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Kac-Moody algebras G(A) of rank r are Lie algebras associated with n x n generalised
Cartan matrices A. If n = r then G(A) is a complex simple finite-dimensional Lie
algebra with finite Weyl group W, but if n = r + 1 then G(A) is a complex infinite-
dimensional affine Lie algebra with afline Weyl group W. This thesis is concerned with
explicit calculations based on the use of W.

Manipulating the Weyl-Kac character formula for highest weight modules provides
a means of expanding Weyl orbit sums in terms of irreducible characters. These expan-
sions are inverted to obtain analytic weight multiplicity generating functions for level
1 and 2 modules for all affine algebras of rank 1 and 2. The orbit-character expansions
and weight multiplicity generating functions are then used to obtain branching rule
multiplicities for some affine embeddings.

On the other hand, the Weyl-Kostant-Liu character formula provides a means of
expressing irreducible characters of an affine algebra in terms of irreducible characters
of a simple finite-dimensional algebra. The key step is the identification of coset repre-
sentatives {W : W} for each of the seven infinite series of affine Kac-Moody algebras
indexed by their rank r. The proof is given in detail for A, while for the other affine
algebras the results are expressed as conjectures which have been extensively verified
by a computer program. Young diagrams are used to specify the action of the coset
representatives on arbitrary weights as required in the character formula. This allows
the computation of the irreducible characters to be done independently of the rank of
the affine algebra. Since the weight multiplicities of finite-dimensional modules of the
classical simple Lie algebras are polynomial in the rank this establishes that the weight
multiplicities of irreducible highest weight modules of the seven infinite series of affine

Kac-Moody algebras are also polynomial in the rank. Illustrative examples are given.
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CHAPTER 1

General Theory of Kac-Moody Algebras

1.1 Introduction

The classification of complex simple finite-dimensional Lie-algebras into four infinite
sequence of classical Lie algebras, A,, B,, C, and D,, and five exceptional Lie algebras
Es, E;, Es, F, and G, was given by Cartan in his thesis of 1894 [Ca). Since then finite-
dimensional irreducible representations and modules of Lie algebras have been studied
extensively by mathematicians and physicist alike. Their investigations have led to
numerous methods and formulae for computing dimensions of irreducible modules,
weight multiplicities, tensor product multiplicities and branching rule multiplicities. In
this thesis, we extend some of these methods to representations of affine Kac-Moody
algebras, working throughout over the field C of complex numbers.

The structure and representation theory of semisimple finite-dimensional Lie alge-
bras have been discussed in many excellent text books, see e.g. [H] and [J]. A Lie
algebra is called simple if it is non-abelian and has no proper ideals. A Lie algebra is
said to be semisimple if it possesses no proper abelian ideals. Since every semisimple
Lie algebra is a direct sum of simple Lie algebras, it is then sufficient to consider the
structure of the latter. Each simple finite-dimensional Lie algebra G possesses a Car-
tan subalgebra H of dimension » which is the rank of the algebra G. The structure
of a simple Lie algebra of rank r is determined up to isomorphism by its root basis
consisting of simple roots ¢;,...,a,. A root is a vector lying in the dual space H* of
‘H. The geometry of the root system is encoded in the Cartan matrix A or equivalently
in the corresponding Dynkin diagram S(A). However, the symmetry of the root sys-

tem is best understood in terms of the Weyl group W, the group that is generated by



Chapter 1
fundamental reflections s; in the hyperplanes perpendicular to the simple roots ¢;.
Before the introduction of Kac-Moody Lie algebras, the standard approach to the
construction of the simple finite-dimensional Lie algebras was to begin by defining
simple algebras and then to proceed through various intermediate stages to the con-
struction of the Cartan matrix A or Dynkin diagrams S(A). It was then noted by Serre
[Se] that every simple finite-dimensional Lie algebra G(A) can actually be constructed
from a set of generators and relations which depend only on the entries in the Cartan
matrix A. By weakening the conditions on the Cartan matrix A, Kac [Kacl] and
independently Moody [Mo1] enquired whether similar constructions are still possible.
Surprisingly the resulting Lie algebras which are now not neccessarily finite dimen-
sional turn out to be more interesting than the original simple finite-dimensional Lie
algebras. The defining matrix A = (A;;) is called a generalised Cartan matrix (GCM)
if A;; = 2, A;; is a nonpositive integer for ¢ # j and A;; = 0 implies A;; = 0. The
Kac-Moody algebra G(A) associated with an n xn GCM A is the Lie algebra generated

by the elements e;, f;, h; (¢ = 1,2,...,n) subject to the following defining relations:

his ] = 0;
les, fi] = bijhis
[his €3] = Asje; s
[hi; fi] = = Aii fi5

(ade;) ™9t e; =0 fori # j;

(ad f) 5 f; =0 fori#j;

for all 2,7 = 1,2,...,n. The vectors h; lie in the Cartan subalgebra H. Furthermore,

the Kac-Moody algebra G(A) has the root space decomposition
g(A) = @aE’H‘gaa

where G, = {z € G(A) | [h,z] = a(h)z for all h € H}. An element a € H* is called a

2



Introduction

root if G, # 0 and dim G, is called the multiplicity of « and is often written as mult a.
The Kac-Moody algebra G(A) possesses a non singular invariant form only if the

GCM A is symmetrisable i.e. there exists a diagonal matrix D such that DA is symmet-

ric. Morever for each indecomposable GCM A, the Kac-Moody algebra G(A) belongs

to one or other of the following three non intersecting classes [Kac4]:

a) if there exists a vector § of positive integers such that all the components of the

vector Af are positive, then G(A) is a simple finite-dimensional Lie algebra;

b) if there exists a vector § of positive integers such that A = 0, then G(A) is an

infinite-dimensional Lie algebra known as an affine Kac-Moody algebra;

c) if there exist a vector ¢ of positive integers such that all the components of the

vector A¢ are negative, then G(A) is an infinite-dimensional Lie algebra known as an

indefinite Kac-Moody algebra.

The affine Kac-Moody algebras, sometimes known as Euclidean Lie algebras or
just affine algebras were classified by Kac [Kacl] and Moody [Mol] and they fall
into one of the following classes: the untwisted algebras A®, B, CM,DW EM ED,
EMFD G and the twisted algebras AP AP DS%)I, E® D®. The centre of the
affine algebra G(A) is one-dimensional [Kac4] and is spanned by the element K known
as the canonical central element. The algebra G(A)/K is isomorphic to one of the

following algebras:

(1) the loop algebra
G ®Clt,t7],

where G is a simple finite-dimensional Lie algebra and C[t,¢~!] is the ring of Laurent

polynomials in t. This is the so called untwisted case.
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(ii) the algebra
®BezG; @,
where G; is the eigenspace of a certain automorphism of G of finite order m corre-

sponding to the eigenvalue €?*%/™. In fact m can only equal to 2 or 3. This is the

so called twisted case.

-

The structure of affine algebras are similar to those of simple finite-dimensional
Lie algebras which permits one to generalise many results of the classical theory. How-
ever the theory of general Kac-Moody algebras is interesting not only because of the
possibility of reproducing the results of the classical theory but mainly because the
corresponding results for Kac-Moody algebras turn out to be directly connected with
other topics in mathematics quite unrelated before.

Initially the Kac-Moody algebras attracted much attention because of the link
between the affine algebras and Macdonald identities [Ma]. Macdonald discovered a
remarkable product formula relating the Weyl group W and the positive roots A* of
a certain kind of Lie algebra. Although cast in a slightly different form, Macdonald

obtained in the framework of affine root systems the formula

Z e(w)e™ =¥ = H (1 — em)#moe

weW acA+

where p\— wp-is the sum of the positive roots a such that w='« is negative. He used
this formula to obtain identities for powers of Dedekind’s eta-function, 7(7)%™¢ where
G is a simple finite-dimensional Lie algebra. Kac [Kac2] later recognised Macdonald’s
unspecialised identity to be nothing other than the Weyl-Kac denominator identity for
affine algebras and also established that the Macdonald identity was valid for the entire
class of Kac-Moody algebras.

Representations of infinite-dimensional Kac-Moody algebras are difficult to con-

struct explicitly even in the affine case. Inspired originally by the theory of relativistic

4
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strings, there is an extensive literature in which operator realisations of the affine al-
gebras are discussed, see e.g [GO] also for other physical applications. However, our
discussion of the representations of Kac-Moody algebras will largely be in terms of
their characters and the related weight vectors. Much like a root, a weight is defined to
be a linear functional A : H — C. A weight A € H* is called integral if A(h;) € Z and
dominant if A(h;) > 0 for all ¢. Given a dominant integral-weight A of a Kac-Moody

algebra G(A), there exist an irreducible module V* = @,¢x-V,} where
V}={veV*|h(v)=pu(h)v forall heH}.

Such a module is called a highest weight module with highest weight A\. The dimension
of the weight space V} is referred to as the multiplicity of the weight u. The character
of this irreducible G{A)- module is given by the Weyl-Kac character formula [Kac2]
ch V* = > g(w)er*+o=r/ I (@ —emoymuite,
weW acAt

This formula is a generalisation of the Weyl character formula of a simple finite-
dimensional Lie algebra. Although the general formula is valid for an arbitrary Kac-
Moody algebra, in the indefinite case the multiplicity of the roots and the exact struc-
ture of the Weyl group are unknown, leaving us with a purely formal expression.

The characters of the irreducible highest weight modules of affine algebra give
rise to many interesting combinatorial identities [FL], [Kac3]. The specialisation
of the denominator identity for the simplest affine algebra A{" leads to the famous
Jacobi triple product identity, while the weight multiplicities of the fundamental weight
module of A module are the values of the classical partition function p(n). Some
weight multiplicity generating functions, known as string functions, can be found in an
important paper [KaP] that relates affine algebras to the theory of theta functions.

Using the classical transformation properties of theta functions Kac and Peterson have

5
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shown that the string functions are modular forms. Although their transformation laws
have been established, obtaining explicit expression for the string functions is not an
easy task. An explicit expression for all string functions is known only for the simplest
affine algebra A{" for which they are expressed in term of Hecke modular forms.

There are a number of methods available for computing weight multiplicities of
the highest weight modules of simple finite-dimensional Lie algebras. Most of these
methods can be extended to affine algebras but unlike the expression of string functions
in terms of modular forms, the weight multiplicities can only be given numerically, with
their values limited by ‘depth’. Recently Begin and Sharp [BS2], extending the work
of Kass [Kass] on the affine algebra A{" and of Patera and Sharp [PS] on simple
finite-dimensional Lie algebras, developed a technique that allowed them to expand
affine Weyl orbits in term of characters of irreducible representations. The weight
multiplicities concerned can be read off from the inversion of this expansion. For the
affine algebras of rank 1 and 2, they gave explicit Weyl orbit expansions in terms of
characters of irreducible representations. Unfortunately, not much progress has been
made in inverting even these expansions analytically.

Weights of irreducible highest weight modules are conjugate to dominant weights
and their multiplicities are invariant under the action of the Weyl group. Therefore
in order to specify all weight multiplicities it is sufficient to tabulate the multiplicities
of dominant weights. Bremner, Moody and Patera [BMP] have published tables of
dominant weights and their multiplicities in highest weight modules of simple finite-
dimensional Lie algebras. These tables are extensive and extend up to rank 12 for some
algebras. It was first reported by King [Kingl] that multiplicities of the dominant
weights are in fact polynomials in the rank of the algebra for each of the sequences of

the classical Lie algebras A,, B,, C, and D,. This polynomial dependence was later
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established explicitly by King and Plunkett [KiP] and Benkart, Britten and Lemire
[BBL].

As in [BMP] similar tables of dominant weights multiplicities but appropriate to
the untwisted affine algebras have been published by Kass, Moody, Patera and Slansky
[KMPS]. In order to extend these tables, it was first conjectured by Benkart and Kass
[BK] that these weight multiplicities are again polynomial in the rank of the algebras.
In the case of A and for sufficiently large r it has been proven to be so by Benkart,
Kang and Misra [BKM1] and they also later established this rank dependence of
weight multiplicities up to depth 2 [BKMZ2]. The rank dependent expressions for
weight multiplicities can be used to obtain root multiplicities of the hyperbolic Kac-
Moody algebras HAM [KM].

A problem which in applications appears quite often is to decompose irreducible
modules of an algebra into those of a subalgebra. However, a knowledge of the subalge-
bras of affine algebras is nowhere near as extensive as that of simple finite-dimensional
Lie algebras. Discussion for the conformal embeddings and their role in the context of
two-dimensional conformal field theory can be found in the text by Fuchs [F]. Other
explicit branching rules for embeddings of one affine algebra in another have been re-
ported in [BS1], [Lu]. It is also interesting to note that an affine algebra can be
embedded in itself [HKLP], [LPS].

In the remaining part of this Chapter we give first some terminology appropriate to
general Kac-Moody algebras before restricting our discussion to either the simple finite-
dimensional Lie algebras or the affine algebras [Kac4], [KMPS]. We begin with the
definition and the classification of GCMs. With these we associate Dynkin diagrams
and define the Kac-Moody algebras in term of generators and relations. The properties

of highest weight modules and Weyl groups are then discussed. The main objects of
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interest are the Weyl-Kac and Weyl-Kostant-Liu character formulae [Liu] and the
derivation of the method for expanding the orbit sums in term of irreducible characters
[PS].

In Chapter 2 we discuss representations of simple finite-dimensional Lie algebras.
Since most of the results are classical we have omitted their proof. Our aim is to
demonstrate some methods used in the context of simple finite-dimensional Lie alge-
bras before extending the methods to affine algebras. Besides this we also discuss the
relationship between the Young diagram notation for partitions and irreducible char-
acters. We then consider the infinite series of characters obtained previously using the
theory of Schur functions [King2]. We also give the modification rules that have to
be taken into consideration when non standard labels are encountered [King2].

In Chapter 3 we discuss the two common approaches to the construction of affine
algebras. In the GCM approach we obtained all the conventions that will be employed.
The central extension of a loop algebra approach is then considered in order to make
the connection with simple finite-dimensional Lie algebras and also to obtain the roots
and their multiplicities [Co]. Next we discuss the properties of affine Weyl groups, the
partitioning of weight space into Weyl orbits and orbit-weight generating functions.
Finally we give analytic expansions of affine orbit sums in term of affine irreducible
characters for all level 1 and 2 modules of affine algebras of rank 1 and 2. Numerical
inversion is then employed to illustrate the method of determining weight multiplicities.
The algorithm developed here to compute weight multiplicities has been implemented
for most affine algebras in the form of computer programs.

In Chapter 4 we spell out explicitly the Weyl-Kac denominator identities for all
affine algebras of rank 1 and 2. With the help of these identities, we are able to rewrite

and simplify the sum form of the orbit-character expansions given in Chapter 3 as
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product forms. Following the work of Kass [Kass] analytic expressions for some string
functions are obtained when the matrix of string functions is of order less than 3. When
the order of the matrix is greater than 2, the string functions are obtained by fitting
product formulae to the weight multiplicities generated by our programs. The method
exploits the modular characteristic of string functions.

Chapter 5 is concerned with an entirely new view of thé relationship between the
infinite series of characters based on Schur functions considered in Chapter 2 and the
denominator of the Weyl-Kostant-Liu character formula. The idea behind the use
of the Weyl-Kostant-Liu character formula is to transform the summation over affine
Weyl group elements directly into irreducible characters of a simple finite-dimensional
Lie algebra. The crucial step is the identification of an appropriate set {W : W} of
right coset representatives of the affine Weyl group W with respect to the finite Weyl
group W. In this chapter we obtain the set {W : W} for all seven infinite series of rank
dependent affine algebras but give a proof only for A®). Although the others are left
as conjectures, they have been extensively verified with a computer program and are
in complete accord with the Schur function formulae. A Young diagrammatic method
for computing the action of each right coset representative on weights is also given.

Chapter 6 is a consequence of Chapter 4 and 5. With the identification of the
set {W : W} and the Young diagrammatic technique developed in Chapter 5 we
give a decomposition procedure for expressing irreducible characters of affine algebras
in terms of character of simple finite-dimensional Lie algebras up to any prescribed
depth. The computations are done independently of the rank of the affine algebras.
Illustrations are given for all seven infinite series of affine algebras with characters of
particular irreducible representations being obtained up to depth 4. Since the weight

multiplicities of the four infinite series of classical Lie algberas are polynomial in the
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rank, we have thereby established that the weight multiplicities of all seven infinite
series of affine algebras are also polynomial in the rank. Examples illustrating the
explicit calculation of this rank dependence are provided. In addition the analytic
orbit-character and character-orbit expansions obtained in Chapter 4 are used following
the method discussed in [PS], to obtain analytic branching rule multiplicities for affine
self embeddings and other maximal embeddings [BS1].

Finally, in Chapter 7 we present some conclusions and recommendations on future

developments associated with this work.

1.2 Kac-Moody algebra associated with generalised Cartan matrices

In the following sections we discuss some aspects of the general theory of Kac-
Moody algebras. Unless specified, the proofs of the results can be found in the text by
Kac [Kac4]. We begin with a definition of a complex Lie algebra.

Definition 1.1 A vector space G over the field C with a binary operation [+, ] is called
a Lie algebra if the following axioms are satisfied:

(L1) [z, y] is a bilinear function of z and y;

(L2) [z,2z] = 0 for all z € G;

(L3) Jacobi Identity: [z,[y,2]] + [y, [z, z]] + [2, [z, y]] = 0 for all z,y,z € G.
As has been noted by Serre [Se] and Gabber and Kac [GK], we can construct a
Lie algebra by the method of generators and relations given any generalised Cartan
matrix(GCM).
Definition 1.2 An integral n X n matrix A of rank r is called a GCM if it satisfies the
following conditions for all 7,7 € I = {1,...,n}:

(Gl) Au=2;

(G2) A; £0 for ¢ #7j;

10



Kac-Moody Algebra ...
(G3) if A; =0 then A;=0.
The relation G3 implies that zeros appear symmetrically in A but in general the matrix
A is not symmetric. A GCM is said to be symmetrisable if there exists a nonsingu-
lar diagonal matrix D such that DA is a symmetric matrix. The symmetrisability
condition eliminates some infinite dimensional algebras that are difficult to study. Fur-
thermore, in order to avoid direct products of algebra, the GCM will be assumed to be
indecomposible 1.e. that it cannot be brought into a block diagonal form by permuting
rows and columns.
A matrix of the form A;; where ¢,7 € S C I is called a principal submatrix of
A and is called proper if S is a proper subset of I. The determinant of a principal

submatrix is called a principal minor. We then can make a distinction among the GCM

as follows.
Definition 1.3 A GCM A is said to be of

(M1) finite type if all its principal minors are positive;

(M2) affine type if all its proper principal minors are positive and det A = 0;

(M3) indefinite type if A is of neither finite nor affine type;

Although they are still the subject of active mathematical research, the theory of
Lie algebras associated with cases M1 and M2 is well developed by now. However not
many general results are known in the case of Lie algebras associated with M3 although
some progress has been made in those special cases when A is of hyperbolic type [KM]
i.e. when A is of indefinite type and all its proper principal submatrices are of finite
or affine type.

To each GCM A we can associate a graph S(A), called the Dynkin diagram of A
as follows. The graph consists of n vertices labelled by ¢ with 2 = 1,2,...,n joined by

edges or lines. If A;;A;; <4 and | A;; |>| A;: |, the vertices i and j are connected by

11
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| A;; | lines and these lines are equipped with an arrow pointing toward j if | A;; | > 1.
In Tables 1.1 and 1.2 we give the Dynkin diagrams of all simple finite dimensional
Lie algebras and affine algebras respectively. Here we adopt the Dynkin numbering
system for simple roots and always assume that the enumeration of the roots begin
from the leftmost vertex of S(A). The numbers attached to the vertices in Table 1.2
are the level vector components (co-marks) whose definition will become apparent in
Chapter 3. For the Dynkin diagram of simple finite-dimensional Lie algebras, the name
consists of a letter (A - G) denoting the type and a numerical subscript denoting the
rank of the algebra. For the affine algebras, the name consists of the name of the
corresponding simple finite-dimensional Lie algebra from which it is derived together
with a parenthetical superscript indicating the degree of the diagram automorphism
used in its construction. The starting point of each sequence of Lie algebras is chosen
both to avoid Lie algebras that are not simple and to eliminate the appearance of
isomorphic algebras with different names. In particular, we have for simple finite-

dimensional Lie algebras
Aixr Bi=C),, Byx=C,, AsxDs;, D,=~A SA.

Definition 1.4 A Kac-Moody Lie algebra associated with a GCM A is a vector space
G(A) generated by 3n elements e;, f;, h; with ¢ € I satisfying the axioms L1 - L3 of a

Lie algebra and for all 7,7 € I the additional relations:

(R1)  [hi,hs] =0

(R2) e, f;] = bishs;

(R3)  [hi 5] = Ajiey;

(R4)  [hi, fi] = =Asfi;

(R5) (ad e;)~?9te; = (ad f;)~*t1 f; =0 whenever ¢ # j.

The elements e;, f; and h; are called the Chevalley generators. The relation R5 is

12



Table 1.1 : Dynkin diagrams of simple finite-dimensional Lie algebras.
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Table 1.2a : Dynkin diagrams of untwisted affine algebras.

AW
AP (r22)

BY (r > 3)
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DO (r > 4)

B
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G

1 1
1 1 1 1 1 1
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1 2 2 2 2 1
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O2
1 2 3 4 5 6 4 2
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1 2 1(3)
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Table 1.2b : Dynkin diagrams of twisted affine algebras.
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known as Serre’s relation and the operator ad is defined as

m times
e N
(ad e,—)’"ej = [6,‘, ey [6,‘, [e,-, Cj]] - .] .
The elements e; and f; for i € I generate subalgebras A, and N_, respectively. Any
commutator product [zi,[zs,..., [Ty, 2] ...]] With z; = e;, f; or h; where 1 € I can
be expressed using the defining relations as a sum of commdtators each involving only
e’s or only f’s or only a sum of A’s. We then have a direct sum of vector spaces or

triangular decomposition

G(A)=N_0HaN, (1.1)

where the vectors h; for ¢ € I lie in the Cartan subalgebra H. The dimension of H is
given by

dimH = 2n—r. (1.2)

The centre K of the Kac-Moody algebra G(A), consists of elements of H commuting
with all e; and f; and has dimension n —r. K = 0 if and only if A is nonsingular.

Let a; € H* be n linear functionals defined on H as follows:
[h,-,e]-] = ozj(h,-)ej = Ajiej Z,_] el. (1.3)

The dimension of the dual space H* is the same as H. When n = r, the elements h;
and q; for ¢ € [ span ‘H and H* respectively, otherwise further elements are needed to
complete both bases. The set of linear functionals «;, 7 € I are called the simple roots
of the Kac-Moody algebra G(A). The roots «; and —a; generate the root subspaces

G, = Ce; and G_,, = Cf; respectively. Other non-zero commutators of the form
[ei, ei/], [6,’, [eil’ eiu]] etc.

[fiafi’]v [fi,[fi:,f,-u]] etc.

16



Kac-Moody Algebra ...

belong to root subspaces G, for which the corresponding root @ € H* has the form

Q= Z k,'a,'
i=1
with integral coeflicients all nonnegative or all nonpositive. Here | k; | is the number
of times the generator e; or f; appears in the corresponding commutator. We call «
positive (resp. negative) if k; > 0 (resp. k; < 0). By relation R1 of the Definition 1.4,
it is sometimes convenient to regard H as being the subspace of G(A) corresponding to

a zero root and to write H = G,. We then have the following root space decomposition

with respect to H

G(A) = P Ga, (1.4)
agH*
where G, = {z € G(A) | [h, 2] = a(h)z for all h € H} is the root subspace attached
to a. The dimension of the root subspace G, is known as the multiplicity, mult o, of
the root a. For a simple finite-dimensional Lie algebra, the multiplicity of a non-zero
root is always unity.
Let I = {a1,...,a,} and IIY = {aY,...,a)} be sets of an n independent elements

of H* and H respectively. These basis vectors are related through a bilinear form on

H* x 'H defined by

C!,(CY;/) =< a,-,a;.’ >= A,’j . (1.5)

We call the elements of II and IIY simple roots and simple co-roots respectively. Let

the root lattice and co-root lattice respectively then be

Q = 2oy, g,y . .., ) and Q¥ =12la),a;y,...,aY].

If Aisa GCM then its transpose A* is again a GCM. The algebras G(A) and G(A') are
called dual to each other. If @V is a co-root lattice of G(A) then @V is the root lattice
of G(A'). We can also introduce a partial ordering > on @ by setting

A>puif A-pe @t =7 a),a0,...,0,]. (1.6)
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The geometry of the root system of a simple Lie algebra is encoded in the Dynkin
diagram which carries the relative lengths of the simple roots and the angles between
them. We can speak of long and short roots. If all roots are equal in length then it is
conventional to call them long. The arrows in the Dynkin diagrams of Tables 1.1 and
1.2 are pointing toward the short simple roots. We denote the set of all non-zero roots
of G(A) by A, the set of positive roots by A* and the set of negative roots by A-.
Then by (1.1) and (1.4), we have

A=A~ U A* (1.7)

1.3 The Weyl group

Given a Kac-Moody algebra G(A), the Weyl group W(A) or simply W is a group
generated by fundamental reflections in the hyperplanes perpendicular to the simple

roots. For each 7 € I, the fundamental reflection s; of the space H* is defined by
si(A)y=A—-< Ao > a. (1.8)

This really defines a reflection in that it fixes the subspace known as the reflection

hyperplane
H,={ eH |<)a/ >=0} foriel, (1.9)
and sends «; to —a;.
If o is a root then s;(«) is also a root. If a root f = w(«) for some w € W then
we say ( is W-conjugate to the root o. However, not every root is W-conjugate to a
simple root. We define the set Ag of real roots to be the W-conjugate of the simple
roots and the set A; of imaginary roots to be A\Ag. For simple finite-dimensional Lie
algebras all roots are real but for affine algebras there exists imaginary roots which are

not W-conjugate to any real root.
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Next we fix an important element p € H* satisfying < p,a) >=1,forall1 <i < n.
In general this does not define p uniquely. However if G is simple finite-dimensional, p
is actually equal to half the sum of the positive roots. With these definitions, we have

in particular
si(p)=p—ai.

We also define the shifted (or dot) action of W on H* by
wed =w(A+p)—p foranyw e W and A € H". (1.10)

Observe that the action  is independent of any freedom that may exist in the choice

of p.

Lemma 1.5. The fundamental reflection s; permutes the positive roots other than «;.

Proof Let a & A' and a # o;. If @ =3 kjo; with k; > 0 for some j # ¢, then
si(a) = Z k(e — Ajias)
J

= Z kjaj - (Z k'jAJ'i -+ ki)a,-

J#i J#
Since the coefficient of «; is positive, this implies that s;(a) € Ay [
A group such as the Weyl group with generators s,,..., s, and defining relations

si=1id i€l; (sis;)™ =1id 4,j€1

is called a Coxeter group. For the Weyl group, the values of the m;; are given by the

following table [Kac4]:

Table 1.3 : The order of the element s;s; of Coxeter groups W(A)
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We see that every element of the Weyl group can be written as a product of

fundamental reflections w = s;,s;,...s;,. By Lemma 1.5 we have
5i8 = s;( A"\ {ai} U{ai} U{—au} UAT\{~au})
= A"\{ai} U{-ai} U{ei} UAT\{~0i})
=A
and hence w € W permutes the root system A.

Forz =1,...,n the fundamental reflection s; acts on h € H as follows
si(hy = h— <a;,h >« . (1.11)
For A € H* and h € H we have
<SMh> =< )A— <Al >a,h>
=< AMh> — < Aol ><ao;,h>
=< AMh— <o,h>a >

=< /\7 Sih > .
More generally < wA,h >=< A,w~'h > which implies that the bilinear form < -,- >

1s W-invariant.

Definition 1.6. The expression w = s;,8;,...8;, is called reduced if ¢ is minimal
possible among all representations of w € W. t is called the length of w and is denoted

by £(w). The parity of w is defined to be e(w) = (—1)4*).
Since w™! = s;,8;,_, - - - 8i,, this implies that {(w) = £(w™?).

Lemma 1.7. [Kac4] Let w = s;, ...s;, € W be of minimal length t. Then we have
(a) £(ws;) < £(w) if and only if w(w) <0,
(b)  w(a,) < 0.

Definition 1.8. [Ko] Define the following important set

0, = wA NA* = {a € At |w™(a) < 0}.
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Since A* and A~ are disjoint sets, then the set ®;, is empty. However for 2 € I,
d,, = ;A" NAY = {a € A" | s;(a) < 0}
and by Lemma 1.5, we have ®,, = {a;}.

Lemma 1.9. If o; ¢ ®,, then ®,,, = 5,9, U{c,} .

Proof
aued,., & (ssw)'(a) <O

<~ «; ¢ @w .
Hence «; is in precisely one of @, or ®,,. Then by hypothesis o; € ®,, so that

¢, = wA~ N (A*\{e;}) and by Lemma 1.5 5;®, = 3,wA~ N (AT\{a;}). In addition
a; € ®,.,, and hence
,., =s;wA” NAT
= (s;wA" NAY\{a;}) U ({a:} N s;wA7)
=59, U s;w((s;w)  {a:} NA7)
= 5;®, U s;w((s;w) " {a;})

=5, U {a}.

Proposition 1.10. {(w) = card {a € AT |w™(a) < 0} =| &, | .

Proof We prove this Proposition by induction on the length of w. By definition,
/(2d) = 0 and #(s;) = 1. The Proposition is trivial for w = id and since ®,, = {a;}
the Proposition is also true for w = s;. Assume that it is true for all v € W with
l(u) < l(w). Let w = s,;,...s;, have minimal length ¢. Then w™! = s;,...s;, also has
minimal length ¢ and by Lemma 1.7(b), w=*(as,) < 0. Hence oy, € ®, = {a € AT |

w™'(a) < 0}. From Lemma 1.9 we can then deduce that ¢, = s,,®, U {ai'} where
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w = s;,u and this implies that | ®,, |=| ®, | +1. On the other hand {(u) = {(w) — 1

and by induction £(u) =| @, |. Hence {(w) =| &, |. O

Lemma 1.9 and Proposition 1.10 implies that if s;w is a reduced form then £(s;w) =
£(w)+1. This tell us how to compute the set ®,, with w of length ¢t. Let w = s;,s4, ... s;

i

Then
nglsiz‘..sg‘ :{ail} U Sglq)

SigeSiy

z{aiﬂsix(ai2)} U Sixsiz(psia-ns'

4]

(1.12)

={ai1,3i1(ai2)’ cee98i8ip .. Sit—x(aie)}'

In general [Liu], if {(ww,) = £(w;) + £(w,) then it follows directly from (1.12) that
Qow, = oy Uw @y,

Proposition 1.11. p— w(p) = Y,ca, @ -

Proof Again we prove this Proposition by induction on the length of w. First
p— si(p) = a; and ®,, = {e;}. Hence it is true for £(w) = 1. Assume that it is true
for all £(u) < £(w). Let w = s;,8;,...s;, be areduced form for w and set u = s, ... s;,.

This is a minimal expression for u so that #(u) = {(w) — 1. Then

p—w(p)=p—si,u(p) =p—sip+si(p—ulp))
= oy, + i, Z .
11
Hence by Lemma 1.9 p —w(p) = Yoca._,, . @ a

i

1.4 Highest weight modules

Definition 1.12 Let G be a Lie algebra over C. A vector space V endowed with an
operation G X V — V is called a G-module if for all z,y € G, v,w € V and a,b € C
the following conditions are satisfied:

(M1) (az+by)-v=a(z-v)+b(y-v);
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(M2) z-(av+bw)=a(z-v)+b(z-w);

(M3) [z,y]rv=z-y-v—y-z-v.

The dimension of a G-module is the dimension of the underlying vector space. A
G-module is called irreducible if it has no proper G-submodules.

An equivalent concept to the idea of a G-module is a representation ¢ of G. By a
representation 1 we meant a homomorphism of G into the general linear algebra of a
vector space V. Given a representation 1 : G — gf(V') the vector space V becomes a
module of G via the action z - v = ¢(z)v. Conversely, given a G-module V, the same
action defines a representation ¢ : G — gf(V).

A G-module V is called H-diagonalisable if

VZ@VA

AeH
where Vi = {v € V | h(v) = AMh)v for h € H}. V) is called a weight subspace,
A € H* is called a weight if V) # 0 and the dimension of the weight subspace V} is
called the multiplicity of A and is denoted by mult Alor dim V,). Viewing G(A) itself
as a G(A)-module, we see that the weights are the roots o € A (with weight subspace
G,) along with 0 (with weight subspace the Cartan subalgebra H).
Let G(A) = @acavio}Fa be a root space decomposition with respect to H of a
Kac-Moody algebra with GCM A and simple roots 11 = {a;,as,...,a,}. Let
P={AeH | Mc/)€Z, 1€{1,2,...,n}}
Ptr={AeP|MNa/])20,1€{1,2,...,n}}.
The set P is called the weight lattice and the elements of P+ are called dominant
weights. Given an element A € P*, it is always possible to form an irreducible G(A)-
module V4 known as a highest weight module with highest weight A that satisfies the
following properties [Kac4], [KMPS]:
(a) V™ is H-diagonalisable ;
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(b) V! is 1-dimensional and G,V =0 for all @ € A*

(c) G.VHCVA,.

This irreducible highest weight module is determined up to isomorphism by its highest
weight and up to isomorphism these modules are in one-to-one correspondence with
the dominant weights of G(A). -

It is convenient to introduce a set of fundamental weights A; € H* for ¢ € I such
that < A;,af >=6; for all ¢,k € I and a set of vectors 6; € H* for
je€J={n+1,...,n—r} such that < §;,af >=0for all j € J and k € I, where A;
for ¢ € I and §; for j € J span H*. Then any vector A € H* can be written in form

A= i)\iA; + ﬂz-’ n;6; (1.13)
iz=] i=n+1
where the Dynkin labels \; are given by A; =< A, @) > for ¢ € I. In particular, in the

case of a simple root ay,

(o) = Aps- (1.14)

Denote the set of all weights of V4 by P(A). Every element A € P(A) is of the
form A = A — a for a € Q*. The distinct weights of P(A) written in Dynkin notation
can be obtained from the highest weight A = (A, X2,...,A,) by applying the following
algorithm [KMPS] :

(S1) Assign A to P(A) and let A = A
(52) For any positive Dynkin coordinate X; of A assign to P(A) the \; weights
A—aij, A —2a;,..., A= Na;fori=1,...,n;

(S3) Repeat step S2, replacing A by each new weight just found in S2.

The weights A € P(A) can be partitioned into Weyl group orbits (W-orbit). The W-
orbit of a weight A is defined to be the set {wA | w € W} and for each weight X of

W-orbit there exist a unique dominant weight A* € P* such that A = w’'A* for some
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w' € W. Orbit labels are then taken to be the components of the highest weight of the
orbit. If 4 € P*, define the orbit sum as
Q= 5 e (1.15)
we{W:W,}
where {W : W,} denotes the set of left coset representatives of W with respect to the
stabilizer W, = {w | wp = g, w € W} of p. -
The set of weights of V4 is invariant under the action of the Weyl group W of
G(A) and also dim V}\,) = dim V}* for all w € W and A € P(A). Since each weight
is conjugate under the Weyl group to a dominant weight, it suffices to determine only

the multiplicities of u € P* N P(A).

1.5 The Weyl-Kac character formula

Let V* be an irreducible highest weight module. The character of V4 is the formal

exponential

ch VA= > (dim V}}) e, (1.16)

AeH*

where for A € H* e* is the function h — e<**> on H converging absolutely on a
nonempty open subset of H [KaP]. This definition means that a knowledge of the
character of the irreducible highest weight module is equivalent to knowing its weight
system and the multiplicity of each weight. In the case of simple finite-dimensional
Lie algebras, Weyl has given a precise formula for this character and in the case of a

general Kac-Moody algebra essentially the same formula was proven by Kac [Kac2].

The Weyl-Kac character formula is given by

ch VA = 3 e(w)er™+0msf T (1= emmymiee, (1.17)

weW agst

where p € H* is defined by p = 37, A;. Setting A = 0 in the above character formula,
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we can deduce the following Weyl-Kac denominator identity

I @—e)mite = 3" g(w)er @ (1.18)

aEAy weEW

This then gives another form of the character formula:

ch VA= " e(w)e?™/ Y g(w)er. (1.19)

weWw weW

Unfortunately, getting from the character formula to the weight multiplicities is not
entirely straightforward because the character formula is a quotient of two alternating
sums. However it can be reorganized to provide an effective way to compute the
individual weight multiplicities.

In the case of a simple finite-dimensional Lie algebra there are a number of methods
available for computing weight multiplicities. The Kostant formula provides a closed

form expression for the multiplicity mult A for any weight A of the irreducible module

with highest weight A [J]:

mult A = > e(w)P(A+ p— w(A + p)),

weWw

where P(p) is the number of ways of writting x as a linear combination of positive
roots with nonnegative integers as coeflicient. Alternatively the Racah formula [R]

provides a recursion relation for the multiplicities of the weights:

mult A= — Y e(w)mult (A +p —w(p)).

wid

Both of these formulae are a consequence of the Weyl-Kac character formula and de-
pend on the generation of the Weyl group for the computation of the weight multiplic-
ities. Another method of computing weight multiplicities due to Freudenthal is also a
recursion formula but this time it avoids the Weyl group and can therefore handle Lie

algebras of larger rank. This recursion relation is [J]

[(A+p|A+p)—(A+p| A+p)]multA=2>"> (A+ka|a)mult (A + ka).

a>0k>0
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It gives the multiplicity of a weight in terms of the multiplicities of the weights that
are higher than it under a certain ordering. The use of the Freudenthal’s formula can
be made more efficient by exploiting the fact that weights conjugate under the Weyl
group have the same multiplicities. Extensive tables of weight multiplicities have been
tabulated [BMP] using this method.

Recently Patera and Sharp [PS] revived a method that can be traced back to
Speiser [Sp] for computing weight multiplicities of a highest weight module and the
branching rules of simple finite-dimensional Lie algebras. The idea is to write the orbit
sum expansion of (1.15) in terms of irreducible characters. The orbit-character matrix
of suitably ordered weights is triangular with ones on the diagonal and therefore can be
easily inverted to obtain the character-orbit matrix whose components are the weight
multiplicities.

Let A € P* and dim V2 be the multiplicity of a weight « of V* module. Then

ch V* = (dim V})er

K

= Z (dzm V:) Z eVt (120)

puepP+ we{W:W,}
= Y (dim V) Q.
ueEP+

The orbit sum Q# can be expressed in terms of irreducible characters by inverting the

weight multiplicity matrix dim V! to give
o = ZBf\‘ (ch V). (1.21)
y

On substituting the Weyl-Kac character formula (1.19), this gives:
04 = ZB“ Z w(k+ﬂ)/ Z w(p)
weW weW

So that

O Z - w(p) — ZBu Z ew(r+r)

weWw weW
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and

ST e Y e(w)er® =S Bt S g(w)er O,
X

w' e{W:W,} weWw wew

However, the only dominant weight of w(X + p) is A + p so that BY is the coefficient of
e*** on both sides of this equation. Hence
Bt= 3 2 e(W)bunrwprsss
we{W:W,} weW
Furthermore, for a fixed w' € {W : W,} and w € W there must exist
w € {W : W,} such that w'w'(g) = @(u). Moreover for fixed w € W there is a

one-to-one correspondence between w’ and w. Then

Bf\‘ = Z Z €(w)5w(u‘;u+p)-—p)\ . (122&)

GE{W:W,} weW

Hence the elements of By for the expansion of the orbit sum in term of irreducible
characters may then be obtained by adding p to each weight of the orbit of u, reflecting
each weight into the dominant sector, subtracting p and interpreting the result as a
signed, positive or negative, coefficient of A according to whether an even or odd number

of elementary reflections is required. A reflected weight lying on a reflection hyperplane

1s ignored.

Alternatively,

Bl = Z Z (W) At p—wp

we{W:W,jweW

= Z Z E(w)5w—lwlﬂ,w_l(>\+p)—p

we{W:W,} weW

= Z Zﬁ(w)%u,wmp)-p

we{W: W, weW

= Y. D e(w)bsuwer

we{W:W,} weW

(1.220)

where the dot action is as defined in (1.10). The interpretation of (1.22b) is that we
plot the Weyl orbit of x4 and the Weyl dot orbit of A and look for their intersection

weights. The sign of the parity of the Weyl dot orbit of X is taken to be the sign of BY.
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Under the partial ordering (1.6) of the weight lattice, the matrix B is triangular

and may be inverted to obtain the required weight multiplicities.

1.6 The Weyl-Kostant-Liu character formula

Let U = {1,2,...,u} C I. Consider the subalgebra Gy of G(A) generated by the
elementse;, f; (1 = 1,...,u) and H. Denote by Af; the set of positive roots generated by
ay, Q. .., a, and let Ay = —AF. Then much like (1.1) and (1.7) Gy has a triangular
decomposition Gy = Ny & H ® N} with Ay = A} U Ag as its root system [Liu].

For dominant integral weights let
Pf={ eH |<)\a/ >>0, ie€U}. (1.23)
Further let Wy be the Weyl group of Gy generated by s,,...,s, and let
WU)={weW]|®, C AN\AS}. (1.24)

The significance of this choice of W(U) lies in the following lemma.
Lemma 1.13. If A € P* and w € W(U) then w(A + p) — p € PF.

Proof Forany w € W(U) and ¢ € U we have a; € Af; so that by (1.24) a; ¢ 9,,. It
then follows from Definition 1.8 that w™'(e;) > 0 and this implies that in H space we

should be able to write
wi(a)) = kel
J

with all coefficients k; nonnegative integers. Then for any A € P+ we have
<wA+p),ef >=< A+ p,w (o) >=<A+p,)_kja} >> 0
J

since < A,af >€ Z* and < p,af >=1 for all ;. Now since < p,af >= 1 it follows
that < w(A + p) — p,af > > 0so that w(A +p) —p € Pf. ]
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Before we arrive at our next important result, we just state the following lemma
[Liu] which shows that W(U) is in fact {W : Wy }, the set of right coset representatives

of W with respect to Wy.

