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ABSWiCT
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Doctoi' of Philosophy

STRESS DISTRIBUTIONS IN RAIiDOMLY EXCITED STRUCTURES

by Stuart Malcolm Steam

The work analyses the distribution of dynamic stress in flat plate and 

cylindrical shell structures, such as are found in the cooling gas cir­

cuits of nuclear reactors,when vibrating in response to broad frequency 

band excitation. The vibration predominantly takes the form of bending 

waves.

Two analytical models are considered, namely the normal mode and the 

travelling wave models. The normal mode model is chosen to examine the 

distribution of stress in regions away from any boundaries of the struct- 

urej the travelling wave model is used to predict variations of stress in 

the vicinity of a boundary or discontinuity. In order to simplify the 

analysis of local stress, an idealised model of a diffuse, travelling 

bending wave field is assumed. Acceleration and strain correlation 

experiments are used to investigate the. conditions necessary to estab­

lish a good approximation to such a field. It is found that such an 

approximation is valid whenever more than ten modes are excited simul­

taneously. An additional requirement for a cylindrical shell is tliat the 

frequency of response must be above the cylinder’s ring frequency.

The travelling wave model is used to predict the ratios of mean 

square stress and strain to mean square velocity averaged over the 

structure. This ra-tio is confirmed by experiment. jULso, the mean 

square stress at a weld and a change of section is predicted in terms 

of the space averaged mean square stress. These results are confirmed 

by experiment. All these results are found to be applicable even when 

fevzer than ten modes are excited.

The normal mode model is used to predict the standard deviation 

of mean square stress and acceleration from their space averaged 

values vzhen more than ten modes are excited. Experimental results show 



good agreement v/ith theory, when more than twenty to tirLrty modes are 

excited, 'tiiien less than that number of modes are available, the 

measured standard deviation is lower than that predicted.

In both sections of the work, the effect of structural damping on 

the validity of the analyses is found to be small. The total number 

of normal modes excited is by far the most important consideration.

Finally, it is suggested how the results might fora the basis of 

a relatively straightfonvard design method, and possible future 

extensions of this are considered.
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NOTATION

A^ amplitude of bending vzave i

a side length of rectangular panel

B bending stiffness

B bending stiffness of weld (Chapter 7)

b side length of rectangular panel

Cg speed of bending v^aves

Cj^ speed of longitudinal waves

D diameter, amplitude of transmitted travelling w£.ve, 
compressive stiffness

D* amplitude of transmitted near field

E Young's modulus

F^ lateral force transmitted (Figure 50)

f^ ring frequency, (page 69)

G- shear modulus

Ei^^i^o;) cross impedance of structure betvzeen positions r and r^* 

at frequency cu

h plate thiclmess

I second moment of area

Jo(x) Bessel function of order zero

K ratio of wavenumbers = kg/ constant, p.180

stiffness matrix for distributed system

k wavenumber = 2_7r 
X 

mass matrix for distributed system



M^ bending moment about z axis

M \
zz I

^'•^xz ( bending moments (see pages I54 et seq)

m mass per unit area, mass per unit length, integer.

N ratio 01 bending stiffnesses (Chapter 7). number of 
modes available,

n integer

^(£os£o';w)cross spectral density of exciting force 

Qy shear force (Figure 50) 

{9^} coordinate matrix for distributed system 

^x,y( ^ ) ^'^gg correlation ooefflclcnt between x and y at time 

R amplitude of reflected travelling wave 

R' amplitude of reflected near field 

r' separation 

r,r*,r^,^' position vectors 

Sg^ signal a

8 (w) spectral density of exciting force

T time, torsional rigidity

T(^ critical angle (Chapter 7)

t tLme (variable)

V variation = standard deviation/ 
/average

Vy lateral velocity

'^^ angular velocity of weld (Chapter 6) 

^7^,r';w) cross spectral density of response 

x,y,z Cartesi^i coordinates 

^a^^^ S-Cceptance of mode a at frequency w 



2y characteristic impedance

a variable 

^ varicible

7 variable, transciisBion loss

7g random phase angle for modal response 

f displacement

7? displacement perpendicular to plate

6 moment of inertia of weld (Chapter 6)

6 angle of incidence

K constant

X wavelength

I' Poisson*s ratio

^ strain, displacement

p density

(F stress

_2
0^ mean square stress due to partially reflected bending 

wave s

^ mean square stress due to transmitted beisding vzaves

_2
<7^ mean square stress due to totally reflected bending 

waves

" 2
(^ mean square stress due to totally non-transmitted 
u bending waves

T time lag

T^^ sliear stress in plane X2

^(r) displacement at of mode a

0) angular frequency

^2 angulej? frequency about 2 axis 



natural frequency of mode a 

angle of departure of transmitted wave^ 
argument of vector on ivavenunber diagram (p 174 et seq) 

time average

space average
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KS ElQBLSn

G,3s, Cooled rTuclec^-' Por;ei- Su:;tions cTe e::-ureGely e::pensive iteus.. 

Iheir cost approaches £100 per la; ii^stalled capacity, coispcr-ed v;ith {%j0 

per la; installed capacity for a conventional coal fired statior/^^ It 

as therefore a critical matter to reduce the capital cost as much as 

possible in oraer to reduce the cost per unit of electricity generated 

to levels competitive vlth conventional stations, i.e. 0.45d./unit.

To achieve this, the specific output must be raised to the liigh- 

est possible level. This, in turn, demands that the rate of heat trans­

fer in the core and heat exchanger regions must be as high as possible. 

It is not difricult to achieve high rates of heat transfer between the 

fuel and the woriring fluid in coal fired stations. The coal is 

incandescent at an extremely high temperature and need retain no mech- 

anica.1 strength; the rate of heat transfer can be very high, v/ithout the 

need for exceptionally high heat transfer coefficients on the gas side 

of the boiler tubes. Ho^vever, in the present generation of reactors, 

nuclear fuels must retain their mechanical properties and cannot -run at 

such Ugh temperatures. At Dungeness 3 Advanced Gas Cooled Reactor, to 

be comiilssioned in 1971, the upper fuel can temperature will be 800°C, 

the outlet gas temperature 675°G, the steam temperature 5o5°C. To achieve 
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the high heat transfer coefficients necessary fo]^ adequate rates of 

heat transfer) a dense gas, carbon dioxide, is used to carry heat firom 

the reactor core to the steam boiler. The gas must be at high pressure, 

450 Ib^/in abs., and must be circulated at relatively high speed, 

approximately 30 feet per second* The gas circulators have to be power­

ful, using as much as 60,000 IIP, 8-10^ of the total station output. Such 

big machines cause severe acoustic conditions in the reactor gas circuits; 

noise levels of up to 180 dB are produced. The high power levels them­

selves demand that the circulators are designed to the highest efficiency, 

which tends to increase their noise output. Simultaneously, the need to 

reduce the capital cost dictates that the least possible material be used 

in the construction of the plant, consistent with satisfactory mechanical 

performance. \

Meeting this requirement leads to the situation where acoustically 

induced dynamic stresses in the structures of the cooling gas circuits 

may be critical.

The problem first became apparent during the commissioning of 

hinkeley Point A reactor in 196). There was a failure of the diffuser 

when a large portion of it broke out' Correction of this type of fail­

ure is very expensive, for even one day's lost output costs approximately 

^20,000, Clearly, it is desirable to avoid such failures in the design 

stage*

The design analysis may be divided into three parts:-

2



(i) Prediction of the intensity* frequency spectrum and 

pressure field distribution of the acoustic field

(ii) Prediction of the stress distribution caused by the 

acoustic field in the structure

(iii) Prediction of the fatigue life of the structure 

under these stresses*

The present work is concerned with the second port of the problem. 

Broadly* we may divide the reactor gas circuit structures into two types 

of component; plate and shell* or rod and tube. Figure (1) diagramm- 

atically shows the main components in a typical gas cooled reactor. In 

this work we shall confine our attention to the vibration of the plate 

and shell structures of the reactor. Of course, the rods and tubes 

vibrate and represent a design problem as well* but the approach to this 

is usually rather different from the problems of shell and plate response 

and is currently being tackled by other workers.

Ungar ' describes an analytical method by ivliich it is possible to 

derive an estimate of the spatial mean square vibration velocity in a. 

structure* in terms of the mean square pressure to which it is subjected* 

by considering the flow of energy between sets of modes of the structure 

and the acoustic field. Pahy^^^ and Beany et al^^^ discuss the specific 

application of this analysis to the problems of nuclear reactor struct­

ures* and it is not discussed any further in this T.-ork, We vd.ll consider 

the next step* how we may deduce the likely distribution of stress in a 

complex structure* given tins mean square level of velocity.

In response to an acoustic field* the plate like structures in 

a reactor will vibrate in bending at frequencies high compared with their 

fundamental frequencies. The structures are complex. Figure 2 shows a.

3



Pressure Shell
Charge Tubes

Motor

Figure 1 Typical Gas Cooled Reactor
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model of part of the gas circuitry of Dungeness B reactor, from which 

one may appreciate the complexity of the many structures bolted and 

welded together. The frequency bandwidth of the excitation depends on 

the type of compressor used. Axial blowers, such as v/ere used in earlier 

designs, produced very narrow band random noise; more recent designs use 

centrifugal blowers which produce more broad frequency band random noise.

Cracks often start from discontinuities in a structure. A 

designer needs to know if significant stresses are going to be induced 

by a particular discontinuity, when these stresses are compared with 

those that might be expected in the mid structure. Very little work 

has been done on this problem and the following references are the 

only known relevant contributions to date. Beany et al derive a 

value for the ratio of maximum to mean stress in a simply supported 

plate, vibrating in a single mode. Lyon^ discusses the ratio of 

maximum to mean response that is likely to occur when many modes may 

be excited at once by a single tone. Ungar' discusses the concen­

tration of strain at a reinforcing beam when a straight crested bending 

wave reaches it. There is also an interesting paper by Cheng and 

Jaharshahiia^^^ which describes the concentration of strain set up 

round a circular obstacle in an infinite plate, excited at a point by 

a harmonic force. However, none of these papers covers the design 

problems associated with nuclear gas circuit structures; that is, 

structures of complex shape, excited at frequencies several times their 

fundamental- by broad frequency band noise.

In Chapter 2 we consider the properties of bending waves in 

6



plates, for this is the most important mode of struotural response to 

sound. In Cliapter ^ we compare the two analytical models which might 

be applied to the behaviour of structures vibrating in bending; these 

are the normal mode and the travelling wave models. We also consider 

the use of the diffuse, reverberant field model as a further simplifi­

cation. Chapter 4 discusses experiments performed on various structures 

to test the validity of the diffuse, reverberant field model under 

broad frequency band excitation*

In Chapter 5 this model is used to predict the ratios of mean 

square strain and stress to mean square velocity; in Chapters 6 and 7 

it is used to predict the stress concentrations at a weld and at a 

change of section.

In Chapter 8 we use the normal mode model to predict the 

statistics of mean square stress, strain and acceleration about their 

spatial means,away from the boundaries of a structure.

Finally, in Chapter 9 we discuss the inclusion of the results 

obtained in a design method,and possible future extensions of the work.

7



Chapter 2

Bending 7aves: A Brief Summary of their Behaviour

There are several ways in which solids may vibrate: they may 

vibrate in torsion, in sheer, in compressibn or in bending. When 

acoustically excited, structures in reactor gas circuits vibrate 

predominantly in bending, for this is the mode of vibration that 

couples most effectively with the sound field.

Figure 3 shows two different modes of vibration in plates and 

beams. In bending the plate is displaced laterally, and initially 

parallel sections ere no longer so. An acoustic field is a compress­

ive wave field in a gas, and if energy is to flow from the acoustic 

field into the structure, then the structure most move laterally. 

Longitudinal vibrations cause small lateral movements, due to the 

effect of Poisson's ratio, but these are negligible compared with 

those caused by bending waves. Further, the speed of bending waves, 

though dependent on several factors, is often of the same order as the 

speed of sound in air,and also that in carbon dioxide under reactor 

service conditions. This also ensures high energy exchange between 

the'acoustic field and the structure. At a typical service frequency, 

the wave lengths in the structure and in the acoustic field will be 

comparable. Maidanik^^^ described this effect and it is beyond the 

scope of this work to consider it further here.

At high frequencies, ripples occur on the surface of the

8



a) Bending Wave

b)Longitudinal or Compressive Wave

Figure 3 Comparison of Bending and 
Compressive Waves 
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material which do not propagate into it, as shovm on Pigure 4o 

These are Rayleigh Surface V/aves. riov/ever, provided that the bending 

v/avelength is more than six times the plate thidmess, it is reason­

able to ignore any such effect^^'^\ Por a 1 inch triid: plate, tliis 

condition holds at frequencies below 10,800 Hs, and for a 5 inch thick 

steel plate below 43#000 Hzo These frequencies acre '.veil above those 

considered in present nuclea.r design studies, Li tliis work we need 

only consider the behaviour of the lovz frequency bending waveo 

2ole The Lov; Frequency Bending 77ave Equation

V/hat follows is well esta.blished theory^^*^\ However it is 

useful to go over the derivation, for there are important differences 

between the behaviour of bending waves and the more familiar compress­

ive waves.

To define the state of a compressive wave we need fix only trzo 

quantities, say the velocity and the pressure. These are sufficient 

boundary conditions from which to deduce, for ex3.mple, the behaviour 

of a sound wave reaching the boundary betr/een two different acoustic 

media, say air and carbon dioxide. But to define the state of a bend­

ing wave we need four quantities. The most common quantities used are 

as shoxm in Figure 5:-

(a) the Lateral Velocity, Vy;

(b) the Singular Velocity, ^^, about an axis normal to 

the deflection and in the plane of the structure;

(c) the Bending moment about the z axiSyL'z;

(d) the Lateral or Transverse Force, Fy.

1 0



Figure 4 Rayleigh Surface Waves
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Figure 5 Boundary Conditions for 
Corripressive and Bending Waves,
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In plates, the bending moment and lateral shear force are 

referred to a unit \Tidth of cross section and denoted as Hz', ?y'. 

These quantities are connected by the following equations.

Consider a beam lying in the directionO-%.

Then

Now, from (11), the bending moment may be written as:-

k/4% = — El 2.2. 

where i? = lateral displacement in the y direction, normal 

to 0%.

E =:. Young's modulus

I =' second moment of area of the cross section of the beam.

Differentiating v/ith respect to time we obtain:

d M^
at a X

where

B = bending stiffness, EI.

A well knoT/n result relates the bending moment and the transverse 

force.

Consider tlie dynamic equilibrium of a section of a bar, 6x, under 

bending and shear loads, as in Figure 6. Taking moments about one end:

1 3



Figure 6 Equilibrum of an element of a 
Uniform Beam in Bending.
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Thent

2*5.

Tn deriving this, we have not considered tlie effect of rotary 

inertia in 2.4. However, Cremer has shoim' that when the bending 

wove length is large compared to the thickness of the plate or bar, then 

the kinetic energy of rotation is negligible compared to tae kinetic 

energy of lateral movement. Since we are restricting our analysis to 

fre(%u.encies where the wavelength is more than six times the chickness, 

this approximation is reasonable, end we may neglect the eifect oj: 

rotary inertia.

Finally, if we consider the dynamic vertical equilibrium of the 

element in Figure 6 we obtain the expression:-

wherem cimass per unit length, for a bar, or per unit area for a plate.

Then m. 2.7.
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If we coMbine the framed equations, 2.1., 2.^., 2.5,, 2.?., we 

obtain the partial differential equation for all field quantities in 

a one dimensional form:-

where :p = density and D = compressive stiffhess.

Vx is the velocity in the 0 - z direction at X.

Any solution of the form V^ will

satisfy the Equation. The velocity of propagation is independent of

frequency and is given by \/ D/p . Waves of complex frequency

content can propagate without dispersion, and the shape of a given wave

will not change as it propagates through free space.

The solution to the Bending 77ave Equation cannot take so simple

a form. The derivative with respect to space is of a different order

from the derivative with respect to time and is of opposite sign.

A possible solution Is:-

2.10.
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provided that K '^hLH 2.11.

8

where k is the wave numberj which e<%uals ^JL 

where X is the wavelength.

For this solution^ a sinusoidcd. variation with tine, the veloc­

ity of wave propagation, Gg, is given'byi-

Cg- - y^ /^ 2.12.

This is no longer independent of frequency; waves of nany different 

frequency harmonics may no longer propagate undistorted in an infinite 

plate.

The various properties of compressive and bending waves are com­

pared in Table 1 at the end of this chapter. However, the differences 

that will most concern us are over the behaviour at boundaries, where 

now four, rather than just two, boundary conditions must be satisfied.

,2,3. The Bending ^ave at a Boundary

Imagine that a bending wave reaches on arbitrary boundary. In 

addition to satisfying the boundary conditions, we must satisfy the 

general solution to the bending wave equation.

We will restrict our considerations to solutions of the form of 

2.10., then;-

1 7



Then:

thus:

2,l/f-«

2 @3-5^

2,15b.

We liave therefore four possible solutions.

From the seoond equation, 2.15b., we will obtain terms of the form 

e%p.( ^ilcx ), which aesoribes travelling bending waves which may carry 

energy,away from the boundary. From equation 2.15a., we will obtain 

terms of the form exp.C ^ ), which describe decaying near fields 

that do not propagate away from the boundary, and which do not carry any 

energy.

Figure 7 shows the near field set up when a long bar is excited 

in bending at a point, (from Cremer(lO)). The solid line represents the 

shape of the bar; the dashed line shows the travelling wave component on 

its own.

In later chapters we will deal with the relative magnitude of each 

of the fields at various discontinuities or boundaries in a plate. For

1 8
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the noment it is sufficient to appreciate that in addition to the energy 

carrying ivaves, a boundary can induce vzaves that do not carry energy and 

that decay rath distance, even rzhen the plate is of unrestricted area. 

This is not to be confused with the acoustic near fields set up, for 

example, near a dipole source in an infinite space. Such near fields 

are the result of complex interference effects and also occur vzith bend­

ing waves. But the decaying waves induced by a boundary in an imrestricted 

area are peculiar to bending waves.

TABLE I

Comparison of Some Frcnerties of Compressive and Bending 

"Vaves'in a Bar

Compressive Bending

Velocity of
Propagation

D = Compressive Stiffness

P = Density

.Speed independent of 
frequency)

% = V^ ^
B = Bending Stiffness 

m = mass/unit length 

w = frequency 

(Speed dependent on 
frequency)

Intensity I : = ^TGI " Cl, ^ "^ ^TOT * ^Cg

2Cg =- Group Velocity (^^i)

Energy Density 
^^TCT^

2 2 2^TCT = A^k .cos^.kx

k = wavenumber

A = Amplitude of 
Compressive Wave

X = Distance along 
bar

(Dependent on position)

U^^= 3A-k4

k = wavenumber

A = Amplitude of
Bending Wave

(independent of position)
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Chapter 3

Tlie Analysis of the Forced Vibration of Extended Plate and Shell 

Structures .; a Summary of Available Methods

There are tr,'o analytical models that we may use, namely, the 

Normal Mode and tlio Travelling Wave models.

First we will consider the derivation of the two models, their 

properties and limitations in accurately representing the behaviour of 

vibrating plate and shell structures*

Next we will consider the problems of analysing the stress dis­

tribution in a complex structure at high frequency, when many modes may 

be excited. We will use the two models and compare their value to us,

3.1. The Normal Node

Let us consider the free vibration of a multi-degree of freedom 

system that is conservative, i,e, undamped* This analysis is well 

known and we will only consider its main results*

For n degrees of freedom we may describe the free oscillation 

about an equilibrium position as:—
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where ’’n-n] are coordinates necessary to define the

state of the system and where h/pg and Kp- are coefficients

of mass and stiffness.

tbre simply^ we may write:-

3.2.

where are mass, coordinate and stiffness

matricies,

We note that are symmetric matrices.

Let us consider solutions of 3*2. corresponding to pure harmonic

motions of the form:-

hl
where is a

is the angular frequency andmatrix of amplitude constants, (*)

3.3.

of

There will be a 
k]- d? [M

solution of this equation wherever the determinant 

vanishes, i,e«, wherever the frequency w

2 2



equals n certain values, Wp . Thus we may set up our 

general solution as:-

The values of u_ are set by the stiffness and inertia of the 

system and are known as natural frequencies of the system* The column 

matrices {^^} ^^ knovm as Modal Columns. Having specified the

value of one element of nil the other elements are fixed, for

this matrix defines the shape of mode r of the vibrating system.

