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AN ALGORITHMIC APPROACH TO DOLD-PUPPE COMPLEXES
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(communicated by Daniel Grayson)

Abstract
A Dold-Puppe complex is the image NFΓ(C.) of a chain

complex C. under the composition of the functors Γ, F and
N , where Γ and N are given by the Dold-Kan correspondence
and F is a not necessarily linear functor between two abelian
categories. The first half of this paper gives an algorithm that
streamlines the calculation of Γ(C.). The second half gives an
algorithm that allows the explicit calculation of the Dold-Puppe
complex NFΓ(C.) in terms of the cross-effect functors of F .

Introduction

Let R and S be rings. The construction of the left derived functors LkF : R -mod
→ S -mod of any covariant right exact functor F : R -mod → S -mod is achieved by
applying three functors. The first functor constructs a projective resolution P. of the
R-module M of which we wish to calculate the derived functor. Then the functor F
is applied to the resolution P. giving the chain complex F (P.). Lastly, LkF (M) is
defined to be Hk(F (P.)), the kth homology of the chain complex F (P.). However, for
a given module M the projective resolution of M is unique only up to chain-homotopy
equivalence, so this construction crucially depends on the fact that F preserves chain
homotopies. In general this fact does not hold when F is a non-linear functor such as
the lth symmetric power functor, Syml, or the lth exterior power functor, Λl. In the
paper [DP] Dold and Puppe overcome this problem and define the derived functors
of non-linear functors by passing to the category of simplicial complexes using the
Dold-Kan correspondence.

The Dold-Kan correspondence gives a pair of functors Γ and N that provide an
equivalence between the category of bounded chain complexes and the category of
simplicial complexes; under this correspondence chain homotopies correspond to sim-
plicial homotopies. Furthermore, in the simplicial world all functors preserve simpli-
cial homotopy (not just linear functors). Because of this the above definition of the
derived functors of F becomes well defined for any functor when F (P.) is replaced by
the complex NFΓ(P.). We call chain complexes of the form NFΓ(C.) Dold-Puppe
complexes, for any bounded chain complex C..
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Let R be a ring and let I be an ideal in R that is locally generated by a non-zero
divisor. If P. is a length-one R-projective resolution of a projective R/I-module V ,
then the homology of the Dold-Puppe complex N Symk Γ(P.), k > 1, has been explic-
itly computed in [Kö]. These computations yield a very natural and new proof of the
classical Adams-Riemann-Roch theorem for regular closed immersions and hence a
new approach to the seminal Grothendieck-Riemann-Roch theorem avoiding the com-
paratively involved deformation to the normal cone; see [Kö].

If C. is a chain complex of length bigger than 1, then the calculation of the Dold-
Puppe complex NFΓ(C.) is normally too complicated to be performed on a couple of
pieces of paper, and the nature of the calculation means that errors easily creep in. In
this paper we analyse and elucidate its combinatorial structure, and exploiting this
structure that we have revealed, we develop an algorithm that computes this Dold-
Puppe complex. We hope that this explicit description of the Dold-Puppe complex
will help later work in calculating its homology, particularly in concrete example
situations. Moreover, we expect that it will be useful in computing maps between the
homology of different Dold-Puppe complexes, such as the plus and diagonal maps
occurring in [Kö]: for such calculations one often has to find representatives on the
complex level for elements of the homology.

We now describe the contents of each section in more detail.
In Section 1 we introduce an ordering on the set Mor([n], [k]) of order-preserving

maps between [n] := {0 < 1 < · · · < n} and [k] := {0 < 1 < · · · < k} (see Definiti-
on 1.9). Basically the entire paper is based on this crucial definition. We show at the
end of Section 1 that composition with the face maps δi : [n− 1] → [n] and degen-
eracy maps σi : [n] → [n− 1] is “well-behaved” with respect to this ordering (see
Theorem 1.13).

The simplicial complex Γ(C.) is defined by

Γ(C.)n =
n⊕

k=0

⊕

µ∈Sur([n],[k])

Ck,

so we have a copy of the direct summand Ck for each surjective order-preserving
map µ : [n] → [k]. The face and degeneracy operators in the simplicial complex Γ(C.)
are defined in terms of composition of µ with the maps δi and σi. In Section 2 we
show how the results in Section 1 can be used to streamline the calculation of the
face and degeneracy operators in the simplicial complex Γ(C.) (see Theorem 2.2 and
Example 2.3).

In Section 3 we summarize the results on cross-effect functors that are needed for
the final section.

The Dold-Puppe complex NFΓ(C.) is constructed by modding out the images of
the degeneracy operators in FΓ(C.). To calculate this we apply the theory of cross-
effect functors to decompose both the numerator and denominator into the direct sum
of cross-effect modules, the non-degenerate modules corresponding to the terms that
appear in the numerator but not in the denominator. However, the decomposition
produces many, many terms and seeing which are non-degenerate is far from obvious.
In Section 4 we give a criterion that identifies the non-degenerate terms (see Propo-
sition 4.4). Using the ordering we introduced in Section 1, we later give an algorithm
that constructs all relevant non-degenerate terms, thus avoiding the need to check
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each of the many terms one by one. We finally illustrate the methods developed in
this paper in the case when C. is a chain complex of modules over a commutative
ring of length 2 and F is the symmetric-square functor (see Example 4.13).
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Notation

Let ∆ be the category whose objects are the non-empty finite totally ordered sets
[n] := {0 < 1 < · · · < n}, n ∈ N, and the set of morphisms, Mor([n], [k]), between [n]
and [k] consists of all the order-preserving maps between them. Recall that for each
i ∈ {0, . . . , n} the face map δi : [n− 1] → [n] is the unique injective order-preserving
map with δ−1

i (i) = ∅, and for each i ∈ {0, . . . , n− 1} the degeneracy map σi : [n]
→ [n− 1] is the unique order-preserving surjective map with σ−1

i (i) = {i, i+ 1}. For
a category A, a simplicial object A in A is a contravariant functor A : ∆ → A. We
write An for A([n]), di for the face operator A(δi) : An → An−1, si for the degener-
acy operator A(σi) : An−1 → An and Sur([n], [k]) for the set of surjective morphisms
between [n] and [k].

1. Partitions and composition with face/degeneracy maps
in ∆

For the whole of this section let us fix the natural numbers n and k. In this section
we introduce an ordering on Mor([n], [k]), investigate the maps µ 7→ µδi and ν 7→ νσi

between Mor([n], [k]) and Mor([n− 1], [k]) and show that these maps behave in a nice
way with respect to the introduced ordering.

This ordering will be used throughout this paper. In Section 2 it will allow us
to describe algorithms that streamline the calculation of the face and degeneracy
operators in the simplicial complex Γ(C.) (for any bounded chain complex C.). In
Section 4 the ordering will help us to give an algorithmic description of the Dold-
Puppe complex NFΓ(C.).

Definition 1.1. For an n-tuple x := (x1, . . . , xn) ∈ Nn we write |x| for
∑n

l=1 xl, and
we call x a partition of m of length n if |x| = m. If each xi 6= 0, then we call x a
proper partition, otherwise we call x an improper partition. We write xi for the ith

entry of x.

A function µ : [n] → [k] is determined by µ−1(0), µ−1(1), . . . , µ−1(k). If µ is a
monotonically increasing function, then the sets µ−1(0), µ−1(1), . . . , µ−1(k) consist
of consecutive elements of [n]. Because of this it is sufficient to know the sizes of
these sets; hence, we can think of a morphism µ : [n] → [k] as a partition of n+ 1 of
length k + 1. A surjective morphism would correspond to a proper partition and a
non-surjective morphism would correspond to an improper partition.
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Notation 1.2. Let µ ∈ Mor([n], [k]). The partition (|µ−1(0)|, . . . , |µ−1(n)|) is denoted
by µ∗. Note that µ∗i = |µ−1(i− 1)|.
Lemma 1.3. The cardinality of the set of surjective order-preserving morphisms
between the sets [n] and [k] is given by the binomial coefficient

(
n
k

)
:

| Sur([n], [k])| =
(
n

k

)
.

Proof. If µ : [n] → [k] is a surjective morphism, then the sets µ−1(i), i = 0, 1, . . . , k
are non-empty, disjoint, their union is [n] and they consist of consecutive elements of
[n]. So if we know the smallest elements of µ−1(1), µ−1(2), . . . , µ−1(k), then we have
determined µ. Since we know 0 = µ(0) the smallest elements are in the set {1, . . . , n}.
So there are as many elements of Sur([n], [k]) as there are ways of choosing k elements
from a set of size n.

Notation 1.4. For i ∈ {0, . . . , n} define δi : Mor([n], [k]) → Mor([n− 1], [k]) by
µ 7→ µδi, and for i ∈ {0, . . . , n− 1} define σi : Mor([n− 1], [k]) → Mor([n], [k]) by
ν 7→ νσi. By abuse of notation we write Imσi for σi(Sur([n− 1], [k])).

Lemma 1.5. For all i ∈ {0, . . . , n− 1} we have δiσi = id, and hence σi is injective
and δi is surjective; also δn is surjective.

Proof. The result follows directly from σiδi = id for i ∈ {0, . . . , n− 1} and from
σn−1δn = id .

Definition 1.6. Let a be a partition of length k and x a partition of length l 6 k.
Then we call x an initial partition of a if xi = ai for 1 6 i 6 l. We write a = (x, y)
where y is the partition of length k − l defined by yi = ai+l for 1 6 i 6 k − l. (Note
that we may allow either x or y to be the empty partition.)

Since knowing the effects of δi and σi are essential in calculating di and si it is
useful to have a quick way of working out the partitions (µδi)∗ and (µσi)∗ from the
partition µ∗.

Lemma 1.7.

