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ABSTRACT

online parametric method of System Identification accounting 

for Poisson noise inherent in the measurement of gamma radiation, 

is proposed for the identification of the parameters attributed to 

the main metabolistic flow systems of the human body.

The main metabolistic systems commonly examined using radioactive 

tracers are modelled, and it is shown how the Kalman-Snyder state 

estimation routines may be used to identify them. Simulations are 

used to show the efficiency of the algorithms.

A proposed semiconductor radiation detector which eliminates 

the need for a lead collimator is also described and some contributions 

made to outstanding computational difficulties.
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PREFACE

The initial aim of this work was to apply estimation 

techniques specifically to a new radiation detection system based 

apon the Compton effect, which was being developed at Southampton 

University. Soon after this project was started, work on the 

Compton effect camera was transferred to the Medical Research 

Centre at Mill Hill, hence after development of imaging algorithms 

for the camera, the work was extended to cover general techniques 

for existing radiation detection systems, in conjunction with 

workers at Southampton University Hospitals.

The main contribution of the work consists of the adaption of 

state estimation techniques to identify rates of extraction or 

flow between organs of the body. The main metabolistic processes 

of the body have been described and modelled, and a method has been 

developed whereby using existing stochastic estimation techniques 

the metabolistic rates may be determined from measurements of 

radiation emitted from radioactive tracers for observable systems. 

The technique has been simulated, enabling the estimated rates 

to be compared with the true values, as well as those obtainable 

from deterministic techniques.



CHAPTER 1

SYSTEM IDENTIFICATION

Introduction

System Identification techniques have been developed in many 

fields, by engineers, bioengineers, statisticians and econometricians. 

Many of the techniques proposed have similarities to others, and 

indeed are special cases of more general ones. Survey papers and works 

of general interest analysing the methods are given in references 

(Ale), ^Tt), (Bal), (Bek), (Cue), (Eyk 1,2,3), (Lee), (Lie) and (Sag). 

To compare the methods an abstract framework is required such as that 

of Zadeh (Zad), who characterises the identification techniques by 

three quantities, the model, the input signal and the identification 

criterion. Each of these quantities will be analysed in turn, and it 

will thus be shown which identification techniques are of particular 

relevance to nuclear medical problems.

The model may be represented parametrically by state models such 

as:

= f (x, u, g) 

y = 9 (x, u, g)

(1.1)

(1.2)

where x is the state vector, u the input vector, y the output vector 

and g a parameter, or non-parametrically in the form of inpulse responses, 

transfer functions, covariance functions, spectral densities, Volterra 

series etc. Comparisons of the two representations may be found in the 

literature on time series analysis (Gre),(Jen), (Man), (Whi).

If the inputs to the system can be altered, and special signals 

applied the identification can in many cases be simplified. Impulse
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functions, step functions and sinusoidal signals are of great value, 

the use of deterministic signals being discussed in references (Bos), 

(Cum), and (Wei). Coloured or white hoise and pseudo random binary 

noise is also of use and this is discussed in (Nik) and (God). In 

biological systems the types of inputs that it is possible to apply 

are generally very limited and an identification technique needs to 

be chosen which is suitable to the particular circumstances, or which 

requires no special input.

The criterion which assesses the performance of the identification 

technique is normally expressed as a functional of an error such as:

fT
V (y. y„> = e^(t) dt (T.3)

where y is the process output, y the model output and e is the error, 

all being functions defined on (0,T).

The error can be an output error

e = y - y^ = y - M(u)

where M(u) denotes the output of the model where the input is u, an 

input error

e = u - u = u - Mr^(y)

where u = Nr^(y) decides the input of the model which produces

(1.4)

(1.5)

the output y, or it may be defined in a more general fashion (Eyk 4), 

(Pot):

e = M^"^(y) - M^(u)

The notations and M represent invertible models. The

(1.6)

T ------- 2
concept of invertibility is discussed in (Bro^ (Sai) and (Sil).

In the problems of identification considered in this thesis, using 

^vulear medical techniques boluses of radioactive tracer are injected



into the circulatory system. We thus have an initial known 

step input. It is of interest to determine the extraction 

efficiency of each organ which removes the particular tracer 

from the blood. These terms may be made to appear explicitly 

in a parametric model and causes the parametric approach to 

be of particular interest. In our case it also has other 

advantages.

Measurements may be taken periodically of the radiactive 

intensity in different organs. Our identification problem 

may thus be expressed that we wish to identify the system from 

a string of input - output data, the input being known as a step 

function at time t = 0 corresponding to the applied bolus. It 

is of great interest to develop techniques whereby the result of 

the identification develops recursively as the process develops, 

subresults being obtained as each input - output pair is used, 

as opposed to techniques which require all the data in the time 

interval (0,T) to produce an answer. This avoids the necessity 

to repeat the whole identification process if the estimate is 

not of sufficient accuracy and the observation period has to be 

increased to (0,T\) where T > T. If an algorithm is available 

to provide an up date using only the new measurement and an 

old update, the computation becomes much less and it becomes



feasable in principle to propose that the identification is

repeated until a specifide parameter accuracy is obtained.

Idenfification techniques which are recursive and do not require

the use of the whole string of input - output data at each step

are called on-line methods. If the parameters are truly time

varying then they must be tracked in real time* this being denoted

as real-time identification. Nearly all methods of real time 

identification yield algorithms of the form

E (N + 1) = E(N) + G(N} e(N)

where the estimate after N input - output pairs is given by

E(N), e(N) is the generalised error* and G(N) is a gain factor which

is of varying complexity.

The online and real time identification problems may in some

circumstances be formulated as model tracking problems figure (1.1).

The known input is simultaneously applied to the unknown system and a 

model which is to simulate the system. The difference between the 

two outputs is then used to adjust the model* and the procedure 

repeated. This formulation was first considered by Whitaker (Whi). 

Modern parametrical, as opposed to so called classical non parametrical 

estimation techniques fall into these categories, and allow the use of 

and systems disturbed by noise, though in the latter case problems 

associated with estimation, and stability and non uniqueness of the 

identification occur. For deterministic systems and observable stable 

systems have been designed using Liapunov techniques (Lio), (Par), (Sha)

and Lions techniques have been extended to stochastic systems by
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Kushner (Kus 2). New stability tests have recently been developed by 

Popv (Pop) and Zames (Zam) which give indications of being of great use in the 

design of stable systems. Initial efforts in this direction have 

been applied by Landau (Lan) w^^ has proposed a stable reference model 

system using the Popov criterion.

The following section describes a model tracking state estimation 

technique which allows for the presence of noise in both the system and 

measurements. This is of particular interest due to the gaussian 

noise present in many biological systems, and the poisson noise inherent 

in any measurement of radiation emitted from radioisotopes. It is then 

shown how this estimation technique may be used for system identification.

The theory used to develop the estimation equations is described 

in detail in the Appendices, In this chapter we outline the main steps 

in the development of the recursive algorithms and show the relationships 

between state estimation techniques and system identification.

State Estimation in the Presence of Noise

a) System Modelling

A main prerequisite of parameter estimation is to model the 

system adequately. Parametric time domain methods normally express the 

system in terms of differential or difference equations, differential 

equations forming continuous time models, difference equations describing 

discrete time processes. It may be shown that any set of differential 

equations of arbitrary order may be reduced to a vector differential 

equation of first order (see ref. (Oga) for ordinary differential equations, 

ref. (Tr) for partial differential equations). For a forced lumped 

parameter system with no inherent noise we have a first order system 

equation (1.1) which we repeat below:

dx = f (x, u, $) (1.1a)



In general the system is driven by noise. If we consider the 

deterministic forcing function to be zero and denoting the noise by 

an additive (n x 1) vector dn we obtain, eliminating g by a change 

of variable

dx = f (x, t) dt + dn (1.7)

Two useful types of noise processes are called the Wiener and 

Poisson processes, both described in Appendix B. In defining the 

processes it is shown that they are both Markov processes in that 

the present value of the noise depends solely apon the most recent 

past history, and are also independent increment processes in that 

events occurring in non-overlapping intervals are independent. These 

properties are important since they cause the system equation (1.7) to 

become mathematically tractable. The Wiener process is continuous, 

whereas the Poisson process is discontinuous. Most noise processes 

occurring in nature may be modelled by one or a combination of both 

of these processes.

Determination of the state x in equation (1.7) is called state 

or parameter estimation, while determination of the matrix A is called 

System Identification. State estimation techniques are well established. 

These are first derived, and it is shown how in some cases they may 

be used for System Identification as well.

b) Derivation of State Estimation Equations

A full derivation of the estimations equations for a system, 

state equation (1.7),observed by measurements consisting of poisson 

processes with a vector rate X (x, t) is given in Appendices B and C. 

Since the system is driven by noise the transition matrix which fully 

describes deterministic systems no longer is sufficient to describe
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the time evolution of the system. The probability density function 

p (u, t|x(s)}, described and evaluated in Appendix C may be used for 

this purpose. An equation may be found which is satisfied by this 

function such that given only the apriori knowledge, the most probable 

state after a period of time may be found. This equation, the 

Fokker Planck equation may then be modified to take account of 

measurements which would improve the knowledge of the state.

The result, derived in Appendix C is repeated below 

Let x(t) be an (n x 1) vector Markov process generated by the 

state equation

dx(t) = f (x,t) dt + dn (t)

where dn is additive gaussian noise, and let dN(t) be an (m x 1) 

vector Poisson step process with an (m x 1) rate parameter x (x(t), t). 

Let (x(t), t) be the i^^ component of x (x(t), t)

Let p^ (u, t|0^ ^ ^ be the conditional probability density

function of the process x(t) given 0^ ^ ^ the minimal o field

generated by the process N(s), sc [t^ ^ ^ Then to order dt

ap = L^XP) dt + q (dN, dt, u) p (1.9)

where

q (dN, dt, u)

m
^ (X. (u, t) - E {x. (X, t)}) (E {X. (X, t)})-

i=l
(dN.(t) - E {X. (X, t)} dt) (1.9a)

where

E {X^ (x, t)} = X. (u, t) p^ (u, t|0^^ ^) du (1.9b)

and where L^\') is the Forward Fokker - Planck operator defined by



nL'(-) = - I + i j I Q.^

I;] i=1j=T \y

Q(t) dt = E fdn (t) dn ^^t)} 
" 9

(1.9c)

(1.9d)

9.

The partial differential equation may be used to derive an 

expression for the state estimate x. This is done by multiplying 

throughout by the state and integrating to yield

dx = E {f (x, t)} +

I E {(X - X) x'(x)} Y- Y^}"^ {dN - A(t) dt}^ Y^

where E {X I CL .}

A = E {A I 0, .}
Lg, L

(1.10)

(1.10a)

(1.10b)

Y^ is a zero vector save for a 1 in the i^^ position.

This equation is,save for limited cases,analytically intractable, 

but can be approximated by expanding f(x) and A(x) about their optimum 

points. This produces two linked estimation equations. The result 

is summarised below:

Let x(t) be an (n x 1) vector Markov process governed by

dx(t) = f (X, t) dt + dng(t) (1.11)

and let dN(t) be an (m x 1) vector Poisson step process with a (m x 1) 

vector rate parameter A (x(t), t). The first order linearised estimate 

s is given by the solution to the equations

ds = f(s) dt + ^ R(t) (X^(s) Y^) ^ (dN(t) -
i =1

A(S) dt) Y^ (1.12a)
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T
^ R dt + dt + Q(t) dt +
oS oS

I
i=1

R(t) y. dN(t) - % R(t) R(t) dt 
3S^ ^ i=1 as2

(1.12b)

These continuous equations are of a suitable form to be used 

directly in a computer program by taking dt to be some small time 

interval such that not more than one collision occurs per tin^interval.

The form that the equations take in this case is derived in Chapter 4.

The equations are initialised using apriori knowledge of the values
t hof the state. Suppose for example that the i element s^of the initial 

state is known to lie anywhere between values b and a. If we may 

assume an equal likelihood of the initial state being anywhere between 

these points then Appendix F gives an initial covarance of (b-a)2/12 which 

may be inserted for the initial value of R^^. Off diagonals are put 

to zero with the assumption of zero correlation between the initial 

values of the states. The initial value of the state is taken as the 

mean of b and a.

Solution of the System Identification Problem by means of State Estimation

In the previous sections we have considered a system consisting 

of a Markov process x(t) generated by the equation

dx(t) = Ax dt + dn (t) (1-13)

Where dn denotes additive Gaussian noise.
9

In the previous section we have shown how, given measurements, 

disturbed by poisson noise, which depend in the state variable x 

in a manner to give an observable system (Med 2), (Pol), (Oga), (Ath 2), 

then the state variable may be determined using equation (1.12).

We now consider the case of system identification where we 

wish to determine the terms of the matrix A in equation (1.13)
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A method commonly proposed is to write a new state equation by 

augmentation of the state x(t) with the unknown terms of the matrix A, 

refs (Sag), (Eyk 1) hence allowing the determination of both the 

state x(t) and system A. This approach has the disadvantage that the 

dimension of the system is made large, the estimation problem becomes 

non-linear and often it is impossible to determine ail the variables 

from the measurements available.

An alternative approach may be adopted provided the system 

parameters, that is the elements of the matrix A may be assumed to 

be constant throughout the observation period, and secondly provided 

it is not required to find an estimate of the state vector x. In the 

cases of organ extraction rate determination to be considered both 

assumptions are valid. The mean flow rates are constant and best 

estimates of tim intensity of isotope in each organ throughout the 

measurement period are not required, it being satisfactory to obtain 

estimates of the extraction efficiencies and related parameters alone.

The first stage is to derive a new state vector r, from which 

the matrix A may be derived, and to express the measurements in terms 

of this new vector. It is then possible to estimate this new vector 

using the state estimation routines, and then from the best estimate 

at the end of the estimation to form the best estimate of the matrix 

A. For blood flow rate estimation a possible new state vector 

consists of the vector of flow rates, and for this case the major 

problem becomes expressing the mean measurement rates in terms of 

the new state vector, the flow rates.

Measurements are taken of the intensities of different organs, 

hence the measurement rates can easily be written in terms of the 

intensities x(t), x (x(t), t).
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We may restate the problem in order to give a general method.

Given a process x(t) generated by the equation

dx(t) = Ax dt + dn (1.14)

With constant system matrix A, observed by measurements with an 

(m X 1) poisson rate vector A (x(t), t) which depends apon the state 

of the system, derive a new system that generates a process r(t) from 

which the matrix A may be derived, having a system equation

dr(t) = dOg"

observed by measurements with an (p x 1) poisson rate vector x' (r(t), t) 

which depends upon the new state vector r.

The deterministic part of equations (1.14), (1.15) must be 

the same i.e. the vector r(t) in equation (1.15) gives the time 

evolution of x(t) and the value of the matrix A in equation (1.14).

It would be convenient if equations (1.14) and equations (1.15) described 

identical noise systems, however the Gaussian noise in equation (1.14) 

cannot be represented exactly by the additive noise in equation (1.15).

The representation of the system noise by an additive Wiener process 

dng in equation (1.14) affecting the intensities x(t) is as good approximation 

to the actual physical system. The system noise can also be adequately 

represented be additive Wiener process dng' affecting the rate vectors 

r(t) as shown in equation (1.15). To derive the new measurement vector 

X'(r(t),t) from the measurement vector X(x(t),t) we need the analytic 

relationship between x(t) and r(t). This may be achieved 

by solving the deterministic part of the equation (1.14), namely

dx(t) = Ax dt (1.16)

We start with the assumption that the elements of A are given in 

terms of a vector r. i.e. we have

A = A(r) or a.j = a,j{r)
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where a^. is the term of matrix A.

We outline the solution of a system of dimension 2 which may 

be extended to higher dimensional systems.

Consider the (2 x 2) matrix equation.

3
3t

^11 ^^2

^21 ^22
(1.17)

dx = Ax dt

Full details of the solution of this equation are given in Appendix 

E. The vector x is changed by stages to produce a diagonal system 

matrix, giving:

(1.18)

3
at

(X^iXg) bi(a) 0 

0

Letting = f\(x), 

we obtain

fl (Xi.Xz)

f, (x,.x^)

f{x)

(1.19)

(1.20)

_a_
at

b, 0 ”

^2 0 *>2
(1.21)

Bp

P^(0) exp b^ t"

p2(0) exp bg t

(1.22)

(1.23)

p = exp Bt p(0) (1.24)



With the known initial conditions of the state vector x, namely 

Xg(0} we may derive p,(0) and p^(0) using

Pi(0) = fi (Xi(0), x^(0)). p^(0) = f^ (x^(0), X2(0))

and hence obtain from equation (1.24) an analytic expression for p in 

terms of B and t. By reversal of the steps taken toderive equation 

(1.19) the inverse expression for x in terms of p can be obtained.

