S°RI

SMALL AREA ESTIMATION FOR SPATIALLY CORRELATED POPULATIONS
— A COMPARISON OF DIRECT AND INDIRECT MODEL-BASED METHODS
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ABSTRACT

Linear mixed models underpin many small area estimation (SAE) methods. In this paper
we investigate SAE based on linear models with spatially correlated small area effects
where the neighbourhood structure is described by a contiguity matrix. Such models
allow efficient use of spatial auxiliary information in SAE. In particular, we use
simulation studies to compare the performances of model-based direct estimation
(MBDE) and empirical best linear unbiased prediction (EBLUP) under such models.
These simulations are based on theoretically generated populations as well as data
obtained from two real populations (the ISTAT farm structure survey in Tuscany and the
US Environmental Monitoring and Assessment Program survey). Our empirical results
show only marginal gains when spatial dependence between areas is incorporated into
the SAE model.

Southampton Statistical Sciences Research Institute
Methodology Working Paper M07/09

University
of Southampton



Small Area Estimation for Spatially Correlated Populations - A

Comparison of Direct and Indirect Model-Based Methods

Hukum Chandra’, Nicola Salvati’ and Ray Chambers®

1. Southampton Statistical Sciences Research Institute
University of Southampton
Highfield, Southampton, SO17 1BJ, UK
Email: hchandra@soton.ac.uk

2. Dipartimento di Statistica e Matematica Applicata all'Economia
University of Pisa, Pisa, Italy
Email: salvati@ec.unipi.it

3. Centre for Statistical and Survey Methodology
University of Wollongong
Wollongong, NSW, 2522, Australia
Email: ray@uow.edu.au

Summary

Linear mixed models underpin many small area estimation (SAE) methods. In this
paper we investigate SAE based on linear models with spatially correlated small area
effects where the neighbourhood structure is described by a contiguity matrix. Such
models allow efficient use of spatial auxiliary information in SAE. In particular, we
use simulation studies to compare the performances of model-based direct estimation
(MBDE) and empirical best linear unbiased prediction (EBLUP) under such models.
These simulations are based on theoretically generated populations as well as data
obtained from two real populations (the ISTAT farm structure survey in Tuscany and
the US Environmental Monitoring and Assessment Program survey). Our empirical
results show only marginal gains when spatial dependence between areas is
incorporated into the SAE model.
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1. Introduction
Estimation of population characteristics for sub-national domains (or smaller regions)
is an important objective for statistical surveys. In particular, geographically defined
domains, e.g. regions, states, counties, wards and metropolitan areas can be of
interest. Estimates for these domains based on the usual design-based approach to
survey sampling inference are typically referred to as direct estimates in the literature.
However, sample sizes are typically small (or even zero) within the domains/areas of
interest, leading to large sampling variability for these direct estimators. An
alternative approach that is now widely used in small area estimation is the so-called
indirect or model-based approach. This uses auxiliary information for the small areas
of interest and has been characterised in the statistical literature as ‘borrowing
strength’ from the relationship between the target variables and the auxiliary
information. A flexible and popular way of borrowing strength is based on the use of
linear mixed models with area specific random effects, with estimation and inferences
typically carried out using empirical best linear unbiased prediction (EBLUP - see
Rao, 2003). An alternative approach, discussed in Chandra and Chambers (2005), is
based on the use of model-based direct estimation (MBDE) within the small areas. In
this case an estimate for a small area of interest corresponds to a weighted linear
combination of the sample data for that area, with weights based on a population level
version of the linear mixed model. These weights ‘borrow strength’ via this model,
which includes random area effects. Provided the assumed small area model is true,
the EBLUP is asymptotically the most efficient estimator for a particular small area.
In practice however the ‘true’ model for the data is unknown and the EBLUP can be
inefficient under misspecification. In such circumstances, Chandra and Chambers

(2005) note that MBDE offers an alternative to potentially unstable EBLUP. In



particular, MBDE is easy to implement, produces sensible estimates when the sample
data exhibit patterns of variability that are inconsistent with the assumed model (e.g.
contain too many zeros) and generates robust MSE estimates.

Model-based methods of small area estimation (SAE) are often based on assuming
a linear mixed model, with area-specific random effects to account for between area
variation beyond that explained by auxiliary variables included in the fixed part of the
model. Although it is customary to assume that these random area effects are
independent, in practice most small area boundaries are arbitrary and there appears to
be no good reason why population units just one side of such a boundary should not
generally be correlated with population units just on the other side. In particular, it is
often reasonable to assume that the effects of neighbouring areas (defined, for
example, by a contiguity criterion) are correlated, with the correlation decaying to
zero as the distance between these areas increases (Pratesi and Salvati, 2005). That is,
small area models should allow for spatial correlation of area random effects. See
Cressie (1991).

