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ABSTRACT 
 

Linear mixed models underpin many small area estimation (SAE) methods. In this paper 

we investigate SAE based on linear models with spatially correlated small area effects 

where the neighbourhood structure is described by a contiguity matrix. Such models 

allow efficient use of spatial auxiliary information in SAE. In particular, we use 

simulation studies to compare the performances of model-based direct estimation 

(MBDE) and empirical best linear unbiased prediction (EBLUP) under such models. 

These simulations are based on theoretically generated populations as well as data 

obtained from two real populations (the ISTAT farm structure survey in Tuscany and the 

US Environmental Monitoring and Assessment Program survey). Our empirical results 

show only marginal gains when spatial dependence between areas is incorporated into 

the SAE model. 
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Summary 

Linear mixed models underpin many small area estimation (SAE) methods. In this 

paper we investigate SAE based on linear models with spatially correlated small area 

effects where the neighbourhood structure is described by a contiguity matrix. Such 

models allow efficient use of spatial auxiliary information in SAE. In particular, we 

use simulation studies to compare the performances of model-based direct estimation 

(MBDE) and empirical best linear unbiased prediction (EBLUP) under such models. 

These simulations are based on theoretically generated populations as well as data 

obtained from two real populations (the ISTAT farm structure survey in Tuscany and 

the US Environmental Monitoring and Assessment Program survey). Our empirical 

results show only marginal gains when spatial dependence between areas is 

incorporated into the SAE model. 
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1. Introduction 

Estimation of population characteristics for sub-national domains (or smaller regions) 

is an important objective for statistical surveys. In particular, geographically defined 

domains, e.g. regions, states, counties, wards and metropolitan areas can be of 

interest. Estimates for these domains based on the usual design-based approach to 

survey sampling inference are typically referred to as direct estimates in the literature. 

However, sample sizes are typically small (or even zero) within the domains/areas of 

interest, leading to large sampling variability for these direct estimators. An 

alternative approach that is now widely used in small area estimation is the so-called 

indirect or model-based approach. This uses auxiliary information for the small areas 

of interest and has been characterised in the statistical literature as ‘borrowing 

strength’ from the relationship between the target variables and the auxiliary 

information. A flexible and popular way of borrowing strength is based on the use of 

linear mixed models with area specific random effects, with estimation and inferences 

typically carried out using empirical best linear unbiased prediction (EBLUP - see 

Rao, 2003). An alternative approach, discussed in Chandra and Chambers (2005), is 

based on the use of model-based direct estimation (MBDE) within the small areas. In 

this case an estimate for a small area of interest corresponds to a weighted linear 

combination of the sample data for that area, with weights based on a population level 

version of the linear mixed model. These weights ‘borrow strength’ via this model, 

which includes random area effects. Provided the assumed small area model is true, 

the EBLUP is asymptotically the most efficient estimator for a particular small area. 

In practice however the ‘true’ model for the data is unknown and the EBLUP can be 

inefficient under misspecification. In such circumstances, Chandra and Chambers 

(2005) note that MBDE offers an alternative to potentially unstable EBLUP. In 
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particular, MBDE is easy to implement, produces sensible estimates when the sample 

data exhibit patterns of variability that are inconsistent with the assumed model (e.g. 

contain too many zeros) and generates robust MSE estimates. 

Model-based methods of small area estimation (SAE) are often based on assuming 

a linear mixed model, with area-specific random effects to account for between area 

variation beyond that explained by auxiliary variables included in the fixed part of the 

model. Although it is customary to assume that these random area effects are 

independent, in practice most small area boundaries are arbitrary and there appears to 

be no good reason why population units just one side of such a boundary should not 

generally be correlated with population units just on the other side. In particular, it is 

often reasonable to assume that the effects of neighbouring areas (defined, for 

example, by a contiguity criterion) are correlated, with the correlation decaying to 

zero as the distance between these areas increases (Pratesi and Salvati, 2005). That is, 

small area models should allow for spatial correlation of area random effects. See 

Cressie (1991). 

In this paper we consider linear unit level small area models (Battese et al., 1988) 

and we extend MBDE and EBLUP for SAE to account for spatial correlation between 

the small areas. We then contrast the performance of these two approaches via 

empirical studies. Our aim in doing so is to explore how much efficiency is gained by 

incorporating spatial correlation into SAE. The paper is organized as follows: In 

section 2 we review MBDE and EBLUP for SAE under random effect models with 

spatially independent area effects and discuss the extensions of these techniques to 

account for spatial dependence between the small areas. We define the resulting 

estimators for the small area means and their mean squared error estimators. In 

Section 3 we describe the design of our simulation studies and present empirical 
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results. Besides using simulated population and sample data, we use two real data sets 

from the ISTAT farm structure survey (farm data) in Northern Tuscany and the 

Environmental Monitoring and Assessment Program (EMAP) survey of lakes in the 

north-east of the USA. Finally, in section 4 we provide some concluding remarks and 

identify further avenues of research. 

