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Abstract 

The research in this document is based on the analysis of three specific problems of 
an amorphous MOS capacitor. The motivation for concentrating on this particular 
device is the relative simplicity of its design and operation, in addition to its diverse 
applications in electronic technology. The emission and capture processes of a single 
state, or trap, in the forbidden gap is extended to a continuous distribution to 
model the localised state distribution existing in amorphous semiconductors. With 
this concept of a continuous distribution of localised states in mind the basic 
semiconductor system of equations is transformed into a system that models 
amorphous semiconductors. These equations are well established and have been 
analysed by many people. 

Each of the problems is concerned with a steady gate voltage being applied to an 
amorphous MOS capacitor. In the first problem the dopant in the semiconductor is 
assumed to be fully ionised and a steaxiy solution is sought. The second problem 
also seeks a steady solution for the MOS capacitor, but more realistically assumes 
partial ionisation of the dopant atoms. In the final problem the short time transient 
behaviour of the MOS capacitor is analysed. The capacitor, initially in equilibrium, 
is subjected to a steady gate voltage, and the creation of a deep depleted region is 
found. However, the longer return of the device to equilibrium is not analysed. 

In most devices the doping concentrations, represented by A, are extremely large. 
This fact is exploited and the analyses of the problems are carried out in the limit 
as A ^ oo. This greatly simplifies the problems, and the method of matched 
asymptotic expansions is applied. The presence of a continuous distribution of 
states in the forbidden gap complicates the analysis of amorphous semiconductor 
devices considerably. Therefore, to simplify, the concentration of the gap states is 
assumed small enough not to inEuence the semiconductor equations to highest 
order. Mathematically speaking, small gap state concentrations, represented by o;, 
are assumed, and the equations are solved in the limit a —» 0. 
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Chapter 1 

Introduct ion 

Much interest has arisen in the area of hydrogenated amorphous semiconductor 
devices, (a-Si:H to be succinct), over the past two decades. Cheapness and 
versatility of production of devices and their wide range of applications is the 
foundation for the enormous amount of work that has taken place. Perhaps the 
most important and well researched device is the amorphous silicon thin film 
transistor which was Arst proposed for applications by LeComber, [1], in 1979. Since 
then there has been extensive research resulting in the utilisation of these devices 
for many functions, especially in the field of large area electronics where significant 
market potential in low power portable computers and small televisions exists. 

The properties and physics of conventional crystalline semiconductor devices are 
well understood. However, much research is being carried out to increase the 
knowledge of the equivalent amorphous devices. One of the main distinctions 
between these two materials is the structural order of the crystalline lattice, aa 
opposed to the structural disorder of the amorphous state. A consequence of the 
disorder present in amorphous semiconductors is the existence of a continuous 
distribution of localised states in the forbidden gap. States in the forbidden gap also 
exist in crystalline semiconductors, arising from lattice defects and impurities, but 
occur at discrete energy levels. It is possible to reduce the discrete state 
concentrations, thus providing devices with more desirable properties. At present, 
the reduction of the gap states in amorphous materials to a suitable level has not 
been achieved. Endeavouring to understand both the disordered state and 
additional unusual behaviour of amorphous devices can only increase our knowledge 
of their operation. In particular, research into the instabilities, both for practical 
importance and fundamental insight into the basic properties, of these devices has 
been undertaken and will continue to take place. A major instability is the 
threshold voltage shift that occurs after prolonged application of a gate voltage to a 
thin film transistor. Charge trapping in the gate insulator and the metastable 



creation of new states in the amorphous silicon has been proposed to account for 
this shift. Indeed, research into the creation of these new states has increased the 
understanding of the role of the states in the band gap and has resulted in a model 
for predicting the size and form of the forbidden gap states. This defect pool model 
is discussed in greater depth in Chapter 2. 

Before entering into amy detailed discussions on amorphous materials, I feel here 
is a good place to outline my thesis and the chapters contained within. The research 
in this document is based on the analysis of a Metal Oxide Silicon, or (MOS), 
capacitor. The motivation for concentrating on this particular device is the relative 
simplicity of its design and operation, in addition to its diverse applications in 
electronic technology. In Chapter 1 I give an introduction to some of the most well 
established devices used in the electronics industry. The purpose of this is to give 
the reader some insight into their operation, and application. The devices presented 
are well understood, and information on them can be found in most good general 
electronics texts. At the end of Chapter 1 I give a review of some of the papers 
written, and research undertaken, on the modelling of amorphous devices, and the 
problems that have been discovered. The beginning of Chapter 2 presents the reader 
with the most important concepts of semiconductor physics. It then proceeds to 
give a brief insight into the derivation of the basic semiconductor device equations. 
These form a well established model describing the operation of crystalline 
semiconductor devices. The more important recombination and generation processes 
are then outlined. In particular, the emission and capture processes of a single 
state, or trap, in the forbidden gap is illustrated. The concept of this single trap is 
then extended to a continuous distribution to model the localised state distribution 
existing in amorphous semiconductors. With this concept of a continuous 
distribution of localised states in mind the basic semiconductor system of equations 
is then transformed into a system that models amorphous semiconductors. Since 
the existence of this continuous distribution of states in the forbidden gap is the 
single most important difference between crystalline and amorphous semiconductors 
a detailed review and explanation of the defect pool model is given. Research into 
this concept has provided a model for predicting and understanding the formation 
of gap state distributions in amorphous semiconductors. At the end of Chapter 2 
the three problems that constitute my research are presented. Each is clear. The 
first seeks a steady-state solution for an MOS capacitor subject to a steady gate 
voltage. The dopant in the semiconductor is assumed to be fully ionised. The 
second problem seeks a steady solution for the MOS capacitor also subject to a 
steady gate voltage, but more realistically assumes partial ionisation of the dopant 
atoms. In the final problem the short time transient behaviour of the MOS 
capacitor is analyzed. The capacitor, initially in equilibrium, is subjected to a 
steady gate voltage, and the creation of a deep depleted region is found. However, 
the longer return of the device to equilibrium is not analyzed. In most devices the 
doping concentrations, represented by A, (explained in Chapter 2), are extremely 



large. This fact is exploited and the analyses of the problems are carried out in the 
limit as A —̂  oo. This greatly simplifies the problems, and the method of matched 
asymptotic expansions is applied. The presence of a continuous distribution of 
states in the forbidden gap complicates the analysis of amorphous semiconductor 
devices considerably. Therefore, as a simplification, the concentration of the gap 
states is assumed small enough not to inAuence the semiconductor equations to 
highest order. Mathematically speaking, small gap state concentration, represented 
by a, are assumed, and the equations are solved in the limit a —> 0. The behaviour 
of these gap states can then be seen from the solutions obtained in the hope of 
helping to give an insight into how they could induence device characteristics. 

1.1 D e v i c e s a n d the ir app l i ca t ions 

The devices that have most research interest are junction field effect transistors, 
(J-FET's), metal oxide silicon capacitors, (MOS capacitors), metal oxide silicon 
field eEect transistors, (MOSPET's), thin film transistors, (TFT's), and 
p-type-intrinsic-n-type diodes, (PIN diodes). I now give a brief outline of each of 
these devices operation, unwanted behaviour and application. As mentioned 
previously the understanding of these devices, except for TPT's, is well established 
and the descriptions given can be found in most electronic texts. However, 
references [2], [3], and [4] are used specifically to write this section. The subsections 
on TFT's and PIN diodes refer in addition to [6], and [7], 

1.1.1 The Junction Field Effect Transistor. 

The conductance of J-FET's and MOSFET's involve predominantly one carrier type 
and they are referred to as unipolar devices so as to distinguish them from bipolar 
transistors, in which both carrier types are involved. Basically, the J-FET is a 
voltage controlled resistor. A simplified diagram is given in figure 1.1. In particular, 
consider a J-FET consisting of an n-type channel sandwiched between two 
layers. I could have equally chosen the converse, a J-FET with a p-type channel 
sandwiched between two n+-type layers. However, there would be no additional 
insight into the operation of the device and I therefore only consider the former case. 

The term n-type or p-type refers to a semiconductor whose electronic properties 
are dominated by electrons or holes, respectively. The concept of a hole, considered 
to be a positively charged particle, is explained in the next chapter. An M+-type or 
p+-type semiconductor has similar electronic properties to the equivalent n-type or 
p-type material, but the respective carrier concentration is much greater. 
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Figure 1.1; Cross section of a J-FET structure. 

Consider the normal operating conditions when the two gate electrodes are tied 
to the same potential. I will refer to the potential of the drain relative to the source 
as Vd, and the potential of the gate relative to the source as Vq- Firstly, the gate 
electrodes are grounded, {Vq = 0), and the drain voltage is zero, %, = 0. Under 
these conditions the device is in thermal equilibrium. The p"^n junctions behave like 
p-n diodes in equilibrium, implying the existence of small depletion widths at the 
top and bottom of the device. This is shown in figure 1.2 (a). When Vp > 0, a 
drain current, denoted 7^, begins to flow through the non-depleted n-region, 
(known as the channel). For small Vd, the thickness of the depletion region along 
the length of the channel is approximately constant and the device acts as a simple 
linear resistor, as shown in figure 1.2 (b). The operation corresponds to the linear 
part of the graph in figure 1.3. When Vd is increased further the approximation is 
no longer valid and the device enters a new phase of operation. 

The voltage varies linearly across the channel from a high voltage at the drain 
end to a low voltage at the source end. Thus, the p-n junction near the drain end is 
more strongly reverse biased than the junction at the source end. Hence, the 
depletion width increases as one proceeds from the source to the drain, as shown in 
figure 1.2 (c). Thinking of the channel as a resistor, a decrease in its volume will 
mean an increase in its resistance. So, the widening of the depletion widths will 
decrease its volume and therefore increase its resistance. This is observed in the 
non-linear part of the characteristics, shown in the graph in figure 1.3. A drain 
voltage, VDsati is reached when the upper and lower depletion regions connect, this 
is known as pinch off, and is shown in figure 1.2 (d). When the device is pinched off, 
the slope of the Id — Vd characteristic becomes approximately zero. For 
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Figure 1.2; (a) A J-FET in equilibrium, (b) small Vd biasing, (c) channel narrowing 
under moderate Vd biasing, (d) pinch-oE, and (e) post pinch-off, {Vd > Vosat)-
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Figure 1.3: The Id — Vo characteristics when Vq = 0. 

Vd > VOSAT, the current, Id, remains approximately constant at the value I DSAT and 
is said to be saturated. 

The above is a simple explanation of the device performing under zero bias 
conditions, i.e. when Vg = 0. I now consider the operation of the J-FET when 
Vq < 0. The operation of the device is similar to Vg = 0 operation, but with three 
modifications. Firstly, if Vg < 0 the top and bottom p+n junctions are in reverse 
bias, even for Vd — 0. The increased depletion widths imply a thinner channel. 
Therefore, a larger channel resistance results. The linear mode of operation 
therefore has a smaller slope on the corresponding Id-Vd characteristic, as shown in 
figure 1.4. Secondly, since the channel is narrower, pinch off occurs at a smaller 
drain bias and a smaller saturation current results. 

Finally, the applied gate voltage can be decreased so much that the entire 
channel becomes depleted, even for zero drain voltage, as shown in figure 1.5. This 
voltage is known as the pinch-off gate voltage, Vp. For Vq <Vp, the drain current is 
essentially zero for all drain biases. 

In the section on MOSFET's, the non-ideal behaviour described could equally 
apply to J-FET's. The reader is therefore referred to this section for any relevant 
information. 

There is considerable overlap in the characteristics of MOSFET's and J-FET's. 
Therefore, I start with a discussion of some of the common properties possessed by 
both of these devices and then describe some of the characteristics unique to the 
J-FET. 
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J-FET's and MOSFET's in general are of use in analogue switching, high input 
impedance amplifiers and microwaves. Noting that these devices are relatively 
simple, coupled with the fact their size can be easily reduced, fabrication onto 
densely packed circuits is possible. They have considerably higher input impedance 
than bipolar transistors, which allows the input of to be more readily matched to 
the standard microwave system. J-FET's and MOSFET's have a negative 
temperature coefBcient at high current levels, that is, the current decreases as the 
temperature increases. This characteristic leads to a more uniform temperature 
distribution over the device area and prevents thermal run away, which occurs in 
the bipolar transistor. The devices are thermally stable even when the active area is 
large, or when many devices are connected in parallel. Because J-FET's and 
MOSFET^s are unipolar devices, they do not suEer from minority carrier storage 
effects, consequently they have higher switching speeds, and higher cut off 
frequencies. By appropriate gate biasing, the resistance between the drain and 
source of a J-FET can be made very low (a few ohms as opposed to 200 in a 
bipolar transistor), or very high (a thousand megaohms as opposed to a few mega 
ohms in a bipolar transistor). Thus, the J-FET is well suited to being used as a 
switch. J-FET's are superior to bipolar transistors as regards to the input current 
they require. Since the gate of a J-FET is a reverse biased pn junction the dc gate 
current is very small indeed, so the signal power input is negligible. Although 
J-FET amplifiers may exhibit rather small voltage gains, their signal power gain can 
be very large. This means they are well suited to digital circuits, since these only 
need a voltage gain of 1. 

1.1.2 MOS Capacitor. 

The research in Chapters 3, 4 and 5 is based on mathematical analysis of the MOS 
capacitor. So, I undertake the task of giving a more detailed qualitative grounding 
in its operation, as compared with the other devices mentioned. 

I consider the semiconductor substrate to be p-type. Referring to figure 1.6, it 
can be seen that the MOS capacitor is a simple two terminal device composed of a 
thin silicon oxide layer sandwiched between a silicon substrate and a metal plate. 
The usual plate material is aluminium or heavily doped polycrystalhne silicon. The 
thickness of the oxide layer is between 0.01//m and l.OO^m. 

To simplify matters considerably a few assumptions are made about the device. 

1. The metalhc gate is a perfect conductor so it can be considered an 
equipotential. 

2. The oxide is modelled as wide gap semiconductor. 
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Figure 1.6: The metal-oxide-semiconductor capacitor. 

3. There are no interface charge centres or charge centres in the insulator. 

4. The semiconductor is long enough that a field free region is established before 
reaching the end of the device. 

5. There is zero work function difference between the metal and semiconductor. 
(This will be elaborated on later in the section). 

6. The analysis of the device only applies to a strip near the middle of the 
device, extending from the oxide-silicon interface to the back of the silicon 
substrate, illustrated in figure 1.6. Edge effects can therefore be ignored and the 
dependent variables can be considered functions of x only, (where the x co-ordinate 
is defined as the perpendicular distance from the oxide-silicon interface to a point 
inside the p-type substrate). 

7. The semiconductor is uniformly doped. 

8. An ohmic contact exists between the semiconductor and the metal on the 
back side of the device. 

All of the qualitative descriptions are in terms of energy band diagrams. 
References [2] and [3] are good introductory text giving a good grounding in the 
basic concepts of energy band diagrams. 

The diagram in figure 1.7 is of the resulting bands in the MOS capacitor. The 
dotted line at the top of the diagram, known as the vacuum level, is denoted 
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Figure 1.7: Individual energy band diagrams for the metal, insulator and semicon-
ductor. 

Evacuum, and represents the minimum energy an electron must posses to completely 
free itself from the material. In a metal, the energy difference between the vacuum 
level, Euacuum-, and the Fermi energy, Ep, is known as the work function, (})m- In the 
semiconductor the height of the surface energy barrier is specified in terms of the 
electron affinity, %, the energy difference between the vacuum level, E^acuum, and 
the conduction band edge, denoted Ec, at the surface. % is used instead of 
Evacuum — Ep, since the latter quantity is not a constant in semiconductors, but 
varies as a function of doping and band bending near the surface. Since the Fermi 
levels must line up in any structure in thermal equilibrium, and because 
<t>M = = % + {Ec — Ep), in a perfect MOS capacitor, where 4$ denotes the work 
function of the semiconductor, the vacuum levels in the metal and semiconductor 
are in perfect alignment. Thus, no charges or electric fields are induced into the 
system. Even when there is an applied gate voltage the Fermi level in the metal or 
semiconductor remains constant over x, since it is assumed there is zero current flow 
under steady conditions. 

Applying a negative voltage to the metal, a negative charge is effectively 
deposited there. In response, an equal but positive charge appears at the 
semiconductor surface, known as the accumulation layer, shown in figure 1.8 (a). 
Since the applied negative voltage depresses the electrostatic potential of the metal 
relative to the semiconductor, the electron energies are raised in the metal relative to 
the semiconductor. Therefore, the Fermi level in the metal lies above its equilibrium 
position by an amount qV, where q is the charge of a proton and V is the applied 
gate voltage. This causes a tilt in the oxide conduction band. This seems reasonable 
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since an electric field causes a gradient in Ec and Ey, from the equation, 

where jBi is the Fermi energy of the intrinsic semiconductor, Ec energy of the 
conduction band edge and Ey the energy of the valence band edge. The reader is 
referred to Chapter 2 for a more detailed definition of these quantities. From 
elementary Fermi statistics, it can be shown that in equilibrium, holes and electrons 
are described by, 

p = m, exp — 

and, 

M = », exp I 

respectively. Here A; is Boltzmann's constant, T is the temperature in degrees 
Kelvin, Ef- is the Fermi energy level and is the intrinsic carrier concentration of 
the semiconductor. Again the reader is referred to Chapter 2 for more detailed 
explanations of these quantities. The bending up of the E, energy band causes an 
increase in the concentration of holes, (from the above relation). Thus, as intuition 
would tell us, a negatively applied voltage causes holes to build up near the 
semiconductor surface. Applying a positive voltage, the potential of the metal 
relative to the semiconductor is raised, lowering the metal Fermi level by an amount 
qV. As a result the oxide conduction band and the semiconductor bands bend. 
From the hole concentration equation it can be seen that as Ei bends toward the 
semiconductor Fermi level the hole concentration drops near to its intrinsic level. 
Since the negatively charged dopant acceptor ions that are present cannot move, this 
area, depleted of holes, acquires a net negative charge, as shown in figure 1.8 (b). 

Continuing to increase the voltage further, the bands bend more strongly. In 
fact, for sufficiently large bias bends below the Fermi level. In this situation the 
electron concentration is greater than the hole concentration. The region near the 
semiconductor surface has the conduction properties of an n-type material. This 
region is known as the inversion layer. This inversion layer, separated from the 
p-type substrate by a depletion layer, is the key to MOS operation. The energy 
band diagram for inversion is shown in figure 1.8 (c). 

Above is a qualitative description of the operation of the MOS capacitor. 
However, there are many assumptions made that are not true in a real device. 

Firstly, the difference between the Fermi energy and the vacuum level is unlikely 
to be the same in the isolated metal and semiconductor components, (i.e. there is a 
work function difference). The ideal theory is easily modified to account for this. 
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Figure 1.8: Energy band and block charge diagrams for a p-type device in, (a) accu-
mulation, (b) depletion, and (c) inversion. 
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Figure 1.9; Equilibrium, (Vq = 0), energy band diagram typical of real MOS struc-
tures. 

and it is found there is simply a built-in potential given by, 

-

Flat band, for the ideal device occurs at zero gate voltage. But as can be seen from 
the figure 1.9, a negative voltage VG = (f>MS must be applied to the non-ideal device 
to achieve flat band conditions. Having a non-zero work function difference is a 
relatively minor non-ideality, since it only causes a voltage shift in the device 
characteristics, and is incapable of causing instabilities. 

Oxide charges can, on the other hand, give rise to large voltage shifts and 
instabilities. There are various types of charge centres as outlined below. 

1)Mobile Ions 

When subjected to bias-temperature stressing, a common reliability testing 
procedure where a device is heated under bias to accelerate device degrading 
processes, the MOS device characteristics are shifted positively or negatively, 
depending on the sign of the bias. In extreme circumstances the instability can be 
observed at room temperature. It is now well established that the instability is 
caused by mobile ions inside the oxide layer. The voltage shift is found to be 
dependent on where the charge is located in the layer, and in fact the shift is largest 
when the ions are near to the oxide-semiconductor interface. Specifically, Na'^, Li^ 
and ions are found to be the dominant cause, present in chemical reagents and 
glass apparatus. Care is taken to reduce the contamination, and new manufacturing 
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Figure 1.10: Filling of interface traps under, (a) inversion, (b) depletion, and (c) 
accumulation. 

processes have been developed to minimise the effects further. 

2)Fixed Charges 

Another voltage shift is explained by the presence of charge located near to the 
oxide-semiconductor interface. This charge is reproducibly fabricated and fixed in 
position. It is found be to independent of oxide thickness, doping concentration, 
and the semiconductor type, (n or p). During the thermal formation of the Si-SiOg 
layer, the oxidising species diffuses through the oxide and reacts at the Si-SiOg layer 
to form more Si-SiOg. Thus, the last oxide formed lies closest to the Si-SiOg 
interface and contains the fixed oxide charge. This fixed oxide charge is due to 
excess ionic silicon, which has broken away from the silicon lattice, and is waiting to 
react in the vicinity of the Si-SiOg interface, where the oxidation process is abruptly 
terminated. Annealing in an inert atmosphere apparently reduces the excess 
reaction components, and thereby lowers the fixed charge. 