In this paper we consider linear unit level small area models (Battese et al., 1988)
and we extend MBDE and EBLUP for SAE to account for spatial correlation between
the small areas. We then contrast the performance of these two approaches via
empirical studies. Our aim in doing so is to explore how much efficiency is gained by
incorporating spatial correlation into SAE. The paper is organized as follows: In
section 2 we review MBDE and EBLUP for SAE under random effect models with
spatially independent area effects and discuss the extensions of these techniques to
account for spatial dependence between the small areas. We define the resulting
estimators for the small area means and their mean squared error estimators. In

Section 3 we describe the design of our simulation studies and present empirical



results. Besides using simulated population and sample data, we use two real data sets
from the ISTAT farm structure survey (farm data) in Northern Tuscany and the
Environmental Monitoring and Assessment Program (EMAP) survey of lakes in the
north-east of the USA. Finally, in section 4 we provide some concluding remarks and

identify further avenues of research.

2. Small Area Estimation under Linear Models with Random Area Effects

2.1 Models with Spatially Independent Effects

To begin, let y, denote the value of the variable of interest for the i" (j=1...,N,)
unit in small area i (i =1,...,m) and let X, denote the vector of values of the p unit

level auxiliary variables associated with this unit. We consider a nested error

regression model of form

Vi = Xl.’jﬁ +u +e D
where g is a vector of p unknown fixed effects, u, is the random area effect
associated with small area i, assumed to have mean zero and variance o, and e, is

an individual level random error with mean zero and variance o?. The two error
terms are assumed to be mutually independent, both across individuals as well as
across areas. In addition, it is often assumed that they are normally distributed. In
matrix notation, (1) is expressed as

Y =Xp+ul, +e (2)
where Y, = (3,00 )y Xi = (X, Xy ) IS @ Ny x p matrix and e, = (e;,,....¢, )
Here N, is the number of population units in small area i. The covariance matrix of

Y, is Var(Y,)=V, = 0.1, +0,1,1, , which depends on the vector 6 = (o,,0;)" of

l



variance components of the model. Here 1, is the unit vector of length N, and 1, is

the identity matrix of order N,. Assuming (2) holds, the population mean of Y in area
iis Y, = X, +u, +e, where X, = N[‘E;V;xj is assumed known.

Grouping the area-specific models (2) over the population leads to the population
level model

Y=XB+Zu+e 3)
where Y =,...Y, X=(X',..X"Y, Z=diag(Z =1, :1si=m),
1 m 1 m i N;

u=(u,..,u,) and e=(e,...,e, ). Since different areas are independent, the

covariance matrix of Y has block diagonal structure given by V = diag(V,;1<i<m).

We assume that X has full column rank p. In practice the variance components that
define V are unknown and can be estimated from the sample data using methods

described, for example, in Harville (1977). We denote these estimates by

0 = (62,67) and put a ‘hat’ on any quantity where these estimates are substituted for

u—"ir-ui

actual values. Thus V = diag(V;;1<i <m), with V, = 671, +62Z,Z; .

Now consider the decomposition of Y, X, Z and V into sample and non-sample

components so that X isthe n x p matrix of sample values of the auxiliary variables,
Z_ is the corresponding n x m matrix of sample components of Zand V. isthe nxn
covariance matrix associated with the n sample units that make up the nx1 sample
vector Y, . A subscript of r is used to denote corresponding quantities defined by the
N -n non-sample units, with V_ denoting the (N -n)xn matrix defined by
Cov(Y.,Y,). In what follows we use 1,, 1, and 1 to denote vectors of 1s of
dimension N, nand N —n respectively, with 7,,, I, and I, denoting identity matrices

of the same order. We use similar notation to denote restriction to small area level by



introducing an extra subscript of i to denote the small area. For example, s,
corresponds to the set of n, sample units in area i, r, the corresponding set of N, —n,
non-sampled units, with associated variances and covariances V,, = o’1, +0.Z,Z.,
and V. =0.Z.7! .

