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UNIVERSITY OF SOUTHAMPTON

ABSTRACT

Faculty of Mathematics

Doctor of Philosophy

SYMMETRIES AND AUTOMORPHISMS OF COMPACT

RIEMANN SURFACES

by Paul Daniel Watson

In this thesis we deal with compact Riemann surfaces, in fact mainly those uni-
formized by normal subgroups of Fuchsian triangle groups. A symmetry of such
a surface is an anti-conformal involution mapping the surface to itself. Each sym-
metry is given a species which completely classifies its topological action on the
surface. We examine an oversight in an important Theorem of Singerman's and
try to mend it. In so doing we find a kind of symmetry not anticipated by Singer-
man. Chapter four contains the symmetry types of all Riemann surfaces with
large cyclic automorphism groups. Harnack gave an upper bound on the number
of curves fixed by a symmetry of a surface of a particular genus, the 'unexpected'
symmetries mentioned above are the only symmetries of the surfaces in Chapter
four to attain that bound. In Chapter five we give a similar treatment to those
surfaces with large non-cyclic abelian automorphism groups. Harnack's bound is
not attained by any symmetry of any of these surfaces. The Appendix chiefly
accompanies Chapters four and five and looks in some detail at the inclusions
between triangle groups and the NEC groups that contain them with index two.

In Chapter six we turn our attention to maps and hypermaps, lying on ori-
entable, connected surfaces without boundary. Such objects can naturally be
thought of as lying on those Riemann surfaces in the scope of this thesis. These
surfaces, together with the maps and hypermaps themselves, are receiving much
attention at the moment in connection with Belyi's Theorem, which implies that
they are precisely the surfaces corresponding to the algebraic curves defined over
algebraic number fields. The maps and hypermaps that we deal with are all regu-
lar and their face centres, vertices and edge centres are important in the geometric
and combinatorial properties of the maps and hypermaps. We call these points
'geometric points'. Weierstrass points are right at the heart of Riemann surfaces
and we determine whether the 'geometric' points of regular maps and hypermaps
with abelian automorphism groups are Weierstrass points or not. Finally we cal-
culate the weight at each of the 'geometric' points of all the regular maps of genus
two, three, four and five.
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Introduction

Riemann surfaces were introduced as the "right" domain for certain functions,

in order to make them one-to-one. The uniformization theorem of Poincare, Klein

and Koebe made it possible to prove that every connected Riemann surface, of

genus greater than one, is conformally equivalent to the upper half plane U, quo-

tient some subgroup of PSL(2,R) that acts discontinuously on U. Furthermore,

the quotient of the normalizer of the subgroup by the subgroup itself is isomorphic

to the full group of conformal automorphisms of the surface. Fuchsian groups are

subgroups of PSL(2,R) that act properly discontinuous on U and they are pre-

cisely the groups of conformal isometries of U with the hyperbolic metric. These

are very important in the study of Riemann surfaces. In Chapter one we detail

some of these ideas and others.

A symmetry of a Riemann surface is defined to be an anti-conformal involu-

tion that maps the surface to itself. To each symmetry we give a species which

consists of the number of curves it fixes on the surface and a plus or minus sign;

plus if the quotient of the surface by the symmetry is orientable and minus if it

is non-orientable. The species of a symmetry completely classifies its topological

action on the surface. Non-Euclidean crystallographic (NEC) groups are properly

discontinuous groups of isometries of the hyperbolic plane that may contain anti-

conformal elements. Just as Fuchsian groups are useful when studying conformal

automorphisms of Riemann surfaces, so NEC groups are useful in studying sym-

metries. If S is a compact Riemann surface and T a symmetry of S, then there is

a proper NEC group A, such that S/(T) ~ U / A. Hence, if we know the signature

of A then we know the species of T. In Chapter two we present a Theorem of

Hoare's [20] that gives us an algorithm to calculate the signature of a subgroup of

a NEC group given the signature of the parent group and its action on the cosets

of the subgroup. This is very useful in calculating the species of symmetries.

In Chapter three we look at an important Theorem of Singerman [35]. The

Theorem considers surfaces uniformized by a surface group that is normal in some

triangle group. It gives necessary and sufficient conditions, on the group of au-

tomorphisms of the surface that is isomorphic to the the triangle group quotient

the surface group, for the surface to be symmetric. Such an automorphism group

is called a large automorphism group. There is a slight oversight in the theorem



which questions the necessity of the conditions. We highlight this and (almost)

mend it. We also differentiate, with respect to a particular large automorphism

group, between the symmetries of the surface.

We look at Riemann surfaces admitting large cyclic automorphism groups

in Chapter four and those admitting large non-cyclic abelian groups in Chapter

five. In both cases we employ Singerman's Theorem, plus amendment, to see

what "kind" of symmetries the surface admits, and then use Hoare's Theorem

to calculate the species of the symmetries. A surface may be uniformized by a

surface group that is normal in two non-isomorphic triangle groups, and so the

surface would admit two large automorphism groups, one contained within the

other. These were the surfaces over-looked in [35]. In the last section of chapters

four and five we pay particular attention to the symmetries of surfaces of this kind

when one of the large automorphism groups is cyclic or non-cyclic abelian. We give

the symmetry types of all surfaces that admit only abelian large automorphism

groups. For those surfaces that admit a cyclic large group and another, which will

necessarily be non-abelian, we also give all possible symmetry types. While for

those admitting one non-cyclic abelian large group and another large group which

is non-abelian we have only calculated the possible species of the symmetries.

The Appendix is chiefly for use with Chapters four and five although we also

use it in Chapter six. In it we look at all the inclusions between triangle groups.

For each inclusion we show that there is just one conjugacy class of subgroups

with the given signature. For certain inclusions we give canonical generators of

one of the subgroups with the specified signature in terms of canonical generators

of the parent group, and give fundamental regions for these subgroups made up of

fundamental regions for the parent group. We also make some comments about

symmetries of surfaces uniformized by surface groups normal in these triangle

groups that prove useful in Chapters four and five.

Maps are certain embeddings of certain graphs into certain surfaces. We

only consider those on orientable, connected surfaces without boundary. These

are classical objects [10]. Jones and Singerman [23], showed that it is natural to

think of maps as lying on compact Riemann surfaces; indeed those uniformized

by subgroups of triangle groups with one period equal to two. More recently

hypermaps have been studied, [9]; these too can be thought of as lying on compact

Riemann surfaces, those uniformized by subgroups of triangle groups (with no

period necessarily equal to two). We will only be considering regular maps and



hypermaps. These objects detail a finite set of points on their underlying surfaces

which we call the geometric points of the map or hypermap. There is another finite

set of points on the surface; the Weierstrass points. In Chapter six, for certain

regular maps, we ask what the connection is between these two sets. To answer

this question we mainly use results of Lewittes [24] and Harvey [18] on fixed points

of automorphisms of compact Riemann surfaces, and other results derived from

these. These are discussed in section two.

In the third section we look at those regular maps and hypermaps whose

automorphism groups are abelian. We prove that the geometric points of these

maps and hypermaps are all Weierstrass points, or that the Weierstrass points are a

proper subset of the geometric points, or that the underlying surface is hyperelliptic

and also carries a regular map with respect to which all the Weierstrass points are

geometric. We also show that any regular map, whose automorphism group is

abelian, lies on a hyperelliptic surface and the hyperelliptic involution is also an

automorphism of the map, so we say the map itself is hyperelliptic. Thus the

Weierstrass points are all geometric points of the map. It is a consequence of [37]

that the Weierstrass points of any hyperelliptic surface carrying a regular map are

geometric points of the map. Apart from one notable exception (ie. the hypermap

of type {4,4,4} on the Fermat curve of degree four whose automorphism group

is isomorphic to Z4 + Z4), the Weierstrass points of a surface carrying a regular

hypermap, which is not a map and whose automorphism group is abelian, are not

all geometric points of the hypermap.

In the final section we examine all the regular maps of genus two, three, four

and five, and determine the weight at each of the geometric points of the maps.

We show that in each case, bar one map of genus five, the Weierstrass points of

the underlying surfaces are all geometric points of the map or they are geometric

points of another regular map which the surface carries. The numbers of geometric

points of regular maps and hypermaps are small compared to the weight of all the

Weierstrass points of the underlying surfaces for large genus. It seems, as might

be expected, that the geometric points of regular maps and hypermaps of high

genus fail to account for much of the total weight, (expect for hyperelliptic maps

of course). However, because of the special nature of the Riemann surfaces that

they lie on, particularly the maps, it may happen that the geometric points have

especially high weights.



Chapter 1

Preliminaries

Section 1.1 NEC Groups

Let U denote the upper-half complex plane, [z £ C : Imz > 0}. If we define

the metric on IA to be

dsl =
2 dx2 + dy2

then U, together with this metric, provides a model of the hyperbolic-plane.

Geodesies of this metric are then just lines and arcs of circles which are per-

pendicular to the real axis.

Let C denote the group of all conformal and anti-conformal homeomorphisms

of Z-/, and let C+ denote the subgroup of index two of all conformal homeomor-

phisms. A mapping is anti-conformal if it preserves angles while reversing orien-

tation. C is precisely the group of isometries of U with the above metric.

C consists of elements of two kinds:

i) Z H , a,b,c,d £ R, ad — be = 1.

ii) z y-* — , a, 6, c, d £ R , ad — be = — 1 .
cz + d

Elements of the first kind are the conformal homeomorphisms of ti while the

elements of the second kind are the anti-conformal homeomorphisms of TA.

C can be topologised as the subset of R4

{(a, 6, c, d) : ad — be = ±1}

1



by identifying ±(a, b, c, d) and taking the identification topology.

A discrete subgroup of C is called a non-Euclidean crystallographic group or

NEC group. A NEC group is said to be a proper NEC group if it contains some

anti-conformal elements and a NEC group is said to be Fuchsian if it contains

conformal elements only. If F is a NEC group then we denote by F + the subgroup

of all conformal elements of F; F contains F + with index one or two. We call F +

the canonical Fuchsian group of F.

Elements of C can be classified according to their fixed point set when acting

on C and their orientation.

Elements of the first kind preserve orientation and their fixed point set is

determined by solving the equation

az + b
z = , ad — be = 1.

cz + d

There are three kinds:

i) If \a + d\ > 2 then there are two fixed points, both of which are in R U {00}

and the element is said to be hyperbolic.

ii) If I a + d\ = 2 then there is a single fixed point which is in R U {00} and the

element is said to be parabolic.

iii) If I a + d\ < 2 then there are two (complex conjugate) fixed points, one of

which is in M, and the element is said to be elliptic.

When acting on ti, hyperbolic elements act like translations, elliptic elements

as rotations about a point of U and parabolic elements can be thought of as

rotations about a point in R U {00}.

Elements of the second kind reverse orientation and their fixed point set is

determined by solving the equation

az + b
z = — -, ad — be = — 1.

cz + a

There are two kinds:

i) If a + d ^ 0 then the fixed point set is a circle and we have a reflection.

ii) If a + d = 0 then there are just two fixed points, both of which are in RU {00}

and we have a glide reflection.



Section 1.2 Fundamental Regions and Signatures of NEC Groups

A NEC Group F acts properly discontinuously on U, that is each point z £ U

has a neighbourhood V such that if 7 £ F and V D 7 ^ ^ 0 then 7 fixes 2. Hence

the F-orbit of any point in U is a discrete subset of U. If we give the set of

all F-orbits the identification topology then we form the orbit (or quotient) space

U/T.

Definition 1.1 A Surface is a connected Hausdorff space on which there is an

open covering by sets homeomorphic to open sets in R2.

Definition 1.2 A Surface with boundary is a connected Hausdorff space on which

there is an open covering by sets which can be mapped homeomorphically on to

relatively open sets of a closed half plane, and is not a surface.

We see that U/T is a surface with or without boundary, orientable or non-

orientable depending on F. In fact the quotient space will have boundary if and

only if F contains relections and will be non-orientable only if F contains glide

reflections.

In this thesis only NEC groups with compact quotient spaces are considered

and it is known that such groups contain no parabolic elements.

Definition 1.3 If F is a NEC group then a F-fundamental region is a closed

subset F of U such that:

i) F contains at least one element of every orbit.

ii) F°, the interior of F, contains at most one element of every orbit.

iii) The hyperbolic area of F\F° is zero.

F is not necessarily connected but a connected fundamental region can always

be found. Let p £ U he such that 7P ̂  p for all 7 £ F. Define Fp to be the set

Fp:= {z eU : d{z,p) < d(-/z,p) for all 7 G F}

where d(z,p) is the hyperbolic distance between z and p. Fp is called the Dirichlet

region for F based at p and is a connected F-fundamental region. Fp is a convex

hyperbolic polygon with a finite number of sides; such a fundamental region is said

to be regular.



Let F be a Dirichlet polygon for F. Then there is a tessellation of U by

F under F. Faces of this tessellation are said to be adjacent if they share a

common edge. In fact the faces are in a one to one correspondence with the

elements of F and F is generated by the elements that map any particular face to

all the faces adjacent to it.

Wilkie [38], has shown that for every NEC group F with compact quotient

space there is a canonical fundamental polygon from which a canonical presenta-

tion for F may be derived. This presentation is given by a set of generators

r , 7 — 1 « h — D i •

e3 j = 1 , . . . , s

ap p=l,...,g

where r > 0, j > 0, tj > 0, g > 0, and h = 0 or g,

with defining relators

•'x'p i = l,...,r

c2
jk j = 1 , . . . ,s k = 0 , ...,tj

(cjk-icjk)
n'k j = l,...,s k = l,...,tj

jt^J1 j = l,...,s

where rijk > 2, mi > 2

and X\X2 • • • xreieo • • • esD

for i) D = a\b\a^1b^1 • • • agbga~lb~Il if h = g>0

ii) D = a\ • • • a] if h = 0 < g

The elements of the form z; are elliptic, the Cĵ 's are reflections and the

elements ej are usually hyperbolic but maybe elliptic. The numbers m; are called

the proper periods of F, while the njjt's are known as the link periods of F. The

elements bq are hyperbolic, when they exist, while the elements ap are hyperbolic

in the first case and glide-reflections in the second.

The quotient space U/T has genus g and is orientable in case (i) but non-

orientable in case (ii). It is not difficult to see, from the canonical fundamental

region, that the number of boundary components of the quotient space is simply

s and the rijk give the orders of branching on the boundaries.



To each NEC group with the above presentation we can associate a signature,

(g; +; [mi , . . . , m2]; { ( n n , . . . , nltl),..., ( n a l , . . . , nsts)}) (1.4)

in case (i) and

(g; - ; [m : , . . . , m2]; { (« i i , . . . , nltl),..., ( n s l , . . . , nsts)}) (1.5)

in case (ii). The cycles (nn,... , n^,.), which may be empty, are called the period

cycles of F.

When writing signatures of NEC groups indices may be employed to indicate

repeated periods or empty period cycles.

(flf;+: [2,2,2,2]; {( ) , ( ) , ( ) } ) will usually be written as (g; +; [2<4>]; {( ) (3 )}).

A Fuchsian group will have an orientable quotient space with no boundary and so

it will have a signature of the form

which we may write as

If the genus g is zero this may be reduced further to

especially in the case when r = 3 and the group is known as a triangle group.

Fuchsian groups with no periods are known as surface groups. These will have

signature

(g; + ; [ ] ;{}) or (g;-).

Throughout this thesis when we write NEC group or Fuchsian group we

will actually mean NEC group or Fuchsian group with compact quotient space.

Macbeath [25] found every group isomorphism between NEC groups can be real-

ized geometrically. That is if Fi and F2 are NEC groups and ip : Y\ —> F2 is an

isomorphism, then there is a homeomorphism w, of U such that ^(7) = LOJUJ~1 for

all 7 £ F. He was then able to show that a signature for a NEC group is unique

up to (a) permutation of the proper periods, (b) permutation of the period cycles,



(c) cyclic permutation of link periods in any period cycle and (d) in the case of

(1.4) simultaneous inversion of all period cycles and in case (1.5) inversion of any

number of period cycles. With this understanding the signature of a NEC group

is unique.

Singerman [34] determined the hyperbolic area of a fundamental region of a

NEC group. This depends only on the signature of the group and not on the

fundamental region chosen and so we denote the hyperbolic area of a fundamental

region for F by /-i(T) unambiguously.

Theorem 1.7

Let F be a NEC group with signature (1.4). Then

If F has signature (1.5), then

Let F be a NEC group and A < F be a subgroup of finite index, say n. Then

a system of right cosets can be found and we can write

r = A 7 I + A72 + • • • + A7n.

If F is a fundamental region for F then it can be shown that

is a (compact) fundamental region for A. Now each 7;.F is also a fundamental

region for F and so we see

which is known as the Riemann-Hurwitz formula.

Theorem 1.8

Let F be a NEC group with sig (1.4), then F + , the canonical Fuchsian group

of F, has signature

(2g + s - 1; mi, m i , . . . , m r , m r , n n , . . . ,nsts).
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If r has signature (1.5), then F + has signature

(g + s - I;m1,m1,... ,mr,mr,nu,... ,nsts).

Section 1.3 Riemann Surfaces and their Uniformization

In this section we shall give the formal definition of Riemann Surfaces, which

allows us to define holomorphic functions between them, notably on to the com-

plex plane which give analytic functions and on to the Riemann sphere to give

meromorphic functions. We shall also say how Riemann Surfaces can be thought

of as equivalent and how they can be uniformized as quotients of U by Fuchsian

groups.

Any surface S, is covered by a collection of open sets Ui, such that for each

Ui there is a homeomorphism $; : Ui —> Vi where Vi is an open subset of C. The

set of such pairs A = {(Ui, $i)} is called an atlas for S. If s £ Ui we say {Ui, $i)

is a chart at s and that Zi = <&i(s) is a local coordinate (or local parameter) at s.

The functions

$,- o $ j i : s^Ui n Uj) -> $i(Ui n Uj)

are called coordinate transformation functions and are defined whenever Ui D Uj is

non-empty. An atlas A, on S is said to be analytic if all its coordinate transforma-

tion functions are analytic. We define two analytic atlases on S to be compatible

if their union is an analytic atlas. Compatibility is an equivalance relation and an

equivalance class of atlases is called a complex structure on S.

A Riemann Surface is a surface together with a complex structure. Usually

we will denote a Riemann surface by the underlying surface only.

Examples i) The atlas of just one chart {C,id : C —>• C} on C is obviously

analytic and is a representative of an equivalence class of analytic atlases which

give a complex structure on C making it a Riemann surface.

ii) Consider S = C U {00} topologized as the one-point compactification of

C. There is an atlas on S consisting of just two charts (Z7i,$i) i = 1,2 where

Uj = C with $ ! = id : C -> C and U2 = £\{0} with $ 2 : £\{0} - • C given by

$2(2) = i /z for z € C and $2(*) = 0 for z = 00. We have Ut^U2= C\{0} and

$2(tfi n u2) = c\{0}



with

which is analytic on C\{0}. The resulting Riemann surface is called the Riemann

Sphere and in fact there is just one complex structure on E.

iii) The atlas {(U,id : U —> U)} is again clearly analytic and gives a complex

structure on U making it a Riemann surface.

Definition 1.9 Let Si and 52 be two Riemann surfaces. Then a continuous

function / : S\ —» 52 is called holomorphic if whenever (U, $) and (W, \I>) are

charts on Si and 52 respectively, with U f) f~1(W) ^ 0, the functions

/ ( n r
are analytic.

This definition is independent of the choices of atlases of charts for the complex

structures on Si and 52-

If 52 C C in the above definition then / is said to be analytic and if 52 C £

then / is said to be meromorphic.

If / : Si —* 52 is a holomorphic homeomorphism then it can be shown that

f~l : S2 —> S\ is also a holomorphic homeomorphism and that local coordinates

are transformed conformally by / and f~l. We say f is a conformal equivalence

and that Si and 52 are conformally equivalent, written as Si ~ S2. Two con-

formally equivalent surfaces share the same analytic properties and are therefore

indistinguishable in terms of their complex structure.

Definition 1.10 If 5 is a Riemann surface, then an automorphism of 5 is a

conformal or anti-conformal homeomorphism f : S —* S.

We shall denote the group of all automorphisms of 5 by Aut(S) and the

subgroup of conformal (orientation preserving) automorphisms by Aut+(S).

Theorem 1.11

If 5 is a connected Riemann surface, not conformally equivalent to the Rie-

mann sphere S, the plane, the punctured plane C\{0}, or a torus, then 5 is

conformally equivalent to UjK for some subgroup K of £ + which acts discontin-

uously on U.



In the above theorem K is a Fuchsian surface group and will have signature

(g;—) where g is the genus of S. This theorem is a consequence of the uniformi-

sation theorem of H. Poincare, F. Klein and P. Koebe which says every simply

connected Riemann surface is conformally equivalent to the Riemann Sphere or

the complex plane or the upper half plane.

Suppose K\ and /vj are Fuchsian surface groups and URI : hi —> hi/K\ and

II/^2 : hi —* UIK2 a r e the natural projections. Then u, a homeomorphism of hi, is

said to induce the homeomorphism / : hljl\\ —•» hi / K2, if

' , ) , for all zeU,

where [Z\K1 is the K\-orbit of the point z £ U.

Or, equivalently, if the following diagram commutes.

U - ^ U

hl/K\ -U U/K2

Clearly, if LO : U —• U is a homeomorphism such that LOK\LO~1 = K2 then the

mapping

is well defined and f is a homeomorphism.

If there is a homeomorphism / : hi/K\ —> U/K21 then fHh\ is a homeomor-

phism from hi to hi j' K2 as is II^2 and so by the theory of covering spaces there

is a homeomorphism LO : hi —> hi that induces / . This homeomorphism u is not

uniquely defined as / is also induced by cok for all k £ K\. Since j^-Kx
 = ^-K2 ^1

to maps A'I-orbits of hi to K2-orbits of hi. Hence for each k\ £ K\ there is a

^2 G K2 such that Lok\LO~l = ^2 and so LOK\LO~1 = AV Thus we have shown that

every homeomorphism LO : hi —> hi, obeying LOK\LO~1 = K2, induces a homeomor-

phism from hi I' K\ to hi/K2 and that every homeomorphism / : hi j' K\ —> hi/ K2 is

induced by a homeomorphism of hi to itself that takes K\ to A2 by conjugation.

Note that / above will be conformal if and only if LO is conformal.

T h e o r e m 1.12

If A'i and A'2 are Fuchian surface groups then hi/K\ and hi/K2 are confor-

mally equivalent if and only if A'x and A2 are conjugate in C.



If we let A'i = A'2 = K in the above then we see / is an automorphism of

UIK if and only if u is an element of the normalizer of K in C.

Theorem 1.13

Let F be a NEC group with compact quotient space. Then the normaliser of

F in C is also a NEC group with compact quotient space.

This follows from the well known result that the normalizer of a Fuchsian

group in C+ is itself Fuchsian.

Theorem 1.14

Let S be a Riemann surface uniformized by some Fuchsian surface group K,

then the group of automorphisms of S is isomorphic to J\fc(K)/K.

Indeed every group of automorphisms of S is isomorphic to T/K where F is

some Fuchsian group such that K is normal in F. In particular the group of all

orientation preserving automorphisms of 5", denoted by Aut (S), is isomorphic to

Af"c+(K)- Therefore a group G, acts as a group of automorphisms of S if and only

if there is an epimorphism from a NEC group to G whose kernel is K. Hence

If F is Fuchsian then G will be a group of orientation preserving automorphisms

and it can be seen that /i(F) > 7r/21 with equality only when F has signature

[2, 3, 7]. Thus the order of Aut+(,S) is less than or equal to 84(g — 1). This bound

was first obtained by Hurwitz [21], who showed that it is attained when g — 3.

It is now known that it is realized for infinitely many g, see [26]. If G is a finite

group which acts as a group of orientation preserving automorphisms of a compact

Riemann surface of genus g > 2 and the order of G is 84(# — 1), then we call G a

Hurwitz group. Wiman [39] found that 2(2g + 1) is the upper bound for the order

of a cyclic group of automorphisms of a compact Riemann surface of genus g > 2,

this bound is attained for every g > 2. The cyclic group will be the image of a

triangle group with signature [2,2g + 1, 2(2g + 1)].

Definition 1.15 A homomorphism from a NEC group to a finite group whose

kernel is a surface group is called a surface kernel homomorphism.

Lemma 1.16

A homomorphism ip, from a NEC group F, on to a finite group, is a surface

10



kernel homorphism if and only if it preserves the orders of the elements of T with

finite order.

Harvey [17] used this result to find necessary and sufficient conditions on the

signature of a Fuchsian group for there to be surface kernel homorphism from the

Fuchsian group onto a cyclic group.

T h e o r e m 1.17

Let F be a Fuchsian group with signature (g; [mi,... ,m r]) . Then there is a

surface kernel homomorphism from F on to a cyclic group of order N if and only

if the following conditions are satisfied.

(i) l.c.m.{mi,... ,rhi,... ,mr} = M for all i, where m; denotes the omission

of m,.

(ii) M divides iV and if g = 0 then M = N.

(iii) r / 1 and if g = 0 then r > 3.

(iv) If M is even, then the number of periods divisible by the maximum power of

2 dividing M is even.

Harvey completely answered the question: Given a cyclic group, what is the

minimum genus of a surface for which the cyclic group acts as a group of (con-

formal) automorphisms. Maclachlan tackled this problem for non-cyclic abelian

groups in [27].

We now define a type of automorphism which will be considered in more detail

later on.

Definition 1.18 An anti-conformal involution of a Riemann surface is called a

symmetry and a Riemann surface that admits such an automorphism is said to be

symmetric.

The fixed point set of a symmetry T, of S, is a union of disjoint smooth,

simple, closed curves of S. We shall call these the mirrors of T. The topological

action of T, on 5, is fully described by the number of its mirrors, say k, and

whether the quotient space S/(T) is orientable or not.

We define the species of T, sp(T), to be

f +k if S/(T) is orientable;
\
[ — k if S/(T) is non-orientable.
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In fact, the quotient is orientable if and only if the complement of the mirrors of

T is not connected. Harnack found that if S has genus g then 0 < k < g + 1,

both these bounds are attained for all g. Clearly any symmetries of S which are

conjugate in Aut(S) will have the same species. If T is fixed point free then S/(T)

is necessarily non-orientable by a previous remark and we omit the minus sign

in the species of T, just writing sp(T) = 0. The symmetry type of a symmetric

Riemann surface is the unordered list of species associated with the conjugacy

classes of symmetries that the Riemann surface admits. For example the Riemann

sphere S, has only two conjugacy classes of symmetries, one represented by the

antipodal map which is fixed point free and the other represented by the reflection

T : z i—> z which has one mirror. It is easy to see that S/(T) is orientable and so

the symmetry type of the Riemann sphere s£(£), is

Bujalance and Singerman [6] obtained results for hyperelliptic Riemann sur-

faces (those surfaces admitting a conformal automorphism J, of order two such

that the surface quotient (J) has genus zero). In particular they determined all

possible symmetry types of compact Riemann surfaces of genus two.

Singerman [35] showed that the infinite family of Hurwitz groups that

Macbeath found [26] are all symmetric and Broughton, Bujalance, Costa, Gamboa

and Gromadzki [4], found the symmetry type of an infinite subset of these surfaces.

The case of a compact Riemann surface admitting two non-conjugate sym-

metries has also been considered [7], [8] and [22].

Section 1.4 Maps and Hype rmaps

In this section we shall define maps and more importantly regular maps and

indicate how Jones and Singerman [23] showed that every map is isomorphic to

some canonical map on a compact Riemann surface. This means that maps can

be thought of as lying on surfaces with constant curvature with respect to which

the edges are geodesies, also automorphism groups of maps are isomorphic to

automorphism groups of Riemann surfaces. We shall also define hypermaps and

indicate the analagous results.

Let £ be a non-empty set of topological spaces (edges) each of which is home-

omorphic to the closed interval I = [0,1] or the circle S1 and let V (the set of

vertices) be a subset of Q= |J e such that:

12



(i) If e is homeomorphic to S1 then |e fl V| = 1 and if e is homeomorphic to /

then e fl V consists of one or two of the end points of e.

(ii) For all distinct ei,e2 G £ the intersection of ej\(ei n V) and e2\(e2 H V) is

empty.

(iii) For any v £ V the set {e G £ : v D e} is finite.

When these conditions are satisfied then ((/, V) is said to be an allowed graph.

This definition differs from the normal definition in that it allows loops, multiple

edges and free edges.

Definition 1.19 A map A4, is an embedding of an allowed graph ((?, V) into an

orientable, connected surface 5" without boundry, such that S\M. is a collection

of two-cells, known as faces.

Examples

The above figures are emmbeddings of allowed graphs in the torus, the first is a

map while the second is not as the complement of this embedding consists of a

disc and an annulus.

As in [23] we restrict our attention to the case when Q is connected.

Maps can also be considered in purely algebraic terms. That is as quadruples

(G, f2,:r,y), where 17 is a set and x, y are permutations of f2, such that x is an

involution and the group G:= (x, y) is transitive on Q,. The set 0 can be thought

of as the set of all pairs

{(e,v) : e G £,v G V,efli) = v}

known as darts or brins. The permutation x interchanges the two darts of each

edge and loop and fixes the single dart of each free edge. The permutation y

cyclically permutes the darts about each vertex according to the orientation of
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the underlying surface. These two approaches have formally been shown to be

equivalent in [23].

The valency of a vertex is the number of edges it is incident with and the

valency of a face is the number of edges that form its boundary. If the least

common multiple, or I.cm, of the valencies of the vertices and faces is m and n

respectively, then the map is said to be of type {m,n}.

The dual of a map M is, as one would expect, obtained in the following way.

Firstly, place a vertex in each face of the map and let these form the vertex set

of the dual map. Secondly, for each edge e of the map adjoin an edge e' to the

dual. If e is a common edge of two faces in M then e' connects the two associated

vertices in the dual. If e is a free edge and hence only on the boundary of one face

of M then e' is a loop at the associated vertex in the dual. We require that e'

crosses no edge of M other than e and that it intersects other edges of the dual

only in the vertices described above. Clearly if a map is of type {m, n) then its

dual is of type {n, m}.

Definition 1.20 If Mi = (£/, V,-,5j) (i — 1,2) are two maps then an isomor-

phism if' : Mi —> M.2 between them is a orientation preservimg homeomorphism

ip : Si —>• 52, that obeys

Definition 1.21 A map is said to be regular if its automorphism group is

transitive on the darts of the map.

Thus regular maps can be thought of as a generalisation of the platonic solids.

A Fuchsian triangle group F, has signature of the form [l,m,n], because it is

Fuchsian we know } + "• + ~- < 1- A triangle group can be constructed as follows.

Consider the NEC group F* generated by reflections in the side of a hyperbolic

triangle with internal angles TT//, n/m and ir/n. This triangle is a fundamental

region for F* which has signature (0; +; []; {(/, m, n)}) or just (/, m, n). Then F j is

a triangle group with signature [/, m,n]. It is known that all triangle groups with

a given signature are conjugate in C and so T[l,m,n] is the canonical Fuchsian

group of some extended triangle group F*[/, m, n].

Note that F* preserves a tessellation of U by triangles with internal angles

7r//,7r/m and 7r/n. Any two of these, that are non-congruent in F+, are together
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a fundamental region for F and F also preserves the above tessellation. If / = 2

then F will preserve a tessellation of U by n-gons, m of which meet at a vertex

(and a tessellation by m-gons, n of which meet at a vertex). This is the universal

map of type {m,n} of Jones and Singerman. If A is a subgroup of F above with

finite index, then S:= U/K is compact. Moreover S carries a map inherited from

the universal map. This map will have type {r, s} where r divides m and s divides

n. The following thorem was proved in [23].

Theo rem 1.22

For each map of type {m, n} there is an associated subgroup M, of a triangle

group F[2, m, n] such that the map is isomorphic to the projection of the universal

map of this type on to U/'M.

M is called the associated map subgroup. Another important result proved in

the same paper is that a map is regular if and only if its associated map subgroup

is normal in F, in which case M will necessarily be a surface group. Hence T/M

is a group of automorphisms of S and the group of all orientation preserving

automorphisms of the map.

The problem of enumerating regular maps has usually been tackled via their

automorphism groups. It was seen that such a group can be generated by two

elements, one of order m and one of order n, whose product has order two. Groups

such as these are finite homomorphic images of Fuchsian triangle groups with

signature [2,m,n]. In this way Coxeter and Moser [10] gave the automorphism

groups of all the regular maps of genus two, Sherk gave those of genus three [30]

and Garbe those of genus four, five, six [13] and seven [15]. Although all the

automorphism groups of regular maps in these cases are known it is not clear how

many maps there are, as it is possible that a group may act as an automorphism

group for more than one regular map. Determining how many regular maps have

a certain group G as their automorphism group is equivalent to calculating the

number of surface kernel epimorphisms from triangle groups, with one period

equal to two, to G with non-conjugate kernels. The regular maps of genus two

have been throughly examined by Breda d'Azevedo and Jones [2], indirectly by

Broughton [3] who determined all Riemann surfaces of genus two or three with

non-trivial automorphism groups, and others. They have shown that there is only

one regular for each group given in [10]. Breda d'Azevedo and Jones actually

considered a wider class of objects called hypermaps of which maps are a subset.
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Corn and Singerman [9] give the following definition of (topological) hypermaps,

which strictly speaking precludes maps by our earlier definition but it is easy to

see how they can be identified with maps in the appropriate cases.

A hypermap Won a compact orientable surface S is a triple (S,R,A), where

R and A are closed subsets of S such that:

(i) B = R Pi A is a non-empty finite set.

(ii) R U A is connected.

(iii) Each component of R is homeomorphic to a closed disc and each component

of A is homeomorphic to a closed disc.

(iv) Each component of S\(R U A) is homeomorphic to an open disc.

(Hypermaps can also be defined on non-compact orientable surfaces). The

genus of 7i is the genus of S. The components of R are called hyperedges, the

components of A the hypervertices and the components of S\(R U A) are called

hyperfaces. The elements of B are called bits and a hypermap is said to be regular

if its group of conformal automorphisms is transitive on the bits. If / and m

are the least common multiples of the number of bits in the hyperedges and in

the hypervertices respectively and n is the least common multiple of the number

of hyperedges incident with each hyperface then the hypermap is said to be of

type {l,m,n}.

We defined the universal map of type {m,n}, ( ^ + ^ < §), via a Fuchsian

triangle group with signature [2,m,n]. The universal hypermap of type {l,m,n},

( j + — + — < 1), is defined via a Fuchsian triangle group with signature [7,m,n]

and can be constructed as follows.

L

M
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Let F be a triangle in U with vertices L,M and N and internal angles TT//, 7r/m
and ?r/n, such that F is half a fundamental region for the above triangle group. F
will tessellate U under the group generated by reflections in LM, MN and NL. If
we reflect F in NL and MN we obtain the triangles LM'N and L'MN. Let Pi
be a point on LM and P2, P3 be its images on LM' and ML'. The geodesies P1P2
and P1P3 intersect iVX and MN at right angles. If we repeat this around L and
M and for all the images of L and M under the above reflection group then we
obtain a tessellation of U by regular /-gons, m-gons and 2n-gons, see [9]. Thus we
have a hypermap (U, R, A) of type {I, m, n} where R is the set of Z-gons, A is the
set of m-gons and the complement of R U A is a union of 2n-gons which are the
hyperfaces. If / = 2 (or m = 2) then the /-gons (or m-gons) are just lines and so if
we take Pi to be M (or L) then we have a map in terms of the earlier definition.
The hypermap constructed above is the universal hypermap of type {l,m,n} in
[9]-

Most of the analogous thorems of maps also hold for hypermaps. For every
hypermap 7i, of type {l,m,n}, (y + ^ + ^ < 1), there is an associated hypermap
subgroup H, of a Fuchsian triangle group F[Z, m,n], such that Ti is isomorphic to
the hypermap on the quotient U/H inherited from the universal hypermap of type
{/, m, n). Also, H is regular if and only if H is normal in F. Hence H is a surface
group and T/H is isomorphic to the group of all conformal automorphisms of 7i.
Regular hypermaps of genus greater than one are then described by surface kernel
homomorphisms from triangle groups onto finite groups.
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Chapter 2

Subgroups of NEC Groups
The main aim of this chapter is to present a Theorem by A. H. M. Hoare con-

cerning subgroups of cocompact NEC groups with finite index. Hoare's Theorem

provides an algorithm to calculate the signature of the subgroup, given the signa-

ture of the big group and the action of its canonical generators on the cosets of the

subgroup. This is an extension of a Theorem of Singerman, who given the same

information about Fuchsian groups gives similar results. From now on, unless we

say otherwise, when we write NEC group we mean cocompact NEC group.

