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ABSTRACT 

Faculty of Engineering and Applied Science 

Jean-Claude Lachat 

Doctor of Philosophy 

The field equations of plane and three-dimensional elastostatics 
are transformed, by a general method applicable to any elliptic 
equation, into boundary integral equations. For the discretisa- 
tion of these equations, the boundary is represented by three- 
node segments with quadratic variation of geometry in the two- 
dimensional case, and by eight-node quadrilaterals and six-node 
triangles also with quadratic variation of geometry in three 
dimensions. Over each boundary element, displacement and traction 
are considered to vary linearly, quadratically or cubically with 
respect to the intrinsic coordinates. In three dimensions, the 
elastic body is divided into subregions, for each of which the 
integral equation is discretised. By specifying continuity and 
equilibrium across interfaces, a global system of equations is 
obtained ; this system is of banded form. The subregions may- 
have different. elastic properties. Gaussian quadrature formulae 
are used to evaluate all integrals but those of the product of 
the strongly singular kernel and shape functions corresponding 
to the functional singularity ; these integrals and the 
coefficient of the free term of the integral equation are 
calculated indirectly, by considering rigid body translations. 
The program for three-dimensional analysis chooses the order 
of integration formula for each surface element according to 
the rapidity of variation of the integrand. Equation coefficients 
are scaled so that numerical stability is such that the system 
may be solved by elimination without iteration on the residues. 
The system is reduced by block solution, all load cases being 
treated simultaneously. Examples of two and three-dimensional 
analyses are presented, and comparisons are made with results 
obtained experimentally and by the finite element method. It is 
shown that the boundary integral equation method may be used 
to analyse a wide range of practical problems, and that in most 
cases it is a relatively economical method of calculation. 



S 

CONTENTS 

, ACKNOWLEDGMENTS 

ABSTRACT 

CHAPTER I- Introduction P. .1 
CHAPTER It - Basic Formulation of the Boundary 

Integral Equations 

1- Transformation of the Navier 
equation into an integral 
relationship p. 10 

2- Calculation of elementary- 
solutions for the operator p. 15 

3- Calculation of displacement and " stress at interior points p. 17 

4- Calculation of displacement on the 
surface p. 19 

5- Body forces p., 22 

6_- The plane problems p. 23 

CHAPTER III. - Numerical formulation of the plane 
problems 
1- Review of previous formulation p. 26 
2- The parametric, representation of 

geometry and functions p. , 30 
3- Discretisation of the integral 

equation p. 36 
4 -Reduction of the system of equa- 

tions p. 42 
5- Calculation of stress and displa- 

cement at interior points p. 48 
6 -- Examples and comparison with 

other methods p. 50 

7- Discussion p. 77 



CHAPTER IV - Numerical Formulation of the 
Three-Dimensional Problem 

1- Review of previous formulations 

2- The parametric representation of 
geometry and functions 

3- Subregions 

4- Discretisation of the integral 
equations 

5- Calculation of stress and displa- 
cement at interior points 

CHAPTER V - Programming 

1- Objectives 

2- General characteristics of the 
program 

3- Reading, checking and generation 
of data 

4- Construction and reduction of the 
system of equations 

5- Calculation of results at points 
inside subregions 

CHAPTER VI - Examples 

a- The thick cylinder 
b- The pipe connection 

c- The rolling mill cylinder 

CHAPTER VII - Discussion 

CHAPTER VIII - Conclusions 

REFERENCES 

APPENDIX 

p. 88 

P. 91 

p. 99 

p. 101 

p. 122 

p. 124 

p. 126 

p. 129 

p. 134 

p. 138 

p. 141 

p. 148 

p. 170 

p. 181 

p. 186 

p. 188 

P. 200 

I', 



I- INTRODUCTION 

During the past fifteen years, various numerical techniques have 

been developed into efficient tools for the solution of pro- 

blems of continuum mechanics. In particular, the finite element 

method is now well established as a means of solving practical 

problems in many fields, including elasticity, plasticity and 

fluid mechanics. The method has proved most versatile, but its 

use does present certain. problems. Even where the most sophis- 

ticated data generation and checking facilities are available, 

the cost of preparation of data is very high. The finite element 

method involves the solution of a large number of simultaneous 

equations ; even though the matrix is of banded form and sym- 

metric �the computer time spent in reducing the system is high. 

In addition most. of the information given by a finite element 

program is never used ; the volume of output is such that the 

engineer finds difficulty in selecting the results of interest 

to him. Finally, the displacement method, which is the most 

commonly used, gives good results for displacements but less 

accurate results for stresses, which are inmost cases of grea- 

" ter interest to the engineer. In particular, the, calculated 

stress field is discontinuous across element interfaces. It is 

possible that these difficulties associated with the finite 

element method may be overcome by using the boundary integral 

equation method. 
000 
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The integral method consists of the transformation of the field 

equations, which describe the behaviour of the unknown function 

inside and on the boundary of the domain, to an integral equa- 

tion, relating the unknown and possibly certain of its derive- 

tives to the given value on the boundary. 

Whether it is preferable to solve a partial differential equa- 

tion subject to boundary conditions, or to solve an integral 

equation, clearly depends upon the technique available for the 

solution of the two types of equation. If an analytic solution 

is envisaged, the transformation of the field equations to an 

integral equation is of little interest. However, if numerical 

techniques are to be used, the transformation is worth consi- 

dering for the following reasons. 

For 
, 

5, 
the boundary of the region under considora- 

tioß the integral relationships become the relationships bet- 

ween V and certain of its derivatives, and if one is able to 

solve these equations, one obtains O CX) 
/X 

6S 
, 

From this 

information one may calculate directly Lt, (., 
) 

^. L-% from the 

integral relationship between displacement at an interior point 

" and the values of displacement and its derivatives on the boun- 

dary. 

... 
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From the point of view of numerical analysis, the advantage 

is therefore that, since the problem is transformed from one 

over the domain V to one over the boundary S, it is, 

sufficient for the solution of the problem to discretise only 

the boundary, and solve the resulting equations. The dimen- 

sion of , 
the problem is reduced by one (e. g. in elasticity 

the solution of equations over the body is replaced by the 

study of behaviour on the surface), which greatly simplifies 

the use of the computer program, especially the specification 

of data and interpretation of results, and also reduces the 

order of the system of simultaneous equations to be solved. 

Historically, the integral methods are a development of the 

method of Fredholm which consists of the application of poten- 

tial theory in conjunction with the theory of linear integral 

equations. 

11 

Fredholm himself was the first to apply the method to elasti- 

city (35). After this development, numerous publications on- 

the application of Fredholm's equations appeared, but today 

most of these are considered to be of no interest, because only 

special problems are analysed, and the mathematical treatment 

lacks rigor. Until 1950, the elastostatic boundary value pro- 

blem had not been thoroughly studied except for certain special 

cases : the first fundamental boundary, value problem (displa- 

000 
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cement-given on the boundary), the plane problem, axisymmetric 

problems, and some others. This was due to the fact that the 

theory of regular integral equations of Fredholm, taken in its 

classical context, appeared to be inadequate for the treatment of 

the second fundamental boundary value problem(stress resultant 

given on the boundary), and the third fundamental boundary 

value problem(linear or quasi-linear combination of displace- 

ment and stress resultant given on the boundary). The system 

of partial differential equations of elasticity in terms of dis- 

placement is an elliptic system, and the problem of integration 

where the boundary values of displacement are given (first fun- 

damental problem) is a Dirichlet problem, similar to the clas- 

sical Dirichlet problem for harmonic functions, and so the 

method of Fredholm may be applied to the first fundamental pro- 

blem of elastostatics as it may be applied to the Dirichlet 

problem for harmonic functions. This has been shown by Fredholm. 

More recently, Kupradze (20), Kinoshita and Mura (68), have ob- 

tained by the method of potentials, integral equations for the 

first and second fundamental problems. Although these integral 

equations are singular, the authors apply the theorem of 

Fredholm; the conclusions are correct but rigorous proofs are 

lacking. 

In 1963, Kupradze (20) reconsidered the boundary value pro- 

blems, for the more general case of periodic oscillations of 

-4-... 



an elastic body, and established proofs of existence and uni- 

queness for homogeneous and piecewise homogeneous bodies. This 

work is apparently the first in which rigorous-and general 

" proofs, based on multidimensional singular integral equation 

theory are given. 

Kupradze has presented two methods of numerical approximation 

of the integral equations (20). Rizzo (29) analysed by compu- 

ter some simple problems of elastostatics in 1967. Rizzo and 

Shippy (30) investigated in 1968 plane inclusion problems and 

Cruse and Rizzo (7,8) generalised their method to elastody- 

namic analysis, by integral transformation (subject to the 

condition that a Laplace transform with respect to time is 

possible), Cruse and Vanburen (43) applied the integral equa- 

tion method to the three dimensional analysis of a fracture 

specimen with an edge crack. In 1971, Swedlow and Cruse (46) 

0 presented an elastoplastic analysis for anisotropic compressible 

materials subject to strain-hardening, but gave no numerical 

examples. 

Since then Mendelson (57) has presented an analysis of the 

elastoplastic problem, accompanied by numerical results. It has 

therefore been demonstrated that the integral method is applica- 

ble to a wide range of problems (dynamics, plasticity), and es- 

pecially the work. of Cruse has shown that complicated geometries 

and boundary conditions can be modelled. 

-5. -. 



The starting point for the work presented here is the study 

by Cruse of the two and three-dimensional problems of elastos- 

tatics. Cruse considers the boundary integral equation : 

Tý L) 
ýLSS 

in which .5 
is the surface of the body, ')(, and are points 

on the surface, and i. (, and 
t 

are the boundary values of displa- 

cement and traction respectively. The kernels-rand U 
are derived 

from the solution of Kelvin's problem of the point load in the 

infinite elastic space. 
T is of order 

A, 
where %(/is the. 

rl. 
distance between X and and therefore it is necessary to take 

the Cauchy principal value of the integral on the left side, 

of the equation. 
U is of order 

L. so no such problem arises 

for the evaluation of the integral on the right side. In each 

direction, at every point on 
St 

either k. or 
t is known, and the 

equation becomes an integral equation of the first or second. 

kind for the unknown function. Once the integral equation has 

been solved, both LL and 
t 

are known at every point on the sur- 

face, and interior values maybe calculated by simple integra- 

tions. 

For the problem of plane elasticity, Cruse represents the boun- 

dary by straight line segments and takes as the unknownsU and 

at the centre of each segment (6). kA, and 
t 

are supposed to be 

constant over each segment. f 0** 
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In three dimensions, the surface is represented by plane trian- 

gles, and again (, (, and 
l 

are taken to be constant over each trian- 

gle. More recently, Cruse has presented formulations in which U. 

and 
t 

are taken to vary linearly over each boundary segment or 

triangle (53), the unknowns being associated with the extremities 

or vertices of the surface elements rather than their centroids. 

In this latter formulation, the coefficient of the free term 

of the integral equation is different from i,. in the case in 

which the point x is on an edge or corner. Cruse finds that 

linear variation is more efficient than the assumption that''k. 

and t. 
are constant over each boundary element (53)t and suggests 

that the accuracy of the method could further be improved by con- 

sidering higher order variation of functions and curved boundary 

elements. 

Where the structure is symmetric with respect to one or.. more of 

the coordinate axes, Cruse discretises only part of the surface, 

so reducing the order of the system of equations to be solved. 

Cruse performs the integrations necessary to calculate the ma- 

trix coefficients and second member analytically. Whilst this 

approach may be more efficient than numerical integration in 

simple cases, it would be very difficult to integrate analytically 

the products of kernels and higher order variations of U. and 
t, 

over curved boundary elements. In general, the coefficients oft).. 

and 'b appearing in the system of equations are not of the same 

order, and the matrix is ill-conditioned. Cruse multiplies the 
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coefficients of 
b by the shear modulus, - so obtaining a system 

which can be-solved by Gauss reduction. 

To calculate stresses at surface points, one may use directly 

the integral formula, or calculate the-stress tensor from the 

traction and surface strain. Cruse uses the latter procedure, 

-Which is very: much more efficient than integration. 

The present study is limited to the elastostatic problem in 

two and three. -dimensions. A general method, based on the theory 

of distributiorsis presented of proceeding from an elliptic 

operator to the corresponding fundamental solution and. boun- 

_ dary integral equation. Improved techniques, based upon para- 

metric representation of geometry and the functions (A, and 

are used in the numerical formulation. The surface elements 

are considered in general to be curved, with quadratic varia- 

tion of geometry with respect to the intrinsic coordinates, 

as for the finite elements of Zienkiewicz and Ergatoudis (65), 

(67). Displacement and traction are considered to vary linearly, 

quadratically or cubically with respect to the intrinsic coor- 

dinates. Gaussian integration formulae are used, and the coef- 

ficient of the free term of the integral equation is. calcula- 

ted numerically. For construction of the system of equations, 

the unit of distance is taken to be the greatest dimension of 

the elastic body, and that of stress is taken to be the 

modulus of elasticity. The system is expressed in nondimen- 
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sional form, and may be expected to be numerically'stable. The 

matrix usually obtained by the integral equation method is ful- 

ly populated, a characteristic which renders the method less 

efficient in certain cases. This disadvantage is overcome by 

dividing the elastic body into' subregions and writing the inte- 

gral equation for each subregion. In this way, a matrix of 

banded form is obtained, and, incidentally, several different 

materials may be considered. To limit the amount of computer 

central memory required, a block solver is used to reduce the 

system of equations. The parametric representation of geometry 

and functions allows an elegant formulation of the direct cal- 

culation of stresses on the surface. 

0*0 
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II - BASIC FORMULATION OF THE BOUNDARY INTEGRAL EQUATIONS 

1. - Transformation of the Navier eguationinto an integral 

relationship 

The integral relationship known as Somigliana's identity 

is normally calculated using Bettics theorem and a limiting 

process (6). 

.- 

In the present study,. the relationship is established in 

' terms of generalised functions, by the use of distribution 

" theory. This technique is an. elegant and powerful: tool for 

the transformation of an elliptic operator, for which a 

fundamental solution is known, into an integral relationship. 

The theory of this technique is given by Schwartz (32). 

" For convenience, operator symbols are used in the follo- 

wing derivation : ý is the gradient operator, 
Q. is the 

divergence operator. Symbols without indices represent 

tensors (S) 
; with `indices they are the components 

S. 
" of 

the tensor S 

The equations of elastostatics in terms of displacement 

are those of Navier : 

U,,. LO 4- 
ý V. ýV U) 4- 
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where is the body force. 

The unknown displacements must satisfy 

(2.1 
. 1) at every point 'X,. = 

(1.1)of 
the domain v 

being considered, and must also satisfy the boundary condi- 

tions : 1L 
/b given on the boundary S 

of v, t being the 

stress resultant 

tIAL- 
whereftis the outward normal and 

1 is the differential 

operator : 

T- v 
(2.1.2) 

To derive a formulation of the above boundary value problem 

in terms of distributions, one applies in the sense of dis- 

tribution theory the operator 
e 

to 
1L) tt where 

Hts)is the 

diaracteristic function of the domain V with boundary .S 

.4X N(S)= 
0 )L \r 

The relationships given in reference (14) are used to ex- 

press the relation 2.1.1 in terms of distributions : 

V Cý. CH s) uý)ý =H Cs) o ýQ. ý. ý _V (ý.. u. ýsC$)) - M. Cý. uý ä Csý 
ý" V H(s)cý, ) KCs 7. qu, _ ý" ((ý, u, ) ts)) -ýM.. v .ý ýSCsý C)1CJ 

(11CS) (V 

where 
ý`S) 

is the Dirac distribution on the surface 
S 

and 

is a distribution and{ 
I 

represents a regular function. 
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. It. 

Substituting these expressions in 2.1.1 we have 

K Is) u. ) }{CSCj L1 w 
ý+ 

-CV 
ýM.. u. ý5ýý Q" C'vL U. (6), 

)TS CS) 
which maybe rewritten as 

cs ý, , Cs .a- 
tT ( (ý. ä Csýý - "`T) S CSC 

where is the operator defined by 2.1.2 and I is the 

(2.1.4A 

adjoint operator, in the sense of partial differential equa- 

tion theory : 

tT) 
(2.1 

. 5) 

Recalling that 
JA6ýc- 

, 2.1.4: may be rewritten as the for- 

mulation of an interior Cauchy problem : 

" 
1U-CS) 

LT £(s) 
(2.1.6) 

Now let E be an elementary solution corresponding to the 

operator 
Aß(31) 

Q=o 

It is known, (31), (32), that a possible representation 

of the solution (if one exists) of (2.1.6) is given by the 

product of convolution of 
E 

and the right side of (2.1.6), 

that is :- 

(2.1.7) 

sw__K Cs _tT(: 
"^) (v� 9 Cs) -E 

(T LM)u. ) ý CS) 
(2.1.8) 

- 12 - 
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This representation may be, considered as the superposition 

of three potentials : the volume potential -E the 

double layer potential -T, and the single 

layer potential Ec ýTýýý( 
.) s) 

Ore may transform the right side of (2.1.8) to show the 

part played by the physical quantities U, and . In fact, 

from tel. , the last term of (2.1.8) is just -E't 
ýC51 

. 

The function F is such that this term may be expressed as 

" 
follows (62) 

E CG )tS js 
For the second last term of (2.1.8), one may carry out the 

" differential operation TýMýupon C; 
according to the pro- 

perties of vector distributions, one'obtains : 

-: E T`'"' Cý. C^r 141 Cý., ýý, ý U. ()ds 
For the first term of the right side of (2.1.8) 

r 

Therefore (2.1.8) may be written for as follows : 
JE 

ww 

u, C-X') = 4L) ý- T (410 
E Cx ý. .ýdS YS 

Remark : let us return to the relation (2.1.6). Developing 

' the expression in terms of distributions, on a 

regular function (Y we have : 

(2.1 
. 9). 

H Cs) u. ) 
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For the first term of the second part we have : 

V For the second term : 

-tTC5 
For the third term ` L' AS 

-<(' 

C1,11) 

W)V 
cs, 

I 
o-,, > 

- 
5 

Therefore, 

1! ' Vi 

ýMW 
ds 

ýI 

V. wsS (2.1.1oi' 

which is the well known Betti identity. We see the equiva- 

! lence between distribution theory and the classic formula- 

tion based on'the Betti identity. 

ýý-ý 

0 40 a 
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2. - Calculation of elementary solutions for the operator 

One may list, among others, the following methods of cal- 

culation of elementary solutions :- 

- superposition (62) 

- Fourier transformation (62) 
. 

- expression of 
Sin 

terms of'plane waves (14) 

- Hörmander's method 

Hörmander's method is the best suited to calculation. If 

one symbolises by ?2 the matrix of a system of differen- 

tial operators with constant coefficients and if Det J(J)+-O 

according to the general theorem of HUrmander (17)) the 

system of operators has the elementary solution : 
CIO 

a- 

(2.2.1) 

where a, ) is the matrix of cofactors of the matrix 
"ate, 

and is the elementary solution of the operator Det, ý I' 
. 

i. e. the solution of : 

(2.2.2) 

For the particular case considered here, one has 

2A *)I fat ýý. ý ä a3 
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From which : 

Q« a nit ---- _ýý. I+zý) ý3 

The solution 
eof 

is given in reference (62) as 

yw_ 

and so 2.2.1 may be written 

II j'. LAi Q rl, (2.2. -; 
where : 

It is noteworthy that, in this method, it is only necessary 

to calculate the elementary solution for the scalar operator 

Det Pa, the other calculations consisting of algebraic 

manipulation. 

Details of the derivation dre given in reference (62) 

In equation (2.2.2) the Dirac distribution 
g 

is located at 

the origin. For any point 6S we have for 
E (? t ) the 

same expression as in 2.2.3 with ýýx"w z 

-Subs ti-ý uVngfor in terms of Fý11 and replacing 
a` ft. 

by its value 
Cam. 

_1 we have 
1t ý' 

ýýJ 
(2.2.4) 

t_.. 4 V) 
11 E 11-y) n, d 
A. e 



3. - Calculation of displacement and stress at an interior point 

Let us consider the interior problem for the three dimen- 

sional case, and suppose that LL and 
t 

are known for all 'X. ý S. 

Then the formula (2.1.9), which is'simply Somigliana's 

identity gives (A. for all '. f '1 
. That is : 

VC * ('`, ) ý-) - Tý ' (X4) u. CT)d 
(2.3.1) 

-ý ý%ý"CX4) E"1ý. ý As 
for ^"G&"T where : 

L J 'ý E (A -9) ?L, tl' (2.3.2) 

TU 

k 2.3. Tl CJt liý ,L 
n'' 

+C" zV) ý q+ 3 (W`- Cxý-'ýa- M, l) (A-ra) 

is given by 2.1.2 and ht1') is the outward normal to S 
at t 

I" 

For details of this derivation, see Lachat and Brebbia (62). 

According to Hooke's law, the stress tensor is given 

in terms of displacement by : 

Using for l. Lý the expression (2.3.1)' and defining : 

ý,, rv + 
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one may obtain the result : 

jýxl J� 
ýý ý iýý výýö 

is 

Sý. 
where 

(2.3.4) 

2.3.5 ) 

- S. (x-ýý) 3ßx4"`ýýýýý'-ýj)(--A- 
h3 

ýýt 0g ("ý-yýý rL3 n- r(. 

-{- 31l 
Cöý{T, 

-}. 21 
21 V) 

vý 
V 

4-61 1ý) 
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4. - Calculation of displacement on the surface 

Let us consider the case of zero body force ( .O in 

equation (2.1.1)). ' The point, 7- may be on a smooth surface, 

or at the intersection of several smooth surfaces, i. e. 

at'an edge or corner : 

'A 

VC 

I 

Let (4 
C and V" be displacement fields, and 

rýý C LL) 
ý i4ýi 

) 

be the corresponding stress fields. If U. and U' are conti- 

nuously differentiable in domain 
V-V 

and on its surface 

the divergence theorem may be used to give : 

Cu-) 
LL 

A ýA 

AJ 
-j000 

-(Sn ve) +SS 
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0 

and 
I 

L)-j 
ý [a' Cam)] 

Eq'4 
j. 

ID 4 
.* 

'"D "I E 
U. 

' 
qyA c, (2.4.1) 

s-Csýýrýj+sf 
Equation (2.4.1) is known as, Betti's theorem for the 

domain V- V 

Let us replaceby (equation (2.3.1)) 
, and let l, (, - 

be a solution of the Navier equations for the case of 

zero body force. Then the volume integral in-equation 

(2.4.. 1) is zero. Now let us consider what happens as 7O, 

Equations (2.4.1) may be rewritten. 
Ja 

ý-N b ý-ýO SE S_ýPgL) (2.4.2) 

uýýx, ý) tý. cjýS+ Uqcx)ý) t)cS 
sC ýa Provided that the surface at ')(,,, or the surfaces that 

intersect atX , are Lyapounov smooth (58), 

-Iq 

where 

." fix. -" Cý. u, " )] u-ý. 

Since Týý -- , 
is not greater than 

gral tends to zero. 

C, --l 
. 

J 

J, ý 

and the area of S£ 

the first part of this inte- 

This leaves 

?O 
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In the case in which the normal direction is continuous at >C, 
) 

C#a: N-) . 
.. 

-I 

Again provided that the surface or surfaces at X are 

Lyapounov smooth, and since liý" Cy, ý is differentiable, 

the second integral on the left side of equation (2.4.2) 

tends to the principal'value. 

ß k1_ \i)k, t" ýl ý s\ Sincebit') 

The last integral always converges to a limit as "'ý p so 

IlkLx, ý. )u, ýýx)+ýrýlx, ý)wý. cý. )äsý: l 
(2.4.4) 

ss 
where the principal value of the integral on the left side 

is. taken. It is interesting to note that the value of ýýýk. C 

would change if the shape of region of exclusion used to 

define the principal value is changed. 

*00 
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5. - Body forces 

In the preceding section, the body forces. (equation 

(2.1.1)) are supposed to. be-zeroj and an integral equation 

for the unknown functions I(. or 
ton S is derived. The general 

case may be treated by taking the displacement to be the 

sum of two components : 

( 2.5.7 ) 

The particular integral LA, is any function that satisfies 

A 
(/ý. _ .. (2.5.2) 

whilst the complementary function 
(, 

is chosen such that 

(2.5.3) 

and the sum Uff. +w satisfies the boundary conditions for U,, 

" The particular integral may be taken as the volume potential 

1, VU (2.5.4) 

" For special cases such as gravity and centrifugal force it 

is more convenient to use polynomials that satisfy equa- 

tion (2.5.2) 
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6. - The plane problems 

0 

The displacement field is said to be plane, parallel to ýL3-0 

if 11 3_ 0 and U, Lt, 2, are f unctions of '-^ and 'X-), only. In 

the linear ' theory, Eý 
_ wý) so it may be deduced 

directly that at any point, 

&43 = 
83aß 

= 
8AJ, 

y O 

that is'the tensor is everywhere a plane tensor. The 

Navier equations are : 

t, 6 l.. JZ (2.6.1 ) 

It should be noted that is not, in general, a plane 

. 
tensor. As for the three dimensional case, one denotes 

by the operator 

, ate =A+ 
The stress field is said to be plane, parallel to X3=0 if L7 

is everywhere a plane stress tensor parallel to % =0 

and its components 07ý- are independent of Conse- 

quently, 
F3 

I 

It follows that 

0 33+2 

The Navier equations for plane stress are : 

1ý u,. + 
k(3t). 

-= 
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One denotes by L the operator 

Now let 

ý (2.6.3) 

OL. 
where 

lane strain . operator, for which 0ý 
plane L 3a ý-z 
plane stress operator, for which cL 

The elementary solution for may be calculated by 

Hörmander's method as in paragraph 2.2. 

One obtains: 

E "C-4 ý. d 
JA, 

where 
(2.6.4) 

4 

From 2.6.4. we may obtain the expression of 

and in terms of E-and V as in paragraph 2.3.: 

(2.6.6 ) 

where 

'ý =y and 
L for plane strain 

'U _ and E- =F(4 v'-or plane stress 
. 4+y 

000 
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The displacements at any point )C& V and XG'& 
S 

are given 

by the relationships identical with (2.3.1) and (2.4.4). 

The components of the stress tensor for x6 Y are determined 

using the same formula as (2.3.4), where ": 

------- 
E4, 

ýýl CA -v') I- rL 
(2.6.7) 

CXu 

R., ., 
li 

'. L. Lt1 1')k' 

n 

1 

ILZI 

"4: M, 1)CN) 
ii,. 

. 
L1iL (v') 

0ý 

")I 
where F, =E for plane strain 

Y, for plane stress 

. ctv 

(2.6.8) 
. 

*00 
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III - NUMERICAL FORMULATION OF THE PLANE PROBLEMS 

J 

1. - Review of previous formulations 

In the formulations for the Laplace operator by Jaswon and 

Ponter (55) and by Symm (54), and the later formulations 

for elastostatics by Rizzo (29), Cruse (51), and Riccardella 

(52), the boundary is approximated by straight line segments, 

so for problems involving curved boundaries, either'a large 

number of segments must be considered or there are large 

errors of geometrical representation. 

Except in the work of Riccardella, the functionslt. and 

are supposed to be. constant over each boundary segment. 

The very approximate nature of this assumption requires 

that a large number of segments be considered even on 

straight boundaries. 

The integral equation for smooth surfaces is used (e. g. 

equation (2.4.4)) with this being 

satisfactory because the equation is written for the 

midpoint of each segment. Riccardella considersU. and t. 

to vary linearly, and writes the integral equations for 

the end points of each segment. The free term of the 

integral equation is modified to account for the possi- 

bility that adjacent segments are not in a straight line. 

e0e 
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The results presented by Riccardella show that this formu- 

lation is superior to that in which functions are taken 

to be constant over each segment. 

Cruse (49) further improves the efficiency of the method 

in some cases by representing only half or one quarter of 

a structure with symmetry. This is a feature which may use- 

fully be retained in the present formulation. 

Jaswon and Ponter, and Symm, use Simpson's Rule. to inte- 

grate for the matrix coefficients, whereas Rizzo, Cruse 

and Riccardella integrate analytically the kernels over 

the straight line segments. The use of Simpson's Rule pro- 

'bably introduces considerable error, because the kernels 

vary rapidly as one argument approaches the other. Even 

the calculation of the stiffness matrices of finite elements, 

which involves only the integration of relatively smooth 

shape functions (65), is normally done by Gaussian qua- 

drature formulae. Analytic integration is clearly the ideal 

solution for straight boundary segmenis with simple varia- 

tion' of U, and. , but must be difficult or impossible to use 

for the more sophisticated segments and functional'variations 

to be considered here. 

-27- 
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" Jaswon and Ponter, and Symm, report that the equations 

become unstable if the number of boundary segments exceeds 

a certain limit. The reason is not stated, but may be that' 

the precision of floating point arithmetic during reduction 

-of the system was insufficient, or that the system is 

inherently unstable because the unknowns (potential and 

normal derivative) are not, of the same order. In the 

latter case, the problem may be solved by writing the 

system in nondimensional form. Cruse (9) finds that, in 

the case of elastostatics, stability is improved, indeed 

assured for the examples presented, by scaling the coef- 

ficients of traction unknowns by the shear modulus. 

No author discusses the programming of the equation solu- 

tion, other than to say that Gaussian elimination is used. 

The examples treated are quite small, and it is probable 
I 

that the matrix is held in core during reduction. This 

approach is not suited to problems of practical size. 

Once the equations are. solved, the stress tensor at the 

surface may be calculated from a formula in terms of the 

kernelsi and 
S (equations (2.6.7. ), (2.6.8)), but the inte- 

grations involved are expensive to perform. A simpler and 

much more economical method, developed by Cruse (9), is 

to calculate the tensor from the traction on the'tangent 

... 
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plane and strain in that plane, the latter data being ob- 

tained by differencing or differentiating surface displa- 

cement. 

00a 
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' 2. - The parametric representation of geometry and functions 

The boundary, which may consist of one or more separate 

parts, is represented by a sequence of straighter. curved 

line elements, each of which has three nodes (fig. 3.2.1). 

O. -l 
ýýý 

s 

0. ) cLt 

fig. 3.2.1. -a line element 

The cartesian coordinates ? L. of an arbitrary point of an 
v 

element are defined in terms of the nodal cartesian'coordi- 
a, 

nates x`ý c: t. ýiý Lý3 and shape f unctions 1. 

4. 
ý' 

(3.2.1 

00e 
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being the intrinsic coordinate, and IV the f unc- 

tions (Ergatoudis (67)) : 

+-) 
Q2, C -1- ý(I --i 

3z Z 
(3.2.2) 

The variation of these functions is shown in fig. 3.2.2. 

5 

"eil 

4A 

ü°(i) vs3Li) 
fig. 3.2.2. - the geometric shape functions 

By differentiating equation 3.2.1. with respect to a 

vector defining the tangent to the element is obtained :, 

ý go-W ., z- , 

= 

Ane, 
`' ( 3.2.3 ) 

Prom this result may be calculated two functions of funda- 

mental importance to the numerical representation of the 

integral equation : the Jacobian, which equals1 
1; 

ýý 
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I", 
and the normal to the element, required for the calculation 

of the kernels 
Tand S, which is either or 

1 
depending upon to which side of the element the elastic 

body lies. 

