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the high heat transfer coefficients necessary for adequate rates of

e

heat tronsfer, a dense gas, carbon dioxide, is used to carry heat from
the reactor core to the stean boiler. The gas must be at high pressure,
450 1bf, in2 obs., ond must be circulated at relatively hizgh speed,
approximately 30 feet ver second. The gas circulators have to be povier=
ful, using as much as 60,000 HP, 8=10% of the total station output. Such
big machines cause severe acoustic conditions in the reactor gas circuits;
noise levels of up to 180 dB are produced. The high power levels theme—
selves demand that the circulators are designed to the highest efficiency,
which tends to increase their noise output. Simultaneously, the need to
reduce the capital cost dictates that the least possible ma%eriél be used
in the construction of the plant, consistent with satisfactory mechanical
performance.,

Meeting this requirement leads to the situation where acoustically
induced dynamic stresses in the structures of the cooling gas circuits
may be critical,

The problem first became apparent during the commissioning of
Hinkeley Point A reactor in 1963, There was a failure of the diffuser
when a large portion of it broke out<2)' Correction of this type of fail-~
ure is very expensive, for even one day's lost output costs approximately

£20,000, Clearly, it is desirable to avoid such failures in the design

stage.

The design analysis may be divided into three parts:-



(i) Prediction of the intensity, frequency spectrum and
pressure Tield distribution of the ascoustic field

(ii) Prediction of the stress distribution coused by the
acoustic field in the structure

(1ii) Prediction of the fatigue life of the structure
under these stressese.

The present work is concerned with the second part of the problenm,
Breoadly, we may divide the reactor gas circuit strﬁctures into two types
of component; plate and shell, or r&d and tube. TFigure (1) diegromm-
atically shows the main components in a typical gas cooled reactor. In
this work we shall confine our attention to the vibration of the plate
end shell structures of the reactor., Of course, the rods and tubes
vibrate and represent a design problem as well, but the approach to this
is usually rather different from the problems of shell and plate response
end is currently being tackled by other workers.

Ungar(3) describes an analytioél method by which it is possible to
derive an estimate of the spatial mean square vibration velocity in a
structure, in terms of the mean square pressure to which it is subjected,
by considering the flow of energy between sets of modes of the structure
and the acoustic field. Fahy(h) and Beany et al(5) discuss the specific
epplication of this analysis to the problems of nuclear reactor struct-
ures, and it is not discussed any further in this work. Ve will consider
the next step, how we mgy deduce the likely distribution of stress in a
complex structure, given this mean square level of velocity.

In response to an acoustic field, the plate like sitructures in
a reactor will vibrate in bending at frequencies high compared with their

fundamental frequencies. The structures are complex, TFigure 2 shows z
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Figure.‘f Typical Gas Cooled Reactor






model of part of the gas circuitry of Dungeness B reactor, from which
one may appreciate the complexity of the muny structures bolted and
welded together. The frequency bandwidth of the excitation depends on
the type of compressor used. Axial blowers, such as were used in earlier
designs, produced very norrow band random nolsej more recent designs use
centrifugal blowers which produce more broad frequency bend random nolse.
Cracks often sfarﬁ from discontinuities in a structure. A4
designer needs o know if significant stresses are going to be induced
by a perticular discontinuity, when these stresses are compered with
those thet might be expected in the mid structure. Very little work
hes been done on this problem and the following references are the

(5)

only known relevant contributions to date. Beany et al derive a

value for the ratio of maximum to mean stress in a simply supported
a4 : R : . = (6) : 4 P

plate, vibrating in a single mode, Lyon discusses the ratio of

»

maximum to mean response that is likely to occur when many modes may

(7)

be excited at once by a single tone. Ungar discusses the concen=
tration of strain at d reinforcing beam when a straight crested bending
wave reaches it. There 1s also an interesting paper by;Cheng and
Jaharshahiia(8) which describes the concentration of strain set up
round 2 circular obstacle in an infinite plate, excited at a point by

a hormonic force. However, none of these papers covers the design
problems associated with nuclear gas circuit structures; that is,
structures of complex shaope, excited at frequencies several times thelr
fundamental by broad frequency band nolse.

In Chapter 2 we consider the properties of bending waves in



y

plates, for this is the most dnporitont mode of structurcl response

o o A
SOL

(1]
sound. In Chapter 3 we compare the two anelyticel models which might

be applied to the behaviocur of structures vibrating in bending; these
are the normal nmode and the travelling wave models. Ve olso consider
the use of the diffuse, reverberant field model as a further simplifi=-
cation. Chapter L discusses experiments performed on various siructures
to test the validity of the diffuse, reverberant field model under
broad frequency band excitation.

In Chapter 5 this model is used to predict the ratios of mean
square strain and stress to mean square velocity; in Chepters 6 and 7
it is used to predict the stress concentrations at a weld and at a
change of section.

In Chapter 8 we use the normal mode model to predict the
statistics of mean square stress, strain and acceleration about their
spatial means,away from the boundaries of a structurce.

Finally, in Chopter 9 we discuss the inclusion of the results

obtained in a design metbod,and possible future extensions of the work.



Chonter 2.
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Bendins Javes: A Brief Swmory of their Behoviour

There are several weys in which solids nmay vibrate: they may
vibrate in torsion, in sheer, in compression or in bending. ihen
acoustically excited, structures in reactor gas circults vibrate

Pl

N o
GG

predominently in bending, for this is the mode of vibration
couples most effectively with the sound field.

.

Figure 3 shows two different modes of v bration in plates and
beams. In bending the plate is displaced loterally, and initicslly
parallel sections cre no longer so. An  acoustic field 1s a compress—
ive wave Tield in a gas, end if energy is to flow from the acoustic
field into the structure, then the structure most move laterally.
Longitudinel vibrations cause small lateral movements, due to the
effect of Poisson's retic, but these are negligible compared with
those caused by bending waves. Iurther, the speed of bending waves,
though dependent on several factors, is often of the same order as the
speed of sound in air,and also that in carbon dioxide under reactor
service conditions. This also ensures high energy exchange between
the acoustic field and the structure. A4t a typical service fregquency,
the wave lengths in the structure end in the acoustic field will be
comparable. Haidanik(9) described this effect and it is beyond the
scope of this work to consider it further here.

At bigh frequencies, ripples occur on the surface of the



a) Bending Wave.
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b) Longitudinal or Compressive Wave.

Figure 3 Comparison of Bending and
Compressive Waves






Figure 4 Rayleigh Surface Waves
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In plates, the bending moment and lateral shear force arc

referred to a unit width of cross section ond denoted as liz', Fy',

-

These gquontities are connected by the following ecuntions.

Consider a bern lying in 4

Then Wy 2ol
d X
Tow, from (11), the bending noment may be written as:i=
2
an
Mz=—ElI 2 2.2.
d
where N = laterel displacement in the y directlon, normel

to Ox.

E = Young's modulus
I = second moment of aresn of +the cross section of the vean.

Differenticting with respect to time we obteain:

vhere

B = Dbending stiffness, El,
A well knovm result relotes the bending noment and the treasverse
force,
Consider the dymamic equilibrium of a section of a bar, §x, under

bending end shear loads, as in Figure 6. Taking moments about one end:

13 -
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Figure 6 Equilibrum of an element of a
Uniform Beam in Bending,
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Mz - Mz+ ‘Q’M}* §>< ""'Fy.éxzo 2.0

oM, -
B e ax. e5e

In deriving this, we have not considered the effect of rotary

inertie in 2.4 However, Cremer has shozm(:O> thet when the bending
wave length is lerge compared to the thickness of the plate or ber, then
the kinetic energy of rotation is negligible compared to the kinetic
energy of lateral movement. Since we are restricting our analysis to
frequencies where the wavelength is more then six times the thickness,
this approximstion is reasonzble, and we may neglect the effect of
rotary inertice.

Finally, if we consider the dynamic vertical equilibrivn of the

element in Figure 6 we obiain the expressioni-

Fo (R (25)6) - m$ 2

where m = mass per unit length, for a bear, or per unit area for a plate.

2470

Then é E‘ﬁ

I

v
g

X
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If we combinc the fromed equations, 2.les 2¢3e, 2000, 2076, TiE

$-d

cbtain the portisl differenticl equation for oll field quantities in

a one dimensional formi=

B ;x \/%uz,,qu,Fﬂ Qgt vyng,Mz,Fj 2,84

2.2« Solution of the Rending Teve Doucticn

The wave equation for o conpressive wave is of the form (10) i

where p = density and D = compressive stiffness.

Vy is the velocity in the O = x direcction at X.
Any solution of the form V, = 7 (¢ i’ﬁ/_g_x will

satisfy the Equation. The ve1061tj of propogation is independent of
frequency and is given by \/”wb;p o aves of complex frequency
content can propegate without dispersion, end the shape of a given wave
will not change as it propagates through free space.

The solution +to the Bending “ave Equation cannot tcke so simple
a form. The derivative with respect to space is of a different order

Y

from the derivative with respect to time end is of opposite signe

A possible solution is:e

v},’ = A(lj sin{wt—kx +« 2,10,

16



4
provided that K'= m ™ ‘ 2,11,

vhere K is the viave number, which equals 21;
wnere N ig the wevelengthe

Por this solution, o sinusoidel variation with time, the veloc-

ity of weve propagotion, CB’ is given byi=

CBﬁ ”“Qk‘)“" = 79/m ’f/CJ | 2.12,

This is no longer independent of frequency; waoves of nany different
freguency harmonics mey no longer propagate undistorted in an infinite
plate.
The various properties of compressive and bending waves are com-
pared in Table 1 at the end of this chopter. However, the differences
.

thet will most concern us are over the behaviour at bounderies, where

now four, rother than Just two, boundery conditions rust be scatislied.

20.3. The Bending Tove ot o Boundery

i,

Imegine tict & bending wave reaches en arbitrary boundary. In
addition to satisfying the boundary conditicns, we must satisfy the
general solution to the bending wave egquation.

We will restrict our considersations to soluticns of the form of

2,10,, theni~

2
Dz\/" l<4'V=O where D= éa—- 2,13,

17



Thens

D-—-kz D"'K \/=O 2,1
thus: D - k?_ O 2e1520

L}

i

D+ =0

Ve have therefore four possible solutions.

Trom the second equation, 2.15be, we will obtain terms of the form

FE BN . . . . .
expel _ikx ), which describes trovelling bending waves which may carry

energy oway from the boundary. From equation 2.15a., we will obtain
terms of the form expa( ikx ), which describe deczying near fields

that do not propagate away from the boundary, and which do not carry any

energy.

TFigure 7 shows the near field set up when a long bar is excited
in bending at a point. (from Cremer(10)). The solid line represents the
shape of the bar; the dashed line shows the travelling wave component on
its owme.

In later chapters we will deal with the relative magnitude of each

of the fields at various discontinuities or boundaries in a plate. Tor

18









Chapter 3

The Analvsis of the Forced Vibration of Extended Plote and Shell

Structures : a Sunnary of Available Methods

There cre btwo analytical models that we may use, namely, the
Normol Mode cnd 4he Trovelling Wove models,
 Flrsy we will consider the derivation of the two models, their
properties and limitations in accurately representing the behaviour of
vibrating plate end shell structures.
Next we will consider the problems of analysing the stress dise~
tribution in a complex structure at high frequency, when many modes may

be exciteds We will use the two models ond compare their value to use

e me T ~ b SN
Sele The ifornsl llode

Let us consider the free vibration of a multi~degree of freedom
system that is conservative, i.e. undamped. This analysis is well
known and we will only consider its main results.

For n degrees of freedom we mdy describe the free oscillation

about an equilibrium position as:i=

i

W
O O O
, W

M“q'|7+““'”"'+M'“‘°‘I’” + Kl'q!+""°"+Klﬂqﬂ
P12|q + .......... +p42nqn\+h&lth".“+k&nqn

i

[\/\n‘.ﬁi‘*ﬂ"*"“"’”}\/\nn qt"l“”’”’Kntl’Oll"' """ + knnC}?\
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where q n __.n] are coordinates necessary to define the

3

state of the system and where Mrs and Kr. s are coefficient

of mass and stiffness,.

tore simply, we may write:-

<
e

N
-~
n

O

3020
where M 9 ;q 9 K are mass, coordinate and stiffness
matricies,

Ve note that M end K:l are symmetric metrices,

«

Let us consider solutions of 3.2, corresponding to pure harmonic

motions of the form:=

%qg =1A sm(w‘t +'6)

where A is a
natrix of amplitude constants, () is the anguler frequency and e

an arbitrery phase angles  Then:i-

g}(-—ml}\/\ -10 5.

There will be_ a solution of this equation wherever the determinant

of K - (A) M vanisnes, i.e., wherever the frequency w

22



equals R certain valuesy, wp . Thus we may set up our

general sclution asi-

{Ol} “ {Ar} Sin <(Ar’c+9r ) 3ukio

The values of op are set by the stiffness and inertia of the

i

system ond are known as natural frequencies of the system. The column
netrices {Ar} are known as MHodal Columms, Having specified the
value of one element of {Ar} 211 the other elements are fixed, for
this matrix defines the shape of mode T of the vibrating system.
One of the most important properties of modal columas is that
. PN , . (12)
(SRS 1 LOL & fERe N Y i S ¥ 1 @
they are orthogomal. An elegant proof of this is quoted by Pipes

Briefly, let us consider the rth modal column, It satisfies

the equation

w? [MIAL = K] A

The s thmodal column satisfies

A [MA - KA

/ /
Premultiply 35 by %As% and 3,6 by g/\rs

T e ADIAAKIA,

23



and
2

(s

A

7
where {A} is the transposed natriz.{ At

Afliag e

How ([a][b] [c ]) = [l Y 3.9,

where  [a] . b ],[c] are three conformeble metrices

Then, from 3.7.
4

a AMMALAKIAL
N ] A —

Then subtracting 3%.10. from 3.8.;

AlMIAL-O

If r#£s , then in general it follows that

(CR-0?)

24



AFIA-0 =

This is the modal orthogonality condition.

We may call these modes Normal modes.

We now have an alternctive sets of axes with which to describe our
system. Instead of describing the state of eéch coordinate, q, we may
define instesd the amplitude of each column matrix {Ap} . This
we are free to do without interfering W;th the amplitude of the other
normal modess

Now,a plate has an infinite number of degrees of freedom, and 1%
is much more convenient to describe the normal modes whose natural fre=-
quencies lie within a given frequency band than to give the displacement
of each point on the structure, which is in principle an infinite task,
for within a certain finite bandwidth we find that there are a finite
number of normal modes.

For 2 lightly damped structure with well separated modes, the
existence ‘of normal modes may be demonstrated practically. The natural
frequencies may be approximately deternmined by exciting the structure with
o discrete tone, and noting the frequencies that cause maximum response.
A %typical response curve is shown in Figure 8. The response 1is then
almost entirely due to one mode., On a flat piate, the mode shapes may
be dramatically demonstrated by scattering sand on the plate and exciting
it ot o resonance. The sand will indicate the nodal points, or points

of rest, in the modal pattern. An example of this is shown later on

25









will be 8iscussed in Section 3.3.1le. of this chapter.

ks
|

Ze2s The Trovellinge Wave

A standing wave, or normal mode, in a room or in a structure, may
be regarded as a set of travelling waves which constructively interfere
to form nodes and enti-nodes. In solving the wave equation for a bounded
region, whether this be for bending waves or acoustic waves, the imposit=
ion of the various boundary conditions imposes restrictions on the form
of the bending waves., For undamped systems, we find that waves may only
travel in a limited number of directions if the frequencies of the waves
lie within a certain band, In other directions, and at other frequenc-
ies within the band, the boundary conditions cannot be satisfied.

This is, of course, identical to the normal mode situation. The
frequency of the "permitted" wave is a normal mode frequency, and the
permitted wave direction merely specifies the mode shape. Figure 9
attenmpts to demonstrate the relationship between two normal mode shapes:
of a flat, rectengular, simply-supported plate and the direction of the
alternative travelling wave as specified on the Wave Number Diagram.

The wavenumber of a particular wave, k, we have already defined as
27/ where A is the wavelength. Each dot on figure 8a represents -
2 normal or a constructively imterfering travelling wave. Let us con-
sider wave number vector 1 corresponding to mode l. The wavenumber in
the O — x direction is 3rfa and in the O - z is w[b ; i.e. the
wavelength in the O = x direction is a2  ond Zb  in the 0 -z

direction. Vector 2 is more complex; the wavelength in the O - x

28



direction is a and in the dircction O - z is Zb The resulting
angle 6 is the direction in space, relative to the O~ x axis, in
which the travelling wave will propagate.