Lemma 1.14. Every element w € W can be uniquely written as w = v where

4 € Wy and v € W(U).

Theorem 1.15. For A € P*

ZwE{W:WU} ('U)) ch vV L

ch V" = wsw(p)—p
Ewe{W:WU} E(w) Ch V

(1.25)

where ch V" is a formal character defined for all u € P} by

Ch Vﬁ‘ — ZUGWU ( ) ute)=r .
U

uEWU ( ) a(p)-p

Proof The Weyl-Kac character formula (1.19) and Lemma 1.14 imply

ch VA = Y wew (W) ev(Atpl-r
Lwew E(w) evlo)=e
 Setmwe) £(0) Daemy (@)er s
Cveiwwoy €(V) Laew, e(a)et()-r
_ ZUE{W:WU}e(U)(ZﬁEWU 5(a)ea[v(A+p)_p+p]_p/Zaewb e(u)e wlel- ?)
B 2ve{w:wy) £(v)(Zaewy E(E)eﬂ[v(p)-p+p]—p/2ﬁewu e(u)elel-»)

—v(A+p)—p

- ZvE{W:WU} 6('1)) Ch V
Z:vE{WIWU} 6(”) ch 'V'”(P)‘P

O

When G and Gy are both simple finite-dimensional Lie algebras this formula was
first given by Kostant [Ko] and in the general case of Kac-Moody algebras it was
proved by Liu [Liu]. Accordingly we shall refer to this important character formula as
the Weyl-Kostant-Liu character formula. This character formula provides a means of
expressing weight multiplicities of affine algebras in terms of known weight multiplicities

of simple finite-dimensional Lie algebras. The idea behind its use is to transform
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summations over affine weights directly into irreducible characters of simple finite-
dimensional Lie algebras. In general to be able to use the Weyl-Kostant-Liu character
formula we must first be able to identify the elements of {W : Wy}. The following

proposition [Kang] is very helpful in the explicit computation of {W : Wy }.

Proposition 1.16. Let w' = ws; and {(w') = {(w) + 1. Then w' € {W : Wy} if and

only if w € {W: Wy} and w(ay) € AT\AS. -

Proof Let {(w) = j with w = s;,s;,...s;,. Then by (1.12)
Dy = {iy, 80,(Qiy)s e - oy S0y Siy - -2 80, (0a,), wlag)}
=, U{w(a)}.

Hence ®,, € A*\Af if and only if &, € A*\A} and w(ax) € AT\AF. Then,
from (1.24) with W(U) = {W : Wy} it follows that w' € {W : Wy} if and only if
we {W: Wy} and w(ap) € AT\AS. O

More generally it can be shown that if v’ = wyw, and #(w’) = {(w,;) + {(w,) then
w' € {W : Wy} if and only if w;, € {W : Wy} and w; 9, C A*\A}. The result follows

from the fact that ¢,,,, = ®,, Uw;®,,.
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CHAPTER 2

Representations of Simple Finite-dimensional Lie Algebras

2.1 Root system and Weyl group

The complex simple finite-dimensional Lie algebras have been completely classified.
The finite type GCM A that corresponds to any one of these algebras is the original
Cartan matrix. Since det A # 0 and n = r then by (1.2) the dimension of H is r and
the elements o; and o) for 2 = 1,2,...,r span H* and H respectively. The Killing
form [H], which involves taking a trace, provides the standard way to define a non-
degenerate symmetric bilinear form for a simple finite-dimensional Lie algebra. We
normalise a symmetric bilinear form (- | -) on H* so that (| @) = 2 for all long roots

and then
2ai | ay)
(aj l aj)

For neighbouring nodes 7 and j of any Dynkin diagram, the data on lengths and angles

Ay = (2.1)

is as set out below. The angle 0;; between roots «; and «; is such that

cos f;; = (ay | a_,-)/\/(a,- | ai)(e; | @j). Arrows go from long to short roots.

Table 2.1 : Data on neighbouring nodes and inner products.

Dynkin diagram  A;; Short root  Long root 0;;
(cu | ) (a5 | &)
?—*? —1 2 2 27 /3
0 —2 1 2 37 /4
@ -3 2/3 2 57 /6

When r < 2, we can describe the root system A of a simple finite-dimensional

Lie algebra by means of a picture as in Figure 2.1. The shaded region, in general a
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Figure 2.1 : Roots and fundamental weights of A; , Ay, C2 and G,
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Figure 2.1 (cont.)
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simplicial cone, is known as the dominant sector. Since A is finite there must exist a
maximal root § that satisfies § — a € Q* for all @ € A*. In Table 2.2 we give the

explicit values of the root § [BMP]. It can be verified that (6 | §) = 2 and hence 6 is

a long root.

Table 2.2 : Maximal long roots of simple finite-dimensional Lie algebras.

A, o +...+a,

B, a;4+2a,+...4+2a,

Cr 201420, +...+20,-y + 0,

D, o420+ ...4+20, 04 ar_; + o

Es a4+ 20, + 303+ 204 + as + 206

E;, 2a;+3a; +4as + 3ag + 2a5 + as + 204

Es  2a; +3a; +4a3 + S5as + 6as + 4ag + 2a7 + 3ag
F, 2a;+3a;+4a;+ 2a,

Gg 201 + 3&2

The number of elements of the Weyl groups associated with a finite GCM is itself
finite. For low rank algebras the Weyl groups can be obtained easily by treating them
as Coxeter groups generated by fundamental reflections as given in Table 1.3. For

example, the Weyl group W(A,) is given by

{id, 81, 82, 85251, 8182, 81825, } (2-2)
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However, for a higher rank algebras it is more efficient to generate the elements of the
Weyl group by their action on the standard (or Euclidean) basis vectors €, ...,€, of
R". For example in the case of A,, the reflection s; permutes the subscripts ¢,z + 1 and
leaves other subscripts fixed. Thus, s; corresponds to the transposition (¢,7 + 1) of the
symmetric group S,;; and the Weyl group W(A,) is isomorphic to S,;;. The roots in
the standard basis have the form ¢; —¢;. If 7 = ( 12..r+1 ) € S,4; then 7 acts on the

My A2 ... 7|’,-+1

roots ¢ — ¢; as follows

(€ — €) = €r, — €x;.

1

(2.3)

For easy reference, we give below for each classical simple finite-dimensional Lie al-
gebra the relation between the root basis and the standard basis, all the roots in the
standard basis, the order of Weyl group and the action of w € W in the standard basis.
The complete set of data that includes the exceptional Lie algebras can be found, for

example, in [KQ].

Type A, (r > 1)
Basis: oy =€, — €4y 1 <1<r 41
Roots: £(e;—¢) 1<i<j<r+1
Order of Weyl group: (r + 1)!
Action of w: (€r,,€nyy-- vy €mpyy)

Parity of w: (=1)7

Type B, (r 2 3)
Basiss oy =6, — ey (1 <i<r—1), ar=¢
Roots: ¢, (1<i<r), e+ (1<i<j<r)
Order of Weyl group: 2".r!
Action of w: (01€r,,09€r,,...,0r6r,) 03 = %1
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Parity of w: o(—1)" where ¢ = 0,0,...0, = £1

Type C, (r > 2)
Basis: o; = ¢, — €41 (1 <i<r—1), @, =2
Roots: +2¢; (1<t <r), +ete (1<i<yj<r)
Order of Weyl group: 27.r!
Action of w: (01€x,,09€0,,...,00€,) 03 = %1

Parity of w: o(—1)" where ¢ = 010;...0, = %1

Type D, (r > 4)
Basis: =€, — 4 (1 <i<r—=1), a =¢_1+e€
Roots: ¢ +¢; (1<i<j<r)
Order of Weyl group: 27~ 1.r!
Action of w: (01€5,,09€5,,...,0+62,) 0; =+%1 where cy05...0,=1

Parity of w: (—1)"

2.2 Orbit-character expansion

Let the fundamental weights of the simple finite-dimensional Lie algebras be de-
noted by w; for 2 = 1,...,r. Then (1.14) implies that oy = 377_; Ajjw;. Asdet A #0
we can express the fundamental weights in terms of simple roots. The inverses of the
finite GCM are given in Table 2.3.

The weight system P(A) for a given highest weight module V4 of a simple finite-
dimensional Lie algebra G(A) lies entirely in one coset {P : Q} of the weight lattice
P with respect to the root lattice @), called the congruence class. The number of
congruence classes is | P : Q |= det A, except for the case of D, for which the number
is 2det A. The class of a weight A € P(A) is specified by an integer (or pair of integers

in the case of D, ) defined in terms of the Dynkin components of A and the components
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Table 2.3 : The determinants det A and inverses A~! of the GCM A of finite type.

1. A, : detA=r+1

l1.r 1.(r-1) 1(r-2) ... 1.3 1.2 1.1
1(r-1) 2.(r-1) 2.(r-2) ... 2.3 2.2 2.1
1.(r-2) 2.(r-2) 3.(r-2) ... 3.3 3.2 3.1
A—l —_ 1 .
(r+1) - - '
1.3 2.3 3.3 e (r=2)3 (r=-2)2 (r-2)1
1.2 2.2 3.2 e (r-2)2 (r-1).2 (r-1)a1
1.1 2.1 3.1 oo (r=2)1 (r=1)1 r.l

2. B,: detA=2

2 2 2 2
2 4 4 4 4 \
2 6 6
PN .
2 4 6 ... 2r-2) 2r-2) 2(r-2)
2 4 6 ... 2r-2) 2r-1) 2(r-1)
1 2 3 “ee r—2 r—1 r
3. C,: detA=2
2 2 2 2 1
2 4 4 4 4
2 4 6 6 3
A_l = }- .
2 4 6 ... 2r=2) 2(r-2) r-2
2 4 6 ... 20r=2) 2(r—-1) r-1
2 4 6 . s 2(r—-2) 2(r-1) r
4, D, : detA=4
4 4 2 2 \
8 4 4
4 12 12 6 6
Al = _1. :
4 8 12 ... 4(r-2) 2(r-2) 2(r-2)
2 4 6 ... 2(r-2) r r—2
\2 4 6 cee 2(r=2) r—2 r
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Table 2.3 (cont.)

det A=3

.

5. Es

M ¥ O W

« o 55

o 8§ X33

w S 8w

<+ o ©

N—————
—

det A =2

6. E7:

12

12
10

18
15
10

24
13
12

16
12

detA=1

7. ES:

12
13
24
30

10
15
20

12
16
20
14

12
15
18
12

12
15
10

10
12

10

24
16

20

15 10

12

A=

detA=1

8. F,:

[ T S A I |

<+ M o M

detA=1

9. GQZ
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of certain congruence vectors identified in Table 1 of [BMP]. To be more explicit for
A= (A1,...,A), we tabulate the congruence classes for the algebras A., B,, C,, D,,

Ees and E; in Table 2.4. For FEs, F; and G, there is only one congruence class since

det A = 1.

Table 2.4 : Congruence classes for the simple finite-dimensional Lie algebras.

Algebra Class of A

A, (M+2X+...+rA)modr+1

B, A, mod 2

C. _ (M+2x+... 4 7)) mod 2

D. Ao + 20,20 + o 4+ 2(r = 2)A 2+ (r = 2) A2 + 7A,) mod(2,4)
Es (M 42X+ A+ 2X5) mod 3

E,; (As + As + A7) mod 2

The weight space of any highest weight module of a simple finite-dimensional Lie
algebra can be obtained by applying the algorithm discussed in Section 1.4. This
weight space can be partitioned into W-orbits. For example, Figure 2.2a gives the
weight space for the representation A = (1,3) of the algebra A,. The congruence class
for the weights of this representation is 1. The dominant weights are (1, 3), (2,1), (0,2)
and (1,0) and their Weyl orbits are denoted respectively by A, ®, ® and .

In the interpretation of (1.22a) we have to add p to each weight and reflect it into
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Figure 2.2a : Weyl orbits of P((1,3)) of A,
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Figure 2.2b : Weyl dot orbits of P((1,3)) of As
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the dominant sector. The elements of the Weyl orbit <7 of (1,0) give
(1,0) + (1,1) = (2,1)
(—-1,1)+(1,1) = (0,2)
(0,-1)+(1,1)) = (1,0).
The elements of the Weyl orbit ® of (0,2) give
(0,2) +(1,1) = (1,3)
s2((2,-2) +(1,1)) = (2,1)
s1((=2,0) + (1,1)) = (1,0).
The elements of the Weyl orbit ® of (2,1) give
2,1 +(1,1) = (3,2)
51((—2,3) +(1,1)) = (1,3)
(3,—-1) +(1,1)) = (4,0)

51((=3,2) + (1, 1))

(2,1)
s2((1,-3) + (1,1)) = (0,2)
s152((—1,-2) 4+ (1,1)) = (1,0).
The elements of the Weyl orbit A of (1,3) give
(1,3)+(1,1) = (2,4)
(-1,4) +(1,1) = (0,5)
s2((4,-3) 4+ (1,1)) = (3,2)
s281((—4,1) + (1,1)) = (2,1)
$2((3,—4) + (1,1)) = (1,3)
s281((—3,—-1) + (1,1)) = (0,2).
The reflected weights that lie on the reflection hyperplanes are to be ignored and p is

subtracted from those that do not. The parity of the Weyl reflections is computed from
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the number of fundamental reflections s;. This then gives the orbit sums of (1.21) as :

Q) = ch VO _ ch VD _ ch VOB 4 cp V3O,
QD = ch VED — ch VO — ch V1O,
(2.4)
QOB = ch VO _ cp VO
Q0 = cp VOO,

Alternatively, as in the second interpretation of (1.22b), we may plot the corre-
sponding Weyl dot orbit with their parities and look for intersection points with the
original Weyl orbits. The Weyl dot orbits of (1,3), (2,1), (0,2) and (1,0) are given in
Figure 2.2b. The parity factors e(w) = % are given as superscripts. On superimposing
Figure 2.2a on Figure 2.2b, the parts of intersection which are labelled by their weights
in Figure 2.2b define the same orbit-character expansion as in (2.4).

Under the partial ordering of (1.6) the orbit sum to irreducible character expansions

can be written in matrix form as

Qa3 1 -1 -1 1 ch V(1.3)
Qe 0 1 -1 —1}1[chveED
Qe | = 1lo o 1 -1 ch V(2
Q.0 0 O 0 1 ch V(1.0

Inverting the triangular transformation matrix we obtain :

ch V13 = 3 41 D 1L 9002 1 2010 .

ch VD = Q& 4 Q02 4 2009

ch V(2 = Q2 4 1.0 :

ch VO = .0
From the above equations, we can conclude that for the highest weight representation
(1,3) the elements of the Weyl orbits of (1,3) and (2,1) have multiplicity 1 and ele-
ments of the Weyl orbits of (0,2) and (1,0) have multiplicity 2. For the highest weight
representation (2,1) the elements of the Weyl orbits of (2,1) and (0,2) have multiplicity
1 and elements of the Weyl orbit of (1,0) have multiplicity 2. While for the highest

weight representations (0,2) and (1,0) all weights have multiplicity 1.
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This technique may be extended to any simple finite-dimensional Lie algebra and

requires for its implementation only a knowledge of the Weyl group action.

2.3 Partitions and characters

A partition ¢ of a positive integer n is any finite sequence of positive integers
(¢1¢2 ... () arranged in non-increasing order ¢; > ¢z = ... = {;, > 0 such that {; +
(2 +...+ (= n. The non-zero (; form the parts of ¢ and tile number of parts £ = £(()
is known as the length of (. It is convenient to denote a partition with repeated parts
using exponents. For example, (4231) denotes the partition (4431).

Each partition { of n may be associated with a Young diagram F(¢) involving
boxes in £(() left-adjusted rows with the i-th row containing (; boxes. The conjugate
of a partition ( is a partition (' whose Young diagram F'({’) is obtained from F({) by

interchanging rows and columns. This definition gives for { = (4?31), the diagram

F(4231) =

and its conjugate ¢’ = (43%2) the diagram

F(43%2) =

Alternatively, we can represent a partition using Frobenius notation [King2]. Let
the number of boxes in the leading diagonal of a Young diagram F(({) be the rank p of
(. Let a; be the number of boxes to the right of the leading diagonal in the i-th row
and let b; be the number of boxes below the leading diagonal in the i-th column. The
partition ( is then denoted in Frobenius notation by the array

(a1 a ... a,,)
by by ... b, )
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where
a>a;>...>a,=>20

by >by>...>b,20

P
and Z(a,--{—b,--}-l):n.

i=1

For example, the partition (4231) and its conjugate (4322) are denoted respectively, by

(3 2 0 nd 3 1 0
3 10) 2 3 2 0f
In general, if

O=(8 5 0 ) =G )
then

ak_*_k k—_-1,2,...,p

card{t | b;+1—k >0} k=p+1,....,0+1

It is also useful to introduce other forms of Young diagram. In our case, we need
what is called a composite Young diagram [King2]. For a partition { let F({) be the
diagram obtained by reflecting the Young diagram F(() successively in its topmost and
leftmost edges. Thus F(() is right-adjusted with the lengths of the rows decreasing
on passing up the diagram. The composite Young diagram F((;7) is constructed by

adjoining F(¢) and F(n) corner to corner as in the following example:

F(31;21) =l |

-
An irreducible highest weight G(A)-module can be indexed by its highest weight

vector A which can be written either in the fundamental weight basis w; or in the
standard basis ¢;. More generally, an arbitrary weight vector A € H* can be written as

A= ia,wi = Z /\,‘6,’ . (26)
i=1

i=1
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The relationship between the Dynkin labels a; and the partition labels \; described

above are given in Table 2.5.

Let an indeterminate z; denote the formal exponential e*. Then (2.6) gives

A

e* = z}'z3? ...z}, Further, let z = (z,,,,...,zx) signify the indeterminates and let

Av = (A1, A2,...,A4,0,0,...,0) with £ < N be a partition augmented by N — £ zeros.

For the algebra A,, p in the standard basis can be written as

p=re+(r—1e+...+¢6 +0

where T4 e, = 0. Then the Weyl character formula (1.19) and the isomorphism

between the Weyl group W(A,) and the symmetric group S,,; gives

chV*= 3" e(w)e”®/ 3 g(w)er®

weWw weWw

= Z e(m)e™ 3+ Z e(r)e™®)
WESr+1 Wesr-i-l

= Z E(ﬂ.)er()\l+r,)\z+r—l ..... Ar+1)/ Z E(W)en'(r,r—l,.._,o)
1rESr+l ”€5r+1

= D, e(meptraltt gy Y e(n)an et e
TE€ESr41 TE€S, 41

= det | x;.\"'”'H“" |(,+1)x(,+1)/det | $;+1_i l(r+1)>((r+1)
= M)

= {M}@)n=rsa.

The ratio of the two determinants as above is known famously as the Schur function,

variously denoted by s (z1,Za,...,zx) or {A}(z1,a,...,2zx) [King2] and defined by:

det | m;“'“’“" |nNxn

det l CE;'V_i INXN

SA(:El’va .. ',‘TN) =

2.7)

More generally, characters of the irreducible modules V* of the classical Lie algebras
with highest weight vector A = Ay are given by the following expressions [Pr]. Here 7
and j are row and column indices of the relevant determinants.
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Table 2.5 : Relationship between Dynkin labels and partition labels.

Algebra  Dynkin label (a4,...,a,) Partition label (A, ..., A)

A, L A1 =ay+as+...ta.-i1ta,
a; =X —As Ay = ayt...+a,_1+a,
L j‘r—l = a,_1+a,
a, = A,- Ar = a,

B, a; =A— A A =artast. .. ta.1tia,
a; = A, — A3 Ay = apt...ta,1t3a,
Ury = )‘r—l Ar j1~-—1 = ar—-1+%ar
a, =2\ A = 3@r

of a; = A — Xy A =a+ar+. .. +a,ota,
a; = A —Ag Ay = ax+...+a,_ita,
ar_y = )\r—l - /\r /ir-—l - ar-_1+a,
a, = A A = a,

D, a; =A— A M =a1+ax+. .. +a,_tia,; + ia,
a; = A — A3 Ay = axyt...+ta,_t3a.-, + sa,
Qr_2 = A1'—2 - )‘r—l ):‘r 2 = a,_2+la,_1 + 'l'ar
Qry = A1'—1 - Ar- /\r 1= %ar—-l + '%'ar
ar - )\r—l + Ar Ar = —Ear—l + Ear

47




Chapter 2
A, .
ch V’\ — det I x';'\i+r+1~_' '(r+1)x(r+1)
det | 2377 |(rpayx(ran)
= {\} (@1, 22, Zri1) (2.84)
= {AHz)Nzrpr Wwithzyzy... 700 = 1.
B, : . .
chV?* = det | xa)“"+r+1/2_' + x;(Ai+r+l/2_z) |2r41)x(2r41)
det | x;_‘-H/Z—: + xj—(r-l—l/2—:) |(2r+1)x(2r+1)
= [/\](xl,xz,-..,:Er,:cl_l,mgl,...,:c:l,l) (2.8b)
= [/\](x)N=2r+1 .
C, : .
RV = det | ghtri-i — :CJ,—(A-'+r+.1—z) |2 xar
det | z7*1 £ xj—(rﬂ_') |2rx2r
=< A > (21,T9,..., 2,27, 250,20 ) (2.8¢)
=< A > (m)N=2r .
D, : |
chV>* = det | $?¢+r—i —_ CL’j_(A'.‘H—’t) l2r><27‘
det | z;“‘i + m;(r+1") |2r 2r
= Az, 29y - .oy Tr 2T, 250, 2 (2.8d)
= [M(z)n=2r -

In the case of D, there is a subtlety associated with the fact that for A, # 0 there are two
inequivalent irreducible modules [A], and [A]. with highest weights (A,..., A_1, Ar)
and (A1,..., A1, —A,) respectively.

In accordance with the composite Young diagram notation introduced before, the

highest weight A of an irreducible representation of A, can also take the form [King2]

/\= (E;Tl)z(nlan%'-‘37717’0)'"703_Cq3-~'>—c2a_gl)7

where n and ( are partitions with p = 4(n), ¢ = 4({) and p+ ¢ < N =r + 1. Its
irreducible character is given by

Tresy E(M)t N1t N2 2ol

— = { ;) N=ri1 - (2.8¢)

Yoresy E(m)zN-1zN-2 . 20 :

ch VEn =
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When comparing this expression with (2.8a), which can also be written as

Yoresy E(M)Tp N1 N=2 | gin

— = {A}(@)n=rn

Yoresy E(T)TN-1pN=2 20

chV§ =

it can be deduced that ch V§" = (z,z,.. .zn) " ch V} where A = (n1 + G, + Gy - -0
—(2 + (1,0). This then implies that F'(\) can be obtained from F({;n) by taking the
complement in a column of length N of each of the {; columns which constitute F(()
and adjoining them to the remaining 7, columns which constitute F'(n) [King2]. For

example in the case of N = 5,

F(31;21) =I | | is equivalent to  F'(5432) =

L]

The irreducible characters of the classical Lie algebras associated with Young di-

agrams labelled by partitions are said to be in standard form if the partitions satisfy

the constraints given in Table 2.6.

Table 2.6 : Constraints for standard characters.

Algebra Label  Constraints

A, {A} <
{Gn} O +Em) <r+1
B, ] () < r
C, <A> LN <r
D, Al o) <

However non-standard labels for characters may arise in certain computations. If

this does happen then we have to apply modification rules [King2] to reduce a non-
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standard labelling to a standard one. The modification rules involve drawing the Young
diagram F'(A) associated with the non-standard labelling of the character and removing
a continuous boundary strip of boxes of length k, starting at the foot of the first column
and working up along the right boundary. The resulting diagram is denoted by F(A—h).
If this diagram corresponds to a partition then A — h is identified with this partition,
otherwise the corresponding character vanishes identically. A phase factor also occurs
which is dependent upon the column ¢ in which the strip removal ends. In the case
of a composite Young diagram F((;7n) the procedure involves the removal of a pair of
boundary strips. The modification rules appropriate to each classical Lie algebra is

given below [King2]

Table 2.7 : Modification rules and striplengths

Algebra  Modification rule Striplength A

A, {Gny = (=) {{—Rn—h} Q) +4(n)—r—2
B, [A] = (=1)" A = h] 20(A) —2r—1

C. <A>=(-1)*<A—h> 20(A) —2r—2

D, [A] = (1) [A — A} 2{(A) — 2r

It should be noted that if the strip removal is of length 0 then c is taken to be 1.
In order to standardise any given character it may be necessary to repeat the strip

removal procedure more than once.
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2.4 Infinite series of characters

Using the theory of the Schur functions (2.7), King [King2] had obtained among

others the following identities

ey T2 (1 — ¢z ) (1 — ¢*) 7t = e (1M ¢ (z) N (2.92)
Ties H15i<j$N(1 - q*ziz;) = Zau("1)|al’lqua'/2[a]($)N (2.9b)
Trz: icicien(l — ¢* i) = Yec(—1)M2gM2 <y > (2)y (2.9¢)

H:o=1 H1gi<j5N(1 - q’“:v;wj)Hfil(l + qui) = ZaeA(“l)lallquam <a> ("E)N—l (2.9d)
[Tz I-LN:I(I — ¢*z;) H1$i<j5N(1 — ¢**z;z;) H?:I_q(l — %)t

= Yeep(—=1)U 2] (z) v (2.9)
I, nlgigjgN(l - qui‘”j) H?;(l +¢kx;)t = Eyec(—l)hlnth/z[')’](x)NH (2.9f)

where A, C, E and F are the sets of partitions given in Frobenius notation by

a=fata= (200 =00 ) )

c={y1a=(aFt =t o))

a as
B=fele=(o & 1))
Pfore= (8 % R )b

The expansion of the right hand side of the above identities reveals that for specific

(2.10)

values of N many of the terms involve characters with non standard labelling. To
illustrate the role of modification rules in reducing non standard labelling to a standard

labelling we expand a few terms of the right hand side of (2.9a) when r = 2 so that
N=3:

] T 1 [
S(-D)FGNE ¢ (=)s = - — g q] ) + g% 3 + )
(eF

— ¢ +I |+ )

&
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+4*( + | +

_ — (2.11)

+ | | I+ )+
|| HEER

Only the first three terms correspond to standard labels. Consider first those terms

for which £(¢) + £(¢') = 4. Since r = 2 the length of the strip removal is h = 0. The

modification rule when applied to F(21;21), for example, gives

since ¢ = ¢ = 1. Hence the character that correspond to F(21;21) is zero. Terms in
the expansion (2.11) with £(¢) + £({") = 5 are

EEED ] B ;
* E | * | * l | | ]

where the boxes fill with *’s denoted the boxes that will be removed under the modi-

fication rule. Hence the first few terms of the expansion for the RHS of (2.9a) in the

case of A, with N = 3 takes the form

2 (=DM CHa)s ={0} — ofT1} + *({251°) + {1%2})
(eF
- ¢*({3;21} + {21;3}) +...
In general the terms that survive are those that consist of Young diagrams which

could be built from a core specified by {{; ¢’} with ¢ € F and £(¢)+£(¢') < N by adding
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strips of length (r 4+ 1) to this core in all possible ways such that each strips starts in
the first row and their successive addition yields a Young diagram that correspond to a
standard labelling [King2]. In (5.21) and (5.11) of [King2], King has already obtained
the expressions for the RHS of (2.9a) and (2.9b) in terms of standard characters (2.8¢)

of A, and (2.8b) of B, and D, respectively, i.e.

> (=1)¥gHE &} (z)n
£eF
= Z i Z (_1)|(|+c+a q|(I+r +F-s {D;u}(x)N (2°12‘1)

(eEF s=0 u=¢(mod N
KO+HECNSN  v=(modN

> (~1)g Vo al(z)y = 3 S X (g )y (2.120)

a€A iy PO AZamod(N-2)
where in (2.12a) F(7; u) is formed from the core diagram F((; (') by adding s pairs of
boundary strips each of length N. The i-th strip added to F(¢’) starts at position (1,7;)
and covers ¢; columns, whilst the i-th strips added F(() starts at the position (1,7;)
and cover ¢; columns, r =3 ;_ r,c= Y, 6,7 =3, 7 and € = Y)_[_, G, respectively.
In (2.12b) F(X) is formed from the core diagram F(«) by adding s boundary strips
each of length N — 2. The i-th strip starts at position (1,7;) and covers ¢; columns,
r=%;,riand c=3;,¢. N =2r+1 in the case of B, and N = 2r in the case of
D,.

To present these results and generalise them to the other cases (2.9¢c - 2.9f) we
develop here a similar notation. Let k = (m, m,,...,m,) be an s-tuple with
my < my < ... < m,. Let F(X*) (resp. F(v%;p°) in the case of A,) be the Young
diagram formed from a core diagram F(f) subject to certain restrictions by adding
s strips (resp. pair of strips) each of length M starting at the first row of F(8) and

covering m,ms,...,m, columns successively. For each of the identities (2.9a - 2.9f)

we tabulate their respective core F(f) and strip length M in Table 2.8 below.
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Table 2.8 : Core Young diagrams and strip length M.

Identity Algebra Core F(8) Restriction Strip length M
2.9a A, F(&¢) (eFa+b<r—1 r+1

2.9b B, F(a) a€Aja; <r—1 2r —1

2.9b D, F(a) a€Aa; <r—2 2r — 2

2.9¢ C, F(y) vyeC,a; <r—1 2r + 2

2.9d C, F(a) a€A,a, <r-1 2r

2.9e B, F(e) ecFE,aq,<r—-1 2r

2.9f B, F(y) vyelC,ay<r-—1 2r+1

Let M,,, denote the i** boundary strip added to 8 which begins at position (1,n;)
and covers m; columns. Further let the partition obtained at this stage be A*. Then

n; = AL, the first part of X} and X' can be defined recursively as follows:

=8

(2.13)
M=+ M.,
or equivalently
mi + XNz, J7=1,
A= iTh 41 i=23,.... M+1—m;, (2.14a)
At J=M+2—my ... 001,
In the case of A,:
mi+ Wrhome J=1,
po =13 i +1 i=23,...,.M+1—-m,;, (2.14b)
pit J=MA4+2—m4 ... 0w ;



Infinite series ...
it Uasiome J =1,
vi=q i+l j=23,....M+1-m;, (2.14¢)
vi-1 J=M+2—-m,... LY,
where (m,,m,,...,Mm,) = k is also an s-tuple.
Proposition 2.1. With the notation as in Table 2.8 and (2.14a - 2.14c), the standard

character forms of the right hand sides of the identities (2.9a - 2.9f) take the form:

Z(_l)mqm{g; 0,}($)r+1
- 3 i ) (—1)€lmem glcl4ntazs (57, w) (2.15a)

(EF s=0 kk,mi147 2743
£(¢)+HE((")<Sr+1 (1<mi<r+l, (1<m1<r+1

S (=1)2g 2] () = 3 E Z (—1)lel/zm glel/24n[)s). (2.15b)

feA acA s=0
(a)<r a1<m1<2r 1
)
E(_l)lf9l/2qlf9l/2 Z Z Z (__1)|°1|/2+mqlcr|/2+ﬂ [/\3]; (2.150)
fcA acA s=0
L(a)<r a1<m1<2r 2
Z( 1 161/2 |0|/2 < 0 > (.’B Z i Z (__1)|'7|/2+m ql'y|/2+n-s < X >;
seC yeC s=0
£y)<r ‘Yl<m;§2r+2

(2.15d)

Z( 1 |o!/2 8l/2 . 9 > (a: Z Z Z (___1)|a]/2+m—s q]a|/2+n <M >

€A acA s=0
L(a)<r a;<m1<2r

(2.15¢)

S (=1)0HR 206 (2) gy = T Z z (—1)Uel+p)fz=m gld+n=sfAs1. (2.15f)

6eE eeE s=0
£(e)<r el<m1<2r
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S (D = T 3 S ()R g ], (2.159)
0€A YEC =0 k
L(y)<r Nn<m;<2r+l

where m = ;. ,m; and n = 3_{_, A{. In the case of A,, m =3, m;, m = ¥i_, ™y,

n=Yiapand =311

Proof (2.15a) and (2.15b-c) are equivalent forms of (2.12_a) and (2.12b) respectively.

We shall give a proof for (2.15d) only as the remaining identities can be proved similarly.
Consider the Young diagram F(6) associated with the partition

- Al . b1+1 b2+1 ‘e
9—9‘( by b )GC

Then any boundary strip removal starting from the end of the first row, i.e. at position
(1,by + 2) ‘and ending at the bottom of the first column, i.e. at position (b + 1,1),
has length 2b, + 2. The resulting Young diagram after removing this boundary strip
corresponds to a partition §? = (::“::“'_:'_) € C. If < 6! > corresponds to a standard
label then we have the Proposition with v = 6! and s = 0. However if < * >
corresponds to a non standard labelling then by the modification rule of the Table 2.7,

the boundary strip removal has length
hy =20 -2r —2=2(by+1) —2r — 2 =2b — 2r.

Hence the remaining part of the boundary strip has a length M = 2b;+2—h, = 2r+2.
Assume that this remaining boundary strip starts at position (1,n,),i.e. n, = b;+2 and
covers m, columns. If § — h,, does not correspond to a partition then the contribution
to the character is zero. If on the otherhand 6 — h,, corresponds to a partition then
the modification rule boundary strip removal covers ¢ = n, — m, + 1 columns so that
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the standardisation procedure gives
(—1)l12glel2 < g > = (—1)I°V/24bat1 (] )remmet1 gl0%1/240t1 g p s
— (_1)ls’llz+2n.-m,q|92l/2+n.—1 <O0—hy> (A)
= (_1)1021/2+m.q|0’|/2+n.-1 <0—hy>.
If < 6 — h, > corresponds to a non standard labelling then we repeat the above
procedure with ' — 62 — 63, b, — by, m, — m,_;, n, — n,_; anci‘ hy — h,, so that
(A) further reduces to
(_1)19I/2qlol/2 < 0>
:(_1)19“’|/2+b2+1—m,(_l)n._l—m.-x+1q|63|/2+bz+1+n.-1 <O—hy—hy>
___(_1)103I/2—m._1—m.q103|/2+n._1+n.—2 <O—hy—hy> .
For s number of applications of the modification rule, this procedure will define an
s-tuple k = (m,,...,m,) where M = 2r +2 > m, > m,_; > ... 2 m; > 7, that
corresponds to columms covered successively by the remaining boundary strips. The

standardisation procedure then gives
(_1)|9|/2q|0|/2 <0 >= (_1)‘gl+1|/2—zmeq]9t+1|/2+zn.‘—s < 6 — ihi >,
i=1

where we assume < § —Y";_, h; > does not require further modification and §*+! = v =

(::“:g’“::'“’“) € C. Then F(0 —3;_, h;) corresponds to adding s boundary strips of

‘ap

length M and covering m,, ..., m, columns successively to F'(v),i.e. F(0—3;_, h;) =
F(y).

Now let X =~* =Y i .., M. Then

j=i4l

Ai—l =7s _ZMmJ = 73 - (Mml + Z Mm_,)

j=i J=i+1

so that

/\i — /\i—l +Mm; ,

as required.
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Conversely, let v = (::“:;“::_’a":“) € C satisfies £(y) < r. Let k = (my,...,m,)
71 <m £ ... <m, £ M. First add a boundary strip of length M = 2r + 2 to
F(7) starting at position (1,n}), n{ > a; + 2 and covering m; columns such that the
resulting Young diagram F(A!) corresponds to a partition. This boundary strip will
end at position (M — m; + 1,n{ —m; +1). Let A\ = vy and A = A~ 4+ M,,,. This
implies that n} = Al.

The boundary strip that can then be added to F(A!') such that it extends from

position (M —m,; + 2,A\! —m, + 1) to position (£(A\°) + 1,1) has length
M4+1+a—M<2M —M -2 since A} > a; +3.

Choose a boundary strip of length A} = 2A1 — M — 2 as dictated by the modification
rule for C, and the fact that M = 2r + 2 and add it to F(A!) starting at (M —m; +
2, —m, +1) and moving toward the left. Then the boundary strip will end at position

(A} = 1,1). The resulting Young diagram F(A' 4+ h)) now corresponds to a partition

,_(,\i—l a,+1 a;+1
TE\N—2 g as

)ec.

with < 7/ >=< Al + B, >= (=1)*"™+! < X! > under modification. This procedure
can be repeated with boundary strips which cover m,,...,m, columns consecutively
to give all possible § € C and characters < 8 > (z),, as required in (2.15d). O

To illustrate (2.15d) consider a term of the expansion of the right hand side which
comes from say r = 3, v = (f), s =2, k = (6,6). Then applying (2.14a) successively

diagramatically by adding 2 strips of length M = 2r 4 2 = 8 each to F(31) we obtain

POY) = Fl) = - L]
"y

F(\) =

’
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O: il

F(\*) = oo

The first of these is standard and of the form [#]. The second and the third diagrams

arises from the following non-standard terms of the form [], respectively,

...?———.l
..l.l [ N BN | G*
[ BN N o | o1&
ole and *
* *
[+

Lf_
where the boxes fill with *’s are to be removed by the modification rules.

Next we illustrate (2.15a) by consider a term of the expansion of the right hand
side which come from say r = 5, {( = (;), s =2k =(3,3) and k = (5,6). Then

applying (2.14b) and (2.14c) successively diagrammatically by adding 2 pairs of strips

of length M =r + 1 = 6 each to F(2;1?) we obtain

_ L1
F(uo5p°) = F(2;1%) = }

[ ]
[ ]

F(vhp') = e
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The first of these is standard and of the form [f; 6’]. The second and the third diagrams

arises from the following non-standard terms of the form [0; §'], respectively,

*

l.‘. L]

Te e

and

*
®|e | ¥
[

EEEEENAr

[N BN N
b
oo

*|@® | ®
%

I"I"I"I"¢"

JV I IV I

60



Generalised Cartan ...

CHAPTER 3

The Structure of Affine Algebras and their Modules

3.1 Generalised Cartan matrices and bilinear forms

The GCM of affine type is an (r 4+ 1) x (r + 1) matrix of rank r. It is conventional
to index the affine matrix A = (4;;) with ¢,j running from 0,1,... to r. The affine
GCM are given in Appendix 1. Let G(A) be the Kac-Moody algebra associated with
the matrix A. Let II = {ap,a1,...,0.} C H* be the set of simple roots and let

¥ = {ay,a},...,a’} CH be the set of simple co-roots with
<apof >= Ay fori,j=0,1,...,r. (3.1)

However from (1.2) dim ‘H = r +2, and hence the elements of IT and IIY do not span H*
and H respectively. In order to complete the bases we fix an element d € H satisfying

[Kac4]

<ap,d>=6; fori=0,1,...,r, (3.2a)

and an element A, € H* which satisfies the following conditions

< Ag,of >=06y fore=0,1,...,r

(3.2b)
< Ao, d>=0.

The center of G(A) is one dimensional and is spanned by the canonical central

element

K=Y ¢dqof, (3.3a)

1=0

where the co-marks ¢)’s are column linear dependence coefficients of A, i.e.

> Al =0. (3.3b)
j=0

In the dual space, introduce a vector

6= Zcia; , (3.4a)
i=0 ’
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which is the smallest positive imaginary root. The integer marks ¢; are chosen such
that they form the row linear dependence coefficients for the affine matrix, i.e. the

marks ¢; satisfy

Z C,'A,'j = 0. (3.4b)
i=0
To fix the normalisation we choose marks and co-marks such that min{cy,¢;,...,¢c .} =
min{cy,cy,...,c'} = 1. In this normalisation ¢, = 1 in all cases. The integer co-marks

are labelled on the Dynkin diagram of Table 1.2. If ¢; differs from ¢}, the corresponding

¢; is given in a bracket beside ¢). The sums

h:Zr:c,- and g.—_-zr:c}’ (3.5)
i=0 i=0

are called the Coxeter number and the dual Coxeter number, respectively.
Since A is symmetrisable there must exist a non singular matrix D such that

S = DA is symmetric. The definition (3.4) of the imaginary root § implies that

A'd = 0. Then we obtain successively:

(D'S)}é=0 ;

S D) E=0 ;
SD'é=0 ;
DAD" =0 ;
AD1'§=0

When compared with (3.3) we can deduce that D='é = mK for some constant m.
If we choose m = 1 then D;; = ¢;/c} and D;;! = ¢!/c;. Since S is symmetric then

D,','Aij = -DjjAji and Aij-DJle = Aj,'Di-l-l.
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We can now define non-degenerate symmetric bilinear forms (- | -) on H and H* as

follows: o
Si = (of | of) = Dy Ay = —CT’,’A;'J' ;
1 o (3.6)
(a,- I aj) = A’JDL = ZJ.—Aij .
)
A consistent choice for an isomorphism v : H — H* is
viel) = &a,- for: =0,1,...,r
¢
v(K)=46 (3.7)
1
d) = —A, .
v(d) oy 0
In general, for any coroot o¥ € H,
2c
v(a) = . (3.8)
(a]a)
Next we introduce the important element
§=6—0p=) coy. (3.9)
=1
We can then obtain the following relations involving 6:
K 6
0V = ——aj and v(0')=— - (3.10)
g c

For easy reference we tabulate below the bilinear forms involving elements of H* and

H.

Table 3.1a : Bilinear form on H* x ‘H

<5 > o d K o

Q; Aj; 6o O —A
Ao do; 0 ¢ O
6 0 1 0 0
9 —Ay; O 0 2

63



Chapter 3

Table 3.1b : Bilinear form on H* x H*

(1) o Ao 6 0

; ECJ}A,'J' COV 5,’0 0 —Cov A,‘o
AO Cgéoj 0 Cg 0

) 0 cy 0 0

g —%Aw 0 0 2¢

Table 3.1c : Bilinear form on H x H

(1) d K o

af f\_‘}'Aij Clv io 0O —%Aio
d C—lv-(Soj 0 1 0

K 0 1 0 0

0 —1A; 0 0 2

3.2 Construction of affine algebras

Starting with a GCM A provides one way to construct affine algebras. Another way
to construct them is through an extension of the well known simple finite-dimensional
Lie algebras. This is particular useful if we want to identify the structure of the affine
algebras in terms of their simple finite-dimensional Lie subalgebras. Our aim in this

section is to obtain the roots of all affine algebras and their multiplicities. Let us
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first construct the untwisted affine algebras, 1.e. the affine algebras with parenthetical
superscript (1).