One of the most important properties of modal columns is that

(12) 
they are orthogomal. An elegant proof of this is quoted by Pipes 

Briefly, let us consider the rth modal column. It satisfies 

the equation

The S th modal column satisfies

Premultiply 3,5 by and 3,6 by

we have

/\s^
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where is the transposed m;

Now 3.9

where [(]],[b])[c] are three conformable matrices

3.10.

Then subtracting 3.10, from 3.8*;

If r/S , then in general it follows that
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3.12.lAJ MlA.hO
This is the modal orthogonality condition.

We may coll these modes Iformal modes.

We now have on alternative sets of axes with which to describe our 

system. Instead of describing the state of each coordinate, q, we may 

define instead the amplitude of each column matrix {Ap} * This 

we are free to do without interfering with the amplitude of the other 

normal modes*

Now,a plate has an infinite number of degrees of freedom, and it 

is much more convenient to describe the normal modes whose natural fre"* 

quencies lie within a given frequency band than to give the displacement 

of each point on the structure, which is in principle an infinite task, 

for within a certain finite bandwidth we find that there are a finite 

number of normal modes.

Por a lightly damped structure with well separated modes, the 

existence'of normal modes may be demonstrated practically. The natural 

frequencies may be approximately determined by exciting the structure with 

a discrete tone, and noting the frequencies that cause maximum response. 

A typical response curve is shown in Figure 8, The response is then 

almost entirely due to one mode. On a flat plate, the mode shapes may 

be dramatically demonstrated by scattering sand on the plate and exciting 

it at a resonance. The sand will indicate the nodal points, or points 

of rest, in the modal pattern. An example of this is shown later on 

2 5



in Figure 6 4.

Hov/ever, while it is successful for lev; cicnping, when the denping 

is liigh the uodel is less satisfactory = The modes nay well no longer 

be orthogonal; they ecn only be so if the damping, if viscous, is dis­

tributed in proportion to the local stiffness or ciass*'^^\ In practice, 

Vvhen structures are liiglily damped, the damping is often entrenelp’- local­

ised; a bolted joint nay be responsible for most of it. T2:is nay beshcam 

b^r measuring the damping of r. continuous raid a bolted structure of the 

same size aud material; the damping in the bolted structure alll be lauch 

liigher. In this situaticn, the damping v.'ill cleaa'lp’" not be distributed 

according to the local stiffness aoid the modes will no longer be orthog­

onal. hith liigh damping it is difficult to interpret the normal mode 

model physically. As damping is introduced to the system, the bandwidths 

of the modes become finite; the peaces i:a the frequency res;Donse curve 

be.ccme flattened and we can no longer be sure of fin.ding a na.tural fre­

quency by simply looZeing for a, local masrina of frequency response. Tins 

is shown on Figure c.

The Anechoic F.cok, where all a.coustic energy tha.t reaches tlie ".vail 

is absorbed, represents the ultimate in highl;^ damped systeras, ITo 

resonances may be detected in tlie :nr space of the room, and it is no 

longer correct to taJ.k about normaA modes.

Hcaever, under many service conditions, the daarping is not very 

liigh, and it is reasonable to use the noma-1 mode model to describe the 

vibration of nmy structures. Ifnether or not it is the best description

2 6
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Figure 8 Frequency Response of a Multi­
Degree of Freedom System with Light 
and Heavy Damping.
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will be discussed in Section 3*3.1» of this chapter.

3.2. Tlie Travelling Wave

A standing wavej or normal mode^ in a room or in a structure) may 

be regarded as a set of travelling waves which constructively interfere 

to form nodes and anti-nodes. In solving the wave equation for a bounded 

region, whether this be for bending waves or acoustic waves, the imposit­

ion of the various boundary conditions imposes restrictions on the form 

of the bending waves. For undamped systems, we find that waves may only 

travel in a limited number of directions if the frequencies of the waves 

lie within a certain band. In other directions, and at other frequenc­

ies within the band, the boundary conditions cannot be satisfied.

This is, of course, identical to the normal mode situation. The 

frequency of the "permitted" wave is a normal mode frequency, and the 

permitted wave direction merely specifies the mode shape. Figure 9 

attempts to demonstrate the relationship between two normal mode shapes; 

of a flat, rectangular, simply-supported plate and the direction of the 

alternative travelling wave as specified on the Wave Number Diagram.

The wavenumber of a particular wave, k, we have already defined as 

2w/X where X is the wavelength. Zach dot on figure 8a represents 

a normal or a constructively interfering travelling wave. Let us con­

sider wave number vector 1 corresponding to mode 1. The wavenumber in 

the 0 — X direction is 3ir/Q end in the 0 — a is w/b J i.c, the 

wavelength in the 0 - x direction is §a and 2b in the 0 z 

direction. Vector 2 is more complex; the wavelength in the 0 - x

28



direction ia a and in the direction 0 - z is ^h The resulting

angle g is the direction in space^ relative to the O- x axis, in 

which the travelling wave will propagate.

The wavenumbers are related to frequency by:-

3.U.

for a rectangular, simply supported plate. (o^ is the frequency 

of the Wave a or noimial mode a « Other stmotures 

have more complicated wavenumber diagrams and we will consider some of 

these later*

Ooing to the trouble of expressing normal modes in terms of per­

mitted wave directions can lead to a better understanding of the 

behaviour of the system when the damping is localised, as it often is in 

practice. We may talk of bending waves losing energy on a reflection at 

a boundary. Clearly, for such a system, a pure standing wave cannot be 

set up. Por constructive interference from the reflected waves is 

impossible as amplitude of the reflected waves will be less than the 

incident wave.

It is quite easy to discuss the flow of energy in an anechoio 

room, if we consider waves travelling to the boundaries and not being 

reflected. It is quite obvious that such a sound,field will behave as 

if it were in an infinite space. As we have seen, we cannot describe this 

situation using normal modes.
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Doak uses a combination of standing and travelling waves 

to describe the behaviour of sound waves in partially absorbent rooms. 

Mead has also used the idea of travelling waves to describe how 

the location of damping materials in a structure can affect the total 

damping. Using the travelling wave model is particularly appropriate 

for this, as the effect of position can be more readily appreciated 

than when the damping is fed in as a generalised modal damping affect­

ing the whole structure. Heckl^^^^ also discusses the superiority of 

the travelling wave model when dealing with localised damping* and 

points out the success with which it has been used in architectural 

acoustics.

A point of great interest to us later is that alterations in 

the boundary conditions do not have serious effects on the wave number 

diagram. Figure 9* from the work of Bolotin^^^^ shows the wavenumber 

diagram for a clamped and simply supported plate. The grid of lines 

has shifted a little on clamping. This ing)lle8 that although individ­

ual modes have.been distorted locally and their frequencies altered* the 

direction associated with them has altered little.

3.3. The Analysis of Stress Distribution

The object of this work is to try and establish a method of pre­

dicting the distribution of stress in a complex structure* vibrating at 

high frequency* from the design stage. We will now consider the details 

of the analysis* using the models described* to see which will most 

reasonably allow us to estimate this distribution^
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FIGURE 9 WAVE NUMBER DIAGRAM FORA 
SIMPLY SUPPORTED PANEESHOWING TWO 
NORMAL MODES AND THEIR 
CORRESPONDING WAVE VECTORS.
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3.5. 1. Normal Mode Analysis

1.3.1.1. Powell's Equation:- Accurate Summation of the Effect of 
Several Known Normal Modes

In principle, all linear shell vibrations are described by

Powell's Equation, quoted in (18) as:-

W(r,r<(j)=y/H(r,n,u) H(r',ri,';u)P(r.,t3'w)dr,dr^^'^'

W(r.r'; w) is the cross spectral density of the response and 

describes the relative phases and amplitude of the response at differ­

ent positions at various frequencies: P(%$lV*w) is the cross;

spectral density of the exciting forces. Formally, the cross spectral 

density is the Pourier Transform from the time domain to the frequency 

domain of the cross correlation of the quantities, response or force,

at r and r', or r and r" .
0 0 

) isEstimating the value of

often an extremely uncertain procedure. The only situations in which 

estimates are reasonable Is when the acoustic field is a travelling 

wave travelling in one direction only, or travelling waves in every 

direction. A further discussion of this Is beyond the scope of this 

work. Bull et al^ ' discuss further ramifications.

^(^*^'o;(^) is the cross impedance of the structure; this is the

response at r due to a unit exciting force of frequency 2^ '4 ^'0
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We may write it as (19):—

It- (r) (rot
3.15.

where ^^ represents the shape of mode a

and Y(^(w) is the impedance of mode a at frequency ^

If we hope to solve Powell's equation to find the response of a 

structure* we must find an ezcpression for ^, and for Ya(w) * 

even if we do have an expression for the cross spectral density P(f^n»$w) 

of the'exciting forces.

Analytic solutions are only possible for the simplest structures* 

for example* the simply supported rectangular plate or cylinder. In 

order to produce solutions for even slight departures from tliis situat­

ion* say a plate* lightly bolted round its edges* we must assume some­

thing about the boundary. We might try to get the mode shapes by assuming 

that the boundary is simply supported* or perhaps rigid* Either way Is 

generally unsatisfactory. We most probably would want to find the stress 

at the boundary; yet we are obliged to ignore those very details which 

are most likely to cause the stress concentrations that we seek.

The so-called Pinite Element technique is an alternative method 

by which the form of the normal modes may be determined for complex 

structures. Briefly* the structure is broken up into a large number of 

small elements. By matching up the boundary conditions of the complete 

structure and of the adjacent elements* and knowing the equations of 
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motion of the elements, it is possible to predict the normal mode 

shapes and frequencies of the structui^* This technique is very 

successful in predicting the low order modes of complex structures. 

Ermutlu^^^) has used it to study the response of arch dams to earths 

(21) 
quakes, and Deb Nath et al' have used it to examine the low order 

modes of curved shells*

Mason' has studied the computational requirements for predict­

ing the normal modes of a rectangular plate. Beyond the 12th normal mode 

over 10^ store locations are needed in the computer to accurately pre- 

dict further modes* In general, we are concerned with very high order 

modes of the gas circuit structure, typically the 100th mode and often 

higher* Even with the largest available machines it is doubtful if 

enough information could be Included to predict the detailed stress dis­

tribution at operating frequencies*

Whether the normal modes are found analytically or numerically, 

there is a further objection to using this model to investigate detailed 

local stress distributions. Even a very modest change in boundary con­

dition can produce large changes in natural frequency and mode shape, 

particularly at high mode order* If a small change is introduced into 

the structure, either deliberately or by accident during manufacture, 

then the normal modes are all changed, and our calculations are invalid* 

In fact, we know this to be an exaggeration, but using a normal mode 

model we have no grounds for saying so, unless we re-calculate the 

response for all possible conditions*
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5.5.1.2. Asymptotic Summation of the Response of Many Normel Modes

Skudrzyk' ' has developed an approach to the analysis of the 

impedance of vibrating systems, based on the concepts of electrical net­

work theory. Re develops this for low order modes; he then examines the 

form of the asymptotic solution at high frequencies. Re finds that fre­

quency average impedance for high order modes relies on what he terms the 

structure's basic parameters. These are gross properties of the struct­

ure; exactly which properties are to be considered depends on the basic 

shape of the structure. For example, for flat plates the Characteristic 

Impedance to a point force is given by:-

Zc=8 B^ m' 5.16

where 6' = Bending Stiffness per unit width of plate, 

m' = Mass per unit area*

Skudrzyk shows how these impedances, which may easily be determined 

with little attention to structural details, can be used to predict the 

flow of energy from one vibrating system to another. Re quotes the 

example of a mass loaded joint to illustrate the use of the method, and 

compares his results derived theoretically with experimental results.

Rowever, these results cannot help us determine either the stress 

concentration around a discontinuity, or the excursions of stress that 

are likely from a given estimated mean value. These are our chief 

interest#

5.5.1.3. Statistical Summation of the Response of Many Normal Modes

Waterhouso^^^ and Lubman^^^\ among others, have investigated the 
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statistics of sums of normal modes to predict the variation in sound 

pressure level about the spatial mean square pressure in reverberant 

roomS) when many normal modes are excited simultaneously. In general^ 

the more modes excited, the lower is the standard deviation of sound 

pressure level, measured at various points about the room. These theo­

retical findings have been borne out by measurements made in reverberant 

rooms.

4 similar analysis could be very useful in deciding the likely 

variation from the spatial mean square stress in a plate. The spatial 

mean square stress is, of course, the stress estimated from the 

statistical energy analysis. Intuitively, one would imagine that 

given enough modes, then a similar result should hold. In Chapter 8, 

where this is discussed in detail, we find that this is so. Por brevity, 

the details of the analysis will not be repeated here.

The important point is this: the property we are trying to find 

is related to the whole plate, and an approach via the normal mode 

model is thus eminently suitable. However, again, such an approach 

cannot tell u^s anything about conditions near a boundary, or, indeed, 

in any specific location.

3.3.2^ The Travelling Wave Analysis : The Diffuse Field Model

First let us consider a single travelling bending wave incident 

at an arbitrary discontinuity at an angle. ^ . Without yet delving 

into the mathematics, we have already seen from Chapter 2 that this 

boundary will reflect some of the bending waves and transmit the rest. 
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The reflected and transmitted wave will give rise to interference 

fringes near the discontinuity, which will cause local alterations of 

stress* We may draw a cautious analogy with the behaviour of light * 

passing through a narrow slit. Interference fringes are produced, as 

shown by local alterations in the intensity of light* As we have seen, 

the bending wave is further complicated by the extra decaying near 

fields* However, we can, in principle, predict the bending stress nor­

mal to the discontinuity due to a bending wave of given amplitude 

arriving from a given direction ^,

Using the travelling wave model we can make an important gener— 

alisation about the form of the bending wave field, that can make our 

analysis of the stress at a particular'discontinuity general for any 

structure containing this discontinuity*

If we are to perform design calculations on any unknown struct-^ 

ure we must make some assumption as to the ac-tual form of the wave­

number diagram* We might assume that all the waves travel in one direct­

ion or that the waves can travel in every direction statistically 

independent of each other* By statistically jj^dependent we mean, for 

example, that the total mean square stress due to all bending waves is 

the sum of the mean square stress caused by each bending wave on its 

own* The actual form of the wavenumber diagram is probably beyond our 

computational powers. Heckl^^^^ points out that the second assumption 

has Worked well in architectural acoustics* (See also Morse^^^^)* 

Certainly, looking at Figure 10, it would seem that if we are concerned 

with the behaviour over a band of frequencies, then, indeed, waves will
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The circle and rectan^.'uls.r 
grid correspond to the simple 
supports;the dashed line and 
offset grid to the clamped 
plate.

Figurel 0 Wavenumber. Diagram for a Simply- 
Supported and a Clamped Rectangular Panel. 
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arrive from many directions, Tliis assumption makes use of the fact 

that small changes in boundary condition mill alter the direction of 

individual waves only slightly.

Of course, the approximation that bending waves arrive from 

every direction can only be exact for a plate of infinite extent. In 

building acoustics the assumption works well, as mentioned. It works 

because the modal density, i.e., the number of modes in a bandwidth of 

one cycle per second, is very high in acoustic spaces. A room 

10 ft. X 10 ft. X 10 ft. at 1000 Hz will have a modal density of 

9.44 modes/Hz; a steel plate 10 ft. x 10 ft* x 1 inch will have a 

modal density of 0.12 modes/Hz at all freguencies^^^^.

One of our tasks will be to see how many structural modes are 

necessary for this assumption to be adequate. Incidentally, a point 

that is likely to favour the assumption is that we only have two dimen- 

sions to fill. The normal modes available in the acoustic volume have 

to produce an even energy flux in three dimensions; in the structure 

they only have to produce an even flux in two dimensions.

A further valuable advantage of the travelling wave model is 

that it is possible to localise the effect of a boundary* The near 

field effects do not propagate. This implies that the stress changes 

are only local. This is in accordance "with the findings of Bolotin^^^^ 

He describes the dynamic edge effects close to boundaries of shell 

structures. The changes from the sinusoidal deflected shape that 

occur at a boundary do not propagate into the mid-field regions. 
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Par from a boundary, the bending waves are sinusoidal in shape, as if 

the plate was simply supported. In short, this approach implies that 

if we change a particular boundary, say, clamp a hitherto free edge, 

then the major alterations in stress will be near that particular bound 

ary and the stress elsewhere will be largely unaffected*

In Chapters 6 and 7 we put these ideas into practice.

3,4 Comparison of the Analyses

We may conclude very simply* Por investigating the local stress 

changes near a boundary we will use the model of waves travelling in a 

diffuse reverberant field; for investigating properties relating to 

the whole plate, like the statistics of mean square stress, the normal 

mode model is more appropriate.

4 0



Chapter /(.

Formal Tests of the Diffuse Field Model

In Chapter 3 we decided that when investigating the variation of 

stress near a boundary) we should use the analytical model of bending 

waveS) travelling about the structure in a diffuse field* We assume that 

many bending waves, statistically independent of each other, will travel 

about the structure in all directions* In this chapter we devise formal 

tests to see if this is a reasonable representation of what happens in 

practice.

The parameter that will most affect the accuracy of the assumpt­

ion is the number of bending wave directions, or modes, excited in the 

structure. This we will investigate, We will also see if damping has, 

any effect on the reverberance or diffuseness of the field, either by 

increasing the amount by which adjacent modes overlap in frequency or by 

creating a radiating field as in an anechoic room.

Two tests have been used; the cross-correlation of accelerations 

at separated points on a thin plate or shell structure and the cross­

correlation of strains at individual points in two orthogonal directions. 

The acceleration correlation experiments have also been simulated on & 

digital computer by using Powell*s Equation (Section 4.1*3*) to show 

that the two models, the normal mode and the travelling wave, give 

consistent results,

4*1* Cross-Correlation of Acceleration ;

Cook et al^ describe a series of experiments in which they 

tested the diffuseness of the acoustic field in a reverberant room* They 

set up two microphones in the room,separated by a distance r, and 
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measured the cross-correlation of the outputs when a sinusoidal signal, 

slowly changing in frequency with time, drove a loudspeaker in the room^ 

They then compared the results with a theoretical prediction of cross­

correlation coefficient based on the assumption that the field was 

diffuse, which they give as (sin kr)ykr where k is the wavenumber. ,

The analogous experiment on a structure is to cross-correlate the 

outputs from two accelerometers, separated by a distance r. Both quan­

tities, acceleration and sound pressure, are independent of the direction 

of any given wave, unlike, for example, strain. The method is attractive 

because accelerometers are easy to handle and usually provide good 

signals for subsequent correlation.

A summary of the following work is given in reference (30).

4.1.1 * Theoretical Value of Cross-Correlation Coefficient

Suppose that a bending wave approaches the line 0 -' x at an angle 

0^ to 0 - X, then the output 8_ from an accelerometer at 0 will be:-

where A^ is the amplitude of the bending wave, 

2^ is the frequency of the wave, 

and o^'^ is some arbitrary phase angle.

The output from the other accelerometer, also on the line 0 - x, but 

separated from the first by a distance r, will bet-
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^- # l"b 0

The pha^e difference between tlie two outputs will be k.r.cos.O^ 

The phase angleOC- is coupon to both signals 2:11 will not 

affect the cross-correlation; for convenience it is omitted in the 

rest of tlie analysis.

Assuming that many modes are responding in a band of frequencies 

the outputs will be:-

N

iCJ^COS.CJit
1=1

SrEA,WjCos(ujtf kjCcos.^J
The cross-correlation at a time lag T of two variables Z,Y

is:- T

2T X(t)y(t+r) dt
-T

T —*oo
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and normalised is:-

where indicates a time averas';e.

