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This thesis describes the mathematical modelling and analysis of the two phase flow

of water and steam in a steam generating pipe contained within the evaporating

component of a nuclear power plant. As the fluid is heated the continuous phase

(water) is evaporated and steam is produced. The phases adopt different geometrical

configurations called flow regimes. The flow regime adopted by the phases depends

on the amount of each phase present and also external features such as pipe geometry.

The main regions of interest are the subcooled, bubbty and, annular flow regimes. The

subcooled flow regime consists of water flowing at temperature below its saturation

temperature and can be modelled as a single phase flow. The bubbly is characterised

by that the gas phase flows as discrete bubbles in the continuous phase. The bubbly

flow regime shall be modelled using a system of averaged two-phase flow equations. Of

particular interest is the annular flow regime. The annular flow regime is characterised

by the fact that the majority of the liquid phase is present in a thin film along the

the pipe wall with the remaining liquid phase being present as droplets in a central

gas core. We develop a non-linear singular integro-differential equation to describe

the interface between the liquid film and gas core. The annular flow regime is further

complicated by an exchange of mass between the film and gas core due to entrainment,

deposition of droplets, and evaporation. The loss of mass from the liquid film leads

to the phenomenon of dryout where the liquid film ceases to exist.
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Chapter 1

INTRODUCTION

1.1 Physical Background

The purpose of this thesis is to study the two-phase flow of water and steam in

the steam generating pipes of a nuclear reactor plant and to model the different flow

regimes which occur as the fluid is evaporated along the length of the steam generating

pipes. In this section we shall outline the physical background to the problem and

give some details on the development of nuclear reactors and their advantages and

disadvantages.

Generally speaking, there are three main types of nuclear reactors. These are

classed as gas cooled, liquid cooled, or reactors where the coolant is a liquid metal.

The coolant is the material which is employed to take the thermal energy (heat)

away from the nuclear reactor. In this thesis we shall mainly be considering liquid

metal cooled reactors. The choice of coolant is of the utmost importance to the

reactor designers for reasons of efficiency, safety and cost. It was found that liquid

metals made excellent coolants since they have good thermal transport properties

and the size of the piping and other pieces of major equipment could then be kept to

a minimum.



Gas Cooled Reactors (GCR), Pedersen (1978), use either carbon dioxide or helium

as the coolant. The main advantages of a gas cooled reactor are that the coolant is

very easy to handle, there is a cheap and abundant supply of carbon dioxide and

the coolant can operate at high temperatures without pressurisation. The disadvan-

tages with gas cooled reactors are that both gases have low heat transfer properties

and require large heat transfer surfaces. The poor heat transfer properties of the

gases mean that they are not as efficient as liquid metal coolants. Also, since large

heat transfer surfaces are required, the size of the piping and other pieces of major

equipment cannot be kept to a minimum in a gas cooled reactor, making them more

expensive to build than Liquid Metal Fast Breeder Reactors.

Both ordinary and heavy wate^H^O) have been used as coolants in liquid cooled

reactors since they have good heat removal properties. The major disadvantage

of water as a coolant is that the system needs to operate at pressures far greater

than atmospheric to raise the boiling temperature of the coolant. Water is also

very corrosive at high temperatures meaning that the pipes have to be coated with

zirconium alloys or stainless steel. This increases greatly the production costs of the

steam generating pipes.

In the 1960's, as outlined by Mclain , the metals of interest for the liquid metal

coolant were sodium, potassium, lithium, lead, bismuth and mercury. The choice

of coolant is determined by which of the metals satisfies the greatest number of the

following properties:

• Low vapour pressure at the operating temperature

• Boiling point of approximately 1500deg F at atmospheric pressure

• Low melting point



• Excellent heat transfer coefficient

• Radiation stability

• Thermal stability

• A low thermal neutron capture cross-section

• Short term induced radioactivity

• Low cost

• Require low pumping power

• Non-toxic

• Non-reactive with water or air

The low system pressure permits the design of pipes with low stress levels and de-

creases the chance of pipe rupture. Having a liquid metal that boils at 1500 °F

atmospheric pressure is an advantage since most liquid metals are limited to a boil-

ing temperature of 1200 °.F at atmospheric pressure and therefore cannot transfer so

much heat to the boiler. Also, if the system is operating at atmospheric pressure it

considerably reduces the risk of a LOCA (loss of coolant accident) due to the pipes

rupturing. If at atmospheric pressure the pipes do rupture then the severity of the

damage caused by the loss of coolant is far less than if the system was operating at

a pressure greater then atmospheric pressure. The liquid metal coolant also needs to

have low thermal neutron capture cross-section meaning that is less likely to become

radioactive than metals with a higher thermal neutron capture cross-section. It is

important that the coolant does not become radioactive, since if there is a loss of



coolant accident caused by rupture of the pipes, the radioactive material may escape

into the atmosphere. This situation may be complicated further if the coolant is

reactive with water or air since an explosion may occur causing further damage to

the environment.

By a process of elimination it was found that sodium had most of the properties

listed above. Sodium does have drawbacks, however, for it is reactive with both

water and air. On the positive side molten sodium has a high specific heat capacity

and high thermal and electrical conductivity. Another problem associated with using

liquid metals as coolants is their corrosive effect on the pipes. However, with a suitable

choice of pipe material, such as steel, the corrosion rate may be limited to less than

0.0001 in/yr.

The type of reactor we shall be dealing with is a liquid metal fast breeder reactor

with a ''once through1 boiler. From now on we shall refer to this by the abbreviation

LMFBR. A once through boiler differs from other boilers in that the water that has

been evaporated is not recirculated through the boiler, thus lowering the chance that

the water will become radioactive.

The central structure in all nuclear power plants is the nuclear reactor or core as

it is sometimes known. The nuclear core contains fuel rods containing an isotope of

Uranium, usually U235. The fuel rods are bombarded with neutrons. Absorption of

a neutron by a heavy material such as Uranium or Plutonium causes the nucleus to

split into two massive fragments with a large release of thermal energy. The process

by which a heavy material splits into lighter materials is known as fission, as opposed

to the process oi fusion where two lighter materials combine together to form a heavy

material. As well as the Uranium splitting into lighter materials, two neutrons are

produced. Only one of these neutrons is needed to substain the reaction. The number



of free neutrons within the reactor is limited by the use of control rods. Control rods

are constructed of carbon and can be lowered into the reactor to absorb some of the

neutrons. If the losses of neutrons can be reduced sufficiently the possibility exists

for new fuel to be generated in quantities as large or even larger than the amount

consumed. This process of producing new fuel is known as breeding and hence the

name breeder reactors.

Sodium cooled reactors usually have two heat exchangers. This is because the

molten sodium that transports heat away from the reactor core becomes radioactive

and so there is an intermediate heat exchanger loop where heat from the radioactive

sodium is transferred to more molten sodium. This molten sodium then passes to

the primary heat exchanger where it is used to heat the water and steam in the

steam generating pipes. The purpose of the intermediate heat exchanger is for safety

reasons, to prevent any radioactive sodium being released into the atmosphere if any

problems occur during the steam generating process. A schematic diagram of a once

through liquid metal fast breeder reactor plant is shown in figure 1.1.

The design life of steam generating pipes within a liquid metal fast breeder reac-

tor is about thirty years. The integrity of the pipes is therefore clearly important for

safety reasons. Calculations carried out by General Electric, and presented by Magee,

Casey et al (1976), predicted fatigue lives of less then thirty years for the steam gener-

ating pipes. These calculated fatigue lives were clearly unacceptable when compared

to the expected design lives of the pipes. This led General Electric to develop more

accurate ways to estimate the fatigue life of the pipes and also to raise the question

of what causes the pipes to crack.

Nuclear Electric Ltd also became interested in this problem when they became

involved with the European Fast Breeder Reactor Project. The European fast breeder
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Figure 1.1: Schematic layout of LMFBR plant

reactor was based on a liquid metal fast breeder reactor (LMFBR) with a once^

through boiler. Initial work was carried out by Atthey, Scruton, and Chojnowski

(1988) with particular emphasis on the heat transfer mechanisms involved and how

these mechanisms are affected by the motion of the dryout front. Initial experimental

work was undertaken at Kraftwerk union and reported upon by Atthey et al (1988).

The evaporating component of the nuclear reactor consists of a bundle of vertical

steam generating pipes surrounded by an outer casing. Molten sodium is pumped in

at the top of the casing and subcooled water is pumped up through an inlet at the

base of the steam generating pipes. The water enters the steam generating pipes at



a temperature of about 240 °C and with an inlet pressure of 200 Bar. The molten

sodium has an inlet temperature of approximately 600 °C and an outlet temperature

of about 350°C. There is an exchange of heat between the countercurrent flowing

molten sodium and the water in the steam generating pipes due to the difference in

temperature between the fluid and the molten sodium. As the water is heated so it

begins to vaporize and we obtain a two-phase flow consisting of water and steam. The

various geometrical configurations adopted by the two phases are called flow regimes

or flow patterns. The flow patterns are determined by the amount of each phase

present and external effects such as the orientation of the pipe and whether the pipe

is being heated.

For the purpose of this work we shall only be considering two-phase flows in

uniformly heated vertical pipes. By uniformly heated we mean that the heating is

uniform around the circumference of the pipe. We will mainly be considering the

case where the pipes are electrically heated, since in practice it is easier to obtain

experimental observations from an electrically heated test rig than one that is heated

by a liquid metal. Experimental evidence indicates that the principal two-phase flow

regimes present in such a vertical pipe are:

• Single phase liquid flow

• Bubbly flow

• Slug flow

• Annular flow

• Drop flow

• Single phase vapour flow.



Some texts such as Collier (1972) and Whalley (1987) list other flow regimes such

as wispy annular and churn turbulent regimes, which may occur under certain flow

conditions between some of the aforementioned flow regimes. Some texts also refer to

slug flow as plug flow. For a list of alternative names for the flow regimes the reader

is referred to Chisholm (1983).

The purpose of this thesis is to model the upward vertical flow of water and steam

in a steam generating pipe and to model the process of dryout. Dryout occurs in the

annular flow regime and is of fundamental importance to the nuclear power industry

since it can cause the steam generating pipes to crack and eventually rupture. A

full description of the dryout mechanism is given in §1.2.4, the section describing

the annular flow regime. The flow regimes are also shown diagrammatically in figure

(1.2). Note that for clarity the flow regimes in figure (1.2) have not been drawn to

scale.
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1.2 Two-Phase Flow Regimes

1.2.1 Single Phase Flow

Water is pumped into the evaporator pipe through an inlet at the base. The water

is initially at a temperature of 240 °C, which is considerably less than its boiling

temperature, and an inlet pressure of 200 Bar. The boiling temperature of the water

is high because the steam generating pipes are at such a high pressure. The water is

either heated by the countercurrent flow of molten sodium in a LMFBR or electrically

heated in the test rig. The water is at a lower temperature than the pipe walls

and therefore heat is conducted into the water. As long as the internal pipe wall

temperature remains below the temperature required for bubble nucleation the heat

transfer mechanism is that of single phase convective heat transfer.

1.2.2 Bubbly Flow

The bubbly flow regime consists of the vapour phase flowing as discrete bubbles in the

continuous liquid phase. The bubbles vary from being small and spherical to large and

cap shaped. The bubbles are produced by the evaporation of the surrounding liquid.

They are formed at nucleation sites which may either be impurities in the liquid

or pits, scratches or cavities along the pipe walls. In certain situations the bubbles

themselves may act as nucleation sites. The bubbly flow regime is usually initiated

when there is still some subcooled liquid present and the heat transfer process is

therefore known as subcooled nucleate boiling.

The transition from the bubbly regime to the next regime occurs when the gas

flow increases and the bubbles get closer together so that collisions occur more fre-
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quently. These collisions lead to bubble coalescence and to the formation of larger

bubbles, which themselves then collide producing even larger bubbles. Once these

larger bubbles have a diameter comparable to the inner pipe diameter the flow regime

has undergone the transition to slug flow.

The bubbly flow that we shall consider will be one involving a change of state.

Bubbly flows involving no change of state also exist and have been studied, for ex-

ample by Lisseter and Fowler (1992). They showed how a set of scales could be

developed for a realistic bubbly flow model and these scales were then used to non-

dimensionalize the equations. By examining the non-dimensionalized equations they

were able to neglect some terms and simplify the model. Their simplified model com-

pared favourably with experimental data. The work of Lisseter and Fowler showed

that it is possible to develop simple but realistic models for bubbly flows.

1.2.3 Slug Flow

Slug flow consists of large spherical cap bubbles with diameters comparable to the

diameter of the pipe. These large spherical cap bubbles are often referred to as

''Taylor1 bubbles or as ''bullet shaped1 bubbles. The large gas bubbles are separated

from the pipe wall by a thin, slowly descending liquid film. The bulk of the liquid

is in the form of slugs which separate the spherical cap bubbles from each other.

These liquid slugs may have small gas bubbles entrained in them. The lengths of the

spherical cap bubbles vary but are usually two to three times the diameter of the

pipe in length. A transition from slug flow to annular flow occurs when the large

gas bubbles begin to break up. The heat transfer mechanism for the slug regime is

saturated nucleate boiling. Slug flows are also be found in heat exchanger pipes and

in gas-oil pipelines.
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1.2.4 Annular Flow

The annular flow regime consists of a thin liquid film along the pipe wall with a

central gas core. The gas core is entrained with liquid droplets which flow along with

the gas core. There is an exchange of mass between the gas core and the liquid film

due to:

• entrainment of liquid drops from the liquid film to the gas core

• deposition of liquid drops from the gas core

• evaporation of the liquid film.

The rate of entrainment depends on the structure of the surface waves on the

liquid film. One type of entrainment is caused by the shearing off of the crests of

large amplitude surface waves by the gas flow. These waves can have amplitudes

which are 3 — 5 times greater then the average film thickness. Another method of

entrainment is the undercutting of the liquid film by the gas flow. Entrainment may

also occur by the bursting of gas bubbles that can sometimes exist in the liquid film.

For a more detailed discussion of surface waves that occur in annular two phase flow

see Ishii et al.(1975)

The rate of deposition is directly proportional to the concentration of liquid

droplets entrained in the gas core flow. The evaporation rate depends on the heat

flux being supplied to the liquid film from an external heating source.

The annular flow regime finishes when dryout occurs. Dryout is the point at

which complete evaporation of the liquid film occurs. At the dryout position there is a

sharp increase in the wall temperature because the thermal conductivity of the vapour
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phase is an order of magnitude less than that of the liquid phase. Determination of the

dryout point is complicated by the fact that the liquid film can reform, thus quenching

or rewetting the wall causing the wall temperature to drop. In fact, this process of

dryout and rewetting can occur periodically causing thermal stresses to be set up in

the pipe wall which may lead to cracks forming in the walls. The integrity of the

pipes is therefore greatly affected by the process of dryout and a good understanding

of dryout is vital in being able to predict the lifetimes of steam generating pipes.

For the purposes of our work we shall consider a system where there is an exchange

of mass in the annular flow regime. This not always the case for annular two-phase

flows. For example, the petrochemical industry is interested in the annular flow of

oil and natural gas in pipelines where there is no mass exchange. A physical model

for an annular two-phase flow without mass exchange is presented by Oliemans et al

(1986). Their model is based upon the experimental observation that the the film

thickness remains approximately constant along the length of the pipe. This is an

important physical example since it shows that dryout cannot occur unless there is

some form of mass exchange present within the system.

A process closely related to dryout is that of burnout, which can occur in pool

boiling. In pool boiling, the boiling occurs at the heated surface and the fluid being

heated is stagnant. The process of burnout is the same as dryout except for the

fact that in dryout the fluid is being forced to flow. Thus dryout occurs in forced

convective flows and burnout in pool boiling. Some texts also refer to the process

of dryout as either, CHF-critical heat flux, DNB-departure from nucleate boiling, or

simply as boiling crisis.

Another important phenomenon which may occur in the annular flow regime is

that of flooding and flow reversal. These two processes are usually seen experimentally
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by injecting liquid through an inlet into a vertical pipe. The liquid forms a thin film

along the pipe wall and flows in a downward direction due to gravity. Gas is then

pumped in through the base of the pipe so that it is flowing in the opposite direction

to the liquid film. As the gas flow rate is increased the surface of the liquid film

becomes disturbed and ripples begin forming on the surface of the film. As the gas

flow rate is increased large waves form on the liquid film. These waves eventually

bridge the pipe and partially block it. Some of the liquid from this blockage is then

propelled above the liquid inlet by the gas flow forming droplets. This process is

known as flooding. When the gas flow rate is increased further the liquid film begins

to be pulled up the pipe by the gas flow. Eventually all the liquid is pulled up by the

gas flow and a co-current annular flow is formed. If the gas flow rate is now gradually

reduced a situation is reached where the liquid film is said to hang at the liquid inlet.

This means that the entire liquid film is located above the liquid inlet. If the gas

flow rate is reduced further then the liquid film begins to flow down the pipe and

a counter-current annular flow is formed. This process is termed flow reversal. It

was shown by Fowler and Lisseter (1992) that a two-fluid model for the annular flow

regime involving realistic phase interaction could be used to predict when flooding

and flow reversal are likely to occur.

1.2.5 Drop and Single Phase Vapour Flow

The drop flow regime is characterised by the fact that the liquid phase is entrained as

discrete liquid droplets in the gas phase. This regime is also termed the liquid deficient

region as the flow is mainly composed of the gas phase. If the pipe is sufficiently long

all the liquid phase will eventually evaporate and the flow will just consist of vapour.

This regime is termed single phase vapour flow.
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1.2.6 Different Pipe Geometries

All the previously described flow regimes have been for vertical upflow in a cylindrical

pipe. Other pipe geometries that exist include two phase flow in rectangular pipes,

where the liquid tends to collect in the corners of the pipe. Sometimes to improve

the heat transfer a helically twisted tape will be inserted in cylindrical pipes. This

has the effect of throwing the liquid onto to the walls of the pipe ensuring good heat

transfer since the thermal conductivity of water is far greater than that of steam. A

similar effect is obtained by using helically shaped pipes, which also has the effect of

minimising the space required for the evaporator.

1.2.7 Horizontal Two-Phase Flow

All the previously described flow regimes have been for vertical two-phase flows.