In cases in which there is structural symmetry and symme- 

try of loads with respect to one or both of the cartesian 

coordinate axes, only half or one quarter of the boundary 

need be represented (fig. (3.2.3)) 

k 

`1C. 
A 

X". 

symmetry with respect to symmetry with respect to 

the axis >(. both axes 

fig. 3.2.3 - representation of symmetric 

" structures 

The functions lttand ' 
are considered to vary linearly, 

quadratically or cubically with respect to the intrinsic 

coordinate over each boundary element. 
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linear variation 

+. 1 quadratic variation 

+4 cubic variation 
+, L 

fig. 3.2.4 - nodes for the representation 

of function 

The value 
4 

of a function at an arbitrary point of an 

element is defined in terms of its nodal values etc 

"a (fig. 3.2.4) and the shape functions 
MC 5) correspon- 

ding to the variation chosen : 

Cý1} - 
Mw 

(3.2.4) 

where is defined as follows : 

- linear variation 

ZI. +(3.2.5) 

rA, - Li) -, - -L Cý - 4) . ... 
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- quadratic variation (isoparametric case) 

C,, _9(, 
ý 

(see equation 3.2.2) 

cubic va 

m1 Cj) 

"ºLC5) 
pi ? 'N 

ii ) 

. riation 

At G 
ý7L- g) 

(3.2.6) 

(3.2.7) 

Lette.,, äc4,23be the unit vector in the tangential direction 

I- (see equation 3.2.3) and(M be the unit normal. Let 

be the displacement, 6be the strain and 0 be the stress 

in the system of local coordinates so defined (see figure 

3.. 2.5). Then the displacement in the tangential direction 
I' is given by : 

wý c3) _ 
IMA (3.2.8) 

By differentiating with respect to ' an expression is obý 

tained for strain in the tangential direction : 

ic V". 
ý-ý' 

(3.2-9) 
IAI 

Let us suppose that the nodal displacements U, änd the trac- 

tion bn the tangent plane at 
7'are known, which is the case 

once the integral equation (2.4.4) is solved 

... 
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. 

JVOC4 AlAttgon -ý/ \, 

ýý 
/- ý: deto, 

ýtý. 

On lei 

fig. 3.2.5 - local-axes for calculation of stress 

Then, using Hooke's law, the stress tensor may be calculated 

from the data already known 

vý yý 
P 

E e, 97 
;44 

ýt+y 

where, for plane strain 

and for plane stress 

, %ý_ 
(4-V' 

and 
&isthe traction in the local system of coordinates. 

a*0 
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3. - Discretisation of the integral equation 

The object of 'the discretisation is to approximate the inte- 

gral equation by a system of simultaneous equations in 

unknowns associated with the element nodes used-to define- 

the variation of (1, and t (fig. 3.2.4). Let there be 

elements each with! hnodes. It is first necessary to create 

a global numberingc. (b, c) , A? - 
et 

-41 '' -) 
pj 

) 
C- ý (Al 

" M'ý 

wherejy is the element and G the node. The numbers 
Ivary 

between 1 and ¶. where g, is the number of distinct nodes, 

and define the order of solution of the simultaneous equa- 

tions. 

In practice, some of the nodes 1 to are either partially 

or completely fixed, and the directions in which they are 

fixed do not necessarily coincide with the global coordinate 

directions. The integral equation (2.4.4) is rewritten in 

terms of the components of k, and 
t in the f ixed, ' and free 

directions at the point X: 

T (XI 

lu' t' lds 
where 

-36- 
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In equation (3.3.2) 
," are the direction cosines of the 

oCt, 
" 

unknown at. Writing the equation (3.3.1) for each node, 

and substituting the parametric representations-. of 
Land 

tA. 

(3.2.4), the desired system of simultaneous equations is 

obtained : 
n1. 

_ 
cot 

M, " 

x1M Ci ý 
4ý (3.3.3) 

where. 
S is the bth element, and: TWis the Jacobian 

JL-P,, 0 

fig. 3.3.1 - parameters of equation 3.3.3 
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The equation coefficients are sums of integrals of kernel - 

shape function products: These integrals are evaluated using 

Gaussian quadrature formulae (Stroud and Secrest (60)). It is 

necessary to consider separately the case in which the node 7i. ' 

is one of the nodes of the element to be integrated over, and 

that in which it is not. Where eis 
not a node of the ele- 

ment, the integrand varies smoothly over the interval and 

the Gaussian formulae with weight function equal 1.0 may be 

used : 

Cýý NA CAL ) 

This formula integrates exactly any polynomial of degree 

(3.3.4) 

Let YLbe the distance, between xandT (fig. 3.3.1) . 
oý Where% is a node of the element, and Ll f a.. the inte- 

grand -still varies smoothly because, whilst the kernel is ; L, 

of ©(4 
, the shape function 116(f) is Where 

ýCtG, ) 

however, the procedure must be modified, because the integrand 

can no longer reasonably be approximated by a polynomial in 

t", G (3.3.3), the Gaussian formulae To integrate 
Vý 

A 

with weight function Tog C'`is 
used : 

(3.3.5) A, 
AL 

j 

., 
L 4(9 1 ,) ýý 
% Val """ 0 
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This formula integrates exactly any polynomial of degree ý J, k4A 

multiplied by log's , so can be expected to give good re- 

suits. In the application of formula '(3.3.5), it is necessary 

tocarry out a linear transformation of the intrinsic coordi- 

nate to obtain the interval (0,1). 1There'X is not at an 

extremity of the element, two applications of the formula 

are required. 

For the case 
ýýr1G) 

= GL, there exist no quadrature 

formula suitable for the calculation of the Cauchy principal i 

value of the integral of 
T- MC. (3.3.3). However, there 

is no need to evaluate separately such integrals and the 

coefficient G6( of the free term ; so the leading diagonal 

submatrix of coefficients of ýp is calculated using the 

fact that the stress field corresponding to a rigid body trans- 

lation is zero. Writing the integral equation for this case 

in global coordinates 
1. 

. 

cxý 

C 

. 
Qr_'t G=4 (3.3.6) 

E CA - dad T xa c) ý'iL) ýý 
öý `ý 

where . 
Qi:, 

ý Grº 5 
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Equation 3.3.6 gives the components of the leading diagonal 

submatrix in the global coordinate directions ; to obtain 
J 

ýCý 
) 

components in the directions ý the the transforma- 

tion (3.3.2) is used. 

During the construction of each pair of equations, the inte- 

grals to be calculated directly are placed in the matrix and 

second member. All second members-are calculated simultaneously. 
i C, I 

Wher. e (/tpý, ( is the unknown, the integral of Ta M is 

placed in the matrix whilst the integral of 
V Ný is multiplied 

by the known function X and placed in the second mein- 

ber. 
d, ) 

Where 
t 

gCMG is the unknown, the integral of 
C., uýp M 

sign reversed, is placed. in the matrix, and that of "jam jG 

sign reversed, is multiplied by the known function LA2 (x} 

and placed in the second member. 

Meanwhile, the global components of the leading diagonal 

submatrix (equation 3.3.6) are summed. When the integration 

is completed, this is transformed (equation 3.3.2) and placed 

in the equations. If LL/ (X) is the unknown, the Submatrix 

is placed on the leading diagonal, whilst if Xo) is 

unknown, it is multiplied by the known function ("t. ý OA and 

placed in the second member, sign reversed. 
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The equation coefficients are scaled, to obtain a non-dimen- 

sional and therefore numerically stable system. No scale fac- 

tor is applied to the integrals of 
Ta because these 

are already nondimensional ; the integrals of 
V%aAM are 

multiplied by the modulus of elasticity and divided by the 

greatest dimension of the structure; given values of dis- 

placement are divided by the greatest dimension and given va- 

lees of traction are divided by the modulus of elasticity. 

The resulting system is that which would be obtained if the 

unit of distance were the greatest dimension and that of stress, 

the modulus of elasticity. It is of course necessaryl, after 

', solution, to multiply the calculatedU by the greatest dimen- 

sion and the calculated t. by the modulus of elasticity. 

If structural symmetry is used, certain unknowns are eliminated 

because they are zero. These unknowns are the displacements 

of and traction at nodes on a plane of symmetry, in the direc- 

tion across that plane. In practice, the eliminations are 

effected by zeroising the corresponding matrix rows and 

columns and placing the value 1.0 on the leading diagonal. 

000 
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4. - Reduction of the system of equations 

The. -matrix is fully populated, and non symmetric. In 

generals there are several second members, each corre's- 

ponding to a load case. By virtue of the scaling of 

coefficients, numerical stability is such that the system 

may be' reduced by Gaussian elimination, without iteration 

on the residues, provided that the floating point arith- 

metic is done in IBM double precision or CDC 6600/7600 

series single precision (about 15 decimal places). However, 

for all but the most trivial problems, the matrix is too 

large to retain in core. The program for plane elastic 

analysis is written to solve problems involving up to 

150 nodes, or 300 equations ; although there do exist 

computers with enough core to hold the resulting 90,000 

coefficients, the retention in core of such an array 

during reduction is undesirable because, the monopolisa- 

tion of core by on or two large programs being inefficient, 

the price paid per second, of central processing time is set 

higher for large programs than for small ones. In addition, 

it is undesirable to write a program that is incapable of 

expansion, or that will run only on a few large machines. 

It is therefore, necessary to store the equations on a disk 

file, and order the reduction in such a way that the input- 

output time, which must also be paid for, is low. The block 

solver of the program -for plane elastic analysis (Appendix 1, 

a 000. 
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subroutine IDSOL) is designed to satisfy these requirements. 

In the plane analysis program, the matrix, is written to a 

random accessfile, record length 900 coefficients. As many 

complete lines of matrix as possible are put in each record ; 

evidently there are always at least 3 equations per record, 

and the maximum wastage of space in a record is less-than 

25 %.. The second members, for, a maximum of 5 load cases, 

are in core ; the forward reduction of all load cases 

takes, place at the same time as that of the matrix. Were 

the reduction of second members to be done afterwards, it 

would be necessary to create a file of pivots, which for a 

non-symmetric matrix are not. numerically equal to the 

coefficients of the reduced matrix, as they are for the sym- 

metric matrices obtained by the finite element method. 

There, are five arra3s in core.: 

The "slow block" A (9000) 

The "slow block output buffet" AO (900) 

The "fast block" FI (900) 

The "fast block- output buffer"CFO (900) 

The second members BT (1500). 

A flow chart of the block solver is shown in fig. 3.4.1. 
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" Begin 

Read slow block 
of LC equations 

LC =1 

LC>1 

Eliminate LC-1 
unknowns in slow 
block and reduce se, 
cond members 

Transfer LC reduced 
equations to, AO and 
write to file as 
necessary 

no more equations 

to reduce 1y 

lemptyFo 

Read fast block of LCF equations. 
Eliminate the LC unknowns correspon- 
ding to equations in slow block, and 
reduce second member. Transfer partial- 
ly reduced equations to FO and write 
to file as necessary. 

more equations no more equations 
to read to read 

18 

solve; last equations 

Eback substitution 

fig. 3.4.1. 

Flowchart of IDSOL END 
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The principle of the block solver is best illustrated by 

diagrams of the matrix at two stages of reduction. In 

fig. 3.4.2 (a) is shown the data being treated at some 

moment during elimination of the unknowns corresponding 

to the first slow block. 

. aý 

LG 

ej. p, 
Xoq, 

s. 

Lc- F: 

gý 

0 

A 

Fr 

A4: J:; J I. ! IM! I 

L Th1 

f 
-, 

4 ýI. ( 

Lc 

Lcr ¶ Py IIIII 

fig. 
-. 

4.2'- elimination of unknowns 
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" The slow block A has been read and reduced, and the reduced 

equations. (unshaded area of A) have been written to the 

file via the buffer AO. In general, there remain a few equa- 

tions in AO at any given time. The shaded area of A contains 

pivots for the elimination of the first LC. unknowns in sub- 

sequent equations. Several fast blocks have already been 

partially reduced, and some of the partially reduced equatiors, 

shorter than the unreduced ones, remain in the output buffer 

FO. During. the elimination for the fast block shown, the 

coefficients in the shaded area are eliminated, and after- 

wards the partially reduced equations (unshaded area of FI) 

are transfered to F0. The latter arrey is emptied as neces- 

sary ; in general the reading of FI and writing of FO take 

place asynchronously, and the number of equations per file 

record is increased. This reduces the input - output time. 

In fig. 3.4.2 (b), the situation at'some moment during 

elimination of the unknowns corresponding to the second slow 

block is shown. The slow and fast blocks contain more 

equations than previously. 

0 

Eventually, it is possible. to put all the remaining 

equations into the slow block, and the forward reduction 

is completed by calculations within that block alone. 
.. 
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. T. Back substitution is a routine process, involving only 

the reading of the file of reduced equations. Input-output 

time is low because each time the matrix is read and 

rewritten, several unknowns are eliminated. The block 'j 

sizes shown, 9000 for the slow block and 900- for the 

fast block are those of the plane analysis program ; 

-they may be changed at will, 'a reduction in core used 

resulting in an increase of input-output time and 

. vice-versa. 

,. 
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5. - Calculation of stress and displacement at interior points 

Prior to calculations at interior points, the global compo- 

nents U-ý(%)1 tjX. a}of surface nodal displacements and 

tractions are calculated from the given values and the 

solution of the system of equations, using the transforma- 

tions (3.3.2). For the calculation of stress and displa- 

cement at interior points, equations (2.3.1) and (2.3.4) 

are discretised in the same. way as is the integral equa- 

tion, "except in that it is unnecessary to define local di- 

rections (equation 3.3.2).: 

Z L 

4 (3.5.1) 
U_ X, 

j-(T) Ai C( f 
tj 

S 
ý''', ý "I to ýý "-., - ,,.. (3.5.2) 

ILPJI 
.0 

.4 
where )' is the shape 

function 
(3.2.4) S is the bth ele- 

ment, and : YCJ) the Jacobian 

. i. _% 
element 

fig. 3.5.1 - parameters of equation 
3.5-1.000 
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For the evaluation of the integrals appearing in the 

equations (3.5.1 and 3.5.2), only the Gaussian quadrature 

formula with weight function 1.0-(equation 3.3.4) is 

required. To reduce central processing time, all load 

cases are treated at once and the results sorted afterwards. 

i 

... 

g. 
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6. - Examples and comparison with other methods 

The plane analysis program has been used to analyse a 

number of problems of stress concentration and fracture 

mechanics. Most of the calculationt have been done on a 

CDC 7 600. The program, of about 5 000 Fortran statements, 

is divided into a root segment and one primary overlay 

- segment ; there. are. 10 overlays. 18 K of core is required 

for em-cation. The user can choose linear, quadratic or 

cubic variation of displacement and traction over each 

boundary segment, and 2,3,4 or 5 Gauss integration points 

per segment. These options were included in the program 

in-order to allow a study of relative efficiencies of 

various combinations of functional representation and 

precision of integration. 

Three examples are shown here. They are : 

a) the analysis of a gear tooth. This is a typical problem 

of calculation of stress concentrations in plane elasti- 

city 

b) the calculation of the stress intensity factor for a 

crack in a tensile test specimen. This illustrates the 

use of the method in plane fracture mechanics 

000 
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c) the calculation of stresses near a rigid inclusion em= 

bedded in rubber. Thifl demonstrates the applicability 

of the method to the analysis of stress in incompressible 

materials. 

The results for the gear tooth are compared with finite 

element, results, and those for the tensile test specimen 

are compared with both finite element and experimental 

results. 

0 40 0 

V 
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6. a) The gear tooth 

The characteristics of the gear wheel considered are 

as follows : 

number of teeth = 10 

diametral pitch = 5.08 

addendum modification =0 

modulus of elasticity = 21 000 daN/mm2 

Poisson's ratio = 0.3' 

In the analysis, the loaded tooth (fig. 3.6.1. ) is 

considered in isolation. The shaded sides are supposed 

to be fixed, and a line load of 40 daN/mm is applied 

as indicated, normal to the surface. A state of plane 

strain is assumed to exist, because the tooth is long 

compared with its width. 

For the analysis by the finite element method the 

tooth is represented by 291 six-node isoparametric 

triangular elements (fig. 3.6.2), with a total of 

630 nodes. In the finite element program the resul- 

ting system of 1 260'simultaneous equations is solved 

by a variable bandwidth Gaussian elimination algorithm, 

in which the matrix is held on a disc file and a sli- 

ding triangle of coefficients is resident in core. 

00* 
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In the analysis by the integral equation method, linear, 

quadratic and cubic. variation of displacement and trac- 

tion over each boundary segment were tried. For the 

linear and quadratic functional representation the 

boundary was represented by 33 segments (fig. 3.6.3), 

whereas for the cubic case it' was represented by 33 

segments and also by 13-segments (fig. 3.6.4). 

Both programs were run on an IBM 360/75. Run statistics 

are shown in table (3.6.5). In the last column of the 

table is shown the calculated maximum stress near the 

root of the tooth, so that the precision of each analy- 

sis can conveniently be assessed. The precision is 

seen to improve with that of the functional represen- 

tation, and the result for cubic variation, 33 segments, 

is probably better than that obtained by the finite ele- 

ment method. It should be noted that, had a-program . 

for automatic generation of finite element networks 

existed at the time, the quantity of data to be pre- 

pared for the finite element analysis would be of the 

same order as that for the integral equation analysis ; 

but in this case some additional computing time would 

be required The. variation of the calculated principal 

stress at the surface in shown in fig. 3.6.6. No ana- 

lysis gives sensible resul- near the line load (which 

is any case a fiction), so -a part of the curve is missing. 

00& 
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The integral equation results just described were ob- 

tamed with 5 Gauss points per segment. In fig. 3.6.7 

is shown the convergence to a limit of the calculated 

stress as the precision of integration is increased. 

" The results for the cubic case, 13 segments are chosen 

for this test because they may be expected to be more 

sensitive to errors of integration than the others. 

It may be seen that there comes a point where it is 

impossible to extract further significant improvement 

by taking a higher order formula. A decrease of preci- 

sion of integration was found not to yield great econo- 

mies, so 5 Gauss points per segment became the standard 

choice for subsequent analysis. 

The ratio input-output time/central processing time 

for the integral equation program was comparable with 

that for the finite element analysis, so the block sizes 

of the solver (section 3.4) are well chosen. To give 

an : indication of roundoff error during solution, the 

integral equation program calculates the norm of the 

residues, divided by that of the second. member, for 

each load case : 
(CL 

1.. 

where ct is the matrix, 
9)'ý 

the second member and 

the solution calculated by the program. In no case 

S.. 
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considered does Fi exceed 4.0 x 10-14 " IBM 360 

series double precision arithmetic being done to 16 or 

17 decimal places, this may be taken-to' show that 

the system of equations is very stable. 

S 

4 8. yS' 
'}. 

4 

llýl 
411, 

G. 

9.10 

. L- -- 

idealisation of the gear tooth 

see 
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291 elements - 630 nodes 

Fig. 3.6.2 - F. E. mesh of the gear tooth 
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C 

Fig. 3.6.3 - discretisation of the gear tooth. 33 segments 
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Pig. 3.6.4'- discretisation of the gear tooth : 13 segments 
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Fig. 3.6.7 - convergence of results 
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6. b) The test specimen CT. 15 

The object of the analysis of the compact tensile test 

specimen CT 15 (fig. 3.6.8) is to calculate the 

variation of the stress intensity factor as a crack 

propagates along the plane of symmetry, according to 

the linear theory of fracture mechanics, and compare 

the results with those obtained experimentally and by 

the finite element method. Because the structure and 

the loads are symmetric, it is only necessary to con- 

sider one half of the specimen. A state of plane strain 

is supposed to exist, and seven different lengths of 

crack are considered. The elastic constants are'the same 

as for the gear tooth, and the load of 2 000 daN acts 

inside the hole. 

The stress intensity factor is calculated by two methods. 

In the first method, the stress intensity factor is ob- 

tained from the path independent integral of Rice (70). 

The integral J is given by the relationship': 

w -ýaw (3.6.2) 

where (A) is the strain energy density : 

o 
and td., are the traction and displacement along a 

contour. i around the crack (fig. 3.6.9) ,.. 
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" The stress intensity factor in mode-I (64) may be ob- 

tained, in elastic plane strain, from the relation : 

2.21 

(3.6.4) 

In the second method, the stress intensity factor is 

calculated from the rate of change of potential energy 

with respect to crack length (64) : 

(3.6.5 )+ 

where 1' 

(3.6.6) i 

In equations'3.6.5 and 3.6.6 U is the potential energy 

per unit thickness, 2 
the load, and 

8 the thickness of 

" the. specimen. The network, for the finite element ana- 

lysis; consisting of. 223 elements and 505 nodes, is shown 

in fig. 3.6.10. For the analysis by the integral equa- 

tion method, the boundary, including the hole, is repre- 

sented by 28 segments with cubic functional variation. 

In fig. 3.6.11 is shown the discretisation for jý0,5 
W 

certain charges are made for each crack length in order 

to group a number of very short segments around the crack 

tip, to represent the rapid functional variation-in 

this zone. ý., 
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In fig. 3.6.12 are shown the 27 cards of input data 

required to define the problem. Card A is the title and 

" on card B are stated the choice of functional represen- 

tation and integration ; whether the analysis is to be 

carried out if there are no errors of syntax in the 

data, or a data check only is to be performed ; and 

lastly the existence of symmetry with respect to coor- 

dinate axes. Cards C define the cartesian coordinates 

of nodes of segments on"the outer contour. Cards D 

define the interior nodes at which results are required 

to calculate the integral3. Card E moves'the origin 

of coordinates to the centre of the hole, and card F 

defines the cylindrical coordinates . of the nodes of 

segments defining the hole. Card G defines the segments 

of the outer contour, and card H those defining the 

hole. Card I specifies that the segments on the plane 

of symmetry, and to the right of the end of the crack, 

be fixed in the vertical direction, and card J fixes 

one node in the horizontal direction. This is necessary 

because, for integral equations as for finite elements, 

the. structure must be incapable of rigid body movements 

or the system of equations will be singular. Card K is the 

load case title, cards L define the load, and card N 

marks the end of the data. 
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The results obtained by calculation of the integral T 

are compared with those obtained experimentally on 5 

specimens by IRSID (64), and those calculated by the 

finite element method, in table 3.6.13. The results 

obtained by the calculation of S and by differen- 

tiation of the potential energy are compared with 

those given by the ASTM . 
(71) and those calculated 

by. the finite element method in fig. 3.6.14 and 
I 

table 3.6.15. The results obtained by the calculation 

of are about as close to the experimental results 

as those given by the finite element method, whereas 

the calculation of 
q 

gives results which are 

even closer. The difference between the accuracy of the 

two sets of integral equation results is probably clue 

-to appreciable error in the calculation of stress and 

displacement inside the body but near the surface ; 
" 

in this case, the kernels) and 
S (equations 2.6.7 

and 2.6.8) vary very rapidly over part of the surface 

" and the 5- point integration formula is not sufficiently 

accurate. 

It is difficult to compare the program execution times; 

the finite element program took longer to execute than- 

the integral equation program, but in the former case 

the same network (fig. 3.6.10) was-used for all seven 

cracklengthsconsidered, so over considerable areas the 

.. 
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elements were unnecessarily small. It is, however, arguable 

that it was the convenience of data preparation for the 

integral equation program that permitted the modifica- 

tions for each crack length to be carried out reasonably 

quickly and therefore economically. In any case, on the 

CDC 7 600, only 3.780 seconds C, , 
time, plus 0,665 seconds 

I/O time were required for execution of the integral 

equation program. 

The large variation of boundary segment length in the 

discretisation (largest 11,25 mm, shortest 015 mm) does 

not induce numerical instability : the CDC 7 600 performs 

floating point arithmetic to about 15 decimal places, 

and the norm 9, (equation 3.6.1) for the case 0.. 5) 

for example, is 9.2 x 1012 

O fit. 

fig. 3.6.9 - the contour integral of Rice 
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S. 

X. 

crack tip 

"Fig. 3.6.10 - the finite element network 

" 

Fii 

crack tip 

fig. 3.6.11 - the integral equation net work 
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Kic hbar X mm 

specimen 
number 

load at 
failure 
daN 

I. R. S. I. D. F. E. I. E. 

1 1 660 194 189 192 
2- 1 934 226 221 223 

3 2 088 224 239 242 

4 2 133 247 241 247 

5 2'225 260 254 257 

fig. 3.6.13 

ýcýw Y A. S. T. M. F. E. (G) I. E. (G) I. E. (J) 

0.40 7.323 6.943 7.295 6.993 
0,45 8.337 8.321 8.253 8.235 

0.50 9.603 9.651 9.538 9.505 
0.55 11.260 11.183 11.242 11.161 

0.60 13.540 13.574 13.530 13.429 

0.65 16.778 16.618 16.523 16.500 
0.70 21.427 21.436 21.430 20.951 

fig. 3.6.15 
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fig. 3.6.14 - Variation of potential energy 

per unit thickness 
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6. c) The-rubber-sheet with rigid inclusions 
------------------------------------- 

The final example is-chosen to demonstrate the applica- 

bility of the method to the analysis of incompressible 

materials. The problem is to calculate stresses in a 

sheet of rubber 4.0 mm thick, with parallel steel wires 

of diameter 2.0 mm at 3.00 mm centres (fig. 3.6.16) 

when subjected to an overall imposed strain of 1.667 x 

10-2 perpendicular to the wires. The modulus of elasti- 

city*is 2.0 daN/mm2 and two values of Poisson's ratio 

are considered :=0.45 et \)= 0.50. 

The rubber is considered to be in a state of'plane 

strain ; and for the purposes of the analysis the wires 

are taken to be perfectly rigid. As the modulus of 

elasticity of steel is 21 000 da, N/mm2, this is a 

reasonable assumption. There are vertical plancsof 

symmetry passing between and by the centre of 'each 

wire, in addition to the horizontal plane of symmetry 

bisecting_ the sheet. It is therefore only necessary to 

consider the area marked ABCDE in fig. 3.6.16. The 

finite element program being incapable of treating 

the case 
J=0.50, 

no finite element results are 

presented for comparison 
, Instead, to check precision, 

two sets of integral equation results are compared : 

those'obtained by representing the contour by a rela- 

tively coarse discretisation, and those obtained by 

... 
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taking a fine representation, with twice as many seg- 

ments as in the coarse one. The'-two discretisations 

are shown in fig. "3.6.17. The cubic functional repre- 

sentation is chosen, and in order to avoid the-need to 

discretise the sections BC and EA of the contour, 'the 

symmetries with respect to the axes 
x 

and 
'f 

are used 

(fig. '3.6.17). The section CD of the contour is sub- 

jected to a displacement-of 0.025 mm in the A- direction. 

Some results of the analysis for V=0.45 are shown in 

fig. 3.6.18(a). At the scale of the graph the results 
.' 

for 9 segments and those for 18 are indistinguishable. 

The. norm of residues 6 (equation 3.6.1) is 8.0 x 10 14 

for 9 segments j. and 1,4 x 10-13 for 18. Execution of the 

program on the CDC 7600 required the following and 

I/O times : 

9 segments 1.151 sec. 0.355 sec. I/O 

18 segments 3.541 see. 0.414 sec. I/O 

The same results for V=0.5 are shown in fig. 3.6.18 (b). 

In. this case there is some difference between the results 

for 9 and 18 segments, amounting to not more than 5% 

of the maximum stress. However, there is very little 

difference between the displacements : the vertical 

displacement at ý is calculated to be - 2.162 x 10-2 mm 

00& 
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(g segments) and = 2.161 x 10-2 mm (18 segments)., This 

disparity of precision is probably only the result of 

the inherent. instability of calculation of stress for 

an incompressible material. The norm of residues i 

for V=0.5 is of the same order as that for j=0.45. 

S.. 
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fig. 3.6.16 -"sheet of rubber with embedded steel wir. es 

A 
I 

n 

YY 

C E3 C 

a) coarse discretisation (9 segments) b) fine discretisation (18 segments 

fig. 3.6.17 - discretisation for integral equation, analysis 
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fig. 3.6.18 - variation of Y, x along the curve AB 
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7. - Discussion 

The strategy adopted for the numerical formulation of the 

plane problem incorporates certain techniques and manipu- 

lations, for which to date there exists no published infor- 

mation on efficiency. The parametric representation of geo- 

metry and functions, for example, although extensively used 

in finite element calculations, appears to be new to the 

field of research into boundary integral, equations. From 

the experience obtained with the program for plane analysis, 

it is possible to make an assessement of these techniques ; 

this assessement can then be used as the basis of the-nume- 

rical formulation in three dimensions. 

The parametric representation of geometry facilitates the 

calculation of vormals to the surface, required for the 

derivation of the kernel T, and of the stress tensor at the 

surface (section 3.2). In the formulation only quadratic va- 

riation of segment geometry was tried, whereas displacement 

and traction could be considered to vary linearly, quadra- 

tically'or cubically with respect to the intrinsic coordi- 

nate. For the example; treatedt no difficulty was found in 

adequately representing the contour by the parabolic seg. 

meats ; in practice nearly all boundaries consist of straight 

lines and arcs of circles ; linear representation of geometry 

would be unsuitable for the circles, and progression to cubic 

... 
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geometry would yield no improvement in accuracy for either 

straight lines or circles. In addition, it has been found 

from experience with finite elements that, if cubic geo- 

metry is used, small errors in the input data cm lead to 

large dis-tor tiors of the segment. 

1, 

" fig. 3.7.1 - segment with distorted cubic 
geometry 

The provision for symmetry with respect to the coordinate. 

, axes (example 3.6. C) was effective in reducing both the 

quantity of input data required, and in most cases the 

execution time was reduced. In certain extreme cases, in 

which the reduction in the number of boundary segments 

thereby achieved is small, the extra integration necessary 

for construction of the matrix outweigI the advantage 

obtained by having a smaller system of equations to solve. 

It is not clear, from the results of tests, which functional 

representation is the most economical. Sometimes, good results 

may be obtained cheaply by representing the boundary. by a 

000 
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large number of segments, and choosing linear variation, 

but the results so obtained are usually far from being 

uniformly accurate over the structure. The linear varia- 

tion is incapable of representing certain rapid local 

variations. However, the option of linear variation was 

very useful during debugging of the program, because the 

diagnostics are simpler than for quadratic or cubic variation. 

Also., linear variation can be useful for testing a discreti- 
L 

sation intended for quadratic or cubic variation. The qua- 

dratic and cubic functional variations appear to be more 

efficient than the linear, and give results of more uniform 

accuracy. The cubic representation is good in the case of 

bending. 

In the discretisation of the integral equations (section 3.3) 

an approximation was made at corners of the structure at which 

the displacements of both the adjacent segments are given 

(fig. 3.7.2). 

I 

fig. 3.7.2 - corner with the adjacent 
segments fixed. 

fS" 
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Let Vk, ý1the stress tensor, be continuous at the corner. Then 

the limiting values of the tractions on each segment as 

the corner is approached are 

tyl 

ýyý 
_ 

(J " 'yý, 
l=ý (3.7.1) 

In general, But in the discretisation, it 
h) l v) 

has been assumed that L- tý 
because the two limiting 

values of traction are not considered as separate iulknowns. 

