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Kac-Moody algebras G(A) of rank r are Lie algebras associated with n X n generalised

Cartan matrices A. If n = r then Q{A) is a complex simple finite-dimensional Lie

algebra with finite Weyl group W, but if n = r + 1 then Q(A) is a complex infinite-

dimensional affine Lie algebra with affine Weyl group W. This thesis is concerned with

explicit calculations based on the use of W.

Manipulating the Weyl-Kac character formula for highest weight modules provides

a means of expanding Weyl orbit sums in terms of irreducible characters. These expan-

sions are inverted to obtain analytic weight multiplicity generating functions for level

1 and 2 modules for all affine algebras of rank 1 and 2. The orbit-character expansions

and weight multiplicity generating functions are then used to obtain branching rule

multiplicities for some affine embeddings.

On the other hand, the Weyl-Kostant-Liu character formula provides a means of

expressing irreducible characters of an affine algebra in terms of irreducible characters

of a simple finite-dimensional algebra. The key step is the identification of coset repre-

sentatives {W : W} for each of the seven infinite series of affine Kac-Moody algebras

indexed by their rank r. The proof is given in detail for A^\ while for the other affine

algebras the results are expressed as conjectures which have been extensively verified

by a computer program. Young diagrams are used to specify the action of the coset

representatives on arbitrary weights as required in the character formula. This allows

the computation of the irreducible characters to be done independently of the rank of

the affine algebra. Since the weight multiplicities of finite-dimensional modules of the

classical simple Lie algebras are polynomial in the rank this establishes that the weight

multiplicities of irreducible highest weight modules of the seven infinite series of affine

Kac-Moody algebras are also polynomial in the rank. Illustrative examples are given.
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CHAPTER 1

General Theory of Kac-Moody Algebras

1.1 Introduction

The classification of complex simple finite-dimensional Lie-algebras into four infinite

sequence of classical Lie algebras, Ar, Br, Cr and Dr, and five exceptional Lie algebras

E6, E7, Eg, FA and G2 was given by Cartan in his thesis of 1894 [Ca]. Since then finite-

dimensional irreducible representations and modules of Lie algebras have been studied

extensively by mathematicians and physicist alike. Their investigations have led to

numerous methods and formulae for computing dimensions of irreducible modules,

weight multiplicities, tensor product multiplicities and branching rule multiplicities. In

this thesis, we extend some of these methods to representations of affine Kac-Moody

algebras, working throughout over the field C of complex numbers.

The structure and representation theory of semisimple finite-dimensional Lie alge-

bras have been discussed in many excellent text books, see e.g. [H] and [J]. A Lie

algebra is called simple if it is non-abelian and has no proper ideals. A Lie algebra is

said to be semisimple if it possesses no proper abelian ideals. Since every semisimple

Lie algebra is a direct sum of simple Lie algebras, it is then sufficient to consider the

structure of the latter. Each simple finite-dimensional Lie algebra Q possesses a Car-

tan subalgebra 7i of dimension r which is the rank of the algebra Q. The structure

of a simple Lie algebra of rank r is determined up to isomorphism by its root basis

consisting of simple roots ax,..., ar. A root is a vector lying in the dual space H* of

7i. The geometry of the root system is encoded in the Cartan matrix A or equivalently

in the corresponding Dynkin diagram S(A). However, the symmetry of the root sys-

tem is best understood in terms of the Weyl group W, the group that is generated by
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fundamental reflections S; in the hyperplanes perpendicular to the simple roots at.

Before the introduction of Kac-Moody Lie algebras, the standard approach to the

construction of the simple finite-dimensional Lie algebras was to begin by defining

simple algebras and then to proceed through various intermediate stages to the con-

struction of the Cartan matrix A or Dynkin diagrams S(A). It was then noted by Serre

[Se] that every simple finite-dimensional Lie algebra Q(A) can actually be constructed

from a set of generators and relations which depend only on the entries in the Cartan

matrix A. By weakening the conditions on the Cartan matrix A, Kac [Kacl] and

independently Moody [Mol] enquired whether similar constructions are still possible.

Surprisingly the resulting Lie algebras which are now not neccessarily finite dimen-

sional turn out to be more interesting than the original simple finite-dimensional Lie

algebras. The defining matrix A = (Atj) is called a generalised Cartan matrix (GCM)

if An = 2, Aij is a nonpositive integer for i ^ j and Afj = 0 implies Ajt = 0. The

Kac-Moody algebra Q(A) associated with an n x n GCM A is the Lie algebra generated

by the elements e,-, /,-, hi (i = 1,2,..., n) subject to the following defining relations:

["•o Jj\ — ~~Aijfj ;

(adei)~A'1+1 tj = 0 f o r z ^ j ;

(ad ft-*"*1 f, = 0 f o r i / j ;

for all i,j = 1,2,... ,n. The vectors h{ lie in the Cartan subalgebra Ti. Furthermore,

the Kac-Moody algebra G{A) has the root space decomposition

Q(A) = ®Q€H*Ga,

where Qa = {x <E Q(A) \ [h,x] = a(h)x for all h €H}. An element a € H* is called a

2



Introduction

root if Qa 7̂  0 and dim Qa is called the multiplicity of a and is often written as mult a.

The Kac-Moody algebra G{A) possesses a non singular invariant form only if the

GCM A is symmetrisable i.e. there exists a diagonal matrix D such that DA is symmet-

ric. Morever for each indecomposable GCM A, the Kac-Moody algebra Q{A) belongs

to one or other of the following three non intersecting classes [Kac4]:

a) if there exists a vector 6 of positive integers such that all the components of the

vector A8 are positive, then G{A) is a simple finite-dimensional Lie algebra;

b) if there exists a vector 8 of positive integers such that AS = 0, then Q{A) is an

infinite-dimensional Lie algebra known as an affine Kac-Moody algebra;

c) if there exist a vector <f> of positive integers such that all the components of the

vector A(j) are negative, then Q(A) is an infinite-dimensional Lie algebra known as an

indefinite Kac-Moody algebra.

The affine Kac-Moody algebras, sometimes known as Euclidean Lie algebras or

just affine algebras were classified by Kac [Kacl] and Moody [Mol] and they fall

into one of the following classes: the untwisted algebras A?\ B™, C^,D?\ Eg\ E?\

E^^F^TG^ and the twisted algebras A ^ ^ r - i , Di%,Ei2\D<?\ The centre of the

affine algebra Q(A) is one-dimensional [Kac4] and is spanned by the element K known

as the canonical central element. The algebra Q(A)/K is isomorphic to one of the

following algebras:

(i) the loop algebra

where Q is a simple finite-dimensional Lie algebra and C[i, i""1] is the ring of Laurent

polynomials in t. This is the so called untwisted case.
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(ii) the algebra

where Qj is the eigenspace of a certain automorphism of Q of finite order m corre-

sponding to the eigenvalue e.2l"i/m. In fact m can only equal to 2 or 3. This is the

so called twisted case.

The structure of affine algebras are similar to those of simple finite-dimensional

Lie algebras which permits one to generalise many results of the classical theory. How-

ever the theory of general Kac-Moody algebras is interesting not only because of the

possibility of reproducing the results of the classical theory but mainly because the

corresponding results for Kac-Moody algebras turn out to be directly connected with

other topics in mathematics quite unrelated before.

Initially the Kac-Moody algebras attracted much attention because of the link

between the affine algebras and Macdonald identities [Ma]. Macdonald discovered a

remarkable product formula relating the Weyl group W and the positive roots A+ of

a certain kind of Lie algebra. Although cast in a slightly different form, Macdonald

obtained in the framework of affine root systems the formula

J2 e{w)e-{p-wp) = n (1 - e-
a)dimCa ,

where p — wp'is the sum of the positive roots a such that w~1a is negative. He used

this formula to obtain identities for powers of Dedekind's eta-function, r)(T)dtm^ where

Q is a simple finite-dimensional Lie algebra. Kac [Kac2] later recognised Macdonald's

unspecialised identity to be nothing other than the Weyl-Kac denominator identity for

affine algebras and also established that the Macdonald identity was valid for the entire

class of Kac-Moody algebras.

Representations of infinite-dimensional Kac-Moody algebras are difficult to con-

struct explicitly even in the affine case. Inspired originally by the theory of relativistic

4
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strings, there is an extensive literature in which operator realisations of the affine al-

gebras are discussed, see e.g [GO] also for other physical applications. However, our

discussion of the representations of Kac-Moody algebras will largely be in terms of

their characters and the related weight vectors. Much like a root, a weight is defined to

be a linear functional A : 7i —> C. A weight A € 7i* is called integral if A(/*t) G Z and

dominant if A(/i.) > 0 for all i. Given a dominant integral "weight A of a Kac-Moody

algebra Q(A), there exist an irreducible module Vx = ®^ew Vx where

Vx = {v € Vx \ h(v) = n(h)v for all h € H} .

Such a module is called a highest weight module with highest weight A. The dimension

of the weight space Vx is referred to as the multiplicity of the weight //. The character

of this irreducible G{A)- module is given by the Weyl-Kac character formula [Kac2]

ch Vx = Y, s{w)ew(x+p)-p/ U ( l - e ~ a ) m u l t a .

This formula is a generalisation of the Weyl character formula of a simple finite-

dimensional Lie algebra. Although the general formula is valid for an arbitrary Kac-

Moody algebra, in the indefinite case the multiplicity of the roots and the exact struc-

ture of the Weyl group are unknown, leaving us with a purely formal expression.

The characters of the irreducible highest weight modules of affine algebra give

rise to many interesting combinatorial identities [FL], [Kac3]. The specialisation

of the denominator identity for the simplest affine algebra A^ leads to the famous

Jacobi triple product identity, while the weight multiplicities of the fundamental weight

module of A^ module are the values of the classical partition function p(n). Some

weight multiplicity generating functions, known as string functions, can be found in an

important paper [KaP] that relates affine algebras to the theory of theta functions.

Using the classical transformation properties of theta functions Kac and Peterson have

5
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shown that the string functions are modular forms. Although their transformation laws

have been established, obtaining explicit expression for the string functions is not an

easy task. An explicit expression for all string functions is known only for the simplest

affine algebra A^ for which they are expressed in term of Hecke modular forms.

There are a number of methods available for computing weight multiplicities of

the highest weight modules of simple finite-dimensional Lie algebras. Most of these

methods can be extended to affine algebras but unlike the expression of string functions

in terms of modular forms, the weight multiplicities can only be given numerically, with

their values limited by 'depth'. Recently Begin and Sharp [BS2], extending the work

of Kass [Kass] on the affine algebra Aj and of Patera and Sharp [PS] on simple

finite-dimensional Lie algebras, developed a technique that allowed them to expand

affine Weyl orbits in term of characters of irreducible representations. The weight

multiplicities concerned can be read off from the inversion of this expansion. For the

affine algebras of rank 1 and 2, they gave explicit Weyl orbit expansions in terms of

characters of irreducible representations. Unfortunately, not much progress has been

made in inverting even these expansions analytically.

Weights of irreducible highest weight modules are conjugate to dominant weights

and their multiplicities are invariant under the action of the Weyl group. Therefore

in order to specify all weight multiplicities it is sufficient to tabulate the multiplicities

of dominant weights. Bremner, Moody and Patera [BMP] have published tables of

dominant weights and their multiplicities in highest weight modules of simple finite-

dimensional Lie algebras. These tables are extensive and extend up to rank 12 for some

algebras. It was first reported by King [Kingl] that multiplicities of the dominant

weights are in fact polynomials in the rank of the algebra for each of the sequences of

the classical Lie algebras Ar, £?r, Cr and Dr. This polynomial dependence was later
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established explicitly by King and Plunkett [KiP] and Benkart, Britten and Lemire

[BBL].

As in [BMP] similar tables of dominant weights multiplicities but appropriate to

the untwisted affine algebras have been published by Kass, Moody, Patera and Slansky

[KMPS]. In order to extend these tables, it was first conjectured by Benkart and Kass

[BK] that these weight multiplicities are again polynomial in the rank of the algebras.

In the case of A^ and for sufficiently large r it has been proven to be so by Benkart,

Kang and Misra [BKMl] and they also later established this rank dependence of

weight multiplicities up to depth 2 [BKM2], The rank dependent expressions for

weight multiplicities can be used to obtain root multiplicities of the hyperbolic Kac-

Moody algebras HA™ [KM].

A problem which in applications appears quite often is to decompose irreducible

modules of an algebra into those of a subalgebra. However, a knowledge of the subalge-

bras of affine algebras is nowhere near as extensive as that of simple finite-dimensional

Lie algebras. Discussion for the conformal embeddings and their role in the context of

two-dimensional conformal field theory can be found in the text by Fuchs [F]. Other

explicit branching rules for embeddings of one affine algebra in another have been re-

ported in [BSl], [Lu]. It is also interesting to note that an affine algebra can be

embedded in itself [HKLP], [LPS].

In the remaining part of this Chapter we give first some terminology appropriate to

general Kac-Moody algebras before restricting our discussion to either the simple finite-

dimensional Lie algebras or the affine algebras [Kac4], [KMPS]. We begin with the

definition and the classification of GCMs. With these we associate Dynkin diagrams

and define the Kac-Moody algebras in term of generators and relations. The properties

of highest weight modules and Weyl groups are then discussed. The main objects of
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interest are the Weyl-Kac and Weyl-Kostant-Liu character formulae [Liu] and the

derivation of the method for expanding the orbit sums in term of irreducible characters

[PS].

In Chapter 2 we discuss representations of simple finite-dimensional Lie algebras.

Since most of the results are classical we have omitted their proof. Our aim is to

demonstrate some methods used in the context of simple finite-dimensional Lie alge-

bras before extending the methods to affine algebras. Besides this we also discuss the

relationship between the Young diagram notation for partitions and irreducible char-

acters. We then consider the infinite series of characters obtained previously using the

theory of Schur functions [King2]. We also give the modification rules that have to

be taken into consideration when non standard labels are encountered [King2].

In Chapter 3 we discuss the two common approaches to the construction of affine

algebras. In the GCM approach we obtained all the conventions that will be employed.

The central extension of a loop algebra approach is then considered in order to make

the connection with simple finite-dimensional Lie algebras and also to obtain the roots

and their multiplicities [Co]. Next we discuss the properties of affine Weyl groups, the

partitioning of weight space into Weyl orbits and orbit-weight generating functions.

Finally we give analytic expansions of affine orbit sums in term of affine irreducible

characters for all level 1 and 2 modules of affine algebras of rank 1 and 2. Numerical

inversion is then employed to illustrate the method of determining weight multiplicities.

The algorithm developed here to compute weight multiplicities has been implemented

for most affine algebras in the form of computer programs.

In Chapter 4 we spell out explicitly the Weyl-Kac denominator identities for all

affine algebras of rank 1 and 2. With the help of these identities, we are able to rewrite

and simplify the sum form of the orbit-character expansions given in Chapter 3 as
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product forms. Following the work of Kass [Kass] analytic expressions for some string

functions are obtained when the matrix of string functions is of order less than 3. When

the order of the matrix is greater than 2, the string functions are obtained by fitting

product formulae to the weight multiplicities generated by our programs. The method

exploits the modular characteristic of string functions.

Chapter 5 is concerned with an entirely new view of the relationship between the

infinite series of characters based on Schur functions considered in Chapter 2 and the

denominator of the Weyl-Kostant-Liu character formula. The idea behind the use

of the Weyl-Kostant-Liu character formula is to transform the summation over afrme

Weyl group elements directly into irreducible characters of a simple finite-dimensional

Lie algebra. The crucial step is the identification of an appropriate set {W : W} of

right coset representatives of the affine Weyl group W with respect to the finite Weyl

group W. In this chapter we obtain the set {W : W} for all seven infinite series of rank

dependent affine algebras but give a proof only for A^\ Although the others are left

as conjectures, they have been extensively verified with a computer program and are

in complete accord with the Schur function formulae. A Young diagrammatic method

for computing the action of each right coset representative on weights is also given.

Chapter 6 is a consequence of Chapter 4 and 5. With the identification of the

set {W : W} and the Young diagrammatic technique developed in Chapter 5 we

give a decomposition procedure for expressing irreducible characters of affine algebras

in terms of character of simple finite-dimensional Lie algebras up to any prescribed

depth. The computations are done independently of the rank of the affine algebras.

Illustrations are given for all seven infinite series of affine algebras with characters of

particular irreducible representations being obtained up to depth 4. Since the weight

multiplicities of the four infinite series of classical Lie algberas are polynomial in the
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rank, we have thereby established that the weight multiplicities of all seven infinite

series of affine algebras are also polynomial in the rank. Examples illustrating the

explicit calculation of this rank dependence are provided. In addition the analytic

orbit-character and character-orbit expansions obtained in Chapter 4 are used following

the method discussed in [PS], to obtain analytic branching rule multiplicities for affine

self embeddings and other maximal embeddings [BSl].

Finally, in Chapter 7 we present some conclusions and recommendations on future

developments associated with this work.

1.2 Kac-Moody algebra associated with generalised Cartan matrices

In the following sections we discuss some aspects of the general theory of Kac-

Moody algebras. Unless specified, the proofs of the results can be found in the text by

Kac [Kac4]. We begin with a definition of a complex Lie algebra.

Definition 1.1 A vector space Q over the field C with a binary operation [•, •] is called

a Lie algebra if the following axioms are satisfied:

(Ll) [x, y] is a bilinear function of x and y;

(L2) [x, x] = 0 for all x G Q\

(L3) Jacobi Identity: [x, [y, z]} + [y, [z, x]} + [z, [x,y]] = 0 for all x, y, z <E Q.

As has been noted by Serre [Se] and Gabber and Kac [GK], we can construct a

Lie algebra by the method of generators and relations given any generalised Cartan

matrix(GCM).

Definition 1.2 An integral n x n matrix A of rank r is called a GCM if it satisfies the

following conditions for all i,j £ / = { 1 , . . . , n}:

(Gl) A, = 2 ;

(G2) Aij < 0 for i^j;

10



Kac-Moody Algebra ...

(G3) if Aij = 0 then Ajt = 0.

The relation G3 implies that zeros appear symmetrically in A but in general the matrix

A is not symmetric. A GCM is said to be symmetrisable if there exists a nonsingu-

lar diagonal matrix D such that DA is a symmetric matrix. The symmetrisability

condition eliminates some infinite dimensional algebras that are difficult to study. Fur-

thermore, in order to avoid direct products of algebra, the GCM will be assumed to be

indecomposible i.e. that it cannot be brought into a block diagonal form by permuting

rows and columns.

A matrix of the form Atj where i,j € S C I is called a principal submatrix of

A and is called proper if S is a proper subset of I. The determinant of a principal

submatrix is called a principal minor. We then can make a distinction among the GCM

as follows.

Definition 1.3 A GCM A is said to be of

(Ml) finite type if all its principal minors are positive;

(M2) affine type if all its proper principal minors are positive and det A = 0;

(M3) indefinite type if A is of neither finite nor affine type;

Although they are still the subject of active mathematical research, the theory of

Lie algebras associated with cases Ml and M2 is well developed by now. However not

many general results are known in the case of Lie algebras associated with M3 although

some progress has been made in those special cases when A is of hyperbolic type [KM]

i.e. when A is of indefinite type and all its proper principal submatrices are of finite

or affine type.

To each GCM A we can associate a graph S(A), called the Dynkin diagram of A

as follows. The graph consists of n vertices labelled by i with i = 1,2,..., n joined by

edges or lines. If AtjAji < 4 and | Atj |>| A,-,- |, the vertices i and j are connected by

11
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| Aij | lines and these lines are equipped with an arrow pointing toward j if | A{j \ > 1.

In Tables 1.1 and 1.2 we give the Dynkin diagrams of all simple finite dimensional

Lie algebras and affine algebras respectively. Here we adopt the Dynkin numbering

system for simple roots and always assume that the enumeration of the roots begin

from the leftmost vertex of S(A). The numbers attached to the vertices in Table 1.2

are the level vector components (co-marks) whose definition, will become apparent in

Chapter 3. For the Dynkin diagram of simple finite-dimensional Lie algebras, the name

consists of a letter (A - G) denoting the type and a numerical subscript denoting the

rank of the algebra. For the affine algebras, the name consists of the name of the

corresponding simple finite-dimensional Lie algebra from which it is derived together

with a parenthetical superscript indicating the degree of the diagram automorphism

used in its construction. The starting point of each sequence of Lie algebras is chosen

both to avoid Lie algebras that are not simple and to eliminate the appearance of

isomorphic algebras with different names. In particular, we have for simple finite-

dimensional Lie algebras

Ai « B1 « d , B2 « C2, A3 « D3, D2 « Ax © A1.

Definition 1.4 A Kac-Moody Lie algebra associated with a GCM A is a vector space

G(A) generated by 3n elements e,-,/i,/i,- with i £ I satisfying the axioms Ll - L3 of a

Lie algebra and for all i,j 6 / the additional relations:

(Rl ) [hi,hj]=0;

(R2) [eijj] = 6ijhi;

(R3) [hi^^Ajitj;

(R4) [hiJj) = -Ajifj]

(R5) (ad ei)-A»+1ej = (ad fi)-A'i+1fj = 0 whenever i / j .

The elements e,-, /; and hi are called the Chevalley generators. The relation R5 is

12



Table 1.1 : Dynkin diagrams of simple finite-dimensional Lie algebras.

Ar

Br (r > 3)

CV (r > 2)

Dr (r > 4)

a2

0-

ar_2

Ctr-2

E7

ar_2 ar

o—o
Qr-1

OL\ a2 a3 o;4 a 5

o—o—o—a—o

x
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Table 1.2a : Dynkin diagrams of untwisted affine algebras.
1 1

1 1

> 2)

(r > 3)

-o-
1 2 2

O l
1 1(2) 1(2)

^ (r > 2)

2 2

(r > 4) 0

1

-o
1 1

1(2) 1(2) 1

2 2 1

1 2 3 2 1

1 2 3 4 3

1 2 3 4 5 6 4 2

1 2 1(3)
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Table 1.2b : Dynkin diagrams of twisted affine algebras.

2(1) 1(2)

2(1) 2 2

4? (r > 2) cryr
2 2 1(2)

1 2 2

V-i (r > 3) O O O
2 2 2(1)

)T^T)

1 2(1) 2(1)

(r > 2)
2(1) 2(1) 1

1 2 3 4(2) 2(1)

o- - ~~̂

1 2 3(1)
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known as Serre's relation and the operator ad is defined as

m times

(ad ei)mej = [e,-,..., [eh [e,-, e,-]]...].

The elements e,- and /,• for i G / generate subalgebras JV+ and JV_, respectively. Any

commutator product [xi, [x 2 , . . . , [xt_i, xt] • • •]] with â  = e,-, /,• or /ij where i £ I can

be expressed using the defining relations as a sum of commtltators each involving only

e's or only / ' s or only a sum of fo's. We then have a direct sum of vector spaces or

triangular decomposition

M-®H®M+ (1.1)

where the vectors ht for i G / lie in the Cartan subalgebra Ti. The dimension of H is

given by

dimH = 2n-r. (1.2)

The centre K of the Kac-Moody algebra Q(A), consists of elements of ti commuting

with all e,- and /; and has dimension n — r. K = 0 if and only if A is nonsingular.

Let oti G Ti* be n linear functional defined on 7i as follows:

[h^ tj] = aj(hi)ej = Aj-.-e,- i,j e I. (1.3)

The dimension of the dual space 7Y* is the same as 7i. When n = r, the elements hi

and Oii for i € / span ?i and 7i* respectively, otherwise further elements are needed to

complete both bases. The set of linear functionals a i? i 6 / are called the simple roots

of the Kac-Moody algebra Q(A). The roots a,- and — a, generate the root subspaces

Qai = Ce, and Q-a, = C/,- respectively. Other non-zero commutators of the form

[e,-,e,-,], [e,-, [e,-,,e,-»]] etc.

UiJi'l [fiAfi'Ji")} etc.

16
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belong to root subspaces Qa for which the corresponding root a 6 7i* has the form

with integral coefficients all nonnegative or all nonpositive. Here | k, \ is the number

of times the generator e* or fi appears in the corresponding commutator. We call a

positive (resp. negative) if k{ > 0 (resp. kt < 0). By relation Rl of the Definition 1.4,

it is sometimes convenient to regard Ti as being the subspace of G(A) corresponding to

a zero root and to write 7i = Go- We then have the following root space decomposition

with respect to H.

G(A)=®Qa, (1.4)

where Ga = {x £ G(A) | [h,x] = a(h)x for all h € 7i} is the root subspace attached

to a. The dimension of the root subspace Ga is known as the multiplicity, mult a, of

the root a. For a simple finite-dimensional Lie algebra, the multiplicity of a non-zero

root is always unity.

Let II = {QI, . . . , an} and ELV = {a^,..., o^} be sets of an n independent elements

of 7i* and Ti respectively. These basis vectors are related through a bilinear form on

U* xH defined by

ai{a])=<ai,a)>=Aij. (1.5)

We call the elements of Fl and FIV simple roots and simple co-roots respectively. Let

the root lattice and co-root lattice respectively then be

Q = Z [ a l s a a , . . . , a n ] and Qv = Z [ a > ^ , . . . , < ] .

If A is a GCM then its transpose Ax is again a GCM. The algebras G{A) and G(A%) are

called dual to each other. If Qv is a co-root lattice of G(A) then Qv is the root lattice

of G(Al). We can also introduce a partial ordering > on Q by setting

\>H if A - / i G<2+ = Z + [ a 1 , a 2 , . . . , a n ] . (1.6)
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The geometry of the root system of a simple Lie algebra is encoded in the Dynkin

diagram which carries the relative lengths of the simple roots and the angles between

them. We can speak of long and short roots. If all roots are equal in length then it is

conventional to call them long. The arrows in the Dynkin diagrams of Tables 1.1 and

1.2 are pointing toward the short simple roots. We denote the set of all non-zero roots

of Q(A) by A, the set of positive roots by A+ and the set of negative roots by A".

Then by (1.1) and (1.4), we have

A = A" U A+. (1.7)

1.3 The Weyl group

Given a Kac-Moody algebra G(A), the Weyl group VK(A) or simply W is a group

generated by fundamental reflections in the hyperplanes perpendicular to the simple

roots. For each i £ / , the fundamental reflection s,- of the space 7i* is defined by

Si(X) = A- < A, a* >a,-. (1.8)

This really defines a reflection in that it fixes the subspace known as the reflection

hyperplane

Hai = {A e H* |< A, a,v >= 0} for i € I, (1.9)

and sends at to —a{.

If a is a root then s,-(a) is also a root. If a root j3 = w(a) for some w £ W then

we say /3 is VF-conjugate to the root a. However, not every root is VK-conjugate to a

simple root. We define the set A.R of real roots to be the W-conjugate of the simple

roots and the set A/ of imaginary roots to be A\ AR. For simple finite-dimensional Lie

algebras all roots are real but for affine algebras there exists imaginary roots which are

not VK-conjugate to any real root.
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Next we fix an important element p € T~C* satisfying < p, aV > = 1, for all 1 < i < n.

In general this does not define p uniquely. However if Q is simple finite-dimensional, p

is actually equal to half the sum of the positive roots. With these definitions, we have

in particular

Si(p) = p-<*i-

We also define the shifted (or dot) action of W on 7i* by

w.\ = w(\ + p)- p for any w <E W and A e W . (1.10)

Observe that the action • is independent of any freedom that may exist in the choice

of p.

Lemma 1.5. Tie fundamental reflection 5,- permutes the positive roots other than a,.

Proof Let a G A + and a ^ a{. If a. = £ \ kjCtj with kj > 0 for some j ^ i, then

Since the coefficient of a,- is positive, this implies that s,(o:) € A+ D

A group such as the Weyl group with generators 5 l 5 . . . , sn and defining relations

s? = id i e I; (siSj)mij = id i,j e I

is called a Coxeter group. For the Weyl group, the values of the m,j are given by the

following table [Kac4]:

Table 1.3 : The order of the element 5,-Sy of Coxeter groups W(A)
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We see that every element of the Weyl group can be written as a product of

fundamental reflections w = S;,Sj2 . . . sit. By Lemma 1.5 we have

3,-A = Si( A
+\{a,} U { a j U {-a<} U A"\{-a,-} )

= A+\{a,} U {-a,-} U {a,} U A-\{-a,-} )

= A

and hence w € W permutes the root system A.

For i = 1, . . . , n the fundamental reflection s{ acts on h € Ti as follows

Si(h) = h- <a,-,A>a,y. (1.11)

For \ eH* and h e H we have

< 3,-A, /&> = < A — < A , a y > a j , / i >

= < A, h - < a{,h> a,v >

= < \,Sih > .

More generally < w\,h > = < X,w~1h > which implies that the bilinear form < •,• >

is W-invariant.

Definition 1.6. The expression w = Silsij...Sii is called reduced if t is minimal

possible among all representations of w € W. t is called the length of w and is denoted

by £(w). The parity of w is defined to be e(w) = (—1 )*("').

Since w~x = sitsit_1 . . . s ^ , this implies that £{w) = ^(u;"1).

Lemma 1.7. [Kac4] Let w = stl .. .a,-, € VF be of minimal length t. Then we have

(a) £(wsi) < £(w) if and only if w(a,) < 0 ,

(b) w(ctit) < 0.

Definition 1.8. [Ko] Define the following important set

$„, = toA" n A+ = {a G A+ | w-\a) < 0}.
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Since A+ and A~ are disjoint sets, then the set $ i d is empty. However for i € / ,

$Si = S.-A" n A+ = {a G A+ | Si(a) < 0}

and by Lemma 1.5, we have $Si = {a8}.

Lemma 1.9. If a{ £ $w then $Situ = 5,-$m U {a,} .

Proof
a< G $*,» <=> (sjio)"^^-) < 0

4̂  w'^ai) > 0

Hence at- is in precisely one of $m or $5,w. Then by hypothesis a,- G $SiTO so that

n (A+\{aJ) and by Lemma 1.5 s{^w = s^toA" H (A+\{aJ) . In addition

hence

n A+

~ n A+ \{aJ) U ({a,-} n SiwA~)

= Si$w U 5iu;((5iu;)-1{ai}n A")

= st$w U siu;((5iu;)"1{ai})

= $,•$„, U { a j .

D

Proposition 1.10. £(w) = card {a e A+ | iw^^o;) < 0} = | $w | .

Proof We prove this Proposition by induction on the length of w. By definition,

£(id) = 0 and £(si) = 1. The Proposition is trivial for w = id and since <&Si = {a{}

the Proposition is also true for w = s,. Assume that it is true for all u G W with

£(u) < £(tf). Let w = sil .. .sit have minimal length t. Then w~x = sit ... sil also has

minimal length t and by Lemma 1.7(b), w~1(ail) < 0. Hence ail £ $w = {a £ A+ |

iy~1(o;) < 0} . From Lemma 1.9 we can then deduce that $„ = 3^$^ U {aA where
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w = Si^u and this implies that | $„ | = | 4>u | +1 . On the other hand £(u) = £(w) — 1

and by induction £{u) = | <]>„ |. Hence £{w) = | $„, |. •

Lemma 1.9 and Proposition 1.10 implies that if s{w is a reduced form then £(siw) =

£(w) + l. This tell us how to compute the set $„, with w of length t. Let w = Si^^ ... sit.

Then
,,lSis...,,( ={a{l} U *,$., , . . . , , ,

={a,-1,ai1(a,-a)} U 5 , ^ $ ^ . . . ^
(1.12)

In general [Liu], if ^(itfiU^) = £{wi) + £(1^2) then it follows directly from (1.12) that

Proposition 1.11. p — w(p) —

Proof Again we prove this Proposition by induction on the length of w. First

p — Si(p) — a, and $,, = {&{}. Hence it is true for £(w) = 1. Assume that it is true

for all £(u) < £(w). Let w = s^s^ . . . 6,, be a reduced form for w and set u = si2... sit.

This is a minimal expression for u so that £{u) = £(w) — 1. Then

p - w(p) = p - s{lu(p) = p - 3Up + stl(p - u(p))

Hence by Lemma 1.9 p - w(p) = ]Cae*«,=.- » a- ^

1.4 Highest weight modules

Definition 1.12 Let Q be a Lie algebra over C. A vector space V endowed with an

operation Q x V —»• V is called a ^/-module if for all a;, y G Q, u, w 6 V and a, 6 G C

the following conditions are satisfied:

(Ml) (ax + by) -v = a(a; • u) + fe(j/ • v) ;
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(M2) x • (av + bw) = a(x • v) -+- b(x • w) ;

(M3) [x,y] • v = x • y • v — y • x • v .

The dimension of a (/-module is the dimension of the underlying vector space. A

^-module is called irreducible if it has no proper ^-submodules.

An equivalent concept to the idea of a ^-module is a representation ip of Q. By a

representation ip we meant a homomorphism of Q into the "general linear algebra of a

vector space V. Given a representation i/> : Q —> gi(V) the vector space V becomes a

module of Q via the action x • v = tp(x)v. Conversely, given a ^-module V', the same

action defines a representation ip : Q —> g£(V).

A ^-module V is called 'H-diagonalisable if

where VA = {» G V | h(v) = \(h)v for h € J-i}. V\ is called a weight subspace,

A G H.* is called a weight if V\ ^ 0 and the dimension of the weight subspace V\ is

called the multiplicity of A and is denoted by mult A(or dim Vx). Viewing G(A) itself

as a ^(A)-module, we see that the weights are the roots o: € A (with weight subspace

Go) along with 0 (with weight subspace the Cartan subalgebra 7i).

Let G{A) = ®aeAv{o}Ga be a root space decomposition with respect to 7i of a

Kac-Moody algebra with GCM A and simple roots II = {c^, a 2 , . . . , a n } . Let

The set P is called the weight lattice and the elements of P+ are called dominant

weights. Given an element A € P+, it is always possible to form an irreducible G{A)-

module VA known as a highest weight module with highest weight A that satisfies the

following properties [Kac4], [KMPS]:

(a) VA is TY-diagonalisable ;
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(b) VA
A is 1-dimensional and QaV£ = 0 for all a G A+ ;

(c) GaV£ C Va\x.

This irreducible highest weight module is determined up to isomorphism by its highest

weight and up to isomorphism these modules are in one-to-one correspondence with

the dominant weights of Q(A).

It is convenient to introduce a set of fundamental weights A,- G 7i* for t £ l such

that < A,-, al >= Sik for alH, k G / and a set of vectors 8, G 7i* for

j G J = {n + 1 , . . . , n — r} such that < 8j, a\ > = 0 for all j G J and k £ I, where A,-

for i G / and 6j for j G J span 7Y*. Then any vector \ €. H* can be written in form

n,-^ (1.13)
t = l »=n+l

where the Dynkin labels A,- are given by A,- = < A, a^ > for i €. I. In particular, in the

case of a simple root ak,

(1.14)

Denote the set of all weights of VA by -P(A). Every element A G -P(A) is of the

form A = A — a for a G Q+- The distinct weights of P(A) written in Dynkin notation

can be obtained from the highest weight A = (Al5 A2, • • •, An) by applying the following

algorithm [KMPS] :

(51) Assign A to P(A) and let A = A ;

(52) For any positive Dynkin coordinate A,- of A assign to -P(A) the A,- weights

A — a,-, A — 2a,-,..., A — A;a,- for i = 1 , . . . , n ;

(53) Repeat step S2, replacing A by each new weight just found in S2.

The weights A G -P(A) can be partitioned into Weyl group orbits (W-orbit). The W-

orbit of a weight A is defined to be the set {w\ \ w G W} and for each weight A of

W-orbit there exist a unique dominant weight A+ G P+ such that A = w'\+ for some
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w' € W. Orbit labels are then taken to be the components of the highest weight of the

orbit. If // € P+1 define the orbit sum as

eW" (L 1 5)

where {W : W^} denotes the set of left coset representatives of W with respect to the

stabilizer W^ = {w \ wp: = /i, w € VT} of //.

The set of weights of VA is invariant under the action of the Weyl group W of

Q{A) and also dimVA^ = dimVf for all w £ W and A € -P(A). Since each weight

is conjugate under the Weyl group to a dominant weight, it suffices to determine only

the multiplicities of fi € P+ C\ P(A).

1.5 The Weyl-Kac character formula

Let VA be an irreducible highest weight module. The character of VA is the formal

exponential

chVA= Yl (dim VA) ex , (1.16)

where for A £ Ti* ex is the function h —> e<A''l> on 7Y converging absolutely on a

nonempty open subset of H [KaP]. This definition means that a knowledge of the

character of the irreducible highest weight module is equivalent to knowing its weight

system and the multiplicity of each weight. In the case of simple finite-dimensional

Lie algebras, Weyl has given a precise formula for this character and in the case of a

general Kac-Moody algebra essentially the same formula was proven by Kac [Kac2].

