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Abstract

Immersed in Water

The radiation from waveguide and duct terminations is an important area in the
field of acoustics. The radiation from acoustic sources in ducts has already been 
the subject of much attention, most of the work carried out in this area being 
associated with aero-engine noise. Consequently, with less obvious practical 
application, little attention has been paid to similar problems in water. In this 
thesis a mathematical model of the radiation from a source in a finite length duct 
is developed. This is an extension of an earlier study of the radiation from a semi­
infinite duct. Whilst this model has been developed for a duct immersed in water, 
the expressions derived are equally applicable to air. However, since the duct 
examined in this thesis is in water, then it is realistic to examine the radiation from 
a duct that has a pressure release lining at the duct wall. This would be a futile 
study if conducted in air, since the pressure release boundary condition is 
impossible to achieve in that medium. Good approximations to an ideal pressure 
release boundary in water are possible in practice using a closed cell neoprene 
foam nxed to the duct wall. It is likely that such a lining could be used to reduce 
the sound radiated by a source within the duct. The mathematical model derived 
enables the pressure outside the duct to be calculated provided that the duct 
terminates in a rigid baffle. Experimental results are compared with those obtained 
from this model, and the agreement is found to be very good over a wide range of 
frequency. It found that the introduction of a pressure release lining at the duct 
wall will significantly reduce the sound power radiated by the source in the duct, 
when compared with a duct with a hard wall. Finally a spatial Fourier transform 
method is described for the prediction of the far-field pressure from measurements 
made near to the duct exit. Despite initial promise, this technique is found to have 
severe limitations, most notably associated with the numerical evaluation of the 
finite length two dimensional Fourier transform. Avoiding wraparound error is 
shown to be a major difUculty when using this technique to propagate a field an 
appreciable distance.



Acknowledgements

I would like to express my sincere gratitude to the following people who have 
helped me in the completion of this thesis. I owe a huge debt to my supervisors, 
Professor P. Nelson and Professor C. Morfey, who were a constant source of 
inspiration and without whom I would certainly never have completed this work. I 
would also like to thank the numerous staff in the ISVR with whom I have 
enjoyed many interesting discussions over the years. In particular I would like to 
thank Professor J. K. Hammond and Professor F. J. Fahy for their help during 
some difficult times.

No acknowledgement would be complete without my mentioning the following 
individuals who helped me in their own way: Naim Audio, Bob Berg, Michael 
Brecker, John Coltrane, Miles Davis, Dave Guardala, Henri Selmer, Wayne 
Shorter.

Finally, I would like to thank Dawn for her immeasurable love, support and 
understanding given to me over the years. I dedicate this thesis to her.



Hell, if you understand everything I say, you'd be me.

miles davis (1926 - 1991)



Contents

AbstracL

Acknowledgements. 

Chapter 1 Introduction.

1.1 Overview
1.2 Organisation of the thesis

1
1
2

Chapter 2 Theoretical analysis of sound radiated from a 
source in a duct of finite length.
2.1 Introduction. 5
2.2 Literature Review. 5
2.3 Summary and conclusions from the literature. 12
2.4 A simple model of the sound propagation within

an infinitely long circular duct. 14
2.5 The acoustic field produced by a point source within

an infinite length duct. 18
2.6 The acoustic radiation from a semi-infinite circular duct,

terminating in a rigid baffle. 24

2.7 The calculation of the modal radiation impedance. 32

2.8 The modal reflection coefficients. 36

2.9 A matrix solution for the acoustic field inside a finite
length duct. 41

2.10 Conclusions. 48
Figures for Chapter 2. 50

Chapter 3 Experimental measurement of the near field of a circular duct. 80
3.1 Introduction.
3.2 Experimental principal and description. 81
3.3 Preliminary investigation using a point monopole

source without a duct. 85
3.4 The field from a hard walled, baffled duct 

containing a monopole source - a comparison
between measured and theoretically derived results. 87

3.5 The field from a pressure release lined, baffled duct 
containing a monopole source - a comparison with
a hard walled duct. 89



3.6 The radiated sound power - a comparison between a pressure
release and hard walled duct. 92

3.7 Conclusions. 93
Figures for Chapter 3. 95

Chapter 4 Techniques for estimating the radiated field from 
near field measurements.
4.1 Introduction.
4.2 The Kirchoff-Helmholtz integral and the radiation 

from complex source distributions.
4.3 A review of the literature on acoustic field, 
propagation techniques.
4.4 Theoretical principles of the wavenumber transform.
4.5 Practical implementation of the wavenumber transform 
and some important sources of error in the computation
of the far-field pressure.
4.5.1 Aliasing of the propagator function
4.5.2 Wraparound error
4.6 The propagation of the field from a monopole source.
4.7 Sound power measurement.
4.8 Conclusions 
Figures for Chapter 4

115

115

116

119
126

128
128
133
137
142
147
149

Chapter 5 Conclusions and recommendations for future work 178

Appendix A Orthogonality of eigenfunctions in circular duct

Appendix B Derivation of the function Dmn(t)

181

187

Appendix C Derivation of the impedance function Zmn 
and the reflection coefficient 189

Appendix D Application of L'Hopital's rule to the function 
Dmn(x) as T -> 194

References 196



Chapter 1

Introduction

1.1 Overview

This thesis is concerned with the analysis of the sound field generated by an 
acoustic source within a finite length circular duct immersed in water. One of the 
primary reasons for this study is the investigation of the radiated acoustic energy 
from a source within a pressure release lined duct. A pressure release boundary is 
one in which the pressure vanishes over that boundary. Pressure release surfaces 
are impossible to achieve in air, and as such are rarely considered by acousticians 
working on problems associated with that medium. By contrast, approximate 
pressure release boundaries are commonly observed in underwater acoustics. 
Perhaps the most obvious example of an approximate pressure release boundary 
for sound waves in water is that provided by the water/air interface at a free water 

surface.

If it is required to reduce the radiation from a source within a duct, the logical first 
step would be examine the nature source mechanisms themselves to see if there 
were any way to reduce the output at the source. Unfortunately, it is not always 
possible to adequately model the source mechanisms, or to reduce the output of 
the source region. It is usually easier, and more practical to attempt to attenuate the 
acoustic energy as it travels within the duct. This attenuation is conventionally 
achieved by the application of either an absorptive acoustic treatment to the duct 
wall, or by the introduction of reactive elements within the duct. Both of these 
methods are aimed at attenuating the propagating acoustic energy within the duct. 
This approach has been widely used in the area of aero-acoustics for example, and 
has resulted in large quantities of published work solely concerned with the 
optimisation of the duct lining for different source types or duct geometries. The 
maximum attenuation possible is limited by the length of the duct; the energy 
distribution amongst the modes within the duct; and the type of acoustic treatment 
used. This limit may be satisfactory for long ducts or where only small reductions 
are required. Usually, however the duct is short, a/W large attenuation is required. 
In this situation, absorptive treatments would be ineffective as the duct is short. In 
the study of jet engine noise- the bulk of which of which was carried out during 
the 1960's and 1970's- trying to squeeze the "last ounce" of attenuation out of a



relatively short length of duct became the focus of much attention by researchers
in aero-acoustics.

If the required attenuation of a noise source in a duct is not in air but in water, it is 
also possible to use acoustic treatment at the duct wall in a similar fashion to that 
used in air. Again if the duct is short, i.e. if the length to diameter ratio is less than 
one, these treatments will be severely limited in their ability to reduce the radiated 
sound from the open end of the duct. As mentioned above it is also possible to 
produce a pressure release boundary in water. It may be possible to capitalise upon 
this unique feature of water, and use it to reduce the radiation of the source into 
the duct. The acoustic power output of the source is a simple function of the real 
part of the acoustic radiation impedance of the source. The duct presents an 
impedance load into which the source is radiating. Changing the acoustic 
impedance of the duct wall will change this load that the source "sees". Thus there 
will be a different radiation impedance of the source for a hard wall duct and a 
pressure release lined duct. It is hoped that this difference between the two 
impedances will yield a lower output power for a pressure release lined duct. This 
is the principal noise reduction method described in this thesis, and it is 
fundamentally different from those commonly employed in air. It should be noted 
that no attempt is made to absorb the acoustic energy as it travels within the duct. 
No reduction of the acoustic energy is possible using a pressure release lining at 
the duct wall as there is no absorption at a pressure release boundary.

1.2 Organisation of the thesis

Originally, at the commencement of this project, an experimentally based
approach for the analysis of the radiation of simple sources within a duct was 
developed. Previous work in the area of acoustic holography had indicated that it 
was possible to predict the far-field simply from measurements made near to a 
source. Therefore, a large percentage of the research effort was deployed in setting 
up an experimental rig to measure the field close to the end of a duct containing a 
source. It was believed that by measuring the acoustic pressure near to the open 
end of the duct, that this may be used to predict the far-field pressure by a wave 
propagation technique similar to those methods used in acoustic holography. In 
principle at least, it seemed possible to examine the far-field radiation from both 
types of duct, hard wall and pressure release, by measuring over a plane Just 
outside the duct. Unfortunately, the propagation technique proved to be fraught



with numerical problems. Most of these were associated with the finite length 
Fourier transform. This experimental approach was therefore supplemented with a 
mathematical analysis of the duct radiation problem. Even though the measured 
pressure field sampled near to the end of the duct could not be used to predict the 
acoustic far-field, it is still valuable information, and may be used to check the 
accuracy of the analytical model.

The analytical study of the radiation from the duct is described in detail in Chapter 
2. This model is based upon an earlier study by Zorumski (1973), who formulated 
a solution for the radiation from a semi-infinite duct terminating in a rigid baffle. 
Most importantly, Zorumski derived expressions for the modal radiation and 
reflection coefficients at the open end of the duct. Since the modes are coupled, 
one incident mode gives rise to an infinite series of reflected modes back into the 
duct. In Chapter 2, the Zorumski semi-infinite duct problem is extended to include 
the radiation from a duct of finite length. In principle, this model enables the 
calculation of the internal acoustic field within the duct containing any source 
distribution. In this thesis, the model is restricted to the examination of the 
radiation from a point monopole source within the duct. The analytical model 
solves the axial particle velocity over the two ends of the duct. Since the duct is 
terminated in a rigid baffle it is a straightforward task to calculate the externally 
radiated field using the Rayleigh integral. There are several important features of 
this model that should be made clear. The Hrst is that it is analytically exact. Since 
the duct finishes in a rigid baffle at both ends of the duct, the calculation of the 
modal reflection coefficients at either end of the duct is not influenced by the field 
radiated by the other end. Secondly, the solution for the internal field is expressed 
in such a manner that it may be readily evaluated using a desktop computer. Also, 
whilst there is emphasis given to the study of hard walled and pressure release 
lined ducts in this thesis, it should be noted that the mathematical model derived 
in Chapter 2 is valid for any arbitrary wall impedance.

Chapter 3 describes the experimental work mentioned above, which measures the 
pressure over a large plane outside the duct. Whilst this data is not used to predict 
the far-field as was originally intended, it is still very useful as a comparison with
results from the analytical model derived in Chapter 2. The field outside the duct 
is measured over a rectangular plane perpendicular to the duct axis. A total of 
4096 separate pressure measurements are made of the external field. Due the very 
large number of measurements it was necessary to design the experiment so that it 
could be totally controlled by a computer. By adopting remote control of the



experiment it is possible to arrange for the computer to be made responsible for
the location of the receiving hydrophone, the generation of the source signal, and 
the capture and analysis of the final pressure.
In Chapter 4 an acoustic propagation technique is described. As mentioned earlier, 
it was originally intended to use this technique to forward propagate the measured 
field from the end of the duct. However, it is shown in Chapter 4 that there are 
many numerical errors incurred when implementing this technique in practice. The 
most common causes of error are outlined in this chapter. It is found that most of 
the problems arise due to the 2D Fourier transform used to calculate the new field.

In the final chapter, conclusions and recommendations for future work are 

presented.



Chapter 2

Theoretical Analysis of Sound Radiated from a Source in a Duct of Finite Length

2.1 Introduction

In this chapter an analytical model will be derived of the sound field radiated from 
a circular duct containing an acoustic source. By comparison with the 
experimental approach that will be discussed Chapter 3, an analytical model 
potentially offers greater speed and flexibility. Given a rigorous analytical model 
of the duct radiation, it is much easier to examine the radiation from different 
source positions and different duct linings using a model than to attempt to 
measure the field experimentally. To illustrate this point, the experimental design 
that is described in Chapter 3, measures 4096 spatial points in the field just outside 
the duct. This process takes more than 40 hours to complete. Obviously, using 
experiments as an investigative tool is not an efficient approach, since any small 
change requires a repeat series of measurements, plus the time taken to set up the 
experiment and analyse the data. Furthermore, if a suitable analytical model was 
developed, it would be possible for a source to take any form, i.e. monopole, 
dipole, etc., and be located anywhere within the duct. By contrast, it has been 
shown by Hewlett (1992), that there are considerable practical difOculties in 
generating accurate, higher order acoustic sources in water for experimental 
purposes.

2.2 Literature review

To assist in the development of an analytical model, a literature review was 
conducted. Perhaps not surprisingly, the bulk of published work in the area of duct 
acoustics is concerned with applications in aero-acoustics. The requirement to 
reduce the noise of jet aircraft was responsible for a considerable number of 
analytical and experimental studies of duct acoustics in the 1960's and early 
1970's. The following literature review, whilst certainly not exhaustive, has 
attempted to focus upon previous work that is believed to be the most applicable 
to the present problem. It is worth noting that despite the abundance of available 
literature, no reported work relating to the radiation of sound from a circular duct 
in water was found. It is believed that previous work investigating the radiation of 
sound from a duct in air, may be applied to a duct in water. However, there are



differences and assumptions that need to be made if using a theory derived for use 
in air is to be applied to a similar problem in water. Most notable amongst these 
differences are the following;

• The fluid loading upon the duct wall vibration is usually ignored in
air, but this may be significant in water. In this thesis this effect will
be ignored.

» There is great difficulty in obtaining acoustically rigid structures in
water, whereas these are easy to achieve in air. Therefore if a duct 
is assumed to have a hard wall in water, then this may be difficult 
to achieve in practice. A more realistic approach would be to 
include wall vibration, and vibrational waves within the duct wall. 
These effects are considered to be beyond the scope of this thesis.

There is a significant, albeit subtle difference between the methods commonly 
adopted by researchers in the area of aeroacoustics and that proposed in this study. 
In the present context the attempted reduction in the far Held pressure does not 
rely upon absorptive or reactive liners to provide attenuation within the duct. In 
this thesis it is intended to reduce the power radiated by modification of its 
radiation impedance. It is proposed that a pressure release liner at the duct wall 
will be used to introduce a region of vanishing pressure at the duct wall. It will be 
shown later in this Chapter that the modal amplitudes are calculated using the 
value of the mode shape function at the position of the source. If the source was a 
monopole placed near to a pressure release wall, then the value of the mode shape 
function at the source will be very small. Hence the source will be ineffective at 
driving the field within the duct. This method of source reduction is not possible 
in air, as an adequate pressure release lining is impossible to achieve in air. If the 
duct length to diameter ratio is small, absorptive liners would be limited in their 
ability to significantly reduce the acoustic radiation from the duct. This is not true 
when using a pressure release liner to modify the source, as it is only necessary to 
have a duct of sufficient length that the source may be modelled as one of higher 
multipole order. To what extent a duct should be lined with such a material is 
beyond the scope of this present study.

The following gives a summary of the objectives of the analytical model, and 
these objectives were used in selecting the literature chosen for discussion later.



• The analytical model should enable the calculation of both near and 
far-field pressures produced by a source in a circular duct, with a 
hard and pressure release lining at the wall.

* Preferably the model should be for a finite length duct since this is
the most representative of the real duct radiation problems. Semi-
infinite ducts are not usually realised in practice.

In conducting the review the following parameters were excluded from the 

analysis:

» Flow. The highest Mach number of interest in this thesis is
extremely low (M<0.05), and therefore the effects of flow upon

the acoustic propagation within the duct may be ignored.

« In this thesis there is no attempt to model the rotational effect of the
source, and attention is restricted to stationary distributions of 
simple multipole sources to investigate the effect of pressure 
release linings upon the radiated sound field. The acoustic field 
produced by rotating sources has been widely reported in the 
literature; e.g. Tanna and Morfey (1971), and Wright (1972 and 
1976). The influence of rotation of the source upon the radiated 
acoustic field is dependent upon the rotational Mach number of the 
source, which in this case is very small.

Tyler and Sofrin (1962) have investigated the propagation and radiation from 

semi-infinite duct. Morse (1948), describes the propagation of modes as a time 
varying acoustic pressure distribution as seen at a stationary point within the duct. 
Morfey (1964), uses the phrase spinning modes to describe the acoustic field in the 
duct. Instead of a time varying field in fixed space, the propagating modes may be 
thought of as a time invariant pressure distribution across the duct cross-section 
that spins as it moves down the duct. The axial velocity of the propagating mode 
depends upon the frequency relative to the cut-off frequency, as does the angle the 
mode makes with the duct wall. Essentially as cut-off is approached the angle the 
mode makes with the duct wall becomes larger, so that the mode is further 
attenuated by any lining on the duct wall. Morfey shows pictorially the effect of 
cut-off upon the helical pattern that the duct mode makes as it is traced through 
the duct. As the frequency is reduced near to cut-off the helix becomes stretched.



until, at cut-off, the pattern is similar to a paddle wheel, and there is no net
propagation down the duct. Equations describing the pressure distribution in a 
hard-walled duct are given for monopole and dipole sources placed within the
duct. The corresponding acoustic intensity is also derived for these sources.

Both of the above studies by Tyler and Sofrin (1962) and Morfey (1964) have 
examined the acoustic radiation from a semi-infinite baffled duct. An expression 
for the radiation from such a duct is given in terms of modal amplitudes. Morfey 
(1964) has derived expressions for the real part of the acoustic impedance for the 
open end of the duct for (m,0) modes, where m denotes the azimuthal order of the 
duct mode. These can then be used to determine the sound power radiated from 

the duct.

The radiation efficiency of higher order acoustic duct modes from a hard-walled, 
circular and annular duct, terminating in a baffle have also been discussed by 
Morfey (1969). Graphs of the variation of radiation resistance with frequency are 
presented as a generalised relationship in terms of the mode cut-off frequency. 
Morfey concludes that the modal velocity distribution across the duct face radiates 
with an efficiency close to unity for a frequency appreciably above cut-off for a 
given mode. Below the cut-off frequency, radiation is shown to fall rapidly as the 
frequency is reduced. A method for calculating the acoustic radiation impedance 
of a hard walled circular duct is also given. However, the method requires that the 
duct is assumed to terminate at the end by an infinite baffle. For this reason the 
method ignores the effect of the acoustic radiation at angles greater than 90 
degrees to the duct axis. The experimental work reported by Tyler and Sofrin 
(1962), has shown that in some cases near cut-off there is a significant 
contribution made to the far-field pressure from such radiation.

In the case of a duct terminated by an infinite baffle, Zorumski (1973) has 
published a method for calculating the modal impedance and reflection 
coefficients for a semi-infinite duct with arbitrary wall impedance. This paper 
contains a few important mistakes in the presentation of numerical results, but the 
analysis will be shown to be robust in a later section in this chapter. This is not a 
trivial problem to solve, however it is possible that the modal reflection 
coefficients may be used to calculate, mode by mode, the internal sound field 
within the duct. Since the duct ends in a rigid baffle, it is possible to use the 
Rayleigh Integral to calculate the pressure at any point outside the duct.



The acoustic propagation of sources within, and the subsequent radiation from, a 
rectangular duct is analysed in two companion papers by Doak (1973a, 1973b). 
Whilst the analysis presented is for a hard-walled rectangular duct, some very 
useful conclusions can be drawn from this study that will apply equally to a 
circular duct. In the first paper, Doak (1973a), describes the effects of source 
distributions within the duct. Unfortunately there does not appear to be any 
reference to the modes in the duct being coupled, as is illustrated by Zorumski 

(1973).

The second of these two papers is concerned with the effect of duct length on the 
sound field both inside and outside the duct. It is shown that internal reflections 
have an effect upon the radiation impedance, and what is more important for the 
production of sound power, the radiation resistance of the radiating source. An 
example is discussed in which a duct with one end was open and the other 
anechoic, thus producing a semi-infinite duct. It is not clear that the solution for 
the internal Held includes the effect of the modes being coupled, which is 

discussed by Zorumski (1973).

The acoustic propagation within a cylindrical duct with soft walls has been 
discussed by Rice (1969) and (1975). Rice shows that as the sound propagates 
down a soft walled duct with a length to diameter ratio of greater than one, there is 
a redistribution of sound power toward the centre line axis of the duct. Rice also 
presents graphs showing the maximum attenuation possible for a given set of 
modes by optimising the wall impedance. These graphs are calculated by first 
optimising the impedance of the duct lining for each mode separately. In most 
practical cases however, there is more than one mode that is significant in carrying 
acoustic energy. The need to optimise the impedance of the lining for more than 

one mode will always compromise the maximum attenuation possible for each 
mode if treated separately.

Lansing and Zorumski (1973), have analysed the problem of a multi-sectioned 
duct by studying an infinite length rectangular duct containing flow. Zorumski 
(1974), has separately published work on acoustic propagation in a multi- 
sectioned circular duct. In this circular duct one end has a rigid wall in which a 
monopole source is located at the centre. The other end of the duct is terminated 
by an infinite baffle. At each interface between two different sections, and at the 
termination, the modes generated by the source are partially reflected and partially 
transmitted as a new set of modes into the adjacent section. This process therefore



results in a very complicated standing wave pattern within each duct section. A
corresponding matrix solution is given for the equations describing the pressure 

distribution within the duct.

The radiation from a hard walled, semi-inOnite circular duct that does not end in 
an infinite baffle, have been examined by several authors. The first analytical 
solution was obtained by Levine and Schwinger (1948), and this paper may be 
considered to be a pioneering study in this field. This paper gave the first rigorous 
solution based upon the Wiener-Hopf technique for the simple case of a plane 
wave propagating within the duct. Using this work, the inclusion of higher order 
modes within a hard walled duct was analysed by Weinstein (1969).

Due to the complexity of the Wiener-Hopf technique, the approach and results 
presented by Weinstein (1969) found little immediate engineering application. Not 
until the necessity to predict and reduce the noise level of commercial aircraft in 
the early )970's did the technique become more widely used. Amongst the work 
that did apply the Wiener-Hopf technique, and incidentally the most readily 
applicable to the present problem, is that by Lordi et al (1971, 1973, 1974), and 
Homicz etal (1975). Mathematical expressions are given for the far-field radiation 
from an unbaffled circular duct given a certain internal incident mode upon the 
end of the duct. Whilst the expressions for the far-field radiation pattern are 
somewhat complex, the essential principle in calculating the far-field from modal 
reflection coefficients remains similar to that using the method of Zorumski 
(1973). However, the expressions for the field outside the duct are only applicable 
at a distance of many duct radii. This then rules out the possibility of using this 
analysis to compare with measured data near the duct exit. This highlights the 
difficulty of using a model of the duct that does not include a rigid baffle at the 
end of duct; namely that it prevents the use simple methods such as the Rayleigh 
Integral to calculate the external pressure field.