The detailed steps for the equation of dimension 2 is given in Appendix 

D. To give the overall philosophy and to give the precise analytic 

expressions slightly different terminology is used.

Let the transformation matric es D and D"i be defined by the 

equations

X = Dp (i.25)

p = D'^x (1.26)

replacing equation (1.20).

Consider the system equation

14.

X = Ax

Substitution of equation (1.22) gives

Dp ADp

p = D ^ ADp

solving this equation we obtain

(1.27)

(1.28)

(1.29)

p = exp (D"i ADt) p(0)

X = D exp (D'l ADt) x(0) (1.30)

where AD is diagonal and x may be easily evaluated.

Since D, and A all depend solely upon the vector r, equation 

(1.30) gives the required analytic expression for x:

X = x(r).
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The system is observed by measurements with a (m x 1) 

poisson rate vector x (x(t), t), which is dependent upon the state 

of the system. By the use of equation (1.30) we obtain

X (x(t), t) = X (x(r, t), t) = x^ (r,t)

The system identification problem has thus been transformed to 

the State Estimation problem:

Given the process r(t) generated by

dr(t) = dng'

Observed by measurements with an (m x 1) poisson rate vector 

t) estimate the state vector r(t).

We see that this problem may be solved directly by the methods 

described in the previous section. The implementation of the 

equations is described in detail in Chapter 4.

Conclusion

Various techniques of System Identification have been reviewed 

and it has been shown that an on-line parameter identification technique 

is desirable. Such a technique exists for stochastic systems, but 

only for state identification. The development of the continuous time 

estimation equations has been outlined, and it has been shown how 

under certain conditions, satisfied by the conditions of the nuclear 

medical problems posed, these state estimation equations may be 

used for system identification.



CHAPTER 2

DETECTION OF ISOTOPE RADIATION INTENSITY

Introduction

16.

Over the past eighty years X-ray%and lately gamma-rays,have 

been used increasingly in the field of patient diagnosis. The 

X-ray technique requires an external source to be positioned to 

one side of the patient. The transmitted rays are detected on the 

other, the information being commonly displayed as an exposed 

photographic plate, or in the case of the E.M.I.-scanner' (Pat 1) and 

related instruments, as a computer reconstruction of a three dimensional 

object, normally displayed in the form of adjacent slices.

The ability to detect gamma rays has made it possible to 

position sources at regions of interest. Isotopes may be incorporated 

in chemicals occurring in or having properties similar to those 

occurring naturally in the body. Detection of these gamma ray emitting 

isotopes can give direct functional studies of the metabolism of the 

body.

The gamma ray sources emit radiation in all directions. To create 

an image some directional information must be known. Gamma rays cannot 

be focussed hence normal imaging techniques are not applicable, and 

other methods must be used. This is generally achieved by the use of 

a lead collimator, the lead being considered opaque to the incoming 

rays. The most elementary form is the gamma ray scanner. This has 

a detector head consisting of a scintillator or semiconductor with 

a converging lead collimator. Figure (2.1), focussed at a single point. 

The system views only this point at any time, and is swept mechanicalTy



PHOTOMULTIPLIER TUBE
17.

FIG 2.1 HEAD OF A GAMMA RAY SCANNER WITH CONVERGING

COLLIMATOR



over the region of interest. The process is slow since each point 

is viewed only for a short period of time, and production of an 

image can take up to thirty minutes.

In 1956 Anger introduced a multichannel collimator camera 

which is now in a similar, but technically more advanced form,gradually 

becoming standard equipment for scanning in many centres, (Ang. 1).

It consists of a multichannel lead collimator, coupled to a sodium 

iodide scintillation crystal viewed by an array of photomultiplier 

tubes, figure (2.2). The light flashes produced in the crystal are 

detected by the photomultiplier tubes, an electric network driven by 

the differing outputs of each tube determining the position of each 

flash.

Alternatives to this system have been investigated over the 

last twenty years. Image intensifiers were introduced in 1964 to 

image low intensity sources, (Ter), but have since been used to 

image all types of sources. A wire spark gas chamber with a digitised 

readout was described by Kaufman et. al. in 1971, (Kau). This is 

a compact instrument capable of covering large areas with higher 

resolution and lower cost, but with a slower counting rate than the 

Anger camera. A multiwire proportional chamber was constructed in 

the same year, (Sch). Liquid Xenon detectors with a higher stopping 

power than gas chambers have also been constructed by Zaklad et. al. 

in 1972, (Zak). Semiconductor detectors have been developed by 

Detko, (Det), Parker, (Par), and Hofker, (Hof), and a survey made in 

the report by Hofker in 1971. M^^y early methods of detection have 

been surveyed by Anger, (An^2), and a later survey of detection 

systems given by Moody in 1970, (Mdo).

All the preceeding detection systems have used lead collimators.
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In the following section the disadvantages of the collimator system 

are outlined, and it is shown how these disadvantages may be overcome 

by use of special properties of the Compton effect. The resulting 

instrument denoted 'the Compton effect camera' is described in the 

theses of Everett,(Eve), Doshi, (Dos) and Fleming, (Fie). A preliminary 

report (Eve. 1) gives further details of the potentialities of the 

system.Due to the many potentialities of the system we outline the 

method, and show how some computing problems which arise in the 

production of the image may be overcome.

The Compton Effect Gamma Ray Camera

A disadvantage of conventional methods of detection of gamma 

radiation utilising collimators is that only a small fraction of 

the total radiation is emitted parallel to the collimator holes. This 

means that comparitively large does need to be administered. Lesser 

doses can be administered if the collimator holes are increased, but 

this leads to lower resolution. Improvements in manufacturing technique 

now have little effect since the theoretical limits of resolution 

are close to being achieved.

A method of detection of the position of radioactive isotopes 

eliminating this drawback was proposed by Todd, (Tod). It requires 

no collimator, but uses the properties of the Compton Effect (Appendix A) 

to determine the position of isotopes. The Compton Effect is observed 

when photons, having the energies associated with commonly used isotopes 

pass through some liquids, gasses and semiconductors. When used as a 

detector semiconductors have many advantages, noteable being the 

far greater stopping power, and a semiconductor detector forms the 

basis of the proposed camera. A problem inherent in the method is 

that the derivation of the image from the detector measurements requires

20.
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a large amount of computation, but due to the potential advantage of 

the method, the Compton Camera is described, and it is shown how 

sharp images may be produced with minimal computation.

The Structure of the Camera

The camera contains a semiconductor detector through which 

radiation emanating from the source passes. Any Compton collisions 

occurring in the detector cause the gamma ray photons to be 

deflected, and in doing so produce free electrons which produce 

electrical signals whose magnitude may be amplified and hence measured. 

The position at which the free electron is produced gives the position 

of the collision, the magnitude of the energy aquired by the electron 

enables the angle of deflection of the photon to be determined.

To determine the position of the Compton collisions the detector 

is divided vertically, using lithium drifting techniques, into a 

multiple sandwich of p and n type doped semiconductors, separated 

by inert layers. Figure (2.3). An electron liberated by a collision 

IS attracted towards the nearest p type layer, and the hole produced 

by the same process travels towards the nearest n type layer. The 

pulses observed when the electrons and holes reach the p and n type 

layers respectively give the vertical height of the collision.

To determine the position of the collision in the horizontal 

plane the p and n type layers are divided further into orthogonal 

strips by Schottkey barriers which have dead spaces of only l^m.

Pulses are only produced on one strip in the p layer, and one in the 

n layer at any time, thus giving the position in the horizontal plane. 

The energy of the pulse may be determined by use of a pulse shaping 

amplifier via a ferrite decoder transformer (Eve).



Mbde of Operation of the Camera

There are several steps from the determination of measurements 

in the camera detector to the production of a useable image. Here 

we show how the collision angle may be determined from the 

measurements of the energy liberated by the electron, how posssibie 

locii of the photon may be determined, and how from this limited 

knowledge an image may be produced.

Determination of the Deflection Angle of a Photon at its first

collision in the Defector

Consider a three stage Compton Effect collision of a gamma-photon 

in a semiconductor. Figure (2.4). The photon is emitted when a photon 

in the radioactive source falls from one energy level to another.

The photon may have one of several initial energies depending apon 

the actual energy transitions performed. Let the initial energy of 

the photon be denoted by E^.

With reference to Figure (2.4) let the energy liberated at the 

first and second collisions be AE^ and AEg respectively.Denoting the 

the energy of the photon incident at the second and third collision 

parts by E^ and E respectively

23.

Eg - E^ - AE^ (2.1)

E, - (2.2)

Assuming a possible value for E^ and by measurement of AE. and 

AEg, see (Eve)for details, we can calculate E^ and E^. We denote these

provisional values by E * and E *.
^ 3

From Appendix A the relationship between the deflection angle 

at the second collision point and the wavelengths before and
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FIGURE 2.4 THREE STAGE COMPTON COLLISION PROCESS
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after the second collision, X2 and respectively are given by

Estimates of X and x^ may be calculated from the estimates
•k

and E^* by use of the formulae

^2* = X3* = ^

A provisional value of the angle , denoted by ^2* 

obtained corresponding to the assumed value of E., the initial photon 

energy.

The position of the collisions of the photons may be determined by 

noting at which orthogonal strips the energy pulses occur. may be 

determined from the position of the collisions,hence it may be determined 

whether the calculated value of namely is correct. If it is 

incorrect different values for are assumed until the value for E^ 

gives a satisfactory value for * *. At this point our found value of 

E^ may be used to determine the angle using the equation

Xj = hc/E^ Xg ~ hc/Eg

Xg - x^ = h(l-cos ^^)/mQC

Note that if E^ is known apriori by the use of a mono-energetic 

radioactive tracer, then no check of and ^g is required, and only 

two collisions are necessary. We determine from the equations

hXg - x^ m^c (1-cos

The above procedure has enabled a limited amount of knowledge of the 

position of the isotope radiation to be determined. We know the co-ordinates 

of the first and second collision points and the deflection angle of the 

photon at the first collision, we hence deduce that the photon source lies 

somewhere on the surface of a cone, semiangle * , apex the first collision 

pointV with the axis passing through both collision points. Figure (2.5).
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FIG 2.5 TWO STAGE COLUSION PROCESS



This information is sufficient to produce an image of the radioactive source.

27.

b) Determination of the position of the source in the image plane

(production of an image).

A body emitting radiation may be considered to consist of a 

set of point sources. If the position and intensity of each point 

source is known, then an image of the object may be produced. If 

the response of the measuring system to a point source is good, the 

corresponding image of the total object will be correspondingly 

sharp. In the following section we show how a point source may be 

imaged.

Consider a point source emitting several photons. Figure (2.6).

If the measurement is assumed perfect then the cones will intersect at 

the source point. With imperfect measurements the cones will pass 

through a sphere, centre the point source, of radius e, where the 

magnitude of e is dependent apon the measurement errors. Figure (2.7a).

If we consider horizontal planes passing above, through and 

belo^ the object, Figure (2.7b), then the cones will be represented on 

the plane by conic sections, which on the planes above and below the 

object will appear to be randomly distributed, but on the plane passing 

through the object will all pass within distance c from the object.

To build up an image a rectangular grid is imposed on each plane, the 

size of the grid being made compatible to e, which may be calculated 

by studying the measurement errors (Eve). The square containing the 

source will be intersected by all the cones. If we give each square 

a count value representing the number of cones intersecting it, then 

the source position will be represented by a square with a high count 

value. The counts in the other grid squares will be ideally zero, 

but in practice will be finite, but smaller, the magnitude of the
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(a)
( b)

FIG 2.7 PRODUCTION OF POSSIBLE IMAGE LOCH 
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count decreasing in magnitude as the distance from the object 

increases. The quality of the image is normally expressed in 

terms of the point spread functions, the response of the imaging 

device to a point source. Here we make some assumptions to obtain 

an approximate expression for the point spread function.

c) Determination of the Approximate Point Spread Fuction

If we consider the region in the image plane surrounding the 

object, the conic sections produced by the intersection of the 

cones with the image plane will generally produce curves of small 

curvature, passing within distance e of the object, figure (2.8).

We may consider, as a first approximation, the conic sections to be 

straight lines passing through the object as in figure (2.9).

Consider a strip at radius R, of width AR, from the object. The 

intensity will be given by the number of counts divided by the area. i.e.

Intensity at Radius R'= No of counts in strip
Total area of strip

31

 2 (No of lines) 
2?R AR

n

AR

A
AR

where n is the number of cones resulting from a source of intensity Q. 

The point spread function is shown in Figure (2.10).

It may be seen that the tail of the point spread function is 

proportional to ^/R. This tail may to a large extent be eliminated 

by utilising the fact that it is built up of a set of conic sections 

This allows a form of apriori processing to be performed.
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FIG 2.12 : DEFOCUSSED

POINT SPREAD FUNCTIONS OF POINT SOURCES
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Apriori Processing of the Image of the Compton Effect Camera

Consider the image of a point source. If many conic sections 

make up the image the plot of the density of ellipse lines against 

the distance r will be of the form shown in figure (2.11). A non-focussed 

image would have a density distribution as shown in figure (2.12). This 

defocussed image has a smaller intensity near the object, but has the 

same 'tail' as the focussed image. If we could subtract the 

contribution of the defocussed image from that of the focussed image, 

then we would obtain the distribution of figure (2.13) which has a

smaller variance, and no tail, and which would produce a sharp total 

image.

To product the defocussed image we may use the fact that the 

image is built up of many conic sections, and plot for each cone, the 

intersection with the image plane of a similar cone, of identical 

semiangle ^ but whose apex lies a small distance 6 from the apex of 

the original cone, figure (2.14). Encoraging preliminary results 

have been obtained, (Dos).

Three Dimensional Imaging

It has been noted that we may produce images on planes at various 

distances from the detector, figure (2.7). We noted that only in the 

plane passing through the object do the cones pass through the object 

to within the errors set by the measurement accuracies of the instrument, 

resulting in the images produced above and below the object plane being 

defocussed. Considering the apriori processing technique which subtracts 

a defocussed version of the image from the original, in planes above 

and below the object the defocussed images will cancel, while only in 

the plane containing the object will one image be focussed and the
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other defocussed resulting in a sharp image point. A sharp response 

will thus be produced on the plane containing the object, but not 

on planes above or below the object.

By the use of this technique images may b^ produced on planes 

at various distances from the collimator giving a three-dimensional 

image. The spatial resolution in the vertical direction will be related 

however to the extent to which the miss distance of the comK change 

with distance from the detector. If the aperture of the collector 

is small and the distance from the collector to the object is large 

then the three dimensional resolution will be poor.

Solution of Some of the Problems involved in the computation of the

image of the Compton Effect Camera

To obtain the image the intersection of cones with an image 

plane must be plotted. This intersection will always be a conic 

section, either a hyperbola, parabola, ellipse or circle. To 

produce a camera with a quicK response time fast algorithms to produce 

their cones must be used.

Method of Plotting Conics

Doshi used three methods to plot the conic sections (Dos).

1) A contrubution to a cell was made if the solution to the 

equation of the conic in the image plane

Sj x2 + xy + x + Za^^y + =0

lay in that cell when the value of y was fixed so as to correspond 

to a line passing through that cell and parallel to the axis. Figure (2.15), 

The value of y takes all v^Ues over the image plane, complex values of 

X denoting that the conic does not pass through a row of cells through 

which the line passes. The method does not give contributions to

37.
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all squares through which the ellipse passes, and there is anisotropy 

in the plotted conic section.

2) With reference to Figure (2.16) a point is plotted on

the conic every value of d^ varying* from * . to * , * being determined
min max max

as the maximum value of * at which the source is likely to occur.

The probability that a collision occurred at each point was evaluated, 

and the contributions at each point so weighted.

3) The most likely point was found and this alone plotted. All 

of these methods, except 3 which was found to be inadequate were too 

complex for a practical system, and hence an effective method was looked 

for which would plot all the grid elements intersected by the elipse, 

since if the point which contained the image was not plotted, any 

other points plotted would in fact simple be noise in the image.

We consider two ellipse plotting methods, firstly a fairly 

efficient method of implementing a variation of method (2) and secondly 

a method which attempts to cut down the number of multiplications 

so as to reduce the computation time.

Method 1

We first derive the equations for the parameters of the ellipse 

which needs to be done once only for each ellipse.