Section 2.1 Finite Subgroups

Let F be a NEC group and let F be the fundamental region associated to the

canonical presentation in Chapter One. Suppose x € F is elliptic and fixes q € U,

then there is at least one point p, in F, such that p is an image of q under F. By

the definition of F we know p must lie on the boundary of F and hence is the fixed

point of a canonical elliptic generator of F. Suppose c £ F is a reflection, then it

fixes an arc /, in U, and there is an arc segment k, in F, which is an image of a

segment of / under F. Again, k must lie on the boundary of F and hence is fixed

by a canonical reflection generator of F. These observations lead to the following

lemma.

L e m m a 2.1

Let F be a NEC group with signature (1.4) or (1.5). Then any element of

finite order in F is conjugate to one of the following:

i) A power of Xi, for some i £ { 1 , . . . , r } .
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ii) A power of Cjk-\Cjk, for s o m e ; e { 1 , . . . , s } , k G { 1 , . . .,ts}.

iii) Cjfc, for some j G { 1 , . . . , s } , k G { l , . . . , t s } .

Clearly any finite subgroup of F can only contain elements of this form.

Lemma 2.2

Let g be an elliptic element fixing p £ M and let h be another isometry of U

that does not fix p. Then [g, h], the commutator of g and h, is hyperbolic.

For a proof of this lemma see Theorem 7.39.2 of [1]. The previous two lemmas

together prove the following theorem.

Theorem 2.3

Let F be a NEC group with signature (1.4) or (1.5). Then any finite subgroup

is conjugate to a subgroup of (x;) for some XJ, or a subgroup of (cjk-i,Cjk) for

some pair Cjk-i-,Cjki and hence is cyclic or dihedral.

Section 2.2 Singerman's Theorem

Singerman, in [32], considers Fuchsian groups which may contain parabolic

elements or hyperbolic boundary elements so they may have non-compact quotient

space and be of the first or second kind. We shall just state the theorem for

cocompact Fuchsian groups.

Theorem 2.4

Let F be a Fuchsian group with signature (g; [mi,. . . , mr}). Then F contains

a subgroup A, of finite index iV and signature

(h; [ran, n i2 , . . . ,ra1 ? 1 , . . . ,rari,rar2,. . . , n r P r ] ) ,

if and only if:

(a) There exists a finite permutation group G, transitive on N points and an

epimorphism 0 : F —> G, satisfying the following.

The permutation Q(xi) has cycles of length m, and precisely pi other

cycles whose lengths are mi/iin,... ,mi/niPi.

= N.

R e m a r k If F does contain a subgroup A, then the elliptic generators of A

are powers of conjugates of the x^s in F. Let ax^a"1 be a canonical generator of
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A, for some a 6 F and 1 < k < mi. Then a = A^, for some A £ A and 1 < j < iV,

where Ag\,... , Agpj are a system of right A cosets. Hence Agjxf = Agj and so

clearly, each elliptic generator of A is induced by the action of the x^s on the

A-cosets.

If there is a homomorphism 0 : F —> G, as in the Theorem, then 0~1(S'ta6(l))

is a subgroup with the required index and signature, where Stab(l) is the stabilizer

of 1 in G.

Example 1 Suppose F has signature (0; [2,3,4,12]) and presentation

(£1,22,3:3, x4 I x\ = x\ = x\ = x\2 = £1X2^3^4 = 1)-

Consider the following epimorphism from F to a group of permutations which is

transitive on eight points.

e-.xt ^ (12)(3 4)(5 6)(7)(8)

£2 —» (1)(2)(3 4 5)(6 7 8)

X3 _ _ ( 1 2 3 4)(5 6)(7)(8)

£4 1—> ( 1 4 6 3)(2)(5 8 7)

0 ( £ i ) has three 2-cycles and two 1-cycles and so contributes three periods of order

1 = 2 /2 and two periods of order 2 = 2 /1 to the subgroup corresponding to the

above action. 0 ( ^ 2 ) has two 1-cycles and two 3-cycles and so contr ibutes two

periods of order 3 = 3/1 and two of order 1 = 3 /3 . ©(£3) has one 4-cycle, one

2-cycle and two 1-cycles and so contributes one period of order 1, one of order 2

and two of order 4. Finally, 0 (24) contributes one period of order 3, one of order

4 and one of order 12. Note tha t a proper period of order 1 just contributes a

generator which is the identity to the group and so is omit ted.

Hence T contains a subgroup A say, of index eight with signature

(g; [ 2 ,2 ,2 ,3 ,3 ,3 ,4 ,4 ,4 ,12 ] )

where g is determined by

(i(A) = 8»(T)

and so g = 2.

Example 2 Suppose F is a triangle group with signature [2,3,2t], (t > 3), and

presentation

( £ l , £ 2 , £ 3 I x\ = X% = x |* = £ i£2£3 = 1).
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Consider the epimorphism from F to a group of permutations on six points defined

as follows.
0 : x i i—> (12)(3 4)(5 6)

x2 H—» (13 5)(2 6 4)

x3 .—» (16)(2 3)(4 5)

The group generated by these permutations is clearly transitive on the six points

on which it acts. Hence F contains a subgroup A, with index six and signature

(g; [t,t,t]), where g is determined by the Riemann-Hurwitz formula and is in fact

zero. This gives an example of an inclusion between triangle groups which will be

important later.

Note that each Q(x;) is regular, i.e. consists of disjoint cycles of the same

length, this is because A is a normal subgroup of F.

Section 2.3 Hoare's Theorem

By canonical generators in the next theorem we mean generators which are

associated to the signature of the group.

Theorem 2.5 [20]

Let F be a NEC group with signature of type (1.4) or (1.5) and let A be a

subgroup with finite index.

Given the action of the canonical generators of F on the A-cosets, the signa-

ture of (and hence a presentation for), A can be determined as follows.

(i) The cosets fixed by canonical reflection generators of F correspond to the

reflection generators of A.

(ii) If c and d are linked canonical reflection generators of F with link period n

(i.e. cd is elliptic of order n), then c and d generate a dihedral group Dn. Let

a be an orbit of the A-cosets under Dn and let K be a coset in a. If m is the

least non-zero positive integer such that K(cd)m = K, then either;

a) a contains no cosets fixed by c or d, in which case a has length 2m and

gives an elliptic generator for A with order n/m, or

b) a contains exactly two cosets fixed by c and d, one fixed by each if m is

odd, two fixed by one and none by the other if m is even, a has length m

and the reflection generators of A corresponding to the two fixed cosets

are linked with link period njm. Each reflection generator of A appears
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in precisely two of these links, unless it is linked only to itself. This gives

the period cycles of A, each coming from one of the period cycles of F.

(iii) If a; is a canonical elliptic generator of F with period m say, then each orbit

of A-cosets under x, of length n say, gives an elliptic generator for A of order

m/n. Every elliptic generator of A is given in this way or by part (a) of (ii)

above.

(iv) A has orientable quotient space if and only if the A-cosets in F divide into

two classes (one of which may be empty), such that every canonical reflection

generator of F either fixes a coset or takes it into the other class, every other

orientation reversing canonical generator of F interchanges the classes and

every orientation preserving canonical generator fixes the classes.

(v) The genus of the quotient space of A is given by the Riemann-Hurwitz formula

JVXF) = (i(A)

where N is the index of A in F.

Remarks

(i) If d is a refection in A, then by (2.1) it must be conjugate to some canonical

reflection generator c say, of F. Hence d = aca~l for some a £ F. Now

a = Xg where g is a representitive for some A coset and A £ A. Therefore

gcg"1 € A and Age = Ag, so every reflection in A is conjugate to some

reflection induced by one of the canonical reflection generator of F fixing a

coset.

(ii) Part (ii) of the Theorem comes from applying the following lemma.

Lemma Let Dn = (a, b | a2 = b2 = (ab)n = 1) and Cn = (r) where r = ab.

If H is a subgroup of Dn then either

1) H < Cn and a and b fix no iJ-cosets, or

2) H ^ Cn- Let m be the exponent of r modulo H. If m is odd, then a and

b fix exactly one coset each. If m is even, then one of a and b fixes two

cosets and the other none.

The application is to consider the group F' := (c, d) ~ Dn generated by a pair

of linked reflection generators of F. If H = A D F', then the action of V on

the iJ-cosets is the same as that of H on the orbit of A under F'.
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(iii) Part (iii) is just one way round of Singerman's Theorem combined with part

(ii)(a) and (2.1).

(iv) This is part of Theorem 2 in [19].

(v) The links in (ii)(b) form chains which correspond to the period cycles of the

subgroup, the link periods are also given by these links and are ordered up

to choosing the direction of traversing the chains. Hoare indicates how to do

this but the subgroups we will be concerned with have empty period cycles

and so we omit that part of the Theorem.

(vi) The action of T on the A-cosets provides a homomorphism from T onto

a group of permutations on N points which is transitive on these points.

The stabilizers of these points lift to A and its conjugates in T. Hence T

contains a subgroup of index N and of a certain signature if and only if there

is a homomorphism from V onto a permutation group on N points which is

transitive on these points and provides the right signature by the construction

in the previous Theorem. Note that if the subgroup is normal then each

canonical generator maps to a permutation with regular cycle structure. The

converse is not true.

Example Let T have signature (0;+; [6,6]; {(5,8,12)}) and presentation with

generators

and relators xf,x®
C2 C2 C2 C2

( C O C 1 ) 5 , ( C 1 C 2 ) 8 , ( C 2 C 3 ) 1 2

Consider the following representation of V acting transitively on six points.

xx .—> (14)(2 3 6)(5)

x2 i—> ( 1 6 2 5 4 3 )

e i—> (12 3)(4 5 6)

co —> (12)(3 4)(5)(6)

d — • (13)(2 6)(4)(5)

c2 .—•> (14)(2 6)(3 5)

c3 >-> (15)(2 3)(4)(6)
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Let A be the stabilizer of a point, then we see x\ induces three proper periods 2,

3 and 6 of A and x2 induces no proper periods of A.

A will have six conjugacy classes of reflections, these are represented by the

reflections induced by the fixed points of Co, c\ and C3. Using the obvious notation

we call these induced reflections C05, C06, en, C15, C34, C36. The orbits of the dihedral

groups are as follows.

Group Orbits

(co,Cl)~.D5 {1,2,3,4,6}, {5}

<Cl,c2)~D8 {1,3,4,5},{2,6}

{c2,c3)~D12 {1,2,3,4,5,6}

,3}, {4}, {6}

The orbit {2,6}, of (ci,c2), and {2,3}, of (e 1coe,C3), have no points fixed by

the generators and so give the periods 8 and 1 for A. The remaining orbits each

contain two points fixed by the generators and so do give links of A. The links

given between the reflection generators of A by the orbits above are as follows.

Group Links

(cO,Ci) C 0 5 ~ C 1 5, C 0 6 ~ C14

(ci,C2) C14 ~ C15

(C2,C3) C34 ~ C 3 6

-3) C34 ~ CQ6, C36 ~ CQ5

Thus we obtain only one chain

C05 ~ C15 ~ C14 ~ C06 ~ C34 ~ C36 ~ C05

and hence one period cycle (5,2,1,1, 2,1) or, after omitting the ones and perform-

ing a cyclic permutation, just (2,2,5). Of course when there is only one period

cycle the direction in which the link periods around the chain are read is not

important.

The six points cannot be partioned as in part (iv) of the Theorem and hence

the quotient space of A is non-orientable.

The genus of the quotient space of A is determined by the Riemann-Hurwitz

formula and is nine. Hence the signature of A is

(9 ; - ; [2,3,6,8]; {(2,2,5)}).
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It is clear how most of the above links were determined but perhaps not so

for the links C34 ~ COQ,CSQ ~ C05. Clearly the orbits of D := (e-1coe, C3) are just

the orbits of C3. Now {4} is an orbit under D. Therefore C3 and e~1coe each fix

some coset Ag4, for g± £ F. Hence g^c^g^1, g±e~xcoeg^1 are conjugate to a pair of

linked canonical reflection generators of A. We know g^c^g^1 is conjugate to C34,

so we need to determine which of eO5, C06 is conjugate to CQ := gie~1coeg^x.

Agie^coeg^1 = Ag4 <^ Ag^e'1 c0 = Ag^e'1

Now Agie~1 = Age for some ge G F, where Ag§ is the coset associated to the

point 6, this is because (4)e"1 = (6). Therefore g±e~l = \g§ for some A £ A and

c0 = A 6̂Co5̂ ~1A which is conjugate to CQQ in A.

In general, if e~1coe = c; fixes the point k then we have the link Cik ~ cOj

where j = {k)e~1.
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Chapter 3

Symmetries

From chapter two we know that any Riemann surface 5" say, can be uni-

formized by some Fuchsian surface group K say, that is S = U/K. We also know

that any group of automorphisms of S say G, is isomorphic to some quotient

YIK where F is a NEC group of which K is a normal subgroup. In [35] Singerman

sought to determine whether a Riemann surface is symmetric by looking at groups

of (conformal) automorphisms of the surface alone. He found that to do this, it is

necessary to look only at the situation when the group of automorphisms lifts to a

triangle group. One of the important theorems in this paper was proved using the

assumption that whenever a symmetry of a surface is adjoined to such a group of

automorphisms, the new group contains the original one with index two. This is

not always the case as we shall show and we will also give an alternative version

of the theorem in question.

Section 3.1 Large Automorphism Groups

Let F be a NEC group with compact quotient space, we denote by R(T) the

set of all isomorphisms r : F —> C such that r(F) is discrete and 1A/r(T) is compact.

We define an equivalence relation on R(T) by saying r\, T2 € -R(F) are equivalent if

there exists some g (E C such that 7-1(7) = 9r?.{l)g~l, for all 7 G F. R(T) quotient

this relation is called the Teichmuller space of F denoted by T(T). If d(T) is the

dimension of T(F) then it is known that for a Fuchsian group F, d(T) = 6g — 6 + 2r,

where g is the genus of U/T and r is the number of periods in the signature of F.

It is also known that if F is a proper NEC group then d(T) = |<i(F+).
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Let a : Ti —> F2 be a monomorphism between two NEC groups and let

n G i?(Fi) and r2 G i2(F2). Then r2 o ct G -R(ri) and o: induces an embedding

of R(T2) in i?(Fi). Hence a also induces an embedding of T(F2) in T(Fi) and so

). Using these ideas Singerman [35] proved the following lemma.

L e m m a 3.1

Let F be a Fuchsian group which is not a triangle group. Then there exists

a Fuchsian group A, isomorphic to F, such that A is not contained in any proper

NEC group.

Let 5 be a Riemann surface and G a group of conformal automorphisms of

S. Then there is a Fuchsian surface group A', such that S := UjK and a Fuchsian

group F, such that K < F and G ~ F/JC; F is the lift of G. Lemma 3.1 tells us

that, unless G lifts to a triangle group, there is a non-symmetric Riemann surface

S'', homeomorphic to S, and a group G\ of automorphisms of S' isomorphic to G.

Hence to use automorphism groups of Riemann surfaces alone to look at

symmetries we must confine our attention to groups which lift to triangle groups,

such groups are said to be large groups of automorphisms. In this case the surface

is normalised by a normal subgroup of a triangle group.

Section 3.2 Symmetries and Large Automorphism Groups

Theorem 3.2

Let S be a Riemann surface uniformized by the Fuchsian surface group K,

and let G be a large group of automorphisms of S. Hence there is an epimorphism

from a Fuchsian triangle group T[l,m,n] with presentation

(xux2\x[ = x? = (xlX2)
n = 1)

to G with kernel K. G is generated by X and Y, the images of x\ and x2.

Then S is symmetric if G admits an automorphism a, obeying either

(i) a(X) = X~\ a(Y) = Y~l or

(ii)

This is one way round of Theorem 2 in [35]. We shall make a couple of remarks

and then give the proof.
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Let F be a Fuchsian triangle group with signature and presentation as de-

scribed in the previous Theorem. If F is the canonical Fuchsian group for a proper

NEC group F* then by (1.8), F* has one of two signatures. Indeed there is always

a NEC group F*(Z, m,n) with presentation

(C l ,c2 ,C 3 \c\ = 4 = cl = (clC2)
1 = (c2c3)

m = (cics)
B = 1)

such that F+ = F. In fact this was how we constructed triangle groups in § 1.4.

F+ is generated by C\C2 = x\ and C2C3 = #2- Note that the automorphism of F

defined by 7 w 0270^ * for 7 £ F maps x\ to x^1 and X2 to x^1. A fundamental

region for F can be constructed from two fundamental regions of F*(Z, m,n) as

indicated below.

Hence any reflection in the side of a triangle with internal angles 7r/Z, yr/m and

vr/n, which is half a fundamental region for F, extends F to F*(/,m,n).

If / = ?n, then there is a proper NEC group F* with signature (0; +; [m];

or ([m],(n)) for brevity, such that F j = F. F* will have presentation

(x, c\xm =c2 = (xcx^c)71 = 1).
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F+ is generated by x = x\ and ex 1c = X2 and the automorphism of F defined by

7 i—> c-yc for 7 £ F maps x\ to .T^1 and X2 to x^"1. The above diagram shows how

a fundamental region for F can be constructed from two fundamental regions for

F*([m], (n)). Hence, given a fundamental region for F of the above form, we can

extend F to F*([m],(n)) by adding a reflection similar to c.

These are the only possible proper NEC groups for which F is the canonical

Fuchsian group.

Proof of Theorem 3.2

The automorphism a is of order two in both cases and so H := {I, a} is a

group of automorphisms of G. Therefore, we can construct the semi-direct product

of G by H, which we denote by F, by taking the ordered pairs [/i, g], h £ H, g £ G

together with the operation [/ii,5fi].[/i25fl
r2] = [^i^2>5i2ff2]-

If a is as in the first case then there is an epimorphism

defined by

<P(c1) = [a,X-1], ¥J(c2) = [a,J], <p(c3) = [a,Y].

If a is as in the second case then I = m and there is an epimorphism

defined by

In each case <^(F+) ~ G and the kernel of <p is K. Therefore T*/K acts as a

group of automorphisms of S and hence 5 is symmetric.

Now suppose S is symmetric and T is some symmetry of S. Let G* = {G, T),

so G* lifts to a proper NEC group F*, of which K is a normal subgroup. If G is

normal in G*, then G* = G U TG and F+ is F (the lift of G), in which case F* is

one of the two NEC groups described above. Suppose G is not normal in G*. Then

F is not normal in F* and so not of index two, therefore F is properly contained

in F^~. F+ must be a triangle group as the only groups to contain triangle groups

are also triangle groups. In [33] Singerman gave all inclusions between Fuchsian
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triangle groups, we will consider the two cases of F being normal and not being
normal in F+ separately.

When F is normal in F+ we have the following possibilities.

r r+ r* I r*: r i
[t,t,t] [3,3,*] (3,3,4) 6
[t,t,t] [3,3,4] ([3],(*)) 6

[4,4,4] [2,3,24] (2,3,24) 12

[t,t,u] [2,4,2u] (2,i,2u) 4
\0f 9/ t] \? 2/ °t} (\2t] (2)) 4

We see from [5] that F is in fact normal in F* for the first four cases and so, in
these instances, F* can not be the lift of G*. We need to determine if F* can be
considered as the lift of G* (G extended by a single symmetry of S) in the last
case. Suppose K is normal in F* then T*/K acts as a group of automorphisms
of S containing G ~ T/K with index four. Any reflection say c, in F*, induces a
symmetry say T, of 5, and (G, T) lifts to (F, c). F* contains no proper NEC group
whose canonical Fuchsian group has the same signature as F and so (F,c) = F*.
Thus, for a suitable K, F* in the last case may occur as the lift of G extended by
a single symmetry, and this symmetry extends G to a group containing G with
index four. This case will be considered in more detail later on.

When F is not normal in F
F

[7,7,7]

[2, 7, 7]
[3,3,7]
[4,8,8]
[3,8,8]
[9,9,9]
[4,4,5]

[n,4n,4n]
[n, 2n, 2n]

[3,n,3ra]
[2,n,2n]

J we have the
r+

[2,3,7]
[2,3,7]
[2,3,7]
[2,3,8]
[2,3,8]
[2,3,9]
[2,4,5]

[2,3,4n]
[2,4,2n]
[2,3,3n]
[2,3,2n]

following possibilities.
1 T+ : F |

24

9

8

12

10

12

6

6

4

4

3

In each of these cases there is only one possible signature for F*. From [5] and [11]
we know, that for each of the inclusions above, F* contains a proper NEC group
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whose canonical Fuchsian group has the same signature as F. It can be seen that

in all the above cases there is only one conjugacy class of groups isomorphic to F

in F+, and so F is the canonical Fuchsian group of some proper NEC subgroup A

of F*.

Example Consider the Fuchsian group

F ' [ 2 , 3 , 8 ] = {x,y \x8 = y 2 = ( x y ) 3 = 1)

and its subgroups of index ten with signature [3,8,8]. Let F be such a subgroup

and consider the permutation representation of F' acting on the right F-cosets.

Theorem 2.4 tells us x will act as a permutation with one eight cycle and two one

cycles and that y will act as a permutation with five two cycles. Without loss of

generality we may assume the eight cycle of a; to be (1 2 3 . . . 8). The permutation

representation is transitive and so we may assume (1 9) is a cycle of y. Therefore,

xyxyx takes 8 to 2 and, as (xy)3 = 1, we know (2 8) must be a cycle of y. Again,

by transitivity, we know that y takes 10 to one of {1,2, . . . ,8}, it can not be 1,

2 or 8. Neither can it be 3 or 7 as {xy)3 = 1 would imply that (2 4) or (6 8) are

cycles of y.

x | y
7 - - - 6

Hence y takes 10 to 4, 5 or 6. If (510) is a cycle of y, then so is (46) and (xy)3 then

takes 2 to 7, which is not the case. Thus y takes 10 to 4 or 6, the coset graphs for

these two possibilities are essentially the same and so there is only one conjugacy

class of groups isomorphic to F in F'.

In the same way it can be shown that there is just one conjugacy class in F*

of subgroups isomorphic to F in all the above cases, see the Appendix. Hence F*

contains a subgroup A such that |A : F| = 2 and A+ = F in all the above. In which

case A/K acts as a group of automorphisms of S that contains G, with index two,

and also a symmetry.
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L e m m a 3.3

Let S be a symmetric, compact Riemann surface uniformized by K, and

let G be a large group of automorphisms of S. Then either

(f) G lifts to F[2n,2n,n] and K is normal in F*([2n],(2)) (which contains

F), but is not normal in either of the two proper NEC groups for which

F is the canonical Fuchsian group,

or S admits a symmetry which extends G to a group containing it with index two.

Theorem 3.4

Let S be a Riemann surface uniformized by some Fuchsian surface group K,

and let G be a large automorphism group of 5, generated by X and Y obeying

X1 = Ym = (AT)" = 1.

That is X and Y are induced by the canonical generators of the triangle group to

which G lifts.

If S is symmetric, then either condition (f) holds or G admits an automor-

phism a, obeying

(i) a(X)=X~\ a(Y) = Y~1 or

(ii) a(X) = Y~1, a(Y) = X~l.

Proof G lifts to a triangle group F[/, m,n] and Lemma 3.3 tells us S admits a

group of automorphisms that lifts to a proper NEC group F* that contains F with

index two. F* is one of the two groups mentioned earlier. If F* has signature

(1,171,17,) and canonical generators c\,C2,cz then a is just the automorphism of S

induced by C2, acting, by conjugation, on G. If F* has signature ([m],(n)) and

canonical generators c and x then a is induced in a similar fashion by c.

Theorems 3.2 and 3.4 together provide an amended version of Theorem 2 in

[35].

In the previous list of signatures it can be seen that at least some (probably

all) of the F* contain reflections that extend F to F*.

Example Let F be a NEC group with signature (2, 3, 3n) and presentation

(a, 6, c | a2 = b2 = c2 = {ah)2 = (bcf = {acfn = 1).
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Then F+ has signature [2,3,3n] and is generated by x:= ab and y:= be. There is

an epimorphism from F+ to a group of permutations on four points defined by

a: H-> (1 4)(2 3), y ^ ( 1 2 3 ) ( 4 ) , x y ^ ( 1

By (2.4) we know that F + contains a subgroup A, of index four, with signature

[3,n,3n] . A is generated by p:= xyx = acba and q:= yxy = bcac. If Aa := (A,a) ,

then

apa = cb = y~l Aa y G A a x € Aa Aa = F.

So if K is a Fuchsian surface group normal in both A and F, then a induces a

symmetry of 5 := U/K which extends the group of automorphisms G ~ A/.K", to

a group containg G with index eight.

Section 3.3 Exceptional Cases

Although one way round of the proof of Singerman's Theorem does not ac-

count for all possibilities the result is true for the vast majority of cases and may

even be correct in all cases. In this section we shall give the conditions that are

required to find a counter example to this Theorem.

From Lemma 3.3 we are looking for a surface group K which is normal in a

Fuchsian triangle group F with signature [2n,2n,n], normal in the proper NEC

group F* which contains F with index four and has signature ([2n],(2)) but not

normal in either of the two proper NEC groups for which F is the canonical Fuch-

sian group.

A(2,4,2n)

[2,4,2n]

F[2n,2n,n]
By considering the above subgroup lattice these conditions are equivalent to a

surface subgroup of F being normal in F* but not in A. It seems very difficult to

decide whether such subgroups exist or to find one if they do.
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An alternative method for finding a counter example is provided by the theory

of maps and hypermaps. If such a surface group K exists, then S:= U/'K carries

a regular hypermap of type {2n,2n,n} and a regular map of type {2n,2n}. By

considering the construction of the map and hypermap it can be seen that the

vertices of the map correspond precisely to the hypervertices and hyperedges of

the hypermap, and that the edges correspond to the incidences between the hyper-

vertices and hyperedges, see [9]. Hence the map is bipartite. A map is said to be

reflexible if there is a symmetry of the surface on which it lies that fixes a face or a

vertex. (This is equivalent to the map subgroup also being normal in the extended

triangle group). We want K to be normal in F*(2n,2), so S will be symmetric,

but not to be normal in any group with signature (2n,2n,2). Therefore the map

will be irreflexible or chiral, see [36].

In summary, we are looking for a regular chiral bipartite map of type {2n, 2n}

on a symmetric Riemann surface. Sherk [31] found an infinite family of regular

chiral maps of type {6, 6} and in [14] Garbe used the same idea to determine

infinite families of regular chiral maps of type {6(2k — 1),6(2A; — 1)}, (k £ N).

Each of these maps is described by its conformal automorphism group. Such a

group is generated by a pair r, s and has defining relations

r6(2*-l) = S6(2*-1) = ( r s ) 2 = r656 = ^ - 3 ^ - 1 = ^ -2^-2 ^ 2 ^ c = L

Where b and c range over the positive integers and parametrise the maps of a

particular type. We denote the above group by Gk,b,c, when k = 1 the orders of

r and s are both six and we have the maps Sherk found. The above maps are

reflexible if and only if bc(b — c) = 0. Our search is for regular chiral maps on

symmetric Riemann surfaces and so by (3.4) we want Gk,b,c to admit an automor-

phism taking r to s~1 and s to r~l. We abuse our notation slightly and define

the group Gk as having generators r, s and having as its relations the first five of

Gk,b,c plus their images under the above automorphism. (The images of the first

four are equivalent to themselves).

Gk := (r, s | r6*2*"1) = s6*2*"1* = (rs)2 = r6s6 = r^sr^s'1 = s^s^r'1 = 1).

Garbe tells us that |Gfc,6,c| = 12(2A; — l)(b2 + be + c2) and it can be shown that

|G*| = 48(2& - 1). Thus for bc(b - c) ^ 0 we have |GM ,C | > 84(2& - 1) > \Gk\.

Hence r t—y s"1 , s i—> r~~l is not an automorphism of Gk,b,c and so these maps lie

on non-symmetric Riemann surfaces. Therefore the maps of Sherk and Garbe do

not provide us with any examples of the kind we require.

34



Chapter 4

Symmetries and Large Cyclic Groups

We are now going to use the results of the previous two chapters to determine

the species of symmetries of certain types of Riemann surfaces. In this Chapter

we will consider compact Riemann surfaces admitting large cyclic groups of auto-

morphisms and in the next, compact Riemann surfaces admitting large non-cyclic

abelian groups of automorphisms.

Section 4.1 Application of Hoare's Theorem

Let T be a symmetry of a compact Riemann surface 5, uniformized by the

Fuchsian surface group A'. Then the group generated by T will lift to a proper

NEC group A say, where A contains A' with index two. Hence K is the canonical

Fuchsian group of A, this means the signature of A is without proper periods

and any period cycles are empty. That is, the signature of A is of the form

(h; ±; []; {( )k}) . Now (T) ~ A/A' and S = U/K, therefore S' := S/(T) = U/A.

Thus S' is a surface of genus h with k boundary components and orientable or

non-orientable according to the signature of A. The boundaries of S' correspond

precisely to the curves fixed by T, and so the number of mirrors of T is k; the

number of period cycles in the signature of A. As already noted we can also

determine whether 5 ' is orientable or not by looking at the signature of A and so

the species of T is completely determined in this way.

Let S and T be as above and let G be a group of automorphisms of S that

contains T. G will lift to some proper NEC group V. The action of G on the (T)

cosets is the same as the action of T on the A cosets. Hence, given the action of
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G on the (T) cosets, the signature of F and the homomorphism from F onto G we

can, by Hoare's Theorem, determine the signature of A and thus the species of T.

Example 1 Consider the following epimorphism.

<p: F(0; +; [2,3]; {(2,3,6)}) .—> D6 = (a, b \ a6 = b2 = {abf = 1)

xi a3

X2 a2

e a

Co b

c\ a3b

c2 a5b

c3 a4b

Note that ip preserves the orders of the canonical generators of F and so the

kernel of tp is a surface group. F + will be mapped onto the cyclic subgroup of D&

generated by a. There are two conjugacy classes of symmetries of S := IA/K, in

DQ7 one represented by b and the other by ab.

The A := <p~1{b) cosets are represented by 1, e, e 2 , . . . , e5. If we label these 1

to 6, then the action of F on these cosets is given by

xx H-* (1 4)(2 5)(3 6) c0 ^ (1)(2 6)(3 5)(4)

x2\—>(13 5)(2 4 6) cji—>(1 4)(2 3)(5 6)

e i—> (1 2 3 4 5 6) c2 i—> (1 2)(3 6)(4 5)

We denote the reflection generators of A, associated to the fixed points of the

canonical reflection generators of T in this action, by c0i,c04 and 032,035.

Actions Links

coCl •—> (1 4)(2 5)(3 6) co i~c O 4

C2C3 1—> (16 5 4 3 2) c32 ~ c35

ecoe-1 ^ ^ (1 5)(2 4)(3)(6) c01 ~ c32, c04 ~ c35

There is only one chain and so A has one empty period cycle. There is no partition

of the A cosets as described in part (iv) of Theorem 2.5 and so U/A is non-

orientable. The genus h, of this quotient is given by

= 8.
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In general we are not interested in the genus. Thus A has signature (8; —; []; {( )})

and the species of b is — 1. The same method shows that the species of ab is also

We are only considering those compact Riemann surfaces that admit large

cyclic or abelian groups of automorphisms. Using Theorems 3.3 and 3.4 we decide

in what ways symmetries of these surfaces extend the large groups and obtain a

homomorphism from a proper NEC group (with signature (l,m,n) or ([m],(n))),

onto the extended large group. Then the above procedure should yield the species

of the conjugacy classes of symmetries. To find the symmetry type of these surfaces

we have to make sure we eventually arrive at the full automorphism group of

the surface. This corresponds to checking inclusions between triangle groups and

determining whether homomorphisms extend to larger groups.

Example 2 Let F be a Fuchsian triangle group with signature [12,6,4] and

canonical generators x and y of orders 12 and 6. Then there is a homomorphism

</?, from F onto C\2 '•= (r | r12 = 1), denned by <p(x) = r and <p(y) = r2. Clearly

C\i admits an automorphism that takes r to r"1 . We adjoin an element t, of

order two, to C\2 to get a group G, with presentation (r,t | r12 = t2 = (tr)2 — 1).

G is dihedral and there is a homomorphism t̂ *, from the extended triangle group

r*(12,6,4), that contains F, onto G such that y*|r = <£> a n d the kernels of both

homomorphisms are the same. If the canonical generators of F* are a, b and c,

then we let ip*(a) = t r" 1 , tp*{b) = t and <^*(c) = tr2. G contains two conjugacy

classes of symmetries of the associated Riemann surface 5", represented by t and tr.

The action of F*, on the right A:= V'^1((^)) cosets, is given by

12)(2 11)(3 10)(4 9)(5 8)(6 7)

2 12)(3 11)(4 10)(5 9)(6 8)(7)

We denote the reflections generators of A, induced by the fixed points of b and c,

by &i, 67 and C2, eg. The orbits of ab, be and ac provide the links

b\ ~ 67, 67 ~ 61, C2 ~ eg and cs ~ ci~

Hence there are two chains and A has two period cycles. By considering the above

action we see that UjK is non-orientable and so sp(t) = —2. In the same way we

find that sp(tr) = — 1. Since F* is maximal in £, we can say that these are the

only conjugacy classes of symmetries of 5* and so st(S) = { — 1, —2}.
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Example 3 If F[8,8,2] has canonical generators x and y, then there is

a homomorphism <p, from F onto C8 := (r\r8 = 1), defined by <p(x) = r and

<p(y) = r3. We denote the kernel of ip by K. Cg admits an automorphism taking r

to r~3 and r3 to r~1. Let G:= (r, t\r8 — t2 = trtr3 = 1), there is a homomorphism

</?*, from a NEC group F*([8],(2)), which contains F with index two, onto G. F*

has canonical presentation

F* = (x,e,co ,ci \x8 = CQ = c\ = (coci)2 = e~1coeci = xe = 1)

= (,T, c | x8 = c2 = (xcx^c)2 = 1),

where c:= CQ. When we use Hoare's Theorem we really need to think of the first

presentation. We can think of 9?* as <p extended and <p*(x) = r and <^*(c) = t. G

contains only two involutions not in C% and these are conjugate in G. Hence there

is only one class of symmetries of S:= M/K, in G. If A = <^)^"1(i), then the action

of F* on the A cosets is given by

x\—> (12 3 8)

c ( = C o ) . — ( 1 ) ( 2 6)(3)(4 8)(5)(7)

We represent the reflection generators of A, associated to the fixed points of c,

by ci, C3, C5 and C7, and those associated to the fixed points of cx are represented

by c'2, c'4, C'Q and c'8. The orbits of cxc = cocl5 give us the links c\ ~ C5, C3 ~ C7

and C2 ~ Cg, C4 ~ Cg. The relation ,Tcx~1c:r(= e~1coeci) = 1 gives the links

c\ ~ C9, C3 ~ C4, C5 ~ c6, C7 ~ Cg, see end of §2.3. Thus we have the chains

c\ ~ C5 ~ c6 ~ C2 ~ ci and c3 ~ c7 ~ c8 ~ c4 ~ C3. Therefore A has two empty

period cycles. 1A/h is non-orientable by Theorem 2.5 and so sp(t) = —2.

Of course Cs also admits an automorphism that takes r to r - 1 , so Cg can

be extended to a (dihedral) group G', of automorphisms of S which lifts to an

extended triangle group F*, with signature (8,8,2). G' contains two conjugacy

classes of symmetries of S and it can be seen that one has species —1 and the

other - 2 .