3)Interfacial Traps 

Interfacial traps are allowed energy states in which electrons are localised in the 
vicinity of a material's surface. These traps introduce a continuous distribution of 
energy levels into the forbidden gap at the Si-SiOg interface. Interface levels do 
occur at energies greater than Ec or less than Ey-, but such levels are obscured by 
the much larger density of conduction or valence band states. Figure 1.10 gives 
some understanding of the role of these states. In the following explanation the 
traps are assumed to be donorlike, (i.e. positively charged when empty, and neutral 
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Figure 1.11: Annihilation of interface states during the post-metalisation annealing 
process. 

when filled). To first order approximation, all energy levels above the Fermi level 
Ep are empty, and all those below are full. Thus, the movement of the Fermi level 
changes the amount of charge contained in these traps. Under accumulation most of 
the traps lie above Ep and are therefore empty. This then gives a maximum 
positive charge. Under inversion however, most of the states are below Ep, and 
hence full. Therefore, the charge contained is at a minimum value. The important 
thing to note is the traps charge and discharge as a function of bias, thereby 
affecting the charge distribution in the device, and hence the device characteristics. 

Much experimental evidence supports the view that interfacial traps are caused 
by the existence of "dangling" bonds at the surface of the semiconductor. When the 
silicon lattice abruptly terminates along a given plane to form a surface, one of the 
four surface atom bonds is left dangling. The thermal formation of the SiOa layer 
ties up some but not all of the Si surface bonds. It is the remaining dangling bonds 
that become the interfacial traps. 

Annealing of MOS devices is performed to minimise the interfacial trap 
concentration. This is accomplished in one of two ways. 

1) Post-metalisation annealing - In this process, which requires a chemically 
active gate material such as A1 or Cr, the metalised structure is simply placed in a 
nitrogen surrounding at % 450°C for 5 to 10 minutes. During the formation of the 
MOS structure, minute amounts of water vapour become absorbed on the SiOg 
surface. At the postmetalifeation annealing temperature the active gate material 

18 



E. 

Annealed 
/ As oxidized 

10 10 
1 0 11 10 12 

1 0 
1 3 

(states/cm^-eV) 

Figure 1.12; General form of the interfacial trap density observed before and after 
annealing. 

reacts with the water vapour on the oxide surface to release a hydrogen species. As 
illustrated in figure 1.11a hydrogen species then migrates through the SiOj layer to 
the Si-SiOg interface, where it attaches itself to a dangling bond, thereby making 
the bond electrically neutral. 

2) The hydrogen-ambient process - This operates on a similar principle, except 
the hydrogen is supplied directly in the ambient environment and the structure need 
not be metalised. 

Figure 1.12 shows the concentration of surface traps before and after annealing. 
As can be seen the interfacial trap density is more or less constant over the mid-gap 
region and increases rapidly as one approaches the band edges. The states near the 
two band edges are usually about equal in number and opposite in their charging 
character, (i.e. states near the conduction and valence bands are acceptorlike and 
donorlike in nature, respectively). 

One of the more important applications of the MOS capacitor is its use in charge 
coupled devices (CCD's). These are dynamic devices that move charge along a 
predetermined path under the control of clock pulses. 

The basis of the CCD is the dynamic storage and withdrawal of charge in a 
series of MOS capacitors. If a positive gate voltage is applied to a MOS capacitor 
for a sufficiently long time, electrons accumulate at the surface and the steady state 
inversion layer exists. The time required to fill this "potential well" is called the 
thermal relaxation time. For good materials the thermal relaxation time is much 
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Figure 1.14: Cross-sectional view of the basic p-bulk (n-channel) MOSFET structure. 

1.1.3 Metal Oxide Silicon Field Effect Transistors 
(MOSFET's). 

Essentially, a MOSFET is no more than a MOS capacitor with two pn junctions 
placed immediately adjacent to the region of the semiconductor controlled by the 
MOS gate. The device can either have a p-type substrate and two n"*" islands or an 
n-type substrate with p"*" islands. I will consider the former case. An illustration of 
the device is shown in figure 1.14. As with the J-FET, the source is the end where 
the majority carriers enter the device, and the drain is the end where they leave. 
The voltage applied to the gate relative to ground is denoted Vg, and the voltage 
applied to the drain relative to ground is denoted Vb. The source and back of the 
device are grounded. 

Consider an applied a gate voltage with no drain bias. When the applied Vq 
results in accumulation or depletion the region between the source and drain islands 
has either an excess or deficit of holes, but always very few electrons. Thus, under 
these conditions there is effectively an open circuit between the source and drain. 
But when Vg is applied so there is inversion, there exists an n-type conducting 
channel, as shown in figure 1.15 (a). Vr is defined as the depletion-inversion 
transition point voltage. Thus, if Vq < Vr, the device is in depletion or 
accumulation, and Vg > Vt the device is in inversion. Now that there is an induced 
channel an applied drain voltage will result in a drain current, denoted Id- For 
small positive voltages the channel is a simple resistor and the resulting current is 
proportional to the applied voltage. Note that the application of this drain voltage 
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means the pn junctions are in reversed bias, and therefore the associated leakage 
currents will contribute to the drain current. In most devices these currents are so 
small they can be ignored. Once Vb is increased above a few tenths of a volt the 
device enters a new phaae of operation, where the voltage drop from the drain to 
the source starts to negate the inverting effect of the gate. 

As illustrated in figure 1.15 (b) the depletion region widens going from the 
source to the drain end, and the number of carriers in the inversion layer decreases. 
The reduction in the number of carriers in the channel reduces the conductance, 
and hence means a decrease in the slope of the Id-Vd characteristics. The greatest 
decrease in carriers occurs at the drain end. Eventually, a situation is reached, 
shown in figure 1.15 (c), when the region near the drain end completely disappears. 
This is referred to as pinch off and corresponds to the slope of the characteristic 
approaching zero. For drain voltages in excess of the pinch off voltage the channel 
widens from just a point to a depleted channel of length 8L. The pinched off section 
absorbs most of the voltage drop in excess of VDaaf, since this is a depletion region 
ajid is high in resistance. If the device is long in comparison to then the shape 
of the conducting n channel, and the potential applied across it remain invariant 
and the current Id sat remain invariant. 

The above results can be used to obtain a complete set of characteristics, 
illustrated in figure 1.16. For %? < the gate voltage does not create a surface 
channel, and /g = 0. Since the conductance of the channel increases with increasing 
Vg it follows that the slope on the Id — Vd characteristics increases with increasing 

Also, the greater then the more inversion layer carriers there are present, so 
the larger the drain voltage to achieve pinch off. Thus, Vbaat increases with 
increasing 1^. 

In the above calculations, the channel length is assumed to be long, but as this 
channel length is reduced departures from long channel behaviour may occur. Short 
channel effects arise from 2-d potential distributions, and high electric fields in the 
channel region. As the channel length is reduced, the depletion layer widths of the 
source and drain junctions become comparable to the channel length. The potential 
distribution in the channel now depends on both the transverse field (controlled 
by the gate and bulk surface bias), and the longitudinal field Ey^ (controlled by the 
drain bias). In other words, the potential becomes 2-d and the gradual-channel 
approximation, (E^ Ey), is no longer valid. As the electric field increases, the 
channel mobility becomes field dependent, and eventually velocity saturation 
occurs. In addition, a non-uniform doping concentration can exist in the channel, 
leading to deviations from ideal behaviour. Modern MOSFET technologies use ion 
implantation extensively to improve device performance. This ion implantation 
causes a threshold voltage shift, which has to be taken into account. 
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Figure 1.15; The different phases of MOSFET operation, (a) Vb = 0) (b) inversion 
layer narrowing under moderate Vb biasing, (c) pinch-off, and (d) post pinch-off. 
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Figure 1.16: General form of the Id - Vb characteristics expected from a long channel 
MOSFET. 

MOSFET's are the most important devices used in very large scale integrated 
circuits, such as microprocessors and semiconductor memories. They are also 
important power devices. Other applications are elaborated on in the previous 
section on J-FET's. 

1.1.4 Thin Film Transistors (TFT's) 

The active region of the device is a thin polycrystalline or amorphous film of 
semiconductor, laid down by evaporation or some epitaxial technique on an 
insulating substrate. The device itself, shown in figure 1.17 (a), is composed of very 
thin layers deposited on an insulating substrate, whereas the MOS transistor is 
formed by diffusion or deposition on a semiconductor substrate. The difference is of 
considerable importance, since the use of a semiconductor substrate forms a severe 
restriction in the design and fabrication of integrated circuits. The electrical 
isolation of the TFT and any other circuit elements deposited on the same substrate 
results in simplified fabricating procedures, and increased design flexibility. The 
understanding of these devices is less advanced than MOS transistors, and they 
suffer from a variety of instability problems. 

The characteristics are similar to the MOSFET and are shown figure 1.17 (b). 

The polycrystalline or amorphous semiconductor deposited contains a 
considerable number of traps close to the insulator-semiconductor interface. These 
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Figure 1.17: (a) Cross-sectional view of a typical TFT. (b) General form of the Id~Vd 
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traps appear to dominate the device threshold voltage, rather than the oxide 
charges as in the case of the MOS transistor. It operates by forming an 
accumulation layer rather than an inversion layer. Hence, the channel produced is 
the same conducting type as the semiconductor. The accumulation layer is formed 
by the metal gate charge attracting majority carriers into the semiconductor. If a 
sufBcient number are attracted to more than All up the traps present, the 
conductance from drain to source will be increased. On the other hand, if there is a 
high density of surface states present which trap more majority carriers in the 
surface region, the device behaves like a depletion MOS device. 

Because the semiconductor layer is formed by deposition, more defects and 
crystalline imperfections occur in the layer than in the corresponding single crystal 
semiconductor, resulting in more complicated transport processes. In a-Si:H there 
exists a continuous distribution of localised states in the band gap, which causes 
even larger deviations from ideal behaviour. To improve device performance, 
reproducibility and reliability, the bulk and interface trap densities are reduced. 
The high density of traps present on the surface and in the bulk of the device are 
the cause of instability. One of the most important is the threshold voltage shift, 
that occurs after a prolonged gate voltage of an a-Si:H TFT. This is caused by 
charge trapping in the gate insulator, and the creation of metastable states in the 
a-Si:H layer. 

T.F.T's are becoming widely used in a range of input and output circuitry in 
displays, image scanners, and printers. A-Si:H has made a major impact on these 
applications because of the relative ease with which the material can be 
manufactured over lafge areas. Systems where visual images for human interfaces 
need to be generated, sensed, and transmitted require the use of large area devices. 
The application of TFT's to liquid crystal displays is the first example of this new 
technology. A-Si:H has already made a major impact in TFT and sensor technology 
because of the existence of a manufacturing capability in a-Si solar cells, where large 
area films with well defined electronic properties are fabricated on glass. In a 
complex high density LCD display there is a requirement for an active element to 
switch each pixel in the display. Various TFT's and diodes are used for this purpose, 
however, the most widely used system is the a-Si:H TFT active matrix LCD display. 

1.1.5 P- type insulator N-type Diodes (PIN Diodes) 

The device, illustrated in figure 1.18 (a), basically consists of a p-n junction with a 
doping profile tailored so an intrinsic layer, the 'i' region, is sandwiched between a p 
and n layer. However, the idealised i region is approximated by either a high 
resistivity p layer, (tt layer), or a high resistivity n layer, (u layer). The variation of 
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Figure 1.18: (a) Representation of a PIN diode, (b) Band diagram of a PIN diode 
under equilibrium. 

the conduction and valence band energy levels at equilibrium are illustrated in 
figure 1.18 (b). As can be seen, the Fermi levels line up, and the built-in voltages at 
the two i-region edges prevent any net flow of charge. The drift of electrons, (or 
holes), in one direction, is exactly balanced by the diffusion of electrons, (or holes), 
in the other. 

On reverse bias, figure 1.19 (a), the depletion region extends right across the 
intrinsic region into the edge of the p and n contacts. Since there are no impurities 
in the i-region, there is no charge from the ionised impurities, and the field is 
constant. The field only falls to zero near the highly doped contacts. By making the 
width of the i layer long, the breakdown field Ei can be reached only at large 
voltages, Vb = Eb X d. Thus, the PIN diode makes a good high voltage rectifier. 

The PIN diode does not behave in quite the same manner on forward bias as the 
conventional pn junction. When a forward bias is applied to the device, the 
drift-diffusion balance is upset, as seen in figure 1.19 (b). The applied electric field 
opposes this built-in field, and hence the drift of the carriers is reduced. Thus, the 
diffusion of carriers from their respective regions will flood the i-region. However, 
any holes close to the n region, and any electrons close to the p region are pushed 
back into the i region. Thus, injected carriers are confined mainly to the i-region by 
these fields at the i-region edges. The distribution is more or less uniform, with 
equal numbers of holes and electrons. With a recombination time Tr, 

r d p , , 
(ff 7-r ' 
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where Q, - the amount of stored charge. In steady state, 

Itj- — Qs . 

The voltage applied across the terminals is such to give, 

r r cy 

where Is is the reverse bias saturation current, e is the electronic charge of an 
electron, V is the voltage applied across the device and v is the emission coefficient 
of the device. Thus, if Tr is large enough, the diode has a low voltage and a high 
charge, and consequently look like a high capacitance on forward bias. However, on 
reverse bias, once the charge carriers have been removed from the depletion region, 
the diode looks like a low capacitance. This behaviour is very useful for non-linear 
applications where signals of different frequencies have to be mixed together. 

Like ail pn junctions, the forward biaa state cannot be immediately reversed 
until the storage charge is removed. However, unlike the pn junction, the stored 
minority charge is not buried in the p and n regions where the electric Aeld cannot 
penetrate. It is stored in the i-region, where on reverse bias the electric fields can 
remove the carriers with a velocity of up to lO^ms"^, (for Si). Thus, when the diode 
is biased from a forward to a reverse state, the final stages of the removal of charge 
can be very rapid, and the voltage will snap to a high reverse voltage. Such diodes 
are known as step recovery or snap diodes. 

The PIN diode has found wide applications in microwave circuits. It can be used 
as a microwave switch, with essentially constant depletion layer capacitance and 
high power handling capability. In addition, the PIN diode is used as a variable 
attenuator by controlling the device resistance, which varies approximately linearly 
with the forward current. 

1.2 A Review Of T h e Relevant Resea rch 
Publ ica t ions 

Many papers have been written on amorphous semiconductors and it is the purpose 
of this section to give a review of some of these publications. The topics of research 
germane to my studies are the recombination statistics of carriers, the 
understanding of the distribution of defect states in the forbidden gap, and the 
various physical characteristics that amorphous devices possess. Of particular 
importance to the defect densities is the defect pool model. This model is used to 
understand and predict the types of defect distributions that occur in amorphous 
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silicon devices under given chemical conditions. A summarised review of the papers 
written on the defect pool model is given here, but a more detailed account is 
presented in Chapter 2. 

Thin film transistors feature heavily in the research of amorphous devices, since 
they are very important in the new technology, and a comprehensive guide to the 
physics and performance issues of these devices is given in [7], It explains the 
problems that these devices posses and many of the characteristics, which largely 
seem to be determined by the band gap defect distribution. In addition, a paper by 
[8] gives an account of the physics and applications of amorphous thin film 
transistors and image sensors. 

One of the earliest and perhaps most important papers written on the statistics 
of recombination of semiconductor devices is by W.Shockely and W.T.Read, [9]. It 
describes the basics of recombination of holes and electrons via a single trap in the 
band gap and explains some non-equilibrium steady-state processes in crystalline 
semiconductors. The mechanisms explained here form the basis for the modelling of 
amorphous semiconductor devices. The concept of a single trap in the band gap is 
extended to a continuous arbitrary distribution of traps and the baaic crystalline 
semiconductor device equations are transformed into a system describing 
amorphous semiconductor devices. Joze Fur Ian, [10], then develops an analytical 
approach to these amorphous device equations. A set of approximate equations, 
describing excess carrier non-equilibrium in an amorphous semiconductor, are 
obtained by integrating only over regions bounded by electron and hole trap 
quasi-Fermi levels in both acceptor-like and donor- like states. A paper by 
J.G.Simmons and G.W.Taylor, [11], applies Shockely-Read-Hall statistics to an 
arbitrary distribution of traps under non-equilibrium steady-state conditions. A 
form identical to the occupancy function f in the single trap case results. They 
proceed to analyze some of the more important properties of this statistic. In 
addition, there are discussions of charge neutrality, net rate of recombination and 
free carrier lifetimes. Finally, an expression for the photocurrent in an amorphous 
semiconductor is obtained. A subsequent paper by J.G.Simmons and G.W.Taylor, 
[12], applies the theory to steady-state photoconductivity in amorphous 
semiconductors. A further paper by J.G.Simmons and G.W.Taylor, [13], 
investigates the energy dependence of the statistic, f, and there is a categorisation of 
traps into shallow traps, recombination centers, and dead states. 

Computer simulations by J.G.Shaw, M.Hack, and P.G.LeComber, [14], have 
been developed to describe the transient behaviour of amorphous silicon diodes and 
thin film transistors. The full set of amorphous device equations are solved, fully 
accounting for the traps in the band gap. These traps are assumed to obey 
Shockely-Read-Hall kinetics. Good agreement between experimental data and 
numerical simulations are shown. F.R. Shapiro, [15], has developed a general 
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purpose simulator for transient experiments in semiconductors and insulators based 
on microscopic transport of carriers including an arbitrary distribution of localised 
states in the band gap. This simulator directly solves the complete set of 
microscopic differential equations governing the transient experiments on 
semiconductors and insulators when localised states are important. Results of 
simulations of time-of-flight experiments with an exponential band tail of localised 
states, believed to be present in a-Si:H, are presented. Similar approaches have also 
been used in papers by [16] and [17]. 

C.Van Berkel, J.R. Hughes and M.J. Powell, [18], investigate the switching 
characteristics of amorphous silicon thin film transistors. They suggest that these 
transient effects are controlled by trapping and 'thermalisation') from the deep 
states in amorphous silicon. The free carrier concentration is assumed to be 
independent of time. An earlier paper by J.M. Marshall and C. Main, [19], 
investigates the transient photoconductivity of amorphous semiconductors and 
explains this in terms of thermalisation of excess charge with localised states 
distributed over a range of energies. However, their research only considers discrete 
sets of traps. Both papers give a good insight into the types of problems that exist 
in amorphous devices in terms of carrier recombination processes. However, like 
many papers, they highlight the need for more analytical research into the basic 
amorphous semiconductor device equations as applied to continuous distributions of 
traps. The influence of traps on the characteristics of thin film transistors has be 
analyzed by M.G Hack, A.G Lewis and J.G Shaw, [20], vindicating the view that 
traps strongly determine the threshold and sub-threshold voltages of these devices. 

Much work has been carried out investigating the instability mechanisms present 
in amorphous silicon thin film transistors. Two papers by M.J.Powell, C.van Berkel, 
and J.R.Hughes, [22], and [23], have measured the voltage threshold shift that occur 
in a series of silicon-silicon nitride thin Aim transistors after prolonged gate 
voltages. These instabilities are resolved into two distinct mechanisms. Firstly, 
there is an increase in the density of metastable states, taking place in the 
hydrogenated amorphous silicon layer. Secondly, there is charge trapping, occurring 
the amorphous silicon nitride layer, usually used as the gate dielectric. Other papers 
written on this subject include [24], and [25]. Research progressed onto 
investigations into the creation of these metastable states; [26], and [28], give good 
insight into the chemical processes responsible for defect formation in a-Si:H, and 
suggest that the defect states are in chemical equilibrium with weak-bond valence 
band tail states. [26] gives a good explanation of the concept of the defect pool 
model, which is used to predict and understand the formation of these metastable 
states. Other papers written on the subject include [29], and [38]. 

There are several important papers, [31], [32], and [33] that approach the 
problem of device modelling in a more mathematical way, employing asymptotic 
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techniques. These publications give a good insight into the methods used to model 
the basic semiconductor equations and M.J. Ward, F.M. Odeh and D.S. Cohen, 
[32], give a very good account of the general concepts on the asymptotic methods aa 
applied to the metal oxide semiconductor field effect transistor. 

32 



Chapter 2 

Derivat ion Of T h e Model 
Equations 

In this chapter, I derive and discuss the model equations describing the behaviour of 
amorphous semiconductor devices, the boundary conditions applied, and the 
physical parameters present that are used to form the non-dimensional system. 
However, it seems appropriate to first introduce to the reader the basic concepts of 
semiconductor physics. 

2.1 Basics Of Crysta l l ine Semiconductor Physics 

2.1.1 Band Theory Of Solids 

The references [2], [34], and [3] are used to provide the necessary information 
contained in the following section. These texts are also useful background reading 
on the general subject of crystalline semiconductor devices. 