 

2. Small Area Estimation under Linear Models with Random Area Effects 

2.1 Models with Spatially Independent Effects 

To begin, let yij  denote the value of the variable of interest for the j th  
 
(
 
j = 1,K,Ni ) 

unit in small area i ( i = 1,K,m ) and let Xij  denote the vector of values of the p unit 

level auxiliary variables associated with this unit. We consider a nested error 

regression model of form 

yij = Xij
t
+ ui + eij  (1) 

where  is a vector of p unknown fixed effects, ui  is the random area effect  

associated with small area i, assumed to have mean zero and variance u
2 , and eij  is 

an individual level random error with mean zero and variance e
2 . The two error 

terms are assumed to be mutually independent, both across individuals as well as 

across areas. In addition, it is often assumed that they are normally distributed. In 

matrix notation, (1) is expressed as 

Yi = Xi + ui1Ni + ei  (2) 

where Yi = (yi1 ,....,yiNi )
t , Xi = (Xi1,...,XiNi

)t  is a Ni p  matrix and ei = (ei1,...,eiNi )
t . 

Here Ni  is the number of population units in small area i. The covariance matrix of 

Yi  is Var(Yi ) = Vi = e
2INi + u

21Ni1Ni
t , which depends on the vector = ( u

2 , e
2 )t  of 
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variance components of the model. Here 1Ni  is the unit vector of length Ni  and INi  is 

the identity matrix of order Ni . Assuming (2) holds, the population mean of Y in area 

i is Yi = Xi + ui + ei , where Xi = Ni
1 x jj=1

Ni
 is assumed known. 

Grouping the area-specific models (2) over the population leads to the population 

level model 

 Y  = X  + Zu + e  (3) 

where Y = (Y1
t ,…,Ym

t )t , X = (X1
t ,...,Xm

t )t , Z = diag(Zi = 1Ni ;1 i m) , 

u = (u1,…,um )
t  and e = (e1

t ,…,em
t )t . Since different areas are independent, the 

covariance matrix of Y has block diagonal structure given by V = diag(Vi;1 i m) . 

We assume that X has full column rank p. In practice the variance components that 

define V are unknown and can be estimated from the sample data using methods 

described, for example, in Harville (1977). We denote these estimates by 

ˆ = ( ˆ u
2 , ˆ e

2 )t  and put a ‘hat’ on any quantity where these estimates are substituted for 

actual values. Thus V̂ = diag(V̂i;1 i m) , with V̂i = ˆ e
2INi + ˆ u

2ZiZi
t
. 

Now consider the decomposition of Y, X, Z and V into sample and non-sample 

components so that Xs  is the n p  matrix of sample values of the auxiliary variables, 

Zs  is the corresponding n m  matrix of sample components of Z and Vss  is the n n  

covariance matrix associated with the n sample units that make up the n 1  sample 

vector Ys . A subscript of r is used to denote corresponding quantities defined by the 

N n  non-sample units, with Vrs  denoting the (N n) n  matrix defined by 

Cov(Yr ,Ys ) . In what follows we use 1N , 1s  and 1r  to denote vectors of 1s of 

dimension N, n and N n  respectively, with IN , Is  and Ir  denoting identity matrices 

of the same order. We use similar notation to denote restriction to small area level by 
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introducing an extra subscript of i to denote the small area. For example, si  

corresponds to the set of ni  sample units in area i, ri  the corresponding set of Ni ni  

non-sampled units, with associated variances and covariances Viss = e
2Iis + u

2ZisZis
t  

and Visr = u
2ZisZir

t . 

Assuming (3) holds, the empirical best linear unbiased predictor (EBLUP) for the 

ith  small area mean Yi  is 

Ŷi,EBLUP = fiYis + (1 fi ) Xir
t ˆ + ˆi (Yis Xis

t ˆ){ }  (4) 

where ˆ = Xis
t V̂iss

1Xisi( )
1

Xis
t V̂iss

1Yisi( )  is the empirical best linear unbiased 

estimator (EBLUE) of , fi = Ni
1ni , ˆi = ˆ u

2 ˆ
u
2 + ni

1 ˆ
e
2( )

1
 is the shrinkage factor, 

Yis = ni
1 yjsi

 and Xis = ni
1 x jsi

 are the sample means of Y and X for area i, while 

Xir = (Ni ni )
1(NiXi niXis )  is the corresponding mean of X for the Ni ni  non-

sampled units in the area. An approximately unbiased estimator of the MSE of (4) 

under (3) is 

M (Ŷi,EBLUP ) = (1 fi )
2 g1i (

ˆ) + g2i (
ˆ) + 2g3i (

ˆ){ } + Ni
1(1 fi ) ˆ e

2  (5) 

where  

g1i (
ˆ) = ˆ u

2 1- ˆ u
2Zis

t V̂iss
-1Zis( )  

g2i (
ˆ) = Xir ĉi

t Xis( )
t

Xis
t V̂iss

-1Xisi( )
-1

Xir ĉi
t Xis( )  

g3i (
ˆ) = tr ( ĉi )Viss ( ĉi )

t Ĉ( ˆ){ }  
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with ĉi = ˆ u
2V̂iss

-1Zis , ĉi = ĉi
ˆ = ĉi ˆ

u
2 , ĉi ˆ

e
2( )

t
 and Ĉ( ˆ)  is the estimated 

asymptotic covariance matrix of ˆ  (i.e. the inverse of the observed information 

matrix for ). For more details see Rao (2003, pp. 107-110). 