We want tliis cross-correlation coefficient for a time delay

- 0 and this will be:-

if we assume that the modes are statistically independent.
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To evaluate this expression we must assume tliat^ for a lar^e 

number of modes, we can reasonably replace the summated terms by a 

continuous functiono Por a diffuse field, even over a small angle 

there would be waves of all frequency and we may write:-

2 TT

If we assume that the spectral density of the generalised 

force on the structure is constant over, say, a third octave (23^, 

frequency band, then we may assume that A w is constant* This 

assumption is necessary if we are to proceed with the analysis and it 

\7ill probably be reasonable for small frequency bands of lUialysis if 

the structure responds at all frequencies within that ba^id.
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If we restrict our analysis to third octave bands, then we may

Tirite k^ + -tc^ as a constant Ic* If we never consider values of Icr greater 

2
tn<;n 10 khio will affeck the accuracy by loss than 10^* For a mild steel 

plate of inch thick, at 2^00 Hz tMs implies r <10 in. and at $000 Eg, 

r < 7 in*

We may now ivrite:-

' 2? I cos^krcos.O^dQ 4.9.

O'/

4.10*

4*1*2. Ezperimental Procedure

Measurements were made on two flat plates, 2.2 ft. by 2.7 ft., 

:$ in. and i in. thick, clamped rigidly at their edges to a cistern 2 ft. 

deep packed round with sand. The plate could be excited acoustically by 

the noise of a jet of compressed air at high pressure escaping into the 

cistern from a gate valve. The ^ in. thick plate could also be excited 

mechanically by an electro-mechanical shaker driven through a power 

amplifier from a white noise generator* Figure (11) shows the complete 

arrangement.

Measurements were also taken on a mild steel cylinder 5 ft. in

4 6



Figure 11 Experimental Set-Up for Correlations on 
Flat Plate

Figure 12a The flat plate showing accelerometer positions.

Figure 12b The cylinder showing accelerometer positions .

4 7



diameter^ 6 ft. long and made of 3/^^ ^" plate* The cylinder was free 

standing-on a light steel frame and could he excited acoustically by 

sound generated Inside by high pressure air escaping from a gate valve. 

Tlie cylinder v/as completely closed a-t one end and could either by com- 

pletely open at the other end or partially closed. This was to alter 

the acoustic conditions inside the tank for another research programme.

The positions of the accelerometers are shown in Figure 12a 

for the ^ in* plate and on IZb for the cylinder; the positions chosen 

on the ^ in. plate were similar to those on the ^ in. plate, except 

that the spacing between each position and the next was smaller. The 

spacing between each accelerometer on the ^ in. plate was 1 in. and on 

the ^ in. plate was 0.7 in* On the cylinder, each position was 1 in* 

apart* During the tests, one accelerometer was held at one end of the 

chosen line and the position of the other accelerometer was altered to 

achieve different values of the separation* The cross-correlation was 

measured along two lines, chosen at random, on the plates andalong one 

axial line chosen at random on the cylinder*

The results for the acoustically excited ^ in. plate are from 

four different experiments. In Figures 13 to 18 the triangle and 

circle represent the results from two experiments on line A, the cross 

and square from experiments on line B* The triangle and cross represent 

the results obtained when one accelerometer was held at the ends of the 

lines marked 1, the other being moved up the line to 8; the circle and 

square marks represent the results when the fixed accelerometer was at 8.

4 8
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The results from the g in. plate are presented on Figure's 19 

and 20 and from the cylinder in Figures 21 and 22. The results 

from the mechanically excited ^ in, plate are presented in Figures 25 

to 29 . They are taken from two experiments only, one on line A and 

one on line B*

Bruel and Ejaer I5 gram accelerometers were used on the :^ in, 

plate and cylinder and 5 gram accelerometers on the ^ in. plate. In 

appendix 1 the effect of these accelerometers on the structures is dis­

cussed. At the frequencies of interest to us, the effect of the added 

local mass on the response of the structure was negligible. Accelezt)- 

meters are usually fixed on with magnets, a thin layer of sticky wax or 

a small screwed stud. During these tests, the accelerometers were 

fixed on with studs screwed into holes, drilled and tapped into the 

structures. Magnets added to the mass of the accelerometers might well 

have affected the local response. Advice given by experienced field 

workers at the Berekely Nuclear Research Laboratories of the Central 

Electricity Generating Board suggested that fixing the accelerometers 

with wax could not be relied on to give accurate phase measurements at 

high frequency. Simple experiments, where two accelerometers were fixed 

to the end of a vibrating cantilever with wax, one on each face, showed 

that at frequencies of interest the phase relationship between the two 

transducers was a function of the care with which they were fixed to the 

base. Only by using studs screwed into the structure could good phase 

information be preserved. Of course* at frequencies where the
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accelerometers could vibrate on their studs, even this would not have 

been satisfactory# Fortunately, these frequencies would have been much 

higher than those of interest ( > 10 kHz )

The signals from the two accelerometers were recorded on a multi*' 

track tape recorder. The signals from the ^ in. plate and the cylinder 

were analysed on an analogue correlator on playback, filtered before 

correlation through a pair of third octave filters selected to have good 

phase matching. The phase match of the filter pair was tested as 

described in appendix 2 and was good enough to ensure that the results 

are correct within about 10^. It was not possible to use narrower 

bandwidth filters as a suitably phase matched pair were not available. 

A signal flow diagram is given in Figure 26. Since the work was first 

reported (30) a digital analysis system has been commissioned at the 

I.8.V.R. at Southampton, in which large quantities of random data may be 

processed on a digital computer (jl). Using this system it has been 

possible to analyse the signals from the ^ in. plate using a digital 

filtering routine on the computer before correlation. This ensured 

that the phase matching was perfect between the two signal channels; 

there could be no question of one channel suffering an arbitrary phase 

change with respect to the other except in the recording or playback 

from the tape recorder. The recorder was a high quality machine, 

recording frequency modulated signals. Its upper frequency limit 

10,000 Hz. The highest frequency considered was 4,000 Hz, and when 

control signals of white noise recorded on to both channels from the

5 6



multichannel

F.M TAPE RECORDER

1/3 octave spectrometers 
TESTED FOR PHASE MATCH

Figure 2G Experimental set up.
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same source were played back* no phase shifts could be detected by 

cross^correlation or any other means.

4.1 *3, Computational Tests

In these tests the behaviour of the test panels was simulated 

by studying the behaviour of a simply supported rectangular panel* using 

Powell's Equation, Th$ object of these tests was to see that the two 

models of the vibrating system* the diffuse bending wave model and the 

normal mode model* were consistent. If an adequate number of normal 

modes are considered* then the two approaches should predict the same 

value of cross-correlation coefficient. These tests also reveal some 

of the practical difficulties of using Powell's Equation.

In fact* Morrows et al^^^^ have carried out an analytical summat­

ion of the effect of an infinite number of normal modes* responding In 

a room and in a plate and* indeed* the two models give the same answer 

for the cross-correlation. However* using the computer* it is possible 

to vary the number of normal modes included to see how sensitive is the 

result to this number.

Two forms of broad frequency band excitation are considered* point 

excitation and excitation by a diffuse* reverberant acoustic field.

Consider the equation for the cross-spectral density of 

displacement* W^JZ^f^w^ . * 4n response to a forcing field of 

cross spectral density (18)

Wk»c^u):^(r,!*^w)|-11r^!^u)RG,,0<%u)dr^<lf/ 4.u.

AA
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HCr,!^;(^) is the cross modal acceptance of the structure. 

Then the cross-correlation of the response at JT and j/ at a time 

delay f is:

4.12 

y
A

Then at zero time delay^ to correspond vvitn our experiment;

""A A

We mil now consider the problem for the structure driven at a point. 

Appendix 3 considers the more involved problem of the structure when 

acoustically excited.

The first problem is to find the value of P(fe/V$^)

Prom the Fourier Transform:
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where Rp is the cross-correlation of the exciting force 

and F(t) is the exciting force at % at time t .

Clearly, for a point force, Fp(t) = : Fpj(t) =. O

unless C— where JH^ is the posacion oi tne

point force.

Then IL, is the auto correlation function of the point force an^

P(%,[p;^) = O if s,^:;^?f J^ 4.16.

—' ^p (w) if J# — J#=^

where S_(^J is the spectral density of the exciting force

Thus we may write 4.1^ as:-

/
eo 
H (r^1^^ G)} H (r, ^^^ )Sp(a) ^ d w 4.17.

13^ we must evaluate the value of the cross acceptances.

From (19), H(r)f^^w). l-f( r<.r);(j) is:-

4.18.

o<
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' 1^ (r) 'ji^tc') 

If we can ignore the cross terms in comparison to the direct 

terms in 4*19«, then the computational effort required will be reduced 

by a factor of M, where N is the number of modes considered* As we 

intend to go up to 20 modes or more* this is a substantial saving of 

time and therefore cost# It will be fair to make this assumption if the 

damping of the system is light* for then the product \^(W) \^(W) 

will be large compared to lYst^w) j near the natural

frequency of mode O( , provided that the modes are well separated 

in frequency.

This means that for structures with high modal densities the 

damping must be so light that the half power bandwidth of the modes is 

smaller than the average frequency gap between them.

If we assume this* we may write 4.13* as:-

6 1



%e are now faced with the difficulty of representing the value of 

1^»(r\ As we have already discussed in Chapter 3, it would be 

very difficult for us to find the correct expression for tlie actual test 

panels used in the experiments. So we are obliged to make some assumption 

about boundary conditions. It would be convenient if we were to assume 

that the plate is simply supported^ for this would mean that Vu^r) 

would be a simple sine wave in r. In fact, this is quite a reasonable 

assumption to make. Bolotin? explains how a change of boundary condit­

ion results in only a small change in position of the nodes of a given 

normal mode. Provided that we are not examining a structure near a bound­

ary of some sort, then the mode shape will not be very different from that 

of a simply-supported plate no matter what boundary conditions apply to 

the structure, except that the nodal points will be shifted in space. 

We must, of course, restrict the analysis to frequencies many times high­

er than that of the lowest normal mode for this to apply. Now, if we 

are examining the effect of many normal modes, then these unknown shifts 

of nodal point from mode to mode will not matter. We are considering 

the. behaviour of several modes, and if one nodal point is shifted con­

siderably in space, then this will doubtless be compensated by the shift 

of another, provided we are considering several normal modes at once.

Damping has been considered uniform over each frequency bandwidth 

of analysis. Thus it appears as a constant in the denominator of 

expression^^^^' When the final result for cross-correlation is normal­

ised the effect of damping is lost, for it affects only the magnitude of 

6 0



the response.

The computed results are presented on Figures 2? and 28 for the 

acoustically excited plates and on Figures 29 to ^1 for the point 

excited plate. The plates modelled in these tests had the same area as 

the practical test samples. The thicknesses are quoted on the Figures. 

The lines along which correlation was measured were picked at random 

so as not to be near a boundary. Very many points were considered along 

each line to provide a continuous picture of the correlogram in space, 

^theoretical curvO) Jo(kr), derived for the diffuse field, is drawn for 

comparison.

4.1.4 * Discussion of Results

4.1.4 *!. Interpretation

The correlation coefficient of a diffuse field has its zero at 

separation distances dependent only on.the wavenumber k, not on the 

absolute position on the structure. If a measured, or simulated field, 

does not satisfy the conditions, then that field might be said not to be 

diffuse* For example, if only one mode were excited, the cross- 

correlation coefficient would be a square wave function with separation. 

The zero crossing separation would depend on the relative position of 

the accelerometers and the nodal lines of the. mode. On the other hand, 

if the p^ate was "anechoic", with all the vibration energy incident on 

the boundaries absorbed, then the first zero crossing would be at & 

quarter of a wavelength separation for a narrow band of analysis.

6 3
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independent of the position of the structure. The effect on the 

correlogram of radiating fields set up by large energy losses (at the 

boundaries) is discussed further in appendix IV.

4.1.4.2. The Effect of Number of Modes and the Degree of Modal 

Overlap

In this section we examine the results from the acoustically 

excited plates and the cylinder.

The signals from the ^ in. plate and the cylinder were analysed 

in third octave bands# The modal density of a flat plate is independent 

of frequency and at low frequencies and bandwidths few modes were 

included in the analysis. Under these conditions the plate did not 

exhibit a diffuse field* as seen in Figures 12 and Ij. The theoretical 

number of modes in each third octave band is given in Figure 32 as 

calculated from (2?). At higher frequencies* particularly when more 

than 10 modes were included* the behaviour is more in accordance with 

that predicted for a diffuse field. See Figures 14 to I?.

The results from the acoustically excited g in. plate were ana­

lysed on the digital data analysis centre and it was possible to select 

a greater variety of bandwidths. Thus we are able to see the effect of 

including very few modes at a high frequency* when the agreement with 

the derived cross-correlation for many modes in a diffuse field should 

be bad# From Figures 18 and 19 we may see that* indeed* when there are 

less than about 10 modes included the field is not diffuse* whether the 

frequency is 2000 or 4000 Hz#

6 7
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Now the loss factor, yr^^ * at 2000 Ez was O.OO63 and at 

4000 Ez ITOS 0.010, As the modal density of the ^ in. plate was 

0*053 modes/E^, then the modal overlap factor, the modal density % 

modal bandwidth is 1;^^, % frequency x 0*053, Thus, at 2000 Ez 

this factor is 0*6? and at 4000 Ez is 2.12, But, despite this large 

change in the overlapping of adjacent modes, the agreement with the 

diffuse field tlieory correlogram is unaffected for the same number 

of included modes.

The results for the cylinder, analysed in third octave bands, 

show a similar trend, agreeing well at high frequence (25OO Ez upwards) 

as shown in Figure 20* Eowever, the disagreement with the diffuse 

field cross-correlation becomes marked at 2000 Ez and lower frequen­

cies, as shown on Figure 21. From Figure 32 the total number of modes 

available was high, over loO , and by analogy with the

behaviour in the plates this should have produced a diffuse field.

Now Manning et al? describe the behaviour of a cylinder at 

various frequencies. Below the ring frequency, bending waves may not 

propagate in an axial direction down the cylinder. This is shown on 

the wavenumber diagram for a cylinder, Figure 33, taken from (34). 

The ring frequency is given by;-

fr = ^ 4*17*

6 9



jr = r ing frequency a : diameter 

b =■ I engt h

Fgure 33 Wave Number Space tor a Cylinder ( Reference 34)
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where D is the diameter of the cylinder and C^ is the speed of 

longtitudinal waves. This is the inverse of the time taken for a 

longitudinal wave to go round the cylinder*

Thus, below the ring frequency, no matter how many modes are 

included in the analysis, the field is not diffuse, as there are 

always some directions ffom which waves may not be incident* This 

agrees with results obtained, as the ring frequency of this cylinder 

was 2000 Sz, the dividing point of the results# Above the ring fre­

quency, the cylinder may be treated as a flat plate because bending 

waves may propagate in every direction#

4*1#4#3# The Effect of Heavy Damping ; the Mechanically Excited Plate

Turning to the results for the mechanically excited plate, we 

see that they do not agree at all well with the theoretical results# 

This was true for all other frequencies# This suggests that the field 

was not diffuse#

The ^ in, plate was very highly damped, as shown from the work 

of Abell^^^^ in Figure 34. How the A#S#A* Standards^^^^ suggest that 

for good "reverberance" in a room, the level of the directly radiated 

acoustic field must be 10 db below,the level of the reverberant field# 

Figure 35 shows the results of calculations detailed in appendix V to 

find the radius from the point of excitation at which, in the ^ in# 

plate, the radiated component of the bending wave field would have 

dropped to 10 db and 3 db below the reverberant level* The calculations

71



Figure 35 Radius from Shaker on 1/4 in Plate at which Reverberant Field is 1O/3db above 
Radiated Field.

7 3



are similar to those outlined by Morse^ \ The lines along which 

correlation was measured lay within 1 foot of the shaJcer position for 

much of their length. Therefore, if the 10 db level is critical, then 

the correlation would be affected under all conditions azid if tne 5 &ti 

level is critical, then at any frequency above 1600 Hz tlie correlation 

would have been affected. At 1250 Hz only 8 modes would have been 

included. It would therefore have been unlikely that any evidence of 

a diffuse field would have been recorded under mechanical excitation at 

a point at any frequency.

The radiated travelling wave model assumes that all energy is 

absorbed at the boundary. When damping is heavy, then this is entirely 

reasonable. It is well established that high dampings are associated 

with localised parts of the structure, like bolted boundaries. 

Beany et al^^^ have investigated the increase of damping of suspended 

plates when bolted sections are added. Experiments performed by the 

author on a diffuser on Windscale Advanced Gas Cooled Reactor reveal 

that, when the structure was bolted into position, the total loss factor 

approximately doubled, as shown in Figure 5^. As the material loss 

factors must have stayed the same, the extra damping must be associated 

with chaffing, pumping and similar phenomena at the bolted joint. Such 

mechanisms are also described in (57)#

This raises the question of why the high damping of the ^ in. 

plate did not affect the cross-correlation of acceleration measured when

7 3
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the plate was excited acousticallyo The radiating component of the 

field would not have been so pronounced) for the excitation was all 

over the surface, ^hen excited at a point the radiated field will 

decay with distance from the shaker; when excited all over, at any 

point on the plate the radiating field will be going in all directions; 

it will be at a constant level over all the plate, except possibly 

near the boundaries. Of course, the'major part of the response will 

be governed by travelling waves that are reflected from the boundaries, 

for the loss factors are not extremely high. Prom Heckl^ the 

transmission loss at a boundary to a plate in a reverberant field is

given as

13'8 TT [Area]_______  

2 Cg [Boundary Length]
4.18,

where T = reverberation time of the plate.

At 1000 Hz the loss factor of the ^ in. plate was measured as 

0,010. Thus the energy lost at the boundary was 6^ of that 

incident on it. If this loss had been total, like an anechoic room, we 

might have been able to set up a psuedo-random field simply by exciting 

the plate at many points. This is currently being done at Southampton 

University in an anechoic room, to study the effect of altering the 

"reverberance" as perceived by the listener under controlled conditions 

If our plate had been completely anechoic, then we could have set up a 

7 5



diffuse field in this fashion ,vithout e^coitin^ cu:y particular number 

of modeS) for as %/e liave discussed in. Chapter 3j under very high 

damping the concept of normal nodes breaks donn. However^ in the plate 

88 tested) the number of modes excited was obviously of major importance 

and a sufficient number must be excited to produce a diffuse field.

4«lo4.4« The Computed Results

There is little difference between the form of the results 

obtained from the mechanically and acoustically excited models* There 

is good agreement with the results derived using the diffuse field 

model which starts between the limits of 12 modes and 20 modes included. 

The number of modes was counted during the analysis, not estimated from 

the theoretical model density. This compares with the agreement obtained 

in practice in the acoustically excited structures when more than 10 

modes were excited, which is encouraging.

However, the programme completely failed to represent the pract" 

ical situation under mechanical excitation, where the agreement was bad.

As discussed previously, this is a fundamental failing of the 

normal mode model in the analysis of highly damped structures.

These computer studies show that when enough normal modes are 

added together, then they behave like a diffuse field. The studies have 

also shown the shortcomings of the normal mode model, and also shown 

how expensive in computer time such calculations are. They have also 

revealed the assumptions that are necessary for the analysis of even 

7 6



very simple situations when the frequencies are high. Even this 

simplified form of analysis was curtailed because of the large amount 

of time that the programmes were using. Wore accurate analysis at 

high frequency was not possible. The store size and time requirements 

would have been beyond those allowable with the available machine.

4«2* The Cross-Correlation of Strain^

The correlation of acceleration is limited to narrow frequency 

bands of analysis. An alternative analysis, the cross-correlation of 

strains at 90^ to each other, may be performed over very wide band- 

widths, for this is not a wavelength controlled effect, like the 

correlation of acceleration. However, the signals are small, and 

difficult to handle, which makes the procedure less attractive 

experimentally.

4*2.1. Theoretical Value of Cross-Correlation Coefficient

Consider a bending wave approaching a strain gauge on a line 

0 - X at an angle 6 to 0 - x.

y = A. exp. i(u)t+ kx.cos.g +kz.cos.<9)
4.19.

where y is the lateral displacement of the plate. 
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k is the bending wave number, 

A is some arbitrary amplitude.

Then:

h^ 

2 ax'
h Ak.cos.O 
2

4.20

wMre A indicates that the tivo exponential terms, in time and space, 

have been omitted. This nomenclature is to be used later in the work.