The Weyl-Kac character formula is given by

n (i - e-r"1*, (1.17)

where p G T~C* is defined by p = YA=I A»- Setting A = 0 in the above character formula,
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we can deduce the following Weyl-Kac denominator identity

XI (1 — e-a)multa = Y, e(iv)ew^-p. (1.18)

This then gives another form of the character formula:

ch VA = J2 z(w)ew(X+p)/ £ £(w)ewM • (1-19)

Unfortunately, getting from the character formula to the weight multiplicities is not

entirely straightforward because the character formula is a quotient of two alternating

sums. However it can be reorganized to provide an effective way to compute the

individual weight multiplicities.

In the case of a simple finite-dimensional Lie algebra there are a number of methods

available for computing weight multiplicities. The Kostant formula provides a closed

form expression for the multiplicity mult A for any weight A of the irreducible module

with highest weight A [J]:

mult A = Y^ £{w)P{\ + p - w(A + p)),
wew

where P(fJ.) is the number of ways of writting a as a linear combination of positive

roots with nonnegative integers as coefficient. Alternatively the Racah formula [R]

provides a recursion relation for the multiplicities of the weights:

mult A = — ̂ 2 e(w) mult (A + p — w(p)).

Both of these formulae are a consequence of the Weyl-Kac character formula and de-

pend on the generation of the Weyl group for the computation of the weight multiplic-

ities. Another method of computing weight multiplicities due to Freudenthal is also a

recursion formula but this time it avoids the Weyl group and can therefore handle Lie

algebras of larger rank. This recursion relation is [J]

[(A + p | A + p) - (A + p | A + p)] mult A = 2 E JT(A + ka I a)mult (A + ka) •
a>0 it>0
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It gives the multiplicity of a weight in terms of the multiplicities of the weights that

are higher than it under a certain ordering. The use of the Freudenthal's formula can

be made more efficient by exploiting the fact that weights conjugate under the Weyl

group have the same multiplicities. Extensive tables of weight multiplicities have been

tabulated [BMP] using this method.

Recently Patera and Sharp [PS] revived a method that can be traced back to

Speiser [Sp] for computing weight multiplicities of a highest weight module and the

branching rules of simple finite-dimensional Lie algebras. The idea is to write the orbit

sum expansion of (1.15) in terms of irreducible characters. The orbit-character matrix

of suitably ordered weights is triangular with ones on the diagonal and therefore can be

easily inverted to obtain the character-orbit matrix whose components are the weight

multiplicities.

Let A 6 P+ and dim Vx be the multiplicity of a weight K of Vx module. Then

ch Vx = YXdim VK
x)e*

= £ (dim Vx) £ e»" ( L 2 0 )

The orbit sum J7M can be expressed in terms of irreducible characters by inverting the

weight multiplicity matrix dim Vx to give

ft" = £££(<* V*). (1.21)
A

On substituting the Weyl-Kac character formula (1.19), this gives:

So that

e{w)ew(x+p)

x
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and

E
However, the only dominant weight of w(X + /?) is A + p so that i?£ is the coefficient of

eA+p on both sides of this equation. Hence

Furthermore, for a fixed w' € {W : W^} and w € W there must exist

u> € {W : W^} such that w~1w'(fi) — w(fi). Moreover for fixed w € VK there is a

one-to-one correspondence between w' and u>. Then

A • (1.22a)

Hence the elements of i?£ for the expansion of the orbit sum in term of irreducible

characters may then be obtained by adding p to each weight of the orbit of fi, reflecting

each weight into the dominant sector, subtracting p and interpreting the result as a

signed, positive or negative, coefficient of A according to whether an even or odd number

of elementary reflections is required. A reflected weight lying on a reflection hyperplane

is ignored.

Alternatively,

( L 2 2 6 )

where the dot action is as defined in (1.10). The interpretation of (1.22b) is that we

plot the Weyl orbit of \i and the Weyl dot orbit of A and look for their intersection

weights. The sign of the parity of the Weyl dot orbit of A is taken to be the sign of B£.
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Under the partial ordering (1.6) of the weight lattice, the matrix B£ is triangular

and may be inverted to obtain the required weight multiplicities.

1.6 The Weyl-Kostant-Liu character formula

Let U = {1, 2 , . . . , u} C / . Consider the subalgebra Qv of G(A) generated by the

elements e,-, /,• (i = 1 , . . . , u) and 7{. Denote by AJ the set of positive roots generated by

Qfi, a2,..., au and let A^ = — AJ. Then much like (1.1) and (1.7) Qv has a triangular

decomposition Qv = Njj ®7i® Afy with A^ = AJ U A^ as its root system [Liu].

For dominant integral weights let

P+ = {XeH* | < A,ay > > 0 , ieU}. (1.23)

Further let Wu be the Weyl group of Qv generated by s i , . . . , su and let

W{U) = {we W\$w C A+\A+}. (1.24)

The significance of this choice of W(U) lies in the following lemma.

Lemma 1.13. If A G P+ and w G W(U) then w(X + p) - p € P+.

Proof For any w € W(U) and i G U we have a{ G A^ so that by (1.24) at- ^ $w . It

then follows from Definition 1.8 that w~1(ai) > 0 and this implies that in 7i space we

should be able to write

3

with all coefficients kj nonnegative integers. Then for any A G P+ we have

jCtj > > 0

since < A,aJ >G Z+ and < p , a j > = 1 for all j . Now since < p,aY >= 1 it follows

that < w(X + p) - p,a* >> 0 so that w(X + p) - p e P£. D
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Before we arrive at our next important result, we just state the following lemma

[Liu] which shows that W(U) is in fact {W : Wv}, the set of right coset representatives

of W with respect to Wy.

Lemma 1.14. Every element w € W can be uniquely written as w = uv where

u € Wv and v € W(U).

Theorem 1.15. For A € P+

T T/A /L-IW£{W:WJJ} \ J v /-t r>E\
ch V = ' T\ II.zo)

v^ / \ L T7w(p>~p

2^we{W:Wu] t\W) Cn V

where ch V^ is a formal character defined for all ji € Pfi by

Proof The Weyl-Kac character formula (1.19) and Lemma 1.14 imply

. Fill)) f,w(A+p)-p

ch VA =

e(v) Zu

£(v) chV{p)"

D

When Q and Qv are both simple finite-dimensional Lie algebras this formula was

first given by Kostant [Ko] and in the general case of Kac-Moody algebras it was

proved by Liu [Liu]. Accordingly we shall refer to this important character formula as

the Weyl-Kostant-Liu character formula. This character formula provides a means of

expressing weight multiplicities of amne algebras in terms of known weight multiplicities

of simple finite-dimensional Lie algebras. The idea behind its use is to transform
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summations over afnne weights directly into irreducible characters of simple finite-

dimensional Lie algebras. In general to be able to use the Weyl-Kostant-Liu character

formula we must first be able to identify the elements of {W : Wu}. The following

proposition [Kang] is very helpful in the explicit computation of {W : Wv}.

Proposition 1.16. Let w' = wsk and £(w') = £(w) + 1. Then w' £ {W : Wv} if and

only ifw € {W : Wv) and w(ak) e A+\AJ.

Proof Let £(w) = j with w = silsi2.. .sir Then by (1.12)

$«,.* = {a,-,, sh {aia),..., silsi2...sij_1(aij), w(ak)}

Hence $„, C A+\A+ if and only if §w C A+\A+ and w(ak) € A+\A+. Then,

from (1.24) with W(U) = {W : W^} it follows that w' £ {W : Wv} if and only if

we{W : Wu} and w(ak) e A+\A+. D

More generally it can be shown that if w' = WiW2 and £(w') = £(wi) + £(iv2) then

to' € {W : Wu} if and only 'd w1 £ {W : Wv} and tui$u,2 C A+ \AJ. The result follows

from the fact that $WlW2 = $Wl U
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CHAPTER 2

Representations of Simple Finite-dimensional Lie Algebras

2.1 Root system and Weyl group

The complex simple finite-dimensional Lie algebras have been completely classified.

The finite type GCM A that corresponds to any one of these algebras is the original

Cartan matrix. Since det A ^ 0 and n = r then by (1.2) the dimension of Ti is r and

the elements a{ and QV for i = 1,2, . . . , r span 7i* and Ji respectively. The Killing

form [H], which involves taking a trace, provides the standard way to define a non-

degenerate symmetric bilinear form for a simple finite-dimensional Lie algebra. We

normalise a symmetric bilinear form (• | •) on 7i* so that (a | a) = 2 for all long roots

and then

_ 2(a, 1 a,-)
(Otj I CLj)

For neighbouring nodes i and j of any Dynkin diagram, the data on lengths and angles

is as set out below. The angle 8^ between roots a,- and o;- is such that

= (a,- | a.j)lJ{ai \ cti)(oij \ a;-). Arrows go from long to short roots.

Table 2.1
Dynkin

O
t

i

i

: Data on
diagram

- O
3

i

i

neighbouring nodes

An

- 1

- 2

- 3

Short
(a,-

root

2

1

2/3

and
Long

(«i

inner
root

«i)

2

2

2

products.
%

2TT/3

3?r/4

5TT/6

When r < 2, we can describe the root system A of a simple finite-dimensional

Lie algebra by means of a picture as in Figure 2.1. The shaded region, in general a
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Figure 2.1 : Roots and fundamental weights of A-i , A2 , C2 and G 2

-oi. o CO,
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Figure 2.1 (cont.)
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Root system and ...

simplicial cone, is known as the dominant sector. Since A is finite there must exist a

maximal root 9 that satisfies 9 — a € Q+ for all a G A+. In Table 2.2 we give the

explicit values of the root 9 [BMP]. It can be verified that (8 \ 9) = 2 and hence 9 is

a long root.

Table 2.2 : Maximal long roots of simple finite-dimensional Lie algebras.

Q

A,

Br

Cr

Dr

Ee

E7

ES

F4

G2

9

ai + 2a2 + ... +

2a! + 2a2 + ... -

ai.+ 2a2 + ... +

«,+*», +3*-1

2ai + 3a2 -f 4a3

2ax + 3a2 + 4a3

2ai + 3a2 + 4a3

2ax + 3a2

2a r

\- 2ar_! + c

2ar-2 + a

- 2a4 + a5

+ 3a4 + 2t

+ 5a4 + 6<

+ 2a4

+ 2a6

5̂ + »e + 2a7

i5 + 4a6 + 2a7 + 3a8

The number of elements of the Weyl groups associated with a finite GCM is itself

finite. For low rank algebras the Weyl groups can be obtained easily by treating them

as Coxeter groups generated by fundamental reflections as given in Table 1.3. For

example, the Weyl group W(A2) is given by

{id, SU S2, S2Si,
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However, for a higher rank algebras it is more efficient to generate the elements of the

Weyl group by their action on the standard (or Euclidean) basis vectors Ci,... ,en of

R". For example in the case of Ar, the reflection st permutes the subscripts i,i + 1 and

leaves other subscripts fixed. Thus, s,- corresponds to the transposition (i,i + 1) of the

symmetric group Sr+i and the Weyl group PF(Ar) is isomorphic to Sr+i- The roots in

the standard basis have the form e,- — e,-. If TT = ( 1 2 - r + 1 ) £ 5 +1 then TT acts on the
J \Xl TT-2 ... ?T r + i / X i

roots e,- — €j as follows

*{€i-ei) = eri-eTr (2.3)

For easy reference, we give below for each classical simple finite-dimensional Lie al-

gebra the relation between the root basis and the standard basis, all the roots in the

standard basis, the order of Weyl group and the action of w £ W in the standard basis.

The complete set of data that includes the exceptional Lie algebras can be found, for

example, in [KQ].

Type Ar (r > 1)

Basis: a{ = e,- — e,+1 1 < i < r + 1

Roots: ±(et- - ej) 1 < i < j < r + 1

Order of Weyl group: (r + 1)!

Action of w: (cTl, e*3,..., effr+1)

Parity of w: ( - 1 ) '

Type Br (r > 3)

Basis: af = e,- — ei+1 (1 < i < r — 1), ar = er

Roots: ±e,- (1 < i < r), ±e{ ± e,- (1 < i < j < r)

Order of Weyl group: 2r.r!

Action of w: (o-ieXl,cr2e^,... ,crreWr) a{ = ±1
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Parity of w: <r( —1)T where a = <7i<72... ar = ± 1

Type C r (r > 2)

Basis: a; = e,- — e i+1 (1 < i < r — 1), ar = 2er

Roots: ±2e,- (1 < i < r ) , ±e,- ±ei(l<i<j < r)

Order of Weyl group: 2 r .r!

Action of w: (a1eVl,a2eZ2,... ,areWr) a{ = ± 1

Parity of w. a{—I)* where a = a^2... crr = ±1

Type D r (r > 4)

Basis: a,- = et- — e,+1 (1 < i < r — 1), a r = er_i + er

Roots: ±ej ± e;- (1 < i < j < r)

Order of Weyl group: 2r~1.r!

Action of w: (aie^^ cr2eW2,..., crreWr) cr,- = ±1 where CTI<72 . . . ar = 1

Parity of w: (-1)"

2.2 Orbit-character expansion

Let the fundamental weights of the simple finite-dimensional Lie algebras be de-

noted by u>i for i = 1, . . . , r. Then (1.14) implies that a{ = Z^=1 AijUJj. As det A / 0

we can express the fundamental weights in terms of simple roots. The inverses of the

finite GCM are given in Table 2.3.

The weight system -P(A) for a given highest weight module VA of a simple finite-

dimensional Lie algebra Q{A) lies entirely in one coset {P : Q} of the weight lattice

P with respect to the root lattice Q, called the congruence class. The number of

congruence classes is \ P : Q \= det A, except for the case of Dr for which the number

is 2 det A. The class of a weight A G P(A) is specified by an integer (or pair of integers

in the case of Dr) denned in terms of the Dynkin components of A and the components
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Table 2.3 : The determinants det A and inverses A"1 of the GCM A of finite type.

. Ar : detA = r

(r + 1)

l . r

l.(r-l)

l.(r-2)

1.3

1.2

1.1

l.(r-l)

2.(r-l)

2.(r-2)

2.3

2.2

2.1

1

2

3

.(r-2)

.(r-2)

.(r-2)

3.3

3.2

3.1

1.3

2.3

3.3

(r-2)

(r-2)

(r-2)

.3

.2

.1

1.2

2.2

3.2

(r-2)

(r-1)

(r-1)

.2

.2

.1

1

2

3

( -

1 \

1

1

2).!

(r-l).l

r 1 /

2. Br : detA = 2

I 2 2 2

2 4 4

2 4 6

2 4 6

2 4 6

\ 1 2 3

2(r-2) 2(r-2)

2(r-2) 2(r-l)

r-2 r-1

2

• 4

6

2(r-2)

3. Cr : det A = 2

A — —

/ 2 2 2

2 4 4

2 4 6

2 4 6

2 4 6

\ 2 4 6

2

4

6

2(r-2)

2(r-2)

2(r-2)

2

4

6

2(r-2)

2(r-l)

2(r-l)

1 ^

2

3

r - 2

r - 1

r J

4. det A = 4

A = -
1
4

f 4
4

4

4

2

\ 2

4

8

8

S

4

4

4

8

12

12

6

6

4

8

12

4(r-2)

2(r-2)

2(r-2)

2

4

6

2(r-2)

r

r - 2

\

4

6

2(r-2)

r - 2

r J
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Table 2.3 (cont.)

5. E6 : det A = 3

6. E7 : det A = 2

7. E* : det A = 1

1. FA: det A = 1

1
3

V

4

5

6

4

2

3

5

10

12

8

4

6

6

12

18

12

6

9

4

8

12

10

5

6

2

4

6

5

4

3

1>

6

9

6

3

( 4

6

8

6

4

2
u

6

12

16

12

8

4

8

8

16

24

18

12

6

12

6

12

18

15

10

5

9

4

8

12

10

8

4

6

2

4

6

5

4

3

3

4 ^

8

12

9

6

3

7 )

9. Go : detA = 1

l i 3 4 2 \

3 6 8 4

2 4 6 3

\ 1 2 3 2 /

2

3

4

5

6

4

2

3

3

6

8

10

12

8

4

6

4

8

12

15

18

12

6

9

5

10

15

20

24

16

8

12

6

12

18

24

30

20

10

15

4

8

12

16

20

14

7

10

2

4

6

8

10

7

4

5

3

6

9

12

15

10

5

8
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of certain congruence vectors identified in Table 1 of [BMP]. To be more explicit for

A = (A l 5 . . . , Ar), we tabulate the congruence classes for the algebras Ar, Br, Cr, Dr,

E6 and E7 in Table 2.4. For E6,F4 and G2 there is only one congruence class since

de tA= 1.

Table 2.4 : Congruence classes for the simple finite-dimensional Lie algebras.

Algebra

AT

Br

Cr

Dr

ES

E7

Class

(A1 +

of A

2A 2 -

Ar mod 2

(Ai +

(A: +

(A4 +

2A2-

+ Ar

2A2-

A6 +

, 2 A ,

f A4

AT)

+ rA

+ r\

+ ...

+ 2A.

mod

r )

»)

2

mod r + 1

mod 2

2(r - 2)Ar_2 + (r - 2)Ar_! + r\r) mod(2,4)

mod 3

The weight space of any highest weight module of a simple finite-dimensional Lie

algebra can be obtained by applying the algorithm discussed in Section 1.4. This

weight space can be partitioned into W-orbits. For example, Figure 2.2a gives the

weight space for the representation A = (1,3) of the algebra A2. The congruence class

for the weights of this representation is 1. The dominant weights are (1,3), (2,1), (0,2)

and (1,0) and their Weyl orbits are denoted respectively by A, ©, ® and V-

In the interpretation of (1.22a) we have to add p to each weight and reflect it into
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A
(-1,4)

0 C
(-2,3) (0

0 W
(-3,2) (-1,1)

A
(1,3)

0
(3,-1)

A ©
(-4,1) (-2,0) (0,-1) (2,-2) (4,-3)

A 0 0 A
(-3,-1) (-1,-2) (1,-3) (3,-4)

Figure 2.2a : Weyl orbits of P((1,3)) of A2

0+

A+

0"
(-2.3)

V"
(-3,2)

(2,-2) (4,-3)

(3,-4)
A

A 0" 0+ A
Figure 2.2b : Weyl dot orbits of P((1,3)) of A2



Chapter 2

the dominant sector. The elements of the Weyl orbit y of (1,0) give

(1,0)+ (1,1) = (2,1)

(-1,1) + (1,1) = (0,2)

(0 , -1)+ (1,1)) = (1,0).

The elements of the Weyl orbit ® of (0,2) give

(0,2)+ (1,1) = (1,3)

52((2,-2) + (l,l)) = (2,1)

5 l((-2,0) + (l,l)) = (1,0).

The elements of the Weyl orbit 0 of (2,1) give

(2,1)+ (1,1) = (3,2)

,3) + (l,l)) = (1,3)

(3 , -1)+ (1,1)) = (4,0)

,2) + (l,l)) = (2,1)

-3) + (l,l)) = (0,2)

-2) + (l , l)) = (1,0).

The elements of the Weyl orbit A of (1,3) give

(1,3)+ (1,1) = (2,4)

(-1 ,4)+ (1,1) = (0,5)

52((4,-3) + (l , l)) = (3,2)

S25l((-4,1) + (1,1)) = (2,1)

s2((3,-4) + (l,l)) = (1,3)

^ ( ( - 3 , - 1 ) + (1,1)) = (0,2).

The reflected weights that lie on the reflection hyperplanes are to be ignored and p is

subtracted from those that do not. The parity of the Weyl reflections is computed from
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Orbit - character ...

the number of fundamental reflections s,-. This then gives the orbit sums of (1.21) as :
) _ CU T/(l,3) _ L T/(2,l) _ t T/(0,2) ,

- ch
(2.4)

Alternatively, as in the second interpretation of (1.22b), we may plot the corre-

sponding Weyl dot orbit with their parities and look for intersection points with the

original Weyl orbits. The Weyl dot orbits of (1,3), (2,1), (0,2) and (1,0) are given in

Figure 2.2b. The parity factors e(w) = ± are given as superscripts. On superimposing

Figure 2.2a on Figure 2.2b, the parts of intersection which are labelled by their weights

in Figure 2.2b define the same orbit-character expansion as in (2.4).

Under the partial ordering of (1.6) the orbit sum to irreducible character expansions

can be written in matrix form as

ch

Inverting the triangular transformation matrix we obtain :

ch

ch

From the above equations, we can conclude that for the highest weight representation

(1,3) the elements of the Weyl orbits of (1,3) and (2,1) have multiplicity 1 and ele-

ments of the Weyl orbits of (0,2) and (1,0) have multiplicity 2. For the highest weight

representation (2,1) the elements of the Weyl orbits of (2,1) and (0,2) have multiplicity

1 and elements of the Weyl orbit of (1,0) have multiplicity 2. While for the highest

weight representations (0,2) and (1,0) all weights have multiplicity 1.
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This technique may be extended to any simple finite-dimensional Lie algebra and

requires for its implementation only a knowledge of the Weyl group action.

2.3 Partitions and characters

A partition £ of a positive integer n is any finite sequence of positive integers

(Ci (2 •• • (1) arranged in non-increasing order d > C2 > • • • > Ct > 0 such that d +

(2 + • • • + (1 = n. The non-zero Q form the parts of £ and the number of parts I — £(£)

is known as the length of £. It is convenient to denote a partition with repeated parts

using exponents. For example, (4231) denotes the partition (4431).

Each partition £ of n may be associated with a Young diagram F(£) involving

boxes in £(Q left-adjusted rows with the i-th row containing & boxes. The conjugate

of a partition £ is a partition (' whose Young diagram F((') is obtained from F(() by

interchanging rows and columns. This definition gives for ( = (4231), the diagram

F(4231) -

and its conjugate £' = (4322) the diagram

Alternatively, we can represent a partition using Frobenius notation [King2]. Let

the number of boxes in the leading diagonal of a Young diagram F(() be the rank p of

£. Let a,- be the number of boxes to the right of the leading diagonal in the i-th row

and let bt be the number of boxes below the leading diagonal in the i-th column. The

partition £ is then denoted in Frobenius notation by the array

a i a.i . . . a
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Partitions and characters

where
a,i > a2

61 > b2

p

ap > 0

bp > 0

and 53(a,- + 6,• + 1) = n .
i=l

For example, the partition (4231) and its conjugate (4322) are denoted respectively, by

2 0
a n d

/3 1 0>
(3 2 0>-

In general, if

then

I2

(2.5)
n, i h U 1 9 Ti
U j ^ \ f\i rv ^ ~ X • i—' > • • • • iJ

card {i \ b{ + i - k > 0} k - p + 1 , . . . , br + 1

It is also useful to introduce other forms of Young diagram. In our case, we need

what is called a composite Young diagram [King2]. For a partition £ let F(() be the

diagram obtained by reflecting the Young diagram F(() successively in its topmost and

leftmost edges. Thus F(£) is right-adjusted with the lengths of the rows decreasing

on passing up the diagram. The composite Young diagram F((; 77) is constructed by

adjoining -F(C) a n d F(rj) corner to corner as in the following example:

F(31;21) =

An irreducible highest weight ^(A)-module can be indexed by its highest weight

vector A which can be written either in the fundamental weight basis u>t or in the

standard basis e,-. More generally, an arbitrary weight vector A € Ti* can be written as

A = (2.6)
1 = 1
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The relationship between the Dynkin labels at and the partition labels A,- described

above are given in Table 2.5.

Let an indeterminate xt denote the formal exponential eei. Then (2.6) gives

ex = xXlxX2... xXr. Further, let x = (xl5 x2, • • ., xN) signify the indeterminates and let

Aw = (Al5 A2 , . . . , A*, 0 ,0 , . . . , 0) with £ < N be a partition augmented by N — £ zeros.

For the algebra Ar, p in the standard basis can be written as

p = re1 + (r- l)e2 + . . . + er + 0

where £i=i ^ = 0- Then the Weyl character formula (1.19) and the isomorphism

between the Weyl group W(A r) and the symmetric group Sr+i gives

chVx =

£(7r)e' r ( r ' r- 1 ' •0)

det | ^ • + r + 1 ~ i | ( r + 1 ) x ( r + 1 ) / de t | a;^1- ' | ( P + 1 ) x ( r + i )

\\}[Xi,X2, • • • i Xr+i)

The ratio of the two determinants as above is known famously as the Schur function,

variously denoted by Sx(xi,x2,... ,xN) or {\}(xi,x2,.. • ,xN) [King2] and denned by:

det I Xj \NxN

More generally, characters of the irreducible modules Vx of the classical Lie algebras

with highest weight vector A = XN are given by the following expressions [Pr]. Here i

and _;' are row and column indices of the relevant determinants.
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Table 2.5 : Relationship between Dynkin labels and partition labels.

Algebra

Ar

Br

Cr

Dr

Dynkin

a2 =

<l-i =
ar =

ax =
a2 =

ar_x =
ar -

ax =
o2 =

ar_x =
ar =

Ol =
o2 =

Or-2 =

ar-x =
ar =

label (cti , . . . , ar)

^ r — 1

Ax-
A 2 -

Ar i
2A~

A _

A 2 -

Ar_x
Ar

Ax-
A 2 -

A r - 2

A r X

Ar-1

A2

- A r

A2

A3

- A r

A2
A3

- A r

• A 2

• A 3

- A r _ x
~ Ar

+ Ar

A

A2

Ar-1
Ar

Ax
A2

i 1
Ar

Ax
A2

[c
Ax
A2

k 2
Ar-1

Ar

Partition

=«x+a 2 +

= a2+

—

=ai+a2+
= a2+

=

=

=a 1 + o2+
= O2 +

—

-OX+O2 +
= O2 +

=

=

label (Ai , . . . , Ar)

.. +ar_x+Or

.. -\-ar-i-\-ar

ar-i+ar
ar

• • ~t"Or_ l~t"^Or

• • ~t~Or —l"T^Or

0 r_l + i 0 r

\ar

. . .+Or-X + Or

ar-i+or
O r

. . . + O r _ 2 + iOr_i + iOr

. . . +ar_2+5<zr_i + -ar

ar-2+l-aT-, + l-aT

| a r_i + | a r

- ^ r - l + ^ r
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A r :
det

det

= {\}(x)N=r+1

Br :
A __ det 1 xr+r+1/2-{ ± xj^W-*) |(ar+1)x(ar+1)

d | + 1 / 2 ' ( + I / a ' > |det | x;+ 1 / 2 - ' ± x; ( r + I / a- '> |(2r

l, x 2 , . . . , x r , x-1 , x~\ .
+ 1 ) x ( 2 r + 1)

ch Vx =
r+l-i i -(r+l-i)
j IE Xj |2rx2r

= < A > (xi, X2,..., xr, x1 , rc2 , . . . , xr )

= < A > (z)N=2r •

1 T^A _ a e l I Xj ~ Xj
™ ( ^ > + | 0 I

~ Xj \2rx2r

Xj ± Xj \2rx2r

= [AJ(x1 ,x2 , . . . , x r ,xx , x2 , . . . , xr )

= [\}(x)N=2r.

In the case of Dr there is a subtlety associated with the fact that for Ar ^ 0 there are two

inequivalent irreducible modules [A]+ and [A]_ with highest weights (Ai , . . . , Ar_l5 Ar)

and (A 1 ? . . . , Ar_l5 — Ar) respectively.

In accordance with the composite Young diagram notation introduced before, the

highest weight A of an irreducible representation of Ar can also take the form [King2]

* = (C;7?) = (>/ i , '72,--- ,»/p,o, . . . ,o , -c , , . . . , -C2,-Ci)>

where 77 and ( are partitions with p = £(r)), q = £(() and p + q<N = r + l. Its

irreducible character is given by

VN -
A e s £\7r)x^1

 x*2
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Partitions and characters

When comparing this expression with (2.8a), which can also be written as

it can be deduced that ch V£;r? = (a :^ . . . xN)~(lch V£ where A = (TJ1 + (x, rj2 + (i5 • • •»

—C2 + Ci)0)- This then implies that F(A) can be obtained from F((;T]) by taking the

complement in a column of length N of each of the d columns which constitute F(()

and adjoining them to the remaining r/x columns which constitute ^(77) [King2]. For

example in the case of iV = 5,

F(31;21) = is equivalent to .F(5432) =

The irreducible characters of the classical Lie algebras associated with Young di-

agrams labelled by partitions are said to be in standard form if the partitions satisfy

the constraints given in Table 2.6.

Table 2.6 : Constraints for standard characters.

Algebra

Ar

Br

cr

Label

{A}

[A]

< A >

[A]
[A]±

Constraints

*(A) < r

i(X) < r

i(X) < r

£(X) < r
£(X) = r

However non-standard labels for characters may arise in certain computations. If

this does happen then we have to apply modification rules [King2] to reduce a non-
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standard labelling to a standard one. The modification rules involve drawing the Young

diagram F(X) associated with the non-standard labelling of the character and removing

a continuous boundary strip of boxes of length h, starting at the foot of the first column

and working up along the right boundary. The resulting diagram is denoted by F(X—h).

If this diagram corresponds to a partition then A — h is identified with this partition,

otherwise the corresponding character vanishes identically. A phase factor also occurs

which is dependent upon the column c in which the strip removal ends. In the case

of a composite Young diagram F((; r/) the procedure involves the removal of a pair of

boundary strips. The modification rules appropriate to each classical Lie algebra is

given below [King2]

Table 2.7 : Modification rules and striplengths

Algebra

Ar

Br

cr

Dr

Modification

[A] = ( - 1 ) -

< A >= (-1)

W = ( - ! )"

rule

c + c - + 1 { C

[A-/i]

c < A -

[X-h]

-h;r,-h}

h>

Striplength

«C) +

2 (̂A) -

2£(A) -

-2r-

- 2 r -

- 2 r

/i

r - 2

1

2

It should be noted that if the strip removal is of length 0 then c is taken to be 1.

In order to standardise any given character it may be necessary to repeat the strip

removal procedure more than once.
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2.4 Infinite series of characters

Using the theory of the Schur functions (2.7), King [King2] had obtained among

others the following identities

K {C; C'K*)" (2.9a)

7

) nf=1(i -

(2.9c)

(2.9a)

(2.9e)

nr=1 ni<,<i<^(i - 9^,^) nf=1a+^^.o-1 =
where A, C, £ and F are the sets of partitions given in Frobenius notation by

1 "X1 :::)}' (2.10)

The expansion of the right hand side of the above identities reveals that for specific

values of N many of the terms involve characters with non standard labelling. To

illustrate the role of modification rules in reducing non standard labelling to a standard

labelling we expand a few terms of the right hand side of (2.9a) when r = 2 so that

iV = 3:
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<z4(

(2.11)

Only the first three terms correspond to standard labels. Consider first those terms

for which £(Q + £((') = 4. Since r = 2 the length of the strip removal is h = 0. The

modification rule when applied to F(21;21), for example, gives

since c = c = 1. Hence the character that correspond to F(21;21) is zero. Terms in

the expansion (2.11) with £(() + £((') = 5 are

*

*

*

*

*

—

*

where the boxes fill with *'s denoted the boxes that will be removed under the modi-

fication rule. Hence the first few terms of the expansion for the RHS of (2.9a) in the

case of A2 with N = 3 takes the form

- <z4({3;21} + {2T;3}) + . . .

In general the terms that survive are those that consist of Young diagrams which

could be built from a core specified by {(; ('} with ( £ F and £(()+£((') < N by adding
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Infinite series ...

strips of length (r + 1) to this core in all possible ways such that each strips starts in

the first row and their successive addition yields a Young diagram that correspond to a

standard labelling [King2]. In (5.21) and (5.11) of [King2], King has already obtained

the expressions for the RHS of (2.9a) and (2.9b) in terms of standard characters (2.8e)

of Ar and (2.8b) of Br and DT respectively, i.e.

E E E (-ir+c+*^+r+r->{*;»}(x) {2A2a)

»=0 fi=

(x)^= E E E (-lp/2+'qH/2+r[\}(x)N (2.126)
i A 0 x d i N 2 )

where in (2.12a) F(v; fi) is formed from the core diagram F(£; (') by adding 5 pairs of

boundary strips each of length N. The i-th strip added to F((') starts at position (l,r,)

and covers ct columns, whilst the i-th strips added F(() starts at the position (l,ff)

and cover c,- columns, r = £i=i r>? c = I2Li cn ^ = !Cf=i ^ an<^ ^ = SLi >̂ respectively.

In (2.12b) F(X) is formed from the core diagram F(a) by adding s boundary strips

each of length N — 2. The i-th strip starts at position (l,r,) and covers Q columns,

r = XIi=i r> an (i c = S<*=i ci- N = 2r + 1 in the case of Br and TV = 2r in the case of

To present these results and generalise them to the other cases (2.9c - 2.9f) we

develop here a similar notation. Let k = (ml5 m2 , . . . , rns) be an s-tuple with

mx < m-2 < . . . < ms. Let F(X') (resp. F(X "̂;/xs) in the case of Ar) be the Young

diagram formed from a core diagram F(fi) subject to certain restrictions by adding

5 strips (resp. pair of strips) each of length M starting at the first row of F([3) and

covering mi,m2.,. ..,771, columns successively. For each of the identities (2.9a - 2.9f)

we tabulate their respective core F(/3) and strip length M in Table 2.8 below.
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Table 2.8 : Core Young diagrams and strip length M.

Identity

2.9a

2.96

2.96

2.9c

2.9d

2.9e

2.9/

Algebra

Ar

Br

Dr

Cr

Cr

Br

Br

Core F{0)

F(C, CO

F(a)

F(a)

F(l)

F(a)

F(e)

FM

Restriction

c
a

a

7

a

e

7

eF,

€A,

eA,

€C,

€A,

ec,

«i +

«1 ^

a l ^

fll<

al s

Ol 5:

â  *̂

!>! < r - 1

r - 1

r - 2

r - 1

r-1

r-1

r-1

Strip length M

r + l

2r-l

2r-2

2r + 2

2r

2r

2r + l

Let Mmi denote the ith boundary strip added to (3 which begins at position (l,n,-)

and covers m,- columns. Further let the partition obtained at this stage be A'. Then

n,- = \\, the first part of A', and A: can be denned recursively as follows:

(2.13)
\{ = A1'"1 + Mmi,

or equivalently

At. = >i-\ +1 (2.14a)

In the case of Ar:

, »

i - 1

4-i + (2.146)

I A*}
f - 1
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Infinite series ...

V. =

- m - 3 =

(2.14c)

K -j

where (m1; m 2 , . . . , fhs) = k is also an s-tuple.

Propos i t ion 2 .1 . Witii t i e notation as in Table 2.8 and (2.14a - 2.14c), the standard

character forms of the right hand sides of the identities (2.9a - 2.9f) take the form:

E
s=0

E -« rp- *i ; (2.15a)

J=0 k
ai<mi<2r-l

a | / 2 + n[A s]; (2.156)

E E E
5=0 i;

(2.15c)

•n<m1<2r+2

A5 >;

(2.15d)

(x)2r = E (-

(2.15e)

= E E E (-' ' ^ 2 — [ A ' ] ; (2.15/)
s=0 It
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»=o t
7i<m,<2r+l

where m = Yl'=i m i a n d n = 52*= 1 ^i- ^n the c a s e °f ^ j "i = 5Z<=i m,-, m = 5Z*=i ™h

n = E'=i /4 and n = E,'=i ^i

Proof (2.15a) and (2.15b-c) are equivalent forms of (2.12a) and (2.12b) respectively.

We shall give a proof for (2.15d) only as the remaining identities can be proved similarly.

Consider the Young diagram F(8) associated with the partition

Then any boundary strip removal starting from the end of the first row, i.e. at position

(1,6t + 2) "and ending at the bottom of the first column, i.e. at position (bi + 1,1),

has length 2bx + 2. The resulting Young diagram after removing this boundary strip

corresponds to a partition Q2 = (^+Ij*+1 ' . ' ) € C. If < 91 > corresponds to a standard

label then we have the Proposition with 7 = 01 and s = 0. However if < 61 >

corresponds to a non standard labelling then by the modification rule of the Table 2.7,

the boundary strip removal has length

- 2r - 2 = 2bx - 2r.

Hence the remaining part of the boundary strip has a length M = 26j -\-2 — hx = 2r + 2.

