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Faculty of Engineering and Applied Science

Prasanta Kumar Banerjee

Doctor of

A study of some of the major parameters governing behaviour of pile

Philosophy

foundations is described. The problems of:

(a)

(b)

(¢)

(dJ

are analysed by assuming an elastic ideally plastic model behaviour for

soils. The elastic analysis is made by developing an integral equation

the load-displacement characteristics of single piles
the load-displacement characteristics of free-standing
pile groups with any arbitrary spacing,

the interaction between a pile cap and its group,

the stresses and pore water pressure around a driven pile,

method based on the theory of multidimensicnal singular integrasl equations.

An algorithm for the solution of the singular integral equstions ig

described,

by choosing for singular solution of the integral equation, the kernel

The computational work involved has been greatly reduced

function due to a point load within an elastic half space.

Numerical solutions of the closely related topic of static response

of buried rigid discs of arbitrary shape within a finite elastic layer

are also obtained.

The behaviour of a driven pile is analysed and an equation is

developed for predicting the changes in the pore water pressuresg due
to the driven pile. The time dependent response of the pile resulting
from the dissipation of these pore water preszssures is then examined.

The theoretical solutiong have been compared with published labor

and field data with reasonable agreement obtained.

(i)
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Or
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.

5

P



The results of dynamic penetration tests of model probes and bladss
at various rates of penetration are reported together with preliminary
results of an investigation of the effectg of an applied D.C. potential

on the penetration resistance of model probes and blades.
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NOTATION
The following symbols have been used throughout the text. Any deviations

or additions are defined locally.

A Cross-sectional area

Ab Base area

Am’ Bn The N number of points on the surface S

Ap Cross-sectional area of pile

AS Area of pile~soil interface

AO A point on the surface S

B Width of base

C Apparent cohesion of soil

Cb Cohesion at the pile base

Cu Undrained cohesion of soil

CV Coefficient of consolidation in radial direction
cr Mean C over the pile length

[b] Conductivity matrix

D, DS Shaft diameter

DB Diameter of base

De Outside domain

Di Inside domain

D:, Di Defined in Figure 2.1

o

D Dilectric constant
{pu} Change in pore water pressures
'{Dagr} Change in the effective radial stress at the pile face
E Yoltage and also defined as a region of exclusion
Ep 4 Young's modulus of the pile material

Eim Error term

[El A matrix of finite difference coefficients

(xv)



K, (A B)
i]

(KCR, .} ,
ij
mn
(KRR, )
1
Pq

1, Ik]

KW, ()

KUl( ) etc

Ed

(KSS)ij,
(s,

(KBS)

Forces acting at a point
Factor of safety

Shear modulus with respect to the total stresses and
effective stresses respectively

Weighting functions, n=1,2...etc

Thickness of the electric layer and also defined as
hydraulic potential

Equivalent hydraulic potential
Current in X, Y and Z directions respectively

The values of the integrals given by equations (2.26), (2.29;
and (2.30)

Current vector
Unit matrix
The bulk modulus with respect to the effective stresses

The kernel functions of the first and second integral of
equation (3.8)

A non-dimensional parameters
Electro-osmotic and hydraulic permeabilities respectively

Kernel functions at the point designated by the bracketted
coordinates

Defined by equation (3.27)

Kernel functions given by Mindlin's Solution

Defined by equation (3.28)

Hydraulic and slectro-osmotic permeability matrix
respectively

The kernel functions given by Mindlin's Solution

The coefficients obtained from the integrals listed
in Appendix I
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[kss], [krS] etc

k], [xs]

w

Matrix representations of (KSS)ij, (KRS)ij etc

Matrix of coefficients for the displacement of
single pile-soil interface

Length of pile
The (N x i)z matrix defined by equation (2.27)

The matrix representations for the continuous and
singular kernels respectively

Functions given by equations (2.16) to (2.19}

the

Continuous and singular part of the kernel functions

respectively

Number of piles and also number of divisions over the

surface S

Bearing capacity factors

Load

Total load for a compressible pile

The static and dynamic load respectively

Base load and also the load under electro-osmosis
Total for a rigid pile

Shaft resistance

Ultimate bearing capacity

Forces in X, Y and Z directions respectively

The end loads for compressible and rigid piles

respectively

Flow through a capillary

A plane region and also defined as the radial
distance between the electrodes

Radii

Arbitrary surface and also defined as the pile spaci

(xvii}



Auxiliary surfaces defined by Figure 2.1
The limiting stress at the pile-soil interface
Surface tension

The kernel functions given by equation (3.9}

Kernel functions for the stress integral representations

Pore water pressures
The radial displacement of the shaft elements
The pore water pressures at the nodal points

The hydraulic velocities in X, Y and Z directions
respectively

The electro-osmotic velocities in X, Y and Z directions

respectively

Velocity vector

Vertical displacement

The vertical displacement of the pile-soil surface
Defined by equation (3.13)

The vertical displacement of disc elements and the
elements of the rigid layer respectively

The wvertical displacement of the shaft elements

Cartesian coordinate system

P

Radius of the disc and the pile and half the width o
the rectangular disc

Semi-axes of elliptical disc

Radius of the pile base and half the length of the
rectangular disc

The depth of the point of application of the load

Coordinates of the load position with respect to
global axes

Shaft diameter
Defined in Figure (8.1}
respectively

Elements of S, 5 , S and 3
I e o}
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Elements of length in £ and n directions
Volumetric strain

Boundary conditions

Acceleration due to gravity

Height of fall

The thickness of annular rings on the disc area and
the rigid layer surface respectively

Suffices

Electro-osmotic and hydraulic gradients respectively
Length of the capillary

Components of the outward normal in the direction of
the coordinate axes

Overburden pressure and ultimate pressure at the base
respectively

The radial distance between the points A and B

The radial distance between the load point and the
field point

Defined in Figure (3.2)
Temperature

Radial displacements

Digplacements at A in terms of a cartesian coordinate
gystem

Displacements in X, ¥ and Z directions respectively

Initial velocity

Radial displacements at a point designated by bracketted

coordinates
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o, 0 Angles defined in Figures (4.1) and (4.2) respectively

B The ratio GiGu
Y Bulk density of soil
{v} Grad, operator
*
{v} Transpose of {V}
AU, Ao r,Acee,
r Increase in pore water pressure and the total stressas

Ji¥e]

z2
Ao Increase in the mean total stresses

mean
Agdct Increase in the octahedral shear stresses
§ Angle of friction
GS,Sui(A) Elements of S5 and elemental displacements
€ Radial distance of the load point from the origin
€ 2 %60° %0y Radial, circumferential and vertical strains respectively
¢ Coulomb's friction angle
¢j, wj Fictitious intensities
{o}, {y} Column vectors for the unknown fictitious intensitiss
o.(A ),¢.(B ) The values of the vectorcbn at discrete set of points

ivm’7 i T i
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m n

¢s’¢b’¢r Unknown stress intensities
u,up Poisson's ratio of the soil and the pile respectively
A The ratio of the Young's modulus of the pile material

to the shear modulus of the soil

Xo A parameter of the integral equation

?X,f;,fz Resistivities in X, Y and Z directions respectively
in(A) Components of the stresses at A
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of the rigid layer respectively
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Chapter 1

Introduction



1.1 Summary

A summary and review of the previougly published theoretical and

A4

experimental work on pile foundations is described in this Chapter and

ur of pile foundations

the present state of knowledge of the behgvi

examined. A brief historical background of the present resesrch is

also given and the scope of the investigation defined.
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load; the majority of which were semi-empirical studies

summariced and reviewed these works
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g = C. NC + Py (1.2)

A different method based on the analysis by Bishop, Hill and Mott (1945)
of the deep punch problem in metals, was proposed by Gibson (1950). He
obtained the pressure q required to expand a horizontal cylinder radially
in an infinite mass of weightless cohesive soil and assumed it to be equal

to the ultimate bearing capacity of a deep strip foundation. Thus:
g = C. (Loge EIBC + 1) (1.3)

where E is the modulus of elasticity of the soil, based on an initial

tangent to the stress-strain curve under agppropriate stress conditious.

Meyerhof (1951) obtained an equation analogous to (1.3) for decp ciicular
footings in weightless cohesive soil. He obtained the pressure ¢ 1c¢-
quired to expand a spherical cavity in an infinite mass of weightless

cohesive soil as:

q = 4!3 . G (Log E!BC + 1). (1.4

The term in the parenthesis is equivalent to NC in equation (1l.2). Thus
the stress deformation characteristics were accounted for through the use
of E as well as C. Using this method Mayerhof found NC for a deep cir-
cular footing in an elastic ideally plastic material wvaries from 7.0 to
9.0 compared to 9.3 for his approximate rigid-plastic analysis. An
equation analogous to (l.4) was deduced by Sk&mpton, Yassin and Gibson
(1953) for purely granular soil (C = 0) assuming the mode of failure
under a pile base to be identical to the expansion of a spherical cavity
in an infinite medium.

In establishing equations (1.3) and (1.4) the assumption is made
that the shaft skin friction has no effect on the ultimate base resist-

ance. Although it is conceivable that the ultimate end bearing capacity



would be affected by the shear stress distribution at the shaft-soil
interface, no solution has been attempted which takes this into agccount.
In spite of these drawbacks, the model and full scale field tests des-
cribed by Meyerhof and Murdock (1953), Golder and Leonard (1954),
Skempton (1959), Whitaker and Cooke (1966) and Cook and Whitaker (1961)
showed the values of the ultimate end bearing within +20% of the
theoretical predictions based on equations (l.1), (1.2), and (1l.4).

In summarising all the methods of determining the ultimate end load
resistance, at the time, Skempton (1959) concluded that for saturated
clay the value of N, = 9 in equation (l.2) was about the average of the
theoretical and experimental results for saturated clay and this was
probably sufficiently accurate for practical purposes. This has sub-
sequently been generally accepted by designers (Whitaker and Cooke, 1966).

Full scale experiments conducted by Whitaker and Cooke (1966) on
piles embedded in fissured clay showed a value of NC less than 9. This

led to the introduction of an additional parameter in equation (1.2}:

q = w@NC¢ Cb (1.5}

where Cb is the cohesion at the pile base and w is a non-dimensional

factor which can be chosen to modify Cb to give the equivalent fissured

strength.

The total ultimate bearing capacity of a pile (Pu) can be represented

by:
= -+ F
P, =Pg TPy (1.6
PS = ultimate shaft resistance,
PE,: ultimate end bearing which is calculated from the formulae

previously described.



To evaluate P, one needs to know the condition<of soil around the pile
shaft. Clay around a pile either softens as a result of boring (and

also concreting) or becomes remoulded due to pile driving and the lateral
stresses at the pile face are time dependent due to reconsolidation of

the soil mass around the pile. Meyerhof and Murdock (1953) found that the
softened zone extended about 2 inches from the shaft face of bored cast-in-
situ piles in London clay. The strength of clay in this zone was reduced
by the initial increase in moisture content which occurred during con-
struction. Little is known of the way the effective stresses are likely
to be affected by this process, particularly in relation to the softened
layer of clay immediately around a bored pile and the remoulded clay arocund
a driven pile in saturated clay. It is therefore necessary to carry out
an effective stress analysis. Pile tests are inevitably carried out at

an early stage in the life of the pile at which time the lateral stresses
are not fully effective. This results in an underestimation of the
ultimate bearing capacity of driven or bored piles in saturated clay.

It has been customary to express the ultimate shaft resistance of a pile

in saturated clay as:

P.=A, . 0 . Ct (1.7)

Where AS is the area of the pile soil interface,
¢ 1is a nondimensional factor,
C* is the mean C over the length of the pile.
Therefore the evaluation of o in equation (1.7) is of prime import-
ance in the determination of the contribution made by the shaft. For
bored piles in London clay the value of o was reported to be between

0.4 to 0.6 (Skempton, 1959, 1966; Whitaker and Cooke, 1961, 1966;

Burland et al, 1966). For driven piles in saturated clay the value

10



of o was found to vary from 0.6 to 2.5 (Tomlinson, 1957). The magnitude
was found to depend on various factors, the major ones being type of pile,
length to diameter ratio of the pile, plasticity index of soil (Tomlinson,
1957), time after driving {Seed and Reese, 1955; Soderberg, 1963; Airhart,
1967; Chandler, 1968), and the sensitivity of the clay (Orrje and Broms,
1967).

Figure (l.1) shows a comparison between the calculated bearing
capacity of single piles by the use of equations (1.6) and (1.7) assuming
NC =0, o = 0.45 and w = 0.75, and observed full scale field results of
cast-in-gitu bored piles in London clay. The agreement between the cal-
culated and the observed ultimate bearing capacity indicates that the
ultimate bearing capacity of a bored pile can be predicted within #20
per cent. The prediction of the ultimate bearing capacity of a driven
pile however, needs more attention.

Broms (1966) expressed the ultimate bearing capacity of piles em-

bedded in granular soil as:

o~
[
]
o]
S

P =q. A -+ L . K0 Ly tan 6. A

u b’ 2 S

where

P = ultimate bearing capacity,

q = ultimate end bearing pressure given by equation (1.1)
K = a non dimensional factor

L = length of the pile

Y = density of soil

§ = angle of friction between the pile and the surrounding soil.

A, A = area of the base of the pile and the shaft of the pile
respectively.

Previous work showed that the value of KO depended on the change in

11
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relative density caused by the placement of the pile (Meyerhof, 1959;
Kezdi, 1960; Nishida, 1961; Robinsky and Morrison, 1964; de Beer,
1963; Feda, 1967) and found to be independent of the length to diameter
ratio and surface roughness (Broms, 1966). The value of § on the other
hand has been observed to be dependent on the surface roughness and
density of soil (Butterfield and Andrawes, 1968).

However, the evaluation of the ultimate bearing capacity is only
the first step. The selection of the factor of safety in calculating
the working load is usually governed by settlement considerations.
Whitaker and Cooke (1966} observed that the consolidation settlement of
a single axially loaded pile is usually negligible when compared with
the immediate settlement and an approximate theoretical solution by
Poulos and Davis (1968) confirmed this observation. The settlement
of g foundation under working loads is almost always estimated by applica-
tions of the theory of elasticity. Although soil is not an elastic
material, it was observed by Turnbull et al (1961) that at least for
saturated clay the agreement between assumed elastic behaviour and the
actual behaviour of foundations was generally good for loads less than
half of the ultimate load.

Terzaghi (1943) suggested a method for calculating the displacement
of a single pile, whereby an equivalent stress distribution at its tip
was obtained by assuming the load to be concentrated at the mid-length
of the pile and then applying Mindlin's solution (Mindlin, 1936) for a
point load within a semi infinite solid. The consolidation settlement
was then estimated By simple one éimensional consolidation theory.
Subsequently various analytical approaches have been emploved in an
attempt to obtain an estimate of the settlement of a single pile.

Assumptions on the manner in which the piles transmit their loads along

13.



the shaft and the pile base to the surrounding soil are fundamental to

all these studies. Seed and Reese (1955) attempted the problem of
relating the stress deformation curves of soil to the displacement of a
friction pile. If a point on the pile is assumed to move downwards by
a certain distance, this downward movement must be related to the shear
deformation of soil at that point in order to determine corresponding
shear stresses which will develop the resisting forces along the pile.
They suggested the use of a vane test adjacent to the pile face, to
determine the relationship between the shear stress and shear strain
curve for the soil. A field test pile fitted with strain gauges was
installed and the load at different sections of the pile was recorded.
The agreement between the calculate loads and the measured loads was
within +10%. A similar method based on shaft shear stress plotted
against pile displacement curves obtained from simulated laboratory model
tests was described by Coyle and Reese (1966). The load displacement
behaviour of an end bearing pile was reported by D'Appolonia and Romualdi
(1963) in which the action of a pile was assumed to be equivalent to a
number of concentrated loads acting at the pile axis. The displacement
of an element i (Figure, 1.2) due to an unit force acting at the centre
of the jth element was calculated using Mindlin's solution for a point
load within an infinite solid (Mindlin, 1936). An allowance for an
underlying rigid layer was made by placing a mirror image of the unit
force on the other side of the rigid boundary (Figure, 1.2).

An identical analysis for a step-tapered pile was described by
DtAppulonia and Hribar (1963), Salas and Belzunze (1965) adopted the
same method of analysis for evaluating the effects of a consclidating
soil mass on the behaviour of an end bearing pile. The load displace-

ment characteristics of single axially loaded compressible pile was

14
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analysed by Nair (1963), Thurman (1964) and Thurman and D'Appolonia
{(1965) using the approximate analysis described above.

Thurman (1964} also described an identical approximate elastic
analysis for a single compressible pile in a layered soil, in which
Westergaard's solution (Westergaard, 1938) for the point load in the
interior of an elastic half space, which is elastic vertically but
infinitely stiff horizontally, was used. Local slip between the pile
and the surrounding soil was also taken into consideration.

The method of analysis adopted by the foregoing writers was based

on the assumption that the pile is reduced to a line, which is only a

15



reasonable assumption for slender piles. Therefore any effect of ths
length to diameter ratio of the pile cannot appear in the results.
Moreover, the research described above did not cover the effects of
other variables, e.g. base diameter to shaft diameter, modulus of
elasticity of the pile to that of the sgoil etc.

An approximate general study of the settlement behaviour of single
axially loaded piles and piers was described by Poulcs and Davis {1968},
Mattes and Poulos (1969a, 1969b) under the following assumptions in
addition to those of ideally elastic soil:

(i) The action of the pile may be represented by a number of
uniformly loaded rings acting along the shaft face together
with a uniformly loaded smooth disc at the base of the pile

(ii) The disturbance of the continuity of the elastic half space
due to the presence of the pile may be ignored.

The displacement at the mid-length of an slement j (Figure, 1.2} was
obtained by integration of Mindlin%s solution over the shaft surface of
the element 1 and over the base. The effects of the ratiog of the

length to diameter, base diameter to shafr dismeter, compressibility of

pile to that of the soil, length of the pile to the depth of the elastic

layer were studied and the effects of the depth of the elastic layer

P

were evaluated by using the Steinbrenner approximation (Steinbrenner,

s i

1934) for vertical displacementsz. An snalysis of an end bearing pil

was also presented (Mattes and Poulos, 1969b) using the mirror image

technique {(DfAppolonia and Romuzldi, 1963}, These authors zla

<

[

the effects of local slip betwszen the pile and the soil medium by

ing the limiting shesr str at the pile z0il interface to be ths same
P

as that described by Thurman and DYAppolonia {1965} and Salas {196
Time dependent szettlement of s single pile due to dissipation of

excess pore water pressure wag analysed by Poulos and Daviz (1968,

16



This analysis was analytically approximate in that it did not allow for
the variation of mean stress throughout the medium with time. It was
found that the magnitude of the time dependent settlement is very small
compared with the immediate settlement which agrees with Whitaker and
Coocke¥s experimental observations (Whitzker and Cooke, 1966).

The above research on a single pile is related to free-standing
piles (i.e. piles with cap not bearing on the ground) only. It was
always suspected that the behaviour of a piles with cap bearing on the
ground may well be different from that of a free-standing pile.

Kishida and Meyerhof (1965) carried out laboratory tests to find the
effect of a cap on the ultimate bearing capacity of a single pile.

They found that the ultimate bearing capacity of a capped pile was higher
than that of a free-standing pile. Poulos (1968a) analysed the settle-
ment behaviocur of a pile with a circular baseﬁ on the assumption that the
cap 1s rigid, smooth and may be represented by a number of uniformly
loaded annular rings, together with the assumptions made in his earlier
paper {Poulos and Davis, 1968). It was found that for the pile cap and
pile geometries commonly encountered in practice the effect of the pile
cap on the load displacement characteristics is negligible. The ghear
stress distribution at the pile-soil interface, however, changes

drastically due to the presence of the cap.

1.5 A summary and review of previous researches on pile groups

Most of the published work has been concerned with single piles
which usually in practice form only one unit within a large group. In
the great majority of casez the being capacity is calculated or measured
1

for a single pile and the group behaviour is extrapolated by empirical

means by use of so called "efficiency formulae' or ‘vrules of thumb"
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(Terzaghi and Peck, 1948).  For szuch foundations one should be able to
express the load-displacement characteristics in terms of various physical
quantities in order to arrive at a safe, economically feszsible design.
Field experience have shown that dynamic driving formulae do not give
satisfactory results (Cummings, 1940).

It has been known for nearly three decades that the ultimate bearing
capacity of a pile group is mnot a simple multiple of the ultimate bearing
capacity of a single isolated pile and various rules have been designed
to allow for this (Terzaghi and Peck, 1948}, Terzaghi and Peck {1348}
considered the use of "efficiency formulae™ to be contrary to good design
since these formulae do not take into account the various parameters which
are known to influence the group behaviour. They suggested that in the
design, the behaviour of the block composed of the soil and the piles
within the perimeter of the outer piles (which will be called a block
subsequently) should be examined. Peck, Hanson and Thornburn (1953)
described a simple method of design in which the failure of this bleck
iz determined using the same method zs for a single pile. Skempton
(1952, 1953) discussed the settlement ratio (defined as the ratioc of the
settlement of a group of N piles under a load of NsP to the settlement of
a single pile under a load P} of pile groups in sand, taking a series of
examples from practice for which data were available. He found that the
general trend of the group behaviour is identical with that of plates of
same sizes as the width of the groups. Whitasker {(1957) examined two
major aspects of the group behsviour, namely:

(i) The evaluation of the efficiency and the settlement ratio of

groups in relation to the number of piles, spacings, lengths
and diameters.

(ii) The distributicn of load between the piles in a group.

ot
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He presented results from an extenzive seriez of model tests on frese-

standing pile groups in soft remoulded clay, which covered 2z wide range

of spacings to diameter ratios, to diameter ratios and grou

In hiz tests fzilure tock place by the group either behaving as a single
unit {i.e. asz a block) or as individual piles. The mods of fzilure was

found to be dependent on the pile spacing and group size. A mechanism
of failure was suggestsd which zhowed the
starting with the exterior ones spreading

the load wzs increased.

iz
w

Meyerhsf {1959, 1960) discuzsed the practicsl

compaction caused by driving piles. Based on a series laboratory and

field tests he presented design curves relating to pile group and singlse

ile groups

considered and his results referred to cappad groups with the pile cap

bearing on the sand surfacs. Modifications to his curves were
to allow for eccentricity and incl
tions are extremely useful especi
was done semiempiricszlly. He

loose sand and locsening of dense zand took place in the vicinity of

piles during placing but the origin
influence on the degree of compaction or loosening occcurring. It was
conclusively shown that the extent of compsction
dent on the relative density.

Model tests were carried out by Fleming (1958) and Kezdi (1960 in
gand and further work has bsen reportad by Whitasker (1960) and Saffsry
and Tate (1961} for capped groups and Sowers et al (1961} for free

Fleming worked with square groups in

standing pile groups




dry zand and his findings confirmsed the gensral trend reported by Kezdi

1

e

t

U
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ler scale
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{1957). Uging =small an hiz previous tests Kezdi {12600

found that the ultimate load depended on the group shape as
spacing and that a gingle row of piles showsd little increase in ultimare
efficiency over unity. The ultimate sfficiency was defined az the ratio
of the ultimate group load to the product of the ultimate lozd of a single
pile at the same depth, in the sams soil condition as the group and ths

number of piles in the group.

Whitaker {1960} extended his previous investigations in
cover the influence of the cap bearing on the clay surface. The main
influence of the cap was to cause "blocking' (i.e. the piles with the cap

behaving as a single block) sven at spacings up to 4 pile diameters com-

pared to about 2 diameters for free-ztanding pile groups.

a3
=
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Y
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ratios {defined by
of a comparable single pile when both carry the same fraction of their
failure load) for 3 square capped pile groups were found to be nearly ths
S Howsver, for

same as that for 3 fr

47
£
c
B}
s
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larger groups, the settlement ratics for capped groups were found to bs

up to 50 per cent higher than the corresponding free-stsnding grou
actual increase being dependant on the pilse spacing and the gize of the

length to dismeter

group. Whitzker confinad his studi
ratio of 48 and the effect of the variation of the leangth to dismeter
ratio on the response of a capped group was not studied.

t with

of Szffery and Tate and Sowers et al were in agres

investigated the

sented by Whitaker (1257).
effectz of an eccentric loading on the load displacemsnt behavicur of

a free-standing pile group in clay, Thay found difference of up to

30% in settlement behaviour and n



load due to eccentricity of loading up to 2/3 pile zpacin

Konder {1962} developed s non-dimensisnal technique based on the

methods of dimensional analvzis to develop analytical expra:
the load displacement charscteristics of axially loaded friction pile

groupe in cohesive goils based on an assumed hyperbolic strese-strain

response of cohesive soils, The variables included ware, the

ment of the group, the piie diameter, the pile spacing, the number of

o]

piles in the group, the depth of embedment, the geometric arrangement of

the piles and the shear strength of the cohesive soil penstrat

piles. The analytical expressions were compared with the field and
laboratory test results with agreement of 15 per cent. Kishida and

Mayerhof (1965) conducted a series of model tests with pile groups in

sand with the cap resting on the surface and the effects of eccentricity

iie]

of loading on the group behaviour were studied. The ultimate bearin
capacity was found to decrease with the increase in the eccentricity of

z large number of

loading. Hanna (1963} describad the

laboratory loading tests on model pile groups in dry sand.
that the ultimate besaring capacity of a group of piles mayv be greas

less than the ultimate bearing capacity of a single pile multiplied by

the number of piles in the group, due to compaction or
by driving the piles. Sattlement of a group was however found to be

several times greater than the settlement of a single pile under the zems

load, so that usually a large factor of gza

control group settlement. An extensive comparis

results and the full scale field test results

an additional scale fzctor which made extrapslaticn

the model tests to field practice difficult.

[ae
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The test results described by Kezdi {1937, 1960), Schiff (1961) were
Yy

on groups of piles between 1/5th and 1/20th of field scale, while Skempton

-

(1953} and Meyerhof {1939, 1960} Berezantzev et al {(1961) gave records of

S

full scale foundations. Comparisons between the results of the model
tests described by Hanma (1963) and these other model tests revealed
(Hanna, 1963) that:
{i) The ultimate group sfficiencies in the field tests are
greater than the laboratory model tests.

{ii) The settlement ratios of the full scale field tests and the

[¢5]

laboratory model tasts are greater than the intermediate
model test values.
(iii) The individual pile driving ratios (defined as the penetration

resistance of the successive

to the penetration

regsistance of the firs: are greater

than in the laboratory tests.
Thus it would appear that more full scale tests dats are nseded te
formulate design rules for pile groups. Full scale field tests are
expensive, however, a theoretical anslysis of pile groups could be

uzefully developed.

the theory of elasticity were made by Nishida (1961, 1964). To simplify

the mathematical complexity of the problem Nishida assumed an ampirical

pattern of shear stress distribution at the pile szoi

distribution of the shear stress at the pile-zoil interface is not known

before the analysis. Moreover, his analysis was based on the gmption
5 Ex

]

that the *zone of influence® of a single pile in 2 group was limited to

a radius of half the pile spacings. Thisz assumption led to the cal



efficiency curve being independent of the geometric configuration of the
group and dependent on the length to diameter ratios only. A comparicon
with the model test results of Whitaker (1957) revealed that except for

9 x 9 pile groups the theoreticsl results underestimated the efficiency
of a group by as much as 100%. Doroshkevich and Bartolomey (1965} cb-

s

tained an approximate anzlysis of single piles, single rows of pil

4]

pile groups with square and rectangular arrangements assuming the pile
group to behave as a single 'block® (Terzaghi, 1943), They used Malan®s
solution (Melan, 1932} in the calculation of the settlement of zingls row
pile foundations and Mindlin's solution (Mindlin, 1936) for the pile groups
with square and rectangular arrangements. The analysis is in no way
different from the one suggested by Terzaghi (1943) and does not take
into account of the variation of load distribution within the pile group.
A very comprehensive analysis of pile groups was described by Poulsns
(1968b) in which he used Mindlin's solution to calculate the interaction
factors between two piles. The load displacement relationships of rigid
pile groups and the load distribution within the pile group were analysed
using the interaction factors derived for a two pile group. The inter-
action factor for two rigid piles was found te be a function of the
spacing to diameter ratios, and length to diameter ratios. It is
however, conceivable that other factors such as position of the pils in

ce the

a group, and the compressibility of the piles are likely to influe
values of these interaction factors. No allowznce for thesse was made
in his analysis, He also attempted an approximate evaluation of ths
effect of the depth of the elastic layer on the load displacement res-
ponse of a pile group using the Steinbrenner approximation. The affect
of the depth of the elastic layer was found to influence the group

behaviour more than it did to single pile.



The problem of the interaction between a pile cap and its group etill

remainsg to be solved.

1.6 Definition of the problem and scope of the present research

5

It can be seen from the previocus sections that the design of pile
foundations ideally requires detailed knowledge of the subsoil properties
before and after placing the pile in addition to the basic mechanice of
pile-soil interaction. Thus neither a wholly theoretical nor a completely

experimental study of pile foundations is likely to give an adequate basis

a3
[
i
]
]
]

of design. To develop a rational design theory one must be able to assg

]

the relative importance of the different variables on the behaviocur of pile
foundations. This is what is examined in the major part of the work pra-
sented below in which the following aspects of pile foundations and the
associated problems are described:
(i A theoretical investigation intc the load displacement
characteristics of axially loaded plain and under~reamed
piles and deep foundations.
(ii) A theoretical analysis of lead displacement characteristics
of free-standing pile groups of arbitrary spacing.
(iii) The interaction between a pile cap and its group.
(iv) The analysis of the ultimate bearing capacity of a driven
pile.
(v) An experimental investigation of the effects of an applied

electric potential and rate of penstration on the penetration

resistance of model probes and blades.
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Chapter 2

Integral equations in three-dimensional elasticity
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2.1 Summary

An integral method which can be used in principle to obtain a
numerical solution of any problem in classical elasticity is described
in this Chapter. The method is compared with some widely used differ-
ential methods. Earlier applications of integral equation metheds to
the problems of elasticity are also reviewed and compared with the
method described in this Chapter. A scheme of numerical calculations
suitable fo; digital computers is outlined which has been used success-

fully for the solutions displayed in the subsequent Chapters.
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2.2 Introduction

With the advent of computers, numerical methods are being used more

often and the days of solution of differential equations by suitably

chosen series polynomials are virtually gone. Numerical methods may be
classified under two major categories:

(i) Differential methods,

(ii) Integral methods.
Differential methods, such as the finite difference, finite element,
collocation and Rayleigh-Ritz methods are primarily designed to satisfy
the governing equations approximately. In finite difference method the

basic differential equation of the problem is replaced by difference

equations over a set of points in the domain (Allen, 1955). The finite

element method, originally developed by Turner et al (1956) and sul

by Clough (1960} and Zienkiewicz (1967) has proved to be a very useful tool
for the solution of many complicated problems. The body or region in
which the solution is required, is divided into a suitable number of tri-
angular, tetrahedral, cubic or rectangular parallelopiped elements, for
each of which a suitable compatible elemental displacement field is chosen
(in the stiffness method). A set of =squations is then derived by satis-
fying equilibrium (in the stiffness formulation) at the element nodss.

