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Abstract

The Radiation from Acoustic Sources within a Finite Length Circular Duct

Immersed in Water

The radiation from waveguide and duct terminations is an important area in the
field of acoustics. The radiation from acoustic sources in ducts has already been
the subject of much attention, most of the work carried out in this area being
associated with aero-engine noise. Consequently, with less obvious practical
application, little attention has been paid to similar problems in water. In this
thesis a mathematical model of the radiation from a source in a finite length duct
is developed. This is an extension of an earlier study of the radiation from a semi-
infinite duct. Whilst this model has been developed for a duct immersed in water,
the expressions derived are equally applicable to air. However, since the duct
examined in this thesis is in water, then it is realistic to examine the radiation from
a duct that has a pressure release lining at the duct wall. This would be a futile
study if conducted in air, since the pressure release boundary condition is
impossible to achieve in that medium. Good approximations to an ideal pressure
release boundary in water are possible in practice using a closed cell neoprene
foam fixed to the duct wall. It is likely that such a lining could be used to reduce
the sound radiated by a source within the duct. The mathematical model derived
enables the pressure outside the duct to be calculated provided that the duct
terminates in a rigid baffle. Experimental results are compared with those obtained
from this model, and the agreement is found to be very good over a wide range of
frequency. It found that the introduction of a pressure release lining at the duct
wall will significantly reduce the sound power radiated by the source in the duct,
when compared with a duct with a hard wall. Finally a spatial Fourier transform
method is described for the prediction of the far-field pressure from measurements
made near to the duct exit. Despite initial promise, this technique is found to have
severe limitations, most notably associated with the numerical evaluation of the
finite length two dimensional Fourier transform. Avoiding wraparound error is
shown to be a major difficulty when using this technique to propagate a field an

appreciable distance.



Acknowledgements

I would like to express my sincere gratitude to the following people who have
helped me in the completion of this thesis. I owe a huge debt to my supervisors,
Professor P. Nelson and Professor C. Morfey, who were a constant source of
inspiration and without whom I would certainly never have completed this work. I
would also like to thank the numerous staff in the ISVR with whom I have
enjoyed many interesting discussions over the years. In particular I would like to
thank Professor J. K. Hammond and Professor F. J. Fahy for their help during

some difficult times.

No acknowledgement would be complete without my mentioning the following
individuals who helped me in their own way: Naim Audio, Bob Berg, Michael
Brecker, John Coltrane, Miles Davis, Dave Guardala, Henri Selmer, Wayne
Shorter.

Finally, I would like to thank Dawn for her immeasurable love, support and

understanding given to me over the years. I dedicate this thesis to her.



Hell, if you understand everything | say, you'd be me.

miles davis (1926 - 1991)



Abstract.

Contents

Acknowledgements.

Chapter 1  Introduction.

1.1
1.2

Overview

Organisation of the thesis

Chapter 2 Theoretical analysis of sound radiated from a

source in a duct of finite length.

2.1
2.2
2.3
2.4

2.5

2.6

2.7

2.8
2.9

Introduction.

Literature Review.

Summary and conclusions from the literature.

A simple model of the sound propagation within

an infinitely long circular duct.

The acoustic field produced by a point source within
an infinite length duct.

The acoustic radiation from a semi-infinite circular duct,
terminating in a rigid baffle.

The calculation of the modal radiation impedance.
The modal reflection coefficients.

A matrix solution for the acoustic field inside a finite

length duct.

2.10 Conclusions.

Figures for Chapter 2.

Chapter 3  Experimental measurement of the near field of a circular duct.

3.1
32
33

34

3.5

Introduction.

Experimental principal and description.
Preliminary investigation using a point monopole
source without a duct.

The field from a hard walled, baffled duct
containing a monopole source - a comparison
between measured and theoretically derived results.
The field from a pressure release lined, baffled duct
containing a monopole source - a comparison with

a hard walled duct.

18

24

32

36

41

48

50

80

81

85

87

89



3.6 The radiated sound power - a comparison between a pressure

release and hard walled duct. 92
3.7 Conclusions. 93
Figures for Chapter 3. 95

Chapter 4  Techniques for estimating the radiated field from

near field measurements. 115
4.1 Introduction. 115
4.2  The Kirchoff-Helmholtz integral and the radiation

from complex source distributions. 116
4.3 A review of the literature on acoustic field.
propagation techniques. 119
4.4  Theoretical principles of the wavenumber transform. 126

4.5 Practical implementation of the wavenumber transform

and some important sources of error in the computation

of the far-field pressure. 128
4.5.1 Aliasing of the propagator function 128
4.5.2 Wraparound error 133
4.6 The propagation of the field from a monopole source. 137
4.7 Sound power measurement. 142
4.8 Conclusions 147
Figures for Chapter 4 149
Chapter 5  Conclusions and recommendations for future work 178
Appendix A Orthogonality of eigenfunctions in circular duct 181
Appendix B Derivation of the function Dmn(t) 187

Appendix C Derivation of the impedance function Zmn
and the reflection coefficient 189

Appendix D Application of L.'Hépital's rule to the function
Dmn(t) as T— A, 194

References 196



Chapter 1

Introduction

1.1 Overview

This thesis is concerned with the analysis of the sound field generated by an
acoustic source within a finite length circular duct immersed in water. One of the
primary reasons for this study is the investigation of the radiated acoustic energy
from a source within a pressure release lined duct. A pressure release boundary is
one in which the pressure vanishes over that boundary. Pressure release surfaces
are impossible to achieve in air, and as such are rarely considered by acousticians
working on problems associated with that medium. By contrast, approximate
pressure release boundaries are commonly observed in underwater acoustics.
Perhaps the most obvious example of an approximate pressure release boundary

for sound waves in water is that provided by the water/air interface at a free water

surface.

If it is required to reduce the radiation from a source within a duct, the logical first
step would be examine the nature source mechanisms themselves to see if there
were any way to reduce the output at the source. Unfortunately, it is not always
possible to adequately model the source mechanisms, or to reduce the output of
the source region. It is usually easier, and more practical to attempt to attenuate the
acoustic energy as it travels within the duct. This attenuation is conventionally
achieved by the application of either an absorptive acoustic treatment to the duct
wall, or by the introduction of reactive elements within the duct. Both of these
methods are aimed at attenuating the propagating acoustic energy within the duct.
This approach has been widely used in the area of aero-acoustics for example, and
has resulted in large quantities of published work solely concerned with the
optimisation of the duct lining for different source types or duct geometries. The
maximum attenuation possible is limited by the length of the duct; the energy
distribution amongst the modes within the duct; and the type of acoustic treatment
used. This limit may be satisfactory for long ducts or where only small reductions
are required. Usually, however the duct is short, and large attenuation is required.
In this situation, absorptive treatments would be ineffective as the duct is short. In
the study of jet engine noise- the bulk of which of which was carried out during

the 1960's and 1970's- trying to squeeze the "last ounce" of attenuation out of a



relatively short length of duct became the focus of much attention by researchers

in aero-acoustics.

If the required attenuation of a noise source in a duct is not in air but in water, it is
also possible to use acoustic treatment at the duct wall in a similar fashion to that
used in air. Again if the duct is short, i.e. if the length to diameter ratio is less than
one, these treatments will be severely limited in their ability to reduce the radiated
sound from the open end of the duct. As mentioned above it is also possible to
produce a pressure release boundary in water. It may be possible to capitalise upon
this unique feature of water, and use it to reduce the radiation of the source into
the duct. The acoustic power output of the source is a simple function of the real
part of the acoustic radiation impedance of the source. The duct presents an
impedance load into which the source is radiating. Changing the acoustic
impedance of the duct wall will change this load that the source "sees". Thus there
will be a different radiation impedance of the source for a hard wall duct and a
pressure release lined duct. It is hoped that this difference between the two
impedances will yield a lower output power for a pressure release lined duct. This
is the principal noise reduction method described in this thesis, and it is
fundamentally different from those commonly employed in air. It should be noted
that no attempt is made to absorb the acoustic energy as it travels within the duct.
No reduction of the acoustic energy is possible using a pressure release lining at

the duct wall as there is no absorption at a pressure release boundary.

1.2  Organisation of the thesis

Originally, at the commencement of this project, an experimentally based
approach for the analysis of the radiation of simple sources within a duct was
- developed. Previous work in the area of acoustic holography had indicated that it
was possible to predict the far-field simply from measurements made near to a
source. Therefore, a large percentage of the research effort was deployed in setting
up an experimental rig to measure the field close to the end of a duct containing a
source. It was believed that by measuring the acoustic pressure near to the open
end of the duct, that this may be used to predict the far-field pressure by a wave
propagation technique similar to those methods used in acoustic holography. In
principle at least, it seemed possible to examine the far-field radiation from both
types of duct, hard wall and pressure release, by measuring over a plane just

outside the duct. Unfortunately, the propagation technique proved to be fraught

%]



with numerical problems. Most of these were associated with the finite length
Fourier transform. This experimental approach was therefore supplemented with a
mathematical analysis of the duct radiation problem. Even though the measured
pressure field sampled near to the end of the duct could not be used to predict the
acoustic far-field, it is still valuable information, and may be used to check the

accuracy of the analytical model.

The analytical study of the radiation from the duct is described in detail in Chapter
2. This model is based upon an earlier study by Zorumski (1973), who formulated
a solution for the radiation from a semi-infinite duct terminating in a rigid baffle.
Most importantly, Zorumski derived expressions for the modal radiation and
reflection coefficients at the open end of the duct. Since the modes are coupled,
one incident mode gives rise to an infinite series of reflected modes back into the
duct. In Chapter 2, the Zorumski semi-infinite duct problem is extended to include
the radiation from a duct of finite length. In principle, this model enables the
calculation of the internal acoustic field within the duct containing any source
distribution. In this thesis, the model is restricted to the examination of the
radiation from a point monopole source within the duct. The analytical model
solves the axial particle velocity over the two ends of the duct. Since the duct is
terminated in a rigid baffle it is a straightforward task to calculate the externally
radiated field using the Rayleigh integral. There are several important features of
this model that should be made clear. The first is that it is analytically exact. Since
the duct finishes in a rigid baffle at both ends of the duct, the calculation of the
modal reflection coefficients at either end of the duct is not influenced by the field
radiated by the other end. Secondly, the solution for the internal field is expressed
in such a manner that it may be readily evaluated using a desktop computer. Also,
whilst there is emphasis given to the study of hard walled and pressure release
lined ducts in this thesis, it should be noted that the mathematical model derived

in Chapter 2 is valid for any arbitrary wall impedance.

Chapter 3 describes the experimental work mentioned above, which measures the
pressure over a large plane outside the duct. Whilst this data is not used to predict
the far-field as was originally intended, it is still very useful as a comparison with
results from the analytical model derived in Chapter 2. The field outside the duct
is measured over a rectangular plane perpendicular to the duct axis. A total of
4096 separate pressure measurements are made of the external field. Due the very
large number of measurements it was necessary to design the experiment so that it

could be totally controlled by a computer. By adopting remote control of the



experiment it is possible to arrange for the computer to be made responsible for
the location of the receiving hydrophone, the generation of the source signal, and
the capture and analysis of the final pressure.

In Chapter 4 an acoustic propagation technique is described. As mentioned earlier,
it was originally intended to use this technique to forward propagate the measured
field from the end of the duct. However, it is shown in Chapter 4 that there are
many numerical errors incurred when implementing this technique in practice. The
most common causes of error are outlined in this chapter. It is found that most of

the problems arise due to the 2D Fourier transform used to calculate the new field.

In the final chapter, conclusions and recommendations for future work are

presented.



Chapter 2

Theoretical Analysis of Sound Radiated from a Source in a Duct of Finite Length

2.1 Introduction

In this chapter an analytical model will be derived of the sound field radiated from
a circular duct containing an acoustic source. By comparison with the
experimental approach that will be discussed Chapter 3, an analytical model
potentially offers greater speed and flexibility. Given a rigorous analytical model
of the duct radiation, it is much easier to examine the radiation from different
source positions and different duct linings using a model than to attempt to
measure the field experimentally. To illustrate this point, the experimental design
that is described in Chapter 3, measures 4096 spatial points in the field just outside
the duct. This process takes more than 40 hours to complete. Obviously, using
experiments as an investigative tool is not an efficient approach, since any small
change requires a repeat series of measurements, plus the time taken to set up the
experiment and analyse the data. Furthermore, if a suitable analytical model was
developed, it would be possible for a source to take any form, i.e. monopole,
dipole, etc., and be located anywhere within the duct. By contrast, it has been
shown by Hewlett (1992), that there are considerable practical difficulties in
generating accurate, higher order acoustic sources in water for experimental

purposes.

2.2 Literature review

To assist in the development of an analytical model, a literature review was
conducted. Perhaps not surprisingly, the bulk of published work in the area of duct
acoustics is concerned with applications in aero-acoustics. The requirement to
reduce the noise of jet aircraft was responsible for a considerable number of
analytical and experimental studies of duct acoustics in the 1960's and early
1970's. The following literature review, whilst certainly not exhaustive, has
attempted to focus upon previous work that is believed to be the most applicable
to the present problem. It is worth noting that despite the abundance of available
literature, no reported work relating to the radiation of sound from a circular duct
in water was found. It is believed that previous work investigating the radiation of

sound from a duct in air, may be applied to a duct in water. However, there are



differences and assumptions that need to be made if using a theory derived for use
in air is to be applied to a similar problem in water. Most notable amongst these

differences are the following;

. The fluid loading upon the duct wall vibration is usually ignored in
air, but this may be significant in water. In this thesis this effect will

be ignored.

. There is great difficulty in obtaining acoustically rigid structures in
water, whereas these are easy to achieve in air. Therefore if a duct
is assumed to have a hard wall in water, then this may be difficult
to achieve in practice. A more realistic approach would be to
include wall vibration, and vibrational waves within the duct wall.

These effects are considered to be beyond the scope of this thesis.

There is a significant, albeit subtle difference between the methods commonly
adopted by researchers in the area of aeroacoustics and that proposed in this study.
In the present context the attempted reduction in the far field pressure does not
rely upon absorptive or reactive liners to provide attenuation within the duct. In
this thesis it is intended to reduce the power radiated by modification of its
radiation impedance. It is proposed that a pressure release liner at the duct wall
will be used to introduce a region of vanishing pressure at the duct wall. It will be
shown later in this Chapter that the modal amplitudes are calculated using the
value of the mode shape function at the position of the source. If the source was a
monopole placed near to a pressure release wall, then the value of the mode shape
function at the source will be very small. Hence the source will be ineffective at
driving the field within the duct. This method of source reduction is not possible
in air, as an adequate pressure release lining is impossible to achieve in air. If the
duct length to diameter ratio is small, absorptive liners would be limited in their
ability to significantly reduce the acoustic radiation from the duct. This is not true
when using a pressure release liner to modify the source, as it is only necessary to
have a duct of sufficient length that the source may be modelled as one of higher
multipole order. To what extent a duct should be lined with such a material is

beyond the scope of this present study.

The following gives a summary of the objectives of the analytical model, and

these objectives were used in selecting the literature chosen for discussion later.



. The analytical model should enable the calculation of both near and
far-field pressures produced by a source in a circular duct, with a

hard and pressure release lining at the wall.

. Preferably the model should be for a finite length duct since this is
the most representative of the real duct radiation problems. Semi-

infinite ducts are not usually realised in practice.

In conducting the review the following parameters were excluded from the

analysis:

. Flow. The highest Mach number of interest in this thesis is
extremely low (M <0.05), and therefore the effects of flow upon
the acoustic propagation within the duct may be ignored.

. In this thesis there is no attempt to model the rotational effect of the

source, and attention is restricted to stationary distributions of
simple multipole sources to investigate the effect of pressure
release linings upon the radiated sound field. The acoustic field
produced by rotating sources has been widely reported in the
literature; e.g. Tanna and Morfey (1971), and Wright (1972 and
1976). The influence of rotation of the source upon the radiated
acoustic field is dependent upon the rotational Mach number of the

source, which in this case is very small.

Tyler and Sofrin (1962) have investigated the propagation and radiation from
semi-infinite duct. Morse (1948), describes the propagation of modes as a time
varying acoustic pressure distribution as seen at a stationary point within the duct.
Morfey (1964), uses the phrase spinning modes to describe the acoustic field in the
duct. Instead of a time varying field in fixed space, the propagating modes may be
thought of as a time invariant pressure distribution across the duct cross-section
that spins as it moves down the duct. The axial velocity of the propagating mode
depends upon the frequency relative to the cut-off frequency, as does the angle the
mode makes with the duct wall. Essentially as cut-off is approached the angle the
mode makes with the duct wall becomes larger, so that the mode is further
attenuated by any lining on the duct wall. Morfey shows pictorially the effect of
cut-off upon the helical pattern that the duct mode makes as it is traced through

the duct. As the frequency is reduced near to cut-off the helix becomes stretched,



until, at cut-off, the pattern is similar to a paddle wheel, and there is no net
propagation down the duct. Equations describing the pressure distribution in a
hard-walled duct are given for monopole and dipole sources placed within the

duct. The corresponding acoustic intensity is also derived for these sources.

Both of the above studies by Tyler and Sofrin (1962) and Morfey (1964) have
examined the acoustic radiation from a semi-infinite baffled duct. An expression
for the radiation from such a duct is given in terms of modal amplitudes. Morfey
(1964) has derived expressions for the real part of the acoustic impedance for the
open end of the duct for (m,0) modes, where m denotes the azimuthal order of the

duct mode. These can then be used to determine the sound power radiated from

the duct.

The radiation efficiency of higher order acoustic duct modes from a hard-walled,
circular and annular duct, terminating in a baffle have also been discussed by
Morfey (1969). Graphs of the variation of radiation resistance with frequency are
presented as a generalised relationship in terms of the mode cut-off frequency.
Morfey concludes that the modal velocity distribution across the duct face radiates
with an efficiency close to unity for a frequency appreciably above cut-off for a
given mode. Below the cut-off frequency, radiation is shown to fall rapidly as the
frequency is reduced. A method for calculating the acoustic radiation impedance
of a hard walled circular duct is also given. However, the method requires that the
duct is assumed to terminate at the end by an infinite baffle. For this reason the
method ignores the effect of the acoustic radiation at angles greater than 90
degrees to the duct axis. The experimental work reported by Tyler and Sofrin
(1962), has shown that in some cases near cut-off there is a significant

contribution made to the far-field pressure from such backward radiation.

In the case of a duct terminated by an infinite baffle, Zorumski (1973) has
published a method for calculating the modal impedance and reflection
coefficients for a semi-infinite duct with arbitrary wall impedance. This paper
contains a few important mistakes in the presentation of numerical results, but the
analysis will be shown to be robust in a later section in this chapter. This is not a
trivial problem to solve, however it is possible that the modal reflection
coefficients may be used to calculate, mode by mode, the internal sound field
within the duct. Since the duct ends in a rigid baffle, it is possible to use the

Rayleigh Integral to calculate the pressure at any point outside the duct.



The acoustic propagation of sources within, and the subsequent radiation from, a
rectangular duct is analysed in two companion papers by Doak (19732, 1973b).
Whilst the analysis presented is for a hard-walled rectangular duct, some very
useful conclusions can be drawn from this study that will apply equally to a
circular duct. In the first paper, Doak (1973a), describes the effects of source
distributions within the duct. Unfortunately there does not appear to be any

reference to the modes in the duct being coupled, as is illustrated by Zorumski
(1973).

The second of these two papers is concerned with the effect of duct length on the
sound field both inside and outside the duct. It is shown that internal reflections
have an effect upon the radiation impedance, and what is more important for the
production of sound power, the radiation resistance of the radiating source. An
example is discussed in which a duct with one end was open and the other
anechoic, thus producing a semi-infinite duct. It is not clear that the solution for
the internal field includes the effect of the modes being coupled, which is

discussed by Zorumski (1973).

The acoustic propagation within a cylindrical duct with soft walls has been
discussed by Rice (1969) and (1975). Rice shows that as the sound propagates
down a soft walled duct with a length to diameter ratio of greater than one, there is
a redistribution of sound power toward the centre line axis of the duct. Rice also
presents graphs showing the maximum attenuation possible for a given set of
modes by optimising the wall impedance. These graphs are calculated by first
optimising the impedance of the duct lining for each mode separately. In most
practical cases however, there is more than one mode that is significant in carrying
acoustic energy. The need to optimise the impedance of the lining for more than
one mode will always compromise the maximum attenuation possible for each

mode if treated separately.

Lansing and Zorumski (1973), have analysed the problem of a multi-sectioned
duct by studying an infinite length rectangular duct containing flow. Zorumski
(1974), has separately published work on acoustic propagation in a multi-
sectioned circular duct. In this circular duct one end has a rigid wall in which a
monopole source is located at the centre. The other end of the duct is terminated
by an infinite baffle. At each interface between two different sections, and at the
termination, the modes generated by the source are partially reflected and partially

transmitted as a new set of modes into the adjacent section. This process therefore



results in a very complicated standing wave pattern within each duct section. A
corresponding matrix solution is given for the equations describing the pressure

distribution within the duct.

The radiation from a hard walled, semi-infinite circular duct that does not end in
an infinite baffle, have been examined by several authors. The first analytical
solution was obtained by Levine and Schwinger (1948), and this paper may be
considered to be a pioneering study in this field. This paper gave the first rigorous
solution based upon the Wiener-Hopf technique for the simple case of a plane
wave propagating within the duct. Using this work, the inclusion of higher order

modes within a hard walled duct was analysed by Weinstein (1969).

Due to the complexity of the Wiener-Hopf technique, the approach and results
presented by Weinstein (1969) found little immediate engineering application. Not
until the necessity to predict and reduce the noise level of commercial aircraft in
the early 1970's did the technique become more widely used. Amongst the work
that did apply the Wiener-Hopf technique, and incidentally the most readily
applicable to the present problem, is that by Lordi et al (1971, 1973, 1974), and
Homicz et al (1975). Mathematical expressions are given for the far-field radiation
from an unbaffled circular duct given a certain internal incident mode upon the
end of the duct. Whilst the expressions for the far-field radiation pattern are
somewhat complex, the essential principle in calculating the far-field from modal
reflection coefficients remains similar to that using the method of Zorumski
(1973). However, the expressions for the field outside the duct are only applicable
at a distance of many duct radii. This then rules out the possibility of using this
analysis to compare with measured data near the duct exit. This highlights the
difficulty of using a model of the duct that does not include a rigid baffle at the
end of duct; namely that it prevents the use simple methods such as the Rayleigh

Integral to calculate the external pressure field.

