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A study of some of the major parameters governing behaviour of pile 

foundations is described. The problems of: 

(a) the load-displacement characteristics of single piles 

(b) the load-displacement characteristics of free-standing 

pile groups with any arbitrary spacing, 

(c) the interaction between a pile cap and its group, 

(d) the stresses and pore water pressure around a driven pile, 

are analysed by assuming an elastic ideally plastic model behaviour for 

soils. The elastic analysis is made by developing an integral equation 

method based on the theory of multidimensional singular integral equations. 

An algorithm for the solution of the singular integral equations is 

described. The computational work involved has been greatly reduced 

by choosing for singular solution of the integral equation, the kernel 

function due to a point load within an elastic half space. 

Numerical solutions of the closely related topic of static response 

of buried rigid discs of arbitrary shape within a finite elastic layer 

are also obtained. 

The behaviour of a driven pile is analysed and an equation is 

developed for predicting the changes in the pore water pressures due 

to the driven pile. The time dependent response of the pile resulting 

from the dissipation of these pore water pressures is then examined. 

The theoretical solutions have been compared with published laboratory 

and field data with reasonable agreement obtained. 
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The results of dynamic penetration tests of model probes and blade; 

at various rates of penetration are reported together with preliminary 

results of an investigation of the effects of an applied D.C. potential 

on the penetration resistance of model probes and blades. 
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chapter 1 

Introduction 



1.1 Summary 

A summary and review of the previously published theoretical and 

experimental work on pile foundations is described in this Chapter and 

the present state of knowledge of the behaviour of pile foundations 

examined. A brief historical background of the present research is 

also given and the scope of the investigation defined. 



1.2 Background of the present research 

The research project began in December 1966 and originally r-_ --d 

to a programme concerning the investigation of high speed earth-c^^2i^g 

techniques. One of the major problems of earth-cutting ia the 'sticking' 

of soil to the blades. It was suggested that any artificial method cf 

reducing the adhesion would increase the efficiency of the earth-' -'ing 

tool. From a preliminary study of the mechanism of adhesion it bscsme 

aooarent that this may be achieved by a thin film of water between the 

and the soilo In this context, it was suggested that an applica-

tion of an electric potential between the blade and the soil may %-

produce the required film of water^ 

As a part of the preliminary Investigation it was decided to investi-

gate the effects of applying an electric potential on th^ variati'r : ? -

penetration resistance of model probes and blades driven into 

clay. It was found that the application of an electric potential to a 

pile driven at rates of 0.16 inches per minute and 0.3S Inches per m % -

altered the penetration resistance by up Co 50 per cento The actual 

amount depended on the moisture content of the clay^ the geometry and 

polarity of the model probes and blades and the voltage gradient etCn 

Penetration resistance was found to increase for an anodic pile and 

decrease for a cathodic pile. 

In order to explore the applicability of such a technique to high 

speed earth-cutting a research programme to investigate the - . at thf 

rate of penetration on the variation of the penetration resistance wab 

then planned. An apparatus capable of driving probes and blad r 

different speeds was constructed and a large number of dynamic ^ ^ r 

tests carried out. However, it was found that virtually no chang* in 

penetration resistance occurred when Che rate of penetration exceeded 



1 ft per second. Furthermore, it was decided that before any reasonable 

analysis could be attempted of the complex effects of electric potentials 

on the penetration of probes and blades the basic mechanics of probe-

interaction needed to be studied. Thereafter the research programme waa 

directed towards a theoretical investigation of the basic mechanics cf 

pile soil interaction. 



1.3 General 

In foundation engineering a pile is a construction element - a 

column of wood, steel or concrete - either driven into or bored in ths 

ground to transmit foundation loada into a layer of firm soil 3- the 

ground surface at an economical and practical depth, in such a way that 

these layers of soil or rock can sustain the loadso Piles may be 

classified into three major categories based on the manner in which t' . 

function (Terzaghi and Peck, 1948): 

(i) Friction pilea in coarse grained acil: These o:_- f-: 

most of the loads to the soil by 3kin friction. These are normally 

driven into the soil. Sometimes a large number of such pilea ars dr 

close together to reduce the porosity and compressibility of the soil 

around them, whence they are sometimes called compaction piles. 

(ii; Friction piles in fine grained koil: cile _ .r.- f 

their loads to the soil by skin friction, but the soil is not compacted 

appreciably. Foundations supported on pilas are c^ d "floating u 

foundations. 

(lii/ End bearing piles: These piles transfer their load ^ to 

a firm stratum . c^ted at a con&idere- - cepth below the base of the 

structure and are normally driven through overlying soft strata. 

Pilew have been ^ -d for w -r a f"-. ;nd years of human : 

(e.g. Caesar built a bridge on pi across the Rhine^, Whenever ' -r-

ing strata were thought to be incapable of supporting the .r^d -+ '»_n-

uous footings, piles have been considered ag an alternati 

Before the seventeenth century since there was abundant supply of timber 

and cheap labour, as many pilam were driven as ground would take. 

Settlement caused no concern, becau&e. the prevalent type of structure 

could withstand considerable amount of differential settlement wit^..-



any damage (Terzaghi and Peck, 1948). 

The Industrial revolution created a demand for heavy but in-%:-r _ 

structures, which made the coBt of pile foundations an item of c ' r 

The engineers tried various ways of forecasting the minimum number of pile 

necessary to support a given load. I' . .-d to various empiric;T 

driving formulae which were summarised by Chellis (1951), The _r" T nt 

short comings of these formulae were realised (Cummings, 1940), and con-

sequently load tests war, - equently favoured (Tsrzaghi, 1943}% 

The majority of the pre-I95G research cn pile foundations wa% 

associated with piling systems, construction methods and load te^t^ and 

was still oriented towards the esr^i-iihrnent of empirical design i -T = , 

A very comprehensive bibliography of these works has been prepared by 

Nighida (1960)o An C" _ .a need for an understanding of the mechanics 

of pile-boil interaction has led to a gra&t increase in research on 

foundations since this time. 

A review of this more recent research into the mechanic f p: --

soil Interaction is giver ^ ^ R- 1:V -f p.3'_^^ed -;rch work 

relating to the problems of: 

(aj stress distribution under a rigid disc of arbitrary shape 

buried within an elastic half space and within a finite - er 

underlain by a rigid base and 

(bj the effects of applied electrical potentials on the dynamic 

penetration resistance of pile# 

are given in the introductions to Ch&pterg 3 and 8 respectively) 

taining the present contributions on these subjects. 

1,4 A review of the previous r ^--r on single P-_-

Many attempts have been, made to ^ /r the basic prooiem of di&-

cribing the behaviour of a single pile under the action of an axial 



load; the majority of which were semi-empirical studies. Mayerhof (1951) 

summarised and reviewed these works and developed an approximate theory for 

the ultimate bearing capacity of deep and shallow foundations. His 

analysis was based on a solution cf the equilibrium equations together with 

the Mohr-Coulomb failure criterion under the following assumptions: 

(i) The failure surface is a logarithmic spiral 

(11) The effect of body forces can be linearly superimposed on 

the solution obtained without the body forces. 

The theoretical results thus obtained were written in the same form as the 

equations for ultimate bearing capacity for shallow footings: 

q = C N + p N + Y . T ' N . ; 
^ c f̂ o q 2 If 

where q = ultimate normal pressure at the base 

C = apparent cohesion of the soil 

p = overburden pressure at the base level 

Y - density of the soil 

B = width of the baae. 

N^, N , Ny were defined as bearing capacity factors which depend on the 

depth of embedment, shape and roughness of the base as well as the 

apparent angle of friction of the soil. Various tables and charts 

were presented to show the effects of the different parameters on these 

factorSo The theoretical results were compared with laboratory ? 

results which were generally within ±15 per cent of the theoretical pre-

dictions. A series of laboratory tests on the ultimate bearing capacity 

of driven piles were also described. Whereas the ultimate bearing 

capacity of a pile driven in cohesive soil was found to increase with 

time the contribution by end bearing remained essentially constants 

For a purely cohesive soil = 0, hence N = 1, = 0), equation 

(1.1) simplifies to : 



q = C. (1.2) 

A different method based on the analysis by Bishop, Hill and Mott (1945) 

of the deep punch problem in metals, was proposed by Gibson (1950). He 

obtained the pressure q required to expand a horizontal cylinder radially 

in an infinite mass of weightless cohesive soil and assumed it to be equal 

to the ultimate bearing capacity of a deep strip foundation. Thus: 

q = C. (Logg E/gc + 1) (1.3) 

where E is the modulus of elasticity of the soil, based on an initial 

tangent to the stress-strain curve under appropriate stress condiih' 

Meyerhof (1951) obtained an equation analogous to (1.3) for deep 'Ini 

footings in weightless cohesive soil. He obtained the pressure (| 

quired to expand a spherical cavity in an infinite mass of weight 

cohesive soil as: 

q = 4/] . C (Log E/32 + 1). (1.4) 

The term in the parenthesis is equivalent to N in equation (1.2). Thus 

the stress deformation characteristics were accounted for through the use 

of E as well as C. Using this method Mayerhof found N for a deep cir-

cular footing in an elastic ideally plastic material varies from 7.0 to 

9.0 compared to 9.3 for his approximate rigid-plastic analysis. An 

equation analogous to (1.4) was deduced by Skfmpton, Yassin and Gibson 

(1953) for purely granular soil (C = 0) assuming the mode of failure 

under a pile base to be identical to the expansion of a spherical cavity 

in an infinite medium. 

In establishing equations (1.3) and (1.4) the assumption is made 

that the shaft skin friction has no effect on the ultimate base resist-

ance. Although it is conceivable that the ultimate end bearing capacity 



would be affected by the shear stress distribution at the shaft-soil 

interface, no solution has been attempted which takes this into account. 

In spite of these drawbacks, the model and full scale field tests des-

cribed by Meyerhof and Murdock (1953), Colder and Leonard (1954), 

Skempton (1959), Whitaker and Cooke (1966) and Cook and Whitaker (1961) 

showed the values of the ultimate end bearing within ±20% of the 

theoretical predictions based on equations (1.1), (1.2), and (1.4). 

In summarising all the methods of determining the ultimate end load 

resistance, at the time, Skempton (1959) concluded that for saturated 

clay the value of N = 9 in equation (1.2) was about the average of the 

theoretical and experimental results for saturated clay and this was 

probably sufficiently accurate for practical purposes. This has sub-

sequently been generally accepted by designers (Whitaker and Cooke, 1966). 

Full scale experiments conducted by Whitaker and Cooke (1966) on 

piles embedded in fissured clay showed a value of N less than 9. This 

led to the introduction of an additional parameter in equation (1.2): 

q = W.N . C, (1.5) 
c b 

where C^ is the cohesion at the pile base and w is a non-dimensional 

factor which can be chosen to modify C^ to give the equivalent fissured 

strength. 

The total ultimate bearing capacity of a pile (P ) can be represented 

by: 

P^ = P 3 + P j , (1.6) 

Pg = ultimate shaft resistance, 

P^ = ultimate end bearing which is calculated from the formulae 

previously described. 



To evaluate Pg one needs to know the condition of soil around the pile 

shaft. Clay around a pile either softens as a result of boring (and 

also concreting) or becomes remoulded due to pile driving and the lateral 

stresses at the pile face are time dependent due to reconsolidation of 

the soil mass around the pile. Meyerhof and Murdock (1953) found that the 

softened zone extended about 2 inches from the shaft face of bored cast-in-

situ piles in London clay. The strength of clay in this zone was reduced 

by the initial increase in moisture content which occurred during con-

struction. Little is known of the way the effective stresses are likely 

to be affected by this process, particularly in relation to the softened 

layer of clay immediately around a bored pile and the remoulded clay around 

a driven pile in saturated clay. It is therefore necessary to carry out 

an effective stress analysis. Pile tests are inevitably carried out at 

an early stage in the life of the pile at which time the lateral stresses 

are not fully effective. This results in an underestimation of the 

ultimate bearing capacity of driven or bored piles in saturated clay. 

It has been customary to express the ultimate shaft resistance of a pile 

in saturated clay as: 

Pg = Ag . a . C' (1.7) 

Where Ag is the area of the pile soil interface, 

a is a nondimensional factor, 

C is the mean C over the length of the pile. 

Therefore the evaluation of a in equation (1.7) is of prime import-

ance in the determination of the contribution made by the shaft. For 

bored piles in London clay the value of a was reported to be between 

0.4 to 0.6 (Skempton, 1959, 1966; Whitaker and Cooke, 1961, 1966; 

Burland et al, 1966). For driven piles in saturated clay the value 
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of d was found to vary from 0.6 to 2.5 (Tomlinson, 1957). The magnitude 

was found to depend on various factors, the major ones being type of pile, 

length to diameter ratio of the pile, plasticity index of soil (Tomlinson, 

1957), time after driving (Seed and Reese, 1955; Soderberg, 1963; Airhart, 

1967; Chandler, 1968), and the sensitivity of the clay (Orrje and Broms, 

1967). 

Figure (1.1) shows a comparison between the calculated bearing 

capacity of single piles by the use of equations (1.6) and (1.7) assuming 

N = 9, a = 0.45 and w = 0.75, and observed full scale field results of 
c 

cast-in-situ bored piles in London clay. The agreement between the cal-

culated and the observed ultimate bearing capacity indicates that the 

ultimate bearing capacity of a bored pile can be predicted within ±20 

per cent. The prediction of the ultimate bearing capacity of a driven 

pile however, needs more attention. 

Broms (1966) expressed the ultimate bearing capacity of piles em-

bedded in granular soil as: 

P = q » A. + Y ' K L Y tan 6. (1.8) 
U D Z O u 

where 

Py = ultimate bearing capacity, 

q = ultimate end bearing pressure given by equation (1.1) 

K = a non dimensional factor 

L = length of the pile 

Y = density of soil 

5 = angle of friction between the pile and the surrounding soil. 

A^, A = area of the base of the pile and the shaft of the pile 

respectively. 

Previous work showed that the value of K depended on the change in 
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relative density caused by the placement of the pile (Meyerhof, 1959; 

Kezdi, 1960; Nishida, 1961; Robinsky and Morrison, 1964; de Beer, 

1963; Feda, 1967) and found to be independent of the length to diameter 

ratio and surface roughness (Broms, 1966). The value of 6 on the other 

hand has been observed to be dependent on the surface roughness and 

density of soil (Butterfield and Andrawes, 1968). 

However, the evaluation of the ultimate bearing capacity is only 

the first step. The selection of the factor of safety in calculating 

the working load is usually governed by settlement considerations. 

Whitaker and Cooke (1966) observed that the consolidation settlement of 

a single axlally loaded pile is usually negligible when compared with 

the immediate settlement and an approximate theoretical solution by 

Poulos and Davis (1968) confirmed this observation. The settlement 

of a foundation under working loads is almost always estimated by applica-

tions of the theory of elasticity. Although soil is not an elastic 

material, it was observed by Turnbull et al (1961) that at least for 

saturated clay the agreement between assumed elastic behaviour and the 

actual behaviour of foundations was generally good for loads less than 

half of the ultimate load. 

Terzaghi (1943) suggested a method for calculating the displacement 

of a single pile, whereby an equivalent stress distribution at its tip 

was obtained by assuming the load to be concentrated at the mid*length 

of the pile and then applying Mindlin's solution CMlndlin, 1936) for a 

point load within a semi infinite solid. The consolidation settlement 

was then estimated by simple one dimensional consolidation theory. 

Subsequently various analytical approaches have been employed in an 

attempt to obtain an estimate of the settlement of a single pile. 

Assumptions on the manner in which the piles transmit their loads along 
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the shaft and the pile base to the surrounding soil are fundamental to 

all these studies. Seed and Reese (1955) attempted the problem of 

relating the stress deformation curves of soil to the displacement of a 

friction pile. If a point on the pile is assumed to move downwards by 

a certain distance, this downward movement must be related to the shear 

deformation of soil at that point in order to determine corresponding 

shear stresses which will develop the resisting forces along the pile. 

They suggested the use of a vane test adjacent to the pile face, to 

determine the relationship between the shear stress and shear strain 

curve for the soil. A field test pile fitted with strain gauges was 

installed and the load at different sections of the pile was recorded. 

The agreement between the calculate loads and the measured loads was 

within ±10%. A similar method based on shaft shear stress plotted 

against pile displacement curves obtained from simulated laboratory model 

tests was described by Coyle and Reese (1966). The load displacement 

behaviour of an end bearing pile was reported by D'Appolonia and Romualdi 

(1963) in which the action of a pile was assumed to be equivalent to a 

number of concentrated loads acting at the pile axis. The displacement 

of an element i (Figure, 1.2) due to an unit force acting at the centre 

of the element was calculated using Mindlin's solution for a point 

load within an infinite solid (Mindlin, 1936). An allowance for an 

underlying rigid layer was made by placing a mirror image of the unit 

force on the other side of the rigid boundary (Figure, 1.2). 

An identical analysis for a step-tapered pile was described by 

D'Appolonia and Hribar (1963), Salas and Belzunce (1965) adopted the 

same method of analysis for evaluating the effects of a consolidating 

soil mass on the behaviour of an end bearing pile. The load displace-

ment characteristics of single axially loaded compressible pile was 
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analysed by Nair (1963), Thurman (1964) and Thurman and D'Appolonia 

(1965) using the approximate analysis described above. 

Thurman (1964) also described an identical approximate elastic 

analysis for a single compressible pile in a layered soil, in which 

Westergaard's solution (Westergaard, 1938) for the point load in the 

interior of an elastic half space, which is elastic vertically but 

Infinitely stiff horizontally, was used. Local slip between the pile 

and the surrounding soil was also taken into consideration. 

The method of analysis adopted by the foregoing writers was based 

on the assumption that the pile is reduced to a line, which is only a 
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reasonable assumption for slender piles. Therefore any effect of the 

length to diameter ratio of the pile cannot appear in the results. 

Moreover, the research described above did not cover the effects of 

other variables, e.g. base diameter to shaft diameter, ]aodulus«pf 

elasticity of the pile to that of the soil etc. 

An approximate general study of the settlement behaviour of single 

axially loaded piles and piers was described by Poulos and Davis (1968), 

Mattes and Poulos (1969a, 1969b) under the following assumptions in 

addition to those of ideally elastic soil: 

(i) The action of the pile may be represented by a number of 

uniformly loaded rings acting along the shaft face together 

with a uniformly loaded smooth disc at the base of the pile 

(ii) The disturbance of the continuity of the elastic half space 

due to the presence of the pile may be ignored. 

The displacement at the mid-length of an element j (Figure, 1.2) was 

obtained by integration of Mindlin*s solution over the shaft surface of 

the element i and over the base. The effects of the ratios of the 

length to diameter, base diameter to shaft diameter, compressibility of 

pile to that of the soil, length of the pile to the depth of the elastic 

layer were studied and the effects of the depth of the elastic layer 

were evaluated by using the Steinbrenner approximation (Steinbrenner, 

1934) for vertical displacements. An analysis of an end bearing pile 

was also presented (Mattes and Poulos, 1969b) using the mirror image 

technique (D'Appolonia and Romualdi, 1963). These authors ? studied 

the effects of local slip between the pile and the soil medium by i-

ing the limiting shear stress at the pile soil interface to be th ; 

as that described by Thurman and D*Appolonia (1965) and Salas (1965)o 

Time dependent settlement of a single pile due to dissipation of 

excess pore water pressure was analysed by Poulos and Davis (1968), 
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This analysis was analytically approximate in that it did not allow for 

the variation of mean stress throughout the inedium with time. It was 

found that the magnitude of the time dependent settlement is very small 

compared with the immediate settlement which agrees with Whitaker and 

Cooke's experimental observations (Whitaker and Cooke, 1966). 

The above research on a single pile is related to free-standing 

piles (i.e. piles with cap not bearing on the ground) only. It was 

always suspected that the behaviour of a piles with cap bearing on the 

ground may well be different from that of a free-standing pile. 

Kishida and Meyerhof (1965) carried out laboratory tests to find the 

effect of a cap on the ultimate bearing capacity of a single pile. 

They found that the ultimate bearing capacity of a capped pile was higher 

than that of a free-standing pile. Poulos (1968a) analysed the settle-

ment behaviour of a pile with a circular base^ on the assumption that the 

cap is rigid, smooth and may be represented by a number of uniformly 

loaded annular rings, together with the assumptions made in his earlier 

paper (Poulos and Davis, 1968). It was found that for the pile cap and 

pile geometries commonly encountered in practice the effect of the pile 

Cap on the load displacement characteristics is negligible. The shear 

stress distribution at the pile-soil interface,.however, changes 

drastically due to the presence of the cap. 

1.5 A summary and review of previous researches on pile groups 

Most of the published work has been concerned with single piles 

which usually in practice form only one ynit within a large group. In 

the great majority of cases the being capacity is calculated or measured 

for a single pile and the group behaviour is extrapolated by empirical 

means by use of so called "efficiency formulae" or "rules of thumb" 
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(Terzaghi and Peck, 1948). For such foundations one should be able Co 

express the load-displacement characteristics in terms of various physical 

quantities in order to arrive at a safe, economically feasible designo 

Field experience have shown that dynamic driving formulae do not give 

satisfactory results (Cummings, 1940). 

It has been known for nearly three decades that the ultimate bearing 

capacity of a pile group is not a simple multiple of the ultimate bearing 

capacity of a single isolated pile and various rules have beem designed 

to allow for this (Terzaghi and Peck, 1948), Terzaghi and Peck (1948) 

considered the use of "efficiency formulae" to be contrary to good design 

since these formulae do not take into account the various parameters which 

are known to influence the group behaviour. They suggested that in the 

design, the behaviour of the block composed of the soil and the piles 

within the perimeter of the outer piles (which will be called a block 

subsequently) should be examined. Peck, Hanson and Thornburn (1953) 

described a simple method of design in which the failure of this block 

is determined using the same method as for a single pile. Skempton 

(1952, 1953) discussed the settlement ratio (defined as the ratio of the 

settlement of a group of N piles under a load of N»P to the settlement of 

a single pile under a load P) of pile groups in sand, taking a series of 

examples from practice for which data were available. He found that the 

general trend of the group behaviour is identical with that of plates of 

same sizes as the width of the groups. Whitaker (1957) examined two 

major aspects of the group behaviour, namely: 

(i) The evaluation of the efficiency and the settlement ratio of 

groups in relation to the number of piles, spacings, lengths 

and diameters. 

(11) The distribution of load between the piles in a group. 
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He presented results from an extensive series of model tests on free-

standing pile groups in soft remoulded clay, which covered a wide range 

of spacings to diameter ratios, length to diameter ratios and group si' 

In hia testa failure took place by the group either behaving as a single 

unit (i.e. as a block) or as individual piles. The mode of failure was 

found to be dependent on the pile spacing and group size* A mechanism 

of failure was suggested which showed the progressive failure of the piles 

starting with the exterior ones spreading into the centre of the group as 

the load was increased. 

Meyerhof (1959, 1960) diecuased the practical significance of esnd 

compaction caused by driving piles. Based on a series laboratory and 

field tests he presented design curves relating to pile group and single 

pile settlement to foundation width, pile spacing and factor of sgfrntv 

(F) ol a single pile. The case of free-standing pile groups wa^ ^ r 

considered and his results referred to capped groups with the pile cap 

bearing on the sand surface. Modifications to his curves were sugg t-d 

to allow for eccentricity and inclination of th% loadings These publica-

tions are extremely useful especially his analysis of samd compaction which 

was done semiempirically. He observed that, in general, compaction of 

loose sand and loosening of dense sand took place in the vicinity of 

piles during placing but the original density of ^and had an Important 

Influence on the degree of compaction or loosening occurrlngc It waa 

conclusively shown that the extent of compaction or loosening wss depen-

dent on the relative density. 

Model tests were carried out by Fleming (1958) and Kazdl (1960) In 

sand and further work has been reported by Whitaker (1960) and Sgft-r. 

and Tate (1961) for capped groups and Sowers et al (1961) for free 

standing pile groups in clays, Fleming worked with square groups in 
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dry sand and his findings confirmed the general trend reported by Kezdl 

(1957). Using smaller scale models than his previous tests Kezdi (1960) 

found that the ultimate load depended on the group shape as w- -: pile 

spacing and that a single row of piles showed little increase in ultimate 

efficiency over unity. The ultimate efficiency was defined as the ratio 

of the ultimate group load to the product of the ultimate load of a single 

pile at the same depth; in the same soil condition as th^ group and the 

number of piles in the group. 

Whitaker (1960) extended hia previous investigations in cl&y^ to 

cover the influence of the cap bearing on the clay surface. The main 

influence of the cap was to cause 'blocking' (i.e. the piles with the cap 

behaving as a single block) even at spacings up to 4 pile diameters com-

pared to about 2 diameters for free-atanding pile groups. The settlement 

ratios (defined by Whitaker as the ratio of settlement of a group t^ that 

of a comparable single pile when both carry the same fraction of their 

failure load) for 3 square capped pile groupa were found to be nearly the 

same as that for 3 square free-standing pile groups. However, for 

larger groups, the settlement ratios for capped groups were found to be 

up to 50 per cent higher than the corresponding free-standing grc.o the 

actual increase being dependent on the pile spacing and the size of the 

group. Whitaker confined his studies to piles with length to diameter 

ratio of 48 and the effect of the variation of the length to diameter 

ratio on the response of a capped group was not studiedU The r^ »_ 

of Saffery and Tate and Sowers et al were in agreement with these pre-

sented by Whitaker (1957), Saffery and Tate also Investigated the 

effects of an eccentri: -Tiding on the load displacement behati'.r of 

a free-standing pile group in clay. They found difference of up to 

30% in settlement behaviour and no noticeable difference in the ultimate 
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load due to eccentricity of loading up to 2/3 pile spacings. 

Konder (1962) developed a non-dimensional technique bs_ d on the 

methods of dimensional analysis to develop analytical expr- for 

the load displacement characteristics of axlally loaded friction pile 

groups in cohesive soils based on an assumed hyperbolic st: strain 

response of cohesive soils. The variables included were, the settle-

ment of the group, the pile diameter, the pile spacing, the number of 

piles in the group, the depth of embedment, the geometric arrangement of 

the piles and the shear strength of the cohesive soil penetrated by the 

piles. The analytical expressions were compared with the field and 

laboratory test results with agreement of 15 per cent. Kishida and 

Mayerhof (1965) conducted a series of model tests with pile groups In 

sand with the cap resting on the surface and the effects of eccentricity 

of loading on the group behaviour were studied. The ultimate bearing 

capacity was found to decrease with the increase in the eccentricity of 

loading. Hanna (1963) described the results of a large number of 

laboratory loading tests on model pile groups in dry sand. It ^ : 'd 

that the ultimate bearing capacity of a group of piles may be greater cc 

less than the ultimate bearing capacity of a single pile multiplied by 

the number of piles in the group, due to compaction or loosening ce c 

by driving the piles. Settlement of a group was however found to be 

several times greater than the settlement of a single pile under amme 

load, so that usually a large factor of safety would be ne^i. -f} t^ 

control group settlements An extensive comparison between model t&st 

results and the full scale field test results indicated the pr ot 

an additional scale factor which made extrapolation of the ^ 

the model tests to field practice difficult. 
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The test results described by Kezdi (1957, 1960), Schiff (1961) were 

on groups of piles between l/5th and l/20th of field scale, while Skempton 

(1953) and Meyerhof (1959, 1960) Berezantzev et al (1961) gav^ records of 

full scale foundations. Comparisons between the results of the model 

tests described by Hanna (1963) and these other inodel tests revealed 

(Hanna, 1963) that: 

(i) The ultimate group efficiencies in the field tests are 

greater than the laboratory model tests. 

(ii) The settlement ratios of the full scale field tests and the 

laboratory model tests are greater than the intermediate 

model test values. 

(iii) The individual pile driving ratios (defined as the penetration 

resistance of the successive piles to the penetration 

resistance of the first pile) are greater in field tests 

than in the laboratory tests. 

Thus it would appear that more full scale tests data are needed to 

formulate design rules for pile groups. Full scale field tests ara 

expensive, however, a theoretical analysis of pile groups could be 

usefully developed. 

Attempts to establish approximate theoretical solutions based on 

the theory of elasticity were made by Nishida (1961, 1964). To simplify 

the mathematical complexity of the problem Nishida assumed an empirical 

pattern of shear stress distribution at the pile soil interface. This 

therefore cannot be regarded as a satisfactory solution, because the 

distribution of the shear stress at the pile-soil interface is not known 

before the analysis. Moreover, his analysis was based on the npticn 

that the 'zone of influence" of a single pile in a group was limited to 

a radius of half the pile spacings. This assumption led to the - -tid 
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efficiency curve being independent of the geometric configuration of die 

group and dependent on the length to diameter ratios only. A comparison 

with the model test results of Whitaker (1957) revealed that except for 

9 x 9 pile groups the theoretical results underestimated the efficiency 

of a group by as much as 100%. Doroshkevich and Bartolomey (1965) ob-

tained an approximate analysis of single piles, single rows of piles, and 

pile groups with square and rectangular arrangements assuming the pile 

group to behave as a single "block* (Terzaghi, 1943). Ttiey used Melan's 

solution (Melan, 1932) in the calculation of the settlement of single row 

pile foundations and Mindlin's solution (Mindlin, 1936) for the pile groups 

with square and rectangular arrangements. The analysis is in no way 

different from the one suggested by Terzaghi (1943) and does not take 

into account of the variation of load distribution within the pile group. 

A very comprehensive analysis of pile groups was described by Pou ' 

(1968b) in which he used Mindlin*s solution to calculate the interaction 

factors between two piles. The load displacement relationships of rigid 

pile groups and the load distribution within the pile group were analysed 

using the interaction factors derived for a two pile groupo The inter-

action factor for two rigid piles was found to be a function of the 

spacing to diameter ratios, and length to diameter ratios. It is 

however, conceivable that other factors such as position of the pile in 

a group, and the compressibility of the piles are likely to influence the 

values of these interaction factors. No allowance for these was made 

in his analysis. He also attempted an approximate evaluation of the 

effect of the depth of the elastic layer on the load displacement res-

ponse of a pile group using the Steinbrenner approximation. The affect 

of the depth of the elastic layer was found to influence the group 

behaviour more than it did to single pile. 



The problem of the Interaction between a pile cap and its group still 

remains to be solved. 

1.6 Definition of the problem and scope of the present research 

It can be seen from the previous sections that the design of pile 

foundations ideally requires detailed knowledge of th^ subsoil properties 

before and after placing the pile in addition to the basic mechanics of 

pile-soil interaction. Thus neither a wholly theoretical nor a completely 

experimental study of pile foundations is likely to give an adequate basis 

of design. To develop a rational design theory one must be able to assess 

the relative importance of the different variables on the behaviour of pile 

foundations. This is what is examined in the major part of the work pre-

sented below in which the following aspects of pile foundations and the 

associated problems are described: 

(i) A theoretical investigation into the load displacement 

characteristics of axially loaded plain and under-reamed 

piles and deep foundations. 

(ii) A theoretical analysis of load displacement characteristics 

of free-standing pile groups of arbitrary spacing. 

(iii) The interaction between a pile cap and its group. 

(iv) The analysis of the ultimate bearing capacity of a driven 

pile. 

(v) An experimental investigation of the effects of an applied 

electric potential and rate of penetration on the penetration 

resistance of model probes and blades. 
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Chapter 2 

Integral equations in three-dimensional elasticity 
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2.1 Summary 

An Integral method which can be used In principle to obtain a 

numerical solution of any problem in classical elasticity is described 

in this Chapter. The method is compared with some widely used differ-

ential methods. Earlier applications of Integral equation methods to 

the problems of elasticity are also reviewed and ci&mpared with the 

method described in this Chapter. A scheme of numerical calculations 

suitable for digital computers is outlined which has been used success-

fully for the solutions displayed in the subsequent Chapters. 
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2.2 Introduction 

%H.th the advent of computers, numerical inethods are being uaied more 

often and the d&ys of solution of differential equations by suitably 

chosen series polynomials are virtually gone? Numerical m^ithods may be 

classified under two major categories: 

(i) Differential methods, 

(ii) Integral methods. 

Differential methods, such as the finite difference, finite element, 

collocation and Rayleigh-Ritz methods are primarily designed to satisfy 

the governing equations approximately. In finite difference method the 

basic differential equation of the problem is replaced by difference 

equations over a set of points in the domain (Allen, 1955). The finite 

element method, originally developed by Turner et al (1956) and subsequently 

by Clough (1960) and Zienkiewicz (1967) has proved to be a very useful tool 

for the solution of many complicated problems. The body or region in 

which the solution is required, is divided into a suitable number of tri-

angular, tetrahedral, cubic or rectangular parallelopiped elements, for 

each of which a suitable compatible elemental displacement field is chosen 

(in the stiffness method). A set of equations is them derived by satis-

fying equilibrium (in the stiffness formulation) at the element nodes. 

In the collocation method, or point matching technique as It is sometimes 

called* a functional representation containing a number of arbitrary con-

stants is chosen. These are substituted in the basic differential 

equations of the problem. A set of simultaneous equations Is then 

obtained by evaluating the function at a number of points equal to the 

number of unknown constants. The Raylelgh-Rltz inethod entails the 

selection of a series of functions with unknown constants, each of which 

satisfies the geometric boundary conditions. The chosen series of functions 

are then substituted into the energy conservation equations corresponding 
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to the given field equations and minimised with respect to the unknown 

constants. A set of simultaneous equations for the unknown constants 

Is thus obtained. A comprehensive treatment of these variational methods 

is given In Mikhlln (1964). 

Differential methods, finite element in particular, have the advan-

tage of being very general and therefore theoretically able to cope with 

complex constitutive laws &or the materials involved. The major dis-

advantage of these methods is that the resulting system of equation 1& 

large and may be ill-conditioned (Massonnet, 1965). 

Integral equation methods often give accurate results more economically. 

A particular solution which satisfies the differential equation of the given 

problem is chosen. By distributing these particular solutions over the 

surface of the given domain (i.e. by the principle of superposition) a 

general solution in terms of an arbitrary function is developed. For the 

general solution to satisfy the boundary condition, the arbitrary function 

must satisfy an Integral equation over the boundary. There are generally 

fewer unknowns and the error of discretisation Is usually confined to the 

boundaries, because in this method the boundaries are only discretlsed 

whereas differential methods need the whole domain to be dlscretlsed. The 

use of principle of superposition restricts the application of such a method 

to problems involving non linear constitutive laws for the materials. 

The first rigorous investigation of an Integral equation was made by 

Fredholm as late as 1903. There has been a considerable development, 

particularly In connection with field theory, since then. The method has 

been applied to solutions of problems of elasticity, notably by Soviet 

writers. The works of Muskhellshvlli (1953) and Mlkhlin (1957) are well 

known. 