(a) Let µ ∈ Mor([n− 1], [k]) and i ∈ {0, . . . , n− 1}. We write µ∗ = (x, d, y) with
partitions x, y and a positive integer d such that |x| < i+ 1 6 |x|+ d. Then
the partition (µσi)∗ is equal to (x, d+ 1, y).

(b) Let µ ∈ Mor([n], [k]) and i ∈ {0, . . . , n}. As above we write µ∗ = (x, d, y) so that
|x| < i+ 1 6 |x|+ d. Then the partition (µδi)∗ is equal to (x, d− 1, y).

Proof. It is clear that we can write µ∗ in the stated way. Note that d 6= 0, so d− 1 is
non-negative.

By definition, for every µ in Mor([n− 1], [k]) we have µ∗l = |µ−1(l − 1)|, and we
also have (µσi)−1(l − 1) = σ−1

i µ−1(l − 1). Recalling that σi is the unique surjec-
tive map [n] → [n− 1] with σ−1

i (i) = {i, i+ 1}, we see |(µσi)−1(l − 1)| = |µ−1(l − 1)|
if and only if i /∈ µ−1(l − 1), and |(µσi)−1(l − 1)| = |µ−1(l − 1)|+ 1 if and only if
i ∈ µ−1(l − 1); i.e., µ∗l = (µσi)∗l if and only i /∈ µ−1(l − 1), and (µσi)∗l = µ∗l + 1 if
and only if i ∈ µ−1(l − 1).
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Let L be the length of x. Remembering that i is the (i+ 1)th element of [n] we
find that i ∈ µ−1(L) and so, by the last sentence of the previous paragraph, we find
(µσi)∗ = (x, d+ 1, y).

Similarly, we get our result for δi.

Lemma 1.8. Let µ ∈ Sur([n], [k]), and let i ∈ {0, . . . , n}. Then the morphism
δi(µ) = µδi is not surjective if and only if the partition µ∗ is of the form (x, 1, y),
where x is a partition of i. In this case we have the commutative diagram

[n]
µ

""FF
FF

FF
FF

F

[n− 1]

δi

::uuuuuuuuuu

µ̂

$$IIIIIIIII
[k],

[k − 1]

δj

<<xxxxxxxx

where µ̂ is the surjection with µ̂∗ = (x, y) and j is the length of x; in particular i = 0
if and only if j = 0.

Proof. The equivalence follows directly from Lemma 1.7(b). The additional state-
ments are easy to check.

If a and b are both partitions of the same number over the same number of places
and x is an initial partition of both, then we call x a common initial partition of a
and b. Because a and b are of finite length there must be some longest common initial
partition (even if it is of length 0, or it is equal to a).

Definition 1.9. If x is the longest common initial partition of a = (x, y) and
b = (x, z), then we say a < b if and only if y1 < z1. This gives the lexicographic
ordering on the set of partitions and finally, via the bijection µ 7→ µ∗, a total order
on Mor([n], [k]).

Notation 1.10. For i ∈ {0, . . . , n} let

Sn,k
i := {µ ∈ Sur([n], [k]) | µ∗ is of the form (x, y) where |x| = i+ 1}

and let

S̃n,k
i := {µ ∈ Sur([n], [k]) | µ∗ is of the form (x, 1, y) where |x| = i}.

Note that S̃n,k
i ⊂ Sn,k

i and Lemma 1.8 tells us that the set S̃n,k
i coincides with the

set {µ ∈ Sur([n], [k]) | δi(µ) is not a surjection}.

Lemma 1.11. For each i ∈ {0, . . . , n− 1} we have |Sn,k
i | = (

n−1
k−1

)
. Furthermore, for

each i ∈ {1, . . . , n− 1} we have |S̃n,k
i | = (

n−2
k−2

)
and finally |S̃n,k

n | = (
n−1
k−1

)
.

Note in the statement above, if the lower entry of a binomial coefficient is negative,
then the binomial coefficient is meant to be 0.
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Proof. If µ ∈ Sn,k
i , then for some l we have that i is the maximal element of µ−1(l).

Furthermore, we know that n is the maximal element of µ−1(k). Therefore, choosing
an element µ of Sn,k

i amounts to the same as choosing the maximal elements for
all but one of the sets µ−1(0), . . . , µ−1(k − 1) from the n− 1 elements of [n] \ {i, n};
hence, |Sn,k

i | = (
n−1
k−1

)
.

For i ∈ {1, . . . , n− 1}, if µ ∈ S̃n,k
i , then for some l we have that i− 1 is the maximal

element of µ−1(l), and also i is the maximal element of µ−1(l + 1), i.e., choosing an

element µ of S̃n,k
i amounts to the same as choosing the maximal elements for all but

two of the sets µ−1(0), . . . , µ−1(k − 1) from the n− 2 elements of [n] \ {i− 1, i, n};
hence, |S̃n,k

i | = (
n−2
k−2

)
.

For the last statement we merely observe that S̃n,k
n = Sn,k

n−1 and use the first
result.

Proposition 1.12. For each i ∈ {0, . . . , n− 1}, the set Sur([n], [k]) is the disjoint
union of Sn,k

i and Imσi:

Sur([n], [k]) = Sn,k
i q Imσi.

Note that Sn,k
n = Sur([n], [k]) and there is no map σn.

Proof. First we prove Sn,k
i and Imσi are disjoint. Let µ ∈ Sur([n], [k]). The partition

µ∗ has an initial partition of i+ 1 if and only if there is some l such that i is the
maximal element of µ−1(l) (remember i is the (i+ 1)th element of [n]). If i is the
maximal element of µ−1(l), then µ(i) 6= µ(i+ 1). But µ ∈ Imσi means that for some
ν ∈ Sur([n− 1], [k]) we have µ = νσi. So µ(i) = νσi(i) = ν(i) = νσi(i+ 1) = µ(i+ 1).
Therefore µ cannot be both in Sn,k

i and Imσi.
Now we prove that the union of Sn,k

i and Imσi form the whole of Sur([n], [k]) by
using a counting argument. We know that Sn,k

i ∩ Imσi = ∅ so |Sn,k
i ∪ Imσi|

= |Sn,k
i |+ | Imσi|. Lemma 1.5 tells us that σi is injective. From this we see that

|Sn,k
i |+ | Imσi| = |Sn,k

i |+ | Sur([n− 1], [k])|
and using Lemmas 1.3 and 1.11 we obtain

|Sn,k
i |+ |Sur([n− 1], [k])| =

(
n− 1
k − 1

)
+

(
n− 1
k

)
=

(
n

k

)
= |Sur([n], [k])|,

as desired.

Theorem 1.13.

(a) The map σi : Mor([n− 1], [k]) → Mor([n], [k]) is strictly order-preserving for
each i ∈ {0, . . . , n− 1}.

(b) The map δi : Sur([n], [k]) → Mor([n− 1], [k]) is strictly order-preserving on both
Imσi and Sn,k

i for each i ∈ {0, . . . , n− 1}, and δn is strictly order-preserving
on Sur([n], [k]) = Sn,k

n .

Note that while δi is order-preserving on these two complementary subsets of
Sur([n], [k]) it is not order-preserving on the whole of Sur([n], [k]); for an illustration
of this look at the calculation at the end of Section 2.
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Proof. (a) Suppose µ, ν ∈ Mor([n− 1], [k]) and µ < ν. As in Lemma 1.7 we write the
partition µ∗ in the form (x, d, y) where |x| < i+ 1 6 |x|+ d. Let a be the longest
common partition of µ∗ and ν∗, so µ∗ = (a, b) and ν∗ = (a, c) for appropriate parti-
tions b and c with b1 < c1. We will show the desired inequality (µσi)∗ < (νσi)∗ by
distinguishing three cases: (i) a is longer than x, (ii) a has the same length as x and
(iii) a is shorter than x.

(i) If a is longer than x, then we can write a in the form (x, d, w) for some
(possibly empty) partition w. Then µ∗ = (x, d, w, b) and ν∗ = (x, d, w, c) and hence
by Lemma 1.7 we see that (µσi)∗ = (x, d+ 1, w, b) and (νσi)∗ = (x, d+ 1, w, c). So
the longest common initial partition of (µσi)∗ and (νσi)∗ is (x, d+ 1, w), and since
b1 < c1, we see that (µσi)∗ < (νσi)∗.

(ii) If a has the same length as x (i.e., if a = x), then d = b1 and since we have
b1 < c1 we see i+ 1 6 |x|+ d < |x|+ c1. Using Lemma 1.7 we obtain (µσi)∗

= (x, b1 + 1, y) and (νσi)∗ = (x, c1 + 1, z) for appropriate partitions y and z. So the
longest common initial partition of (µσi)∗ and (νσi)∗ is x, and since b1 + 1 < c1 + 1,
we see that (µσi)∗ < (νσi)∗.

(iii) If x is longer than a we write x = (a, x′) for some non-empty partition x′.
Then µ∗ = (x, d, y) = (a, x′, d, y). As in Lemma 1.7 we write ν∗ = (w, d′, z) where
|w| < i+ 1 6 |w|+ d′. We know that |a| 6 |x| < i+ 1 and a is an initial partition of ν∗

so w = (a,w′) for some possibly empty partition w′. We now show the desired inequal-
ity (µσi)∗ < (νσi)∗ by distinguishing two subcases: (α) w′ is non-empty, (β) w′ is
empty.

(α) If w′ is not empty, then µ∗ = (a, x′, d, y) and ν∗ = (a,w′, d′, z). Since µ∗ < ν∗

we find that x′1 < w′1. Applying Lemma 1.7 we find that (µσi)∗ = (a, x′, d+ 1, y) and
(νσi)∗ = (a,w′, d′ + 1, z). So the longest common initial partition of (µσi)∗ and (νσi)∗

is a, and since x′1 < w′1, we see that (µσi)∗ < (νσi)∗.