Lordi, Homicz and Rehm (1973) and (1974), have presented work for a similar 
radiation problem. The solution for the external radiation is written in terms of 
analytical expressions for the directivity pattern for a given mode. Following this 
analysis, Homicz and Lordi (1975), have shown that certain approximations may 
be made to this exact solution to enable useful information to be obtained about 
the radiation pattern without recourse to a digital computer. The location of the 
principal lobe in the radiation pattern can be calculated and the location of minima 
in the radiation pattern. A sample application of these simple formulae is also



given and compared with an exact solution. Useful qualitative information 
concerning the duct radiation pattern is also derived from the exact solution. 
Homicz and Lord! (1975) show that the number of lobes in the radiation pattern 
produced by a given duct mode is determined by the number of modes that may 
propagate freely in the duct above their cut-on frequency. It is not clear from this 
paper if this would also be true for a duct with soft walls. The previous work by 
Homicz and Lordi is based almost wholly upon the earlier work of Weinstein, but 
also includes the work by Lansing (1969), which used the Wiener-Hopf technique 
to examine the effect upon the radiated field of introducing a uniform axial flow 
within the duct.

An alternative computational method for the calculation of the radiation from a 
baffled and unbaffled, semi-infinite duct with hard walls is given by Beckemeyer 
and Sawdy (1975). An approximate solution based upon a spherical wave function 
technique is compared with other previously published methods for the unbaffled 
duct. Directivity patterns calculated using previous work are compared with those 
produced by the new method. Agreement is shown to be good for the example 
used of a plane wave incident on the end of the duct.

The case of a finite length duct, has been examined by Johnson and Ogimoto 
(1980). In this paper the Wiener-Hopf technique is used to calculate the internal 
and external acoustic fields. When examining a finite length duct, the possibility 
exists for there to be acoustic interaction between the two ends of the duct. 
Johnson and Ogimoto overcome this problem by only considering a duct in which 
the length is chosen to be sufficiently large that this interaction may be ignored.

This acoustic interaction between the ends of the duct is discussed extensively by 
Wang and Tszeng (1984). The effect of the interference between the two duct 
apertures is identified in the calculations of the radiation impedance, reflection 
coefficient, and subsequently the far-field radiation pattern. It is shown that the 
interference effects between the two ends reduces for high frequency waves and 
for long ducts. This effect can be understood by considering the radiation 
impedance of each end of the duct separately. The value of the radiation 
impedance is governed not only by the self impedance of the end, but also by a 
mutual impedance term between the two ends. It is intuitively obvious that the 
mutual impedance term will diminish as the relative length of the duct is increased 
compared to the wavelength. For higher order modes, Wang and Tszeng also make 
comparisons between the far field directivity patterns of different duct geometries



for a single duct opening (semi-infinite duct) and a double duct opening (finite 
length duct). The results presented indicate that for small values of ka the 
radiation at angles more than 90° to the duct axis is significant.

This fact has previously been observed by both Lord! et al (1974) and Lansing 
(1969). Because of this significant radiation at angles more than 90° to the duct 
axis, it is possible in a short length duct that the radiation from one end will 
directly interfere with the radiation from the other end of the duct. Therefore a 
difference in the directivity patterns for low values of with a short length duct, 
and a semi-infinite duct should be expected. Homicz and Lord! (1975), have 
demonstrated that modal order is shown to influence the radiation pattern of a 
short length duct, since the directivity pattern is related to the order of the incident 
mode. Graphs of the far field directivity are presented for the first 3 azimuthal 
mode orders. It is shown that as ka increases beyond a value of 6, the acoustic 
radiation at angles greater than 90° to the duct axis, reduces dramatically. For a 
longer length duct, these effects will be reduced because the two external fields 
have a greater separation than from a short duct.

Rice (1978), has applied approximations to Bessel functions in terms of a series of 
sine and cosine terms to describe analytically the radiation pattern produced by a 
large number of modes incident upon the end of a flanged, hard-walled duct. This 
is an extension of previous work by Saule (1977), which whilst not using the 
approximations made by Rice (1978), was limited to the special case of equal 
power in each mode. Rice compares the predicted far-field pressure given by both 
methods for an example that assumes equal power per mode. The agreement 
between the exact and approximate solutions is shown to be very good for a 
summation of 1000 modes. Rice makes the observation that the approximate 
solution does neglect the contribution from some of the side lobes. The exact 
solution however, shows that the number of side lobes is dependent upon the 
radial mode number n. This analysis follows from similar work conducted by 
Rice, (1976a) and (1976b), in which the attenuation characteristics of duct liners 
are optimised for different modes in the duct.

2.3 Summary and conclusions from the literature.

The analysis of acoustic propagation in cylindrical waveguides has been widely 
published in the literature. In particular, the case of a hard walled, infinitely long,



axisymmetric duct has often been studied. However, the infinitely long duct does 
not allow for the reflection of acoustic energy at a duct termination, or take into 
account sound radiation from an open end of the duct. It is thought that the case of 
either a semi-infinite or finite length duct would be more relevant for the purposes 
of the present study.

Before a derivation of an analytical model the following important observations 
from the literature are worth noting:

(i) The case of a duct terminated by an infinite baffle is simpler to 
model and has the added advantage that the acoustic near field may be 
calculated using the Rayleigh Integral. This would enable comparison 
between the measured experimental data and predictions, and would also 
enable the prediction of the important wavenumber spectrum near to the 
duct exit. It is necessary to arrange the measurement plane as close to the 
duct as possible for accurate far field predictions, and to avoid windowing 
problems at the edges of the measurement array. However it is essential to 
place the measurement plane sufficiently far away from the duct to avoid 
the measurement of high order evanescent modes close to the duct exit. 
These evanescent modes may cause aliasing due to finite bandwidth of the 
measurement system.

(ii) The disadvantage of using a baffled model is that it ignores all 
radiation at angles more than 90° to the duct axis. It has been reported in 
the literature that this error is large at low ka and low modal order. This 
may not be important given the high frequency nature of the source to be 
modelled.

(iii) Expressions for the far-field directivity associated with an 
unbaffled duct have been derived previously. However these are lengthy, 
and may take considerable time to compute over a wide frequency range. 
Also expressions are not available for the near-field of an unbaffled duct.

Having conducted a literature review, it is proposed that the calculation of the far- 
field radiation from the duct be divided into two separate problems. The first task 
is to calculate the internal acoustic field within the duct for a given acoustic 
source. Once this has been determined, then the pressure and particle velocity over 
the end of the duct can be specified. Assuming the duct is terminated by an infinite



baffle, the particle velocity over the end of the duct may then be used to calculate 
the acoustic pressure outside the duct using the Raleigh Integral. In this way it is 
possible to compare experimentally obtained pressure data over the 64x64 position 
array, with pressure values derived from the mathematical model.

The ultimate objective of the mathematical model is to describe and examine the
propagation and radiation from a finite length duct containing a source. Given the 
level of complexity of the finite length duct problem, it is necessary to analyse 
several intermediate (and simpler) problems before attempting to solve for the 
finite length duct. This approach is extremely desirable as it avoids the underlying 
physical principles from becoming obscured by the detailed mathematics.

2.4 A simple model of the sound propagation within an infinitely long 
circular duct

In this section the important equations relating to the propagation of acoustic
waves through a circular waveguide are presented. Before attempting to analyse 
the behaviour of a finite length duct, it is important to understand the physical 
principles of acoustic propagation within a simple circular duct. The most straight 
forward is perhaps the case of a uniform and infinitely long duct, with acoustic 
waves only travelling in the positive direction. This simple approach ignores 
reflections caused by discontinuities in the duct (such as an open end), but it does 
act as a useful vehicle for appreciating the more complex problem described later 
in section 2.6.

Morse (1948), has shown that the fraveZZmg pressure distribution in an
infinitely long circular duct can be expressed as a series of duct modes. The 
complex pressure contribution from each mode may be written as (see figure 2.1)

p„,„ (r, 0. z) = (2.4.1)

Where is an amplitude coefficient, and r, 6 and z refer to the radial, azimuthal
and axial components respectively. 7^ is the Bessel function of the first kind of

integer order m. Note also that each mode within the duct has its own axial
wavenumber k'^'f and radial wavenumber kf '\ The indices, m and n refer to the
azimuthal and radial order of the mode. The value of X:""' is determined by the

boundary conditions at the duct wall, and the relationship between this radial



wavenumber and the axial wavenumber, will be given later. A suppressed 

time dependence of is understood throughout.

Notice also that the pressure of each mode may be considered to be the product of 
a modal amplitude and phase terms, \ and a mode shape function.

As there are no reflections, the total field within the duct is an infinite sum of
theseybnvarcf duct modes, and is given by

/w('-.e,z)= X
in=-oa n—Q

(2.4.2)

Applying conservation of linear momentum in the radial direction to equation
(2.4.1) gives

dt p dr
(2.4.3)

where wjT is the radial particle velocity of the (;%, w)'^' order mode, and p is the

density of the surrounding fluid medium.

This results in the following expression for the particle velocity in the radial 
direction, i.e. normal to the duct wall, for a single duct mode

ymp
(2.4.4)

where the prime on the Bessel function indicates a derivative with respect to the
argument r.

The above equations for the pressure and particle velocity can be related to the 
acoustic impedance Z, at the duct wall by

Z Pn (2.4.5)



where a is the duct radius. Using equation (2.4.5) it can be shown that the radial 
wavenumber satisfies the following relationship

(2.4.6)

which simplifies to

(A:r^) + ;; (A:r^) = O.
pc

(2.4.7)

Note also that the acoustic impedance at the duct wall, Z, may be defined non- 
dimensionally as

pc
(2.4.8)

where t^,. is the non-dimensional acoustic resistance, and is the non- 

dimensional acoustic reactance of the duct wall.

Equation (2.4.6) above then becomes, in terms of the useful frequency parameter 
ka or Helmholtz number

(2/4.9)

From the above it can be seen that if the duct wall impedance is allowed to take 
both real and imaginary values then the radial wavenumber will also be 
complex. Thus for an arbitrary wall impedance, then from equation
(2.4.9) Bessel functions of complex argument must be computed to solve for k'."".

However there are two limiting cases of particular interest in the present context, 
these are the hard wall and pressure release boundary conditions. The hard wall 
boundary condition requires that the particle velocity must be zero at the duct wall. 
(Or equivalently the momentum equation states that the pressure gradient must
also be zero at the duct wall). From (2.4.3), and equating the particle velocity to 
zero results in the following condition for the radial wavenumber



y;;(/:r^) = o. (2.4.10)

Thus for any given value of m, there will be infinitely many values of a that 
satisfy this equation, and these are given by the zeros of the Bessel function
derivative, However, it will be shown that there exist only a yZ/zirg

number of values that represent modes that can propagate freely and carry 

acoustic energy. These correspond to modes that have real axial wavenumber.

The axial and radial wavenumbers are related by the following equation

(2.4.11)

By inspection of equation (2.4.11) it can be seen that there exists a maximum
value of such that the axial wavenumber remains real. This is termed the 
cut ojffrequency for a given mode, and is given by the condition

= 0. (2.4.12)

Alternatively, this may be viewed as there being a lower limit to k, (which may be 
the frequency of a source), such that the source may propagate waves within the 
duct of a certain modal order. Expressed in this way, the term cut-on is often used.

From the above it can be seen that if is larger than A then the axial

wavenumber will be purely imaginary. From the expression for the acoustic 
pressure given by equation (2.4.1), then it can be seen that this represents an 

exponentially decaying, or evanescent wave. Referring to (2.4.2), the field may be 
described as an infinite series of modes, but there will be only be b. finite number 
that can propagate within the duct.

The pressure release boundary condition at the duct wall requires a vanishing 
pressure when r is equal to the duct radius. Equation (2.4.1) gives the following 
solutions for A'™a

y^(Ar(z) = o. (2.4.13)



As before, the above equation represents an infinite series of solutions for k'"''a 
which correspond to the cut on frequencies for all possible mode shapes across the 
duct.

In the discussion of both types of duct, the suffices and » have an important 
physical interpretation. For any value of then this corresponds to a

particular mode shape in the duct that has m diametrical pressure nodes and /r 

circumferential pressure nodes.

2.5 The acoustic field produced by a point source within an infinite length 

circular duct.

The previous analysis provides a means of understanding the principles involved 
in the propagation of a series of acoustic modes within an infinitely long duct. 
However, the excitation of these modes has been overlooked. The source 

mechanisms were ignored and only the propagation of these modes was 
considered. This section introduces a point source within an infinitely long duct, 
and illustrates how the amplitude of each mode may be found from a knowledge 
of three source characteristics: the type, strength, and position of the source in the 

duct.

Consider an infinite length circular duct that contains some source distribution at
an axial location given by z = 0. Referring to figure 2.2, it can be seen that the 
duct is divided into two sections on either side of the source plane at z = 0. In side 
one, each singlepropagating mode is given by equation (2.4.1) above, and 

is repeated here

(2.5.1)

Explicitly, the present problem is to determine the value of the amplitude term,
A,„„, for each mode. It will be shown that this is determined by characteristics of

the source.

The sum of the pressures from all the forward propagating modes in side 1 gives 

the total pressure, which is given by



P(])(n8,Z)= g
m=—oo M—0

-yC"z (2.5.2)

The radial mode shape function, t|/„,„(A:r), is given by

(2.5.3)

where the term is a non-dimensional normalising coefficient. The exact form 

of this function will be derived later in the next section.

Following a similar approach to that in Section 2.4, it is possible to solve for the 
particle velocity in the axial direction. It will be shown that a knowledge of both 
the pressure and axial particle velocity is required to match the source with the 
acoustic mode amplitudes within the duct. For harmonic motion the momentum 
equation applied in the axial direction to a single mode, is given by

wr(r,8,z):
1 ap'^(/-,8,z)

y(i)p
(2.5.4)

Applying the momentum equation above to the acoustic pressure in equation
(2.4.2), the total axial particle velocity in side 1 is given by

"z(l)(A8,z) = — ^
tup /n=—<» n=0

(2.5.5)

which is equivalent to

e.z) = ^ A„„ V... (2.5.6)

By a similar argument, the total pressure and total axial particle velocity in side 
two of the duct are given by

/^)(/-,8,z)= ^ g (2.5.7)
rt=0

w(")(r,8,z) = -— %
A:pc

(2.5.8)
n-O



It is will be shown how the values of the coefficients and may be found 
by matching the pressure and particle velocity with that of the source.

Consider a point monopole source at an axial location z = 0, and azimuthal and 
radial locations of 6, and and respectively. For a monopole source within an
infinitely long duct, by symmetry it is obvious that the modal amplitudes and 

will be equal for all corresponding values of m and n. Put simply it is 

reasonable that a monopole should radiate equally on either side of the source 
plane.

This principle is expressed by the continuity of acoustic pressure at the source
plane z = 0, and for a monopole source'

(2.5.9)

Therefore

A — D ^mn ^mn * (2.5.10)

For a monopole source, there is a difference in the axial particle velocity at the 
source. This difference in the axial particle velocity immediately either side of the
source plane at z = 0 is given by

Aw/r, 8, z = 0) = —% g (^:') -
P*' ,,

(2.5.11)

For a point monopole, then the source strength distribution over the duct cross 
section is given by

Q 8(r-r,)8(8-8 J, (2.5.12)

' For an axial dipole source, the difference in acoustic pressure either side of the source plane is

non-zero and may be equated to the dipole strength. However, for a dipole, the difference in
particle velocity is zero either side of the source plane.



where 8, and r^. are the azimuthal and radial locations of the source respectively, 
and Q is strength of the monopole source.

This may be verified by integrating equation (2.5.12) over the duct cross section, 
5, which shows that

^8(/'-7^)8(8-ej/-^r^6 = <2. (2.5.13)

This difference in particle velocity either side of the source plane, may be equated
to the source strength expression given by equation (2.5.12), giving

Q S(r -) 8(0 - e,) = ^ XX *z”” v™ ib-y (2.5.14)

The mode shape functions, \|r^^(^r), are orthogonal^, such that

form = p aW M = (2.5.15)
6'

jvM,z(^^)^ form ftp or (2.5.16)

where S is the duct cross section. Therefore multiplying both sides of equation
(2.5.14) by t|/ (A:r) and integrating over the duct cross section 5^, and noting

that gives the following expression

lit a

0 0

I I ^Hr-r,me-e,)W„„(l‘'-)e-‘"^rdrde

2% a
1 I

(2.5.17)

0 0

Using the sifting property of the delta function (Bracewell, 1986), gives

27t a

/:pc ^ ^
(2.5.18)

2 cr',see Appendix A



and performing the integral with respect to 0 on the right hand side gives

Ape J
(2.5.19)

By definition of the normalised mode shape functions

(2.5.20)

Therefore equation (2.5.19) becomes

Ape
(2.5.21)

Thus the amplitude of each mode is given by

A,, Ape
4ttAr

(2.5.22)

For a circular duct the mode shape function is a Bessel function, hence equation 

(2.5.22) may be expressed as

G0)P %) ..yw,

"" 4%Ar
(2.5.23)

Therefore it can be seen from equation (2.5.18) that the value of amplitude of each 
mode is determined by the value of the mode shape function at the source position, 

and r^., multiplied by the source strength at a single frequency O).



2.6 The acoustic radiation from a semi infinite circular duct, terminating 

in rigid baffle.

In the previous sections, the important characteristics of the acoustic propagation 
within a circular duct have been demonstrated. However, this analysis dealt with a 
very special case, namely an infinitely long duct containing only modes travelling 
away from the source. Furthermore, since the duct was of infinite extent, there is
no radiation from an open end.

Obviously, for many practical purposes the special case described above will not 
be sufficient to model the acoustic propagation. In particular for the present 
application it is necessary to include the effects of finite length, and radiation from 
the open ends. Also it is desirable to examine the radiation from the duct by 

different sources within it, and how a particular this radiation is effected as the 

source is moved near to the duct wall.

This section builds upon the understanding of the infinite duct given in sections
2.4 and 2.5, to examine the radiation from a semi infinite duct. This is a duct with 
only one open end, and the other may be considered to extend to infinity (or be 
terminated anechoically). As a reminder, the ultimate objective of the analysis is to 
describe and examine the propagation amf radiation from a finite length duct 
containing a source. However, the additional analytical complexity incurred by 
assuming that the duct be terminated at oMg end is sufficient to warrant separate 

description.

The first step in the process is to divide the overall problem into two parts; by first 
examining the field within the duct, and then look at the radiation, given a particle 
velocity distribution over the open end of the duct. With a semi-infinite duct, there 
will be acoustic reflection at the open end caused by the impedance change as the 
sound propagates toward the open end. In this section the important parameters 
that are needed to calculate the internal acoustic field are derived.

It will be seen that the reflections at the open end of the duct are calculated by first 
finding the impedance of each mode. Whilst the general method of calculating 
these modal impedances follows that given by Zorumski (1973), considerable time 
has been taken to correct many of the errors found in this paper. Furthermore, a 
detailed derivation of all the principal equations and functions used are listed in 
separate appendices. Perhaps the most important of these errors is that the



expression for the modal impedances given by Zorumski was found to be incorrect 
regarding the sign of the real part. This error has been corrected in the analysis that 
follows. Therefore the approach taken in this section is taken from the paper by 
Zorumski, and corrections are made where appropriate. Equation (2.6.1) to 
equation (2.6.36) are those based upon this earlier work. The matrix solution for 

the finite length duct which follows is original work.

Consider a circular duct whose geometry is given by figure 2.3. The acoustic field
within the duct is composed of forward and backward travelling acoustic modes. 
Using the expressions given by equations (2.4.2) and (2.4.4) the pressure and axial 
particle velocity within the duct are given by (a time dependence of is 

assumed throughout)

I
n=0

A p j^mn I D pj^nm ^ ^mn ^ ' ^mn ^ (2.6.1)

Note the similarity between (2.4.2) and the above equation. Again each mode may 
be considered to be constructed from a mode shape function tj/mn an
amplitude and phase term The axial particle velocity is given by

pc n=0

A ^ J^inn _ g pJ'‘-mn ' ^mn ^ ^mn ^ (2.6.2)

where 12,„„ may be considered to be a non-dimensional axial wavenumber which 
is related to the conventional axial wavenumber k’"'^ by

k'r
(2.6.3)

The indices m and n refer to azimuthal and radial order respectively. A non- 
dimensional radial wavenumber which is related to the conventional radial

wavenumber is defined as

(2.6.4)



The values of A"'" form an ordered sequence. As in section 2.4 the value of 
depends upon the boundary conditions at the duct wall. Equations (2.6.3) and
(2.6.4) are related by the dispersion equation

^tnn ^nm ' (2.6.5)

This is equivalent to equation (2.4.11). The mode shape function, is

normalised and given by

A.
(2.6.6)

The eigenvalues are determined by the boundary conditions at the duct wall. If 
the duct wall has an arbitrary wall admittance denoted by where a is the duct

radius, then the characteristic equation for the field within the duct is given by

(2.6.7)

where the prime on the second Bessel function in equation (2.6.7) refers to
differentiation with respect to radius. This equation may be derived by applying
the momentum equation to the duct wall in the radial direction to the pressure
given as equation (2.6.1)

dp
(2.6.8)

Equation (2.6.7) gives the relationship between the radial wavenumber and 
the duct wall impedance that may take any value. For an arbitrary, complex 
wall impedance, then will be complex, and results from the computation of
Bessel functions of complex argument. Much of analysis that follows makes 
speciEc reference to the simpler case of duct walls that are either rigid or pressure 
release. However, these are just two special cases for the duct wall impedance, and 
do not limit the potential application of this analysis to the study of ducts of
complex wall impedance.



Using this notation, for the hard wall boundary condition y8^=0, solutions of 

equation (2.6.7) are given by the zeros of the derivative of the Bessel function,
given by

Jr
— 0. (2.6.9)

For the pressure release boundary condition at the duct wall, = oo, and

0. (2.6.10)

The radial modes are orthogonal and therefore the normalising factor given in
equation (2.6.6) is chosen such that

(2.6.11)

Substituting equation (2.6.6) into equation (2.6.11) and evaluating the integral 
gives the required form of the normalising function (Watson, 1962).

N,. a
Vl'

m 2 A
(2.6.12)

For the hard walled duct case, equation (2.6.12) may be further reduced using the
relationship given in equation (2.6.9)

V2 '
m (2.6.13)

and for the pressure release boundary condition, from equation (2.6.10)

^mn — ^ (2.6.14)

The pressure and particle velocity at the end of the duct (z == 0), may be expressed
in terms of duct modes as



Xro)=
m=—“> «=0

(2.6.15)

w(ro):=— (2.6.16)
n=0

Where, rg is a position vector in circular co-ordinates, with components /q and 0o 
at the duct exit, (see figure 2.3), and where and 1/^ are given by

(2.6.17)

(2.6.18)

E the duct is assumed to be terminated in a plane rigid baffle, the acoustic field 
outside the duct may be found using the Rayleigh Integral, and depends upon the 
axial velocity over the end of the duct. The Rayleigh Integral is given by

7A:pC [2:: fo / \ ^
2:[ Jo Jo

(2.6.19)

where the position vector r refers to points in the external field, z > 0, and where

A = 4-fQ^ -2r/Q cos(8-8o) + z^ . (2.6.20)

Substituting equation (2.6.16) into equation (2.6.19) gives

= (2.6.21)

which becomes

p(r) A
271 n~0

(2.6.22)

™ h



Equation (2.6.21) gives the external field in terms of the modal velocities at the 
end of the duct. This equation is usually solved numerically. It is possible to 
express the function of /z in a more convenient form to enable a tractable analytical 
solution for the mtemaZ field to be found. From Watson, (1962), the exponential 
term may be expressed as

~jkh

h -'0
(2.6.23)

where T is a dummy variable.