Then the strain along the line 0 - z, at 90° to 0 - x, will be 

_ mi J iiiiu g

, h y h Ak'sin . 0
p — _ — ----- - — -------
OZ 2 ^ X^ 2

4,21,

and

4.22.

Now if we assume that the bending waves arrive from all directions.

uncorrelated with each other, and if they are all of the same amplitude.

7 8



then we may T/rite:

4.23.

where the bar indicates a time average

The mean square strain in the directions 0 - x and 0 - z will be equal 

in a diffuse field and given by;

-2

0%

k"* h^ A'

oz 8 IT 
0 

- k"* h: AY 
3 a f r

2ir
- 4 .

SI n. 0 d g

4*24

Then the normalised cross-correlation coefficient is given by

= 0 33 4.25.

7 9



4.2.2. Experimental Procedure

The results from two structures are presented, a ^ inch plate and a 

oyllnder, as described in Section 4.1.2. of this Chapter.

Both structures were excited acoustically, as before. The outputs 

from the strain gauges were both amplified oO dB« by a uhree channel 

strain gauge amplifier. Phase matching between the cliannels was tested 

and found to be good up to frequencies of 20,000 Hz. (See also 

Appendix VI.) The signals were recorded, as before, on a high quality 

frequency modulated tape recorder. In order to get the largest possible 

signals to process, semi-conductor gauges were used to measure the 

strain. These gauges have a gauge factor 50 times that of conventional 

wire strain gauges, (in Appendux X an expei'iment is d^escribed in v/hich 

they were tested against a wire gauge to ensure that they were not 

sensitive to acceleration, as had been suggested. They were found sat­

isfactory in every way, if somewhat fragile.)

The signals from the strain gauges on the cylinder were processed 

on an analogue correlator. On playback, they were filtered through 

a pair of third octave filters known to have good phase match, as 

before (4.1.2.). The signals from the flat plate were analysed on 

the digital data processor, using a digital filtering routine. Apart 

from the better accuracy expected, using this system, various bandwidths 

and centre frequencies could be chosen so that the efiect of the number 

of modes could be seen. The results for the plate are shown on 

Figure 57 and on Figure 58 for the cylinder.

The positions at which strains were measured were not close to 

any boundaries, but were otherwise chosen at random.
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Figure 37 Cross-Correlation of Strain on Acoustically Excited 1/8 in Plate

. Figure 38 Acoustically excited cylinder - correlation between two strain gauges at 
90‘ remote from boundaries.
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4c2.3o Discussion of Results on Strain Correlation

The results for the plate are plotted directly in terms of the 

theoretical number of modes included in the band of analysis. The 

agreement is good provided at least ten modes are included. Below this 

number of modes, the scatter on the results is very great and one would 

deduce that the field was not diffuse.

We notice that the results for low bandwidths, whether or not at 

a high frequency, depart widely from the diffuse field value. However, 

results for high bandwidths, and therefore large numbers of included 

modes, lie close to the predicted value. This again shows that the 

number of simultaneously excited modes is the major parameter on which 

to judge whether or not a structure will have a diffuse bending field.

The changes in damping and in the amount that modes overlap 

each other in frequency which occur between high and low frequencies 

are less important.

The results from the cylinder suggest that at frequencies higher 

than 3150 Hz; the bending wave field was diffuse. At lower frequencies 

the results fluctuate, suggesting that the field is not diffuse. At 

2000 Hz, the ring frequency, some departure from the expected value 

might be expected, for as we have already discussed, there will be some 

directions along which bending waves may not propagate. However, it is 

surprising to record a departure from the expected value at 2^00 Hz* 
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4*3« Conclusions

4*^»1, Conditions for Diffuse Bending Vave Field

Both sets of tests reveal that at least 10 modes must be excited 

in order to set up a diffuse bending wave field. In addition, a 

diffuse field in a cylinder can only be set up at frequencies above the 

ring frequency, when bending waves may propagate in all directions.

Small changes in damping, affecting the degree of modal over­

lap, do not seem to be important. Although ths amount of modal over­

lapping is a function of frequency and will have changed over the fre­

quency ranges considered in the tests, no effect was noticed.

Large values of damping can upset the diffuse field behaviour 

under conditions of point excitation, as we have seen .

This is exactly paralleled by the behaviour of sound in partly 

absorbing rooms where, unless the damping is small, the reverberant 

field will be swamped by the radiating field,

4*3*2, Comparison of the Two Tests

The accelerometer test was easier to perform than the strain 

gauge test and was susceptible to interpretation. The accelerometer 

signals were much bigger than those from the strain gauges, which is 

important. The tests involve considerable signal handling, during 

which phase information must be preserved carefully and electronic 

noise kept as low as possible in order to get reliable correlations.
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The accelerometer test also offers important advantages in 

the interpretation of the results. It offers us two curves for com- 

parisoU) theory and experiment; the strain gauge test offers us only 

two pointS) theory and experiment. Examining the accelerometer results^ 

it is possible to examine the first zero crossing, the value and locat­

ion of the first minimum and the smoothness of the curve in an objective 

way to decide whether or not a field is diffuse. The strain gauge's 

single result is much less easy to interpret. Only if its value is 

close to the theoretical value for a diffuse field can we interpret the 

result.

The only situation in which this strain gauge test is likely to 

be of more use than the accelerometer test is when access to the struct­

ure is very limited, when the analysis time available is limited, or 

when information is required over a very large bandwidth. In all other 

cases, the accelerometer test is more useful.

4.3*3* Sensitivity of the Tests to Diffuseness of ?ield 

These tests both suggested 

a diffuse field, ^e must try and 

sufficient for other parts of the 

ering the stress at a boundary we 

too severe, or perhaps not severe 

in subsequent parts of the work*

than ten modes are necessary to ensure 

establish if this is necessary or 

analysis. For example, when consld- 

might find that this criterion is 

enough. This must be borne in mind
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Chapter 5

Ths Ratio of Mep.a Square Stress end Strrhn to Velocity

The statistical energy method of vibration analysis, mentioned 

in Chapter 1, leads to an estimate of the level of mean square 

velocity, or kinetic energy, of the st3?ucture. Before we can use tins 

information to predict the service life of a particular component we must 

convert this to a level of mean square stress. Ve can then compare this 

with levels of stress currently considered acceptable, to decide if the 

component vzill fail.

Yeh et al^ ^ have derived a value for the ratio of mean square 

stress to velocity for a rectangular plate, pinned at its edges, under 

pure tone excitation. Hovzever, using the model of bending waves, in a 

reverberant field, vze can derive a more generaJ. result. Having sho'.-m 

the conditions necessary for the model to be reasonable, we may now 

proceed to the analysis.

5ol., Theoretical Analysis based on the Diffuse Field Hodel 

Let us assume that a straight crested wave with a harmonic time 

dependance (see Chapter 2, Section 2.2.) approaches a point 0 on a plate 

at 6 degrees to the line 0 - x, then the stress along 0 - x is given 

by;-

" 3 [, - uq
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T/here h = plate thiclmess

S = Young’s modulus,

p = Poisson’s ratio,

n OJ t - kx cos 6 - kx sin 6 ) 
y = lateral displacement =

k =. vzavenumler,

w = angular frequency.

velocity = Vg 5«2.

Eh ^ (cos^O 4^ u sin^O ) Vg ^o^. 

^° 'ox = - 2(1- p") i^

and the mean square stress is:-

For bending waves in plates of density P :-

0,2 _ Eh"

k^ 12P[l-u^
C^'c E

P

where C^ is the velocity of longitudinal waves in the material

If the bending wave field is diffuse, i.e., the value of 

is independent of 6 , with the waves statistically independent of each 

other, then the stress will be the same at every point, in every direct­

ion and will be given by:- 

2x
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The pointed brackets thus:- <( > indicate a spatial average, 

the bar,  , a time average. For most engineering materials, mild 

steel, light allow, etc., U = 0,5. and the ratio is then given as:

I 6 I C| p^
5.7.

We cannot measure stress directly, 'we can only measure strain. 

Therefore v;e need to derive a value for the ratio of strain to mean 

square velocity, so that -;?e may verify our anaJysis experimentally. Por 

if tlu-s derivation proves successful, then it will be reasonable to 

assume that the derivation for stress T/ill be at least as successful.

Agahn, we consider that a straight crested wave approaclies 0 

at an angle 6 to 0 - x. Then the strain ^ ^ along 0 - x is:-

ah. = 

d X^

±Alk’cos?» 

2 i w
5.8.

Proceeding as before we obtain the relationship:-

5 q

for a diffuse bending vzave field.
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Tliese results agree T.'itn those obtaiiiecl by Yeh et oJ.^ ' aeutioned 

esriier. As we have assumed tlie same deflected shape in both analyses^ 

a sinusoid, we would expect tlae ratios of strain energy and kinetic 

energy to be the same at any given frequency. This is the basis of 

Rayleigh’s method of finding natural frequencies of beams and plates^ '

5.2 , S^cperinentol Tests

The relationship between meaai square strain and velocity was 

investigated oqoerimentallyo Measurements of strain and acceleration 

were made on two different structures, both excited acoustically by 

the sound of aJLr escaping from a gate valve. One structure v;as the 

cylinder, described before; the other structure was a change of section 

specimen, as used in the eroperiments to be described in Chapter 7o It 

was made of tvzo aluminium plates, 4 ft, by 5 ft*# slotted together 

along their shorter edges, (one 5 in, thick, one -g in. thick).

The strain was measured using semi-conductor strain gauges. 

The strain gauge and accelerometer outputs vzere analysed in tliird 

octave ba.nds and recorded on a paper chart level recorder. The value 

of the velocity was deduced by dividing the acceleration by the angular 

frequency corresponding to the filter centre benndnidth. This is 

accurate to within 10^. The results are presented on Figure 29o

The results for the cylinder were produced bj- Mr Fahy, of 

Southampton University, and are presented by his kind permission.
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Figure 39 Ratio of Mean Square Velocity to Mean Square Strain

8 9



Four sets of results are presented for the change of section 

specimen; tno are for tl:e thick section of the specimen and tuo ere 

for the thin section.

As we Imve discussed in Section 7* tlie deflected shape near 

the boundary would not be sinusoidal in space and this could upset the 

results. To try end judge the seriousness of this effect, for each 

section of the specimen, one result is presented for strain gauges and 

accelerometer positions chosen to be remote from the boundary, and 

another result is presented which includes the strain and acceleration 

measured near the boundary.

5,5 * Comments on the Results

Turning to the results shown on Figure 59^) we see that the 

agreement with theory is generally good. At low frequencies, and 

therefore low numbers of modes, the measured ratio does vary somewhat 

above and below the theoretical value. This reflects on the difficulty 

of getting good samples of strain and acceleration when only a few 

modes are available. This situation gives rise to large variations of 

strain and acceleration about the spatial mean, as discussed later in 

Chapter 8. At higher frequencies the results steady up.

It seems that otherwise the measured ratio does not depend on the 

number of modes available. This is what we would expect, for provided 

the deflected shape of the structure is sinusoidal in space, the 

theoretical results should still hold, regardless of the number of 

available modes. Thus, for this result, the criterion established in
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Chapter 4 is too severe.

ihe resales for the cylrnoer show no dependence on the ring 

frequency^ 2000 Hz. Tliis is to be expected for the directions in 

which tne bending waves con travel is not important here. Provided 

that the deflected shape is sinusoidal in space the result should 

still apply. Again, the criterion established in Chapter 4 is too 

severe.

Turning uo figure ji9b, we see that the effect of the boundorie 

is not particularly marked. However, the ratio of velocity to strain 

rises for the thin section and falls for tiie thick sectione Tills 

is in general agreenient v/ith the findings of Chapter 7, niiere the 

stresses and strain induced by a change of section ore discussed in 

detail.

5,4 * Conclusions

ihe difiuse field moael leads to the some relationshin of 

stress and strain to velocity as does the single mode model. This 

is borne out by the experimental findings. % may use the theoretical 

resulc jiuii no particular regard to the requirements of Chapter 4, 

^^^t at least 10 modes ore available, and, with cylinders, only 

frequencies above the ring frequencies ore considered.

Hear the boundaries the strain must be predicted by other 

means.
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GL_ r/ber 6

Stress and Strain Coiicent,ration nt a ;?eld

It is necessary to be quite clear about the problem that v.-e are 

to consider in tMs Chapter and the nexto

In the first three Chapters vze have considered the problems set 

by the complex structures of a nuclear reactor gas circuit vibrating 

in bending, and we have investigated some of the analytical models 

that we might use to solve them. V/e concluded that v/hen investigat­

ing the stress and strain distribution in a localised region vze should 

use the model of bending waves, travelling in a diffuse field. In 

Chapter 4, we examined various structures to see when this model was 

reasonable.

In Chapter 5 we have derived a value for mean square stress 

using this model, in terms of the mean square velocity of the structure. 

In Chapters 6 and 7 we yzill use this same model to estimate the variat­

ions from this mean value that y/ill be induced by a discontinuity, or 

boundary to a particular structure.

The incidence of a bending wave on a discontinuity sets up a 

reflected wave which radiates energy to the far distance. Some energy 

may be transmitted beyond the discontinuity to the far distance. So 

far, this is analogous to the behaviour of light reaching the inter­

face between a glass block and the air. But, as has been discussed 
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already in Chapter 2, there are four boundary conditions to matchy 

not just two. Thus* two additional near fields are set up* which do 

not transmit enerey to the far distance, one a reflected field and 

one a transmitted field. The combination of these waves, in phases 

determined by the impedance of the discontinuity, will govern the 

stresses and strains at the boundary.

In the following analysis we will assume that plane sections 

remain plane. Timoshenko et al^^^) and Savin^^^ among others, dis­

cuss the statis bending and tension of specimens of complex shape, in 

which initially plane sections are allowed to become non-plane* They 

have considered shafts of varying cross-section in bending and the 

stress generated round holes in a plate under tension. These effects 

are extremely localised, affecting the region immediately adjacent to 

the discontinuity.

In this analysis we confine our attention to the macroscopic 

changes of stress due to the interference of bending waves near the 

discontinuity in question, assuming that initially plane sections 

remain plane. A more detailed investigation is not yet possible.

It might, of course, be reasonable to use the stress concent™ 

ration factors derived, for example, by Timoshenko, in addition to the 

factors to be derived in this section. The frequencies are low com­

pared with the frequencies at which Rayleigh surface waves are 

important and away from boundaries plane sections do remain plane. 

However, such a discussion is beyond the scope of this present work 
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and is not considered further.

In the next two Chapters we consider the stress normal to a 

butt weld and to a sharp change of section in a plate. Both situ­

ations are met with fairly often in practice. Appendix VIII 

considers the stress at a rigid boundary.

The approach is as follows. First we will study the solution 

of the bending wave equation at a weld; then we will investigate the 

stress generated by a weld by a bending wave from a single direction. 

Then we will assume that bending waves arrive from all directions and 

derive a value of total stress. Finally, the derived results are 

tested experimentally*

6,1 * The Behaviour of a Bending Wave Incident on a Butt Weld

The analysis in this section, of solutions to the bending wave 

equation at a rib, was first performed by Gremer^^^^ for a rectangular 

rib. It is detailed here to introduce the more complete work in 

Chapter 7 and also because we use the results toderive the stress.

Let the two semi-infinite plates, of identical thickness and 

the same material lie in the plane x - g, as shown in Figure 41* The 

weld of the same material lies along the line x = 0 and is assumed to 

have an elliptical cross-section.

We will use the following boundary conditions.

If we assume that the wavelength is large compared to the width 

of the weld, which is reasonable at the frequencies wliich are of 

most Interest to us, then we may assume that the lateral displacement
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Figure 41 Forces on Weld.
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and velocity of the plates are the same each side of the weld*

Further, if the weld cross-section remains undistorted, then 

the angular velocity will be the same each side of the weld*

For the next boundary condition we may consider the equilibrium 

of the bending moments each side of the weld, the torsional moment 

set up within the weld by the amount it twists along the line x = 0 

and the rotary inertia of the weld.

Finally, we consider the equilibrium of the shear forces in 

the plate each side of the weld, the shear stresses in the weld and 

the d'Alembert forces due to its vertical acceleration.

6.1,1 * Wave Velocities

Let us consider the velocity of the waves incident on and 

travelling from the weld as a first step to deriving these four 

boundary conditions.

Let the incident wave arrive from an angle 0 to Z = 0*

We may assign to it the arbitrary amplitude of unity.

V =
1+

exp. iwt -Ikx.cos.o+lkz.sin.d 6.1

Now the trace wavelength (^ the Incident and departing waves 

must be the same; their tangential wavelength must be equal, as shown 

in Figure 42* If not, then the relationship between the waves would 

be a function of their position along the Z axis; yet we are deriving

this relationship at an arbitrary value of z. Thus, this relationship
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Figure 42 Trace Wavelength at Weld.

2a

Figure 43 Dimensions of Cross Section of Weld.
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.ny value of s in an infinite plate#

How to find the travelling wave we solve the equation

2

Tills is

from which

and thus

O fron Section [ 2.3]

6.2.

Then the velocity of the reflected

o

2

wt + kx.cos.Q+kz.sin. 0 6.3

and the transmitted wave is

+1
wt - kx.cos.6 fkz.sln.B 6.2|.
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where R and D are the complex amplitudes of the reflected and 

travelling waves that we shall find by equating the boundary condit­

ions.

To find the decaying near fields we consider the equation

^ V- k^ =O from Section

Now the near field is steady only in the X direction* The 

variation in the Z direction is still given by exp i^t-kz.sln. g)

and thus we have:-

6.5.

The reflected near field velocity is therefore

6*6.

and the transmitted near field is:-

V = D.gxp. 
fl

I cut+kz.sin.6^ 6.7
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R* and D^ are complex amplitudes that we will find by equating 

boundary conditions.

6.1.2, The Boundary Condition

Prom the four sets of boundary conditions we obtain four 

simultaneous equations.

Equality of Velocities

I + R + R^ =^0+ D

Equality of Angular Velocity 

The angular velocity is given by

6$8,

lx

Then at x = 0

-I.COS.^4- i R.cos.^ tR'Yl+sirL^ = 

-I.COS.0.D -Jl + sinpO. D'^

Let cos.^

Then |o( = I o*,R + R + 1 ot D + D 6.10

101



Equilibj'ium of Bendin.^ Lioments

At X = 0, from Figure (41)

M 51-M^Sl-dM'Sl = iu6W,5l

xvhere M^ , M^^ = bending moments about x = 0 in plats 

Ivl'^ = t;'/i sting moment along the vzeld

6 = inertia of the vzeld per unit length

^2^= angular velocity of weld,

ITow the tvzisting moment in the neld is;-

l(^ ^ z

where T is the torsional rigidity of the v/eld

Tiien _ "T W^

^ z I cJ ^ z^

1 end 2

6.12.

6.13.

The bending moment in tlie plates is given by

6.11.

6 o 14 o

where 3' = bending stiffness/unit width.
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iyo;v since the iispXncer.ient es.ch side o±’ the T/eld is the sejne.

v/e inny nnite that

M^.SI- M^Sl =
Al a2

d,15o

end need trJ:e no ncconnt of the vejrietion of displncsi^scnt n'ith Z

Using the rolntionship:

\^ 2
(k.sin.OjWz 6.16.
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Squili’jriur:; of Sho' ri-7': forces

Consider the equa-tion of equilihriuin of the vertical forces 

on the element in Figure ti ;-

__ p/
F.— E =z i u)m V + "x-— per unit length of

wnere Fx, Fx, is the shear force in plates 1 and 2

weld 
^20

m is the mass of the weld/unit length

F* is the shear force in the weld.

From the simple theory of bending beams (for example (41))

/ 3
F = Bq ^Vy

1G) <^ Z^

.21.

where Bo is the bending stiffness of the beam

where is the lateral velocity.

Thus;

Fy— F^= iwm-i Bo(k.sin.9.) Vy .22.
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Now the shear forces in the plate are:-

X
6.23

where %:- Poisson's Ratio.

T/e will consider the derivation of this result in the next 

Chapter* For the moment, notice that the expression differs from 

that for the simple beam (6,21,) because of complications induced by 

curvatures in both directions.