So K is normal in F[8,8,2], F*([8], (2)) and F'*(8, 8,2). Hence, if NC{K) is the

normalizer of K in £, then F is properly contained in Nc(K)+ • By [33], Nc(K)+

has signature [2,4,8] or [2,3,8]. Infact, see [10] table 9, K is normal in some

A[2,3, 8] and, as S is symmetric and A is maximal, we know that the signature of

Nc(K) must be (2,3, 8). The full group of automorphisms of S is

NC(K)/K ~ {u, v, 11 u2 = v3 = s2 = {tuf = {tvf = (u(uu)4)2 = 1)
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and there are only two conjugacy classes of symmetries, of S, in this group. They

are represented by s and sv. Thus, st(S) = { —1, —2}.

Section 4.2 Large Cyclic Groups

Riemann surfaces admitting large cyclic groups of automorphisms correspond

to surface kernel homomorphisms from Fuchsian triangle groups onto cyclic groups.

We shall now say how Harvey's Theorem (1.17) applies specifically to triangle

groups.

If F is a Fuchsian triangle group with signature [mi, 1712,1713], then there is a

surface kernel homomorphism, from F onto a cyclic group of order TV, if and only

if

[mi, 7712] = [mi,m3] = [1712,1713] = N and if N is even, then the number

of periods divisible by the maximum power of two dividing N is two.

Here [mi,7712] denotes the lowest common multiple of mi and m2- If (m.1,7772)

denotes the greatest common factor of mi and 1712, then let d = (mi, 7712, m3) and

bi, t>2, &3 be such that

(mi,m 2) = db3, (m1,m3) = db2, {m2,rnz) = db\.

Thus 61, b2 and 63 are mutually coprime and m; = dbjbk where i,j,k G {1,2,3}

are mutually distinct. For the above conditions to be fully satisfied we require that

if d is even, then one of the 6,'s must also be even. Therefore, there is a surface

kernel homomorphism, from F[mi, m.2,777,3] onto a cyclic group of order N, if and

only if

mi i s of t h e f o r m dbjbk w h e r e d = (1711,1712,1713), i,j,k G { 1 , 2 , 3 } a r e

mutually distinct, (m;, nij) = dbk and if 2\d then 2\bi for some i.

Hence N = dbib2b3. If K is the kernel of the above homomorphism and S is the

Riemann surface uniformized by K, then 5 has a large cyclic group of automor-

phisms of order N.

Lemma 4.1

Let F be a Fuchsian group and let ipi, <f2 be two surface kernel homomorphisms

from F onto a finite group G, with kernels A'i and K2 respectively. If ipi and ip2

differ by an automorphism of G, then K\ = K2-
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Proof Let a be an automorphism of G such that, for all 7 in F, (^1(7) = a(<f2("f)).

Then

If F is maximal then we have the following, stronger result.

Theorem 4.2

Let F be a maximal Fuchsian group and let f\, if 2 be two surface kernel homo-

morphisms from F onto a finite group G, with kernels K\, K2 respectively. Then

K\ and K2 are conjugate in C+ if and only if ip\ and if 2 differ by an automorphism

of G.

The proof requires the following lemma.

L e m m a 4.3

Let F be a maximal Fuchsian group and K\, K2 be two normal subgroups of

F. If there is a g £ £ + such that K2 = gK\g~l then A\ = A'2 arid g £ F.

Proof Let A;2 € /v2 and 7 <E F.

Then gjg~1k2g^~1g~1= fif7^i7~1<7~1 for some &i G A"i
1 for some A; £ A'i

Thus 575- 1 £ ^ ( )

As F is maximal we know that A7'£+(A"2) = F and so g^g~l £ F.

Therefore g £ NC+(T) = F and Ax = A2 .

Proof of Theorem Suppose A'i and A'2 are conjugate in £ + then by the previ-

ous lemma K\ = A'2 and so <f\ and <p2 differ by an automorphism of G. Lemma 4.1

completes the proof.

If G is a cyclic group of order N generated by r, then the automorphisms of

G are just of the form

r
X where (A,JV) = 1, i.e. A is a unit in

We denote the set of all units in Z/v by U(N).

Let f be a surface kernel homomorphism from F[m 1, m2, mz\ onto

rN = 1). If x and y are canonical generators of F, of orders mi and m2
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respectively, then

ip(x) = rkl where (h,N) =

ip(y) = rk* (h,N) = N/m2 = b2

(p(xy) = r

Clearly, r i-> r~1 defines an automorphism of CN which maps rkl to r~kl and

rk2 to r~k2. Thus if K is the kernel of ip, then the Riemann surface 5":= U/K,

admits a symmetry that extends CN to a dihedral group DN and this DN will lift

to a proper NEC group F*(mj,7^2,^3), see §3.2.

Definition 4.4 Suppose G is a large group of automorphisms of a Riemann

surface S, that lifts to some triangle group F. Then a symmetry of 5, that extends

G to a group that lifts to an extended triangle group containing F with index two,

is said to be of the first kind with respect to G.

We now turn our attention to another kind of symmetry and ask when

admits an automorphism of the kind in (ii) of Theorem 3.2. For rkl H->• r~k2 and

rk2 ,__>. r-fci £o describe an automorphism of CN we require that k\ = k2 (mod N)

and so mi = rri2. Thus b\ = b2 = 1, F has signature [db,db,d\ and N = db. Hence

we may assume that <p(x) = r and that y(j/) = rk for some fc G U(N). In this case

r 1—> r~fc, rfc 1—> r"1 is an automorphism of CN if and only if k2 = 1 (mod iV).

Note that the order of rk+1 must be d and so (k + 1, JV) = 6.

Suppose A7" = 2ap®1p2*
7 • • -Ps": where p i , . . . ,ps are distinct odd primes and

a > 0, an > 0. Then k2 = 1 (mod iV) if and only if

k = ±l (modpfO i = l , . . . , s

fc = 1 (mod 2a) if a = 1

A; = ±1 (mod 2a) if a = 2

fc = ± 1 , 2 " - 1 ± 1 (mod 2a) if a > 2.

Thus there are 2S+T solutions, modulo JV, of 22 = 1 (mod N). Here r is 0 if

a < 2, 1 if a = 2 and 2 if a > 2. When A; is as above S admits a symmetry if,

such that

G:= (CN,u) = (r,u\rN = u2 = ururk = 1 )

lifts to a proper NEC group T*([db},(d)), that contains F with index two.

Definition 4.5 Let G be a large group of automorphisms of some surface,

suppose a symmetry of the surface extends G to G'. If G' contains G with index
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two but does not lift to an extended triangle group, then the symmetry is said to

be of the second kind with respect to G.

Assume that the surface S, uniformized by the kernel of ip above, admits a

symmetry of the second kind w.r.t. CN, so N = db and k2 = 1 (mod TV). Let n\

denote the product of the maximum odd prime power factors of TV, for which k

is congruent to +1 and n2 the product of the maximum odd prime power factors

of TV, for which k is congruent to —1, so TV = 2ani?i2. Recall that (k + 1,TV) = b

and so

for a = 0, d = n\ b = n2

for a = 1, d = Tii b = 2n2

for a = 2, d = 2n\ b = 2n2 when k = +1 (mod 4)

d = 7ii b = An2 when k = — 1 (mod 4)

for a > 2, d = 2a~1ni b = 27i2 when k = +1 (mod 2a)

d = m b = 2an2 when k = - 1 (mod 2a)

d = 2a~lm b = 2n2 when k = 2a~l + 1 (mod 2a)

d = 2n1 b = 2a~1n2 when k = 2a~1 - 1 (mod 2a).

Hence
N\ _ . , M _ f 1 if a < 2;
a y [ 1 or z it a > z.

Conversely, if d and 6 are such that (d, b) is as above, then there is a A; such that

k2 = 1 (mod TV) and (A; + 1,TV) = b. When it is clear with respect to which group

a symmetry is of the first or second kind we will neglect to mention it.

It was clear that a symmetry of the first kind would extend CN to DN- NOW

we consider briefly if CN, extended by a symmetry of the second kind, can be

expressed in simple terms. Let

GN,k'•= (^ 1 u \ r = u2 = urur = 1 ) .

First ly, we look for normal subgroups . Let Hc = ( u , r c ) where c divides TV. T h e n

Hc will be normal in GN,1; if and only if r^1ur = urk+1 £ H. T h a t is, r f c + 1 £ (T*C).

T h u s Hc is no rma l in Gjv.fc if and only if c | (AT + 1, TV) and

{
7i2 if a = 0;

2n 2 if a = 1;
2TI 2 , 4n 2 if a = 2 and k = ± 1 (mod 4);

2 n 2 , 2 a 7 i 2 , 2 n 2 , 2 Q - 1 7 i 2 if a > 2 and k = ± 1 , 2a ± 1 (mod 2° ) .
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Now Hc will be dihedral if and only if urcu = r c and this is the case if and only

if c(k — 1) = 0 (mod N). This is equivalent to

n2 | c if a = 0, 1,

n2 | c, 2n2 \c if a = 2 and k = ±1 (mod 4),

n 2 | c , 2 a~1n2 |c , 2n2 |c, 2o~1n2 |c if a > 2 and A: = ±1, 2a ± 1 (mod 2a).

Clearly any subgroup of CN is a normal subgroup of (?/v,fc. Using the above

conditions on c we can determine when Hc is a dihedral, normal subgroup of Crjv,it

and we see that the following isomorphisms hold.

for a = 0 GN>k ~ Hn2 x (r"1) ~ Dd x C6,

for a = 1 Giv,fc ~ .ff2n2 x (rni) ~ L>d x Cb,

for a - 2 G w _ / ^ n 2 x ( r 4 « 0 - ^ x C 6 / 2 , A: = +1 (mod 4);
U 7 V ' f c - \ F 4 7 l 2 x ( r ^ ) ~ D d x C 6 , k = -l (mod 4).

f o r « > 2 G v i i i
> ^ N ' f c - \ i J ( " 0 ^ C fc = - l (mod

Thus, if k is congruent to ±1 for all maximum prime powers dividing iV, then

a symmetry of the second kind extends CN to the direct product of a dihedral

group and a cyclic group. If 2a is the maximum power of 2 dividing N, a > 2,

and k = 2a~1 ± 1 (mod 2°), then Gjv,fc does not have such a simple structure.

Section 4.3 Symmetries of the First Kind

We have seen that a symmetry of the first kind extends a cyclic group to

a dihedral group. Hence we have a surface kernel homomorphism t£>, from some

extended triangle group r*(?7?i,??i2,rnz). onto a dihedral group DN such that <p

maps T~£ [mi, 1712,1713] onto CN', the cyclic subgroup of Djq of index two. Suppose

F* has canonical generators a, b and c. Then x := ab and y := be are generators

of T:= F+, and we may assume that

<^:I\ >-* DN = (r,t\rN = t2 = (trf = 1)

a rklt — tr~kl

b t

c trk2

x rkl

y rk2

for (ki,N) = mi, (k2,N) = m2 and (ki + k2,N) = m^. If K is the kernel of

<p, then the symmetries of 5*:= U/K are the involutions in DN\CN- If N is odd
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there is only one conjugacy class of symmetries in DN and if N is even there are

two conjugacy classes, represented by t and tr.

Suppose N is odd and let L := (t). The right L cosets maybe represented

by l , r , r 2 , . . . , r^1 , and rklt, t, trk2 each fix exactly one L coset. Thus a, b and

c each fix exactly one A := ^~1{L) coset. As N is odd so are m\, m,2 and 77*3.

Hoare's Theorem tells us that the cosets fixed by a and b are in the same orbit

under (a, b), the cosets fixed by b and c are in the same orbit under (b, c) and the

cosets fixed by a and c are in the same orbit under (a, c). Therefore A has exactly

one empty period cycle and sp{t) = dbl.

Suppose N is even. Let 2a be the maximum power of two dividing N. We may

assume 2a divides mi and 7772 but not 7773. Thus we have two cases to consider,

when 777.3 is odd and when it is even.

Suppose 7773 is odd. Now 7773 is the order of rfcl+fc2, this is N/(ki + &2,iV) and

so hi + &2 must be even (in fact divisible by 2a). Of course k\ and &2 are odd and

so tr~kl and trk2 are conjugate in DN, the other conjugacy class of symmetries

is represented by t. Let L' =• (tr), so tr~kl and trk2 fix two V cosets each and

t fixes none. Thus a and c each fix two A' := <p~l(yL') cosets and b fixes none.

Hoare's Theorem tells us that, because 7773 is odd, there is a coset fixed by a and

one fixed by c in the same orbit under (a, c), while the other coset fixed by a is in

the same orbit as the other coset fixed by c. mi and 77̂2 are both even and so the

two cosets fixed by a lie in a single orbit of (a, b) and the two cosets fixed by c lie

in a single orbit of (b,c). Therefore, A' has but one period cycle and sp(tr) = ± 1 .

Let L" = (t). Then a and c fix no A" := (/?-1(L") cosets while b fixes two. These

two will be in the same orbit under (a, b) and (b,c), thus A" has only one period

cycle and sp(t) = ±1 . So when N is even, and one of the periods of F is not, then

DN contains two non-conjugate symmetries of 5, each with one mirror.

Suppose 7773 is even. Then ki + k-i is even as 2a does not divide m25 and ki

and k2 are still odd. tr~kl and trk2 will each fix two (tr) cosets and t will fix none.

Thus a and c fix two (p~1((tr)) cosets each while b fixes none as before. However,

because mi, 777.2 and 7773 are all even, the cosets fixed by a lie in the same orbits

under (a, b) and (a, c) while the cosets fixed by c lie in the same orbits under (6, c)

and (a,c). Hence there are two distinct chains of links and tr has two mirrors, t

fixes only two (t) cosets and, because mi and 777.2 are even, t has only one mirror.

Therefore, when all the periods of T are even, DJM contains two non-conjugate

classes of symmetries, one with one mirror and one with two.
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The symmetries of surfaces that arise from surface kernel homomorphisms

from proper NEC groups onto dihedral groups were studied in [8] and [22], where

a useful graphical method has been developed to find the number of mirrors of

these symmetries.

For each of the above symmetries, we want to determine whether the quotient

by the symmetry is orientable or not. We do this by looking at Schreier coset

graphs. If H is a subgroup of Dpj generated by a symmetry, say T, then we denote

by Q := (DN,H, {tr~kl ,t,trk2}) the coset graph of H under the generating set

{tr~kl , t , t r f c 2}. Thus Q is precisely the coset graph of the subgroup A:= </?~1(if),

of F*, under the generating set {a,b7c}. If Q denotes the graph Q minus loops,

then Hoare's Theorem tells us that U/A (— S/(T)) is orientable if and only if Q is

bipartite.

Let iV be odd and let H = (t). We represent the H cosets by l , r , . . . , r" 1 .

Of course, the vertices of the Schreier coset graph Q = (DN,H, {tr~kl ,t,trk2}),

correspond to these cosets. We shall endeavour to find a circuit of length three in

Q, showing it not to be bipartite and showing that t has negative species.

Consider the element t.tr~kl .trk2 = trkl+k2 of Dpj, this fixes a single H coset

rl, where 2i = &1 + &2 (mod N). Without lose of generality we may assume &1+&2

to be even and so i = (hi + k2)/2. If we start at the vertex in Q corresponding to

the H coset r% then t.tr~kl .trk2 represents a circuit of length three in Q. If this

circuit contains no loops then it is a circuit in Q.

Hrl.t = Hr~l and so t fixes Hrl if and only if 2i = k\ + &2 = 0 (mod N)
and this is the case if and only if 7723 = N/(k\ + &25 N) = 1.
Hr-Ktr'^ = jH'r(-fci+fc2)/2 s o tr-k, fixes Hr-i i f a n d o n l y if fc2 = Q (mod N),

if and only if mj = 1.

Finally, HA-^ + ̂ I2.trk2 = Hrl and so trk2 fixes HA~kl+k2^2 if and only if

ki = 0 (mod N) <5 ni2 = 1. Thus we have found a circuit of odd length in Q and

so sp(t) = — 1.

Let N be even. As before, we assume that if 2a is the greatest power of 2

dividing JV, then 2a divides mi and rti2 but not m3. We know that D^ has two

conjugacy classes of symmetries of the associated Riemann surface, one represented

by t and the other by tr. We have shown that tr has one mirror when m3 is even

and two when ?n3 is odd, while t has one mirror in both cases. Let L\ = (t),

L2 = {tr) and let Ql = (DN,Li,$), where $ = {tr~k^ ,t,trk2}, i = {1 ,2} . Now h

and &2 are both odd and so, with slight changes, the above argument shows that
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Q\ also has a circuit of length three when N is even and so again sp(t) = — 1.

To find a circuit of odd length in Q21 without loops, it is necessary to consider

circuits of length five. (This is because we need an element of the form tr2l+1

to fix a L2 coset and this element must be a word of odd length in $ such that

each element of $ occurs once in any substring of length three of this element.)

The element t.tr~kl .trk2 .t.tr~kl = trk2 in DN fixes two L2 cosets, one of which

is represented by r ^ " 1 ) / 2 . We now look at the circuit in Q2 represented by the

above word in $, starting at the vertex associated to the coset L 2
r ~ , to see

when it is loop free. We enumerate the cosets 0 , 1 , . . . , N — 1 where i corresponds

to L2r\

t: \{k2 — 1) 1—* | ( — k2 ~ I)? this represents a loop if and only if ^2 = 0 (N),

if and only if rri2 = 1.

tr~kl : |(—k2 — 1) 1—> \{k2 — 1) — &i, is a loop if and only if k\ = Jc2 (N),

only if mi = m2.

trk2: \{k2 - 1) - ifci 1—> \{k2 - 1) + h, is a loop if and only if 2h = 0 (N),

if and only if mi = 2.

t:^(k2-l) + ki\—• |(-A,-2 - 1 ) - h, is a loop if and only if 2h + k2 = 0 (N),

if and only if k\ + fc2 = —k\ (N), only if mi = m^.

tr~kl : \{-k2 - 1) - fci 1—> \{k2 - 1), is a loop if and only if h + k2 = 0 (JV),

only if m3 = 1.

We require all the m^'s to be greater than one and by our hypothesis mi and

1713 are not equal as 2a (a > 0) divides mi but not 7713. Hence the above circuit

in Q is also a circuit in Q unless (i) k\ = k2 (mod N) or (ii) mi = 2. Now

if mi is indeed two, then the circuit in Q starting at \{~k\ — 1) represented by

t.trk2 .tr~kl .t.trk2 = tr~kl is without loops unless m2 = 2, (this can be seen by

the same procedure as above). However [2,2, m] is not the signature of a Fuchsian

group and so Q is not bipartite unless, (possibly) k\ = k2 (mod N).

We now show that if k\ and &2 are equal, then Q is bipartite and so tr does

have positive species. If they are equal we may assume, without lose of generality,

that k\ — k2 = 1, and so <p(a) = tr~l, <p(b) = t and ip(c) — tr. Recall that we

enumerated the (tr) right cosets 1, r , . . . , T*"1 by 0 , 1 , , . . . , N — 1. We partition the

cosets in to two sets;

A:= { 0 , 1 , . . . , (N/2) - 1}, B:= {N/2, (N/2) + 1,...,N-1}.

If i G A then, acting by right multiplication, tr^1 maps i to N — i — 2 which is in
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B unless i = (JV/2) — 1, in which case i is fixed by tr 1. t maps i to N — i — 1

which is always in B. tr maps i to JV — i if z > 0, which is also in B, and fixes i

when i = 0. Thus we see that tr""1, t, ir map cosets in A to B or fix them, they

act on cosets in B in a similar way. Hence the species of tr in this case is positive.

Note that if k\ = &2 (mod JV), then mi = m,2 and 7773 = m/{k\ -\- ̂ 2,777) = m/2,

so CV lifts to a group with signature of the form [2n,2n, n].

We now summarize these results.

Theorem 4.6

Let S be a compact Riemann surface which admits a large cyclic automor-

phism group of order N. S is uniformized by some Fuchsian surface group K

and there is a surface kernel homomorphism ip, from a Fuchsian triangle group

F[mi, ?7i2, ?77,3] onto a Z^r, such that the kernel is K. Let x and y be canonical

generators of F, and let their respective images under </? be k\ and A;2. Then S

is symmetric and always admits a symmetry (of the first kind) that extends the

large cyclic group to a dihedral group DN, and this lifts to an extended triangle

group F*(mi, 777.2, m^). The table below gives the number of conjugacy classes of

these symmetries in DN and their species; these depend on the signature of F and

the homomorphism 93.

r [mi ,m 2 ,m 3 ] , ip
No. of conjugacy classes

of symmetries in DN

Species of

conjugacy classes

Each mi odd

m i , 777,2 even, 7773 odd

and k\ 0 &2 (mod N)

m i = m 2 = 2?77,3, 7773 o d d

and ki = k2 (mod N)

Each 777 i even

and ki ̂  k2 (mod JV)

777i = 7772 = 2?773, 7773 e v e n

and k\ = k2 (mod JV)

1

2

2

2

2

{-1}

{-1,-1}

{-1,+1}

{-1,-2}

{-l,+2}

Riemann surfaces that attain Wiman's bound on the order of an automor-

phism correspond to surface kernel homomorphisms from triangle groups with

signature [2,2n + l,2(2n + 1)], (77 > 1), onto cyclic groups of order 2(2n + 1).
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Hence surfaces of this nature only admit symmetries of the first kind with species

— 1. Although these triangle groups are not maximal they are the normalizers of

the surface groups that uniformize the surfaces with this property, see case 14 of

§4.5. Thus the surfaces for which Wiman's bound is attained have symmetry type

{-1,-1}.

Section 4.4 Symmetries of the Second Kind

We now consider symmetries that extend large cyclic groups to groups that

lift to proper NEC groups with signature ([m],(n)). Let ip be a surface kernel

homomorphism from a triangle group F[m,m, n] onto a cyclic group of order m.

If the cyclic group is generated by r and x, y are canonical generators of F, both

of order m, then we may assume that <p(x) = r and <p(y) = rfe, for some k.

Hence, (k,m) = 1 and (k + l,m) = m/n. We are assuming that <p extends to

some NEC group F*([m], (n)), containing F with index two, and so, by §4.2 p41,

k2 = 1 (mod m). If x and c are canonical generators for F*, then the group G,

generated by r:= ip(x) and u:= ip(c) has presentation

G:= (r,u \rm = u2 = ururk = 1).

Recall that if k2 = 1 (mod m), then m = 2Oin\n2 where n\ and 77,2 are both

odd and coprime such that k = 1 (mod ni), k = —1 (mod 77,2) and, if a > 0,

fc = ±1 (mod 2a), or, if a > 2, k = 2a~1 ± 1 (mod 2a).

Now (f(xcx~1) = rur~l = ur~(k+1>. If L = (u), then l , r , r 2 , . . . ,r~1 repre-

sents a system of right L cosets in G. Hence, 1, x, x 2 , . . . , x"1 represents a system

of right A := ip~1(L) cosets in F*. The action of the canonical generators of F* on

these cosets, acting by right multiplication, is

c:xl

-i : ^
xcx

Note that x permutes the cosets as a m cycle. Now c fixes coset x\ or i for ease,

if and only if i{k + 1) = 0 (mod m) and, as (k + 1,777) = m/n, this is the case

if and only if 77 | i. Hence c fixes b := 777/77 cosets; 0, n, 2n , . . . , n(b — 1) = m — n.

We denote the induced reflection generators of A by CQ, cn, C2n, • • •, Cm-n- We see

that cx fixes i if and only if {i + l)(k + 1) = 0 (mod 777), if and only if n \ 1: + 1-

Thus cx also fixes b cosets; n — 1, 2n — 1,. . . , fen — 1 = 777 — 1 and we denote the
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induced reflection generators of A by c^_ 1 , c | n _ 1 , . . . ,cx
n_l.

We now need to determine the links between these reflection generators. The

relation xcx~x = cx, gives the links

<-0 L
m _ i ) <--n L-JJ — I , ( '2n C2n —1> i^m — n ^ m _ n _ j -

See end of §2.3 and example 3 of §4.1.

By part (ii) of Hoare's Theorem, when an orbit of (cx,c) contains a point fixed

by either c or c1, the orbit merely corresponds to a cycle of cxc. Hence we look

at the cycles of cxc to find the other links. We see that <p(cxc) = Ak+1^ which is

of order n. Suppose n is even then we know each cycle of cxc contains two points

fixed by c or two fixed by cx or no points fixed by either. Therefore, if c fixes xl,

then for some A G Z, 0 < A < n, we know that c also fixes x
l+x^k+1\ This is true

if and only if

i + X(k + 1) = -ik + -Xk(k + 1) (mod m)

<& 2X(k + 1) = 0 (mod m).

Thus A(& + 1) = m/2 (mod m). Similarly, if cx fixes x J , then j and j + m/2 are

in the same cycle of cxc. Hence, when n is even we have the following links.

Cf + n Cfn-1~ C%+2n-l

Ci2l_71~ Cm-n

Putting these links together with the ones previously obtained we form the follow-

ing chains.

C n-1 ~ Cn

Ctn ~ C f + i n ~ C% + in-i ~ Cfn_! ~ Ci

There are 26/4 = 6/2 = m/2n chains and so u is a symmetry of S := U/K,

K := ker(<p), with j ^ mirrors.

Suppose n is odd. If a cycle of cxc contains a point fixed by c, then it must

also contain a point fixed by cx and vice versa. Therefore, if c fixes i then cx must
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fix i + X(k + 1), for some A, 0 < A < n. This holds if and only if

i + X(k + l) = - k i - Xk(k + 1) - (k + 1) (mod m)

<^ z(l + k) + 2A(fc + 1) + (fc + 1) = 0 (mod m)

<& (2A + l)(jfc + 1) = 0 (mod m)

<$ n|2A + l.

For ease we denote c; by [i] and c | by [j]', so we have links of the form

[i] ~ [i + X(k + 1)]'. Thus with these links and those from the relation xcx~1 — cx,

we have the following chains.

[i]~ [i + X(k + 1)]' ~ [i + X(k + 1) + 1] ~[i + 2A(& + 1) + 1]'~

[i + 2A(A; + 1) + 2] ~[i + 3A(fc + 1) + 2] '~ [i + 3A(fc + 1) + 3] ~

[i + 4X(k + 1) + 3] '~ [i + 4X(k + 1) + 4] ~

As, in total, there are only 2b = 2m/n points fixed by c or cx, after 26 links we
will surely arrive back at c; or [i]. However, suppose the minimum number of links
required to return to [i] is p. Then clearly p is even, p divides 26 and

|(A(fc + l) + l) = 0 (modm).

We want n to be odd and so (& + 1, m) = 2ari2, therefore (A(fc + 1) + 1, 2°n2) = 1.
Thus if m divides f (A(fc + 1) + 1), then 2an2 divides p/2 and so 2a+1n2 = 26
divides p. Hence when n is odd there is only one chain and u has but one mirror.

The question of the sign of the species of u is a simple one in this case. We
saw that x cyclically permutes the A cosets in a m cycle. Therefore, because x is
conformal, we see, by (2.5)(iv), that for S/(u) to be orientable c would have to fix
every coset and this is never the case. This could only happen if m divides k + 1
in which case n would be one. Hence the species of u is negative.

Lemma 4.7

Let H be a group of automorphisms of a symmetric compact Riemann surface
that contains at least one symmetry. Hence, H lifts to a proper NEC group, say
A. If v £ H is a symmetry of X that is not conjugate to any of the symmetries
induced by the canonical reflection generators of A, then sp(v) = 0.

Proof Let K be the surface group that uniformizes S and let 8 G A induce v.
By the hypothesis, 8 is a glide reflection, as any reflection in A is conjugate to
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one of the canonical reflection generators. Hence, v fixes a point of 5", if and only

if there is a point p 6 U and a k £ K such that 8{p) = k(p). This is true if and

only if k~l8, which also induces v, is a reflection. Hence v is fixed point free.

We now determine the number of conjugacy classes of (symmetries) involu-

tions in G\{r). The elements of G\(r) can all be written in the form ur1. Such an

element is an involution if and only if i(k — 1) = 0 (mod m), as (ur1)2 — rl~kt.

Hence, there are (k — l ,m) involutions in G\(r). We see that u conjugates ur1

to ur~lk and that r conjugates ur1 to ur*~(k+1\ If ur1 is an involution, then, as

noted above, i(k — 1) = 0 (mod m) and so ur~tk = ur1. Therefore the conjugacy

class of ur1 is

and so contains mj{k + l ,m) elements. The number of conjugacy classes of sym-

metries of S in G, is the number of symmetries in G, divided by the length of a

conjugacy class, (they all have the same length).

n 1 \ /7 i i \ f 1 if a = 0;
(k - l,m)(k + l ,m) I .„ ' , . , , ,

= < 2 if a > 0 and k = ±1 (mod 2°);m 1 if a > 2 and A; = 20'1 ± 1 (mod 2a).

We know that a NEC group with signature ([m],(n)) has only one conjugacy

class of reflections. Hence, by Lemma 4.7 when there are two conjugacy classes

of symmetries of S in G above, one of them must have zero species. Note that

when n = mj{k + 1, m) is odd k = —1 (mod 2a) and so the number of conjugacy

classes of symmetries in G, when n is odd, is one if m is odd and two if m is even.

We now summarize these results.

T h e o r e m 4.8

Let tp be a surface kernel homomorphism from a Fuchsian group T[m,m,n],

onto a cyclic group C of order m. Let k be such that <p(x)k = <̂ >(y), where x

and y are canonical generators of F both of order m. Hence (k,m) = 1 and

(k -\- l ,m) = m/n. Let S be the surface uniformized by the kernel of ip. Then

C acts as a large group of automorphisms of S and S admits a symmetry of the

second kind with respect to C if and only if k2 = 1 (mod m). (Such a k exists

if and only if (n,m/n) = 1 when 4 / m and 1 or 2 otherwise.) If G denotes the

extension of C by such a symmetry, then the table gives the number of conjugacy

classes of symmetries in G and their species according to the signature of Y and
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The genus g of S1, is given by the Riemann Hurwitz formula; g = y ( l

_r , No. of conj. classes Species of
1 [m, m, nj, <p

m odd

m even,

[so k =

m and n

and k =

m and n

and A; ̂

n odd

- 1 (mod 2

even

; +1 (mod

even

: ±1 (mod

tt)]

2«)

2 a )

of symmetries in G

1

2

2

1

conj. classes

{»,-!}

{-ft}

2 a is the greatest power of 2 dividing m.

Now n > 2 and so g > ^- Therefore, if we fix g, to maximize ^ we must

let n equal two, in which case g = ^t and ~^=g. Hence Harnack's bound is

not attained on compact Riemann surfaces that admit large cyclic automorphism

groups by symmetries of the first or second kind with respect to these large groups.

Section 4.5 Symmetry Types

We know that if a Riemann surface admits a large cyclic automorphism group,

then it also admits a symmetry of the first kind with respect to this large group. If

such a surface also admits a symmetry of the second kind with respect to this large

group, then clearly the cyclic group is not the full group of conformal automor-

phisms of the surface. Let S be a surface that admits a large cyclic automorphism

group G, and symmetries of the first and second kind with respect to G. Let G\

denote the extension of G by a symmetry of the first kind, C?2 the extension of

G by a symmetry of the second kind and G' the full automorphism group of S.

Then, possibly, two symmetries that are non-conjugate in G\ are conjugate in (?',

or perhaps a symmetry from G\ is conjugate to a symmetry from G2 in G'. Fur-

thermore, G' may contain symmetries that are non-conjugate to those in Gi or G-i-

Alternatively, a surface admitting a large cyclic group may not admit symmetries

of the second kind w.r.t. the cyclic group and yet the cyclic group may still be

properly contained in the full group of conformal automorphisms of the surface.

Therefore, to determine the symmetry type of surfaces that admit a large

cyclic group, which is not the full conformal automorphism group, we need to
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consider the inclusions between Fuchsian triangle groups. Given such an inclusion

F < A, let S be a surface uniformised by a surface group K, which is normal in F,

such that Y/K is cyclic and finite. We must determine if K is also normal in A.

Thus given a surface kernel homomorphism </?, from Y onto a cyclic group G, we

need to determine if <p extends to A. That is; is there a surface kernel homomor-

phism from A onto a finite group G', containing G, such that the kernel is K and

the restriction of this homomorphism to Y is ipl Of course if the homomorphism

does not extend, then G is the full group of conformal automorphisms and the

symmetry type of the surface is one of those in the table at the end of §4.3.

In the Appendix all triangle group inclusions are considered. Information

relating the conjugacy classes of reflections in the proper NEC groups containing

F, with index two, and those in the proper NEC groups containing A, with index

two, is also given. Once we find surface kernel homomorphisms onto cyclic groups

that do extend we can use these results and those in the previous sections to

determine the symmetry types of the associated surfaces. The requirements of

Theorem 1.17 mean we only have to consider cases 1-4, 7, 9 and 10-14, with some

restrictions on the first three and last two cases. Note that in these cases the

Appendix tells us that the symmetries of the surfaces with non-zero species are all

conjugate to symmetries of the first or second kind w.r.t. the cyclic group except

in case twelve.

1. The Appendix tells us we can choose canonical generators x and y for

A[2,m,2n] of orders 2 and m respectively, such that X := y and Y := xyx are

canonical generators for Y[m,m,n], both of order m. Therefore given a surface

kernel epimorphism </?, from Y to a finite group, we see that (p extends to A if and

only if <p(X) H-» <p(Y) is an automorphism of order two of the finite group. Thus

if the finite group is cyclic, generated by r and (p(X) := r, <p(Y) := rk, then ip

extends to A if and only if k2 = 1 (mod m). This is precisely the same condition

for the associated surface to admit symmetries of the second kind w.r.t. the cyclic

group.

If k is as above, then the extension of <p maps A to the group

G:=(r,s\rm = s2 = srsr-k = 1),

by taking x to s and y to r. We know the associated surface is symmetric and so

admits a symmetry of the first kind i, w.r.t. G, that conjugates s and r to their

inverses. We denote by G*, the group generated by these three automorphisms.
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The elements of G* are

{1, r , . . . , r~l ,s,sr,..., sr'1 ,t,tr, , tsr"1}.

The involutions (symmetries) in G*\G are of the form trl, for all i, or tsr1 for

i(k — 1) = 0 (mod m). Now

r~1tr = tr2, sir1 s = trik, ttrit = tr~\ rtsr'r'1 = tsri~k~1,

stsr's = tsr'k = tsr1 and ttsr%t = tsr~l.

Hence the symmetries of the form ir* form one conjugacy class in G* if m is odd

and two if m is even. The symmetries of the form tsrxd, where rf = m/(k — l ,m)

and A a constant, split in to classes of order (k + l ,m) = n. Hence, as there are

(k — l ,m) such symmetries there are (k — l,m)/(k + l,m) conjugacy classes of

such symmetries. We recall the notation of §4.2.

( f c - l , m ) _ (1 if a = 0 or, a > 2 and k = 2a~x ± 1 (mod 2 a) ;

(ib + l , m ) ~ \ 2 if a > 0 and k = ±1 (mod 2a).

The symmetries trl are of the first kind w.r.t. (r), while tsrXd are of the second

kind or conjugate to those of the second kind. Thus the classes and species of

symmetries in G* are

— 1, —1 if m odd;

0, —1, —1, —1 if m even, n odd (so k = — 1 (mod 2 a));

0, —1, —1, +1 if m = 2n, n odd and k = 1;

0, - 1 , - 2 , -f^ if m, n even and 1 ^ A; = 1 (mod 2 a) ;

0, —1, +2, — ^ if m = 2n, n even and A; = 1;

- 1 , - 2 , - ^ if m, n even and k = 2a~1 ± 1 (mod 2 a ) .

We will show, in our treatment of inclusion twelve, that in the third and fifth

cases G* is not the full group of automorphisms of the surface, while in the other

instances it clearly is. This is because A[2,m,2n] is maximal when m ^ In.