At the duct exit, the integrand of the Bessel function in (2.6.23) may be replaced 
using Neumanns addition theorem for Bessel functions (Watson, 1962).

yQ(TA:A) = ^0 TA: + -2r7QCOs(8-8Q) + z' (2.6.24)

From Watson (1962)^, then Neumanns addition theorem states that if a function is
defined as y = - 2Zzcos(|), then

_//«(]) (2.6.25)

This gives, using equation (2.6.24)

4 (= % -/m (lAr/o )g
fn——oo

(2.6.26)

Substituting equation (2.6.26) into equation (2.6.23) gives

h
A (2.6.27)

Equation (2.6.22) for the pressure at the duct exit can now be expressed as

^ p358, equation



p(ro) = Z 1' -^m (1:^^) jj ^ -/m (1:^:0 ^1:

(2.6.28)

m=—o« n=0

We know define the function, D^»(T) given by

(l:) = ^ jj /b-/m ) Vmn )^'b - (2.6.29)

The integral above may be evaluated directly, Watson (1962)^^

Wmn (A%z)y;; (t/ca) -
X,. 2 .r2 (2.6.30)

Then equation (2.6.28) may be expressed as

p(r) = jk r T(f - l)'"j,„(#r)D,„„(T)A. (2.6.31)
m=~oa n=0

Equations (2.6.15) and (2.6.31) may now be used to solve for the modal pressure 
amplitudes in terms of the modal velocity amplitudes'’

^inn ^mnl %?;/ '
1=Q

(2.6.32)

Where / is the radial order of the reflected mode, and n is the radial order of the 
incident mode. The above equation relates the modal pressure amplitudes within 
the duct to the modal velocity amplitudes. The term is the coupling

impedance between the pressure and velocity.

Due to the symmetry of the duct, the azimuthal order is shared by the incident and 
reflected modes. In equation (2.6.32) Z,„„y is the modal generalised impedance, and

is given by

see Appendix B 

see Appendix C



(2.6.33)

Equation (2.6.32) may be split into two integrals over the ranges (0,1) and (l,®^). 
Using a change of variable such that

i; = sin((),

T = coshE,,

(2.6.34)

(2.6.35)

in those respective ranges given above. The expression for the generalised 
impedance then becomes*’

= jj sin 4) (sin (t))D^/(sin (|))^(|) + ;cosh ^ (cosh (cosh .

(2.6.36)

Expressed in this way, it is possible to compute the real and imaginary parts of the 
radiation impedance separately. This statement is only true if the impedance at the 
duct wall is purely real, which is the case for a hard wall and pressure release wall. 
If the duct wall is made to take any complex impedance value, the expression for 
the radiation impedance given by equation (2.6.36) is still valid, but each integral 
in equation (2.6.36) will no longer produce purely real answers. The reason for 
this is that for a complex wall impedance, the value of the radial wavenumber will 
be complex, hence the terms and will be complex, and hence the 
computed functions D^(T) and D^/(T) will be also have real and imaginary 

parts.

2.7 The calculation of the modal radiation impedance.

Upon inspection of equations (2.6.30) and (2.6.35) it would appear that they may 
contain poles at sin^(() = X^ and sin^(|) = X^/ for the real part, and for the 
imaginary part, poles at cosh^ ^ = X^ and cosh^ ^ = X^,,/.

However, by application of L'Hopital's rule, it is possible to show that the limiting
value of the function D^n(l:) in equation (2.6.30) is finite (full details are given in

6 c,see Appendix C



Appendix D). This may be explained simply from examination of the function 
which is used to calculate the modal impedances

X ^
(2.7.1)

In the limit as t -> then the denominator tends to zero, and it would be 
reasonable on this evidence alone to expect the function would tend to
infinity. However, as t the numerator also tends to zero. This can be seen

by expanding the numerator of equation (2.6.30) as follows;

(Tkr).
N., N„

(2.7.2)

Figure 2.4a shows the value of the real and imaginary parts of the radiation
impedance plotted against ka, for the plane wave mode, i.e. /« = 0, « = 0, incident 
upon the end of a hard walled duct, and a plane wave reflected at the end of the 
duct. Figure 2.4b shows the mode shape of the incident and reflected modes. 
Examination of equation (2.6.32), shows that these radiation impedances may be 
considered to be the impedance of a radiated m, I order mode away from the open 
end of the duct, due to an incident m, n velocity mode at the end of the end. A 
plane wave radiating from the end of the duct is analogous acoustically to the 
textbook problem of radiation from a circular piston in an infinite rigid baffle. 
Consequently, the radiation impedances for each of these cases should yield 
identical results. A comparison of figure 2.4 with the radiation impedance of such 
a piston as given by Kinsler and Frey cr a/ (1982) for example, shows that these 

two impedances are indeed identical.

In calculating these impedances, the integration in equation (2.6.36) was 
performed numerically using Simpson's Rule. Referring back to equation (2.6.36),
then the for real part of the impedance the function is integrated over the range 
0<(t)<7t/2. Accounting for the behaviour of the integrand in the region of 
sin^(|) = X^ and sin^(|) = X^/ as noted above then this integration is

straightforward. At first sight the integral required to compute the imaginary part 
of the impedance in equation (2.3.36) looks more difficult. This is because it is a 
semi-inlinite integral, where the range of integration is given by 0<%<«). 

Fortunately, due to the nature of the integrand this does not pose too many
difficulties. Since the integrand is of the order of cosh"^ ^ then it follows that the



integrand is approximately zero for all values of ^ above about 10. At 4= 10, the
value of cosh"^^ is 7.48x10"^^. For the calculation presented here the range of 

integration for the imaginary part was truncated at ^=20. Using Simpson’s rule for 
the integration both the real and imaginary parts were divided into 1000 strips, and 
all the computation of the integration was performed using MATLAB. As this 
software is optimised for speed in the calculation of vector and matrix problems it 
is extremely quick in performing the necessary summations required to evaluate 
an integral using Simpson's rule, which for completeness is given below as

(2.7.3)

where A is the value of the integral, A = (6 - a)/» is the width of each strip, [a, 6] 

is the range of integration, and « is the number of separate evaluation points strips 
over the integration range. The values yg...% the values of the integrand

evaluated at each point n over the integration range. Thus the integration of a real 
function y = /(x) from a to 6 is approximated by dividing the interval up into an
even number of » points , X2, X],.......x^-i- The corresponding ordinates at these
points are y],y2')'3'.......The repeated numbers 4 and 2 in equation (2.7.3)

form a vector known as the weighting function, w. Therefore to compute the value
of A using MATLAB, it is first necessary to evaluate ....... iXn-i from the
values of x,,X2,X3,.......These can be determined very quickly by making
the values Xj,X2,X3,.......a vector of length n. The vector of y values then

follows from the integrand. The value of the integral A is simply the scalar or dot 
product of the weighting function vector w and the vector y which is given by

y = ......

Figure 2.5a shows the value of the real and imaginary parts of the impedance for 
the higher order mode, m=0, n=0, 1=2, in a hard walled duct. This represents the 
coupling impedance of a plane wave mode incident upon the end of the duct (i.e. 
m=0, n=0), and a reflected 3rd radial order mode {1=2). Note that both the real 
and imaginary parts of the impedance are non-zero in the region of the cut-on 
frequency of the 3rd radial order mode at ka = 7.02 (for m=0). The incident mode 
shape is shown in figure 2.4b, which is the familiar plane wave mode, and the 
reflected mode is shown in figure 2.5b. These, and all other mode shape plots are 
to illustrate the shape of the mode either incident or reflected at the end of the 
duct, and as such are do not have representative amplitude to the modes within the 
duct. Also the contour lines shown beneath the mode shape plot show the nodal 
lines of the mode shape. The number of these lines is directly related to the order



of the mode. For example, the /M=0, /=2, reflected mode has 0 azimuthal nodal 
lines, and 2 radial nodal lines.

The observation of a significant degree of coupling between these modes is of 
vita] importance as these coupling impedances cannot be ignored in the calculation 
of the reflection coefficients, and hence the internal and radiated acoustic fields for
the values of ka of interest in this thesis.

It is important also to note the form of equation (2.6.33). It is clear from this 
equation that the radiation impedance of a order mode will be the same as 
that for a order mode in the same duct. To illustrate this, figure 2.6 shows the
radiation impedance for a m-O, n=0, 1=1 mode, and the impedance of a m=0, 
n=l, 1=0 order mode. Clearly these are the same, as expected.

Figures 2.7 and 2.8 show the radiation impedance for a various modes in a hard 
wall duct. Figure 2.7 illustrates how the impedance changes for a fixed azimuthal 
order, while allowing n and I to vary. Alternatively, figure 2.8 shows the 
relationship between impedance and azimuthal order. Not surprisingly, the 
radiation impedance is greater when n=Z, which corresponds to the radiation of an 

order mode, due to a mode at the end of the duct. It is expected that the 
coupling between these two modes will be greater than for two different radial 
orders.

By way of comparison with the above, figure 2.9a shows the impedance of the
m = n = 0 mode incident upon the end of the duct, and a. m = l = 0 order pressure
mode radiated from the duct, for a pressure release boundary at the duct wall. 
Figure 2.9b, shows the mode shape for this mode in a pressure release lined duct. 
What is interesting to note about this mode shape is that it is clearly not a plane 
wave. As a result of the boundary condition within a pressure release lined duct, 
that there is zero pressure at the duct wall, then this explains why the pressure is 
zero at the extremities of the mode shape. The shape of the mode is explained by 
examining the generating function for the mode shape, which in this case is 
proportional to JoiKr). For the lowest order mode in a pressure release lined duct,

then is equal to 2.'^0. Therefore when the value of r = a, where a is the duct 
radius, then the mode shape is zero. Elsewhere it takes the form of the Bessel 
function. Since the value of is non-zero for this lowest order mode, then this 

implies that there is a cut-on frequency for even this mode. If the source is



radiating at a frequency below ka -2.40, then the total field inside the duct will be 
composed of evanescent modes.

Figure 2.10 shows the impedance in a pressure release lined duct for various 
modes with the same azimuthal order. Figure 2.11 shows the radiation impedance 
for various azimuthal orders in the same duct.

2.8 The modal reflection coefficients.

To solve for the internal field it is necessary to calculate the reflection coefficient 
for each mode incident upon the end of the duct. In this section it is shown how 
the expression for the modal impedances derived previously may be used to 
calculate the modal reflection coefficients at the duct exit.

The acoustic field within the duct is composed of a series of forward and 
backward propagating waves whose amplitudes are given by and These
two variables are related using the expressions in equations (2.6.17) and (2.6.18), 
which are repeated here

Ptnn ^mn Pmn ? (2.8.1)

Fmn Pmn) • (2.8.2)

Substituting equations (2.8.1) and (2.8.2) into the expression for the impedance
given by equation (2.6.32) gives

y, {^innl^ml ^nl) ^ml 
/=0 /=0

(2.8.3)

where 8^i is the Kronecker delta function defined as

= 0 for » Z,

5^1 =1 forn - /.

Solving the above equation for results in an equation of the form



B,nn ~ ^ Rmnl A,nl- 

1=0
(2.8.4)

The terms are the reflection coefficients that can be related to the modal 
impedance by the following infinite matrix equation, (that is Z = oo in
principle). For a given value of azimuthal order, the reflection coefficients are 
given by

Rnl — [ ^nl ^1 ^ ^ ]' (2.8.5)

Where I is the identity matrix defined as

1 0 0 
0 1 0

0 0 1

(2.8.6)

and where Q; is a diagonal matrix. ForyZxgdl azimuthal order m, Q, is given by

Oi

no 0 ... 0 
0 ni .. 0

0 0 Ol

(2.8.7)

Note that the m dependence has been suppressed in equations (2.8.5) and (2.8.7), 
and thus n, given in equation (2.8.7) is only valid for one vaZwe of azimuthal

order at a time, and generally will be different for each value of m. Here / is the 
radial order of the reflected modes, where 0<l <oo.

The reflection coefficient matrix is def ned as

Rnl

Roo Ro\ ■■■ Rol 
R]o R\i ■■■ R]l

Rno Rni Rnl

(2.8.8)

and for fixed azimuthal order m, the impedance matrix is given by



Znl

Zw Zoi
Zm 2^1 2^1

Z/vo Z/v] Zm

(2.8.9)

Note the form of equation (2.8.4), since it illustrates the nature of the reflected
field within the duct. For one incident mode upon the end of the duct, the reflected 
field takes the form of an infinite series of other modes with the same azimuthal 
order, but having all radial orders up to infinity. Obviously in practice it is not 
possible to compute the reflection coefficients for all the reflected modes as they 
are infinite in number. However, since only a finite number of modes may 
propagate freely in the duct at a given frequency, then it is possible to ignore 
modes that are highly evanescent, but not all evanescent modes.

Therefore to calculate both the impedance and reflection coefficients it is 
necessary to first truncate the number of reflected modes at some value of radial
order at some value T. This truncation will have an impact on the accuracy of any 
calculated reflection coefficients given by equation (2.8.5).

The generalised reflection coefficients may be solved for by first finding the 
generalised impedances given by equation (2.6.33). Note these impedances are 
specific to each incident mode and duct wall impedance for a given value of ka.

The calculation of the reflection coefficients in practice, first requires that the 
azimuthal order be fixed. This reduces the order of the impedance from a 3 
dimensional 'matrix' (m, n, and I all allowed to vary), to a conventional 2 
dimensional matrix, which is readily manipulated on a computer. Secondly, it is 
necessary to calculate the reflection coefficient matrix, Rni for a single frequency 
at a time. This is because the matrix of modal impedances is valid for a single 
frequency, and the diagonal matrix, O, can only be calculated for a single 
frequency at a time. This can be shown by remembering that

(2.8.10)

where the m dependence has been suppressed in the above equation.



Therefore in practice it is necessary to solve equation (2.8.5) for each value of m 
and k separately, which results in numerous Rni matrices at each value of m and k. 
Consequently, the desired reflection coefficient for a given n, I order mode may be 
simply extracted from each of these Rni matrices to give a reflection coefficient 

vgcfor, which may be plotted as a function of

As mentioned above, it is necessary to truncate the number of modes in the 
calculation of the reflection coefficients to a finite quantity for calculation. For this 
thesis, the values of under discussion are relatively small, i.e. /:<3<15. 
Therefore the total number of modes that will be cut-on below this frequency is 
limited to approximately 30, for all possibilities of azimuthal and radial order, and 
for both the hard wall and pressure release lined duct. For modes that have cut-on 
frequencies above the driving frequency of the source, then the elements in the 
diagonal matrix O, corresponding to these cut-off modes will be pure imaginary.

Furthermore, when calculating the reflection coefficient matrices given by
equation (2.8.5), it is only necessary to include the radiation impedance of those 
modes that are either fully cut-on (i.e. Xzz < 15), and those modes that are only just 
cut-off. It has been found that no extra accuracy is gained by including modal 
orders for which the cut-on frequency is given by ka> 20.

Even taking into consideration the fact that the modal orders may be truncated, 
there remains a considerable computing overhead in first calculating the modal 
radiation impedances, (largely due to the numerical integration that is time 
consuming), and then the reflection coefficient matrices for a large number of 
modes. Indeed all the reflection coefficients used in this thesis were calculated 
using a 30 by 30 matrix for Zni Rni and Hi. This is provides considerably greater 

accuracy in the resultant reflection coefficients than those reported by Zorumski 
(1973), and by Wang and Tszeng (1984).

Figure, 2.12 shows the reflection coefficient for a plane wave incident 
{m-n- 0), and a plane wave reflected at the end of a hard walled duct 
(m = I = 0).

It is interesting that unlike the impedance matrix, Zni, the reflection coefficient 
matrix, Rni, is not symmetric. For example, consider the reflection coefficient 
/?oio (the convention adopted here will be that the subscript for the modal orders 
will be written alphabetically, i.e. /?,„„/), plotted against ka for a hard wall duct.



This is shown as figure 2.13. By comparison, /(oQ, is shown as figure 2.14. It can

be seen that these two reflection coefficients are not the same. This is due to 
nature of equation (2.8.5), which includes only the axial wavenumber matrix, Hi 
of the reflected modes, and not a corresponding matrix for the incident
modes.

Figures 2.15 to 2.18 show different reflection coefficients for various modal orders 
in a hard walled duct. Figures 2.19 to 2.22 show the equivalent reflection 
coefficients for a pressure release lined duct.

To explain the importance of modal coupling it is necessary to examine the nature 
of the reflection coefficients at the end of the duct. These reflection coefficients 
determine the level of energy reflected back into the duct, together with the modal 
decomposition of this energy. At the end of the duct, energy is exchanged from a 
single incident m,n mode into an infinite series of m,l modes. If coupling could be 
ignored it would require that the modal reflection coefficients be zero for all n^l. 
This is the equivalent to requiring that the non-diagonal elements of the reflection 
coefficient matrix given in equation (2.8.8) be set to zero. The larger the value of 
these non-diagonal elements the larger the energy exchange between modes. 
Consider the case of a m = l, n = \ mode incident upon the end of a hard wall 
duct. The reflection coefficient for this mode incident and an m = l, / = 0 mode 
reflected back into the duct is shown as figure 2.15. At ka=5.3, the value of the 
real part of the reflection coefficient is 0.4. If coupling were ignored, then at this 
value of this would assume that this reflection coefficient has a value of 0. If 
the /M = 1, M = 1 were dominant in terms of energy, and coupling were to be 
ignored then this would produce large errors in the calculated field, as a large 
proportion of the energy would be transferred to another mode within the duct. 
Because the reflection coefficient is non-zero for the case of the coupled m = l, 
M = 1, 1 = 0 mode reflected at ka=5.3, this will cause this reflected mode to 
interfere with the field within the duct either constructively or destructively at the 
source. This has a fundamental influence upon the radiation of the source as it will 
alter the radiation impedance of the source, which in turn dictates the modal 
amplitude of this mode at this frequency. This latter aspect involves the duct 
length, since the phase change of the reflected mode from the end of the duct to 
the source will depend upon the axial position of the source relative to the open 
end of the duct, and also the axial wavenumber of the mode.



In summary, it is not a trivial problem to state that coupling may be ignored or 
included. It will depend upon many factors; the source location, the frequency of 
the source and the length of the duct, and the source type. All of these in 
themselves will produce huge changes in the power distribution within the modes 
propagating within the duct. Depending upon which modes (if any) are significant 
in terms of energy, and the value of the reflection coefficient at a chosen 
frequency, will determine if coupling may be ignored or not. Most importantly, the 
effect of modal coupling cannot be accessed a priori, and requires the field be 
calculated with and without coupling to assess its importance.

2.9 A matrix solution for the acoustic field inside a finite length duct.

In this section the above analysis that calculates the modal impedances and 
reflection coefficients for semi-infinite duct is used to calculate the field within a 
finite length duct. To simplify the following analysis the problem is restricted to 
one of fixed azimuthal order, but allowing variable radial order modes. Using
superposition it is possible to solve for the complete field within the duct, 
assuming a finite number of reflected modes.

In matrix notation, equation (2.6.1) may be written as

;)(])/»(r,8,z) = (z) (f) + (z) Vt('')} (2 9.1)

where P(])^(r,8,z) is the incident pressure in side one of the duct for a fixed 

azimuthal order m. The terms a^ and are the transpose of a column vector of 

modal amplitudes, which have the following form

^m\ ^m2 (2.9.2)

mO B.'ml B
'm2 B,nL ]. (2.9.3)

jlhwhere is the modal amplitude of the TV'" radial order mode for a given 
azimuthal order as defined in equation (2.7.1). This vector is truncated at 

where TV is a suitably large value of the radial order such that the field may be 
described adequately. Usually the value of will be determined by trial and error.



The term is a diagonal matrix of axial propagation factors, given by

E,
0

0

0

0

0
0

(2.9.3)

and is similarly defined. The term \|r^(r) is the column vector of mode

shapes given by

(2.9.4)

and i|/2;(f) is similarly defined. The reflected field at the end of the duct may be

expressed in a similar matrix form, except here the exponential sign in the terms 
within the matrix of equation (2.9.3) will be positive denoting a negative direction 
of propagation. The reflected and incident modes are related through a matrix of 
modal reflection coefficients. The relationship between the incident and reflected 
fields in side one of the duct may be defined as

Em6(z)b = R](z)E^(z)a, (2.9.5)

where the matrix R, (z) is defined as

BU(Z):

&)(z) ... /(o/v(z)
^^o(z) ^n(z) ... /^N(z)

&o(z) &l(z) ... /(LN(Z).

(2.9.6)

The reflection coefficient matrices, R^fO) and R2(-A -/2), i.s. evaluated at either 
end of the duct, may be evaluated by the method derived by Zorumski (1973) and 
detailed in Section 2.8. This method may be used to calculate the value of R, (z)
and R2(z) at any other location, z within the duct from a knowledge of the 

reflection coefficient at the ends of the duct. If the reflection coefficient were 
known at some axial location 1, then equation (2.9.5) may be written

E_(/)b = R,(/)E„,(Z)a (2.9.7)



Solving for b in equations (2.9.5) and (2.9.7) and then equating gives

R,(z) = E^^(z)E^(,(Z)-'R,(f)E^(Z)E^(z)- (2.9.8)

and for side 2 of the duct

Rib) = E„„,(z)Ew('r'R2(')E„,(()E„(z)- (2.9.9)

Rearranging equation (2.9.5) gives

(2.9.10)

Substituting equation (2.9.10) into equation (2.9.1) yields

Plll,„{r,0,z) = e^"'®aT {e,„(2) + [E„,,,{z)-' R,(z)E„„(z)r E,„j{z)} >|/„(z).