In the collocation method, or point matching technique as it iz sometimes
called, a functional representation containing a number of arbitrary con-
stants is chosen. These are substituted in the basic differential
equations of the problem. A set of simultaneous equations iz then
obtained by evaluating the function at a number of points equal to the
number of unknown constants. The Rayleigh-Ritz method entails the
selection of a series of functions with unknown constants, each of which
satisfles the geometric boundary conditions. The chosen series of Ffunctions
are then substituted into the energy conservation equations corresponding
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to the given field equations and minimised with respect to the unknown
constants. A set of simultaneous equations for the unknown constants

is thus obtained. A comprehensive treatment of these wvariational methods
is given in Mikhlin (1964).

Differential methods, finite element in particular, have the advan-
tage of being very general and therefore theoretically able to cope with
complex constitutive laws for the materials involved. The major dis-
advantage of these methods is that the resulting system of equation is
large and may be ill-conditioned (Masszonnet, 1965).

Integral equation methods often give accurate results more economically.
A particular solution which satisfies the differential equation of the given
problem is chosen, By distributing these particular solutions over the
surface of the given domain (i.e. by the principle of superposition) a
general solution in terms of an arbitrary function is developed. For the
general solution to satisfy the boundary condition, the arbitrary function
must satisfy an integral equation over the boundary. There are generally
fewer unknowns and the error of discretisation is usually confined to the
boundaries, because in this method the boundarieszs are only discretised
whereas differential methods need the whole domain to be discretiszed. The
use of principle of superposition restricts the application of such a method
to problems involving non linear constitutive laws for the materials.

The first rigorous investigation of an integral equation was made by
Fredholm as late as 1903. There has been a considerable development,
particularly in connection with field theory, since then. The method has
been applied to solutions of problems of elasticity, notably by Soviet
writers. The works of Muskhelishvili (1953) and Mikhlin {1957 are well
known.

Muskhelishvili's method of solution, being based on complex variable

28



theory, cannot easily be extended to three dimensional problems of
elasticity. Mikhlin’s work on multidimensional singular integral
equations is much more useful in this respect. Vectors, such as stress
components can be written directly in a vectorial integral equation,
which is effectively a system of simultaneous scalar integrazl equations.
None of the above mentioned writers considered the translation of
guch a method into a suitable algorithm for the numerical soclution of
engineering prlblems. Massonnet (1965) described a numerical solution
of the stress boundary value problem formulated in terms of a vectorisgl
singular integral equation of the second kind. His formulation was
based on the use of Boussinesq's point load solution (Boussinesq, 1885
for a half space. Since Boussinesq's solution has a line of doublets
extending from zero to infinity on the negative side of the half space,
his formulation is not valid for some concave domains where the outward
normal to the surface cuts the domain more than once. His method is
valid for smooth surfsces hence would produce good results for bodies
without sharp edges and corners. Difficulties caused by charp edges
and corners were partially overcome by a method described by Cliveira
(1968), in which the elementary singular solution f; distributed over an
auxiliary boundary adjacent to the actual boundary. The fictitious
intensities (the arbitrary functions) are distributed over the auxilisry
boundary in such a manner that the given boundary conditions on the
actual boundary are reproduced. Such a method has an advantage over
Massonnet’s for bodies with sharp edges and corners. The major
deficiency is that it has to be possible to analytically continue the
functions representing the displacement field into the region between
the auxiliary boundary and the actual boundary, without the occurrence

of a singularity. Oliveira assumes without the proof that this is
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possible.

Oliveira restricted hisz formulation to plane stress problems only.

The particular solution chosen is an intensity, defined by two parameters,
distributed linearly from z maximum to zero over two adjacent slements of
the auxiliary boundary. Such an approach would appear to be better than
Masgonnet's method of uniform variation of intensity across sach element,
In general, if the auxiliary boundary sufficiently far away from the actual
boundary the resulting system of equations may be ill-conditioned. Ewen
if a double precision technique of numerical solution is adopted, the
variation of the unknown fictitious intensities over the boundary would be
very rapid. If, however, the auxiliary boundary is taken indefinitely
close to the actual boundary the method suggested by Oliveiras would produce
good results, provided the kernel functions (st least the nearly singular
part of it) are evaluated analytically (see Article,2.9),

Kupradze (1964) described an integral formulation for the displacement
of an elastic body subjected to periodic body forces and boundary conditions
congidering the static problem as a particular case. He has given the
proof of the existence of the proposed integral representstion and investi-

work on multidimensional singular

€3]

gated its uniqueness using Mikhlin?®
integral equations (Mikhlin, 1957, 1965).

The method described below is both an improvement and generalissztion
of Oliveira's and Massonnet's methods for the three—dimenzional problems.
Some of Kupradze's results have been used in the derivation of the integral
equations. A method of numerical soclution of the integral equation iz

suggested which can deal with any regular variation of the unknown functions

over the boundary. Body forces have been assumed to be zerc and st

strain theory has been used throughout.
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2‘3

Statement of the problem

We consider a body of arbitrary shape enclosed within a surface, S.

The region outside S is denoted by De and the interior region by Si'

The

surface S is assumed to satisfy a smoothness condition, such as that of

Lyapunov (see Smirnov, 1964).
ive.
is sufficiently smooth.
Cartesian Coordinates):

() ) = £,(4)

(ii) oip(A).np = pi(A)

(iii) cip(A).np + ui(A)

where A = 8§

il

The condition is,

£, (A)

however, not too restrict-

In future, we specify this requirement by stating that the surface

The boundary conditions on S are given by {in

p,(A) + u;(A) = £,(A)

ui(A) denotes the displacement vector on S,

np ig the unit normal to S {+ ve for outward normals and - ve for

inward normals),

fi(A) are the given boundary conditions which are assumed to sztisfy

a Lipschitz condition (Mikhlin, 1957}, which we may interpret in

engineering sense asz reasonably well behaved functions

cip(A) denotes the stress tensor at a point on S, and pi{A} the

stress resultants at a point on 3,

i,p =4,2 for 3-dimensgional and two-dimensional problems respective

and summation is implied over repeated suffixes.

Alternatively in matrix notation (with respect to X, Y, Z axes, Figure 2.2 ':

XX Oxy xz{ jnx P,
_ 0O o E ! -
0, .n = x z| Jn , = o E
ip p Y ey Py Y py
zx ‘zy ° o
yozE i, Py
o = C i.e. ’_Ugi 5 fca’ H
where 5 pi’ i.e. |0| is symmetrical;



and,

iu : £
X X
1 '
kY
u, = - u i, f = £ B
i A 1 vy
o
fu_ f
Lz z '

2.4 Some definitions

Figure 2.1 defines some regions by symbols which are used i

sequent articles. The surfaces S_ and SI are two surfaces in the

neighbourhood of S.

De = Domain outsgide SI and contains De’
De = Domain outside S,

+ _ A - .
Di = Domain inside S_ and contains Di’
Di = Domgin inside S

FIGURE 2.1
SOME DEFINITIONS OF SURFACES AND REGIONS
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2.5 A basic elementary solution

Before we can make any kind of mathematical formulation of the problem

we need to select an elementary solution which satisfies the basic equation

of equilibrium and compatibility everywhere in the domain of

following elementary singular solution have been uzed by previocus invs
tors:

(i) Flamant's two—dimensional simple ra

54
£,
[
2

(Massonnet, 1965),

ly

(ii) Boussinesqg®s solution for a concentrated load on the surfsc
of a half space (Masszonnet, 1965),

(iii) Kelvin's solution for a point load within an infinite space
(Kupradze, 1964; Watson, 1968).

In the present work the singular soclution of a peint load in the interiocr of

a half space (Mindlin, 1936) will be used. There is a distinct adwan

in using Mindlin®s solution for many foundation engineering problems b

the singular solution satisfies the zero stress boundary condition on the

r part of solu

jav]

surface of the half space. The zingul
same singularity at the point of application of the load zs has Mindlin®s
solution. Thug for the purpose of the snalytical formulation of the
singular integral equation they can be regarded as identical.

As shown in Figure (2.2) forces P Py’ P are scting at B{z,&,n) in

the X, Y and Z directions respectively. The displacements an

[0

due to these forces can be obtzined everywhere in the half space {defined
as the materials filling Z 2 O region) from Mindlin's szolution (Mindlin,

1936) given below:
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B(;ri)n)

A(X,Y,Z)

MINDLIN'S PROBLEM

FIGURE 2.2

The displacements and stresses at A due to the force Ex acting at B zre

given by:
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) ~n 1 5 oo y y \ =
u — X Td—sn 1 xy (B=swng e/ 35N 401 - (1 —2u / feod \
X - S S sl i St P S §
iérG;E*u [ Fig 1 R33 ,RQ‘Q‘\ Rz‘!/ Rg-r... +C \ Kgu{, t 3—-6,/5
'5%92 - C3—su Gez é’ — {1 =297
u = . “_7— - - K 2 Ty
¥ 167G —u)LR® R Rg° K. (Raw"v—c} i

where G and u are elastic constants, modulus of rigidity and Poisson's

ratio respectively.

R, = [(x-g)z + (y-m? + (Z-C)Z] )
R, = [-0)° + (y=n)? + (at0)?]
XO = [X“g]: EY"T"] 5 UX: uy: uz

e

are displacements in X, Y, 2

directions respectively.

The displacements and stresses at A due to the force Py

be obtained from:

vl
Uit

acting at B can



The stresses

and displacements at A due to the force Pz

B r re—c (3—4u){z—c) fi»{im,—u}{i—-im) B Gezl(s-+ c}"g
o rG(L—me Ry® ‘ Ry? Ry(Ry+a-+c) RpP j‘/
B, T3 —4u (1 —p)?=(@~4p) (—0)* (3—4u)(s+c)*—2¢z Gez{z-+c)*
U T inGU—n)l Rs R TRe Ry " R
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e r3— 4;; 1 x; @—dpjxz L(ze! 3xpy 4(l—uwy(1=2u) x4 \
U TleGU-ml B R Re Re A\ %) A wrrwa Gy ey
y _ ]_3}3& rol 3 4;; Gcz 4(1—W{L—-2,x,:
y 167G(1—wLR® R® Ry Ro(Ry+54¢)% 4
u. _ Lx;  [z—c \3 4;1/(2-—-6)—662(2*1“6) 4\1—;5;\L~2,<;,)§
216Gl =l RS Ry Ry Ro(Retz4¢) J
o = Vs ( (1—2u) (1~—2u)(3 44; jx, a\3 4u)xt
X i-w. Re o Re . ke &
_4(1'—»#)(17—-2#)5/3 EHEIORS o"’rc)\ ;36_(3 2#)(21‘6}“‘5A23\%~E‘
 Ro(Rata407 ' RP(Rat a0/ | Rp\ R/ |
o (=20 (=264 3 3G~}
YV Sa(l-ul Ry Ry Ry Ry
.4(1»;4)(1—2#) yzﬁRo+z+c;X 6c / \!sfz\}
’ “R,’(Rwz+c‘)f<j R (Rets40)/) | R \emUmmetatL) |
G"ZZ s Dy, G—-12;;.),_"(1—-2/.4&?&.3(\2‘—"6)2_3(3 4;;)'\ 5)2 6c/c+(1~2p>\2+6)“3z(3+5) \’51
Sr(l—wl R Ry R R TR\ R: /J
. = By, —3(2—6) 3(3*“&)(2’#6)‘ ‘u-«Z,u ] z—rcl\z 5'
vz © 8v(l —uli R Rt R R /4
- _ Z *(i—-—2,-4)(z-—c)+(1—-2;4)(z—-c)“3x,2(z-c)m3(3—-—4u;x§(z+c; s s
ZX 8r(l—wl R Ry Ry R R
j:\ZQﬂﬂg_(1“2m®% J%;;‘Q}f,
. By gy_‘(l—z;;)’+(1»-2“)_.3@_3(3‘-—4,4)%
Xy 87r —wh RS R RS Ry ,
~4(1~ﬂ)(1-2;ﬂ}g/1_x}(3Rz+z+C)\ 6@54 Sx}\%’z
Ri(Re+s+0)2 N RHRy+ate)/ Ro\ R/
where G, U, Rl’ R‘2 are quantities defined previously.
x = [yn] ,
vy = [e-x]
are given by:



5 E, f(1-—2;;)(s—-c) 3xiz—c) (I—2ujdz—c)—4u(s~+c)]
- ]

xx 8,.(1-—#)L Ry R Ryt
M&%@@@—@~&@+@ﬂbﬂ@pﬂﬁﬂ 30cx2z(z+c)
- Ryt Ry
4(1~uw)(1=24) / x% 2L\ 7T
T RiRatetd \ RaRerara Rel |
o = Pz [U=20(E=0 35e—q (-2)[3E—c)—4u(+d)]
X se(l-wl Ry RS Ry
3(3—=4u)yi(a—c)—6c(z-+c)[(1—2u)5—2uc] 30¢y22(z-+¢)
- R Ry
H-p) -2/ Y
T RiFiroid \  ReRerere Rl
o = ‘Lz {_(1*’“2#)(2*6)1(1—~2u)(z-—6)_3(z—‘6)“ :
%2 gr-wl 0 R® RS R VoA
3(3—4)5(z+0) = 3c(z+c) (5z—c)  30ca(s+c)*
Re TRy
6 = b r (1“"2#) (1—24) 3(3 C>2 33— 4;1)2&2-—;*6/—-36(327‘6)“306&&576,E
ya 87(1—;& TTRe . & Ry RiJ
o = g‘ (1—-2;¢) U —2u) 3\z-—c; 3(3 —4u)z(z-+¢) —3¢(3z4¢) 306o\2"“*6>-i
zx sr(L-“)L Re R Ry Ry YA
g = @"?Q’( 3(z—¢) 3(3 ~4u)(z—c) 4(‘—-#)(1—-2,@/ 1 .1\;3055(3-%-5)”‘
XY ge(l—pl RS Ry T RpRatite) \Ratate R Re )
. 1
w, = (e (=02 + em?) 3,
b
0y = (G- (0 e
wihere U is the radial displacement (because the last case is an

£
axisymmetric one) and r = [(x~g)2 + (y~h)zj
It can be seen from equations (2.2), (2.3} and (2.4) that
B indefinitely the terms containing Rl in the denominator

whereas the terms containing RZ in the denominator remain

become infinite

finite, and also

by letting R2 + = the solutions for point loads (PX, Py’ PZ) in an



infinite space can be derived (Love, 1953; Mindlin, 1936).

Equations (2.2), (2.3) and (2.4) can be combined and written as:

, = (2.5)
ui(A} Pj Kij (A,B) (2.5)

= { 3
Gij(A) Pk Tijk {A,B) (2.6

where ui(A) are displacements at A
cij(A) are the stress components at A
Pj are the forces at B

Kij(A,B), Tijk(A,B) are known functions which can be obtained from
equations (2.2), (2.3) and (2.4).

Equation (2.6) may be reduced, with the help of equation (2.1}, to
pi(A) = Pj Tij(A,B) (2.7}
where pi(A) are the stress resultants on a surface at A and

rij(A,B) = Tijk(A,B)o n -

2.6 Formulation of the integrals for the stress resultants and
displacements in D and Di

If we now distribute fictitious surface stress intensities ¢j over
the surface S, and let &5 be an element of the surface S, then for the

elemental loads the elemental displacements are given by

éui(A) = ¢j(B) Kij(AaB) 8S (2.8)

The displacements ui(A) at a point A due to all such elemental surface

intensities given by

S
e
©
«w

f
u, (a) = J qu(B) Kij(A,B) ds

S
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Similarly the stress resultants at a point on a surface through A dus to

all elemental surface intensities acting over S can be obtsined from

{

= b, (B 1, .{A,B} S 2. 100

REY J ¢;(B) 1;,(4,B) d (2.10)
S

The kernel functions of the integrals (2.9) and (2.10) have a singularity

when A and B coincide. The order of the singularity for the displacement

integrals is l/rAB and that for the stress integrals 1/rABZ’ where

[N

AR {(zmc)z + (X“€>2 + iy’n}zj °

Before we can proceed any further we need to investigate the following:
(i) Does the integral representation satisfy the equations of
equilibrium and compatibility everywhere?
(ii) Do the integrals exist everywhere on De’ Di and on 37
(iii) Have the integral equations got a unique solution?
The functions (2.9) and (2.10) satisfy the equations of equilibrium and
compatibility in De and Di’ because the elementary sclution is chesen to

satisfy these conditions. The integrals (2.9) and (2.10) exist in D

and Di since they are proper integrals of continuous functions {(the kernel
functions are continuous and bounded in Be and Di}° The integrals for
the displacements satisfy the regularity condition at infinity. But the

neeads to be established.

2.7 Behawviour on S

We consider the integral {2.9)

L(A) = . . LA, 8
u, (4) j ¢J(B} KlJiA B) d
S
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Let A0 be a point on S. For the point A tending to S from either gide {i.e.

either from De or from Di)9 the above can be written as

(
Lt (A) = Lt .(B) K, .(A,B) dsS
v, () | 8508 K¢
A~ A A~A s
O O
= Lt [ 6.¢B) - ¢.(A )| K..(A,B) dS
| Loy - oya [ K, 4(4,3)
A+ A S
o |
' (2,315
ol Ky (am) as (2,117
S

where ¢j(Ao) is the value of ¢(B) at AOfE S.
It has been shown by Kupradze (1964) that for Lt A -+ Ao equation (2.11) can

be written as

f
- 3\ (2.1
u, (4) } ¢j(B) Kij(Ao,B} ds (2.12
S
Similarly, the integral for stress resultants is
p;(4) = j ¢j{B) Tij{A,B) s
S
As Lt A- A, A =8 from D,
o o i
1, [ y ds o ven
py(A) =3 0, (A + | 0,(B) 1,.(A,B) & (2.13)
s
and also Lt A~> A, A 8 fromD
o o e
1 [
== ¢ - ) : {2,147
pi(A) =7 0, (A - | 0.(B) T (A ,B) S (2.14)

g

subject to the conditions that the surface is smooth and functions ¢, are

T

well behaved. The proofs of these results are rather lengthy, and are not
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reproduced here (See Kupradze, 1964},

Thus we know that the integrals for diszplacements exist in the normsl
sense over S as S is approached from Di or De, but the integrals for the
stress resultants are discontinuous, as can be seen from equations (2.13
and (2.14).

The generality and uniqueness of the integral representations {(2,1%]

and (2.14) for the stress resultants has been established by Kupradze

(1964).

- 2.8 Derivation of the integral equations
g g

For the displacement boundary value problem (i) the integrsl
equation in terms of the given boundary displacements fi(Ab> is, by

equation (2.123},

[
(A ) = 5. (B) ' (2.
fi(AO/ [ ¢j\B; Kij(Ao’B) ds {2
where
fi(Ao) are the given displacements on the boundary 8,
¢j(B) are the unknown fictitious intensities distributed on 3.

The integral equation (2.15) is applicable to the boundary value problem
in terms of displacements in both domains D@ and D..

Similarly, the equation of stress resultant boundary value problsm is:

™

h
P
g
p—e
I
o e
-
o~
e
e

§
Y]
o

ABY 1, {A ,B} dS
¢JA ) 17(49B)

e
L —

for D, and
i

fi(As} -

B[
3»4
Q

for D .
e
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In the foregoing derivation of the integral equations the fictitious
intensities are distributed on S. If however the fictitious intensitics
are distributed over an auxiliary boundary (Cliveirsz, 1968}, the integral

equations become:

= " { 3 g
£;(8) J 95(B) Ky y(Ay,By) Sy

S
' £2.18)
£.(a) = J ¢j(BI) Tij(AOBI> ds,
S‘T‘
ps
AO Z. 8, BIQ: Szg
for boundary value problems in the domain De and:
£.(A ) = { ¢ (B ) K, . (A ,B ) dS
i*o | e TijtorTe’ e
Ve (2.19

for boundary value problems in the domain Di:

where dSI and dSe are the elemental surfaces of SI and Se respectively.

Y

The functions Kij(AO,BI}, Kij(Ao’Be}’ Tij(AggBI} and Tij{AOsBe) are

B

wholly continuous for De and Di and exist in the normal sense. These
"integrals are proper integrals of continuous functions. Oliveirs
(1968) adopted the equivalent representations of (2,18 and (2.19) for

two-dimensional problems. He claimed to have established the necessary

W

and sufficient conditions for the existence and uniqueness of represent
tions (2.18) and (2.19) (it has not been possible for the author to obtazin

the publications cited in the gbove mentioned paper). If the guxilisry

boundaries SI and Se do not coincide with the boundary S the representations
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(2.18) and (2.19) become integral equations of the first kind with con-
tinuous kernels. The resulting system of equatiéns for such integrsl
equations may be unstable (Baker et al, 1966) and produce oscillations
in the values of ¢j(Be} and ¢Q€BIEE For the purpose of an approximats

engineering analysis it is possible to choose the boundaries S, and S _

S

sufficiently near S so that the kernel functions become nearly
and the resulting system of equations ig stable {(zee Art 2.9,

Equations (2.15), (2.167, (2,173, (2.18) and (2,19} can 21l be
represented by:

f
fi(AO} = q, ¢i(AO) A J qu(B) Mij(Ag,B) ds (2,2

S
o

where fi(Ao) are the given boundary conditions on S.

o for the

i

o ¢i(AO) is the term for the discontinuity, &
integrals which exist in the normal sense and % for the

equations (2,16} and (2.17},

Mij(AO,B) are functions given by equations (2.16), (2.17), (2.18)
and (2.19),

AO is a point on the boundary §,

B is the moving point on the chosen boundary So {which may
either be § or SI or Se} on which the fictitious stress
intensities are distributed,

XO is a parameter which carn be obtained by comparing equation
(2.20) with the parent equations,

dS is an element of S .
o o
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2.9 Solution of the integral equations

The method of solution is kept sufficiently gemeral by illuszstrating
the solution of equation (2.20). The kernel Mij(AggB} is divided inte

a continuous part McijéAOSBj and a part MS:j(AOSB} containing singularity
£

when (AO = B), The equation (2.20) then becomes:

{
= 4 3 ’ {8 MC ; g
£ (A)) = a ¢ (A )+ Ay J cpj\ B Mcij(AO,m ds
S
[o]
o [ eByms, (a,B) as
~}\0 J{ Q)j\B 3 13( 52 B da@
S
o}

Using Saint Venant's principle that for points sufficiently far from ths
point of application of the load the stresses and displacements at these
points are independent of the manner in which the load is applied, it is
possible to apply a simple linear quadrature formula to (2.21} to zll

regions except those near to AO = B, Equation {2.21)} can therefore ba

written in a discrete linear form as:
N
+ Yo Me Y 9. (B2
ae o (a) g L 6 MO (A LB ) 9 (B

=1
+ A ) G_MS, (A ,B) ¢ (B )+E = f (A) (2,22
T 1] 0 j T im 1 m

where Eim are the error terms {which will be neglected),
Gn are weighting functions {constantz for a given interval of
integrationy,

A :-A(la AZ’ AQ,GOOOA

are the N values of A corresponding to
m b N [} -

N intervals of integration on the surface SGS

Equation (2.22) therefore represents a system of N x i linear slgebrsic
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equations for the N x i unknown values of ¢. This system of equation

can then be written in matrix notation as:

o [T] + [MC] {9} + [MS] {¢} = {f} (2.23)
where
{i] = (< x 1) x (N x i} unity matrix,
]Mcj and IjSﬁ = (N » 1} »~ (N x i} matrices and are, in general,

fully populated,
{¢}= (N x 1) x 1 vector for the unknowns,
{F}= (N x i} x 1 vector for the boundary conditicns,

i = 2, 3 depending depending on number of space dimensions.

The accuracy of the solution of equation (2.21) depends upon the accuracy

with which the integral squation is replaced by the quadrature formulas,

the coefficients of the matrix 'MG[ and the off diagonal elements

(i.e. A # B) of the matrix ]MSJ .
Since Saint Venant's principle does not apply for points near to ths

application of the unknown intengity, the diagonal elements of ths matrix

iMSJ were evaluated by the method given below. These diagonal e

involve the evaluation of the integrals of the type

I = ( MS(A_,B) o(B) dS_ (2.24)

where S 1 and S+~1 denote the limite of an element of the discretised

surface S5 ,
o)
The kernel function MS{AaaB} is singular at AO = B,

Since the unknown function iz assumed to regular it can be expanded in

the form of a Taylor series about Agg hence

45



9(B) = 0(A_) + (B-A) '(A ) + —5y— oA D Fo... (2.25)

where
¢'(AO}, ¢”(AO} denotss differention with respect to the
independent variable on the surface S@o @‘(Agg, o' (A 2
can be represented by their finite difference approximstion
over the surface.

Substituting (2.25) in (2.24) leads to:

511 Siq
r [
= Y4 Lh4 [ {R-A %.MS( BY 4%
I, = ¢(a) J MS(A _,B) dS_ + ¢7(A ) } (B-A_).MS(A_,B} dS_
S_1 5.1
S
¢ 1 §BmAP}
MEICA Y PO, </ YA ] 12 96
+ 9"(A ) J T MS(A_,B) dS_ Feesas (2,26
5.1

Equation (2.26) only involve known functions under the integral sign.
It is seen that this method deals with virtually any rapidly varving dis-
tribution of ¢. In most problems, good results have bsen obtained by
simply taking the first term of the series. However, the integralz in
(2.26) still have to be evaluated. If the method of the auxiliary
boundary is used (i.e. when the boundary Sg is not the same as S) the
integrals in (2.26) exist in the normal sense and may be evaluated
analytically or numerically by a fine mesh quadrature over the
element. 1f the fictitious intensities sre distributed on the boundary
S the integrals (the first or the first two, depending on the order of
singularity) are singular integrals which only exist as Cauchy principsl
values.  The method of evaluation of these integrals is given in the
following section. When this has been accomplished equations (2.23)

can be combined and written as:
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M] (¢} = (£} (2.27)

where

@ﬂ is a fully populated (N * i)z matrix.
The formal solution of (2.27) which provides (N X i) discrete, approximate

values of ¢ as:

[ 9]
@

(2]
o]

oy = M7 e)

2,10 Evaluation of the principal value of the singular integrals

Let us consider a plane region R, sufficiently small, to represent zn

element of the surface 5, enclosed by a curve ¢, (Figure 2.3) at s distznce

of a.pl(e} from AO and containing a small region E which is within 3 cu
C2 at a distance ¢ po(e) from Al € being an arbitrarily small constant,

The curve Cl is of some convenient geometric configuration to fit the schame
of surface discretisation. The present problem iz to evaluate the integrsls

in equation (2.26) over the region R, It is convenient to perform the

integration with respect to local axes through AOe

REGION R e
vc\\ ”/’ e S e, . )
‘C\\ e o
\\-’\\ ) §;«° ‘
\\ ~ ep (8) f//
~ N - -~—-~\// 5
NN & i x
SRAVAN <
% © [ . CcmVEC, :
“\‘ \A '¢~\q. '”W
- ° . a pq(8) '27
. . o CURVE Cl
REGION E

FIGURE 2.3

A SYMMETRICAL REGION OF EXCLUSION AROUND THE SINGULARITY
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In terms of the local variable r and 6 the displacement integrals are

reduced to the form:

1 = ( Cos8 ds
p J r
R
Py apl(e}
= Lt [ f Cos8 .. dr.ds
J J L r
£+>0 © £ poae,
{
2r 201 () 2m
Foof f A ,
= Lt J Cos8,dr.dd = | ap,(8) Cosb db 2,290
Fl
€>0 o© € poée> o

where Ip denotes the principal value of the integral,
Equation (2.29) shows that the displacement integrals exist in the normal
sense over S. They are evaluated by a fine mesh quadrature over the region.

The mesh size is reduced until Ip becomes independent of the mesh siz=.

In terms of the local variable r and 0 the integrals for the strass
resultants are reduced to the form:
rZW apl(e)
‘—-e ® s
1 —f Cos” 4s = Lt J [ Cost  r.dr.ds
P 2 e - o R ;
R T o ep (8) T
o
FZH
=Lt | |loglap, (8} - Logle p_(8)}] Cost a6
£ > o0 Jo
27 rlﬂ
= Lt J Log{ap,(68)}Coss d6 - Lt | Cost Logle p (87} 4@
” - j s
E >0 © £E> 0 o
PA 2m

. [ . L
Log{aplie}} Cosd d6 - | Log pQ{SE Cosb do
J
) o

I
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2m
- Lt Loge { Cos8 do
€ > o0 !
o
2T 2T
= f Log{apl{eﬁ} Coz6 d6 - J Log p@{@} CosB dé {2.:

b
L

o o

The integrals in (2.30) can now be evaluated either snalytically
or numerically. For the results described in the present work, thsses

integrals have been evazluated by Simpson®s rule.

2.11 Discussion

The method of numerical analysis developed in this Chapter can bz
used to solve’any problem of classical elastostatics. The formulation
is sufficiently general to be able to deal with bodies of arbitrary shaspe

if Kelvin's solution is used (i.e. R

2 is put equal to infinity in equ
(2.2), (2.3) and (2.4)). Since the present work is exclusively concernsd
with the problems with a plane horizontal unloaded ground surface, the

formulation based on Mindlin's solution iz used which ensures that the

integral representations (2.15), (2.16), (2.17}, (2,18}, €2.19) satis

this boundary condition for the stress resultants on the surface.
The singularity of the kernel function is very important in ths
present analysis because this leads to a very stable system of algebraic

equations with dominant diagonal elements.
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Chapter 3

The load displacement characteristics of an embedded

rigid disc of arbitrary shape
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3.1 Summary

In this chapter the load displacement characteristics of a rigid
disc embedded within an elastic half space and also within a finite
elastic layer underlain by a smooth rigid base are examined. The
solution is developed using the integral equation method described in
Chapter 2. Numerical solutions for a rigid circular disc and s rigid
rectangular disc are presented.

Specific resultg, for a range of burial depths and ratios of ths
dimensions of the disc to the depth of the elastic layer are illustrsted
in various graphs. These results agree closely with the analytical

solutions available for comparable surface discs.
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3.2 Introduction

The stresses and displacements within a homogencous soil mass due to
an imposed load are directly influenced by, amongst other factors, the
flexibility of the loading surface, the shape of the loaded area, the
depth of burial and thickness of the elastic layer. A perfectly flexibis

loading may be considered to allow a direct transmission of applied

pressure over the loaded area.

Following Boussinesq's solution (Boussinesq, 1885) many prob!

0

uniformly loaded foundations at the surface of an elasti

solved. Newmark (1935) aﬁa Love (1929) calculated
ments due to uniformly loaded rectangular areas while Deresiewicz (19539
has calculated the stresses due to a load uniformly distributed ovar an
ellipse and Harr (1966) obtained the stresses and displacements under any
axi-symmetric loading on the surface of an elastic half space.