Muskhellshvlll's method of solution, being based on complex variable 
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theory, cannot easily be extended to three dimensional problems of 

elasticity. Mikhlin's work on multidimensional singular integral 

equations is much more useful in this respect. Vectors, such as stress 

components can be written directly in a vectorial Integral equation, 

which is effectively a system of simultaneous scalar integral equations. 

None of the above mentioned writers considered the translation of 

such a method into a suitable algorithm for the numerical solution of 

engineering prlblems. Massonnet (1965) described a numerical solution 

of the stress boundary value problem formulated in teimis of a vectorial 

singular integral equation of the second kind. His formulation was 

based on the use of Bpusslnesq's point load solution (Boussinesq, 1885) 

for a half space. Since Boussinesq's solution has a line of doublets 

extending from zero to infinity on the negative side of the half space, 

his formulation is not valid for some concave domains where the outward 

normal to the surface cuts the domain more than once. His method is 

valid for smooth surfaces hence would produce good results for bodies 

without sharp edges and corners. Difficulties caused by sharp edges 

and corners were partially overcome by a method described by Oliveira 

(1968), in which the elementary singular solution is distributed over an 

auxiliary boundary adjacent to the actual boundary. The fictitious 

Intensities (the arbitrary functions) are distributed over the auxiliary 

boundary in such a manner that the given boundary conditions on the 

actual boundary are reproduced. Such a method has an advantage over 

Massonnet's for bodies with sharp edges and corners. The major 

deficiency is that it has to be possible to analytically continue the 

functions representing the displacement field into the region between 

the auxiliary boundary and the actual boundary, without the occurrence 

of a singularity. Oliveira assumes without the proof that this is 
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possible. 

Oliveira restricted his formulation to plane stress problems only. 

The particular solution chosen is an intensity, defined parameters, 

distributed linearly from a maximum to zero over two adjacent elements of 

the auxiliary boundary. Such an approach would appear to be better than 

Massonnet's method of uniform variation of intensity across each element. 

In general, if the auxiliary boundary sufficiently far th^ actual 

boundary the resulting system of equations may be ill-conditioned. Even 

if a double precision technique of numerical solution is adopted, the 

variation of the unknown fictitious intensities over the boundary would be 

very rapid. If, however, the auxiliary boundary is taken indefinitely 

close to the actual boundary the method suggested by Olivelra would produce 

good results, provided the kernel functions (at least the nearly singular 

part of it) are evaluated analytically (see Article,2.9). 

Kupradze (1964) described an integral formulation for the displacement 

of an elastic body subjected to periodic body forces and boundary conditions 

considering the static problem as a particular case. He has given the 

proof of the existence of the proposed integral representation and investi-

gated its uniqueness using Mikhlln's work on imultidimensional singular 

integral equations (Mlkhlin, 1957, 1965). 

The method described below is both an improvement and generalisation 

of Olivelra's and Massonnet's methods for the three-dimensional problems. 

Some of Kupradze's results have been used in the derivation of the integral 

equations. A method of numerical solution of the integral equation is 

suggested which can deal with any regular variation of the unknown functions 

over the boundary. Body forces have been assumed to be zero and small 

strain theory has been used throughout. 
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2.3 Statement of the problem 

We consider a bo^y of arbitrary shape enclosed within a surface, S. 

The region outside S is denoted by and the interior region by The 

surface S is assumed to satisfy a smoothness condition, such as that of 

Lyapunov (see Smirnov, 1964). The condition is, however, not too restrict-

ive. In future, we specify this requirement by stating that the surface 

is sufficiently smooth. The boundary conditions on S are given by (in 

Cartesian Coordinates): 

(1) u^(A) = f^(A) 

(ii) Oip(A).np = p^(A) = f^(A) 

(ill) o. (A).n + u.(A) = p.(A) + u,(A) = f.(A) 

XO p 1 1 1 1 

where A ^ S 

u^(A) denotes the displacement vector on S, 

n is the unit normal to S (+ ve for outward normals and - ve for 

inward normals), 

f^(A) are the given boundary conditions which are assumed to &ati^fy 

a Lipschltz condition (Mikhlln, 1957), which we may Interpret in 

engineering sense as reasonably well behaved functions 

CL (A) denotes the stress tensor at a point on S, and p^(A) the 

stress resultants at a point on S, 

i,p = 4,2 for 3-dimensional and two dimensional problems respecti - \ 

and summation is implied over repeated suffixes. 

Alternatively in matrix notation (with respect to X, Y, Z axes, Figure 2.2): 

a . .n 
ip p 

o a o 
XX 3^ XZ 

0 0 0 
yx yy yz 

o o 0 
zx zy zz 

ip pi' 

n 
X Px 

n 
• y 

Pz 

is symmetrical 

Pi 

(2. 
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and. 

i u 

"i = 

z 

2.4 Some definitions 

Figure 2.1 defines some regions by symbols which are used in sub-

sequent articles. The surfaces and are U#o surfaces in the immediat; 

neighbourhood of S. 

D — Domain outside S^ and contains D , 
e I e 

D — Domain outside S, 

+ 
D^ = Domain Inside and contains D , 

D^ — Domain inside S. 

D 

FIGURE 2.1 

SOME DEFINITIONS OF SURFACES AND REGIONS 

32 



2.5 A basic elementary solution 

Before we can make any kind of mathematical formulation of the problem 

we need to select an elementary solution which satisfies basic equation 

of equilibrium and compatibility everywhere in the domain of interest. The 

following elementary singular solution have been used by previous investiga-

tors: 

(1) Flamant's two-dimensional simple radial stress distribution 

(Massonnet, 1965), 

(ii) Boussinesq's solution for a concentrated load on the surface 

of a half space (Massonnet, 1965), 

(iii) Kelvin's solution for a point load within an infinite space 

(Kupradze, 1964; Watson, 1968). 

In the present work the singular solution of a point load in the interior of 

a half space (Mindlin, 1936) will be used. There is a distinct advantage 

in using Mindlin's solution for many foundation engineering problems beca^^e 

the singular solution satisfies the zero stress boundary conditio^ - ' 

surface of the half space. The singular part of solution (iii) 

same singularity at the point of application of the load as has Mind2in*w 

solution. Thus for the purpose of the analytical formulation of the 

singular integral equation they can be regarded as identical. 

As shown in Figure (2.2) forces P , P^ are acting at 8 ( 3 , i n 

the X, Y and Z directions respectively. The displacements and str-

due to these forces can be obtained everywhere in the half space (defined 

as the materials filling Z % 0 region) from Mindlin's solution (Mindlin^ 

1936) given below: 
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0 
XI - X 

y -P 

MINDLIN'S PROBLEM 

FIGURE 2.2 

X 

A(x,y,z) 

The displacements and stresses at A due to the force P^ acting at B ar( 

given by: 
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1-3-4;: . ̂  3.v;Y 4(1-/^X1-2;,}/^ \ 

p. „ 

.R, jR^ 

1 i) — 4/1 6cz 4(1—^)(1 — 2;̂ ) 

"y 16-C(1 . 

U =-
-$-̂ 0 F" — (3—4/i)(z — c) 6cc(̂ z-rc) 4(1—;u)(l—J^u) 

5̂"' n̂(̂ 2-̂ z-{-c) , Z 16zG(l-;i]L^i 

g = " (1-2/.) (l-2;,)(5-4;:) 3.V; 3(3-4;,).̂ : 

XX S;r(l-;,jL jf, 1̂: 

(1—At)(l —-^)/ ()C/ ^ ^ 
^ 3c—(3 —2/f)\,z+cj-i—^— ; |, 

^2" / J ;(:(^:+3+c)= \ 

g _ I'll—2;() (1—2;i)(3-4;^) 3)1; 3(3-4;:))'̂ ' 

yy 8-(l-;i)L 

4(1—;t)(l—2j:i)/ y;(3j^«+z+c)\ 6c 

ZZ 8-(l—; 

: ^ ! 1 1 C — ( 1 — 2 / ^ ) ( z 4 - c ) - j .; 

2(:(2(:+z+c);\ .Ĵ ::(](:4-z-rc)/ 

^ — 2/:) (1 — 2;:) 3(z — c)" 3;,3 —4;/)(z-|-c)- 6c / oz'̂ z-rCj-\ 
'c+(l—2;;)(2-!-c)' 

2̂ 2 yj' 

r 3(z —c) 3(3—4;()(z4-c) 6c / 5z(z-rc) 
' ' ' l-2u4 : 

yz ' 8r(l —1 

O .= 8r(l—,L/ 
zx 

.-2;:)(z-c) (l-2;i)(z-c)' 3a;j(s-c) 3(3—4;:)%;(z+c) (2.2) 

2̂ " 

6c / a.\:z(s4-c) 
:(z+c) - (1 - 2;:)a:; 

xy 

p (1-2;.) (1-2^), 3̂ -; 3(3-4;.)̂ :; 

= 8-(l-;z)l J?:' 

4(1—;t)(l—2;:)/ ;ĉ (3J(«-rZ-{-c)'̂  

-c): \L JZ.r(̂ :- + c)y 

where G and ^ are elastic constants, modulus of rigidity and Poisson's 

ratio respectively. . 

% 
+ (y-n)^ + (z-c)^] , 

% 
Rg = [(x-E)^ + (y-n)^ + (z+c)^] , 

x^ = [x-s], y^ = [y-n] , u , Ug are displacements in X, Y, Z 

directions respectively. 

The displacements and stresses at A due to the force P acting at B can 

be obtained from: 



4 3 — 1 i : ; 2 c z y 4 ( 1 — — 2 ; i ) / 

X 1 6 ; r C ( l — / / ) „ , 
y 16;rC(l-#)L^i' Jg;) a,(;?2+2+c):J 

#1 a, 

1 3—4/^ 6cz 4 ( 1 — / ( ) ( i — 2 / ( ) 

z / 

^a+z+C -V ;?:(^:-rZ+c) 

% 

o: 

^ 16%^G(1— 
= 

XX 
8 ; r ( l —/ i ) 

z —c (3—4)[ i )(2 —c) 6 c z ( z + c ) 4 ( l - / i ) ( l — 2 / t ) i 

' ;R:' ;{;(;(;+2+c) j' 

( i - 2 / , ) ( 1 - 2 , ^ ) ( 5 - 4 / , ) 3a;; 3 ( 3 - 4 ; i X 

: 
i' \̂.i- ^2-

4 ( 1 — / t ) ( l — 2 / f ) / a : ; ( 3 7 ( z + z + c ) ' \ 6c )/g a:/(37\.z-rz+c)'\ 6c 

— / 

y y 8 , r ( l -

( l - 2 , i ) ( l - 2 , i ) ( 3 - 4 , . ) 3 y ; 3 ( 3 - 4 / , ) ? ; 

3 c - ( 3 - 2 , i ) ( z + c ) + 

4 ( 1 — j n ) ( l — 2 f i ) y ^ y ; ( 3 J ( : + z 4 - c ) \ 6c 

- 0 -

/ 5};z\ 
^c—(1—2/i)(z+c)-r-^ ̂ 

c& — 
( 1 - 2 / , ) ( 1 - 2 / . ) 3 ( z - c ) ' 3 ( 3 - 4 / , ) ( g + c ) ' 6c 

Pi" 
cr = -

ty arv 

yz 87r(l—/()L 

3(3 — c) 3 (3 — 4 / , ( ) ( z+c ) ' 6c 

/ 52(z+c):\-
i - — ( c + ( l - 2 / , ) ( z + c ) + ) 

5 2 ( z + c ) ' \ -
1 - 2 / , + — r — y 

4 
(T = 

8 ^ ( 1 — 

0-

( 1 — 2 / , ) ( z —c) (1 —2/( ) (z —c) 3a;X^" ' ( : ) 3 ( 3 —4/,)%;(z + c) 

a,: #1* 
(2.3/ 

6c / 5a;^z(z4-c) 
— f z ( 2 + c ) - (1 - 2/,)%: — — 

*y 8a'(i--/*) 

(1-2/,) (1-2/,) 3%J 3(3-4/,)%; 

:Ri' 

4 ( 1 — / , ) ( ! — 2 / , ) ^ % J ( 3 2 ( i 4 - z + c ) " ^ 6 c z / 

^:(;;:+z-rc)»V ;;:%(j(,+z+c)/ . v A ' 

where G, u, quancicies defined previously. 

x^ = [y-n] , 

y^ = [s-x] , 

The stresses and displacements at A due to the force P are given by: 

u — 
lii7rG(l —/,) 

-c (3 —4/ , ) (2 —c) 4 ( 1 — A ) ( l —2/, ) 6cz(z + c) 
- 4 

jRa(^i-t"Z+c) 

P "3-4/, 8(l-/,)'-(3-4/,) (2-c)\(3-4/,)(s+c)«-2c2 6c2(z+c): 

u 
z 1 6 i r G ( l —/,) 
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o = 4. 

8ir(l—/i) 

—c) 3a:j(z —c) (i-2/4)[3(z-c)—4/4(z-rc)] 

a / ^ ay/ 

3(3 —4/;)a:̂ (g —c) — 6c(3+c)[(l —2;()2 —2;(c] 30cac?z(2+c) 

4(1 —/f)(l — 2/t) 

(' 

0 = 
xy 

8^(1 —/f) 

a = fz 
zz 

8ir(l —/i) 

0 = % r 
yz 

8r(l —/() 

a = r 
zx 

8ir(l —/t) 

0 = f 
8ir(l —/«;L 

î(;R%4-z + c) \ 2(2(jZa+2+c) 

(l-2,i)(z-c) 3);̂ (z-c) (l-2;Lt)[3(2-c)-4,i(z+c)] 

3(3—4/f ) ) ;^ (z—c) — 6 c ( 2 + c ) [ ( 1 — 2 / i ) z—2; i c ] 3 0 ( ; ] ^ z ( 2 + c ) 

4(l-Ai)(l-2A) ( 1-
y; 

(1 — 2, i ) (z—c) (1 — 2/ i ) (2 —c) 3(z — c ) ' 

\R:' 

3(3 — 4 / i ) z ( z + c ) : — 3 c ( z + c ) ( 5 2 — c ) 3 0 c z ( z + c ) ^ l 

(1 — 2^) (1 — 2jif) 3 ( z — 3 ( 3 — 4 , L ( ) z ( 2 4 - c ) — 3 c ( 3 z 4 - j ) 30cz(z - ; -c / 

itz' 2̂ 2̂  

(1 —2/i) (1—2/;() 3 (z—c)^ 3 (3—4/ ( ) z (z4 -c ) — 3 c ( 3 z + c ) 30cz(z-!-c) ' 

^2' 

— 3(g —k) 3(3 —4/ i ) (z —c) 4 ( 1 — A ' ) ( l —2;n)y' 1 1 ' ^ 3 0 c z ( z + c ) l 

8ir(l-„)L l;R2+z+c'^j;,y W J' 

U = u. {(x-G)/((x-C)* + (y-n)2) } , 

Uy - { (y-n)/((%-€) + ( y - n ) ) } , 

where u is the radial displacement (because the last case is an 

ax isymmetric one) and r = [(x-g)^ + (y-n)^] 

It can be seen from equations (2.2), (2.3) and (2.4) that as A approaches 

B indefinitely the terms containing in the denominator become infinite 

whereas the terms containing R2 in the denominator remain finite, and also 

by letting Rg ^ * the solutions for point loads (P^, P , In an 



infinite space can be derived (Love, 1953; Mindlin, 1936)-

Equations (2.2), (2.3) and (2.4) can be combined and written as: 

u.(A) = Pj K_ (A,B) (2.5) 

o.j(A) = ^ (A,B) (2.6) 

where u^(A) are displacements at A 

0^ (A) are the stress components at A 

P. are the forces at B 

] 

K. .(A,B), T..,(A,B) are known functions which can be obtained from 
ij 1JK 

equations (2.2), (2.3) and (2.4). 

Equation (2.6) may be reduced, Tfith the help of equation (2.1), to 

Pi(A) = P (A,B) (2,7) 

where p^(A) are the stress resultants on a surface at A amd 

T.j(A,B) = TijkCA,B). n^. 

2.6 Formulation of the integrals for the stress resultants and 

displacements in D and D. 

e 1 

If w^ now distribute fictitious surface stress intensities over 

the surface S, and let 6S be an element of the surface S, then for the 

elemental loads the elemental displacements are given by 

6u^(A) = 4j(B) (A,B) 6S (2.8) 

The displacements u^(A) at a point A due to all such elemental surface 

intensities given by 

u^(A) b (B) (A,B) dS (2.9) 
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Similarly the stress resultants at a point on a surface through A due to 

all elemental surface intensities acting over S can be obtained from 

r 
p (A) = I *.(B) % .(A,B) dS (2.10) 

S 

The kernel functions of the integrals (2.9) and (2,10) twwre a singularity 

when A and B coincide. The order of the singularity for the displacement 

integrals is ^ / r ^ and that for the stress integrals where 

r^^ - l(z-c)^ + (x-S)^ + (y-n)^i 

Before we can proceed any further we need to investigate the following: 

(i) the integral representation satisfy the equations of 

equilibrium and compatibility everywhere? 

(ii) Do the integrals exist everywhere on D^, D and on S? 

(iii) Have the integral equations got a unique solution? 

The functions (2.9) and (2.10) satisfy the equations of equilibrium and 

compatibility in and D^, because the elementary solution is chosen to 

satisfy these conditions. The integrals (2.9) and (2.10) exist in 

and D since they are proper integrals of continuous functions (the kernel 

functions are continuous and bounded in D and D^). The integrals for 

the displacements satisfy the regularity condition at infinity. But the 

existence of the integral representation as A approaches S from D and 

needs to be established. 

2.7 Behaviour on S 

We consider the integral (2.9) 

u^(A) )j(B) K^j(A,B) dS 
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Let A be a point on S. For the point A tending to S from either side (1. 

either from D or from the above can be written as 

Lt 

A A 

u^(A) - Lt *.(B) K. (A,B) dS 
J J iJ 

A A S 
o 

Lt 

A ^ A 

j(B) - *j(A^)| (A,B) dS 

f 

+ I OjCA.^) Kij(A,B) dS 

S 

(2.11: 

where is the value of 4^B) at A^ ^ S . 

It has been shown by Kupradze (1964) that for Lt A equation (2.11) can 

be written as 

r 
u,(A) = I * (B) K (A ,B) dG 
1 ; J ij o 

S 

(2.12: 

Similarly, the integral for stress resultants is 

p (A) = * (B) T.,(A,B) dS 
1 J J 

As Lt A A , A S from D. 
o o 1 

1 r 
P^CAJ = 2 *i(Ao) + j 9j(B) T^^(AQ,B) dS '9 \ 

and also Lt A A , A <=^3 from D 
or o e 

Pl(A) = Y OiC&Q) - j *j(B) T^^(AQ,B) dS 

S 

(2.14) 

subject to the conditions that the surface is smooth and functions are 

well behaved. The proofs of these results are rather lengthy, and are not 
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reproduced here (See Khpradze, 1964). 

Thus we know that the integrals for displacements exist in the normal 

sense over S as S is approached from or ID , but the integrals for the 

stress resultants are discontinuous, as can be seen from equations (2.13) 

and (2.14). 

The generality and uniqueness of the integral representations (2.13) 

(2.14) for the stress resultants has beiMi established by Ka^radze 

(1964). 

2.8 Derivation of the integral equations 

the displacement boundary value problem (i) the integral 

equation in terms of the given boundary displacements f (A^) is, by 

equation (2.12), 

f *j(B) K. (A^,B) dS (2. . 

's 

where 

f (Ag) are the given displacements on the boundary S, 

4y(B) are the unknown fictitious Intensities distributed on S-

The integral equation (2.15) is applicable to the boundary value prT"_ T 

in terms of displacements in both domains and D^. 

Similarly, the equation of stress resultant boundary value problem 

fi(Ao) = Y *i(A,) * (B) (A^,B) dS (2.16:-

S 

for D and 

= i + j ,.(3) T. .(A^^,35 dS 

S 

for D , 
e 
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In the foregoing derivation of the integral equations the fictitious 

intensities are distributed on S. If however the fictitious intensities 

are distributed over an auxiliary boundary (Olivelra, 1968), the integral 

equations become: 

fiCA,) = j dSi 

S-I 

fi(A,) = I *.(B;) TljCA^B;) dS; 

"i 

5 S , S;, 

for boundary value problems in the domain D and 
e 

V " e ' 
S 
e 

S 
e 

A cES, B <=5 
o ' e e 

for boundary value problems in the domain D^: 

where dS^ and dS are the elemental surfaces of and S respectively* 
I e 1 e 

The functions K^j(AQ,B2), K^j(A^,Bg), T^jCA^gB^) and T^^CA^.B^) are 

wholly continuous for and and exist in the normal sense. These 

integrals are proper integrals of continuous functions. Oliveira 

(1968) adopted the equivalent representations of (2°18) and (2.19) for 

two-dimensional problems. He claimed to have established the necessary 

and sufficient conditions for the existence and uniqueness of representa-

tions (2,18) and (2.19) (it has not been possible for the author to obtain 

the publications cited in the above mentioned paper). If the auxiliary 

boundaries and S do not coincide with the boundary S the representations 
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(2.18) and (2.19) become Integral equations of the first kind with con-

tinuous kernels. The resulting system of equations for such integral 

equations may be unstable (Baker et al, 1966) and produce oscillations 

in the values of ifi (B^) and (i).(B^). For the purpose of an approximate 

engineering analysis it is possible to choose the boundaries and 

sufficiently near S so that the kernel functions become nearly singular 

and the resulting system of equations is stable (see ^Urt 2.9/^ 

Equations (2.15), (2.160, (2.17), (2.18) and (2.19) caa all be 

represented by: 

f^(AQ) == o. ^iCAg) + A, fy(B) (A^.B) dS^ (2,20: 

S 
o 

where f\(Ag) are the given boundary conditions on S. 

a is the term for the discontinuity, a = o for the 

integrals which exist in the normal sense and ^ fof the 

equations (2.16) and (2.17), 

MLj(Ag,B) are functions given by equations (2.16), (2.17), (2.18) 

and (2.19), 

A is a point on the boundary S, 

B is the moving point on the chosen boundary (which may 

either be S or or S ) on which the fictitious stress 

intensities are distributed, 

A is a parameter which can be obtained hy comparing equation 

(2.20) with the parent equations, 

dS is an element of S . 
o o 
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2.9 SoluCion of Che integral equations 

The method of solution is kept sufficiently general by illustrating 

th^ solution of equation (2.20). The kernel (Ag,B) is divided In&o 

a continuous part and a part M S ^ c o n t a i n i n g singularity 

when (A = B). The equation (2.20) then becomes: 
o 

fl(A,) = a f^CA,) + |) ( B ) (A^,B) dS^ 

S 
o 

+ X 
o 

* j ( B ) MS^ (A^.B) dS^ (2.2: 

S 
o 

Using Saint Venant's principle that for points sufficiently far from thf 

point of application of the load the stresses and displacements at 

points are independent of the manner in which the load is applied, it it 

possible to apply a simple linear quadrature formula to (2.21) to all 

regions except those near to A = B. Equation (2.21) cam therefore be 

written in a discrete linear form as: 

N 

»• W + I e. • " i j t ' V ' V » j < V 

n=l 

+ \ I <=„ = £.(A^} ;2.2i 

n=l 

where are the error terms (which will be neglected), 

G are weighting functions (constants for a given interval of 

Integration), 

A^ = A^, Aj, A^,..».AQ are the N values of A corresponding to 

N intervals of Integration on the surface S . 

Equation (2.22) therefore represents a system of N % i linear algebraic 
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equations for the N x i unknown values of Fhis system of equation 

can then be written in matrix notation as: 

a |lj + [MC] {*} + {*} = {f} (2.23) 

where 

]l| = (i X i) X (N X i) unity matrix, 

]MC| and jMSj - (N x i) x (N x i) matrices and are, in general, 

fully populated, 

{4J— (N X i) X 1 vector for the unknowns, 

{F}= (N X 1) X 1 vector for the boundary conditions, 

i = 2, 3 depending depending on number of space dimensions^ 

The accuracy of the solution of equation (2.21) depends upon the accuracy 

with which the integral equation is replaced by the quadrature formulae. 

For the problems solved in the present work very simple quadrature formula 

(e.g. Simpson's rule or the trapezoidal rules) were used for evaluating 

the coefficients of the matrix and the off diagonal elements 

(i.e. A ^ B) of the matrix |MSj . 

Since Saint Venant's principle does not apply for points near to the 

application of the unknown intensity, the diagonal elements of ths matrix 

|MS| were evaluated by the method given below. These diagonal elements 

involve the evaluation of the integrals of the type 

S +1 

MS(A ,B) 0(B) dS (2,24) 

s_i 

where S ^ and S^^ denote the limits of an element of the discretised 

surface S , 
o 

The kernel function MS(A ,B) is singular at A = B. 

Since the unknown function is assumed to regular it can be expanded in 

the form of a Taylor series about A , hence 
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(B-A 
*(B) = *(A ) + (B-A ) *'(A ) + ° 4"(A^) +.... (2.25) 

O O O 6 ? o 

where 

^/(A^), ^i^CA^) denotes dlfferention with respect to the 

independent variable on the surface S^. #*(A^), $"(A^) 

can be represented by their finite difference approximation 

over the surface. 

Substituting (2.25) in (2.24) leads to: 

s+1 s + i 

f 
I = 4(A ) I MS(A ,B) dS^ + 4'(A. ) 

U U J o U V 

s_i 

(B-A ),MS(A ,B) dS 
o o ( 

+ *"(A ) — M S ( A ,B) dS (2.26) 
o J /: u o 

s_i 

Equation (2.26) only involve known functions under the integral slgn< 

It is seen that this method deals with virtually any rapidly varying dis-

tribution of 4. In most problems, good results have beem obtained by 

simply taking the first term of the series. However, the integrals in 

(2.26) still have to be evaluated. If the method of the auxiliary 

boundary is used (i.e. when the boundary S is not the same as S) the 

integrals in (2.26) exist in the normal sense and may be evaluated 

analytically or numerically by a fine mesh quadrature over th^ 

element. If the fictitious intensities are distributed on the boundary 

S the integrals (the first or the first two, depending on the order of 

singularity) are singular integrals which only exist as Cauchy principal 

values. The method of evaluation of these integrals is given in the 

following section. When this has been accomplished equations (2,23) 

can be combined and written as: 
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[M] {*} = {f} (2c27) 

where 

[wQ is a fully populated (N % 1)^ matrix. 

The formal solution of (2.27) which provides (N * i) discrete, approximate 

values of ^ as: 

{*} = [M]-l {f} (2.28) 

2.10 Evaluation of the principal value of the singular integrals 

Let us consider a plane region &, sufficiently small, to represent an 

element of the surface S, enclosed by a curve (Figure 2°3) at a distance 

of a.p^(8) from and containing a small region E iwhich is within a curva 

Cg at a distance E PgCo) from A^, E being an arbitrarily small constant. 

The curve is of some convenient geometric configuration to fit the & 

of surface discretisation. The present problem is to evaluate the integrAl 

in equation (2.26) over the region R. It is convenient to perform the 

integration with respect to local axes through A . 

REGION R 

v 

-
E p _ ( 8 ) 

" X . 

/ \ ( 
CURVE C 

A 
o 

2 

\ a p. (8) 

CURVE C 

REGIOK E 

FIGURE 2.3 

A SYMMETRICAL REGION OF EXCLUSION AROUND THE SINGULARITY 
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In terms of the local variable r and 8 the displacement integrals are 

reduced to the form: 

I = , C0S8 j g 
P J r 

R 

= Lt 

2, 
Cost 

,r.dr.dE 

E ̂ o o E p (I 

*Pl(G) 

- Lt Cos8.dr.d8 — ap^(8) Cos8 d8 ;2o29: 

E ^ ^ O E P ( 8 ) 

where denotes the principal value of the integral. 

Equation (2.29) shows that the displacement integrals exist in the non&al 

sense over S. They are evaluated by a fine inesh quadrature over the region, 

The mesh size is reduced until I becomes independent of the mesh size. 

In terms of the local variable r and 8 the integrals for the stre&a 

resultants are reduced to the form: 

2m *Pl(G) 

Cost 

p ; 
dS = It 

R 
E -» o 

Cos8 
. r.dr.dO 

o Ep^(8) f 

21: 

Lt 

E O O 

ilog{ap^(8)} - Log {E P^CS)}] Cos( d8 

217 

Lt 

E O O 

Log{ap^(8)}Cos8 d8 - Lt Co86 lag{E p_(6)} d8 

E O O 

2%- 2n 

Log{ap^(8)} Cos8 d8 - | Log PgCG) Cos8 d8 
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Zir 

- Lt LogE 
E -» O 

Cos6 dE 
J 
o 

2n 

Log{ap^(8)} CosG d8 - Log P (8) Cos8 d8 (2o30) 

The integrals in (2.30) can now be evaluated either analytically 

or numerically. For the results described in the present work, these 

integrals have been evaluated by Simpson's rule. 

2.11 Discussion 

The method of numerical analysis developed in this Chapter can be 

used to solve any problem of classical elastostatics. The formulation 

is sufficiently general to be able to deal with bodies of arbitrary shape 

if Kelvin's solution is used (i.e. Rg is put equal to infinity in equat. -

(2.2), (2.3) and (2.4)). Since the present work is exclusively concerned 

with the problems with a plane horizontal unloaded ground surface, the 

formulation based on Mindlin's solution is used which ensures that the 

integral representations (2.15), (2.16), (2.17), (2.18), (2.19) satisfy 

this boundary condition for the stress resultants on the surface. 

The singularity of the kernel function is very important in the 

present analysis because this leads to a very stable system of algebraic 

equations with dominant diagonal elements. 
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Chapter 3 

The load displacement characteristics of an embedded 

rigid disc of arbitrary shape 
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3.1 Summary 

In this chapter the load displacement characteristics of a rigid 

disc embedded within an elastic half space and also within a finite 

elastic layer underlain by a smooth rigid base are examined. The 

solution is developed using the integral equation method described in 

Chapter 2. Numerical solutions for a rigid circular disc emd a rigid 

rectangular disc are presented. 

Specific results, for a range of burial depths and ratios of the 

dimensions of the disc to the depth of the elastic layer are illustrated 

in various graphs. These results agree closely with the analytical 

solutions available for comparable surface discs. 
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3.2 Introduction 

The stresses and displacements within a homogeneous soil mass due to 

an imposed load &re directly influenced lyy, amongst other factors, the 

flexibility of the loading surface, the shape of the loaded area, the 

depth of burial and thickness of the elastic layer. A perfectly flaxibla 

loading may be considered to allow a direct transmission of applied 

pressure over the loaded area. 

Following Boussinesq's solution (Bousslnesq, 1885) many pr:b_-T 

uniformly loaded foundations at the surface of an elastic solid have been 

solved. Newmark (1935) and lave (1929) calculated stresses and disc 

ments due to uniformly loaded rectangular areas while Dereslewicz (1959; 

has calculated the stresses due to a load uniformly distributed over an 

ellipse and Harr (1966) obtained the stresses and displacements unde 

axl-symmetric loading on the surface of an elastic half space. 

Though the condition of full rigidity of footing is more likely to 

occur in practice, very few attempts have been made at the solution of the 

problems of rigid discs. The above mentioned solutions are not really 

applicable to most foundation situation where the footing is relatively 

rigid. In these situations the stresses and displacements need to be 

computed on the basis of a specified displacement of the loaded area. 

The available solutions of rigid footings exclusively deal with the 

of surface loadings. Bousslnesq (1885) obtained the stress distribution 

under a rigid circular disc, Sadowski (1928) that under a rigid strip, 

more recently Schlffman and Aggarwala (1961) analysed the problem of a 

rigid elliptical disc and Cheung and Zienkiewicz (1965) that of square 

plates of various stiffnesses resting on the surface* 

The most widely used foundation geometry is that of a rigid rectangular 

footing. It is common practice to use Bousslnesq's solution for a rigid 
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circular disc to approximate dhe stresses under a rectangular footing lyy 

matching the contact areas. This approximation seems to be reasonable 

for square footings but it is natural to believe that this approximation 

becomes less accurate as the side ratio of the footing departs from unity/ 

A better approximation can be achieved if the rectangular footing is 

approximated by an ellipse with the ratio of the semi-axes and the contact 

area of the ellipse the same as the ratio and contact area of the rectangular 

footing (Schiffman and Aggarwala, 1961). 

In many situations footings are placed on or within soil which is 

underlain by a rigid layer. In such cases the foregoing solutions are 

of little relevance. The problems of uniformly loaded circular and 

rectangular footings on the surface of an elastic layer were analysed by 

Burmister (1956). Aa earlier approximate solution of the problem cf an 

uniformly loaded circular disc was given by Stelnbrenner (1934). His 

results and approximations were discussed by Terzaghl (1943). Pr 

(1968c) analysed the problem of a rigid circular disc on the surface, cf an 

elastic layer using Steinbrenner's approximation. Since Steinbrenner's 

approximation becomes increasingly inaccurate for depth of layer ! han 

two times the diameter of the footing, the solution cannot be regarded 28 

a satisfactory one. 

None of the foregoing writers have considered the effect of burial 

depth on the stresses and displacements under a loaded area. Mackey and 

Khafagy (1968) obtained numerical results for the vertical stress under an 

uniformly loaded circular disc embedded within a half space. 

In the following the problem of a rigid disc of arbitrary shape 

either buried within or resting on the surface of (a) a half space and 

(b) a finite elastic layer underlain by a smooth rigid base is considered. 

The embedded discs are analysed on the basis of following assumptions: 
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(i) The disc is smooch and bonded with the medium, 

(ii) The underlying rigid layer is smooth. 

The assumption (i) implies that the shear stresses at the disc-medium 

interfaces are zero but tensile stresses can exist on the top surface 

of the disc. The effect of smoothness of a circular disc resting on the 

surface of a half space was considered by Lee (1963), v^io found that the 

solutions to the problems of a smooth disc and a rough disc identical 

Poisson's ratio = ^ and differ by negligible amount for other va 

of Poisson's ratio. The assumption of a bonded disc is likely to give 

inaccurate results for shallow foundations but seems to be adequate for 

deep footings as long as the weight of the soil above the footing level 

produce a net compressive stress on the top surface of the disc. The 

effect of the assumption (11) was investigated by Blot (1935), who con-

sidered the problems of a point load on the surface of an elastic layer 

underlain by rigid smooth and rigid rough base. It was found that smooth, 

ness of the surface of the rigid layer did not produce amy noticeable 

difference in the computed vertical stresses even on the surface of the 

rigid layer. It seems, therefore quite reasonable to assume the same 

assumption is valid for an embedded disc. 