Assuming (3) holds, the empirical best linear unbiased predictor (EBLUP) for the

i" small area mean Y, is

T = 15, + A= KB+ 7,0, - X} @
where f = (E X'V ) (E X'V: ) is the empirical best linear unbiased

estimator (EBLUE) of B, f =N 'n, 7, = 65(65 +n'0? )_1 is the shrinkage factor,
Y, = n;‘ES_ y, and X, = ni“zs_ x; are the sample means of ¥ and X for area i, while

X, =(N,-n)"(NX, -nX,) is the corresponding mean of X for the N, -n, non-

sampled units in the area. An approximately unbiased estimator of the MSE of (4)

under (3) is
M i) = (= 7 {200) + 2,0+ 28, O+ N - )52 (9)
where

8.(0)=62(1-622.V,'7, )

uus o ussTus

g2i(é) = ()_(ir -G X, )[ (Ein;‘}i;s]'Xis )_1 (‘)—(ir - éitXis)

8(0) = r{(VE )V, (Ve ) C )}



with & =627, Vé =a¢,/06=(0¢/36%,0¢,/a57) and C(9) is the estimated
asymptotic covariance matrix of 0 (i.e. the inverse of the observed information
matrix for 6). For more details see Rao (2003, pp. 107-110).

Under the population level linear mixed model (3), the sample weights that define

the EBLUP for the population total of Y are

A

Wessor = OV, pmup) = 1, + ' (X', = X1, )+ (1, - AV X )V, 1 (6)

s ANy Sror

where H = (EiX’V“XiS )_I(EiXif‘,\Z;‘). See Royall (1976). The model-based direct

is ' iss

estimator (MBDE, see Chambers and Chandra, 2006) of the i small area mean is

then defined as

Z,MBD = E]’Er,- Wj,EBLUPyj/EjESi Wj,EBLUP : (7)
A robust estimator (Chandra and Chambers, 2005; Royall and Cumberland, 1978) of

the mean squared error of the MBDE (7) is
2 2 S 2
M(Yi,MBD) = V(Yi,MBD) + {b(Yi,MBD)} (8)

where V(Yii,MBD) = E Ay _x;/g’y, with A, = N;? {af +(N, —n)(n, - 1)—1} and
-
a, =(E wk) (N,.wj—ES wk), is the estimate of the prediction variance of the

MBDE, and b(Y, ) = (X, ,.sp — X,)' B is the estimate of its prediction bias. Here

A

X, usp denotes the weighted average of the sample values of the auxiliary variables in

area i based on the EBLUP weights (6).



2.2 Models with Spatial Dependence
In order to take into account the correlation between neighbouring areas we consider
the use of spatial models for random area effects (Cressie, 1991). In particular, we
consider a linear regression model with spatial dependence in the error structure. In
particular, we assume a Simultaneous Autoregressive (SAR) error process (Anselin,
1992), where the vector of random area effects v = (v,) satisfies

v=pWv+u. 9)
Here p is a spatial autoregressive coefficient, W is a proximity matrix of order m and
u~N(,0.1,). Since v=(-pW)'u with E(u) =0 and Var(u)=o.1,, we have
E(Wv)=0 and Var(v)=o.[(I, - pW)(I, - pW")]"' = G. The W matrix describes how
random effects from neighbouring areas are related, whereas p defines the strength
of this spatial relationship. The simplest way to define W is as a contiguity matrix.
That is, the elements of W take non-zero values only for those pairs of areas that are
adjacent. Generally, for ease of interpretation, this matrix is defined in row-
standardized form; in which case p is called the spatial autocorrelation parameter
(Banerjee et al., 2004). Formally, the element w, of a contiguity matrix takes the
value 1 if area j shares an edge with area k and 0 otherwise. In row-standardised form
this becomes

{d}l if j and k are contiguous
k=

0 otherwise
where d; is the total number of areas that share an edge with area j (including area j

itself). Contiguity is the simplest but not necessarily the best specification of a spatial
interaction matrix. It may be more informative to express this interaction in a more

detailed way, e.g. as some function of the length of shared border between



neighbouring areas or as a function of the distance between certain locations in each
area. Furthermore, the concept of neighbours of a particular area can be defined not
just in terms of contiguous areas, but also in terms of all areas within a certain radius
of the area of interest. In the empirical evaluations reported later in this paper,
however, we used simple contiguity (row-standardized) to define the spatial
interaction between different areas.
In order to define the EBLUP in this situation, we replace (3) by a linear mixed
model of form
Y=XB+Zv+e. (10)
Here the vector v is an m-vector of spatially correlated area effects that satisfy the
SAR model (9), with Var(e)=o’l, and Var(v)=G. This model can then be
rewritten as
Y=XB+ZU-pW) 'u+e. (11)
It follows that the covariance matrix of Y is Var(Y)=V = o’1, + ZGZ'. In practice,
the vector of parameters 6= (o.,07,p) is unknown. Replacing it with an