2. Let x and y be canonical generators of A[3,3, m], both of order three, such

that X := xy and Y := yx are canonical generators of F[m, m, m]. Such generators

exist by the method in the Appendix using Schreier transversals. Note that,

1, xYx'1 = X and so x(yXY)-1x~1 = Y.
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Therefore, a homomorphism ip, from T onto a finite group G, extends to A if and

only if

<p(X) *-* ip(XY)~\ ip(Y) ^ <p(X) and

describes an automorphism of the finite group. In our case the finite group G is

cyclic, of order m, generated by r say and we may assume <p maps X to r and Y

to rk. Recall that for this to be a surface kernel homomorphism m must be odd.

Let tp be a mapping of G defined by

t/,(r) = r - ( f c + 1 ) , V(rfc) = r, V(r(fc+1)) = r~k.

Then this is an automorphism of G if and only if k2 + k + 1 = 0 (mod m). Note

that if k2 = 1 (mod m) as well, then m = 3, and F[3,3,3] is not Fuchsian. For

low k the possibilities are as follows.

k

k2 + k +
Possible

genus

1

m

2

7

7

3

3

13

13

6

4

21

7

3

5

31

31

15

6

43

43

21

7

57

19, 57

9, 28

8

73

73

36

9

91

91

45

10

111

37, 111

18, 55

11

133

7, 19

3, 9

The genus here is that of the associated surface. Suppose that ip does indeed

extend to A[3, 3, m]. If G' is the image of A, under ip, then it has presentation

G' = (r,s\rm =s3 = srs'1^1 = 1),

where s := <p(x) and s2r := 9?(y). We know that the associated surface S, is

symmetric and that it admits symmetries of the first kind w.r.t. G but none of the

second kind. Thus, any symmetry that normalizes G' is of the second kind w.r.t.

G', see Appendix. Therefore ip extends to some A([3],(m)) but to no (3,3,m).

Now A([3], (m)) is generated by x and a reflection C such that CxC = y~1. Hence

if G* is the image of A, under <p, then G* has presentation

G* = ( r , 5 , t | r m = 53 =t2 =srs-1rk+1 =tsts2r = 1),

where t:= tp(C). Note that (tr)2 = 1. The only symmetries in G* are of the form

tr%, for all i. We see that r conjugates t to tr~2 and so, because m is odd, there

is just one conjugacy class of symmetries in G*. This class is represented by a

symmetry of the first kind w.r.t. G and so has species —1, see §4.3. In fact, as
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we shall see in the next case, G* is the full automorphism group of S and so the

symmetry type of S is just { — 1}.

3. If a surface kernel homomorphism from a [m,m,m], onto a cyclic group,

extends to a [2,3,2m], then it must extend to a [2,m, 2m] and to a [3,3,m]. This

requires there to be a k such that k2 = 1 (mod m) and k2 + k + l = 0 (mod m),

see the previous two cases. Thus m must be three, in which case [m,m,m] is not

Fuchsian. Hence there is no such extension, and so in the previous case G* is

indeed the full automorphism group of S. This is because the only Fuchsian group

to contain a [3,3,m], has signature [2,3,2m].

4. If F[7, 7, 7] is generated by cannonical generators x and y then it is well

known that the surface associated to the surface kernel homomorphism, from F

onto Z7, that maps x to 1 and y to 2 is the Klein surface. It is also well known

that this surface has symmetry type { — 1}.

Note that, up to an automorphism of Z7 there are only two surface kernel

homomorphisms from F onto Z7, only the one above extends to A[2,3, 7].

7. If a surface kernel homomorphism from F[4, 8,8], onto a cyclic group of

order eight, extends to a homomorphism from A[2,3,8] onto a finite group G',

then the order of G' must be 96 and the associated surface S must carry a regular

map of type {3,8}. S would have genus three, so the map it carries should appear

in Sherk's list [30] and such a map does indeed appear. The group of conformal

automorphisms of the map is given as

(r,s\r8 = s2 = (rsf = ( s r ^ r " 1 ) 3 = 1).

Canonical generators x and y, of orders 8 and 2 respectively, can be chosen for

A[2,3,8] such that X := yxy and Y := xiyxyx~i are canonical generators, both

of order eight, for F, see Appendix. Clearly, if : x *—>r,yi—> s is a surface

kernel homomorphism from A onto (r,s). If we denote by G, the image of F

under this homomorphism, then it can be seen that G is cyclic of order eight and

r4srsr~4 = (srs)5. There are two inequivalent surface kernel homomorphisms

from F onto Cg, one characterized by k = 1 and the other by k = 5. The surface

associated to the epimorphism ip, can therefore be thought of as an extension of the

second epimorphism from F to C&. (The first, leads to a hyperelliptic surface, and

extends to a [2,4,8] as we shall see later). By §4.4 a symmetry of the second kind

w.r.t. G has species —1 and by §4.3 the two classes of symmetries in G extended by
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a symmetry of the first kind have species —1 and —2. The Appendix tells us Aut(5)

contains at most two conjugacy classes of symmetries with non-zero species, both

of which are represented by symmetries of the first or second kind w.r.t. G. From

remarks in §3.2 Aut(S') is (r,s) extended by a symmetry t, such that tr and ts

are both involutions. Thus it can be seen that there are three conjugacy classes

of symmetries in Aut(5) and so S has symmetry type {0, —1, —2}.

9. If a surface kernel homomorphism from F[9,9,9], onto a cyclic group of

order nine were to extend to A[2,3,9], we would expect to find a regular map

of type {3,9} on a surface of genus four. The automorphism group of the map

would be of order 108. There is no such map in Garbe's list [13]. Thus no such

homomorphism extends in this way.

11 . For all n > 2 there are surface kernel homomorphisms from F[4n,4n,n]

onto C*4n, the cyclic group of order An generated by r say. Let if be one such

homomorphism and let f{g\) : = r, <f(g2) : = rk 1 where g\ and #2 are canonical

generators for F, both of order An.

Clearly, if if extends to A[2,3,4n] it must also extend to some [2,2n,4n] and

so k2 = 1 (mod An), see case one. Thus we require An to have the form 2an\n2

where n\, «2 are odd and coprime such that k = 1 (mod n%), k = —1 (mod 712)

and k = ±1 (mod 2a) or k = 2a~l ± 1 (mod 2a) if a > 2, see §4.2. The order

of <f(gig2) = rk+1 is n and so (k, + 1, An) = 4. This is the case if and only if n-i = 1

and (i) n is odd, k = — 1 (mod 4) =>• k = 2n + l, or (ii) n = 2 (mod 4), so a = 3

and k = 3 (mod 8) =£> k = n + 1 or 3n + 1. Of course these are only necessary

conditions for if to extend to A.

The Appendix tells us, that when f does extend, there are one or two classes

of symmetries with non-zero species and these are represented by symmetries of

the first and second kind w.r.t. C±n. §4.3 says that C±n extended by a symmetry

of the first kind has two conjugacy classes of symmetries with species —1 and —1 if

n is odd, and —1 and —2 if n is even. C±n extended by a symmetry of the second

kind has two classes of symmetries with species 0 and — 1, if n is odd and one

class with species —2, if n is even. Thus if if does indeed extend to A then the

associated surface has

(i) one or two classes of symmetries with species — 1, at least one class with

species 0, and possiblly others all with zero species if n is odd, or

(ii) one class with species —1, another with species —2 and possiblly other classes,
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all with species 0 if n is even.

Here are a couple of examples to show that some of these extensions do occur.

(a) There is a surface kernel homomorphism 9?, from A[2,3,8] onto

G1 := (r, s I r8 = s2 = (rsf = ( rS)3 = 1)

defined by <p(x) := r and <p(y) := s, where x and y are canonical generators for A

of orders eight and two respectively. The subgroup F, of A, generated by g\ := yxy

and #2 := x2yxyx~2 has signature [8,8,2], see Appendix. Indeed, g\ and #2 a r e

canonical generators for F, both of order eight, and it can be seen that y>{g?) =

if(gi)3. Thus f(T) is cyclic of order eight. The full group of automorphisms G*,

of the associated surface 5, is G extended by a symmetry t such that tr and ts

are involutions. It can be seen that G* has two classes of symmetries, thus the

symmetry type of S is { —1, —2}.

(b) There is a surface kernel homomorphism ij>, from A[2,3,12] onto

G' := (r, s I r12 = s2 = (rs)3 = s^s^r'4 = 1)

defined by ip(x) := r and V'(y) : = s, where x and y are canonical generators for

A of orders twelve and two respectively. The subgroup F, of A, generated by

<7i := yxy and gi := x2yxyx~2 has signature [12,12,3], see Appendix, and g\, 52

are canonical generators for F, both of order twelve. We see that 1^(92) = V'(fi'i)7

and so ip(T) is cyclic of order twelve. If S is the associated surface then Aut(S')

is G' extended by a symmetry t such that tr and ts are involutions. Aut(5) can

be shown to have three classes of symmetries, represented by rt, t and rsr2str.

Aut(S') lifts to A*(2,3,4n) which is generated by reflections a, b and c such that

ab = x, be = y, and rt and t are the images of a and b. Thus precisely two of

the classes of symmetries have non-zero species and so the symmetry type of S is

{ 0 , - 1 , - 1 } .

It may well be that the symmetry type is precisely {0, —1, —1} when n is odd,

and { — 1, —2} when n is even, for all extensions. However all we can say for sure

is the symmetry type is (i) {0p,—1} or {0r, — 1,— 1} for some p > 1 when n is

odd, or (ii) {0?,—1,—2} for some q > 0 when n is even. Here 0p denotes the

occurrence of 0, p times in the symmetry type.

12. Suppose x and y are canonical generators for F[2n,2n,n], both of order

2n. Let i^bea surface kernel homomorphism from F onto Cin, which is generated
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by r, defined by <p(x):= r a n d v{y):= r * • We see that for (p to extend to A[2,4,2n]

it must also extend to some A[2n, 2n, 2]. Case one tells us that this happens if and

only if k2 = 1 (mod 2n). Thus we can write 2n as 2anin2 where n\ and r*2 are

both odd and coprime, see §4.2. We require (k + l,2n) = 2, therefore n2 = 1 and

k = l (mod 2a) or, if a > 2, fc = 2"-1 + 1 (mod 2a) . Hence fc = 1 or k = n + 1,

note that the second case can occur only when four divides n. The two possibilities

for k describe two epimorphisms that do not differ by just an automorphism of

C2n and so we have to consider two epimorphisms and two extensions.

fl • F I > C2n <t>2 • T I > C2n

x r x r

y r y r
n+1

We can choose canonical generators x\ and j/i for A[2,2n,2n] of orders 2 and

2n respectively, such that x = yi and y = xiyiXi, see Appendix, and we let
zi = {xiy\)~l• Let G\ denote the image of A under ip\ and G2 the image under

9?2- Then

d:= (r,s\r2n = s2 = srsr'1 = 1) a n d G2:= {r,s\r2n = s2 = srsr71'1 = 1).

ipi : A 1—> Gi ^ : A i — > G2

X\ S X\ S

2/i r Vi r

z\ sr~1 z\ srn~l

In the same way we can choose canonical generators X2 and 2/2 for A, of orders 2

and 2n respectively, such tha t t/i = y2 and zi =

Hence ip\ extends to A if and only if, G\ admits an automorphism of order

two that maps <^i(yi) = r to ^1(21) = 5?-""1. Clearly ^r"1 is of order 2n and this

mapping takes srsr^1 to the identity, so G\ does admit such an automorphism

and if 1 does extend. Note that such an automorphism fixes s.

Similarly, <pi extends to A if and only if r 1—>• srn~1, srn~1 \—> r describes an

automorphism of G2. Note that

srn~1.rn+1 = 5 ^-> r ( 5 r n - 1 ) n + 1 = rsrn~\srn-1 srn-x)nl2 = s{rn-2)nl2 = srn

because 4 divides n. This mapping is indeed an automorphism of G2 and so if

also extends to A.
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The Appendix tells us that the surfaces associated to these extensions will

admit a class of symmetries that are not conjugate to any symmetry that normal-

izes C2n and so we will now seek to calculate its species. From the Appendix we

know that the class will be represented by a symmetry of the second kind w.r.t.

G\ in the first case and G2 in the second, however we will work in the full auto-

morphism group so as to determine the number of conjugacy classes of symmetries

with species zero.

We deal with <pi first. The image of A, under tp\, is G\ extended by an

involution u := y>\(x2) such that uru = sr~1 and so usu = 5. Note that v?i (j/2) = f-

Thus <t>i(A-) = (r, s, u I r2n = s2 = u2 = srsr~1 = ururs = 1)

= (r, u I r2n = u2 = (ru)4 = rur2ur = 1)

= (u, v I u2 = vA = (uv)2n = uv2uv2 — 1)

where v := ur. The full group of automorphisms G*, of the associated surface 5*,

will lift to a A*(2,4,2n). A* will be generated by reflections a, b and c such that

ab = X2 and be = X21/2- Note that a, b and c here are not the same as those in

the Appendix. However the Appendix does tell us that the symmetry induced by

the canonical reflection generator of A*, that is associated to the link periods two

and four, represents the class we are interested in. In this case it is <£i(6), In fact,

if fi(b) = t then

G* := (u, v, 11 u2 = v4 = t2 = (uv)2n = uv2uv2 = {tuf = {tvf = 1).

Therefore, trt = tuvt = uv~1 = ur~lu = rs and tst = tv2t = s. Let L:= (t), so

the right L cosets are represented by the elements of ip\(A), which are

{l,r, . . . ,r~"1 ,s, sr,..., sr~1, u, ur, , usr~1}.

We know that <pi(a) = tu and <pi(c) = tv are not conjugate to t. Therefore, we

only need to look at the action of t, on the L cosets, for the reflection generators

of ipil{L). Note that trlt = (rs)1 = slrl. Hence

Lrlt = Lslrl = Lr{ 4=^ 2\i

Lsrlt = Lsl+1r% = Lsr1 <=> 2\i

LurH = Lusiri = Lur{ <=> 21 i

LusrH = Luslrl — Lusr1 <=$• 2 | i
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Therefore t fixes the following An cosets.

l , r 2 , . . . , r~ 2 , s , s r 2 , . . . ,sr~2,u,ur2,..., ur~2, us,usr2,...

We must now determine how the associated reflection generators of <̂ j~ (L) are

linked, (fi(ab) = u, which is of order two, thus if g represents a coset fixed by t

then the associated reflection generator is linked to that of gu. Therefore we have

the links

O O O " * O O O O

1 ~ u, r ~ ur~~, . . . , r2 ~ itr and 5 ~ us, sr ~ usr~ , . . . , .sr~ ~ t/sr .

<vj1(6c) = i; = ur, which is order four, thus the cycles of v acting on the L cosets

are all four cycles and if g represents a coset fixed by t then gv2 is the other coset

fixed by t in the same v cycle. This is because <y?]~
1(L) has no proper periods and

only empty period cycles. Note that v2 = s and s is in the centre of G*. Therefore

we have the following links.

O O O O * O O O O

1 ~ s, r" ~ sr~, . . . , r ~ sr~~ and u ~ us, ur ~ usr , . . . , ur~ ~ u^r

Putting these links together we form the following chains.

1 ~ u ~ us ~ s ~ l

r2 ~ ur~2 ~ tisr~2 ~ sr2 ~ r2

o O 0 9 O

Hence t has 4n/4 = n mirrors. The Riemann Hurwitz formula tells us that the

genus g, of the surface is n — 1 and so n = g + 1 which is Harnack's bound.

Therefore spit) = +(</ + 1), as a symmetry that attains the bound of Harnack

necessarily separates the surface. At the end of the last section we remarked that

symmetries of the first or second kind, w.r.t. a large cyclic automorphism group,

never attain Harnack's bound, now we have shown that there is an infinite family

of surfaces with such automorphism groups that do admit symmetries attaining

this bound.

We now consider how many conjugacy classes of symmetries there are in G*.

(tr1)2 = (rsYr* = slr2i = 1 <& i = 0 or i = n and 2 | n

(tsr1)2 = 5(rs) isr i = sV2i = 1 <& i = 0 or i = n and 2 | n

{tur1)2 = u(rs)lurl = (sr~1s)lri = 1 for all i

(tsur1)2 = us(rsYusrl = s(sr~1 s)1 sr1 = 1 for all i
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The symmetries are the elements tur1 and tusr' (for all i), t, ts and, if n is even,
trn, tsrn. We see that

r.turl.r~l = tur%~2 r.tusr1 .r~l = tusrl~2

u.tur'.u = tuslr~l u.tusr1 .u = tust+1r~t

t.tur1 .t = tus'r1 t.tusr1 .t = tust+1rl

r.t.r~1 = ts r.trn.r~1 = tsrn.

Thus the conjugacy classes are

{tu,tur2,... ,tur~2} {tus,tusr2,..., tusr~2}

{tur,tur3,... ,tur~l,tusr,tusrz,... ,tusr~1}

{t,ts} and {trn,tsrn} if n is even.

Hence G* has four classes when n is odd and five when n is even. Recall that
fi(a) = tu a nd </?i(c) = ^ur> a nd are therefore non-conjugate. Hence G* contains
three classes of symmetries with non-zero species, two of which are represented by
symmetries of the first or second kind w.r.t. C2n- Thus we are in a position to use
results from §4.3 to write down the symmetry type.

st(s) = { i °> 1' + 1 ' +(sr + l ) } if n is odd;
S^ } \ {0 ,0 , -1 , +2, +(0 + 1)} if n is even.

Now we consider the extension of ip2- The image of A, under (f2, is G2
extended by an involution if := <£2(«'C2)? such that uru = srtl~1 (and so usu = srn).

Note that ^2(2/2) = f- Thus

tp2(A) = (r,s,u \r2n = s2 = u2 = srsrn~1 = ururn+1s = 1).

The full group of automorphisms (?*, of the associated surface 5", will lift to a
A*(2,4,2n), generated by reflections a, b and c such that ab = x2 and 6c = x2i/2-
We are interested in (̂ 2(6) and if 922(6) = t, then iiti = u, turt = (ur)"1. Therefore
trt = sr and

G*:= (r,5,if,f|r2n = 52 = u2 = t2 = srsr^1 = ururn+1 s = (tu)2 = (tr)2 s = 1).

Let L := (t), so the right L cosets are represented by the elements of < 2̂(A). We

know that </?2(a) — tu a n ( i (p2(c) = tur are not conjugate to t and so we only need
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to look at the action of t on the L cosets for the reflection generators of <p2
 1(L).

Note that trH = (sr)1.

. ,- f Lsrisrsr)^-1^2 = £arr(™+2)(«-D/2 if i is odd;
Lr .t = Lisry = <

\ L{srsryi2 = LAn+2W2 = Lri+n'/2 if i is even.

Hence t fixes rl if and only if 4 divides i. As t commutes with u and s we see that

altogether t fixes 2n cosets and they are

1 4 —4 4 —4 4 —4 4 —4

l , r , . . . , r , s , s r , . . . , s r ,u,ur ,...,ur ,us,usr• , . . . , u s r .

(p2(ab) = u a n d r 4 A u = u r ~ 4 A , so we have t h e links
i 4 —4 —4 4

Q ^̂> 7i<irn QT* ^-^ it Qrn Q71 ŝ̂  it <irn '

(f2(bc) = ur, which is of order four, and (ur)2 = srn. As r4Xsrn = Sr
n+4X we have

the links

1 ~ srn, r4 ~ srn+4, . . . , r ~ 4 ~ srn~4,

71 4 72 + 4 —4 72—4

u ~ usr , ur ~ usr , . . . ,ur ~ usr

These links combine to form the following chains
1 72 72 72 tl 1

i^-l W i^s> tliST rs"1 3 ^^ r* ^̂ ^ UV ^^ US l^°l SV r*-/ L

r4 ~ Ur~
4 ~ usrn~4 ~ sr4 ~ r"+4 ~ urn~4 ~ usr~4 ~ srn+4 ~ r4,

r 4 ~ ur4 u s r n + 4 ~ sr 4 ~ rn 4 ~ u r n + 4 ~ usr4 ~ srn 4 ~ r 4.

There are 2?i/8 = n/4 chains. A rather tedious argument shows that

tu.tur.tu.t.tur.t.tur.tu.tur.tu.tur.t.tur = t

represents a circuit, without loops, of odd length in the coset graph of L in G*,

over {tu,t,tur}. Hence, sp(t) = —n/4: = — (g + l) /4 , where g is the genus S.

It can be seen that G* has three conjugacy classes of symmetries represented

by i, tu and iur when n = 4 (mod 8) and four classes represented by t, tu, tur
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and trnl2 when n = 0 (mod 8). Using the above results and those in the tables

of the previous sections we see that

. L a., «, ,u/ ,j when n = 0 (mod 8);
S " ' ~ \ { 0 , - 1 , - 2 , - n / 4 } when n = 4 (mod 8).

Note that if n = 4, then if 2 extends further, to a [2,3,8], see case seven. The

symmetry type in this case is {0, —1, —2}. Hence, in this instance, the two classes

of symmetries with species — 1 = —n/4, in G* above, are in fact conjugate in

Aut(S).

13. Suppose ip is a surface kernel homomorphism from F[3,n,3n] onto Csn,

of course there is such a homomorphism if and only if n and three are coprime.

Let X and Y be canonical generators for F of orders 3n and 3 respectively. We

may assume that <f(X) = r, where r generates C^n. Then, as ip(XY) must be of

order n, we see that

( . _ (r2n if n = 1 (mod 3);
\rn if n = 1 (mod 3).

The genus g, of the associated surface 5, is given by g = n — 1. If <f extends to

some A[2,3,3n], then S carries a regular map of type {3,3n} whose (conformal)

automorphism group is of order 12n. Hence, if such an extension were possible

for n = 4, 5, 7 or 8, we would expect to find the corresponding regular map in

Sherk's list [30], or in the lists of Garbe [13], [15]. For n = 5, 7 or 8 there is no

such map. However, Sherk lists a map of type {3,12}, on a surface of genus three,

whose automorphism group G, has the following presentation

G: = (r, s I r12 = s3 = (rs)2 = sr^s'1^3 = 1)

= (u,v\ u12 = v2 = (tit))3 = u3vu~3v~1 = 1).

Here u := r" 1 and v := rs. Let x and y be canonical generators for A[2,3,3n], of

orders 3n and 2 respectively, such that X = yxy and Y = xyx~2, the Appendix

says such generators exist. Clealy, when n = 4, x 1—* u and y \—> v defines a surface

kernel homomorphism from A onto G, and it maps X, Y to vuv, uvv~2. It can be

shown that vuv and uvv~2 do indeed generate a cyclic group and uvv~2 = (vuv)s,

so for n = 4 there is a homomorphism that does extend.

Let us now consider the general case. Suppose a homomorphism f, does

extend to A and G:= <f(A). Then G is generated by u:= <f{x) and v:= f(y), the
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orders of which are 3n and 2 and the order of their product is 3. Now (p(T) will

be generated by vuv and uvu~2. By the above remarks we see that

_2 f vu2nv if n = 1 (mod 3);
= I u»v if n = - 1 (mod 3).

Hence ^(XF)-1 = u3 = ( ^ ^ ^ ? ;
r v ; [ 2 " 1 ] ; rfn = - l (mod 3).

Suppose n = 1 (mod 3), then u3 = uu""1?;. Thus uu3u = un~1 and so

f"-1)2/3 = u3 if and only if ( n - l ) 2 / 3 = 3 (mod 3n), if and only if

1 (mod n). If we let c:= (n — l ) /3 , then we require c2 = 1 (mod 3c + 1). Thus

if p is an odd prime factor of 3c + 1, then c = ±1 (mod p).

(i) If c = 1 (mod p), then p\c — 1 and p | 3c + 1 which implies p 14.

(ii) If c = — 1 (mod p), then p | c + 1 and p | 3c + 1 which implies p | 2.

Thus ra has no odd prime divisors, and so 3c + 1 = 2a for some a. We require

c = ±1 (mod 2°) or c = 2 " - 1 ± 1 (mod 2a), if a > 2. However, c = (2a - l ) /3

and so these conditions are satisfied only when a = 2 and n = 4. By a similar

argument it can be shown that when n = —1 (mod 3), no extension is possible.

Hence there are no extensions of the above nature except when n = 4. In this

case the full group of automorphisms of S, is G extended by a symmetry t, such

that tu and tv are both involutions. It can easily be seen that this group contains

only two conjugacy classes of symmetries, one represented by t and the other by

tu, and so the symmetry type ofS'is-f — 1, — 1}.

14. Let if be a surface kernel homomorphism from F[2,n,2n] onto C*2n,

so n is odd and ip is unique up to an automorphism of C2n- If X and Y are

canonical generators of F, of orders 2n and n, then we may assume <p(X) = r

and f(Y) = r""1 , where r generates C2n- Suppose ip extends to A[2,3,2n] and

G := </?(A). We can find canonical generators x and y of A, of orders In and

2, such that X = yxy and Y = x2, see Appendix. Now G will be generated by

u := y(x) and v := y(y), and u2 n = v2 = (uu)3 = 1. Thus <p(X) = vuv, <p(Y) = u2

and so by the uniqueness of <p, we see that (^(X)""1 (= vun~1v) = (p(Y)(= u2).

Thus vu2v = un-x and so vun~lv = {vu2v){n-1^2 = u^n-^2l2 = u2. Now,
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(n - l)2/2 = 2 (mod 2n) if and only if c2 = 1 (mod n), where c = (n - l)/2.
Let p be any prime divisor of n = 2c + 1, then c = ±1 (mod p). Suppose
c = 1 (mod p), then p divides c — 1 and 2c + 1, thus p divides 3 and so p = 3. In
the same way we see that if c = — 1 (mod p), then p divides 1. This argument
also applies to the maximum power of a prime divisor of n and so n = 3 is the
only possibility, in which case Y is not Fuchsian. Therefore there are no surface
kernel homomorphisms of this kind that extend, for any n.

We now summarize the results of the chapter and list all possible symmetry
types of compact Riemann surfaces with large cyclic automorphism groups. In the
following S denotes the surface, g its genus, K the surface group that uniformizes
5, C the large cyclic group, Y the lift of C, G the full group of conformal auto-
morphisms of S, A the lift of G, G* the group of all automorphisms of S and A*
the lift of G*.

Theorem 4.9

If C — G, that is F = JVc(K)-, then S only admits symmetries of the first kind
with respect to C, and the symmetry type of S appears in the following table.

r[m1,m2,m3]

mi odd

mi, 7ri2 even, mz odd

77i i even

Symmetry Type

{-1}

{-1,-1}

{-1,-2}

Note that the table in Theorem 4.6 has two entries containing positive sym-
metries. In these cases Y has signature of the form [2n,2n,n] and we have shown
in case 12 that C j^ G.

Theorem 4.10

Let C < G. Then the signature is one of those in the following table. At
least one of the periods of Y is equal to the order of C. Let x and y be canonical
generators of Y such that the order of x is the order of C and the order of y is the
next largest period of Y. Let (p : Y i—> C, be a homomorphism with kernel A", and
let k be such that (f(x)k = tp(y). Then the symmetry type of 5 is given in the
following table.
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r

[m, m, n]

n | m

m odd

m even
n odd

m, n even

[m, m,m], m odd

[7,7, 7]

[4,8,8]

[4n,4n, n]

[2n,2n,n]

n odd

n = 2 (4)

n odd

n even

n = 0 (8)

n = 4 (8)

[3,4,12]

A,

(2,m,2n)

([3],(m))

(2,3,7)

(2,3,8)

(2,3,4n)

(2,4, 2n)

(2,3,12)

<P

k2 = 1 (m)

fc2 - 1 (m)
k = 1 (2a)

fc = 2 a~ x ± 1 (2a)

A;2 + Jk + 1 = 0 (m)

ib = 2 n + l

n = 2 ( 8 ) , fc = n + l

n = 6 (8), A; = 3 n + 1

Ar- 1

Ar - n + 1

fe = 3, y? is unique

Symmetry Type

{-1,-1}

{0,-1,-1,-1}

{0,-1,-2,-^}

{-1}

{-1}

{0,-1,-2}

{OP,-1'}

{0r,-l,-2}

{0,-1,+1,+n}

{0,0,-1,+2,+n}

{-1,+2,-n/4}

{0,-l,+2,-n/4}

{-1,-1}

9

—Cl - -)
2 V n>

(m-D
2

3

3

2n-2

n - 1

3

In the table q is one or two, p > 1 and r > 0. Since j> and r are the numbers of

conjugacy classes of involutions in G*\G, less one or two, the only obvious upper

bound on them is of the order 8n.
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Chapter 5

Symmetries and Large Abelian Groups

In the first section we consider surface kernel homomorphisms from Fuchsian

triangle groups, onto finite non-cyclic (two generator) abelian groups. We deter-

mine necessary and sufficient conditions on the signature of the triangle group and

on the abelian group for such an epimorphism to exist. To each of these homo-

morphisms there is associated a compact Riemann surface which admits a large

non-cyclic abelian group of automorphisms. In the second and third sections, we

find the species of symmetries of the first and second kind w.r.t. the abelian group.

Finally, in the fourth section, we see that there is an infinite family of the above

surfaces that admit symmetries that are not conjugate to those in sections two or

three. We calculate the species of these symmetries, and so completely determine

all possible species of symmetries of compact Riemann surfaces admitting large

non-cyclic abelian automorphism groups. We refrain from calculating all possible

symmetry types, content with finding the symmetry types of all but three or four

infinite families and three or four particular examples of these surfaces.

Section 5.1 Large non-Cyclic Abelian Groups

Let xi, x2 and x3 be canonical generators of the Fuchsian triangle group

F[mi, 777,2,1TL3], of orders mj, m,2 and 777.3. Suppose ip is a surface kernel homo-

morphism from T onto a non-cyclic abelian group GJV, of order N. As in the

case of cyclic groups, we must have [mi, 7772] = [mi, 7773] = [777,2,777,3]. Therefore,

if d — (777,1,777,2,777,3) a n d db\ = (m2,777,3), db2 = ( m i , 777,3), db3 = ( m i , 777,2), t h e n

61, b2 arid 63 are m u t u a l l y copr ime a n d m\ = db2bz, 777.2 = db\b% a n d 777.3 — db\b2.
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Clearly GJV will be generated by any two of y>(xi), tp{x2) o r f{x3)- If ui is

the order of the intersection (tp(x2)) H (^(£3)), then ui divides (m2,m3) = d&i. If

we define «2 and U3 in the same way, then u?, divides d&2, U3 divides db$ and

17121713
1V == — =

Hence 61 divides ui, 62 divides «2, b3 divides 113, and so N = (Pb^bz/h, for some

proper divisor h, of d.

If p is a prime divisor of TV, then the Sylow-p subgroup of GN is either cyclic

or two generator abelian. We distinguish between three different types of prime

divisors of N.

(i) Those that are coprime to 6162̂ 3 •

(ii) Those that divide d and 61 &2&3 •

(iii) Those that are coprime to d.

Let e be the exponent of p in the prime decomposition of N. Then the Sylow-p

subgroup of GN, is isomorphic to Z ^ + Zpr for some a and r that sum to e. We

may assume that a > r.

If p is of type (i), then e = 2a — v, where a and v are the exponents of p in c?

and /?.. For tp to preserve orders we must have a > a and so, for <p to also be onto,

we must have a = a and r = a — v.

If p is of type (ii), then e = 2a — v + u> where u; is the exponent of p in the

decomposition of 6162&3• For ip to preserve orders we must have a > a + u. Thus,

for ip to also be onto, we must have a = a + UJ and r = a — u.

If p is a prime of type (iii), then e is just u and so, for ip to preserve orders,

we must have a = LO.

We arrange the prime decomposition of AT as follows

]\[ _ n f i rfk nea „€&

1\ — p1 . . .pk . . .pa . . .pb ,

where p i , . . . ,p& are all distinct primes, k < a < b and e\ > 0. The first k primes

are of type (i), note that k may be zero. For k < i < a, p; is of type (ii) and

ti = 2on — Ui + Ui, where a,-, V{ and WJ are the exponents of pi in c?, /i and 61&2&3

respectively. For a < i < b, pi is of type (iii) and so divides exactly one of the b^s

and is coprime to d. From the previous remarks about Sylow subgroups we see
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that

(Z^ak + 1+wk + 1 + Z^ak + 1-uk+1 ) + + (Zpaa+wa + Zpaa

Zp(a + l + + Zpeb

~ z M + zd/h,

where M = db\b2bz = [mi,m2] = [mi,7713] =

Theorem 5.1

Let T[mi,rri2,m3] be a Fuchsian triangle group. Let M = [mi,m2,7713] and

d = (mi,m2,m3). Then there is a surface kernel homomorphism from F onto a

non-cyclic abelian group G, of order N, if and only if the following conditions hold.

(i) [mi,m2] = [mi,m3] = [m27ms] = M.

(ii) iV = dM/h for some proper divisor h ^ d, of d.

(iii) G - Z A Z + Z ^ .

(iv) If d is even then h is odd or M/<i is even.

Proof We have already shown the necessity of conditions (i)-(iii). To show that

(i)-(iv) are sufficent we construct a surface kernel homomorphism of the required

nature. If p is a prime factor of JV, then Zpa + Zpr is the Sylow p subgroup of GN,

where a and r are the exponents of p in the decomposition of M and d/h respec-

tively. We build up a homomorphism by specifying its restriction to the Sylow

subgroups. To this end we define ^>p, a homomorphism from F onto Zpv + Zpr,

the only requirement being that the orders of <^p(x), (fP{y) and <pp(xy) are the

powers of p in the prime decompositions of mi, m2 and m3.

If p is of type (i) , then a = a and r = a — v. We let <pp(x) = (1,0) and

ifp(y) = (1)1)? then ifp(x), <pp(y) and <pp(xy) are all of order pa, unless p = 2.

If p = 2 and /i is odd, then z/ = 0 and fp(x) = (1,0), fP(y) — (0,1) describes a

satisfactory homomorphism. However, if p = 2 and h is even, then a — v < a and

a satisfactory homomorphism can not be found. (This shows the necessity of the

fourth condition).

If p is of the type (ii), then a = a + UJ and r = a — v. Without loss of

generality we may assume that p divides 63. In this case we let ^>p{x) = (1,0) and

= (Pw — l i l)- Thus ipp(x) and <pp(y) both have order pa+iJ, while <fp(xy)
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has order pa.

If p is of type (iii), then a = to and r = 0. Again we assume that p divides 63

and so we let <fp(x) = (1) and <pp(y) — (~1)-

By the Chinese Remainder Theorem, there is a unique x\ modulo M that is

congruent to the first coordinate of <pp(x), modulo pe, for all p dividing N. Simi-

larly there is a unique x2, modulo d/h, that is congruent to the second coordinate

(if there is one), of ipp(x), modulo pe, for all p dividing d/h. If we define y\ and

y2 in a similar way from the <^p(y)'s, then <p(x) = (xi,x2), <f(y) = (2/1,2/2) defines

a surface kernel homomorphism from T onto G.

Example Let x and y be canonical generators of F[600, 840,1050] of orders 600

and 840. Now (600,840,1050) = 30 and [600,840,1050] = 126,000. The Theorem

tells us that there are surface kernel homomorphisms from T onto ZM + Zr where

r G {2,3,5,6,10,15}. We will take the case when r = 10. Hence N = 24.3.53.7,

the only prime of the first type is 3, those of the second type are 2 and 5, and 7 is

the only one of the third type. Let x\ and X2 obey the following.

X! = 1 (mod 3)

xi = 1 (mod 8) x2 = 0 (mod 2)

x1 — 4 (mod 25) x2 = 1 (mod 5)

xi = 0 (mod 7)

Then the Chinese Remainder Theorem tells us that x\ = 1729 (mod M) and

£ 2 = 6 (mod 10). If yi and j/2 obey the following.

yi = 1 (mod 3)

Hi =3 (mod 8) 3/2 = 1 (mod 2)

y i = 5 (mod 25) 2/2=0 (mod 5)

iji = 1 (mod 7)

Then yi = 1555 (mod M) and y2 = 5 (mod 10). Therefore, x >-> (1729,6) and

y 1—> (1555,5) describes a surface kernel homomorphism from V onto ZM + Z10.