However, (2" l^^k.sln.^^"^^ Is

the same for both plates, and we need, therefore, only consider the 

terms

If we write;-

B k^ I + sln?^.
6 o 22^6

then 6,22. reduces tor-
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~ 1^ R + R + D = — io< 6*25.

We are now able to determine the four quantities^ R, R'^ 

from equations 6*8.) 6.10.) 6,19. and 6*2$.

After extensive manipulation they are found to be:-

JL=_2&lzLA(^^Ill^^ 
A +; c

6.26.

D =.'

A "R ) C

6.27.

R: =^

1

6.28.

D' =-

A 4" ! C

A f ( (^
6.2$.
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6,30.

Now wo are ready to examine the stresses and strains induced

at the weld.

6o2« The Stress in a Plate generated norme.l to a V/eld

IVhen a bending wave reaches tlie weld* some of it will be 

reflected end some transmitted. Thus it will set up stresses both 

sides of the weld. Conversely^ the stress on one side of the weld 

will be csused by both reflected waves from the same side and trans­

mitted waves from the other side. We will consider each separately.

6,2*1, Stress due to Reflected Waves.

Prom (ll,pp45):-

6.31,

where (T is the stress,

h is thickness of the plate and

E is Young's modulus of the material.
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Por a single wave incident from angle

where V. is the velocity of the wave arriving from plate ^

jhEk^
(R+I)(cos 0.H- sin^J "—R^I+0—)))sirf^) ^16.53,

Then the mean square stress is given by:

(Rf l)(c o^^.fOsinTO)— R?l+(l-9)sih^^)

2

where is the time average squared stress due to the waves 

incident at angle g being reflected.
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Now let us assume that instead of a bending of me^:i square 

velocity V^ arriving from 0 , bending waves arrive from all 

directions with a total mean square velocity ^W^ The ) 

indicate a mean over space* V/e will also assume that they are 

statistically independent.

Tlaen

(R+ l)(cos^^. + V s i n?^.) - Ktk(H')))siM^6)

.......  6*35*

Now from Chapter 5* equation

6*36*

for Poisson's ratio = 0*3*

where is the mean square stress in plate 1*
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6.2*2o Stress due to Transmitted Waves

6,$8a*

Por a single wave incident firom plate 2 at angle ^ * the stress

in 1 is

where Vp is the velocity in plate 2.

Then the mean square stress normal to the weld in plate 1 is

2

- 4(l-\)7w'
^2

where y,'
and

D(cos?^.+\).sirL^)'-[/(l+(l-v) sirt^)

is the mean square

is the stress in 1

velocity of the wave from in region 2

due to waves transmitted from on angle 6?
T^
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>For a diffuse incident fields as before

6 o^O »

Ag&in^ for 'O = 0,^

6*40a,

Thus, for steel, aluminium, etc.

IT

6*)e Details of Numerical Evaluation of the Integrals

Such unpleasant integrations as in equations ^#^7* and 6*41* 

are best tackled numerically. An integration subroutine was written 

to Integrate this expression on a computer using Simpson's Rule*

It is not necessary to detail the complete programme. However, 

there are three points of interest; the evaluation of the structural 
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parameters of %eld; the limits of the integration; the modifications 

necessary to determine strain concentrations.

6*5*lo Structural Parameters of Weld.

In equations 6.26, to 6e30« the variehles are of , ^3 and 2^.

O< is determined solely by the angle of incidence.

/8 is given by:-

To evaluate this we need the angle of incidence 0 ' , the 

frequency w the bending stiffness of the plate B and the 

wavenumber k* These are independent of the weld parameters,

?/e also need to know G ^ the moment of inertia of the wel^/ 

unit length and T its torsional stiffness,

Bp to this point what we have derived could apply to any rib on 

the plate of any cross section, providing only that it is thin compared 

to a wavelength.

It is reasonable to approximate the cross-section of a weld by 

an ellipse. From Timoshenko^ we obtain the results that the 

torsional stiffness of an elliptical section is:-

1( g^ b^G 

o' + b^
T = 6.42*

where the ellipse is of width 2a and height 2b (Figure 45) snd where
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& is the sheer modulus of the material.

Likev;ise :-

'K^'a b

where

6 =.

= material densitvo

(a^+ b^)yO 6.4j
4

ye are now able to evaluate yS.

From equation 6o22|-;

CD^m — Bq k^ s i n'^0.
B k".V 1+ simST'

To evaluate

weld B and m its 
0

this v,'e need to Imow the bending stiffness of the 

mass per unit length, in addition to the other

parcjaeters.

Aga-in, from (2j-2)

Bo.=
/TTab'^E 

4

where E is Young's modulus

m 2= TtabyO

v/here yO = msiterial density 
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We erm no;? evaluate

6o5.2 „ The Liinits of the liiteer.'-ticn

The ram^e of ij^sgr^tion of 6,j7. c^^d ^.^il. covers angles of 

incidence betv/een + SO"^. Kov,ever, there are in general two critical 

angles that must be considered, naniel;/, that given when 8 = 0 and 

where ^ = Oo

yg = 0 when

e

From table (1) we see that this corresponds to the condition 

that the trace velocity of bending waves equals the velocity of 

torsional T'oves in the ’weld. In this case the angle 6 is oependent 

on u^, the frequency.

^= 0 when sln.^ 6,45

From table (1) this is the condition that the trace velocity of 

the bending waves in the plate equals the velocity of oending v/aves 

in the vreld. In tliis case the angle 6 is not dependent on O.
For the weld considered experinientally and tneore bicallj' in 

Section 6.4 the angle at wliich^ = 0 was always less than the 
angle giving = 0, Cremer’s v/ork^ on ths loss factor past a rib 
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on a plate shows that under those conditions the important angle is 

that at which y= 0^ (y-Q* This is shown in 

Figure (44a.j taken from his work tlO)* In tlie evaluations of 

stiTGss oyid stT&m d.Gso]?lcod. in Section this w&s 

olso true# Special routines 3.ccated ^y-^o ^^ ^^^ 

integration was performed from -90° to -0^,^ ^ from - g^^ to 

^Y-o from +^ to 90 . It was not necessary to define 

the angle 6^ = 0,

However, if we wish to evaluate strain and stress at high 

frequencies we must also define ^.g , whereig = 0, Por Cremer 

shows that at such freguehoics ^ = 0 are greater than ^ = 0 , 

the loss factor is sharply dependent on both ^^ and /3 as 

shown in Figurev44h^o These are a.lco taken from Cremer's work

6.3 $3, Modifications for Strain 
WWU.IUL JUWI WAmiifNi-mmiiiiMiiNii ,, iWmuln.NkMiwHai \ -. " -| - -trr-^^ iiliiirniji III ijiii Iki,   I] III I Iliiiii.u 

The modifications for strain are very simple. Briefly,

equations 6.31. and 6.38a, are replaced by:.

6,46,

and equations 6&36. and 6.40a, are replaced by

6.47*
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*

(b)High Frequency

Figure 44 Transmission Past a Rectangular Rib (from 10)
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where C. is the speed of longitudinal waves, as sbOT/n in Chapter 5

Section 5«lo

Otherwise the analysis is identical.

The results are as follow

TT

and
IT

6*4* Experimental Tests
*i*u* i.i»..# '*.i.*.i*mimmij*niMgM*^&,aMNwA .**.K mHi*uun**juw.uri'»miwu,ii  **!.»,^w*k'%«**..**.i".

6*4.1* Experimental Procedure

A-butt weld was prepared between two aluminium plates, as shown 

In Figure 45* The plates were 0*050 in. thick and the weld was on 

average 0*074 In. thick and 0*250 in. wide. It ran the full width of 

the plate. The measurements were, of course, taken at several 

positions, along the weld, as there was some small variation in the
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Figure 4 5 The Welded Aluminium Plate
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dimensions of the weld with position. The plate was suspended from 

a light frame by thin wires from one edge. It was excited by broad 

frequency band noise from a loudspeaker.

The strain in the top and bottom plates was measured by semi­

conductor strain gauges randomly scattered over their surfaces. 

Seven gauges were used on the bottom plate, but only three gauges 

gave good outputs from the top plate.

Semi-conductor gauges are expensive and fragile. V/hen a 

number of them failed on the top plate, it was not possible to 

replace them within a reasonable time, so the experiment had to be 

continued in the knowledge that the average readings from the top 

plate would be less accurate than the lower plate. However, at fre­

quencies about 500 Hs, the results from the gauges agreed within 

jdB, so although less than perfect, the results from the top plate 

were considered adequate.

The strain at the weld was measured at three points on the 

lower side and two points on the upper side. At each point two or 

three gauges were positioned in a line normal to the weld, the first 

one as close as possible to the weld. Because the near field decays 

exponentially will distance from the boundary as described in 

Section 0 3 , it was felt that it might be possible to 

extrapolate the stress from two or three gauges to give a more 

accurate estimate of the strain at the weld.

In fact, this proved to be impossible, as no extrapolation 
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was worthwhile because the readings from the strain gauges near the 

weld were all closer within one or two decibels. There was not 

enough information on which to base a satisfactory extrapolation. 

Instead, the reading of the gauges nearest the weld was taken and these 

readings averaged over each side of the weld,

All the results were analysed in third octave bands,

6,4 ^2, Computational Procedure

A theoretical estimate of the likely strain concentration was 

made on a digital computer. It would not have been reasonable to 

have predicted strain concentrations for a large number of welds at 

many frequencies. Instead, a weld of the experimental weld's 

proportion was studied over the range of frequencies of the experi­

ments, As a control, the effect of a very small weld and a very 

large weld was considered to see that the predicted strain and stress 

concentration behaved as the physics would have suggested.

The programme predicted that a weld of O.^l in. thickness that 

was only OoOOOl in. wide, would produce no concentrations of stress 

and strain on a plate 0,2$ in, thick within the accuracy of the 

Integration procedure (l/S), This is wholly reasonable, A weld 

of circular cross-section, 0,2$ in. in diameter on a 0,0^0 in. thick 

plate was calculated to produce a greater concentration of stress 

than the actual weld due to reflected waves and a lower stress due to 

transmitted waves. Prom Skudryk (2^ pp 280-298) this is what we 

would have expected. Comparing the shape of the practical weld and 
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the circular weld, on Figures 2|.6 and 47) v/e see that v/e have increased 

the angular inertia of the weld without increasing the lever arm 

of the bending force exerted by the plate around the centre of the 

v/eld. This Slcudryk has found, decreases the transmission of bending 

waves. Thus, in general, one v/ould expect the reflected v/aves to 

generate a, higher stress and the transmitted v/aves to generate a 

Ibv/er stress than in a weld such as.was used in practice. Tliis is 

predicted by the programme. The actual predictions for strain and 

stress are shovm on Figures 2,-6 and 24.7,

The mean square stress at the side of the weld in plate 1, 

()Si 1 given by:

(G = <(9 ^+<6^4

where <G^
<O?>

Sm

is the mean squ8.re stress in pla.te 1

is the mean square stress in plate 2 

are the factors given on Figures 2,.6 and 47• 

A similar calculation gives strain.

6«4«5. Comparison of Computed and ji;;-merimental Results

The mean square strain measured at the boundary was compared v/ith 

the.t estimated theoretically from the rnecn square strains measured in 

the plates. The ratio of the actual to theoretically predicted root
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Figure 4 6 TheoreUcal Stress and Strain Concentration at a Weld

Frequency Hz ‘■°°°

Figure 4 7 Theoretical Stress and Strain Concentrations at a Weld.
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mean square strains at the ueld is sho^m on Figure 40 as a function 

of the nui:ibcr of modes included in a ]:articular measurement.

Basically, ths results are soLmdo Ths s-:yerimcntal results a^rsc 

uith the calculated results v/ithein, in general, 30/^'» though there are 

some larger discreptmeies at lo'-v? numbers of modes. Then more thcin 

foxir or five modes are included, the results are most satisfactory. 

Y/e may thus safely conclude that the theory predicts relatively 

low levels of stress concentration at welds of the type tested.

6,5 . Conclusions

Concluding, briefly,we have used the diffuse field bending 

wave model to predict stress and strain concentration s-t a v/eld. 

hlien measured, the prediction of strain was satisfactory, 

with even only a fev/ modes included, less than^ necessary to satisfy 

the formal conditions of diffusivity in Chapter 4o
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CHAffaR 7

Stress and Strain Concentrations at a Change of Station

The problem to be solved in this chapter is similar to that 

solved in the previous chaptero V/e will use the same basic approach* 

First we will study the solution of the bending wave equation at a 

change of section) then find the stress generated by a single wave. 

Then, invoking the diffuse field model) we will derive a value of 

total stress. However) there are differences between the form of the 

boundary conditions to be used in this chapter and those used in 

Chapter 6) which we must carefully consider.

The theoretical results are tested experimentally using sev­

eral different test pieces*

7*1* The Behaviour of a Bending Wave Incident on a Change of 
Section

Let two semi-infinite plates of the same material) but of 

different thicknesS) lie in the plane X - Z ) joined along the 

line X = O .

The lateral and angular velocity must be the same each side 

of the join* The shearing forces must be equal and opposite in both 

plateS) as must be the bending moments*

7*1*1* Wave Velocities

As before) we consider the transverse velocity incident on and 
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reflected from the change of section as a first step to deriving the 

boundary conditions.

Let an incident wave arrive from an angle g to Z = O 

This wave is described byi-

V,^=: exp.lCot-kx.cos.^fkz.sin.^) 7.io

The trace wavelength of the incident, reflected and transmitted 

waves must be the same^ as shown in Figure 49,

Now from Section 2, we find the travelling waves as a

solution to

which is 7.3.

7.2

For waves in region (1) :

Since
—k^.sir^ V

7.4.

we know that the reflected travelling or propagating wave must satisfy

the equation -

12 6



Figure 4 9 Equality of Trace Wavelength at a Change of 
Section.
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^v — (l — sin?^)k^V = O 7.5.

therefore -

V = R.expj((Jt4-k,x.cos.^+k,z.sin.^) 7.6

This is the same as for the weld.

However at a change of section^ the speed of bending waves 

changes (table 1 p 20 ), To accommodate thiS) yet meet the require­

ment of equalify of trace wavelength, the angle of departure ^ of 

the wave in region 2 must obey the relationship:-

where

7.7.

are the wavelengths in 1 , 2.

Under certain conditions total reflection takes place.

Clearly, when X| is less than X2 * i:^ sin (^ is
1

then sin P must be less than 1 will then be the critical
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angle of total reflection. At angles of incidence greater than 

critical no energy will pass from region 1 to 2. There is an analogy 

with the behaviour of a ray of light leaving a glass block and pass­

ing into the air. At angles of incidence greater than the critical 

angle) transmission is not possible. The analogy ends there* as with 

bending waves four boundary conditions must be satisfied. It is 

important to realise that whilst no energy may be transmitted across 

the interface when the angle of incidence is greater than the critical 

angle* there is still a disturbance set up in the "receiving" plate 

due to the transmitted near field. We v/ill discuss this later. Total 

internal reflection will occur when a wave is travelling from a thin 

region to a thick region.

Now the transmitted propagating wave must satisfy:-

7*8

or — k 7.9

Therefore 7.10.

where K
^2

^1
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The transmitted wave is then given by

D.exp.(((Jt-kiVk^-sin^^ . x + k.z sln.^) 7.11.

If there is no total reflection^ then A - sin will be 

greater than zero and the solution for V^grepresents a transmitted 

travelling wave*

However^ if there is total reflection, K^ - sin^^ will be 

less than zero* Then we must T/rite as
+2

V = D. c X p( i (w t + k.z.s i n. ^) - k, Vsk^^-^K^jt) 
*2

7.12.

This is a wave that decays with X . It does not transmit 

energy and it is an additional near field*

The near fields must satisfy the equations

(v^- k^V & O

(V^- 1^=0

in region 1

in region 2

7.13.

From the previous reasoning, the reflected near field must

satisfy:
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— k| (l +si n^) V = O 7.14.

Then;-

V = P^.0Xp.(i(ut + k|Z.sin.<97+k|YH'Sin^ .x) 7 .15

and since the transmitted near field satisfies

7.16.

then

V^ = IXexp.(i(wt + kz.sln.^)"- k^x-^ K+si n? 7.17.

This component is not affected by total reflection.
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7ol.2« The Boundary Conditions : Transmission

7.1.2.1. Equality of Lateral Velocity

At X= 0) I + R+ R = D 4" D

for the velocity in each plate must be

Equality of Angular Velocity

the same at the join.

7.18.

At X = 0, the angular velocitie must be the same

in each plate at the join.

Therefore:

(cos.^fiR.cos.^tVl+sin?^ R^ 7.19.

= -i D^K-sIn%^ -D'^K + sintO

7.1.2.$. Equality of Bending Moment

Prom (40) the bending moment in a plate is given by

7.20.

B" = bending stiffness/unit width

>) = Poisson's Ratio,
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Now we must include the terms in , for the bending

stiffnesses are not the same in each plate.

Por equilibrium:*"

7.21.
where N ^

4

Then

-cos^^.-R.cos^.f R'^(l+sirH6^.)""^)6l + R'*Af)sin^^ =

N DfK-si n?<9)+ hf D^(K^ si n?^) -^ N .si n%( D + C*)

7.22.

7.1.2.4. Equality of Shearing Force

First we must derive the shearing force in a plate bent in two 

directions; then we can equate the forces each side of the join.

The following derivation is due to Cremer^^^\ It is wise for 

us to consider this in detail as it is not a familiar result. Consider 

the thin slice at the edge of each plate, as depicted in Figure 50.
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Figure 5 0 Shear Forces in Edge of Plate.
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Qx is the shear force generated in the material per unit width of 

material; Px is the force transmitted to the other plate. Taking 

moments about the Z axis at X = 0

7.2).

7.24.

where M is the torsional moment per unit width in the strip twisting

about the Z axis.

Resolving forces vertically for the strip gives us:-

F)f.^x.Sz = O^x.^z "t'&x ^J^XX. 7.25.

z

^xx and M*_ are moments resulting from the shear stress Wy

end %^^ j which are, of course, equal. These are shown in Figure 51.
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Figure 51 Shear Deformation
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Then My^ 7.26.

where y is here the distance from the centre line of the plate. 

This shear stress is due to the "lozenging" of the element

shown in Figure 51 and is given by

where

7.27.

and are displacements defined in Figure 51 and G

is the shear modulus of the material.

From the well known relationships (4-1 PP 205)

thus

Strain 7.28.

7.29.

and 7.g0

where is the lateral displacement of the centre line of the

unstressed plate.
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Thus 7.31.

the edge

Now

and

where B

and thus 7.32.

JL
is the rate

of the plate.

at which the angle of twist varies along

2G

= I the second moment of area of the 
strip per unit width

is Young's modulus per unit width.

^X^Z

7.33

7.35.

138



From 7*24.

B fk.si n.^) ly 

iw ^x^ ^x

7.36

Prom 7*35*

7.37.

Thus from 7.25*

7.38.

la this derivation we have assumed that the distribution of 

stress is linear in the y direction across the plate. This is not 

strictly true. Prom the principle of St. Venant we would deduce that 
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this is so only at a distance from the boundary comparable to the 

thickness of the plate. However, as we are considering only wave­

lengths greater than six times the thickness or more, then we should 

still be able to deduce the levels of stress caused by interference 

of the bending waves near the boundary, if not quite at it. This is 

a fundamental limitation of the theory that we have already discussed. 

It becomes serious at very short wavelengths and high frequencies, 

We have, however, already excluded these conditions.

How we must equate the shearing forces both sides of join.

Thus we obtain our fourth equation

IIC os^^. - R i.cos^'0 4- R 6^(2—^3^ si n^ (iR .cos.^. — i.cos.^4- S R^ 

= iNDP —DNT^N(2-v)sin^^(-iDP-D'T)

where S = I + s I n. a

............................................. 7.39.
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Attempts to reduce these four equations to simple results 

for R, R^ ) D) D^ have been unsuccessful. Instead, the equations 

were solved numerically using a computer subroutine to solve the 

simultaneous equations, the numerical results being used directly to 

produce the strain and stress concentrations.

7,1. ^* The Boundary Conditions : Total Reflection

The same four boundary conditions are used. The only differences 

in the resulting equation are due to the form of the transmitted wavO) 

which under conditions of totalrefLection is only a decaying near field* 

Without deriving them formally) wliich may be done by analogy 

with Section 7*1*2., we may write down the four equations as follows:

Equality of Velocity

| + R+R = D+D 7 *^*^ *

Equality of Angular Velocity

R.i.cos^- LCOS.^-fR^S^-DP-DT 7*41.