(β) If w′ is empty, then µ∗ = (a, x′, d, y) and ν∗ = (a, d′, z) where |a| < i+ 1
6 |a|+ d′. Since µ∗ < ν∗ we see that x′1 < d′. Applying Lemma 1.7 we find that
(µσi)∗ = (a, x′, d+ 1, y) and (νσi)∗ = (a, d′ + 1, z). So the longest common initial par-
tition of (µσi)∗ and (νσi)∗ is a, and since x1 < d′ < d′ + 1, we see that
(µσi)∗ < (νσi)∗.

(b) That δi is order-preserving on Imσi follows directly from Lemma 1.5 and
part (a). Although (the first half of) the proof that δi is strictly order-preserving on
Sn,k

i is pretty similar to (the first half of) the proof of part (a) we include all details
for the reader’s convenience.

Suppose µ, ν ∈ Sn,k
i with µ < ν. As in Lemma 1.7 we write the partition µ∗ in

the form (x, d, y) where |x| < i+ 1 6 |x|+ d. Let a be the longest common partition
of µ∗ and ν∗, so µ∗ = (a, b) and ν∗ = (a, c) for appropriate partitions b and c with
b1 < c1. We will now show the desired inequality (µδi)∗ < (νδi)∗ by distinguishing
three cases: (i) a is longer than x, (ii) a has the same length as x and (iii) a is shorter
than x. Only case (iii) will make use of the assumption that µ, ν ∈ Sn,k

i .
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(i) If a is longer than x, then we can write a in the form (x, d, w) for some (pos-
sibly empty) partition w. Then µ∗ = (x, d, w, b) and ν∗ = (x, d, w, c) and hence by
Lemma 1.7 we see that (µδi)∗ = (x, d− 1, w, b) and (νδi)∗ = (x, d− 1, w, c). So the
longest common initial partition of (µδi)∗ and (νδi)∗ is (x, d− 1, w), and since b1 < c1,
we see that (µδi)∗ < (νδi)∗.

(ii) If a has the same length as x (i.e., if a = x), then d = b1 and since we have
b1 < c1 we see i+ 1 6 |x|+ d < |x|+ c1. Using Lemma 1.7 we obtain

(µδi)∗ = (x, b1 − 1, y) and (νδi)∗ = (x, c1 − 1, z)

for appropriate partitions y and z. So the longest common initial partition of (µδi)∗

and (νδi)∗ is x, and since b1 − 1 < c1 − 1, we see that (µδi)∗ < (νδi)∗.
(iii) If x is longer than a, then we write x = (a, x′) for some non-empty partition

x′. Then µ∗ = (x, d, y) = (a, x′, d, y). As in Lemma 1.7 we write ν∗ = (w, d′, z) with
|w| < i+ 1 6 |w|+ d′. We know that |a| 6 |x| < i+ 1 and a is an initial partition of
ν∗ so w = (a,w′) for some possibly empty partition w′. We now show the desired
inequality (µσi)∗ < (νσi)∗ by distinguishing two subcases: (α) w′ is non-empty, (β)
w′ is empty.

(α) If w′ is not empty, then µ∗ = (a, x′, d, y) and ν∗ = (a,w′, d′, z). Since µ∗ < ν∗

we find that x′1 < w′1. Applying Lemma 1.7 we find that (µδi)∗ = (a, x′, d− 1, y) and
(νδi)∗ = (a,w′, d′ − 1, z). So the longest common initial partition of (µδi)∗ and (νδi)∗

is a, and since x′1 < w′1, we see that (µδi)∗ < (νδi)∗.
(β) If w′ is empty, then µ∗ = (a, x′, d, y) and ν∗ = (a, d′, z) where |a| < i+ 1

6 |a|+ d′. Since µ∗ < ν∗ we see that x′1 < d′. Applying Lemma 1.7 we find that
(µδi)∗ = (a, x′, d− 1, y) and (νδi)∗ = (a, d′ − 1, z). As x′1 < d′ we have either
x′1 < d′ − 1 or x′1 = d′ − 1.

If x′1 < d′ − 1, then the longest common initial partition of (µδi)∗ and (νδi)∗ is a,
and since x′1 < d′ − 1, we have (µδi)∗ < (νδi)∗.

If x′1 = d′ − 1, then we observe the following: we have written ν∗ as (a, d′, z) so
that |a| < i+ 1 6 |a|+ d′, but ν ∈ Sn,k

i so ν∗ begins with a partition of i+ 1; hence,
|a|+ d′ = i+ 1. Now i+ 1 = |a|+ d′ = |a|+ x′1 + 1, so |a|+ x′1 = i, i.e., the partition
(a, x′1) (which is an initial partition of µ∗) is a partition of i. But µ ∈ Sn,k

i so µ begins
with a partition of i+ 1 and µ∗ is a proper partition, so µ∗ begins with the partition
(a, x′1, 1), i.e., x = (a, x′1) and d = 1. So µ∗ = (a, x′1, 1, y) and ν∗ = (a, d′, z).

By Lemma 1.7 we find that

(µδi)∗ = (a, x′1, 0, y) and (νδi)∗ = (a, d′ − 1, z) = (a, x′1, z).

Since all the entries of ν∗ are positive we have z1 > 0. So the longest common initial
partition of (µδi)∗ and (νδi)∗ is (a, x′1), and since 0 < z1, we find that

(µδi)∗ < (νδi)∗.

2. The face and degeneracy operators in the simplicial
object Γ(C.)

For an abelian category A the Dold-Kan correspondence gives two mutually inverse
functors Γ and N between the category Ch>0(A) of bounded chain complexes and the
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category SA of simplicial objects in A. For a chain complex C. ∈ Ch>0(A) the func-
tor Γ(C.) is usually defined by Γ(C.)n =

⊕n
k=0

⊕
σ∈Sur([n],[k]) Ck. So Γ(C.) contains

|Sur([n], [k])| copies of Ck and these copies are indexed by elements of Sur([n], [k]).
We write Γ(C.)n,k to denote

⊕
σ∈Sur([n],[k]) Ck considered as a sub-sum of Γ(C.)n.

The effect of the degeneracy operator si : Γ(C.)n−1 → Γ(C.)n on the copy of Ck

indexed by µ ∈ Sur([n− 1], [k]) is to identify it with the copy of Ck ∈ Γ(C.)n indexed
by σi(µ) (cf. Notation 1.4).

The effect of the face operator di : Γ(C.)n → Γ(C.)n−1 on the copy of Ck indexed
by µ ∈ Sur([n], [k]) depends on the nature of δi(µ) (cf. Notation 1.4):

• If δi(µ) is surjective, then Ck is identified with the copy of Ck indexed by δi(µ);

• If δi(µ) is not surjective, and δi(µ) = δ0µ̂ for some µ̂ ∈ Sur([n− 1], [k − 1]) (cf.
Lemma 1.8), then di maps the copy of Ck indexed by µ to the copy of Ck−1

indexed by µ̂ with the same action as the differential of C.;

• If δi(µ) is not surjective, and δi(µ) = δjµ̂ for some µ̂ ∈ Sur([n− 1], [k − 1]) and
for some j 6= 0 (cf. Lemma 1.8), then Ck is mapped to 0.

This can be expressed more concisely in symbols than in words. For µ ∈ Sur([n], [k])
we write Ck,µ to denote the copy of Ck in

⊕
σ∈Sur([n],[k]) Ck that is contributed by µ

and also, for m ∈ Ck, we write (m,µ) to denote m ∈ Ck,µ. The face and degeneracy
maps in Γ(C.) are defined as follows:

si(m,µ) := (m,σi(µ)),

di(m,µ) :=





(m, δi(µ)) if δi(µ) is surjective
(∂(m), µ̂) if δi(µ) = δ0µ̂ with µ̂ ∈ Sur([n− 1], [k − 1])
0 if δi(µ) = δj µ̂ with µ̂ ∈ Sur([n− 1], [k − 1]) and j 6= 0.

The object of this section is to rewrite these expressions using results from the
previous section and to thereby make the calculation of the face and degeneracy
operators simpler.

Lemma 1.3 tells us that for natural numbers n and k,

Γ(C.)n = Γ(C.)n,0 ⊕ Γ(C.)n,1 ⊕ · · · ⊕ Γ(C.)n,n = C
(n
0)

0 ⊕ C
(n
1)

1 ⊕ · · · ⊕ C
(n

n)
n ;

again each copy of Ck is indexed by the element of Sur([n], [k]) that contributes it.
But now we can use the ordering on Sur([n], [k]) that we defined in Section 1 to
order the copies of Ck. Because of this we will tend to use the ordinal associated to
µ ∈ Sur([n], [k]) instead of µ to index a copy of Ck, i.e., if µ is the mth element of
Sur([n], [k]) we will usually write Ck,m instead of Ck,µ.

Combining various results from the previous section we get the following proposi-
tion. For n, k ∈ N and A ⊂ Sur([n], [k]) we write AC for the complement of A in the
set Sur([n], [k]).

Proposition 2.1. Let n > 0 and k ∈ {0, . . . , n}.
(a) (i) For each i ∈ {0, . . . , n− 1} the sets Sur([n− 1], [k]) and (Sn,k

i )C have the
same cardinality.

(ii) The sets Sn,k
0 and Sur([n− 1], [k − 1]) have the same cardinality.
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(iii) For each i ∈ {1, . . . , n} the sets Sn−1,k
i−1 and Sn,k

i \ S̃n,k
i have the same car-

dinality.
(b) For each i ∈ {0, . . . , n− 1} the map σi : Sur([n− 1], [k]) → Sur([n], [k]) sends

the lth element of Sur([n− 1], [k]) to the lth element of (Sn,k
i )C .