Lordi, Homicz and Rehm (1973) and (1974), have presented work for a similar
radiation problem. The solution for the external radiation is written in terms of
analytical expressions for the directivity pattern for a given mode. Following this
analysis, Homicz and Lordi (1975), have shown that certain approximations may
be made to this exact solution to enable useful information to be obtained about
the radiation pattern without recourse to a digital computer. The location of the
principal lobe in the radiation pattern can be calculated and the location of minima

in the radiation pattern. A sample application of these simple formulae is also



given and compared with an exact solution. Useful qualitative information
concerning the duct radiation pattern is also derived from the exact solution.
Homicz and Lordi (1975) show that the number of lobes in the radiation pattern
produced by a given duct mode is determined by the number of modes that may
propagate freely in the duct above their cut-on frequency. It is not clear from this
paper if this would also be true for a duct with soft walls. The previous work by
Homicz and Lordi is based almost wholly upon the earlier work of Weinstein, but
also includes the work by Lansing (1969), which used the Wiener-Hopf technique

to examine the effect upon the radiated field of introducing a uniform axial flow

within the duct.

An alternative computational method for the calculation of the radiation from a
baffled and unbaffled, semi-infinite duct with hard walls is given by Beckemeyer
and Sawdy (1975). An approximate solution based upon a spherical wave function
technique is compared with other previously published methods for the unbaffled
duct. Directivity patterns calculated using previous work are compared with those
produced by the new method. Agreement is shown to be good for the example

used of a plane wave incident on the end of the duct.

The case of a finite length duct, has been examined by Johnson and Ogimoto
(1980). In this paper the Wiener-Hopf technique is used to calculate the internal
and external acoustic fields. When examining a finite length duct, the possibility
exists for there to be acoustic interaction between the two ends of the duct.
Johnson and Ogimoto overcome this problem by only considering a duct in which

the length is chosen to be sufficiently large that this interaction may be ignored.

This acoustic interaction between the ends of the duct is discussed extensively by
Wang and Tszeng (1984). The effect of the interference between the two duct
apertures is identified in the calculations of the radiation impedance, reflection
coefficient, and subsequently the far-field radiation pattern. It is shown that the
interference effects between the two ends reduces for high frequency waves and
for long ducts. This effect can be understood by considering the radiation
impedance of each end of the duct separately. The value of the radiation
impedance is governed not only by the self impedance of the end, but also by a
mutual impedance term between the two ends. It is intuitively obvious that the
mutual impedance term will diminish as the relative length of the duct is increased
compared to the wavelength. For higher order modes, Wang and Tszeng also make

comparisons between the far field directivity patterns of different duct geometries



for a single duct opening (semi-infinite duct) and a double duct opening (finite
length duct). The results presented indicate that for small values of ka the

radiation at angles more than 90° to the duct axis is significant.

This fact has previously been observed by both Lordi et al (1974) and Lansing
(1969). Because of this significant radiation at angles more than 90° to the duct
axis, it is possible in a short length duct that the radiation from one end will
directly interfere with the radiation from the other end of the duct. Therefore a
difference in the directivity patterns for low values of ka with a short length duct,
and a semi-infinite duct should be expected. Homicz and Lordi (1975), have
demonstrated that modal order is shown to influence the radiation pattern of a
short length duct, since the directivity pattern is related to the order of the incident
mode. Graphs of the far field directivity are presented for the first 3 azimuthal
mode orders. It is shown that as ka increases beyond a value of 6, the acoustic
radiation at angles greater than 90° to the duct axis, reduces dramatically. For a
longer length duct, these effects will be reduced because the two external fields

have a greater separation than from a short duct.

Rice (1978), has applied approximations to Bessel functions in terms of a series of
sine and cosine terms to describe analytically the radiation pattern produced by a
large number of modes incident upon the end of a flanged, hard-walled duct. This
is an extension of previous work by Saule (1977), which whilst not using the
approximations made by Rice (1978), was limited to the special case of equal
power in each mode. Rice compares the predicted far-field pressure given by both
methods for an example that assumes equal power per mode. The agreement
between the exact and approximate solutions is shown to be very good for a
summation of 1000 modes. Rice makes the observation that the approximate
solution does neglect the contribution from some of the side lobes. The exact
solution however, shows that the number of side lobes is dependent upon the
radial mode number n. This analysis follows from similar work conducted by
Rice, (1976a) and (1976b), in which the attenuation characteristics of duct liners

are optimised for different modes in the duct.

2.3 Summary and conclusions from the literature.

The analysis of acoustic propagation in cylindrical waveguides has been widely

published in the literature. In particular, the case of a hard walled, infinitely long,



axisymmetric duct has often been studied. However, the infinitely long duct does
not allow for the reflection of acoustic energy at a duct termination, or take into
account sound radiation from an open end of the duct. It is thought that the case of

either a semi-infinite or finite length duct would be more relevant for the purposes

of the present study.

Before a derivation of an analytical model the following important observations

from the literature are worth noting:

(1) The case of a duct terminated by an infinite baffle is simpler to
model and has the added advantage that the acoustic near field may be
calculated using the Rayleigh Integral. This would enable comparison
between the measured experimental data and predictions, and would also
enable the prediction of the important wavenumber spectrum near to the
duct exit. It is necessary to arrange the measurement plane as close to the
duct as possible for accurate far field predictions, and to avoid windowing
problems at the edges of the measurement array. However it is essential to
place the measurement plane sufficiently far away from the duct to avoid
the measurement of high order evanescent modes close to the duct exit.
These evanescent modes may cause aliasing due to finite bandwidth of the

measurement system.

(11) The disadvantage of using a baffled model is that it ignores all
radiation at angles more than 90° to the duct axis. It has been reported in
the literature that this error is large at low ka and low modal order. This
may not be important given the high frequency nature of the source to be

modelled.

(iti)  Expressions for the far-field directivity associated with an
unbaffled duct have been derived previously. However these are lengthy,
and may take considerable time to compute over a wide frequency range.

Also expressions are not available for the near-field of an unbaffled duct.

Having conducted a literature review, it is proposed that the calculation of the far-
field radiation from the duct be divided into two separate problems. The first task
is to calculate the internal acoustic field within the duct for a given acoustic
source. Once this has been determined, then the pressure and particle velocity over

the end of the duct can be specified. Assuming the duct is terminated by an infinite



baffle, the particle velocity over the end of the duct may then be used to calculate
the acoustic pressure outside the duct using the Raleigh Integral. In this way it is
possible to compare experimentally obtained pressure data over the 64x64 position

array, with pressure values derived from the mathematical model.

The ultimate objective of the mathematical model is to describe and examine the
propagation and radiation from a finite length duct containing a source. Given the
level of complexity of the finite length duct problem, it is necessary to analyse
several intermediate (and simpler) problems before attempting to solve for the
finite length duct. This approach is extremely desirable as it avoids the underlying

physical principles from becoming obscured by the detailed mathematics.

24 A simple model of the sound propagation within an infinitely long

circular duct

In this section the important equations relating to the propagation of acoustic
waves through a circular waveguide are presented. Before attempting to analyse
the behaviour of a finite length duct, it is important to understand the physical
principles of acoustic propagation within a simple circular duct. The most straight
forward is perhaps the case of a uniform and infinitely long duct, with acoustic
waves only travelling in the positive direction. This simple approach ignores
reflections caused by discontinuities in the duct (such as an open end), but it does
act as a useful vehicle for appreciating the more complex problem described later

in section 2.6.

Morse (1948), has shown that the positively travelling pressure distribution in an
infinitely long circular duct can be expressed as a series of duct modes. The

complex pressure contribution from each mode may be written as (see figure 2.1)

P (728,2) = A d (keI mOHED), 2.4.1)

Where 4,,, is an amplitude coefficient, and r, 8 and z refer to the radial, azimuthal

and axial components respectively. J,, is the Bessel function of the first kind of

integer order m. Note also that each mode within the duct has its own axial
wavenumber k;"", and radial wavenumber k™" . The indices, m and n refer to the

azimuthal and radial order of the mode. The value of k" is determined by the

boundary conditions at the duct wall, and the relationship between this radial



wavenumber and the axial wavenumber, k,", will be given later. A suppressed

time dependence of ¢/ is understood throughout.

Notice also that the pressure of each mode may be considered to be the product of
a modal amplitude and phase terms, Am”e_jkz ¢, and a mode shape function,

mn N = jmo
J (k. r)e .

As there are no reflections, the total field within the duct is an infinite sum of

these forward propagating duct modes, and is given by

oo

°° 3 6 k/”/lz
Piowat(1,8,2) = z 2A17111J171(k;’-71’1r)3 JimorlT), (24.2)

m=—co n=0

Applying conservation of linear momentum in the radial direction to equation

(2.4.1) gives

aulnll ] ap n
Lt = 243
ot p or ( )

th

where u™ is the radial particle velocity of the (m, n)" order mode, and p is the

¥

density of the surrounding fluid medium.

This results in the following expression for the particle velocity in the radial

direction, i.e. normal to the duct wall, for a single duct mode

mn
A, k!

o mn
" (r,0,2) =~ o T (ke O, (2.4.4)

where the prime on the Bessel function indicates a derivative with respect to the

argument 7 .

The above equations for the pressure and particle velocity can be related to the

acoustic impedance Z, at the duct wall by

p
7 = Emn
mn
rdr=a

(2.4.5)

k4



where a 1s the duct radius. Using equation (2.4.5) it can be shown that the radial

wavenumber satisfies the following relationship

Zklnll ,
a;p I (k" a)=0, (2.4.6)

Jm (k;nna) +

which simplifies to

mn
ZK!

pe

(k" a) + T (k™a)=0. (2.4.7)

Note also that the acoustic impedance at the duct wall, Z, may be defined non-

dimensionally as

Z
Rl o8 (2438)

where {, is the non-dimensional acoustic resistance, and {, is the non-

dimensional acoustic reactance of the duct wall.

Equation (2.4.6) above then becomes, in terms of the useful frequency parameter

* ka or Helmholtz number

jkal, (K™a)+ka(C, +jC,) T, (k"a)=0. (2.4.9)

From the above it can be seen that if the duct wall impedance is allowed to take
both real and imaginary values then the radial wavenumber k" will also be
complex. Thus for an arbitrary wall impedance, {, +jC,, then from equation

(2.4.9) Bessel functions of complex argument must be computed to solve for k.

However there are two limiting cases of particular interest in the present context,
these are the hard wall and pressure release boundary conditions. The hard wall
boundary condition requires that the particle velocity must be zero at the duct wall.
(Or equivalently the momentum equation states that the pressure gradient must
also be zero at the duct wall). From (2.4.3), and equating the particle velocity to

zero results in the following condition for the radial wavenumber



I (kM™Ma)=0. (2.4.10)

Thus for any given value of m, there will be infinitely many values of k™" a that

satisfy this equation, and these are given by the zeros of the Bessel function

derivative, J; (k'""a). However, it will be shown that there exist only a finite
number of k,"'a values that represent modes that can propagate freely and carry

acoustic energy. These correspond to modes that have real axial wavenumber.

The axial and radial wavenumbers are related by the following equation

2
k=l =k 2.4.11)

By inspection of equation (2.4.11) it can be seen that there exists a maximum
value of k" such that the axial wavenumber k," remains real. This is termed the

cut off frequency for a given mode, and is given by the condition

/ 2
k;m - k2 _ k;nn =0. (2.4.12)

Alternatively, this may be viewed as there being a lower limit to k, (which may be
the frequency of a source), such that the source may propagate waves within the

duct of a certain modal order. Expressed in this way, the term cut-on is often used.

From the above it can be seen that if k" is larger than k then the axial
wavenumber will be purely imaginary. From the expression for the acoustic
pressure given by equation (2.4.1), then it can be seen that this represents an
exponentially decaying, or evanescent wave. Referring to (2.4.2), the field may be
described as an infinite series of modes, but there will be only be a finite number

that can propagate within the duct.

The pressure release boundary condition at the duct wall requires a vanishing
pressure when r is equal to the duct radius. Equation (2.4.1) gives the following

solutions for k" a

J (K"™a)=0. (2.4.13)



As before, the above equation represents an infinite series of solutions for k,"a
which correspond to the cut on frequencies for all possible mode shapes across the

duct.

In the discussion of both types of duct, the suffices m and n have an important

"a, then this corresponds to a

physical interpretation. For any value of k,
particular mode shape in the duct that has m diametrical pressure nodes and n

circumferential pressure nodes.

2.5 The acoustic field produced by a point source within an infinite length

circular duct.

The previous analysis provides a means of understanding the principles involved
in the propagation of a series of acoustic modes within an infinitely long duct.
However, the excitation of these modes has been overlooked. The source
mechanisms were ignored and only the propagation of these modes was
considered. This section introduces a point source within an infinitely long duct,
and illustrates how the amplitude of each mode may be found from a knowledge
of three source characteristics: the type, strength, and position of the source in the

duct.

Consider an infinite length circular duct that contains some source distribution at
an axial location given by z=0. Referring to figure 2.2, it can be seen that the
duct is divided into two sections on either side of the source plane at z =0. In side
one, each single forward propagating mode is given by equation (2.4.1) above, and

is repeated here
mn . o _ J (k™ )~—j(me+k£”"z)
Py (r,0,2)= A, J (k. 1)e . (2.5.1)

Explicitly, the present problem is to determine the value of the amplitude term,

A, for each mode. It will be shown that this is determined by characteristics of

the source.

The sum of the pressures from all the forward propagating modes in side 1 gives

the total pressure, which is given by



puy(r0.2)= 3, e N ALy, (kre T (2.5.2)
n=0

m=—oo
The radial mode shape function, v, (kr), is given by

mn
Y (k) = Inhe 1) (2.5.3)

N,

mn

where the term N, , is a non-dimensional normalising coefficient. The exact form

of this function will be derived later in the next section.

Following a similar approach to that in Section 2.4, it is possible to solve for the
particle velocity in the axial direction. It will be shown that a knowledge of both
the pressure and axial particle velocity is required to match the source with the
acoustic mode amplitudes within the duct. For harmonic motion the momentum

equation applied in the axial direction to a single mode, is given by

mn
W (1,0,7) =~ P82 (2.5.4)
- Jjop 0z

Applying the momentum equation above to the acoustic pressure in equation

(2.4.2), the total axial particle velocity in side 1 is given by

e 53

] —i(m i
e (1,0,2) == 30 3" Ay Wy () e, (2.5.5)

m=—oco n=0

which is equivalent to

1 i . e _apmn
(8.2 = 2 e jmevzokz’" " A Y k) 5 (2.5.6)
n=

m=—eoo

By a similar argument, the total pressure and total axial particle velocity in side

two of the duct are given by

o0
sp

pP00.= 3 Y By Wi (ke (2.5.7)
n=0

H=—o00

] - —jm o ni i
u 0.2 == 3 e R B Y ) e (25.8)
n=

m=—oo



It is will be shown how the values of the coefficients A,,, and B,,, may be found

by matching the pressure and particle velocity with that of the source.

Consider a point monopole source at an axial location z =0, and azimuthal and
radial locations of 8, and r, and respectively. For a monopole source within an

infinitely long duct, by symmetry it is obvious that the modal amplitudes 4,,, and
B

nn

reasonable that a monopole should radiate equally on either side of the source

will be equal for all corresponding values of m and n. Put simply it is

plane.

This principle is expressed by the continuity of acoustic pressure at the source

plane z =0, and for a monopole source!

p = p®, (2.5.9)
Therefore
A, =B (2.5.10)

min-

For a monopole source, there is a difference in the axial particle velocity at the
source. This difference in the axial particle velocity immediately either side of the

source plane at z =0 is given by

Au,(r,0,z=0)=

.

2 - jm mn
,ze ’ eZkZ AmnWmn(kr)' (251])

m

For a point monopole, then the source strength distribution over the duct cross

section is given by

—Q—S(r——rs)S(G-GS), (2.5.12)
.

R

I For an axial dipole source, the difference in acoustic pressure either side of the source plane is
non-zero and may be equated to the dipole strength. However, for a dipole, the difference in

particle velocity is zero either side of the source plane.



where 6, and r, are the azimuthal and radial locations of the source respectively,

and @ is strength of the monopole source.

This may be verified by integrating equation (2.5.12) over the duct cross section,

S, which shows that

Jznj(lQ—S(r—rs)ﬁ(e—-é)s)rdrdG:Q. (2.5.13)
0 Y0 r

This difference in particle velocity either side of the source plane, may be equated

to the source strength expression given by equation (2.5.12), giving

_Q_S(r -r)0(0-6,)= kiz eI Z k" Ay W o (K1) (2.5.14)
Ty pc o

m

The mode shape functions, v, (kr), are orthogonal?, such that

J\an(kf) ey (krye?dS=1, form=p and n=gq, (2.5.15)
%
fw,,l,l(kr) e“j’"e\;/pq(kr) e dS=0, form#p or n#gq, (2.5.16)
S

where S is the duct cross section. Therefore multiplying both sides of equation
(2.5.14) by vy, (kr) ¢/ and integrating over the duct cross section S, and noting

that dS = rdrd6, gives the following expression

o

T

!

O ey
oy

Q—S(z‘ )80 -0, (krye ™ rdrdo =

21 a
2 ~jm8 _jp mn
J J k__ze ! ee”ezkz 1Amn \]!mn(kl’)l’dl”dﬂ
00 pe m n
(2.5.17)
Using the sifting property of the delta function (Bracewell, 1986), gives
. ) 2% «a
QWm/z(krs)ejmex - };EZ J. jkglilAlvlrl \ymnz(kr)rdrdé), (2518)
0 0

2 see Appendix A



and performing the integral with respect to 6 on the right hand side gives

O i) = Tl [y 2y (25.19)

kpc 0

By definition of the normalised mode shape functions

a
[ W Ceryrdr=1. (2.5.20)
0

Therefore equation (2.5.19) becomes

) mn
O (k)" = ks (2.5.21)
‘ kpc

Thus the amplitude of each mode is given by

kp(,‘ jmo
= OV, (kr Y™ (2.5.22)
Z

For a circular duct the mode shape function is a Bessel function, hence equation

(2.5.22) may be expressed as

_ Qop T (M) o, (2.5.23)

A =
mn mn
4rk z N mn

Therefore it can be seen from equation (2.5.18) that the value of amplitude of each

mode is determined by the value of the mode shape function at the source position,
6, and r,, multiplied by the source strength at a single frequency ©.



2.6  The acoustic radiation from a semi infinite circular duct, terminating

in rigid baffle.

In the previous sections, the important characteristics of the acoustic propagation
within a circular duct have been demonstrated. However, this analysis dealt with a
very special case, namely an infinitely long duct containing only modes travelling
away from the source. Furthermore, since the duct was of infinite extent, there is

no radiation from an open end.

Obviously, for many practical purposes the special case described above will not
be sufficient to model the acoustic propagation. In particular for the present
application it is necessary to include the effects of finite length, and radiation from
the open ends. Also it is desirable to examine the radiation from the duct by
different sources within it, and how a particular this radiation is effected as the

source i1s moved near to the duct wall.

This section builds upon the understanding of the infinite duct given in sections
2.4 and 2.5, to examine the radiation from a semi infinite duct. This is a duct with
only one open end, and the other may be considered to extend to infinity (or be
terminated anechoically). As a reminder, the ultimate objective of the analysis is to
describe and examine the propagation and radiation from a finite length duct
containing a source. However, the additional analytical complexity incurred by

assuming that the duct be terminated at one end is sufficient to warrant separate

description.

The first step in the process is to divide the overall problem into two parts; by first
examining the field within the duct, and then look at the radiation, given a particle
velocity distribution over the open end of the duct. With a semi-infinite duct, there
will be acoustic reflection at the open end caused by the impedance change as the
sound propagates toward the open end. In this section the important parameters

that are needed to calculate the internal acoustic field are derived.

It will be seen that the reflections at the open end of the duct are calculated by first
finding the impedance of each mode. Whilst the general method of calculating
these modal impedances follows that given by Zorumski (1973), considerable time
has been taken to correct many of the errors found in this paper. Furthermore, a
detailed derivation of all the principal equations and functions used are listed in

separate appendices. Perhaps the most important of these errors is that the



expression for the modal impedances given by Zorumski was found to be incorrect
regarding the sign of the real part. This error has been corrected in the analysis that
follows. Therefore the approach taken in this section is taken from the paper by
Zorumski, and corrections are made where appropriate. Equation (2.6.1) to
equation (2.6.36) are those based upon this earlier work. The matrix solution for

the finite length duct which follows is original work.

Consider a circular duct whose geometry is given by figure 2.3. The acoustic field
within the duct is composed of forward and backward travelling acoustic modes.
Using the expressions given by equations (2.4.2) and (2.4.4) the pressure and axial
particle velocity within the duct are given by (a time dependence of e’ s

assumed throughout)

[7(1’,6,2) = 2(3]”79 z [A/nn ¢ ke + an o ] WVonn <k’) (261)

m=-—oo n=0

Note the similarity between (2.4.2) and the above equation. Again each mode may
be considered to be constructed from a mode shape function ,,, (kr) ¢/™®, and an

amplitude and phase term A, ¢ I % The axial particle velocity is given by

€2 i K
i, (I’ 6 Z) = Z sm0 Z an[ mn € T Brmz o }Wmn (kl”) (262)

pc m=—oc

where €2~ may be considered to be a non-dimensional axial wavenumber which

mn

is related to the conventional axial wavenumber k. by

mn
kZ

o (2.6.3)

Q

The indices m and n refer to azimuthal and radial order respectively. A non-
dimensional radial wavenumber A,, which is related to the conventional radial

wavenumber k" is defined as

knm
A =t 2.6.4
mn k ( )




The values of k" form an ordered sequence. As in section 2.4 the value of k™"
depends upon the boundary conditions at the duct wall. Equations (2.6.3) and
(2.6.4) are related by the dispersion equation

Q. =y1-1,". (2.6.5)

This is equivalent to equation (2.4.11). The mode shape function, V,,, (kr), is
normalised and given by

J (A kr)
k — m Hh .
WInn ( r) N

mn

(2.6.6)

The eigenvalues A are determined by the boundary conditions at the duct wall. If

min

the duct wall has an arbitrary wall admittance denoted by 3, where a is the duct

radius, then the characteristic equation for the field within the duct is given by

lﬂa ‘]m (;{'I?TIlka) + A‘Inll ‘]I,)Z (}Lﬂlllka) = O 3 (26-7)

where the prime on the second Bessel function in equation (2.6.7) refers to
differentiation with respect to radius. This equation may be derived by applying
the momentum equation to the duct wall in the radial direction to the pressure

given as equation (2.6.1)

___ Lo
Jjkpe or lr=a’

(2.6.8)

Equation (2.6.7) gives the relationship between the radial wavenumber A4,,,, and
the duct wall impedance 3, that may take any value. For an arbitrary, complex

wall impedance, then 4,, will be complex, and results from the computation of

Bessel functions of complex argument. Much of analysis that follows makes
specific reference to the simpler case of duct walls that are either rigid or pressure
release. However, these are just two special cases for the duct wall impedance, and
do not limit the potential application of this analysis to the study of ducts of

complex wall impedance.