Equality of Bending Moment

- cos^^.-R.co^^.t R%^\)( h R+F()sin^^ = N D p\ N D^T^ 7.42.

))N(D+D')sin^^.
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Equality of Shear Force

+ ic os?^ -i R.cos?6' + R 5^-(2- v)sin^^( i FLc 05.6*- i cos.^+5 P^) =. 

-NDP^D^N T^(2-v) sin'^^( DP + D^T) 

7.43. 

where N = ratio of bending stiffness

8^ = I +sin^0

P^ = si n^^ ~ K

T^ = K + sin^^

where K = ratio of wave numbers

7*2# The Stress Generated Normal to a Change of Section

The basic approach is the same as that used in Chapter 6^

Section 2, we determine the stress set up by the curvature due to 

a wave incident from angle 6 ; then the total stress is found by 

assuming that a diffuse field is incident on the change of section. 

Finally this is compared with the level of mean square stress in the 

region from v/hich the bending waves arrive.
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The stress in plate (1) is now due to four types of bending

wave:-

lo Partial Reflection in i plate (1) o^

2. Total Reflection in plate (1) Og

3* Partial Transmission from plate (2)(%

4* Total Non Transmission from plate (2) O^

7»2,lo Stress due to Partial Reflection

The stress in plate (1) normal to the join due to partial

reflection at X = 0 is given by (40).

7.44

where V = lateral velocity,

h, = thickness.

= (l4si n Al

x=O

where k, is the wave number in region 1

and:-

7.4^
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where V, is the velocity of waves incident from region 1 

i.e. V, = v,.0Xp.i((Jt + kz.sin^-kx.cos.^)

i h, E sfRi-1) (c 0 s^^. + V. s i n?^^)— R(l+ (l - v) s Tn^^)}*

Vicxp.ifWt+kz.skn.^)

Then the mean square stress is

hfE\f
4(h9^)^L)^

srn^^) - R(l + 0 -v)sin^^)(R +1) (c o ^1^ + V

If the bending wave field is diffuse and reverberent then 

instead of all the energy arriving from angle 0 it will arrive from

ell angles. Prom the result of Chapter 5, as in Chapter 6, we may

T 1 4 
hTE k.

write

7.49.
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Then

for 9 = 0.3

3277 .x 0 4^4

T is when the incident wave and reflected v/ave lie

in the thicker of the two sections. But when total reflection can 

take place, going from a thin to a tliick section, T^ is the critical 

angle.

7.2o2o Stress due to Total Reflection

Nov/ if a bending v/ave arrives from the thin section at an 

angle greater than the critical angle it will be reflected with no 

loss of energy at the change of section. 7;e T/ill find the stress gener­

ated in the tliin section.

Again

-IhE____ jy+ 

2(l-v")u’- dx'^^z^-
7.510
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i h,E k^ 

2(l-V^) (J^

(l+POficos) +F^Y|^sin?^)

f^Ci sin^) (l fR+ R ) V, ex p. i(cJ t f k z.sfn. 7.52.

This may be directly compared with equation 7.47: they are identical. 

Thus by the same reasoning we obtain the same expression for stress 

concentration, except that the bending waves that contribute to this 

stress arrive from angles between $0° and T the critical angle.

Let a bending wave approach the change of section from plate 1, 

of thickness h| , from angle 6 and let the wavenumber be k| . Let 

this wave be partially transmitted and depart into plate 2, of 
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tliickness h^ , at an emgle ^ with a wavenumber k^ .

I'Tov; the stress in 2 will be

-•XsO

7.54

i h^E k? 
2(1 -9^)CJ^

-Dcos^$Z$ + otl'*' sin?^) - V. sin^$^(D+ d) V,

........................7.55

where D and D'' are the transmission coefficients from plate 1 to 

plate 2.

Now

sin^ _ 'X, / h,
sin0 " SX^ 'Y h^

7.56

Then 7.5.5. may be witten in

incidence 6 as

k.

terms of the angle of
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- (I - v) s i n^^ V, 7.

This is a necessary operation: if we intend to use the diffuse 

field model we can only assume a uniform distribution of V| with 

6 the angle of incidence, not (^ .

Then the mean square stress in Section 2 due to one wave is 

given as:
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where T- is the critical angle from 1 to 2, or $0°.

Now from Chapter 5

/
2

c osV+V s irfC , dC

2

Then

7«61 tells us the stress to expect in section 2, normal to 

and at the change of section compared to the mean square stress over

section 1.

7*2.4# Stress due to Totally Non-Transmitted Bending Waves

Using the same notation as in 7*2.5, we are trying to find 

stress normal to and at the change of section, in section 2, presumed 

thicker than in 1, due to a bending wave incident from 1 at an angle 

greater than the critical angle.
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Again

7.62

i hiEk?" (K^+sin*̂)D'^+(sin''^-K^)D-v.sfn^^fD+D9

* * * « * , 1 e « e ■ • e . » e • • , * • 7 * 6^

This is identical to 7«57.

Proceeding the same way we end with the result that

V,

2(1 - v^)u^

15 0



where T^ is the critical angle from 1 to 2,

We have now found the stress in plate 2 and normal to the 

change of section in terms of the mean square stress in plate 1.

7*3* Evaluation of the Results 

7*3*1« Computation

Such complex integrations as are involved in expressions 

7*50, 7*55) 7*61 and 7.64 are best solved numerically* As ment­

ioned in section 7*1.) from a given value of ^2 the values of

R, R , D, D , are deduced as from equations of sections 7*1*2 and 

7*1*5* From these are determined the stresses generated due to 

waves from various angles. Then,by integration using Simpson's 

rule, was calculated the effect of waves coming from every direction. 

The results of this calculation are presented in Figure 52* There 

are no particular complications that need mention and the structure 

is completely defined by the ratio of the change of section. The 

results are discussed later*

In practice we may only measure strain not stress and the 

results are derived also for the expected strain.concentrations. 

The modifications are the same as those described in section 6,5*2, 

for the v/eld. Expressions 7*44, 7*51, 7*54 and 7*62 are replaced by

7*65
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Figure 5 2 Stress Concentration ata Change of Section
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and expressions for stress versus velocity are replaced by

<v*)
7#66

(See also section 6,3.2*)

The results for strain are presented in Figure 53* The only

structural parameter is the ratio of one section's thickness to the

other*

7*3*2* Discussion of Computed Results

Let us first consider how to use Figures 52 and 53*

If we want to calculate the stress concentration at a change

of section of 4 to 1 (say) and v/e estimate the mean square stress in 1

tobe loolbf/in^ and in 2) the thicker, to be 10 Ibf/in^

then the mean square stress on the thin side of the join will

be

= IC)()\3r^ 4. I d^ 
^%$) (61$)

0:^=0:^+

where 01 is the stress due to partial reflection

is the stress due to total reflection

7.67
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Figure 53 Strain Concentrations at a Change of Section
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stress due to partially transmitted energy

at values of ^1

^2

Then the stress would be given by:-

(T = 100x2.84 + 10x6.46

& 28640

7.68

be:-

On the thick side of the join the mean square stress will

S-'-. IO cy;^+ I OOoC:^, 7.6$

where O^ = d^^ = stress due to partially reflected energy

and where

and where

^i' = ^Tb "d

CT? = stress due to 

dy = stress due to

partially transmitted waves.

totally reflected waves in the

thin section.

O':- = |O\O.O25 4"(OO\g.OH = l 12.5 O'«IO.61hf/in^

.... 7#70

Figure 55 is considered in exactly the same way.
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We must next consider if these results are basically sensible. 

Do they seem reasonable in the light of our experience?

First we examine the result at a change of section of unity) 

i.e.) no change. The stress concentration) and strain concentrations 

are 0.5 for both transmitted and reflected waves, i.e. there is no 

total stress or strain concentration. This is correct. Small depart­

ures from the uniform thickness condition introduce progressive 

rather than step changes in concentration factor. At very low values 

of r ) where thin sections join very thick sections) the results 

suggest that high stresses and strains will be developed. This seems 

reasonable for the ultimate condition) the solid edge) generates high 

stresses (appendix VIl).

At very high values of r, where tliick sections are joined by 

very thin sections) the plate will behave as if free and the stresses 

near the edge will fall to zero. This is the trend indicated by 

Figure 52, The strain due to reflected waves is not shown as falling 

towards zero. At first sight this seems wrong) but this is not so. 

The stress normal to the edge approaches zero if the edge 

becomes approximately free. Let be the surface strain normal to 

edge, ^^along the edge. Then the stress normal to the edge

O' = (,+ ^^ 7.71

If there is curvature along the edge, which is so for any wave not 

normally incident and if the stress normal to the edge is to be zero.

15 6



then as ^ O then 8 9^ O . Thus one would 

expect that the strain normal to the edge would not approach zero* 

This is shown on figure 55* a.t high values of r .

figures 54 and66 show the theoretical variation of mean square 

stress with angle of incidence, from this we may deduce likely 

variations from the diffuse field results if the incident field is 

not diffuse. In fact, as we see,.the likely excursions above the 

diffuse field valve are small, from this we may deduce that even 

large departures from the diffuse field are unlikely to cause serious 

increases in stress above the average value.

At a few angles of incidence the stress is extremely low. How­

ever, from a design point of view this does not concern us, 

from the magnitude of the transmitted or reflected travelling 

wave we can find the loss factor across the change of section; the 

energy loss per unit length over the energy incident. This is done 

in appendix XII. Whether we calculate the energy loss by measuring 

the reflected energy and subtracting it from the incident or by 

measuring the transmitted energy the results should be the same. It 

is, in fact, a further boundary condition, that of conservation of 

energy. This is also a useful check of the calculation of H and D 

and revealed no errors.

7.4* Experimental Tests

We have made assumptions about plane sections remaining plane 

and about the diffusiveness of given fields. We must now put them
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to the test to see if the theory agrees with practice and if our

assumptions are justified.

7.4*1* Experimental Procedure
<«aw«*-KM6i*a*«M»M»M==«m*m.*MI»WW"™M*»K««5*«m««M**«»=l*=*«**MKW»*l«a*EMMMBKiamM#MM««KM«l»a*

Three specimens were used; tv/o incorporated a4:l change of 

section and the other a 2;l change. Two specimens consisted of two 

aluminium plates 4 feet by ^ feet joined to make a specimen

8 feet by ^ feet. The thick section was ^ inch and the tliin sections 

either ^ inch and :^ inch. Of these) the 4:1 specimen is shown in 

position hung in a reverberant room in Figure 5^* The 2:1 specimen 

was similarly mounted. The other was a small steel specimen made up 

of two plates ^ inch and ^ inch thick is shown in Figure 57* This 

was supported by wires from a light frame.

The plates were joined by milling a slot in the edge of the 

thick plate and fixing the thin plate into the slot with epoxy 

resin. The slot and thin plate were a good fit and the resulting 

join was considered very satisfactory. All the joins were inspected 

visually and the small specimen was also tested experimentally. We 

would call a join good if there was no relative movement between the 

two plates. Since the layer of epoxy resin was very thin between the 

two surfaces any relative movement between them must represent a 

failure in the band, a rubbing would occur. This rubbing would be 

associated with a higher loss of energy. To test this the reverber­

ation time of the plates was measured) the rate of decay of the 

response to a loudspeaker after it was turned off. This was then
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Figure 56 Large 4:1 Change of Section Specimen.
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V4 thick ms 
vZJ

^/16 thick ms

Fig.57 The small 4h change of section specimen

Fig. 58 Damping of small 4:1 specimen with and without lower section 
connected. Suspended (Va OB measurements)
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interpreted as a loss factor. Figure ^ shows the total loss factor 

of both the single ;y inch plate ano. the two joined plates as a 

fXinction oj, frequency/, i-iotice tnat tliere is no incres.se of daiiiping 

of any significance on joining. Even the slightest loss due to 

chaffing would have produced a very large increase. The reduction 

in loss factor at high frequency, when the thinner plate is added 

on, is doubtless due to the reduced radiation from the thinner 

panel' '.

When measuring the strain concentration the specimens were 

all excited acoustically. The small specimen was excited by a loud­

speaker driven by white noise from a power amplifier. Both the large 

specimens were excited by the sound generated by high pressure air 

escaping from a gate valve in a reverberant room. The large 4:1 

specimen was also separately excited by white noise from a loudspeake

The strains were measured by semi-conductor gauges distributed 

as shown in Table 2 below. The gauges measuring the main stresses in 

each plate were scattered at random over the surface. The strain at 

the edge was estimated by fixing three gauges in line perpendicular 

to the change of section. The strain at the edge was then joined by 

fitting an exponential curve to the results by a least square fit 

routine and extrapolating this curve to the boundary. Sometimes this 

was not reasonable and then the result from the nearest gauge to the 

edge was taken as the strain at the edge.

The outputs were analysed in third octave frequency bands. 
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TABLE 2

Distrioution of Strain Sauges on Change of Section 

Specimens

Specimen
Number of Gauges

Wean Thick Mean Thin Thick Edge. Thin Edge

Small 4:1 10 6 5x5 5x5

Large 4:1 8 8 4x5 4x5

large 2:1 8 8 4x5 4x5

7*4*2* Experimental Results

lAien examining the stresses at the 4«1 change of section 

extrapolation teclmigue was muoh more successful than it had been 

when applied to the welded joint ( 6.4. 1 )* The 

strain concentrations were much greater and it was in general easier 

to separate them from the background level. Figure 59 shows two 

typically good fits. The extrapolation seems entirely reasonable. 

There were, however, some occasions where the technique failed, as 

shown in Figure 60. This was a far less frequent occasion.

The strain concentrations are presented in Figures 61 and 62 

as the ratio of the actual r.m.& strain and the predicted 

r.m.5. strain plotted against the theoretical number of modes 

available in the thinner plate in each frequency band.
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Fig.59 Small specimen 4:1 change of section. 
2500 Hz Vs OB. Thick edge. Good fit by 
least square method of exponential curve.

Fig 5 9 Small specimen. 4 = 1 
400 Hz 1/3 OB. Thin 
least square method

change of section, 
edge. Good fit by 
of exponential curve.
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Figure 61 Strain Measured at a 4:1 Change of Section.
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Figure 6 2 Strain Measured at a 2:1 Change of Section.
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7.4*3* Discussion of Results

The results for the 4:1 concentration are uniformly good. 

There are a few digressions but none of these is very marked. 

Even with very few modes available, the results are close to the 

predicted values*

At first sight it might seem strange to quote the results 

along the thick edge in terms of the modes available in the thin 

section. However, in these experiments, the thick panels had much 

lower mean square strains than the thin panels and, as calculated 

from Figure 53) the strain in the thick edge was controlled by the 

strain in the thin panel rather than in the thick. The calculation 

in section 7*3*2. of this chapter was fairly typical.

The results for the 2:1 change of section are at first sight 

less satisfactory. The expected fall and rise in strain towards the 

thick and thin section edges were not found. In fact, this is 

hardly surprising fot the strain concentrations expected are much 

less than those of the 4:1 change of section. This was not dis- 

cemable above the mean level in the plate and certainly the extra- 

polations were not very satisfactory* Nd change of strain was 

detected near the change of section* We will discuss this at greater 

length in the last chapter.

7*5* Conclusions on Chapters 6 and 7

These chapters consider two very similar problems in the same 
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7/ay by using the diffuse field model. However, it has been a 

rather long business and it is useful to summarise what we have 

aohievedo

By studying the behaviour of a bending wave reaching a weld 

and a change of section we have been able to find the magnitude of 

the resulting reflected and transmitted travelling and decaying 

waves. From this wo have deduced the mean square stress caused by 

a wave from one given direction. Then by invoking the diffuse 

field model, of bending of random phase travelling from every dir­

ection, we have deduced the stress likely at the join compared to 

the mean square stress elsewhere in the structure.

We have also deduced similar results for strain and have 

tested these results experimentally. We have found that in theory 

a typical butt weld is unlikely to cause a large strain concentrat­

ion and have proved this experimentally. We have also predicted 

that small changes of section, i.e. 2:1, are also unlikely to pro- 

duce large strain concentrations and we have shown this in 

practice. However, the strain concentration rises sharply as the 

change of section increases, and at 4:1 can be large. We have 

shown this experimentally.

Looking at the experimental results (Figures 61 and60), 

there seems to be no dependence on the number of available modes, 

or wave directions. However, as more modes are available 

departures from the predicted diffuse field values are less common. 

In any case, there are no serious excursions upwards from the 
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predicted values. A factor of 2 would include almost all of them, 

however small the theoretical number of available modes.

Thus we may reasonably conclude that the diffuse field model 

adequately predicts stress and strain concentrations even if very 

few modes are available* Vfe do not require the more stringent 

conditions suggested by the formal tests of the diffuse field 

model described in Chapter 4*
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CIIAM'SR 0

Stress Distribution in the ilid-Structure 
Ilef;ions

Let us assume that we are able to make an estimate of the time 

and space averaged mesn square velocity of a structure in response to 

a particular excitation by use of the statistical energy method' 

From Chapter 5 we may then estimate the resulting time and space aver­

aged mean square strains and stresses, noting that this result applies 

whether many modes are excited or only one From the criterion 

suggested in Chapter 4 we can decide whether or not the resulting 

bending wave field is diffuse. If so, then from Chapters 6 and 7, we 

can deduce the strain and stress concentrations likely at any butt 

welds or changes of section.

Now we must decide whether or not such concentrations of stress 

are significant compared to the variations in stress to be expected in 

the mid-structure regions, away from any such discontinuities. To do 

this we need some estimate of the distribution of local time averaged 

mean square stress about the structure's time and space averaged 

mean square stress,

From the discussion in Chapter 5 we conclude that the travelling 

wave model is less likely to be satisfactory than the normal mode model 

because we are now dealing with a property that affects the whole 

plate, not just localised areas, ^e will try to determine the vari­

ation in stress over the structure from the statistics of the sum of 

many normal modes.
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8.1. Derivation of Henn Scu&re Stress in a 

Arbitrary Bounclar;/ Conditions
Flat Plate with

Starting generally we may write the response of our system as:

z(Xiy)t)=:2 W(x,y)Q(t) 8.1

^^^Gre '^(^^yit) = displacement at X , y at time t .

^ (t) IS the generalised displacement of modeo( 

y^CX,y) is the normalised mode shape of mode o(

Bolotin^ ^ shows that at frequencies high compared with the 

fundaruentai frequency^ flat structures behave like simply supported 

plates away from their boundaries. The nodal lines are displaced 

by amounts which depend on the wave number of a particular mode and 

the end fixity of the boundaries of the plate. Considering first the

response of a simply supported plate) we may write:- 

z(x,y, t) 8.2.

a and b are the plate dimensions in the X and y direct

ions. mf? and _njl, 
a b

fnifr\ fnTTAI a r^r Iw

are the wave numbers given by:-

where u.^ is the 8.).

natural frequency of mode ol and C^ is the speed of bending
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waves at this frequency.

For these simple mode shapes the principal stresses lie 

along the X and y axes and tlie stress (/ at X)/ at 

a^gls to the X axis is given by

O'(x,y, t,^? » -E h ^(l+cos. 2^ + 9(l-cos 2^)) 

4(1- V"") ^H^

Prom Figure 6^ the wavenumber diagram for a simply supported 

plate^ we may deduce that

k? cos 2<^

8.5.

where 0 is the argument of the wavenumber vector of mode o/.
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1

km = y^ cos kn = ^ sin^

The circle and rectangular 
grid correspond to (he 
simple supports, the dashed 
line and offset grid to the 
clamped plate.

km^- kn = (^ )^ C cos^ 0 - s in ^]

Fig.63 Wave number space for a simply supported 
plate showing possible shift due to boundary.
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If me restrict the analysis to third octave, (2);L), frequency 

bands, since k^ is proportional to I /J6J^ ^ k mill very 

oy no more than 6/: from its mean value. Thus, me may replace k@( 

by a constant k .

To proceed with this analysis me must also assuhie that the 

response of each mode within a given frequency bond is approximately 

the same. Without experimental evidence it is not possible to 

judge the effect of the accuracy of this assumption on the results 

of the analysis. However, from the experimental tests, described 

later, we may conclude that the accuracy of the assumption is not 

critical.