(c) (i) If µ ∈ Sn,k
0 , then for some µ̂ ∈ Sur([n− 1], [k − 1]) we have δ0(µ) = δ0µ̂.

Moreover, the map µ 7→ µ̂ acts on Sn,k
0 by sending the lth element of Sn,k

0

to the lth element of Sur([n− 1], [k − 1]).
(ii) For each i ∈ {0, . . . , n− 1} the map δi : Sur([n], [k]) → Mor([n− 1], [k]) acts

on the set (Sn,k
i )C by sending the lth element of (Sn,k

i )C to the lth element
of Sur([n− 1], [k]).

(iii) For each i ∈ {1, . . . , n} the map δi : Sur([n], [k]) → Mor([n− 1], [k]) acts on

the set Sn,k
i \ S̃n,k

i by sending the lth element of Sn,k
i \ S̃n,k

i to the lth element
of Sn−1,k

i−1 .

Part (a) of this proposition ensures that the later statements are well defined.

Note for i 6= 0 we do not describe the action of δi on S̃n,k
i because from Lemma 1.8

we know for µ ∈ S̃n,k
i the map δi(µ) will be a non-surjection equal to δj µ̂ where j 6= 0;

hence, the action of di on Ck,µ will just be the zero map (see the definition of Γ at
the beginning of this section).

Proof. Part (a)(i) follows from Proposition 1.12 and the injectivity of σi (Lemma 1.5).
Part (a)(ii) follows from Lemmas 1.3 and 1.11. Lemma 1.11 furthermore tells us

that for i ∈ {1, . . . , n− 1} we have |Sn,k
i | = (

n−1
k−1

)
and that |S̃n,k

i | = (
n−2
k−2

)
, and there-

fore |Sn,k
i \ S̃n,k

i | = (
n−1
k−1

)− (
n−2
k−2

)
=

(
n−2
k−1

)
= |Sn−1,k

i−1 | (the final step is given by Lem-
ma 1.11 again). Furthermore, Sn,k

n = Sur([n], [k]) and by using Lemma 1.11 twice we

see that |S̃n,k
n | = (

n−1
k−1

)
, so |Sn,k

n \ S̃n,k
n | = (

n
k

)− (
n−1
k−1

)
=

(
n−1

k

)
= |Sn−1,k

n−1 |. Thus, we
have shown part (a)(iii) of this theorem for all i ∈ {1, . . . , n}.

Part (b) is seen by applying Proposition 1.12 and Theorem 1.13(a) to part (a)(i).
If µ ∈ Sn,k

0 , then µ∗ is of the form (1, y) for an appropriate partition y. Applying
Lemma 1.8 gives us the first sentence of part (c)(i), and also tells us that µ̂∗ is the par-
tition y. Clearly the map that sends (1, y) to y is order-preserving. Now using (a)(ii)
we get (c)(i). By applying Theorem 1.13(b) to part (a)(i) we get part (c)(ii). Finally,
part (c)(iii) follows by applying Theorem 1.13(b) to part (a)(iii) of this statement.

Note that δi(S
n,k
i \ S̃n,k

i ) ⊆ Sn−1,k
i−1 .

Theorem 2.2. Let n > 0.
(a) Let i ∈ {0, . . . , n− 1}, fix k ∈ {0, . . . , n} and let c ∈ Γ(C.)n−1,k; then we have

si(c) ∈ Γ(C.)n,k. More precisely, write

c = (c1, . . . , c(n−1
k )) and si(c) = (b1, . . . , b(n

k));

then si(c) is given by the following relations:

(i) If the lth element of Sur([n], [k]) is an element of Sn,k
i , then bl = 0.

(ii) If the lth element of Sur([n], [k]) is the mth element of (Sn,k
i )C , then bl = cm.
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(b) Let c = (ck,l)k=0,...,n;l=1,...,(n
k) ∈ Γ(C.)n. Then

d0(c) = (bk,l)k=0,...,n−1;l=1,...,(n−1
k ) ∈ Γ(C.)n−1

is given by the following relation: bk,l = ∂(ck+1,l) + ck,(n−1
k−1)+l.

(c) Let i ∈ {1, . . . , n− 1}, fix k ∈ {0, . . . , n} and let c ∈ Γ(C.)n,k; then we have
di(c) ∈ Γ(C.)n−1,k. More precisely, write

c = (c1, . . . , c(n
k)) and di(c) = (b1, . . . , b(n−1

k ));

then di(c) is given by the following relations:

(i) If the lth element of Sur([n− 1], [k]) is an element of (Sn−1,k
i−1 )C , then bl

= cα(l), where α(l) is the ordinal associated with the lth element of (Sn,k
i )C .

(ii) If the lth element of Sur([n− 1], [k]) is the mth element of Sn−1,k
i−1 , then

bl = cα(l) + cβ(m) where α(l) is the ordinal associated to the lth element of

(Sn,k
i )C and β(m) is the ordinal associated to the mth element of Sn,k

i \ S̃n,k
i .

(d) Fix k ∈ {0, . . . , n} and let c ∈ Γ(C.)n,k; then we have dn(c) ∈ Γ(C.)n−1,k. More
precisely, write c = (c1, . . . , c(n

k)) and dn(c) = (b1, . . . , b(n−1
k )); then dn(c) is gi-

ven by the following relation: Let β(l) denote the ordinal associated with the lth

element of Sn,k
n \ S̃n,k

n = Sur([n], [k]) \ Sn,k
n−1; then bl = cβ(l).

Proof. Part (a) follows from Proposition 2.1(b). To prove part (b) we first observe
that Sn,k

0 = {µ ∈ Sur([n], [k]) | µ∗ = (1, x) where |x| = n)}; so Sn,k
0 consists of the

first
(
n−1
k−1

)
elements of Sur([n], [k]). Now part (b) follows from Proposition 2.1(c)(i)

and (c)(ii). Part (c) follows from Lemma 1.8 and Proposition 2.1(c)(ii) and (c)(iii).
Finally part (d) follows from Lemma 1.8 and Proposition 2.1(c)(iii).

In Example 2.3 below we look at the case when the chain complex C. is of length 2,
to help elucidate the previous results. But first we give some general instructions on
how to read that example.

While part (b) of the previous theorem is a very explicit formula which allows us
to instantly describe the action of the face operator d0, we first need to calculate the

sets Sn,k
i (and S̃n,k

i ) to be able to use the other parts for describing the degeneracy
operators and the other face operators.

For each n that we are concerned with (the position in the simplicial complex Γ(C.))
and each k ∈ {1, . . . ,min(n, l)} (where l stands for the length of the chain complex C.),
we draw a table to help us determine these sets. We label the columns of the table
by the possible values of i (0 through to n). We label the rows of the table with both
the partition and the ordinal associated with the elements of Sur([n], [k]). If a cell in
the table has its column labelled by i and its row is labelled by a partition µ∗ that
has an initial partition of i+ 1, then we mark the cell with a × mark. If that initial
partition ends with a 1, then we also mark the cell with a ∗. So if a cell is marked
with a × mark, then the corresponding surjection µ is an element of the set Sn,k

i .

If the cell is also marked with a ∗, then µ is an element of the set S̃n,k
i . We do not



312 RAMESH SATKURUNATH and BERNHARD KÖCK

draw any tables for k = 0 because all face and degeneracy operators act just as the
identity on the single copy of C0 in Γ(C.)n.

We now explain how to use the tables we have made to calculate the degener-
acy operators. For this paragraph we fix i ∈ {0, . . . , n− 1} and k ∈ {0, . . . , n}, let
c ∈ Γ(C.)n−1,k and write c = (c1, . . . , c(n−1

k )). The vector si(c) ∈ Γ(C.)n,k is an
(
n
k

)
-

tuple. By Theorem 2.2(a) the entries of si(c) are either 0 or one of c1, . . . , c(n−1
k ); more

specifically, c1, . . . , c(n−1
k ) each occur once in si(c) and occur in order, with zeroes in

all the other entries. We find where the zeroes are in si(c) by looking at the column
labelled i in the table we made for (n, k); if there is an × in the lth row of this column,
then (by Theorem 2.2(a)(i)) the lth entry of si(c) is zero.

We now explain how to calculate the face operator dn. For this paragraph we fix
k ∈ {0, . . . , n}, let c ∈ Γ(C.)n,k and write c = (c1, . . . , c(n

k)). If k = n, then Γ(C.)n−1,k

is just the zero module, so dn(c) = 0. In general, the vector dn(c) ∈ Γ(C.)n−1,k is
an

(
n−1

k

)
-tuple. By Theorem 2.2(d) each entry of di(c) is one of c1, . . . , c(n

k); more

specifically,
(
n−1

k

)
elements of c1, . . . , c(n

k) occur in dn(c); they occur once and they
occur in order. To determine which entries do not occur in dn(c) we look at the
nth column of the table we drew for (n, k). If a ∗ occurs in the lth row, then (by
Theorem 2.2(d)) cl does not occur in dn(c).

We finally explain how to calculate the face operators other than d0 and dn.
For this and the next paragraph we fix i ∈ {1, . . . , n− 1} and k ∈ {0, . . . , n}; let
c ∈ Γ(C.)n,k and write c = (c1, . . . , c(n

k)). If k = n, then Γ(C.)n−1,k is just the zero

module, so di(c) = 0. In general, the vector di(c) ∈ Γ(C.)n−1,k is an
(
n−1

k

)
-tuple. By

Theorem 2.2(c) each entry of di(c) is either one of c1, . . . , c(n
k) or the sum of two of

them; more specifically, each of c1, . . . , c(n
k) occur at most once in di(c), either by

itself or as part of a sum, but might not occur at all.