With reference to Figure (2.17) we see that

p = &h (tan (6 + *) - tan (e - *))

tan 1 ih = tan"^ {

a =

& = 

r =

X = a

tan (8+*) - tan (8-*)

h (tan (8 + *) - tan (8 - *))

h sec 8 

t tan * = y

h tan 8 - (h tan (e - *)+^/2^



FIGURE 2.15 ANISOTROPY OF AN ELLIPSE PRODUCED WHEN METHOD 1 IS USED

FOR PUOTriNG

FIGURE 2.16 VARYING ^ TO PRODUCE THE CONIC POINTS



With reference to figure (2.18) we see that

40.

b =
a y.

(a+x^)

Where we have used the standard equation of the ellipse

^ 1 =
b2

53''

Consider the projection of a circle radius b onto a plane at 

angle a to the circle. This will be the desired ellipse. With reference 

to figure (2.19).

R =

= b/^i[

Hence we may vary * from - * to * to produce points on the
IIICIA fliClX

ellipse. If ^ ^ then the whole ellipse is produced, * may be

expressed in terms of g to give points equispaced in g.

Method 2 Approximate method of Image Formation

Consider the equation of an ellipse* major axis the x axis, 

then we have:

^ = 1 
b^

or y^ -k x^ + b2 , k =
b^

With reference to figure (2.20) we start at x = a, y = 0 and 

plot in the direction of the arrow.

If we can obtain the points on the ellipse for x varying from a 

to zero in unit steps, then this will be sufficient since the unit



FIGURE 2.17 MAJOR PARAMETERS OF THE CONE

FIGURE 2.18 MAJOR PARAMETERS OF THE ELLIPSE
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IGURE 2.19 PARAMETERS USED IN THE CALCULATION OF THE

EFFECTIVE RADIUS OF AN ELLIPSE
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Of measurement can be adjusted to give the required accuracy.

Consider a general point on the curve (i, y^) where i is an 

integer and is the present value of x, and y. is the value of y 

corresponding to x = i.

The next value of i will be i-1

The next value of i^ will be (i-T)^ = i^ - (2i-1)

Noting that y? = -ki^ + b^, we see that the next value of y^, 

namely y^_i will be given by

= -k (i-l)2 + bZ

= -k (i2 - (2i-l)) + b^

= -k i2 + b2 + k(2i-l)

= y; + k(2i-l)

This recursive equation can be made the basis of an approximate

ellipse plotting routine. At any point the next value of i may be
2

found by decreasing i by 1. The next value of y^ namely y^ ^ may be 

found from the current value of y^, namely y?, i and k. This may be 

done using a square root routine, but this exact solution is unnecessary 

and an approximation may be used by obtaining j as the nearest integer. 

The routine shown in figure (2.21) (which would be implemented in 

machine code.to acrue the speed advantage gives the required value 

of y.

We note that as the arc from x = a to x = 0 is traversed y and 

hence y^ increases. The squares of the integers, starting from zero 

are taken by means of simple addition and shift operations using the 

formula (a+1)^ = a^ + (2a + 1), and their squared values compared to 

those of y^Li' The value of y\ ^ corresponding to yi ^ is taken to be 

the integer whose squared value just exceeds y^
i-1
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—__ PLOTTING AN ELLIPSE BY THE APPROXIMATE METHOD^

XAXIS PARALLEL TO MAJOR AXIS
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FIGURE 2.21 FLOW CHART TO PLOT ELLIPSE USING APPROXIMATE SQUARE ROOT METHOD
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This algorithm may be modified to give a very efficient method 

of plotting ellipses aligned in any arbitrary position. A concribution 

in the direction of the minor axis is given every time the inner loop 

of figure (2.21) is traversed, and a contribution in the direction 

of the major axis is produced every time the outer loop is traversed.

The contribution in the image grid directions corresponding to 

contributions parallel to the major and minor axes are easily found 

using the rotation matrix

cos 6 sin 6 

-sin 8 cos 8

where are the contributions in the image grid directions, u,v are 

unit lengths in the x and y directions corresponding to the major and 

minor axes of the ellipse, and 8 is the angle between the grid side 

and the major axis.

An example of ellipse plotting using this method is shown in 

figures (2.22) and (2.23). It can be seen that by varying the ratio 

of the grid size to the step length that it can be made certain that 

a contribution will be made in every grid square through which the 

ellipse passes. Other conic sections hyperbolas and parabolas may 

be plotted using slight modifications to the above algorithm, these 

modifications have been analysed,(Fit),but since the ellipse is the 

most common conic section to occur due to the predominance of Compton 

collisions with small deflection angles and arguably the best 

scheme for a practical camera would be to disregard those collisions 

resulting in hyperbolas or parabolas in the image plane, the resulting 

algorithms are not presented here.
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Conclusion

Various methods of detection of radiation have been surveyed 

and one method relying upon the Compton Effect, a process which 

occurs readily with radiation in the energy range produced by most 

important isotopes, has been singled out as having special potentialities. 

These are response to very low quantities of radioactive tracer, dispensing 

wHithe large cumbersome lead collimator present in most other detector 

systems, and also some degree of 3.D resolution.

The computational problems preculiar to this system have been 

outlined, and algorithms proposed which would go some way to enabling 

images to be produced in times compatible with other systems.
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CHAPTER 3

THE IDENTIFICATION OF THE EXTRACTION EFFICIENCIES

OF ORGANS OF THE BODY USING RADIOACTIVE TRACERS

Introduction

Radioactive tracers are commonly used to visualise the liver 

and spleen, the kidneys, and the biliary system. Radioactive compounds 

are used which emulate the action of naturally occurring substance.

These may be visualised either by 'static' or 'dynamic' images, a 

static image being the totalised image of all radiation emanating from 

the object for the duration of the scan, dynamic scans being a set of 

scans taken from the same orientation,the latter enabling changes in 

emission rate to be observed. Static scans are usual except in the 

case of the kidneys where the use of dynamic scans enable a measure 

of the mean transit time between the kidneys and bladder to be computed.

It is of interest to obtain a measure of the extraction efficencies 

of each organ. In this chapter present techniques are outlined, and it 

is shown how estimation techniques can be used to improve the reliability 

of the results, and in some cases obtain results unobtainable by 

deterministic methods.

Liver Spleen and Bone Marrow System

Introduction

The liver spleen and bone marrow all contain reticuloendothelial 

cells which extract particles lying especially in the range 10 - 100 nm. 

Over the past thirty years various methods have been employed to determine 

estimates of the rates at which these particles are extracted. Radio-



colloid methods have tended to oust chemical methods, and we will 

concentrate on the determination of estimates of radiocolloid clearance. 

This was first attempted using blood clearance curves (Dob 1), (Pla).

In 1952 Dobson et al (Dob 2) used serial blood sampling and P labelled 

chromic phosphate. More recently external counting techniques have 

been used (Chr). Colloidal radiogold was used in 1954 by Vetter et

al (Vet) and labelled human serum alubim in 1958 by Biozzi (Bio).

^^Tc^ sulphur colloid, the method being first described by Mundschenk et al 

(Mun) in 1971, is now used widely in conjunction with Anger type nuclear 

cameras.

Modelling of the factors influencing the colloid clearance is 

complicated since the rate is dependent upon both the hepatic blood flow 

and the extraction efficiency of the colloid (Bra). The colloidal 

clearance rate is useful only as an indication of liver blood flow, 

and parameters more indicative of actual flow rates are required, 

however the parameter has been shown to be of use in the detection 

(xF cirrhosis wl^iine values are considerably reduced (Tap). A model showing 

the contributing effects of blood flow and extraction efficiency 

the liver,spleen and bone marrow has been developed by Miller et al (Mil) 

and corroborates this evidence. The colloidal clearance rate was 

found to be useful in the detection of cirrhosis, but not useful as an 

indicator of non-cirrhotic liver disease, nor of secondary tumours of 

the liver, the clearance rate in these cases being indistinguishable 

from normal.

Attempts to estimate the extraction rates of the liver and spleen 

as opposed to the hepatic clearance rate have been made by Karren et al 

(Kar) and DdNardo et al (DeN). These are of especial interest since 

increased uptake of the spleen relative to the liver determined by

51.
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visual inspection of the scan has been correlated with cirrhosis, carcinoma, 

anemia and diabetes melTitus (Wil),while decreased splenic uptake has 

been correlated with reticuloendothelial and hematopoietic neoplasia 

(Wil), (Bek). Karen et a1 applied the exponential fit routines of 

Miller et al to determine the extraction rates for the rat. While De Nardo 

et ai used a parameter estimation technique utilising a Gauss Newton 

iterative process. The Tatter produced measurements of the hepatic, 

extrahepatic and splenic rates, which it was claimed, allowed the 

differential diagnosis of cirrhosis and hepatitis. In neither of 

these Tatter cases did the modeT take account of the partiaT cTearance 

of coTToid in the portal vein by the spTeen.

In the following section the model of MiTTer et aT is developed to 

give expressions for the intensities of radio coTToid in the Tiver 

and spTeen in terms of the reTavent extraction efficiencies and 

bTood flows. It is shown how the extraction efficiencies may be 

determined from the results of a dynamic Tiver scan using the 

deterministic method of Karen et aT, and how the Snyder FiTter may 

be used to determine an estimate of these efficiencies with improved 

accuracy.

MathematicaT ModeT

CoTToid injected into a venous return, commonTy in the arm, wiTT 

be transported around the body as indicated in block diagram form in 

Figure 3.T. A smaTT fraction is extracted by the bone marrow. Studies 

on rats have indicated that the smaTTness of this fraction is not due 

to Tow blood fTow, which contrariTy is thought to be quite Targe, but 

due to the Tow extraction efficiency of the bone marrow. The main 

extraction takes place in the Tiver which is supplied both by a direct 

feed, the hepatic artery and also via either the spTeen or the gut.
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Further extraction takes place in the spleen which reduces the 

concentration of colloid in the portal vein.

Let the volume flows to the Gut, Spleen and Bone Marrow be denoted
« » *

Qo* Q3 respectively, and the direct supply to the liver through

the hepatic artery Q

Let the extraction rates of the colloid to the spleen, liver 

and bone marrow be E^, and E. respectively.

The quantity of colloid extracted at any moment from an organ 

is related to the concentration of the colloid and the extraction 

rate by the equation

^ = -EC or If = -a 3.1

Where

q = quantity of colloid in blood 

E = the extraction rate 

C = the concentration of the colloid 

V = the volume of blood in the organ

If an organ of blood volume V is supplied with a blood flow Q, then 

the extraction of colloid causes a reduction in the concentration of 

colloid in the blood leaving the organ.

Equating colloid entering and leaving the organ we obtain

Colloid entering = Colloid extracted + colloid leaving
in blood supply by R.E. cells via blood supply

dq,.,

(i dt

Cin [Q-E] 

^out

dqext

E dt

Sn P-E/q]

dqout

3.2
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If two blood flows of colloid concentration and volume

flow 0^, 0^ combine then the resultant flow will have colloid concentration 

Cg given by

C.ih,* Q,) = C, Qj + 0,

S “ Qi + 02)/(Qi + Op 3.3

With these preliminary statements the equations governing the 

extraction of colloid as shown in Figure 3.1 may be written by inspection.

Let the concentration of colloid in the blood entering the spleen 

be Cg and that leaving the spleen be C . Let the extraction efficiency 

of the spleen be and the flow in the portal vein Q then the concentration 

leaving the spleen is given by

3.4

The concentration of the colloid entering the liver C is given 

by the resultant concentration of the direct feed through the hepatic 

artery and the feeds via the gut and spleen. It is given by the 

expression

V Q, +1

We see that the extraction equations giving the changes in

concentration in the blood, spleen,liver and bone namely q q q and q
0 ^2 3

are given by

dq
-3F = -Pl ^0 + ^2 ^2 * ^3

dqi
W ==0
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dt

dt
E3 Cg 3.6

to solve these equations we use the relationships between the 

concentrations and intensities to give a set of equations solely in 

terms of the intensities. We use the relationships.

^2 ...

and

3.7

where is the total blood volume. 

Hence

dt

3.8

dq^
mr = E q^/V^

dq
' ^ - E ] / [Po * q, V ''0

dt
E3

3.9



This may be written in matrix form:

(R + R + R 
1 2 3' ^0

q 1

q 2

q 3
J

where

dt

This matrix equation may be converted to diagonal form

(Ri + ^2 + R3) 1 qu

^ - ir 4o

^2 " IT ^0

R3
" IT

j

where R — R + R + R 
1 2 3

The solution to this can be seen to be 

pQ = exp (-Rt) q(0)

R.
" IT ^0 = = q^(0) +

3.10

3.11

3.12

3.13

3.14

3.15

3.16
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" ir

q = [1 - exp (-Rt)] q_(0) 3.17

and similarly

Ag - [1 - exp (-Rt)] qQ(0)

R,
^3 " IT ("^^)] ^^(0)'

where we have used the initial conditions

3.18

3.19

(0) q^(0) q.(0) 3.20

We see that the spleen liver and bone marrow have extraction 

curves of the form shown in Figure"^.5 and that we may postulate 

a flow model Figure 3.3 with overall extraction rates R^, R^, R .

Extraction curves obtained from a dynamic scan taken for 20 minutes, 

using Tc labelled with liocoll are given in Chapter 4. Curves are 

shown only of the liver and spleen.

It is seen that the liver spleen and bone marrow curves all 

rise exponentially with the same time constant, ^ , and reach plateau 

values proportional to the extraction rates.

We now outline the method of Karen et a1 (Kaf)to show how using 

the model of Miller et a1 (Mil)we may determine the extraction rates.

Determination of Extraction Rates using exponential fitting techniques

An Anger camera is positioned so that the liver and spleen are 

in the field of view, a posterior view is suitable for this, and gives 

good spatial separation on the resultant image. ^^Tc^ labelled 

sulphur colloid, or better mtlli-microspheres the particles of the 

latter having a more uniform size, are injected and a dynamic scan



Started immediately and images taken for fifteen to twenty minutes with 

frames being taken every fifteen seconds.

At the end of the scan a totalised image can be created, regions 

of interest defined, and time activity curves displayed using 

standard programs supplied by manufactures of nuclear medicine data 

systems (Link, Dec, MDS. etc). Time constants and plateaux of the 

liver and spleen curves may then be obtained using standard exponential 

fit and averaging techniques. A listing of a FORTRAN program to be 

ruh in conjunction with data produced by the MED program of a Link 

data system. Dyanne computer system is given in Appendix F. The program 

gives directly the total extraction rate and calculates the liver and 

spleen extraction rates, R^ and R^ by simple divisioh.

We may now use equations 3111,3.12 and 3.13 to determine the 

extraction rates E^, E and Eg. We note that in 3.11 and 3.13 the 

extraction rate, or clearance as it is more normally expressed is 

obtained by multiplying the rate constant by the dilution volume.

Clearance = Rate constant . Volume

As the time volume of the blood is unknown the method of DeNardo 

(DeN) may be used by incorporation of a factor of 100 into the rate 

constants to express the clearance in units of ml/mm per 100ml of 

dilution, and to express the dilution volume in units of 100 ml.

This gives values for

60.

Ez PQ. + «o - EJ
and E.

%
To obtain a value for E^ assumptions of the blood flows Q^, Q^, 

must be made in the absence of further measurements. Cowles et a1 (Cow)

t Fortran Coding supplied by John Fleming of Southampton 
, University Hospital.
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quote a flow of 841 ml/min/m^ for flow to splanchnic tissue and a flow 

of 595 ml/min/m^ to the bone marrow

le. % 841 ml/min/m^

Qg = 595 ml/min/m^

The mean rest portal vein blood flow measured by local thermal 

dilution was reported as 500 ml/min (Cot) which using figures of 

1.8 m^ surface area of man gives portal vein flow of 277 m1/min/m^.

We may thus write

= 277 m1/min/m^

The total liver flow has been reported as 1500 m1/min/m^ (Map), 

hence we have the expression

Qm + Q + Q = 1500 m1/min/m2
"12

Any actual patient will not have the above values especially 

if suffering from a disease such as cirrhosis which affects the blood 

flow to the organs. The above values are also suspect since they 

are derived from the results of different workers in the field. We 

therefore round the figures to ones conve nently near the correct ones 

and make

= 500 m1/min/m^

Q = 500 m1/min/m^

Q = 500 ml/min/m^
3

Q = 500 m1/min/m^

Any differences in the flow values used to those occurring in the 

patient will be reflected in the extraction rates contained by the 

algorithm.
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The values above may be multiplied by

100/{B1ood Volume . Body Surface Area} 

to obtain limb of ml/min/TOO ml dilution.

To give

Similarly

Q = ^ g m1/min/100 ml dilution
" 5400

Q - Q = Q = Q =^6 ml/min/100 ml dilution
12 3 4

Substituting these values in the e/pression for the second extraction 

rate we obtain

[2Qi + - El] Eg [1.8 - E^]

Qo + Qi + Q, T.8

and hence with the above assumed values E may be determined by the 

substitution of the first estimated extraction rate = E into the 

above expression.