3.3 Development of the analysis 

The vertical stress a ^(1^,2) and displacement w(r^,z) at a point 

q(r^,z) due to a vertical point load P acting within an elastic f 

space occupying a part of the region z % o (Figure,3c1) are given by 

(see Chapter 2): 

w(f;,z) = P. K(c,rT,z) 

P" T(c,ri,z) (3u2) 
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where KXc,r^,z) and T(c,r^,z) are functions given by Mindlln 

at the points designated the bracketed coordinates. Equations ( 

amd (3.2) may be expressed in a cartesian coordinate system as: 

/O o 0 0 . . . 
w(x,y,z) = P. K(x,y,z,c) ' _ 

°zz(*'y:Z) = P. T(x^y^z,c) (3.4) 

where the z axis passes through the point of application of the load so 

0 0 

that X and y are distances measured from the point of application of 

load. 

3.3.1 General formulation for a disc of arbitrary shape within an 

elastic layer 

If a resultant vertical stress intensity o acts on an elemental 

area E.68.6E on a horizontal place at z = c (point A, Figure 3.2), the 

vertical displacement at Q(r,8^,z) due to the load (o .E.68.6E) acting 

at A is given by equation (3.1) as: 

6w (r,8^,z) = (o^^.E.68.6E). K(c,r^,z) 

where r, - Ir^ + E^ - 2rE cos(8 -8 )l^ and 6w denotes the vertical dis-
1 r E J 

placement due to elemental load. The total vertical displacement at 

Q(r,8 ,z) due to all elemental loads over the disc area (S) bounded by F 

is given by: 

Wl(r,8^,z) a^g.E. K(c,r,,z) de d8 

Equation (3.6) therefore represents the solution for vertical displace-

ment at a point Q within an elastic half space due to o distributed ov&r 

the disc area bounded by F. If the disc is flexible o g will be equal 

to the applied loading and equation (3.6) becomes a definite integral 
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which can be evaluated directly for the point Q everywhere in the half 

space. 

However, if the disc is rigid a is unknown and the integral (3.6' 

cannot be evaluated until o g is obtained from the boundary conditions. 

To include the effect of a smooth rigid layer at a depth H below 

the surface we apply a "fictitious" vertical intensity at c = H o 

The vertical displacement at the point Q due to g acting over the sur-

face of the rigid layer can be obtained by analogy with (3.6) as: 

W2(r,8^,z) = 

211 

o o 

K(H,r^,z) dE d( 

Thus the total vertical displacement at Q due to a disc of arbitrary 

shape embedded within an elastic layer is given by: 

w(r,8 ,z) = o A'C. K(c,ri,z) dE d8 

2 TT 

+ g.E. K(H,r^,z) dE d8 

o o 

Similarly the vertical stress at a point Q due to the loaded disc can be 

obtained from: 

O z 2 ( r , 8 ^ , z ) = T ( c , r ^ , z ) d E d 8 

+ 

2Tr 

o o 

E. T(H,r^,z) dE d( (3,9) 

By virtue of the choice of Mindlin's solution the boundary conditions: 

56 



zz 
o, o 

rz 
o at z = o 

o = 0^ = o at z = c over the disc area 
rz 8z ; 

o = o_ = o at z = H 
rz 8z 

(3.10) 

have already been satisfied. The boundary conditions for the vertical 

displacement of the disc can be satisfied by considering the points B 

within F and substituting z = c in equation (3.8) which then becomes: 

w(r,8^,c) o g.E. K(c,r^) dc d8 

K(H,r^c) dE d8 (3,11) 

o o 

similarly the vertical displacement of the rigid base can be satisfied 

by considering the points on the surface of the rigid base and substituting 

z = H in equation (3.8) which then becomes: 

w(r,8^,H) = o^Q.E. K(c,r^,H) ds d8 

217 

^^g.E. K(H,r^) dE de (3.12) 

0 0 

Equations (3.11) and (3.12) can be represented over the disc area and over 

a finite area of the rigid base surface in a discrete linear form (see 

Chapter 2) by application of quadrature formulae. Thus the vertical dis-

placement of the elements (i,j) of the disc can be obtained from (see 

Figure 3.3): 
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n m 

J n=l m=i J mn 

" p i q l *M 

where (WC).. are the vertical displacements of disc elements (i,j). 
1J 

0 , & are the resultant vertical stress intensity on the disc mn Tpq ^ 

elements and the 'fictitious' normal stress intensities 

on the elements on the surface of the rigid base, 

(KCC.. AAJ are the values of the kernel function of the first 
ij mn 

Integral of equation (3.11), AA being the constant 

weighting function, 

(KEC.. As) are the values of the kernel function of the second 
ij pq 

Integral of equation (3.11), As being the constant weightii 

function, 

m,n are the arbitrary number of elemental divisions within the 

disc area in r ,E and directions (Figure 3.3) 

p,q are the arbitrary number of elemental divisions within a 

finite surface of the rigid base In r , E and 8 , 6 
r E 

directions. 

1 ^ 1,2,3 n, j = 1,2,3 ..... m. 

Similarly by application of numerical quadrature formulae to equation 

(3.12) the vertical displacements of the elements (i,j) on the surface 

of the rigid base can be written In analogy with equation (3.13) as: 

n m 

\ °„n 
n=l m=l J 

+ 2 I o (KRR.. AB) . (3.14) 
pil q=l PI M 
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where 

(WR)^ are Che vertical displacements of elements on the surface 

of the rigid base, 

(KCR...A&) are the values of the kernel function of the first 
ij mn 

integral of equation (3.12), 

(KRR. ..6B) are the values of the kernel function of the second 
ij pq 

integral of equation (3.12)o 

i l,2,Lfm#**oP, j j.,2,o#*oaP# 

If now unit vertical displacement of the rigid disc and zero vertical di< 

placement of the rigid base is specified, (WC).. = 1 and = 0, than 
^ J 

from (3.13) and (3.14) we obtain 

n m ^ q 
V ; 

n m G q 

i i i i " 

Equation (3.15) represents (m»n + p.q) linear equations for the (m.n) 

unknown o and (p.q) unknown ^ . Having obtained the solution for o 
nm ^ pq mn 

and ^ the vertical displacements and vertical stresses at a point B, by 

analogy with equation (3.8) and (3.9), are: 

n m E 9 

j l j l V J / " 
(3.16; 

n m p q 

n=l M=1 p=l q=l 

respectively. 

where, the functions KG, KR, TC and TR are obtained from tĥ i 

the equations (3.8) and (3.9). 
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The second equation of (3.16) is undefined for points on th^ disc and rigid 

base surface. The vertical stress on the surface of the rigid baee and 

the disc can be obtained by calculating the limiting value as the surfaces 

are approached uniformly from either side (see Chapter 2), 

The total load P carried by the rigid disc can be evaluated @s: 

n m 

I 
n—1 nt—1 

I mn 
,AA. 7) 

The solution for a rigid disc embedded within a half space (Butterfield 

and Banerjee, 1969a) can be obtained from the formulation described above 

by substituting ^ 
pq 

0 and considering equation (3.13) only. 

3.3.2 Solution for a rigid circular disc 

Because of the axial symmetry of this problem we can use 8 = 0 

throughout (Figure 3.4) the quantities a and ^ are functions of & onlyc 

The stresses and displacements are functions of r and z. Hence from 

equations (3.11) and (3.12) we have 

2? 

w(r,c) 
r 

O , E K(c,r^) d8 de 

+ 

2^ 

$ . ej K(H,r^,c) d8 de 

and 

w(r,H) = o . 
E 

2? 

K(c,r^,H) de d& 

2Tr 

f 
4^.E| KCH.r^) d8 dE 

in which now a direct integration with respect to 8 can be carried 
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Thus for n number of annular rings for the disc and p number of annular 

rings of the finite rigid base surface we have 

n p 

(WC), = I 0 . (KCC .h ) + % 41 .(KRC .h ) (3.19) 
1 n=l " 1 ^ " p=l P 1 ^ P 

where i — 1,2...n and 

(WR). = 1 c (KCR .h ) + 1 ^^.(KRE. .h ) (3.20: 
1 n 1 i n p 1 / p 

where i = 1,2..,p, h^ and hg are the thickness of the annular rings far 

the disc and the rigid base respectively. 

If again for a rigid disc (WC)^ = 1 and for the rigid base (WR) = 0, then 

I + f 
n=l p=l 

a^.(KCC..hj-._^+ I <KEC..h2)p = l 

(J.21) 
n p 

I a .(KCR .h ) + % ^ (KBR .h ) = 0 
n^l " 1 ^ * p=l P 1 ^ P 

and and can be obtained from the solution of these (n+p) linear 

algebraic equations. Haying obtained and ^ the vertical displace-

ments and vertical stresses elsewhere (except at the disc surface and the 

surface of the rigid base) can be obtained from. 

r(B) = I a .(KC .h ) + % ^ .(KR.h ) 
n=l " p=l P ^ I 

wl 
n i n 

P-

(3.22) 
n 

a ,(B) = I a .(TC .h,) + I ^ .(TR.h ) 
n=l * ^ * p=l P ^ 

which are analogous to (3.16). 
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3.3.3 Solution for a riRid rectangular disc 

As before a resultant vertical stress is assumed to act on an 

elemental area of a horizontal plane at a depth z = c (Point A(%,n), 

Figure 3.5). The vertical displacement at Q(x,y,z) due to a load 

(Og^.6%.6%) acting at A is given by (3.3) as: 

(x,y,z) = o ^.gg.dn. K(x,y,z,q) (3.2: 

where 

0 0 -
, y = L y - g l ' 

If as before, we considered all such intensities on the surface of the 

disc the vertical displacement at Q(x,y,z) due to the rigid disc can be 

obtained from: 

b a 
f 

-b -a 

WT(x,y,z) = I a K(x,y\z/G) dg. dn. (3,24' 

We distribute a 'fictitious' intensity over the surface of the rigid 

base, the vertical displacement at Q(x,y,z) due to this fictitious 

intensity can be obtained from: 

w (x,y,z) = I I K(x,y,z,H) dG dn. 

Thus the total vertical displacement at a point Q(x,y,z) due to a rigid 

rectangular disc can be obtained from: 

b a 
f 

w(x,y,z) = o . K(x,y,z, ) dg dn 
; J 

-b -a 

+ ^ K(x,y,z,H) dS dn 
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If as before, points B on the plane z - C and at z — H are considered 

and the boundary condition for the vertical displacements of finite 

of elements of the rigid rectangular disc and rigid base surfacs are con-

sidered we obtain: 

n m E 9 
2. (KCCij-'A).. + I I, (KRC » ) = 1 ' 

n=l m=i J p=l q=l ^ 

where i = 1,2....n, j = l,2....m and 

n m 

I y CJ { K C R . . . A A J + T y (J ( K E E . , . i B ) = 0 .3.28; 
nil m=l »" IJ mn pq ij pq 

where i = l,2....p, j = 1,2....q, n and p denotes the numbers of 

elemental dimensions chosen in 5 directions a n d m and q denotes the number 

of dimensions chosen in n directions respectively. The order of t^a un-

knowns in equations (3.27) and (3.28) can be reduced by the quadrantal 

symmetry of the problem. For elements having the same a ŝ id ^ v 

direct summation can be carried over them. Having obtained t^- _ t 

0 and ^ the displacements and stresses can be obtained from * 
mn pq 

similar to (3.16) in terms of the variables in the Cartesian coordinate 

system. 

3.3.4 Notes on computer programme for the solution for vertical skr&yH 

and displacement under a rigid disc within a finite layer 

The computer programme discussed has been developed for the r ' o: 

the problems described in the preceeding sections. The listing ot 

gramme is given in Banerjee (1969). 

The main features of the computer programme are the procedures 

ALGOL word, used for a set of algorithm* to carry out som^ specific 

operations in the computer). The following paragraphs are d- r-sd tc 

brief descriptions of the procedures used (see also Banerjee, 1969): 
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(1) procedure 'Simpson' 

This procedure evaluates a multidimensional definite integr&l by 

Simpson's rule of quadrature. 

(ii) procedure 'Girc Disc Array' 

This procedure evaluates the vertical displacements at the centre of 

a number of annular rings (field points) of a circular disc at a depth * 

due to the vertical loading intensities acting on a number of annular 

rings (load points) of another circular disc placed at a depth H. 

by adjusting the values of c and H all the integrals of equation (3.18) 

can be evaluated this procedure. Special provisions are made within 

this procedure to evaluate a singular integral. These singularities 

occur when the load point and the field point coincide. 

(iii) procedure '&ect Disc Array' 

This procedure evaluates the vertical displacements at the centre 

of a number of rectangular elements of a rectangular disc at a depth c 

due to vertical loading intensities acting on a number of rectangular 

elements of another rectangular disc placed at a depth H. Henco, 

before, by adjusting the values o f c and H all the coefficients of 

equations (3.27) and (3.28) can be obtained. There is a special 

vision for evaluating a singular integral over a local rectangular 

region. 

(iv) procedure 'Inp' 

(v) procedure 'Grout 2' 

(vi) procedure 'Solve' 

The procedures (iv), (v) and (vi) are used to solve a set of linear 

algebraic equations by Gaussian elimination. 

(vii) procedure 'Print Array' 

This procedure prints an array of quantities in a pre-set forrn^^ 
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of floating point arithmatic. 

The main body of the programme calls the above procedure to solve a 

particular problem, depending on the type of input. The 

problems have been solved using this programme: 

(i) A circular disc at any depth within an elastic half sp-.-

(ii) A circular disc at any depth within a finite layer. 

(iii) A rectangular disc at any depth within an elastic half space. 

(iv) A rectangular disc at any depth within a finite layer. 

The remainder of the main body of the programme is devoted to the calcula-

tion of the total load carried by the disc and also the vertical Bti 

under the centre and under the edge or corner of the disc. 

3.3.5 The stability and accuracy of the solution 

The accuracy of the results of the numerical analysis would depend 

on how accurately the integrals are replaced by the quadrature fcr%. --

Simpson's rule and trapezoidal rules are adopted in the present analyBlL, 

mainly for their simplicity. For the circular disc a direct int^^^9ti~" 

with respect to 8 is carried out by choosing 50 dimensions to repr-

180° in the 8 direction. The disc is divided into n number of ar-

rings. The calculated load for n = 5 is found to be about 5% hig^^r ^ * 

that obtained for n = 10 and about 6% higher than that obtained for % = JC, 

Hence for all the results de&cribed in this chapter the disc Is d; ^ i 

into 10 annular rings. The resulting system of equations i3 character-

ised by predominant diagonal elements which suggest a good stability 

the solution. 

The problem of the circular disc within a finite layer is analysed 

by choosing 50 divisions to represent 180° in the 8 direction for direct 

integration. The disc is divided into 10 annular rings and the rigid 
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base area is assumed to be a finite area with a diameter = 10 times the 

diameter of the disc. The increase in area of the rigid layer beyond 

10 times the diameter of the disc seemed to produce no noticeable change 

in the calculated load. The rigid base area is divided into annular 

rings. 

Figures (3.6) and (3.7) which are independent of Poisgon's ratio 

show the results of the present analysis and the analytical solution for 

a circular disc on the surface of the half space (Boussinesq, 1885)* 

The maximum difference is about 5% for the vertical stress immediately 

below the centre of the disc. The calculated load is about 1% higher 

than the corresponding analytical solution. 

For the rectangular disc there is a quadrantal symmetry. For each 

quadrant 10 intervals in x direction and 10 intervals in n, y direction 

appears to be the optimum from the point of view of accuracy and computer 

store and time. This leads to 400 elements representing the rectangular 

disc surface. The local integration (i.e. Integration over t?- - -m-rte 

on which the intensity is acting) waa done by subdividing the element into 

a further 100 dimensions in both directions in such a manner that a 

symmetrical region of exclusion is left out (see Chapter 2). 

The problem of the rectangular disc within a finite layer is , -c 

by choosing the same number of elements to represent the rigid base sur-

face. The dimensions of the rigid base are assumed to be 10 times the 

dimensions of the rigid rectangular disc. 

No analytical solution is available even for rigid rectangular or 

square disc on the surface of a half space. The numerical 

compared with solutions for equivalent circular and ptic,' d: 

(Schlffman and Aggarwala, 1961), Figure (3.8), which is independent 

of Polsson's ratio, shows a comparison of calculated vertical cent^- < = 
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stresses for an elliptical disc with semi-axes a* and b* chosen to give 

a'/a = b*/b and %a'b* = 4ab. The agreement is sufficiently c\ -= C3 

indicate the accuracy of the numerical solution, 

3.4 The results of dbs analysis 

The results of the analysis are presented In Figures (3.9) to ( 3 . 2 1 ) 

below. Figures (3.9) to (3.14) refer to rigid circular discs for which 

the following points are of Interest. 

Figures (3.9,1) and (3.9.2) show the effect on th^ vertical centre-

line stresses of varying the burial depth (c), Poisson's ratio for a 

disc embedded within a half space. The effect of Polsson's ratio Is 

shown to be negligible and for the depths of burial greater than four 

disc diameters the stress becomes essentially independent of burial depth 

also. Similar results are obtained for the vertical stress under the 

edge of the disc and these are shown In Figures (3.10.1) and (3^10.2), 

The vertical stresses under the edge of the disc are higher (theoretically 

Infinite at the edge) than those under the centreline, near the diac 

surface but are considerably lower than those under the centreline beyond 

a depth of typically a/2. 

The load displacement characteristics of the disc are presented In 

Figure (3.11.1) as a dimensionless stiffness (P/2GaW) related to the 

burial depth and Polsson's ratio. The stiffness is seen to be dependent 

on Polsson's ratio and show very little increase with the burial depth 

beyond about four diameters. Figure (3.11.2) showB th^ ratio of 

stlffness of the burled disc to that of a surface disc. At burlai 

depths greater than around four diameters this ratio is approximately 

two for typical values of Poisson's ratio. 

It has been mentioned before that in the present analysis the disc 
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is assumed to be completely bonded vertically to the el&stic medium &nd 

therefore, in general, tensile stresses will exist on the top surface 

of the disc. Whereas the unbonded solution will obviously give et' 

distribution different from those calculated here, it is thought that 

the stiffness of the bonded system will not be greatly in excewH sf that 

of the unbonded system. 

Figures (3ol2) to ( 3.14) refer to a rigid disc within an ric 

layer. Figure (3.12.1) shows the contact pressure distribution for a 

surface disc. The contact pressure distribution is dependent on both 

the Poisson*s ratio and the ratio of depth of the elastic layer ta the 

radius of the disc. The contact pressure distribution approaches the 

distribution shown in Figure (3.6) for deeper layer. Figure (3.12*2) 

shows the vertical stress under the centre of a rigid circular disc 

founded on the surface of an elastic layer. The vertical stresB dis-

tribution appear to be significantly different from those showm in 

Figures (3.9.1) and (3.9.2) for the discs on the surface (c/2a = 0); 

though there is a trend to approach the same distribution for a deeper 

layer. The vertical stresses seemed to be dependent on the P: - ^ 

ratio which is different from what is observed for a disc on the r 

of an elastic half space. 

Figure (3.13) shows the vertical stress distribution under the 

centreline of an embedded disc within an elastic layer of a different 

depth to diameter of disc ratios. The stresses are higher those 

found for the corresponding discs within a half space. Figure 

shows that effect of H/2a ratio and z/2a on the nondimensional stiffness 

The presence of a rigid layer increases the stiffness of th^ bystem, 

which approaches the half space solution for deeper layer. 

Figures (3.15) to (3.21) refer to the solution for a ractangular 

disc. Figure (3.15) shows the contact pressure contours for two 
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different rectangular discs, which illustrate both their approximately 

elliptical form over a large portion of the disc artwa zwrnl rapid approach 

to two dimensional strip solution as a/b ratio decreases. The rectangular 

disc solution approximates to that for a strip for values of a/b < 1/6 

(Figure 3.16.5), Calculated values of the vertical stresses under the 

centre for a/b = 1/10 shows a variation of less thsm fixHn Î Mit of 

a/b = 1/6 values. 

Figures (3.16.1) to (3.16.5) give the vertical centreline stresses 

under rectangular discs at various depths of burial cn/er tibe range 

a/b = 1 to 1/6 (for w = 0.5), As for the circular discs the stresses 

are insensitive to the value of Poissonfs ratio. Figures (3.17.1) to 

(3.17.5) give similar results for the vertical stress under the corners 

of the discs. It is Interesting to note that the effect of increasing 

the burial depth dies out less rapidly as a/b values decreases. A com-

prehensive set of dimenslonless stiffness curves are given in Figure 

(3.18) for a range of disc shapes, burial depths and % values. 

Figures (3.19) to (3.21) refer to the rectangular discs within a 

finite elastic layer. Figure (3.19) shows the ^vertical stress diPtrihw-

tlon under a rectangular disc (a/b = 2/3) for two depths of firlf* -v r. 

The vertical stresses are higher and of different distribution t; 

of the half space solutions. The Poisson's ratio is shown - m-

effect on the stress distribution. Figure (3^20) showa Che vartlc&I 

stresses under a burled disc. The results are shown for W = 0,' 

W = 0 cases only. Here again the vertical streBsea are higher 

those solutions for the discs burled within a half space. Figure 

shows the non-dtmenslonal stiffness of a rectangular disc (a/b = ! 

plotted against H/a for a surface disc and an embedded disc (c/a = 4) 

for two values of Polsson's ratio. The effect of this Is small beyond 
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H/a = 16 for W = 0 and 30 for % = 0.5. 

3.5 Conclusions 

(1) A general method of solution has been presented for the d-:-zmina-

tlon of the complete stress displacement fields due to t^-

displacement of a rigid bonded disc of arbitrary shape both within 

a half space and within a finite elastic layer, 

(2) The results obtained have been compared with the earlier analytical 

solutions for surface discs, where possible and g^K)d agreement 

found. 

(3) Graphs have been prepared Illustrating values of vertical centre 

line and edge stresses and vertical stiffnesses rigid circular 

discs at different depths, 

(4) The stresses and stiffnesses remain essentially unchanged when the 

depth of burial is increased beyond about 4 diameters and stiffn^^d 

at this depth is about twice the surface value for a d -mbedd-d 

within a half spaces 

(5) The effect of layer thickness appear to have considerable ir^ -r -

on the vertical stress distribution as v- _ on the stiffs--

The stiffness of a disc within a half space is less than tha 

corresponding disc within a finite layers 

(6) The stiffness of a dlac within a finite elastic layer c ^ -rgfj to 

within 10% of the half space solution as the depth below the dl^c 

exceeds eight diameters. 

(7) Similar curves are also presented for rigid rectangular digce* 

The limiting stiffness values in these cases are functions if 

geometry, depth of elastic layer and Poisson's ratios, 

(8) The vertical stresses in the half space becomes essentia- t 
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independent of the resulting disc loading stress for disc g-zi-irlt 

having a/b s 1/6, which therefore corresponds approximately ta the 

two dimensional strip solution. 

71 



FjGU&E 3.1 

MINDLIN^S PROBLEM FOR A POINT LOAD WITHIN A HALF SPACE 
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Chapter 4 

An analysis of single axially loaded 

plain and under-reamed piles 
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4,1 Summary 
»i m « L 

The load displacement characteristics of single axially loaded piles 

and piers are described in this chapter. The elastic response of both 

rigid and compressible piles embedded in a homogeneous isotropic elastic 

half apace and a finite layer underlain by a rigid smooth base has been 

obtained by the use of an alogorithm based on integral equation method 

described in Chapter 2c 

The method has been extended to analyse local slip between the piie 

aad surrounding soil: The results of the analysis are compared with 

previously published experimental data and are presented as a series of 

graphs showing the effects of variation of the ratios of pile length to 

diameter, modulus of elasticity of piles to that of the soil, pile length 

to thickness of the elastic layer and the effects of the base enlargement 

on the load displacement characteristicsr 
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4c2 General 

The analysis of a single, compressible pile embedded within both an 

elastic half space and a finite elastic layer which is underlain by a tigid 

base, is presented below under the following assumptions: 

(i) Both the soil and the pile material are elastic^ isotropic 

homogeneous, 

(ii) The pile is bonded with the medium at the pile medium interface^ 

(iii) The elastic soil layer is underlain by a rigid and smooth 

surfaced layers 

(iv) The base of the pile is assumed to be smooth-

Assumption (i) is an idealisation of stress-strain response of real soil: 

However, the results of a long series of experiments at tlie Waterways Experi-

mental Station^ summarised by Turnbul et al (1961) have shown that for 

saturated clays, quite close agreement between e:&perimentally observed 

stresses under surface leads and the values computed frcm elastic soiucions 

based on Bussinesq's analysis (Boussinesq, 1885): There is therefore some 

justification for attempting to obtain useful predictions of load displace-

ment characteristics of piles based on elastic theoryv Assumption (ii) 

implies no slip at the pile-soil interface. In practice, however; the 

shear stress at the pile - soil interface will have a maximum limit depend™ 

ing on various factors^ such as, method of ccnstruccion, roughness of the 

pile surface etc, (Tomlinson. 1957): The present analysis has been 

extended to take the local slip between the pile and the soil medium into 

considerations The effects of assumptions (iii) and (iv) have been dis-

cussed already in Chapter 3-

4o3 Analytical formulation for an axially loaded single pile 

embedded within a half space 

A cylindrical pile of length L and radius a is embedded in an 
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elastic* isotropic half space defined by elastic constants G and p as 

shown in Figure (4,1), If is the vertical shaft stress intensity at 

a depth c below che surface, the vertical and radial displacements 

6w\lr,z; = I a, 9 % {KW^Cc.r^^z) 6c) de l4 1) 

6u^lr,z) = I a, {KU^(c,r^,z) 6c} cosa^ d8 (.4.2) 

Where KM\lC;r_.z) and KU-Ccsr^.z) can be obtained frcm th^ first and 

the second equation respectively, of equations (2s4) by substitucing 

2 2 2 
r. ' = r f a - 2ra cosG for r, 

1 E 

is the angle between r^ and the outward normal to a surface 

at B (Figure, 4il) 

The total vertical and radial displacements at B(r;Z) due to eAl such 

elemental shaft intensities is then obtained by integration, as: 

w\(rrz) = I i ac KW^Ccsr^.z) d8 dc 14:3) 

u. iZfZ) ^ j i 0 , a^ KU\(c3r^3z) cos&. . db dc 
1 ' ' s ± 1 i. 

similarly if we consider to be the resultant vertical stress 
b 

Chapter 3) over the base area of the pile acting at a point 0 

Figure (4.2)^:h^ vertical and she radial displacements at Blz%z) due co 

the base intensity can be expressed by analogy wich (4-3) and (4:4) as 

;b ;2^ 
w_(rrz) * j j f, ; &= KWU(L.r^;Z) d8 dc (4 5; 

KU2lLcr2;Z) cosGg d8 ds (4.6) 

107 



Where KW2(L;r2;Z) and KUglLprgpZ) can be obtained by substituting c = L 

2 2 2 

and rg = r + c - 2re cos8_ for r in the first amd the second 

equation respectively, of equations (2o4), 

^2 is the angle between rg and the outward normal to surface at B 

(Figure, 4.2). 

Now if we apply a 'fictitious radial stress' # over the pile shaft, the 

vertical and radial displacemenzs at B(rpz) due to ^ can be obtained by 

integrating over the pile shaft surface, Mindlin's solution for an embedded 

point load acting parallel to the surface of an elastic half space 

(equations; 2 = 2 and 2.3), The displacements are given by (Figure, 4;3)g 

/L ^2% 

w (r,z) » I I a. 0 . KWL(c,r,z) ds dc (4^7) 
j J ; r u 

O '0 

rL f2^ 

u (r;Z) = i I a: 0 KU2(c,r,z) d8 dc (4.8) 

o - 0 

Where 

KUg(c,r,z) = K^ic,rrz) Ccst^ + Ky(C;r,z) SinGg, 

K. (c,r,z); K^^c.rtz) and KWg(c,r;z) can be obtained from first 

three equations respectively, of equations (2o2) by substituting 

% = r CosG - a and y = r SinG . 
o 6 o & 

Thus the total vertical and radial displacements at a point B^r^z) due to 

a pile loaded with an axial load are given by: 

fL ^2% 
w(r,z) = I j a. KW^(c.rT,z) d8 dc 

fL r2r 
+ I I a, KW2(Cpr;Z) d8 dc (4 9) 

'3 -'0 

fb r2 
+ i I 0, . Et KWL(L,r_pZ) d8 dc 

'' o ^0 
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rL r2% 
UlffZ) = j I $gr a. Cosa^ do dc 

'C "0 

r2^ 
^ I j $ r a. KULCcsTrZ) d6 dc 14^10) 

'0 ^0 ^ j 

,b r2v 

0^= Ef KUgCLjZgfZ) d8 dE 
c 

Equations (4,9) and (4,10) are valid everywhere within the half space 

(see Chapter 2) and satisfy the boundary conditions: 

B(r,o)f 0 = 0 = o 
zz rz 

(4:11) 

B(rsL); 0^^ = o, o < r f b. 

Equations (4,9) and (4,10) can now be used to calculate the displacement 

components at any point within the half space, if the distribution of 

and are known from the prescribed displacement boundary con-

ditions of the pile-soil interface^ 

4r4 Solution for an axiaily loaded plain and under-reamad pile 

By bringing the field point B(r;Z) onto the pile-soil interface we 

can obtain integral equations for displacements of the pile-soil inter-

facBo A simple numerical treatment of these integral equations has 

been outlined previously (Chapter 2), in which the pile shaft is divided 

into n similar segments of thickness and the base in *m/ rings each 

of annular radius Gg, The vertical and the radial displacements of any 

element (i) on the shaft can then be written in a discrete linear form 

(see Appendix 1) ass 

n n m 
(Wq) = I (*<) (KSS).. + I (* ) (KRS),. + f (* ) (KBS);. (4.12) 

b i j.i b j ij r j ij b j ij 
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1 ]=1 J 
I (*_) (KSU) 

ij 

n m 

Y (9^) (KRU).. + % (KBU), 
j-1 j=l 

(4:13) 

where i = 1. 2, 3,ooon. 

Similarly the vertical base displacements (Wy) are given by: 

n m 

(Wy) = (KSB)ii + I (KRB).; + I (*^) (KBB),. 
i j=l ' J 13 jii • ̂  j 1] 

(4=14) 

where i = 1, 2;ao,.mc 

The integrals involved in the calculation of the coefficients (KSS)^j, 

(KRS)^j etc, (except (KSS)^^, (KRU)^^, (K3B)^^) are proper integrals of 

continuous functions and are evaluated by Simpsons rule. The integrals 

invoIved in calculation of the coefficients (KSS).., (KRU).. and (KBB).. 
11 11 11 

are singular integrals and are evaluated by a fiiMs im:sh quadrature leaving 

a symmetric region of exclusion around the singularity (see Chapter 2), 

The mesh size was reduced until the coefficients became essentially 

independent of the mesh size. 

Equations (4,12), (4=13) and (4.14) may be written in matrix notation as; 

[ k s s ] LkRS] [KBSj 

[KSUj [KRU] [KBUJ 

(KSBJ [K&B] [KBB] 

* ( 

(4-15) 

J 

where. {W^}, {Ur and } are n x 1 vectors for the given .g,, LUgJ, LTg. 

vertical displacements of the shaft elements, the radial displacements 

of the shaft elements, the unknown shear stress and the fictitious radial 

stress at the pile-soil interface respectively. 

{Wy}, m X 1 vectors for given vertical base displacements and 

the resultant stress normal to the base area of(he pile respectively. 
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[K5S[, jkRS[, [KRUj are n x n matrices. 

KSBI, IKREI are m x n matrices, 

[KESj, [kBUj are n x n matrices, 

[KBBj is a m x m matrix of coefficients. 

Equation (4,15) can be written more compactly as: 

{*g} 

where 

M = 

= [KJ : to 

{(P 

liKssj 

1[KSuj [kau] tKBu] 

1 [KS^ i N l IKBBj 

(4.16) 

, a (2n+m.) matrix of coefficients 

This system of linear algebraic equation can be solved for the unknowns 

{^g}, {$2^' ^^b^ displacements (Wg), {Ug}iMKl{Wy} are obtained 

from the solution of the pile domain 

For a rigid pile, the vertical displacements of all points on the 

shaft and the base are equal to the displacement of the head of the pile 

The radial shaft ^ ig 2sro. Thus^ if &FF^y & cnit :* 

displacement to the of we hav^r 

= tlf; iL to. tW, } = ti) 
o 

Substituting 

equations which ca: 

pila-uoil 

and di&pl&cemant^ 

integrals similar -

acting at the. pii; 

(4a16J we obt&in a sat of linear 

36 solved for tka unknown str^so r-' ' 

having obtained {#%), (# } 

- ' r in ;oil media can ba comput-^ 

: Chapter * 

interface can be obtained by Y^ar.nti-
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the stresses at B(r,z) as the point B approaches vanishingly close to 

the pile-soil interface. 

Thus when the distribution of and over the pile shaft and 

pile base respectively, have been obtained for prescribed displacement 

boundary conditions for a rigid pile, the load P carried by the pile 

at any depth below the surface is found from 

Z b 
f 

P = I 2na. dc + Zne. 0 . dE (4.18) 

o 

The total load P required to produce unit displacement of the head of 

the rigid pile is given by substituting Z = 0 in equation (4.18). 

The solution from equation (4.16) and (4.17) will, if applied to a com-

pressible pile, lead to an underestimation of the displacement of the 

pile head for a given load. 

If the pile is assumed to be perfectly bonded to the medium, the 

vertical displacement of a shaft element at a depth Z, will differ from 

that at a depth (Z + dZ) by an amount equal to the elastic compression 

of the pile length dZ (Figure, 4.4). Since for any pile section the 

vertical direct stress is much greater than other stresses, then to a 

good approximation we can write: 

aw "z „ aw 
= =-'p-

p p 

where 

A = Cross-sectional area of the pile shaft 
P 

E = Young's modulus of the pile material, 

W = Poisson's ratio of the pile material. 
P 

Equation (4*19) can be written in finite difference form and used in 

an iterative scheme for the solution for a compressible pile as f" ' 
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(i) The rigid pile solution form (4.16) and (4ol7) is obtained. 

(ii) V&lcas of P are fcund from equation (4,18) and cubatitcted 

in (4.19) as a flrdt approximation, giving new 

and ''If where iWq}, stand for the 

first approximation of ^^3^ values for eom-

presyible pile z- o-ctively. 

(iii) fW^}, and : . ire substituted in (4.16) as an approx-

imation giving new {q^}, where {4^}, 

stand for the first approximation of 14^) and for 

compressible pile, 

(iv) A new value of P ^ is obtained for each section of the pile 

and the cycle (ii), (iii) and (iv) is repeated until th-

of P ^ between two successive iterations differs by an 

acceptably &m- alue. 