We now proceed in three steps. In the first step we determine those entries of di(c)
that consist of the sum of two entries of c (but not yet the summands). To do so we
look at the column labelled i− 1 in the table we have drawn for (n− 1, k); if the lth

row of that column has a × mark in it, then the lth entry of di(c) is the sum of two
entries of c (by Theorem 2.2(c)(ii)). For the second and third step we look at the
column labelled i in the table we have made for (n, k). In this column there are as
many rows with no × mark as there are entries of di(c) (by Proposition 2.1(a)(i)).
The second step now is to write the entries of c indexed by the ordinals of these rows
into di(c) in order. Still in the same column of the same table, there are as many
rows that are marked with a × but not with a ∗ as there are entries of di(c) that
contain a sum (by Proposition 2.1(a)(iii)). The final, third step is to write the entries
of c indexed by the ordinals of these rows in order into those entries of di(c) we have
identified in the first step to contain a sum and join them by a plus sign with the
entries we have already made in the second step. This accomplishes calculating di(c)
by Theorem 2.2(c). Finally, it may be worth mentioning that if the lth row (still in
the same column of the same table) contains both a × mark and a ∗ mark, then cl
does not occur in di(c).
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Example 2.3. Let C → B → A be a chain complex of length 2, placed in degrees 0,
1 and 2, which has differential ∂. For n > 0 let Γn := Γ(C → B → A)n. For each
n ∈ {1, 2, 3, 4, 5} we calculate all the degeneracy operator si : Γn−1 → Γn and all the
face operators di : Γn → Γn−1. But first we write write down the tables as introduced
above.

Table for (n, k) = (1, 1):

0 1
1 (1, 1) ×∗ ×∗

Tables for (n, k) = (2, 1) and (n, k) = (2, 2):

0 1 2
1 (1, 2) ×∗ ×
2 (2, 1) × ×∗

0 1 2
1 (1, 1, 1) ×∗ ×∗ ×∗

Tables for (n, k) = (3, 1) and (n, k) = (3, 2):

0 1 2 3
1 (1, 3) ×∗ ×
2 (2, 2) × ×
3 (3, 1) × ×∗

0 1 2 3
1 (1, 1, 2) ×∗ ×∗ ×
2 (1, 2, 1) ×∗ × ×∗
3 (2, 1, 1) × ×∗ ×∗

Tables for (n, k) = (4, 1) and (n, k) = (4, 2):

0 1 2 3 4
1 (1, 4) ×∗ ×
2 (2, 3) × ×
3 (3, 2) × ×
4 (4, 1) × ×∗

0 1 2 3 4
1 (1, 1, 3) ×∗ ×∗ ×
2 (1, 2, 2) ×∗ × ×
3 (1, 3, 1) ×∗ × ×∗
4 (2, 1, 2) × ×∗ ×
5 (2, 2, 1) × × ×∗
6 (3, 1, 1) × ×∗ ×∗

Tables for (n, k) = (5, 1) and (n, k) = (5, 2):

0 1 2 3 4 5
1 (1, 5) ×∗ ×
2 (2, 4) × ×
3 (3, 3) × ×
4 (4, 2) × ×
5 (5, 1) × ×∗
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0 1 2 3 4 5
1 (1,1,4) ×∗ ×∗ ×
2 (1,2,3) ×∗ × ×
3 (1,3,2) ×∗ × ×
4 (1,4,1) ×∗ × ×∗
5 (2,1,3) × ×∗ ×
6 (2,2,2) × × ×
7 (2,3,1) × × ×∗
8 (3,1,2) × ×∗ ×
9 (3,2,1) × × ×∗

10 (4,1,1) × ×∗ ×∗

The face and degeneracy operators between Γ0 = A and Γ1 = B ⊕A act as follows:

di((b; a)) =

{
∂(b) + a for i = 0
a for i = 1,

s0(a) = (0; a).

The face and degeneracy operators between Γ1 = B ⊕A and Γ2 = C ⊕B2 ⊕A act
as follows:

di((c; , b1, b2; a)) =





∂(c) + b2; ∂(b1) + a) for i = 0
(b1 + b2; a) for i = 1
(b1; a) for i = 2,

si((b; a)) =

{
(0, b; a) for i = 0
(b, 0; a) for i = 1.

The face and degeneracy operators between

Γ2 = C ⊕B2 ⊕A and Γ3 = C3 ⊕B3 ⊕A

act as follows:

di((c1, c2, c3; b1, b2, b3; a)) =





(c3, ∂(c1) + b2, ∂(c2) + b3; ∂(b1) + a) for i = 0
(c2 + c3; b1 + b2, b3; a) for i = 1
(c1 + c2; b1, b2 + b3; a) for i = 2
(c1; b1, b2; a) for i = 3,

si((c; b1, b2; a)) =





(0, 0, c; 0, b1, b2; a) for i = 0
(0, c, 0;1 , 0, b2; a) for i = 1
(c, 0, 0; b1, b2, 0; a) for i = 2.

The face and degeneracy operators between

Γ3 = C3 ⊕B3 ⊕A and Γ4 = C6 ⊕B4 ⊕A
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act as follows:

di((c1, c2, c3, c4, c5, c6; b1, b2, b3, b4; , a))

=





(c4, c5, c6; ∂(c1) + b2, ∂(c2) + b3, ∂(c3) + b4; ∂(b1) + a) for i = 0
(c2 + c4, c3 + c5, c6; b1 + b2, b3, b4; a) for i = 1
(c1 + c2, c3, c5 + c6; b1, b2 + b3, b4; a) for i = 2
(c1, c2 + c3, c4 + c5; b1, b2, b3 + b4; a) for i = 3
(c1, c2, c4; b1, b2, b3; a) for i = 4,

si((c1, c2, c3; b1, b2, b3; a))

=





(0, 0, 0, c1, c2, c3; 0, b1, b2, b3; a) for i = 0
(0, c1, c2, 0, 0, c3; b1, 0, b2, b3; a) for i = 1
(c1, 0, c2, 0, c3, 0; b1, b2, 0, b3; a) for i = 2
(c1, c2, 0, c3, 0, 0; , b1, b2, b3, 0; a) for i = 3.

The face and degeneracy operators between

Γ4 = C6 ⊕B4 ⊕A and Γ5 = C10 ⊕B5 ⊕A

act as follows:

di((c1, c2, c3, c4, c5, c6, c7, c8, c9, c10; b1, b2, b3, b4, b5; a))

=





(c5, c6, c7, c8, c9, c10; ∂(c1) + b2, ∂(c2) + b3, ∂(c3) + b4, ∂(c4) + b5; ∂(b1) + a)
(c2 + c5, c3 + c6, c4 + c7, c8, c9, c10; b1 + b2, b3, b4, b5; a)
(c1 + c2, c3, c4, c6 + c8, c7 + c9, c10; b1, b2 + b3, b4, b5; a)
(c1, c2 + c3, c4, c5 + c6, c7, c9 + c10; b1, b2, b3 + b4, b5; a)
(c1, c2, c3 + c4, c5, c6 + c7, c8 + c9; b1, b2, b3, b4 + b5; a)
(c1, c2, c3, c5, c6, c8; b1, b2, b3, b4; a),

si((c1, c2, c3, c4, c5, c6; b1, b2, b3, b4; a))

=





(0, 0, 0, 0, c1, c2, c3, c4, c5, c6; 0, b1, b2, b3, b4; a) for i = 0
(0, c1, c2, c3, 0, 0, 0, c4, c5, c6; b1, 0, b2, b3, b4; a) for i = 1
(c1, 0, c2, c3, 0, c4, c5, 0, 0, c6; b1, b2, 0, b3, b4; a) for i = 2
(c1, c2, 0, c3, c4, 0, c5, 0, c6, 0; b1, b2, b3, 0, b4; a) for i = 3
(c1, c2, c3, 0, c4, c5, 0, c6, 0, 0; b1, b2, b3, b4, 0; a) for i = 4.

Looking for instance at the case i = 1 in the previous table for di one sees that c5
appears before c3 and that c6 appears before c4. This reflects that δ1 is not order-
preserving on the whole of Sur([5], [2]), as stated after Theorem 1.13.

3. Cross-effect functors

In this section we summarize some definitions and results about cross-effect func-
tors that are relevant to our work; see [EM] for proofs and more details.

Recall a functor G : A → B between abelian categories is called linear if, for any
sequence A1, . . . , An of objects in A, we have the relation G(⊕n

i=1Ai) = ⊕n
i=1G(Ai)
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in B. The main result of the theory of cross-effect functors (Theorem 3.4) gives us
an analogous decomposition for any non-linear functor F : A → B with the property
that F (0A) = 0B. This decomposition we get in B has a term for each subsum of the
original sum in A (rather than for each summand as with a linear functor). The terms
of this sum in B are given by cross-effect functors of F .

For the rest of this section we let F : A → B be a functor between an additive
category A and an abelian category B with F (0A) = 0B. The condition F (0A) = 0B
is equivalent to the condition that the image of any zero homomorphism in A under
F is a zero homomorphism in B.

Definition 3.1. For f1, . . . , fn ∈ Hom(A,B) we define the morphism

F (f1 ᵀ · · · ᵀ fn) ∈ Hom(F (A), F (B))

by the following equation:

F (f1 ᵀ · · · ᵀ fn) =
n∑

k=1

∑

j1<···<jk

(−1)n−kF (fj1 + · · ·+ fjk
).

The function F (− ᵀ · · · ᵀ−) has the following properties. For each permutation π
of {1, . . . , n} we have F (f1 ᵀ · · · ᵀ fn) = F (fπ(1) ᵀ · · · ᵀ fπ(n)). Whenever any of the
functions fi are zero we get F (f1 ᵀ · · · ᵀ fn) = 0. By rearranging the definition we get
the relation F (f1 + · · ·+ fn) =

∑n
k=1

∑
j1<···<jk

F (fj1 ᵀ · · · ᵀ fjk
).