If we assume that the modal responses are statistically 

independent, (i.e. that their time averaged cross products at a 

point are small compared v/ith tneir mean squares), then we may 

write:- -

in
E hk 

4(l -V^)

(l+V) ±(1-9) cos.2^.cos. 20

The bar indicates a time average.

This further assumption implies that modes are separated in 

frequency by frequency bands greater than their half -power bandwidths.
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In the experimental tests this condition was not always fulfilled, 

but it had little effect on the results obtained. This is dis­

cussed in more detail in secticn 5*

For a rigidly clamped boundary, we may deduce from

^28)that
a more accurate description of the variation in the

direction is given by:-

sin
4

2 tan 8.7.

is the wavenumber in the X direction and k in tlie y

direction.

In practice no boundary is either rigid, or a simple support 

It lies, an stiffness, at some indeterminable value between these 

two extremes. 8o instead of trying to preserve a degree of accur­

acy in our analysis quite out of keeping with the data available to 

us, i^e assume that the displacement of the nodal lines induced by a 

set of practical boundary conditions is a random function depending 

on the modal wavenumber. This then implies that mfrX g^d

Jl^ , in the expression for a^, should be treated as 

b
random variables.

For such systems the form of the wavenumber diagram will be 

changed as described by Bolotin^^^^ and as depicted in Figure 64.

Although individual modes will have slightly differing eigenvectors,

tvv



a) 945 Hz

b)133O Hz

Figure 64 High Order Modes of 1/8 in Plate.
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the total number of modes in a frequency band is likely to stay 

the same* However) the value of A is not, in practice) deter­

minable in advaiace for any particular mode and it is reasonable to 

consider that (Zb is (: random function of mode number*

If we examine the behaviour of actual panels excited in their 

individual normal modeS) we find that the principal axes of stress 

are not necessarily along the X,/ axes due to small irreg­

ularities of shape and boundary stiffness,

Figure 64 shows two higher order modes of the ^ inch plate 

used in the experiments described in section 8.jo The plate was 

excited at a resonance and sand was distributed over its surface* 

The position of the sand indicates the nodal lines of the structural 

mode* As can be seen.) at $45 HS) the nodal pattern is fairly 

regular, and the principal axis of stress would liO) in general) 

parallel to the edges of the plate* However) at 1550 Hz this is 

not so. The pattern is irregular) as is more often the case, and 

the direction of the principal axes of stress no longer lie parallel 

to the edges of the plate.

It is thus more realistic to replace ^ by Y^ 

where %( represents the angle between the X axis and one of 

the principal axes of stress for mode O( * As we are unable 

to predict Individual values of ^Y^ at the design stage, we 

must treat ^+ ^(^ as a random variable depending on the 

mode number.
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8*2o Statistics of Square Stress

First v/e will determine the mean square stress in a flat plate^ 

averaged over spacey and then deduce its likely variation over the 

struoturoo

8o2»l* Determination of Spatial tken Square Stress

From expression (4)

2(I-9^) c OS 2 c os 2 0 + (l-v) cos 2^cos.2<%

Let 8.9K

Suppose that N modes are excited then
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8.10a.

8.10b.

of:: I

N
= Ky. 0+^)) + S^(|-"^2^ 0+cos.4(%,) 

o(=|
where the pointed brackets^ ^ ^ ^ indicate a space

8.10c.

average.

Assuming that all values of 4 are equally likely^ from 0

to 2) then taking the average value for all the modes *•

I< or^) = N Ku l+v) 4 :^ 8.11.

8.2.2. Probability

M. 81ack(^^)

Distribution of Mean Square Stress in Snace

has shown that if ten or more cosines of equal

amplitude, but random phase, are added together, then the instant

aneous sum is a Oaussion variable. The standard deviation is 

given by ^, where ^ is the amplitude of each cosine term

and there are N such terms. In order to use this result vze must
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expand O' to the fonn of sines and cosines

Thus we write:-

-(1 -\^)

2
^cos 2(A +?) + 2^ cos 2(B +

—4- J - Zj Goa ^3

+ ^cos 2 G

B) + ^ cos 2(A — 3)

?) +^cos 2(A f G)

+ ^cos 2(3 f G) + 23 008 2(A - p) +%]cos 2(3 - P) f^^cos 2(A - G)

+ y]cos 2(3 - G) + ^—
23cos 2(A + 3 + P) + I]cos 2 (A+B-p)

+ Z/008 2(A - B + P) + ^ cos 2(A - B - P) + ^ cos 2(A +3 + G)

+ ^cos 2(A + 3 - G) + }]cos 2(A + 3 4G) ^3 00s 2(A — B — G)

+ (Lz^
4

f^cos 4(p + G)+^cos 4(p - G) goos 4F

+ iZooa 4(P + G) 2(A + B) + 2(A

&Z008 4(P + G) 2( B) 21

+ B)

"" B)

+ ^HI^cos 4(P + G)

+ ^)E]cos 4(P + G)

cos

4(p 4" Gj

+ il]008 

+ & X^OOS 

+ ^3E3oe8

4(p - G)

4(p "" G)

4(p - G)

4" 2(A - 3)

2 3

4-\ 2(A

2(A

4"

4(P g)
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+^ X cos 

4 Leos 

4 Z cos 

4 Zoos

4(F - G) 

(2A + Aor) 

(2A + 4G) 

(2B + 4P) 

(2B + 4G) 

(40- + 2(A 

(4G f 2(A 

(4F + 2(A 

(4^ + 2(A

i' 2A. + 'J; Z^ COS 4(p - G)

COS (2A - 4F)

— 2A

- 23 cos (2A - 4G)

:^^2oos (2B — 2fji')

- ^^^cos (23 " 4G)

+ Bj) -^ ̂ ^^cos (4G — 2(A + s))-

" ^)) %jCos (4G - 2(A - B))

+ B) + 2^^008 (4P — 2(A + B))

" ^)) + %]oos (4G - 2(A - B))-
.12

where A = HI^X B .^^ _ ? = (g+ "X^) +<5^, & =(f f Tg) -Q);

Expression 8.7 contains 58 summations of cosines, but we have only 

four independent variables. No amount of manipulation will reduce 

the 58 terms to 4 sums of cosines, and the best we can do is to 

estimate the extreme values of standard deviation. We find the 

highest estimate by assuming that all the terms act as if they 

were Independent, and the lowest reasonable estimate by assuming 

that only the four largest terms contribute significantly to the 

total. Let the variation of mean square stress be the standard 

deviation divided by the mean. We denote the variation by V. 

Then the maximum value of V is obtained by considering only the 

terms cos 2A, cos 2B, cos aP and cos 2C, and is:-
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The minimum value isr-

8.15b.

6*13^0

Putting "0 = 0,5; <3- typica.1 value for rns-ny engineering

materials, ne obtain the simple result that

^e have deduced that values of mean square stress, measured 

^^®^ the plate, will have a Oaussion distribution; but we may not 

deduce that very large values are likely. Analysis of the extreme 

values of scress is only possible, as yet, when one mode is excited (5)# 

or when many modes may be excited at one frequency (6).

We now briefly consider the effect of curvature on the results^ 

since many engineering structures are curved. The effect of plate 

curvature on the wavenumber diagram is shown in Figure 55, for a 
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circular cylinder (^4) 0 is restricted below the ring fre— 

quency, cy^tD, where C^ is the longitudinal wave speed and D 

the cylinder diaaieter. Above thvvt frequency 0 can kive any value 

and the previously derived results should hold. Below the ring 

frequency^ cespite the fact that 0 is restricted in range, the 

results snould scill nold. In expression 8«7 the variables are

+ 0 and ^ - 0 and if ^ is unrestricted end 0 is 

permitucd soine variation (i.e, not sensibly constant) then there 

are still four independent variables. Of course if the range of

0 becomes very restricted at frequencies well below the ring 

frequency, then ^+ 0 approaches ^ - 0 for all conditions 

and there wall only be three independent variables. The expression 

will become invalid. For the cylinder described in section 8.j. 

at jOO Hz, 0 may lie from -i-55' to 0 and ^ + 0 may thus be 

very different from ^- 0 . At this frequency tlie cylinder's 

response to acoustic noise was very low as this frequency is well 

below the critical frequency of the cylinder, where the bending 

wave speed equals the acoustic compressive wave speed. The 

ability of the cylinder to receive acoustic energy under these 

conditions is low. A fuller description of this phenomena, which 

is beyond the scope of the present work, is given in (4). Suffice 

it to say that at all frequencies of interest to us for this 

cylinder, the results of this chapter are applicable.
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A similar analysis for strain and acceleration gives the 

folloxving results in terras of numbers of modes involved

TABLE 5

Stm_d_^d__Deyiation,/Average Itean Squar§

Acceleration

Strain

The results for streAn may be simply obtained by putting 

Poisson's ratio equal to zeroo Strictly, equation 8.5 should be 

replaced by

2 ^)^

2
(lfCO5.2^) + ^ zf I - cos.2^)

8.15

and the analysis repeated.

The derivation, for acceleration is briefly described in 

appendix XII

The variation in strain is predicted as being greater than 

that for acceleration. This xould agree with the physics of the 
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the situation^ for whilst a strain gauge is sensitive to the direct' 

ion of a given bending wave) an accelerometer is not. One would 

therefore expect more variation from a strain gauge for a finite 

number of wave directions*

8,3* Experimental Tests

To verify the analysis and investigate the relative import­

ance of some of the assumptions made in the theory, the spatial 

variation, V, of mean square acceleration and strain was measured 

on some laboratory structures, excited in broad frequency bands, 

either acoustically or mechanically at a point*

The results shown in Figures 6$, 66 and 6? were obtained 

from a cylinder 6 feet long and 3 feet in diameter of ^/^g inch 

mild steel and three mild steel plates, clamped at their edges, of 

dimensions 2*2 feet x 2*7 feet and 0*2$ inches, 0.123 inches and 

.064 inches thick respectively* 20 gauges were used to measure the 

strain* The acceleration was measured at 20 positions on the plates 

and 13 positions on the cylinder. All measurements were taken away 

from boundaries or shaker positions* The transducer outputs were 

analysed in third octave bands and the variation, V, plotted 

against the theoretical number of modes available in each band, 

as calculated from references 3 and 33* In Figure 67 the weight 

referred to was a magnet of 0*8 lb. mass attached to the ^ inch 

plate 4 inches from the mechanical shaker connection.

Table 2 shows the variation of strain in 3*33 feet x 

1*66 feet X 0,03 inches acoustically excited with white noise*
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The outputs from 10 gauges were analysed at a constant bandwidth of 

50 Hz, corresponding to about 11 modes per band, as calculated from 

ref. 5*

8.4o Discussion of Results

The measured spatial variation of mean square acceleration, 

shown on Figure 65,agrees well with the theoretical prediction when 

over 10 modes are available. %hen less than 10 modes are available 

the agreement is only fair for under these conditions the central 

result quoted from 45 does not hold.

The variation of acceleration seldom falls below 0.1 and the 

low values predicted whe, say, 800 modes are available, are not 

observed. Readings were talcen from a level recorder to the nearest 

decibel, which implies an accuracy of ^ dB. which affects the 

recorded variation as discussed in appendix X. The level at which 

the observed variation is controlled by this accuracy of measurement 

is shown in Figure 6 s

The experimental results for strain (Figures 66 and 6?) are 

well described by the theoretical results when over 50 modes are 

available, r.hen less than 10 modes are available the analysis fails. 

Both bands seem vrell justified and the individual curves show a 

strong dependance on l/Ulf .

We have deduced that the analysis would describe the 

behaviour of a cylinder above and below the ring frequency fp. 

The variations in strain measured over the mechanically driven 
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cylinder coalesce well with the measurements from the various plates. 

There is no change in trend or level of results between the variations 

measured below and above the ring frequency, which here corresponds to 

200 modes available. The variations measured over the acoustically 

excited cylinder group round the upper band both above and below the 

ring frequency.

Figures 68 and 6$ show the distribution of mean square strain 

over the acoustically excited inch plate at 400 Hz and 1600 Hz^ 

plotted as a cumulative total. The individual points plotted approxi­

mate to a straight line which indicates, on the distorted scale of 

probability, that the distribution is Gaussion, as predicted.

In deriving the theoretical predictions of variation the 

assumption was made that the response of the modes was uniform in 

each band. In Figure ^, the variation of mean square acceleration 

is shown for both the inch plate and the cylinder mechanically 

and acoustically excited. The distributions of the response of each 

mode would surely be different for the two methods of excitation, yet 

the differences in the variations observed was small. This shows 

that the effect of the assumption is small and that we were justified 

in making it. Figure 4 shows that the variation of mean square 

strain over the g inch plate again was unaffected by the method of 

excitation.

The variation of mean square strain measured over the 

cylinder (Figure 66) was greater under acoustic excitation than
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toecticUiical excitationo This suggests thstt consistently fewer 

modes were excited than predicted, under acoustic excitation* The 

acoustic field was set up inside the cylinder; the effect of 

selective coupling between acoustic and structural mode is to reduce 

the number of structural modes contributing significant]^' to the 

response. Honever, the results still lie within the suggested band 

and the assumption of uniform modal response still seems to be 

adequate.

In the analysis we assumed that the structural modal 

responses were statistically independent. The amount by which the 

iiiodal half po'A-er bandtvidths overlap is a measure of the accuracy of 

tiiis assumption. If the modal overlo.p factor (the half power band— 

width mulciplied by the modal density) is greater than 1, then the 

half power bands of some modes must overlap, and modal independ­

ence is no longer certain* In Table 2 is shown the variation of 

strain measureo. over the suspended aluminium panel, at va.rious 

frequencies, at a constant bandwidth* With only 11 modes included, 

the agreement with the theoretical variation is not good* However, 

despite a very large change in modal overlap factor, the variation 

measured was reasonably constant. Thus, we may deduce that the 

overlapping of adjacent modes is unlikely to affect the results 

seriously and our assumption is reasonable*

This latter experiment also provides evidence for consider­

ing the number of available modes as the major parameter in estimat­

ing the variation of strain* As the modal density of a flat plate is
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independent of frequency, the number of modes included in each 

annljSis in j.able 4- v/as tne same (11 moaes), and the vaixiations 

measured should have been constant. Despite the fact that very 

difl erent modes i.ere cozisidered, the variation measured was Indeed 

constant as predicted.

Further strong evidence is presented in.Figure 5, showing 

the variation of strain over the ^ inch plate, with and without 

added weignt. .ihilst the weight altered individual modes very much 

indeed, the total nuraoer of mooes in each frequency band was 

approximately tlie same, with and without the weight (j). Thus, we 

tfould predict no diiierence in the variation of strain over the 

surface, between the two systems. In Figure 5 we see this to be so 

ivhen more LuGn 10 mooes were available tnere were no significant 

differences in the variations measured, despite the addition of a 

lumped mass of 30^ of the mass of the plate.

This evidence strongly endorses the theoretical findings 

of section 8,2.
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TABLE 4

Variation V of Strain from Suspended Aluminium Plate 

Analysed at Constant Bandnidth (50 Hz)

Centre Frequency Hz V Modal
Overlap

200 0.5^ 0.24

400 0,27 0.45

800 0,46 0.4B

1600 0,49 0.85

^150 0,55 1.85

6j00 0.45 2.50

50 Hz bandwidth corresponds to'^11 modes.

Modal overlap is taken as M

where f = centre frequency 

*[= total loss factor 

H = modal density

8.5,_ Conclusions .:. Extension to Existing Estimates : 
.HffecH^of^i^sur^^

By making a nui:ber of sweeping assumptions we have achieved 

some simple results which well describe the variation of stress, 

strain and acceleration with position over a variety of structures 

under various excitations. The only parameter required is the 

number of mooes available, This is no more Information than is 

required by the statistical energy analysis of vibrating structures 

and thus having estimated the mean square stress, a designer can work 
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out the likely variation about this mean over a given bandwidth 

very simply* This result does not, of course, refer to the region 

near a boundary (see Chapters 6 and ?).

The assumptions made do not seem to be very critical. The 

assumption concerning uniformity of mode response has not caused 

trouble despite different types of excitation. The effects of 

changing damping and modal overlap are small. Damping could become 

important if the modal bandwidths became comparable or greater than 

the analysis bandwidths. Then more modes would be included than 

those with their centre frequency in the analysis bandwidth. 

Beany Yen and Smiths noted that under modest pressures of COp 

a suspended structure under acoustic excitation failed to exhibit 

peaks in its frequency response curve. This implies extremely high 

radiation loss factors from the structure to the acoustic field 

such that the effective damping is high. Under these conditions the 

modal bandwidths were high and thus a narrow band of noise would 

excite many modes and would produce little variation of response 

over the structure.

It is interesting to compare the findings of this chapter 

with those of Chapter 4, where formal tests were applied to the 

structure to test the "diffuseness" of the bending wave field. 

About the same number of modes are required to produce satisfact­

ory answers, i.e. at least 10. However, the dependance on point 

excitation vs. acoustic excitation seems to have vanished for 

both accelerometers and strain gauge. This seems reasonable. 
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We are only Measuring variation in magnitude^ wliereas the 

correlation measurenents are sensitive to phase as well, as 

discussed in section Gi.lJ^.dJ and appendix IV.

The assumptions seem well justified and allow us to present 

designers with usable expressions which ina^; easily be applied 

to improve estimates of the service life of components.
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Chapter 9

CONCLUSIONS

9el« Preview of the Results

The probloa that we set out to solve in Chapter 1 was that of 

predicting tlie stress distribution -in complex plate-like structures 

vibrating at high frequency. We sought an approach that would be 

easy to apply, but sufficiently accurate for design purposes, start­

ing from the mean square velccity. This can be estimated by the 

statistical energy analysis of sets of coupled oscillators. In 

Chapter 2 we concluded that at the frequencies of interest to this 

study, the structures will vibrate in bending, and we discussed the 

behaviour of bending waves.

Two alternative models were discussed in Chapter 3, the normal 

mode and the bending wave models. We concluded that the normal mode 

model is convenient when studying properties affecting the whole 

structure. We also concluded that the travelling bending wave model, 

coupled with the concept of the diffuse field as used in architectural 

acoustics, is convenient when studying local effects around boundar­

ies, for this model enables us to make use of the fact that these 

effects do not propagate far from the boundary. %e discussed the 

wavenumber diagram and its importance to the diffuse field model.
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Ty.'o formal tests of the diffuse field model were developed 

in Chapter 4 and experiments on two plates and a cylinder were des­

cribed, It was concluded that at least ten modes are necessary for 

a diffuse field. Further, for a cylinder, this will only apply at 

frequencies above the ring frequency* It was also concluded that 

although high dampings would not affect diffusencss by increasing 

the overlapping of adjacent modes, it can affect it by producing 

a radiating, rather than diffuse field under point excitation*

The diffuse field model was used in Chapter 5 to predict the 

ratio of mean square stress and strain to mean square velocity* 

This turned out to be the same as predicted by a single mode model, 

as expected* The result was tested experimentally and it was con­

cluded that the criteria suggested in Chapter 4 were, in fact, too 

severe* It was found that even with only a few modes available, 

the result still held* With cylinders, the ring frequency had no 

effect on the results.

In Chapters 6 and 7 the diffuse field model was used to pre­

dict the concentration of stress and strain likely near a weld and a 

change of section. It was found that, at the particular weld 

investigated, little strain concentration was to be expected and 

this was proved experimentally, However, it was concluded that 

thicker welds and ribs could cause significant concentrations, A 

change of section of 2 : 1 was found experimentally not to intro­

duce high concentrations of strain either, but significant strains 
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were introduced by a 4 : 1 change. This agreed with the theoretical 

predictions. Again, tlio number of modes, or bonding wave directions 

available, was not foimd to bo very significant. Prom the theoreti­

cal work the stress and strain induced was seen not to be strongly 

dependent on wave direction, in the sense that values much above the 

mean diffuse field value wil]. not occur, even with one bending wave 

on].y in the most unfavourable direction. This is important when 

considering tlie incorporation of these results into a design method.