In what follows, the foregoing method of solution will be described as 

a 'rigoro^ : crlon' bince it allows for radial displacement compatibility 

at the pi interface (i.e. the effect of the pr- -r:e of the ; 

in disturbing the continuity of the half space). If, however, the 

presence of the within the half space is ignored, we need only to 

consider vertical displacement compatibility. The resulting system of 

equation to be solved thus reduces to: 

iWg); j[ksEQ j^3s] 

}: liKas] [ksB l 

< 
} ! 

where |k3] 

or iWg} I 

^ ' jta]' - {4,>0. 

' *b ', 

(n+m)* matrix of coefficients, 
IKBSI IkBsl! , 
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Equation (4.20) provides n discrete approximate values of {* } and m 

discrete approximate values o f { once the vertical displacement boundary 

conditions for rigid and compressible pile are incorporated as shown 

previouslyo 

4.4ol Some notes on the computer programme for solution of a single 

axially loaded pile within a half space 

The computer programme discussed beliMf has been developed to solve 

the problems described in the preceeding sections: The listing of the 

programme is given in Banerjee (1969), The progranme is essentially designed 

to perform the following operations: 

(i) Read data. 

(ii) Calculate coefficients of the matrices and [KSj. 

(iii) Solve for the unknowns ^4^}, 

(iv) Calculate the total load for a given head displacement. 

(v) Calculate the stresses and displacements at a given radial 

distance from the pile surface. 

The operations listed abova have been carried out by a set of procedures 

described below (for listing of these procedures see Banerjee,1969), 

(i) Procedure 'Print array' 

(ii) Procedure 'inp' 

(iii) Procedure 'Crout 2* 

(iv) Procedure "Solve' 

(v) Procedure 'Simpson' 

The above mentioned procedures have been discussed in Chapter 3* 

(vi) Procedure 'Mult' 

This procedure multiplies a matrix A x BUj and a matrix 

B[N X Ngj to give a matrix C [N^ x The matrices A and B 

remain unaltered. 
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(vii) Procedure 'Invert' 

This procedure uses procedures 'inp', 'Grout 2', and 'solve' 

to obtain in the inv&rss of matrix Ko The original matrix K is 

destroyed and the results of the. Inversion are stored in K. 

(viii) Procedure 'Direction' 

This procedure calculates the value of Cosa^ and Coaa {see 

equations ^.4)and&.6)respectively). 

(ix) Procedure 'Elevert' 

This procedure calculates the coefficients of 4^ smd 4^ of the 

system of equations (4*16) and (4,20) and also similar integrals 

for the stres&es ehich involve the evaluation of definite integrals 

(ice, where the load point and the field point db coincide)o 

The integrals are evaluated by using procedure 'Simpson*. 

(x) Procedure 'Elehorz' 

Thia procedur*^ r^rforms operations that are identical to those 

of the procedure 'C - rt*. It calculates the coefficients of 

of the aystem of equations (4nI6) and also similar integrals for 

the stressesc 

(xi) Procedure 'Form array' 

This procedure C' the procedures 'Elehorz' 'Elevert' 

to calculate the coefficients of the matrices |K] and [KSj. 

Provision is made in this procedure to calculate the principal value 

of the singular integrals that are necessary in evaluating the 

coefficients (K5S) (KRU) and (K3B) . 

The remainder of the programme is devoted to the solution of 

the system of linear algebraic equation, calculation of the total load 

carried by the pile for a given displacement, and calculation of the 

stresses at a radial distance E from the surface of the pile. 
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4.4.2 Convergence of the solution 

The accuracy of the solution wo^ld depend on the accurate evaluation 

of the integrals listed in Appendix (I). These integrals were evaluated 

by Simpson's rule and tha trapezoidal rule. Because of tt^ axial 

symmetry of the problem a direct integration with, respect to 8 was 

carried out using Simpson's rule, choosing 50 divisions to represent 

18C^ in 8 direction. The principal value of the singular integrals T*as 

evaluated by subdividing the Individual segments of the pile surface intd 

50 divisions. The integrals were then evaluated by leaving cut a 

symmetric region of exclusion, small enough not to influence the results 

(see Chapter 2), 

The pile shaft was divided into 10 segments and the base into 5 

annular rings. Thus the total number of equations solved was 25 for a 

rigorous analysis and 15 for an approximate analysis. Pile displacements 

for a given load calculated by using 25 equations for a rigorous analysis 

were found to be about 5% higher than those using 13 equations (for 5 

shaft-segments and 3 bas^-anf^.^r ringw) and 1% lower than those obtained 

by using 50 equations (for 20 shaft segments and 10 base-annular rings^. 

An exactly similar trend ' observed for the approximate analysiso 

4.4o3 Results of the analysis 

The results of the - - tic analysis of ayi%! y loaded plain and 

under-reamed pilep are presented in Figures (4.5) to (4oll)o It was 

found that the rigorous analysis gives essentially identical results to 

those obtained by approximate analyses (which ignores the radial dis-

placement compatibility at the pile-soil interface^ for the load dis-

placement relationship of the pile. The diffcr=-ce being relatively 

less for piles with length to diameter rati^ d. greater than 10^ and 
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Poisson's ratio of pile ' th&n 0,^, 

Various results for 1/d = 10, and Pcisaon's ratio (u) of soil = OuS 

are given in Figures (4.5^1^ to (4,5,4). Figure (4,5.1) shows the radial 

displacement u(a,z) to be of the order of 5 x 10 " times the displacement 

of the head of the pile both near the surface (Z/L = 0) and at the 

bottom of the shaft (Z/L = 1) from the approximate analysis. That ic^ 

of course, identically zero for a rigid pile In the rigorous analysis 

(the negative sign indicates that the displacement is towards the pile 

face/o Figure (4.5,2j shows the shear stress at the pile face for a 

rigid pile plotted in nondimensional form as r/ (P/mdlJ, where T = the 

shear stress at the pile-soil Interface, P = the total load acting on the 

pile, d = diameter of the pile = 2a; and L = length of the pile. The 

distribution of the str-^_ calculated both the analyses are 

identical at the bottom of the pile but differ in the upper portion of 

the interface. Figure (4o5.3J shows the radial stresses calculated by 

both methods. The magnitude of the radial stresses are of the order of 

1/2 the shear stress at the extremities of the shaft and are of the order 

of l/50th of the shear str over the middle portion of the pile shaft 

(compressive stre are indicated by a negative sign)* Figure (4.534) 

shows the shear stress distribution for two values of pile material 

Poisson's ratio (u = 0, 0^2) calculated by the rigorous analysis (in 

the approximate analysis the Poisson's ratio of the pile does not enter 

into calculation). The compressibility ratio A (A = the ratio of Young's 

modulus of the pile to the yhear modulus of the soil) is chosen as 6000. 

The shear stress distribution differs noticeably although the calculated 

loads are within 6%. for analysis of _cd displacement character-

istics for practical uses the approximate analysis, which Ignores the 

presence of the pile within the half space, appear to be adequate. 
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whereas, if the pila-medium interface streases are required then the 

rigorous analysis ia needed. 

The results pr- --:-d in Figures (4,6) to (4oll/ have been obtai^-] 

from the approximate an^lywis. Figures (4.6/ to (4*8) refer to single 

compressible plain piles ?rd Figures (4.9j and (4olO/ apply to ^^mpres&^^ 

under-reamed pilesa In C---3 a range of 6000 $ X < ™ is r ' ^dered 

which covers the range of macerial properties of practical interest. 

Figures (4.6sl) and (4o6.2) show the effect of length to diameter 

ratio and A on the shear stress distribution at the shaft faces For 

the shorter pile the effect of X is seen to be negligible and the stress 

distribution agrees closely with that obtained by more approximate 

analysis (Poulos and Davis, 1968, Mattes and Poulos, 1969a). Figure 

(4.6.2) shows the shear distribution at the shaft face for slender 

piles (L/D = 80) in which A = 60,000 and A = = results are almost 

Identical and similar to the short pile results. However, the ehear 

stress distribution is radically altered in the more compressible 

system (A = 6000)o Figure (4,7) shows the load displacement character-

istics of plain p for ^ values of A. For piles with length 

to diameter ratios less than 20 the effect of A is showM to be negligible^ 

Figures (4.8.1) and (4o8c2) shows the effect of ignoring the compress-

ibility on the ratio of ^^d where P^, P^^ are the 

total load and the end Isad respectively for a compressible pile and 

P , P are the total load and the end load respectively for a rigid 
K LK 

pile, for a given head dispiacement. 

Comprehensive load d_ -^^nt curves are. presented in figures 

(4.9,1) to (4.9,5) for compr -i-\e underreamed piles over a range of 

base to shaft diameter ratios (1 ^ CL/Do ^ Whereas, these curves 

enable absolute value of the pile, head displacements to be estimated, 
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the relative influence Of (D /D^) and A can be seen more clearly in 

Figure (4.10) where they are related to the ratio (& ) of tha settlement 

of an under-reamed pile to that of a plain pile under the sam^ load. 

In all cases the effect of A on is seen to be very small (60€0 6 \ ^ 

The stiffening of the system (i.e. decrease in achieved by enlarging 

the base is also seen to be very 8m5__ for longer piles (IjD = 80) and 

even for shorter piles (L/D — 20), E is only reduced to around 0.8 for 

Dg/D = 4. Figures (4ollul) to i) shows the percentage of load 

taken by the base for various base to shaft diameter ratios. It can be 

seen from these Figures that the advantages gained by under-reaming are 

limited to piles with length to diameter ratios less than 20 and Base to 

shaft diameter ratios less than 3, which agrees with current practice 

(Whitaker and Cooke, 1966; Burl&nd et al; 1966), 

4.5 Solution for an axially loaded pile within a finite elastic layer 

The formulation described -- - can be ^ _ly extended to solve the 

problem of an axially loaded pile embedded within a finite elastic layer* 

The following assumptions - been made to reduce the computational work 

involved: 

(I) Since the introduction of radial displacement compatitibllity 

at the p i l e - - i r , e f f a c e does not produce any major alter-

ation in the load displacement response, only vertical 

displacement compatibility of the pile-soil Interface is con-

sidered in the subsequent analyses. 

(II) The surface of th& rigid layer is assumed to be smooth. 

Thus if we distribute a fictitio^e vertical stress intensity ^ on a 

horizontal surface at a depth H below the ground surface (H > L), the 

vertical displacement at B(r,zj due to ^ can be obtained as: 
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w^(r,z) E. KW^ (H,r2,z) d8 de (4.21) 

o 
0 

The integral (4.21) is obtained by substituting b = ^ and L = H 

in equation (4.5) and ia also identical to the integral on the right hand 

side of equation (3.11'. Thus the total vertical displacement at BCr,z) 

due to an axially loaded pile can be written as: 

W(r,z) = j I 0^. a. KW^ fc,r^,z) dG dc 

o o 

rb |2n 

j I 4^. E. KWj(L,r2,z) d8 dE (4.22) 

0 0 

a: 2 
r r 

+ I I V, E, K%y(H,r ,z) d8 dt 

o o 

The integral representation (4.22) exists in the ordinary sense every-

where within the finite tic layer and satisfies the following boundary 

conditions: 

B(r,o) , " o; 

B(r,L) , o < r g b, = o; 

B(r,H), o < r < =, = o. 

As before if we replace the integrals in equation (4.22) in a discrete 

linear form over n segments of shaft surface, m annular rings over base 

surface and s annular rings to represent a large enough area over the 

surface of the rigid layer, we obtain (see Appendix 1); 
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n 

(Wg) I (*g) (Kss: 
j=l 

ij 

m 

A ' " j 

(KBS: + I (4C k .TV, (KL8).. (4.23; 
ij j=l J 

where (NL) is the vertical displacement of an element i of the pile 

i 
Shaftg 1 Ig 2;ea#3nm 

Similarly the vertical base displacements (W^) are given by: 

n 

(w, ) = % (4 ) (KSB) + % (* ) (KBB) + % (^) (KLB) 
' i j=l j j=l j j j=l j 

ij 
(4.24) 

where i = 1, 2,.c..m; and the vertical displacements (W.) are given 

by 

(W,) = I ' + g ) <K31. . 

i j=l J 

m 
Y r. (KBL).. + 1 (40. (KLL).. (4.23) 

j=l " j "j j=l J 

where i — 1, 2,,...s. 

The method of evaluation of the coefficients (KSS)^ , (K^S)^^, (KSB)^j 

and (KBB)^ have been described previously. The integrals involved in 

determining the coefficients (KBIJ^^, , (KIS)^^ gmd (KLB)^^ are 

definite Integrals of continuous functions and they are evaluated dir c' 

by Simpson's rule. The integrals Involved in determining the coeffici r" 

of (KLL)^ are singular for i = j and they are evaluated by a fine mesh 

quadrature, leaving a symmetric region of exclusion around the singularity. 

Equations (4.23), (4.24) and (4c25) can be written in matrix notation ab: 

{Wq} ^38 1 txasj IKLSI 

— |KSBJ IKBB"! I^B| 

|KS1| |K3L| IKLL j 

(4.26; 
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Where 

{W }, are s x 1 vectors for the given vertical displacements of 

the rigid layer ({W^} = 0) and the fictitioue vertical stress in-

tensity on the surface of the rigid layer, respectively. 

|kLS|, |klB], |kSLj, [KBLJ and |kLL| are n x s, m x s, s x n, 

s X m, s X s matrices of coefficients respectively. 

All other matrices have been defined previously. 

Equation (4.26) represents (n + m + s) unknowns. Having obtained 

{ ^ } , {î } the total loads for the prescribed displacement boundary con-

ditions for rigid pile and compressible pile, the total load is obtained 

from equation (4.18). 

4.5.1 Numerical analyeis and discussion of the results 

The computer programme developed for the analysis of plain and under-

reamed piles is discussed in Chapter 5 in connection with the analysis of 

free standing pile groups of arbitrary spacing in which the analysis of 

a single pile becomes a particular case. The results of the analysis 

of axially loaded single compressible plain and under-reamed piles are 

shown in Figures (4.12.1) and (4.12.2)% These are calculated by using 

10 segments over the pile shaft surface, 5 annular rings over the base 

area of the pile and 20 annular rings over a radius equal to the depth of 

the elastic layer, to represent the surface of the rigid layer. 

Solutions obtained from solution of these 35 equations were compared 

with those obtained by using 70 equations (i.e, by doubling the number 

of elements to represent the pile-soil interface and the surface of the 

rigid layer) and found to be within 5%. 

Figure (4*12.1) shows the non-dimensional stiffness plotted against 

H/L for a plain pile. The shape of the curves is not significantly 
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different for piles with L/D = 20 and 40; A = 6000. In all cases the 

stiffnesses appear to converge to the half space solutions beyond H/L = 5 

and becomes asymtotlc as H/L approaches 0, Figure (4.12.2) shows simll?^ 

curves for under-reamed pil^s for 1 $ $ 4. The shape of the c .r -

Is also similar to those show% in Figure (4»12.1) for plain piles with 

D 

very similar trends except that the piles with higher B/Dg ratio becomes 

increasingly stiffer as H/L approches zerOo In all cases the presence 

of a rigid layer reduces the displacement under a given load. 

4.6 Analysis of local slip at the pile-soil interface 

In the analysis described above assumption is made that the pile is 

bonded to the medium and the soil is capable of resisting any state of 

stress which may be developed around the loaded pile. However, real 

have a finite shear strength and the interface between the pile shaft and 

the surrounding soil has a finite ahdeslve strength, depending on various 

factors, such as, method of construction, variation of the effective str^ 

and moisture content after the construction etc. When the shear strengch 

at the shaft-soil Interface reaches this limit slip occurs. 

An approximate analysis of local slip inay be carried out by a 

modification of the elastic analysis given above. Whem th^ shaft ' r 

stress or base normal stress reaches a specified maximum, local yield will 

occur and the vertical displacement compatibility between the pile and the 

soil for that element will no longer hold. The load and displacement at 

which this occurs is readily calculated. Any further increase in load 

will cause a redistribution of the interface stresses amongst the remain-

ing elements, where elastic conditions prevail. Such a# analysis has 

been described by Salas (1965/. Poulos and Davis (1968), Mattes and 

Poulos (1969a) for a pile In cohesive soil, Thurman and D'AppoIonia (1965; 
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for a pile in sand and D'Appolonia and Romualdi (1963), Mattes and Poulos 

(1969b) for end bearing piles. The analysis presented by these writers 

was based on the assumption that purely elastic conditions prevail at the 

base of the pile until the base load of the pile attained the ultimate 

end bearing load. The analysis described below is essentially identical 

with the one described above with a step by step yielding of the rigid 

pile base included. 

Equation (4.20) can be written for (n + m ) elements of discrete pile-

soil interface as 

(n-hn) 
(W). = % (KB).. (*). , i = 1, 2,...(n+m); (4.27) 

j=l J J 

where (W) are the specified vertical displacements of n elements of 

discrete shaft-soil interface and m elements of discrete base-soil 

interface 

(^). are the n unknown shear stress intensities 4L over the shaft-j & 

soil interface and m unknown vertical stresses 4^ the base soil 

interface. 

If we define the limiting stress at the pile-soil interface as (S ) for 

i 

n elements of shaft-soil interface and m elements of base-soil interface; 

and if element of pile-soil interface is brought to a state of 

limiting stress (S ) we can modify equation (4.27) to: 
i 

(n4m) 

(%0^ = X (KS)j^ ( - (KS)ip 4̂^ + (KS)^p (S^J^ (4.28) 

where i = l,2,...s(p-l), (p+1), (p+2)o..o(n4m). 

Equation (4.28) represents a set of (ntm-1) equations that can be solved 

for (n+m-1) unknowns. This process of imodification of the elastic 

analysis is repeated until all the elements of the shaft-soil interface 

and base-soil interface have attained (S ) state of stress. The 
i 
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limiting shaft-shear stresses and the base normal stresses are calculated 

from equations (1»4) and (1.6) respectivelyo 

In this analysis the development of plastic zones within the soil 

has not been taken into consideration. Although such an analysis would 

be likely to involve little Inaccuracy in the early stages of yielding, 

the load displacement relationship is likely to be inaccurate as the load 

approaches the ultimate load of the pile, 

4.6.1 Numerical analvHia and results 

The results of the analysis were obtained by using 10 elements to 

represent the shaft-soil interface and 5 elements for the pile base. Th* 

computer programme developed for the present analysis is essentially the 

same as the one described for the elastic analysis with the following 

'procedures' added: 

(i) Procedure 'limit stress' 

Calculates the (n+m) elements of from 

" i 

equations (1.4) and (1.60. 

(ii) Procedure ; = tic' 

Solves the system of equation (4.28) and (4.29) 

for the succcSGive load increments up to failure. 

Load displacement curves for axially loaded plain and under-reamed p 

are given in Figures ) and (4,13.2), the displacements being 

plotted in terms of a factor It T*as found the shape of the curves 

is independent of the ratio where is the cohesion at the pile 

base, although the magnitude of the settlement does depend on this ratio, 

which agrees with the solutions given by PouloR and Da ' ^63) and 

Mattes and Poulos (1969a/o Figure (4.13.1) shows the ratio (P/P ) 

plotted against for plain rigid and compressible piles. For a given 

(P/P ) ratio the piles with L/D = 10 settles less than the pile with 
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L/D - 50. A trapezoidal distribution of shear strength as shown in 

Figure (4.13.1) is assumed for these results? It is interesting to 

note that the theoretical load displacement curves are linear up to 

(P/Py)f 0.7. Figure (4.13.2) shows a similar curve an under-reamed 

pile (lyo = 15, = 2) for a triangular distribution of shear strength 

ov^T the pile length. The result for a plain pile is also shown for 

comparison. The load displacement curve for a plain pile is linear 

up to (P/Py)< 0.7 but that for the under-reamed pile is distinctly curved 

above (P/P^) : 0.4. For a given (P/P ) ratio the settlement of an under-

reamed pile is more than that of a plain pile of the same L/D ratio, which 

agress with the test results of Whitaker and Cooke (1966). 

4.7 Comparison with the ';3:ratory and field test results 

A series of - scale teats on bored piles with and without enlarged 

bases in stiff fissured overconsolidated London Clay were carried out 

Whitaker and Cooke (1966). figures (4.14.1) to (4.14.3) show the com-

parison between thesa te^t r : and the theoretical predictions. Far 

the purpose of comparison the following relevant parameters were assumed: 

Mean L/D = 15, Mean for underreamed pile = 2 

a = 0.45, q = 0.75 and = 9 (Whitaker and Cooke, 1966). 

A = 1000, u = 0.45g G = 4000 psi 

uniform cohesion over the pile length. 

Figure (4.14.1) shows the percentage of load taken by the base for plain 

and under-reamed piles plotted for (P/P ) = 0.5. One test result given 

by Sowers(1961) for a plain pile under very similar conditions is also 

plotted in the same figure. The theoretical and experimental results 

are in good agreement. The theoretical load-displacement relationships 

for plain and under-reamed piles are compared with the mean experimental 
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curves in Figure (4.14.2), in which the theoretical results agree reasonably 

with the mean experimental values only up to (P/P );% 0.4. comparison 

between the theoretical and mean experimental ratios of (P/P ) values for an 

under-reamed pile to that of a plain pile for various settlement to diameter 

ratios is shown in Figure (4.14.3). The theoretical results and the mean 

observed field results sufficiently close to suggest that the behaviour of 

under-reamed piles is predictable provided the relevant elastic parameters 

are obtained from the load tests on single pile. The ssm# figure also shows 

the theoretical and mean experimental average shaft stress plotted against 

mean shaft strain for both plain and under-reamed piles which are also in 

good agreement. 

4.8 Conclusion 

(i) A rigorous elastic analysis of bonded compressible plain and 

under-reamed piles has been presented. It has been shown 

that for the analysis of load-displacement characteristics 

for practical uses, the approximate analysis whic^ ignores 

the presence of the pile within the half space, appears to 

be adequate. Whereas if the pile-soil interface stresses 

are required then the rigorous analysis is needed. 

(ii) The amount of load taken by the base for a practical range 

of length to diameter ratios (10 < L/D < 30) for a plain pile 

is only about 10% of the total load. 

(iii) Settlement of a compressible pile may be up to 50% higher 

than that of a rigid pile under the same load. Pile com-

pressibility is of consequence only for piles with length tc 

diameter ratios greater than 20. 

(iv) The reduction in settlement gained by under-reaming are 

limited to piles with length to diameter ratios between 10 

and 20 and ^*B/D < 3. 
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(v) The presence of a rigid layer underneath the pile reduces 

the settlement but beyond H/L = 5 the presence, of a rigid 

layer produces no noticeable change in the load dirc^-irment 

response, 

(vi) The elastic analysis is modified to take local slip into 

consideration; it was found that for a given (P/P ) ratio 

the settlement of &n under-reamed pile (^B/D - 2^ L/D = 15) 

is about 1% to 2 times the settlement of a plain pile, which 

agrees well with the experimental results of Whitaker and 

Cooke (1966). 

(vii) The results of the analysis have been compared with oyp^rim-'/ 

results. It was found that theory not only gives tativf 

description of the r - ^ of an axially loaded pile, which 

agrees with the exprrim-*, hut - shows that it is p . -

to predict accurately the load c: p-'-ment behaviour of an 

under-reamed pi_- provided the elastic param^t-r : 

selected from f-- f&gt results on single piles. 
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5.1 Summary 

This Chapter d-^L with an elastic analysis of pile groups obtained 

by an extension of the integral formulation described in Chapter 4 for 

single piles. The results of the analysis are presented graphically to 

show the relative effects of the ratios of length to diameter, spacing 

to diameter, length of the pile to the thick-- 3f the t. 

compressibility of the pile to that of the soil and the geometry of 

group. 

The theoretical predictions are compared with laboratory mod _ : : 

and full scale field tests, with reasonable agreement in most cases. 

A method of predicting the load digplacement behaviour of a pil^ 

group based on field test data for single piles is also presented. 
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5.2 General 

It has been found from the analysis of a single axi-_ y load i 

that the theoretical predictions are in general agreement with tr- r * r 

behaviour. The theoretical analysis is also capable of giving ^ati t _y 

quantitative predictions of pile displacements under working lo&d^. 

success of the elastic theory in analysing the behaviour of a single pile, 

therefore suggests that, it may also be useful in analysing the 

of pile groups. 

The analysis for a single pile described in Chapter 4 " ' je u 

directly to deal with general pile groups. The following appr^xim_:\'_ 

are introduced in order to reduce the number of simultaneous equations in-

volved in the analysis 

(i) Since the introduction of a fictitious radial ir^-" f/ 

produces a negligible effect on the overall load d 

response horizontal displacement compatibilities c 

soil interfaces are ignored. 

(11) The b: of the piles and also the surface cf the rigid 

are assumed to be smooth. 

(ill) The piles are assumed to be bonded to the medium. 

(iv) The pile cap is rigid and lias above the. surface of t : 

(i.e. the groups are free-Bcanding}. 

Assumptions (i) and (ii) ' - d- d in ' 4 a^d ' 

respectively? ^ ')tion (iiij imp : no Klip occurs -

and the adjacent Boll and solutions p' 'tad be_ 

while purely _ ^ ? 

actual load-di_ ^ ^ ^ : 4.13ol and ^ 2^ 

that these curves are linear up to 1/3 or 1/2 the ultima? . sd. 7 - -

fore at normal working loads the assumption of elastic h x 
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to be reasonable. Assumption (iv) implies that all piles in the gr 

settle equally and the cap is not in contact with ttm ground surfaca. 

Though the condition of full rigidity is more likely to occur in, nr^rtics, 

free-standing pile groups are much lees common. If the cap f ' the 

soil the problem becomes more complex and the solution involves th; : ^ 

sideration of displacement compatibility between the pile cap and tne 

piles. This problem is analysed in the next Chapter. 

5.3 Development of the analysis 

We define two systems of coordinates, a local cylindrical co=ordlnata 

system defined by (0,5,8^) and the global cartesian co-ordinate system 

defined by (x;y,z); both systems have their origins at the ground 

(see Figure 5.1). If we distribute intensities (|)̂ (c, 8 ) along the it-

soil interface normal to the base-soil interface and 

normal to the surface of the rigid layer at a depth H ^ 

we can write an integral representation for the vertical d ement ci 

a point B(x,y,z) within the finite elastic layer due to a number (N) jf 

arbitrarily spaced piles (Figure 5.1); by analogy with equation (4^22) 

and (3.25), as: 

L 2 IT 

W ^ ' (x,y,z) = % 
p=l 

)g(C)Go) " a* KWT(c ri,z) dc 

o o 

b 2 7T 

o o 

4 - n) KW(x,y,z,g,n;H) dS dn 

Where 

^1 
[fp + a' - ^fp" a Cos8^]^ , r^ -

2 2 ^ 
(x - Xp) + (y - y^) 
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X and y are the co-ordinates of the local origin with reference to 
P P 

the global axes. 

The intensities and are functions of (c,8_) and (e ,8 ) respectively 
S D 0 0 

and allowing for this would again increase the number of simultaneous equations 

to be solved, therefore and are approximated by equivalent rotationally 

symmetric distributions about the local axes. It is thought that th r. 

imations will introduce negligible errors in the calculated displ&r ^ rf ^nd 

loads for the pile spacings commonly encountered in practice (S/D 3 2.3/. 

Thus we can write equation (5.1) as: 
L Z-fT N 

w(x,y,z) - ^ 
p=l J 

K%^(c,r^,z) d8 dc 

o o 

b Zir 

V 
*b(co) Go' 

^(%,n) KW(x,y,z,g,n,H) dg dn 

5.4 Analysis of a symmetrical pile group 

A symmetrical pile group may be defined as a pile group in which th- z 

are spaced equally around the circumference of a circle, consequently each 

displaces equally and carries the same load. For such a case we can wi 

equation (5.2) as: 

L 2 

w(x,y,z) 

b Ztr 

^g.a.j KWi(c,^,z) dQ^ dc 

o 

L 2n 

o o 

N 

I 
p-2 

KW^(c,^,z) dG^ dc KW^CLsr^sZ) dCrr 

^(g,n) KW(x,y,z,g,n,H) dg dn 

By bringing the field point B(x,y,z) onto the pile-soil interface, of tha fir; 

pile of the group we obtain an integral equation for the displac^rant of . 

pile-soil interface. The first two integrals of equation (f. ^re exa ' 

analogous to the first two integrals of equation (4.22). As before, dic-

cretising the integrals over n segments of the shaft surface, m annular ring& 
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over the base area and s rectangular or square elements to represent a 

large enough area over the surface of the rigid layer, we obtain: 

NS 
= I (KSS)l + I (Kas)P 

G i j=l s j _ 1 p=2 t 

m 
1 ^ 

(KBS)^. + A (KBS)P. 

+ % (*) (KIS) 
j=l j J 

.3.< 

where i = 1,2,....n. 

Similarly 

(«^>. = Jul) 
j=i : 

(KSB)' 

NS 

I (KaB)P 
P=2 j J 

V 1 r 1 
1 ($,) (K3B)- + 1 (K3B, , 
1=1 L - p=2 ij j 

+ (KlB)ij (3,5) 

where i — 1,2 and the vertical displacements (W.) are given by 

n ^ r NS 

(Wn) = I (4:) (KSL)1\ + I (KSL)P 
i j-i j L 1 p=i 

V 1 

-j j-1 j 

NS 

fKBL)". + 

^ p 4 

. K 

% (KLL) 
j=l J ij 

where i — 1,2,....s. 

In the above equations (W^), (WT), (#0) are the vertical dig; - r 
s b ^ 

of the shaft; the base of pile no. 1 and the rigid layer res^ ct; 

, normal strass at the 

of pile no. 1 and the fictitious vertical stress intensity on tkt 

(4^), are the shaft shear str 

face of the rigid layer respectively. 

(K5S)^\ (K3S)^, (KBB)' etc. are the coefficients for di^plac* 

pile no. 1 due to the stress intensities acting on its surface 

(KSS)P, (KBS)P, (KSB)P etc. are the coefficients for displacsm&ntR 

the pile no. 1 due to the stress intensities acting on the surface of 
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, Ch .1 

the p pile. 

NS = number of piles in the symmetrical group. 

(KLS), (KLB), (KLL) are defined in Chapter 4. 
1 , . T 

The integrals involved in evaluation of the coefficients (K3S)"\ , 

(K5B)^^ and (KBB)^^^ are identical to those of equations (4.23) and (4.24), 

The integrals involved in evaluating the coefficients of (KLL)^ are 

identical to those of equation (3.25). The other coefficients in the 

above set of equations are calculated from integrals taken over non local 

regions (i.e. regions at some distance away frma the points on the surf&ce 

of pile no. 1 and the surface of the rigid layer). These integrals are 

evaluated by Simpson's rule for displacements at the centre-line of pile 

no. 1. 

Equations (5.4), (5.5) and (5.6) may be combined and writtsn a^: 

n-l-m 
( e / : . 

J 

(W^) = f (o^l (K5P)' 
1 j=l 1 iJ • 

where i = l,2,3...(n4m); and 

nTm 

(KLL)ij 
T ' j ^ i J 

where i = 1, 2, 3....S. 

By incorporating the boundary conditions for the rigid pile and rigtd 

layer and writing equations (5.7) and (5.8) in matrix notation we ^rr; 

. ' ^ 
{1} { * } 

1 < > 
{0} [KPL] [klL] 

where, (W^); are vertical displacements of (n+m) elements of 

soil interface of pile no. 1 and {W } the eqt 

(n+m) X 1 matrix, 

It 
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(W^) are vertical displacements of s elements of the finite rigid 

layer-soil interface and the equivalent s x 1 matrix, 

(4^)j are stress intensities acting over n elements of shaft and m 

elements of base of the pile no. 1, and ig tha equivalent 

(n4m) X 1 matrix, 

{4^ is s X 1 values of fictitious vertical stress intensity on the 

surface of the rigid layer, 

(KSP)^..; (KIP)'.., (KPL)^.. are given by equations (5,4), (5.5) 

and (5.6) by comparison with equations (5.7) amd (5.8); 

[KSp]^, [klP^^, |KPLj^, [KLl] are (n+m) x (n+m), (n+m) x s, 

s X (n+m) and s x s matrices of coefficients. 

5.5 Analysis of arbitrarily spaced pile groups 

A general pile group with arbitrarily spaced piles can be considered 

to be equivalent to a number (NP) of symmetrical pile groups where each 

symmetrical pile group carries different loads. Itms the partial symmetry 

of a general pile group may be utilised by carrying out a direct summatica 

over the surfaces of the piles that carry equal loads. Therefore the 

integral representation (5.2) can be written in a discrete linear form via 

equation (5.7) as (writing the equations for one pile from each symmrZiL 

group): 

NP n+m s 

= I I (KSP)P4 + % (44 (KIP)P . 
1 q=l j j=l J 

where p = 1, 2...NP, i — 1,2.,.(n+m); and 

NP n+m s 

(Wg) ^ I I (qf), (KPL)4 + y (4J (KLL) (: 
i q=l 3=1 : "J j=l j 

161 



where 1 — 1,2....s; 

jP (W ) are the vertical displacements of the pile-soil interface of 

the p^^ pile, p = l,2«,.oNP. 

(4^). are the shaft and the base stress intensities over the pile 
J 

th 
surface of the q pile, q = l,2.o.NP. 

NP is the number of symmetrical pile groups within the general pils 

group, therefore N = NS x NP. 

(KBP)P^^ are the coefficients (KSP)^j evaluated at the p^^ pile due 

to q^^ symmetrical group. 

are the coefficients (KIP)., evaluated at the p^" pile* 
ij ij 

(KPL)^^j are the coefficients (KPL)^^ evaluated over the elem&ntE 

on the surface of the rigid layer due to q^^ symmetrical group. 

Again equations (5^10) and (5.11) may be combined and written in matrix 

notation as: 

< . f 

{%&} 

[KSPj 
11 

[ksp] 
NP 

[KLP]" 

iKBpj 

jKPL]-

[KSPj^^ 

. jKPL] 
NP 

QCLL] 
.. NP 

where denote (n+m) x 1 vectors for vertical diku 

of pile no. 1, pile no. 2 etc., each representing a typical 

of different symmetrical groups. 

denote (n+m) x 1 vectors for the shaft si 

base stress intensities for pile no. 1, pile noo 2... etc*; 

representing a typical pile of different symmetrical g] 

{#2^ and are s x 1 vectors for vertical displacements a; 

the fictitious vertical stress on the surface of the rigid 

layer respectively. 
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[i^P] , etc. are (n+m) x (n+m) matrices, 

|KPLj^...o|kPLj^' are (n+m) x s and s x (n+m) 

matrices. 

Equation (5.12) represents a set of NP x (#+&) + s linear algebraic ^ 

which can be solved for rigid and compressible pile groups as Ghown earlier 

(Chapter 4). The solution for rigid or compressible pile groups embedded 

within an elastic half space (Butterfield and Banerjee, 1969b) can be 

obtained by substituting 0 in equation (5.12). 