An important consequence of quantum mechanics, applied to the description of 
electrons in a solid, is that the allowed energy levels of electrons are grouped into 
bands. The bands are separated by regions which contain energies that the electron 
in the solid cannot possess. These regions are called forbidden gaps. The electrons 
in the outer most shells of the atoms, referred to as valence electrons and shown in 
figure 2.1 (a), occupy the lowest possible energy states. The band of these states is 
called the valence band. Electrons that posses enough energy, can be promoted 
from the valence band into the conduction band, where they are free to move 
through the lattice structure and participate in electrical conduction. Solids can 
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then be be put into three classes - metals, insulators, and semiconductors -
distinguished by the size of the forbidden gap. 

The corresponding band diagram for conductors is shown in figure 2.1 (b). The 
two bands mentioned earlier overlap and there is in effect no forbidden gap. As a 
consequence, lattice vibrations provide enough energy for many valence electrons to 
be promoted into the conduction band. The solid possesses a "sea" of electrons, 
capable of conducting electricity. 

Turning to the example of an insulator, the valence electrons form strong bonds 
between neighbouring atoms, which are difficult to release. Therefore, very few 
electrons are available to participate in the conduction process. In terms of the 
band diagram, shown in figure 2.1 (c), there is a large forbidden gap. In a perfect 
insulator, all levels in the valence band are occupied by electrons, and all levels in 
the conduction band are empty. For this reason, a perfect insulator will not conduct 
electricity. 

The intermediate case between the two classes above, is the semiconductor. The 
bonds between neighbouring atoms are only moderately strong, and the electrons 
participating in the bonding structure can be released by thermal vibrations of the 
lattice. When an electron is released, it is promoted into the conduction band, free 
to move, and able to participate in the conduction process. However, the release of 
the electron results in a deficit of charge at this incomplete bonding site. This 
deficit is referred to as a hole. A valence band electron can then jump from a 
neighbouring atom, into the position of the hole, also leaving behind a charge 
deficit. The movement of this lower energy valence electron can be thought of aa the 
movement of a positively charged particle, or hole, in the opposite direction. Under 
the application of an electric field, these holes are able to move and participate in 
the conduction of electricity. In terms of the band diagram, shown in figure 2.1 (d), 
the forbidden gap of a semiconductor is not aa large aa that of an insulator. Because 
of this, some of the electrons will acquire enough energy to jump from the valence 
band into the conduction band, leaving behind holes. From now on, I will refer to 
the movement of high energy conduction band electrons as the movement of 
electrons, and the movement of low energy valence band electrons as the movement 
of holes in the opposite direction. 

2.1.2 Intrinsic and Extrinsic Semiconductors 

In pure semiconductors at absolute zero all the valence band energy levels are 
occupied by electrons, and all the conduction band energy levels are empty. As the 
temperature is increased the valence baad electrons can gain energy from thermal 
lattice vibrations, promoting them into the conduction band. The description of the 
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Figure 2.1: Illustrations of, (a) the valence and conduction bands in a solid, (b) a 
conductor, (c) an insulator, and (d) a semiconductor. 
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Figure 2.2: Value of the Fermi function versus energy with the system temperature 
as a parameter. 

occupation of states by electrons is given in terms of / (e) and specifies how many 
of the existing states at energy E will be filled with an electron. In equilibrium f 
takes on a particular form termed the Fermi function. The details of its derivation 
require some statistical reasoning that will not be entered into here. However, the 
final form for this Fermi function is 

f{E) 
1 

1 + e ^ 

where k is Boltzmann's constant, T is the temperature in degrees Kelvin and Ep is 
the Fermi energy of the electrons in the solid. Ep is the maximum energy the 
electrons have at zero degrees Kelvin. At higher temperatures the probability of 
occupation has exactly the value | at the Fermi level. In general f can take on many 
different forms and it must be understood that the above form is only valid in 
equilibrium. 

In figure 2.2 is a graph of the function for various temperatures. Notice, at T = 0 
all the valence band states are occupied, but all the conduction band states are 
empty. 

Since the creation of a conduction band electron simultaneously creates a hole, 
the concentration of electrons, n, equals the concentration of holes, p. These 
concentrations are called the intrinsic carrier concentrations n,, and the 
semiconductor is referred to as intrinsic. 

Next consider an impurity added to the semiconductor in concentrations much 
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Figure 2.3: Visualisation of a donor ion, (phosphorus), incorporated into the silicon 
lattice. 

larger than n,-. In particular, first consider the case when an impurity atom which 
has five valence electrons, such as phosphorus, is added to silicon, which has four. 
The extra electron cannot be incorporated into the regular arrangement of the 
silicon lattice, but is out of place, as shown in figure 2.3. It is easier to free, or ionise 
the extra electron, and the lattice vibrational energy of silicon at room temperature 
is large enough to ionise nearly all of these electrons, (complete ionisation). Under 
these conditions, the concentration of free electrons, to highest order, is equal to the 
concentration of the impurity atom. Figure 2.4 is a diagram to explain the above in 
terms of band-energy. The dopant ions introduce an extra energy level into the 
forbidden gap below the conduction band. The electrons in this energy level need 
only a small amount of energy to be ionised into the conduction band. 

Similarly, an impurity atom with three valence electrons, such as boron, can be 
added to the silicon lattice, as shown in figure 2.5. This impurity atom has a hole 
associated with the bonding. It can be removed relatively easily since only a small 
amount of energy is needed for a valence electron to jump to this level. The valence 
electrons thus leave behind holes in the valence band. Because the amount of energy 
required for this to happen is small, nearly all of the holes associated with the 
impurity atoms are occupied by electrons. The concentration of holes is then equal, 
to highest order, to the concentration of impurity atoms, (complete ionisation). 

Figure 2.6 illustrates the resulting band energy diagram due to the introduction 
of impurity atoms, (boron). An extra energy level is introduced into the forbidden 
gap, and valence electrons readily fill these states. Materials that have impurity 
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Figure 2.5: Visualisation of an acceptor ion, (boron), incorporated into the silicon 
lattice. 
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Figure 2.6: Energy-band diagram representing acceptor ions. 

atoms added in the above manner are referred to as extrinsic semiconductors. 

2.1.3 Equilibrium Distribution Of Carriers 

The distribution of carriers is obtained by simply multiplying the appropriate 
density of states by the appropriate occupancy function. If Qc {E) dE represents the 
number of conduction band states /cm^ in the E to E + dE energy range then 
Qc (E) f (E) yields the distribution of electrons in the conduction band. Similarly, if 
Qv (E) dE represents the number of valence band states /cm^ and lying in the range 
E to E + dE then (E) [1 — / (E)] dE yields the distribution of holes in the valence 
band. The general form for the carrier distributions is that the concentrations are 
zero at the band edges, reach a peak close to Ec or Ey, and then decay very rapidly 
to zero as one moves upward into the conduction band or downward into the 
valence band. When the Fermi level is positioned in the upper half of the band gap, 
the electron population greatly outweighs the hole population. Conversely, when the 
Fermi level is in the lower half of the band gap the hole population greatly outweighs 
the electron population. When the Fermi level is near the midgap the number of 
holes is equal to the number of electrons. All of this is summarised in figure 2.7. 

The concentration of electrons with energies between E and E+dE is 
Qc (E) f (E) dE and the concentration of holes with energies between E and E+dE is 

(E) [1 — / (jB)] dE. The total carrier concentrations are obtained by simply 
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integrating the appropriate distribution function over the energy band, thus, 

rEtop 

Iec 

f^V 

gAE)}{E)dE. 

P = [ gAE)ll~f{E)]dE. 
^bottom 

If the Fermi level lies more than away from either band gap then the Fermi 
functions can be approximated by. 

f(E)^exp 

for conduction band energies, and, 

1 — y (E) 1% exp 

(E - E;.) 
kT 

(E - E r ) 

for valence band energies. A semiconductors whose Fermi level satisfies the above is 
referred to as non-degenerate. The occupancy functions are replaced by the above 
expressions, and the following approximations for the carrier concentrations are 
obtained, 

(Bp—EQ) 
7% % A T c e ' — E c - Ef > 3A;r , 

where. 

Nc the elective density of conduction band states . 

Ny — the effective density of valence band states . 

The carrier concentrations obey Maxwell-Boltzmann statistics. If the Fermi level 
violates the above inequalities the semiconductor is said to be degenerate, and the 
carrier concentration approximations break down. 

In an intrinsic non-degenerate semiconductor, 

n,' = . 

Mi = jVye 
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factors. 
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The above equations can be used to express jVc and jVy in terms of n;, Eg and 
Ev- Hence, the equilibrium extrinsic non-degenerate semiconductor carrier 
concentrations can be written in terms of the intrinsic carrier concentration, 

n = rue 

p = n,e 

As can be seen from the above expressions the product np gives, 

which is always satisfied when the semiconductor is in thermal equilibrium. 

All semiconductors mentioned henceforth will be assumed to be non-degenerate. 

2.2 T h e Basic Semiconductor Device Equa t ions 

In the following section the reader is referred to [5]. This text gives a good account 
of the origins of the crystalline semiconductor device equations. It haa also been 
used to construct the summary below. 

The full set of equations used to model amorphous semiconductors are derived 
from the basic semiconductor equations. However, due to the nature of amorphous 
silicon, extra terms will appear, which will be discussed later in the chapter. The 
baaic equations can be classified into three groups: Maxwell's equations, continuity 
equations and carrier transport equations. 

2.2.1 Maxwell's Equations 

These equations describe the propagation of electromagnetic fields in an arbitrary 
medium. The differential form is listed below. 

V A E = (2.1) 
dt 

c 
V A ^ = (2.2) 
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V jD = p . (2.3) 

V B = 0 . (2.4) 

Here ^ and D are the electric Held and displacement vector respectively, ^ and 
B are the magnetic field and induction vector respectively, /) is the electric charge 
density, and J denotes the current density vector. Faraday's law of induction, (2.1), 
tells us that a time varying magnetic field produces an electric Aeld. The 
Ampere-Maxwell law, (2.2), states that both electric currents and changing electric 
fields produce magnetic fields. The following two equations are the electric and 
magnetic dux laws. Gauss' law, (2.3), is an equivalent statement to the inverse 
square law. Equation (2.4) states that there are no magnetic charges. 

2.2.2 Poisson's Equation 

Poisson's equation is derived from equation (2.3). Firstly, the electric displacement 
vector is replaced by the electric field using, 

D = , 

where 6 is the permittivity of the medium. The above is valid for all materials 
where e is time-independent, and where polarisation effects due to mechanical forces 
are negligible. It is assumed the permittivity is homogeneous in the device, and that 
the device is isotropic. Hence, the permittivity can be treated as a scalar quantity. 
To simplify the above equations, the magnetic induction vector B is assumed 
independent of time. Therefore, from equation (2.1), 

V A E = 0 , 

i.e. the vector field is irrotational. From differential calculus, a sufficiently 
smooth irrotational vector field in a simply connected region can be expressed as a 
gradient Aeld. Therefore, the electric Aeld can be expressed as, 

E = -V , / , , 

for some scalar potential Substituting this expression for ^ into equation (2.3), 
it can be shown, 

. 
t 

The electric space charge density p can be further specified as the product of the 
elementary charge, q, times the sum of the positively charged hole concentration, p, 
the negatively charged electron concentration, n, and a quantity denoted by C. 

p — q(j} — n C) . (2.5) 
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The constituents that make up C depend on the assumptions made about the 
semiconductor material. Here the device equations for a perfect crystalline 
semiconductor are being derived and therefore C only contains terms accounting for 
the charge stored in the dopant energy level. However, in real crystalline 
semiconductors, imperfections can occur in the lattice creating discrete "trap^ 
states in the forbidden gap. These states also contain charge. Thus, extra entries in 
the quantity C appear, in such cases to take account of these "defects". 

The occupancy of an energy level in equilibrium is given by the Fermi function, 

p (— I 
^ ^ 1 + exp (E - E f ) /A;r ' 

Since, typically, the donor energy level is much greater than the Fermi level, 

exp (E - E f ) /&r » 1 f (E) % 0 , 

whereas typically, the acceptor energy level is much less than the Fermi level, 

e x p ( E - E F ) / A : T % 0 

In most models the above approximations are used. That is to say, the donor and 
acceptor energy levels are assumed to be far enough away from the Fermi level to be 
"fully ionised". The important point to make here is the donor states, when fully 
ionised, posses a charge of magnitude 

where Nd+ denotes the concentration of donor atoms, and the acceptor states, when 
fully ionised, posses a charge of magnitude, 

—qN^- , 

where denotes the concentration of acceptor atoms. 

Finally, /) is replaced by g (n — p + — jVc+) to give, 

= g (n — p + TVyi- — #D+) . 

The problem of assuming full ionisation as opposed to partial ionisation of the 
acceptor dopant energy level in a p-type crystalline M.O.S capacitor is discussed 
later in the chapter, and its resolution constitutes part of my research. 

In the case of a trap in the band gap, it too can be either an acceptor type or 
donor type defect. However, the trap may occur nearer to the Fermi level, 
invalidating the above approximations for the Fermi function. The full expression 



for the occupancy function F (E) is then used. Therefore, in equilibrium, the charge 
contained in an acceptor type trap is given by, 

where Eyi is the energy of the acceptor defect, and the charge contained in a donor 
type trap is given by, 

gFj (Ez)) , 

where Ef, is the energy of the donor defect. It must be noted that the function f, 
describing the probability of a state being occupied by an electron will, in general, 
be different from F, the Fermi function, which describes the probability of 
occupation of a state by an electron under equilibrium conditions. 

In amorphous semiconductors there exists a continuous distribution of 
"localised" defect states. This differs from the crystalline material in two ways. 
Firstly, the states are localised. That is, the defects that occur in the material are 
isolated in space from each other, and charge jumping from one defect state to 
another is very unlikely. Discrete traps occurring in crystalline semiconductors exist 
throughout every point of the material, and communication between traps is 
possible. Secondly, a continuous distribution of states in the forbidden gap, as 
opposed to discrete states, exists. Thus, in amorphous materials C will contain 
integral expressions to account for these continuous trap distributions. 

2.2.3 Continuity Equations 

The continuity equations can be derived from Maxwell's equations (2.2) and (2.3) 
by application of the divergence operator. Since div^curl = 0, for a sufhciently 

smooth vector field H then, 

V . J + ^ = 0 . (2.6) 

This means that if a fixed volume in the crystal is considered, the change in the 
density of any carrier balances the carrier flux out of the volume. Next, the total 
conduction current density J , is split into an electron current, caused by the 
flow of electrons, and a hole current, Jp, caused by the flow holes, giving. 

Assuming the doping profile is time-invariant. 
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and substituting equations (2.5) and (2.6) into equation (2.7) then, 

— 9 ^ (n — p) = 0 . 

The above equation can be split into an electron continuity equation, and a hole 
continuity equation by defining a new quantity R, 

= gA. 

'm 
W.Jp + — —9-̂  • 

The quantity R can be physically interpreted aa the difference between the rate at 
which electron-hole pairs recombine and the rate at which they are generated. 
There are various recombination / generation processes, the more important of 
which are discussed in the next section. 

2.2.4 Carrier Transport Equations 

It is assumed that, 

i) the sources of current flow are from drift and diffusion, (e.g magnetic field 
phenomena, such as the Hall effect, are not included). 

ii) the electron and hole current densities are found by linearly superimposing 
the current flows caused by drift and diffusion. Thus, 

/ „ = J f ' + J j " " . (2.8) 

(2.9) 

In a semiconductor material carriers are continually gaining kinetic energy from 
thermal vibrations of the lattice, and losing energy from collisions with other 
particles and the lattice itself. The macroscopic effect is a random thermal motion 
of the particles, resulting in no net movement of charge. However, when an electric 
field JS is applied to the semiconductor device, the charged particles gain extra 
kinetic energy and a net additional motion in the appropriate direction results, 
(along the field if it is positive and opposite to the field if it is negative). However, 
as in the equilibrium case, the particles are still colliding with each other and with 
the lattice, losing all their kinetic energy aa a result. They again acquire kinetic 
energy from the field and the process is repeated. As a result, the carriers not only 
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posses this random thermal motion, but in addition posses net motion from the 
applied electric field. This net movement or "drift" of charge, superimposed onto 
the random thermal motions of the carriers, results in a current. Since current is 
the rate of movement of charge, the drift current density will be proportional to the 
product of the concentration of the carrier type, and its drift velocity, giving for the 
electron and hole drift current densities, 

^ (2.10) 

where and denote the average drift velocities for electrons and holes 
respectively. 

At moderate field strengths, the drift velocities are proportional to the applied 
electric field, giving, 

t;; = (2.12) 

= //pE , (2.13) 

where fin and fip are the electron and hole mobilities respectively. 

Using equations (2.10)-(2.13), the drift current densities are given by, 

, (2.14) 

^ drift -t 

Jp = . (2.15) 

The diffusion current densities are caused by diffusion of electrons and holes 
from regions of high concentration, to regions of low concentration. The direction of 
diffusion of a charged particle is in the direction of steepest descent of the 
corresponding particle concentration. The diffusion flux densities are proportional 
to the gradients of the corresponding particle concentration. Thus, the diffusion 
current densities are obtained by multiplying the diffusion Euxes, with the charge 
per particle, q for holes and -q for electrons. Hence, 

(2.16) 

= -gDpVp, (2.17) 
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where D„ and Dp are the diffusion co-efficients. 

Substituting equations (2.14) and (2.15) for the drift current densities, and 
equations (2.16) and (2.17) for the di:Eusion current densities, into equations (2.8) 
and (2.9) the current relations become, 

(2.18) 

^ + (2.19) 

The diEusion coefficients and f)p, are related to the mobilities and //p by 
Einstein's relations, 

Dn — 1 

Dp = , 

where f/r is the thermal voltage, given by, 

I 

where A denote's Boltzmann's constant and T is the absolute temperature. 

2.2.5 The Basic Semiconductor Device Equations 

Below, is a list of the equations derived at the beginning of this section, along with 
the assumptions made to obtain them. 

= g (n — p — C) , Poisson's equation. 

qR = V. , electron continuity. 

—gA = V.Jp — , hole continuity. 

(f/rVn — nV^) , electron current. 

Jp =—qfiplUr'^ppVt/^) , hole current. 



i) The only sources of current flow are drift of carriers caused by the electric field, 
and diEusion of carriers, due to the spatial variation of the carrier concentrations. 

ii) Einstein's relations hold. 

iii) The magnetic induction vector is independent of time. 

2.3 Recombina t ion Processes 

It was mentioned earlier that there are various recombination and generation 
processes. The quantity R, appearing in the charge continuity equations, can be 
described by a combination of different phenomena. It is the purpose of this section 
to outline the more important of these and the reader is referred to [2]. 

i) Band-to-Band Recombination. 

As illustrated in figure 2.8 (a) this merely involves the direct annihilation of a 
conduction band electron and a valence band hole, the electron falling from an 
allowed conduction band state, into a vacant valence band state. This process is 
typically radiative, with the excess energy released during the process going into the 
production of a photon. 

ii) Recombination / Generation (R-G) Centres. 

Certain impurity atoms can introduce allowed energy levels into the mid-gap 
region of a semiconductor. Crystal defects can also give rise to deep level states. As 
shown in the figure 2.8 (b), the R-G centre is involved in the state to state transition 
of a single carrier. A carrier is first captured at the R-G site, and then makes an 
annihilating transition to the opposite carrier band. R-G centre recombination is 
characteristically non-radiative. Thermal energy is released during the process. 

iii) Recombination via Shallow Levels. 

Like R-G centres, donor and acceptor sites also function as intermediaries in the 
recombination process, (see figure 2.8 (c)). If an electron is captured at a donor site, 
however, it has a high probability of being re-emitted into the conduction band 
before completing the remaining steps of the recombination process. A similar 
statement can be made for holes captured at the acceptor sites. For this reason, 
donor and acceptor sites are extremely inefficient R-G centres, and the probability 
of recombination occurring via shallow levels is usually quite low. The largest 
energy step in shallow-level recombination is typically radiative. 
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Figure 2.8: Energy-band diagrams of recombination processes for, (a) band to band 
recombination, (b) R-G centre recombination, (c) recombination via shallow levels, 
and (d) Auger recombination. 
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iv) Auger Recombination. 

In an Auger process, band-to-band recombination or trapping at a band gap 
centre occurs simultaneously with the collision between two like carriers. The 
energy released by the recombination or trapping subprocess, is transferred during 
the collision to the surviving carrier. Subsequently, this highly energetic carrier 
"thermalises"-loses energy in the small steps through collisions with the 
semiconductor lattice. The "staircases" in figure 2.8 (d), represent the envisioned 
step-wise lose of energy. Because the number of carrier collisions increases with 
carrier concentration. Auger recombination likewise increases with carrier 
concentration, becoming very important at high carrier concentrations. 

2.3.1 Generation Processes 

Any of the above recombination processes can be reversed to generate carriers, as 
depicted in figure 2.9. In band-to-band generation either thermal energy or light 
can provide the energy required, and thermally assisted generation of carriers is 
obtained with R-G centres acting as intermediaries. Impact ionisation is the reverse 
of Auger recombination. An electron-hole pair is produced as a result of the energy 
released, when a highly energetic carrier collides with the lattice. The generation of 
carriers through impact ionisations occurs in the high E-field regions of devices, and 
is responsible for the avalanche breakdown in pn junctions. 
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Figure 2.10: (a) Electron and hole capture leading to carrier recombination, (b) 
Electron and hole emission leading to carrier generation, (c) Visualisation of an 
inter-center surface transition, (d) A pictorial explanation of why such transitions 
are highly unlikely. 