Let G be a simple complex finite-dimensional Lie algebra and C[t,¢~] the ring of
Laurent polynomials in . A complex untwisted affine algebra G may be constructed

as an extention of a loop algebra G ® C[t,t}] as

G =(GeCltt?])eCKaCd, (3.11)

with the bracket operation defined on G as follows:

[(z @)+ pK + pd, (y @) + ¢K + p'd]
(3.12)
=[2,y] @t + july @) — in'(z @ ') + i6iyj0(z | y) K ,

where (- | -) is the Killing bilinear form on G. It can be verified that the above
commutator is antisymmetric and satisfies the Jacobi identity. The element K lies in
the centre of G and d acts on the elements of the loop algebra in the same way as the
differential operator tZ.

We identify G with the subalgebra G®id of G and let h; = o, e;, fifori = 1,2,...,r
be the Chevalley generators of G. If 8 is the highest root of G then its expression is

given by (3.9) and we can choose f; € Gy and e, € G_, such that [Kac4]

[eo, fo] = =Y. (3.13)

Let eq = €,®t and f, = fy®t~! then it can be deduced from (3.13) that [e,, fo] = K —6".
Let ay = K —6Y, then for : = 0,1,...,7 «a},e;, f; are the generators of G and they
generate the matrix A = (< a;,@f >)i;_, which coincides with the untwisted affine

GCM.

Let H be the Cartan subalgebra of G. For h € H, corresponding elements h € H

of the Cartan subalgebra of G are given by

h=hQ@t + pK + pd. (3.14)
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Let 6 be the linear functional on H defined by [Co]
8y ®t°) =0 fori=1,...,r
§(K)=0 (3.15)
8(d)=1
which are consistent with the conditions on the imaginary root é in Table 3.1a. The

bracket operation of (3.12) then gives

[hyea ® ] =[h @t° + pK + ud, &, é 7]

[h,8] @ + ju(ea ® )
=(a(h) +jé(h))e. @ ¥
and similarly

A, he @] = j6(R)(hy ® t). (3.16)

Hence &,®% corresponds to a root a+jé and h,®%’ corresponds to a root j§. However,
there are r linearly independent elements &, ® t/ that can correspond to the root jé
and hence the multiplicity for the root jé is r.

Next we construct the twisted affine algebras. Again let G be a simple finite-
dimensional Lie algebra and let 7 be a symmetry of the corresponding Dynkin diagram.
Non-trivial symmetries are admitted only by the Dynkin diagrams of the algebras A,,
D,, Es and D,. For all of these algebras, except D,, there is only one non-trivial
symmetry 7 [Co] and this satisfies 7%(¢;) = o; for i = 1,...,r. But for D, there is
also a symmetry 7 of order 3.

Let o be the automorphisms of G which correspond to the symmetries of Dynkin

diagrams. If 0™ = 1 for m = 2 or 3 then we have the decomposition of G into a direct

sum of eigenspaces of o [Kac4]

G=Go+ G (or g=go+@1+g2) (3.17)
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and they satisfy

[Go, Qo] C Go, [Go, 61] C Gy, [GmGz] C G,.

We observe that the space G, is a subalgebra of G and that G, and G, are Go-modules.
In fact these G,-modules are irreducible, and G, and G, are equivalent Gy-modules. For
each G the corresponding G, is given in Table 3.2. Its construction in term of the

generators h;,e;, f; for each algebra G can be found, for example, in [Kac4].

Table 3.2 : Underlying information for the construction of twisted algebras

m G Go G, — module G, Go — moduleG, dimG,

2 A, B, %—O—— -- —Q3S0 2r? + 3r

2 Ax, C. o—é——-——o:o 2r2 —r —1
2 D, B, b—o0—--—a>0 2r +1

2 A A, 3 5

2  Es F, o———o:Zo———é 26

3 D, G, =0 o= 7

Let H, be the Cartan subalgebra of G, and let ¢; denote the associated simple
roots of Go. The Go-modules, G; and G, have highest weight § = 3, ¢;a; given in Table
3.2 in term of fundamental weights. The weight space decomposition of G, takes the

form:

Go= 2 Gpp+Gpo forp=1,2 (3.18)

BEL,

where G, ¢ is the subspace corresponding to zero weight and A, is the set of non-zero
weights of H, on G,.
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With all this notation, the corresponding twisted affine algebra is defined as

m-—1
G™ = > (Gicpmoam @) B CK ® Cd (3.19)

p=0 j€l
where K and d are as defined in (3.11). Let § be a functional on H as in (3.15). Then
the root system A of G(™ is given by [KV]

A={a+jb|la€cA,,je€l,j=pmodm} U {jé|j €Z,;j+#0}.

Here A, is the root system A, of the algebra G, if p = 0 and the weight system A, of
(3.17) if p#0.
Let us consider by way of an example, the determination of the roots of the twisted

algebra G = AP). From (3.17) and Table 3.2 we have

A;DGo+G =B+ G

We then choose the Cartan subalgebra H, in B, and the roots
0, £ay, £os, £y + @), £(a; + 2a,)

with respect to H,. All these roots have multiplicity one except the zero root which
has multiplicity 2.

If w; is the fundamental weight of simple finite-dimensional Lie algebras then from
Table 3.2 the B,-module G, has highest weight 2w, = 20y + 2a,. Then from Figure

3.1, the rest of the weights can be computed to be
:}:(201 + 2&2), :i:(ozl + 2&2), i(al + QQ), izag, :i:al, :!:ag, 0.

All the weights have multiplicity 1 except the weight 0 which has multiplicity 2. The
twisted affine algebra is then given
AP=Y"B,@t" 3> G, @t¥ '@ (CK + Cd).
jez jez
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Figure 3.1 : Weight diagram of the V2** module of B,
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The roots of A? can then be read off as
j6 with multiplicity 2
+a, + 36 o long
ta,; £ 376 ayshort
+(a; + @)+ 76 a; + azshort
+(a; + 2a,) £ 76 @, + 2a, long
+(2a; +2a2) £ (27 +1)§  2a; + 20, very long
+2a, £ (27 +1)6 20, very long

It has been shown how the construction of the twisted affine algebra G(™), m = 2
or 3, involves a non-trivial automorphism of the Dynkin diagram of G. Analogously,
we can think of the untwisted affine algebras G(*) as involving a trivial automorphism
of the Dynkin diagram of G.

If we let Xz(v"(lr)) be the affine algebra generated by o ,e;, f; ¢ = 0,1,...,r and Y,
be the subalgebra of X,(v"(’z) generated by oY,e;, fi ¢ = 1,...,7. Then Y, ~ G in the
case of an untwisted affine algebra and Xy D Y, =~ G, in the case of a twisted affine
algebra. Equivalently we can identify Y, with the simple finite-dimensional Lie algebra
G(A) whose GCM A is obtained from A by deleting the zeroth row and column. Let H

be the Cartan subalgebra of XI(V"(‘r)) and H, = Y, N'H and by (3.14) we have orthogonal

direct sum of subspaces as follows:

H=H®(CK+Cd) and H =H &(Cé+ CAo).

Let A C H* be the root system and A = AN Cley,...,a,.]. Denote by A, and
A, the sets of short and long roots, respectively, in A. A closer observation of the
Dynkin diagram of A% or our previous example reveals that in A there exist also

roots of length twice that of the short roots but longer than the long roots. With our
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convention we have the following results on the real roots of the affine algebras [Kac4].
Proposition 3.1.

a) Are={a+né|lacA nel}ifm=1.
b)A,e={a+nélacA,,ncZ}U{a+2n6|a€A,nel}ifm=2
but not A$?
)Ae={a+nd|lacA,ncZ}U{a+3né|lacA,necl}ifm=23.
d) A, ={a+nf|la€eA,,neZ}U{a+né|acA,nel}
U{2a+ (2n —1)§ |a € A,, n € Z} for AD.
All of these real roots have multiplicity 1. The multiplicity of the imaginary root

né is given by the following Proposition [Co].

Proposition 3.2. The multiplicity of the non-zero imaginary roots are as follows

(a) For all untwisted algebras or A%

multnd =r.

(b) For AD),

_Jr if n is even,
mult né = {r—l if n is odd.

(¢) For D%,

mult nd = {7‘ if n is even,
1

if n is odd.
(d) For E{®

_}4 ifniseven,
mult nd = {2 i n is odd.

(e) For DY

_J2 ifnmod3=0,
multné—{l ifnmod3=1or2.
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3.3 The affine Weyl group

Let W and W be the Weyl groups generated by so, s1,...,s, and s;,...,s, respec-
tively. The element s; acts on H* as in (1.8) and on H as in (1.11). In particular we
can see from Table 3.1a 5;(§) = é and s;(K) = K.

Let A, X € H*. Then the mapping (3.7) implies

(s:(A) 1 X) = (A [N)= < Aaf > (e | X)
v

=A[X)- <\ > %< Nyafl >

=A|N)=-<N,af > (A )

= (A s:(X))-
More generally for any w € W we have (wA | X') = (A | w™'X). Hence the bilinear
form (- | ) is also W-invariant.

Let the lattice M for each affine algebra be defined as follows [Kac4]

Q if A is symmetric or m =2 or 3,
M = { _ (3.20a)
v(QV) otherwise ,
or more explicitly as
(Z[cy,. .., ;) for AD, DOV EMW and twisted algebras,
Zloy,...,a,-1,20,] for BD),
M =14 7[2ay,...,20,_4,a,] for C), (3.200)
2oy, iy 203, 204 for F{V,
( Z[a1, 3as) for G$V.
For a € M define an endomorphism ¢, on H* as follows [Kac4]
() = M <MK >a— (A @) +3(a| ) <X K >)8 (3.21)

Then we have the following Lemma [Kac4].
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Lemma 3.3. The endomorphism t, satisfies the following relations

(a) tolp = tass, a,BeM
(b) tw(a) = wtaw“l, w e W

Proof
(a)
tatp(A) = A+ </\,K>a—-((/\|a)+% la P < A\, K >)6
T <MK > (B+<BK>a—((a ﬁ)+%(a la) < B, K >)8)
—((A[ﬂ)+%(ﬁ|ﬂ) <MK S) 6+ <8,K>a—(5]a)s
———;—(a|a) <6,K > 6)
= A+ <A,I{>a—((A|a)+%(a|a)</\,K>)6

+<AMNK>B-<AMNK>(@|B)—=(AB)+=z(B1B) <K >)b

1
2
— M <MK S (@+8) = (0] a+,3)—%(a|a) <MK >)6

— <MK > (a]B)S— %(,3 |8) < \ K >)6
1
=A< AK> (a+ﬁ)——((/\|a+,8)—§(a+,3|a+ﬁ) <MK >)6
= ta+s(A)-
(b) Considering the facts that w(K) = K, w(6) = é and both bilinear forms
< +,+>and (- |-) are W-invariant,
tw (A) = w (V) + < MK > a— (A | w(a)) + % la P< MK >)6
wtaw™ (\) = A < A, K > w(a) — (A | w(@)) + % la[2< 0, K >)6

= tw(a) .

Lemma 3.3(a) and (3.21) imply that ¢, acts like a translation on H*.
Recall that § = 6§ — o, € A*+. 0 is the highest long root of G in the case of

untwisted algebras or is the highest short root of G, in the case of twisted algebras.
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Then v(6¥) = 0 except in the case of A where v(8") = 6/cY = /2. Analogous to the
definition of the fundamental reflections, we can define a reflection s, with respect to
a real root a by

sa(M)=A=< Vo' >a, MM . (3.22)

Since < a,a’ >= 2 then s, sends a to —a. If & = 0/cy then (3.22) and (3.10) imply

that

-

sores(A) = A= < A, f{- —al>0. (3.23)

4

Further action by s, gives

S()Sg/cg()\) =A-< A, Clov > Oy

—<,\,-§-—ag>(9—<o,ag>ao)
0

=/\—cl—g< MK > (ap+6)+ < Aoy > 6.
However from (3.21), (3.10) and the fact that (6 | ) = 2¢y
toeny () = A < X, K > w(6Y) — (A ] v(6Y)) + %(1/(0") | v(8Y)) < A, K >)6
=/\—c1—g<)\,1{>(ao+6)+ <Aal>s§.

Hence for each affine algebra we can write

tu(ev) = SOSE/CX ; (3.24)

where sq;cy, which does not contain the fundamental reflection s, satisfies (3.23). In
Table 3.3 we list explicitly the reflection Se/cy 1N terms of fundamental reflections for
each affine algebra. These expression are obtained from Table 1 of [Mo2] by adding
certain conjugates. In fact Se/cy = ws;w™! for any w and ¢ such that w(a;) = 6/cy.
The length of each tabulated expression for s4/.y is minimal in the sense that it satisfies
Proposition 1.10. The rank independent cases in Table 3.3 can be verified directly. For

the rank dependent cases we will give the proof for just A(). The proof for the other

cases is similar.

74




The affine Weyl group

Table 3.3 : The reflection Se/cy in terms of fundamental reflections.

Algebra So/cy

AP, AP s

AW, AD $182+..8p_18r8p_1 ... 8281

B® AP | 5385...8, 18,8, 1+ 828182+ Sr—185Sr1 - - 5352

CW DB, 5185...8,18:8r_1 ... 528

DM 5983+ .. 8p—28p8p_1++.525182 ..5,-15,8y_2...8352

((sl) 56538452838554518283565352518455535284535¢

EW® 81528384 85875354828356855457835251
5283875455865352545357558453525]

ESV $182835455865355545357565554529353555654553786535554538281
$9835455535657555456555853525485565753545583565554538281

F4(1), Egz) 515283825453825182835452838281

Gg;), DE}S) 815281828,

Proposition 3.4. For the algebra A®M)

W= 85182...8,_1.

Proof: If o is a root then < @, K >= 0. Then (3.21) implies that

ti(e) = o — (a | 6)8

so that (3.24) further gives

se{a) = so(a) — (| )6

where § = 5_, o; and § = ¥_, ;. The set of positive roots for A, is

{as+aipm+...+a; |1 <i<j<r}.
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From (3.25) we can show that
—(ar+...+a )N 1=1,
se(y) =4 o i=2,...,r—1,
—(o1+...+a) EAT i=r.
While for 1 < 3
| [ —(ey + ...+ )€ A t=1,5=r,

—(ajp1+...ta)EA" 1=1,7=2,...r -1,
sg(a,--{—...—}-aj):ﬁ
ot .t 2<i1<y<r—1,

(a1 + ...+ ) EA” i=2,...r—1,j=r.

Hence by Proposition 1.10, #(ss) =1+ 1+ 1+ (r —2) + (r — 2) = 2r — 1. Finally, the

element w = $;8,...5,_; is simply the permutation (1,7). The action of this element

on a, = €, — €41 gives € — €,,; = § as required. |
Lemma 3.3 implies that the operations ¢, with « € M forms an abelian group

known as the group of translations T. This group is generated by wt,vyw™! for

w € W. With this result we are then able to express the affine Weyl group W in term

of the finite Weyl group W.

Theorem 3.5. The affine Weyl group W is the semidirect product of a finite Weyl

group W and the group of translations T.

Proof: First recall that if N and H are subgroups of a group G then G is said to be
a semidirect product of N by H whenever

(a) N is a normal subgroup in G,

(b) G =NH and

(¢c) NN H =1d.
It is clear that W and T are subgroups of W and by Lemma 3.3(b), T is a normal
subgroup in W.
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In all cases shown above, the translation ¢,sv) can be written as sgs, where s4 does not
contain the fundamental reflection s,.
8089 = t,(pv)
So = tuevySy | = tyevyse € TW

and trivially TW contains W and hence all the fundamental reflections sy, ...,s,. Thus
W=TW.
For each o € M, the translation t, contains the fundamental reflection s, but no
element of W contains sy. Hence TN W = id. 0

In the process of obtaining t,(v), we have also identified some of the other fun-
damental translations i.e. t,’s where the a’s form the basis for the lattice M. Since
twevy = Wevyw™t, for certain @ € M we just need to identify w € W such that
a = w(f/cy). In other instances we can only express a in the form a = ¥, 7 w(k9)

with k € —+Z. For example in the case of G,

Lo, = lsysi(0) = S251198152
= 898180518281
but
30 = L9—=25351(0) = o-20; = to(te,)””
= 535152505152515251 505152
AL
O = 8i_18i-2...818i118i32...8.(0) fore =1,...,r
BM .

O = S;_18i-2..-818i418i42 - Sr—18:8r_1...8382(f) fori=1,...,r—1
20, = 8,_18,-3...82(0) + Sr_15r-2...528152 ... Sp_15:Sr_1...52(0)
cH
20; = 8;_18i—2...51(0) + Sit18i42+ - Sr=18,8rmy .. 81(0) fori=1,...,r =1
O = Sp_1Sp_z...51(0)
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DW

a; =

Qg =

Qg =

EY

E)

8i—18i-2++515i418i42 -+ - Sr_187Sr_28,-3...82(f) fore=1,...,r -1

Sp_287-3...518,_18,_2...8352(0)

= 82333436333554825336(0)

$386545355545152536(0)

= 86345253353431323336(0)

$3868253555481525386(0)
3433563233515234365355(6)

5183545253555451525386(0)

= S2333485378334323335858437338231(0

= 51533435373384323335555437335251(9

= 33323135373334323335353437338231(9

)
)
$2815455575354525356555457538251(60)
)
)

= 34838281375334323336355437833231(9

$554835251575352545385545753825,(6)

533733(0)

= 52833435563738358433853534323338353654355837563554335231(0)

3334353657313538353433353534323338355554353837363554333231(0)

545556575251 58855453565554525383555654555357865554538281(0)

= 8$556575352515653555453565554528358555654555857565554535251(0)

36573433323138353433363534323338353634553837365534533231(9)
3735843332813533853433353554323338353554853837563534333231(0)
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Q7 = $6855453525158555453565554525353555654555357565554535251(0)

Qg = 855483828515786575554838685845283538558654555387568584538251 (0)

o) = 32335432533281(0)
Q2 = $1535452535251(0)
203 = $15254835251(0) — $1535452535251(0)
2C¥4 = 333231(0) - 84338231(0)
GV
oy = 3231(0)
3C¥2 =0 23231(6)
ALY
O =Si_1-+-818ip1---S:(0/2) + Sicy ... 818ip1.--SrSro1...5281(0/2)

Oy = 8,_1.. .3251(0/2)

O = Si-1Si—2. .. 81841542+« - Sro18rSro1 - .8382(0) fori=1,...,r—1
Qr = Sp_18r-2---92(0) + 8,_18r-2 ... 825182+ . 5,15, Sr—1 - .. S2(0)
D&,
o = 8;_18i—2...51(0) + 8418142 . - . Sr_18:8r1 ... 81 (0) fore=1,...,r =1
O = 8,182 ..51(0)
E®
O = $2535482535251(0)
Q2 = $1535482538251(0)
Q3 = $18254835281(0) — $1535482538251(0)

Qg = 335251(0) — 54835251(0)
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3.4 Highest weight modules

We shall study the highest weight modules V4 of affine algebras in the same way as
we have done for those of the simple finite-dimensional Lie algebras. In affine algebras,
it is convenient to express the weights of V4 in Dynkin notation i.e. with respect to

the basis {Aq, Ay, ...,A,,8}. In term of this basis the simple roots can be expressed as

follows

Qg = ZAOjAj + 6,

j=0

r (3.27)
a,-:ZA;jAj i=1,...,7‘.
=0
From (3.3b) and (3.4b) we can deduce respectively that
o =—cy > AjAj fori=1,...,r (3.28a)
j=1
and
¢ =— ;AOiﬁi‘jl forj=1,...,r. (3.28b)

With the help of the relations (3.3b), (3.4b), (3.28a) and (3.28b) it can be shown that

0 1 e ... ¢ 0 1 o ... O
1 0 0 ... 0 1 A Ao ... Ao

cY/ey O 0 Ay = I
: :A Do A

C'Y/Cg 0 0 ArO

and

0 1 o ... O 0 1 o Cr

1 Aoo A01 cee Ao,- 1 0 0 e 0

0 Ay cy/eg O =]

2 A : AT

0 ArO C:,//C\Ol 0
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where [ is the identity matrix. Hence from the inversion of the (3.27) we obtain

A,»=— 0+Z Yia; ;i=1,...,r
(3.29)
E-LA0+.7\, ;i=0,1,...,7’
c
where A, = 0. For p = Yi_,A; and p = ¥I_, A; this gives
p——Z( A0+A)_—_c%./\0+ﬁ‘ © (3.30)
i=0 0
Lemma 3.6. Any weight A € H* can be written as
A= E/\,'A,' + TL5
i=0
where \; =< A\,af > andn = 2107()‘ | Ao).
Proof .
<)\,a}’>=2/\,-<1\,,a] > +n<bof >
i=0
=)\
From (3.29),
A= Z A0 + A;) + né
Z)\c AO+Z)\A + né.
CO i=0
Hence .
(A Ao) = Z/\i(]\; | Ao) +n(é | Ao)
= ZZ/\ ey | Ao) + ney
i=1j=1
= nc, .
g

Let us begin by studying the simplest representation of an affine algebra, i.e. the
weight system of the highest weight module of A{" with highest weight A,. Applying
the algorithm developed in Section 1.4 we obtain the weight diagram as in Figure

3.2. In contrast to the case of simple finite-dimensional Lie algebras this time the
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Figure 3.2: Weight diagram of the v module of A(:)
(_5!6) (_314) (-1 ’2) (1 ,0) (3"2) (5:'4) (71'6)

(11 v?2 O
v? m3 v?2
A E3 @5 m 3 Al
O ®> e ®° o
\ A ® 7 o 11 ® v ?2
m 3 o 11 o 15 o 11 =3
@5 e 15 o 22 e 15 ®5
Al o7 o 22 e 30 o 22 C Al
Fl1 e 11 o 30 o 42 e 30 o 11 @1
v ?2 e 15 o 42 o 56 o 42 o 15 v?2
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procedure does not terminate. Any weight of V4 can be written as A = AgAg+ M Ay +
né = (Ao, A1;—n). The highest weight is assigned the null depth 0. All other weights
can be obtained from the highest weight (1,0;0) by subtracting linear combination of
fundamental roots ap = (2,—2;—1) and oy = (—2,2;0). For each o subtracted, the
depth is increased by one unit. In Figure 3.2 the numbers next to the weights are their
multiplicities which are the values of the partition functian p(n). The A signify the
weights in the first Weyl orbit, [J those in the second orbit, etc. The weight system of
Vs is the union of infinitely many Weyl group orbits and each orbit itself is infinite.
Weights in the same Weyl orbit have the same multiplicities.

In general, the most striking feature of any affine weight system is the appearance

of weights of the form A — né where X is an element of the weight lattice P(A). That

is we have strings of the form
Ams Am — 6, Ay — 26, ...

where ), is the highest weight in the string and is called a maximal weight. We denote
the set of maximal weights by P,... and we have W - P,,,. = P,.,.. The weight system
of the highest weight module V* is then completely determined by the Weyl orbits of
ut € Pra. N P, i.e the Weyl orbits of the maximal dominant weights.

The weights of P(A) can be further organised into affine congruence classes. Each

congruence class involves two invariants [KMPS]. The first one is the level L()) of a

weight A defined by

L) =< MK >=)Y M. (3.31)

=0
The level is constant for all A € P(A) since all the roots have level zero. The second
invariant is the finite congruence class of the underlying simple finite-dimensional Lie
algebra as defined in Table 2.4.
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For a weight A, it is sometime convenient to use an (r+1)-tuple incomplete Dynkin
label (Ag, A1y - .., A-). When it is necessary to make a distinction we shall attach a null
depth d relative to A to give (Ao, Ay, ..., A )a as the complete weight labelling. If two
weights A and ) lie on the same Weyl orbit then the null depth of X relative to A is
the number of times the simple root g is subtracted from A in reaching A’. Below we

give an explicit formula [KiW] for computing the null depth A relative to a dominant

weight A*.

Theorem 3.7. Let A € P and A* € P* lie in the same Weyl orbit. The null depth of
A relative to At is given by

1 r ro

i=1l j=1
where G = S~! and S;; = (a | o)) = LAy

Proof: Let A = At =37, kio;. Then the relative null depth required is k,. Consider

/\;r — A=< At = Ao >=< Zk,-a,-,a;-’ >
=0

= kg < ao,aj > +Zk,'A,‘j
i=1

= ko <6—zr:c,-a,-,a}' >+Xr:kiAij

i=1 i=1

=~k Z ciAi; + Z k; A;;

i=1 i=1

r.c’ -
= Z j(k, — kQC;)S,'j
i=1

Gjl()‘.i - /\j-) = Z %(koci - k;)S’,-,-C_?,-,

i=1
r \"
D Gi(N =)= Z—i(koct — ke)
i=t

However S is symmetric and so is G. Then we have

r Y
Z Gii(’\i + ’\?)()‘j - )‘;') = %f(koci - k{)(/\i + /\f‘)
i=1 1

r _ r r ki v
2 Gk = XEXF) = ko el (A + A1) = o= (A + X))

ij=1 i=1 i=1 4
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The facts that the bilinear form is symmetric and W-invariant gives,
0= | A=A A=+ XAt =)

- ()\++)\[ikia,-)

=0

= kocy (A} +,\0+}: A++A)

i=1 Gi

Ly )
koci (M + ) ==Y j (NF + )

i=1 1
These implies that
i Gii (M = AFAY) }:c (i + AF) + koY (AF 4 X))
ij=1
= koZr)c,-V(Af + A7)
i=0
= ko(L(AT) 4+ L(X)) = 2k L(X)

Hence

T r

1 a +\+
20 - DG = AFAD).

i=1j=1

k03:

0
Explicit values for the symmetric matrix G for all affine algebras are given in

Appendix 2.

3.5 Orbit sums

Recall from (1.21) and (1.22) that the relation between the orbit sum and the
irreducible character is given by Q* = 3, B ch V* where
, Yoeww,} owew E(W)Ou(susp)-pn first interpretation,
o= { Yoeww,} wew E(W)0uuwer second interpretation.
In the affine case, the first interpretation of (1.21) is suitable for computional purposes.

However although lengthy, the second interpretation of (1.21) may be used to obtain
analytic expressions for BY.
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Consider a weight v that lies on the intersection of the Weyl orbit of u and the
Weyl dot orbit of A where pu = (uf,pf,...,pf)a,, and A = (Af,Af,..., A )a . Then

the null depth of X relative to p is d = d,, — d5, where

1 ' = N
dyy = m i§=:1 Gij(vivj — p I‘T) ’
1 o . . (3.32)
ST ) 2 Gt 1) +1) = (F + DOF +1)).

i,j=1

[ S
dAv_

-

We can then interprete the elements of the matrix Bf as

y= ZE(W,\V) (3.33)
veY
where T is the intersection set of the Weyl orbit of p = (&, pf,...,pt)o and the
Weyl dot orbit of A = (A, A, ..., Ar)s, while e(w,,) = 1(resp. — 1) if the number
of fundamental reflections required to reach v from X is even (resp. odd). Since any
w € W can be written as w = t, with t, € T and @ € W, and the parity of t, is
even then the parity of w is the same as the parity of w.

Before we proceed with explicit calculations it is of the utmost importance that we
identify first a set of coset representatives {W : W, } such that we do not double count
terms appearing in the Weyl orbit of u. Each w € W can be written in the form ¢,
with ¢, € T for some a € M and @ € W. Two terms @w(u) and @'(¢) of the W-orbit

of p are said to be equivalent if there exists a € M such that w(u) = t,@'(¢). In such

a case it follows from (3.21) and the fact that L(@'(x)) = L(k),

B(n) = @) + L) = (1) | @) + 5(a | ) L(1))8
where the last term necessarily vanishes since w(u) and @'(p) both have null depth 0
relative to p. Hence
(i) — & () € L(u)M . (3.34)
Thus reduces the generation of the complete Weyl orbit of p to that of finding a

complete set of inequivalent terms w(u) and applying translations to these.
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For example, in the case of A} and the dominant weight A = (0, \;, A;), we have
S2(A) =)\- /\2&2
8132(/\) =)\ - (Al + /\2)041 - Azag

The lattice M in this case is ma, + nay with myn € Z and L(A) = A; + A,. Hence

52(A) — 5182(A) = (M + X))y € (A + XM = L(A)M.

-

so that s,(A) and s,5,(A) are equivalent. However when the dominant weight is

(X0,0, ;) we obtain

$2(A) — 8182(A) = s € (Ao + X)) M

so that s;()) and s;82()) are not equivalent.

In Table 3.4a-3.4d we tabulate w' € {W : W,} such that no two w’()) are equiva-
lent. Thus, for example from Table 3.4b, the set of coset representatives {W : Wp x, 1)}
is given by

{tmoq+na;a tmal+na;sl’ tma1+na332 l man € Z} .

As discussed by Patera and Sharp [PS], for simple finite-dimensional Lie algebras,
the complete weight content of a Weyl orbit of a dominant weight A may be obtained
from a corresponding orbit-weight generating function. The same principle applies to

the affine algebras. In the affine algebra case the orbit-weight generating functions take

the form

HAAN = Y wl]( - AA) (1 — A6 (3.35)

we{WWw,} i=0

where A = (Ao, A1,..., A, A) are dummy labels which carry the affine orbit labels
p = (o, 1, ..., tr)a, as exponents and A = (Ag, Ay,..., A, 6) are also dummy labels
which carry affine weight labels v = (v, v4,...,1,)s, as exponents. Thus:

H(AA) = ST Al AR AR A% NS L A2 6%

TR
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Table 3.4a : Left coset representatives of W with respect to W, for AW and AP,

Y w € {W: W,}

(AD))‘I) 2d, 81
(Ae,0)  id

(0’ ’\1) Zd

Table 3.4b : Left coset representatives of W with respect to W, for A,

A ’LUIE{—W—:W)‘}

(Ao, A1, A2)  id, sy, Sa, 8281, $1S2, $18251
(0,A1,A2)  id, sy, S9

(Xo,0,X2)  2d, 83, 8185

(Ao, A1,0) id, 8y, $25,

(0,0, ;) id

(0, A1,0) id

(X,0,0)  4d
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Table 3.4c : Left coset representatives of W with respect to W, for C{", A®) and
DY,

A w € {W: W,}

(/\0,/\1,)‘2) id, S1y 82y 5251, S152, 518281, 528152, 52515251
(03A1,/\2) 2d, 81, S2, 8182

(/\0, 0, /\2) td, 8o, 5182, 52515,

(/\07>‘1,0) id, sy, 5281, 818281

(0,0,%,)  id

(0, /\1, 0) Zd, S

Table 3.4d : Left coset representatives of W with respect to W, for G and D{.

A 'LU’E{—W:W,\}

(/\o, /\17 )\2) 3d’ S1y S2, S281, 8182, 818281, 825182, 8281829,
: 81525182, 8152515251, 52581525152, 52515251528,

(0, A1, A2) 1d, Sy, 83, S182, 8281, S2815,

()\o, 0, /\2) td, S5, 8152, 525152, 51525152, 5251525152
(/\07 AL 0) td, 81, 8351, 518281, $2518281, 515251528,
(0,0, ;) id, s,

(0,1,0) id, sy, 895,
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where the relative depth d,, = d, — d,, so that the factor (1 — A)~! is redundant.
The sum in (3.35) is over the left coset representatives which it should be empha-

sised operate only on the weights carried by A. It should also be noted that we have

abused the notation by denoting dummy variables and fundamental weights by the

same symbols. We shall give a derivation of the orbit-weight generating function of

A in order to illustrate the notation and the method.

First note that

1 o0 oo
0= A AR = 2 2 Aeho) (Anh)’

j=0i=

and a general 2-tuple (Ag, A;) can be classified as one or other of

(0,0), (¢,0), (0,5) and (,4)

where ¢, # 0. Let A = tA;+7A; be a weight. Then the set of left coset representatives

{W : W,} that can be associated with various 7 and j can be obtained from Table 3.4a.
By (3.21)

tnay (180 + JA1) = (i = 2r(i + j))Ao + (§ + 20(i + j)) Ay — (nj + (i + j))8
tnorS1(ih0 + A1) = (1 + 27 = 2n(i 4 7)Ao + (=7 + 2n(i + §))A,
— (—nj+n*(Z+7))6.

The Weyl group for A is {tnerstnars1 | m € Z} so that from Table 3.4a the orbit-

weight generating function (3.35) can be expanded to

H(A,A) =) taa, (1 — A6) 1ii (Aofo)' (ALAL)

nel j=0i=0
+ D tnesi(1— A8 D (Acho) (AAy )
n€Z j=014i=0

o]

- i(AoAO)i — D (AAL))

i=0 j=1
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i
Ingk
’.3>
=

|
RY
-
£y
[w%
3
e S
=,
¥
-
[y
£y
[w %Y
S
1
-

[oe]

- Z(AoAé_znAfn(snz)i - Z(A1A§"2"A1-1+2n6n2—n)j)

i=0 j=1
This can then be simplified to the rational form
1 1
H(AA) =
S 2:2 = 28) (1= AAT A6 = A As AT 67+0)
1
* (1 — AgAg™*" AP 677)(1 — AL AGT> AT 27 6n2-n)
1 A1Ag_2"Al-1+2n6n2—n ) 330
T L= ALY TATET) | (1= A AT AL ghn (3.36a)
1
= 7;1 (1 — AoAé_znAf"&")(l _ A1A0-2HA1+2H5"2+")(1 _ A(S)
+ Z A0A1A3—4nA1—1+4n62n2-n
nez AOAIIJ-%A%"‘SM)(I - AlAg—ZnAf1+2n5"2"")(1 — A$) )

In the following we give the remaining orbit-weight generating functions for all

affine algebras of rank 1 and 2. The parity of the Weyl element used to obtain the

terms are denoted by superscript + or — of (1 — A§). Otherwise specify, m and n are

always assume to be integers.

The orbit-weight generating function for A is
1
2 T AR Ar67)( — Ahs AT 6w (1 — AT
AOAlAg—SnA-l-1+6n5(3n2——n)/2
(1 — AgAT™ " Anén™) (1 — A AFPATIFPRE(2=n)/2) (1 — AS)- ]
The orbit-weight generating function for A" is

(3.36b)
+

1
Z[(1 — AoQAo)(1 — A1QA6™)(1 — A,QA67)(1 — Ad)+
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Chapter 3
ALQPAIAT A5
(1= A00Ae) (1 = A0 Ase-m+m)(1 = A;0A,6)(1 = A6)-
A A;Q* Ao AT AZS—m 2
(l - AIQA()AI—IA 6-m+n)(1 - AgQAzfsn)(l - A(S)_
AoAr,Q?AZA, A 16
T A 0A) (1 = 410A67)(1 — A,QAoh; A7 167 7)(1 — AG)F
A AzQZAoAZA 152m-n
T AT A 0M7) (1 — A0MAA; ) (1 = AG)F
AoA,Q?ASA;16-7
T A T A OR) (1 = A;0A2A;76-")(1 = A,0AoA A7 67 7)(1 — A)-
AoA,Q?AZAT 16~
(]. - AQQAQ)(]. —A QAOAl 1A26—m+n)(1 - AQQAzAl 16- )(]. - A6)+
AgA Ay QPASAT A 5
AT AQA) (1 = AQAIA; 16-7)(1 — A,0AA6-m)(1 — A6)-

2
Where Q — Ao—m—nAfm—-nAz-—m-}-Zném —mn4n? .

+

+

(3.36¢)

The orbit-weight generating function for C$V i

1
,;:,[(1 — AgQA )1 — A1 QA16™)(1 — AsQA67)(1 — Ad)*

A1QAGAT A6
(1 = As00o) (1 — A;0AA Az6-m+7)(1 — A;QA,67)(1 — AS)-
A0A2Q2A A2A 162m n
T 0= 40801 — A0A67)(1 — 400205 87 )(1 — A3)-
A A2Q2A3A 153m n
t AT A0 (1 = A,QAIA; 6 )(1 = Ad)-
AoA1 Q2A2A, A 1m"
= A0Qhe) (1 = A OB AT 67 )(1 — A;0MTA; 167 )(1 = A6)F
A A2Q2A3A 3A25 -3m+2n
T A= As0Re) (1 = A OAoAT Ayb—m+7)(1 — A;QNEATZA6-7mm)(1 — A6)*
AoAzQzAgAl 2A26 2m+tn
(1 — AsQAo)(1 — A;QA2A P A,6-2m)(1 — Ab)F
Ao A, Q2AZATIS—™
T U= A000) (1 = A, 0MAT6-™)(1 — A,0MZAZAz5-7mm) (1 — AB)-
AoA;Q?ASAS16-"
(1 -_— AQQA())(]. — AIQAQAlAz_l(Sm_n)(]. - AZQA%A;16~")(1 —_ A(S)—

+

(3.36d)

+

+
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AcA1 A QPAATIASS—™ ]
(1= AQA0)(I — AQMATE™)(1 — A,QAZA;T6-)(1 — Ad)*

+
2 2
where Q — Aa2mAt11m—2nA;2m+2n62m —2mntn?

The orbit-weight generating function for A is

1
Z[(l — AsQ7Ao)(1 — A1Q?A,6m)(1 — A,QA87)(1 — Ab)*

m,n

AIQZAO 1A26—m+n
(1 — AoQ2Ao)(1 — A;Q?AoAT 1A25-m+")(1 — A,QA,6772)(1 — A6)-
Ao Ay QA A NG E™ 12
(1 — Ae@2Ao)(1 — A,Q?A6m)(1 — AQA AT 6m7/2)(1 — A6)-
AL A QPAIAG 8201
(1 — A1Q2A,6m)(1 — A,QA AF6mn/2)(1 — A)-
N AoA QA AZA AF2Em"
(1 — AeQ?Ao)(1 — A1Q?AgA AS26m-7)(1 — A,QA A 6m7/2)(1 — AS)+
Ay A, QPARATP A6t/
(1 — AgQ?Ao)(1 — A;Q2AAT AZE-m+7)(1 — A,QAoAT AR6-m+7/2)(1 — Ab)+
Ao ArQ3A2ATIA§-mHn /2
(1= ApQ?Ao)(1 — AsQAoAT A§—m+n/2)(1 — AS)+
N Ao A1 QHASATIE™
(1 — AeQ2A0)(1 — A1Q2A2ATI6-m) (1 — AsQAAT A 6-m+n/2)(1 — A6)-
Ao A Q3AZAFI6~?
(1 — Ao@Q?A0)(1 — A1Q2AcA AT26m7)(1 — A2QAAZTI6-7/2)(1 — Af)-
AgA A Q3ARATI G612
(1 — AoQ2A0)(1 — A;Q?2AZATI6-7)(1 — A,QAA; 6-7/2)(1 — Ab)*+ ]

+

+ (3.36¢)

-+

+

+

—_m m-—n —_—em n m - n n2
where Q = A;™A2m=n A5 2m+2n§(m*=2mntn)/2

The orbit-weight generating function for D{¥ is

1
2 (1= AoQAo)(1 — A1Q2A16°)(1 — A2QA287)(1 — A)*

m,n

A1Q2A5A;1A§6-2m+2n
(1 - AOQAO)(]. - A1Q2A2A;1A26—2m+2n)(1 — AzQAz(gn)(l — A(S)—
AcAsQ?Agh  Ag162mn
T U= 400 (1 = 4,074, 67)(1 — A,0A,A; 67 )(1 — Ad)-
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Chapter 3
AL A QPAIAT 4
(1= A,02A,6°)(1 — A,QA A7 6m-n)(1 — Ab)-
AoA Q3AZA, A 2872
(1 = AeQAo)(1 — A,Q2AZA, A;262m2n)(1 — A;QA A58 )(1 — AS)*
N A A QPASAT2AG 4o
(1 — AcQAo)(1 — A;Q?AZA;TAZ6-2m+20)(1 — A,QABALA,6-2m17)(1 — Ad)*
AgA,Q2ASATI A6 2m
(1 = AcQAo)(1 — A;QAZA;TA,6-2m+n)(1 — AS)*
AleAgAl—lé-zm
(1 — AoQAo)(1 — A;Q?AATT6-2m)(1 — A,QAZAT Ay6-2m+n)(1 — Ad)-
AoA, Q7 ABAS16
(1 — AoQAo)(1 — A,Q?AZA,A; 267m-2)(1 — A,QAZA;76-7)(1 — Ad)-
Ao Ay A, Q*ATATI A §-2mn ]
(1 — AoQAo) (1 — A;Q?A2AT16-27)(1 — A,QABA; 6-7)(1 — Ab)*

+

(3.36f)

+

_I._

_|._

+

+

2 2
where Q = A;2mAZP=n A5 2m+2n §2m?=2mntn?