5.6 Notes on the computer programme for the analysis of pile groups 

The computer programme and the associated 'procedures' developed for 

the theory in the preceding articles are described below The listing of 

the computer programme and the procedures are given ^l^-vhere iBanerjee. 

1969). 

'Procedures' 

(i) Print array, Inp, Grout 2, Solve, Simpson, Mult, and Invert 

have been discussed in Chapters 3 and 4% 

(ii) Issa: Calculatesthe coefficients (KBS)^\ of equation (5.4J 

(iii) Ibba: Evaluates the coefficients (KBBJ^\. of equation (5.5) 
1J 

(iv) Isba: Calculates the coefficients (KSB)^^^ of equation (5.5^. 

(v) Ibsa: Calculates the coeffictants of equation (5.6/. 
1J 

The integrals involved in evaluating the various coefficients by using 

procedures (il) to (v) listed above are proper integrals of conti'^ 

functions and are evaluated by using the procedure Simpson. 

(vi) Copy: Copies a matrix A from a matrix B. 

(vll) Cumadd: Adds a matrix A to a matrix B to form a new matrix A. 

This procedure is used to carry out a direct summation for 

coefficients for piles carrying the same load. 
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(vlli) Single pile array: Calculates the laatrix [KSJ (see Chapter 4). 

(ix) Typical pile array: Calculates the coefficients (KSP)*^^ of 

equation (5.8) and (KBP)^^^ (for p = q) of equation (5.10) by 

calling procedures Issa, Ibba, Isba, Ibsa, Copy and Cumadd. 

(x) Inf another typ array: The coefficients (KSP)^^^ (for p ^ q) 

of equation (5.10) are evaluated by the use of procedures Is8a, 

Ibba, Isba, Ibsa, Copy and Cumadd. 

(xl) Form Load array: Forms a (n+1) x NP load matrix for the group 

from the integration of the surface stress intensities. TOie 

loads are calculated at different section of the pile lengths 

for only one typical pile of each symmetrical group. 

(xii) Displ array: Forms a (n+m). NP x 1 column matrix of pile 

displacements from the calculated loads at each p;_ v ^ r, 

(xiil) Cap array: Calculates the coefficients (KLlJ^j of equation 

(5.8) and (5.11), for a finite rectangular or square eui 

of the rigid layer. 

1 
(xiv) Inf on pile array: Calculates the coefficients (Klf)"^ of 

1 ac cne cypicai piie or 

symmetrical group. 

equation (5.7) and (Klf)^^ at the typical pile of p* 

1 

(xv) Inf on cap array: Evaluates the coefficients (KPL}"jj cf 

equation (5.8) and coefficients (KPL)^^^ due to the q^^ 

symmetrical pile group. 

(xvi) Form rigid layer: Assembles the sub-matrices |Klf["...a ^ 

|KPL|^.... [kpLj^^, [KLLJ to form a modified K-matrlx for a 

pile group embedded with a finite elastic layer. For dat; 

input corresponding to a pile group embedded within an 

elastic half space this procedure and hence procedureG cap 

array, Inf on pile array, Inf on cap array, is not used. 
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The main body of Che programme calculates the various coefficients for a 

single pile (Chapter 4) and assembles the sub^matrlxes |KSPj^\ 

to form a K^matrix for a pile group within a half space. If a solution 

for a pile group within a finite elastic layer is desired it proceeds to 

modify the K^matrix using the procedures (xiii) to (xvi). The resulting 

system of simultaneous equation is then solved by Gaussian elimination. 

5.7 Accuracy and convergence of the solution 

The results described in this Chapter have been obtained irg 

equal cylindrical segments over the pile-shaft surface and 5 annular rings 

over the base of the pile. The group analy. - involve evaluation of the 

integrals for coefficients of the resulting system of equations, over tha 

local and non local pile surfaces. The integrals over the local pil^ 

surfaces are identical to those involved in the anal v. - of -t*. " 

single pile and the numerical evaluation of the&e integr;. has » ^ dis-

cussed in Chapter 4. The intervals of integration r... _ry ,. -

evaluation of the integrals over the non local pile surfaces are f ' 

be dependent on the pile spacings. The Table 1 shows the minimum noniocal 

intervals of integration required for the convergence of the solution by 

using 15 divisions of pile-soil interfaces of a four pile group (L/D = 20, 

H/L = =0 at various spacings. 

TABLE - 1 

NO. 

1 

2 

3 

PILE SPACINCS 
S/D 

2.5 

5 

10 

INTERVALS OF I^' 

FOR 180 IN e^DIRECTION 

20 

10 

4 

SrR-TNl 

The use of the numerical quadrature No. 3 (Table, 1) to pile groups with 

S/D = 2.5 produced only 3% increase in the calculated load over that obtained 
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by using No. 1. Therefore the results described in this Chapter have been 

obtained by using this. Trial computations were carried out to test the 

stability of the system of simultaneous equations and the convergence of 

the results. It was observed that for a four-pile group (L/D = 20, 

S/D = 5) embedded within a half space the calculated loads for a given pile 

displacement by using 15 equations (10 for the shaft and 5 for the base) 

was about 2.6% lower than that obtained by 10 equations (8 for the shaft 

and 2 for the base) and 1% higher than that obtained by using 25 equations 

(20 for the shaft and 5 for the base). Hence the use of 10 equations for 

shaft surface and 5 for base area would appear to be a satisfactory com-

promise. 

the analysis of pile groups embedded within a finite elastic layer 

the selection of a finite surface area of the rigid layer is necf "rv. 

This area was found to be dependent on the width and breadth of the pile 

group as well as the depth of the layer. From a series of trial computa-

tions it was found that the width and breadth of the rigid r 

may be approximated as the width of the pile group plus twice the dept ' 

the layer and the breadth of the group plus twice the depth of the layer 

respectively. The results described in this Chapter w^^^ obtained by 

using 36 equations (i.e. 144 elements) to represent the finite rigid 

surface. A detailed discussion of the numerical evaluation of the 

involved for the coefficients of these equations is given in Chapter 3. 

5.8 Results of the analysis 

The results of the analysis are presented In graphs show::% 

of the different parameters that may be considered to affect f- f 

displacement behaviour of axially loaded pile groupw in an ideal elartic 

sub-soil are as follows: 
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(i) Number of piles and arrangement of the piles in the group 

(ii) The length to diameter ratio of the piles in the grou# 

(iii) The spacing to diameter ratio 

(iv) The Poisson's ratio of the soil 

(v) The compressibility of piles 

(vi) The ratio of the thickness of the elastic layer to the 

length of the piles. 

It is impracticable to undertake an exhaustive evaluation of the r : 

effects of all the variables listed above, therefore some typical ca^ea 

of 2, 3, 5, 6 and 7 pile groups and square groups of 4, 9, 16, and 25 pi 

are considered below. The solutions are given for p = 0.5 caRes which 

are thought to be appropriate for calculating the immediate settlement of 

pile groups in saturated clay. 

The settlement ratio C&g) is a commonly used parameter for df^cribing 

the settlement of a pile group. It is best defined the ratio of the 

settlement of a group to the settlement of a single pile carrying the uame 

average load as a pile in the group. 

Figures (5.2) to (5.11) refer to pile groups embedded within 

space. Figures (5.2) and (5.3) give the settlement ratio for groupc cf 

(N) compressible piles (N = 2, 3, 4) under a rigid cap for L/D ratios cf 

20 and 40 and A values of 6000 and ^ plotted against various S/D rati3^« 

The curves for a rigid pile (A = Figure, 5.2) are very Kim\ L to '' 

given by Poulos (1968b). The settlement ratio of longer ^ 

is about 50% higher than that for shorter piles (L/D:%2C)c W? r 

is strongly influenced by L/D and 3/D ratios, the .r if ^ i: 

be small for all groups with the exception of groups of longer pi 

The settlement ratio for longer piles is influenced by both A ar^ - J 

ratios, which makes the principle of superposition a_ ^ ^d by Pc.. 

(1968b), not applicable to compressible piles. 
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TABLE 2 

L/D = 25, U = 0,5, S/D = 2.5, H/L 

Type of group j2 2^ 4^ 5^ 

Rg (Poulos, 1968b) 
X = 0° 

Rg (present & = ™ 

analysis) = 6000 

2.69 4.88 7.35 10.10 
Rg (Poulos, 1968b) 

X = 0° 

Rg (present & = ™ 

analysis) = 6000 

2.66 4.95 7.30 9.90 

2.48 4.50 6.72 9.28 

TABLE 

S/D = 2.5, L/D = 25, U = 0.5, H/L 

Type of group Pile no. P/P 
av 

(B) 
X = 00 

P/P 
&v 

X = 00 

(A) 

A = 6000 
1 1.520 1.510 1.380 

2 0.740 0.750 0.760 

3 0.050 

(tension) 

?."60 

(t ^ ion) 

0.120 

1 2.020 2.C20 1.840 

4^ 2 0.960 0.965 0.965 

3 0.050 0.044 0.180 

1 

2 

2.580 

i.lSC 

2.520 

1.190 

5^ 3 1.160 1.160 

4 0.010 0,048 r . 

5 0,010 0.106 r- 4 

6 0.190 C.095 

TABLE 4 

Values of the settlement ] 

L/D = 25, P = 0.5, A 

itio (R^) 

S/D 

H/L 
CO 5 2.5 1,5 1 _ 2 

A 4.95 4.50 4.20 4.CO 3.70 

2.5 
B 4.88 4.45 4.30 3.48 2.54 

A 3.82 3.70 2.90 2.60 2.05 
i 

5 
B 3.74 3.27 3.05 2.30 1.75 

10 
A 2.81 2.51 2.20 1.70 1.55 

10 
B 2.73 2.20 1.98 1,48 1.27 
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Curves showing both the load-displacement behaviour and the 

individual pile load sharing of larger groups of compr&u6i^. piles 

under a rigid pile cap are pzr ted in %\g"res 5,4 to 5.^0« A 

standard close spacing of S/D = 2.5 has adopted throughout in 

order to indicate the likely worst case values of 

Figure 5.4 shows the value of P/GWD plotted against L/D ratio for 

compressible symmetrical pile groups of 2, 3 and 4 piles. The effect 

of compressibility is negligible for pilee with and ' for 

piles with L/D = 40 has only a small effect on the over a _ ^d-

displacement response. Figures (5.5) to (5.10) refer to the results 

of general pile groups. Variation of X is ur to have iderable 

effect on the load distribution between the piles within the group but 

a much smaller effect on the load displacement behaviour. A reduction 

in X from ™ to 6000 produces about a 1G% reduction in EU (Tab - 2), 

whereas the individual pile load sharing pattern changes drasti 

As X decreases the load carried by the inte pi in a gt 

(Figures, 5.5 to 5.10) increases although the. contribution of t". 

piles in 4^ and 5^ groups (Figures, 5.9 and 5.10; 3) < ri 

generally less than 10% of that of th' _ r pi 

Tables 2 and 3 show a comparison bet^ : the numerical r _ ' 

obtained from the present analysis (A) and -- - 3 (5) ^ d 

by Poulos (1968b). It can be seen that whils both methods give idAr-

results for rigid pile, the settlement of c o m p c lole pile is over-

estimated in Pouloa's analysis. 

The results of 3^ and 5^ groups embedded within & : 5p&c^ are 

summarised in Figure (5.11J in which the settlement rat - -re r t: d 

against S/D. The length to diameter ratio and the compressibility of 

longer piles appears to have strong Influence on the tt_-ment 3 . 
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of larger groups. 

The effect of the presence of a rigid layer on t̂ ie settlement ratio 

of a 3^ pile group is shown in Table 4. As might be expected the effect 

of the rigid layer is to reduce the interaction between the piles, partic-

ularly at larger spacings. The results of the present analv i (4) are 

also compared with the approximate analysis (B) of Poulos (1968b) obtained 

by the use of Steinbrenner's approximation for vertical displacement 

(Steinbrenner, 1934). It can be seen that the both methods give ts 

within 15% in all but thinner layers (H/L = 1.5, 1.2). While Poulog's 

analysis is likely to improve in accuracy for thicker layers but bAcomp 

increasingly inaccurate for shallower layers, the present analysis + 

the opposite trend. It is, however, possible to increase the accuracy 

of the present analysis by considering more elements to repr- 't larger 

areas of the rigid layer, at the expense of increased computer storage 

and computing time. 

5.10 Comparison between the theoretical and model test r- . f ; 

The applicability of the foregoing theoretical analysis to the design 

of free standing pile groups can be investigated by comparing tha theoretic 

results with the laboratory and full scale tests on groups* 

of tests on laboratory models have been reported by Whitaker (1937, 1 

Sowers et al (1961), Saffery and Tate (1961), Hanna (1963), while Bei 4"' 

et al (1961) described full scale tests on pile groups. Be_- - the ^ h 

of the soil layer and the length to diameter ratio of piles varikS ir 

case the test results have been compared with the theoretical r ; c 

corresponding to appropriate H/L and L/D ratios. Unfortunately in mcsc 

cases the authors (Whitaker 1957, 60; Sowers et al)1961; Saffery and 

1961) adopted a different and much less satisfactory definition of ? 

settlement ratio, which causes considerable confusion in interpreting 
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their results. The Polsson's ratio has been assumed to be 0.5 through-

out, as it has a negligible effect on the value of settlement ratio. 

Comparison with Whitaker (1957, 1960) 

Whitaker (1957, 1960) carried out a large number of small scale 

model tests on pile groups driven in remoulded London Clay of undrained 

cohesion of about 0.6 to 1.3 Ibs/sq in. The model piles were 1/8 i^ k. 

diameter brass rods with tips formed to 60° cones, the top ends being 

plane. The pile caps were designed to permit the piles to be driven 

singly in any order to form a group by pushing them through a template. 

The cap was essentially rigid and remained above the soil surface through 

out the test. The effects of variation of length to diameter ratio and 

spacing to diameter ratios on the settlement, ultimate bearing capacity 

were studied. These results are compared with the theoretical r ^Itc 

in Figures 5.12 to 5.15. The depth of the soil layer was not bpccifi&d 

by Whitaker but from the photograph of the general arrangement of the 

testing rig it would appear that the soil bin was probably 9 ir^' _ ^ ' 

Hence for L/D = 24 and 48, H/L is assumed to be 3 & 1.5 respecti-

The brass piles may be considered to be rigid compared to the soft 

remoulded clay. 

The experimental results show considerable ecatter. The thecr&ticv3 

settlement ratios are in good agreement with the mean experimental r f 

(Figures, 5.12 and 5.13) for l/D = 48 but the theoretical resuits for 

L/D = 24 are about 20% higher than the mean experimental ? . r Tha 

discrepancy is likely due to the definition of the settlemcnf t-fi 

Whitaker defined as the settlement of a pile group to the Ksfr -^^mt of 

single pile at half the ultimate load for each. Without th- _ ,d-

displacement curves of single piles it has not been possible to modify 

the experimental results according to the definition of settlement r^tio 
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in Che present analysis. Figures 5.14 and 5.15 show the load sharing 

between the piles within the pile group of half the ultimate load, com-

pared with the theoretical results which are not very sensitive to T _ 

variations of L/D (between 16 and 24) and H/L (between 2 to 4j. The 

theoretical results suggest that the corner piles may take about 2 to 3 

times the average load per pile whereas the central pile takes neglig 

load at close spacing. The experimental results of Whitaker show a 

more uniform load distribution than that predicted by the theory. 

Comparison with Sowers et al (1961) 

Sowers et al (1961) described a series of model tests on groups of 

1/2 in and 1.21 in diameter piles driven into a mixture of commercial 

bentonite clay and water of uniform composition, hig^ plasticity and 

permeability. Before each test the soil was remoulded and then the gr 

was forced into place. An isolated single pile was r ^-d into 

same soil to provide a standard for comparison. The group and th^ H 

pile were then tested after 7 days. 

For the purpose of comparison with the theory the piles been 

considered to be rigid. The theoretical settlement ratios are com, r ' 

with the experimental values at half the ultimate loads in Figure 

The ultimate bearing capacity of smaller groups of 2 and 4 pilct 

nearly equal to that of an isolated single pile. Hence the 

definition of settlement ratio applies to these t-_ Lc for E? " * 

But for larger groups the average load per pile at half tbA u]tj 

group load is lower than half the ultimate load in the single pi^^. 

Hence the theoretical results are within 10% of the imean experimental 

for smaller groups. However for larger groups cf 9 and 16 pi'-

results are about 30% higher than the mean experimental - ^ 

load-displacement curves for isolated single piles are net 
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therefore the results for larger groups cannot be imodified to suit the 

present definition of settlement ratio. The load sharing between 

different piles within a 3^ pile group ir ghown in Figure (5.14) in 

which the results from Whitaker (1957) aleo pr rted. The r 

of Sowers et al appear to agree well with the theoretical ^ for 

pile no. 2, but for pile no. 1 the theoretical results art _r _0% 

higher, and for pile no. 3 the theoretical results ara about 20% lower. 

The results of load distribution obtained by Whitaker (1957) arr ' 

siderably more uniform than both those obtained by Sowers et al and 

those predicted by the theory. 

Comparison with Saffery and Tate (1961) 

Saffery and Tate carried out a series of model tests on groups of 

1/4 inch diameter stainless steel piles with toe& formed to a 6C 

driven into soft remoulded London They studied ffect rt 

eccentricity on the ultimate bearing capacity and settlement of 3^ 

groups. The remoulded clay bed was formed in a cylindrical -r r 

in four to five layers each three inches deep. 

Figure (5.17) shows a comparison between the theoretical -'t " ' 

ratio and the experimental values at half the ultimate loads^ 

theoretical results have been obtained by assuming A = appropriate 

for rigid pile. The thickness of the layer probably lies be 12 

inches to 15 inches, hence for a pile of L/D = 30, r.: " T-

to be 1.8. The settlement ratios are in good agr- i ^t K^th 

theoretical results for H/L = 1.8 but are about 1C% tha^ 

theoretical values, which might have been again due tA the diF* r -

in the definition of the settlement ratios. The t'-.letii- L 

for H/L = m is also shown in the same fig^^e to r: f. ' T 

the presence of the rigid layer on the interaction between the pi. 
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Comparison with Hanna (1963) 

Hanna (1963) described a series of model tests on groupg of 0.367 

in diameter wooden piles driven into loose and dense sand. The load-

displacement characteristics and ultimate bearing capacity of pile gi 

of square and rectangular arrangement were studied. The L/D and H/1 

ratios were about 30 and 3 respectively. The value of ^ for wooden pi 

in sand has been assumed as 6000, the theoretical solutions, b r. 

not very sensitive to)\ for the pile length under consideration. 

The theoretical settlement ratios for S/D = 2.3 and 4*6 of Hqcare 

groups of 4, 9, 15 and 25 piles are compared with the corresponding 

experimental results for groups in dense sand and loose sand respecti 

(Figure 5.18) for a factor of safety (Fg) of 2 on single, pile, 

theoretical results are lower than the corresponding laboratory test 

results for dense sand and higher than the teet results t r in 

loose sand, but are within 15% of the mean experimental r . . r d ' 

sand and loose sand for a given spacing of pilew. The tb fi' 

analysis, presented takes no account of the factors such f' urdei 

driving the piles, layering of the soil profile, the difference in th^ 

changes in the soil properties caused by driving a single pile and a 

group. From Figure (5.18) it is apparent that there may hr b* % mar: 

compaction or loosening due to driving a pile group ty-r ^^^t c_ r 

driving a single isolated pile. 

Comparison with Berezantzev et al (1961) 

Berezantzev et al (1961) described a gerieK of p. ' : cn 

groups of 4, 5, 9, 16 and 25 piles. The piles were 28 cm i- \ : 

5.6 metres long and driven into fine dense sand. His Icad-d: -

curves are replotted in Figures (5.19) and (5.20). The p: " 

sidered to be rigid. 
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The theoretical results for pile groups within a half space ara 

compared with the settlement ratios calculated from the experimental 

load displacement curves for pile groups and isolated pil%_ _ - ^^gtr 

5.19 and 5.20) in Figure (5.21). The experimental r are generally 

within 15% of the theoretical predictions and are biphtr, which f-

the same trend as the comparison of theoretical r 2 with Harna (1963). 

This is obviously due to the fact that the volume expansion t-. d by 

driving a pile group is higher than that caused by an isolated pile, 

driven in dense sand. 

From the foregoing comparison between the theoretical and the 

experimental results it may be concluded that the analysis described in 

this Chapter is not only capable of predicting the general trend of pile 

group behaviour but is also capable of predicting the group r'L %t, 

which is of primary importance in the design of pile gr It ^ 

be emphasised that this analysis is only applicable to stardi^p 

pile groups i.e. no allowance has been made for the, action of a 

contacting the ground. This is examined in the ^ext Chapter. 

Application of the present analysis directly to pile groups in 

practice would involve the assessment of the three elastic paramat&rS; 

G, W and Ep, of which the determination of G and ^ for appropt.^f : 

conditions is very difficult. Soils exhibit stress-strain i ' 

which are often curved throughout their entire length. ;r: ^ 

and seemingly unpredictable stress-strain properties of ' !f 

the selection of proper elastic moduli. However, t! incertaintie^ 

can be overcome by calculating the value of G froa ^ . r^rc 

curves of isolated single p. vhich are approxinit - lirfgr upto thr 

working loads (see the load-displacement cur% _ f Whitaker and ' < , 

1966) assuming since the values of the se'f. ^int ratio are i" 

to the value ofyt. The settlement ratios plotted in Figure,(5.2^ 

been calculated using this method. 
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5.11 Conclusions 

An elastic analysis of free-standing pile groups of arbitrary spacing 

is presented. Solutions have been obtained for the load distribution in & 

pile group under a rigid floating cap and also its settlement. The effects 

of the various parameters L/D, S/D, H/L and group size on the settlement 

and load distribution are studied. The major conclusions may be summari : 

as follows: 

(I) The settlement ratios of pile groups are strongly influenced by 

the ratios of length to diameter, spacing to diameter, thlcknegs 

of the elastic layer to the length of pile and the number of pile 

in a group and their arrangement. 

(II) The compressibility of piles has a relatively negligible effect 

on the settlement ratio of groups of short piles (L/D $ 2'., 

whereas for groups of longer piles (L/D = 80) the compressibility 

may reduce the settlement ratio by as much as 40%. 

(ill) The corner piles of a group under a rigid floating cap carry 

2 to 3 times the average load per pile in a gi _ and th& 

at the centre of a group carry virtually no load, %d 

distribution between the piles in a group is very strongly 

affected by the pile compressibility. With incre&se in pil^ 

compressibility the load distribution approa i mora 

uniform distribution, but with the corner piles still taking 

the maximum load. 

(Iv) The settlement ratio of a 25 pile group may be high e, 

at S/D = 3, L/D = 48, H/L = »and A = ™ which «-

importance of accurate e\^ tion of seti_:T6nt in , 

design. 
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(v) The presence of a rigid layer reduces the interaction b-t'' ^ 

the piles particularly at larger spacings, e.g. for 3^ pile 

group (L/D = 25, X = ») embedded within a half space the 

settlement ratio at S/D = 10 is 2.81 against the settlement 

ratio of 1.70 for the same pile within a finite layer 

(H/L = 1.5). 

(vi) The presence of a rigid layer beyond H/L = 5 for a 3^ pile 

group has only small (< 10%) influence on the settlement 

ratio. 

(vii) For a pile group of a given width and breadth the settlement 

ratio is almost independent of the number of piles in a group 

(for S/D between 3 and 10). Hence it is more economical to 

use less number of piles at large spacings than to use a 

large number of piles at close spacings. 

(viii) Comparisons between the theoretical and experimental r 

reveal that theoretical method is capable of predicting t-

settlement of any pile group, using the elastic param f. 

obtained from field tests on an isolated single pile. 
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Chapter 6 

Analysis of pile groups with 'ground-contacting' 

pile cap 
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6.1 Summary 

An elastic analysis of two problems concerning the interaction 

of an arbitrarily spaced group of piles and a smooth pile cap, of any 

shape, in contact with the ground surface viz. 

(i) the load-displacement behaviour of the system, 

(ii) the load distribution between the piles in the group, 

are presented using the analysis for pile groups described in Chapter j 

The effect on the response of the system of pile length to diameter 

ratio, pile cap size and the compressibility ratio of the pile and the 

supporting medium has been investigated and specific results are 

presented graphically for a single pile with a square cap and typical 

pile groups in rectangular and square arrays. 
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6.2 General 

Although the problem of the load displacement behaviour of a pile 

group - pile cap system is of considerable importance in foundation 

engineering the vast majority of available field and laboratory studies 

on piles have been concerned with single piles, or groups of free-

standing piles. Theoretical analyses of pile and pile group behaviour 

have also avoided the interaction problem with the exception of a paper 

by Poulos (1968a) which considered a single rigid pile with a rigid 

circular cap resting on the ground. 

The theoretical analysis presented in earlier chapters has shown 

encouraging correlation with the field and laboratory test results therefori 

in this chapter the foregoing analysis is extended to the complete 

"compressible pile group - rigid cap" system, of any geometry, where 

(i) the piles are assumed to be bonded to the supporting medium, which 

is assumed to be an ideally elastic half space, and (ii) the cap -

medium interface is assumed to be smooth. 

The effect of assumption (i) is discussed in Chapter 5 and that 

of the assumption (ii) in Chapter 3. 

6.3 Development of the analysis 

The details of the analytical method used have been described in 

Chapters 2, 3, 4 and 5, and only an outline of the essential steps is 

given below. 

The following notation is used. Figure (6.1), C is the EFFECTIVE 

pile cap - medium interface area (i.e. the total cap area less that 

occupied by the group of N piles) and Q , are load points and field 

points respectively on C. Similarly Q^, are load points and field 

points respectively on S, the TOTAL pile shaft plus base Interface area 

for all N piles in the group. P(x,y,z) is a general field point in the 

medium. 
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The vertical displacement of P due to a normal direct stress 

h acting at Q^, on an element dc of c can be written as 

w^CP) = K(P,Q^) dC (6.1) 
C c 

Similarly the vertical displacement due to shaft-shear and direct 

normal stress over the base areas, at Q^, on elements dS of the shaft 

and the base areas, Included in S, can also be written as 

Wj(P) . K(P,Q ) dS (6.2: 
S ^ G 

where K(P,Q ) and K(P,Q^) can be obtained from Mindlin's equations 

(Chapter, 2). 

Hence the total vertical displacement w(P) of P due to the interface 

intensities ^ and is obtained as: 
c s 

c c 
W(P) = K(P,Q^) dC + K(P,Q )' dS (6.3) 

C ' S 

The integral representation satisfies the equations of equilibrium and 

compatibility everywhere in the half space (see Chapter 2) and also, 

because of the choice of singular solution, the following boundary con-

ditions referred to the cartesian axes shown in Figure (6.1): 

or = Q = o = 0, at z = 0, outside C 
zz xz yz 

Q = G" = 0, at z = 0, inside C (6.4) 
xz yz 

a = o = 0, at z = L, over the pile base area 
xz yz ^ 

Since the integral representation (6.3) exists, in the ordinary sense for 

the displsceo^nts 3 t points c n t h e surfaces S andC. it c a n b e equated 

directly to t h e displacement boundary condition of the problem. If we 
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now consider P to be at P on C we have from (6.3): 
c 

w(P^) = K(Pc'9c) + I K(P^,Q») dS (6.5: 

and when P Is at P on S similarly, 

w(Pg) = j KfPg'Qc) dC + j *g KCPg'Qg) dS (6.6) 

s 

Equations (6.5) and (6.6) have singularities in the kernels, K, when 

either points P and or P and coincide. Equations (6.5) and 

(6.6) do not take into account the horizontal displacement compatibility 

at the pile shaft - medium interfaces, however, it Ibis been shown earlier 

(Chapter 4) that this approximation has a negligible effect on the load 

displacement behaviour of an axlally loaded pile. 

The above analysis is quite general and can be applied to pile groups 

of any geometry within a rigid cap of any shape when the vertical dis-

placements at the interfaces are specified as follows: 

w(P ) = constant = 1 (say) on C 

and either w{Pg) = constant = 1 (say) on S, for a rigid pile (6.7) 

or M(P ) = f(Pg) on S, for a compressible pile 

The function f(Pg) allows for the pile compressibility and can be included 

in the analysis by the iterative procedure discussed in Chapter 4. 

Equations resulting from the substitution of (6.7) into (6.5) and (6.6) 

can be stated in a convenient matrix form by dividing, the pile-soil 

interfaces as in Chapter 5 and the EFFECTIVE cap-soil interface as in 

Chapter 3 into discrete elements thus (see equation 5.12): 
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g S P ] ^ . . . . |KSP]^ ^ QKCPJ 1 

< . > 
* • • < ° > 

^5P]"P 1 . . . gSP]** MP [kCP]"^ 

{w } 
c 

1%'C]^ . . . . gFC]HP |KCC] {<), } c 

V. y 

(6.8) 

ill 
[KSPj 

INP 
Where the quantities {W^ } }, [KSp]' 

jgSpQNPl |Kgp]^^ etc. have been defined in Chapter 5. 

|KrcQ*\...[K?c]^^ are matrices of coefficients identical to the 

matrices [kfl]^..... defined in Chapter 5. 

|KCp]^ [KCP]^^ are matrices identical to the matrices 

defined in Chapter 5. 

[KCC] is identical to [xCcQdefined in Chapter 3. 

} is the unknown direct normal stress at the cap-soil interface. 

Equation (6.8) represents a set of linear equations that can be solved for 

the unknowns and } for rigid and compressible pile groups 

6.4 Discussion of the computer programme and convergence of the solution 

The computer programme developed for the analysis of the above problem 

is identical to that discussed in Chapter 5. The listing details are 

given in Banerjee (1969). 

In the present analysis of the problems of pile cap - pile group 

systems with rectangular or square symmetry the integrals unvolving all 

the elements of the sub-matrices except those for [KCC] have been evaluated 

by the use of numerical quadrature discussed in Chapter 5. The integrals 

involved in evaluating the coefficients of the sub^matrix [gCc] have been 

discussed in Chapter 3. 

For the solutions described in this chapter the pile shaft was 
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divided into 10 cylindrical segments and the pile base into 5 annular 

rings. The cap soil interface was divided into 144 elements which, 

because of the quadrantal symmetry, was reduced to 36 equations for the 

cap displacements. The number of equations representing the cap-soil 

interface were further reduced by ignoring the equations involving the 

displacements of the elements of pile cap area occupied by the pile 

cross-section. 

A series of trial calculations were carried out for a 4-pile group 

(1/D = 20, S/D = 2.5, X = p = 0.5) under a rigid square cap (B/D = 5). 

The calculated load obtained by using 10 equations for the shaft, 5 

equations for the base and 32 equations for the cap was about 4%% lower 

than that obtained by the use of 5 equations for shaft, 3 for base and 

8 equations for the cap and was about 3% higher than that obtained by the 

use of 15 equations for shaft 5 equations for base and 52 equations for 

the effective cap surface. Therefore, although there is some slight 

inaccuracy involved in the results presented in this chapter, by the use 

of 15 equations for each typical pile of the group and 32 equations for 

the cap, it was thought that these are justified by economics achieved 

in computer storage and run time. 

6.5 Results of the analysis 

The effects of length to diameter ratio, group size, pile compr-_ -

Ibility ratio (X), the distribution of the load between the cap and the 

individual piles in the group and the Influence of the cap on the vert;^._ 

stiffness of the group have been studied and typical results are pre&eri ^ 

graphically in Figures (6.2) to (6.10). 

Figure (6.2) shows a comparison between the load-displacement 

behaviour of a single axially loaded pile with a square pile cap 

(B = 2.5D) and that of a similar single pile without a cap. The pr- ice 
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of a pile cap is seen to produce only a small increase in the stiffness 

of the system (< 5%) for all but short piles (L/D < 20). 

The distribution of the total load between the ca^ amd pile is shown 

in Figure (6.3) for both rigid and a compressible pile. It is seen that, 

for 20 $ L/D 3 40, the cap carried some 15% to 20% of the load although, 

from Figure (6.2), the effect of this load redistribution on the stiffs 

of the system is very small. These results are in general agreement 

with those calculated by Poulos (1968a) for a rigid pile with a circular 

cap resting on the ground surface. Similar information for a four-pile 

group appears in Figures (6.5) and (6.6) and here again, even though a 

rather higher proportion of the load is taken by the cap a particular 

geometry used, the increase in the stiffness is negligible. 

The effect of the pile spacings (S) and pile stiffness (AJ on the 

load-displacement behaviour of a capped 2-pile group is illustrated in 

Figure (6.4) from which a doubling of the pile spacing is seen to produce 

only a 5% to 10% increase in the system stiffness over th^ range of 

A (6000 3 X $ ™). Figures (6.7) and (6.9) show the effect of varying S 

for capped group of 5 piles and 9 piles. Each doubling of S almost 

quadruples the cap area and in all cases, for 0 $ 1/D ^ 40, each doubling 

increases the system stiffness by 25%. 

Figures (6.8) and (6.10) illustrate how the load is shared betv 

the different piles in capped 5 and 3^ pile groups for various S and A 

values. It is interesting to note here that although, for closely apac^d 

piles (S(%3D), the effect of the caps on the load displacement i ;r 

is small they do radically effect the loads carried by the individual F_ 

in the group (Compare with Figures, 5.5 and 5.8). 

All the results for 2, 5 and 3^ pile groups are summarised in 

Figure (6.11) where the effect of ground contacting caps and cap size 

on the system stiffness is given in terms of a settlement ratio (Rq = 
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the ratio of group settlement under a load of N x P to t±ie single uncapped 

pile displacement under load P). The results of free-standing pile g;-

are also shown for comparison. 

6.6 Conclusions 

(i) An elastic analysis has been presented for the general com-

pressible pile group problem including a rigid smooth 'ground 

contacting' cap. 

(ii) The results of the analysis show, 

(a) The load-displacement behaviour of pile groupg with and 

without such caps are little different, the cap incr tng 

the system stiffness by from 5% to 15% depending upuu 

group size and pile spacings. 

(b) The presence of the cap does, however, change drastically 

the load carried by the different piles in the group. 

(c) The proportion of the total group load taken by the cap% 

of normal dimensions on piles with 20 3 L/D ^ 40 rara 

from 20 to 60 percent depending upon the group size &ad 

pile spacing, being higher for the larger groups at larger 

spacings. 