Though the condition of full rigidity of footing is more likely to

problems of rigid discs. The above mentioned solutions sre not really
applicable to most foundation situation where the footing is relatively
rigid. In these situations the stresses and displacements nesd to be

computed on the basis of a specified displacement of the loaded ares.

The available solutions of rigid footings exclusively deal with
of surface loadings. Boussinesq (1885) obtained the stress distribution

under a rigid circular disc, Sadowski (1928) that under a rigid strip,

Jat]

more recently Schiffman and Aggarwala (1961} analysed the problem of
rigid elliptical disc and Cheung and Zienkiewicz {1965) that of square
piates of various stiffnesses resting on the surface.

The most widely used foundation geometry is that of g rigid rectangular

footing. It is common practice to use Boussinesq's solution for & rigid
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circular disc to approximate the stresses under a rectangular footing by
matching the contact areas. This approximation ssems to be reasonsble
for square footings but it is natural to believe that this zpproximsztion
becomes less accurate as the side ratioc of the footing departs from unity.
A better approximation can be achieved if the rectangular footing is
approximated by an ellipse with the ratio of the semi-axes and the contact
area of the ellipse the same as the ratio and contact area of the rectangulsr
footing (Schiffman and Aggarwala, 1961).

In many situations footings are placed on or within so0il which is
underlain by a rigid layer. In such cases the foregoing solutions ars
of little relevance. The problems of uniformly loaded circular an
rectangular footings on the surface of an elastic layer were analysed by

Burmister (1956). An earlier approximate solution of the problem of an

uniformly loaded circular disc was given by Steinbrenner (1934}, His

results and approximations were discussed by Terzaghi (1943), Pou
{1968c¢c) analysed the problem of a rigid circular disc on the surface of an
elastic layer using Steinbrenner's approximation. Since Steinbrenner®s
approximation becomes increasingly inaccurate for depth of laver lass than
two times the diameter of the focoting, the solution cannot be regarded zs
a satisfactory one.

None of the foregoing writers have considered the effect of burisl
depth on the stresses and displacements under a loaded area. Mackey and
Khafagy (1968) obtained numerical results for the vertical stressz under an

uniformly loaded circular disc embedded within a half space.

The embedded discs are analvsed on the basis of following asssumptions:
v g P

53



(i) The disc is smooth and bonded with the medium,
(ii) The underlying rigid layer is smooth.
The assumption (i) implies that the shear stresses at the disc-medium

tresses can exist on the top surfacs

]

interfaces are zero but tensile

i

of the disc. The effect of smocothness of a circular disc resting on ths
surface of a half space was considered by Lee (1963}, who found thsat the

solutions to the problems of a smooth disc and a rough disc are idesntical

. . 1 . _ 4
for Poisson’s ratio = 5 and differ by negligible amount for other waluas
of Poisson's ratio. The assumption of a bonded disc is likely to give

inaccurate results for shallow foundations but seems to be adequate fo

deep footings as long as the weight of the soil above the footing level

T

produce a net compressive stress on the top surface of the disc. Th
effect of the assumption (ii) was investigated by Biot (1935), who con-
sidered the problems of a point load on the surface of an elastic laver
underlain by rigid smooth and rigid rough base. It was found that smocth-
ness of the surface of the rigid layer did not produce any noticesbls
difference in the computed vertical stressges even on the surface of ths
rigid layer. It seems, therefore quite reasomnable to assume the zame

assumption is valid for an embedded disc.

3.3 Development of the analysis

The vertical stress GZV(rigz} and displacement w{rlszi at a point

x
Q(rlsz} due to a vertical point load P acting within an elastic half
space occupying a part of the region z 2 o (Figure, 3. are given by

(see Chapter 2):

w(r,,z) = P. Klc,r,,2)

qzz(rlsz) =P, T&C;I’122>
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where K(c,rl,z} and T(c,rl,z} are known functions given by Mindlin

at the points designated by the bracketed coordinates. Equationg (3.1)

and (3.2) may be expressed in a cartesian coordinate system as:

&
[

o0 o 0 y
w(x,y,2z} = P. K(X,y,2,C) (%,

o0 L0 0 . N
OZZ{‘X?ng') =P. Tix,y,2z,c) :

ot
5

where the z axis passes through the point of application of the load =o

tha

0 o . . .
that x and y are distances measured from the point of application «f

load.

3.3.1 General formulation for a disc of arbitrary shape within an
elastic layer

If a resultant wvertical stress intensity O_q acts on an elemental

area £.60.5¢ on a horizontal place at z = ¢ (point A, Figure 3.2}, th

[

vertical displacement at Q{raergz) due to the load (GE .£.86.8¢e) acting

6

at A is given by equation (3.1) as:

Sw (r,ersz) = {0 _,.€.68.8¢e), K{c,rl,z}

€6

! 2 ""1/ 3 “ 5
where r, = {;2 + €% - 2re c@S(Gr ~8€)[2 and &w denotes the vertical diz-
placement due to elemental load. The total vertical displacement at
Q(r,er,z) due to all elemental loads over the disc area (8} bounded by F

is given by:

(SN
[

{ O ge€e K{c,r,,2z) de do (3.
J S
S

{
w, (r,6 ,z) =
1» =2y J

Equation (3.6) therefore represzents the solution for vertical displ
ment at a point Q within an elastic half space due to Oeg distributed over
the disc area bounded by F. If the disc is flexible o_, will be equal
to the applied loading and equation (3.6} becomes a definite integral
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which can be evaluated directly for the point Q everywhere in the half

space.
However, if the disc is rigid SR is unknown and the integrsl (3.6)

cannot be evaluated until 0_g, iz obtained from the boundary conditions.

El

To include the effect of a smooth rigid layer at sz depth H be!

oW

the surface we apply a "fictitiocus' vertical intensity wae at ¢ = H,
The vertical displacement at the point Q dus to @ge acting over the sur-

face of the rigid layer can be cobtained by analogy with (3.6} a=:

2n =
wz(r,ersz} = J J wsegeo K(Hsrlgz} de db (3.7
o o
Thus the total vertical displacement at Q due to a disc of arbitrary
shape embedded within an elastic layer is given by:
[
w(r,er,z} = J O g s K(c,rl,z) de d6
S
271 =
[ [ .
+ J J Y g€ K(H,r;,z) de de (3.8)
o )

Similarly the vertical stress at a point Q due to the loaded diszc can be

obtained from:

Ozz<r’er’Z} = Jj I g Eo T(csrl,z) de dg
s
27 «
( { P
+ ) J Voge € T{H9r192> de do (3.9
o ¢

By virtue of the choice of Mindlin*s solution the boundary conditions:
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z2z
rz
rz

have already
displacement

within F and

(o]
-
(e}
il
Q
]

o at z = o,

Tz 8z
Opy = © at z = ¢ over the disc area, (3.10)
ag = o at z = H
Oz
been satisfied. The boundary conditions for the vertical

of the disc can be satisfied by considering the points B

substituting z = ¢ in equation (3.8) which then becomes:

ff ,
w(r,8 ,c) = JJS o_g-€s K(e,rq) de do
o
+ ) ] wgecea K(H,rlc) deg db (3.11)
o} [¢)

Similarly the vertical displacement of the rigid base can be satisfied

by considering the points on the surface of the rigid base and substituting

z = H in equation (3.8) which then becomes:

(f
w(r,8 ,H) = JJ o g€ K(e,r ,H) de do
S

Equations (3.

27 p=
+ J { wee°€° K(ngl) de de6 (3.12)

11) and (3.12) can be represented over the disc area and over

a finite area of the rigid base surface in a discrete linear form (see

Chapter 2) by application of quadrature formulae. Thus the vertical dis-

placement of

Figure 3.3):

the elements (i,j) of the disc can be obtained from (see

57



(Wc)ij - Z L. Ymn (chi AA)mn
n=1 m=1
B
+ ) 31 Y ., (KRC.. 4B) (3.13)

where (WC)ij are the vertical displacements of disc elements (i,]).

On’ wpq are the resultant vertical stress intensity on the disc
elements and the 'fictitious? normal stress intensities
on the elements on the surface of the rigid base,

(KCCij AA)mn are the values of the kernel function of the first
integral of equation (3.11), AA being the constant
weighting function,

(KRCij AB)p are the values of the kernel function of the second
integral of equation (3.11), AB being the constant weighting
function,

m,n are the arbitrary number of elemental divisions within the

disc area in r,ec and er,eg directions {(Figure 3.3)

Psq are the arbitrary number of elemental divisions within =z
finite surface of the rigid base in r,e and er, 68
directions.

i = 192,3 368 5 e ng j - 1»9:233 ® #8838 me

Similarly by application of numerical quadrature formulae to equation
(3.12) the vertical displacements of the elements (i,j) on the surface
of the rigid base can be written in analogy with equation (3.13) as:

n m

(WR)ij = é zl o (KcRij,,AA)m

{ad
I
A

P

gq
+ ) 21 opq (KRRij AB}pq.,



where
(WR}ij are the vertical displacemente of elements on the surfsce

of the rigid base,

(KCRij’AA}mn are the vsluess of the kernel function of the firsr

integral of equation (3.12),
(KRRij°AB}pq are the values of the kernel function of the sscond
integral of equation {(3.12).

i=1,2,3:0004p, 3= 1,2,00000p

If now unit vertical displacement of the rigid disc and zero vertical disg-

placement of the rigid base is specified, (W'C)ii =1 and(YATR)ii = (g, then
from (3.13) and (3.14) we obtain
"o 2 9 K«
) o (KCC,, MA) + ) ) v (KRG, . .AB) =1
o2l pey mo ij mn oSy - Pq ij Pq
n m p g
) o, (KGR, AY + [ )y (KRR ..AB) =0

Equation (3.,15) represents {(m.n + p.q) linear equations for the (m.n)
unknown © and (p.q) unknown ¥ . Having obtained the seolution for ¢

mn pq mn
and wpq the vertical displscements and vertical stresses at a point B, by
analogy with equation (2.8) and (3.9), are:

2 | e ¢

o,

i
foad
[

n m g q
— e }
o (B) ZJ Lo (TC.0A) + [ )
=1 w=1
respectively.,
where, the functions KC, KR, TC and TR are obtained from the
the equations (3.8) and (3.9).
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The second equation of (3.16) is undefined for points on the disc and rigid
base surface. The vertical stress on the surface of the rigid base znd
the disc can be obtained by calculating the limiting value ss the surfaces
are approached uniformly from either side {see Chapter 2).
The total load P carried by the rigid disc can be evaluasted as:
%

m
P=, o -0A. (3.17)
=1 m=1 -

The solution for a rigid disc embedded within a half spsce {(Butterfizld

and Banerjee, 1969z} can be obtained from the formulation described ab

by substituting wpq = 0 and considering equation (3.13) only.

3.3.2 Solution for a rigid circular disc

Because of the axial gymmetry of thie problem we can use ef = {3
throughout (Figure 3.4) the quantities o and y are functions of ¢ only.
The stresses and displacements gre functions of r and z. Hence from

equations (3.11) and (3.12) we have

ra rZw
w(r,c) = | OEQE} K(e,ry) do de
J J -
s} o
« 27
[ [ )
+ | v..e K{H,r.,c) d8 de
J € } i
(4] [o]
and a 2m
w(r,H) = { 0 . € K{c,rlaﬁ} do de
4 4
o o
o« Zﬂ
[ ‘
+ ¥ o€ K(H,rij do de
J &y
o) o
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Thus for n number of annular rings for the disc and p number of annular

rings of the finite rigid base surface we have

T
(wey, = }j g . {(KCC,.h,) -+ 3 U (KRC,.h,} {3,193
i n=1 i1l n p=1 P i 727p
where i=1,2...n and
¥ §
- ] | PR -+ J 4 El )] ’{“3 Oé
(WR) ni_l o (KCRi hi)n 21 llfp {KRRi hzj 3.20

where i = 1,2...p, h1 and hz are the thickness of the annular rings for
the disc and the rigid base respectively.
If again for a rigid disc (WC)i = 1 and for the rigid base {(WR} = 0, then
i
n

. (KCC,.h Y 5 {(KRC.. =
Z o+ (KCC, by + v, (KRC, hz}p 1
=1 p=

| oo

|
o

a |4

) o _.(KCR,.h,) + ) (

) . .h " (KRR, .h.)
=1 D i""1’n p=i P i 2'p

and o, and wp can be obtained from the solution of these (ntp) linsar
algebraic equations, Having obtained o and wp the vertical displace-

ments and vertical stresses elsewhere (except at the disc surface and the

surface of the rigid base} can be obtained from,

n P
w(B) = )} o .(KC .h;) + ¥, (KR-b)

o Y= ) o Lh)
L, (B) ) _-(TC .h)_ +

which are analogous to (3.16).
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3.3.3 Solution for a rigid rectangular disc

Az before a resultant vertical stress o

En

elemental area Sén of a horizontal plane at a d

Figure 3.5) The vertical digplacement at Q(x

El

(Ogn,ﬁg.én} acting at A is given by (3.

00 .
Sw (x,y,2) n,65°6n3 K{x,v,z,9;

where

e 5
[N

If as before, we considered all such intensitie
disc the vertical displacement at Q(x,y,z) due

obtained from:

wlixsy,z} =

-b

We distribute a 'fictitious® intensity wgn over

base, the vertical displacement at Q(x,v,z; due

intensity can be obtained from:

Wzix,y:ZB =

62

» d€ dn.

is assumed to act on an

epth z = ¢ (Point A{E,n),

,v,2) due to g load

(2.2
g on the surface of the
to the rigid disc can be
dg. dn. (3,24

the surface of the rigid

to this fictitious

ad
L4

Q(x,y,z) due to a rigid

A



If as before, points B on the plane z = C and at z = H are considsred

and the boundary condition for the vertical displacements of finite numbe
of elements of the rigid rectangular disc and rigid base surface are con-

sidered we obtain:

n m E %
T ) o (KReC,,.0A) + )} ) ¥ (KRC,, .AB) =1
n:1 ) mn ij mn p=1 g=1 pg ij q
where i=1,2.0..0, j=1,2....m and
n m
) 1 o (RCR,.AA) + 3 % Vo (KRR, .0B) =0  (3.28
el me1 0% 1] p=1 q=1 P9 i] pg

where i=1,2.00:p, j=1,2.0..q, n and p denotes the numbers of

elemental dimensions chosen in & directions and m and q denotes the

of dimensgions chosen in n directions respectively. The order

knowns in equations {3.27) and (3.28) can be reducad by the quadrantal

symmetry of the problem. For elements having the same 0 and ¢ valu

direct summation can be carried over them. Having obtainad the

Gmn and ¥ the displacements and stresses can be obtagined from

similar to (3.16) in terms of the wvariables in the Cartesian coo

system.

3.3.4 Notes on computer programme for the solution for vertical
and displacement under g rigid disc within a finite laver

The computer programme discussed has been developed for the

the problems described in the preceeding szections.

s s

gramme is given in Banerjee (1969,

The main features of the computer progrsmme

ALCOL word, usged for a set of

operations in the computer).

brief descriptions of the



(i) procedure ‘Simpson'

This procedure evaluates a

Simpson®s rule of quadrature

(ii) procedure *Circ Disc Array”

This procedure evaluastes the vertical displacementz szt the

a number of annular rings (field pointe) of a circular disc at z depth

\

due to the vertical loading intensities acting on a number of anr

rings (load points) of another circular disc placed at az depth H.
by adjusting the values of € and H all the integrals of equation (3.18)
can be evaluated by this procedure. Special provisiens azre madse within
this procedure to evaluate a singular integral. These singularities
occur when the load point and the field point ceincide.
(iii} procedure ‘Rect Disc Array’

This procedure evslustes the vertical displacements at the centre

of a number of rectangular elements of g rectangular disc at a depth o

due to vertical loading intensitiss acting on a number of rectangu
elements of another rectangular disc placed at a depth H, Hencs, az

before, by adjusting the values of £ and H 511 the coefficients of

equations (3.27) and (3.28) can be obtained. There is a specias

vision for evaluating a singular integral over a local rectangular

(iv} procedure °Inp'’
{v) procedure °Crout 2°

{vi} procedure ‘Solve’

W
i
[ng
[@]
[
ot

The procedures (iv), (v) and (vi) are used to solve a
algebraic equations by Gaussian slimination.

(vii) procedure '"Print Array®

This procedure prints an srray of quantities in a pre-set formst
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of floating point arithmatic.
The main body of the progrsmme ¢

particular problem, dapending on the

problems have been solved using this

1)
M

pois

(i) A circulsr disc at any depth within

{(11) A circular disc st any depth within a finite

W

{(iii) A rectangular disc at any depth within an elastic ha
g y

{iv) A rectangular disc at any depth within a finite

£

The remainder of the main body of the programmes iz devoted to the

tion of the total load carried by the disc and also the wvertic

under the centre and under the edge or corner of the disc.

3.3.5 The stability and accuracy of the solution

The accuracy of the results of the numerical analysiz would depsend

on how accurately the integrals are replaced by the quadraturs form

Simpson's rule and trapezoidal rules are adeopted in the present ans

city. For the circular disc s

mainly for their simpl

o ., . . . . . ; -
180" in the 8§ direction. The disc is divided inte n number of g

=y
%

rings. The calculated load for n = 5 is found to be

that obtained for n = 10 and about 6% higher than that ocbtained

his chapter the diszc is

s
[
B3
[p]
[
-
(o]
H
Y
(=]
( ot
[ui
o
]
[
[
L]
o
[a-!
t
7]
o
(i
e
[
[
o
[
¢
o
b
]
iy

[

into 10 annular rings. The resulting system of equations

iged by predominant disgonal elements which suggest a good
the solution.

% =2

The problem of the circular disc within a finite lsyer is

. f e . o . . .
by choosing 50 divisions to represent 1807 in the 8 direction for

integration., The disc ig divided into 10 znnular ringe and the rigid
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baze area is azssumed to be a finite ares with a diameter = 10 times the

diameter of the disc. The increase in ares of the rigid layer beyond

10 times the diazmeter of the disc seemed to produce no noticesbh

in the calculated load. The rigid base area is divided into
rings.
Figures (3.6 and (3.7 which are independent of Poisson's ratio

show the results of the present analysis and the analytical solution for

1

a circular disc on the surface of the half space (Boussineszq, 1885},

The maximum difference is gbout 5% for the vertical stress immed

Ho
‘.“.7‘
s

[

below the centre of the disc. The caglculated load is about 1% h
than the corresponding analytical solutien.

For the rectangular disc there is a quadrantal symmetry.

quadrant 10 intervals in &, x direction and 10 intervals in n, vy

appears to be the optimum from the point of view of accuracy and computer
store and time. This leads to 400 elements representing the rectangular

disc surfsce. The local integration (i.e. integration over

on which the intensity is acting) was done by subdividing the

a further 100 dimensions in both directions in such a manner that a

Ui

symmetrical region of exclusion is left out (see Chapter 2.

The problem of the rectangular disc within a finite

by choosing the same number of elsments to
face. The dimensions of the rigid base sre assumed to be 10 times the
dimensions of the rigid rectangular disc.

ven for rigid re

o

No analytical szolution is available

square disc on the surface of 3 half spacs. The numerical

comparad with solutions for equivale

]

(Schiffman and Aggarwala, 1961).
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stresses for an elliptical disc with semi-axes a' and b? chosen to givs

a'/a = b*/b and Ta’b? = 4ab. The agreement is sufficiently ¢

indicate the accuracy of the numesrical sclution,

3.4 The results of the anzlysis

The results of the analysis are presented in Figures (3.9) to (2.21)
below. Figures (3.,9) to (3.14) refer to rigid circular discs for whick
the following points are of interest.

Figures (3.9.1) and (3.9.2) show the effect on the verticsl centre=
line stresses of varying the buriazl depth (¢}, Poisson's ratio {(u) for =z
disc embedded within a half space. The effect of Poisson’s ratio is
shown to be negligible and for the depths of burial greater than four
disc diameters the stress becomes essentially independent of burial depth
also. Similar results are obtained for the vertical stress under the
edge of the disc and these are shown in Figures (3.10.1) and (3.10.20.
The vertical stresses under the edge of the disc are higher (theoretically
infinite at the edge) than those under the centreline, near the disc
surface but are considerably lower than those under the centreline beyond
a depth of typically a/2.

The load displacement characteristics of the disc are presented in

Figure (3.11.1) as a dimensionless stiffness (P/2GaW) related to the

burial depth and Poisson’s ratio. The stiffness is seen to be dependent
on Poisson's ratio and show very little increase with the burial depth
beyond about four diasmeters. Figure (3.11.2) shows the ratic of ths
stiffness of the buried disc to that of s surface disc. At burisl
depths greater than around four diameters this ratic is approximately

two for typical valueg of Poisson's ratio.

It has been mentioned before that in the present analysis the disc
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is assumed to be completsly bonded vertically to

i

therefore, in general, tensile stresses will

&3

of the disc. Whereas the unbonded solution will

distribution different from those cslculsted here,

the stiffness of the bonded system w

of the unbonded system.

Figures (3.12) to {(2.14) refer to a rigid disc within zu

layer, Figure (3.12.1) shows the contact pressure distrib:

surface disc, The contact pressure distributi ig dependent on both
the Poisson’s ratio and the ratio of depth of the elastic layar to the

radius of the disc. The contact pressure distribution approaches ths

digtribution shown in Figure (3.6) for deeper layer. Figure (
shows the vertical stressz wander the centre of z rigid circulsr disc
founded on the surface of an elastic layer. The vertical stress dis-

shown in

e

tribution appear to be szignificantly different from tho:

Figures (3.9.1) and (3.9.2) for the discs on the surface {¢/2s =
though there is a trend to approach the same distribution

layer. The vertical stresses seemed to be depandent on

ratio which ig different from what is observed for a disc
of an elastic half space.

Figure (3.13) shows the vertical stress distribution under the

4

centreline of an embedded disc within an elastic layer of =

depth to diameter of disc ratios. The stresses are higher than

found for the corresponding disgcs within a half gpace. Figu:
shows that effect of H/2a ratio and ¢f2a on the nondimenziocnal stiffn

The presence of a rigid layer incressesz the stiffness of the

which approaches the half space solution for deeper layer.
Figures {(3.15) to {(3.21) refer to the solution for a ractangular

disc. Figure (3.15) shows the contact pressure contours for two
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different rectangular discs, which illustrate both their aspproximately
elliptical form over a lsrge portion of the disc area and rapid approach

to two dimensional strip solution as a/b ratio decresses. The rectangular
disc solution approximates to that for a strip for values of a/b ¢ 1/6
(Figure 3.16.5), Calculated values of the vertical stresses under the
centre for a/b = 1/10 shows a variation of lezs than 5% from that of

af/b = 1/6 values.

Figures (3.16.1) to {3.16.5) give the vertical centreline stresses
under rectangular discs at various depths of burial over the range
afb=1to L/6 (for uw = G.5). As for the circular digcs the strescsas
are insensitive to the value of Poisson®s ratio. Figures (3.17.1) to
(3.17.5) give similar results for the vertical stress under the corners
of the discs. It is interesting to note that the effect of increasing
the burial depth dies out less rapidly as a/b values decreases. A com-
prehensive set of dimensionless stiffness curves are given in Figure
(3.18) for a range of disc shapes, burial depths and ¥ values.

Figures (3.19) to (3.21) refer to the rectangular discs within s

finite elastic layer. Figure (3.19) shows the verticsl stress distribu-

tion under a rectangular disc (a/b = 2/3) for two depths of finite
The vertical stresses are higher and of different distributilon to thoue
of the half space solutions. The Poizson's ratio is shown to have small
effect on the stress distribution. Figure (3.20) shows the vertical
stresses under a buried diszc. The results are shown for U = 0.5 and

b =0 cases only. Here again the vertical stresses are higher than
those solutions for the disce buried within a half space. Figure (1.21)
shows the non~-dimenszional stiffness of a rectangular disc {(a/b = 2/3)

plotted against H/a for a surface disc and an embedded disc (¢/a = 4)

for two values of Poisson®g ratio, The effect of this is small beyond
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H/a = 16 for 4 = 0 and 30 for u = 0.5.

(3)

(4)

(5)

(6)

(73

o~
o]
ot

“The limiting stiffness valuss in these case

Conclusions

o
[{:]
[a N
£y
"
i8]
;%
=
o
o
B

A genersl method of soluticon has been presented for th

displacement fields due to ths

Wi

tion of the complete stres:
displacement of g rigid bonded disc of arbitrary shape both within

a half space and within z finite elastic layer-

The results obtainad have been compared with the earlier analvticsi
solutions for surface discs, where possible and good agreement
found.

Graphs have been prepared illustrating values of vertical centre

line and edge stresses and vertical stiffnesses for rigid

discs at different depths.

{3}
3

The strezses and stiffnesses remain essentially unchanged whaen the

depth of buriszl is increaszed beyond about 4 diameters and stiffness

at this depth is sbout twice the surface value for a d:

within a hglf space.

The effect of layer thickness gppear to have con

!..x»»

oun the vertical stress distribu
The stiffness of a disc within s half space iz less than thz
corresponding disc within a finite layer.

The stiffness

within 10% of the half gpace solution as the depth below the dizc

exceeds eight diameters.

Similar curves sre also presented for rigid rectang

geometry, depth of elastic layer and Poisson's

The vertical stresszes in the hzlf space becomes
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independent of the resulting disc loading stress for diszc ge

having a/b < 1/6, which therefore corresponds approximately ts the

two dimensional strip solution,
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An analysis of single axially loaded

plain and under-veamed piles



The load displacement characteristics of single axially loaded piles
and piers are described in this chapter. The elastic response of both
rigid and compressible piles embedded in a homogenecus isotropic elastic
half space and a finite layer underlain by a rigid smooth base has been
obtained by the use of an alogorithm based on integral esquation methed

described in Chapter 2.

The method has been extended to analyse local slip between the
and surrounding soil. The results of the analysis ave compared with
previously published experimental data and are presented as a series of
graphs showing the effects of variation of the ratios of pile length to
diameter, modulus of elasticity of piles to that of the soil, pile length

to thickness of the elastic layer and the effecis of the base enlargement

on the load displacement characteristics.
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4.2 Gemeral

The analysis of a single, compressible pile embedded within both an

o

elastic half space and & finite elastic layer which is underlain by & rigid
base, 1 presented below under the following assumptions:
(1) Both the soil and the pile material are elastic. 1sotroplc
homogeneous.
(11) The pile 1s bonded with the medium at the pile medium interface.

(i11) The elastic soil layer is underlain by a rigid and smooth

CI,‘:
£
H
ey,

‘aced layer.

The base of the pile is assumed to be smooth.

-y

(iv
Assumption (i) iz an idealisation of stress—-sirain response of real soil.
However, the results of a long series of experiments at the Waterways Experi-
mental Station, summarised by Turnbul et al (1961} have shown that for

saturated clays, quite close agreement between experimentally observed

s

ds and the values computed from elastic solurions

o

ot

stresses under surface

based on Bussinesq's analysis {(Boussinesq, 1883). There 1s therefore some

empting to cobuain useful predictions of load displace~

justification £

ed on elastic theory. Assumption {(i1)

4a3
o

W

=
£

ment characteristics of piles

implies no slip at the pile=-socil interface. In practice, howsver, the

shear stress at the pile = soil interface will have a maximum limit depend-
ing on various factors. such as, method of construction. roughness of the

pile surface stc, {Tomlinson. 1957). The present analysis hag been

extended to take the local slip between the pile and the soil medium 1nto

considerations, The effects of assumpiions {111} and {(1v) have besn dis-
cussed already in Chapter 3.

4.3  Analvtical formulat: n axially loaded single pile

€ for
embedded within a hali spac

A cy gth L and radius 'z’ 1s embedded in an

b«.?(
!...A
o
o N
¥
I
5
i
o
o
kvq‘
ot
M
8]
by
o
1]
o



elastic, isotropic half space defined by elastic constants G and u as

shown in Figure {(4.1). if ¢ ig the vertical shaft stress intensity at

a depth ¢ below the surface, the vertical and radial displacements
owgiﬁgz) = §y a @S inlicAzljz} sc b de (4 1)
Su, (r,2) = ! a., KU.{c.r..z) 8¢}t coso, d8& (4.2
OFLQ ) | g { 1CesTys ) } cos 1 (4.2)

.23 and Kﬁzfsﬁz?:z} can be cbtained from the first and
A

zecond equation respectively, of equations (2.4) by substituting

£, =1 + a = Zra cosb_ for r,
i [
o, is the angle between T and the outward normal to a surface

at B {(Figure, 4.1)

The total wvertical and vadial displacements at B{r.z) due to &ll such

L 2s
wo{r,z} = | ; a. Kyéggﬁrigz} ds dc (4.3
and ‘
U (z.%) é f a. RU.{c.v..2) cosc, d&. dc (4 4
L ! i i L
o007
Similarly 1f we consider %y, EO be the vesultant vertical sivess (s#s

Figure {(4,73the wartical and the vadial displacements at Bir.z) dus

Y
L

the base intensit be expressed by analogy with (4.3) and (4.4} as.

e

boi2r
w.lr.2}y = | | $, . £ (4 5)
LT ! » h J
:b i
= 0 Dy € KUziigfggz} cosa, dg de (4.6



Where sz(Lgrzgz) and KU2<L;X2;Z) can be obtained by substituting ¢ = L

and rzz = 12

Z

+ g7 = Zre cos8_ for r in the first and the second
i

equation respectively, of equations (2.4},

G

2

(Figure, 4.2)-

is the angle between r, and the outward normal to surface at B

Now if we apply a "fictitious radial stress’ @r over the pile shaft, the

vertical and vadial displacemen:s at B{r,z) due to ¢, can be cbtained by

integrating over the pile shaft surface, Mindlin's solution for an embedded

point load acting parallel to the surface of an elastic half gpace

(equations, 2.2 and

/L

&

W3(r$z}

it

u3(r;2> |

Where

T =z ==
KLS(cpﬂwz}

2.3).

do

The displacements are given by (Figure, 4.3):

@rc Kw3(czr§z) dz de (4.7)
¢r KUS(csriz) dg do (4.8

lc.r,2z) and KWB(QQEQZ} can be obtained from first

three equations respectively, of equations (2.2) by substituting

% = ¢ Cos®
o] £

Thus the total vertical and

= g and vy =t Sinb .
O [

radial displacements st a point B(r.,z) due to

a pile loaded with an axial load are given bys

):} 4
(L
*
b
+ |
e

o

KW, (¢,

1 hr1§z} d8 dc

a, KWSQCQZ:Z} de dc {4 .9

[a

KW, (L,7,,2) df de
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Ur,z) = | | 9. 8. KU, {c,r ,z) Cosc, d¢ dc
S PR i £ L
{i‘ r2.
L @zw a. KUg(cgrﬁz} ds de {4.10)
b (2
| o Eo K'ZCL rzﬁz) ds de

Equations (4.9) and (4,10) sre valid everywhere within the hali space
(see Chapter 2) and satisfy the boundary conditions:
B{r.0), o =g =g
(4.11)

B{r,L), ¢ =0, 0<71 <b.