The wavenumbers are related to frequency by:=

(L"_l}z . (_D...L)a: k2+ ka_.: <ﬁr__)2 5.15.
a b m n Cg

for a rectangular, simply supported plate. w is the frequency
of the wave o4 or normal mode o o Other structures
have more complicated wavenumber diagrams and we will consider some of
these later,

Going to the trouble of expressing normal modes in terms of per=
mitted wave directions can lead to a better understanding of the
behaviour of the system when the damping is localised, as it often is in
practice. We may talk of bending waves losing energy on a reflection a£
a boundary. Clearly, for such a system, a pure standing wave cannot be
set up. TFor constructive interference from the reflected waves is
impossible as amplitude of the reflected waves will be less than the
incident wave.

It is quite easy to discuss the flow of energy in an anechoic
room, if we ooﬁsider waves travelling to the boundé?ies and not being
reflected, It is quite obvious that such é sound, field will behave as
if it were in an infinite space. As we have seen, we cannot describe this

situation using normal modes.

29



Doak(l4) uses a combination of standing and travelling weves

to describe the behaviour of sound waves in partially absorbent rooms.
Mead(15) has also used the idea of travelling waves to describe how
the location of damping materials in a structure can affect the total
damping. Using the travelling wave model is particularly appropriate
for this, as the effect of position can be more readily appreciated
than when the damping is fed in as a generalised modal demping affect=
ing the whole structure. HECkl(lé) also discusses the superiority of
the travelling wave model when dealing with localised damping, and
points out the success with which it has been used in architectural
acoustics,

A point of great interest to us later is that alterations in
the boundary conditions do not have serious effects on the wave number
diagram., Figure 9, from the work of Bolotin(l7) shows the wavenumber
dizgram for a clamped and simply supported plate., The grid of lines
has shifted a little on clamping. This implies that althoﬁgh individ=
ual modes have been distorted locally and their frequencies altered, the

direction associated with them has altered little.

L]

3¢%¢ The Analysis of Stress Distribution

The object of this work is to try and establish a method of pre-
dicting the distribution of stress in a complex structure, vibrating at
high frequency, from the design étage. We will now consider the details
of the analysis, using the models described, to see which will most

reasonably allow us to estimate this distribution.
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Je3ele  Normal Mode Analysis

Seelels Powell's Bquation:~ Accurate Summation of the Effect of
Several Known Normal lodes

In principle, all linear shell vibrations are described by

Powell's Equation, quoted in (18) as:-

qk

W(rrie) = [fH (i) H{ret0) Pourt) et

,VV(r,rﬁ w) is the cross spectral density of the response and
describes the relative phases and amplifude of the response at differ-
ent positions at various frequencies: P(r;,,r,", w) is the cross
spectral density of the exciting forces. Tormally, the cross spectral
density is the Fourier Transform from the time domain to the frequency
domain of the cross correlation of the quantities, response or force,
at r and r*, or r, and r‘o. Estimating the value of P(r ,r'O; w ) is
often an extremely uncertain procedure, The only situations in which
estimates are reasonable is when the acoustic field is a travelling
wave travelling in one direction only, or travelling waves in every
direction. A further discussion of this is beyond the scope of this
work. Bull et al( 9) discuss further ramlflcatlons.

H(r,r'o;a)) is the cross impedance of the structure; this is the

response at r due to a unit exciting force of frequency ifi at r'o

32



We may write it as (19):=

/
o) =5 058

where ¢n represents the shape of mode a

and Y (@) is the impedance of mode a at frequency 2%

I we hope to solve Powell's equation to find the response of a
structure, we nust find an expression for Yy and for Ya(w);
even if we do have an expression for the cross spectral density p(Qgg;w)
of the exciting forces.

Analytic solutions are only possible for the simplest structures,
for example, the simply supported rectangular plate or cylinder. In
order %o produce solutions for even slight departures from this situat=-
ion, say a plate, lightly bolted round its edges, we must assume some=
thing ebout the boundary. We might try to get the mode shapes by assuming
that the boundary is simply supported, or perhaps rigid. Either way is
_ generally unsatisfactory. We most probably would want to find the stress
at the boundary; yet we are obliged to ignore those very details which
are most likely to cause the stress concentrations that we seek.

The so~called Finite Element technique is an alternative method
by which the form of the normal modes may be determined for complex
structures. Briefly, the structure is broken up into a large number of
small elements. By matching up the boundary conditions of the complete

structure and of the adjacent elements, and knowing the equations of

33



motion of the elements, it is possible to predict the normal mode
shapes and frequencies of the structure. This technique is very
successful in predicting the low order modes of complex structures.
Ermutlu(zo) has used it to study the response of arch dams to earth-
quakes, and Deb Ngth et al(2l) have used it to examine the low order
ﬁodes of curved shells,

Mason(zz) has studied the computational requirements for predict-
ing the normal modes of a rectangular plate. Beyond the 12th normal mode

A

over 10" store locations are needed in the computer to accurately pre-
dict further modes. In general, we are concerned with very high order
medes of the gas circult structure, typically the 100th mode and often
higher. Even with the largest available machines it is doubtful if
enough information could be included to predict the detailed stress dis-
tribution at operating frequen&ies.

Whether the normal modes are found analytically or numerically,
there is a further objection to using this model to investigate detailed
local stress distributions. Even a very modest change in boundary con=
dition can produce large changes in natural frequency and mode shape,
particularly at high mode order. If a small change is introduced into
the structure, either deliberately or by accident during manufacture,
then the normal modes are all changed, and our calculations are invalid,
In fact, we know this to be an exaggeration, but using a normal mode
model we have ne grounds for saying so, unless we re~calculate the

response for all possible conditionse
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Sedele2. Asymptotic Summation of the Response of Manv Normsl Modes

Sku&rzyk(23) has developed an approach to the analysis of the
impedance of vibrating systems, based on thé concepts of electrical net-
work theory., He develops this for low order modes; he then examines the
form of the asymptotic solution at high frequencies. He finds that fre-
quency a&erage impedance for high order modes relies on what he terms the
structure's basic parameters, These are gross properties of the struct-
ure; exactly which properties are to be considered depends on the basic
shape of the structure. For example, for flat plates the dharacteristic

Impedance to a point force is given by:=

Z=84/B'm 3016
where B' = Bending Stiffness per unit width of plate,
n' = Mass per unit area.

Skudrzyk shows how these impedances, which may easily be determined
with little attention to structural details, can be used to predict the
flow of energy from one vibrating system to another. He quotes the
example of a mass loaded joint to illustrate the use of the method, and
compares his results derived theoretically with experimental results.

iowever, these results cannot help us determine either the stress
concentration around a discohtinuity, or the excursions of stress that
are likely from a given estimated mean value, These are our chief

interest.

Se3sle3. Statistical Summation of the Response of Many Normal Modes

2l)

Waterhouse( and Lubman(25), among others, have investigated the

35



statistics of sums of normal meodes to predict the variation in sound
pressure level about the spatisl mean square pressure in reverberant
rooms, when many normal modes are excited simultaneously. In general,
the more modes excited, the lower is the standard deviation of sound
pressure level, measured at various points about the room, fhese theo=
‘retical findings have been borne out by measurements made in reverberant
TOOmS

A similar analysis could be very useful in deciding the likely
variation from the spatial mean square stress in a plate. The spatial
mean square stress is, of course, the stress estimated from the
statistical energy analysis. Intuitively, one would imegine that
given enough modes, then a similar result should hold. In Chapter 8,
where this is discussed in detail, we find that this is so. For brevity,
the details of the analysis will not be repeated here.

The important point is this: the property we are trying to find
iskrelated to the whole plate, and an approach via the normal mode
model is thus eminently suitable. However, again, such an approach
cennot tell us anything about conditions near a boundary, or, indeed,

in any specific location,.

3,3.,2  The Travelling Wave Analysis 3 The Diffuse Field Model

First let us consider a single travelling bending Wave incident
at an arbitrary discontinuity at an angle. 6 o Without yet delving
into the mathematics, we have already seen from Chapter 2 that this

boundary will reflect some of the bending waves and transmit the rest.
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The reflected and transmitted wave will give rise to interference
fringes near the discontinuity, which will cause local alterations of
stress. We may draw a cautious analogy with the behaviour of light .,
passing through a narrow slit. Interference fringés are produced, as
shown by local alﬁefations in the intensity of light. As we have seen,
fhe bending wave is further complicated by the extra decaying near
fields., However, we can, in principle, predict the bending stress nor—
mal to the diécontinuity due to-a bending wave of given amplitude
arriving from a given direction 6.

Using the travelling wave model we can make an important gener=
alisation about the form of the bending wave field, that can make our
analysis of the stress at a particular discontinuity general for any
structure containing tﬁis discontinuity.

If we are tq perform deéign calculations on any unknown struct—
ure we must make some assumption as to the actual form of the wave~-
number diagram; We might assume that all the waves travel in one direct-
ion or that the waves can travel in every direction statistically
independent of each other. By statistically jndependent we mean, for
example, that the total mean square stress due to all bending waves is
the sum of the mean square stress caused by each bending wave on its
OWile The actual form of the wavenumber diagram is probably beyond our
computational powers. Heck1(16) points out that the second assumption
has worked well in architectural acoustics. (See also Morse(26)).
Certainly, looking at Figure 10, it would seem that if we are concerned

with the behaviour over a band eof frequencies, then, indeed, waves will
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arrive from many directions. This assumption makes use of the fact
that small changes in boundary condition will alter the direction of
individual weves only slightly.

O0f course, the approximation that bending waves arrive from
every direction can only be exact for a plate of infinite extent. In
building acoustics the assumption works well, as menticned., It works
because the modal density, i.e., the number of modes in a bandwidth of
one cycle per second, is very high in acoustic spaces. A room
10 4. x 10 ft., x 10 £+, at 1000 Hz will have a modal density of
9okl modes/Hz; a steel plate 10 ft. x 10 £+, x 1 inch will have a
modal density of 0,12 modes/Hz at all frequencies(27).

One of our tasks will be to see how many structural modes are
necessary for this assumption to be adequate. Incidentally, a point
that is likely to favour the assumption is that we only have two dimen=~
sions to fill., The normal modes available in the acoustic volume have
to producs an even energy flux in three dimensions; in the structure
they only have to produce an even flux in two dimensions.

A further valuable advantage of the travelling wave model is
that it is possible to localise the effect of a boundary. The near
field effects do not propagate. This implies that the stress changes
are only local. This is in accordance with the findings of Bolotin(zg).
He describes the dynamic edge effects close to boundaries of shell
structures. The changes from the sinusoidal deflected shape that

occur at a boundary do not prbpagate into the mid-field regions.
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Far from a boundary, the bending waves are sinusoidal in shape, as if
the plate was simply supported. In short, this approach implies that

if we change a particular boundary, say, clamp a hitherto free edge,
then the major alterations in stress will be near that particular bound-
ary and the stress elsewhere will be largely unaffected.

In Chapters 6 and 7 we put these ideas into practice.

3.4 Compariscn of the Analvses

We may conclude very simply. For investigating the local stress
changes near a boundary we will use the model of waves travelling in a
diffuse reverberant field; for investigating properties relating to
the whole plate, like the statistics of mean square stress, the normal

mode model is more appropriate.
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Chopter 251
Formal Tests of the Diffuse Plcld Model

In CGhapler 3 we decided that when investigating the variation of
stress near a boundary, we should use the analytical model of bending
waves, travelling about the structure in a diffuse field. We assume that
. many bending waves, statistically independent of each other, will travel
about the structure in all directions. In this chapter we devise formal
tests to see if this is a reasonable representation of what happens in

practice.

The parameter that will most affect the accuracy of the assumpt~-
ion is the number of bending wave directions, or modes, excited in the
structure. This we will investigate. TWe will also see if damping has
any effect on the reverberance or diffuseness of the field, either‘by
increasing the amount by which adjacent modes overlap in frequency or by
creating a radiating field as in an anechoic room.

Two tests have been used; the cross—~correlation of accelerations
at separated points on a thin plate or shell structure and the crosgs=
correlation of strains at individual points in two orthogonal directions,.
‘" The acceleration correlation experiments have also been simulated on a
digital computer by using Powell's Equation (Section lele3.) to show
that the two models, the normasl mode and the travelling wave, give

consistent resulis.

Lole Cross—Correlation of Acceleration

Cook et a1(29) describe a series of experiments in which they

tested the diffuseness of the acoustic field in a reverberant roome. They

set up two microphones in the room,separated by a distance r, and

41



measured the cross—correlation of the outputs when a sinusoidsl signal,
slowly changing in frequency with time, drove a loudspeaker in the roome
They then compared the results with a theoretical prediction of cross~—
oorfelation coefficient based on the assumption that the field was
diffuse, which they give as (sin kr)fkr‘where k is the wavenumber, .

The analogous experiment on a structure is to cross-correlate the
outputs from two accelerometers, separated by a distance r. Both quan-
tities, acceleration and sound pressure, are independent of the direction
of any given wave, unlike, for example, strain. The method is attractive
because accelerometers are easy to handle and usually provide good
signals for subsequent correlation.

A summary of the following work is given in reference (30).

4o1.1s Theoretical Value of Cross-Correlation Coefficient

Suppose that a bending wave approaches the line O - x at an angle

0, %o O = x, then the output Sa from an accelerometer at O will bez=

Sa z/A\;w"fcos <(,_),fﬁ*o(‘)  kla

where A; is the amplitude of the bending wave,
i

3 is the frequency of the wave,

and o(i is some arbitrary phase angle.

The output from the other accelerometer, also on the line O - x, but

separated from the first by a distance r, will be:=
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wiere k

affect the crogs=—correlation; for convenlence it is omitted in the

Sh =/A\i 0; Cos (W, trol + kir.cos.ei
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and normalised isi=

R (T) - R%Y(T )

g/ X . V%)

where indicotes o tine average. .

We want this cross=correletion coefficient for a time delay

= 0 and this will bes~
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To eveluate tals e
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pressicn we nust assume that, for o large

o

wmber of modes, we can reasonaily replace the summoted terms
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continuous function., For a diffuse field, even over a small angle

there would be waves of all frequency and we nay write:=
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If we resirict our analysis %o third octave bands, then we mny
write kg + kl es o constont ke I we never consider valucs of kr prester
then 10 %h%s will aeffect the cccuracy by less than 10%. Tor a mild steel
plate of % inch thick, at 2500 Hz this implies r < 10 in. and at 5000 Hz,

r < 7 in.

We may now write:=

e
|

° T 2, Cos(kr.cos.e)dé | o

O

Tl

I
1

i

Lelo2e Euperimental Procedure

leasurements were made on two flat plates, 2.2 ft. by 2.7 i P
% in. and § in. thick, clamped rigidly at their edges to a cistern 2 fb.
deep packed round with sand. The plate could be excited acoustically by
the noise of a jet of compressed air at high pressure escaping into the
cistern from a gate valve. The % in. thick plate could also be excited
nechanically by an elecﬁro~mechanical shaker driven through a power
amplifier from a white noise generaﬁor. Figure (11} shows the complete
arrangenent.

Measurements were also taken on a mild steel cylinder 3 £%. in
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diemeter, 6 ft. long and made of ?/16 in. plate. Thé cylinder was free
standing on a light steel frame and could be excited acoustically by
sound generated inside by high pressure alr escaping from a gate valve,
The cylinder was completely closed at one end and could either by com=
pletely open at the other end or partially closed. This was to alter
the acoustic conditions inside the tank for another research programmes

The positions of the accelerometers are shown in Figure 1l2a
for the % in. plate and on 12b for the cylinder; the positions chosen
on the £ in. plate were similar to those on the % in. plate, except
that the spacing between each position and the next was smaller. The
spacing between each accelerometer on the % in. plate was 1 in. and on
the %-in. plate was 0.7 in, On the cylinder, each position was 1 in.
apart. During the tests, one accelerometer was held at one end of the
chosen line and the position of the other accelerometer was altered to
achieve differenﬁ values of the separation. The cross—correlation was
measured along two lines, chosen at random, on the plates andalong one
axial line chosen at random on the cylinder.

The results for the acoustically excited % in. plate are from
four different experiments. In Figures 13 to 18 +the triangle and
circle represent the results from two experiments on line A, the cross
and square from experiments on line B, The triangle and cross represent
the results obtained when one accelerometer was held at the ends of the
lines marked 1, the other being moved up the line to 8; the circle and

square marks represent the results when the fixed accelerometer was at 8.
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The results from the § in. plate are presented on TMigurds 19
and 20 end from the cylinder in Figures 21 and 22, The resulis
from the mechanically excited % in. plate are presented in Figures 23
to 25 . They are taken from two experiments only, one on line A and
one on line Be.