Corresponding flow patterns exist for flows in horizontal pipes. The horizontal bubbly

two phase flow regime differs from the vertical one since the gas bubbles tend to gather

along the top of the horizontal pipe, whereas in vertical bubbly flow the bubbles are

evenly distributed across the cross-section of the pipe. A similar occurrence happens

with horizontal slug flow since the large Taylor bubbles gather at the top of the

horizontal pipe. Horizontal annular flow is very similar to vertical annular flow except

that the liquid film at the bottom of the horizontal pipe is thicker than the liquid

film along the top of the pipe.
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1.3 Closing Remarks

Our approach to modelling the flow of steam and water in a steam generating pipe

will to be to consider each flow regime separately and then produce a global model

for the flow. The aim of modelling each of the flow regimes is to be able to formulate

analytical relationships for quantities such as pressure drops and lengths of the flow

regimes and then be able to estimate the importance of each flow regime in the global

flow.

An important feature to take into account in our model will be the exchange of

mass between the two phases. This will vary from regime to regime and will depend

on the flow conditions. It will have particular relevance in the annular flow regime

where the evaporation of a thin film along a heated plate will be modelled. From the

latter model we hope to be able to predict the shape of the liquid gas interface close

to the dryout point.



Chapter 2

METHODS OF MULTIPHASE FLOWS

2.1 Introduction

In this chapter we shall outline some of the theories of multiphase flows, with specific

emphasis on the different modelling techniques developed to model multiphase flows.

We shall also define all of the physical quantities that will be required in later chapters.

A multiphase flow is simply the flow of several phases which need not be in

different physical states. The simplest form of a multiphase flow is a two-phase flow.

Examples of two-phase flows are

liquid-gas - boiling condensation processes

gas-liquid - atomizers

gas-solid - fluidised beds

liquid-liquid- liquid-liquid extractions

liquid-solid - flow of suspensions

In such a large class of problems many diverse mechanisms are important in the

different flows. The models used for these different flows do have common features,

such as interfacial drag.

Historically, among the first multiphase systems to be investigated were geophys-



18

ical flows involving sediments and, also, the motion of clouds. At the start of the

century work was undertaken on the shape beds of particles take when subjected to

a fluid flow. This lead to an investigation of the stability of the interface between two

liquids and to an understanding of sedimentation. The need to extract hydrocarbons

from inside the earth's crust led to a detailed investigation into two- phase flow in

a porous medium. In the 1960's, with the emergence of commercial nuclear power,

came the need to model water and steam flows. Problems first encountered when

modelling fluid-fluid flows, unlike fluid-particle systems, were mainly due to the fact

that the shape of the interface between the fluids may change shape leading to in-

teractions between the fluids. The need to model water and steam flows is still very

important today for reasons of nuclear safety and improving the efficiency of heat

transfer in steam generating pipes.

Some authors, for example Wallis (1969), use the term two-component flow to

indicate that the two phases consist of different materials. So, for example, the flow

of air and water would be considered a two-component flow, whereas the flow of water

and steam would be termed a two-phase flow.

For the purpose of this work we shall be concentrating on the flow of water and

steam in steam generating pipes located in the evaporation component of a Liquid

Metal Fast Breeder reactor. Our model will be complicated by the fact that a change

of phase occurs because the water is evaporated as it flows. For this reason the flow

model will include an exchange of mass between the two phases. Although we will

only be modelling a one dimensional two-phase flow the techniques developed may

be extended to model general multiphase flows in higher dimensions. Two general

approaches have been developed for modelling multiphase flows; one consists of mod-

elling the dynamics of a single particle and extending the model to a multi-particle

system, whilst the other concerns the development of continuum models. For the
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purpose of this work we shall be developing a continuum model.

There have been several methods developed for modelling multiphase flows. These

methods have been widely reported upon in such texts as Wallis (1969), Collier (1972),

Soo (1967,1990), Whalley (1987) and Drew and Wood (1988). The seminal book

by Wallis tends to concentrates on gas-liquid flows using cross-sectionally averaged

equations. In addition he introduced constitutive relationships by quoting appropriate

experiments. The work by Soo is principally concerned with particle fluid systems.

Both Collier and Whalley tend to concentrate on the flows of liquids and gases, with

Whalley giving particular emphasis to physical situations involving boiling processes.

There are a number of different ways that a continuum model may be developed.

These include:

• separated flow models

• mixture and homogeneous models

• drift flux models.

Both the drift flux and separated flow models involve formulating a set of equations

describing the flow in each phase, whereas the mixture and homogeneous flow models

treat the flow as a single component flow. Each of these models is relevant to different

physical situations. For example, the homogeneous model has been used successfully

to model foams and the drift flux model to describe bubbly flows in wide diameter

pipes.

The most general model is the separated flow model and this is the model that we

shall be developing. Separated flow models can become very complicated as a large
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number of variables may be involved. The equations may be simplified, however, by

careful consideration of the physical situation being modelled. In using any of the

aforementioned techniques careful consideration needs to be given to which particular

flow regime is being modelled, since the equations of motion for the flow will vary

from regime to regime.

In the following sections we shall explain in detail the separated flow model .and

outline the drift flux and mixture models.

2.2 Separated Flow Model

The separated flow model involves formulating a set of equations that describe the

motion of each phase. Separated flow models vary a great deal in complexity de-

pending on the particular flow being modelled. When modelling two-phase flows we

need to take into consideration, for instance, whether both phases are compressible,

if there is an exchange of mass between the phases, and whether we are considering a

single-pressure or a two-pressure model. For the purpose of our modelling we shall be

using a two-pressure model. The motivation behind developing two-pressure mod-

els is that single-pressure models do not always result in a hyperbolic set of partial

differential equations which, in turn, can lead to an ill-posed initial value problem.

Single pressure models are based on the assumption that the pressures in each phase

are in equilibrium.

Before considering the details of two-phase flow averaging we give a short example

to show just how much care is required. Suppose we write down a system of equations
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for an unsteady one dimensional incompressible inviscid two phase flow :

r\ r\

d_

d

d_
dx

d

= o,

= o,

= o,

= 0.

(2-1)

(2.2)

(2.3)

(2.4)

The above equations are Euler equations for each phase. We have four equations with

five unknowns a\, v\, v2, p1; and p2. To close the system we need to apply a constraint

on the system to reduce the number of unknown variables to four. A popular choice

to close the system is to use a one-pressure model and take p\ = p2 = p, where p is

the averaged bulk pressure. The above system of equations may then be written in

the form

Au>t + BUJX = 0 , (2.5)

where w = (ai,vi,v2.,p) and the matrices A and B are defined by

\

A =

Pi
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^V^
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0
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0
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0

0

0

-p2v2 0 p2a2 0

(2-6)
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0
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-XA\ =

0

P2OC2

0

0

0

Oil

2p2a2v2 a2 ^

by solving the equation

o,

(2-7)

(2-8)
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for A. The characteristics are found to be A = 0 (twice), due to the fact that both

phases are incompressible, with the remaining two characteristics are given by the

solution of

- A)2 + a2Pl {v2 - A)2 = 0 . (2.9)

This shows that the system of equations will be elliptic (have complex characteristics)

unless the condition v\ = v2 is satisfied. Boundary value problems are associated with

elliptic systems whereas problems that depend on initial data and boundary condi-

tions are associated with hyperbolic systems. Hyperbolic systems of equations have

real distinct characteristic values. Two-phase flow problems are usually associated

with hyperbolic systems, since we would expect the flow at any instance to depend

on the histories of the inlet and other boundary conditions.

If a single pressure model for a two phase flow is to be physically reasonable model

(i.e. hyperbolic) we must also impose that the velocities of the two phases are equal.

For many flows this is not a valid assumption to make, since for vertical two-phase

annular flow, for example the gas phase velocity is several orders of magnitude greater

then the velocity of the liquid phase present in the liquid film.

For a detailed discussion of the differences between single- and twTo-pressure models

see Ransom and Hicks (1984) and Stewart and Wendroff (1984). The main conclusions

stated by Ranson and Hicks concerning two pressure models are that under some

circumstances two pressure models, are hyperbolic, and provide greater physical detail

than single pressure models.
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2.2.1 Averaging

When modelling multiphase flows we use averaged equations which may then be used

to predict average flow quantities. Employment of averaged multiphase equations

allow us to predict such quantities as the average bubble velocity and the pressure

drop across the bubbly flow region which for most practical applications is adequate.

For the purposes of our model we shall begin by formulating the exact equations

of motion for each of the two phases with suitable boundary conditions and jump

conditions at the interfaces between the phases. We shall then apply the averaging

processes to formulate an averaged set of equations for the flow.

There are several types of averaging used in the formulation of the averaged mul-

tiphase flow equations. The four most commonly used averages are the time average,

space average, weighted average and ensemble average. The time and space averages

for a continuous quantity, f(x.t). are defined respectively by :

(f)(x,t) = 1 Jt[Tf(x,t')dt', (2.10)

</}(*M) = J-J , / , f{x',t)dx',dx>2dx^ (2.11)

where t and x,- (i = 1. . . 3) are the time and space variables respectively. The param-

eter T appearing in equation (2.10) is a time scale for the flow. The most important

average is the ensemble average, which is obtained by summing together all the ob-

served values and then dividing by the total number of observations .This averaging

is taken over a number of realisations of the flow. For a continuous quantity f(x,t)

the ensemble average is defined by

/ / ( , ; / ) ( / ) (2.12)
M
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where M is the set of all processes and m (/i) the measure of observing process

fi. In general the averaged equations we shall be employing have been obtained

by application of the ensemble average. The other averaging techniques are only

appropriate in special situations as an approximation to the ensemble average.

Before applying the averaging techniques it is worth noting that all the aforemen-

tioned averages satisfy the following rules, as quoted by Drew (1983), which are used

in formulating the averaged multiphase flow equations:

(f + g) = (f) + (g), (2-13)

= (/) (9) , (2-14)

(M.) = m, (2.16)

(c) = c. (2.17)

In the preceding rules / and g are functions of the space and time variables, c a

constant. Angled brackets are used to represent the averaging process. Equations

(2.13) and (2.14) are known as Reynold's rules, equation (2.15) is Leibnitz rule and

equation (2.16) is Gauss' rule.

The averaging is usually achieved by the introduction of a phase indicator function.

The phase indicator function is defined by

( 1 if x is in phase k at time t
(2.18)

0 other.

For a more general discussion of the phase indicator function see for example Drew(1983).

To obtain a set of averaged two-phase equations the exact equations of motion for
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the flow are multiplied by the phase indicator function and the resulting equations are

then averaged. In formulating the averaged equations the previous rules for averages

are applied. In averaging the equations we need to use the following relationship

(2.19)
at

where u,- is the velocity of phase k on the interface between the different phases.

Proof of the relationship (2.19) is given by Drew (1983) and involves intergrating the

left-hand side of equation (2.19) multiplied by a function with compact support over

volume and time.

For example, to average the conservation of mass equation, we multiply through by

the phase indicator function and then average the equation. Following Drew (1983),

and using the rules outlined in equations (2.13)-(2.16) and (2.19), we obtain:

= 0, (2.20)

dt

d (PXk)

Kk) = 0, (2.22)

V((pXkv)) = p(v - Vi).V (Xk) . (2.23)
dt

The term p (v — t>,-) .V {Xk) is the rate of production of mass by phase k per unit

volume and is usually denoted by Tk. We define the void fraction of phase k to be

{Xk)- The void fraction is usually denoted by ak and is the time averaged fraction of

the cross-sectional area or volume which is occupied by phase k.

To formulate the averaged conservation of mass equation in a more recognisable

form we introduce the phase and mass weighted variables. The phasic average of a
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variable <f> is defined as

7 (Xk<f>) MnA
9k = , (2-24)

and the mass weighted average of a variable t/> is denned as

(2.25)

If we introduce the above averaged variables into the averaged conservation of mass

equation,(2.22), we obtain the more familiar equation

h V.(akpkVk) = lfc. (2.26)
dt

A similar procedure may be used to develop averaged equations for conservation of

momentum, energy and enthalpy.

For ease of notation we will no longer indicate the average of a variable <f> by <̂>,

but simply as <j>. The reader should assume that all variables have been averaged

unless stated otherwise.

2.2.2 Equations of Two-Phase Flow

When all the conservation equations have been averaged we are left with a system of

partial differential equations describing the average behaviour of each phase. For this

thesis we shall only consider a one dimensional model, although all the analysis does

extend to two and three dimensional problems. The one dimensional set of equations

is obtained from the ensemble averaged three dimensional equations by averaging

over the cross-section of the flow. The area average of the ensemble-averaged variable

/ is defined by

[I A, t (i/i , \ LA.LJ \ )
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where we have assumed the flow is purely in the z direction with a cross-sectional area

A(z). As previously mentioned the equations describing the flow can be simplified

by careful consideration of the physical situation being modelled.

The following set of averaged one-dimensional equations were first presented by

Drew and Wood (1985). These equations differ from previous models in that previous

models have bypassed the averaging process and postulated conservation equations

from first principles.

The standard notation for two phase flows is for the liquid and gas phase vari-

ables to have the subscripts 1 and 2 respectively. For modelling a two phase flow the

conservation equations for mass and momentum are required along with a conserva-

tion equation for energy internal energy or enthalpy. Equations (2.30)-(2.32) are not

independent but merely alternatives.

Mass

Tk (2-

Momentum

d{akPkVk) ]_
dt A

A o

Energy

at {akpk {Uk + T
= ^ — (Aak

+Ek + Wk

Mk r-j akw-L kv

l-(ACek*kPkVk(uk+
l-r

(2.29)

w + i (ve
kl)

2^ Tk + akPk (rk + gzvk) . (2.30)
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Internal energy

Id
5 i A ~dz

= -—T-Aak (qk + <?fe) - -^akeqkw + Ek + ukiTk

, dvk dvk+akpkrk + ockrk— h akDk - akpk— h Pkdz dz

Enthalpy

= -IL {Aak ( f t + &»•)) (2.32)

——akeqkw + Ek + akpkrk

. , r . dvk b (dpk dpk+hkilk + akTk-^- + akDk + Pk + ak [ -^- + v
d \ dt\ dz J

The remaining relationship defining the flow is the entropy inequality given by

( A C ) ^

-7Oikw(f>kw + Sk + Sfc,Tfc + akpkcrk .

The entropy inequality can be used to check the validity of constitutive equations.

Suppose a constitutive equation is used in the inequality such that the inequality

is violated for some values of the parameters. Then, if the initial conditions of the

system are set such that these values of parameters are present at the start of the

flow then the entropy will decease. A decrease in entropy violates the second law

of thermodynamics. So constitutive relationships that violate the entropy inequality

are incorrect.

Although energy, mass and momentum are conserved across the phase interface

the properties of the phases are discontinuous across the interface. So in addition

to the equations (2.28)-(2.32) we also require a set of jump conditions to relate the
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properties of the two phases at the interface. The jump conditions, as presented by

Drew and Wood (1985), are:

I\ + T2 = 0 (2.34)

Mi + M2 + < I\ + v% T2 = m (2.35)

T2 = e (2.36)

The variables Ek, Mk and W^ are the interfacial energy, momentum and work. The

velocities with superscripts e and m are the interfacial velocities for energy and mo-

mentum respectively. As well as the jump conditions, equations (2.34)-(2.36), we also

require a set of constitutive relationships to close the model. Constitutive relation-

ships describe how the two phases interact with each other. For example, constitutive

equations are required for the stresses in each phase, the pressure differences and the

interfacial force density. The constitutive relationships depend on which flow regime

is being modelled and what materials the phases are composed of. Another important

requirement of the constitutive equations is that they must be consistent with the

equations of motion and the jump conditions. Also, the constitutive equations should

be material frame indifferent, that is they should be independent under a change of

coordinate system. Constitutive equations are usually obtained by first proposing a

mathematical form for the constitutive equation and then checking it experimentally.

The empirical results may then be used to adjust the proposed form.

Throughout equations (2.28)-(2.32) there are many constants denoted by the

general form Cab. These constants are called profile parameters and arise because

when averaging the equations it is assumed that the average of a product equals the

product of the averages. The latter is incorrect, i.e.

(2-37)
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but by the introduction of profile parameters, it is assumed that

(fg) = cfg(f)(g)- (2.38)

The profile parameters are usually determined from empirical observations.

The void fraction of phase k is denoted by a^ and is defined as the time averaged

fraction of the cross-sectional area, or the volume, which is occupied by phase k.

Throughout this work we shall use a\ and a2 to represent the liquid and gas void

fractions respectively. From the definition of void fraction we have the relationship

a1+a2 = l. (2.39)

If a\ = 1 then flow just consists of liquid and if a.2 = 1 the flow just consists of

vapour.

The cross-sectional area of the pipe is denoted by the letter A. Note that A will be a

function of the axial variable z if the pipe in which the fluid is flowing in constricts or

dilates. Note for the one-dimensional approximation to hold the cross-sectional area

must vary only slowly or not at all.

In many two-phase flows there is an exchange of mass between the two phases either

by evaporation or condensation depending on whether the fluid is being heated or

cooled. The rate of production of mass per unit cross-sectional area is denoted by IV

Upon adding together the conservation of mass equations for each phase we obtain

d 1 a

— (axpx + a2p2) + ~TQ~A (aiPivi + a2P2V2) = Ti + T2 • (2.40)

Therefore for the total mass to be conserved within the flow we must have

r! + r2 = o. (2.41)
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Note that this is just the jump condition (2.34).

The velocity of phase k is denoted by vk. It is important to note that this is the

actual averaged velocity of the phase and not the superficial phase velocity. The

superficial velocity of the phase is the velocity of that phase if it was travelling alone

in the pipe. The superficial velocity is more commonly used as a variable in the drift

flux model and will be developed further when we consider the drift flux model. The

other velocities that appear are interfacial velocities which have the subscript i. The

difference in the velocity at the interface in three dimensional flows is given by the

jump condition

pip {V - Vi) • VXk = CtpZfai (vif - v-) • Vol = V^TT. (2.42)

Since the tangential components of the velocities are continuous the jump in the

velocity vki must occur in the averaged normal direction. So the interfacial velocity

in three dimensions is obtained by taking the dot product of the above jump condition

with Vat and then rearranging to obtain

= Vi + _ . (2.43
Cp\Va\2

The one dimensional interfacial velocities are assumed to have the same form as the

three dimensional velocities There are interfacial velocities for momentum, energy

and work defined by

t £± . (2.44)

Where the superscripts m, e and w indicate the interfacial velocity for momentum,

energy and work respectively.