A2 A2

asymptotically consistent estimator 0 = (62,62,p), and assuming that (11) holds, the

spatial-EBLUP (SEBLUP) for the i" small area mean Y, is

7, seman = £, + (A= (XL + mi5) (12)
where f* = (XjVX;‘XS )_I(Xi\%;llc,) is the empirical BLU estimator of B under (11),
m, is the m-vector (0,0,0,...,1,...,0,0)" with the 1 in the i position and

9 = GAZE‘}V:I (YY - Xv/;;s)



Here G = 65[(1,n - pw(1, - ﬁW’)]_l and V., =621, +Z.62((I, - pW)(U,, - pW) "' Z!
When all random effects are normally distributed, the parameter vector 6 can be
estimated via maximum likelihood (ML) as well as restricted maximum likelihood
(REML) (Pratesi and Salvati, 2005; Singh et al., 2005; Petrucci and Salvati 2006).
Numerical approximations to either the ML or REML estimators 62,57 and p can be
obtained via a two-step procedure. At the first step, the Nelder-Mead algorithm
(Nelder and Mead, 1965) is used to approximate these estimates. The second step then
uses these approximations as starting values for a Fisher scoring algorithm. This is
necessary because the log-likelihood function has multiple local maxima (Pratesi and
Salvati, 2005). In empirical studies reported in Section 3 we carried out parameter
estimation via REML using the Ime function in the R environment (Bates and
Pinheiro, 1998).

Following the same approach as in Prasad and Rao (1990), an approximately

unbiased estimator of the MSE of the SEBLUP (12) is given by
MV, gii) = (= £ {200+ 880 @)+ 26 @)+ N1 - )67 (13)
where
0@ =(X, -ax,) (xvix, ) (X, -ax,)
g0 =1r {(Véi W_(VE, )’é(é)}

with & =V'Z,Gm, and V¢ =a¢ /a6 =(a¢,/962,0¢,/062,0¢,/ap) . Here, after

dropping ‘hats’ for the sake of clarity,

10



ac, WV]'2G [, (G (aV,
- 90 mi_{‘/sszk MY 5J G}

u u

={VS;‘ZS(;2) (V' sy ZG}

-V.'zp{1,-ZV, ZG}

s 8s

2 t\1-1
where p = 2% 2 99l = PWIL, = WO _ 17 _ pwyr — pw*)I™ and

0, a0,
9 0021, + Z o[, - pW)U, - pW)] ' Z!
V. _ {021, + 2,021 oW, =p ‘}=ZSDZ§.
a0, 0,
Similarly
dc, IVI'ZG G v
sz SS . l_ s;lZS( z\lmi+( Z\ZGm
a0, 00, l\aoeJ l\ op ,J
| —V' Ve —2V 3 Z,Gm
k Yool )T
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since G=o.D and aV = [ . Finally

= {V;ZSA -V (%) VY;‘ZSG}m,-

-V,'zA{l,-ZV.ZG}m,.

s 8s

2 t
Here Ve _ a{o" L+ Z“'GZ“'} =Z, (%) Z; =Z,AZ;, with

op ap

4226 _ oj{aD\ = -02(D£D\ = 202D(pWW' =W )D
oo “\op o )

-1 t
a;) _ad pWa)(I PWOL_ 2(pWW' =W ). We note that C(6)=1"'(0) is
P P

since

still the estimated asymptotic covariance matrix of 6 defined by the inverse of the
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information matrix 1(63) (Rao, 2003, pp. 107-110), with the (i, j)" element of 1(63)

av.\ (ov.\] . __{ . 1}
ae,.)PLaej)}W'th P=V{I - X (XVIX) XV

s 8§ s §§

) 1 (
enby —#rlP
giv yzr{ l\

Turning now to implementation of model-based direct estimation under (11) we
note that the EBLUP sample weights (6) depend on the structure of the random area
effects in the mixed model (3) only via the their sample and population covariance

structure. Consequently, extension to more complex covariance structures requires
only that V' and V. be recomputed under these more complex models. When (11)

holds, the corresponding spatial EBLUP weights wg,,, ,, = (W, g5,,,) are therefore
still given by (6), but where now V:'= {6513 +Z.0., - pW)HU,, - ,?)W’)]"Zj}_l
and V. =G2Z[(I, - pW)(, - pW")]"' Z'. The spatial-MBDE (denoted by SMBDE)

of the i” small area mean Y, and the corresponding estimator of its mean squared

error are then given by (7) and (8) respectively, with the weights (6) used there

replaced by the spatial EBLUP weights wg,,, ,» defined above.