The orbit-weight generating function for G%V is

1
2| (1= AQA)(1 — A1 @Q2A16m)(1 — A,QA267)(1 — Ab)+

m,n

A1Q2AOA1—1A:236—7R+371
(l - AoQAQ)(l — AleAoAl—lAgé-m+3n)(1 - AgQAzén)(l — A(S)—
A QA AFTE™ R
(1= A0A)(1 — A1Q7A67) (1 — A;0M A7 6 )(1 = AG)-
AIQ ADAZA 362m =3n
AT A 0Re) (1 = A,07AeA7A; 567 5) (1 — A, QM A7 6m-m)(1 — AG)F
AoAngAZA 1A26-m+2n
1— 0 0 1'— 1 21\1&1 36—m+3n 1 - 2 OAl A2—m+2n 1—A +
A,0M 4,07 Ao AL A28 4,00 AT iA26 ;
A0A1Q3A4A 2A36 2m+3n
P A= A080) (1 — A, Q?AIATAZ6-27+57) (1 — A;QAoAT T AZ6-m+7)(1 — A6)-
AoArQ?AZA, A26m=2n
(1 — AoQAQ)(l —A Q2A0A2A~362m—3")(1 — AzQAoAlAz_zém_zn)(l — Aé)_
A A2Q3A2A3A 563m -5n
T AT A07A, A A% 3n)(1 A0 M A6 ) (1 — Ad)-
+ 1Q3A3A1A236m -3n
(1= A,0h9)(1 = A1Q2A3A1A;36m-3n)(1 A0 A A 26T (1 — AG)T

-+

+

+

(3.369)
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Orbit sums
ApAQPASATI A8+
T T A0Re) (1 = A;OPAZATTAZ8-2m+9)(1 — A,O AT A7) (1 — Ao)T

AgALQ3ASATIS ™

(1 - AQQA )(1 et A1Q2A4A1 16”")(1 - AgQA2A1 1A26-—m+n)(1 - A(S)"
AcA,Q2A3AZI6

T S A0 (1 = A07AIA, A56m)(1 — A,Q0AIA: 6-7)(1 — AG)-

AoA A, QUATAT A6~ |
AT A0A) (1 = A;Q?AIA 6-7) (1 — A,0A3A; 6-7)(1 — Ad)*

where Q = A;™A2™~3n \F3m+6ngm?-3mn+3n’

The orbit-weight generating function for D is

1
Z[ (1 — AoQAo)(1 — A1 Q2A6m)(1 — A,Q3A,6%7)(1 — Ab)*+

m,n

A Q2 AGAT A6
T = AQho) (1 = @A A8 +n)(1 — A;QPA,67)(1 — £6)-
+ AzQSA?A-:Z—léBm—IBn
(1 — AQA0)(1 — A;Q7A87)(1 — A,Q3AZA; 6m—3n)(1 ~ AG)-
N ALQ2AAZAF 1§25
(1 — AoQA0)(1 — A1Q7AcAIA;T67—37)(1 — A,QPAIA; 1 65m-3m)(1 — Ab)*
N Ao A QP AIATPAZE3m+on
(1 — AQAo)(1 — A Q7 AGAT "A6-m+3)(1 — A,Q3AZAT°AZ6—3m+5)(1 — Ad)*
A0A1Q3A4A 2A 6 2m+3n
T A=A Q) = AGPAIAT Ayb-3mtom)(1 — A,QPARALAZ8-m+om)(1 — A6)-
N Ao A Q AEAZAF267m-0n
(1 = AQAo)(1 — A;Q7AATA; T 87m-30)(1 — A,QPAZATA;26—m)(1 — Ad)-
A1A2Q5A4A5A~—365m—9n (336h)
T A= AR AiA; 1em7)(1 — A,QPA3ATA; 26o-om)(1 — Ad)-
. A QPARA, AF1m-3n
(1= AQRo)(1 — AQ7A3AA; 8m3)(1 — A,Q3AZA3A;763m—6n)(1 — Ad)*+
Ao Az Q*ATATEA,8-3m o
T = A0 = A, QPATAT P A6-3m+3n)(1 — A,QPASAT A 6-omHan)(1 — Ab)*
AcA QP AZATI6~™
T U= A0 = 4QPASAT 6-m)(1 — A,QPATAT S AR6-3m+an)(1 = AD)-
A0A2Q4A7A 15~3n
T = AQ0)(1 = AQPAIA,A; 6m-37)(1 — A;QPA3A; 6-37)(1 — A6)-

95




AoAi A, QO AL AT A 6~ m3n
+ ]
(1= AoQho)(I — A;Q7A2AT6-m)(1 — A,Q°AGA; 16-57)(1 — Ad)*

2 2
where Q = AamAgm—anAz-m+2n5m -3mn+3n .

For the purpose of illustration let us obtain weight multiplicities for the affine
algebra A$"Y whose highest weight has level 2 and there are mixing of orbits. The
dominant weights 2A; = (0,2,0) and Ay + A, = (1,0,1) have the same level and are in
the same affine congruence class. The Weyl orbit of p = (0,2, 0) can be obtained by
picking up the coefficient of A? in the expansion of the orbit-weight generating function
(3.36¢) namely Q2A26?™ where Q = A;™-"AZm-n A m+2ngm’-mnin®  This orbit consists
of weights v = (1o, V1, 2)a,,. However only two of the components of v are independent
because of the constancy of the level. In fact vy = L{y) — 1 — v, and in the following

we shall not need to write down vq explicitly. Hence the Weyl orbit of p = (0,2,0) is
{(voy 1, 2)4,, | i =4m —2n + 2, v, = —2m +4n, d,, =2T+2m }.

where ' = m? — mn + n.
Similarly, the Weyl orbit of x4 = (1,0,1) is obtained by picking out the coefficients
of AyA, and can be shown to be
{vilnn=4m—-2n,v,=-2m+4n+1,d,, =2T+n }
Uvin=d4m-2n+1,v,=-2m+4n—-1,d,, =2l +m—-n }
U{rin=4m—-2n—-1,v,=-2m+4n,d,, =2 -m }.

The Weyl dot orbit of A can also be computed similarly. But this time the level
is increased to L(A + p) = 5 and at the same time we have to take into consideration
the parity e(ws,) of tna,4na,@. First we obtain the Weyl orbit of (1,3,1) by picking
up the coeflients of AgA3A, and then have to subtract p from v. The Weyl dot orbit

of A =(0,2,0) is then
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Orbit sums

{v|vi=10m —-5n+2, v, = ~5m + 10n, d§, = 5T +3m +n, ¢ = +1}
U{r|vi=10m—5n—-4,v,=-5m+10n+3,d{, =5T -3m +4n, e = -1}
U{v v =10m —5n 43, v = —5m +10n — 2, d§, = 5T + 4m —n, e = +1}
U{(v | v =10m = 5n, v, = =5m + 10n — 5, d§, = 5T + m — 4n, e = —1}
U{v | vi =10m —5n —5, v, = ~5m + 10n + 2, d§, =50 —4m + 3n, e = +1}

U{v|n=10m~5n—2, v, = —5m + 10n —4), d;, =5I' —m ~3n, e = —1}.
The Weyl dot orbits of A = (1,0,1) are obtained by picking up the coefficients of

AZA; A2 and subtracting p,
{v|v=10m —5n,v, = -5m+10n+1,d], =5T + m + 2n, ¢ = +1}

U{v|n=10m—-5n—-2,v,=—-5m+10n+2,d, =5 —m+3n, e = —1}
U{rln=10m—-5n+2, v, = —5m +10n — 3, df, =5 + 3m — 2n, € = +1}
U{rim=10m-5n+1, v,=-5m+10n -4, d;, =5T +2m — 3n, e = —1}
U{v|wn=10m—-5n—4, vy,=~5m +10n, d§, = 5I' - 3m +n, ¢ = +1}

U{rlm=10m—-5n-3,1,=-5m+10n—2,d5, =5 —2m —n, e = -1}
Let Y(u,A) denote the intersection of the Weyl orbit of ¢ and the Weyl dot orbit

of A. The null depth of A relative to p is d = d,,, — d5,. For illustration, consider the

intersection of the Weyl orbit of z = (0,2,0) and the second subset of the Weyl dot

orbit of (0,2,0) given above, i.e. we must have

4m,; —2n; + 2 = 10m, — 51y — 4 and —2m, +4n, = —5m, + 10n, + 3.

In matrix form this can be written as
( 2 —1) (2m1—5m2 _ (-6
"1 2 2711 —_ 5n2 -
(Zml - 5m2 _ -3
2n1 - 5712 - 0

m=5m+1, my=2m+1, mel

This then implies that

n,=95n, ny,=2n, nel
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Then
d =2((5m + 1) — (5m + 1)(5n) + (5n)%) + 2(5m + 1)

-5((2m +1)? — (2m + 1)(2n) + (2n)?) — 3(2m + 1) + 4(2n)
=30 4+ 16m — 8n + 2

Cdntinuing with the other subsets we obtained the intersection sets Y((0, 2, 0), (0,2,0))

as follows

{(v6,20m — 10n,—10m + 20n)4 | d = 30’ + 4m — 2n, ¢ = +1}
U {(ve,20m — 10n +6,—10m +20n —2), | d = 30T + 16m — 8n + 2, ¢ = —1}
U {(v,20m — 10n — 2, —10m + 20n +8),; | d = 30T — 8m + 22n + 4, ¢ = +1}
U {(v,20m — 10n,—10m + 20n + 10), | d = 30T — 2m + 28n + 8, ¢ = —1}
U {(vo,20m — 10n + 10, —10m + 20n + 2), | d = 30T + 28m + 4n + 10, € = +1}
U {(v0,20m — 10n + 8, —10m + 20n +6),; | d = 30T + 22m + 16n + 12, e = —1}.
Similarly it can be shown that Y((0,2,0), (1,0,1)) is
{(v0,20m — 10n + 10, —10m + 20n — 4),; | d = 30T + 28m — 14n + 6, ¢ = +1}
U {(,20m — 10n + 18, —10m + 20n — 8)4 | d = 30T 4 52m — 26n + 22, € = —1}
U {(#,20m — 10n +2,—10m + 20n + 12); | d = 30T + 4m + 34n + 14, ¢ = +1}
U {(vo,20m — 10n + 16, —10m + 20n — 4),; | d = 30T 4 46m — 14n + 18, ¢ = —1}
U {(v,20m — 10n + 6, —10m + 20n + 10), | d = 30T + 16m + 28n + 16, € = +1}
U {(v0,20m — 10n + 12, —10m + 20n — 2), | d = 30T + 34m — 8n + 10, ¢ = ~1}.
Then (3.33) and (1.21) imply that the orbit sum of (0,2,0) is given by
002,000 — Z[ch Y (020)s0r44m-2n _ of 1/ (0:2:0)30r416m-6n42 1 oy |/ (0:2,:0)s0r-sm+22m 44
- :’;nV(OrZ»O)SOT—Qm+26n+6 +ch V(0.2.0)s0r428mt4ns10 _ ofy 1/(0,2,0)20r 422m +16n 412
+ ch V(0 )s0r428m-1ants _ o} V(1.0.1)s0r+52m - 26n+23 + ch V(10 Dsorsamysantaa

—ch V(1.0.1)30r+4sm-un+1s + ch V(1,0,1)30r+16m+:sn+1s —ch V(1,0,1)30r+34m-sn+xo ] .
: (3.37)
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Geometrically we can visualise Weyl orbits of rank 1 and 2. For the Weyl orbits
of p = (0,2,0) and (1,0,1) given previously we may plot them as in Figure 3.3. The
symbols e specify the Weyl orbit of (1,0, 1), and the symbols & specify the Weyl orbit
of (0,2,0),. The number next to the elements are the null depths d,,,. The elements of
the Weyl dot orbit of (1,0,1), are the vertices of the hexagons of the shape and
the Weyl dot orbit of (0,2,0), are the vertices of the hexagons of shape -<:> .

An alternative method of obtaining the orbit sum expansion for p is to add p to each
weight of the Weyl orbit of p, reflecting into the dominant sector, subtracting p and
interpreting the result as a signed, positive or negative, coeflicient of A according to the
parity. A reflected weight lying on a reflection hyperplane is ignored. When computing
the orbit sums numerically we must truncate at a certain depth. This truncation depth
is determined by reflecting some neighbouring elements into the dominant sector. In
Figure 3.3, the neighbouring elements that we should consider are those that lie in
the upper part since these elements tend to have a lower depth and a negative zeroth

Dynkin component. These neighbouring elements, among others, includes
(=7,-2,11)17, (—8,0,10)16, (—12,8,6)2.

Reflecting these weights into the dominant sector, we obtain
8280828180((—7,—2,11; —17) + p) — p = (0, 2,0; —9)
S0528180((—8,0,10; —16) + p) — p = (0,2,0; —8)
5081528150((—12,8,6; —24) + p) — p = (0,2,0; ~12)
Hence the weight lattice in Figure 3.3 will gives result accurate until depth 7. Applying

similar reflections to other weights on the hexagons, we obtain

QO — ch YO _ o, YU _ ch O 1 9ch V(10Da _9ch VO2 _ ch YOOs 4

(3.38a)
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Figure 3.3 : Orbits of (0,2,0) and (1,0,1) modules of A(;)

[ ] [ ]
18 18 15 kS 12 1% 5 g
®* — — e — - e _—_ . e [ ]
/ / \ \
/ Vi \ \
A 164 A e 10 A%
\ / A\ /
\ / N v
* . ) . )
\ /

\ /
. ‘OA__Q_..Aq .

\ \ / /
\ \ / /
. o 2e . .
\ / \ /
Ny A \ \ /
. A . 28 . A °\ A Ge & .
/ \ / \
/ \ / \
. . . 06—~ — o _ _ e . . Qe — — & — — e,
/ \ / \ /
/ \ / \ /
A . N . A _ A o A o« — _ A
4 4 V2 16
e — — \3’_- _1.0__ ~ e & . Te— - ?___‘S_._Q\S . .
/ / \ \ / / \ \ /
/ / \ \ / / \ \ /
. A . A * 1\ IOA - A ° A\g .
\ / \ / \ / \ / \
\ / \ / AN N/ \
. . . * . \Ge . . *9) . .
\ / \ /
\ / \ /
A o . A“ — e A . 20&_ — e _A ] &
2% 22 U
. .
100



Orbit sums

QMo — cp Y10 _ 9cp V(02001 _ 9cp YOO o o V(020 9cp (10D
+2ch VO 4 9ch VO20h _ cp V04 _ 2ch V(020 _ 2cp V1ODs  (3.38b)
— ch Ve _ 9ch YV (10s 4 90p (020 4 9cp /(100 4
Other non-maximal orbit sums Q29 and (1:%% can be obtained directly as
QO20% = cp YO0k _ ch YOOk _ of YO0tz 9cp (1002

QU = ch VOO 9k YOk _ 2 Y(IODer 4 ch YOOz 4

In matrix form this can be written as

[ (0200 1 -1 0 0 ... 0 0 ...\ /chV(e\
Q1010 0 1 -2 -2 ... 2 2 .|| chVvao
(020) 0 0 1 -1 ... 0o -1 ... ch V(0201
Quas | 1o 0 0 1 ... =1 =2 ...||chyvuom
Q020)- 0 0 0 0 ... 1 =1 ..]||cnveon

\ Qo \0 0 0 o0 0 1 ...) \chvaonr

The multiplicity matrix is upper triangular with 1’s on the diagonal and can be
easily inverted. The inversion will gives the expression of irreducible characters in term

of the orbit sums whose coefficients are the weights multiplicities.

ch V(020) 1 1 2 4 522 40 ...\ [ QO
ch V(101 0 1 2 4 636 908 ... || Qaowe
ch V(020% 0 0 1 1 256 365 ... || q2n
chvaoms | _fo o0 0 1 300 441 ... || Quom
ch V(020)7 o 0 ©0 o0 ... 1 1 .|| o
\ ch V(101 o 0 o 1 ... 0 1 ... ] \qaour |

As in the case of the orbit sums the expansion of the irreducible characters
ch V(©200 and ch V(1% determine the expansion of ch V(®29x and ch V(1.01x respec-
tively, i.e. the first two rows of the inverse matrix determine the rest. The modules
of V(020 and V(29 are isomorphic. Hence if the highest weight representation
is (0,2,0), then the first row of the above inverse matrix gives the following weight
multiplicities of the dominant weights up to depth 7.
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depth (020) (101)
0 1 1
1 2 4
2 8 12
3 20 32
4 52 7
5 116 172
6 256 365
7 522 740

If the highest weight representation is (1,0,1), then the second row gives the following

weight multiplicities of the dominant weights.

depth  (020) (101)
0 0 1
1 2 4
| 2 7 13
3 22 36
| 4 56 89
5 136 204
6 300 441
7 636 908

These results are in agreement with the tabulation given by [KMPS] for level 2 mod-
ules of AM.

Using a similar algorithm we have written a computer program to calculate weight
multiplicities of heighest weight representations of the affine algebras A®), B, CM),
DM, GP, AP, D, and DP. The program runs successfully for low rank algebras. In
the case of higher rank algebras we have to consider a Weyl group of large order which
grows factorially with rank and a large weight lattice which grows exponentially with

rank. This places a practical bound on the calculations. In Appendix 3 we tabulate
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some weight multiplicities of level 2 modules of twisted affine algebras of rank 2.

To obtain analytic results for the weight multiplicities we have to introduce a
dummy variable ¢ = e~ which carries as its exponent the depth of the irreducible
character [Kass], i.e. we shall write in general ch Ver2ne ag ch V(dorAndogd  For

example, the previous orbit-character expansions (3.38) can be written as
Q02 = cp VO2o(1 — g2 —2¢* + ...)

+ chVIMo(1 4+ 2¢% — g+ ...)
Q%0 = RV O0(_2 4 g2 4 2¢3 +2¢% — 2¢° — ¢® + 24" + ...)

+ch VUMe(1 — 29 4 2¢% — ¢* —2¢° ~2¢° +2¢" + ...)
In general for each particular affine congruence class, we need to consider

Q* = (ch V)&t (3.39)

A

where p and A are maximal dominant weights. For example, from (3.37) in the case of

level 2 modules of AS", the analytic expressions for {2 and £{32%)

(020) (101) &T€
(020) __ Z 30T'+4m—2n 30T +16m—8n42 30T ~-8m+22n+4
K(o20) = g —4q +4q
m,n
30T —2m+28n 48 30T +28m+4n+10 300+22m+16n+12
—q +q —q ]

(020) __ 30I'4+23m—14n+6 30T +52m—26n422 30I'+4m+-34n414
K(101) = Z[q -4 +q

m,n

. q30F+46m—14n+18 + q301"+16m+28n+16 _ 30I‘+34m—8n+10]

q
In Appendix 4 we tabulate some analytic expressions for &5 in the case of level 1

and 2 modules of the affine algebras of rank 1 and 2. Although given with different
parametrisations, some of these expressions can be inferred from or checked against
the work of Begin and Sharp [BS1]. Inverting the matrices of the g-series analytically

extends the work of Begin and Sharp to give the required expansion of irreducible

characters

ch V¥ =" (9 0f. (3.40)

)
This will be discussed in the next chapter.
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CHAPTER 4

Weight Multiplicity Generating Functions

4.1 String functions and modular forms

Let VA be a highest weight module of an affine Kac-Moody algebra G(A). Let A
be a maximal weight and dim VA, denote the multiplicity of the weight A — né. A

string function o2 is defined as the weight generating function

or =Y, dimVy e . (4.1)

n=0

Since any weight A of V4 is conjugate to a dominant weight A* € P+ we know all the
string functions and hence all the weight multiplicities as soon as we know o% for all
maximal dominant weights A+.

Although o3 is not really a ‘function’, it can be turned into a genuine function that

is defined and converges in the upper half complex plane H = {r € C| Im7 > 0} by

replacing e~® with €™ to give

or(7) =D a. e =" a.q, (4.2)
n=0 n=0

where a, = dimV} ; and ¢ = €**". This string function can further be turned into

a modular function by multiplying with a certain power of ¢ known as the modular

characteristic

A+plA+ Al A
S(AN) = ‘Z(Zl-{-g) P (p2|gp) _ 2IL)

where L = L()) and g = L(p). In the case of untwisted affine algebras, a tabulation of

(4.3)

s(A, A) can be found in [KMPS]. In Table 4.1 we tabulate the modular characteristic

of level 2 modules of all affine algebras of rank 2. We denote a modular string function

by ¢} where

(1) = ¢ Mad(r). (4.4)



Table 4.1a : Modular characteristics of level 2 modules of ASY.

(002) (110) (020) (101) (011) (200)
(002) —% ~-£ 0 0 0 0
(110) % - 0 0 0 0
(0200 0 0 - -x 0 0
(om0 o 5 -x% 0 0
(011) © 0 0 0 - -
(200) 0 0 0 0  _z

Table 4.1b : Modular characteristics of level 2 modules of C{V.

(002) (020) (101) (200) (011) (110)
(002) —§ - ~% % 0 0
(0200 3 -% % % 0 0
1) 5 & & e 0 0
(2000 % % m s 0 0
(011) 0 0 0 0o -i -
(110) o0 0 0 0 R &
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Table 4.1c : Modular characteristics of level 2 modules of G5V.

(002) (010) (101) (200)
(002) —3% L £ 1
(010) —Z% -4 1 u
(101) -2 —1 ~L >
(00) & -»m 1 =z

Table 4.1d : Modular characteristics of level 2 modules of A,

(002)  (010) (100)
(002) -3 2 u
(010) -2 -5 i
(100) -7 -% —%

Table 4.1e : Modular characteristics of level 2 modules of DS.

(002) (010) (200) (101)
(002) —%& Z i 0
(010) -2 —1 u 0
(100) -2 1 _5 0
(101) 0 0 (-

Table 4.1f : Modular characteristics of level 2 modules of DP.
(010) (200)

(010) —; =
(200) -2 —
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A modular function which is holomorphic everywhere (including infinity) is called a

modular form. To be precise we need a definition of modular form as follows [Kac4].

Definition 4.1.  Let
I'(n) = {(az) € SLy(Z)|a=d=1modn, b=c=0modn}
c

be the principle congruence subgroup of SL,(Z). A function f : H — C is called a

modular form of weight k for I if f is holomorphic on H and

ar +b
cr +d

I ) = x(A)(er +d)* f(7)

where the multiplier system x satisfies | x(A) |=1 forall A= (*") e T.

Among the most popular examples of a modular form is the Dedekind n-function
n(r)=e% [[(1 - €™) forT € H, (4.5)
n=1

which is a modular form of weight ; for I'(1). The multiplier system x is such that
x(S) = e=™/* and y(T') = e™/*? where § = (°7!) and T = () generate T'(1). In

10

terms of Euler’s function ¢(g), the n-function can be written as

n(r) = ¢¥¢(q) where ¢(q) = ﬁl(l ~q). (4.6)

i=
The relations between modular string functions ¢} and modular forms can be traced
back to the work of Kac and Peterson [KaP]. Using the theory of classical theta-
functions they obtained the transformation law for string functions of affine algebras of
rank r and showed that ¢} are modular forms of weight —r/2. The following theorem
and corollary which were proved in the light of modular forms [KaP] are very helpful

in obtaining explicit form for string functions.

Theorem 4.2. Let G(A) be an affine Kac-Moody algebra and ¢, be a modular string

function of a highest weight module V* of level L. Then

det | ¢, [aueph,. = G(7)IPrhesl
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where P}, is the set of maximal dominant weights of level L and
(n(r) for XM and AP,
n(r)~p(2r) for AL ,,

G(r) =3 n(r)p(2r)-t for DY),

n(r)*n(27)* for E(z)

C7(7)n(37) for D, -
where X = A,B,C,D,E,F or G.
Corollary 4.3. Let h and g be the Coxeter number and the dual Coxeter number,

respectively, as defined in (3.5). Then

___(alp)
AG%«: S(A,A) - (h +1) l

where h, = h in the case of untwisted algebra and h, = g in the case of twisted algebra.

s |

For each of the affine algebra we tabulate h, g and (7 | p) in Table 4.2. By (1.21)

and (3.40) we can see that
Qf = ZK‘;ZU:Q” ,
A v
where A, u and v are all maximal dominant weights in the same affine congruence class.

This then implies that

> ko) = 6. (4.7)
Hence in principle if we could invert the matrix x4 then we could obtain the required
string functions. We shall call «§ an inverse string function. By Theorem 4.2 the

determinant of the modular inverse string functions must necessarily be G(7)/Pmez|,

Let Pt = {w,...,v.} where n =| P _|. Then

det | cX |= det | ¢*™ ) gH 3 Iaueps

= 5 fotmor,

7€S, 1=1

=3 gt vn)HJV* _

7€Sn

rnaa:

mazx
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Table 4.2 : Coxeter numbers, dual Coxeter numbers and (p | p)

Algebra h g (p]p)
AWM r+1 r4+1 Lr(r+1)(r +2)
BM 2r 2r—1 Lr(2r—-1)2r+1)
cm 2r  r4+1 Er(r+1)(2r+1)
DM 2r—2 2r—2 ir(r—-1)(2r —1)
E®M 12 12 78
E®M 18 18 399/2
E®M 30 30 620
F® 12 9 39
G 6 4 14/3
AP 2r+1 2r+1 Lr(2r—-1)(2r+1)
AP, 2r—1 2r  ir(2r+1)(r+1)
D®  r41 2r  Lr(2r —1)(2r +1)
E® 9 12 78
DY 4 6 14
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But
(i) = & te l:g : p) _ (pzlgp) AT
and
:Zl(Vn | vai) = :ZI(V.- | ;)
so that

which is independent of the permutation 7. Hence qzs’(""'”") can be factored out from

the expansion of the determinant, i.e.

det | C I mEPE .= qzs(y' ) det | ‘7 | JBEPE

mex

However, from Corollary 4.3 and Table 4.2 (modified slightly in the case of Agi)) we

have
~r/24 for X® and A,
—(r+1)/24 for AP,
| PE. 170 D0 s(AMA) =3 —(2r —1)/24 for D,
rePL.. ~1/4 for EQ),
—-1/6 for D(s) .

It then follows from Theorem 4.2 , (4.6) and (4.7) that

det | x4 | = H(q)"! (4.8)

where \
q)" for X and AD,

[ &(
$(q)1¢(g?) for A5,
H(q) = { ¢(q)é(¢?)" for D3,
| 8(9)*é(q?)  for EC,

| L (@e(e®)  for D

In the Appendix 4 we have tabulated explicit expressions for some inverse string

functions k4. These functions were expressed as sums. It simplifies things enor-
mously and make inversion easier if these functions are expressed as products. To
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The Weyl-Kac denominator identity

have some idea of what we are going to do let us invert the inverse string function
K$e) = Ta(@®™ ™" — ¢5¥'~57+1) of the algebra A{". Euler’s function of (4.6) also has an

expansion as a sum given by

¢(q) — Z (_1)nq(3n=+n)/2 — E(qen2—n _ q6n2—5n+1). (4.9)

nel+ nel

Thus ﬁgigg = ¢(q). Relation (4.7) then implies that ngigg 0(183 = 1. Hence

o= b0 = [l e = Sty
where p,(n) is the partition function. In order to obtain similar results for other
inverse string functions one may use the Weyl-Kac denominator identity (1.18) to
generalise (4.9). For future reference it is also useful to have a tabulation for the
functions ¢(gq)~* = 3 px(n) ¢" which can be obtained from [KMPS]. The combinatorial
interpretation of px(n) is the number of distinct partitions of the integer n into integers

of k different colours. We tabulate the partition function py(n) for £ = 1,...,6 and

n=1,...,20 in Appendix 5.

4.2 The Weyl-Kac denominator identity

The Weyl-Kac denominator identity (1.18) takes the form

IT (1 = eoymite = 3 g(w)er >,

a€ly weW

By Theorem 3.5 and (3.21) we have for w € W

w(p) = tatb(p) = B(p) + gar — (W(p) | &) + S| @))8
where o = 37_ njo; € M and @ € W. Let w(p) —p = — Yloes, @ = — Soiey ki, Then

w(p) | @) an Zr: kin; Ay

i,j=1

(afa)= Z nin; Aij

i,j=1
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so that

toew(p) — Z(k - gn;)e Zn, an,A,, + = E n;n; ,J)é

:Jl

Next let u; = e *,i=1,...,7r and v = e~%. Then

H (1 _ e—a)multa _ z Ze(w) ’U'q/zz .ninjA J"Z: Jkinj IJ+Z n; Hu—gn,+k, (4 10)

aE A+ a€M & -

To illustrate the method let us apply the denominator identity to the affine algebra
A, The set of positive roots obtained from (3.26), Proposition 3.1 and Proposition

3.2 1s

{né6|n>1} U {ay +né,as+né,cn + a2+ né | n > 0}.
The real roots have multiplicity 1 but the imaginary roots have multiplicity 2. Hence

H (1 _ e—a)multa - H(]- —né H(l —(a;+n6) (1 _ e—-(az-l-n&))(l _ e—(a1+a;+n6))
acA+ n=1

f_[ 1—9" ]_1)(1 — ") (1 — u0™)(1 — wyuqo™).

On the other hand we can expand [J,ea+(1l — €7%)™*" through (4.10). The Weyl

group W is given in (2.2) and this gives

2

ij=1
2
Sl(p) —p=--m = Z k,-niAij = 277,1 — Ny
{,5=1
2
sa(p)—p=—ay, = > knAy=—ni+2n,

ij=1

2
S]_Sg(p) —p= ’—2(11 — Qg = Z k,-n,-A,-J- = 3711

ij=1

2
SQSl(p) —p =0 — 2a, = Z k,’Tl,’A,’j = 3n,
i,j=1
2
518281(p) — p= —2a; — 20, = Z kin; Ay = 2ny + 2n,.

H,j=1
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The Weyl-Kac denominator identity

Let I' =33, ; ninjA;; = 6(n? — nyn, + n2) then (4.10) can be expanded to give

E : vf‘+n1+ngu-1—3n1u;3n; _ Z UF—n1+2ngu-l-3nx+1u-2—3ng
ni,na ng,n2
E vr+2ﬂ1—ﬂ2u;3ﬂ1u2—3n2+1 + Z vl"—2n1+ngu1—3n1+2u;3n2+l
ny,n3 ny,n2

+ E vI‘+n1—2n2u1—3n1+1u2—3n2+2 _ E : vr—ﬂx—ﬂgu;3n1+2u2—3n2+2’
ni,ng ni,n2

where n; and n, are integers. Hence the denominator identity for ASY can now be
written down as:

A(Ql) :

T =) (1 — v e ) (1 — v uy)(1 — v u5t)
n=1

(1= v" M) (1 = v ui up (1 = v uy) (4.11a)

—3n+2 —~3m+1

ZZ{UI‘+n+mu;3nu;3m+vI‘+n 2m,_ —3n+1 3m+2+v1‘ 2n+mu1 2

Uy Uy
_ vI‘—n+2mui—3n+1u;3m _ ,UI‘+2n—mui-3nu2—3m+1 ,Ul"~-n—mu;—3n«l-2u2 3m+2}
where I' = 3(n? — nm + m?).

In a similar way, the denominator identity expansions that correspond to the other

lower rank affine algebras may be expressed in the same form.
AP .

]_—_[(1 _ Un)(]. . v"u'l)(l _ ,vn—lu) — Z{vn(2n+l)u—-2n . vn(2n—-l)u—2n+l} (411b)

A(i) :

@ = o) (1 —vru™)(1 = o™ ) (1 — v* =) (1 — v u?)
= (4.11¢)
— Z{v§(3n+l)u—3n _ v%(sn—l)u—3n+1}
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(1) .
2 .

I.jl{(l — ™)1 - vnufl)(l —v" ) (1 = v g ) (1 - v"_IUZ)

(1 = v utus ') (1 — v tugug) (1 — v u ?us ) (1 — v tudu,) )

_ Z{vr+n+mul-6n S3m g g T Hn=2m  =6ntly ~3me2 (4.11d)

—-6n-43

U1 —-6n+4

u1 —-3m+3

+ ,UF—Sn+2m -3m+41 + v[‘-—n—-m u;

U,y

L=-n+2m,_ —-6n+41,,-3m r'+3n-m_,—6n_, —-3m+1

- up Pyt = uy MU,

F—3n+m —6n+4,, -3m+2 T'+n-2m_—-6n43
—v Uy Uy

— v ul 3m+3}

Uy

where I' = 3(2n? — 2nm + m?).
GV

ﬁl{“ — o) (1 = ) (1 — ) (1 — vt — )
(1 —v"ug uz )(1 =" uluz)(l —v"uy u2 2)(1 — " 1u1u§)

(1-o" uy uz )(1 —vnﬁlulug)(l —vnul 3)( — " fug)}

. E{vl’+n+mu;4nu2—12m + vP+3n—4mu1—4n+1u;12m+4
n,m (4116)

—4n+4u;12m+9

+ vF—2n+5mu1—4n+2 -12m+1 + ,UI‘+2n—-5mu1

Uy

ui—-4n+5 u1—4n+6 -12m+10

+ ,UF-3n+4m —-12m+4-6 + ,vl"—n—m ’LL2

Uy

_ vF—n+4mu1—4n+1 2—12m - vl"+2n—mui—4nu;12m+1

I'~3n+5m —4n+4 -12m+4 __ F+3n 5m, ~4n+42

_ -12m+6
v Uy Uy ul

Uy

_ vF—2n+mu1—4n+6 2—12m+9 _ vr+n—4mu1—4n+5 —12m+10}

Uy

where I' = 4(n? — 3nm + 3m?).
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AP
TT{( = ™)’ (1 — v uy)(1 — v ul ) (1 — v tug) (1 — v ust)
n=1
(1 — v tuyug) (1 — v u ey (1 — v ey ud) (1 — v ultug?) (1 — v lul)

(1 = o771 = v Rudud)(1 - o))

1 - - ps - - -
_ Z{UZ(F+2n+m)U1 5nu2 5m + va(F+4" !?om)u1 5n-}-1u2 5m+3
n,m

(r- - - (Tr—2n-— - -
+ 'UQ(P 4n+3m)u1 5n+2u2 5m+4-1 + ’U’(r 2n m)u1 5n+3u2 5m+44

. v%(F—2n+3m)ul—5n+1u;5m . v%(r+4n—m)ui-5nu;5m+l
_ v%(r—4n+m)u-l-5n+3u;5m+3 _ v%([‘+2n—3m)u1—5n+2u2—5m+4}
(4.111)
where I' = 5(2n? — 2nm + m?).
DY -
TT{@ =)A= ™)1 = v u; ) (1 — v Tug)(1 — v u uy ) (1 — vty u,)
n=1

(1 — v u7) (1 — v 2uy)(1 — v uT s ) (1 — ™ uyud)}

_ Z{vl‘+2n+mu1—4nu2—4m + vl"+4n—3mu;4n+1u;4m+3
n,m

+ vl"—4n+3mu;4n+2u-2—4m+l + vl"-2n-mu1—4n+3u2—4m+4

_ vF—2n+3mu-1—4n+1u2—4m _ vP+4n—mul—4nu2—4m+1

F—4n+mu—4n+3,v—4m+3 _ I‘+2n—3mu—-4n+2

— v v

,v—4m+4}

(4.11g)

where I' = 4(2n? — 2nm + m?).
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Dfla) :

ﬁ{(l — ") (1 = ®)(1 = v u ) (1 — v" tug ) (1 — v u ey ) (1 — o™ ugu,)
n=1
(1 — v u?us ) (1 — v Mudu,)(1 — v uz (1 — 0¥ 2u,)
(1= v ) (1 — v S (1 = o)L — o))
_ Z{vr+n+3m —6n —6m 4 plHon- Smul—6n+1 —6m42
A bOmy =Bnby —EmL P bn—Sm, —sn 4, ~6m s

+vF—5n+6mu;6n+9u;6m+4+U1‘ n-— Smu;6n+10u2—6m+6

vF—n+6mu1-6n+1 2—6m . ,UI‘+4n 3mu1—6nu;6m+1

_ vF—5n+9mu;6n+6u;6m+2 _ vl"+5n 9mu1—6n+4 2—6m+4

- 3 -6 0,,—6 5 - -
—v 4n4 mu1 n+1 u2 m- + vI‘+n Gmu1 6n+9u2 6m+6}

(4.11h)
where I' = 6(n? — 3nm + 3m?).

In fact (4.11b) is one form of the celebrated Jacobi triple product identity (JTP)

o

(1—o")(1 = v u ) (1~ o™ tu) = D _(=1) "3y

1

3
1

If further we let v = ¢** and u = (—¢)*** then we obtain another form for the JTP as

3

(1 _ q2lcn)(1 :t q2kn—k—£)(1 :t qan—k+£) — Z(il)nqknﬁ.{.ln . (412)

n

1
-

Specialising to v = ¢", u; = ¢°*, u, = ¢°2 in the respective denominator identities
(4.11a - 4.11h), we are able to express the x5 that are given in Appendix 4 as sums of
products. Specialisation of this form will be denoted by [r; s, s2]. A bar represent a
negative q specialisation, e.g. [3; 1,1/3] denotes the specialisation v = ¢*, u; = ¢ and
u, = —q'/3. Also note that the notation [Tea)(1 — ¢*) means

HnZl(l _ qrn—a)(l _ qr(n-—l)+a))‘
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AP

AR
(41, 1]
[10; 4, 4]
[10; 2, 2]

[10; 1, 2]

[10; 1, 1]

The Weyl-Kac denominator identity

3;1] = «fo) =¢(q)

21 = &) =¢(@) 10 ~q") (4.13a)

1(2)

2, 1/2] = &850+ ¢ kn = ¢(q®) [T(1 = ¢*/*)

[4; 1]
[10; 1]
[10; 2]
[10; 3]

[10; 4]

=
=

=

and

and

1(2)

= ko) = 6(q)

= k=0 T 1-¢) I 0-q)

+1(10) +8(20)
= sag=0¢") I] 0 -¢") I] @ -q") (4.13b)
+2(10) +6(20)
= K =—¢(¢"") [T 1-¢") ITI A -q")
£3(10) +4(20)
= ki =—¢(¢") I] 1= I] 1 -¢")
+4(10) +2(20)

Kooy = $(4)”

kion = 8(¢)8(¢") I (1 —¢")

+4(10)
ki) = —aé(¢)e(¢*) TI 1 —q)
£2(10)
[10; 3, 3]
co) =0 JI (Q—-¢)-2¢ JI (1-¢Y)
£3,43,+4(10) £1,42,+3(10)
[10; 1, 3]
Koo = —0(")2 JI Q-¢m+e¢ I @Q-¢")
£1,+3,34(10) +£1,41,£2(10)
(4.13¢)
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csv
(41,1 = &g =¢(¢) 101~ ¢

[41/2,1] = &) + ¢ *kGon) = #(@)e(¢®) [T — ¢™%)
1(2)
[10; 1/2, 1], (10; 3/2, 3], [10;7/2,7] and [10;9/2, 9]

011 - 110
= ’igou; —4q 1/2"320113

=¢(¢°)? II Q- II a=-¢®+¢" I 1-¢"%)

+3,+4(10) +3,£9(20) +1,£7(20)
+q1/2¢(q10)2 H (1 . qn)( H (1 _ qn/2) + q3/2¢(q1°)2 H (1 _ qn/2))
£1,£2(10) £7,£9(20) £1,43(20)
[10;2,2] = &{o3) + grisen = ¢(¢")¢(¢*) T (1 —¢")
10(20)
[10;4,6] = &lgon=—6(¢®)* ] 1—q¢") II (1 —¢")
+8(20) £4(10)
[10;2,8] = &0} =4q8(¢®)? [ 0-¢") II @ —¢")
+£4(20) £2(10)
[10; 1,2 = &ao)=—o(gDe(¢"®) [I (1+4¢")
£1,+£3(10)
[10; 1,4] = sl =¢(¢")2 II Q+¢) [T+4¢")* IT (1 —¢")°
+1(10) 5(10) +4(10)
[10;3,2] = &) =—0(¢")? [I Q+¢) [IQ+¢")* II 1 —¢)°
£3(10) 5(10) +2(10)

[10; 0,1] and [10; 5, 9]

= Ko =—q0(¢")" I @+¢) II (1—¢")?
+4,5,5(10) +1(10)
+28%(¢*°)? I (1—-4¢")
+£1,42,£9(20)
[10; 2,3] and [10; 0, 3]

= sho) =6 I (+¢) [ =g
+2,5,5(10) +3(10)
-2¢4(¢™)? JI (@-¢7)
43,46, +7(20)

[10; 3, 3] and [10; 1, 7]

= ko=~ II (+¢) II (1-q7)

+3,+4(10) +1,4+3(10)
+q6(¢°) I (+¢*) I (1-4q")
+1,+2(10) +1,£3(10)
(4.13d)
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1

AP

5;1,1/3] = «fioo) + /%6000 = d(q) TI (1 —¢?)
0,41(5)
[5;1,2/3] = khon+ ¢ xlen =6(q) [ 1—q%)
0,£2(5)
3;1,1] = &sos=9¢(") [I(1+q")
£1(3)
3;1,1/3] = &+ aPelon = —d(gDe(¢®) TI 1 +¢) I —q")
£1,44(9) £4(9)
3;1,4/3] = &{oe — ¢ 3kioem = —d(q)b(¢®) I (1+¢®) I Q=g
+2,+4(9) +2(9)
[3;2,1/3] = &(on +q"3kiom = —d(g)e(¢®) I (1+¢) I Q=g
+1,+2(9) £1(9)
[3;1/2, 1/3] = k{00 + ¢/°k50) + 026501 + ¢/ °500)
=¢(q)(®) [IA - ¢TI -¢") [T (1 =¢*®) I @ —4¢*%)
1(2) 3(6) +1(9) 45,£7(18)
[3;1/2, 4/3] =  kse) + ¢/*sion) + ¢/ %k{58) + ¢*/° Ko
= 2o [T - [T - TLa-¢) T (1-q")
1(2) 3(6) £4(9) £1,£7(18)
(4.13¢)
[6;1,1] = «{on = é(q)°
[14;4,1] = «fen=¢("?* I Q-¢) I (-¢"
+1,44,45,+£6(14) +£4,+12(28)
142,1] = sfo=-¢? I @-¢) II (@-97)
£1,22,+3,+4(14) £8,£12(28)
[14;2,3] = s=—¢¢"> I (Q-¢» I Q-¢")
42,43 45,+6(14) +4,48(28)
[14; 3,1] and [14; 3, 3]
) (4.13f)
= kaa=¢"?* I Q-¢) JI (1-¢v)
£1,43,44,£5(14) +£6,+12(28)
—qo(¢)? JI a-¢) ] (1-¢Y)
£3,43,45,+£6(14) £2,48(28)

[14; 1,2] and [14; 5, 5]

S 3=y I - I -0

£1,42,43,+5(14) 48,4+10(28)
+q6(¢y I (-¢) II (-¢")
£1,44,45,45(14) +4,46(28)
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[14; 1, 1] and [14; 3, 5]

= Kom=-¢¢(¢")? I (a-¢) II (1-¢7

+1,41,42,+3(14) +10,£12(28)
+¢(¢)? I Q-¢) JI (1-¢7)
+1,43,45,+6(14) £2,+£4(28)

[14;4,2] = &o)=—ad(g?d(d) I (-q)
£2,46,48,£10(23)

[14;2,4] = &G0 = ¢*(¢%)$(q™) I a-¢)

+2,+4,46,£10(28)

[14;2,2] = «{50) = d(¢*)é(¢") I a-q¢)

+2,46,£10,412(28)

D
52, 1] = &loo) = 6(q)6(c?)
31,1 = &l =0g")d(¢®) 11+ (1 +¢™3)
3;2,2] = &&= —qd(¢*)p(¢*) TI(1 +¢*") w130
4.13¢g
3;1,2] = &)= —8(a)d(¢") I + ¢ 1)1+ ¢*)
[3;1,1/2] = k{00 + ¢/ 6500 + a5200)
| — ¢(q)¢(q6)n(1 . q(2n—1)/2)(1 . q(Gn—s)/z)
| e

[7:3,8] = st = #(a)$(¢°)
[41,3/2] = i+ ki)
= ¢(9)6(¢") [T(1 + ¢™)(A +¢°~*)(1 — g2 (1 — ¢*»=F%)
[42,3/2] = KGoo) + " Kaon)

= ¢(9)p(¢®) [T + ¢ 1)1 + ¢™)(1 — ¢~ /2)(1 — ¢on=3)72)
(4.13h)
This complete the determination of all level 1 and level 2 inverse string functions

for all rank 1 and 2 affine algebras, although some results are only given implicitly in

the form of a linear combination of such functions.
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4.3 Explicit computation of string functions
Let o and k denote the matrices with matrix elements o4 and &%, respectively. Then
the matrix form for (4.7) is o = &~!. Matrices of order less than or equal to 2 can be
inverted easily. So whenever | P,.. |< 2 we can obtain the string functions directly.
For example, consider the task of obtaining all string functions of the level 1 modules
of the affine algebra G{"). From (4.8) and (4.13¢), we have P, = {(001),(100)},
det k = ¢(q)* and

ktoor + 43600 = ¢(g) TI (1 —¢*)

0,£2(5)
100 1/3, (001 n
KEloog +4q /3"52100; = ¢(q) Hé (1—g¢ /3)-
0,1(5)
Hence
001 001 100 0
(o o)~ o (i, )
Oo01) T(100) ¢(q)* —Koo1)  F(oo1)
so that
100 - 100 - n
0((100)) —dq 1/30'((001)) = ¢(‘I) 3 H )(1 —q /3) (4.14a)
0,+2(5
001 001 - n
o'gom)) - qllsa((loo)) = ¢(q)° H (1-¢ /3)- (4.14b)
0,£1(5)

It is also useful to have explicit forms for o) rather than linear combinations of

them. By the JTP (4.12)
¢(q5) H(l _ qsn—l)(l _ q5n—4)

— Z(_l)nqn(5n+3)/2
_ Z(_1)3nq3n(15n+3)/2 + Z(_1)3n+1q(3n+1)(15n+8)/2 + Z(_1)3n+2q(3n+2)(15n+13)/2

— 2(_1)nq9n(5n+1)/2 — g Z(_l)nq3n(15n+13)/2 + gt Z(_l)nq3n(l5n+23)/2 )
Hence

H (1 - q%) — Z(_l)nqn(15n+3)/2 _ q4/3 Z(_l)nqn(15n+13)/2
0,+1(5)
+ q13/3 Z(_l)nqn(15n+23)/2

—4@*) (T A=) = T A=) = T (=)

+6(15) +1(15) +4(15)
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This expression and (4.14b) implies that

oo _ ¢(q"®) H (1-q")

(oon ¢(q)? +6(15)
0_(001) _ (15((]15)( H (1 . n) + H (1 _ n))
(100) = 3(q)? q q q))-

+4(15) +1(15)

Similarly, from the other expression (4.14a), it can be shown that

(100) __ ¢(q"%) _.n
0(001) ¢(q)3 i}:_!:s)(l q )
(100) _ ¢(q15)

T(100) = 3(q)? ( H (1-q¢")—g¢ H (1-4")).