(2.9.11)

Since both E^(z) and E^(z) are diagonal matrices, then equation (2.9.11) for 

the pressure in side one of the duct reduces to

P(,),„{z.e.z) = e-'"'® {a^ E,„„(z)[I + R,(z)^] (2-9-12)

Applying a similar approach to the field within side 2 of the duct gives

P(2),..('-.e,z) = e"'”'* {c'" E,„(Z) [I -t R2(z)2j } v,(z). (2.9.13)

For a monopole source at z = -Z|, in the plane of the source zip = 0, and therefore 
equations (2.9.12) and (2.9.13) may be equated to give

E^(-Z,)[I-l-R,(-Z|)'] \|ra(^)-(^^E^g(-Z,)[I + R2(-Z))'] i|r^(r).(2.9.14)

Multiplying both sides of equation (2.9.14) by (where it is assumed now that 
Yg and Yc have the same order), and integrating over the duct cross section S', 

gives



6" (2.9.15)

The orthogonality property of the mode shape vectors may now be used, such that

(2.9.16)

where is ±e duct cross section, and I is the identity matrix. Therefore equation 

(2.9.15) reduces to

E^(-Z|)[I + R](-/|)^] = c^ E^(-Z])[I + R2(-/])^] (2.9.17)

Simplifying (2.9.17) gives

=c%2, (2.9.18)

c'^=aT'G]G2-\ (2.9.19)

where the matrices G, and G? are denned by

G]=E^(-Zj)[I + R](-Z,)T^], (2.9.20)

G2=E_(-Zj)[l + R2(4) ]. (2.9.21)

For a fixed azimuthal order the axial particle velocity in side I of the duct is given 
by

uz0)m
(r. e, z) = -L i [a„„. ] V...(0. (2.9.22)

pc ;z=0

The expression for the particle velocity given in equation (2.9.22) may be written 

in matrix form as

(r.e.z) = C"'«{a%„. E„,„(z) v„(z)-bTK„,, E,„i(z)^(.(0}. (2.9-23)



where K,„^ is a diagonal matrix containing the values of —^ for each axial
pc

wavenumber given by

K,

OmO
pc

0

0

^ml
pc

0 0

0

0

^mN
pc

(2.9.24)

the matrix may be similarly defined. The particle velocity in side 2 of the 

duct is given by

4(2)m = E,„Xz)Y,(r) + d%,„j E„,j(z) v^(r)}. (2.9.25)

Using the reflection coefficient relationships these equations become

= a"" E^,(z)-[E^(z)-' R,(z)E^(z)f K,,, E^^fz)]

(2.9.26)

Which reduces to

“z(l),„('-.9.2) = C"®aTE,„(z)[K,„„-R|(7,)’^K,„]v|<„(r). (2.9.27)

In side two of the duct the axial particle velocity is expressed by

W,(2),/r,8,z) = C^"'^ cT' [-K^, E^Xz) + [Ew(zr' ^2 (z)E^Xz)f Kmc Ew(z)] Vc(^)

(2.9.28)

Which reduces to

^z(2)m (r,0.7) = C"'» cTe,„(7) +R2(z)'" K„„] Y, (' ) (2.9.29)

Equations (2.9.27) and (2.9.29) may be written as.

a’‘Y,(7)v„(.) (2.9.30)



^z(2)m (2.9.31)

where the matrices Y, and Y2 are defined by

Y,(z) = E^(z) [K^ - R, (z)^ 

^2(2) = E^Xz) [-K^^ + R2(z)^

(2.9.32)

(2.9.33)

For a point monopole source, the source strength distribution over the duct cross 
section is given by

Q 6(r-/^)6(0-6J (2.9.34)

where 8, and are the azimuthal and radial locations of the source respectively,
and Q is strength of the monopole source. This may be verified by integrating 
equation (2.36) over the duct cross section, 5 which shows that

(2.9.35)

where 6(z) is the Dirac delta function. At the source, the differences in the axial 
particle velocities between sides / and 2 of the duct can be equated to the volume 
velocity of the source such that

A(r,8,-Z,) = 8,-^1) - Wz(2)m(A8,-/]) = —6(/- - /^)8(8 - 8J (2.9.36)

which can be written as

Au„„(r,9,-;|) = «-''"* Y, c' Yj l|l„(r) = i^8(r-r,)8(e-0,)(2

(2.9.37)

To match the source to the field within the duct, the orthogonality property of the 
mode shape functions is again used. Multiplying both sides of equation (2.9.37) by
g-jmQ and integrating over the duct cross section gives



(2.9.38)

where is a row vector of mode shape function evaluated at the radial
source location r,. Using the relationship between a and c in equation (2.9.19), 

equation (2.9.38) becomes

=aT Y,H )-a'^G,Gj-' Y^H, ) . (2.9.39)

This can be simplified to give

qT = aT[Y;-G,Gf'Yz], (2.9.40)

where the source strength vector q is defined by

(2.9.41)

Equation (2.9.41) may be written in the compact form

(2.9.42)

where the matrix H is defined by

H = [Y,-G,G2-'Y2] (2.9.43)

Rearranging equation (2.9.43), gives the modal amplitude vector a, as

a = (H'^)-' q (2.9.44)

By solving equation (2.9.44), it is possible to solve for all the other modal 
amplitudes within the duct.

Solving for the modal amplitudes, the axial particle velocity given by equations 
(2.9.27) and (2.9.29) at either of the two ends of the duct may be evaluated. If the 
duct is chosen to be terminated in a rigid baffle, then it is possible to use the 
Rayleigh Integral to calculate the field radiated externally from the duct. Results



obtained using this model are presented in the next chapter where they are 

compared with experimental results.

2.10 Conclusions.

A derivation of an analytical model of the internal and external fields from a finite
length duct terminating in a rigid baffle has been presented. This model offers 
greater potential flexibility than the experimental approach detailed in the next 
chapter. Using this model, it is possible to examine the effects of source location 
and duct wall impedance upon the externally radiated field. Furthermore, this 
analytical model will be used to examine the accuracy of the propagation 
technique described in Chapter 4, and to compare with the experimental results 

presented in Chapter 3.

It has been shown that the method for obtaining the far-field radiation from the
duct may be subdivided into solving for the internal pressure and axial particle 
velocity, and then for the external pressure field. The previous work by Zorumski 
(1973) which concerned a semi-infinite, baffled, duct, has been extended to 
include a duct of finite length. The analytical model presented in this Chapter is 
exact. Due to the geometrical symmetry of the duct, then the reflection coefficients 
at one end of the duct will be the same as those at the other end. Therefore the 
reflection coefficients need only be calculated for one end of the duct. Also as the 
duct is baffled the two exterior fields from each end of the duct will not interfere 
with each other, and do not alter the reflection coefficients at either end of the 
duct. If the duct were unbaffled, then this would not be the case. It should also be 
made clear that this model is completely general, and it is possible to examine the 
radiation from sources within a duct with any impedance at the duct wall.

It has been established that the internal acoustic field produced by a source within 
the duct is constructed from an infinite series of forward and backward
propagating modes, which are partially reflected at the ends of the finite length 
duct. Also these modes are coupled, and this coupling is important in the 
calculation of the modal reflection coefficients at the ends of the duct.



Figure 2.1- The cylindrical geometry of a circular duct.
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Figure 2.2 - The geometry for a semi-infinite duct.
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Figure 2.3 - The geometry for a finite length duct.



Figure 2.4a - The real and imaginary parts of the radiation impedance 

for an incident plane wave and a reflected plane wave (i.e. m = n = / = 0) 

within a baffled, hard walled duct. This is identical to a circular piston in a baffle.
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Figure 2.4b - The mode shape for the incident and reflected plane wave in figure 2.4.
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Figure 2.5a - The real and imaginary parts of the radiation impedance 

for an incident plane wave m = n = 0 and a 

reflected m = 0, / = 2 mode within a baffled, hard walled duct.
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Figure 2.5b - The mode shape for the reflected mode m = 0,l = 2 mode figure 2.5.
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Figure 2.6a - A comparison between the real and imaginary parts of the radiation impedance for the

m = rt = 0, / = 1 mode,

and the m = / = 0, n = 1 mode in a hard walled duct.

These two impedances are the same due to the symmetry 

of the impedance matrix Z^„i, i.e. Z,„„; =

L
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Figure 2.7a - A comparison of the real and imaginary parts of the 

radiation impedance for fixed azimuthal order (m = 0)

for various radial orders within a hard walled duct.

The numbers on the curves indicate the radial order of the 

incident mode and reflected mode respectively.
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Figure 2.7b - The mode shape for the mode m = 0, n = 1 mode figure 2.7a.
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Figure 2.7c - The mode shape for the mode m = 0,« = 2 mode figure 2.7a.
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Figure 2.7d - The mode shape for the mode m = 0, n = 3 mode figure 2.7a.



Figure 2.8a - A comparison of the real and imaginary parts of the 

radiation impedance for fixed radial order (n = 1 = 0)

for various azimuthal orders within a hard walled duct.

The numbers on the curves indicate the modal order (mnl).



0.05

duct diameter [m] -0.05 -0.05 duct diameter [m]

Figure 2.8b - The mode shape for the mode m = 1, /z = 0 mode figure 2.8a.

duct diameter [m] -0.05 -0.05 duct diameter [m]

0.05

Figure 2.8c - The mode shape for the mode m = 2, n = 0 mode figure 2.8a.
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Figure 2.8d - The mode shape for the mode m = 3,n = 0 mode figure 2.8a.
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Figure 2.9a - The real and imaginary parts of the radiation impedance

for an incident m = n = l = 0 mode and a reflected m = n = l = 0 mode

within a baffled, pressure release lined duct.
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Figure 2.9b - The mode shape for the incident and reflected m = n = Z = 0 mode 

in a pressure release lined duct as in figure 2.9a.

Note that this is not a plane wave as in the hard walled duct in figure 2.4a.



Figure 2.10a - A comparison of the real and imaginary parts of the 

radiation impedance for fixed azimuthal order (m = 0)

within a baffled, pressure release lined duct.

The numbers on the curves indicate the modal order (mnl).
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Figure 2.10b - The mode shape for the m = 0, / = 1 mode in figure 2.10a, 

for a pressure release lined duct
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Figure 2.10c - The mode shape for the incident m = 0, M = 1 mode in figure 2.10a,

for a pressure release lined duct
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Figure 2. lOd - The mode shape for the reflected m = 0,1 = 2 mode in figure 2.10a, 

for a pressure release lined duct
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Figure 2.1 la - A comparison of the real and imaginary parts of the 

radiation impedance for various modes within a baffled, pressure release lined duct. 

The numbers on the curves indicate the modal order (mnZ).
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Figure 2.11b - The mode shape for the reflected m = 3, 1 = 1 mode in figure 2.1 la, 

for a pressure release lined duct
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Figure 2.11c - The mode shape for the incident m = 1,« = I mode in figure 2.1 la,

for a pressure release lined duct
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Figure 2.1 le - The mode shape for the incident m-3,n = 0 mode in figure 2.1 la, 

for a pressure release lined duct
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Figure 2.1 Id - The mode shape for the reflected m = 2,1 = 1 mode in figure 2.1 la,

for a pressure release lined duct



Figure 2.12 - The real and imaginary parts of the reflection coefficient 

for the plane wave mode within a hard walled duct. (m = 0,n = 0,1 = 0)



Figure 2.13 - The real and imaginary parts of the coupled reflection coefficient 

for an incident m = 0, n = 1 mode and a reflected m = 0,1 = 0 mode within a hard walled duct.

Note that the value of this coupled reflection coefficient is significant 

around the cut-off frequency of the incident mode (ka = 3.S3).

This indicates that coupling would be significant around this frequency



Figure 2.14 - The real and imaginary parts of the coupled reflection coefficient 

for an incident m = 0,n = 0 mode and a reflected m = 0, / = 1 mode within a hard walled duct.

Note that the value of this coupled reflection coefficient is different from that given in figure 2.13.

This indicates that the reflection coefficient matrix is non-symmetric (i.e.



Figure 2.15 - The real and imaginary parts of the coupled reflection coefficient 
for an incident m = l,n = l mode and a reflected m = 1, / = 0 mode within a hard walled duct.

Note that the value of this coupled reflection coefficient is significant

around the cut-off frequency of the incident mode (ta = 5.33).



Figure 2.16 - The real and imaginary parts of the coupled reflection coefficient 

for an incident m = 1, n = 0 mode and a reflected m = 1, / = 1 mode within a hard walled duct.

Note that the value of this coupled reflection coefficient is significant 

around the cut-off frequency of the incident mode (ka = 3.83).



Figure 2.17 - The real and imaginary parts of the reflection coefficient
for an incident m = 0, n = 1 mode and a reflected m = 0, / = 1 mode within a hard walled duct.



Figure 2.18 - The real and imaginary parts of the reflection coefficient 
for an incident m = 2, n = 0 mode and a reflected m = 2, / = 0 mode within a hard walled duct.



Figure 2.19 - The real and imaginary parts of the reflection coefficient 

for an incident m = 0, n = 0 mode and a reflected m = 0, / = 0 mode 

within a pressure release lined duct.



Figure 2.20 - The real and imaginary parts of the reflection coefficient 

for an incident /n = 0,« = 1 mode and a reflected m = 0,1 = 0 mode

within a pressure release lined duct



Figure 2.21 - The real and imaginary parts of the reflection coefficient 

for an incident m = 0,« = 0 mode and a reflected m = 0, / = 1 mode

within a pressure release lined duct.



Figure 2.22 - The real and imaginary parts of the reflection coefficient
for an incident m = 2, « = 0 mode and a reflected m = 2,l = 0 mode

within a pressure release lined duct.



Chapter 3

Experimental Measurement of the Near-Field of a Circular Duct.

3.1 Introduction.

In the previous chapter an analytical model has been developed which enables the 
determination of the field radiated from a duct of finite length. In this chapter, the 
experimental measurement of the pressure radiated from a duct is presented. Results 
from these experiments are compared with theoretical predictions.

Originally, at the commencement of this project it was the intention to use 
measurements made near to the duct exit as a means of determining the far-field 
radiation. This technique relied upon the implementation of a 2 dimensional Fourier 
transform of the pressure field near to the end of the duct. Unfortunately, this method 
proved to be unsatisfactory, and the reasons for this are described in the next Chapter. 
However, the large volume of experimental data obtained by these experiments 
proved to be a useful means of comparison with the theoretical results obtained form 
the model developed in Chapter 2.

The measurement area consists of a square grid of equi-spaced points that are 
positioned close to the end of duct exit (see figure 3.1). To sample accurately the 
acoustic pressure at the end of the duct it is necessary to make measurements close to 
the duct exit. However, due to the discontinuity at the duct termination, high spatial 
wavenumbers are present close to the end of the duct. These high spatial 
wavenumbers take the form of evanescent wave components and consequently will 
decay with increasing distance from the duct. This decay is beneficial as it helps to 
reduce the contribution of these evanescent components to the measured data. A 
further beneficial factor is that the measurement hydrophone has a finite active area, 
and this behaves as a low pass spatial wavenumber filter. These two factors combined 
help to limit the measured amplitude of these very high spatial wavenumbers.

Even with the evanescent decay, and the filtering effect of the hydrophone, it is still 
possible that the field measured by the array will contain contributions from these 
high wavenumber components. However, without knowledge of the highest 
wavenumber component, it is impossible to prevent unwanted high wavenumber 
components from aliasing the sampled data if the sampling interval is not chosen 
correctly. The evaluation of the wavenumber spectrum of the acoustic field from an



analytical model is essential if the FFT propagation technique were to be used
successfully. Put simply: aliased near-field data will result in aliased far-field data. 
Obviously this would result in incorrect predictions for the far-field.

In Chapter 2, an analytical model of the acoustic Held within a finite length circular 
duct has been developed. This model allows the specification of the acoustic pressure 
and particle velocity over the end of the duct. The particle velocity will be used to 
calculate the radiation from the duct using the Rayleigh integral. In this chapter an 
experiment is described whose objective is the accurate measurement of the acoustic 
pressure near to the end of a circular duct immersed in water. Results from these 
measurements may then be used to compare with the analytical model derived in 
Chapter 2.

3.2 Experimental principle and description.

As stated above the objective of the experiment is to measure accurately the field 
radiated from the end of a duct. The simplest method of obtaining a large number of 
measurement points is to employ a single, scanning hydrophone that moves over an 
X - y plane. As it is impractical and expensive to have a large number of pressure 
transducers to measure simultaneously the pressure in this plane, a single moving 
hydrophone receiver is substituted. This requires that the source signal is repeatable 
over time. In this way it is assumed that all the measurements were made 
simultaneously. The pressure field is sampled over a set of equi-spaced grid points 
giving the pressure as a function of x, y, and U). By applying a Fourier transform to 
each of the pressure measurement time histories, it is possible to extract the co 

dependence of the field, and to leave the pressure as function of two spatial co­
ordinates at a single fixed frequency. Ideally, these pressure measurements must be 
both accurately located in the x-y plane, and be separated at such an interval as to 
avoid spatial aliasing of the field.

As there are many pressure measurements to be made, moving the hydrophone 
manually would be extremely time consuming. Therefore, it was decided to have the 
hydrophone incorporated in an automated x-y traversing system, controlled by a 
computer. The computer can then control the positioning of the receiving hydrophone, 
the triggering of the source, and the capture and storage of the measured signal. A 
scaled diagram of the experimental design is given in figure 3.2.



There are practical considerations that need to be examined so that the measurements 
be made successfully. Ideally the measurements should be made in a free field using a 
continuous broadband source. In air, free field measurements may be simulated by 
conducting the measurements in an anechoic chamber. Unfortunately, anechoic 
materials offering good absorption over a large frequency range in water are 
prohibitively expensive. However it is possible to avoid reflections from the walls of a 
measurement tank by using a finite duration, impulse source signal. By adopting such 
an approach it is possible to capture totally the direct signal, and to finish 
measurement before the arrival of any reflected signals from the water surface, or 
sides of the tank. It should be noted that due the very high sound velocity in water, 
these reflections arrive very soon after the direct signal has been measured. Because of 
this the input signal must be of very short duration to avoid interference with the 
desired, direct signal from the duct.

Referring to the diagram shown as Bgure 3.2, the major components of the 
experimental rig are a fixed position source, an x-y traversing measurement 
hydrophone, a source generator, and an A-D capture system. The %-y traverse is 
controlled by computer as is the source generator. One of the requirements of the 
source is that it should have excellent repeatability. It is common to use a spark-source 
in underwater experiments, but it was found that this type of source does not possess 
the degree of repeatability required to be suitable in these circumstances. Specifically, 
the variation in the formation of the plasma spark, which is a random process, causes 
the time histories of the generated acoustic wave to be significantly different, not only 
in amplitude, but in the time duration of the impulse itself. Also the directivity 
characteristics of a spark source were also found to be a vary considerably. This 
results in differing spectra when compared in the frequency domain. It was therefore 
decided to use a hydrophone as a source, which offers much better repeatability.

The repeatability of the source when using a hydrophone can be seen from figure 3.3. 
The input signal to a Briiel and Kjaer (B&K) type 8103 hydrophone used as the source, 
was a band-passed step function, Altered between 10 kHz and 70 kHz. The data was 
digitally converted using a Datalab DL2000 analogue to digital converter, which is 
programmable using an BEE interface. It is clear from Bgure 3.3 that the repeatability 
of the source is extremely good. It also important that this repeatability may be 
sustainable over a long period. The source output was therefore measured 24 times, 
once every hour, for 24 hours. The results were found to be identical to those shown 
in figure 3.3. The source was generated using a Wavetek programmable signal 
generator, which is controlled by a computer through an IEEE 488 data bus. A



computer program was written which controls the generation of the source signal, and 
the triggering of that signal. Since the D-A converter is triggered by the start of the 
input signal, then this enables the phase of the radiated field to be established. To 
avoid reflections from the sides and water surface of the test tank, the source signal 
used was a band passed step function. This had a sufficiently short duration to avoid 
the reflections from the walls of the tank from interfering with the desired signal. 
From figure 3.3 it can be seen that the data length of the captured signal is 5.12 x 10^ 
seconds. This was decided upon based upon the geometry and sampling requirements 
of the experiment. The highest frequency of the source was set as 75kHz, which set a 
lower limit upon the sample frequency of 150kHz. However, at this sampling 
frequency reflections from the sides of the tank were present at the end of the captured 
data. These were eventually removed by increasing the sample rate, with a fixed 
number of samples, so reducing the time 'window' of the captured signal.

As stated earlier, the motion and location of the receiving hydrophone are also
controlled by the computer. Software was written to communicate with a CDL 
analogue to digital, digital to analogue converter that was used to measure the output 
from the positioning potentiometers responsible for the x and y directions.. A 
reference voltage of 9V is also available from the CIL, and this was used as the input 
to the potentiometers. As the receiving hydrophone is moved, the voltage output from 
each potentiometer will change linearly with distance moved. By measuring the 
voltage change over a fixed reference distance, (in this case 500mm), it is possible to 
calibrate the x-y traversing rig to obtain the voltage change per mm of motion. This 
was performed separately for both the x and y co-ordinates. Hence by calculating the 
voltage change per unit of motion, it also possible to obtain the required voltage that 
would be output from the potentiometers at a desired location in the x-y plane. A 
simple direct feedback loop is employed to move the receiving hydrophone to the 
desired location. First the computer calculates the voltages that would be output from 
the potentiometers at the desired location. The actual voltage is read by the CIL, and 
sent to the computer through an IEEE data link. The difference between the actual and 
desired voltages is considered to be an error voltage. This is multiplied by a constant, 
and is used as the D-A output from the CIL into a power amplifier and on to the 
motors that control the x-y motion. Whilst this approach is simple in theory, there 
were considerable practical problems in achieving a steady motion from one position 
to another due to friction, and bending of the supporting rods that form the core of x-y 
traverse. For this reason it was necessary to step incrementally from one position to 
another, instead of relying on the steady motion of the hydrophone alone. This 
combined with extra gain applied to error voltage at the extremities of the



measurement array overcame nearly all problems, apart from the odd freezing of the 
rig caused by insurmountable friction.

The sequence of events for the capture of data a desired location in the x-y plane is as
follows:

(i) The computer calculates the voltage output from each position
potentiometer at the desired location, based upon the traverse calibration.

(ii) These voltages are compared with the actual readings made using the CIL
A-D converter.

(iii) The resulting difference, or error voltage, is used as a feedback to drive 
the motors that move the receiving hydrophone.

(iv) Once the voltage error has been reduced such that the position error is 
calculated to be less than ±0.25mm.

(v) When the receiving hydrophone is at the desired location the motors are 
stopped, another check is performed to verify the position, and then the 
source is triggered by the computer. The computer also triggers the 
Datalab A-D converter that is used to capture the signal from the source. 
The data is sent to the computer through the IEEE interface, and converted 
into a MATLAB binary file format, and then saved to disk. Each time 
history has a unique filename for easy identification, which includes the 
position in the array from which it was taken.

The process repeats for every position over the array. In practice, the array is divided 
into 64 columns containing 64 positions in each column. Each column of positions is 
measured sequentially, so that once the x co-ordinate position has been set, then the 
hydrophone is moved only in the vertical or y co-ordinate direction. A check of both 
the X and y positions is made before capture. This reduces the time required to scan the 
whole 64 x 64 points, which cover an area of 630 x630mm. Because the required 
accuracy, and the number of sample points in the array, the time taken to perform a 
complete capture of all 4096 points was approximately 40 hours.



3.3 Preliminary investigation using a point monopole source without a duct.

To ensure that the %-y traversing system was working correctly, it was necessary to 
begin measurements with a known source that could be compared easily with a 
well-known theoretical result. For this reason some preliminary measurements were 
made using a point monopole source generated from a B&K 8103 hydrophone driven 
as a source. If the traversing system was working correctly, these measurements would 
also act as a means of examining the accuracy of the hydrophone as an approximate 
point monopole source. It is intended to compare measured results obtained by placing 
a point monopole inside the duct, with predicted theoretical results, and for this reason 
is it very helpful if the hydrophone can be assumed to act as a point source.