Notation 3.2. Let A = A1 ⊕ · · · ⊕An be a direct sum in the additive category A.
For each non-empty subset α = {j1 < · · · < jk} of {1, . . . , n} and each j ∈ α, we write
Aα for

⊕
l∈αAl, iα for the canonical injection Aα → A, pα for the canonical projection

A→ Aα, ψα
j for the map Aα → Aα, (aj1 , . . . , ajk

) 7→ (0, . . . , 0, aj , 0, . . . , 0) and just
ψj if α = {1, . . . , n}. We also write (Aj , j ∈ α) for the tuple (Aj1 , . . . , Ajk

).

Definition 3.3. The nth cross-effect of F is a functor An → B. It acts on objects by

crn(F )(A1, . . . , An) = F (ψ1 ᵀ · · · ᵀψn)F (A1 ⊕ · · · ⊕An).

For the collection of morphisms fl : Al → Bl, 1 6 l 6 n, the morphism

crn(F )(f1, . . . , fn) : crn(F )(A1, . . . , An) → crn(F )(B1, . . . , Bn)

is induced by F (f1 ⊕ · · · ⊕ fn) : F (A1 ⊕ · · · ⊕An) → F (B1 ⊕ · · · ⊕Bn).

Definition 3.3 is a technical definition of cross-effect functors that does not really
give much intuition about how one should think of them. It is better to think of cross-
effect functors as the terms of a direct-sum decomposition as given in Theorem 3.4
below; Theorem 3.6 gives us the justification of this mental picture. In a sense, The-
orem 3.6 is a converse of Theorem 3.4, because it says that if we have an appropriate
collection of functors which give a decomposition of G(

⊕n
i=1A), then they are (up

to isomorphism) the cross-effect functors of G.
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Theorem 3.4. Let A1, . . . , An ∈ A. The maps

cr|α|(F )(Aj , j ∈ α) ⊆ F (⊕j∈αAj)
F (iα)−−−−→ F (A1 ⊕ · · · ⊕An), α ⊆ {1, . . . , n},

induce the following direct-sum decomposition of F (A1 ⊕ · · · ⊕An):
⊕

α⊆{1,...,n}
cr|α|(F )(Aj , j ∈ α) ∼= F (A1 ⊕ · · · ⊕An);

here, for each subset α = {j1 < · · · < j|α|} of {1, . . . , n}, the direct summand of the
left-hand side that is indexed by α corresponds to the sub-object

F (ψj1 ᵀ · · · ᵀψj|α|)F (A1 ⊕ · · · ⊕An)

of the right-hand side. In particular, given any subset β of {1, . . . , n}, the subsum
⊕α⊂β cr|α|(F )(Aj , j ∈ α) of the left-hand side corresponds to the image of

F (iβ) : F (⊕j∈βAj) → F (A1 ⊕ · · · ⊕An)

on the right-hand side.

Cross-effect functors also have the following properties. Whenever any of the
objects Aj for j ∈ {1, . . . , n} is the zero object, then crn(F )(A1, · · · , An) is also the
zero object. For each permutation π of {1, . . . , n} we get a natural isomorphism

crn(F )(A1, . . . , An) ∼= crn(F )(Aπ(1), . . . , Aπ(n)).

Definition 3.5. If crn(F ) is the zero functor, then we say that F is a functor of
degree less than n. In this case F is also of degree less than m for any m > n. Because
of this F has a well-defined degree. The degree of F is either a non-negative integer
or infinity.

The following theorem gives us a characterization of the cross-effect functors of F
by their appearance in a direct-sum decomposition as in Theorem 3.4.

Theorem 3.6. For each subset α of {1, . . . , n} let Eα be a covariant functor between
A|α| and B, which is zero when any of its arguments is zero. If we have a natural
isomorphism

h :
⊕

α⊂{1,...,n}
Eα(Aj , j ∈ α) ∼= F (A1 ⊕ · · · ⊕An),

then h induces an isomorphism

Eα(Aj , j ∈ α) ∼= F (ψj1 ᵀ · · · ᵀψj|α|)F (A1 ⊕ · · · ⊕An).

In particular, we get a natural isomorphism Eα
∼= cr|α|(F ).

Example 3.7. Let R be a commutative ring and let Sym2 denote the symmetric-
square functor from the abelian category of R-modules to itself. For any R-modules
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M1, . . . ,Mn we have a natural isomorphism

Sym2(M1 ⊕ · · · ⊕Mn) ∼=
(

n⊕

i=1

Sym2(Mi)

) ⊕

 ⊕

16i<j6n

Mi ⊗Mj


 ,

which easily follows from the well-known case n = 2 by induction on n. From Theo-
rem 3.6 we therefore obtain

cri(Sym2)(M1, . . . ,Mi) =





Sym2(M1) if i = 1
M1 ⊗M2 if i = 2
0 if i > 2.

Similarly, we obtain

cri(Sym3)(M1, . . . ,Mi) =





Sym3(M1) if i = 1
Sym2(M1)⊗M2 ⊕M1 ⊗ Sym2(M2) if i = 2
M1 ⊗M2 ⊗M3 if i = 3
0 if i > 3.

In particular, Sym2 is of degree 2, Sym3 is of degree 3, and more generally, Symn is
of degree n.

4. Expressing Dold-Puppe complexes in terms of cross-effect
modules

Let A be an abelian category. Previously we have worked with the functor Γ; now
we introduce its inverse N : SA → Ch>0A. Let X. be a simplicial object in A. The
normalized chain complex N(X.) of X. is given by

N(X.)n := Xn

/
n−1∑

i=0

Im si,

with its differential induced by the alternating sum of the face maps of X.:

∂ =
n∑

i=0

(−1)idi : Xn → Xn−1

(for n > 0). An important application of the Dold-Kan correspondence is the con-
struction of Dold-Puppe complexes, i.e., complexes of the form NFΓ(C.) where C.
is a chain complex and F : A → B is a functor between abelian categories (that has
been extended to the category SA in the obvious way).

In [Kö] the first-named author uses cross-effect functors to give a description of
the Dold-Puppe complex of a chain complex C. = (P → Q) of length one (i.e., Cn = 0
when n > 1) in the category Ch>0(A). Lemma 2.2 of [Kö] proves that

NFΓ(P → Q)n
∼= crn(F )(P, . . . , P )⊕ crn+1(F )(Q,P, . . . , P )

and gives an explicit description of the differential. The aim of this section is to
generalize this result and give a similar description of Dold-Puppe complexes in terms
of cross-effect functors when the original complex is longer.
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For the rest of this section we fix a functor F : A → B from an additive category A
to an abelian category B with the property that F (0A) = 0B, we fix a chain complex
C. in A and we fix a positive integer n.

The following definition introduces another way of denoting elements of
Sur([n], [k]), which will make it easier to deal with the problems in this section.

Definition 4.1. Let Pn denote the set of subsets of {0, 1, . . . , n− 1}. We define a
bijective map 4 as follows:

4 : qn
k=0 Sur([n], [k]) → Pn

µ ∈ Sur([n], [k]) 7→ µ4 := {maxµ−1(0), . . . ,maxµ−1(k − 1)},
where max is the function that gives the maximum element of a set. For each k ∈
{0, . . . , n}, we use the symbol 4 also for the induced bijection between Sur([n], [k])
and the set Pk

n of subsets of {0, . . . , n− 1} of cardinality k.

Note that we have omitted maxµ−1(k) in the list of elements of µ4 because
maxµ−1(k) is always equal to n. For every 0 6 i 6 n− 2, the partition µ∗ obviously
begins with a partition of i+ 1 (in the sense of Definition 1.6) if and only if i ∈ µ4.
We will be using this observation extensively when we refer to results of Section 2.

Definition 4.2. We say that a subset α of the disjoint union qn
k=0 Sur([n], [k]) is

honourable if ∪µ∈α µ
4 = {0, 1, . . . , n− 1}.

Notation 4.3. Let α ⊂ qn
k=0 Sur([n], [k]). For each k ∈ {0, . . . , n} we write αk for

the intersection α ∩ Sur([n], [k]). For C0, . . . , Cn ∈ A we write (C0,α0 , . . . , Cn,αn) for
the following |α|-tuple:

(C0, . . . , C0︸ ︷︷ ︸
|α0| times

, . . . , Cn, . . . , Cn︸ ︷︷ ︸
|αn| times

).

Proposition 4.4. We have a canonical isomorphism

NFΓ(C.)n
∼=

⊕

α⊂qn
k=0 Sur([n],[k])

α is honourable

cr|α|(F )(C0,α0 , . . . , Cn,αn).

Proof. Using the definitions of N and Γ we see that

NFΓ(C.)n = F
( n⊕

k=0

⊕

µ∈Sur([n],[k])

Ck

)/
n−1∑

i=0

ImF (si).

Expanding the numerator in terms of cross effects according to Theorem 3.4 we get
the formula

F
( n⊕

k=0

⊕

µ∈Sur([n],[k])

Ck

)
=

⊕

α⊆qn
k=0 Sur([n],[k])

cr|α|(F )(C0,α0 , . . . , Cn,αn).

Theorem 2.2(a) tells us that si maps the direct sum
⊕n

k=0

⊕
µ∈Sur([n−1],[k]) Ck iso-

morphically to the subsum
⊕n

k=0

⊕
µ∈(Sn,k

i )C Ck of
⊕n

k=0

⊕
µ∈Sur([n],[k]) Ck. Applying
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Theorem 3.4 again we see that

ImF (si) =
⊕

α

cr|α|(F )(C0,α0 , . . . , Cn,αn
),

where the last sum ranges over all subsets α ⊂ qn
k=0 Sur([n], [k]) where i 6∈ ∪µ∈α µ

4.
From this we see that cr|α|(F )(C0,α0 , . . . , Cn,αn

) is not a direct summand of ImF (si)
if and only if i ∈ ∪µ∈α µ

4. A module is a direct summand of NFΓ(C.)n if and only if
it is not a direct summand of

∑n−1
i=0 ImF (si), and hence we see the desired result.