Equations (4.9) and (4.10) can now be used to calculate the displacement
components at any point within the half space, if the distribution of
@SQ @r and 9, are known from the prescribed displacement boundary con-

ditions of the pile~scil interface.

4.4  Selution for an axially loaded plain and under-reamed pile

By bringing the field point B{r,z) onto the pile-soil interface we
can obtain integral equations for displacements of the pile-soil inter-
face., A simple numerical treatment of these integral egquations has
been outlined previously (Chapter 2), in which the pile shaft is divided
inte n similar segments of thickness 61 and the base in 'm’ rings each
of annular radius 625 The vertical and the radial displacements of any

element (i) on the shaft can then be written in a discrete linear form

(see Appendix 1) as:

(W
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i
R SR f
Ug) = L g &KW+
i 3=l ] ]

o3
[ =

‘(¢r) (KRU)ij +

1" j ’

1 ]
where 1 = 1, 2, 3....n.

Similarly the vertical base displacements (WE) are given by:

. (@b)j (KBB)ij (4.14)

where 1 =1, 2,.,..m.

The integrals involved in the calculation of the coefficients (KSS)ij¢

(KRS)ij etc. (except (KSS)ﬁ9 (KRU)ii% (KBB)ii) are proper integrals of
continuous functions and are evaluated by Simpsons rule. The integrals
involved in calculation of the coefficients (KSS)iiﬁ (KRU)ii and (KBB)ii
are singular integrals and are evaluated by a fine mesh quadrature leaving
a symmetric region of exclusion around the singularity (see Chapter 2).
The mesh size was reduced until the coefficients became essentially

independent of the mesh size.

Equations (4.12), (4.13) and (4.14) may be written in matyix notation as ¢

;in; |Kss| [KRS| [KBS| | §¢Sé
Lo
g e 1 ksl (krUl (kBU | g - :
. (Ug) &= | [KSUJ [KRUJ |KBUJ o b (4:15)
¢ ;
{ b e e L.
‘ ; wb ]; ‘ LKSBJ | KRB | LKBBJ B J @b ;

where, {Ws}g {US}3 {®S} and {@r} are n x 1 vectors for the given
vertical displacements of the shaft elements, the radial displacements

of the shaft elements, the unknown shear stress and the fictitious radial
stress at the pile-soil interface respectively.

{wb}, {¢b} are m x 1 vectors for given vertical base displacements and

the resultant stress normal to the base area of the pile respectively.
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|Kss |, jﬁRng {?S@j; {?Rﬁj are n x n matrices,
|KSB|, |KRB| are m x n matrices,
|kBS|, |KBU| are n x n matrices,

|KBB | is a m x m matrix of coefficients.

Fi Sj i@sf
; -
{v_} = |K]| {qor}, (4.16)
H, ) (9, ]
"‘Wbi/ Ly s
where lkss] [krs] [KBs]|
™. E - = = = o .
K| = | |KSU]| KRU KB ! , a (2n+m)2 matrix of coefficients.
29 § ol - . I
[ . I
| RsB| [kRm| [KBB]|
[

This system of linear algebraic equation can be solved for the unknowns

¢ ]

{¢S}, {®r}, {¢b} if the displacements {WS}; {ug? and {W,_ } are obtained

g
[

b
from the solution of the pile domain

For a rigid pile, the vertical displacements of all points on the

&

shaft and the base are equal to the displacement of the head of the pile:




the stresses at B{r,z) 25 the point B approaches vanizhingly close to

]
e
|—I
I
D
L
T
&
.y
e+
o
3
o

Thus when the distribution of ¢ and ¢y s OVer th
pile base respectively, have bsen obtained for prescribgd displacement
boundary conditions for a rigid pile, the load PZ carried by the pile
at any depth below the surface is found from

V4 b
P, = { PRIEN @Sc de + [ 2TE, ¢b° de (4.1

Z 4 i
L Q

found
o0
S

The total load P required to produce unit displacement of the head of
the rigid pile is given by substituting Z = O in equation (4.18),
The soluticn from equation (4,16) and (4.17) will, if applied to a com-

sible pile, lead to an underestimation of the displacement of the

(]

pre:
pile hzad for a given load.
If the pile is sssumad to be perfectly bonded to the medium, the

vertical digplacement of a shaft element at a depth Z, will differ from

that szt a depth {Z + dZ} by an amount equal to the elastic comprassion
of the pile length dZ {Figure, 4.4, Since for any pile section ths
vertical direct stress is much greater than other stresses, then to 3

good approximation we can write:

P
Wz S ' (o1
— = P e lh, 5
37 AR ° “pr Bz ¢ @
P P
where
Ap = Cross-sectional sreas of the pile shaft,
E = Young's modulus of the pile material,
p
up = Poissgon's ratio of the pile materiagl.

Equation (4.19) can be written in finite difference form and uszed in

an iterative schems for the solution for & compressible pile z3 follows:
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where {¢l}

[ o]
¥

(iv)

In what follows, the foregoing method of

consider

equation




wes of {¢S} and m
discrete approximate vazlues of { ¢} once the vertical displacement boundary

e are incorporatad as shown

previously.

bob,l programme for solution of a single

z half space

The computer programme discussed below has been developed to solve

cribed in the precesding sections. The lisgting of the

programme is given in Banerjee (1969). The programme is essentially designed

Lowing operations:

(i} Read data.

fficients of the matrices {kﬂ and iksla

ke

(ii) Calculats co

iy
;

{iii) Solve for the unknowng {®§}9 {¢b} and {¢r}@

(iv) oad for a given head displacement.
(v) Calculate the stresses and displacements at a given radial

distance from the pile surface.

The operations listed carried out by s set of procedures

described below {for listing of these procedurssz see Banerjee , 1969),
I 5

-~
=N
[

Procedure 'Print array?

o~
.
)\Jn

S

Procedure ‘'inp?

(iii) Procedure ?Crout 2°7
{(iv) Procedure 'Sclve’
{v) Procedure ‘'Simpsgont

have been discuszssed in C

This procedure multiplies a matrix A [Ny X No| and 2 matrix

B[N

N, x Ngj to give g matrix C [Nl X Ngja The matrices A and B

remain unalteréd.
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carried by

stresses at

caleculates the coefficients of @S and @b of the

and also similar integrals

=
P
N
£
o
S

system of

frd
E} i

valuation of definite integrals

et
.
o
[
(5}

for the st

ield point do not coincide).

o,
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o
]
[
W
[ns
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M
formend
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&3]
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Re)
&
e
3
=3
Jab]
]
=9
(23
b
[

ing procedure "Simpson’.

(xi}
procedures "Elehorz! and 'Elevert?
to calculate the coefficients of the matrices [Kj and [KS{G

vision 1 made in this procedure to calculate e principal wvaluse
Provi d this proced £ leulate the p pal !
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4.4.2  Convergence of

jux
4]

The accuracy of th

of the integrals listed in Appendix (1).

mpson's rule and the trapezoidal rule. Becauge of the axial

frete

by 5
symmetry of the problem a direct integration with respsct to 0 was

carried out using Simpsonts rule, choosing 50 divizions to represent

O L . o . ; P
180" in 6 direction. The principsl wvaz

raluated by subdividing the individual segments of the
50 divisions.  The integrals were then svaluated by lsaving out a

symmetric region of excliusion, small enough not to influence the results

(see Chapter 2}.
The pile chaft was 10 segments and the base into 5
annular rings. Thus of equations solved was 25 for a

rigorous analysis and Pile displacemente

for a given load

were found to be

by using 50 equa

An exactly simi.

4. 4,.3 Results of the

loaded plain and

under-reamed pil
found that the

those obtained
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are given in Figures (4.5.1) to (4.5.4). Figure {4.5.1) =zhows th
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displacement u(z,z) to be of the order of 5

of the head of the pi

the approximate analysis. Tha

bottom of the shaft

o3

3

ile in the rigor:

of course, ide

foka

the displscement is towards the

7

rigid pile plotted in nondimeons
P

shear stress at ths pi the total load acting

pile, d = diameter

h

distribution o©
identical at the bottom of the pile but differ in the upper portioc

aleculsat

of 1/50th of

(compressi
shows the shear
Poisson's ratio

the approximate

into calculation).

The shear stre

loads are within 6%,
istics for practicsl

prezence of the pile within the half space, appear to be adequate.

shear stress at the pile face for

form as v/ (P/ndlL), where T = the

ed

o

o]

of the order of

are of the ordex




from the approximsts

compregsible plain

under-reamed piles,

which covers the vange of macerial properties of practical interest.

Figures {4.6.27 show the effect of length to dismeter
ratio and A on the sghear stress distribution at the shaft face. For
the shorter pile the effect of 1 iz seen to bes negligible and the st

ozely with that obtained by more approximate

results. However, the shear

the more

Iy for a2 compresgsible pile and

underreamed pi

< 63, Wherzaa,

S
displacements te be



ile under the szme load.
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¥

of an under-resmed pile
7 p

In all cases the effect of A on R ie seen to be very small (6000 ¢ A £ =),

ed by enlarging

= 80} and

centage of load

shows the pe

ﬂ

DBIDS = 4, Figures {(4,11.1) to (4.

shaft dismeter ratiocs. It can be

taken by the base

seen from these Figures ntages gained by under-reaming ars

[

limited to piles with ess than 20 and Base to

with current practice

shaft dismeter ratios

o

{(Whitaker and Cooke,

problem of an axia

The following assumptions b

involved

o«

introduction of radisl displacement compatitibility

o
o

oo
L
o
o)
(g}
H
o+
e
Ty

not produce any major al

ad displacemsent response, only verticsl

interface is con-

sl

o1

{(ii) The surface

sity ¢ on 3

r

Thus if we distribute g

surface (H > L), the

horizontal surface at a depth H below

vertical displacement at Blr,z) dus to ¥ can be obtained asz:
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e A
w4(r,z) = l ] Pe €. KW4 (H,rz,z) ds de (4.20)

The integral (4.21) is cobtained by substituting b = =, 28 = and L =H

in equation (4.53) dentical to the integral on the right hand

the total vertical displacement at Blr,z)

side of equation

due to an axially lozded pile can be written as
T

} J 9 - € sziLng,z) db ge (4,22
¢ 0O
[ [
+ | Vo €. KW, (H,r,,z) db dc
o O

n the ordinary sense every-

Lo
2
g
N
o
x
e
i
[
N
o

The integral repre

gztisfies the following boundary

63

where within the finite

conditions:
Bir,o} , g = g = 0
KR 3¥ o3 72 rz >
B{r,L} o<t sh, o = 03
< ER P H rz 3
B{ ) < =
Bir,H), S Orz O.

As before if we replace the integrals in equation (4.22) in a discrete

surface, m annular rings over base

linear form over n segments of

a large enough ares over the

surface and s annular rings to

n {see Appendix 1):

[

surface of the rigid laver, wa obts
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where (WS} is the verticsl displacement o
i
shaft, 1 =1, 2,cs-515

Similarliv the verticzl bzse displacements (W, ) are given by:
y P Y & y

4
n m =
W,) = Yy (KSBY.. + Y (4. ) (KBB),,+ Y (y), (KLB),. (L4.24)
{ b . le((ps J ( i3 J:[dl ¢b j ij J£1 Y 30 'lJ 5

where i =1, 2,....m; and the vertical displacemants (wx; are given
i

I p~ntn

N
-
BN
a
s
b

h
o
.51
,

n m
(W) = L (o) (KsLy, + [ (¢ (KBL)  +

where 1 =1, 2,....58.

The method of evsluation of the coefficients {aab;ija {KBsﬁijg {KSB}ij

and (KBB),, have besn described previously, The integrals involved in
1 £ o

determining the coefficients (XSL} ,, (KBL), ,, (KLS},, and (KLB)},, ar=
i3 ij ij ij

definite integraliz of continucus functions and they are evaluated dirsctly

-

by Simpson®s rule. determining the coefficisnts

of (KLL}ij are singular for £ = j and they are evaluated by a fins mesh

aving a symmetric region of exclusion arcund the singularity.

[l

quadrature, 1

Equations (4.23), (4.24) znd (4.25) can be written in matrix notation as:
{w,} kss | lkss| [kis|) {eg})

ey o= KSR | |KBB| |KLB |

e

-

et
i
B
o

w1 KSL| [KBL| [KLL|| {y}
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Where

‘{Wﬁ}, {y} are s x 1 vectors for the given vertical diszplacements of
the rigid layer {{Wi} = 0} and the fictitious wvertical stresg in-

tensity on the surface of the rigid laysr, respectively,

EgLST, |KLB|, [KSL], [gBLJ and |[KIL] are n x 5, m x ¢, s x n,

w

s xm, & x § matrices of coefficients respectively.

All other matrices have been defined previously.
Equation (4.26) represents {n + m + s) unknowns. Having obtained {¢8}3
'{éb},'{w} the total loads for the prescribed displacement boundary con-
ditions for rigid pile and compressible pile, the total load is obtained

from equation {(4.18.

4.5.1  Numerical analvsis and discussion of the results

The computer programme devsloped for the anaiyvsis of plain and under-

cugsad in Chapter 5 in conmnection with the analysis of

¢3!

reamed piles ig di
free standing pile groups of arbitrary spacing in which the analysis of
a single pile becomes a particular case. The results of the analysis
of axislly loaded single compressible plain and under-reamed piles are
shown in Figures (4.12,1) and {4.12.2). These are calculated by using
10 segments over the pile shaft surface, 5 annular rings over the base
area of the pile and 20 annular rings over a radius equal to the depth of
the elastic layer, to represent the surface of the rigid layver.
Solutions obtained frowm solution of these 353 squations wers compared
with those obtained by using 70 equations {i.e. by doubling the number
of elements to represent the pile-zoil interface and the surfzce of the
rigid layer) and found to be within 5%.

Figure (4.12.1) shows the non-dimensional stiffness plotted against

e

H/L for a plain pile. The shape of the curves is not significantly
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In the analysis described above assumption iz made that the pile is

bonded to the medium and the s0il is capable of resisting any state of

[
&
Fedo

stress which may be oped around the loaded pile. However, real

strength and the interface between the pil

have a finite

the surrounding soil has g finite ahdesive strength, depending on

factors, such as, method of construction, variation of the

and moisture content azfter the construction =tc. When the

o

at the shaft-goil

An approximate

modification of the

The load and 4

Any further increzs
will cause a redistribution of the interface stresses amongst the remain-
ing elements, where elasstic conditions prevail

been described by

Poulos (19695} for
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for a pile in sand and D*Appolonia and Romualdi (1963), Mattes and Poulos
(1969b) for end bearing piles. The analysis presented by these writers
was based on the assumption that purely elastic conditions prewvail at the

base of the pile until the base load of the pile attained the ultimate

end bearing load. The analysis described below is essentially identicsl

o

with the one described sbove with a step by step yielding of the rigid

pile base included.

ements of discrete pile-

Equztion {4.20) can be written for (n + m)

soil interface as

{n+m)
(W, =} (KS)y; (0 s 151, 2,000 (mim); (4.27)
=1

where (W)i are the specified vertical displacements of n elements of
discrete shaft-soil interface and m elements of discrete base-s0il

interface

(¢), are the n unknown shear stress intensities qé over the shaft-

soll interfazce and m unknown verticsl stress ¢b over the base soil
interface.

If we define the limiting strezs at the pile-soil interface as (St) for

i
n elements of shaft-zoil interfzce and m elements of base~-soil interface:
P th s ] 2 3
and 1if p element of pile-so0il interface is brought to a state of
imiting stress {St} we can modify equation (4.27) to:
{ntm)
Wy, = ) KSH {¢), = (K8). + (K8}, (8 (46,287
(W), L ( dig (O - (RS0 FRS), (S . J
J—e P
where 1 = 1,2,c...{p=1] 1, (pt2h.000{mtmy,

Equation (4.28) represents a set of {(ntm-1) equations that can be solved
for (ntm-1} unknowns. Thiz procesg of modification of the elzstic
analysis is repeated until all the elemsnts of the shaft-soil interface
and base-soil interface have attained {St} state of stress. The

i
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limiting shaft-shear

from equations (1.4)
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L/D = 50. A trapezoidal distribution of shesar strength as shown in
Figure {4.13.1} is assumed for these results. It is interesting to

note that the theoretical load displacement curves are

(Pf?u}z?“057g Figure (4.12.2) shows a similsr curve for an under-reamed
pile (L/D = 15, "B/D, = 2) for a triangular distribution of shear strength

=1

over the pile length, plain pile is 3

comparison. The load displacement curve for a plain pile is linear

up to (P/P_ ). 0.7 but that for the under-reamed pi Ly curved
b

above (P/P } = Ock. For a giv ratio the settlement of sn under-

[ s

reamed pile is more than that of a plain pile of the same L/D ratis, which

of Whitsker and Cocke (1966).

he test

T+

agress with

‘f

4.7. Comparison with the lsborstory and field test results

of £

,_,
@
5
£E

C‘k

A series

iw

on bored piles with and without enlargad

Lidated London Clay were carried out by

bases in stiff fie

Whitaker and C es (4.14.1) to (4.14.3) show the com-

parison betwesn th snd the theoretical predictions. For

the purpose of comparison the following relevant parameters were assumeds
Mean L/D = 15, Mesn BED§ for underreamed p = 2

o = 045, g =w. N 22 = 0,75 and N_ = 9 (Whitaker and Cooke, 1966},

uniform cohesion over the pile length.

Figure (4.14.1) shows the percentage of load taken by the base for plain

and under-reamed 0.5. One test result given

by Sowers {1961} for z plzin pile under wery similar conditions is also

plotted in the zame figure.

are in good agresment. The theoretical losd-displacement relationships

for plain and under-reame



curves in Figure (4.14.2), in which the theoretical results agree reasonably
with the mean experimental values only up to (PfPu)ﬁz 0.4, The comparison
between the theoretical and mean experimental ratios of (P/Pu) values for an
under-reamed pile to that of a plain pile for various settlement to diameter
ratios 1s shown in Figure (4.14.3). The theoretical results and the mean
observed field results sufficiently close to suggest that the behaviour of
under—reamed piles is predictable provided the relevant elastic parameters
are obtained from the load tests on single pile. The same figure also shows
the theoretical and mean experimental average shaft stress plotted against
mean shaft strain for both plain and under-reamed piles which are alsoc in

good agreement.

4,8 Conclusion

(i) A rigorous elastic analysis of bonded compressible plain and
under-reamed piles has been presented. It has been shown
that for the analysis of load-displacement characteristics
for practical uses, the approximate analysis which ignores
the presence of the pile within the half space, appears to
be adequate. Whereas if the pile-soil interface stresses
are required then the rigorvous analysis is needed.

(11) The amount of load taken by the base for a practical range
of length to diameter ratios (10 < L/D < 30) for a plain pile
is only about 10%Z of the total load.

(i11) Settlement of a compressible pile may be up to 50% higher
than that of a rigid pile under the same load. Pile com-
pressibility is of consequencz only for piles with length te
diameter ratios greater than 20.

(iv) The reduction in settlement gained by under-reaming are
limited to piles with length to diameter ratios between 10
and 20 and DB/DS < 3.
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(v)

(vii)

The presence of z rigid layer underneath
but beyond H/L = 5 the presence of a rigid

no noticesble change in tl
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fdo
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o
fie o

it was found that

The results of the analysis have been compared with experi

description of ¢

with the experim

to predict accarately
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An snalysis of pile groups
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single piles.

show the relative eoffeacts

to diameter, length of the pi

1 and the geomestry of th

compressibility of the pile to that of the soil

group.

The

and full scale field tests, with reasonable agresment in most cac
A method of predicting the load displacement bebaviocur of a pils

Ea
i

group based on field test data for eingle pil
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It has been found from the analysis of

&)

that the theoretical predictions are in general sgreement with ths

behaviour. The theoretical analy

quantitative predictionz of pile d

success of the elastic theory in a

therefore suggests that, it may aigoc be use

of pile groups.

3]

ysis for a gingle pile described in

fount

The ana

s

directly to deal with general pile groups. The following approximat

are introduced in order to reduce the number of

volved in the analysis

Py
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Since the introduct




to be reasonable. Assumption (iv) implieg that all pilas in ths

settle equally and the cap is not in contact with the ground surfz

Though the condition of fell rigidity iz more likely to scocur in practice,

free-standing pile groups are much lesg common.

P

solution

zoil the problem becomes more complex and the

sideration of displacement compatibility between the pils

piles. This problem is analysed in the next Chapter.

5.3 Development of the analysis

We define two systems of coordinates,

system defined by {0980950> and the global cartesian co-ordinate system

defined by (x,y,z); both systems have their origins at the zu
(see Figure 5.1). If we distribute intensities ¢a§c,6C} along the chaft-
w3 3

soil interface ¢b§sg,6 3 normal to the base

L8]

normal to the surface of the rigid layer 2t a depth H b

we can write an integral repregentation for the

a point B(x,y,z) within the finite elastic layer due to 2 number (N

arbitrarily spaced piles {Figure 3.1}, by anziogy with esquation (4.22]
and (3.25), as:
™~ }-_z ,,2‘
Ny ! P
wix,y,z) = ) % @S{cse ) o 8. KW, {(c r, ,z) ai} c
== ) - -
P Lo o
b 27 %
P
+ (e e KW {L,r_ ,z}) d6 e 5.4
! J ‘)«b{t@a 8&:) o ;« ;r;s/f d a dti}g r
o o
fC( ’VCC
+ | Pyde,n) KWix,y,z,g,n,H) d& dn
e e
Where
2 2 1% - 2
= =+ - . a Cosb r, = + e - 2r .t
ry B@ a zr‘ a Cosb |, 5 g? € o€
2 2 €
ro= (x-x )"+ (y -y



4

x and yp are the co-ordinates of the local crigin with
p

the global axes.

The intensities ¢€ and ¢§ are functionz of (c,6_ ) and {eg,eoé respectively
F

and allowing for this would again increase the number of simultanes

equations

to be solved, therefore p ¢E are approximated by equivalent rotationally
3
symmetric distributions about the local axes. It is

imations will introduce negligible errors in the calculated displacs

loads for the pile spacings commonly encountered in practice (S/D = 2.5).

Thus we can write equation (5.1) as:
L
N 5 rZ
w(x,y,z) = } ( ¢ (cia.| KW (c,ry,2) d8_ dc
p:l J s ) e S
o o

f
b (L
+ ( Cf)b(ﬂ > f EO‘ K}}\‘IZ\ 2,}2 dﬁa dg’(\

]

!

o |

‘o ‘o J

(o g o ,

+ ] (f;(gsﬂf Kwést9£’3€sﬁsﬁ§ dci d'ﬂ
J /
=00 =0

5.4  Analysis of a cymmetrical pile group

2

o

group in which

fodo

A symmetrical pile group may be dafined as a p

are spaced equally around the circumference of a circle, conssquently 1 pi

displaces equally and carries the same load, For such & cgse we can write

equation (5.2) as:

L 2 b 27

(1 . [ 1] ,
wix,y,2) = | ¢ .a.| KW (c,r,z) do de + | ¢ | e KW,(L,r,,z) dg de_

| E ] & ; >

o o "o o

L Pas b 27
N b \ 4: (
+ ) ;E b, =a I Kwiic,gsz; dg c + 9, | e Kwiii;fgﬁz dg, ds
p—_zz ijg > ﬂO - ,Q ﬂ,.,s o - e

4
)
By bringing the field point B(x,y,z) onto the = firzen
pile of the group we obtzin an integral equati £ ek

pile-soil interface. The first two integrals of esquation {5

analogous to the first two integrals of equation (4.22}. As

cretising the integrals over n segments of the shaft surface,

[



over the base area and s rectangular or square elements to represent a

large enough area over the surface of the rigid layer, we obtain:

n - . NS - m . NS
© N 1. ; N
wh = T 6b Jasot + 1 ass? ] + Lol [aast )
i =1 °J L p=2 AR S p=2
%
+ ) (¢), (KLS),,
L 7
=1 3 1]
where 1 = 1,2,.0:-0-
Similarly
n . NS m
1 -, 1 . N T 1
(W), Z (¢ {KSB)", + Z {KSB}pL? + ) (@1; SkKBB} o+
b i N 8”7, i - i, 2. bt | i
=L 3L p=2 Ji 57

N

where 1 = 1,2,....m; and the vertical displacements {Wz} are given
i
ST R A B S s
= ¥ (¢ [(KSLY + ) 3L) + ) (&Y NUreLYt o+
e A A S L A R
1 I+ J p—s -1 i 1 pe
where i
In
of

1
(41),

1 .
(@b39 {4y} are th

of pile ne. 1 and the fictitiocus vertical stress intensity on
face of the rigid layer respectively.

IS S i S e 1
(KSS) ™, (KBS)", (KSB) «etc. are the coefficients for displ
pile no., 1 due to the stress intensities acting on its surfac

1

kA

the pile no. due to the stress intensities acting on the

159
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th
the p~ pile.
NS = number of piles in the symmetrical group.

(RLS ), (KLB), (KLL) azre defined in Chapter 4.

The integrals involved in evaluation of the coeff

1 . 1
(KSB)™ ., and (KBB) .. are
ij ij
The integrals involved in svaluating the coefficients of (KLL}, 6 zare

identical to those of equation (3.25). The other coeifficients in t

above set of equations are calculated from integrsls taken over non loc

regions (i.e. regions at some digtance awsy from the points on ths

of pile no. 1 and the surface of the rigid layer). These integrals are

evaluated by Simpson?s rule for displacements st the centre-line of pile

no. 1l.
Equations (5.4), (5.5) and (5.6) may be combined and written as:
ohm . s .,
(wli Y (¢7) !ch\i S {Klgi'g‘ -
4 ), = { J (RSY ), L B2 N [T
i . ] 1] s ] i]
Jra JTL
where 1 = 1,2,3...{ntm}; and
nm . . a
(W )y = Y (47, (RLy™,, + ¥ (y), (KLL)
L ' A 4
L : jté b j::‘i B L]
where 1 = 1, 2, 3,..:84

By incorporating the boundary conditions for the

laver and writing equations {5.7) and (5.8} in matrix netation we

| 7
W }L _ g{zzé _ %;;@?}1 RLP] 167} ¢
wal o] e wad | e
YvJ L Tl 1
\ p b J

(ntm) % L matrix,
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(W2>i are vertical digplacements of & clements of the finite rigid

layer-soil interface and {Wl} the squivalent & x 1 matrix,
(¢i)j are stress intensities acting over n elements of chaft and m
elements of base of the pile no. 1, and {¢1} ig the eguivalent
(ntm) x 1 matrix,

{Y} is ¢ x 1 values of fictitious vertical stress

=4

surface of the rigid layer,

1 | - . . . . .
KSP) P (KPLY” are given by watio (5.4, (5.5
(KSP) 157 {KLP ) iy° {KPL} 15 are given by equationg (5.4), {5.5)
and (5.6) by comparison with equations (5.7) and (3.8):

M

[?SP]l, @JP] KPLJ E?LL] are {(n+m) x (nm), {(orm) x s,

s x {otm) and = x 8 matrices of coefficisnts,

5.5 Analysis of arbitrarily spaced pile groups

A general pile group with arbitrarily spaced pilesg can be conegidersd
to be equivalent to a number (NP) of symmetrical pile groups whers each

symmetrical pile group carries different loads. Thus the partial symmetry

of a general pile group may be utilised by carrying out a dirsct sumng

over the surfaces of the piles that carry equal lcads. Therefors the

integral representation (5.2} can be written in a discrete

equation (5.7) as {(writing the

group):
NP wtm =
WPy, = 5 T e, xse)PY 4 T (). (kP
q:::‘% jr:”i“ ] 1] 3:—:L J L1

NP nim
W) = ) 1 (e (KLL)
L j ij

i q=i =i




where 1 = 1,2....83
(Wp)i are the vertical displacements of the pile-scil interface of
the pth pile, p = 1,2.,..NP.
(@q)j are the shaft and the base stress intensities over the pile

: h o, ‘
surface of the qt pile, q = 1,2.,.NP,

NP is the number of symmetrical pile groups within the general

group, therefors N = NS x NP.

7

" e . s 4 . th
(KSP)pqi, are the coefficients {KSP),. evaluated at the p p

43
th L.
to q  symmetricsl group.

poio
fmed
#

(KLP)pij are the coefficients (KLP)} ., evaluated at the pt

1]

(KPL}qi, are the coefficients (KEL}ij evaluated over the

P th .
on the surface of the rigid layer due to q  symmetrical group.

5 9

Again equations (5.10) and (3.11) may be combined and written in mstrix

notation as:

R _

1, - a1l S 1.
{wr} KSP|TT . . . B E:H D E
o k=2 2 ] E

w1
3
(.u&

ey
=
Py
("
[
e
o

-
et \L

- FoNPL
where {W t.....{w "} denote



matrices.

N

Equation (5.12) represents a set of NP x {nim

which can be solved for rigid and compresszible

(Chapter 4). The solution for rigid or groups embeadde

within an elastic half space (Butterfield and Banerjee, 1969b) can be

.,

obtained by substituting y}= 0 in equation (5.12).

5.6 Notes on the computer programme for the analysig of pile groups

The computer programme and the sssociated ‘procedures? dev

the theory in the preceding articles arse described below. The

ewhere {(Banerjse

the computer programme and the pro
1969).

'Procedures?

(i) Print array, 1inp,

have been discugzsed in Chapters 3 and 4,

{(v) Ibsa: Calculates the confficients {KB&}‘i. of equation (5.6,

The integrals invelved in evaluating the various coefficients by using

procedures (i1) to (v) listed asbove are proper integra
functions and are evaluated by using the procedure Simpson.
{(vi) Copy: Copies a matrix A from s matrix B.

(vii) Cumadd: Adds a matrix A to a matrix B to form 3 new matrix

This procedure is used to carry out a direct summs

coefficients for piles carrying the same load.




(viii) Single pile array: Calculates the matrix Lgbj ee Chapter 4).
TR R | :
(ix) Typical pile srray: Cslculates the cosefficients {KSP} 1] of

equation (5.8} and {KSP}pqij {for p = qJ) of equation (5.10) by

calling procedurss Issa, 1bba, Isba, Ibsa, Copy and Cumadd.
(x) Inf another typ array: The coefficients (ksp)Pd 14 {for p # qJ

of equation (5.10) are evaluated by the use of procedures
Ibba, Isba, Ibsa, Copy and Cumadd.

(xi) Form Load array: Forms a {(ntl} x NP load matrix for the group

from the integration of the surface stress intensities.
loads are calculated at different section of the pile lengths

for only one typical pile of asch symmetrical group.