2.3.2 Surface Recombinat ion-Generat ion 

In many devices under certain conditions, surface recombination-generation can be 
as important as, or more important than, the bulk recombination-generation 
considered in the above section. Bulk R-G takes place at centres distributed 
throughout the volume of a semiconductor. Surface R-G refers to the 
creation/annihilation of carriers in the near vicinity of a semiconductor surface, via 
the interaction with interfacial traps. Interfacial traps are functionally equivalent to 
R-G centres localised at the surface of a material. Unlike bulk R-G centres in 
crystalline silicon, interfacial traps are typically found to be continuously 
distributed in energy throughout the band gap. As pictured in figure 2.10 (a) and 
(b), the fundamental processes which occur in the bulk also occur at the surface. 
Electrons and holes can be captured and emitted from surface centres. One might 
expect additional transitions to occur between surface centres at different energies. 
However, as illustrated in figure 2.10 (c) and (d), these states are localised in space 
on the surface plane. Whereas a single level usually dominates bulk R-G, the 
surface-centre interaction routinely involves centres distributed in energy 
throughout the band gap. 
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2.3.3 Recombination and Generation Through Centres 

In this section, I will be discussing the effect that centres have on the recombination 
and generation of carriers. Emission and capture rate equations will be derived, and 
then used to calculate the steady state occupation function f. This function will 
then be used in later analysis of the M.O.S. capacitor. SpeciAcally, the steady state 
problem of a constant gate voltage applied to the device. Partial, as opposed to 
complete ionisation of the dopant energy level will be investigated. Since this 
problem is steady state, the above occupation function can be used to calculate the 
number of traps that have been ionised. However, I will first discuss the essential 
mechanisms of these traps in the band gap. 

The processes taking place in the recombination-generation centres haa been 
studied by Hall, Read and Shockley, [9] . Figure 2.11 is an illustration of their 
findings. 

Centres are "stepping stones" in the transition of electrons and holes from their 
respective bands. The probability of a transition depends on the size of the step. 
These centres can make such transitions more probable and hence influence the 
life-time of a carrier in a semiconductor. The rates of the various processes are now 
considered. 

a) Capture of an electron from the conduction band by a centre. This process is 
proportional to the concentration of free electrons in the conduction band, and the 
concentration of centres which are not occupied by electrons, (only one electron can 
occupy a given centre). If the concentration of centres in the semiconductor is 
then the concentration of unoccupied centres is Nt{l — / ) , where f is the probability 
of occupation of a state by an electron. Since the capture of an electron is 
determined by there being both an electron and an available trap site, the rate of 
capture will be proportional to the product of their probabilities. Therefore, the 
rate of process (a) is, 

(1 - / ) , 

where, 

Vth- thermal velocity , 

cr„- capture cross section of the centre . 

The concept of capture cross-section is discussed at the end of this section. 

b) The emission of an electron from a centre into the conduction band. This 
process will be proportional to the concentration of centres which are occupied by 
an electron, i.e. Ntf. Thus, 

Tb = , 
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Figure 2.11: Energy-band diagrams for, (a) the capture of an electron from the 
conduction band by a centre, (b) an emission of an electron from a centre into the 
conduction band, (c) the capture of a hole from the valence band by a centre, and 
(d) an emission of a hole from a centre into the valence band. 
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emission probability of a jump from an occupied centre into the conduction band 

A similar approach is taken to And the rates of the processes for holes and it is 
found, 

rc = . 

r j = epTVf (1 - / ) . 

The above equations describe the general recombination and generation 
processes of centres in semiconductor materials. The emission rates contain 
unknown constants, e„, and Cp. These terms are calculated for the specific case of 
equilibrium. Then, when considering non-equilibrium conditions, the new emission 
rate constants will be assumed equal to their equilibrium counterparts. 

In equilibrium, the rates of the processes describing the transition of electrons 
into and out of the conduction band, must be equal. Therefore, == r^. In addition, 
the electron concentration can be expressed in terms of the Fermi level, 

n = AT, exp ( - (E, - E f ) /A;]") = n,- exp ((Ef - E.) /ArT) . 

Substituting the value of the electron concentration into = r^, it is found, 

exp ((Ef - Ei) /A;r)7Vt (l - / ) = . 

Re-arranging, 

e„ = „.fta„n,exp((i;p - E.) /kT) (l - ^ ^ /kT)) 

X ( l + e x p ( ( E ( - E F ) / A ; r ) ) . 

Thus, 
Gn = eXp ((E( - Ei) / t T ) . 

Here it can be seen that goes up exponentially as the centre energy level E( 
approaches Ec. 

Cp is found in a similar manner, by letting = r^, and noting 
p = Mi exp ((E,- - E f ) 

Gp = exp ((E, - E<) / t r ) . 

Considering steady state, with generation of carriers represented by Gl, the rate 
by which electrons enter the conduction band equals the rate by which they leave. 
Thus, 

= Gl — {va — n) = 0 . 
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Similarly, for holes, 

- (rc - r j ) = 0 . 

Eliminating Gl, 
r o - r 6 = = r c - - r d . 

Substituting in the appropriate expressions for these rates, the following algebraic 
equation for f is found, 

VthC n̂'nNt (1 — / ) — GnNff = CpNt (l — / ) — VihCTppNtf • 

The equilibrium emission rates are used, and the equation is solved to give, 

+ (TpM,- exp ((E,- - E() /A;r) 
/ 

or 

/ 

an (M + n,' exp ((E* - Ei) /A;!")) + CTp (p + M,- exp ((E; - E*) /AT)) 

cr-gn + cTpiV^exp ( - [Et - Ey) / k T ) 

(^n Gxp (— [Ec — Et) / k T ) ) cTp (p -j- Ny exp (— (^Et — Ey) / k T ) ) 

Capture Cross-Section 

The capture of an electron or hole, is dependent on a quantity known aa the 
capture-cross section of a centre. Above, the capture-cross section is simply 
introduced as a constant of proportionality. But here I give a more physical view of 
capture, and hence a deeper insight into the concept of capture-cross section. The 
visualisation of electron capture at an R-G centre is given in figure 2.12. The 
idealised view is that the centres are modelled as spheres randomly distributed 
about the semiconductor volume. An electron is considered to be captured if it 
penetrates the sphere surrounding an empty R-G centre. In a time t, (assumed to 
be small), an electron travels a distance Vtht, and passes through a volume of 
material equal to Avtht-, where A is the cross sectional area of the material normal 
to the electrons path. In this volume there is (1 — / ) empty R-G centres per cm^, 
or a total number of (1 — / ) empty centres. Since the centres are 
considered to be randomly distributed, the probability of an electron being captured 
in the volume can be determined by conceptually moving the centres to a single 
plane in the middle of the volume, and noting the fraction of the plane blocked by 
the R-G centres. If the area blocked by a single centre is (Zn, the total area blocked 
by empty centres is (1 — / ) actnvtht- The fraction of the area giving rise to 
capture is (1 — / ) The capture rate for a single electron is then 
Nt {I — f ) cr-aVth- Given n electrons per unit volume, the number of electrons/cm^ 
captured per second is nNt (1 — / ) (JnVth-, or 

^ (1 - / ) n . 
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Figure 2.12: (a) Real space visualisation of electron capture at an R-G centre, (b) 
Construct employed in determining the capture rate. Left: volume through which an 
electron passes in a time t. Right: effective recombination plane. 

2.4 T h e S y s t e m Of A m o r p h o u s E q u a t i o n s 

Above, a system of equations applicable to crystalline silicon was derived. However, 
due to the nature of amorphous silicon, further investigation into its structure is 
needed in order to derive equations that describe its behaviour more accurately. 
The important characteristic of amorphous silicon is the existence of a continuous 
distribution of localised traps in the band gap throughout the bulk as well as the 
surface. Depending on the nature of these traps, they can possess positive, negative 
or neutral charge. The significance of this can immediately be seen, for example, in 
Poisson's equation. In fact the recombination terms in the charge continuity 
equations depend on these traps also. The amount of charge stored in these traps, 
and the recombination of electrons and holes depend on their occupancy f. In the 
previous section, a more quantitative description of the recombination mechanisms 
in crystalline silicon was performed, where a single trap in the band gap occurred. 
The equations used to model amorphous silicon are taken from the basic 
semiconductor equations, but the discrete traps that occur in crystalline silicon, are 
extended to a continuous distribution of traps. The recombination processes for 
these traps are the same as for the single trap case, but integration over the whole 
band gap range is performed. 

I will be considering two types of trap. 
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i) Donor traps - When a donor trap is occupied by an electron, it is neutral and 
when it is empty it has a positive charge. 

ii) Acceptor traps - When an acceptor trap is occupied by an electron, it is 
negatively charged and when it is empty it is neutral. 

To modify Poisson's equation the charge stored in these traps is considered. For 
acceptor traps of concentration at energy E the charge stored is, 

ta 

where /g is the probability of an acceptor trap being occupied by an electron. As for 
donor traps of concentration 

where / j is the probability of a donor trap being occupied by an electron. 

The above is for traps occurring at discrete energy levels. This is now modified 
and a continuous distribution of traps results. For donor and acceptor traps at 
energy levels between E and E+dE the charge stored is, 

The donor and acceptor trap concentrations are, in general, dependent on the 
energy E. To find the total charge stored, integration over the whole band gap 
range, from the valence energy level to the conduction energy level, is carried out. 
Full ionisation of the dopant energy level is assumed from now onwards. The 
magnitude of the concentration of the dopant ions is denoted by Nnet, (< 0). This 
doping level can, in general, be dependent on x and the doping profile is therefore 
denoted by A^(z). Therefore, Poisson's equation is, 

= 9 — P + (a:) + ^ (1 — / j ) -

The recombination term, R, in the continuity equations is now considered. From 
previous calculations, the recombination of electrons for a single trap is. 

A = Tg - r;, . i.e. A = (1 - / ) - exp ( - (Ec - E) 

The above equation applies to donor and acceptor traps, but the capture cross 
section, the concentration, and probability of occupation differ in value, and are 
therefore denoted with the appropriate subscripts. Note, a list of all variable 
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definitions is given in Appendix A and a table of parameter sizes is given in 
Appendix B. Summing the two expressions together, and integrating across the 
band gap, 

--R = / ((TnaTVc exp ( - (Ec - E) (l - A)) 
J Ev 

+ exp ( - (Ec - E) (1 - / j ) ) cZE 
V ̂ 1/ 

Similarly, for the hole recombination, 

A = r-c - r j , i.e J? = exp ( - (E) / t T ) ( 1 - / ) 

Following the reasoning for electron recombination. 

t-Ec 
-A = ( ( T p . j V y e x p ( - ( E - E y ) / A ; r ) 7 V , X l - A ) - W # t . A ) ( ^ E 

J EY 

fEc 
+ exp (— (E — Ey) /A;T) (1 — / j ) — (rpjpWfj/j) . 

./El/ 
Finally, the rate of change of occupancy of a trap for each species is calculated. 

In particular, the case for a single trap f, at an energy E is found to be, 

_ r . - rt - Tc + r j 

Note, the expression is divided by Nt since only a single trap is being considered. 
Putting in the values for the recombination rates computed earlier it is found, 

- «^A/k»(n + A r c e x p ( - ( E c - E ) / M ) 

+ ap(p + # y e x p ( - ( E - E y ) / t r ) ) ] 

+ + (ZpÂ y exp - ((E - Ey) //cT)) . 

This equation for both types of species is used, denoting the capture cross sections 
etc. in the appropriate manner. Therefore, 

- %;(,A[(Zna(ẑ  + A r c e x p ( - ( E c - E ) / A ; r ) ) 

59 



+ (;pa(p + W y e x p ( - ( E - E y ) / A ; r ) ) ] 

+ % + o-paA ŷ exp ( - (E - Ey) //:T)) . 

- Wj[ '7n j (z i + 7 V c e x p ( - ( E c - E ) / A : r ) ) 

+ o'ja (p + exp ( - (E - Ey) /^T))] 

+ + (TpjWy exp ( - (E - Ey) //cT)) . 

2.4.1 The System of Amorphous Equations 

The system of equations for amorphous silicon can now be written down. 

Poisson's Equation, 

V'V = 9 - P + (z) + (1 - / j ) . 

The continuity equation for electrons, 

dn 1 -» r^c 
- - - v . J , = / ( a , . A ^ c e x p ( - ( E c - E ) / M ^ ^ . A ) ( ^ ^ 
Ot q J Ey 

/-Be 
'^th I {^na'^^ta (l /a)) 

J E\/ 
4- / an jA( j#c exp ( - (Ec - /A;T')/jc(E 

J ̂ 1/ /Ey 

— 'Vth / O'ndlT'Ntd (1 — fd) dE . 
* / 

The continuity equation for holes, 

dv 1 -> /f'c 
^ + - v . Jp = / ((7p.jVy exp ( - (E - Ey) (1 - / . ) - (fE 
ot q JEv 

60 



+ exp ( - (E - Ey) /A:r) (1 - / j ) - (Tp^pTV ĵ/j) dE 
J Ev 

The current relations, 

Finally, for the rate of change of the traps, 

- W . k . . ( ^ + A r c e x p ( - ( E c - E ) / A ; r ) ) 

+ o-pa (p + exp ( - ( E ) / A;!"))] 

+ l^th {<^naT^ ''r (^paNy Gy^P {—(E — Ev) /kT)) . 

- W j k » j ( " + ^ c e x p ( - ( E c - E ) / A : r ) ) 

+ (rj.(P + A^yexp( - (E -Ey) /A :T) ) ]y j 

+ Vthi^ndn -{• CTpdNv {E — Ey) fkT)) . 

2.4.2 The Non-Dimensionalised Form Of The System 

Before starting to analyse the model it is appropriate to put it in a non-dimensional 
form using the following procedure from [21]. 
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^ = 1 f z = 

n = p = Mip 

= fikTni J 
L Jp — likTni J 

I, ''P 

^ = E = | ( E c - - ^v ) (l + 

Nta = Â w = 

With the above scalings, the non-dimensional set of equations for amorphous 
silicon are found. 

- p + A// (z) + a y ^ / a - TVfj (1 - / j ) . 

All subsequent ajialysis assumes uniform doping profiles aa applied to a p-type 
semiconductor, implying A^(z) = 1. Hence, 

+ A + a y /aTVta - (1 - / j ) . 

+ a y ^ ((TgVVfj exp (1 - / j ) ) . 

+ ^ V . ^ = ( y y ' ^ ( e x p ( - E / 6 ) A 4 X l - A ) - # . A ) ( ^ ^ 

+ c^y (o-sA^jexp ( - E / 6 ) (1 - / j ) - cZE 

m 

Jn = Vn — nVip . 
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dt 
= - A o"! ( " + exp 

+ ^p + e x p ^ - ^ / 6 j ) ^ 

+ (̂Tin + exp^—E/6^^ 

^ = - / j [o-2 (» + exp (E 

+ <7'3 (p + exp E/6^ ^ j 

+ (̂T̂M + exp^—E/6^^ . 

The parameters in the equations above are listed below. 

a = = /in? a = 
2ni 

= 

^''^th^pa 

1 _ 
5 ~ 

1 ^ 
2 AT fi = 

Ez 
Mn 

CTl = O^pa <72 = £jld. 
(ypa 

<̂3 = ^pd 
O'pa 

An, = 

2.5 Defect Pool Mode l 

In the succeeding section is an outline of the problems constituting my MPhil. But 
first, I feel it is appropriate to explain one of the more important concepts of 
amorphous semiconductors, namely the existence of a continuous distribution of 
localised states in the forbidden gap. Much research has been done in trying to 
understand the cause of these localised states, and how, if possible, to predict the 
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distribution, given certain constituents of the semiconductor. One successful 
method that is being used is the defect pool model. It haa been discovered that 
dangling bonds, created by the breaking of weak silicon bonds, are the cause of 
these defect states. Since amorphous semiconductors are highly disordered 
materials, the weak silicon bonds are continually distributed in energy. Hence, the 
energy possessed by a defect depends on which weak silicon bond is broken. The 
continually distributed weak silicon bond energies imply the corresponding dangling 
bond energies are also continually distributed. The defect pool model approaches 
the problem by considering a chemical equilibrium between the weak silicon bonds 
and the dangling bonds. There are various choices for the specific reactions, and it 
is the purpose of this section to outline the basic types used. Firstly, however, I give 
a brief history of how these defect states were discovered, and why a weak 
bond-dangling bond chemical equilibrium is used to describe the defect distribution. 

Two papers by Powell, Berkel and French, [22], and [23], reported on bias stress 
measurements on amorphous silicon T.F.T's. The first gives conclusive evidence 
that instability mechanisms occur when the device is subjected to a prolonged gate 
voltage, and that they are distinguishable. This bias produces a shift in the 
threshold voltage. The two mechanisms proposed to account for this behaviour are, 

i) State creation, dominated at low positive bias. 

ii) Charge trapping, dominated at high positive biag as well as negative bias. 

The first paper does not indicate whether state creation occurs in the nitride 
gate insulator, or in the a-Si:H semiconductor. However, [23] investigates the 
mechanisms for various nitride compositions. There exists a strong dependence of 
charge trapping, as opposed to an independence of state creation, on the nitride 
composition. Therefore, state creation occurs in the a-Si:H semiconductor, and 
charge trapping occurs in the a-Si:H gate insulator. They also propose that the 
created states result from the breaking of weak Si-Si bonds. There are three types 
of dangling bond, classified by the charge they possess, 

Df, states - negatively charged dangling bonds, 

Dh states - positively charged dangling bonds. 

Dp states - neutral dangling bonds. 

Virtually all the states in the lower part of the gap are Dg states, and all the 
states in the upper part are Dh states. Figure 2.13 illustrates the typical 
distribution of the states in a-Si:H, taken from [29]. 

Next, it has to be decided what causes these defects. The analysis of chemical 
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Figure 2.13: Density of states distribution in a-Si:H. 

reactions in a-Si:H borrows heavily from the methods developed to analyze defect 
reactions in crystals. But the disordered nature of a-Si:H introduces a continuous 
distribution of reaction enthalpies. The kinetics of vacancy formation in C-Si 
depends on the motion of Si, but it is the dispersive diffusion of hydrogen that 
governs the kinetics in a-Si:H. When neutral defect concentrations were first 
discovered to vary reversibly with temperature, the effect was thought to be 
thermal. While these concentrations do depend on temperature, the long 
equilibrium times (up to 1 yr at 300K in n-type a-Si:H), make it clear some other 
type of equilibrium is going on. Therefore, chemical reactions mediated by 
molecules, not phonon exchange, are the key to interpreting the behaviour of defects 
in a-Si:H. A paper by R.A.Street and K.Winer, [28], discusses the different sorts of 
reactions that could be taking place. They adopt the same approach as an earlier 
paper by Z.Smith and S.Wagner, [35], but make three additional assumptions. 

1) There is a non-equilibrium distribution of strained Si-Si bonds, which 
originates from the disorder of the a-Si:H network. 

2) Defects are caused by the breaking of Si-Si bonds, which they are in thermal 
equilibrium with. The non-equilibrium distribution of Si-Si bonds implies there is a 
distribution of defect-formation energies, since the energy depends on which bond is 
broken. 

3) The defect formation energy is equated to the difference in the one-electron 
energies of the defect gap state and the valence band tail state from which it is 

65 



derived. Therefore, 
U = Ed — Evb 5 (2.20) 

where, 
Ef) — the energy of the defect 

EVB — the energy of a weak Si-Si bond 

The above assumptions form the weak-bond-dangling-bond conversion model, 
described by M.Stutzmann, [36]. 

Before looking at the reactions in more detail, a brief explanation of the chemical 
equilibrium between two molecules A and B, possessing energies amd Eg, 
respectively, is given. Chemical A reacts, and transforms into chemical B at a 
certain rate, determined by the reaction constant ki. Similarly, chemical B reacts at 
a rate determined by tg, transforming into chemical A. A point is reached when the 
amount of chemical A transforming into chemical B, is balanced by an equal 
amount of chemical A, forming from the transformation of B. The same reasoning 
applies to chemical B. Thus, the concentrations of chemicals A and B are constant 
and a dynamic equilibrium exists. This is represented by the following equation, 

A ^ B . 