Although the expression for NFΓ(C.)n given in the previous proposition is quite
compact, it still contains many vanishing terms: whenever |α| is bigger than the degree
of F or αk is non-empty for k bigger than the length of C., the cross-effect module
cr|α|(F )(C0,α0 , . . . , Cn,αn) vanishes. The rest of this section is devoted to the problem
of quickly finding those honourable subsets α for which cr|α|(F )(C0,α0 , . . . , Cn,αn

)
does not vanish. A first (still rather rough) result in this direction is Corollary 4.6
below. Later we will describe an algorithm that produces the relevant honourable
subsets fairly quickly.

Proposition 4.5.

(a) Let α be an honourable subset of qn
k=0 Sur([n], [k]). Then we have the inequality∑n

k=0 k|αk| > n.
(b) Conversely, let (a0, . . . , an) ∈ Nn+1 with ak 6

(
n
k

)
for each k ∈ {0, . . . , n}. If∑n

k=0 kak > n, then there is some honourable subset α of qn
k=0 Sur([n], [k]) with

|αk| = ak for each k ∈ {0, . . . , n}.
Proof. First we prove part (a). We know α is honourable, so by definition

∪n
k=0 ∪µ∈αk

µ4 = {0, 1, . . . , n− 1},
hence,

n∑

k=0

k|αk| =
n∑

k=0

∑
µ∈αk

|µ4| > |{0, 1, . . . , n− 1}| = n.

Now we prove part (b). Because |{0, . . . , n− 1}| = n 6
∑n

k=0 kak and ak 6
(
n
k

)
we can cover the set {0, . . . , n− 1} using a1 subsets of cardinality 1, a2 subsets
of cardinality 2, . . . , an−1 subsets of cardinality n− 1 and an subsets of cardinal-
ity n. Take such a covering β and define α to be the preimage of β under the map
4 : qn

k=0 Sur([n], [k]) → Pn introduced in Definition 4.1. Then α has the desired prop-
erties.

Corollary 4.6. The length of the Dold-Puppe complex NFΓ(C.) is less than or equal
to the product ld of the length l of C. and the degree d of F . Equality is achieved if
the module crd(F )(Cl, . . . , Cl) is not the zero module.

Proof. Proposition 4.4 tells us that

NFΓ(C.)n
∼=

⊕

α⊂qn
k=0 Sur([n],[k])

α is honourable

cr|α|(F )(C0,α0 , . . . , Cn,αn).

If |α| > d, then cr|α|(F )(C0,α0 , . . . , Cn,αn) vanishes. Also the properties of cross-effects
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tell us if any of the modules are zero, then cross-effect modules involving them will
also vanish, in particular any which involve any copies of Cl′ where l′ > l vanish. So
the only non-zero cross-effect modules in NFΓ(C.)n are those which correspond to
subsets of qmin{n,l}

k=0 Sur([n], [k]) that are honourable and of cardinality d or less.
It therefore suffices to show that, if n > ld, there does not exist any honourable

subset α of qmin{n,l}
k=0 Sur([n], [k]) that satisfies |α| 6 d. Suppose α is such a subset.

As |αk| = 0 for k > min{n, l} = l (we may assume d > 1), we obtain

n∑

k=0

|αk|k =
l∑

k=0

|αk|k 6
l∑

k=0

|αk|l = l|α| 6 ld < n.

This contradicts Proposition 4.5(a).
To prove equality is achieved if crd(F )(Cl, . . . , Cl) is not the zero module, we set

n = dl, al = d and ak = 0 if k 6= l. Proposition 4.5(b) tells us that there is some
honourable set α ⊂ qn

k=0 Sur([n], [k]) with |αk| = ak for each k ∈ {0, . . . , n}. This
condition tells us that α ⊂ Sur([n], [l]). So cr|α|(F )(C0,α0 , . . . , Cn,αn

) = crd(F )(Cl,αl
).

This is non-zero by assumption and a direct summand of NFΓ(C.)n because of our
choice of α.

The following definition will be useful in describing the algorithm mentioned above.

Definition 4.7.

(a) We define a total order on the powerset Pn of {0, 1, . . . , n− 1} as follows. Let
x = {i1 < · · · < ik} and y = {j1 < · · · < jk′} be sets in Pn. Then x 6 y if and
only if k′ < k or (k′ = k and (i1, . . . , ik) 6 (j1, . . . , jk) in the lexicographic order-
ing).

(b) Let T be a subset of Pn and let x be a set in T . We say that x is superfluous in
T if ∪y∈T y = ∪y∈T\{x} y.

(c) We say that an honourable subset α of qn
k=0 Sur([n], [k]) is minimal if α4 does

not contain any superfluous sets.

Recall that we have introduced a total order on Sur([n], [k]) in Definition 1.9 for
each k ∈ {0, 1, . . . , n}. It is easy to see that the bijection 4 : Sur([n], [k]) → Pk

n is order
preserving. The following easy procedure is an efficient way for checking whether a
subset T of Pn contains superfluous sets, particularly in the context of the algorithm
described later.

Procedure 4.8. Let T be a subset of Pn. We first order the sets in T using the ordering
introduced in Definition 4.7(a), say T = {x1 < · · · < xm}. For each r = 2, . . . ,m and
for each i ∈ xr we then check whether i ∈ x1 ∪ · · · ∪ xr−1. If so, we underline i in each
of the sets x1, . . . , xr where it occurs. There are two ways for this procedure to stop:
(1) we perform the check (and if necessary the underlining) described above for each
r ∈ {2, . . . ,m} and each i ∈ xr and at each stage we find that no set in T has all of
its elements underlined; (2) at some point we find some set x in T with each of its
elements underlined. In case (1) no superfluous sets are contained in T ; in case (2)
the set x is superfluous in T .
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Example 4.9. Let n = 4.
(a) Applying Procedure 4.8 to T = {{0, 1}, {0, 3}, {0}}, we first obtain {0, 1} <

{0, 3} and then {0, 1} < {0, 3} < {0}; hence, the last set {0} is superfluous.
(b) Applying Procedure 4.8 to T = {{0, 1}, {1, 2}, {2, 3}}, we first obtain {0, 1} <

{1, 2} and then {0, 1} < {1, 2} < {2, 3}; hence, the second set {1, 2} is superflu-
ous.

(c) Applying Procedure 4.8 to T = {{0, 1, 2}, {1, 3}}, we obtain {0, 1, 2} < {1, 3};
hence, none of the sets in T is superfluous.

(d) Procedure 4.8 applied to T = {{0, 1}, {1, 2}, {1}, {2}, {3}} stops at {0, 1} <
{1, 2} < {1}.

We now describe an algorithm which finds all minimal honourable subsets of the
set qn

k=0 Sur([n], [k]) in an efficient way. Via the bijection 4 : qn
k=0 Sur([n], [k]) → Pn

(see Definition 4.1) this amounts to finding all subsets T of Pn such that ∪x∈T x =
{0, 1, . . . , n− 1} and such that T does not contain any superfluous sets. Below we
first inductively define a finite list T1, T2, . . . of subsets of Pn. From the construction
it will be immediately clear that T1, T2, . . . is the list of all subsets of Pn which do
not contain any superfluous sets. We finally just discard those subsets from the list
which are not honourable.

Definition 4.10. We inductively define a finite list T1, T2, . . . of distinct subsets of Pn

containing no superfluous sets as follows. Let T1 := {{0, 1, . . . , n− 1}} and suppose
T1, . . . , Tm have already been defined. We write Tm in the form {x1 < · · · < xr} with
some sets x1, . . . , xr in Pn. If r = 1 and x1 = {n− 1}, i.e., if x1 is the maximal set
in Pn \ {∅}, then the list T1, . . . , Tm is complete. We now assume this is not the
case. If Tm is not honourable, then (since by construction Tm contains no superfluous
set) there exists a set y in Pn bigger than xr such that {x1 < · · · < xr < y} does
not contain any superfluous set; we choose y to be minimal with this property and
define Tm+1 := {x1 < · · · < xr < y}. If Tm is honourable, then there exists an index
s ∈ {1, . . . , r} and a set y in Pn bigger than xs such that {x1 < · · · < xs−1 < y} does
not contain any superfluous set. We choose s ∈ {1, . . . , r} to be maximal and y ∈ Pn

to be minimal with this property and define Tm+1 := {x1 < · · · < xs−1 < y}.
Example 4.11. For n = 3 the previous definition gives the following list T1, T2, . . . of
subsets of P3. Following the convention introduced in Procedure 4.8 we underline
certain elements to be able to easily detect superfluous sets.

T1 = {{0, 1, 2}}, T2 = {{0, 1}}, T3 = {{0, 1} < {0, 2}}, T4 = {{0, 1} < {1, 2}},
T5 = {{0, 1} < {2}}, T6 = {{0, 2}}, T7 = {{0, 2} < {1, 2}}, T8 = {{0, 2} < {1}},
T9 = {{1, 2}}, T10 = {{1, 2} < {0}}, T11 = {{0}}, T12 = {{0} < {1}},
T13 = {{0} < {1} < {2}}, T14 = {{0} < {2}}, T15 = {{1}}, T16 = {{1} < {2}},
T17 = {{2}}.

The subsets T1, T3, T4, T5, T7, T8, T10 and T13 correspond to minimal honourable
subsets of q3

k=0 Sur([n], [k]).