3. Empirical Evaluations
In this section we use simulation to illustrate the performance of the four different
methods of SAE discussed in the previous section. These are the EBLUP and MBDE
under the linear mixed model (3) with spatially independent area effects (see section
2.1) and the SEBLUP and SMBDE under the linear mixed model (10) with spatially
dependent area effects (see section 2.2). We computed three measures of estimation
performance using the estimates generated in our simulations. These are the relative
bias (RB) and the relative root mean squared error (RRMSE), both expressed as

percentages, of estimates of the small area means and the coverage rate of nominal 95

12



per cent confidence intervals for these means (for more details see Chandra and

Chambers, 2005).

We carried out two types of simulation studies. The first used real data and design-
based simulation to evaluate the performance of these methods in the context of a real
population and realistic sampling methods. The second used model-based simulation
to generate artificial populations, from which samples were then taken. The sample
data obtained in each case were then used to contrast the performance of different
methods of small area estimation. The populations underpinning the design-based
simulations were based on two different data sets:

0] The ISTAT farm structure survey. This is a sample of 529 farms from the
farm structure survey in Tuscany carried out by ISTAT. Here we used these
sample farms to generate a population of N = 22977 farms by sampling with
replacement from the original sample of 529 farms with probabilities
proportional to their sample weights. We drew 1000 independent stratified
random samples from this (fixed) population, with total sample size in each
draw equal to the original sample size (529) and with the small areas of
interest defined by the 23 Local Economy Systems (LESs) of the North
Tuscany region. Sample sizes within these areas were fixed to be the same as
in the original sample. Note that these varied from 4 to 48. Our aim was to
estimate average olive production (quintals) in each LES using utilized olive
surface (hectares) as the auxiliary variable. The results from this simulation
are set out in Tables 1 and 2.

(i) The Environmental Monitoring and Assessment Program (EMAP) survey.
The data, on which this population was based, was provided by the Space-

Time Aquatic Resources Modelling and Analysis Program (STARMAP) at

13



Colorado State University. It consists of 551 measurements, taken between
1991 and 1996, from a sample of 349 of the 21,026 lakes located in the
north-eastern United States. Here we define lakes grouped by 6-digit
Hydrologic Unit Code (HUC) as our small areas of interest. Since three
HUCS had sample sizes of one, these were combined with adjacent HUCS,
leading to a total of 23 small areas. Sample sizes in these 23 areas varied
from 2 to 45. A (fixed) population of size N = 21028 was then defined by
sampling N times with replacement from the sample of 349 units, with
probability proportional to a unit’s sample weight. A total of 1000
independent stratified random samples of the same size as the original
sample were selected from this simulated population, with HUC sample sizes
fixed to be the same as in the original sample. The survey variable Y in this
case was the Acid Neutralizing Capacity (ANC) of a lake - an indicator of
the acidification risk of water bodies in water resource surveys - with
elevation of the lake as the auxiliary variable X. Results from this simulation
are set out in Tables 3 and 4.

In our model-based simulations we again used the data from the EMAP survey, but
this time based the population model underlying our simulations on variance
components obtained by fitting a linear mixed effects model to these data. In
particular, we generated a population of size N = 21028, with the same small area
(HUC) population sizes as before. We used a sample size n = 349 and constrained
the small area sample sizes to be the same as in the EMAP survey. These population
and sample sizes were kept fixed in all our simulations. The model used to generate

the population corresponded to a nested error regression model with random area
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effects for neighbouring areas distributed according to a SAR spatial correlation
structure. This was of the form

Yy = 1000 - 3xij +v, +e;
where the x; values were generated from the uniform distribution on [10, 700],

v=u)=(,-pW)'u was an m-vector of spatially correlated area effects with

u=(u;) an m-vector of independent realisations from N(0,0>) and the e, were

individual error terms distributed as N(0,o07). Using estimates derived from the linear
mixed model fitted to the original EMAP survey data, we put o = 265000 and

o’ = 125000, with intra area effect, y = o> /(0> + 07) = 0.68 . The row standardised

SAR neighbourhood structure matrix W used in the simulations was kept fixed and
corresponded to contiguous HUCs in the EMAP survey data set. Population data for
four values of p (0.05, 0.25, 0.50 and 0.75) were generated and simple random
samples selected from each small area, with a total of 1000 combinations
independently simulated. The results from this simulation are set out in Table 5.