@

(xii) Displ array: Forms a (ntm). NP x 1 column matrix of pil

(xiii) Cap array: Calculates the coefficients {(KLL),. of equation

(xiv) Inf on pile array: Calculates the coefficients {KLP}Aéj ot
, . N ror s P . th
equation (53.7) and (KLP) i3 at the typical pile of p
symmetrical group.
(xv) Inf on cap array: valuates the coefficients (KPL) a:j of
En
th

equation (5.8} and coefficients {KPL}qij due to the g

symmetrical pile group.

{xvi) Form figi layer: Asgsembles th [KLP |
o o e
s Fo NP e
EiLi eaes KEL |7, |KLL| to form a modified K-matrix for a
pile group embedded with a finite ic layer.
input corresponding to a plle group embedded within an

f )

elastic half space this procedure and hence procedur

array, Inf on pile array, Inf on cap array, iz not used.
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The main body of the programme czlculates the various coefficisnts for a

single pile (Chapter 4) and zs

to form a K-matrix for a pile
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for a pile group within s finite elast

1
H

5.7 Accuracy and convergence of the solution

The results described in this Chapter have been obtained by using 10
equal cylindrical segments over the pile-shaft surface and 5 annular rings

over the base cf the pile.

integrals for coefficients

local and non

single pile and the numericsl

cussed in Chapter 4. The

evaluation of the integr

- 5

shows the minimum noniccal

be dependent on the pile zpacings, The

intervals of integration required for the convergence of the solution by

4]
=
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s
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n
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using 15 divisi pile-so1l interfa

H/L = «) at

o

5

w

e

st
i

PILE SPACINGS
5/

NO. D FOR 1807
1 2.5 20 2
p 5 K8 2
3 10 4 1

£t ] T
{Table, 1)

Ly Eay

The use of the numerical gquadrature No.

S/D = 2.5 produced only 3% increase in the calculated load over that
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by using No. 1. Therefore the results described in this Chapter have been
obtained by using this. Trial computations were carried out to test the
stability of the system of simultansous equations and the

the results, it was observed that for a four-pile grou

o
e}

S/D = 5) embedded within a half space the calculated loads

displacement by using 15 equations (10 for the chaft and 5 for the

was about 2.6% lower thsn that obtained by 10 equations (8 for ths

and 2 for the base) and 1% higher than that obtained by using 25 squations

{3

(20 for the shaft and 5 for the basze). Hence the use of 10 equations for
shaft surface and 5 for base area would appear to be a satisfactory com-

promise.

For the analysis of pile groups embedded within s finite elastic layer

the selection of a finite surface area of the rigid layer is nece

“

This area was found to be dependent on the width and breadth

group as well as the depth of the layer. ¥

tions it was found that the widesh and breadth

§

¢

may be approximated as the width of the pile group plus twice

the layer and the breadth of the group plus twice the depth

respectively. The results described in this Chapter wer

w
i %
bty
m

The results of the anzliysis

k“‘h

the different pavameters that

By

o

displacement behsviour of axigll

6]

=

sub~801il are as folliow
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(i Number of piles and arrangement of the piles in the group
(ii) The length to diamester ratio of the piles in the group
(iii) The spacing toc diameter ratic
(iv) The Poigson's ratio of the secil
(v)  The compressibility of piles

(vi) The ratio of the thickness of the elastic layer to the

length of the pilesz.

It is impracticable to undertake an

effects of all the variables listed above, therefore
of 2, 3, 5, 6 and 7 pile groups and square groups of 4, 9, 16, and 25 piles

are considered below. The solutions are given for y = 0.5

are thought to be appropriate for calculasting the immediate
pile groups in saturated clay.

The settlement ratio QRS; i a commonly

the settlement of a pile group. It is best

settlement of a group to the settlement of a

average load as a

Figures (53.2)

space. Figures (5.2} and (3.3} give o
= 3 oF

(N) compressible piles (N = 2, 3, 4

20 and 40 and * valuss

is about 50% higher than that for shorter pil

is strongly influenced by L/D and 3/D ratios,

be small for all groups with the exception of groups of longer piles.

The settlement ratioc for longer piles iz

ratios, which makes the principle of superpozition as

bl

(1968b), not applicable to compressib

e
B

fid
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L/D = 25, 1 = 0.5,

é

Type of group 2 37 4 3
RS (Poulos, 1968b)
A= 2.69 4,88 7.35 10,10

o
Ad
o
o
s
O
o

Rg (present A = @ 2.66 4.95
sdah
analysis), _ go00 2.48 4.50

O~
@

~ L
[39]
.

[\

o]

TABLE 3

S/D = 2.5, L/D = 25, = 0.5, H/L =

¢

— : ;
P ile no /o P/P {AS
Type of group | Pile no. P””gv PIP_, (A)
(3 . |
A= A== A = 6000
1 1.520 1,510 1.3280
2

3 2 0,740 0,760

3 G.050 ¢.120
{tension}

1 2.020 1.840

42 2 0.960 0.965 0.365
3 G, 050 0,044 0,180
3 2.580 2.
2 . 18C 1.

2 - 5 .

5 3 1,160 1,160
4 0,010 C.048 0,145
5 0,010 0,106 0,119
6 G. 190 C.095 0,085

TABLE 4
Values of the settlement ratio ’RQ;
L/D = 25, 4 =0.5, A =

w
S,
o}
by
/ ”
8
L)
(R
-
(93]
e
L
[Ew)

.
o0
o
[
.
L
3 s
N
@
[
]
=
o
~d
(o
ok
®
S1
1

A 4.95 4.50 4.20 4.00 2,70
2e2 B 4.88 4. 45 4.50 3. 48 2.5

A 3.82 3.70 2.80 2.60 2.05
5 B 3,74 3,27 3,05 1.75

A 4

B

[ AV (V]
~a1
(98]
[a )
®
foesd
o
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i
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Curves showing both the load-displacemsnt behaviour

individual pile load sharing of larger groups

il

under a rigid pile cap are pr

standard close spacing of 8/D = 2.5 has
order to indicate the likel

Figure 5.4 sghows the

compressible symmetrical pile groups of 2,

of compressibility is negligibl

piles with L/D = 40 has only

73}
£
wn
®
W
ot
T
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o
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®
-ty
m
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»]
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o
[}
-
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0
o
ot
3

displacement response. Figures

to have coneidersbl

4

of general pile groups. Variation of A is

in the group but

effect on the load distribution betwe

A reduction

a much smaller effect on the load dis;

in & from = to 6000 produc

whereas the individual pi

As X decreases the load carried by the

(Figures

piles in 42
generally less than

Tablez 2 and 3

obtained from the pr

that whils

by Poulesz (1968b).

results for rigid pile,

egtim

summarised in Figure

against S/D.
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of larger groups.

The effect of the presence of g rigid 1

\

of a 3 pile group is shown in Table 4. Az might be expected the effect

of the rigid layer is to reduce the interaction

—y

ularly at larger spacings. The results of the

also compared with the approximate analysis (B)

by the use of Steinbrenncr'®s spproximation for ve
(Steinbrenner, 1934}, It can be seen that the
within 15% in 2ll but thinner layers (H/L = 1.5,

analysis is likely to improve in accuracy for thicker lavers but bscome

increasingly inaccurate for shallower layers,
the opposite trend. It iz, however, possible to increase the accuracy

of the present analysis by considering more

areas of the rigid layer, at the expense

and computing time.

5.10 Comparison between the theoretical and model

The applicability of the foregoing theoretics
of free standing pile groups can be investigated

results with the laboratory and full scale tests

i}

£

of tests on laboratory models have been reported

mu
\m
u”}

=3

Saffe ste (19261}, Hanns

m

Sowers et al (196 ry and

et al (1961} described full scale tests on pile groups.

of the so0il layer and the length to diameter ratio of pi

case the test results have been compared with the theors

corresponding to appropriate B/L and L/D ratios.

cases the authors {(Whitsker 19257,

1961) adopted a different and much

settlement ratio, which czuses considerable confusion in
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their results. The Poigson's ratioc has been assumed to be 0.5 through-

out, as it has a negligible effect on the value of settlement ratioc.

Comparison with Whitaker {1257, 1960)

Whitaker {1957, 1960) carried out a large

model tests on pile groups driven in remoulded

Tie The model

=N

cohesion of about 0.6 to 1.3 ibs/=q

o .
diameter brass rods with tips formed to 60 cones, the top ends being

¢

plane. The pile caps were designed to permit the piles to be driven
singly in any order to form a group by pushing them through z template.
The cap was essentially rigid and remained above the soil surface through-
out the test. The effecte of variation of length to dismeter ratic and

spacing to diameter ratics on the settlement, ultimate bearing capscity

were studied. These results are compared with the thsorstical

in Figures 5.12 to 5.15. The depth of the a: layer was not

by Whitaker but from the photograph of the ganersl arrangemen

testing rig it would appear that the soil

Hence for L/D = 24 and 48, H/L is assumsd to be 3

The brass piles may be congidered to be rigid compa

remoulded clay.

show congidergble

The experimental results

frde

gettlement ratios are in good agresement with the

(Figures,

L/D = 24 are about 20% higher than the mean experimental r¢

discrepancy is likely due to the definition of the sze

Whitaker defined as the settlement of 3 pile group

single pile at half the ultimate load for each.

displacement curves of single piles it hasz not been
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in the present analysis. Figures 5.14 and 5.15

3

between the piles within the pile group of half the ultimate load, com-

pared with the theoretical results which are not very sensitive to

variations of L/D (between 16 and 24) and H/L

theoretical results suggest that the corner piles may take about 2 to 2

load at close spacing. The experimental

more uniform load distribution than that predictad by the

Comparison with Sowers et al {1961}

Sowers et al {1961} described a series of model

permeability. Before each test the soll was

was forced into place.

same soil to provide 2z standard for comparison. The
pile were then tested after 7 days.

For the purpose of comparison with the theory

considered to be rigid. The theoretical sett
with the experimental values at half the

The ultimate bearing capacity of smaller

But for larger groups the average load per pile at hali
group load is lower than hszl
Hence the theoreticsl results
for smaller groups. Howeve
results are about 307 higher

load-displacement curves for issolated
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therefore the results for larger groups

present definition of gettlement ratio.

2

different piles within a 37 pile group is shown in Figure

¢

which the results from Whitsker (1937) are

of Sowers et al appear to agree well with the theoretical
pile no. 2, but for pils no. 1 the theoretical 10%

higher, and for pile no. 3 the theorstical re
The resulte of load distribution obtzined by Whi
siderably more uniform than both those obtainad by Sowers et sl and

those predicted by the theory.

i
SO
o
[

Comparison with Saffery and Tate (19

Saffery and Tate carried out a series of model

1/4 inch diameter stainle

driven into soft remo
eccentricity on the ultimate bearing capacity and

M

Sroups. The remoulded clay bed was formed in a2 cylindricsl

in four to five layers each three inches

ratic and the experiments
theoretical resgsults have

for rigid pile. The thickne
inches to 15 inches, hence
to be 1.8, The settiement ratiocg it with the
theoretical results for H/L = 1.8 but are
theoretical valuesz, which might have besn

in the definition of the

for H/L = = isg

the presence of the rigid layer on the intersction betw

A
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Comparison with Hanns {1963

Hanna (1963) described a seriesc of model tests on groups of 0.367

in diameter wooden piles driven into loose and dense sand. The

isplacement characteristics and uvultimate bearing capacity of pile srou
displ t ch teristic d vitimate bearing cap ty of ¢ 2

of square and rectangular arrangement were studied.

ratios were about 30 and 3 respectively. The value of N for woodsn pil

in sand has been asgsumed as 6000, the theoretical sol

not very sensitive to\ for the pile length under consideration.

ment ratics for 5/D = 2.3 and 4.6 of

1

The theoretical settl

93]
Ll

iles are compared with

W

groups of 4, 9, 15 and 2

experimental results for groups in dense sand and

(Figure 5.18) for a factor of safety (F

theoretical results are lower than the

results for dense szand and higher than

loose sand, but are within 15% of the mean

sand and loose zand for a given spacing of

driving the pilez, lavering of the
changes in the soil pr

group. From Figure (53.18

compaction or loosenin

1

[ &N
=
oo
Jod
{0
N

driving a single iszclate

groups of 4, 5,

5.6 metrez long

curves are replotted in Figures (5.19) and (5.20). The

sidered to be rigid.



"he theoretical results
compared with the settlement
load displacement curves for
5.19 and 5.20) in Figure {5.21

within 15% of the theoreticsl

the same trend as the compazrison of theo

This is obviously due to the fact that the volume expansion cat

ised by an isclated pil

jad
b
oQ
oy
)]
=
s
e
jeed
3
r
e
A3
(w4
le]
=
T

driving a pile group is

driven in dense sand.

o]

From the foregoing comparison between the theoretical and th

[65]
Hn
"
Q.
m
[
o]
[
jon
6B
.
ot
&3

experimental resultse it may be concluded that the analysi:

this Chapter is not only capable of predicting the genaral trend of pile

group behaviour but is also capsble of pradicting the group

guia
o
o]
<
iy
T
?.J
)

which ig of primary importance in the des

be emphasised that

pile groups i.e.

contacting the ground. This is examinad

groups in

practice would

G, U and Ep, of which the determination of G and

conditions is very difficulc. Soils exhibit

which are often curved throughout their entire length.

and seemingly unpredictable

the selection of proper
can be overcome by cszlculating the
curves of isclated single piles

working loads

1966)

ttlement ratios plotted in Figure, (5.

been calculated using this method.
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5.11 Conclusions
An elastic analysis of free-standing pile groups of arbitrary spacing

is presented. Solutions have been obtained for the load distribution in =z

pile group under a rigidfloating cap and also its settlement. The effects
of the various parameters L/D, 5/D, H/L and group size on

and load distribution are studied. The major conclusio
as follows:

(i) The settlement ratios of pile groups are
P g P

the ratios of length to diameter, spacin

of the elastic layer to the length of pile and the number of pil

in a group and their arrangement.

-
S
o
EEAY
]
>

on the settlement ratio of groups of short pil

whereas for groups of longer pilss (L/D = 80}
may reduce the settlement ratio by as much as 40%.
(i1i) The corner piles of a group under g rigid fl
2 to 3 times the average load per pile in a

at the centre of a group carry virtually no

distribution between the piles in a group is

affected by the pile compressibility.

compressibility the load distribution

uniform distribution, but with the corner piles
the maximum load.
(iv) The szettlement ratio of a

at §/b =3, L{D = 48, B/L

(£33

importance of accurate eva

dezign.
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(v) The presence of a rigid layer reduces the

the pileg particularly at larger spacings,
group (L/D = 25, & = ®) embedded within a half spzce the
settlement ratio at S/D = 10 is 2.81 against the ssttlement
ratio of 1.70 for the same pile within a finite layer

(H/L = 1.5).

(vi) The presence of a rigid layer beyond H/L = 5 for a 37 pile

[

group has only small {< 10%) influence on the ssttlemen
ratio.

(vii) For a pile group of a given width and breadth the settliement

P

[

ratio is almost independent of the number of piles in a groe
(for S/D between 3 and 10j}. Hence it is more economicsal to

use less number of piles at large spacings than to use s

£

large number of piles at close spacing

3

(viii) Comparisons between the theoretical and expesrimental
reveal that theoretical method is capable of predicting ths

settlement of any pile group, ucing the elastic parametors

obtained from field tests on an i:
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Chapter 6

Analysis of pile groups with t*ground-contacting?

pile cap
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6.1 Summary

An elastic analysis of two problems concerning the interaction
of an arbitrarily spaced group of piles and a smooth pile cap, of any
shape, in contact with the ground surface viz.

(i) the load—displacemenf behaviour of the system,

(ii) the load distribution between the piles in the group,

.

are presented using the analysis for pile groups described in Chapter 5.
The effect on the response of the system of pile length to diameter
ratio, pile cap size and the compressibility ratio of the pile and the
supporting medium has been investigated and specific results are
presented graphically for a single pile with a square cap and typical

pile groups in rectangular and square arrays.
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6.2 General

Although the problem of the load displacement behaviour of a pile
group - pile cap system is of congiderable importance in foundation
engineering the vast majority of available field and laboratory studies
on piles have been concerned with single piles, or groups of free-
standing piles. Theoretical analyses of pile and pile group behaviour
have also avoided the interaction problem with the exception of a paper
by Poulos (1968a) which considered a single rigid pile with a rigid
circular cap resting on the ground.

The theoretical analysis presented in earlier chapters has shown
encouraging correlation with the field and laboratory test results therefore
in this chapter the foregoing analysis is extended to the complete
"compressible pile group -~ rigid cap' system, of any geometry, where
(i) the piles are assumed to be bonded to the supporting medium, which
is assumed to be an ideally elastic half space, and (ii} the cap -
medium interface is assumed to be smooth.

The effect of assumption (i) is discussed in Chapter 5 and that

of the assumption (ii) in Chapter 3.

6.3 Development of the analysis

The details of the analytical method used have been described in
Chapters 2, 3, 4 and 5, and only an outline of the essential steps is

given below.
The following notation is used, Figure (6.1}, C is the EFFECTIVE

pile cap - medium interface area (i.e. the total cap area less that

occupied by the group of ¥ piles) and Qc’ P_are load points and field
o

points respectively on C. Similarly O , Pg are load points and field

0

points respectively on §, the TOTAL pile shaft plus base interface area
for all N piles in the group. P(x,y,z) is a general field point in the

medium.
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The vertical displacement Wl(P) of P due to a normal direct stress

¢c acting at Q_, on an element dc of ¢ can be written as

[
w.(P) =] ¢ K(P,Q) dC {6.1)
‘%C C C

Similarly the vertical displacement WZ(P) due to shaft-shear aznd direct
normal stress over the base aress, @S at Qs, on elements dS of the chaft

and the base areas, included in S, can also be written as

¢ .. K(p,Q_» ds (6.23

where K(P,QC) and K(P,QS) can be obtained from Mindlin's squations
(Chapter, 2).
Hence the total vertical displacement w(P} of P dus to the interface
intensities ¢C and ¢, is obtained as:
' {
w{p = [c ¢ K(P,QC) dc + ’)5

65 K(P,Q) dS (6.3)

The integral representation satisfies the squations of equilibrium and
compatibility everywhere in the half space (see Chapter 2) and also,
because of the choice of singular solution, the following boundary con-

ditions referred to the cartesiasn axes shown in Figure (6.1):

a =g =g =0, at z = 0, outside C

zz Xz vz

@ =g =20, at z =0, inside C (6.4)
Xz vz
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now consider P to be at PC on C we have from (6.3):

W(PC) = j ¢c K(PC,QC) dc +’j ¢s K(PC:QQ) ds (6.3)
C 5
and when P is at P, on S similarly,
w(pg) = j 9. K(PgsQ.) dC + j o, K(B,,Q) ds (6.6)

C S

Equations (6.5) and (6.6) have singularities in the kernels, K, when
either points P and Q_ or Ps and Qs coincide. Equations (6.5) and
(6.6) do not take into account the horizontal displacement compatibility
at the pile shaft - medium interfaces, however, it has been shown earlier
(Chapter 4) that this approximation has a negligible effect on the load
displacement behaviour of an axially loaded pile.

The above analysis is quite general and can be applied to pile groups
of any geometry within a rigid cap of any shape when the vertical dis-

placements at the interfaces are specified as followe:

w(PC) = constant = 1 (say) on C

and either W(P_ ) = constant =1 (say) on 8, for a rigid pile (6.7

or W(PS) = f(PS) on 5, for a compressible pile

The function f(Ps} allows for the pile compressibility and can be included
in the analysis by the iterative procedure discussed in Chapter 4.
Equations resulting from the substitution of (6.7) into (6.5) and (6.6)
can be stated in a convenient matrix form by dividing, the pile-soil
interfaces as in Chapter 5 and the EFFECTIVE cap-soil interface as in

Chapter 3 into discrete elements thus (see equation 5.12):
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, _ . . : . : (6.8)
J s . L . Y0

) NP
'{wNP} [KSP]NP 1 o ESSP]NP NP [chjNP {67}
{wc} E@C]l e e e E@C]NP |koc] {cpc}

. o g )

N
Where the quantities {Wl}.....{WNP}, {¢l}....{¢NP}, [?SP]ll.....{ESPjINP,

- NP NP

NPl KSP etc. have been defined in Chapter 5.

[ksp]™ ...

BTC]l....[gPQjNP are matrices of coefficients identical to the

matrices [}PL]l.....IBPL]NP defined in Chapter 5.

@ﬂP]l.....[gCP]NP are matrices identical to the matrices

[BLP]I.,...[BLPvNP, defined in Chapter 5.

[BCQ] is identical to [ECd]defined in Chapter 3.

{¢C} is the unknown direct normal stress at the cap-soil interface.
Equation (6.8) represents a set of linear equations that can be solved for

1 .,
the unknowns {¢ }.....{¢NP} and {¢C} for rigid and compressible pile groups.

6.4 Discussion of the computer programme and convergence of the solution

The computer programme developed for the analysis of the above problem
is identical to that discussed in Chapter 5. The listing details are
given in Banerjee (1969).

In the present analysis of the problems of pile cap - pile group
systems with rectangular or square symmetry the integrals unvolving all
the elements of the sub-matrices except those for [%CC] have been evalusted
by the use of numerical quadrature discussed in Chapter 5. The integrals
involved in evaluating the coefficients of the sub-matrix IECC] have baen
discussed in Chapter 3.

For the solutions described in this chapter the pile shaft was
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divided into 10 cylindrical segments and the pile base inte 5 annular
rings. The cap soil interface was divided into 144 elements which,
because of the quadrantal symmetry, was reduced to 36 equations for the
cap displacements. The number of equations representing the cap-soil
interface were further reduced by ignoring the equations involving the
displacements of the elements of pile cap area occupied by the pile
cross~-section.

A series of trial calculations were carried out for a 4-pile group
(L/D = 20, S/D = 2.5, » =, u = 0,5) under a rigid square cap (&/D = 5),
The calculated load obtained by using 10 equations for the shaft, 5
equations for the base and 32 equations for the cap was about 4%% lower
than that obtained by the use of 5 equations for shaft, 3 for base and
8 equations for the cap and was about 3% higher than that obtained by the
use of 15 equations for shaft 5 equations for base and 52 equationg fer
the effective cap surface. Therefore, although there is some slight
inaccuracy involved in the results presented in this chapter, by the use
of 15 equations for each typical pile of the group and 32 zquations for
the cap, it was thought that these are justified by economice achieved

in computer storage and run time.

6.5 Results of the analysis

The effects of length to diameter ratio, group gize, pile compress-
ibility ratio (), the distribution of the load between ths cap and thes
individual piles in the group and the influence of the cap on the vertical
stiffness of the group have been studied and typical results are presented
graphicglly in Figures (6.2} to (6.10).

Figure (6.2) shows a comparison between the load-displacement

behaviour of a single axially loadad pile with a square pile cap

(B = 2.5D) and that of a similar single pile without a cap. The i
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of g pile cap is seen to produce only a small increase in the stiffness
of the system (< 5%) for all but short piles (L/D < 203,

The distribution of the total load between the cap and pile is shown
in Figure (6.3) for both rigid and a compressible pile. It is seen thet,

for 20 € L/D € 40, the cap carried some 15% to 20% of the lozd although,

from Figure (6.2), the effect of this load redistribution on ths stiffn
of the system is very small. These results are in general agrsesment
with those calculated by Poulos (1968a) for a rigid pile with a circular
cap resting on the ground surface. Similar information for a four-pile
group appears in Figures (6.5) and (6.6) and here again, even though a
rather higher proportion of the load is taken by the cap for a psrticular
geometry used, the increase in the stiffnegs 1s negligible.

The effect of the pile spacings (S) and pile stiffnecs (A} on t
load-displacement behaviour of a capped 2-pile group is illustrated in
Figure (6.4) from which a doubling of the pile spacing is seen to produce
only a 5% to 10% increase in the system stiffness over the range of
A (6000 £ A € @), Figures (6.7) and (6.9) show the effect of varying &

for capped group of 5 piles and 9 piles. Each doubling of 5 almost

quadruples the cap area and in all cases, for O € L/D £ 40, =zach dos
increases the system stiffness by 25%.
Figures (6.8) and (6.10) illustrate how the load iz shared betwsen

the different piles in capped 5 and 32 pile groups for various 5 and A

values. It is interesting to note here that although, for clo:

piles (S = 3D), the effect of the caps on the load displacement be

in the group (Compare with Figures, 5.5 and 5.8).
All the results for 2, 5 and 32 pile groups are summarised in
Figure (6.11) where the effect of ground contacting caps and cap size

on the system stiffness is given in terms of a settlement ratis (R, =

=
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the ratio of group settlement under a load of N x P to the single uncapped

pile displacement under load P}. The reszults of free-standing pile grou

are also shown for comparison.

6.6 Conclusions

(i) An elastic analysis has been presented for the generzl

pressible pile group problem including a rigid smcoth Yground
contacting® cap.

(ii) The results of the analysis show,

(a) The load-displacement behaviour of pile groups wi

without such caps are little different, the cap increzging

=

the system stiffneszs by from 5% to 15% depending upon the

group size and pile gpacings.

(b) The presence of the cap does, however, change dr
the load carried by the different piles in the group.
(c) The proportion of the total group load taken by the caps

of normal dimensions on piles with 20 £ L/D £ 40 ranges

from 20 to 60 percent depending upon the group size and
pile spacing, being higher for the larger groups at lsrger
gpacings.

In applying the theoretical results and conclusiens to practical fisld

problems it should be borne in mind that the theoretical analyses

strictly applicable to homogeneous isotropic subsoil and do not take into
account of effect of increase in stiffness of zoil with depth, lavering
of the strata, effect of driving the piles etc., which affect the group

: o . 22 s
behaviour. The trend of present anzlysis for the 37 pile grou

o
o
N

1

agreement with the experimental study due to Whitaker (1960}, who found
the settlement ratios of the capped group and uncappsd group to he

nearly equal.
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Chapter 7

The effect of induced pore water pressurs on

the ultimate bearing capacity of driven piles.
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7.1 Summary

In this Chapter the effect of pore water pressure on ths ultimate

bearing capacity of driven piles is examined. The problem has
divided into two parts:

(1) Analysis of the stresses and pore water pressurs

due to pile driving assuming the soil to be

ideally plastic porous skeleton saturated with an incom-
pressible pore fluid.
(ii) Analysis of the dissipation of the pore water pressure and

the changes of effective stresses around the pile

the soil skeleton to be elastic.

The ultimate bearing capacity of a driven pile in saturszted clay in

relation to the variation of the effeactive along
soil interface is then investigated. The theoretical values

water pressure and ultimate bearing capacity are compared with publighed

full scale field test data and reasonable agresment obtainad.
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7.2 General

The bearing capacity of a pile in clay increases with time after
driving, partly due to the recovery of shear strength of the clay re~
moulded by pile driving and partly due to the dissipation of the induced
pore water pressures. These phenomena have been recognised by many
authors (Cummings et al, 1950; Seed and Resse, 1955; Yang, 1956; Lo
and Stermac, 1963, 1965; Nishida, 1963; Airhart, 1967; Chandler,
1968), but no theoretical analysiz based on reasomnably realistic goil
behaviour has yet been presented.

The analysis presented below makeg the following assumptions:

(i) The soil is a homogeneous, isotropic, elastic-ideally plastic
solid defined by elastic constants G and u in the elastic range
and by the generslised Von Mises yield criterion, octshedrsl
shear stress = Constant, in the plastic region, with respect
to the total stresses.

(ii) There is no volume change in the soil during pile driving.

(iii) The strain in the vertical direction ig zero i.¢. rotationall

symmetric plane strain conditions prevail.
Assumption (i} is an idealisation of the stress-strain response of resl
soil, whereas (ii) will be true for any saturated normally consolidated
clay deformed under undrained condition. In support of (iii)} one may
refer to the published results of Cummings et al (19530} and Lo and Stermsac
(1965) who measured respectively the moisture contents and pors water
pressure at various radii and depths round the driven pile.  Their

observations established that:

(a)

ive mean pressure remains essentially constant with depth along

the pile length and varies only in the radial direction (Lo and

Stermac, 1965). .
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(b) There is a horizontal migration of pore water pressure initiate
by pile driving but the change in meisture iz uniferm over the
length of the pile and varies only with time (Cummings st al,
1950).

Thus the condition of plane strain is thought to be wvalid over the pile
length except possibly near the ends.

A real pile is driven by a series of approximately instantanscus
increases in penetration in which the soil at the tip of the pile is
remoulded and pushed outwards. Thug 1f the pile is leng, so that ths
end effects may be ignored, the mode of deformation of the soil
around the pile is reasonably analogous to that of the expansion of a

cylindrical cavity from zero radius to a finite radius.

nd

£

The problem of elastic-plastic expansion of a long cvlinder,
a sphere from a finite radius by radial strezses acting at their surfaces

was obtained by Bishop, Hill and Mott (1943} acsuming the material to

The solution they obtained showed a discontinuity of vertical streszs at

the elastic-plastic boundary. Although such a discontinuity of
would not violate equilibrium, a later exact solution by Hill (1950}
showed that the discontinuity, does not in fact occur if elastic strains
are allowed for in the plastic zone {i.e. if an elastic-plastic material
model is used. Hill obtained a solution of the problem of the expansion
of a cylindrical cavity from zero radius to a finite radius by radial

ial cbeving

stresses acting at the surface of the cavity in a ms
Prandtl-Reuss's flow rule in the plastic zone. Using Coulomb's yield
criterion in lieu of Von Misszs together with the same assumptions az
Bishop et al (1945), Skempton Yaszsin asnd Gibsen (1953} analvsad ths

problem of the expansion of a spherical cavity within an infinite medium
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which they applied to predict the ultimate end bearimg capacity of a driven
pile. Based on the same hypothesis Gibson (1963} analysed the expansion
of a cylindrical cavity from a finite radius, in a granular medium, which
he applied to problems associated with the "Menard pressure-meter?.

A comprehensive numerical treatment of the problem of expansion of
long cylindrical and spherical cavities from zero radius and from finite
radius by radial pressure acting at their inner boundaries hag been given
by Ladani (1963). He obtained the shear strain at various radii from
purely geometrical considerations and thence the stresses from experimsntal
stress-strain curves.

An analytical zolution of the problem of the expansion of a cylindrical
cavity from zero radius to a finite radius by a system of radial and
longitudinal shear stresses acting at its inner surface is given below,

in which strains in the elastic zone are assumed to be infinitesimal but

large strain theory is used in the plastic zone.