In applying the theoretical results and conclusions to practical field 

problems it should be borne in mind that the theoretical analy - .re 

strictly applicable to homogeneous isotropic subsoil and do not take into 

account of effect of increase in stiffness of soil with depth, layering 

of the strata, effect of driving the piles etc. which affect the group 

behaviour. The trend of present analysis for the 3^ pile group is ir 

agreement with the experimental study due to Whitaker (1960), who : d 

the settlement ratios of the capped group and uncapped group to be 

nearly equal. 
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Chapter 7 

The effect of induced pore water pr:. vr » on 

the ultimate bearing capacity of driven pi - , 
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7.1 Summary 

In this Chapter the effect of pore water pressure on the ultimate 

bearing capacity of driven piles is examined. The problem has been 

divided into two parts: 

(i) Analysis of the stresses and pore water pressure developed 

due to pile driving assuming the soil to be an elastic 

ideally plastic porous skeleton saturated with an incom-

pressible pore fluid. 

(ii) Analysis of the dissipation of the pore water pressure and 

the changes of effective stresses around the pile assuming 

the soil skeleton to be elastic. 

The ultimate bearing capacity of a driven pile in saturated clay in 

relation to the variation of the effective stresses along the pile shaft 

soil interface is then investigated. The theoretical values of pore 

water pressure and ultimate bearing capacity are compered with published 

full scale field test data and reasonable agreement obtained. 
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7.2 General 

The bearing capacity of a pile in clay increases with time after 

driving, partly due to the recovery of shear strength of the clay re-

moulded by pile driving and partly due to the dissipation of the induced 

pore water pressures. These phenomena have been recognised by ma^y 

authors (Cummings et al, 1950; Seed and Reese, 1955; Yang, 1956; Lo 

and Stermac, 1963, 1965; Nishida, 1963; Airhart, 1967; Chandler, 

1968), but no theoretical analysis based on reasonably realistic soil 

behaviour has yet been presented. 

The analysis presented below makes the following assumptions: 

(i) The soil is a homogeneous, isotropic, elastic-ideally plastic 

solid defined by elastic constants G and M in the elastic range 

and by the generalised Von Mises yield criterion, octahedral 

shear stress = Constant, in the plastic region, with respect 

to the total stresses. 

(ii) There is no volume change in the soil during pile driving. 

(iii) The strain in the vertical direction is zero i.e. rotation^ ^ 

symmetric plane strain conditions prevail. 

Assumption (i) is an idealisation of the stress-strain response of real 

soil, whereas (ii) will be true for any saturated normally consolidated 

clay deformed under undrained condition. In support of (ili) one may 

refer to the published results of Cummings et al (1950) and Lo and Stermac 

(1965) who measured respectively the moisture contents and pore water 

pressure at various radii and depths round the driven pil&. Their 

o&aervations established that: 

(a) The ratio of the increase in pore water pressure to the effect-

ive mean pressure remains essentially constant with depth a_ rg 

the pile length and varies only in the radial direction (Lo and 

Stermac, 1965). 
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(b) There is a horizontal migration of pore water pressure initiated 

by pile driving but the change in moisture is uniform over the 

length of the pile and varies only with time (Cummings et al, 

1950). 

Thus the condition of plane strain is thought to be valid over the pile 

length except possibly near the ends. 

A real pile is driven by a series of approximately instantaneous 

increases in penetration in which the soil at the tip of the pile is 

remoulded and pushed outwards. Thus if the pile is long, so that the 

end effects may be ignored, the mode of deformation of the soil ^ 

around the pile is reasonably analogous to that of the expansion of a 

cylindrical cavity from zero radius to a finite radius. 

The problem of elastic-plastic expansion of a long cylinder, and 

a sphere from a finite radius by radial stresses acting at their surfaces 

was obtained by Bishop, Hill and Mott (1945) assuming the material to 

be linearly elastic, in the elastic zone and rigid-plastic, obeying Yon 

Mises yield criterion and Saint Venant's flow rule in the plastic zone. 

The solution they obtained showed a discontinuity of vertical stress at 

the elastic-plastic boundary. Although such a discontinuity of stress 

would not violate equilibrium, a later exact solution by Hill (1950) 

showed that the discontinuity, does not in fact occur if elastic strains 

are allowed for in the plastic zone (i.e. if an elastic-plastic material 

model is used. Hill obtained a solution of the problem of the expansion 

of a cylindrical cavity from zero radius to a finite radius by radial 

stresses acting at the surface of the cavity in a material obeying 

Prandtl-Reuss's flow rule in the plastic zone. Using Coulomb'd yield 

criterion in lieu of Von Mises together with the same assumptions as 

Bishop et al (1945), Skempton Yassin and Gibson (1953) analysed the 

problem of the expansion of a spherical cavity within an infinite medium 
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which they applied to predict the ultimate end bearing capacity of a driven 

pile. Based on the same hypothesis Gibson (1963) analysed the expansion 

of a cylindrical cavity from a finite radius, in a granular medium, which 

he applied to problems associated with the 'Menard pressure-meter*. 

A comprehensive numerical treatment of the problem of expansion of 

long cylindrical and spherical cavities from zero radius and from finite 

radius by radial pressure acting at their inner boundaries has been given 

by Ladani (1963). He obtained the shear strain at various radii from 

purely geometrical considerations and thence the stresses from experimental 

stress-strain curves. 

An analytical solution of the problem of the expansion of a cylindrical 

cavity from zero radius to a finite radius by a system of radial and 

longitudinal shear stresses acting at its inner surface is given below, 

in which strains in the elastic zone are assumed to be infinitesimal but 

large strain theory is used in the plastic zone. 

7.3 Expansion of a cylindrical cavity from zero radius to a finite radius 

Referring to the cylindrical system of co-ordinates (r;6,z) as shown 

in Figure (7.2), the equilibrium equation for an element (Figure 7.1) at 

a distance r from the oz axis can be written as: 

+ acrs/az + (0?? - CQg)/r - 0 

3o / 9z + 3a / 3z + o /r - y = 0 
zz rz rz 

where o , or ̂  and o are the total normal stresses in r, 8 and z direct-
rr 88 zz 

ion respectively, a ^ is the shear stress in rz plane and y the bulk density 

of the material. The problem can be considered as: 

(1) the expansion of an elastic cylinder, whose inner radius is r^ 

and outer radius by a system of stresses o and o and 
o o o 
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T being the radial and shear stresses acting at the inner boundary, 

(ii) the expansion of a fully plastic cylinder from zero radius to a finite 

radius by a system of stresses and T at the inner boundary and 

0^, acting at the outer boundary (Figure 7.2). 

Now for a long pile an element of soil of thickness dz at a depth z suf-

ficient far from the ground surface will deform identically with the elements 

above and below it (this will be referred to approximately as a plane strain 

condition, here after). It is therefore quite reasonable for an element 

at a depth sufficiently far from the ground surface to assume (using a sign 

convention of compression positive): 

3a / z = Y and / 3 z = 0 
zz rz 

Hence the equilibrium equations can be written as: 

+ i ( V - Cgg) = 0 

3a /3r + a /r = 0 
rz rz 

and the problem is reduced to the solution of an elastic problem with the 

equilibrium equations given above, a plastic problem within the boundary 

governed by the yield criterion, incompressibility and the above equilibrium 

equations again and the compatibility of the stresses and displacements at 

the elastic-plastic boundary. 

Solution for the stresses in the elastic domain 

The equation of incompressibility combined with the condition of plane 

strain can be written as: 

S r + ^60 = ° 

where E and 6^. are the radial and circumferential strains respectively, 
rr 88 

For large displacements we have 

= (3u/9r)/(l + 3u/3r), Egg = u/(u+r) 
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Substituting these into the equation for incompressibility we get: 

9/9r (u^ + r u) = 0 

which can be integrated to give: 

u^ + r u = (7.3) 

where is a constant of integration. In the elastic zone, which we 

may expect to be at some distance from the pile, will be negligible 

in comparison with r u. Thus for r 2 r we can write equation (7.3) as: 

r u = 

Substituting the boundary condition for u = u^ at r = r^, where u^ is the 

radial displacement of the elastic-plastic boundary, we have: 

u = u^ r^/r 

Hence e = -u r /r^ and 6^0 = u r /r^. By applying Hooke ' s law for 
rr o o 88 o o ^ 

incompressible material we get: 

*rr = "o =0/:^ Ogg = 2G. u^ r^/r^. 

Substituting these into the first equilibrium equation (7.2) we obtain: 

aa /3r - 4G. u r /r^ = 0 
rr o o 

Integrating we get 

o = C, - 2G. u r /r^ (7.4) 
rr 2 o o 

where is a constant of integration. Substituting the boundary con-

ditions: 

r = r , G = a 
o rr o 

r = a = K yz = yz (since K = 1 for incompressible 
rr o o ^ 

material) 

we obtain u^ = (yz - o^) rQ/2G and = yz (7.5) 
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Substituting (7.5) in (7.4) and the result obtained thereof if substituted 

into the first equilibrium equation we obtain: 

O p, = Yz + (r^/r)^. (o^-yz) (7.6.1) 

°88 ^ (o^-Yz) (7.6.2) 

From the plane strain and incompressibility condition: 

*zz ^ (^rr + ^ee)/^ = Yz (7.6.3) 

Now using the second equilibrium equation we obtain 

o = Cg/r (7.6.4^ 
rz 3 

where is a constant of integration which can be obtained by applying the 

boundary condition at r = r , a = T , therefore: 
^ o rz o 

o = T . (r /r) (7.6.5) 
rz o o 

Equations (7.6.1) to (7.6.5) give the solution for the stresses in the elastic 

domain provided the unknown quantities r^, o and are known from the 

solution of the plastic region in the inner r < r region. 

Due to the symmetric expansion of the cavity the elastic-plastic 

boundary will also be a cylindrical surface. At this surface the soil 

will be in a state of incipient yielding. Thus, if we assume that the 

yield criterion of Von Mises modified for plane strain condition is valid, 

we have 

where C is the undrained cohesion of the soil. Substituting the values 

of the stresses obtained from equations (7.6.1) to (7.6.4) at r = r into 

(7.7) we obtain: 
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(a - YZ)2 + T 2 = c 2 (7,8) 
o o u 

Solution in the plastic domain 

The equilibrium equations are valid in this domain and hence equation 

(7.6.4) is also valid. Substituting the boundary condition a = m at 

r = a (where m denotes the fraction of C mobilised at the pile-soil inter-

face) in (7.6.4) we have 

a = m.C (a/r) (7.9) 
rz u 

At r = r we have T = & = m C (a/r ) which if we substitute in (7.8), 
o o rz u o 

we obtain 

% 

(o^ - y z ) = Cy |l - (ma/r^)^] ' (7.10) 

Again from the failure criterion we have: 

(°rr " °88) ^ ^ [l - (ma/r)^] - (7.11) 

Equation (7.11) is valid throughout the plastic domain, hence, substituting 

(7.11) in the first equilibrium equation and integrating we get 

^ % 
a = 2 C ll - (ma/r)^l - 2 C log [r + (r^ - m^a^) ] (7.12) 
r r u u 

+ s 

The constant of integration , can be obtained, by substituting the 

boundary condition at r = r ; a = & , where o is given by equation 
o rr o o 

(7.10): 

% % 
C_ = yz - C [l - (ma/r )^1 + 2C log |r + (r ^ - m^a/) ] 

u ' - o - " u '-o o 

(7.13) 

Equations (7.9) to (7.13) provide the radial, circumferential and shear 

stresses in the plastic domain. The vertical stress is given by the 

condition of incompressibility and plane strain, i.e. ^ 

The only problem left now is to determine the radius (r^) of the elastic 

227 



plastic boundary. 

Substituting the boundary condition at r = a; u = a in equation 

(7.3) we obtain 

u + r u — 2a 

Hence the displacement at r = r is given by u ^ + r u = 2a^. If we 
o o o o 

assume again that the distance r >> u^ so that is negligible in 

comparison with r u we obtain 

u = 2a^/r (7.14) 
o o 

Hence from equations (7.5), (7.10) and (7.14) we obtain: 

% 
(r^/a)^ = 4(G/Cy)/[l - (ma/r^)*] (7.15) 

Equation (7.15) can be solved to obtain (r /a) and hence the stresses in 

the elastic and plastic domains can be calculated from: 

(i) for r .< r g m 

2 2 
o ^ = yz + 4G.a /r , 

Ogg = YZ - 4G.a^/r^, (7.16) 

o = Yz, o = m.C .a/r 
zz rz u 

(ii) for a 3 r $ r 

o = 2C |l - (ma/r)^] + 2C log [{r + (r^ -rn^a^) } 
rr u ^ u o o 

% P % 
/{r+(r^-m^a^) + yz - C ll - (ma/r ) 1 . 

_ % ^ n 
O-Q = 2C log |{r + (r ^ - m^a^) l/fr + (r^-rn^a^) 
00 U " o o 

% 
+ yz - C ^ - (ma/r )^] (7.17) 

u 

^ ^ 2 2 ^ ^ 
a = C |1 - (ma/r) 1 + 2C log {r + (r -m a ) ) 
z z u ^ u ^ o o 

% % 
/{r + (r^-m^a^) }] + yz - [l - (ma/r^)^^ 
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0 — (a/r). m.C . 
rz u 

G in the above equations may be approximated as g C where g is a constant 

depending upon the type of clay and the stress history. Skempton and 

Henkel (1957) quoted a typical value of about 46 for saturated London Clay. 

For fully saturated normally consolidated clay the value of G (the tangent 

shear modulus) is reported (Mayerhof, 1951) from 30 C to 130 C . Figure 

7.3 shows a typical distribution of the ratios of increase in o , 
rr 0 0 

o and o to the undrained cohesion C plotted against various (r/a) for 
zz rz u 

B = 36 and m = 1. This figure suggests that for a saturated clay very 

high total stresses and hence pore water pressures may exist around a 

driven pile. 

7.4 The pore water pressure induced around a driven pile 

The foregoing analysis may be modified to obtain useful information 

about the distribution of pore water pressure around a driven pile. If 

we consider the foregoing Idealised material is a &wo phase continuum i.e. 

an ideally elastic perfectly plastic skeleton saturated with incompressible 

fluid then all spherical components of stress will be carried by the fluid 

as pore pressure and deviatoric stresses only will be carried, with zero 

volume change, by the skeleton as effective stresses. Thus the stresses 

calculated in equation (7.16) and (7.17) are in fact the total stresses. 

Pore water pressures in a water saturated elastic skeleton 

If the pore water pressure is U and AU Aa , Ao^^ and Ao are the 
^ ^ rr 88 zz 

increases in U, ^ Ogg, & due to pile driving, we have the pore water 

pressure increase is given by 

AU = (Ao + Ao.. + Ao )/3 (7.17. 
rr 88 zz 
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Subscicutlng equations (7.16) and (7.17) in (7.17.1) we obtain; the pore 

water pressure Increase in the elastic zone as: 

Ay = 0 (7.18) 

and in the plastic zone: 

Au/c^ = + '"ee + 

- [l - (ma/r )^ l - [l - (ma/r^)^] 

% % 
+ 2 log [frg + (r - m^a^) }/{r + (r^-m^a^) )] (7.19) 

where r is given by equation (7.15). Typical calculations for r^ 

within the range of quoted values of ^ show that the value of r lies 

between 10 to 24 pile radii. Thus the analysis suggests that beyond a 

radius of 10 a to 24 a pore water pressures would not increase due to pile 

driving. Field observations (Bjerrum, 1961; Lo and Stermac, 1963, 1965; 

Koizumi and Ito, 1967) show that pore water pressure increases even up to 

40 times the radius of the pile which confirm as one would expect that the 

simple elastic-plastic model used is not powerful enough to fully represent 

realistic soil behaviour. However, we can modify the analysis as follows 

to make a semi-empirical allowance for the fact that real soil skeleton 

do exhibit volume change under shear stress changes. 

Pore water pressure using Henkel's generalised pore pressure equation 

The excess pore water pressure induced by total stress changes in any 

element of soil under a three dimensional stress system may be predicted 

by the equation (Henkel, 1960) 

AU = B(6o + a,.A ? ^) (7.20) 
mean 1 oct 

where 
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B and are generalised pore water^parameters, 

Agr is the change in the spherical component of stress tensor 
mean 

and is equal to (A# + )/3. 
^ rr 88 zz 

Ar is the change in the octahedral shear stress = 
oct 

1/3. + ( . 0 , -9 , . ) ' + + 60 J ] ' . 

This equation is a generalisation, due to Henkel of Skempton's empirical 

pore pressure equation. Since B = 1 for saturated clay, equation (7.20) 

can be written as: 

AU = Aa: + a AT (7.21) 
mean 1 oct 

where = (3A-1)//T, A being Skempton's pore pressure coefficient for 

"triaxial" stress increment (Skempton, 1954). If we apply the incompress-

ibility and plane strain condition of G = (o + &QQ)/2 we can write 
^ zz rr 00 

equation (7.21) as: 

^ % 

AU = (AO^^ + 60gg)/2 + A[(3/2)(o^^_Ogg)2 + 60^^^] . (a^/3) (7.22) 

From equations (7.16), (7.17) and (7.22) and replacing G by B.C we 

obtain: 

(i) for r 3 r 3 

,2, , ,4 , , \2- = 
AU/Cy^ = (0^/3) [969 (a/r) + 6(ma/r) J (7.23) 

(ii) for a $ r 3 r 

AU/C = [l -(ma/r)2]* + 2 log [{r +(r 2_m2a2)^}/{r+(r2_22g2)=jj 

- [i -(ma/rQ)2] + 0.81 (7.24) 

Equations (7.23) and (7.24) predict the pore water pressure increase 

throughout the whole body once r has been obtained from equation (7.15), 

It should be noted that + sign of AU would indicate pore water pressure 
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increase and a - sign would indicate pore water pressure decrease because 

of the compression positive sign convention adopted for this Chapter. 

Figure (7.4) shows the distribution of excess pore water pressures 

around a pile driven in normally consolidated clay (A ^zl), a water 

saturated elastic-plastic skeleton (A = 1/3), an overconsolidated cl&y 

(A = 0) and a highly overconsolidated clay (A = -1/3) typical values 

o f B = 36 and m = 1. It can be seen that pore water pressures of 4 to 

6.5 times the undrained cohesion may exist at the pile shaft face. Also 

for highly overconsolidated clay the theoretical excess pore water 

pressure may be negative beyond 7 times the pile radius. 

Comparison with field data and discussion 

Bjerrum et al (1961) have given comprehensive results of pore water 

pressure measurements around driven piles. The measurements were made 

in connection with the construction of a bridge abutment in Southern 

Norway in a clay described as homogeneous, saturated and normally con-

2 

solidated with an average cohesion ( C ) of 2.5 between depths of 

5 to 15 metres below ground level. The increase in pore water pressures 

were measured at depths of 7.5 metres and 10 metres during driving. The 

20 cm sq. piles were made by welding 20 cm x 20 cm angles together. For 

the purpose of comparing these field results with the theoretical results 

obtained from equations (7.23) and (7.24) the pile has been assumed to 

be of equivalent circular cross-section of 11.3 cm radius. The value of 

0^ has been calculated by assuming A scl for normally consolidated clay 

and the roughness coefficient m is chosen to be unity. If we assume 

that equation (7.23) is applicable beyond say a distance (r/a) = 20 away 

from the pile, then the mean insitu measured values of (AU) can be sub-

stituted in this equation to obtain g = 30. With this value of B the 

ratio of |AU/C | to [AU/C |, was computed from (7.23) and 

^ (r/a) " (r/a) = 10 
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(7.24) for various values of (r/a). The theoretical results show 

(Figure, 7.5) that there is a very close agreement with the measured 

values. It was apparently not possible to obtain any reliable field 

measurements of excess pore water pressure In the region close to the 

driven pile because of the general ground disturbance due to pile driving. 

Theoretical results for (AU/C ) for normally consolidated clay 

(Aszfl) for m = 1 and g = 20, 40 and 60 are compared with the various 

field results (Lo and Stermac, 1965; Koizumi and Ito, 1967) in Figure 

(7.6). Lo and Stermac measured the excess pore water pressures at 

Wallaceburg, due to driving of 3.5 Inches diameter cylindrical pile in a 

normally consolidated sllty clay. The field results agree closely with 

the theoretical results for 6 ̂ 3 0 except near the pile shaft surface. 

The deviation from the theoretical results may well have been increased 

by: 

(I) Errors in the obtained excess pore water pressures near the 

pile shaft surface due to disturbances caused by the dynamic 

pile driving. 

(II) The drain rate in sllty clay being such that the undrained 

conditions do not apply accurately and consequently volume 

changes may have occurred. 

More recently Koizumi and Ito (1967) have published measurements of excess 

pore water pressures due to driving two 30 cm dia x 5.55 metres long pi J 

into a normally consolidated layers of slightly organic sllty clay con-

2 

talning shells. The undrained cohesion of the clay was 0.25 K^^cm at 

1.5 metres depth increasing up to 0.4 Kg/cm^ at the toe of the pile. 

Earth pressure cells and pore water pressure cells w^^^ incorporated 

along the face of the piles which were gushed in at a rate of 10 cm/ 

minute using a Winch system to minimise the disturbances. The Increase 

in the total normal radial stress on the pile face was found to be nearly 
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equal to the increase in the pore water pressure ifhich is in agreement 

with the present analysis. The ratio of ] at the pile face was 

found to be within 5.25 to 6.75 between the depths of 1.5 and 5.5 metres 

which again agrees with the theoretical values at the pile shaft face 

(Figure, 7.6). 

Further measurements of the pore pressure increase due to driving 

model H-piles into slightly overconsolidated Varved clay were reported 

by lo and Stermac (1963). Present analysis is only relevant to piles 

with circular cross-section and therefore these results can not be com-

pared with the theoretical ones. 

7.5 Dissipation of the pore water pressure around a driven pile 

After the pile is driven rapidly into a uniform stratum the increase 

in the total stresses and pore water pressures can be computed from 

equations (7.16), (7.17), (7.23) and (7.24) based on the estimates of 

the undrained parameters G, G and experimentally determined values. 

The excess pore water pressure will decay with time giving rise to time 

dependent total stresses and effective stresses around the pile. This 

process of consolidation around a long pile may be analysed after making 

the following assumptions: 

(i) The soil is assumed to be an elastic skeleton defined by 

shear modulus G' and bulk modulus K' saturated with an 

incompressible pore fluid. 

(ii) A glane strain axially symmetric situation prevails (E = 0), 

hence the stresses, displacements and pore water pressures are 

only dependent on the radial distance from the centre of the 

pile and time. 

The process of consolidation around a driven pile may then be examined 
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as follows. 

In the solution of consolidation problems,very often a linear 

differential equation deduced by Terzaghi is used: 

Cy v2 u = au/3t (7.25) 

where C = ( K ^ / ( K * + 4/3 G'), = hydraulic permeability, K* and G' 

are the bulk modulus and shear modulus respectively with respect to the 

effective stresses, y is the unit weight of the pore water, U is the 

2 
excess pore water pressure, t is the time and V is the laplace operator, 

2 2 

which in radially symmetric coordinate system is given by {9 /gr + 

(l/r)3/3r}. 

Equation (7.25) is developed by assuming that there is a linear 

relationship between the quantity of water expelled and the change in 

excess pore water pressure and that is only valid in the case of one 

dimensional loading and drainage under the condition of zero lateral 

strain (Oedometer case). Therefore it cannot be applied directly to 

the solution of the present problem and we shall imake use of the general 

three dimensional theory proposed by Blot (1941). 

The true process of three-dimensional consolidation for cylindrical 

bodies can be described by two equations (de Leeuw, 1965) formulated on 

the basis of Blot's theory (Blot, 1941). The first being the storage 

equation for an incompressible pore fluid: 

-(K^/Y^) = 3e/Bt (7.26) 

where e is the volumetric strain. The second equation is the deforma-

tion equation which can be deduced by writing the equilibrium equation 

in the radial direction (r) in terms of the displacement as: 

G' _ G' u/r^ + (K' + 1/3 G') Se/Sr = -au/3r (7.27) 
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Differentiating both sides of equation (7.27) and dividing both sides 

of equation (7.27) and adding the results we obtain: 

-(K' + 4/3 G') V^e = (7.28) 

Equation (7.26) and (7.28) are fundamental equations to be solved for 

our problem. We can Integrate (7.28) to give: 

-(K' + 4/3 G') e(r,t) = U(r,t) + g(r,t) (7.29) 

where, g(r,t) = o (7.30) 

Thus the function g(r,t) causes divergence from the linear relationship 

between e and U postulated by Terzaghi in his consolidation theory. 

Substituting (7.29) in (7.26) we obtain: 

C = 3U/9t + 9g/3t (7.31) 

Equations (7.29) to (7.31) are the necessary equations for determining 

the three unknown quantities e, U, g(r,t). Eliminating U between (7.27) 

and (7.29) we get: 

G' (V^u - u/r^ - 3e/ar) = ag/3r , 

or 3g/ar = 0, or g = f(t) 

But since for the present problem U — 0, e = 0, at r = we must have 

g = 0 for the equation (7.29) to be valid. Thus as a special case, for 

the solution of the present problem equation (7.31) does degenerate into 

Terzaghi's equation. 

Solution for the variation of the pore water pressure and stresses with time 

Equations (7.29) to (7.31) will be solved for the following boundary 

conditions in terms of displacement and pore water pressure: 

(1) permeable pile 
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U = f(r), a 3 r $ = , C = 0 ; 

U = 0 , r = a , t > 0 ; 

(7.32) 

U = 0 , r = » , t 3 0 

u = 0 , r = a, , t 3 0 

where u here denotes further radial displacement (infinitesimal) 

caused by the dissipation of pore water pressure. 

and (ii) for impermeable pile 

U = f(r), a 3 r s = , % = 0 

3U/3r = 0, r = a , t > 0 

(7.33) 
U = 0 , r = a : , t 3 | 0 

u = 0 , r = a,», t % 0 

The function f(r) in the above is given by equations (7.23) and (7.24). 

These solutions are useful from a practical standpoint since estimates 

are often needed of the time required for the pore water pressure 

dissipation process to be essentially complete (i.e. approximate time 

required for the pile to essentially attain its maximum ultimate bearing 

capacity). Analytical solution of the system of equations listed above 

is out of question hence we now proceed to solve them numerically. 

It is convenient to express equation (7.31) with 3g/9t = 0, in 

2 

nondtmensional form by substituting R = (r/a) and T = (C .t/a ). Thus 

we have: 

8U/3T = + (1/R) 9U/aR (7.34) 

Expressing equation (7.34) in finite difference form over a finite radius 

we have (Scott, 1963): 

U 1,I+AI - "l,T =&T/(2.4e')] [{(1+AR/2R.)U._̂  

(1 -AR/2R_) - 2U.} + {(1+6R/2R. )Ui_i 

+ (1-6R/2R ) U - 2U } n 
T+AfJ 

237 



For all the nodal points in R direction we may write the above in matrix 

notation as 

- {U^} = (AT/2.AR2) (|D]{U^} + (7-35) 

where 

values of the pore ivater pressure at ttne 

T+AT and T respectively, 

AT and AR are the steps of integration in T and R direction, 

[pj is the matrix of finite difference coefficients. 

Equation (7.35) in which the values of (U^) are known (starting with 

T = 0), gives a set of simultaneous equations in the unknowns } 

for chosen intervals of integration AR and AT. There is no restriction 

on AT and AR, other than the second difference must be a reasonable 

approximation to the actual second derivatives. In general, small time 

steps must be chosen for a greater change of the excess pore water 

pressure. In order to incorporate the boundary condition for an 

impermeable pile a fictitious node at R = 0 is needed (Scott, 1963). 

Thus having obtained { U ^ ^ } from a prescribed {U^} the change in 

the pore water pressure between the time T and T+AT may be obtained 

from: 

= * V a t ' - ' " l ' (7-3S) 

This change in pore water pressure would cause a further change in e 

and hence u which may be related by equation (7.29) as: 

' " V A T (7-37) 

where {u}^^^ is the change in radial displacements at the 

nodal points, 

[sj is the matrix of finite difference coefficients for 

(K' + 4/3 G') (9u/3r + u/r)/3. 
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Solution of equation (7.37) gives the changes in the radial displacements 

at all the nodal points if the boundary conditions f^^ tt^ radial dis-

placement u = 0 at r = a and u = 0 at r = (a large enough distance fram 

the pile), are incorporated. Having obtained this the changes in 

radial stress at a time T+AT can be obtained from: 

{Do' } = [pR] fu) (7.38) 
rr T+AT 

where 

{oG' } is the change in the effective radial stress around 
T+AT 

the pile during the time interval T, T+AT, 

[pRj is the matrix for finite difference coefficients for the 

expression (K' + 4/3 G*)(3u/3r) + (K' - 2/3 G') (u/r). 

Now, the effective radial stress at time T = 0 can be obtained fr&m 

equations (7.16), (7.17) and (7.19) (or equations (7.23) and (7.24))as: 

("•„J = f"„J - (")T=0 (7-33) 
1=0 1=0 

where {o' } are the effective radial stresses at T = 0, 
T=0 

are the total radial stresses at T — 0 obtained 
T=0 l^rrj 

from equations (7.16) and (7.17), 

(uj _ are the pore water pressures at T = 0 obtained from 

equation (7.19) or equations (7.23) and (7.24), at the 

nodal points. 

The effective radial stresses at T = A T , 2AT, lAT .... etc may be obtained 

by adding to jxr '? successively the values of jocr calculated 

from equation (7.38/. Thus the ultimate bearing capacity (P ) of a long 

driven pile at any time after driving may be calculated from: 

^u ^rr'' tan 6. (7.40) 
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where 

(3^/ is the effective radial stress at the shaft face, 

is the coefficient of friction between the pile shaft 

and the soil medium. 

A is the area of the shaft surface. 

Description of the computer proRramme and results 

The computer programme and the associated procedures developed for 

the above analyses are described below. The listing of the programme 

is given in Banerjee (1969). 

'Procedures' Print array. Mult, Inp, Grout 2, Solve have been 

discussed in Chapters 3, 4 and 5. 

Solcar : This procedure solves a banded system of 

symultaneous equation (7.41) by Gaussian elimination. 

The original matrices and )cj are destroyed and 

the results are stored in |C(. 

i ^ f 
7.4! 

only the shaded area is stored 

The main body of the programme essentially performs the following 

operations. 

(1) Read data. 

(ii) Check the time step. 

(ill) Calculate the coefficients of the matrices ^sjand iDRj 

by using finite difference approximations, and incorporate 

the boundary conditions given by equations (7.32) and (7.33/ 
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(iv) Calculate at iLbe nodal points from equations (7.18) and 

(7.19). 

- - ( ? 

(v) Multiply Lo] and ^Uj _Q using the procedure 'Mult' and convert 

equation (7.35) into the form given by equation (7.41). 

(vi) Compute! using 'Solcar'. 

(vii) Calculate ^ D u j ^ ^ via equation (7.36) and obtain 

using 'Solcar'. 

(viii) Multiply [ D R ] and to obtain 

(ix) Obtain^CT^'jand via equations (7.39; and (7.40). 

(x) Make^ repeat the computational steps (v) 

to (x) until ^ less than a specified minimum 

i.e. until the pore water pressure dissipation process is 

essentially complete. 

The numerical analysis involves the selection of a large enough radial 

distance in order to include the boundary conditions at infinity. The 

solutions described in the present work have been worked out by assuming 

this distance to be 15 times the radius of the pile. The ratio 

2 

M = T/C&R) was found to have a considerable influence on the number of 

time steps required for the consolidation process to be essentially Cv^/ : 

From a series of trial computations it was observed that a range of 

0.1 M ^ 0 . 2 iwas satisfactory. The accuracy of finite difference 

approximation would of course depend on smallerZiR, particularly rear 

the pile surface. The results described below have been calculated by 

using^^R = 1/6 i.e. /\r = (l/6)a, with the time step/\T - to 

satisfy the condition M = 0.15. 

Figures (7.7) and (7.8) shows the pore waber pr* - ̂ rrs at tlm^ ' -

of 0, 1, 2, 4 and 8 for permeable and Impermeable piles respectively. 

The pore water pressures at (r/a)^1.5 are almost identical for both 
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piles. It is also interesting to note that for (r/a)J> 9 the pore water 

pressures at T ^ 0 are higher than those at T = 0, The effect of the 

values of G' and K' on the corresponding effective radial str- =t the 

pile face have been demonstrated in Figures (7.9) and (7.10). For a 

comparatively wide range of the values of the elastic moduli! the varia-

tions in the stresses appear to be small. 

Comparison with field data 

Several authors (Seed and Reese, 1955; Yang, 1956; Airhart, 1967! 

have described full scale load tests on driven piles and ob&erved from 6 

to 10 fold increase in the ultimate bearing capacity with tim^ with respect 

to that observed immediately after driving. The theoretical solution 

contains a number of parameters such as K^, G', , C_ etc., and hence 

to obtain any meaningful direct comparison with field reeults detailed 

information of these relevant parameters ig necessary. Unfortunately it 

is not possible to obtain the value of thege parameters from the teat 

results described by the above mentioned authors. 

Figure (7.11), which is reproduced from Soderberg 362), ^ the 

various observations of time dependent ultimate bearing capacity. 

results have been expressed in a non-dimensional form in Figure \7.i2, 

which shows the percentage increase in ultimate bearing capacity plott&d 

against (T/T^^), where T is the time after driving and T^^ lo th& tim* 

required to attain 50% of the maximum ultimate bearing capacity. 

by expressing the results in nondimensional form the effect; sf .it 

G' and K' have been eliminated. It is interesting to note that 

field results calculated from Figure (7.11) are quite cioae to each otkrr 

and also the ultimate bearing capacity at is about 15% of the max-

imum bearing capacity. The theoretical results for the ultimate bearing 

capacity corresponding to case (1) of Figure (7.10^ have been fd in 

Figure (7.12) by assuming the ultimate bearing capacity at T ^ 
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15% of the maximum ultimate bearing capacity. This non-dimensional curve 

of the time dependent ultimate bearing capacity is found to be insensitive 

to variations in G' and K' within the quoted range in Figure (7.10). The 

agreement between the nondimensional theoretical and experimental results 

of Figure (7.12) is quite close to suggest that the tim^ dependent bearing 

capacity of a driven pile can be predicted by extrapolating the results 

obtained from the load tests on piles at an early stage of the consalidation 

process. 

7.6 Conclusions 

A theoretical approach to understanding and predicting the increase in 

the pore water pressures and effects on the ultimate bearing capacity of 

driven pile is developed. The conclusions of this study are summarised below: 

(i) The Increase in pore water pressure at the pile face may be up to 6.5 

times the undrained cohesion of the soil. 

(ii) For a pile driven into normally consolidated clay there may be no 

increase in effective stresses at the pile face immediately after 

driving. 

(ill) The distribution of the pore water pressure due to pile driving ia 

determined by three major parameters A , p and C^, of which the 

evaluation of ^ appears to be difficult. However, it was found that 

^has a relatively small Influence on the results, hence an approx-

imately estimated value of ^ would give reasonably accurate results. 

(iv) The ultimate bearing capacity of a driven pile may increase to 6 

to 10 times of its value immediately after driving. 