The output from a monopole source is also useful in determining the size of required 
receiving array. Ideally, the array should be large enough so that the pressure at the 
extremes is negligible. However, there will be a finite limit on the size, dictated 
primarily by the size of the tank used to conduct the experiments. The nearer to the 
sides that the extreme measurement points are, the earlier the reflections will return 
from either the side walls, bottom of the tank, or from the free water surface at the top. 
A large enough distance is therefore required all around the array, so that these 
reflections may be easily gated out in the time domain. Another consideration, given 
that the data from the experiment was originally to be used to forward propagate the 
field from a source using a 2D Fourier transform, is that it would be beneficial to have 
the array constructed from a number of points corresponding to an integer power of 
two number of points, such as 32 x 32 or 64 x 64. If the number of data points in the 
array along either co-ordinate is not a power of two, then there are errors introduced 
by the 2D FFT routines. Given the above considerations, it was decided to arrange for 
the array to have 64 x 64 points, with a spacing of 10mm between data points. This 
would allow for the highest wavenumber component to be 75kHz (20mm wavelength) 
without aliasing in the spatial wavenumber domain. This gives the total number of 
points on the array as 4096, and a size of 640 x 640mm. The number of data points 
captured at each location was fixed at 256, at a sample rate of 500kHz.

Figure 3.4 shows the pressure variation in the x-y plane for a monopole source 
produced using a hydrophone. The frequency is 46875Hz. The horizontal axes are the 
X and y array points (64 x 64), and the vertical axis is absolute pressure is measured in 
dB re. 1x10"^ Pa. What is most striking about this two dimensional plot is that it is 
clearly not what is to be expected from a point monopole source, since it contains 
obvious ripples on the right hand side corresponding to the maximum depth



measurement positions within the tank. At first these ripples were thought to be 
caused by early reflections from the bottom of the tank interfering with the direct 
signal. However, an analysis of a typical time history showed that the there were no 
signs of the expected early reflections. What was noticeable though, was that as the 
measurement hydrophone was lowered in to the tank to measure the data points near 
to the bottom of the tank, there was a noticeable change at the start of the captured 
data, and not at the end, which one would expect from a reflection. Since the 
monopole source was placed in the centre of the array, it is expected that the measured 
field would be circularly symmetric about this centre point. Consequently the time 
histories captured along the centre line of the array should be symmetrical about the 
mid point. However, it became clear that this was not the case, and there was some 
small signal arriving the main direct signal when the data points are near to the
bottom of the tank.

It is possible to understand the reason for this by referring to the components of the 
experimental rig. Referring specifically to the x-y traverse, the receiving hydrophone 
is supported by a brass rod, which is progressively lowered into the water to obtain 
measurements in the vertical direction. The brass rod, introduced a good structural 
path for the acoustic energy to be transmitted to the hydrophone; i.e. through wave 
transmission down the brass rod. This effect would obviously become more 
significant as the rod was lowered, and explained the ripples in figure 3.4 which occur 
at points of large depths of the receiving hydrophone. The reason for these being 
difficult to detect from a simple examination of the time histories, is that the speed of 
sound in brass is approximately 5200 m/s, and the geometry of the experimental rig 
conspired to result in the arrival of the energy from structural pathway to coincide 
with the direct acoustic signal through the water. Hence these interfered, and resulted 
in the ripples that are present in figure 3.4.

The above problems with the brass rod illustrate an important strength in analysing 
acoustic data in this way. If the output from the monopole were taken over a few 
points in a radius out from the source then the effect of the brass rod could have gone 
undetected. By separating the frequency components and examining them as a 
function on an x-y plane, it is possible to yield more information about the source and 
the measuring system itself, than would otherwise be available.

To overcome the influence of the brass rod, the receiving hydrophone was supported 
using a perspex rod that has an impedance very close to that of water. Further tests 
were undertaken using a monopole source. A typical result, again at 46875Hz is



shown in figure 3.5. It can be seen that the ripples in the pressure surface have now 
been removed. As a further safeguard, the supporting rod for the fixed hydrophone 
source was also replaced by one of perspex.

Figure 3.6 shows predicted pressure from a point monopole source using the same 
frequency and geometry as in figure 3.5 above. By comparison, figure 3.7 shows the 
error involved in the measured monopole field, as a difference compared to theoretical 
monopole using the same geometry. Clearly this error is very small. Possible 
explanations for the observed error between the measured and analytically derived 
monopole fields are mis-positioning of the array points in the x-y plane, and the 
directivity of the hydrophone as source.

3.4 The field from a hard walled, baffled duct containing a monopole source - 
a comparison between measured and theoretically derived results.

Having established that the hydrophone may be assumed to behave as a point source 
for the range of frequency considered in this project, it is now intended to use this as a 
means of comparing the pressure field measured near to the duct with results obtained 
from the mathematical model described in Chapter 2. To achieve this objective it is 
necessary to know the complex source strength of the hydrophone when used as a 
source, since this is one of the important input parameters to the mathematical model. 
The source strength was evaluated by measuring the complex pressure at known 
distances from the source at a given frequency. If this pressure field was produced by 
an ideal monopole, then the source strength can be calculated from the usual free field 
expression

4nr
(3.4.1)

where /?(/-) is the pressure at a radial distance r from the source, m is the frequency, 
and ^ is the complex source strength.

The following experiments were conducted using a baffled duct, which unfortunately 
does not represent accurately a real ducted propeller system. If the duct is unbaffled it 
is not possible to use the Rayleigh integral as a means of calculation of the far-field. 
Lansing (1969) and Homicz and Lordi (1975) have observed that as ka increases 
beyond a value of 10 for an unbaffled duct, the acoustic radiation at angles greater 
than 90° to the duct axis, reduces dramatically. Expressions for the radiation from an 
unbaffled duct are available, (e.g. Lordi 1973 and 1974), but these are only valid when



the observer is in the far-Oeld. Since it is desired to look at the radiation near to duct 
exit, then expressions for the pressure from an unbaffled duct are not applicable.

As mentioned earlier, acoustically rigid structures are very difficult to realise in water 
due to the very large density of the medium. Therefore to produce an ideal hard walled 
duct does present practical difficulties in water, unlike in air. Therefore, in an attempt 
to reduce the acoustic excitation of the duct wall by the source, the duct used for all 
the experiments is constructed from mild steel, and has dimensions of 135mm long 
and outer and inner diameters of 200mm and 100mm respectively. This gives a wall 
thickness of 50mm.

The geometry for the experiments using a duct is shown as figure 3.1. The grid size 
and spacing of points is kept constant for all the duct experiments and is the same as 
those for the monopole experiments discussed above. Figure 3.8, shows the absolute 
pressure at 31250Hz measured over the array. The source is a monopole placed 
initially along the duct axis, and at the mid-point along the duct length. The 
measurement location is 0.125m from the end of the duct. Due to the radial symmetry 
of the source within the duct, it is possible to consider only a 1 dimensional pressure 
field that is essentially a slice along the centre-line of the 2 dimensional pressure field 
as measured using the array. This saves considerable time when computing the 
radiated field using the Rayleigh integral. Figure 3.9 shows the theoretically predicted 
pressure for the same geometry and frequency. It can be seen that the agreement is 
very good between the experimental results and those derived analytically.

Figure 3.10 shows the radiation from the hard walled duct at 15625 Hz for the same 
geometry as above. Here has a value of 3.3. As expected, by reducing the value of 
iba, the acoustic energy is less focused toward the axis of the duct. Clearly the Held is 
axisymmetric. This is to be expected, given the radial symmetry of the source within 
the duct. Figure 3.11 shows the pressure calculated from the mathematical model at 
this frequency. General agreement is found in figures 3.12 and 3.13, which show the 
measured and predicted pressure at 46875Hz.

The comparison between the experimental and theoretical results for the frequencies 
mentioned above illustrate that the analytical model has reasonable agreement with 
experimental measurement for the hard wall duct. However, whilst the general 
structure of the sound Feld is predicted, the level difference in some of the Fgures is 
often large. Given that the predictions for the pressure release lined duct discussed in 
the next section are much better, this would mitigate against there being a



fundamental problem with the theory or with the prediction software. It is believed
that other sources of error based upon the physical nature of the problem would be a
more realistic source of the observed discrepancies, these are:

# The error in the predictions Amy be due to the difficulty of reproducing a true 
hard wall in water for experimental purposes. The impedance mis-match 
between the water and the duct wall is such that excitation of the duct may be 
responsible for this error. Since the analytical model assumes that the normal 
particle velocity is zero at the duct wall, and this boundary condition is a 
fundamental assumption in the analysis, then if this is not the case in practice 
then there will be a error in the computed field. The same argument may be is 
true for the rigid baffle used for the experiments.

« The ideal point monpole source used in the analytical model is unrealisable in 
practice. Directionality of the source will change the way it drives the internal 
field within the duct relative to a true omni-directional monopole. This 
argument would also be true for the pressure release lined duct, but since the 
internal field is completely different (i.e. different boundary condition at the 
duct wall, different modal cut-on frequencies etc.), then it is impossible to rule 
out this being more significant in one duct from the other, without computing 
the field knowing the directivity characteristics of the source.

Having established this it is now possible to use the mathematical model to examine 
the influence upon the radiated pressure of introducing a pressure release lining at the 
duct wall. This can then be compared with the results when the same source is 
radiating within a hard wall duct. Using the mathematical model enables a wider 
range of variation in the location of the source to be obtained with greater ease than 
those obtained experimentally. Also it is much quicker to obtain theoretically 
produced results than to measure the field, as a typical measurement takes 40 hours, 
whereas a theoretical simulation takes a small fraction of this time. Another 
disadvantage of the experiment is that it is impossible to position the hydrophone 
source very close to the duct wall, due to the large rubber sheath covering the active 
element within the hydrophone. This rubber covering prevents the hydrophone active 
area from getting any closer than 2mm from the duct wall. This important limitation 
does not exist when considering results from the analytical model, as the source may 
be placed anywhere within the duct. Given the very good agreement between the 
experimental and theoretical results presented above, it is justifiable to examine the 
radiation from the hard and pressure release lined ducts using this model alone.



During the course of this project many experiments were conducted using different
source and receiver locations, and using either a hard walled or a pressure release 
lined duct. The experimental data presented in this chapter is only a small selection of 
the total available. Space does not permit a presentation of all of the results. However, 
table 3.1 lists all of the experimental data which is available, and indicates the relevant 
parameters in the table. All experiments were conducted using a monopole source.

3.5 The field from a pressure release lined, baffled duct containing a 
monopole source - a comparison with experiment and the hard walled duct.

One of the primary reasons for this work is to explore the effect of applying a pressure 
release lining at the duct wall. There is a good reason to expect low radiation from a 
monopole source positioned near to the wall of a pressure released lined duct. This is 
related to the way in which the source drives the field within the duct. Not forgetting 
that the externally radiated pressure is a function of the axial particle velocity over the 
end of the duct, then an overall reduction in the amplitude of the modes within the 
duct will lead to reduction in the radiated energy. The amplitude coefficients for each 
mode are determined from the product of the source strength with the value of the 
mode shape function at the location of the source. To illustrate this, consider a 
monopole source located within an infinite length duct at a position given by
For this simple case, the modal amplitude coefficients are given by^

4%k
(3.5.1)

where is the modal amplitude coefficient, g is the monopole source strength, and 
is the axial wavenumber. The final term t|r(r;,6^), is the mode shape function' mn

evaluated at the position of the source. This function may be expanded into two 
separate functions of r and 0. Equation (3.5.1) then becomes

"" 47tkr
(3.5.2)

where y^„(k^r) is a Bessel function of the first kind and the normalising coefficient, 
is given by

see Appendix A
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For a pressure release lined duct, then equation (3.5.3) reduces to

N., — y fA:'"
V2

a (3.5.5)

For the pressure release lined duct, the boundary condition requires that there be zero 
pressure at the duct wall. This means that the value of the radial part of mode shape 
function \|/(q.),will be zero at the duct wall. If the source is placed near to the duct
wall then the value of \|/(f}) will be small. This function will become progressively 
smaller as the position of the source is moved nearer to the wall. From equation
(3.5.1) above, this will give smaller values for the modal amplitude coefficients. 
Hence the source will not drive the field within the duct very effectively when the 
source is close to the wall for a pressure release boundary condition.

To achieve any practical radiation reduction, it is essential that a pressure release 
boundary condition can be achieved at the duct wall. Experiments conducted at the 
commencement of this project indicated that an extremely good pressure release 
boundary condition can be realised using closed cell, neoprene foam of 4 mm 
thickness, if backed by a rigid metal plate (Hewlett, 1989). In these experiments, one 
hydrophone was used as an acoustic source, and another was used as a receiver. A 
short pulse was used as the excitation from the source hydrophone. This was 
measured by the receiving hydrophone, which was placed between the source and a 
pressure release coated square steel plate measuring 1.2m by 1.2m, and having a 
thickness of 40mm. In this way both the incident and reflected waves were measured 
at the receiving hydrophone. Figure, 3.14 shows the time history measured at the 
receiving hydrophone. It can clearly seen from this figure that the incident and 
reflected pulses are separated in time. Also the reflected pulse is very close to a 
perfect inversion of the incident pulse. This indicates that the neoprene coating has 
reflected properties very similar to an ideal pressure release boundary condition. 
Figures 3.15 and 3.16, show the spectrum of the incident and reflected pulses. These 
were obtained by extracting the reflected and incident time histories shown in figure 
3.14, and the applying a Fourier transform to each separately. It can be seen that the 
spectrum of the incident and reflected pulse is very similar, showing very little 
absorption or scattering from the coated plate.



A similar investigation by Caille (1988), found that for a closed cell neoprene foam to 
act as a good pressure release coating on the outside of a circular cylinder, then it was 
necessary to decouple the vibration of the coating from that of the cylinder. For a thin 
walled cylinder, it was found that vibrational wave motion in the cylinder wall 
reduced the effectiveness of the coating as pressure release surface. By carefully 
applying the coating to a thick walled metal cylinder, it was found that the neoprene 
material was a very good pressure release surface.

Calculated radiated pressures from a hard wall and pressure release lined duct were 
obtained from the theoretical model for various geometries. For ease of description in 
the figures that follow, the position of the source will be fixed and is always located 
mid-way along the z-axis, whereas the source will be varied over several radial 
locations. The radial distance from the centre of the duct will be denoted by r, where

the suffix indicates the source. As the source is a monopole and is placed mid-way
along the duct axis, the pressure radiated from either end will be identical. Therefore 
only the radiation from one end will be discussed. The distance at which the radiated 
field is calculated is denoted by z. This is measure of the distance from the centre 
point on the duct exit to the centre point on a square plane outside of the duct.

A comparison between prediction from the theoretical model and experimental 
measurements for a pressure release lined duct are shown as figures 3.17a to 3.17d. 
The four figures are for values of A%z=3.3, 6.5, 9.8 and 13.1. It can be seen that the 
agreement between the theoretical results (the dashed line) and the experimental 
results (solid line) is very good. The structure of the sound field is predicted well, and 
the overall level difference is typically within 5dB. It is interesting to note that these 
results are even better than those obtained from the hard walled duct, and one 
possibility for this may be due to the boundary condition at the duct wall in the 
experiments being closer to the true pressure release liner used for the analytical 
predictions.

Figures 3.17e to 3.17h show the pressure predicted over a plane at a distance of 
z=0.125m from the open exit of a hard walled duct and a pressure release lined duct. 
The source in the centre of the duct (i.e. r^=0), for four different frequencies. Note
here that the pressure release duct pressure is dashed, whereas the solid line represents 
the hard walled duct. It can be seen that as the frequency is increased, the pressure 
release data becomes increasingly less than the corresponding pressure radiated from 
the hard walled duct.



The opposite extreme to the above is to place the source very close to the duct wall, 
and the to compute the radiated pressure. Figures 3.18 to 3.21 show the pressure from 
a hard walled duct with r^=49mm, which represents the source being 1mm from the
duct wall. As the source is no longer symmetric about the radial co-ordinate, these 
series of figures are shown as 2D pressure surfaces. The equivalent radiated fields for 
a pressure release lined duct are shown as figures 3.22 to 3.25. What is most 
noticeable is that even at the lowest frequency of 15625Hz {ka=3.212), that there is a 
large difference in the nature of the radiated field. However, despite the complexity of 
the plots, there does seem to be a reduction in the overall level with the pressure 
release lined duct. The pressures presented in these figures were calculated at a 
distance of 0.125m from the open end of the duct. This represents a distance of 2.5 
duct radii. The onset of the geometric far Feld is normally defined by (Morfey, 1982)

X ’
(3.5.6)

where is the distance from the source and 1 is the largest dimension of the source 
region. In this case, with L set to the duct diameter of 100mm, at 15625Hz R is equal 
to 0.1042m, and at 62500Hz is equal to 0.4167m. Thus only the radiated pressure at 
15625Hz is in the far-field.

3.6 The radiated sound power - a comparison between a pressure release and
hard walled ducts

Using the analytical model it not only possible to obtain the radiated field but also the 
acoustic pressure and particle velocity over the end of the duct. This is very useful as 
the total power radiated from the duct may be calculated from these two parameters 
using the relationship

(3.6.1)

where W is the sound power, Re denotes the real part, p is the pressure, and w* is the 
complex conjugate of the particle velocity. This does of course ignore the directivity 
of the radiated energy, but is nevertheless extremely important in investigating the 
differences between the two types of duct.



Using the above equation, and having a knowledge of the pressure and particle 
velocity for different source locations enables the power reduction when using a 
pressure lining to be shown as a function of source location within the duct. Figures 
3.26 to 3.29 show in dB this difference in sound power at four different frequencies of 
15625, 31250, 46875 and 62500Hz (which represent values of Azz of 3.27, 6.55, 9.81, 
and 13.09 respectively). At all frequencies the sound power reduction is substantial. 
Only at 15625Hz, and with the source in the centre of the duct is the radiated power 
greater than that for the hard walled duct. This may be partly explained by the 
different modal cut-on frequencies for the two ducts. At this relatively low value of ka 
at this frequency of 3.72, there are very few modes cut-on for either duct, and 
therefore comparisons between the radiated power may be influenced by the proximity 
of a modal cut-on frequency near to the frequency of the source. However, in all other 
respects the sound power reduction is very large at all positions of the source. As one 
would expect the sound power reduction increases as the source is moved towards the 

duct wall.

3.7 Conclusions

In this chapter an experiment to measure the pressure field close to the end of the duct 
has been described. This has been used to measure the Feld radiated from a hard 
walled duct. It has also been shown that the experimental results are in reasonable 
agreement with those obtained from the analytical model derived in Chapter 2. Where 
differences in the levels between the two different approaches, experimental and 
theoretical, are observed, these are most likely to be due to experimental error. As 
explained within this chapter, it is very difFcult for example to generate an ideal hard 
wall boundary condition in water, and this alone may be responsible for the 
differences observed in the hard wall duct data. Also the source used is not omni­
directional and therefore is not an ideal point monpole as used in the theoretical 
predictions.

Furthermore, it has been shown that the introduction of a pressure release lining at the
duct wall has a signiFcant effect upon the radiated sound power compared to a hard 
walled duct. Measurements of the sound pressure radiated from the duct have been 
compared with analytically derived data, and shown to be in good agreement. This has 
shown that the analytical model is accurate for this type of problem. Furthermore, it 
has been possible using this model to calculate the radiated Feld for vanous source 

locations within the duct.



Duct wall condition Z (mm) (mm) Data points (mm)

hard 125 0 64x64 0

hard 125 10 64x64 10

hard 125 25 64x64 25

hard 125 45 64x64 45

hard 125 49 64x64 49

pressure release 125 0 64x64 0

pressure release 125 10 64x64 10

pressure release 125 25 64x64 25

pressure release 125 45 64x64 45

pressure release 125 49 64x64 49

hard 125 0 64x64 0

hard 125 10 64x64 10

hard 125 25 64x64 25

hard 125 45 64x64 45

hard 125 49 64x64 49

hard 50 0 64x64 0

hard 50 10 64x64 10

hard 50 25 64x64 25

hard 50 45 64x64 45

hard 50 49 64x64 49

pressure release 50 0 64x64 0

pressure release 50 10 64x64 10

pressure release 50 25 64x64 25

pressure release 50 45 64x64 45

pressure release 50 49 64x64 49

hard 50 0 64x64 0

hard 50 10 64x64 10

hard 50 25 64x64 25

hard 50 45 64x64 45

hard 50 49 64x64 49

Table 3.1 - A complete list of experimental data
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Figure 3.1 - A diagram of the measurement array and duct for the experiments.
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Figure 3.2 - A scaled diagram of the experiment rig, showing the location 

of the duct and array within the measurement tank.



Figure 3.3 - A total of 24 time histones recorded over a 24 hour period,

indicating the good repeatability of the source.
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Figure 3.4 - The magnitude of the pressure in dB re. 1 x 10"^ Pa at 46875Hz

from a point monopole source measured using a brass supporting

rod for the receiving hydrophone.

Note the interference from the early arrival of the structural waves through the brass rod.
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Figure 3.5 - The magnitude of the pressure in dB re. lx 10“"® Pa at 46875Hz 

from a point monopole source measured using a perspex supporting 

rod for the receiving hydrophone.

Note the interference from the early arrival of the structural waves is now absent.
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Figure 3.6 - The magnitude of the pressure in dB re.lx 10 ® Pa at 46875Hz 

from a theoretically generated point monopole source.



Figure 3.7 - The magnitude of the difference between the measured

and theoretical pressure for a monopole source in dB re.l x 10 ^ Pa at 46875Hz.



Figure 3.8 - The magnitude of the measured pressure in dB re. lx 10 ^ Pa at 31250Hz 

for a monopole source within a hard walled duct.

Source is placed in the centre of the duct 0, and ka = 6.5.

Array plane is 0.125m from the centre line of the duct exit.

Figure 3.9 - The magnitude of the theoretical pressure in dB re.l x 10"^ Pa at 31250Hz

for a monopole source within a hard walled duct.

Source is placed in the centre of the duct= 0, and = 6.5.

Theoretical array plane is 0.125m from the centre line of the duct exit.



Figure 3.10 - The magnitude of the measured pressure in dB re.lxlO"^ Pa at 15625Hz 

for a monopole source within a hard walled duct.

Source is placed in the centre of the duct ^ = 0, and far = 3.3.

Array plane is 0.125m from the centre line of the duct exit.

Figure 3.11 - The magnitude of the theoretical pressure in dB re.lxlO"^ Pa at 15625Hz 

for a monopole source within a hard walled duct.

Source is placed in the centre of the duct r, = 0, and faa = 3.3.

Theoretical array plane is 0.125m from the centre line of the duct exit.



Figure 3.12 - The magnitude of the measured pressure in dB re.l x 10"^ Pa at 46875Hz 

for a monopole source within a hard walled duct.

Source is placed in the centre of the duct ^ = 0, and ka = 9.i.

Array plane is 0.125m from the centre line of the duct exit.

Figure 3.13 - The magnitude of the theoretical pressure in dB re.l x 10 ® Pa at 46875Hz 

for a monopole source within a hard walled duct.

Source is placed in the centre of the duct r, = 0, and ka = 9.8.

Theoretical array plane is 0.125m from the centre line of the duct exit.



Figure 3.14 - The magnitude of the measured incident and reflected time histories 

from a neoprene coated steel plate.

Note the required phase inversion of reflected time history.
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Figure 3.15 - The magnitude of the measured incident spectrum from 

figure 3.14 in dB re. 1X10"® Pa.

Figure 3.16 - The magnitude of the measured reflected spectrum from

figure 3.14 in dB re. 1x10 Pa



Figure 3.17a - The magnitude of the theoretical (dashed line) and experimental (solid) 

pressures in dB re.l x 10“^ Pa at 15625Hz 

for a monopole source within a pressure release lined duct.