Bruel and Kjeer 13 gram accelerometers were used on the % ine
plate and cylinder and 3 gram accelerometers on the % in. plate. In
appendix 1 the effect of these accelerometers on the structures is dis—
cussed., At the frequencies of interest to us, the effect of the added
local mass on the response of the structure was negligible. Accelero-
meters are usually fixed on with magnets, a thin layer of sticky wax or
a small screwed stude. During these tests, the accelerometers were
fixed on with studs screwed into holes, drilled and tapped into the
structures. Magnets added to the mass of the accelerometers might well
have affected the local response. Advice given by experienced field
workers at the Berekely Nuclear Research Laboratories of the Central
Electricity Generating Board suggested that fixing the accelerometers
with wax could not be relied on to give accurate phase measurements at
high frequency. Simple experiments, where two accelerometers were fixed
to the end of a vibrating cantilever with wax, one on each face, showed
that at frequencies of interest the phase relationship between the two
t?ansducers was a function of the care with which they were fixed to the
base. Only by using studs screwed into the structure could good phase

information be preserved. Of course, at frequencies where the















accelerometers could vibrate on their studs, even this would not have
been satisfactory. Fortunately, these frequencies would have been much
higher than those of interest ( > 10 kHz )

The signals from the two accelercmeters were recorded on a multi=
track tape recorder. The signals from the % in. plate and the cylinder
were analysed on an analogue correlator on playback, filtered before
correlation through a pair of third octave filters selected to have good
phase matching. The phase match of the filter pair was tested as
described in appendix 2 and was good enough to ensure that the results
are correct within about 10%. It was not possible to use narrower
bandwidth filters as a suitably phase matched pair were not available.

A signal flow diagram is given in Figure 26, Since the work was first
reported (20) a digital analysis system has been commissioned at the
I.5.V.R. at Southampton, in which large quantities of random data may be
processed on a digital computer (31)e Using this system it has been
possible to analyse the signals from the 4 in. plate using a digital
filtering routine on the computer before correlation. This ensured
that the phase matching was perfect between the two signal channels;
there could be no question of one channel suffering an arbitrary phase
change with respect to the other except in the recording or playback
from the tape recorder. The recorder was a high quality machine,
recording frequency modulated signals. Its upper frequency limif
10,000 Hz. The highest frequency considered was 4,000 Hz, and when

control signals of white noise recorded on to both channels from the
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same source were played back, no phase shifts could be detected by 7

cross~correlation or any other meanse.

Lol.3. Gomputational Tests

In these tests the behaviour of the test panels was simulated
by studying the behaviour of a simply supported rectangular panel, using
Powell's'Equation. The object of thesé tests was to see that the two
models of the vibrating system, the diffuse bending wave model and the
normal mode model, were consistent. If an adequate number of normal
modes are considered, then the two approaches should predict the same
value of cross=correlation coefficient. These tests also reveal some
of the practical difficulties of using Powell's Equation.

In fact, Morrows et a1<32) have carried oul an anaiytical summat~
ion of the effect of an infinite number of normal modes, responding in
e room and in a plate and, indeed, the two models give the same answer
for the cross—correlation. However, using the computer, it is possible
%o vary the number of normel modes included to see how sensitive is the
result to this number.

Two forms of broad frequency band excitation are considered, point
excitation and excitation by 2 diffuse, reverberant acoustic field.

Consider the equation for the cross—spectrol density of
displacement, W <JZ,.E", w) _, in response to a forcing field of

cross spectral density (18)
P ! .
A '*'/fH(r,f.:oaw)H'(f:;&’sw)P(w.a’;w) dede s
AA
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fi([sggcﬁ) is the cross modal acceptence of the structure.
Then +he cross—correlation of the response at £ and [ at a time

delay ist=

é

L.12.
gt

R AT) =f/ Hirym o Hirso Py €7 dg diy dw.
LY 4 A

Then at zero time delszy, to correspend with our experiment,

[+

& - .

— / N ‘

R:,r_’(,n" f f f H(f,r_;;w)H (£, ) Piry s dudrgdo 13,
.oaAA .

Vie will now consider the problem for the structure driven at a point.

Appendix 3 considers the more involved problen of the structure when

acoustically excited.

The first problem is 4o find the value of P (Rffiw)

From the Fourier Transforn:-

Plagze) =35 [ Re, (1€ 7dT

- OO

delDe
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where R’E«’ is the cross—correlation of the exciting force

and FTE» (t) is the exciting force at fy 2t time t
PR £ a oTeS YN _ »
Clearly, for o point force, Fro(t) = Fr‘;(t) = O
‘ . . C o A
unless = Ty = Tg where Tg  is the position of the

point force,.

o}

Then % is the auto correlaticn function of the point force apd

.. — . y .
PGEe) = O it L5 .16,
"= Sp(w) if j‘,:!;,':_[‘s
where Sp(w) is the spectral density of the exciting force

Thus we may write Ll.13 as:-

o0

RO = [ H @) H' (), gy )Sp(w) dw Le17.

- 0P

Next we must evaluate the value of the cross acceptances.

Fron (19), H (r, f;w). H(r’, rgsw)  is -

‘ Volr) Yot Ye(r’) Yo (rs)
- Le18e
Z Y () Z Y (W)

o

* | s
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If we can ignore the cross terms in comparison to the direct
terms in L4el9., then the computational effort required will be reduced
by a factor of N, where N is the number of modes considered. As we
intend to go up to 20 modes or more, this is a substantial saving of
time and therefore cost. It will be fair td make this assumption if the
damping of the system is light, for then the product  Ye(w) x:CGQ
will be large compared to : ’Y&ﬁhﬂ ! near the natural
frequency of mode & s provided that the modes are well separated
in frequency,

This means that for structures with high modal densities the
damping must be so light that the half power bandwidth of the modes is
smaller fhan the average frequency gapabetween them.

If we assume this, we may write L.l3. asi~

ry r'(o j Z (r) WY("(? ;{l/ « (Ts) SF (U) C{ 0. Le204




We are now faced with the difficulty of representing the value of
¢a(r). As we heve already discussed in Chapter 3, it would be
very difficult for us to find the correct expression for the sctual test

~

panels used in the experiments. So we are obliged +to make somc assumption

S

about boundary conditions. It would be convenient if we were to assume
that the plate is simply supported, for this would mean that ¢acr)
would be a simple sine wave in L. Iﬁ fact, this i1s guite a recsonable

. . . (28) e ,
assunpticn to make. Bolotin explains how a chenge of boundary condit-
ion results in only a small change in position of the nodes of a given
normal mode., FProvided that we are not examining & structure near a bound=-
ary of scme sort, then the mode shape will not be very different from that
of a simp1y~supported plate no matter what boundary conditions apply to

the structure, except that the nodal points will be shifted in space.

er than that of the lowest normasl mode for this to epply. Now, if we
are examining the effect of many normal modes, then these unknown shifts
of nodal point from mode to mode will not matter. We are considering
the behaviour of seversl modes, and if one nodal point is shifted con~
siderably in space, then this will doubtless be compensated by the shift
of ancther, provided we are considering several normal modes at once.

Damping has been considered uwniform over each frequency bandwidth
of analysis. Thus it appears as a constent in the dencminator of

4,20,

expression When the final result for cross~correlation is normal-

ised the effect of damping is lost, for it affects only the magnitude of
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the response.

The computed results are presented on Figures 27 and 28 for the
acoustically excited plates and on Figures 29 to 31 for the point
excited plate. The plates modelled in these tests had the same area as
the practical test samples. The thicknesses are quoted on the Figurese.
The lines along which correlation was measured were picked at random
so as not to be near a boundary. Very many points were considered along
each line to provide a continuous picturé of the correlogram in space.
A theoretical curve, Jo(kr), derived for the diffuse field, is dramn for

comparison.

Li,1.4. Discussion of Results

Loelelodo Interpretation

The correlation coefficient of a diffuse field has its zero at
separation distances dependent only on, the wavenumber k, not on the
absolute position on tﬁe structure., If a measured, or simulated field,
does not satisfy the conditions, then that field might be said not to be
diffuse, For example, if only one mode were excited, the cross-
correlation coefficient would be a square wave function with separation.
The zero crossing separation would depend on the relative position of
the accelerometers and the nodal lines of the mode. On the other hand,
if the plate was "anechoic", with all the vibration energy incident on
the boundaries sbsorbed, then the first zere crossing would be at a

quarter of a wavelength separation for a narrow band of analysis,
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independent of the position of the structure. The effect on the
correlogram of radiating fields set up by large energy losses (at the

boundaries) is discussed further in appendix IV.

Loledio2, The Bffect of Number of Modes and the Degree of lodal
Overlap

In this section we examine the results from the acoustically
excited plates and the cylinder.)

The signals from the % in. élate and the cylinder were analysed
in third octave bandse. The modal density of a flat plate is independent
of frequency end at low frequencies and bandwidths few modes were |
included in the analysis. Under these conditions the plate did not
exhibit a diffuse field, as seen in Figures 12 and 13. The theoretical
number of modes in each third octave band is given in Figure 32 as
calculated from (27). At higher frequencies, particularly when more

than 10 modes were included, the behaviour is more in accordance with
that predicted for a diffuse field. See Figures 14 to 17.

The results from the acoustically excited § in. plate were ana-
lysed on the digital dqta analysis centre and it was possible to select
a greater variety of bandwidths. Thus we are able to see the effec# of
including very few modes at a high frequency, when the agreement with
the derived crpss~corre1ation for many modes in a diffuse field should
be bade From Figures 18 and 19 we may see that, indeed, when there are
Tless than ebout 10 modes included the field is not diffuse, whether the

frequency is 2000 or 4000 Hz.
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Now the loss factor, 7 ror s &t 2000 Hz was 0.00063 and at

4

4000 Hz was 0,010, As the modal density of the 4 in. plate was

0,053 modes/Hz, then the modal overlep factor, the modal density x
modal bendwidth is Neer X frequency x 0,053, Thus, at 2000 Hz
this factor is 0,67 and &t 4LOCO Hz is 2.12. But, despite this larze
change in the overlapping of aljocent modes, the agreement with the

diffuse field theory corrvelozram is unaffected for the same number

of included modes.

The results for the cylinder, cnalysed in third octove bands,
show o similar trend, esgreeing well et high frequence (2500 Hz upwerds)

a5 shown in Figure 20, However, the disagreement with the diffuse
field cross-correlation becomes marked at 2000 Hz and lower frequen—
cies, as shown on Figure 21. From Figure 32 the totsl number of modes
available was high, over 100 , and by anclogy with the
behaviour in the pletes this shouid have produced a diffuse field.
Now Manning et al(za) describe the behaviour of a cylinder at
various frequencies. Below the ring frequency, bending waves may not
propagate in an axial direction down the cylinder, This is shown on

the wavenumber diagram for a cylinder, Figure 33, taken from (34).

The ring frequency is given bys:=

fo= Sl hel7e
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where D is the diameter of the cylinder and Cl is the speed of
longtitudinal waves. Thisis the inverse of the time taken for a
longitudinal wave to go round the cylinder,

Thus, below the ring frequency, no matter how many modes are
included in the analysis, the field is not diffuse, as there are
always some directions from which waves may not be incident. This
agrees with results obtained, as the ring frequency of this cylinder
was 2000 Hz, the dividing point of the results., Above the ring fre~
quency, the cylinder may be treated as a flat plate because bending

waves may propagate in every direction.

Leleltoa’. The Effect of Heavy Damping : the Mechanically Excited Plate

Turning to the results for the mechanically excited plate, we
see that they do not agree at all well with the theoretical resultse.
This was true for all other frequencies, This suggests that the field
was not diffuse.

The % in. plate was very highly damped, as shown from the work
of Abell(35) in Figure 34. Now the A.S.A. Sﬁandards(36) suggest that
for good "reverberance" in a room, the level of the directly radiated
acoustic field must be 10 db below ,the level of the reverberant fields
Figure 35 shows the results of calculations detailed in appendix V to
find the radius from the point of excitation at which, in the % in.
plate, the radiasted component éf the bending wave field would have

dropped to 10 db and 3 db below the reverberant level. The calculations
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are similar to‘those outlined by Morse(gé)a The lines along which
correlation wes measured lay within 1 foot of the shaker position for
much of their length. Therefore, if the 10 db level is critical, then
the correlation would be affected under all conditions and if the 3 db
level is critical, then at any frequency above 1600 Hz the correlation
would have been affected. At 1250 Hz only 8 modes would have been
included. It would therefore have béen unlikely that any evidence of
a diffuse field would have been recorded under mechanical excitation at
a point at any fregquency.

The radieted travelling wave model assumes that all energy is

sbsorbed at the boundary. When demping is heavy, then this is entirely
ressonable. It is well esteblished that high dampings are assoclated
with localised parts of the structure, like bolted boundaries.
Beany et al(5) have investigaeted the increase of demping of suspended
plates when bolted sections are added. Bxperiments performed by the
author on a diffuser on Windsczle Advanced Gas Cooled Reactor reveal
that, when the structure was bolted into position, the total loss factor
approximétely doubled, as shown in Figure 36, As the material loss
factors must have stoeyed the seme, the extra dasping must be associated
with chaffing, pumping and similor phenomena at the bolfed joint. Such
mechanisms are also described in (37).

This raises the question of why the high damping of the % in.

plate did not affect the cross-—correlation of acceleration measured when
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the plate was excited scousticelly. The radiating componcnt of the
field would not have been so pronounced, for the excitotion was all
over the surface. Vhen excited at o point the redicted Ffield will
decay with distance from the sheker; when excited all over, ot any
point on the plate the rodiating field will be going in all dircctions;
it will be 2t o constent level over all the plate, except possibly
near the boundaries. 0Of course, the major part of the response will
be governed by travelling waves that are reflected from the boundaries,
for the loss factors are not extremely high. From Heckl(lG) the
tronsmission loss at o boundary to a plate in a reverberant field is

given as

- 13-8 = [AFGQ] ' 4.3.8.
2 C; [Boundary Length] | T .

where T = reverberztion time of the plate.

At 1000 Hz the loss factor of the % in. plate was measured as

0.010. Thus the energy lost at the boundary was 6L of that
incident on it. If this loss had been total, like an anechoic room, we
night have been cble to set up a psuedo-rendom field simply by exciting
the plate ot many points. This is currently being done at Southamplon
University in an anechoic room, to study the effect of aliering the
"reverberance™ as perceived by the listener under controlled condifions.

If our plate had been completely cnechoic, thea we could hove set up a
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diffuse field in this fusiion without ecxeiting sy nerticular number
for as we nave discussed in Chnpter 3, under very high
deamping the concert of norwal medes brecks dom.  Jovever, in the plote

;(;"r
as tested, the number of modes excited was obviously of major importance

end a sufficient number must be excited to produce a diffuse field.,

Lolodiel, The Computed Results

There is little difference between the form of the results
obtained from the mechenically and acoustically excited models, There
is good agreement with the resulis derived using the diffuse field
model which starts between the limits of 12 modes and 20 modes included.
The number of modes was counted during the analysis, not estimated from
the theoretical model density. This compares with the agreement obtained
in practice in the acoustically excited structures when more than 10
modes were excited, which is encouraging.

However, the programme completely failed to represent the pract—
ical situétion under mechanical excitation, where the agreement was bad.

As discussed previously, this is a fundamental failing of the
normal mode model in the analysis of highly damped structures.

These conputer studies show that when enough normal modes are
added together, then they behave like a diffuse field. The studies have
also shown the shortcomings of the normel mode model, and also shown
how expensive in computer time suchvcaiculations are. They have also

revealed the assumptions that are necessary for the analysis of even

76



very simple situations when the frequencies are high. Even this
simplified form of analysis was curtailed because of the large amount
of time that the programmes were using. More accurste analysis at
high frequency wes not possibles. The store size and time requireuments

would have been beyond those allowable with the available machine.

Lo2. The Cross-Correlstion of Strain:

The correlation of acceleration is limited to narrow frequency
bands of analysis. An alternative analysis, the cross-correlation of
strains at 900 to each other, may be performed over very wide band-
widths, for this is not a wavelength controlled effect, like the
correlation of acceleration. However, the signals are small, and
difficult to handle, which makes the procedure less attractive

experimentally.

4e2,1ls Theoretical Value of Cross~Correlation Coefficient

Consider a bending wave approaching a strain gauge on a line

0 - x at on engle 8 to O - x,

y = A.exp.i{wt+kx.cos.6 +kz.cos.0) 119,

where y is the lateral displacement of {the plate.
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k is the bending wave number,
A is some arbitrary amplitude.