In most practical situation such as that of the gear tooth tG 

considered in section 3.6 (a), this approximation does not 

lead to any error because, the given displacements of the 

adjacent segments being zero, In the case 

in which the given displacements of the adjacent segments 

are not zero, local errors are introduced but the accuracy 

of results at points some distance from the fixed corner is 

not significantly affected. 

It was noted (section 3.6. (b)) that stress and displacement 

at interior points near the boundary are not calculated very 

accurately, because of the rapid variation'of the kernels 

and 
S 

over the segments near the point, and the consequent. 

inadequacy of the integration formula. Similar significant 

error must arise in the calculation of the matrix and se- 

cond members, for example where there is rapid variation 

000 

- 80 - 

ýý 
. ýý 



of segment length. In the caseshown in fig. 3.7.3 the kernel- 

r 

shape function product varies very rapidly with respect to 

L 

fig. 3.7.3 - critical case of integration. 

(notation equation 3.3.3) 

the intrinsic coordinate. In the program, the number of 

'integration points per segment is fixed beforehand ; if this 

number is set high enough to give good results for such a 

case, an unnecessary amount of computing time is spent on 

integrating over'small segments, or segments distant from 

the singularity'. It would therefore be desirable to 

include in the program, logic to calculate automatically, 

from upperbounds for' error of integration, the formula to 

use, depending upon the length of the segment and its dis- 

tance from the singularity's In this way, precise integra- 

tion could be performed at low cost. 

In the program for plane analysis, there is a contribution 

both to the matrix and to the second member for every term 

of the double sum , equation 3.3.3. However, they may 
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exist terms of this sum for which both of the integrall of 

kernel-density products should be placed in the second member. 

Let us consider the case in which X) -is the common node 

of two segments, one free in the direction ß and the other 

fixed in that direction (fig. 3.7.4). Then 
/the 

unknown in 

the direction at )t is the traction 
L/ 1, x) so the integral 

1I 
over of the product 

Tý 
must be multiplied by the known 

displacement U.! CX. ) and placed in the second member. However, 

although the'traction 
l (fJis the unknown, the limiting value rd 

of the traction on 
5, 

as)C# is approached is known, so the inte- 

gral over 
, 
). 

r 
of the product 

U4g ! should be multiplied by the 

known limiting value of traction and placed in the second 

member. The matrix coefficients oft 
)should 

consist of 

integrals over the fixed segment adjacent to'X. only. 

The effect of this error of numerical formulation is twofold : 

the calculated value of stress at such points as 'ýý 

fig. 3.7.4ýis too low, and the structure as a whole is cal- 

culated to be a, little stiffer than it really is. 

0 . 

ýý 
l. 

, R,., dýýwýýý ßý 

.w 
äý: wýs1 y 

fig. 3.7.4 - node shared by'fixed and free segment 
(notation equation 

. 
3.3.3) ... 
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As may be seen from the examples, (section 3.6), the system 

of equations is very stable, irrespective of the value of 

Poisson'sratio. For the systems solved, of order up to 200, 

the norm of residues (equation 3.6.1) is between 100 and 

1 000 times the precision of floating-point arithmetic. 

Evidently the scaling of matrix 'coefficients_ to render them 

nondimensional solves the problem of numerical instability, 

noted by some authors. The residues are so small that 

iteration on them (Cruse, 9) will be unnecessary even for 

much larger systems. 

The reduction of the equations becomes relatively expensive 

for systems of order 2 200 (corresponding to about 33 

cubic or 50 quadratic segments), because, whilst the time 

required for integration is proportional, roughly, to (2, )2, 

that for reduction is proportional to (21). 3 

Evidently this is a problem for the three-dimensional ana- 

lysi's, for which the order of the system of equations will 

be considerably greater than for two-dimensional problems. 

" It is interesting to note that, in most cases, there are 

pairs of nodes of the structure which are relatively far 

from one another (fig. 3.7.5), and to which, in consequence, 

there correspond very small matrix coefficients (fig. 3.7.6). 

006 
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fig. 3.7.5 - elongated structure 

Xis 
Ce, `) 

submatrices of 

small coefficients 

fig. 3.7.6 - matrix corresponding to 

discretisation of fig. 3.7.5 

r 
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The coefficients are small because the kernels of the inte- 

equation (equation 30.3) are and 
C 

'I gral 

Evidently the processing of these small coefficients makes 

a considerable contribution to the high computing time for 

the construction and especially the reduction of large 

systems, for structures such as-that shown in fig. 3.7,5. It 

would be desirable to devise a formulation in which such 

small coefficients are absent. 

This can be done by dividing the structure into subregions, 

these being subdivisions of the elastic body, as shown in 

fig. 3.7.7., and writing the integral equation, 

fig. 3.7.7 - elongated structure, di'vided into subregions 

b 
-85- 



: for each subregion.. Using the discretisation described in 

section 3.3, a matrix of the form shown in fig. 3.7.8 is 

obtained .ag lb E 

integral equation 
for subregion O1 

integral equation 
for subregion L/ 

integral equation 
for subregion (3 

fig. 3.7.8 - matrix corresponding to discretisation 

of fig. 3.7.7. 

In fig. 3.7.8., columns A 
correspond to nodes belonging 

to subregion. only,. columnsß to nodes belonging to su- 

bregions 1O and n2 
, etc ..: The matrix is now of banded 

form, the small coefficients shown in fig. 3.7.6 now 

being zero. There are fewer coefficients to calculate, and 

the time for reduction is no longer proportional to the cube 

of the order of the system. However, corresponding to nodes 

on the interfaces between subregions, some equations. are" 

added-to the system. As an incidental benefit of division 

0*9 
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into subregions, it becomes possible to analyse structures 

consisting of several different elastic materials. 
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IV - NUMERICAL FORMULATION-OF THE THREE DIMENSIONAL PROBLEM 

1. - Review of previous formulation 

In previous , formulations of the three dimensional pro- 

blem, as for those of the plane problem, relatively simple 

-. numerical techniques have been used. The work of princi- 

pal interest is that of Cruse (9,53). In the formulation 

presented in the earlier paper (9), the surface is repre- 

sented by plane triangular elemen-1S, and it is 
,, 

supposed that (, L 

and 
t 

are constant over each element. The integral equation 

is written for the centroid of each element, and the resul- 

ting system of equations, 'af ter scaling of certain coeffi- 

cients by the shear modulus, is solved by Gaussian elimina- . 

tion with iteration, on the residues. Symmetries with res- 

pect to the coordinate axes may be taken into account, and 

as, in the two dimensional analyses by Cruse, the stress 

tensor at the surface points is calculated from traction 

and tangential strain, this being obtained by differencing 

displacements of adjacent elements. 

In the second paper (53) Cruse presents an improved formu- 

lation, still with'. plane triangular elements, but with 

linear variation over each element of U, (, and . The unknowns 

are now associated with the nodes, and the system of equa- 

... 
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tions is obtained by writing the integral equation at 

these points. The integration is performed analytically, 

due respect being paid to the definition of the Cauchy 

principal value. The coefficient of the free term of 

the equation no longer necessarily equals Cruse 

calculates the free term implicitly, by considering rigid 

body translation, as is done in the formulation in two 

dimensions of chapter 3 (equation 3.3.6). The rest of the 

formulation is basically unchanged. 

Cruse treats the example of a fracture specimen, and gives 

results obtained using the program with,,, and 
b constant 

over each segment, and using the improved program in two 

ways : by analysing the entire specimen, and by analysing 

only one half, taking account of symmetry. Results and run 

statistics are presented to show that the improved formula- 

tion is more efficient than the original. However, the run 

times are still rather high considering the relative simpli- 

city of the problem and Cruse states in conclusion (53) 

that "Future efforts to improve the accuracy of the BIE 

method should concentrate on even higher order variation 

of the boundary data and curved boundary segments. Such 

effort has already had significant pay-off in two dimen- 

sional problems. The emphasis, as infinite elements, will 

shift to efficient algorithms for performing the necessary 

discrete integrations : numerically". 
000 
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The object of the following formulation is. to effect these 

improvements to the algorithm. The numerical methods are 

those used for the formulation of chapter 3, with the impro- 

vements suggested in the discussion of the results for 

plane elasticity. 
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2. - The parametric representation of geometry and functions 

The surface is represented by . elements, each of which 

has either eight or six nodes (figures 4.2.1 and 4.2.2). 

Generally, the 8- node quadrilateral elements are used, 

but where necessary, to represent complicated surfaces, 

lkoý, Cýi at C41 A) 

ý, ýoda 
(O oe n0dR 

6 

1z 

V obi 
C"ß, 4) 

tuaj, f -", k ý- AI 

(Al "4) 

n, ý $ Loy "i) 

", 14,1 ak P) A) 

fig. 4.2.1 - quadrilateral surface element 

A 

21? 

fig. 4.2.2 - triangular (degenerate) surface element 
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degenerate surface elements are incorporated in the net- 

work. In fig. 4.2.2 is shown only one of four ways in 

which a degenerate element may be defined;. the end 'and 

mid - nodes of any side may be considered to be coincident. 

The cartesian coordinates XL of an arbitrary point of 

an element are defined in terms of the nodal coordinates 

ýý A. E ýýý 
""ý$ and shape functions Cýýy' 

1 

-ý ... xýýý) = NI X37 x 
being the intrinsic coordinates, 

and the functions (Ergatoudis (67)) : 

74 4-'ýý 4) 

NC 1- -- C4 +4) (A- z 
the functions for other values of Q, being derived using 

symmetry. Evidently, an element may be flat, singly or 

doubly curved. The variation of these functions is-shown 

in fig. 4.2.3. 
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'I' 
l' ýt 

/ :. 

I 

nt"t, ) 

it 

,. - r -. 
/ff 

"1 
ýI 

rý 

"r 

I 
If 

1 .1 

N`(i) 

fig. 4.2.3 - the geometric shape functions and. 
N 

By differentiating equation 4.2.1. with respect to ý" 

vectors tangent to the coordinate line3are obtained : 

,ý -x, ýý? g, - W 
ID lý ý Ij 

i 
ýd 

r : 'r 

(4.2.3)» 

A vector normal to the element is obtained by taking the 

vector product of the two vectors defined by equation 4.2.3, 

and the Jacobian is the modulus of this vector product. 

This procedure breaks down at the singularity of intrinsic 

coordinates occurring in a degenerate element (e. g. the 

line 74 
-. 4, fig. 4.2.2), but in this case it is suffi- 

cient to calculate the normal a little way -towards the 

centre of the element, to obtain a value precise enough 

for practical purposes. 

Symmetries with respect to coordinate axes may be treated 

in the same way as for the plane problem (section 3.2). 
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-The functions Lk and 
bare 

considered to vary linearly, qua- 

dratically or cubically with respect to the intrinsic coor- 

dinates over each surface element. The valuer of a function 

at an arbitrary point of an element is defined in terms of I'. 
A. 

its nodal values a E{A, ---ßr&} (fig. 4.2.4) and the shape 

functions. Mcorresponding to the variation chosen,: 

Qa 
(4.2.4) 

{ 

' 

'ý1 
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.ý 

If 

77. 
i 

linear variation 

iii 

r 

b 
ýL 

ý' -3 

3 (0 3 

ýl 

ý4 

cubic variation. 

fig. 4.2.4 - nodes for the representation of functions 

... 
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Mýý) is defined as follows : 

- linear variation 

1.4 14) ( +. 4) 
- quadratic variation 

(see equation 4.2.2) 

- cubic variation 

ýýc l= C (j2--t-4) [c ýz) -101 i 
32 

) Z4 to 
L- 

(TA 
J 3, 3 

(4.2.5) 
)I 

(4.2.6) - 

(4.2.7) 

The shape functions for other values of q, are obtained using 

symmetry. 

' Let (WAb ") 
cl 

6ý4)b)3ý'be the unit: vector in the coordinate 

direction 7 tw j be the unit- vector in the coordinate 

direction Tz, (see equation 4.2.3), and /1+h3b be the unit 

normal. Id general, the directions and i%t are not. 

orthogonal. Let 
k"be. the direction cosines of the ortho- 

gonal system of axes, obtained by taking u. ̂" - 1r`ß * 
ý. 

3ý ý M't3i 

and taking 
L" to be the vector product of /mAý and 3" 

Let U`,, be the displacements, be the strain, 

be the stress and be the traction in the orthogonal 

local system defined by ý, 
ý, ýý 

(see figure 4.2.5) 

... 
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P. 

i 

fig. 4.2.5 - local axes for calculation of stress 

Then the displacement in the orthogonal tangential 

direction'U 6 . 
ýý(123 is given by 

1A.. 
tA 

(4.2.8) 

By differentiating with respect to an expression is 

obtained for tangential strain in the orthogonal system 

see 
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0 

a 

and 

"-(T) (Aý 
ýýA 

AAA4 

where 
0 

is the angle shown in figure 4.2.5. Then, using 

Hooke's law, the stress tensor may be calculated from 

the traction and displacement : 

oil '3 ++i2,7J 

A -V 
A-vv A+v 

- 
8AZ. 61 

:U 
rb 

4 Z(444) 

3L"ýý. 3 

34 - 

a 

000 

(4.2.9) 

(4.2.10 

(4.2.11; ' 
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3. - Subregions 

The elastic body is considered to consist of several 
t () 

homogeneous subregions 
[ the elastic properties of 

which may differ (fig. 4.3.1). The integral equation 

is written 

fig. 4.3.1 - elastic body divided into subregions 

for each subregion : 
(A) CIL) 

,,, 
v 

(X)p 

-where 
S_ is the surface of 

R, (ý 
and the superscript 

indicates that a function is calculated from the elastic 

properties of 
1 

,, 
, 
and the outward normal to 3"j To equa- 

tions 4.3.1 are added the compatibility and equilibrium 

conditions across interfaces : 

000 
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(t jx) -= U, £") 

Cýj fie) where }ý /ý S 

Where there is body force, the solution is taken for each 

subregion. as the sum of a particular integral 
X 14) 

and complementary function (, l. (see section 2.5) 

I 

A (ok) 

The compatibility and equilibrium conditions across inter- 

faces (equation 4.3.2) 

between the complement 

give the following relationship 

(4) (t) ary functions for i 
and 

(4.3.2) 

(4.3.3) 

(4.3.4 

where and 
t 

are the tractions corresponding to the dis- 

placement fields U. and Vk respectively. It may be seen that 

/A /. ý (e) in general the complementary functions UL and U.. are not 

equal on the interface SOlt), A S(j, 

To calculate stress and displacement at a point inside a 

subregion., equations 2.3.1 and 2.3.4 are written for that 

subregion only. 



4. - Discretisation of the integral equations 

60 
Let-there be elements and distinct nodes on the 

surface J /KLM 
ý4-21. 

A global numbering 
J,.. ýýý. 

" 
ýýýCE{ýl, 

"ý+ýýis created for each subregion, the 

nodes being numbered in the following order : 

- nodes on J only 

- nodes on 
PA S 

- nodes on 
S(A)A SL3) 

, and not already numbered 

S ýý) 
- nodes on S(, ) A 

' (s) 

- nodes on only 

- nodes on 
S1 /1 and not already numbered 

- nodes on 
S 

only 

In this way a banded matrix is obtained. 

As in the two-dimensional case (section 3.3), the integral 

equation is rewritten in terms of the components of W and 
t 

in the fixed and free directions at the point 

T( OLJ VuýC)A Sý 
Oti's 

Sc, 

where Sý) 

(4.4.1 ; 
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tOL 

LIN 

(4.4. Z 

and- 
In equation 4.4.2' . are the direction cosines of the un-,. 

knowns at Writing the equation 4.4.1 for the node 

and substituting the parametric representation of 
t 

I 

and V-, (4.2.4), the following equations are obtained 

c 
L 

x, .14 
Loa) 
v /%, 

t cx )U ýý, c3ý ý1 Cý) C3) d 
1-4 

where is the element of the surface 
S 

andýjj is the 

Jacobian 
, 

fig. 4.4.1 - parameters of equation 4.4.3 

(4.4.3 
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The integrals of kernel-shape function products appearing 

in equation 4.4.3 are evaluated using Gaussian quadrature 

formulae(60), the integration scheme being chosen accor- 

ding to the rapidity of variation of the integrand. 

and rl are the lowest and highest orders of Gauss formula 

Gauss point of the formula order, 4 

000 

I 

available for use in the procedure, and where necessary 

the element is divided into subelements,. over each of 

which formulae within this range are sufficiently precise. 

As for the two-dimensional analysis (section 3.3), the 

case in-which the node )(gis one of the nodes of the element 

and that in which it is not are considered separately. 

In the latter case, Gaussian formulae with weight function 

1.0 are used : 

4 4 

where (see fig. 4.4.2) the argument 
7 is calculated as 

follows : 

Aa 
x2. 

The functions 
Pfandhb 

appearing in equations 4.4.4 and 
l 

4.4.5 are the weight function and offset of the 

1 

(4.4.4! 

(4.4.5 
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To calculate, for a given position of the singularity X. 
1ý) 

and a given element 
s, the values of 

K. 
and 

xZ(number 
of 

subelements each way) andaytZ}) )AL1 
) (order of integration 

formula for subelement ( 1/j- )) necessary to give satisfac- 

tory precision, the upper bounds given by Stroud and Secrest 

(60)a, 

a 

__-_, _ _ 

1 

Fig. 4.4.2 - example of integration scheme for regular 

integrand 

for error in terms of derivatives of the integrand are used. 

Stroud gives upper bounds for'error in terms of the 2n th 

derivative of the integrand, 4% being the order of the inte- 

gration formula M 

ý1 
NL ( 4.4.6 ) 

where st. 

The function e is tabulated by -Stroud and Secrest. ... 
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For all practical purposes, one may write 

"- 

where 
G-/- 4.0 

. The same authors generalise this result 

to the multidimensional case ; for two dimensions they 

(4.4.7)! 

obtain 

Ax X, 

w=A 

where lr' 
4M t-i 2, ýjw 

It would be impractical to calculate the. preceding upper 

bounds for the functions appearing in equation 4.4.3, so, 

in the procedure for choice of the integration scheme, 

the function _(see 
fig. 4.4.1) is taken to be repres. en- 

qL 

tative of the integrands. This is reasonable because it is, 

in critical cases, the most rapidly varying component of 

the kernel T. The kernel-0 varies more slowly, and the 

shape functions and Jacobian should present no problem 

either. 

Even the calculation of derivatives with respect to intrin- 

sic coordinates of is impractical, and further simplifi- 

cations are made. .., 
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Let us consider the transformation from the coordinates 

used for the integration, l., to the global cartesian coor- 

. 
dinates. Provided the, element is not badly distorted, the 

rate of change of the Jacobian for this transformation is 

low compared with the rate of change of In these circums- 

tances, the calculation of error bounds may reasonably be 

performed supposing the Jacobian 
al 

whereA = arc length, 

to, be constant. Then 

y_ jf1ý. 
_L) aý y 

(4.4.9)l 

Let us assume that the 2 derivative with respect to arc 

length is never greater than theta derivative with res- 

pect to. r. at the nearest point of the subelement to ?ý, 

Then 

" ýý,.;. ý + ýr Iý 
4 

(4.4.10 ) 
IJ 

where 
R 

is the minimum distance. Let us adopt the following 

criteria : 

1. - the upper bound for error shall be proportional to 

the product of 
4L 

and the area of the'subelement 

2. - as nearly as possible, eA h, 
ý- 

ýý ML (equ. 4.4.8), 

i. e. the integration is equally precise in each 

direction. 
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Let the Jacobian for the transformation from the coordinates 

h. to global cartesian coordinates, which is assumed to be 

constant, be 3, Then jA f .... 

Jv 
Then by equations 4.4.8 and 4.4.10, the error e ids given by 

Go 3' tj 

z R" 

where 

(4.4.11) 

(4.4.12) 

Then, according to the criteria just proposed, il' L should 

be chosen such that : 

C ý`ý ý 
where 

V is a constant, to be chosen in the light of expe- 

rience. The parameters and of equation 

4.4.4 are, therefore, calculated as follows : 

(4,4.13)' 

1. - the minimum distance R for the whole element is deter- 

mined 

2. - 
(and(, 

are 

taining the 

fied whilst 

available. 

chosen such that, for the subelement con- 

nearest point, inequality 4.4.13 is satis- 

Mjý 
a )the 

highest order of Gauss formula 

This gives 
ý, 

ýýý/dý", 
tCJ)for the subelement 

nearest to 'X,, a' 
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3. - the corresponding functions for all other elements are 

" now calculated, from their minimum distances from X. 7- 

and inequality 4.4.13. 

The effect 

gration po 

4.4.3. The 

imposed so 

points are 

functions. 

of this procedure is to concentrate the inte- 

ints around the singularity, as shown in fig. 

lower limit 
A 

on order of Gauss formula is 

that, where the kernels vary very slowly, enough 

retained to integrate accurately the shape 

I /. 6-I 

" element 
' divided into 2 

" subelements 
. 

00 
`", -, 

element divided into 4 
subelements 

fig. 4.4.3 - typical distribution of integration points. 

a c&) In the case in whichX is a node of the element 
S 

the element is divided into triangles, each with a vertex 
a 

at ) and with a side of the element as the base opposite 

that vertex (fig. 4.4.4. ). With each 
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z_ $w4: A T 
(1L1 

. 
Jti 

i 
ýO, 

yy 

:, -/F 31 fl 114 1 
I, 0, 

fig. 4.4.4 - examples of division into triangles 

(nondegenerate element). 

triangle are associated the triangle coordinates 

(fig. 4.4'. 4). In the case of nondegen4rate elements, or 

degenerate elements with)( , on the degenerate side, the 

coordinates are defined in terms of by the relationships 

(4.4.14', 

where 
L(j)are 

the linear shape functions defined by equation 

4.2.5, and 
fr- 

are the intrinsic coordinates of the vertices 

of the triangle, as shown in-fig. 4.4.5. For a nondegenerate 
c3) l4) 

element, 'r;, = IL 
; for a degenerate element with 'Y-on the 

degenerate side, 71 C3) 
and 1 

0) 
are the limiting values as 

is is approached along the sides and Yý--t'1 respectively, and 

Tý The Jacobian - is given by 

(4.4.15 ) 
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Let us consider what happens as the functional singularity ' 

is approached. In the case in which the element is not 

degenerate , 
`a u1s (1. t4 and consequently the Jacobi an 

is }"1 as well. 
ýL 

(2) 

1LV 

TZ = TZ 

r 

J' 

" ý`ý , 
? E. 

fig. 
. 
4.4.5 - definition of triangle coordinates by 

linear transformation ' 

Where the element is degenerate and C' is on the degenerate 

side, is 0 ý41 
, and again is hZý''ý) 

In the case in which the element is degenerate, but 7t. ß 

is not on the degenerate side, the transformation 4.4.14 

is not used because, whatever value be adopted for 

at the vertex on the degenerate side, thexe exist-points in 

the triangle to which there correspond no -A 

(see fig. 4.4.6). In fig. 4.4.6, Ti and 7. are the limiting 

values of 
3zas the point (1,1) is approached along the 

base and sides respectively. To obtain a transformation' 

covering the whole triangle, a combination of the two 

transformations C shown in fig. 4.4.6 is used 
000 
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a p ti 

J'' 

i 

r 

"4 

a) transformation b) transformation 

obtained by putting obtained by putting 

fig. 4.4.6 - transformation 4.4.14 with degenerate side 

at the point (1,1) 

"r 

fJ)) :: t()i (4.4.16) 

where 

4 
Iz/ 

(4.4.17), 

1. ýCJ 

and 

Cý 
= (4.4.18) 
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L4) 

Let ýýý1 . Then ='I and Now let 14 
t Lý 4) 

Then ýCJ)=-Iand Along the lines 
tL%) 

and so has the desired values on all four sides of 

the square -A 
4 ýCL- +A 

The Jacobian is given by the product 'formula 

ate` 
_1 ___ t 'ý 

It may be readily be shown that 

w 

(4.4.19, 

a 

(4.4.20'! 

011. 
Let us consider the behaviour of the Jacobianý as %L is 

a 5ý 
approached. The first component of the left side of 4.4.19 

isUC because-and, since X, is not on a 

degenerate side, LV J. .J is VCy1.0) The function 
a^ 

is 
Chv+'1). 

(see equation (4.4.15)o Hence 

is ýý, 1ýLt4) as is. the case for the transformation 4.4.15. 

A similar transformation exists for the case in which the 

degenerate side is at (-1,1). 

In all cases, therefore', the Jacobian is vý*4 C~ 
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a 

In addition it is known that the kernel T is V 

and v is A 
z+4 

Where OL, the shape function ýcýi, is ýs+ýý 
. 

Therefore, -the integrand, being the product of the kernel 

V 
or 

T, 
shape function M 

and the Jacobian 
JA 

is a(l) 

y near the functional singularity at? % änd it is permissible 

to use Gauss formulae with weight function = I. 0 to inte- 

grate over 
x 

subelements with each of which is 

associated the coordinates defined by 

4-_t 

x4 

xz_ 
Where 

J (, 41 G) =a,, the shape function M is ýý, 
. 

(4.4.21 

To integrate the product of the kernel V) the function 
l 

and 

the Jacobian, the same procedure as for AýCýfzmay be used. 

But there exists no quadrature formula suitable for the 

calculation of the product ofT M and 1because the product 

ti 't- isAs for the two-dimensional case (section 3.3), 

the Cauchy principal value and the coefficient of the free 

term are evaluated indirectly from the following relation- 

ship between global components 

4- 
NLýC; 

ý ý, . I. Cýý) 
(4.4.22' 

to 
A00k. 

(-L) fr- cxý IýV) wýýý 
. N_1 

G" c4) 
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For both and ca. (kernel U only) , 

' therefore, the integrals are calculated as follows : 
+4 t4 H k' Xy .l (4, }) A1. )i 

.4j 

2: -1 e (4.4.23; 

where is the number of triangles into which the 

element is split (see fig. 4.4.4). For a degenerate elemen t, Hr j 

I 
and are the Gauss weight and offsets. 

The argument ' is calculated from equations 4.4.21 and 

either 4.4.14 or 4.4.16, and the Jacobian may be calcu- 

lated from equations 4.4.21 and either 4.4.15 or 4.4.19 

The procedure for the calculation of. 
(ýjj)and 

is the same as for the case in which 'u- is not a node 

of the element (see equations 4.4.13), except in that, the 

distance f is taken to be the minimum distance from 14! 6 

to a point on the base, and 1 are taken 

to be independent of (see fig. 4.4.7) 

', 
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triangle divided into 
into 4 subelements 

r 

triangle divided 
into 3 subelement; 

triangle di- 
vided into 
2 subelement 

. Ka 

s fig. 4.4.7 - typical distribution of integration points 

near. singularity 

The equations 4.4.3 for each subregion and the equilibrium 

conditions 4.3.4, form a linear system which can be solved 

for the unknown functions on the surface and interfaces. 

In practice it is unnecessary actually to include equations 

4.3.4 in the system ; it is sufficient to include as unknowns 
^ ll. ) 0G. ) UGC) 400 

A 

:i or ri 
, and either tt: ý or UC , and, for the traction 

unknowns to change the signs of certain contributions. to the 

matrix and second member. 

The unknowns are numbered in the following order (see 

fig. 4.4.8) : 

0*0 
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S '44 
- unknowns (U. or t) at nodes on 

Sýý) 
only ) equation 

AL ) 

$t- tractions on the interface SG' A S'L' Y for first 

43 (4) c3) ) SL- tractions on, the interface SAS) subregion 

N 

AL s U, - other unknowns ( u. or 
}i) 

at nodes on the inter-) 

face equation 
43 ) 

S Lk"- other unknowns (tLor t) 
at nodes on the inter-) 

(4) cý) ) 
face S (1S 

' not already numbered ) for second 
SLZ 

- unknowns (tt or b) at nodes-on 
SCL, 

only ) 

subregion 
S: t - tractions on the interface SA1 ¶) 

St- tractions on the interface 

L3 s U. - other unknowns(I., ort ) at nodes on the inter- ) equation 
(t. ) L3) ) 

face ýi S, 
not already numbered ) 

Stiu, 
- other unknowns (tort ) at nodes on the inter-) for third 

face S (IS ' not already numbered ) 

C3) ) subregion ý13 
- unknowns ( Lor t) 

at nodes on 
S 

only ) 

00a 
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S1t st Sw S. 'Ö S3 S3', - S3i 3 SW+ i, 3 SAS SSs' 
44 

s Itz IIXIIII 

S33 ýII 

S`ý 
--I'- _' 

y-- 
I- ----- 

second 
member 

1%- 7 

J. 

Sss ýý 'ýI 
.Iýý 

SL 
unreduced note; for 

matrix and second member 

areas filled 
during reduction 

fig. 4.4.8 - typical system of equations 
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As in the two-dimensional case (section 3.3), certain 

unknowns at nodes in planes of symmetry, if these are taken 

into account in the geometric representation, are zero and 

so are eliminated from the system. In addition, it is neces- 

sary to substitute for certain unknowns in the sets 
S U. 

ff. 

before reduction of the system. These unknowns are tractions 

on the surface of the body, introduced when a node shared 

by an interface and the surface (fig. 4.4.9) is considered 

to be fixed in some direction. 

tz 

OL 

ýýýý 

9 ̀t) 

vz, ýz (4 

Fig. 4.4.9 - fixed node'shared by surface and interface 

By supposing the stress tensor to be-continuous in either 

of the subregions or 
R 

as ). is approached. and using 

Hooke's Law, the surface-traction 
)may 

be 

expressed in terms of the interface tractions L, 
I- 

l 

and the tangential strain of the interface. In the numerical 

formulation, this tangential strain may be expressed in terms 

of the nodal displacements of the adjoining interface 

elements (see equations 4.2.8,4.2.10), and so the unknown 

may be expressed in terms of other unknowns appearing 

in the system of equations. ... 

- 118 - 



As in the two-dimensional case, there are contributions 
.. f 

to the matrix and the second member for each term of the 

double sum, equation 4.4.3. As explained in section 3.7. 

- the integral over a free element of the shape function 

for a fixed node, multiplied by the kernel U (see fig. 

4.4.10), must. be multiplied by the known limiting value of 

traction as the fixed node is approached and placed in the 

second member. There are, of necessity, certain derogations 

(1L i 
'ree in direction ý 

fig. 4.4.10 - case in which 
U is multiplied by known 

traction and placed in second member 

of this rule. Where it is-specified that an isolated node' 

is fixed, or that the common side of two elements is fixed, 

the procedure just described would lead to the presence 

in the system of equations of traction unknowns to which 

there correspond zero surface areas. In this case, the 

shape functions associated with the fixed node or the fixed 

line are multiplied by u 
and placed in the matrix, as in 

the two-dimensional analysis. Examplesof such sets of shape 

... 
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functions, for the case of quadratic functional variation, 

are shown in fig. 4.4.11. 

fixed` line 

. fig. 4.4.11 - shape functions associated with fixed nodes 

and lines. 

Similarly, point and line loads are converted to equiva- 

lent tractions, multiplied by the integral of 

for the functions Mc 
shown in fig. 4.4.11, and placed in 

the second member. This "spreading" of point and line loads 

is not unrealistic because concentrated forces are impos- 

sible anyway. 

Ot. During the integration fora node )c 
, 

the global components 

of the leading diagonal submatrix (equation 4.4.22) are 

summed. When the integration is completed, this is trans- 

formed (equation 4.4.2) and placed in the equations. 