Assume that this remaining boundary strip starts at position (1, ns), i.e. n, — bi+2 and

covers m, columns. If 9 — hx, does not correspond to a partition then the contribution

to the character is zero. If on the otherhand 9 — /ix, corresponds to a partition then

the modification rule boundary strip removal covers c = n, — m, + 1 columns so that
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Infinite series ...

the standardisation procedure gives

0 > = (_iy«2l/2+ii+U_^n.-m.+l |«2|/2+51 + l < Q _ ^ >

2 = - 1 <0-h1> (A)

If < 0 — hi > corresponds to a non standard labelling then we repeat the above

procedure with 61 —> 02 —*• #3, bx —> 62?
 m« —̂  w,_i, n3 —* n,_i and /ii —> /i2, so that

(A) further reduces to

Q _ ^ _

For s number of applications of the modification rule, this procedure will define an

s-tuple k = (m l r . . , ro , ) where M — 2r + 2 > m, > m,_! > . . . > mi > 'ji that

corresponds to columms covered successively by the remaining boundary strips. The

standardisation procedure then gives

where we assume < 9 — E!=i ̂ « > does not require further modification and 6>+1 = 7 =

l «i+i«j+i'"°T+1 J G C. Then F(9 ~Yfj=i hj) corresponds to adding s boundary strips of

length M and covering m l 5 . . . , ma columns successively to F(j), i.e. F{9 — £2>=i ̂ i) =

Now let A* = 75 - E;=,-+I Mm,- Then

A'"1 = T* - £ Mmi = 7
J - (Mmi + J2 Mmj)

so that

A'^A'^+M^,

as required.
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Conversely, let 7 = (£+1£+1::.'°;+1) € C satisfies £(7) < r. Let k = ( m , , . . . ^ , )

< mi < . . . < m, < M. First add a boundary strip of length M = 2r + 2 to

starting at position (1 , ^ ) , n'x > ax + 2 and covering mi columns such that the

resulting Young diagram ^(A1) corresponds to a partition. This boundary strip will

end at position (M — mi + l,n'x — mi + 1). Let A0 = 7 and A* = A'"1 + Mmi. This

implies that n[ = X\.

The boundary strip that can then be added to JF^A1) such that it extends from

position (M — mi + 2, X\ — mi + 1) to position (̂ (A°) + 1,1) has length

X\ + 1 + Ci - M < 2X\ - M - 2 since X\ > ax + 3.

Choose a boundary strip of length h[ = 2X\ — M — 2 as dictated by the modification

rule for CT and the fact that M = 2r + 2 and add it to -^(A1) starting at (M — mx +

2, AJ — mx + 1) and moving toward the left. Then the boundary strip will end at position

(X\ — 1,1). The resulting Young diagram ^(A1 + h'j) now corresponds to a partition

7
a2

with < 7' >=< A1 + h[ >= (-l)Ai-mi+1 < A1 > under modification. This procedure

can be repeated with boundary strips which cover m2, . . . ,m , columns consecutively

to give all possible 9 € C and characters < 9 > (x)2r as required in (2.15d). •

To illustrate (2.15d) consider a term of the expansion of the right hand side which

comes from say r = 3, 7 = m , s = 2, k = (6,6). Then applying (2.14a) successively

diagramatically by adding 2 strips of length M — 2r -\- 2 = 8 each to -F(31) we obtain

F{\°) - i

FiX1) =

P(1

•-

0 =

f-

-l
-*-

fi
-•-
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F(A2) =
•

•
•

•
•-

•
•

-•-

•

i

•
-•- t-i

-•

The first of these is standard and of the form [0]. The second and the third diagrams

arises from the following non-standard terms of the form [0], respectively,

•
*
*

•
•

•
•
•

• •
and

where the boxes fill with *'s are to be removed by the modification rules.

Next we illustrate (2.15a) by consider a term of the expansion of the right hand

side which come from say r = 5, ( = (Jj, s = 2, k = (3,3) and k = (5,6). Then

applying (2.14b) and (2.14c) successively diagrammatically by adding 2 pairs of strips

of length M = r + 1 = 6 each to F(2; I2) we obtain

• • •

•
•

•
•
•
•-

•
<

-4

I

I

t
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Chapter 2

The first of these is standard and of the form [9; 9'}. The second and the third diagrams

arises from the following non-standard terms of the form [9; 9'], respectively,

• •

•

•

•

*

•

•

•

*

•

•

•

•

and
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Generalised Cartan ...

CHAPTER 3

The Structure of Affine Algebras and their Modules

3.1 Generalised Cartan matrices and bilinear forms

The GCM of affine type is an (r + 1) x (r + 1) matrix of rank r. It is conventional

to index the affine matrix A = (A,;) with i,j running from 0 , 1 , . . . to r. The affine

GCM are given in Appendix 1. Let Q(A) be the Kac-Moody algebra associated with

the matrix A. Let II = {ao,ai,... ,ar} C H* be the set of simple roots and let

IIV = {QQ , ot[,..., a*} cTi.be the set of simple co-roots with

< a{, a) > = Aij for t, j = 0 , 1 , . . . , r . (3.1)

However from (1.2) dim 7i = r + 2, and hence the elements of II and IIV do not span H*

and 7i respectively. In order to complete the bases we fix an element d G Ti satisfying

[Kac4]

< a{,d> = Soi for i = 0, l , . . . , r , (3.2a)

and an element Ao G 7i* which satisfies the following conditions

< Ao, a,v > = Soi for i = 0 , 1 , . . . , r
(3.26)

< A0,d > = 0.

The center of Q(A) is one dimensional and is spanned by the canonical central

element

l X , (3.3a)
i=0

where the co-marks cV's are column linear dependence coefficients of A, i.e.

In the dual space, introduce a vector

(3.4a)
«=o
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which is the smallest positive imaginary root. The integer marks c, are chosen such

that they form the row linear dependence coefficients for the affine matrix, i.e. the

marks c, satisfy

iA-;=0. (3-46)
»=0

To fix the normalisation we choose marks and co-marks such that min{c0-, cu ..., cr} =

min{c%, c[,..., cjf} = 1. In this normalisation c0 = 1 in all cases. The integer co-marks

are labelled on the Dynkin diagram of Table 1.2. If c, differs from c*, the corresponding

d is given in a bracket beside c(. The sums

/* = £>,- and </ = X>r (3.5)
i=0 «=0

are called the Coxeter number and the dual Coxeter number, respectively.

Since A is symmetrisable there must exist a non singular matrix D such that

S — DA is symmetric. The definition (3.4) of the imaginary root 6 implies that

A*S = 0. Then we obtain successively:

(D-1S)t6=0 ;

St{D-1)t6=0 ;

SD~16=0 ;

DAD~1S= 0 ;

AD-1 6= 0 .

When compared with (3.3) we can deduce that D~l 8 = rnK for some constant m.

If we choose m = 1 then Da = Cijci and D^1 = cY/c^. Since 5" is symmetric then

DaAij = DjjAji and AtjDtf = AjiDr:1.
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Generalised Cartan ...

We can now define non-degenerate symmetric bilinear forms (• | •) on 7i and 7i* as

follows:

(a{ | Qj) = A(jDj:
l = f-Aij.

c:

A consistent choice for an isomorphism v : H —* 7i* is

/y 1 — / - y . t n r ? = r r ( 1 1 7^

(3.6)

(3.7)

In general, for any coroot av G 7i,

2a
(a\a)'

Next we introduce the important element
r

6 = 6 — a0 = ]P c,a,-.
t = i

We can then obtain the following relations involving 9:

9y = —-ai and u(9v) = —
v 0 V / v

(3.8)

(3.9)

(3.10)

For easy reference we tabulate below the bilinear forms involving elements of 7i* and

U.

Table 3.

< • • > • >

<*i

Ao

6

6

l a : Bilinear

V J

£oj 0

0 1

4 ft
,/*lO; «

form on

K

o 0

«s
0

0

W xH

r

-A.

0

0

2
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Table 3.1b : Bilinear form on H* x H*

<•

Ao

6

e

•) aj

0

Ao

0

oj 0

0

<«

0

0

9

nv A

0

0

zCo

Table 3.1c : Bilinear form on H x H

/ \ y

V / /

i

d ±60j

K 0

d

0

1

oj 0

0

I

0

0

—^A-o

0

0

_2_

3.2 Construction of afRne algebras

Starting with a GCM A provides one way to construct affine algebras. Another way

to construct them is through an extension of the well known simple finite-dimensional

Lie algebras. This is particular useful if we want to identify the structure of the affine

algebras in terms of their simple finite-dimensional Lie subalgebras. Our aim in this

section is to obtain the roots of all affine algebras and their multiplicities. Let us
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Construction of affine algebras

first construct the untwisted affine algebras, i.e. the affine algebras with parenthetical

superscript (1).

Let Q be a simple complex finite-dimensional Lie algebra and C^i"1] the ring of

Laurent polynomials in t. A complex untwisted affine algebra Q may be constructed

as an extention of a loop algebra Q ® C[f,<-1] as

Q = {Q ® c[t,t-1]) e CK e cd, (3.11)

with the bracket operation defined on Q as follows:

[(x ® f) + pK + pd, (y ®tj) + qK + n'd]
(3.12)

= [x, y] ® f+J + jp(y ®V)- ifx'{x ® V) + i6i+jt0(x | y)K,

where (• | •) is the Killing bilinear form on Q. It can be verified that the above

commutator is antisymmetric and satisfies the Jacobi identity. The element K lies in

the centre of Q and d acts on the elements of the loop algebra in the same way as the

differential' operator t ^ .

We identify Q with the subalgebra Q®id of Q and let hi — a*, e,-, /,- for i = 1,2,..., r

be the Chevalley generators of Q. If 0 is the highest root of Q then its expression is

given by (3.9) and we can choose fe G Q$ and ee € Q-e such that [Kac4]

[e*,/,] = - 0 v . (3.13)

Let e0 = eB®t and /0 = fs^t'1 then it can be deduced from (3.13) that [e0, /0] = K—6V.

Let Qg = K — 6*, then for i = 0 , 1 , . . . , r a*, e,-, /,• are the generators of Q and they

generate the matrix A = (< a^a j >)i J = 0 which coincides with the untwisted affine

GCM.

Let H be the Cartan subalgebra of Q. For h € H, corresponding elements h € H

of the Cartan subalgebra of Q are given by

h = h®t° + pK + fid. (3.14)
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Let 8 be the linear functional on 7i defined by [Co]

8(a* ® t°) = 0 for t = l , . . . , r

6(K) = 0 (3.15)

8(d) = 1

which are consistent with the conditions on the imaginary root 8 in Table 3.1a. The

bracket operation of (3.12) then gives

[h, ea ® V] =[h ® t° + pK + pd, e

=(a{h)+j8{h))ea®ts

and similarly

[h,ha®tj)=j6(h){ha®tj). (3.16)

Hence ea®t> corresponds to a root a+j8 and ha®P corresponds to a root j8. However,

there are r linearly independent elements ha ® V that can correspond to the root j6

and hence the multiplicity for the root j8 is r.

Next we construct the twisted affine algebras. Again let Q be a simple finite-

dimensional Lie algebra and let r be a symmetry of the corresponding Dynkin diagram.

Non-trivial symmetries are admitted only by the Dynkin diagrams of the algebras AT,

Dr, E6 and D4. For all of these algebras, except £)4, there is only one non-trivial

symmetry r [Co] and this satisfies r2(o,) = a,- for i = l , . . . , r . But for D4 there is

also a symmetry r of order 3.

Let a be the automorphisms of Q which correspond to the symmetries of Dynkin

diagrams. If am — 1 for m = 2 or 3 then we have the decomposition of Q into a direct

sum of eigenspaces of a [Kac4]

Q = Q0 + Gi ( o r g = go + gl + g2) (3.17)
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Construction of affine algebras

and they satisfy

[Go, Go] c Go, [Go, Gi] c Gi, [Go, Gi\ c G2.

We observe that the space Go is a subalgebra of Q and that G\ and Gi are £J0-modules.

In fact these C/0-modules are irreducible, and G\ and Q2
 a r e equivalent ^-modules. For

each G the corresponding Go is given in Table 3.2. Its construction in term of the

generators /i,-,e,-,/i for each algebra Q can be found, for example, in [Kac4].

Table 3.2 : Underlying information for the construction of twisted algebras

m

2

2

2

2

2

3

A2r

A2r-\

A2

Ee

D4

Go

Br

Cr

Br

A,

F.

G2

Go — module G\

2 _ ^ _
o—o ayr>

O—O CSJD

1
O—O Q2D

4
O

. 1
O n >>o O

1

Go — module Q2 dim G\

2r2 + 3r

2r2 - r - 1

2r + l

5

26

Let H.Q be the Cartan subalgebra of Qo and let at denote the associated simple

roots of Go- The ^0-m°dules, G\ and G2 have highest weight 9 = J2» ciQ« given in Table

3.2 in term of fundamental weights. The weight space decomposition of GP takes the

form:

GP = Y, GP,p + GP,o f o r p = l , 2 (3.18)
/?€AP

where GP,o is the subspace corresponding to zero weight and Ap is the set of non-zero

weights of 7Y0 on GP-
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With all this notation, the corresponding twisted affine algebra is defined as

® V) 0 CK © Cd (3.19)
p=0 j

where if and d are as defined in (3.11). Let 8 be a functional on H as in (3.15). Then

the root system A of C?(m) is given by [KV]

A = {a + j6 | a <= Ap, j € Z, j = pmodm} U {j<5 | j € Z, j ^ 0}.

Here Ap is the root system Ao of the algebra ^0 if p = 0 and the weight system Ap of

(3.17) if p ^ 0 .

Let us consider by way of an example, the determination of the roots of the twisted

algebra Q = A{?\ From (3.17) and Table 3.2 we have

We then choose the Cartan subalgebra 7iQ in 2?2 and the roots

0, ±au ±a7, ±(ctx + aa), ±(ori + 2a2)

with respect to HQ. All these roots have multiplicity one except the zero root which

has multiplicity 2.

If u>i is the fundamental weight of simple finite-dimensional Lie algebras then from

Table 3.2 the 52-module Q1 has highest weight 2u>x = 2ai + 2a2. Then from Figure

3.1, the rest of the weights can be computed to be

±(2c*i + 2a2), ±(a, + 2a2), ±(Ol + a2), ±2a2, ±au ±a2 , 0 .

All the weights have multiplicity 1 except the weight 0 which has multiplicity 2. The

twisted affine algebra is then given
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Figure 3.1 : Weight diagram of the V ' module of B2
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The roots of A^ can then be read off as

j8 with multiplicity 2

ic*! ± j8 ax long

± Q 2 i j8 &2 short

±(o>i + a2) ± j8 c*i -f a2 short

±(ax + 2a2) ± j8 ax + 2a2 long

±(2a! + 2a2) ± (2; + 1)8 2ax + 2a2 very long

±2a 2 ±(2j + 1)8 2a2 very long

It has been shown how the construction of the twisted affine algebra Q(m\ m = 2

or 3, involves a non-trivial automorphism of the Dynkin diagram of Q. Analogously,

we can think of the untwisted affine algebras £(1) as involving a trivial automorphism

of the Dynkin diagram of Q.

If we let Xfyl) be the affine algebra generated by aY, e,-, /,- i = 0,1,... ,r and Yr

be the subalgebra of X^J.^ generated by ay,e i 5 / i i = l , . . . , r . Then Yr ~ Q in the

case of an untwisted affine algebra and X^r) D Yr ~ Qo in the case of a twisted affine

algebra. Equivalently we can identify Yr with the simple finite-dimensional Lie algebra

Q(A) whose GCM A is obtained from A by deleting the zeroth row and column. Let H.

be the Cartan subalgebra of X^\ and Ho = Yr C\ H. and by (3.14) we have orthogonal

direct sum of subspaces as follows:

H = n® {CK + Cd) and H* = H" @ (C8 + CA0).

Let A C 7i* be the root system and A = A fl C[a 1 ? . . . , o r ] . Denote by A, and

A^ the sets of short and long roots, respectively, in A. A closer observation of the

Dynkin diagram of A2^ or our previous example reveals that in A there exist also

roots of length twice that of the short roots but longer than the long roots. With our
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Construction of affine algebras

convention we have the following results on the real roots of the affine algebras [Kac4].

Proposition 3.1.

a) Are = {a + nS \ a G A, n G 2} if m = 1.

b) Are = {a + n8 \ a G As, n G Z} U {a + 2nd \ a G Au n € Z} if m = 2

but not A{£

c) Are = {a + nS \ a e A,, n e 1} U {a + 3n6 \ a e At, n G Z} if m = 3.

d) Are = {a + nS | a G A,, n G Z} U {a + nS \ a G A*, n G Z}

U{2a + (2n - 1)6 \ a G A,, n G Z} for A(
2
2
r
}.

All of these real roots have multiplicity 1. The multiplicity of the imaginary root

nS is given by the following Proposition [Co].

Proposition 3.2. The multiplicity of the non-zero imaginary roots are as follows

(a) For all untwisted algebras or A$

mult nS = r .

(b) For 4 1

m u l t n < 5 = ( r
 n ^ n ! s ^ ,

t r — 1 if n is odd

(c) For %

multn£ = ( j )
LI if n is odd.

(d) For

4 i f " j s

2 it n is odd.

(e) For D{?

multn6 = {2 if
if n mod 3 = 1 or 2.
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3.3 The affine Weyl group

Let W and W be the Weyl groups generated by so,Si,... ,sr and s 1 ? . . . , sr respec-

tively. The element S; acts on 7i* as in (1.8) and on "H as in (1.11). In particular we

can see from Table 3.1a s,(<5) = 8 and Si(K) = K.

Let A, A' 6 7i*. Then the mapping (3.7) implies

= (A | st{\')).

More generally for any w € W we have (wX | A') = (A | w^X'). Hence the bilinear

form (• | •) is also ^-invariant.

Let the lattice M for each affine algebra be defined as follows [Kac4]

Q if A is symmetric or m = 2 or 3,

v(Qv) otherwise ,

or more explicitly as

Z[a1?..., ar] for A^}\ D^}\ E^ and twisted algebras,

Z[ai,...,a r_1,2aP] for B^\

M = (3.20a)

M = Z[2a1,...,2ar.uar] for C^, (3.206)

for F4
(1),

For a € M define an endomorphism ta on 7i* as follows [Kac4]

tQ(X) = X + < X , K > a - ( ( X \ a ) + \ ( a \ a ) < X , K

Then we have the following Lemma [Kac4].

(3.21)
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Lemma 3.3. The endomorphism ta satisfies the following relations

(a) tJp = ta+!3, a,/3eM

(b) tw{a) = wtaw~l, w e W

Proof

(a)

Ue{\) = X+ < X,K > a - ({\ \ a) + I \ a |2< A,K >)6

+ <\,K>([3+<f3,K>a- ((a | /?) + I(a | a) < 0,K >)6)

- ((A | /?) + 1(0 | /?) < A, if >)(«+ < «, A" > a - (6 \ a)8

-±(a\a)<6tK>6)

= A+ < A, K > a - ((A | a) + i ( a | a) < A, K >)8

\,K >/3-<\,K>(a\ P)6-{(\ | /?) + | ( / ? | 0) < X,K

a + (3)- i ( a | a) < A, i

- <X,K > (a | /3)<5 - i ( ^ | 0) < A, A" >)6

= A+ < A, if > (a + 0) - ((A | a + /?) - i ( a + 0 | a + /?) < A,

(b) Considering the facts that tu(ii') = if, to(<5) = 6 and both bilinear forms

< •, • > and (• | •) are W-invariant,

taw-\X) = w~l{X)+ < A, K > a - ((A | w(a)) + \ \ a |2< A, K >)8
Zi

wtaw-\X) = A+ < A, if > w(a) - ((A | w(a)) + \ \ a |2< A, if >)<$

a

Lemma 3.3(a) and (3.21) imply that ta acts like a translation on H*.

Recall that 9 — 6 — a0 E A+. 9 is the highest long root of Q in the case of

untwisted algebras or is the highest short root of Qo in the case of twisted algebras.
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Then u(9v) = 9 except in the case of A® where f(0v) = 8/cw
Q = 9/2. Analogous to the

definition of the fundamental reflections, we can define a reflection sa with respect to

a real root a by

sa(X) = A- < A,av >a, XeW. (3.22)

Since < a, av >= 2 then sa sends a to —a. If a = 6/c£ then (3.22) and (3.10) imply

that

4
co

Further action by s0 gives

=A— < A, c*o

co

= A - 1 < A, A"
co

However from (3.21), (3.10) and the fact that {0 \ 8) = 2cw
0

i,(.v,(A) = A+ < A, A" > v(6") - ((A | v(8v)) + \{v{0*) \ u(9v)) < XJ< >)S

= X - \ < X,K > (ao + 6)+ < A,a* > 6.
co

Hence for each affine algebra we can write

, (3.24)

where -s9/cv, which does not contain the fundamental reflection s0, satisfies (3.23). In

Table 3.3 we list explicitly the reflection se/e^ in terms of fundamental reflections for

each affine algebra. These expression are obtained from Table 1 of [Mo2] by adding

certain conjugates. In fact se/cv = wSiW'1 for any w and i such that u>(a,) = 9/c£.

The length of each tabulated expression for se/cv is minimal in the sense that it satisfies

Proposition 1.10. The rank independent cases in Table 3.3 can be verified directly. For

the rank dependent cases we will give the proof for just A^}\ The proof for the other

cases is similar.
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Table 3.3 : The reflection se/c
v in terms of fundamental reflections.

Algebra

Ai , A2

^\ A2V-1 53S2

r-i . . . 525i

5253 . . . 5r_25rSr_i . . . 525i52 • • • 3r_1Sr5r_2 . . . 53S2

Proposition 3.4. For the algebra A^ £{se) — 2r — 1 and se = wSrW'1 with

W = 5iS2 . . . 5r_i.

Proof: If a is a root then < a,K >- 0. Then (3.21) implies that

tB(a) = a - {a \ 6)6

so that (3.24) further gives

sB{a) = so{a) - {a \ 9)6 (3.25)

where 6 = 52i=i a« an<^ ^ = Y?i=o a>- The set of positive roots for Ar is

< i < j < r} (3.26)
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From (3.25) we can show that

... + ar) <E A

a,-

= r.

While for i < j

—(aj + . . . + a r ) G A" i = J . , j = r,

- ( a i + i + . . . + a r ) € A" t = l , j = 2 , . . . r - 1,

a,; + . . . + ctj 2 < i < j < r — 1,

, - ( a i + . . . + a{_i) e A" t = 2 , . . . r - 1, j = r.

Hence by Proposition 1.10, £(se) = 1 + 1 + 1 + (r - 2) + (r - 2) = 2r - 1. Finally, the

element w = s1s2 • • .-sr-1 is simply the permutation ( l , r ) . The action of this element

on ar = er — er+1 gives ti — e r+i = 6 as required. •

Lemma 3.3 implies that the operations ta with a G M forms an abelian group

known as the group of translations T. This group is generated by wtv^6^w~l for

w G W. With this result we are then able to express the affine Weyl group W in term

of the finite Weyl group W.

Theorem 3.5. The afRne Weyl group W is the semidirect product of a finite Weyl

group W and the group of translations T.

Proof: First recall that if iV and H are subgroups of a group G then G is said to be

a semidirect product of N by H whenever

(a) N is a normal subgroup in G,

(b) G = NH and

{c)Nr\H = id.

It is clear that W and T are subgroups of W and by Lemma 3.3(b), T is a normal

subgroup in W.
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The affine Weyl group

In all cases shown above, the translation tuy) can be written as sosg where se does not

contain the fundamental reflection s0.

S0Sg = iv(«v)

•So = t^e^Sg1 = tv($v)se e TW

and trivially TW contains W and hence all the fundamental reflections sx,...,sr. Thus

W = TW.

For each a € M, the translation ta contains the fundamental reflection s0 but no

element of W contains s0. Hence T D W = id. O

In the process of obtaining tv(gv), we have also identified some of the other fun-

damental translations i.e. ta 's where the Q'S form the basis for the lattice M. Since

iw{?(ev)) — wtv(Bv)W~l, for certain a € M we just need to identify w € W such that

a = W(6/CQ). In other instances we can only express a in the form a — YLw^w

with k G \1. For example in the case of G{ ,
co

= S2SIS0SIS2SI

but

= SQS1S2SQS1S2S1S2S1SQS1S2

OLi = S,-_1Si_2 . . . Si3 i+iS,-+2 . . . Sr(6) for I = 1, . . . , T

-.

a{ = 3i_i5i_2 . . . S iS i + 1 5 , + 2 . . . 5 r_i5 rs r_i . . . s3s2{6) for i = 1 , . . . , r - 1

2ar = Sr_!Sr_2 . . . S2{9) + 3 r_!5 r_2 . . . SjS^z • • • S r-l5 r5 r_i . . . S2{6)

2a>i = 5,-_1s,-_2. . . S i ( # ) + 5 , + i 5 , + 2 . . . s r _ 1 5 r 5 r _ 1 . . . S i ( 0 ) for z = 1 , . . . , r - 1

ar = s r _ 1 s r _ 2 . . . S i ( 0 )
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Oti = 5i_i5j_2 . . • SiSi+iSi+2 • . . S r_iS r5 r_25 r_3 . . . S2{6) for I — 1, . . . , T - 1

a r = 5 r_25 r_3 . . . S!5r_i3r_2 • • . S3S2(9)

0:3

Q.4

E7
l)

OC3 =

a7 =

Q3 =

(9)

(9)
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The affine Weyl group

Ct$ =

2a4 =

3a2 = 9 -2s2s1(9)

4?

a,- = s,_i ...

a r = s r_1 . . .s2s1(6'/2)

4(2)

,_! . . . s 1 s , - + i . . . s r s r _ i . . . s 2 S i ( 0 / 2 )

a,- = 5i_!5i_2 • • • 515 l+i5 i+2 . . . 5r_i

OLT — Sr_iSr_2 . . . S2{9) + 5 r_!5 r_2

) for Z = 1, . . . , T —

• • •5r_jSr5r_i . . . S2(9)

n(2)
-L r̂ + l

a,- = 5,-_iS,-_2... sx(9) + si+1si+2 • • • 5 r _ i3 r s r _! . . . Si(0) for i = 1 , . . . , r - 1
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= 6 - 232*^6)

3.4 Highest weight modules

We shall study the highest weight modules VA of affine algebras in the same way as

we have done for those of the simple finite-dimensional Lie algebras. In affine algebras,

it is convenient to express the weights of VK in Dynkin notation i.e. with respect to

the basis {Ao, Ai , . . . , Ar, 6}. In term of this basis the simple roots can be expressed as

follows

(3.27)
j=0

r

3=0

From (3.3b) and (3.4b) we can deduce respectively that

= ~co
A7,}Aio for i = 1 , . . . , (3.28a)

and

cj = - ]£ AotAj for j = 1,.. . , r. (3.286)

With the help of the relations (3.3b), (3.4b), (3.28a) and (3.28b) it can be shown that

0 1 cx

1 0 0
K 0

cr\

"1

and
/0 1 0

i -^oo ^oi
0 A10

: ': A

/0 1
1 AQ0

0 A10

0 \

\0 ArO

0 \
AQr

0 A

o i Cl
1 0 0
lcl 0

l - l

rO

J
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Highest weight modules

where / is the identity matrix. Hence from the inversion of the (3.27) we obtain

A,- = - ^ A o 4 _
C° J = 1 (3 .29)

= -77 AQ + A,- ; i = 0, l , . . . , r

where Ao = 0. For p = Y^=o A, and p = X^Li A,- this gives

r ,c?
1 1 v « v /^V

«=0 CO °0

Lemma 3.6. Any weight A € W' can be written as

r
A =

j=0

wiiere A,- = < A, a* > and n = -̂ -(A | Ao).

Proof

< A,aj > = E A» < Ai,aj > + n <
i=0

From (3.29),

= E ( ^ A 0 + A,-) + n8
{=0 C0

C0 i=0

Hence

a

Let us begin by studying the simplest representation of an affine algebra, i.e. the

weight system of the highest weight module of A^ with highest weight Ao. Applying

the algorithm developed in Section 1.4 we obtain the weight diagram as in Figure

3.2. In contrast to the case of simple finite-dimensional Lie algebras this time the
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Figure 3-2: Weight diagram of the VAo module of A

(-5,6) (-3,4) (-1,2) (1,0) (3,-2) (5,-4) (7,-6)

- oc.

-a,

H l H l

A l A l

(5)5 d) 5

• 11

. 1 1 • 15

15 • 22 • 15

. 2 2 . 3 0 . 2 2

B 1 • 11 • 30 • 42 • 30 • 11

15 42 . 5 6 . 4 2 . 1 5
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Highest weight modules

procedure does not terminate. Any weight of VAo can be written as A = A0A0 + Ax Ax +

nS = (Ao, Ax; —n). The highest weight is assigned the null depth 0. All other weights

can be obtained from the highest weight (1,0; 0) by subtracting linear combination of

fundamental roots a0 = (2, —2;—1) and ocx = (—2,2;0). For each a0 subtracted, the

depth is increased by one unit. In Figure 3.2 the numbers next to the weights are their

multiplicities which are the values of the partition function p(n). The A signify the

weights in the first Weyl orbit, Q those in the second orbit, etc. The weight system of

VAo is the union of infinitely many Weyl group orbits and each orbit itself is infinite.

Weights in the same Weyl orbit have the same multiplicities.

In general, the most striking feature of any affine weight system is the appearance

of weights of the form A — n8 where A is an element of the weight lattice P(A). That

is we have strings of the form

Am, Am — <5, Am — 26, . . .

where Am is the highest weight in the string and is called a maximal weight. We denote

the set of maximal weights by Pmax
 a^d we have W • Pmax = Pmax • The weight system

of the highest weight module VA is then completely determined by the Weyl orbits of

ji+ 6 Pmax H P+i i-e the Weyl orbits of the maximal dominant weights.

The weights of P(A) can be further organised into affine congruence classes. Each

congruence class involves two invariants [KMPS]. The first one is the level L(\) of a

weight A defined by

L(X)=< \,K>=J2\icf. (3.31)
«=o

The level is constant for all A € -P(A) since all the roots have level zero. The second

invariant is the finite congruence class of the underlying simple finite-dimensional Lie

algebra as denned in Table 2.4.
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For a weight A, it is sometime convenient to use an (r + l)-tuple incomplete Dynkin

label (Ao, A i , . . . , Ar). When it is necessary to make a distinction we shall attach a null

depth d relative to A to give (Ao, Ai , . . . , Xr)d as the complete weight labelling. If two

weights A and A' lie on the same Weyl orbit then the null depth of A' relative to A is

the number of times the simple root a0 is subtracted from A in reaching A'. Below we

give an explicit formula [KiW] for computing the null depth A relative to a dominant

weight A+.

Theorem 3.7. Let A € P and A+ € P+ lie in the same Weyl orbit. The null depth of

A relative to A+ is given by

where G = S'1 and §„ = (aV | a/) = j-A{j.

Proof: Let A = A+ — ]T^_0 fc.o:,-. Then the relative null depth required is k0. Consider

A+ - A,- =< A+ - A,a/ >=< J2k^a] >
r

= k0 < a0 , CCJ > Y
1 = 1

= k0 < 6 - Y Ca a]0 < 6 - Y, Ciau a]

< = 1 Ci

T V

i=\ c*-

However S is symmetric and so is G. Then we have

ClE Gy(A,- + A+)(A,- - A+) = MkoCi - h)(Xi + At)
;=1 °i

r r r fc c y
jrjjl AjAj — Aj- A* j = = /Co / y Ct- ^Aj *T~ Aj- J / d \ i ' i )

i=i i=i c»
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The facts that the bilinear form is symmetric and ^-invariant gives,

0 = (A+ | A+) - (A | A) = (A+ + A | A+ - A)

»=o

Ao) = -

These implies that

iXj - A+A+) = *b ̂ ( A , + A,+ ) + A:oCv(A+ + Ao)

»=0

= ko(L{\+) + L{\)) = 2k0L(X)

Hence

D

Explicit values for the symmetric matrix G for all affine algebras are given in

Appendix 2.

3.5 Orbit sums

Recall from (1.21) and (1.22) that the relation between the orbit sum and the

irreducible character is given by W = £A -̂ A °h ̂ A where

£(w)£t«(ui,,+p)-p,A first interpretation,

e(w)f>ww\ second interpretation.

In the affine case, the first interpretation of (1.21) is suitable for computional purposes.

However although lengthy, the second interpretation of (1.21) may be used to obtain

analytic expressions for B^.
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Consider a weight v that lies on the intersection of the Weyl orbit of fi and the

Weyl dot orbit of A where /x = (/xf,/zf,... ,n+)d,v and A = (AJ, A+, . . . , A+)d^. Then

the null depth of A relative to JX is d = d^ — dp
Xv where

(3-32)
+ 1)~ {K + 1 ) ( A * + 1 ) } •

We can then interprete the elements of the matrix Bx as

£* = £*(«*,) (3-33)

where T is the intersection set of the Weyl orbit of /z = (/xj,/i]|",... ,/z+)0 and the

Weyl dot orbit of A = (A+, A+,..., A+)d, while e(wXfl) — l(resp. — 1) if the number

of fundamental reflections required to reach u from A is even (resp. odd). Since any

w € W can be written a.s w = taw with ta € T and w 6 W, and the parity of ta is

even then the parity of w is the same as the parity of id.

Before we proceed with explicit calculations it is of the utmost importance that we

identify first a set of coset representatives {W : Wp) such that we do not double count

terms appearing in the Weyl orbit of //. Each w € W can be written in the form taw

with ta 6 T for some a € M and w £ W. Two terms w(n) and w'([i) of the W-orbit

of fi are said to be equivalent if there exists a £ M such that U>(/J) = taw'(n). In such

a case it follows from (3.21) and the fact that L(u)'(/z)) = L(n),

w(fi) = w'(fi) + L(p)a - ((w'(fi) | a) + | ( a | a)L(fi))6

where the last term necessarily vanishes since w(fi) and w'(fi) both have null depth 0

relative to //. Hence

w(n) - w'bi) € L(fi)M . (3.34)

Thus reduces the generation of the complete Weyl orbit of /: to that of finding a

complete set of inequivalent terms w(fi) and applying translations to these.
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For example, in the case of A^ and the dominant weight A = (0, Al5 A2), we have

52(A) = A — A2a2

5i52(A) = A - (Ai + A2)o;i — A2c*2

The lattice M in this case is max + na2 with m,n € Z and L(A) = Xx + A2. Hence

52(A) - s l52(A) = (Ax + A 2 ) a i € (Ai + A2)M = L(X)M.

so that 52(A) and SiS2(A) are equivalent. However when the dominant weight is

(Ao, 0, A2) we obtain

52(A) — Si52(A) = A2cti $ (Ao + A2)M

so that 52(A) and Si-s2(A) are not equivalent.

In Table 3.4a-3.4d we tabulate w' € {W : Wx} such that no two w'(X) are equiva-

lent. Thus, for example from Table 3.4b, the set of coset representatives {W : W^Ai.As)}

is given by

As discussed by Patera and Sharp [PS], for simple finite-dimensional Lie algebras,

the complete weight content of a Weyl orbit of a dominant weight A may be obtained

from a corresponding orbit-weight generating function. The same principle applies to

the amne algebras. In the affine algebra case the orbit-weight generating functions take

the form

#(A,A)= Y, ^ ( l - A A l i l - A ^ 1 (3.35)
weiww,,} t=o

where A = (Ao, Ax,..., Ar, A) are dummy labels which carry the afnne orbit labels

[i = (//0, / / i , . . . , /*!•)<«„ as exponents and A = (Ao, Au ..., Ar, 6) are also dummy labels

which carry affine weight labels u = (i/0, ̂ 1, • • •, ̂ r )^ a.s exponents. Thus:

H(A, A) = Y1 ̂ o0^!1 • • • K"
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Table 3.4a : Left coset representatives of W with respect to Wx for A[x) and A2
2).

A

(Ao,

(Ao,

(o,;

AO

o)

w' e

id, s

id

id

{W : Wx}

i

Table 3.4b : Left coset representatives of W with respect to Wx for A2
X).

A

(Ao, Ai, A2)

(0,A1;A2)

(A0,0,A2)

(Ao,Al5O)

(0,0, A2)

(0,A1;0)

(Ao,0,0)

w' € {W : Wx}

t i l l * « ^ j i ^ 2 i * ^ 2 1 i ^ 1 ^ 2 1 ^ 1 ^ 2 1

id, Si, s2

tcZ* ^2 i 1*̂ 2

ZC?, Si, S2Si

id

id

id



Table 3.4c : Left coset representatives of W with respect to Wx for C^, A^ and

(2)

A

(Ac

(0,

(Ac

(A

(0,

(0,

, Aj, A

Ai, A2

),0,A2

),Ax,0

0,A2)

Ai,0)

2)

)

)

)

w'

id,

id,

id,

id,

id

id,

e {w: wx}

o j . «S25 ^2^*11 ^ 1^2 ? ^1^2*^1? •^2^1*^25 *^2'^1^2'^1

*^1 ? ^ 2 ? ^ 1 ̂ 2

O2} *^1^2? ^ 2 1 2

-Sl

Table 3.4d : Left coset representatives of W with respect to Wx for G2
1} and

A

1^0; ^11 ^ 2 /

(0,Ax,A2)

(A0,0,A2)

(Ao,A1?0)

(0,0, A2)

(0,A1;0)

w'

id,
sxs

id,

id,

id,

id,

id,

€ {W : Wx}

^1) ^2i ^2^1? ̂ 1^2} ^1^2^1i ^2^1^2i ^2^1^2^1i
2SXS2, S ^ S x ^ S x , S25J52SXS2, S2S1S2S1S2S1

S j j ^2 i ^1^2} ̂ 2*^1? ^2*^1^2
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where the relative depth d^u = d^ — du, so that the factor (1 — A5)"1 is redundant.