Application of theFilter to give estimates of the flow rates

with improved accuracy.

The results of the previous section enable the state and

measurement equations for the Snyder Filter to be written by inspection

The rates to R^ are constants hence satisfying the state 

equation

= ink ^2 = ETf Rg = 0

If measurements are taken of the liver and spleen intensities, 

poisson rates will be

Ri

3.21

= IT (1 " qQ(0)
Rg

^2 " IT ^o(°)
R

3.22

3.23
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If measurement of the uptake of radiocolloid into the bone 

is recorded then we have a third measurement

R3

^3 " ^ IT - exp RtJ q^(0) 3.24

where a is the ratio of the observed bone mass to the total bone 

mass. This latter measurement is required only if the clearance 

rate to the bones is required.

These equations are in the form required for the application 

of the filtering equations,equation (I.12). Comparisions are made of 

the results obtained by this and the exponential curve fit method in 

the next chapter.

Practically two methods could be used to obtain the required 

data, either the data could be stored on magnetic disk, regions of 

interest formed after the recording and offline processing. Alternatively 

a method similar to that of DeNardo could be performed. Two 

radiocolloids are used, one traced with ^^Tc^ and the other with 

one to position the camera and define the regions of interest, the 

second to determine the extraction rates the latter technique allowing 

the possibility of on-line processing. Disadvantages exist with 

both techniques, the first requiring large amounts of data storage, 

since the data would need to be recorded in a serial or 'LIST' mode 

in which each count is recorded together with its x and y position 

and the required information of the number of collisions in each time 

interval given by time markers. The first method would also increase 

the time before the result could be obtained. The second method would 

increase the radioactive dose and would be more cumbersome kadminister 

since two isotopes would need to be administered at different times.
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The Kidney Bladder System

Introduction

Renal scintigraphy and the determination of quantitative measurements 

describing the performance of the kidneys are both of great value 

in the evaluation and follow up of patients with renal disease. The 

most common quantitative renal measurement is the glomerular filtration 

rate (G.F.R). A common procedure to determine this is to inject ^^Cr- 

chromate and then to use the blood clearance curves obtained from blood 

samples taken over three hours. The Chromate during this time does 

not stay in the vascular space, but flows into,remains in dynamic 

equilibrium with,the extravascular space.

A two compartmental system was proposed by Sapirstein et al (Sap) 

who analysed the system for a dog and used the disappearance curve 

of creatnine to verify his results. Chantler et al (Cha) compared 

the glomerular filtration obtained using the results of Sapirstein but 

using inulin in man with that using ^^Cr-chromate using the same 

method. They also compared the results with those obtained using an 

analysis using only one compartment, and tailored correction factors, 

the 'single injection, single exponential' method.

With the advent of ^^Tc^ labelled DTPA, useful for renal scintigraphy 

Hi Ison et al (Mil) compared the results using this and ^^Cr chromate 

using Chantlers single exponential method. The results agreed with 

high correlation, and enabled a dynamic scan and an estimation of 

glomerular filtration rate to be performed with only one injection 

of one isotope.

It is necessary in some instances to distinguish between the 

action of the left and right kidneys. At present very few quantitative
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techniques exist for this,qualitative examination of the scans being 

the norm. To distinguish between the effect of both kidneys more 

complicated models are required to model the transport of the isotope.

Arnold et al (Arn) reported the perfusion of seventeen compounds which 

have been used in kidney studies, of which three technetium products 

were recommended, are in common use and are of relevance to this study:

1) Sn-DTPA : This is cleared rapidly by glomerular filtration without 

tubular resorbtion. It promptly appears in the urine and pelvocalyceal 

system. Only a small fraction retained in the cortex, (Hiramatsu 1970 

(Hir)).

2) GH : A sizeable fraction is prompQy excreted to the

urine. 6% is retained by each kidney, largely by the cortex, and 

located intercellularly (Kazem et al (Ka)).Visualisation of delayed 

images is excellent.

3) : Urinary excretion is extremely slow. It is 

excellent for delayed images of parenchyme. It oxidises spontaneously 

and must be used within six hours of preparation. It has similar 

characteristics to mercury labelled chloromerodine (Lin et al (Li),

Hirst et al (His)).

It can be seen that there are two main mechanisms that of 

DTPA and that of DMSA, GH being cleared by a mixture of the two. DMSA 

is cleared by glomerular filtration and is fixed mainly in the cortex, 

whereas DTPA after clearance by glomerular filtration passes directly 

to the bladder along drainage tubes. We now analyse these systems and 

show how the unknown parameters may be determined.



Mathematical fk)dening

1. DMSA

A block diagram of the rbute taken by DMSA is given in Figure 3.4. 

Using equation 3.1 governing extraction of isotope by a colloid we 

may directly write the matrix equation describing the time evolution 

of the intensities in each compartment.

Let the intensity of isotope in the vascular space,extravascular 

space, left kidney and right kidney by q^, q^, q^ and q respectively 

and the extraction or clearance rates as shown in Figure 3.4 (r , r. 

r^ and r^). Then

66.

d

-(''o + ''2 +

'■3 A.

-^/V,

^0

A.

J

3.25

Using the method described in Appendix D we may diagonalise this 

equation to obtain analytical expressions for the intensities in each 

compartment.

d
at

Cl E

e g q^/s

0 A2

'"I'-s 0 %
-

3.26
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where

“ = -(''o + '■2 " '■3! %

^ = ■'fro ‘‘l 'o ''J

let

«o =

Then, again with reference to Appendix D:

d
Qi

^2

(I3

r r -d 0 
1 2

r^r^ -d

Qi

q.

where

68.

3.27

3.28

3.29

a - Ce

2 = r + Ce
1

a + r^ + / gr^ + a)2 + 4^]

2G

G = /[rg r^]

Subtraction of row equations gives

Qi

Q.

q,

«2
3.30



rir^
3.31

The solution to this equation is 

Qo = exp^- x^t)+

= exp|^ X tj^

t=0

t=0 3.33

Inserting the initial condition that at time t=0 a bolus 

injection of Q units of radioactive tracer are injected into compartment 

1, the vascular space, then

^0(0) = q (0) = q (0) = 0

qi(o)

Qn(0)

q,(0)

QjCO)

dQ/e 

Q/e 

dQ r

Qq(0) 19
£

19
e

r r
1 3

Q/e - 1
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Hence

Qo = ^1^]+ IT - T

Qi = ^zt]+ § - 1

Q. =
rirg

e ^ A

«3 = f f - 1r r 
1
X 1 3.34

from which we may determine q^. q , q^, q^ from the relationships

% = '"i So - dQ.]

= >= [«j - d [Qq - d Q,]]

‘‘a ' ^ «o-i^ Q.

‘>3 = «3 «o - r- Q,
1 2

Measurements may be made over the left and right kidneys, 

both have 'blood backgrounds'hence will be of the form

3.35

These will

m 1 " ^2 +

m̂  = ^3 + 3.36

where and can be assumed to be known. The measurements m and 

m^ are hence known functions of r^, r^, r^ and r^ and are thus in 

a suitable form for the implementation of the estimation equations 2.7.
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2. DTPA

Block diagrams of the route taken by DTPA are given by figures 

3.5 a,b. It difuses into and from the extra vascular space with 

rates r^ and r^ respectively and is extracted by the left and right 

kidneys with rates r and r.. The pharmacutical then takes time AT\ 

and ATg to flow from the glomerulus of the right and left kidney 

respectively. Standard procedures now exist on most gamma camera 

computer systems to compute the mean transit time through the kidneys 

(the time for material to flow from points A to points B in Figure 

3.5, AT^, ATg respectively). Here we solve the system equations 

so that with the use of suitable measurements the filtration rates 

and the transit times may be estimated using the discrete form of 

equation 2^7

We see from the analysis in the previous section that q^ and q^, 

the intensities in the vascular and extravascular space,are given by 

the equation

d
%ft

•r,/V,
3.37

we may also see by inspection of Figure 3.5 that

% (t) - r^q^ct) /v^

/''o

% (t - atj)qB^(t) =

% (t) = \ (t - 6t ) 
2

3.38

3.39
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Assuming that the transit time for B and B to the Bladder 

is negligible

Dq^(t) 3.40

! 3.4la
t-6t^ 1

ft
"Is

•
Aa (t) dt

t-6t ^
2

3.41b

Measurements may be made of the intensities of the right and 

left kidneys and the bladder. The analytical expressions for these 

are now found:

From the analysis for DMSA we have, using the same change of 

variable to and Q

Qo = exp(: x^t]+ - 1

= exp[- t]+ - 1 3.42

Ao = [Qo -^Qi]

= G [Q^ - c [Q^ + d Q^]] 3.43

Where X^, Xg.c.dand e have been defined in the previous section.

Using equations 3.38 and 3.41 we may derive the expressions for

ft r^rz
'' ' Jt-at "V ^ "'ll "
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rt
Qm dt - d Q dt }

3.44

0. dt 6Xp t 4" •“ 11 dt

“PS ‘ . d_it
+ —a— - t

G
3.45

Ql dt { exp A t f'lS - 1}
2 e dt

exp Ag t
. li-t

e 3.46

Hence

r r 
1 2 exp A^ t - exp [A^ -(t-6tg)] dQ6t^ + gt^

exp Ag t - exp [A^(t - 5t^)] dQdtg + gt^

3.47

and is found by replacing gt^ by gt in the above expression for 

Ag equation 3.47.

From equation 3.40 we obtain the expression for q^

't
{qB(t) + q. (t)}

0 1 dt

qA,(t) dt +
Vgt

2
6t.

qA3(t) dt

i=2
q, (t) dt 

gtz ^i 3.48
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Thus

"• ■ ii L *.«1

exp exp[x^ 5t_]

dQ ft - 5t^)
- t - 6t.

- d
expgx^t]- exp [x^dtj d Q (t - at.)

: — + ------------------^ - t 6t: } 3.49

We have now put the measurements in a form suitable for the 

application of the Snyder filter. Note that for these two cases no 

proof of the convergence nor the stability of the resultant filter ''

has been given. Further work needs to be done in this direction, 

though introductory work in the dual problems of controllability and 

observability has been done by Bucy (Buc).

3" The Biliary System

Introduction

The main factors influencing the function of the hepato biliary 

system are the blood clearance, the liver blood flow, the hepatocellular 

uptake, metabolism and secretion into the bile, and the biliary 

transport. The traditional tracer used has been - Rose bengal, 

more recently labelled compounds have been developed, the

latter having the advantage of high photon flux rates, and low radiation 

dosage. Compounds which have been used in conjunction with a 

label have been derivatives of acetanilidoiminodiacetic acid, namely 

dimethyl-,diethyl-.ethoxy- and p-iodo-IDA see (Lob). (Har).and derivatives
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of pyridoxal, namely py-glutamate, py-lucine and py-arginine, and also 

di-hydrothyoctic acid (DHT). and Mercapto isobutyric acid (MIBA).

Wistow et a1 (Wis) investigated the cumulative bile, and 

cumulative urinary excretion for up to three hours of all the above 

compounds in baboons. Diethyl IDA was found to have the fastest 

blood clearance, the best liver uptake, and lowest urinary excretion 

(Figure 3.6). We consider the use of diethyl-IDA, and outline the 

main factors affecting the kinetics of the tracer.

Mathematical Model and Kinetics of Diethyl IDA

^^Tc^ Diethyl IDA has a high affinity for the normal human 

hepatocytes. It accumulates in the polygonal cells of the liver 

parenchyma with high extraction efficiency immediately following 

intravenous injection. After a short intrahepatic transit time it 

is excreted into the bile, without being conjugated in the process.

The complex then appears rapidfy in the larger bile ducts from where 

it passes into the intestinal tract. Figure gL7).In the process.a 

portion of the activity extracted by the liver is temporarily stored 

in the gall bladder. A second route of elimination, only observed 

to a significant extent when hepatic function is impaired is via 

the kidneys to the urinary bladder. Extrahepatic recirculation appears 

to be negligible in normal subjects. A block diagram of the path 

taken by the tracer is shown in Table (3.8). The modelling of the 

process is complicated by the action of the sphincter of 8ddi at the 

junction of the bile duct and the duodenum. In the non fasting state 

the splincter of Oddi is contracted allowing no bile to pass into 

the duodenum. When a meal is eaten, the hormone cholecystokin 

causes the sphincter of Oddi to relax, the gall bladder to contract.



78.

Compound Blood Clearance 
(%}

1
Cumulative Cumulative I

Biliary Extraction Urinary Extraction 
(%) (%)

Diethyl IDA 1 80 5

Dimethyl IDA 3 75 2

p- etho\y-IDA 2 36 34

p - iodo IDA 4 62 15

Py glutamate 3 31 28

Py lucine 4 32 27

Py arginine 4 18 25

DHT 15 27 8

MIBA 12 24 16

Rose Bengal 2 67 2

Table 3.8 Baboon Data obtained three hours after injection (Wis)
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and bile to flow freely into the duodenum. The activity is more 

marked if a fatty meal is taken. The degree of contraction should be 

represented in any model purporting to represent the system under all 

conditions. We consider two simplified systems one in the fasting 

state, and the second after administration of meal with a high fat content 

We assume in the former that the sphincter is completely closed, and 

all bile flows into the gall bladder, while in the latter case all 

bile will flow into the duodenum. Flow diagrams are shown in Figure (3.9)

and (3.10). We now obtain analytic expressions for the intensities in 

each compartment.

The same mathematical model may be used for both the fasting and 

non fasting state by substitution of the parameters relating to the 

gall bladder in the former case to those relating to the duodenum in

the latter, namely the transport time from the liver, and the radioactive 

intensity.

Comparison of the system for the transport of isotope in the 

kidneys with the present system shows that the majority of the analysis is

directly applicable here. The system equation giving the time evolution of

qo and q,, the intensities in the vascular and extra vascular space, is given 
by:

d
3t

-(no + V

V''o

r,/Vj

■ri/Vj

‘’o

LSj

The volume flows entering the Liver and Kidneys are given by

‘'l = '■, q

at q,. . r^ q
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From the analysis for the kidney we have equation 3,34, 3,35 and 

equation 3.42, 3.43

Qg = exp - t + dQ 1

d Q= exp-t + ;

% = ''i Po - d QJ

qj = E Pi - c [Qp - d Qj]]

where x^, c, d, e have been defined in the equations 

(3.26) and (3.29).

HIDA being extracted from the blood stream by the liver flowing 

on towards the gall bladder or duodenum is acted on by the same 

transport mechanism as DTPA when it is extracted from the blood stream by 

the kidneys, and flows on towards the bladder. Comparison of the two 

systems shows that we may use the results derived in the previous 

section directly.From equation (3.47) the intensity of ethyl IDA in the 

liver is given by

I
exp X^ t - exp x^ (t -6t^) d Q gt^

+ 6t

- d
exp Xg t - exp [X^ (t - 6t )] d Q 5t 1

+ 5t

With the same definities of x^, x , c, d and e as before, and being 

the volume of the vascular space.

Since in examination of biliary function the function of the 

kidneys is not being examined, their effect must be accounted for in
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the most economical fashion. The best way to do this is to regard the 

two kidneys and the bladder as a single compartment and to it assign 

the total glomerular filtration rate. This treatment causes them to 

act in a manner similar to one of the kidneys when DMSA has been 

administered. We may again use this equation directly to give the 

intensity of ethyl IDA in the kidneys. From equation (3.34), (3.35) 

we obtain:

IQ
e }

r r
= dO, +-H- Q„ -

Where

Q , Q^, X , d^are as previously defined.

The remaining expression is that for the gall bladder or 

duodenum, depending upon whether the patient is in a fasting condition, 

or not. The expression for the intensity is given by the expression 

for the contribution of one kidney to the intensity in the bladder.

For the case of DTPA vve obtain from equation (3.49).

{
exp X t - exp X 5% d Q(t - 6?)
-------- ------------------------  + ------------------ _t 6?

exp X t - exp XggT d Q(t - 5%)
- t - 5% }

where t is the delay from the liver to the gall bladder or the duodenum, 

and all other terms as before.
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Conclusion

In this Chapter four major metabolistic flow mechanisms have 

been studied, and it has been shown that by the use of state space 

analysis expressions are derivable for the intensities of radioactivity 

in each organ in terms of the constant organ extraction, filtration 

or flow rates,and inter-organ time delays in the blood,bile,urine or 

other body fluids. These expressions allow the estimation of these 

constants to be posed using a Snyder estimation filter with a linear 

state equation together with non-linear measurements.