In equilibrium, according to the law of maas action, 

[^]eq = [^leq^""^ , (2-21) 

where = Eg — When the system is perturbed, the transient concentrations 
can be solved. The rate at which A reacts, is equal to the product of the reaction 
constant and the amount of A present. The amount of A being created, is equal 
to the product of the amount of B present, and its corresponding reaction constant 
k2. Thus, the rate of change of A satisfies, 

^ . 
Similarly, for B, 

dB 
—z— = Ai/i — . 
at 

Note, adding the two equations above. 

dt 
0 , A + B = C , where C is a constant, 

vindicating the conservation of mass. Substituting B with C-A in the first 
differential equation, 

= k2 {C — A) — k\ A . 
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This can be easily solved to give, 

A — Aeq = (^A (0) — ^eq) exp (— {ki + 62) t) • (2.22) 

Similarly, for B, 

B — 5eq = (0) — i?eq) GXp (— {ki + t) . (2.23) 

These relations are well established for defect reactions in crystals. But the 
disordered nature of a-Si:H introduces a distribution of reaction enthalpies AE. 
The modification of equations (2.22) and (2.23) is treated by W.B Jackson, 
Here, only the study equation (2.21) is investigated. 

Simply having the reaction, 
Si ^ Do , 

gives, 

[•Doleq=ISileqexp . 

[Sijgg 5 X lO^^cm ^ 
But, 

rs^eq 

and 
[Dojeq lO^^cm"^ . 

This requires AE ^ 0.7ey, implying [Do] to be highly temperature dependent, 
which is not true. In fact l\E has been measured to be 0.2 eV—0.3 eV by [39]. 
Therefore, an equilibrium between Dq and a subset of Si must exist. Z.Smith and 
S.Wagner, [35], resolved this by invoking the weak-bond-dangling-bond model, 
originally proposed by M.Stutzmann, [36]. Since the weak bond concentration, 
[Si-Si], is ^ lO^^cm"^, and this gives the correct defect density. Therefore, an 
equilibrium between the weak silicon bonds (Si-Si), and the dangling bonds (Do) 
exists and is represented by, 

Si-Si ^ Do . 

Solving this gives, 

[^o]eq = [SiSi]gqexp -

However, the total number of Si-Si bonds is simply the sum of the equilibrium and 
broken bond concentrations, 

[SiSiltot = [SiSi]^, + [SiSilbroken -

However, 

[^^^%roken ~ i-^oJeq ' [-^oJeq ~ ([^^^^Itot ^ t^oleq) ( ~ ' ^ ) ' 
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AE=EnO-E 

Energy 

Figure 2.14; Density of states diagram to illustrate the distribution of reaction en-
thalpies in the weak-bond-dangling-bond model with a single defect Do in the gap at 
energy Ego. 

Rearranging this equation, 

[Do leq 
[SiSiltot. 

l + e" 

The existence of a distribution of reaction enthalpies is made clear in figure 2.14, 
taken from [26], which depicts the valence-band tail, (weak Si-Si bonding states) 
described by Nvoe^p{-E/Eq ) , and a single defect Do in the gap at energy Edo- It 
is essential to include in the calculations the distribution of formation energies, 
which originates from the variation of strain energies of the silicon bonds, (the 
contribution made by Smith and Wagner, [35]). According to the weak bond model, 
the distribution function is equated to the shape of the valence band tail, which is 
assumed to be of the form. 

Nvo (Evb) — a^voexp 
E vb 
kn 

Each weak bond in the valence tail is assumed to be in chemical equilibrium with 
this single defect Dq. Therefore, integrating over all possible weak bond energies 
gives the defect concentration, 

Nd i: NvoE 
1 -I- t~vr 

-dEvB 

T, 
IT 

^ e x p ( - E D / t r , ) - e x p ( - E D / A : r ) 
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Figure 2.15: Density of states diagram to illustrate the distribution of reaction en-
thalpies in the weak-bond-dangling-bond model. The distribution involves both an 
exponential component due to the exponential valence band tail, and a Gaussian 
component due to the distribution of virtual defect states in the defect pool. 

The above calculations are applicable to a single band gap defect. However, since 
there exists a continuous distribution of defect states, a chemical equilibrium 
between the valence band tail states and a distribution of potential, or pool, of 
defect sites needs to be considered. Mathematically speaking, this single defect is 
simply a ^-function. Therefore, to create a distribution of defects, a distribution of 
potential defect sites is considered. The true distribution is known to be nearly 
Gaussian. Therefore, this ^-function is replaced with a Gaussian pool of states of 
width cr, as illustrated in figure 2.15. Integrating across all possible defect state 
energies, 

Lr 
ND L 6 X 

(2?r cr^)' 

where, 
Efj, — most probable defect chemical potential , 

a — Gaussian width . 

This expression can be approximated, 

Nd X ( | - e x p ( - E c / t r . - a ^ l 2 ( k % f ) 

exp {-Eo/kT - <T'/k^Z + ,7^/2(kTf) , (2.24) 
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where, 

t; 
Equation (2.24), is identical to the discrete gap state (2.23), except the defect 
energy is shifted from the average defect chemical potential by the energy 

and the effective density of valence band tail states is reduced by a factor 

exp (~2(fcr )0 ' reason for this is straight forward. The formation enthalpy for 
defect states near the low-energy Gaussian tail is smaller than at the Gaussian 
peak. Consequently, many defect states "want" to form there. Yet, there are 
progressively fewer available sites as one moves down the sides of the Gaussian. The 
balance between the enthalpy reduction, for states formed in the lower energy tail of 
the "defect pool" distribution, and enthalpy increase due to increased distortion 
energy for states formed far from the defect pool maximum, results in the defect 
peak shift. In n-type and p-type a-Si:H, D_ and D+ defects, respectively, dominate. 
In undoped a-Si:H, however, the dominant defect depends on the width of the 
Gaussian defect pool. For small values of, a, (~ 0.1 eV, Do defects dominate in 
intrinsic a-Si:H. For larger values of <t, (> 0.15 eV), charged D_ and D+ defects 
dominate, when the appropriate electron occupation statistics are employed. 

In reality, it is known that one broken weak silicon bond leads to two rather than 
one defect. The previous reaction does not account for this, and Smith and Wagner 
modified their analysis to take into account this extra defect, with the reaction, 

SiSi ^ 2Do . 

However, for reasons not mentioned here, the two resulting dangling bonds must 
diffuse away from each other. This model, therefore, can only apply if the silicon 
defects are mobile. But there is no clear evidence mobile defects exist. However, 
such a mechanism is likely to determine the reaction kinetics. The kinetics of defect 
equilibration in a-Si:H has been measured and is consistent with a process whose 
rate is limited by the dispersive diffusion of hydrogen. The explicit introduction of 
H into the chemical reactions describing defect formation, resolves the problem of 
defect diffusion, and accounts for the kinetics of defect equilibration in a 
straightforward manner. The introduction of hydrogen into the reaction gives, 

Si-H 4- (weak bond) , 

and is illustrated in figure 2.16. The defect labeled Dw refers to the one at the site 
of the weak bond, where it is immediately adjacent to the Si-H bond. This defect 
cannot be separated from the Si-H bond and the two must be considered a single 
entity. The isolated Dh defect is left by the removal of hydrogen from the Si-H 
bond. It is assumed that the two defects have the same energy. The application of 
the law of mass action to the above reaction is similar to the previous calculations 
on the earlier reaction. 
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H 

Figure 2.16: Schematic illustration of the defect reaction for the hydrogen diffusion 
model. 

The basics of the defect pool model are to calculate defect distributions and 
concentrations. The distribution can be calculated as a function of temperature and 
Fermi energy. The results compare favourably with the available experimental data, 
suggesting the underlying basis of the theory to be correct. 

The success of this chemical approach to understanding the behaviour of defects 
in a-Si:H can also be carried over into the description of optimal growth of a-Si:H, 
defined as those growth conditions that lead to the lowest equilibrium defect 
concentration. The key idea for this approach, is that the main role of the plasma is 
to supply the sources of the chemically reactive species, and the material properties 
of the a-Si:H are determined primarily by reactions that take place on or below the 
surface. The reliance on solid state chemical reactions, rather than plasma-gas 
processes, is radically different from most previous attempts to describe a-Si:H 
growth. Future work is to discover from this defect pool model, how to better 
control the material properties of a-Si:H. 

2.6 A n I n t r o d u c t i o n To T h e T h r e e P r o b l e m s 
Cons ide red 

Before entering into any detailed discussions on the problems considered a review of 
the current understanding of specific devices, such as the MOS capacitor and the 
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Figure 2.17: Diagram depicting the delta-depletion approximation. 

p-n junction, is given. 

A widely used approach for understanding the operation of devices makes use of 
the delta-depletion approximation. As an example of this approximation consider a 
p-type MOS capacitor in equilibrium subject to a steady positive gate voltage. The 
approximation considers the device to be divided into a depletion, neutral and 
inversion layer, see diagram 2.17. The neutral layer has zero space charge and hence 
there is a small uniform field. However, in the depletion region the application of 
this steady gate voltage repels holes into the neutral layer and attracts electrons 
towards the silicon-oxide interface. Since this region is now depleted of carriers the 
space charge is due solely to the fixed ionised dopant atoms. In order to patch the 
depletion and neutral layers two conditions are satisfied. Firstly, approaching the 
neutral layer from the depletion region the field is taken to be very small and 
secondly the electric potential is taken to be continuous. Finally, in a very thin layer 
at the oxide-silicon interface the electric field collects electrons and repels holes. If 
the applied gate voltage is large enough the concentration of electrons exceeds the 
bulk hole concentration and an inversion layer results. There are, however, 
inadequacies in this delta-depletion approximation. In particular, a discontinuity in 
the space-charge occurs at the depletion-neutral layer interface. In addition, there is 
a need to understand more deeply the mathematical structure of the inversion layer. 

To shed light on the first of these inadequacies research undertaken by Please, 
[21], reveals a very thin 'transition' region, see diagram 2.18, between the depletion 
and neutral layers of a p-n junction. Here, the equations are non-dimensionalised in 
such a way that a large parameter A results. This parameter, which is proportional 
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Figure 2.18: Diagram showing the voltage structure of a p-n junction. 

to the doping level, is typically 0 (10^°). Asymptotic analysis in the limit X -* oo 
was then carried out. It is found that in Chapter 3 the voltage across the MOS 
capacitor has a similar transition layer structure. In addition, this chapter 
investigates the structure of the inversion layer and a complete matched asymptotic 
solution for the electric potential is given. 

Another common assumption made in modelling semiconductor devices is that 
the dopant atoms are completely ionised. In Chapter 4 this assumption is relaxed 
and a solution is sought for the problem of an MOS capacitor. Here the ionisation 
of the dopant atoms are considered by assuming that the dopant energy level is a 
single trap in the forbidden gap. The solution to this problem gives an initial 
insight into the behaviour of an amorphous MOS capacitor where a continuous 
distribution of traps exist in the band gap. However, this more difficult problem 
with a continuous distribution will not be considered. 

There has been some analytical work into the transient behaviour of MOS 
capacitors. In [37] some asymptotic analysis of the transient behaviour of a p-n 
junction device is given and a brief review of the work is appropriate. 

After an appropriate scaling of the semiconductor device equations [37] carries 
out a singular perturbation analysis. The resulting perturbation parameter is 
proportional to the minimal, (or extrinsic), Debeye length. It must be noted that 
this parameter is distinct from the parameter used in [21]. The Shockley-Read-Hall 
model for recombination is used and the hole and electron mobilities are assumed 
constant. It is found that two disparate time scales are present. The slow time scale 
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involves recombination of the carriers. The fast time scale corresponds to the 
conventional displacement current. In addition, some numerical solutions are given 
at the end of the paper. 

In Chapter 5 the transient response of an amorphous MOS capacitor is 
investigated. It is anticipated at least two time scales are present. The fast time 
scale corresponds to the setting up of the deep-depletion phase. There is a slow 
time scale that corresponds to the return of the device to equilibrium, but this is 
not examined. The magnitude of the doping concentration is exploited and as in the 
previous chapters an asymptotic analysis in the limit A —> oo is performed, as in 
[21]. Shockley-Read-Hall recombination is assumed and the electron and hole 
mobilities are considered field independent. In addition, the concentration of the 
continuous distribution of traps in the band gap are taken to be small enough not to 
induence the equations to highest order. The behaviour of these traps, however, is 
hoped to shed light on how they may influence the problem when occurring in 
larger concentrations. 

The following three problems are concerned with the application of a steady 
positive voltage to the gate electrode of an amorphous silicon MOS capacitor. In 
the first two problems a steady solution is sought. However, as mentioned earlier, 
either complete or partial ionisation of the dopant acceptor energy level can be 
considered. The first problem is concerned with complete ionisation of the dopant 
ions, whereas the second is concerned with the more realistic scenario of partial 
ionisation. In connection to the first problem the reader may wish to refer to [21]. 
The parameter A, denotes the concentration of dopant, which is typically 0 (10^°). 
The magnitude of this parameter is exploited, and the problems are solved in the 
limit, A —» oo . Asymptotic analysis of the device equations is then carried out. In 
addition, to simplify the problems, small defect gap state concentrations are 
considered. In mathematical terms, I take the limit, a ^ 0 , where, a denotes the 
defect gap state concentrations. The third and final problem is concerned with 
finding a transient solution to the device equations, when a constant positive 
voltage is applied to the MOS capacitor, initially in equilibrium. The complete 
ionisation of the dopant acceptor ions is assumed, and asymptotic analysis is 
performed under the same limits as above. 

To simplify all the problems above, the analysis of the device only applies near 
the centre of the channel, as shown in the shaded strip in figure 2.19. Here edge 
effects are ignored and the voltage, carrier concentrations etc. only depend on the 
distance x. Leakage currents, due to continuous distributions of surface states at the 
oxide-semiconductor interface, do exist in real devices and the concentrations that 
occur are not negligible. However, for simplicity the three problems are analysed 
with the assumption of zero surface states. Finally, the applied voltage is assumed 
to be large enough so as to ensure the formation of an inversion layer. 
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Figure 2.19: Diagram indicating the region of the MOS capacitor where the analysis 
is applicable. 

Each of the previous mentioned problems is now discussed in greater detail. 

2.6.1 The Steady Problem W i t h Complete lonisat ion Of 
The Dopant Ions 

Chapter 3 is concerned with the problem of a steady voltage being applied to the 
gate electrodes of an MOS capacitor, and a steady solution is sought. One 
extremely useful property of the MOS capacitor is the absence of any current in 
steady state conditions. It is this property that simplifies the problem greatly, and 
enables the carrier concentrations to be described in terms of the voltage. In 
addition, very small defect gap state concentrations are assumed, and hence, to 
highest order, the device behaves as a crystalline MOS capacitor. These 
assumptions are made in the hope that the solution will give some insight into both 
the problem of partial ionisation of the dopant ions in the crystalline device, and 
the more complicated steady and transient problems of the amorphous device. 

To set up the problem mathematically, the reader is referred to the 
non-dimensionalised system of amorphous equations at the end of section 2.4. 

To highest order, in the limit a —> 0, the continuity equations for electrons and 
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holes are, 

s » ' S - • 

S-'t' • 
However, a steady solution is being sought, therefore. 

Therefore, the continuity equations imply the electron and hole currents are 
constant under steady state conditions. In the limit o; 0, the leakage currents due 
to the interfacial traps at the oxide-semiconductor interface are, to highest order, 
zero. Thus, 

J-n — 0 , 

Jp = 0 , at z = 0 . 

Therefore, the currents are zero everywhere. Since there are no electron or hole 
currents, 

0 = (2.25) 

These equations can easily be solved, and the electron and hole concentrations can 
be expressed in terms of the voltage 

n 

p = Be ^ . 

Under equilibrium, the product np=l applies, and, 

4 -
A 

Thus, in the limit a —> 0, Poisson's equation to highest order is, 

^ + A . 
A 
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The boundary conditions of the problem are now considered. The boundary 
conditions for the currents have already been mentioned and the remaining 
conditions are concerned with the voltage, and the electric field, At the 
oxide-silicon interface, the voltage, is expected to be continuous, and is given the 
value ^ ( z = 0). It also seems reasonable to assume continuity of the electric field. 
Since the oxide layer is assumed to be neutral, the electric field is linear. Continuity 
of this field across the oxide-silicon interface is therefore given by, 

where, 
u In A — is the voltage applied to the gate electrode, 

— is the thickness of the oxide layer. 

At the back of the device, (x = a), it is assumed an ohmic contact exists between 
the silicon substrate and the rear contact. Thus, 

—— = 0 , and np = I 

Finally, letting, 
•0 = 0, 

at x=:a, fixes the arbitrary constant contained in the voltage potential. The 
boundary conditions for this problem are. 

at x=0, and, 
^ = 0 , 

0 

at x=a. 

2.6.2 The Steady Problem With Partial lonisation Of The 
Dopant Ions 

The steady problem above assumes complete ionisation of the dopant ions. Here, 
this simplifyed description is removed, and a more realistic scenario, of partial 
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ionisation of the dopant atoms, is considered. In the section on recombination and 
generation of centres, a function f was derived, through the use of Shockley Read 
Hall statistics, to describe the occupancy of traps under steady state conditions. 
Here, a steady solution is being sought. Thus, f can be used to describe the 
occupancy of the dopant energy level. 

Referring to the ajnorphous system of equations, in section 2.4, in steady state, 
the rate of change of the acceptor trap occupancy is zero. This gives an algebraic 
equation for /„, which is easily solved to obtain, 

(Tin + 
(Tin + + e~^l^ + p 

Since the semiconductor is assumed to be p-type the dopant ions are acceptor type 
in nature. Therefore, the occupancy of the dopant ions, f, is described by the 
function /g. To simplify further, the problem with cri = 1, is considered to give, 

/ 

where 'y = e The assumption that (Zi = 1 seems reasonable since the typical 
value is of the order of unity. 

Under complete ionisation, the charge stored in the acceptor traps is simply A. 
Here, however, the ionisation is only partial, and the amount of charge storage is 
given by /A. Thus, Poisson's equation becomes, 

Ae-^-^e-* + x( " + ^ 
dx'^ A + ^ + ^ + p 1 

where in the expression for f the bar notation has been dropped for clarity. This 
problem is identical to the previous in every respect, but for the partial ionisation of 
the dopant ions. The boundary conditions are the same, except at z = 0, where the 
thickness of the oxide layer is. 

1 /1 In A7 
i V A 

Thus, 

at x=0, and. 

A / . 1 
^In A'y 

- (;^ln A /̂̂  

0 

at x=a. 

^ = 0 , 

78 



2.6.3 The Transient Problem With full lonisation Of The 
Dopant Ions 

Here, the transient eEects of the capacitor, caused by the application of a steady 
voltage to the device initially in equilibrium, are considered. The main concern is 
the formation of a deep-depletion layer, and the succeeding development of the 
device into the steady state. For simplicity, a constant level of traps throughout the 
band gap is taken at a concentration far below the that of the dopant. The bulk 
traps taken are to be acceptor traps, to reduce the algebra. Again, the limit of large 
doping levels is taken, 

A oo , 

and small bulk trap levels, 
a —> 0 . 

It is assumed , 6 1, but do not, as yet, specify their values relative to A. In 
addition, to simplify matters, the problem assumes complete ionisation of the 
dopant ions. 

The equations for this problem, to highest order, are, 

= n — p + A . 

S - ' S - -

(li +''I! 

^ - A [(Zi (" + exp 

+ ^p4-exp^—E/6^) 

+ + exp ^ 
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Since initially, the device is in equilibrium, (i/; = 0), the carrier concentrations 
are simply, 

n = /I , 

^ = % ' 

Initially, the device is equilibrium, which implies the rate of change of the acceptor 
traps is zero, i.e. ^ = 0. The above expression for ^ therefore gives an algebraic 
equation for /g. This is solved and, 

1 + 

is the initial value for fa- As discussed earlier, when the device is in equilibrium, 
charge neutrality holds and no currents flow. With all the above true in 
equilibrium, the initial conditions are, 

Jn ~ 0 ' 

Jp = 0 . 

n — p + A = 0 . 

^ = 0 . 

1 
fa = 

+ 1 ' 

np — 1 . 

The boundary conditions are similar to the first problem. However, since in this 
problem current flows, conditions on Jn and Jp must be imposed at z = 0. It is 
assumed that small surface trap concentrations at the oxide-semiconductor interface 
exist and to highest order no leakage currents are present. Therefore, 

= 0 , and Jp = 0 , 

at X = 0. Hence the boundary conditions for this problem are, 
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atx:=0,and, 

at x=a. 

Jn 

J. 

0 , 

0 , 

np = 1 

0 
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Chapter 3 

T h e Steady Solution W i t h Full 
lonisat ion Of T h e Dopant Energy 
Level 

In this chapter a steady solution for the M.O.S. capacitor, when its gate electrode is 
subject to a constant voltage, is sought. As discussed in the previous chapter, the 
one dimensional system of equations are considered, implying the solution is only 
valid near the middle of the device, where edge effects can be ignored. 

The problem is then to solve, 

A 

with the following boundary conditions 

- ^ + A , (3.1) 

at x=0, and. 

t j j = 0 

0 

at x=a. Making use of the two boundary conditions at re = a, the arbitrary constant 
A can be found. Since, at rc = a, equation (3.1) becomes, 

0 = A — — + A . 
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Thus, the solution for A is given by the roots of quadratic, 

+ XA. — 1 = 0 . 

Using the fact A 1, and A > 0, the solution for A can be expanded in powers of A 
to obtain, 

In addition, 4 is given by. 
1 
A ^ + 0 © • 

Substituting these equations into (3.1), gives. 