Under the population level linear mixed model (3), the sample weights that define 

the EBLUP for the population total of Y are 

wEBLUP = (wj ,EBLUP ) = 1s + Ĥ
t X t1N Xs

t1s( ) + Is Ĥ t Xs
t( )V̂ss1V̂sr1r  (6) 

where Ĥ = Xis
t V̂iss

1Xisi( )
1

Xis
t V̂iss

1

i( ) . See Royall (1976). The model-based direct 

estimator (MBDE, see Chambers and Chandra, 2006) of the ith  small area mean is 

then defined as 

Ŷi,MBD = wj ,EBLUPyjj si
wj ,EBLUPj si

. (7) 

A robust estimator (Chandra and Chambers, 2005; Royall and Cumberland, 1978) of 

the mean squared error of the MBDE (7) is 

M (Ŷi,MBD ) = v(Ŷi,MBD ) + b(Ŷi,MBD ){ }
2

 (8) 

where v(Ŷi,MBD ) = j (yj x j
t ˆ)2

si
, with j = Ni

2 aj
2 + (Ni ni )(ni 1) 1{ }  and 

aj = wksi
( )

1

Niwj wksi
( ) , is the estimate of the prediction variance of the 

MBDE, and b(Ŷi,MBD ) = (X̂i,MBD Xi )
t ˆ  is the estimate of its prediction bias. Here 

X̂i,MBD  denotes the weighted average of the sample values of the auxiliary variables in 

area i based on the EBLUP weights (6). 
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2.2 Models with Spatial Dependence 

In order to take into account the correlation between neighbouring areas we consider 

the use of spatial models for random area effects (Cressie, 1991). In particular, we 

consider a linear regression model with spatial dependence in the error structure. In 

particular, we assume a Simultaneous Autoregressive (SAR) error process (Anselin, 

1992), where the vector of random area effects v = (vi )  satisfies 

v = Wv + u . (9) 

Here  is a spatial autoregressive coefficient, W is a proximity matrix of order m and 

u N(0, u
2Im ) . Since v = (I W ) 1u  with E(u) = 0  and Var(u) = u

2Im , we have 

E(v) = 0  and Var(v) = u
2[(Im W )(Im W t )] 1 = G . The W matrix describes how 

random effects from neighbouring areas are related, whereas  defines the strength 

of this spatial relationship. The simplest way to define W is as a contiguity matrix. 

That is, the elements of W take non-zero values only for those pairs of areas that are 

adjacent. Generally, for ease of interpretation, this matrix is defined in row-

standardized form; in which case  is called the spatial autocorrelation parameter 

(Banerjee et al., 2004). Formally, the element wjk  of a contiguity matrix takes the 

value 1 if area j shares an edge with area k and 0 otherwise. In row-standardised form 

this becomes 

wjk =
dj

1 if j  and  k  are contiguous

0 otherwise
 

where dj  is the total number of areas that share an edge with area j (including area j 

itself). Contiguity is the simplest but not necessarily the best specification of a spatial 

interaction matrix. It may be more informative to express this interaction in a more 

detailed way, e.g. as some function of the length of shared border between 
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neighbouring areas or as a function of the distance between certain locations in each 

area. Furthermore, the concept of neighbours of a particular area can be defined not 

just in terms of contiguous areas, but also in terms of all areas within a certain radius 

of the area of interest. In the empirical evaluations reported later in this paper, 

however, we used simple contiguity (row-standardized) to define the spatial 

interaction between different areas. 

In order to define the EBLUP in this situation, we replace (3) by a linear mixed 

model of form 

 Y  = X  + Zv + e . (10) 

Here the vector v is an m-vector of spatially correlated area effects that satisfy the 

SAR model (9), with Var(e) = e
2IN  and Var(v) = G . This model can then be 

rewritten as 

Y = X + Z(I W ) 1u + e . (11) 

It follows that the covariance matrix of Y is Var(Y ) = V = e
2IN + ZGZ

t . In practice, 

the vector of parameters = ( u
2 , e

2 , )t  is unknown. Replacing it with an 

asymptotically consistent estimator ˆ = ( ˆ u
2 , ˆ e

2 , ˆ )t , and assuming that (11) holds, the 

spatial-EBLUP (SEBLUP) for the ith  small area mean Yi  is 

Ŷi,SEBLUP = fiYis + (1 fi ) Xir
t ˆ s + mi

t v̂( )  (12) 

where ˆ s = Xs
tV̂ss

1Xs( )
1
Xs
tV̂ss

1Ys( )  is the empirical BLU estimator of  under (11), 

mi  is the m-vector 
 
(0,0,0,K,1,K,0,0)t  with the  1 in the ith  position and 

v̂ = ĜZs
tV̂ss

1 Ys Xs
ˆ s( ) . 
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Here ˆ G = ˆ  u
2 Im

ˆ  W( ) Im
ˆ  W t( )[ ]

1
 and V̂ss = ˆ e

2In + Zs
ˆ
u
2[(Im ˆW )(Im ˆW t )] 1Zs

t . 