Using this notation, for the hard wall boundary condition f,=0, solutions of
equation (2.6.7) are given by the zeros of the derivative of the Bessel function,

given by

=0. (2.6.9)

r=a

d
—J (A,.k
(9,_ Hl( nin r)

For the pressure release boundary condition at the duct wall, 8, = eo, and

=0. (2.6.10)

r=a

J (A, ka)

mn

The radial modes are orthogonal and therefore the normalising factor given in

equation (2.6.6) is chosen such that

[ 12 Cr)r = 1. (2.6.11)
0

Substituting equation (2.6.6) into equation (2.6.11) and evaluating the integral
gives the required form of the normalising function (Watson, 1962).

e

2 bl
a m 2 ) 1
N =— =] “(A, ka)+J A,k . 2.6.12
mn [“2 {( }\‘ 2k2a2 J m ( mn a) m ( mn a)[ ( )

nmn

For the hard walled duct case, equation (2.6.12) may be further reduced using the

relationship given in equation (2.6.9)

al,(n, ka) m?
N - m\Vmn _ ; 2.6.13
mn \/5 7Lm,‘12k2a2 ( )
and for the pressure release boundary condition, from equation (2.6.10)
N, =-27 (A, ka). (2.6.14)

mn m
N2

The pressure and particle velocity at the end of the duct (z = 0), may be expressed

in terms of duct modes as



p(ry) = 26”"9" 2 > W (K70, (2.6.15)

=00
u(ro>—~ Z 7% Z VoW (k1 ). (2.6.16)

m*—*oo n=()

Where, 1, is a position vector in circular co-ordinates, with components ry and 6,

at the duct exit, (see figure 2.3), and where P,,,, and V,, are given by

Pmn = Amn + Bm;z b (26. 17)
‘/mn an (Amn mn ) (26 I 8)

If the duct is assumed to be terminated in a plane rigid baffle, the acoustic field
outside the duct may be found using the Rayleigh Integral, and depends upon the
axial velocity over the end of the duct. The Rayleigh Integral is given by

e — jkh

p(r )“‘Jkpc

> jo Jfo rott(r) drydf,, (2.6.19)

where the position vector T refers to points in the external field, z 2 0, and where

h :\/r2 +r02 -2rp cos(8-80>+22. (2.6.20)

Substituting equation (2.6.16) into equation (2.6.19) gives

- ]kh

p(l’) jkpc jzn p Zeﬂne 2 nn“’mnucr) drOde()’ (2.6.21)
c

n=-—oco n=0

which becomes

oo . - jkh
(1) Zef’"e Z - Jizn Jm8y folroe“f W, (kry )dryd®y.  (2.6.22)

m=—oo n=0



Equation (2.6.21) gives the external field in terms of the modal velocities at the
end of the duct. This equation is usually solved numerically. It is possible to
express the function of 4 in a more convenient form to enable a tractable analytical

solution for the internal field to be found. From Watson, (1962), the exponential

term may be expressed as

- j/\/l

=k[ o7 1) Jy(ekh)dr (2.6.23)

where 7 is a dummy variable.

At the duct exit, the integrand of the Bessel function in (2.6.23) may be replaced

using Neumanns addition theorem for Bessel functions (Watson, 1962).

1
Jo(thh) = Jo(rk[rz + 12 = 2rrycos(@-0,) + 22]2 ) (2.6.24)

From Watson (1962)3, then Neumanns addition theorem states that if a function is
defined as y = \/Zz +7% —2Zzcos ¢, then

Jo(n= 3 12T, (2) ™. (2.6.25)

=-~o0

This gives, using equation (2.6.24)

Jo(tkn)= 3 Iy (thr ), (tkry )" @), (2.6.26)

H=—0c0

Substituting equation (2.6.26) into équation (2.6.23) gives

- _ B
¢ Ze[f’"(e“"’)] ) (e =1) 21, (thr)J,, (thr ). (2.6.27)

m=-—oo

Equation (2.6.22) for the pressure at the duct exit can now be expressed as

3 p358, equation |



rO = /k2 Zejme 2 an T<T2 ”I)m%‘]m(ﬁckrO)J’: o an(TkrO)erz<krO)drdT

m=-—oo
(2.6.28)
We know define the function, D,,,(7) given by
a

Dmn(T) = kJ'O rOJm (TkrO)Wmn(krO )d'O (2629)

The integral above may be evaluated directly, Watson (1962)*
D (1) = ’Cwmn(ka)fm(’fk;) : _m;;vmn(ka) (Tka)}, (2.6.30)

nin

Then equation (2.6.28) may be expressed as

p(l‘) jk Ze]nze 2 an. ( ) ljm(”ckr)Dnm(’C)d”C. (2.6.31)

=00

Equations (2.6.15) and (2.6.31) may now be used to solve for the modal pressure

amplitudes in terms of the modal velocity amplitudes’

mn Z Zmnl ml - (2632)

Where [ is the radial order of the reflected mode, and n is the radial order of the

incident mode. The above equation relates the modal pressure amplitudes within
the duct to the modal velocity amplitudes. The term Z, ., is the coupling

impedance between the pressure and velocity.

Due to the symmetry of the duct, the azimuthal order is shared by the incident and
reflected modes. In equation (2.6.32) Z_, is the modal generalised impedance, and

is given by

4 see Appendix B
5 see Appendix C



oo ~L
Zo = J J; W72 =1) 7 Dy (00D, (R)d. (2.6.33)

Equation (2.6.32) may be split into two integrals over the ranges (0,1) and (1,0).

Using a change of variable such that

T=sin¢, (2.6.34)
T=cosh§, (2.6.35)

in those respective ranges given above. The expression for the generalised

impedance then becomes®

Zynl = Jgsin ¢ D,,,(sin®d)D,,(sind)d¢ + jfo coshE D, (cosh&)D, ,(cosh&)dE .

(2.6.36)

Expressed in this way, it is possible to compute the real and imaginary parts of the
radiation impedance separately. This statement is only true if the impedance at the
duct wall is purely real, which is the case for a hard wall and pressure release wall.
If the duct wall is made to take any complex impedance value, the expression for
the radiation impedance given by equation (2.6.36) is still valid, but each integral
in equation (2.6.36) will no longer produce purely real answers. The reason for

this is that for a complex wall impedance, the value of the radial wavenumber will
be complex, hence the terms A, and A,,; will be complex, and hence the

computed functions D,,,(7) and D,,(t) will be also have real and imaginary

parts.

2.7 The calculation of the modal radiation impedance.

Upon inspection of equations (2.6.30) and (2.6.35) it would appear that they may
contain poles at sin?¢=2%, and sin” ¢ = k%n, for the real part, and for the

mn

imaginary part, poles at cosh? £= 7»%”,1 and cosh? E= K%n,.

However, by application of L'Hépital's rule, it is possible to show that the limiting
value of the function D,,,(T) in equation (2.6.30) is finite (full details are given in

6 see Appendix C



Appendix D). This may be explained simply from examination of the function
D, (t) which is used to calculate the modal impedances

D,

min
’ A 212

mn

()= {a[wm(kaw,;(rka)—— x,,mw:mxka)Jm(rka)}}_ e

In the limit as T— A, then the denominator tends to zero, and it would be
reasonable on this evidence alone to expect the function D, (1) would tend to

infinity. However, as T— A,,,, the numerator also tends to zero. This can be seen

by expanding the numerator of equation (2.6.30) as follows;

T ‘]m ( }\./ kr JI;’[ ( 7\’ mn kr)

o J )’n (Tkr ) - 7“mn

nin min

T, (tkr). 2.7.2)

Figure 2.4a shows the value of the real and imaginary parts of the radiation
impedance plotted against ka, for the plane wave mode, i.e. m =0, n =0, incident
upon the end of a hard walled duct, and a plane wave reflected at the end of the
duct. Figure 2.4b shows the mode shape of the incident and reflected modes.
Examination of equation (2.6.32), shows that these radiation impedances may be
considered to be the impedance of a radiated m, [ order mode away from the open
end of the duct, due to an incident m, n velocity mode at the end of the end. A
plane wave radiating from the end of the duct is analogous acoustically to the
textbook problem of radiation from a circular piston in an infinite rigid baffle.
Consequently, the radiation impedances for each of these cases should yield
identical results. A comparison of figure 2.4 with the radiation impedance of such
a piston as given by Kinsler and Frey er al (1982) for example, shows that these

two impedances are indeed identical.

In calculating these impedances, the integration in equation (2.6.36) was
performed numerically using Simpson's Rule. Referring back to equation (2.6.36),
then the for real part of the impedance the function is integrated over the range
0<¢<m/2. Accounting for the behaviour of the integrand in the region of
sin?¢ =22, and sin ¢ = K%n, as noted above then this integration is
straightforward. At first sight the integral required to compute the imaginary part
of the impedance in equation (2.3.36) looks more difficult. This is because it is a
semi-infinite integral, where the range of integration is given by 0<E<eo.
Fortunately, due to the nature of the integrand this does not pose too many
difficulties. Since the integrand is of the order of cosh‘3§ then it follows that the



integrand is approximately zero for all values of & above about 10. At £=10, the
value of cosh™ E is 7.48x% 10713, For the calculation presented here the range of
integration for the imaginary part was truncated at £=20. Using Simpson's rule for
the integration both the real and imaginary parts were divided into 1000 strips, and
all the computation of the integration was performed using MATLAB. As this
software is optimised for speed in the calculation of vector and matrix problems it
is extremely quick in performing the necessary summations required to evaluate

an integral using Simpson's rule, which for completeness is given below as

I
A= ghm +AY + 2y +4yy o+ 2y AV T V) (2.1.3)

where A is the value of the integral, k= (b~a)/n is the width of each strip, [a, b]

is the range of integration, and # is the number of separate evaluation points strips
over the integration range. The values y,...y, are the values of the integrand

evaluated at each point n over the integration range. Thus the integration of a real
function y = f(x) from a to b is approximated by dividing the interval up into an

even number of 1 points Xy, Xy, X3, ...... x,.1- The corresponding ordinates at these
points are y;, ¥, ¥3, ... Vp—i- The repeated numbers 4 and 2 in equation (2.7.3)
form a vector known as the weighting function, w. Therefore to compute the value
of A using MATLAB, it is first necessary to evaluate y;, y;, y3,...... V-1 from the
values of xj, x5, x3,...... x,.;- These can be determined very quickly by making
the values x;, xp, x3,...... x,_; a vector of length n. The vector of y values then

follows from the integrand. The value of the integral A is simply the scalar or dot
product of the weighting function vector w and the vector y which is given by
y:yl,yz,y3, ...... y”_].

Figure 2.5a shows the value of the real and imaginary parts of the impedance for
the higher order mode, m=0, n=0, [=2, in a hard walled duct. This represents the
coupling impedance of a plane wave mode incident upon the end of the duct (i.e.
m=0, n=0), and a reflected 3rd radial order mode (/=2). Note that both the real
and imaginary parts of the impedance are non-zero in the region of the cut-on
frequency of the 3rd radial order mode at ka =7.02 (for m=0). The incident mode
shape is shown in figure 2.4b, which is the familiar plane wave mode, and the
reflected mode is shown in figure 2.5b. These, and all other mode shape plots are
to illustrate the shape of the mode either incident or reflected at the end of the
duct, and as such are do not have representative amplitude to the modes within the
duct. Also the contour lines shown beneath the mode shape plot show the nodal

lines of the mode shape. The number of these lines is directly related to the order



of the mode. For example, the m=0, [=2, reflected mode has 0 azimuthal nodal

lines, and 2 radial nodal lines.

The observation of a significant degree of coupling between these modes is of
vital importance as these coupling impedances cannot be ignored in the calculation
of the reflection coefficients, and hence the internal and radiated acoustic fields for

the values of ka of interest in this thesis.

It is important also to note the form of equation (2.6.33). It is clear from this
equation that the radiation impedance of a m,n,[ order mode will be the same as
that for a m, 1 n order mode in the same duct. To illustrate this, figure 2.6 shows the
radiation impedance for a m=0, n=0, I=] mode, and the impedance of a m=0,

n=1, I=0 order mode. Clearly these are the same, as expected.

Figures 2.7 and 2.8 show the radiation impedance for a various modes in a hard
wall duct. Figure 2.7 illustrates how the impedance changes for a fixed azimuthal
order, while allowing n and [ to vary. Alternatively, figure 2.8 shows the
relationship between impedance and azimuthal order. Not surprisingly, the
radiation impedance is greater when n=I[, which corresponds to the radiation of an
m,n order mode, due to a m,I mode at the end of the duct. It is expected that the
coupling between these two modes will be greater than for two different radial

orders.

By way of comparison with the above, figure 2.9a shows the impedance of the
m =n=0 mode incident upon the end of the duct, and a m =[=0 order pressure
mode radiated from the duct, for a pressure release boundary at the duct wall.
Figure 2.9b, shows the mode shape for this mode in a pressure release lined duct.
What is interesting to note about this mode shape is that it is clearly not a plane
wave. As a result of the boundary condition within a pressure release lined duct,
that there is zero pressure at the duct wall, then this explains why the pressure is
zero at the extremities of the mode shape. The shape of the mode is explained by

examining the generating function for the mode shape, which in this case is
proportional to J,(k,r). For the lowest order mode in a pressure release lined duct,

then k,a is equal to 2.40. Therefore when the value of r=a, where a is the duct

radius, then the mode shape is zero. Elsewhere it takes the form of the Bessel
function. Since the value of k.a is non-zero for this lowest order mode, then this

implies that there is a cut-on frequency for even this mode. If the source is



radiating at a frequency below ka =2.40, then the total field inside the duct will be

composed of evanescent modes.

Figure 2.10 shows the impedance in a pressure release lined duct for various
modes with the same azimuthal order. Figure 2.11 shows the radiation impedance

for various azimuthal orders in the same duct.

2.8 The modal reflection coefficients.

To solve for the internal field it is necessary to calculate the reflection coefficient
for each mode incident upon the end of the duct. In this section it is shown how
the expression for the modal impedances derived previously may be used to

calculate the modal reflection coefficients at the duct exit.

The acoustic field within the duct is composed of a series of forward and
backward propagating waves whose amplitudes are given by A,, and B, . These

two variables are related using the expressions in equations (2.6.17) and (2.6.18),

which are repeated here

Pmn = Amn + ans (2-8- 1)

an = Q,,m (Amn - an) - (282)

Substituting equations (2.8.1) and (2.8.2) into the expression for the impedance
given by equation (2.6.32) gives

oo

( mlem/ +8n[ Z mle‘ml /zl)Aml’ (283)
=0

Mx

T
o

where 9, is the Kronecker delta function defined as

O, =0forn#l,
o

o =1forn=1.

Solving the above equation for B, results in an equation of the form

mn



Bpn = 2 Ryt Ami- (2.8.4)
=0

The terms R, are the reflection coefficients that can be related to the modal
impedance Z.,,; by the following infinite matrix equation, (that is [=co in
principle). For a given value of azimuthal order, the reflection coefficients are

given by
Ro=[Zoy Q+1]" %[ Zyu-1] (2.8.5)

Where I is the identity matrix defined as

10 .0
01 .. 0

1=, . (2.8.6)
00 I

and where € is a diagonal matrix. For fixed azimuthal order m, Q, is given by

Qo 0 ... O
0 @ .. 0

o= . 2.8.7)
0 0 - Q;

Note that the m dependence has been suppressed in equations (2.8.5) and (2.8.7),
and thus ) given in equation (2.8.7) is only valid for one value of azimuthal

order at a time, and generally will be different for each value of m. Here [ is the

radial order of the reflected modes, where 0 <[ < oo.

The reflection coefficient matrix is defined as

Roo Roir - RoL
Rio Riir - RiL

Ry = T (2.8.8)
Rno Rn1 - RnL

and for fixed azimuthal order m, the impedance matrix is given by



Zoo Zoi  ZoL
Zio Zuy o ZiL (2.8.9)

nl —

ZNO ZN1  ZNL

Note the form of equation (2.8.4), since it illustrates the nature of the reflected
field within the duct. For one incident mode upon the end of the duct, the reflected
field takes the form of an infinite series of other modes with the same azimuthal
order, but having all radial orders up to infinity. Obviously in practice it is not
possible to compute the reflection coefficients for all the reflected modes as they
are infinite in number. However, since only a finite number of modes may
propagate freely in the duct at a given frequency, then it is possible to ignore

modes that are highly evanescent, but not all evanescent modes.

Therefore to calculate both the impedance and reflection coefficients it is
necessary to first truncate the number of reflected modes at some value of radial
order at some value L. This truncation will have an impact on the accuracy of any

calculated reflection coefficients given by equation (2.8.5).

The generalised reflection coefficients may be solved for by first finding the
generalised impedances given by equation (2.6.33). Note these impedances are

specific to each incident mode and duct wall impedance for a given value of ka.

The calculation of the reflection coefficients in practice, first requires that the
azimuthal order be fixed. This reduces the order of the impedance from a 3
dimensional 'matrix' (m, n, and [ all allowed to vary), to a conventional 2
dimensional matrix, which is readily manipulated on a computer. Secondly, it is
necessary to calculate the reflection coefficient matrix, Ry for a single frequency

at a time. This is because the matrix of modal impedances is valid for a single
frequency, and the diagonal matrix, Q; can only be calculated for a single

frequency at a time. This can be shown by remembering that
QI:%:‘h_xﬁ, (2.8.10)

where the m dependence has been suppressed in the above equation.



Therefore in practice it is necessary to solve equation (2.8.5) for each value of m
and k separately, which results in numerous Ry matrices at each value of m and k.

Consequently, the desired reflection coefficient for a given n, [ order mode may be

simply extracted from each of these Ry matrices to give a reflection coefficient

vector, which may be plotted as a function of ka.

As mentioned above, it is necessary to truncate the number of modes in the
calculation of the reflection coefficients to a finite quantity for calculation. For this
thesis, the values of ka under discussion are relatively small, i.e. ka<I5.
Therefore the total number of modes that will be cut-on below this frequency is
limited to approximately 30, for all possibilities of azimuthal and radial order, and
for both the hard wall and pressure release lined duct. For modes that have cut-on
frequencies above the driving frequency of the source, then the elements in the
diagonal matrix ; corresponding to these cut-off modes will be pure imaginary.

Furthermore, when calculating the reflection coefficient matrices given by
equation (2.8.5), it is only necessary to include the radiation impedance of those
modes that are either fully cut-on (i.e. ka < 15), and those modes that are only just
cut-off. It has been found that no extra accuracy is gained by including modal

orders for which the cut-on frequency is given by ka >?20.

Even taking into consideration the fact that the modal orders may be truncated,
there remains a considerable computing overhead in first calculating the modal
radiation impedances, (largely due to the numerical integration that is time
consuming), and then the reflection coefficient matrices for a large number of
modes. Indeed all the reflection coefficients used in this thesis were calculated
using a 30 by 30 matrix for Zy Rp and Q. This is provides considerably greater
accuracy in the resultant reflection coefficients than those reported by Zorumski
(1973), and by Wang and Tszeng (1984).

Figure, 2.12 shows the reflection coefficient for a plane wave incident

(m=n=0), and a plane wave reflected at the end of a hard walled duct
(m=1=0).

It is interesting that unlike the impedance matrix, Zy, the reflection coefficient
matrix, Ry, is not symmetric. For example, consider the reflection coefficient
Ryjo (the convention adopted here will be that the subscript for the modal orders

will be written alphabetically, i.e. R,,,), plotted against ka for a hard wall duct.



This is shown as figure 2.13. By comparison, Ry; is shown as figure 2.14. It can
be seen that these two reflection coefficients are not the same. This is due to
nature of equation (2.8.5), which includes only the axial wavenumber matrix, €

of the reflected modes, and not a corresponding matrix ,Qy,, for the incident

modes.

Figures 2.15 to 2.18 show different reflection coefficients for various modal orders
in a hard walled duct. Figures 2.19 to 2.22 show the equivalent reflection

coefficients for a pressure release lined duct.

To explain the importance of modal coupling it is necessary to examine the nature
of the reflection coefficients at the end of the duct. These reflection coefficients
determine the level of energy reflected back into the duct, together with the modal
decomposition of this energy. At the end of the duct, energy is exchanged from a
single incident m,n mode into an infinite series of m,l modes. If coupling could be
ignored it would require that the modal reflection coefficients be zero for all n# 1.
This is the equivalent to requiring that the non-diagonal elements of the reflection
coefficient matrix given in equation (2.8.8) be set to zero. The larger the value of
these non-diagonal elements the larger the energy exchange between modes.
Consider the case of a m=1, n=1 mode incident upon the end of a hard wall
duct. The reflection coefficient for this mode incident and an m=1, [ =0 mode
reflected back into the duct is shown as figure 2.15. At ka=5.3, the value of the
real part of the reflection coefficient is 0.4. If coupling were ignored, then at this
value of ka, this would assume that this reflection coefficient has a value of 0. If
the m=1, n=1 were dominant in terms of energy, and coupling were to be
ignored then this would produce large errors in the calculated field, as a large
proportion of the energy would be transferred to another mode within the duct.
Because the reflection coefficient is non-zero for the case of the coupled m =1,
n=1, [=0 mode reflected at ka=5.3, this will cause this reflected mode to
interfere with the field within the duct either constructively or destructively at the
source. This has a fundamental influence upon the radiation of the source as it will
alter the radiation impedance of the source, which in turn dictates the modal
amplitude of this mode at this frequency. This latter aspect involves the duct
length, since the phase change of the reflected mode from the end of the duct to
the source will depend upon the axial position of the source relative to the open

end of the duct, and also the axial wavenumber of the mode.



In summary, it is not a trivial problem to state that coupling may be ignored or
included. It will depend upon many factors; the source location, the frequency of
the source and the length of the duct, and the source type. All of these in
themselves will produce huge changes in the power distribution within the modes
propagating within the duct. Depending upon which modes (if any) are significant
in terms of energy, and the value of the reflection coefficient at a chosen
frequency, will determine if coupling may be ignored or not. Most importantly, the
effect of modal coupling cannot be accessed a priori, and requires the field be

calculated with and without coupling to assess its importance.