7.3 Expansion of a cylindrical cavity from zero radius to a finite radius

Referring to the cylindrical system of co-ordinates {r,¢,z} a3 shown

in Figure (7.2), the equilibrium equation for an element (Figure 7.1) at

a distance r from the oz axis can be written as:

+ z + { - /r = :
qur/sr Z}o‘rz!az*(crr o . Mr =20 (7.1

66

5z + + - =
BOZZ/az acrzjaz orzlr Y 0

where Ops © and o, are the total normal stresses in r, 9 and z direct-

SIV

ion respectively, ¢ ig the shear stress in rz plane and Y ths |

n ¢can be ceonsidered as:

of the material. The
(i} the sxpansion of an elastic cylinder, whose inner radius is r

and outer radius =, by a system of stresses 0 and 7., ¢ and



T, being the radial and shear stresses acting at the inner boundsry,
(ii) the expansion of a fully plastic cylinder from zero radius to a finite

radius by a system of stresses Gi and T, at the inner boundary and

9y T, acting at the outer boundary (Figure 7.2).
Now for a long pile an element of soil of thickness dz at a depth z suf-
ficient far from the ground surface will deform identically with the elements
above and below it (this will be referred to approximately as a plane strain
condition, here after). It is therefore quite reasonable for an element

at a depth sufficiently far from the ground surface to assume {using a2 sign

convention of compression positive):
3o / z = Y and 90 /82 =0
2z rz
Hence the equilibrium equations can be written as:

dg  [or +.'.((j - 0..Y=0
v 66 - .
rr rr (7¢2}

Els] 3 o] =
rz/ r + rZ/r 0

and the problem is reduced to the solution of an elastic problem with the
equilibrium equations given above, a plastic problem within the boundary
governed by the yield criterion, incompressibility and the above equilibrium
equations again and the compatibility of the stresses and displacements st
the elastic-plastic boundary.

Solution for the stresses in the elastic domain

The equation of incompressibility combined with the condition of plane

strain can be written as:

E:rr i E66 =0

where € v and €gg aTC the radial and circumferential strains respectively.

For large displacements we have

€ = (Bufdrif(L + 3ufdr), €qq = u/ (utr)
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Substituting these into the equation for incompressibility we get:

3/0r (u? +ru) =0
which can be integrated to give:

u2 +ru= Cl (7.3

where Cl is a constant of integration. In the elastic zone, which we

may expect to be at some distance from the pile, u‘Z will be negligible

o

[44]
&

in comparison with r u. Thus for r = r  we can write equation (7.3}

Substituting the boundary condition for u = U, at r = ¥ where u_ 1s the

radial displacement of the elastic-plastic boundary, we have:

o O

2 2 ; v
= - = . e's law for
Hence €r u, ro/r and €50 = Y rO/r By applying Hook law

incompressible material we get:
o = 22G. u_r /r2 and 0., = 2G. u_ r /rz.
re o o 66 o o
Substituting these into the first equilibrium equation (7.2} we chtain:
, 3 _
3¢ /3r - 4G. u_r [T =0
rr o o

Integrating we get

2 N
= - & 70['9
o =G, 2G. u rO/r (7.4]

where C, is a constant of integration. Substituting the boundary con-

2
ditions:
r=r_ , J = g
o ry o
= @ 8] = K vz = Yz ince K =1 f incompressible
T , r oY Yz {(sinc 5 or incompress
material)
w ain = - g ) = {7.,5%
e obtai u, (Yz o0’ rO/ZG and C2 Yz {(7.5)
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Substituting (7.5) in (7.4) and the result obtained thereof if substituted

into the first equilibrium equation we obtain:

o 2 {7 LY
Grr Yz + (rolr) . (UO—YZ) {(7.6.17

i

2 ¢ 3
o Yz - (ro/r) (00~YZ) (7.6.2)

60
From the plane strain and incompressibility condition:

g = (Orr + 066)/2 = vz (7.6.3>

Now using the second equilibrium equation we obtain

Oy = 03/r (7.6.4)

where C3 is a constant of integration which can be obtained by applying the

boundary condition at r = Tos O, T Too therefore:

e} = T . 0665%
7 o (rO/r) (7 )

Equations (7.6.1) to (7.6.5) give the solution for the stresses in the slastic

domain provided the unknown quantities ry» O and T, are known from the
solution of the plastic region in the inner r < r, region.

Due to the symmetric expansion of the cavity the elastic-plastic
boundary will also be a cylindrical surface. At this surface the soil
will be in a state of incipient yielding. Thus, if we asszume that the
yield criterion of Von Mises modified for plane strain condition is valid,
we have

2 2 2 . R
- = (7.7
(grr GSSD +4 Grz 4Cu (7.

where Cu is the undrained cohesion of the soil. Substituting the ¥
of the stresses obtained from equations (7.6.1) to (7.6.4) at r = r ints

(7.7) we obtain:
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@, - YZ)Z +~102 = Cu2 (7.8)

Solution in the plastic domain

The equilibrium equations are valid in this domain and hence equation
(7.6.4) is also valid. Substituting the boundary conditien g,~m ¢, at

r = a (where m denotes the fraction of Cu mobilised at the pile-soil inter-

face) in (7.6.4) we have

) — N
a., m.Cu (alr) (7.9}

At r =r we have T =a =m C_(a/r_ ) which if we substitute in (7.8},
o o rz u o

we obtain

N+

N = : 277 .
(Qo -yz) = c, L - (mafro) ] (7.10
Again from the failure criterion we have:
%
(@ -a)=20 [1- (ma/r)?] (7.11)
rr 89 u - a - o/

Equation (7.11) is valid throughout the plastic domain, hence, substituting

(7.11) in the first equilibrium equation and integrating we get

i i
- 27" - 2 2_2,% 5
- - - ,12)
. 2 Gu u (ma/r) 1 2 Cu log {; + (r ma) ] (7 J
-i-C3

The constant of integration 03, can be obtained, by substituting ths

o}
|

boundary condition at r = rs 4= as where o, is given by equation
(7.10):
® i- 2 7 M 2 Z l
e X = - - + + ¢ - ma%)
C3 Yz Cu l} (ma/ro) J ZCu log T (r, m 3 ]
(7.13;

Equations (7.9) to (7.13) provide the radiszl, circumferential and shear
q ¢

stresses in the plastic domain. The vertical stress is given by the

condition of incompressibility and plane strain, i.e. 9, = <O£r T Ol

N

The only problem left now is to determine the radius (rO) of the elastic

227



plastic boundary.

Substituting the boundary condition at r = a; u = a in equation

(7.3) we obtain

u2 + r u= 2a

N
(3]

ot

. . . 2
Hence the displacement at r = r  is given by u, +Tr u = 2a .

ped

assume again that the distance r  >>u 8o that uoz is negligible i
comparison with r,u, we obtain
u = ZaZ/r (7.14
o o
Hence from equations (7.5), (7.10) and (7.14) we obtain:
i

2 21°?
(r /a)" = 4(c/c )/ [L - (ma/r )] (7.15)
Equation (7.15) can be solved to obtain (rO/a) and hence the stresses in

the elastic and plastic domains can be calculated from:

(i) for r ST gw

- 2, 2
o .. = Y2 + 4G.a" /",
2 2 3 %
Ogg = V2 - 4G.a"/x", (7.16)
Ozz = Yz, Grz = m.Cu.a/r

(ii) for a € r £ r

i L
¢ =20 [1- (ma/r)2]2 +2C log [{r_+ (¢% mmzaz)21
rr u - ’ u "0 o -

L, 2 2 2 o 2
/ {r+{xr"-ma") }] + yz - Cu L - (ma/ro) ] .
_ g 2 22 2 2.2.%7
Ogg = ZCu log [ﬁro +*(ro - ma%) Yir + (r*n*a 1]
3
+ vz = Cu B - (ma/re)zj (7.17}
- 2 . 2 22,7
= i 11 = Y - B 1 ¢ =M & i
o, =6, Lt (mal/r) 1 + ZCu og [ﬁrc +‘(r0 m 3
1 i
] 2 2 2.7~ pon27
gy - 1 o e 341
[{r + ("=m"a™) I + vz - C |1 - (malr )7]

228



O, = (alxr). m.C .
G in the above equations may be approximated as B Cu where B 1s a constant
depending upon the type of clay and the stress history. Skempton and
Henkel (1957) quoted a typical value of about 46 for saturated London Clay.
For fully saturated normally consolidated clay the value of G {the tangent
shear modulus) is reported (Mayerhof, 1951} from 30 Cu to 130 Cu° Figure
7.3 shows a typical disFribution of the ratios of increase in o> g6

S and o, to the undrained cohesion Cu plotted against various (r/a) for
B =236 and m = 1. This figure suggests that for a saturated clay very

high total stresses and hence pore water pressures may exist around a

driven pile.

7.4 The pore water pressure induced around a driven pile

The foregoing analysis may be modified to obtain useful information
about the distribution of pore water pressure around a driven pile. 1f
we consider the foregoing idealised material is a two phase continuum i.s&.
an ideally elastic perfectly plastic skeleton saturated with incompressibls
fluid then all spherical components of stress will be carried by the fiuid
as pore pressure and deviatoric stresses only will be carried, with zero
volume change, by the skeleton as effective stresses. Thus the stresses

2

calculated in equation (7.16) and (7.17) are in fact the total stresses.

Pore water pressures in a water saturated elastic skeleton

If the pore water pressure is U and AU, Ao, Ac and Ao are the
rY 66 zZz

increases in U, Oy Og0s Gzz due to pile driving, we have the pore water

pressure increase is given by

b

i

3

AU (Aorr + o, o+ Aozz)/:} {(7.17.
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Substituting equations (7.16) and (7.17) in (7.17.1) we obtain; the pore

water pressure increase in the elastic zone as:
by =0 (7.183
and in the plastic zone:

A = (Ao A + Ao
U/Cu ( rr + %8 zz>/30u

::[i - (ma/r)zl - {E.— (ma/ro)zl

\H
[Sad

B N B .
+ 2 log [ﬁro + (ro - mzaz) WAr +-(r2~mzaz) H (7.19)

where r is given by equation (7.15). Typical calculations for r
within the range of quoted values of ﬂ show that the value of r lies
between 10 to 24 pile radii. Thus the analysis suggests that beyond a
radius of 10 a to 24 a pore water pressures would not increase due to pile
driving. Field observations (Bjerrum, 1961; Lo and Stermac, 1963, 1965;
Koizumi and Ito, 1967) show that pore water pressure incresases even up to
40 times the radius of the pile which confirm as one would expect that the
simple elastic-plastic model used i5 not powerful enough to fully represent
realistic soil behaviour. However, we can modify the analysis as follows
to make a semi-empirical allowance for the fact that real soil skeleton

do exhibit volume change under shear stress changes.

Pore water pressure using Henkel's generalised pore pressure equation

The excegs pore water pressure induced by total stress changes in any
element of so0il under a three dimensional stress system may be predicted

by the equation (Henkel, 1960;

J = T ot . {7,205
AU B(Agmean Gy A Tgct> (7,20,

where
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' ovessuie
B and o are generalised pore water parameters,
A% ean is the change in the spherical component of stress tensor

; + Ao, + Ao _)/3.

and is equal to (4g__ hag, Ao, /3

AT
o

ot is the change in the octahedral shear stress

i
r 2 2 2 27"
1/3°Aiﬁgrrngeé> + (Gee”gzz) +<0zzugrr> +60rz J

®

This equation is a generalisation, due to Henkel of Skempton?s empirical
pore pressure equatiom.

Since B = 1 for saturated clay, equation (7.20)}
can be written as:

AU = g -+ A
U mean OCl cht

(7.21)
where % = (3A-l)/V§; A being Skempton's pore pressure coefficient for

"triaxial! stress increment (Skempton, 1954).

1f we apply the incompress-
ibility and plane strain condition of Uzz = (Grr + cee>;z we can write
equation (7.21) as:

Nad

_ , N 2 . 217 »
by = (ba__ + baggd/2 + AL@!Z}(UH'G%) + 60 7. (a/3)

(7.22)
From equations (7.16), (7.17) and (7.22) and replacing G by B.C  we
obtain:
(i) for r S
%
su/c, = (a,/3) [968%(a/r)* + 6(ma/r)?] (7.23)

(ii) for a £ r ¢ r,

—

-

3 S 5 « -
AU/Cu = |1 ~(ma/r)21 + 2 log [}ro+(r02-m2a2} }/{r+(r2—m2az3 H

-

2
- [ «(ma/rg)zl +0.81 o (7.24)

Equations (7.23) and (7.24) predict the pore water pressure increase
throughout the whole body once r, has been cbtained from equation (7.15

It should be noted that + sign of Al would indicate pore water pressure
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increase and a - sign would indicate pore water pressure decrease because
of the compression positive sign convention adopted for this Chapter.
Figure (7.4) shows the distribution of excess pore water pressures
around a pile driven in normally consolidated clay (A == 1), a water
saturated elastic-plastic skeleton (A = 1/3), an overconsolidated clay
(A = 0) and a highly overconsolidated clay (A = -1/3) for typical values
of =36 and m = 1, It can be seen that pore water pressures of 4 to
6.5 times the undrained cohesion may exist at the pile shaft face. Also
for highly overconsolidated clay the theoretical excess pore water

pressure may be negative beyond 7 times the pile radius.

Comparison with field data and discussion

Bjerrum et al (1961) have given comprehensive resulte of pore water
pressure measurements around driven piles. The measurements wers made
in connection with the construction of a bridge abutment in Scuthern
Norway in a clay described as homogeneous, saturated and normally con-
solidated with an average cohesion (Cu) of 2.5 T/m2 between depths of
5 to 15 metres below ground level. The increase in pore water pressures
were measured at depths of 7.5 metres and 10 metres during driving. The
20 cm sq. piles were made by welding 20 cm x 20 cm angles together. For
the purpose of comparing these field results with the theoretical results
obtained from equations (7.23) and (7.24) the pile has been assumed to
be of equivalent circular crosg-section of 11.3 cm radius. The value of
oy has been calculated by assuming A =1 for normally consclidated clay
and the roughness coefficient m is chosen to be unity. 1f we assume
that equation (7.23) is spplicable beyond say a distance {(r/fa) = 20 zway
from the pile, then the mean insitu measured values of (AU} can be sub-

stituted in this equation to obtain g = 30. With this value of B the

2

ratio of |AU/C

£,

u} to iAU/Cui‘ was computed from (7.23} an
(r/a) (r/a) = 10
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(7.24) for various values of (r/a). The theoretical results show
(Figure, 7.5) that there is a very close agreement with the measured
values. It was apparently not possible to obtain any religble field
measurements of excess pore water pressure in the region cleose to the
driven pile because of the general ground disturbance due to pile driving.

Theoretical results for (AU/Cu) for normally consolidated clay

(A=1) for m = 1 and B = 20, 40 and 60 are compared with the wvariocus
field results (Lo and Stermac, 1965; Koizumi and Ito, 1967) in Figure
(7.6). Lo and Stermac measured the excess pore water pressures at
Wallaceburg, due to driving of 3.5 inches diameter cylindrical pile in s
normally consolidated silty clay. The field results agree closely with
the theoretical results for B = 30 except near the pile shaft =zurface.
The deviation from the theoretical results may well have been increased
by:

(i) Errors in the obtained excess pore water pressures near the
pile shaft surface due to disturbances caused by the dynamic
pile driving.

(ii) The drain rate in silty clay being such that the undrainead
conditions do = not apply accurately and consequently volume
changes may have occurred.

More recently Koizumi and Ito (1967) have published measurements of excess

pore water pressures due to driving two 30 cm dis x 5.55 metres long pil:
into a normally consolidated layers of slightly organic silty clay con-
taining shells. The undrained cohesion of the clay was 0.25 Kgfcmz at
1.5 metres depth increasing up to 0.4 ngcmz at the toe of the pile.
Earth pressure cells and pore water pressure cells were incorporated
along the face of the piles which were pushed in at a rate of 10 cm/
minute using a Winch system to minimise the disturbances. The increase

in the total normal radial stress on the pile face was found to be nearly



equal to the increase in the pore water pressure which ig in agreement
with the present analysis, The ratio of [}U/Cu] at the pile face was
found to be within 5.25 to 6.75 between the depths of 1.5 and 5.5 metres
which again agrees with the theoretical values at the pile shaft face
(Figure, 7.6).

Further measurements of the pore pressure increase due to driving
model H-piles into slightly overconsolidated Varved clay were reported
by Lo and Stermac (1963). Present analyszis is only relevant to piles
with circular cross~-section and therefore these results can not be com-

pared with the theoretical ones.

7.5 Dissipation of the pore water pressure around a driven pile

After the pile is driven rapidly into a uniform stratum the increase
in the total stresses and pore water pressures can be computed from
equations (7.16), (7.17), (7.23) and (7.24) based on the estimates of
the undrained parameters G, Cu and experimentally determined oy values.
The excess pore water pressure will decay with time giving rise to time
dependent total stresses and effective stresses around the pile. This
process of consolidation around a long pile may be analysed after making
the following assumptions:

(i) The soil is assumed to be an elastic skeleton defined by

shear modulus G! and bulk modulus K' saturated with an
incompressible pore fluid.

(ii) A plane strain axially symmetric situation prevails {egz = 0},

only dependent on the radial distance from the centre of the
pile and time.

The process of consoclidation around a driven pile may then be examinead
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as follows.
In the solution of consolidation problems,very often a linear
differential equation deduced by Terzaghi is used:

2

C_ V- U= 3U/3t (7.253

v
where Cv = (Kh/Yw) (Ke + 4/3 @U), Kh = hydraulic permeability, K¢ and G?
are the bulk modulus and shear modulus respectively with respect to the
effective stresses, Yo is the unit weight of the pore water, U is the
excess pore water pressure, t is the time and Vz is the Laplace operator,
which in radially gymmetric coordinate system is given by {azjarz -+
(1/r)3/5r}.

Equation (7.25) is developed by assuming that there is a linear
relationship between the quantity of water expelled and the change in
excess pore wWater pressure and that is only valid in the case of one
dimensional loading and drainage under the condition of zero lateral
strain (Oedometer case). Therefore it cannot be applied directly to
the solution of the present problem and we shall make use of the general
three dimensional theory proposed by Biot (1941}.

The true process of three-dimensional consolidation for cylindrical
bodies can be described by two equations (de Leeuw, 1965} formulated on
the basis of Biot's theory (Biot, 1941). The first being the storage
equation for an incompressible pore fluid:

~(K, /Y, v2y = de/0t (7.263

where e is the volumetric strain. The second equation is the deforms-
tion equation which can be deduced by writing the equilibrium squation

in the radial direction (r) in terms of the displacement as:

Gl V24 - Gt u/r? F (KY + 173 GY) defdr = -dU/or (7.27)
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Differentiating both sides of equation (7.27) and dividing both sides
of equation (7.27) and adding the results we obtain:
2 .2

-(K¥ + 4/3 Gv) Voe = VoU (7.28)
Equation (7.26) and (7.28) are fundamental equations to be solved for
our problem. We can integrate (7.28) to give:

-(K* + 4/3 G*) e(r,t) = U(r,t) + glr,t) {7.293

2 _

where, Ve g(r,t) =0 {7.30)

Thus the function g(r,t) causes divergence from the linear relationship
between e and U postulated by Terzaghi in his consolidation theory.

Substituting (7.29) in (7.26) we obtain:
CVVZU = 3y/d3t + 9g/dt (7.31)
Equations (7.29) to (7.31) are the necessary equations for determining

the three unknown quantities e, U, g{r,t). Eliminating U between (7.27)

and (7.29) we get:
2 2 _
G* (V'u - u/r” - defor) = sg/or ,
or 23g/or =0, or g= £{t)

But since for the present problem U =0, e = 0, at r = =, we must have
g = 0 for the equation (7.29) to be valid. Thus as a special case, for
the solution of the present problem equation (7.31) does degenerate into

Terzaghi®s equation.

Solution for the variation of the pore water pressure and stresses with fime

Equations (7.29) to (7.31) will be solved for the following boundary
conditions in terms of displacement and pore water pressure:
(i) permeable pile
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(7.32)

u=20 , r=a,*® , t=x20
where u here denotes further radial displacement (infinitesimal}
caused by the dissipation of pore water pressure.

and (ii) for impermeable pile

U = f(r), agsrge= , t=0
3U/sr = 0, r=a ,t>0
(7.33)
U=20 s r=a , tzx0
u=20 5 r=a,»o, £ 3 O

The function f(r) in the above is given by equations (7.23) and (7.24).
These solutions are useful from a practical standpoint since estimates
are often needed of the time required for the pore water pressure
dissipation process to be essentially complete (i.e. approximate time
required for the pile to essentially attain its maximum ultimate bearing
capacity). Analytical soclution of the system of equations listed above
is out of question hence we now proceed to solve them numerically.
It is convenient to express equation (7.31) with 3g/3t = 0, in
c 2y

nondimensional form by substituting R = (r/a) and T = (vv.tfa

s Thus
we have:
30/ 5T = 52U/3R% + (1/R) 3U/3R (7.34)

Expressing equation (7.34) in finite difference form over a finite radius

we have (Scott, 1963):

= AT 2 1
Uy qigr ~ Upp = [AT/(2.0R%)] [{(1HaR/2R DU, 4
= - ' /IR Y
+ (L -4R/2R,;) U, 4 2Ui}T + {(1+8R/2R U, 4
+ (1-AR/2R,) U, , - 2U,} -
B Ly
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For all the nodal points in R direction we may write the above in matrix

notation as

{u } - {UT} = (AT/Z.ARZ) (KDJ{UT} + ED]{UT+AT}) (7.35)

T+AT
where

{u } and {UT} are the values of the pore water pressure at time

T-+AT

T+AT and T respectively,

AT and 2R are the steps of integration in T and R direction,

@] is the matrix of finite difference coefficients.
Equation (7.35) in which the values of {UT} are known (starting with
T = 0), gives a set of simultaneous equations in the unknowns {UT+AT}
for chosen intervals of integration AR and AT. There is no restriction
on AT and AR, other than the second difference must be a reasonable
approximation to the actual second derivatives. In general, small time
steps must be chosen for a greater change of the excess pore water
pressure. In order to incorporate the boundary condition for an
impermeable pile a fictitious node at R = 0 is needed (Scott, 1963).

Thus having obtained {UT+AT} from a prescribed {UT} the change in

the pore water pressure between the time T and T+AT may be obtained

from:

{pU }T+AT = {UT+AT

Poo Ayt (7.36)
T
This change in pore water pressure would cause a further change in e

and hence u which may be related by equation (7.29) as:

{pu} = HE‘] {ul

T+HAT T+AT

where {u} is the change in radial displacements at the

T+ AT
nodal points,
@ﬂ'isthe matrix of finite difference coefficients for

(K¥ + 4/3 Gv) (Bufdr + u/r)/3.
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Solution of equation (7.37) gives the changes in the radial displacements
at all the nodal points if the boundary conditions for the radisl dis-
placement u = 0 at r = a and u = 0 at r = {(a large enough distance from
the pile), are incorporated. Having obtained this the changes in the

radial stress at a time T+AT can be obtained from:

o s

{Do?__} = [DR| {ul., .. {7.38)
L T+AT
where
{pst__} is the change in the effective radial stress around

rr T-HAT

the pile during the time interval T, T+AT,
[bR] is the matrix for finite difference coefficients for the
expression (K' + 4/3 Gv){du/or) + (K* - 2/3 G} (u/r).

Now, the effective radial stress at time T = 0 can be obtzinsd from

7@24}}8Q'

Chis e

PiaaaN

equations (7.16}, (7.17) and (7.1%9) {or equations (7.23%) and
q q

o Tlogd - iU (7.39)
g £ T=0
where {o¥ __} are the effective radial stresses at T = O,
rr
=0
{Gkr} are the total radial stresses at T = ( obtained
T=0

from equations {7.16) and {7.17},
£
iU}TzO are the pore water pressures at T = 0 obtained from
equation (7.19) or equations (7.23) and (7.24), at the

nodal points.

The effective radial stresses at T =AT, 24T, 3AT ,... etc may be obtained

by adding to{o“ ! successively the valuez of %D@“ ] caleculated
LR PN o R
T=0 T+HAT

from equation {7.38}. Thus the ultimate bearing capacity (P } of s long

driven pile at any time after driving may be calculated from:

5 e g \ , 3
gy =0 T tan.é, A (7,405
u ry z (7.40 )



where

Qf}r? is the effective radial stress at the shaft face,

é, iz the coefficient of friction between the pile shaft
and the soil medium,

AS is the area of the shaft surface.

Description of the computer programme and resultg

The computer programme and the assoclated procedures developed for
the above analyszes are described balow. The listing of the programme
is given in Banerjee (1969).

'Procedures’ Print array, Mult, Inp, Crout 2, Solve have been

discussed in Chapters3, 4 and 5.

Solcar : This procedure solves a banded system of

symultaneous equation (7.41) by Gauszsian elimination.
The original matrices [ A) and 36} are destroyed and

the results { B| are stored in {C{.

[es)

fi

[
)
i
2

___;.\L\ b

i

only the shaded area is stored

The main body of the programme eszentially performs the following
operations.
(i) Read data.

<,

(11} Check the time step.

(iii) Calculate the coefficients of the matrices | D], [E]

by using finite difference approximations, and incorporate

the boundsry conditions given by equations {7.32) and {7.33).
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=g ot the nodal points from equations (7.18) and

P

(iv)  Calculate %L

(7.19).

1

j using the procedure "Mult' and convert

- ¢
(v) Multiply | D] and [ U
equation (7.35) into the form given by equaticn (7.41).

(vi) Compute} Uf by using 'Solcar’.

T+AT
” f Ul via equation (7.36% btain ful
(vii) Calculate (DUJT+ﬁ$ via equation {7.36; and obtain U] ppaT OV
using ‘Solcart.
(viii) Multiply SDR>}and iu%T+ﬁE to obtain %Dij}r?}ﬁﬁﬂﬁf
(ix) Obtainiczr'}and Pu via equations (7.39) and {(7.40).
(x) Make{’U}TZO = {U}T%AT and repeat the computational steps (v)
to (x) until {U}T+AT is less than a specified minimum

i.e. until the pore water pressure dissipation process 1is
essentially complete.

The numerical analysis involves the selection of a large enough radial

distance in order to include the boundary conditions st infinity.

solutions described in the present work have besn worked out by sssuming

this distance to be 15 times the radius of the pile. The ratio

W2 . } . . . .
M = T/{(AR}® was found to have a considerable influence on the number of

time steps required for the consolidation process to be
From a series of trial computations it was observed that s range of
0.1 <M £0.2 was satisfactory. The accuracy of finite difference

approximation would of course depend on smaller AR, particulariy near
p y

the pile surface. The results described below have been calculstsd by

PR .

using AR = 1/6 i.e. ar = {(1/63a, with the time step AT
s p

satisfy the condition M = G.15.

Figures (7.7} and {7.8) shows the pore water pr
of O, 1, 2, 4 and 8 for permeable and impermeable piles respectivaly,

The pore water pressures at {rfa > 1.5 are almost identicel for hoth
p e

L]
S
s



piles. It is also interesting to note that for (r/a}> 9 the pore water
pressures at T > 0 are higher than those at T = 0. The effect of the
values of G!' and K! on the corresponding effective radial stress at the

e
'

pile face have been demonstrated in Figures (7.9) and (7.10 For

j

comparatively wide range of the values of the eslastic modulii ths varis-

tions in the stresses appear to be small,

Comparison with field data

Several authors {(Seed and Reese, 1955; Yang, 1956; Airhart, 1967
have described full scale load tests on driven pilies and observed from 6

to 10 fold increase in the ultimate bearing capacity with time with respect

o

to that observed immediately after driving. The theoretical zo

contains a number of parameters such as Kh’ Gt, K?,Q 5

to obtain any meaningful direct comparison with field re
information of these relevant parameters iz necessary. Unfortunately it
is not possible to obtain the value of these parameters from the rest

results described by the above mentioned authors.

Figure {7.11}, which is reproduced from Soderberg (1362,

various observations of time dependent ultimate bearing capacity.

results have been expressed in a non-dimensional form in Figure (7.12.

:

il
f
(]
[
et
[

which shows the percentage increase in ultimate bearing capscity

against (T/T5O}, where T is the time after driving and Tep 1o the time

required to attain 50% of the maximum ultimate bearing capacity. Thus
by expressing the results in nondimensional form the effscts of but
G' and K' have been eliminated. It is interssting to nets that all the

field results calculated from Figure {7.11l) are quitzs closs

and also the ultimate bearing capacity at T/ 0 1 szbout 15% of the max-

ot

imum bearing capacity. The theoretical results for the ultimate besring

capacity corresponding to case (1) of Figure (7.10} have

A

Figure (7.12) by assuming the ultimate bearing capacity st T = 0 to be
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15% of the maximum ultimate bearing capacity. This non-dimensiona

of the time dependent ultimate bearing capacity is found to be insensitive

to variations in G' and K' within the quoted range in Figure
agreement between the nondimensional theoretical and experimantal results
of Figure (7.12) is quite close to suggest that the time dependent bearing

capacity of a driven pile can be predicted by extrapolating the results

obtained from the load tests on piles at an early stags

process.

7.6 Conclusions

A theoretical approach to understanding and predicting the increase in
the pore water pressures and ts effectson the ultimate bearing capacity of
driven pile is developed. The conclusions of this study are zummarised below:

(i) The increase in pore water pressure at the pile face may be up to 6.5
times the undrained cohesion of the soil.

(ii) TFor a pile driven into normally consolidated clay there may be no
increase in effective stresses at the pile face immsdiately afrer
driving.

(iii) The distribution of the pore water pressure due to pile driving iz

/7

determined by three major parameters A, ? and Cu, of which the
[ ;

evaluation of @ appears to be difficult, However, it was found that
£, has a relatively small influence on the results, hence an approx-
imately estimated value of § would give reasonably accurate results.

6

[

(iv) The ultimate bearing capacity of a driven pile may increass t
to 10 times of its value immediately after driving.
(v) The theoretical results have been compared with field test data with

reasonable agreement.
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Chapter 8.

Application of electro-osmosis to the

driving of probes and blades in soils.
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8.1 Summary

In this Chapter the effects of electro-~osmosis on the penetration
resistance of blades and probes in clay is studied. A high speed, and
a slow speed pile driving rig which have been developed to study the
penetration resistance of probes and blades for a wide range of gpeeds
of penetration is described. A series of tests was performed in which
the speeds of penetration, the polarity of the electrodes and the voltags
gradient across the electrodes was varied. The results of these tests
are discussed. An analysis of probe soil interaction as affected by

electro-osmosis is outlined.
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8.2 Introduction

The phenomenon of electro-osmosis was discovered by “Reuss? over

160 years ago. He observed that when a direct current waz applied to
a rigid, porous diaphragm which iz submerged in water the pore water
*

moves from the anode towards the cathode. Later Helmholtz (1879)

supplied the necessary mathematical support which was modified by Gouy
*® s - p .x* <
(1910) and others (Freundiich, 19265 Manegold and Solf, 1931} but the

quantitative results remained substantially unchanged (Caszgrande, 1949}

8.2.1 Electro-osmotic flow

The currently accepted hypothesis of the mechanics of electro-osmotic
flow through a single rigid capillary is based on the “diffuse double

layer theory.'" The faces of clay minerals have a net residusl negative

charge which is balanced by the attraction of the
ions from the surrounding porewater. These positive ions in porswater
orient themselves around the soil particle. The force of attraction
between the particle and the exchangeable ions varies with the relativs
concentration of ionsz, and the temperature and the type of pore fluid.