The source is placed in the centre of the duct r, = 0, and for = 3.3.

The theoretical array plane is 0.125m from the centre line of the duct exit.

Figure 3.17b - The magnitude of the theoretical (dashed line) and experimental (solid) 

pressure in dB re.l X10“^ Pa at 31250Hz 

for a monopole source within a pressure release lined duct.

The source is placed in the centre of the duct ^=0, and ka = 6.5.

The theoretical array plane is 0.125m from the centre line of the duct exit.



Figure 3.17c - The magnitude of the theoretical (dashed line) and experimental (solid) 

pressure in dB re.l x 10“® Pa at 46875Hz 

for a monopole source within a pressure release lined duct.

The source is placed in the centre of the duct /) = 0, and ka = 9.8.

The theoretical array plane is 0.125m from the centre line of the duct exit.

Figure 3.17d - The magnitude of the theoretical (dashed line) and experimental (solid)

pressure in dB re.l x 10~^ Pa at 62500Hz 

for a monopole source within a hard walled and pressure release lined duct.

The source is placed in the centre of the duct = 0, and far = 13.1.

The theoretical array plane is 0.125m from the centre line of the duct exit.



Figure 3.17g - The magnitude of the theoretical pressure in dB re.I xlO~^ Pa at 46875Hz 

for a monopole source within a hard walled and pressure release lined duct.

The dashed line is the field from the pressure release duct, and the solid line the hard walled duct. 

The source is placed in the centre of the duct =0, and *a = 9.8.

The theoretical array plane is 0.125m from the centre line of the duct exit.

Figure 3.17h - The magnitude of the theoretical pressure in dB re. 1X10"^ Pa at 62500Hz 

for a monopole source within a hard walled and pressure release Uned duct.

The dashed line is the field from the pressure release duct, and the solid line the hard walled ducL

The source is placed in the centre of the duct r, =0, and = 13.1.

The theoretical array plane is 0.125m from the centre line of the duct exit.



Figure 3.17e - The magnitude of the theoretical pressure in dB re.l x 10“^ Pa at 15625Hz 

for a monopole source within a hard walled and pressure release lined duct.

The dashed line is the field from the pressure release duct, and the solid line the hard walled duct. 

The source is placed in the centre of the duct = 0, and ka = 3.3.

The theoretical array plane is 0.125m from the centre line of the duct exit.

Figure 3.17f - The magnitude of the theoretical pressure in dB re.l x 10 Pa at 31250Hz 

for a monopole source within a hard walled and pressure release lined duct.

TTie dashed line is the field from the pressure release duct, and the solid line the hard walled ducL 

The source is placed in the centre of the duct ^=0, and ka = 6.5.

The theoretical array plane is 0.125m from the centre line of the duct exit.



160

0 0

Figure 3.18 - Hie magnitude of the theoretical pressure in dB re.l x 10"^ Pa at 15625Hz

for a monopole source within a hard walled duct.

Source is placed at a radius of r, =49mm, the duct radius is 50mm, and ka = 3.3. 

Theoretical array plane is 0.125m from the centre line of the duct exit.
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Figure 3.19 - The magnitude of the theoretical pressure in dB re.l x 10 ° Pa at 31250Hz

for a monopole source within a hard walled duct.
Source is placed at a radius of -49mm, the duct radius is 50mm, and ka = 6.5.

Theoretical array plane is 0.125m from the centre line of the duct exit.
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Figure 3.20 - The magnitude of the theoretical pressure in dB re.l x 10"^ Pa at 46875Hz 

for a monopole source within a hard walled duct.

Source is placed at a radius of r, =49mm, the duct radius is 50mm, and iko =9.8.

Theoretical array plane is 0.125m from the centre line of the duct exit.
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Figure 3.21 - The magnitude of the theoretical pressure in dB re.l x 10 ^ Pa at 62500Hz 

for a monopole source within a hard walled duct.
Source is placed at a radius of r, =:49mm, the duct radius is 50mm, and ^ -13.1. 

Theoretical array plane is 0.125m from the centre line of the duct exit.
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Figure 3.22 - The magnitude of the theoretical pressure in dB re.l x 10 ^ Pa at 15625Hz 

for a monopole source within a pressure release lined duct.

Source is placed at a radius of r, =49mm, the duct radius is 50mm, and ka = 3.3.

Theoretical array plane is 0.125m from the centre line of the duct exit.
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Figure 3.23 - The magnitude of the theoretical pressure in dB re.l x 10"® Pa at 31250Hz 

for a monopole source within a pressure release lined duct.

Source is placed at a radius of ;; =49mm, the duct radius is 50mm, and ta = 6.5.

Theoretical array plane is 0.125m from the centre line of the duct exit.
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Figure 3.24 - The magnitude of the theoretical pressure in dB re.l x lO'^ Pa at 46875Hz 

for a monopole source within a pressure release lined duct.

Source is placed at a radius of =49mm, the duct radius is 50mm, and /bz = 9.8.

Theoretical array plane is 0.125m from the centre line of the duct exit.
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Figure 3.25 - The magnitude of the theoretical pressure in dB re.l x 10“^ Pa at 62500Hz 

for a monopole source within a pressure release lined duct.

Source is placed at a radius of r, =49mm, the duct radius is 50mm, and Azi = 13.1. 

Theoretical array plane is 0.125m from the centre line of the duct exit.

Ui



Figure 3.26 - The theoretical sound power reduction using a pressure release lined duct 

in place of a hard walled duct as a function of source location, 

for a monopole source at 15625Hz {ka = 3.3).

Figure 3.27 - The theoretical sound power reduction using a pressure release lined duct 

in place of a hard walled duct as a function of source location, 

for a monopole source at 31250Hz {ka =6.5).



Figure 3.28 - The theoretical sound power reduction using a pressure release lined duct 

in place of a hard walled duct as a function of source location, 

for a monopole source at 46875Hz {ka-9.%).

Figure 3.29 - The theoretical sound power reduction using a pressure release lined duct 

in place of a hard walled duct as a function of source location, 

for a monopole source at 612500Hz {ka = 13.1).



Chapter 4

Techniques for Estimating the Radiated Field from Near Field Measurements

41 Introduction

In this chapter, techniques are examined which offer the potential to determine the 
acoustic pressure at one region in an acoustic field, from the pressure at another 
region. At the outset of this project it was intended that results obtained from the 
experiment described in Chapter 3 would be used for this purpose. It was intended 
that a measured plane of pressure values obtained close to the duct exit could be used 
to predict the far field radiation from the duct.

These propagation techniques are perhaps most useful where the source cannot easily
be described analytically. In these cases measured acoustic data is often the only way 
to determine the radiated field. If this data is measured near to the source, then it may 
be desirable to be able predict the far-field radiated by the source using this measured 
data. This is the basic objective of many of the propagation techniques that will be 
examined later in this chapter. Furthermore, to measure directly in the far field is 
sometimes impractical, and often impossible. Generally this requires a very large, low 
noise, free field. Of course, simulation of a free field underwater is possible using an 
anechoically lined tank for example, but in water anechoic materials that work well 
over a large frequency range can be prohibitively expensive. For this reason it is 
necessary to use near field data to predict the pressure in the far field.

This chapter reviews and describes many propagation techniques, but in particular
concentrates upon a method that is based upon a 2 dimensional Fourier Transform of 
the original pressure field. By way of introduction to this, and the other propagation 
techniques, the most fundamental approach to calculating the radiation from an 
acoustic source, the Kirchoff-Helmholtz integral, will be described. It will be shown 
that this is the basis of the most significant propagation techniques.



4.2 The Kirchoff-Helmholtz integral and the radiation from complex source 
distributions.

Arguably one of the most important problems in the field of acoustics is the
calculation of the acoustic radiation from complex sources distributions. The most 
fundamental approach of calculating the radiation from an acoustic source is found by 
solving the Kirchoff-Helmholtz integral equation. However, for all but very simple 
geometries, tractable analytical solutions to this equation can not be obtained. 
Solutions require a knowledge of both the surface pressure and velocity to specify the 
acoustic field at a receiver point. These two parameters are often difficult obtain, 
either by analysis or experiment. It is for this reason that approximations and 
simplifications’ to the full Kirchoff-Helmholtz integral equation have been derived 
and are frequently used.

The most widely used of these simplifications applies to radiation from a planar 
source region, where the Kirchoff-Helmholtz integral reduces to the Rayleigh integral. 
It will be shown that by subdividing the source region into small elemental sources 
over a finite range in space, and because the acoustic radiation from these elemental 
sources is known analytically, the far-field amplitude and phase may be obtained from 
a sum of the contributions from each of these elemental sources. The Rayleigh integral 
has many advantages not least of which is that it is simple and exact. However, the 
successful implementation of the Rayleigh integral, may require a large number of 
these elemental sources and hence a large number of calculations to determine the 
radiated field. Typically, for any reasonably sized source region, together with high 
frequency radiation, the number of such calculations is counted in tens of thousands.

To derive the Rayleigh integral and to aid the description of the many propagation 
techniques reviewed in the next section, it is necessary to begin with the
inhomogeneous Helmholtz equation, given by

()p(x) = V. f^^/ (x) - y(Upo9w (^)» (4.2.1)

where f.,g;(x) is the distribution of complex force per unit volume and the
distribution of complex volume velocity per unit volume acting on the fluid. Solutions 
to this equation are found using a suitably chosen Green function, and applying 
Green's Theorem results in the following integral expression, (see for example Nelson 
and Elliott, 1992)

’Not withstanding approximate numerical techniques such as boundary element methods.



P(X) = f Gw ()')G(x|y) (iV + j [G(x|y) Vyp(y) - Xy)G(x|y) ]. n . (4.2.2)

Referring to figure 4.1, the pressure at some point p(x) produced by some complex 
volume source strength in the volume V, can be found by solving the integrals on the 
right hand side of equation (4.2.2). The first is a volume integral, and the second is a
contribution from a surface integral, which requires specification of not only the 
pressure on the surface 5', but also the pressure gradient, Vyp(y) on 5" and the Green
function G(x|y). If the Green function is chosen to be the free space Green function, 
g(x|y) given by

g(x|y)
g-y/:|x-y|

4:t|x-y|
(4.2.3)

and there is zero source strength within y, then the integral expression given in 
equation (4.2.2) reduces to the Kirchoff-Helmholtz integral equation

rp(x), X within y 1 
J [:(*) V,P(y) -P(y )s(x|j)l •», .uBide vj (4.2.4)

The terms on the left hand side of equation (4.2.4) can be shown to have a physical 
interpretation. The conservation of momentum equation for harmonic excitation gives

V,,p(y) = -;Q)pow(y)- (4.2.5)

The first term of the integral in (4.2.4) can be written as

- j g(x|y);(opo "(y)«= j g(x|y);(hpo (f5x|y, (4.2.6)

where <2^^^(y) = -u(y)'n is a volume velocity per unit surface area, and therefore 

represents a monopole distribution of source strength. Also the second term in 
equation (4.2.4) may be written as

- j ;)(y)V),g(x|y). n ^5 = j L^(y)Vyg(x|y) ^5, (4.2.7)

where f^u(f(y)==P(y)" ^ acting at the surface & This is

equivalent to a distribution of dipole sources on the surface S. It is possible to solve 
the Kirchoff-Helmholtz equation in some circumstances, and for the present



application it is useful to examine the case where the Green function is chosen such 
that VyG(x|y).n = 0 on the surface S which is the case for a rigid surface. Equation

(4.2.4) then becomes

Xx) = jG(x|y)V^,Xy)'n^'S'. (4.2.8)

For the case of S being an infinite plane rigid boundary, the Green function becomes 
the hard walled Green function, G(x|y) = 2g(x|y). The Kirchoff-Helmholtz integral

equation then reduces to the Rayleigh integral given by

p(x) = 2y(i)po j g(x|y)u(y). n (4.2.9)

Thus it can be seen that the Rayleigh integral is a special case of the more general 
Kirchoff-Helmholtz equation, and represents the acoustic field produced by some 
surface velocity, as equivalent to a sum of monopole sources on the plane S. Since we 
have assumed that S is an infinite plane then the integration in equation (4.2.9) must in 
principle be made over the region <x<^ and <y<«= for Cartesian co­
ordinates. However the range of integration may be truncated if u(y) • n is only finite 
over a given portion of 5. In this case the integrand will be zero for all but the region 
of u(y). n # 0.

4.3 A review of the literature on acoustic field propagation techniques.

In this section a literature review is discussed which examines previous work aimed at 
calculating the acoustic pressure field at a desired location, from a knowledge of the 
field at another location.

Pachner (1956a) has developed a method for determining the directivity of a source at 
an arbitrary distance, from measurements made of the instantaneous values of the field 
at another distance from the source. The field is decomposed into an infinite series of 
spherical wave components, and together with suitable measurements made of the 
acoustic field, are shown to be sufficient to determine the directivity pattern of the 
source. In a subsequent paper, (1956b), Pachner, shows how the theory developed in 
(1956a) may be applied to fields consisting of the superposition of travelling waves 
and standing waves.



Approximations to the technique derived by Pachner (1956a) have been reported, 
most notably by Horton and Inn is (1961), and Baker (1962). Horton and Innis show 
that it is possible to evaluate the far-field radiation pattern from pressure 
measurements alone made over a closed surface S, which contains the source. As a 
starting point it is shown that if the Helmholtz equation is to be solved by using a 
Green Function of the form expi jkr / r) requires a knowledge of the normal pressure 
gradient, dp/dn over S and the pressure p. Normally the pressure gradient is not a 
measured quantity^, and therefore approximations to the pressure gradient are 
discussed. These approximations to the pressure gradient are then used to solve the 
Helmholtz equation, and the accuracy of the resultant computed far-field is tested by 
comparison with measured data. If however, a Green Function is chosen which 
vanishes over the surface 5, it is shown that the far-field may be evaluated in terms of 
only pressure measurements over S. The resulting formula for the far-field is more 
complicated than the Helmholtz formula, but it does not require a knowledge of 
dpjdn.

Baker (1962), adopts a similar method for the calculation of the far-field pressure, by 
using approximations to the normal component of the pressure gradient in the near 
field of the source. A large amount of data is presented comparing the pressure field as
predicted using suitable approximations with measured experimental data.

In a slightly different problem, Trott (1964) uses measurements made in the near field 
of a source to determine the directivity of underwater acoustic transducers. This
employs the principle of reciprocity combined with the above work by Horton and
Innis and Pachner.

Schenck (1968) reviewed the integral methods that have been used until that time for
the calculation of the acoustic radiation from sources. These are a simple source 
formulation derived from potential theory, a surface Helmholtz integral formulation 
given by Copley (1967) and (1968), and an interior Helmholtz integral formulation. It 
is shown that each of these formulations has potential computational problems for 
some wavenumbers, caused by discontinuities in the integral formulations. To 
overcome this problem, a combination of the interior and surface formulations of the 
Helmholtz integral equation is proposed, and is denoted by the acronym chief, which 
refers to the Combined Helmholtz integral Equation Formulation. Examples of the

^Pressure gradients may be measured using a two hydrophone technique similar to that used in acoustic 
intensity measurements.



predicted radiation from a cylinder are given, and are shown to be in good agreement
with the conventional Helmholtz integral equation.

Koopman and Benner (1982) have developed a technique based upon the Helmholtz 
integral to determine the sound power radiated from complex sources such as
machinery. The method requires a knowledge of the geometry and the modal 
characteristics of the sources' vibrating surfaces, so that the pressure on the surface 
may be computed. The source is then divided into planar surfaces consisting of 
rectangles and triangles, and the required surface integration performed over each 
element. What makes this work different from that given above, is that here it is 
intended that the technique be compatible with finite element methods, i.e. they 
should share the same grid system. The approximation of the closed surface 
surrounding the source by planar elements results in the integration over a 3 
dimensional surface being replaced by two dimensional ones. This reduces the 
computation time considerably. The accuracy of this approximation is demonstrated 
by calculating the pressure on the surface of a uniformly pulsating sphere and an 

oscillating sphere.

An alternative to using the Helmholtz integral equation directly, relies on the principle 
of decomposing an arbitrary wave field into a series of plane wave components. This 
principle has been widely used in optics and the study of electromagnetic waves. 
Authors such as Linfoot (1964), Clemmow (1966) and Goodman (1968) have 
established this technique for the analysis of different types of electromagnetic field. 
The work by these authors indicated that the Fourier integral representation of a 
spatial wave field could be used to examine the propagation of this field. In particular 
it was established that by adopting this Fourier description of the field, greatly assisted 

in the solution of complex wave problems such as diffraction and scattering. It should 

be noted that to decompose a 3 dimensional field, the resulting Fourier Transform has 
the dimensions of space and time, requiring a 4 dimensional transform. However, the 
number of dimensions of the Fourier Transform may be reduced by considering only 
one frequency component at a time, and working in a plane, x-y geometry. The 

resulting Fourier Transform is 2 dimensional, and there are several readily available 
routines that may be used to compute a 2D FT.

The first reported work of the application of the Fourier Transform explicitly to the 
propagation of an acoustic field was by Stepanishen and Benjamin (1982). The two- 
dimensional Fourier Transform of an acoustic field is used to propagate forward this 
field as an x - y plane. Examples are given for differing source descriptions, and the



effects of filtering in both time and space are briefly mentioned. It is also shown that it 
is possible to predict the far-field pressure from velocity measurements made on a 
planar surface using this technique.

Further use of the Fourier Transform to evaluate the Rayleigh integral for planar 
radiators has been reported by Williams and Maynard, (1982). It is shown that the 
Fourier Transform offers a much faster method for calculating the far-field pressure 
from a vibrating plane body than the Rayleigh integral. Using the Rayleigh integral 
requires the splitting up of the vibrating surface into an A^xN array of points. The 
subsequent far-field pressure calculation requires approximately multiplication 
and additions. Using the Fourier Transform only requires N log2(A/)^, thus providing 

a more rapid way of obtaining numerical results for large array sizes. Computations 
with the Fourier Transform for rectangular plates are given, and these are compared 

with exact solutions.

Williams (1983), has also studied the acoustic radiation from unbaffled thin plates in 
air using a Fourier transform form of the Rayleigh integral. The near field pressure 
and velocity of the plates are evaluated using an iterative technique, and this is used to 
calculate the radiation. As an example of the technique, the radiation from an 
unbaffled vibrating circular disk is computed and is shown to agree well with an exact 
solution for a small distance (less than a wavelength) away from the disk. It is also 
shown that the use of the Fourier transform to perform the integration in the Rayleigh 
equation, offers a large saving in computation time, compared with standard 
integration techniques.

The use of the Fourier Transform to propagate acoustic fields in cylindrical co-
ordinates has also been studied. Candel and Chassaignon (1984), have used the 
Fourier Transform to examine the radiation from cylindrical sources. Here the 
propagation takes the form of cylindrical waves, and certain properties of the source 
may be used to simplify the radiation problem. If the source demonstrates circular 
symmetry, then it is possible to replace the conventional 2D Fourier Transform with a 
ID Hankel transform. Instead of measuring over a square grid as is necessary using 
the 2D Fourier Transform, the field need only be measured along one radius assuming 
a circularly symmetric field. In practical terms this can offer large savings in both data 
capture and subsequent analysis. Good agreement is found between the propagated 
field of data measured from a dipole source, and an exact solution.



When a source of light or an illuminated object (i.e. a scatterer of light waves) is 
observed it is possible to obtain a good impression of the size, shape and source 
strength. Since acoustics is also the study of a wave phenomenon, it is reasonable to 
attempt to reconstruct the size and shape of an acoustic source by measuring the 
scattered sound. Acoustic Holography (AH), is an attempt to apply such an analogy 
and the theories of optical holography to acoustic fields.

Before going further, it should be noted that there exist important differences between 
task of source reconstruction, and the problem of forward propagation into the far-
field. The most significant of these differences concerns the inclusion evanescent 
components of the field. For the complete reconstruction of a source, the evanescent 
components measured at some distance from the source, must be increased in 
amplitude exponentially as the field is propagated toward the source. This 
amplification may be large for highly evanescent components in the field. Thus any 
error in the measurement of these components will be magnified by this amplification, 
and will result in completely the wrong results for the reconstruction. For forward 
propagation this is not a problem, as the evanescent components decay as the field is 
propagated, and may be ignored completely in the far-field. There is also a practical 
signal to noise problem in measuring all the evanescent Feld necessary for complete 
reconstruction when using NAH. Because any instrumentation will have a finite signal 
to noise ratio, it may not be possible to measure adequately all the evanescent field. If 
this is the case then it is only possible to reconstruct the overall behaviour of the 
source, but the fine details with dimensions less than the wavelength in the 
surrounding medium cannot be reconstructed. Therefore to maximise the level of 
detail in the reconstruction it is helpful to make measurements very near to the source, 
hence the addition of word near field when attempting to reconstruct the source. This 
problem in measuring the evanescent field, and the subsequent amplification of any 
error, is a major limitation in the practical application of NAH (Matzumtoto, 1991).

It should also be observed that to amplify the evanescent components it is first 
necessary to know which wavenumbers are indeed evanescent and which are freely 
propagating. This is can only be achieved by having an a priori knowledge of the 
wavenumber spectrum of the source. This is another limitation of the technique, and it 
will be shown later that this a priori knowledge is not only restricted to NAH but also 
to the method of forward propagation of an acoustic Feld, but for different reasons.

However, despite the differences mentioned above between the present application 
and those of AH, there are many similarities, and in particular many of the difficulties



encountered in the practical application of AH are the same as those when attempting 
to propagate into the far-field.

The first thorough statement of the principles and practical aspects of AH and NAH
are given in two companion papers as a result of a considerable research effort carried 
out at Penn State University, USA. The first of these papers is by Maynard and 
Williams (1985), which describes the theoretical basis of AH and points to important 
differences between optical and AH. It is also noted by the authors that many of the 
limitations previously imposed upon AH are without foundation, and are a result of 
mimicking the practices of optical holography and applying them in acoustics. To 
distinguish between previous AH and that defined in the paper, Maynard uses the 
phrase 'Generalised Holography that is applicable to acoustic fields. NAH can then 
be shown to be a special case of this general principle. The practical implementation 
of NAH is demonstrated by use of a 16 x 16 array of microphones measuring 3mx3m. 
Provided certain important considerations are observed, then the technique is shown 
to be successful. However, it will be shown later in this chapter, that many of the 
sources of error in using NAH difficult to overcome, and in some cases may result in 
abandonment of the technique in preference to say, the Rayleigh integral.

The reconstruction of an underwater acoustic source using Near field Acoustic
Holography (NAH), has been reported by Williams et aZ (1985a). Measurements are 
made of the acoustic pressure of a source over a 2D plane surface very close to the 
source. This pressure map is essentially a hologram containing amplitude and phase 
information, which a can be used to backward propagate the field to reconstruct the 

source surface normal velocity and pressure.

The above work is extended by the authors to examine the structure borne intensity of 
plates underwater (Williams et al 1985b). The 2 dimensional structural intensity 
inside the plate is computed from pressure measurements made very close to the 
surface of the plate. This work is an extension of NAH and relies upon some of the 
fundamental techniques employed in NAH.