The sum in (3.35) is over the left coset representatives which it should be empha-

sised operate only on the weights carried by A. It should also be noted that we have

abused the notation by denoting dummy variables and fundamental weights by the

same symbols. We shall give a derivation of the orbit-weight generating function of

Ai in order to illustrate the notation and the method.

First note that

1

and a general 2-tuple (Ao, Ai) can be classified as one or other of

(0,0), (i,0), (0,;)and(i,j)

where i,j ^ 0. Let A = iA0+jAi be a weight. Then the set of left coset representatives

{W : W\} that can be associated with various i and j can be obtained from Table 3.4a.

By (3.21)

+ jAi) = (t - 2n(i + j))A0 + (j + 2n(i + j))A, - (nj + n2{i + j))S

+ jAi) = (i + 2j - 2n(i + j))A0 + (-j + 2n(i + j))A,

- (-nj + n2(i+j))8.

The Weyl group for A^ is {tnai,tnaisi \ n € Z} so that from Table 3.4a the orbit-

weight generating function (3.35) can be expanded to

H(A, A)=Y, W(l
J=O >=0

j=0 «'=0

i=0
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H(A,A) =
j=0t=0

oo oo

j = 0 i=0
oo

«=o

j=0 i=0
oo oo

i=0 j=l

This can then be simplified to the rational form

^ ' , L
5

 A) E
1

(1 - A0Aj-2"Af(5"2)(l - A ^ - ^ A

(1 - A0Aj-2nA2»,5"2) ~ (l-A1A2f2nAr1+2Fl£»a-»)) ^ ^

T^Af)

2-n)(l - AS)'
In the following we give the remaining orbit-weight generating functions for all

affine algebras of rank 1 and 2. The parity of the Weyl element used to obtain the

terms are denoted by superscript + or — of (1 — AS). Otherwise specify, m and n are

always assume to be integers.

The orbit-weight generating function for A^ is

T[ I
V L (1 - AAj" 2 n Af S"3)(l - A1A

(1 - A0Aj-2nA|"<5"2)(l - A1Aj-"Ar1+2n^n2-")/2)(l - AS)-

The orbit-weight generating function for A2^ is

1

^ l ( l - AOQAO)(1 - A1QA15'»)(1 - A2gA2<5")(l - A5)+
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1 ( i - A o g A o ) ( i - .

i

(1 — A i / A

' (i-AogAo)(i-

' ( 1 " A i Q A

(l-AogAo)(l-A

(l-AogAo)(l-A1

A A A — T M - f - n 1 ( 1

^AAOSA";.
i6m)(i - A2gA(

iQAlA2
18~n)(l

A+»i-
- A :

Aj^
A2gi

JAJA:

iQA25»)(l

m — n

^oAiAi-1^

r1<5m-»)(i

OAOA,AJ:

. £—m—n

- A ( 5 ) -

. - H I -

- A 5 ) +

A6)-

AS)+

-Asy

{ - A8)+

(3.36c)

- A6)~

Q = ^ ^

The orbit-weight generating function for C2
1^ is

EI;- L ( l - AoQAo)(l - A 1 g A 1 ^ ) ( l - A2QA26»)(1 - A8)+

- AogAo)(l -

- AoQAo)(l -

- AoQAo)(l -

- A6)

\A2
l8^-«)(i - A8)~

{ '

- AoQAo)(l -

- AogAo)(l -

- AogAo)(l - - AS)~

- AogA0)(l - -1<5-«)(l - A6)~
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+ (1 - A0QA0)(l - AiQAgAr^—Xl - A2Q A2A2
l 8-»)(l - AS)+

Where Q = A-2-A4m-2nA-2m+2n(52m3-2mn+n^

The orbit-weight generating function for A4
2^ is

l ( l - A0Q2A0)( l - A 1g2A l ( 5m)( 1 _ A2QA2<W2)(1 - A8)+

- A0Q2A0)(l - A1Q*A0Ar1A^-'»+»)(l - A2<2A2<W2)(1 _

A0A2Q
3A0AlA-16m~n'2

— A0Q2A0)( l — AiQ 2Ai£m ) ( l — A2QAiA2"16m-n/2)(l — A8)~

- A0Q2A0)(l - A1(52A0A1A2-2^-")(l - A2QAiA21Sm-n

- A0Q2A0)(l -

(1 - A 0 Q 2 A 0 ) ( l -

+
- A0Q2A0)(l -

where Q = A-mA2
1

m-nA-2m+2n8(-2m2-2mn+n2V2.

The orbit-weight generating function for D^ is

- A o gA o ) ( l - A1Q2A1(52-)(1 - A,QA26»){1 - A<5)+

(1 _ yd̂ DA \{\ _ /4,n2A2A~1 A2X-2m+2nVi _ An(~) \n£n\(-\ _ A/)V

+ (1 - AOQAO)(1 - A1Q2A1<52-)(1 - A2QA1A2-1<52m-")(l - A*)~
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+ \2
 i<52m-"j(i — Asy

A0A1g3A3A1A2-2<$2m-2'>

(a ofi f\

- AOQAO)(1 -

- AOQAO){1 - - A6)

- AoQAo)(l -

- AOQAO)(1 - - A6)

oQA0)

where Q = A-2mA2m~ r iA2-2m+2r l<52m2-2mn+n2.

The orbit-weight generating function for G2^ is

AOQAO)(1 - - A2QA26»)(1 -

- A0QA0)(1 -

^
1A2"

1(5'"-")(1 - AS)-

- AoQAo)(l -

- AOQAO)(1 -

- AoQAo)(l - - AS)

- AoQAo)(l -
3 A 2 A 3 A~ 5 / i 3 m - 5 n

• 1A2 0

- AS)-

- AS)-

+ - AogAo)(l - - A6)
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A0A2Q
2 A3

QA^

- AOQAO)(1 -

-U-m

- AoQAo)(l - - A6)

- AoQAo)(l -

oQAo) -ASy

Where Q =

The orbit-weight generating function for D ^ is

AoQAo)(l -

- AoQAo)(l -

- AoQA0)(l - A1Q2A16'»)(1 -

- AOQAO)(1 - A1Q2A0A2A2
1

- AoQAo)(l -

AoQAo)(l - A1g2A3Ar2A25-2">+3«)(l -

- AoQAo)(l - - A2Q3A3A3A2
2<53— 6")(1 - A8)~

,
- A2Q3A3A3A2'2(53'"-6")(1 - { ' }

+ - A1Q2A3A1A2
16™-s

- AoQAo)(l - - A<5)

3")(1 - AS)-

- AOQAO)(1 - - A 6 ) -
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A0A1A2QAlATA^6
(1 - AoQAo){l - AQ2A3Ar1<5-m)(l - A2Q

3A3A2-
1<5-3»)(1 - A6)+ J

Where Q = A-mA2m-3nA-m+2n(5m2-3mn+3n2
>

For the purpose of illustration let us obtain weight multiplicities for the affine

algebra A2^ whose highest weight has level 2 and there are mixing of orbits. The

dominant weights 2A! = (0,2,0) and Ao + A2 = (1,0,1) haye the same level and are in

the same affine congruence class. The Weyl orbit of /z = (0,2,0) can be obtained by

picking up the coefficient of A\ in the expansion of the orbit-weight generating function

(3.36c) namely Q2A\87m where Q = Aom-nA*n-BAo ra+2B5ma-nn+n\ T h i s o r b i t c o n s j s t s

of weights v = (u0, vu v2)dfii/. However only two of the components of v are independent

because of the constancy of the level. In fact v0 = L(JJ,) — V\ — v2 and in the following

we shall not need to write down u0 explicitly. Hence the Weyl orbit of // = (0,2,0) is

{(i/0, vu v2)dl,u | V\ = 4m - 2n + 2, v2 = -2m + 4n, d^ = 2F + 2m } .

where F = m2 — mn + n2.

Similarly, the Weyl orbit of fi = (1,0, l) is obtained by picking out the coefficients

of A0A2 and can be shown to be

{v\u1=Am- 2n, v2 = -2m + An + 1, d^ = 2T + n }

(J {u | v1 = 4m - 2n + 1, u2 = -2m + An~l,dllv=2T + m-n }

U {v | ^i = 4m — 2n — 1, v2 = —2m + 4n, d^ = 2F — m } .

The Weyl dot orbit of A can also be computed similarly. But this time the level

is increased to L(X -f p) = 5 and at the same time we have to take into consideration

the parity e(wxv) of tmai+na3w. First we obtain the Weyl orbit of (1,3,1) by picking

up the coeffients of AQA\A2 and then have to subtract p from v. The Weyl dot orbit

of A = (0,2,0) is then
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{i/\vl = 10m - 5n + 2, u2 = - 5 m + lOn, dp
Xv = 5T + 3m + n, e = +1}

(J {f | i/! = 10m - 5n - 4, i/2 = - 5 m + lOn + 3, dp
Xv = 5T - 3m + 4n, e = - 1 }

| J {i/ | I/J = 10m - 5n + 3, u2 = - 5 m + lOn - 2, <*$„ = 5F + 4m - n, e = +1}

(J {(z/ | z/j = 10m - 5n, v2 = - 5 m + lOn - 5, dp
Xv = 5F + m - 4n, £ = - 1 }

| Vi = 10m - 5n - 5, z/2 = - 5 m + lOn + 2, d^ =~5r - 4m + 3n, e = +1}

(J {i/ | i/x = 10m - 5n - 2, i/2 = - 5 m + lOn - 4), dp
Xv = 5T - m - 3n, e = - 1 } .

The Weyl dot orbits of A = (1,0,1) are obtained by picking up the coefficients of

AQAIAJ and subtracting />,

{v\vx = 10m - 5n, i/2 = - 5 m + 10n + I, dp
Xv = 5T + m + 2n, £ = +1}

(J {j/ | J/J = 10m - 5n - 2, i/2 = - 5 m + lOn + 2, dp
Xv = 5T -m + 3n, £ = - 1 }

(J {z/ | i/i = 10m - 5n + 2, v2 - - 5 m + lOn - 3, d"Xv = 5r + 3m - 2n, £ = +1}

(J {j, | Vl = 10m - 5n + 1, v2 = - 5 m + lOn - 4, c?^ = 5T + 2m - 3n, £ = - 1 }

{J{v \Ul = 10m - 5n — 4, i/2 = - 5 m + lOn, dp
Xv = 5 r - 3m + n, £ = +1}

(J {i/ | I/J = 10m - on - 3, v2 = - 5 m + lOn - 2, d"Xu = 5T - 2m - n, £ = - 1 }

Let T(//, A) denote the intersection of the Weyl orbit of // and the Weyl dot orbit

of A. The null depth of A relative to \x is d = d^ — dXv. For illustration, consider the

intersection of the Weyl orbit of /x = (0,2,0) and the second subset of the Weyl dot

orbit of (0,2,0) given above, i.e. we must have

4m : — 2nj + 2 = 10m2 — 5n2 — 4 and —2mj + 4ni = — 5m2 + 10n2 + 3.

In matrix form this can be written as
(2 -lU2m1-5m2\ _ /-6\
V-l 2 )\2n1-5n2 J ~ \ 3 J

[2m1 - 5 m 2 \ _ (-Z\
{ 2nx - 5n2 J ~ \ 0 J

This then implies that
mj = 5m + 1, m2 = 2m + 1, m £ Z

rii = 5n, n2 = 2n, n G Z
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Then
d = 2((5m + I)2 - (5m + l)(5n) + (5n)2) + 2(5m + 1)

- 5((2m + I)2 - (2m + l)(2n) + (2n)2) - 3(2m + 1) + 4(2n)

= 30r + 16m - 8n + 2

Continuing with the other subsets we obtained the intersection sets T((0,2,0), (0,2,0))

as follows

{(i/0,20m - lOn, -10m + 20n)d | d = 30F + Am - 2n, e = +1}

U {(i/0,20m - lOn + 6, - 1 0 m + 20n -2)d\d= 30F + 16m - 8n + 2, e = - 1 }

(J {(i/0,20m - lOn - 2, - 1 0 m + 20n + 8)d \ d = 30r - 8m + 22n + 4, e = +1}

(J {(z/0,20m - lOn, - 10m + 20n + 10)d | d = 30F - 2m + 28n + 8, e = - 1 }

U {(z/0,20m - lOn + 10, - 1 0 m + 20n + 2)d\d = 30F + 28m + An + 10, e = +1}

(J {(i/0,20m - lOn + 8, - 1 0 m + 20n + 6)d } <i = 30r + 22m + 16n + 12, e = - l ) .

Similarly it can be shown that T((0,2,0), (1,0,1)) is

{(i/0,20m - lOn + 10, - 1 0 m + 20n -A)d\d = 30T + 28m - Un + 6, e = +1}

U {(uQ, 20m - lOn + 18, - 1 0 m + 20n -8)d\d = 30T + 52m - 26n + 22, e = - 1 }

U {(i/0,20m - lOn + 2, - 1 0 m + 20n + 12)d | d = 30F + 4m + 34n + 14, e = +1}

U {(uQ, 20m - lOn + 16, - 10m + 20n -A)d\d = 30r + 46m - Un + 18, £ = - 1 }

(J {(i/0,20m - lOn + 6, - 1 0 m + 20n + 10)d | d - 30r + 16m + 28n + 16, e = +1}

(J {(i/0,20m - lOn + 12, - 1 0 m + 20n -2)d\d = 30r + 34m - 8n + 10, e = - 1 } .

Then (3.33) and (1.21) imply that the orbit sum of (0,2,0) is given by

-2n _ ^ ^(0,2,0),or+16m-en+3 ^_ c

m,n

_L C}l y(l|0.1)sor + 2«m-14n + « _ g^ y(1,0,l)jor+52m-26n + 2a I ,0,l)3or+4m+34n

1

(3.37)
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Geometrically we can visualise Weyl orbits of rank 1 and 2. For the Weyl orbits

of \i = (0,2,0) and (1,0,1) given previously we may plot them as in Figure 3.3. The

symbols • specify the Weyl orbit of (1,0, l)0 and the symbols A specify the Weyl orbit

of (0,2,0)0. The number next to the elements are the null depths d^. The elements of

the Weyl dot orbit of (1,0, l)0 are the vertices of the hexagons of the shape ̂  J and

the Weyl dot orbit of (0,2,0)0 are the vertices of the hexagons of shape

An alternative method of obtaining the orbit sum expansion for \i is to add p to each

weight of the Weyl orbit of fi, reflecting into the dominant sector, subtracting p and

interpreting the result as a signed, positive or negative, coefficient of A according to the

parity. A reflected weight lying on a reflection hyperplane is ignored. When computing

the orbit sums numerically we must truncate at a certain depth. This truncation depth

is determined by reflecting some neighbouring elements into the dominant sector. In

Figure 3.3, the neighbouring elements that we should consider are those that lie in

the upper part since these elements tend to have a lower depth and a negative zeroth

Dynkin component. These neighbouring elements, among others, includes

(-7, -2,11)17, (-8,0,10)16, (-12,8,6)24 .

Reflecting these weights into the dominant sector, we obtain

s2SoS2slSo{{-7, -2,11; -17) + p) - p = (0,2,0; -9)

sos2slSo{{-8,0,10; -16) + p) - p = (0,2,0; -8)

SaSlS2sys0({-12,8,6; -24) + p) - p = (0,2,0; -12)

Hence the weight lattice in Figure 3.3 will gives result accurate until depth 7. Applying

similar reflections to other weights on the hexagons, we obtain

= ch y(020)0 _ ch y(101)0 _ ch y(020)3

(3.38a)
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(1)
Figure 3.3 : Orbits of (0,2,0) and (1,0,1) modules of A2 .

I?

A • ? A 1,

(O IO

• U • A
\ /

A. _ _ • _ A
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= ch

+ 2ch

- ch

- 2 c / i V ( 0 2 0 ) l -

+ 2ch

- 2ch

- ch V(101)4 - 2ch

+ 2ch V(020)T + 2ch

- 2ch (3.386)

Other non-maximal orbit sums O^0'2'0^ and fit1'0-1)* can be obtained directly as

= chy(020)t - chV{101)k - chV(020)k+3 + 2ch

l - 2ch V(l01)k+i + ch= ch y(101)k - 2ch

In matrix form this can be written as

(I
0
0
0

0

-1
1
0
0

0
0

0
-2
1
0

0
0

0 ...
-2 ...
-1 ...
1 ...

0 ...
0 ...

0
2
0
-1

1
0

0
2
_^
_2

-1
1

ch

(I
0
0
0

0

1
1
0
0

0
0

2
2
1
0

0
0

4
4

i—
i

1

0
1

522
636
256
300

1
0

740
908
365
441

1
1

The multiplicity matrix is upper triangular with l's on the diagonal and can be

easily inverted. The inversion will gives the expression of irreducible characters in term

of the orbit sums whose coefficients are the weights multiplicities.

c/iy(°2°)»\ / I 1 2 4 . . . 522 740 . . . \ /fi(020)°\
ch
ch

ch

As in the case of the orbit sums the expansion of the irreducible characters

ch V(°.2>°)° and ch V^1'0'1^ determine the expansion of ch V^2-°^k and ch V^0-1^ respec-

tively, i.e. the first two rows of the inverse matrix determine the rest. The modules

of y(°>2>°)o and yC0'2-0)* are isomorphic. Hence if the highest weight representation

is (0,2,0), then the first row of the above inverse matrix gives the following weight

multiplicities of the dominant weights up to depth 7.
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depth

0
1
2
3
4
5
6
7

(020)

1
2
8
20
52
116
256
522

(101)

i—
i

4
12
32
77
172
365
740

If the highest weight representation is (1,0,1), then the second row gives the following

weight multiplicities of the dominant weights.

depth

0
1
2
3
4
5
6
7

(020)

0
2
7
22
56
136
300
636

(101)

1
4
13
36
89
204
441
908

These results are in agreement with the tabulation given by [KMPS] for level 2 mod-

ules of A^.

Using a similar algorithm we have written a computer program to calculate weight

multiplicities of heighest weight representations of the affine algebras A$}\ B^\ C^\

Df\ Gi , A^r, -Dr+i and D^. The program runs successfully for low rank algebras. In

the case of higher rank algebras we have to consider a Weyl group of large order which

grows factorially with rank and a large weight lattice which grows exponentially with

rank. This places a practical bound on the calculations. In Appendix 3 we tabulate
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Orbit sums

some weight multiplicities of level 2 modules of twisted affine algebras of rank 2.

To obtain analytic results for the weight multiplicities we have to introduce a

dummy variable q = e~s which carries as its exponent the depth of the irreducible

character [Kass], i.e. we shall write in general ch V^Xo>' ••x^d as chV(-Xa>--tX^°qd. For

example, the previous orbit-character expansions (3.38) can be written as

)° = ch V(020)°(l - q2 - 2qi + ...)

= ch V(°20)°{-2q + q2 + 2q3 + 2q4 - 2qh - q6 + 2q7

+ ch V(1O1>°(1 - 2q + 2q2 - q4 - 2q5 - 2q6 + 2q7 + ...)

In general for each particular afEne congruence class, we need to consider

* K (3-39)
where \i and A are maximal dominant weights. For example, from (3.37) in the case of

level 2 modules of A[ , the analytic expressions for K^O) an<^ K(ioi) a r e

_(020)

30r-2m+28n+8 i 30r+28m+4n + 10 .

(020) V ^ r 30r+2Sm-14n+6 _ 30r+52m-26n+22

m,n

_ 30r+46m-14n+18 , 30r+16m+28n+16 _ J

In Appendix 4 we tabulate some analytic expressions for «£ in the case of level 1

and 2 modules of the affine algebras of rank 1 and 2. Although given with different

parametrisations, some of these expressions can be inferred from or checked against

the work of Begin and Sharp [BSl]. Inverting the matrices of the ^-series analytically

extends the work of Begin and Sharp to give the required expansion of irreducible

characters

chV = Y(ttX)<7x- (3-40)
A

This will be discussed in the next chapter.
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CHAPTER 4

Weight Multiplicity Generating Functions

4.1 String functions and modular forms

Let VA be a highest weight module of an afnne Kac-Moody algebra Q(A). Let A

be a maximal weight and dim VA_ni denote the multiplicity of the weight A — n6. A

string function aA is defined as the weight generating function

ftn6e-ni. (4.1)
n = 0

Since any weight A of VA is conjugate to a dominant weight A+ 6 P + , we know all the

string functions and hence all the weight multiplicities as soon as we know crA for all

maximal dominant weights A+.

Although aA is not really a 'function', it can be turned into a genuine function that

is defined and converges in the upper half complex plane H = {r 6 C | Imr > 0} by

replacing e~6 with e2iriT to give

aA(r) = ±ane^ = ±anq\ (4.2)
n=0 n=0

where an = dimVA_nS and q = e2"T. This string function can further be turned into

a modular function by multiplying with a certain power of q known as the modular

characteristic

s ( A X )

where L = L(\) and g = L(p). In the case of untwisted affine algebras, a tabulation of

s(A, A) can be found in [KMPS]. In Table 4.1 we tabulate the modular characteristic

of level 2 modules of all affine algebras of rank 2. We denote a modular string function

by cA where

cl(r) = q-'iA-X)aA(r). (4.4)
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Table 4.1a : Modular characteristics of level 2 modules of

String function

(002)

(110)

(020)

(101)

(011)

(200)

(002)

_2_
15

11
30

0

0

0

0

(110)

_ 8
15

1
30

0

0

0

0

(020)

0

0

2_
15

11
30

0

0

(101)

0

0

8
15

J_
30

0

0

(011)

0

0

0

0

1_
30

_7_
15

(200)

0

0

0

0

_ 1 9
30

2_
15

Table 4.1b : Modular characteristics of level 2 modules of

(002)

(020)

(101)

(200)

(011)

(110)

(002)

I
6

1
3

7_
12

5
6

0

0

(020)

-.11
30

1
15

ri
60

13
30

0

0

(101)

23
30

4
15

J_
60

7
30

0

0

(200)

7
6

2
3

25
60

1
6

0

0

(011)

0

0

0

0

_1_
24

n
24

(110)

0

0

0

0

_ 1 3
24

i_
24
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Table 4.1c : Modular characteristics of level 2 modules of

(002)

(010)

(101)

(200)

(002)

i_
12

7
36

_!£
36

31
36

(010)

_1_
12

1_
36

— i3.
36

_ 2 5
36

(101)

5
12

n_
36

1_
36

_12
36

(200)

_j_
12

17
36

J>_
36

7
36

Table 4.Id : Modular characteristics of level 2 modules of

(002)

(010)

(100)

(002)

_i
7

_2
7

_ 4
7

(010)

_3_
28

1_
28

9
28

(100)

_5_
14

_3_
14

1
14

Table 4.1e : Modular characteristics of level 2 modules of D.S>2).

(002)

(010)

(100)

(101)

(002)

5_
24

13
24

_ 2 9
24

0

(010)

7_
24

1_
24

_12
24

0

(200)

19
24

n
24

_5_
24

0

(101)

0

0

0

1
24

Table 4.If : Modular characteristics of level 2 modules of

(010) (200)

(200) - j

li.
24

7_
'24
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String functions ...

A modular function which is holomorphic everywhere (including infinity) is called a

modular form. To be precise we need a definition of modular form as follows [Kac4].

Definition 4.1. Let

Tin) = {(ab) e SL2(Z) \a = d = lmodn, b = c = 0modn}
c d

be the principle congruence subgroup of SX2(Z). A function f : H —> C is called a

modular form of weight k for T if f is holomorphic on H and

where the multiplier system \ satisfies \ x(A) |= 1 for all A = (° *) 6 T.

Among the most popular examples of a modular form is the Dedekind ^-function

oo

7?(T) = e^n ( 1 - e 2 " n T ) forre#, (4-5)
n = l

which is a modular form of weight | for F( l ) . The multiplier system x is such that

X(S) = e"" / 4 and X(T) = e™'12 where S = ( J " 1 ) and T = (JJ) generate T(l) . In

terms of Euler's function <f>(q), the //-function can be written as
CO

V(T) = q^<f>(q) where <f>(q) = \{{l - q*) . (4.6)

The relations between modular string functions c^ and modular forms can be traced

back to the work of Kac and Peterson [KaP]. Using the theory of classical theta-

functions they obtained the transformation law for string functions of affine algebras of

rank r and showed that c^ are modular forms of weight —r/2. The following theorem

and corollary which were proved in the light of modular forms [KaP] are very helpful

in obtaining explicit form for string functions.

Theorem 4.2. Let Q(A) be an affine Kac-Moody algebra and c* be a modular string

function of a highest weight module Vx of level L. Then
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where P+ax is the set of maximal dominant weights of level L and

7y(r)r for X™ and A%>,

for 2}«r+l)

7?(r)27?(2r)2

U(r)i7(3r)

where X = A, 5 , C, £>, £, F or G.

Corollary 4.3. Let h and g be the Coxeter number and the dual Coxeter number,

respectively, as defined in (3.5). Then

where hp = h in the case of untwisted algebra and hp = g in the case of twisted algebra.

For each of the affine algebra we tabulate h, g and (p | p) in Table 4.2. By (1.21)

and (3.40) we can see that

where A, fi and v are all maximal dominant weights in the same affine congruence class.

This then implies that

Hence in principle if we could invert the matrix K\ then we could obtain the required

string functions. We shall call K^ an inverse string function. By Theorem 4.2 the

determinant of the modular inverse string functions must necessarily be G(r)'p™cx'.

Let P+ax = K . . . , i / n} where n = | P+flI |. Then

det | cl \= det | g'^-"VJ |

t = l
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Table 4.2 : Coxeter numbers, dual Coxeter numbers and (p | p)

Algebra

^4(1)
r

r

cp

T

pC1)

4?

4?-i

r + 1

2r

2r

2r-2

12

18

30

12

6

2r+ 1

2r-l

r + 1

9

4

9

r + 1

2r-l

r + 1

2r-2

12

18

30

9

4

2r + l

2r

2r

12

6

—rfr
12 v

ir(2r-

i r ( r .

4r(2r-

Jr(2r

ir(2r -

(P

+ l)(r -t

-l)(2r 4

-l)(2r-(

" l)(2r -

P)

-2)

-1)

-1)

-1)

78

399/2

620

39

14/3

- l)(2r -

+ l)(r-

" l)(2r -

hi)

hi)

hi)

78

14
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But

and

so that

(p
2(L + g) 2g

E K | u,t) = ±{ut | Vi)

2L

t = i t = i

•«)vv*1*)+ra?(1* l')~
which is independent of the permutation TT. Hence

the expansion of the determinant, i.e.

can be factored out from

| ĉ  \Xt,ePima= ^•(•"."O det | aj

However, from Corollary 4.3 and Table 4.2 (modified slightly in the case of A?r') we

1 E

have
-r /24 for JK*1) and
- ( r + l)/24
-(2r - l)/24
-1/4 for

1-1/6 for M3) .
It then follows from Theorem 4.2 , (4.6) and (4.7) that

det (4.8)

where
for XW and

for 4^-i

I <t>(q)<j>(q3) fo r
In the Appendix 4 we have tabulated explicit expressions for some inverse string

functions K^. These functions were expressed as sums. It simplifies things enor-

mously and make inversion easier if these functions are expressed as products. To
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The Weyl-Kac denominator identity

have some idea of what we are going to do let us invert the inverse string function

«(1S) = En(<Z6n3"n - q6n'-5n+l) of the algebra A[1]. Euler's function of (4.6) also has an

expansion as a sum given by

(4.9)

Thus K[JQ] = 4>{q). Relation (4.7) then implies that «[") f(io) = 1- Hence

CO 1

fc = l \L 1 ) n

where pi(n) is the partition function. In order to obtain similar results for other

inverse string functions one may use the Weyl-Kac denominator identity (1.18) to

generalise (4.9). For future reference it is also useful to have a tabulation for the

functions <f>(q)~k = ]CPfc(n) <?" which can be obtained from [KMPS]. The combinatorial

interpretation of p^(n) is the number of distinct partitions of the integer n into integers

of k different colours. We tabulate the partition function Pk(n) for k = 1 , . . . ,6 and

n = 1 , . . . , 20 in Appendix 5.

4.2 The Weyl-Kac denominator identity

The Weyl-Kac denominator identity (1.18) takes the form

(1 - e-a)-a)mulia e{w)ewM-p.

By Theorem 3.5 and (3.21) we have for w G W

w(p) = taw(p) = w(p) + ga- ((w(p

where a = £;=i nia% € M and w € W. Let w(p) -p

r

(w(p) | a) = ]Tn,- -

a) + | ( a | a))S

a = i=i h&i- Then
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so that

r r r

taw(p) - p = - Y(k - gni)ai - (Y n{ - Y hrijAij + -
;=i »=i ij z tj=i

Next let u{ = e~Oi, i = 1 , . . . , r and u = e~*. Then

E ^ ^ + E «-«"•+*•. (4.10)

To illustrate the method let us apply the denominator identity to the affine algebra

A^\ The set of positive roots obtained from (3.26), Proposition 3.1 and Proposition

3.2 is

{nS | n > 1} U {ai + n8, a2 + nS, ax + a2 + nS \ n > 0} .

The real roots have multiplicity 1 but the imaginary roots have multiplicity 2. Hence

00 OO

I I (~\ —a\mult a __ I I / i — ni\2 I I / i —(ai+ni)\/-i

n=l n=0

OO 00

1 — U } ( 1 — WiU ) ( 1 — V-2V ) ( 1 —
n=\ n=0

On the other hand we can expand rLeA+(l - e-a)muHa through (4.10). The Weyl

group W is given in (2.2) and this gives

id(p) -p = Q =>

si(p) ~ P = - Q ' i => Y2 kriiAij = 2nx - n2

~ P =

— p = ~Q\ — 2Q'2 =^
t,i=i

2

- /? = —2a! — 2a2 =^ ] P fc.-njA.-j- = 2nx
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The Weyl-Kac denominator identity

Let F = 3£)? i = 1 riiTijAij = 6(n2 — n ^ + nl) then (4.10) can be expanded to give

E , . r+n,+n, -3ni -3n, V ^ , ,r-n1+2n3 -3ni + l -3n3

U Ux U2 — 2_^ v ul U2

where n : and n2 are integers. Hence the denominator identity for A2 can now be

written down as:

1 2 UlU2 (4.11a)

1 2 | t/ Lfc-i l*o I L/ IX-i Cto

n,m

r-n+2m -3n + l -3m r+2n-m..-3n. -3m+l r -n -m -3n + 2 -3m+2*l
c/ u-i t*2 ^ 1 2 1 2 J

where F = 3(n2 — nm + m2).

In a similar way, the denominator identity expansions that correspond to the other

lower rank affine algebras may be expressed in the same form.

A? :

_ ? , n Vi — ?jn?/~1Vi — nn~1'?t\ — V^/7)n(2n+1)7/-2n
 ? , n ( 2 n - 1 ) 7 / -

2 r i + 1 \ (AIM)}
— V ) \ * - " t* It X — V \lJ — / i u u, — V VL f l r r . l J . y i

11(1 - vn){l - v^-1)^ - v"-1u)(l - ^ " " ^ - ^ ( l - v2n~lu2)
n = 1 (4.11c)

i 3 + 1 ) 3 ^ 3 ^ 3
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n=l

(4.11c?)

u

- v
r-n+2mu-6n+1u;3m

'1 "2

where T = 3(2n2 - 2nm + m2).

vnf{\ - vnu-l)(l - v^u

vnu-lu-l){\ - vn-l
Ulu2)(l lu-2){\ - vn-l

Ulu
2
2)

2ti"3)(l - vn-lu\u3
2)}

,r+3n-4m, -

n}m

U

u

u

u u

where F = 4(n2 — 3nm + 3m2).

r -2n+m -4n+6 -12m+9 T+n-Am , , -4n+5 -12m+10"l
1/ U-| Wo v t*| tin J
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The VVeyl-Kac denominator identity

n = l

- v2n-lu\u2
2){\ -

u

u u
(4.11/)

where T = 5(2n2 - 2nm + m2).

- vn)(l - v2n)(l -

u

,r-
u

-4m+4
l l a2

r-2n+3m -4n + l,,-4m r+4n-m -4n -4m+lr-2n+3m
1/ Ci

r+4n-m

where F = 4(2n2 — 2nm + m2).

(4.115)
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- vn)(l - v3n)(l - vnu~1)(l - t;""1u1)(l - v X ^ j '

- un«72txj x)(l - vn-lu\u2)(l - v3nu^)(l - v3n~3u2)

- v3nu-3u;l)(i - v3n

,}r+*n-6mu-6n + lu-i

n,m

u

r-5n+9m -6n+6 -6m+2 r+5n-9m -6n+4 -6m+4
/ tXi t*2 — v I4i cio

r-4n+3m -6n + 10 -6m+5 , T+n-6m -6n+9 -6m+6i
— t/ Uj «2 - j - U Uj 1*2 j

(4.11ft)

where F = 6(n2 — 3nm + 3m2).

In fact (4.11b) is one form of the celebrated Jacobi triple product identity (JTP)

- vn)(l - vnu-l){l - v^'u) =
n = l n

If further we let v = q2k and u = (—q)k+l then we obtain another form for the JTP as

fl - q2kn){\ ± g
atB-*-*)(l ± q^-W) = 2(±l)"9*n2+te . (4.12)

n = l

Specialising to v = qT, «i = 5s1, u2 = 9*2 in the respective denominator identities

(4.11a - 4.11h), we are able to express the K^ that are given in Appendix 4 as sums of

products. Specialisation of this form will be denoted by [r;si,s2]- A bar represent a

negative q specialisation, e.g. [3; 1,1/3] denotes the specialisation v = q3, Uj = q and

u2 = —qll3. Also note that the notation n±<.(r)(l ~ <?") means
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The Weyl-Kac denominator identity

A?
Mo) _K(io) -

- 9 " ) (4.13a)
1(2) V !

[2; 1/2] =» /cgSi + 91/a«g3
1(2)

42 )

[4;1] =•

i - ?n) n (i - ?n)
±1(10) ±8(20)

[10; 2] =• K\\°0] = <J>(q") J [ (1 - ?") I I (1 " «") (4.136)
±2(10) ±6(20) V y

[10; 3] => «g2j = -<^(9
10) n (1 - 9") I K 1 - ?")

±3(10) ±4(20)

[10; 4] =» «g5j = -#(9
10) n (1 - 9") I K 1 - 9")

±4(10) ±2(20)

[4; 1,1] =» « K =

[10; 4, 4] =» zegSSj = ^(92)<^(g10) I I (1 " ?")
±4(10)

[10; 2, 2] =• KJ™> = -q+tfWq") J{ (1 -
±2(10)

[10; 1, 2] and [10; 3, 3]

( n a-?")-2? n
±3,±3,±4(10) ±l,±2,±3(10)

[10; 1, 1] and [10; 1, 3]

n a-?-)+« n (i-o)
±l,±3,±4(10) ±l,±l,±2(10)

(4.13c)
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[4; 1/2, 1] => p P
1(2)

[10; 1/2, 1], [10; 3/2, 3], [10; 7/2, 7] and [10; 9/2, 9]

r n (i-9n)( n a - ?n/a)+?i/a n a - o )
±3,±4(10) ±3,±9(20) ±l,±7(20)

+?i/w°)2 n (i-«B)( n (i - ?n/2)+?3/2w0)2 n a - o
±l,±2(10) ±7,±9(20) ±l,±3(20)

[10; 2, 2] =• « P + q4°ol] = 0(?4)<^(?10) I I (1 ~ ?")
10(20)

[io; 4,6] => KJSS2) = -^(9
2°)2 n a - ?") n (i - ?")