Possible methodologies are outlined for each case to allow 

the estimation to be performed, and are compared with present techniques.
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CHAPTER 4

EVALUATION OF THE ESTIMATION ROUTINES

Introduction

The previous Chapters have shown how the parameters of the 

transport mechanisms of various radiopharmacuticals may be estimated 

using the radiation intensity measurements of a nuclear camera. The 

estimation must be made using a digital computer, hence in the first 

section of this Chapter the filtering equations of Chapter 2 are 

transformed to a form suitable for this treatment.

The estimation scheme for the liver spleen and bone marrow is 

examined in detail in this Chapter. The estimation scheme while similar 

to the single exponential, single parameter fit performed by Snyder '72 

(Sny 4), estimates three parameters and brings to light techniques 

which are directly applicable to all the systems described in 

Chapter 3.

Time varying poisson processes, similar to those which would be 

produced by radiocolloid in the liver and spleen were simulated using the 

random number generating facility of a computer. The estimation 

technique to be tested (both the deterministic exponential fit and 

the stochastic filter) was then applied using the simulated process, 

and the estimated results compared to the values used to produce the 

simulated measurements. The comparison of the estimates to the known 

values gives an indication of the performance that the routine would 

give using real data.
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1. Derivation of the Discrete Time Filter

The version of the continuous time system identification 

equations required in Chapter 3 and derived in Chapter 2 may be restated: 

Given a process r(t), generated by the equation

dr(t) = 0 4.1

observed with measurements having a poisson rate vector X (r(t),t) 

where the vector r(t) needs to be identified, then the best estimate, s, 

of r may be found using the equations

/ T. (xT(s) y.)-" (dN(t) - X(S) dt) y.

dR = I R(t)
i=1

3^&nx m
R(t) dN(t) % R(t) R(t) dt 4.2

These equations must be discretised before implementation on a 

digital computer. This may be done by replacing the differential dt 

by the measurement interval At, the differentials ds and dR by the

differences - ^old^ (^new " ^old^' differential dl

by the measurement AN obtained in the measurement interval At to 

obtain:

new = S.
m ..T ^

old + Yj (X (s) Y^)" (4N(t) - X(s)At) Y^

R
m

ne« = "old + .1, "(t) ^ "(t) Vj' OM - I R(t) ^ R(t) At1=1 3S2 i=1 3s2

4.3

a^x T m a^x

i

We note that the equations 4.2 were derived using the assumption 
that dN = 0 or Y^^ This assumptioiextends to the discrete case to give 

the restriction that AN must have no more than one contribution (event)

[Oy.. 1 / ol



in each measurement, otherwise poor performance of the filter is 

obtained. This restriction sets a limit on the maximum time that 

may be taken for taking each measurement before updating the estimate.

If variable time periods are permitted a new time period can be 

started whenever an event causes an element in the measurement vector 

to have more than one entry,however for simulation purposes it is 

shown that a fixed time period is necessary, and for real data aquisition 

a fixed time period is convenient. The(%rrect apriori choice of the 

time period is of vital importance since it affects the computation 

time, the accuracy and stability of the filter.

2. Computer Simulation

The main prerequisite to test the performance of the estimation 

equation 4.3 is to produce simulated poisson processes, representing 

the measurements of rate x (r.t) produced from a process with system 

equation x = A(r) x. The problem is treated in three stages, first 

considering a process of uniform intensity, secondly of time varying 

intensity, and finally the desired result.

(a) Simulation of a Poisson Process of Uniform Intensity

A poisson process consists of a chain of events each of which 

are independent and have an exponentially decaying probability 

distribution (Freeman (Fre)). A sample function of a poisson process 

is shown in figure 4.1.

Consider the likelihood of a particular event occurring at time 

t. If the time of the previous event was s, then the distribution 

function will have the form shown in Figure 4.2. Given the rate of 

the poisson process a, a random number in the range (0, 1) will 

correspond to a particular value of F(T). Fp(t) and hence a collision 

time t^. By reference to Figure 4.2 we may derive an expression for

89.
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FIGURE 4.1 SAMPLE FUNCTION OF A POISSON PROCESS

DISTRIBUTION
FUNCTION

FIGURE 4.2 USE OF DISTRIBUTION FUNCTION TO DETERMINE 

THE INTEREVENT PERIOD (t-s).



the collision time:

Random Number = 1 - exp (-at )

1' ' = - - [tn (1 - Random Number)]

Since (1 - Random Number) where 'Random Number' Ties between 

0 and i gives the same distribution as (Random Number), the typical 

collision time is given by

tg = — (Randow Number)]

Since the time between collisions can be found the number of 

collisions between any two times can be calculated, thus enabling 

measurements to be genereted.

(^) Simulation of a Poisson Process of time varying intensity

A poisson process time varying intensity may be simulated 

by transformation of the time axis of a poisson process of uniform 

intensity the latter process being generated as shown in the previous 

subsection.

Consider a measurement process with rate x(t). The time variable
ft

t may be transformed to u = x (t) dt to obtain a poisson process

of uniform measurement rate x^^u), (Fre). This may be seen by noting

that the number of events between 0 and t of X will be the same as

the number between 0 and u of the transformed measurement rate x thus-
2

x^(t) dt 

and using the tranformation u

u
X (uj du

0

X (t) dt
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we obtain:

ft
X (t) dt = 1

dt

X^^u) du

which has a solution x^ = 1 verified by substitution

X^(t) dt
x^ du x^(t) dt

thus the tranformatiion u = f X 

''O
(t) dt gives a uniform rate x (u)

Points may be projected from the t axis onto the u axis, but not
ft

vice-versa since the transformation equation u = ^,(t) dt cannot
-(o

always be inverted to give an expression for t in terms of u.

In any simulation the actual times of collision on the t axis 

may not be produced due to this limitation, however the number of 

events occurring between time t^ and t may be found by a two stage 

method by projection of the times t , t onto the u axis to give 

an interval u^, u^, and then obtaining the number of events occurring 

on the u axis in this interval.

(c) Simulation of the Measurements of the Posson process

x^ (x,t) where x = Ax

The state equation x = Ax may be solved as shown in Chapter 1, 

equation (1.30), to give the expression

X = D exp (D"^A Dt) D"^x(0)

where the notation is as in Chapter 1 and D and A are both functions

of the unknown vector r whose values need to be estimated.

This solution may be inserted into the expression x to give
1

an expression for the measurement rate in terms of r. We denote this
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expression by (r,t).

To generate the collisions the time axis is transformed as
rt

before using u = (r,t) dt.

If X consists of measurements of the intensities, (it is a 

simple step to combine these), then we have

ft
u = D exp (D-lA Dt) D"ix(0) dt 

-fo

D may be removed from inside the integral sign since it is independent 

of time to give

u = D exp (OT^ADt) dt D"^x(0)

i;= D exp Rt dt D x(0)
'o

where R is a diagonal matrix solely dependent apon r. (see section 2.3) 

Integrating we obtain

t
u = D R ^ exp Rt D ix(0)

= D R"^ [exp Rt - I] D-ix(O)

We therefore have a differentinme axis for each measurement.

The begining and end are projected onto each u- axis (u is a vector), 

and the number of events occurring on each axis between the two respective 

points computed to give the required measurement vector.
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Evaluation of the Discrete Time Filter through the Simulation and

Estimation of the Extraction Rates to the Liver and Spleen

It has been shown in the previous Chapter that the problem of 

the determination of the Liver and Spleen Extraction Rates may be 

reduced to the problem of the estimation of the rates r^.r^ and r from 

the measurements of the intensities q^, and q^ in the four 

compartmental problem of Figure 4.4. This model was used to test 

the convergence of the discrete time filter. Three time varying 

processes were simulated as described in the previous section, 

corresponding to the measurements of the intensities of compartments 

1-3. The known values of r^,^and r^ used to produce the poisson 

processes were compared with the final estimates obtained after using 

the poisson processes as inputs to the estimation routine. A suitable

algorithm for this procedure was derived, the main steps involved 

being

(T) Setting initial extraction rates, and isotope intensities

(2) Setting apriori estimates and covariances

(3) Setting discretisation periods

(4) Generation of pseudo measurements

(5) Improvement of the estimates using the discrete time filter

(6) Repeating from (4) as required

The algorithm was tested in Basic and the coding is given in 

Appendix G. The initial estimate and covariance of the state variables 

(the extraction rates) would normally correspond to or be derived 

from the most likely value and the expected range of each variable.

In the simulation the expected ranges were made large, and initial 

estimates were chosen either above or below the true value to 

test for convergence.
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Differing intensities were simulated to give an indication of 

the minimum intensity required to give adequate results. The results 

were produced in the form of an estimate and a confidence interval, 

the latter being derived from the linear covariance. Since the 

confidence interval is not derived from the time covariance, care 

needs to be taken in its interpretation, and it was found in some 

cases to be smaller than the time value, giving an over optimistic 

confidence limit. As the initial isotope intensity was increased 

in the simulation the confidence limits were found to be more reliable, 

and the intervals proved to be a useful aid.

In order to increase the knowledge about and hence decrease 

the confidence interval of each parameter the measurements taken 

at any time must be dependent upon them. Analysis of the measurement 

rates in the liver spleen system shows that the intensity in each 

measurement compartment rises exponentialTy in the form (1 - exp (-Rt)) 

to form a plateau of value q^. Figure 4. 5. It can be see that the 

period before the plateau gives information concerning the time 

constant R which has been shown to equal the sum of the extraction 

rates, or more exactly as given by equations (3.11), (3.12), (3.13) 

and p.l5). If by the time the plateau has been reached the estimated 

value of the sum of the extraction rates is still incorrect, this 

measurement will not improve appreciably with further measurements in 

the plateau region. Although individual parameters may improve 

slightly in accuracy due to the adjustment of ratios between differing 

parameters,information concerning this being contained in the plateau 

region, the total accuracy of the result will not improve dramaticalfy 

in this region. The only procedure available to obtain a better 

estimate for the sum of the extraction rates is to use a higher count
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rate, the effect of this being shown in the results in Table 4.1 and 

Figures 4.6 - 4.10.

For the estimation routine to work well the number of counts from 

each measurement in each time interval has to be kept at one or zero.

This number is dependent apon the time interval. For reasons discussed 

earlier a fixed time interval was chosen, hence one which fulfilled 

the most stringent requirement of the highest measurement rate 

throughout the whole period of measurement was chosen. The highest 

count rate occurred in the plateau region hence the reciprocal of the 

final expected intensity in counts per minute was taken as the 

discretisation period.

With a maximum extraction rate of r, with the sum of all extraction 

rates being R and an injected dose of Q we obtain:

Firal expected intensity in the compartment = counts/sec

99.

Discretisation Period < sec

Results

The aim of the computation was twofold, firstly to use data 

obtained from dynamic scans using an Anger camera to show typical 

results that can be obtained using curve fitting techniques, secondly 

to evaluate and compare the performance of the stochastic filter using 

simulated measurements. Measurements typical of those that could 

be obtained from observations of a system of first order flow to three 

compartments, such as the liver spleen and bone marrow, were generated.

In practice for the liver spleen bone marrow system only two measurements 

would be possible, of the liver and spleen making it impossible to 

estimate all parameters, but for completeness in the simulation all 

parameters were estimated. Since with simulated measurements the
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true values of the model parameters are known, comparison of the estimates 

produced from the measurements can be made with true values to give a 

guide to the performance of the identification process. We first 

consider the curve fitting techniques.

Although some specialised curve fitting techniques which may be 

considered essentially as non sequential Kalman Filters can be used to 

give estimates of parameter errors, curve fitting routines in normal use 

give at most only the residue errors after curve fitting. They do not 

take into account apriori knowledge of the spread of parameter values and 

do not use the known statistics of the measurement noise in the

production of the estimates of the states and errors in the estimates 

(covariance).

A curve fitting routine which gave no error estimates was used on 

patient data to produce estimates of the total flow rate. A listing of 

the program is given in Appendix F. The data was processed using a 

LINK system at Bristol Royal Infirmary to give customary pictorial 

representation of the data as shown in figures 4.12 to 4.14, then the 

curve fitting routines applied to give the total extraction rates. It 

should be noted that to obtain the correct measurement values so called 

'blood background correction" needs to be applied. This is necessary 

since in the field of view of both the liver and spleen, plasma is present. 

This may be corrected for by subtraction of a certain fraction of general 

blood background, which may be observed at any region away from the 

liver spleen or bone, from the measurements over the liver and spleen.

If this is done correctly then the liver and spleen curves will have 

equal total extraction rates as shown theoretically in Chapter 3. Results 

after processing the liver curve are shown in Table/k2 and give an idea 

of typical values. Miller et al (Mil) gives further results using

106.
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the same method, showing the change of total extraction rate for differing 

diseases. The total extraction rates were of the order 0.15 min"^ 

giving a plateau after 15-20 minutes. The count rates observed were 

of the order 80,000 per minute over the liver region, giving a total 

count of the order 10^ over the observation period up the the plateau.

To test the stochastic filter simulated measurements were used.

The actual value of the simulated extraction rates were considered 

unimportant since scaling of the time axis can convert the measurement 

with nominal extraction rates to measurements of any desired extraction 

rate. The important parameter was considered to be the total number 

of counts in the measurements up to the plateau region. Very large 

counts equivalent to those experienced in real data were not simulated 

due to excessive computing time requirements with the facilities availiable, 

the total counts in the period of measurement up to the plateau being 10 to 

100 times greater than those generated in the simulations. Despite this 

the results show the main trends experienced in the use of the filter 

and show the potentialities of the method.

The results verify the expected result that the total flow rate is 

only influenced by measurements taken before the plateau is reached, 

and vhat the results of the curve fitting techniques were more inaccurate 

than those obtained by the stochastic filter, but improved in accuracy 

as did those of the stochastic filter as the count rate was increased.

The simulations showed that one would expect good correlation between the 

estimate and actual value of the total extractionrate for measurements 

with count rates of the order of 100 times greater than the maximum 

shown in Figure 4.10. This would correspond to total counts up to the 

plateau region in the order of 10^, equivalent to the count density 

obtained using an Anger camera.



The ability of the filter to distinguish differing extraction 

rates can be tested in isolation to the estimation of the total extraction 

rate by estimating the ratio of the individual extraction rates to the 

total extraction rates. The time evolution of these ratio estimates 

are shown in Figures 4.6 and 4.9. The information can be estimated both 

from the data in the region up to the plateau and in the plateau region. 

Tolerable estimates were obtained with the highest count densities used, 

showing that good estimates would be obtained with real data from an 

Anger camera with a standard dose of 3-5 mCi. With the proposed Compton 

camera one would expect more accuracy in the estimate of total extraction 

rate with tighter confidence limits since the number of emissions which 

could be detected by the camera would be far higher due to the elimination 

of the lead collimator.
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Count Rate 1000 per time unit

Actual Flow 
Rate

Stochastic
Apriori

Estimate
Final

Deterministic
Estimate

Individual Rates

.4 .5 ± .2 .389

.5 .5 ± .2 .487

. 6

Total Rate

.5 ± .2 .582

1.5 1.5 1.451 2.14

Individual Rates

.4 .5 ± .1 .419

.45 .5 ± .1 .487

.5 .5 ± .1 .541

Total Rate

1.35 1.5 1.447 1.985

Table 4.1a Comparison of Estimates due to Stochastic and Deterministic
Algorithms, of the Extraction Rates of the Liver Spleen and Bone Marrow

and of the Total Extraction Rate of all three organs



Count Rate 10,000 per time unit
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Actual Flow Stochastic Estimate Deterministic
Rate Apriori Final Estimate

Individual Rates
.4 .5 ± .15 .404
.5 .5 ± .15 .488
.6 .5 ± .15 .583

Total Rate

1.5 1.5 1.475 1.569

Individual Rates

.4 .5 + .15 .428

.45 .5 ± .15 .477

.5 .5 ± .15 .514

Total Rate

1.35 1.5 1.419 1.83

Count Rate 100,000 per time unit

Actual Flow Stochastic Estimate Deterministic
Rate Apriori Final Algorithm

Individual Rates
.4 .5 + .2 .403
.5 .5 ± .2 .490
.6 .5 ± .2 .578

Total Rate

1.5 1.5 1.471 1.81

Table 4.1b Comparison of Estimates due to Stochastic and Deterministic
Algorithms
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Patient A Total Extraction Rate 0.13 min'i

Patient B Total Extraction Rate 0.14 min ^

L
Patient C Total Extraction Rate 0.19 min"^

Table 4.2 Comparison of Total Extraction Rates obtained using

the Curve Fitting Method on Data Collected from Three Patients.
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Conclusion and Further Work

An estimation scheme which takes full account of all apriori 

knowledge of the system and accounts for any system or measurement noise has 

been applied to the special case of estimation of the parameters affecting 

major systems of metabolistic flow in the body using radioactive tracers.