4 0.0 
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" The equation coefficients are scaled, as previously, 

to give a numerically stable system (see section 3.3). For 

the analysis with subregion the unit of distance is taken 

to be the greatest dimension of a subregion, and-that of 

stress is taken to be the average modulus of elasticity. 

This system of equations is reduced by Gaussian elimination, 

as described in chapter 5, and then the global components 

(, ý, ý 
ýw tý Cx1 , 

are " calculated, -'using the' trans- 

formation 4.4.2. 

009 
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" 5. -'Calculation of stress and displacement at interior points 

For points on interfaces, the results may be calculated 

directly from the solution of the system of equations. 

To calculate stress and displacement at a point 'K inside 

the subregion /&", the equations 2.3.1 and 2.3.4 for that 

subregion only are discretised in the same way as is 

the integral equation 

'm'-waf)ýj Cam) >ý) L 
J, 

vo 

Q, 
". ýc='ý 

sý (4.5.2) 

c1 Sý AC > >) 
10 skIA) 

The integrals of kernel-shape function produci appearing 

in equations4.5.1 and 4.5.2 are calculated using Gaussian 

quadrature formulae (60), the integration scheme being chosen 

in the same way as for the integral equation (see section 4.4. ). 

The point :C is not on the surface of the subregion so only 

the formula 4.4.4. is required. To calculate the number of 

subelements and order of integration formulae, the upper 

bounds given by-Stroud and Secrest (60) are again used 

(equation 4.4.8). The function where tL, is the distance 
, 1, a 

v00 
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between the two arguments of the kernels, is taken to be 

representative of the integrands, because this is, in cri- 

tical cases, the most rapidly varying component of either 

kernel. The same approximations are made as previously 

(section 4.4), and in the notation of equations 4.4.11, 

"8 

., C., r u. (&L+ Z) i, ý,. 
K3 

ý__ 

Ii 
(4.5-3) 

Using the same criteria as previously, /11, ý should be chosen, 

such that 

Z- 
(4.5.4) 

:; i 

where 
k is a constant. 

Where there is body force, the integration just described 
A LPL) 

gives only the complementary function (i.. (equation 4.3.4), 

and it is necessary to add the particular integral I, (,, - to 

obtain the desired result. 

l 

000 
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V- PROGRAMMING 

. 
For a sophisticated method of calculation to be useful, it is 

' essential that not only the numerical formulation but also 

the programming be carried out with care. For example, were it 

not for the development of sliding triangle, frontal and block 

solvers for symmetric banded systems of equations, the finite 

element method would be very 'inefficient In this chapter are 

described the overall' structure of the program for three di- 

mensional analysis, and the solutions adopted to programming 

problems more or less peculiar to the boundary integral 

equation method. 

1; - Obiectives 4 

The program is designed so that, for problems of prac- 

tical size, 

a) it is easy to use 

b) the cost of execution is low, 

' c) it can easily be converted to run on machines other 

than that for which it was originally written. 
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The attainment of the first of these objectives depends 

upon the manner in which data is read and checked,. and the 

presentation of results. Restriction on the order J pre- 

sentation of data, and on node and element numbering, 

for example, must be kept to a minimum, and it"is essential 

that as much data as possible (e. g. normals to the surface) 

be calculated automatically by the program rather than 

entered by the user. The program must check the data read; 

and continue doing so no matter how many errors have been 

-encountered. 

The cost of execution is kept low both by attention to the 

detail of calculations, and by'a global strategy in which 

core and files are efficiently used. The latter point is 

of vital importance because, the quantity of information 

to be handled being too great to be hold in core, extensive 

use of files must be made. As will be seen later, the order 

in which certain calculations are done is dictated by the 

need for efficient file access, as indeed is the case for 

the equation solver of the program for two-dimensional ana- 

lysis (section 3.4). 

Absolute machine independence is incompatible with. efficency, 

but a program can be written so that a minimum of change 

is. required when converting to another machine. There are 

four principal areas of interest : input data decoding, the 

00* 
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relative length of reals and integers, file structure, 

and program length. The decoding routines provided by 

computer manufacturers are often insufficiently robust, and 

even where there'is satisfactory error recovery'it may be 

difficult to incorporate this into the overall error recovery 

scheme of the program. The efficient use of core requires 

that real and integer arrays be equivalenced, so to allow 

simple' conversion a-standard ratio length of real/length 

of integer must be chosen. In the specification of files, 

., only those file structures that are permissible in all large 

computer systems should be used. Finally, the program must 

not be so long that it is confined to a few very large 

machines. It is in any case desirable to limit program 

length because of its influence on cost per second of com- 

puting time. 

p 

2. - General characteristics of the program 

The problem size is subject to the following limits. The 

letters, L, q 
and C, denote the cases of linear, quadratic 

and cubic functional variation respectively. 

w 

(a) 1 200 geometric nodes and interior points 

(b) 400 surface and interface elements 

(c) 10 subregions 
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(d) 150 ((-), 75 (Q) or 50 (C. ) elements on the surface 

of any one subregion. 

(e) 900 equations in the set 
S 'L 

US4 (U S' 

(see fig. 4.4.8), for any subregion 

(f) 1 200 coefficients per equation in the shaded area of 

the matrix, fig. 4.4.8 

(g)'4 800 equations in all 

(h) between 2.56 x 106 and 3.84 x 106 matrix cöeff icients, 

depending upon the amount the unusable space on the 

matrix file (see section 5.4) 

/ i 
ýi) 640 points: with which are associated unknowns 

(as distinct from geometric nodes) with cons- 

traints upon displacement 

lj 5 load cases. 

The program is written in Fortran for the CDC 6 600/7 600 

series of computers, in such"a way that conversion for 

the IBM 360/370 series would not be difficult. To this end, 

and also for efficient use of core, integer arrays are gene- 

rally packed 4 coefficients per 60 -bit word. This allows 

the storage of integers up to 32K, which is ample, and the 

IBM equivalent would'simply be 2- byte (16 bit) integers 

and double precision (64 bit) reals. The CDC 7 600 Large 

Core Memory is not used. Variable - length direct access 

file records, permissible in CDC 7 600 Fortran, are not 

used because there exists no equivalent in IBM Fortran. 

900 
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In the interest of efficiency, multidimensional arrays 

are not used. (this is less important where optimising 

compilers are available, but it is preferable to be 

sure that adressing is done in the most efficient pos- 

sible way rather than hope that the optimiser arrives at 

the - right- conclusions). 

The program consists of over' 80 subroutines, comprising 

10 000 cards of Fortran. The root segment contains, in 

addition to the main program, about 30 of these subroutines 

the rest are arranged-as 13 overlays, each of which is 

loaded only once. The first six overlays, half the'program 

as measured by number of cards, read, check and generate 

data. The rest construct and reduce the system of equa- 

tions, calculate data at interior points and print the 

results. In appendix-l(are reproduced listings of the 

two overlays which construct and'reduce the system, and 

supporting routines. The occupation of core is shown in 

fig. 5.2.1 

overlay segment 7K 

root segment 6K COMMON 22 K 

fig. 5.2.1 - occupation of CDC 7600 core by 
the program. 

S. 

- 128 - 



. 

3. - Reading, checking and generation of data 

Data is read in the following order (see example, section 

6.2 

(a) title and options ) 

(b) coordinates of geometric nodes and ) 1 st 

interior points ) overlay 

(c) nodes of surface and interface elements) -2 nd overlay 

(d) definition of subregions ) -3 rd overlay 

(e) constraints on displacement ) -5 th overlay 

(f) loads ) -6 th overlay 

The options under (a) above include symmetry with respect 

to global cartesian coordinate axes, and whether it is de- 

sired to chedk the data only or check the data and, if no 

errors are found', carry out the analysis. The program can 

read the cartesian, cylindrical polar or spherical coor- 

dinates of nodes with respect to any system of axes. There 

are interpolation facilities for the generation of nodes 

along straight lines, circles or spirals. There are no 

restrictions on the order in which nodes. are numbered ; 

there may be gaps in the numbering, and whilst there may 

not be more than 1 200 nodes, the maximum permissible node 

number is 2.400. The coordinates of nodes at midpoints of 

straight element sides need not be specified. ... 
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The second overlay includes automatic generation facilities 

for the easy specification of nodes of elements. The only 

restriction on numbering is that no element number may 

exceed 400. 

The third overlay reads the elastic properties of each 
lfit) 

subregion. sand given one element and its orienta- 

tion (node numbering anticlockwise or clockwise viewed 

from outside for each separate part of the surfaces 

finds the set of elements 
'. E {'%--;? j, 

representing 
. 
ýr 

that surface. The program records. the orientation of 

each element, to enable the outward normal to be calculated. 

A hole in the surface is detected by the program . 

The fourth overlay finds-and numbers all the degrees of 

freedom, and writes the sequential, file L t% Ft 
, one 

record per subregion, of coordinates XL of points with 

which are associated degrees of freedom and the numbering 

t4L of the degrees of freedom associated with each sur- 

face or interface element. 

The fifth overlay reads constraints on the displacement 

of elements, lines and nodes, and merges this data into 

tables of constraints on the displacement of each point with 

which is associated degrees of freedom : the arrays cons- 

tructed are IJ Gý. the number of constraints at a point; 

and JDC, i) i'Gf, which give the direction cosines of degrees 

000 
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of freedom (equation 4.4.2). In addition, information 

on the fixity of elements is added to the information on 

file LVK(see discussion on free element next to fixed node, 

section 4.4). 

The sixth overlay reads loads, by which is meant both 

'known nonzero tractions and known nonzero displacements. 

The user may specify tractions on elements, forces dis- 

tributed over lines and concentrated at nodes, gravitational 

and' centrifugal loading, and nonzero displacements of ele- 

ments, lines and nodes. Forces distributed over lines and 

concentrated at nodes are distributed as described in 

section 4.4. The program, in addition to performing the. 

distribution, adjusts the traction on each adjacent element 

so that the resultant of the equivalent tractions coincides 

in position as well as in magnitude with that of the 

applied load. The procedure is rather the reverse of that 

for finite elements (displacement method), in which tractions 

are represented by equivalent nodal forces. 

Loads are read by load case, but for maximum economy all 

load cases are treated simultaneously during construction 

and reduction of the system of equations, and calculations 

for interior points. In addition, the table of known 

functions at-surface points, even for a single load case, 

is too large to be held in core. The data is therefore 

stored on a direct access file ; this file is later read 
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(by the seventh overlay), the data. rearranged and placed 

on the sequential fileLUJ hich is the file of known func- 

tions and discontinuities react during construction of the 

matrix (section 5.4). 

All data is read in the format (A4,76A1), the field A4 

corresponding to a keyword. The decoding subroutine'decodes 

the remaining 76 characters, provided the keyword is valid, 

without using F or I conversions. The procedure is 

therefore crashproof ; if illegal data is found, a flag is 

set'and control is returned. to the calling'subrodtine. The 

program äs a whole'detects errors at three levels : 

(a) decoding' 

(b) single card 

(c) completeness and compatibility of data sets consisting 

of more then one card. 

At level (b), the validity of data on just one card is 

considered (e. g. upper limit on node number),, whilst at level 

(c) the compatibility of data on a card with data read 

previously is chocked (e. g. existence öf a node of an element, 

existence of an element to be loaded, limit on. number of 

load cases). There are three error flags : 

000 
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JOHN : denotes error found by overlays 1-4, i. e. ini. the. 

" 
specification of geometry 

JOE : denotes error found by overlay 5, i. e. in the spe- 

cification of constraints on displacement 

KAY- : denotes error found by overlay 6, i. e. in the spe- 

cification of loads. 

Checks at levels (a) and (b) are continued no matter what 

errors have already been found. Checks at level (c), however, 

are suppressed if it is indicated by the flags JOHN or JOE 

that the data to be checked, against is faulty. If,, when all 

the data has been read, any of the three flags are set, exe- 

cution is terminated. ' About 100 different.,, error messages 

can be- printed ; the system of flags is intended to ensure 

that the user is given the greatest possible amount of infor- 

mation about errors in the data during one runs of the 

program. 

0*0 
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4. - Construction and reduction of the system of equations 

r 

Prior to construction of the system, the sequential files 

LVAI LU(r 
andLUEare created. To file LV 

are written the 

given values and discontinuities of the complementary func- 

tion for each surface element of each subregion. The data 

for a subregion begins at the beginning of a record, and as 

many records of 1 440 words as necessary are written for 

each subregion. In fig. 5.4.1, is shown the particular case 

u ff, 

fig. 5.4.1 - structure of file 
LVA (record length = 1440 words 

of cubic functional variation, 5 load cases and 6 elements on 

the surface of the first subregion. The program always puts 

the data for as many elements as possible into each record, 

according to the-choice of functional variation and number 

of load cases. 

I 
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File L VS. holds the coordinates of, and outward normal 

and Jacobian at, each of the integration points for the 

3x3 Gauss formula, 1 subelement (see integration scheme, 

section 4.4). This information is filed because the 3x3 

formula is the most commonly used, and it is desirable to 

avoid repeated geometric calculations. The format of file 

is 'the same as 
Ll%q (fig. 5.4.1), except in that the record 

length is 1008, and instead of load cases there'are 2 Ir 

reflections, wherein is the number of'symmetries with 

respect to global coordinate axes. 

File 
LVE 

holds factors for the elimination from the system. 

of surplus traction unknowns at points shared by an inter- 

face and the surface (section 4.4). Substitutions are 

made in terms of the functions over every interface 

element adjoining the point, the data on the file being 

arranged in the order in which the unknowns to be elimi- 

nated appear in the table NL (file LVR. ). The format 

of file 
LV 

is the same as that of file LUh, except in 

that the record length is 500, instead of elements there 

are unknowns to be eliminated, and instead of load cases 

there are adjacent interface elements. 

The subroutine ITFOR of overlay 8 (f o. r listing, see Appendix 

1) reads the files LVH, LVA LV (r and LV 

constructs equations and writes them to the direct access 

file 
L. V ll 

and to 

000 
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.1 

,.. 
- 

the sequential file (, VS. The formats of files L'Vfj and ý. US 

are identical : as many equations as possible are put into 

each-record of 2 410 words ; the first equation for each 

subregion: ) begins at the beginning of a record (fig. 5.4.2. ) 

U 

R CA) 
121 

W. "i ,, 0.0 UCOV4 

fig. 5.4.2. - structure of files 
LuMpS (record length 

2 410 words) 

The maximum length of an equation is 1 205 coefficients, 

so the wastage of space on files LV P't/ LU S cannot 

exceed 33 % (ignoring unused space at the end of each 

subregion). 

ITFtR consists of a series of nested loops, the outermost 

of which is over subregions. For each subregion, before 

construction of the equations, the data relevant to that 

subregion on files LVA LVG' 
and'L UE is copied to 

files L Uß 
/ 

LUG 
and L-U i respectively. The equations are 
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assembled in blocks of three 
LvMrecords 

each. For each block, 
" 

the files LVP; L VC. and 
LVF are read once from beginning 

to end, and all equations in the block are constructed simul- 

tane'ously. The procedure is essential if the input time for 

the three files is to be kept within reasonable limits. 

The subroutine ITSOL of overlay9 (for listing, see Appendix 1) 

reduces the system of equations held on file LUN1 
, 

The 

procedure is the same as that for the two-dimensional ana- 

lysis(section 3.4), except in that the second members are 

on the file Lt) (which simplifies the forward reduction), 

11, and addressing is more complicated. ITSOL leaves the solution 

on a sequential file, or1 record per subregion, rather than 

on the file L VM in place of the second members. 

After the solution has been calculated, it is multiplied 

by the copy of the unreduced matrix on the file t-V S and 

the result subtracted from the. second members, to calculate 

the residues. The norm of the residues is calculated and 

printed for each load case. 

0*0 
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5. - Calculation of results at points inside subregions 

Before calculation of results at interior points, two pre- 

liminary operations are performed. Firstly, file L Vft is 

rewritten. The data on 
LV I\ is merged with the solution, 

and placed : on another 'file ; tlis file and file LUEare 

r 

s 

then read, the eliminated tractions at points shared by 

the surface and an interface are calculated and added to 

. the data, and the components of displacement and traction 

in the global coordinate direction are calculated. These 

global components are rewritten to file ýý'ý in the format 

shown in fig. 5.4.1. 

Secondly the program determines in which subregion each 

interior point lies. This it does by finding! for each 

interior point, the nearest point on any surface or inter- 

face element, and calculating, for each subregion on the 

surface of which this point lies, the inner product of 

the outward normal and the vector joining the interior and 

surface points (fig. 5.51 (a)). Where the normal at the 

nearest point is discontinuous (fig. 5.5.1 (b)), the 

average of the limiting values is taken. If the point is 

found not to be inside any subregion, a diagnostic is 

printed and calculations for that point are suppressed. 

*00 

- 138 - 

l 



The integration for displacement and stress at interior 

points is carried out in the same way as is the construc- 

tion of equations. For each subregion, the relevant data 

is copied. from, files L"A 
and Lt)G to files LUSand L. VG. 

r 

(a) normal continuous at nearest point 

(b) normal discontinuous at nearest point, 

fig. 5.5.1 - location of interior point ýcý,, 
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Stress and displacement are calculated, for all load 

cases simultaneously, in blocks of 32 nodes each. For each 

block, the files LUßand LUC. are read once from beginning 

to end, and integrations are performed for all nodes simul- 

taneously. The results for each block are sorted by load 

case and placed on a direct access file, so that, after 

all the results have been calculated, they can be printed 

by load case. 

4 
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VI - EXAMPLES 

Three examples of three-dimensional analysis are presented here. 

They are : 

(a) the analysis of a thick cylinder. This is intended principally 

as a test of the integration-scheme. 

(b) the analysis of a pipe connection. This is a typical calcu- 

lation of stress concentrations in a mechanical component. 

(c) the calculation of the stress intensity factor for a crack 

" in a rolling mill cylinder. 

The results for the thick cylinder are compared with finite 

element results and the exact solution, and those for the 

flange are compared with finite element-and experimental results. 

6-a) The thick cylinder 

The characteristics of the thick cylinder considered 

in the first part'of this example are as follows : 

internal diameter = 20 mm 

external diameter = 40'mm 

modulus of elasticity = 21 000 daN/mm2 

Poisson'ratio = 0,3 
.. 
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The cylinder is subjected to an internal pressure of 2.0 

daN/mm2, and is considered to be in a state of plane 

strain with respect to the axial direction. A 902 sector, 

of height 40 mm, is analysed ; the discretisation of 

the surface is shown in fig. 6a1. There are two subre- 

gions. The finite element discretisation (20 - node 
r 

isoparametric elements). is shown in fig. 6a2. 

" In table 6. a. 3 are shown the calculated and exact solutions, 

for five values of radius. For both analyses by the 

ýK earing in integral equation method the constant appearing 

inequality 4.4.13 in taken such that there will be at 

least two Gauss points for an interval which subtends 

an angle of one radian at the functional singularity, 

for the calculation of equation coefficients. In the 

following discussion, this is referral to as "precision 

of integration 2.0". It may be seen that 3whilst the 

results obtained with linear functional variation are 

less accurate than the finite element results, those 

obtained with quadratic variation are as good, for 

displacements, and better, for stresses, than the 

finite element results. In the case of quadratic func- 

tional variation, the norm of residues is 1.9 x 10-11 

(CDC 7600), so the system of equations is numerically 

stable. The execution time of 38 seconds for quadratic 

variation is high compared -with the execution time 

000 
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7.5 seconds for the analysis by the finite element 

method, but the problem of the thick cylinder is a 

small one for which the time required to solve the 

equations is heavily outweighed by that required to 

construct the system and especially to integrate around 

the. singularity of the kernels 0 
and T. The significance, 

of this is'that the integration time, especially that 

for. integration around the singularity, climbs relatively 

slowly as problem size increases. 

In the second part of this example, the internal dia- 

peters 20 mm, 30 mm, 36 mm and 38 mm are considered, 

to test the stability and precision of the algorithm 

as surface elements become long and narrow and very 

close to'--one--"another compared with their dimensions. 

Cubic functional variation is adopted for this test ; 

the discretisation for internal diameter 38 mm is shown 

in fig. Ea. 4. The precision of integration 2.0 is 

retained. The execution times and norms of residues are 

shown in table 6a5. The increase in execution time with 

internal diameter is due to an increase in the number 

of integration points required to obtain the, requested 

precision. The variations of exact and calculated 

hoop stresses are shown in fig. 6, a`6. The error in 

calculated stresses remains below 3 ýo of the maximum 

value of, stress even at' internal diameter = 36 mm, 

9a0 
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at which stage there are surface elements with length 

breadth ratio 10. At internal diameter = 38 mm, i. e. 

thickness =1 mm, the error is still less than 10 %. 

This shows that the algorithm for choice of integra- 

tion scheme continues to work well even in extrem-4 cases. 
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E 20000 

V=0.3 

a_10.0 

-' b_. 20.0 

h_ 40.0 

P= 2.0 

ý" b 
a 

h 

6. a. 1 - Integral equation network of the-thick cylinder 

I, 

6. a. 2 Finite element mesh 
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I I 
I 

integral 

" "Exact Finite e quations 

Function Radius +Solu- Element linear quadratic 
tion 

. 10.0 11 1.904 1.905 1.818 1.905 

12.5 111.602 1.600 1.568 1.600 

15.0 1.415 1.414 1.319 1.414 
Cd 

r-A "17.5 1.293. 1.292 1.234 1.291 
H. 

Cc 

9: 4 

ri 20.0 ii 1.212 1.212 1.150 1,211 
;4 rd 

10.0 11-2.00 -1.74 -1.38 -1.85 
12.5 1.04 -1.16 -1.32 -1.13 
15.0 -0.52. -0.36 -0.18 -0.41 

H ,H M 0) 17.5 iý 11j-0.20 -0.24 -0.12 -0.22 
W 20.0 0.00 0.07 0.11 0.04 

10.0 3.33 3.44 2.71 3.35 

12.5 2.37 2.33 2.01 2.37 

M 15.0 1.85 1.92 1.52 1.85 
ö 

1-1 17.5 1.54 1.52 1.43 1.54 
M 

ý 20.0 "1 1.33 1.36 ' 1.21 1.33 

Table 6. a. 3 - Comparison between calculated and exact 

solutions 
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aý1.00 
b 19.0 
h 40.0 

4, 

h 

6. a. 4 - Integral equation network for internal 
diameter 38 mm 

internal diameter 
ý""^- 

execution 
time 

norm of 
residues 

20' 21 s- 4.5x10-13 

30 23 s 1.4x10-12 

36 35 s 4.0x10 12 

38 50 s 7.8x10-12 

table 6. a. 5 
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daN /, 

0 

05" 10 mm 

AdaNImm2 aNImm2 daN mm2 

8 20 40 

5 15 30 

4 10 20 

25 10 

mm mm mm 
0 2,5 502 

. 
0.0,51 

6. a. 6 - Variations of exact and calculated hoop stress 
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6-b) The pipe connection 

The flange to be analysed is the flange B3'which was the 

subject of experimental and theoretical studies at the 

Centre Technique des Industries Mecaniques, France (72). 

The flange (fig. 6. n. 1) is designed to connect two pipes 

carrying fluid under pressure ; the arrangement is symme- 

tric with respect to the plane of the joint, so only one 

half need be considered. The twelve connecting bolts 

being equally spaced, there are also 'planes of symmetry 

passing through pairs of holes, and between holes, and 

only a 152 sector need be considered. For the purposes-of 

numerical analysis, only 100 mm of the pipe are taken into 

account (Cig. 6. b. 2). The dimensions of the flange are 

shown in fig. 6. b. 2. The elastic constants are : 

modulus of elasticity ="21 000 daN/mm2 

Poisson's ratiö = 0.3' 
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Two'load cases are considered : bolt tension of 

5000 daN/bolt, and bolt tension plus an internal 

" pressure of 0.45 daN/mm2. 

For the analysis by the integral equation method, the 

sector of flange shown in fig. -6h2 is divided into 

four subregions, and the 'symmetry with respect to the 

plane equidistant from two holes is used, to avoid the 

need to discretise that, plane. The discretisation, con- 

sisting of 57 surface and interface elements of which 

three are degenerate, and 180 nodes, is shown in fig. 

6b3 (a). The 80 cards of input data required to define 

the discretisation are shown in fig. 6b3 (b). The 

interpretation of data is similar to that for the plane 

problem (section 3.6 and especially fig. 3.6.12). The 

precision of integration is specified on the second 

card ; it is expected that when sufficient experience 

has been gained a default option will be provided 

-"f or this parameter. The elastic properties may be defi- 

ned on the second-card or on the cards SOUS which 

define the sibregions ; values given on the latter 

cards override any data on the second card. 

The finite element network, consisting 'of' 64 twenty-node 

isoparametric elements and 501 nodes, is shown 
*0 11 
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in fig. 6, b. 4 . Over 200 cards of data are required to 

define the discretisation. (the data generation facilities 

:f the finite element program are comparable in sophis- 

tication with those of the integral equation program). 

The finite element program used incorporates a variable 

bandwidth sliding triangle algorithm for the reduction 

of the system of equations. The central processing time 

(CDC 7 600) required for the finite element analysis 

is 37 seconds. 

The execution time for the analysis by the integral 

equation method, with quadratic functional variation 

and precision of integration 2.0 is 57.6 seconds, or 

65 % greater than that for the finite element analysis. 

The input-output time for both analyses is very low. 

The norms of residues for the two load cases are 1.3 x 10-10 

and 6.9 x 10-11. In fig. 66b, 5 to 6. b12 are shown the varia- 

tion of mericlonal and circumferential stresses* over 

the outer and inner surfaces, for the two load cases. 

The results are presented as follows : 
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05 - outer surface, on symmetry passing ) 
) ! 

through 2 holes I 

Cxb. 6 - outer surface, on symmetry passing ) bolt 

between holes 
) 

S) tension 

6b7 - inner surface, on symmetry passing ) only 

through 2 holes 

6. b8 - inner surface, on symmetry passing ) 

between holes ) 

6b9 - as 6.5 ) bolt 

6b10 - as 6, b, 6 ) tension 
+ 

6. b11 - as ýLký7 S S ) internal 

6b. 12 - as 6b8 S ) pressure 

ýI 

B 

The integral equation, finite element and experimental 

results all show, as. would be expected, that there is a 

strong stress concentration in the radius between the 

plate and the coae, and a weaker stress concentration 

at the junction of the cone and the pipe., The stress 

in the radius remains sensibly constant under different 

loading conditions, whereas that at the junction of 

the cone and the pipe varies greatly with pressure. 

It is therefore to be expected that, under repeated 

loading and unloading, the flange would fail in fati- 

gue at the junction with the pipe, rather-than'at the 

radius. The state of stress is shown to be practically 

axisymmetric everywherebt"'in the plate.... 
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However, certain of the calculated and experimentally 

determined results must be regarded with scepticismft 

In both numerical analyses- the radius is represented 

by only one element, and, more seriously, the junction 

with the pipe is represented as a corner rather then 

-1 as a radius. Undoubtedly, in reality, there was a 

radius between the cone and the pipe, but there exists- 

no data on this so-it could not be modelled numerically. 

The results at the junction are quite meaningless, 

and the fact that the value obtained by the finite 

element method is higher than that given by the integral 

equation method is due to the differing fineness of 

-networks; By putting more and smaller finite elements 

or . surface elements near the junction, results of 

any magnitude could be obtained. The experimental results 

at points where stress varies rapidly are no more reliable 

than the'numerical results, because the strain guages 

are of significant length compared with the dimensions 

of the region of stress concentration. 

The flange B3 was the first practical problem to be 

analysed by the integral equation method, and the dis- 

cretisation -of the surface (fig. 6. b3) is probably not 

ideal. The results could be improved by moving certain 

nodes towards the junction with the pipe. The problem 

is relatively expensive to solve by the integral equa- 

... 
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tion method because the surface area/volume ratio is 

high, and the finite element method is economical because 

the bandwidth is small. In the analysis by integral 

equations, most of the computing time is spent'inte- 

grating for the matrix, whereas in the analysis by 

the finite element method the reduction of the system 

is the longest calculation. However, by comparing with 

the analysis of the thick cylinder, it can a]ready 

be seen that the integral equation method becomes more 

economical as problem size increases. In fig. 6, b. 14 

is reproduced a 'typical page of results. 

An analysis was performed with the same discretisation 

but with precision of integration 3.0 instead of 2.01 

to observe the effect of the latter parameter on accu- 

racy and execution time. The effect on accuracy turns 

out to be negligible, the calculated stresses changing 

" by not more than'. 0.1 daN/mm2. The execution time, 

however, increases to 71 seconds. Evidently, precision 

of integration 2.0 is*nearer the optimum than is 3.0 

This may not apply to the case of cubic functional 

variation, however, and it could be that the, precision 

of integration must be increased with problem size. 

Analyses were carried out using the same discretisation 

as before, but with linear and cubic functional variation. 

I- 000 
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statistic, or result linear quadratic cubic 

execution time, secs. 

norm of residues 
(merid. 

stress in radius 

daN/mm2 
( circ. 

stress at pipe 
(merid. 

junction, daN/mm2( circ. 

15 

5.7 x10 
12 

10.1 

3.76 

2.80 

5.32 

57 

6.9 x, 10-11 

11.1 

4.27 

4.10 

6.43 

166 . 

4.3 x 10-10 

11.3 

4.35 

5.30 

6.85 

fig. 6b13 - effect of functional variation on results 

In table 6b13, are shown some typical results, for the 

second load case. The convergence to a limit may 

clearly be seen, for 'all results except the meridknal 

stress at the pipe junction, which, as has already 

been noted, is undefined. The maximum stress in the 

radius, calculated using quadratic variation, must 

in fact be very near the exact value, and even the 

analysis with linear variation gives this stress to 

within about 10 ö, for an execution time of only 

15 seconds. As the system of equations increases in 

size, the norm of residues also increases, but the 

system is still very stable. 

00* 
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Finally, 'an analysis was carried out,. using quadratic 

functional variation, but which only two subretions. 

The calculated stresses in this case are within 0.1 

daN/mm2 of those previously obtained, so the introduc- 

tion of interfaces does not seriously affect accuracy. 

The execution time for the analysis with two subretions 

is 76 seconds, or about 30 % higher than with four 

subregions. 

I 
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Emplacement des mints dc rnesure stir In bride type 133 
Ics points dc mesute ccrclds sont situes clans un plan 
passant par dcux t. ous, les autres clans un plan in dian. 

ý' 16 

17 
20 

1ýOOý. 

,. 