The interfacial force due to the stresses acting on the interface is given by the quantity

Mfc, which is defined by

Mk = PkiVak - Tki • V a t + M'k • (2.45)



32

The term M'k represents all the forces that are not directly related to the phase

distribution such as the drag, Basset and virtual mass force. The Basset force is a

force experienced by bubbles due to the formation of a boundary layer on the bubble.

We now briefly define the remaining variables from equations (2.28)-(2.33). The

term Tk is the stress and is related to the shear stress r̂  and the pressure pk by

(2.46)

The internal energy of phase lk'is denoted by uk and the enthalpy and entropy by

hk and sk. The interfacial energy, momentum and work are denoted respectively by

Ek, Mk and Wk- The interfacial energy and work are related via the jump condition

(2.36). The term qk is the heat flux.

Variables that have the superscript Re are known as Reynolds stress and are due

to turbulence. Variables with a subscript w represent perimeter averaged variables

and take account for fluid close to the wall. Variables with subscript i are the values

of the variables along the interface between the phases.

2.3 Mixture and Homogeneous Models

An important simplification of the separated flow model is the mixture model. The

mixture model is a simplification of the two fluid model in that it replaces the two

fluid equations with a one component pseudo fluid model. The variables for the

mixture model are averaged variables based on the two fluid variables. The easiest

way to formulate the mixture model is by adding the relevant conservation equations

(2.28)-(2.32) and then deciding on sensible mixture variables. For example, for the
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mixture conservation of mass we add together equations (2.28) for k — 1,2 to obtain

— (ai pi + a2 p2) + ^ - {a\ P\ vx + a2 p2 v2) = 0 . (2-47)

This equation is then simplified by the introduction of the mixture variables for

density and velocity. A suitable choice of mixture variables for density and velocity

are respectively

pm =odpi + a2 p2 , (2.48)

vm = a*W + a*P>v> . (2.49)
a-i pi + a2 p2

It should be noted that other authors have developed different forms for the mixture

density and velocity. The conservation of mass equation in terms of the mixture

variables is therefore

The mixture equations for momentum and energy are formulated in the same way by

adding the respective balance equations and then deciding upon mixture variables.

For a complete set of mixture equations and definitions of all the mixture variables

see either Drew and Wood (1985) or, for a more classical approach, Atkin and Craine

(1975). The mixture model is usually a good approximation to the flow if the fluids

are well mixed.

Closely related to mixture theory is homogeneous flow theory. To be able to

approximate the flow using homogeneous flow theory the two phases must be well

mixed and travelling at the same velocity. So homogeneous flow theory is a simplifi-

cation of mixture theory and the balance equations can be obtained from the mixture

equations by setting u\ = u2 = um. The homogeneous flow model has been used to

calculate the pressure gradient for two phase flows. For a more detailed discussion of

the applications of homogeneous flow theory see Wallis (1969) and Whalley (1987).
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2.4 Drift Flux Model

The drift flux model has been used successfully in modelling bubbly flows, slug flows

and fluid particle systems such as fluidised beds. The drift flux model was developed

by Wallis, and his book published in 1969 still remains a seminal reference for the

drift flux model. A good introduction to the this model can also be found in Whalley

(1987). The drift flux model is most relevant for flows where the velocity of the gas

phase is well defined. This particular model can be confusing due to the large number

of variables used.

To understand the drift flux model we need to distinguish between superficial

phase velocities and actual phase velocities. The superficial phase velocity is the

velocity of that particular phase if it were flowing alone in the pipe. The superficial

velocity is thus defined as

Vj = %-, (2.51)
Pi

where Gj is the mass flux of phase j and pj the density of phase j . The mass flux is

defined by

3 . (2.52)

By combining equations (2.51) and (2.52) we are able to relate the superficial velocities

and the actual velocities via the equation,

vj = -i-. (2.53)

Another important quantity is vs, the slip velocity, which is defined as the difference

between the actual gas phase velocity and the actual liquid phase velocity. In terms

of the superficial velocities and gas void fraction, the slip velocity is defined by

v. = Zl- — 1 ! _ . (2.54)
Oil \ — OL\
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Rearrangement of 2.54 yields

vsa2 (1 - a2) = V2(l- a2) - Vxa2 . (2.55)

The drift flux of the gas phase relative to the liquid phase is therefore defined to be

J21 = vsa2 (1 - a2) . (2.56)

The drift flux represents the volumetric flux of a component relative to a surface

moving at the average velocity. The drift velocity of the gas phase relative to the

mean flow and the drift velocity of the liquid phase to the mean flow are defined

respectively by

v2j = v2-j, (2.57)

vij = v1-j, (2.58)

where j is defined as

j = Vi + V2 . (2.59)

Although the drift flux model has been used to model flows, we will not be developing

it further since for our flow we do not have detailed experimental results to define the

velocity of the gas phase as a function of the other flow parameters.

2.5 Closing Remarks

From the equations developed in this chapter it is evident that correct averaging of

the equations is of upmost importance to the model. The other important process

is the formulation of the constitutive relationships. Most constitutive relationships

are developed from experimental data. They are then checked to ensure that they

are consistent with the averaged equations by insisting that they satisfy the entropy
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inequality. The particular model used depends on the flow being considered. For

example if two phases are well mixed then the mixture model would be the first model

to be considered. A more complicated separated flow model could be introduced when

the general features of the flow are understood.

One of the major difficulties with multiphase models is the large number of vari-

ables involved. The complexity of the equations can usually be reduced by using

asymptotic methods to determine which terms involved in the equations are small

and may therefore be neglected. This helps us to develop realistic but simple models

for the different flow regimes.

Having reviewed the physical details of LMFBR's, two-phase flows, and the dif-

ferent flow regimes, we will now start to look specifically at each region in a heat

exchanger pipe.



Chapter 3

SUBCOOLED FLOW REGIME

3.1 Introduction

In this chapter we shall study the subcooled flow regime, wThich is the region of flow

where the water is at a temperature below its boiling temperature. The subcooled

region is the first flow regime and occurs at the base of the steam generating pipe.

The subcooled water is pumped in at the base of the pipe at a constant velocity

and is heated by the countercurrent flow of molten sodium which flows in a casing

surrounding the steam generating pipes. In test rigs the steam generating pipes are

heated electrically, since it is easier to measure physical quantities such as external

heat flux and wall temperature.

We shall assume that the start of the transition from subcooled flow to bubbly

flow occurs when the temperature of the fluid reaches the boiling temperature at

some point within the flow. With this assumption we shall be able to estimate the

length of subcooled region and judge its global importance to the flow.

We will consider two situations, one where the fluid is heated by a constant heat

flux and another where the heat transfer is modelled by Newton's law, so that the heat

supplied to the fluid is directly proportional to the temperature difference between

the channel wall and the fluid. In calculations we shall assume that all the physical
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quantities of the fluid (i.e. specific heat capacity, thermal diffusivity etc.) remain

constant which is a reasonable approximation for water.

3.2 Energy Equation For Single Phase Liquid

Experimentally the flow in the subcooled regime is sometimes observed to be turbulent

and other times laminar. For this analysis we shall be just be considering the situation

where the flow is laminar. Ignoring viscous dissipation, the energy equation for an

inviscid incompressible fluid is

f FIT \
[L + (V)TjKV2T, (3.1)

where q is the velocity of the fluid and T = T(r,0,z) the temperature of the fluid.

We shall initially model the flow using cylindrical coordinates and also assume that

the pipe is uniformly heated around its circumference. This is not exact since the

liquid sodium will be cooler at the bottom of the pipe than at the top, having given

up some of its heat to the fluid. The thermal conductivity K is a measure of the

efficiency of the material at conducting heat.

Since the fluid is heated uniformly around the circumference of the steam gen-

erating pipe we can assume that the temperature is angular independent and only

varies in the axial and radial directions. We also assume that the flow is steady, and

the fluid is flowing with a constant velocity u> in the axial direction and there is no

flow in the radial direction. With these assumptions we can write down the relevant

reduced version of the energy equation (3.1)

dT TJd2T ldT d2T\ . .
pCp LO— = / < • _ - + —— + _ . . (3.2)

oz \ or2 r or oz2 /
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In an effort to simplify equation (3.2) we introduce the following non-dimensional

variables

T = Tof, (3.3)

z = Lz, (3.4)

r = ar, (3-5)

where To is the initial inlet temperature, L is a typical length scale in the axial

direction and a is the pipe radius. The non-dimensionalised version of equation (3.2)

is therefore

( ldf\ _^_^T

dz NGz \dr2 r dr J NPe dz2

The non-dimensional groups introduced in the above equation are the Peclet number,

aspect ratio and Graetz number, defined respectively by

^ , (3.7)

a = | , (3.8)

NGx = NPea^P-^f. (3.9)

For the physical situation under consideration the Peclet number typically has the

value 7.4 x 104 and the aspect ratio a value of 7 x 10~3. Thus the Graetz number

has a value of 518. The values of the physical parameters used in calculating these

non-dimensional groups are located in Appendix A. By comparing the magnitudes of

the non-dimensional groups it may shown that

This means that to lowest order any terms multiplied by -—- may be neglected. To
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lowest order the non-dimensional equation (3.6) therefore reduces to

at 1 (&t iaf\

Before dealing with the complexities of the full axially symmetric case, we note that

a further simplification is to consider the two dimensional energy equation instead

of the axially symmetric energy equation. All the simplifications carried out on the

axially symmetric energy equation also hold for the two dimensional case, which can

be written

dz NGZ dx2 '

3.3 Constant Heat Flux

3.3.1 Two Dimensional Problem

For the two dimensional case with prescribed heat flux we need to solve the energy

equation with the following boundary conditions:

K -z— = q on x = a, (3.13)
ox

K -̂ — = — q onx = —a. (3-14)
ox

In equations (3.13)-(3.14), q is the constant external heat flux applied at the boundary

of the channel. The problem is shown diagrammatically in figure 3.1.

Since the problem is symmetric about x = 0 we need only solve the problem in

the region 0 < x < a. By using symmetry we may replace the second boundary

condition with
dT

K—(0,z) = 0 onx = 0. (3.15)
ox
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Figure 3.1: Schematic layout of 2-dimensional problem

The boundary value problem for the two dimensional case in the region 0 < x < a

may then be written as

,82TdT
Pcpu- = K

dx2 '

T = To on 2 = 0 ,

A —— = q on x = a,
ox

dT
K —- = 0 on x = 0 .

ox

We seek a solution of the form

(3.16)

(3.17)

(3.18)

(3.19)

T{x,z) = f(x, (3.20)

where f(x,z) is a function that satisfies the partial differential equation (3.16) but
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also renders the boundary conditions (3.18) and (3.19) homogeneous. By inspection

such a function is seen to be

(3.21)

The problem in terms of <j)(x, z) may then be written as

(3.23)

^(°>z) = °> (3-24)
-^(a ,z) = 0. (3.25)

The boundary value problem defined by equations (3.22)-(3.25) may then be

solved by using the separation of variable technique. The solution for the two dimen-

sional heat flux case can therefore be written

mi \ rn 9 (KZ a x 2 a J 2 , / ( l ) (rnxx\

T x, z) = T0 + j-( + - ^ i - ^ - cos exp
K \au> 6 2a TT2 ̂  \ n2 \ a J

j ( + ^ ^ cos e x p .
K \au> 6 2a TT2 ^ \ n2 \ a J a2u> ))

(3.26)

For ease of notation in equation (3.26) we have introduced the quantity /c, the thermal

diffusivity. The thermal diffusivity is defined by

K = — . (3.27)
PCP

We may now use equation (3.26) to calculate the length of the subcooled region. To

do this we assume that the transition from subcooled flow to bubbly flow occurs when

the temperature of the water at some point in the channel reaches the saturation tem-

perature. Experiments were carried out by the Kreftwerk Union using an electrically

heated pipe of axial length 6m and inner radius 7mm. A heat flux of 595Kw m2
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was supplied to the pipe. The Kreftwerk experiments were reported on by Atthey

et al (1988). The water had an pressure of 200 bar, implying that the saturation

temperature of the water is 365 °C. The inlet temperature of the water was 240 °C.

Since the heat flux is being applied at the boundary of the channel we may assume

that the water will first reach its saturation temperature at some point along the

channel wall. By setting x = 7 x 10~3m in equation (3.26) and varying z we were

able to calculate that the transition from subcooled flow to bubbly flow occurred a

distance of 0.15m from the channel inlet. The variation of temperature along the

channel wall with respect to the distance from the channel inlet is shown in figure

3.2. An explicit formula for calculating the length of the subcooled region is obtained

in the next section by the use of asymptotic methods.

Next, calculations were performed to determine how the temperature of the water

varied across the channel by keeping z fixed and varying x. We found that the bulk

of the water remained at its inlet temperature of 240 ° C and that only a layer of

water about lmm thick along the channel wall was heated. The variation of the

water temperature near the wall is shown in figure 3.3.

3.3.2 Asymptotic Analysis of Two Dimensional Constant Heat Flux Case

Two dimensional subcooled flow with a prescribed constant heat flux at the walls is

governed by equations (3.16)-(3.19). Although we have an exact analytical solution

it is not very easy to analyse since it involves an infinite summation. However,

from the analytical solution we were able to see that only the temperature of a very

thin layer of water next to the channel wall was changing significantly, and this

suggests the existence of a boundary layer along the channel wall. This implies that
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we might obtain a simpler approximate solution to the problem by the application of

asymptotic methods. To study the problem asymptotically we need first of all to non-

dimensionalise equations (3.17)-(3.19). A suitable set of non-dimensional variables

are

T = T0{l+6) , (3.28)

z = LZ, (3.29)

x = aX, (3.30)

where To is the inlet temperature, a is the half the width of the channel and L is

typical length in the axial direction. Upon the introduction of the non-dimensional

variables the system of equations (3.16)—(3.19) reduces to

dZ

de
dX

de
dx

e =

where e and A are denned respectively

0

A

0

by

i

X2

on

on

on

X-0,

X - l ,

z = o,

1

(3.32)

(3.33)

(3.34)

< 3 ' 3 5 )

(3.36)

The critical balance determines that A is of order e"1

From the structure of equation (3.31), it is obvious that there is a boundary layer

at X = 1 since if we treat the problem as regular perturbation with small parameter

e we can not satisfy all the boundary conditions. The problem therefore needs to be
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approached as singular perturbation problem. To study such problems we need to

construct an inner solution for the rapid variation of temperature within the boundary

layer and an outer solution for the variation of temperature away from the boundary

layer.

Outer Problem

The outer expansion is given by the solution of the following equations

f § = o> (3-37)
H = 0 on* = 0, (3,8)

6 = 0 onZ = 0. (3.39)

The solution to this problem is simply

0° = O, (3.40)

where we have used a superscript o to indicate that this is the solution for the outer

problem.

Inner Problem

For the inner problem we need to change to boundary layer variables. Since the

boundary layer is located at X = 1 we need to expand the independent variable

about X = 1. A suitable change of variable is therefore

where v is to be determined. Since we are now solving the problem for the boundary

layer we may neglect the boundary condition at X = 0 so that the problem becomes
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I = s'X on{ = 0, (3.43)

9 = 0 on Z = 0. (3.44)

The correct balance therefore occurs when v = | . The boundary layer equations then

reduce to

- = £* , (3.45)
aZ oc,1

89
— = -/x on i = 0, (3.46)

0 = 0 on Z = 0, (3.47)

where [i = £a/2A and is 0(1). One way to proceed in solving this problem is to

introduce similarity variables

t = -4=, (3-48)
9 = y/Zxl>(t). (3.49)

These similarity variables can easily be obtained by the method of stretchings. The

introduction of similarity variables transforms the partial differential equation (3.45)

into an ordinary differential equation with dependent variable ift and independent

variable t. The problem in terms of tp(t) therefore becomes

hff-iv> = o, (3.50)

-^- = -fi ont = 0. (3.51)

It should be noted that the boundary condition (3.47) is automatically satisfied by

the similarity variables. The general solution of equation (3.50) is

exp ( -V)) , (3.52)
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where erf(x) is the error function, denned as

22 fx

;rf(x) = —= / exp(—s2) ds .
y/TT JO

(3.53)

Applying the boundary condition defined by equation (3.51) we obtain

2 e r f (£) + e x p Hr (3.54)

To calculate the remaining constant of integration we will need to match the outer

solution to the inner solution. The inner solution in terms of £ and Z is

exp - AZ
(3.55)

We have used the superscript i to indicate that 6l is the inner solution. The matching

condition, as quoted in any standard text on asymptotics such as Nayfeh (1981) is

that the outer expansion of the inner expansion equals the inner expansion of the

outer expansion. This is usually represented by the notation

The inner expansion in terms of the outer variable is

i *; \ „ / I — X
D

+ B

J l - X \
erf 7=

r- (

+ VZ exp -

(3.56)

(3.57)

Keeping X fixed and expanding the above to lowest order in s we obtain

^ - . (3.58)

The inner expansion of the outer expansion is simply zero, which means by equating

equation (3.58) with zero we obtain

B = (3.59)
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The inner expansion is therefore

'3«P(-7*)-*l • (3-6°)

Composite Expansion

The composite expansion for the non-dimensional temperature is given by

0C = 6* + 6° - (P)" (3.61)

where (9l)° is the common limit of the outer and inner expansion and we have used the

superscript c to indicate that this is the composite solution. The composite expansion

for the dimensional temperature is therefore

± JI (^)) • (3.62)
j)

This is a useful approximation to the analytic solution equation (3.26) since it allows

us to find a simple formula relating the axial distance along the pipe to the physical

parameters.

As previously mentioned we assume that the transition to the bubbly regime

occurs when the temperature of the water first reaches the boiling temperature of

water. This will occur first at some point along the channel wall. The variation of

the water temperature along the channel wall is therefore given by substituting X = a

into equation (3.62) to give

TW1 = To (l + 2X^ ) . (3.63)

A plot of the water temperature along the wall is shown in figure 3.8. Note that it

compares favourably with the analytic solution depicted in figure 3.2. The transition
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from single phase subcooled flow to bubbly flow occurs when Twi = Ts. Upon rear-

ranging equation (3.63) the length of the subcooled region is given by the relationship

This formula can be recast into more familiar variables by replacing e with its equiv-

alent physical representation

z = ^ ^ (Ts - To)' . (3.65)

Note that equation (3.65) also predicts that the transition to the bubbly flow regime

occurs a distance of 0.15m from the channel inlet.