The action of the body of four isotopes has been modelled, and the parameters 

of interest indicated. It has been shown how by the correct choice of 

the state variables of the estimation scheme, how these parameters may be 

identified.

The estimation scheme has been simulated using one of the metabolistic 

flow models. The results show that the parameters could be identified 

well with the number of counts normally availiable, and perhaps with 

far fewer counts allowing the possibility of a reduction of the 

radiation d se or scanning ibiima. It is therefore suggested that 

with this technique parameters could be identified using scanning 

times equivalent to th^se of static scans in everyday use.

Further reduction in scan times or improvement in the accuracy 

of results, of use especially in models with large numbers of parameters 

to estimate, could be made with improved equipment capable of responding 

to radiation not parallel to collimator holes, potentially possible with 

the use of a novel camera depending upon the Compton effect for its 

imaging ability. One outstanding difficulty of this camera is the 

computation time required to produce the image. Fast algorithms have 

been proposed to overcome this problem.

Difficulties besetting any quantitative technique in nuclear 

medicine is the need to compensate for absorbtion in tissue, air or 

other substances obstructing the path from the source to the radiation 

detector. One method for doing this is computerised tomography. This
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after its success in the E.M.I. scanner is slowly being adopted by 

most medical systems to be used in conjunction with moving head Anger 

cameras. The computing time now offered is in most cases prohibitively 

slow, but with the introduction of new techniques if the computing 

time could be reduced to those approached by the most modern of X-ray 

scanners, then each scan could be regarded as a discrete measurement 

to be used by the estimation scheme proposed in this thesis,giving a 

technique which would give absolute metabolistic rates, be on-line, non-invasive 

thus providing a quick non-traumatic method of patient diagnosis.

Using present devices the methods outlined by this thesis driven by 

measurements from an Anger camera, or indeed several hand held probes, 

would give information about metabolistic rates, which although difficult 

to express in absolute units can be compared with the results obtained 

from normal patients, and can certainly be used to diagnose and 

quantify the degree of malfunction of body organs.
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APPENDIX A

THE COMPTON EFFECT

The Compton Effect occurs when a photon, a packet of electromagnetic 

radiation collides with a loosely bound electron. This commonly occurs 

in semiconductors where many electrons exist in energy bands, move 

throughout the whole structure and are not attached to individual 

atoms. In a Compton collision the photon is deflected and 

continues with reduced energy and hence with an increased wavelength.

The electron is scattered with an energy equal to that lost by the 

photon. In this section we derive an expression for the angle through 

which the photon is deflected in terms of the initial energy of the 

photon, and the energy aquired by the electron.

Consider Figure A.1 which shows a photon scattered by a loosely 

boumjelectron. The total momentum of the photon is given by

P =
where

p = momentum of photon 

b = Plancks Constant (6.636 x 10"^ jg)

X = Wavelength of the radiation

Equating the momenta before and after impact in the directions 

parallel to and at right angles to the initial direction of the photon 

gives

= Jl cos ^+nwcos 8
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hence we obtain

T26.

h 2^ h2--- - -----  cos + -— (A.T)

Equating energy before and after impact we obtain

+ mc^
0

h _h_
1 '2

A A: + ^0 ^ (A.2)

The mass of an electron travelling with velocity v is given

by

m.
m =

(1 - (^^c)2)^

hence

m^v^ = m^c^ - m 2^ 2 
0 0

Substituting equation (A.2) into equation (A.3) gives:

(A.3)

m2v2 r _h
A
- - + m^c j" + m^2c2

(A.4)

Eliminating m2v2 between equation (A.T) and equation (A.4) gives

cos * 
i 2

^ ”0" (^

multiplying by

2h m^ c
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gives

AX = x^ - x^ (1 - cos*) (A.5)

showing that the change in wavelength is independent of the initial 

wavelength.

If the energy of the incident photon is E that of the emerging 

Eg and the energy of the electron after the collision E , then, since 

the relationship between wavelength and energy is X = h c/E then equation 

(A.5) becomes

he he
ri - IT %

(1 - cos *)

We know that energy is conserved in the collision

E. = E, + E,

hence we may write

he
El - Eg

he
IT m^ c (1 - cos *) (A.6)

Thus the angle of deflection may be expressed in terms of the 

initial energy of the photon E^ and the energy aquired by the 

electron in the collision

* = cos
% E,

(A.7)
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APPENDIX B

ANALYSIS OF NOISE PROCESSES

Introduction

Two processes which are commonly used to describe noise in both system 

and measurements are the Poisson and Wiener processes. These are 

both special forms of a class called stochastic processes. In this 

section mathematical descriptions of random and stochastic processes 

are given, and by the use of successive restrictions the Markov 

process, and then the Poisson and Wiener Processes are defined.

Definitions

To describe a random process the concept of a probability space 

is required.

Probability Space

The elements from which this can be constructed are:

(a) A certain or sure event » of probability 1

(b) A set of less sure events A.

(c) A field in which the events A^ lie called a o field

(d) A probability measure P

We now define the o field and probability measure P and give a 

definition of the probability space, see reference (Haz)i^)r 

a full description.

o field

A class of set {A.} is called a o field ^ if

(1) a G A, * G A where * is the null set and a is the sure event



(2) Aj Q Aj E ^ if A., A. E ^
' j

(3) A. ^ e ^
1 if A. e ^ where

(4) A^ n Aj E ^ if Aj. Aj E ^

(5) U A\e X 
i=l

for all A^ E ^

ility measure P

A. is the

The sets are composed of points w belonging to the sure event 

0. The probability measure P is defined as the assignment of 

quantitative values to each of these events or w-sets.

Probability Space fn^4,P)

A probability space is defined 5a space n containing a o field 

X of sets A^ of points w together with a probability measure P that 

is defined on all points in the sets A..

The events w e nhave properties which are isolated by mapping 

the events into the real line R . Let x(w) represent any one of 

these properties (for example radioactive intensity). The quantity 

X is called random since it depends apon some point ^ s n, and is called 

a random process if it satisfies certain conditions.

Random Variable

Let (n^A,P) be a probability space and x a mapping of n into R 

where R is the real line. x(w) is called a random variable if 

Xg E R and the setik:x(w) < x^)} belongsh^A where ^ is the a field 

defined on n. Random variables are special classes of mappings from 

n into R such that the inverse image of the open interval in R 

are events.
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Borel Field a

Giwmthe random variable x mapping o into R , the inverse 

map of open intervals of R generates a o field called a Bore! 

field g. The sets belonging to the Bore! field are called a Bore! 

set, A random variable is a mapping whereby all inverse images 

of B are events that belong to the o field A. i.e.

A = {w: x(w) e B, B e g} = A (A e A)

To define a stochastic process we need to generalise x to be a 

n-dimensional random process, mapping a into R", the n-dimensional 

Euclidean space. We define probabilities as

P ({w: x(uj < ... x^(w) < 5^})

which is commonly written

P (Xi(w) < g. ... x^(w) <

We next cause the random process x to be a function of time x(t,w).

We thus obtain the definition

Stochastic process x(t,w)

A stochastic process is a finite real valued function x(t,w) that 

is a mapping from n x T for some interval T into R^ such that for each 

fixed t e T, x(t,w) is a measureable function of the o field A of events 

on A. Thus for each t e T the event

{w: a^ < x^(t) < bi ... a < x^(t) < b^} 

belongs to the o field A.

We thus assume that {x(t,w) , w e n} denotes an ensemble of 

measureable waveforms. It is conventional to denote the process



x(t.w) by x(t).

For a subset of stochastic processes called Markov processes it is 

possible to obtain a statistical description of the nature of the 

process, at all points t = t^ ... t^ belonging to a set {t } dense 

on some interval T, this being called the joint distribution function.

A Markov process is one in which knowledge of the present state, 

depends solely apon the most recent past knowledge. We use the 

approach of Loeve (Loe) by the introduction of the concept of conditional 

expectation to define this process. Other approaches are given in 

(Dob 2), (Gik), (Bre).

Conditional Expectation E (x|B)

Let B be a sub o field of ^ with sets g. e g. We define an 

indicator function I as an w function such that

I = { T w Eg.
w

For a special class of stochastic processes called Markov processes 

it is possible to obtain a statistical description of the nature 

of the process at all points t = t^ ... t^ belonging to a set {t } 

dense on some time interval T, this being called the joint distribution 

function. To give the definition of a Markov process we need the 

concepts of conditional expectation and conditional probability.

These are developed rigorously in (Loe), outlined in (McG), and alternative 

techniques are given in (Dob), (Gik) and (Bre). Here we proceed 

using the concepts in their elementary form.

Markov Process

A Markov process x(t), t e T is a process which satisfied the 

following conditions

For any integer n>l , if t^ < t^ < ... < t are parameter



values, the conditional probabilities x(t^) given x(t ) ... x(t^ 

are the same as those just given x(t i.e.

P (x(tn) I x(t^) ... x(t^)) = P (x(t^) )A|x(t^_i))

If the times are continuous intervals, then if s < t and 

fg is the sub o field generated by {x(u); u<s} then

P (x(t) I fg) = P (x(t) I x(s)) (B.2)

The probability distribution function P( ) is often 

differentiable. The derivative called the probability density 

function is often easier to manipulate and is defined as follows.

Probability Density Function p( )

Let the probability distribution function of the random vector 

X e P" be given by

132.

P < u ; ; x^(w) < u^)

then the probability density of the random vector is given by

= 3—frrT- ^ “i (^-3)
“i “n

where u e R , and u. are the components of the n x 1 vector u.

We may now derive an important equation governing the 

Markov Process.

Chapman Kolmogorov Equation

Let p^ (u.t x^,|tQ) be a probability density function on the 

Markov process x(t).

We know that if t^ < s < t, and that if we transfer from state
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at time t^ to state u at time t via state v at time s then

Px ^ ^0' ^o) = j Px ("'t I v,s; x^, t^) (v,s | x^, t^) dv 

From equation (B.1) for a Markov process ^

Px (u,t I v.s ; x^ t^) = (u,t I v.s) (B.5)

Hence

Px (u.t I x^, t^) = j p^ (u,t I v.s) Px (v.s I x^. t^) dv (B.6)

The function p^ (u.t | v.s) is called the transition probability 

density and shows how the Markov process progresses in time, and 

acts in a similar way to a transition matrix on a deterministic 

system, projecting the state of the system from one instant to the 

state at some other instant in time.

A complete statistical description at any time using the 

transition function is possible only if some initial density is known, 

since

Px ;...; u^^t^) =

Px ! Vl’ Vi) Px "I'ti) Px (“j. t,)

{B.7)

A more detailed description of the Markov process is given in 

(Ito2).

We now restrict the discussion to independent increment 

processes. The two most important of these processes are the Wiener 

and Poisson processes. The Wiener process is a continuous process 

which when formally differentiated yields white noise. The Poisson 

process is a step process where the points of discontinuity are at



FIGURE B1 EXAMPLE OF AN INDEPENDENT INCREMENT PROCESS
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countable. The theory given below is described in (McG) and in 

expanded forms in (Dob 2). (Ita2) and (McK 2). We now define the 

three types of processes.

Independent Increment Process

If the increments x(tj) - x(tj) ; x(t^) - x(t^) of the random 

process x(t), t eT have conditional probabilities of the form

P (x(t.) - x(tj) eX I x(t^) - x(t^^eS)

P (x(t^) - x(tj) eX)

for any x in R' and g a point in R', then x(t) is an independent 

increment process.

This implies that the increments of the process over two 

non overlapping times are independent. Hence for three random 

variables x(t^) - x(t^). x(t2) - x(tg), x(t3) - x(t^), and for 

any x^, x^ and x .

P (X(ti) - X(t2) EX^; X(t2) - X (t^) X(tg) - X(t^) EXg)

(B.8)

= P (x(t^) X(t2) EX^) P (X(t2) -X(tg) eX^) P (X(t3) - X(t^) EX^)

(B.9)

Wiener Process

The Wiener process is defined from the independent increment process. 

If x(t,w) ; tE|0,"j is a scalar independent increment process such 

that x(0,w) = 0 for almost all w,and for t>s

X (
P (x(t) - x(s) < X) = 1

{2^ (t-s)}&
exp

2 (t-s)
ds (B.10)
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that is the increments have a Gaussian Distribution, then x(t,w) is 

a normalised Wiener process. When the variance is |t-s| then the 

process is not normalised.

A theorem with proof in (McQ) and further discussion in (Ito 2), 

(Hid) gives a more concise description.

Let x(t) be an independent increment process. If x(t,w) is 

continuous in t for almost all w then the distribution of the interval 

variable x(I), I = t^.t is Gaussian.

Poisson Process

We again start from the independent increment process.

If x(t,w), t G |0,»| is a scalar independent increment process 

such that

(1) x(t,w) is a step function increasing with jumps of 
magnitude one, and vanishing at t = 0. x(t,w) = 0.

(2) for t>s the probability that the number of jumps is k 
between times t and s is given by

P (x(t) - x(s) = k) = exp (-X -
kl

where x>0 (B.ll)

(3) The discontinuities are of t^e first kind, that is

x(t-O) ^ x(t) = x(t+0)

Then x(t,w) is called a poisson process.

A more general description of the structure of Poisson Processes 

is given in (Paw). A theorem, proof of which is given in (McG) with 

further discussion in (Ito 2) and (Hid) derives a more concise 

description of the Poisson process.

Let x(t) be a levy process i.e.
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(1) x(0) = 0

(2) x(t) is an independent increment process

(3) x(t) has no independent increment discontinuities 
i.e. lim P (|x(t) - x(s)|>0) = 0

t + «=

(4) the sample paths of x(t) have discontinuities of the 
first kind.

If almost all sample functions are step functions with jumps 

of magnitude one, then x(t) is a poisson variable.

This then completes an introduction to the Wiener and Poisson 

processes.
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APPENDIX C

DERIVATION OF THE STATE ESTIMATION EQUATIONS

To obtain an estimate of the state of a system, the system must 

first be modelled, thus defining the parameters describing the system 

which are required to be known. Apriori knowledge and relavent 

measurements may then be used to give at any time the most likely 

value of the parameters describing the performance of the system, 

taking into account the disturbing influence of apy noise inherent 

in the system or disturbing the measurements.

Here we describe a technique of modelling and estimation, for 

use particularly with a system observed by measurements containing 

Poisson noise, here having in mind the human metabolic system observed 

using radioactive tracers which are extracted by various organs, the 

radiation from which may be detected using various detectors, such as 

scintillate^counters or eventually the Compton Effect camera.

The Model

Many continuous deterministic systems may be represented by 

an ordinary differential equation. These may be put into a state 

vector form (Dga)

X = f(x,t)

This equation is generally driven by a random forcing function 

which we restrict to be an independent increment Markov process for 

analytical tractability. Several processes are possible but ones 

that have proved most useful are the Wiener and Poisson processes, 

Appendix B). These processes when formally differentiated yield
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stationary white noise. The derivatiwof the covariance function 

of a white noise process is infinite, and hence white noise is not 

realisable physically, however the process allows useful engineering 

results to be obtained (Kal 1). (McG). With this in mind we write 

the model with a random forcing function as a stochastic differential 

equation

dx(t) = f(x, t) dt + dn

Where n(t) is an independent increment process which implies 

that x(t) is Markov, and we limit this to the sum of a Wiener process 

which accounts for continuous fluctuations, and the poisson process 

which accounts for discontinuities.

We therefore assume that

dn(t) = dng(t) + dnp(t)

Where ng(t) is an (n x 1) Wiener process and n (t) an (n x 1) 

poisson process called a generalised poisson process.

We hence obtain the state equation

dx(t) = f(x,t) dt + dn^ + dn

the solution of which is given by

x(t) = x(a) + I f(x,t)dt + 
'a

ft
dng + dn.

The first integral is a standard Riemann Integral. The second 

and third may be interpreted in the Ito sense. In an Ito integral 

the second order terms must be retained since the second moments are 

of order dt not dt^.

We now describe an Ito Integral.
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Ito Integral

Let be the o field generated by a Wiener process 

{w(t) : s$t}. Let be a step function such that

$ (t,f^) -

t < t;

(%) tj ' t ^ + i

t > tj 4 1

then the Ito integral over an interval T such that teT is defined as

* - Mt) A - -(tj))

This is well defined since * is constant over any

interval tj,tj^^ and depends only apon which depends only on 

w(t) for t < tj. ^

For any t^, t^^^

$ (t,ft) dw(t) = *.
ti

t+1

^i
dw(t)

where the integral of the Wiener process is defined as

f^i+1
dw(t) ^ - w(tj)

The definition of the Ito integral may be extended to the case 

where w(t) is an independent increment process, but not a Wiener process, 

for example a poisson process Reference (Sko).