Thenz:

g = -D 3y __ h Ak’cos.s lho20
ox 2 3y 2

where A indicates that the two exponential terms, in time and space,

have been omitted. This nomenclature is to be used later in the worke

Then the strain along the line O = z, at 90° to 0 - x, will be

2 =2, 2
£ _h oy _ __h Aklsin’e e
0z 2 d X2 2
and
_ _hPT3 a2 2
fox- fop = 2 A k'sin. 0 .cos:6 L4.22,

Now if we assume that the bending waves arrive from all directions,

uncorrelated with each other, and if they are all of the same amplitude,
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then we may write:

!

ez ™ 8

— 4.2 A2 2 .
Ef = ——»‘-—‘—-—b—-»—é-—/sin?e.cos.e.de
(4]

KntAt | | ho23.
32 7

where the bar indicates a time average.
The mean square strain in the directions O = x and O - z will be egual
in a diffuse field and given by:-

2T
. 4
sin. g .dg

4 4.2 2
~2 —2 _ kTh7A
50)1 : SOZ - 8 =r

(o]
4 1.2 A2

— k h A 3) Lo2k,
32 7 (

i

Then the normalised cross—correlation coefficient is given bys~

¢ ¢ |
Ox * (-2 4
= = 0-33 4,25,
D e
by .« o v 9
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Le?.2, Experimentsl Procedure

4. N
The results from two structures are presented, a y inch plate and a

cvlinder, as described in Secticn L.l.2. of this Chapter.
2

Both structures were excited acousticzlly, as before. The outputs

]

from the strain gauges were both amplified 80 dB. by a three chamnel

Y,

strain gouge anplifier. Phase matching between the channels was tested

and found to be good up to frequencies of 20,000 Hz. (See also

Appendix VI.) The siznals were reéor&e&, as before, on a bigh quality
frequency modulsated tape recorder. In order to get the largest possible
signals to process, semi-conductor gouges were used to measure the
strain. These gauges have a gauge Tector 50 times that of conventional
wire strain gauges. (In Appendix X an experiment is described in which
they were tested against a wire gauge to ensure that they were not
sensitive to acceleration, as had been suggested. They were found sat-

A al

isfectory in every wey, if somewhatl fragile.)

The signals {rom the straiﬁ gauges on the cylinder were processed
on an enalogue correlator. On playback, they were filtered through
a pair of third octave filters known to have good phase match, as
before (4.1.2;). The signals from the flat plate were analysed on
the digital date processor, using a digital filtering routine., Apart
from the better accuracy expected, using this system, various bandwidths
and centre frequencies could be chosen so that the effect of the number
of modes could be seen. The results for the plate are shown on
Figure 37 end on Figure 38 for the cylinder.

The positions at which strains were measured were not close to

any boundaries, but were otherwise chosen at random.

80






bo2e3, Discussion of Results on Strain Correlation

The results for the plate are plotted directly in terms of the
theoretical number of modes included in the band of anelysis. The
egreement is good provided at least ten modes are included. Below this
number of modes, the scatter on the results is very great and one would
deduce that the field was not diffuse.

We notice that the results for low bandwidths, whether or not at
a high frequency, depart widely from the diffuse field value., However,
results for high bandwidths, and therefore large numbers of included
modes, lie close to the predicted value. This again shows that the
number of simultaneously excited modes is the major parameter on which
to judge whether or not a structure will have & diffuse bending field.

The changes in demping and in the amount that modes overlap
each other in frequency which occur between high and low frequencies
are less important.

The results from the cylinder suggest that at frequencies higher
than 2150 Hz the bending wave field was diffuse. At lower frequencies
the results fluctuate, suggesting that the field is not diffuse. At
2000 Hz, the ring frequency, some departure from the expected value
might be expected, for as we have already discussed, there will be sonme
directions along which bending waves may not propagate. However, it is

surprising to record a departure from the expected value at 2500 Hz.
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Le%e Conclusions

Le3,1, Conditions for Diffuse Bending Wave Field

Both sets of tests reveel that at least 10 modes must be excited
in order to set up a diffuse bending wave field. In addition, a
diffuse field in a cylinder can only be set up at frequencies above the
ring frequency, when bending waves may propagate in all directions.

Small changes in damping, affecting the degree of modal over=—
lap, do not seem to be important. Although the amount of model over-
lapping is a function of frequency and will have changed over the fre=-
quency ranges considered in the tests, no effect was noticed.

Large values of damping can upset the diffuse field behaviour
under conditions of point excitation, as we have seen .
This is exactly paralleled by the behaviour of sound in partly
absorbing rooms where, unless the demping is small, the reverberant

field will be swamped by the radiating field.

43,2, Comparison of the Two Tests

fhe accelerometer test was easier to perform then the strain
gauge test and was susceptible to interpretation. The accelerometer
signals were much bigger than those from the sitrain gauges, which is
important. The tests involve considerable signal handling, during
which phase information must be preserved carefully and electronic

noise kept as low as possible in order to get relisble correlationse.
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The accelerometer test also offers important advaniages in
the interpretoetion of the results., It offers us two curves for com=-
parison, theory and experinent;

the strain gauge test offers us only

two points, theory and experiment. Ixamining the acceleroumeter results,

ne the first zero crossing, the value and locat-
ion of the first minimum and the swmoothness of the curve in an objective

way to declde whether or not o field is diffuse. The strain gauge's

&

single result is much less easy to interpret. Only if its value is

close to the theoretical value for o diffuse field can we interpret the
result.

The only situation in which tids strain gauge test is likely to
be of more use than the asccelerometer test is when access to the struct-
ure is very limited, when the analysis time avalleble 1s limited, or
when inforpmation is required over & very large bandwidthe. In ell other

cases, the accelerometer test is more useful.

{t
vy

leBe3e Sensitivitry of the T

These tests both suggested than ten modes are necessary to ensure
a diffuse ficld., Ve nust try and establisﬁ if this is necessary or
sufficient for other parts of the anelysis, For exomple, when consid-
ering the stress at 2 boundary we umizht find that this criterion is

too severe, or perhaps not severe enough. This must be borne in mind

in subsequent parts of the work.
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Four sets of resulls are presented for the chonge of section
specimen; two are for the thick section of the specimen and two ere
for the thin sectione.

As we hove discussed in Section 7, the deflected shope near
the boundary would not be sinusoidal in space and this could upset the
results, To try and judge the seriousness of this effect, for each

>

5 ds presented for strain gauges an

o
L

section of the specimen, one resul
acceleroneter positions chosen to be remote from the boundery, and

another result is presented which includes the strain and acceleration

measured near the boundary.

5e3.  Comments on the Results

Turning to the results shown on Figure 3%9a, we see that the
agreement with theory is generally good. At low frequencies, and

L

therefore low numbers of modes, the measured ratio does vary somewhat
above and below the theoretical value, This reflects on the difficulty
of getting good samples of strain and acceleration when only a few
modes are avallable. This situation gives rise to large variations of

.

strain and acceleration sbout the spaticl meon, as discussed later in
Chapter 8. At higher frequencies the results steady up.

It secems thot otherwise the measured ratio does not depend on the
number of modes available. This is what we would expect, for provided
the deflected shepe of the structure is sinusoidel in space, the

theoreticel results should still hold, regardless of the number of

avallable modess Thus, for this result, the criterion established in
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Chapter L is too severe,

The results for the cylinder show no dependence on the ring
frequency, 2000 Hz. This is to be expeoted for the directions in
which the bending vaves can travel is not importent here. Provided
that the deflected shope iz sinusoidal in space the resuli should
still apply. Again, the oriterion estoblished in Chapter L is too

Turning to Figure 39, we sec that the effecﬁ of the boundaries
is not particularly marked. However, the ratio of velocity +o strain
rises for the thin section and falls for +h thick section., This
is in general agreement with +he findings of Chopter 7, where the
stresses and strain induced by o chenge of section are discussed in

detzil.

5., Conclusions

The diffuse fileld model leads to “he ssue relaticnshin of

stress and strain to velocity as docs the single node nolel. This
is borne out by the exnerimentol findings. Ve nmey use the theoretical

result wita no particuler regard to the requirements of Chapter L,
that at least 10 modes are avalleble, end, with cylinders, only
freguencies sbove the ring frequencies sre considered.

Hear the bounderies the strain must be predicted by octher

means.,
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elready in Chapter 2, there are four boundary conditions to nateh,
not Jjust two. Thus, two additionnl ncer fields are sect up, waich do
not transmit energy to the far distence, one a reflected field and
one a transmitted field. The combinsiion of these vaves, in phases
determined by the impedance of the discontinuity, will govern the
stresscs and streins at the Loundary.

In the following analysis we will assume that nlane sections
remain plane. Timoshenko et al<39) and Savin(ao), among others, dis-
cuss the statis bending and tension of specimen§ of complex shape, in
which initially plane sections are allowed to become non-plane. They
have considered shafts of varying cross-section in bending and the
stress generated round holes in s plate under tension. These effects
are extremely localised, affecting the region imnediately adjacent to
the discontinuity,

In this analysis we confine our attention to the macroscopic
changes of stress due to the interference of bending waves near the
discontinuty in question, assunming that initially plane sections
remain plane. A more deteiled investigation is not yet possible.

It might, of course, be reascnable to use the stress concent-
ration factors derived, for example, by Timoshenko, in addition to the
factors to be derived in this section. The frequencies are low com-
pared with the frequencies at which Rayleigh surface waves are
importent and away from boundaries plane sections do remain plane.

However, such a discussion is beyond the scope of this present work

94



and is not considered further,

In the next two Chapters we consider the stress normal to a
butt weld and to a sharp change of section in a plate. Roth situ~
ations are met with fairly of'ten in practice. Appendix VIII
considers the stress at a rigid bcundary.

The approach is as follows. First we will study the solution
of the bending wave equation al 2 weld; then we will investigate the
stress genersted by n weld by a bending wave frem a single direction.
Then we will assume that bending waves arrive from all directions and
derive a value of total stress. ¥Finally, the derived results are

tested experimentally.

T

6,1, The Behaviour of a Bendinz Wave Incident on a Buth Yeld

The analysis in this section, of solutions to the bending wave

(10)

equation at a riv, was first performed by Cremer for a rectangular
rib. It is detailed here to introduce the more complete work in
Chapter 7 und also because we use the results toderive the stress.

Let the two semi~infinite plates, of identical thickness and
the samé material lie in the plane x ~ z, as shown in Figure 4l. The
weld of the same materisl lies along the line x = 0 and is assumed +o
have an elliptical cross—section,

We will use the following boundary conditions,.

If we assume that the wavelength is large compared to the width
of the weld, which is reasonuble at the freguencies which are of

most interest to us, then we may assume that the lateral displacement
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and velocity of the plates are the ssre each side of the weld.

Further, if the weld cross—section remains undistorted, then
the angular velocity will be the same ecach side of the weld.

For the next boundary condition we may consider the equilibrium
of the bending moments each side of the weld, the torsional moment
set up within the weld by the amount it twists along the line x = 0
end the rotary inertis of the welde.

Pinally, we consider the equilibrium of the shear forces in
the plate =ach side of the weld, the shear stresses in the weld and

the d'Alembert forces due to its vertical acceleration.

»

6.1.1, Vave Velocities

Let us consider the velocity of the waves incident on and
travelling from the weld as a first step to deriving these four
boundary conditionse.

Let the incident wave arrive from an angle 8 to Z = 0O,

Ve may assign to it the arbitrary amplitude of unity.

V, = expliot —ikx.cos.0 + jkz .sin.g 61

Now the trace wavelength of the incident and depzrting waves
must be the seme; their tangential wavelength must be equal, as shown
in Pigure 42, If not, then the relationship between the waves would
be a function of their position along the 72 axds; yvet we are deriving

this relationship at an arbitrary value of z. Thus, this relationship
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must be the same a2t any value of z in an infinite plate.

Now to find the travelling wave we solve the equation

2
VV+ k?V=0 fron Section[2.3]

This is

Sv  dv BV = 0
Sz e T

2
OV .
from which S 2 ’+li'"k2.sin?9. +k2J -0

62
end thus 5 V2 -+ KV.cos@ =0 6.24
X

Then the velocity of the reflected wave is

V’ =R.exp.i[wt+kx.cos.9+kz.sin.6] 6.3,

and the transmitted wave is

\Qf’-D.@Xp.i[wt - kx.cos.8 +kz.sln.6] 6ulye
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where R and D are the complex amplitudes of the reflected and

travelling waves that we shall find by equating the boundary condit-

ionse

To find the decsying near fields we consider the cquation

2
V V- k2V = Q from Section

How the near {ield is steady only in the X direction. The

variation in the % direction is still given by exp[i(wt~kz.sin. 6)]
and thug we havei=

2
%\%é[H sin2@]£<2v.~.-. o 6.5.

The reflected near field velocity is therefore

V = R'exp. I%ta»kz.sin.@]-rkx.gl +sin'Q 6.6.

-l

and the transmitted near field is:~

\4-9."‘ D.’exp. i[wt-:—kz.sm.@]-kxw-rsin29 S
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RY and D' are complex amplitudes that we will find by equoting

boundary conditions.

6.1.2, The Boundary Conditions

From the four sets of boundary conditions we obtain four
simultencous equatlons.

oy

Bounlity of Velocities

| + R+R =D+ D’ 6.0,

Bouslity of
The angular velocity is given by a‘V

Then at x = 0

-i.ccs.9+iR.cos.@.-i—R’Ql-#sin?@ = 6.9,
-i.c0s.0.D «Vl-%sin?@. D’

Let cos. 8  _ Y,
‘/l + sin20

Phen il = (R + R+ 1D + D’ 6.10.
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Now the shear forces in the plate aret-

_ B[V APV -
= o mﬂ-@"ﬂ)(k.sm@) FY 6,23
where \) = Poisson®s Ratio.

We will consider the derivation of this result in the next
Chapter, For the moment, notice that the expression differs from
that for the simple beam (6.21.) because of complications induced by
curvatures in both directions,

2
However, (2"’ \)Xk.sin.é) ’g’y;' is

the same for both plates, and we nced, therefore, only consider the

terms

If we write:~

L Y= wh — Bsinf. - -
B kY [ +sin?6. S

then 6,22, reduces to:—
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~jctR + R+ <-~io<+X)D+<! + X)D'; —ick 625,

T

We are now able to determine the four quantities, R, R', D, D!
from equations 6.8+, 6,100, 6,19, ond 6.25.

After evtensive nmanipulation they are found to bei=

¥ o - (YY) 6.26.

A+iC

D = ib((df"{"X"'/Q) ‘ 6,27,

A4+ iC
BYo* 25 |
- +0(2,@+io<(°§"-—-5') ¢.25.
A+ iC
2 )
D! = - 0( /6"’“" IO( X 6°29°
\ A+ iC
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]

where A

”‘-;»Q -jl-—0(9’)
s =

emd €= o 4»+b’-/3w/§;ib;/

Now we are rcady to examine the stresses and strains induced
at the weld.

A4

6.2, The Stress in a Plzate generated normal to a Weld

When a bending wave reaches the weld, some of it will be

reflected and some transmitted. Thus it will set up stresses both

sides of the weld. Conversesly, the stress on one side of the weld
5

will bte csused by both reflected waves from the same side and trans—

nitted waves from the other side. We will consider each separately.

602,10 Stress due to Reflected Waves.

From (11,pphs):-

2.
o= _ihE 3v JV 5. 5L
2090 | 3 + \)éz’“ | 6,31

is the stress,

where @
h dis thickness of the plate and
E

is Young's meodulus of the material.
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For a single wave incident from angle

v] L "
- th s Q . g / . 19 6¢j20
o} =N (~ikcosrR(icos.0)- R{+sin )

+V [(mik.sin.@l‘%' R(—-ik.sin.(9)1+R/(~ik.sin.@)1] vy

where Vl is the velocity of the wave arriving from plate 1

. ihE K> (R+1)(c0s0.+ sin*0) — R{+{-9)sindd) V16,33

20 = 2(1—vIw

Then the mcan square stress is given by:

2

e 4?[ -E\) )ﬁw’- (Re1)(c °57:9~+\)53”?9) — R(1+(-v) sirt8) Vi, 3.

3
where d

ro is the time average squared stress due to the waves

incident at angle @6 being reflected,

108



Now let us assume that instead of a bending of mean square

X 2 . ) o . ;
velocity \G arviving from 6 , bending waves arrive from all

directions with a total mean square velocity < V?) The € )
indicate a mean over space, We will also assume that they are

statistically independent.
o 1

Then

2

<2 o 4 :
Or PE? K (R+N(cos?@ +Vsin?f)- R/(!-'(l"v)sin?@.)' do

R

e 6,35,
Now from Chapter 5, equation
(CP) __ E2n2 k4
=17 = - 0-484 6.35.
(v2) 4(1-V) o
for Poisson's ratio = 0.7,
.2
where <'Cﬁ D is the mean square stress in plate 1.
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-3
=3
o
s
[N RE

2
(Re(cos’d +0.3.5in’6)-R(l +(!—v)sin2.9), dé.