3.3.3 Axially Symmetric Case

The axially symmetric case gives rise to a similar boundary value problem as in the

two dimensional case. The axially symmetric problem to lowest order is

dT TJd2T ldT\ , o .
pcpu— = KI — + -— , 3.66

dz \ or2 r or J

T(r,0) = T0, (3.67)

K — = q on r = a, (3.68)
or

K —- = 0 on r = 0 , (3.69)
Or

where r is the radial coordinate and z the axial coordinate. Following the same

procedure as in section (1.3.1) we look for a solution of the form

(3-70)
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where /(r , z) satisfies the differential equation but also makes the boundary conditions

homogeneous. By inspection such a function is seen to be

i . (3.71)
2Ka

This transforms the boundary value problem to

d<j> 8<f> ld<j>
— - K-— + - — (3.72)
oz or2 r Or

% o n 2 = 0 ' (3-73)

- ^ = 0 onr = a, (3.74)
Or

^ ( 0 , z ) = 0 onr = 0. (3.75)

This boundary value problem can once again be solved by separation of variables.

Using a similar procedure to that used for the two-dimensional problem the solution

is given by

4 ^ a2 J{a) a2u J^ an J0{an)

Here an are the roots of the equation

J i K ) = 0. (3.77)

Note that Jo(x), J\(x) are Bessel functions of the first kind of order zero and one

respectively. In general Bessel functions of the first kind of order v satisfy the equation

r or
(3.78)

To calculate the length of the subcooled region we find the point at which the water

along the wall reaches its saturation temperature. We calculated this distance to be
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0.15m from the channel inlet. The variation of water temperature along the channel

wall is shown in figure 3.4.

As with the two dimensional case only a thin layer of water along the pipe wall

showed any significant increase in temperature. The variation of temperature in the

radial direction at a distance of 0.15m from the inlet is shown in figure 3.5. This

agrees with the previous result of § 3.3.2.

3.3.4 General Solution

Solutions to generalised versions of the previous boundary value problems considered

above are possible through the application of Duhamel's theorem, which for this

particular problem has the following form taken from Carslaw and Jaeger (1946):

If T — /(x, z) represents the temperature of a fluid, with initial temper-

ature zero and surface heat flux equal to unity, then the solution to the

problem when the surface heat flux is q(z) is given by

So, for example, applying Duhamel's theorem to the two dimensional case with a

heat flux q(z) at the surface x = a gives the general solution

rri. . m fz q(r) d (K(Z-T) 2a ^ ( - l ) n frnrx\ n2IT2K(Z - r ) \ ,
Jo K or \ au> IT2 ~^ n2 \ a J a2u )

(3.79)

By applying equation (3.79) it would be possible to model more complex situations

where the heat flux depended on the axial distance along the channel from the inlet.
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3.4 Comments on Heating by Constant Heat Flux

Both the two dimensional case and the fully axially symmetric case predict that the

length of the subcooled regime will be 0.15m. This compares favourably with the

results obtained by Atthey (1992). Both cases show that only the fluid close to the

wall is being heated significantly. This allowed us to develop a simple formula based

on asymptotic techniques for the length of the subcooled regime.

3.5 Heating by Newton's law

3.5.1 Newton's Law

Newton's law states that the heat flux across a surface is directly proportional to the

temperature difference between the surface and the surrounding medium.

This statement is equivalent to applying the following boundary condition along

the channel wall

(3.80)

where H is the coefficient of surface heat transfer. For our analysis we shall assume

that H is constant although in reality it is typically a function of the flow velocity

and the temperature.
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3.5.2 Two Dimensional Case

For the two dimensional case we need to solve the energy equation with a Newton's

law boundary condition:

T = To on z = 0, (3.82)

^ = -h(T(a,z)-Ta) onx = a, (3.83)

— = 0 onx = 0, . (3.84)
(J3C

where h = ^ . The boundary condition can be made homogeneous by introducing

the change of variable

<f> = T(x,z)-Ta. (3.85)

The boundary value problem for <j) then becomes

H d2<f>
pCpUTz = ^ ' (3"86)

<l> = To - Ta o n z = 0 , (3.87)

-^— = —h<f> o n x = a , (3.88)
ace

^(0 ,2) = 0. (3.89)

This boundary problem for <p(x,z) can now be solved by separation of variables to

give

£ f ; '^ - r > ° M ( " ) ( # ) . (3.90)
+ ah cospn

In equation (3.90) pn are the roots of the transcendental equation,

(3.91)
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This equation has an infinite amount of roots that can be located by application of a

numerical procedure such as Newton's method. Some of the roots for specific values

of ha are located in Carslaw and Jaeger (1946). To calculate the value of H we used

the equation

q = H(Ta - Tf), (3.92)

In equation (3.92) Ta denotes the ambient temperature, which we take to be equal

to the maximum wall temperature of 480° C, and Tj is the average temperature

of the water. For a first approximation we assume the average temperature of the

water is 240° C. The value of h is obtained by dividing the surface heat transfer

coefficient by the thermal conductivity of the water (ie h = y) . This gives a value

for ha of approximately 27. Since the fluid near the wall of the channel will heat up

more quickly then the rest of the fluid, we assume that the water would first reach

its saturation temperature along the channel wall. We let r = 7 x 10~3m, where

7 x 10~3m is the radius of the channel, and then vary z until we find the point at

which the water first reaches its saturation temperature. According to this simplified

model, this determines the transition to bubbly flow to be a distance 0.5m along the

pipe.

We then repeated the calculation but took Tf — 280° C, which gave the quantity

ha a value of about 33. This time the transition point was calculated to be at a

distance of about 0.35m along the channel. The variation of water temperature along

the channel wall is shown in figure 3.6. We then calculated how the temperature of

the water varied radially at a fixed axial distance. As in the constant heat flux case

we found that only a layer of water of thickness lmm along the channel wall was

being heated and the bulk of the water was remaining at its inlet temperature. The

temperature profile for variation of water temperature in the radial direction at a

distance of 0.35m from the pipe inlet is shown in figure 3.7
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3.5.3 Asymptotic Analysis of the Two Dimensional Case

The analytic solution obtained in the previous section is not very easy to analyse

since it involves summing an infinite series and finding roots of a transcendental

equation. The analytic solution does indicate though that there is a thermal bound-

ary layer along the channel wall as only the fluid near the channel wall shows any

significant increase in temperature. To analyse the boundary layer we first need to

non-dimensionalise equations (3.81)-(3.84). To do this we introduce the following

non-dimensional variables

T — T
0 = ±—jr, (3-93)

-La — -tO

x = aX, (3.94)

z - LZ, (3.95)

where To and Ta are the inlet and maximum wall temperatures respectively. The x

variable has been scaled with half the channel width and the z variable with a typical

length in the axial direction. The non-dimensional problem can then be written as

dd dH

Jz = £dT>> (3'96)

8 = 0 on Z = 0, (3.97)

de
dx
dd
ex

= -Nu(-l+6) o n l = l , (3.98)

= 0 o n l = 0. (3.99)

In the above system e is equal to JJ—, where NQZ is the Graetz number defined

previously by equation (3.9). The non-dimensional constant Nu is the Nusselt number

defined by

^ . (3.100)
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The critical balance determines that the Nusselt is of order e a/2.

As stated previously this is not a regular perturbation problem since there exists

a boundary layer at X — 1. To look at this problem asymptotically we need to find

an outer solution far away from the boundary layer and an inner solution which in-

corporates the boundary layer.

Outer Problem

The outer expansion is obtained by solving the following equations

9 = 0 onZ = 0, (3.102)

r)9

ax = ° °aX = °- <3-1 0 3)
The solution to this problem is simply

0° = O, (3.104)

where we have used the superscript o to indicate that this is an outer solution.

Inner Problem

In order to investigate the inner solution we need to introduce the boundary layer

variable defined by

The inner problem can then be written as

89
8Z ~ 8?> (3-106)

9 = 0 on Z = 0, (3.107)
an
°U w ° - - '-1 + 9) . (3.108)
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To complete the inner solution we need a matching condition, which for this problem

is

0->O a s£ -+oo . (3.109)

One approach to solving this problem is take the Laplace transform with respect to

the Z variable. The Laplace transform is defined in the usual way by

6(t, a)=C [9(t, z)) = j T e—9(£, z) dz . (3.110)

The transformed problem can then be written down as

d2e
f2

-s6 = 0, (3.111)

^--u.0 = - - on£ = 0 (3.112)
d£ s

0->Q o n ^ - ^ o o . (3.113)

In the above system of equations we have introduce the the quantity // defined by

fi = Nus1/2. (3.114)

Since Nu is of order £1/'2 then // is of order 1. The solution to equation (3.111) which

satisfies the boundary conditions (3.112) and (3.113), is

To obtain 0((, Z) we need to apply the inverse Laplace transform. The inverse of

(3.115) as quoted by Carslaw and Jaeger (1946), is

'"(6 Z) = erfc (^L^J - exp (tf + /,2Z2) erfc ( ^ = + pVz} , (3.116)

where erfc(x) is the complementary error function and we have used the superscript

i to indicate that this is an inner solution
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Composite Expansion

The composite expansion is given by

8e = P + 0° - (ff1)0 (3.117)

where the last term represents the outer limit of the inner expansion and the su-

perscript c indicates that it is a composite expansion. The composite dimensional

expansion of the temperature is therefore

= To + (Ta - To) ferfc lf^=) -
[ \2a/ezJ

(3.118)

From the composite expansion we can now obtain an explicit formula describing the

temperature of the water along the channel wall by substituting x = a into equation

(3.118). The water temperature distribution along the channel wall is therefore given

by the expression

Twt = Ta- {Ta - ToK^erfc (hay/H) . (3.119)

A plot of the asymptotic expansion of the water temperature along the wall is shown

in figure 3.9. Note that equation (3.118) also predicts that the transition to bubbly

flow occurs 0.35771 from the pipe inlet.

3.5.4 Axially Symmetric Case

The axially symmetric case gives rise to a similar boundary value problem as in the

two dimensional case. The axially symmetric problem to lowest order is

dT TJd2T ldT\ ,o .

= / H ^ + 7 a r ) ' (3'120)



59

T = To onz = 0, (3.121)
fsrn

—- = -h(T-Ta) onr = a, (3.122)
or
dT
—- = 0 onr = 0. (3.123)
Or

As with the previous boundary values problem, the problem can be made homoge-

neous by the substitution

</>(r,z) = T(r,z)-Ta. (3.124)

The boundary value problem in terms of (f)(x, z) is therefore

86 (826 186\
[ rTr) ' (

6 = (T0-Ta) on 2 = 0, (3.126)

— = -h<f> onr = a, (3.127)
Or
86
-I- = 0 onr = 0. (3.128)
dr

This system is solved using separation of variables, giving a solution

exp (-41.) , (3.129)

where pn are the roots of the equation

pJiip) = ahJ0(p). (3.130)

This transcendental equation has an infinite number of roots which can be calculated

using a numerical scheme, such as the bisection method. Using the same method as

in the previous section with T/ = 240 °C we again calculated the transition point to

be a distance of about 0.5m along the channel. However when we took the average

temperature of the fluid to be 280 °C the transition to bubbly flow occurred 0.35m

from the pipe inlet. The temperature variations along the wall and in the radial

direction are shown in figures 3.10 and 3.11 respectively.
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3.5.5 General Solution

Applying Duhamel's theorem as previously denned in § 3.3.4 we can calculate the gen-

eral solution for the two dimensional system. So, for example, for the two dimensional

case we have the general solution,

This is the solution to the problem where the surrounding temperature is not constant

but depends on z.

3.6 Discussion

From the analysis carried out in this chapter we have been able to calculate the length

of the subcooled regime for two forms of heating, constant heat flux and heating

by Newton's law. The two forms of heating give different lengths since heating by

Newtons law depends on the temperature difference between the fluid and the wall.

As the fluid gets hotter the temperature difference decreases and therefore less heat

flows from the wall to the fluid. This implies that the length of the subcooled regime

should be greater for the Newton case then the for the constant heat flux case. This

argument is verified by our analysis.

The model could be made more complex by not assuming that the fluid velocity

remains constant throughout the subcooled regime. Further work could be to study

non-uniform heating of the pipe in which the external heat flux varies around the

cross-section of the pipe.
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Figure 3.2: Variation of water temperature along channel wall for constant heat flux,

two dimensional geometry
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Figure 3.3: Variation of water temperature in radial direction for constant heat flux,

two dimensional geometry
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T° C
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Figure 3.4: Variation of water temperature along channel wall for constant heat flux,

axially symmetric geometry.

T° C

r / m

Figure 3.5: Variation of water temperature in radial direction for constant heat flux,

axially symmetric geometry
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240
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Figure 3.6: Variation of water temperature along channel wall for Newton heating,

two dimensional geometry
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Figure 3.7: Variation of water temperature in radial direction for Newton heating,

two dimensional geometry
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Figure 3.8: Asymptotic solution for the variation of water temperature along the wall

for constant heat flux, two dimensional geometry

TW/°C
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Figure 3.9: Asymptotic solution for the variation of water temperature along the wall

for Newton heating, two dimensional geometry
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Figure 3.10: Variation of water temperature along channel wall for Newton heating,

axially symmetric geometry

T °C

6 6.2 6.4 6.6 6.8 7

r /mm

Figure 3.11: Variation of water temperature in radial direction for Newton heating,

axially symmetric geometry



Chapter 4

BUBBLY AND SLUG FLOW REGIMES

4.1 Introduction

The gas phase flows as discrete bubbles in the continuous liquid phase. The bubbles

are formed at nucleation sites along the channel walls. This type of nucleation is

termed heterogeneous nucleation and is due to the fact that the channel walls are not

entirely smooth but contain minute pits where bubbles can be formed. It should be

noted that bubbles may also act as nucleation sites themselves. To model the bubbly

flow regime it will be necessary to formulate a set of equations for each of the two

phases. Since the steam generating pipe is being heated our model must to take into

account the exchange of mass between the two phases due to the evaporation of the

liquid phase.

As the number of bubbles increases so does the probability that the bubbles

will collide and conglomerate to form bigger bullet shaped bubbles. These bullet

shaped bubbles are often referred to as Taylor bubbles, as for example in Mao and

Dukler (1991) and Chisholm (1983). The collision process continues until bubbles

are produced which have a diameter just less than the diameter of the channel. Once

this has occurred the flow regime is assumed to have changed from bubbly flow to

slug flow. Between the large Taylor bubbles slugs of water are entrained with smaller
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bubbles. As the Taylor bubbles flow up the channel a thin film of liquid flows around

the bubble in the opposite direction to the overall flow.

Navarro-Valenti, Clausse, Drew and Lahey(1991) and Taitel, Bornea and Dukler

(1980), observed that the transition from bubbly to slug flow takes place when the

gas void fraction, c*2, ha s a value of approximately 0.3. We shall use this fact to help

us calculate the length of the bubbly regime and the pressure drop across the bubbly

regime.

4.2 The Bubbly Flow Regime

4.2.1 Constitutive Relationships

To utilise the two-phase flow equations developed in chapter 2 on pages 27- 28 we

need to supply the constitutive equations that are relevant to the bubbly flow regime.

As previously mentioned, the constitutive equations describe how the two phases

interact with each other. Therefore we will need to develop equations describing such

interactions as the drag force experienced by the steam bubbles and the interfacial

pressure difference between the two phases.

Interfacial Pressure

For two-phase flows where the effect of surface tension is important the simple rela-

tionship between the continuous and dispersed interfacial pressures is

2a
P2i-Pu = — • (4.1)
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In the above expression cr(N/m) is the surface tension and rc is the radius of curvature

of the gas/liquid interface. For the purpose of our modelling we will be assuming that

the effects of surface tension are negligible and therefore the interfacial pressures are

equivalent and equation (4.1) reduces to

Pi,- = P2i • (4.2)

Drew and Wood (1983) suggest that the pressure of the continuous phase may be

related to the continuous interfacial pressure by

Pi." =Pi~ £p\ (ui - v2)
2 , (4.3)

where the last term is known as Lamb's term and £ is a dimensionless constant which

for most applications, is taken to have a value of 0.25, as quoted by Prosperetti and

Satrape (1990). The dispersed phasic pressure is assumed to be equal to the dispersed

interfacial pressure, that is

P2i = P2 • (4.4)

By combining equations (4.2)-(4.4) we are able to relate the continuous and dispersive

pressures by the equation

P\ =P2 + £pi {vi - v2f . (4.5)

The above equation is a simple formula relating the continuous and dispersive pres-

sures that we will use to close the equations of two phase flow. Note that by using

equation (4.5) we are formulating a two pressure model.
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Interfacial Force

The one-dimensional interfacial force term defined by Drew and Wood (1988) is given

by

Mk = P k i ^ - T k l ^ + M>k, (4.6)

where pki and rki are respectively the interfacial pressure and viscous stress of phase

k. The interfacial force is due to the stress acting on the interface between the

two phases. For the dispersed phase M'2 is the sum of all the interfacial terms not

directly related to the phase distribution. For the purpose of this work we will only

be considering the effects of the drag force. The equation for M'2 is therefore

M'2 = FD , (4.7)

where Fp is the force on the bubbles due to drag. To calculate M[ we need to apply

the jump condition defined by equation (2.35). As we will be neglecting the effects

of surface tension, the momentum source term due to surface tension, m, can be

neglected. The jump condition (2.35), upon the introduction of (4.6), reduces to

M[ + M2 + P l ~ + P 2 , ~ + T (v2i - vu) = 0 . (4.8)

This expression can be simplified further since the interfacial velocities are equal and,

by using equation (2.39) to relate the void fractions for the continuous and dispersive

phase, we obtain

Mi + M̂  + ( p 2 , - - P l 0 - ^ = 0. (4.9)

oz

As we are neglecting the effects of surface tension the interfacial pressures are equiv-

alent and we obtain the relationship

M[ = -M'2. (4.10)
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The interfacial force terms for the continuous and dispersive phases are therefore

respectively
Hrv-

(4.11)

(4.12)

Interfacial Drag

The interfacial drag term appears as one of the interfacial force terms in equation

(2.45). The interfacial drag depends strongly on which flow regime is being modelled

and on the materials that make up the two-phase flow. In two-phase flows the drag

force is directly proportional to the square of the difference of phasic velocities. In

developing an equation to describe the interfacial drag one needs to determine the

drag coefficient, Co- The two-phase interfacial drag as defined by Zuber and Ishii

(1976), and also Drew and Wood (1988), is

FD = a2Pi (v\ — v2) V\ — v2 . (4.13)
8 n

In the expression (4.13) rb is the average bubble radius. The drag coefficient is a

function of the two-phase Reynolds number, Re2p, which is defined through

_. 2rbp1 \v-i-V2
(4.14)

In expression (4.14) /xm is the mixture viscosity defined by

(4.15)

where a2m is the maximum packing, which for bubbly flows is usually taken to be

unity. Following Zuber and Ishii (1976) we may now write down the relevant form of
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the drag coefficient for a fluid particle system as

Ke2p \ 1U

Distributed Heat Source

When modelling the two-phase flow of water and steam in a steam generating pipe

we must take into account the fact that the pipe is being heated and therefore the

liquid phase is evaporating. One way of doing this is to introduce a distributed heat

source term, rm, into the model. The distributed heat source is defined as the total

heat entering the system per unit mass. The distributed heat source may be related

to the external heat flux by treating the flow as a mixture. The total amount of heat

entering a cylindrical control volume of length Sz is

Q = 2iraqSz. (4.17)

The total mass of fluid contained in a cylindrical control volume of length Sz is given

by • j
: i

M = ira2pm. (4.18)

In equations (4.17) and (4.18) a represents the pipe radius and pm the mixture density.