_ 
VA 

+ 0 
A3 

A + 0 - ) ) e - * + A. (3.2) 

To highest order, the 0 electron concentration, and the O hole 
concentration terms can be ignored. Therefore, equation (3.2) becomes. 

_ 1 
A 

- Ae-"̂  + A (3.3) 

In the following analysis four different regions of behaviour are found, illustrated 
in figure 3.1. 

The scalings required are given below. 

z O (1) , 0 (1) . 

X — XQ ~|~ V' ~ 0 (1) . 

- Outer Solution 

-Transition Layer 

- Depletion Layer 

z = ) ^ = 21nA4-lnt^ + !;A. — Inversion Layer 

Where, u, (c: 2 In A) is a constant to be determined. 

The remaining part of this chapter is concerned with the calculations necessary 
to find the leading order solutions, and the matching together of the four regions. 
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Neutral layer 

X ~ 

a: ~ 0 (1) 

Depletion lay 

X ~ 

In vers i 

Figure 3.1: Sketch showing the different boundary layers of the steady solution with 
full ionisation of the dopant energy level. 

3.1 T h e O u t e r Solut ion 

In this region, far away from the oxide-semiconductor interface, the device is to 
highest order, neutral, and the hole concentration balances the dopant ion 
concentration. 

Seeking as a. power series in y, . 

V* = V'o + + 0 ^ , 

and substituting into equation (3.3) gives, 

But the exponential terms can be expanded to obtain. 

^ + i + 
dx^ A ̂  

Equating co-efficients of A, 

0(A) , -Ae-^ + A = 0 , 

=> r/'o = 0 . 

84 



To highest order, 
ij) = 0 

3.2 Trans i t ion Layer 

This is the very thin layer that separates the depleted region, where the hole 
concentration is small, from the neutral outer region, where the hole concentration 
is large. A concentration gradient therefore exists across the layer. Since a steady 
solution is being sought the net &ow of holes is zero, implying the presence of an 
electric Aeld to counter-balance the tendency of the holes to diffuse towards the 
interface. This is achieved by making the second order term, in Poisson's equation, 
balance the hole and dopant concentrations. 

Expanding ip in powers of y, 

V' = V'o + yV'i H , 

equation (3.3) becomes, 

/ ^̂ 1̂ 0 , 1 A 1 
\ A 

^1 — y V'l 4" • • + A 

To highest order, 

+ . . . j = + 

2 — 

However, equation (3.4) can be integrated to give, 

2 

+ 1 . (3.4) 

- ' = " * ° + ' ' ' ° + ^ • 

where C is a constant of intergration. 

Approaching the neutral region, z —̂  cx), and ^o, » oo- Substituting this 
into (3.5), gives C = — 1. Equation (3.5) can be re-arranged to give, 

(3.6) _ 

It is known the gradient is negative, since only a positive gate voltage is being 
considered, therefore the negative root is chosen. Re-arranging equation (3.6) 
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results in the following integral equation, 

ri'o ( 1 \ p 
Jibr 

= —-\/2a; + \/2zi . (3.7) 
/V'Q(ri) \ e ^4-y — 1/ 

3.3 The Deplet ion layer 

In this layer the concentrations of electrons and holes are small in comparison to the 
background acceptor ion concentration. This is simply because the large electric 
field present in this region repels any of the holes out towards the neutral layer, 
whereas the acceptor ions, 'stuck' in the lattice structure, are unable to move. 
Electrons are attracted beyond this region into the accumulation layer, and their 
concentration is also comparatively small. 

Again, expanding as a power series in Poisson's equation becomes, 

To highest order, 

Therefore, 

— Ae + A . 

1 -2 

1 . 

^0 = 2̂ ^ 4- + 6 . (3.8) 

The constants a and b are found through matching. 

3.4 Strong Inversion 

Here, the electron concentration, much larger than the hole and dopant 
concentrations, balances the second order term in Poisson's equation. 

As with the other regions i/; is expanded in powers of Equation (3.3) then 
becomes, 

1 V \ 
1 — —f/)! + • • • ) + A . 
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To highest order, 

This equation can be integrated to give, 

^ ' 

where B is a constant of integration. Re-arranging, the integral equation, 

\e.y B 

is obtained. 

Letting xi = 0, then, 

r*) / 1 \2 r 

/1̂ 0 (0) Vê  + i? 

The value of (0) caii bs found by the boundary condition at z = 0 and the 
constant B found by matching. 

3.5 Matching The Solutions 

The arbitrary constants found in the previous section are now determined using the 
method of matched asymptotic expansions. The procedure is to let each solution 
tend towards a neighbouring one. This is achieved by expressing a solution in terms 
of its neighbours variables and finding the highest order behaviour. The highest 
order behaviour of the solutions, in these overlap regions, are then equated. This 
method ensures a complete matched asymptotic solution is obtained for the voltage, 

3.5.1 The Transition and Depletion Layers 

In the transition region, the equation governing tp is, 
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The transition layer has already been matched into the outer region, and is now 
matched into the depletion layer. Writing the transition layer voltage, in terms of 
the depletion layer voltage, 

In the limit A cx), matching the transition layer into the depletion region, is 
equivalent to letting ^ ^ cxo. The above integral equation can be re-written, 

^ 4 = f y ^ Cf!/ + r - ^ 4 . 

J-'Poixi) y Y 4-^ — 1)/ J'4'o{xi) y Y ~ 1) \/y 

However, 

r^Q I 1 1 \ I 1 1 
(̂ 2/ = r , 

Vi/fn f n 1 \ ^ n —!/ -I- 9/ — 1 ̂  \ / w / \^J(e-y + y — l) Vy/ -^^oixi) \^J(e-y + y — 1) \/y/ 

\ Y + ^ — 1) \/y j 

It can be shown that, 

Y (6"^ + ^ — 1) \/y Vvro/ 

and, 
foo 1 1 
/ / = = = ()!, 

y(e^y + 2/ — 1) Vy 

where a is an order one constant. Thus, aa oo, to highest order, 

yV'o 1 i— 
/ _ / ~ V'O • 

y{e~y y — I) 

Therefore, approaching the depletion layer, the relationship between ipo and x is, to 
highest order, 

—\/2f = . 

Re-arranging this equation gives as a function of f , 

V'o = , (3-9) 

In the depletion layer the solution is, 

^0 = -t- 6 . 
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Substituting the depletion layer variables for the transition layer variables, 

X — \ ~xo H 7= , yo — ? 

the depletion layer solution becomes, 

ts = + + 

u 2 u u y 

+ " + ^ ) + ' • 

Hence, 

ipo — — - ) - X ̂ \/Azo 4" ct,\/u^ 

^ ' (3.10) 

In order that the depletion and transition layers match, the depletion layer solution, 
as it approaches the transition region, (equation (3.10)), must equal, to highest 
order, the transition layer solution as it approaches the depletion region, (equation 
(3.9)). Therefore, equating the co-efhcients of f in equations (3.9) and (3.10), gives, 

\/Azo + \/t(a = 0 . 

Therefore, 

—xq -|- o ] = 0 . 

If zo is scaled, 
lu 

Xq Y ^ ' 

then, 
xo ~ —a . 

Equating co-efficients of xq in equations (3.10) and (3.9) gives. 

4- 6^ — 0 . 

To completely determine the constants o 6 and fo the depletion layer solution is 
matched into the inversion layer. However, as an aside, the analysis is continued, for 
the case when the applied gate voltage is small enough to only form a depletion 
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layer. The voltage at the oxide-semiconductor interface is 1̂ 0 (0), which gives 
6 = ^0 (0). Therefore, a and fb can be calculated from the above quadratic and the 
relationship zb = — o, to give, 

= ^0 (0) , => = \/2i^o (0) , 

Thus, the growth of the depletion layer is proportional to the square-root of 
interface voltage (0). 

3.5.2 The Depletion and Inversion Layers 

The equation describing the inversion layer voltage, •0, is, 

1 
/ -ay = —ylx . 

;*(o) (e!/ 

Expressing the inversion layer voltage, ^ in terms of the depletion layer voltage, 

^ — (2 In A 4- In u — j . 

Since u <C 2 In A, then in the limit, A —+ 00, approaching the depletion layer from 
the inversion region is equivalent to letting ^ ^ — 0 0 . Thus, as ^0 — — 0 0 , the 
highest order behaviour of the above integral is found. Splitting this integral into 
the following parts, 

1 1 1 /"*) 1 /-% 1 1 fV-o 1 
-rcly — / J— —r^y ~i~ I —r^y 1 

V,;;o(o) (e^ + (ê / -t- B): ^̂ o(o) B 

and noting, 

1 1 /—00 1 1 
^ -ay = / J -ay , 

/,̂ o(o) (ef + Bz ;*(o) (e!/ + Bz 

1 1 
1 T ' 

_L 2 R 2 (e^ + B)2 Bz 

where, 

and. 

f-OO I 

/ r r 4 - 0 ( l ) 
V;Ao(o) (e!/ + B& 

/ J—- —vdy <C 1 . 
(e!/ -t- B)2 Bz 
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The highest order behaviour of the integral is given by, 

1 1 , 
_ 

4 o ( o ) ( e ! / \ / n ' 

giving, ^ ^ 
tpQ ——\/2vBx\. (3.11) 

The depletion layer solution is sent into the inversion layer, by expressing the 
depletion layer variables in terms of the inversion layer variables, 

2 In A + In K + ^0 . ic 
IPQ = , X = — . 

Thus, the depletion layer solution becomes, 

_lnA Inw 1:%̂  
M U « 2 U": 

2 In A + ^0 = O ^ + az + . (3.12) 

The terms in equations (3.11) and (3.12) are equated, ajid, 

co-efficients of x , a = — \ / 2 5 . 

co-efficients of xo , — 2 In A = 0 . 

Letting n = In A gives. 

Hence, 

6 — 2 = 0 . 

6 = 2 , 

u = In A , 

B 
a2 

The quadratic for zo is then, 

giving. 

— — xo^ 4- 2 — 0 , 

zo = 2 , 
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and therefore, 

a = —2 , and = 2 . 

The Anal boundary condition, 

= h\ {tp — V In X) , at z — 0 , 
oz V In A 

is used to And (0)- Re-writing this boundary condition in terms of the inversion 
layer variables gives. 

\/A In Y (2 In A + In (In A) + ^ — u In , at ^ = 0 . 

However, from the inversion layer section. 

Therefore, at & = 0, 

Thus, 1̂ 0 (0) is given by. 

1 
2 

2 
- = + 2 . 

-f- 2^ — h (2 — V 
In In A ^0 (0) 
In (A) In A 
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Chapter 4 

T h e Steady Problem W i t h Partial 
lonisat ion Of The Dopant Energy 
Level 

4.1 Introduction 

In this chapter the analysis of having a probability density function for the 
occupancy of electrons in the semi-conductor band gap is performed. The previous 
chapter assumed complete ionisation of the donor atoms, and the dopant charge 
density was simply A. However, in this chapter only partial ionisation is considered, 
and the dopant charge density is A/. It is assumed that I f - y ^ A z ^ l , 
then to highest order, the problem of the previous chapter, in which the dopant ions 
are fully ionised, results. 

The problem is then, 

+ - + 7 + 
(4.1) 

with the boundary conditions, 

^ In Ây 0 u - In A') 

at x=0, and. 
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^ = 0 , 

at x=a. To And the highest order value of A and ^ the boundary conditions at 
z = o are imposed to equation (4.1), to give, 

It can be seen by inspection that the final term in the above equation can be 
factorised to give, 

A 1 Ay4 

A solution, where A 1 is being sought, therefore, ignoring A, to highest order, 

and, 

1 . ^ . 0 ( 1 

The values of A and 4 can be put back into equation (4.1) to give, to highest order, 

_ + A 
i + 7 + ^ 

(4.2) 

The remainder of the chapter is concerned with the analysis of (4.2), subject to the 
afore mentioned boundary conditions, in the limit A —> oo. It is found that there are 
Ave baaic layers, as shown in Agure 4.1. The structure is similar to the solution of 
Chapter 3 with neutral, depletion and inversion layers. However, the thickness of 
the transition layer is such that it is greater than all but the outer, neutral, layer. 
This "spreading out" of the transition layer is due to the partial ionisation of the 
dopant atoms. An additional thin region exists where the dopant atoms undergo 
rapid ionisation and f changes from a near 0 value to a value close to 1. This is the 
ionisation layer. Approaching the oxide interface further the dopant atoms are, to 
highest order, fully ionised and the depletion and inversion layers, both similar in 
structure to the previous chapter, are encountered. 

f can be classified into three regions of behaviour as outlined below. 

(1) / ^ V"'" O (1). 

(2) y —r for ^ In — + ^ . 

(3) y 1 for V' > ^ In (A-y) . 
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^ A 

Inversi 

a: ~ 0 

Neutral layer 

0 (1) 

Transition layer 
1 

X ~ 

A in A7 

Depletion laye 

X 

Figure 4.1: Sketch of the five layers of behaviour for the steady problem with partial 
ionisation of the dopant energy level. 

Listed below are the scalings for the five different layers in this problem. 

Outer Layer. 

z - O ( l ) , V - O ( l ) , 

Transition Layer. 

X T 5 , V' ~ 0 (1 ) , 

lonisation Layer. 

/ 
1 

1 + 

a: = xo + , rp — ~\n— + '^ 
vA 2 7 
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Depletion Layer. 

, 1 
z = W -—: X A ' 2 

The Inversion Layer. 

X = .—^ X , ?/'= In f A272 - In (A7)^ + ' 0 , / — 1 . 
y A i i ^ V ' 2 ^ 

4.2 Outer Solution 

Expressing ^ as a power series, 

V' = V'o + ' ' ' 

and substituting into equation (4.2), 

^ = -ij—e(V'o+") _ -) + ") 
\/('yA) 

= , e * (1 + • • •) — \l{'yX)e~^° (1 + • • •) + \J(A7)e'^° (1 + • • •) 

To highest order, 
— 6"^° + e^° = 0 ipo = 0 . 

4.3 Transition Layer 

Here, as in the problem in the previous chapter, the second order term in Poisson's 
equation balances the hole and dopant concentrations. However, the thickness of 
this layer is much greater. 

Letting, 
V' = V'o - I — , 

equation (4.2) becomes, 
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Expanding the exponential terms, 

\ 1 

to highest order, 

^ -|_ e"/'o 

This can be integrated, to give, 

(4-^) 

where A is a constant of integration. 

To match the solution into the nentral layer i ^ oo. But, approaching the 
neutral layer, , i/; —^ 0. Putting these values into equation (4.3) it is found 
A = — 2. Therefore, 

1 ^ ^ ^ gV'o _ 2 
2 af 

which re-arranged gives, 

f ^ (fz = —V^x + ^/2xi . (4.4) 
— 2) 

This integral equation can be solved, and an explicit solution for (/fo can be obtained. 

Letting 6̂  = gives, 

/ / . ^ / ! / 
^ _L fV — 9^ e-!/ + e«_2) -/ + 

2 

=(f6 

/ 
(.2 _ 1) 

1 1 

( 6 - 1 ) (6 + 1) 

Therefore, 

^ / z = In + /I . (4.5) 
^V'o(:^)y(e-': + e ' : - 2 ) 6 2 + 1 
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This equation is inverted to give ?/> as a function of x 

^ 1 — eB-Ag-\/2: 

where B = \ /2 f i . 

lAo = In I + l I , (4.6) 

4.4 The lonisation Region 

= V'o + ' " , 

equation (4.2) becomes, to highest order, 

A # = i e * - ^e* + ^ 

Xi 

022 ^ 1 + e-^ 

Since A I', to highest order, 

32^0 1 

Integrating gives, 

= ln (e -^ ' ' + l ) + 4 + C'. 

This can be re-arranged to give the following integral equation, 

[*° ' 6 = - V z a + 
"'V'o(ri) y in + 1) + z + C 

4.5 The Deplet ion Region 

Letting, 
^ = V'o -I , 

to highest order, equation (4.2) becomes, 

A + A . 
\ / \/(')A) 

98 



To highest order, 
a * _ 

This gives the quadratic, 

^0 = 2^^ + az + 6 . 

The constants a and b are found by matching the solution into the transition and 
accumulation layers. 

4.6 Inversion 

To highest order equation (4.2) is, 

Integrating, and re-arranging gives, 

riA) 1 

- -

/ —dy = -\/2a 
•'•.(O) Met, + A) 

4.7 Matching The Solutions 

4.7.1 The Transition And lonisation Layers 

Here, the ionisation region, described by, 

fSo 1 

h *(ri) y(In (e-^ + 1) + a; + C) 

is matched with the transition layer. Approaching the transition layer, from the 
ionisations region, is equivalent to letting ipo —oo. The above integral equation 
can be re-written, 

Ipo 1 , f^o 1 1 

Jiinia-i) . //In (f-r _L 1 "l -I, -r 4- H) Ji /lAo(zi) y(ln (e-'^ 4-1) 4- z 4- C) ^In (e"'' -|- 1) 4- z 4- C Cz 

1 
/ —-dx . 
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However 

1 1 , 1 1 , 
, === -dx = I , = -dx 

'/V'o(ri)yin(e-'^ + l ) + Z + C Cz -/l^(:^i)Y(lne-'^ + l ) + Z + C (7: 

1 1 , 
— I , == -dx 

-̂ 0̂ y ln (e-'' + 1) + z + C (7% 

where, 

and, 

r-oo I % 
/ . , - - - rdz - 0 ( 1 ) , 
'/V'o(ri) y in (e-'' + 1) + a; + C 

y-oo 1 1 
/ . , - 0 ( 1 ) . 

./t̂ n y in (e-r j; Oz 

Thus, approaching the transition layer gives, to highest order 

/̂ "O 1 1̂ 0 

''̂ V'o(ri) y(In + 1 + z + 0 ) 0% 

To highest order, the voltage is linear, and does not match into the transition layer, 
unless C=0. Therefore, the solution in the ionisation layer is now described by. 

[*' ' dx = + sn. 
yin (e"^ + 1) + z 

Again, to approach the transition layer, —oo. In this limit the integral can be 
re-written, 

1 , 1 1 , 1 , 
dx = I , -rdx + -rdx 

-/V'o(ri)Y(lne"^4-l + a;) ''V'o(ri)Y^ln(e-'' + l)4-a; -̂ '̂0(̂ 1)62 

—(fz 
62 

) Y^n (e-'' 4 -1) + a; 

1 

) y in (e-^ 4 -1) 4- z 

1 
/ , ^dx + I e ^dx . 
* Y(ln(e"^ + l) + z) "/V'o(ri) 

Therefore, to highest order, 

^ cfz = - 2 e - ^ 
'/V'o(zi) y(lne"'^ 4- 1 + a:) 
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Thus, the behaviour of the ionisation solution, aa it approaches the transition layer, 
is 

g-iF == . (4.7) 
\/2 

The transition layer solution, described by (4.5), approaches the ionisation region 
by sending i/'o —» oo. The resulting function is re-written in terms of the ionisation 
variables, and equated to equation (4.7). In this way the two layers are matched 
together. The solution in the transition layer is given by, 

+ 72X1 = In ( 4 ^ ) + - 4 -
2 + 1 / 

Approaching the ionisation layer, by letting > co, gives. 

In — In = in — In — In e"^ — In + e ^ 

= 4 

Therefore, in the limit as '̂ o ^ oo, the solution to highest order, is given by, 

-A. A 1 _ B 
6 - Y ' ^ 

where = B, (an arbitrary constant). This solution is expressed in terms of the 

ionisation variables. Using the fact, 

^ = (A"/)^ ^zo + , 

and, 
V'o = % In - + '̂ 0 -

2 "y 
equation (4.8), gives, to highest order. 

On simplifying, 

_ 1 ( ^ _ yi) . 
2 ^ ' \/2 

This function is then equated to equation (4.7), implying, 

^ ( A - B ) ^ z o \ / A = 0 . 
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In the following section it is found, 

~ Y A 

Therefore, in the limit aa A —̂  oo, 

(B - A) = 0 , 

implying the solution in the transition layer to be, 

+ 1 
1 — g-VZi 

1̂ 0 = In 

4.7.2 The lonisation And Depletion Layers 

Here, the ionisation layer solution, described by, 

f dx = —\/2x + \/2fi , 
-/V'o(zi) yin(e-::: + 1) + z 

is matched with the depletion layer solution, 

V'o = + az + 6 . 

Approaching the depletion region, from the ionisation layer, i/'o, &nd z —> oo. In this 
limit, the ionisation layer solution can be re-written as, 

dx = I , — dz + / _ —^dx . 
Itljaixi) ^In (e~^ + 1) + y l̂n (e ^ + 1) + a: \ / ^ \ / ^ 

However, it can be shown, 

rtAo 1 1 . 1 1 
/ dz - r 

Jifo(x'i) y/ln (e-^ + 1) + z yin (e"® + 1) + 

7"°° 1 1 , 
/ . , ;=dz , 

-/V'o Y l̂n 4-1) + a; 

/ •CO 1 1 

/ . / - —dz - O (1) , 
•jSn(xi) . /in (p-x _L 1 ^ _L T X2 

z 

where, 
1 

'4o{x\) y^ln (e~^ + 1) + z x'' 
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and, 

/: 1 
r. 0(1) 

Ab + 1) + a; 22 

Using the above results, gives, to highest order, 

2 \ / ^ = —\/2z , 

for the solution of the ionisation layer, as it approaches the depletion region. 
Re-arranging. 