- 

A=&L-32 31 

IT- 
2 t6 t7 26" 

st 

90 

L 

ýtº 

to 
""Lwnn. w.. M Aa ýa.. 

qrý 

fig. 6. b. 1 - Section. of the flange B3 
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fig. 6. b. 2 - the dimensions of the flange 
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ETUDE DE LA BRIDE 83 PAR LA METHODE DES EOUATIONS INTEGRALES 
c OUI 21000. 0.3 0.006 2.0 P2 

' CYL 5 194.5 0.0 270.0 15 194.5 15.0 270.0 5 
CYL 1 214.5 0.0 270.0 11 214.5 15.0 270.0 5 
CYL 205 194.5 0.0 170.0 215 194.5 15.0 170.0 5 
CYL 201 214.5 0.0 170.0 211 214.5 15.0 170.0 5 
CAR * 5 205 100 

" CAR * 10 210 100 
- CAR ' 15 215 100 

CAR * 1 . 
201 100 

C CAR * 6 . 206 - 
100 

CAR * 11 211 100 
CYL 309 194.5 0.0 95.0 319. 194.5 15.0 95.0 5 
CYL 305 219.5 0.0 102.5 315 219.5 15.0 " 102.5 5 
CYL 301 244.5 0.0 110.0 311 244.5 15.0 110.0 S 

CYL 409 194.5 0.0 22.5 419 194.5 15.0 22.5 5 
CYL " 405 228: 0 0.0 52.0 415 228.0 15.0 52.0 5 
CYL 401 259.5 "0.0 80.0 411 259.5 15.0 80.0 5 
CYL 439 194.5 0.0. 0.0 449 194.5 15.0 0.0 5 

L CYL 509 204.5 0.0 0.0 519 204.5 15.0 u. 0 S 
CYL 505 252.0 0.0 40.0 515 252.0 15.0 4U. 0 5 
CYL 501 271.5 0.0 55.75 511 271.5 15.0 55.75 5 
CYL 551 275.25 0.0 51.50 561 275.25 15.0 51.50 
CYL 609 270.0 0.0 0.0 619 

. 
270.0 15.0 0.0 5 

CYL . 605 275.0 0.0 26.0 615 275.0 15.0 26.0 5 
CYL 601 280.5 0.0 50.0 611. 280.5 15.0 50.0 5 
CYL' 581 417.5 0.0 50.0 571 417.5 15.0 50.0 -5 
CYL 599 417.5 0.0 0.0 579 417.5 15.0 0.0 -5 

c; ' CAR * 581 601 10 
CAI * 589 609 10 
ROT 0.9659258 0 . 258819 0.0 -0.258819 0.9659258 0.0 
ORIG 338.07403 9 0.58665 0.0 
CYL 719 47.5 -180.0 0.0 679 47.5 0.0 0.0 -5 
CYL 711 47.5 -140.0 50.0 671 47.5 0.0 50.0 -5 
CYL '119 19.0 -180.0 0.0 779 19.0 0.0 0.0 -5 
CYL 811 194.0 -1K0.0 50.0 771 19.0 0.0 50.0 -5 
ELI 200 201 4 301 311 315 305 
ELE 350 1 11 15 5 
ELE 16 100 1 101 111 11 . . ELE ?1 22 100 5 10 115 15 
ELE 23 205 30-1 319 215 

, ELE 24 309 409 419 319 
ELE 25 409 439 449 419 S "" 

b: ELE 26 439 "509 519 449 
ELE 27 509 609 619 519 
ELE 31 36 100 11 111 115 15 

c ELE 41 215 315 319 215 
ELE 42 419 519 449 419 
ELE 44 46 100 315 415 419 319 
ELE 48 719 619 615 719 
ELF 50 53 -10 611 601 701 711 
EL' 60 63 -10 711 701 80'1 811 
ELE 

" 
70 73 -10 619 609 709 719 

.' ELE 80 83 -10 719 709 809 819 
ELE 91 92 -20 599 591 691 699 

ti ELE 
" 

100 102 "-20 711 811 819 719 " ELE 120 123 -10 819 811 801 809 ' 
ELE 150 611 711 719 615 
ELE 160 571 581 589 579 
ELE 300 301 .4 b01 605 615 611 
SOUS 1 "'"' -200 

f c, 2 200 

SOUS 3 -300 
" SOUS 4 91" 

"" 
F1 

-" 
E 31-0.258819 0.9659255 0.0 3 6 1 

". " - Fl E 41-0.250319 0.9659258 0.0 
Fl E 44-0.258819 0.9659258 0.0 4 6 1 

ý, '" F1 E 42-0.258819 0.9659258 0.0 4 8 - 6 
F1 E 150-0.258819 0.9659258 0.0 

" 
F1 E 92-0.258819 0.9659258 0.0 
Fl E 100-0.258819 0.9659258 . 0.0 102 2 
F1 L 27 0.0 0.0 1.0 41 ." 
CHA EFFORT DE SERRAGE 
PEU -0.839u 

CHA 
60 61 62 63 

EFFORT DE SERRAGE ET PRES SIOS! 
fig.. 6. b. 3(b) 

- Input data 
PEU -0.8390 

60 61 b2 63 for integral equ ation program 
PEU -0.45 

21 22 23 24 25 26 ' 
PEU +2.08 " 350 
FIN "" 
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. 6(c) The rolling mill cylinder 

The cylinder is one of a pair, supported by bearings at 

the ends and loaded (by the plate being rolled) along the 

central portion of its length. In fig. 6c1 is shown the 

idealisation of the problem ; the bearings are represented 

by simple supports on a circle defined by`the intersection 

of the surface of the bearing and a vertical plane bisec- 

ting that surface. 

1100 
P 73 0 

r 
fig. 6c1 - idealisätion of the rolling mill cylinder 
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In the analysis presented here, the effect of tempera- 

ture differential is ignored. The load is in reality 

distributed over a finite area of the cylinder ; in 

the analysis it is supposed that the load is distributed 

along the line through which the resultant passes. As 

may be seen from fig. 6c1, the resultant does not pass 

through the axis of the cylinder, so there is torsion 

as well as bending. 

The object of the analysis is to determine the admis- 

sibility of vertical cracks located at the centre of 

the span: This is of great interest to steelmakers 

because it would be useful to know at what stage during 

the propagation of such a crack it is advisable to 

replace a cylinder. -'. It is not necessary to withdraw 

a cylinder from service immediately a crack appears ; 

but if the cylinder fails whilst in operation, consi- 

derable damage is done to other components such as the 

bearings. For the purposes'of analysis, the crack tip 

is supposed to be circular (fig. 6. c, 2). 
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Here, only one value of crack depth and crack tip radius 

is considered ; to obtain the required information, it 

is necessary to'carry out analyses of several different 

combinations of depth and radius, and determine accor- 

ding to same crack propagation criterion at what stage 

the crack becomes critical. 

The-modulus of elasticity is taken to be 21 000 daN/mm2, 

and Poisson's ratio0.3. The intensity of the line load 

isnearly constant, 850 daN/mm, and the length of the 

perpendicular fröm the axis of the cylinder to the 

resultant is 40 mm. There is therefore very little 

torsion and the critical case may be taken to be that 

in which the crack is diametrically opposed to the load 

point. The crack considered here is of depth 165 mm and. 

c 

fig. 61G2 - dimensions of the crack considered. 

. ý: ýý. 
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a. 

radius 1100 mm. The cylinder is divided into 5 subregions 

(fig. 6c3), the fifth containing the crack. The discre- 

tisation of the surface of each subregion is shown 

in fig. 6, c4 - 6. c. 5. There are 289 nodes and 117 elements, 

may of the elements being degenerate. About 120 cards 

of data are required to define this discretisation. 

Quadratic functional variation is chosen, and the pre- 

cision of integration is' taken to be 2.0. 

The execution time (CDC 7 600) for this problem is 

120 seconds central processing plus 6 seconds of 

input/output time. The norm of residues is 1.2 x 10 10 

The program calculates the vertical displacement at 

midspan to be 2.5 mm. This compares well with the 

deflection 1.9 mm obtained by the finite element 

method for the untracked cylinder. The finite element 

"- analysis, incidentally, took 88 seconds (c. p. time), 

and so it is certain that, with a network representing 

the crack to'an accuracy comparable with that of the 

_. _iAegra1 equation discretisation, a finite element ana- 

lysis would cost much more than the analysis presented 

here. 

In fig. 6, c. 7 is shown the variation of calculated 

direct stress on the plane containing the crack as the 

... 
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crack tip is approached, along five lines in that 

plane. From these results may be calculated the stress 

intensity factor, according to the linear theory 

of fracture mechanics: 

The variation of stress intensity factor along the 

crack tip is shown in fig. 6, c8. 

-S 
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fig. 6. c. 4 - first and second'subregions 
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fig. 6. c. 5 - third and fourth subregions 
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VII - DISCUSSION 

The formulation of the three-dimensional problem is in several 

respects an improvement upon that of the plane problem (chapter 3). 

The refined integration scheme works well. The analysis of the 

cylindrical smell (section 6 (a)) shows that good accuracy is 

maintained even in extreme cases in which the functional sin- 

gularity is very close. to the element being integrated over. 

This permits the representation of the surface by elements with 

aspect ratio (length/breadth) as high as 10, and therefore in 

many practical situations a reduction in the number of elements 

required adequately to represent a structure. In three-dimensional 

finite element discretisations, it is generally inadvisable to 

exceed an aspect ratio of 3. 

The division of the elastic body into subregions results 

in significant economies, without appreciable deterioration 

of accuracy,. and also allows inhomogeneous bodies to be 

analysed. It would be possible, by eliminating all the traction 

unknowns from the system for each subregion before assembly 

of the global system, to create a stiffness matrix for each 

subregion. The stiffness matrices could then be assembled as 

in the finite element formulation'. This strategy is, however, 

undesirable because in the present formulation, by retaining 

the traction unknowns at points on interfaces, better continuity 

across, interfaces is assured. 

000 
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The representation in the three-dimensional formulation of, 

constraints on displacement is a considerable improvement, and 

it is this above all that permits the use of coarser discreti- 

sations-than could be used for plane analyses., The improvement 

consists in changes in the allocation of. integrals of kernel- 

shape function products to the matrix and second members, 

and also in allowance for the possibility of non-orthogonal 

. fixed. and free directions at a node. This case, which does 

not occur in the examples of Chapter 6, would arise for example 

at the intersection of two non-orthogonal planes of. symmetry, 

and results in Aý2 in equation 4.4.2. 

M1 

'v. 

The discontinuity of traction at points at which the displacement 

is given and the normal is discontinuous (see Section 3.7 and 

especially fig. 3.7.2) is not taken into account in the formu- 

lation of the three-dimensional problem, and it might be inte- 

resting to see what is the effect upon-accuracy of allowance 

" for this factor. In the example of Section 6(c)ß this situation 

arises at points on the interface between the fourth and fifth 

subregions, but the points in question being near the neutral 

plane for bending, the; corresponding traction unknowns are 

nearly zero and so the effect of the approximation is not seen. 

It is evident from the run statistics-for the thick cylinder, 

flange and rolling mill cylinder that the execution time increases 

more slowly with problem size than for analyses by the finite 

element method. For nearly all practical problems, an integral 
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equation analysis requires. less execution time than the equiva- 

lent finite element analysis, provided , 
the results at not too 

many interior points are required. In practice, it, is the results 

on the surface that are. of primary interest, and results at 

interior points can often be obtained free, by judicious 

positioning of interfaces. For the rolling mill cylinder, for 

example, a finite element analysis-in which-the crack is 

represented to an-accuracy comparable with that of the 

integral equation analysis would require about 5 minutes of 

CDC 7 600 execution time, instead of the 2 minutes for the 

integral equation analysis. This is for a discretisation with. 

less than 300 nodes ; for more complicated problems, towards 

the limit of the integral equation program (1200 nodes), the 

advantage over finite elements would be greater still. For 

all problems, there is less data to prepare for an analysis by 

the integral equation method than for an analysis by the finite 

element method. 

There is still scope for reduction of execution time. The 

choice of integration formula, which is a long calculation in 

itself, could be speeded up, and it might be worthwhile to cal- 

culate before construction of the matrix the geometric data 

for the 4x4. integration formula as well as the 3x3, and use 

4x4 where the program calculates that the 3x4,4 x3 or 

4x4 formulae are necessary. 
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Immediate further developments should include the plotting 

at least of'the input data, to facilitate checking. The 

graphical representation of the results of three-dimensional 

analyses is difficult, and might be left until later. It may 

be desirable to-introduce special crack-tip elements, to 

represent the stress singularity. The next stage is the analysis 

of thermal stresses. The internal temperature distribution itself 

could be calculated by the integral method, and the results 

taken as input data for the elastic analysis. The necessary logic 

I for analysis of the effect of volume distributions, that is, 

the representation of the solution for each subregion as the 

sum of a particular integral and a complementary function, 

already exist in the program for three dimensional analysis. 

There would be some volume integration to do, but the order 

of*the system of equations would be unchanged. 

I 

The improved integration scheme and division into subregions 

could be incorporated in the program for two-dimensional 

analysis without difficulty. Next to be considered should 

be axisymmetric problems, for which the kernels are expressed 

in terms of Bessel functions, and plate bending. The extension 

to thin shells would be more difficult, but, although. -the 

kernels for the boundary integral equation might be expensive 

to calculate, this development would be worthwhile because the 

integral method may well give good results in cases in which 

the accuracy of finite element analyses is poor. It should 
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prove possible, by using the concept of subregions, to analyse 

assemblies' of plates, . shells *etc., and to include finite ele- 

meats in'the discretisation to represent beams, for example. 

The devel? pment of such a system would be slow, because of-the 

programming difficulties involved . Just for the three- 

dimensional problem, it is difficult for a single researcher 

to cope with the numerical analysis and programming ; to 

develop a system, a team of researcherswould be required. 

The generalisation to. the analysis of time-dependent 

phenomena presents no insurmountable problem. Kupradze (20) 

gives fundamental solutions for elastodynamics, which could be 

used to give systems of equations similar to those for 

elastostatics. 

A, Laplace transform with respect to time gives equations that 

`- may be solved by the methods described here. The inverse trans- 

formation being unstable for large values of time, it would be 

necessary to divide the interval of time into increments of 

duration such that the inverse transform is stable at the 

end of the step. 

Material anisotropy, inhomogenity and nonlinearity present 

problems of a different order, and it is not certain that the 

entire range of problems soluble by the finite element method 

can be solved economically by the integral method. It is to 

be hoped that at least the problem of a permeable anisotropic 

elastic material, a fair approximation to soil, can be considered. 
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" VIII - CONCLUSIONS 

r- 

The parametric representation of element geometry and of 

functions provides a good basis for the numerical representa= 

tion of boundary integral equations. Variation of order of 

integration formula according to the rapidity of variation 

of'the kernels, and special procedures for integration around 

the functional singularity, are essential to the calculation 

of consistently accurate results at reasonable cost. The 

division of the elastic body into subregions yields important 

economies ; indeed, without subregions the analysis of large 

three-dimensional problems would not be feasible. It appears, 

from the results of the few- tests carried oüt so far, that 

for most three-dimensional problems of practical size, the 

execution time required for an analysis by the integral equation 

method, using subregions, is lower than that required for an 

equivalent analysis by the finite element method ; the adran- 

tage of the integral method increases with the complexity of 

the problem. More tests must,. however, be carried out before 

the circumstances in which the method is advantageous can be 

defined with precision. Fewer cards of input data are required 

for an integral equation analysis than for the equivalent 

finite element analysis. The numerical representation and 

programming are difficult, and it is not certain that the 

entire range of problems soluble by the finite element method 

can be solved economically by the integral method. The optimal 
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algorithm is probably one in which both formulations are used, 

according to their suitability. 
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APPENDIX 1 

" In this appendix are presented the Fortran subroutine IDSOL, 

the equation solver of the program for two-dimensional 

analysis, the subroutinesITFOR and ITSOL, which construct 

and. reduce the system of equations for three-dimensional 

analysis, and subroutines called by ITFOR and ITSOL. The 

order of presentation is 

IDSOL 
ITFOR 
ITSOL 
ITSSB 
ITMKE 
ITMAT 
ITSHA 
ITSHB 
ITUNS 
ITNLG 
ITNCO 
ITBUF 
ITNOR 
ITVPR 
ITTRA 
ITIPR 
ITZER 
ITSET 
ITTRS 
ITSEI 
ITPIK 
ITGEO 
ITUNV 
ITMIN 
ITNCH 
ITDCO 
ITSSA 
ITSWO 
ITDRW 

a 
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"C 
,C 

C 

C 

C 

C 

SUBROUTINE IDSOL 
ALL LOAD CASES ARE TREATED SIMULTANEOUSLY 
CHOICE OF UNITS FOR ANALYSIS GIVES WELL-CONDITIONED 
DIMENSION EI(900). FO(900) 
COMMON/FIXE/AYM(18), NLIB0, NEBC, NEBD, NCC9 

1 LUS, LUM, LHLM, NBLM, JMAT, MMAT 
INTEGER AYM 
CONMMON/CHANGE/BT(1500) "A(9000) +AO(900) 
EQUIVALENCE (ICUE, AO(900)) 
DATA NBLO/10ß 
DATA LUO/6/. 
LBUF=NBLM*LBLM 
INCREMENTS AND SLOW BLOCK FILE PARAMETERS 
JA=NLIED 
JALO=JA-1 
JB=JA+ 1 
IAI=1 
IA0=1 
EINS READ TO DATE AND SLOW OUTPUT BUFFER CONTROL 
LA=O 
LB=1 

1 CONTINUE 
READ SLOW-BLOCK = LD SOL BLOCKS 
LC=l1INO (NBLO*MMAT, JA-LA) 
LCLO=LC-1 
LD=LCLO/MMAT+1 
JC=1 
JD=LALM 
00 2 IA=1, LD 
JE=JC 
JF=JD 
DO 3I B=1, NBLM 
IR=(JF-JE)+1 
CALL READiiS (LUM, A (JE) , IR IAI )' 
JF=JE+LBLt"I 
JF=JF+LBLM 
IAI=IAI+1 

3 CONTINUE 
JC=JC+JMAT 
JD= JD+JMAT 

2 CONTINUE 

MATRIX 

0 

LONGEST EQUATION SLOW BLOCK, LEADING DIAGONAL INCREMENT 
LE-JA-LA 
LED=J3-LA 
IF (LCLO) 49495 

C REDUCTION OF SLOW FLOCK 
5 CONTINUE 

JC=l 
JIA=LA+l 
DO 6I A=1 " LCLO 

C ELIMINATE THE UNKNOWN JIA 
ELT=A(JC) 
IF ( A! S(ELT)-1.0E-6) 999,999,8 

999 WRITE (LU0,100: JIA 
100 FORMAT ( 71H UN COEFFICIENT DIAGONAL DE LA MATRICE TRIANGULAIRE 

ZEST ZEROS EQUATION 9I3) STOP 

- 201 - 



8 CONTINUE . 
ELT=I. OEO/ELT ... . JD=JC+LE 
JIB=JIA+1 
DO 9 IB=IA. LCLO 

'C MODIFY THE EQUATION JIB 
. ELTA=A(JD)*ELT 

C THE MATRIX 
JE=JD+1 
JF=JC+1 
DO 10 IC=JIA, JALO VV 
A(JE)=A(JE)-ELTA*A(JF) 
JE=JE+1 
JF=JF+1 . 10 CONTINUE 

C THE SECOND MEMBER FOR EACH LOAD CASE 
. JE=JIB 

JF=JIA 
DO 11 IC=I9NCC VV 
BT(JE)=bT(JE)-ELTA*BT(JF) 

.. JE=JE+JA 
JF=JF+JA 

11 CONTINUE 
JD=JD+LE 
JIB=JIB+1 

9 CONTINUE 
JC=JC+LED 
JIA=JIA+1 V 

6 CONTINUE 
C MOVE REDUCED EQUATIONS TO OUTPUT BUFFER, WRITE AS NECESSARY 

4 CONTINUE 
JC=LE-1 V 

.. JD=1 . 
JE=LE V 

" DO 12 IA=19LC 
JF=LB+JC 
IF (JF-LBUF) 13914914 

C WRITE SLOW OUTPUT BUFFER 
C ICUE IS START OF LAST EQN 

"" 
14 CONTINUE 

ICUE=LH-JC-2 
JF=1 
JG=LBLM V. 
DO 15 IB=1. N3LM 
IS=(JG-JF)+1 V 
CALL WRITMS(LUM, AO(JF), IS, IAO) V 
JF=JF+LBLM 
JG=JG+LbLM 
IAO=IAO+1 

15 CONTINUE 
LB=1 

13 CONTINUE " 
C TRANSFER ONE EQUATION 

DO 16 IB=JD, JE V AO(LB)=A(IB) V LB=LB+ 1V 
16 CONTINUE 
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JC=JC-1 
JD=JD+LED 
JE=JE+LE " 

12 CONTINUE 
C EONS READ TO DATE 

LAF=LA+LC 
IF (LAF-JA) 17+18.18 

C REDUCTION OF REST OF THE-SYSTEM 
17 CONTINUE 

C FAST BLOCK FILE PARAMETERS 
IFI=IAI- 
IFO=IAO 

C FAST OUTPUT BUFFER CONTROL 
LBF=1 
LBG=LC+1 
JCF=JALO-LAF 

19 CONTINUE 
C READ FAST BLOCK =1 SOL BLOCK 

LCF=MIND (MMAT, JA-LAPP) 
JC=1 
JD=LBLM 
00 20 IA=1. NBLM 
IT=(JD-JC)+1 
CALL REAI)MS (LUM, FI (JC) , IT, IFI ) 
JC=JC+LBLM 

-JD=JD+LBLM 
" IFI=IFI+1 

20 CONTINUE 
JC=1 

. JIA=LA+1 
00 21 IA=1, LC 

.C 
ELIMINATE THE UNKNOWN JI-A 
ELT=A(JC) 

" IF ( AGS(ELT)-1.0E-6) 555,555941 
41 ELT=1. OEO/ELT 

JD=IA 
JIB=LAF+1 
DO 22 IB=1 %LCF 

C MODIFY THE EQUATION. JIB 
" ELTA=FI(JD)*ELT 

C THE MATRIX 
JE=JD+1 
JF=JC+1 
DO 23 IC=JIA, JALO 
FI(JE)=FI(JE)-ELTA*A(JF) 
JE=JE+1 
JF=JF+1 

23 CONTINUE 
C THE SECOND MEMBER FOR EACH LOAD CASE 

JE=JIb 
JF=JIA 
DO 24 IC=1+NCC 
BT (JE)=BT (JE)-ELTA*BT (JF) S 
JE=JE+JA 
JF=JF+JA 

24 CONTINUE 
JD=JD+LE 

vk 
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JIB=JIBt1 
22 CONTINUE 

JC=JC+LED 
JIA=JIA+1 

21 CONTINUE 
C MOVE REDUCED EQUATIONS TO OUTPUT BUFFER, WRITE AS NECESSARY 

JD=LBG 
JE=LE 
DO 25 IA=1, LCF 
JF=LBF+JCF 
IF (JF-LBUF) 26,26,27 

C WRITE FAST OUTPUT BUFFER 
27 CONTINUE 

JF=1 
JG=LBLM 
00 28 I8=1-, NBLM 
IU= (JG-JF) +1 
CALL WRITMS(LUM, FO(JF), IU, IFO) 
JF=JF+LHLM 
JG=JG+LBLM 
IFO=IFO+1 

28 CONTINUE 
LBF=1 

26 CONTINUE 
C TRANSFER ONE EQUATION 

DO 29 I6=JD, JE 
FO(LBF)=F1 (I8) 
LBF=LBF+1 

29 CONTINUE 
JD=JD+LE 
JE=JE+LE 

25 CONTINUE 

" LAF=L AF +LCF 
IF (LAF-JK) 19: 30930 

C EMPTY FASE BUFFER 
30 CONTINUE 

JC=1 
JD=LFLM 
DO 31 IA=1, NBLM 
IV= (JD-JC) +1 

-CALL tWRITMS(LUM, FO(JC). IV, IFO) 
JC=JC+LBLII 
JD=JD+LBLM 
IFO=IFO+1 

31 CONTINUE 
LA=LA+LC 
MMAT=LBUFI(JCF+1) 
JMAT=MMAT*(JCF+1) 
IAI=IAO 
GOTO 1 

.C 
SOLVE LAST'EQUATION 

18 CONTINUE 
JC=LB-1 
ELT=AO(JC) 
IF ( ABS(ELT)-1.0E-6) 555,555,33 

. 33 CONTINUE 
ELT=I. OEO/ELT 
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JD=JA 
00 34 I A=1 , NCC 
BT WD) =8T (JD) *ELT 
JD=JD+JA 

34 CONTINUE 
C BACKWARD PASS 

JB=2 
JD=JA 
00 35 IA=I, JALO 
JC=JC-J& 
JD=JD-1 
IF (JC) 36,36,37 

36 CONTINUE 
IAO=IAO-NBLM 
IAI=IAO 
JE=1 
JF=LBLM 
DO 38 IB=1, NBLM 
IN=(JF-JE)+1 
CALL RLAOMS(LUrM, AO(JE), IW, IAI) 
JE=JE+LBLM 
JF=JF+LBL. 4 
IAI=IAI+1 

38 CONTINUE 
JC=ICUE 

37 CONTINUE 
JE=JC+1 
JF=JD+l 

C CALCULATE THE UNKNOWN JD 
ELT=I. OEO/AO(JC) 
JG=JD 
JH=JF 
00 39 I3=19NCC 

C SUM OVER UNKNOWNS ALREADY CALCULATED 
JI=JE 
JJ=JH 
SUM=O. OEO 
^0 40 IC=1, IA 
SUM=SUM+/ O (JI; *BT (JJ) 
JI=JI+1 
JJ=JJ+ 1S 

40 CONTINUE 
BT(JG)=(BT(JG)-SUM)*ELT 
JG=JG+JA 
JH=JH+JA S 

39 CONTINUE 
JB=JB+ 1 

35 CONTINUE 
RETURN 

555 WRITE(LUO, 556)JIA 
556 FORMAT( 71H UN COEFFICIENT DIAGONAL DE LA MATRICE TRTANGULAIRE 

1ST ZEROS EQUATION +13) 
STOP 556 
END S- 
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SUBROUTINE I TFOR 
C CONSTRUCTS THE MATRIX AND SECOND MEMi3ERS 

DIMENSION XL(900), NL(300), VAC(3) 
1 ILIO (4) , LI6 (36) , LINK (4) , IPQP (4) s IPQ)IN (4) r 
2 IXLS(4), XLS(48), GOF(20), GWT(20), IGGF(6) "IDER(10) 9 
3 KSYM6 (3) , LSYM (3) , NLT (24) , IAQ (24) , NCAT (72) 9NCBT (72) 9DCA (108) s 
4 VACA(3), VACB(3), VACC(3), XA(24), XU(24)9 
5 UVL(108), TVL(108)4UTL(1u8), TTL(108), UT(9), TT(9)9 
6 NR(2), NI (200), XI (4), AC(3), XD(9), UN(3), XAI (16), 
7 JDCO(2U), TS(180), DD(300), K000(20), NLU(24), NLV(3) 

DIMENSION 3UFC(1008), IRUF(5U0), 
1 NCHT('l2), ISU(3), JAO(13), KAQ(13) 

DIMENSION YI (2), DEPO(2), DER(H), YAI (10), XIH(2), DERH(4) 
COMMON/f"IXE/IDENT(8), JDENT(40), ITLST, JOHN, IFLAG(8), 

1 NOMX, NUMXC, PINO, NONO, NONE, NONOC, NONUD, NONOE, NONOF"NONC, NOPAR(5) 
2 NSYM, I SYM (3) +NXt3 s NCB, NSUR, JSUB (10) , YM (10) , PR (10 )., DEN (1 o) s 
3 NSQ(10), NSL(10) sISUB(10), INK(100) sIEQH(10) +IEQL(10) s 
4 JEQD (10) s JEOF (10) , JEQL (10) , KEQD (10) s KEO (10) , KEQL (10) 9 
S LEQD(10), LEOF(10), LEQL(10), NLI8sLUA, LUBsLURsLBLiMsNBLM, LENK9 
6 ECHsYMO, LCO, NCC, LUD(14), KGRAV(50), KSYM(10), 
7 LUAL, LUAN, LUS, P INJ, JOKER, LUMD (10) s 
8 MOTS(10) sMMAT(1U), JMAT(10), t4UG(10), MUE(10)'LUG, LUGL, NOMM1ü, 
9 LUE, LUEL, LUEN, LUEI, LUEJ 

COMMON/ChANGE/X(3600)sJEL(100), KEL(800)sNS(200)9 
1 DCO (5760) , i'JCO (400) , IDCO (400) , BUF R (1200) 96UFB (1440) , 
2 A; 7230), BUFF(500) 

EQUIVALENCE (XL(1)913UFRtl)), (NL(1), BUFR(901)) 
EQUIVALENCE (LSYMA9LSYM(1)), 

1 (LSYMH9LSYM(2))+(LSYMCsLSYM(3)) 
EQUIVALENCE (UN(1), XD(7))"(UNA, UN(1))+ 

1 (UNß, UN(2)), (UNC9UN(3)) 
EQUIVALENCE (I BUF (1) , tsUFF (1) ) 
EQUIVALENCE (XIH(1), XI(3))s(DERH(1), DER(5)). 
DATA VAC/1.091. O91. o/ 
DATA ILIt3/1,1,9,21/ 
DATA LlB/1,29 293,394,4,1, 

1 19295,213969 394,79 491989 

2 19295+6,2,3,7,89 394999109 4,1911,12/ 
DATA LINK/2,1: 291/ 
DATA IPQP/2,3,4+1/ 
DATA IPQN/4,1,2,3/ 
DATA IXLS/191,9,23/ 
DATA XLS/1.. 0,1.0, -1.0,1.0, -1.09-1.09 1.0, -1.0, 

1 1.091.0, -1.0,1.0", -1.09-1.0,1.09-1.0, 
2 0,091009 -1.0,0.0,0.09-1.09 1.0,0.0, 
3 1.091.09 -1.0,1.09 -1.09-1.09 1.0, -1.0+ 
4 0.333333333391.09 -0.3333333333+1.09 5 -1.0,0.3333333333, -1.09-0.33333333339 
6 -0.3333333333, -1.0,0.3333333333, -1.09 
7 1.09-0.3333333333,1.0,0.3333333333/ 

DATA GOF/0.5773502692, -U. 5773502692, 
1 0.77459666921 0.09 -0.7745966692, 
2 0.8611363116,0.33998104369 -0.3399810436, -0.8611363116, 
3 0.9061798=+59,0.53846931019 0.09 
4 -0.5384693101, -0.9061798459, 
'5 0.9324695142,0.6612093865,0.23861918619 
6 -0.2366191861, -0.66120938659 -0.9324695142/ 
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DATA GWT/1.09 1.09 
1 0,55555555559 0.888168888899 0.55555555559 
2 0.3478548451,0.65214515499 0.6521451549,0.34785484519 
3 0.2369268851,0,47962867059 0,56888 388899 
4 0.4786286705,0.23692668519 
5 0,17132449249 0.36076151309 0.4679139346, 
6 0.4679139346.0.3607615730,0.1713244924/ 

" DATA IGOF/1,1,3,6,10,15/ 
DATA LT5/20/ 
DATA LUM/17/ 
DATA LU0, MAN/6,100/ 
DATA ISIXC, ISIXT/37777F3,400003/ 
DATA NLM/7777B/ 
DATA YAI/1.0,1.0, -1.0,1.0, -1.09-1.0,1.0, -1.0, 

1 1.0,1.0/ 
DATA LUC/15/ 
DATA LUF/16/ 
LUGI=7*NOMO*NOMO 
JOKER=I. UM 
NCCT=3*NCC 
IAN=O 

C SCALE FACTORS AND PRECISION OF INTEGRATION 
RECH=1.0/ECM 
RYM0=1.0/Y, lo 
RAT=ECH/YMO 
NONH=NONOC+1 
ELT=2.0*PINo 
PIN=(ELT-1.0)*0.25**ELT 
NONON=9*NONOC 
LBUF=NBLM*LBLM 
JA=1 
KMAT=1 
00 1 IA=19NSUB 