The mixture density has already been defined by equation (2.48). The distributed

heat source rm is then obtained by taking the ratio of equations (4.17) and (4.18),

leading to

On
(4.19)
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4.2.2 Temperature-Pressure Relationship for Dispersed Phase

We shall model the relationship between the gas pressure and temperature by initially

treating the steam as a perfect gas and applying the equation of state for a perfect

gas. For a perfect gas we have that the gas pressure is directly proportional to the

product of the gas density and temperature. This is referred to as the gas law and is

usually defined by

p2 = RP2T , (4.20)

where R is the gas constant. The value of the gas constant varies for different gases.

The gas constant for a particular gas is given by the ratio of the universal gas constant,

Ro, to the molecular weight, M, of the gas in question. For steam the gas constant

is given by

R = § = HL« = 0.462tf9/*.7* . (4.21)

Since, in reality steam is not a perfect gas we introduce a correcting factor to the

gas law, called the compressibility factor and denoted by Z. The equation of state

for the gas phase with the compressibility factor introduced is

p = ZRpT. (4.22)

In reality Z is a function of pressure and temperature, but since in the bubbly flow

regime the pressure and temperature will not vary much from the saturation temper-

ature and pressure we can take it to be constant. With these assumptions we may

calculate the compressibility factor as

^ = 0.615, (4.23)

For a more detailed explanation of the equation of state for a perfect gas, and the

compressibility factor, the reader is referred to Rodgers and Mayhew (1967).
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4.2.3 Temperature-Pressure Relationship for Continuous Phase

To obtain an equation relating the temperature to the pressure we plot the data for

the saturation line of water. A plot of the temperature against pressure is shown in

figure 4.1. From this it is possible to extrapolate a linear relationship between the

temperature and the pressure holding in a region close to the saturation temperature

of 365.5 °C. This linear relationship between water temperature and pressure may be

cast in the form

T = TS + XP (4.24)

In equation (4.24) Ts is the saturation temperature, and p is the pressure relative to

the saturation pressure. The gradient of the line x 'ls calculated directly from the

curve depicted in 4.1 and is found to have a value of 0.412 x 10~6 °C/Bar.

370

Tj°C

190 200 205 210

p/bar

Figure 4.1: Saturation curve for water
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4.2.4 Equations of Bubbly Flow Regime

We may now formulate a system of one-dimensional averaged flow equations for the

bubbly regime by using the equations defined in chapter 2, (2.28)-(2.32), and the

constitutive relationships detailed in this chapter. We have formulated conservation

equations of mass and momentum for each phase and an equation for the mixture

enthalpy. It's further assumed that the liquid phase is incompressible and that the gas

phase is compressible. The unknown variables in the flow equations are the pressure

in the gas phase (p2), g&s void fraction (0:2)) rate of production of steam (F), liquid

phase velocity (t>j) and gas phase velocity (^2)- The gas density can be defined as a

function of the gas pressure and will be introduced when required at a later point in

this chapter.

Conservation of Mass

Conservation of Momentum

dz ' Q l

3(^2
2)

Mixture Enthalpy

[«»
[dz +2i

dp2

dz
d(p2a2v2)

dz

Pi (vi - v2) f

3 CD p\ oc2[v2o r^

r(.~).

1

" / .

- Vi) | U2 -

a2 (v2 — v-i)

^1 | — "1/31

| ^2 - V-i |

\2 ^ a 2

dz

9

OL2p2g

(4.25)

(4.26)

(4.27)

(4.28)

d_
dz

a2p2v2h2) =
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+ „,„,& + «,„, [ £ + 2f» <„, - „) ( £ - £ ) ] . (4.29)

The mixture enthalpy equation may be simplified by substituting for the phasic

enthalpies and using equations (4.25) and (4.26). In doing this we make the assump-

tion that the water and the steam are at the the same temperature. This assumption

means that the water and steam enthalpies are defined respectively by

h = cpl (Ts + xfo) , (4.30)

h2 = cp2 (Ts + xh) • (4.31)

The mixture enthalpy is therefore defined by

T (Cp2 - Cpi) (Ts + Xfa) + a i P l ^ l X c p l ^ + «2/02U2XCp2— =

{ ) I / ^ ( _ V2) ( ^ - ^ ) • (4.32)

A further simplification is possible since at the saturation temperature the difference

in the water and steam enthalpies is equal to the latent heat of vaporisation. This

implies

cp2 - Cpj = — , (4.33)
J s

where A is the latent heat of vaporization. The mixture enthalpy equation is therefore

r , / , . X . \ . dp dp
FX ^1 + — p2j + a-tp-iViXCpl-fe + a2P2V2XCp-2-Q^ =

h. + ( a i u , + a2V2) | + 2aivm( (U1 - Vl) ( ^ - Q • (4.34)

4.2.5 Non-Dimensional Equations

To simplify the equations presented in the previous section we first non-dimensionalise

and compare the magnitudes of the non-dimensional groups to see if some terms in
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the equations can be omitted. To non-dimensionalise the equations of bubbly flow

the following scalings were employed:

92 = P\p'2 , Vi = ^o^j ,

v2 = vov'2 , z = 1/^'.

The non-dimensional equations describing the bubbly flow regime can be written as

^ ^ - = ~NpchT' (4.35)

d ( / y > = iVpc,r (4.36)

dip'aov'2) dp' 1
2 2 ' Ar -2^-7 = ^pcfcHuj + NCDOC2 (v[ - v2) \v'1-v'2\ —rpra2P2 (4.38)

dv dv
NpchT' [1 + N&] = N2- N4axv[^r - Nsa2v'2p'2-^r (4.39)

oz oz

N3 (alV[ + *2v>2) | f + 2N7(v[ (v[ - v'2)

By combining the non-dimensional forms of equations (4.22) and (4.24) we can con-

struct an equation for the density of the gas phase which is simply a function of the

non-dimensionalised gas pressure. The non-dimensional gas density is now defined
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In equations (4.35)-(4.40) the AVs are non-dimensional numbers which depend on the

physical parameters. The non-dimensional numbers and their orders of magnitude are

Npch = — - 1 0 0 0 , (4.41)

Np = - ^ - 8 3 3 3 , (4.42)

NCD = ^ (4.43)

NFr = -^L= ~ 0.26, (4.44)

Ni = ^ ~ 0.225 , (4.45)

N2 = — ^ r 1-45, (4.46)
P\VQ\ a

N3 = - ^ - - 5 6 . 7 7 , (4.47)
pX

N4 = ^ ^ - 2 . 9 5 , (4.48)

Â s = ^ ^ - 2 . 8 2 , (4.49)
A

N6 = — ~ 0.18, (4.50)
P\

N7 = ^ ~ 7 x 10"3 . (4.51)
A

The values used to calculate the magnitudes of the above non-dimensional numbers

are listed in Appendix A. The value of the drag number, NCD, will be discussed in

section §4.3 since it depends on the magnitude of the difference between the gas and

liquid phase velocities.
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4.3 Bubble Velocity

The main assumption we make in modelling the bubbly flow regime is that the bubbles

flow up the channel with the continuous phase at approximately the same velocity.

This is a reasonable approximation to make since at high pressures the surface tension

of the bubbles tends rapidly to zero. For more details on the relationship between

bubble rise velocity and pressure the reader is referred to Whalley (1987). This

approximation allows us to introduce the following perturbation,

v'2 = v'1+e1v. (4.52)

We could also introduce a similar perturbation as above for the pressure, but since

we expect the change in pressure will be small the effect of this perturbation on the

pressure will be negligible. On physical grounds we would expect the drag force on

the bubbles to be important and therefore require that, to lowest order, the drag

terms remain in the conservation of momentum equations. This means we need to

choose E\ to have a value such that

NCDe\ ~ Np . (4.53)

For our simplified study we shall treat the drag coefficient as a constant. The drag

coefficient is a function of the two-phase Reynolds number which depends on the

difference in the continuous and dispersive velocities, meaning that the drag coefficient

is a function of 6\. Using these assumptions we obtain

Oie-1'4). (4.54)

To satisfy the condition outlined in equation (4.53) we must have S\ = O(10"2).

For ease of notation from this point onwards we shall drop the prime notation for
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non-dimensional variables and the reader should assume that all variables are non-

dimensional unless stated otherwise. The two phase flow equations to lowest order in

S\ are defined by:

dz

dz

= -NpchT (4.55)

= NpchT (4.56)

S = NpchTv, + a2v | v\ --^-a, (4.57)
UZ liJPy.

Np(X2
dJL = _NpchTvi _ a2V | „ , _ 1 ,2 (4.58)

UZ iVjpr

NpchY [1 + N,p2] = N2 + (N3Vl - N4a,Vl - N5 (1 - a,) p2vx) ^ (4.59)

The initial conditions for the dimensional equations, taken relative to the start of the

bubbly region, are

p(0) = 0,

a2(0) = 0,

u = 0.

4.4 Simplified Bubbly Flow Model

The complexity of the problem can further be simplified together by adding the non-

dimensional conservation of momentum equations for each phase to give a system

of equations which is now independent of the variable v. The combined momentum
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equation can then be integrated exactly to determine the pressure as a function of

the gas velocity. The system of equations now under consideration is:

^ (4-60)

— ((l-Ql)p2Vl) = NpchT, (4.61)

NpchT [1 + N&] = N2 + (N3v, - N4alVl -N5(l-ai) p2vx) ^ , (4.63)

To make progress with this model we introduce the following perturbation series

H , (4.65)

+ £2^11 -̂  , (4.66)

+ £2«i i + • • • , (4-67)

r = To + £2ri + • • • , (4.68)

Pi - p2o + £2p2i -\ • (4.69)

Strictly speaking p2 is a known function of p2, but we have included a perturbation se-

ries for p2 to simplify the algebra. Comparing the magnitudes of the non-dimensional

groups defined in equations (4.41)-(4.50) we can see that a suitable choice for e2 is

(4-70)

By substituting the perturbation series into the simplified model we will obtain a

zero order problem where e2 is absent, and a first order problem where only terms of

order e2 are considered.
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0(1) Problem

— (a10v10) = -NpchT0, (4.71)

fc{p2o{l-alo)vio) = NpchT0, (4.72)

§ = 0, (4.73)

NpchT0 [1 + N1p20] = N2 + (N3v10 - N4al0v10- N5 (1 - a1 0) p20v10) ^ (4.74)

I20 = Af > • (4.75)
1 + N1P20

Integrating equation (4.73) and applying the relevant initial condition we obtain

£20 = 0. (4.76)

In terms of the non-dimensional gas pressure we have

P20 = 1• (4-77)

The above result can then be used to simplify the problem significantly as it simply

means that to lowest order the gas density and rate of production of steam are

constant. The problem therefore reduces to

^ I S I = - * , (4.78)

N6— (l-ccio)vio = iV2, (4.79)

(4.80)

P20 = N6. (4.81)

The problem has reduced to solving a pair of simultaneous differential equations for

the lowest order terms in the asymptotic expansion of the liquid void fraction and
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the liquid velocity. The solution to equations (4.78)-(4.79) with the relevant initial

conditions is

(4.82)

For ease of notation we have introduced the variable /? defined by

Combining equations (4.83) and (2.39) yields the following relationship for the gas

void fraction:

It should be noted that all the aforementioned results are for non-dimensional vari-

ables.

O(e2) Problem

The next order terms in the perturbation series are given by the solution of the system

of equations:

— (a io^ i i + QfnUio) = —Npch.Ti , (4.86)

— ((1 — a\o)v\i/92o + (1 — oio)uio/92i — <*ii^io/02o) = +Npc}Xi , (4-87)
OZ

vio^P- = ~NFr, (4.88)

= (^3^10 — A^^io^io — ^5 (1 — ctio) /52o^io) r*1 > (4.89)

^21 = iV6(l - A^i)p2i • (4.90)

Using the results obtained for the first order problem, equation (4.88) can be inte-

grated directly to give a relationship for p2i in terms of the axial distance from the
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start of the bubbly regime. This relationship (after some rearrangement) is

(4.91)

In obtaining the above relationship the boundary condition p21 = 0 was used. Equa-

tion (4.91) can now be used to obtain a relationship for I\ in terms of the axial

distance from the initiation of the bubbly flow regime. After some simplification the

aforementioned relation is

N2

Npch
- ^ In (! + /?*)] (4.92)

1
Npch

N2(N4-N5))z)x P +
NFr 1

l+Pz\

To evaluate a n and t>n we need to integrate equations (4.86) and (4.87) with respect

to z, giving

+ «i i^i o = -G(z), (4.93)

N6{1 - -alo)vlop2T. o = G(z). (4.94)

In equations (4.93)-(4.94) the function G(z) is obtained from integration of equation

(4.92) and can be expressed

N2NANFT N2 NFr N3NFT N2 NFT Z N4NFT

+ NFr

N2N5NFr\, , , (N2p , N2N5p N2N4p\ 2ln(l + Pz)+[ - — + — z2

N2N5NFr , N2NFr N2N4NFr'

(4.95)

From the previous analysis for the 0(1) problem a i 0 and u10 are known functions

of z. This allows us to solve equations (4.93)-(4.94) for ct\\ and v\\. After some
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simplification v\ i and a.\ \ are defined by

= •jFG(z)-{l-alo)vloP21, (4.96)

iv2

= fi + D+
Respectively by substituting for (?(^), c*io, and t^o we obtain

_£ ((N2N4NFT _ N2NFr _ JV3JVFr _ N2NFrz

+Ne N2 (1 _ M ) (fi+^k) + ^ - N F r - * ™ » ) ln(l + ^) (4.98)

'N2N4NFT N2NFr N3NFT N2NFrz N4NFr

—p P P w~+~—^Fr

Pz) + {^r + ̂ ~^- - ̂ ^] z2 (4.99)
\ Zi Zd Zi J

N2NFr N2N4NFT\ \
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4.4.1 Analysis of Simplified Bubbly Flow Model

From the analysis carried out in §4.4 we may now write down the first two terms

in the perturbation series for the non-dimensional liquid void fraction, liquid phase

velocity, rate of production of steam and pressure in the gas phase, as functions of

the axial distance, z measured from the start of the bubbly flow regime. After some

simplification these quantities are:

Liquid Void Fraction

l-N2z
1+Pz

- N2 z

w.
'N2N4NFT _ N2 NFT _ N3NFr _ N2NFrz N4NFr

A^2 A^s NFr

No Pz

P
N2N4NF;

P

Pz

(4.100)

Liquid Phase Velocity

8 'N2N4NFr N2NFT N3NFr N2NFrz

P P
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+Ne

'N^+N^._N1N±l_N6N2{1_Ni){,,

*\ .

Rate of Production of Steam

T-l
N2

N,pch

(4.102)

Gas Pressure

(4.103)

As previously mentioned the transition from bubbly to slug flow occurs when the

gas void fraction has a value of approximately 0.3, ( that is when the liquid void

fraction is approximately 0.7). If we just use the first term in the perturbation series

for the liquid void fraction we obtain the following simple relationship for the non-

dimensional length of the bubbly flow regime

- Ql bs (4.104)
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In the above equation aj \,s is the liquid void fraction at the bubbly/slug flow tran-

sition. Substituting for the values of the parameters in equation (4.104), and re-

dimensionalising, we calculate the length of the bubbly regime to be approximately

0.3 m. This seems a sensible value for the length of the bubbly flow region considering

the total length of the two phase flow regimes up to the dryout point is approximately

one sixth the total length of the pipe. This was also confirmed to be approximately

the correct length by Atthey (1992). Plots of the liquid and gas void fractions as

a functions of axial distance are shown in figure 4.2. From this plot it is seen that

the rate at which the water evaporates decreases as more steam is produced. This is

because as well as the thermal energy supplied heating the liquid phase it also heats

the gas phase meaning less heat is supplied to the liquid phase slowing down the rate

at which steam is being produced.

Now that we have calculated the length of the bubbly flow regime we can calcu-

late the pressure variation in the gas phase. Application of equation (4.103) shows

that the gas pressure varies by 0.025 Bars over the length of the bubbly flow regime.

The variation in the difference between the gas pressure and the saturation pressure

with respect to axial distance is displayed in figure 4.3. Sometimes it is easier exper-

imentally to measure the gas void fraction, by the use of freeze frame photograph for

example, and for this purpose we have displayed the variation of gas pressure drop

with gas void fraction in figure 4.4.

We are also able to construct profiles of how the liquid phase velocity varies with

axial distance and gas void fractions. These two profiles are displayed in figures (4.5)

and (4.6). These two plots show that the liquid velocity increases as the the liquid

void fraction decreases. This is due to the fact that the some of the energy supplied

thermally is being converted into kinetic energy causing the liquid to increase its

velocity
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Our analysis can also be applied to look at the variation in the rate of production

of steam throughout the regime. The variation of the rate of production of steam

with respect to axial distance and void fraction are displayed in figure (4.7) and

figure (4.8) respectively. These plots confirm the result deduced from the variation of

void fraction with axial distance that the rate at which the rate evaporation occurs

decreases as the amount of steam increases.