Section 5.2 Symmetries of the First Kind

Let if be a surface kernel homomorphism from T[mi,ni2,ms], onto a non-

cyclic abelian group G, of order N. If £1 and x2 are canonoical generators of F,

of orders mi and m2, then r := ^(xi) and s :— ̂ >(x2) generate G. We use the

notation of the previous section and so mi = db2bz, ra2 = dbib%, m^ = dbib2,
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M = [mi, m2, m3] = d&i&2&3 and N = Md/h, where /i is some proper divisor of d.

The 6 '̂s are mutually coprime and d = (mi, m2,7713). Theorem 5.1 tells us that

G ~ Z M + Z/ , for / := d/h. The orders of r and 5 are mi and m2 and so the

order of the intersection (r) D (s), must be /163. Thus (r^2) = (sfbl). Let rj be

the least positive integer such that r^2 = snfbl, then (77,^63) = 1. We know that

(rs)m 3 = 1, and so

Therfore r\db\ = —db^bo (mod m2), and so 63 divides 7761+&2- We actually require

the order of rs to be m3, hence (77&1 + 62, ̂ 63) = 63. With this understanding G

has the presentation

G = (r,s \rmi = sm2 = r^r" 1^- 1 = r
fb2

S-
vfbl = 1).

The elements of G are

{1, r, r2 , . . . , r~x, s, rs,. . . , r~l s, , sfl>1 ~x, rsfbl - 1 , . .. , r ^ s ^ 1 " 1 } .

Symmetries of the first kind (w.r.t. G, of the associated compact Riemann

surface) exist if and only if r i—s- r"1 , s 1—>• s"1 describes an automorphism of G,

see §3.2. This is always the case. Let G* denote the extention of G by such a

symmetry. Then G* lifts to T*(mi,m2,m3). F* is generated by three reflections

a, b and c such that ab = x\ and be = x2. Hence if will extend to F*. If £:= f{b),

then (tr)2 = (ts)2 = 1 and f{a) = i r" 1 , tf(c) = is. The symmetries in G* are the

involutions in G*\G, clearly trls-7 is an involution for all i and j . Note that

r.t^^.r-1 =trl-2sj, s.tr'sKs-1 =trlsj-2, t.trisj .t = tr-is~j.

Therefore, if the m;'s are all odd, then there is just one conjugacy class of sym-

metries in G*. Suppose mj, m2 are even and m3 is odd, then d is odd and 63

is even. Thus tsfbl~1 is conjugate to ts^bl+1, which is equal to tr^fb2s, where ip

is the inverse of rj modulo hb3. Hence there are two classes of symmetries in G*,

one contains those elements of the form tr2ls2^ and t r 2 j + 1 s 2 j + 1 , the other contains

those elements of the form tr2ls2:>+1 and tr2l+1s2:>. If the mi are all even, then d

is even and we see that when / is odd the classes are the same as in the previous

case, while when / is even there are four classes represented by t, tr, ts and trs.
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The (tr J ) , (i) and (ts) right cosets are represented by the elements of G. We

now consider the actions of y(a), <p(b) and <p(c), by right multiplication, on these

cosets.

On the (t^1) cosets; On the (i) cosets;

On the (ts) cosets;

(1) Suppose the ?n2's are all odd. Then there is only one class of symmetries

and so we need only determine the species of i. t fixes the (i) coset represented

by rlsi, 0 < j < fb\. if and only if r2ls2i = 1. Hence fb\ must divide 2j and

so, because fb\ is odd, j must be zero. Therefore t only fixes one coset, namely

1. This means that tr~x and is each fix precisely one coset and, because the m;

are all odd, i will only have one mirror. The word tr-1 .ts.t.tr"1 .ts = i, represents

a circuit in the Schreier coset graph of (t) in G* over {tr~1 ,t,ts}, that passes

through the vertex associated to the coset 1. When the m; are odd it can be seen

to be loop free and so sp(t) = — 1.

(2) Suppose mi and m2 are even and m3 is odd, so d is odd and 63 is even.

Then there are two classes of symmetries, one represented by i and the other by

is. Note that tr~x is conjugate to ts.

Firstly we consider the action of G* on the (i) cosets and determine the

species of i. fb\ is still odd and so i can only fix rls* when j = 0. Hence i fixes

only two cosets, 1 and r m i / 2 . Therefore, because mi and m,2 are even, the two

associated reflection generators of </?~1((i)) are linked and i only has one mirror.

The arguement that shows i is non-separarting in case one can be adapted to show

that i is also non-separarting here.

We now look at the action of G* on the (ir"1) cosets. tr-1 will fix r'si

(0 < j < fb\), if and only if r2ls2i = 1. This is the case only if fb\ divides 2j

and as fb\ is odd, j must be zero. Hence tr~x fixes only two cosets, 1 and r m i / 2 ,

similarly ts must fix only two cosets. m\ is even and so the two reflection generators

of (/?'~1((ir~1)) associated to the cosets fixed by tr"1 are linked. 1712 is also even and
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so the cosets fixed by ts also give rise to linked reflection generators. However,

is odd and so there are links between these two pairs of generators. Therefore tr~*

only has one mirror. In the associated Schreier coset graph t.ts.tr*1 .t.ts = tr~x,

represents a circuit of odd length that passes through 1. This circuit is without

loops when mz is odd and so sp{tr~1) = •—1.

(3) Suppose mi, m2 and 7713 are all even, so d is even. If M/d is even then

we assume that it is b3 which is even.

(i) If / is odd, then there are two conjugacy classes of symmeteries in (?*, {t}

and {tr~1,ts}. Clearly tr"1 and ts will fix no (t) cosets, and t will only fix two

(t) cosets, 1 and rm i /2 . This is because fb\ and fb2 are still odd. Hence, because

mi and m^ are even, t only has one mirror.

Similarly, tr"1 only fixes two (tr~1) cosets, 1 and rmi'2. Therefore ts will fix

exactly two of these cosets and, because the mi are even, tr~l has two mirrors.

We consider whether t and tr"1 separate after we have dealt with the case when

/ is even.

(ii) If f is even, then there are four classes of symmetries in G*, {£}, {tr"1},

{ts} and {t}. On the (t) cosets: t fixes r's-7', 0 < j < fb\, if and only if r2ls2i — 1.

This is the case only if fb\ divides 2j, and so j is 0 or fb\/2. When j ' = 0 we

must have i = 0 or m\j2. If j = /&i/2, then r2ts2i = 1 only if i is congruent to

—•0/^2/2 or (?7ii — ̂ /62)/2 modulo mi, where ipr] = 1 (mod /163). Thus t fixes

exactly four (t) cosets. If t fixes r's-7, then we denote the associated reflection

generator of <p~1((t)) by (i,j). Hence the reflection generators are

(0,0), (mi/2,0), (-z/>/&2/2,/61/2) and ( ( m i - V/&2)/2,/&i/2).

Now tr~x .t = r and the r orbits of cosets give the following links.

(0,0) ~ (mi/2,0), ( -^ /6 2 /2 , /6i /2) ~ ((mx - ^fb2)/2Jh/2).

The other links are obtained by looking at the t.ts = s orbits, in particular the

action of sm^2 on the cosets fixed by t. We see that s™2!2 = rm i /2 if and only if

fh divides m2/2(= fhhbz/2), if and only if hb3 is even. Thus sm^2 links (0,0)

to (rm i /2 ,0) if and only if hbz is even. Therefore, t has two mirrors if hb3 is even

and one otherwise.

Similarly, tr"1 has two mirrors if hb2 is even and one otherwise, and ts has

two mirrors if hb\ is even and one otherwise.
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The element tr 1.ts.t.tr * .ts = t, represents a circuit in the Schreier coset

graph of (t) in G* over {tr~1,t,ts}, that passes through 1. The circuit is loop

free unless r2 s2 = 1 and so, unless mz — 2, the species of t is negative. Therefore

the above circuit is loop free unless d = 2 and b\ = 62 = 1. If this is case, then

m\ = mi = 263, 7773 = 2 and the epimorphism <p, from F to G, is unique up to

an automorphism of G. The (t) cosets are 1, r, r 2 , . . . , r~1,s, r s , . . . , r - 1 s and the

action of G* on these cosets is described by the following.

tr~1 :rl 1—> r~l~1 t:rl 1—> r~x ts :rl 1—>r~ls

rls r~l+1s rls r~'t+2s rls r~l

Thus, we can partition the cosets in to two sets,

and {r~\r-\ ..., r m i / 2 , s ^ s , r~2 s .. .,r

such that t r" 1 , t and ts either take cosets from one set to the other, or they fix

them. Hence t separates if and only if 7723 is two. In this case F will have signature

[26, 26, 2] and t will have species +1 if b is odd and +2 if b is even.

The element t.ts.tr~1.t.ts = tr^1, represents a circuit in the Schreier coset

graph of (tr~1) in G* over {tr~1 ,t,ts}, through 1. This can be seen to be loop

free unless s2 = 1, that is 1112 = 2. When 7712 is two then the coset graph can also

be seen to be bipartite. Hence the species of tr~l is positive if and only if G lifts

to [26,2,26], in which case sp(tr~l) will be +1 if 6 is odd and +2 if 6 is even.

Consideration of the element t.tr^1 .ts.t.tr^1 = ts, in a similar manner to

the above, shows that ts separates if and only if G lifts to [2,26,26]. Again, the

epimorphism ip, is unique up to an automorphism of G and sp(ts) is +1 if 6 is odd

and +2 if b is even.

Note that at most one class of symmetries in G* has positive species.

We now summarize the results in this section.

Theorem 5.2

Let ip be a surface kernel homomorphism from F[mi, 77̂ 2,7773] onto a non-cyclic

abelian group G, of order N. (Thus 7771 = c?6i62, ?T72 = db\b^, 7773 = dbib2, where

d = (7711,7772,7773) and 61, 62, 63 are mutually coprime, and for a proper factor / of

d, N = fdb\ 62 63.) The Riemann surface S that is uniformized by the kernel of <p
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admits symmetries of the first kind w.r.t G. If G* denotes the extension of G by

such a symmetry, then the following table gives the number of conjugacy classes

of symmetries in G* and their species. The results are independent of <p.

r[mi,m2,m3]

mi odd
mi, m2 even, m^ odd

m; even

/odd

/ even

f = d = 2,

M/d = bi

otherwise h

bi odd

bi even

h, M/d odd

odd, M/d even

h even

{0,

{0,

{0,

{0,

{0,

Classes

{-1}

{-1}

{-1,-2}

- 1 , - 1 ,

- 1 , - 1 ,

- 1 , - 1 ,

- 1 , - 1 ,

-2,-2,

+ 1}

+2}

- 1 }

- 2 }

- 2 }

Note that {0,-2,-2,+2} and {0,-1,+1,-2} do not appear in the table.

The first does not because for G* to contain three classes of symmetries that have

two mirrors h must be even, but h must be one for there to be a symmetry that

separates in G*. The reason the second does not occur is that for G* to contain

a separating symmetry G must lift to [26,26,2]. If G* also contains a symmetry

with two mirrors, then b must be even and the class of symmetries that has two

mirrors will necessarily be the class that separates.

When G* contains separating symmetries, that is G lifts to T[2b, 2b, 2], then G

is isomorphic to Z2& + Z2 and, as we shall see later, G* is not the full automorphism

group of the surface. However, as most Fuchsian triangle groups are maximal, most

Riemann surfaces admitting large non-cyclic abelian automorphism groups have

one of the symmetry types in the previous table, excluding those symmetry types

containing any positive species.

Section 5.3 Symmetries of the Second Kind

To even consider symmetries of the second kind w.r.t. a large non-cyclic

abelian group G, we must have G lifting to some T[db, db, d\. As before we let tp be

a surface kernel homomorphism from T onto G, the associated Riemann surface

5, is uniformized by ker(ip). G will then have presentation

ir,s r""' =
db _ db _ „„_- ! a - l _ „/ a-i]f —

= rsr rJ s = 1),
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where / is a proper divisor of <i, and r and s are the images of canonical generators

x\ and X2 of F, both of order db. We have seen that (77, hb) = 1 and (77 + 1 , /16) = b

where h := d/f. From §4.2, we know that S admits symmetries of the second

kind w.r.t. G if and only if, r 1-+ s"1, s 1—> r" 1 describes an automorphism of

G. Clearly this is the case if and only if s~frT'f = s^1~r> ) = 1, if and only if

T]2 = 1 (mod hb).

Suppose p is an odd prime factor of hb, if pe is the maximum power of p

dividing hb then we want 77 = ±1 (mod pe). However, (77 + l,hb) = b and so pe

divides h or b. If pe divides b then 77 = —1 (mod pe) and if pe divides h then

77 = 1 (mod pe). Now suppose hb is even and that a, v and u; are the exponents

of two in the decompositions of hb, h and b respectively. Then 77 = ±1 (mod 2a)

or 2a~l ± 1 (mod 2a) if a > 2. If 77 = 1 (mod 2a), then (77 + l ,2 a ) = 2 which

implies LO = 1. If 77 = —1 (mod 2 a) , then (77 + 1,2°) = 2a which implies u = a

and v = 0. If 77 = 2a~1 + 1 (mod 2°), then (77 + l ,2 a ) = 2 which implies u; = 1

and v = a-1. If 77 = 2 a " 1 - 1 (mod 2a), then (77 + 1,2a) = 2a~x which implies

LO = a — 1 and v = 1. Hence given h and 6, such an 77 exists only if (/i, b) = 1

or 2. It is also quite clear from the above that given such a pair an 77, satisfying

(77, hb) = 1, (77 + 1, hb) = b and i]2 = 1 (mod fo6), can be constructed.

We assume that S does indeed admit a symmetry of the second kind and we

let G* denote G extended by such a symmetry. G* lifts to some F*([<i&], (d)), which

is generated by a rotation x and a reflection c such that x\ = x and 22 = cx~1c.

G* will have presentation

{r,s,t\rdb = sdb = t2 = rsr~l s~l = r ^ " ^ = trts = 1),

where rj := y(c). We want to determine the species of t and so we use Theorem 2.5,

remembering that the canonical generators of F* are strictly x, xcx~x and c. Note

that ip(xcx~1) = tr~1 s"1 and (^(xcx-1c) = rs. We now determine the action of r,

tr~1 s"1 and i on the right (i) cosets. The cosets are represented by the elements

of G,

l , r , r 2 , . . . , r~1 ,s, rs,r2s,.. . , r"" 15, . . . j ^ ^ ^ 1 , rs^"1, r2^^""1 , . . . j r " 1 ^ " 1 .

We shall sometimes abuse this notation by refering to the coset rlsi, for some

j greater than / — 1, meaning the coset which is equivalent to it in the above

representation. The actions are as follows.

r: r%si \—> r l + 1 5 J f t: r1V 1—> r~:'s~1 tr~xs~*: rlV 1—»• r~:>~1 s~l~1
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Hence t fixes r%s^ if and only if (rs)*+J = 1, if and only if d divides i + j . Thus t

fixes fb cosets,

rd r2d -d - l d-i r~
d~1

- / + 1 J 1 r d / + l o / l d / + l / - I

Similarly, tr~1s~1 fixes rlsi if and only if d divides i + j + 1 and so fixes

We must now determine the links between the reflection generators of <̂ "

induced by ip(c) and ip(xcx~1) fixing these (t) cosets. We denote the reflection

generator corresponding to the coset r's-7', fixed by t or tr~ls~1, by (i,j)- The

(i,j) that are associated to t are such that d divides i + j , while those associated

to tr~1 s~* are such that d divides i + j + 1, this is how we distinguish between

them. The relation x"1 .xcx~1 .x = c, provides us with the following links, see end

of §2.3.

That is, if (i,j) is associated to t, so d | i + j , then it is linked to (i — 1, j ) which

is associated to tr~1s~1, and vice versa. We must now look at the cycles of

Lp{xcx~1c) = rs for the other links. In doing this we must distinguish between the

case when d is odd and the case when d is even.

Suppose d is odd. We see that if (i,j) is associated to t then it is linked

to (i H—5~ )̂i H—7^)5 w n i c n is associated to tr~1s~1. This is because the cosets

rlsi and r
l+( d - 1 ) / 2

5 i+( d - 1 ) / 2 lje m the same orbit under rs. Putting these links

together with those above, we form the following chain.

Let 2n be the length of the above chain, then clearly In divides 2/6, the total

number of cosets fixed by t and tr~1s~1. After 2n links we arrive at
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For this to be (0,0), / must divide n ( ^ - ) , but (/, ̂ ^") = 1 as / is a factor of d.

Therefore / divides n and

This is (0,0) if and only if db divides n(^=^(?7 + 1) + 1). We know / divides n and

so this is the case if and only if hb divides 7(^7^(77 + 1) + 1)- Since b divides 77 + 1,

b must divide nj/ and so 2n = 2/6. Hence there is only one chain and £ has only

one mirror.

Suppose d is even, then if (i,j) is associated to £, it is linked to (i + | , j + | )

which is also associated to t. Similarly, if (&, /) is associated to tr~l s~l, it is linked

to (k + - , / + | ) which is also associated to tr~1s~1. Putting these together with

the links above we obtain the following chains.

(0,0) ~ (f, f) ~ (f - 1, f) ~ (d- l,d) ~ (d,d) = (0,0)2 ' 2

\ 2 ' 2 ' y 2 ""•' 2(d,0) ~ ( f f ) ~ ( f - 1 f

Hence there are 2/6/4 = /6/2 chains and so £ has /6/2 mirrors. Note that if g is the

genus of 5, then fdb[l-l/db-l/db-l/d] = 2g-2, therefore (d-l)fb/2-f+l = g.

Substituting in fb/2 = g + 1, we see that £ attains Harhack's bound if and only

if (g + l)(d - 2) = / - 2, and as g > 1, 2 < / < d, we must have d = f = 2.

So we see that sp(£) = +(g + 1) if and only if T has signature [26,26,2]. In this

case, up to isomorphism, there is only one finite abelian group that is the image

of F under a surface kernel epimorphism and the epimorphism is unique up to an

automorphism of the abelian group.

Clearly F* contains only one conjugacy class of reflections and so G* will

contain only one class of symmetries with non-zero species. We now determine

the number of classes of all symmetries in G*. Consider, (£rJ5J)2 = r J ~ J s J ~ J .

Therefore, trlsi is an involution if and only if / divides i — j and 5(8~i)('?~1) = l?

if and only if / | i — j and hb divides ^-^-(T] — 1). Now,

(v-l,hb) = \ 2 h if « > 0, 77 = ±1 (mod 2°);
I- h otherwise.

Here 2a is the maximum power of two dividing hb. Hence there are 1h possibilities

for i —j in the first instance and h in the second. Therefore, G* contains 2h.f = Id
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symmetries, / for each possible i — j , in the first instance. These are

t, trs, tr2 s2,..., tr^1 s^1, tr^2, trW2+1s,...,

or
99 J i A 1 0 fhl^

v * v i *J » \J i tj • • • • % ly I t j v̂^̂  Of *

In the second instance G* contains / i . / = d involutions,

or

is generated by r, s and i, and

+ 1 i + 1 t.trs.t = tr~j s~{

Note that if ir's-7' is a symmetry then tr~is~1 = tr's-7'. Hence the order of each

conjugacy class of symmetries in (7* is d = Orders). Thus G* contains two classes

of symmetries, {i} and {ir^6/2}, in the first instance, and one in the second.

We must now decide whether S/(t) is orientable or not. If it is, then the

(t) cosets can be partioned into two sets such that ip{x) = r fixes the sets and

(p(c) = t, ip^xcx^1) = tr~l s~l take cosets from one set to the other or fix them.

If r preserves the partition, then, for all i and j , r'sc and rJ 'sc are in the same

set of the partition. Now r~l .t = ts, r~2st = tr~1s2 and r" 1 ^ s, r~2s ^ r~1 s2.

Therefore cosets r% and r* s are in different sets of the partition, as are rJ's and rks2.

This implies that r% and rks2 are in the same set of the partition, but r~2 .t = ts2

and so, unless r~2 = s2, t does not separate. When r 2 s 2 = 1 then d = 2 and we

know that t does separate, as this is the case when t has g + 1 mirrors.

We now summarize these results.

T h e o r e m 5.3

Let <p be a surface kernel homomorphism from T[db,db,d] onto a non-cyclic

finite abelian group G of order N = fdb, for / a proper factor of d. If x\ and X2 are

canonical generators of F, both of order db, let r/ be the least positive integer such
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that <p(xi)f = (ip(x2)f)v- The associated Riemann surface 5, admits symmetries
of the second kind w.r.t. G if and only if rj2 = 1 (mod hb), (h:= d/f), and such
an r/ exists if and only if (h, b) = 1 or 2. Suppose this is the case and that G*
is G extended by such a symmetry, then the species of the conjugacy classes of
symmetries in G* are given in the following table, a is the exponent of two in the
prime decomposition of hb.

T[db,db,d], ip

d odd

d even

d-2=>h-l

b odd

b even (=* 77 = - 1 (2 a ) )

h, b odd

h odd, b even (=• 77 = - 1 (2a))

h even

(=>• 6 even)

77 = 1 (2«)

otherwise

6 odd

6 even (==> 77 = —1 (2 a ) )

Classes

{-1}

{0,-1}

W&/2}

{0,-/6/2}

{0,-/6/2}

WV2}
{+(<? + !)}

R+U + i)}

Looking at this table and the one in the previous section, we see that the only
surfaces to admit symmetries of the first or second kind that separate are those
that arise via epimorphims from some [26,26,2], onto Z2& + Z2. These surfaces
also admit a large cyclic automorphism group and are covered in case twelve of
§4.5. The symmetry type of such a surface can be seen to be {0, —1, +1, -\-(g + 1)}
when g is odd, and {0,0, —1, +2, +(g + 1)} when g is even.

Section 5.4 Other Symmetries

If F and A are Fuchsian triangle groups such that T is contained in A, then
this inclusion appears in [33]. There are only eight particular inclusions or infinite
families of inclusions for which there is a surface kernel epimorphism from F to a
finite non-cyclic abelian group. These inclusions are 1-4, 7, 9, 11 and 12 in the
Appendix. If A* is a proper NEC group containing A above, then the Appendix
tells us that every reflection in A* is conjugate to a reflection that normalizes F
except for one of these inclusions, (No. 12). Therefore, if <p is a surface kernel
epimorphism from F to an abelian group of the above nature, that extends to
A, then all the symmetries of the associated surface, with non-zero species, are
conjugate to symmetries of the first or second kind, with non-zero species, w.r.t.
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the abelian group unless F < A is inclusion twelve. That is unless A has signature

[2,2d, 4] and contains T[2d,2d,d] with index four. In this case if ip extends to A,

then it must extend to some A[2,2d, 2d], F < A < A. If G' denotes </>(A), then the

Appendix tells us that there is a symmetry of the second kind w.r.t. G', with

non-zero species, which may not be conjugate to any of the symmetries of the first

or second kind w.r.t <p(T).

In this section we find necessary and sufficient conditions on T[2d,2d,d], the

abelian group and <p for ip to extend to A[2,2<i, 4]. Then we calculate the species

of symmetries of the second kind w.r.t. <p(A) and show that in fact one class of

these symmetries, with non-zero species, contains no symmetries conjugate to any

symmetry of the first or second kind w.r.t. <p(T).

Let x\ and 3/1 be canonical generators of F, both of order db. If tp takes F to

G, then G is isomorphic to Z2d + Zf for some proper factor / , of d, and G has the

following presentation.

G:= (r,s\r2d = s2d = rsr'1 s'1 =rfs~Tlf = 1)

Here r := ip(xi), s: = <p(y\) and rj is the least positive integer such that (77,2/1) = 1

and (77 + l,2h) = 2, h := d/f. A[2,2d,2d] has canonical gnerators 22 and 2/2, of

orders 2 and 2d, such that x\ = 3/2 a n d 3/1 = ^2^/2^2- Thus a ^ i ^ = 3/1 and so

</? extends to A if and only if r 1—> s, s t—> r is an automorphism of G. This is

the case if and only if r/2 = 1 (mod 2h). We assume 77 satisfies this condition, if

u:= (p(x2) then G':= < (̂A) has presentation

G' = (r,s,u \r2d = s2d = u2 = rsr^s'1 = rfs~vf = urus"1 = 1).

Hence 95(3/2) = ^ and if 22 = (a^Jte)"1) then ^(^2) = r~1u = us~l. Now A[2,2d, 4]

contains A with index two and so has canonical generators X3 and 3/3, of orders

2 and 2c?, such that 3/2 = 3/3 and 22 = ^33/3^3 • Therefore £33/2^3 = 2̂ and so 9?

extends to A if and only if r 1—>• r~1u is an automorphism, of order two, of G'.

Let d denote this mapping. If d is an automorphism, then d(u) = i?(r.r~1u) =

r~1u.r = urs~1 and 'd(s) = i?(urw) = urs~2. However, since d is an involution and

urs~1 = sr~1u, we see that -d(s)r = u. We have already shown that •d(s) = urs~2

and so we require urs~2 = ur"1. This is true only if r2s~2 = 1, so / = 2 and

77 = 1. Thus necessary conditions for tp to extend to A are / = 2, which implies d

is even, and 77 = 1. In fact these conditions can also be seen to be sufficient and

from now on we shall assume that / = 2 and 77 = 1.
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Under the above circumstances the associated surface S, admits symmetries

of the second kind w.r.t. G'. Thus (p extends to A*([2<i], (2)), which is generated

by a rotation x and a reflection C such that U2 = x and Z2 = Cx~1C. If t:= ip(C),

then t(p(i/2)t = (/2(z2)~1, that is trt = ur. Therefore,

tut = turr~1t = u and tst = turut = us.

Recall that, strictly speaking, the canonical generators of A* are x, xCx~* and

C. Thus we look at the actions of r, tu and t on the right (t) cosets to determine

the species of t. The cosets are represented by the elements of G',

1, r, r 2 , . . . , r"1 , ts,r,s, . . . ,r~1 .s,u, ur, ur , . . . , ur~ , us, urs,... , ur-1 s.

; o d d ;

(urur)1!2 = rll2sll2 i even.

= urllLs%l^v i even.

Note that t commutes with u and so the above also indicates the action of t on

the cosets ur1 and urJ5. Thus t fixes r* and ur1 if and only if 4 divides z, and i

fixes rls and u?^!s if and only if 4 divides i + 1. Hence i fixes 2cf cosets.

tu: r% ̂  (ur)lu = I |
[ [urur)1' u — ur1' s1' i even. i

^ i , , i ( u r ( u r u r ) ^ ^ r = u r ^ ^ s ^ ^ i odd; j
tu: r s i—> (ur) usu = < . ' -/Q-H • M

y {urur)1'' usu = r
l/2+1

s
1/2 % even.

Therefore tu fixes rl and ur1 if and only if 4 divides i + 1, rls and url.s if and only

if 4 divides i + 2 and so, tu also fixes 2c? cosets.

It now remains for us to calculate the links between the reflection generators

of ip~1((t}) associated to these fixed cosets. We also use the coset representitives

to represent the associated reflection generators. Thus if t fixes u%r^sk, i,k £

{0,1}, 0 < j < 2d, then the reflection generator u'Ws* is linked to uV ;+1« fc,

which is associated to coset uVJ+1s fc fixed by tu. This is because the action of r

on the cosets is simply r: ulrisk i—> u ' r J + 1 6 i , see end of §2.3. Hence

u r 7 s
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The remaining links come from the orbits, or cycles, of tut = u. We know u is an

involution and so the links it induces will link generators associated to cosets fixed

by t to generators also associated to cosets fixed by t, or generators associated

to cosets fixed by tu to generators associated to cosets fixed by tu. Note that u

commutes with r4% and so we have the links

rAl ~ ur4i,

Putting all these links together we form the following chains.

1 ~ r"1 ~ ur~2s ~ ur~1s ~ r~ls ~ r~2s ~ ur~^ ~ u ~

r4 ~ r3 ~ ur2s ~ ur3s ~ r3s ~ r2s ~ ur3 ~ ur4 ~ r4,

r 4 \

r 4 ~ r ° ~ ur 6s ~ ur 5s ~ r 55 ~ r 65 ~ ur 5 ~ ur 4 ~ r 4.

Hence there are Ad/8 = d/2 chains and t has d/2 mirrors. If g is the genus of 5,

then 4d[l - ^ - ^ - J] = 2g - 2, so gf = 2d - 3 and d/2 = (g + 3)/4.

Under r there are four orbits of (t) cosets, these are {r1}, {rJ.s}, {ur1} and

{urzs}. However t maps cosets from each of these orbits to cosets in the remaining

three orbits. For instance t maps coset r to ur, r2 to rs and r3 to ur25. Hence,

by (2.3)(iv), t does not separate and so sp(t) = —(g + 3)/4.

Clearly t does not attain Harnack's bound, unlike in the cyclic case. By

considering the tables in the previous sections, we can see that the associated

surface 5, admits at least one class of symmetries with zero species and two

or three with non-zero species. When d/2 is odd the non-zero species are —1,

—2 and —d/2. When d/2 is even there is one class with species —d/2 and the

others have species —2. If one works in the full automorphism group, then the

symmetry type can be calculated exactly. If d is congruent to two modulo four,

then st(S) = {0, —1, —2, —j(g + 3)}. If d is congruent to zero modulo four and is

greater than four, then st(S) = {0 , -2 , -2 , -^ (0 + 3)}. When d — 4, A[2,2d,4]

is not maximal but is contained in some [2,3,8]. In this case g = 5 and we see

that the surface kernel epimorphism from F[4, 8, 8] to Zs + Z2 does extend to this

[2,3,8]. Hence the automorphism group of S has order 384. By working in this

group we can see that S admits just three classes of symmetries and has symmetry

type {0 , -2 , -2} .
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Chapter 6

Weierstrass points and Regular Maps

The set of Weierstrass points on a compact Riemann surface is a finite set

of "special" points. In the first chapter we saw that maps and hypermaps can

naturally be thought of as lying on compact Riemann surfaces. By the nature of

the construction of these objects, we see that the vertices (hypervertex centres),

face centres (hyperface centres) and edge centres (hyperedge centres) also form a

finite set of "special" points on the surface. We call this set the set of geometric

points of the map or hypermap. In this chapter we shall be looking at certain

regular maps and hypermaps and asking what the coincidence is between the

geometric points of these objects and the Weierstrass points on the underlying

surfaces. When a Weierstrass point is also a geometric point, with respect to some

map, we will say that it is itself geometric with respect to that map.

In the first section we give the necessary definitions and some background re-

sults. In §6.2 we present the theorems that we will use directly. In §6.3 we consider

those regular maps and hypermaps whose automorphism groups are abelian. We

show that the Weierstrass points of surfaces carrying such maps are all geometric,

with respect to the maps, and the surfaces themselves are hyperelliptic. Finally,

in §6.4, we look at all the regular maps of genus two, three, four and five and

determine (in most cases), whether the Weierstrass points are geometric.

Section 6.1 Weierstrass points

For a compact Riemann surface S, recall that a function / : S i—> S, is called

meromorphic if, for every chart (U, <fr) on S, the function / o $ - 1 : $(U) i—• E is
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meromorphic. Thus a meromorphic function on S can be thought of as a set of

local meromorphic functions fi: <&i(Ui) i—> S, where A = {U{, $i} is an atlas that

gives rise to the complex structure on S. f is said to have a pole (zero) at P 6 S

of order n, if / o $~ ' has a pole (zero) at &i(P) of order n, where (£/j, $i) is any

chart at P .

When we differentiate the set of functions {/ o $ 2
r 1 } , we get another set of

meromorphic functions {(/ o $^"1)'}. However, if P £ U{ V\ Uj, then

= (/ o

Hence ( / o $ r 1 ) ' $ i ( P ) and ( / o $J"1)'$J-(P) differ by the derivative of the coor-

dinate transformation function at $;(P). Thus the derivative of a meromorphic

function is not necessarily a meromorphic function, but a collection of meromor-

phic functions on the local coordinates.

Definition 6.1 A m,eromorphic differential, on a Riemann surface with atlas

A = {(£/j,$i)}, is a collection of meromorphic functions m : $i(Ui) i—» S, such

that if PeUiH Uj, then ^ ( ^ ( P ) ) = ^ ( ^ ( P ) ) . ^ o ̂ - ^ ' (

Clearly if 1] and C are meromorphic differentials on S with £ =£ 0, then

77,-($i(P))/Ci($,-(P)) = iij($j(P))/(j($j(P))- Hence 77/C is a meromorphic func-

tion on S.

Let M(S) denote the vector space of meromorphic functions on S, and D(S)

the space of meromorphic differentials on S. If g is the genus of S, then it is known

that the subspace of analytic differentials, denoted by A(S), has dimension g.

Definition 6.2 A divisor on 5 is a symbol P?lP™2 ...P%\ where P,- e
o, G Z and fc is finite.

If A = n -Pa(P) and £ = [] P^ p ) are divisors on 5, then we define their
PGS pes

product and inverses by, AB = [] p°(m0(P) a nd A"1 = [] P~ a ( P ) . Thus
PGS PGS

the set of divisors on S, denoted by Div(S), with the above product and inverses
is a group. The degree of A, or deg(A), is defined as deg(A):= Yl a(P)-

Pes
To each / G M(S) we associate a divisor (/) = J | P°rdpf 5 where ordpf is n

PGS
if / has a zero of order n at P , —n if / has a pole of order n at P and 0 otherwise.
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If / £ M(S), then the divisor (/) is said to be principal. The principal divisors

form a subgroup of Div(S).

Similarly, to each rj £ D(S) we can also associate a divisor (77) = FJ p°rdPTi,
Pes

We define an equivalence relation on Div(S) by saying that the divisors A and B

are equivalent if AB~l is principal. Hence, if 77, £ £ D(5)\{0}, then 77/C £ M(S)

and so (77) ~ (£).

We say that the divisor A is integral, or that A > 0, if a (P) > 0 for all P £ S.

Furthermore, we say -4 > B if A-B^1 > 0.

Definition 6.3 If A £ Div(S), then we define L(A) to be the space of / £ M(S)

such that (/) > ,4 and we let r(A) denote the dimension of L(A). We let Q(A) be

the space of 77 £ D(S) obeying (77) > A, and «(A) denote the dimension of ft(A).

Note that 0(1) = -4(5) and so i(l) = flr.

Theorem 6.4

For A £ Div(S). r(A) and z(A) depend only on the class of A, and if 7? ̂  0 is

any meromorphic differential, then i(A) = r(

For a proof of this theorem and other results stated here, see [12].

Theorem 6.5 (Riemann-Roch)

If A £ Div(S) is integral, then r(A~1) = deg(A) - g + 1 + i(A).

This is a very meaningful result and has lots of applications, not least in the

study of Weierstrass points. We now define Weierstrass points via the following

theorem, which is itself an application of the Riemann-Roch Theorem.

Theorem 6.6 (The Weierstrass gap Theorem)

If S is a compact. Riemann surface of genus g, then for each point P £ 5,

there are precisely g integers

1 = 71 < 72 < • • • < lg < 2gr,

such that there does not exist a function / £ M(S), analytic on 5'\{P} with a

pole of order 7; at P.

The above sequence is called the gap sequence at P , while its complement in

the natural numbers is the set of non-gaps at P . The non-gaps form a semi-group.
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We denote the first g non-gaps by

1 < a\ < a2 < • • • < otg — 2g.

For each ctj, there is a meromorphic function with a pole of order aj at P and

which is analytic everywhere else.

Definition 6.7 A point P £ 5, is a Weierstrass point if «i < g or equivalently,

if 7S > g. That is, there exists a function in M(S) that is analytic on 5 \ { P } , and

has a pole of order less than or equal to g at P.

Let W denote the set of Weierstrass points on S. To each point of S we ascribe

a weight according to its gap sequence. The weight of P , denoted by wp, is given
9

by wp = ^2(li — 0 ' where 7IT • • ->1g a r e the gaps at P. This is zero unless P £ W.