When all random effects are normally distributed, the parameter vector  can be 

estimated via maximum likelihood (ML) as well as restricted maximum likelihood 

(REML) (Pratesi and Salvati, 2005; Singh et al., 2005; Petrucci and Salvati 2006). 

Numerical approximations to either the ML or REML estimators ˆ u
2 , ˆ e

2  and ˆ  can be 

obtained via a two-step procedure. At the first step, the Nelder-Mead algorithm 

(Nelder and Mead, 1965) is used to approximate these estimates. The second step then 

uses these approximations as starting values for a Fisher scoring algorithm. This is 

necessary because the log-likelihood function has multiple local maxima (Pratesi and 

Salvati, 2005). In empirical studies reported in Section 3 we carried out parameter 

estimation via REML using the lme function in the R environment (Bates and 

Pinheiro, 1998). 

Following the same approach as in Prasad and Rao (1990), an approximately 

unbiased estimator of the MSE of the SEBLUP (12) is given by 

M (Ŷi,SEBLUP ) = (1 fi )
2 g1i

(s ) ( ˆ) + g2i
(s ) ( ˆ) + 2g3i

(s ) ( ˆ){ } + Ni
1(1 fi ) ˆ e

2  (13) 

where 

g1i
(s ) ( ˆ) = mi

t Ĝ ĜZs
tV̂ss

1Ĝs( )mi  

g2i
(s ) ( ˆ) = Xir ĉi

t Xs( )
t
Xs
tV̂ss

1Xs( )
1
Xir ĉi

t Xs( )  

g3i
s ( ˆ) = tr ( ĉi )Vss ( ĉi )

t Ĉ( ˆ){ }  

with ĉi = V̂ss
1ZsĜmi  and ĉi = ĉi

ˆ = ĉi ˆ
u
2 , ĉi ˆ

e
2 , ĉi ˆ( )

t
. Here, after 

dropping ‘hats’ for the sake of clarity, 
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ci

u
2
=

Vss
1ZsG

u
2

mi = Vss
1Zs

G

u
2
+

Vss
1

u
2

ZsG mi

= Vss
1Zs

G

u
2

Vss
1 Vss

u
2
Vss

1 ZsG mi

= Vss
1ZsD Is Zs

tVss
1ZsG{ }mi

 

where D =
G

u
2
= u

2[(Im W )(Im W t )] 1

u
2

= [(Im W )(Im W t )] 1  and 

Vss

u
2
=

e
2Is + Zs u

2[(Im W )(Im W t )] 1Zs
t{ }

u
2

= ZsDZs
t . 

Similarly 

ci

e
2
=

Vss
1ZsG

e
2

mi = Vss
1Zs

G

e
2
mi +

Vss
1

e
2

ZsGmi

= Vss
1 Vss

e
2
Vss

1 ZsGmi

= u
2 Vss

1IsVss
1{ }ZsDmi

 

since G = u
2D  and 

Vss

e
2
= Is . Finally 

ci =
Vss

1ZsG mi = Vss
1Zs

G
mi +

Vss
1

ZsGmi

= Vss
1ZsA Vss

1 Vss
1

Vss
1ZsG mi

= Vss
1ZsA Is Zs

tVss
1ZsG{ }mi .

 

Here 
Vss =

e
2Is + ZsGZs

t{ }
= Zs

G
Zs
t = ZsAZs

t , with 

A =
G
= u

2 D
= u

2 D
D 1

D = 2 u
2D WW t W( )D  

since 
D 1

=
[(I W )(I W t )]

= 2 WW t W( ) . We note that Ĉ( ˆ) = I 1( ˆ)  is 

still the estimated asymptotic covariance matrix of ˆ  defined by the inverse of the 
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information matrix I( ˆ)  (Rao, 2003, pp. 107-110), with the (i, j)th  element of I( ˆ)  

given by 
1

2
tr P

Vss

i

P
Vss

j

 with P = Vss
1 Is Xs Xs

tVss
1Xs( )

1
Xs
tVss

1{ } . 