4.5 Slug Flow

The slug flow regime is characterised by the existence of large gas bubbles whose

diameter is comparable to the pipe diameter. The slug flow regime has a more

complicated structure then the bubbly and annular flow regimes. This is due to the

fact that as the Taylor bubble moves through the liquid phase it pushes the water in

front of it to the sides of the pipe forcing the thin layer of water between the Taylor

bubble and the pipe wall to flow in the opposite direction to the overall flow. As

described by Nakoryakov et al this descending layer of water only changes direction

when it interacts with the water travelling in the wake of the Taylor bubble. So the

velocity field for the continuous phase in slug flow is far more complicated then for

any of the other flow regimes.

The slug flow regime does not undergo a transition directly into the annular

flow regime but develops first into the churn flow regime. There is considerable

difficulty in identifying the slug/churn transition since there is confusion as to the

exact description of the churn regime. As stated by Taitel et al (1980) some define

the start of the churn flow regime as being when froth appears within the gas region

and others with the instability of the liquid film adjacent to the Taylor bubble.



89

The transition from churn to annular flow is defined to occur by Taitel et al (1980),

when the gas velocity is great enough to support the entrained droplets within the gas

core. By balancing the drag and gravity forces on a droplet they were able to develop

a simple expression for the minimum gas velocity required to support a droplet. The

minimum velocity is given by the expression

(4,05,

where C& is the coefficient of frag and d the diameter of the droplet. The droplet

size is usually determined by balancing the the surface tension that holds the droplet

together with the impact force required by the gas to break up the droplet.

Griffith and Wallis (1961) proposed an alternative model for the transition di-

rectly from the slug regime to annular regime. Their model simply assumed that the

transition occurred when the Taylor bubbles become very long. When this model

was compared with experimental data it was found that it predicted a gas velocity

lower then expected. So it was proposed that their model, instead of predicting the

transition from slug to annular, may actually predicted the transition to the churn

regime.

The important information from the slug flow regime is that upon transition to

the annular flow regime the gas velocity is at least an order of magnitude greater

then the liquid velocity. This is due to the effects of flow reversal on the liquid layer

flowing around the Taylor bubbles. Apart from this fact we are going to ignore the

slug flow regime in relation to our problem.
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4.6 Closing Remarks

From this work and the work in the previous chapter on the length scales of the

flow regimes it is becoming apparent that the dominant flow regime, (ie. the longest

regime), is going to be the annular flow regime. This is supported by work carried

out by Atthey (1992) in which he proposes that the length from the start of the the

subcooled regime to the dryout point is approximately one sixth the total pipe length.

The length of the slug flow regime can be estimated by the fact that the length of the

Taylor bubbles is approximately twice the diameter of the pipe. It has been observed

empirically that the slug flow regime on average consists of five taylor bubbles. So

allowing for five Taylor bubbles to exist in the slug flow gives an approximate length

for the slug regime of approximately 0.15, m (allowing for the liquid slugs between

the Taylor bubbles). So in total the length of the subcooled flow, bubbly and slug

regimes is about 0.8m. This means the annular flow regime would be over a meter in

length confirming that the annular flow regime is the longest flow regime.

Future work could be to examine the unsteady version of equations (4.25)-(4.32)

to see if they form a hyperbolic system of differential equations. Due to the large

number of variables involved this calculation could be carried out with the help of a

symbolic manipulator such as MapleTm.
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Figure 4.2: Variation of liquid and gas void fractions with respect to axial distance

within the bubbly flow regime
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Figure 4.3: Variation of pressure drop in gas phase with respect to axial distance

within the bubbly flow regime
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Figure 4.4: Variation of pressure drop in gas phase with respect to gas void fraction
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Figure 4.5: Variation of liquid phase velocity with axial distance in the bubbly flow

regime
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Figure 4.6: Variation of liquid phase velocity with respect to gas void fraction
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Figure 4.7: Variation of rate of production of steam with respect to axial distance in

the bubbly flow regime
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Figure 4.8: Variation of rate of production of steam with respect to gas void fraction



Chapter 5

ANNULAR FLOW

5.1 Introduction

We now analyse the annular flow region. As indicated in the previous chapters, this

region forms the largest regime in a steam generating pipe. The annular flow region

is also particularly worthy of study since it is in this region that the dryout point

occurs.

The annular flow regime is characterised by the fact that most of the liquid phase is

present in a thin liquid layer covering the steam generating pipe wall. The remainder

of the liquid phase is located as minute liquid droplets within the central gas core. To

model the annular flow regime successfully we need to take into account the exchange

of mass between the liquid film and gas core. The three mechanisms for mass exchange

are

• Entrainment of liquid droplets from the liquid film into the gas core.

• Deposition of liquid droplets from the gas core to the liquid film.

• Evaporation of the liquid phase.

Several mechanisms for entrainment are described by Ishii and Grolmes (1975). A
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wavy liquid film may be entrained into a gas flow in a number of different ways,

depending on the shape of the interface between the liquid film and gas core. The

shape of the interface is influenced by hydrodynamic and surface tension forces. The

first form of entrainment, which is commonly observed in experiments on horizontal

film flow, for example by Van Rossom (1959), is by the shearing off of the tops of large

amplitude waves. The second type of entrainment is caused by undercutting of the

liquid flow by a gas flow. A third type of entrainment is caused by gas bubbles being

formed in the liquid film, rising to the surface of the liquid film and then bursting,

sending droplets of liquid into the gas core. This type of entrainment was shown

to exist experimentally by Newitt et al (1954). It was also found that even larger

droplets were formed by the surrounding liquid moving into the crater formed by the

bursting bubble. As the liquid moves into the crater a spike-like filament rises at the

centre of the crater. This filament rapidly breaks up into droplets.

From experimental observations, as reported by Whalley (1987), it was found

that the rate of deposition of droplets from the gas core to the liquid film is directly

proportional to the concentration of liquid droplets in the gas core. This simply means

that the more droplets that exist within the gas core the greater the probability that a

droplet will hit the liquid film. The relationship between deposition rate and droplet

concentration is usually represented by the equation

D = kC, (5.1)

where D is the deposition rate, k the deposition mass transfer coefficient and C the

concentration of liquid droplets within the gas core. In many texts, for example

Whalley (1987), a similar relationship is proposed for the entrainment rate, usually

in the form

E = kCE- (5.2)
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In the above equation E is the rate of entrainment, k the deposition mass transfer

coefficient and CE the concentration of droplets in the gas core when the entrainment

rate and deposition rate are in equilibrium. Although the above relationship is only

strictly true when the the deposition rate equals the entrainment rate it is usually

assumed to be true for all annular flow regimes involving mass exchange since it is

extremely difficult to measure entrainment rates experimentally.

The other mechanism in the mass exchange between the liquid film and gas core

is evaporation. Convective boiling which takes place in the liquid film, is the process

by which heat is conducted and convected through the thin liquid film. When con-

vective boiling takes place evaporation occurs at the liquid vapour interface and so

the evaporation rate depends on the external heat flux supplied to the boiling tubes.

All the aforementioned mass exchange mechanisms determine where the position

of dryout will occur. For our analysis we will be concentrating on the effect of

evaporation on both the thickness of the liquid film and the position at which dryout

occurs.

5.2 Model for Gas Core Flow

To model the interaction between the gas core and the liquid layer close to the wall, we

shall assume that, at some intermediate point between the slug flow and annular flow

regions both the gas and liquid are flowing unidirectionally with a known temperature

and velocity. Although this is a major simplifying assumption, it does not seem

unreasonable that at some point before the initiation of true annular flow such flow

conditions exist. We also assume that, if required, the relevant temperatures and

velocities could be experimentally determined.
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We assume that the gas flow is inviscid and incompressible, and, from the assump-

tions above irrotational. We may introduce a velocity potential for the gas flow. Since

we are dealing with an inviscid flow, upon the introduction of the velocity potential

the Euler equations reduce to Laplace's equation with the dependent variable being

the velocity potential. This is a standard result, the details of which can be found

in most fluid mechanics text books, such as Panton (1984) or Acheson (1990). The

velocity potential is usually denoted by <j> and therefore satisfies

82<f> 32<f>
= 0.

dx2 dy2

The velocity components are related to the velocity potential in the usual way by

d<f>

(.5.3)

v =

v —

dx'

~dy

(5.4)

(5.5)

The problem for the gas core flow is shown schematically in figure 5.1.

y=s(x) Gas Flow

x=0

Figure 5.1: Schematic diagram of flow of gas core over the liquid film

The boundary conditions for equation (5.3) are given by an upstream condition and

a tangency condition.

f\ ry

as x -f y ~> oo ,

v u,y . .
- = - j - on y = s(x).
u ax

(5.6)

(5.7)
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If we now redefine our problem in terms of the non-dimensional scaled variables,

x — Lx,

V = Ly,

s(x) = eLs(x),

where £ is a scaling factor for the film height and is known as the thickness parameter.

It seems reasonable to introduce the scaling factor since the aspect ratio of the film is

small; in reality, of course, the value of e would have to be determined by some sort

of experimental measurement.

The problem in non-dimensional variables is

kx + hy = 0 , (5-8)

<j> ~ x as x 2 + y2 —> c o , (5-9)

fa = es'(x)k on y = es(x), (5.10)

<j>y = ® o n y = 0- (

We now seek an asymptotic expansion as a function of the thickness parameter, of

the form

fe y) = x + e<fo(x, y) + £2fc(x, y) + • • • • (5-12)

For the purposes of this work we will be considering only terms up to O(e). In order

to employ the above expansion we need to transfer the tangency condition from the

gas/liquid interface to the axis y = 0. This is the same technique as that used in thin

aerofoil theory. Following Van Dyke (1964), the transfer is achieved by expanding

the tangency condition about y = 0.
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The O(e) problem can then be written

<£ls£ + $lyy = 0 , (5.13)

<̂  = o(l) as x2 + y2-+oo, (5.14)

4li){x,0) = six). (5.15)

This elliptic problem may be solved by representing the interface as a distribution of

sources and sinks along the y axis. The simplest way of doing this is to write

&(*, y) = ±- f g(t) log((x - tf + f)dt. (5.16)
Z7T J-oo

where the function g(t) is to be determined. Applying the boundary condition (5.15)

and noting that the source distribution becomes a delta function under differentiation,

we find that g(t) = 2s'(t) and thus

s'(t)\og({x-t)2 + f)dt. (5.17)
7T J — oo

The solution to the original problem to order e is therefore,

<f>(x,y) = x + - / s'(t)log((x-t)2 + y2)dt. (5.18)
7T J-oo

The velocity components as defined by equations (5.4) and (5.5) are

. 2e f° s'

2 6 / 0 s'{t)y

T 7-oo (x - t)2 + y2 K '

Note that for convenience we have dropped the hats above the non-dimensional quan-

tities.
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With the thin aerofoil approximation, the velocity along the gas/liquid interface

is obtained by setting y — 0, leading to

Of /-O s'(Of /-O s'(t)

- 4 mirdt. (5.21)
7T J—oo X — t

In the above the liquid film occupies the region (—oo, 0) but, for simplicity, we redefine

the equations so that the film occupies the region (0, oo), with the trailing edge of

the film remaining at x = 0. The non-dimensional interfacial velocity is now given

by
2±r£^l (5.22)dt.

O X — t

To calculate the pressure along the the gas/liquid interface we apply Bernoulli's equa-

tion :

Poo + \p2vl = P2i + \p2v\i. (5.23)

Substituting for v2i and retaining terms to O(e) yields the gas pressure P2» on the

surface of the liquid film as

P2i = P~~ \P2vl (- f ^ - dt) . (5.24)
/ y TT Jo x — t j

5.3 Liquid Film Flow

Assuming that the liquid is irrotational and inviscid, and noting that by Kelvin's

theorem the flow in the film will be irrotational we may again introduce a velocity

potential <f>(x, y) such that U = V<̂ . The conservation of mass equation is

V V = 0. (5.25)

Since the height of the liquid film is of O(e) we may introduce the following scalings:

4> = eauooL^, (5.26)
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x = Lx, (5.27)

y = eLy, (5.28)

which transforms equation (5.25) to

hi + \foy = 0 . (5.29)

To 0(1) equation (5.29) becomes

hv = 0 • (5.30)

The general solution to the equation (5.30) is

]>(x,y) = A(x)y + B{x), (5.31)

where A(x) and B(x) are arbitrary functions to be determined by the boundary

conditions. The wall condition <^(x,0) = 0 implies that A(x) = 0 for all x, which

implies that <f> is only a function of x to O(e). Hence to order e

u = u(x), (5.32)

and we note that the vertical velocity v is zero. The liquid film thins, and eventually

disappears completely, because there is an interchange of mass between the liquid

film and the gas core. In the current model, since the vertical velocity v is zero,

mass is effectively transported from the liquid film via the horizontal velocity u.

To determine the mass loss term, we note that the amount of liquid crossing the

boundary of the liquid film between the positions x and x + 8x will be given by

s(x + Sx)u(x + 6x) — s(x)u(x). The equation for the conservation of mass for the

liquid film may therefore be written

p\u(x)s(x) = rh(x), (5.33)
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where m is a mass exchange term combining entrainment, deposition and vapourisa-

tion rates. The mass excahnge term is usually defined as the rate of change of mass

per unit surface area. So strictly speaking the true mass exchange term is given by

^r , but for furture calculations it is easier to work in terms of m. Note that since

u = u(x) it satisfies the condition imposed by equation (5.32). For the remainder of

this chapter, it will be tacitly assumed that m is a known function of x (determined,

perhaps, from experimental measurements). In reality, of course, the mass exchange

is likely to be a complicated function of s and other flow variables, including the tem-

perature. In chapter 6, the difficult problem of formulating an independent model for

m to close the system of equations is discussed.

To retain the thickness parameter e explicitly in the equation we introduce the

following scalings:

x = Lx , (5.34)

y = eLy , (5.35)

s(x)=eLs(x), (5.36)

m = e"/o1u00m(x). (5.37)

The parameter n has to be chosen such that u2 ~ O(e). Applying these scalings to

equation (5.33) we obtain

u = e B - 1 U c o ^ . (5-38)
s(x)

This implies that n = | . The scaled velocity is thereby defined by

u = e^Uoo^l. (5.39)

s(x)

Since the velocity does not depend on y the interfacial liquid velocity is defined by

i mix)U=£*uM (
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To calculate the pressure along the liquid/gas interface we must apply Bernoulli's

equation

P1 + -P1U2 = h, (5.41)

here h is the Bernoulli constant. On using equation (5.40) in the above equation we

obtain

p.', = h eu2 pr—^— . (5.42)

5.3.1 Equation of Free Surface

To calculate the velocities and pressures in the respective regions, we must first of all

determine s(x), the equation of the free surface between the liquid film and the gas

phase. An equation for s(x) can be formed by noting that

Pu - P2i = ^ , (5.43)

where a is the surface tension and R is the radius of curvature of the surface. We

assume that the term ^|, suitably non-dimensionalised, is negligible. Since we are

only considering terms up to O(e) equation (5.43) reduces to

Pu - Pii = 0 . (5.44)

Substituting for Pu and P2t, we have an equation for the free surface s(x):

1 thirV 1 (OF r°° V(i} \

h-Lep1ul^PpT = Poo--p2ulol—-f 4^-dt\ . (5.45)

If we define

h = PO0 + ^ep1u
2
ooh, (5.46)

then equation (5.45) becomes

(5-47)
IT JO t — X
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The above is a nonlinear singular integro-differential equation for the shape of the free

surface that divides the liquid film and the gas core. As noted above, the equation

is made even more complicated by the fact that an expression for the mass exchange

between the gas core and the liquid film is required. The nonlinearity of the equation

suggests that attempts to determine closed-form solutions for general mass exchange

rates are likely to prove fruitless; additionally, it is not obvious what suitable boundary

conditions are for the equation.

On physical grounds, it is evident that i(0) = 0 since the film ceases to exist at

the dryout point. A further approximation implicit in the derivation above is that

the liquid film extends over a semi-infinite range; in view of the fact that the liquid

film is extremely thin in the vicinity of the dryout point this is clearly valid.

5.4 Non-linear Singular Integro-differential Equations

The theory of linear first and second kind singular Fredholm integrals with Cauchy

kernels dates back to the start of the century. More recently, singular integral equa-

tions have been investigated because of their use in linear elasticity, thin aerofoil

theory and many other boundary value problems. Examples of such boundary value

problems in the theory of linear elasticity can be found in Muskhelishvili (1953).

It seems that there are very few theoretical results available concerning non-linear

singular integral equations.

In general over recent years singular integral equations have received more atten-

tion then integro-difFerential equations, although Varley and Walker (1989) studied

the linear integro-differential equation

u(x) = - -/°° - ^ - ds , (5.48)
7T JO S — X
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where both u and v were linear in the unknown function S(x) and its derivatives.

This type of integral equation often occurs when studying the motion of an interface

between two incompressible fluids with different densities. Upstream, the fluids are

separated by a semi-infinite plate and the interface starts at the trailing edge of

the plate. Such problems are termed dock problems. Methods for such equations,

however, rely largely on complex variable techniques that do not carry over to non-

linear equations.

Nonlinear singular integro-differential equations similar to equation (5.47) also

occur in the study of inviscid flows where the flow separates. Examples of such

separated flows are given by Fitt, Ockendon and Jones (1985), in relation to the

study of the aerodynamics of slot film cooling, and by O'Malley, Fitt et al. (1991),

for high Reynolds number flow down a step.

There is a large amount of literature available concerning the numerical solution

of linear integral equations. For example, Theocaris and Ioakimidis (1977) use Jacobi

functions to approximate an integral equation by a system of linear equations. In

general, there are no standard numerical techniques for the solution of non-linear

singular integro-differential equations, and methods tend to be ad hoc. However Fitt

(1994) has developed a numerical scheme, based on direct iteration, to solve the

singular integro-differential equation

& )). (5.49)
At — X

In Fitt's investigation of this equation he only considers functions f(S(x)), where x

does not explicitly appear on the right hand side of the equation but only via S(x).

This is an extremely useful scheme since the equation (5.49) normally only admits

closed-form solutions when / is a linear function of S(x). For the case when / is

non-linear numerical techniques must be used to determine S(x). We shall explain
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more about such numerical schemes in § 5.7.

5.5 Exact Solution for the Equation of the Free Surface

An exact solution to equation (5.47) can be found for the special case when the

mass exchange rate is proportional to y/x. Although physically this solution maybe

of little relevance, it has the benefit of illustrating that at least one solution exists.