±8(20) ±4(10)

[io; 2,8] ^ Kgsg = #(<?20)2 I K 1 - ?") I K 1 - ?")
±4(20) ±2(10)

[10; 1,2] =» /cg»j = - ^ W ° ) II (1 + 9")
±l,±3(10)

[10; 1, 4] >̂ , £ ! = ^(g10)2 n (1 + 9") I I (1 + ?")2 I I (1 ~ q"?
±1(10) 5(10) ±4(10)

[io; s, 2] >̂ «g»>=-<A(g10)2 n ( i+? n ) n ( i + o 2 n (i - ?n)
±3(10) 5(10) ±2(10)

[10; 0, 1] and [10; 5, 9]

a n (i+?") n a-?")
±4,5,5(10) ±1(10)

II (i - qn)
±l,±2,±9(20)

[10; 2, 3] and [10; 0, 3]

n (i+in) n (i - ?n)2

±2,5,5(10) ±3(10)

±3,±6,±7(20)

[10; 3, 3] and [10; I, 7]

2 n (i+9n) n a-?")
±3,±4(10) ±l,±3(10)

n (i+9n) n a-?")
±l,±2(10) ±l,±3(10)

(4.13d)
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The Weyl-Kac denominator identity

[5; l ,

[5; i ,

[3;

[3;1,

[3; l ,

j^O, Z ,

1/3]

2/3]

1,1]

1/3]

4/3]

1/3]

[3; 1/2, 1/3]

0,±l(5)

(1 - q*)
0,±2(5)

±1(3)

±1,±4(9) ±4(9)

- g^/cSS = ~M)M) II (1 + O II (1 " 9B/3)
±2,±4(9) ±2(9)

n a+?n/3) n a - ?n/3)
±1,±2(9) ±1(9)

- ?n/2) I K 1 - ^n/2) I K 1 - <zn/3) n (
1(2) 3(6) ±1(9) ±5,±7(18)

[3; 1/2, 4/3] =* g )

1 - ?n/3) n (1 - <?"/6)
1(2) 3(6) ±4(9) ±1,±7(18)

(4.13e)

AT
[6;

[14;

[14;

[14;

[14;

1,

4,

2,

2,

3,

11 _1^ (001) / / •

i] =* « = «,•

3] =• « = -«

1] and [14; 3, 3]

2

4r n (i
±1,±4,±5,±6(14)

<?14)2 n i
±1,±2,±3,±4(14)

914)2 n
±2,±3,±5,±6(14)

-qn) n (i
±4,±12(2S)

;i-?n) n
±8,±12(28)

:i-o n (
±4,±8(28)

n a-?-) n a-?-) (4'13/)

±1,±3,±4,±5(14) ±6,±12(28)

)2 n (1-0 n a-?-)
±3,±3,±5,±6(14) ±2,±8(28)

[14; 1, 2] and [14; 5, 5]

)a n (1-0 n a-?")
±1,±2,±3,±5(14) ±8,±10(28)

)2 n ( 1 - 0 n a-<zn)
±1,±4,±5,±5(14) ±4,±6(28)
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[14; 1, 1] and [14; 3, 5]

2 n (I-?B) n (
±1,±1,±2,±3(14) ±10,±12(28)

n (i-9n) n (i
±1,±3,±5,±6(14) ±2,±4(28)

[14;

[14;

[14;

[3

4,2]

2,4]

2,2]

[5; 2,

[3;1,

[3; 2,

[3; I,

=^ /

= > • /

=$• i

1] =*

I] *

2] ^

2] =»

; 1,1/2] =»

±2,±6,±8,±10(28)
4) II (I

±2,±4,±6,±10(28)

II (I
±2,±6,±10,±12(28)

4) 11(1 +
(4-13flr)

( o ) + 9 K(2oo) )

) I K 1 - 9 ( 2 -

[7; 3, 3] =»

[4; 1,3/2] =» «gl»j +

[4; 2, 3/2]

2n~1 )(i - <z ( 6 n-3 ) / 2)

This complete the determination of all level 1 and level 2 inverse string functions

for all rank 1 and 2 afrine algebras, although some results are only given implicitly in

the form of a linear combination of such functions.
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Explicit computation of ...

4.3 Explicit computation of string functions

Let <r and K denote the matrices with matrix elements a^ and K^ , respectively. Then

the matrix form for (4.7) is a = /c"1. Matrices of order less than or equal to 2 can be

inverted easily. So whenever | Pmax |< 2 we can obtain the string functions directly.

For example, consider the task of obtaining all string functions of the level 1 modules

of the affine algebra G2
1}. From (4.8) and (4.13e), we have Pmax = {(001), (100)},

det K = <f>(q)4 and

0,±2(5)

n ( i -
0,±l(5)

^
"
()
(001)
(ioo)

(001) \
(100) \ _

I -
K

()
(ioo) I
( ) /

(100)
(100)
(ioo)

(001)
~K(100)

(ooi)

Hence

so that

0,±2(5)

3 n (i-?n/3)- o
0,±l(5)

It is also useful to have explicit forms for ax rather than linear combinations of

them. By the JTP (4.12)

_y^_]\3n 3n(15n+3)/2 V ^ / 3n + l)(15n+8)/2

3n(15n + 13)/2 + 13

(3n+2)(15n+13)/2

j ^ n 3n(15n+23)/2

Hence

JJ (1 - 9*) = Y,(-l)nqni

0,±l(5)

( n (i -
±6(15)

- <?4/3 n
±1(15)

IK 1 - 9n)
±4(15)
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This expression and (4.14b) implies that

±6(15)

±4(15)

Similarly, from the other expression (4.14a), it can be shown that

y l — q J

<r\(i) ±7(15) ±2(15)

Below we give some string functions for the case | Pmax |< 2 obtained by inverting

expressions from (4.13a - 4.13h). Some of these string functions are expressed as a

linear combination of terms. Explicit string functions can be obtained by a similar

method to that discussed above. Although cast in slightly different form these results

can be compared with those obtained in [KaP]. The ones marked * are new results.

A™ :

(02) (20)

^(02) ~ °"(20)
(4 .15a)

(20) _ ^^C02)

A?

±2,±6,±8(20)
1 n c1-?")

± 3 ' ± 4 £ ( 2 0 ) (4.156)
•2 n (! - 9n)

±2,±4,±6(20)
- 2 TT /-i n\

±l,±8,±9(20)
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n- ( 1 0 0 ) -"(100) —
- 2

_(200) _ (020) _ (002)
"(200) ~ "(020) — "(002)

= <t>{qiy<t>{q)-\ n (
±3,±3,±4(10)

n a-?"))
±1,±2,±3(10)

-.(200) _ (020) _ (002)
" ( o n ) — 9 " ( ) 9 ° ( )

= q<t>{q2)<i>{q10)<t>{q)-A I I (1 ~ ?")
±2(10)

nrr(on) _ (ioi) _ (no)
y"(200) — "(020) — "(002)

(4.15c)

±l,±3,±4(10)
q ft (1 - qn))

±l,±l,±2(10)
_(0H) _ (101) _ (110)
"(011) ~ "(101) — "(110)

±4(10)

(loo) V1 0 0) -
"(ooi) —

TTC1 - o^ "

HI1 ?
- (100) _ -(001)
"(100) — "(001)

n
0,±2(5)

-(001) _ 1/3 (001) _
a(ooi) 9 a(ioo) —

- 3

0,±l(5)

(4.15e)

T(ooi) _
"(ooi) — (4.15/)

\ - l

(4.15^)
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11(1

11(1
(4.15/z)

4.4 Further computation of string functions

For large order matrices it is impractical to invert « by the method of minors

and cofactors because it is quite difficult to simplify combinations of infinite products.

Whenever | Pmax |> 3 we shall instead resort to directly fitting the weight multiplicities

tabulated in [KMPS] in the case of untwisted affine algebras or from our program

for all low rank affine algebras to various forms of the required weight multiplicity

generating functions. Using any algebraic package such as Maple some of the string

functions can be fitted quite easily. These are the string functions which consists only

of a single infinite product. To illustrate the method let us obtain the string functions

of level 2 module of D^. From the numerical values of weight multiplicities we find

(200) _ 2 (002)
^(002) — H "(200)

^,(200) _ (002)
a yCT

(4.16)

- (200) _ (002)
<J(200) — <7(002)-

The modular characteristic of these string functions can be checked to be consistent

with that given in Table 4.1e. It then just remain to determine the string functions

and o"(°oo)- These remaining string functions cannot be obtained so easily because
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they may consist of a sum of infinite products. In this case the following proposition

[Kac4] is very helpful in doing the fitting.

Proposition 4.4. Let &i, b2,... be a periodic sequence of integers with period m,

such that bj = 6m_;- for j = 1 , . . . , m — 1. Set b = br + b2 + ... + bm. Then

is a modular form (for T(n), for some n) if and only if the modular characteristic c is

given by:

bm 1

In particular this proposition implies that (j>(qT) n±a(r)(l ~ <?") n a s modular char-

acteristic (2a — r)2 /8r since m = r and the only non vanishing Vs a r e ba = 6m_a = 1,

bm = 1. The period m in the above proposition can be expected to be the maximun

value of k of the form n±a(*)(l ~ 0.") appearing in K obtained at the end of Section

4.2. With this value of m and modular characteristic Table 4.1a - 4.If we can generate

Vs that satisfies the Proposition 4.4. There will certainly be an enormous number of

different sets of 6,-'s but it is sometimes the case that by sheer 'good luck' we are able

to see how to combine some of them to give the required string functions.

The string functions (T^r) a n d (̂200) °f M ^ generated by our program are

$ 24<?4 + 39q5 + 90g6 + U7q7 + 297<?8

77<z9 + 880g10 + 1391?11 + 2412g12 ++ 477<z9 + 880g10 + 1391?11 + 2412g1

= 2 + 3q + Uq2 + 18q3 + 47 q4 + 77 q5 + I65q6 + 268q7 + 516<?8

+ 823g9 + 1468g10 + 2300qn + 38919
12 + . . .

From the string functions obtained in (4.16) the values of bf of Proposition 4.4 are in

the range of —5 to — 1. Another more important observation is that the values for b

and bm are constant for all string functions associated with a given affine algebra. We
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conjecture that this is also true for other affine algebras and we tabulate these constant

for various algebras in Table 4.4.

Table 4.3. : Some parameters arising in fitting string functions of level 2 modules.

Algebra

42)

4"

cp

tip

A<2)

DP

period m

16

20

10

40

18

28

12

12

b

-24

-32

-32

-160

-84

-96

-30

-28

bm

- 1

- 1

- 2

- 2

- 2

- 2

- 2

- 2

Hence on restricting the values of 6,- and letting m = 12, b = —30 and 612 = —2 we

obtained the following possibilities for 6j's in the case of
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Modular characteristic= —5/24

-4
-2
-3
-3
-3
-4
-2

*-2
-3

62

-2
-5
-2
3

-3
1

-3
-4
-1

63

1

-1
—4
-1
_2

-2
-5
_2

-5

64

-1
_2

-1
—4
-1
3

-1
-4
-3

65

-4
-2
_2

-1
—4
-3
-2

-1

66

-4
-4
-4
-4
_2

-2
-2
-2
-2

Modular characteristic= 19/24

61

-3
-1
-2

*-2
2

-3
-1

*- 1
_2

62

-2
-5
-2
-3
-3
-1
-3
-4
-1

63

-1
-1
-4
-̂

-2
-2
-5
-2

64

-1
-2
-1
-4
-1
-3
-1
-4
_3

65

-5
-3
-3
-2
g

-4
-3
-2
2

66

-4
-4
-4
-4
-2
-2
_2

-2
-2
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By combining line 4 and 8 of the second table we can fit our D3
2^ data to the string

function crLooj, i.e.

[L — q ) H [1 — q ) 11 (,i ~ 9 j 11 (.1 ~~ 9 J
±3(12) ±1,±5(12) ±2(12) ±4,6(12)
-2 TT /'-i n \ - l TT f-i n \ -2 TT / i «n\-4

11 1-̂  ~ 9 ) 11 I"*- ~ 9 / 11 V-*- ~ 9 /
±1(12) ±3,±5,6(12) ±2,±4(12)

x%( n ( i - o + n a-?"))•
±2,±3(12) ±2,6,6(12)

can be obtained by combining line 8 of the first table and line 4 of the second

table,

•• Yi (l-g-y1 n (i-?")"2 n (i-?")"4

±5(12) ±1,±3,6(12) ±2,±4(12)

±3(12) ±1,±5(12) ±2(12) ±4,6(12)

%( n (i-o-? n a-?")).
±5,6,6(12) ±2,±3(12)

Taken in conjunction with (4.16) these results represent a strikingly simple form for

the weight multiplicity generating functions of level 2 modules of D^.

Below we give the string functions for other level 2 modules of the remaining

rank 2 affine algebras. It must be admitted that not all of the string functions which

consist of sum of infinite products are unambiguously obtained by the method discussed

above because of the enormous range of possibilities. But some are obtained instead

through the expansion and simplification of the terms arising from minors and cofactors.

Further simplification is not out of the question but it would be difficult to pursue this

method for higher level cases.
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Level 2 (class 0) modules of ^

±2,±4(20) ±12,±16(40)

(2oo) = (002) =

(020) q (020)

- «• n ( i - o n (i-?n)/x
±6,±8(20) ±4,±8(40)

) n (i-?B)+?aM?) n (
±4,±16,±16(40) ±4,±6,±14(40)

n (i-?n)+A(9) n a-?")
±4,±16,±16(40) ±4,±6,±14(40)

II (1 - 9")
±2,±2,±3(10)

where

±2,±12,±18(40) ±8,±8,±12(40)

n (i-?n)+?^(?) n a-?")
±8,±8,±12(40) ±2,±12,±18(40)

6 n (i - ?")
±1,±4,±4(10)

-i( n a-?") n a-?")4 n a-?")
±3(10) ±4(10) ±2(20)

n (!-?n) n (I-?-)4) n a - o )
±1(10) ±2(10) ±6(20)

m-lMYxMYl{ n (I-?-) n ^-<r)
±l,±2(10) ±6,±8(20)

n a-?") n (I-?B))
±3,±4(10) ±2,±4(20)

5)^(910)^(g2O)3^(g)-V(?2)-V(?4)-1( II (i - 9")3 II (i - qn)
±4(10) ±8(20)

2 I I (i - ?n)3 II (i - qn))
±2(10) ±4(20)

ha{q) =
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Level 2 (class 1) modules of

Level 2 modules of G(
2
1}.

±3(9)

±3(9)

*a(9) n a -
±3(9)

*a(9) I I C1 ~
±3(9)

qh3(q) JJ (1 -
±2(9)

hi(q) I I ( 1 -

±4(9)

±2(9)

*a(9) II (! ~
±4(9)

qh3(q) Y[ (1
±4(9)

9*1(9) n (1
±1(9)

*i(9) n (x -
±4(9)

*4(9) n (1 -
±2(9)

q2h3(q) Y[ (1
±1(9)

9̂ 2(9) n i1

±4(9)

9*1(9) n (!
±1(9)

*4(9) n (1 -

9")

9")

- 9 "

9")

9")

-qn

-qn

• 9 " )

-9")

- 9

- 9 "

- 9 "

-9")

- 9/i2(g) 1[J (1 -
±1(9)

- h4{q) n (1 -
±1(9)

)

)+9*2(9) n (1
±2(9)

+ 9*3(9) n (i •
±1(9)

" )

) " 9*l(9) 11(1
±2(9)

)

- gvg) n (1
±4(9) ±2(9)
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where

h2(q)

h3(q)

Level 2 modules of A

i - « " ) - ? 4 n ( i -
±2(6) ±2(18)

= n a-?")/• (?)+?2 n
±6,±8,±12(28) ±4,±4,±10(28)

=^(?2)V(?7)<^(?)-5 n (i -«")
±2,±3,±5(14)

4oo°oj= n (i-?n)^(?)+ n ( I - 9 B ) M ? )
±4(14) ±6(14)

n (I-?B)/(?)+« n (
±2,±12,±12(28) ±4,±8,±10(28)

II (i - ?")
±1,±5,±6(14)

= II (1 - qn)h*(q) + q II ( l - O ^ )
±4(14) ±2(14)

n (i -?-)/(?)- ?3 n (
±6,±8,±8(28) ±2,±4,±12(28)

5 n a - ?n)
±1,±3,±4(14)

±6(14) ±2(14)

where

±2,±6,±10(28)±1,±3,±5(14)
4 n (!-?") n (!+?")

±1,±3,±4(14) ±4,±6(14)
4 n a-?") n (I+9B)

±1,±5,±6(14) ±2,±6(14)

h*(q) =<t>(ql4n(q)-* R (1 - ?») II (1 + O
±2,±3,±5(14) ±2,±4(14)

This complete the level 2 calculation for C{
2

1\ G(
2

l\ A{2) and
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CHAPTER 5

The sets {W : W} and the actions of their elements

5.1. Specialisation of the Weyl-Kostant-Liu character formula

With reference to Section 1.6., let Q(A) be an affine algebra of rank r with Cartan

subalgebra H. Let U = { l , 2 , . . . , r } C / = { 0 , 1 , . . . , r } . Then Qv is isomorphic

to the simple finite-dimensional Lie algebra Q{A) which we will denoted by Q. As a

consequence of this we will replace all terms in Section 1.6. with a subscript U by

corresponding barred symbols. In particular,

W(U) = {weW\ $WC A+\A+}

P+ = {\en* | < X,af >€Z+ fori = l , . . . , r } ,

where W is the affine Weyl group. By Lemma 1.14, W(U) = {W : W] is the set of

right coset representatives of W with respect to the finite Weyl group W. Then for

any w G W, we may write

w = ww'', (5-1)

where w £ W and w' G {W : W}.

Lemma 3.6 and (3.29) implies that for any A G Ti* we have

A = n8
«=o

co

where A = X)i=i «̂̂ ->- ^ should be noted that from (3.30) w(p) = (g/c£)A0 + w(p) so

that

w(p)-p = w(p)-p. (5.3)
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Specialisation of ...

Lemma 5.1. The denominator D of the Weyl-Kostant-Liu character formula (1.25)

can be written as

D= J2 e{w')chVw~P = n C1 ~ e-a)muUa

w<e{W-W} a£A + \A +

Proof First note that the Weyl-Kac denominator identity is given by

e(iii\ f>w(p)~P TT (~\ p-a\multa

and the original Weyl denominator identity is

w€W a6A+

Then the above identities together with Weyl character formula (1.19) and (5.3) imply

that

w'e{w-W}

= I I C1 ~ e-a)m u ' ( a

a€A+\A+

•

Proposition 5.2. Let D = ̂ u;'g{w:vF} e(w') chV™ ~". Then for each infinite series

of rank dependent afRne algebras we have:

-l)MqM{t]t'}{x)r+u (5.4a)

P : D = EaEA(-l)|a|/39|a|/aM(a;)ar+i, (5.4b)

: JD = E 7 6 c ( - l ) h l / V 7 l / 2 < 7 > ( ^ , (5.4c)

: D = Ea6A(-l) |Ql /2? | a l /2W(x)2r, (5.4d)

U: D = E o ^ ( - 1 ) H / V t t | / 2 < a > (x)2r, (5.4e)
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£)(2) . D — Yl (—l)^f'+p^2g'e'fel(x)2 i (5.4f)

A(
2
2) : D = E7 6c(-l)W / 29W / 2[7](a02 )-+ 1 . (5.4g)

Proof First we need the change of basis from {aQ, a l 5 . . . , ar} to {8, eu..., er} for

each affine algebra and this is given as follows [Ma] :

: a0 = 8 + er+1 - eu a{ = e,- - e,+1 (1 < i < r).

: OCQ = 8 — Ci — e2, a,- = et- — e l + i (1 < i < r — 1) , orr = e r

: a0 = ^ — 2e1? a,- = e,- — e,+1 (1 < i < r — 1), a r = 2er (5.5)

.i: a 0 = ^ — ^1 — ^25 #« = e< — ^i+i (1 5: i ^ r ~ 1)5
 ar = 2e r

t : a0 = 5 - e1? a,- = e,- - e,+1 (1 < i < r - 1), ar = er

: a0 = 8 — 2eu a,- = e,- - ei+1 (1 < i < r — 1), ar = e r .

We will give the proof for the case A^}\ The proof for the other cases is similar.

From Proposition 3.1 and Proposition 3.2 it can be deduced that the positive affine

roots of A + \A + with multiplicity 1 are n8 ± (e; — ê ) for n > 0 and 1 <i < j <r + 1

and with multiplicity r are n8 for n > 0. Hence by Lemma 5.1 we have

n = l 1
00

n=l
00=n( n (

n = l l<i,J<r+l

It then follows from (2.9a) that

where a:,- = eu and q = e~s. O

As emphasised in Section 2.4 if the irreducible characters are not in the standard

form for a particular r then we have to apply modification rules.
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The right coset ...

5.2. The right coset representatives of W with respect to W for A^

We have yet to determine the set of right coset representatives {W : W}. Let us

work first with the affine algebras A^}\ Consider the identity (5.4a) obtained in the

previous section

>{) (5-6)

For all a and b such that 0 < a < r and 0 < b < r let

s0 if a = b = 0,

• • sa if 0 < a < r and 6 = 0,
(5.7)

sosrsr_i • • • sr_i+i if a = 0 and 0 < b < r,

• • 5a6rsr_i • • • s r_ i+1 if 0 < a < r and 0 < b < r.

We now compute w^){p) — p for a few cases to see the motivation for introducing these

Weyl group elements. For a -f b + 1 < r the results are given in Table 5.1. From this

table we observe that for large r they systematically give a contribution of the required

form to (5.6) in the sense that W(°)(p) — p 6 P+. If w' = u>(°i)U>(«2)... U>(«J>) we might

expect from these examples that

where £ has partition label (7T- •T'')" However for small r, i.e. when ax + bx > r, the

right hand side of (5.6) has to be replaced by (2.12a) where modification rules have

been taken into consideration. In general the elements of {W : W} are not in one-

to-one correspondence with the partitions f °^2""£")• Before we arrive at the general

result we need the following Lemma which can be proved by direct calculation.
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Table 5.1. : Some results from the action tO(«)(p) — p

w

So

* . ,

sosr

S0S1S2

W,

S0SrSr-i

S0SIS2S3

saWr

w(p) -

-2a0-

-2a. •

—3a0 -

-3a.

-3a.

- 4 a 0

—4a0

- 4 a 0

- 4 a 0

- 4 a .

•P

- a ,

-ar

— 2di

— Oil -

-2ar

- 3 a ,

- 2 a ,

- 2 a x

- a , -

- 3 c t r

-a,

-OCr-i

- 2 a s -

-O.-0

- 2 a r

-2a,-c

-2a ,_ ,

Ar character

{T;i}

{2;l2}

{P;2}

{3;l3}

{2T;21}

{F;3}

{4;I4}

v {3T;212}

tr_i {2P; 31}

- a r _ 2 T {14; 4}

depth

1

2

2

3

3

3

4

4

4

4

4

136



w ( ! ) ( " • • ) =

The right coset ...

Lemma 5.3. Let a,- be a simple root and a + b + 1 < r. Then
cto + ai + a r i = 0,

a,-+i 1 < i < a - 1,

— (a0 + c*i + • •. + cta) i = a,

a0 + ocx + ... + aa+x i = a + l < r — b,

a,- a + 2 < i < r - b- 1,

a0 + a r + ar_i + . . . + ar_;, z = r — b> a + 1,

- ( a 0 + a r + ar_! + .. • + ar+i-b) i = r + 1 - b,

. a,-_x 2 > r + 2 - 6.

In the limiting case i = a-\-l = r — b, iy(«)(a,-) = iO(°)(aa+i) = a 0 + <$ •

Lemma 5.4. With the situation as in Lemma 5.3.

( a0 + «i + • • • + Oj+i + a r 0 < 2 < a — 1,

a r t — a,

c*o + « ! + . . . + a,- + a r a + l < 2 < r — 6 — 1 ,

o 0 + a r + 5 i = r — b,

6 i = r.

fa r .1+a r .2 + . . . | a r . M 0 < i < b - 2,

- Q 0 - a r i = b — 1,

av_i + c*r-2 + • • • + Qfr_j 6 < i < r — a — 2,

a r _ i + a r - 2 + • • • + a r _ i + i r - a < i < r

ii)

6 i = r.
Proof Using Lemma 5.3 and then direct verification for each case.

Proposition 5.5. Let ax + &i + 1 < r. The elements of {W : W} of A™ of length

n include all
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such that in Frobenius notation £ is the partition :

W b2 ... I

with ax > a2 > ... > ap > 0, bx > b2 > ... > bp > 0 and n = YlPi=i(ai + &« + !)• The set

of all these elements w( will be called the core Wr of {W : W}.

Proof We shall prove this by induction with respect to length n using Proposition

1.16.. Since $,, = { a j , then the only $Si which is a subset of A + \ A + is $ J o , so that

the only element of {W : W} of length 1 is s0 = w^oy

Next consider

—a0 if i — 0,

GA+\A+ ifi = l,

if i = 2,...,r- 1,

I a0 + ocr € A+\A+ if i - r.

Then by Proposition 1.16 the elements of {W : W} of length 2 are sosi = w^i^ and

sosr — W(°)- Hence the Proposition is true for n = l and 2.

Assume that the proposition is true for n. By hypothesis we have the following interval:

0 < ap < a p _ i < . . . < a i < r — bi -{• 1 < r — b2-\-l<...<r — bp-\-l<.r.

By Lemma 1.7 and Proposition 1.16 we need to consider only those at that satisfies

w(cti) > 0 and u^a,) 6 A + \ A + .

If i = 0 then

< 0 dp = 0, bp = 0,

ap £ A+\A+ ap ^ 0, bp = 0,
(5.8a)

T+1_p i A+\A+ ap = 0, bp ^ 0,

Jj = O aj + Uj-l a r+ l - j «p 7^0, Op yt U.

For 1 < i < ap — 1, we have by Lemma 5.3 and Lemma 5.4

.. .we*) (a,) = ai+p (5.86)

a
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The right coset

If i = ap then w^i^w^'j).. . u>(»p)(a.) < 0.

If i = cii + 1 then

^ ^ )

If ax + 2 < z < r — 6j — 1 then W(«i)W(*i)... iW(«P)(a,-) = a{ ^ A + \ A + .

If i = r — 6i then

If { = r — 6P + 1 t h e n iy^«i^u;/«2^... uv«p }(<*,•) < 0.

For r — bp + 2 < i < r, we have

We are then left with the following values of i to be considered.

ap + 1 < i < ai , and r — b1 + 1 < i < r — bp.

Let us partition the integer interval ap < i' < ax that is (ap ,a!] into

(«P , ap_i] U (ap_!, ap_2] U . . . U (a 2 , ax]

and the integer interval r — &i + l < z < r — 6P + 1 into

[r - &! + 1, r - &2 + 1) U [r - 62 + 1, r - &3 + 1) U . . . U [r - &„_! + 1, r - &p + 1).

Consider a case a^ < i < ak^x. If ak-i = a^ + 1 then z = a^ + 1 only.

139



Chapter 5

If (ik-! = ak + j , j > 1 then i = ak + l,ak+ 2,... ,ak + j and

(

While for t = 2 ,3 , . . . , j - 1

-f

aak+2 + ar)

A+ \A

and

S i m i l a r l y , c o n s i d e r a ca se r — fefc_ x -\-l<i<r — bk + l. If &£_! =

on ly .

() ( + ar

then i = r — bk
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The right coset

If 6 f c_! = bk + j , j > 1 t h e n i = r - bk - j + l,r - bk - j + 2,... ,r - bk a n d

bk-2

ar

«r + ar_i + . . . + ar_6k_i)

a2 + ar + ar_i + .. . + ar_

= a0 + ai + ..

While for t = 2 ,3 , . . . , j - 2

ar + ar_i + ar+1_6jc_t G A+ \A+ .

and

w(l\) • • •

— O>-r-bk-t-

By Proposition 1.16, the expression for elements of {W : W} of length n + 1 are then

IW(«P)S0 if dp 7̂  0 a n d 6P ^ 0,) (

z«4 = iO(»i)ii>(°2)... i«(°p)Safc+1 for all k such that ak~\ — ak > 1,

to5 = iy(«i)iW(«a).. .iy(»p)5r_ill for all k such that bk-i — bk > 1,

which can also be written as

) ( oj if ap ^ 0 and 6P ^ 0,
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ru4 = W('i)W(«i) .. .w('k-i )W,°k+>).. .W('p) for a l l k s u c h t h a t ak-i — ak > 1,
v ' l ' *• b3 ' K*k — l *• *>k b'1

W5 = wrb
1)w(l2) • • -W(°k-i}W( «* ) . . . iW(«i>) for all k such that bk_l — bk > 1.

This is precisely the required list of elements of length n + 1 defined by Proposition

5.5. •

Proposition 5.6. Let al + 6X + 1 < r and w^ € Wr C {W : W} be a core element

of length n as given in Proposition 5.5. Let £ = ( j'^2...^1') be a partition of n. Then

p-
J = l j=l i = l

Proof We shall prove this result by induction on p. Let £ = (71J!...J'') an<^ ^ =

VMs •• •6%a!>+
1
1) b e partitions of n and m, respectively, and let ^' and A' be their conjugates

respectively. Thus m = n + aP+i + &P+i + 1. Then by (2.5)

+

and

6

o

+ 1 forfc = p + l ,

for k — p + 2 , . . .

for A; = p + 2 + £

for Jfc > b, + 2,

for k = 1 , . . . , p,

(5.9a)

+ 1,

for A; =

for fc =

2,. . . , p + 1 + a
p+l,

(5.96)

Let < <!>„, > =

1*0 for k > at + 2.

a so that by Proposition 1.11

p-w(p) = < $„, > .

The fact that iW(«i) = 30SJS2 • • • • s a i s r 5 r _ 1 . . . 6 r_6 l + 1 and (1.12) we then obtain
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The right coset ...

< $«,,.,, > = Oi0 + so(al) + 50S!(a2) + ... + s0... saisr... s r_ i l+2(a r_ i l+1)

= a0 + w(j)(oi) + w{io)(a2)... + wri-i}(aai)

+ WCJ ) K ) + W( V)(a--0 + • • • +

= a0 + (a0 + ai) + • • • + (a0 + «i

+ (a0 + a r) + (a0 + ar + ar_x) + .. • + (a0 + a

= (at + fei + l)a0 + axai + (ax - l)a2 + . . . + aai

+ biOtr + (61 - l)a r_i + • • • + av-h+i-

For ^ = f °' J and ̂ ' = f *s J the above expression gives

ai i

< $w .» >= (Oi + 61 + l)a0 + E( f l l + 6l + 1 - E ^ ) ° J
b l j = l «=1 j = l « = 1

Hence Proposition 5.6 is true for p = 1. Assume that it is true for p and let w' =

w^w^p+iy By the generalisation of (1.12), < $„< >=< $n,{ > + < t/;?$u, Op+1 >, so

that

U {a0 + ar,Q!o + Q:r + a r_ l 5 . . . , a0 + ar + ar_! + ..

This expression and (5.8a - 5.8c) then imply

< w^w + > = w((a0) + w((a0 + at!) + ... + w((a0 + ar + ar_i,
bp+i

= (ap+1 + 6P+1 + l)(a0 + ai + • • • + ap + ar-P+i + ar_p+2 + . . . + ar)

(aP+i - l)aP+2 + • • • + 2ap+aj )+1_1 + ap+ap+1

{bp+i - l )a r _ p _i + . . . + 2a r_p_ i i )+1+2 + ar_p_br+1+1.

However by hypothesis

< §Wi > =
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The coefficient of each ak in < $TO( > + < w^w > is then given by the following

n + ap+1 for k = 0,

n + ap+1 + p + 1 - & - £,*=! £• for fc = p + 1 , . . . , p + ap+i,

rc-ELi£ for fc = p + l + ap + 1 , . . . ,a1 ,

0 for k = ai + I,... ,r — bi,

E*=i4l~r 61+2-i forA; = r + l — 6 i , . . . , r — p - 6p+i,

k + p + bp+l - r + Ef=i6l"r 61+2-i forA; = r + l - p - bp+u . ..,r-p,

I ap+1 + bp+1 + 1 + E ^ 1 " 7 ^ 61+2-i for fc = r + 1 - p , . . . , r.

where ax > p + aP+i and r — bx < r — p — 6p + i . On noting that rn = n + ap+1 + fep+1 + 1,

(5.9a) and (5.9b), the above coefficients of the ak can be simplified and coincide with

the coefficient of ak in

< $m > = ma0 -

Hence, by induction the proposition is true for all p. •

Now we are in a position to prove our key result regarding the core contribution

to (5.6).

Proposition 5.7. Let q = e~5 and let w( G WT be the core element of {W : W}

defined in Proposition 5.5, then

V

where £ € F is the partition which in Frobenius notation takes the form (

Proof Proposition 5.6 implies that

j=\ i=i
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er+1 - £ l ) -

j = l 1 = 1

With the fact that n =

; = 1 i = l j = l 1 = 1

.^t1 ̂ ' ii; can be seen tnat

; = 2

61 + I

Since e(i«f) = ( —1)'?' we have the result. •

Notice that (5.11) can be written in the form

MP)~P= E (S+ei-er-i+2), (5-12)

where the summation is carried out over all (i,j) such that a box lies in the ith row

and jth column of the Young diagram F(£).

Next we consider the non-core action w^^ where c + d > r. Again by Proposition

1.11 we have

P ~ W - . . . + So-Si... scsr... sr_d+2(ar-d+i)
c

= 8 + (c + d + l)a0 + E(«i + a2 + ... + a,-)

r—c—1 c+d—r

»=i t=i

When casting this expression in terms of the 8 — e basis we obtain
r-d+l

— p = —(c + d + 2)8 + (<i + l)e! + E e» ~ (c + 2)er+1 —
i=2 '=2

e « - E e>-+2--
(5.13)
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where u = ( d .) and 1/ = ( c + 1 , ) .
r* V r-d' V r - c - l /

Next let A = 53iL'iV«e» "" HiL*? uier+2-i where /z and v are partitions of the same

positive integer. Since each e< [i — 1,2,... , r + 1) lies in "H* then the level -L(e,) = 0

and hence L(X) = 0. For c + d > r we can write

^ ( 5 ) = = S0Sl • • • scsr • • • Sr-d+2sr-d+l — tesrSr-l • • • Sc+2S1S2 • • • sr-d i

where 6 = tx — e r + 1 and there is no intersection between the intervals [ l , r — d] and

[c + 2 , r ] . Since each Weyl reflection 5,- correspond to a transposition (i,i + 1) then

the permutat ion correspond to the Weyl reflection w = srsr_i... sc+2sis2 . • • sr_d is the

permutat ion

(r + 1 r . . . c + 2 ) ( l 2 . . . r - d + 1).

Hence
r-d+l l{n)

W{\) - /ir_d+ie! + J2 Vi-lei + H / ^
i = 2 i=r-d+2 /

:=2 !=r-c+l

where the second and fourth summations are considered to be zero if r — d + 2 > £(fj.)

and r — c + 1 > £(v) respectively. Then by (3.21)

= w(X) + L{\)9 - ((u>(A) | 9) + -L{X){e | 6))S (5.146)

= 1i)(A) - (Hr-d+l + K-c)S •

Theorem 5.8. The general form for the right coset representatives of W with re-

spect to W of the afRne algebra A^ is

where

r > ct > ... > c2 > Ci > ax > a2 > ... > ap > 0,

r > dt > ... > d2 > dx > bx > b2 > ... > bp > 0,

with cx + dx > r > ax + bx + 1.
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Proof In term of the core elements we can write w = w^t)... w^i jiu^i )ty?. We shall

prove the theorem by showing that there is a one-to-one correspondence between the

elements of {W : W} and the expression in (2.15a), namely

E E E
J=0 fc.

where k = (m l 5 . . . ,m5) with mi < . . . < m5, k = (mi , . . . ,fhs) with mi < . . . < m
4,

First we note that there is a one-to-one correspondence of labels with the following

identification:
m~; i > Ci + 2

m,- < >• rf< + 1

It just remain to show that that for our particular w we have

Now by (5.12)

= P

where /i° = (' = E(y)eF(O ei a n d

and (5.14)

= P~ U | * — (ci

= - ^ = E(.j)ef(O er+2-i- Furthermore by (5.13)

where to(/x° — i/0) can be computed from (5.14a). Next let
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nx = dx

e,

r ^ +

+ E
i=2

er+2_,.