As explained earlier, in order to calculate the direct-sum decomposition in Propo-
sition 4.4 there is no need to find those honourable subsets α of qn

k=0 Sur([n], [k]) for
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which αk is non-empty for k bigger than the length l of C.. In other words, rather than
starting the inductive procedure in Definition 4.10 at the smallest set {0, 1, . . . , n− 1}
in Pn, it suffices to begin at {0, 1, . . . ,min{n, l} − 1}.
Example 4.12. In this example we apply Definition 4.10 in the case n = 4. We begin
the induction only at {{0, 1}} rather than at T1 = {{0, 1, 2, 3}}, i.e., we assume l = 2.
For simplicity, we omit the external brackets for Ti; we in fact omit the name Ti as well
(but keep the order of the list of course), and we moreover write down only subsets
of Pn which correspond to minimal honourable subsets. The result is as follows:

{0, 1} < {0, 2} < {0, 3}, {0, 1} < {0, 2} < {3}, {0, 1} < {0, 3} < {2},
{0, 1} < {1, 2} < {1, 3}, {0, 1} < {1, 2} < {3}, {0, 1} < {1, 3} < {2}, {0, 1} < {2, 3},
{0, 1} < {2} < {3}, {0, 2} < {0, 3} < {1}, {0, 2} < {1, 2} < {2, 3},
{0, 2} < {1, 2} < {3}, {0, 2} < {1, 3}, {0, 2} < {2, 3} < {1}, {0, 2} < {1} < {3},
{0, 3} < {1, 2}, {0, 3} < {1, 3} < {2, 3}, {0, 3} < {1, 3} < {2}, {0, 3} < {2, 3} < {1},
{0, 3} < {1} < {2}, {1, 2} < {1, 3} < {0}, {1, 2} < {2, 3} < {0}, {1, 2} < {0} < {3},
{1, 3} < {2, 3} < {0}, {1, 3} < {0} < {2}, {2, 3} < {0} < {1},
{0} < {1} < {2} < {3}.

The object of the following example is to illustrate the methods developed earlier
in this paper.

Example 4.13. Let R be a commutative ring and let C ∂−→ B
∂−→ A be a chain complex

of R-modules of length 2 (sitting in degrees 0, 1 and 2). The goal of this example is to
explicitly write down the Dold-Pupppe complex Q. := N Sym2 Γ(C → B → A). We
proceed in two steps. In the first step we write down the object Qn for n = 0, 1, . . .
(using the method developed in this section), and in the second step we write down
the differential ∆: Qn → Qn−1 for n = 1, 2, . . . (using the calculations made at the
end of Section 2).

By Corollary 4.6 the chain complex Q. is of length 4. From Proposition 4.4 we
immediately get D0 = Sym2(A). To calculate Dn for n = 1, 2, 3, 4 we first find all
honourable subsets of qn

k=0 Sur([n], [k]). The subsets of Pn listed below correspond to
minimal honourable subsets of qn

k=0 Sur([n], [k]). As explained earlier, before Exam-
ple 4.12, we write down only those subsets T of Pn whose sets contain at most two
elements. Furthermore, we write down only those subsets T of Pn which contain at
most two sets (because the degree of Sym2 is 2). As in Example 4.12 we omit the
exterior brackets. For n = 3 and n = 4 we use Examples 4.11 and 4.12, respectively:

n = 1 : {0}
n = 2 : {0, 1}, {0} < {1}
n = 3 : {0, 1} < {0, 2}, {0, 1} < {1, 2}, {0, 1} < {2}, {0, 2} < {1, 2},

{0, 2} < {1}, {1, 2} < {0}
n = 4 : {0, 1} < {2, 3}, {0, 2} < {1, 3}, {0, 3} < {1, 2}.

We finally add to these lists those subsets T of Pn which correspond to non-minimal
honourable subsets. As above we are only interested in subsets T of Pn of cardinality
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at most 2; hence, the lists for n = 3 and n = 4 do not change. For n = 1 and n = 2
the completed lists are as follows:

n = 1 : {0}, {0} < ∅
n = 2 : {0, 1}, {0, 1} < {0}, {0, 1} < {1}, {0, 1} < ∅, {0} < {1}.

(By the way, this also illustrates that it is more efficient to first find the minimal
honourable subsets and then to add the relevant non-minimal honourable subsets
than to immediately go for all honourable subsets.) Hence, the objects Q0, . . . , Q4

are as follows:

Q0 = Sym2(A)

Q1 = Sym2(B1)⊕B1 ⊗A

Q2 = Sym2(C1)⊕ C1 ⊗B1 ⊕ C1 ⊗B2 ⊕ C1 ⊗A⊕B1 ⊗B2

Q3 = C1 ⊗ C2 ⊕ C1 ⊗ C3 ⊕ C1 ⊗B3 ⊕ C2 ⊗ C3 ⊕ C2 ⊗B2 ⊕ C3 ⊗B1

Q4 = C1 ⊗ C6 ⊕ C2 ⊗ C5 ⊕ C3 ⊗ C4.

Here, for instance, the module C5 in Q4 refers to the fifth copy of the module C
in Γ(C → B → A)4 = C6 ⊕B4 ⊕A, using the ordering of copies of C introduced in
Section 2.

We finally turn to the differential ∆: Qn → Qn−1 for n = 1, 2, 3, 4. It is induced by∑n
i=0(−1)idi (see Section 3). Here, di denotes the ith face operator in Sym2 Γ(C →

B → A); i.e., di is the symmetric square of the ith face operator in Γ(C → B → A).
Using the calculation given in Example 2.3 and some elementary facts about the
cross-effects of Sym2, we obtain the following action of di on each direct summand of
Qn for n = 1, 2, 3, 4:

n = 1: d0: Sym2(B1) → Sym2(A), bb′ 7→ ∂(b)∂(b′)

B1 ⊗A→ Sym2(A), b⊗ a 7→ ∂(b)a

d1: acts as the zero map on Q1

n = 2: d0: Sym2(C1) → Sym2(B1), cc′ 7→ ∂(c)∂(c′)

C1 ⊗B1 → B1 ⊗A, c⊗ b 7→ ∂(c)⊗ ∂(b)

C1 ⊗B2 → Sym2(B1), c⊗ b 7→ ∂(c)b

C1 ⊗A→ B1 ⊗A, c⊗ a 7→ ∂(c)⊗ a

B1 ⊗B2 → B1 ⊗A, b⊗ b′ 7→ b′ ⊗ ∂(b)

d1: acts as the zero map on the first four direct summands of Q2

B1 ⊗B2 → Sym2(B1), b⊗ b′ 7→ bb′

d2: acts as the zero map on Q2

n = 3: d0: C1 ⊗ C2 → B1 ⊗B2, c⊗ c′ 7→ ∂(c)⊗ ∂(c′)

C1 ⊗ C3 → C1 ⊗B1, c⊗ c′ 7→ c′ ⊗ ∂(c)

C1 ⊗B3 → B1 ⊗B2, c⊗ b 7→ ∂(c)⊗ b

C2 ⊗ C3 → C1 ⊗B2, c⊗ c′ 7→ c′ ⊗ ∂(c)
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C2 ⊗B2 → B1 ⊗B2, c⊗ b 7→ b⊗ ∂(c)
C3 ⊗B1 → C1 ⊗A, c⊗ b 7→ c⊗ ∂(b)

d1: acts as the zero map on the first three direct summands of Q3

C2 ⊗ C3 → Sym2(C1), c⊗ c′ 7→ cc′

C2 ⊗B2 → C1 ⊗B1, c⊗ b 7→ c⊗ b

C3 ⊗B1 → C1 ⊗B1, c⊗ b 7→ c⊗ b

d2: acts as the zero map on the 2nd, 4th and 6th direct summand of Q3

C1 ⊗ C2 → Sym2(C1), c⊗ c′ 7→ cc′

C1 ⊗B3 → C1 ⊗B2, c⊗ b 7→ c⊗ b

C2 ⊗B2 → C1 ⊗B2, c⊗ b 7→ c⊗ b

d3: acts as the zero map on Q3

n = 4: d0: C1 ⊗ C6 → C3 ⊗B1, c⊗ c′ 7→ c′ ⊗ ∂(c)
C2 ⊗ C5 → C2 ⊗B2, c⊗ c′ 7→ c′ ⊗ ∂(c)
C3 ⊗ C4 → C1 ⊗B3, c⊗ c′ 7→ c′ ⊗ ∂(c)

d1: acts as the zero map on the first direct summand of Q4

C2 ⊗ C5 → C1 ⊗ C2, c⊗ c′ 7→ c⊗ c′

C3 ⊗ C4 → C1 ⊗ C2, c⊗ c′ 7→ c′ ⊗ c

d2: acts as the zero map on the last direct summand of Q4

C1 ⊗ C6 → C1 ⊗ C3, c⊗ c′ 7→ c⊗ c′

C2 ⊗ C5 → C1 ⊗ C3, c⊗ c′ 7→ c⊗ c′

d3: acts as the zero map on the first direct summand of Q4

C2 ⊗ C5 → C2 ⊗ C3, c⊗ c′ 7→ c⊗ c′

C3 ⊗ C4 → C2 ⊗ C3, c⊗ c′ 7→ c⊗ c′

d4: acts as the zero map on Q4

Note that in the case n = 4 the only i for which the image of di intersected with
C3 ⊗B1, C2 ⊗B2 or C1 ⊗B3 does not vanish is 0; hence,

∑4
i=0(−1)idi is injective if

d0 is injective. The latter holds for instance if ∂ : C → B is injective and the R-module
C is projective. This reproves the case k = 4 of Theorem 6.4 in [Kö], which states
that H4N Sym2 Γ(P.(V )) ∼= 0 for a certain projective resolution P.(V ).
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