The total weight of points on S is known to be g(g — l)(g + 1) = g3 — g. It is also

known that, for each P on 5, wp < \g{g — 1), with equality if and only if a.\ — 2,

in which case S is hyperelliptic. Thus if to = §W, then 2(<? + 1) < u ; < g3 — g.

When S is hyperelliptic all its Weierstrass points have weight \g{g — 1).

Thus 7 is a gap at P e S if and only if L(P~7) - L ( P - 7 + 1 ) = 0, that is,

r(P-t) - r(P-'<+1) = 0. The Riemann-Roch Theorem tells us that

r(p-f) - r(p-~<+1) = i(Pr) - ^P7"1) + 1.

Hence, 7 is a gap at P if and only if there is an 77 £ A(S) with a zero of order

7 — 1 at P . For each P £ S a basis for A(5), 6\, #2, • • •, Qg, can be constructed

such that 6i has a zero of order 7,- — 1 at P , where ji is the itil gap at P .

Section 6.2 Automorphisms

We have previously remarked that the automorphisms of a surface 5, fix

W setwise, and so Aut(S) acts as a group of permutations on W. In fact this

representation can be seen to be faithful if S is not hyperelliptic. Lewittes [24],

considered the representation of (conformal) automorphisms on D(S), in particular

A(S), and on spaces of ^-differentials which we shall not discuss. Let 9 £ D(S)

at P £ S be given locally by 8 — (dkzk + . . .)dz, [z is a parametrization of $(£/),

where (U, $) is some chart at P). Let h £ Aut+(S) and let Q = h~1(P). Suppose

6 at Q is locally given by 6 = (bjiii +.. .)du, for some local parameter u. Since h~l

is conformal, it is given locally at P by u = F(z), where .F'(O) 7̂  0. We define h(9)

to be the differential which at P is locally given by h{&) = (bj{F{z))>+.. .)F'(z)dz;

that is, h(8) = Ol^1. The mapping 6 i-> fo(0), is a linear transformation of D(S)



that maps A(S) to itself. Let R(h) denote the linear transformation determined

by h acting on A(5). Lewittes has shown that this representation of Aut+(S) is

faithful.

Automorphisms of S can act on M(S) in the same way that they act on D(S)

and A(S). Let H = (Ji), a meromorphic function or differential which is fixed by h

is said to be H-invariant. We let M(S)H, D(S)H and A(S)H denote the subspaces

of M(S), D(S) and A(S) that are if-invariant. If S is the quotient space S/H,

with the obvious complex structure, then Lewittes proved that M(S)H ~ M(S),

D(S)H ~ D(S) and A(S)H ~ A(S). This was done by "lifting" differentials from

D(S) to D(S)H and "lowering" those in D(S)H to D(S), [meromorphic functions

were considered to be O-differentials].

Lewittes then used these ideas to calculate a formula for the multiplicities of

the eigenvalues of R(h), which we shall outline. If h is of order N, then so is R(h)

which is therefore diagonalisable. Hence its eigenvalues are powers of e:= e2mlN.

Let nk denote the multiplicity of ek as an eigenvalue of R(h). Thus no is the

multiplicity of one and is equal to the dimension of A(S)H, which is g; the genus

of S and the dimension of A(S). Let ITH : 5 —̂> S be the branched analytic covering

whose branch points are precisely the points fixed by either h or its powers. We

denote these points by Pi ,P2,. . . ,Pt- Lewittes only considered the case when N

is prime and so each P; has branch order N — 1, this is because H has no non-

trivial proper subgroups when N is prime. Now njt is the dimension of the space of

analytic differentials #, such that h(9) = ek9. This can be seen to be the dimension

of a space of if-invariant meromorphic functions with certain properties. These

functions can be "lowered" into M(S) and the Riemann-Roch Theorem then gives

an expression for the dimension of this space in terms of the action of h at all its

fixed points. At P;, h~l is locally z 1—> rjiz, where rn is some primitive iVth root of

unity. If eh = rjf1, 1 < p; < iV, then Lewittes showed that

= 9 - 1 + Yl i1 - ^ ) ' 0<k<N.

If Â  is not prime, then there may be branch points of TVJJ with branching orders

less than N-l. Let { P n , P 1 2 , . . . , P i r i } , . . . , {Pti,-Pt2, • • • ,-Ptrt } be the t orbits of

branch points, with branching orders N/r\ — 1, . . . ,N/rt — 1 and let Ni — N/r{.

Suppose / i~ r ; , at P, ; , is locally z t—> r/iZ, where rji is a primitive N^ root of

unity. Note that the action of h~r' is locally the same at each of the points
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PJ I , . . . , Pin • The expression for the multiplicities of the eigenvalues, not equal to

one, generalizes to

-jf\, where ekr> = Vf\ 1 < Pi < Nt.

We now describe and make use of some results of Harvey, [32]. If S is uni-

formized by the surface group K, then H will lift to a Fuchsian group F, such

that K < F and T/K ~ H. For each 7 G F, we define the mapping 7' : S 1—> S

by Y(Kz) = K-yz. This is an automorphism of 5* and so 7' = h~^ for some

0 < £ < iV. By these means we define a homomorphism (p, from F onto ZAT ~ iJ.

If 7' = /i~^, then we let ^(7) = £, and so the kernel is K. Let xi be a canon-

ical elliptic generator of F, of order Ni, and let £j be the integer between zero

and N such that x\ = h~^'. If Z{ is the unique point of U fixed by Xi, then

Kzi, h(Kzi),... , hr'~1(Kzi) are the points of S" fixed by x'j and its powers alone.

These are precisely the points fixed by every element of (hri) and by no other power

of h, which we have called Pn1 Pi2,..., Pin- It can be assumed that Xi, at Zi, is

locally a rotation of 2iri/Ni. Thus h~^'(= x'j), at Pij, is locally z H-> er'z. Hence,

h~r' at Pij is locally 0 i-> eriCTiz, where &(?{ = rj (mod JV) and 0 < Oi < Ni.

Therefore rji = eriCri and so ekri = (er'"<r'")Pi- T h u s * = °"iPi ( m o d ^ i ) - I f ^i de-

notes the multiplicative inverse of Oi modulo JVj, then, by definition, ^ = o-j^r.

Therefore we may rewrite the above expression for n^ (0 < k < TV), as

Here {) denotes the fractional part of a non-integer and one for an integer.

Example Consider the surface kernel epimorphism (f : F[7, 7, 7] H-> Z7, defined

by <p(xi) = I5 (f(x2) = 2 and </?(x3) = 4. The surface S uniformized by the kernel

is known to be Klein's surface of genus three. In the above notation £1 = 1, £2 = 2,

6 = 4, <7i = 1, a2 = 4, cr3 = 2 and Ni = N2 = N3 = 7. Therefore 5 admits

an automorphism /z, of order seven (associated to —1 in Z7), fixing exactly three

points Pi , Pi and P3 (associated to x\, x2 and £3 respectively). Thus, h~x at P;

is given locally by z \—> e^'z, where e = e
27r*/7. We now calculate the n^'s for R(h).

n0 = 0, m = - 1 + (1 - I ) + (1 - 2) + (1 - i ) = 1
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Hence the eigenvalues of R(h) are e, e2 and e4.

Now we give Lewittes' expression for the eigenvalues of R(h) in terms of the

gaps at a particular fixed point of h and the local action of h at this fixed point.

We mentioned, at the end of the last section, that for each P € S we may construct

a basis for A(S), 81,82,... ,8g, such that 8{ has a zero of order 7; — 1 at P , where

ji is the i t h gap at P. Lewittes considered such a basis and "normalized" it still

further. In his basis, 8i at P is locally 8{ = (z7 ' "1 + .. .)dz and the coefficient of

z"r^~1 is zero for j > i. If h~1 at P is locally z i—» r\z, then

h(8i) = ( ( ^ r - - 1 + .. .)rfdz = R(h)(6i) =

where R(h) = {c,j} is non-singular. Since h(8i) has the same order zero at P as

8i does, Cij = 0 for j < i. By construction 8{, and so h(8i), have no z"i'~1 term

for j > i. Hence cij = 0 for j > i, and so ca = 777i.

Theorem 6.8 (Lewittes)

Let h be an automorphism of a compact Riemann surface S that fixes a point

P € S. If /z"1 is locally z M ?jz at P and the gaps at P are 7 1 , . . . ,jg, then the

eigenvalues of R(h) are 777l,. . . , rps.

Example 1 Let us go back to the previous example. At P\, / i"1 is locally

z 1—> ez, where e = e2lTl/'. Thus, if the gaps at Pi are 71, 72 and 73, then the

eigenvalues of R(h) are e71, e72 and e73. However, our previous calculations show

the eigenvalues of R(h) to be e, e2 and e4. Hence one of the gaps at Pi is congruent

to 1 modulo 7, one is congruent to 2 and one is congruent to 4. Since 7 > 2g there

is no ambiguity and the gaps at Pi are {1,2,4}, so wpl = 1. At P2, h~^ is locally

z H-> e4z. Now e = (e4)2 [= ( e ^ 2 ] , so e2 = (e4)4 and e4 = (e4). Hence the gaps

at P2 are also {1,2,4}. The gaps at P3 are again {1,2,4}. These three points

are in the same orbit under Aut(S), indeed this orbit contains 24 points and they

are all Weierstrass points with weight one. The genus of the surface is three and

33 — 3 = 24, so these are all the Weierstrass points. In fact, they correspond to

the face centers of the regular map of type {3,7} that lies on Klein's surface.

Note that the order of h above was greater than 2g and so we could calculate

the gaps explicitly. In general this method gives the gaps at a fixed point of h,

modulo the order of h. When the order of h is "small" with respect to g then it

may still be uncertain as to what the gaps actually are.
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Example 2 Consider the following surface kernel epimorphism.

V?:r[2,ra,2n]i—> Z2 n 0 ,2) = 1

x\ n <J\ = 1

X2 n — 1 CT2 = n — 2

Z3 1 O - 3 = l

Let S denote the surface uniformized by the kernel, and let h be the automorphism

of S associated to —1 in Z2n. Hence, for R(h),

If A; is even, then (kn/2n) = 1 and (&(n — l)/2n) — 2n — k. If A; is odd, then

(kn/2n) = n and (A:(n — l)/2n) = n — k when A; < n, 1 when k = n and 2n — A;

when k > n. Hence, rik = 1 if and only if k is odd and less than n. Thus

the eigenvalues of R(h) are e, e 3 , . . . , e n ~ 2 = e25"1, where g is the genus of S

and g = (n — l ) /2 . Since £3 = 1 the gaps at P3 are {1 ,3 , . . . ,2^ — 1} and S is

hyperelliptic.

Let L = (<p(xx)), so |Z2n : L\ = n and <^(x2), </?(z2)2, • • • 5 V:'(a;2)n
5
 a r e -̂  coset

representitives. The action of T on the A:= tp~1(L) cosets is therefore given by

2 ) . . . (n), , T 2 H ( 1 2 . . . n ) , i 3 « ( l n . . . 2 ) .

Thus A has signature [2("+1^] or [2(2flr+2)]; n of the canonical elliptic generators

will be conjugate to x\ and one to x%. In the restriction of tp to A, combined with

the isomorphism from {0,n} onto Z2, all the elliptic elements are mapped to one.

So, for R(hn), n0 = 0 and n\ = g. Plence the 2g + 2 fixed points of hn, one of

which is the single point fixed by h, are the (hyperelliptic) Weierstrass points of 5.

Example 3 Let tp be the surface kernel epimorphism from F[2,2n,2n] to Z2n>

(n even), defined by <p(xi) = n, ^(£2) = n — 1 and <p{xz) = 1. Again we let S be

the associated surface and h the automorphism of S associated to —1 in Z2n. We

now calculate the eigenvalues of R(h).

-
_ / 1 if A; is odd and A; < n;

I 0 otherwise.
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Hence the eigenvalues of R(h) are e, e 3 , . . . , en 1. If g is the genus of S, then the

Riemann-Hurwitz formula tells us that g = n/2, and so n — 1 = 2g — 1. Therefore,

as £3 = 1, the gaps at P3 are {1 ,3 , . . . , 2g — 1} and S is hyperelliptic.

If M = (</?(zi)), then \Z2n : M\ = n and <^(x2), (f(x2)
2 . . . , ^ (x 2 ) n are M

coset representitives. Hence the action of V on the A:= ip~1(M) cosets is

The signature of A is [2^"+2^]; n of its conjugacy classes of elliptic elements will be

conjugate to x\, one to x2 and the other to £3. The restriction of 9? to A followed

by the unique isomorphism from M to Z2 maps all the elliptic generators of A to

1. Thus, no = 0 and n\ = g for R(hn), and so the gaps at the n + 2 = 2g -\-2 fixed

points of hn are {1,3, . . . ,2# — 1}. These are all the (hyperelliptic) Weierstrass

points of S.

Lewittes showed that if an automorphism fixes five or more points, then they

are all Weierstrass points. Schoeneberg had shown that a fixed point of an au-

tomorphism is a Weierstrass point provided, the integer part of the genus of the

surface divided by the order of the automorphism, is not equal to the genus of

the quotient of the surface by the group generated by the automorphism. In [28]

Theorem 6.9 (Maclachlan)

Let S be a compact Riemann surface of genus g > 1, and let h be an auto-

morphism of S of order N. Let the Fuchsian group T be the lift of (h); that is, if

S is uniformized by A", then K < T and T/K ~ (h). If h fixes a point which is not

a Weierstrass point, then T has one of the following signatures

(i) (jL;[N,N]), or

(ii) ( g j ^ + 1; [̂ > N, N, N]\, or

N-i 4- No
(iii) (^[N,^,^]), where 2N~g = 2g - 1 - N + / 2 and [N1,N2] = N.

{l\l,l\2)

We also state a related theorem of Guerrero's [16], In fact it is a further

improvement on part (iii) of Maclachlan's Theorem.
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L iiicac mcuiciiia LLSIIÎ  LUG ICOLIIID UI ucwiuico aim.

Harvey outlined in this section.
Maclachlan improved on both of these theorems using the results of Lewittes and 1



Theorem 6.10 (Guerrero)

Let 5, g, h and F be as in (6.9), but now suppose h fixes exactly one point,

P £ S. Then P is a Weierstrass point unless h has order 6 and F has signature of

the form (g; [2,3,6]). (Note that g > 0, else F is not Fuchsian.)

Section 6.3 Regular Maps and Hypermaps with Abelian

Automorphism Groups

See §1.4.

Theorem 6.11

The underlying (compact Riemann) surface of a regular map whose automor-

phism group is abelian is hyperelliptic, and the Weierstrass points of the surface

are all geometric points of the map.

Proof Firstly we consider those regular maps whose automorphism groups are

cyclic. These correspond to surface kernel homomorphisms from Fuchsian triangle

groups with signature [2,m,n], onto cyclic groups. By (1.17) the only triangle

groups for which such homomorphisms exist are those with signature [2, n,2n] (n

odd), or [2, 2n, 2n] (n even), and in both cases the homomorphism will map them

to Z2n- The canonical generator of order two must map to n in each case. In

the first case we may assume that the canonical generator of order 2n maps to 1

and so the generator of order n must be taken to n — 1. In the second case we

may assume that one of the canonical generators of order 2n maps to 1 and so the

other must be taken to n — 1. Hence, in both cases the epimorphism is unique

up to an automorphism of Z2n- These two possibilities were taken as examples

two and three in the last section. There we showed the surface uniformized by

the kernel to be hyperelliptic; the Weierstrass points to be the edge centres and

the face centre (or vertex) in the first case, and the edge centres, face centre and

vertex in the second case.

Now we look at those regular maps whose automorphism groups are non-

cyclic abelian. By (5.1) these can only arise via surface kernel epimorphisms from

groups with signature of the form [2,2n,2n], to groups isomorphic to Z2 n + Z2.

Let F have such a signature and <p be a surface kernel epimorphism from F to

G := (a, b I a2n = b2n = aba'1 b~l = {abf = 1) ~ Z2 n + Z2,

defined by <p(xi) = (ab)"1, <p(x2) = a and ^(23) = b. It is easy to see that 9?

is unique upto an automorphism of G. Let L = ((a6)~1), so \G : L\ = 2n and
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1, a, a 2 , . . . , a2n x are L coset representatives. The action of T on the A:= <p 1(L)

cosets is therefore given by

) . . . ( n ) i 2 i - » ( 1 2 . . . n ) z3 i-> (1 n . . . 2).

Thus A has signature [2(2™)]. The Riemann-Hurwitz formula tells us that the genus

g, of the associated surface, is given by g = n — 1. It can easily be verified that

the gaps at the 2n = 2g + 2 fixed points of (afc)"1, which correspond to the edge

centres of the map, are {1, 3 , . . . , 1g — 1}. Hence the surface is hyperelliptic and

the Weierstrass points are geometric. •

The theorem in [37] tells us that if the underlying surface of a regular map is

hyperelliptic, then the map automorphism group contains the hyperelliptic invo-

lution, (we say that such a map is itself hyperelliptic). It is a trivial consequence

of this theorem that the set of geometric points of a regular map on a hyperelliptic

Riemann surface contains all the Weierstrass points of the underlying surface.

We now consider those regular hypermaps whose automorphism group is

abelian, and try to determine when the geometric points are also Weierstrass

points. First we look at the cyclic case.

Suppose that ip is a surface kernel epimorphism from F[mi,m,2,m^] to Z ^ ,

we return to our earlier notation, so (ip(xi)) = (62). If Li = (c/?(x;)), then

\ZM '• L{\ = hi and ip(xj),ip(xj)2, . . . , (^(XJ) 6 ' , for j ^ i, are Li coset representi-

tives. Hence the action of T on the A;:= (ip~1(Li)) cosets is given by

x i » ( l ) ( 2 ) . . . ( b i ) Xj^ ( 1 2 . . . b i ) x f c ^ ( 1 6 t . . . 2 ) ,

where i,j, k £ {1, 2, 3} are mutually distinct. Thus [m^ , dbk, dbj] is the signature

of Ai. Let S be the surface uniformized by the kernel of 9?, let g > 1 be the genus

of S and let h be the automorphism of S associated to —1 in Z M - This is the

automorphism of 5 induced by any element in <^~1(—1). Provided the signature

of Ai is not one of those in (6.9), or is of the form [m^iVi,.^] with m; > Ni and

mi > N2, then the point(s) of S fixed solely by hbi and its powers are Weierstrass

points. (The second possibility is included because of (6.10)). This corresponds to

one "type" of the geometric points being Weierstrass points, hypervertex centres,

hyperedge centres or hyperface centres. We now determine when the signature of

Ai does indeed have the form of one of those in (6.9).

The signature of Ai can never take the form (-^-; [mi,mi]). This is because

the genus of U/A\ is zero and g/m\ ^ 0.
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If Ai has signature of the form (y~™1+1; [m[4)]), then

(i) db2 = dbz = 1 and 61 = 4, but then F would have signature [4,4] which is not

Fuchsian. Or

(ii) 6̂62 = 1 and ^63 = mi or vice versa, and 61 = 3. In which case F would

have signature [63,363,3], (63,3) = 1 and 63 > 2. Hence Ai has signature

[63 ], three of the conjugacy classes of elliptic elements of order 63 will be

conjugate to X\ and the other to x2. Thus <p restricted to Ai, follwed by the

isomorphism from L\ to Z m i that maps <p(x\) to one, takes three of the four

canonical generators to 1 and the other to 63 — 3. Hence, for

n0 = 0 and n\ = —1 + '•

Since (7 = 63 — 1, <? + 2 is a gap at the three points fixed by (h^1) alone,

and so these are indeed Weierstrass points. Note that A2 = F, and so by

(6.10), the fixed point of h is a Weierstrass point. Furthermore the signature

of A3 is [3^3+1^], which does not appear in (6.9), so all the geometric points

of the hypermap are Weierstrass points despite the signature of Ai appearing

in (6.9). Or

(iii) db2 = db3 = mi and 61 = 2, in which case F has signature [d, 2d, 2d], (d > 2).

Note that A2 = A3 = F, and the signature of F also appears in (6.9) and is

not ruled out by (6.10).

If Ai has signature of the form (g; [mi,iVi, JV2]), then

(i) db2 = db3 = 1 and 61 = 3, but then the F would not be Fuchsian. Or

(ii) db2 = 1 and c/63 > 1 or vice versa, and b\ = 2. In this case F would have

signature [63,263,2]. We know from (6.11) that the points fixed by (h2) are

not Weierstrass points while the other geometric points constitute all the

Weierstrass points. Or

(iii) 61 = 1, db2l dbs ^ 1, and so F will have signature of the form [^6263,^63,^62].

Hence Ai = F, A2 has signature [db3
 2 , d] and A3 has signature [db2

 3 ,d].

Without loss of generality we may assume 1 < 62 < 63. If 62 > 1, then 63 > 2

and db2b$ > J63 > c?62, and so, by (6.10), the single fixed point of h is a

Weierstrass point. The signature of A2 only appears in (6.9) if 62 = 1 and

d > 1, or 62 = 2 and d = 1. The second possibility is covered in (6.11).

Similarly the signature of A3 only appears in (6.9) if 63 = 1 and d > 1, or
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63 = 2 and c? = 1. Under our hypothesis that 62 < 63 the second possibility

cannot occur.

Hence, in (iii), if 62 > 1 (=>• 63 > 2), then all of the geometric points are

Weierstrass points, or, in the case when 62 = 2 and d = 1, so that F has the

signature [263, 63, 2], all the Weierstrass points are geometric.

We need now only consider the case when 62 = 1, so F has signature [db, db, d],

Ai = A2 = F and A3 has signature [c?(i+2)j. Hence the points fixed by (hb) alone

are certainly Weierstrass points when b > 2. For R(h),

nd = - l + (l - (<p(Xl)d/bd)) + (1 - {<p(x2)d/bd)) + (1 - (<p(x3)d/bd)).

Now f(x$) is of order d and so (1 — (ip(xs)dfbd)) = 0, which implies rid = 0. This

is the case whatever <p(xi) and <p(x2) are. In fact, if we consider R(h^1), then rid

is still zero, this is also the case for R(h^2). Therefore d is a non-gap at both fixed

points of h. The genus of S is given by g = 6(c? — l ) /2 and so d < g whenever

b > 2. Thus when b > 2 all the geometric points are Weierstrass points.

We are now going to consider the two remaining cases, when 6 = 1 , and 6 = 2

in some detail.

a) When b = 2, F has signature [2c?, 2c?, c?] and g = d — 1. Let ip: F i—• Zi2d, be

defined by ip(xi) = 1, ^(#2) = a and (^(^3) = /?, so (a,2c?) = 1 and (/3,2c?) = 2.

First we make a useful observation. If r\ + r2 + r% = 0 (mod iV) and 0 < r2 < N,

then
3

r1/N + r2/N <1 =>

and ?*i/iV + r2/iY > 1 =» \ ^ r,-/iV = 2The genus of U/T is zero and so, for R(h), no = 0.

" = 1 + 3 1

„,=-1 + 3 - I - ( g ) - ( ! ) = !, M2/M+(2a/2d)<l.

nd = ng+1 = - 1 + 2 - ( — - ) - ( — - ) = 0, as a is odd and (/3,2c?) = 2.
\ 2 d / \2c?/

If the fixed point of h, associated to x\, is not a Weierstrass point then n& = 1 for

]- < k < g. Now we determine the conditions for this to be the case.
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Hence rid-\ = ng = 1 if a < d, and 0 if a > d. Note that a ^ 2d/\ for any divisor

A of Id. We assume a < d, so

and 4 ^
if a rf/2 2d

Hence n^-2 = 1 if a < <i/2, and 0 if a > d/2, so we assume a < d/2.

^ i fn. \ d-3 ,d-3 , 3d-3a
2d < - L < ^ ' « > 3 i '

if a > djz^ but a < f and f - 1< f ^ rf < 6.

We know n\ = n2 = 1 and so we are only interested in the case when d — 3 > 2,

that is c? > 5. In which case rid-z = 1 if a < d/3, and 0 if a > d/3, so we require

a < d/3. Suppose that a < d/(j — 1), for some 3 < j < d — 2, then

Since a < d/(j — 1), we see that 3d — ja > 0. Now

d-j 3d-ja , p d 2d ,
——f- H -V1— < 1, for a > - , <£> a > — - 1.

2c/ 2rf J J

However, a < -^— and so M- — 1 < -r^- if and only if d J~\, < 1, if and only

if -r^j- < -^ < 2. Note that H- — 1 > 1 and so there is no integer k, such that

^4 — 1 < k < -r^-. Thus under the above hypothesis, that is a < -r^-,

_ f l Xa<d/j;
d-J \0 i

If a > 1, then 3 j , 2 < j < d - 3 such that J / j < a < d/(j — 1), in which

case rid-j = 0, unless d/(d — 3) > 2 or d < 6. We know d > 3. When rf = 3,

</? is essentially unique and a = 1. In the two cases, c? = 4 and c? = 5, there are

essentially two epimorphisms from T to Z2rf. In each case one maps a:i and X2 to

the same element, (1 if you like). The other does not and in these cases the fixed

points of h can be seen to be Weierstrass points.

In general, since <p(xi) = £i = 1, the gaps at the fixed point of h associated to

x\, are precisely the A' for which rik = 1 in R(h). Thus, if a ^ 1 the fixed point of

h associated to xj is certainly a Weierstrass point. Furthermore, if we follow ip by

the automorphism of Z2ci that maps a to 1 and 1 to a, where act = 1 (mod 2c?),
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we can apply the same arguement to show that the fixed point of h associated to

X2 is also a Weierstrass point provided Q / 1 . This process is equivalent to looking

at the eigenvalues of R(ha).

Consider A3[<i, d, d, d}; two of its classes of elliptic elements are conjugate to

£3, one to X2 and the other to x\. In fact the Reidemeister-Schreier method shows

that £3, X31, x\ and x\ are canonical generators for A3. Thus <${xs) = <p(x^1) — (3,

<p(x\) = 2 and y>{x\) = 2a. If we restrict ip to A3 and follow it by the isomorphism

from L3 to Zd that maps (3 to 1, then £3, X31 map to 1 and x2, x\ map to some

r and A, and 1 + 1 + r + A = d o r 2d. In the first case, for R(h2), n\ = 2

and so ed+1 = e(J+2 (e : = e2ni/d), is an eigenvalue of R{h2). Therefore, g + 2 is

a gap at the points fixed by (h2) alone. In the second case, r = A = d — 1 and

nk = 3 — k/d— k/d—(d— k)/d — {d — k)/d = 1 for 0 < k < d, and so we can not say

whether the fixed points of h2 are Weierstrass points or not. Of course if r = A =

d— 1, then 2<p(xi) = 2(^(.T2) = (d — 1)^(2:3) (mod 2d), and so y>(#2) = v ( x i ) o r

<p(xi) + d (mod 2<i). If <p(x2) = d+l, then /3 = d—2 and so <i must be even, but

2(p(x2) = ( d - l ^ x a ) (mod 2d) implies 2c/+2 = ( d - l ) ( d - 2 ) = d+2 (mod 2d).

In conclusion, when the images of the two canonical generators of order 2d

of F, are not the same under the epimorphism <p, then all the geometric points

are Weierstrass points. It can easily be seen that ip{x\) = ^(^2) is a sufficient

condition for tp to "exetnd" to cp : A[2d, 2d, 2} 1-+ Z2d + Z2, where |A : T\ = 2. We

have already considered this case and know the Weierstrass points to be the edge

centres of the associated regular map. These points are not geometric points of

the hypermap, see case two of the Appendix.

b) When b = 1, T has signature [d, d, d] (d odd), and the genus of the surface is

given by g = (d— l ) /2 . We may assume that ip(x\) = 1, ^(£2) = OL and ^(23) = /?,

where (a,d) = (f3,d) — 1 and 1 + a + (3 = d. As before, for R(h), n0 — 0 and

?7i = 1. Now 77.2 = 0 if and only if a = (3 = {d—1)/2, in this case £1 = 1 and so 2 is

a non-gap at the fixed point of h associated to x\. Thus the surface is hyperelliptic.

In fact, <p mapping am- two of the Xj's onto the same element of Z^ is precisely

the condition for <p to "extend" to A[2,<i,2d]. In this case <^(A) ~ Z2d and we

have already seen that the Weierstrass points of the surface are the edge centres

and face centre (or vertex) of the associated regular map. By the construction of

fundamental regions for F, see Appendix, only one of the geometric points of the

regular hypermap will be a Weierstrass point.
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We now assume 1 < a < (d — l)/2 and so exclude the above case. Recall that,

—»-<!>-<¥>-<¥>•
For each k there is some A, 0 < A < k, such that (A — l)d/k < a < Xd/k, else

(at,d) > 1. Therefore (ka/d) = (ka - (A - l)d)/d, and so (k/d) + {ka/d) > 1 if

and only if a > Xd/k — 1. Thus n* = 0 if and only if there is a A, 1 < A < k,

such that Xd/k — 1 < a < Xd/k. Note that if for a particular A, k divides Xd, then

clearly a is not in the interval {Xd/k — l,Xd/k), so we need only consider those

A < k - l .

Lemma 6.12

Let d be an odd positive integer and let a £ Z be such that 1 < a < ^p- and

(a,d) = 1. Then there is a pair k, X G Z, 1 < k < ^ - , 1 < A < k - 1 such that a

is in the open interval ( ^ — 1, ̂ ) .

Proof First we prove the result for even a. If k = ^= -̂, then j = 2j^y and

2A < ^f < 2X + 1 for 1 < A < k. Hence, if a is even, then, when k = ^ - and

Now we need to prove the result for odd. a. If \_ J denotes the integer part,

then [MJ = 2A + [ ^ ^ J and [ ^ ^ \ = 1 if and only if 1 < ^ ^ < 2, if

and only if 9̂ _f 9 < k < jM-^- There will certainly be an integer in the interval

i f 2X+T ~ 2X+2 ^ !> a n d t h i s i s s o i f a n d o n ly i f A ^ ^ " A- T h u s '
for A > 1, -L < I a n cl s o i=i _ J_ < i^j_^ provided d > 15. Thus for 1 < A < ^

there is a A; such that |_^J = 2A + 1, note that ?g = 2A + 1 only if 2A + 1 is not

coprime to d.

We do require k > X and so we must check that at least one of the integers
m (?X+2' ^X+T] i s S r e a t e r t n a n A- Therefore, A < ^ x ^ i f a n d o n l ^ if 2A + 2 < cf

which is clearly always the case for the k we are constructing.

Also note that if d > 5, then (f, | ] , (A = 1), always contains an integer

greater than one. Hence, if d > 5, then there is an integer k > 1, such that

3 = L̂ rJ = 2.1 + 1. Thus if a is any positive integer coprime to d such that

1 < a < ^ , then for A = $-zl a n d fc <c (_M_? _H_]5 w e have shown that

We have proved the lemma except when =̂̂ - is odd and coprime to d, and

when d < 15. Hence, when jfc = ^ and A = ^ , we see that ^ - 1 < ^ < M

unless d < 9. It only remains to verify the result for d < 15 which is left as an

exercise for the reader. n
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The above lemma tells us that for each 1 < a < ^Y~, there is a 1 < k <

^y^ = g such that, for R(h), nu = 0. Hence the fixed point of h associated to x\

is a Weierstrass point. By considering R(h^3) and R(h^3) we can see that when

no two of (fi(xi), f(x2) and (p(xs) a r e equal, then the three fixed points of h are

all Weierstrass points. [Incidentally the above lemma helps to prove that if an

automorphism of a compact Riemann surface fixes exactly three points and its

powers fix no additional points, then either one or three of the fixed points are

Weierstrass points.]

We now determine when the geometric points of a regular hypermap, whose

automorphism group is non-cylic abelian, are also Weiestrass points. Let

if : r [mi ,m 2 ,m 3 ] i—> G ~ ZM + Z/

be a surface kernel epimorphism where M is the lowest common multiple of the

m8-'s and / > 1 is a factor of the highest common factor d, of the m^'s. Let 5* be

the surface that is uniformized by the kernel of ip, so S carries a regular hypermap

of type {mi, 1712,1123} whose automorphism is G and has genus g > 1. Note that

G is generated by any two of tp(xi), ip(x2) a n d (,0(2:3). Hence, if Li = (ip(xi)), then

\G : L{\ = fbi and the order of the intersection Li D Lj, is hbk, where h := d/f

and i, j , k £ {1,2,3} are mutally distinct. Therefore ip(xj), <p(xj)2,... ,(p(xj)fbi

(j ^ i), are Li coset representitives. The action of T on the A,-:= <p~1(Li) cosets

is given by

Xl ^ (1)(2).. . (fbi) x2 ^ (1 2 . . . fbi) X3 ^ (1 fbi ... 2).

Thus Aj has signature [m/ ,hbf.,hbj].

We must now consider when the signature of A; appears in (6.9). Clearly, A2-

cannot have signature of the form [^;m;,?nj], as the genus oiU/Ai is zero.

Note that hbk ^ mi / hbj, as h < d, and so A; only has signature of the form

[9~™\+1 : mj4)] if fbi = 4 and hbjh = 1. In which case / = d and / = b, = 2 or

/ = 4 and 6j = 1. However [2, 4,4] is not the signature of a Fuchsian group and so

the only possibility is F[4,4,4]; Ai, A2 and A3 will all have signature [4,4,4,4]. It

can easily be seen that the twelve fixed points in all, of tp(xi), (f(x2) and (^(2:3),

are all Weierstrass points of weight two. The genus is three and so the twelve

geometric points of the liypermap are precisely the Weierstrass points. In fact the

surface here corresponds to the fermat curve of degree four; we shall say more

about this later.
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If Ai has signature of the form [g; mi, Ni, N2], then

(i) fbi = 3 (=>• / = 3, bi = 1) and hb2 = ^6^ = 1, but then F would have

signature [3,3,3] which is not Fuchsian. Or

(ii) fbi = 2 ( = > / = 2, 6i = l) and one of /162, ^63 is one while the other is greater

than one. Hence h = 1, so d = f = 2 and we assume that 62 = 15 63 > 1- In

which case F has signature [263,263,2], G ~ Z2&,, + Z2 and Ai has signature

[263,263,63], as does A2. We have shown, in (6.11), that the corresponding

surface is hyperelliptic and that the Weierstrass points are precisely the edge

centres of the regular map on the surface, and so the face centres and vertecies

are not Weierstrass points.

Thus we have shown that all the geometric points of regular hypermaps,

whose automorphism groups are non-cyclic abelian, are Weierstrass points unless

the hypermap is of type {26,26,2} (and so is a map, its automorphism group is

isomorphic to Z2& + Z2), in which case the Weierstrass points form a subset of the

geometric points. We summarize our findings in the next theorem.

Theorem 6.13

The geometric points of a regular hypermap with abelian automorphism group

are all Weierstrass points unless:

(i) The hypermap is a map of type {6,26} 6 odd, and its automorphism group

is isomorphic to Z2&, or it is a map of type {26,26} and its automorphism

group is isomorphic to Z2& + Z2. In both cases the underlying surfaces are

hyperelliptic and the Weierstrass points form a proper subset of the geometric

points of the maps.

(ii) The hypermap is of type {d, d, d}, with automorphism group isomorphic to

Zd, and lies on a hyperelliptic surface. In this case only one of the geometric

points is a Weierstrass point.

(iii) The hypermap is of type {d, 2d, 2d}, with automorphism group isomorphic to

Z2rf, and lies on a hyperelliptic surface. In this case none of the geometric

points are Weierstrass points.

R e m a r k In cases (ii) and (iii) there are hypermaps of the same type and with

isomorphic automorphism groups that do not lie on hyperelliptic surfaces. The

geometric points of these hypermaps are all Weierstrass points.
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Now we ask when the set of geometric points of a regular hypermap, whose

automorphism group is abelian, contains all the Weierstrass points of the under-

lying surface. Note that the number of Weierstrass points is at least 2g + 2, and

so we need only consider hypermaps with at least 2g + 2 geometric points.