This analytical solution could also be used for comparison with any numerical results

obtained. For this particular form of the mass exchange rate (with a constant of

proportionality of one) the shape of the free surface is obtained by solution of

(5.50)
lo t — x

where A is defined by

A = 2 - ^ - . (5.51)

For ease of notation we have dropped the * symbols from above the non-dimensional

variables. To solve equation (5.50) we use properties of the eigenfunctions of the

Hilbert transform on the semi-infinite interval. As quoted by Pipkin (1991), the

eigenfunctions are of the form x~p, where 0 < p < 1, with respective eigenvalues

7rcot(p7r). Hence the eigenfunctions satisfy the equation

~T GLZ — TV COl l pii IX . I O . O i I

Jo t — X

In particular, x"1/2 has the eigenvalue zero:

yoo +-1/2

4 dt = O. (5.53)
Jo t-x v ;

We therefore observe that there is a solution of equation (5.50) of the form -s(x) =

Ax1//2. Substituting the proposed form of solution into equation (5.50), and applying
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equation (5.53), we obtain

This implies that the solution for the free surface between the liquid film and gas core

when the mass exchange rate is a:1/2, is

(5.55)

It should be noted that this solution has infinite slope at the dryout point and is

unbounded for large x.

5.6 Asymptotic Analysis

Before considering the numerical solution of the equation for s(x), we note that

some progress may be made in determining the asymptotic solution for large and

small values of x. In fact, it transpires that knowledge of the relevant asymptotic

behaviour is essential if accurate numerical schemes are to be constructed. Suitable

asymptotic methods may be illustrated by considering particular forms for the mass

exchange term m(x).

5.6.1 Constant Mass Exchange Rate

We investigate the behaviour of the free surface asymptotically when the mass ex-

change rate is constant. Details of the asymptotic analysis, when the mass exchange

is constant are given, since a similar analysis may be used to investigate situations

where the mass exchange rate is a function of the variables involved. The integral
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equation may be written

(5.56)
s[xy Jo t — x

where

A = 2 — - . (5.57)
/>1 7T

X - » 0

If we assume that ,s(x) is an algebraic function of x as i -> 0 then we may

substitute s(x) = Axn (where A is a constant) for small x into equation (5.56), giving

_ i -» = A f / dniTl^ + r m d t ) . (5.58)

A 2 \To t - x Is t - x J y '

In the above equation 8 and z satisfy the inequalities

0<x«k<l. (5.59)

By substituting t = ux into the first integral it is easily seen that to balance both

sides of the equation we need to set n = | , yielding

- ̂  =x (lA £ w^7)dt +1" sJrdt)+ ow • (5-60)
The first integral is a Cauchy principal value integral which needs to be expanded.

rs 1 / rx~c 1 r8 I \
4 -TJZZ -dt = \im[ — dt+ dt\ (5.61)
Jo tV3(t-x) i-+o\Jo tl(t-x) J*+ttl(t-x) J

mlos' ~{x -e)1/3 + xl/3' " 2 ^ l o g ' { x ~e)2/3 + xl/3(x -e)1 /3'

l o g , , / » + x i ^ / . + x 2 / 3 , _ ^ | a r c t a n
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log I (*
VI

X2 /3
log

(£2/3
arctan 2xl/3

Expanding the above expression as a Taylor series in x,

4
To

s

Substituting this result into equation (5.60) gives

£(£)
's t

To complete the asymptotic expansion we need to show that

Js t

which can be achieved by studying the integral

f
Jo

s'{t) - |

t — x
dt.

Splitting the above integral, gives

s'{t) - | r 2 / 3 _ re s'(t) - It-2'3

0 t — X

At) - ¥

= 0 +
— x

(5.62)

(5.63)

(5.64)

(5.65)

Since x <C £ we may expand the above integral as a Taylor series in x, giving

/•oo a'(i\ -i'

L —f- dt + O(x)
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Integrating by parts, it follows that the above integral equals

s{8) - <W3 roo s(t) -

8

Since 8 is small we may use the asymptotic expansion for small x to evaluate s(8).

The above expression then reduces to

rIS f"

By continually expanding the above integral by parts, and using the asymptotic

expansion, it is easily seen that the integral is zero. This then implies that

r~ *'(0-Jr_2'3 * _ n/
t — x

which is equivalent to equation (5.64). Using this result equation (5.63) reduces to

- T*X~2/3=4^x"2/3+o{x) • (5-66)

By equating like terms we can determine the value of A. This leads to the following

asymptotic expansion for equation (5.56), as x —* 0

s (x)~v / 3 — . (5.67)
\ ATT/

This asymptotic expansion for small x is not too dissimilar from the solution for the

interface when the mass exchange rate is equal to y/x since the slope at the dryout

front is infinite. On physical grounds it might be expected that m(x) = 1 does not

provide a very accurate estimate of the mass exchange.

x —> oo

Some informal experimentation suggests that a suitable asymptotic form for s[x)

when x is large is given by

six) ~ A - B— - C1^^-. (5.68)
V 1 xn xn

 v I
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On substituting into equation (5.56) we obtain

h r = (5.69)
(A-Bx-"-Cx-"\og(x)f y '

\7o i - x

The integral has been split on the assumption that 5 and x satisfy the inequality

1 < 8 < x . (5.70)

Expanding equation (5.6.1) to lowest order terms in x as x —* oo we obtain

l \ B 2C\og(x) 1

\ l_±y s'{t)dt-j —=- \^L _ _^_ + ——6V-; 1 <ft 1 + O(^) .

To balance both sides of the equation we choose A = -A- (thus relating the final

thickness of the fluid layer to the Bernoulli constants) and n = 1, in which case

_2Bh3^ 2C7i3/2log(z) _ J s{8) r 1 (B

(5.71)

Evaluating the Cauchy principal value integral and expanding the above expression

we obtain

2Ch?l2\og(x) _ / s{8) B C\og{8) B\og(x)\ 1
X X 2 \ X XO XOZ Xz I X1

(5.72)

Since (5>1 we may use the asymptotic expansion to evaluate s(S) in the form

1 B Clog(6)
s{S) (5"73)

The above expression can then be substituted into equation (5.72) to give

) = x ( l + B\og(x)\
X X2 \ X X2
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For the above equation to balance we require B = ^§72 and C = ^p-. The leading

order terms in the asymptotic expansion of equation (5.56) as x —> 00 are then

• ( 5 - 7 5 )

A key difference between the derived forms of the interface for the different mass

exchange rates considered is that as x tends to infinity, s(x) becomes infinite when

m(x) = •^/x, whilst when m(x) = 1 s(x) tends to a constant value.

5.6.2 General Mass Exchange Rate

By using similar techniques to the ones developed in the previous section we can

formulate asymptotic solutions for some particular forms of m(x). If m(x) = xm for

0 < m < 1 then it can be shown that

( l ) ) V

3 X I —-F= as x —> oo . (5-77)
v / i

The asymptotic formula as x —> 0 is valid only for values of m that satisfy 0 < m <

1/4. For values outside this range the asymptotic formula becomes unphysical since

s(x) < 0. There are no such restrictions upon the asymptotic formula as x —> oo.

Once again, it is seen that s(x) —•» oo as x tends to infinity.

For rh(x) — xm with m > 1 we find that

xm

s(x) ~ -j= as x -> 0 . (5.78)

It would appear from the forms of rh(x) studied that in general s(x) tends to infinity

as x —• oo, with m = 1 being the exception.
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Further examples of mass exchange rate can be constructed by using the formulae

derived above. For example the mass exchange rate

(5.79)

behaves like as ^Jx as x tends to zero and approaches 1 as i becomes large. Thus

it is possible to construct other forms of m(x) that generate an interface s(x) which

tends to a constant as x tends to infinity. For practical purposes, some details of the

function m(x) would be required in order to determine the values of e and other such

variables.

As far as the pressure is concerned, the asymptotic results that have been estab-

lished above predict an infinite slope at the dryout point which corresponds to an

infinite pressure. Clearly this is not physically realistic. Near to the dryout point,

however, there will be a small region where the assumption that the aspect ratio is

small will not be justified. Analysis of the flow within this 'inner' region would be

necessary in order to make accurate pressure predictions. We do not consider this

matter further, but simply note that the prediction of such infinite pressures is com-

monly encountered (see, for example, O'Malley et. al. (1991)) in simple separated

flow models.

5.7 Numerical Solution

We will develop the general approach to solving the film equation numerically and

then apply this approach to the case when rn = 1. The first step is to invert the

integral equation so that we can then integrate with respect to x. We do this since

the use of numerical differentiation can lead to inaccuracies. The inverted integral
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equation is
„ , C 1 f°° (m{tf ,\ /x\±V2 1

5'(x) = - _ + _ - -/ —L-L-/J - . dt. 5.80
y/X X-K JO \ S{t)2 J \t ) t — X V '

For details of the inversion of the Hilbert transform on the semi-infinite interval see

the Appendix B. C is an arbitrary constant that arises owing to the fact that the

transformation does not possess a unique inverse. The value of C has to be calculated

by using the asymptotic series developed for equation (5.45). The exact form of the

kernel is also determined by the asymptotic solutions. If C is taken to be non-zero

and the kernel taken to be J(tlx) then s(x) will become unbounded as x tends to

infinity. Where as if C is zero and the kernel Jit/x) then s(x) will be bounded as

x tends to infinity. So the value C really corosponds to weither s(x) is bounded

or unbounded as x tends to infinity. We illustrate the numerical scheme for s(x)

bounded as x tends to infinity when C = 0 and the kernel is

(5.81)
x t — x

The numerical scheme for C non-zero could also be developed using a similar ap-

proach. The integral equation for s(x) therefore becomes

(B.82)
K ' XTTJO \ s ( t ) 2 ) \xJ t - x

Integrating equation (5.82) with respect to x yields

<5 '83)

The parameter D is an arbitrary constant that is determined by the initial condition

5(0) = 0, implying that D = 0.

Equation (5.83) is more suitable for numerical evaluation since it no longer con-

tains a Cauchy principal value integral. Assuming that 5 is piecewise constant on the
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intervals (6fc,£fc+i) we may write the equation in the discrete form

(±§-h) log /l + ̂ L it (5.84)

[iog-4
The first and last integrals above can be approximated by using the relevant asymp-

totic expansions. Numerical experiments have indicated that some form of relaxation

is invariably required to ensure convergence of the scheme. Therefore we use the

iterative numerical relaxation scheme

\irsj+1 (xi) = An + 53 SJ2 (60 Bik ~ hC*N + DiN , (5.85)
fc=i

sj+i(xi) = Sj(xi) + 6(sj+i(xi) - Sj(xi)), (5.86)

where

, 1/2 fl/2 . 1/2

-6 ) l og ^ ' + x ; / - ( 6 - « , ) % + "

The terms A,AT and DJAT are the approximations to the integrals for small and large

t respectively, and the scheme is begun with an estimate for s(x).

The same analysis could be performed on the integral equation if we had the

inverted film equation with the kernel

(5-87)
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The important point to recognise about our numerical scheme is that we need to know

the asymptotic expansions of s(x) as x —>• 0 and as x —> oo. Having the asymptotic

expansion for large x allows us to truncate the integral at a finite value and then

use the asymptotic expansion to estimate the remaining part of the integral. The

asymptotic expansion as x tends to zero is required by virtue of the initial condition

5(0) = 0 and the fact that terms of the form l/s(x) appear in the scheme.

5.7.1 Application of Numerical Scheme to Constant Mass Exchange Rate

By using the previous asymptotic results for the film equation with m = 1 it may

easily be shown that the corresponding inverted equation is

dt . (5.88)

We may now apply the iterative relaxation scheme described in the previous section

to obtain
N

1(xi) = An + Y, sf (Zk)Bik - hClN + DiN , (5.89)
fc=i

Sj+i(xi) - Sj(xi) + 9(lj+i(xi) - Sj(xi)), (5.90)

l/6 , 1/6
1 ~r x i

of1'6 + r
1 / 6 N

— arctan I _ , ...—
yix{'

BiN = (6+1 - 60 log 1̂2 \j2 (£fc ~ xi) l°g 7^f2 7/7-
I Sfc-fl ~" xi I xlk ~ Xi I

^1/2 , 1/2 >l/2 , 1/2
^ - " 6 ) log ™+l+xi ,e _ A b Cl + Xi

S i / o 1*1/2 l / 2 i ^ ** î/ x v o . -1 /2 1/2



118

1/2

When running the code an exponentially increasing mesh was used. The numerical

results compare favourably with the asymptotic results. A plot of s(x) and the

asymptotic results is shown in figure (5.5). The sequence of solutions Sj converged

rapidly for all initial guesses for So(x) when the relaxation parameter 9 was chosen

to be less than 0.1. It was found that in general the closer the initial guess was to 4r

then the better the convergence. The scheme was deemed to have converged when

the LQO norm of the relative errors in successive iterates fell below 5 x 10~4. The

table in figure (5.2) shows the convergence of 5(1) given a range of initial guesses.

In generating this table an exponential grid over the range (0, 2) was used with the

relaxation parameter equal to 0.1. For an initial guess SQ(X) = 1 with 100 node

Number

of Iterations

2

10

20

40

50

I]

S(l) = l

0.93272

0.94927

0.94942

0.94935

0.94935

litial Gue

S(l)=2

1.53085

0.94050

0.94955

0.94935

0.94935

ss

S(l)=10

8.63425

1.77693

0.93092

0.94941

0.94935

Figure 5.2: Table showing convergence of S(l) given different initial guesses

points over the range (0,2) and an exponentially increasing grid, the solution was

found to converge in 44, 78 and 268 iterations respectively, for relaxation parameters

0.1, 0.05 and 0.01. In addition to exponentially increasing grids we can also use a

grid with constant step size. Exponential grids are usually preferred to equally spaced
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meshes since they usually converge more rapidly and fewer mesh points are required

to encompass large values of x.

Calculations were carried out with an equally spaced mesh using 20, 40, 80 and 100

mesh points, with associated step-lengths 0.2, 0.1, 0.05 and 0.04 respectively, so that

the mesh stretched from 0 to 4. A relaxation parameter of 0.1 was applied and the

number of iterations (NIT) required for convergence was recorded. The results from

these calculations along with asymptotic values for large x are shown in figure 5.3.

The numerical values even for 20 mesh points are encouraging and all the calculated

values for large x compare favourably with the asymptotic values. It is interesting to

note that the agreement with the asymptotic results becomes slightly less accurate

as the number of mesh points increases; this may be attributed to mesh truncation

effects. Further calculations were carried out with the same convergence criterion

and initial approximation but using 40, 80 and 160 mesh points with step sizes 0.2,

0.1 and 0.05 respectively so that the mesh now stretched over (0,8). The results of

these calculations are shown in figure 5.4. In contrast to the results of figure 5.3,

the agreement with the asymptotic results is now improved as the number of points

increases.

Plots of the variation of film the thickness are shown in figures (5.5) and (5.6).

Evidently the numerical solution compares favourably with the asymptotic solutions

for both large and small values of x.
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Ji

0.

0.

0.

0.

0.

1

1

1

1

1

2

2

2

2

2

3

3

3

3

3

4

0

2

4

6

8

0

2

4

6

8

0

2

4

.6

.8

.0

.2

.4

.6

.8

.0

NITS

20

0.0

0.70009

0.87478

0.90972

0.94641

0.95065

0.95913

0.96413

0.96832

0.97158

0.97426

0.97647

0.97833

0.97991

0.98126

0.98242

0.98342

0.98429

0.98500

0.98554

0.98586

110

0.

0.

0.

0.

0.

0.

0.

0

0

0

0

0

0

0

0

0

0

0

0

0

40

0.0

87127

89684

92367

93974

95026

95768

96318

96741

97077

97350

97575

97764

97925

98063

98182

.98284

.98372

.98445

.98499

.98542

65

80

0.0

0.83057

0.89331

0.92205

0.93868

0.94951

0.95712

0.96275

0.96708

0.97051

0.97328

0.97557

0.97749

0.97912

0.98052

0.98172

0.98275

0.98363

0.98435

0.98486

0.98616

55

0.

0.

0.

0.

0.

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

100

0.0

82912

89265

92166

93841

94932

95700

96264

96699

97043

97322

97552

97541

97908

.98048

.98168

.98272

.98360

.98431

.98480

.98684

53

large x

0.

0.

0.

0

0

0

0

0

0

0

0

0

0

0

0

0

-

-

-

-

-

94695

95543

96163

96632

97002

97298

97543

97747

97920

98068

.98198

.98310

.98410

.98498

.98578

.98650

Figure 5.3: Table of convergences for different step sizes over the range (0,4)
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X

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6

2.8

3.0

3.2

3.4

3.6

3.8

4.0

NITS

40

0.0

0.70083

0.86807

0.91581

0.94289

0.95157

0.95878

0.96490

0.96822

0.97450

0.97417

0.97639

0.97827

0.97987

0.98125

0.98245

0.98351

0.98445

0.98529

0.98604

0.98672

55

80

0.0

0.86373

0.89652

0.92390

0.93995

0.95049

0.95793

0.96345

0.96771

0.97109

0.97384

0.97612

0.97803

0.97967

0.98108

0.98230

0.98338

0.98434

0.98519

0.98595

0.98664

53

0.

0.

0.

0.

0.

0.

0.

0

0

0

0

0

0

0

0

0

0

0

0

0

160

0.0

83061

89356

92229

93890

94974

95737

96302

96737

97081

97361

97592

97787

97952

98095

98219

.98328

.98425

.98511

.98588

.98657

51

large x

0.

0.

0.

0

0

0

0

0

0

0

0

0

0

0

0

0

-

-

-

-

-

94695

95543

96163

96632

97002

97298

97543

97747

97920

98068

.98198

.98310

.98410

.98498

.98578

.98650

Figure 5.4: Table of convergences for different step sizes over the range (0,8)
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1.4-

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Figure 5.5: Variation of film thickness along the heated surface



123

S(x)

0.25

0.2-

0.15-

0.1-

0.05-

0.001

Figure 5.6: Comparison of variation of film thickness along heated surface with

asymptotic approximation for small x



Chapter 6

INVESTIGATION OF MASS EXCHANGE RATE

It was noted in the previous chapter that, in order to close the model for the

liquid film region properly, the dependence of the mass exchange rate needs to be de-

termined in terms of s(x) and the other flow quantities. The mass exchange between

the film and the gas core is due to entrainment, deposition and evaporation; in the

work presented below, we consider only the evaporation as it is clearly the dominant

mechanism. Heat is conducted from the channel wall to the liquid film. Bubbles of

steam are produced at nucleation sites along the channel wall. In reality the bubbles

would then rise up through the film and join the gas core. To indicate how a model

could be proposed for the mass exchange rate, we will make a number of approxi-

mations. In particular, we will assume that the steam produced at the nucleation

sites appears 'instantaneously' in the gas core. This is a reasonable approximation to

make since the film is thin and the time taken for the bubble to pass through the film

would be very short. Since the film is inviscid any mixture effects due to the bubble

rising up through the film are also neglected.