If an external potential difference is applied, it is observed that the
soil particle and a thin layer of strongly attracted cations and water
molecules will move (if they are free to move) with the negatively chargsd

4

particle toward the anode. The diffuse system of counterionsz {which |

a net positive charge) and the water associated with it, will move toward
the cathode. Such a system is referred to as "The Diffuse Doub

the soil particle and the strongly adsorbed cations and the wate

e

being one layer and the diffuse swarm of counteriong constitutin

other layer.

*
Reported by Casagrande (1949).
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A simplified diagrammatic representation of the water movement in a
capillary is given in Figure (8.1}, which shows the approximate velocity
distribution over the cross section. Here d1 indicates the thickness of
that part of the double layer which is rigidly attached to the boundary

wall, d. the thickness of that part of the double layer which can move,

2

and d3 the diameter of the inner free liquid.

The quantity of liquid moved in unit time through a capillary under
the influence of a potential difference E has been obtained by Freundlich
(1926) from the modified Helmholtz equation as:

e 4ng A

Q

where r = radius of the capillary,

D = Dielectric comstant of the fluid,

€ = the electro-kinetic potential difference between that part of
the double layer in the liquid which is bound to the wall, and
the part which is free to move (termed zeta potential by
Helmholtz),

n = coefficient of viscosity of liquid,

2 = length of the capillary.

Now if we consider a prism of saturated soil with a cross-sectional area

®e

A in contact with the electrodes and length % equation (8.1} becomes

g

}E _
1%

Q =: (8.2

e 4n
where q is related to the porosity and to the cross-section of the pore
space through which the water moves.

Equation {8.2) can alternatively be written as:
q y

Q =K . i .A

o
M
0]

253



D
where Ke = Zﬁé, and assumed to be a constant for a given sgoil and may be
described as the "“electro-osmotic permeability” of the soil and iﬁ is the
electrical potential gradient. It is very interesting to note that

equation (8.3) is very similar in form to Darcy's equation for hydraulic

flow through a prism of soil:

where ih is the hydraulic gradient, A the cross-sectional area, and Kh
the hydraulic permeability of the soil.

There are however some fundamental differences bestwesn hydraulic and
electro-osmotic flows. The electro-osmotic permeability Ké depends
mainly on the pore area and is less dependent on the size and the shape
of individual pores whereas Kh is strongly influenced by the shape and
sizes of the pores. This has been shown analytically by Esrig and
Majtenyi (1966) and experimentally by Casagrande (1949} and others
(Piakowski, 1957; Lomize et al 1957). The distribution of the wvelozity
of electro~osmotic flow and that of hydraulic flow across the cross-
section of a single capillary are also different. This is shown in

Figures (8.1) and (8.2),

8.2.2 The forces acting on soil particles and pore water during
electro-osmosis

When an external electric potential is applied to a saturated soil

mass, which hag a network of electrical double layers at the soil-water

T

interfaces, two equal and opposite systems of electrical forces ar

i

created simultaneously. One system of the electrical forces acting
upon the negatively charged adsorbed layer tends to move the soil
particle towsrd the anode and the other system, which acts on the

positively charged movable layer, tends to move the pore water toward
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the cathode. Due to the relative motion between the water and the zoil,
resisting forces are developed which are proportional to the relative
velocity. In a rigid soil gkeleton, the pore water flow reaches the
steady state *"instantansously' If a saturated rigid soil mass iz sub-
jected to a combined hydraulic and electro-osmotic gradient, the seepage
flow caused by the hydraulic gradient can be superimposed on the electro-
osmotic flow. Assuming that they can be superimposed linearly, it can
be shown (Wang and Vey, 1953) that at the steady state flow condition the
resultant force on the soil particle due to the combined hydraulic and
electro-osmotic action is equal to the resultant hydraulic seepage force.
The relation between the resultant hydraulic gradient under combined
hydraulic and electro-osmotic action and the applied electric poteﬁtiai
was established by Wang and Vey (1953) by making the following assumptions:

(1) The soil is perfectly saturated.

, 38 .
lic s tg e =« K, == etg,.

(2) The hydraulic flow obeys Darcy's Law (i.e Vi K o . )

o
(3) The electric current cbeys a similar law {(i.e. V. = - K o= et b,
ax ex 3X
. X . . - i OE .

(4) The electric current cbeys Ohmts Law (i.e. IX = -5 etc i,

4

(5} Both the pore water flow and the electric current flow obay the
law of continuity.
Now within the system, at any position (%, y, z) the velocity of flow can

be expressed as

vh=- |k | (V- [k [ (V}E

‘,,w,..l
o
Iy
51

e

where, 7
! 9
v, /4 i
Wy="v_ o ,vi="ar, |
f ;
Vz ~ ! afazﬁ

255



Vx’ Vy, VZ being the velocities of the pore water in X, Y and Z
directions respectively; and X, Y and Z axes are the principal

axes of Kh and Kes

i

K. O % K, O 0
Kl =10 K, o E ed [k [ =]0 K 0];
0o o0 Khz§ o o X

‘a 3 ‘10 3
Khx’ Khy’ KhZ being the hydraulic permeabilities and Kexg Key and

Kez are the electro-osmotic permeabilities in the X, Y and Z
directions, respectively.

The law of continuity of hydraulic flow gives:
* 4 *,
{(vi{vi=o0 (8.6

*
where {V}  denotes the transpose of {V}.

For the electric current Ohm's Law can be written as:

{1} = -|1/0]{VIE

= -|c|{VIE (8.7)
where
¢ »
T 1 0
| % /e, 0
(1} =/1%, [cl =11, = 1
{ Vi 2 { j I /p,i 0 /p 0 H
IIZ 0 0 1/9
v z

if X, .Y and Z are the principal axes of p,

IX, I and Iz are the currents in the X, Y and Z directions

respectively,

DX, ¢ and pz are the resistivities in the X, Y and Z directions

respectively.
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The law of continuity of electric current flow gives
*
{(vi{1t=o0 {8.8)

The above equations (8.5) to (8.8} of combined flow contain eight

unknowns: the three velocity components (Vx, vyg Vz}g the three com-

-+

ponents of electric currents density ilxg Eys Ez), one resultsnt
hydraulic potential or pore water head (H), and the applied electric

potential (E). The other nine physical quantities, permeabilitiesg and

resistivities must be determined experimentally.

8.2.3 Solution of steady state electro-osmotic flow problems

Equations (8,5) to (8.8) are for a rigid soil skeleton and can only
be applied to solve electro-osmotic flow problems where there is no volume
change during electro-osmosis,

Then from equations (8.5) and (8.6) we have

(73" [k 193 = (93 [R_[{VIE = 0 (8.9

and combining equstions (8.7) and (8.8) we have

(7} |e[iviE = 0 (8.10"

Equations (8,9) and (8.10) sre Laplace equations of quasi-harmonic form,
and thereby enable the well-developed theory of seepage to be extended
the solution of corresponding electro-osmotic flow problems.

The function H determined from equations (8.9) and (8.10) is defined
by the physical conditions of the problem, It appears that equations
(8.9) and (8.10) ensble us to reduce a steady state electro-osmotic
seepage problem to the determination of a function, which is defined szt
the boundary of given problem and is quasi-harmonic (or harmonic) within
the region. Solutions of some steady state seepage prebiems under

electro-osmosis are given by Butterfield and Banerjee (1967) using 2
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finite difference technique.

8.2.4 Electro-osmotic consolidation of soily

The electro-osmetic flow problem becomes much more involved when
during the process of electro-osmosis the soil volume changes noticeably.
This occurs in the electro-osmotic consolidation of soil. Electro-
osmotic movements of water in zo0il are essentially of two types:

(i) Where the electro-osmotic forcesg transport water from a3
source (A} say, to a sink (B) (i.e. a free flowing elactro-
osmotic cell). The scil skeleton behaves as z capillary
system on which the resultant stresses are very small (see
Art,8.2.2) and there is therefere zero change in the soil
moisture during the process.

(ii} Where the flow is restricted either by impermesble boundaries
or by what is essentially the same thing, the source beyond

the anode being the pore water in a fine grained soil mass.

o

zet up

b)

In thie case there are very high resultant stresses

{

in the soil skeleton.
In both these cases the resultant stresses cause consolidation of the
soil skeleton as explained below, In (i) the consclidation iz

negligible whereas in (ii) it will be considerable. However the time

taken to fully consolidate a large body of soil (i.e. preduce appreci
changes in moisture content) is long enough to preclude major short term
modifications of moisture content being achieved by electro-oszmosis {or

any other consolidating process).

o

Much research has been carried out (Casagrande, 1952; Schaad an
Haefeli, 1947; Evans and Lewis, 1965; Preece, 1947; Vey, 1949} to try
and interpret the bagic mechanics of the electro-osmotic consolidstion

process but no completely successful theory has yet been produced.
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The two following simple cases illustrate the consolidation of a
soil sample under hydraulic and electrical potential gradients.
Case 1. Referring to Figure (8.3.1), the tank on the right hsnd sids
is filled to level YY 'aa' is sesled and the sample pore pressures
therefore correspend to the YY level. If 'aa’® is now opsned flow
starts and eventuslly, as the sample consolidates under the ssepage
!/

forces, the piszometric level becomes xy (Figure, 8.3.2). In this

steady state the increase in effective stresses 60 is given by the

ordinate Su in this figure and the soil skeleton is compr
the end *aa’. The consgolidation process is therefore that of the

dissipation of the triangular (XYY) excess pore pressure distribution
with two free draining boundaries faa® and *bb*. Now by the addition

“

of a suitable electrical potentizl E across a-b, {(Figure, 8.%.

steady state hydraulic fleow can be cancelled. This will in ne way
alter the consolidation process since, in a free flowing slectro-osmotic
cell no net seepage forces are produced (see Art. 8.2.2).

Case 2. 1f however the end %aa' always remains sealed there are no
hydraulic seepage forces and the piezometric level remsins st YY until

E is applied. With '3 as the anode (Figure, 8.3.3) drainage can now

only occur through *bb' but the eventual steady state situation i:

exactly as in Case 1. 1f Yaz® is rigid the net result of the compre

effective stresses in the soil skeleton is g displacement of the zol
away from the cathode at *bb', no final change in the soil state ar "hb

and considerable hardening at fasz?,

e
0
r
n
‘un’ﬂ
m
[43]
ot
i.A
-
M

During the process of consolidation, soil pro

hydraulic permesbility etc. change considerably. Howevear, thes

tions by Wang and Vey (1953} suggest that a relationship exists betwesn

all electrical and mechanical properties of soil. Thus it is

to try and postulatz a comprehensive model to explain these changas in
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mechanical and electrical properties of soil under electro-osmosis.

8.2.5 Electro-osmotic activity of soils

In general the velocity of pore water in soils under slectro-csmosisz
depends upon the electric potential (E), the hydraulic potential (HJ,
the salt concentration of pore water (C'), the water content of soil

mass (M) and the temperature (t).

tvr = -k ] tvie - [k ] (i + (K] (vyer

PN
o
o
fot
frenh

ot

"LKW] {VIM - LKtJ (Vit

where Kc’ K, and Kt are properties of the soil mass and K, and K, are as
defined previously. As a first approximation assuming no change in
temperature, and ignoring C', the gradient M ultimately gives rise to a
seepage field that superimposes on the external filtration field

(Netoushil, 1953). Thus equation (8.1l1) reduces to

Wi = -[x | V3 - [k ] (VIE

i

k] (vim+ [ ] (k] (vi)

or tv} = -|k | 1V} @ +H) (8.12)

Where {V}He = [Kh 1 [Ké] {V}E 1is a hydraulic gradient equivalent to
the electrical potential gradient causing the electro-osmotic flow.
Experimental investigations of the electro-osmotic flow of water
carried out by several research workers Casagrande, 1949, 1952; Lomize
et al 1957) have shown that electro-osmotic permeability Ke can be con-
siderably greater than the hydraulic permeability, depending on the
colloidal content of the soil, It has already been mentioned that

Ke varies very little with grain size, soil grading, shape of pores
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etc. For most soils ranging from fine sand to heavy clays (e.g. London
Clay) the value of Ke iz gbout 3 x 1Ga5 cm/sec., {(Casagrande, 1949, 19352).
On the other hand Kh ranges typically from 3 x IOWB cm/sec for dense fine
sand to 7 x 10=9 c¢mf/sec for London Clay. Thus the ratio of Ka{Kh for
any soil is of major importance in practical applications of slectro-
osmosis in foundation engineering and earthworks. If Keth is less

than 1 there ic no advantage of electro-osmotic dewatering etc., over
pumping. But if KeiKh ig large then He »> H for small E valuez hence
electro-osmotic 'dewatering™ is very much better than any other method.
Several practical applications of electro-osmosis in foundation and
earthworke have been described by Casagrande (1952, 1962}, Lomize et al
(1957), Soderman and Milligan (19611:.

Equations (8.5}, (8,9) and (8.12) are based on the agssumption that
the electrical and hydro-mechanical forces are acting independently;
whereas from the basic analysis of the physical process of electro-
osmosis it is evident that the impressed electrical field must change
the seepage properties of the =soil. For the clayey soils investigated
by Lomize et al {1957} the value of K, under electro-oszmosis was found
to have increased by 8 to 15 times, the more hydrophilic the soil and
the larger its density the greater the increase. This has been
attributed to alteration of the shape or tortuosity of the capillarissz

under an impregsed electrical field - an sssumption that has been

questioned {(Esrig and Majteyni, 1966).

i

8.3 Reduction of apparent adhesion between soil and metal objisct
by slectro-osmosis

Saturated clay soils sdhere to metal objects as z result of two
phenomanon, adhasion and negative porewater pressure or suction. The
adhesive forces are intermclecular and they develop essentially on a
direct contact with clay particles. If a very small gap is formed
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between the object and the clay particles the adhesive forces become
negligible. It has been shown by Peleg (1960) and Potyondy (1961)
that a very thin layer of moisture between metal objects and clay reduces
the adhesion considersbly. Though the basic idea of adhesion between
the metal implements and clay soils seems very simple, the magnitude,
however, depends upon the cleanliness, humidity, oxide or other films,
surface finigh, velocity of sliding, contact pressure, grain size,
direction of grain orientation, vibratory, static or dynamic loading,
etce Thus the problem iz one of extreme complexity.

The forces due to negative pore water pressure play a very important
part in the bonding forces between metal objects and soil. With atmos-
pheric pressure P, and absolute pore water pressure p, the bonding force

EY
4

per unit area due to suctiom iz (p_ - pl. If the wetted area is A

o
. 1
(Figure 8.4) and the total area iz A and A"/A = o {(say), then the

equivalent total force per unit area due to this on the total area A ig

alp, ~ ple
Now if the surface tension is T, and the radii of curvature of the

two menisci Rx’ Ry? the suction pressure inside the water neck is given

by

{8.13:

WlH

T
- = e
(p, - P)= 3
x y
Thus as the moisture content increases, Rx’ Ry increass and therefore
. R

the suction pressure decreases, and, as the moisture content decresses <*

R decrease and therefore the suction pressure incresses. The ratioc

¢ is dependent on moisture content and contact pressure. It incres

e
i

with the increase in moisture content and contact pressure. Thus i
would appear that the totsl normal s¢tress on AS will have s maximum st
some intermediate moisture content. An addition of water to the matsl
soil interface or complete drying of metal-s0il interface will destroy
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the suction and conseguently detach the metal object from the soil.

A hi

PORE WATER

FIGURE - 8.4
SURFACE TENSION NEAR THE CONTACT
BETWEEN TWO PARTICLES

The suction contributes to the ultimate shear stress (TS) at the

metal-soil interface. This contribution can be expressed as

T = oc(po - p) tand = {%——l—%—} tanS, o (8,14}
X

s »

where § is the soil metal coefficient of friction,

It has been mentioned previously that when an electrical potential
is applied across two electrodes driven into soil, two equal and opposite
system of body forces are developed. One system acts in the porewater,
pulling towards the cathode, the other system acts on the continuous solid
phase and pulls towards the anode. Thus immediate compressive total
stresses set up in the soil skeleton are reacting against the anode,

which is held in equilibrium by a suction in the porefluid. Since the
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soil does mot behave exactly as an ideal water saturated elastic
skeleton there will be an immediate reduction of the radial stress
already existing around a driven probe. Thus a reduction in total

radial stress will reduce the driving resistance of the probe.

During the application ¢f electro-osmosis to a driven cathede probs
a very thin film of moisture appears at the cathode, almost instantan-
eously with the switching on of the electric potential which helps to
reduce the adhesion. Thus it is possible to reduce the apparent
adhesion between a metal object and soil by electro-osmosis. Several
research workers (Fountain and Payne, 1954; Zaslavasky and Ravinas, 1965
have done experiments to investigate the effects of applying an electric
potential to the adhesion existing between metal objects and soil but so
far only a partial explanation of the phenomenon has been obtained.

The magnitude of the body forces set up during the application of
an electrical potential to a driven cathode probe would depend on the
applied potential 'E' and the ratio of electro-osmotic to hydraulic
permeability. But this possible theoretical value will not be attained
in a practical application because of inadequate sealing of the cathode
and also near the anode the formation of gases (Oz} may . prevent suction
values exceeding one atmosphere. The suction of course may. be greater
in a completely saturated clay but in any case it iz limited to the PF

value at the natural moisture content of the soil.

8.4 Electro-osmosis in the driving of probes and blades

Reltov and Novikov (1938) first cuggested the use of electro-ozmo

for facilitating the driving of piles into soil. Begemann {1
published the results of laboratory studies and experiments on driving

four reinforced concrete piles covered with strips of mild steel, using

electro-osmosis. However his investigation did not include the sffect
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of various physucal and physiochemical factors on the effectiveness of
driving piles and without this knowledge it is impossible to cbtain the
optimum benefit from electro-csmotic effects. Nikolgev {1962} invssti-
gated the influence of minerclogy, grain size distribution, moisture and
porosity, arsa of electrodes on the sinking of a cathods pile. Hig work,
however, does not include the effect of rate of penetration or the pene-
tration resistance of 3 pile driven with or without electro-osmotic
assistance.

On the basiz of the preliminary investigation carried ocut by several
P y y

research workers {Begemann, 1953; Nikelaev, 1962} and more rs iy by
Butterfield and Banerjee (1967), it can be concluded that application of
a negative electric potential to a probe reduces the skin friction by an
amount up to about 70% depending on the applied voltage gradient and the
probe geometry.

For a very short time application of electro-osmosis, such as in th

(1]

0]
o
)

ginking of probes in soils, the reduction in penetration resistance

§

is only temporary. Rapid restoration of the probs-zoil gripping
takes place almost immediately after switching off the appiiad potential.
On this bzsis the electro-osmotic method of speeding up stesl probe-
driving operations may have Semergommercial application.,

Apart from the beneficial results that can be achieved by driving
probes and blades by electro-osmozis it should be borne in mind that
application of a voltage gradient of high magnitude for a long time might

lead to a very severe cracking of the ground surrounding the probes, which

may be an unfavourable side effect.

The zcope of the presznt work is to indicats the influsnce

gradient and the zpeed of driving on penetration resitance of model pr

in clay soils.
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The application of an electric potential to the probe soil system
gives rise to several complex physico-chemical phenomena most of which
are not fully understood. Therefore in lieu of trying to evaluate the
effects of these complex physico-chemical phenomena the present study
was dirscted towards obtaining experimental relationships bastween pene-

tration resistance, speed of penetragtion and voltage gradient.

8.4,1 Effect of electro-osmosis on penetrating probes and blades

During sinking of a cathodic probe with an applied D.C. potentisl
a2 number of phenomena may occur which facilitate the driving operation:

{13 Bubbles of hydrogen form on the surface of the cathode as 2
result of electrolysis of water, these bubbles flow between the probe
and the soil and therefore decrease the adhesion between the probes and
soil during the time of sinking.

{(2) In plastic clays the formation of a thin film of water on the

fto
3

surface of the cathode probe as a consequence of electro-osmosis
observed almost immediately the current is switched on. Thisz f£ilm
also reduces the adhesion betwsen the probe and the soil.

{3} Due to continuous accumulation of moisture around the cathads
the soil may even "wet up' to the liquid limit over a long period

i

(Casagrande, 1952). This however takes a considerable time and can be
ruled out completely for the short times involved in the application cof
electro-osmosis in the driving of probes.
(4) Due to development of body forces (mentioned in the Art.
8.2.2 ) the existing radisl pressure around a driven pile decresses
and thus contributes to the decrease in penetration resistance Ths
radial compressgive stressez set up in the =oil by a driven probe iz

thus reduced by an amount proportional to the voltage gradient and the

“electro-osmotic activity' of the szoil.



In the short term application of electro-osmosis to pile driving,
the phenomena described in (2} and {4) appear to be the most significant,
while in the long term application of electro-osmosis to such problems ss
the stabilisation of soil the effect of (3} and also many other complex
physico-chemical phenomena are of relevance (Casagrande, 1962,

It has already been mentioned in Chapter 7 that very high porewater
pressures develop when a pile is driven in clayey soil. Digsipation of
this porewater pressure is primarily responsible for the increase of
load carrying capacity of driven piles with time. The total time which
a driven pile may take to reach its maximum load carrying capacity may
in some cases take many months (Seed and Reese, 1955). It is possibls
to use electro-osmosis to dissipate the excess porewater pressure exist-
ing around the pile. The pile in this case will be made anodic gnd ths
cathode will be at some distance awgy from the pile. The corresponding

time required for the pile to reach its maximum bearing capacity could

thus be reduced considerably. In this case electro-osmosis is merels

being used to accelerate an existing consolidation process.

8.4,2 Variation of electric potential during the application of elzctro-~

osmosis for a given probe electrode configuration

The rate of moisture movement in soil and the magnitude of the
stresses set up in the goil skeleton are dependent on the magnituds
and variation of the applied electric potential gradients. Thie it is
necessary to investigate the distribution of the electric potential for

a given probe slectrods geometry.

#

In zpplications such as in plane problems (blade-plate elactrode

system) and in rotationally symmetric problems {co-axial probe-electrods
system) the voltage gradient could be simply calculated. But it is

generally difficult to provide a co-axial probe-electrede system for a
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rotationally symmetric application of electro-osmosis. Hence an array
of electrodes arranged around a central electrode (Figure, {(8.5) has been
used. The potential field for such a probe-electrode configuration can
be obtained simply from an electric analogue. The analogus szolution
shown in Figure (8.5), shows that the actual voltage gradient at the
pile face iz zbout 4 times the average voltage gradient, the aversge
voltage gradient being defined as the applied voltage divided by the

radius R.

8.5 Apparatus for slow speed tests

8.5.1 Rotationally symmetric case:

Details of the model pile

The pile shaft consisted of a 3/4" diameter mild steel tubing of

3/32% wall thickness. The pile shaft was made in three gszctions, cut

to their appropriate lengths and faced up in the lathe. Two shaft pls
were them machined to size. These had a central flange of 3/4" dismster
with threaded connections each end. The function of these shaft plugs
was to connect the two end pieces to the main pile shafr. The end
pieces were designed to accommodate the load cells. An oval hole was
cut just below the top plug in the side of the shaft for emerging wires
from the bottom load cell. Four 3/32" diameter holes were alzo drill:zd

radially in the bottom shaft plug, in the longitudinal directicn, to take

[

the wires from the bottom load cell up through the pile shaft. The cu
side surface of the pile shaft was cleaned after the assembly to get rid
of the rust on the pile surface.

Details of Load cells

Twoe load cells were used. The one used on the top was to give a
measurement of the total load acting on the pile during driving, wherez:

the bottom load cell was to give a measurement of end load at every
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stage of driving. Thus it was possible to measure the shaft and end
loads continuously during driving.

The core of the top load cell consisted of a solid cylinder of 7/1i6™
diameter araldite. The base of this core was located in the centrs of
the top plug. Load was transmitted to the core by mesans of z spherical
bearing resting on a mild steel cap glued to the top of the araldite core.
Two foil strain gauges of 1/2%" length were attached longitudinally to the

core serving as active. Two similar gauges were attached circumferanti

acting as dummies. The cell was cased within the top 3/4" dis. tubing

n the

screwed to the top shaft plug. A P.V.C. bush was positioned bstwe

casing and the load cell cap. The wires coming out of the top load c:
were passed through two holes drilled in the cell casing. The details of
the top load cell are given in Figure (8.6.1).

The bhottom 1oad cell was primarily a thin cylinder made out of &
solid 3/4" dia. araldite core. The wall thickness of the cylinder was

1/16". It had 1/4'" long and 1/2" dia. extension to the top end so thst

it can be pushed inside the pile. Two active strain gauges were attsched
longitudinally and two dummy strain gauges were attached circumferentisz v
to the inside surface of the cylinder. The connecting wires to the strain
gauges were taken through the 3/32' diameter holes in the bottom plug into
the pile shaft and then out through the openings in the pile ghaft at the
top of the pile. The extensions of the araldite cell was then glusd and
pushed into the pile. The cell was then finally closed by a 3/4" digmeter
and 1/8' thick araldite disc glued to the bottom end. The bottom ioad
cell was thus made perfectly watertight. The details of the bottom load

cell can be seen in Figure (8.6.2).

Preparation of the Samplé\

The clay bed was contained in a circular concrete cylinder of 4'es
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in diameter and 3'6" in depth. The bed was prepared from remoulded
London Clay mixed in a large mixer and layered and compacted by hand in
3" layers. The surface of the sample was kept covered with wet sack
and polythene sheets.

The driving rig

Basically the driving rig was the same as the one used by Johnsten
(1968}. It constituted a network of steel girders from which the
driving head was suspended. Four main girders extended from the ground
to a height of about 870" each one being bolted to the concrete containsr
at two points. Two joining girders were welded across each of the two
pair of main vertical girders, so as to be parallel with each other.
These two joining girders were fitted with trolleys capable of movement
along the line of their supporting girders. From each trollzy wss sus-
pended a 2" diameter threaded bar of length 3'0" and suspended from thass
was yet another girder. This supported the driving platform, which con-
sisted of an inverted U section girder running along the suspended girdsr
on another pair of trolleys. The driving platform itself supportsd and
housed the electric driving motor, the system of driving shafts and chain
sprockets and bearing plate.

By incorporating two pairs of trolleys in the rig, motion of the
driving platform could be achieved in two perpendicular directions.

Thus it could be moved horizontally to any required position over the
clayobedg Furthermore the vertical adjustment could be made by uszsing
the 2" diameter threaded bars. These were supported above the upper
set of trolleys by two large nuts welded to the steel threads. Thusz
by turning these nuts and so also the steel bars the girder supporting
the driving platform could be raised or lowered, by its running up and

down steel threads.
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A triaxial machine motor and gearbox was used to drive the probes.
The upper and lower axle was connected by chain and wheel system. To
the lower axle was fitted a worm and wheel mechanism. The rotational
motion of the wheel was transferred to 1%'" diameter and 24'" long threaded
shaft by screw-nut mechanism. The assembly was thus capable of driving
in 18" without any interruptiomn.

The bearing plate was connected to the main driving shaft using a
ball connector as found in standard triaxial testing machine for the
attachment of a proving ring. On the underside of the plate, counter-
sunk bores were made to locate the spherical bearings of the model pile
and electrodes. These electrodes were made on a 3.04" radius around
that for the model pile and at 120° intervals. They were held together
by a triangular wooden block made up of three pieces, with a one inch
diameter hole at the centre. The purpose of this assembly was to keep
the probes and the pile at a constant distance apart at every stage of
driving.

The rate of driving for the apparatus was found to be 0.36" per
minute by measuring the vertical movement by an ordinary dial gauge.

A forward/reverse switch was placed in the electric motor circuit to
enable motions of the shaft both up and down. It was possible to drive
the rig manually by loosening the bottom sprocket restraining screw.

Other features of instrumentation

The wires from the top and bottom load cells are connected to four
arm bridge of z Baldwin strain indicator through a Huggenberger junction
box. The signals from the locad cells were thus recorded directly in
terms of micro-inch per inch against a particular setting of a gauge
factor for the fail strain gauges.

The source of elesctric potential applied across the pile and the
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probes was a 30 volt rectifier and the voltage applied could be varied
from O to 30 volt D.C.

The load cells were calibrated in a heavy duty triaxial testing
machine. This incorporated a central cross beam to support the centre
of the model pile and to line it up vertically. The model pile passed
through a2 bush at the centre of this beam and rested on a piece of rubber
sheet resting on the base supporting plate. The load was measured by
a proving ring in the usual manner. The bush was well greased to avoid

possible error due to friction.

8.6 Dynamic driving rig:

Basic features of the apparatus

It was essentially a shaft carrying a sheet pile blade or a cylin-
drical probe at its lower end, sliding vertically within twe linear
bearings mounted on the structural frame. The top end of the shaft was
held by an electromagnet hanging freely from a cantilever bracket. The
cantilever bracket was fitted with a dial gauge which recorded deflect-
ion of the cantilever arm at a particular point. The cantilever bracket
with the dial gauge was then used to read load held by the electromagnet.
A 9% x 5" x 4" box was accommodated on the top of the pile connecting the
shaft so that weight of the shaft, pile and the moving components could
be increased, if necessary by putting some lead shots in the box. A
displacement-time measuring device was fitted to the shaft and the diz-
placement plot was recorded in a U.V. recorder. The box providad for

lead shot was alzo uszad as housing for an accelerometer. The output

from the accelerometer was recordaed in the U.V. recorder. The wh

frame wasg mounted on a rigid platform. The platform was on four

H

levelling screws to make the base, and hence the structural frams,
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vertical so that the vertical shaft could fall freely under gravity when
released by the electromagnet. A zet of buffer springs were placed on
the both sides of the shaft. These springs were mounted on a horizontal
channel that was alse a structural member of the frame. A gecondary
horizontal beam channel fitted with rubber cushions was supported on

the springs. A cylindrical welded stop was fitted to the 3/4" digmster
shaft. The function of the welded stop, the spring and the horizontal
beam channel assembly was to bring the shaft to rest after the required
penetration of the probe iz reached. The basic features of the apparatus
can be seen in Plate 1,

Theory behind the design of the apparatus

Let the mass of the shaft, box and the blade m fall through a height
h under gravity and then penetrate the soil sample., Then at any pesition
of the blade inside the s0il mass we have, by considering the dynamic
equilibrium and applying the d'Alembert’s principle,
| 2

m -§ + P = mg
dt

where x is the distance {measured from the surface of the soill}, t is
the time and P is the penetration resistance offered by soil.