2.9 A matrix solution for the acoustic field inside a finite length duct.

In this section the above analysis that calculates the modal impedances and
reflection coefficients for semi-infinite duct is used to calculate the field within a
finite length duct. To simplify the following analysis the problem is restricted to
one of fixed azimuthal order, but allowing variable radial order modes. Using
superposition it is possible to solve for the complete field within the duct,

assuming a finite number of reflected modes.

In matrix notation, equation (2.6.1) may be written as

Peym (1,9,2) = e {3T E,a(2) W a(r)+b" E, 0 (2) \u;,(r)} (2.9.1)

where ppy, (r,0,z) is the incident pressure in side one of the duct for a fixed

azimuthal order m. The terms a' and b" are the transpose of a column vector of

modal amplitudes, which have the following form

aT:[Amo At Ay - AmN]’ (2.9.2)

bT = [BmO Bml Bm2 BmL ]v (2.9.3)

where Ay is the modal amplitude of the N radial order mode for a given
azimuthal order as defined in equation (2.7.1). This vector is truncated at Ay
where N is a suitably large value of the radial order such that the field may be

described adequately. Usually the value of N will be determined by trial and error.



The term E,,, is a diagonal matrix of axial propagation factors, given by

[ ok g g
0 eI mke 0
Ena= : : N : , (2.9.3)
O O . e_jgszkZ

and E,,, is similarly defined. The term wy ,(r) is the column vector of mode

shapes given by

\Va(r)T = {WmO(r) Yol (r) WmN(r)]s (2-9-4)

and y,(r) is similarly defined. The reflected field at the end of the duct may be

expressed in a similar matrix form, except here the exponential sign in the terms
within the matrix of equation (2.9.3) will be positive denoting a negative direction
of propagation. The reflected and incident modes are related through a matrix of
modal reflection coefficients. The relationship between the incident and reflected

fields in side one of the duct may be defined as

E,;,(2)b=Ri(2)E,,(2)a, (2.9.5)

where the matrix R;(z) is defined as

Roo(z) Ryi(z) ... Ryn(2)

Rio(z) Ry(2) ... Ry(2)

R,(z) = (2.9.6)

Rio() Rp(2) ... Rpn(2)

The reflection coefficient matrices, R;(0) and R, (I, —1,), i.e. evaluated at either
end of the duct, may be evaluated by the method derived by Zorumski (1973) and
detailed in Section 2.8. This method may be used to calculate the value of R;(z)
and R,(z) at any other location, z within the duct from a knowledge of the
reflection coefficient at the ends of the duct. If the reflection coefficient were

known at some axial location 1, then equation (2.9.5) may be written

E ,(Ob=Ri(DHE,,(Da (2.9.7)



Solving for b in equations (2.9.5) and (2.9.7) and then equating gives

R;(2) =E,;(2)E,;, ()7 R{(DE,,(DE .0 ()™ (2.9.8)
and for side 2 of the duct

Ry (2) = E g (DE,,g (D7 Ry(DE (DB (2) ™ (2.9.9)
Rearranging equation (2.9.5) gives

b=E,,(z)" R (2)E,.(2)a (2.9.10)
Substituting equation (2.9.10) into equation (2.9.1) yields

p(l)m(r’es z)= ejmeaT {Ema(z) + [Emb(z)»] R] (2) Ema(z)]T Emb(z)} Wa(r)'

(2.9.11)

Since both E,,(z) and E,,;, (z) are diagonal matrices, then equation (2.9.11) for

the pressure in side one of the duct reduces to

P (1,0,2) =™ {aT B, (2) 1+ Ry ()]} wa(r). (2.9.12)

Applying a similar approach to the field within side 2 of the duct gives
Pam (8,2 =" {cT B, () 1+ Ry ()T J (). (2.9.13)

For a monopole source at z = -1, in the plane of the source 4p =0, and therefore

equations (2.9.12) and (2.9.13) may be equated to give

aT B, I+ R (1)TT w, ()= ¢ B, (=) [T+ Ry (=) 1] W, (1) .(2.9.14)

Multiplying both sides of equation (2.9.14) by \yaT (where it is assumed now that
vy, and Y, have the same order), and integrating over the duct cross section S,

gives



JaTE o (I I+ Ry (1) W (N (1) dS =

s . i (2.9.15)
J'C Emc(_ll )[I+R2(_l]) ]Wc(r)Wc(r)TdS
S

The orthogonality property of the mode shape vectors may now be used, such that

[ wywnTds=1, (2.9.16)
S

where S is the duct cross section, and I is the identity matrix. Therefore equation

(2.9.15) reduces to
a B, (-1 L+ R, (=) 1= ¢" B, (-1 [T+ Ry (=[] (2.9.17)
Simplifying (2.9.17) gives
a’G, =¢'G,, (2.9.18)
"=a"G,G,7", (2.9.19)

where the matrices G, and G, are defined by
G, =B, (i) [T+ R (=[], (2.9.20)

Gy =E, () [+ Ry (=" (2.9.21)

For a fixed azimuthal order the axial particle velocity in side 1 of the duct is given
by

I ime < Q. k Q. k
uz(l)m(rﬂg’z) = EC— " 0 Z an [Amn ¢ FPimn e an el mn Z] Wonn (r) (2922)
n=0

The expression for the particle velocity given in equation (2.9.22) may be written

in matrix form as

uz(l)m(r’e°2) = eij {aTKma Ema(z) Wa(r) - bTKmb Emb(z) Wb(r)}’ (2923)



. . . - Q :
where K,,, is a diagonal matrix containing the values of —% for each axial

pc
wavenumber given by
PE&Q 0O - 0 ]
pc
Q
o =Smlo 0
Kma=| pc . (2.9.24)
6 0 QmN
L pe

the matrix K,,, may be similarly defined. The particle velocity in side 2 of the

duct is given by
Uzr(2)m (I’,G,Z) = ejm@ {MCTch Emc(z) Wc(r) + dTKmd Emd(z) Wd(r)} (2925)
Using the reflection coefficient relationships these equations become

uz(l)m(r’e’z) = ejme aT [Kma Ema(z) - [E/nb(zrI RI (2) Ema(z)}T Kma Emb(z)] ‘Va(r)

) (2.9.26)
Which reduces to

Uz(tym (F,G,Z) = ejme aTEma(Z) [Kma - RI (Z)T Kma} Wa(r)' (2927)

In side two of the duct the axial particle velocity is expressed by

ey (R 0.2) = " ¢ [-K e By () + (B ()7 Ry (DE e (D] K By (D] W (1)

) (2.9.28)
Which reduces to

uZ(Z)m(r’e’Z) = ejm@ CTEmc(Z) [“—Km(: + R2 (Z)T ch] Wr(’) (2.9.29)
Equations (2.9.27) and (2.9.29) may be written as,

Ur(lym = ejme aT Y[ (2) Wa(r) (2.9.30)



Uy ym = eI T Y, () . () (2.9.31)
where the matrices Y; and Y, are defined by

Y, (2) =B, () [K, = R (2T K, (2.9.32)
Y,(2) = B, () [-Kppe + Ry () K] (2.9.33)

For a point monopole source, the source strength distribution over the duct cross

section is given by

Qﬁ(rwmﬁ(e—es) (2.9.34)
I

A

where 6, and r, are the azimuthal and radial locations of the source respectively,
and Q is strength of the monopole source. This may be verified by integrating

equation (2.36) over the duct cross section, § which shows that

| 2"]“ L5(r—1)8(6-6,)rdrdo =0 (2.9.35)
0 J0 T

where & (x) is the Dirac delta function. At the source, the differences in the axial
particle velocities between sides / and 2 of the duct can be equated to the volume

velocity of the source such that

Auzm(r,G,—ll ) = uz(l)m(r, 9,—11 ) - uz(z)m(l’,e,_ll ) = %6(1" - 1’5)5(9 - 65) (2936)

s

which can be written as

Aty (r0,~) = e aT Yy (r) =™ T Y, v, (r) = 25— r)5(0-6,)
t.

s

(2.9.37)

To match the source to the field within the duct, the orthogonality property of the

mode shape functions is again used. Multiplying both sides of equation (2.9.37) by
e/ vy T(r), and integrating over the duct cross section gives



al Y, (=) =" Y, (=) =0y, T (r,)e s (2.9.38)
where w7 (r,) is a row vector of mode shape function evaluated at the radial
source location r,. Using the relationship between a and ¢ in equation (2.9.19),
equation (2.9.38) becomes

oyT(r)e ™ =aT Yy (~)~a" GG, Yy (1)) . (2.9.39)
This can be simplified to give

q =a’ [Y,-G,G,7'Y,], (2.9.40)
where the source strength vector q is defined by

q"= 0y, (r)e "™ (2.9.41)
Equation (2.9.41) may be written in the compact form

q = al H (2.9.42)
where the matrix H is defined by

H=[Y,-G,G,'Y,] (2.9.43)
Rearranging equation (2.9.43), gives the modal amplitude vector a, as

a=HH"q | (2.9.44)

By solving equation (2.9.44), it is possible to solve for all the other modal

amplitudes within the duct.

Solving for the modal amplitudes, the axial particle velocity given by equations
(2.9.27) and (2.9.29) at either of the two ends of the duct may be evaluated. If the
duct is chosen to be terminated in a rigid baffle, then it is possible to use the

Rayleigh Integral to calculate the field radiated externally from the duct. Results



obtained using this model are presented in the next chapter where they are

compared with experimental results.

2.10  Conclusions.

A derivation of an analytical model of the internal and external fields from a finite
Jength duct terminating in a rigid baffle has been presented. This model offers
greater potential flexibility than the experimental approach detailed in the next
chapter. Using this model, it is possible to examine the effects of source location
and duct wall impedance upon the externally radiated field. Furthermore, this
analytical model will be used to examine the accuracy of the propagation

technique described in Chapter 4, and to compare with the experimental results

presented in Chapter 3.

It has been shown that the method for obtaining the far-field radiation from the
duct may be subdivided into solving for the internal pressure and axial particle
velocity, and then for the external pressure field. The previous work by Zorumski
(1973) which concerned a semi-infinite, baffled, duct, has been extended to
include a duct of finite length. The analytical model presented in this Chapter is
exact. Due to the geometrical symmetry of the duct, then the reflection coefficients
at one end of the duct will be the same as those at the other end. Therefore the
reflection coefficients need only be calculated for one end of the duct. Also as the
duct 1s baffled the two exterior fields from each end of the duct will not interfere
with each other, and do not alter the reflection coefficients at either end of the
duct. If the duct were unbaffled, then this would not be the case. It should also be
made clear that this model is completely general, and it is possible to examine the

radiation from sources within a duct with any impedance at the duct wall.

It has been established that the internal acoustic field produced by a source within
the duct is constructed from an infinite series of forward and backward
propagating modes, which are partially reflected at the ends of the finite length
duct. Also these modes are coupled, and this coupling is important in the

calculation of the modal reflection coefficients at the ends of the duct.
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Figure 2.4a - The real and imaginary parts of the radiation impedance
for an incident plane wave and a reflected plane wave (ie. m=n=1=0)

within a baffled, hard walled duct. This is identical to a circular piston in a baffle.
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Figure 2.4b - The mode shape for the incident and reflected plane wave in figure 2.4.
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Figure 2.5a - The real and imaginary parts of the radiation impedance
for an incident plane wave m=n=0 and a

reflected m =0, I =2 mode within a baffled, hard walled duct.
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Figure 2.5b - The mode shape for the reflected mode m =0, =2 mode figure 2.5.
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Figure 2.6a - A comparison between the real and imaginary parts of the radiation impedance for the
m=n=0, [=1 mode,
and the m=[=0, n=1 mode in a hard walled duct.

These two impedances are the same due to the symmetry

of the impedance matrix Z,,,,,1.e. Z,,./=Z,,.
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Figure 2.7a - A comparison of the real and imaginary parts of the
radiation impedance Z,,,,,, for fixed azimuthal order (m =0)
for various radial orders within a hard walled duct.

The numbers on the curves indicate the radial order of the

incident mode and reflected mode respectively.
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Figure 2.8a - A comparison of the real and imaginary parts of the

radiation impedance Z,,,,; for fixed radial order (n=1[=0)
for various azimuthal orders within a hard walled duct.

The numbers on the curves indicate the modal order (mnl).
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Figure 2.9a - The real and imaginary parts of the radiation impedance
for an incident m = n =1 =0 mode and a reflected m=n=1[=0 mode

within a baffled, pressure release lined duct.
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Figure 2.9b - The mode shape for the incident and reflected m =n =1=0 mode
in a pressure release lined duct as in figure 2.9a.

Note that this is not a plane wave as in the hard walled duct in figure 2.4a.
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Figure 2.10a - A comparison of the real and imaginary parts of the

radiation impedance Z,,,, for fixed azimuthal order (m=0)
within a baffled, pressure release lined duct.

The numbers on the curves indicate the modal order (mnl).
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Figure 2.11a - A comparison of the real and imaginary parts of the

radiation impedance Z,,,, for various modes within a baffled, pressure release lined duct.

The numbers on the curves indicate the modal order (mnl).
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Figure 2.13 - The real and imaginary parts of the coupled reflection coefficient
for an incident m =0, n =1 mode and a reflected m =0, [ =0 mode within a hard walled duct.
Note that the value of this coupled reflection coefficient is significant
around the cut-off frequency of the incident mode (ka = 3.83).

This indicates that coupling would be significant around this frequency
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Figure 2.14 - The real and imaginary parts of the coupled reflection coefficient

for an incident m =0, n =0 mode and a reflected m = 0,! =1 mode within a hard walled duct.

Note that the value of this coupled reflection coefficient is different from that given in figure 2.13.

This indicates that the reflection coefficient matrix R, is non-symmetric (i.e. Ry # R, )
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Figure 2.15 - The real and imaginary parts of the coupled reflection coefficient

for an incident m =1, n =1 mode and a reflected m =1, [ =0 mode within a hard walled duct.

Note that the value of this coupled reflection coefficient is significant

around the cut-off frequency of the incident mode (ka =5.33).
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Figure 2.16 - The real and imaginary parts of the coupled reflection coefficient

for an incident m =1, n = 0 mode and a reflected m =1, [ =1 mode within a hard walled duct.

Note that the value of this coupled reflection coefficient is significant

around the cut-off frequency of the incident mode (ka = 3.83).
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Figure 2.17 - The real and imaginary parts of the reflection coefficient

for an incident m =0, n =1 mode and a reflected m =0,/ =1 mode within a hard walled duct.
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Figure 2.18 - The real and imaginary parts of the reflection coefficient

for an incident m =2, n =0 mode and a reflected m =2, =0 mode within a hard walled duct.
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Figure 2.19 - The real and imaginary parts of the reflection coefficient

for an incident m = 0, n =0 mode and a reflected m=0,1=0 mode

within a pressure release lined duct.
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Figure 2.20 - The real and imaginary parts of the reflection coefficient

for an incident m =0, n =1 mode and areflected m =0, =0 mode

within a pressure release lined duct
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Figure 2.21 - The real and imaginary parts of the reflection coefficient

for an incident m =0, n =0 mode and a reflected m =0,/ =1 mode

within a pressure release lined duct.
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Figure 2.22 - The real and imaginary parts of the reflection coefficient

for an incident m = 2, n =0 mode and a reflected m =2, =0 mode

within a pressure release lined duct.



Chapter 3

Experimental Measurement of the Near-Field of a Circular Duct.

3.1 Introduction.

In the previous chapter an analytical model has been developed which enables the
determination of the field radiated from a duct of finite length. In this chapter, the
experimental measurement of the pressure radiated from a duct is presented. Results

from these experiments are compared with theoretical predictions.

Originally, at the commencement of this project it was the intention to use
measurements made near to the duct exit as a means of determining the far-field
radiation. This technique relied upon the implementation of a 2 dimensional Fourier
transform of the pressure field near to the end of the duct. Unfortunately, this method
proved to be unsatisfactory, and the reasons for this are described in the next Chapter.
However, the large volume of experimental data obtained by these experiments
proved to be a useful means of comparison with the theoretical results obtained form

the model developed in Chapter 2.

The measurement area consists of a square grid of equi-spaced points that are
positioned close to the end of duct exit (see figure 3.1). To sample accurately the
acoustic pressure at the end of the duct it is necessary to make measurements close to
the duct exit. However, due to the discontinuity at the duct termination, high spatial
wavenumbers are present close to the end of the duct. These high spatial
wavenumbers take the form of evanescent wave components and consequently will
decay with increasing distance from the duct. This decay is beneficial as it helps to
reduce the contribution of these evanescent components to the measured data. A
further beneficial factor is that the measurement hydrophone has a finite active area,
and this behaves as a low pass spatial wavenumber filter. These two factors combined

help to limit the measured amplitude of these very high spatial wavenumbers.

Even with the evanescent decay, and the filtering effect of the hydrophone, it is still
possible that the field measured by the array will contain contributions from these
high wavenumber components. However, without knowledge of the highest
wavenumber component, it is impossible to prevent unwanted high wavenumber
components from aliasing the sampled data if the sampling interval is not chosen

correctly. The evaluation of the wavenumber spectrum of the acoustic field from an



analytical model is essential if the FFT propagation technique were to be used
successfully. Put simply: aliased near-field data will result in aliased far-field data.

Obviously this would result in incorrect predictions for the far-field.

In Chapter 2, an analytical model of the acoustic field within a finite length circular
duct has been developed. This model allows the specification of the acoustic pressure
and particle velocity over the end of the duct. The particle velocity will be used to
calculate the radiation from the duct using the Rayleigh integral. In this chapter an
experiment is described whose objective is the accurate measurement of the acoustic
pressure near to the end of a circular duct immersed in water. Results from these

measurements may then be used to compare with the analytical model derived in

Chapter 2.

3.2  Experimental principle and description.

As stated above the objective of the experiment is to measure accurately the field
radiated from the end of a duct. The simplest method of obtaining a large number of
measurement points is to employ a single, scanning hydrophone that moves over an
x—y plane. As it is impractical and expensive to have a large number of pressure
transducers to measure simultaneously the pressure in this plane, a single moving
hydrophone receiver is substituted. This requires that the source signal is repeatable
over time. In this way it is assumed that all the measurements were made
simultaneously. The pressure field is sampled over a set of equi-spaced grid points
giving the pressure as a function of x, y, and @. By applying a Fourier transform to
each of the pressure measurement time histories, it is possible to extract the @
dependence of the field, and to leave the pressure as function of two spatial co-
ordinates at a single fixed frequency. Ideally, these pressure measurements must be
both accurately located in the x-y plane, and be separated at such an interval as to

avoid spatial aliasing of the field.

As there are many pressure measurements to be made, moving the hydrophone
manually would be extremely time consuming. Therefore, it was decided to have the
hydrophone incorporated in an automated x—y traversing system, controlled by a
computer. The computer can then control the positioning of the receiving hydrophone,
the triggering of the source, and the capture and storage of the measured signal. A

scaled diagram of the experimental design is given in figure 3.2.



There are practical considerations that need to be examined so that the measurements
be made successfully. Ideally the measurements should be made in a free field using a
continuous broadband source. In air, free field measurements may be simulated by
conducting the measurements in an anechoic chamber. Unfortunately, anechoic
materials offering good absorption over a large frequency range in water are
prohibitively expensive. However it is possible to avoid reflections from the walls of a
measurement tank by using a finite duration, impulse source signal. By adopting such
an approach it is possible to capture totally the direct signal, and to finish
measurement before the arrival of any reflected signals from the water surface, or
sides of the tank. It should be noted that due the very high sound velocity in water,
these reflections arrive very soon after the direct signal has been measured. Because of

this the input signal must be of very short duration to avoid interference with the

desired, direct signal from the duct.

Referring to the diagram shown as figure 3.2, the major components of the
experimental rig are a fixed position source, an x-y traversing measurement
hydrophone, a source generator, and an A-D capture system. The x-y traverse is
controlled by computer as is the source generator. One of the requirements of the
source is that it should have excellent repeatability. It is common to use a spark-source
in underwater experiments, but it was found that this type of source does not possess
the degree of repeatability required to be suitable in these circumstances. Specifically,
the variation in the formation of the plasma spark, which is a random process, causes
the time histories of the generated acoustic wave to be significantly different, not only
in amplitude, but in the time duration of the impulse itself. Also the directivity
characteristics of a spark source were also found to be a vary considerably. This
results in differing spectra when compared in the frequency domain. It was therefore

decided to use a hydrophone as a source, which offers much better repeatability.

The repeatability of the source when using a hydrophone can be seen from figure 3.3.
The input signal to a Briiel and Kjer (B&K) type 8103 hydrophone used as the source,
was a band-passed step function, filtered between 10 kHz and 70 kHz. The data was
digitally converted using a Datalab DL2000 analogue to digital converter, which is
programmable using an IEEE interface. It is clear from figure 3.3 that the repeatability
of the source is extremely good. It also important that this repeatability may be
sustainable over a long period. The source output was therefore measured 24 times,
once every hour, for 24 hours. The results were found to be identical to those shown
in figure 3.3. The source was generated using a Wavetek programmable signal

generator, which is controlled by a computer through an IEEE 488 data bus. A



computer program was written which controls the generation of the source signal, and
the triggering of that signal. Since the D-A converter is triggered by the start of the
input signal, then this enables the phase of the radiated field to be established. To
avoid reflections from the sides and water surface of the test tank, the source signal
used was a band passed step function. This had a sufficiently short duration to avoid
the reflections from the walls of the tank from interfering with the desired signal.
From figure 3.3 it can be seen that the data length of the captured signal is 5.12 % 107
seconds. This was decided upon based upon the geometry and sampling requirements
of the experiment. The highest frequency of the source was set as 75kHz, which set a
lower limit upon the sample frequency of 150kHz. However, at this sampling
frequency reflections from the sides of the tank were present at the end of the captured
data. These were eventually removed by increasing the sample rate, with a fixed

number of samples, so reducing the time 'window' of the captured signal.