Turning now to implementation of model-based direct estimation under (11) we 

note that the EBLUP sample weights (6) depend on the structure of the random area 

effects in the mixed model (3) only via the their sample and population covariance 

structure. Consequently, extension to more complex covariance structures requires 

only that V̂ss
1  and V̂sr  be recomputed under these more complex models. When (11) 

holds, the corresponding spatial EBLUP weights wSEBLUP = (wj ,SEBLUP )  are therefore 

still given by (6), but where now V̂ss
1 = ˆ

e
2Is + Zs

ˆ
u
2[(Im ˆW )(Im ˆW t )] 1Zs

t{ }
1
 

and V̂sr = ˆ u
2Zs[(Im ˆW )(Im ˆW t )] 1Zr

t . The spatial-MBDE (denoted by SMBDE) 

of the ith  small area mean Yi  and the corresponding estimator of its mean squared 

error are then given by (7) and (8) respectively, with the weights (6) used there 

replaced by the spatial EBLUP weights wSEBLUP  defined above. 

 

3. Empirical Evaluations 

In this section we use simulation to illustrate the performance of the four different 

methods of SAE discussed in the previous section. These are the EBLUP and MBDE 

under the linear mixed model (3) with spatially independent area effects (see section 

2.1) and the SEBLUP and SMBDE under the linear mixed model (10) with spatially 

dependent area effects (see section 2.2). We computed three measures of estimation 

performance using the estimates generated in our simulations. These are the relative 

bias (RB) and the relative root mean squared error (RRMSE), both expressed as 

percentages, of estimates of the small area means and the coverage rate of nominal 95 
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per cent confidence intervals for these means (for more details see Chandra and 

Chambers, 2005). 

We carried out two types of simulation studies. The first used real data and design-

based simulation to evaluate the performance of these methods in the context of a real 

population and realistic sampling methods. The second used model-based simulation 

to generate artificial populations, from which samples were then taken. The sample 

data obtained in each case were then used to contrast the performance of different 

methods of small area estimation. The populations underpinning the design-based 

simulations were based on two different data sets: 

(i)  The ISTAT farm structure survey. This is a sample of 529 farms from the 

farm structure survey in Tuscany carried out by ISTAT. Here we used these 

sample farms to generate a population of N = 22977 farms by sampling with 

replacement from the original sample of 529 farms with probabilities 

proportional to their sample weights. We drew 1000 independent stratified 

random samples from this (fixed) population, with total sample size in each 

draw equal to the original sample size (529) and with the small areas of 

interest defined by the 23 Local Economy Systems (LESs) of the North 

Tuscany region. Sample sizes within these areas were fixed to be the same as 

in the original sample. Note that these varied from 4 to 48. Our aim was to 

estimate average olive production (quintals) in each LES using utilized olive 

surface (hectares) as the auxiliary variable. The results from this simulation 

are set out in Tables 1 and 2.  

(ii)  The Environmental Monitoring and Assessment Program (EMAP) survey. 

The data, on which this population was based, was provided by the Space-

Time Aquatic Resources Modelling and Analysis Program (STARMAP) at 
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Colorado State University. It consists of 551 measurements, taken between 

1991 and 1996, from a sample of 349 of the 21,026 lakes located in the 

north-eastern United States. Here we define lakes grouped by 6-digit 

Hydrologic Unit Code (HUC) as our small areas of interest. Since three 

HUCS had sample sizes of one, these were combined with adjacent HUCS, 

leading to a total of 23 small areas. Sample sizes in these 23 areas varied 

from 2 to 45. A (fixed) population of size N = 21028 was then defined by 

sampling N times with replacement from the sample of 349 units, with 

probability proportional to a unit’s sample weight. A total of 1000 

independent stratified random samples of the same size as the original 

sample were selected from this simulated population, with HUC sample sizes 

fixed to be the same as in the original sample. The survey variable Y in this 

case was the Acid Neutralizing Capacity (ANC) of a lake - an indicator of 

the acidification risk of water bodies in water resource surveys - with 

elevation of the lake as the auxiliary variable X. Results from this simulation 

are set out in Tables 3 and 4. 

In our model-based simulations we again used the data from the EMAP survey, but 

this time based the population model underlying our simulations on variance 

components obtained by fitting a linear mixed effects model to these data. In 

particular, we generated a population of size N = 21028 , with the same small area 

(HUC) population sizes as before. We used a sample size n = 349  and constrained 

the small area sample sizes to be the same as in the EMAP survey. These population 

and sample sizes were kept fixed in all our simulations. The model used to generate 

the population corresponded to a nested error regression model with random area 
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effects for neighbouring areas distributed according to a SAR spatial correlation 

structure. This was of the form 

yij = 1000 3xij + vi + eij  

where the xij  values were generated from the uniform distribution on [10, 700], 

v = (vi ) = (Im W ) 1u  was an m-vector of spatially correlated area effects with  

u = (ui )  an m-vector of independent realisations from N(0, u
2 )  and the eij  were 

individual error terms distributed as N(0, e
2 ) . Using estimates derived from the linear 

mixed model fitted to the original EMAP survey data, we put u
2
= 265000  and 

e
2
= 125000 , with intra area effect, = u

2 ( u
2
+ e

2 ) = 0.68 . The row standardised 

SAR neighbourhood structure matrix W used in the simulations was kept fixed and 

corresponded to contiguous HUCs in the EMAP survey data set. Population data for 

four values of  (0.05, 0.25, 0.50 and 0.75) were generated and simple random 

samples selected from each small area, with a total of 1000 combinations 

independently simulated. The results from this simulation are set out in Table 5. 