(v) The theoretical results have been compared with fl&ld test data with 

reasonable agreement. 
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immersed in on incompressible fluid 

Overconsolidatec 

/ .w./ over 
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C h a p t e r 8 

Application of electro-osmosis to the 

d r i v i n g o f p r o b e s a n d b l a d e s i n s o i l s 
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8.1 Summary 

In this Chapter the effects of electro-osmosis on the penetration 

resistance of blades and probes in clay is studied. A high speed, and 

a slow speed pile driving rig which have been developed to study the 

penetration resistance of probes and blades for a wide range of speeds 

of penetration is described. A series of tests was performed in which 

the speeds of penetration, the polarity of the electrodes and the voltage 

gradient across the electrodes was varied. The results of these tests 

are discussed. An analysis of probe soil interaction as affected by 

e l e c t r o - o s m o s i s i s outlined. 
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8.2 Introduction 

The phenomenon of electro-osmosis was discovered by 'Reuse' over 

160 years ago. He observed that ivhen a direct current was applied to 

a rigid, porous diaphragm which is submerged in water the pore water 

moves from the anode towards the cathode. Later Helmholtz (1879) 

supplied the necessary mathematical support which was modified by Gouy 
* * 

(1910) and others (Freundlich, 1926; Manegold and Solf, 1931) but the 

quantitative results remained substantially unchanged (Casagrande, 1949)r 

8.2.1 Electro-osmotic flow 

The currently accepted hypothesis of the mechanics of electro-osmotic 

flow through a single rigid capillary is based on the "diffuse double 

layer theory." The faces of clay minerals have a net residual negative 

charge which is balanced by the attraction of the exchangeao- p ' % t i v e 

ions from the surrounding porewater. These positive ions in porewater 

orient themselves around the soil particle. The force of attraction 

between the particle and the exchangeable ions varies with the relative 

concentration of ions, and the temperature and the type of pore fluid. 

If an external potential difference Is applied, it is observed that the 

soil particle and a thin layer of strongly attracted cations and water 

molecules will move (If they are free to move) with the negatively charged 

particle toward the anode. The diffuse system of counterlons (which haw 

a net positive charge) and the water associated with it, will move toward 

the cathode. Such a system is referred to as "The Diffuse L.. r 

the soil particle and the strongly adsorbed cations and the water mo.-

being one layer and the diffuse swarm of counterlons constituting 

other layer. 

* 
Reported by Casagrande (1949), 
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A simplified diagrammatic representation of the water movement in a 

capillary is given in Figure (8.1), which shows the approximate velocity 

distribution over the cross section. Here d, indicates the thickness of 

that part of the double layer which is rigidly attached to the boundary 

wall, dj the thickness of that part of the double layer which can move, 

and dg the diameter of the inner free liquid. 

The quantity of liquid moved in unit time through a capillary under 

the Influence of a potential difference E has been obtained by Freundlich 

(1926) from the modified Helmholtz equation as: 

where r = radius of the capillary, 

b = Dielectric constant of the fluid, 

5 = the electro-kinetic potential difference between that part of 

the double layer in the liquid which is bound to the wall, and 

the part which is free to move (termed zeta potential by 

Helmholtz), 

n = coefficient of viscosity of liquid, 

6 = length of the capillary. 

Now if we consider a prism of saturated soil with a cross-sectional area 

A in contact with the electrodes and length & equation (801) becomes: 

Qe = §5^ ° I ' (8.2) 

where q is related to the porosity and to the cross-section of the pore 

space through which the water moves. 

Equation (8.2) can alternatively be written as: 

Q = K . 1 « A (8«j/ 
e e 
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where and assumed Co be a constant for a given soil and may be 

described as the "electro-osmotic permeability" of the soil amd i^ is the 

electrical potential gradient. It is very interesting to note that 

equation (8.3) is very similar in form to Darcy's equation for hydraulic 

flow through a prism of soil: 

Qh = Kh ° ^h ' A (8-4) 

where i^ is the hydraulic gradient, A the cross-sectional area, and 

the hydraulic permeability of the soil. 

There are however some fundamental differences between hydrg^.u: aad 

electro-osmotic flows. The electro-osmotic permeability K depends 

mainly on the pore area and is less dependent on the size and the shape 

of individual pores whereas is strongly influenced by the shape and 

sizes of the pores. This has been shown analytically by Esrig and 

Majtenyi (1966) and experimentally by Casagrande (1949) and others 

(Piakowski, 1957; lamlze et al 1957). The distribution of the velocity 

of electro-osmotic flow and that of hydraulic flow across the cross-

section of a single capillary are also different. This is shown in 

Figures (8.1) and (8.2), 

8.2.2 The forces acting on soil particles and pore water during 

electro-osmosis 

When an external electric potential Is applied to a saturated soil 

mass, which has a network of electrical double layers at the soil-water 

interfaces, two equal and opposite systems of electrical forces are 

created simultaneously. One system of the electrical forces acting 

upon the negatively charged adsorbed layer tends to move the soil 

particle toward the anode and the other system, which acts on the 

positively charged movable layer, tends to move the pore water toward 
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the cathode. Due to the relative motion between the water and the sol], 

resisting forces are developed which are proportional to the relative 

velocity. In a rigid soil skeleton, the pore water flow reaches the 

steady state " I n s t a n t a n e o u s l y I f a saturated rigid soil mass is sub-

jected to a combined hydraulic and electro-osmotic gradient, the seepage 

flow caused by the hydraulic gradient can be superimposed on the electro-

osmotic flow. Assuming that they can be superimposed linearly, it can 

be shown (Wang and Vey, 1953) that at the steady state flow condition the 

resultant force on the soil particle due to the dmmbined hydraulic and 

electro-osmotic action is equal to the resultant ]hydraulic seepage force^ 

The relation between the resultant hydraulic gradient under combined 

hydraulic and electro-osmotic action and the applied electric potential 

was established by Wang and Vey (1953) by making the following assumpti' 

(1) The soil is perfectly saturated. 

9H 
(2) The hydraulic flow obeys Darcy's Law (i.e. etc^o 

(3) The electric current obeys a similar law (i.e. V = - K —^ etc 
ex ex 3x 

(4) The electric current obeys Ohm's law (i.e. I = - etc)^ 

X 

(5) Both the pore water flow and the electric current flow obey 

law of continuity. 

Now within the system, at any position (x, y, z) the velocity of flow car 

be expressed as 

{y} = - {V} H - [k ] {V} E (8.5) 

where, 

^ " a. X ox 

{v} = .,{v} = -9/% ' 
y dy 

\ ^ a.! 
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V^, V , Vg being Che velocities of the pore water in X, Y and Z 

directions respectively; and X, Y and Z axes are the principal 

axes of and K , 

Khx 0 0 

[Kni = 0 
"by 

0 

0 0 

and [K I 

K 
ex 

0 

0 

K 
ey 

0 

0 

0 

K , 
ez 

being the hydraulic permeabilities and ^ey 

are the electro-osmotic permeabilities in the X, Y and Z 

directions, respectively. 

The law of continuity of hydraulic flow gives: 

{9} {V} = 0 (8.6: 

where {V} denotes the transpose of {V}. 

For the electric current Ohm's Law can be written as: 

{1} = -ri/pj{v}E 

= -|C|{V}E (8.?: 

where 

(I) , |C] - |l/pj -

1 = 
I ; 

0 

0 

/ p . 

/ p . 

if Xf'Y and Z are the principal axes of p, 

I , I and I are the currents in the X, Y and Z directions 
X y z 

respectively, 

p , p and p are the resistivities in the X. Y and Z directions 
x' y z 

respectively. 
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The law of continuity of electric current flow gives 

= 0 ( 8 . 8 ) 

The above equations (8.5) to (8,8) of combined flew contain eight 

unknowns: the three velocity components (V^^ V , tlm three com-

ponents of electric currents density (I , I , I ), one resultant 
X y z 

hydraulic potential or pore water head (H), and the applied electric 

potential (E). The other nine physical quantities, permeabilities and 

resistivities must be determined experimentally, 

8.2.3 Solution of steady state electro-osmotic flow problems 

Equations (8,5) to (8.8) are for a rigid soil skeleton and can only 

be applied to solve electro-osmotic flow problems where there is no volume 

change during electro-osmosis. 

Then from equations (8.5) and (8.6) we have 

= 0 (8,9) 

and combining equations (8.7) and (8.8) w^ have 

{V} t'c]{V}E = 0 (8 

Equations (8.9) and (8,10) are Laplace equations of quasi-harmonic form^ 

and thereby enable the well-developed theory of seepage to be extended 

the solution of corresponding electro-osmotic flow problems. 

The function H determined from equations (8.9) and (8.10) is defined 

by the physical conditions of the problem. It appears that equations 

(8.9) and (8.10) enable us to reduce a steady state electro-osmotic 

seepage problem to the determination of a function, which is defined at 

the boundary of given problem and is quasi-harmonic (or harmonic) withia 

the region. Solutions of some steady state seepage problems under 

electro-osmosis are given by Butterfield and Banerjee (1967) using a 
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finite difference technique. 

8.2.4 Electro-osmotic consolidation of soil* 

The electro-osmotic flow problem becomes much more Involved when 

during the process of electro-osmosis the soil volume changes noticeably: 

This occurs in the electro-osmotic consolidation of soil. Electro-

osmotic movements of water in soil are essentially of t%m types: 

(l) Where the electro-osmotic forces transport water from a 

source (A) say, to a sink (B) (i.e. a free flowing electro-

osmotic cell). The soil skeleton behaves as a capillary 

system on which the resultant stresses are very small (see 

Art.8.2.2) and there Is therefore zero change in th^ soil 

moisture during the process. 

(il) Where the flow is restricted either by Impermeable boundaries 

or by what is essentially the same thing, the source beyond 

the anode being the pore water in a fine grained soil mass. 

In this case there are very high resultant stresses set up 

in the soil skeleton. 

In both these cases the resultant stresses cause consolidation of the 

soil skeleton as explained below. In (1) the consolidation is 

negligible whereas In (11) it will be considerable. However the time 

taken to fully consolidate a large body of soil (i.e. produce apprecia 

changes in moisture content) is long enough to preclude major short term 

modifications of moisture content being achieved by electro-osmosis (or 

any other consolidating process). 

Much research has been carried out (Casagrande, 1952; Schaad and 

Haefell, 1947; Evans and Lewis, 1965; Preece, 1947; Vey, 1949) to try 

and interpret the basic mechanics mf the electro-osmotic consolidation 

process but no completely successful theory has yet been produced. 
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The two following simple cases illustrate the consolidation of a 

soil sample under hydraulic and electrical potential gradients. 

Case 1. Referring to Figure (8.3.1), the tank on the right hand side 

is filled to level YY 'aa' is sealed and the sample pore pressures 

therefore correspond to the YY level. If 'aa' is now opened flow 

starts and eventually, as the sample consolidates under the seepage 

forces, the piezometric level becomes xy (Figure, 8.3.2). In this 

steady state the increase in effective stresses is given by the 

ordinate 6u in this figure and the soil skeleton is compressed against 

the end 'aa'. The consolidation process is therefore that of the 

dissipation of the triangular (XYY) excess pore pressure distribution 

with two free draining boundaries 'aa' and 'bb'. Now by the addition 

of a suitable electrical potential E across a-b, (Figure, 8.3*3;; the 

steady state hydraulic flow can be cancelled. This will in no way 

alter the consolidation process since, in a free flowing electro-osmotic 

cell no net seepage forces are produced (see Art. 8.2.2). 

Case 2. If however the end 'aa' always remains sealed there are no 

hydraulic seepage forces and the piezometric level remains at YY until 

E is applied. With 'aa' as the anode (Figure, 8.3.3) drainage can now 

only occur through 'bb' but the eventual steady state situation is again 

exactly as in Case 1, If 'aa' is rigid the net result of the compr-

effective stresses in the soil skeleton is a displacement of the so_^d 

away from the cathode at 'bb', no final change in the soil state at 'bb' 

and considerable hardening at 'aa'. 

During the process of consolidation, soil properties like r- : ' 

hydraulic permeability etc. change considerably. However, the obaerr^' 

tions by Wang and Vey (1953) suggest that a relationship exists between 

all electrical and mechanical properties of soil. Thus it is possi:.-

to try and postulate a comprehensive model to explain these changes in 
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mechanical and electrical properties of soil under electro-osmosis. 

8.2.5 Electro-osmotic activity of soils 

In general the velocity of pore water in soils UTKler electro-osmosie 

depends upon the electric potential (E), the hydraulic potential (H), 

the salt concentration of pore water ( C ) , the water content of soil 

mass (M) and the temperature (t). 

{v} = -[kg] {7}E - [k^] {V}H + {V}C: 

- [KcJ (G.ll) 

where K , K and K a r e p r o p e r t i e s of the soil m a s s a n d K a n d K , are as 
c w c ^ ^ e n 

defined previously. As a first approximation assuming no change in 

temperature, and ignoring C', the gradient M ultimately gives rise to a 

seepage field that superimposes on the external filtration field 

(Netoushil, 1953). Thus equation (8.11) reduces to 

{v} = -Lk^] {V}H - [k^] {?}E 

= -[k^j [{9}H + [K/] {?}E) 

or {V} = {9} (H + H ) (8.12) 

Where {9}H^ = [K^ ^ [K ] {9}E is a hydraulic gradient equivalent to 

the electrical potential gradient causing the electro-osmotic flow. 

Experimental investigations of the electro-osmotic flow of water 

carried out by several research workers Casagrande, 1949, 1952; Lomlze 

et al 1957) have shown that electro-osmotic permeability K can be con-

siderably greater than the hydraulic permeability, depending on the 

colloidal content of the soil. It has already been mentioned that 

K varies very little with grain size, soil grading, shape of pores 
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etc. For most soils ranging from fine sand to heavy clays (e.g. London 

Clay) the value of K is about 5 x 10 ^ cm/sec. (Casagrande, 1949, 1952)c 

-3 

On the other hand ranges typically from 3 x 10 cm/sec for dense fine 

sand to 7 x 10 ^ cm/sec for London Clay. Thus the ratio of ^e/K^ for 

any soil is of major importance in practical applications of electro-

osmosis in foundation engineering and earthworks. If ^e/K^ is less 

than 1 there is no advantage of electro-osmotic dewatering etc*, over 

pumping. But if e/K^ is large then H >> H for small E values hence 

electro-osmotic "dewatering" is very much better than any other methods 

Several practical applications of electro-osmosis in foundation and 

earthworks have been described by Casagrande (1952, 1962), Lomize et al 

(1957), Soderman and Milligan (1961). 

Equations (8.5^, (8.9) and (8.12) are based on the assumption that 

the electrical and hydro-mechanical forces are acting independently; 

whereas from the basic analysis of the physical process of electro-

osmosis it is evident that the Impressed electrical field must change 

the seepage properties of the soil. For the clayey soils investigated 

by Lomize et al (1957) the value of under electro-osmosis was found 

to have increased by 8 to 15 times, the more hydrophilic the soil and 

the larger its density the greater the increase. This has been 

attributed to alteration of the shape or tortuosity of the capillaries 

under an impressed electrical field - an assumption that has been 

questioned (Esrig and Majteyni, 1966). 

8.3 Reduction of apparent adhesion between soil and metal objects 

by electro-osmosis 

Saturated clay soils adhere to metal objects as a result of two 

phenomenon, adhesion and negative porewater pressure or suction. The 

adhesive forces are intermolecular and they develop essentially on a 

direct contact with clay particles. If a very small gap is formed 
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between the object and the clay particles the adhesive forces become 

negligible. It has been shown by Peleg (1960) and Potyondy (1961) 

that a very thin layer of moisture between metal objects and clay reduces 

the adhesion considerably. Though the basic idea of adhesion between 

the metal implements and clay soils seems very simple, the magnitude, 

however, depends upon the cleanliness, humidity, oxide or other films, 

surface finish, velocity of sliding, contact pressure, grain size, 

direction of grain orientation, vibratory, static or dynamic loading, 

etc. Thus the problem is one of extreme complexity. 

The forces due to negative pore water pressure play a very important 

part in the bonding forces between metal objects and soil. With atmos-

pheric pressure p and absolute pore water pressure p, the bonding force 

per unit area due to suction is (p - p). If the wetted area is 

(Figure 8.4) and the total area is A and A^/A = a (say), then the 

equivalent total force per unit area due to this on the total area A is 

a(p^ - p). 

Now if the surface tension is T, and the radii of curvature of the 

two menisci R. , E. . the suction pressure inside the water neck is given 
x' y 

by 

(Po - p) = 
X y 

Thus as the moisture content increases, E , R increase and therefore 
X y 

the suction pressure decreases, and, as the moisture content decreases R , 

R decrease and therefore the suction pressure increases. The ratio 
y 

a is dependent on moisture content and contact pressure. It incre^ 

with the increase in moisture content and contact pressure. Thus it 

would appear that the total normal stress on A will have a maximum at 

some intermediate moisture content. An addition of water to the n 

soil interface or complete drying of metal-soil interface will destroy 
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the suction and consequently detach the metal object from the soil: 

\ / PORE AIR 
PORE WATER . 

\ / 

FIGURE - 8.4 

SURFACE TENSION NEAR THE CONTACT 

BETWEEN TWO PARTICLES 

T h e s u c t i o n c o n t r i b u t e s t o t h e u l t i m a t e s h e a r s t r e s s ( ? ) a t t h e 

m e t a l - s o i l i n t e r f a c e . T h i s c o n t r i b u t i o n c a n b e e x p r e s s e d a s 

tanS. a 
T , T 

(8.14) 

w h e r e 6 i s t h e s o i l m e t a l c o e f f i c i e n t o f f r i c t i o n . 

I t h a s b e e n m e n t i o n e d previously t h a t w h e n a n e l e c t r i c a l p o t e n t i a l 

is applied across two electrodes driven into soil, two equal and opposite 

system of body forces are developed. One system acts in the porewater, 

pulling towards the cathode, the other system acts on the continuous solid 

phase and pulls towards the anode. Thus immediate compressive total 

stresses set up in the soil skeleton are reacting against the anode, 

which is held in equilibrium by a suction in the porefluid. Since the 
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soil does not behave exactly as an ideal water saturated elastic 

skeleton there will be an immediate reduction of the radial stress 

already existing around a driven probeo Thus a reduction in total 

radial stress will reduce the driving resistance of the probe. 

During the application of electro-osmosis to a driven cathode probe 

a very thin film of moisture appears at the cathode, almost instantan-

eously with the switching on of the electric potential which helps to 

reduce the adhesion. Thus it is possible to reduce the apparent 

adhesion between a metal object and soil by electro-osmwsis. Several 

research workers (Fountain and Payne, 1954; Zaslavasky and Ravina, 1965; 

have done experiments to investigate the effects of applying an electric 

potential to the adhesion existing between metal objects and soil but so 

far only a partial explanation of the phenomenon has beem obtained. 

The magnitude of the body forces set up during the application of 

an electrical potential to a driven cathode probe ifould depend on the 

applied potential 'E' and the ratio of electro-osmotic to hydraulic 

permeability. But this possible theoretical value will not be attain&d 

in a practical application because of inadequate sealing of the cathode 

and also near the anode the formation of gases (0^) prevent suction 

values exceeding one atmosphere. The suction of course be greater 

in a completely saturated clay but in any case it is limited to the Pp 

value at the natural moisture content of the soil. 

8.4 Electro-osmosis in the driving of probes and blades 

Reltov and Novikov (1938) first suggested the use of electro-osmoslK 

for facilitating the driving of piles into soil. Begemann (1953) 

published the results of laboratory studies and experiments on driving 

four reinforced concrete piles covered with strips of mild steel, using 

electro-osmosis. However his investigation did not include the effect 
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of various physucal and physiochemical factors on the effectiveness of 

driving piles and without this knowledge it is impossible to obtain tha 

optimum benefit from electro-osmotic effects. Nikolaev (1962) investi-

gated the influence of minerology, grain size distribution, moisture and 

porosity, area of electrodes on the sinking of a cathode pile. His work, 

however, does not include the effect of rate of penetration or the pene-

tration resistance of a pile driven with or without electro-oamotic 

assistance. 

Om the basis of the preliminary investigation carried out by 

research workers (Begemann, 1953; Nikolaev, 1962) and more recently by 

Butterfield and Banerjee (1967), it can be concluded that application of 

a negative electric potential to a probe reduces the skin friction by an 

amount up to about 70% depending on the applied voltage gradient and the 

probe geometry. 

For a very short time application of electro-osmosis, such as in the 

sinking of probes in poils, the reduction in penetration resistance a -d 

is only temporary. Rapid restoration of the probe-soil gripping for 

takes place almost immediately after switching off the applied potentials 

On this basis the electro-osmotfc method of speeding up steel probe-

driving operations may have some commercial application. 

Apart from the beneficial results that can be achieved by driving 

probes and blades by electro-osmosis it should be borne in mind that 

application of a voltage gradient of high magnitude for a long time might 

lead to a very severe cracking of the ground surrounding the probe, which 

may be an unfavourable side effect. 

The scope of the present work is to indicate the influence of voltage 

gradient and the speed of driving on penetration resitance of model p 

in clay soils. 
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The application of an electric potential to the probe soil system 

gives rise to several complex physico-chemical phenomena most of which 

are not fully understood. Therefore in lieu of trying to evaluate the 

effects of these complex physico-chemical phenomena the present study 

was directed towards obtaining experimental relationships between pene-

tration resistance, speed of penetration and voltage gradient. 

8.4.1 Effect of electro-osmosis on penetrating probes and blades 

During sinking of a cathodic probe with an applied D.C. potential 

a number of phenomena may occur which facilitate the driving operation: 

(1) Bubbles of hydrogen form on the surface of the cathode as a 

result of electrolysis of water, these bubbles flow between the probe 

and the soil and therefore decrease the adhesion between the probe and 

soil during the time of sinking. 

(2) In plastic clays the formation of a thin film of water on the 

surface of the cathode probe as a consequence of electro-osmosis is 

observed almost immediately the current is switched on. Thie film 

also reduces the adhesion between the probe and the soil. 

(3) Due to continuous accumulation of imoisture around the cathode 

the soil may even "wet up" to the liquid limit over a long period 

(Casagrande, 1952J. This however takes a considerable time and can b e 

ruled out completely for the short times involved in the application cf 

electro-osmosis in the driving of probes. 

(4) Due to development of body forces (mentioned in the Art; 

8.2.2 j the existing radial pressure around a driven pile decreases 

and thus contributes to the decrease in penetration resistance, Th* 

radial compressive stresses set up in the soil by a driven probe Ip 

thus reduced by an amount proportional to the voltage gradient and the 

"electro-osmotic activity" of the soil. 
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In the short term application of electro-osmosis to pile driving, 

the phenomena described in (2) and (4) appear to be the most significant, 

while in the long term application of electro-osmosis to such problems aw 

the stabilisation of soil the effect of (3) and also many other complex 

physico-chemical phenomena are of relevance (Casagrande, 1962)» 

It has already been mentioned in Chapter 7 that very high porewater 

pressures develop when a pile is driven in clayey soil. Dissipation of 

this porewater pressure is primarily responsible for the increase of 

load carrying capacity of driven piles with time. The total time which 

a driven pile may take to reach its maximum load carrying capacity may 

in some cases take many months (Seed and Reese, 1955). It is possible 

to use electro-osmosis to dissipate the excess porewater pressure exist-

ing around the pile. The pile in this case will be made anodic and tht 

cathode will be at some distance away from the pile. The corresponding 

time required for the pile to reach its maximum bearing capacity could 

thus be reduced considerably. In this case electro-osmosis is merely 

being used to accelerate an existing consolidation process. 

8.4.2 Variation of electric potential during the application of elsctrc 

osmosis for a given probe electrode configuration 

The rate of moisture movement in soil and the imagnitude of the 

stresses set up in the soil skeleton are dependent on the magnitude 

and variation of the applied electric potential gradients. This it is 

necessary to investigate the distribution of the electric potential for 

a given probe electrode geometry. 

In applications such as in plane problems (blade-plate electrode 

system) and in rotationally symmetric problems (co-axial probe-electrodr 

system) the voltage gradient could be simply calculated. But it is 

generally difficult to provide a co-axial probe-electrode system for a 
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roCationally symmetric application of electro-osmosis. Hence an array 

of electrodes arranged around a central electrode (Figure,(8.5) has bean 

used. The potential field for such a probe-electrode configuration can 

be obtained simply from an electric analogue. The analogue solution 

shown in Figure (8.5), shows that the actual voltage gradient at the 

pile face is about 4 times the average voltage gradient, the average 

voltage gradient being defined as the applied voltage divided by the 

radius &. 

8.5 Apparatus for slow speed tests 

8.5.1 Rotationally symmetric case: 

Details of the model pile 

The pile shaft consisted of a 3/4" diameter mild steel tubing of 

3/32" wall thickness. The pile shaft was irnade in three sections, cut 

to their appropriate lengths and faced up in the lathe. Two shaft p ^ 

were them machined to size. These had a central flange of 3/4" diameter 

with threaded connections each end. The function of these shaft plugs 

was to connect the two end pieces to the main pile shaft. The end 

pieces were designed to accommodate the load cells. Aa oval hole was 

cut just below the top plug in the side of the shaft for emerging wires 

from the bottom load cell. Four 3/32" diameter holes were also dri t 

radially in the bottom shaft plug, in the longitudinal direction, to tak^ 

the wires from the bottom load cell up through the pile shaft. The cut 

side surface of the pile shaft was cleaned after the assembly to get rid 

of the rust on the pile surface. 

Details of Load cells 

Tb^ load cells were used. The one used on the top was to give a 

measurement of the total load acting on the pile during driving, where%-

the bottom load cell was to give a measurement of end load at every 
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stage of driving. Thus it was possible to measure the shaft and end 

loads continuously during driving. 

The core of the top load cell consisted of a solid cylinder of A" ^ 

diameter araldite. The base of this core was located in the centre of 

the top plug. Load was transmitted to the core by means of a spherical 

bearing resting on a mild steel cap glued to the top of the araldite core. 

Two foil strain gauges of 1/2" length were attached longitudinally to 

core serving as active. Two similar gauges were attached circumferent.-

acting as dummies. The cell imas cased within the top 3/4" dia. tubing 

screwed to the top shaft plug. A P.V.C. bush was positioned between 

casing and the load cell cap. The wires coming out of the top load r 

were passed through two holes drilled in the cell casing. The det^i- ^ 

the top load cell are given in Figure (8.6.1). 

The bottom load cell was primarily a thin cylinder made out of a 

solid 3/4" dia. araldite core. The wall thickness of th^ cylinder warn 

1/16". It had 1/4" long and 1/2" dia. extension to the top end s o that 

it can be pusheJ inside the pile. Tbc active strain gauges were atts ^ 

longitudinally and two dummy strain gauges were attached circumferentz. 

to the inside surface of the cylinder. The connecting wires to the r 

gauges were taken through the 3/32" diameter holes in the bottom p . * 

the pile shaft and then out through the openings in the pile shaft at r -

top of the pile. The extensions of the araldite cell was then glued 

pushed into the pile. The cell was then finally closed by a 3/4" di=T ' 

and 1/8" thick araldite disc glued to the bottom end. The bottom load 

cell was thus made perfectly watertight. The details of the bottcm -d 

cell can be seen in Figure (8.6.2). 

Preparation of the sample 

The clay bed was contained in a circular concrete cylinder of 496^ 
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in diameter and 3'6" in depth. The bed was prepared from remoulded 

London Clay mixed in a large mixer and layered and compacted by hand in 

3" layers. The surface of the sample was kept covered with wet sack 

and polythene sheets. 

The driving rig 

Basically the driving rig was the same as the one used by Johnston 

(1968). It constituted a network of steel girders from which the 

driving head was suspended. Four main girders extended from the ground 

to a height of about 8*0'!, each one being bolted to the concrete container 

at two points. Two joining girders were welded across each of the two 

pair of main vertical girders, so as to be parallel with each other. 

These two joining girders were fitted with trolleys capable of movement 

along the line of their supporting girders. From each trolley was sup-

pended a 2" diameter threaded bar of length 3*0" and suspended from theea 

was yet another girder. This supported the driving platform, which con-

sisted of an inverted U section girder running along the suspended girder 

on another pair of trolleys. The driving platform itself supported and 

housed the electric driving motor, the system of driving shafts and chain 

sprockets and bearing plate. 

By incorporating two pairs of trolleys in the rig, motion of the 

driving platform could be achieved in two perpendicular directions. 

Thus it could be moved horizontally to any required position over the 

clay bed. Furthermore the vertical adjustment could be made by using 

the 2" diameter threaded bars. These were supported above the upper 

set of trolleys by two large nuts welded to the steel threads* Thus 

by turning these nuts and so also the steel bars the girder supporting 

the driving platform could be raised or lowered, by its running up and 

down steel threads. 
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A triaxial machine motor and gearbox was used to drive the probes. 

The upper and lower axle was connected by chain and wheel system. To 

the lower axle was fitted a worm and wheel mechanism. The rotational 

motion of the wheel was transferred to 1%" diameter and 24" long threaded 

shaft by screw-nut mechanism. The assembly was thus capable of driving 

in 18" without any interruption. 

The bearing plate was connected to the main driving shaft using a 

ball connector as found in standard triaxial testing machine for the 

attachment of a proving ring. On the underside of the plate, counter-

sunk bores were made to locate the spherical bearings of the model pile 

and electrodes. These electrodes were made on a 3.04" radius around 

that for the model pile and at 120° intervals. They were held together 

by a triangular wooden block made up of three pieces, with a one inch 

diameter hole at the centre. The purpose of this assembly was to keep 

the probes and the pile at a constant distance apart at every stage of 

driving. 

The rate of driving for the apparatus was found to be 0.36" per 

minute by measuring the vertical movement by an ordinary dial gauge. 

A forward/reverse switch was placed in the electric motor circuit to 

enable motions of the shaft both up and down. It was possible to drive 

the rig manually by loosening the bottom sprocket restraining screw. 

Other features of instrumentation 

The wires from the top and bottom load cells are connected to four 

arm bridge of a Baldwin strain indicator through a Huggenberger junction 

box. The signals from the load cells were thus recorded directly in 

terms of micro-inch per inch against a particular setting of a gauge 

factor for the fail strain gauges. 

The source of electric potential applied across the pile and the 
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probes was a 30 volc rectifier and the voltage applied could be varied 

from 0 to 30 volt D.C. 

The load cells were calibrated in a heavy duty triaxial testing 

machine. This incorporated a central cross beam to support the centre 

of the model pile and to line it up vertically. The model pile passed 

through a bush at the centre of this beam and rested on a piece of rubber 

sheet resting on the base supporting plate. The load w#^ measured by 

a proving ring in the usual manner. The bush was well greased to avoid 

possible error due to friction. 

8.6 Dynamic driving rig: 

Basic features of the apparatus 

It was essentially a shaft carrying a sheet pile blade or a cylin-

drical probe at its lower end, sliding vertically within two linear 

bearings mounted on the structural frame. The top end of the shaft ifag 

held by an electromagnet hanging freely from a cantilever bracket. The 

cantilever bracket was fitted with a dial gauge which recorded deflect-

ion of the cantilever arm at a particular point. The cantilever bracket 

with the dial gauge was then used to read load held by the electromagnet. 

A 9" X 5" X 4" box was accommodated on the top of the pile connecting the 

shaft so that weight of the shaft, pile and the imoving components could 

be increased. If necessary by putting some lead shots In the box. A 

displacement-time measuring device was fitted to the shaft and the dis-

placement plot was recorded in a U.V. recorder. The box provided for 

lead shot was also used as housing for an accelerometer. The output 

from the accelerometer was recorded in the U.V. recorder. The 

frame was mounted on a rigid platform. The platform was on four 

levelling screws to make the base, and hence the structural frame^ 
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vertical so that the vertical shaft could fall freely under gravity when 

released by the electromagnet. A set of buffer springs were placed on 

the both sides of the shaft. These springs were mounted on a horizontal 

channel that was also a structural member of the frame. A secondary 

horizontal beam channel fitted with rub&er cushions w^^ supported on 

the springs. A cylindrical welded stop was fitted to the 3/4" diameter 

shaft. The function of the welded stop, the spring and the horizontal 

beam channel assembly was to bring the shaft to rest after the required 

penetration of the probe is reached. The basic features of the apparatus 

can be seen in Plate 1. 

Theory behind the design of the apparatus 

Let the mass of the shaft, box and the blade m fall through a height 

h under gravity and then penetrate the soil sample. Then at any position 

of the blade inside the soil mass we have, by considering the dynamic 

equilibrium and applying the d'Alembert's principle. 

d^x 
y + P = mg 

dt 

where x is the distance (measured from the surface of the soil), t is 

the time and P is the penetration resistance offered by soil. 

Assuming that P can be represented by a series polynomial 

P = A + Bx + Cx^ + 

For simplicity we assume that P can be represented by 

P = A + Bx 

Then we have, 

4-5 + (B/^)x + (g - A^^) (A 

dt 

The solution of equation (8ol5) under the boundary condition at t = o, 
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of X = o, where is the velocity of blade at tb^ surface of 

the soil, is 

u_ , (g - A/ ) (g - A/ ) 

X = Sin (/B/ )t rp7-T— ' Cos (/B/ )t + — / % , ^ — (8.16) 

/BT" (B/mJ m (a/m) 
m 

Therefore the velocity V and acceleration f at any time t are given by: 

(g - A/ ) 

= u Cos (/B7")t + . Sin (/B7Z)t (8.17) 
/ ] ) / 

m 

ft = (g - Cos (/B/^^t - (/sy^^ Sin (/S/^^t (8.18) 

In the equations (8.16) to (8.18) A and B are soil-blade parameters and 

are directly related to the dimensions of the blade and the cohesian of 

the soil. 

The following points are worth noticing in connection with the above 

equations of velocity and acceleration: 

(i) The hypothetical periodic time — 2n/m/ 

(ii) The condition for constant rate of penetration demands 

f = o, i.e: 

g - A/ 

tan 
m 

u 

(yi)7")t == (g, 19 

Equation (8.19) provides the value of 'm' necessary to keep the velocity 

approximately constant over a small penetration. 

Accelerometer assembly 

The accelerometer used was the *Vibrometer' type 5A/SA; ±5g range, 

133 c/s resonant frequency with resistance strain gauge sensing element-> 
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It was mounted on a x 2" x thick perspex piece with a 1 cm^ hole 

at the middle. It was split into two parts so dhat the accelerometer 

could be placed in 1 cm^ hole horizontally at the centre of the driving 

shaft. The accelerometer was placed in the 1 hole and the two 

pieces were then bolted together by two brass screws. Ttms th^ 

accelerometer was firmly gripped by the perspex piece. The perspex 

piece was then fitted in a special housing provided within th^ 

9" X 5" X 4" box at the bottom of the 3/4" diameter driving shaft. 