- . i

6.2.2, Stress due to Transmitted Waves

he | vy SV .
2(1-Vw | & x2 + O 22 -Jbe

Again 0=

For a single wave incident from plate 2 at angle 6 , the stress

in 1 is

0: 2£|E§)w [Dﬁk.coS,HﬁD’k?(wsm.e)iv'(:—ik.sin.e)z(mof) v,

where V? is the velocity in plate 2.

Then the mean square stress normal to the weld in plate 1 is

2 2214 2
h“E“k
Oré - A(TOTe? D(cos’d.+Vv.sin8)-D((1-v) sind) | €.39.

where V22 is the menn square velocity of the wave from 9 in region 2

and O':zm is the stress in 1 due tc waves transmitted from an angle 5 .
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A ey

For a diffuse incident field, as before,

iy

2 / 2 2
D&oﬁgﬁﬂsmﬁU~Dﬂ+Gﬂﬂsm9)Ld@

Jds
N
i
6040,
Again, for NV = 0.3
— 2,2 4
2
<”§>__: E hzk - 0.484 6402,
(V2> 4(1-vTw
Thus, for steel, aluminium, ctcC.
2

iy

ID(c0s20 +0.3 sin0) - D'(1+ 0.7 sin®) Ide 641,

l

G
(T 2r0.484

T e

- -

Details of Numerical Avsluation of the Integrals

€30

Such unpleasant integrations as in equations €.,37. and 6.41,
An dntegration subroutine was written

are best tackled numerically.
to integrate this expression on a computer using Simpson's Rule,
However,

It is not necessary to detail the complete programme.

there are three points of interest; the evaluation of the structural
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paremeters of' weld; the limits of +he integration; the modifications

necessary to determine strain concentrations,

Go%edo  Structursl Peorameters of Weld

-

In equations 6,26, to 6,30, the veriebles are of ,‘/3 end U,
L4 is determined solely by the angle of incidencs.
3 is given by:=

W o
B k w

/3 — W f+sin?0 T kisin’d

To eveluate this we need the angle of incidence 6 s the
frequency o  the bending stiffness of the plate B and the
woverumber K. These are independent of the weld paremeters.

Ve also need to knew O , the moment of ineriia of the weld/
unit length cnd T its torsicral stiffness,

Up to this point whot we have derived could apply to any rib on
the plate of any cross section, providing only that it is thin compared
to a wavelength.

It is reasonable to approximste the cross-—secticn of o weld by

(42)

an ellinse, From Timoshenko we obtain the results that the

torsional stiffness of an elliptical section is:i=
3.3
xabaG

= 6.42,
T ErR— L2

vl

where the ellinse is of width 2a and height 2b (Figure 43) end where
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on a plate shows that wder these coenditions the importoint angle is

that at which & = 0 s 0

Yo"
' AN . ’ o

Figure (ima.) token from his work (10). In the evaluations of
stress and strain descrived in Section this was

also true. dpecial routines located 97 =0 end the

K] K . . " 230 o o £ .
integration was performed from -90° to - 0‘{:0 s from ~ 0.“0 %6

. ~0 . .
+ 07 o end from + 9‘1’ o to 907 . It was not necessary to define

the angle é = 0,

However, if' we wish  to evaluste strain and stress ot bigh
frequencies we must also define 9/330 5 v."rxer‘eﬁ = 0, For Cremer
shows that at such frequencics QB = 0 are greater toan 97 =0,

1

the loss factor is sharply dependent on both ¥ and ﬁ as

.

. ] ISR 5 o
shown in Tigure(li4b), These are alco teken from Cremer's work

60303  Modifications for Strain

The modifications for strain sre very simple, Briefly,

equations 6.31. and 6.38a. are replaced by:

2
g = _ih v
2w O x2 6.4t
X=Q

and equations 6.36. and 6.40a. are replaced by

g2 _ 1 .
<—\-/-2> CL2 4T
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where CL is the speed of longitudinal waves, as shown in Chapter

Section 5.1,

Otherwise

o

he analysis is ddeatical,

The results are as follow

m

AN
3

ang

I
2

s

il

CLSAHBF

€l Experimentsl Tests

6,0, . Exnerimentel Procedure

‘ 2
=0.848 [(R+ Neos?d —R(1+sin20)| do

' 2
‘Dcof@»[ﬁG*shﬁ@)ld@

5

€o1B.

601‘2"90

A butt weld was prepsred between two aluminium plates, as shown

in Figure 45,

The plates were 0,030 in, thick and the weld was on

gverage 0,074 in, thick and 0,250 in; wide., It ran the full width of

the plate. The measurements were, of
5

f course, taken at several

positions, glong the weld, as there was some small variation in the
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.

dimensions of the weld with position., The plate was suspended from
a light frame by thin wires from one edge. It was excited by broad
frequency band noisze from o loudspezker.

The strain in the top and bottom vlates was meassured by semi-
conductor strain gauges rancdonly scattered over their surlacese.
Seven gauges were used on the bottom plate, but only three gauges
gave good outonts from the top plate,

Semi~conducteor gauges are expensive and fragile., ¥When a
number of them failed on the top plate, it was not possible to
replace them within a reasonable time, so the experiment had to be
continued in the knowledge that the average readings from the top
plate would be less accurate than the lower plote. However, at fre-
quencies about 500 Hz, the results from the gauges asgreed within
3dB, so although less than perfect, the results from the top plate
rere considered adequate,

The strain at the weld was measured at three points on the
lower side and two points on the uwoper side. At each point two or
three gauges were positioned in a line normal to the weld, the first
one as close as possible to the weld. Because the near field decays
exponentially will distance from the boundary as described in
Section 2.3 , it was felt that it might be possible ¢
extrapolate the stress from two or three gauges to give a more
accurate estimate of the sirain at the weld.

In fact, this proved to be impossible, as no extrapolation
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was worthwlhile becazuse the readings

weld were all close, within one or two decibels,.

encugh Information on which to bass

Instead, the reading of the gauges n
readings averaged over cach side of

All the results were analysed

Computational Procedure

é&z’}‘ﬂ2ﬂ

A theoretical estimate of the

nade on a digital computer. It woul

have predicted strain concentrations

many frequencies., Instead, a weld o

e

ST

ter

proportion was died over the rang

ments. As a control, the effect of
large weld was considered 1t
concentratién beheved as

The programme predicted tha
was only 0,CC0L in. wide, would prod
and strsin on a plate 0.25 in, thick
integration procedure (1ji). This is

of circular cross~scction, 0.25 in,

plate was calculated to produce a gr

as

than the actual weld due to reflecte
transmitted waves, From Skudryk (23

would have expected. Comparing the

120

from the strain gauges near the
m 37 4
There was not
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CHAPTAR 7
[N

Stress and Strain Concentrations at & Chance of Siation

The problem to be solved in this chapter is similar to that
solved in the previous chapter. We will use the same basic approach.
First we will study the solution of the bending wave equation at a
change of section, then find the stress generated by a single wave.
Then, invoking the diffuse field model, we will derive a value of
total stress., However, there are differences between the forin of the
boundary conditions to be used in this chapter and those used in
Chapter 6, which we must carefully consider.

The theoretical results are tested experimentally using sev—

eral different test pieces.

7ele The Behaviour of a Bending liave Incident on a Change of
Section

Let two semi=-infinite plates of the same materiel, but of
different thickness, lie in the plane X - Z , joined along the
line X = O .

The lateral and angular velocity must be the same each side
of the join. The shearing forces must be equal and opposite in both

plates, as must be the bending moments,

Telele Wave Velocities

As before, we consider the transverse velocity incident on and
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reflected from the change of section as a first step to deriving the
boundary conditions.
Let an incident wave arrive from an angle # to Z = O .

This wave is described by~

V,,= exp.ilwt-kx.cosb+kz.sin.f) 7.10

The trace wavelength of the incident. reflccted and transmitted
waves must be the same, as shown in Figure 49.
Now from Section 2, ~ we find the travelling waves as a

solution %o

(v kv =0 7.2.
which is "%2"” + éy; + k|2V =0 | Tele

For waves in region (1) :

Since —-——~\-/-— = --klz.sinz.@ \' 7 ebie

we know that the reflected travelling or propagaeting wave must satisly

the equation -
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v

2L (1 —sinfd)KkPv =0 7.5,
0 R
therefore -
V= Rexp.i(wt+ klx.cos.é’.+k,2,sin.9) , 7.6

This is the same as for the weld.

However at a change of section, the speed of bending waves
changes (table 1 p 20 ). To accommodate this, yet meet the require-
ment of equalify of trace wavelength, the angle of departure ¢  of

the wave in region 2 must obey the relationship:~

sin.& = sin.@ 2.7
N A

2 \

where >\_' . ?\ 5 are the wavelengths in 1 , 2.
Under certain conditions total reflection takes place.
Clearly, when >\! is Jess than ?\.2 , if sin ¢ is 1

then sin @ must be less than 1. 9 will then be the critical
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engle of total reflection. At angles of incidence greater than
critical no encrgy will pass from region 1 to 2, There is an analogy
with the behaviour of a ray of light leaving a glass block and pass=—
ing into the air. At angles of incidence greater than the critical
angle, trensmission is not possible. The analogy ends there, as with
bending waves four boundery conditions must be satisfied. It is
important to realise that whilst no energy mey be transmitted across
the interface when the angle of incidence is greater than the critical
angle, there is still a disturbance set up in the "receiving" plate
due to the transmitted near field. We will discuss this later. Total
internal reflection will occur when a wave is travelling from a thin
region to a thick region,

Now the transmitted propagating wave must satisfy:=

(V3 AV =0 7.8.

or | ?;/2 - k s 1n%0.V+ k2V=O (2

62\/ 2 .2
Therefore = —K|{K-sin®)V =0 7.10,
| Sz~ KlKEeine)
where K = Eg
K
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The transmitted wave is then given by

+

\Y 2: D.exp Hwt-k, /K- sind  x+ K.z sin. @) 7.11.

If there is no total reflection, then K2 - sin2€9 will be
greater than zero end the solution for V;zrepresents a transmitied
travelling wave,

y . . ) » . K? . 269 ‘

However, if there is total reflection, - sin will be

less than zero, Then we must write V;z as

\/;2.: D.exp(ilwt +k,z.sin.0)-k,Jsind-K* x) 7.12,

This is a wave that decays with x . It does not transmit
energy and it is an additional near field,

The near fields must satisfy the equations

(V2"‘ k,z)V =0 in region 1
7-13.
(V2~ k22)V=O in region 2

From the previous reasonin the reflected nesr field must
3

satisfy:=~
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Sv
~ k(1 +sifP) V=0 7.1k,

0%

Thenz—

\(::: R’.exp.(i(wt—z—klz.sin.é])+klgl+si n*@ .x) 7 15

and since the itransmitied near field satisflies

2
LY (rain) v= 0 7.16.

then

s ; . 2 . 3
V+2= D.exp.(l(wt+kz.sm.9)-kixg/ K+sm.t9) 7.17.

This component is not affected by total relflection.
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Tedelo The Boundary Conditicns : Transmissicn

Tolelele Hauality of Loterel Velocity

At X = O, [+R+R'= D+D 7.18.

for the velocity in cach plate must be the same at the join.

Lede2.20 Eouality of Angular Velocity

5

At X = 0, the angular velocities must be the same

0

b4

in each plate at the Join.

Therefore:

‘ »icos.é’HR.cos%VH sinfd R’ 7.19.
:-"--iD#K?-s{le —-DIQK+sin9f@

7eleZe3%s Bquality of Bending loment

‘From (4O) the bending moment in a plate is given Dby

2
M = ’éy———vé

X 3@ d 7

7.20.

o
]

bending stiffness/unit width

<
n

Poisson's Ratioc.

i3z



Xy
D22’

Now we must include the terms in

for the bending
stiffnesses are not the same in each plate.

For eguilibrium:-

(Fe)eiaiay] - (£5) + @0 )

%20 0
where N = %2/; .
Then
-c0s?0 -R.cos.+ R(1+sin6)-v(1+R+R)sin%d =
ND(KZsin%0)+ N D'(K% sin2d) -V N.sin®(D + D)
722,

Telelole FBauality of Shearing Force

First we must derive the shearing force in a plate bent in two
directions; then we can equate the forces each side of the Join,
: N (10) e
The following derivation is due to Cremer « It is wise for
us to consider this in detail as it is not a femiliar result. Consider

the thin slice at the edge of each plate, as depicted in Figure 50,
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Qx dis the shear force generated in the material per unit width of
material; ¥x is the force transmitted to the other plate. Taking

moments gbout the Z axis at X = 0 i~

gx.gZ.sz'mgx:gz~Miéz.Sx. 74230
z

0 X P
Therefore =

_ OMy _ OMa

-— 02}+o
% o X oz !

where Mzz is the torsiocnal moment per unit width in the strip twisting
sbout the Z axis.

Resolving forces vertically for the strip gives us:i-

7

FeSx.$z = Q x5z + Sx OMxx 7.25.
z

Myyx eand My, are moments resulting from the shear stress ZZX

and I;:z , which are, of course, equal. These are shown in Figure 5].
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3 PN

Czx

Figure 51 Shear Deformation
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Then I, 726,

ba h 2%

1%

where y is here the distance from the centre line of the plate.
This shear stress 1s due to the "lozenging" of the element

shown in Figure 51 and is given by

T:G(BX méf) 2.27.

where S and 5 are displacements defined in Figure 51 and G
is the shear modulus of the material.

From the well known relationships (41 pp 205)

2
Strain = yA-!L 7628,
. a x?.

2
thus s =-y .é._fL , 7.29.

X ax*

2
and gzx =—y > Z%— 750

where rl is the lateral displacement of the centre line of the

unstressed plate,
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3E o8 ”'----—‘l~—-é -y . 74510

Thus o foand

and b 7 =2G.y( 31 ) 7.32.
dx.dz |

ax az is the rate at which the angle of twist varies along

the edge of the plate.

b
{ 2
| 5 1
e . 70370
Mxx 2G | y'éxbzdy 2

I the second moment of area of the
strip pexr unit width

N
ja W
~
[

Now y<

N

2G

(1-v)

{
s}
Y
-J
°
¥

’ . e e
where E°  is Young's modulus per unit width.

2 2
/191 - plon. 7035,
Mz Ox 7z

e o Mx’(:‘:
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From 7e2h.

3 2
Qx:.-. B SV*(k,sin.Q) aV 7+36.
WX d X
From 7.35.

iW]dxoz
A 7.57.
= -{%— -g—-—:i(? ksin.g)

Thus from 7.25.
- 3
Fo_ B[3V-(2-V)(ksin6)QV 70380
R 3 x v

In this derivetion we have assumed that the distribution of
stress is linear in the y direction across the plate. This is not

strictly true. TFrom the principle of St. Venant we would deduce that
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this is so only et a distance from the boundary comparable to the
thickness of the plate. However, as we are considering only wave=
lengths greater than six times the thickness or more, then we should
still be able to deduce the levels of stress caused by interference
of the bending waves near the boundary, if not quite at it. This is
a fundamental limitation of the theory that we have already discussed.
It becomes seriocus at very short wavelengths and high frequencies,
We have, however, already excluded’these conditions,

Now we must equate the shearing forces both sides of Join.

Thus we obtain our fourth equation

icos3@ -Ricos 6 + R s (2—Msin® (iR.cos..~icos.f+ S R')

=iINDP—DNT2N(2-v) sin 4 (=i D P — D'T)

where 2 |+ sin?@

P2=—' Kz" <in2@

T2.== K%-sinz.ﬁ
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Atteumpts to reduce these four equations to simple results
for R, R’ s Dy p’ have been unsuccessful. Instead, the equations
were solved numericszlly using a computer subroutine to solve the
simultaneous equations, the numerical results being used directly to

produce the strain and stress concentrations.

Tele 30 The Roundery Conditions : Totael Reflection

The same four boundsry conditions are used. The only differences
in the resulting equation are due to the form of the transmitted wave,
which under conditions of total reflection is only a decaying near field,

Without deriving them formally, which may be done by analogy

with Section 7.1l.2., we may write down the four equations as follows:

Equality of Velocity

l+R+R =D+ D 7.40.

Eguality of Angular Velocity

R.i.cos.9~— icosf« RS=-DP- D/T 7ohle

Equality of Bending Moment

—cos26.-R.cos?0 + R'S=v(I+R+R)sin’g = NDP* ND'T" 7,42,

-vN(D+D)sin*6,
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Egquality of Shear Force

ticos@-iRcos?0+R S -(2-Wsin*0(iRcos0-icos.0+SR) =

-NDP-DN T%(2-v) sin*@(DP+D'T)

Tolie

where N ratio of bending stiffness

n

| +sin*0

v
!