As stated earlier, the motion and location of the receiving hydrophone are also
controlled by the computer. Software was written to communicate with a CIL
analogue to digital, digital to analogue converter that was used to measure the output
from the positioning potentiometers responsible for the x and y directions.. A
reference voltage of 9V is also available from the CIL, and this was used as the input
to the potentiometers. As the receiving hydrophone is moved, the voltage output from
each potentiometer will change linearly with distance moved. By measuring the
voltage change over a fixed reference distance, (in this case 500mm), it is possible to
calibrate the x-y traversing rig to obtain the voltage change per mm of motion. This
was performed separately for both the x and y co-ordinates. Hence by calculating the
voltage change per unit of motion, it also possible to obtain the required voltage that
would be output from the potentiometers at a desired location in the x-y plane. A
simple direct feedback loop is employed to move the receiving hydrophone to the
desired location. First the computer calculates the voltages that would be output from
the potentiometers at the desired location. The actual voltage is read by the CIL, and
sent to the computer through an IEEE data link. The difference between the actual and
desired voltages is considered to be an error voltage. This is multiplied by a constant,
and is used as the D-A output from the CIL into a power amplifier and on to the
motors that control the x-y motion. Whilst this approach is simple in theory, there
were considerable practical problems in achieving a steady motion from one position
to another due to friction, and bending of the supporting rods that form the core of x-y
traverse. For this reason it was necessary to step incrementally from one position to
another, instead of relying on the steady motion of the hydrophone alone. This

combined with extra gain applied to error voltage at the extremities of the



measurement array overcame nearly all problems, apart from the odd freezing of the

rig caused by insurmountable friction.

The sequence of events for the capture of data a desired location in the x-y plane is as

follows:

(1) The computer calculates the voltage output from each position
potentiometer at the desired location, based upon the traverse calibration.

(i1) These voltages are compared with the actual readings made using the CIL
A-D converter.

(i11) The resulting difference, or error voltage, is used as a feedback to drive
the motors that move the receiving hydrophone.

@iv) Once the voltage error has been reduced such that the position error is
calculated to be less than £0.25mm.

(v) When the receiving hydrophone is at the desired location the motors are

stopped, another check is performed to verify the position, and then the
source is triggered by the computer. The computer also triggers the
Datalab A-D converter that is used to capture the signal from the source.
The data is sent to the computer through the IEEE interface, and converted
into a MATLAB binary file format, and then saved to disk. Each time
history has a unique filename for easy identification, which includes the

position in the array from which it was taken.

The process repeats for every position over the array. In practice, the arréy is divided
into 64 columns containing 64 positions in each column. Each column of positions is
measured sequentially, so that once the x co-ordinate position has been set, then the
hydrophone is moved only in the vertical or y co-ordinate direction. A check of both
the x and y positions is made before capture. This reduces the time required to scan the
whole 64 x 64 points, which cover an area of 630x630mm. Because the required
accuracy, and the number of sample points in the array, the time taken to perform a

complete capture of all 4096 points was approximately 40 hours.



33 Preliminary investigation using a point monopole source without a duct.

To ensure that the x-y traversing system was working correctly, it was necessary to
begin measurements with a known source that could be compared easily with a
well-known theoretical result. For this reason some preliminary measurements were
made using a point monopole source generated from a B&K 8103 hydrophone driven
as a source. If the traversing system was working correctly, these measurements would
also act as a means of examining the accuracy of the hydrophone as an approximate
point monopole source. It is intended to compare measured results obtained by placing
a point monopole inside the duct, with predicted theoretical results, and for this reason

is it very helpful if the hydrophone can be assumed to act as a point source.

The output from a monopole source is also useful in determining the size of required
receiving array. Ideally, the array should be large enough so that the pressure at the
extremes is negligible. However, there will be a finite limit on the size, dictated
primarily by the size of the tank used to conduct the experiments. The nearer to the
sides that the extreme measurement points are, the earlier the reflections will return
from either the side walls, bottom of the tank, or from the free water surface at the top.
A large enough distance is therefore required all around the array, so that these
reflections may be easily gated out in the time domain. Another consideration, given
that the data from the experiment was originally to be used to forward propagate the
field from a source using a 2D Fourier transform, is that it would be beneficial to have
the array constructed from a number of points corresponding to an integer power of
two number of points, such as 32x32 or 64 x 64. If the number of data points in the
array along either co-ordinate is not a power of two, then there are errors introduced
by the 2D FFT routines. Given the above considerations, it was decided to arrange for
the array to have 64 x 64 points, with a spacing of 10mm between data points. This
would allow for the highest wavenumber component to be 75kHz (20mm wavelength)
without aliasing in the spatial wavenumber domain. This gives the total number of
points on the array as 4096, and a size of 640X 640mm. The number of data points

captured at each location was fixed at 256, at a sample rate of 500kHz.

Figure 3.4 shows the pressure variation in the x-y plane for a monopole source
produced using a hydrophone. The frequency is 46875Hz. The horizontal axes are the
x and y array points (64 x 64), and the vertical axis is absolute pressure is measured in
dB re. 1x107% Pa. What is most striking about this two dimensional plot is that it is
clearly not what is to be expected from a point monopole source, since it contains

obvious ripples on the right hand side corresponding to the maximum depth



measurement positions within the tank. At first these ripples were thought to be
caused by early reflections from the bottom of the tank interfering with the direct
signal. However, an analysis of a typical time history showed that the there were no
signs of the expected early reflections. What was noticeable though, was that as the
measurement hydrophone was lowered in to the tank to measure the data points near
to the bottom of the tank, there was a noticeable change at the start of the captured
data, and not at the end, which one would expect from a reflection. Since the
monopole source was placed in the centre of the array, it is expected that the measured
field would be circularly symmetric about this centre point. Consequently the time
histories captured along the centre line of the array should be symmetrical about the
mid point. However, it became clear that this was not the case, and there was some
small signal arriving before the main direct signal when the data points are near to the

bottom of the tank.

It is possible to understand the reason for this by referring to the components of the
experimental rig. Referring specifically to the x-y traverse, the receiving hydrophone
is supported by a brass rod, which is progressively lowered into the water to obtain
measurements in the vertical direction. The brass rod, introduced a good structural
path for the acoustic energy to be transmitted to the hydrophone; i.e. through wave
transmission down the brass rod. This effect would obviously become more
significant as the rod was lowered, and explained the ripples in figure 3.4 which occur
at points of large depths of the receiving hydrophone. The reason for these being
difficult to detect from a simple examination of the time histories, is that the speed of
sound in brass is approximately 5200 m/s, and the geometry of the experimental rig
conspired to result in the arrival of the energy from structural pathway to coincide

with the direct acoustic signal through the water. Hence these interfered, and resulted

in the ripples that are present in figure 3.4.

The above problems with the brass rod illustrate an important strength in analysing
acoustic data in this way. If the output from the monopole were taken over a few
points in a radius out from the source then the effect of the brass rod could have gone
undetected. By separating the frequency components and examining them as a
function on an x-y plane, it is possible to yield more information about the source and

the measuring system itself, than would otherwise be available.

To overcome the influence of the brass rod, the receiving hydrophone was supported
using a perspex rod that has an impedance very close to that of water. Further tests

were undertaken using a monopole source. A typical result, again at 46875Hz is



shown in figure 3.5. It can be seen that the ripples in the pressure surface have now
been removed. As a further safeguard, the supporting rod for the fixed hydrophone

source was also replaced by one of perspex.

Figure 3.6 shows predicted pressure from a point monopole source using the same
frequency and geometry as in figure 3.5 above. By comparison, figure 3.7 shows the
error involved in the measured monopole field, as a difference compared to theoretical
monopole using the same geometry. Clearly this error is very small. Possible
explanations for the observed error between the measured and analytically derived
monopole fields are mis-positioning of the array points in the x-y plane, and the

directivity of the hydrophone as source.

3.4 The field from a hard walled, baffled duct containing a monopole source -

a comparison between measured and theoretically derived results.

Having established that the hydrophone may be assumed to behave as a point source
for the range of frequency considered in this project, it is now intended to use this as a
means of comparing the pressure field measured near to the duct with results obtained
from the mathematical model described in Chapter 2. To achieve this objective it is
necessary to know the complex source strength of the hydrophone when used as a
source, since this is one of the important input parameters to the mathematical model.
The source strength was evaluated by measuring the complex pressure at known
distances from the source at a given frequency. If this pressure field was produced by
an ideal monopole, then the source strength can be calculated from the usual free field

expression

p(r) :—J%S—r(i e (3.4.1)

where p(r) is the pressure at a radial distance r from the source, ® is the frequency,

and ¢ is the complex source strength.

The following experiments were conducted using a baffled duct, which unfortunately
does not represent accurately a real ducted propeller system. If the duct is unbaffled it
is not possible to use the Rayleigh integral as a means of calculation of the far-field.
Lansing (1969) and Homicz and Lordi (1975) have observed that as ka increases
beyond a value of 10 for an unbaffled duct, the acoustic radiation at angles greater
than 90° to the duct axis, reduces dramatically. Expressions for the radiation from an
unbaffled duct are available, (e.g. Lordi 1973 and 1974), but these are only valid when



the observer is in the far-field. Since it is desired to look at the radiation near to duct

exit, then expressions for the pressure from an unbaffled duct are not applicable.

As mentioned earlier, acoustically rigid structures are very difficult to realise in water
due to the very large density of the medium. Therefore to produce an ideal hard walled
duct does present practical difficulties in water, unlike in air. Therefore, in an attempt
to reduce the acoustic excitation of the duct wall by the source, the duct used for all
the experiments is constructed from mild steel, and has dimensions of 135mm long

and outer and inner diameters of 200mm and 100mm respectively. This gives a wall

thickness of 50mm.

The geometry for the experiments using a duct is shown as figure 3.1. The grid size
and spacing of points is kept constant for all the duct experiments and is the same as
those for the monopole experiments discussed above. Figure 3.8, shows the absolute
pressure at 31250Hz measured over the array. The source is a monopole placed
initially along the duct axis, and at the mid-point along the duct length. The
measurement location is 0.125m from the end of the duct. Due to the radial symmetry
of the source within the duct, it is possible to consider only a 1 dimensional pressure
field that is essentially a slice along the centre-line of the 2 dimensional pressure field
as measured using the array. This saves considerable time when computing the
radiated field using the Rayleigh integral. Figure 3.9 shows the theoretically predicted
pressure for the same geometry and frequency. It can be seen that the agreement is

very good between the experimental results and those derived analytically.

Figure 3.10 shows the radiation from the hard walled duct at 15625 Hz for the same
geometry as above. Here ka has a value of 3.3. As expected, by reducing the value of
ka, the acoustic energy is less focused toward the axis of the duct. Clearly the field is
axisymmetric. This is to be expected, given the radial symmetry of the source within
the duct. Figure 3.11 shows the pressure calculated from the mathematical model at
this frequency. General agreement is found in figures 3.12 and 3.13, which show the

measured and predicted pressure at 46875Hz.

The comparison between the experimental and theoretical results for the frequencies
mentioned above illustrate that the analytical model has reasonable agreement with
experimental measurement for the hard wall duct. However, whilst the general
structure of the sound field is predicted, the level difference in some of the figures is
often large. Given that the predictions for the pressure release lined duct discussed in

the next section are much better, this would mitigate against there being a



fundamental problem with the theory or with the prediction software. It is believed
that other sources of error based upon the physical nature of the problem would be a

more realistic source of the observed discrepancies, these are:

. The error in the predictions Amy be due to the difficulty of reproducing a true
hard wall in water for experimental purposes. The impedance mis-match
between the water and the duct wall is such that excitation of the duct may be
responsible for this error. Since the analytical model assumes that the normal
particle velocity is zero at the duct wall, and this boundary condition is a
fundamental assumption in the analysis, then if this is not the case in practice
then there will be a error in the computed field. The same argument may be is

true for the rigid baffle used for the experiments.

. The ideal point monpole source used in the analytical model is unrealisable in
practice. Directionality of the source will change the way it drives the internal
field within the duct relative to a true omni-directional monopole. This
argument would also be true for the pressure release lined duct, but since the
internal field is completely different (i.e. different boundary condition at the
duct wall, different modal cut-on frequencies etc.), then it is impossible to rule
out this being more significant in one duct from the other, without computing

the field knowing the directivity characteristics of the source.

Having established this it is now possible to use the mathematical model to examine
the influence upon the radiated pressure of introducing a pressure release lining at the
duct wall. This can then be compared with the results when the same source is
radiating within a hard wall duct. Using the mathematical model enables a wider
range of variation in the location of the source to be obtained with greater ease than
those obtained experimentally. Also it is much quicker to obtain theoretically
produced results than to measure the field, as a typical measurement takes 40 hours,
whereas a theoretical simulation takes a small fraction of this time. Another
disadvantage of the experiment is that it is impossible to position the hydrophone
source very close to the duct wall, due to the large rubber sheath covering the active
element within the hydrophone. This rubber covering prevents the hydrophone active
area from getting any closer than 2mm from the duct wall. This important limitation
does not exist when considering results from the analytical model, as the source may
be placed anywhere within the duct. Given the very good agreement between the
experimental and theoretical results presented above, it is justifiable to examine the

radiation from the hard and pressure release lined ducts using this model alone.



During the course of this project many experiments were conducted using different
source and receiver locations, and using either a hard walled or a pressure release
lined duct. The experimental data presented in this chapter is only a small selection of
the total available. Space does not permit a presentation of all of the results. However,
table 3.1 lists all of the experimental data which is available, and indicates the relevant

parameters in the table. All experiments were conducted using a monopole source.

3.5 The field from a pressure release lined, baffled duct containing a

monopole source - a comparison with experiment and the hard walled duct.

One of the primary reasons for this work is to explore the effect of applying a pressure
release lining at the duct wall. There is a good reason to expect low radiation from a
monopole source positioned near to the wall of a pressure released lined duct. This is
related to the way in which the source drives the field within the duct. Not forgetting
that the externally radiated pressure is a function of the axial particle velocity over the
end of the duct, then an overall reduction in the amplitude of the modes within the
duct will lead to reduction in the radiated energy. The amplitude coefficients for each
mode are determined from the product of the source strength with the value of the
mode shape function at the location of the source. To illustrate this, consider a

monopole source located within an infinite length duct at a position given by r,, 8.

For this simple case, the modal amplitude coefficients are given by?

= OkPC 0, (3.5.1)

mn i
4k,

where A,,, is the modal amplitude coefficient, Q is the monopole source strength, and
k™ is the axial wavenumber. The final term y(7,,8,), is the mode shape function
evaluated at the position of the source. This function may be expanded into two

separate functions of r and 6. Equationy (3.5.1) then becomes

mn = QkpC J""(k;n” rs) ejm@_\. s (3.5.2)
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where J,,(k[""r) is a Bessel function of the first kind and the normalising coefficient,

N

mn

is given by

! see Appendix A
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For a pressure release lined duct, then equation (3.5.3) reduces to

a ., {;m
Nmn :Ti‘lnz(kr' na)' (355)

For the pressure release lined duct, the boundary condition requires that there be zero

pressure at the duct wall. This means that the value of the radial part of mode shape
function y(r,),will be zero at the duct wall. If the source is placed near to the duct

wall then the value of y(r,) will be small. This function will become progressively

smaller as the position of the source is moved nearer to the wall. From equation
(3.5.1) above, this will give smaller values for the modal amplitude coefficients.
Hence the source will not drive the field within the duct very effectively when the

source is close to the wall for a pressure release boundary condition.

To achieve any practical radiation reduction, it is essential that a pressure release
boundary condition can be achieved at the duct wall. Experiments conducted at the
commencement of this project indicated that an extremely good pressure release
boundary condition can be realised using closed cell, neoprene foam of 4 mm
thickness, if backed by a rigid metal plate (Hewlett, 1989). In these experiments, one
hydrophone was used as an acoustic source, and another was used as a receiver. A
short pulse was used as the excitation from the source hydrophone. This was
measured by the receiving hydrophone, which was placed between the source and a
pressure release coated square steel plate measuring 1.2m by 1.2m, and having a
thickness of 40mm. In this way both the incident and reflected waves were measured
at the receiving hydrophone. Figure, 3.14 shows the time history measured at the
receiving hydrophone. It can clearly seen from this figure that the incident and
reflected pulses are separated in time. Also the reflected pulse is very close to a
perfect inversion of the incident pulse. This indicates that the neoprene coating has
reflected properties very similar to an ideal pressure release boundary condition.
Figures 3.15 and 3.16, show the spectrum of the incident and reflected pulses. These
were obtained by extracting the reflected and incident time histories shown in figure
3.14, and the applying a Fourier transform to each separately. It can be seen that the
spectrum of the incident and reflected pulse is very similar, showing very little

absorption or scattering from the coated plate.



A similar investigation by Caille (1988), found that for a closed cell neoprene foam to
act as a good pressure release coating on the outside of a circular cylinder, then it was
necessary to decouple the vibration of the coating from that of the cylinder. For a thin
walled cylinder, it was found that vibrational wave motion in the cylinder wall
reduced the effectiveness of the coating as pressure release surface. By carefully
applying the coating to a thick walled metal cylinder, it was found that the neoprene

material was a very good pressure release surface.

Calculated radiated pressures from a hard wall and pressure release lined duct were
obtained from the theoretical model for various geometries. For ease of description in
the figures that follow, the position of the source will be fixed and is always located
mid-way along the z-axis, whereas the source will be varied over several radial
locations. The radial distance from the centre of the duct will be denoted by r, where
the suffix s indicates the source. As the source is a monopole and is placed mid-way
along the duct axis, the pressure radiated from either end will be identical. Therefore
only the radiation from one end will be discussed. The distance at which the radiated
field is calculated is denoted by z. This is measure of the distance from the centre

point on the duct exit to the centre point on a square plane outside of the duct.

A comparison between prediction from the theoretical model and experimental
measurements for a pressure release lined duct are shown as figures 3.17a to 3.17d.
The four figures are for values of ka=3.3, 6.5, 9.8 and 13.1. It can be seen that the
agreement between the theoretical results (the dashed line) and the experimental
results (solid line) is very good. The structure of the sound field is predicted well, and
the overall level difference is typically within 5dB. It is interesting to note that these
results are even better than those obtained from the hard walled duct, and one
possibility for this may be due to the boundary condition at the duct wall in the
experiments being closer to the true pressure release liner used for the analytical

predictions.

Figures 3.17e to 3.17h show the pressure predicted over a plane at a distance of
z=0.125m from the open exit of a hard walled duct and a pressure release lined duct.
The source in the centre of the duct (i.e. ,=0), for four different frequencies. Note
here that the pressure release duct pressure is dashed, whereas the solid line represents
the hard walled duct. It can be seen that as the frequency is increased, the pressure
release data becomes increasingly less than the corresponding pressure radiated from

the hard walled duct.



The opposite extreme to the above is to place the source very close to the duct wall,
and the to compute the radiated pressure. Figures 3.18 to 3.21 show the pressure from
a hard walled duct with r,=49mm, which represents the source being 1mm from the
duct wall. As the source is no longer symmetric about the radial co-ordinate, these
series of figures are shown as 2D pressure surfaces. The equivalent radiated fields for
a pressure release lined duct are shown as figures 3.22 to 3.25. What is most
noticeable is that even at the lowest frequency of 15625Hz (ka=3.272), that there is a
large difference in the nature of the radiated field. However, despite the complexity of
the plots, there does seem to be a reduction in the overall level with the pressure
release lined duct. The pressures presented in these figures were calculated at a
distance of 0.125m from the open end of the duct. This represents a distance of 2.5

duct radii. The onset of the geometric far field is normally defined by (Morfey, 1982)

L2
Rz —, 3.5.6
o (3.5.6)

where R is the distance from the source and L is the largest dimension of the source
region. In this case, with L set to the duct diameter of 100mm, at 15625Hz R is equal
to 0.1042m, and at 62500Hz R is equal to 0.4167m. Thus only the radiated pressure at
15625Hz is in the far-field.

3.6 The radiated sound power - a comparison between a pressure release and

hard walled ducts

Using the analytical model it not only possible to obtain the radiated field but also the
acoustic pressure and particle velocity over the end of the duct. This is very useful as
the total power radiated from the duct may be calculated from these two parameters

using the relationship

W=2%[ Re(pu)ds (3.6.1)
S

where W is the sound power, Re denotes the real part, p is the pressure, and u” is the
complex conjugate of the particle velocity. This does of course ignore the directivity
of the radiated energy, but is nevertheless extremely important in investigating the

differences between the two types of duct.



Using the above equation, and having a knowledge of the pressure and particle
velocity for different source locations enables the power reduction when using a
pressure lining to be shown as a function of source location within the duct. Figures
3.26 to 3.29 show in dB this difference in sound power at four different frequencies of
15625, 31250, 46875 and 62500Hz (which represent values of ka of 3.27, 6.55, 9.81,
and 13.09 respectively). At all frequencies the sound power reduction is substantial.
Only at 15625Hz, and with the source in the centre of the duct is the radiated power
greater than that for the hard walled duct. This may be partly explained by the
different modal cut-on frequencies for the two ducts. At this relatively low value of ka
at this frequency of 3.72, there are very few modes cut-on for either duct, and
therefore comparisons between the radiated power may be influenced by the proximity
of a modal cut-on frequency near to the frequency of the source. However, in all other
respects the sound power reduction is very large at all positions of the source. As one

would expect the sound power reduction increases as the source is moved towards the

duct wall.

3.7 Conclusions

In this chapter an experiment to measure the pressure field close to the end of the duct
has been described. This has been used to measure the field radiated from a hard
walled duct. It has also been shown that the experimental results are in reasonable
agreement with those obtained from the analytical model derived in Chapter 2. Where
differences in the levels between the two different approaches, experimental and
theoretical, are observed, these are most likely to be due to experimental error. As
explained within this chapter, it is very difficult for example to generate an ideal hard
wall boundary condition in water, and this alone may be responsible for the
differences observed in the hard wall duct data. Also the source used is not omni-
directional and therefore is not an ideal point monpole as used in the theoretical

predictions.

Furthermore, it has been shown that the introduction of a pressure release lining at the
duct wall has a significant effect upon the radiated sound power compared to a hard
walled duct. Measurements of the sound pressure radiated from the duct have been
compared with analytically derived data, and shown to be in good agreement. This has
shown that the analytical model is accurate for this type of problem. Furthermore, it

has been possible using this model to calculate the radiated field for various source

locations within the duct.