£7(15) 42(15)

Below we give some string functions for the case | P |< 2 obtained by inverting
expressions from (4.13a - 4.13h). Some of these string functions are expressed as a
linear combination of terms. Explicit string functions can be obtained by a similar
method to that discussed above. Although cast in slightly different form these results

can be compared with those obtained in [KaP]. The ones marked * are new results.

A?) :
o) — g0l = (q) T TT(1 — g1
Tlon = Oa)
(4.15a)
ol = qoten)
oy = ¢(9) " T1(L + ¢7)
A(zz) :
oon=¢@"e(e)* Il (Q-4q)
4+2,46,::8(20)
oy =8(a")¢(e)* Il (1-¢q")
+3,+4,+7(20) (4'151))

ooy =q¢d(@)d()* I (-q¢7)

+2,4+4,+6(20)

oy =@ I (1-¢)

+1,£8,4+9(20)
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A(zl) :
olo0) = 6(q)™
Ta00) = Olose) = Tioon
=¢(d")V () I (Q-¢9)-2¢ JI (1-¢Y)
£3,43,44(10) +1,42,43(10)
oloin = qoliay) = qolii
= q49(¢")$(¢")o(9)™* T] (1 —¢") (4.15¢)
£2(10)
40 (300) = Olone) = Oloom)
=qd(¢")Vd()*2 JI (U-¢"+q¢ I (1-¢7)
41,43,+£4(10) +1,41,+2(10)
olon) = otion = o)
= é(¢")o(¢)p(g)™* T 1 =)
+4(10)
C’gl) :
* Olo0) — 4 ol = ¢(9) 2 [I(1 — ¢** 173
oy = ol
(4.15d)
(100) __ _ (001)
001y = 99(100)
x ot =) 2 []1 +¢7)
G(zl) :
oo — 0 Pobon = ¢(q)™® T (1 —¢?)
0,£2(5)
) . (4.15¢)
oloon) — 000 = ¢(0)™ T] (1—¢%)
0,£1(5)
AEE) :
oloor) = ¢(g)™2 (4.15f)
Dgz) :
o0y = loon = #(a) " 8(¢*) ™
(4.159)

* ohen =a(e)*TI(1 + ¢7)
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DY .
ooy = $(4) 7 d(¢°)
*0(00 — 4010y = $(9) 7 8(¢°) 7 TI( + @) + ¢ %) (1 — gBr (1 = g

*0(010) = 4"/ °0(00) = $(9) 7 ¢(¢°) T TI(L + ") (1 + ¢™)(1 = g7V (1 = g*n=2%)
(4.15R)

4.4 Further computation of string functions

For large order matrices it is impractical to invert £ by the method of minors
and cofactors because it is quite difficult to simplify combinations of infinite products.
Whenever | P, |> 3 we shall instead resort to directly fitting the weight multiplicities
tabulated in [KMPS] in the case of untwisted affine algebras or from our program
for all low rank affine algebras to various forms of the required weight multiplicity
generating functions. Using any algebraic package such as Maple some of the string
functions can be fitted quite easily. These are the string functions which consists only
of a single infinite product. To illustrate the method let us obtain the string functions
of level 2 module of D{?. From the numerical values of weight multiplicities we find

otore) = $(a*)#(a*)(¢'*)(9) *8(¢*) *(¢°) !
olor0) = 6(a*)°$(4°)°$(a) ' 8(¢°)*(¢) (¢**)
a(a00) = $(¢'*)°8(4*)* 8(9)~°d(q*) *¢(¢°) ™

200 002
05002; = q2‘7§2oo))

(4.16)
200 002
o'gom; = qafofog

200 002
agzoo; = ‘750023-

The modular characteristic of these string functions can be checked to be consistent

with that given in Table 4.1e. It then just remain to determine the string functions

afggg and agggf,)) . These remaining string functions cannot be obtained so easily because
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they may consist of a sum of infinite products. In this case the following proposition

[Kac4] is very helpful in doing the fitting.

Proposition 4.4.  Let by, b,,... be a periodic sequence of integers with period m,

such that b; = by,_; forj=1,...,m—1. Set b="b,+ b, + ...+ b,,. Then
¢ [I(L —¢)
i=1

is a modular form (for I'(n), for some n) if and only if the modular characteristic ¢ is

given by:

bm 1 =2l ;
C'—“,,:Z“'ZEZJ(m—J)b:‘-

i=1

In particular this proposition implies that ¢(q") [T1a(1 — ¢*) has modular char-
acteristic (2a — r)?/8r since m = r and the only non vanishing b;’s are b, = b = 1,
b, = 1. The period m in the above proposition can be expected to be the maximun
value of k of the form [].,4)(1 — ¢") appearing in & obtained at the end of Section
4.2. With this value of m and modular characteristic Table 4.1a - 4.1f we can generate
b;’s that satisfies the Proposition 4.4. There will certainly be an enormous number of
different sets of b;’s but it is sometimes the case that by sheer ‘good luck’ we are able
to see how to combine some of them to give the required string functions.

The string functions a((gg._'“:g and 0538;; of DY) generated by our program are

(002

o0 =14 ¢+ 5¢° + 8¢° + 24¢* + 39¢° + 90¢° + 147¢" + 297¢°

+477¢° + 880¢™° + 1391¢"* + 2412¢* +...

(002) _

Tla00) = 2 + 3¢ + 11¢* + 18¢° + 47¢* + 77¢° + 165¢° + 268¢" + 516¢°
+ 823¢° + 1468¢'° + 2300¢™" + 3891¢"% + ...
From the string functions obtained in (4.16) the values of b; of Proposition 4.4 are in
the range of —5 to —1. Another more important observation is that the values for b

and b,, are constant for all string functions associated with a given affine algebra. We
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conjecture that this is also true for other affine algebras and we tabulate these constant

for various algebras in Table 4.4.

Table 4.3. : Some parameters arising in fitting string functions of level 2 modules.

Algebra  period m b b
AP 16 —24 -1
AP 20 =32 -1
AS) 10 =32 =2
cgM 40 160 -2
G4V 18 -84 -2
AP 28 —96 -2
D 12 =30 -2
D® 12 -28 =2
Hence on restricting the values of b; and letting m = 12, b = —30 and b, = —2 we

obtained the following possibilities for ;s in the case of D$.
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Modular characteristic= —5/24

b

bs

b

bs

b2

by

Modular characteristic= 19/24

b

b

bs

bs

b,

by
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By combining line 4 and 8 of the second table we can fit our D data to the string

function 0((28(2,)), le.

o =8 [T 1-¢) I Q=g [J=-¢) I @-¢)*

13(12) +1,45(12) +2(12) +4,6(12)
+o(¢)? [T A-¢) I -¢) JI Q-¢)"
£1(12) +3,45,6(12) +2,£4(12)
¢(q**)’
—¢(Q)2 2)2( H 1_q)+ H ]-"Q)
+2,+3(12) +2,6,6(12)
0‘((802) can be obtained by combining line 8 of the first table and line 4 of the second
table,
ooy =) [T =) I (-¢)? I (1-¢")
+5(12) +1,43,6(12) +2,£4(12)
—q¢(@™)* [T 0~g) I Q- I Q=) I =g
+3(12) +1,+5(12) +2(12) +4,6(12)
_8(d?)?
e ( 1-¢—q¢ I (1-¢")
#(q)?é( 2)2 :{:s:e!'—'e[(m) £2 :t3(12)

Taken in conjunction with (4.16) these results represent a strikingly simple form for
the weight multiplicity generating functions of level 2 modules of DS?.

Below we give the string functions for other level 2 modules of the remaining
rank 2 affine algebras. It must be admitted that not all of the string functions which
consist of sum of infinite products are unambiguously obtained by the method discussed
above because of the enormous range of possibilities. But some are obtained instead
through the expansion and simplification of the terms arising from minors and cofactors.
Further simplification is not out of the question but it would be difficult to pursue this

method for higher level cases.
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Level 2 (class 0) modules of C§" :

o =0ckem= Il A-¢ Tl Q-¢"fi—qfe

£2,+4(20) +12,%16(40)
(002) _ q9(q%)*¢(¢*°)® 4 *d(q*)°6(¢*°)*
O 6(q)*¢(q*)8(¢°)26(g%)> * B(q)*b(q?)24(¢®)2¢(g*°)
olion = qotien = 4(a%)?6(¢*°)?é(q)~*B(¢®)

oo =Cohem=f—¢ I 1-¢) I Q-gf

200
U((ozo)) =40

£6,£8(20) +4,£8(40)
ooy = a0 =qhi(q) I (A=) +¢h(e) I @Q-4q7)
+4,416,416(40) +4,46,+14(40)
oo =hs(q) T (A—-¢)+¢h(q) I (1-¢"
+4,+16,+16(40) £4,46,+14(40)

ooy = d()6(¢*)d(e)™* I (1-4q)
£2,42,+3(10)
Oloon = 0G0y = qha(q)  [I Q=g +qle) [I @@-¢")
+2,412,+18(40) +8,48,112(40)
olsy =aqhs(q) I (Q—-¢)+qhale) J[I (=g
+8,48,+12(40) +2,412,+15(40)
olien = #(a*)?e()Vb(q)* I (1 -4q7)

+1,+4,+4(10)

where
fi(a) =<75(ql°)7¢(q)""’<ﬁ(q"’)“"szs(tf‘)‘1(ig0 (1-4") igo)(l —q")* iEO)(l —q")
-q iHo)(l - q") ﬂ:ﬂo)(l = q(")i) igo)(l —(Q")) |
fa(q) =¢(q1°)5¢(Q)‘5¢(q")“1¢(q5)‘1(ilg(m)(l ~q") 16’lj}m)(l ~q")
—q iaﬂ(m)(l - q") izﬂm)(l -q")

+ ¢(q5)¢(q‘°)¢(q2°)3¢(q)'5¢(q2)"é(q")'l(ﬂlgo)(l —q") igo)(l ~q")
— ¢ igo)(l - ¢ igo)(l -q"))
hi(q) = 26(¢°)*6(¢*)*¢(a) *¢(¢")~*
ha(q) = 6(q*)°8(a™)¢(a) *¢(a*) *8(¢%)~*
ha(q) = 6(q*)*8(q™)*¢(q)*¢(a*) *¢(¢")~?

ha(q) = 26(q%)*6(q*°)d(q) *d(g*) ™
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Level 2 (class 1) modules of C§"

ofony = ooy = $(¢")°¢(a)*9(¢*)?

ooy = 990y = 246(¢7)*#(¢%)*#(0)*d(¢") ™
Level 2 modules of G§V.

oD = hy(q) TI (1 = ¢7)

£3(9)
olor =hi(g) [T (1 =)
£3(9)
olon = ha(q) TI (1 = ¢™)
£3(9)
oloen = ha(q) JI 1 —¢™)
£3(9)
oloon) = qhs(q) TI (1 —¢")
£2(9)
oot =hi(q) TI (1 —q") —qha(q) TT (1 = q")
£4(9) £1(9)
ooy =hi(a) T (1 —q")
£2(9)
ol00) = ha(q) TT (1= ¢*) = ha(q) T (1 = ¢")
£4(9) £1(9)
oloory = qhs(q) TI (1 —q7)
£4(9)
olote) = qhi(q) TI 1 — ¢”) + qha(q) TT (1 —q™)
+1(9) +2(9)
ohen =hi(q) JI (1= ¢
£4(9)
oG00) = ha(q) TI (1 —¢") + qha(q) TT (1 — ")
£2(9) £1(9)
oloen = a*ha(q) TT (1 —¢7)
£1(9)
olos =gqha(q) [T A~ ¢") —qhi(e) TT 01— ™)
£4(9) £2(9)
ot = qhi(q) T (1 = ¢*)
£1(9)
otoey = ha(q) TI (1 —¢") — qha(q) TT (1 = ¢7)
+4(9) +2(9)
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where

hi(q) = ¢(a*)*¢(¢*)*8(a°)$(q) " é(¢°)

ho(q) = 2¢(¢%)*¢(¢°)*$(a°)6(9)~°¢(¢*) ™

ha(q) = 36(¢°)*8(q°)8(q)°¢(a*) ™

hu(a) = SDALE T (- =4 T (- a7

¢(q)°4(¢?) £8(18) +4(18)
+6¢" J[JA-¢")—¢* II 1 —¢")?)
+2(6) +2(18) -

Level 2 modules of A(z)

o= Il Q-+ I @-¢")f)
£6,+8,+12(28) +4,£4,+10(28)
ol =0(a*)*d(aNd(e)° I (1—4q)
£2,43,45(14)

ooy = I 1 =a"h(g)+ I (1—q")hs(q)

+4(14) +6(14)

com=a I (-"f@+e TI @Q-g¢")f(q)
+2,412,+12(28) +4,£8,+10(28)
olore =¢(*)?e(aNd(a) [ (—¢")
£1,45,+6(14)

ooy = 11 (1 —q")ha(q) +q [T (1—q")hs(q)

+4(14) +2(14)

oom=a¢ I (Q-¢flo-¢¢ I Q-1
£6,48,+5(28) £2,44,+12(28)
ol =¢()?e(qNé(q)* [ (1 —q")
+1,43,44(14)
oo = [ (1 = ¢"ha(q)—¢ T] (1 —¢™)hi(q)
+6(14) £2(14)

where

fla) =8(¢*)e(a)(a)e(0)* I (Q=-¢) JI (1-4¢7)

£1,43,+£5(14) £2,46,£10(28)
hi(q) =¢(¢")’¢(q)™* J] (-¢°) [ (Q+4¢Y)
£1,43,£4(14) £4,46(14)
ha(q) =¢(¢"*)V’é()™* I (Q-¢) I (+4¢7)
£1,£5,£6(14) £2,46(14)
ha(q) =¢(*)?d(q)™ T (1-¢*) I (1+4q7)
£2,43,15(14) +2,44(14)

This complete the level 2 calculation for CcV, G, AP and DP.
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CHAPTER 5

The sets {W : W} and the actions of their elements

5.1. Specialisation of the Weyl-Kostant-Liu character formula

With reference to Section 1.6., let G(A) be an affine algebra of rank r with Cartan
subalgebra H. Let U = {1,2,...,r} ¢ I = {0,1,...,r}. Then Gy is isomorphic
to the simple finite-dimensional Lie algebra G(A) which we will denoted by G. As a
consequence of this we will replace all terms in Section 1.6. with a subscript U by
corresponding barred symbols. In particular,

WU)={weW]| &, C AT\A*}
Pt={AeH |<)\a >€Z* fori=1,...,r},
where W is the affine Weyl group. By Lemma 1.14, W(U) = {W : W} is the set of
right coset representatives of W with respect to the finite Weyl group W. Then for
any w € W, we may write
w = ww, (5.1)
where w € W and w' € {W: W}.

Lemma 3.6 and (3.29) implies that for any A € H* we have
A=né+ > MA;
i=0 0

L())

. (5.2)
= Ao +né+ Z MiA;
i=1

v
¢y

L(N)

= \"
Cs

where X = 327_, MiA;. It should be noted that from (3.30) w(p) = (g/c¥)Ao + @(p) so

A0+n5+5\,

that

w(p) —p=w(p) —p. (5.3)
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Lemma 5.1.  The denominator D of the Weyl-Kostant-Liu character formula (1.25)
can be written as
D= 3 &) h VO = I @@= e)mutte
w'e{W:W} aEAT\A+
Proof First note that the Weyl-Kac denominator identity is given by
Z 5('11.)) ew(p)—p — H (1 _ 6—a)multa
weW agA+

and the original Weyl denominator identity is

Then the above identities together with Weyl character formula (1.19) and (5.3) imply

that

Z €(wl) Ch "—/’w’(p)—p — Ew’E{W:W} 6(11),) Zu’) W 6(17)))ew(w'(9)—p+ﬁ)—p

€
we{W W} Loew E(W)e?)=>

 Twreiwiwy Loew E(Ww)e?? 9=
Hae[}+(l - 6’0‘)
Yowew E(w)e (D=7
[Taca+(l — €79)

H (1 _ e—a)multa_

acA+\A+

f

O

Proposition 5.2.  Let D = 3. waw (') ch V*'P™". Then for each infinite series

of rank dependent affine algebras we have:

AD D = Seep(=1)AgH{E ¢ H @), (5.42)

BW : D=5, (=1)2glel2[q)(z),,,, (5.4b)

CH 1 D=3 co(-1)M2gM2 <y > (), (5.4c)

DO i D = Toea(~1)/2gV2[0)(2)er, (5.44)

AR 10 D =T ea(=1)lel2glel2 < o > (1), (5.4¢)
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D21 D = Teep(=1)1/2gM[e](2)orsn, (5.4f)
A+ D= Thee(=1)"2¢"M2[)(2)2r 41 (5.4g)

Proof First we need the change of basis from {ao,,...,a.} to {8,¢,...,¢} for
each affine algebra and this is given as follows [Ma] :
AW qy =8+ —e,=€6—€,4(1<i<r).
BW: agy=b-—e—€, =€ —€nu(1<i<r—1),a, =¢
CH: qy=8—-2¢,0=€6—€,(1<i<r—1), a =2 (5.5)
DYV . gy=b6—€—€,a=6—€u(1<i<r—1),a, =¢€_;+¢

AD . p=b6— -, a=6—n(1<i<r—1), a =2

Dﬁ)l D ag=b—€,0i=€6—-€n(1<i<r—1),a,=¢

AP 0w =62, 0=, —u(1<i<r—1),a, =¢,.

We will give the proof for the case A®M). The proof for the other cases is similar.
From Proﬁosition 3.1 and Proposition 3.2 it can be deduced that the positive affine
roots of AT\A* with multiplicity 1 are nd £ (e; —¢;) forn >0and 1 <i<j<r+1

and with multiplicity r are né for n > 0. Hence by Lemma 5.1 we have

D= H(l _ e—n&)r H (1 . ez,-—c,-—né)(l _ e_fl._i_cj_n&)
n=1 1<i<igr+l
=[I0-¢)y I (-qzz;))(1 - ¢z ;)
n=1 1<i<j<r+1
=TI( II Q-qzz)/(1-q)-
n=1 1<i,j<r+1

It then follows from (2.9a) that
D =3 (-1)¢"{& ¢} (z)rn
§eF

where z; = e and ¢ = e~*. ]

As emphasised in Section 2.4 if the irreducible characters are not in the standard

form for a particular r then we have to apply modification rules.

134

B
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5.2. The right coset representatives of W with respect to W for A"

We have yet to determine the set of right coset representatives {W : W}. Let us
work first with the affine algebras A, Consider the identity (5.4a) obtained in the
previous section

T7w'(p)- F. ¢l
> e(@)eh VT = 3 (—1) & € (@), (5.6)
we{W:W} EEF

For all @ and bsuchthat 0 <a<rand 0<b<r let

( So 1fa=b=0,
808182+ * 8q4 if0<a<rand b=0,
weg) = _ (5.7)
S0SrSr 1" Sr_py1 fa=0and 0<b<r,

L 508183+ +8,8,8,_1+8;_pp; fO0<a<rand0<b<r.

We now compute ws)(p) — p for a few cases to see the motivation for introducing these
Weyl group elements. For a + b+ 1 < r the results are given in Table 5.1. From this
table we observe that for large r they systematically give a contribution of the required
form to (5.6) in the sense that wesy(p) —p € P*. fw' = W W(sz) - - - W(r) We might

expect from these examples that
/ wrw'(p)— &
e(w)eh V" = (—1)flgkI{E;¢')

where ¢ has partition label (‘;"‘;::”) However for small r, i.e. when a; + b; > r, the

right hand side of (5.6) has to be replaced by (2.12a) where modification rules have
been taken into consideration. In general the elements of {W : W} are not in one-
to-one correspondence with the partitions (‘;‘1‘;::") Before we arrive at the general

result we need the following Lemma which can be proved by direct calculation.
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Table 5.1. : Some results from the action wsy(p) — p

w w(p) — p A, character depth
So —ayp {1;1} 1
$651 —2a0 — o {2;1%} 2
S0S, —2a4 — Q, {1%;2} 2
508182 —3ay — 20q — oy {3;13} 3
S0818, —3ap — oy — {21;21} 3
S08rSp_1 —3a — 20, — Qpy {13;3} 3
S0515253 —dag — 30y — 205 — 3 {4;1%} 4
5051825 —4ay — 204 — ay — {31;21%} 4
80818,S0 —4ag — 204 — 2a, {27; 22} 4
$05157Sr—1 —4og — o — 20, — Qpy . {212; 31} 4
8081 8,-18r-2 —4ap — 30, — 20,1 — Qp_s ? {1_4; 4} 4
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Lemma 5.3.  Let o; be a simple root and a + b+ 1 < r. Then

( g + oy + o 1=0,
Qirt 1<i<a-1,
—(ao+ay+...+ ) 1 =a,
o T e T i e a7 t=a+1<r—b,

wesy(ou) = ,

o a+2<:1<r—-b-1,
P e T S P S S Y i=r~b>a-+1,
—(aot+ o, +arat ...t arqy) t=r+1-0,

\ oy 1>r+2—0.

In the limiting case t = a +1=r —b, we)(o:) = wesy(Qapr) =@+ 6.

Lemma 5.4. With the situation as in Lemma 5.3.
(g t+a;+ ...t ta 0<:i1<a—1,

o, 1= a,

o+ o+ ...+ o+ a+1<:1<r—-5b-1,
i) weyawtar+...+o) =
oo+, + 6 1=71—b,

cota +...ta t+a r—b+1<i<r,

6 1=r.

(i + ot .ot 050 <b—2,

— Qg — O Z:b—‘].,

- Qpey + Cpa+ oo+ 0ry b<i1<r—a-—2,
i) weyor o+t o) =

—-a, +6 t=r—a—1,

oyt st oty T—ali <

Y t=r.
Proof Using Lemma 5.3 and then direct verification for each case.

Proposition 5.5. Let a; + b, + 1 < r. The elements of {W : W} of AD of length
n include all
We = w(;; )w(‘;z e w(::)
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such that in Frobenius notation £ is the partition :

€=<a1 a ... ap>
by b, ... b
withay, > a;>...>a,20,b,>b,>...>b,>0andn =37%_(a;+ b +1). The set

of all these elements w, will be called the core W, of {W : W}.

Proof We shall prove this by induction with respect to length n using Proposition
1.16.. Since ®,, = {;}, then the only ®,, which is a subset of A*\A* is ®,,, so that
the only element of {W : W} of length 1 is s, = wo)y.

Next consider
( — Qg lf 1= 0,
g + o € A+\A+ if2 = 1,

so(a;) = N
«; ife=2,...,7r—1,

\ao-i—a,GA”'\Z&*” le:T'
Then by Proposition 1.16 the elements of {W : W} of length 2 are sos; = w1y and

S0Sr = W(oy. Hence the Proposition is true for n=1 and 2.

Assume that the proposition is true for n. By hypothesis we have the following interval:
0<a, <1 <...<:; <r=b+1l<r—b+l<...<r—=0b,+1<r

By Lemma 1.7 and Proposition 1.16 we need to consider only those «; that satisfies

w(e;) > 0 and w(ay) € AT\AT.

If 2 = 0 then
(<0 a,=0,b,=0,
oy ¢ AP\A® @ #0, by =0,
W(sW(za) - - .w(::)(ao) = i ¢ AP\AS @ =0, b 40 (5.8a)
([ T+ Th o e ap #0, b, #0.

For 1 <% < a, — 1, we have by Lemma 5.3 and Lemma 5.4

w(;ll )w(;g <o W ::)(O(,-) = Qiy4p (5.8b)
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If ¢ = a, then W yw(s ...w(;;)(ai) < 0.
If 2 =a, + 1 then

Yittta; € AY\AY a+ b <r—1,

WHW(gz) - - - W(5r ) (Cayr1) ={ )

ap+ 6 € AT\At a, + b, =r—1.
Ifa, +2<:i:<r—b, —1 then Wa W) - - .w(::)(a,-) = qo; ¢ AT\AT,
If i =r —2b; then
0+ Yoy 0 € AT\AY ay b <r—1,

wWEnW(s) -+ W) (@ren) = { -
ao+6eA+\A+ a1+61='f‘—1.

Ifit=r—25,+1 then W(sHW(s2) - ..w(::)(a,-) < 0.
Forr —b,+2 <1 <r, we have
W(anw(s ...w(z:)(ai) = Qi_p. (5.8¢)
We are then left with the following values of 1 to be considered.
a,+1<1<a;, and r—b,+1 <32 <71 ~b,.

Let us partition the integer interval a, < 7 < a, that is (a,,a;] into

(ap , ap-l] U (ap._l 7ap--2] u...u (Cl2 ,al]

and the integer interval r — b, +1 <:<r — b, + 1 into
[T—bl+1,T—bg+1)U[T“b2+1,r—b3+1)u e U[T—bp_1+1,T—bp+1).
Consider a case a; < 7 < ax_q. If ap_; = a; + 1 then 7 = a; + 1 only.
w(';;) N .w(:::i )w(::) .o .w(::)(aakﬂ) = w(::) . .w(:::i )w(::)(aa,‘ﬂ)
= W) .. .w(::::)(ao +ay+ .. F Qo)
sl w(;i)..w(::::)(a,)

= Org42
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Hagy,=ar+7, j>1theni=ay+1,a;,+2,...,a;,+ 7 and
Weg) - W W) -+ WG (Qarn)
= W) ..w(::::)w(::)(aak“)
= w(gy-- .w(::::)(ao +a;+ ...+ Q1)

= w(a) - .w(::::)(ao e Th s S P o'

= w(:}) . w(::::)(ao -+ a4+ ... -+ g, +3 + a, -+ Ol,._l)

= Qo+ 0+t Qurr + @+ Qo+ Qg2 € AT\AT
While for ¢t =2,3,...,7 -1
W)« Wk yW(gE) - - - W) (Qante) W51 - Wer-1) (Caytt)
=w(sy .. .w(::::)(aakﬂﬂ)

= Ogpttt+k-1

and
Wty - Wk Wk - W) (@) = Wan - Wkt ) (@) <O
Similarly, consider a case r — by +1 <i<r—~b,+1. by =b;+1theni=r—0b;
only.
W(gH) -+ W(E= W) - .w(::)(a,_bk) =w(s) .. .w(::::)(ao +ar+a gt aey,)
=w(g). .. w(::::)(ao +a +a,~ay—a,)

::'LU(‘;: RN W(::::)(al)

= Q-1
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fbei=be+j,7>1theni=r—b,—3+1,r—b.—7+2,...,7 — b and
Wty -+ WgEm W) -+ - W) (s )
=weg) -« Weg-n(ao + e+ + .ot aey,)

:’w(::) e w(:::;)(ao + (a %] +oa,+o._1+ ...+ C!,-_bk__l)

=Wsry - w(::::)(ao tartasta o+t Qropa)

=qotoa+...+ap 1+ F a1+ gk € A+\[§+,
While for ¢t =2,3,...,7 — 2
W) - W= W(E) - .w(::)(a,_bk_,) =Wy - W(pE y(Qr_py—t)
=Wy . w(:::z)(ar-bk_t_l)

= Qr_pp—t—k+1

and

w(;;) . w(“k—l )w(:: e w(::)(a,_bk_jH) = w(::) e UJ(:::: )(a,_bk_jﬂ) < 0.

br_1

By Proposition 1.16, the expression for elements of {W : W} of length n + 1 are then
Wi = W(HW(s) - - W(3r)So if a, # 0 and b, # 0,
Wy = W(HW(52) -« - W(5r ) Sart1s
W3 = WW(32) - W) Srmbs
W = W HW(32) - -+ W(52)Sans for all k such that az_, —az > 1,
W5 = W(s)W(32) - - - W(5r)Sr—by for all k such that b,_; — b, > 1,
which can also be written as
Wy = WEW) - WEHWR) if a, # 0 and b, # 0,
Wy = Wept)W(g2) - - - WSr),
W3 = W, W) - W),

141




Chapter 5
Wq = W(eHW(2) - - .w(::::)w(o,;:l) (e for all k such that ai_, —ay > 1,
W5 = W(gHW(s2) - - LW(gE-W(, ok - LW(3r) for all k such that b,_, — b, > 1.
This is precisely the required list of elements of length n 4+ 1 defined by Proposition

5.5. O

Proposition 5.6. Let a; +b, +1 <r and we € W, C {W : W} be a core element

of length n as given in Proposition 5.5. Let £ = (“‘“2“'“P) be a partition of n. Then

bybg--bp

J

p—w(p) =nag + i(n - Z o + Zl: mez—iarﬂ—h

j=1 i=1 j=1li=1

Proof  We shall prove this result by induction on p. Let £ = (‘““2‘”“’) and A =

brbae-by

(‘2‘1‘;2?: ::1‘) be partitions of n and m, respectively, and let ¢’ and X be their conjugates
respectively. Thus m = n + a,41 + bp41 + 1. Then by (2.5)
(& fork=1,...,p,

§pr1+ appn +1 for k=p+1,

A =1 &+1 fork=p+2,...,p+ 14 by, (5.9a)
& fork=p+2+by41,...,01 +1,
(0 for k > b, + 2,
and
( & fork=1,...,p,

vpr b+ 1 fork=p+1,

A, =16 +1 fork=p+2,...,p+1+ a1, (5.9b)
& fork=p+2+a,41,...,a1+1,
\ 0 for k > a; + 2.

Let < &, >= Y ,cs, @ so that by Proposition 1.11
p—w(p) =<, > . (5.10)

The fact that W(s) = S08182 - .- Say SrSr_1 - Sropy41 and (1.12) we then obtain
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< @w(::) > = g + Sol@y) + Sosi(@z) ..o+ S0 Sa,8r - Srmbip2(Qrop 41)
= o +wg)en) +w(a) .+ Wi (0a,)
+wep(ar) + wep () + -+ we e (ers4)
=+ (mta)+...+(ao+ar+...+ag)
+(aot+a)+(aotar+ari)+...+ (ot o +ar+ ...+ b t1)
=(a;+ b+ 1ag+aen+ (a1 — Dag+ ...+ ag
+bia, + (b — Doy + .o+ ppy1e

For ¢ = (:;) and ¢ = (2‘1) the above expression gives

<®up, > (a1+b1+1)ao+2a1+b1+1—25)a1+225,, p2oiQrpit,-

j=1li=1

Hence Proposition 5.6 is true for p = 1. Assume that it is true for p and let w' =

WeW(zr1) . By the generalisation of (1.12), < ®,, >=< ®,, > + < wP SO

w(ap_{..l) >7
bpt1

that

Qw(“p+1) = {ao,ao +al,...7a0 +C¥1+ +aap+1}
bpt1

U{ao+ a0+, +aronyo 0ot + 0y oo Qg 41 )
This expression and (5.8a - 5.8¢) then imply

< wf(pw(a,,+1) > = we(a) + we(ao + o) + ... Fwelao + o + oy, ooy @y, 41)

bp+1
=(app1 +bpp1 + V(o +ar+...+ o+ pry +0ppra+ ... + a,)
+ ap10p41 F (Gpr1 — D)pia + oo + 20p40,40 -1 + Opia,y,
+ bp+1ar—p + (bp+1 - 1)ar—p—l + L + 2ar—p—bp+1+2 '+ ar—p—bp+1+l'

However by hypothesis

< ®w€ >= na0+2 n _Zé CY] +ZZ€1’1+2 iQrgj—p, -

j=114=1
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The coefficient of each a; in < @, > + < IUE(I)w( ;> is then given by the following

p+1
bpt1

'n+ap+1+bp+1+]. fOI‘kZO,
n+ap+1+bp+1+1—2f=1§£ fork=1,...,p,

ntap+p+l—k-r & fork=p+1,...,p+ap,

n_Zlegz fOTk=p+1+ap+1,...,a1,
0 fork=a;+1,...,r = by,
Zf;fl—rfb,n—i fork=r+1-5b,...,Tr—p— b1

ktp+by —r+ i o fork=r+1—p—by,...,m —p,

L Apyr + bppr + 1L+ T 640y fork=r+1—p,...,r.
where a; > p+a,4; and r — by <7 —p—b,4;. On noting that m =n+a,41 + b1 +1,
(5.92) and (5.9b), the above coefficients of the ¢y can be simplified and coincide with
| the coefficient of o in
a j by j
< ®, >=ma, + ;(m - ; Ae; + ; ; by +2—iCr by -
Hence, by induction the proposition is true for all p. O

Now we are in a position to prove our key result regarding the core contribution

to (5.6).

Proposition 5.7. Let ¢ = e~® and let w; € W, be the core element of {W : W}

defined in Proposition 5.5, then
s(we)eh V™" = (-1)gH{£;¢')

where ¢ € F is the partition which in Frobenius notation takes the form (‘;‘1‘;:::)

Proof Proposition 5.6 implies that

a1 J

by J
we(p) —p=—nao =3 (n =3 _&)a; = 3D busz-irajon,
j=1i=1

j=1 i=1
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we(p) = p == (6 + erpr — 2 6
—Z_;;&m i(€rpjmby — Ergjtrit1)
=S+ e — &) = (n - E)er JZn—Zé)mLZn—Zé
+(;§€b,+z-i)er+1 —JZ“X;&IH i€r4joby +l:2j26bl+z i€rpjobiti-

With the fact that n = Y04 £ = 24 ¢/ it can be seen that

we(p) —p=—nb+ e+ Zﬁ}ej + &, r1€a 4
j=2

by
- £1€r+1 - Z§b1+2—j6r—b1+j - €b1+15r+1—b1 (5-11)
a1+1 b+l
:—t€|6+261{61 ngrw?
i=1
Since e(wg) = (—1)%! we have the result. O

Notice that (5.11) can be written in the form

we(p) —p= Y, (=6+¢—€oisa), (5.12)
(L.5)EF(E)

where the summation is carried out over all (7, ) such that a box lies in the ¢th row
and jth column of the Young diagram F(¢).
Next we consider the non-core action wyey where ¢+ d > r. Again by Proposition

1.11 we have
p—weey(p) = o+ Solau) + ... 4 5081 ... 880 Sr_ar2(Croayr)

:6+(C+d+1)&0+Z(C¥1+a2+...+ai)
i=1

r—c—1 ctd-r
+ Y (ot ot o)t Y (et oy + o+ erni).
i=1 i=1
When casting this expression in terms of the § — € basis we obtain
r—d+1
wey(p) —p=—(c+d+2)d+(d+1)e; + Z & — (c+2)eqy — Zer+2 ;
i=2 (5.13)
=—(c+d+2)6+ Z € — Z €rta-i
(.3)eF(p) (i.4)eF(v)
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d ¢
where = (% ) and v = (7t ).
Next let A = S5 e — T4 vie,4o-; where p and v are partitions of the same

positive integer. Since each ¢ (i = 1,2,...,7 + 1) lies in H* then the level L(¢) = 0

and hence L(A) = 0. For ¢+ d > r we can write
’LU(;) = 85081:--8:8r...8,-d428r—d+1 = th,-S,._l oo Se428182...874,

where § = €, — €,,; and there is no intersection between the intervals [1,r — d] and
[c + 2,r]. Since each Weyl reflection s; correspond to a transposition (2,7 + 1) then

the permutation correspond to the Weyl reflection & = s,8,_1 ... 8c428152 ... S,~4 1s the

permutation
(r+1 r ... ¢c+2)(1 2 ... r—d+1).
Hence
r—d+1 (u)
W) = fogp€ + D fia&i+ Dt
i=2 i=r—d+2
r_c o) (5.14a)
— Vpesboyt — D VieiErsami — 9, Vi€rya—i,
1=2 f=r—c+1

where the second and fourth summations are considered to be zero if r — d +2 > {(u)

and r — ¢+ 1 > {(v) respectively. Then by (3.21)
w(s)(A) = ted(A)

= H(\) + LN — (B()) | 8) + %L(x\)(() | 6))6 (5.14)

= B(A) = (Hroass + Vr_0)5

Theorem 5.8.  The general form for the right coset representatives of W with re-
spect to W of the affine algebra AY) is
w = UJ(S:() N w(gg)w(;i)w(::)w(gg .o ’LU(::)

where
T>C2...2C2C2a>a0>...>a,20,

r>d,>...2d2di > >b;>...>b,20,

with C1+d127'2a1+b1+1.
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Proof In term of the core elements we can write w = w(g) ... wega)w g )ywe. We shall
prove the theorem by showing that there is a one-to-one correspondence between the

elements of {W : W} and the expression in (2.15a), namely

w -
> 2 > (—1)Khmam glilanta=s (57, 10}
(eF 3=0 kE,mi 47 2r43
L)+ HSr+1 (i<miLr+], (1< <r+d -
where k = (m,,...,m,) with m, < ... < m,, k= (my,...,m,) withm, <... <m,,

m = E::l mi, m= Z::l Fn—f’ n= Z::l n; a‘nd n = Z::l -ﬁi’

First we note that there is a one-to-one correspondence of labels with the following

identification:

T — ¢+ 2
m; «—— di +1
s +— ¢

It just remain to show that that for our particular w we have
5(w)chT/_w(p)_p = (_1)|(|+m+ﬁl qICl+n+ﬁ—s {-V—,; #3}

Now by (5.12)

we(p) =p+ D (—6+¢€ — €rp2i)
(.EFE)

=p— &6+ p° =",

where p° = £ = Yiiepe € and V0 = ~£ = S Gii)eF() Er+2-i- Furthermore by (5.13)
and (5.14)

weywe(p) = p— {6 —(a+di +2)6 + o e > €rpomi
(L.)EF(, 2y, (.§)eF( 1L,
— (Bgyn V206 + (= 1),

where w(u® — v°) can be computed from (5.14a). Next let
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(L.)eF(2L))

r—di+1 4(r°)

=(d+l+pmaat 2 (Wa+at > we
i=2 i=zr—d;+2
v =w(°) + > €rpami
()EF(, ¥
r—cy £(v%)
=(a+2+v_ . )&+ Z(Vf_l + 1)€rya—i + Z V) €ryami
i=2 j=r—ci+1

ny=di+ 14 p . =

—_— 0 1
m=a+2+v,_, =,
then

wieywe(p) = p— (| €] +ni+ 7y —1)6 + p' — v
In general p' and v are defined recursively as in (2.14b) and (2.14c) respectively,

ng =d; + 14+ pi7l_, and ; = ¢; + 2+ viZ! . Continuing the procedure iteratively we

obtain
w(p) = w(g) - - wgzywegHwe(p)
=wg)--wee(— [ E16+p—(n+ R —1)6+p — v
= o= €1+ m+ om0+ =
Hence - -

w(p) —p=—(Cl+n+n—s)6+p —v. (5.15)

The parity of w is

(—1)ttertteckdittditie
=(__1)5+(ﬁu-2)+~--(ﬁh—2)+(mx-1)+---+(mc—1)+|C|
=(_1)ICI+m+rﬁ .
and hence the Theorem is proved. O
Since there is a correspondence between the Weyl group element
W o= wigy ... w2 W)W with that of (2.15a) then the action of w € {W : W}

on p can be obtained diagrammatically, i.e. w(p) — p can be obtained from F(;¢’)
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by adding t pairs of boundary strips of length r + 1. For example, let us note the

result of computing w(p) — p with w = wsywsywiy for the affine algebra AP, TFirst
note that wy = wg = sps; is a core element and contribute the Young diagram
F(&¢) = F(2;1%). W(3y = 805152538584 is a non-core element and its action amounts
to adding a pair of boundary strips of length r + 1 = 6 each extending over 5 and 3
columns respectively. Similarly the action Wy = $08152838554 amounts to adding a
pair of boundary strips each extending over 6 and 3 columns respectively. Hence we

obtain the following Young diagram F(v2; u?):

ote

[etetetotote]ote]

F2p?) = =

so that from (5.15) this gives
(30515233343534)(808152333534)(3031)(p) - p
=—(2+@+4)+(5+11)—2)6+4e; +4es + 3ea + 34 — 11es — 3€s

= — 236 + 15¢; + 15€, + 14€5 + 14€4 + Ses .