Table 1 shows the relative bias and relative root mean squared error for small area 

estimates calculated using the four different methods of small area estimation 

(EBLUP, MBDE, SEBLUP and SMBDE) based on repeated sampling from the 

simulated Northern Tuscany population. Corresponding coverage rates for nominal 

95% intervals for area means generated by these four approaches are set out in Table 

2. Tables 3 and 4 show analogous results for repeated sampling from the simulated 

EMAP population. Note that the estimated value of the spatial autocorrelation 

parameter  in the original ISTAT farm survey data was quite small ( ˆ = 0.025 ), 

while for the EMAP survey data this estimate was considerably larger ( ˆ = 0.50 ). 

Table 5 shows the average values of relative bias and relative root mean squared error, 
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both expressed in percentage terms, and average coverage rates for the different 

methods generated under the model based simulations. All averages in Table 5 are 

over the 23 small areas of interest. 

The results set out in Table 1 show that both EBLUP and SEBLUP are very 

unstable in a few small areas (e.g. regions 3, 6 and 14), due mainly to there being little 

or no variability in the variable of interest in these areas. In such situations, the 

SEBLUP seems to perform worse than the EBLUP. In contrast, the MBDE and 

SMBDE methods appear unaffected by such behaviour. Since the average values of 

performance measures are influenced by outlying estimates, we compare different 

methods using the median values of their area-specific performance measures. From 

Table 1 we see that the median relative bias of MBDE is smaller than that of EBLUP. 

In contrast, the median relative root mean squared error of EBLUP is smaller than that 

of MBDE. The median relative bias and median relative root mean squared error of 

SEBLUP is marginally smaller than that of EBLUP. However, these values are almost 

same for MBDE and SMBDE. Table 2 shows that average coverage rates increase 

when estimation methods are based on a spatial model (SEBLUP and SMBDE). 

The results in Table 3 show that in region 1 (with sample size 2) all methods are 

very unstable, while in regions 2 and 3 (both with samples of size 3) EBLUP and 

SEBLUP are unstable. As noted earlier, EBLUP in these regions is affected by lack of 

variability in the data whereas MBDE is influenced by the presence of outlying values 

(see Chambers and Chandra, 2006). Although the estimated spatial autocorrelation is 

relatively higher for the EMAP data compared to the Northern Tuscany data, the 

simulation results for the EMAP data (Tables 3 and 4) are similar to those for the 

Northern Tuscany data (Tables 1 and 2). In both cases we see that the overall gain 

from introduced spatial dependence into small area estimation is rather small.  
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Finally, in Table 5 we show the performance of the different methods when 

population (and sample) data follow the assumed model. Here, we considered four 

different values ( = 0.05,0.25,0.50,0.75 ) for the spatial autocorrelation parameter  

and a W matrix that characterises the neighbourhood structure of the small areas in 

terms of the contiguity characteristics of the sampled lakes in the EMAP data. As in 

Chambers and Chandra (2006) we note that when the assumed model is correct, 

estimation via EBLUP dominates estimation via MBD. These results also show that in 

this case the gain in small area estimation from taking account of the spatial 

correlation of random effects remains marginal for the MBD estimator for all values 

of  and only improves the performance of the EBLUP for large values of this 

parameter. 

 

4. Concluding Remarks 

This paper presents results from an initial exploration of the use of unit level models 

with spatially correlated area effects in small area estimation. In particular, we show 

how the EBLUP and MBD methods of estimation can be adapted for this situation. 

However, our empirical results, based both on real data as well as on simulated data 

under the spatial model, indicate that the gains from inclusion of spatial structure in 

small area estimation do not appear to be large. This is especially true for model-

based direct estimation based on this structure (SMBDE), where the extra spatial 

information seems to have very little impact on the distribution of the SEBLUP 

weights that characterise this method of estimation. 

There are many issues that still need to be explored in the context of using unit 

level models with spatially distributed area effects in small area estimation. The most 

important of these is identification of situations where inclusion of spatial information 
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does have an impact, and the most appropriate way of then including this spatial 

information in the small area modelling process. An important practical issue in this 

regard relates to the computational burden in fitting spatial models to survey data. 