Duct wall condition | z (mm) 7, (mm) Data points ¥y (mm)
hard 125 0 6464 0
hard 125 10 64064 10
hard 125 25 64x64 25
hard 125 45 64x64 45
hard 125 49 64x64 49
pressure release 125 0 64x64 0
pressure release 125 10 64x64 10
pressure release 125 25 64x64 25
pressure release 125 45 64064 45
pressure release 125 49 64x64 49
hard 125 0 64%64 0
hard 125 10 6464 10
hard 125 25 64%64 25
hard 125 45 64x64 45
hard 125 49 64x64 49
hard 50 0 64x64 0
hard 50 10 64x64 10
hard 50 25 64%64 25
hard 50 45 64x64 45
hard 50 49 64%64 49
pressure release 50 0 64x64 0
pressure release 50 10 64x64 10
pressure release 50 25 64x64 25
pressure release 50 45 064x64 45
pressure release 50 49 64x64 49
hard 50 0 64x64 0
hard 50 10 64x64 10
hard 50 25 64x64 25
hard 50 45 64x64 45
hard 50 49 64x64 49

Table 3.1 - A complete list of experimental data
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Figure 3.1 - A diagram of the measurement array and duct for the experiments.
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Figure 3.2 - A scaled diagram of the experiment rig, showing the location

of the duct and array within the measurement tank.
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Figure 3.3 - A total of 24 time histories recorded over a 24 hour period,

indicating the good repeatability of the source.
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Figure 3.4 - The magnitude of the pressure in dB re. 1x 107 Pa at 46875Hz

from a point monopole source measured using a brass supporting
rod for the receiving hydrophone.

Note the interference from the early arrival of the structural waves through the brass rod.
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Figure 3.5 - The magnitude of the pressure in dB re.1x 107 Pa at 46875Hz
from a point monopole source measured using a perspex supporting
rod for the receiving hydrophone.

Note the interference from the early arrival of the structural waves is now absent.
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Figure 3.6 - The magnitude of the pressure in dB re.1x 107 Pa at 46875Hz

from a theoretically generated point monopole source.
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Figure 3.7 - The magnitude of the difference between the measured

and theoretical pressure for a monopole source in dB re.1x107® Pa at 46875Hz.
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Figure 3.8 - The magnitude of the measured pressure in dB re.1x10™® Pa at 31250Hz

for a monopole source within a hard walled duct.

Source is placed in the centre of the duct r, =0, and ka =6.5.

Array plane is 0.125m from the centre line of the duct exit.
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Figure 3.9 - The magnitude of the theoretical pressure in dB re.1x 107° Pa at 31250Hz
for a monopole source within a hard walled duct.

Source is placed in the centre of the duct r, =0, and ka = 6.5.

Theoretical array plane is 0.125m from the centre line of the duct exit.
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Figure 3.10 - The magnitude of the measured pressure in dB re.1x 107 Pa at 15625Hz
for a monopole source within a hard walled duct.

Source is placed in the centre of the duct r, =0, and ka=3.3.

Array plane is 0.125m from the centre line of the duct exit.
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Figure 3.11 - The magnitude of the theoretical pressure in dB re.1x 107° Pa at 15625Hz
for a monopole source within a hard walled duct.

Source is placed in the centre of the duct r, =0, and ka=3.3.

Theoretical array plane is 0.125m from the centre line of the duct exit.
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Figure 3.12 - The magnitude of the measured pressure in dB re.1x107° Pa at 46875Hz
for a monopole source within a hard walled duct.

Source is placed in the centre of the duct r, =0, and ka =9.8.

Array plane is 0.125m from the centre line of the duct exit.
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Figure 3.13 - The magnitude of the theoretical pressure in dB re.1x107® Pa at 46875Hz

for a monopole source within a hard walled duct.

Source is placed in the centre of the duct r, =0, and ka =9.8.

Theoretical array plane 1s 0.125m from the centre line of the duct exit.
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Figure 3.14 - The magnitude of the measured incident and reflected time histories
from a neoprene coated steel plate.

Note the required phase inversion of reflected time history.

164



press [dB]

150 T T T T ¥
140 4
130} .

1201 .

press [dB]

100“ ]

80 i il 1
0 0.5 1 1.5 2 25 3

frequency [Hz] x 10°

Figure 3.15 - The magnitude of the measured incident spectrum from

figure 3.14 in dB re. 1% 107 Pa.
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Figure 3.16 - The magnitude of the measured reflected spectrum from

figure 3.14 in dB re. 1x107° Pa,
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Figure 3.17a - The magnitude of the theoretical (dashed line) and experimental (solid)
pressures in dB re.1x107% Pa at 15625Hz
for a monopole source within a pressure release lined duct.

The source is placed in the centre of the duct r, =0, and ka =3.3.

The theoretical array plane is 0.125m from the centre line of the duct exit.
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Figure 3.17b - The magnitude of the theoretical (dashed line) and experimental (solid)
pressure in dB re.1x107® Pa at 31250Hz

for a monopole source within a pressure release lined duct.

The source is placed in the centre of the duct r, =0, and ka =6.5.

The theoretical array plane is 0.125m from the centre line of the duct exit.
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Figure 3.17¢ - The magnitude of the theoretical (dashed line) and experimental (solid)
pressure in dB re.1x107® Pa at 46875Hz
for a monopole source within a pressure release lined duct.

The source is placed in the centre of the duct r,=0, and ka =9.8.

The theoretical array plane is 0.125m from the centre line of the duct exit.
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Figure 3.17d - The magnitude of the theoretical (dashed line) and experimental (solid)
pressure in dB re.1x 1075 Pa at 62500Hz
for a monopole source within a hard walled and pressure release lined duct.

The source is placed in the centre of the duct 7, =0, and ka=13.1.

The theoretical array plane is 0.125m from the centre line of the duct exit.
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Figure 3.17g - The magnitude of the theoretical pressure in dB re.1x10™® Pa at 46875Hz
for a monopole source within a hard walled and pressure release lined duct,
The dashed line is the field from the pressure release duct, and the solid line the hard walled duct
The source is placed in the centre of the duct r, =0, and ka =9.8. |

The theoretical array plane is 0.125m from the centre line of the duct exit
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Figure 3.17h - The magnitude of the theoretical pressure in dB re.1x 107 Pa at 62500Hz

for a monopole source within a hard walled and pressure release lined duct.

The dashed line is the field from the pressure release duct, and the solid line the hard walled duct.

The source is placed in the centre of the duct 7, = 0, and ka =13.1.

The theoretical array plane is 0.125m from the centre line of the duct exit.
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Figure 3.17e - The magnitude of the theoretical pressure in dB re.1x10~® Pa at 15625Hz
for a monopole source within a hard walled and pressure release lined duct.
The dashed line is the field from the pressure release duct, and the solid line the hard walled duct.

The source is placed in the centre of the duct r, =0, and ka =3.3.

The theoretical array plane is 0.125m from the centre line of the duct exit.
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Figure 3.17f - The magnitude of the theoretical pressure in dB re.1x 107 Paat 31250Hz
for a monopole source within a hard walled and pressure release lined duct.
The dashed line is the field from the pressure release duct, and the solid line the hard walled duct.

The source is placed in the centre of the duct r; =0, and ka=6.5.

The theoretical array plane is 0.125m from the centre line of the duct exit.
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Figure 3.18 - The magnitude of the theoretical pressure in dB re.1x 107 Pa at 15625Hz

for a monopole source within a hard walled duct.

Source is placed ata radiué of r, =49mm, the duct radius is 50mm, and ka = 3.3.

Theoretical array plane is 0.125m from the centre line of the duct exit.
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Figure 3.19 - The magnitude of the theoretical pressure in dB re.1x 107 Pa at 31250Hz

for a monopole source within a hard walled duct.

Source is placed at a radius of r, =49mm, the duct radius is 50mm, and ka =6.5.

Theoretical array plane is 0.125m from the centre line of the duct exit.
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Figure 3.20 - The magnitude of the theoretical pressure in dB re.1x107° Pa at 46875Hz

for a monopole source within 4 hard walled duct.

Source is placed at a radius of r, =49mm, the duct radius is 50mm, and ka =9.8.

Theoretical array plane is 0.125m from the centre line of the duct exit.
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Figure 3.21 - The magnitude of the theoretical pressure in dB re.1x 107 Pa at 62500Hz

for a monopole source within a hard walled duct.

Source is placed at a radius of r; =49mm, the duct radius is 50mm, and ka =13.1.

Theoretical array plane is 0.125m from the centre line of the duct exit.



160+

1404

33
R
R

R

[dB re 1e-6 Pa]
5 »
o (o]
L L

g3
SIS IS
SOSOC IS
SSOMILICICS
SIS IOSI S
SISO XIS
SO SSOONSS

D
O
V3

Figure 3.22 - The magnitude of the theoretical pressure in dB re.1 x 107 Pa at 15625Hz

for a monopole source within a pressure release lined duct.

Source is placed at a radius of r, =49mm, the duct radius is 50mm, and ka =3.3.

Theoretical array plane is 0.125m from the centre line of the duct exit.
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Figure 3.23 - The magnitude of the theoretical pressure in dB re.1x107® Pa at 31250Hz

for a monopole source within a pressure release lined duct.

Source is placed at a radius of r, =49mm, the duct radius is 50mm, and ka = 6.5.

Theoretical array plane is 0.125m from the centre line of the duct exit.
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Figure 3.24 - The magnitude of the theoretical pressure in dB re.1x10~° Pa at 46875Hz

for a monopole source within a pressure release lined duct.

Source is placed at a radius of r, =49mm, the duct radius is 50mm, and ka =9.8.

Theoretical array plane is 0.125m from the centre line of the duct exit.
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Figure 3.25 - The magnitude of the theoretical pressure in dB re.1x 107 Pa at 62500Hz

for a monopole source within a pressure release lined duct.

Source is placed at a radius of r, =49mm, the duct radius is 50mm, and ka =13.1.

Theoretical array plane is 0.125m from the centre line of the duct exit.
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Figure 3.26 - The theoretical sound power reduction using a pressure release lined duct
in place of a hard walled duct as a function of source location,

for a monopole source at 15625Hz (ka =3.3).
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Figure 3.27 - The theoretical sound power reduction using a pressure release lined duct
in place of a hard walled duct as a function of source location,

for a monopole source at 31250Hz (ka =6.5).
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Figure 3.28 - The theoretical sound power reduction using a pressure release lined duct
in place of a hard walled duct as a function of source location,

for a monopole source at 46875Hz (ka =9.8).
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Figure 3.29 - The theoretical sound power reduction using a pressure release lined duct
in place of a hard walled duct as a function of source location,

for a monopole source at 612500Hz (ka =13.1).



Chapter 4

Techniques for Estimating the Radiated Field from Near Field Measurements

41 Introduction

In this chapter, techniques are examined which offer the potential to determine the
acoustic pressure at one region in an acoustic field, from the pressure at another
region. At the outset of this project it was intended that results obtained from the
experiment described in Chapter 3 would be used for this purpose. It was intended
that a measured plane of pressure values obtained close to the duct exit could be used

to predict the far field radiation from the duct.

These propagation techniques are perhaps most useful where the source cannot easily
be described analytically. In these cases measured acoustic data is often the only way
to determine the radiated field. If this data is measured near to the source, then it may
be desirable to be able predict the far-field radiated by the source using this measured
data. This is the basic objective of many of the propagation techniques that will be
examined later in this chapter. Furthermore, to measure directly in the far field is
sometimes impractical, and often impossible. Generally this requires a very large, low
noise, free field. Of course, simulation of a free field underwater is possible using an
anechoically lined tank for example, but in water anechoic materials that work well
over a large frequency range can be prohibitively expensive. For this reason it is

necessary to use near field data to predict the pressure in the far field.

This chapter reviews and describes many propagation techniques, but in particular
concentrates upon a method that is based upon a 2 dimensional Fourier Transform of
the original pressure field. By way of introduction to this, and the other propagation
techniques, the most fundamental approach to calculating the radiation from an
acoustic source, the Kirchoff-Helmholtz integral, will be described. It will be shown

that this is the basis of the most significant propagation techniques.



4.2  The Kirchoff-Helmholtz integral and the radiation from complex source

distributions.

Arguably one of the most important problems in the field of acoustics is the
calculation of the acoustic radiation from complex sources distributions. The most
fundamental approach of calculating the radiation from an acoustic source is found by
solving the Kirchoff-Helmholtz integral equation. However, for all but very simple
geometries, tractable analytical solutions to this equation can not be obtained.
Solutions require a knowledge of both the surface pressure and velocity to specify the
acoustic field at a receiver point. These two parameters are often difficult obtain,
either by analysis or experiment. It is for this reason that approximations and
simplifications! to the full Kirchoff-Helmholtz integral equation have been derived

and are frequently used.

The most widely used of these simplifications applies to radiation from a planar
source region, where the Kirchoff-Helmholtz integral reduces to the Rayleigh integral.
It will be shown that by subdividing the source region into small elemental sources
over a finite range in space, and because the acoustic radiation from these elemental
sources is known analytically, the far-field amplitude and phase may be obtained from
a sum of the contributions from each of these elemental sources. The Rayleigh integral
has many advantages not least of which is that it is simple and exact. However, the
successful implementation of the Rayleigh integral, may require a large number of
these elemental sources and hence a large number of calculations to determine the
radiated field. Typically, for any reasonably sized source region, together with high

frequency radiation, the number of such calculations is counted in tens of thousands.

To derive the Rayleigh integral and to aid the description of the many propagation
techniques reviewed in the next section, it is necessary to begin with the

inhomogeneous Helmholtz equation, given by
(V24 k) p(x) =V ef, ;(X) = jOPoGuo (X)) (4.2.1)

where £, ,(x) is the distribution of complex force per unit volume and g, (x) the
distribution of complex volume velocity per unit volume acting on the fluid. Solutions
to this equation are found using a suitably chosen Green function, and applying
Green's Theorem results in the following integral expression, (see for example Nelson
and Elliott, 1992)

INot withstanding approximate numerical techniques such as boundary element methods.



p(x) = [ Qo (NGXY) dV + [[GEYI V,p(¥) = p(¥IG(xly)]emdS.  (422)
vV S

Referring to figure 4.1, the pressure at some point p(x) produced by some complex
volume source strength in the volume V, can be found by solving the integrals on the
right hand side of equation (4.2.2). The first is a volume integral, and the second is a

contribution from a surface integral, which requires specification of not only the
pressure on the surface S, but also the pressure gradient, Vy p(y) on S and the Green

function G(x|y). If the Green function is chosen to be the free space Green function,
g(x]y) given by

enjkfx—y!

S 423
g(xly) pr—_ (4.2.3)

and there is zero source strength within V, then the integral expression given in

equation (4.2.2) reduces to the Kirchoff-Helmholtz integral equation

p(x), x within V}. (42.4)

£ [g(xly)V p(y) —p(¥)g(x|y)]en dS = { 0. xoutside V

The terms on the left hand side of equation (4.2.4) can be shown to have a physical

interpretation. The conservation of momentum equation for harmonic excitation gives

V,p(y) = —jopg u(y)- (4.2.5)

The first term of the integral in (4.2.4) can be written as

~ [ s(xly)jopo u(y) « ndS = [ 2(x[y)jopg Gy dSXly. (4.2.6)
S S
where qg,,r(¥) = —u(y)en is a volume velocity per unit surface area, and therefore

represents a monopole distribution of source strength. Also the second term in

equation (4.2.4) may be written as

—J[)(y)V),g(X[y) endsS= J fm,f(y)Vyg(ny) dS9 (427)
S S

where fmrf(y):p(y)n is a force per unit area acting at the surface S. This is

equivalent to a distribution of dipole sources on the surface S. It is possible to solve

the Kirchoff-Helmholtz equation in some circumstances, and for the present



application it is useful to examine the case where the Green function is chosen such
that VyG(xly).n =( on the surface § which is the case for a rigid surface. Equation

(4.2.4) then becomes

p(0) = [ G(x|y)V,p(y)+n ds. (4.2.8)
S

For the case of S being an infinite plane rigid boundary, the Green function becomes
the hard walled Green function, G(x]y)ng(x[y). The Kirchoff-Helmholtz integral

equation then reduces to the Rayleigh integral given by

p(x)=2jopy [ g(x|y)u(y)«n ds. (4.2.9)
S

Thus it can be seen that the Rayleigh integral is a special case of the more general
Kirchoff-Helmholtz equation, and represents the acoustic field produced by some
surface velocity, as equivalent to a sum of monopole sources on the plane S. Since we
have assumed that S is an infinite plane then the integration in equation (4.2.9) must in
principle be made over the region —eo<x< oo and —eo<y<eo for Cartesian co-
ordinates. However the range of integration may be truncated if u(y)en is only finite
over a given portion of S. In this case the integrand will be zero for all but the region
of u(y)en=#0.

4.3 A review of the literature on acoustic field propagation techniques.

In this section a literature review is discussed which examines previous work aimed at
calculating the acoustic pressure field at a desired location, from a knowledge of the

field at another location.

Pachner (1956a) has developed a method for determining the directivity of a source at
an arbitrary distance, from measurements made of the instantaneous values of the field
at another distance from the source. The field is decomposed into an infinite series of
spherical wave components, and together with suitable measurements made of the
acoustic field, are shown to be sufficient to determine the directivity pattern of the
source. In a subsequent paper, (1956b), Pachner, shows how the theory developed in
(1956a) may be applied to fields consisting of the superposition of travelling waves

and standing waves.



Approximations to the technique derived by Pachner (1956a) have been reported,
most notably by Horton and Innis (1961), and Baker (1962). Horton and Innis show
that it is possible to evaluate the far-field radiation pattern from pressure
measurements alone made over a closed surface S, which contains the source. As a
starting point it is shown that if the Helmholtz equation is to be solved by using a
Green Function of the form exp(jkr/r) requires a knowledge of the normal pressure
gradient, dp/dn over S and the pressure p. Normally the pressure gradient is not a
measured quantity?, and therefore approximations to the pressure gradient are
discussed. These approximations to the pressure gradient are then used to solve the
Helmbholtz equation, and the accuracy of the resultant computed far-field is tested by
comparison with measured data. If however, a Green Function is chosen which
vanishes over the surface S, it is shown that the far-field may be evaluated in terms of
only pressure measurements over S. The resulting formula for the far-field is more
complicated than the Helmholtz formula, but it does not require a knowledge of

dp/on.

Baker (1962), adopts a similar method for the calculation of the far-field pressure, by
using approximations to the normal component of the pressure gradient in the near
field of the source. A large amount of data is presented comparing the pressure field as

predicted using suitable approximations with measured experimental data.

In a slightly different problem, Trott (1964) uses measurements made in the near field
of a source to determine the directivity of underwater acoustic transducers. This

employs the principle of reciprocity combined with the above work by Horton and

Innis and Pachner.

Schenck (1968) reviewed the integral methods that have been used until that time for
the calculation of the acoustic radiation from sources. These are a simple source
formulation derived from potential theory, a surface Helmholtz integral formulation
given by Copley (1967) and (1968), and an interior Helmholtz integral formulation. It
is shown that each of these formulations has potential computational problems for
some wavenumbers, caused by discontinuities in the integral formulations. To
overcome this problem, a combination of the interior and surface formulations of the
Helmbholtz integral equation is proposed, and is denoted by the acronym CHIEF, which

refers to the Combined Helmholtz integral Equation Formulation. Examples of the

Zpressure gradients may be measured using a two hydrophone technique similar to that used in acoustic
intensity measurements.



predicted radiation from a cylinder are given, and are shown to be in good agreement

with the conventional Helmholtz integral equation.

Koopman and Benner (1982) have developed a technique based upon the Helmholtz
integral to determine the sound power radiated from complex sources such as
machinery. The method requires a knowledge of the geometry and the modal
characteristics of the sources' vibrating surfaces, so that the pressure on the surface
may be computed. The source is then divided into planar surfaces consisting of
rectangles and triangles, and the required surface integration performed over each
element. What makes this work different from that given above, is that here it is
intended that the technique be compatible with finite element methods, i.e. they
should share the same grid system. The approximation of the closed surface
surrounding the source by planar elements results in the integration over a 3
dimensional surface being replaced by two dimensional ones. This reduces the
computation time considerably. The accuracy of this approximation is demonstrated

by calculating the pressure on the surface of a uniformly pulsating sphere and an

oscillating sphere.

An alternative to using the Helmholtz integral equation directly, relies on the principle
of decomposing an arbitrary wave field into a series of plane wave components. This
principle has been widely used in optics and the study of electromagnetic waves.
Authors such as Linfoot (1964), Clemmow (1966) and Goodman (1968) have
established this technique for the analysis of different types of electromagnetic field.
The work by these authors indicated that the Fourier integral representation of a
spatial wave field could be used to examine the propagation of this field. In particular
it was established that by adopting this Fourier description of the field, greatly assisted
in the solution of complex wave problems such as diffraction and scattering. It should
be noted that to decompose a 3 dimensional field, the resulting Fourier Transform has
the dimensions of space and time, requiring a 4 dimensional transform. However, the
number of dimensions of the Fourier Transform may be reduced by considering only
one frequency component at a time, and working in a plane, x—y geometry. The
resulting Fourier Transform is 2 dimensional, and there are several readily available

routines that may be used to compute a 2D FT.

The first reported work of the application of the Fourier Transform explicitly to the
propagation of an acoustic field was by Stepanishen and Benjamin (1982). The two-
dimensional Fourier Transform of an acoustic field is used to propagate forward this
field as an x — y plane. Examples are given for differing source descriptions, and the



effects of filtering in both time and space are briefly mentioned. It is also shown that it
is possible to predict the far-field pressure from velocity measurements made on a

planar surface using this technique.

Further use of the Fourier Transform to evaluate the Rayleigh integral for planar
radiators has been reported by Williams and Maynard, (1982). It is shown that the
Fourier Transform offers a much faster method for calculating the far-field pressure
from a vibrating plane body than the Rayleigh integral. Using the Rayleigh integral
requires the splitting up of the vibrating surface into an NX N array of points. The
subsequent far-field pressure calculation requires approximately N* multiplication
and additions. Using the Fourier Transform only requires N ]ogz(N)z, thus providing
a more rapid way of obtaining numerical results for large array sizes. Computations
with the Fourier Transform for rectangular plates are given, and these are compared

with exact solutions.

Williams (1983), has also studied the acoustic radiation from unbaffled thin plates in
air using a Fourier transform form of the Rayleigh integral. The near field pressure
and velocity of the plates are evaluated using an iterative technique, and this is used to
calculate the radiation. As an example of the technique, the radiation from an
unbaffled vibrating circular disk is computed and is shown to agree well with an exact
solution for a small distance (less than a wavelength) away from the disk. It is also
shown that the use of the Fourier transform to perform the integration in the Rayleigh

equation, offers a large saving in computation time, compared with standard

integration techniques.