Care was taken to ensure that the centre of the mounting perspex piece 

and hence the centre of the accelerometer coincided with the centre line 

of the driving shaft. The three wire leads from the accelerometer and 

two 100 .L resistors were made to form a Wheatstone bridge. The terminal 

of the bridge were taken out of the housing block through a %" diameter 

hole in the housing block. The specification details of the accelero-

meter used are given below: 

Nominal value = ±5g 

Maximum load = ±50g 

Sensitivity = 19.97 mv/v at 5g 

(Resistance strain gauges as the sensing element) 

Excitation = 3 to 8 volt D.C. 

Natural frequency = 133 c/s 

Impedance = 2 x 113 

The two diagonal terminals of the bridge were connected to a 7% 

volt D.C. source while the other two terminals (output terminals) 

were connected to a 450 c/s galvanometer of an ultraviolet recorder 

with a 250' '-damping resistance in parallel. It was possible to 

increase or decrease the deflection of the galvanometer by varying 

the resistances incorporated in the bridge so that the width of the 
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t r a c e o n t h e u l t r a v i o l e t l i g h t s e n s i t i v e r e c o r d i n g p a p e r c a n b e m e a s u r e d 

w i t h s u f f i c i e n t a c c u r a c y . T h e c i r c u i t d i a g r a m f o r t h e a c c e l e r o m e t e r i s 

s h o w n i n F i g u r e (8.7.1). 

P h o t o e l e c t r i c d i o d e a s s e m b l y 

T h e p h o t o e l e c t r i c d i o d e a s s e m b l y w a s u s e d t o r e c o r d t h e v e l o c i t y 

o f p e n e t r a t i o n o f t h e p i l e a t e v e r y s t a g e o f p e n e t r a t i o n . I t e s s e n -

t i a l l y c o n s i s t s o f t h r e e p a r t s , 

( 1 ) T h e l i g h t s o u r c e : 

T h e p u r p o s e o f t h e l i g h t b u l b w a s t o p r o j e c t l i g h t o n t o t h e e y e o f 

t h e p h o t o d i o d e t h e r e s i s t a n c e o f w h i c h v a r i e s w i t h t h e l i g h t i n t e n s i t y 

f a l l i n g o n t h e e y e . T h e l i g h t s o u r c e u s e d , w a s a n o r d i n a r y 2 5 w a t t 

b u l b c o n n e c t e d t o a 1 2 v o l t D . C . s o u r c e . T h e b u l b w a s p a i n t e d b l a c k 

o n a l l s i d e s e x c e p t t h e o n e f a c i n g t h e s c r e e n . 

( 2 ) T h e p h o t o d i o d e : 

T h i s w a s e x c i t e d b y a 6 v o l t D . C . s o u r c e t h r o u g h a n 1 r e s i s t -

a n c e i n s e r i e s w i t h i t . T h e r a t i n g o f t h e d i o d e u s e d w a s 1 . 6 7 M - O . . 

f o r 1 f t . c a n d l e o f l i g h t i n t e n s i t y . A s t h e l i g h t i n t e n s i t y o n t h e 

c e l l i s i n c r e a s e d s o i t s r e s i s t a n c e f a l l s a n d t h e p o t e n t i a l d r o p a c r o s s 

i t d e c r e a s e s . 

T h u s i f % . f t . c a n d l e i s t h e l i g h t i n t e n s i t y f a l l i n g o n t h e e y e o f 

t h e p h o t o c e l l f o r t h e g i v e n c o n f i g u r a t i o n t h e v o l t a g e d r o p a c r o s s t h e 

photocell is given by ^ ^ volts, provided the photocell 

b e h a v e s l i n e a r l y w i t h r e s p e c t t o t h e l i g h t i n t e n s i t y . T h e n o n l i n e a r i t y , 

h o w e v e r , w o u l d n o t o f f s e t t h e p u r p o s e f o r w h i c h i t w a s u s e d . T h e 

v o l t a g e d r o p w a s m e a s u r e d b y a 1 0 0 0 c / s g a l v a n o m e t e r w h i c h w a s d a m p e d 

c r i t i c a l l y b y a 2 5 0 . . » 2 - r e s i s t a n c e a c r o s s i t . T h e t r a c e o f t h e g a l v a n o -

m e t e r w a s r e c o r d e d o n u l t r a v i o l e t r e c o r d i n g p a p e r . T h e l i g h t s o u r c e 

a n d t h e p h o t o e l e c t r i c c e l l w e r e m o u n t e d o n t h e e x t e n d e d a r m s o f a n 
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adjustable magnetic clamp. The magnetic clamp itself was held fixed 

with the structural frame. The circuit diagram for the photocell 

assembly is given in Figure (8.7.2). 

(3) The screen: 

The purpose of the screen was to allow light to fall on the eye of 

the photocell at some preset intervals. A brass plate with 1 mm wide 

slits at 5 mm centre to centre was used. It was held fixed with the 

moving shaft and held vertically between the light source and the eye 

of the photocell which consists of the fixed part of the photoelectric 

assembly. Sufficient care was taken so that the gap between the moving 

and the fixed part of the photoelectric assembly was a minimum for the 

brass plate to pass clear of the photocell and the lamp. 

The details of the photoelectric assembly can be seen in Plate 2. 

The ultraviolet recorder 

The recorder used was S.E. 2000 type and was capable of recording 

in 25 channels of which only four were used. It has a series of mirror 

galvanometers such that a beam of ultraviolet light from an ultraviolet 

lamp falls on the mirror and is reflected onto the light sensitive 

linograph direct print paper. Thus any small deflection of the galvano-

meter is automatically recorded as a deflection of the light trace acrogn 

the recording paper. 

Timer Circuit 

This was an ordinary pulse generator which could generate step 

pulses at chosen time intervals. The function of the pulse recorded 

on the Ultra Violet Recorder was to check on the paper speed. As most 

of the penetration tests were highspeed ones it was not possible to 

depend on the rated paper speeds of the U.V. Recorder. The numerical 

analysis was carried out on a time base obtained from the pulses 
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generated at 10 milliseconds intervals. The circuit diagram for the 

timer circuit can be seen in Figure (8.7.3). 

Event marking Device 

This was used to obtain a marking on the recorded results at the 

instant when the pile is exactly touching the surface of the soil 

specimen. This was attained by using one terminal of a 1% volt dry 

battery connected to the surface of soil sample ivhile the other was 

connected to the pile through a 100 c/s galvanometer through a 400 

resistance in series. The galvanometer was suitably damped by having 

a 250J^ resistance connected in parallel with it. As the pile touched 

the surface the electric circuit was complete and accordingly an 

instantaneous deflection of the galvanometer trace was obtained on the 

linograph paper. The circuit diagram for the event marks can be seen 

in Figure (8.7.4). 

The electromagnet and the Triggering device 

The electromagnet was designed to carry a inaximum load of 70 lbs. 

The current necessary was supplied from a 12 volt heavy duty car battery. 

The electromagnet and the triggering switch for the paper drive of the 

ultraviolet recorder were connected to a special biased switch which 

could be switched momentarily on and off. Thus it was possible to 

control the electromagnet and the paper drive motor of the U.V. Recorder 

simultaneously. 

Preparation of the sample 

Samples of London Clay were mixed at a preset moisture content in 

a large mixer until the sample appeared to be homogeneous. It was 

then compacted in 3" layers in 2*0" long 1*3" wide and 9" deep containers 

by a 5 lb. hammer with 60 blows per layer, for a free drop of 12". The 

samples were kept covered with wet sacking and polythene sheets to pre-

vent any loss of moisture. 
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8.7 Experimental investigation 

8.7.1 Slow speed driving of model pile 

Calibration of the Load Cells 

The calibration of the model pile was carried out using a triaxial 

testing machine. The pile was loaded and unloaded at least 25 times 

to bed down the load cells. The pile was then loaded up to 150 lbs 

in increments of 10 lbs. The loads were measured by a 200 lbs, proving 

ring. The strain readings were measured in a Baldwin strain indicator 

using the four arm bridge. These tests were continued until the strain 

readings followed a regular and consistent pattern. A calibration chart 

(Figure 8.8) was then plotted of microstrain against load on the pile 

taking the mean of four test runs. 

Slow Speed Driving of the probe with and without an applied 

electric potential 

A series of penetration tests were performed without any applied 

D.C. potential. The loading frame with the pile held in position was 

lowered manually until the bottom of the pile touched the surface of 

soil. The pile was made perfectly vertical with the help of a spirit 

level. The loading plate was adjusted by releasing an adjusting screw 

provided at the bottom of the driving shaft. The loading plate was 

made absolutely horizontal and then the adjusting screw was tightened. 

Care was taken to ensure that the driving unit and the driving shaft 

were held rigid against any side sway. The driving shaft and the pile 

was thus held absolutely vertical with the bottom of the pile touching 

the ground surface and the top of the pile touching the countersink in 

the loading plate through a spherical ball bearing. 

The initial readings of both load cells were taken by a Baldwin 

strain indicator. The drive motor was switched on and the readings 
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were taken at one minute intervals until a penetration of 16" was 

reached. The drive motor was switched off and then switched on to the 

reverse direction until the loading plate went back to its original 

position. The pile was then pulled out of the clay bed and thoroughly 

cleaned to have the same surface texture as before. 

In driving the pile with an applied electric potential essentially 

the same operation was followed, except that three electrodes were 

arranged at 120 degree intervals around the model pile. These electrodes 

were held rigidly tight with the loading plate by screws through perspex 

adapters to prevent short circuiting. A triangular wooden block made 

in three pieces, having 1" diameter hold at the middle was used to pre-

vent these electrodes going outwards with the pile held at the centre. 

The object of providing the 1" diameter hole at the centre was however 

to prevent any loss of load transfer due to friction between the block 

and the pile shaft. The steady D.C. source used for applying a steady 

D.C. potential was a rectifier plugged in 220 TM)lts 50 c/s A.C. mains. 

After the penetration tests samples from the compacted clay bed 

from different depths were taken by 1%" sampling tubes. The moisture 

content and undrained triaxlal shear strength of the samples were also 

determined. 

Results 

The shaft load was calculated by deducting the end load from the 

total load measured by the top load cell at different depths of pene-

tration. Figure (8.9.1) to (8.9,5) show the shaft loads and the end 

loads of various depths for a range of applied D.C. potentials. 

(0 to ±0.4 volts/cm). Each point on these figures represents the mean 

of three tests. The moisture content and the undrained cohesion values 

of the samples are shown plotted against depth in Figure (8.10). 
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The decrease or increase in shaft adhesion due to an applied negative 

or positive D.C. potential respectively was defined as a nondimensional 

quantity given by (P-P )/P. Wher^P = the penetration resistance of the 

probe without any applied D.C. potential and P = the penetration resist-

ance of the probe with an applied D.C. potential. 

Figure (8.11) shows the values of (P-P )/P plotted against the average 

voltage gradient (E/R) in volts/cm, where E Is the voltage applied between 

the pile and the electrodes and R is the radial distance between the centre 

of the probe to the centre of the electrodes. Since R was -.^ntially 

constant for all the tests Figure (8.11) Is virtually a plot of (P-P,)/? 

against 'E' to a different scale. It should be noted here that the 

results are interpreted in terms of the average (E/R) only for the purpose 

of possible field applications. The actual voltage gradient at the pile 

face for a given probe-electrode configuration would depend on the diameter 

of the electrodes and the radius 'R'. For the geometrical configuration 

such as the one used for all the tests the actual voltage gradient at the 

pile face 4 x E/R average. 

Tt^ relationship between the current through the system for a pene-

tration of 14" and the average (E/R) is shown in Figure (8.12). Con-

trary to the general expectation the relationship between the applied 

voltage gradient and the current was found to be non-linear. 

Conclusions 

It was found that application of an electric potential to a 

cathode probe reduces the shaft resistance considerably, wheraas there is 

virtually no reduction in end load (see also Johnston, 1968)* A reduction 

up to 85% in the shaft resistance could be achieved by an application of an 

average potential gradient of 0.4 vclt/cm at a rate of penetration 

0.36" per minute. The increase in the shaft resistance by making 
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the pile anodic was, however, found to be limited to 45% at am average 

voltage gradient of 0.4 volt/cm for the same rate of penetration. 

if the total shaft resistances can be expressed (conventionally) as 

P = nDL a C 
o u 

P = wDL a C 
e E u 

where D and L are diameter and length of shaft respectively and C is 

the average undrained cohesion over the pile length, which can be ^ ,med 

to remain virtually unaltered, for the short time application of an 

electric potential and the nondimensional factors which are 

dependent on the change of interaction forces at the pile soil inter-

facer 

If now C can be taken as 4,00 psi (Figure, 8.10) over the -

length of the shaft. We obtain. 

p 
average a 0.50. 

° nDL C 
u 

Similarly average 

OLlfor fE/R) = -0.4 V/Cm|= ^ — = 0.08 
G i av - J noL C" 

and average 

r 1 P 
a^jfor (E/R)^__ = +0.4 V/Cni| = — = 0,76. 

^u 
nDL C 

It is however conceivable that for an application of a D.C. negaLiv* 

potential cannot be less than 0 and for an application of a D.C* pos-

itive potential cannot be greater than 1 provided that the duration jf 

application is small enough not to change the value of C , This 
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reflected very well in Figure (8.11), which shows quite clearly that 

the increase in reduction or the increase in penetration resistance is 

almost linear with average (E/R) up to 0.2 volt/cm., beyond which the 

rate of decrease or increase is progressively less. T^ms it would 

appear that the most economic average voltage gradient perhaps lies 

around 0.2 volts/cm. 

The relationship between the applied voltage and current was found 

to be nonlinear (Figure 8.12). This nonlinearity was thought to be 

due to: 

(i) The relationship between the voltage and current for any - i 

is not strictly linear, i.e. linear ohms law cannot strictly be applied 

to soils. 

(ii) The clay bed was not 100% saturated, consequently there has 

been an almost instantaneous movement of the fluid phase resulting from 

the body forces on the fluid phase as soon as the potential was applied 

This would result in change in almost immediate change in moisture con-

tent and consequently in resistivity. The change in resistivity would 

thus increase with increase in applied potential. Hence the deviation 

from linearity was found to be greater for higher voltage gradients^ 

For a fully saturated soil there cannot be any change in resistivity duc 

to moisture migration for short time applications of electric potent:-

8.7.2 High speed driving of sheet pile blades 

Calibration of the load measuring device 

A cantilever bracket was used for measuring the weight of th^ 

driving shaft. The details can be seen in Plate (3). lead shotg 

of known weight were placed in the container on the rod with a 

spherical head at the top ^late, 3). The deflection of the bracket 

at a given load was measured by a dial gauge. Figure (8*13) shows 
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the reading of the dial gauge plotted against the load applied to the 

bracket. The bracket was loaded several times and the readings of the 

dial gauge for a given load were remarkably consistent. 

Driving of sheet pile blades with and without electro-osmosis 

A series of high speed penetration tests were performed over a 

range of speeds from 2 to 6.8 ft/sec. The rate of penetration was 

varied by varying the height of fall. Coarse adjustment for height 

was done by raising the sample while the finer adjustment was done by 

turning the female adopter provided at the bottom of the cantilever 

bracket. The height of drop, that is the height between the trimmed 

and levelled top surface of the sample and the bottom edge of the blade, 

was measured. 

All the electrical appliances were switched on. The frequency 

of timer signal and the speed of the ultraviolet recorder was selected 

so that a convenient spread of time scale plot could be attained. The 

photo-electric cell lighting was adjusted until a reasonable well def ^ 

trace was obtained on the ultraviolet recorder paper. The accelerometer 

trace and the base line trace (i.e. a reference line) were adjusted by 

turning the galvanometers so that both traces coincide at a point when 

the accelerometer is at rest. The event marking device was laid and 

the galvanometer was adjusted to give a sharp trace on the ultravi: 

light sensitive paper. 

A series of vane tests were done on the sample by a portable 

laboratory vane which was calibrated before hand with triaxial test 

results. Thus the vane tests results were directly transferred to 

equivalent underained triaxial values of shear strength. 

From the measured values of cohesion a rough estimate of the 

penetration resistance of the pile was made, and thua a required 
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value of the weight of the moving components to attain constant velocity 

of penetration over a required range was obtained. Ttie weight was 

adjusted by adding or reducing the amount of lead shot in the box provided 

at the top of the pile. The exact weight of the shaft, pile etc. and 

its moving components was measured from the dial gauge fitted to the 

cantilever bracket. 

The triggering switch was pressed and the electromagnet thus 

automatically released the shaft which fell under gravity and penetrated 

the soil sample until brought to rest against the buffer device. The 

recorded paper trace out of the ultraviolet recorder was exposed to room 

lighting. 

A series of driving tests were performed with an applied electric 

potential. The test procedure was essentially similar to the one des-

cribed above except that two steel plates buried 2" inside the soil 

sample were used as anodes and the pile was made the cathode. The 

plates were buried parallel to each other and the pile was allowed to come 

down along a line equidistant from thgmw The necessary D.C. potential 

was supplied by a rectifier connected to a 220 volt 50 c/s A.C. mainsa 

Recording of data 

The recording of all high speed penetration tests were done on 

llnograph ultraviolet light sensitive paper. The paper was exposed 

to room lighting for a few minutes after recording and then as soon as 

the galvanometer traces became prominent it was stabilised by spraying 

llnograph stabilising lacquer over the relevant part of the paper trace, 

A copy of typical paper trace can be seen in Figure (8.14). 

8.7.2 Results of high speed driving of piles 

Numerical Calculations 

The basic analytical theory behind the design and performance of 
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the dynamic driving rig has been outlined previously. This section 

therefore outlines the scheme of numerical calculations used to obtain 

the penetration resistance (P), the velocity at any instant V and the 

distance penetrated (S) from the ultraviolet paper traces of velocity 

and acceleration. 

Now let us start with the basic differential equation for acceler-

ation X of the pile at any instant 't' inside the soil mass at a depth 

X measured from the surface of the soil 

n# + P = m g (8.20) 

where P = Penetration resistance offered by soil for penetration from 

ground level to the depth X 

mg = Weight of the pile, shaft and all itsinoving components. 

The equation (8.20) can be written as 

R — m(g - X) (8.21/ 

The right hand side of the (8.21) can be obtained from the recorded 

paper trace as shown in Figure (8.14). 

The rest of the procedure of numerical calculations can better be 

described in the following steps:-

(I) From the measured height of fall calculate the initial 

velocity u by u = /2gh where h = height of fall. 

(II) From the trace of the event marking device locate the exact 

position of the time-scale where the probe just touched the 

surface of the soil. 

(ill) Having obtained the starting point the rest of the trace 

of the accelerometer. I.e. from the start up to the point 

where the velocity trace vanishes or the accelerometer 
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records the impact of the buffer springs whichever happens 

earlier, is divided In suitable numbers of divisions 

(Figure 8.14). This is to allow for the pile coming to 

rest before hitting the buffer due to the resistance offered 

by the soil alone. 

(Iv) The change in velocity at an instant t, 6V Is obtained from 

where X = acceleration at time 't' measured from the origin 

0 (Figure (8.14). 

^t+At " acceleration at time (t+At). 

At = time interval. 

(v) Having obtained AV , can be obtained and hence the 

average velocity within the specified time Interval 

(t, t+At) can be obtained from 

\ v = i " t + \ + A t > 

(vi) The distance traversed during the specified time interval 

can be obtained from 

AS = V * At 
t av 

(vil) Finally can be obtained from 

S(t+At) - St + 

where denotes the distance traversed in time (t4^^). 

The computational steps (i) to (vii) can be performed very easily in 

tabulated form. 

Presentation of the results 

The results of high speed penetration tests of blades are given 
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in Figures (8.15.1) to (8.15.12). Each point on the graph shows the 

mean of four tests. The difference of the other results were within 

±4% of the mean. 

p . 

Figure (8.16) shows the ratio of D/Pg plotted against the average 

velocity over a 2" penetration (where Pg = mean dynamic penetration 

resistance and Pg = static penetration resistance for a 2" penetration 

of the blade). The static penetration resistance has beem defined as 

the ultimate load which a stationary blade or probe, which has been 

pushed into soil by 2", can take without failure. 
p 

Figure (8.17) shows the ratio of E/P plotted against the average 

velocity of penetration over 2", Pg being the dynamic penetration 

resistance offered by the soil under an electric potential for a pene-
P 

tration of 2". The ratio E/P has been shown plotted for various 

values of voltage gradient. 
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8,8 Conclusions 

The dynamic penetration resistance was found to be higher than dhe 

P 

static penetration resistance. The ratio of D/Pg was found to vary 

from 2 to 2.75 when the velocity ranges from 2 ft/sec to 7 ft/sec. 
Figure (8.16). It would thus appear that the rate of increase in the 

p 

ratio of D/P would be very rapid within the range of 0 to 2 ft/sec. 

It was not possible to investigate the dynamic penetration resistance 

within this range because of difficulty to keep the velocity of pene-

tration approximately constant over this range. 

p 

The ratio E/P was found to be 0.75 to 0.98 depending on the volt-

age gradient when the velocity ranges from 2 ft/sec. to 6.5 ft/sec., 

(Figure, 8.17). The line representing the mean experimental results 

for 1 ft/sec has been projected back to the ordinate to show the probable 

curve linking the static test results of earlier investigation (Butterfield 

and Banerjee, 1967) for blades for the corresponding range of samples. 

It would appear from the dynamic test results that application of an 

electric potential does not reduce the penetration resistance to any 

significant amount. Hence it cannot be recommended for a continuous 

high speed earth cutting to which the project was directly related. 
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FiGuî c — 8.7.4 

294 



hv 
\0 
Ln 

0 

6 
z 

n 
c 6 

1 

00 p 

00 p. o 
6 

P 

N(CA06TR4INS 

I200 

& 0 0 

& 0 0 0 

looo 

Z 4 o o 

l2ao 

28oo 

^4oo 

5 2 0 0 (Top cell] 

!GOO (Bottom cell) 



SHAFT 

LOAD E = 

END LOAD E 

10 

PENETRATION (INCHES) 

FIGURE - 8.9.1 

12 14 

SHAFT LOAD, (E/R = +0.1) 

SHAFT LOAD (E/R = -0.1) 

END LOAD (E/R =+0 

END LOAD (E/R =n0^1) 

PENETRATION (INCHES) 

FIGURE 8.9.2 



h4 

l/l 

i 

• 

SHAFT LOAD (E/R = 

END L( )AD (E /R = -( ).05)i 

if 

E%D L( jAn roj 

- SHAB T LOAT (E/R = -0.: ;5) 

6 8 

PENETRATION (INCHES) 

FIGURE - 8.9.3 

10 12 14 

SHAFT LOAD (E/R 

SHACT T^An fR/Rl= +0 

END LOAD (E/R = +C 

END LOAD (E/& = +C 

PENETRATION (INCHES) 

FIGURE - 8.9.4 

297 



o 
00 

M O 
m \o 
hJ 

i 
o 

'SHAFT LOAD (E/R = +0.40 

/ 

/ 

~3 

s )HAFT I ,OAD (E/R = -0.40) ^EN] ) LOAD (E/R = +0.41 ] ) ' i 

o 
CM 

10 12 

PENETRATION (INCHES) 

FIGURE - 8.9.5 

'X. a 

o 
o 

o 
I 

UNDg^L INED C( 3HEST0 lf(C^^ 

^MOIS' CURE C pNTENT (MC) 

M 

o 
vo 

o 

'.O 

u 

(N 
N PI 

2 4 6 8 10 12 

DEPTH (INCHES) 

FIGURE - 8.10: UNDRAINED COHESION AND MOISTURE CONTENT VS DEPTH 

298 



DECREASE FOR A C A 4iHC)Dc 

=- i I 

CS 
o 

1 

/ 6 

i 1 

1 ' : 

/ 
1 

/ / 

i 

u I Od 0 4 

, 1 1 

O: 

OI c,-

8.12 

299 



o 
o 

o 

II 

s 
Q 

I 

20 40 60 80 100 

LOAD (LBS) 

FIGURE - 8.13. CALIBRATION CURVES FOR THE CANTILEVER BRACKET 

300 



w 
o 

I BASKUr'l FO.l 

ACCELCRo:,:rii: 

"iTiAc.i OF i;:: 
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CHAPTER 9 

Final Conclusions and recommendations for further work. 
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The final discussions and conclusions of the results of the present 

investigation are presented below. The conclusions drawn from the present 

analysis of the load-displacement behaviour of piles and deep foundations 

are discussed with special reference to their applicability to practical 

situations. Recommendations are made for the direction of future work 

which should aim at systematic relaxation of the basic assumptions made 

herein and experimental verifications of the results of the various analyses. 

The algorithm, using Mindlin's equations, in an integral equation method 

which has been developed for the elastic analysis of piles, pile groups and 

deep footings appears to be ideally suited for such problems as it auto-

matically takes into account a half space with an unloaded boundary. The 

number of equations to be solved for such problems is much smaller in this 

method than the number necessary for similar problem by other numerical 

methods (such as the finite element method) because in the present method 

the surface is to be discretised whereas in the other methods the whole 

domain has to be discretised. Most of the computational time involved in 

the analysis is spent in forming the coefficients of the resulting system 

of linear algebraic equations. Hence the method is most suitable for high 

speed digital computers with relatively low storage capacity. The accuracy 

of the solution depends on the accuracy with which the integrals are replaced 

by the quadrature formulae. It was found that the most satisfactory 

numerical quadrature is the one which allows an accurate representation of 

the kernel function rather than the variation of the unknown intensity over 

the surface of the given domain. The principle of superposition used in 

the formulation of the integral equations restricts the application of the 

methbd to problems involving linear constitutive laws for the materials 

involved. The present analysis is only applicable to bodies enclosed 

within a smooth surface and hence produces good results away from the edges 

and corners and not so good near them (see Figure, 3.6). The method could 
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be extended to deal with piecewise homogeneous domain which is composed 

of a number of homogeneous domains. For such problems the fictitious 

intensities (i.e. the arbitrary functions) may be distributed over the 

surfaces of each homogeneous domain and a set of integral equations may 

then be derived to satisfy the boundary conditions and the compatibilities 

of the surfaces of the domains in contact with each other. 

Application of the method to the solution of the problems related 

to piles, pile groups and buried rigid discs produced a number of inter-

esting results which are in general agreement with practice. Although 

over-simplified constitutive laws for soils have been assumed, the com-

parison between the theoretical predictions with appropriate pseudo-

elastic parameters and the field and laboratory test data, revealed 

encouraging correlations. 

The load displacement characteristics of buried rigid discs have been 

analysed in Chapter 3. It was observed that the depth of burial, shape 

of the disc and depth of elastic layer strongly influence the settlement 

of the disc. Hence the conventional method of calculating the settlement 

of the buried rigid footings by the use of Boussinesq's solution (match-

ing the contact areas) may produce results in error by up to 100%. The 

solutions presented are strictly applicable to bonded discs where tensile 

stresses can exist on the top surface of the disc. Whereas the stress 

distribution for an unbonded disc will be different from that for a bonded 

disc it is thought that the stiffness of both systems will not be radically 

different. The bonded solution will generally be applicable to deep 

footings when the weight of the soil above the footing level product 

a net compressive stress on the top surface of the disc. It would be 

of interest to analyse the problem of an unbonded rigid disc where the 

displacement of the bottom surface of the disc is specified and the 
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vertical stress on the top surface is zero. For this mixed boundary 

value problem the fictitious intensities could be distributed over the 

surfaces of two discs indefinitely close to each other. The simultaneous 

system of integral equations may then be derived by satisfying the dis-

placement boundary conditions of the bottom disc and stress boundary con-

ditions of the top disc. 

The problems of piles, pile groups and pile group-cap systems have 

been analysed in Chapters 4, 5 and 6. It was found the load-displace-

ment response of such foundations are strongly influenced by the ratios 

of thickness of the layer to pile length, length to diameter, spacing to 

diameter, and compressibility of the pile to that of the soil. The 

reduction of settlement under a given load achieved by under-reaming is 

restricted to piles with length to diameter ratios of less than 20 and 

base to shaft diameter ratios of less than 3. These restrictions are 

in agreement with current practice. The settlement ratios of free-

standing pile groups are found to be dependent on the width, breadth of 

the group, length to diameter ratio and thickness of the elastic layer 

and are almost independent of the number of piles in a group. Hence 

for free-standing pile groups it appears to be more economical to use 

fewer piles at larger spacings than to use many piles at close spacings. 

The settlement ratio of a group of 25 piles at spacings of 3 diameters 

may be as high as 15, which emphasises the importance of accurate evalua-

tion of settlement for group design. Whereas the presence of a rigid 

cap bearing on the ground surface has little effect on the overall load-

displacement response of the pile groups, it does change drastically the 

load carried by different piles in the group. The theoretical results 

have been compared with available laboratory model and full scale field 

test data. This comparison for axially loaded piles revaled that the 
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load-displacement relationships are in general agreement up to working 

loads of P/P - ^ 0 . 4 and also that the behaviour of an under-reamed piles 

is predictable from the load test results on plain piles. Comparison 

between the theoretical and experimental results for free-standing pile 

group showed that the theoretical method is capable of predicting the 

settlement of groups of any geometry using an elastic parameter G ob-

tained from the field test results on an isolated single pile, provided 

the values of Poisson's ratio is assumed. Poisson's ratio has a 

negligible influence on the settlement ratio. In the present analysis 

the settlement ratio has been defined as the ratio of the settlement of 

a group to the settlement of a single pile, where the average load per 

pile in the group is the same as that on the single pile. Unfortunately 

many previous investigators have used a different and much less satis-

factory definition of the settlement ratio which gives rise to consider-

able confusion in interpreting their results and rather limits their 

utility for either checking the present analysis or logical general 

extrapolation to other field situations. The present analysis is of 

course strictly applicable only to homogeneous and isotropic sub-soil 

and does not take into account any soil stratification, changes in the 

soil properties caused by pile driving, the order of driving pile etc. 

which are all known to influence the pile group behaviour. Therefore 

a systematic experimental research programme is still needed to evaluate 

the importance of these variables. 

The increase in stresses and pore water pressures developed due to 

driving a cylindrical pile into a saturated clay and its effect on the 

ultimate bearing capacity of a driven pile is examined in Chapter 7. 

Aa equation for predicting the pore water pressure increase around a 

driven pile is developed and compared with available full scale test 
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data with reasonable agreement. It was found that t±ie increase in the 

pore water pressure at the pile-soil interface imay aoKmat to 5 to 6.5 

times the undrained cohesion of the soil. This information may be very 

relevant to the analysis of the stability of foundaticms alongside the 

site in which the piles are being driven. The tinm dependent bearing 

capacity of driven piles with reference to the variation of the pore 

water pressures and effective stresses at the pile-soil interface is dben 

examined. The analysis predicts the ultimate bearing capacity of a 

driven pile may increase with time from 6 to 10 times its value immediately 

after driving. Since the load tests on piles are inevitably carried out 

at an early stage when the process of consolidation is nat essentially 

complete^these results may be helpful in predicting an extrapolated ultimate 

bearing capacity at the end of the consolidation process. The theoretical 

analysis is, however, based on a number of over-simplified assumptions, 

such as, that of plane strain, elastic-ideally plastic soil media etc. 

Therefore again a solution relaxing these assumptions w^±h experimental 

support is required. 

A topic which though not directly related to the general framework 

of the present investigation which may however be useful in connection 

with piled foundations is discussed in Chapter 8. A series of slow speed 

and high speed probe driving tests was carried out into saturated clay 

assisted by applied D.C. potentials. It was found that for cathodic 

probes application of an average voltage gradient of about 0.2 volts/cm 

can reduce the driving resistance by as much as 50% for slow speed 

driving (0.36"/minute) but when the speed of driving is increased beyond 

2 ft/sec the reduction in penetration resistance achieved by this process 

is negligible. More detailed investigation of the slow speed and time 

dependent effects is currently being carried out but the phenomenon 
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appears to have no application towards improvement in continuous bi^h 

speed pile driving operation. 
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APPENDIX 1 

LIST OF INTEGRALS 

(KSS)^j = 2 

jGn 

(j-l)Gi o 

a. KW^(c,%pz) de dc 

r 2 2 
= [ 2 a -2.a.Cos 6^J ; 

(KRS).. 
ij 

jG, 

(j-l)G^ o 

a. KMg(c,r,z) d8 dc. 

r = a ' 

(KBS) . = 2 

jG, 

(j-l)G2 o 

E. KW2(L,r2'^) de , 

r_ = [a^+E^-2.a.€.Cos 8 ] 

(KSU)., = 2 
^ J 

.jG, 

(j-l)G^ o 

a. KU^(c^r^,z) d8 dc. 

r 2 2 
= [2.a -2.a.Cos 

jG 
1 2n 

(K&U).. a. KU_(c,r,z) d6 dc, r = a 

(j-l)Gi o 

(KBU).. = 2 
ij 

.jG, 

(j-l)G2 o 

E. KUgCL.fg'Z) d8 de. 

r2\ 2 
r, = [a +E -2.a.E.Cos 8 ] 
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w h e r e 

z = (i - gO" 

(KSB).. = 2 

jG, 

(j-l)Gi o 

a. KW^(c,r^,z) d8 dc, 

= [ r ^ + a ^ - 2 . a . r o C o s 0 ^ 

JG, 

(KRB)^j = 2 a.KWgCc/c^.z) d8 dc, 

(j-l)Gi o 

r_ = [r^'+a^-Z.a.r.Cos 8 ^ ; 
1 ^ 

jGn 

(KBB).. 
ij 

= 2 

(j-l)G. o 

[r^+E^-Z.r .E.Cos 8 ]* ; 

w h e r e 

(i - ^O.Gg ; z =L: 

jG 

(KIS).. = 2 
ij 

3 T7 
r 

E.KW^CH.rg.z) d8 de 

(j-liGg o 

[a^+E^-2&a.Cos 8 ^ 

w h e r e 

z - (i - g). G^ 

jG, 

(KlB)^j = 2 E . K N ^ ( H , r 2 , L ) d 8 d e 

(j-l)G3 o 
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r = [i^+E^-ZrE Cos 8 ] 
2 ^ E-" 

w h e r e 

r = (1 - z = L , 

jGn 

(KSL).j = 2 a. KN^(c,r^,H) d8 dc 

(j-l)GT o 

r . = [ r ^ + a ^ - 2 a r C o s 8 ^ ^ 

(KBL)^j = 2 

jG, 

(j-l)G2 o 

E . K W 2 ( L » r 2 * H ) ^ 8 d s 

r „ = r r ^ + e ^ - 2 r e C o s 9 ~] 
Z E- ' 

(KlL)ij = 2 

jG: 

(j-liGg o 

E . K W ^ C H . r g . z ) d 8 d E 

r« = [r^+E^-2rE Cos 8 

w h e r e 

r = ( i - z = H . 
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