As always we look at the cyclic case first. These hypermaps correspond to

a surface kernel epimorphisms from some T[mi, 1712,1713] to Z M , where, in terms

of our earlier notation, M = dbib2b3. We let a denote the number of geometric

points of the hypermap, and so a = M/m-i + M/m,2 + Mjmj, = 62 + 62 + 63. The

Riemann-Hurwitz formula tells us that M — a = 2g — 2. We are only interested

in the case when a > 2g + 2 which implies M — a = 2g — 2 < a — 4, and so want

M + 4 < 2a or equivalently

rf6i6263 +4 <2(6i +b2 + 63).

We now assume this to be true and determine what restrictions this implies. With-

out lose of generality we also assume that b\ < 62 5: 63.

(i) Let d=l, then M 2 6 3 + 4 < 2(bx + b2 + 63).

1) bi = 1 => 6363+2 < 2(62+63)-

=>• P o s s i b l e s o l u t i o n s a r e : ( 6 1 , 6 2 , ^ 3 ) = (1,1, n), n > 1;

( l , 2 , n ) , n > 2 ;

( 1 , 3 , 4 ) .

2) b, > 1 , 616263+4-2(61+62 + 63) = 6 i [ & 2 6 3 - i ^ - i ^ + ^ - 2 ]

= 61K62 - ^)(63 " * ) + ^ - 2 - ^ ]
If 61 > 1, then 2 < 62 < 63 and - 2 < ^- - 2 - ^ < 0, while

(&2 ~ ^ ) , (&3 — y-) > 0. Thus there are no solutions for b\ > 1.

(ii) Let d = 2, then b1b2b3 + 2 < bx + b2 + b3.

1) 6X = 1 =$, b2b:i + 1 < b2 + b3.

=? Only possible solution is: (61,62,63) = (1 ,1 ,n ) , n > 1.

[As 6963 + 1 — 62 — 63 = (62 — 1)(63 — 1) > 0 unless 62 or 63 is one.]

2) h > 1, M2&3 + 2 - (&! + 62 + 63) = 61 [(62 - £)(&3 - ^ ) + ^ - 1 - ^ ] -

As 1 < 61 < 62 < 63, we see that —1 < -^— 1 — p- < 0 and

(62 — y-), (63 — ip) > 0. Hence, when 61 > 1 there are no solutions,

(iii) Let d > 2.

dblb2b, +4 - 2(6! + 62 + 63) = ^[6263 - g . - g . + ^ - f ]
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L e t jfc =', _ 4 9

dbi d ( d 6 i ) 2

then - | < - 4 < k < -£- < ^L

If h = 1, then [ ] > (l - 2)2 + 2 _ £ = i _ 1 > o.

If 6i > 1, then 2 < 62 < 63 and — | < k < | ,

while (69 77-), (63 — -7?-) > f.
^ - a l i i / ' v •> db\ ' 3

Hence there arc no solutions when c? > 2.

Therefore the only instances when a > 2g -\- 2 are:

a) d = 1, 61 = b2 = 1 and 63 = n, n > 1;

b) d = 1, &! = 1, b2 = 2 and 63 = n, n > 2 and (n, 2) = 1;

c) d = 1, 61 = 1, b2 = 3 and 63 = 4;

d) <i = 2, 61 = 62 = 1 and 63 = n, n > 1.

The first case gives rise to a non-Fuchsian signature.

In the second case F has signature [2n,n,2], so we have a regular map whose

automorphism group is cyclic. We have covered this in (6.11) and the Weierstrass

points are a subset of the geometric points.

In (c) F has signature [12,4,3] and the epimorphism to Zj2 is essentially

unique. It is not hard to see that the total weight of the geometric points is

twelve, half the total weight of the Weierstrss points.

Finally, in (d), F has signature [2n,2n,2] and again this is covered in (6.11).

The Weierstrass points are precisely the geometric points.

We now treat the non-cyclic abelian case. Given a surface kernel epimorphism

from F[mi, m2, m3] to Z^/ + Z/, the number of geometric points of the associated

hypermap is now a = fM/mi + fM/m2 -f fM/ms = f{b\ + 62 + 63). We may use

the Riemann-Hurwitz formula to show we are only interested in hypermaps for

which fM + 4 < 2cr, and so we assume that this is true and that 1 < b\ < 62 < 63.

Note that 2 < f < d.

(i) Let d = 2 (=» / = 2) =* 616363 + 1 < 61 + 62 + 63

1) 61 = 1 =>• 6263 < 62 + 63, only solutions are 61 = b2 = 1 and 63 > 1.

2) 61 > 1 (=> 2 < b2 < 63)

616263 + 1 — (bi + 62 + 63) = 61 [(62 ~ F")(63 ~ j~) + y 1 ~~ p ]

If k = x— 1 — 7T, then — 1 < k < —^

while (62 — T-), (63 — r-) > | .

Hence there are no solutions in this case.

104



(ii) Let d > 2.

dhbtbs - 2(6! + b2 + 63) + J = ^[(6 2 - ^-)(63 " i ) + Tfc ~ J " aftr]
1) fcx = 1 => [ ] < 0, if and only if db2b3 - 2(b2 + 63 + 1) + j < 0,

if and only if d = 3 (=>• / = 3) and b\ = b2 = b3 = 1, or

d = 3 (=> / = 3) and 61 = 61 = 1 and 63 = 2, or

d = 4 (=> / = 2 or 4) and 61 = b2 = 63 = 1, or

d = 5 (=> / = 5) and 61 = b2 = b3 = 1.

2) &! > 1. If k = - ^ - \ - ^ , then - I < k < | ,

but 2 < 62 < 63 and so (62 - J 7 ) , (63 - J r ) > f.

Hence there are no solutions in this case.

The instances for which a > 2g + 2 are as follows.

a) d = f = 2, bi = b2 — 1 and 63 = n, n > 1.

b) d = / = 3, 61 = 62 = 63 = 1-

c) <J = / = 3, 61 = 62 = 1 and 63 = 2.

d) </ = 4, / = 2 and fej = b2 = b3 = 1.

e) d = f = 4 and 61 = 62 = 63 = 1.

f) d= f = 5 and 6a = fe2 = 63 = 1.

The hypermaps that arise from (a) are in fact maps and so are covered in

(6.11); the Weierstrass points are a subset of the geometric points.

The signature in (b) is not Fuchsian and so there are no hypermaps of this

type with genus greater that one.

The signature in (c) is [6, 6,3] and the automorphism group of the hypermap

is ZQ + Z3. The genus is four but it can be seen that the total weight of the

geometric points is only 42.

In (cQ, F has signature [4,4,4] but there is no surface kernel epimorphism

from T to Z4 + Z2.

The underlying surfaces in (e) and (f) are the Fermat curves of degrees four

and five respectively. We have met the degree four case earlier in this section

and have seen that the Weierstrass points in that case are precisely the geometric

points of the hypermap. The gaps at the geometric points on the hypermap on

the degree five curve can be seen to be {1,2,3,6,7,11}, and so the total weight

of the geometric points is 120. The surface is of genus six and so the total weight

of Weierstrass points is 210. However the automorphism group of a Fermat curve

of degree N > 4, is of order 6N2 and the surface carries a regular map of type
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{3,2iV}; the kernel of the essentially unique epimorphism from some A[iV, N, N] to

Ziv + ZAT that uniformizes the Fermat curve of degree N is also a normal subgroup

of some A[2,3, 2N] that contains A with index six. When N > 5 the edge centres

of the map, (fixed points of automorphisms of order two), can also be seen to be

Weierstrass points. For the degree five case the edge centres and face centres of the

map constitute all the Weierstrass points, while for degree greater than five this

is not the case. It is still not known whether the fixed points of automorphisms of

order three (the vertices of the map), are Weierstrass points or not. Unfortunately,

this is an example of the ambiguity that sometimes arises when using Lewittes'

methods. For a survey of the results stated here about Fermat curves see [29].

Note that the geometric points of the hypermap are precisely the vertices of the

map, see the third case in the Appendix.

These calculations prove the following.

Theorem 6.14

The set of geometric points of a regular hypermap whose automorphism group

is abelian contains all the Weierstrass points of the underlying surface if and only

if

(i) the hypermap is in fact a map, or

(ii) it is the hypermap of type {4,4,4} whose automorphism group is isomorphic \

to Z4 + Z4. [The hypermap lies on the Fermat curve of degree four]. )'

Section 6.4 Weierstrass points and Regular Maps of Low Genus

By the genus of a map we mean the genus of the underlying surface. In this

section we look at the regular maps of genus two, three, four and five listed by

Coxeter and Moser [10], Sherk [30] and Garbe [13]. In most cases we determine

the weight of the geometric points of the maps. We do this by using the results of

Lewittes and Harvey presented in §6.2, and by relying quite heavily on counting

arguments. As we are considering maps of low genus the orders of their automor-

phism groups are relatively large compared to their genus and to the total weight

of the Weierstrass points of the underlying surfaces. That is; 84(g — 1) is large

compared to g3 — g for low g.

We will see that sometimes a surface carries more than one regular map, this

corresponds to a surface group being normal in two Fuchsian groups F[2, m, n] and
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A[2,p,q], where A contains F with finite index. When this is the case we may

be able to determine the weight of the geometric points of the "smaller" map by

calculating the weight of the geometric points of the "larger" map and using the

fundamental regions constructed in the Appendix.

The results will be presented on the tables given in [10], [30] and [13], where

the maps are denoted by their type and other "appendages". For example, we

see {4,10 | 2} denotes a certain map of type {4,10} and genus four, and {4 • 2,8)4

denotes a certain map of type {8,8} and genus five. The tables list the number

of faces, vertices and edges, and we will usually indicate the weight of the the

associated geometric points by adding indecies to these numbers. If the map is

of type {m,n}, then G is generated by two elements r and s of orders n and m,

whose product is of order two. Of course the underlying surface of the map is

uniformized by the kernel of a epimorphism C/J, from some F[ra,m,2] to G that

maps 2, y and z, canonical generators of orders n, m and 2 for F, to r, s, ( rs )" 1 .

Our tables will be incomplete in the sense that we shall only detail one map from

each pair of dual maps, of course the face centres and vertices of the dual are the

vertices and face centres of the original map, while the edge centres are the same

in each case. So we are really only considering automorphism groups of regular

maps.

Here is an example of a regular map of genus three.

Number of Order of
Map Type G

Faces Vertices Edges G

{ 2 - 2 , 2 - 6 } 23 63 12 (6,21,2 : 2) ~ C4 x V3 24 H

The two face centres and six vertices all have weight three while the 12 edge centres

are not Weierstrass points. Thus the underlying surface is hyperelliptic, indicated

by the H on the right, and the Weierstrass points are precisely the face centres

and vertices of the map.

Regular m a p s of genus two

It is known that all the compact Riemann surfaces of genus two are hyperel-

liptic and so they have a total of six Weierstrass points, each with weight one. The

orders of the automorphism groups of the regular maps of genus two are all greater

than six. Thus the Weierstrass points of the underlying surfaces of these maps are

all geometric points with respect to these maps, as a non-geometric point is in an
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orbit of length greater than six under the map automorphism group. Hence we are
looking for six of the geometric points in each case to be the Weierstrass points.
Clearly each "kind" of geometric point, face centres, vertices or edge centres, all
have the same weight. Therefore, we can easily see which of the geometric points
are the Weierstrass points.

Map Type

{8,8}1|0

{5,10}2

{6,6}2

{4,8}i,i

{4,6 2}

{3,4 + 4}

Number of
Faces Vertices Edges

I 1

l i

2

2i

4

6i

I 1

2

2

41

6i

16

41

51

6i

8

12

24

G

Cs

C10

C6 xC2

(-2,4 | 2)

(4,6 2,2)

(-3,412)

Order of
G

8

10

12

16

24

48

Regular maps of genus three

When the genus g1 is three, then g3 — g = 24. Half of the maps in the follow-
ing table have automorphism groups of order greater than 24. This immediately
tells us that, in these cases, the Weierstrass points are all geometric. In the last
two cases, because of the large numbers of geometric points, we are able to see
straight away the weight of these points. The first three maps listed have abelian
automorphism groups, so lie on hyperelliptic surfaces and the proof of (6.11) tells
us the weight of the geometric points in these cases. The remaining maps require
some direct calculations.

For presentations of the groups in (i)-(v), (vii) and (x)-(xii) see [10], presen-
tations for the remaining groups appear in [30]

iv) G = (2,2 I 2) = (r, s \ r2s~2 = (rs)2 = 1).
Now (rs)2 = 1 => srs~1 = r~ls~2 — r~3 => r = s2rs~2 = r9

=> r8 = s8 = 1.

So G = { l , r , . . . ,r7.s,rs:. . . ,r7s} and rls = sr~3t .

If L = (r), then \G : L\ = 2 and L coset representitives are 1 and s. Thus the
action of G on the L cosets is given by

(12), (12).
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Hence A := tp 1(L) has signature [8,8,4]. Canonical generators for A are r,

srs"1 = r5 and r2, so for R(r~1),

n0 = 0 n 1 = - 1 + (1 - | ) =1

Thus the gaps at the two fixed points of r, the face centres, are {1,2,5}. By-

symmetry, these are also the gaps at the two vertices.

Map Type

{12,12} l i0

{7,14}2

{S,8}2

{4-2,4-2}

{2-2 ,2-6}

{2-3 ,2-3}

{2-2,8}

{4,4-2}

{3,4-3}

{4,2-3}

{3,8}6

{3,7}8

Number of
Faces Vertices Edges

I3

I3

2

22

23

4 3

4

42

42

83

122

241

I3

2

2

22

63

43

83

82

161

12

32

56

63

73

83

82

12

12

16

16

24

24

48

84

G

C12

C8 xC2

(2,2|2)

(6,2|2;2)~C4 xP 3

(3,3|2;2) ~ A x C 2

((2,8|2;2))~(8,4 2,2)

«2,4|2»

«2,3|3»

({2,4|3;2))~54 xC2

(2, 3,8; 3)

(2,3, 7; 4 ) - ^ ( 2 , 7 )

Order
of G

12

14

16

16

24

24

32

32

48

48

96

168

H

H

H

H

H

H

H

If M = (rs)

The action of G

, then |G : M\ = 8 and M coset representitives are 1, r,

on the M cosets is

TK-> (12 . . . 8), 5 ^ ( 1 4 3 6 5 8 72), rs .-> (1)(2 6)(3)(4 8)(5)(7).

Hence A' := ip~1(M) has signature [1;2,2,2,2]. Any surface kernel epimorphism

from A' to Z2 maps all elliptic elements to 1. Thus, for R(rs), no = 1 and n\ = 2,

so the gaps at the edge centres are {1,2, 3} or {1,2,5}. This is rather inconclusive.
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Fortunately F[8,8,2] is not maximal, but is contained in a [8,4,2]. If the kernel

of ip is also normal in a group with this signature, then the surface also carries a

regular map of type {4,8} whose automorphism group has order 32. So we need

to see if cases (vii) or (viii) can be considered to be an "extension" of (iv). We

shall now investigate all the possible extensions (or inclusions). We look at the

inclusions in [32] and consider the signatures of the lifts of the map automorphism

groups.

The map automorphism group G5, in (v) lifts to some F[12,4,2] and G in (i)

lifts to a [12,12,2]. If x and y are canonical generators for G5 of orders 12 and 4,

then x, xy and y2 are canonical generators of some A[12,12,2]. Now

G5 = {r,s\r12 =s4= (rs)2 = [r,s2] = [r6,s] = 1),

and if r = y>(xi)i s = Lp{x2)-1 then ip(x) = r, <~p{xy) = r5 and s2 = r 6 . Thus

<p(A) ~ Z12 and the underlying surfaces in (i) and (v) are conformally equivalent.

This tells us that the map in (v) is hyperelliptic and that, by construction of

fundamental regions for F and A, the two face centres and six vertices in (v) are

the Weierstrass points.

From [32], each [8,8,2] is contained with index two in a [8,4,2], which in turn

is contained in some [8,3,2] with index three. Note that (iii) and (iv) are both

of type {8,8} and have automorphism groups of order 16. There are two regular

maps of type {4,8}, (vii) and (viii), with automorphism groups of order 32, but

only one of type {3,8}, (xi), with automorphism group of order 96. If F[8,4,2]

has canonical generators x and y of orders eight and four, then x, xy and y2 are

canonical generators of a subgroup A, with signature [8,8,2]. In

G7 = (r, s I r8 = s4 = (rs)2 = (r^sf = 1),

we see that [r^rs^1] = 1. Hence (f(A.) is abelian and so isomorphic to Zs + Z2.

Thus the underlying surfaces in (iii) and (vii) are conformally equivalent, so the

map in (vii) lies on a hyperelliptic surface and the Weierstrass points are precisely

the eight vertices of the map. We know the Weierstrass points in case (xi) have

weight two and so the underlying surface is not hyperelliptic and not the one in

(iii) and (vii). In
ri — i r „ I A _ (rc.\

2 — \ r
2 <?l — 1 \i_r8 — \ r , s | s — \ r s ) — [' isi — l/i

the subgroup generated by r and 5?^ - 1 is certainly not abelian but it is of order

16 and r2 = sr2s~l. So we see that it is isomorphic to G4. Therefore the maps in
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(iv) and (viii) do lie on essentially the same surface. We now ask is it the surface

in (xi)?

G n = {r,s\rs =s3 = (rs)2 = ^ 1 3

We have already noted that G\\ is the image of some F[8,3,2], under a surface

kernel epimorphism. F contains a subgroup of index three and signature [8,4, 2]

whose canonical generators map to r, sr2s~l and sr~1s under this epimorphism.

It can be seen that H := (r, sr2s~1), has order 32 and [r2, sr2s~1] = 1. Hence H is

isomorphic to Gs, so the maps in (iv), (viii) and (xi) all lie on essentially the same

surface. The Weierstrass points in (xi) are the 24 face centres, by the construction

of fundamental regions detailed in the Appendix, the Weierstrass points in (viii)

are the four face centres and eight vertices, and in (iv) they are all the geometric

points.

There is one more pair of maps, (vi) and (x), that are candidates for lying on

the same surface.

d o = ((2,4 | 3; 2)) = (r, s \ r6 = s4 = (rs)2 = [r\s] = 1), |G10 | = 4 8 .

If H = (r.srs-1^2), then H lifts to a [6,6,2]. Clearly (srs'1)3 = r3, and so

H ~ GQ = (3,3 | 2,2). Thus the maps in (x) and (vi) lie on essentially the same

surface.

We have yet to determine the Weierstrass points in (vi) or (x), but once we

have done so for one, then we should know them for both. It will then only remain

to determine the Weierstrass points in (ix).

We will now calculate the weights of the geometric points in (vi). Recall that

G6 = (r,s \rG = / = (rs)2 = r3s~3 = [r\s] = [ r , , 3] = 1),

and so, by symmetry, the weight of the face centres and vertices is the same. If

L = (r), then \G& : L\ = 4 and L must lift to a Fuchsian group A, with signature

[k : 6(Q ) ,3(^,2^)] , where a > 0. The Rieman-Hurwitz formula tells us that

9k - 9 + a - 4- 8- + -Y- = 4(1 - - - l - -)

Hence the only possible signatures for A are [6,3,3,2] and [6,6,2,2]. There is

essentially only one surface kernel epimorphism from A to ZQ in each case. If F

has the first signature then the eight face centres and vertices each have weight two,
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leaving a weight of eight to be found from the 12 edge centres or non-geometric

points. Clearly this is not possible and so V has signature [6,6,2,2], in which case

it can be seen that the surface is hyperelliptic and the eight Weierstrass points are

the face centres and vertices in (vi), and the eight face centres in (x). Alternatively

we could have determined the signature of A by looking at the action of r and s

on the L cosets.

Finally we look at case (ix). G9 = (r, s \ s3 = (rs)2 = [r3, s] = 1). If M = (r)

and A is the lift of M, then A has signature of the form

where a > 0 and

2k - 2 4- n±± 4- /?£ 4- 'Y3- 4- 8^ 4- e^ - 4(1 - - - ± - -M

The only possible signatures for A are [12,12,2] or [12,4,3]. From [32] we know it

can not be the first. There is a unique surface kernel epimorphism from A[12,4, 3]

to Z12 and the fixed point of r can be seen to have weight two. Hence the four face

centres all have weight two and this implies that the 16 vertices are the remaining

Weierstrass points and have weight one.

This completes our analysis of the genus three case.

Regular maps of genus four

We know that if G is the automophism group of a regular map of type {m, n},

then it is generated by a pair r and s of orders n and m, whose product is of order

two. If the genus of the map is greater than one then there are other defining

relations for G. Garbe specifies the automorphism groups of the maps in his lists

by giving the necessary extra defining relations. Again the first three maps in the

following table have abelian automorphism groups and so we know the weight of

the geometric points from (6.11). For g = 4, g3 — g = 60, so the Weierstrass points

of the underlying surfaces in cases (ix), (xi) and (xii) must all be geometric with

respect to these maps. For regular maps of genus two and three we have seen that

the sets of geometric points always contain the Weierstrass points of the underlying

surface. We can see from the table below that this is not true for regular maps

of genus four. The total weight of the geometric points in cases (iv), (vii) and (x)

is less than 60, indeed in (x) none of the geometric points are Weierstrass points.
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However, we shall show that the underlying surfaces in these cases carry another
regular map with respect to which the Weierstrass points are all geometric.

Map Type

{16,16}i,o

{9,18}2

{10,10}2

{3-2,3-4}

{4,16}

{4,10

{6,6

2}

2}

{3-2,6}

{3,3-4}

{5, 5 |3}

{4,6}4

{4,5}6

Number of
Faces Vertices Edges

I 6

I 6

2

24

26

4

62

64

64

12

122

24

I 6

2

2

44

86

106

62

63

24

12

18

30

86

96

106

121

16

20

18

181

361

30

361

601

Extra
Relation

r 7 s - i

r8a-l

r2s2

(rs-1)2

[r\s]

(rs-lf

(r2s2)2

(r2s2)3

Order
of G

16

18

20

24

32

40

36

36

72

60

72

120

H

H

H

H

H

First we determine when the underlying surfaces of different maps are confor-
mal equivalent.

If T[n, 4,2] has canonical generators x and y of orders n and 4, then x, yxy~1

and y2 are canonical generators of a subgroup with signature [n,ro,2] and index
two.

If A[2n, 3,2] has canonical generators x and y of orders In and 3, then x,
yx2y~1 and yx~^y are canonical generators of a subgroup with signature [2n, n, 2]
and index three.

The map in (v) is of type {4,16} and

G5 = (r, s | r16 = s4 = (rs)2 = rss~2 = 1).

Let H5 = (r,srs~1 ,s2). Since srs^1 = r7 and s2 = r 8 , H5 ~ Zi 6 ~ G\ and so the

maps in (i) and (v) lie on essentially the same surface. Therefore the map in (v) is
hyperelliptic and the Weierstrass points are the two face centres and eight vertices.
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G6 = (r, s | r10 = s4 = (rs)2 = (rs'1 f = 1)

If HQ = (r, s r s " 1 , ^ ) , then \He\ = 20 and, as [r, srs"1] = 1, HQ is abelian. Hence

i?6 — Zio + Z2 — G3. Therefore the map in (vi) is also hyperelliptic and the

Weierstrass points are the 10 vertices.

If Hg = ( r , 5 r 2 5- 1 , s r - 1 5) , then \H9\ = 2 4 and, as ( s r 2 ^ 1 ) 2 = r4, #9 ~ G4.

Gn = (r,5 |r6 = 5
4 = (r5)2 = ( r V ) 2 = 1)

If Hu = (r,srs-\s2), then \HU\ = 36. Since ( r ^ r s " 1 ) " 1 ) 2 = 1, # u ~ G7 (not

Gs).

G12 = (r,s\r5 = s4 = (rs)2 = (r2s2)3 =

If # i 2 = (r,srs-\s2), then \H12\ = 60. Since ( r ^ r s - 1 ) " 1 ) 3 = 1, H12 ^ Gio-

We have shown that although there are 12 regular maps of genus four, they

essentially lie on only seven surfaces. This helps us alot in determining the Weier-

strass points, which we do now. We return to looking upon the map automorphism

groups us images under a surface kernel epimorphism tp, from some Fuchsian

group r[n ,m, 2], where x and y are canonical generators of T and <p(x) = r and

<p(y) = s.

(viii) The extra relation that defines Gs is [r2, s] = 1 and \Gs | = 36. Let L = (r),

so \G$ : L\ = 6 and 1, s, . . . ,s5 are coset representitives. The action of Gs on

the cosets is

r i ->(l)(2 6)(3 5)(4), s^ (12 3 4 5 6), rs (-»• (1 2)(3 6)(4 5).

Hence L lifts to a Fuchsian group A, with signature [6,6,3,3] and has canonical

generators x, y3xy~3, yx2y~1 and y2x2y~2. If we denote by i\> the restriction of 9?

to A followed by the epimorphism from A to Z6 that maps r to 1, then ip(x) = 1,

ip(y3xy~3) = 1, ^(yx2y~1) = 2 and rp(y2x2y~2) = 2. This is because [r2,s] = 1
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a n d so sr2s 1 = r2, s2r2s 2 = r2. Hence for R(r J ) ,

«2 = - 1 + (1 - f) + (1 - f) + (1 - f) + (1 " }) = 1
n3 = - 1 + (1 - | ) + (3 - J) + (1 - f) + (1 - f) = 0
"4 = - 1 + (1 - f) + (1 - f) + (1 - f) + (1 - f) = 1

Thus the gaps at the fixed points of r are {1,2,4, 7} and so the weight of the six

face centres is four. Further analysis of this kind shows that the weight of each of

the vertices is three. We are lacking 18 from the total weight of all the points of

the surface and so the edge centres must each have weight one.

(iv), (ix) The action of G4 on the (r) cosets is clearly given by r i-> (1)(2) and

s i—> (1 2). Thus A:= Lp~1((r)) has signature [12,12,3]. There is essentially only

one surface kernel epimorphism from A to Z12, so it is easily verified that the

weight of each of the two face centres is four. As the maps in (iv) and (ix) lie

on the same surface, by looking at fundamental regions, we see that the two face

centres and four vertices in (iv) together are the six face centres in (ix) and so all

have weight four. Hence we are lacking in weight by 36. The order of GQ is greater

than 60 and so the 36 edge centres must have weight one and be the remaining

Weierstrass points. Only 12 of the edge centres in (ix) are geometric points in (iv);

the 12 edge centres, and so these have weight one.

(vii), (xi) The extra relation needed to define G7 is (rs~1)2 = 1 and so, by

symmetry, the weight of the six face centres is the same as the weight of the six

vertices. If A = t^"1^?-)), then it can be shown that A has signature [6,6,3,3]

and canonical generators x, y3xy~3, yix2y~~i and y5x2y~5. Since s3rs~3 = r5,

s4r2s~4 = r2 and S5T2S~5 = r4, the weight of each of the fixed points of r is two.

Thus the total weight of the face centres and vertices is 24 and we are lackig 36

from the total weight. Hence the 18 edge centres have weight two or there are 36

non-geometric points with weight one, this is one orbit of points under G7, each

with trivial stabilizer. We need to look at case (xi) to know for sure. The extra

relation in Gn is (r2s2)2 = 1 and if A = (^^((.s)), then, by looking at the actions

of r and s on the (s) cosets, we see that A has signature [1;4,4]. Hence, for R(s~l),

n0 = n\ = 7i2 = n3 = 1. Therefore the gaps at the 18 vertices are {1,2,3,4} or

{1, 2,4, 7}. The latter implies that the weight of each of the edge centres is four,

which clearly is not possible. Hence the vertices in (xi) are not Weierstrass points

while the edge centres are and each has weight one. Thus the edge centres in (vii)
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are not Weierstrass points and there are 36 non-geometric points with respect to

the map in (vii), each with weight one.

(x), (xii) When we look at the order of G12 and the numbers of geometric points

in (xii) then it is clear that the 24 face centres are certainly not Weierstrass points,

while the vertices have weight two and the edge centres weight zero or, the vertices

have weight zero and the edge centres have weight one. Let A be the lift of (s),

then A has signature [k; A^a\ 2^)] where a > 0 is even and

Hence the only possible signatures for A are [1;4,4], [4^,2] and [4,4, 2 ^ ] . There

is essentially only one surface kernel epimorphism from a group with the last

signature to Z4 and it is not difficult to see that were A to have this signature then

the vertices would each have weight 6. There are two surface kernel epimorphisms

from a group with the second signature to Z4, one would give the weight of the

vertices to be one and the other three. Hence the signature of A must be [1;4,4].

So the gaps at the vertices are {1,2,3,4} or {1,2,4,7}, our previous remarks tells

us that they must be {1,2,3,4}. Therfore the Weierstrass points in (xii) are the

60 edge centres, while the Weierstrass points in (x) are all non-geometric with

respect to this map. This can be seen by constructing fundamental regions for

some F[5,5,2] from fundametal regions of some A[5,4,2] that contains F with

index two.

This concludes our analysis of the regular maps of genus four.

Regular maps of genus five

We analyse the regular maps of genus five in much the same way as we did

those of genus four: First determining when different maps lie on the same Rie-

mann surface and then using these "inclusions" in our calculations. Again there

are maps whose set of geometric points does not include all the Weierstrass points

of the underlying surface; cases (iv), (vi) and (vii). The surfaces in (vi) and (vii)

each carry another regular map with respect to which all the Weierstrass points

are geometric. However we shall show that this is not the case in (iv). The asterisk

on the number of edges in (iv) indicates that we are uncertain as to the weight of

the edge centres, our methods only give us a range of possible weights for these

geometric points. The range is such that the total weight of all the points on the

surface, which is 120 for surfaces of genus five, can not be accounted for by just

116



the geometric points of the map.

Map Type

{20,20}i,0

{H,22}2

{12,12}2

{3-2,3-5}

{4,20}!,!

{4-2,8}4

{ 8 , 8 } ^ " - - '

{4,12|2}

{6,6}2)0

{4,8}^'s2]=1

{4,8|4} r s'r'=s '

{3,2-5}

{5,5}4

{4 ,6}^ 3 ) 2 = 1

{3>8}[.a,r- l-*r] = l

{4, 5 |4}

Number of
Faces Vertices Edges

I 1 0

I 1 0

2

25

210

45

43

4

83

85

83

1210

16

163

245

32

I 1 0

2

2

54

1010

45

43

1210

83

165

16

40

16

243

64

403

1010

n i o

126

15*

20

165

16

24

243

32

323

60

403

48

96

80

Extra
Relations

r 9 s - l

rios-i

rio5-2

r105-2

[r2,s], ( r V ) 2

(r2)V2 , (r2s2)2

(rs-i)2

( r 2 ^ 1 ) 2 , (r2s2)2

[r\s2]

(r2)s2r2, (rs'1)4

(r2s2)2

(r3s2)2

[r2, 5-xr4s]

Order
of G

20

22

24

30

40

32

32

48

48

64

64

120

80

96

192

160

H

H

H

H

H

H

G5 = (r,s\ r20 = s4 = (rs)2 = rlos~2 = 1)

If H5 = (r^rs-1^2), then \H5\ = 20 and its lift has signature [20,20,2]. Since
srs~1 = r9 and s2 = r10, H5 ~ Z20 — G\. Hence the map in (v) is hyperelliptic
and the Weierstrass points are the two face centres and ten vertices.

G8 = (r, s I r12 = s" = (rs)2 = (rs'1 f = 1)

If Hg = (r,srs~1, s2), then \HS\ = 24. Since [r,srs~1] = 1, ils is abelian and so

H5 ~ Z12 + Z2 — G3. Hence the map in (viii) is hyperelliptic and the 12 vertices

are the Weierstrass points.

G15 = ( r , s | r 8 =s3 = (rs)2 = [r2, s'1 r4 s) = I)
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If #15 = (r^s^s-^sr^s), then |#15| = 64. Since [ r 2 , ^ - 1 ] = 1, #15 is

isomorphic to G10 (not G\\).

= (r, s, r8 = s4 = (rs)2 = s2r2
S-

2r2 = ( r ^ 1 )4 = 1)

If #11 = (r,srs-\s2), then \Hn\ =32.

Now, (r2(sr3~1)2)2 = (srs~1)r2(srs~1)~1r2 = 1 but [ r^srs" 1 ] 7̂  1, so i J u is

ismorphic to G-j (not Ge)-

If #10 = ( r ^ r s " 1 ^ 2 ) , then |#io| = 32. Now, ( r ^ r s " 1 ) 2 ) 2 = [r2,srs~l] = 1, so

#10 is ismorphic to GQ.

If i?i4 = (r, srs^1, ,s2), then |i?i4| = 48 and it can be seen that H14 is isomorphic

to G9.

If i?i6 = (r, 3 r5 - 1 , s2), then |#i6 | = 96 and it can also be seen that Hi6 is

isomorphic to G13.

Thus we have shown that the 16 regular maps of genus five lie on essentially

only nine surfaces. We know three of these are hyperelliptic and so we now only

need to determine the Weierstrass points on the remaining six surfaces.

(iv) Note that the extra relation for G4 in [13] is incorrect and should read

rlos~2. The subgroup L := (r) has index two in G4. The action of G4 on the

cosets is given by r H (1)(2) and s 1—> (1 2). Hence A := ip~1(L) has signature

[15,15,3]. There is essentially only one surface kernel epimorphism from A to

Z15, this is described by x\ 1—> 1, £2 '—• 4 and £3 1—> 10, where x\, £2 and £3 are

canonical generators of A. Hence, for R(r~1), n\ = ri2 = n^ = n^ = ng = 1 and so

the gaps at the two face centres are {1,2,4,5,8}. If M = (s), then I , r , r 2 , r 3 , r 4

are M coset representitives and the action of G4 on the M cosets is given by

r ^ (12 345) , 5i-»(l)(2 5)(3 4), rs H-> (

Hence M lifts to a group with signature [6,3,3,3,2], there is essentially only one

surface kernel epimorphism from a group with this signature to Tt^,. Furthermore
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it can be seen that for R(s 1), n\ = ri2 = n± = «5 = n-j = 1 and so the weight

of each the five vertices is four. Finally, 1, r , . . . , r14 are representitives of the {rs)

cosets and by looking at the action of r and s on these cosets we see that (rs) lifts

to a group with signature [2; 2,2,2,2]. Thus, for R(rs), no = 2 and rt\ = 3. This

information fails to give us the gaps at the edge centres, it only tells us that the

gap sequence at the edge centres is one of the following.

{1,2,3,4,5} {1,2,3,4,7} {1,2,3,4,9} {1,2,3,5,6}

{1,2,4,5,7} {1,2,3,6,7}

Hence we only know that the weight of each of the 15 edge centres is 0, 2 or 4.

Therefore the total weight of the geometric points is 30, 60 or 90, and so there is at

least one orbit of non-geometric Weierstrass points under G4, possibly three. Note

that any Fuchsian group with signature [15,6,2] is maximal and so the underlying

surface here admits no other regular maps.

(vi), (x), (xv) The extra relations to define G§ are [r2
7s] = (r2s2)2 = 1. If

L = (r), then I , s , s 2 , s 3 are L coset representitives and the action of G$ on these

cosets is given by

r h-+ (1)(2 4)(3), 5 ^ ( 1 2 3 4 ) , rs •-> (1 2)(3 4).

Thus L lifts to some A[8,8,4,2]. Furthermore A has canonical generators that

map to r, r, r2 and r4. Hence the weight of each face centre is five. The four face

centres and four vertices in (vi) are the eight face centres in (x), and the 16 edge

centres in (vi) are the 16 vertices in (x). Furthermore, the eight face centres and

16 vertices in (x) are the 24 face centres in (xv). Hence all the geometric points in

(vi) have weight 5, as do the face centres and vertices in (x), and the face centres

in (xv). So the Weierstrass points of the underlying surface of these maps are all

geometric with respect to each map.

(vii), (xi) Let L denote the subgroup of G-j generated by r, so L has order eight

and I , s , s 2 , s 3 are L coset representitives. The action of G7 on these cosets is

r H-> (1)(2 4)(3), s i->(12 3 4), rs »-• (1 2)(3 4).