5.3. The right coset representatives of W with respect to W for X,(f(),)

All the results of the previous section for A% O A, may be extended in very much
the same way to more general cases X,(f(),) D Y,. For the other infinite series of rank
dependent affine algebras we will be content in this thesis with stating conjectures on
the elements of the right coset representatives {W : W}. We suspect that they can
all be proved in the same way as in the case of A, All our results are based on an
extensive computer assisted study of w(p) — p for various w. This has allowed us to
identify all w € {W : W} with some confidence. The resulting elements are then used

to calculate w(X + p) — p.
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Definition 5.9.

(i) For0<a<rlet

So ifa =0,
Weas = (5.16)
8081 ...84 ifa;éO

A general expression is given by wea,>Weay> - - - Wea,>-

(il) Forl<a<rlet

{so ifa=1,
(0) _

808283 ...8,4 ifa;é 1,

(5.17)
|
S1 ifa=1,
| wil) =
| $18983...8, 1f a # 1.
A general expression is then given by w1 Wia,) -+ Wiay - - - Wig,) With wye,y = wff'_)] for 2

odd, and wy,; = wfj?] for 7 even. Thus the Weyl reflections for each sequence begin

alternately with s and s;.
Again before giving a general result let us compute some terms for the denominator
of the Weyl-Kostant-Liu character formula. Consider first the case when a; < r — 1.

In Table 5.2a, 5.2b and 5.2c, respectively, we compute for a few cases w(p) — p for the

representatives affine algebras B®), D%, and C,
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Table 5.2a : Some results arising from w,(p) — p for B

w w(p) —p B, character depth
So —ay [1?] 1
5082 —20 — iy [217] 2
508251 —3ap — a; — 20, [23] 3
508253 —3ap — 205 — 3 [31%] 3
S0828381 —4og — ay — 3ay — 3 [3221] 4
50528354 —4ap — 30, — 203 — Qv [41%] 4
5082538485 —dag — day — 3az — 204 — a5 [51°] 5
5083838481 —Dag— oy —4ay — 203 — g [42%17] 5
8082838182 —dag — 20 — 4o, — 203 [322?] 5

Table 5.2b : Some results arising from w,(p) — p for D®

r+1
w w(p) —p B, character depth
o —Qp 1] 1
Sp8y —3a0 — Q3 [21] 3
S081S80 '—'4C¥0 - 2C¥1 [22] 4
S08182 —bBap — 2a; — oy [317] 5
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Table 5.2c¢ : Some results arising from w¢,s(p) — p for CV
w w(p) —p C, character depth
So —Qp <2> 1
8051 —200 — oy < 31> 2
808152 —3ap — 207 — ay < 41% > 3
S05150 —3ap — 3a; < 3> 3
|
S0815283 —4ag — 3a; — 2a, — a3 < 51% > 4
S0815250 —4day — 4oy — oy < 431 > 4
8051828384 —dag— 4o, — 3oy — 203 —ay < 61> 5
| 8081828389 —dagy — day — 2, — a3 < 5312 > 5
| 8081525081 —Hay — b6y — 20, <422 > 5

With Proposition 5.2 in mind we make the following conjectures on the core ele-

| ments of the right cosets {W : W} generalising Propositions 5.5 and 5.7 which apply

to AM,

Conjecture 5.10.

and A2 | of length n are given by

Wy = w[a,]w[az] e w[a,]

where a; > a; > ... >a, 20 and n =

e(wq)ch yel-r _ {

(_1)la|/2qlal/2[a]

(—1)elizglel/2 < o > for AP,
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where o € A is a partition of the form (“‘a'l“"l”'“"l).

aaz crGp

Conjecture 5.11.  Let a; < r — 1. Core elements of {W : W} for the algebra CV

and AY) of length n are given by

Wy = Wea;>W<az> -+ Weap,>

where a; > a; > ... >a, > 0 and n = p+ 5%, a;. These elements are such that

=1

(o)~ (_1)|7|/2q|7|/2 < o > for C'(l)
e(w,)ch V' =
(_1)17I/2q|71/2[7] for A(22r)

where v € C is a partition of the form (“;““’;:1 "’:)

Conjecture 5.12. Let a; <r — 1. Core elements of {W : W} for the algebra Dﬁijl
of length n are given by
We = w<al>w<a2> . .w<ap>

where a; > ay > ... >a, 2 0 and n = p+ Y7, a;. These elements are such that
e(w)ch VP77 = (—1)ld+p)i2gld]

where € € E is a partition of the form (““” "'“’).

ayaz - ap

It should be emphasised that thanks to Proposition 5.2 and the fact that the
w(p) — p € P* if and only if w € {W : W}, the only aspect of these Conjectures
requiring proof is the precise form of w,, w, and w,. Next we make further conjectures

for arbitrary elements of {W : W} analogous to Theorem 5.8 in the case of AW,
Conjecture 5.13.  The general form of the right coset representatives of W with
respect to W of the affine algebra C) is

Weh>Wapyoy> « -0 Wy >Weay>Waar> -+ Wea,>

with2r —1>b>...2b;>a,>...>a, andforb>r,

Wep> = S0S81-.-8r-18r8r-1+.-82r—3-
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Further let w = wep,sWep,_,> .- Wep,>W,. Then

e(w) ch Ve _ (—1)PVzHmghi/zen=t o \()
where all the variables are as described in Proposition 2.1 with the t-tuple given by
k=(b+3,b+3,...,b,+3).

For illustration let us note the result of computing w7sw<;5(p) — p for the affine
algebra C{V. First note that w¢;s = so8; = w, is a core element and contributes the

Young diagram F'(y) = F(31)

and wers = $081528384555685 1S a non-core element and contributes an additional bound-

ary strip of length 14 extending over 10 columns.

Telo]o[o]e]e]

.
il
L |
Hence

w<7>w<1>(p) —p= —-116 + 1061 + 462 -+ 263 + €4 + €5.
Conjecture 5.14.  The general form of the right coset representatives of W with

respect to W of the affine algebra AP s

Web>Weheoy> - - Wepi>Wea>Weaz> -+ - Wea,>)
where all the terms are as in Conjecture 5.13. Then
e(w) ch v _ (—1)Il/24m=t glrl/zen=t (Y]

where all the variables are as described in Proposition 2.1 with the t-tuple given by
k= (bi+2,b4+2,...,b+2).
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For illustration let us note the result of computing w¢7swi5(p) — p for the affine

algebra A?. As before Weis = 5981 = W, is a core element and contributes the Young

diagram F(y) = F(31)

| |

S

and wers = 50818283548586S5 1S a non-core element and its action amounts to adding a

beundary strip of length 13 extending over 9 columns .

[ ] .].l.l.l.'

[
o]
Hence

WersWers(p) — p = —108 + 9¢; + 4ey + 263 + €4 + €.

Conjecture 5.15.  The general form of the right coset representatives of W with

respect to W of the affine algebra Dﬁ)l is

Webi>Webioy> « v v Wehy>Wea>Weaz> - -+ Weap>,
where all the terms are as in Conjecture 5.13. Then
e(w) Cth(p)—p _ (_1)(|e|+p)/2+mq|e|+zn—t[)\(k)],

where all the variables are as described in Proposition 2.1 with the t-tuple given by

k=(b+1,by+1,...,0+1).

For illustration let us note the result of computing w<rsw<15(p) — p for the affine

algebra D). As before we,s = S¢8; = w, is a core element and contribute the Young

diagram F'(e) = F(21)
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and wers = 505152835485563s 1 a non-core element and its action amounts to adding a

boundary strip of length 12 extending over 8 columns.

® .I.I.'.I.I

e Te o

Hence

WersWers(p) — p = —186 + 8¢y + 3€2 + 263 + €4 + €5.

Conjecture 5.16.  The general form of the right coset representatives of W with

respect to W of the affine algebra B is

Wiy ) Wibe—i] - -+ Wb:]W[a,]1W]a5] « + + Wap]

suchthat2r—12>2b2>2...2b02r>a;>...> a,,
8089+ 87 18p8p_1 ... 89r_py 1 bF#2r—1,
{ 8089 ...57-15;85-1...828¢ 1 b=2r—1,
“ {3152...s,_lsr.s,_l...sz,._b ifb#2r —1,

8189 ...87-18p87_1...828; Ifb=2r—1.

Further let w = wy,wp,_y - - - W, Wa. Then
5(11)) cth(P)—P — (_1)|al/2+mq|a|/2+n[A(k)]’

where all the variables are as described in Proposition 2.1 with the t-tuple given by

k - (bl,bg,...,bt).

For illustration let us note the result of computing w{%)wgl)(p) — p for the affine

algebra BSY. As before wg’]) = 8p83 = W, is a core element and contributes the Young

diagram F(a) = F(21?)

L
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0 . . . .
and wfﬂ) = 8052535485565 15 a non-core element and its action amounts to adding a

boundary strip of length 11 extending over 7 columns.

[® |

Hence
(0),,,(1)

'LU[7] 'LU[2] (p) — P =80828354555635 Slsg(p) —p

= — 96+ Te; + 36y + 263 + 2¢€4 + €5.
Conjecture 5.17.  The general form of the right coset representatives of W with

respect to W of the affine algebra AP s

W We-n] - - - Win]Wa1]Wias] - - - Way)
where all the terms are as in Conjecture 5.16. Then
e(w) ch V07 = (—1)lel/ztm=s glal/24n o \®) 5
where all the variables are as described in Proposition 2.1 with the t-tuple given by
E=(+1,b+1,...,0+1).

For illustration let us note the result of computing w[(%)wle])(p) — p for the affine

algebra A%. As before wg)]) = 8083 = W, 1S a core element and contributes the Young

diagram F(a) = F(21?)

0 . . . .
and wfﬂ) = 80S528354555635 15 a non-core element and its action amounts to adding a

boundary strip of length 12 extending over 8 columns.

[ ] .LOIOIO[OJ
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Hence -
wfn)wfz])(p) — P =805253845586S5 3132(p) i

= — 108 + 8¢; + 3¢, + 2€5 + 2€4 + €5.
Finally, in the case of D) we have to introduce a slightly different form for the

elements of {W : W}. If (A,..., \-1,A.) is a partition label for a dominant weight of
a D, module then from Table 2.5 we observe that A,_, is always positive but the range
for A, is —\,_; < A, < \_;. Hence it is possible for A, to have negative values. For
example, in the case of Dgl), we obtain
S0898384(p) —p=—46+4de1 t et 3+ et €5
S0828385(p) —p=—40+4de;+ 2+ 3+ €4 — €5
3052538485(p) — p=—56+5€; + €2+ €5+ €4
3032335531323334(/)) —p=—986+ 5¢; + 5€; + 2€3 + 2€4 — 2¢5
5052838551828385(p) — p = —T6 + 3€1 + 5€; + 2¢3 + 2€4 — 2¢5 |
Hence all these Weyl reflections, except the last one, are valid elements of {W : W}.

With these examples and from further computations we make the following conjecture

on the elements of {W : W}.

Conjecture 5.18.  The general form of the right coset representatives of W with

respect to W of the affine algebra D) is

Wy ]Wyeoa] - - - Wpi]Wz,] -+ + + Wizi]Wia,]Was] - - - Wia,)

suchthat2r—12>y, >...2yu>r2z;#aa2r—1>a,> ... > a,,

( S0S2 .. .8,_28,1 fz=r— 1,
(0)
Wi = | .
(=] 8082 .. .8,_28, ifz=r
2 2
\
(8189 ...8,_28,_1 fax=r—1,
(1)
Wri = « .
(=] 8182...8,_-25, ifz=r,
\
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( 8082 ...8,_98,_1S8, if y=r + 1,

wg)]) — J S082...8,_18:5r_28r_3...S2roy ifr+2<y<2r-2,

8089+« 8r_1878;-98r_3...898¢ ify=2r—1,
\

( 8182 ...8,-257-15, ify=r+1,
(1) _ )} 8182...8r-1878p-28r_3...82y Hr+2<y<2r—2,
W] = 3
81892 ...87_15787_28,_3...828; fy=2r—1.
\
Further let w = wp,jwp,_y) - .- Wp, We Where b; = z; or y;. Then

e(w) ch V™7 = (—1)lal/24m glai/2en] \(4)]

where all the variables are as described in Proposition 2.1 with the t-tuple given by
k=(b—1,b—1,...,b,—1) except when b; = r — 1 the boundary strips extend over
r — 1 columns as in the case of b; = r. Further if w contains the Weyl reflection wf,ol)

then the coefficient of ¢, is negative.

For illustration let us note the result of computing w(p) — p with

(0), (1), (0), (1)

W = Wiej Wiy Wijwpyj for the affine algebra D{V. First note that wff]) = 8p = Wy IS @

core element and contributes the Young diagram F(a) = F(1%)

wg]) = §0S283 1S a non-core element and its action amounts to adding a boundary
strip of length 6 extending over 3 columns. Similarly the action of w[(f]) = 808284 and
(

w[g]) = 8082535482, respectively, amount to adding boundary strips extending over 3

columns and 5 columns.

retetere]

®
*T?
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Since w does not contains the term wffl) then the coefficient of ¢, is positive. Hence

w[(g])wfi])w&)wflll)(p) — P =8082835482 518284 S0S253 Sl(p) —p

= — 176 4+ 9¢;, + 5¢, + 3€3 + 3¢,

5.4. The actions of the right coset representatives on A

The numerator of the Weyl-Kostant-Liu character formula involves evaluating ex-
pressions of the form w(A + p) — p. We thus need a generalisation of Proposition 1.11,
i.e. a general formula to evaluate w(A) — A. In this situation we need the following

Lemma which appears in one of the exercises in the text by Kac [Kac4].

Lemma 5.19. Let w = s, ...s;, be a reduced expression of w € W and 8 € ®,,.

Then the sequence B, s;,(B), $:,9:,(B), - .. contains a unique simple root, say «;s), and
for A € H*
E w

Proof Since § € At and w™'(f) < 0 then at a certain stage, say s;,, in the sequence

of w™! we must have s;,,...,5:,5;,(8) < 0 but ;) = si;_,,---,5i,8,(F) > 0. Then

si,(¢j(s) < 0. By Lemma 1.5, the fundamental reflection s; permutes the positive roots

other than «;. Thus ;) = o;; which is a simple root.
Suppose that there exist another simple root ¢, in the sequence. Then
Qi = Sip_y -+ 8,80,y - 51,85, (B)
= Sip_y -0 8i;(u;) > 0.
But s;,_, ...s;; is a reduced form so that by Lemma 1.7(b) s;,_, ... s;;(cs;) < 0 which
is a contradiction. Hence ¢4 is unique.

The second part (5.18) of the Lemma can be proved in the same way as in the

proof of Proposition 1.11. O
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As before let us concentrate first on the case of the affine algebra A(Y). In this

section we will always assume that a weight A has a Dynkin label (Ao, A1,..., A.). Let

( Qg for y =0,
5081 ... 85-1{e;) forj=1,...,q,
B; =4 (5.19)
S081 -+ Sar) for j =,
Lsosl...sasr...(aj) forj=r—-1,...,r—=b+1.

Then by (1.12) we have

w( ) {1307:817 7:Ba7ﬂr1:6r—17"" r—b+1}'

It can be easily checked that s;,(8;) < 0 so that a;(s of Lemma 5.19 can be taken as

a; for each ;. If a + b+ 1 < r then by (1.12)
A—wp(N) = X <Aoy>p;

ﬁjeq)w

= Xoao+ Moo+ 1) ...+ Ao+ ... + )

(5.20)
+ X (co + a,) A Arcppi(@o F o ot i)
Z)\ +Zx\,+1 _ao +Z Z)\ o; +ZI(Z/\,+1_, Qpy1i-
In the 6 — € basis thls reduces to o o
wis)(A) —A = —(Za: A + i Arp1-5)8 + (Ao + i Art1-j)€1
=" = (5.21)

a b
+ Z Xio1€ — (Z )\j)fr+1 — Z Arpioi€rpr—i-
i=2 j=0 i=1
A generalisation of (5.11) and (5.21) for the action of a core element of {W : W} takes

the following form.

Proposition 5.20.  Let wg = w(s1)... wery be a core element of {W : W?}. Then

the action
14

we(A) — A= —(pAo + Ep:i A+ sz/\r+l—i)5

j=1i=1 j=1i=1
p i—1 a1+1

+Z 2/\ +Z/\r+1-J € + Z f_:/\—gfa (5.22)

i=l j=0 i=p+lj=
a; bi+1

P 3
Z(Z /\J + Z A1--)—1—,1)61'+2 -4 Z ZAr+1—z+J 6r+2—z,

i=1 j=0 i=1 i=p+1j=
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or in terms of the Young diagram F(¢§)

wf(/\) —A= Z (_"\'I-J“S + )‘ﬂ-j € — ’\n-’jer+2—i)7 (5'23)
(i,3)EF(§)
where
-t ifi <y,
Mi; = o o (5.24)
r+l—1475 ift>7.

Proof We shall prove this important result by induction on p. When p = 1, then
(5.21) is the required special case of (5.22) and it is easy to see that the action wy;: y(A)—
A can also be written in the form
w(::)(/\) —A= > (=M, + A6 — ApErsani)
G.i)EP(3
in agreement with (5.23). Hence the Proposition is true when p = 1. Now let w, =

WeW(grt) = W(5t) - - W3y W(3rD ) Then from (5.20)

ap+1 bpt1 Gp+1 4p41
LU(::I:)(/\) — /\ = —(ZO /\i + Z )\,+1_,-)a0 - ZI(Z /\j)ai
i= 1= j=i

bpt1

- Z Z /\r+1—] Q;,

i=rtl-bpyy j=r+1-i

so that
Gp+1 bpi1 Gp+1 Gpt1
wEw(Z;I;)(/\) we(A) = 2 Ai + Z Arp1-i)We(ao) — Z(Z AjJwe ()
i=1 j=i
r bpga

= 2 (2 Mag)we(e)

i=rdl=bpyy j=r+l—i

Then from (5.8a - 5.8¢) we have:

dp+1 bpt1
w,(A) —we(A) = —(ZA +Z’\r+1 )0 —apy = )
i=1
Gpt1 Gpi1 bp4a

= 2 (0 M) ew) - S (3 Aasy)an)

i_r+1 b,+1 j—"+1 H

Gp41 bp41 Gpi1 dp41
= _(Z A + Z /\r+1 i 6 + Z /\ + Z /\r+l—: 6p+1 - 6r—p+1)
Gp+1 Gpt1 bpt1
+ (D0 M) €inprt — €iap) + Z (2 Mg (€imprr — €ip)
i=1 =i s=r4l-byyy j=r+l—i
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Ap41 bpg1 Ap41 bpt1
wu(A) — we(A) = —(}: A+ Z Arg1-:i)6 + Z Ai€pyryi + Z Ars1-i€pi1
=0
Gp+1 r
- Z A,'E,._p_*_l - Z A,‘ﬁi_p .
i=0 i=r+l-bp41
However using the hypothesis to write down we(A) — A we have:
Gpi1 b,+1 Gp41 P+1
wu(A) = A= we(A) = A= (DA + E Art1-i)6 + Z Ai€pr14i + Z Ars1-i€pi1
=0
Gpt1 r
- z /\iﬁr—p+1 - Z /\iﬁi-p
i=0 i=r+l-bpi1
ap+1 bp+1
= Z (_’\ﬂ-’jé + )‘fh‘jej - ’\mjef‘+2—i) - (z A + 2 /\7‘+1--")(S
(3,7)EF(E) i=0 i=1
Gp41 bpi1 Gp+1 r
+ Z A; i€pr1+i T 2 Argi- i€pg1 — Z /\iér—p+1 - Z )‘iei—p .
i=0 i=1 i=0 i=r+l-by4

This can be expanded to show that the coefficients of ¢; coincide with the coefficients

of ¢ in

Z (_)‘fl-’j‘s + )"lijej - An;56r+2—i) )

(L.5)eF(n) :
with 7 as in (5.24). a

The remarkably succinct formulation of (5.23) in terms of Young diagrams lends
itself to a simple diagrammatic method for computing we(A) — A. By way of illus-

tration, consider the case of we = w(sywzyweey so that { = (:g;’) = (52321%2). The

relevant composite Young diagram and the appropriate numbering of its boxes by 7;;

in accordance with (5.23) and (5.24) take the form:

r—4

r — 3

0|r r—1r—2r—3!r-4]

2|1)o0]r
312
4|3
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The depth of we(A) — A is obtained by adding the contributions ), specified by the
entries 7 appearing in each box of F(£) (or equivalently F(£')), as displayed above.
Similarly the coefficient of ¢; is obtained by adding (resp. subtracting) all the contri-

butions A, that appear in the corresponding rows of F(¢') (resp. F(£)). Thus for this

example the coeflicient of —§ is

3Ao+2A +2 0+ 2+ A+ Ass F Ao+ A + 2001 43X, 4304,

and the dependence on ¢; for 1 <¢ <r+1 is given by:
Qo+ +Ah a0+ Ao+ s+ A_da+ M+ X+ A +Ao1)e

e+ M+ Ao+ M)+ (A + Ar)es + (A + As)es

~ Areabros — Ara€os — (A, + Asr + As2)€o
| = (Aot A +Ao)e = (As+ A+ A+ Ao+ Mg

— (A + A4+ A+ AL+ do)erga.
The above expression is valid for r > 10. But for the case r < 10 we have to apply the
modification rule to F(£;¢') and identify 5 by filling the remaining boxes with entries
taken modulo (r + 1) as we will describe below.
By Lemma 5.19 and (5.19) it is not difficult to show that for c+d > r

A= ’LU())\) ZA)GQ+Ac+16+ZA a1+012+ +Of,')

r—c-1

+ Z Arpr-i(or +ary + oo+ rpri)
i=1
etd—r

+ Z /\c+1—i(a0 + a, + Qr_y + oo + ac+2—i)7

i=1
where the third and fourth summations are considered to be zero if r —c¢—1 < 0 and

¢+ d—r <0 respectively. In term of the § — € basis,

c+1

wesy(A) = A = ( Zd /\+}:/\)5+ Xo + Z; /\)61+Zx\ €ir1
j=r—d+1 j=r—d+1
c+1 r-c—1

- (Z )‘j)5r+1 - Z /\r+1—i €rt1-i
j=0 i=1
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In the light of (5.13) and (5.23), the above expression can be written as

e+1

wegy(A) — A = —( Z Aj +Z’\ )6 + Z Ansi € — Z Ani €rda—i (5.25)

jr—d4l (5.5)EF(n) (5.J)EF(v)

where g = (%) and v = (_°*! ). Diagrammatically the contributions of X,,, and A

Nij

are specified by:

—
E
>, |
T T T Tl
Ao A,.l | . ‘ A‘v—d:ll
L
-
Next let
: ) v = Z /\n,'.' €& — Z )‘mjer+2—-i
(1.5)EF(u) (i.J)eF(v)
O LHORT
= Z Z Ansi€i — Z Z Anis Ery2-i
i=1 j=1 i=1j=1

where p and v are partition of the same integer. Comparing with (5.14) we can make

the following correspondence

bi
Hi & Z)‘ﬂji

ji=1
vy & Z /\77.',' ’
j=1
and these implies that

Hregd+41 Vr—e

w(:)(7) = @(7) - ( Z Aﬂj.r—d-&-x + Z Aﬂr—c,j)é
j=1 j=1
where
Br—d4r red+41 Bioy Lp)  p
/\ﬂj.r-d+1 € + Z Z )‘"ioiﬂei + Z Z /\'71"6"
j=1 i=2 j=1 f=r—d+2 j=1
Veee re=C Vie1 l(l/) v (5.26)
/\nr-c,j €re1 — Z Z )‘ﬂ.'-x,,' €rt2-i — Z Z: ’\nej €rt2-i-
i=1 i=2 j=1 i=r—c+1 j=1
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Noting that by (5.23)
wf(’\) = A —( E Aﬂ-‘j)é + E ’\'lj.'el' - Z )‘n;,'er+2—i

(i5)eF(€) (i)eF(¢’) (i5)EF(¢)
= )‘—( Z )‘mj)6+p'o()‘) —Vo()‘)
((5)EF(E)

with p®(A) = Cuiery Ansi€ and v°(X) = gjyerce) Anis €r+2-i- Further by (5.25)

r a+1
weowe) == 2 M+ W+ D Ay

l‘:f—dl +1 i=0 (I,J)EF( r—d; )

- E ’7'1 €r+2-i — ( Z A’7-.1

(.4)eF(, 1) (i5)EF(E)

r—cy =1

(5.27)

0 0
HBredy 41 yr—-cl

~ (X Mo T 2 M )6 H (B (A) — (W),
j=1 j=1
where @W(u°(A) — v°())) can be obtained from (5.26). As in the case of (5.24) u°(A) —

v°(X) can be computed by filling the composite Young diagram F(£;¢') with corre-

sponding entries A, ;. It then follows that

r a1 +1 I‘r—3,+x r—cl
w( :i )wf(A) = A - ( Z A + Z A + Z Anu + Z Nir— dy+1 + Z Nr—cy, J
f=r—d;+1 (ij)EF(§) i=1

+p () —v(A)

where
HO) =)= Y Aa— D Ay 2(6°(A) = °(V)
G.EF(,2) (0)EF(,Lt,) '
r r—d 141 r—ecy—1
= (Ao + Z Aj)er + Z Ai€ip1 — (Z Aj)ersr — z Arg1oi€ryioi
j=r—d; 41 =1 j=0 =1
“r—dl-!-l r— d1+1 "‘:— l(/‘o) “‘?
+ E Aﬂ; r—dj+1 61 + E Z Aﬂ] i-1 6’ Z Z A7];,':'6i
i i=2 j=1 i=r—d1+2 j=1
r—cl r—c¢ Vl-l l(yo) y?
- Z Aﬂr—c‘ ]6r+1 Z Z >"7|—l 167'+2“ E Z A’761' €f+2—i7
=2 j=1 i=r—cy+1 j=1

(5.28)
where the summations y4*") 4,42 Z i, and ng’,_cl 1 E}'j:l are considered to be zero if
r—dy+2>fu°) and r —¢; + 1 > £(v°) respectively.

All the subscripts 7 of A necessarily lie in the range 0,1,...,r. Without loss of
generality we may take these subscripts 7 modulo (r 4+ 1). With this convention it
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follows from (5.24) that

Aoy = Aj-i forallz, j. (5.29)
Then
r— d1 141 r-c;—l
M (A 1(A) (Z /\_1)61 + Z A €41 — (Z )\ €r+1 Z A_,'é,._*_l_,-
i=1
Il.--a,-n redy4+1 l‘-—x . l(l‘o) I‘?
+ Z A_g,-j€1 + Z Z Aimjor1€ + E Z)\i-jﬁi
=2 j=1 :—r—d;+?j=1
yg-cl r—cg l-l l(vo) "?
- Z Aertrei€rtr = D D Nimig1€rpai — Z Z)‘J’—ier+2—i
j=1 1=2 j=1 i=r—c3+1 j=1
dl+i‘g-al+1 rady 41 By qu®y  p?
=( > Aja+ S hsjaa+ Y > disje
i=0 i=2 j=0 i=r—d, 42 j=1
e tlv]_ r—cy Vi (%) e
- ( Z /\j)er-{-l Z E A —z+1€r+1 -1 Z Z Aj-—i€r+2—i-
j=0 i=2 j=0 t=r—c1+1j=1

Let F(u!) and F(v') be the Young diagrams that can be obtained from F'(x°) and
F(v°) respectively by adding strips of length (r + 1) as in (2.12a). Then p*()) can be
obtained ciiagrammatically by filling the :**-row of boxes of F(u') from left to right
with the sequence

VD VPR Vi

where o .
di+1+ Bror-a, =1,
1

u; = #‘?—1+1 i=2,...,7‘+1—d1,

I t=r+2—dy,..., 0u°)
in accordance with (2.14b). Similarly »*(A) can be obtained diagrammatically by filling

the i*"-row of boxes of F(v!) from right to left with the sequence
’\—i+1 3 A—i+2 Yty A—i-{-v‘.‘,

where )
C +2+VB_C1 Z=1,

1 _ 0 .
v, = v, +1 1=2,...,7—¢y,
0 . 0
VS t=r+1—-cy,...,0V°%.
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It should be noted that the entries in each added strip are then precisely Ag, Ay, ..., A,.

In general p'(\) may be obtained by filling the ** row of F(y') from left to right

with the sequence

A,’_l,)\;_z,...,Al,Ao,/\r,Ar_l,...,/\l (5.300)

and v*()\) may be obtained by filling the i** row of F(v*) from right to left with the

sequence

Aes2mi s Aeaacis ooe s Aey Aoy Mea oo M (5.300)

where the overline sequence may be repeated as necessary. Hence we may write (5.28)
as
#1()‘) - Vl()‘) = Z ’\nji & — Z An-’jer-*-?-i (5‘31)
(.3)eF(ut) (i.J)eF(v)
where 7;; = ¢ — j and all entries are to be taken modulo (r + 1) so as to lie in the range

0,1,...,r.
Let w = w(esy ... w(ayweery ... weery be an element of {W : W} as in Theorem 5.8
q d 1 »
with core term wg = w(eiy...w(ery and such that { = (a;a;...:p). Then (5.28), (5.29)

bybge-by

and (5.31) implies

dy #3_4,“
QU(A) = w(sq)...W(:g)[A— ( z /\ﬂij - Ao+)\o +Z>\r+1"j + Z )\,_dl“_j)(s

) ()EFE) izt et
c1+1 ”E-:, '

= (2 X+ 2 Xrernn)S 1 (X) = (V)]
j=0 FE

=wy WA= (Sl 30 Ay (V) +11(N))8
(i1)EF(§)
+ Z ’\ﬂjiei - E "‘17.‘,'61‘+2—"]
(1.5)EF(u?) (#.5)eF(v?)

where pl()) and v}()) are the coefficients of ¢; and —e¢,,;, respectively in

E Ansi€i = Z Anis €rpanis

(1.5)EF(u?) (1.3)eF(v?)
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Proceeding iteratively,

w(d) = A —(=gro+ Z A T i E Ansa + i Z Anrs)6

(i5)EF(¢) =1 (1,j)eF(nt) t=1 (1,5)eF(vt)

+ D) AE— DL AnyErso-i)

(3,5 )eF(uv) (.5)eF(v9)

where F(u!) and F(v') are defined in terms of F(u'~!) and F(vt-1), respectively, by

adding strips of length (r +1). These results are can all be summarised in the following

theorem.

Theorem 5.21.  For affine algebra AM, let w = W(ge) -+ W(EHWSE) - - W(gr) &S in
Theorem 5.8 and ¢ = (:’1::::) Let F(u') (resp. F(v?)) be the Young diagram
obtained by adding t boundary strips each of length r + 1 to ¢’ (resp. £) and covering
dy+1,d2+1,...,d; + 1 (resp. ¢; +2,¢; + 2,. , ¢ + 2) columns consecutively. Let
&'(X) correspond to filling the i** row of boxes of F(¢') with the sequence in (5.30a).
Similarly l;at g*(A) (resp. v*(A)) correspond to filling the i** row of boxes of F(u*) (resp.

F(v?)) with the sequence in (5.30a) (resp. (5.30b)). Then
W) = A= (€0) + LA + A0 = o)+ w(3) = w1().

where u!()) and vi(A) are the coefficients of €; and —¢, 1, respectively, in p*(A) —v'(A).

It should be noted that the specific case of this corresponding to w(p) — p may be
recovered directly by setting Ay = A; = ... = A, = 1 so that the shape of F(v*;u')
is sufficient to define w(p) — p. To illustrate Theorem 5.21 let us note the result of
computing w(A) — A where w = w(1ywywe in the case of A, Here ¢ = ()) and
g = 2. First we obtain the Young diagrams F(p?) (resp. F(v?)) by adding to F(;)
(resp. F(])) 2 boundary strips each of length r + 1 = 4. Then we fill the boxes of

the composite Young diagram F(v?; u?) with the sequence of ); as described in (5.302)
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and (5.30b). This will gives u?(X) — v2(A).

Fo5u%) = F(§E) = E

F(vhp') HE

T2 2 —
POt ) = T

The contribution to 6 comes from the following:

_ 3|2 1 0 '70|3|2J1170
2o+ [[5] + Iquq* T e

Hence

(80818382)%8083(A) — A
=— (=20 + (Ao + )+ A+ A+ A+ X))+ (Ao + A+ Ay)
F Ao+ A+ X+ A+ )+ Ao+ A+ A+ A+ X+ A3))6
+ A+ A F A +20)ea + A+ A+ A+ As)e
— (A + A F A+ As)es — (Ao + A+ A2+ 2)3)e;
=— (3L 42X+ X2 +3X3)6 4+ (L4 o + As)er + Les — (L + As)es — (L + Xo)ea

where L = Z?_—_o A; is the level of A.
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5.5. Conjectures on the actions of the right coset representatives on A
For the other affine algebras we give the following conjectures on the form of w(A)—

A which have been arrived at.

Conjecture 5.22. For C), let w = wgp,> ... Wep,>Weay> + - - Wea,> as in Conjecture
5.13 and v = (:i“;;“’.:i:“ ) Let F(u') be the Young diagram obtained by adding t
boundary strips each of length 2r +2 to v and covering b, +3,b,+3,...,b:+3 columns
consecutively. Let pt()) (resp. 4()) correspond to filling the i** row of boxes of F'(p')

(resp. F(«)) with the sequence

A,‘__], /\,'_2, ceey Az, /\1, AO, AQ, /\1, /\2, ey Ar—ly A,., /\,-, Ar—-la ceey Al, AQ
where the overlined sequence may be repeated as necessary. Then
1 q
w(d) =A== (57N + 2 () — ¢h)d + u'(A).
t=l

To illustrate this, let compute w2, wei5(A) — A of C{Y. In Table 5.3 we have

written down the sequences as described in Conjecture 5.22 when r = 3.

Table 5.3 : The sequences for computing w(\) — A in the case of C§”

0 0 1 3 3 2 1 0 0 1 2 3 3
1 1 3 3 2 1 0 1 3
21 0 0 1 2 3 3 2 1 O 1 2

On superimposing the Young diagrams F(u®), F(u') and F(u?), respectively, on

the top left hand corner of Table 5.3 we obtain

() = F(y) = o]

?

ojJo(|1]2 3[3}

F(iul)=1°°1 ’
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ojofl1f2]3|3|2]1
F(#2)=1001233

21130011

The contribution to 6 comes from the following:

—2h + [o[1]+ G2 [s1e] + Gl e s s [ 15

\ This then implies
(30313233)28051(/\) - A= '—(BAO + 4A1 + 3/\2 + 4A3)6 + (2/\0 + 2A1 -+ 2A2 + 2/\3)61

-+ (2/\0 + ZAI + /\2 + 2A3)€2 + (2/\0 + 2A1 + /\2)63.

. 2 . .
Conjecture 5.23. For A, let w = Wep,> -+ - Weby>Wear> « - - Wea,> as in Conjecture

f 5.14 and v = (::“Zi“::‘;:“ ) Let F(u') be the Young diagram obtained by adding t

| boundary strips each of length 2r +1 to v and covering b; +2,b,+2,...,b,+2 columns

consecutively. Let p*(A) (resp. 4())) correspond to filling the i** row of boxes of F'(p')

(resp. F(v)) with the sequence

/\i—la Ai—Z; .- '7A27/\17/\0)/\07A1’A2’ T 7/\1'—13)‘7'7/\7'—13 AR | )\17/\0

where the overlined sequence may be repeated as necessary. Then

W) =3 = ~(310) + 3 () ~ aha)6 + ()

To illustrate this, let compute w2, wei»(A) — A of AY. In Table 5.4 we have

written down the sequences as described in Conjecture 5.23 when r = 3.

Table 5.4 : The sequences for computing w()) — X in the case of AP

l 0 1 3 2 1 0 0 1 3 2 1
1 0 1 3 2 1 1 3
2 1 0 1 2 3 1 0 1 2 3
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On superimposing the Young diagrams F'(p°), F(x!) and F(u?), respectively, on

the top left hand corner of Table 5.4 we obtain

P) = F(y) = 4o,

00123]

F(g') ={1{o]o}1 ;

oflof1]2]a]2]1]
Fp*y =l1lofo|1]2]|3

2|l130]0¢}1

The contribution to § comes from the following:

—2%o + o] 1|+ [ofolsfo]af+ o]ofr]2]s]2]1}

This then implies
(80815283)°8081(A) — A = —(3Xo + 4A1 + 325 + 2X3)6 + (2h + 2X; + 2X2 + X3)ey
+(2h0 + 20 + A2+ A3)ea + (2X0 + 22, + Ao)es.
Conjecture 5.24. For D%, let w = Wep,> v Wepy>Weay> - - - Wea,> as in Conjec-
ture 5.15 and € = (:“:zz:) Let F(u') be the Young diagram obtained by adding t

boundary strips each of length 2r to € and covering b, +1,b, + 1,...,b; + 1 columns

consecutively. Let p*(\) (resp. €(A)) correspond to filling the i** row of boxes of F(u')

(resp. F(e€)) with the sequence

)\,‘_1,)\;_2, .o .,Al,Ao,Al, .. .,A,-_l,)\r,/\,-_l, een 7A1

where the overlined sequence may be repeated as necessary. Then

() = A = =(e() + 22 4N ~ )6 + 11N,

To illustrate this, let compute w2, wes5(A) — A of DP. In Table 5.5 we have
written down the sequences as described in Conjecture 5.24 when r = 3.
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Table 5.5 : The sequences for computing w(A) — A in the case of D

On superimposing the Young diagrams F'(p°), F(p') and F(u?), respectively, on

the top left hand corner of Table 5.5 we obtain

F(p') =|1]o 1
211

012321J
F(p*) =|1]o|1]2]s

211410141

The contribution to é comes from the following:

2%+ P+ oD + AL LD

This then implies
(50515283)%8051(A) — A = — (3o + 8A; + 65 + 4X3)6 + (Ao + 221 + 2X; + Aa)e
+ (o 42X + Az + Aa)ez + (Ao + 22, + Ao)es.
Conjecture 5.25. For BM), let w = wp,] - - . W, Wa,] - - - Wia,] a8 in Conjecture 5.16 and
o= ( :i‘IZ:_IZZZ:"I ) Let F(p') be the Young diagram obtained by adding t boundary

strips each of length 2r — 1 to « and covering by, b,,. .., b; columns consecutively. Let

pt(A) (resp. a(A) ) correspond to filling the i** row of boxes of F(p') (resp. F(ca) )

with the following sequence:

if p+ ¢q even

) VINTD VENUEUED Vs Vb V5 VRURES WENUD WD VRS W
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and if p + ¢ odd

Ao,)\z,/\s,. . .,A,-_l,A,-,/\,-__]_,. - ,Ag,AQ,/\l,/\Q,. . '3/\r—1)AraAr—17- . .,Az,/\o ?, = l,

A07/\1,)‘2a'''a/\r—17>‘ra/\r—1,-"'))‘29/\0 Z=2a

Ai—lw . ‘,/\2) /\OaAla/\Z" . '7/\1'—-17 /\ra)‘r—la .. 'a)‘2,/\0 ? > 2.

Further suppose that the element wy,,; begins with the fundamental reflection s (k =
0,1). Let 2}()) be obtained from j(}) by replacing the first entry with A; but retaining

the rest of the entries. Then

w(h) = A == ~(50(0) + A+ ()

To illustrate this let us note the result of computing w(\) — A of B{" for a few

cases. In Table 5.6 we have written down the sequences as described in Conjecture

5.25 when r = 4.