C COEFFICIENTS/EON 
JB=3*IEQL(IA)+NCC 
MOTS(IA)=JF 

C EQNS/SOL BLOCK = TRIPLES/FOR BLOCK 
JC=LBUE'/JB 
JC=MINU (.; C, LTS) 
MMAT (I A) =JC 

C WORDS USED/SOL BLOCK 
JD=JB*JC 
JMAT(IA)=JD 

C DIVERSE INCREMENTS ' 
JE=3*JB 
JF=JB+1 
JG=3*JC 

)'C POINTER TO EONS FOR SUBREGION IA 
LUMD (I A) =KMAT 
JH=1 
DO 2 ILi=19NSUB 

C POINTER TO EQUATION COEFFICIENTS FOR TRIPLES 
C BELONGING TO SUBREGION Iti, IF ANY 

IDEB (IL)"=JH 
JI=INK(JA) 
JA=JA+I 
G0T0 (2,3,4,5) , JI 
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C 

C 

C 

C 

C 

SKIP DISPLACEMENT TRIPLES ON INTERFACE 
3 JH=JH+3*JEOL (I O) 

GOTO 2 
TRACTION TRIPLES ON INTERFACE 

4 JH=JH+3*LEQL (I3) 
GOTO 2 
ALL TRIPLES ASSOCIATED WITH SUBREGION IA 

5 JH=JH+3*IEQH(I6) 
2 CONTINUE 

POINTERS TO DIAGONAL AND SECOND MEMBERS 
JDEB=IDEN (I A) 
KDEB=JH 
CALL ITBUF (1, LUR, BUFR(1), BUFR(LENR), LUO9IERR) 
JH=ISUB(IA) 
JI=NSQ(JH) 
JJ=NSL(Jh) 
TEMPORARY FILE OF GIVEN FUNCTIONS AND DISCONTINUITIES 
JK=(JJ-1)/LUAN+l 
DO 

:6 
IH=1+JK 

CALL ITHUF (1, LUA, 8UFB(1), BUFK(LUAL), LU0, IERR) 
CALL ITBUF (O, LU993UFB(1), BUFB(LUAL)'LUO, IERR) 

6 CONTINUE 
REWIND LUB 

C TEMPORARY FILE OF MOST COMMONLY USED INTEGRATION POINTS 

0 

C 

"C 

C 

C 

JK=MUG(IA) 
DO 97 IB=1, JK 
CALL ITBUF (19LUG, RUFC(1), BUFC(LUGL), LUO, IERR) 
CALL ITBUF (O, LUC, BUFC(1), BUFC(LUGL)+LUO, IERR) 

97 CONTINUE 
REWIND LUC 
IF (NSUB. EQ. 1) GOTO 98 
TEMPORARY FILE OF FACTORS FOR ELIMINATION OF SURPLUS TRACTIONS 
JK=MUE (I A) 
DO 99 IB=l, JK 
CALL ITBUF (19LUEsBUFF(1)9BUFF(LUEL), LUO9IERR) 
CALL ITBUF (09LUF, E3UFF (1) , BUFF (LUEL) +LUQ, IERR) 

99 CONTINUE 
REWIND LUF 

98 CONTINUE 

. 
ELASTIC CONSTANTS AND SYMMETRIES THIS SUBREGION 
CALL ITMKE (JH, XA, XA, XA, XA, XA, IERR) 
CALL ITNCO (KSYM(JH)9NLT, KSYMB) 
DO 7 IB=1s3 
IF (KSYMd (Id) . EQ. 0B) GOTO 6 
REFLECT WK TO COORDINATE IB 
LSYM (IB) =2 
GOTO 7 

8 LSYM(I8)=1 
7 CONTINUE 

LUGJ=LUGI*LSYMA "LSYMB*LSYMC 
NHI=JEOD(IA)-1 
JK=(IEQH(IA)-1)/JC+1 
JL=1 
00 9 IE3=1, JK 
FIRST AND LAST TRIPLES THIS BLOCK 
NLO=NHI+1 
NHI=NHI+JC 
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NHI=MMINO (NHI, LEOF (IA)) 
JM=NHI-NLO+1 

C FOR DIRECTION COSINES FIRST ARGUMENT OF KERNELS 
JN=1 
JO=NONOD 
DO 92 IC=1. JJ 
CALL ITUNV (NL"NLT, JN, JO) 
DO 93 ID=1, NONOD 
JP=ANND (NLT (ID) , NLM) 
IF (JP. EQ. 0) GOTO 94 
IF (JP. LT. NLO. OR. JP. GT. NHI) GOTO 93 
JQ=JP-NLO+1 
IF. (ID. GT. NONOC) GOTO 95 
JDCO (JQ) =JP 
GOTO 93 

C INTERFACE TRACTION 
95 JR= I D-NONOC 

JDCO (JO) =AND (NLT (JR) , NLM ) 
93 CONTINUE 
94 JN=JN+NONOD 

JO=JO+NONOD 
92 CONTINUE 

JN=JE*JM 
CALL ITZER (A, JN) 
JO=9 {JM 
CALL ITZ R (TS, JQ) 
JO=JI . 
JP=1 
JQ=NONOD 
JR=LUAN+1 
: CA=LUGL+ 1 
KB=LUEN+ 1 
JMT=3*JM 
DO 10 IC=1, JJ 
CALL ITUNS (NS, JS, JO) 

C ORIENTATION OF NORMAL 
FAC=1.0 
IF (AND (JS, ISIXT) . EQ. 0E3) GOTO 11 
FAC=-FAC 

11 JS=AND(JS, ISIXC) 
CALL ITPIK (X, KEL, XA, JS) 
CALL ITUNV (NL, NLT, JP, JQ) 
INT=1 
JT=1 
JV=1 
DO . 12 ID=1, NONOD 
JW=NLT (ID) 
NLU(ID)=J: i 
JW=AND (JW "NLM) 
NLT(ID)=JW 
IF (JW. E0. O) GOTO 13 

C POSITION IN EQUATIONS 
DO 14 IE=19NSUB 
IF (J'4. GT. LEOF (It')) GOTO 14 

C TRIPLE BELONGS TO SUBREGION. IE 
LA=IDEE (IE) 
IF (LA. EQ. 1. AND. IE. LT. IA) GOTO 15 
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IAO (ID) =LA+3* (JW-JEOD (IE) ) 
GOTO 16 

C ONLY INTERFACE TRACTION TRIPLES STORED SUBREGION IE 
15 IAO(ID)=LA+3*(JW-LEQD(IE)) 

GOTO 16 
14 CONTINUE 

. 16 CONTINUE 
CALL ITUNS (NCO, LA, JW) 
CALL ITNCH (LA, NCHT(JT), NCAT(JT), NCBT(JT))* 
JT=JT+3 
IF (ID. GT. NONOC) GOTO 12 

C DIRECTION COSINES 
CALL ITDCO (Jw, LA, IDCO, DCO, UT) 
CALL ITTRS (UT, DCA(JV), IERR) 
CALL ITSAO (DCA(JV+1), DCA(JV+3)) 
CALL ITSW3 (DCA(JV+2), DCA(JV+6)) 
CALL ITSWO (DCA(JV+S), DCA(JV+7)) 
JV=JV+9 

12 CONTINUE 
C SEGMENT IS ON INTERFACE " INT=2 

13 CONTINUE 
JT=INT*NONOC 

C FOR PLACING OF DIAGONAL TERMS 
DO 19 ID=1, JT 
JV=NLT(ID) 
IF (JV. LT. NLO. OR. JV. GT. NHi) GOTO 19 

C ID-TH TRIPLE IS IN THIS BLOCK 
JW=JV-NLO+ 1 
LA=JE*(Jq-1) 
IF (ID. GT. NONOC) GOTO 20 
KDCO (J'4) =LA+IAQ (ID) 
GOT0 19 

C INTERFACE TRACTIONS 
20 LB=ID-NONOC 

KDCO(Jw)=LA+IAO(LB) 
19 CONTINUE 

IF (JR. LE. LUAN) GOTO 21 
C FILL BUFFER OF GIVEN FUNCTIONS AND DISCONTINUITIES 

CALL ITBUF (1, LUB, BUFB (1) , BUFB (LUAL) , LUO, I ERR ) 
JR=1 
JU=1 

21 CONTINUE 
IF (KA. LE. LUGI_) GOTO 1C0 

C FILL BUFFER OF INTEGRATION POINTS 
CALL ITBUF (1, LUC, BUFC(1), BUFC(LUGL), LUO, IERR) 
KA=1 

100 CONTINUE 
JV=JL 
JW=1 
JZ=1 
LA=KDEB 
DO 22 IU=NLO, NHI 
FACA=FAC 
CALL ITSET (VAC, VACA, 3) 

C" CONTRIBUTIONS TO i"1ATRIX AND SECOND MEMBER THIS TRIPLE 
CALL ITCER (UVL, NONON) 
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CALL ITZER (TVL, NONON) 
LB=1 

. C LOOK FOR MATCH OF DEGREE OF FREEDOM NUMBER 
LE=JDCO(JZ) 
DO 23 IE=1, NONOC 
IF (NLT(IE). NE. LE) GOTO 23 

C SINGULARITY 
LC=IE 
LD=1 
GOTO 24 

23 CONTINUE 
LC=O 
LD=O 

24 CONTINUE 
KD=KA 

C SYMMETRY WR TO Al 
DO 25 IE=1, LSYMA 
FACE=FACA 
CALL ITSET (VACA"VACB, 3) 0 C SYMMETRY WR TO X2 
DO 26 iF=1, LSYNB 
FACC=FACB 

. CALL ITSET (VACB, VACC, 3) 
C SYMMETRY WR TO X3 

DO 27 IG-1+LSYMC 
C CONTRIBUTIONS THIS ORTHANT 

CALL 1TZER (UTL, NONON) 
CALL ITLER (TTL, NONON) 

C REFLECTED NODAL COORDINATES 
DO 28 IH=1+3 
ELT=VACC(IH) 
LE=IH 
DO 29 I; =1,8 
XB (LE) =XA (LE) *ELT 
LE=LE+3 

29 CONTINUE 
28 CONTINUE 

!F (LB. EQ. 1. OR. LC. EQ. O) GOTO 30 
C CHECK DISTANCE BETWEEN TRIPLE AND REFLECTED TRIPLE 

" LE=JV 
DO 31 1H=1,3 
ELT=XL(LE)*(1.0-VACC(IH)) 
LE=LE+1 
IF (ELT. LT. 1. OE-5) GOTO 31. 
LD=O 
GOTO 30 

31 CONTINUE 
C SINGULARITY 

LD=l 
30 CONTINUE 

IF (LD"NE. O) GOTO 32 
C NO SINGULARITY 

CALL ITSSA (1'P1N, XL(JV)+XB: NR, NI, IERR) 
IF (IERR. E0.0) GOTO 33 

998 IAN=IAN+1 
IF (IAN. GT. MAN) GOTO 999 
LE=JV+2 
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CALL ITUNS (JEL, LF. JS) 
WRITE (LUO, 200) LF. (XL(IO), IO=JV, LE) 

200 FORMAT ( 33H ERREUR POUR LA MATNICE, ELEMENT , I39 
1 15H COORDONt4EES '3F 14.4) 

' GOTO 34 
33 CONTINUE 

C SUBSEGMENTS EACH WAY 
LE=NR(l) 
LF=NR. (2 ) 
KE=O 
IF (LE. GT. 1. OR. LF. GT. 1) GOTO 101 
IF (NI(1). NE. NOMO. OR. NI(2). NE. NOMO) GOTO 101 

C STANDARD INTEGRATION 
KE=1 
KF=KD 

101 CONTINUE 
C JACOBIAN FOR TRANSFORM SUBSEGMENT - SEGMENT 

XYA=1.0/LE 
XYB=1.0/LF 
AREA=XYA*XYB 
XIA=2.0*XYA 
XI B=2.0*XY, 3 

C INTRINSIC COORDINATE X1 OF SUBSEGMENT ORIGIN 
XOA=1.0-XYA 
LG=1 
DO 35 IH=1, LE 

C IN1RINSIC COORDINATE X2 OF SUBSEGMENT ORIGIN 
XOB=1.0-XYE3 
DO 36 II=19LF 

C ORDER OF INTEGRATION THIS SUBSEGMENT 

. 
LH=NI(LG) 
LI=NI(LG+1) 
LJ=IGOF(LH) 
LK=IGOF(LI) 
DO 37 IJ=1, LH 

C X1 OF INTEGRATION POINT 
XI(1)=XOA+XYA*GOF(LJ) 
GWA=AREA*Gt T (LJ) 
LL=LK 

" DO 38 IK=1, LI 
C X2 OF INTEGRATION POINT 

XI (2) =XU8+XYB*GUF (LL) 
IF (KE. EQ. 0) GOTO 102 

C STANDARD INTEGRATION 
XC(1)=BUFC(KF) 
KF=KF+1 
XC(2)=BUFC(KF) 
KF=KF+1 
XC (. ) =BUFC (KF ) 
KF=KF+1 
UNA=BUFC (KF) 
KF=KF+1 
UNB=BUFC (KF ) 
KF=KF+1 
UNC=BUFC(KF) 
KF=KF+1 
ELT=BUFC (KF ) 
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KF=KF+1 
GOTO 103 

102 CONTINUE 
CALL ITGEO (XB, XI, XC, XD, ELT, IERR) 

" IF (IERR. NE. 0) GOTO 998 
C ORIENTATION OF NORMAL 

UNA=UNA*FACC 
UNB=UNB*F'ACC 
UNC=UNC*FACC 

103 CONTINUE 
CALL ITMKE (0, XL(JV), XC, UN, UT, TT"IERR) 
IF (IERR. NE. O) GOTO 998 

C JACOBIAN*GAUSS WEIGHT 
GWB=GWA*ELT*GWT (LL) 
LM=1 
DO 39 IL=-1 , NONOC 
CALL ITSIA (NONO, IL, XI, FUN) 

C MULTIPLY BY SHAPE FUNCTION THIS TRIPLE 
FACT=GW8*FUN 
DO 40 IM=1,9 
UTL(LM)=UTL(LM)+FACT*UT(IM) 
TTL (LM) =TTL (LM) +FACT*TT (IM) 
LM=LM+1 

40 CONTINUE 
39 CONTINUE 

LL=LL+1 
38 CONTINUE 

LJ=LJ+1 
37 CONTINUE 

XOB=XOi3-XIB 
LG=LG+2 

" 36 CONTINUE 
XOA=XOA-X IA 

35 CONTINUE 
GOTO 41 

C SINGULARITY 
. 32 CONTINUE 

LE=ILIt3 (NONO) 
JDEG=O 
KDEG=O 
LF=LE 
DO 131 1H=1,4 
LG=LIB (LF) 
LH=LIB (LF+1) 
IF (NLT(LG). NE. NLT(LH); GOTO 133 

C DEGENERATE SIDE 
JDEG=IH 
IF (NLT(LG). NE. JDCC(JZ)) GOTO 133 

C KERNEL AND COORDINATE SINGULARITIES COINCIDE 
KDEG=1 
LI=2*(IH-1)+1 
CALL ITSET (YAI(LI), XAI(5), 4) 

133 LF=LF+NONO 0 
131 CONTINUE - IF (KDEG. NE. 0) GOTO 132 

LF=IXLS(NONO)+2*(LC-1) ' 
XAI(5)=XLS(LF) 
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XAI(6)=XLS(LF+1) 
XAI (7) =XAI (5) 
XAI(8)=XAI(6) 

132 CONTINUE 
" DO 42 IH=1.4 

C CHECK FOR DEGENERATE TRIANGLE BASE 
IF (IH. EO. JDEG) GOTO 43 

C CHECK FIRST ARGUMENT NOT ON BASE 
LF=LE 
DO 44 II=19NONO 
LG=LIB(LF)- 
IF (NLT(LG). EQ. JDCO(JZ)) G0T0 43 
LF=LF+1 

44 CONTINUE 
CALL ITSSB (PIN, XL(JV), XB, XAI(5), IH, NR, NI, IERR) 
IF (IERR. NE. 0) GOTO'998 
LF=2*(IH-1)+1 
CALL ITSET (YAI(LF), XAI, 4) 
LXAI=1 

C SEE IF DEGENERATE SIDE ADJOINS TRIANGLE BASE 
IF (IPON(IH). NE. JDEG) GOT0 139 
ETA=1.0 
LF=8 
GOTO 140 

139 CONTINUE 
IF (IPQP (Iri) . NE. JDEG) GOTO 141 
ETA=-1.0 
LF=10 

140 LXAI=2 
C INTRINSIC COORDINATES FOR SECOND LINEAR TRANSFORM 

" CALL ITSET (XAI, XAI(9), 8: 
LG=LF+LINK (IH) 
XAI(LG)=-XAI(LG) 

141 LF=2; }LXAI 
LG=4*LXAI 

C SUBSEGMENTS EACH WAY 
LH=NR(1) 
LI=NR(2) 

C JACOBIAN FOR TRANSFORM SUBSEGME14T - TRIANGLE COORDINATES 

. XYA=1. U/LH 
XYB=1.0/LI 
AREA=XYA*AYB 
XIA=2. U#XYA 
XIB=2.0*XYB 

C FIRST TRIANGLE COORDINATE OF SUBSEGMENT ORIGIN 
XOA=1.0-XYA 
LJ=1 
DO 46 II=1. LH 

C ORDER OF INTEGRATION THIS COLUMN OF SUBSEGMENTS 
LK=NI(LJ) 
LL=NI(LJ+1) 
LM=IGOF(LK) 
LN=IGUF(LL) 

C SECOND TRIANGLE COORDINATE OF SUBSEGMENT ORIGIN 
XOB=1.0-XYB 
DU 47 IJ=1"LI 
LO=LM 
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00 48 IK=1"LK 
C FIRST TRIANGLE COORDINATE OF INTEGRATION POINT 

YI(1)=XOA+XYA*GOF(LO)' 
GWA=AREA*GWT(LO) 
LP=LN 
DO 49 IL=1"LL 

C SECOND TRIANGLE COORDINATE OF INTEGRATION POINT 
YI (2) =XUi3+XYB*GOF (LP) 

C* INTRINSIC COORDINATES AND JACOBIAN FOR TRANSFORM 
C TRIANGLE COORDINATES TO INTRINSIC COORDINATES 

CALL ITZER (XI, LF) 
CALL ITZER (DER, LG) 
L0=1 
00 136 IM=1,4 
CALL ITSHB (2, IM, YI, ELTA, DERO) 
LR=1 
LS=1 
LT=LQ 
DO 137 IN=1, LXAI 
LU=LT 
DO 138 I0=1,2. 
ELTU=XAI (LU) 
XI(LS)=XI(LS)+ELTA*ELTB 
DER(LR)=DER(LR)+DERO(1)*ELTB 
LR=LR+1 
DER (LFZ) =DER (LR) +OERO (2) *ELTB 
LR=LR+1 
LS=LS+1 
LU=LU+1 

138 CONTINUE 
LT=LT+8 

" 137 CONTINUE 
-LQ=LQ+2 

136 CONTINUE 
IF (LXAI. EO. l; GOTO 142 

C NONLINEAR TRANSFORM 
ELT=ETA*YI(1) 
ELTA=2.0-ELT-YI(2) 
ELTB=(YI(2)-ELT)/ELTA 

'C WEIGHT FUNCTIONS-FOR LINEAR TRANSFORMS 
ELTC=O. 5*(1.0+ELTB) 
ELTD=ELTC-ELTB 
ELTB=ELTA*ELTA 
DERO(1)=ETA*(YI(2)-1.0)/ELTB 

" _DERO(2)=(1.0-ELT)/ELTB LQ=1 
DO 143 IM=192 
ELTA=XI(IM) 
ELTE3=XIII(IM) 
ELTE=ELTA-ELTB 

C INTRINSIC COORDINATE 
XI (It4) =ELTA*ELTC+ELTB ELTD 
DO 144 IN=1,2 

C JACOBIAN BY PRODUCT FORMULA 
OER(LD)=ELTE*DERO(IN) 

.1 +DER (LO) *ELTC+DERH (LO) *ELTD 
LQ=LQ+ 1 
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144 CONTINUE 
143 CONTINUE 
142 CONTINUE 

ELTE3=DEk (1) *DER (4) -DER (2) *DER (3 ) 
CALL ITGEO (XB, XI, XC, XD, tLT, IERR) 
IF (IERR. NE. 0) GOTO 998 

C ORIENTATION OF NORMAL 
UNA=UN4*FACC 

. UNB=UNB*FACC 
UNC=UNC*FACC 
CALL ITMKE (0, XL(JV), XC, UN, UT, TT, IERR) 
IF (IERR. NE. O) GOTO 998 

C JACOBIAN*GAUSS WEIGHT 
GWB=GWA*ELT*GWT(LP)*ELTB 
LQ=1 
DO 50 IM=1, NONOC 
CALL ITSHA (NONO, IM, XI, FUN) 

C MULTIPLY BY SHAPE FUNCTION THIS TRIPLE 
FACT=GWB*FUN 
IF " (NL. T (IM) . EQ. JDCO (JZ)) GOTO 51 
DO 52 IN=1,9' 
UTL(LQ)=UTL(LQ)+FACT*UT(IN) 
TTL (LQ) =TTL (LCD) +FACT*TT (IN) 
LQ=LQ+1. 

52 CONTINUE 
GOTO 50 

C OMIT SINGULAR COMPONENT 
'51 DO 53 IN=199 

UTL(LQ)=UTL(LQ)+FACT*UT(IN) 
LQ=LQ+1 

53 CONTINUE 
50 CONTINUE 

LP=LP+1 
49 CONTINUE 

. LO=LO+1 
48 CONTINUE 

XOB=XOB-XIB 
47 CONTINUE 

XOA=XOA-XIA 
LJ=LJ+2 

46 CONTINUE 
43 LE=LF_+NUNO 
42 CONTINUE 

C FOR LEADING DIAGONAL SUBMATRIX, KERNEL T 
41 CONTINUE 

LE=JW 
DO 54 1h=1,9 
SUM=0.0 
LF=IH 
00 55 II=19NONOC 
SUM=SUM+TTL(LF) 
LF=LF+9 

55 CONTINUE 
TS (LE) =TS (LE) +SUM 
LE=LE+ 1 

54 CONTINUE 
C SYMMETRY TRANSFORM 
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00 56 IH=1+3 
ELT=VACC(IH) 
LE=IH 
DO 57 II=I. NONOE 
UVL (LE) =UVL (LE) +UTL (LE) *ELT 
TVL(LE)=TVL(LE)+TTL(LE)*cLT 
LE=LE+3 

"57 CONTINUE 
56 CONTINUE 
34 LB=LB+ 1 

KD=KD+LUGI 
FACC=-FACC 
VACC(3)=-VACC(3) 

27 CONTINUE 
FACB=-FACB 
VACB(2)=-VACB(2) 

26 CONTINUE 
FACA=-FACA 
VACA(1)=-VACA(1) 

25 CONTINUE 
C DISTRIBUTE TO EQUATIONS 

LB=JU 
LC=JU+NONOE 
LD=1 
LE=1 
LF=NON0C+1 
00 58 IE=1+NONOC 

C TRANSFORM TO LOCAL AXES OF SECOND ARGUMENT 
LG=LE 
LH=1 
DO 59 IF=1.3 
CALL ITTRA (UVL(LG), DCA(LE), UT(LH), 1) 
CALL ITTRA (TVL(LG), DCA(LE), TT(LH), 1) 
LG=LG+3 
LH=LH+3 

59 CONTINUE 
IF (NLT(IE). NE. ID. AND. NLT(LF). NE. ID) GOTO 50 

C GIVEN DISPLACEMENT OR DISPLACEMENT DISCONTINUITY 

.C 
NOTE - NLT(LF)=0 FOR SURFACE SEGMENT 
LG=LB 
LH=NCCT*(ID-NLO)+1 
IF (INT. EQ. 2) GOTO 126 
LI=LC 
00 127 IF=1"NCC 
LJ=LG 
LK=LI 
LL=LD 
DO 128 IG=1,3 
IF (NCBT(LL). EQ. OB) GOTO 129 
LM=LJ 
GOTO 130 

129 LM=LK 
'130 DD(LH)=6UFB(LM) 

LH=LH+l 
LJ=LJ+1 
LK=LK+1 
LL=LL+1 
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128 CONTINUE 
LG=LG+NONOF 
LI=LI+NONOF 

127 CONTINUE 
" GOTO 60 

126 CONTINUE 
DO 61 IF=I, NCC 
CALL ITSET (BUFB(L6), DD(LH)93) 
LG=LG+NONOF 
LH=LH+3 

61 CONTINUE 
60 CONTINUE 

LG=1 
LH=IAO(IE) 
LI=LA 
IF (INT. E0.2) GOTO 62 

C SEGMENT ON SURFACE 
CALL ITNLG (NLU(1E), LJ, NLV) 
DO 63 IF=1,3 
LJ=LB 
LK=LC 
LL=LO 
LM=LH 
DO 64 IG=1.3 
IF ('4CBT(LL). NE. OB) GOTO 65 

C DISPLACEN ENT UNKNOWN 
ELIA=TT(LG) 
ELTB=ELTA*PECH 
ELT=UT(LG)*RYMO 
GOTO 66 

C TRACTION UNKNOWN 
65 ELTA=-UT(LG) 

ELTB=ELTA*RYMO 
ELT=-TT(LG)*RECH 
IF (NLV(IG). E0.08) GOTO 67 

66 CONTINUE 
IF (NCAT (LL) . E0.08. AND. NCHT (LL) . EO. Ot3) GOTO 67 

C INCREMENT MATRIX COEFFICIENT 
A(LM)=A(LMG)+ELTA 

C TRANSFORM GIVEN FUNCTION AND DISCONTINUITY 
C OR TWO GIVEN FUNCTIONS INTO SECOND MEMBER 

67 LN=LJ 
LO=LK 
LP=LI 
DO 68 IH=19NCC 
A (LP) =A (LP) +ELT*BUFB (LN) -"ELTB*BUFB (LO ) 
LN=LN+NONOF 
LO=LO+NONOF 
LP=LP+1 

68 CONTINUE 
LG=LG+1 
LJ=LJ+1 

" LK=LK+1 
. LL=LL+1 

LM=LM+1 
-64 CONTINUE 

LH=LH+JB 

S 



S 

.C 

C 

C 

C 

C 

LI=LI+JB 
63 CONTINUE 

GOTO 69 
SEGMENT ON INTERFACE 

62 CONTINUE 
LJ=IAO(LF) 
DO 70 IF=1.3 
LK=LB 
LL=LC 
LM=LO 
LN=LH 
LO=LJ 
DO 71 IG=1,3 
MATRIX COEFFICIENT FOR TRACTION UNKNOWN 
ELTA=-UT(LG) 
ELTB=ELTA*RY140 
LP=LM+NONOE 
IF (NCAT(LP). EO. 0B) GOTO 72 
LP=NLT ; LF ) 
IF' (LP. GE. JEOD(IA). AND. LP. LE. LEQF(IA)) GOTO 
UNKNOWN COES NOT BELONG TO SUBREGION IA 
ELTA=-ELTA 

17 CONTINUE 
A(LO)=A(LO)+ELTA 

lb 

17 

MATRIX COEFFICIENT FOR DISPLACEMENT UNKNOWNS IF ANY 
72 CONTINUE 

ELTC=TT(LG) 
ELTD=ELTC*RECH 
IF (NCAT(LM). EQ. OB) GOTO 73 
A (LN) =A (LW) +ELTC 
TRANSFORM DISCONTINUITIES OR DISCONTINUITY 
INTO SECOND MEMBER - MULTIPLIERS SAME BOTH 

73 LP=LK 
LO=LL 
LR=LI 
00 74 IH=I, NCC 
A (LR) =A (LR) -ELTB*BUFB (LQ) -ELTD*BUFB (LP) 
LP=LP+NONOF 
LQ=LQ+N ON OF 
LR=LR+1 

74 CONTINUE 
LG=LG+1 
LK=LK+ 1 
LL=LL+1 
LH=LM+1 
LN=LN+1 
LO=LO+1 

71 CONTINUE 
LH=LH+JI3 
LI=LI+JB 
LJ=LJ+JB 

70 CONTINUE 
. 69 LB=L8+3. 

LC=LC+3 
LD=LD+3 
LE=LE+9 
LF=LF+1 

AND GIVEN FUNCTION 
CASES 
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. L) 

58 CONTINUE 
C INCREMENT POINTERS TO MATRIX 

DO 75 IE=1. JT 
IAO(IE)=IAO(I-E)+JE 

75 CONTINUE 
JV=JV+3 
JW=JW+9 
JZ=JZ+1 
LA=LA+JE 

22 CONTINUE 
IF (NSUU. E0.1. OR. INT. EQ. 2) GOTO 104 

C ELIMINATION OF SURPLUS TRACTIONS 
JV=1 
DO 105 ID=1, NONOC 
JW=NLU(ID) 
CALL ITNLG (JW, LA, NLV) 
JW=O 
00 106 IE=1,3 
IF (NLV(IE). EQ. OB. OR. NCHT(JV). EQ. OB) GOTO 107 
JAI=JW+ 1 
ISU(J4)=IE-1+IAO(ID)-JN 

107 JV=JV+1 
106 CONTINUE 

IF (JW. EO. 0) GOTO 105 
C ELIMINATIONS THIS TRIPLE 

LA=O 
108 CONTINUE 

DO 109 IE=1, JW 
IF (KB. LE. LUEN) GOTO 110 

C BUFFER OF SUBSTITUTION DATA 
CALL ITBUF (1, LUF, BUFF(1), BUFF(LUEL), LUO, IERR) 
KB=1 
KC=1 

110 CONTINUE 
IF (IE"GT. 1) GOTO 111 

C NUMBER OF INTERFACE SEGMENTS 
LB=IBUF (KC) 
LC=KC+3 
LD=1 
00 112 IF=19NONH 
LE=IBUF(LC) 

C POSITION IN EQUATIONS 
DO 113 IG=1, NSUB 
IF (LE. GT. LEQF(IG)) GOTO 113 

C TRIPLE BELONGS TO SUBREGION IG 
LF=IDEB(IG) 
IF (LF. EQ. I. AND. IG. LT. IA) GOTO 114 
JAQ(IF)=LF+3*(LE-JEOD(IG)) 
GOTO 115 

114 JAQ (IF) =Lr +3* (LE-LEAD (IG) ) 
GOTO 115 

113 CONTINUE 
115 CALL ITUNS (NCO, LF, LE) 

CALL ITNCO (LF, NCAT(LD), NCBT) 
LC=LC+1 
LD=LD+3 

11? CONTINUE 
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C FACTOR FOR SUBSTITUTION IN TERMS OF TRACTION 
ELT=1. U 
IF (LE. GE. JEQD(IA). AND. LE. LE. LEQF(IA)) GOTO 111 