:=2

E

;=r-ci

then

In general p,% and vx are defined recursively as in (2.14b) and (2.14c) respectively,

ns- = d{ + I -\- ̂ r+i-d a n d nj = c,• + 2 + z/̂ ~J . Continuing the procedure iteratively we

obtain
W(P)

6 + p-

= p - (U

Hence

w(p) -p=-{ (5.15)

The parity of w is

and hence the Theorem is proved. D

Since there is a correspondence between the Weyl group element

w = iW(c*)... W('2)W(<=i )U>j with that of (2.15a) then the action of w G {W : W}

on p can be obtained diagrammatically, i.e. w(p) — p can be obtained from F(£;£')
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by adding t pairs of boundary strips of length r + 1. For example, let us note the

result of computing w(p) — p with w — w^w^^w^y for the affine algebra A^K First

note that w^i^ = w^ = sosi is a core element and contribute the Young diagram

•^(£;£') = ^ (2; I2). tf(3) = s0SiS2s3s5S4 is a non-core element and its action amounts

to adding a pair of boundary strips of length r + 1 = 6 each extending over 5 and 3

columns respectively. Similarly the action t y ^ = S0-S1-S2.S3.S5.S4 amounts to adding a

pair of boundary strips each extending over 6 and 3 columns respectively. Hence we

obtain the following Young diagram F(z/2;ju2):

so that from (5.15) this gives

- p

= - (2 + (3 + 4) + (5 + 11) - 2)8 + 4d + 4e2 + 3e3 + 3e4 - l le6 - 3e5

= - 236 + 15£l + 15e2 + 14e3 + 14e4 + 8e5 •

5.3. The right coset representatives of W with respect to W for X^ r )

All the results of the previous section for A^ D Ar may be extended in very much

the same way to more general cases X^^ D Yr. For the other infinite series of rank

dependent afnne algebras we will be content in this thesis with stating conjectures on

the elements of the right coset representatives {W : W}. We suspect that they can

all be proved in the same way as in the case of A^\ All our results are based on an

extensive computer assisted study of w(p) — p for various w. This has allowed us to

identify all w G {W : W} with some confidence. The resulting elements are then used

to calculate w(X + p) — p.
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Definition 5.9.

(i) For 0 < a < r let

{ So if a = 0,

(5.16)
s0Si... sa if a 7= 0.

A general expression is given by w<ai>w<a3> ... w<ap>.

(ii) For 1 < a < r let
s0 if a = 1,

s0s2s3...sa if a ^ 1,

(5.17)

Si if a = 1,

SiS2s3 ... sa if a T^ 1.

A general expression is then given by W[ai]W[aj ... W[ai]... W[ap] with W[ai] = w^ for i

odd, and W[ai] = w^ for i even. Thus the Weyl reflections for each sequence begin

alternately with s0 and sx.

Again before giving a general result let us compute some terms for the denominator

of the Weyl-Kostant-Liu character formula. Consider first the case when ax < r — 1.

In Table 5.2a, 5.2b and 5.2c, respectively, we compute for a few cases w(p) — p for the

representatives affine algebras .B^1 ,̂ -Dr+\ and
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Table 5.2a : Some results arising from W[a](p) — p for B

w

So

s0s2s1

s0s2s3

S0S2S3S4S5

S0S2S3SIS2

w{p)-

- o c 0

-2a0

—3a0

—3a0

- 4 a 0

- 4 a 0

- 5 Q 0

—5a0

—5a0

~P

-0.2

- 2 Q 2

- a , -

— 3a2

— 4a2

- 2 a ,

-2a2

- a s

- 3a2 -

- 2 a 3

- 3 a 3

- 4a2 -

- 4 a 2

- 0:3

- a 4

— 2a4 — a5

- 2a3 — a4

- 2 a 3

B r character

[I2]

[212]

[23]

[313]

[3221]

[414]

[515]

[42212]

[3222]

depth

1

2

3

3

4

4

5

5

5

Table 5.2b : Some results arising from w<a>(p) — p for

w

So

0 1

CQOIuQ

w{p)-

-a0

—3a0

—4a0

—5a0

- P

- « .

- 2 a !

- 2 a , -

B r character

[1]

[21]

[22]

a2 [312]

depth

1

3

4

5
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Table 5.2c : Some results arising from w<a>(p) — p for C

w

So

0 1

S0S1S2S3

S0SIS2S3S4

S0SiS2S3S0

w(p)-

- 0 .

- 2 a 0 -

- 3 a 0 -

—3a0 -

- 4 a 0 -

- 4 a 0 -

- 5 a 0 •

—5a0

- 5 a 0

P

- a ,

- 2 t t l

- 3ai

- 3 a ,

- 4 a ,

- 4 a ,

— 5ai

- 6ai

- a ,

- 2 a 2

-a,

- 3 a 2

- 2 a 2

- 2 a 2

Cr character

< 2 >

<31 >

<412 >

< 3 2 >

-a3 < 513 >

< 431 >

- 2a3 - a4 < 614 >

- a3 < 5312 >

<4 2 2>

depth

1

2

3

3

4

4

5

5

5

With Proposition 5.2 in mind we make the following conjectures on the core ele-

ments of the right cosets {W : W} generalising Propositions 5.5 and 5.7 which apply

to

Conjecture 5.10. Let ax < r — 1 in the case of afEne algebras B^ and A2
2r-x and

ax < r — 3 in the case of D^}\ Core elements of {W : W} for the algebra B^\ D^

and A2r-\ of length n are given by

wa = w[ai]w[a2]... w[ap]

where ax > a2 > • • • > ap > 0 and n =

wa)chv

%=i a>- These elements are such that

/2
9H/2[a] for B^ or ^

«l/29|a|/2 < a > for %
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where a 6 A is a partition of the form (o»- la*-i"op-i>\

Conjecture 5.11. Let d < r - 1. Core eJements of {W : W) for the algebra C

and A2V of length n are given by

= W<ai>W<a3>...W<ap>

where ax > a2 > ... > ap > 0 and n = p + JZLi a«- These elements are such that

{ (__ 1)171/2^171/2 < 'y > for C^

(_l)l7l/29hl/2[7] for 4 ?

where 7 <E C is a partition of the form ("l+1 fl3+1' - a ' + 1 ) .

Conjecture 5.12. Let ax < r — 1. Core elements of {W : W} for the algebra

of length n are given by

where ax > a2 > ... > ap > 0 and n = p + £X=i ai- These elements are such that

where e £ E is a partition of the form ( ̂  a
a
2'' "* J.

It should be emphasised that thanks to Proposition 5.2 and the fact that the

w(p) — p € P+ if and only if w € {VF : W}, the only aspect of these Conjectures

requiring proof is the precise form of wa, io7 and we. Next we make further conjectures

for arbitrary elements of {W : W} analogous to Theorem 5.8 in the case of A^.

Conjecture 5.13. T ie general form of the right coset representatives of W with

respect to W of the afRne algebra C^ is

i> ••• w<hl>w<ai>w<a2> . . . w<ap>

with 2r — 1 > bt > ... > bx > ax > ... > ap and for b>r,

w<b> = -So-Si . . . S r _ 1 S r 5 r _ 1 . . . S2 r_6 .
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Further let w = i,_,> . . . w<bl>wy. Then

where all the variables are as described in Proposition 2.1 with the t-tuple given by

k = (b1+3,b2 + 3,...,bt + 3).

For illustration let us note the result of computing w<7>w<i>(p) — p for the affine

algebra Cg . First note that tw<i> = sosi = wy is a core element and contributes the

Young diagram ^(7) = F(31)

and w<7> = sQSiS2S3S4s5s6s5 is a non-core element and contributes an additional bound-

ary strip of length 14 extending over 10 columns.

Hence

w<7>w<l>(p) - p = -US + lOei + 4e2 + 2e3 + e4 + e5.

Conjecture 5.14. Tie general form of the right coset representatives of W with

respect to W of the afEne algebra A^} is

where all the terms are as in Conjecture 5.13. Then

where all the variables are as described in Proposition 2.1 with the t-tuple given by
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For illustration let us note the result of computing u><7>io< i>(p) — p for the affine

algebra Ail . As before tu<i> = So-Si = w7 is a core element and contributes the Young

diagram Ffr) = F(31)

and w<7> = s0SiS2s3S4S5s6s5 is a non-core element and its action amounts to adding a

boundary strip of length 13 extending over 9 columns .

Hence

w<7>w<i>(p) - P = - 4e2 + 2e3 + e4 + e5.

Conjecture 5.15. Tie general form of the right coset representatives of W with

respect to W of the affine algebra Di% is

where all the terms are as in Conjecture 5.13. Then

e{w)chV M~"

where all the variables are as described in Proposition 2.1 with the t-tuple given by

fc = (61 + l,62 + l , . . . , 6 t + l) .

For illustration let us note the result of computing w<7>w<x>(p) — p for the affine

algebra D? . As before wKi> = sosi = u?7 is a core element and contribute the Young

diagram F(e) = F(21)
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and w<7> = s0SiS2s3S4S5SeS5 is a non-core element and its action amounts to adding a

boundary strip of length 12 extending over 8 columns.

Hence

w<7>w - p = -188 2e3 + e4 + e5.

Conjecture 5.16. The general form of the right coset representatives of W with

respect to W of the afRne algebra B^ is

^ , ] W [ 4 . - i ] • • • w[b1]W[a1]W[aa] • • . W[ap]

such that 2r — 1 > bt > ... > h > r > a-L > ... > dp,

3 0 s 2 . . . 3 r _ i S r 5 r _ 1 ...s2r-b ifb^2r-l,

s0s2... 5 r_i5 r5 r_! . . . s2s0 if b = 2r — 1,

S i S 2 . . . 5 r _ i 5 r s r _ i . . . 5 2 r - i if b ^ 2r - 1,

SiS2.. . 5 r _ i 5 r s r _ i . . .s2sr ifb = 2r — 1.

Further let w = uty.jUty,..!] • • • w\j,x\wa. Then

M~P ( i )e(w)chV

where all the variables are as described in Proposition 2.1 with the t-tuple given by

k = (bub2,...,bt).

For illustration let us note the result of computing w^w^(p) — p for the affine

algebra B^. As before w$ = s0s2 = wa is a core element and contributes the Young

diagram F{a) = F(212)
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and w$ = s0S2S3s4s5s6s5 is a non-core element and its action amounts to adding a

boundary strip of length 11 extending over 7 columns.

•

•

•

•

•

•

•

• • 1 ••

Hence
,,,(°)7/,(l)/,.\ „ _
W[7] W{2] \P) — P — ~ P

= - 98 + 7d + 3e2 + 2e3 + 2e4 + e5.

Conjecture 5.17. The general form of the right coset representatives of W with

respect to W of the afRne algebra A^-i is

where all the terms are as in Conjecture 5.16. Then

€(W) chV™'" = (_l)W/2+m-9l

where all the variables are as described in Proposition 2.1 with the t-tuple given by

k = {b1 + l,b2 + l,...,bt + l).

For illustration let us note the result of computing w^w^(p) — p for the affine

algebra A^. As before w^ = s0s2 = wa is a core element and contributes the Young

diagram F(a) = F(212)

and w^l = s0s2s3S4S5s6s5 is a non-core element and its action amounts to adding a

boundary strip of length 12 extending over 8 columns.
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Hence
W[7]W[2](P) - P =S0S2S3S4S5S6S5

= -108 + 8c! + 3e2 + 2e3 + 2e4 + e5-

Finally, in the case of D^ we have to introduce a slightly different form for the

elements of {W : W}. If (Ai , . . . , AP_i, Ar) is a partition label for a dominant weight of

a DT module then from Table 2.5 we observe that Ar_i is always positive but the range

for Ar is — Ar_i < Ar < Ar_i. Hence it is possible for Ar to have negative values. For

example, in the case of D^\ we obtain

s0s2s3s4(p) — p = -48 + 4ei + e2 + e3 + e4 + e5

s0S2S3s5(p) - p = -48 + 4ei + e2 + e3 + e4- e5

sos2s3s4s5(p) - p = -56 + 5ei + e2 + e3 + tA

sos2s3s5sis2s3s4(p) — p = —98 + 5ei + 5e2 + 2e3 + 2e4 — 2e5

s0s2s3s5s1s2s3s5(p) — p = —78 + 3ei + 5e2 + 2e3 + 2e4 — 2e5

Hence all these Weyl reflections, except the last one, are valid elements of {W : W}.

With these examples and from further computations we make the following conjecture

on the elements of {W : W}.

Conjecture 5.18. Tie general form of the right coset representatives of W with

respect to W of the affiue algebra D^ is

such that 2r — 1 > yt > ... > j ^ > r > xt ^ x,+1 > r — 1 > a : > . . . > ap,

s0s2... s r_2s r_! if x = r — 1,

so-s2 ...sr_2sr if x = r,

SiS2 ... sr_2sr-.i if x = r — 1,

^ ' ^is2 ... sr..2sr if x = r ,
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.,,(0) _
w[y] -

S0S2 • . • 3 r _ 2

S0S2 •..5r_i5rSr_25r_3

S0S2 . . .Sr_!

if y = r + 1,

.s2r_y if r + 2 < y<2r-2,

. .s2s0 if y = 2v — 1,

Further let u; =

5152...5 r_25 r_15 r ift/ = r + l,

. . . 6r_isr5r_25r_3 . . . s2r_y if r + 2 < y < 2r - 2,

. . . 5r_!3rsr_2sr_3 . . . 525! if y = 2r - 1.

,_i] • • • w^Wa where 6,- = xt or i/,-. Then

where all the variables are as described in Proposition 2.1 with the i-tuple given by

k = (6i — 1, b2 — 1 , . . . , bt — 1) except when bt — r — 1 the boundary strips extend over

r — 1 columns as in the case of bt = r. Further if w contains the Weyl reflection w[°y

then the coefficient of er is negative.

For illustration let us note the result of computing w(p) — p with

!W[qW^w^ for the affine algebra D^\ First note that w$ = s0 = wa is aw =

core element and contributes the Young diagram F(a) = F(l2)

w\?] = sos2S3 is a non-core element and its action amounts to adding a boundary

strip of length 6 extending over 3 columns. Similarly the action of w$ = sos2s4 and

w[s] = soS2s3S4S2, respectively, amount to adding boundary strips extending over 3

columns and 5 columns.

i
<

-4

• -

- •

1

<

T
[i

y1
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Since w does not contains the term w$ then the coefficient of e4 is positive. Hence

W[%]Wll]Wp]W[l]{p) - P =S0S2S3S4S2 SxS2S4 S0S2S3 S^p) - p

= - 176 + 9Ci + 5e2 + 3e3 + 3e4.

5.4. The actions of the right coset representatives on A

The numerator of the Weyl-Kostant-Liu character formula involves evaluating ex-

pressions of the form w(\ + p) — p. We thus need a generalisation of Proposition 1.11,

i.e. a general formula to evaluate w(X) — A. In this situation we need the following

Lemma which appears in one of the exercises in the text by Kac [Kac4].

L e m m a 5.19. Let w = sil . . .sit be a reduced expression of w £ W and (3 € <&«,.

Tien the sequence /3,5 i l(/9),5 i25,1(^),... contains a unique simple root, say o^p), and

for \<EH*

Proof Since /3 € A+ and to~1(^) < 0 then at a certain stage, say siy, in the sequence

of w~l we must have stj,... ,3i2sfl(/?) < 0 but a;(/3) = sij_l,...,s.^Sj^^) > 0. Then

s^ (a:^)) < 0. By Lemma 1.5, the fundamental reflection Si permutes the positive roots

other than a,-. Thus ctj^ = aii which is a simple root.

Suppose that there exist another simple root aik in the sequence. Then

= «.•*-» • • • • s , - J ( a i i ) > 0 .

But sik_1 ... sij is a reduced form so that by Lemma 1.7(b) s<fc_, . . . ^^.(a^.) < 0 which

is a contradiction. Hence a ^ ) is unique.

The second part (5.18) of the Lemma can be proved in the same way as in the

proof of Proposition 1.11. •
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As before let us concentrate first on the case of the affine algebra A[}\ In this

section we will always assume that a weight A has a Dynkin label (Ao, A1 ? . . . , Ar). Let
Q0 for j = 0,

s o s i . . . s i _ i ( a j ) for j = l , . . . , a ,

sQS!... sa(ar) for j = r,

. . . sasr... (a,) for j — r - 1 , . . . , r - 6 + 1.

(5.19)

Then by (1.12) we have

It can be easily checked that s^fy) < 0 so that a ^ ) of Lemma 5.19 can be taken as

ci} for each fy. If a + b + 1 < r then by (1.12)

= Aoao + A^Qo -

+ Ar(a0 + ar)
a 6

... + \a(oc0 + .. . + aa)

Ar_(,+1(a0 + ar + ... +
(5.20)

b b

In the 8 — e basis this reduces to
a b

A = - E Ai + E W ; ) £ + (Ao
i=o j= i

a+l a
(5.21)

'-l£»' "~ ( E Ai)e>-+1 ~ E Ar+l-.£r+l-i •
i=2 j=0 « = 1

A generalisation of (5.11) and (5.21) for the action of a core element of {W : W} takes

the following form.

Proposition 5.20. Let w^ = W(°iy . .W(°p) be a core element of {W : W}. Then

the action

w((\) - A = -(pA0 + E E A»- + E E x^-<)t

Ai + E Ar+i-i)^ + E 1 EA'--^-
»=1 j=0 i=l i=p+lJ=l
P a; «-l ii+1 fi

r+l - i ) e r+2- t — 2 ^ / J A r + 1_,-+ je r + 2_i,
«=p+l;=l

(5-22)

161



Chapter 5

or in terms of the Young diagram

MX) ~ A = E (~XnJ + K& - \yCr+2-.-), (5-23)
(•",i)6F(0

wiere
f j - » ifi<j,

i7« = { (5-24)
I r + 1 — i + j if i > j .

Proof We shall prove this important result by induction on p. When p = 1, then

(5.21) is the required special case of (5.22) and it is easy to see that the action iU(«i )(A) —

A can also be written in the form

- A =

in agreement with (5.23). Hence the Proposition is true when p = 1. Now let

^'P+I^ = tU(«i)... u>(«*)iy(«,,+i). Then from (5.20)

u;(-,+!>(A) - A = - ( ^ A,- + E Ar+i-.)a0 -
p + 1 i=0 i = l i=l j=i

r bp+i

~ E ( E Ar+L^a,-,
»=r+l-tp+1 j=r+l-i

so that

u;fu;(:?+1)(A) - wc(A) = - ( E A,- + E Ar+i-,-)u>€(ao) - E ( E
r+1 1=0 t = l i= l j= i

r 'P+I

- E ( E K+i-j)Mai)-
«'=r+l-6,+i j=r+l-i

Then from (5.8a - 5.8c) we have:

Ar+i-i)(£ - ap+1 - . . . - ar_p)
i=0 i= l

r+i °H-i r tp -̂i

i)(«.+P)- E ( E Ar+W)(«,-P)
t=r+l-6,+i j=r+l-»

= - ( E A.- + E w o * + (E Ai + E w,)(«p+i - cr-,+0
i = 0 » = 1 >=0 » = 1

"p+i "p+i r ip+i

+ E ( E Aj)(ei+P+i-e.+P)+ E ( E Ar+1_J)(e,_p+1 - e,_p)
i=l J=i i=r+l-bp+1 j=r+l-i
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Op+l ap+l

w. Ar+1-.Cp+l
i = 0 » = 0

However using the hypothesis to write down w^(A) — A we have

w^X) — A = u^(A) — A —
»"=0 »=o

— 2_, A,e r_p + i — A,e,_p

«=0

A,-

— 2L,Ar+i-,cp+i —
i=0 « = 1 i=0 i=r+l-4p+i

This can be expanded to show that the coefficients of e,- coincide with the coefficients

of 6i in

with T] as in (5.24). D

The remarkably succinct formulation of (5.23) in terms of Young diagrams lends

itself to a simple diagrammatic method for computing u>f(A) — A. By way of illus-

tration, consider the case of w^ = w^w^^w^o^ so that £ = (52°) = (523212). The

relevant composite Young diagram and the appropriate numbering of its boxes by 77,̂

in accordance with (5.23) and (5.24) take the form:

3

4

2

3

r

0

1

2

r - 1

r

0

1

r-4

r-3

r - 2

r - 1

r

0

0

1

2

3

4

r

0

1

2

3

r - 1

r

0

r - 2

r - 1

r

r-3r-4
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The depth of W((X) — A is obtained by adding the contributions Xv specified by the

entries 7] appearing in each box of F(£) (or equivalently F(£')), as displayed above.

Similarly the coefficient of e* is obtained by adding (resp. subtracting) all the contri-

butions An that appear in the corresponding rows of F(£') (resp. F(£)). Thus for this

example the coefficient of —8 is

3A0 + 2Ai + 2A2 + 2A3 + A4 + Ar_4 + Ar_3 + Ar_2 + 2Ar_! + 3Ar + 3Ar+1,

and the dependence on e,- for l < i < r + l i s given by:

(Ao + Ar + Ar_i + Ar_2 + Ar_3 + Ar_4)e! + (Ax + Ao + Ar + Ar_!)e2

+ (A2 + Ax + Ao + Ar)e3 + (A3 + A2)e4 + (A4 + A3)e5

- Ar_4er_4 — Ar_3er_3 — (Ar + Ar_i + Ar_2)er_2

- (Ao + Ar + Ar_i)er-i - (A3 + A2 + Ai + Ao + Ar)er

- (A4 + A3 + A2 + Ax + A0)er+i-

The above expression is valid for r > 10. But for the case r < 10 we have to apply the

modification rule to F(£] £') and identify r/ by filling the remaining boxes with entries

taken modulo (r + 1) as we will describe below.

By Lemma 5.19 and (5.19) it is not difficult to show that for c + d > r
r c

A - tw(;)(A) = (J2 Xi)a0 + Xc+18 + £ ) A4(ai + a2 + ... + a,-)
«=0 i=l

r-c-1

e+d-r

+ ^2 Ac+I_j(o!o + ar + ar_! + . . . + ac+2-i),

where the third and fourth summations are considered to be zero if r — c — 1 < 0 and

c + d — r < 0 respectively. In term of the 8 — e basis,

A = ( E Ai+f:Ai)*+(Ao+ E A ^ + S^c+x
jzzr-d+l ;=0 j=r-d+l «"=1

c+1 r-c-1

~(E^i)£r+l— z2 K+1
j=0 i=l
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In the light of (5.13) and (5.23), the above expression can be written as

e+l

(j)(A) — A = —( 2_j Aj + z_ / A ; ) " + Z^t A i i i e « ~ 2-J A,y€r+2_i (5.25)
j=r-d+l j=0 (i,j)^f(ii) (,'<i)^F(_v)

where \i = (rid) and v = (, , '^j). Diagrammatically the contributions of A .̂. and Xv..

are specified by:

^ c + ] . . . A ,

Ar

Ao

Ao

A i

Ar

-

. . . A ._,,.

Next let
7 = ^e«— E Ki^r+2-i

«"=1 j = l 1=1 J = l

where /x and v are partition of the same integer. Comparing with (5.14) we can make

the following correspondence
Mi

" i

and these implies that

_ ( y - An + T An
 >

where
Vr-d+l

w (7)= E \i,r.,
r - d + l Mt-

E E
>=2 j =

r-c I'I-I
(5.26)

— 2-^ A^ Ar)i_,,j
»=2 j' = l

7 .
«'=r-c+l j = l
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Noting that by (5.23)

U> f(A)=A-(

= A ~ ( E
E

(O")eF(«')

C'- E
(«J)6F(O

with /x°(A) = E(,;)6F(f) Aw«i a n d u°(x) = Ew)€F«) ^i^+a-.-- Further by (5.25)

+ E A™e<
ei+1

i=0

A^

E
where tu(^°(A) — ^°(A)) can be obtained from (5.26). As in the case of (5.24) /x°(A) —

f°(A) can be computed by filling the composite Young diagram F(£;£') with corre-

sponding entries \Vij. It then follows that
o . o

Cl+1

= A-( E E E K-.J
t=o

where

E

= (Ao

+ E ^

E AfCi+1 ~ ( E Ai)£r+1 "~ E Ar+1_,er+1_i
» = 1 j = 0 i = l

E
i=r-<fi+2j=l

E
»=2 j = l

~" Z_-> Z-> A»7i-i,ier+2-i ~
t"=2 j = l

(5.28)

where the summations Y^+i HJY =̂r-a+i HJ=i a r e considered to be zero if

r — dx + 2 > t(n°) and r — cx + 1 > £(u°) respectively.

All the subscripts t] of A necessarily lie in the range 0 , 1 , . . . ,r. Without loss of

generality we may take these subscripts r\ modulo (r + 1). With this convention it
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follows from (5.24) that

Then
d,

for alii,.7.

r-di Ci+1 r-cx-1

*iei+l — \ 2.*, *j)er+l ~ 2_j

(5.29)

E
t=2 j=l

r-e,"f-x

t=2 j=l

E

/ , Aj_,-er+2-t
t=r-ci+lj=l

j = 0 «=2 j=0

i )

~( E ^K+i~EEVi+i£r+i-i- E
j=0 »=2 j=0 «=r-ci

Let F(fi1) and F(i/X) be the Young diagrams that can be obtained from F([i°) and

F(u°) respectively by adding strips of length (r + 1) as in (2.12a). Then ^(X) can be

obtained diagrammatically by filling the ilh-iow of boxes of Fdi1) from left to right

with the sequence

where
+1 + pt°r+1_dl i = 1,

i = r + 2-du...J(fx°)

in accordance with (2.14b). Similarly i^(A) can be obtained diagrammatically by filling

the i*h-row of boxes of F{yl) from right to left with the sequence

where
2 + u

r_ci

z 1 = <
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It should be noted that the entries in each added strip are then precisely Ao, A1?..., Ar.

In general /x'(A) may be obtained by filling the ith row of FdjL*) from left to right

with the sequence

A,--i, A,_2, . . . , A j , Ao , A r , A r _ j , . . . , Ai (5.30a)

and ^'(A) may be obtained by filling the ith row of F(uf) from right to left with the

sequence

Ar+2_,-, Ar+3_,-, . . . , A r, Ao, Ai, . . . , Ar (5.306)

where the overline sequence may be repeated as necessary. Hence we may write (5.28)

as

A,yCr+2-- (5-31)

where T)^ = i—j and all entries are to be taken modulo (r + 1 ) so as to lie in the range

0 , 1 , . . . , r .

Let xv = iO(<=«)...iO('i )*tf(-i) • • • t#(or) be an element of {W : W] as in Theorem 5.8

with core term w( = u ; ( ; i ) . . . wc>>r) and such that £ = (^{."•j ') . Then (5.28), (5.29)

and (5.31) implies

ix(A) - i/1 (A)]
i=o j=i

wCi,)...wCiV[\-{-\0+

A,yc r+2.,-]
)

where /z^(A) and ẑ J(A) are the coefficients of ei and — e r+i, respectively in

/ .
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Proceeding iteratively,

= A - (-,A0 + E \« + E E ^ + E E KJ
(«J)€F(O «=

+ E AWe«- E

where F(fj,t) and ^(i/*) are defined in terms of F(fit~1) and i^i/""1), respectively, by

adding strips of length (r +1). These results are can all be summarised in the following

theorem.

Theorem 5.21. For affine algebra A^}\ let w = ty(««).. .tU(n)iw(«i).. .iy(«p) as in

Theorem 5.8 and £ = (££.""4'). Let F(fif) (resp. F(v*)) be the Young diagram

obtained by adding t boundary strips each of length r + 1 to £' (resp. £) and covering

dx + 1, d2 + 1 , . . . , dt + 1 (resp. cx + 2, c2 + 2 , . . . , ct + 2) columns consecutively. Let

£'(A) correspond to filling the ith row of boxes of F(£') with the sequence in (5.30a).

Similarly let /i'(A) (resp. vf(\)) correspond to Riling the ith row of boxes of F^) (resp.

F(i/ t)j with the sequence in (5.30a) (resp. (5.30b)). Then

u;(A) = A — (£'(A) + E ^ i ( ^ ) ~^ E1 7^1^) ~~ 9̂ o)<̂  + /^'(A) — ^?(A).
t=i <=i

where fJ.[(X) and v[(\) are the coefficients of ex and — er+1, respectively, in /i*(A) — ̂ *(A).

It should be noted that the specific case of this corresponding to w(p) — p may be

recovered directly by setting Ao = Ai = . . . = Ar = 1 so that the shape of F(i/';/x')

is sufficient to define w(p) — p. To illustrate Theorem 5.21 let us note the result of

computing w(\) — A where w = w^^w^^w^ in the case of A^\ Here £ = (°) and

q = 2. First we obtain the Young diagrams F(n2) (resp. F(u2)) by adding to F(l
Q)

(resp. F(°)) 2 boundary strips each of length r + 1 = 4 . Then we fill the boxes of

the composite Young diagram F(v2; pi1) with the sequence of A,- as described in (5.30a)
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and (5.30b). This will gives //2(A) - v\X).

3

0

0 3

3 2

0

1

3

0

3

0

2

3

1

2

0

1

0

1

3

0

3

0

0

1

2

3

3

0

2

3

1

2

0 3

The contribution to 8 comes from the following:

-2A 0 + 0 3
3 2 1 0

0 3 2

0 3 2 1 0

0 3 2 1 0 3

Hence

- A

= - (-2A0 + (Ao + A3) + (A3 + A2 + Xi + Ao) + (Ao + A3 + A2)

+ (Ao + A3 + A2 + Ax + Ao) + (Ao + A3 + A2 + A: + Ao + A3))<5

+ (2A0 + Ax + A2 + 2A3)ei + (Ao + Ax + A2 + A3)e2

- (2A0 + Ax + A2 + A3)e4 - (Ao + Ax + A2 + 2A3)e3

= - (3L + 2A0 + A2 + 3A3)<5 + (L + Ao + A3)e! + Le2 - (L + A3)e3 - (L + A0)e4

where L = ]Ci=o ̂ « ̂
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5.5. Conjectures on the actions of the right coset representatives on A

For the other affine algebras we give the following conjectures on the form of w(\) —

A which have been arrived at.

Conjecture 5.22. For Cr
(1), let w = w<iq> . . •to<j1>^<a1> • • -w<ap> as in Conjecture

5.13 and 7 = ( °|+1°*+l"'.°'+1 )• Let F(^<) be the Young diagram obtained by adding t

boundary strips each of length 2r + 2 to 7 and covering 61 + 3, b2 + 3 , . . . , bt + 3 columns

consecutively. Let /i'(A) (resp. 7(A)/) correspond to filling the ith row of boxes of F(fit)

(resp. F(^)) with the sequence

. - i , A , _ 2 , . . . , A 2, A 2 , . . . , A r_i , A r, A r, A r _ i , . . . ,

where the overlined sequence may be repeated as necessary. Then

w(A)-A = -(|7(A) + i>i(A)-

To illustrate this, let compute w<3>u><i>(A) — A of C^l\ In Table 5.3 we have

written down the sequences as described in Conjecture 5.22 when r = 3.

Table 5.3 : The sequences for computing w(X) — A in the case of

0
1
2

0
0
1

1
0
0

2
1
0

3
2
1

3
3
2

2
3
3

1
2
3

0
1
2

0
0
1

1
0
0

2
1
0

3
2
1

3 . . .
3 . . .
2 . . .

On superimposing the Young diagrams F(fj,°), F^J,1) and F(fi2), respectively, on

the top left hand corner of Table 5.3 we obtain

f ^
0

1

2

J "

0

0

1

1

0

0

1

2

1

0 1

3 3

171



Chapter 5

0

1

2

0

0

1

1

0

0

2

1

0

3

2

1

3

3

2

3

1

The contribution to 8 comes from the following:

— 2 A 0 + 0 1 + 0 0 1 2 3 3 + 0 0 1 2 3 3 2 1

This then implies

(s0s1s2s3)
2s0s1(X) - X = - (3A 0 + 4AX + 3A2 + AX3)S + (2A0 + 2Ai + 2A2 + 2A3)e!

+ (2A0 + 2AX + A2 + 2A3)e2 + (2A0 + 2AX + A2)e3.

Conjecture 5.23. For A2V, let w = tu<j,> . . . w<bl>w<ai> .. .w<ap> as in Conjecture

5.14 and 7 = ( °[+1£+1;;;°'+1 )• Let F(^) be the Young diagram obtained by adding t

boundary strips each of length 2r +1 to 7 and covering bx + 2, b2 + 2 , . . . , bt + 2 columns

consecutively. Let ^'(A) (resp. 7(A)j correspond to filling the ith row of boxes of F(fit)

(resp. F(*y)) with the sequence

\i-i, A ,_ 2 , . . . , A
2, A 2 , . . . , A r_i , A r , A r _ i , . . . ,

wiere the overlined sequence may be repeated as necessary. Then

- A = - ( I
t=i

To illustrate this, let compute •U'<3>'̂ <i>(A) — A of A^\ In Table 5.4 we have

written down the sequences as described in Conjecture 5.23 when r = 3.

Table 5.4 : The sequences for computing w(X) — A in the case of

0
1
2

0
0
1

1
0
0

2
1
0

3
2
1

2
3
2

1
2
3

0
1
2

0
0
1

1
0
0

2
1
0

3
2
1

2
3
2

1 . . .
2 . . .
3 . . .
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On superimposing the Young diagrams F((i°), F(p.1) and F(fi2), respectively, on

the top left hand corner of Table 5.4 we obtain

= F(7) = o I

0

1

2

0

1

2

0

0

1

0

0

1

1

0

1

0

0

2

1

2

1

0

3

3

2

1

7

2

3

1

The contribution to 6 comes from the following:

— 2 A 0 + 0 1 + 0 0 1 2 3 + 0 0 1 2 3 2 1 .

This then implies

(s0s1s2s3)
2s0s1(X) - A = -(3A0 + 4Ai + 3A2 + 2\3)8 + (2A0 + 2XX + 2A2 + A3)ci

+ (2A0 + 2AX + A2 + A3)e2 + (2A0 + 2Ai + A2)e3.

Conjecture 5.24. For D^, let w = w<bq> .. .w<bl>w<ai> ... w<ctp> as in Conjec-

ture 5.15 and e = f"1"2^"")- Let F^) be the Young diagram obtained by adding t

boundary strips each of length 2r to t and covering &i + 1, b2 + 1 , . . . , bt + 1 columns

consecutively. Let /J*(A) (resp. e(X)) correspond to filling the ith row of boxes of F(fxf)

(resp. F(e)) with the sequence

. . . , Ar_i, Ar, A r _ i , . . . ,

where the overlined sequence may be repeated as necessary. Then

w(X) - A = -(e(A) + 2 - qX0)S + fi«(X).
t = i

To illustrate this, let compute w'^3>w<i>(X) — A of D^\ In Table 5.5 we have

written down the sequences as described in Conjecture 5.24 when r = 3.
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Table 5.5 : The sequences for computing w(\) — A in the case of

0

1
2

1

0

1

2
1
0

3
2
1

2
3

2

1
2
3

0

1

2

1
0

1

2
1
0

3

2
1

2
3

2

1
2
3

0

1

2

1 . . .
0 . . .
1 . . .

On superimposing the Young diagrams F(n°), F^i1) and F(fi2), respectively, on

the top left hand corner of Table 5.5 we obtain

= *•(«) = 7 T l

0

1

2

0

1

2

1

0

1

1

0

1

2

1

2

1

0

3

3

2

1

2

3

1

The contribution to 6 comes from the following:

-2A 0 +
0

1

1

1 2( o I 2 3 ) + 2( 0 I 2 3 2 1

This then implies

{s0s1s2s3fs0s1(X) - A = - (3A 0 + 8Ai + 6A2 + 4A3)<5 + (Ao + 2XX + 2A2 + A3)ei

+ (Ao + 2AX + A2 + A3)e2 + (Ao + 2Ai + A2)e3.

Conjec ture 5.25. For B$}\ let w — W[iq]... W[bl]W[ai]... W[ap] as in Conjecture 5.16 and

a — { ai"1 aa"1... a'"1) • ^ ^i^) ^ e ^ e ^oung diagram obtained by adding t boundary

strips each of length 2r — 1 to a and covering 6X, b2,..., bt columns consecutively. Let

^*(A) (resp. a(A) ) correspond to filling the ith row of boxes of F(fit) (resp. F(a) )

with the following sequence:

if p + q even

,_i, A,_2 , . . . , Al5 Ao, A2, A 3 , . . . , Ar_1; Ar, A r_ l 5 . . . , Ax
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and if p + q odd

Ao, A2, A 3 , . . . , Ar_i, Ar, A r _ l 5 . . . , A2,

Ao)

A2,. • •, Ar_i, Ar, A r _ i , . . . , A2 ,

A 2 , . . . , Ar_i, Ar, A r _ i , . . . , A2, Ao

• A j _ i , . . . , A2, AQ,

i = l ,

t = 2,

A 2 , . . . , Ar_i, Ar, A r _x, . . . , A2, Ao 1 > 2.

Further suppose that the element W[bt] begins with the fundamental reflection sk(k =

0,1). Let p.[(X) be obtained from n\(X) by replacing the first entry with A* but retaining

the rest of the entries. Then

u,(A) - A == -(I«(A) + £ A!(A))« + JI'(A).
(=1

To illustrate this let us note the result of computing w(X) — A of B4 for a few

cases. In Table 5.6 we have written down the sequences as described in Conjecture

5.25 when r = 4.