The use of the Fourier Transform to propagate acoustic fields in cylindrical co-
ordinates has also been studied. Candel and Chassaignon (1984), have used the
Fourier Transform to examine the radiation from cylindrical sources. Here the
propagation takes the form of cylindrical waves, and certain properties of the source
may be used to simplify the radiation problem. If the source demonstrates circular
symmetry, then it is possible to replace the conventional 2D Fourier Transform with a
1D Hankel transform. Instead of measuring over a square grid as is necessary using
the 2D Fourier Transform, the field need only be measured along one radius assuming
a circularly symmetric field. In practical terms this can offer large savings in both data
capture and subsequent analysis. Good agreement is found between the propagated

field of data measured from a dipole source, and an exact solution.



When a source of light or an illuminated object (i.e. a scatterer of light waves) is
observed it is possible to obtain a good impression of the size, shape and source
strength. Since acoustics is also the study of a wave phenomenon, it is reasonable to
attempt to reconstruct the size and shape of an acoustic source by measuring the
scattered sound. Acoustic Holography (AH), is an attempt to apply such an analogy

and the theories of optical holography to acoustic fields.

Before going further, it should be noted that there exist important differences between
task of source reconstruction, and the problem of forward propagation into the far-
field. The most significant of these differences concerns the inclusion evanescent
components of the field. For the complete reconstruction of a source, the evanescent
components measured at some distance from the source, must be increased in
amplitude exponentially as the field is propagated foward the source. This
amplification may be large for highly evanescent components in the field. Thus any
error in the measurement of these components will be magnified by this amplification,
and will result in completely the wrong results for the reconstruction. For forward
propagation this is not a problem, as the evanescent components decay as the field is
propagated, and may be ignored completely in the far-field. There is also a practical
signal to noise problem in measuring all the evanescent field necessary for complete
reconstruction when using NAH. Because any instrumentation will have a finite signal
to noise ratio, it may not be possible to measure adequately all the evanescent field. If
this is the case then it is only possible to reconstruct the overall behaviour of the
source, but the fine details with dimensions less than the wavelength in the
surrounding medium cannot be reconstructed. Therefore to maximise the level of
detail in the reconstruction it is helpful to make measurements very near to the source,
hence the addition of word near field when attempting to reconstruct the source. This
problem in measuring the evanescent field, and the subsequent amplification of any
error, is a major limitation in the practical application of NAH (Matzumtoto, 1991).

It should also be observed that to amplify the evanescent components it is first
necessary to know which wavenumbers are indeed evanescent and which are freely
propagating. This is can only be achieved by having an a priori knowledge of the
wavenumber spectrum of the source. This is another limitation of the technique, and it
will be shown later that this a priori knowledge is not only restricted to NAH but also

to the method of forward propagation of an acoustic field, but for different reasons.

However, despite the differences mentioned above between the present application

and those of AH, there are many similarities, and in particular many of the difficulties



encountered in the practical application of AH are the same as those when attempting

to propagate into the far-field.

The first thorough statement of the principles and practical aspects of AH and NAH
are given in two companion papers as a result of a considerable research effort carried
out at Penn State University, USA. The first of these papers is by Maynard and
Williams (1985), which describes the theoretical basis of AH and points to important
differences between optical and AH. It is also noted by the authors that many of the
limitations previously imposed upon AH are without foundation, and are a result of
mimicking the practices of optical holography and applying them in acoustics. To
distinguish between previous AH and that defined in the paper, Maynard uses the
phrase 'Generalised Holography' that is applicable to acoustic fields. NAH can then
be shown to be a special case of this general principle. The practical implementation
of NAH is demonstrated by use of a 16 X 16 array of microphones measuring 3mx3m.
Provided certain important considerations are observed, then the technique is shown
to be successful. However, it will be shown later in this chapter, that many of the
sources of error in using NAH difficult to overcome, and in some cases may result in

abandonment of the technique in preference to say, the Rayleigh integral.

The reconstruction of an underwater acoustic source using Near field Acoustic
Holography (NAH), has been reported by Williams et al (1985a). Measurements are
made of the acoustic pressure of a source over a 2D plane surface very close to the
source. This pressure map is essentially a hologram containing amplitude and phase
information, which a can be used to backward propagate the field to reconstruct the

source surface normal velocity and pressure.

The above work is extended by the authors to examine the structure borne intensity of
plates underwater (Williams er al 1985b). The 2 dimensional structural intensity
inside the plate is computed from pressure measurements made very close to the

surface of the plate. This work is an extension of NAH and relies upon some of the

fundamental techniques employed in NAH.

The second of the two companion papers to the paper by Maynard and Williams
discussed above is presented by Veronesi and Maynard (1986). This paper concerns
the sources of error involved in the computer implementation of NAH. The authors
explain some of the difficulties in employing finite length and discrete Fourier
transforms. Problems caused by the sampling of a finite region in space, and the

consequent infinite transforms becoming finite are discussed. The effects of sampling



in wavenumber space are also discussed and the effect of incorrect sampling upon the
image reconstruction. It will be shown later that poor sampling in the wavenumber
domain has a very large influence upon a propagated pressure field when attempting
to predict the far field from near field data. Veronesi and Maynard indicate that these
problems may be overcome by artificially increasing the size of the measurement area
by filling out with zeros. This is of course analogous to increasing the sample length
in a time history to reduce the frequency interval Af. However, it will be shown in
section 4.4 that there exists an unavoidable link between the propagation distance and

the sampling requirements of the original pressure or velocity field.

4.3.1 Summary and conclusions from the literature.

The literature reviewed above discusses different methods to estimate the acoustic
field at one spatial region from a knowledge of the field in another region. Despite the
apparently wide disparity in the techniques reviewed, all are fundamentally based
upon the Kirchoff-Helmholtz integral equation, the Rayleigh integral being a special
case of this integral equation. Acoustic Holography offers a way to propagate a
measured pressure distribution using a spatial and temporal Fourier Transform of the
initial pressure field. It will be shown in the next section that the wavenumber
decomposition of the field necessary to use the Fourier Transform technique
originates from the Fourier transform of the Helmholtz equation. One of the
advantages of using the Fourier Transform is that it offers reductions in computation

time when compared to the standard Rayleigh integral.

Whilst there is no doubt that the use of the Fourier transform is quicker than the
summations required by the Rayleigh integral, the absolute time difference when
using these two techniques must be put into perspective. For small array sizes the time
saved by using the FFT approach will be negligible when compared to the Rayleigh
integral. Also any previously published work that aims to compare these two
techniques must be viewed against a background of increased performance and
availability of personal computers and desktop workstations. For example,
Stepanishen and Benjamin published their paper in 1982, when high volume, complex
mathematical processing would have been undertaken using a mainframe computer.
The capital and running costs of using such computers (which were often shared by
many users) was expensive. Consequently, there was a real need to develop
techniques that limited the time taken to perform computational problems. The

Fourier Transform technique described by Stepanishen and Benjamin, offered a



potential time saving. Given the speed of computers in 1982, it is not difficult to
imagine the Rayleigh integral being viewed as being slow by comparison to this new
technique. However, the processing speed of computers has increased dramatically
since 1982, and this has been coupled with an increase in the availability of fast
personal computers and desktop workstations, which are much faster than the

mainframe computers of 10 years ago.

This being acknowledged, it is valid to question the need to use the spatial Fourier
Transform technique as a route to faster computation. These potential advantages may
be further questioned when it is remembered that the Rayleigh integral is exact. It will
be shown that whilst the theoretical derivation of the spatial Fourier Transform
technique is similarly exact, errors may arise due to the sampling necessary for digital

computation using the FFT algorithm.

4.4  Theoretical principles of the wavenumber transform.

This section describes the principle of decomposing an arbitrary acoustic field into a
series of plane wave components, using a wavenumber transform. This method is

similar to that employed in NAH and to that suggested by Stepanishen and Benjamin
(1982).

Starting with the 3 dimensional Helmholtz equation for a harmonic sound field

(V2 + &%) p(x.y,2) = 0. (4.4.1)

and applying the 2 dimensional transform

Flko k)= [ [ fGey) S5 dvay, (4.4.2)

—-—00 — 00

to the Helmholtz equation results in

2 2 2 _ L
X y z

where, p(x,v,z) is a 3 dimensional the pressure field at a fixed single frequency k. If
the 2D Fourier transform of the pressure field is denoted by, P(kx,ky,z), then the



derivatives in the above equation, with respect to x and y are —ka(kx,ky,z), and

——ky2 P(k,.ky,2) respectively. The derivative with respect to z may be taken outside the

two integrals, to give

2
&?—h?~@?+£7)Pwy@J»:o. (4.4.4)

This has a solution of the form

Pk ky.2)= A, (4.4.5)
where A is an arbitrary constant determined by the boundary conditions. The solution
to the transformed Helmholtz equation, can be seen to have the form of a plane wave

propagating in the positive z direction with the wave number k,.

The wavenumber &, is given by

(4.4.6)

From equation (4.4.6) clearly k, will be either real or imaginary number, depending

on the nature of the term with the square root. For real k, the following condition

must be satisfied

K 2 kE 4k (4.4.7)

If the condition in equation (4.4.7) is not upheld then k, will be purely imaginary, and

this represents an exponentially decaying wave in the positive z direction.
Furthermore, to satisfy the Sommerfeld radiation condition, the imaginary part of k,

(if it exists), must always be taken to be negative.
The general solution to the transformed Helmholtz equation given by (4.4.3) can be

used to show that if P(k,,k,,z,) is the measured wavenumber transform at z = z,, then

the wavenumber transform at any other plane z is simply given by
Pk, Ky 2) = Pl ey 2y )e 7573, (4.4.8)

Using the inverse Fourier transform



1 0o o0 -—'kx k
S = [ ] Flidy)e S e, dik, (4.4.9)

The expression in equation (4.4.9) may be used to determine the pressure on another

plane at z

p(x,y,z)=F" {P(kx,ky,zh)e“jkz(z“z")}. (4.4.10)

The above equation is similar to that presented by Maynard and Williams (1985)
discussed previously. In principle, the prediction of the new pressure at z, is an
extremely fast and straightforward procedure. However, in practice problems may
arise in the implementation of equation (4.4.10). One of the major causes of error in
this technique will be shown to arise from incorrect sampling of the exponential term
in equation (4.4.10). This exponential term may be referred to as the propagator
function, and will be denoted as

glk,,2)= ¢ helema) (4.4.11)

4.5  Practical implementation of the wavenumber transform and some

important sources of error in the computation of the far-field pressure.

The preceding mathematical analysis is exact, and by the implementation of equation
(4.4.10) it is theoretically possible to calculate a 3 dimensional acoustic field from
measurements made in one plane only. However, it will be shown in the sections to
follow that serious problems may arise when implementing equation (4.4.10) in
practice. The reason for these problems is that the infinite Fourier transform integral
in equation (4.4.10) is a continuous function, whereas in practice it will be replaced by
its discrete, and finite length, counterpart that is usually calculated numerically using
the FFT algorithm. For any general source distribution it is not possible to find an
analytical form for the Fourier transform in equation (4.4.10) hence the need for
numerical analysis. Indeed, to find an analytical solution for the Fourier transform
requires a complete knowledge of the source region. If this knowledge were available,
then there would be no need to use this technique at all, as the field could be

completely defined based upon this source description.



the wild oscillations in these function when multiplied by the original 2DFFT of the
pressure field given as figure 4.39. At a propagation distance corresponding to ten
wavelengths and the real and imaginary parts of g,(n,k,,z) are clearly under sampled

(figure 4.40).

From the above series of figures using a smaller sampling increment in real space,
demonstrate that the errors introduced by the FFT technique are increased when the
array is optimised for a higher frequency that currently under investigation. In any
practical measurement system this places considerable restrictions upon the suitability
of the FFT technique to propagate the field from a source at several frequencies using

a fixed array.

It is argued that there is little advantage in using the FFT to solve a convolution
integral if it is necessary to first calculate a function in real space, then massage that
function to avoid errors introduced in the numerical processing in the FFT. Indeed the
number of points required to both avoid aliasing of the propagator function and to
avoid wraparound soon become prohibitive. The suggestion of Veronesi and Maynard
(1986) is to calculate Ehe Green function in space, and take a 2D FFT of this real space
function to obtain Gy(k,.k,.z). As a illustration of the difficuity of even then
obtaining correct results, six different Green functions are presented which may or
may not be appropriate in a given situation. However there is little information to
guide the reader as to which Green function would be most appropriate to their
application. Veronesi and Maynard (1986) compare results using the six Green
functions with the Rayleigh integral, for a plane velocity source. Even with an
optimised Green function, errors are still apparent for a propagation distance of 3
wavelengths. In terms of the application of the FFT propagation technique to this
thesis, then it is more accurate to stay completely in the spatial domain and use the
Rayleigh integral, rather than spend time trying to avoid the signal processing

limitations imposed by the discrete FFT algorithm.

4.7 Sound power measurement.

Whilst the propagation of an acoustic field by the 2D FFT is practically difficult to
realise, there are some advantages in simply taking a 2D FFT of a sampled source
region and not propagating it at all. With care it is possible to overcome some of the
above numerical problems. Several useful properties of an acoustic field that can be

obtained when the field has been decomposed into a series of plane wave components



using the 2D FFT. Most obviously, one of the main advantages of transforming an
arbitrary pressure distribution into a series of plane waves is that the impedance of
plane waves is known, i.e. pc. Therefore it is possible to convert from pressure values

to those of velocity and vice versad.

In the real space domain, a harmonic pressure and velocity field are related by the

Euler equation

Vp(x,y,2) =~ jopy u(x,y,2). 4.7.1)

If the pressure and velocity fields are now replaced by their 2D Fourier transform,

then equation (4.7.2) becomes

VP(kyky2) == jopo Ulkykyazy). (4.7.2)

Since the pressure field is now constructed from plane wave components, each of
which has an exponential space dependence of the form exp(—jk,x), then the real
space derivatives in equation (4.7.2) may be replaced by — jk,, —jk,, and —jk, to give

!
Uy Ukgky2) = Pl kg 23) ok (4.7.3)

where U,, N=x, y, z, denotes the three components of the particle velocity. The
multiplier &, /pgck has the from of a wavenumber response function and dimensions
of admittance. The reciprocal of this term has dimensions of impedance, and may be

written

7 = Pock (4.7.4)

n

As an example, consider a plane of pressure values at z =0, which represent the end
of a duct. This field may be decomposed into a series of plane wave components using

the 2D FFT. This results in the field being a function of wavenumber variables, which

are related by the equation,
k= k2~ k2 Kk} for K*>k}+k], (4.7.5)

3Converting from velocity to pressure values can present problems in certain circumstances - see Lahti,
1989.




k, = —jJk2+kE=k>  for K <kl+kl. (4.7.6)

It has been seen that since the field is now a series of plane waves, it is possible to

express the ratio of the pressure and acoustic particle velocity (the impedance) easily,
since this is known for plane waves to be equal to pc of the medium. If k, is real then

propagation to the far field occurs and the real radiation impedance may be defined as

5 _Pek _ pck 4.7.7)
N

g =Pk ___ pek (4.7.8)

ke o i —i2—k2

k2 + k2 K
zzp{1-[ "kz )’] . (4.7.9)

The jump from real to imaginary k, at the point k* = kf + ky2 has a major effect upon

or

the radiation, and therefore the circle k = k2 +k§‘ in the k,, k, plane has been termed

the radiation circle. For all values of k, and k}, outside this circle, then this represents

an evanescent decaying plane wave that does not propagate into the far field or carry
any net acoustic power. Values of k.and k, within the radiation circle represent

propagating plane waves. It is possible to translate from pressure to velocity using the

wavenumber domain expression

Plkeky)=U, (k. k) Z, (4.7.10)

where ﬁz is the transform of the particle velocity in the z direction. Using equation

(4.77.8) this becomes

Pl ky) = Oz(kx,ky)%f’f—. 4.7.11)

Z

The intensity follows and is simply given by

I= Pk, k)0, (K, k). (4.7.12)



The sound power may be calculated using the following expression (Lahti 1989)

= | jk ) <kRe[13(kx,ky)02*(kx,k),)] dk, dk,. (4.7.13)
xofy

Real values for the integrand are obtained if k> kf + k)z,, and the Re[ ] operation may
be dropped if integrated within the radiation circle. Using the relationship given in
equation (4.7.11) it is possible to express the sound power in terms of pressure or

particle velocity only. For the case of pressure measurements, the sound power is

given by
M= Re| Plk, k) P (ko k)~ | die,dk 4714
_,U’kx’k)(k c ( X y) ( X y)pck X y ( A )
5 k
- 2 K v
= J-J‘kx,ky<k P(kx’ky), pCZk d, dk, (4.7.15)

As a check on the technique, a field was simulated on computer within a hard walled
and pressure release lined duct, and this was sampled using a very large (512 by 512)
array of points at the duct exit. The difference between the power when using the hard
wall and pressure release lining was within = 1dB of the results obtained using the

method in Chapter 3, where the sound power was calculated using the equation
W=4%[ Re(pu")ds (4.7.16)
)

However, with less points than 512 by 512 noticeable errors were observed. Figure
4.41 shows difference between the sound power calculated with the 'exact' expression
given by equation (4.7.16), and the sound power calculated using the 2D FFT method
in equation (4.7.15). It can be seen that for a fixed number of points at the maximum
frequency of &, then this results in less points being available for the calculation of
the sound power at lower frequencies. As the frequency is lowered, then this has the
effect of reducing the diameter of the radiation circle in the wavenumber domain.
Since the sound power is only calculated from points in the wavenumber domain
within the radiation circle, then there will be less points as the frequency of interest is

reduced.

It can be seen from figure 4.41 that the 2D FFT introduces an error the calculation of

the sound power, and this error increases with reduced frequency. A possible



explanation for this is in the nature of the finite sampling in the wavenumber domain.
For discrete sampled data the continuous variables k, and k, are only calculated at

discrete points. Thus the continuous domain is represented by a finite number of
small 'patches’. For equal number of sample points in the k, and k, directions, then

these patches will be small squares, with the centre of the patch being at a &, k, co-

ordinate in the wavenumber domain. Therefore the continuous wavenumber domain is
averaged over the area of the patch. In the calculation of the sound power, only those
patches inside the radiation circle are used in the calculation, but the is a difficulty in
ignoring those patches which lie on the radiation circle. Patches whose centres lie just
outside the radiation circle contain a contribution from the wavenumber domain inside
the radiation circle, but this is ignored in the calculation of the sound power. Similarly
patches whose centres lie just inside the radiation circle, contain a contribution from
outside the radiation circle, and this is included in the calculation of the sound power.
The problem reduces to a simple geometric one; that of representing a circle - in this
case the radiation circle - by a number of small squares. The bigger the squares

relative to the size of the circle, the less like a circle the resulting shape is.

It is worth noting that serious instability occurs when using the FFT to calculate the

radiated pressure from a known velocity distribution. From equation (4.7.8) then

Py ky) = Uz(kx,k),)pk—d‘, 4.7.17)

Z

and if k, and k, lie on the radiation circle, then k, is zero. This is a major problem

and was completely overlooked in all the fundamental papers on NAH including what
were considered to be the pioneering work by Stepanishen and Benjamin (1982), and
Williams and Maynard, (1982). The latter paper was a means of replacing the
Rayleigh integral with the FFT for a vibrating plate of known velocity distribution. If
the original field is a pressure field, then this is not a problem, but since these two
papers used the FFT to calculate the propagation from vibrating plates, it is surprising
that they did not mention of the problem of the instability caused by the pole on the
radiation circle. There is no way to ignore the pole on the radiation circle and it this
severely limits the ability of the FFT to calculate the pressure field from a vibrating
plate. It was only later that Veronesi and Maynard (1986), attempted to deal with the
problem. Their suggestion was to apply a smoothing function that averages out the
values of k, either side of the radiation circle in the wavenumber domain. This
prevents the value of k, from become infinite, but has no physical basis. Fortunately,
when propagating into the far field it is possible to ignore all values of k,and k,

which lie outside the radiation circle. But for values of k,and k, near to k, then there



will always be a sampling problem due to the pole on the radiation circle causing k, to
become very large as k,and k, approach .

For pressure to velocity conversion, rearrangement of equation (4.7.15) gives

(4.7.18)

N - k
and is well behaved as long as k> 0. In the context of this thesis, measurements of
pressure have been made, and not particle velocity. For this reason it possible to

ignore the effect of the pole on the radiation circle in equation (4.7.16), and calculate

sound power in terms of pressure only, as given by equation (4.7.12).

4.8 Conclusions

In this chapter techniques to calculate the field at one location from a knowledge of
the acoustic field at another location have been discussed. Since it is not usually
possible to solve the Kirchoff-Helmholtz equation to find the radiation from an
acoustic source, then approximations to this have been developed. For a planar source,
it has been shown that the Kirchoff-Helmholtz equation may be simplified to a well-
known form - the Rayleigh integral. This may be used satisfactorily where either the
normal velocity or pressure? is known over a finite sized plane, and is zero outside
that region. it is often the case that these requirements are not met, or else the problem

is not concerned with planar geometries.

A literature review has shown that there exist several methods to obtain the pressure at
another region, given some knowledge of the field at another region. In particular, it
has been shown that the propagation of a plane of pressure is theoretically possible
using the 2D Fourier Transform. This technique arises from the 3 dimensional Fourier
transform of the Helmholtz equation and is exact when the pressure is a continuous
function of space. This offers a potential time saving over the Rayleigh integral, as the
number of calculations is required to predict the propagated field is reduced.
Unfortunately, a continuous analytical expression for the pressure variation over a
plane in space is not normally available. Therefore it usual to sample the pressure at
discrete intervals. However, in this chapter it has been shown that many practical
problems arise when using the discrete form of the Fourier transform. The previous

4 For a plane of pressure requires the use of the second form of the Rayleigh Integral.



exact expressions referred to previously are derived in continuous space, are now

replaced by their discrete space equivalents. These latter expressions are not exact.

Errors arise due to incorrect sampling of the pressure field or propagator function, and
the periodic nature of the DFT used to propagate the original pressure plane. It has
been shown that whilst the original pressure field may have been sampled adequately,
then it does not immediately follow that the propagated field will be free from error. It
has been established for example, that the correct number of samples for a given
frequency of excitation of the source, is determined by the spacing of k, and the
propagating distance z. This dependence upon the propagation distance z, is entirely
different from the Rayleigh integral. In the latter, the distance from the original
velocity field to the observer location does not influence the sampling requirements of
that velocity distribution. Also it has been shown that a much more serious problem is
wraparound error. This can occur even in a well-sampled pressure field, and to avoid
this requires many more data points to be added to the original array. Unfortunately,
the inclusion of these extra points means that it is often simpler and quicker to use the
Rayleigh integral, which is exact, and does not suffer from these problems. Finally, it
has been shown that if a 2 dimensional Fourier transform of the field is successfully
made, then useful information about the field may be found without propagating to
another plane. Using the 2 D FFT, the field may be decomposed into a sum of plane
wave components. This gives simple expressions for the sound power and the source
directivity. However, great care must be taken to ensure the are sufficient samples in
the wavenumber domain to enable a calculation of the directivity or sound power to

be made successfully.