C TRACTION TRIPLE DOES NOT BELONG TO SUBREGION IA 
ELT=-ELT 

111 LC=KC+LUEJ 
LD=ISU (IE) 
LE=KDEti 
CALL ITSEI (JAQ, KAQ, NONH) 
DO 116 IF=1, JMT 
ELTA=A(LD) 
LF=1 
LG=LC 

C SUBSTITUTION IN TERMS-OF DISPLACEMENT 
ELTB=ELTA*RAT 
DO 117 IG=1 , NONOC 
LH=KAQ(IG) 
DO 118 IH=1,3 
IF (NCAT(LF). EQ. OB) GOTO 119 
A(LH)=A(LH)+ELTB*BUFF(LG) 

119 LF=LF+1 
LG=LG+1 
LH=LH+1 

118 CONTINUE 
1'17 CONTINUE 

C SUBSTITUTION IN TERMS OF TRACTION 
ELTB=ELTA*ELT 
LH=KAO (NONH) 
DO 12U IG=193 
IF (NCAT(LF). EQ. OB) GOTO 121 
A(LH)=A(LH)+ELTB*BUFF(LG) 

121 LF=LF+ 1 
LG=LG+1 
LH=LH+ 1 

120 CONTINUE 
C CONTRIBUTIONS TO SECOND MEMBERS... 

ELTB=ELTA*RYMO 
LH=LE 
DO 122 IG=19NCC 
A(LH)=A(LH)-ELTB*BUFF(LG) 
LG=LG+1 
LH=LH+1 

122 CONTINUE 
C INCREMENT POINTERS 

00 123 IG=19NONH 
KAQ(IG)=KA0(1G)+JB 

'123 CONTINUE 
LD=LD+JB 
LE=LE+JB 

116 CONTINUE 
KB=KB+1 
KC=KC+LUEI 

109 CONTINUE 
LA=LA+1 
IF (LA. LT. LB) GOTO 108 

C ZEROISE ELIMINATED COLUMNS 
DO 124 IE=19JW 
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LA=ISU(IE) 
DO 125 IF=1, JMT 
A(LA)0.0 
L. A=LA+JB 

125 CONTINUE 
124 CONTINUE 
105 CONTINUE 
104 CONTINUE 

KA=KA+LUGJ - 
ý+ 

JO=JO+1 
JP=JP+NONOD 
JO=JO+NUNOD 
JR=JR+1 
JU=JU+NC)NC 

10 CONTINUE 
REWIND LUB 
REWIND LUC 
REWIND LUF 

C DIAGONAL CONTRIBUTION (USE OF SOMIGLIANA IDENTITY) 
C TRANSFORM W R' TO FIRST ARGUMENT 

JO=1 
JP=1 
JQ=1 
JR=JDEB 
JS=KDEB 
JT=NLO 

DO 76 1C=1, JM C FIXITY, DIRECTION COSINES 
CALL ITUNS (NCO+JV, JT) 
CALL ITNCO (JV, NCAT, NCBT) 
JU=JDCO(IC) 
CALL ITUNS (NCO, JV, JU) 
CALL ITDCO (JU. JV, IDCO, DCO, UT) 
CALL ITTRS (UT+OCA, IERR) 
CALL ITSWO (DCA (2) , DCA (4) ) 

-CALL ITSNO (DCA(3), DCA(7)) 
CALL ITSWO (DCA(6), DCA(8)) 

C TRANSFORM CONTRIBUTION WR TO SECOND ARGUMENT 
JV=1 
DO 79 1U=1,3 
CALL IT1RA (TS(JO), DCA, TT(JV), 1) 
JO=JO+3 
JV=JV+3 

79 CONTINUE 
JV=1 
JW=KDCO(IC) 
LA=JS 
DO 84 ID=1,3 
LB=JP 
LC=JW 
DO 85 "IE=193 
ELTA=TT(JV) 
IF (NCB1 (IE). NE. OB. AND. JU. EQ. JT) GOTO 87 
IF (NCMT(IE). EO. OB) GOTO 87 

C, DECREMENT MATRIX 
A (LC) =A (LC) -ELTA 

C TRANSFORM GIVEN DISPLACLMENT OR DISCONTINUITY INTO SECOND MEMBER 
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C" MULTIPLIER SAME 80TH CASES 
07 ELTB=ELTA*RECH 

LD=LB 
" LE=LA 

DO 88 IF=1 9NCC 
A(LE)=A(LE)+ELTB*DD(LD) 
LD=LD+3 
LE=LE+1 

88 CONTINUE 
JV=JV+1 
LB=LB+1 
LC=LC+1 

85 CONTINUE 
Jai=JW+JB 
LA=LA+JB . 

84 CONTINUE 
C TRANSFORM EQUATIONS TO LOCAL AXES OF FIRST ARGUMENT 

JU=JQ 
DO. 89 1D=1, JB 
CALL ITTRA (A (JU) "DCA, A (JU) , JB) 
JU=JU+1 

89 CONTINUE 
C ELIMINATE UNKNOWNS ZERO BY SYMMETRY 

JU=JQ 
DO 90 ID=1e3 
IF (NCAT(ID). NE. OB) GOTEN 91 
CALL ITZER (A(JU), JB) 
A(JR)=1. U 

91 JR=JR+JF 
JU=JU+JB 

90 CONTINUE 
JP=JP+NCCT 
JQ=JQ+JE 
JS=JS+JE 
JT=JT+1 

76 CONTINUE 
C NUMBER OF SOL BLOCKS TO BE WRITTEN 

JO= (JN-"1) /JD+i 
CALL ITMAT (LUS9LUM, LBLMgNBLM*JO+KMAT, JD) 
JL=JL+JG 
JDEB=JDEB+JG 

9 CONTINUL 
1 CONTINUE 

IF (IAN. NE. O) GOTO 997 
REwIND LUR 
REWIND LUA 
REWIND LUG 
REWIND LUE 
REWIND LUS 
RETURN S 

999 WRITE (LUO9201) MAN 
201 FORMAT ( 9H PLUS DE 9139 

1 24H ERREURS POUR LA MATRICE) 
997 STOP 

END 
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C 

C 

SUBROUTINE ITSOL 
BLOCK SOLUTION OF BANDED SYSTEM OF EQUATIONS 
DIMENSION FI(2410), FO(2410) 
DIMENSION IRQ(100), IRL(100), 8(6000), C(4500), 

1 IEH(10), JED(1O) , JEL(10), LtD(10), LEL(10), 
2 MOT(10), IAQ(11), IAL(11), MOTT(10), LUMF(10)s 
3 LENB(10), LENC(10) 

COMMON/F IXE/IDENT (A) , Jr. )ENT (40) , IFLAG (10) , NOPAR (15) s 
1 NSYM, ISYM(3). NX9, NEB, NSU8, JSUH(70)9 
2 INK(100) , IEQH(10), IEQL(10) sJEQD(10) sJEQF(10) sJEQL(10) s 
3 KEQD (10) , KEOF (10) , KEEL (10) . LEOD (10) 'LEAF (10) s LEQL (10) , 
4 NLIB, LUA, LUN, LUR, LBLM, NBLM, LENRs 
5 ECN, YM0, LC0, NCC, LUD(14), KGRAV(60), 
6 LUAL. LUAN, LUS. PIN, LUM9LUMD(10)s 
7 MOTS(10), MMAT(10), JMAT(10) 

COMMON/CHANGE/A(19280), AO(2410) 
EQUIVALENCE (ICUE, AO(2410)), 

1 (I110(1)'A(1) ), (IRL(1), A(101) ), 
2 (B(1), A(201)) s (C(1), A(6201) ) 

DATA EPS, EPSA/1.0E-6,1.0E-50/ 
DATA NFLO/8/ 
DATA LUO/6/ 
DATA LUCO/16/ 
NSUR'-i=NSUB+1 
LBUF=NBLM*LFLM 
PARAMETERS OF SYSTEM IN TERMS OF COEFFICIENTS AND EQUATION NUMBER 
DO 1 iA=1, NS(JB 
IEH(IA)=3*1EOH(IA) 
JED(IA)=3*(JEQD(IA)-1)+1 
JEL (IA)=3*JEOL (IA) 
LED (IA)=3* (LEOD (IA)-1) +1 
LEL(IA)=3 'LEQL(IA) 

C INSTANTANEOUS LENGTH OF EQUATION 
MOT(IA)=MOTS(IA) 

1 CONTINUE 
JA=1 
JB=1 
DO 2 Ir"=1, NSUB 

C FORiAT OF EQUATIONS SUBREGION IA 
JC=JA 
JD=1 
DO 3 IB=IA, NSUB 
JE= INK (JC) 
GOTO (4,5.4,6) , JE 

4 IAL(JD)=0 
GOTO 7 

5 IAL(JD)=JEL(IB) 
GOTO 7 

6 IAL(JD)=IEH(I3) 
7 JC=JC+1 

JD=JD+1 
3 CONTINUE 

C SECOND MEMBERS 
IAL (JD) =NCC 
IAI=LUMD(IA) 
IAO=IAI 
JC=IEH(IA) 
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JD=O 
JE=1 

8 CONTINUE 
C READ SLOW BLOCK 

JF=MIND(NBLO*MMAT(IA), JC-JD) 
JG=JF-1 

C. NUMBER OF SOL BLOCKS TO READ 
JH=JG/MMAT(IA)+1 
JI=JMAT(IA) 
JJ=1 
DO 9 Its=1, JH 
CALL ITDRW (1, LUM, A(JJ)+LBLM, NBLM, IAI) 
JJ=JJ+JI 

9 CONTINUE 
JH=MOT(IA) 
JI=JH+1 
JJ=1 
IF, (JG. EQ. 0) GOTO 10 

C REDUCE SLOW BLOCK 
JK=JH 
DO 11 IB=1, JG 
ELT=A(JJ) 
IF (ABS(ELT). LT. EPS) GOTO 999 

C ELIMINATE AN UNKNOWN 
ELT=1.0/ELT 
JL=JJ+JH 
JM=JJ+1 
DO 12 IC=IB, JG 
ELTA=A(JL) 
IF (ABS(ELTA). LT. EPSA) GOTO 13 

C MODIFY AN EQUATION 
ELTB=ELTA*ELT 
JN=JL+1 
DO 14 ID=JM, JK 
A(JN)=A(JN)-ELTB*A(ID) 
JN=JN+ 1 

14 CONTINUE 
13 JL=JL+JH 
12. -CONTINUE 

JJ=JJ+JI 
JK =JK+JH 

11 CONTINUE 
10 CONTINUE 

IF (AF3S (A (JJ)) . LT. EPS) GOTO 999 
JJ=1 
JK=JH 
DO 15 Ib=1, JF 
JL=JE+JK 
IF (JL. LE. LBUF) GOTO 16 

C EMPTY OUTPUT BUFFER 
ICUE=JE-JK-1 
CALL ITDRW (O, LUM, AO, LHLM, NBLM, IAO) 
JE=1 

16 CALL ITSET (A(JJ)+AO(JE)+JK) 
JJ=JJ+JI 
JE=JE+JK 
JK=JK-1 

- jyi 
' 

E 
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15 CONTINUE 
C REDUCTION OF REST OF SYSTEM 

JD=JD+JF 
JJ=JA 
DO 17 Ifs=I A, NSUB 

C. NUMBER OF EQUATIONS TO BE REDUCED 
IF (IB. GT. IA) GOTO 18 
JK=JC-JD 
IF (JK. FQ. 0) GOTO 19 
GOTO 20 

18 JK=IEH(IE3) 
20 CONTINUE 

C UNKNOWNS ELIMINATED FROM SLOW BLOCK BUT ABSENT FROM FAST BLOCK 
JL=O 
JM=INK(JJ) 
GOTO (19,19,21,22)sJM 

21 JL=MAXO(JL, LED(IA)-JB) 
IF"(JL. GE. JF) GOTO 19 

C POINTER TO SLOW BLOCK 
22 JM=JI*JL+1 

JN=JL+1 
C POINTErS. TO COEFFICIENTS TO BE MODIFIED IN FAST BLOCK 

JO=I. L(1)-JL+1 
JP=2 
IF (IA. EQ. NSUB) GOTO 23 
JGG=JJ+ 1 
JR=IA+1 
00 24 IC=JR, NSUB 
IAO(JP)=JO 
JS=INK(JQ) 
COT O (25,26,25 , 27) " JS 

'26 JO=JO+JEL(IC) 
GOTO 25 

27 JO=JO+IEH(IC) 
25 JP=JP+ 1 

JQ=J0+1 
24 CONTINUE 
23 IAO(JP)=J0 

IFT=MAXO (IAI "LUMD (IB) ) 
IFO=IFI 
JO=0 
JP=1 " 
JQ=MOT(IB) 
JR=JQ-JF+JL 
JS= I AQ (2) -2 

28 CONTINUE 
C READ FAST BLOCK 

CALL I TL)KW (1, LUM, FI+ LBLM, NBLM, IFI) 
JT=MIi40 (MMAT (1i3) , JK-JO) 
JU=JM 
JV=1 
JW=JS 
00 29 IC=JN, JF 

C" ELIMINATE AN 'INKNOWN 
ELT=1. u/A(JU) 
JX=O " 
JY=JV . 
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DO 30 ID=19JT 
ELTA=FI(JY) 

" IF (ABS(ELTA). LT. EPSA) GOTO 31 
C MODIFY AN EQUATION 

ELTU=ELTA*ELT 
JZ=JU+! 
LA=1 
00 32 "I E= I A, NSUBH 
IF (LA. GT. 1) GOTO 33 

C NUMBER OF COEFFICIENTS TO MODIFY FOR SUBREGION IA IS VARIABLE 
LH=Jib 
LC=JY+l 
GOTO 34 

33 LB=IAL(LA) 
LC=JX+IAQ(LA) 

34 CONTINUE 
IF (LB. EQ. 0) GOTO 35 
LD=JZ+Lt3-1 
00 36 iF=JZ, LD 
FI (LC)=FI (LC)-ELTB*A(IF) 
LC=LC+1 

36 CONTINUE 
JZ=JZ+LFi 

35 LA=LA+1 
32 CONTINUE 
31 JX=JX+JQ " 

JY=JY+JQ 
30 CONTINUE 

JU=JU+JI 
JV=JV+1 
JW=JW-1 

29 CONTINUE 
C TRANSFER TO OUTPUT BUFFER 

JU=JR-1 
00 37 IC=1, JT 
JW=JP+JU 
IF (JW. l_E. LBUF) GOTO 38 

'C EMPTY OUTPUT GUF FER 
CALL ITDRW (0, LUM, FO. LBLM, NBLM, IFO) 
JP=1 

38 CALL ITSET (FI(JV), FO(JP), JR) 
JV=JV+JO 
JP=JP+JR 

37 CONTINUE 
JO=JO+JT 
IF (JO. LT. JK) GOTO 28 

C WRITE LAST FAST BLOCK THIS SUBREGION 
CALL ITDNW (O, LUM, FO, LELM, NBLM. IFO) 

C NEW EOUATIOIN AND FILE FORMAT THIS SUBREGION 
MOT(IB)=JH 
MMAT(IB)=LBUF/JR 
JMAT(IB)=JR*MMAT(IB) 

19 JJ=JJ+NSUB 
17 CONTINUE 

JB=JB+JF 
IF (JD. EQ. JC) GOTO 39 

C MODIFY FORMAT OF EQUATIONS SUBREGION IA "" 
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IAL(1)=IAL(1)-JF 
GOT0 8 

.C POSITION AND LENGTH LAST REDUCED EQUATION SUBREGION IA 
39 MOTT(IA)=JH-JG 

" LUMF(IA)=IAO 
I CUE=JE-slOTT (I A) 

C' WRITE LAST BLOCK OF REDUCED EQUATIONS SUBREGION IA 
CALL ITORW (0, LUM, AO, LBLH, NBLM, IAO) 
JA=JA+NSUGH 

? CONTINUE 
C STRUCTURE OF SOLUTION FILES 

JA=1 
DO 40 IA=1, NSUB 
JB=1 
DO 41 IB=I, NSUB 

C POINTEt TO UNKNOWNS BELONGING TO SUBREGION IB 
IRO(JA)=JB 
JC=INK(JA) 
GOTO (42,43,44,45), JC 

42 JD=O 
GOTO 46 

43 JD=JEL(IB) 
GOTO 46 

44 JD=LEL(IB) 
GOTO 46 

45 JD=IEH(I6) 
46 IRL(JA)=JD 

JB=JB+JD 
JA=JA+1 

41 CONTINUE 
MOT(IM)=MOTS(IA)-NCC 
LENf3(IA)=NCC*MOT(IA) 
LENC(IA)=NCC*IEH(IA) 

40 CONTINUE 
C BACKWARD PASS 

LUC=LUCO 
JA=NSUB 

" JB=JA*JA 
JC=JB 

C POSITION OF LAST EQUATION, ALREADY IN CORE 
JD=ICUE 
DO 47 IA=1, NSUB 
IF (IA. (iT. 1) GOTO 48 
JF=IEH (NSIJB) 

C SOLVE LAST EQUATION 
ELT=1.0/AO(JD) 
JG=JD+ 1 
JH=JF 
DO 49 I6=19NCC 
B(JH)=AO(JG)*ELT 
JG=JG+ 1 
JH=JH+JF 

49 CONTINUE 
JE=NCC+2 
Jn=JD-JE 
JG=JF-1 

" IAI=LUMF (NSUO)-NBLM 
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GOTO 50 
C INTERACTION WITH HIGHER NUMBERED SUBREGIONS 

48 CONTINUE 
JG=IRQ (JC)'-1 
JF=rf0T (JA) -JG 
JH=NSUB 
JI=JB 
: 1J=IA-1 
DO 51 Ib=1+JJ 
JK=LENC(JH) 
CALL ITbUF (19LUC, C(1), C(JK)"LUO+IERR) 
CALL IT13UF (0, LUB"C(1), C(JK), LUO, IERR) 
JL=IRL(JI) 
IF (JL. EQ. O) GOTO 52 

C RETAIN SOLUTIONS SUBREGION JH REQUIRED FOR SUBREGION JA 
JM=IEH(JH) 
JN=1 
JO=IRQ: JI)-JG 
00 53 iC=19NCC 
CALL ITSET (C(JN), B(JO), JL) 
JN=JN+JM 
JO=JO+JF 

53 CONTINUE' 
52 JH=JH-1 

JI=JI-1 
51 CONTINUE 

REWIND LUC 
JG=IEH(JA) 
JE=HOTT(JA) 
IAI=LU14F (JA) 

50 CONTINUE 
JH=JG 
DO 54 IB=1. JG 
IF (JD. GT. O) GOTO 55 

C REFILL EQUATION BUFFER 
JI=IAI 
CALL ITORW (1bLUM, AO, L8LM, NBLM, JI) 
IAI=IAI-N3LM 
JD=ICUE 

55 CONTINUE 
C CALCULATE ONE UNKNOWN 

ELT=1.0/AO(JD) 
JI=JH 
JJ=JH+1 
JK=JF 
JL=JD+JE-i4CC 
00 56 IC=I+NCC 

C SUM OVER UNKNOWNS ALREADY CALCULATED 
SUM=0.0 
JM=JD+1 
DO 57 I D=J, 1, JK 
SUM=SUM+AO! JM)*B(ID) 
Jr4 Jrj+ 1 

57 CONTINUE 
B(JI)=(A0(JL)-SUM)*ELT 
JI=JI+JF 

" JJ=JJ+Jr 
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JK=JK+JF 
JL=JL+1 

56 CONTINUE 
JH=JH-1 
JE=JE+1 
JD=JD-JE 

54 CONTINUE 
C COMPRESS AND WRITE RESULTS 

JG=IEH(JA) 
JH=1 
JI_1 
00 58 IH=1 +NCC 
CALL ITSET (B(JH), C(JI)"JG) 
JH=JH+JF 
JI=JI+JG 

58 CONTINUE 
JG=LENC(JA) 
CALL ITBUF (09LU89C(1). C(JG), LUO+IERR) 
REWIND LUB 

C SWOP LOGICAL UNIT NUMBERS 
" JG=LUB 

LUB=LuC 
LUC=JG 
JA=JA-1 
JB=J9-NSUB 
JC=JC-NSUBH 

47 CONTINUE 
C ASSEMBLE RESULTS FOR ITRES 

JA=NSUB 
DO 59 IA=I, NSUi3 
JB=JA 
JC=NSUB 
JD=140T(IA) 
00 60 IB 19NSUB 

C READ RESULTS SUBREGION JC 
JE=LENC(JC) 
CALL ITBUF (1, LUC, C(1), C(JE), LUO+IERR) 
JE=IRL(JB) 
IF (JE. EQ. 0) GOTO 61 

C TRANSFER DATA TO FILE LUti 
JF=IRQ(JB) 
JG=JF 
IF (INK(JB). EQ. 3) GOTO 62 
JH=1 
GOTO 63 

62 JH=LED(JC)-JED(JC)+1 
63 JI=IEH(JC) 

DO 64 IC=19NCC 
CALL ITSET (C(JH), B(JG), JE) 
JG=JG+JD 
JH=JH+JI 

64 CONTINUE 
C CHECK WHETHER ANY MORE OF LUC NEED BE READ 

IF (JF. EQ. 1) G0T0 65 
61 JB=JB-1 

JC=JC-1 
60 CONTINUE 
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65 REWIND LUC 
C WRITE DATA FOR SUBREGION IA 

JD=LENB(IA) 
CALL ITtUF (0gLUB B(1). ti(JD), LUOsIERR) 
JA=JA+NSUB 

59 CONTINUE 
" REWIND LUB 

RETURN 
999 WRITE (LUO, 200) 
200 FORMAT 

1 47H UN COEFFICIENT DIAGONAL DE LA MATRICE EST ZERO) 
STOP 
END 

I 
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SUBROUTINE ITSSB (PIN., XA, Xd, XAI, LIN, NR, NI, IERR) 
C INTEGRATION SCHEME FOR SINGULAR CASE - XAI ARE 
C INTRINSIC COORDINATES OF FIRST ARGUMENT XA 

DIMENSION XA(3), Xb(24), XAI(2), NR(2), NI(20), 
1 LINK(4). XLIN(4), 1P(2), OtO(4), 
2 XI (2), XC(3). XD(9), XR(3) +DEX(2), DEY(2), DEZ(2) 

DATA MIT, STEP, EPS/10,0.6,0.01/ 
DATA MSS/20/ 
DATA MST/100/ 
DATA LINK/2,1,291/ 
DATA XLIN/1.0, -1.0, -1.0,1.0/ 
DATA 1P/2,1/ 
DATA DEO/1.0,1.0, -1.0, -1. O/ 
DATA NOMX. NOMN/6,2/ 
DATA N014U/3/ 
RNOMN=2*NOMN+1 
NOMXD=2*NOMX 
ASM=PIN/(NOMXD+1) 

C CONSTANT COORDINATE ON LINE 
JA=LINK(LIN) 
XI(JA)=XLIN(LIN) 

C VARIABLE COORDINATE 
JB=IP(JA) 
XI(JB)=O. O 

C ITERATE FOR MINIMUM DISTANCE TO LINE FROM XA 
CALL ITGEO (XBsXI, XC, XD, ELT, JERR) 
DO 1 I4=1,3 
XR(IA)=XA(IA)-XC(IA) 

1 CONTINUE 
CALL ITIPR (XR, XR, SUM) 
RO=SORT(SUM) 
JC=3* (Jd-1) +1 
DO 2 IA=1, MIT 
CALL 1TNOR (XR, XR, IERR) 
IF (IERR. NE. O) GOTO 3 

C COSINE ANGLE BETWEEN XD(JC), XR # LENGTH XD(JC) 
C AND DISTANCE MOVED**2 

GR=0.0 

. SUM=0.0 
JD=JC 
DO 4 IB=1,3 
ELT=XD(JD) 
GR=GR+ELT+rXR (I B) 
SUM=SUM+EIT*ELT 

" JD=JD+1 
4 CONTINUE 

IF (SUM. GE. 1. OE-20) GOTO 5 
C SINGULARITY 

IERR=1 
GOTO 3 

C XI CHANGE 
5 GR=RO*GR/SUM 

ELT=AHS (GR) 
IF (ELT. LE. STEP) GOTO 6 

C STEP TOO LARGE FOR SAFETY 
GR=GR*STEP/ELT 

6 CONTINUE 
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C ADJUST INTRINSIC COORDINATE 
ELT=XI(J4)+GR 
ELi=AtIAX1 (ELT. -1.0) 
XI(JB)=AMIN1(ELI, 1.0) 
CALL ITGEO (XH, XI "XC, XD+ELT9JERR) 
DO 7 IB=1.3 
XR(IB)=XA(IB)-XC(IB) 

7 CONTINUE. 
CALL ITIPR (XR, XR, SUM) 
RN=SQRT(SUM) 

C COMPARE CHANGE IN DISTANCE WITH DISTANCE 
ELT=KO-KN 
IF (ELT. LT. EPS*RN) G0T0 8 
RO=RN 

2 CONTINUE 
C DERIVATIVES FOR CALCULATION OF ASPECT RATIOS 
CWR TO INTRINSIC COORDINATES OF SEGMENT 

8 JC=1 
DO 9 IA=1.2 
CALL ITIPR (XD(JC)"XD(JC). SUM) 
DEX(IA)=0. S*SORT(SUM) 
JC=JC+3 

9 CONTINUE 
DET=DEO(LIN) 

CWR TO FIRST INTRINSIC-COORDINATE OF TRIANGLE 
DEY(1)=DEX(JB) - C SECOND 
SUM=0.0 
DO 10 IA=1.2 
ELT =0.5*(XI(IA)-XAI(IA))*DEX(IA) 
SUM=SUM+1LT*ELT ... 10 CONTINUE 
DEY(2)=SORT(SUM) 

C FIND HOw MANY SUBSEGMENTS EACH WAY 
DO 11 IA=1,2 
DER=DEY(IA) 

f RAON=RN 
DO 12 IB=1, MSS 

C ASPECT RATIO OF SUBSEGMENT 
ASP=DER/RADN 
IF (ASP**NOMXD. GE. ASM) GOTO 13 

C TAKE Id SUBSEGMENTS 
JC=IB 
G0T0 14 

13'RADN=RADN+RN 
12 CONTINUE 

JC=MSS 
14 NR(IA)=JC ", 
11 CONTINUE 

JC=NR(1)*NR(2) 
IF (JC. LE. MST) GOTO 26 

C REDUCE NUMBER OF SUBSEGMENTS 
ELT=JC 
ELTA=MST/ELT 
EITB=SQNT (ELTA) " NR (1) =NR (1) *ELT8 
NR(2)=MST/NR(1) 
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26 CONTINUE 
00 27 IA=1.2 
JC=NR(IA) 

" DEY(IA)=OEY(IA)/JC 
27 CONTINUE 

JC=NR(1) 
C. INTRINSIC COORDINATE OF TRIANGLE IS DESCENDING 
C FUNCTION OF SUBSEGMENT NUMBER 

MR=0.5*JC*(1.0-DET*XI(JB))+1.0 
MR=MINO(MR, JC) 

C CHOOSE ORDER OF FORMULA FOR EACH COLUMN OF SUBSEGMENTS 
DETA=1.0/JC 
DETB=0.5/NR(2) 
YA1=2.0*DETA*DET 
YA=DET-YAI 
JD=1 
DO 15 IA=1, JC 
IF (IA. EO. MR) GOTO 16 

C VARIABLE INTRINSIC COORDINATE 
XI(JB)=YA 
CALL ITGEO (X8, XI, XC, XD, ELT, JERR) 
SUM=0.0 
DO 17 I6=1,3 
ELT=: CA (I6) -XC (IS) 
SUM=SUM+ELT*ELT 

17 CONTINUE 
IF (SUM. GE. 1. OE-20) 'GOTO 18 

999 IERR=1 
5OTO 3 

C DERIVATIVES WR TO INTRINSIC COORDINATES OF SEGMENT 
18 JE=1 

DO 19 IB=1,2 
CALL ITIPR (XD(JE). XD(JE), SUMA) 
DEX(I6)=0.5*SORT(SUMA) 

"JE=JE+3 
19 CONTINUE 

C DERIVATIVES WR TO INTRINSIC COORDINATES OF SUBSEGMENT 
DEZ (1) =uF rA*OEX (Jß) 
SUMA=0.0 
00 20 IB=1,2 
ELT=DET6*(XI(IB)-XAI(I6))*DEX(IB) 
SOMA=SUtiA+ELT*ELT 

20 CONTINUE 
DEZ(2)=SQRT(SUMA) 
YA=YA-YAI 
GOTO 21 

C CRITICAL SUBSEGMENT 
16 CONTINUE 

IF (RN. LT. 1. OE-10) GOTO 999 
SUM=RN*KN 
DEZ(1)=DEY(1) 
OEZ(2)=OEY(2) 

21 CONTINUE' 
_ 00 22 I8=192 

ELT=DEZ(M) 
C ASPECT RATIO**2 
" ASP=ELT*ELT/SUM 
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ELTA=RNOMN 
ELTU=ASP**NOMN 
DO 23 IC=NOMN, NOMX 
IF (ELTA*ELTB. GT. PIN) GOTO 24 
JE=IC 
IF (NR(IA). GT. 1) GOTO 25 
JE=MMAXO (JE+NOMO) 
GOTO 25 

24 ELTA=ELTA+2.0 
ELTR=ELT8*ASP 

23 CONTINUE 
JE=NOMX 

25 NI(JD)=JE 
JD=JD+l 

22 CONTINUE 
15 CONTINUE 

3 CONTINUE 
RETURN 
END 



SUBROUTINE ITMKE (JA, XA, XB, UN, UT, TT, IERR) 
C CALCULATES KERNELS OF THE INTEGRAL EQUATION 

DIMENSION XA(3), X9(3), UN(3), UT(9), TT(9) 
COPMON/FIXE/ I DENT (8) , JfDENT (40) , IT EST q JOHºN, IF LAG (8) , NOPAR (15) , 

1 NSYM, ISYM(3) "NX9, NEA, NSUB", JSUB(10), YM(1O) "PR(1O), 
2 DEN(250) , NLIl3, LUA, LUB. LUR, LBLM, NBLM, LENR, 
3 ECH, YMO 

DATA HPi/25.13274123/ 
IF (JA. EQ. O) GOTO 1 

C ELASTIC CONSTANTS FOR SUBREGION JA 
COA=PR(JA) 
COED= (1.0-COA) *HPI 
COC=1.0-2.0*COA 

C SCALE FACTOR FOR KERNEL U 
UNA=YMO/ECH 
EUB=UNA*(1.0+COA)/(COB*YM(JA)) 
EUA=EUB*(3.0-4. O*COA) 

C FOR KERNEL T 
ETA=COC/CUB 
ETB=3.0/COB 
GOTO 2 

C CALCULATE KERNELS 
1 CONTINUE 

COA=XA(1)-XB(1) 
COB=XA (2) -XB (2) 
COC=XA(3)-XB(3) 
SUM=COA*COA+COB*COB+COC*COC 
IF (SUM. GT. 1. OE-20) GOTO 3 
IERR=1 
GOTO 2 

3 CONTINUE 
RADS=1.0/SUM 

C RECIPROCAL OF DISTANCE 
RAD=SORT(RADS) 
COA=COA*RAD 
COB=COB*RAD 
COC=COC*RAD 

C PRODUCTS OF DIRECTION COSINES 
"COAA=COA*COA 

COBB=COB*COB 
COCC=COC*COC 
COAB=COA*COB 
COBC=COB*COC 
COCA=COC*COA 
UNIS=UN (1) 
UN9=UN(2) 
UNC=UN (: 3 ) 
UNCO=UIIA*COA+UNB*COB+UNC*COC 