Table 5.6 : The sequences for computing w(\) — A in the case of

11 pH

0

1

2

3

h q is

2

0

1

2

even

3

2

0

1

4

3

2

0

3

4

3

2

2

3

4

3

1

2

3

4

0

1

2

3

2

0

1

2

3

2

0

1

4

3

2

0

3

4

3

2

2

3

4

3

1 . . .
2 . . .
3 . . .
4 . . .

1± p 4

0

0

2

3

- g is

2

1

0

2

odd

3

2

1

0

4

3

2

1

3

4

3

2

2

3

4

3

0

2

3

4

1

0

2

3

2
1

0

2

3

2

1

0

4

3

2

1

3

4

3

2

2

3

4

3

0 . . .
2 . . .
3 . . .
4 . . .

Let w = wp/iyp/wfi/ = so5233 5i32So- This is a core element with p odd. On

superimposing the Young diagram F(a) on the top left hand corner of Table 5.6 we
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0

0

2

3

2

1

0

2

3

2

1

0

Then

w(X) - A = - (2A0 + A: + 2A2 + X3)S + (Ao + A2 + A3)ei

+ (Ao + A! + A2)e2 + (Ao + \i + A2)es + (Ao + A2 + A3)e4.

Next let w = w$w$w$w$ = SaS2S3S4s3 5152s334S3 sos2s3 Si where p = 2 and

5 = 2. On superimposing the Young diagrams -F(/i°), F(IJ}) and i'X/J2), respectively,

on the top left hand corner of Table 5.6 we obtain

0 \ Fir
V\C

0

1

2

3

0

1

2

3

2

0

1

2

0

1

3

2

0

3

2

0

0

1

2

3

4

3

4

3

2

2

0

1

3

3

4

3

3

2

2

3

1 1

1

2

0

1

The depth comes from the following diagrams

0

1

2

3

2

0

1

3

1 2 3 4 3 2 1 0 2 3 4 3 2 1 1 0

Then

iy(A) - A = - (3A0 + 4Aj + 5A2 + 5A3 + 2A4)<5 + (2A0 + Ai + 2A2 + 2A3 + A4)e!

"I" (Ao + 2Ai + 2A2 + 2A3 + A4)e2 4- (Ao + Aj + 2A2 + A3)e3 + A3c4.

Finally let w = w^w^w^w^w^ — 5oS2S3643351s253S433So'S2-S354335152S35o where

p — 2 and q = 3. On superimposing the Young diagrams F(fi°), F(/zx), F(n2) and
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F(fi3), respectively, on the top left hand corner of Table 5.6 we obtain

°\

iV) =

•) =

The depth comes from the following diagrams

l<

F{a) =

0

0

2

3

0

0

2

3

0

0

2

3

2

1

0

2

1

0

2

1

0

3

2

1

3

2

1

3

2

1

0

1

2

3

4

3

4

3

2

4

3

2

2

0

1

3

3

4

3

3

4

3

3

2

2

3

2

3

4

0

0

2

0

2

3

1

0

1

0

2

2

1

0

3

0

1

2

3

2

0

1

3

0 2 3 4 3 2 0

+ 1 2 3 4 3 2 0 1 + 0 2 3 4 3 2 0 1 2 3 .

Then

w(X) - A = - (6A0

+ (2A0

+ (2A0

Ai + 8A2 + 8A3 + 3A4)<5

x + 3A2 + 3A3 + A4)ex + (2A0 + 2X, + 2A2 + 2A3 + A4)e2

i+ 3A2 + 2A3 + A4)e3 + A3e4.

Conjecture 5.26. For A^r-i, let w — W[h^ ... u>[i,]tU[ai] • • • W[ap] as in Conjecture 5.17

and a = (^~1 | | '"1:"^"1)- Let F{n*) be the Young diagram obtained by adding t

boundary strips each of length 2r to a and covering &i + 1,62 + 1, • • •, bt + 1 columns

consecutively. Let /i'(A) (resp. Q(A) ) correspond to filling the iih row of boxes of F(nf)

(resp. F(a) ) with the following sequence:
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if p + q even

A2, A 3 , . . . , A r_i , A r , A r, A r _ i , . . . ,

and if p + q odd

Ao, A 2 , . . . , A r _i , A r, A r, A r _ i , . . . , A2, Ao,

^o, A i , . . . , A r _i , A r , A r , A r _ i , . . . , A2, AQ

• A , _ i , . . . , A2, AQ:

. . . , A r, A r, A r _ i , . . . , A2, Ao 1 — 1,

i = 2,

. . . , A r _j , A r, A r , A r _ i , . . . , A
2,

Then

" (A) - A = = - ( i a ( A ) + £ AUA))« + A*f(A)1

where fi\(X) are as in Conjecture 5.25.

To illustrate this, let compute w = w^jw[^w[^w[^{\) - A of A(
7
2). In Table 5.7 we

have written down the sequences as described in Conjecture 5.26 when r = 4.

Table 5.7 : The sequences for computing w(X) — A in the case of A7

11 ?H

0

1

2
3

h q is

2

0

1

2

even

3

2
0

1

4

3

2
0

4
4

3

2

3
4
4
3

2
3
4
4

1
2
3
4

0
1
2
3

2
0

1

2

3
2
0
1

4

3

2
0

4

4
3
2

3 . . .
4 . . .
4 . . .
3 . . .

If pH

0
0
2
3

h<? is

2
1
0

2

odd

3
2
1

0

4
3
2

1

4
4
3
2

3

4

4

3

2
3

4

4

0

2
3
4

1
0
2
3

2
1
0
2

3
2
1

0

4
3
2
1

4
4

3

2

3 . . .
4 . . .
4 . . .
3 . . .
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On superimposing the Young diagrams F(fi°), ir(//1) and F(n2), respectively, on

the top left hand corner of Table 5.7 we obtain

= F(a) =

0

1

2

3

2

0

1

3

0

1

2

3

0

1

2

3

2

0

1

2

0

1

3

2

0

3

2

0

4

3

4

3

2

4

4

4

3

3

3

4

2

2

3

1

1

2

0

1

The depth comes from the following diagrams

2<

0

1

2

3

2

0

1

3

+ 1 2 3 4 j 4 3 2 1 ~ - o 2 1 3 4 4 3 2 1 0

Then

w(\) - A = - (3A0 + 4AX + 5A2 + 5A3 + 4A4)<5 + (2A0 + X1 + 2A2 + 2A3 + 2A4)£l

+ (Ao + 2Ai + 2A2 + 2A3 + 2A4)e2 + (Ao + Ax + 2A2 + A3)e3 + A3e4.

For the rank dependent series of affine algebras we are finally left to determine

the action w(\) — A for D^}\ As has been noted in obtaining Conjecture 5.18 we have

found it is necessary to introduce a slightly different form for the elements of {W : W}.

This create further difficulties, in determining the action w(\) — A diagrammatically.

We have yet to resolve these problem. To illustrate these difficulties let us compute

w${\) - A in the case of M1}-

As has been noted in the example following Conjecture 5.18, w$ — s0s2s3s4s2 is a

valid non-core element of {W : W} since

~ P = -55 + 5e! + e2.
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The Young diagram associated with this Weyl element and action is

However

w[$(\) - A = - (Ao + 2A2 + A3 + A4)c*0 - (2A2 + A3 + A4)a2

- (A2 + A3)a:3 - (A2 + A4)a4 ,

= - (Ao + 2A2 + A3 + X4)6 + (Ao + 2A2 + A3 + A4)ci

+ A0e2 + (A3 - A4)e4.

Since there is a gap with the coefficient of e3 being zero, there is no way that we can

represent the action w&'(X) — A by filling a continuous boundary strip with Dynkin

components of A. There is also a term in e4 whose coefficient is zero if A = p, but may

be positive, negative or zero for other A.

However, it should be noted that, although w$(X) — X £ P+ for some A, but Lemma

1.13 implies that I U ^ A + p) — p is still a dominant weight if A itself is dominant. In

this particular example, we have

^l°](X + P)~P =^(^)Ao - (Ao + 2A2 + A3 + A4 + 5)8

+ (Ao + X, + 3A2 + ^A3 + ^A4

+ (Ao + A2 + - A 3 + -A 4 + l)e2

which is dominant for all non-negative Ao, A x , . . . , Ar.

±X4)
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Basic theory

CHAPTER 6

Branching Rules

6.1 Basic theory

A Lie subalgebra Q' of the Lie algebra Q is a subvectorspace which itself is a

Lie algebra. A subalgebra Q' is called a regular subalgebra if the roots of Q' are

contained in the root system of Q. Otherwise Q' is called a special subalgebra. The

problem of classifying the maximal semisimple subalgebras of simple finite-dimensional

Lie algebras has been dealt with in the article of Dynkin [D].

An embedding of a subalgebra G' into a Lie algebra Q is a mapping / of Q' into Q.

Given an embedding / : Q' —> Q and an irreducible representation ip(G), the represen-

tation ij>(G) becomes a representation i?(f(G')) of Q' which can be either reducible or

irreducible. If ip(f(G')) is reducible then the decomposition [McP]

')) © iW(0')) © • • • (e-i)

is called the branching rule of G with respect to the subalgebra G1 • The multiplicity of

occurrence of the irreducible representations ipi(f(G')) in the decomposition (6.1) are

called the branching rule multiplicities and they are necessarily non-negative integers.

The same subalgebra G' can often be embedded in a given algebra G in different ways

with different branching rules. The embedding f : G' —+ G induces a projection between

the weight spaces of Q and of G'•

Correspondingly, the restriction of the characters ch Vx, of G to G', induces a

mapping of the form

chV^^^chV' ( 6 . 2 )
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where care has to be taken in defining consistently the mapping from the weight space

of Q to that of Q'. The coeffients b\ are the branching rule multiplicities of each

irreducible constituent V'. If Q' is a regular subalgebra then the Dynkin labels of the

weights of (/'-module under the projection are just the Dynkin labels given in the usual

way by

//;.=</z,a;v> . - (6.3)

The problem of obtaining branching rules for representations of simple finite-

dimensional Lie algebras restricted to Lie subalgebras has been treated by various

methods. Extensive tables of branching rules for simple finite-dimensional Lie algebras

have already been given by McKay and Patera [McP]. An obvious method for obtain-

ing the branching rule (6.2) is to proceed in three stages. First we find the weights of

(/-modules. Then the weights are transformed into the weights of the subalgebra (/'.

Finally these weights are sorted out into the weights of (/'-modules.

In order to make use of the orbit-character and character-orbit expansions given

in Chapter 3 and 4 in obtaining affine branching rules we describe first the method

discussed by Patera and Sharp [PS] in the framework of simple finite-dimensional Lie

alegebras. This technique also works in the affine algebra case [B]. The method as

described in [PS] consists of three steps:

(Bl) Express the irreducible (/-character in terms of (/-orbits;

(B2) Decompose (/-orbits to (/'-orbits; (6-4)

(B3) Express the (/'-orbits in term of irreducible (/-characters.

Step Bl requires the weight multiplicities of dominant weights which can be obtained,

for example, directly from the tabulation of [BMP]. Step B3 just amounts to inverting

weight multiplicity matrices which also can be done easily. The only problem lies

in decomposing the (/-orbit into (/'-orbits. However if the projection of the weights
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are known then the decomposition of ^-orbits into ^'-orbits are obtained merely by

retaining the weights of Q' modules which have all components non-negative, i.e. are

^'-dominant.

For illustration let us consider an embedding of A2 © ux in A3 where ux is the

abelian Lie algebra of dimension 1. The representation theory of ux is quite trivial.

The embedding is such that the simple roots of A2 may be .taken to be:

Q'J —» ax + a2

a'2 —• a3

where ax,a2 and a3 are the simple roots of A3. Then an A3 weight A = (Al5A2,A3)

becomes an A2 weight (Ai,A'2) where

A; = < A, a " > = < A, ax + a2 >= Xx + A2

A'2 = < A, a'2
v > = < A, a3 > = A3.

In order to obtain the label for ux which necessarily takes the form kxXx + k2X2 + k3X3

where kx, k2 and k3 are constants to be determined, consider the Weyl orbit of (1,0,0),

As an A2 © ux weight these become

{ (1,0; fcx), (0,0; -kx + k2), ( - 1 , 1 ; -k2 + k3), (0, - 1 ; -k3) } .

However the weights (1,0), ( — 1,1) and (0, —1) form the Weyl orbit of (1,0) so that

A?i = —k2 -f- k3 = —k3 .

If we further fix the scale by letting the ux label of A2 Weyl orbits (1,0) and (0,0) differ

by unity then we obtain the following projection for the weights of A3 to the weights

of A2 @ ui

(A1? A2, A3) -> (Ai + A2, A3; (Xx - 2A2 - A3)/4).
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In particular the projected weights of the (1,0,0) orbit becomes

{ (1,0; i ) , (0,0; - | ) , ( - 1 , 1 ; i ) , (0, - 1 ; | ) }

and on retaining the components of A2 which are non-negative we obtained the decom-

position

jy(0,0;-3/4)_

In a similar way we obtain

Q(0,1.0) _ , . Q/(0,l;l/2)

Q(0,0,l) _^ Q/(0,0;3/4)

n(0,2,0)

Then from the orbit multiplicities table [BMP], we have

f2'(3-0;0) + 2f2'(lll;O)

= ch V^1'1^ + ch V^V + ch V^lfi) + ch V^°-'-V + ch V^0'1^ + ch

We see that in this particular example the ^-module decomposes into a finite

number of ^'-modules. The same is true for all finite dimensional modules of simple

finite-dimensional Lie algebras. However for affine algebras this is no longer the case

and in general (/'-modules may appear with infinite multiplicity in an affine ^-module.
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6.2. Simple finite-dimensional Lie subalgebras of affine algebras and weight

multiplicity polynomials.

The simplest subalgebras of a given affine algebra G(A) are those whose Dynkin

diagram may be obtained from the Dynkin diagram of Q(A) by dropping one node,

say the ith node. The resulting diagram is that of a semisimple finite-dimensional Lie

algebra Qt. Although there already exist extensive tables of branching rules Q D Q{ of

these regular embeddings [KMPS], the computation has been done case by case, one

rank at a time. Rather than dropping an arbitrary node we consider here the more

specific case of dropping the zeroth node from the Dynkin diagram of Q(A). Then the

resulting simple finite-dimensional Lie algebra is G(A) or just Q.

From (5.2) we can write

w(X + p) - p = - ^ A o - dw(X + p)S + w(X + p) - p . (6.5)

Then the numerator of the Weyl-Kostant-Liu character formula (1.25) can be written

as

(6-6)

where q = e {. In a similar way the denominator of the Weyl-Kostant-Liu character

formula (1.25) can be written as

D= "£ eMq^chV™-". (6.7)

In the following, the computations are done independently of the rank r of the affine

algebras by assuming that r is sufficiently large for no modifications to be required.

Rank dependent calculations can be taken care of by the use of modifications rules
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as discussed in Chapter 5. For each affine algebra the denominator can be computed

easily from Proposition 5.2. Let us denote the denominators for affine algebras A^\

B^l\ C^ and Dr+i respectively by Kq, Aq, Cq and Eq. Then up to depth 4 we obtain

Kq ={0} - <?{!; 1} + <?2({2; I2} + {P; 2}) - g
3({3; I3} + {2l; 21} + {f3; 3})

+ 9
4({4; I4} + {31; 212} + {2»; 22} + {f«; 4}) + . . .

Ag =[0] - g[l2] + ?2[212] - q3([313} + [23]) + g
4([414] + [3221]) + . . .

(6.8)
Cq = < 0 > -q < 2 > +q2 < 31 > -q3(< 412 > + < 32 >)

+ 9
4 ( < 5 1 3 > + <431 > ) + . . .

The inverse of Kq for example can be calculated as follows. Let K~x =

. . . . Then K~l x Kq = {0} and on comparing the coefficients of various powers of q

we obtain

h ={o},
fci =k0 X {1;1}

=h x {I; 1} - k0 x ({2; l2} + {f2; 2})

The above tensor products and others like them may be carried out with the help of

SCHUR software [W]. Similar computations can be done for other afrine algebras. The

results take the form:
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= {0}

+ g
3({3; 3} + {21; 21} + {f*; I3} + 2{2; 2}

+ 2{2; I2} + 2{P; 2} + 2{P; I2} + 5{1; 1} + 2{0})

+ 94({4; 4} + {31; 31} + {2"2; 22} + {2P; 212} + {1*; I4} + 2{3; 3}

+ 2{3; 21} + 2{2"1; 3} + 4{2"l; 21} + 2{2"l; I3} + 2{P; 21} + 2{P; I3}

+ 8{2; 2} + 5{2; I2} + 5{P; 2} + 8{P; I2} + 12{1; 1} + 5{0})

(6.9a)

A:1 =[O]

+ 92([22] + [I4] + [2] + [I2] + [0])

+ g3([32] + [2212] + [I6] + [31] + [22] + 2[212] + [I4] + [2] + 4[12] + [0])

+ ?4([42] + [3212] + [24] + [2214] + [I8] + [42] + [32] + 2[321] + [313] (6.96)

+ [23] + 2[2212] + 2[214] + [I6] + [4] + 2[31] + 6[22] + 5[212] + 5[l4]

6[l2] + 4[0])
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C;1 = < o >

q< 2 >

q2{< 4 > + < 2 2 > + < 2 > + < l 2 > + < 0 > )

q3(< 6 > + < 4 2 > + < 2 3 > + < 4 > + 2 < 3 1 > + < 2 2 >

+ < 212 > +4 < 2 > + < I2 > + < 0 >)

q\< 8 > + < 6 2 > + < 4 2 > + < 4 2 2 > + < 2 4 > + < 6 > (6.9c)

+ 2 < 51 > +2 < 42 > + < 412 > + < 32 > +2 < 321 > + < 23 >

+ < 2212 > +5 < 4 > +5 < 31 > +6 < 22 > +2 < 212 > + < I4 >

+ 6 < 2 > +5 < I2 > +4 < 0 >)

1 = [ O ]

(6.9d)

[31] + [22] + [212] + [I4] + 4[2] + 4[12] + 3[0])

For the numerator Nx of (6.6), we make use of the Young diagram method to

compute w(X + p) — p by noting that

w(\ + p) - p = w(X + p)-(X + p) + \
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where /z = A + p. First we compute w(n) — p, by the Young diagrammatic method

as in the example following Proposition 5.20 and to each Young diagram term we add

the boxes that correspond to A. By way of illustration let us compute the numerator

when the highest weight representation of A^ is A = Ao + Ai = (1,1,0, . . .) so that

A = 2A0 + ei and A -j- p = \i = ( 2 , 2 , 1 , 1 , . . . , 1). Let w = w( = tt>(;i).. • W(«r) where £ is

the partition (V'l")- First we list all the Young diagrams that correspond to £' and

fill the boxes with the appropriate numerical values of ^ where 7/ is given in (5.24)

Next we annex to these Young diagrams the empty boxes that correspond to A = ti

and this will determine chVw(-x+p^~p. Then up to depth 4 we obtain

e(w)ch =n - ̂
1

2

2 1

2 2

-

2 1 1

Algebraically these come about through applying id, s0, sosr, sosi and sosrsr_i which

are the the Weyl core elements of Proposition 5.5. The empty boxes denote the con-

tribution from A in the e basis. Every empty box will contribute 1 unit while the

contribution of the other boxes is according to the numerical values of their entries.

Hence the expansion for the numerator can be written as follows:

X) e{w)chy-(Ao+A1+p)-p = e2Ao({!} _ q*{2;3} + ?3{2T;4}
w£{WW}

+ <?
4({4;32} - { 2 1 * 5 } ) + . . . ) .

The tensor product of the above numerator expression with K~x of (6.9a) then gives

the expression for ch yAo+Ai as
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ch VAo+Al =e2A°({l} + q({T; 2} + {T; I2} + {1})

+ <z2({2; 21} + {P; 21} + 3{T; 2} + {P; I3} + 3{T; I2} + 3{1})

+ 9
3({2;3} + {P;3} + {2T;22} + {2T;212} + {P;212}

+ 4{2; 21} + 5{P; 21} + 8{T; 2} + {P; I4} + 2{2; I3}

+ 3{P;13} + 9{T;12} + 7{1})

+ g4(2{2T; 31} + {P; 31} + 4{2; 3} + 4{F; 3} + {2*; 221}

+ {2P; 221} + {3; 22} + 4{2~T; 22} + 2{P; 22} + {2P; 213}

+ {P;213} + {3;212} +6{2T;212} + 5{P;212} + 14{2;21}

+ 17{P; 21} + 21{T; 2} + {P; I5} + 2{2T; I4} + 3{P; I4}

+ 7{2; I3} + 12{P~; I3} + 24{T; I2} + 16{l}

This expression for the character of Ao + Ai defines a branching rule of the affine

algebras A^ to the simple finite-dimensional algebra Ar down to depth 4 since {v\ fi}

is to be interpreted as the Ar character ch V ' . In contrast to the other methods

discussed elsewhere [KMPS], the branching rule has been obtained without the need

to compute weight multiplicities or Weyl orbits and is done independently of the rank

of the affine algebras. Below are some character expressions up to depth 4 of affine

algebras that we have computed using the algorithm discussed above.
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M D Ar

ch VA° =eAo({0}

+ 9
3({F; I3} + {P; 2} + {2; I2} + 2{P; I2} + 4{T; 1} + 2{0})

+ g
4({F; I4} + {2T; I3} + {F; 21} + 2{F; I3} + {2; 2}

+ 2{F; 2} + 2{2; I2} + 6{P; I2} + 8{T; 1} + 4{0})

+ <?2({T; 2} + {P; I3} + 2{T; I2} + 2{l})

+ <?3({P; 21} + 2{T; 2} + {F; I4} + {2; I3} + 2{P; I3} + 5{T; I2} + 4{1})

+ g4({P; 212} + {2; 21} + 3{P; 21} + 5{T; 2} + {F; I5}

+ {2T; I4} + 2{F; I4} + 2{2; I3} + 6{P; I3} + 10{T; I2} + 8{1})

ch V2A° =e2Ao({0} + q{T; 1} + q\{2; 2} + {F; I2} + 2{T; 1} + {0})

+ 9
3({2T; 21} + {P; I3} + 2{2; 2} + 2{2; I2} + 2{P; 2}

+ 2{P;l2} + 5{T;l} + 2{0})

+ 94({2^; 22} + {2P; 212} + {F; I4} + {3; 21} + {2T; 3}

+ 4{2T; 21} + 2{2T; I3} + 2{F; 21} + 2{P; I3} + 7{2; 2}

+ 5{2; I2} + 5{P; 2} + 8{F; I2} + 12{T; 1} + 5{0})
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B™ D Br

ch VA° =eA°([0] + g[l2] + g
2([l4] + [2] + [I2] + [0])

+ 3[l4] + 3[2]+4[l2]

ch VA> =eA°([l] + g([l3] + [1]) + 9
2([21] + [I5] + [I3] + 2[1])

+ 9
3([213] + 2[21] + [I7] + [I5] + 3[13] + 3[1]

+ <?4([3] + [221] + [215] + 2[213] + 4[21] + [I9] + [I7]

ch

ch

l =e2A°([l] + q([l3} + [21] + [1])

[221] + [213] + 3[21] + [I5] + 2[13]

2[312] + 2[3] + [231] + [2213] + 3[221] + [215] + 4[213]

+ 8[21] + [I7] + 2[15] + 7[13] + 6[1])

+ g
4([41] + [322] + 2[3212] + 4[32] + 2[314] + 6[312] + 6[3] + [24l]

+ [2313] + 3[231] + [2215] + 4[2213] + 11[221] + [217] + 4[215]

+ 13[213] + 20[21] + [I9] + 2[17] + 8[15] + 15[13] + 14[l]) + . . . )

=e2Ao([0] + q[l2}

+ ?2([22] + [I4] + [2] + [I2] + [0])

+ <73([2212] + [I6] + [31] + [22] + 2[212] + [I4] + [2] + 4[l2] + [0])

+ <?4([4] + [321] + [313] + 2[31] + [24] + [23] + [2214]

+ 2[2212] + 5[22] + 2[214] + 5[212] + 5[2] + [I8] + [I6]

+ 5[l4] + 6[l2]+4[0]) + . . . )
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D Cr

ch VAo =eAo(< 0 > +q < 2 >

+ q2{< 22> + < 2 > + < l 2 > + < 0 > )

+ g
3(< 23 > + < 31 > + < 22 > + < 212 >

+ 3 < 2 > + < l 2 > + < 0 > )

+ q\< 24 > + < 321 > + < 23 > + < 2212 >

+ < 4 > +2 < 31 > +4 < 22 > +2 < 212 >

+ < I4 > +4 < 2 > +4 < I2 > +3 < 0 >)

ch VAl =eAo(< 1 > +q(< 21 > + < 1 >)

+ q\< 221 > + < 3 > +2 < 21 > + < I3 > +2 < 1 >)

+ g
3(< 32 > + < 312 > +2 < 3 > + < 231 > +2 < 221 >

+ < 213 > +5 < 21 > +2 < I3 > +4 < 1 >)

+ q\< 41 > + < 322 > + < 3212 > +3 < 32 > +3 < 312 >

+ 4 < 3 > + < 241 > +2 < 231 > + < 2213 > +6 < 221 >

+ 3 < 213 > +11< 21 > + < I5 > +5 < I3 > +8 < 1 >)
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ch VAo+Al =e2Ao(< 1 > +q(< 3 > + < 2 1 > + < l > )

+ q2{< 41 > + < 32 > + < 221 > +2 < 3 > +3 < 21 >

+ < I3 > +3 < 1 >)

+ q3{< 5 > + < 43 > + < 421 > +3 < 41 > + < 322 >

+ 4 < 32 > +3 < 312 > +6 < 3 > + < 231 > +3 < 221 >

+ < 213 > +9 < 21 > +2 < I3 > +6 < 1 >)

+ q\2 < 52 > + < 512 > +3 < 5 > + < 421 > + < 432 >

+ 3 < 43 > + < 4221 > +5 < 421 > + < 413 > +11 < 41 >

+ 3 < 321 > + < 323 > +4 < 322 > +3 < 3212 > +14 < 32 >

+ 10 < 312 > +14 < 3 > + < 241 > +3 < 231 > + < 2213 >

+ 12 < 221 > +4 < 213 > +23 < 21 > + < I5 >

+ 8 < I3 > +14 < 1 >) + . . . )

ch V2A° =e2A°(< 0 > +q < 2 >

+ q2(< 4 > + < 2 2 > + < 2 > + < l 2 > + < 0 > )

+ q3(< 4 2 > + < 2 3 > + < 4 > + 2 < 3 1 > + < 2 2 >

+ < 212 > +4 < 2 > + < I2 > + < 0 >)

+ q\< 51 > + < 42 > + < 422 > +2 < 42 > + < 412 >

+ 4 < 4 > + < 32 > +2 < 321 > +5 < 31 > + < 24 >

+ < 23 > + < 2212 > +6 < 22 > +2 < 212 >

+ 6 < 2 > + < I4 > +5 < I2 > +4 < 0 >) + . . . )
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ch VA° =eA°([0] + q[l] + 9
2([12] + [0])

ch V^ =eA°([l] + <z([l2] + [0]) + 9
2([21] + [I3] + 2[1])

+ <?
3([212]+2[2] + [l4]+3[l2] + 2[0])

+ q\[3] + [221] + [213] + 4[21] + [I5] + 4[l3]

ch V2A° =e2A°([0] + q[l] + q\[2] + [I2] + [0])

+ ?3([21] + [I3] + 3[1])

+ 9
4([22] + [212] + 3[2] + [I4] + 4[12] + 3[0]) + . . . )

ch VA°+A> -e2Ao([l] + q([2] + [I2] + [0]) + g
2(2[21] + [I3] + 3[1])

+ q3([3l] + [22] + 2[212] + 4[2] + [I4] + 5[l2] + 3[0])

+ <?4([32] + [312] + 3[3] + 2[221] + 2[213] + 9[21]

+ [15] + 6[13] + 1O[1]) + . . . ) •

For sufficiently large r, the branching rule of representations of A$ restricted to

Br is the same as that of C^ to Cr. While the branching rule of representations of

D^ restricted to Dr and A^-i restricted to Cr is the same as that of B^ to Br.

In general we can write

chVx = eL^A°'c° £ Yl bx
pchVPqn (6.10)

where the sum is over the set P+ of dominant weights /Z of G(A). Then

ch vx = e
L(*)w«ov £ j2 E bKdim v?) eP<in • (6-n)

n=0

Alternatively chVx = I2i/ew(^zmKA) e" w n e r e dimVx = 0 if v is not a weight of

the highest weight module Vx. As has been discussed in Chapter 4, each weight
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v = v — n8 + (L (^ ) /CQ)A 0 appears in a string so that we may write

chVx =

On comparing this expression with that of (6.11) we obtain

dimV? = £ V&dimVf). ( 6 1 3 )
P€P+

In term of the weight multiplicity generating function or string function <r* we may

write

^ = E E bUdimV?)qn. (6.14)
n=0 pgp+

Tabulation of dim Vf in terms of the rank of the algebras can be obtained from the

work of [KiP] and [BBL] whereby it was established that the weight multiplicities of

dominant weights of finite-dimensional modules of the classical series of simple finite-

dimensional Lie algebras are polynomials in the rank of the algebra. It then follows

that the weight multiplicities of the highest weight modules of the rank dependent

series of affine algebras are necessarily polynomials in the rank of the algebra.

It is well known [Kac4] that the string functions a1^. for level 1 modules of the

affine algebras A^ and D^ and the string function afc of A^) are all given by (j>(q)~T.

But

/ J- A & Q ^ y •) * \ A

+ ( 2 4 r + 4 r + 2 4 r + 4 r ) ? + • • •
This illustrates the polynomial rank dependence of the weight multiplicities with the

degree of the polynomial given by the depth of the weights.

In the case of other afnne modules, using the weight multiplicity polynomials of

the simple finite-dimensional Lie algebras tabulated in [KiP] or [BBL] and (6.14), we

find from our branching rule results:
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=1 + ^(7r2 + 9r + 8)q3

44r2 + 87r + I6)q4 + ...

+ (7r2 - 7r + 8)q3 + (7r3 - 9r2 + 28r - 20)?4 + . . .

1 + r? + r(r + 2)<?
2 + ^(5r2 + 15r + lO)q3

X 4^

(7r3 + 30r2 + 53r -f 30)Q4 + . . .

(5r - 4)9
3 + (7r2 - l l r

crAo = c r A l =
Ao Ai

rq + - ( r 2 + 3r + 2)g2 + - ( r 3 + 9r2 + 14r + 6)q3

£ 0

—(r4 + 18r3 + 71r2 + 102r + 48)^4 + . . .

- 2r - 12r2 + 85r -

—(63r4 - 10r3 + 375r2 - 248r + 132)§4 + . . .

33r + 22)g4

-(21r3 + 34r2 + 57r + 8)q5

= l + rq+ r-(3r + 3)?
2 +

66r2 + 169r + 42)?
4

6r

(3r - l)q2 + (5r2 - 2r + 2)g
3 + i(35r3 - 12r2 + 61r -

l)q3 6r
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<rAo° =1 + rq + r(r + l)q2 + -(5r2 + 6r + 7)q3

+ —(7r3 + 12r2 + 29r + 12)q4 +...

aAl =1 + (2r - l)q + -(5r2 - 3r + 2)q2 + -(14r3 - 9r2 + 25r1 2 6

i(7r4 - 4r3 + 31r2 - 26r + 12)9
4 + . . .

(3r - !)9 + (7r2 - 5 r + 2)?2 + (14r3 ~

-(99r4 - 304r3 + 655r2 - 638r + 244)g4 + . . .

Ao+Aa = 3 ? + ( 1 4 r - 1 5 ) ? 2 + (42r>2 - 1 0 8 r

+ (99r3 - 454r2 + 953r - 762)g4 + . . .

<°0 =l + rq+ r-(3r

2 8 r ~

3r

-(21r3 - 10r2 + 54r - 5)g4 + . . .
6

CT
2A;A2 = g + (3r - l)q2 + (7r2 - 8r + 6)g3 + (14r3 - 36r2 + 62r

+ ^J2A° =q + 2rq2 + (4r2 - r + l)g3 + ^(22r3 - 30r2 + 47r -

=1 + (3r - 2)g + (5r2 - 5r

+

- 42r2 + 55r - 30)9
3

(63r4 - 80r3 + 249r2 - 280r

aA
3
0+Al =3q + (lOr - 15)q2 + ^(35r2 - 99r + 108)g3

+ -(42r3 - 169r2 + 389r - 360)g4 + . . .

=1 + rq + -(3r2 + r)q2 + -(lOr3 + 3r2 - r + 6)q3

+ -^(35r4 + 26r3 + 37r2 -2r + 24)9
4 + . . .

=q + (3r - 3)9
2 + (5r2 - 9r + 7)9

3

+ -(35r3 - 87r2 + 160r - 120)g4 + . . .
6
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=1 + q

4(2)
/ i2r- l

Simple finite-dimensional

3rq2 + (4r + l)q3 + (5r2 + 2r + 3)q4 + ...

5rq2 + (12r - 2)qz + (I5r2 - r + 6)q4 + ...

+ 1)9 + (5r + I)?2 + (6r2 + 5r + 2)q3 + (15r2 + 7r + 2)<?4 + ..

(2r + 1)9
2 + (3r + 2)q3 + (3r2 + 5r

+ (3r + l)q3 + (6r + 1)9
4 + . . .

=1 + (r - l)g + (

=1

=1

= 1

9r2 - 8r - 6)q3

T^(7r3 + 30r2 + 59r + 24)9
4 + . . .

2rq + -(5r2 + 3r)g2 + -(7r3 + 9r2 + l l r - 3)q3

— (21r4 + 44r3 + 117r2 - 26r
J. Li

(7r

- 3r2 + l l r -

+2r + 4)g3

=9

+ (7r2 - r

+ r(4r + 2)q3 +

1 + (r - 1)9 + ^(r2 + r)

^-(r4 + 14r3 + 23r2 - 14r

6r2 - r - 6)q3

<°TA' =1 + (3r - 3)q + (5r2 - 9r + 6)g2 + ^(35r3 - 87r2 + 130r -

+ i(21r4 - 64r3 + 161r2 - 202r + 100)g4 + . . .

These results are a significant generalisation of those obtained previously for

[BKM2].

199



Chapter 6

6.3 Self embedding

Although not possible in the finite-dimensional case, it is a remarkable fact that

an affine algebra may be embedded in itself. Indeed this can be done in a number of

distinct ways. The simplest way is to define the following transformation of the roots

a'o —> Q0 + 5
(6.15)

a- - + Qi z = l , . . . , r .

It can then be seen that the GCM A'^ = < cc'^a'^ > coincides with the affine GCM

Ajj = < c*j, c*y >. The weights of the Q modules of level L and depth d are transformed

to weights of Q' = Q modules of level 2L and depth d/2. This type of self embedding

is possible for all highest weight modules of affine algebras except A2r. In the case of

A$, by (6.3), (3.6) and (3.8), the transformation (6.15) would give:

A'o = < A, a'o
v > = < A, 2 < + a* + ... + ar

V-i + \< >

= 2A0 + Aa + .. . + Ar_! + -A r

A;. = < A, a;v > = X{ for i = 1 , . . . , r.

Since the weight label must be integer, we see that unless the rth Dynkin component

of the highest weight is even then the projection (6.15) does not define an embedding

A$ D A$.

In the case of the self embeddings A{^ D A^ some branching rules have been

computed by Hussin, King, Leng and Patera [HKLP]. However most of their results

are given numerically. Here we undertake the compution of branching rules analytically

by obtaining the branching rule multiplicity generating functions for level 1 modules

to level 2 modules using the algorithm discussed in (6.4).

For illustration let us consider the branching rule for D^ D D^\ The transfor-

mation (6.15) implies that the weights are projected as follows:

(Ao,A1;A2)d —> (2A0 + 2A1+A2,A1,A2) f. (6.16)
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Self embedding

From the orbit-weight generating function given in (3.36f) and the projection (6.16)

we obtain the following decomposition of level 1 orbits of D^ on retaining the weights

that have all their components non negative and are thus dominant:

In term of generating functions we can write

On substituting the string functions given in (4.15g) and the inverse string functions

given in (4.13g) we obtain the branching rule multiplicity generating function for

as

4-
+

In a similar way,

Then
(200) — °(100)W )\Kl200) I 5K(200) ' Q K(200)J
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1,(100) _ ^(100)/ l / 2 \ / (200) , ,,..(002) , -l/2(.(010)x
°(oio) — "(100)19 AK(oio) i 9«(oio) "T q K(oioy

Below we give branching rules for the self embedding of affine algebras A[x\

G2^ and D^ defined in each case by (6.15). Because we could not find ways of

simplifying them, some of them look quite 'ugly'. Those marked * have been obtained

previously in [HKLP].