The variation of stress, strain and acceleration over the 

surface of a plate was investigated in Chapter 8 and simple theoret­

ical results were derived, involving only the number of available 

modes. The normal mode model was used here, as these are properties 

of the whole structure. The theory breaks down when less than 

10 modes are available and experiments suggested that between 10 end 

^ modes are necessary for good agreement with the tlicory* The ring 

frequency of a cylinder does not seem to be important, as discussed, 

and the effects of damping, Cr-using overlapping of adjacent modes, 

was also shown to be unimportant,unless it affected the number of 

modes responding within a given frequency band. The effect of diff­

ering boundaries to the structure, and different methods of exciting 

it is also seen as unimportant. Only the number of modes available 

is of importance. We can now combine these results into a design 

methods
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9*2* CritGria.I'ReWueeui meji.i-e^^rve'-wwlr.-Nee*. **M*k*'^;.**»M*M***w%gs.fW».-^^**"*k*-"

Let us suppose that vfe have estimated the mean square velocity 

of response for a plate to broad bend noise in^ sayj third octave 

bands* Let us also suppose that ue have fatigue data available. 

First) from Chapter 5 v^s T-orlc out the mean square stress* TheU) 

from Chapters 6 and 7 wc can find out stress concentrations likely 

at a weld or change of section and from Chapter 8 and the number of 

available modes(27)) the standard deviation of mean squai'e stress. 

Now tills last result will enable us to set the level of stress 

which will not be exceeded over 9S% of the surface of the plate. 

This proportion is at our choice) but 9S^ is convenient. It is the 

level greater than 2,$ times the standard deviation above the 

estimated mean.

This gives us two levels of stress to compare) a level at 

a number of boundaries and a level that we might expect to occur 

occasionally elsewhere in the plate. As yet) we cannot set a 

maximum value to this except in special cases ( 8.2. 2 ) 

and the figure of 9S^ would probably be modified by experience. 

However) comparing these two figures will enable us to decide where 

the stress concentrations are highest) and) in the light of the 

fatigue data, most likely to cause premature failure.

As an example) let us consider the 4 : 1 and 2 : 1 

change of section specimens and try to decide whether the strains 

where ttie thin section joins to the thick section are significant. 
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Let us consider the third octave frequency band at 2000 Hz, ?or 

simplicity v/e will ignore the small strains in the thicker 

section

Change of Section 2 : 1 4 : 1

Modes Available in 
Thinner Section

50 100

Standard Deviation

Mean

1.18 0.855 (upper
Band)

9S% Level 5.96 5.09

Mean

Change of Section Strain 1*45 5.69

Concentration
(Figure 54)

Thus we would deduce that the 4 : 1 change of section would 

induce significant strains and the 2 : 1 change of section not so. 

This was what we found in practice^

Having decided that a given stress is significant^ we then 

compare this with the fatigue data and decide whether or not any 

redesign is necessary. It may be that local redesign might serve 

the purpose, if a local stress is high, but if the mean level of 

stress in the plate is high, it may be necessary to redesign the 

whole structure, perhaps increasing its thickness, whatever the 

decision, information is now available for the designer to act on.

& 0 3



9.^. Limitations on Design Method

Whether or not we can use this approach is cliiefly a function 

of the number of available modes within a given bandwidth of 

analysis. The calculation of stress at a boundary seems relatively 

undemanding, needing only one or two modes for good answers, How­

ever, the prediction of the standard deviation demands about 10 to 

^0 modes. The formal tests of diffuseness (Chapter 4) seems rather 

severe, but if a given structure satisfies these tests, then this 

analysis may be successfully applied to it.

The effect of other parameters is small. Damping and 

modal overlap have little or no effect on the accuracy of the pre­

diction, although high damping could upset the formal tests of 

Chapter 4 under mechanical excitation,

9,4. Future Extensions

In this work we have only considered two boundaries, the 

weld and the change of section. The solid edge is treated in 

appendix VII, Clearly, there are a vast array of details that we 

could consider, e,g, the right angle join, the mass, the slender 

rib and so on. However, the establishment of the conditions under 

which a diffuse field model is usable has put all such calculations 

into the category of routine, if complex, design calculation.

Another facet of the work could be to try and predict what 

will happen under narrow band random noise loading. At high modal 
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densities the results found here are applicable directly. How­

ever) as mentioned in Chapter 8, the controlling influence would 

be the bandwidth of the individual modes rather tlaan of the 

exciting force, especially when the damping of the system is 

high. This might, perhaps, apply when the acoustic medium is of 

high density, as in a nuclear reactor.

Which of these points to be next tackled will depend on the 

needs of the nuclear engineering industry. Whatever may be 

decided, the method forms a basis of a simple way of tackling the 

otherwise intractable problem of predicting acoustically induced 

stresses in the plate structures of nuclear reactors

The author hopes to extend and develop this approach over

the next few years.
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APR^miX I

Effect of Accelerometer on Measured Response of an 
infinite Plate

Por an infinite plate of thickness h vibrating at a frequency

f Schloss (44) givest-

% - ^t* ^ S Al.l

V^ = local velocity of the plate alone

V^ = local velocity of the plate + accelerometer

Z^ = impedance of accelerometer = i2*%flVl

where M = Mass of accelerometer

Eg = Impedance of plate

density
of material of plate.

E =. Young's Modulus

the velocity measured will be accurate to within I db,

if <051 A1.2t

S
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Now V.
- 1 + —t. Al#^*

7

Z^ 18 imaginary.

Thus the phase error in measuring V. will be

tan"' ^t Al.4.

The effects of the accelerometer mass on amplitude and phase 

are plotted on Figure 70 for two accelerometer masses and for 

different plate thicknesses as a function of frequency.
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Fig.70 Effect of loading, impedance of accelerometers on estimation of 
mean square velocity and Phase
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Appamix II

Phase Match of Analogue Filter

The two filters used in the analogue correlation were 

^ O.B. Speotometers made by Bruel and Kjaer.

A simple experiment ivas devised to test their phase 

match, Y/hite noise from a white noise generator was recorded 

on a multi-channel tape recorder and then played back to both 

filters. The output from these filters was correlated on the 

analogue correlator. The signals should have given a correlat 

ion coefficient of unity, The results are shown on Figure 71* 

As can be seen^ the filter was adequately phase matched from 

500 to 5000 Hz:.
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APPETTDIX III

Use of Powell's Equation to compute Cross-Correlation 

of Acceleration on a Plate

Prom (18) 19)

//W(r,r^;u)

If R(r,r';T)

response at r and

H(r,r*l(j) Htr\!};su)P(o,r;;w) dj^dr/

A A A3.1

is the cross correlation of 

r^ at a time delay of t * then

R(r,r<0) HCr,r^;u) H^r1r;,w)p(ro,D/;w)gxpOO) dj^di^do.

A3.2.
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Prom (19 pp^O)

P(ro)rp;u) =A + IB A).).

IVhere A =- T« O, //(j) S^^) 
2

A^,4*[o'K ([0 ,

^ ^ ([*) [0 ,T"^)//w)S2^^ A5.5.

2

where //u indicates a narrow frequency band and SpCw) is 

the power spectral density over that narrow band.

From the theoretical and experimental work of Cook et al 

we may assume that if the acoustic field is diffuse, then

A= R (5,!;%T^O,//w). Sp^) 
2

o sin(kr) Sp(w) 

kr 2

A^«6.

where r = [."[o and k = acoustic wavenumber*

Unfortunately, no such information exists about the forms of

B* We will return to this awkward point in a moment.
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Let us now examine the form of the cross acceptance terms.

00

— 0O

- - A).7.

At this point we make the assumption about the value of the 

second term A$«6, compared to the first, T/e assime that we may 

neglect the cross mode terms in comparison to the direct as:-
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(a) The cross mode terms contain the integral of a 

produce of modal functions over the panel area 
T/hich is , in general, less than the integral 
of the square of either of the modal functions 
over the same area.

(b) If the modes are v/ell separated in frequency and 

lightly damped, then:

Iy*‘")| « V“'i Y^(w) A3.8

We make these assumptions T/ith some reservations, for we are 

noT/ strictly limited to lightly damped modes. Hovrever, these 

assumptions enable us to reduce the computation time required by a 

factor of N, where N is the number of modes to be examined, because 

while there are N direct terms, there are il^ cross terms. Vfithout 

making this assumption we could not reasonably proceed.

Now the direct terms of A5.7* will produce wholly real numbers 

and we could simply represent A 3.2 as

Spfw) 
2

D(u>)* i £(w) du)

where D(w)S p(w)= A 
2

E(w)Sp(w)=: B 
2
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Now whatever the form of C(w) SpCo) ^RCr^r^O)
2 

must be wholly real. Tills can only be so if C(u)SpCo) E (o) 

2 
is an odd function, or if E(w) is always zero* This seems the 

more reasonable assumption*

Having decided to ignore the cross terms in equation A^»7«, 

in order to reduce the computational requirements of store and time 

to a reasonable level, we are also obliged to make this assumption. 

As we have no information about the form of E(w)this assumption 

is as reasonable as any we could make.

Our final expression now reduces to

* d^ dgfdw A5.10.
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appe:]dk rv

The Correlation Goef-icients of AcceJ-eratior- of c. 
Dix'fuse hendinv; lave ]?icla v.-itl: Cb SLircrinpooed Uni- 

diroctionfA Travollinh Sending; ..'avs

Let us consider a plate in which there is both a diffuse bend­

ing wave field and a travelling bending wave and examine the acceler­

ation at tvzo positions x and x*  along the direction of the travelling 

wave. We restrict the analysis to third octave frequency bands.

• • e e A2{-« 1

Let the acceleration at 'cime t due to the travelling wave field 

be A(x,t) at x and that due to the diffuse field be B(x,t). Let 

us assume that at any point x the two fields are statistically 

independent. Tliis is fair if vze consider a frequency bond of response, 

with a travelling wave of only one frequency vathin that baiid.

Then the zero time delay correlation coefficient of displacement 

or acceleration for a, narrow band of frequencies, r(x,x’,O), will be:-

[A(x,t) -}. B(x,t)] [A(x',t) +. B(x*,t)]  

V^A(x,t) + 3(x,t)]2*  [A(x*,t)  + 3(x*,t)]^
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R(x,x', O " ^()()t) A(/, t)

where indicates a time average

and TCx.t"^ =ACx,l5 + B(x,t)

The product 

uncorrelated fields.

ACx.n BCx\t) is zero for

The first term in A4.2. is due to the travelling wave and 

the second term to the diffuse field.

Let us briefly derive the correlation coefficient for a 

travelling wave on its own. If two points be a distance r apart 

and lie on a line normal to the direction of the travelling wave) 

then the displacement at X and x/ will be identical

(x, t)j= fA(x^t^=[cos(w t)] 
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Then the cross correlation will be 1.

Low^ if the tv/o points lie on a line parallel to the direct 

ion of a travelling wave^ the displacement at X is

A (x,t) = cosCut) J14.2^. 

and at X^ is

A(x ,t) = cosCut^- kr)

where k is the wavenumber.

Then the cross correlation will be

cos(ut)cos(wt4kr) 

^cos\w t) c os\w t+ kr)

= cos(kr)

NoW) returning to A4.2.* if the diffuse field is given 

the arbitrary mean square response of 1 and the travelling wave then
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the measured cross correlation coefficient will be:-

= J o(k:^+ n for X^ X^ normal

to the travelling wave direction, AZf.,?*

Jo(k r) + n.cos(kr) ,
= , for X-X 

along the travelling wave direction.

On figure 72 these expressions are plotted as a function of kr.

Of course, the situation was observed in the mechanically 

excited plate, and was rather more complex. The travelling wave is 

more properly a radiating field of varying magnitude and the acceler­

ometers were not in either position relative to the radiating field. 

However, one may judge the possible effect of a combined radiating 

and diffuse field, A small travelling wave ( n = 01 ) might not 

be detected, but if the component was a third of the total 

response ( n f 05 )then the effect on the correlogram

would be severe.
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Figure 72 Effect of Radiating Field on Diffuse Field Correlogram.
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APPENDIX V

The Ratio of the Reverherant Field to the Radiating Field in the 
■4' Plate Lieclianically Excited

The basis of this calculation is outlined in Morse (26).

Suppose 'ive set up a point source on a plate that absorbs all 

energy at its boundary, then the intensity Ig^ vzill be;~

P 
2fir

K where P = Povrer input 
at source

A5.1
r = Radius

Hovrever, if the boundaries reflect some energy, then far away

from the source the reverberant intensity lyQ is given as;-

loo y = P ^5.2

where 2f- °<Js A5.5

where O(^ = abso2?ption coefficient and

15 = length of boundary S

Now from Keckl (16) we may deduce that
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where

Then

y = 13 -8 ‘TT S 
CgT

S = surface area of plate;

Cg = "bending wave speed;

T = reverberation timeo

PCg T
I3.81TS

P 
24f r

A5e4.

A5.5

A5.6

A
L

I S.S'rfS
CgT 2trr

A5.7

This result is used to predict the radii from the shaker at v/hich 

I^ is lOdB and 5dB belovz J^^ on the 5’* plate. The results 

are shown on Figure 55#
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APEEIJDIX VI

Tests of Three Channel Strain G-auge Amplifier

To measure the signal from the semi-conductor strain gauges 

a combined amplifier and voltage source v/as built. The voltage 

source was to supply a potentiometer bridge including the active 

gauge and a dummy resistance. The signals from the strain gauges 

were passed through three parallel high gain amplifiers.

There were three channels to allow the examination of 

stress through a strain gauge rosette . However, in this project 

only two channels v/ere used simultaneously in the strain 

correlation tests.

The service requirements vzere:-

(a) low noise at inputs ( < 5 ju V ), even 

v/hen in a loud sound field, as the strain 
signals were so small;

(b) good phase match between channels, for 

correlation measurements, 4 to 10 K H^;

(c) gain of 10^ up to 10 K H^.

The amplifier fulfilled all these requirements.

1. Noise Test

The input to the amplifier was taken as the signal from a 

gauge fixed to a massive block of metal. A loud sound (>90dB) was 

made locally to the amplifier by allowing air to escape from a 

gate valve under pressure. The output signal from the amplifier 
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was measured on a third octave spectrometer and the level was 

expressed as a level at the input. The test was repeated with no 

local sound.

The results are plotted on Figure 73o On all channels the 

noise was very low. No increase of noise was observed with the 

local sound on.

2, Phase Match Test

A sine wave from an oscillator was fed to two channels at 

once and the output signals were correlated on the analogue 

correlator. The frequency of the input was altered and the test 

repeated. The test was then repeated on two other channels.

No phase shift was observed up to 20 K H^, when the test 

was stopped.

3o G-ain Test

A small signal, 100 juY,was set up by feeding the signal 

from an oscillator through a potentiometer. This voltage was 

deduced by Ohms Law. This voltage was passed to the amplifier and 

the output voltage measured. The frequency of the oscillator was 

varied.

The gains of the three channels are presented on Figure 75o 

They were flat from 80 H^ to 10 K H^ and approximately 10'^.
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APPENDIX VII

Stress Concentration in a Plate,Normal to a 

Solid Boundary

Consider a plate lying in the plane X Z and a solid boundary 

lying along the axis O /c Let a bending wave propagate towards the 

boundary at an angle ^ to O X
The boundary conditions are as follows;-

The magnitudes of both the transmitted travelling and near 

fields are zero, and the vertical velocity and angular velocity is 

zero at all points on the boundary.

The incident wave may be represented as;~

Vj = V. expX'ik.x.cos^ tikz.sin.^) A7.1.

where the bar indicates the time variable omitted.

The reflected wave, the solution to
(vS. k2)x = O

is V, = R V.expXik.x.cos./^) A7.2o
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The reflected near field, the solution to v^V^ - k / X = O

is Vj^ = R'^V ex|:^kVr+7[n^) A?.3,

The double indicates the omission of the variation in the Z 

direction.

Now if the velocity is zero at Xz O then

9(HR^R')=O A7.4.

and if the angular velocity is zero at X? O then

V (-i k.cos.A + i k R.c o s.6^ + fYk VTTsTnT^ ) = O Ay.^o

. . R= -sin^^ 4-1 cos.^ VI tsi n*^ A7o6.

and R'= -cos^^ - i cos.^ "V I t^i n‘^ A7.7.
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We may check this calculation: all the energy must be 

reflected at the boundary. Thus:

I- |R|^-=O

This is the condition fulfilled by A?.6. above.

A7.8.

Now the stress normal to the boundary will be:~

A7.9.

Now ^^V = o for the boundary is solid

and

S V : k^(-2 cos*^-2ico s5.-VI+ si n®^ )V A7.10.

Thus the mean square stress at the boundary may be 7/ritten:-

5^ h^E^* V"- 8cos^^
40-?)W

A7.11.
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Nov/ let us assume that the incident field is diffuse. i.e.

T/aves arrive from all angles with mean square velocity

Then

0^-- 2h’*E^k* <vb 
2 nCl-t)^)^ cj"^

c o s?^. d^ A7.12a.

h^ E^ k* A7ol2bo

Now

h^E^k* = 3 Cl/)'^

4(l-'>?'y(J^ l-V^

0;"^= 6 C^/^<V^

and thus for a Poisson ratio of 0.5

% = 6.6 7C2^/<V''>

A7.15.

A7.14.

A7.15.

Now from section 5. 1 the mean square stress in the

plate will be;-
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<a^> = |.6ICc/<V^> A7.16

o-t =4.14 <.o''*-> A7.17

°r.ms, "boLindar.Y
<^nm.s. lai^^pi^^e

= 2o 1 A7o18
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AEFS'IDIX VIII

Loss Factor at a Change of Section

From the equations for the amplitudes of the transmitted and 

reflected v/aves derived from Chapter 7 v/e may calculate the loss at 

a change of section as follows;-

Energy Transmitted _ |-|r| A 8.1.
Energy incident

= |D|/k^?Bi A 8.2.
W B, 

whi62?6 k 
= ratio of wavenumbers in receiving and transmitting plates, 

ki

and Bo
—. = ratio of bending stiffness.

The energy loss may be calculated for a given angle of 

incidence ^ . Then, if we assume that all values of 5 are equally 

likely, then we may derive a value for diffuse incidence by integration 

of the loss factor from 5 =-90° to +90° or from one critical 

angle to the other, when total internal reflection takes place.

The calculation was carried.out on a digital computer using the 

programmes to find the strain and stress concentration. The computat­

ion was performed both ways, by calculation S and D, as a check on 

these values.
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The calculation gave identical results, Ti'hether cfJLculated

using 48el» or 2(S,2o, confirming our results for R and D in Section 7.

The results of the computation appear in Figure 74#

The results for normal incidence and diffuse incidence are 

scarcely different when the transmission is to the thin plate.

Vdaen the transmission is from the thin plate, the effect of 

total internal reflection becomes marked and much less energy is 

transmitted under diffuse than normal incidence.
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Figure 74 Loss Factor at a Change of Section
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APmiDIX IX

Variation of Mean Square Acceleration

From expression 8-1 vze nay write

zCx,y,t)=^ACt)a^

0<

sin/mfi^ sin I A9,l

If v/e restrict the analysis to a narroT/ hand in which

may be assumed constant and assume that the modes are orthogonal, 

the mean square acceleration is given hy:-

^^x, y) = Z^t) cj^si i?/mfrx'\ sin^/n'ny A9.2
ba

Then the space average mean square acceleration is

<z2> sin/nT^\dx.dy
\ b /

A9.3



E):panding the terms in A5,2o so that we may apply Slack’s result (45)

we find;-

Taking only the two most significant variables (as we have only two 

independent variables) to get the lowest estimate of standard 

deviation;-

A2ct)co^2/N A9,6.

Taking all variables as independent, to get the upper bound of 

standard deviation;-

/^(t)W.1

A9.7

Then the variation V given as A9.8
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.-^PFEi'JDIX X

Effect of Measurement Error on Variation

Assume that all readings lie wltkin 1 dB and are measured 

witnin - ^ dB to the neanest dB, Then tlie readings will "be, 

v/ith even probability, the next dB up or dov/n from the actual 

results. Thus the mean of the readings will be at the -^ dB 

point and the standard deviation will be ^ dB. Then the variat~ 

ion will be 0ol2o

For readings lying 'witliin 2 dB, measured to the nearest 

dB, a similar calculation gives a variation of 0.22.
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