. 2
P2 sin*@ ~K

i

2 .
7% = K+sin20
where K = raetio of wave numbers

7026 The Stress Generated Mormal to a Chance of Section

The basic approach is the same as that used in Chapter 6,
Section 2, Ve determine the stress set up by the curvature due to
a wave incident from angle 6 ; then the total stress is found by
assuming that a diffuse field is incident on fthe change of section.
Finally this is compared with the level of mean square stress in the

region from which the bending waves earrive.
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The
wave i~

1o

Z2e

Se
L.

stress in plate (l) is now due to four types of bending

Partial Reflection in ' plate (1) o
Total Reflection in plate (1) O
Pertisl Traonsmission from plate (2) b

Total Non Trensmission from plate (2) o4

Telelo Stress due to Partial Reflecction

The

reflection

stress in plate (1) normal to the join due to partial

at X = O is given by (40).

1 2
g =ihE |V _voV,
@2V A*  dz
k0
where V = lateral veloéity,
h, = thickness.

Bx2><==<)

where K,

end -

is the wave number in region 1

2 , 2
Q_X = (HR-{»R)(i.sin@) Vv, k,zexp.i(wwk,z.sin.@)

az x=0
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(fx) 2[(”51“19) Rie (1+R)(i cos.g)'l] v k2expli(wttkz sind))7.45.

746,



where V, is the velocity of waves incident from region 1

ie€e V; = V|.2Xp.i((dt+kz'Sinﬁ-—kx.co's.Q)

o _hE R+ 1) (cos*0 +v.sin*F)= R1s (1-v) s1n%9) }
%= 2(1-F) }

Viexp.ilt+kz. sin.&) W7

~]

Then the nean square stress is

o B [R+Dco2B4v sin) - R(1(1-Wsin?d)| V2 7.5,
oAyt

If the bending wave field is diffuse and reverberent then
instead of all the energy arriving from angle 6 it will arrive from
all angles. Trom the rcsult of Chapter 5, as in Chapter 6, we may

write

OB

<57Q>: h'}.’El k.4 os*B +Vsin? 6 .d0@ YRR
KVH  a(l-v)Rwt -

-

I
2
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o = i MEK_|(1+R)icos) + R(1+sin?f)
€T 2(1-v) wh

2
+v(isind) (l+R+R) | V, ex p.ifwt+k 2. sin.6) 7.52.4

This mey be directly compared with equation 7.47: they are identical,
Thus by the same reasoning we obtain the same expression for stress
concentration, except that the bending waves that contribute to this
stress arrive from engles between 900 end Tc the critical angle.

is€es

2
(R+1)(cos*0+0.3 sin*0)- R'(1+ 0.7sin20) |46 7.53.
O.4841

A

|

A
Q|
\V

Je2e3. Stress due to Partislly Transnitted Bending Javes

Let a bending wave approach the change of section from plate 1,
of thickness h, , frem angle 6 end let the wavenumber be K, . Let

this wave be partielly transmitted and depart into plate 2, of
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o Ahz E | Kk, [DI(K“(!-V)sin*Q) - D(K-(I-v) sin’“é’)] Vi 7.7
b 2(1»\}1) K'l. (Jt

This is a necessary operation: if we intend to use the diffuse
2,0 - LY i ] 3 ——l +
field model we cean only assume a uniform distribution of V" with
6 the angle of incidence, not ¢ .
Then the meesn square stress in Section 2 due to one wave is

given as:

2
4, .
% M[k‘] D (K(1-v)sin8)- D(K-(-v) sin*d)| V> 7.5

Ka

b 2(- v

Now if the incident field 1s diffuse, then

2

. T
o E'nik! D31~ vsin'd) - D(KA(-v)sin*d)| a8 7.59.

JETnkG ke f ‘
<V 20~ ky

~T;
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‘s )
where Te is the critical angle from 1 %o 2, or 90",

MNow from Chapter b

s
> 2
Ko™ hiE ki cosl@+vsintl.db .
Q\’}“).) - 4(1 - \)'l)lw‘? | 7,60
-
2
f'l'?l»len
T
)
D(K}O.7 sinlg)— D'(K:0.7 sin*d) 40 e
2UX.Q 444 oD

5+ 0)

7.61 tells us the stress to expect in seciion 2, normal to
and at the change of section compared to the mean square stress over

section 1.

7e2eke  Stress due to Totally Non-Trensmitied Bending Vaves

Using the same notation as in 7.2.3. we are trying to find
stress normal to and at the change of section, in section 2, presumed
thicker than in 1, due to & bending wave incident from 1 at an angle

greater than the critical angle.
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Again

_ihE |3V . v 3V 7.62
d7 2(1- VW | 3% 27
XsQ

i hE kG [(K‘u- sin"0)D'+ (sin*f-K*) D-v.sin*G( D+ D'):} v,
- 2(l~ v“)uﬁ

7.63.
This is identical to 7.57.
Proceeding the same way we end with the result that
s Tc
’ . 19 'l) . 1@ 2
D(0.7sin*0+ K )+ D(0.7 sin*F-K) 40
0.484 ar
764
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where T is the critical angle from 1 to 2,
We have now found the stress in plate 2 and normal to the

change of section in terms of the mean square stress in plate 1.

7.3, Evaluation of the Resulis

Telale Computation

Such complex integrations as are involved in exuressions
750, 7.53, 7.61 and 7.6k ore best solved numerically. As mente

ioned in section 7.l., from a given value of Eg' the values of

y

R, R’ ; Dy p’ s are deduced as from equations of sections 7.1.2 and
{els3. TFrom these are determined the stresses generated due to
waves from various angles. Then,by integration using Simpson's
rule, was celculated the effect of waves coming from every direction.,
The results of this calculation are presented in Figure 52, There
are no particular complications that need mention and the structure
is completel& defined by the ratio of the change of section. The
results are discussed later.

.In practice we may only measure strain not stress and the
results are derived also for the expected strain.concentrations.
The modifications are the same as those described in section 6.3.2,

for the weld. Expressions 7.hk, 7.51, 7.5k and 7.62 are replaced by

¢ in(_@:\_/_ 7.65
2w\ ox* x:0
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and expressions for stress versus velocity are replaced by

&S
o cy

(See also section 6.3.2.)

The results for strain are presented in Figure 53.

7.66

The only

structursl parameter is the ratio of one section's thickness to the

Oth@ro

Te302e Discussion of Comnuted Resulis

Let us first consider how to use Figures 52 and 53.

If we want to calculate the stress concentration at

change

of section of L to 1 (say) and we estimate the mean square stress in 1

to be 100 Ibf/in2  nd in 2, the thicker, to be 10 Ibf/in

then the mean square stress on the thin side of the Join will

be

— 2 1 2 2
6tz 100" + 0o,
15 625)

2 . . . .
where g, is the stress due to vartial reflection

a

2
o’c is the stress due to total

153

reflection
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1 2
G",l = O"'b = stress due to partially traismitted energy
st values of h1
by
Then the stress would be given by:=-
G 2 1
0 =100x2.84 + 10x6.46 7.68

= 28640

. o, = 169 1br/in”

. et

On the thick side of the join the mean square stress will

be:~

&= * > 7.69
IOo’,mJe lOOoq(‘H

1 2
where G, = dG = stress due to partially reflected energy

end where Gy O’t;' + d;

1

stress due %o partially transmitted waves,

I

end where CY;
03 = stress due to totally reflected waves in the

thin section.

ot = 10*°x0.025 +100*x0.011=112.5 " 6=10.6 1b/in2
eeo0 7070

Figure b3 is considered in exactly the seome WEY o
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"We must next consider if these results are basically sensible.
Do they seem reasonable in the light of ocur experience?

First we examine the result at a change of section of unity,
is€s, no chaonge. The ;tress concentration, end strain conceﬁtrations
asre 0.5 for both transmitted and reflected waves, i.e. there is no
total stress or strain concentration. This is correct. Small depart-
ures from the uniform.tbickness condition introduce progressive
rather than step changes in concentration factor. At very low values
of  , where thin sections Jjoin very thick sections, the results
suggest that high stresses and strains will be developed. This seenms
reasoﬁable for the ultimate condition, the solid edge, generates high
stresses (eppendix VII).

At very high values of T, where thick sections are joined by
veryythin sections, the plate will behave as if free and the stresses
near the edge will fall to zero. This is the trend indicated by
Figure 52, The strain due to reflected waves is not shown as falling
towards zero. At first sight this seems wrong, but this is not so.

The stress normal to the edge approaches zero if the edge
becomes approximately free. Let a'be the surface strain normal %o
edge, gzalong the edge. Then the stress normal to the edge

o =¢+v &, 7.71
If there is curvature along the edge, which is so for any wave not

normelly incident and if' the stress normal to the edge is to be zero,
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then as 5&#—‘ O then é‘ # O . Thus one would
expect that the strain normal to the edge would not approsch zero,
This is shown on Figure 53, at high values of o .

Figures 54 and 55 show the theoretical variation of mesn square
stress with angle of incidence. From this we may deduce likely
variations from the diffuse field results if the incident field is
not dif'fuse. In fact, as we see, the likely excursions above the
diffuse field valve are small, From this we may deduce that even
lerge departures from the diffuse field are unlikely to cause serious
increases in stress sbove the aversge value,

At a few angles of incidence the stress is extremely low. How-~
ever, from a design point of view this does not concern uss

From the magnitude of the transmitted or reflected travelling
weve we can find the loss factor across the change of section; the
energy loss per unit length over the energy incident. This is done
in appendii XII. ‘hether we calculate the energy loss by measuring
the reflected energy and subtracting it from the incident or by
measuring the transmitted energy the results should be the same. It
is, in fact, a further boundary condition, that of conservation of
energy. This is also a useful check of the calculation of R and D

and revealed no errors.

Tolio Experimental Tests

We have made assumptions about plane sections remaining plane

and about the diffusiveness of given fields. Ve must now put them
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to the test to sce if the theory agrees with practice and if our

assumptions are Jjustified.

Teliole Txnerimental Frocedure

Three specimens were used; two incorporated a 4:1 chenge of
section and the other a 2: | change. Two specimens consisted of two
aluminium plates 4 feet by 3 feet jgined tc make 2 specimen
8 feet by 3 feet., The thick secticn was % inch and the thin sections
either % inch and % inch. Of these, the 4:l specimen is shown in
position hung in a reverberant room in Figure 56. The 2:1 specimen
was similarly mounted. The other wos a small steel specimen made up

. 1. v . . . .
inch and §g inch thick is shown in Figure 57. This

FSB

of two plates
was supported by wires from a light frause.

The plates were Joined by milling a slot in the edge of the
thick plate and fixing the thin plate into the slot with epoxy
resine. The.slot and thin plate were a good fit and the resulting
Jjoin was considered very satisfactorio 411 the Joins were inspected
visually and the smwell specimen was elso tested experimentelly. Ve
would call a Jjoin good if there was no relative movement between the
two plates. Since the layer of epoxy resin was very thin between the
two surfaces any relative movement between them must represent a
failure in the band, & rubbing would occur, This rubbing would be
assoclated with a higher loss of energy. To test this the reverber-
ation time of the plates was measured, the rate of decay of the

response to a loudspesker after it was turned off. This was then
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interpreted as a loss factor. Figure 58 shows the total loss factor
of both the single % inch plate and the two joined plates as a

-

function of frequency. Notice that there is no incresse of domping

i

of any significence on joining. lven the slightest loss due to

T

cheffing would have produced a very large increase. he reduction
in loss factor et high freguency, when the thinner plete is added
on, is doubtless due to the reduced radiation from the thinner
pane1(9)¢

When measuring the strain concentration the specimens were
all excited acoustically. The.small specimen was excited by a loude
speaker driven by white noise from a power amplifier. Both the large
specimens were excited by the sound generated by high pressure air
escaping from a gate valve in a reverberant room. The large L:l
specimen was also separately excited by white noise from a loudspeaker.

The strains were measured‘by semi~conductor gauges distributed

as shown in Table 2 below. The gauges measuring the mein stresses in
each plete were scattered at rendom over the surface. The strain at
the edge was estimated by fixing three gauges in line perpendicular
to the change of sectione. The strein at the edge was then joined by
fitting an exponential curve to the results by a least square it
routine end extrapolating this curve to the boundary. Sometimes this
vas not reazsonable and then the result from the necarest gauge to the

edge was taken as the strain at the edge.

The outputs were enalysed in third octave frequency bands,

16 3


incres.se

TADILE 2

Distribution of Strain Gauges on Change of Section
Specimens

HMumber of Gauges
Specimen
tean Thick | Mean Thin | Thick hdge Thin Zdge
Small L:l 10 6 3% 3 3x 3
Large 4:1 8 8 bLx 3 4Lox 3
Larse 2:1 8 8 Lx3 L x 3

Telie2s  Experinentsl Results

(o)

When examining the stresses at the Lil change of secticn
extrapolation technique was much more successful than it had been
when applied to the welded joint ( 6.4.1 Je The
strain concentretions were much greater and it was in general easier
to separate them from the background level, Figure 59 shows two
typically good fits. The extrapolatiocn seems entirely reasonable,
There were, however, some occasions where the technique failed, as
shown in Figure 60. This was a far less frequent occasion.

The strein concentrations are presented in Figures 61 and 62
as the ratio of the actual r.m.s. strain and the predicted

r.m,s. strain plotted against the theoretical number of modes

availeble in the thinner plate in eazch frequency band.
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0 | |
0.1 0.2

.
Lo
A

RMS strain {(arbitrary units)

Fig.59a Small specimen. 4:1 change of section.
2500 Hz Y3 OB. Thick edge. Good fit by
least square method of exponential curve.

~RMS strain (arbitrary units)

Fig.59 b small specimen. 4:1 change of section.
400 Hz V30B. Thin edge. Good fit by
least square method of exponential curve.
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The results for the L:1 concentration are uniformly good.
There are a few digressions but none of these is very marked,

Even with very few modes availsble, the results are close to the
predicted valuese

At Tirst sight it might seem strange to quote the results
along the thick edge in terms of the modes avsilable in the thin
section. IHowever, in these experiments, the thick panels had much
lower mean square sirains than the thin panels and, as calculated
from Figure 53, the strazin in the thick edge was controlled by the
strain in the thin panel rather then in the thick., The calculation
in section 7.3%.2. of this chapter was felrly typical.

The results for the 2:1 ohangg of section are at first sight
less satisfactory. The expected fall and rise in strain towards the
thick end thin section edges were not found, In fact, this is
bardly surprising fo' the strain concentrations expected are much
less than those of the L:1l change of section., This was not dis-
cernable above the mean level in the plate and certainly the extra-
poletions were not very satisfactory. No change of strein was
detected ncar the change of section., We will discuss this atb greater

length in the last chapter.

7.5. Conclusions on Chapters & and 7

These chapters consider two very similar problems in the same
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way by using the difiuse field model. However, it has been a
rather long business and it is useful to summarise what we have
achievede .

By studying the behaviour of a bending wave rcaching a weld
and a change of section we have been able to find the magnitude of
the resulting reflected and transmitted travelling and decaying
waves. Xrom this we have deduced the nmean square stress caused by
a wave from one given direction, Then by invoking the diffuse
field model, of bending of random phase travelling from every dir-
ection, we have deduced the stress likely at the join compared to
the mean square stress elsevhere in the structure.

We have a2lso deduced similar results for strein and have
tested these results experimentally. We have found that in theory
a typical butt weld is unlikely to cause a large strain concentrat-—
ion and have proved this experimentslly. Ve have also predicted
that small changes of section, i.e. 2:1, arc also unlikely to pro-
duce lerge sitrain concentrations and we have shown this in
practice. However, the strain concentration rises sharply as the
change of section increases, and at L:1 can be large. Ve have
shovn this experimentaelly.