The second of the two companion papers to the paper by Maynard and Williams 
discussed above is presented by Veronesi and Maynard (1986). This paper concerns
the sources of error involved in the computer implementation of NAH. The authors 
explain some of the difficulties in employing Onite length and discrete Fourier 
transforms. Problems caused by the sampling of a finite region in space, and the 
consequent infinite transforms becoming finite are discussed. The effects of sampling



in wavenumber space are also discussed and the effect of incorrect sampling upon the 
image reconstruction. It will be shown later that poor sampling in the wavenumber 
domain has a very large influence upon a propagated pressure field when attempting 
to predict the far field from near field data. Veronesi and Maynard indicate that these 
problems may be overcome by artificially increasing the size of the measurement area 
by filling out with zeros. This is of course analogous to increasing the sample length 
in a time history to reduce the frequency interval Af. However, it will be shown in 
section 4.4 that there exists an unavoidable link between the propagation distance and 
the sampling requirements of the original pressure or velocity field.

4.3.1 Summary and conclusions from the literature.

The literature reviewed above discusses different methods to estimate the acoustic
field at one spatial region from a knowledge of the field in another region. Despite the 
apparently wide disparity in the techniques reviewed, all are fundamentally based 
upon the Kirchoff-Helmholtz integral equation, the Rayleigh integral being a special 
case of this integral equation. Acoustic Holography offers a way to propagate a 
measured pressure distribution using a spatial and temporal Fourier Transform of the 
initial pressure field. It will be shown in the next section that the wavenumber 
decomposition of the field necessary to use the Fourier Transform technique 
originates from the Fourier transform of the Helmholtz equation. One of the 
advantages of using the Fourier Transform is that it offers reductions in computation 
time when compared to the standard Rayleigh integral.

Whilst there is no doubt that the use of the Fourier transform is quicker than the 

summations required by the Rayleigh integral, the absolute time difference when 
using these two techniques must be put into perspective. For small array sizes the time 
saved by using the FFT approach will be negligible when compared to the Rayleigh 
integral. Also any previously published work that aims to compare these two 
techniques must be viewed against a background of increased performance and 
availability of personal computers and desktop workstations. For example, 
Stepanishen and Benjamin published their paper in 1982, when high volume, complex 
mathematical processing would have been undertaken using a mainframe computer. 
The capital and running costs of using such computers (which were often shared by 
many users) was expensive. Consequently, there was a real need to develop 
techniques that limited the time taken to perform computational problems. The 
Fourier Transform technique described by Stepanishen and Benjamin, offered a



potential time saving. Given the speed of computers in 1982, it is not difficult to 
imagine the Rayleigh integral being viewed as being slow by comparison to this new
technique. However, the processing speed of computers has increased dramatically 
since 1982, and this has been coupled with an increase in the availability of fast 
personal computers and desktop workstations, which are much faster than the 

mainframe computers of 10 years ago.

This being acknowledged, it is valid to question the need to use the spatial Fourier 
Transform technique as a route to faster computation. These potential advantages may 
be further questioned when it is remembered that the Rayleigh integral is exact. It will 
be shown that whilst the theoretical derivation of the spatial Fourier Transform 
technique is similarly exact, errors may arise due to the sampling necessary for digital 
computation using the FFT algorithm.

4.4 Theoretical principles of the wavenumber transform.

This section describes the principle of decomposing an arbitrary acoustic field into a 
series of plane wave components, using a wavenumber transform. This method is 
similar to that employed in NAH and to that suggested by Stepanishen and Benjamin 

(1982).

Starting with the 3 dimensional Helmholtz equation for a harmonic sound field

p(x,y,z) = 0. (4.4.1)

and applying the 2 dimensional transform

F(A:^,A:^,)= j j /(;^,y)c (4.4.2)

to the Helmholtz equation results in

1 1 3' +21+,%
dy^ dz^ ^

(4.4.3)

where, p(x,y,z) is a 3 dimensional the pressure field at a fixed single frequency If
the 2D Fourier transform of the pressure field is denoted by, P{k^,ky,z), then the



derivatives in the above equation, with respect to x and are and

respo

two integrals, to give

respectively. The derivative with respect to z may be taken outside the

V

f(A:^,k^,,z) = 0. (4.4.4)

This has a solution of the form

,z) = Ag (4.4.5)

where A is an arbitrary constant determined by the boundary conditions. The solution 
to the transformed Helmholtz equation, can be seen to have the form of a plane wave 
propagating in the positive z direction with the wave number

The wavenumber k is given by

(4.4.6)

From equation (4.4.6) clearly will be either real or imaginary number, depending 
on the nature of the term with the square root. For real the following condition 

must be satisfied

(4.4.7)

If the condition in equation (4.4.7) is not upheld then will be purely imaginary, and 

this represents an exponentially decaying wave in the positive z direction. 
Furthermore, to satisfy the Sommerfeld radiation condition, the imaginary part of

(if it exists), must always be taken to be negative.

The general solution to the transformed Helmholtz equation given by (4.4.3) can be
used to show that if F(kj.,k ,z,:) is the measured wavenumber transform at z = Z;, then

the wavenumber transform at any other plane z is simply given by

f (k^, , z) = ?(/:;(, , z/, )g -A(Z-ZA) (4.4.8)

Using the inverse Fourier transform



(2^0"
(4.4.9)

The expression in equation (4.4.9) may be used to determine the pressure on another
plane at z

p(%,y,z) = F" '{F(^,.,A:^, -A(Z-ZA) (4.4.10)

The above equation is similar to that presented by Maynard and Williams (1985) 
discussed previously. In principle, the prediction of the new pressure at z, is an 
extremely fast and straightforward procedure. However, in practice problems may 
arise in the implementation of equation (4.4.10). One of the major causes of error in 
this technique will be shown to arise from incorrect sampling of the exponential term 
in equation (4.4.10). This exponential term may be referred to as the propagator 

yi/Mct/oM, and will be denoted as

g(^,,z) = e (4.4.11)

4.5 Practical implementation of the wavenumber transform and some 
important sources of error in the computation of the far-field pressure.

The preceding mathematical analysis is exact, and by the implementation of equation
(4.4.10) it is theoretically possible to calculate a 3 dimensional acoustic field from 
measurements made in one plane only. However, it will be shown in the sections to 
follow that serious problems may arise when implementing equation (4.4.10) in 
practice. The reason for these problems is that the infinite Fourier transform integral 
in equation (4.4.10) is a continuous function, whereas in practice it will be replaced by 
its discrete, and finite length, counterpart that is usually calculated numerically using 
the FFT algorithm. For any general source distribution it is not possible to find an 
analytical form for the Fourier transform in equation (4.4.10) hence the need for 
numerical analysis. Indeed, to find an analytical solution for the Fourier transform 
requires a complete knowledge of the source region. If this knowledge were available, 
then there would be no need to use this technique at all, as the field could be 
completely defined based upon this source description.



the wild oscillations in these function when multiplied by the original IDFPT of the 

piressm-efhdd ghxmas ngure^k39. Al ajpropagahon diskmce conespondh^^to km 
wavelengths and the real and imaginary parts of are clearly under sampled

(figure 4.40).

From the above series of figures using a smaller sampling increment in real space, 
demonstrate that the errors introduced by the FPT technique are increased when the 
array is optimised for a higher frequency that currently under investigation. In any 
practical measurement system this places considerable restrictions upon the suitability 
of the FFT technique to propagate the field from a source at several frequencies using

a fixed array.

It is argued that there is little advantage in using the FFT to solve a convolution 
integral if it is necessary to first calculate a function in real space, then massage that 
function to avoid errors introduced in the numerical processing in the FFT. Indeed the 
number of points required to both avoid aliasing of the propagator function and to 
avoid wraparound soon become prohibitive. The suggestion ofVeronesi and Maynard 

(1986) is to calculate the Green function in space, and take a 2D FFT of this real space 
function to obtain G;v(A:„ky,z). As a illustration of the difficulty of even then

obtaining correct results, .yix different Green functions are presented which may or 
may not be appropriate in a given situation. However there is little information to 
guide the reader as to which Green function would be most appropriate to their 
application. Veronesi and Maynard (1986) compare results using the six Green 
functions with the Rayleigh integral, for a plane velocity source. Even with an 
optimised Green function, errors are still apparent for a propagation distance of 3 

wavelengths. In terms of the application of the FFT propagation technique to this 
thesis, then it is more accurate to stay completely in the spatial domain and use the 
Rayleigh integral, rather than spend time trying to avoid the signal processing 

limitations imposed by the discrete FFT algorithm.

4.7 Sound power measuremenL

Whilst the propagation of an acoustic field by the 2D FFT is practically difficult to 
realise, there are some advantages in simply taking a 2D FFT of a sampled source 
region and not propagating it at all. With care it is possible to overcome some of the 
above numerical problems. Several useful properties of an acoustic field that can be 

obtained when the field has been decomposed into a series of plane wave components



using the 2D FFT. Most obviously, one of the main advantages of transforming an 
arbitrary pressure distribution into a series of plane waves is that the impedance of
plane waves is known, i.e. pc. Therefore it is possible to convert from pressure values 

to those of velocity and vice versa^.

In the real space domain, a harmonic pressure and velocity field are related by the 
Euler equation

VX:K,y,z) = -ympQ w(x,y,z). (4.7.1)

If the pressure and velocity fields are now replaced by their 2D Fourier transform, 
then equation (4.7.2) becomes

VF(, Z/,) = -ywpo [/(A:^, A: , Z/,). (4.7.2)

Since the pressure Held is now constructed from plane wave components, each of 
which has an exponential space dependence of the form exp(-y^^z), then the real 
space derivatives in equation (4.7.2) may be replaced by -yA:^, -yA: and -yA:^ to give

[/^(A:^,A:y,Z/,) = f(A:^,A:y,ZA)
PocA:

(4.7.3)

where q = y, z, denotes the three components of the particle velocity. The 
multiplier k^jpQck has the from of a wavenumber response function and dimensions

of admittance. The reciprocal of this term has dimensions of impedance, and may be 

written

Z = Po^
A^i

(4.7.4)

As an example, consider a plane of pressure values at z = 0, which represent the end 
of a duct. This field may be decomposed into a series of plane wave components using 
the 2D FFT. This results in the field being a function of wavenumber variables, which 
are related by the equation.

K ^ Ac^-A:^ /br A:^>A:^+A:^, (4.7.5)

-^Converting from velocity to pressure values can present problems in certain circumstances - see Lahti,
1989.



(4.7.6)

It has been seen that since the field is now a series of plane waves, it is possible to 
express the ratio of the pressure and acoustic particle velocity (the impedance) easily, 
since this is known for plane waves to be equal to pc of the medium. If is real then 

propagation to the far field occurs and the real radiation impedance may be deOned as

pcA: pcA: (4.7.7)

or

Z pc/c pcAc

Z = pc

(4.7.8)

(4.7.9)

The jump from real to imaginary at the point A:^ = A:^ + A:y has a major effect upon 

the radiation, and therefore the circle = A:^ in the A:^, A:^ plane has been termed

the radiation circle. For all values of and ky outside this circle, then this represents

an evanescent decaying plane wave that does not propagate into the far field or carry
any net acoustic power. Values of Ar^and ky within the radiation circle represent

propagating plane waves. It is possible to translate from pressure to velocity using the 
wavenumber domain expression

f(A:^,A:y) = [//A:^,A: )Z, (4.7.10)

where is the transform of the particle velocity in the z direction. Using equation 
(4.7.8) this becomes

%,A:^,) = I7/A:^,ty)^, (4.7.11)

The intensity follows and is simply given by

(4.7.12)



The sound power may be calculated using the following expression (Lahti 1989)

iCj. flCy^fC • “
(4.7.13)

Real values for the integrand are obtained if + ky, and the Re[ ] operation may

be dropped if integrated within the radiation circle. Using the relationship given in 
equation (4.7.11) it is possible to express the sound power in terms of pressure or 
particle velocity only. For the case of pressure measurements, the sound power is 

given by

n = li Re
pcA;

(4.7.14)

2 K (4.7.15)

As a check on the technique, a field was simulated on computer within a hard walled 
and pressure release lined duct, and this was sampled using a very large (512 by 512) 
array of points at the duct exit. The difference between the power when using the hard 
wall and pressure release lining was within ± IdB of the results obtained using the 
method in Chapter 3, where the sound power was calculated using the equation

IV: I Rc(pu*)dS (4.7.16)

However, with less points than 512 by 512 noticeable errors were observed. Figure
4.41 shows difference between the sound power calculated with the 'exact' expression 
given by equation (4.7.16), and the sound power calculated using the 2D FFT method 
in equation (4.7.15). It can be seen that for a fixed number of points at the maximum 
frequency of k, then this results in less points being available for the calculation of 
the sound power at lower frequencies. As the frequency is lowered, then this has the 
effect of reducing the diameter of the radiation circle in the wavenumber domain. 
Since the sound power is only calculated from points in the wavenumber domain 
within the radiation circle, then there will be less points as the frequency of interest is 
reduced.

It can be seen from figure 4.41 that the 2D FFT introduces an error the calculation of 
the sound power, and this error increases with reduced frequency. A possible



explanation for this is in the nature of the finite sampling in the wavenumber domain. 
For discrete sampled data the continuous variables and ky are only calculated at

discrete points. Thus the continuous domain is represented by a finite number of 
small 'patches'. For equal number of sample points in the k^ and ky directions, then 
these patches will be small squares, with the centre of the patch being at a k^, ky co­

ordinate in the wavenumber domain. Therefore the continuous wavenumber domain is 
averaged over the area of the patch. In the calculation of the sound power, only those 
patches inside the radiation circle are used in the calculation, but the is a difficulty in 
ignoring those patches which lie on the radiation circle. Patches whose centres lie just 
outside the radiation circle contain a contribution from the wavenumber domain inside 
the radiation circle, but this is ignored in the calculation of the sound power. Similarly 
patches whose centres lie just inside the radiation circle, contain a contribution from 
outside the radiation circle, and this is included in the calculation of the sound power. 
The problem reduces to a simple geometric one; that of representing a circle - in this 
case the radiation circle - by a number of small squares. The bigger the squares 
relative to the size of the circle, the less like a circle the resulting shape is.

It is worth noting that serious instability occurs when using the FFT to calculate the 
radiated pressure from a known velocity distribution. From equation (4.7.8) then

(4.7.17)

and if and ky lie on the radiation circle, then k^ is zero. This is a major problem 

and was completely overlooked in all the fundamental papers on NAH including what 
were considered to be the pioneering work by Stepanishen and Benjamin (1982), and 
Williams and Maynard, (1982). The latter paper was a means of replacing the 
Rayleigh integral with the FFT for a vibrating plate of known velocity distribution. If 
the original field is a pressure field, then this is not a problem, but since these two 
papers used the FFT to calculate the propagation from vibrating plates, it is surprising 
that they did not mention of the problem of the instability caused by the pole on the 
radiation circle. There is no way to ignore the pole on the radiation circle and it this 
severely limits the ability of the FFT to calculate the pressure field from a vibrating 
plate. It was only later that Veronesi and Maynard (1986), attempted to deal with the 
problem. Their suggestion was to apply a smoothing function that averages out the 
values of k^ either side of the radiation circle in the wavenumber domain. This 
prevents the value of from become inOnite, but has no physical basis. Fortunately, 
when propagating into the far field it is possible to ignore all values of A:^and 
which lie outside the radiation circle. But for values of &^and k near to k, then there



will always be a sampling problem due to the pole on the radiation circle causing to 
become very large as A^and ky approach k.

For pressure to velocity conversion, rearrangement of equation (4.7.15) gives

pcA:
(4.7.18)

and is well behaved as long as k>Q. In the context of this thesis, measurements of 
pressure have been made, and not particle velocity. For this reason it possible to 
ignore the effect of the pole on the radiation circle in equation (4.7.16), and calculate 
sound power in terms of pressure only, as given by equation (4.7.12).

4.8 Conclusions

In this chapter techniques to calculate the field at one location from a knowledge of 
the acoustic field at another location have been discussed. Since it is not usually 
possible to solve the Kirchoff-Helmholtz equation to find the radiation from an 
acoustic source, then approximations to this have been developed. For a planar source, 
it has been shown that the Kirchoff-Helmholtz equation may be simplified to a well- 
known form - the Rayleigh integral. This may be used satisfactorily where either the 
normal velocity or pressure^ is known over a finite sized plane, and is zero outside 
that region, it is often the case that these requirements are not met, or else the problem 
is not concerned with planar geometries.

A literature review has shown that there exist several methods to obtain the pressure at 
another region, given some knowledge of the field at another region. In particular, it 
has been shown that the propagation of a plane of pressure is theoretically possible 
using the 2D Fourier Transform. This technique arises from the 3 dimensional Fourier 
transform of the Helmholtz equation and is exact when the pressure is a continuous 
function of space. This offers a potential time saving over the Rayleigh integral, as the 
number of calculations is required to predict the propagated field is reduced. 
Unfortunately, a continuous analytical expression for the pressure variation over a 
plane in space is not normally available. Therefore it usual to sample the pressure at 
discrete intervals. However, in this chapter it has been shown that many practical 
problems arise when using the discrete form of the Fourier transform. The previous

For a plane of pressure requires the use of the second form of the Rayleigh Integral.



exact expressions referred to previously are derived in continuous space, are now
replaced by their discrete space equivalents. These latter expressions are not exact.

Errors arise due to incorrect sampling of the pressure field or propagator function, and 
the periodic nature of the DPT used to propagate the original pressure plane. It has 
been shown that whilst the original pressure field may have been sampled adequately, 
then it does not immediately follow that the propagated field will be free from error. It 
has been established for example, that the correct number of samples for a given 
frequency of excitation of the source, is determined by the spacing of and the 
propagating distance z. This dependence upon the propagation distance z, is entirely 
different from the Rayleigh integral. In the latter, the distance from the original 
velocity field to the observer location does not influence the sampling requirements of 
that velocity distribution. Also it has been shown that a much more serious problem is 
wraparound error. This can occur even in a well-sampled pressure field, and to avoid 
this requires many more data points to be added to the original array. Unfortunately, 
the inclusion of these extra points means that it is often simpler and quicker to use the 
Rayleigh integral, which is exact, and does not suffer from these problems. Finally, it 
has been shown that if a 2 dimensional Fourier transform of the field is successfully 
made, then useful information about the field may be found without propagating to 
another plane. Using the 2 D FFT, the field may be decomposed into a sum of plane 
wave components. This gives simple expressions for the sound power and the source 
directivity. However, great care must be taken to ensure the are sufficient samples in 
the wavenumber domain to enable a calculation of the directivity or sound power to 

be made successfully.



Figure 4.1 - The volume Vin a medium and its bounding surface S.

Figure 4.2a - Real vs. for 16 samples. (&c = 5m, 1 = Im).
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Figure 4.2b - Non-uniform spacing in real vs. for 16 samples. (5x =.5m, X - Im).

Figure 4.3 - Non-uniform spacing in real k^ vs. k^ for 32 samples. (5x =.5m, X = Im).
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Figure 4.4 - Values of real as a function of the number of samples, N.

Figure 4.5 - Real part of the propagator function g^.(n,k^,z) = e vs. k^^/k

(N=32, 5x =.5m, X = Im, z=0.5m, 5k^ = 0.4054).



Figure 4.6a - Real propagator function, Re{g^(M,t^,z)} vs. k^jk 

iN=32, &r =.5m, l-lm, Z=1.5m, =0.4054).

Solid line indicates the calculated values of Re{gy(n, A:^,z)}, and the dashed line 

shows the theoretical exact values obtained from a continuous version of Re{g,(M,&^,z)}.

Figure 4.6b - Real propagator function, Re{g,(M,^z.z)} vs.

(A)=32, 8x=.5m, k = lm, Z=:3.0m, 5A:^ = 0.4054).

Solid line indicates the calculated values of Re{g^(n,/c2,z)}, and the dashed line 

shows the theoretical exact values obtained from a continuous version of Re{g,(n,A:^,z)}.
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Figure 4.7 - Real spaced derived propagator function, Gf/fz.y.z) - vs. 

(N=32, 6x=.5m. X, = lm, Z=3.0m, =0.4054).



repeated versions of DFT

Figure 4.8a - Repeated versions of the pressure array due to the finite length DFT.

Real space derived Green Function 
having infinite extent in real space

Figure 4.8b - The propagator function which is convolved in real space with figure 4.8a.



original N by N DFT

Figure 4.9a - The original pressure array with a guard band of zeros added to 

help avoid wraparound error.

Truncated real space derived Green Function 
now having finite extent in real space

Figure 4.9b- The truncated real spaced derived Green function.



Figure 4.10a - The angle of resolution in the wavenumber domain (/c-space) for 32 samples, k^-k.

Figure 4.10b - The angle of resolution in the wavenumber domain (k-space) for 32 samples, k^ — 0.5k



XlO"

diet [m] 0 6.4 dist [m]

Figure 4.11 - A theoretical array of pressure values from monopole source. 

Original array size is 64 x 64.

A guard band of zeros is added to increase the array size to 128 x 128. 

(7V=128xl28, 5%=0.05m, A,=0.1m, A=0.1m, Z=0.0m).

200

dist [m]
0 0 dist [m]

Figure 4.12 - The pressure data in figure 4.11 propagated a distance of 0.01m using the 2D FFT.

■ (A?=128x128, 6x=0.05m, ?i=0.1m,/z=0.11m, Z=0.0!m).



3.2

Figure 4.13 - The centre 64x64 points of figure 4.12. 

6^-64x64, 5% = 0.05m, X=0.]m, A=0.] Im, Z=0.01m).

3.2

Figure 4.14 - The theoretical correct propagated field from monopole source

(#=128x128, 6% = 0.05m, A,=0.1m, A=0.11m, Z=0.01m).



dist [m]
0 0 dist [m]

Figure 4.15- The centre 64 x 64 points of the propagated array in figure 4.1] 

without adding the guard band of zeros.

(N=64x64, &= 0.05m, k=0.1m, /t=0.11m, z=0.01m).

dist [m] 0 0 dist [m]

Figure 4.16 - The pressure data in figure 4.11 propagated a distance of 0.1m using the 2D FFT.

(A^=]28xl28, 6% = 0.05m,-A.-O.lm, h=0.2m, Z=0.1m).



Figure 4.17 - The centre 64x64 points of figure 4.16,

(#=64x64, &=0.05m, X,=0.1m, A=0.2m, Z=0.1m).

Figure 4.18 - The theoretical correct propagated field from monopole source

(#=64 x 64, 8% = 0.05m, X =0.1m, h=0.2m, Z=0.1m).



3.2

Figure 4,19- The centre 64 x 64 points of the propagated array in figure 4.11 

without adding the guard band of zeros.

(/V=64 X 64 , 5% = 0.05m, X=0.1m, h=0.2m, Z^.lm).

200

dist [m] 0 0 dist [m]

Figure 4.20 - The centre 64 x 64 points of the pressure data in figure 4.1] 

propagated a distance of Im using the 2D FFT.

(Al=64 X 64, &%=0.05m, A.=0.1m, A = l.lm, Z=1.0m).
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180

dist [m] 0 3^ dist [m]

Figure 4.21 - The theoretical correct propagated field from monopole source 

(A^=64x64, 8%=0.05m, A. =0.1m, A = 1.1m, z=1.0m).

Figure 4.22 - Same as figure 4.20 but vertical axis changed to show errors in the propagated field. 