This can be seen by analysing the group or by looking at coset graphs, as combina-

torial arguments show L must lift to a group A, with signature [8,8,4,2]. Thus A

has canonical generators that map to r, s2r,s~2 = r5, s3r2s~3 = r2 and r4. Hence,
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for R(r 1), ni = n2 = n^ = 125 = n,7 = 1 and so the gaps at the fixed points of r

are {1,2,3,5, 7}. The four face centres and four vertices in (vii) correspond to the

eight face centres in (xi), and so these eight points each have weight three.

We now turn our attention to Gn. If M := (s) lifts to A[fc;4(a),2(/9)], then

a > 0 is even and

2k - 2 + a\ + (3\ = 16(1 - I _ I - I ) = 2.

Thus A has one of the following signatures [1; 4,4,2], [44\ 2,2] or [4,4,2<5>]. There

is a unique surface kernel epimorphism from a group with the first signature to Z4

and if A is such a group then our methods tell us that the weight of each of the

16 vertices is zero or four. There are essentially two surface kernel epimorphisms

from a group with the second signature to Z4. One would imply the weight of

the vertices to be three and the other would imply it to be five. Finally, there is

a unique surface kernel epimorphism from a group with the last signature to Z4

and the associated surface is hyperelliptic. Therefore the weight of the vertices is

either zero, three, four or five. Hence the total weight from the vertices and face

centres in (xi) is either 24, 72, 88 or 104, leaving 96, 48, 32 or 16 to come from the

32 edge centres and non-geometric points. Hence the vertices must have weight

zero or four so A has signature [1;4,4, 2], this implies that the 32 edge centres

have weight one or three.

Similarly we can show that (rs) must lift to a group with signature [2;2^4^],

or [1; 2(8)], or [2(12)]. If it is the first, then the edge centres have weight zero, two

or four. If it is the second, then the edge centres have weight three or five and it

can not be the last as the associated surface would be hyperelliptic. Notice that

one is not an option for the weight of the edge centres, so it must be three and this

implies that the vertices, (which are the edge centres in (vii)), are not Weierstrass

points.

(ix), (xiv) Let L denote the subgroup of G14 generated by r, so |G14 : L\ = 16.

The action of r, s and rs on the L cosets tells us that L lifts to a group with

signature [6,6,3,2,2]. There is essentially only one surface kernel epimorphism

from such a group to Z6 and calculations show that the weight of each of the

face centres is three. It can also be seen that (s) lifts to a group with signature

[4(4),2, 2]. There are two distinct surface kernel epimorphisms from such a group

to Z4, one implies the vertices have weight three and the other five. Hence the 16

face centres and 24 vertices each have weight three in (xiv), and these are all the
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Weierstrass points of the surface. Thus all the geometric points in (ix) each have
weight three.

The remaining cases can also be dealt with using coset actions and counting
arguments.

Garbe has also given lists of all the regular maps of genus six and seven.
However our methods prove to be unsucessful for almost half the maps of genus
six and so we have not included such partial results.
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Appendix

In [33] Singerman gave all inclusions between Fuchsian triangle groups. In

this appendix we look at each of these. For each inclusion F < A, we will show

that every subgroup of A, that is isomorphic to F, is in fact conjugate to F in

A. This is done by showing that the coset graph in each case is unique up to a

relabling of the vertices and this merely corresponds to conjugation in A. For some

cases we determine canonical generators for F in terms of canonical generators of

A and construct a fundamental region for F out of fundamental regions of A.

In all but one of the cases A is the canonical Fuchsian group of only one proper

NEC group, an extended triangle group A*. F is often contained in two proper

NEC groups with index two and using [5] and [11] we see when these are contained

in A*. We have already shown that not every reflection in A* necessarily extends

F to a group containing it with index two, and now we ask: Is every reflection

in A* conjugate to a reflection that normalizes F? This is the case for most

inclusions but not all. (The reason we construct fundamental regions in some

cases is to determine which conjugacy classes of reflections in A* are represented

by reflections that normalize F.) This question is closely related to the following

question: Given a large group of automorphisms G, of a compact Riemann surface,

are all the symmetries of this surface conjugate to a symmetry of the first or

second kind with respect to G? Again the answer is "usually". However there

are interesting instances when this is not the case, providing exceptional surfaces.

The results here are used in chapters 4 and 5 to find all symmetries with non zero

species of Riemann surfaces with large cyclic and non-cyclic abelian groups and

hence to determine the symmetry type of these surfaces.

Suppose A* is an extended triangle group with signature (7, m, n) and presen-
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tation
A, = (a, b, c | a2 = b2 = c2 = (ab)> = (bc)m = (ac)n = 1).

If / is odd , t hen (a&)' = (aft) "2 a{ba) "2 6 = 1 and so (a&) "2 a(ba) "2 = 6 .

Therefore a and 6 are conjugate in A*.

Now consider the epimorphism 0, from A* to

H:= (r,s,t\r2 = s2 = t2 = (rs)1 = {st)m = (rt)n = [r,s] = [s,t] = [r,t] = 1),

defined by 6 (a) = r, 6{b) = s and 6(c) = t. Here [r, 5] denotes the commutator of

r and s. We see that if / is odd, then rs = 1 and so r = s. H is abelian and so

r is conjugate (equal) to s if and only if / is odd or m and n are both odd. Our

previous calculations show that under these circumstances a is conjugate to b in

A*. Clearly a can only be conjugate to b, in A, if r is conjugate to s in H. Hence

a is conjugate to b if and only if / is odd or m and n are both odd. Thus A* has

three conjugacy classes of reflections if /, m and n are all even, two if one is odd

and the others even and one if two or more are odd.

We now give a brief outline of the Reidemeister-Schreier method. This is an

algorithm for finding a presentation of a subgroup, with finite index, in terms of

generators of the parent group, given the action of the parent group on the cosets

of the subgroup. Let T be a subgroup of finite index in A and let $ be a set of

generators of A that do indeed generate A. A right Schreier Transversal E, for T

in A, over $ is a set of words over $ such that there is a one to one correspondence

between the members of S and the right T cosets, and every initial segment of a

word in S (reading left to right), is also in E. If <f> £ $ and a (E E, then there is a

unique a £ S such that Ta<p = Tex, and of course a^a"1 is then in T. In fact the

set of all such elements

{o-^a""1 : a, a G S, (f> G $, Taa = Toe},

is a set of generators for F, some of which may be redundant. These are know

as Shreier generators. The defining relations are derived by writing the denning

relations of A, for $ and their conjugates under S, in terms of this set;

Note that if A above is a NEC group and F is a fundamental region for A,

then by [19] we see that
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is a connected fundamental region for T.

Example Let D := (a,b\a6 = b2 = (ab)2 = 1) and let a K+ (1 2)(3 4),

b h-> (1 3)(2 4) describe the action of D on the right cosets of some subgroup C, of

index four. Then a right Schreier transversal for C is {1, a, 6, ab}.

s
1

a

b
ab

a

—

a2

bab~1a~1

abab~1

91

g2

gs

b

—

—
b2

ab2a-A
g4

g5

a6

g\

g\
(g3gif
(g2gsf

b2

g4

g5

g4

gs

(ab)2

9\9295

g2g$gi

gsg5

The column on the left just lists the members of E. The entries under a are the

Schreier generators of C of the form aaa~1, where Coa = Ca and a, a £ £. We

see the action of a on the cosets of C is such that 3a = 4, therefore C6.a = Cab

and so i.a^afr)"1 appears under a and across from b. Note that if era £ S, then

we will just get an identity generator which we omit from the table. We perform

the same procedure for b and label the generators that we obtain g\ to g$. The

entries under the defining relations of D are these relations and their conjugates

under S written in terms of the g^s. For instance

b.(ab)2 .b 1 — baba = bab 1a l .ab2 a 1 . a 2 =

Hence C: = g5 | g\ = = #4 = 95 = = 9x929$ = 1)

We now proceed with our analysis of the triangle group inclusions. In our

subgroup lattices we merely write signatures of Fuchsian and NEC groups. We

are able to do this without ambiguity because all triangle groups of a certain

signature are conjugate in C.

1. [m, m, n] < [2, m,2n], index 2.

(2,m,2n)

Index

4

[2,m,2ra] (m,rn,n)
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Let S be a symmetric Riemann surface with a large group of automorphisms

G, that lifts to T[m,m,n] and another large group of automorphisms that lifts to

A[2, m, 2n]. Then, depending on the parity of m, S may have up to two or three

classes of symmetries with non-zero species in Aut(.S'). S admits symmetries of

the first and second kind w.r.t. G and we will determine which of these represent

the classes in Aut(S') mentioned above.

Coset Graph: Clearly if A[2,3, 2n] = (x, y | x2 = ym = (xy)2n = 1), then x must

permute the two T[m, m, n] cosets while y fixes both.

1 n

A right Schreier transversal for F, in A, over {x,y} is E:= {l ,x} , and

where g\ = xyx and g2 = y.

Let a, b and c be reflections such that ab — x and be = y, let a, b and c be

reflections such that ab = gi and be — g2, and let C be the reflection such that

9i 92

Then in A*(2, m, 2n) := (a, 6, c), we see that

a ~ c ~ c, and C ~ a.

Let us suppose that S has the maximum number of classes of symmetries with

non-zero species, two if m is odd and three if m is even. Then these are represented
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by a symmetry of the second kind induced by C and (i) any symmetry of the first

kind w.r.t. G if m is odd, or (ii) two symmetries of the first kind w.r.t. G if m is

even, one induced by a or c and the other induced by b. In any case, the classes

of symmetries of S, with non-zero species, are represented by those of the first or

second kind w.r.t. G.

2. [m, m, m] o [3,3, m], index 3.

(3,3,m

[3, 3, m

index

6

4

3

2

[m, m, m

Let 5" be a symmetric Riemann surface with a large group of automorphisms

(7, that lifts to r[m,m,m] and whose full group of conformal automorphisms lifts

to A[3,3,m]. Then Aut(S) lifts to (3,3,m) or ([3],(m)) and in both cases S

will have only one class of symmetries with non-zero species. This class will be

represented by a symmetry of the second kind w.r.t. G in the first case and one

of the first kind in the second case.

Coset Graph: If A[3,3,m] = (x,y \ x3 = y3 = (xy)m = 1), we may assume that,

for a suitable enumeration of the F[m, m, m] cosets, the action of x on these cosets

is (1 2 3) and hence y must act as (1 3 2).
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3. [m, rn, m] < [2, 3, 2m], index 6.

{3,3,m) ([3],(m)) [2,3,2m]

[3,3,m]

m,m,rn) [2,m,2m]

index

(2,3,2m) 12

6

4

3

2

(2,m,2m)

1, m, m

Let S be a symmetric Riemann surface with a large group of automorphisms

G, that lifts to r[m,m,m] and another group of automorphisms that lifts to

A[2,3,2m]. S will have one or two conjugacy classes of symmetries with non-

zero species in Aut(S") and admits symmetries of the first and second kind w.r.t.

G.

Coset Graph: If A[2,3,2m] = (x,y\x2m = y2 = (xy)3 = 1), we may assume

that, for a suitable enumeration of the F[2,n,2n] cosets, the action of x on these

cosets is (1 2)(3 4)(5 6). xy fixes no cosets therefore ly ^ 2 and so we assume

2y = 3. Thus 4y = 1, 5 or 6. If 4y = 1 then l(xy)3 = 3.

2
^

Hence 4y = 5 or 6, we may assume that it is 5, as by symmetry they are equivalent,

and so 6y = 1.
x (12)(3 4)(5 6)

xy (13 5)(2 6 4)

A right Schreier transversal for F in A over {x,y} is

S:= {l,x,xy,xyx,xyxy,y}.
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Using the Reidemeister-Schreier method we determine a presentation and a fun-

damental region for T.

1

X

xy

xyx

xyxy

y

X

—

X2

—

xyx2y~1x~1

xyxyxy"1

yxy~1x~1y~1x~1

9\

92

gs

g4

y

—

—
2 —1

xy x
—

xyxy2 x~1 y~l x~1

y2

g$

ge
g7

X2m

gT
gT
gf
92

{.g3gi)m

(g+gz)™

y2

97

g$
gs

ge

ge
g7

{xyf

93

9\9492

93

929194

93

9492gi

Hence

Let a, b and c be reflections such that ab = x and be = y, let a, b and c be

reflections such that ab = g± and be = g~2, and let C be the reflection such that

9492

Then in A*(2, 3, 2m) := (a, b, c), we see that

a ~ c, a ~ b ~ c ~ b and C ~ a.

Hence, if S does have two classes of symmetries with non-zero species, then one is

represented by a symmetry of the first kind and the other by a symmetry of the

second kind w.r.t. G. In any case, the classes of symmetries of 5*, with non-zero

species, are represented by those of the first or second kind w.r.t. G.
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4. [7,7,7] < [2,3,7], index 24.

index

48

24

12

(2,7,14)

(7,7,7) ([7], (7)) [2,7,14]

4

3

[7,7,7]

Let K be a surface group normal in some F[7,7, 7] and A[2,3,7] and let G

be a large group of automorphisms of S := U/K that lifts to F[7,7,7]. If 5* is

symmetric then there is just one conjugacy class of symmetries with non-zero

species in Aut(5'), this is because A(2,3,7) contains only one conjugacy class

of reflections. Hence, the class of symmetries of S, with non-zero species, is

represented by a symmetry of the first kind with respect to G. Note that 5*

admits no sjanmetries of the second kind w.r.t. G and this is because no ([7], (7))

is contained in any (2, 3, 7).

Coset Graph: Let (x,y | x7 = y2 = (zy)3 = 1) be a presentation for A[2,3,7].

By Theorem 2.4 we know what the cycle structures of x, y and xy are when they

act on the cosets; x must have three seven cycles and three one cycles, y must

have twelve three cycles and xy must have eight three cycles. Hence y and xy fix

no cosets. We may assume that on the F[7, 7, 7] cosets x acts as

and, because transitivety is required, ly = 22. Then 7(a;y)3 = 7 implies 2y = 7.

Suppose 23y G {3,4,5,6}. If 23y = 3, then 2(xy)3 = 2 which implies 2y = 4
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and, as 2y = 7, this is not the case. For a similar reason 23 y ^ 6 either. Now 23y =

4 implies 3y = 5 and hence 6xyxyx = 6, which means 6y = 6 and this is certainly

not the case. In the same way we see that 23y ^ 5. Hence 23y ^ {3,4,5,6},

therefore we may assume that 23y = 8, 24y = 15 and so 14y = 9, 21y = 16.

If 3y = 4 then 3xy = 3, if 3y = 6 then 2(xy)3 = 6 and if 3y = 5 then

Qxyxyx = 6, which implies 6y = 6. Thus 3y ^ {1,. . . , 7} and similarly neither are

Ay, by or 6y. This implies that the rest of the transpositions of y map cosets from

each seven cycle of x to cosets in a different seven cycle of x.

Without lose of generality we may assume that 3y 6 {10,11,12,13}. As

3y = 13 implies that 2xyxyx = 10, we see 3y ^ 13. Now

2(xy)3 = 2 => 2xyxy = 2y~1x~1 = 6 => 3yx = 6y => 6y ^ 10, else 9y = 3.

If 3y = 10, then 6y = 11. For the same reasons that 3y and 6y belong to the same

cycle of x so must lOy and 13y. Therefore, if 3y = 10, then 13y £ {4, 5}. Similarly

17y, 20y both lie in {1,. . . , 7} or {8,.. . , 14} but if 3y = 10, then there is no room

for them both. Hence 3y ^ 10 and similarly 3y ^ 12.

Thus 3y = 11 and 6y = 12. Therefore, {10,13}y = {4,5} or {19,18}, if it

is the former, then there will be nowhere for y to take {17,20} and so lOy =

18, 13y = 19 which implies 17y = 4, 20y = 5.

x (1, , 7)(8, , 14)(15, , 21)(22)(23)(24)

y i—> (1 22)(2 7)(3 11)(4 17)(5 20)(6 12)(8 23)(9 14)(13 19)(15 24)(16 21)

xy (1 7 22)(3 17 10)(4 20 16)(5 12 19)(8 14 24)(9 18 13)(15 16 21)

5. [2,7,7] < [2,3,7] index 9.

Index

(2,3,7) 18

9

4

([7], (2)) (2,7,7) \ [2,4,7] 2



Let K be a surface group normal in some F[2, 7, 7] and A[2,3,7], and let G

be a large group of automorphisms of S:= U/K, that lifts to F[2, 7, 7]. Then as in

case four, if S is symmetric there is only one conjugacy class of symmetries with

non-zero species in Aut(5f). Hence, this class is represented by a symmetry of the

second kind w.r.t. G. Note that S admits no symmetries of the first kind w.r.t.

G as A(2, 3, 7) contains no (2, 7, 7).

Coset Graph: Let A[2,3, 7] = (x,y \x7 = y2 = (xy)3 = 1), we may assume that,

for a suitable enumeration of the F[2,7, 7] cosets, x acts as ( 1 , . . . , 7)(8)(9) and

ly = 8, y will fix one coset only and xy must fix none.

Now Ixyxyx = 2 and so 2y = 7. Hence 9y £ {3,4,5,6}, by symmetry 3 and

6 are equivalent, as are 4 and 5. If 9y = 3 then for the same reason that 2y = 7

we require 2y = 4.

3 2

Therefore we may assume that 9y = 4, which implies 3y = 5 and so 6y = 6.

(1, ,7)(

xy (17 8)(2 5 6)(3 9 4)

6. [3,3,7] < [2,3,7], index 8.

(2,3,7)

Index

16

[2,3,7]

([3], (7))

(2,3,14)

[2,3,14] (3,3,7)

[3,3,7]
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Suppose K is a surface group normal in some F[3,3, 7] and A[2,3, 7], and that

S := UIK is symmetric. If G is a large group of automorphisms of 5* that lifts to

F[3, 3, 7], then the single conjugacy class of symmetries of S, with non-zero species

in Aut(S'), is represented by a symmetry of the second kind w.r.t. G. Furthermore,

5* admits no symmetries of the first kind w.r.t. G.

Coset Graph: Let A[2,3,7] = (x,y\x7 = y2 = (xy)3 = 1), we may assume

that, for a suitable enumeration of the F[3, 3, 7] cosets, x acts as (1 , . . . , 7)(8) and

ly = 8. We know that y must fix no cosets while xy must fix exactly two.

We know 7(xy)3 = 7 and as Ixyxyx = 2 we see that 2y = 7. Therefore 3y = 4, 5

or 6. If 3y = 6 then 2(xy)3 = 6, if 3y = 5 then 4y must be 6 and so 3(a;y)3 = 5.

Hence 3y = 4 and 5y = 6.

(1 7)(8)

y—>(18)(2 7)(3 4)(5 6)

xy (17 8)(2 4 6)(3)(5)
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7. [4,8,8] < [2,3,8], index 12.

(2,3,8)

([8], (4)) (4,8,8) [2,8,

[2,4,8]

index

24

12

Let a surface group K, be normal in some F[4,8,8] and A[2, 3,8]. Let S =

UIK be symmetric and G be a large group of automorphisms of S that lifts to

F[4, 8,8]. Then S has one or two conjugacy classes of symmetries with non-zero

species in Aut(S') and S admits symmetries of the first and second kinds w.r.t. G.

If t\ is a symmetry of the first kind and ti is a symmetry of the second kind w.r.t.

G, then (G,ti) contains up to three conjugacy classes of symmetries with non-

zero species and (G, £2) contains one. Hence, if (G,ti) does contain three classes

of symmetries with non-zero species, then some of the classes of symmetries of the

first and second kind w.r.t. G are certainly conjugate in Aut(S'). This is because

any (2, 3, 8) contains only two conjugacy classes of reflections. We use fundamental

regions to determine which are conjugate and if the two possible classes in Aut(S')

mentioned above are represented by thoses symmetries of the first or second kind

w.r.t. G.

Coset Graph: Let A[2, 3, 8] = (x,y \x8 = y2 = (xy)3 = 1), we may assume that,

for a suitable enumeration of the F[4, 8, 8] cosets, the action of x on these cosets is

and \y = 11. Of course y and xy fix no cosets.

We see that 8xyxyx = 2 and so 2y = 8. Now 12y <E {3,. .. , 7} or {9,10}.

If 12y £ {9,10}, then Uxyxyx G {1, . . . ,8} but Yly'1 is not. Therefore 12y <E
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{ 3 , . . . , 7}, in fact 12y = 4, 5 or 6, as 12y = 3 implies 2y = 4 and 12y = 7 implies

8y = 6, neither of which is the case. Suppose 12y = 4, then 3y = 5 and we may

assume that 9y = 6 and lOy = 7, but then 6(xy)3 = 10. By symmetry, 4 and 6

are equivalent, hence 12y = 5, 4y = 6, 3y = 10 and 7y = 10.

7

6

(1, ,8)(9

y — > ( l l l ) ( 2 8)(3 9)(4 6)(5 12)(710)

xy (18 11)(2 9 7)(3 6 10)(412 5)

A right Schreier transversal for F in A over {x,y} is

E := {1, x, x2 , . . . , x7, x2y, x6y, y, x4y}.

We now employ the Reidemeister-Schreier method to find a presentation for V.

s
1
X

x2

x3

x4

x5

x6

x7

x2y

x6y

y
x4y

X

—

—

—

—

—

—

—

x8

x2yxy~1x~6

x6yxy~1x~2

yxy-1

A 1 A

x yxy x

9i

52

53

54

55

y

—

xyx~7

—

x3yx~5

—

x5yx~3

—

x7yx~2

9 o 9

x y x
x6y2x-6

y2

A —A

x yx

56

57

58

59

5io

5n

512

513

X 8

5i

5 i

5 i

5 i

5 i

5 i

5 i

5 i

(525s)4

(5352)4

9l
g!

y2

512

56 59

5io

5758

513

5857

5n

5956

5io

5 n

512

513

(xy)3

5654

5259

5753

5558

5855

5357

5952

5456

5259

5357

5456

5558

Hence T = ,... ,g13\gi = (g2g3)4 = gl = gl = gio - 9n = #12 =

513 = 5659 = 5758 = 5456 = 5259 = 5357 = 5558

= (54,55 I 54 = 5s = (545s)4 = 1).

= 1)
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Using E we construct a connected fundamental region for F out of fundamental

regions for A.

xy

Let a, b and c be reflections such that ab = x and be = y, let a, b and c be

reflections such that ab = g\ and be = gs, and let C be the reflection such that

C'g^C = g§1. Then in A*(2, 3, 8) := (a, 6, c), we see that

a ~ c, a ~ c ~ c and 6 ~ C ~ b.

Thus the classes of reflections in A*(2,3,8) are represented by a or c and b or C.

Hence the classes of symmetries of S above, with non-zero species, are represented

by symmetries of the first and second kind w.r.t. G,
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8. [3,8,8] < [2,3,8], index 10.

Index

(2,3,8) 20

10

([8], (3)) [2,6,8]

• —

[3,8,8]

Note that a (2,3,8) contains two conjugacy classes of reflections while a

([8], (3)) contains only one and so the classes in (2,3,8) are not both represented

by reflections in ([8], (3)). Thus, if a surface group K is normal in some F[3,8,8]

and A(2,3,8), then S := U/K may admit two conjugacy classes of symmetries

in Aut(S') with non-zero species. Only one of which would be represented by a

symmetry of the first or second kind w.r.t. to the large automorphism group G,

that lifts to T[3,8,8].

Coset Graph: Let A[2,3,8] = (x,y\xs = y2 = (xy)3 = 1), so, for a suitable

enumeration of the F[3, 8, 8] cosets, the actions of x and y on the cosets are

x (1, ,8)(9)(10)

y—*(19)(2 8)(3 5)(4 10)(6 7)

xy (18 9)(2 5 7)(3 10

See the example in §3.2.

A right Schreier transversal for T in A over {x, y} is

£ : =

Using the Reidemeister-Schreier method we determine a presentation and a fun-
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damental region for F.

S

1
X

X2

X3

X4

X5

x6

X7

y
x3y

X

—

—

—

—

—

—

—

x8 01

yxy CJ2

x3yxy~1x~3 g3

y

—

xyx~7

x2yx~4

—
A o

x yx
x5yx~6

x6yx~5

x7y~1

y2

x3y2x~3

94

95

96

97

gs

gs

9io

gn

x8

91

9i

9i

9i

9i

9i

9i

9i

gl
gl

y2

9 io

9499

gsge

911

9 eg 5

97g&

g&g7

010

9ii

{xyf
94g2

g5g7ga

0306

0603

070905

gi
090507

ff204

0204

0306

Hence | g\ = g\ = g\ = g10

gn = g7g&

Let a, b and c be reflections such that ab = x and be = y, and let C be the

reflection such that Cg%C = g^1-

9293

Then in A*(2, 3, 8) := (a, 6, c), we see that

a ~ c and C ~ a.
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Hence, if S above does admit two classes of symmetries with non-zero species, then

one class is represented by the symmetry induced by C, which is of the second

kind w.r.t. G, and the other is represented by the symmetry induced by b which

extends G to Aut(S').

9. [9,9,9] < [2,3,9], index 12.

(2,3,9)

(2,3,18) [2,3,9]

([3], (9)) [2,3,18] (3,3,9)

(2,9,18

(9,9,9) [2,9,18] ([9], (9))

[3,3,9]

Index

24

12

6

4

3

2

[9,9,9]

Let S be a Riemann surface admitting a large automorphism group G, that

lifts to F[9,9,9], and a large automorphism group that lifts to A[2, 3,9]. If S

is symmetric, then it only has one conjugacy class of symmetries with non-zero

species in Aut(.S'). This class is therefore represented by a symmetry of the second

kind w.r.t G and S admits no symmetries of the first kind w.r.t G.

Coset Graph: Let A[2, 3, 9] = (x, y | x9 = y2 = (xy)3 = 1), we may assume that,

for a suitable enumeration of the F[9, 9, 9] cosets, the action of x on these cosets is

and lOy = 1. Hence 2y = 9 and l ly G {4,5,6,7}. If l ly = 5 or 6, then there

will be no "room" for y to connect 12 to { 1 , . . . 9}. Therefore we may assume that

l ly = 4, as by symmetry 4 and 7 are equivalent, and so 3(xy)3 = 3 implies that

3y = 5. Thus 12y = 6, 7 or 8, if 12y = 6 then 5y = 7, if 12y = 8 then 9y = 7 and
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so 12y = 7, 6y = 8.

6 5

(1, ,9)(10)(ll)(12)

xy (1910)(2 5 8)(3 114)(6 12 7)
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10. [4,4,5] < [2,4,5], index 6.

(2,4,5)

(2,4,10)

Index

12

6

4

[2,4,10] (4,4,5) ([4],(5))

[4,4,5]

Let S be a symmetric Riemann surface with a large group of automorphisms

G, that lifts to F[4,4, 5] and another group of automorphisms that lifts to A[2,4, 5].

Then 5* admits no symmetries of the first kind w.r.t G and only one class of

symmetries of the second kind. Since A(2,4,5) has two classes of reflections S

may have two conjugacy classes of symmetries in Aut(S') with non-zero species,

in which case only one of the classes would be represented by a symmetry of the

second kind w.r.t. G.

Coset Graph: Let A[2,4, 5] = (x,y |x5 = y2 = (zy)4 = 1), we may assume that,

for a suitable enumeration of the F[4,4,5] cosets, the action of x on these cosets

is ( 1 . . . 5)(6) and 6y = 1. If 2y = 5 then 5(zy)4 = 6, if 2y = 4 then 3y = 5 and

l(xy)4 = 5.

Thus 2y = 3 and 4y = 5.
x

y >

xy

(1 6)(2 3)(4 5)

(13 5 6)(2)(4)
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A right Schreier transversal for T in A over {x, y} is S := {1, x,. .. , x5, y}.

E

1

X

x2

x3

X4

y

X

—

—

—

—

x5 gi

yxy~l gi

y

—

xyx~2

x2yx~1

xzyx~4

x4yx~3

y2

g3

g4

g5

ge
g7

X5

9i

9i

9i

9i

9i

g\

y2

g7

93 g 4

94gz

95 g &

#6 #5

97

{xyf
g^gi

gi

gi
g29395

g2g%gh

Hence r = g7 \ g\ = gi = g\ =

= gi = = l ) .

= gi = gt =• 1)

Let a, b and c be reflections such that ab = x and be = y, and let C be the

reflection such that Cg-$C — g^1.

Then in A*(2,4,5) := (a,b,c), we see that a ~ b ~ C and the other class of

reflections is represented by c.
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11. [ra,4n,4n] < [2,3,4n], index 6.

(u,4n,4n) [2,2n,4n]

(2,3,4n)

Index

12

6

4

n,An, 4n]

Let 5* be a symmetric Riemann surface with a large group of automorphisms

G, that lifts to F[n,4n,4n] and another group of automorphisms that lifts to

A[2,3,4n]. Then S admits symmetries of the first and second kind w.r.t G and

has one or two conjugacy classes of symmetries in Aut(5) with non-zero species.

Coset Graph: Let A[2,3,4n] = (x,y \x4n = y2 = (xy)3 = 1), we may assume

that, for a suitable enumeration of the T[n, An, An] cosets, the action of x on these

cosets is (1234)(5)(6) and 5y = 1. Hence Axyxyx = 2 and, as (xy)3 = 1, we know

that 2y = 4 and so 6y = 3.

O6 3 3O

:3 4)(5)(6)

xy (14 5)(2 6 3)

A right Schreier transversal for F in A over {x, y} is E := {1, x, x2, xy, y, x2y}.

Using the Reidemeister-Schreier method we determine a presentation and a fun-
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damental region for F.

s
1
X

x2

xy

y
x2y

X

—

—

x3y-1x~1

xyx

yxy-1

x2yxy~~1 x~2

5 i

52

53

34

y

—

—

—

xy2x~1 g5

y2 56
o 9 o

xzyzx z g7

xin

(5i52)n

(5i52)n

(5i32)n

(5251Y
4n

53

g\n

y2

56

55

37

35

36

37

(xyf
3253

545i

5i 54

5253

5352

545i

Hence T = (gu . . . ,g7 \(g1g2)
n = j f = g\n = g5 = g6 = g7 = g2g3 = gigi = 1)

Let a, b and c be reflections such that ab = x and 6c = y, let a, 6 and c be

reflections such that ab = g% and be = (74, and let C be the reflection such that

Then in A*(2, 3, An) := (a, b, c), we see that

c, a C ~ b and 6 ~ c.

Thus the classes of reflections in (2, 3, An) are represented by one of a, c or C and

6. Hence the classes of symmetries of S with non-zero species are represented by

symmetries of the first and second kind w.r.t. G. Indeed, if S does have two such

classes, then one is represented by the symmetry induced by a and the other by

the symmetry induced by b.
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12. [n,2n,2n] < [2,4,2n], index 4.

See §3.3 for the subgroup lattice in this case.

Let S be a symmetric Riemann surface with a large group of automorphisms

G, that lifts to r[n,2n,2n] and another group of automorphisms that lifts to

A[2,4,2n]. Then S admits symmetries of the first and second kind w.r.t G and

has up to three conjugacy classes of symmetries in Aut(S') with non-zero species.

Coset Graph: Let A[2,4,2n] := (x,y \xA = y2n = (xy)2 = 1). We know that

x fixes no T[n, 2n, 2n] cosets while y fixes two and interchanges the other two.

We may assume that, for a suitable enumeration of the cosets, the action of x is

(12 3 4) and ly = 1.

Now 4xyx = 2 and so, as {xy)2 = 1, 2y = 4. Hence y fixes 3.

x

V *

xy

(12 3 4)

(1)(2 4)(3)

A right Schreier transversal for T in A over {x,y} is E : = {l,x,x2,x3}

S x

1

X —

X2

x3 x4 gx

y

y
xyx-3

x2yx~2

x3yx~x

g2

gs

gi

g$

X4

9i

9i

gi

9i

y2n

g\n

(#3ff5)n

9ln

(g^gsT

(xy)2

gzgm

Q-\ Go Qo

Hence T = , g5 | gx = g\n = g\n = = gi9293 = 1)

Let a, b and c be reflections such that ab = x and be = y, let a, b and c be

reflections such that ab = #4 and be = g2, and let C be the reflection such that
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Cg2C = - i

9492

xy

Then in A*(2, 4, 2ra) := (a, b: c), we see that

a ~ c ~ c, and 6 ~ C ~ 6.

Thus only two of the three classes of reflections in A*(2,4,2n) are represented by

reflections that normalize T. The "missing reflection" is in ([2n],(2)), see §3.3.

Hence if S above does have three classes of symmetries with non-zero species in

Aut(5r), then only two of them are represented by symmetries of the first or second

kind w.r.t. G.

13. [3, n, 3n] < [2, 3, 3n], index 4.

Index

(2,3,3n)

[2,3,3n]

(3,n,3n)

[3, n, 3n]

Let 5 be a symmetric Riemann surface with a large group of automorphisms

G, that lifts to F[3,n,3n] and another group of automorphisms that lifts to

A[2,3,3n]. Then S has one (if n is odd) or possibly two (if n is even), classes

of symmetries in Aut(5) with non-zero species. Clearly any symmetry of S that
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normalizes G must be of the first kind and G extended by such a symmetry con-

tains one (if n is odd) or possibly two (if n is even), classes of symmetries with

non-zero species.

Coset Graph: Let A[2,3,3rc] = (x,y \x3n = y2 = (xyf = 1). We see that, on

the F[3, n, 3n] cosets, x acts as a three-cycle and y as two two-cycles. Hence for

a suitable enumeration of the cosets we may assume that x acts as (1 2 3)(4) and

Ay = 1. Thus 3xyxyx = 2 and so 2y = 3.

4-o

X

y y—
xy

(1

- ( 1

(1

2 3)(4)

4)(2 3)

3 4)(2)

A right Schreier transversal for F in A over {x,y} is £ : = { I , x , x 2 , y } .

1

X

xy

y

X

—

x2y~1x~1

xyx

yxy-1

9i

92

93

y

—

—

xy2x~ a y4

y2 95

X3n

(gig2)n

(gig2)n

(929i)n

gin

y2

95

94

94

95

(xy)3

ff2<?3

9l
9293

93g2

Hence T = {gu . . . ,g5 \(g1g2)
n =

= (93,gi\(93fn = g\ =

= g5 = g\ =

I)-

- 1)

Where g\ = g~[l = xyx~2 and g3 = yxy.

Let a, b and c be reflections such that ab = x and be = y, let a, b and c be

reflections such that ab = ^3 and be = g~\. Then in A*(2, 3, 3n) := (a, 6, c), we see

that

a ~ c, and c ~ a.

Hence the classes of symmetries of 5 , with non-zero species, are represented by
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symmetries of the first or second kind w.r.t. G.

14. [2, n, 2n] < [2,3,2n], index 3.

xy

Index

(2,3,2n) 6

[2,3,2n]

[2,n,2n]

(2,n,2n)

3

2

Coset Graph: Let A[2, 3,2n] = (x,y\x2n = y2 = (xy)3 = 1), we may assume

that , for a suitable enumeration of the F[2,n,2n] cosets, the action of x on these

cosets is (1 2)(3) and 3y = 1.

^ 2 1

x

xy (12 3)

A right Schreier transversal for F in A over {x,y} is E : = {l,x,y}.

E

1

X

y

X

—

x2
 3l

yxy'1 92

y

—

xyx^1

y2

93

94

X2n

9?
9?
9ln

y2

94
2

93
94

(xyf
939192

919293

929391
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Hence Jin

Let a, b and c be reflections such that ab = x and be = y, and let a, b and c

be reflections such that ab = g\ and be = g2.

Then in A*(2,3,2n) := (a, 6, c), we see that

a ~ c, a ~ c and 6 ~ c ~ b.

Thus, if a symmetric Riemann surface S, has a large automorphism group G, that

lifts to a [2,n,2n] and another automorphism group that lifts to a [2,3,2n], then

S has one or two classes of symmetries in Aut(S') with non-zero species. In either

case these classes are represented by symmetries of the first kind w.r.t. G.
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