In the model presented in the previous chapter, the vertical velocity v was found

to be zero to lowest order (§ 5.3). In the model described below for the temperature

in the film, the assumption that the evaporation occurs at the wall means that the

streamlines cannot be horizontal; therefore the vertical velocity will not be zero.

Physically, the vertical velocity acts to replace the fluid that has been evaporated at
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the wall. We still assume, however, that u is given by (§ 5.3).

6.1 Temperature Distribution Within the Film

Assuming that the flow is steady, the equations governing the flow of heat within the

film are
/ dT dT\ , fd2T d2T\ . ,

P c v [ u — + v — ) = k — • + - — , (6.1)
\ dx dy J \dx2 dy2 J

where, in this chapter, k denotes the thermal conductivity of the liquid layer. This

equation must be solved in the liquid layer and the problem is thus of free boundary

type since we do not know the position of the liquid/gas interface. We therefore

require enough boundary conditions to specify the solution completely. Since the

thermal conductivity of steam is far less than the thermal conductivity of water

there will be negligible heat loss from the liquid film to the gas core. This boundary

condition is represented by the equation

k— = 0 on y = s(x), (6.2)
on

where 4~ denotes differentiation in the direction of the outward normal to the inter-

face. Expanding equation (6.2) in terms of s(x) and the derivatives of T we obtain

dT dT

-s'w^ + ̂  = °- (6-3)
Consider now the boundary conditions on the channel wall. As explained previously

we are modelling the evaporation of the liquid film by assuming that the phase change

occurs at the wall. Because of the fact that water is being evaporated at the wall, the

liquid film must move towards the wall to replace the water that has been evaporated.

The boundary condition at the wall is therefore

-k—- = q-p\v. (6.4)
dy
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Here q is the heat flux through the wall, p the density of water, and A the latent heat

of vaporisation of water. The other boundary condition on the wall is that the water

along the film/wall interface is at its saturation temperature.

T = TS ony = 0. (6.5)

Our final boundary condition is based on the fact that the fluid entering the annular

flow regime is at a temperature that is close to, but below the saturation temperature.

Denoting this temperature by To we have

T = To at x = L , (6-6)

where L denotes the point at which the upstream measurements are made. For clarity

we list the equations and boundary conditions together.

pcp (uTx + vTy) = k(Txx + Tyy) , (6.7)

- s'(x) Tx + Ty = 0 on y = s{x), (6.8)

T = TS onj/ = 0, (6.9)

— kTy = q — p\v on y — 0 , (6.10)

T = T0 a t z = L. (6.11)

The thermodynamical problem for the liquid film is displayed in figure 6.1.

6.1.1 Simplified Analysis of Mass Exchange Rate

To make progress with the previous equations we need to non-dimensionalize and

scale to exploit the fact that the film is thin compared to the channel diameter. The

scaled variables are therefore

T = TS {l+sT6) ,
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wall

T=T.

y=0

Figure 6.1: Schematic diagram of evaporation of the liquid film

y=eLY,

x = L X ,

s{x) = eLS{X),

The scalings have been chosen such that they are consistent with the scalings used

previously when modelling the film flow. The scaled equations are therefore

(uex + v BY) = j - (exx + ~ (6.12)
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£3/2 si(Xj Tx + _Ty = Q onY = S(X), (6.13)

6 = 0 on y = 0, (6.14)

= -q* + Pe ( - 4 F - ) £3/2V onF = 0, (6.15)

(6.16)

As in the previous set of equations Pe is the Peclet number and q* the non-dimensional

heat flux, which are defined by respectively

(6.17)

For this particular problem the Peclet number has a typical value of 6 x 106 and q* a

value of 10. The non-dimensional number —4r has a value of 4.6 x 10~2. A possible
Cp i s

balance for equation (6.12) is

This implies that e ~ 0.002 and gives us an estimation for the thickness parameter

from a thermodynamic argument. Using this balance also implies that r = 1. To

lowest order our system of equations is now

U Bx + V eY = BYY , (6.20)

eY = 0 on Y = S{X), (6.21)

0 = 0 on Y = 0, (6.22)

0Y = -q* + aV on Y = 0 , (6.23)

d = 90 at X = 1. (6.24)
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6.1.2 Simplification of Velocity

In our previous analysis of the film we calculated that, to lowest order, the component

parallel to the pipe wall of the velocity, u, was only a function of x. This allows us

to integrate the continuity equation for the fluid with respect to Y to obtain

V = C{X)-UXY, (6.25)

where C(X) is an arbitrary function of X. In contrast to the model of the previous

chapter, Y = S(X) is now a streamline of the flow. Applying the standard kinematic

boundary condition leads to

V(X, Y) = (U(X) S{X))' - U'{X) Y . (6.26)

Equation (6.26) can now be used to simplify the equations (6.20)-(6.24) to obtain

u ex + [{u sy - u1 Y] eY = eYY, (6.27)

6Y = 0 on Y = S(X), (6.28)

0 = 0 on Y = 0, (6.29)

eY = -q* + a (U S)' o n r = 0, (6.30)

d = 80 at X = 1. (6.31)

Equation (6.27) can be simplified considerably by a change of independent variable.

Consider the change of variable

6 = 6(X,V), (6.32)

where

TI = T,(X,Y). (6.33)
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Substitution of the above into equation (6.27) gives

uex + uevrjx + [(u s)1 - u1 Y] ev VY = em V
2

Y + e, r,YY, (6.34)

and rearranging this and collecting like terms yields

uex + [Urix + ({u sy - u1 Y) VY) OV = evv ti + ev VYY. (6.35)

We now choose 77 (X, Y) such that it satisfies the relation

Urjx + [{US)f-U'Y}rjY = 0. (6.36)

We look for a solution of the form

T)(X,Y) = A{X)Y + B(X). (6.37)

Substitution of the above into equation (6.36) yields

U (A'Y + B') + [(US)'-U'Y]A = 0. (6.38)

The constraints on A and B for the above equation to be satisfied are

UA'-U'A = 0, (6.39)

UB' + (US)'A = 0. (6.40)

A suitable choice of 77 (X, Y) is therefore

tl(X,Y) = U(S-Y). (6.41)

This reduces the problem to:

0x = U9vv, (6.42)

0, = 0 on 7] = 0 , (6.43)
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0 = 0 on rj = U S, (6.44)

U 9n = q* - a (U S)' onr1 = US, (6.45)

6 = 90 at X = 1. (6.46)

In the previous analysis for the equation of the free surface we defined the non-

dimensional mass exchange rate by

m(X) = US(X). (6.47)

This notation allows us to construct the thermodynamic problem for the liquid film

in terms of the mass exchange rate and the free surface function. The thermodynamic

problem is therefore:

9V = 0 on T] = 0 , (6.49)

9 = 0 on 77 = m ( X ) , (6.50)

, = q* - a (m(X))' on r, = m(X) , (6.51)

6 = 6O at X = 1. (6.52)

This seems to be the simplest form in which the free boundary problem may be

written; if equation (6.48) could be solved subject to the boundary conditions (6.49),

(6.50) and (6.52) then the extra condition (6.51) would presumably determine rn in

terms of S. We note, however, that in contrast to many other problems of this type

the 'extra' condition is applied not on the free boundary but on the pipe wall. This

is a consequence of the form of the flow streamlines.

In general, of course, the submodel for the determination of rn that has been

presented above constitutes a complicated free boundary problem which would require

a numerical solution. It seems unlikely that any progress can be made in proving
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existence and uniqueness for general rh and 5, but we note that there is one special

case in which some progress may be made.

6.1.3 Special Case: Upstream Liquid at Saturation Temperature

Consider now the case where do is zero. Physically, this corresponds to the fact that

all of the incoming fluid is already at saturation temperature. The solution of the

thermodynamic problem is therefore trivial and is given by 9 = 0. To satisfy the

complete problem it thus only remains to satisfy

q = a(rh)'.

If q is a given function of x, then a simple integration immediately gives rh and

therefore rj. We now solve the non-linear singular integro-differential equation of the

previous chapter to determine S and finally use the relationship US = rh to find U.

Although physically this case is not very realistic, it can be regarded as corresponding

to the case where the 6V term in (6.51) is small. In any case, it does at least have the

virtue of showing that, in this simple case, the problem possesses a sensible solution.



Chapter 7

CONCLUSIONS AND POSSIBLE FUTURE WORK

From our analysis we have been able to make predictions of the lengths of the

subcooled and bubbly flow regimes and also of the pressure drop across the bubbly

flow regime. Although a detailed comparison with experiment has not been carried

out (mainly owing to the lack of suitable experimental results) it is clear that the

predictions are generally in agreement with the few experimental results that are

available. Using asymptotic techniques we have developed simple formulae for pre-

dicting the length of the subcooled regime. By considering a set of one dimensional

averaged two phase flow equations for the bubbly flow regime we have been able to

relate such quantities as gas velocity to the void fraction.

These results have a number of practical uses; first, they may enable estimates to

be made of flow regime size in large and small scale experiments. Also, they increase

the physical understanding of how the different flow regimes interact in a LMBFR.

From the analysis of the lengths of the flow regimes we were able to confirm that

the annular flow regime is the dominant flow regime in length, a fact that is once

again in agreement with experimental evidence. The annular flow regime is the most

important region since it is the region in which dryout occurs. Modelling the annular

flow regime is complicated by the fact that there is an exchange of mass between the

liquid film and gas core. We have developed a model to predict the position of the
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interface between the liquid film and the gas core. This model describes both the

fluid flow in the liquid layer near to the pipe wall and the thermal problem in the

fluid layer. The shape of the interface between the liquid and gas phase within the

annular flow regime is governed by a non-linear singular integro-differential equation.

Progress has been made in solving this equation both asymptotically and numerically

for various mass exchange rates.

All the analysis that has been carried out has been for the steady flow of water, and

steam in a steam generating pipe. An extension to the work would be to consider

related unsteady problems. This would involve investigating the hyperbolicity of

the unsteady system of equations for bubbly flow. Because of the large number

of variables involved this would require the assistance of a symbolic manipulator

package. The model for the dryout front could also be extended to encompass the

case of unsteady flow. This would allow analysis of a case that is of particular physical

significance, namely the oscillations in dryout front position that have sometimes been

observed in boiler pipes. The main results of such analysis would be predictions of the

speed of the dryout front and its sensitivity to changes in conditions at the entrance

to the boiler pipe. Another extension to the modelling of the annular flow regime

would be to consider the axially symmetric problem.

Future work will involve an investigation of the behaviour at the interface between

the gas and the liquid as x —»• 0 since near the dryout point the assumption that the

aspect ratio is small is no longer justified. To do this it will be necessary to consider

the 'inner' solution at the dryout point and asymptotically match this to the 'outer'

solution obtained in chapter 5. The indications are, however, that this may be a

formidable problem.



Appendix A

PHYSICAL PARAMETERS

A.I Subcooled Flow Regime

To = 240 °C

q = 595 Kw/m2

p = 800 Kg/m3

to = 2.0 m/s

K = 6.39 x 10-4 Kw/mK

a = 7 x 10~3 m

A.2 Bubbly Flow Regime

Ts = 365.0 °C

ps = 200.0 Bar

q = 595.0 Kw/m2

p1 = 600.0 Kg/m3

P2s= 110.0 Kg/m3

v0 = 2.0 m/s

L = 6.0 m
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a = 7 x 10~3 m

g = 9.81 m/s2

cpl= 21M4KJ/KG°C

cp2= 2Q.125KJ/KG°C

Ro= 8.3143 KJ/mol°C

A = 587.1 KJ/Kg

A.3 Annular Flow Regime

p1 = 600

p2 = 110 Kg/m3

A = 587.1 KJ/Kg



Appendix B

INVERSION OF THE HILBERT TRANSFORM ON THE

SEMI-INFINITE INTERVAL

The Hilbert transform of a function <j>(x) on the semi-infinite strip is defined by

*)l = f J^- dt, (B.I)
Jo t — x

where the bar through the integral sign indicates that it is a Cauchy principal value

integral. A Cauchy principal value integral on the interval (a, b) is defined as

. ( B . 2 )
t-X £-0 \Ja t-X Jx+i t-X

The inversion of the Hilbert transform on a semi-infinite interval can be achieved

by the application of Fourier transforms. Before doing so we shall briefly outline the

relevant properties of the Fourier transform.

The Fourier transform and its inverse on the infinite strip are defined respectively

by

^ j ° ° x i > { x ) d x , (B.3)

-^{x)dx. (B.4)
oa\/2W-c

For the Fourier transform of XJJ(X) to exist the integral of |t/>(z)| o v e r the range

( — 00,00) needs to be finite. If f(x) and g(x) are two functions in L2[—00,00] then
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the convolution of f(x) and g(x) is defined to be

(f*g)(x)= H f(y)g(x-y)dy. (B.5)
J-oo

Two important properties of the convolution are

I- (/**)(*) = (**/)(*)

2. F{f * g) = V^

We now have enough information about Fourier transforms and the convolution the-

orem to be able to invert the integral equation

U / w . (B)
li JO X — t

To be able to take the Fourier transform of equation (B.6) we first need to change

the variables so that the integral is taken over the range (—00,00). This is achieved

by the using the following change in variables

x = e2^, (B.7)

t = e2r). (B.8)

Upon introduction of the new variables (B.7) and (B.8) equation (B.6) becomes

(h(e2ri)2e2r>

To simplify equation (B.9) we redefine the dependent variables as

g(0 = ./W- (B.11)
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Upon further algebraic manipulation, equation (B.9), in terms of the new dependent

variables tp and g, becomes

(B.12)

Application of the Fourier transform to equation (B.12) yields

To proceed further we need to expand the Fourier transform

d

and this can be accomplished by integrating the complex function

(B.13)

(B.14)
sinh z '

around the closed contour depicted in figure B. Integrating around the contour we

obtain

/ F(z)dz= [ " F{x)dx- j F{z)dz+ i F(x)dx+ f F(z)dz (B.15)

Figure B.I: Contour of integration
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In the limit as p —> 0

I F(z)dz =

where RtQ is the residue at z = 0. To evaluate the integral of F(z) over the contour

F we apply Jordan's lemma. Jordan's lemma (Chillingworth 1972) states:

Let f(z) be meromorphic in the upper half-plane and let f(z) approach

zero uniformly for all 6 in 0 < 6 < TC as \z\ approaches infinity. Then, for

all m > 0,

/ etmzf(z) dz -> 0, (B.17)

where T is the upper semi-circle \z\ = R.

A function whose only singularities in a domain D are poles is said to be meromorphic

in D.

The poles of f(z) are all of order 1 and are given by solving

sinh(z) = 0. (B.18)

The roots of the above are trivial to find and can be expressed

z = niii ,n = 1,2,... . (B.19)

and the residue at each pole is given by

Ren = lim {z r:;>: (B.20)
z-+n-Ki s inh(z)

otsz

= lim -^— (B.21)
z-*mn cosh(2:)

= (-l)ne-sn* . (B.22)
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Thus the integral of F(z) over 7 is equal to the sum of the residues given by equation

(B.22), ie

[ F(z)dz = 2iriY/(-l)
ne-sn\ (B.23)

J1 n=l

Here, as p —> 0 and R —> 00 equation(B.15) reduces to

This can be simplified further by noting that

sinh [^fj

and applying the inverse Fourier transform then gives

cosh (1 roo
~ g(t -
2i7T J-00

To simplify the above we need to evaluate the integral

cosh (z?)
yL

sinh(f)

( B ' 2 4 )

i)»c-»* (B.25)
z 0

1 + (B.26)
2 1 + e-s^ v ;

(B.27)
2(1 + e~sn)

(̂ ) (B.28)

So equation (B.24) reduces to

/ ——c?7/ = 7rztanh — . (B.29)
J-00 sinhr/ \ 2 /

Substituting the above result into equation (B.13) leads to

1 cosh (sz)

) l ( n ) ( B . 3 0 )

(B.32)
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By substituting s = — t the above integral becomes

- -T eitr> "~" ) 2 ( ds . (B.33)
"-00 s inh(f ) V '

This integral can then be evaluated by integrating

F{z) = elZT> )±J- (B.34)
sinh ( f )

about the closed contour depicted in figure B:

rR

h

The poles of F(z) are obtained by solving

f F(z)dz= j " F(x)dx- f F(z)dz+ f F(x)dx+ I F{z)dz. (B.35)
J~i J-R JTD Jo JVR

^ j = O . (B.36)

The poles are therefore located at

z = 2ni n = 0---oo, (B.37)

and for the corresponding residues are given by

Ren = -e-2m> . (B.38)

These residues then allow us to calculate the following integrals

F(z)dz = 4 i £ > ~ 2 " \ (B.39)

I F(z)dz = 2i. (B.40)

Application of Jordan's lemma then gives

/
F{x)dx = 2J l +

\ n = l
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Substituting this result into equation (B.31) we obtain

By using the properties of the convolution this may then be written as

In terms of our original variables the integral equation is

dt. ( B . 4 5 )
dt.

2TT JO y/tf, x-t

This expression, (B.45), can be simplified by using the fact that

(B.47)

Substituting equation (B.46) into equation (B.45) and simplifying the integral we

obtain the relationship

c . , ,,-,.„.,,,. ^B48̂
n J o \ l \ t j X - t

If we substitute equation (B.47) into equation (B.44) and simplify the resulting inte-

gral we obtain

c _ i r 7 ( 1 ) - M *. (B.49)
TT JO ]j \XJ X — t

Both the above equations are valid alternatives for the inverse of the Hilbert transform

on a semi-infinite interval. The properties of the function f(t) may be used to dictate

which form is relevant This is determined by which of the integrals is convergent when

given a particular function f(t). The integral equation for the inverse of the Hilbert
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transform on the semi-infinite interval is usually written as

(B.50)
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