Table 1 shows the relative bias and relative root mean squared error for small area
estimates calculated using the four different methods of small area estimation
(EBLUP, MBDE, SEBLUP and SMBDE) based on repeated sampling from the
simulated Northern Tuscany population. Corresponding coverage rates for nominal
95% intervals for area means generated by these four approaches are set out in Table
2. Tables 3 and 4 show analogous results for repeated sampling from the simulated
EMAP population. Note that the estimated value of the spatial autocorrelation

parameter p in the original ISTAT farm survey data was quite small (o = 0.025),
while for the EMAP survey data this estimate was considerably larger (p = 0.50).

Table 5 shows the average values of relative bias and relative root mean squared error,

15



both expressed in percentage terms, and average coverage rates for the different
methods generated under the model based simulations. All averages in Table 5 are
over the 23 small areas of interest.

The results set out in Table 1 show that both EBLUP and SEBLUP are very
unstable in a few small areas (e.g. regions 3, 6 and 14), due mainly to there being little
or no variability in the variable of interest in these areas. In such situations, the
SEBLUP seems to perform worse than the EBLUP. In contrast, the MBDE and
SMBDE methods appear unaffected by such behaviour. Since the average values of
performance measures are influenced by outlying estimates, we compare different
methods using the median values of their area-specific performance measures. From
Table 1 we see that the median relative bias of MBDE is smaller than that of EBLUP.
In contrast, the median relative root mean squared error of EBLUP is smaller than that
of MBDE. The median relative bias and median relative root mean squared error of
SEBLUP is marginally smaller than that of EBLUP. However, these values are almost
same for MBDE and SMBDE. Table 2 shows that average coverage rates increase
when estimation methods are based on a spatial model (SEBLUP and SMBDE).

The results in Table 3 show that in region 1 (with sample size 2) all methods are
very unstable, while in regions 2 and 3 (both with samples of size 3) EBLUP and
SEBLUP are unstable. As noted earlier, EBLUP in these regions is affected by lack of
variability in the data whereas MBDE is influenced by the presence of outlying values
(see Chambers and Chandra, 2006). Although the estimated spatial autocorrelation is
relatively higher for the EMAP data compared to the Northern Tuscany data, the
simulation results for the EMAP data (Tables 3 and 4) are similar to those for the
Northern Tuscany data (Tables 1 and 2). In both cases we see that the overall gain

from introduced spatial dependence into small area estimation is rather small.
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Finally, in Table 5 we show the performance of the different methods when
population (and sample) data follow the assumed model. Here, we considered four

different values (o = 0.05,0.25,0.50,0.75) for the spatial autocorrelation parameter p

and a W matrix that characterises the neighbourhood structure of the small areas in
terms of the contiguity characteristics of the sampled lakes in the EMAP data. As in
Chambers and Chandra (2006) we note that when the assumed model is correct,
estimation via EBLUP dominates estimation via MBD. These results also show that in
this case the gain in small area estimation from taking account of the spatial
correlation of random effects remains marginal for the MBD estimator for all values

of p and only improves the performance of the EBLUP for large values of this

parameter.

4. Concluding Remarks

This paper presents results from an initial exploration of the use of unit level models
with spatially correlated area effects in small area estimation. In particular, we show
how the EBLUP and MBD methods of estimation can be adapted for this situation.
However, our empirical results, based both on real data as well as on simulated data
under the spatial model, indicate that the gains from inclusion of spatial structure in
small area estimation do not appear to be large. This is especially true for model-
based direct estimation based on this structure (SMBDE), where the extra spatial
information seems to have very little impact on the distribution of the SEBLUP
weights that characterise this method of estimation.

There are many issues that still need to be explored in the context of using unit
level models with spatially distributed area effects in small area estimation. The most

important of these is identification of situations where inclusion of spatial information
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does have an impact, and the most appropriate way of then including this spatial
information in the small area modelling process. An important practical issue in this
regard relates to the computational burden in fitting spatial models to survey data.
With the large data sets common in survey applications it can be extremely difficult to
fit spatial models without access to high-end computational facilities. Although spatial
information is becoming increasingly available in environmental, epidemiological and
economic applications, there has been comparatively little work carried out on how to
efficiently use this information. A further issue relates to the link between the survey
data and the spatial information. In this paper we have assumed that all areas have
sample units. In many situations this is not true, with survey data available only from
a sample of areas. However, we often have spatial information for all areas. Saei and
Chambers (2005) have explored the use of this spatial information in order to
efficiently estimate the characteristics of the so-called ‘out of sample’ areas. Finally,
we note that the spatial models considered in this paper have been based on
neighbourhoods defined by contiguous areas. It is easy to see that this is just one way
of introducing spatial dependence between area effects, and several other options

remain to be investigated.
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Table 1 Relative Bias and Relative Root Mean Squared Errors generated by design
based simulations using Northern Tuscany data. Regions are arranged in order of
increasing population size.