Looking &t the experimental results (Figureseé1 sndé2),
there seems to be no dependence on the number of available modes,
or wave directlons, However, as more modes are available
departures from the predicted diffuse field values are less common.,

In any case, there are no serious excursions upwards from the
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predicted velues. A factor of 2 would include almost all of them,
however small the theoretical number of available modes,

Thus we nmay reasonably conclude that the diffuse ield model
adequately predicts stress and strain concentrations even if very
few modes are available., e do not require the more stringent
conditions suggested by the formal tests of the diffuse field

model described in Chapter L.
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HHd-3tructure

Let us assume that we are able to nake an estimate of the time

and space aversged nean sguare velocity of & structure in response %o

(),

a particular excitation by use of the statisticzl energy method
From Chapter 5 we may then estimate the resulting time and space aver=

aged mean square strains and stresses, noting that this result applies

£y
whether nany modes are excited or only one(J/. From the criterion

suggested in Chapter & we can decide whether or not the resulting

,J
y

bending wave field is diffuss, If so, then frem Chapters 6 and 7, we

u

can deduce the strain and stress concentrations likely at any butt
welds or changes of section,

Now we must decide whether or not such concentrations of stress
are significant compared to the variations in stress to be expected in
the mid»struéture regions, awey from any such discontinuities., To do
this we need some estimate of the distribution of local time averaged
mean square stress about the structure's time and space aversged
mean square stresss

From the discussion in Chapter 3 we conclude that the travelling
wave model is lecss likely to be satisfactory than the normal mode model

because we are now dealing with a property that affects the whole

aticn in stress over the structure from the statistics of the sum of

many normal modes.
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8+1. Derivetion of lern Scucre Stress in a Flst Plote with
Arbitrary Soundory Conditions

Starting generally we may write the response of our system a

v
aa

RMZ

z(x,y, = W(x,y) '?; (t) 8.1,
vhere z(x,y,t) = displacenment at X , Y at time t o
g (t)  is the gencralised displacement of mode of

W(x,y) is the normelised mode shape of mode X
'8

Bolotm( ) shows that at freguencics high compared with the
e [w] A
fundenmental frequency, flat siructures behave like simply supvorted
q S s J £
plates away from their boundarics. The nodel lines are displaced
by amounts which depend on the wave number of & particular mode end

the end fixity of the boundaries of the plate, Considering first the

response of a simply supported plate, we nmay write:-

N
z(x,y,t) = > sin[mnx }sin{nmy ;(t) 8.2,
. a b &
o -
a and b are the plate dimensions in the X  and y direct~
ionse. mTs and  pITv are the wave numbers given by:=
a b -
ﬂ_2 2 2
v I~
*m-a—---rnb = —-éi : where )y 1s the 83

natural frequency of mode oL  and CB is the speed of bending
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waves at this frequency.
For these simple mode shepes the vprincipal stresses lie
along the X and Y axes and the stress ¢ at X,Y at

angle € +to the X axis is given by

ox,y,t,8) = -Eh az(H-cos 267+\?(!-c0529))
a( -y axt

gz(l—cos 28+V(i+cos. 29))
&x

i ) )l s
+ (l-v)cos..?_@.K_mLT)z..(M (t)

a

From Figure 63 the wavenumber diagram for a simply supported

plate, we may deduce that

2 2 2
mx\)_ (pHY . Kk cos 2¢ )
q b 805.
where (D is the argument of the wavenumber vector of mode of.

of
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If we restrict the anelysis to third octave, (25}), frequency
bands, since K, is proportional to WA K will vary
F] (4 & g G&‘)

by no more than 6% from its mean value. Thus, we may replace K

o

<
oy
o
(e}
3
[&]
o
o
£
=

-

=
&

To proceed with this analysis ve must also assume that the
o J

response of each mode within a ziven frequency band is approximetely
xr < 9] i

the same. “ithout experimental evidence it is nob possible to
Judge the effect of the accuracy of this assumption on the results
of the anzlysis. However, from the experimentol tests, described
leter, we may conclude that the accuracy of the assumption is not
critical,

If we assume that the modal responses are stetisticslly
independent, (i.c. thet their +ime averaged cross products at a
point are smell compared with their mean squares), then we nay

write:=~

?l(x,y,B)-: Ehk” k (t)Zm mmx sin _Q_f_r_x
' 4(I~ b

(i +v)+(|-v)cos.26’./gos.2é) 3.

This further assumption implies that modes are separated in

frequency by frequency bands greater than their half=-power bandwidths.,
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In the cxzperimental tests this condition was not alweys fulfilled,
but it hed little effect on the resulis obisined. This is dig-
cussed in more detail in sectivn 5.
For a rigidly clemped boundery, we may deduce from
(28)that & more accurete description of the variation in the

direction is given by:=

.
sinfkx+ 2tan K 8o7e
% %
Q/k, + 2k,
K is the wavenurber in the X direction and K in the Y

direction.

In practice no boundary is either rigid, or a simple suprort.
It lies, in stiffness, at some indeterminsable value between +these
two extremes. So instesd of trying to preserve a degree of accur-—

b}

acy in our analysis quite out of keeping with the datz aveilable +o

6]

us, we assupe that the displacement of the nodal lines induced by &

set of practical boundary conditions is a random function depending

on the modal wavenurber, This then implies that m X and
a
nfvy » in the expression for &, should be treated as

b

rendor variables.
For such systems the form of the wavenumber disgram will be
. AL . . .
chenged as described by Bolotln( 7) and &s depicted in Figure €.

Although individual nodes will have slightly differing eigenvectors,
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the total number of modes in a frequency band 1s likely to stay
the same, However, the value of QL is not, in practice, deter-
minsble in advence for any particulsr mode and it 1s reasonable to
consider that Q& is o rendom function of mode number.

If we ewamine the behaoviour of actual panels excited in their
individual normal modes, we find that the principal axes of stress
are not necessorily along the X,Y sxes due to small irreg-
ularities of shepe and boundery stiffness.

Figure 6L sﬁows two higher order modes'of the % inch plate
used in the experiments described in section 8.3, The plate was
excited et a rescnance and sand was distributed cver its surface.
The position of the sand indicates the nodal lines of the structural
mode. As can be seen, at 945 Hz, the nodal pattern is fairly
regular, and the principal axis of stress would lie, in generasl,
parallel tp the edges of the platé. However, at 1330 Hz this is
not so. The pattern is irregular, as is more often the case, and
the direction of the principal axes of sitress no longer lie parsllel
to the edges of the plate.

It is thus more realistic to replace & by é?*-\ﬁx
where .K; represents the angle between the X axis and one of
the principal axes of stress for mode . As we are unsble
to predict individual values of ‘7; at the design stage, we
must treat @ « "Y; as & random variable depending on the

mode numberas
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First we will determine the meen squere stress in a flat plate,
averaged over spaoce, end then deduce its likely varistion over the

structurc,

8¢2.10 Determination of Spatizl llesn Scuare Stress

From expression (4)

&"(x.yﬁ) = sinznﬂy @ w)t-r

8.8,
a b
: 1 2 2 2
2(1-v)cos 28cos 20;‘4' (1-v) cos 26 cos_2@
N gr &,
Let E hk €(t) = K 8.9

Suppose that N modes are excited then
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84102,

I

N
2
KZ[(I-N)I*-‘:‘;( 1-v) cos 2 @a} 8,10b,
of=|

"

N
KZ [(l+v)2+ I';(I~V)’L(I+ cos. 4 @dﬂ 8410c.
o= |

where the pointed brackets, < > s indicate a space average,

Assuming that all values of L. are equally likely, from O

L)

to 2, then teking the average value for all the modes K

<& =N K(( 1ev) s () —-v)z) 8,11,

802.2, Probability Distribution of lean Square Stress in Space

M. Slack(AB) has shown that if ten or more cosines of equal
amplitude, but random phase, are added together, then the instant-
aneous sum is & Gaussion variable.‘ The standard deviation is
given by 3; %, where é; is the amplitude of each cosine term

and there are I such terms., In order to use this result we must

181



Lol . »
expand 0'1 to the form of sines end cosines,

Thus we write:=—
=K (1 +\)) - D cos 24 [(1 +\J)2 + (%mﬁym) J»» D cos 2B
2 (1 -v)? 0
(1 +9)° 4 ‘=t + (1 »\}) cos 2F 4 cos 2 G
L

4 2
2 -~

+ [(']"*gmy') + @-'-a”)i) } [ >, cos 2 (& +3B) + D cos 2(4 »3)]

~(1 VZ) [Zcon 2(4 +F) 4 Z cos 2(B + F) +.cos 2(4 + &)

+ 25008 2(B 4+ 6) + 37 cos 2(4 = F) 43 cos 2(B = F) +Dcos 2(4 - &)
+ Scos 2(B - G)] (1 - V%) [ Docos 2(L + B + F) + Scos 2 (443 ~F)
+ 2ocos 2{& ~B +F) 4+ 3. cos 2(4 ~ B ~F) + ) cos 2(4 +3B +G—?

+ Docos 2(4 +B - G) 4 2.c0os 2(h +B 46) + Y cos 2(4 -~ B - G)]

-
+ (1 ;\’ 1 +ZCOS Z;.(F + G')"'ZCOS 4(}9 - G,} + ZCOS LG + Zcos LF

—

+ 22 cos | L(F +G)
- %Zcos[ﬁlp(ﬁ‘ + G
+% Y cos r.l4~(l“ + Q)
+% D cos ‘4(5‘ + G)
+ 5 Y cos FAL(B’ - &)
% > cos =4(F - G)

+ %3 cos | 4(F ~ )

+
N
~N

¥
-
t
g
C7
O
o
K
P
5]
+
)
S

- 2(A 4+ B)]

- B) |- % y.cos| L{F +8&) ~2(& - B) ]
DTN PERIOREN

2 Zcos[ W7 +6) - 2B ]

2(a + B):l + % ) cos [4(:«’ -G) - 2(4 + B)]

2(s - B)] + &) COS [4(1? -G) -2(a - B)]
2 B] +£L«Z(:os [4(3‘ -G) - 2‘5]

p

+ £ + +

L______’L____Jv’
L o
P M

+

-+
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4% D cos [4(F -G) + ZA] + LY. cos [A(F -G) - ZA]

— cos (24 + 4F) = % 2 cos (24 = 4F)

~% 3. cos (24 +L4G) - % 2 cos (24 - 46)

~% », cos (2B + 4F) - :Z: cos (2B = 4¥)

4 Y cos (2B +46) = & D cos (23 - 46)

5y eos (46 +2(4 +B)) + D cos (46 = 2(4 + B))
D vos (46 +2(a - 3)) 4 > cos (46 - 2(4 - B))
ji}os (47 + 2(& +B) + j{:cos (47 - 2(4 +B)) ]
D cos (47 +2(4 =B)) + P cos (46 - 2(4 ~ B))

I

8.12

where A:m‘ﬁx B = nﬁY F:(9+ 'Y0L> +@o(,G—::(9+Y‘£)-—®
a ? b ? o

Expression 8.7 conteins 58 summations of cosines, but we have only
four independent variebles. No amount of manipulation will reduce
the 58 terms to L sums of cosines, and the best we can do is +o
estimate the extreme values of standard deviation. Ve find the
highest estimate by assuming thet all the terms act as if they
were‘independent, and the lowest rcasonsble estimate by assuming
 that cnly the four largest terms contribute significantly to the
totale Let the variation of mean square sitress be the standard
deviation divided by the meen. e denote the variation by V.

Then the maximum value of V is obtained by considering only the

terms cos 24, cos 2B, cos aF znd cos 20, and is:-
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2- %
3C+v) +8(1- vz)ﬂa?(l*v) 8.1,

VBN (1 F +3(F]

The minimum value is:-

AN 2
2|0 o) +(1-v)+ 3(1-v) 8.13b.
N (Mv)z«\-é:(l»—‘@i

Putting ¥ = 0.3, a typical value for many engineering

materials, we obtain the simple result thaet

2"' < 5‘5' 8012{«)

We have deduced thet values of mean squarc stress, measured
over the plate, will have a Goussion distributicn; but we may not
deduce thet very large values are likely., Analysis of the extreme
values of siress is only possible, as yet, when one mode is excited (5),
or when many modes may be excited at one frequency (6),

We now briefly consider the effect of curvature on the results,
since many engineering structures are curved. The effect of plate

curvature on the wavenumber diegram is shown in Figure 33, for a
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circular cylinder (34) (@  is restricted below the ring fre-

uency, CD/QTD, where G, is the longitudinal wave speed and D

L
the cylinder dismeter. Above that frequency @ can have cny value,
and the previously derived results should hold. Below the ring
frequency, despite the fact that @ is restricted in renge, the
results should still hold, In expression 8.7 the varisbles are

ﬁ = @ and 9 - @ end if g is unrestricted and @ is
permitted some veriation (i.e. not sensibly cbnstant) then there
are still four independent variables., Of course il the range of

Qb becomes very rostricted at frequencies well below the ring
frequency, then 57+ Qb approaches é? - @ for all conditicns
end there will only be three independent varisbles. The expression
will become invelid. For the cylinder described in section 8e3e

o .
and 9 + @ mey thus be

at 300 Hz{ @ may lie from +55Q to O
very different from é? - O . A% this freguency the cylinder's
response to acoustic noise was very low as this frequency is well
below the criticel frequency of the cylinder, where the bending
wave speed equals the acoustic compressive wave speed. The
ebility of the cylinder to receive acoustic energy under these
conditions is low. A fuller description of this phenomena, which
is beyond the scope of the present work, is given in (4). Suffice

it to say that et 2ll frequencies of interest to us, for this

cylinder, the results of this chapter are sppliceble.
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the situation, for whilst a strein gauge is sensitive to the direct~
ion of a given bending wave, an accelerometer is not. Onc would
therefore expect more veriation from a strain gauze for a finite
number of wave direcctions.

8e30 Ixperimental Tests

To verify the analysis and investigate the relative import-
ance of some of the assumptions made in the theory, the spatial
variation, V, of mean square acceleration and strain was measured
on some lahoratory structures, excited in broéd frequency bands,
either acoustically or mechanically at & point.

The results shown in Figures 65, 66 and 67 were obtained
from a cylinder 6 feet long and 3 feet in diameter of 3/16 inch
mild steel and three mild steel plates, clamped at fheir edges, of
dimensions 2.2 feet x 2.7 feet and 0.25 inches, 0,125 inches and
<064 incbes thick respectively. 20 gauges were used to measure the
strain. The acceleration was measured at 20 positions on the plates
and 13 positions on the cylinder. All measurements were taken away
from boundaries or shaker positions; The trensducer outputs were
analysed in third octave bands and the variation, V, plotted
ageinst the theoretical number of modes available in cach band,
as calculated from references 3 and 33. In Figure 6% the weight
referred to was a magnet of 0.8 1b. mass attached to the ¢ inch
plate L4 inches from the mechanical shzker comnection.

Table 2 shows the variation of strain in 3.33 feet x

1.66 feet x 0,03 inches acoustically excited with white noise.
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The outputs from 10 gauges were analysed at & constant bandwidth of
50 Hz, corresponding fo cbout 11 modes per band, as calculated from

ref. 3.

8elo Discussion of Results

The measured spatial variation of mean square acceleration,
shown on Figure 65,agrees well with the theoretical prediction when
over 10 modes are available. Hhen.less than 10 modes are available
the agreement is only fair for under these conditions the central
result quoted from 43 does not hold.

The variation of acceleration seldom falls below O.1 and the
low values predicted whe, say, 800 modes are available, are not
observed, Readings were taken from a level recorder to the nearest
decibel, which implies an accuracy of 45 dBe which affects the
recorded variation as discussed.in appendix X. The level at which
the observed variation is controlled by this accuracy of measurement
is shown in Figure g 5 |

The experimental results for strain (Figures 66 and 67) are
well_described by the theoretical results when over 30 modes are
available. 7hen less than 10 modes are availsble the analysis fails.
Both bands seem well justified and the individual curves show a
strong dependance on 1/%[55.

Vie have deduced that the anelysis would describe the
behaviour of & cylinder sbove and below the ring frequency fr .

The variations in strain measured over the mechanically driven
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cylinder coalesce well with the measurements from the various plates.
There is no change in trend or level of results between the variations
measured below end shove the ring frequency, which here corres ponds to
200 modes available. The variations measured over the acoustically
excited cylinder group round the upver band both sbove and below the
ring frequency,

Figures 68 and 69 show the distribution of mean square strain
over the scoustically excited 4 inch plaete at 40O Hz and 1600 Hz,

plotted as a cunuletive total. The individual points plotted approXi=

F]

nate to a straight line which indicates, on the distorted scale of

probebility, that the distribution is Gaussion, as predicted.

In deriving the theoretical predictions of variation the
assumption was made that the response of the modes was uniform in
each band. In Figure 3, the variation of mesn square accelerstion
is shown for both the l/l’ inch plate and the cylinder mechanically
ond ccousticelly excited. The distributions of the response of each
mode would surely be different for the two nethods of excitation, yet
the differences in the variations observed was small. This shows
that the eff'ect of the assumption is small and that ve were justified
in moking it. TFigure 4 shows that the variztion of mean square
strain over the g inch plate again was unaffected by the method of
excitation,

The variation of mesn square sirain measured over the

cylinder (Figure 66) was greater under scoustic excitation than
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mechanical excitation, This suggests that consistently fever

modes were excited than predicted, under acoustic e xCcitations The
acoustic field was set up inside the cylinder; the effcct of
selective coupling between acoustic and structural mode is to reduce
the number of structural mcdes contributing significaently to th
responsec. However, the results still lie within the suggcsted band
and the assunption of uniform modal response still seems to be
adequate,

In the cnalysis we assumed that the structural modal
responses were statistically independent. The amount by which the
wdal half power bandwidths overlap is a measure of the accuracy of
this assumption., If the modal overlep factor (the hzlf power band-
width multiplied by the modal density) is greater than 1, then the
half power bands of some modes must overlap, and nodal independ=
ence is no longer certain, In Table 2 is shown the varistion of
strain measured over the suspended aluminium panel, at various
frequehcies, at o constant bandwidth., With only 11 modes included,
the egreement with the theoreticsl variztion is not good. However,
despite & very large change in modal overlap factor, the variation
measured was reasonsbly constant. Thus, we may deduce that the
overlapping of adjacent modes is unlikely to affect the results
seriously and our assumpiion is reasonzble.