Assuming that P can be represented by a series polynomial

P = A+ Bx +'sz T o ceves

For simplicity we assume that P can be represented by

P = A+ Bx
Then we have,
d“x - , .
+ (B Jx + (g - A/ 78,
dt hii} M0

The solution of equation (8.15) under the boundary condition at t = o,
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of x = o, dx _ uOLWhere u, is the velocity of blade at the surface of

dt

the soil, is

u (g - A/ ) (g - A/ )
x = —2 Sin (VB/ 't - ————2— , Cos (V/B] )t + —r—r- (8.163
m (B!m) m (B!m}

\/B/m

Therefore the velocity Vt and acceleration ft at any time t are given by:

(g - A/ )
Vt = uo Cos (VBfm)t + —_— . Sin (VB/m)t (8.17)
B/m
£, = (g -~ A/ ) Cos (V/B/m)t - u, </37m> Sin (/B/m>t {8,118

In the equations (8.16) to (8.18) A and B are soil-blade parameters and

are directly related to the dimensions of the blade and the cohesian of

the soil,

The following points are worth noticing in connection with the above

equations of velocity and acceleration:

(i) The hypothetical periodic time = Zﬂ/m/B

(ii) The condition for constant rate of penetration demands

ft = 0, il.e:
g - Al ,
tan {VB!m}t B e (8,19
u (VB/ )

Equation (8.19) provides the value of 'm' necessary to keep the velocity

approximately constant over a small penetration.

Accelerometer assembly

The accelerometer used was the 'Vibrometer' type 5A/SA; *5g rangs,

133 c¢/s resonant frequency with resistance strain gauge sensing element:-.
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It was mounted on a 1% x 2" x %" thick perspex piece with a 1 cm2 hols
at the middle. It was split into two parts so that the accelerometer
could be placed in 1 cmz hole horizontally at the centre of the driving
shaft. The accelerometer was placed in the 1 sz hole and the two
pieces were then bolted together by two brass screws. Thus the
accelerometer was firmly gripped by the perspex piece. The perspex
piece was then fitted in a special housing provided within the

9" x 5" x 4% box at the bottom of the 3/4" diameter driving shaft.

Care was taken to ensure that the centre of the mounting perspex pisce
and hence the centre of the accelerometer coincided with the centre line
of the driving shaft. The three wire leads from the accelerometer and

two 100... resistors were made to form a Wheatstone bridge. The terminals
of the bridge were taken out of the housing block through a %' diameter

hole in the housing block. The specification details of the accelero~
meter used are given below:

Nominal wvalue = +5g

Maximum load = +50g

19.97 mv/v at 5g

f

Sensitivity

(Resistance strain gauges as the sensing element)

Excitation = 3 to 8 volt D.C.
Natural frequency = 133 ¢/s
Impedance = 2 x 113. 72

The two diagonal terminals of the bridge were connected to a 7%
volt D.C. source while the other two terminals {output terminals}
were connected to a 450 c¢fs galvanometer of an ultraviolet recorder
with a 250." damping resistance in parallel. It was possible to
increase or decrease the deflection of the galvanometer by varying

the resistances incorporated in the bridge so that the width of the
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trace on the ultraviolet light sensitive recording paper can be measured
with sufficient accuracy. The circuit diagram for the accelerometer is

shown in Figure (8.7.1).

Photoelectric diode assembly.

The photoelectric diode assembly was used to record the velocity
of penetration of the pile at every stage of penetration. it essen-
tially consists of three parts,

(1) The light source:

The purpose of the light bulb was to project light onto the eye of
the photodiode the resistance of which varies with the light intensity
falling on the eye. The light source used, was an ordinary 25 watt
bulb connected to a 12 volt D.C. source. The bulb was painted black
on all sides except the one facing the screen.

(2) The photodiode:

This was excited by a 6 volt D.C. source through an 1 M$l'résist-
ance in series with it. The rating of the diode used was 1.67 MO
for 1 ft. candle of light intensity. As the light intensity on the
cell is increased so its resistance falls and the potential drop across
it decreases.

Thus if - ft. candle is the light intensity falling on the eye of

the photocell for the given configuration the voltage drop across the
6 x10°° 1 1.67
L+ 167Xl T

behaves linearly with respect to the light intensity. The nonlinearity,

photocell is given by volts, provided the photocell
however, would not offset the purpose for which it was used. The
voltage drop was measured by a 1000 c¢/s galvanometer which was damped
critically by a 250.5% resistance across it. The trace of the galvano-
meter was recorded on ultraviolet recording paper. The light source

and the photoelectric cell were mounted on the extended arms of an
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adjustable magnetic clamp. The magnetic clamp itself was held fixed
with the structural frame. The circuit diagram for the photocell
assembly is given in Figure (8.7.2).

{3) The screen:

The purpose of the screen was to allow light to fall on the eye of
the photocell at some preset intervals. A brass plate with 1 mm wide
slits at 5 mm centre to centre was used. It was held fixed with the
moving shaft and held vertically between the light source and the eye
of the photocell which consists of the fixed part of the photoelectric
assembly. Sufficient care was taken so that the gap between the moving
and the fixed part of the photoelectric assembly was a minimum fof the
brass plate to pass clear of the photocell and the lamp.

The details of the photoelectric assembly can be seen in Plate 2.

The ultraviolet recorder

The recorder used was S.E. 2000 type and was capable of recording
in 25 channels of which only four were used. It has a series of mirror
galvanometers such that s beam of ultraviolet light from an ultraviolest
lamp falls on the mirror and is reflected onto the light sensitive
linograph direct print paper. Thus any small deflection of the galvano-
meter is automatically recorded as a deflection of the light trace across
the recording paper.

Timer Circuit

This was an ordinary pulse generator which could generate step
pulses at chosen time intervals.  The function of the pulse recorded
on the Ultra Vioclet Recorder was to check on the paper speed. As moszt
of the penetration tests were highspeed ones it was not possible to
depend on the rated paper speeds of the U.V. Recorder. The numerical

analysis was carried out on a time base obtained from the pulses
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generated at 10 milliseconds intervals. The circuit diagram for the
timer circuit can be seen in Figure (8.7.3).

Event marking Device

This was used to obtain a marking on the recorded results at the
instant when the pile is exactly touching the surface of the soil
specimen. This was attained by using one terminal of a 1% wvolt dry
battery connected to the surface of soil sample while the other was
connected to the pile through a 100 ¢/s galvanometer through a 400 K-
resistance in series. The galvanometer was suitably damped by having
a 250.%7. resistance connected in parallel with it. As the pile touched
the surface the electric circuit was complete and accordingly an
instantaneous deflection of the galvanometer trace was obtained on the
linograph paper. The circuit diagram for the event marks can be zeen
in Figure (8.7.4).

The electromagnet agnd the Triggering device

The electromagnet was designed to carry a maximum load of 70 lbs.
The current necessary was supplied from a 12 volt heavy duty car battery.
The electromagnet and the triggering switch for the paper drive of thes
ultraviolet recorder were connected to a special biased switch which
could be switched momentarily on and off. Thus it was possible to
control the electromagnet and the paper drive motor of the U.V. Recorder
simultaneously.

Preparation of the sample

Samples of London Clay were mixed at a preset moisture content in
a large mixer until the sample appsared to be homogeneous. It was

then compacted in 3" layers in 2Y0" long 1'3" wide and 9'" deep containers

o

by a 5 1b. hammer with 60 blows per layer, for a free drop of 12%. The
samples were kept covered with wet sacking and polythene sheets to pre-

vent any loss of moisture.
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8.7 Experimental investigation

8.7.1 Slow speed driving of model pile

Calibration of the Load Cells

The calibration of the model pile was carried out using a triaxial
testing machine. The pile was loaded and unloaded at least 25 times
to bed down the leoad cells. The pile was then loaded up to 150 lbs
in incrementg of 10 1lbs. The loads were measured by a 200 lbs, proving
ring. The strain readings were measured in a Baldwin strain indicator
using the four arm bridge. These tests were continued until the strain
readings followed a regular and congistent pattern. A calibration chart
(Figure 8.8) was then plotted of microstrain against load on the pile
taking the mean of four test runs.

Slow Speed Driving of the probe with and without an applied
electric potential

A series of penetration tests were performed without any applied
D.C. potential. The loading frame with the pile held in position was
lowered manually until the bottom of the pile touched the surface of
soil. The pile was made perfectly vertical with the help of a spirit
level., The loading plate was adjusted by releasing an adjusting screw
provided at the bottom of the driving shaft. The loading plate was
made absolutely horizontal and then the adjusting screw was tightened.
Care was taken to ensure that the driving unit and the driving shaft
were held rigid against any side sway. The driving shaft and the pile
was thus held absolutely vertical with the bottom of the pile touching
the ground surface and the top of the pile touching the countersink in
the loading plate through a spherical ball bearing.

The initial readings of both load cells were taken by a Baldwin

strain indicator. The drive motor was switched on and the readings
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were taken at one minute intervals until a penetration of 16" was
reached. The drive motor was switched off and then switched on to the
reverse direction until the lcading plate went back to its original
position. The pile was then pulled out of the clay bed and thoroughly
cleaned to have the same surface texture as before.

In driving the pile with an applied electric potential essentially
the same operation was followed, axcept that three electrodes were
arranged at 120 degree intervals around the model pile. These electrodes
were held rigidly tight with the loading plate by screws through perspex
adapters to prevent short circuiting. A triangular wooden block made
in three pieces, having 1' diameter hold at the middle was used to pre~
vent these electrodes going outwards with the pile held at the centre.
The object of providing the 1" diameter hole at the centre was however
to prevent any losz of load transfer due to friction between the block
and the pile shaft. The steady D.C. source used for applying s steady
D.C. potential was a rectifier plugged in 220 volts 50 c¢fs A.C. mains.

After the penetration tests samples from the compacted clay bed
from different depths were taken by 1%" sampling tubes. The moisture
content and undrained triaxial ghear strength of the samples were salso
determined.

Results

The shaft load was cazlculated by deducting the end load from the
total leoad measured by the top load cell at different depths of pene-
tration. Figure (8.9.1) to (8.9.5) show the shaft loads and the end
loads of various depths for a range of applied D.C. potentials.

(0 to *0.4 volts/cm). Each point on these figures represents the mean
of three tests. The moisture content and the undrained cohesion values

of the samples are shown plotted against depth in Figure (8.10}.
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The decrease or increase in shaft adhesion due to an applied negative
or positive D.C. potential respectively was defined zs 2z nondimensional
quantity given by {PzPE}ch Where, P = the penetration resistance cf the
probe without any applied D.C. potentisl and PE = the penetration resist-
ance of the probe with an applied D.C. potential.

Figure (8.11) shows the values of {?»PE}ZP plotted against the average

voltage gradient (E/R) in volts/ecm, where E ig the voltage applied between

the pile and the electrodes and R is the radial distance between the centre

entislly

of the probe to the centre of the electrodss. Since R
constant for all the tests Figure {(8.11) igc wirtually 3 plot of {PaPE}fP
against YE' to a different scale. It should be noted here that the
results are interpreted in terms of the average (E/R) only for the purpose
of possible field applications. The actual voltage gradient zt the pile
face for a given probe-clectrode configuration would depend on the diameter
of the electrodes and the radiug *RY. For the geometrical configuration

the actual voltage gradient at the

Efy

such asz the one used for all the test
pile face 4 x E/R average.

The relationsghip between the current through the system for & pene-
tration of 14 and the average (E/R) is shown in Figure (8.12). Con-
trary to the general expectation the relationship between the applied

voltage gradient and the current was found to be non-linsar.

Conclusions

cathode probe reduces

virtually no reduction in and load

up to 85% in the shaft resistance o
average potential gradient of 0.4 velt/cm at a rate of penetration

0.36" per minute. The increases in the shaft rsasistance by msking
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the pile anodic was, however, found to be limited to 45% at an zverage

voltage gradient of 0.4 volt/cm for the same rate of penetration.

if the total shaft resistances can be expressed {conventionally) zs

P = mDL o C_
o u

= TDL G C_
?@ b E CU

where D and L are diameter and length of shaft respectively and E; ig

the average undrained cohesion owver the pile length, which can be aszumsd
to remain virtuslly unaltered, for the short time application of an
electric potential,ao and %p the nondimensional factors which are
dependent on the change of interaction forces at the pile soil inter-
face.

If now 5; can be tzken as 4.00 psi (Figure, 8.10) over the whole

length of the shaft. We obtain,

b

average o = ———— = (3, 50.
- L G
Similarly average
{ ) ) PE
inff,{}r "f:E,{’R,:‘aM = 0.4 V!Cfﬂ[ =M~_ = 0,08,
oL ‘ /ML ¢
u
and average
; : P
{ . VR
ap | for {E/R)__ = +0.4 V/Cm| = = 0,.76.
i A »‘f/i DL C
u

It is however conceivable that o_

E for an application »f a D.C. negati

potential cannot bs lzss than 0 and for an application of 5 D.C. posz-
itive potential cammot be greater than 1 provided that the duration of

applicztion iz small enough not to change the value of G - This is
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reflected very well in Figure (8,11}, which shows quite clearly that
the increase in reduction cr the increase in penetration resistance isg
almost linear with average (E/R} up to 0.2 volt/cm., beyond which the
rate of decrease or increase is progressively less. Thus it would
appear that the most economic average voltage gradient perhaps lies
around 0.2 volts/cm.

The relationship between the applied voltage and current was found

to be nonlinear (Figure 8.12)}. This nonlinearity was thought to be

due to:

(i} The relationship between the voltage and current for any soil
is not strictly linear, i.e. linear ohms law cannot strictly be appiigd
to soils.

(i1} The clay bed was not 100% saturated, consequently there has
been an almeost instantaneous movement of the fluid phase resulting from
the body forces on the fluid phase as soon as the potential was applied.
This would result in change in simost immediate change in moisture con-
tent and consequently in resistivity. The change in resistivity would
thus increase with increage in applied potential. Hence the deviation
from linearity was found to be greater for higher voltage gradients.

For a fully zaturated soil there cannot be any change in resistivicy dus

to moisture migration for short time applications of electric potential.

8.7.2 High szpeed driving of sheet pile blades

Calibration of the load measuring device

A cantilezver bracket was used for measuring the weight of the
driving shaft. The details csn be ssen in Plate (3 ). Lead shots

of known weight were placed in the container on the rod with a

spherical head at the top Plate, 2, The deflection of the bracket

at a given load was measured by a dial gauge. Figure (8,13
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the reading of the dial gauge plotted against the load applied to the
bracket. The bracket was loaded several times snd the readings of the

dial gauge for a given load were remarkably consistent.

Driving of sheet pile blades with and without electro-osmosis

A series of high speed penetration tests were performed cver a
range of speeds from 2 to 6.8 ft/zec. The rate of penetration was
varied by varying the height of fall. Coarse adjustment for height
wag done by raising the zample while the finer adjustment was done by
turning the female adopter provided at the bottom of the cantilaver
bracket. The héight of drop, that is the height between the trimmed
and levelled top surface of the sample and the bottom edge of the blads,

was measured.

All the electrical appliances were switched on. The frequency

1

of timer signal and the speed of the ultraviolet recorder was selacted

s0 that a convenient spread of time scale plot could be attained. The

photo-electric cell lighting was adjusted until a reasonable well defin=d

trace was obtained on the ultraviolet recorder paper. The acceleroms
trace and the base line trace (i.e. a reference line) were adjusted by
turning the galvanometers =o that both traces coincide at a point whan

the accelerometer is at rest. The event marking device was laid and

the galvanometer was adjusted to give a sharp trace on the ultravi
light sensitive paper.

A series of vane tests were done on the zample by a portable
laboratory vane which was calibrated before hand with triaxial test
results,  Thus the vane tests results were directly transferred to
equivalent underained triaxial values of shear strength.

From the measured values of cohesion a rough estimate of the

penetration resistance of the pile was made, and thus a required
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value of the weight of the moving components to attain constant velocity

of penetration over a required range was obtained. The weight was
adjusted by adding or reducing the amount of lead shot in the box providsd
at the top of the pile. The exact weight of the shaft, pile etc. and

its moving components was measured from the dial gauge fitted to the
cantilever bracket,

The triggering switch was pressed and the electromagnet thus
gutomatically released the shaft which fell under gravity and penetrated
the soil sample until brought to rest against the buffer device. The
recorded paper trace out of the ultraviclet recorder was expesed to room
lighting.

A series of driving tests were performed with an applied electric
potential. The test procedure was essentially similar to the one des-
cribed above except that two steel plates buried 2' inside the soil
sample were used as anodes and the pile was made the cathode. The stzel
plates were buried parallel to each other and the pile was allowed to coms
down along a line equidistant from thems The necessary D.C. potentisl
was supplied by a rectifier connected to a 220 volt 50 ¢/s A.C. mains.

Recording of data

The recording of all high speed penetration tests were done on
linograph ultraviolet light sensitive paper. The paper was expossad
to room lighting for a few minutes after recording and then ag soon as
the galvanometer traces became prominent it was stabilised by spraying
linograph stabilising lacquer over the relevant part of the paper trace.

A copy of typical paper trace can be seen in Figure (8.14).

8.7,.2 Results of high speed driving of piles

Numerical Calculations

The basic analytical theory behind the design and performance of
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the dynamic driving rig has been outlined previously. This section

therefore outlines the scheme of numerical calculations used to obtain
the penetration resistance (P), the velocity at any instant Vt and the
distance penetrated (S) from the ultraviolet paper traces of velocity

and acceleration.
Now let us start with the basic differential equation for acceler-

ation X of the pile at any instant 't? inside the so0il mass at a depth

X measured from the surface of the soil
mX + P = mg (8.20}

where P = Penetration resistance offered by soil for penetration from

ground level to the depth X

I

mg = Weight of the pile, shaft and all its moving compponents.

The equation (8.20) can be written as
=m(g - X) (8.21>

The right hand side of the (8.21) can be obtained from the recorded
paper trace as shown in Figure (8.14).

The rest of the procedure of numerical calculations can better be

described in the following steps:-

(1) From the measured height of fall calculate the initial
velocity Uy by u, = /EEE' where h = height of fall.

(ii) From the trace of the event marking device locate the exact
position of the time-scale where the probe just touched the
surface of the soil.

(iii) Having obtained the starting point the rest of the trace
of the accelerometer, i.e. from the start up to the point

where the velocity trace vanishes or the accelerometer
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records the impact of the buffer springs whichever happensz
earlier, is divided in suitable numbers of divisions

(Figure 8.14). This is to allow for the pile coming to
rest before hitting the buffer due to the resistance cffered
by the soil alone.

(iv) The change in velocity at an instant t, AVt is obtained from

- 1 . )
Vt 2 (Xt t+At) t
where Xt = gcceleration at time 't' measured from the origin

0 (Figure (8.14).

= i i A o
AL acceleration at time (t+4t)
At = time interval.
(v) Having obtained Avt"vt+At can be obtained and hence the

average velocity within the specified time interval

(t, t+it) can be obtained from

=1
Vo5 (U V)

av t+AE

(vi) The distance traversed during the specified time interval
can be obtained from

ns, =
L=V vt

av
(vii) Finally St+At can be obtained from
S(t+At) - St - ASt

where S(t+At) denotes the distance traversed in time (t+At}.
The computational steps (i) to {(vii) can be performed very easily in

tabulated form.

Presentation of the results

The results of high speed penetration tests of blades are given
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in Figures (8.15.1) to (8.15.12). Each point on the graph shows the
mean of four tests. The difference of the other results were within
4% of the mean.

Figure (8.16) shows the ratio of PDjPS plotted against the average
velocity over a 2" penetration (where Py = mean dynamic penetration
resistance and P, = static penetration resistance for a 2% penetration
of the blade). The static penetration resistance has been defined as
the ultimate load which a stationary blade or probe, which has been
pushed into soil by 2", can take without failure.

Figure (8.17) shows the ratio of PE/PD plotted against the average
velocity of penetration over 2", PE being the dynamic penetration
resistance offefed by the soil under an electric potential for a pene-
tration of 2'. The ratio PE/PD has been shown plotted for various

values of voltage gradient.

288



8.8 Conclusions

The dynamic penetration resistance was found to be higher than the
static penetration resistance. The ratio of PD/PS was found to vary
from 2 to 2.75 when the velocity ranges from 2 ft/sec to 7 ft/sec,

Figure (8.16). It would thus appear that the rate of increase in ths
ratio of PD/PS would be very rapid within the range of 0 to 2 ft/szec.

It was not possible to investigate the dynamic penetration resistance

within this range because of difficulty to keep the velocity of pene-

tration approximately constant over this range.

The ratio PE/PD was found to be 0.75 to 0.98 depending on the velt-
age gradient when the velocity ranges from 2 ft/sec. to 6.5 ft/sec.,
(Figure, 8.17). The line representing the mean experimental results
for 1 ft/sec has been projected back to the ordinate to show the probable
curve linking the static test results of earlier investigation {(Butterfisld
and Banerjee, 1967) for blades for the corresponding range of samples.

It would appear from the dynamic test results that application of an
electric potential does not reduce the penetration resistance to any
significant amount. Hence it cannot be recommended for a continuous

high speed earth cutting to which the project was directly related.
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CHAPTER 9

Final Conclusions and recommendations for further work.
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The final discussions and conclusions of the results of the present
investigation are presented below. The conclusions drawn from the present
analysis of the load-displacement behaviour of piles and deep foundations
are discussed with special reference to their applicability to practical
situations. Recommendations are made for the direction of future work
which should aim at systematic relaxation of the basic assumptions made
herein and experimental verifications of the results of the various analyses.

The algorithm, using Mindlin's quations, in an integral equation method
which has been developed for the elastic analysis of piles, pile groups and
deep footings appears to be ideally suited for such problems as it auto-
matically takes into account a half space with an unloaded boundary. The
number of equations to be solved for such problems is much smaller in this
method than the number necessary for similar problem by other numerical
methods (such as the finite element method) because in the present method
the surface is to be discretised whereas in the other methods the whole
domain has to be discretised. Most of the computational time involved in
the analysis is spent in forming the coefficients of the resulting system
of linear algebraic equations. Hence the method is most suitable for high
speed digital computers with relatively low storage capacity. The accuracy
of the solution depends on the accuracy with which the integrals are replaced
by the quadrature formulae. It was found that the most satisfactory
numerical quadrature is the one which allows an accurate representation of
the kernel function rather than the variation of the unknown intensity over
the surface of the given domain. The principle of superposition used in
the formulation of the integral equations restricts the application of the
methéd to problems involving linear constitutive laws for the materials
involved. The present analysis is only applicable to bodies enclosed
within a smooth surface and hence produces good results away from the edges

and corners and not so good near them (see Figure, 3.6). The method could
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be extended to deal with piecewise homogeneous domain which is composed

of a number of homogeneous domains. For such problems the fictitious
intensities (i.e. the arbitrary functions) may be distributed over the
surfaces of each homogeneous domain and a set of integral equations may
then be derived to satisfy the boundary conditions and the compatibilities
of the surfaces of the domains in contact with each other.

Application of the method to the solution of the problems related
to piles, pile groups and buried rigid discs produced a number of inter-—
esting results which are in general agreement with practice. Although
over—simplified constitutive laws for soils have been assumed, the com-
parison between the theoretical predictions with appropriate pseudo-
elastic parameters and the field and laboratory test data, revealed
encouraging correlations.

The load displacement characteristics of buried rigid discs have been
analysed in Chapter 3. It was observed that the depth of burial, shape
of the disc and depth of elastic layer strongly influence the settlement
of the disc. Hence the conventional method of calculating the settlement
of the buried rigid footings by the use of Boussinesq's solution (match-
ing the contact areas) may produce results in error by up to 100%. The
solutions presented are strictly applicable to bonded discs where tensile
stresses can exist on the top surface of the disc. Whereas the stress
distribution for an unbonded disc will be different from that for a bonded
disc it is thought that the stiffness of both systems will not be radically
different. The bonded solution will generally be applicable to deep
footings when the weight of the soil above the footing level produceé
a net compressive stress on the top surface of the disc. It would be
of interest to analyse the problem of an unbonded rigid disc where the

displacement of the bottom surface of the disc is specified and the

[¥S]
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vertical stress on the top surface is zero. For this mixed boundary
value problem the fictitious intensities could be distributed over the
surfaces of two discs indefinitely close to each other. The simultanecus
system of integral equations may then be derived by satisfying the dis-
placement boundary conditions of the bottom disc and stress boundary con-—
ditions of the top disc.

The problems of piles, pile groups and pile group-cap systems have
been analysed in Chapters 4, 5 and 6. It was found the load-displace~-
ment response of such foundations are strongly influenced by the ratios
of thickness of the layer to pile length, length to diameter, spacing to
diameter, and compressibility of the pile to that of the soil. The
reduction of settlement under a given load achieved by under—reaming is
restricted to piles with length to diameter ratios of less than 20 and
base to shaft diameter ratios of less than 3. These restrictions are
in agreement with current practice. The settlement ratios of free-
standing pile groups are found to be dependent on the width, breadth of
the group, length to diameter ratio and thickness of the elastic layer
and are almost independent of the number of piles in a group. Hence
for free—standing pile groups it appears to be more economical to use
fewer piles at larger spacings than to use many piles at close spacings.
The settlement ratio of a group of 25 piles at spacings of 3 diameters
may be as high as 15, which emphasises the importance of accurate evalua-
tion of settlement for group design. Whereas the presence of a rigid
cap bearing on the ground surface has little effect on the overall load-
displacement response of the pile groups, it does change drastically the
load carried by different piles in the group. The theoretical results
have been compared with available laboratory model and full scale field

test data. This comparison for axially loaded piles revaled that the



load—displacement relationships are in general agreement up to working
loads of P/Pugv,o.a and also that the behaviour of an under-reamed piles
is predictable from the load test results on plain piles. Comparison
between the theoretical and experimental results for free-standing pile
group showed that the theoretical method is capable of predicting the
settlement of groups of any geometry using an elastic parameter G ob—
tained from the field test results on an isolated single pile, provided
the values of Poisson's ratio is assumed. Poisson's ratio has a
negligible influence on the settlement ratio. In the present analysis
the settlement ratio has been defined as the ratio of the settlement of
a group to the settlement of a single pile, where the average load per
pile in the group is the same as that on the single pile. Unfortunately
many previous investigators have used a different and much less satis-
factory definition of the settlement ratio which gives rise to consider—
able confusion in interpreting their results and rather limits their
utility for either checking the present analysis or logical general
extrapolation to other field situations. The present analysis is of
course strictly applicable only to homogeneous and isotropic sub-soil
and does not take into account any soil stratification, changes in the
soil properties caused by pile driving, the order of driving pile etc.
which are all known to influence the pile group behaviour. Therefore

a systematic experimental research programme is still needed to evaluate
the importance of these variables.

The increase in stresses and pore water pressures developed due to
driving a cylindrical pile into a saturated clay and its effect on the
ultimate bearing capacity of a driven pile is examined in Chapter 7.

An equation for predicting the pore water pressure increase around a

driven pile is developed and compared with available full scale test
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data with reasonable agreement. It was found that the increase in the
pore water pressure at the pile-soil interface may amount to 5 to 6.5
times the undrained cohesion of the soil. This information may be very
relevant to the analysis of the stability of foundations alongside the
site in which the piles are being driven. The time dependent bearing
capacity of driven piles with reference to the variation of the pore
water pressures and effective stresses at the pile-soil interface is then
examined, The analysis predicts the ultimate bearing capacity of a
driven pile may increase with time from 6 to 10 times its value immediately
after driving. Since the load tests on piles are imevitably carried out
at an early stage when the process of consolidation is not essentially
complete, these results may be helpful in predicting an extrapolated ultimate
bearing capacity at the end of the consolidation process. The theoretical
analysis 1s, however, based on a number of over—simplified assumptions,
such as, that of plane strain, elastic-ideally plastic soil media etc.
Therefore again a solution relaxing these assumptions with experimental
support 1is required.

A topic which though not directly related to the general framework
of the present investigation which may however be useful in connection
with piled foundations is discussed in Chapter 8. A series of slow speed
and high speed probe driving tests was carried out into saturated clay
assisted by applied D.C. potentials. It was found that for cathodic
probes application of an average voltage gradient of about 0.2 volts/cm
can reduce the driving resistance by as much as 507 for slow speed
driving (0.36"/minute) but when the speed of driving 1is increased beyond
2 ft/sec the reduction in penetration resistance achieved by this process
is negligible. More detailed investigation of the slow speed and time

dependent effects is currently being carried out but the phenomenon
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appears to have no application towards improvement in continuous high

speed pile driving operation.
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APPENDIX 1

LIST OF INTEGRALS

. 1 T
(KSS)ij = zJ ; a. KW (e,5,2) d6 de ,
(3-1)6; o
> %
- 2 .
ry = LZa ~2.a.Cos GEJ H
JGl T
(KRS)ij = ZJ , J a. KWB(c,r,z) de dec,
(j-l)Gl o
r=ay
JGZ il
(KBS)ij = zj j e KW, (L,t,,2) d8 de ,
(J—l)G2 o
%
r, = [az+sz—2°a.e,Cos eS] H
JGl T
RSV, 5 = 2 | J a. KU (¢,ry,2) d8 de,
(J—l)G1 o
1
2, 2 -2
r, = [an -2.a.Cos BEJ 5
164 27
(KRU)ij =J « J a. KUB(C,r,z) dé de, r = a ;
(J-l)Gl o
JGZ i
(KBU)ij = 2 j £ KUZ(L,rZ,z) de de,
(j—l)G2 o

-2, 2 }
r, = [@ +e¢7=2.a.¢.Cos eg]z ;
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where

le i
(KSB)ij = ZJ a. KWl(C,rl,z) dé dc,
(J—l)G1 o
2.2 3
= +a“=2.a.r. :
r1 Er a a.r.Cos eé]
iGy .
(KRB), ; = 2[ J a KW, (S,r ,2) d6 de,
(J—l)G1 o)
_ 2,2 !
rl = [} +3"=2.a.r.Cos 6;]
le i1
(KBB)ij = 2 s.KW2(11r2,z) de de,
(J~1)G2 o
" 1
r, = [;2+52~2°rasaCos 6 |2
€
where
- _ L 1
r = (1 2) G2 s oz =L,
jG3 T
(KLS)ij = 2 enKWA(H,rz,z) de de
(3—1)G3 o
- 1
r, = L@2+€2-Z£3~Cos Séjz ;
where
- ¢ - L
z = (1 2)0 Gl
jGB T
(KLB)ij = 2 J €. KW4(H,r2,L) ds de
(j—l)G3 o
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r, = [r2+52—2re Cos GE]%

where
_ _ 1 -
r= (1 Z)GZG z = L,

JGl i
(KSL)ij = ZJ a. le(C,rl,H) ds dec
(J—l)Gl o
2 2 i
r, = [} +a " =2ar Cos e;]2
JGZ zﬂ
(KBL)ij =2 €. KW, (L,r,,H) do de
(3—1)G2 o
2 2 i
r, = [r +£“-2re Cos eé]z
JGB gﬁ
(KLL)ij = ZJ €. KWA(H,rz,z) de de
(J—l)G3 o
, 1
r, = [}2+€2—2rg Cos 6 ]2
2 £
where

. 1
r = (1 - §QG3, z = H.
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