Relative Bias (%)

Relative Root Mean Squared Error (%)

Regions | EBLUP SEBLUP MBDE SMBDE | EBLUP SEBLUP MBDE SMBDE
1 411 10.39 -3.03 -3.45 13.67 1741 4861 47.63

2 32.18 70.11 0.31 0.31 45.35 90.33 31.16 31.16

3| 278.07 415.79 1.34 1.34 ] 302.70 463.39  20.76 20.76

4 64.39 93.43 0.01 0.01 69.06 112.79  38.50 38.50

5 -4.90 -1.72 -1.23 -1.25 13.28 1483  22.53 22.54

6 70.18 71.76 -9.47 -11.35 93.05 93.50 34.92 34.08

7 36.94 44.49 -0.13 -0.17 51.99 57.17 2131 21.29

8 9.08 1.79 -1.43 -1.84 21.91 2240  36.36 36.22

9 24.60 24.53 -0.73 -1.22 31.20 3142  37.50 37.25

10 41.54 42.31 -2.13 -2.66 60.12 60.31  47.03 46.75

11 11.07 12.94 -0.42 -0.53 17.00 18.34 1427 14.19

12 -3.90 -9.87 0.18 0.17 13.10 16.94  19.05 19.05

13 ] -15.11 -14.54 -0.47 -0.67 28.68 28.49  35.80 35.66

141 116.59 140.97 1.14 1.13 ] 128.10 152.73  32.85 32.84

15 5.25 1.26 0.49 0.35 11.52 13.60 3249 32.27

16 -8.17 -1.73 -1.73 -2.47 21.48 2153 2543 25.09

17 8.53 7.52 0.60 0.52 18.01 1758  23.87 23.80

18 7.46 8.38 -1.59 -1.95 19.63 19.84 2351 23.35

19 5.29 9.43 0.69 0.50 15.36 1785 3153 31.44

20 9.81 6.74 -0.02 -0.03 21.61 20.80 16.48 16.48

21 -5.89 -10.25 0.76 0.61 30.53 33.84  42.26 42.23

22 -9.14 -9.67 0.31 0.15 17.71 1782  22.26 22.27

23| -11.42 -12.33 0.49 0.46 20.62 21.02  23.52 23.53
Mean 28.98 38.68 -0.70 -0.96 46.33 59.30  29.65 29.49
Median 8.53 8.38 -0.02 -0.03 21.61 2153 31.16 31.16
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Table 2 Coverage rates generated by design based simulations using Northern
Tuscany data. Intervals are defined by the small area mean estimate plus or minus
twice their corresponding estimated root mean squared error. Regions are arranged in
order of increasing population size.

Coverage rates

Regions EBLUP SEBLUP MBDE SMBDE
1 1.00 1.00 1.00 1.00
2 1.00 1.00 0.99 0.99
3 1.00 1.00 1.00 1.00
4 1.00 1.00 0.97 0.97
5 1.00 1.00 0.95 0.95
6 0.50 0.51 1.00 1.00
7 1.00 1.00 1.00 1.00
8 1.00 1.00 0.97 0.97
9 0.98 0.99 0.98 0.98
10 0.99 1.00 0.97 0.97
11 1.00 1.00 0.99 0.99
12 1.00 1.00 0.94 0.94
13 0.65 0.68 0.91 0.91
14 1.00 1.00 1.00 1.00
15 1.00 1.00 0.99 0.99
16 0.49 0.50 0.91 0.91
17 1.00 1.00 0.97 0.98
18 0.98 0.98 0.98 0.98
19 1.00 1.00 0.97 0.98
20 1.00 1.00 1.00 1.00
21 0.98 0.98 0.63 0.63
22 0.91 0.93 0.93 0.93
23 0.99 0.99 0.92 0.92
Mean 0.93 0.94 0.95 0.96
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Table 3 Relative Bias and Relative Root Mean Squared Errors generated by design
based simulations using EMAP data. Regions are arranged in order of increasing
population size.