Figure 4.1 - The volume V in a medium and its bounding surface S.
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Figure 4.2a - Real k, vs. k, for 16 samples. (8x =.5m, A =1m).
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Figure 4.8a - Repeated versions of the pressure array due to the finite length DFT.
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Figure 4.8b - The propagator function which is convolved in real space with figure 4.8a.
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Figure 4.9a - The original pressure array with a guard band of zeros added to

help avoid wraparound error.
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Figure 4.9b- The truncated real spaced derived Green function.
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Figure 4.10a - The angle of resolution in the wavenumber domain (k-space) for 32 samples, k, = k.

Figure 4.10b - The angle of resolution in the wavenumber domain (k-space) for 32 samples, k, = 0.5k
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Figure 4.11 - A theoretical array of pressure values from monopole source.
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A guard band of zeros is added to increase the array size to 128x128.
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(N=128x128, 8x =0.05m, A =0.1m, £ =0.11m, Z=0.01m).
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Figure 4.14 - The theoretical correct propagated field from monopole source
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Figure 4.19 - The centre 64 X 64 points of the propagated array in figure 4.11
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(N=64x64, 6x =0.05m, A =0.1m, h=0.2m, 2=0.1m).
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Figure 4.20 - The centre 64 x 64 points of the pressure data in figure 4.11
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Figure 4.21 - The theoretical correct propagated field from monopole source

(N=64x64, 8x =0.05m, L =0.1m, h=1.1m, Z=1.0m).
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Chapter 5

Conclusions and Recommendations for Future Work

This project has set out to examine the radiation from simple sources within a
finite length duct. In particular the radiation from a pressure release lined duct has
been examined closely. This is of particular interest in this thesis, since this
boundary condition cannot be produced in air. At the commencement of this
project, the radiation from the duct was to be examined using an experimentally
based technique. It was the intention to measure the field just outside the duct exit,
and to use this to predict the far-field. Unfortunately, the method to propagate the
measured pressure away from the duct was found to extremely difficult to
implement successfully. The technique is described in Chapter 4, and it is hoped
that this presentation is useful in alerting other would-be users of some of the

practical problems that can arise when trying to employ this technique.

To overcome these problems a different approach to finding the radiation from the
duct was made. An analytical model of the radiation from a finite length, circular
duct was been derived. This analytical model is described in Chapter 2.
Experimental measurements have shown good agreement with theoretical
predictions using this model. Comparisons between experiment and theory are
presented for a finite length hard walled duct, containing a monopole source.
Furthermore, since the duct is immersed in water, an examination of the effect of
introducing a pressure release lining at the duct wall has been undertaken. It has
been shown that this is a good method for the reducing the radiation of acoustic
energy from the duct. For a pressure release lined duct with the source close to the
duct wall, then the amplitude of the mode shape function is very small. This is
because the boundary condition at the duct wall requires vanishing pressure at the
wall. Hence the value of the mode shape function will also be zero at the duct
wall. Because the values of the modal amplitude coefficients are proportional to
the value of the mode shape function evaluated at the location of the source, then
there will be poor coupling between the source and the duct field for this case. The
resultant output from a finite length duct has been evaluated by an analytical
model described in Chapter 2, and by an experiment detailed in Chapter 3. For a
monopole radiating into a hard walled duct, it has been shown that there is good
agreement between the theory and experiment. Consequently, the radiation from
this duct has been compared with that from a duct having a pressure release lining

at the wall. It has been shown that large reductions in the sound power radiated



from the duct are possible when using the pressure release lining in place of the

hard wall.

The values of ka used in this thesis have been restricted to a maximum of about
13. This was because the original experiment was based upon this maximum
value. It is recommended that this work be repeated for much higher values of ka.
This would mean that there are many more modes that may propagate freely
within the duct, and hence the computation of the radiated field would take Jonger.
However, this is offset by a need to know the relative amplitudes of the radiation
from a hard wall and pressure release lined duct with a much higher modal
density. It is believed that a greater power reduction would be possible using the
pressure release lined duct, if there were more modes cut-on within the duct. This

of course assumes that the source is placed close to the duct wall.

The analytical model derived in Chapter 2, assumes the duct to be terminated in a
rigid baffle. Since there was a need to verify the accuracy of the model with
measurements made near to the duct. No far-field data was available, and hence
expressions that could be made to calculate in the far-field from an unbaffled duct
could not be used. If only the far-field were to be calculated then it would be
possible to replace the modal reflection coefficients used to calculate the internal
field, with those for an unbaffled duct. This would then give the modal amplitudes
for such a duct, and expressions for the far-field, whilst very complex, are
available for this case. It is therefore recommended that this the mathematical

model be extended to include the radiation from an unbaffled duct.

It is also recommended that the model be used to examine the case of a duct lined
with an arbitrary wall impedance. The model developed in Chapter 2 enables the
boundary condition at the duct wall to take any value, both real and imaginary. It
would then be possible to examine the radiation from a duct whose wall
impedance was not quite pressure release for example. This has practical
significance, since the it is likely that any pressure release lining developed for
practical use would not be an ideal pressure release surface. Therefore it would be
useful to examine the necessary tolerance such a lining, to yield satisfactory

reductions in the radiated energy from the duct.



Also it would be useful to examine the radiation from other source distributions
within the duct, for example dipole-type sources. A simple modification to the
model could be made to include such sources, and these could be compared to the
results presented in this thesis. A simple modification of the theory presented in
Chapter 2 would enable the study of the radiation from an axially oriented dipole
source. For the monopole source examined here, the pressure difference on either
side of the source plane is zero, and the magnitude of the axial particle velocity
difference is equated to the source strength. For an axial dipole, the axial particle
velocity difference is zero either side of the source plane, and it is the pressure
difference that is used to calculate the modal amplitudes within the duct. This is
fine for the restricted case of an axial dipole, However, it would be much better to
formulate a solution for the radiation from an arbitrarily oriented dipole. Whilst
this is not so straightforward, it is recommended that the model derived in Chapter

2 be extended to include such sources.



Appendix A

Orthogonality of Eigenfunctions in a Circular Duct

In Chapter 2, the principle of the orthogonality of mode shapes was used to
calculate the amplitude of each mode in the duct. Appendix A explains this

principle and provides a concise derivation.

Modal sound fields in a uniform duct.

In any source-free region, the complex amplitude of the acoustic pressure satisfies

the homogeneous Helmholtz equation

VZp(x)+k*p(r)=0, (A1)
where r is a vector of field co-ordinates, r,0,z, and V7?2 is the Laplacian operator.

Modal solutions of this equation are of the form

p(r) = y(s)e /' (A.2)

where s is the two dimensional transverse position vector, and z is the axial co-
ordinate. Values of w(s) are required which satisfy the two dimensional

Helmholtz equation

V, 2y(s)+k 2y(s)=0 (A.3)

where k; is the transverse wavenumber, which is related to the axial wavenumber,

k, by

k2 =k 2+ k2 (A.4)

A sound field in a uniform duct or waveguide can be of the form of equation (A.2)
provided the transverse pressure distribution wy(s) satisfies the duct- wall
boundary condition, as well as equation (A.3). Solutions of y(s) with these
properties are possible for certain values of k; known as eigenvalues. Successive

eigenvalues (e.g. in increasing order of Re k| ) are labelled with an index:



kl:kl’kl""ku,'” (AS)
and the corresponding W solutions (eigenfunctions) are labelled vy ,.

Orthogonality of eigenfunctions

From equation (A.3), eigenfunctions vy, y,, satisfy the equations

V2, (5)+ k2, (5)=0. (A.6)

Vi, (s) +k, 2y (s)=0. (A7)

By combining equations (A.6) and (A.7), and, by dropping the explicit (s)

dependence for brevity, this gives

Uk AW~ Wk, = v Vi, -y Vi, (A3)
Rearranging equation (A.8) gives

vk kD) =y, Vi, —y, Vi, (A.9)

Integrating equation (A.9) over the duct cross section §, gives

(kuz “kvz)j WqudS:_[ \Vuvzu!v _WVVZWu ds. (AIO)
S S

The right hand side of equation (A.10) may be alternatively expressed using a

special case of the divergence theorem known as Green's second identity. Thus

(k142 - kvz)j v, ¥, ds = J (WuVWv - WVVWu)' ndcC, (AI I)
S C

where the vector n denotes the unit outward normal to the boundary C, which is

the duct wall. By applying the following boundary conditions to equation (A.11),



the right hand side of this equation vanishes. This is always true for the following

cases

Vy,en=Vy «n=0, on C, which is the hard wall boundary condition,  (A.12)

vy, =Wy, =0, on C, which is the pressure release boundary condition. (A.13)
A condition of validity is given by

(VWu * n)/\Uu = (VWV ° n)/Wv (A.14)

For either boundary condition given by equations (A.12) and (A.13), the right
hand side of equation (A.11) vanishes, and this gives

k2 =k [ Wy, ds=0. (A.15)
S

Remembering that the eigenvalues were chosen to be distinct, then
(k2 =k,2)#0 (A.16)

Therefore, from equation (A.15)

[ vy, ds=0 foru=v. (A.17)
S

This is known as the orthogonal property of eigenfunctions.

For the case of a duct of circular cross section, then equations (A.6) and (A.7)

become

VA o (7 0) + K2 (1, 0) = 0, (A.18)

2 2 _
V W[)q(rae)+k[)q qu(}’,g)—-o, (A19)



where

k{nn .
w,nn(r,@):m———Jm( r 1) gmimd, (A.20)

nin
and all the terms in equation (A.20) have been defined in Chapter 2.

For a monopole source in an infinite length duct at 7, 6,, z, =0, the modal

amplitudes are related to the source by

28(r-r)80-0, =2 X, ¢ Y K" Ay (1), (A21)
7, ¢ n=0

§ =00

where Q is the strength of the monopole source. As previously, an alternative

eigenfunction may be defined such that

J, (kr)
qu (r,@) = qu (r)\‘]pq (e) = __17_]_\]___“____ €

rq

8 (A.22)

Note the sign of the exponential term in equation (A.22). It will be shown that this
is the orthogonal mode shape to that given in equation (A.21) when m=p.

Multiplying equation (A.21) by equation (A.22), and integrating both sides of the

resulting equation over the duct cross section S gives

J Q—S(r~ )30 -0y, (r)et™ ds
s Ts

2 - —jmb im - r
= IO K A (1), (1)
S kpc Hi=—0o0 n=0

(A.23)

Using the sifting property of the delta function (Bracewell, 1986), and noting that
dS = rdrd9, then equation (A.23) becomes

27 a
1 2k A —jm i
QY (1) =l [ e % dB [, (r) W () . (A.24)
0 0



From the principle of orthogonality of the mode shapes, defined by equation
(A.13), this equation is zero unless m= p and n=gq. Therefore equation (A.24)

becomes
O (1) ™ = 3%——?— T g f Y, (F) rdr, (A.25)
0 0
which gives
OV (1) = %é——f W (r)rdr. (A.26)
0

The mode shapes are normalised, such that

[ Wt (ryrdr=1. (A.27)
0

Consider now just the integral in equation (A.27). Upon expansion this becomes

a a

1 mn
jw,nnz(r)rdr—_-]:?\[__z [ 7,20 ryrdr. (A.28)
¢}

nin 0

The integral on the right hand side of equation (A.28) has a solution given by!

a

2 2
Nyn? == {1~ - }sz(ki””r>+J,;2<k£"”r> : (A.29)

2 L I’2

r 0
which gives
a 1712 2
- 2 r2

Nmn —ﬁ{(l—mjjm (}Lr7znka)+‘])7z (kmnka)} - (A3O)

Therefore using equations (A.22) and (A.25) it is possible to find the value of the
modal amplitude coefficients A,,,, which are thus given by

mn Q kp: Jm{k;nn’}) ejmex . (A?)U
Amk;™ N

mn

A

I'see Watson (1962), page 135, equation 11.



Appendix B

Derivation of the Function D, (1)

In Chapter 2, the function D, (7) is used to calculate the modal impedances. In
this Appendix a more detailed derivation of the integral used to express this

function is provided.

The integral representation of the function D, (T) defined in Chapter 2 is given

by

Dmn(T) = kJ-: rO‘/ln(TkrO )Wmn(kr())dr()’ (B ])

where all the above symbols were defined in section Chapter 2, Section 2.6. From

the definition of the mode shape function

wm,xkro):M, (B.2)
NHZII
equation (B.1) may be expressed in terms of two Bessel Functions, to give
k ta

Dmn(T) JO rojnl(TkrO)‘]l7Z(7\'nllikr0 )drO‘ (B3)

The integral above may be evaluated directly, (Watson, 1962). The result is
a { T JHH-I <Tka) ‘]III (xnmka) - 7‘“mn Jm—f—l (kmnka) J}n(’cka)}
Dy (1) = 5 5 . (B4
Nmn (T - }\’mn )

Using the Bessel function identity

],,H,](X):%J"H](X)—J,;I(X), (BS)

equation (B.4) becomes



a

X
2 2
- }\'mn )

mn( )“

17111 (

{’C(T 7, (tha) — m(rka)) (X, ka) (B.6)

_7\‘11111 (*Xﬂ; m (kmnka) m (kmnka)]']m (Tka)}

mn

This can be written as

a
Dmn(T): (12~k Z)X

N,

min

{ Ty (tha)J (K pkea) = Tk}, (tha) Ty (Mikar) (B.7)

1?1 (7\’/71/zka)‘]nz (Tka) - A‘mn (}\‘mnka) JIM (Tka)}

Cancelling common terms gives

a

(12 - Kmr12)

mn(T> = {_T‘]r,n (Tka) m (xmnka) + 7“m/1'], (A’tnnka)‘]m(’tka)} (B8)

N

mn

Further rearrangement gives

mn(T) — {T 171 ’Cka Hl k/)l/lka> 7\‘177[1‘]7’71 (kmnka)Jin(Tka)} ] (Bg)
Nm’l ( rmz -1 )

In terms of the duct mode shape function, this becomes

_ a{Tk‘]t,n (Tka)\ymn (ka) - 7"mn‘~v:nn(ka)~]m (Tka)}

B.10
(7‘“/11172 - 12) ( )

D, (1)



Appendix C

Derivation of the Impedance Function Z, ., and the Reflection Coefficient R,,,,

In Chapter 2, Section 2.6, expressions for the modal impedance and reflection
coefficient at the end of the duct were given. This Appendix gives the derivation

of these two important parameters.
1. The Modal Radiation Impedance
In order to solve for the modal impedances, it is necessary to equate the

expressions for the pressure from within the duct, to the pressure outside the duct,

at the duct exit. These 2 expressions are given by

P(ro) = Zejmeo E‘P/nqumj(kr())s (C])
m=-—co Jj=0
S
pry=jk 3 e Y vy [Cale =1) 0, (k) Dy (). (C2)
m=~oo 1=0

Equation (C.1) was derived from the internal field (z < 0), whereas equation (C.2)
was found by examination of the exterior field of the duct z > 0), and is essentially
the Rayleigh Integral. At the duct exit (z=0), then it is possible to equate these two

equations.

Note that indices for the azimuthal order, m, are the same, whereas those for the
radial order are different, and are denoted by j and [ respectively. This is because
there exits a simple relationship between the azimuthal components in equations
(C.1) and (C.2). However, to equate the radial components in each of these
equations is non-trivial. Since the azimuthal components may be simply equated it
is possible to ignore the summation over m. This gives upon equating equations
(C.1) and (C.2)

o

s oo L
3 PV (k1) = S Vi [ (57 =1) 70, (vhr) D,y (1)t (C.3)
j=0 1=0

Multiplying both sides of equation (C.4) by v, (kry) and integrating over the

duct cross section gives



J 2 iV (KR (k) 1 dr =
. (C.4)

> ~.l
Y Vot 7 [ (52 1) 20,2kt ) D,y (0 ey i i
[=0

where the suffix 0 indicates that this is at the end of the duct at z=0. For clarity this

explicit notation will be dropped in the equations that follow.

From the principle of orthogonality of the mode shape functions

da N .
[ P W )W Gy dr =0 for jm, (C.5)
a >
jo P (k)Y (k) dr =1 for — j=n. (C.6)

Therefore equation (C.5) becomes

,kzvm, j j (12 =1) 70, (thr) D, (D) (kr)rdrdt.  (C.7)

Note the appearance of the different index n, on the mode shape function in the
right hand side of equation (C.7). From the definition of the function, D,,, (1)

Dy (V) = k11, (k) (kr)dr (C.8)
Then equation (C.6) becomes

mn =] 2 J' T Ml mI(T) Dlnll(T)dT' (C.9)

Equation (C. 9) may be used to express the modal impedance given by

mn z‘zmnl mil» (C9)

where

nml ]J mn(T) ml(r)dr' (C 1 O)



The above integral may be split into the two ranges, (0,1) and (1,%°) to give

Zmnl = ] J‘; T(Tz - 1)_%Dmn(T)Dml(T)dT + ] LDO T( ) mn(T) m[(’f)d‘f. (CI 1)

Using the substitutions

T=sIin¢ for (0<1<1), (C.12)

T=cosh§ for (1<1<0e0). (C.13)

Noting that for equation (C.12) then dt=cos¢dd, and for equation (C.13)
dt = cos& dE, then equation (C.11) becomes

sin _ sing
I?lll[ J J‘ l?lll Sln (D ml (SIn q)) Cos (1) dq)

1/ sin ¢—1
(C.14)

+J J""___E?fﬂé_____ D, (cosh E_,) D,, (cosh EJ) sinh & d€
0 Jt?cosh?E~1

Using the following well known identities

cos¢:jw/sin2d)~l, (C.15)
sinh& = y/cosh? & —1. (C.16)
Then equation (C.14) becomes

Zmnl J Sln q) mn (Sln q)) ml (Sln ¢ dq) + -] J. COSh & nmn (COSh &)Dﬂll (COSh EJ) d& *

(C.17)

This is the required result, and the above equation is used to calculate the modal

impedances used in this thesis.



2. The Modal Reflection Coefficient.

Starting with equation (2.8.3) from Chapter 2, Section 8,

o0

( mleml +8n[ Z mlemI nl)Aml'
=0

Mx

—_—
It
<

For fixed azimuthal order, m, the above equation becomes

o0

2} ZyQ +8,) Z Zu2 = 8,0) Ay

In matrix form this equation may be written as
Zy&y by +b, =78 a; +a.
Since the delta function ensures that n =/, and noting that
b,=Ry ay,
then equation (C.19) becomes
Ly Ryay +Ryay =20 a; - a,
this gives
(21 Ry + Ry~ Zy € + 1] 2 = 0.
Hence
ang Rnl +Rnl “anQ‘i +I:O.

[Za9 Ry + 1Ry =[Z 9 +1].

(C.18)

(C.18)

(C.19)

(C.20)

(C.21)

(C.22)

(C.23)

(C.24)



This results in the following expression for the reflection coefficient in terms of

modal impedance, for fixed azimuthal order

Ry =[Z Ry +1]7 [Z, +1]. (C.25)



Appendix D

Application of L'Hépital's Rule to the Function D,,,,(T)as T—= A,

In Chapter 2, the function D, (T) is used to calculate the modal radiation

impedances. These impedances are used to calculate the modal reflection
coefficients at the end of the duct. The function D, (1) is given by

Dmn(ft):a|:TWmn(kd)Jl/n(Tka) : m,,\tfm,,(ka)Jm(Tka) (Dl)
7\’mn "T
As T-— L. then the denominator in (D.1) tends toward zero, and it would be

mn
reasonable to expect that D, (t) would tend to infinity. This makes the evaluation

of this function impossible. More importantly, it would prevent the evajuation of

the modal impedances within the duct. These are given by

nm[ «]j 1’( Tz Dmn ( 3 ml( >df (Dz)

It is necessary to integrate the function D,,,(T) over a range which will include
possible poles at T=2X,, and T=2,,. However, it will be shown in this
Appendix that by application of L'H6pital's rule it can be demonstrated that the
function D,,,(7) is continuous at T=2X,, and T=A2,,. L'Hopital's rule may be
defined in the following manner (see for example Abramowitz and Stegun, 1970
p.13). Let f(x) and g(x) be differentiable on an interval a<x<b for which
g’ (x)#0, thenif

x&“;}_ f(x)=0 and x]jl’;}ﬁ g(x)=0 (D.3)
orif
1m f(x)=rc0 and lxm g(x)—ooand if hm AEY) =1 (D.4)
—g'(®)
then
lim ico] =1. (D.5)

X3 g(x)



Applying this to equation (D.1), and letting f(1) denote the numerator, and g(1)

denote the denominator, gives

f(vy=ary,, (ka)J, (tka)—kak,,y,,, (ka)J, (tka), (D.6)
g()=1,,2—1%. D.7)

Considering the numerator first

’

f,(T) = ka2 W nn (ka)Jl,l/l (Tka) + a‘]m (Tka)u’mn (ka) - kaz 7Lnm\}:’;nn (ka)‘]m (Tka')'

(D.8)
Differentiating the denominator, gives
g(1)=-21. (D.9)
At T=A,,,, the ratio f,(T) is given by
g(7)

%‘-ka‘z],; (xmnka)w:nn (ka) - %ka2‘]t,1; (knmka) l”mn (k(l) - %‘xmna ‘]r/n (xmnka) Wmn (ka)

(D.10)
For a hard walled duct, then equation (D.10) gives
fim D, (1) =~ ka®yy,, (ka)J;, (kpka), (D.11)
U mn
which is equivalent to
lim D, (1) =+ ka® 1, (ka)[ Ty 11 Mpk@) = Ty Mika)]. (D.12)

T mn

For a pressure release boundary at the duct wall, then equation (D.10) becomes

lim D, (v) =1 ka®J}, (A k) Wi, (ka), (D.13)

U )‘nm



which is equivalent to

ka*J! 2 (M, ka)
2N )

mn nn

lim D, (t)=

T—A

(D.14)

It can be seen that equations (D.12) and (D.14), are well behaved for all values of
m and A

min:®
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