With the large data sets common in survey applications it can be extremely difficult to 

fit spatial models without access to high-end computational facilities. Although spatial 

information is becoming increasingly available in environmental, epidemiological and 

economic applications, there has been comparatively little work carried out on how to 

efficiently use this information. A further issue relates to the link between the survey 

data and the spatial information. In this paper we have assumed that all areas have 

sample units. In many situations this is not true, with survey data available only from 

a sample of areas. However, we often have spatial information for all areas. Saei and 

Chambers (2005) have explored the use of this spatial information in order to 

efficiently estimate the characteristics of the so-called ‘out of sample’ areas. Finally, 

we note that the spatial models considered in this paper have been based on 

neighbourhoods defined by contiguous areas. It is easy to see that this is just one way 

of introducing spatial dependence between area effects, and several other options 

remain to be investigated. 
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Table 1 Relative Bias and Relative Root Mean Squared Errors generated by design 

based simulations using Northern Tuscany data. Regions are arranged in order of 

increasing population size. 

 

   Relative Bias (%) Relative Root Mean Squared Error (%) 

Regions EBLUP SEBLUP MBDE SMBDE EBLUP SEBLUP MBDE SMBDE 

1 4.11 10.39 -3.03 -3.45 13.67 17.41 48.61 47.63 

2 32.18 70.11 0.31 0.31 45.35 90.33 31.16 31.16 

3 278.07 415.79 1.34 1.34 302.70 463.39 20.76 20.76 

4 64.39 93.43 0.01 0.01 69.06 112.79 38.50 38.50 

5 -4.90 -7.72 -1.23 -1.25 13.28 14.83 22.53 22.54 

6 70.18 71.76 -9.47 -11.35 93.05 93.50 34.92 34.08 

7 36.94 44.49 -0.13 -0.17 51.99 57.17 21.31 21.29 

8 9.08 1.79 -1.43 -1.84 21.91 22.40 36.36 36.22 

9 24.60 24.53 -0.73 -1.22 31.20 31.42 37.50 37.25 

10 41.54 42.31 -2.13 -2.66 60.12 60.31 47.03 46.75 

11 11.07 12.94 -0.42 -0.53 17.00 18.34 14.27 14.19 

12 -3.90 -9.87 0.18 0.17 13.10 16.94 19.05 19.05 

13 -15.11 -14.54 -0.47 -0.67 28.68 28.49 35.80 35.66 

14 116.59 140.97 1.14 1.13 128.10 152.73 32.85 32.84 

15 5.25 1.26 0.49 0.35 11.52 13.60 32.49 32.27 

16 -8.17 -7.73 -1.73 -2.47 21.48 21.53 25.43 25.09 

17 8.53 7.52 0.60 0.52 18.01 17.58 23.87 23.80 

18 7.46 8.38 -1.59 -1.95 19.63 19.84 23.51 23.35 

19 5.29 9.43 0.69 0.50 15.36 17.85 31.53 31.44 

20 9.81 6.74 -0.02 -0.03 21.61 20.80 16.48 16.48 

21 -5.89 -10.25 0.76 0.61 30.53 33.84 42.26 42.23 

22 -9.14 -9.67 0.31 0.15 17.71 17.82 22.26 22.27 

23 -11.42 -12.33 0.49 0.46 20.62 21.02 23.52 23.53 

Mean 28.98 38.68 -0.70 -0.96 46.33 59.30 29.65 29.49 

Median 8.53 8.38 -0.02 -0.03 21.61 21.53 31.16 31.16 
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Table 2 Coverage rates generated by design based simulations using Northern 

Tuscany data. Intervals are defined by the small area mean estimate plus or minus 

twice their corresponding estimated root mean squared error. Regions are arranged in 

order of increasing population size.  

 

  Coverage rates 

Regions EBLUP SEBLUP MBDE SMBDE 

1 1.00 1.00 1.00 1.00 

2 1.00 1.00 0.99 0.99 

3 1.00 1.00 1.00 1.00 

4 1.00 1.00 0.97 0.97 

5 1.00 1.00 0.95 0.95 

6 0.50 0.51 1.00 1.00 

7 1.00 1.00 1.00 1.00 

8 1.00 1.00 0.97 0.97 

9 0.98 0.99 0.98 0.98 

10 0.99 1.00 0.97 0.97 

11 1.00 1.00 0.99 0.99 

12 1.00 1.00 0.94 0.94 

13 0.65 0.68 0.91 0.91 

14 1.00 1.00 1.00 1.00 

15 1.00 1.00 0.99 0.99 

16 0.49 0.50 0.91 0.91 

17 1.00 1.00 0.97 0.98 

18 0.98 0.98 0.98 0.98 

19 1.00 1.00 0.97 0.98 

20 1.00 1.00 1.00 1.00 

21 0.98 0.98 0.63 0.63 

22 0.91 0.93 0.93 0.93 

23 0.99 0.99 0.92 0.92 

Mean 0.93 0.94 0.95 0.96 
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Table 3 Relative Bias and Relative Root Mean Squared Errors generated by design 

based simulations using EMAP data. Regions are arranged in order of increasing 

population size. 