Relative Bias (%)

Relative Root Mean Squared Error (%)

Regions | EBLUP SEBLUP MBDE SMBDE | EBLUP SEBLUP MBDE SMBDE
1| 173.18 190.85 -8.85 -8.72 | 224.28 236.92 263.32  263.46

2| -17.18 -96.23 1.52 1.60 | 160.02 189.91  35.26 35.34

3 (104489 1166.54 0.14 0.14 ] 1056.36  1188.52  37.61 37.61

4 19.86 20.07 0.00 0.00 24.48 24.79 9.61 9.61

5| -12.08 -12.28 -0.39 -0.39 14,52 1470 1187 11.87

6 3.24 24.29 -0.32 -0.31 64.38 69.67 31.95 31.94

7 -0.28 -2.50 1.56 1.62 42.42 42.11  51.34 51.35

8 5.49 4.73 0.28 0.27 29.70 2893 3324 33.24

9 -8.07 -8.49 -0.08 -0.07 17.09 1716  16.56 16.56

10 0.81 -0.25 0.94 1.01 22.54 2234  27.23 27.24

11 7.19 451 0.51 0.57 35.00 3451 30.32 30.38

12 -4.40 -5.07 -0.70 -0.66 21.48 2148 2531 25.31

13 -3.44 -0.23 0.87 0.87 32.10 31.77  34.46 34.47

14 3.07 4.10 0.29 0.48 23.90 2418 2251 22.51

15 -1.20 -1.09 0.30 0.33 11.65 1159 1248 12.47

16 22.12 25.14 -0.17 -0.18 49.42 50.92  38.06 38.06

17 4.15 2.53 0.22 0.25 16.44 16.22 1121 11.22

18 -0.86 -3.29 0.36 0.36 10.28 10.83 7.25 7.25

19 0.38 151 1.93 212 15.50 1557 2047 20.52

20 -1.30 -2.10 -0.57 -0.58 17.36 1743  16.83 16.83

21 2.15 1.49 1.17 1.27 12.25 1216 14.96 14.98

22 4.85 2.90 -0.02 -0.03 15.82 1529  13.83 13.83

23 -0.41 0.49 0.73 0.88 12.64 12.64  15.23 15.27
Mean 54.01 57.29  12.00 0.04 83.90 91.72  33.95 33.97
Median 0.81 1.49 0.28 0.27 22.54 22.34 2251 22.51
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Table 4 Coverage rates generated by design based simulations using EMAP data.
Intervals are defined by the small area mean estimate plus or minus twice their
corresponding estimated root mean squared error. Regions are arranged in order of

increasing population size.

Coverage rates

Regions EBLUP SEBLUP MBDE SMBDE
1 1.00 1.00 0.98 0.99
2 1.00 1.00 1.00 1.00
3 1.00 1.00 1.00 1.00
4 1.00 1.00 1.00 1.00
5 1.00 1.00 1.00 1.00
6 1.00 1.00 1.00 1.00
7 0.83 0.82 0.86 0.86
8 0.98 0.98 0.62 0.64
9 0.60 0.60 1.00 1.00
10 0.92 0.92 0.95 0.96
11 1.00 1.00 1.00 1.00
12 0.77 0.77 0.96 0.96
13 0.74 0.76 0.72 0.70
14 1.00 1.00 1.00 1.00
15 0.75 0.75 0.98 0.98
16 1.00 1.00 1.00 1.00
17 1.00 1.00 1.00 1.00
18 1.00 1.00 1.00 1.00
19 1.00 1.00 0.96 0.97
20 0.78 0.77 0.97 0.97
21 1.00 1.00 1.00 1.00
22 1.00 1.00 1.00 1.00
23 0.85 0.85 0.96 0.95
Mean 0.92 0.92 0.95 0.96
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Table 5 Average Relative Bias (ARB,%), average Relative Root Mean Squared Error
(ARRMSE, %) and average Coverage Rate (ACR) generated by model-based
simulations. All averages are over the 23 small areas of interest.

p

Criteria Methods 0.05 0.25 0.50 0.75
EBLUP -8.22 -4.96 -25.56 45.84

ARB. 0 SEBLUP -4.51 -5.13 -20.35 41.09

’ MBDE -35.25 5.02 9.80 69.16

SMBDE -35.12 5.03 9.64 68.74

EBLUP 448.91 305.26 258.18 932.95

ARRMSE. % SEBLUP 451.18 305.31 256.38 911.47
MBDE 921.80 622.98 531.09 1924.81

SMBDE 921.71 622.97 531.13 1922.11

EBLUP 0.95 0.94 0.95 0.96

ACR SEBLUP 0.95 0.94 0.95 0.95
MBDE 0.98 0.98 0.98 0.98

SMBDE 0.98 0.98 0.98 0.98
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