We wish to estimate the state x in the equation

dx(t) = f(x,t) dt + dOg + dn .

To do this the estimation criteria must be examined in detail.

Let dy (t,w) be a measurement given by

dy (t,w) = h(x(t), w)dt + dn (t,w)
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where n (t,w) is a Markov process. We must find the best method 

of estimating x(t,m) at a given time t, given y(s, w) from tq to t. 

A useful deterministic cost criterion is the expectation of some 

positive function of the error experience by obtaining x from the 

data. Let x (t,w) be a function measurable with respect to the 

sub o field generated by the measurements y(s,w), s e [t^,t] namely

^t ,t estimate The error x (t,w) is defined by

x(t,w) = x(t,w) - x(t,w)

_
Let f(x) be a non negative function of x.

A quatitative cost function is E(f(xJ)

If

f(x) = |x|^ for p>1

then for all values of p, p / 2 then f(x^ produces a Banach Space, 

but not a Hilbert space. We are therefore if we wish to be assured 

of the existence and uniqueness of aminhmm error x confined to 

the case where p = 2.

A suitable choice is themfore E (|x|^), the minimum mean square 

error (MMSE). It may be shown (McG) that by the use of set theoretic 

definitions of conditional expectation (Wo), the Radon-Nikodymtheorem 

(Nev),(Ha 2),martingale (Kus) and the martingale convergence theorem 

(Doo 2), (Won) that if the measurements y(t,w) are given by

dy (s,w) = h (x(s,w),s)ds + dn (s,w) 

for s E |t ,t| as before, then the MMSE estimate is E (x|0^ ) where
Cg.t

E (x|0^^ ^) = j u p^ (u.t|0^ ^) du 

the conditional probability density of the process x at time t, given
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the minimum a-fieid generated by the process y(t.w). It is thus 

sufficient to obtain (M.t|Q^^_^) to fully describe the process 

nu«}. and the required estimate. We now show how this expression 

may be evaluated and how the required state estimate may be derived.

System Propagation Equations

We consider the Markov process

dx(t) = f(x,t)dt + dOg + dn

as previously defined. We have shown in Appendix B that the probability 

denoting function is sufficient to describe the statistics of the 

process by means of the Chapman Kolmogorov Equations. The temporal 

evolution equations of the probability density function will 

describe the evolution of x(t). We first define the characteristic 

function, the Fourier transform of the probability density function. 

Which is more convenient to work with.

Characteristic Function

cet (u.t|x{s) . V) be the conditional probability density

function of the random process x at time t, given that x at time s

is equal to v.

The characteristic function {u.t|x(s)) is defined by

"x ' E {exp (j u ^ x(t))jx(s) = V)

T“P (■!“ E) Px (C.t|x(s) = v)d{

where u and { are (n x 1) vectors, and the Integration is over all r". 

We now Obtain the temporal evolution of (u.t|x(s)) which is



143.

equivalently the temporal evolution of p^ (u,t(x(s)). This 

evolution equation is called the Bartlett Moyal equation (Moy).

Bartlett Moyal Theorem

Let (u,t|x(s)) be the characteristic function of the Markov 

process x(t), t e T where t is some interval.

The Chapman-Kolmogorov equation (Appendix B) states

p^ (V, t + At|x(s) = j p^ (V, t + Atjr.t)

Px (r,t|x(s))dr

Using this in the definition of the characteristic function 

above we obtain

M^ (u, t + At|x(s)) =

j Py (v,t + At|r,t) p^ (r,t|x(s) exp (j u ^ v) dv dr 

" j ^x Gxp (j u ^r) {j p^ (v,t+ At|r) exp (ju'^v-ju^r)dv}dr

= E {exp (j u ^x(t)) E {exp (j u ^(x(t + At) - x(t))|x(t)}|x(s)}

Hence

M^ {u, t + At|x(s)} - M {u, t|x(s)} 1
'

= E {exp (j u ^x(t) . E {exp (j u ^^x(t + At) -
x(t))) -1|x(t)}|x(^Hi

(C.1

Now by definition

(u,t|x(s))

3t

At^O Al ^ + At|x(s)) - M^ (U, t[x(s))}
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Hence taking the limit as At+0 in equation (C.1) and defining the Ito 

differential of the Markov process * (u,t, x(t))* ((Fro) p.36), as

lim __
At+0 At

^ E {(exp {ju^^x(t+At) - x(t))} -T)|x(t)} = $(u,t, x(t))

then we obtain

aM (u,t|x(s)) y
----------------------- # E (exp (ju x(t)) x(t)|x(s)))

at
(C.2)

Note that * is also called the infinitesimal generator of the 

Markov semigroup (Dyn),(Wong). We now wish to evaluate * and substitute 

it in the above equation.

From the definition of the Ito differential of the Markov process 

we obtain

* (u.t, x(t)) =
dt

The n x 1 vector Markov process is generated by the equation

dx = f(x,t) dt + dng+ dn^

where dOg is an (n x 1) Gaussian process with covariance matrix Q(t) 

where

E {dng(t) dng '(t)} = Q(t) dt

and dOp is an (n x 1) generalised poisson process with rate vector

A(t) and jump probability p_(a)

Substituting in the definition for ^ we obtain

* (u.t. x(t)) = E,{exp (juTdx)-1|x(t)}

dt

_ E {exp (ju^ f(x,t) dt + ju ^dng + ju' dnp) -1|x(t)}

dt
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exp (ju ^f(x.t) dt) E {exp (ju ^dn )} E {exp (ju ^dnil} -1 
= —----------------------------------- ———--------g----------------------------- E_____

dt

To evaluate this expression the characteristic functions of two 

independent noise processes must be evaluated.

Evaluation of Efexpfju^dng)} = (u,t)

If x(w) is an (n x 1) random vector, and is Gaussian, then the 

probability density of x(w) is

Px(u) = -------^7^--------- exp {-^ (x-m)^ Q"^(x-m)}

(2:0 IQI^

where

Q is the(nx n) covariance matrix defined by 

Q = E {(x-m)(x-m)^} 

where m = E {x}

Let V = x-m. The characteristic function of the process is 

then given by

Mx(u) =
exp v^Q"^ v}

(2ir
—n/2 ------ 1----- = GXp {-^ U Q U}
) |Q| ^

Hence

E {exp (ju ^dn )} = exp {-i u ^ Q u dt}

Evaluation of E {exp (j u ^dn^)}

This is the characteristic function of the generalised poisson 

process. The probability of two or more jumps occurring in dt is 

cKdt) hence



E {exp (ju dn )} = 1 . P {no jumps} 

n
+ % E {exp (j Uza.)} . P {only one jump in dn.} 

i=1 ' ^

n
P (no jumps) = n (1 - A. dt) 

i=T ^

and

1- ^ A. dt + o(dt)

P(one jump only)

i=i

A. dt n (1 - A. dt)
' j=i :

A. dt + 0 dt

where A is the rate of the poisson process dn .

Hence letting M^^(u^) = E {exp (j u^a^)}, the characteristic
th

1 1
function of the i jump we obtain

"T ( I
E {exp (ju 'dn )} = 1 - ^ A. dt (1 - M {u.}) (C.5)

^ i=1 '
Substituting these two results into the equation for equation 

(C.3) we obtain

^ (u,t, x(t))
T Texp {ju f(x.t) dt} exp {-^ u 'Q u dt}{l-Ai(}-M(u.)) dt}

dt

(C.6)
Now exp {j u ^ f(x,t)dt} = 1 + ju ^f(x,t) dt + c(dt)

Texp {-^ u ' Q u dt} = T - ^ u u dt + o(dt)
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* (u,t, x(t))

1 + ju 'f(x,t)dt - & u ^ Q u dt - A. (1-M {u.}) dt + o(dt)

hence to o(dt)

$ (u,t, x(t)) = j u f(x,t) u u -A^ (1-M {u.}) 

Substituting equation (C.7) into equation (C.2) we obtain:

(C.7)

i,t, x(s)) = E {exp (j u ^x(t))
3t

E {exp (j u ^x(t)) (j u^ f(x,t) + % A (M . {u.}-1))

which when Inverse Fourier transformed yields

5 9 (fiP) n n B^QiiP n
3t 1—1 9U;

*il Ii;i 1=1 a /
1 UJ

where the covolution * is defined by
(C.8)

P * P. PL {u. - V.}p^ {ui^^^ ... v^ ... t{x(s)} dv.

Defining the forward operator as

^ + i i, i, Ai( )‘P, -(i=1 °"i

we obtain the equation

i^l j=1 ^^9u. 3u. i=1 ' ^^i
I J

))

where p is the transition probability density function for the 

process x. Although arguments on the existence and uniqueness of 

solutions are knowM, see (Dun), solutions, except in a very few cases 

are unknown.



The case where there is no poisson noise in the system equation, 

when dnp is zero results in the last term of the operator derived 

above being zero. The resulting equation is called the Fokker Planck 

equation, and is derived in references (Uhl), (Moyj and (Wan); examples 

being given in (Moy). No poisson noise exists in the system we consider.

The next stage is to use the measurements taken in the time interval 

t to t. These generate a sub o field 0+ ..

We note that, see (Cla) for the proof that

^'tQ,t + dt ^^0*^ ^ ^ ^

where dN is an m x 1 measurement process, to obtain

Px ("'^l°to,t+dt) " Px (C.IO)

The measurements fall into two classes, the (m x 1) vector 

Gauissian measurement dy(t) given by

= h (x(t),t) + dw(t)

Where w(t) is a Wiener process with zero mean and covariance

E |dw(t) dw^^t)| = R(t)dt

and the Poisson counting process dN(t) which is an (m x 1) vector 

process with arrival rate X(x(t),t) where X(x(t),t) is also an 

(m X 1) process. Here we consider only the effect of the poisson 

counting process, which is that observed when radiation intensity 

is measured. The case of Gaussian measurements is treated in (McG) 

(Sny 1), (Bre), (Men), (Lie) and others.

Let the (m x 1) vector measurement process dN(t) be a unit 

jump Poisson process with an (m x 1) rate vector which we denote by 

x(t), to distinguish if from the rate parameter A(t) of the state 

equation.
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d N(t) may take the values 0 or y. where

" (0» «» # 0*1*0, ...* 0)

1 ... 1 ... HI

Thus the probability that dN^ and dNj are both 1 with all others 

being 0 is o(dt).

Now the probability that the i^^ event occurs is x.(u*t)dt.

Hence for an arbitrary y; / 0

m
P (dN = yz|x(t) = u) = X. (u,t)dt n (1 - X. (u,t)dt)

= X^ (u,t)

For the case dN(t) = 0

m
P (dN = 0|x(t) = u) = n (1 - X. (u*t) dt)

i=1

m

as

= T - I (u,t) dt 
i=1

This may be written concisely using the vector y where

Y = (1, 1...........1, 1) '

1 m

P (dN = 0|x(t) = u) =

X^ (u,t) dN dt + (1 - x^ (u.t)ydt) (1 - dN^y) 

dN is a discrete random process* hence Bayes rule gives

tQ*t

where P {dN||0L x(t) = u} is the probability that dN takes on its 
0*""
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prescribed value, given 0. . and x(t).

The denominator may be written

P{<iNi0t^_t> = |P(dN|0 x(t)

= E{P{dN(x(t)}}

Hence

Px ("'tlO^^.dN} x^^u.t) dNdt + (l-x^^u.tjydt) (1 - dN^y)

Px{u.t|0t t^ E{X^^x.t)} dNdt +(1-E{X^^x,tXWicH:X1-dN^Y)

dN takes the values 0 or y^, hence:

1 - xT(u,t)ydt X^^u,t)y. _
-^--------(1 - dN'y) + —- Y '— ----- dN^y^

1 - E{x'(x,t)}ydt E{X (X,t)}y^

}(T -
m

1 + { % (E{X^ (x,t) -A. (u,t))

Tm A. (u,t) 
dN^y + dN.

dN^y)

= T + I (x.t) - E {A. (x,t)}}{E{A. (x,t)}} 
1=1 '

{dN.(t) - E{A.(x,t)}dt}^

Hence p may be written in the form

where

m
q (dN, dt, u) = % {X.(u,t) - E{A. (x,t)}}

i=1

{E{A. (X,t)}}"^ {dN.(t) - E{A. (x,t)}dt}

(C.11)

Px ,t+dt) = Px (u,t|0^ (1+q (dN, dt, u)) (C.12)

(C.13)
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The characteristic function has been defined by 

(v,t+At;o^^ =

jexp (j v'u) (u, t+At|0^

which may be manipulated to give

(V, =

jexp (jv^u) p^ (u, t+At|x(t) = s, 0^ p^ (s,t|0^

T f T= ^exp (jv s) p^ (s.tjo^ jexp (jv'(u-s)) p^ (u,t+At|x(t))duds

= jexp (jv^s) p^ (s,t(0^^ E{exp (jv^dx(t))|x{t) = s}ds

Substituting equation (C.12) gives

T
= jexp (jv s) Px (u,t|0^ (1+q (dN, At, u))

E{exp (jv^dx(t))|x(t) = s}ds

Using the definition of characteristic function once more we can 

write

Px (s.t|0(. _J,) exp (jv^s) Ejexp (jv^dx{t)-l |x(t)=s}ds

Px I °t ,t) (jv's)q (dN, dt, s)

E{exp (jv'dx(t))|x(t) = s}ds (C.14)
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taking the limit as At+0 changes the RHS of equation (C.14) to:

lt!o («x C. - "x =

»"x

the Inverse Fourier transform of which is given by

*Px

The same operations may be performed to the LHS of equation (C.14), 

Equation (C.1) shows that the first term of equation (C.14) may be 

written as

(u, t+At|x(s)} - u,t|x(s)}

which when the limit as At+0 is taken, and the inverse Fourier 

transform performed yields the L+ operator as shown by equation (C.9)

The second term of equation (C.14) contains the product of the 

expectation

E{exp (jv^dx|x(t) = s} = 1 + 0(dt)

and q (dN, dt, s). Since q (dN, dt, s) is already 0(dt) and the product 

of two 0(dt) terms is o(dt) the second term becomes

j Py (s,t|0^ ^) exp (jv^s) q (dN, dt, s) ds + o(dt)

taking the limit as At»0 and the inverse Fourier Transform we 

obtain q(dN, dt, u)(p)

Hence equation (C.14) yields after taking the limit as At+O 

and taking the Inverse Fourier transform

ap = L^(p) dt + q (dN, dt, u)(p) 

where p = p (u,t|0. ^)
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Substituting for q we obtain

m
3p = p + % X {x. (u.t) - E{X. (x,t)}} 

i=1 '

{E{X. (x,t)}}"i {dN^(t) - E {X. (x,t)}dt}^p (C.15)

Equation (C.15) is called Snyders equation, see (Sny 1-4). The 

corresponding equation for Gaussian Measurements is called the Kushner 

Stratonovich equation. Snyders equation may be used to give an estimate 

of the state variables.

Multiplying by the (nxl) state vector u and integrating the 

L.H.S. gives

u3p du = 3 |up du = 3x(t)

where x = E(x)

The term is difficult to integrate. We simplify it by 

assuming that no Poisson noise disturbs the system. We hence treat 

a system disturbed by Gaussian noise, observed by measurements with 

poisson rates X.

The forward operator becomes

L^(.) =
n n

I "ij

to integrate this term we use the following results 

3(f, P)h du =
3U:

^1 P I ‘‘u. ■ [ P ■ I
— CO 1 «

p dt

P)
du

3Uj
= j f (u,t) p du = E {f(x,t)|0^

(C.17)

(C.18)



ij au. 3u. du = 0

The last term in equation (C.15) gives

(C.19)

up { I {^(t)
i=1

A(t) dt}^Yi} du

I E {(x-x)x^(x)}Yj{x'Y.}^{dN-X(t) dt}'Y^
i=1

T
i

(C.20)

Hence muTtipiying equation (C.T5) by the (m x 1) state vector 

u and integrating, we obtain by the use of equations (C.16) to (C.20),

dx(t) = E{f (x,t)} +

I E{(x-x) X^^x)}Yy{xTY } {dN-X(t) dt}^) 
i=1

(C.21)

where i ^ E |x(t)|0 }

The evaluation of this equation is analytically impossible, 

and approximations must be made. This may be achieved by assuming 

the non linearities may be expanded in multidimentional Taylor series. 