 

 Relative Bias (%) Relative Root Mean Squared Error (%) 

Regions  EBLUP SEBLUP MBDE SMBDE EBLUP SEBLUP MBDE SMBDE 

1 173.18 190.85 -8.85 -8.72 224.28 236.92 263.32 263.46 

2 -17.18 -96.23 1.52 1.60 160.02 189.91 35.26 35.34 

3 1044.89 1166.54 0.14 0.14 1056.36 1188.52 37.61 37.61 

4 19.86 20.07 0.00 0.00 24.48 24.79 9.61 9.61 

5 -12.08 -12.28 -0.39 -0.39 14.52 14.70 11.87 11.87 

6 3.24 24.29 -0.32 -0.31 64.38 69.67 31.95 31.94 

7 -0.28 -2.50 1.56 1.62 42.42 42.11 51.34 51.35 

8 5.49 4.73 0.28 0.27 29.70 28.93 33.24 33.24 

9 -8.07 -8.49 -0.08 -0.07 17.09 17.16 16.56 16.56 

10 0.81 -0.25 0.94 1.01 22.54 22.34 27.23 27.24 

11 7.19 4.51 0.51 0.57 35.00 34.51 30.32 30.38 

12 -4.40 -5.07 -0.70 -0.66 21.48 21.48 25.31 25.31 

13 -3.44 -0.23 0.87 0.87 32.10 31.77 34.46 34.47 

14 3.07 4.10 0.29 0.48 23.90 24.18 22.51 22.51 

15 -1.20 -1.09 0.30 0.33 11.65 11.59 12.48 12.47 

16 22.12 25.14 -0.17 -0.18 49.42 50.92 38.06 38.06 

17 4.15 2.53 0.22 0.25 16.44 16.22 11.21 11.22 

18 -0.86 -3.29 0.36 0.36 10.28 10.83 7.25 7.25 

19 0.38 1.51 1.93 2.12 15.50 15.57 20.47 20.52 

20 -1.30 -2.10 -0.57 -0.58 17.36 17.43 16.83 16.83 

21 2.15 1.49 1.17 1.27 12.25 12.16 14.96 14.98 

22 4.85 2.90 -0.02 -0.03 15.82 15.29 13.83 13.83 

23 -0.41 0.49 0.73 0.88 12.64 12.64 15.23 15.27 

 Mean 54.01 57.29 12.00 0.04 83.90 91.72 33.95 33.97 

 Median 0.81 1.49 0.28 0.27 22.54 22.34 22.51 22.51 
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Table 4 Coverage rates generated by design based simulations using EMAP data. 

Intervals are defined by the small area mean estimate plus or minus twice their 

corresponding estimated root mean squared error. Regions are arranged in order of 

increasing population size.  

 

 Coverage rates 

Regions  EBLUP SEBLUP MBDE SMBDE 

1 1.00 1.00 0.98 0.99 

2 1.00 1.00 1.00 1.00 

3 1.00 1.00 1.00 1.00 

4 1.00 1.00 1.00 1.00 

5 1.00 1.00 1.00 1.00 

6 1.00 1.00 1.00 1.00 

7 0.83 0.82 0.86 0.86 

8 0.98 0.98 0.62 0.64 

9 0.60 0.60 1.00 1.00 

10 0.92 0.92 0.95 0.96 

11 1.00 1.00 1.00 1.00 

12 0.77 0.77 0.96 0.96 

13 0.74 0.76 0.72 0.70 

14 1.00 1.00 1.00 1.00 

15 0.75 0.75 0.98 0.98 

16 1.00 1.00 1.00 1.00 

17 1.00 1.00 1.00 1.00 

18 1.00 1.00 1.00 1.00 

19 1.00 1.00 0.96 0.97 

20 0.78 0.77 0.97 0.97 

21 1.00 1.00 1.00 1.00 

22 1.00 1.00 1.00 1.00 

23 0.85 0.85 0.96 0.95 

  Mean  0.92 0.92 0.95 0.96 
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Table 5 Average Relative Bias (ARB,%), average Relative Root Mean Squared Error 

(ARRMSE, %) and average Coverage Rate (ACR) generated by model-based 

simulations. All averages are over the 23 small areas of interest. 

 
 

Criteria Methods 0.05 0.25 0.50 0.75 

EBLUP -8.22 -4.96 -25.56 45.84 

SEBLUP -4.51 -5.13 -20.35 41.09 

MBDE -35.25 5.02 9.80 69.16 
ARB, % 

SMBDE -35.12 5.03 9.64 68.74 

EBLUP 448.91 305.26 258.18 932.95 

SEBLUP 451.18 305.31 256.38 911.47 

MBDE 921.80 622.98 531.09 1924.81 
ARRMSE,% 

SMBDE 921.71 622.97 531.13 1922.11 

EBLUP 0.95 0.94 0.95 0.96 

SEBLUP 0.95 0.94 0.95 0.95 

MBDE 0.98 0.98 0.98 0.98 
ACR 

SMBDE 0.98 0.98 0.98 0.98 

 

 