C SCALAi MULTIPLIERS 
EUAR=EUA*IAD 
EUIR=EUB*RAD 
ETAR=ETA*RADS 
ETARN=ETAP UNCO 

_ ET; 3RN=ET8*PADS*UN(. O 
C KERNEL U 

UT (1) =EUAR+EUBR*COAA 
UT (4) =EUBR*COAB 
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UT(5)=EUAR+EUBR*COBR 
,,.., UT (7) =EU8R*COCA 

UT (8) =EUBR*C08C 
UT(9)=EUAR+EUBR*COCC 
UT(2)=UT(4) 
UT(3)=UT(7) 
UT(6)=UT(8) 

C SYMMETRIC COYPONENT OF KERNEL T 
TT(1)=ETARN+ETfRN*COAA 
TAB=ETdRN*COAB 
TT(5)=ETARN+ETeRN*COBB 
TCA=ETz3RN*000A 
TBC=ETBRN*COBC 
TT(9)=E1"ARN+ETBRN*COCC 

C ANTISYMMETRIC COMPONENT 
AAA= (UNP *COB-UNB*COA) *ETAR 
ABC=(UNB*COC-UNC*COB)*ETAR 
ACA=(UNC*COA-UNA*COC)*ETAR 

C OFFDIAGUNAL T 
TT(2)=TAä+AA8 
TT(3)=TCA-ACA 
TT (4) =TAB-AAB 
TT (6) =TUC+ABC 
TT(7; =TCA+ACA 
TT(8)=TBC-ABC 
IERR=O 

2 CONTINUE 
RETURN 
END 

SUBROUTINE ITMAT (LUS, LUM, LBLM, NBLM, JA, KMAT, JMAT) C WRITES JA SOL BLOCKS OF t. QUATIONS TO SEQUENTIAL AND RANDOM C ACCESS FILES 
COF1'"1ON/CHANGE/X(13900)"A(7230) 
DATA LUO/6/ 
JB=1 
JC=JMA1 
00 1 IA=1, JA 
JD=Jt3 
DO 2 IB=19NBLM 
CALL WHITMS (LUM, A(JD), LßLM, KMAT) 
KMAT=KMAT+1 
JD=JD+LdLM 

2 CONTINUE 
C FOR CALCULATION OF RESIDUES 

CALL ITbUF (O, LUS, A (JB) ,A (JC) , LUO, IERR) 
JB=JB+JMAT 
JC=JC+JMAT 

1 CONTINUE 
RETURN 
END 

c 
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SUBROUTINE ITSHA (NONO, JA, XI, FUN) 
C CALCULATES SHAPE FUNCTION JA AT POINT XI 

DIMENSION XI(2), IP(2), IXLS(4), XLS(48), 
1 ICOP(4), IC0(12), XIA(2), XIS(2) 

DATA IP/2,1/ 
DATA ICOP/19191,5/ 
DATA ICO/2,192,1,2,2+191,2,2,1,1/ 
QATA IXLS/1,1,9,25/ 
DATA XLS/1.0,1.09 -1.0,1.0+ -1.0+-1.09 1.0, -1.09 

1 1.091.09 -1.0,1.09 -1.09-1.09 1.0, -1.0, 
2 0.0,1.0, -1.0,0.0,0.04-1.0,1.0,0.0, 
3 1.0,1.00 -1.0,1.0, -1.09-1.0,1.0, -1.0, 
4 0.3333333333,1.0, -0.333333333391.09 
5 -1.0,0.3333333333, -1.09-0.3333333333, 
6 -0.33333333339-1.0,0.33333333339-1.0, 
7 1.0, -0.3133333333,1.0,0.3333333333/ 

JB=2*(JA-1)+IXLS(NONO) 
DO 1 IA=1,2 
ELT=XLS(JB) 
XIA(IA)=ELT 
XIS(IA)=ELT*(XI(IA)+ELT) 
JB=JB+1 

1 CONTINUE 
IF (JA. GT. 4) GOTO 2 

C CORNER FUNCTION 
PROD=XIS(1)*XIS(2) 
GOTO (494,5,6), NONO 

C LINEAR 
4 FUN=0.25*PROD 

GOTO 7 
C PARABOLIC 

5 FUN=0.25*PROD*(XIA(1)*XI! ])+XIA(2)*XI(2)-1.0) 
GOTO 7 

C CUBIC 
6 FUN=0.03125`PROD*(9.0*(XI(1)*XI(1)+XI(2)*XI(2))-10.0) 

GOTO 7 
C EDGE FUNCTION 

2 CONTINUE 
JB=ICOP(NONO)+JA-5 
JC=ICO(JU) 
JD=IP(JC) 
SUMP=X I (JD ) 
ELT=XIS (JC) * (I . 0-SUM*SU: 1) 
IF (NONU. E0.4) GOTO 8 

C PARABOLIC 
FUN=0.5*ELT 
GOTO 7 

C CUBIC 
8 FUN=0.28125*ELT*(1.0+9.0*XIA(JD)*SUM) 
7 CONTINUE 

RETURN 
END 
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SUAROUTINE ITSHH (NONO, JA, XI, FUN, DER) 
C CALCULATES SHAPE FUNCTION AND DERIVATIVES 

DIMENSION XI(2)90ER(2)9 
1 IP(2), IXLS(4), XLS(48), ICOP(4), ICU(12), 
2 XIA(2), XIS(2) 

DATA IP/? _91/ DATA ICOP/1,191,5/- 
DATA ICO/2,1,2_, 1e2,2,1.19292,1,1/ 
DATA IXLS/1,1,9,25/ 
DATA XLS/1.0,1.0, -1.0,1.0+ -1.09-1.0,1.0, -1.09 

1 1.0,1.09 -1.0,1.0, -1.09-1.0,1.0, -1.0, 
2 0.091.09 -1.0,0.09 0.09-1.0,1.0,0.0, 
3 1.0,1.0, -1.0,1.09 -1.0, -1.0,1. u, -1.0, 
4 0.3333333333+1.09 -0.3333333333,1.0, 
5 -1.0,0.33333333339 -1.0, -0.33333333339 
6 -0.3333333333, -1.0,0.33333333339-1.09 
7 1.0, -0.33333333339 1.090.3333333333/ 

JB=2*(JA-1)+IXLS(NONO) 
00 1 IA=1,2 
ELT=XLS(JB) 
XIA(IA)=ELT 
XIS(IA)=ELT*(XI(IA)+ELT) 
JB=JB+ 1 

1 CONTINUE 
IF (JA. GT. 4) GOTO 2 

C CORNER FUNCTION 
PROD=XIS (1) *XIS (2) 
GOTO (494,596) 9NONO 

C LINEAR 
4 FUN=0.25*PROD 

DER(1)=0.25*XIA(1)*XIS(2) 
DER(2)=0.25*XIA(2)*XIS(1) 
GOTO 7 

C PARABOLIC 
5 SUt4=XIA(1)*XI(1)+XIA(2)*XI(2)-1.0 

FUN=0.25*PROD*SUM 
DER(1)=0.25*XIP(1)*(PROD+XIS(2)*SUM) 
DER(2)=0.25*XIA(2)*(PROD+XIS(1)*SUM) 
GO. TO 7 

C CUBIC 
6 ELT=9.0*(XI(1)*XI(1)+XI(2)*XI(2))-10.0 

FUN=0.03125*PROD*ELT 
PROD=18.0*PROD 
DER(1)=U. 03125*(PROD*XI(1)+XIA(1)*XIS(2)*ELT) 
DER(2)=0.03125*(PROD*XI(2)+XIA(2)*XIS(1)cELT) 
GOTO 7 

C EDGE FUNCTION 
2 CONTINUE 

JB=ICOP(NONO)+JA-5 
JC=ICO(JB) 
JD=IP(JC) 
ELT=XI(JD) 
ELTA=1. U-ELT*ELT 
ELTF3=X IS (JC) *ELTA 
IF (NONO. EQ. 4) GOTO 8 

C PARABOLIC 
FUN=0.5*ELTB 
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DER(JC)=0. S*XIA(JC)*ELTA 
DER(JD)=-ELT*XIS(JC) 
GOTO 7 

C CUBIC 
8 ELTC=1.0+9.0*XIA(JD)*ELT 

FUN=0.28125*ELTB*ELTC 
DER(JC)=0.28125*XIA(JC)*ELTA*ELTC 
DER(JD)=0.28125#XIS(JC)*(9.0*ELTA*XIA(JD)-2.0*ELT*ELTC) 

7 CONTINUE 
RETURN 
END 

SUBROUTINE ITUNS (JA, JB, JC) 
C UNPACKS JCTH INTEGER OF JA 

DIMENSION JA(1), MOVE(4) 
DATA MOVE/0, -15, -30, -45/ 
DATA NBYTP, NBYTN/2+-2/. 
DATA IQU/77777B/ 

C WORD-1 
JD=SHIFT(JC-19NBYTN) 

C POSITION IN WORD 
JE=JC-SHIFT(JD, NBYTP) 
JF=S'iIFT (JA (JD+1) , MOVE (JE) ) 
JB=AND(JF9IOU) 
RETURN 
END 

SUBROUTINE ITNLG (JA, NLsNLV) 
C UNPACK NL 

DIMENSIDN'NLV(3)+NLVM(3) 
DATA NLM/777713/ 
DATA NLVM/100008,20000B9400008/ 
NL=AND(JAsNLM) 

C FIXITIES 
DO 1 IA=1,3 
NLV (I A) =A,; D (JA., NLVM (I A) ) 

1 CONTINUE 
RETURN 
END 

SUBROUTINE ITNCO (JA+NCOA, NCOB) 
C UNPACKS COEFFICIENT OF NCO 

DIMENSION NCOA(3), NCOB(3), NCM(3), NCN(3) 
DATA NCM/108,20B, 40Ei/ 
DATA NCM/1d, 2B, 46/ 
DO 1 IA=1,3 

C ELIMINATION OF EQUATIONS RY SYMMETRY 
NCOA(IA)=ANU(JA, NCM(IA)) 

C TRACTION "UNKNOt NS 
NCOB(IA)=AND(J! %, NCN(IA) ) 

I CONTINUE 
RETURN 
END 

- 240 - 
V 



SUBROUTINE ITBUF (JA, LUF, JE3, JC, LUO, IERR) 
IF (JA. EQ. 1. OR. JA. EQ. 3) GOTO 1 
BUFFER OUT (LUF, O) (JB, JC) 
GOTO 2 

I BUFFER IN (LUF, O) (JB, JC) 
2 CONTINUE 

IF (UNIT(LUF). GT. -0.5) GOTO 3 
IERR=O 
GOTO 4 

C TROUBLE 
3 CONTINUE 

' IF (JA. GE. 2) GOTO 5 
WRITE (LUO, 100) 

100 FORMAT 26H ERREUR POUR BUFFER OUT/IN) 
STOP 

5 IERR=1 
4 CONTINUE 

RETURN 
END- 

SUBROUTINE ITNOR (XA, XB IERR) 
C PUTS NORMALISED XA IN XB 

DIMENSION XA(3)ºXR(3) 
SUM=0.0 
DO 1 IA=193 
ELT=XA(IA) 
SUM=SUM+ELT*ELT 

} CONTINUE 
IF (SUM. GE. 1. OE-10) GOTO 2 
IERR=1 
RETURN 

2 CONTINUE 
SUM=1.0/SQRT(SUM) 
DO 3 IA=1,3 
XB (IA) =XA (IA) 'SUM 

3 CONTINUE 
IERR=O 
RETURN 
END 

SUBROUTINE ITVPR (X4, XBgXC) 
C PUTS VECTOR PRODUCT XA*XB IN XC 
C XC MAY NOT BE THE SAME AS XA OR XB 

DIMENSION XA(3), XB(3), XC(3)"IP(3) 
DATA IP/293,1/ 
DO 1 IA=1+3 
JA=IP(IA) 
JB=IP(JA) 
XC(IA)=XA(JA)*XB(JB)-XA(JB)*XB(JA) 

I CONTINUE 
RETURN 
END 
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SUBROUTINE ITTRA (XA, DCO, XB+JA) 
C TRANSFORM XA INTO NEW COORDINATES, PUT RESULT IN XB 

C DCO ARE DIRECTION COSINES OF NEW AXES 
" DIMENSION XA(1)+DCO(9), Xb(1), XC(3) 

JB=1 
DO 1 IA=193 

" SUM=0.0 
JC=1 
DO 2 IB=193 
SUM=SUM+DCO(JB)*XA(JC) 
JB=JB+1 
JC=JC+JA 

2 CONTINUE 
XC(IA)=SUM 

I CONTINUE 
JB=1 
DO 3 1A=1,3 
XB (J3) =XC (IA) 
JB=JB+JA 

3 CONTINUE 
RETURN 

. END 

SUBROUTINE ITIPR (XA, XB, LT) 
C PUTS INNER PRODUCT XA, X8 IN ELT 

DIMENSION XA(3), XB(3) 
ELT=0.0 
DO 1 IA=193 
ELT=ELT+XA(IA)*XB(IA) 

1 CONTINUE 
RETURN 
END 

SUBROUTINE ITZER (XA, JA) 
C ZEROISE JA ELEMENTS OF XA 

DIMENSION XA(1) 
DO 1 IA=1, JA 
XA(IA)=0.0 

r CONTINUE 
RETURN 
END 

SUBROUTINE ITSET (XA, XA, JA) 
C TRANSFER JA ELE14ENTS OF AA TO XB 

DIMENSION XA(1), XB(i) 
DO 1 IA=1, JA 
XB(IA)=XA(1A) 

I CONTINUE 
RETURN 
END 
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SUBROUTINE ITTRS (DCA, DCB, iERR) 
C INVERTS 3*3 MATRIX 

DIMENSION DCA(9) DCB(9) 
CALL ITVPR (DCA(4)+DCA(7), DCB(1)) 
CALL ITVPR (DCA(7), DCA(1), DCB(4)) 
CALL ITVPR (DCA(1), DCA(4)+DCB(7)) 

C DETERMINANT 
CALL ITIPR (DCA, DCR, ELT) 
IF (ABS(ELT). GE. 1. OE-10) GOTO 1 
IERR=1 
GOTO 2 

I ELT=1.0/ELT 
DO 3 IA=1,9 
DCB(IA)=0Ct (IA)*ELT 
CONTINUE 
ELT=DCB(2) 
DCB(2)=UCB(4) 
DCB(4)=ELT 
ELT=DCE3 (3) 
DCB (3)=UCB (7) 
DCB(7)=ELT 
ELT=DCJ(6) 
DCB(6)=DCB(8) 
DCB (8) =E. L1 
IERR=O 

2 CONTINUE 
RETURN 
END 

SUBROUTINE ITSEI (KA, KB, JA) 
DIMENSION KA(1), KB(1) 

" DO 1 IA=1, JA S 
KB(IA)=KA(IA) 

I CONTINUE - 
RETURN 
END 

SUBROUTINE ITPIK (X, KEL, XA, JA) 

.C PICK OUT COORDINATES OF NODES OF SEGMENT JA 
C KEL IS PACKED 

DIMENSION X(1)'KEL(1), XA(24), KELT(8) 
JC=8*JA 
JB=JC-7 
CALL ITUNV (KEL+KELT, JB, JC) 
JB=1 
DO 1 IA=1,8 
JC=3*(KELT(IA)-1)+1 
CALL ITSET (X(JC), XA(JB)+3) 
JB=JB+3 

1 CONTINUE 
RETURN 
END 
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SUBROUTINE ITGEO (XA, XI, XH, XC, AREA, IERR) 
C GIVEN CARTESIAN COORDINATES OF NODES AND INTRINSIC COORDINATES 
C OF POINT, FINDS CARTESIAN COORDINATES, TANGENT AND NORMAL 

DIMENSION XA (24) , XI (2) , X8 (3) , XC (9) , XD (3) , 
1 NO(8), NOD(8), FOR(8), FOIU(16) 

DATA NO/1,294,3,6, R95,7/ 
DATA NOD/1,3+7,5,11,15,9,13/ 

C" INTRINSIC COORDINATES 
XIA=XI(1) 
XIB=XI(2) 
XIAS=1.0-XIA*XIA 
XIBS=1.0-XIB*XIB 

C INTRINSIC COORDINATE OF NODE, AND INTRINSIC COORDINATE PRODUCTS 
YA=1.0 
PRODA=X IA 
PRODB=XIB 
JA=1 
JB=5 
JC=7 
DO 1 IN=1,2 
SUMA=1. O+PRODA 
SUMS=1. O+PROD8 

C SHAPE FUNCTION FOR MIDSIDE NODE ON X1=0 
JD=Nn(Jb) 
FOR (JD) =0.5*SUMB*XIAS 

C DERIVATIVES W. R. TO X1. XZ 
JD=NOD(JH) 
FORD (JD) =-SUMB*XIA 
FORD(JD+1)=0.5*YA4XIAS 

C SHAPE FUNCTION FOR MIDSIDE NODE ON X2=0 
JD=NO(JC) 
FOR(JD)=O. S*SUMA*XIBS 

C DERIVATIVES W. R. TO X1, X2 
JD=NOD(JC) 

. 
FORD(JD)=0.5*YA*XI2S 
FORD(JD+1)=-SUMA*XIB 

C INTRINSIC COORDINATE X1+ AND INTRINSIC COORDINATE PRODUCT 
YC=1.0" 
PRODC=XIA 
DO 2 I8=1,2 
SUMC=1. O+PRODC ' 

" SUM=PRODC+PRODB 

-C SHAPE FUNCTION FOR CORNER NODE, X1 VARIES MORE RAPIDLY 
JD=NO (JA) 
FOR(JD)=0.25*SUMC*SUMB*(SUM-1.0) 

C DERIVATES W. R. TO X1, X2 
JD=NOD (JA) 
FORD(JD) =0.25*YC*SUMB* (SUM+PRODC) 
FORD (JD+ 1) =0.25*YA*SUMC* (SUM+PRODB) 
YC=-YC 
PRODC=-PRODC 
JA=JA+1 

2 CONTINUE. . YA=-YA "' 
-PRODA=-PI30DA 
PRODB=-PROOB 
JB=JB+ 1 
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JC=JC+1 
1 CONTINUE 

C CARTESIAN COORDINATES AND TANGENTS TO COORDINATE LINES 
CALL ITZER (X6,3) 
CALL ITZER (XC, 3) 
CALL ITZER (X093) 
JA=1 
JB=1 
DO 3 IA=1,8 
ELT=FOR(IA) 
ELTA=FORD(JA) 
ELTB=FORD(JA+1) 
DO 4 18=193 
YA=XA(JB) 
XB(IB)=Xb(It3)+ELT*YA 
XC(IB) =XC(IB) +ELTA*YA 
XD(IB)=XD(IB)+ELTB*YA 
JET=J8+1 

4 CONTINUE 
JA=JA+2 

3 CONTINUE 
CALL ITSET (XD, XC(4), 3) 

C JACOBIAN AND NORMAL 
CALL ITVPR (XC, XC(4), XC(7)) 
CALL ITIPR (XC(7), XC(7), SUM) 
AREA=SQRT(SUM) 
CALL ITNCK (XC(7)+XC(7), IERR) 
RETURN 
END 

SUBROUTINF ITUNV (JA, JR, JC"JD) 
C UNPACKS INTEGERS JC-JD OF JA 

DIMENSION JA(1), J6(1), MOVE(4) 
DATA MOVE/0, -15, -30, -45/ 
DATA N: 3YTP, NBYTN/es-2/ 
DATA IOU/77777B/ 
DATA IBYTi, N9ME3YT/-15.4/ 

C 
. 
WORD-1 AND POSITION IN WORD 
JE=SHIFT(JC-1+NBYTN) 
JF=JC-SHIFT(JE, NSYTP) 
JE=JE+1 
MOT=SHIFT(JA(J'Z), MOVE(Jh)) 
JG=JD-JC+l 
00 1 IA=1, JG 
IF (JF. LE. NBYT) GOTO 2 

C NEXT WORD 
JE=JE+1 
MOT=JA(JE) 
JF=1 

2 CONTINUE 
JB (IA) =AND (tIOT, IOU) 
JF=JF+1 

C LINE UP NEXT INTEGER 
MOT=SHIFT(MOT, IBYTN) 

1 CONTINUE 
RETURN 
END 
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SUBROUTINE ITMIN (XA, 'XB+RAD, XI, IERR) 
C FINDS MINIMUM DISTANCE FROM XA TO 

"C SEGMENT WITH NODES XB 
DIMENSION XA(3), XB(24), XI(2), YI(2), 

1 XC(3), XD(9), XDH(3)"XR(3), GR(2), XE(3) 
EQUIVALENCE (AOH(1), XD(4)), (GRA, GR(1)), (GR9, GR(2)) 
DATA MIT, STEP, EPS/10,0.6,0.01/ 
STEPS=STEP*STEP 

C BEGIN FROM CENTRE 
YI(1)=0.0 
YI(2)=O. O 
CALL ITGEO (XB, YI, XC, XD, ELT, JERR) 
DO 1 IA=1,3 
XR(IA)=XA(IA)-XC(IA) 
CONTINUE 
CALL ITIPR (XR, XR, SUM) 
RO=SQRT(SUM) 
DO 2 IA=1, MIT 
CALL ITNOR (XR, XR, IERR) 
IF (IERR. NE. O) GOTO 3 

C GRADIENT OF DISTANCE IN INTRINSIC COORDINATE DIRECTIONS 
JA=1 
DO 4 IB=1,2 
CALL ITIPR (XD(JA), XR, GR(IB)) 
JA=JA+3 - 

ý4 CONTINUE 
C CARTESIAN COORDINATE CHANGE CORRESPONDING TO 
C INCREMENT (GRA, GRB) AND DISTANCE MOVED**2 

SUM=0.0 
DO 5 IB=1,3 
ELT=GRA*XD(IB)+GRB*XDH(I8) 
XE (IB) =ELT 
SUM=SUM+ELT*ELT 

5 CONTINUE 
IF (SUM. GE. 1.0E-20) GOTO 6 

C EXTREMUM 
RN=RO 
GOTO 7 

C COSINE. ANGLE BETWEEN XR. XE # LENGTH XE 
6 CALL ITIPR °(XE, XR. ELT) 

C RATIO DISTANCE TO BE MOVED/LENGTH XE 
FACT=RO*ELT/SUM 
GRA=GRA*FACT 
GRB=GRB*FACT 
SUM=GRA*GRA+GRB*GRB 
IF (SUM. LE. STEPS) GOTO 8 

C STEP TOO LARGE FOR SAFETY 
FACT=STEP/SQRT(SUM) 
GRA=GRA*FACT 
GRB=GRB*FACT 

8 CONTINUE 
C ADJUST INTRINSIC COORDINATES 

DO 9 IE=1,2 
ELT=YI (It)+GR(IB) 

C STAY INSIDE SEGMENT 
ELT=AMAX1(ELT, -1.0) 
YI (IB) =AMINI (ELT, 1.0) 

ýý 

r s 
., ,ý ýýý 

i 
., 

-246- 



L 

9 CONTINUE ... CALL ITGEO (X6, YI, XC, XD%ELT, JERR) 
DO 10 IB=1,3 

" XR(IB)=XA(. IB)-XC(iB) 
10 CONTINUE 

CALL ITIPP (XR, XR, SUM) 
RN=SORT (SUP4) 

C COMPARE CHANGE IN DISTANCE WITH DISTANCE 
7 ELT=RO-RN 

IF (ELT. LT. EPS*RN) GOTO 11 
RO=RN 

2 CONTINUE 
11 RAD=RN 

XI (1)=YI (1) 
XI(2)=YI(2) 

3 CONTINUE 
RETURN 
ENO 

SUBROUTINE ITNCH (JA"NCOH, NCOA, NCOB) 
C UNPACKS NINE BITS OF NCO 

DIMENSION NCOH(3), NCOA(3), NCOB(3), 
1 NCH(3) +NCM(3), NCN(3) 

DATA NCH/1008,200ß, 400A/ 
DATA NCM/108,20f3,408/ 
DATA NCN/18,28,48/ 
DO 1 IA=1,3 

C SUBSTITUTION FOR REDUNDANT TRACTIONS 
NCOH(IA)=AND(JA, NCH(IA)) 

C SEE ITNCO 
NCOA(IA)=AND(JA, NCM(IA) ) 
NCOB(IA)=AND(JA, NCN(IA)) 

I CONTINUE 
RETURN 
END 

SUBROUTINE ITDCO (JA, J: ß,. IDCO, DCO, DCA) 
C PICK OUT DIRECTION COSINES FOR TRIPLE JA 
C JB IS VALUE OF NCO 

DIMENSION IDCO(1), OCO(1), DCA(9), 0EL(9) 
DATA DEL/1.0,0.0: 0.09 0.0,1.0,0.0,0.0,0.0,1.0/ 
JC=AND(J8,7B) 
IF (JC. EO. OB) GOTO 1 
CALL ITUNS (IDCO, JC, JA) 
JD=9* (JC-1) +1 
CALL ITSET (DCO(JD), DCA, 9)' 
GOTO 2 

I CALL ITSET (DEL, DCa99) 
'2 CONTINUE 

RETURN 
END 
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SUBROUTINE ITSSA (MODE, PIN, XA, XB, NR, NI, IERR) 
C DETERMINES THE INTEGRATION SCHEME FOR CASE IN WHICH 

.C FIRST ARGUMENT OF KERNFLS IS NOT IN SEGMENT 
C MODE=1 FOR ITFOR, MODE=2 FOR ITINT 

DIMENSION XA (3) , X8 (24) , NR (2) , NI (200) , ZERO (2) + 
1 XI(2), YI(2), XC(3). XD(9), MR(2), DE(2) 

DATA ZERO/0.0,0.0/ 
DATA MSS/2U/ 
DATA MST/100/. 
DATA NOMX. NOMN/6+2/ 
DATA NOMO/3/ 
RNOMN=2*NOMN+1 
NOMXD=2*NOMX 
IF (MOOE. EO. 1) GOTO 18 
RNOMO=NOMN+1 
RNOMI=1.0 
ASM=PIN/((NOMXD+1)*(NOMX+1)) 
GOTO ly 

18 RNOMO=1.0 
RNOMI=0.0 
ASM=PIN/(NOMXD+1) 

19 CONTINUE 
C MINI'1UM DISTANCE 

CALL ITMIN (XA, X8, RAD, XI, IERR) 
IF (IERR. NE. O) GOTO 1 

C DATA FOR CALCULATING ASPECT RATIO 
CALL ITGEO (XB, ZERO, XC, XU, ELT, JERR) 
JA=1 
DO 2 IA=1'p2 

C, DERIVATIVE FOR ASPECT RATIO 
CALL ITIPR (XD(JA), XD(JA), SUM) 
DER=0.5*SORT(SUM) 

C' FIND HOW MANY SUBSEGMENTS THIS DIRECTION 
RAD. N=RAD 
00 3 IB=1"MSS 

C ASPECT RATIO OF SUBSEGMENT 
ASP=OER; RADN 
IF (ASP"'NOMXU. GE. ASM) GOTO 4 

C CRITERION CAN BE MET WITH 18 SUBSEGMENTS 
JB=IE3 
GOTO S 

4 RAUN=RADN+RAD 
3 CONTINUE 

JB=MSS 
5 NR(IA)=J8 

JA=JA+3 
2 CONTINUE 

JA=NR (1) *NR (2) 
IF (JA. LE.! "+ST) GOTO 20 

C REDUCE NUMBER OF SUBSEGMENTS 
ELT=JA 
ELTA=MST/ELT 
ELTB=SORT(ELTA) 
NR(1)=NR(1)*ELTB 
NR(2)=MST/NR(1) 

20 CONTINUE 
DO 21 IA=1,2 
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JB=NR(IA) 
C INTRINSIC COORDINATE TAKEN TO BE DESCENDING 
C FUNCTION OF SUBSEGMENT NUMBER 

JC=0.5*JEI*(1.0-XI(IA))+1.0 
MR(IA)=t4IN0(JCsJB) 

C DERIVATIVE FOR ASPECT RATIO OF A SUBSEGMENT 

" DE(I4)=DER/JB 
21 CONTINUE 

C CHOOSE ORDER OF FORMULA FOR EACH SUBSEGMENT 
JA=NR(1) 
JB=NR(2) 
JC=MR(1) 
JD=MR (2) 0 JE=1 

. YAI=2.0/JA 
YBI=2.0/JB 
YA=1.0-YAI 
DO 6 IA=1, JA 

C FIRST ! NTRINSIC COORDINATE OF NEAREST POINT 
IF (IA. EO. JC) GOTO 7 
YI (1)=YA 
YA=YA-YAI 
GOTO 8 

7 YI (1! =XI (1) 
8 YB=1.0-YBI 

DO 9 Iß=1, JB 
C SECOND INTRINSIC COORDINATE OF NEAREST POINT 

IF (IH. EO. JD) GOTO 10 
YI (2) =YB 

" YB=Yß-YBI 
GOTO 11 

1.0 YI (2)=X? (2) 
11 CONTINUE 

C CALCULATE ASPECT RATIO**2 OF SEGMENT 
CALL ITGEO (XB, YI, XC+XD+ELT, JERR) 
SUM=0.0 
00 12 IC=1.3 
ELT=XA(iC)-XC(IC) 
SUM=SUM+ELT*ELT 

12 CONTINUE 
IF (SUM. GE. 1. OE-20) GOTO 13 
IERR=1 
GOTO 1 

13 CONTINUE 
DO 14 IC=1,2 
ELT=DE(IC) 

C ASPECT RATIO**2 
ASP=ELT*ELT/SUM 
ELTA=RNOi1N 
ELTB=RNOMO 
ELTC=ASPS*NOMN 
00 15 ID=N0t"1N, NOMX 
IF (ELTA*ELTB*ELTC. GT. PIN) GOTO 16 

C TAKE It) INTEGRATION POINTS IN DIRECTION IC 
JF=ID 
IF (NR(IC). GT. 1) GOTO 17 
JF=MAXO(JFsNOMO) 
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GOTO 17 
16 ELTA=ELTA+2.0 

ELTB=ELTb+'NOMI 
ELTC=ELTC*ASP 

15 CONTINUE 
JF=NOMx 

17 NI(JE)=JF 
JE=JE+ 1 

14 CONTINUE 
9 CONTINUt 
6 CONTINUE 
1 CONTINUE 

RETURN 
END 

SUBROUTINE ITSWO (JA, J3) 
C SWOP JP. AND JB 

JC=JB 
JB=JA 
JA=JC 
RETURN 
END 

SUBROUTINE ITDRW (MODE, LUM, AtLBLMsNBLM, IAO) 
C READS OR WRITES ONE SOL BLOCK OF EQUATIONS 

DIMENSION A(1) 
JA=1 
DO 1 IA=1, NBLM 
IF (MODE . NE. O) GOTO 2 
CALL WRITMS (LUM, A(JA), LBLM, IA0,1) 
t, OTO 3 

.2 CALL READMS (LUM, A (JA) , LBLM: I AO ) 
3 IAO=IAO+1 

JA=JA+LE; LM - 
1'CONTINUE 

RETURN 
END, 
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