Table 5.6 : The sequences for computing w()) — A in the case of B{"

If p+ ¢ is even

0 2 3 4 3 2 1 0 2 3 4 3 2 1
1 0 2 3 4 3 2 1 0 2 3 4 3 2
2 1 0 2 3 4 3 2 1 0 2 3 4 3
3 2 1 0 2 3 4 3 2 1 0 2 3 4
If p+ qis odd
0 2 3 4 3 2 0 1 2 3 4 3 2 0
o 1r 2 3 4 3 2 0 1 2 3 4 3 2
2 0 1 2 3 4 3 2 0 1 2 3 4 3
3 2 0 1 2 3 4 3 2 0 1 2 3 4
Let w = wfgl)w[(;])w[(f]) = 508283 8152 Sg- This is a core element with p odd. On
superimposing the Young diagram F(a) on the top left hand corner of Table 5.6 we
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W |wvw {o |e
N O |~ |

o |- v W

Then

wA) =A== (2 + A +2X + A3)6 + (Ao + A2 + A3)e

+ Ao+ A+ A)ea+ (Ao + A1+ Az)es + (Ao + Az + As)eq.

Next let w = wQuw®w(Dw®

w[5] 'LU[5] w[al ’LU[U = 8052838483 8182835483 S982583 31 Where P = 2 and
‘ g = 2. On superimposing the Young diagrams F(u°), F(u!) and F(u?), respectively,

on the top left hand corner of Table 5.6 we obtain

2

2

23]

The depth comes from the following diagrams

0
F(p°) = F(a) = 1~
211
E2
0[2]3]4 3|211]
Ful) = |[24el2]s3
(1) NP
|3
012131413 |2|11]0
F2=10234321
(”) 211101]12]3
3

1
5(

)+ﬁ|2|3!4|3l211J+loL2[sl4lal2|1lﬂ.

Iw v {~ (O
-

Then

. 0 0 1 0
Finally let w = wfsl)wfsll)wfs])wfsj)wfn) =

176

U)()\) —_ A= (3/\0 -+ 4A1 + 5/\2 + 5)\3 + 2A4)6 + (ZAO + Al -+ 2A2 + 2A3 + A4)€1
+ (Ao + 221 + 20 + 223 + Ag)ea + (Ao + A 4+ 2h2 + Aa)es + Azeq.

80828354538152838453505253848351528335p where

p = 2 and ¢ = 3. On superimposing the Young diagrams F(u°), F(u'), F(u?) and
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F(u3), respectively, on the top left hand corner of Table 5.6 we obtain

0{ 2 3J
F(u*) = F(a) = -2
2|1
[ 3
0j2(314 3]2‘0]
F 1y oj1]2}3
) =113 )
K
0l2}1314)]3|2]0}1
F(2) = |°l1l2]s]alsjz2]o
(#) 2]1011}12)3
3]
of2]alafslafoli]2]3s]
F 3 — oj1121314]3|2]|]0}1
(”) 2j0(1]2]3}43j2}¢0
2
The depth comes from the following diagrams
0} 2 3]
T lilo
s )+ ledele]sfslz{o]
3

oz felafsfolofi)+lofo]s]afslo]ofr]2]s}

Then
w(A) = A= —(6X + 41 +8X2 + 835+ 3A)é
+ (200 + A1 + 30+ 305 + A)er + (2h0 + 22X + 20, + 205 + Aye
+ (220 + A+ 322+ 23 + Ag)es + Azeq.
Conjecture 5.26. For AP et w = Wip,] -+ - Wiy )Wiay] - - - Wa,) a5 In Conjecture 5.17
and o = (Z:"IZ:":',Z:"). Let F(u') be the Young diagram obtained by adding t
boundary strips each of length 2r to o and covering by + 1,b, +1,...,b, + 1 columns

consecutively. Let u*(A) (resp. a()) ) correspond to filling the i** row of boxes of F(u')

(resp. F(a) ) with the following sequence:
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if p+ q even

A,‘_l,)\,‘_g, e ,/\1,A0,)\2,A3, e ,)\,-_1,/\,.,/\,.,)\,-_1, ‘e .,Al

and if p + ¢ odd

/\07/\2,. . ,/\r_l,A,-,/\r,A,-_l, . .,Az,AQ,Al, . -,/\ry/\raAr-—l, . .,/\2, /\0 Z = 1,

A07A1,---,Ar—ly)\r,Ar,)\r-l,---,AzaAO Z=2,

Aictyer s A2 05 ALy eees Armty Ary Ary ArCgy v oy Ay Ag > 2.
Then

w(h) = A == = (3000 + 3 AO)S+ ()

where fi}(A) are as in Conjecture 5.25.
To illustrate this, let compute w = wg])wg])wfg])w&)()\) — X of AP, In Table 5.7 we

have written down the sequences as described in Conjecture 5.26 when r = 4.
Table 5.7 : The sequences for computing w()) — X in the case of A

If p+ qis even

0 2 3 4 4 3 2 1 0 2 3 4 4 3
1 0 2 3 4 4 3 2 1 0 2 3 4 4
21 0 2 3 4 4 3 2 1 0 2 3 4
3 2 1 0 2 3 4 4 3 2 1 0 2 3
Ifp+qisodd
0 2 3 4 4 3 2 0 1 2 3 4 4 3
0 1 2 3 4 4 3 2 0 1 2 3 4 4
2 0 1 2 3 4 4 3 2 0 1 2 3 4
3 2 0 1 2 3 4 4 3 2 0 1 2 3
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On superimposing the Young diagrams F(u°), F(p') and F(u?), respectively, on

the top left hand corner of Table 5.7 we obtain

0|2 3]
F(u*) = F(e) = -
2|1
5 | .
ol2]3]|4 4|3]2|1]
1j10}2}3
F(u') = -
211(0
2
0j2(314}4]3}211}0
F(u?) = LLlolzlslsj4fsfz2]1
(#) 2|]1]10}213
2

The depth comes from the following diagrams

T

SV
—

J+ladefalafsalafolaf+ofo]sfalafslo]s]o}

Im [ L [}
Load

Then

w(A) =A== (3 +4X + 53X +5x3 +40)8 + (2X + A1 +2X, + 225 + 206

+ (Ao + 20 + 20 + 2 3+ 2X)ea + (Ao + Ay 4+ 2X2 + A3)es + Aseq.

For the rank dependent series of affine algebras we are finally left to determine
the action w(A) — A for D). As has been noted in obtaining Conjecture 5.18 we have
found it is necessary to introduce a slightly different form for the elements of {W : W}.
This create further difficulties, in determining the action w(A) — A diagrammatically.
We have yet to resolve these problem. To illustrate these difficulties let us compute
wfg])()\) — ) in the case of D{".

As has been noted in the example following Conjecture 5.18, wfg]) = 8052538487 1S &

valid non-core element of {W : W} since

wfg])(p) —-—p= —-56 + 561 + €o.
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The Young diagram associated with this Weyl element and action is

[T

However
WP (A) = A== (Ao +2Xs + s + Ae)ao — (23 + s + Ag)exs
— (A2 +As)as — (A2 + Ag)as
== (Ro+ 202+ Xs + A6 + (Ao + 22 + X3 + Ao)er

+ Xo€z + (A3 — Ay)es.
Since there is a gap with the coefficient of €; being zero, there is no way that we can
represent the action w[(é’])(/\) — X by filling a continuous boundary strip with Dynkin
components of A\. There is also a term in e, whose coefficient is zero if A = p, but may
be positive, negative or zero for other A.

However, it should be noted that, although wfg])()\)—}\ ¢ P* for some ), but Lemma
1.13 implies that wfgl)(/\ + p) — p is still a dominant weight if A itself is dominant. In
this particular example, we have

WA+ p) — p =L(M)Ao — (Mo +2X3 + As + Ay + 5)6
+ o+ A +32s + %As + %& +5)e
+(do+ X2+ %/\3 + :,12-/\4 + 1)e;
+ (%Aa + %A4)63 + (—;-/\3 _ %)\4)64,

which i1s dominant for all non-negative Ag, Ay, ..., A,.

180




Basic theory

CHAPTER 6

Branching Rules

6.1 Basic theory

A Lie subalgebra G’ of the Lie algebra G is a subvectorspace which itself is a
Lie algebra. A subalgebra G’ is called a regular subalgebra if the roots of G’ are
contained in the root system of G. Otherwise G’ is called a special subalgebra. The
problem of classifying the maximal semisimple subalgebras of simple finite-dimensional
Lie algebras has been dealt with in the article of Dynkin [D].

An embedding of a subalgebra G’ into a Lie algebra G is a mapping f of G’ into G.
Given an embedding f : G’ — G and an irreducible representation ¥ (G), the represen-
tation 1(G) becomes a representation ¥(f(G’)) of G’ which can be either reducible or

irreducible. If ¥ (f(G’)) is reducible then the decomposition [McP]

$(G) D P(F(9) =4 (F(G)) @A f(G)) B ... (6.1)

is called the branching rule of G with respect to the subalgebra G’. The multiplicity of
occurrence of the irreducible representations 1;(f(G’)) in the decomposition (6.1) are
called the branching rule multiplicities and they are necessarily non-negative integers.
The same subalgebra G’ can often be embedded in a given algebra G in different ways
with different branching rules. The embedding f : G’ — G induces a projection between
the weight spaces of G and of G'.

Correspondingly, the restriction of the characters ch V?, of G to @', induces a

mapping of the form
chV* — Z b} ch v (6.2)
Iy
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where care has to be taken in defining consistently the mapping from the weight space
of G to that of G’. The coeflients b;\‘, are the branching rule multiplicities of each
irreducible constituent V#'. If G’ is a regular subalgebra then the Dynkin labels of the
weights of G’-module under the projection are just the Dynkin labels given in the usual

way by

pi=<pof > . - (6.3)

The problem of obtaining branching rules for representations of simple finite-
dimensional Lie algebras restricted to Lie subalgebras has been treated by various
methods. Extensive tables of branching rules for simple finite-dimensional Lie algebras
have already been given by McKay and Patera [McP]. An obvious method for obtain-
ing the branching rule (6.2) is to proceed in three stages. First we find the weights of
G-modules. Then the weights are transformed into the weights of the subalgebra G'.
Finally these weights are sorted out into the weights of G’-modules.

In order to make use of the orbit-character and character-orbit expansions given
in Chapter 3 and 4 in obtaining affine branching rules we describe first the method
discussed by Patera and Sharp [PS] in the framework of simple finite-dimensional Lie
alegebras. This technique also works in the affine algebra case [B]. The method as
described in [PS] consists of three steps:

(B1) Express the irreducible G-character in terms of G-orbits;

(B2) Decompose G-orbits to G'-orbits; (6.4)

(B3) Express the G’-orbits in term of irreducible G-characters.

Step B1 requires the weight multiplicities of dominant weights which can be obtained,
for example, directly from the tabulation of [BMP]. Step B3 just amounts to inverting
weight multiplicity matrices which also can be done easily. The only problem lies

in decomposing the G-orbit into G’-orbits. However if the projection of the weights
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are known then the decomposition of G-orbits into G’-orbits are obtained merely by

retaining the weights of G’ modules which have all components non-negative, i.e. are

G'-dominant.

For illustration let us consider an embedding of A; @ u, in A; where u, is the
abelian Lie algebra of dimension 1. The representation theory of u; is quite trivial.
The embedding is such that the simple roots of A, may be taken to be:

oy — o+ o
oy, — a3
where oy, s and oz are the simple roots of A;. Then an Az weight A = (A, Az, As)
becomes an A, weight (A}, \}) where
A=< Ao >=< a1 +a; >= A + ),
Ay =< Aoy >=< A\ az >= A;.
In order to obtain the label for u; which necessarily takes the form kA, + ko Ao + kals

where k;, k, and k; are constants to be determined, consider the Weyl orbit of (1,0,0),
{(1,0,0),(-1,1,0),(0,-1,1),(0,0,—1) }.
As an A, ® u, weight these become
{(1,0;k1),(0,0; —ky + ks), (—1,1; —ky + k3), (0, —1; —ks) } .
However the weights (1,0), (—1,1) and (0, —1) form the Weyl orbit of (1,0) so that
ky = —ky+ ks = —ks.

If we further fix the scale by letting the u, label of A, Weyl orbits (1,0) and (0, 0) differ
by unity then we obtain the following projection for the weights of Az to the weights
of A; ® u,

(A1, A2, A3) — (A4 Az, Az (A — 20, — A3)/4).
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In particular the projected weights of the (1,0,0) orbit becomes

1

3 1 1
{(1,0; Z)a (070; _Z)’ (_la 1;

Z)’ (0,-1; Z) }

and on retaining the components of A, which are non-negative we obtained the decom-
position

Q(I,0,0) — 91(1,0;1/4) + QI(0,0;—3/4). B
In a similar way we obtain
Q(O,I,O) — 91(0,1;1/2) + QI(I,O;—1/2)
QOO _, 0.03/4) 4 gH0.1-1/4)
Q(l,O,l) — Ql(l,O;l) + QI(I,I;O) _+_ QI(O,I‘,—I)
Q020) _, ((e21) 4 ((2.0i-1)
Q(?,I,O) — Ql(?,l;l) + Q/(S,O;O) + QI(l,O;—?)
Then from the orbit multiplicities table [BMP], we have
ch V@LO) = (210 4 0.20) 4 99101 4 30(0.00)
N {Q/(2,1;1)+Ql(3,0;0) +QI(1,0;—-2)} + {QI(O,2;1)+Q/(2,0;—-1)}
$2{ Qo) 4 UL0) 1 o=t 30)(0,00)
— Q/(Q,l;l) + QI(O,Q;I) + 2QI(1,0;1) + QI(3,0;0) + 29/(1,1;0) + 3QI(0,0;0)
+ {Q/(z,o;-l) + 29/(0,1;—1)} + 1,0-2)
= ch V@) L ch VB 4 cp VAL 4 op V2O-D 4 op YOI-D 4 cp (102
We see that in this particular example the G-module decomposes into a finite
number of G’-modules. The same is true for all finite dimensional modules of simple

finite-dimensional Lie algebras. However for affine algebras this is no longer the case

and in general G’-modules may appear with infinite multiplicity in an affine G-module.
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6.2. Simple finite-dimensional Lie subalgebras of affine algebras and weight

multiplicity polynomials.

The simplest subalgebras of a given affine algebra G(A) are those whose Dynkin
diagram may be obtained from the Dynkin diagram of G(A) by dropping one node,
say the i** node. The resulting diagram is that of a semisimple finite-dimensional Lie
algebra G.. Although there already exist extensive tables of branching rules G D G; of
these regular embeddings [KMPS], the computation has been done case by case, one
rank at a time. Rather than dropping an arbitrary node we consider here the more
specific case of dropping the zeroth node from the Dynkin diagram of G(A). Then the
resulting simple finite-dimensional Lie algebra is G(A) or just G.

From (5.2) we can write

L(VA)AO —du(A+p)6 +w(X+p) ~p. (6.5)

Co

Then the numerator of the Weyl-Kostant-Liu character formula (1.25) can be written

as )
M= 3 ew)ch V™"
we{W:W}

T(w(A+p)—p+5)—7

= Z 5( )(e(L(/\)/Cg)Ao du,(/\-{-p)gzwew 6(w)e
we{W:W} ZwEW 5(11))6’”(!’) 5

= LM/ ed)Ao E e(w) i +o) th(HP) )
we{W:W}

(6.6)

)

where ¢ = e7%. In a similar way the denominator of the Weyl-Kostant-Liu character
formula (1.25) can be written as
D= > ew)g™PchV 7O (6.7)
we{W:W} .

In the following, the computations are done independently of the rank r of the affine

algebras by assuming that r is sufficiently large for no modifications to be required.

Rank dependent calculations can be taken care of by the use of modifications rules
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as discussed in Chapter 5. For each affine algebra the denominator can be computed
easily from Proposition 5.2. Let us denote the denominators for affine algebras A,

BW, CY) and D, respectively by K,, A,, C, and E,. Then up to depth 4 we obtain

K, ={0} —o{T; 1} + ¢*({2;1°} + {1%,2}) — ¢°({3; 1"} + {21521} + {13;3})
+ ¢ ({4 1%} + {31;212} + {2522} + {I%4]) + ...
A, =[0] — g[17] + ¢*[217] — ¢*([31°] + [2°]) + ¢*([42°] + [32°1]) + ...
C,=<0>—-¢<2>+¢"<31>—g}(< 41>+ <3*>) (62)
+g* (<51 >+ <431 >) + ...

E, =[0] - q1] + ¢’[21] = ¢*[2°] + ...

The inverse of K, for example can be calculated as follows. Let K;' = ko+qk; +¢°ky +
. Then K x K, = {0} and on comparing the coefficients of various powers of ¢

we obtain

ko, ={0},
ki =ko x {1;1}
={1;1},

ks =k, x {T;1} — ko x ({2;12} + {12:2})

={2;2} + {1%; 1%} + 2{1;1} + {0}.

The above tensor products and others like them may be carried out with the help of
SCHUR software [W]. Similar computations can be done for other affine algebras. The

results take the form:
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K7 ={0}

+¢{L; 1}

+¢*({2;2} + {1717} + 2{T; 1} + {0})

+ ¢®({3;3} + {21; 21} + {13; 1} + 2{2; 2}
+2{2;1%} + 2{1%; 2} + 2{1%;1%} + 5{T;1} + 2{0})

+ ¢*({4;4} + {31; 31} + {22;2°} + {212;21%} + {1%;1*} + 2{3; 3}
+2{3;21} + 2{21;3} + 4{21; 21} + 2{21; 1%} + 2{13; 21} + 2{13;1%}
+8{2;2} +5{2;1} + 5{1%,2} + 8{1%,1°} + 12{1;1} + 5{0})

+ ...

A7t =[0]
+q[17]
+¢*([2%] + (1] + [2] + [1°] + [0))
+¢*([3%] + [2°2%]) + [1°] + [31] + [2°] + 2[21°] + [1%] + [2] + 4[1°] + [0])
+ q4([42] + [3212] + 24 + [221%] + [1%] + [42] + [3%] + 2[321] + [313] (6.90)
+ [2%] + 2[2%1°%] + 2[214] + [1°] + [4] + 2[31] + 6[2°] + 5[21%] + 5[1%)
+ 5[2] + 6[12] + 4[0))

+ ...
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Cil=<0>
+9<2>
+¢(<4>+<22>4+<2>+<1?>+<0>)
+P(<6>+<42>+< 282>+ <4>42<31>+<22 >
+<2?>+4<2>+<1P>+<0>)
+¢*(<8>+<62>+< 4>+ <42 >+<2>+<6> (6.9¢)
+2<5l>42<42>+ <4 >+ <P > +2<3R21 >+ <2 >
+ <2212 >45<4>45<31>+6<22>42<21 >+ <1 >
+6<2>4+5<1*>44<0>)

| + ...

E;' =[0]
+ q[1]
+ ¢*([2] + [1°] + [0])
(6.94)
+¢*([3] + [21] + [1°] + 3[1])
+ ¢*([4] + [31] + [27] + [21%] + [17] + 4{2] + 4[1°] + 3[0})

+ ...

For the numerator N* of (6.6), we make use of the Young diagram method to
compute w(A + p) — p by noting that
wA+p)—p=wA+p)—(A+p)+A

= w(p) —p+A
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where 4 = X + p. First we compute w(y) — p by the Young diagrammatic method
as in the example following Proposition 5.20 and to each Young diagram term we add
the boxes that correspond to A. By way of illustration let us compute the numerator
when the highest weight representation of A® is A = Ay + A; = (1,1,0,...) so that
A=2A+€ and A +p=p=(2,2,1,1,...,1). Let w =w = W(gy - W) where ¢ is
the partition (;:::) First we list all the Young diagrams that correspond to ¢ and
fill the boxes with the appropriate numerical values of u, where 7 is given in (5.24)
Next we annex to these Young diagrams the empty boxes that correspond to A = ¢,

and this will determine ch V*®+/=¢ Then up to depth 4 we obtain

e(w)ch VrA+a=r =1 | 2(|Z ) + 3(E )
Wz U=t ol

+¢'( L) - ¢ )-

2

2
= 2[1]a] |

Algebraically these come about through applying id, so, sos., ses; and sgs,s,_; which

are the the Weyl core elements of Proposition 5.5. The empty boxes denote the con-
tribution from X in the € basis. Every empty box will contribute 1 unit while the
contribution of the other boxes is according to the numerical values of their entries.

Hence the expansion for the numerator can be written as follows:

Y e(w)ch Vretturd=r = e2ho({1} — ¢*{2;3} + ¢*{2T;4}

we{W:W}

+ ¢*({4;32} — {21%;5}) + ...).
The tensor product of the above numerator expression with K ! of (6.9a) then gives

the expression for ch VAetAi a5
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ch Vit =e*to ({1} + ¢({T; 2} + {T;1°} + {1})

+ ({221} + {1521} + 3{T; 2} + {15 13} + 3{T; 12} + 3{1})

+¢*({2; 3} + {173} + {31; 2%} + {20; 212} + {15;21%}
+4{2;21} +5{1% 21} + 8{1; 2} + {15 1"} + 2{% 1°}
+3{T%; 1%} + 9{T; 1%} + 7{1}) -

+ ¢*(2{21; 31} + {13; 31} + 4{2; 3} + 4{1%;3} + {22;2%1}
+ {212,221} 4 {3; 2%} + 4{21;2°} + 2{13; 2°} + {21%; 21%}
4+ {1%21%} + {3;21%} + 6{21; 217} + 5{13; 217} + 14{2; 21}
+17{1%;21} + 21{T; 2} + {1%;1°} + 2{21; 1*} + 3{13;1*}
+ 7{2; 1} + 12{1%; 1%} + 24{1;1°} + 16{1}

+ ..

This expression for the character of A + A, defines a branching rule of the affine

algebras A to the simple finite-dimensional algebra A, down to depth 4 since {7; u}

is to be interpreted as the A, character ch Ak

. In contrast to the other methods

discussed elsewhere [KMPS], the branching rule has been obtained without the need

to compute weight multiplicities or Weyl orbits and is done independently of the rank

of the affine algebras. Below are some character expressions up to depth 4 of affine

algebras that we have computed using the algorithm discussed above.

190




Simple finite-dimensional ...

A DA,
ch V7o =e ({0} + ¢{T; 1}
+ ¢ ({1% 17} + 2{T;1} + {0})
+ PUT 13} + {1252} + {7;1%) + 2{1%;1%) + 4{T; 1) + 2{0})
+ ({15 1%} + {21; 1%} + {15; 21} + 2{13; 1%} + {2; 2}
+2{1% 2} +2{2;1°} + 6{1%, 1°} + 8{T; 1} + 4{0})

+ )

ch V& =e™({1} + ¢({1;1°} + {1})
+¢°({T; 2} + {17 1°} + 2{T; 1} + 2{1})
+@({1%;21} + 2{T;2} + {13;1*} + {2; 1°} + 2{1%; 1®} + 5{1; 1*} + 4{1})
+¢* ({15217} + {2; 21} + 3{1%; 21} + 5{1; 2} + {1%1°}
+ {21; 1%} + 2{13; 1*} + 2{2; 1°} + 6{1%;1°} + 10{1;1°} + 8{1})

+ )

ch V24 =e*™ ({0} + ¢{1;1} + ¢*({2; 2} + {1%1°} + 2{T; 1} + {0})
+ @({2T;21) + {T5; 13} + 2{2; 2} + 2{2; 1*} + 2{1%; 2}
+2{1%;1%} + 5{T; 1} + 2{0})
+ ¢*({27; 2%} + {21%; 212} + {15, 1%} + {3; 21} + {21; 3}
+4{21;21} + 2{21; 1%} + 2{13; 21} + 2{15; 13} + 7{2; 2}
+5{2; 1%} + 5{1%;2} + 8{1%; 1°} + 12{T; 1} + 5{0})

+..)
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B > B,
ch Ve =et([0] + q[1%] + ¢*([1*] + [2] + [17] + [0])

+¢°([1°] + 217 + [1%] + [2) + 3[1°] + [0])

+ ¢*([1°] + [21%] + [1°] + [2%] + 2[217]
+ 3[1%4] + 3[2] + 4[12] + 3[0]) +...)

ch Vi =e™([1] + ¢([1°] + [1]) + ¢*([21] + [1°] + [1°] + 2[1])

+ ¢3([21°) + 2[21] + [17] + [1°] + 3[1%] + 3[1]

+¢*([3] + [2°1] + [21°] + 2(21°] + 4[21] + [1°] + [17]
+3[1°] + 5[1% + 6[1]) +...)

ch VAort =e?bo([1] + ¢([17] + [21] + [1])

+¢*([31 + [2°1] + [22°] + 3[21] + [1°] + 2[1°] + 3[1])

+ ¢®([32] + 2[31%] + 2[3] + [2°1] + [2°1%] + 3[2%1] + [21°] + 4[217]
+8[21] + [17] + 2[1°] + 7[1°] + 6[1])

+ ¢*([41] + [327] + 2[321%] + 4[32] + 2{31*] + 6[317%] + 6[3] + [2°1]
+ [2°1°] + 3[2%1] + [221°] + 4[2°1°] + 11[2%1] + [217] + 4[21°]
+ 13[21%]) + 20[21] + [1°] + 2[17] + 8[1°] + 15[1°%] + 14[1]) +...)

ch Vo =e*b([0] + q[17]

+¢*([2°] + (1] + [2] + [17] + [0))

+ ¢3([2°17] + [1°] + [31) + [27] + 2[217] + [1%] + [2] + 4[1%] + [0])

+ ¢*([4] + [321] + [31%]) + 2[31] + [2%] + [2%] + [2%1%)]
+ 2[2%1%] + 5[2%] + 2[21%] + 5[21%] + 5[2] + [1®] + [19)]

+ 5[14 + 6[12] + 4[0]) + ...)
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cH oG,
ch VAo =t (< 0> 4+¢g<2>

+ (<2 >+<2>+<12>+<0>)
PP >+<3l>+<2>+<2%>
+3<2>4+<1P>4+<0>)

LM< 2>+ <R2L>+ <>+ <212 >
+<4>4+2<31>4+4<22>42<217>
L <1t >44<2>+H4 <P >43<0>)

+..)

ch VA =efo(< 1> +g(<21 >4+ <1>)
L(< 21>+ <3>42<2>+ <P >+2<1>)
+q3(<32>+<312>+2<3>+<231>+2<221>
4+ <218>45<21>+2< 12> +4<1>)
Fgt(<4l> 4+ <32 >+ <320°>+3<32> +3 <317 >
+4<3>4+<21>42<21 >+ <221 > 4+6<2°1 >
+3<213>411<21>+<®>+5<1®>48<1>)

+..)
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ch VAot =eo( 1> 4g(< 3>+ <21 >+ < 1>)

+ (<4l >4+<32>+<221>+2<3>+3 <21l >
+<1®>43<1>)
+¢H(<5>+<43> 4+ <421 > 43 <41 >+ <322 >
+4<32>4+3<32>4+6<3>+<2’1>+3<2'1>
+ <2 >49<2l >42< P> +6<1>)
+q*(2<52>+ <512 > 43 <5> + <4%1 >+ <432 >
+3<43 >+ <42’1 > +5 <421 > + <41° > +11 <41 >
+3<31>+<328%>+4<322>4+3<3217>414<32>
+10<312>+14<3>+ <21 >+43<21 >+ <2’1° >
+12<221>4+4 <213 > 423 <21 >+ < 1° >

+8<1P>+14<1>) +...)

ch V% =e*(< 0> +g< 2>

+(<4>+<2>4+<2>4+<1P>+<0>)
+P(<42>4+ <>+ <4>42<31 >+ <22 >
+<2?>44<2>+<1P>+<0>)
+g(<Bl>+<4>+ <42 > 42<42> + <412 >
+4<4>+<F>+2<321>+45<31 >+ <2t >
+<2>+<2?I2>+46<22>42<21 >

+6<2>+<l*>45<1®?>4+4<0>) +...)
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D&, > B,
ch Ve =e([0] + ¢[1] + ¢*([1%] + [0])
+¢*([1°] + 2(1])
+ ¢*([1*] + [2] + 2[1°] + 2[0]) +...)
ch Vi =eto({1] + (17 + [0]) + ¢*([21] + [1°] + 2[1])
+ ¢*([217] + 2[2] + [1%] + 3(1%] + 2[0])
+¢*([8] + [2°1] + [21°] + 4[21] + [1°] + 4[2°] + 6[1]) +...)
ch V4o =e*'([0] + q[1] + ¢*([2] + [1°] + [0])
+¢*([21] + [1°] + 3[1])
+ q4([éz] + [21°] + 3[2] + [1*] + 4[1*] + 3[0]) +...)
ch VAt =e*™([1] + g([2] + [17] + [0]) + ¢*(2[21] + [1°] + 3[1])
+¢*([31] + [2°] + 2(217] + 4[2] + [1%] + 5[1°] + 3[0])
+ ¢*([32] + [31%] + 3[3] + 2[271] + 2[21%] + 9[21]
+ [1°] + 6[1%] + 10[1]) +...).
For sufficiently large r, the branching rule of representations of A restricted to
B, is the same as that of C{!) to C,. While the branching rule of representations of

DO restricted to D, and AP | restricted to C, is the same as that of B® to B,.
In general we can write
ChV* = ENMles 3 S P ep T g (6.10)
n=0 gep+
where the sum is over the set P+ of dominant weights i of G(A). Then
ch VA = eMMholed N™ 5™ 5™ P (dim Vi) g™ . (6.11)
n=0nc P+ reP
Alternatively chV* = ¥, 5. (dimV}) e where &imV} = 0 if v is not a weight of

the highest weight module VA, As has been discussed in Chapter 4, each weight
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v="0-—nb6+ (L(v)/cy)A, appears in a string so that we may write
chV* = Z > (dim V}) 7" eFMol e (6.12)
n=0pecp

On comparing this expression with that of (6.11) we obtain

BeP+
In term of the weight multiplicity generating function or string function ¢} we may

write

io: > b (dimVF)g". (6.14)

oy

Tabulation of dim VF in terms of the rank of the algebras can be obtained from the
work of [KiP] and [BBL] whereby it was established that the weight multiplicities of
dominant weights of finite-dimensional modules of the classical series of simple finite-
dimensional Lie algebras are polynomials in the rank of the algebra. It then follows
that the weight multiplicities of the highest weight modules of the rank dependent
series of affine algebras are necessarily polynomials in the rank of the algebra.

It is well known [Kac4] that the string functions o}’ for level 1 modules of the
affine algebras A® and D) and the string function o4+ of A$? are all given by ¢(q)~"
But

T =1I0-¢)"

i>0

3 4
—1+rq+(2r+ r)q +( +-2—r2+-§r)q3+...

+ (& S r + r + r) + .
24" 1
This illustrates the polynomial rank dependence of the weight multiplicities with the
degree of the polynomial given by the depth of the weights.
In the case of other affine modules, using the weight multiplicity polynomials of
the simple finite-dimensional Lie algebras tabulated in [KiP] or [BBL] and (6.14), we

find from our branching rule results:
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AW
opottt =1 + 2rq + -;—(57‘ +3)¢* + -7-:;—(7r2 +9r + 8)¢°
+ (210" + 44r° 4 8Tr +16)¢" + ...
onotal =2¢ + (57 —3)¢® + (Tr* —Tr 4+ 8)¢® + (7r® — 9r% 4+ 28r — 20)¢* + ...
oMo =1 + rg + r(r +2)¢* + %(57'2 +15r + 10)¢®
+ {5(7#" + 3072 + 53r + 30)¢* + ...
2A0

1 1
oAt s =q + 2rg® + 5(57‘2 +r+2)¢ + E(Mr3 +6r? +51r —18)¢* + ...

o =2¢" + (5r —4)¢® + (Tr* —11r +15)¢* + ...

B®
1
023 :02: =1+ rqg+ %(7‘2 +3r+2)¢® + -6(7'3 +9r% 4 147 + 6)¢°
1
+ g (r* +18° + 710" +102r +48)¢* + ...
Ao+A;

1
ot =1+ (83r—1)g + (57 = 2r +3)¢*> + 6(357'3 —12r% 4+ 85r — 36)¢°

1
+ 5(637'4 —10r° + 375r% — 248r + 132)¢* + ...

Ao+A,

r
ot =qogtt = ¢ + 3rg® + r(5r +2)¢° + 6(357'2 +33r +22)¢* + ...

+ (21 + 347 £ 57 £ 8)¢" + ...

2A0

.
ofe =0k =1+ rg + Z(3r +3)¢" + g(sﬂ +6r +7)g?

+ 57 (35r° + 661" +169r +42)g* + ...

2A0

1
oxoa, =q + Br—=1)¢* + (57 —2r +2)¢° + 6(357'3 —12r? 4 61r — 24)¢* + ...

2A0

o =rq® + —;—(37' +1)¢® + T3—(5r2 +6r+7)¢* + ...
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cw
r
ope =1+ rq + r(r+1)¢* + (5" + 67 + )¢’
+ —1%(77«3 41272 4 297 +12)¢* + ...
1 1
opt =14+ (2r—1)qg + 5(57‘2 —3r+2)¢* + 6(147'3 —9r® + 25r — 12)¢°
+ i—(7r4 —4r® 43177 — 26r +12)¢* +...
opotar =1 + (3r —1)g + (7r* = 5r 4+ 2)¢° + (14r° —23r® + 287 — 11)¢°
+ %(997‘4 — 304r® 4+ 65572 — 638r + 244)¢* + ...
oot =3¢ + (14r — 15)¢* + (42r? — 108r + 99)¢°
+ (99r® — 454r% 4+ 953r — 762)¢* + ...
r
o =1+ rq + —;—(37' +3)¢® + §(7r2 +3r+5)¢°

+ %(217«3 — 1072 + 54r — 5)q* + ...

2A0

oo, =g+ (3r—1)¢* + (7r* —8r +6)¢° + (14r° —36r% + 62r — 37)¢* + ...

2A0

1
o3 =¢ + 2" + (4rf = r +1)g" + (227 = 30r +4Tr —18)¢" + ..

D
oaottr =1 + (3r—2)g + (5r° —5r +2)¢* + é(357‘3 — 42r* 4+ 557 — 30)¢°
+ 115(637'4 — 80r° 4 249r® — 280r + 108)¢* + ...
opeth =3¢ + (10r — 15)¢° + %(357‘2 —99r + 108)¢®
+ %(421#’ — 169r? + 389r — 360)¢* + ...
o =1+ rq + %(:%fr2 +7r)¢" + %(1073 +3r? — r + 6)¢°
+ %(357‘4 +26r° +37r® —2r + 24)¢* +...
ora =q + (3r —3)¢* + (57" —9r + 7)¢°

+ %(357’3 —87r? +160r — 120)¢* + ...
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D,
A

oa =1+ ¢+ 3r¢® + (4r +1)¢° + (5r* +2r + 3)¢* + ...

onotit =1 4 2 + 5r¢® + (12r —2)¢® 4+ (157 —r +6)¢* + ...

3Ao

o, =14+ (2r+1)g + (5r +1)¢* + (6r° +5r +2)¢° + (157> + Tr +2)¢* + ...

240
O9r,

=1+q+ (2r+1)¢ + (Br+2)¢® + Bri+5r+2)¢* + ...
opto=q + 2¢* + 3r+1)¢® + (6r+1)¢* + ...
o0 =2¢" + 3¢> + (6r —1)¢* + ...
A
one =1+ (r—1)g + (r* +7r)¢*> + %(57‘3 +9r? — 8r —6)¢°
+ {5(7#' + 3072 + 597 +24)¢* + ...
t=1+ 2rg + %(5#’ +3r)¢® + %(77~3 +9r? +11r — 3)¢°

+ 3—2(217«4 + 44r° + 117r — 267 + 24)¢* + ...

opttt =1+ 3rg + (TP +71)¢® + (14r® =3r* +11r — 3)¢® + ...

Ao+Ay

ottt =1 4+ 3rqg + r(Tr+2)¢> + r(14r* + 2r + 4)¢° + ...

2A,

1 1
ol =1+ rq + §r(3r +5)¢® + §r(7r2 +12r +5)¢° + ...

2A0

ophe =¢ +3rg® + (Tr' —r+1)¢® + ...
o =q + 2r¢® + r(4r +2)¢® + ...
A5
1
6
1
+ ﬁ(TA + 14r% 4+ 23r® — 14r + 24)¢* + ...

1
o-fltoo :a//\\: =14 (r—1)¢ + 5(T2+7')q2 + (7‘3+67‘2 —T—G)q3

1
opctti =1 4+ (3r—3)g + (5 —9r +6)¢° + 6(357'3 — 87r? +130r — 78)¢®

1
+ :1—(217'4 — 64r® + 161r° — 202r + 100)¢* +...
These results are a significant generalisation of those obtained previously for A

[BKM2].
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6.3 Self embedding

Although not possible in the finite-dimensional case, it is a remarkable fact that
an affine algebra may be embedded in itself. Indeed this can be done in a number of

distinct ways. The simplest way is to define the following transformation of the roots

ai) — oy + )
(6.15)

1 .
o, — o 1=1,...,7.

It can then be seen that the GCM Aj; =< «j, ¢}’ > coincides with the affine GCM
Aij =< a;,a] >. The weights of the G modules of level L and depth d are transformed
to weights of G’ = G modules of level 2L and depth d/2. This type of self embedding
is possible for all highest weight modules of affine algebras except AS?. In the case of

AP by (6.3), (3.6) and (3.8), the transformation (6.15) would give:

Ay =< Aoy >=< \2a) +a) +...+a)_, + %—a,‘,’ >
= 2ot h ot Ao A

A=< Ao >=X for i=1,...,r
Since the weight label must be integer, we see that unless the r** Dynkin component
of the highest weight is even then the projection (6.15) does not define an embedding
A5 D AR

In the case of the self embeddings A{" > A{" some branching rules have been

computed by Hussin, King, Leng and Patera [HKLP]. However most of their results
are given numerically. Here we undertake the compution of branching rules analytically
by obtaining the branching rule multiplicity generating functions for level 1 modules
to level 2 modules using the algorithm discussed in (6.4). |

For illustration let us consider the branching rule for D® o D$. The transfor-

mation (6.15) implies that the weights are projected as follows:

(AQ, )\1,A2)d h— (2)\0 + 2/\1 + AZ,AI,A;})%- (616)
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From the orbit-weight generating function given in (3.36f) and the projection (6.16)
we obtain the following decomposition of level 1 orbits of D$” on retaining the weights
that have all their components non negative and are thus dominant:
QO _, 100
Q00 _,  ()H(200)as + QO 4 (002 a42y/2
In term of generating functions we can write
oV = o832
o
= o )k VO
On substituting the string functions given in (4.15g) and the inverse string functions

given in (4.13g) we obtain the branching rule multiplicity generating function for bgfgig

as

p(001) _ 1 #(q)® — (2n-1)/2y
453 = Smat gl ~ L)

In a similar way,
ch V00 — a§i§§§(q)g(1°0)
N Ugggg(qu)(ﬂl(zoo)o 4 O3 Q/(ooz)l)
= ‘fgggg(ql”)(ﬁﬁﬁggﬁ(q)ch Yoo 4 K,Egcl’gg(q)ch pr10) o fggggg(q)ch V(2000
+ ¢ 2088 (g ) (K(g)ch VIO 4 k1D (g)ch VOO 4 kG1(g)ch V'3
+ qoi8(g?) (k{2 (g)ch V2 4 x93 (q)ch VIO 4 k(02 (g)ch V'),

Then

100 100
bgzoog = O'Emo;(qllz)(’cgggg + 9"78833 + qllzﬂﬁgégg)

B m¢(q)¢(q6) T — g®r-Dr2)(1 — glon-312)
= ¢(¢")8(q) 7 TI(1 — ¢©~"%)

pe100) _ (100)(q1/2)(n(200)

(002) = O(100) (002) + q1/2 (010)) — qb(mo)

(002) + 9K(002) K(oo02) (200)
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100 100 200 002 010
onm% = Uémo))( 1”)(’“%0103 + q’iEom% I/ZKE 103)

= ¢"¢(¢*)¢(¢*)b(¢"*) d() M (TI(A + 1) (1 + ¢*7°)

=207 TI(A + ™)1 +¢™))
Below we give branching rules for the self embedding of affine algebras A", AV,
C§Y, GIV and DY defined in each case by (6.15). Because we could not find ways of
simplifying them, some of them look quite ‘ugly’. Those marked * have been obtained

previously in [HKLP].

AP > AP,

Weight projection: (Ao, \1)a — (2X0 + A1y Ar)s.
i = ¢ [T +¢7)
+ba = 101+ ¢)

bty = [1(1 +¢*~777)

A o AW,
Weight projection: (Ao, A1, A2)a = (20 + A1 + Az, Ay, Ag)sg.

boy = ¢°¢(0)?e(@)’ [TA+¢™)*( II (1 -4¢")

+3,4+3,+4(10)

-2¢ I Q- -¢7 JI @a-g¢%)

£1,42,£3(10) £2,+2,+4(10)

39 = @ e TIa+e T (1-¢)

+2,44,£4(10)

-2¢7 I (a-¢)-¢"* II @@-q¢%)

+1,43,+4(10) +1,+1,+2(10)
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ciV o cfY
Weight projection: (Ag, A1, Az2)a = (2A0 + A1 + Az, Ay, Az)g.