This latter experiment oloOvTrOVIdC evidence for consider-—
ing the number of availeble modes as the najor paraneter in estimat~

ing the veriation of strain. As the modal density of a flat plate is
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independent of frequency, the number of modes included in each
enalysis in Teble L was the same (11 mOuﬁo) d the voriations
measured should have been constant. Despite the fact that very
different medes were cons sidered, the variation measured was indec
constant as predicted.
Marther strong evidence is presented in Figure 5, showing
the veriction of strain over the % inch rlate, with and without
added weight. Whilst the weight altered individual modes very much

indeed, the total nuuber of modes in each frequency bend was

n

approximately the same, with and without the welght (3)o Thus, we

would predict no difference in the variation of strain over the
surface, between the two systems, In Figure 5 we see this to be so,.
When more then 10 modes were available there were no significant
differences in the veristions messured, despite the addition of a
lumped nmoss of 3058 of the mess of the plate.

This evidence strongly endorses the theoretical findings

of section 8.2,
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Variation V of Strein from Suspended Aluminivs Dlete
Analvsed ot Constrnt Donduidth (50 Hz)
Centre Frcequency Hz v Lioda,
Cverlap
200 0.5% O.2L
400 0,27 Col3
£00 0.4.6 048
1600 045 0.83
3150 0.55 1.85
6300 Oodth 2.50
50 Hz bandwidith corresponds to~117 modes.,
todel overlzp is tcken as f;z M
vhere f = centre frequency
Q = totel loss factor
H = modal density
8.5, Conclusiong : Dxtersion to Sxisting Zetimates @
ffect of .szummtions
By meking a number of sweeping assumptions we have achieved
some simple results which well describe the variation of siress,

strain and acceleration with position over a varied, of structures
£V

under various ewcitations. The only paraneter reguired is the

&

number of modes available. This is no more information than is

end thus having estinated the mean square stress, o designer can work
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out the likely variation about this mean over a given bandwidth
very simply. This result does not, of course, refer to the region
near a boundary (see Chapters 6 and 7).

The assumptions made do not seem to be very critical. The
assumption concerning unifornity of mode response has not caused
trouble despite different types of excitation. The effects of
changing damping and model overlap are small. Damping could beccne
important if the modal bandwidths became comparable or greater than
the analysis bandwidths. Then nore modes would be included than
those with their centre frecuency in the analysis bandwidth.

U ) B :
Beeny Yen and Smith noted that under modest pressures of GO,
a suspended structure under acoustic excitation falled to exhibit
peaks in its frequency response curve. This implies extremely high
radiation loss factors from the structure to the acoustic field
such that the effective dauping is high. Under these conditions the
modal bandwidihs were high and thus & narrow band of noise would
excite many modes and would produce little variation of response
over the étrucﬁure.

It is interesting to compare the findings of this chepter
with those of Chapter 4, where formal tests were applied to the
structure to test the "diffuseness" of the bending weve fleld,
About the seme number of modes are required to produce satisfact-
ory answers, l.e. at least 10, Howéver, the dependance on point
excitation vs. acoustic excitation seems to have veanished for

AL

both accelerometers and strain gauvge. This sesus reasonable.
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Ve are only mewsuring verdstion in

itude, whereas the

correlation measurencnts sre sensitive to phase as well, os

discussed in secticn (4,1.4.0) and cppendix IV,

The and 2llow us to present
designers with usable cxpressions which may easily be applied
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CONCLUSTIONS

Yele A review of the lain Resulis

The problcm that we set out to solve in Chapter 1 was that of
predicting the stress distribution-in complex plate-like structures
vibrating at high freguency. Ve sought an approach that would be

asy to apply, but sufficiently accurate for design purposes, start-

ng from the mean square velccity. This can be estinated by the

‘_.!-

stical energy analysis of sets of coupled oscillators, In

e
Py

tat

w
jo]

nterest Lo this

ds

Chaepter 2 we concluded that at the frequencies of
study, the structures will vibrate in bending, =nd we discussed the
behaviour of bending waves.

Two alternative models were discussed in Chapter 3, the normal
mode and the bending wave meodels. We concluded that the nornal mode

A~

_model is convenient when studying properties aifecting the whole

structurec. %We also concluded that the travelling bending wave model,
coupled with the concept of the diffuse field as used in architectural
acoustics, is convenient when studying local effects around boundare-
ies, for this mecdel enables us to make use of the fact that these

effects do not propagate far from the boundary., Ve discussed the

wavenumber diagram and its importance to the diffuse field model.
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Two formal tests or the diffuse field model were developed

Chapter 4 and experiments on two plates and z cylinder were des-
cribed, It was concluded that =t least ten modes are necessary for
a diffuse field. Turther, for a cylinder, this will only apply at
frequencies above the ring frequency. It was also concluded that
although ligh danpings would not affect diffusenecss by increasing
the overlapping of adjscent modes, it can affect it by producing

rediating, rether than difiuse field under point excitation.

The diffuse field model was used in Chapter 5 to predict the
ratio of mean square stress and strain to mean square velocity.

This turned out to be the same as predicted by a single moede model,
as expected., The result wes tested experimentally and it was con=-
cluded that the criteria suggested in Chapter 4 were, in fact, toc
severe, It wes found thaet even with only a few modes availlable,
the result still held. With cylinders, the ring frequency had no
effect on the results.

In Chapters 6 and 7 the diffuse field model was used to pre~
gict the concentration of stress and stirain likely near a weld and
change of section, It was found thet, at the particularvweld
investigated, little strain concentration was to be expected and
this was proved cxperimentelly. However, it was concluded that
thicker welds and ribs could cause significant concentrations. A
change of section of 2 : 1 was found experimentally not to intro-

duce high concentrations of strain either, but sigrnificant strains
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were introduced by a & ¢ 1 change. This agreed with the theoretical
peedictions, Again, the number of modes, or bending wave directions
aveilable, was not found to be very significant. Irom the theoreti-
cal work the stress and strain induced was seen not to be strongly
dependent on wave direction, in the sense that volucs mach above the
mean diffuse field value will not occur, c¢ven with onc bending wave
only in the most unfavourszble direction., This is dmpor
considering the incorporation of these results into o design uethod.
o

The veriation of stress, strain and acceleration over th
surface of a plate was investigatcd in Chepter 8 and simple theoret-
ical results were derived, lnvolving only the nunber of aveileble

no¢es, The normal mode model wes used here,

[pd

5 these are propertics
the whole structure. The theory brecks down when less thon
10 modes ore aveils

ble and experiments sugzested thatbt bebween 1C an

30 modes are necessary for zood cgresnent with the thceory. Th

o 4 o

frequency of & cylinder does not

modes responding within o given freguency band. The effect of diff-

ering boundariecs to the structure, and different methods of exciting
it is alsc seen as unimportant. Only the nuvnber of nodes available
is of importance., We cen novw combine these results into o design
nethod.
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942, Degirn Critoria

Let us suppese that we huve estimated the meen square velocity
of response for o plate to broad band neoise in, say, third cctave
bands, Let us also surspese that we have fatigiue date availeble.
First, from Chapter 5 we work out the mean squore stress. Then,
from Chapters 6 and 7 we can £ind out siress concentrations likely

at a weld or change of section and from Che ~ & 2nd the number of

available modes(27), the stendord deviction of mesn square sbress,

sty

Now this lagt ru
winich will not be excceded over 95k of the surface of the plate.
This proportion is at our choice, but 95% is convenient. It is the
level grester thon 2.5 times the standard deviation above the
estimated nea

This gives us two levels of stress to compare, a level at
a nurber of boundaries and & level that we might expect to occur
occasicnally elsevhere in the plate. As yet, we cannot set a
mesdimun velue to this except in special cases ( 8.2.2 )
and the figure of 95% would probably be modified by experience.
However, comparing these two figures will enable us to decide where
the stress concentrations are highest, cad, in the light of the
fatigue data, most likely to ceuse premeture failure,

As an exaumple, let us consider the 4 ¢ 1 and 2 ¢ 1
chenge of section specimens and try to declde whether the streins

where the thin secticn joins to the thick section are significant.
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et us consider the third octave froyuency band at 2000 Hz., For

simplicity we will ignore the small strains in the thicker

sectlon
Change of Section 2 : 1 Lo 1
Modes Avainublﬂ in
b 50 100
Thinner Sectio
Standard Deviation 1.18 0.835 (Upper
] Band)
Hean
957 Level | 3,56 5409
Change of Section Strain 1ekib 3069
Concentration S s

(Figure 54)

Thus we would deduce that the 4 ¢ 1 change of section would
induce significant strains and the 2 ¢ 1 change of section not so.

v

This was what we found in practices

.

Having decided thal a given stress is significant, ve then

C'}

conpare this with the fatigue date and decide whether or not any
redesign is neczssary. It may be that local redesign might serve

the purpose, if a local stress is high, but if the meen level of
stress in the plate is high, it may be ncoessary to redesign the

whole structure, perhaps increasing its thiclmess. Vhatever the

decision, information is now available feor the designer 1o act on.
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9¢l. _Limitotions on Desiem iethod

Whether or not we can use this anproach is chiefly a function

of +the number of available modess within o given bandwidth of
analysiae

The calculation of stress at & boundary seems relatively
undenanding, needing only one or two modes for goeod answers, Hove-
ever, the prediction of the stand

standard deviabion damands about 10 to

The formsl tests of diffuseness (Chapter L) seems rather
severe, but if a given struchure these tesis, then this
analysis may be

successfully ap

The effect of other parsmeters is small. auping and

odal overlap have 1little or no effect on the accurcey of the pre-

diction, although high damping could upset the formal tests of
Chapter L under mechanical excitabion.

In %his woerk we have only considered two boundaries, the
weld and the change of section, The s0lid edge is *tx
sppendix VII. Clearly, there cre a vast array of details that

could censider, e.g. the right ongle join, the mass, the slender
rib @nd so on, However, the cstablishment of the conditions under
which jiffuse fiecld model is usable has put all such calculations
into the category of routine, if complex, design calculation,
Mnother facct of the werk.could be to try and predict what

will hapven under narrow band random noise loading. At high modal
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densities the results found here are epplicable directly. How=
ever, =g menticned in Chapter 8, the centrolling influence would
be the bandwidth of the individual modes rather tihan of the

exciting force, especinlly when the demping of the system is

&

s when the acoucstic medium is of

Thich of these points to be next tackled will depend on the

needs of the nuclear engineering industiry. “hatever way be

ot
P
(e

decided, the method forms a basis of o simple way of tackling
othervise intracteble problenm of predicting acoustically induced

stresses in the plate structures of nuclear reactors

The author hopes to extend and develop this epproach over
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APPIIDIE T

pusvat e

Effect of Accelercometer on Measured Resnhonse of an

Infinite Plate

For an infinite plate of thickness h vibrating at a frequency

f Schloss (44) gives:=

i

Viz V| Zy+Zg Al.l.
Zg |

local velocity of the plate alone

local velocity of the plate + accelerometer
impedance of accelerometer = |2ufM

where M = Mass of accelerometer

impedance of plate :4hEﬁ
: 3

density
of material of plate.

Young's Modulus

«*+ the velocity measured will be accurate to within | db,

if

2y

Zg

<051 A1.2,
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A U S Ale3e
Vl ya
S
Zt is imaginary.

Thus the phase error in measuring V; will be

tan™ | Zt ALk,
25

The effects of the accelerometer mass on amplitude and phase
are plotted on Figure 70 for two accelerometer masses and for

different plate thicknesses as a function of frequency.
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Phase latch of Analogue Pilter

The two filters used in the analogue correlation were
% 0.B. Spectometers made by Bruel and Kjaer.

A sinple experiment was devised to test their phase
mateh, White noise from a white noise generator was recorded
on a multi-channel tape recorder and then played back to both
filters. The output from these filters was correlated on the
analogue correlator. The signals should have given a correlat—
ion coefficient of unity. The results are shown on Figure 71.
As can be seen, the filter was adequately phase matched from

500 to 5000 Hz.
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APPEIDIY TTT

Use of Powell's Baquation to compute Cross-Correlation

of Acceleration on a Plate

From (18, 19) :-

W(r,rw) - / / H(r roi) H(rI30) PG, ro3w) dr, d 1)
AA A3.1,

If R (r,r; T) is the cross correlation of

response at f and T’ at a time delay of T , then

/ H(r 53 ©) HTirew) Pes, 530) e xpli0) drdgde.

Ad.2.
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From (19 pp30)

P(o,lo;w) =A+ iB A3.30
Where A = R (ro, 1y, T=0, //w) Spw) A3y
2 R
B = R (L, EJ,T=§§//w) Splw) A3.5,
2

where [[/w indicates a narrow frequency band and S;DG») is

the power spectral density over that narrow band.

(29)

From the theoretical and experimental work of Cook et al

we may assume that if the acoustic field is diffuse, then

A=R (r,, . 70, //w). Spl = sin(kr) §_§(w)
2 kr 2

A3.6.

where T = and K = acoustic wavenumber.

Unfortunately, no such information exists sbout the forms of

Bo We will return to this awkward peint in a moment,
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Let us now examine the form of the cross acceptance termse

i

| []H (r, royw) Hr' r5w) P(rp,fp3w0) dro drgdw
co o AA

Zw(rﬂlﬂﬁfﬁ}l/(ﬂw(t') P, w) drodr,” +

| Y‘,l(w)[1

ZZ“[@) V(r‘l) _[,/V(m V(?’) P, 1) dro d 1o’ dw

Y00 Y0 A A

e e e e e e e e e e e e n o A30T

At this point we make the assumption about the value of the
second term A3.6. compared to the first. We assume that we may

neglect the cross mode terms in comparison to the direct as:i~
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Now whatever the form of  C(w) 522 w) , R(r,r50)
must be wholly resl. This can only be so if Clw)Sp{w) E (w)
is an odd function, or if E(w) is slways zero. %his seens the
more reasongble assumpbion.

Having decided to ignore the cross terms in cquation A3.7.,
in order to reduce the coemputational requirements of store and time

to a reasonable level, we arec also obliged to make this assumption.

As we have no information about the form of E(w) this eassumption

e
24

as reasonable as any we could make.,

Our final expression now reduces %o

Y, (r) %r’) /]4{5\ ‘L(g,’) sin(kr)Sp(u)

)Ydlw”z AA kr 2

* dr, dr/ dw - A3.10,
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R(x,x,0) = Alx,t) A(X, 1) . Bt B,
%/["T(x,t‘)'z'r(x’,ﬁ] Q[T(x,t)?'r(x’,tiﬂ

CAle2,

where . indicates a time avérage
and T, = A, ) +B (x,t)
The product Alx, Y B(x't) is zero for

uncorrelated fields,

The first term in Ak.2. is due to the travelling wave and

the second term to the diffuse field,

Let us briefly derive the correlation coefficient for a
trevelling wave on its owne. If two points be & distance I apart
and lie on a line normal to the direction of the travelling wave,

then the displacement at X and x/ will be identical

[A (x,t)]:{A(x',t)]z{cos(w t)] Aie3o
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Then the cross correlation will be 1.

How, if’ the two points lie on a line parsllel to the direct-

ion of & travelling wave, the displacement at X is

Ax,t) = cos{wt)

and at %’ is

Alx ,t) = cos(wt« kr)

where K is the wavenunber.

Then the cross correlation will be

cos(wt)coslwtskr)
Y T
‘/cos Wt)cosWt+ kr)

= cos(kr)

Now, returning to Ak.2., if the diffuse field is given

the arbitrary mean square response of 1 and the travelling wave
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the measured cross correlation coefficient will be:~

=Jolkr+n for X - X' normsl

to the travelling wave direction, braTe

Jo(kr) +n.coslkr) ,
= for X=X
l+n

along the travelling wave direction.  44.8.

On figure 72 these expressions are plotted as a function of kr.

Of course, the situation was observed in.the mechanically
excited plate, and was rather more complex. The travelling wave is
more properly a radisting field of varying magnitude and the ageeler—
ometers were not in either position relative to the radiating field.
However, one may judge the possible effect of a combined radiating
and diffuse field. A small travelling wave ( n =z Q.| ) might not
be detectedg but if the component was a third of the total
response ( n=Q0.5 ) then the~effect on the correlogranm

would be severe.
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