(#=64x64, 6% = 0.05m, X=0.1m, A = 1.1m, Z=1.0m).



Figure 4.23a - Real and imaginary parts of the wavenumber space propagator function 

for a propagation distance of 0.01m.

A guard band of 64 x 64 zeros has been added to the original pressure data. 

(Af=64 x 64, &r=0.05m, 2,=0.]m, Z=0.01m).



Figure 4.23b - Real and imaginary parts of the wavenumber space propagator function 

for a propagation distance of 0.1m.

A guard band of 64 x 64 zeros has been added to the original pressure data. 

(A'=64 x 64 , 6% -0.05m, 1 =0.1m, Z=0.1m).



X 10"

Figure 4.24 - The absolute value of the 2D FFT of the pressure array in figure 4.11. 

A guard band of 64 x 64 zeros has been added to the original pressure data. 

(iV=64 X 64, 8% -0.05m, X,=0.1m, =5ky =0.9895).



Figure 4.25 - Real and imaginary parts of the wavenumber space propagator function 

for a propagation distance of 1.0m.

A guard band of 64 x 64 zeros has been added to the original pressure data. 

(A=64x64, 6x= 0.05m, A. = 0.1m, Z=1.0m, =5ky =0.9895).



63

63

Figure 4.26 - Real and imaginary parts of the wavenumber space propagator function 

for a propagation distance of 1 .Om.

No guard band of zeros has been added to the original pressure data. 

(N=64x64, = 0.05m, 1 =0.1m, Z=1.0m, =8^^ =1.995).
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dial [m]
0 0 dial [m]

Figure 4.27 - The centre 64 x 64 points of the field in figure 4.11 

propagated a distance of 0.01m using the 2D FFT.

Note that the sampling interval in real space has been reduced to 0.01m.

A guard band of 64 x 64 zeros has been added to the original pressure data. 

(77=64x64, 6% = 0.01m, 1 =0.1m, z=0.01m).

200

120
0.64

dial [m] 0 0.64 dial [m]

Figure 4.28 - The theoretically correct monopole field propagated a distance of 0.01m.

Note that the sampling interval in real space has been reduced to 0.01m.

(77=64x64, =0.01m, X=0.1m, Z=0.01m).



120
0.64

0.64

dist [m] dist [m]

Figure 4.29 - The centre 64 x 64 points of the field in figure 4.11 

propagated a distance of 0.01m using the 2D FFT.

Note that the sampling interval in real space has been reduced to 0.01m. 

No guard band of zeros has been added to the original pressure data. 

(N—64 X 64, = 0.01m, ^=0.1m, z=0.01m).

1.28

dist [m] 0 0 dist [m]

Figure 4.30 - The whole 128x128 points of the field in figure 4.11 

propagated a distance of 0.01m using the 2D FFT.

Note that the sampling interval in real space has been reduced to 0.01m.

A guard band of 64 x 64 zeros has been added to the original pressure data.

(//=128xl28, &c=0.01m, X=0.1m, Z=0.01m).
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dist [m]
0 0

Figure 4.31 - The centre 64 x 64 points of the field in figure 4.11 

propagated a distance of 0.1m using the 2D FFT.

Note that the sampling interval in real space has been reduced to 0.01m.

A guard band of 64 x 64 zeros has been added to the original pressure data. 

(A=64x64, 6% = 0.01m, X=0.1m, Z=0.]m).
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120
6.64

dist [m] 0 0.64 dist [m]

Figure 4.32 - The theoretically correct monopole field propagated a distance of 0.1m.

Note that the sampling interval in real space has been reduced to 0.01m.

(7V=64 X 64, &c =0.01m, X=0.1m, Z=0.1m).



100
1.28

1.28

dist [m]
0 0 dist [m]

Figure 4.33a - The whole ]28x 128 points of the field in figure 4.11

propagated a distance of 0.1m using the 2D FFT.

Note that the sampling interval in real space has been reduced to 0.01m.

A guard band of 64 x 64 zeros has been added to the original pressure data. 

(A=64x64, 6% = 0.01m, 1 =0.1m, 2=0.Im).

0.64

Figure 4.33b - The centre 64 x 64 points of the field in figure 4.11 

propagated a distance of 0.1m using the 2D FFT.

Note that the sampling interval in real space has been reduced to 0.01m. 

No guard band of zeros has been added to the original pressure data. 

(At=64x64, 8r=0.0Im, A.-O.lm, Z=0.1m).



0.64

Figure 4.34 - The centre 64 x 64 points of the field in figure 4.11 

propagated a distance of 0.1m using the 2D FFT.

Note that the sampling interval in real space has been reduced to 0.01m. 

A guard band of 64 x 64 zeros has been added to the original pressure data. 

(N-128 X128, = 0.01m, 1 =0.1m, Z=0.1m).

200

dist [m] 0 0.64 dist [m]

Figure 4.35 - The theoretically correct monopole field propagated a distance of 0.1m.

Note that the sampling interval in real space has been reduced to 0.01m.

(N=128xl28, &r=0.01m, A.=0.1m, Z=0.1m).
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dist [m] 0 0 dist [m]

Figure 4.36 - The whole 128 x 128 points of the field in figure 4.11 

propagated a distance of 1 m using the 2D FFT.

Note that the sampling interval in real space has been reduced to 0.01m. 

A guard band of 64 x 64 zeros has been added to the original pressure data.

(N=128xl28, 8A:=0.01m, l=0.1m, Z=lm).
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Figure 4.37 - Real and imaginary parts of the wavenumber space propagator function 

for a propagation distance of 0.01m.

A guard band of 64 x 64 zeros has been added to the original pressure data.

(7/=128x 128, 6%=0.05m. A.=0.1m, Z=0.01m, 6/:^ =4.947).
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Figure 4.38 - Real and imaginary parts of the wavenumber space propagator function 

for a propagation distance of 0.1m.

A guard band of 64 x 64 zeros has been added to the original pressure data. 

(A^=128X128, 6% = 0.05m, A-=0.1m, Z=0.1m, =5ky =4.947).
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314

Figure 4.39 - The absolute value of the 2D FFT of the pressure array in figure 4.11.

A guard band of 64 x 64 zeros has been added to the original pressure data.

Note that the sampling interval in real space has been reduced to 0.01m.

(N=128X 128, 8x=0.01m, X,=0.1m, =4.947).

i'/r-
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Figure 4.40 - Real and imaginary parts of the wavenumber space propagator function

for a propagation distance of 1.0m.

A guard band of 64 x 64 zeros has been added to the original pressure data.

(yv=128x 128, 6% = 0.05m, X -0.1m, z=1.0m, =5ky =4.947).



figure 4.41 - Error in the calculated sound power using the 2D FFT for a 
monopole source in the centre of the duct.



Chapter 5

Conclusions and Recommendations for Future Work

This project has set out to examine the radiation from simple sources within a 
finite length duct. In particular the radiation from a pressure release lined duct has 
been examined closely. This is of particular interest in this thesis, since this 
boundary condition cannot be produced in air. At the commencement of this 
project, the radiation from the duct was to be examined using an experimentally 
based technique. It was the intention to measure the field just outside the duct exit, 
and to use this to predict the far-field. Unfortunately, the method to propagate the 
measured pressure away from the duct was found to extremely difficult to 
implement successfully. The technique is described in Chapter 4, and it is hoped 
that this presentation is useful in alerting other would-be users of some of the 
practical problems that can arise when trying to employ this technique.

To overcome these problems a different approach to finding the radiation from the 
duct was made. An analytical model of the radiation from a finite length, circular
duct was been derived. This analytical model is described in Chapter 2. 
Experimental measurements have shown good agreement with theoretical 
predictions using this model. Comparisons between experiment and theory are 
presented for a finite length hard walled duct, containing a monopole source. 
Furthermore, since the duct is immersed in water, an examination of the effect of 
introducing a pressure release lining at the duct wall has been undertaken. It has 
been shown that this is a good method for the reducing the radiation of acoustic 
energy from the duct. For a pressure release lined duct with the source close to the 
duct wall, then the amplitude of the mode shape function is very small. This is 
because the boundary condition at the duct wall requires vanishing pressure at the 
wall. Hence the value of the mode shape function will also be zero at the duct 
wall. Because the values of the modal amplitude coefficients are proportional to 
the value of the mode shape function evaluated at the location of the source, then 
there will be poor coupling between the source and the duct field for this case. The 
resultant output from a finite length duct has been evaluated by an analytical 
model described in Chapter 2, and by an experiment detailed in Chapter 3. For a 
monopole radiating into a hard walled duct, it has been shown that there is good 
agreement between the theory and experiment. Consequently, the radiation from 
this duct has been compared with that from a duct having a pressure release lining 
at the wall. It has been shown that large reductions in the sound power radiated



from the duct are possible when using the pressure release lining in place of the 
hard wall.

The values of ka used in this thesis have been restricted to a maximum of about 
13. This was because the original experiment was based upon this maximum 
value. It is recommended that this work be repeated for much higher values of ka. 
This would mean that there are many more modes that may propagate freely 
within the duct, and hence the computation of the radiated field would take longer. 
However, this is offset by a need to know the relative amplitudes of the radiation 
from a hard wall and pressure release lined duct with a much higher modal 
density. It is believed that a greater power reduction would be possible using the 
pressure release lined duct, if there were more modes cut-on within the duct. This 

of course assumes that the source is placed close to the duct wall.

The analytical model derived in Chapter 2, assumes the duct to be terminated in a
rigid baffle. Since there was a need to verify the accuracy of the model with 
measurements made near to the duct. No far-Held data was available, and hence 
expressions that could be made to calculate in the far-Oeld from an unbaffled duct 
could not be used. If only the far-field were to be calculated then it would be 
possible to replace the modal reflection coefficients used to calculate the internal 
field, with those for an unbaffled duct. This would then give the modal amplitudes 
for such a duct, and expressions for the far-field, whilst very complex, are 
available for this case. It is therefore recommended that this the mathematical 
model be extended to include the radiation from an unbaffled duct.

It is also recommended that the model be used to examine the case of a duct lined
with an arbitrary wall impedance. The model developed in Chapter 2 enables the 
boundary condition at the duct wall to take any value, both real and imaginary. It 
would then be possible to examine the radiation from a duct whose wall 
impedance was not quite pressure release for example. This has practical 
significance, since the it is likely that any pressure release lining developed for 
practical use would not be an ideal pressure release surface. Therefore it would be 
useful to examine the necessary tolerance such a lining, to yield satisfactory 
reductions in the radiated energy from the duct.



Also it would be useful to examine the radiation from other source distributions 
within the duct, for example dipole-type sources. A simple modification to the 
model could be made to include such sources, and these could be compared to the 
results presented in this thesis. A simple modification of the theory presented in 
Chapter 2 would enable the study of the radiation from an axially oriented dipole 
source. For the monopole source examined here, the pressure difference on either 
side of the source plane is zero, and the magnitude of the axial particle velocity 
difference is equated to the source strength. For an axial dipole, the axial particle 
velocity difference is zero either side of the source plane, and it is the pressure 
difference that is used to calculate the modal amplitudes within the duct. This is 
fine for the restricted case of an axial dipole. However, it would be much better to 
formulate a solution for the radiation from an arbitrarily oriented dipole. Whilst 
this is not so straightforward, it is recommended that the model derived in Chapter 
2 be extended to include such sources.



Appendix A

Orthogonality of Eigenfunctions in a Circular Duct

In Chapter 2, the principle of the orthogonality of mode shapes was used to
calculate the amplitude of each mode in the duct. Appendix A explains this 
principle and provides a concise derivation.

Modal sound fields in a uniform duct.

In any source-free region, the complex amplitude of the acoustic pressure satisfies 
the homogeneous Helmholtz equation

(/\. 1)

where r is a vector of field co-ordinates, r,8,z, and is the Laplacian operator.

Modal solutions of this equation are of the form

Xr) = (A.2)

where s is the two dimensional transverse position vector, and z is the axial co­
ordinate. Values of Y(^) required which satisfy the two dimensional

Helmholtz equation

(A.3)

where is the transverse wavenumber, which is related to the axial wavenumber,
by

(A.4)

A sound field in a uniform duct or waveguide can be of the form of equation (A.2)
provided the transverse pressure distribution \\f(s) satisfies the duct- wall 
boundary condition, as well as equation (A.3). Solutions of \j/(s) with these 
properties are possible for certain values of known as eigenvalues. Successive 
eigenvalues (e.g. in increasing order of Re kj^) are labelled with an index:



j 5 • • • • * 0\.5)

and the corresponding \j/ solutions (eigenfunctions) are labelled t|/w

Orthogonality of eigenfunctions

From equation (A.3), eigenfunctions tj/^, satisfy the equations

(A.6)

By combining equations (A.6) and (A.7), and, by dropping the explicit (s) 

dependence for brevity, this gives

(A.8)

Rearranging equation (A.8) gives

V - V) = (A.9)

Integrating equation (A.9) over the duct cross section 6", gives

(V - V) j = j (A. 10)

The right hand side of equation (A. 10) may be alternatively expressed using a 
special case of the divergence theorem known as Green's second identity. Thus

j: C
(A.ll)

where the vector n denotes the unit outward normal to the boundary C, which is
the duct wall. By applying the following boundary conditions to equation (A.11),



the right hand side of this equation vanishes. This is always true for the following
cases

V\|/„» n = Vv}/j,• n = 0, on C, which is the hard wall boundary condition, (A. 12)

= 0, on C, which is the pressure release boundary condition. (A. 13)

A condition of validity is given by

(A. 14)

For either boundary condition given by equations (A. 12) and (A. 13), the right 
hand side of equation (A.l 1) vanishes, and this gives

- V)j = (A.15)

Remembering that the eigenvalues were chosen to be distinct, then

(A:,/ (A. 16)

Therefore, from equation (A.15)

J dS = 0 fox V. (A. 17)

This is known as the orthogonal property of eigenfunctions.

For the case of a duct of circular cross section, then equations (A.6) and (A.7) 
become

(A. 18)

(A. 19)



where

N.
(A.20)

and all the terms in equation (A.20) have been defined in Chapter 2.

For a monopole source in an infinite length duct at r,, 6^, =0, the modal

amplitudes are related to the source by

^-8(r-r,)8(e^e,,) = ^ i A,„, V...
A:pc

(A.2I)
n=0

where g is the strength of the monopole source. As previously, an alternative
eigenfunction may be defined such that

N
(A.22)

pq

Note the sign of the exponential term in equation (A.22). It will be shown that this 
is the orr/zogowal mode shape to that given in equation (A.21) when /» = /;. 

Multiplying equation (A.2]) by equation (A.22), and integrating both sides of the 
resulting equation over the duct cross section 5' gives

^ /CpC fyi~—oo ^n=0

(A.23)

Using the sifting property of the delta function (Bracewell, 1986), and noting that
, then equation (A.23) becomes

In
I e-!"-” de I ^„(r) rdr. (A.24)



From the principle of orthogonality of the mode shapes, defined by equation 
(A. 13), this equation is zero unless m = p and n = q. Therefore equation (A.24) 
becomes

KpC

271 a

0 0
(A.25)

which gives

z ^ V7in

Ape
(A.26)

The mode shapes are normalised, such that

(A.27)

Consider now just the integral in equation (A.27). Upon expansion this becomes

N„
(A.28)

The integral on the right hand side of equation (A.28) has a solution given by'

(V„ 2_^ m }jJ(krr-)+Jp(krr)

which gives

(A.29)

N„ V2'
2 \

(A.30)

Therefore using equations (A.22) and (A.25) it is possible to Ond the value of the 
modal amplitude coefficients which are thus given by

GA:pc Jme,
"" 4;tAr

(A.31)

see Watson (1962), page 135, equation



Appendix B

Derivation of the Function (x)

In Chapter 2, the function D^(x) is used to calculate the modal impedances. In 

this Appendix a more detailed derivation of the integral used to express this
function is provided.

The integral representation of the function D^,„(x) defined in Chapter 2 is given

by

(B.l)

where all the above symbols were defined in section Chapter 2, Section 2.6. From
the definition of the mode shape function

 •^m O^mn^^O ) (B.2)

equation (B.l) may be expressed in terms of two Bessel Functions, to give

A..,. -'0
(B.3)

The integral above may be evaluated directly, (Watson, 1962). The result is

^ Cl 1 ^m/j‘^m+1

V ^mn J (1: )
(B.4)

Using the Bessel function identity

m (B.5)

equation (B.4) becomes



a
X

mn

f

m

yxka

m ( ^ ^m (^m/z ^ )

-1.
m

V '^mn^
in i'^^inn^in (^inn^m () j

08 6)

This can be written as

X

m
a

m (^zzzzz^)

m
a

m (^;zz;z^^)'^zzz ^/zz/z'^m (^mzz^^)'^zzz

08 7)

Cancelling common terms gives

a {-Tj;,(T^)7M(tA^z)} (B.8)

Further rearrangement gives

a {^7„; i'^^)Jin i'^inn^) ~ '^inif^in m (t^)}
N.,

08 9)

In terms of the duct mode shape function, this becomes

a{TU;; (1:^) Ymm (^) - VL (^)7m (l:^)}
(BTO)



Appendix C

Derivation of the Impedance Function and the Reflection Coefficient mill

In Chapter 2, Section 2.6, expressions for the modal impedance and reflection 
coefficient at the end of the duct were given. This Appendix gives the derivation 
of these two important parameters.

1. The Modal Radiation Impedance

In order to solve for the modal impedances, it is necessary to equate the 
expressions for the pressure from within the duct, to the pressure outside the duct, 
at the duct exit. These 2 expressions are given by

(C.l)
1=0

/7(r) = r -1) ('rA:r)D,„XT)di:. (C.2)
1=0

Equation (C.l) was derived from the internal field (z ^ 0), whereas equation (C.2) 
was found by examination of the exterior field of the duct z > 0), and is essentially 

the Rayleigh Integral. At the duct exit (z=0), then it is possible to equate these two 

equations.

Note that indices for the azimuthal order, m, are the same, whereas those for the 

radial order are different, and are denoted by y and Z respectively. This is because
there exits a simple relationship between the azimuthal components in equations 
(C.l) and (C.2). However, to equate the radial components in each of these 
equations is non-trivial. Since the azimuthal components may be simply equated it 
is possible to ignore the summation over m. This gives upon equating equations
(C.l) and (C.2)

Z ) = 2^ Z Jo
j=0 /=0

(C.3)

Multiplying both sides of equation (C.4) by integrating over the

duct cross section gives



n=0 (C.4)

/=0

where the suffix 0 indicates that this is at the end of the duct at z=0. For clarity this 
explicit notation will be dropped in the equations that follow.

From the principle of orthogonality of the mode shape functions

for y = ».

(C.5)

(C.6)

Therefore equation (C.5) becomes

Cn C r-l) (C.7)
1=0

Note the appearance of the different index n, on the mode shape function in the 
right hand side of equation (C.7). From the definition of the function, F>,„„(x)

(C.8)

Then equation (C.6) becomes

1=0
(C.9)

Equation (C.9) may be used to express the modal impedance given by

^fnn ~ Zw ^mnl ^ml ’

f=0
(C.9)

where

= 7 jj - inD^(x)D^(x)^x. (C.IO)



The above integral may be split into the two ranges, (0,1) and (1,<») to give

Using the substitutions

x = sin(t) for (0<x<l),

x = cosh^ for (l<x<«').

(C.12)

(C.13)

Noting that for equation (C.12) then <ix = cos(|)<^(|), and for equation (C.13) 
= cos^<j^, then equation (C.l 1) becomes

'^mnl - j L sin(j)
^(sin^(t)-l)

(sin (})) (sin ())) cos (|) (^(|)

^x^cosh^^-1

(C.14)

Using the following well known identities

cos (|) = 7-y/sin^(t)- 1

sinh^ = -Jcosh^^-l.

(C.15) 

(C.l 6)

Then equation (C.14) becomes

Zm/,/ = sin (sin (t))D^, (sin (|)) ^(j) + y jj cosh (cosh (cosh ^.

(C.l 7)

This is the required result, and the above equation is used to calculate the modal 
impedances used in this thesis.



2. The Modal Reflection Coefficient.

Starting with equation (2.8.3) from Chapter 2, Section 8,

^ ^nl ) ^inl mnl^ ml

1=0 1-0
(C.18)

For fixed azimuthal order, m, the above equation becomes

1=0 1=0
(C.I8)

In matrix form this equation may be written as

Zn|f^ bjj + bjj 3] +3). (C.19)

Since the delta function ensures that n-l, and noting that

bn — ^nl ^1> (C.20)

then equation (C.19) becomes

ZniO, RnlSi + Rnl^l - ^nlA - 3], (C.2])

this gives

[ZnA Rnl + Rnl ^ + l] »! - 0. (C.22)

Hence

R^+R^-Z^Q, + I = 0.

[Z„A R„,+I]R„|=[Z„A + I].

(C.23)

(C.24)



This results in the following expression for the reflection coefficient in terms of 
modal impedance, for fixed azimuthal order

R„,=[Z„,n, R„,+ir'[Z„,£J, + l]. (C.25)



Appendix D

Application of L'Kopital's Rule to the Function D^„{x) a& % ->

In Chapter 2, the function is used to calculate the modal radiation

impedances. These impedances are used to calculate the modal reflection
coefficients at the end of the duct. The function is given by

: a (D.l)

As T -> then the denominator in (D. 1) tends toward zero, and it would be 
reasonable to expect that would tend to infinity. This makes the evaluation

of this function impossible. More importantly, it would prevent the evaluation of 
the modal impedances within the duct. These are given by

(D.2)

It is necessary to integrate the function over a range which will include
possible poles at 'r = A,^^ and However, it will be shown in this

Appendix that by application of L'Hopital's rule it can be demonstrated that the
function is continuous at t = and x = L'Hopital's rule may be

defined in the following manner (see for example Abramowitz and Stegun, 1970 
p.l3). Let /(x) and g(x) be differentiable on an interval a<x<6 for which 
g'(x) 0 , then if

lim /(x) = 0 and litn g(x) = 0x-^b— x-^h~
(D.3)

or if

f'(x^
lim /(x) = oo and liin g(x) = and if lirn --- (D.4)

then

limZW (D.5)



Applying this to equation (D.l), and letting /(t) denote the numerator, and g(T) 

denote the denominator, gives

2 ,2= -T:

(D.6)

CD7)

Considering the numerator first

/'(T) = (tAzz) + (1:^)VmM VL (1=^)'

(D.8)

Differentiating the denominator, gives

g(i:) = -2T. (D.9)

At T = , the ratio ---- is given by
g (t)

\ ka^ J ^,^ika) 2^a J^j(X„j^ka)\\f ^'X ,„nCl JmCX

(D.IO)

For a hard walled duct, then equation (D.IO) gives

lim (t) — ^ ka vj/,,yj(/c(5()/„j(X,,„,jA:a), (D.ll)

which is equivalent to

lim (A,^,j/ca) —/,„_i(X,„j„fc3)]. (D.l2)

For a pressure release boundary at the duct wall, then equation (D.IO) becomes

lim D^„{X) — ^ ka -/,M V mn (^<3) ,'^mn V / 2 '^mn (D.l 3)



which is equivalent to

T—>?i„ 2M,
(D.14)

It can be seen that equations (D.12) and (D.14), are well behaved for all values of 
m and .
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