100 100
bgoozg = qbgzoog

= q6(¢"/*)2¢(¢) " d(g*)B(¢**) ($(g*) TT 1 +¢**) TI 1 —¢7)

+3(8) 10(20)
-¢() [T +¢ TI (+qY)
+3(8) +1,£3(10)
¢ T[T +¢") I -¢%) II Q+4g")
£1(8) £1,£3(10) £3,+4(10)
+¢7¢(@) [T+ I A-¢) II a+g¢Y)
+1(8) +1,+£3(10) +1,£2(10)
1/2 4( 4 102
b9 = LXDIANL) 14T L) T (140 TT (1=
¢(q ) ¢(Q) 5(10) £3(8) +1(10) +4(10)
—-qJT@+¢) I 0+¢) II
£1(8) £4(10) £1(10)
2¢4(q*)p(¢*°)? /2
+ (- 1] (A +q"%) (1-4¢")
¢(q 1/2)24(q) i]'s,_(]z:;) i4,i:]s',—£8(zo)
+¢ [T+ I G-q%)
£1(3) £1,£2,£5(10)
/2 4 10\2
i = LML 1 ) T 040 T] (-0
5(10) +1(8) +2(10) +3(10)
- e+ I 0+¢) I @ =4¢%)%)
+3(8) +3(10) 12(10)
2¢6(q¢*)o(¢*°)?,  1)a 2
+ (—=¢"* II (0 +¢*?) (1-¢")
o(q*/*)24(q) 111—({;) is,igmo)
+qI[+¢ JI (1-q7
£3(8) +2,+4,+8(20)

010
bos) =4'/*b{ix)

=¢%¢(¢*) I - I @+ +¢” JI (1+47%)

+3,£4(10) +3,49(20) +1,+7(20)
+q6(¢)? I - II Q+¢®+¢* I Q+4¢*?)
+1,£2(10) +7,+9(20) +1,£3(20)
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GP o> G
Weight projection: (Ag, A1, A2)a = (20 + 221 + Ay, Ay, )\2)%.

bgéggg 1/2¢(q15/2)¢(q1/2)—1 H (1 _ qn/Z) H (1 _ qn/2)

+1(6) 3(15)
boro ¢ 2000 = ¢'® T (1= ¢**)fa(q)
+3(15)
(¢ TI @ =¢*® —q II @ =g fi(q)
+7(15) +2(15)
Bion+a b0 = a/°6(¢™*) ™ TI (1 +¢*°)fi(q)
0,£2(5)
+(=¢"* JI @ =g +¢*® T[] 1 —q"?))f2(q)
+7(15) +2(15)
boosy =a'*¢(¢** M) (¢ T (1 = ¢**) TT (1 = ¢*?)
+1(6) 6(15)
b(oo1g+q1/3b(001) _ q1/3 H (1- qn/Z)fz(q)
+6(15)
(@ ] @=¢"®)+q [ @ =q"H)fi(q)
£4(15) £1(15)
Boo+a 2600 = ¢(¢"*) TT (1 +¢"°)fi(q)
0,£1(5)
+(=¢"* T] 1= ¢""*) = ¢ T (1 =) fo(q)+
+£4(15) £1(15)
Where 1/2 2 3/2 15/2 3 /6
fi(q) =8(¢*)28(¢**)d(¢™?) T 1 —¢*®*) [ (1-¢"°)
£1(9) +5,+7(18)
F2(q) =6(q"H) 2 (¥ d(¢**) [T 1 = ¢*®) I (1 —g*%)
£4(9) :}:1,17(18)

DY > DY

Weight projection: (Ao, A1, Az)a = (2X0 + 221 + 345, Aq, Ag)s.
bzoo) = [1(1 + ¢*"7)(1 +¢*)

Bosey = ¢ TI(1 + ¢*")(1 + ¢°7%)
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Other affine algebra ...
6.4 Other affine algebra to affine algebra branching rules

In the case of affine algebras of rank 2 most of the maximal equal rank affine
subalgebras have been identified by Begin and Sharp [BS1]. As before the branching
rules multiplicity generating functions are expressed in terms of the string functions
and inverse string functions obtained in Chapter 4. For reason of simplicity we shall
consider only a few cases. Others can be obtained in a similar fashion.

For illustration let us consider the embedding C$" D A{”@®wu,. The transformation
of the roots have been given in [BS1]. Here we shall give the projection of the weights

only. It takes the form:
Aoy Adr data — {2X0 + A, AL 4+ 22 5 A )

Then from the orbit-weight generating function given in (3.36d) we obtain

Q(loc)d N Z(Q(ZO§4”)4+2n2 + Q(02;4n—2)d+‘2n2—2n+1)

nel

Q(Olo)d — Z(Q(ll;4ﬂ+1)d+2nz+n + Q(11;4n_1)d+2n7—n)
nel

Q(OOl)d —_ Z(Q(20;4"+2)4+2n2+2n + Q(Oz§4")d+2n2)_
nel

For the highest weight representation (100) we then have
Ch V(IOO)

(100)Q(oo1)+ (100)9(100)

(oo1)

— (S (A i 4 Q)
neZ
+ U((]%ggg 2(9(20;4")44.27.2 + 9(02?4"“2)d+2n2—2n+1)
nel

= Y {9 ch VT Darnaie . k29 VB g
nel
Z 0888 ﬁggg) ch V(0%4m)an2 4 RE%; ch V(20;4n)zuz)
neZ
E 08333 Rgggg ch V(02i4n)5.2 + ,igg; ch V(20;4n)2n=)
nez

Z ‘7888)) K%gg; ch V(02i4n=2)2.2_5.4, n K(Oﬁ) ch Y (20ian— 2)2n2-2n+1)
neZ
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This implies that for n € Z, the branching rules are
B2 | g2n?(5 00, (02) 4 ;(100), (20))

(20;4n) T (001)(20) (100)%(20)
100 _2n242n, (100) (20 100) (02
bEzo;:;)n+2) =g *? (05001;"7E203 + qagmog’“(zog)

100 2, (100) (02 100) (20
bgoz;‘;)n) = ¢ (05001))5E02§ + U((loog’igozg)

2, (100) (20 100) (02
= ¢ (Ugom;’igzog + q0§mo§'€ﬁzo§)

n?42n, (100) (20 100) (02
bgzl)g?tz)nw) =g (a((om))”gozg + qa’gmog’cgzg)

2n7+2n+1(0(100) (02) (100) (20))

=49 (001K (20) T 99 (100)K(20)

However from (4.13a) k%) + ¢/*k{5s) = 8(¢*) [1(1 — ¢®*~1/2) and from (4.154)
otr00) + 4 *o(0r) = #(q) > TI(1 + ¢*=/%). Then
$(a)™" =(ofioo) + ¢ *ofo0n) ((z0) + ¢'/°k(55)
=(otionyrt0) + olankzn) + 472 (0(aor)k(2a) + 40100} (201)-

Hence (100) \
n? -1
b(20;4n) = ¢ ¢(q)

100
bg20;4)n+2) = 0
100
b§02;4)n) =0
100) _ an24om -
bgoz;4n+2) = ¢ +1¢(‘1) t

Similarly, for highest weight representation (010) we have
ch V(OIO) — U((g;ggﬂ(om)
-— Z 058;8))9(11;271_1)11(7;—1)/2

nel

010) (11 11;2n=1)n(nn
=Y 0((01o;’f§11% ch V! Intn=aa
nel

Hence on substituting aggig; and KSB from (4.15d) and (4.13a) respectively, we obtain

By = 00

Below we give some branching rule multiplicity generating functions for the affine
subalgebras of affine algebras identified in [BS1]. The branching rule multiplicities
marked * can be inferred from those of [BS1], while others are new.
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A(zl) D A(11) D uy
Weight projection: (Ao, A Ad2)a — (Ao, At 4 A2 5 3(Ar — A2))a
* bioamy = ¢ $(9)™

100 n? -
*on1~,2):»+1): ¢ +3n+1¢(‘1) '

) o AV e A
Weight projection: (Ao, Ay A2)a — (Ao, A1 + Az 5 Aa)a

bg(l)g?z)nﬂ) — (qn2+n+1 i qn3+3n+3)¢(q8)¢(q)—2 H (1 _ qn)
+2,+3,£5(16)

Kioomy = (6% = a™p(Me() T (1 —-¢")
£1,46,4£7(16)
x bloiony = (% — ¢"*)g(q*)(q) 2
£ D banany = (gD — g FNEED) 4(g2) 4 (g) 72
DY > AP e A,
Weight projection: (Ao, Ay A2)a — (Ao + As + Aoy Ay 5 A1 + A

Bovmy = (g™ — g™ ") ¢(q) ™!

B onssy = (7D — g DD) g(g) !
ﬂ2 n -
* bE(l)(l)?Z)n+1) = (¢ i/ qn2+3 *2)¢(q)7!

x blioamy = (4% — ¢ )g(q)?

b(lOl) ) — (q(n +n41)/2 q(n +3n+4)/2)¢(q1/2)-2¢(q2)

(02;2n+1
Bty = (6777 = g™ 1)8(¢ ) 8(¢%)  8(g)?
Biodnsny = (qH/2 — g4 (g1 112 4(g?)
D o> Alew
Weight projection: (Ag, A; A2)a — (Ao, 221 + Az 5 A2)4.
bggg;lz)nﬂ) = qn(n+1)¢(q2)-—l
. K, = )
iy = € 6(0)"
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AP > AVea

Welght projection: ()\0, )\1 /\2)d — (2/\0 + )\1 + )\2, Al ,)\1 + Ag)d.

£ Boram = (¢"" — ¢"")g(q)™
* bg(l)g;lz)nﬂ) = (qﬂ(n+1) - q(n+1)(n+2))¢(q)—-l

AE;Z) ») A(zz)@ul

Weight projection: (Ao, A; Az)a — (Aoy 2A1 + Az 5 Ag)a.

* bgg(lnz)n-l-l) = qn(nﬂ)/zﬁb(qu

G o AP
Weight projection: (Ag, A; Az)a = (Aoy A, A + Az)a

K500 = ¢(0)o(¢*) JT O —¢)+¢ [ 01 ~¢")

+£4(15) £1(15)
Koo = d(a)e(¢*)( T 1—¢")—¢ [] A =9¢™)
£7(15) £2(15)
boo) = bov) = B(0)7'8(¢"®) T (1 —¢™)
+6(15)
boon = blose) = qd(a) ' d(q"*) igs)(l —q")
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CHAPTER 7

Conclusion

In this thesis we have presented two methods of computing weight multiplicities of
highest weight modules of affine Kac-Moody algebras. The first method depends on
reorganising the Weyl-Kac character formula and on makil‘lg use of the fact that the
affine Weyl group is a semidirect product of a translation group and a finite Weyl group.
This allowed us to obtain analytic expressions for orbit sum to irreducible character
expansions for low level and low rank affine algebras. These expansions were further
simplified by specialising the Weyl-Kac denominator identity before being inverted to
obtain weight multiplicity generating functions. These analytic functions were later
used to obtain analytic branching rule multiplicities for the embedding of one affine
algebra in anotheér or in itself.

Although the method itself is of general validity, it seems quite impractical in the
case of affine algebras to proceed beyond level 2 and rank 2 as the number of irreducible
characters tends to increase rapidly as well as the number of weights in each congruence
class. It remains to be seen how the compatibility rules stated by Begin and Sharp
[BS2] may be used for anything beyond the rank 1 affine algebras. Numerically with
the help of computers, some progress could be made but certainly there will be a
practical bound because the computations depend on the explicit generation of Weyl
group element.

In the second method, the Weyl-Kostant-Liu character formula together with the
identification of the set {W : W} and the Young diagrammatic technique for computing
w(A) — A allowed us to expand the irreducible affine characters directly in terms of

irreducible characters of simple finite-dimensional Lie algebras. For sufficiently large
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rank, this computation is independent of the rank of the algebra. Since the weight
multiplicities of the simple finite-dimensional Lie algebras are polynomial in the rank,
we have thereby established that the weight multiplicities of affine algebras are also
polynomial.

In the process of obtaining the action w(A) — A in the € basis, it is a bit of a
surprise that the entries in the boxes of the Young diagfams are just the Dynkin
labels of the weight A which are actually components of A in the fundamantal basis.
Another unexpected coincidence is that the core elements of {W : W} are in such close
correspondence with the Frobenius notation for partitions. Both of these factors make
the results much easier to express than would be the case without the use of partitions
and Young diagrams.

One obvious extension of this work is surely to find proofs of all the conjectures
stated for the affine algebras CM, A, D, BM, A | and DW. It is expected that
the proofs in the case of C), A and D%, will be similar to that of A®). Although
it might be more difficult, it is also reasonable to expect that the conjectures for cases
B®M and A$Y) | can also be proved in the near future with a two-step inductive argument
taking into account the distinction between w{(f]) and w}]. The case of DV is a bit subtle
and surely needs some further ingredient especially in obtaining the action w(}\) — A.

In the thesis we have been most concerned with the determination of {W : W}
for the seven infinite series of rank dependent affine algebras and their restriction to
one specific infinite series of rank dependent simple finite-dimensional Lie algebra. It
would also be interesting to know what the set {W : W} looks like where W is the
Weyl group of the semisimple Lie algebra G obtained from the Dynkin diagram of the
affine algebra G by dropping a node other than the zeroth node. Similarly it would be

interesting to know {W : W} in the case of exceptional affine algebras. Maybe we are
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not concerned with the computation of weight multiplicities this time, but the possi-
bility of obtaining branching rules is certainly of interest.

The computations so far have been made only for a few representation of the affine
algebras and have been carried out only up to depth 4. They are already quite involved.
It would be helpful if a program could be written in SCHUR to do similar computations
for these and other representations going beyond depth 4. It should be stressed that
in computing up to depth 4 the expansions of the inverse D!, (6.7), have been given
in full. To proceed it is only necessary to expand N*, (6.6), up to terms involving ¢*.
Since dy () is proportional to the level L()) of A very few coset elements w € {W : W}
are required. In fact for L(A) > 4 it is sufficient to just take w = id in the numerator.

Beyond the context of affine Kac-Moody algebras, it would also be interesting to
know the impact of the polynomial nature of the weight multiplicities of affine alge-

bras on the determination of the root multiplicities of hyperbolic Kac-Moody algebras

[KM].
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Appendix 1 : Generalised Cartan matrices of affine type.

1. GCM for AV
2 =2
a=(3 73)

2. GCM for AM, r > 2is the (r + 1) x (r + 1) matrix.

2 -1 0 0 0 -1
-1 2 - 0 0 0
0 -1 2 0 0 0
A=1] : : : :
0 0 O 2 -1 0
0 0 0 -1 2 -1
-1 0 0 0 -1 2

In particular, for r = 2

2 -1 -1
A=|-1 2 -1
-1 -1 -2

3. GCM for B®W), r > 3 is the (r + 1) x (r 4 1) matrix

2 0 -1 0 0 0 0
0 2 -1 0 0 0 0
1 -1 2 -1 0 0 0
0 0 -1 2 0 0 0
A= ] . ) ) )
0 0 0 0 2 —1 0
0 0 0 0 1 2 -2
\o 0 o0 o 0 -1 2

In particular, for r = 3
2 0 -1 O
o 2 -1 o
A= -1 -1 2 =2
0 0 -1 2

4. GCM for CV, r > 2 is the (r + 1) x (r + 1) matrix

/2 -2 0 0 0 0 0
1 2 —1 o0 0 0 0 \

0 -1 2 -1 0 0 0

0 0 -1 2 0 0 0
A= ] ) ] ] j ]

0O 0 0 0 2 -1 0

O 0 0 0 1 2 -1

0 0 0 0 0 -2 2
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In particular, for r = 2

(r+1) x (r + 1) matrix

r > 4 is the

5. GCM for DM,

—
OO OD 0_02
—
)
i e —
—
—
— —
_ _2_.0000
—
—
Il
<

In particular, for r =4

——
v

o O _02
—

oo _20

11211

I I
—

[onR N _00
—

N O _00
N~——
I
<

6. GCM for E{V is

e
— —
_00_002
—
0000_20
— —
— — —
— —
—
O N

7. GCM for EY is

—
— —
— — —
— —

8. GCM for E{V is

000000_20
— —
OOOOO_n/H_O
— — —
— -
— —
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Appendix 1
9. GCM for F{" is

2 -1 0 0 0
-1 2 -1 0 0
A=} 0 -1 2 -2 0
0 0o -1 2 -1
0 0 o -1 2

10. GCM for G is

11. GCM for A
(2 —4
a=(_1 73)

12. GCM for A, r > 2 is the (r + 1) x (r + 1) matrix

9 —2 0 0 0 0 0
1 2 -1 0 0 0 0
0 -1 2 -1 0 0 0
0 0 -1 2 0 0 0

A= T >
0O 0 0 0 2 -1 0
0O 0 0 0 1 2 -2
0O 0 0 0 0 -1 2

In particular, for r = 2

2 =2 0
A=1-1 2 =2
0o -1 2

13. GCM for A% ,, r > 3is the (r +1) x (r + 1) matrix

2 0 -1 0O 0 0 0
0 2 -1 0 0 0 0
-1 -1 2 -1 0 0 0
0 0 -1 2 0 0 0
A=1] . ) . . . )
0 0 0 0 2 -1 0
0 0 0 0 -1 2 -1
0 0 0 0 0 -2 2
In particular, for r = 3
2 0 -1 0
A= 0 2 -1 0
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14. GCM for D%, r > 2is the (r + 1) x (r 4+ 1) matrix

2 -1 0 0 0 0
—2 2 -1 0 0 0 W
0 -1 2 0 0 O
A=| : : : :
0 0 0 2 -1 0O
0 0 0 -1 2 =2
\o 0 0 0 -1 2 )
In particular, for r = 2 B
2 -1 0
A= (—2 2 ——2)
0 —1 2
15. GCM for E{ is
2 -1 0 0 0
-1 2 -1 0 0
A=10 -1 2 -1 0
0 0 -2 2 -1
0 0 6 -1 2

16. GCM for DY is
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Appendix 2 : The symmetric G matrices.

1. For AD, DO, EM | EM or E{Y the matrix G is the same as matrix A~

2. For A, G= (1)

3. For GV
~_1/76 3
6=5(5 3) )
4. For D
~ (2 3
6=(5 o)
5. For F{V
4 6 4 2
~_1[6 12 8 4
G=312 s 6 3
2 4 3 2
6. For B
2 3 4 2
. (36 8 4
G = 4 8 12 6
2 4 6 4
7. For BW or A
4 4 4 4 4 2
4 8 8 8 8 4
4 8 12 12 12 6
G:l : : . : : :
Y11 8 12 ... 4(r=2) 4r—2) 2(r—-2)
48 12 ... 4(r—2) 4(r=1) 2(r—1)
2 4 6 2(r—2) 2(r—1) r
8. ForDS";)1
4 4 4 4 4 2
4 8 8 8 8 4
4 8 12 12 12 6
=~ _ 1 .. : :
G=§ Do : :
4 8 12 4r—2) 4(r-2) 2(r—-2)
4 8 12 4(r—-2) 4(r—1) 2(r-—1)
2 4 6 2(r—2) 2(r-1) T
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\\
ANl —
s B BEER B B
| S SN
A et —t
[ S
N AN N
~ N K
O ) e N MMM
—~ {3
il
5

9. For C
10. For A(Q%-)-_l

4/
(AN
M e || s
I
AN —t
U S
a3 NN
— N P
[N S
—HOITM MM
e e b = o
N—
i
5
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Appendix 3 : Weight multiplicities of twisted affine algebras of level 2.

A - Class 0 - Highest weight (02) and (10)

(02) (10)

Depth |  (02) (10) (02) (10)
0 1 1 0 1
1 2 2 1 1
2 4 5 2 3
3 8 9 4 5
4 15 17 8 10
5 26 29 14 16
6 44 50 24 29
7 72 80 40 45
8 115 129 64 74
9 180 199 101 113

10 276 306 156 176
11 416 458 236 261
12 619 682 352 393
13 908 994 519 570
14 1316 1442 754 832
15 1888 2059 1084 1186
16 2682 2923 1544 1691
17 3774 4100 2177 2369
18 5268 5719 3044 3317
19 7296 7898 4224 4578
20 | 10032 10852 5816 6307
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Appendices

A - Class 0 - Highest weight (002)

Depth (002) (010) (100)
0 1 1 2
1 4 5 7
2 14 17 24
3 40 49 64
4 104 126 162
5 248 298 371
6 556 663 816
7 1184 1403 1696
8 2421 2849 3414
9 4776 5589 6623

10 9144 10643 12524
11 17048 19747 23057
12 31055 35810 41582
13 55404 63627 73454
14 97020 110994 127560
15 167040 190431 217861
16 283202 321804 366774
17 473404 536297 608989
18 781124 882383 998800
19 1273440 1434697 1618978
20 2052979 2307165 2596392
21 3275392 3672284 4121772
22 5175012 5789225 6482332
23 8101952 9044581 10104295
24 | 12575799 14011106 15619824
25 | 19362520 21531867 23955810
26 | 29584406 32840234 36468828
27 { 44876016 49730097 55125988
28 | 67604838 74796125 82772398
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A - Class 0 - Highest weight (010)

Depth (002) (010) (100)
0 0 1 1
1 2 4 4
2 8 13 15
3 25 37 42
4 68 94 109
5 168 221 256
6 384 491 571
7 832 1038 1202
8 1720 2108 2442
9 3426 4139 4776

10 6608 7890 9086
11 12397 14657 16822
12 22696 26617 30471
13 40672 47359 54044
14 71488 82732 94169
15 123488 142143 161328
16 209968 240533 272317
17 351894 401391 453260
18 581968 661275 744987
19 950753 1076529 1209974
20 | 1535664 1733263 1943939
21 | 2454316 2761993 3091152
22 1 3883936 4358997 4868861
23 | 6089647 6817339 7600122
24 | 9465260 10571599 11764154
25 | 14591966 16261984 18064744
26 | 22321992 24825871 27532285
27 | 33897746 37627706 41662824
28 | 51120104 56642461 62621070
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A - Class 0 - Highest weight (100)

Depth (002) (010) (100)
0 0 0 1
1 1 1 2
2 4 4 8
3 12 13 20
4 32 36 53
5 79 89 120
6 180 205 271
7 390 446 564
8 808 925 1154
9 1613 1847 2252

10 3120 3570 4307
11 5872 6708 7980
12 10784 12299 14519
13 19387 22066 25802
14 34184 38824 45126
15 59230 67124 77496
16| 101008 114222 131236
17| 169770 191559 218976
18 | 281540 317001 360953
19| 461160 518167 587644
20| 746752 837368 946542
21| 1196350 1338904 1508534
22 | 1897588 2119697 2381611
23| 2981818 3324766 3725400
24 | 4644496 5169603 5778673
25 | 7174599 7972279 8890794
26 | 10996576 12199331 13576397
27 | 16730180 18531033 20581100
28 | 25275136 27953657 30988700
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D$P - Class 0 - Highest weight (002)

Depth | (002)  (010)  (200)
0 1 1 2
1 1 2 3
2 5 7 11
3 8 13 18
4 24 32 47
5 39 57 77
6 90 119 165
7 147 204 268
8 297 385 516
9 477 633 823

10 880 1125 1468
11 1391 1812 2300
12 2412 3041 3891

D? - Class 0 - Highest weight (010)

Depth | (002)  (010)  (200)
0 0 1 1
1 1 1 3
2 3 6 7
3 7 9 16
4 16 27 34
5 34 43 67
6 67 101 127
7 127 161 232
8 232 328 412
9 412 520 713

10 713 964 1205
11| 1205 1508 1997
12| 1997 2623 3255
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D{? - Class 0 - Highest weight (200)

Depth | (002) (010) (200)
0 0 0 1
1 0 1 1
2 2 2 5
3 3 7 8
4 11 13 24
) 18 32 39
6 47 57 90
7 77 119 147
8 165 204 297
9 268 385 477

10 516 638 880
11 823 1125 1391
12 1468 1812 2412

D$? - Class 1 - Highest weight (101)

Depth |  (101)
0 1
1 3
2 8
3 19
4 41
5 83
6 161
7 299
8 538
9 942

10 1610
11 2694
12 4427
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DY - Highest weight (010) and (200)

Appendix 3

(010) (200)

Depth | (010) (200) (010) (200)
0 1 1 0 1
1 2 4 1 1
2 5 8 3 5
3 13 17 6 10
4 25 37 15 21
5 49 68 31 42
6 96 125 57 83
7 169 229 110 143
8 296 390 198 263
9 515 658 338 448

10 851 1101 583 749
11| 1393 1774 971 1237
12| 2261 2832 1569 2012
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Appendix 4 : Inverse string functions &

Level 1: Pf._={(10)} U {(01)}

n?—n 2_
68 = Wi = Sl - )

Level2:  Pi, = {(11) U {(2,0),(02)}
&83 = Z{q4n2 _ q4n2——4n+1}
B - S
) g = — T
AP

Level1: Pt ={(01)}

mazxr

K/Egig — Z(q6n2+n . q6n2—5n+1)

22

Level2: Pf = {(10),(02)}

’?Egg; — Z{q15n2+2n _ q15n2+8n+1}

KE%% — Z{q15n2+14n+3 _ q15n2—-4n}
n

KEégg — Z{q15n2—13n+3 _ q15n2—7n+1}

588% — Z{qwn’—n _ q15n2+11n+2}
n

A(zl) :

Level1: Pf .= {(100)} U {(010)} U {(001)}

100 010 001
5%100% ="5E01og = “Eom;

— Z{qF—m—n + 2qF—m—10n+3 _ 2qF—7m+2n+l _ qF—7m—7n+4}

m,n

where [' = 12(m? — mn + n?).
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Level 2:  P* = {(200),(011)} U {(020),(101)} U {(002),(110)}

011 101 110
55011; 2521013 = “Euo;

I'+19m+19n+412

_ I'+m+4n I'+49m—-23n+420 I'+31m+413n+417
=>{q —2¢g +2q —q
mn

+ qu‘+31m-—14n+8 _ 2qI‘+19m-8n+3 _ 2qF+7m+34n+16 + 2qF+m+28n+9

'-17m+46n+18 F~11m+434n+10
+2q m+46n+ ___2q m+34n+ }

110 101 011
KEoozg Z’fgozog = ‘Z’“Emo;

— Z{qr‘+13m+13n+6 - 2qF+37m+n+16 + QqF~11m+43n+17 _ AT4+7Tm+Tn4-2

q

m,n

+ 2qF—17m+28n+7 . 2ql"+7m+16n+5 . 2q1"—29m+52n+23 + 2q1‘+13m+4n+3

I+19m+428n4-17 '+37m—-8n+413
+2q+ m+28n+ __2q+ n+ }

200 002 020
ffEm% ZCI’Cguog = q"f%1o1g

_ '+16m+16n49 I4+4m+4-22n+7 I'+16m—-2n+43 I'+4m+4n+1
=%"{q ~2g +2¢ —q }
mn
1200) (020) __ . (002)

K(200) =F(020) = F(o02)
=3 {gF2mm2n gl lantt y 9 P HSimtnd1z _ (T2 220410}
where I' = 30(m? — mn + n?).
o

Level1: Pr = {(010)} U {(100),(001)}

mazr

(010) __ I'+2m-n F+8m-13n+4 I'—16m+5n+3 r'—-10m-7n47
Kio10) = Z{q +q +q +q
m,n
P—10m+45n+1 P4+8m—~Tn+l '-16m~-n+6 I'+2m-13n+6
—q —q -9 +4q }
(t00) __ (001) __ TC—m-n I'-7Tm-Tn+5 F45m—-7Tn+1 '+1im-10n42
K(100) = F(oo1) = Z{q +4q - q —q }
m,n
(160) __ (001} __ C+11m—13n+4 —19m+5n+5 P-7m+5n+1 F-m—13n+8
K(oo1) = 9K(001) = Z{q +q —q —q }
m,n

where I' = 12(2m? — 2mn + n?).
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Appendix 4
Pt,. = {(002),(020), (101), (200)} U {(011), (110)}

110 011 '+m-2n r - r—-47 n
’iguog = "62011; = Z{q +m-2 +q +37Tm-lant6 | q 4Tm+34n+11

m,n

'+49m-38n+13 '+31m-2n+47 C+7m-—14n+42 ['+43m-—26n+3
+q+m n+ +q+mn++q+m n++q+m n+

'—41m+422n+7 I'+49m-—~26n+10 '-23m+22n+4 _ T'+13m-2n+1
+4q —q —9q q

_ ql"+m—14n+3 _ qF—41m+34n+10 . qF+67m—38n+19 _ ,-1"Tm-2n+3

_ Z qF+31m—l4n+4}

110 011 r+3 9 F~17m+13n+2 C-53m+37n+14
’igoug =<1'<«Euo§= Z{q HImAnES gl 4 g mHsnt

m,n

q

T+19m—11n+2 I'+61m—29n416 T'+13m—17n+3 I'-23m+7n+3
+q+m n++q+m n+ +q+m n++q m+7n+

I'+49m—4in+415 T~41m+437n+12 I'+43m-11n+10 T+7m4n+1
+9q —q —q —q

'-29m+13n44 _  I'=11m+47n4+1 _ T'+73m—4in+23 __  TI'+37m—29n4-8

-9

_ Z q[‘+m—17n+5}

101) __ 101) __ I'-14m+13n+2 I'+34m—23n+6 I'+16m-17n+43
KEoozg —qngzoog = E{q +q +9q "

m,n

q q q

I'+4 n+2 I'+76m—47n426 '-56m+37n+15 T+46m—17n+10
+q+m+n++q m n +q n+ +q+m n+

- 26m47n+4 [-38m+437n412 [4+58m—47n420 C—8m+7n+1
+4q -9 -9 —4q

_ ql‘+28m—17n+4 _ qr+52m—23n+12 _ D—32m413n45 _  T+22m47n438

_ Z ql‘—2m— 17n+6}

q q

(101)

_ C4+70m—47n+23 [-50m+37n+13 4+40m—17n+7 C—20m+7n+2
K(020) —“Z{q +Tq +q +q

m,n

r'-20 13n+4-2 IF'+40m—-23n+7 T+10m~17n43 r'+10 n+3
+q m+ "++q+m n++q+m n++q+ m+Tn+

_ ql"+46m—-23n+9 _ qF—26m+13n+3 _ qI‘+16m+7n+5 _ ql"+4m—17n+4

_ qI‘—44m+37n+12 - qF+64m—47n+21 _ ,=14m+47n4+l

I'+34m—-17n45
q q }

(101)

_— I—-2md4-n '+22m—-11n42 I'-32m+31n+8 I'+52m—-41n+415
Ko =2 _{q +q +q +q

m,n

+ qF+28m+n+7 + qF—Sm—11n+4 + qF+58m—29n+14 + qF—38m+19n+6

'+10m~11ln+1 __

—q qF+10m+n+1 _ qF-20m+19n+3 _ +40m-11n+38

q

_ qr‘+40m—29n+8 _ qF—20m+n+3 _ ,I+70m—41n421

I'-50m+3in+411
q q }
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(200) __ 2 (002) __ I+58m—26n+15 T'+22m-14n+3 F446m—14n411 _  [434m-26n+7
Kooz) = 9 K{z200) = Z{q +q —q q }
mn
(200) __ (oo02) __ I'+34m—2n+9 I'+46m—-38n413 __  [+70m—-38n+21 _  T[+10m-2n+1
K(o20) = 9%(020) = Z{q +4q q q }
m,n
(200) __ (002) __ Z I+10m—14n42 [~50m+34n+12 __  T'-38m+34n+10 __ TI'-2m—14n+44
K(101) = 4K(101) = {q +q q q }
m,n
(200) __  (002) _ Z '-2m~2n I'-38m+22n+6 r'-26m+22n44 __ I'—14m—2n+42
K(200) = K{o02) = {q +q —4q q }
m,n
(020) __ (020) _ Z '~32m+34n+10 -8m—14n+6 I'+28m+44n4-9 C'+52m—44n417
Klooz) = 9K(200) = {q +q +q +q
m,n
I'+16m-—14n+2 '-56m+34n414 I'+76m—44n425 _ T'+4m+44n+1
~q —q —q q }
(020) __ Z T+4m—2n I'—44m+22n48 I'+64m-32n4+17 C+16m—8n+1
Kooy = 2 _1¢q +4q +gq +4q
m,n
I'—20m+22n+44 '-20m-2n+4 I'+40m—8n+49 I'+40m—-32n+9
~q —q —-q —q }
(020) __ F+40m—14n47 I'4+40m—26n+7 '—20m+16n+2 —20m+4n+2
K(101) —Z{q +q +4q +q
m,n
r+52m—26n+11 T'+28m=—14n+3 I—8m+4n r-32m+16n+4
~q —q —q —-q }

where I' = 30(2m? — 2mn + n?).

GV -

Level 1: Pr = {(001),(100)}

(001) _ Z D—m+3n I+7m=-33n+9 [—21m+15n+10
Kioo1) = {q +q +9q
m,n
I'-9m+15n+1 I'+11m-33n46 I'—-17m+43n412
—-q —q —q }
~(oo1) __ D+7m—21n+2 I—13m+15n+2 I—9m—~9n+9
Ki1o0) = Z{q +4q +q
m,n
I't+3m—-9n I'-17m+15n+5 I'—-m-21n48
—q —q —q }

(100) __ Z I'+11m=-25n+3 I'-17m+23n+4 -9m—-13n+13
Kioo1) = {q +4q +q

m,n

_ F+7m-13n+1 I'-21m+23n47 '—m-—25n+12
q —q —q }

“8883 — Z{qr‘—m-n + qP+3m—25n+7 + ql"—-17m+11n+7
m,n
_ qF—9m+11n+l _ qF+7m—25n+4 _ qI‘—ISm-n+9}
where " = 20m? — 60mn + 60n?2.
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Level 2: PF,. = {(002),(010),(101),(200)}

101 Tm-—15n I'+5m—-9n
’ggoozg — 3Z{qr+ m—15n+42 _ q +5 +1}
m,n

- 101 —13n - n
KE%B’% = —¢q 152010; — Z{qr+m 13n43 4 q 9m+5n+3
mn

P-Tm-n44 '—5m+45n
—q —-q }

010) __ (101} __ C+m— F+3m—-19n+6
5%010% = "35101% = Z{q tmen g -
mmn

I'=7m+411n41 '+7m-19n+43
—q —-q }
(o10) __ ,.(101) __ I'+5m-13n+1 '-5m~-7n+46
K(101) = K(200) = Z{q +q
m,n
I'-11m+11n+3 '+3m—~7Tn
~q —q }
~(002) _ __ Z C—m+3n I-5m—9n+48
Kioo2) = = {q +q
m,n
-13m+415n44 T+7m—21n+4
—-q —q }

200) __ (010) __
“Eoozg = K{oo2) = 0

002 —1,(200 C43m—-17 F-5m+7
KEm% =49 1’igom) = Z{q Ham=lintt g * "}
m,n

002 - 200 - - -9m+7n
’fgzoog =49 1’*%101% = Z{qr smosndd _ ghome 2}

002 200 C+7m—17n T +3m—
K%om; = _"Ezoog = Z{q TomolTndz _ gt 5n}

m,n

where I' = 12m? — 36mn + 36n2.

AP

Level1: Pi = {(001)}

max

(oo1) __ P-m+2n T4+9m=—13n+3 C—-21m4+7n+4 F—11m-8n+7
Koo1) = Z{q +q +4q +q
m,n
F—11m+7n+1 I+9m—8n+1 C-21m+2n+6 r—m-13n+6
—q —q ~-q —q }

where I' = 30m? — 30mn + 15n2.
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Level 2: Pt _ = {(002),(010), (100)}

(002) Z{qF—2m+4n + qF+48m—16n+9 _+_ qI‘+78m—26n+24 + ql"—-12m+24n+5

K{oo2) =

m,n

'+58m-—26n+12 F-22m+24n+4 I'+8m<44n+1 I'+68m—-16n+421
—q —q —q —q }
(002) __ I'-32m<4-34n+38 I'+78m—16n+429 '=22m+44n417 '+18m—6n+1

Koro) = 149 +q +q +9q

m,n

_ gTH88m=26n432 _ (P-62mt6in+20 _ ([-22m434nts _ ([438m-16n+5}

(002) _ I'~2m+34n4-15 '+108m—46n+442 I'+18m+4n+3 I'+58m~-6n419
Koo = D {4 +q +q +q

m,n

I'+58m+-4n+27 r'438m-—6n47 I'+88m—36n+428 I'—2m+424n+7
—q —q —q —q }

(010) __ I'-37m+39n+11 ['+13m+19n410 I'+43m+9n+20 I'+23m—-11n+42
Kooz = D_{a +q +q +q

m,n

—q

C+23m+9n+8 __ qF—57m+59n+25 _ ql"—27m+39n+12 . qF+103m—51n+38}

r+33m+4n+10 I'—-57m+54n+421 I'~27m+44n+16 r4+93m—46n+431
+q+ m+4n+ +q + +q m+44n+ +q+ n

F—47m+44n+14 _  T4+13m424n414 _  T+43m44n$16 F+33m—16n+4}

-4 q q q

(010) __ F4+3m-—n ['+113m—51n+46 [+13m+9n+4 r'—17m429n47
Ko10) = Z{q +4q +4q +q
m,n

—q

'+123m—61n+54 _ T'—=27m+29n+6 __ [+13m-n+l __ F+3m+19n+6}

q q q

I'4+73m-36n419 T'+43m-16n+7 T'4+83m—-26n+28 '+53m—6 16
+q+m n +q+m n++q+m n+ +q+m n+

I'+53m—26n+10 I'+43m-6n+10 I'+83m—36n+4+25 I'+73m—-16n425
—q —q }—q —q }

(010) __ C+33m—n+7 [+73m—11n+28 C~17m+39n+14 +93m—41n+31
K(100) = Z{q +q +4q +4q
m,n

—4q

'+93m-31n+434 _ T'+3m+29n413 I'+53m-n+19 I‘+33m—11n+4}
q —q q
I'-37m+34n+8 r'+3 24 9 r+53m+4 23 I'+23m—6n+2
+ q + q +3m+24n+ + q + +4n+ + q +23m +

- qr‘+'23m+4n+5 _ 4—67m+464n429 T'-17m+34n+10 __ F+103m—46n+38}

q q q
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(100) __ I'+68m—-31in+17 r-22m+19n+3 I'+8m+49n+3 I'+58m—11n+17
K(oo2) = Z{q +q +4q +4q
m,n
I-12m+9n+1 C448m—11n+11 _  T+78m=31n4+23 _  TI'—2m+419n45
—q —q q q }
(100) __ I'+38m-n+10 I+8m+19n+8 I'+118m—61n+50 '+88m—41n+28
Koto) = D14 +q +q +q
m,n
I'+18m+9n+6 I'+78m—41n+22 I'+48m-n+16 __ _T+108m—51n442
-q —q —q q }

(100) __ C—-2m-n I'+38m—-11n+6 T+488m—-31n+30 N '~12m+29n+438
Kooy = D14 +q +q +q
m,n

_ giFsEm-sinti2 _

T-32m+29n+6 _  T+18m—n+2 __ F+68m—11n+24}

q q q

where I' = 70m? — 7T0mn + 35n°.

Déz) :

Level1: P* = {(100)} U {(001)}

max

100 001 C—2m—n F+6m—17n+5
"Emog = ’Cglooi) = Z{q gt *
m,n

r-26 n+5 Ir'-18m-9 10
+ q m+in4 + q m=9n+

r-18m+47n+2 __ TI'+6m-9n41

-4 q

I'-26m-n+49 __ 1"—2m—-17n+8}

—q q

where I' = 40m? — 40mn + 20n2.

Level2: Pt . = {(002),(010),(200)}

max

010 010 -22m+7n+6 C+10m—9n+2
"Eoozg = Q’igzoo; = Z{q FInAS gt o *
m,n

I'+10m—13n+4 '-22m+3n+438
+4q - }

q

010 I'+2m-n I'—14m+7n+42
5%010% = Z{q * —4q Tt

+ ql"—14m—5n+8 . q[‘+2m_13n+6}
200 - 002 _ 5 Loma 7
Kgoozg =4q 25%200% = Z:{qF 10m=9n+10 _ o[-10m+Tn+2}
m,n

(200) _ -1 _(002) __ I'-18m4-Tn r'-1i8m-n
Kooy = 4 "{(omg = Z{q Fontd _gtt +8}
m,n

200 002 T~2m-n F~2m-9n
"35200; = “%oozg = Z{q ? — g Iy
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where [' = 24m? — 24mn + 12n2.

DE;’" :

Level1: Pr = {(100)}

max

(100) __ P—m—3n C+23m—-57n47 C-31m+33n+7 C+17m—75n+21
K(100) = Z{q +q +4q +q
m,n
[C-37m+15n+21 ['~13m—39n+28
+ q m+15n+ + q m n+ _

I'-13m+15n41 _  I'+17m-39n+43

q q

'=37m+33n412 __ I'+23m-75n+16 _ _'=-31m-—3n425 + qF—m—-57n+27}

—9q q q

where I' = 42m? — 126mn + 126n2.

Level2: Pf = {(010),(200)}

mazr

(010) Z{qr+2m-3n + qF—IOm—2ln+19 _ qF—10m+15n+1 __  T+2m-39n+18

K(o10) =

m,n

L—19m+24n+4 I+11m—43n+15
+q m+24n+ +q+ m n+15 __

q

'-25m+24n49 _ I‘+17m—48n+10}

q q

'—16m—-3n+12

(010) _ I'—16m+15n43 '4+8m—-39n+10 T+8m—~21n+1
K(200) = Z{q +4q —q —q
m,n
+ ql"+llm—30n+3 + qF—19m+6n+10 _ qI‘—7m+6n . qF—m—30n+13}

I'+1tm-21n+42 __

(200) __ I'+17m-39n+6 '-25m415n+14 -19m-3n+18
K(o10) = Z{q +4q —q q }
m,n
(200) __ F'~m-3n F~7m-21n414 I'—19m+15n+6 I+11m-3%n+8
K200y = Z{q +4q —q —4q }
m,n

where [' = 24m? — T2mn + 72n°.
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Appendices

Appendix 5 : The values of the partition function py.

4! P2 P3 Pa Ps Ps

0 1 1 1 1 1 1

1 1 2 3 4 5 6

2 2 ) 9 14 20 27

3 3 10 22 40 65 98

4 5 20 51 105 190 315

5 7 36 108 252 506 918

6 11 65 221 574 1265 2492

7 15 110 429 1240 2990 6372

8 22 185 810 2580 6765 15525

9 30 300 1479 5180 14725 36280

10 42 481 2640 10108 31027 81816
11 56 752 4599 19208 63505 178794
12 77 1165 7868 35693 126730 380051
13 101 1770 13209 64960 247170 788004
14 135 2665 21843 116090 472295 1597725
15 176 3956 35581 203984 885723 3174210
16 231 5822 57222 353017 1633000 6190182
17 297 8470 90882 602348 2963840 11867310
18 385 12230 142769 1014580 5302075 22395359
19 490 17490 221910 1688400 9358470 41650050
20 627 24842 341649 2778517 16313440 76413078
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