In the depletion region. 

I 1 '2 
^ 0 = 2 % . 

tpQ — —3;^ cix b . 

(4.9) 

(4.10) 

Expressing the depletion layer variables in terms of the ionisation variables, 

in A7 I in A7 

\ 
A 

T1—r~^o i / , 

equation (4.10) becomes, 

2 l lnA7 

Re-arranging, 

1 A 

+ 0 " -Xq -j-d, 
A? ^ ^ 1 ^ 1 ; ; 2 | l n A 7 " ^ in A7 

zo-t-6, 

-|- ^ ^ 2 \ / A z o + In A ^ j + + o ^ A ^ In A7 a;o + 6 ^ In A7 - ^ In - . 

Equating co-efScients of in this expression to co efficients of $ in equation (4.9), 
gives, 

'1 
In A7 2 

A 

% In A7 
3̂0 (( I — 0 

which implies, to highest order. 

? in A7 
xo + a = 0 . 
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Letting, 
/ Mn A7 

a:o = W —3:0 

gives, 

In addition, co-e@cient8 of zo in the above expression are equated to co-e&cients of 
:ro in equation (4.9), giving. 

— Xxq^ + ay A— In X'jxq + b— In A7 — — In — — 0 
A y /j ^ ^ 'Y 

which implies, to highest order, 

1 / A 
1 1 A I ^0^ + <3, 

2 \^ lnA^ 

In terms of T, 

1 [n A'-y 
Xq -j- b — 0 . 

1 ^ 
+ a f o 4 - 6 = 0 . (4-11) 

To solve this equation a and b need to be determined. This is achieved by matching 
the depletion layer into the inversion layer. 

4.7,3 The Inversion And Depletion Layers 

Here the inversion layer, described by, 

1 fVO 1 y—_ 
/ -dx = —ylx . 

y*(0) (gr _|_ 

is matched with the depletion layer, described by, 

•00 — —-{- OJX -|- h . 

Approaching the depletion region from the inversion layer, 1̂ 0 —» — 00, and the 
inversion layer solution, to highest order, is given by. 

Therefore, 
(̂ 0 = —V2%^ . (4-12) 
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In the depletion layer, the solution is, 

f/'o — 2^^ ^ " 

Expressing the depletion layer solution in terms of the inversion layer variables gives, 

In ((A'Y)^Aln 1 a . 

^InAn^ "^llnAn/ p n A n / ^ ^ 

Re-writing this gives, to highest order, 

1̂ 0 = (zz + g^ln Ây — In ^(A'y)^AIn Â ŷ  . 

Equating co-efRcients of 5 in this equation with the co-efhcients in equation (4.12) 
implies, 

— \plA = a . 

In addition, co-efhcients of in the above equation are equated with the 
co-efEcients in equation (4.12), to give, 

ln((A'-y)2AlnA')' 

^[InA^ 

But, 

In ^(A"/)^Aln A'}̂  = In ^(A"/)^^^ ^ ^ ^ 

giving, 
| l nA7 In (In A^) In 7 
I In A7 I In A7 In A7 

Therefore, to highest order, 
6 = 3 . 

In matching the depletion layer to the ionisation region it was found, 

1 
-f" clxq b — 0 . 

Since 6 = 3 and o = —2zo, then. 

— ~ 2zo^ 4" 6 — 0 , xq — \Pi 

Thus, A = 4 and a = —2\/2. 
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Transforming the Anal boundary condition 

r 

\ 
at z = 0, into the inversion layer variables gives, 

§ = ~ I • 

From the inversion layer section, 

givmg, 

y ^2e^(°) + 4̂  = /i 
' I n i 2 7 ^ in A7 

^ In A7 

which is used to find (0). 

^ In A7 
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Chapter 5 

T h e Transient Problem 

As discussed in Chapter 3 the transient behaviour of an M.O.S capacitor, initially in 
equilibrium, subjected to a constant gate voltage is considered. The problem is to 
find the solution to, 

n —p + A , 

dp 

7 " 

f « 6 - • 

dt 
- [o-2 + (7-3 (p + e / ] + (<72M + (Zse , 

subject to the conditions, 

- 0 , 

Jp = 0 , 

np = 1 , 
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n — p 4- A = 0 , 

V' = 0 , 

/ : 

fs = 

1 

+ 1 ' 

1 
Ae'Yg, + 1 

at i = 0, 

Jn = 0 , 

Jp ~ 0 ) 

at 2 = 0, and, 

f . = V k T A W - " ' " ^ ' • 

^ = 0 , 

np = 1 , 

0 

at z = a. In the following analysis small bulk trap levels, a —> 0, are considered and 

^ , 7 > 1-

5.1 Short Time Solution. 

A time scale in which a depletion layer is forming is considered. The solution is 
found to have five boundary layers, and in figure 5.f is an illustration of the regions. 
First, is the outer neutral layer far away from the oxide-semiconductor interface. 
Then, approaching the interface, is a minority diffusion region where the minority 
carriers disuse towards the depletion layer. The transition layer, similar in structure 
to Chapter 3 and centered about a (^), exists at the edge of the depletion layer and 
moves as the region widens. The depletion layer is similar in structure to the layers 
in the previous chapters and is depleted of charge. Finally, very close to the oxide 
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•0 

Inversio i laj er 

a; ~ O 

Minority,pmusion Layer 

layer . . i 
(Am A) 

Depletion laye 

X ^ 0 

Neutral layer 

X ~ 0 (1 ) 

Figure 5.1: Sketch of the five layers found in the transient problem with full ionisation 
of the dopant energy level. 

interface, is the inversion layer, where the minority carriers collect. However, on this 
time scale the carriers do not have enough time to collect and the concentration 
remains small. 

To get an idea of the structure of the solution, and to find the necessary scalings 
for the time t etc. the simplified problem of a depletion layer and neutral region is 
considered. The problem is therefore. 

dx^ 

ft 

A, 

p 
dxj) % ' 

in the depletion layer, and, 

J, _p 

0 , 

—p 4- A , 

drp 

0 , 

in the neutral layer, subject to. 
p — X 
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np = 1 , 

Jp — 0 , 

•0 = 0, 

at t=0. 

at x=:0, and, 

Jp = 0 , 

0 = 0 , 

np = 1 , 

0, 

at x=a. 

The following conditions across the transition layer are also imposed, 

(i) at z = 6 (^) [{/]] = 0 , 

(ii) as X ^ s(tf f.13^ = - J , 

(iii) as a; — ^ ^ 0 -

Solving in the neutral region, 

p = A, 

The depletion layer problem is then the moving boundary layer problem, 

p = X 

A , 

with. 

at z = 0, and. 

A) . 

^ = 0 
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at X = s (t), Using condition (ii), an equation for the movement of the transition 
layer is found, 

ds _ HISTP {S [t)) 

dt a 

Imposing the initial condition s (0) = 0, s (t) is given by, 

A , , 2u/i (l — exp \/2u + / i~2^\/Aln Atj) 
it) = 

InA ^ ^ + 1 + l ) - (l - \/2vh^ + l ) exp (^-\/2v + Xln 

The above calculation gives, 
/In A , 

for the depletion layer scaling, and. 

t = 
/3\/\ In A 

t . 

for the time scaling. 

5.2 The neutral layer 

/JvAlnA 

n = fn . 

J — ]sA J "n — 'Jn 

== In A ^ 

2 == 0(1) 

p = \p . 

Jp — A In XJp 

The following highest order equations for the system are obtained, 

—p + 1 = 0 . 

Jp 

(5.1) 

(5.2) 

(5.3) 
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In addition., to next order, 

and. 

1 = 0 , (5.5) 

§ = 0 , M ) 

6i2^o 
0 . (5.7) 

These equations can now easily be solved. From equation (5.1), 

p = 1 . 

Equations (5.4) and (5.6) imply, 
h — \ . 

From equation (5.7) the voltage is found to be linear, 

^ = Az + B . 

But ^ = 0 at z = a, giving, 
B = —aA . 

It can be seen the electron and hole currents are purely functions of f, 

Jn — f t Jp — 9p •> 

where. 

The solution to this system of equations is therefore, 

n = 1 . 

p = 1 . 

f _ 

Jp ffp (F) . 
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5.3 The minority diffusion layer 

^ z . 
' ' (AlnA)i' 

Tl "Ĵ Tl • tJp A I n A . 

p = Ap. ^(InA)^Jti-

With these scalings, the highest order equations are, 

p = 1 . (5^) 

jp 

a jp 
#2 

0jL 

= 0 . (5^1) 

= 0 . (5^2) 

0 . (5^3) 

02 

In addition, to the next order. 

From equation (5.13), 

fi 

Prom equations (5.8) and (5.11) it can be deduced the hole concentration and 
current remain unchanged, 

p = 1 , Jp — 9p iP) • 

Combining equations (5.8) and (5.9) it is found, 
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The boundary conditions for this equation now need to be determined. From the 
overall boundary conditions, 

n = — , a t t = 0 , =>n = l . 
A 

Approaching the depletion layer, 

'(In A): 
2 0 

A* 

and, 
n —+ (Aln . 

Therefore, to highest order, the boundary conditions are, 

n = 1 at i = 0, 

M = 0 on z = 0. 

This equation can now be solved by finding a similarity solution, using the method 
of stretchings. 

r = ("'f, X = 

The choice of solution must also leave the boundary conditions unchanged. 
Therefore, 

g-7jY _ a t t = 0 , => 7 = 0 . 
A 

Transforming the above equation using the stretchings provided gives, 

Therefore, if n (z, is a solution, then so is # (X, T), since the transformation 
leaves the original equation invariant. TV is then a solution. To reduce the 
equation to an ordinary differential equation, 

= 1 , e = r « . 

Substituting this new variable into the equation gives a second order ordinary 
differential equation in terms of p, where v = , 

Therefore, 
= A 

az/ 
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# = A / 

JB 

T h e b o u n d a r y cond i t i ons m u s t also b e t r a n s f o r m e d in t e r m s of t h i s n e w var iab le . 

^ = 0 , 1/ —oo , 

a n d 

.X = 0 , => ;v = 0 , 
giving, 

# —̂  1 , as z/ —̂  oo , 

W = 0 , a t = 0 , 

fo r t h e b o u n d a r y cond i t i ons . T h e second b o u n d a r y c o n d i t i o n gives i m m e d i a t e l y 

= 0. Applying the other boundary condition gives, 

12 
1 = A / e - ; " (fu. 

Jo 

H o w e v e r , u s ing t h e fo l lowing s u b s t i t u t i o n , 

1 

i t is f o u n d . 
1 

=> A = —= 
0 VTT 

1 — A 2e ^ ds , 
Jo 

However, z/ = giving, 

for the concentration. Now the electron concentration, is found. Referring to 
equation (5.9), 

a n d s u b s t i t u t i n g for n, it is f o u n d , 

" " i 
X = 4 = ^ e-"'d,) . 

\/7r oa; y o y 

2 1 _ f ^ 

\ /F2\/^ 
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Thus, the solutions in this layer are, 

= e r / 
X 

n ' " ' ' 
2VFy 

p = 1 . 

L = 

V?r( 

Jp — ffp (t) . 

5.4 T h e Transi t ion Layer 

^ ^ in A + ?/) . 

n = A-r(lnA)4n. J^ = A-T(lnA)4j; 

p = Xp . Jp = A in XJp . 

T h e f i rs t o r d e r e q u a t i o n s a re , 

022 
p + 1 . (5J4) 

•'" " 8x " a i ' 

0 = § . (5.17) 
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In obtaining the above equations care is taken transforming from the unsealed 
variables to the scaled ones, since the x variable contains a function of time 
6 = 6 (f). For example, the hole concentration, 

is related to, 

by, 

where. 

Therefore, 

f f , 

(z,f) 
' 

/In A (fa 

/ ; — ( f a 

W = a r - ^ ' ° - ^ a i 5 ' 

Considering p to be a function of ^ and then, 

_ ^p 

T r a n s f o r m i n g e q u a t i o n (5.16) , it is found, 

• = m - 4 -

^ ^P 

ap 

8V " " ' 

Therefore, 
— I n p = 0 + A. 

T o match i n t o the n e u t r a l layer •0 -—)• 0, a n d p —> 1. Thus, A = 0 and, 

p = e 

Equation (5.18) can be re-written, 

s ''I' = "• 
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I n t e g r a t i n g w i t h r e s p e c t t o x g ives , 

J, - ^ f m. 

Matching into the neutral layer ^ ^ 0, p —̂  1 and jp —+ (f) giving, 

= J . 

for the arbitrary function. The hole current is therefore, 

= (p — 1) - ^ + (^ -

R e f e r r i n g t o (5.14) a n d n o t i n g p — e"'^ it is f o u n d , 

Integrating with respect to x gives, 

2 

= + ^ + C . 
2 a z 

Matching into the neutral region ^ 0, and ^ ^ 0, giving C = — 1. Re-arranging 
the above integral gives. 

(fl/ 

/'A(ri) y(e-!/ + !/ - 1) 

The negative root is chosen since the gradient is known to be negative. Referring to 
equation (5.15), M is found from, 

/ I " 

This is a straight forward integrating factor equation, giving, 

On integrating, 

V TT̂  Vc. V Vc. 
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Matching into the depletion layer C, is found. In summary, the solution to the 
transition layer s y s t e m is, 

l" 
Tit JC, 

p = 

Jn — 9p {i) • 

5.5 Deple t ion Layer 

= In . 

n = A ~ l ( l n A)"?72. p — 

T h e h ighes t o r d e r e q u a t i o n s are , 

1 = ^ - (5-19) 

i = - h ~ . (5.20) 
oa; 

' . » f f l 

„ a^p ^ 
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From equation (5.23), 
Jn ~ 9p • 

T o m a t c h i n t o t h e t r a n s i t i o n layer , m u s t b e g iven by, 

F r o m e q u a t i o n (5.19) t h e vo l t age is f o u n d t o q u a d r a t i c , 

^ + 6 . 

Substituting the voltage and electron current solutions into equation (5.20), 

- 1 / T 
n 

X + a\l Tct 

is found to be the electron concentration. Using equation (5.21) gives, 

d = 0 , ^ / (f) . 

Matching into the other layers and jp are found. The solution to the system is 
given by, 

= ^3;̂  + (zz + 6 . 

-1 1 
n 

X + a\j Tvt 

p = . 

-

jp = AlnAe'^^'^fjp 
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5.6 Inversion Layer 

^ f . z = \/r!rT^ /3VAlnA ' V ̂  In A 

^ (0) + ^ . 

n = A-T(ln . p = . 

J» = A f ( l n A ) U » . Jp = AlnAe-K'^^;p 

The highest order equations are, 

° = U " 

0 = # - a # . (5.25) 

am 
(5.26) 

0 = 1? + ^ . (5.27) 
oa: 

0 = (5.28) 
oz oa; 

F r o m e q u a t i o n (5.24) t h e vo l t age is f o u n d t o b e l inea r , 

= oz . 

In t h e d e p l e t i o n layer , 

^ +1^1,2 + l i ' j . 

R e p l a c i n g t h e s e va r i ab l e s w i t h t h e invers ion layer va r i ab les , a n d s imp l i fy ing , i t is 

f o u n d , 

^ (0) _ 1 1 2 , 
In A In A 2 (In A)̂  In A 2 // 

For these regions to match, 

= + , 
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a n d , 

CI — —s . 

Expressing the boundary condition, 

02 ylnA 

in terms of the inversion layer variables 

(()) _ ^ (0) - u In A) , 

implies, 

VA InA^^^^^ = (0) - u In A) , 

When matching this layer into the depletion region is found to be also 

§# = - 5 , giving, 

" = ''[r 

which is the e q u a t i o n sa t i s f ied by a (F) in the s impl i f ied depletion-neutral l ayer 

p r o b l e m a t the b e g i n n i n g of the chapter. 

Since , 

p = , 

a n d , 

^ = In A ^ 

then, 

Equation (5.27) becomes, to highest order. 

However, at z = 0 , Jp = 0, giving. 

The hole current is therefore, 

dt 
Jp = A l n A e - K ' " ^ ^ ( e " ^ - l ) . 
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Next the electron current and concentration are solved. From equation (5.25), 

an 

b u t , 

therefore. 

-ng , => fi = A (() e 

Substituting the electron concentration into equation (5.26) gives, 

dt dt dx 

This can be integrated, and the electron current is given by, 

- B (f) = J , . 
5 of df a of 5̂  

Imposing the boundary condition, 

f » r. 1 , (fa 1 
= at z = : 0 , => B(f) = — + 

of 6 of 6̂  
Matching into the depletion layer the function A (f) is found. The solution to the 
inversion layer system is, 

^ = —ar . 

» = A (f) . 

1 = ' 

dt 
Jp = A lnAe-K^"^^ (e ' " 
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5.7 Ma tch ing T h e Solutions 

5.7.1 The Transition and Depletion Layers 

The voltage in the transition layer is described by, 

-\/2z + \/2zi 
4- --1) 

A p p r o a c h i n g t h e d e p l e t i o n layer f r o m t h e transition reg ion it c a n b e s h o w n , 

oo , 

and the integral equation's highest order behaviour is, 

f , ''' ~ r ^ + 0 ( 1 ) , 

-/V'(ri) y(e-)/ + ^ — 1) '/V'(ri) 
—\/2z = 2 ^ ^ , 

to highest order. Therefore, approaching the depletion layer to highest order, 

7 1 -2 ^ = -a; . 

In t h e depletion layer ^ is q u a d r a t i c , 

ijj — —-f- ax -|- b . 

E x p r e s s i n g t h e s e va r i ab le s in t e r m s of t h e t r a n s i t i o n va r i ab les , 

^ + z ^\/A6a + aVln A j + + aVAln A66 + In A ^6 — —^ . 

To ensure the solutions match the co-efRcients of ^ are equated. Co-efRcients of f , 

\/ln A (65 + a) = 0 , => 6 ^ + a = 0 . 

Letting 6 = gives. 
(X — — 5 . 

Co-efhcients of zo, 

In A + 6 = 0 , ^ + aa + 6 ^ = 0 , 
\ 2 // / 2 // 
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giving, 

6 = L ^ . 
2 // 

The electron concentration is now matched. In the depletion region, 

. / l 
" a - i V ' 

Approaching the transition layer the depletion region solution is expressed in terms 
of the transition layer variables. Since, 

z = a M = Vln An , 
v ln A 

the depletion layer solution is given by, 

n = (5.29) 
xyTrt 

in this over lap region. In the transition layer , 

1 
n 

TXt 

Approaching the depletion region ^ oo, and the highest order behaviour of the 
above e q u a t i o n for n is f ound . Since, 

the equation for fz is expressed in terms of 

/ T - 1 e-!/ ^ 
" = V r f 7 5 A V e - ' + y - i 

The integral can be re-written. 

J A \/e-y + y — 1 J A y/fy + y — 1 

— I — dy . 

But in the limit as tp ̂  oo, 

/•oo p-y /-oo p~y 9 /•CO 
/ (f?/ - / , 4 = - / 

Jip \ft y -\- y — \ Jtp \/y — 1 6 J(^Tp~i'j^ 
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It can be shown t h a t in t h e l imi t as —>• oo, 

e 

\h¥^) 
Therefore, approaching the depletion layer from the transition region, the electron 
concentration is, to highest order, 

1 
n = — U 

e-y 

A Ve-:' + V - i ^ + !/ - 1 - 1, 

In th i s over lap region, 

'1̂  — 1 y z 

Therefore, 
/ r = 

71 ^ —U—zeV' 
p—y 

/ y 4 
J A \/e-y + V — 1 ye-!/ + 2/ - 1 

To match into the depletion region this equation is equated with equation (5.29), 
giving A = 00. T h i s co r responds t o C , = —00. 

The hole concentrations are now matched. In the depletion layer, 

and in the transition layer, 
p = Ae-^. 

Expressing ^ in terms of 1̂ , 

^ -
jjL InA ' 

a n d s u b s t i t u t i n g into t h e e q u a t i o n for t h e depletion layer hole c o n c e n t r a t i o n it is 

found, 

For the two regions to match. 

The hole current is now matched. In the depletion layer, 

+ ; p ^ = 0 , (5.30) 

where, 
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However, 

fi 

and is quadratic in the depletion region, giving, 

1 ^ V 2 I ^ ^2 
fp = - - 5 . 

U s i n g t h i s in e q u a t i o n (5.30) t h e a b o v e e q u a t i o n for (f).p is, 

dg . , . da 

The hole current in the depletion region is therefore, 

jp = . 

Expressing the depletion layer variables in terms of the transition layer variables, 

-(fa J — p-V". 

However, in the transition layer. 

Jp — (e ^ . 