Weight projection: (Ao, Ai)d —> (2A0 + A1; \i)±-

*&((2oj = 11(1 + q")

= 11(1 + qV

^ D 4 X ) -

Weight projection: (A0,A!,A2)d —> (2A0 + Ai + A2 ,A1 ,A2) | .

±3,±3,±4(10)

(i-?n)-?i/2 n (i
±l,±2,±3(10) ±2,±2,±4(10)

±2,±4,±4(10)

(i-?n)-?3/2 n
±l,±3,±4(10) ±l,±l,±2(10)
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Self embedding

Cil) D ^

Weight projection: (X0,XuX2)d —> (2A0 + \x + A2,A1,A2)|.

_ _L(100)
y w ( )

(
(002)

1 + ?n/2) I K 1 - ? " )
±3(8) 10(20)

±3(8) ±l,±3(10)

)na+?B/a) n a-?") n
±1(8) ±l,±3(10) ±3,±4(10)

)ii(i+?n/2) n a-<n n
±1(8) ±l,±3(10) ±l,±2(10)

1 + ? ° / 2 ) n (

5(10) ±3(8) ±1(10)

n a+<?n/2) n (!+?n) n (i-<n2)
±1(8) ±4(10) ±1(10)

iv iL q)

±1(8) ±l,±2,±9(10)

q°n n

5(10) ±1(8)

n(i+<7n/2) n ( I + ? B ) n ( i -
±3(8) ±3(10) ±2(10)

+?n(i+?n/2) n
±3(8) ±2,±4,±8(20)

n (
±2(10)

n ) n (

±4(10)

") n (
±3(10)

n a-«")
±3,±4(10)

•)* n a -
±l,±2(10)

( n (i+?n/2)-
±3,±9(20)

?nK n (i+?n/

±7,±9(20)

i ,,1/2 TT (i

±l,±7(20)
2\ i ^3/2 TT

> + q l i±l,±3(20)
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Weight projection: (Ao, Ai,A2)d —*• (2A0 + 2AX + A2, Al5 A2)i.

b{Z] ^ W W")"1 H (1 ~ O IK1"
±1(6) 3(15)

=i l /3 n (i - ^n/2)/2(?)
±3(15)

n (i-?B/a)-? n ( i -?n

±7(15) ±2(15)
1 n (i+<

0,±2(5)

±7(15) ±2(15)
2)-1 n (i - ?n/2) n (

±1(6) 6(15)

= ? i / 3 n (i - <7n/2)/2(?)
±6(15)

n ( i -? n / 2 )+? n ( i - 9
±4(15) ±1(15)

0,±l(5)

+(-9 i / e n (i - q
n/2) - q2/a n

±4(15) ±1(15)

where
h{q) =

±1(9) ±5,±7(18)

n (i - ?n/3) n (
±4(9) ±1,±7(18)

Weight projection: (Ao, Ai, A2)d —> (2A0 + 2Ai + 3A2, A1; A2)i .
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Other affine algebra ...

6.4 Other affine algebra to affine algebra branching rules

In the case of afnne algebras of rank 2 most of the maximal equal rank affine

subalgebras have been identified by Begin and Sharp [BS1]. As before the branching

rules multiplicity generating functions are expressed in terms of the string functions

and inverse string functions obtained in Chapter 4. For reason of simplicity we shall

consider only a few cases. Others can be obtained in a similar fashion.

For illustration let us consider the embedding C^ D A^®ux. The transformation

of the roots have been given in [BS1]. Here we shall give the projection of the weights

only. It takes the form:

{Ao, Aj. \2}d —* {2A0 + Al5 Xi + 2A2 ; A ^ .

Then from the orbit-weight generating function given in (3.36d) we obtain

For the highest weight representation (100) we then have

E
2;4n), 2 i ^.C02) _L

E f̂iSSJ(«
n£Z

E ^ (
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This implies that for n £ Z, the branching rules are

, _ / , 2 » : 7 ( T
( 1 0 0 ) K - ( 0 2 ) -I- n K \

"(20;4n) ~ H Va(001)K(20) I c7(100) / t(20);

7,(100) _ 2n a+2n/_ (100) (20) , (100) (02^
°(20;4n + 2) ~ 9 i,a(001)K(20) "•" 9<7(100)'C(20)./

1,(100) _ «2n2/_(100) (02) , (100) (20)\
°(02;4n) ~ 9 lCr(001)K(02) •" Cr(100)K(02);

— H V^OOl^^O) ' </a(100)/t(20)7

1(100) _ _2na+2n/ (100) (20) , (100)

°(02;4n+2) ~ 9 V(7(001)/C(02) + 9 a

/ (100) (02) , (100)
l<7(ooi)K(2o) i y ^() ()

7(ooi)K(2o)

However from (4.13a) /cggj + g 1 / 2 ^ ] = <^(g2)n(l - g(2"-1)/2) and from (4.15d)
+ ^ ^ ^ S = <K<?)-2n(l + 9(2"-1)/2)- Then

( ) (20) , (100) (02)N , - 1 / 2 / (100) (20) , (100) (02)N
T(100)K(20) "I" °(001)K(20)J + 9 la(001)K(20) I 9(J(100)K(20)j-

Hence

1,(100) _ n

°(20;4n + 2) — U

1,(100) _ Q

"(02;4n) ~ u

°(02;4n + 2) ~ 9

Similarly, for highest weight representation (010) we have

(010) (11) , y( l l ;2»- l ) n ( n _ 1 ) / 2
7(010)/C(ll) CRl V

Hence on substituting a^} and /c|jjj from (4.15d) and (4.13a) respectively, we obtain

Below we give some branching rule multiplicity generating functions for the affine

subalgebras of affine algebras identified in [BSl]. The branching rule multiplicities

marked * can be inferred from those of [BSl], while others are new.
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Other affine algebra

4 © «i

Weight projection: (Ao, Xx \2)d — • (Ao, Ai + A2 ; ±(Ai - A2))d

Weight projection: (Ao, Ax A2)d —>• (Ao, \i + A2 ; A2)d.

±2,±3,±5(16)

I (i - ?"
±1,±6,±7(16)

S . + 0 = (?" ( n + 1 ) - 9 ( n + 1 ) ( n + 2 ))^(? 2)0(9)- 2

Weight projection: (Ao, Ax A2)d -» (Ao + Ax + A2, Ax ; Ax + A 2 ) | .

= (?"2 /2 - ? (n+1)2 /2)<K?1 /2r3<K<zT? (n+1)2 /2)<K?1 /2r3<K<zT

Weight projection: (Ao, Ax X2)d —>• (Ao, 2AX + A2 ; A2)d.
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Weight projection: (Ao, \i A2)d —> (2A0 + Ai + A2, Ai ; Ai + A2)d.

* ft = («"' ~ gc"+1

A(
4
2) D A(

2
2) 0 Ul

Weight projection: (A0,A! A2)d —»• (A0,2Ai + A2 ; A2)d.

2 D

Weight projection: (Ao, Ai A2)d —•> (Ao, Ax, Ai + A2)a.

n (i - ?n)+9 n (
±4(15) ±1(15)

±7(15) ±2(15)

) I K 1 - ?")
±6(15)

18) n I1-?-)
±3(15)
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CHAPTER 7

Conclusion

In this thesis we have presented two methods of computing weight multiplicities of

highest weight modules of affine Kac-Moody algebras. The first method depends on

reorganising the Weyl-Kac character formula and on making use of the fact that the

affine Weyl group is a semidirect product of a translation group and a finite Weyl group.

This allowed us to obtain analytic expressions for orbit sum to irreducible character

expansions for low level and low rank affine algebras. These expansions were further

simplified by specialising the Weyl-Kac denominator identity before being inverted to

obtain weight multiplicity generating functions. These analytic functions were later

used to obtain analytic branching rule multiplicities for the embedding of one affine

algebra in another or in itself.

Although the method itself is of general validity, it seems quite impractical in the

case of affine algebras to proceed beyond level 2 and rank 2 as the number of irreducible

characters tends to increase rapidly as well as the number of weights in each congruence

class. It remains to be seen how the compatibility rules stated by Begin and Sharp

[BS2] may be used for anything beyond the rank 1 affine algebras. Numerically with

the help of computers, some progress could be made but certainly there will be a

practical bound because the computations depend on the explicit generation of Weyl

group element.

In the second method, the Weyl-Kostant-Liu character formula together with the

identification of the set {W : W} and the Young diagrammatic technique for computing

iu(A) — A allowed us to expand the irreducible affine characters directly in terms of

irreducible characters of simple finite-dimensional Lie algebras. For sufficiently large
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rank, this computation is independent of the rank of the algebra. Since the weight

multiplicities of the simple finite-dimensional Lie algebras are polynomial in the rank,

we have thereby established that the weight multiplicities of affine algebras are also

polynomial.

In the process of obtaining the action w(A) — A in the e basis, it is a bit of a

surprise that the entries in the boxes of the Young diagrams are just the Dynkin

labels of the weight A which are actually components of A in the fundamantal basis.

Another unexpected coincidence is that the core elements of {W : W} are in such close

correspondence with the Frobenius notation for partitions. Both of these factors make

the results much easier to express than would be the case without the use of partitions

and Young diagrams.

One obvious extension of this work is surely to find proofs of all the conjectures

stated for the affine algebras C?\ AZ\ Di%, B?\ A^_i and D?\ It is expected that

the proofs in the case of Cj}\ A^r and D^i will be similar to that of A^}\ Although

it might be more difficult, it is also reasonable to expect that the conjectures for cases

B^ and A<^r)_1 can also be proved in the near future with a two-step inductive argument

taking into account the distinction between w$ and tw[̂  . The case of D^ is a bit subtle

and surely needs some further ingredient especially in obtaining the action w(X) — A.

In the thesis we have been most concerned with the determination of {W : W}

for the seven infinite series of rank dependent affine algebras and their restriction to

one specific infinite series of rank dependent simple finite-dimensional Lie algebra. It

would also be interesting to know what the set {W : W} looks like where W is the

Weyl group of the semisimple Lie algebra Q obtained from the Dynkin diagram of the

affine algebra Q by dropping a node other than the zeroth node. Similarly it would be

interesting to know {W : W} in the case of exceptional affine algebras. Maybe we are
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not concerned with the computation of weight multiplicities this time, but the possi-

bility of obtaining branching rules is certainly of interest.

The computations so far have been made only for a few representation of the affine

algebras and have been carried out only up to depth 4. They are already quite involved.

It would be helpful if a program could be written in SCHUR to do similar computations

for these and other representations going beyond depth 4. It should be stressed that

in computing up to depth 4 the expansions of the inverse JD"1, (6.7), have been given

in full. To proceed it is only necessary to expand Nx, (6.6), up to terms involving q4.

Since dw(X) is proportional to the level L(\) of A very few coset elements w € {W : W}

are required. In fact for L(X) > 4 it is sufficient to just take w = id in the numerator.

Beyond the context of affine Kac-Moody algebras, it would also be interesting to

know the impact of the polynomial nature of the weight multiplicities of affine alge-

bras on the determination of the root multiplicities of hyperbolic Kac-Moody algebras

[KM].
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Appendix 1 : Generalised Cartan matrices of affine type.

Appendix 1

1. GCM for

A =
2 - 2

- 2

2. GCM for A?\ r > 2 is the (r + 1) x (r + 1) matrix.

/ 2 - 1 0

A =

- 1 - 1
0 - 1 2

0
0
0

0
0
0

- 1 \
0
0

0
0

V - l

0
0
0

0
0
0

- 1 2
0 - 1

- 1 0
2 - 1

In particular, for r = 2

3. GCM for B^\ r > 3 is the (r + 1) x (r + 1) matrix

A =

/ 2 0
0 2

- 1 - 1
0 0

0
0

\ 0

0
0
0

In particular, for r = 3

- 1
i

2
- 1

0
0
0

2
0

0
0

- 1
2

0
0
0

0
2

0
0
0
0

2
- 1
0

0
0
0
0

- 1
2

- 1

-1 -1
0 0

- 1 0 \
- 1 0
2 - 2

- 1 2 /

4. GCM for C?\ r > 2 is the (r + 1) x (r + 1) matrix

/ 2 - 2 0

A =

i - 1
0
0

0
0

0
0

^ 0

- 1
0

0
0
0

2
- 1

0
0
0

2

0
0
0

0
0
0
0

0
0
0
0

- 1 2
0 - 2

0
0
0
0

0
- 2
2

0
0
0
0

- 1 0
- 1
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In particular, for r = 2
/ 2 - 2 0

A=[-l 2 - 1
\ 0 - 2 2

5. GCM for D?\ r > 4 is the (r + 1) x (r + 1) matrix

/ 2 0 - 1 0 . .
0 2 - 1 0 . .

- 1 - 1 2 - 1 ..
0 0 - 1 2 . .

0
0
0

V 0
In particular, for r = 4

0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0

2
- 1
0
0

0
0
0
0

_-jL

2
- 1
- 1

0
0
0
0

- 0
- 1
2
0

0 \
0
0
0

0
Y

0
2 )

/ 2 0
0 2

- 1 - 1
0 0

0

6. GCM for ElP is

A =

I 2
0
0
0
0
0

V o

0
2

- 1
0
0
0
0

0
- 1
2

- 1
0
0
0

- 1

2
- 1
- 1

0
0

- 1
2

- 1
0

0 0 \
0 0

- 1 - 1
2 0
0 2

0
0
0

- 1
2

- 1
0

0
0
0
0

_j

2
0

0
0

- 1
0
0
2 /

7. GCM for is

A =

' 2
- 1
0
0
0
0
0

V o

- 1
2

- 1
0
0
0
0
0

0
- 1
2

- 1
0
0
0
0

0
0

- 1
2

- 1
0
0

- 1

0
0
0

- 1
2

- 1
0
0

0
0
0
0

- 1
2

_]_

0

0
0
0
0
0

- 1
2
0

0 \
0
0

_Y

0
0
0
2

8. GCM for EP is

A =

( 2
- 1
0
0
0
0
0
0

\ 0

2
- 1
0
0
0
0
0
0

0
- 1
2

- 1
0
0
0
0
0

0
0

- 1
2

- 1
0
0
0
0

0
0
0

- 1
2

- 1
0
0
0

0
0
0
0

- 1
2

- 1
0

- 1

0
0
0
0
0

- 1
2

- 1
0

0
0
0
0
0
0

- 1
2
0

0 \
0
0
0
0

- 1
0
0
2 }
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9. GCM for IS

10. GCM for is

11. GCM for A(,2)

A =

/ 2 - 1
- 1 2
0 - 1
0

V 0
0
0

0 0
- 1 0
2 - 2

- 1 2
0 - 1

A = 2 - 4
- 1 2

0 \
0
0

- 1
2 )

12. GCM for A%), r > 2 is the (r + 1) x (r + 1) matrix

Appendix 1

A-

f 2
- 1
0
0

0
0

V 0

- 2
2

- 1
0

0
0
0

0
- 1
2

- 1

0
0
0

0
0

—
2

0
0
0

0
0
0
0

2
- 1
0

0
0
0
0

- 1
2

- 1

0
0
0
0

0
- 2
2

In particular, for r = 2
2 - 2 0

A= -1
0 - 1

- 2

13. GCM for A{£_x, r > 3 is the (r + 1) x (r + 1) matrix

A =

/ 2 0
0 2

- 1 - 1
0 0

0
0

V 0

0
0
0

- 1
- 1
2

- 1

0
0
0

0
0

- 1

0
0
0

0
0
0
0

2
- 1
0

0
0
0
0

In particular, for r = 3

A =

0
0
0
0

- 1 0
2 - 1

- 2 2
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14. GCM for £><§!, r > 2 is the (r + 1) x (r + 1) matrix

A =

/ 2 - 1 0
- 2 2 - 1
0 - 1 2

0 0 0
0 0 0

V 0 0 0

In particular, for r = 2

15. GCM for Ei2) is

16. GCM for M3) is

A= - 2

0 0 - 2

0
0
0

0
0
0

0
0
0

2 - 1 0
- 1 2 - 2
0 - 1 2

- 1 0

0 - 1

0 0

= 1 - 1 2 - 1
0 - 3 1

0 \
- 1 0 0
2 - 1 0

- 1
0 - 1 2 /

- 1 0
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Appendix 2 : The symmetric G matrices.

1. For A?\ D^\

2. For 4 2 ) , G = (I)

3. For

or the matrix G is the same as matrix A"1

f 3

3 V3 2

4. For £>i3)

(5 =
2 3
3 6

5. For F4
(1)

(A 6 4 2 \
6 12 8 4
4 8 6 3

\ 2 4 3 2

6. For Ei2)

7. For B^ or /

8. For £><£

1

~ 4

f4

4
4

4
4

~ 2

/4
4
4

4
4

\2

4
8
8

8
8
4

4
8
8

8
8
4

-1
4 .. .
8 . . .
12 .. .

12 .. .
12 ...
6 . . .

4 . . .
8 . . .
12 .. .

12 .. .
12 .. .
6 . . .

(2
3
4

^2

4(r
4(r
2(r

4(r
4(r
2(r

3 4
6 8
8 12
4 6

4
8
12

1 1
 

1 
"

to
 t

o 
to

4
8
12

I
I

I
"

to
 t

o 
to

2\
4
6
4 /

4
8
12

4 ( r -
4 ( r -
2 ( r -

4
8
12

4(r
4(r
2(r

—

2)
1)
1)

2)
1)
1)

2(r
2(r

2(r
2(r

2
4
6

- 1 )
r

2
4
6

- i :
r
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9. For CP

10. For

G =

/ I
1
1

1
1

\ 1

(I
1
1

1
1

1
2
2

2
2
2

1
2
2

2
2
2

1 .
2 .
3 .

3 .
3 .
3 .

1 ..
2 ..
3 ..

3 ..
3 ..
3 ..

.. r
r

.. r

•

. T

. r

. r

1
2
3

- 2
- 2
- 2

1
2
3

- 2
- 2
- 2

1
2
3

r - 2
r - 1
r - 1

1
2
3

r - 2
r - 1
r - 1

r
r

r
r

1
2
3

- 2
- 1
r

t
2
3

_ 2
- 1
r

\

y

\

/
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Appendix 3 : Weight multiplicities of twisted affine algebras of level 2.

A(
2
2) - Class 0 - Highest weight (02) and (10)

Depth

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

(02)
(02)

1
2
4
8
15
26
44
72
115
180
276
416
619
908
1316
1888
2682
3774
5268
7296
10032

(10)

1
2
5
9
17
29
50
80
129
199
306
458
682
994
1442
2059
2923
4100
5719
7898
10852

(10)
(02)

0
1
2
4
8
14
24
40
64
101
156
236
352
519
754
1084
1544
2177
3044
4224
5816

(10)

1
1
3
5
10
16
29
45
74
113
176
261
393
570
832
1186
1691
2369
3317
4578
6307

2'13
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- Class 0 - Highest weight (002)

Depth

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

(002)

1
4
14
40
104
248
556
1184
2421
4776
9144
17048
31055
55404
97020
167040
283202
473404
781124
1273440
2052979
3275392
5175012
8101952
12575799
19362520
29584406
44876016
67604838

(010)

1
5
17
49
126
298
663
1403
2849
5589
10643
19747
35810
63627
110994
190431
321804
536297
882383
1434697
2307165
3672284
5789225
9044581
14011106
21531867
32840234
49730097
74796125

(100)

2
7
24
64
162
371
816
1696
3414
6623
12524
23057
41582
73454
127560
217861
366774
608989
998800
1618978
2596392
4121772
6482332
10104295
15619824
23955810
36468828
55125988
82772398
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- Class 0 - Highest weight (010)

Depth

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

(002)

0
2
8
25
68
168
384
832
1720
3426
6608
12397
22696
40672
71488
123488
209968
351894
581968
950753
1535664
2454316
3883936
6089647
9465260
14591966
22321992
33897746
51120104

(010)

1
4
13
37
94
221
491
1038
2108
4139
7890
14657
26617
47359
82732
142143
240533
401391
661275
1076529
1733263
2761993
4358997
6817339
10571599
16261984
24825871
37627706
56642461

(100)

1
4
15
42
109
256
571
1202
2442
4776
9086
16822
30471
54044
94169
161328
272317
453260
744987
1209974
1943939
3091152
4868861
7600122
11764154
18064744
27532285
41662824
62621070
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Aij2) - Class 0 - Highest weight (100)

Depth

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

(002)

0
1
4
12
32
79
180
390
808
1613
3120
5872
10784
19387
34184
59230
101008
169770
281540
461160
746752
1196350
1897588
2981818
4644496
7174599
10996576
16730180
25275136

(010)

0
1
4
13
36
89
205
446
925
1847
3570
6708
12299
22066
38824
67124
114222
191559
317001
518167
837368
1338904
2119697
3324766
5169603
7972279
12199331
18531033
27953657

(100)

1
2
8
20
53
120
271
564
1154
2252
4307
7980
14519
25802
45126
77496
131236
218976
360953
587644
946542
1508534
2381611
3725400
5778673
8890794
13576397
20581100
30988700
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- Class 0 - Highest weight (002)

Depth

0

1

2

3

4

5

6

7
8

9

10

11

12

(002)

1

1

5

8

24

39

90

147

297

477

880

1391

2412

(010)

1

2
7

13

32

57

119

204

385

638

1125

1812

3041

(200)

2

3

11

18

47

77

165

268

516

823

1468

2300

3891

- Class 0 - Highest weight (010)

Depth

0

1

2

3

4

5

6

7
8

9

10

11

12

(002)

0

1

3

7
16

34

67

127

232

412

713

1205

1997

(010)

1

1

6

9

27

43

101

161

328

520

964

1508

2623

(200)

1

3

7
16

34

67

127

232

412

713

1205

1997

3255

221
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- Class 0 - Highest weight (200)

Depth

0

1

2

3

4

5

6

7
8

9

10

11

12

(002)

0

0

2

3

11

18

47

77
165

268

516

823

1468

(010)

0

1

2

7
13

32

57

119

204

385

638

1125

1812

(200)

1

1

5

8

24

39

90

147

297

477
880

1391

2412

- Class 1 - Highest weight (101)

Depth

0

1

2

3

4

5

6

7
8

9

10

11

12

(101)

1

3

8

19

41

83
161

299

538

942

1610

2694

4427

221
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M3 ) - Highest weight (010) and (200)

Depth

0

1

2

3

4
5

6

7
8

9

10

11

12

(010)

(010)

1

2

5

13

25

49

96

169

296

515

851

1393

2261

(200)

1

4

8

17
37
68

125

229

390

658

1101

1774

2832

(200)
(010)

0

1

3

6

15

31

57

110

198

338

583

971

1569

(200)

1

1

5

10

21

42

83

143

263

448

749

1237

2012

22^
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Appendix 4 : Inverse string functions n

A™ :

Level 1 : P+ax = {(10)} U {(01)}

(10) (01) V^J §n2-n „ n$

n

Level 2 :

Level 2 :

,.(20) -^.(02) _ V ^ 4n3-n
"-(20) —^(02) — / JH

,.(20) _nK.(02) _ _ V ^ 4r.2-5n+2
"'(02) —^"'(20) — / j H

A(
2
2) :

Level 1 : P+ar = {(01)}

6n2-5n+l\

^(02) V~^f 15n2+2n 15n2+8n+l\
v(o2) — Z -A? " " " J

15n2+14n+3 „15n2-4n^

()
(02)

n

15n7-13n+3

15n2+lln+21

Level 1 : P+ar = {(100)} U {(010)} U {(001)}

,.(100) _, . (010) _ (001)
"-(100) — / t(010) — K

?-m-10n+3 o r-7m+2n + l r-7ro-7n+4"l

where F = 12(m2 — mn -\- n2).
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Level 2 : P+ax = {(200), (Oil)} U {(020), (101)} U {(002), (110)}

_ ..(no)
— "-(101)

= £{?
m,n

- , -jm+19n+12

n + 16 _i_ 2or+m+28n+9

(H0) _« . ( 1 0 1 ) _ nK(011)
(002) —^(020) — (/ft'(200)

3 n + 6 _ 2 0
r + 3 7 m +"+ 1 6

m,n

. 20
r-i

I

^r+7m+7n+2

_r+13m+4n+3

.(200) _ (002) _
V K )

_ V ^ f r+16m+16n+9 , 2 r+4m+4n + l \

,.(200) __(020) _ (002)
^(200) —^(020) — K(002)

r+22m-l4n+4

where F = 30(m2 — mn + w2)

Level 1 : P+ax = {(010)} U {(100), (001)}

,(010) _ V~̂  r r+2m-n ,

m,n

_ qr-10m+5n + l _ g

_ (001) _ ST^r r-m-n , r-7m-7n
— K(ooi) — 2 "W + 9

_ •

_ -,-(001) _ V^ f r+llm-13n+4
9K 2 9 , r

+9

r+5m-7n + l r+llm-lOn+2-1
— 9 /

5n + 5 r -7m+5n + l r-m-13n+81
— 9 — 9 /

where T = 12(2m2 - 2mn + n2).
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Level 2 : P+ax = {(002), (020), (101), (200)} U {(Oil), (110)}

^(110) — K(011) — 2-f I*? ~̂~ ̂  ' ^

i r+49m-38n+13 , r+31m-2n+7 , r+7m-14n+2 i r+43m-26n+8

• r-41m+22n+7 _ r+49m-26n + 10 _ r-23m+22n+4 _ r+13m-2n + l

_ r+m-14n+3 r-41m+34n + 10 _ r+67m-3Sn + 19 _ r -17m-2n+3

_ V ^ r+31m-14n+4-|

_r-17m+13n+2 i

I r+19m-lln+2 , r+61m-29n + 16 i r+13m-17n+3 , r-23m+7n+3

^r+49m-41n + 15 r-41m+37n + 12 ^r+43m-lln + 10 ^

q — q — q — q

r-29m+13r»+4 ^r-llm+7n + l r+73m-41n+23 ^,

— q — q — q — q

_ V^ ,r+m- 17n+5\

I r+4m + 7n+2 • r+76m-47n+26 , r-56m+37n + 15 , r+46m-17n+10

I r -26m + 7n+4 _ r-38m+37n + 12 _ r+58m-47n+20 _ r-Sm+7n + l

_ r+28m-17n+4 _ r+52m-23n + 12 _ r -32m + 13n + 5 _ r+22m+7n+8

r-2m-17n+6j

r+70m-47n+23 , r-50m+37n + 13 , r+40m-17n+7 , V-20m-

i r-20m+13n+2 , r+40m-23n+7 • r+10m-17n+3 , r+10m+7n+3

_ r+46m-23n + 9 _ r-26m + 13n+3 _ r+16m+7n+5 _ r+4m-17n+4

_ r-44m+37n + 12 _ r+64m-47n+21 _ r-14m+7n + l _ r+34m-17n+5\

r-2m+n i r+22ra-lln+2 , r-32m+31n+S , r+52m-41n + 15

+9 +9 +9
, r

i r+28m+n + 7 , r-8m-lln+4 , r+58m-29n+14 ,

_ r+10m-lln + l _ r+10m+n + l _ r~20m + 19n+3 _ r+40m-lln+8

^r+40m29n+8 ^F20m+n+3 ^r+70m-41n + 21 ^
— q — q — q — q
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(200) _ 21002) _ V"> f r+5Sm-26n + 15 . r+22m-14n+3 r+46m-14n + l l r+34m-26n+7\
^(002) — 1 K(200) — Z ^ l 9 ' 1 ~ 9 ~ 1 J

m,n

(200) _ ,,,-(002) _ V"^/ JT+34m-2n+9 , r+46m-38n + 13 r+70m-38n+21
(020) — 9K(020) — 2 ^ I? + 1 ~" ~
(200) _ ,,,-(002) _ V / JT+34m2n+9 , r+46m38n + 13 r+70m-38n+21 r+10m-2n + l-|

K(020) — 9K(020) — 2 ^ I? + 1 ~" ~" J

r~38m+34n+10 r-2m-14n+4\
""9 ~ 9 J

m , n

,.(200) _ (002) _ V^ f r-2m-2n , r-38m+22n+6 r-26m+22n+4 r - 1
K(200) — ^(002) — 2-^\" ' ^ ~" ? ~~ "

r-8m-14n+6 , r+28m+4n+9 , r+52m-44n + 17

m,n

_ r+16m-14n+2 _ r-56m+34r» + 14 _ r+76m-44n+25 _

(020) _ V^ r r+4m-2n , T-44m+22n+8 , ^r+64m-32n+17 , r+16m-8n + l
K(O2o) — 2 1 9 +9 +9 +9

K
(020) _ V^f r+40m-14n+7 , r+40m-26n + 7 , r-20m+16n+2 i r~20m+4n+2
(101)

m,n

where V = 30(2m2 - 2mn + n2).

Level 1 : P+ar = {(001), (100)}

.(001)
^(001)

3n + 12j

(001) _ y r r-m+3n , r+7m-33n + 9 , T-K(001) — /_, 19 +9 t?

m,n
_ r+3m-9n _ r-17m+15n+5 _ r-m-21n+8-l

^(10°) _ V^/or+llm-25n+3 , r-17m+23n+4 , r~9m-13n +

m,n

_ r+7m-13n + l _ r-21m+23n + 7 _ r-m-25n + 121

r+3m-25n+7 , r-17m+lln+7
+9

m,n

_ o r - 9 m + lln + l _ r+7m-25n+4 _ r-13m-n+9~l

where V - 20m2 - QOmn + 60n2.
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Level 2 : P+ax = {(002), (010), (101), (200)}

() _ ^
(2oo) — ~~9 K(oio) —

= 3£{<Z

r-9m+5n+3
" 9

_ r-7m-n+4 _ r-5m+5n1

nr+5m-l3n+l , r-5m-7n+6
(200) — Z^lV ' "

— q

_ _r-13m+15n+4 _ r+7m-21n+4"l

^(200) _ (010) _
K(002) — K(002) —

,(002) _ -1 (200) _ V^f r+3m-17n+4 r-5m+7n\

(ioi) — 9 ^(oio) — Z^ty ~ 1 j

J

r
m,n

_ -1 (200) _ V^f r-5m-5n+4 r-9m+7n+2~l

9 K ) 2\1 ~ $
,,(002) _ (200) _ V^ f/7r+7rn-17n+2 r+3m-5n
^(010) — ~K(200) Z y ~ 1 J

m,n

where T = 12m2 - 36mn + 36n2.

Level 1 : P+ar = {(001)}

(001) _ O f r-m+2n _i_ _r+9m-13n+3 , ^,r-21m+7n+4 , ̂ ,r
K(ooi) — Z^\9 +9 +9 +9

^,r-llm+7n + l ^r+9m-8n + l ^,r-21m+2n + 6 ,̂
— q — q — q — q

where T = 30m2 - 30mn + 15n2.
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Level 2 : P+ax = {(002), (010), (100)}

(002) _ \ ~ ^ f r-2m+4n , _r+48m-16n+9 i /,r+78m-26n+24 , jr-12m+24n+5
(̂002) — Z ^ \ 9 ' 9 ' 9 ' "

_ r+58m-26n + 12 _ r~22m+24n+4 _ r+8m+4n + l _ r+68m-16n+2n

(002) _ V"̂  r r-32m+34n+8 , r+78m-16n+29

— q — q — q

(002) _ V^/^r-2m+34n + 15 , ^r+108m-46n+42 , r+18m+4n+3
T q

_ r+58m+4rc + 27 _ r+38m-6n+7 _ r+88m-36n+28 _ r-2m+24n+7\

^ •

(010) _ O r [
(002) ~ / AH

m,n

„^+23m+9n+8 _r

— q — q

,r+23m-lln+2

— q — q

i r+33m+4n , r • r-27m+44n + 16 , r+93m-46n+31

_ r-47m+44n + 14 _ _ r+43m+4n + 16 _ r+33m-16n+4-|

\ ^ f r-t-3m — n |

- 9 — q

r-17m+29n + 7

— q

I r+73m-36n , r+43m-16n + 7 . r+83m-26n+28 , r+53m-6n

_ r+53m-26n + 10 _ r+43m-6n + 10~l _ r+83m-36n+25 _ r+73m-16n+25-|

\ •* f^,r+33m-n + 7 , ^r+73m-lln+2S i

- 2^19 +g +q
_ r+93m-31n+34 _ r+3m+29n + 13 _ r+53m-n + 19 _ r+33m-lln+4T

, r-37m+34n+8 , r+3m+24n+9 , r+53m+4n + 23 , r+23m-6n

— q — q — q — q
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(100) V^ / r+68m-31n + 17 , ^,r-22m+19n+3 , ,,r+8m+9n+3 ,

_ r-12m+9n + l _ r+48m-lln + ll _ r+78m-31n+23 _ r-2m+19n + 51

(100)
K(002) —

(100) _ V^ f r+38m-n + 10 , ^r+Sm+^n+S , r+118m-61n+50 , r+88m-41n+28

_ r+18m+9n + 6 _ r+78m-41n+22 _ r+48m-n + 16 _ r+108m-51n+42|

(100) V^ f r-2m-n i ^,r+38m-lln+6 i r+88m-31n+30 i r-12m+29n+8
K(100) — 2Lrfl9 "T" 9 +? "r" H

m,n

r+58m-31n + 12 /,r-32m+29n+6 ^r+18m-n+2 /Y

— q — q — q — q

where T = 70m2 - 70mn + 35n2.

Level 1 : P+ax = {(100)} U {(001)}

..(100) _ ,,(001) _ r ^ f r-2m-n , r+6m-17nH

I r-26m+7n+5 , r-18m-9n

_ r-18m+7n+2 _ T+6m-9n + l

_ r-26m-n+9 _ r-2m-17n+8\

where T = 40m2 - 40mn + 20n2.

Level 2 : P+ax = {(002), (010), (200)}

, - - - y _ , - - - , _ . , r-22m+7n + 6 r+10m-9nH
K(002) — 9K(200) — 2^i\" ~ "

m,n

_|_ q +10m-13n+4 _ ^

(010) Y^f r+2m-n X
K(oio) — Z^i-9 "~ 9

I _r-14m-5n+8 _ r+2m-13n+61

-2 (002) _ y ^ f r-10m-9n+10

_
— H ()

m,n
.(200) _ --1^.(002) _ Y^frtr-18rn+7n+4

^ Z9

,.(200) _ (002) _ V"̂  r r-2m-n />r-2m-9n+4"l
K(200) — ̂ (002) — 2 " "~ ? /
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where T = 24m2 - 24mn + Yin2.

Level 1 : P+ax = {(100)}

(100) _ V^/^r -m-Sn i ,_r+23m-57n+7 , ,T-31m+33n+7
K(ioo) — Z_/i9 + 9 + ? T 9

I r-37m+15n+21 i r~13m-39n+28 _ r-13m+15n+l _ r+17m-39n+3

_ r-37m+33n+12 _ r+23m-75n+16 _ r~31m-3n+25 i r-m-57n+27T

where T = 42m2 - 126mn + 126n2.

Level 2 : P+ar = {(010), (200)}

(010) _
K(010) —

m,n

I r-19m+24n+4 , r+llm-48n + 15 _ r-25m+24n+9 _ r+17m-48n+10-|

(oio) _ \ p r _r-
(̂200) — 2 ^ I?

"" 1 5

K(0W) = 22{qr+17m~39"+6 + g
r " 2 5 m + 1 5 " + 14 _ ?r+llm-21n+2 _ ?r-19m-3n + 18 j

ro,n

(200) _ V^f r-m-3n , /,r-7m-21n+14 ^r
^(200) ~ 2-f l" """ " ~" ̂

where T = 24m2 - 72mn + 72n2.
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Appendix 5 : The values of the partition function pk-

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

Pi

1
1
2
3
5
7
11
15
22
30
42
56
77
101
135
176
231
297
385
490
627

Pi

1
2
5
10
20
36
65
110
185
300
481
752
1165
1770
2665
3956
5822
8470
12230
17490
24842

1
3
9
22
51
108
221
429
810
1479
2640
4599
7868
13209
21843
35581
57222
90882
142769
221910
341649

Pi

1
4
14
40
105
252
574
1240
2580
5180
10108
19208
35693
64960
116090
203984
353017
602348
1014580
1688400
2778517

Ps

1
5
20
65
190
506
1265
2990
6765
14725
31027
63505
126730
247170
472295
885723
1633000
2963840
5302075
9358470
16313440

Pe

1
6
27
98
315
918
2492
6372
15525
36280
81816
178794
380051
788004
1597725
3174210
6190182
11867310
22395359
41650050
76413078
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