For these two regions to match, 
(fa 

5.7.2 The Inversion and Depletion Layers 

In the depletion layer the hole current is given by, 

Jp = A l n A e ^ ^ ( T - 4 ^ , 

where ^ is, 

Expressing the depletion layer voltage in terms of the inversion layer voltage, 
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t h e ho le c u r r e n t is, 

In t h e inve r s ion l ayer t h e hole c u r r e n t is, 

A 

and approaching the depletion layer, —> InAz), the hole current becomes, 

J p - A l n A e - K ' " ^ e ' ^ , 

which matches with the depletion layer. The electron current in the depletion region 
is, 

7 _ / l 
V TTt 

and the equation for the electron current in the inversion layer is, 

+ B (i) . 

A p p r o a c h i n g t h e d e p l e t i o n layer f r o m t h e invers ion layer, {x —> oo) , it is f o u n d , 

B (f) , 

where. 

For t h e t w o layers to m a t c h . 

. (fA 1 . 1 
(t) — —;:r A-;:: — 

1 dA A ds 1 

Thus, 
'A 

A = 26A 
dt \l Tft V TT 

T h e so lu t ion for t h e e l ec t ron c o n c e n t r a t i o n in t h e invers ion layer c a n n o t b e 

matched directly into the depletion region and an intermediate layer is needed. This 
layer is very thin and a distance into the depletion region. Between these two 
regions is another layer that is essentially a depletion region but with a larger 
electron concentration. This layer is referred to as the essentially depleted region. 
The scalings for x and ^ are, 
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w h e r e it is f o u n d Xi = s — y s"^ — (l + j . T o h ighes t o r d e r t h e e q u a t i o n for t h e 

electron concentration is, 

where, 

- 5 1 " " l i ' (5 31) 

f / l , _ 
J N " " " \ I X ' H^NCL — X \ s 

Substituting these values into equation (5.31) the electron concentration becomes, 

6 —2iV 
n 

T h e reg ion b e t w e e n t h e invers ion a n d i n t e r m e d i a t e layers is e s sen t i a l ly a d e p l e t i o n 

region but the electron concentration is scaled, 

n = A-T(lnA)-^e^^'''' . 

T o h ighes t o r d e r t h e e q u a t i o n for t h e e l ec t ron concentration in t h i s reg ion b e c o m e s , 

- ^ - - ^ = 0 , = ^ + , 

where, 

^ . 
T h e a r b i t r a r y f u n c t i o n is f o u n d by m a t c h i n g i n t o t h e inve r s ion layer . A p p r o a c h i n g 

the inversion region. 

However, 
giiiA(;A+40) = \/Aln AA , 

giving, 
n = ^ + _ g -

For t h e t w o layers t o m a t c h , 

This solution is matched into the thin intermediate layer. Approaching this layer 
from the essentially depleted region end, 
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T h e i n t e r m e d i a t e l ayer so lu t ion is g iven by, 

A = + C m , 
5 — 

and approaching the inversion layer -4̂  — In A (f^i — i)) , to highest order, 

For the solutions to match, 

Q _ gV'(ri)+lnAi,(t) ^ 
where, 

This gives aa equation to find both C and Since, 

a n d , 
gV'(ri) — gkiA(lri2_ari + ̂ »̂  + ̂ ) 

then, 

C = 25 \ /^ , and + V l + = Q . 
V?r 2 2 \ In A y 

From this quadratic is found to be. 

-
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Chapter 6 

Conclusions 

It is the purpose of this chapter to bring together the results developed and 
presented earlier in this thesis. The first part of this chapter reviews the results of 
the problems investigated in the previous chapters. These descriptions are 
qualitative in nature in order that the reader can acquire a general physical 
u n d e r s t a n d i n g of t h e processes involved . A t the e n d of t h i s chapter there is a 

section outlining some possible avenues of future research that are relevant to the 
problem areas studied in this document. 

In Chapter 3 it was found, by the use of matched asymptotic expansions, that 
the electric potential across the MOS capacitor in equilibrium has an 
inversion-depletion-transition-neutral layer structure. In the neutral layer the space 
charge and corresponding electric held are small. In the depletion region the electric 
held is large and repels the holes into the neutral layer and attracts the electrons 
t o w a r d s the s e m i c o n d u c t o r - o x i d e interface. T h e remaining fixed d o p a n t ions in this 
region give rise to the large space charge. The analysis demonstrated that the 
depletion and neutral layers are separated by a very thin transition region. This 
layer is similar in nature to the transition layer in [21]. Its presence enables the 
e lec t r i c p o t e n t i a l in the d e p l e t i o n and n e u t r a l reg ions t o b e smoothly m a t c h e d . 

Across the transition layer the hole concentration changes rapidly from a large value 
in the n e u t r a l layer t o a smal l value in the d e p l e t i o n region . T h i s concentration 
g r a d i e n t g ives r ise t o a hole d i f fus ion current. In equilibrium throughout the dev ice 

the drift-diffusion currents balance to give no net movement of charge. The electric 
field p r e s e n t in t h e t r a n s i t i o n reg ion gives r ise t o a n equal but o p p o s i t e d r i f t of holes 

into t h e neutral r eg ion wh ich balances w i t h t h e d i f fus ion current out of the n e u t r a l 

layer. In the classical delta-depletion approximation of these devices the continuity 
of the hole concentration breaks down at the neutral-depletion layer interface as 
well as the balance in the drift-difFusion currents. The asymptotic analysis reveals 
that the results of the depletion layer approximation are valid, in that the behaviour 
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p 

D e p l e t i o n l aye r 

Electric Field 

D r i f t of ho le s 

N e u t r a l l aye r 

Diffusion of holes 

F i g u r e 6.1: D i a g r a m i l l u s t r a t i n g t h e d r i f t - d i f f u s i o n b a l a n c e of ho le s ac ro s s t h e t r a n -

s i t i o n l a y e r . 

in t h e d e p l e t i o n a n d n e u t r a l l aye r s is c o r r e c t , b u t t h a t c a r e s h o u l d b e t a k e n in 

i n t e r p r e t i n g t h e b e h a v i o u r of t h e n e u t r a l - d e p l e t i o n i n t e r f a c e . F i n a l l y , a t t h e 

s e m i c o n d u c t o r - o x i d e i n t e r f a c e t h e r e is a t h i n i nve r s ion l aye r . T h e e l e c t r i c field 

a t t r a c t s t h e e l e c t r o n s ac ross t h e d e v i c e t o w a r d s t h i s l aye r . If t h e g a t e e l e c t r i c 

p o t e n t i a l is l a r g e e n o u g h t h e c o n c e n t r a t i o n of e l e c t r o n s in t h i s r eg ion is g r e a t e r t h a n 

t h e b u l k h o l e c o n c e n t r a t i o n . T h e a s y m p t o t i c a n a l y s i s s h o w s t h a t t h i s i n v e r s i o n l aye r 

is n a r r o w c o m p a r e d t o t h e d e p l e t i o n l aye r a n d h e n c e t h e c o n v e n t i o n of n e g l e c t i n g i t s 

w i d t h is va l id . A g a i n c a r e s h o u l d b e t a k e n in i n t e r p r e t i n g t h e d e p l e t i o n l a y e r 

a p p r o x i m a t i o n n e a r t h i s r e g i o n . 

T h e a n a l y s i s of t h e s t e a d y fu l l y i on i sed M O S d e v i c e is t h e r e f o r e in a g r e e m e n t 

w i t h t h e c o n v e n t i o n a l d e p l e t i o n l aye r a p p r o x i m a t i o n b u t g ives a d d i t i o n a l d e t a i l s of 

t h e b e h a v i o u r t h r o u g h o u t t h e dev ice . 

I n C h a p t e r 4, t h e c o n d i t i o n s on t h e M O S d e v i c e a r e r e l a x e d t o a l low f o r p a r t i a l 

i o n i s a t i o n of t h e d o p a n t a t o m s . T h e r e s u l t i n g s t r u c t u r e of t h e s o l u t i o n is s i m i l a r t o 

t h a t of C h a p t e r 3. T h e d e g r e e of i o n i s a t i o n c a n b e r e d u c e d b y c o n s i d e r i n g t h e s ingle 

d o p a n t e n e r g y leve l t o m o v e a w a y f r o m t h e b a n d e d g e s . T h e m a i n c h a n g e is t h a t 

t h e t r a n s i t i o n r eg ion of t h e c o m p l e t e l y ion i sed p r o b l e m s p r e a d s o u t u n d e r p a r t i a l 

i o n i s a t i o n a n d c a n b e c o m e w i d e r t h a n t h e d e p l e t i o n r e g i o n . In t h i s t r a n s i t i o n r eg ion 

a l a r g e p r o p o r t i o n of d o p a n t a t o m s a r e n o t ion i sed a n d t h e y t h e r e f o r e posses s n o n e t 

c h a r g e . H e r e , t h e g r o w t h of t h e e l e c t r i c p o t e n t i a l is s low. H o w e v e r , a p o i n t is 

r e a c h e d w h e n t h e o c c u p a t i o n of t h e d o p a n t e n e r g y level c h a n g e s r a p i d l y . T h i s v e r y 

t h i n ' i o n i s a t i o n ' l aye r is w h e r e t h e m a j o r i t y of d o p a n t a t o m s a r e i on i sed t h r o u g h t h e 
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F i g u r e 6.2: G r a p h of f v e r s e s x . 

r e l e a s e of c a r r i e r s a n d s i t s b e t w e e n t h e t r a n s i t i o n a n d d e p l e t i o n l aye r s . F i g u r e 6 .2 

s h o w s q u a l i t a t i v e l y h o w t h e d o p a n t o c c u p a n c y f u n c t i o n c h a n g e s as a f u n c t i o n of 

d i s t a n c e f r o m t h e s e m i c o n d u c t o r - o x i d e i n t e r f a c e . In t h e d e p l e t i o n a n d i n v e r s i o n 

l a y e r s t h e d o p a n t is f u l l y i on i sed , t o h i g h e s t o r d e r , a n d t h e i r c h a r a c t e r i s t i c s a r e 

s i m i l a r in n a t u r e t o t h e d e p l e t i o n a n d i nve r s ion l a y e r s of t h e f u l l y i on i sed p r o b l e m . 

F i n a l l y , in C h a p t e r 5, t h e f u l l y ion i sed M O S d e v i c e of C h a p t e r 3 is c o n s i d e r e d 

d u r i n g a v o l t a g e t r a n s i e n t . T h e i n v e r s i o n - d e p l e t i o n - t r a n s i t i o n - n e u t r a l l aye r s t r u c t u r e 

is f o u n d t o p e r s i s t b u t t h e r e is a n e x t r a r eg ion s e p a r a t i n g t h e n e u t r a l a n d t r a n s i t i o n 

l aye r s , ( t h e m i n o r i t y diffusion r e g i o n ) . B e c a u s e of t h e t r a n s i e n t n a t u r e of t h e 

p r o b l e m t h e t r a n s i t i o n l aye r , c e n t e r e d a b o u t 5 ( i ) , is f o u n d t o m o v e as t h e d e p l e t i o n 

l aye r e x t e n d s i n t o t h e d e v i c e , (see f i g u r e 6 .3) . In t h e n e u t r a l l a y e r t h e e l e c t r i c 

p o t e n t i a l is l i n e a r in x , t h e h o l e a n d e l e c t r o n c o n c e n t r a t i o n s a r e a t t h e i r e q u i l i b r i u m 

levels , a n d t h e c u r r e n t s a r e p u r e l y t i m e d e p e n d e n t . A n e l e c t r o n c o n c e n t r a t i o n 

g r a d i e n t is p r e s e n t b e t w e e n t h e n e u t r a l l aye r , w h e r e t h e c o n c e n t r a t i o n is r e l a t i v e l y 

s m a l l , a n d t h e t r a n s i t i o n l a y e r , w h e r e i t is e x t r e m e l y s m a l l . T h i s g r a d i e n t is 

a c c o m m o d a t e d in a r eg ion b e t w e e n t h e n e u t r a l a n d t r a n s i t i o n l aye r s , c a l l ed t h e 

' m i n o r i t y d i f f u s i o n ' l aye r , ( see f i g u r e 6 .4 ) , w h e r e t h e e l e c t r o n s d i f f u s e t o w a r d s t h e 

t r a n s i t i o n r eg ion a n d a n e l e c t r o n d i f f u s i o n c u r r e n t r e s u l t s . W h e n t h e e l e c t r o n s h a v e 

d i f f u s e d i n t o t h e t r a n s i t i o n l aye r t h e l a r g e e l e c t r i c f ie ld s w e e p s t h e m ac ros s a n d i n t o 

l aye r a t t h e s e m i c o n d u c t o r - o x i d e i n t e r f a c e . O n t h e t i m e - s c a l e c o n s i d e r e d h e r e t h e 

e l e c t r o n c u r r e n t is r e l a t i v e l y s m a l l a n d so t h e e l e c t r o n c o n c e n t r a t i o n r e m a i n s s m a l l . 

A s a r e s u l t in t h e e l e c t r i c p o t e n t i a l is u n a f f e c t e d b y t h e e l e c t r o n c u r r e n t a n d t h e 

i n v e r s i o n l aye r is n o t p r e s e n t in t h e m a n n e r d e s c r i b e d in C h a p t e r 3. T h e d e p l e t i o n 

l aye r t h e r e f o r e g r o w s t o a g r e a t e r t h i c k n e s s t h a n i t s s t e a d y - s t a t e v a l u e . T h i s 
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F i g u r e 6.4: I l l u s t r a t i o n of t h e d i f f u s i o n of e l e c t r o n s . 
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behaviour is called deep depletion. To return to steady-state it would be necessary 
to consider the problem on a time-scale where the electron concentration becomes 
comparable to, and then exceeded , the hole concentration so the inversion layer 
appeared. T h e fu l l de t a i l s of the electron p o t e n t i a l , and m o r e i m p o r t a n t l y the 
electron concentration, show why deep depletion occurs and how long it might last. 

The research performed in this document compares favourably to the 
delta-depletion approximation. This approximation is a very simple but effective 
description of the structure of the MOS capacitor. However, the existence of the 
transition layer is needed to ensure that the solution is continuous everywhere. 

Future Research. 

Considering the full transient amorphous system of equations, when a continuous 
distribution of states is coupled into the device equations, is an extremely 
complicated problem. It seems sensible to continue to consider some of the simpler 
cases t o gain further i n s igh t i n t o how to approach and so lve the fu l l amorphous 
system. 

The research undertaken in this document can be categorised into two cases 
namely steady-state and transient. Below is an outline of how the research might 
proceed. 

1) S t e a d y - s t a t e Case . 

The major simplification of the steady-state case is that the trap occupancy is an 
a l g e b r a i c function of t h e ca r r i e r concentration. 

Chapters 3 and 4 investigated both the full and partial ionisation of the single 
dopant energy level in the steady-state case, respectively. As a first step the trap 
concentrations were taken to be suHiciently small for the recombination of carriers 
to be negligible. This made all currents zero to first order and the problem of the 
occupancy of traps was decoupled. However, the behaviour of the traps has not 
been analyzed. 

It will be necessary to determine an appropriate trap distribution for further 
analysis to proceed. As described in the defect pool model of Chapter 2 the usual 
sort of distribution consists of two exponential tail band states extending out of the 
conduction and valence bands and a Gaussian distribution of states located near to 
the middle of the band gap. 

Subsequently, the assumption of small trap concentrations could be relaxed and 
the behaviour with recombination could be approached. 
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2)Transient Case . 

The major simplification in the transient case has been to decouple the problem 
for the trap occupancy by assuming small trap concentrations. This meant, to first 
order, no recombination of carriers. In addition, the complete ionisation of the 
dopant energy level was assumed. As in the steady-state case above, investigations 
into the behaviour of the traps has not been undertaken. 

A first relatively simple problem to study is the long time behaviour of the 
deeply depleted MOS device. Electrons to fill the inversion layer could be 
considered to appear from the existing minority diffusion layer or the model could 
be e x p a n d e d t o a l low for s o m e small r e c o m b i n a t i o n . 

Before approaching the full problem of recombination the the partial ionisation 
of the dopant atoms could be considered, as in the steady-state case of Chapter 4. 
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APPENDIX A 

Below is a list of the variables used in the full amorphous silicon problem. 

Z — thne,(8) . 

^ (z) — the voltage at a point x within the semiconductor substrate , (V) 

M — the electron concentration, (cm"^) . 

p — the hole concentration, (cm"^) . 

Jn — the electron current density , (A cm"^) . 

Jp — the hole current density , (A cm"^) . 

/a — the probability an acceptor type trap is occupied by an electron. 

— the probability a donor type trap is occupied by an electron. 

Ec — the energy of the lower edge of the conduction band , (eV) . 

— the energy of the upper edge of the valence band , (eV) . 

E i — t h e i n t r i n s i c F e r m i l e v e l , ( eV) . 

(_B) — the concentration of acceptor type traps at energy E , (cm"^) . 

j (^) — the concentration of donor type traps at energy E (cm"^) . 

//n — the electron mobility, . 

//p — the hole mobility, ^cm'^V^^s"^^ . 

e — t h e permeativity of the s e m i c o n d u c t o r , ( F ) . 

1 3 7 



— the electron capture cross-section for an acceptor type trap , (cm^) 

- the electron capture cross-section for a donor type trap , (cm^) . 

(Tpa — the hole capture cross-section for an acceptor type trap , (cm^) . 

(Zpj — the hole capture cross-section for a donor type trap , (cm^) . 

vth — t h e t h e r m a l ve loc i ty of ca r r i e r s , ( c m s"^ ) . 

g — electronic charge , (C) . 
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APPENDIX B 

Below is a table comparing the range of parameter sizes for crystalline and 
amorphous silicon. 

Parameter Crystal range Amorphous range 

A W - 10® 108 _ 1014 

IS • 1.2 X 10* 9 0 

a 10*--10* 10*4 

0.3 0 . 1 

7 20 40 

0-1 1 1 

0'2 0 . 1 0 . 1 

(T3 1 1 
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F i g u r e 1.13: O p e r a t i o n of a C C D . 

l o n g e r t h a n t h e c h a r g e s t o r a g e t i m e s invo lved in C C D o p e r a t i o n . If n o w , a l a r g e 

p o s i t i v e c lock p u l s e is a p p l i e d t o t h e g a t e e l e c t r o d e , a d e e p p o t e n t i a l wel l is f i r s t 

c r e a t e d . B e f o r e i n v e r s i o n o c c u r s b y t h e r m a l g e n e r a t i o n , t h e d e p l e t i o n w i d t h is 

g r e a t e r t h a n it is a t e q u i l i b r i u m . T h i s is k n o w n as d e e p d e p l e t i o n . I n j e c t i n g 

e l e c t r o n s i n t o t h i s p o t e n t i a l wel l , e l ec t r i ca l l y or o p t i c a l l y , e n a b l e s t h e m t o b e s t o r e d 

t h e r e . T h e s t o r a g e is t e m p o r a r y , h o w e v e r , b e c a u s e t h e e l e c t r o n s m u s t m o v e o u t t o 

a n o t h e r l o c a t i o n b e f o r e t h e r m a l g e n e r a t i o n b e c o m e s a p p r e c i a b l e . W h a t is n e e d e d is 

a m e t h o d for a l l o w i n g c h a r g e t o flow f r o m o n e p o t e n t i a l wel l t o a n o t h e r q u i c k l y 

w i t h o u t los ing m u c h c h a r g e . T h e o p e r a t i o n of a C C D is o u t l i n e d w i t h r e f e r e n c e t o 

figure 1.13. A t t i m e t i a p o s i t i v e v o l t a g e , Vi, is a p p l i e d t o t h e G i e l e c t r o d e a n d a 

c h a r g e p a c k e t is s t o r e d in c o r r e s p o n d i n g G i p o t e n t i a l wel l . A t t i m e t2 a p o t e n t i a l is 

a l so a p p l i e d t o t h e G2 e l e c t r o d e , V2, a n d t h e c h a r g e e q u a l i s e s a c ro s s t h e c o m m o n 

Gi — (?2 wel l . T h i s c o n t i n u e s a t tz w h e n Vi is r e d u c e d a n d t h u s d e c r e a s e s t h e well 

u n d e r G i . M o r e c h a r g e flows i n t o t h e G2 well a n d t h e p r o c e s s is c o m p l e t e d a t t i m e 

t i w h e n Vi is ze ro . In t h i s w a y c h a r g e c a n b e i n j e c t e d u s i n g a n i n p u t d i o d e , 

t r a n s p o r t e d d o w n t h e l ine a n d d e t e c t e d a t t h e o t h e r e n d . 

C C D ' s h a v e a p p l i c a t i o n s in m e m o r i e s , logic f u n c t i o n s a n d s igna l p r o c e s s i n g . 

T h e y a r e a lso u s e d in i m a g i n g , w h e r e a n a r r a y of p h o t o s e n s o r s a r e u s e d t o f o r m 

c h a r g e p a c k e t s p r o p o r t i o n a l t o t h e l i gh t i n t e n s i t y . T h e s e p a c k e t s a r e t h e n s h i f t e d t o 

a d e t e c t o r p o i n t fo r r e a d o u t . 
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