When this technique is applied to the case of Gaussian measurements, 

generalisation of the Kalman Bucy filter are produced. The continuous 

time version of this filter is given in the books of Meditch (Mdd 2) and 

Van Trees (Van 1-3). The results of the Kalman Filter were first 

derived using an approach similar to that used in deterministic 

control. The quadratic criterion deterministic control problem is 

the dual of the linear minimum mean square error problem, and the 

approach is discussed in the books of Meditch (Med 1) in Saga and 

Melsa (Sag), Jaswinski (Jas) and Breiman (Bre) among others. Here



we consider the case of poisson measurements. Several analyses have 

been performed noteably by Jaswinski (Jas 1), (Jas 2) and Culver 

(Cul 1), (Cul 2). Here the techniques of Ahens et a1 (Ath) are 

used. Snyder (Sn 1-3)(i^ri\n^and used the special case of linear 

state equations and non linear state equations which is the basis of 

the filtering schemes applied to the metabolistic flow problems described 

in the main text.

We proceed by expanding f(x) and x(x) about their optimal points, 

that is letting

155.

f(x) = f(x) + (x-x)T Sf
3X

m . , B^f
+ & I (x-x) -T-/ (x-x) (C.22)

i=1 3x^

^ A T A. m ^ ^
X(x) = x(x) + (X-X) ^ g (x-x)' -T-^ (x-x) (C.23)

Bx i=1 3x2

Where = |0,0 ... 0,1,0 ... 0,0|

0 i n

iA
BX

3X'

BA,

B^A^ B^A^

BX^BX^ BX.BX
1 n

B^A^ B'^i

x=x

x=x
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and similar expressions exist for and
3X 3x^

The use of equations (C.22) and (C.23) introduce some error 

into the estimates. The resulting estimates are termed linearised 

optimum estimates. It is convenient to denote the linearised state 

estimate by s, and the linearised covariance estimate by R.

Substituting equation (C.22) and (C.23) into equation (C.2T)
gives the linearised estimate.

m A A T Y
ds(t) = f(s) dt + i E{{x-x) (x-x) -T- }

i=l ax

Ti (x(s)^Yi)"^(dN(t) -x(s)dt) 

The covariance matrix is defined by

(C.24)

P(t) = E {(x(t) - ^^t) (x(t) - x(t))^|0^

Hence we obtain

ITl ^ X\""l
ds(t) = f(s) dt + P(t) Yi (x(s) 1%)

nail

(dN(t) - x(s)dt)

We now need to evaluate P(t). To do this we first use 

equation (C.25) to produce a subresult: To 0(dt):

(C.25)

ds(t) ds(t)T = j ! P(t) Ti (^'(:)Yi)'Ti'dN(t)
m n /rT/_. x-i T.

i=l j=l

dN
T -1 3X(t) Yj (X(S) Yj) Yj P(t)
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but

dN(t) dNT(t) Yj = dN.(t)

Hence we obtain, denoting X (s,t) by X*

3s(t) 3s(t)T = % P(t) X* P(t)T,''’dN(t)
i—1

but noting

3X T 3X
U *i h 3?

atnx^ 3inx^
3s 3S

and using the relationship

3^^YA.

3s2

we obtain

3tnX.

3s

3&nX.

3s

r 32X;

3S'

T m , 32x. 32&nX;
aTsft) . P(t) —i}P(t) Y^TdN(t)

(C.26)

P(t) may now be evaluated. From the definition of P(t) we

obtain

P(t+dt) = E{(u-x (t+dt) (u-x (t+dt))^|0^

but

hence

X (t+dt) = x(t) + dx

P (t+dt) = E {(u-x(t) - dx) (u-x(t) - dx)^^0^ ^+±1^



(u-x(t)) (u-x(t))^ (u, t+dt) du + dxdx^

j (u-x(t)dx^ (u, t+dt|0^ ^j^Jdu

dx (u-x(t))T p^ (u, t+dt|0^ t+dt)^" (G.27)

Noting that

(u-J(t)) dxT (u.wtjo

(u-x (t+dt) + dx) dx^ p^ (u, t+dt|0^ ^t+dt^^"

(u-x (t+dt)) dxT (u, t+dt|0^ ^^j^) du + dx dx

dx dx (since the estimate x (t+dt) is unbiased)

equation (C.27) becomes

P (t+dt) (u-x(t)) (u-x(t)) (u, t+dt|0t du - dx dx'

(C.28)

From equation (C.15) we obtain

Px .t+dt)

Px p^ (u,t|0^ ^) dt + p^ (u,t|0^ ^)m
0 0 0

where
m

m 2 (X. (u.t) - E {X. (x,t)}} {[{x. (x.t)}}
i=T T ------T

,T{dN.(t) - E {X. (x,t)}dt}

Substituting this into equation (C.28) we obtain (C.29):



P (t+dt) + dx dx:T (u-x(t)) (u-x(t))^ (u,t|0^ ^^Jdu

(u-x(t) (u-x(t))T p^ (u,t)|0^ ^)dt

+ (u-x(t)) (u-x(t))T p^ (u,t|0^ m dt (C.29)

The first term of the R.H.S. of equation (C.29) equals P(t), 

To evaluate the second term consider the integral

n 3(fiP) n n
("k " ^k) ^ "BuT"" + ^ .^.Qi arrinr }du

1 *“ I 1 i;i j=l

which by integration by parts yields

= : (<^k - \) E * ‘!ki

Hence using the expansion of equation (C.22):

f(x) = f(x) + (x-x) + & % Yi (x-x)
ax i=l

T a^f 
ax 2

(x-x)

we obtain

(u-x) (u-x)^ p^ (u,t ^)dt

= P(t) + P(t) + Q
ax ax

The third term is evaluated

(u-x) (u-x) p ^ {X(t) - X(t)}Yi (X(t)Yi) 
i=l ^ ^

(dN(t) - X(t) dt) Y^ du



("k " ^k) P

Z {A(x) - (x-x) + & ^ (. (x-x)T 1:1 (x-x) - x(t)}T 3^x
i=1 ax i=1 3X^

(^(t)Yi)"^(dN(t) -A(t)dt)^^ Yi du

Noting that

'L/ v"g A., K ^ (X"X) du
K ^ ^ i=i T 3x2

("k - Xu) (u, - x.) p 2! Gi (x-x)

= P
3x2

We see that the third term equals

32^
3X 2

I p(t) ^_P(t) Xj'VJ (dN - Xdt)

Hence using equations (C.30) and (C.31) in equation (C.29) we 

obtain

cT
P (t+dt) = P(t) + P(t) + P(t) + Q

3x

+ Z P(t) P(t) (dN -Xdt) - dx dx^
3X

(C.3T)

(C.32)

Evaluating this expression at the linearised optimum point, noting 

that

R(t) A p (s,t) 

x(t) ^ X (s,t)

3P P (t+dt) - P(t)



we obtain

at R(t) + R(t) 21 + Q

+ Z R(t) R(t) (dN-x*dt) - ds ds^ (C.33)

using equation (C.26) we obtain

if
as dt + R(t) dt + Q(t) dt

R(t) {
i=1

X.

a^x.

as2

a^^nx.

as'
}R(t) Yi'dN(t)

(C.34)

Equations (C.25) and (C.24) together form the estimation routines.

We summarise the results below.

Given a system disturbed by Gaussian noise, system equation

dx = f(t) dt + dng (C.35)

observed with measurements containing no Gaussian noise, with poisson 

rate vector x (x,t), the first order linearised estimate s is given 

by the solution to the equations

ds - f(s)dt + % R(t) Yz (dN(t) -x(s)dt)
i=l '

as
af+ R dt + Q(t) dt

+ ^ R(t) ii&Dl
i=l as^

R(t) Yi dN(t)- ^ R(t)
i=l as^^

(C.36)

In certain cases (Sny 4,5) (Eva 2), (Cla), simplifications 

occur in the filtering equations, though these are not normally as



great as those experienced in the case of linear Gaussian measuremen 

In the cases of metabolistic flow treated in the main text we may 

assume that no Gaussian noise occurs in the system, and that the 

state vector is constant. The equations obtained in this case for 

the state equation is

and for the estimates

dt + R 3AnX

i = ^
Rdt + ^ R il&Di

i=l 9$"

In the case of a scalar exponentially varying measurement, drastic 

simplifications are obtained. With the problems treated in the 

text no other general simplifications occur, and each is treated on 

its own merits.



APPENDIX D

ANALYTIC SOLUTION OF THE EQUATION A = Ax OF DIMENSION 2

The(%wation x = Ax has a solution 

X = exp (At) x(0)

This solution is in general difficult to evaluate, if however 

the matrix A is diagonal then the evaluation is trivial. For most 

cases of non-diagonal forms/ by suitable change of variable, the 

matrix A may be diagonalised, the resulting equation solved, and 

the solution to the original equation obtained. The equation of 

dimension 2 is treated in this Appendix, and the general technique 

shown in Appendix E for a particular case of an equation of dimension 3.

Consider the equation x = Ax, which for a matrix A of dimension 

(2x2) may be written

163.

a g

Y 6

d

This may be manipulated to give

(0.1)

a /gy ''/g

/gy 6
^//gy

\
//ga

d
dt"

We have two cases. If gY>0 then let e = /gy to obtain (0.3) 

t For cases of non repeated eigenvalues.

(0.2)
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d
“Vg

f a £

ss
e 6

(D.3)

If gY<0 then let je=Vge, e = /|gY| to give

d

f ’ ^a JG ■ 'Vg ■

Bt ss
je 6

.,

/ '
\g a E

-G 5
(D.4)

If gY=0 then g = 0 or Y = 0 and the matrix may be transformed 

into diagonal form by straightforward row subtraction.

The next stage is to transform either of the resulting 

equations (D.3) or (D.4) to a diagonal form.

Treating the symmetric matric (D.3)» with the definitions

*
= ’i/g *

= /G we obtain

d
■ q,* a G A,*

IS

. "2-. cq;, G + Ca 5 + CG Az*

rq* ' a - CE G
d 1

Ag* + cq^* G + Ca - c(6 + CG) 5 + CE

(D.5)

Ag* + cq^*

(D.6)
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With the restriction

G + ca - c (5 + ce) = 0

i.e. with the definition c ^
C 6 - g ± - g)^ + 4%^^

-2a

= ^ ^ (6 - g)^ +4^4

2a

We obtain an upper diagonal matrix

d

this may now be converted to a diagonal form

a - CG G ■ V

qg* + cq* * 5 + CG q/ + cqj*

(D.7)

(D.8)

d

" q^* + d(q^* + cq^*) a-CG G+d(6+CG)-d(a-CG) ' qi*+d(q2*+cq^*)

+ cq^* * 6 + CG
.

q2*+cqi*

(0.9)

d is a variable, hence we may make the restriction e + d(5+CG) - d(a-CG) = 0, 

defining d and forming a diagonal matrix equation

d
9T

f
a - CG ^

5 + CG Q,

where = q^* + d(qg* + cq *) 

Qg = + cq^*

(D.IO)

(D.ll)

(D.12)
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- g - 6 ± + 4E^
2a

(D.13)

d =
a - 5 - 2ce

(D.14)

The skew symmetric matrix of equation (D.4) may be converted 

to diagonal form in a similar manner. With the definitions

y , equation (D.4) becomesAi* = Az* =

d
3t

a e Ai*

Az* + CAi* -e + Ca 5 + Ce Az*
1

(D.15)

' V a - CE e

q * + cq *
1 ^ *

-E + Ca - c(5 + Cs) 6 + CE q * + cq *

d

(D.16)
With the restriction -e + Ca -c (6 + ce) = 0, defining c, we obtain an 

upper diagonal matrix

d
a-CE E

Ag* + cq^* 0 5 + ce Az* + CAi*
(D.17)

Noting that equation (D.17) is of the same form as equation (D.8) we 

obtain the diagonal form corresponding to equation (D.IO) namely

d
3t

f

.

o - Ce 0

0 6 + CE

(D.18)



where = q^* + d (q^* + cq^*) (D.19)
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% - q,* +

= * " & ± /jg -5)^ - 4e^

(D.20)

(D.21)

^ a -6 - 2Ce (D.22)

Due to the similarities in the two cases they may be combined. We 

hence obtain the summary. Given a matrix equation of dimension 

2 of the form

d
3t

then we may write

^11

a a 
12 22

Ai

%
(D.23)

d

Where

'Q.- 0

0 \.

Qi = + d (q^* + cq^*)

(D.24)

(D.25)

^2 " ^2* ^ ^^1*

^^/azi

_ q/e

(D.26)

(D.27)

(D.28)

e = 4
^12 ^21 (D.29)



^11 " ^12 -

2e
(D.30)

\ (0.31)

\ = ^2 + ':^ (0.32)
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APPENDIX E

Diagonalisation of a Third order matrix to show the 

general technique of solution of an equation of the form x = Ax.^

d

()i

A3

Using equations (D.23)

to give

f
"1 ■

dt "2

A3 .

11

zi

12

^^2 ^23

^^2 ^33

'^1

^2

%

(E.1)

les

where

32
23
'33

(E.2)

(€.3)

^32 " ^ ^^2

which arise from the relationships

= ^12 ^

(E.4)

(E.5)

>2 = " '■2 - If: ‘>1 = - «r
12 ^ ^

and Xg are as given in equation (D.31) and (D.32) 

Subtracting a multiple of the third variable from the 

second gives equation (E.7).

(E.6)

+ For case with no repeated eigenvalues.
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d

where

23

^32

I'a = q, -
31

3

(E.7)

(E.8)

" ^33

Applying the result from Appendix D once more gives

(E.9)

d
31

1*1

% ^2

.'’aj
.

(E.10)

where

Qi = r,

Q, =

q, = rj/sj + Cj r^/a^,

"i ' \

(E.lla)

(E.llb)

(E.llc)

(E.12a)

(E.12b)

(E,12c)

(E.13)
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^2 - 833 - - ^33)^ +
(E.14)

bi = sgn (@23 @32") (E.15)

The result of this section may be summarised:- 

Given the system equation

d
Ht ^2

%

11 ^2

a a21 22 23

a a32 33

Ai

(E.16)

by change of variables we may form the diagonal matrix equation

f

^1 0 '

d
Q2 ''2

Oa 0 '3,

(.17)

where

Qi = q^/a 12

{q^/e + cq^/a^2 }/a23

(E.18a)

(E.18b)

Q3 = - ^31^12} +{^2/^ + cq^/a } c^/a 23

31 -cea32

(E.18c)

(E.18d)

= a^^ -CG

= a^^ mce

(E.18e)

(E.ISf)
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" ^22 ^ " ^1^1 (E.18g)

= ^33 + ^1^1 (E.18h)

e = /]a,,a12 21'
(E.18i)

a__a__'| = y^a__a__ el
23 32 23 32

a^i - + 4E

Ze

(E.18j)

(E.18k)

^^2 ^ " ^33 ^ ^1^22 ^ ^ ^33 '1 "j

2e,

b = sgn [a^^a^i]

(E.18i)

(E.18m)

bi = sgn [a^^a^^ e]

= S9" [=23=32] {E.18n)
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APPENDIX F

DERIVATION OF THE INITIAL COVARIANCE OF 

A VARIABLE GIVEN THE INITIAL RANGE f^.b! reffPrel

In this Appendix we derive the initial covariance of a variable 

X. given the initial apriori assumption that the probability that 

it has a certain value is uniform inside a certain range (a,b), and 

zero outside this range. Figure F.1 shows the uniform density 

function of the variable. Discontinuities exist at the end points 

at X = a and x = b.

The density function is given by:

1
= y: g , a<x<b , f(x) = 0 elsewhere (F.1)

The expected value (the mean)is given by:

E(x) xf(x)dx =
./a

X^ 1^)=^ (F'2)

The covariance is given by

rb
(x) = j [x - E(x)]2 f(x)dx

= i: dx

1
-Tj FT



fb-al (a-b
2 - j-y-

3 (b-a)

(b-a)^
"nr

174.

(F.3)



APPENDIX G

COMPUTER LISTINGS

(1) Code to produce estimate of the total extraction rate 

using curve fitting techniques from the output of an

Anger Camera (FORTRAN). (p. 176)

(2) Code to produce Ellipses using the approximate Algorithm

developed in Chapter 2 (BASIC). (p. 179)

175.

(3) Code to Evaluate the Stochastic System Identification 

Techniques by the use of simulated results.

(a) Code to produce simulated measurement and estimations
of organ extraction rates using the stochastic 
algorithm (BASIC). (p. 133)

(b) Code to produce an estimate of the total organ 
extraction rate from simulated results using
curve fitting techniques (BASIC). (p. 189)
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n

■>0

50
c
500
G

CODE- TH DETErRfMMkr hrXTRAGTIOrh RATES DF LIVER-AMD SPLEEli

COMMON MR-fi-&>?-MG f23&>rMA-fES&rlA-y 
DIMEMSIDM F(:24'U;'-rS ^240> yCURV&IF:)^0)-

GBLL CPEM (i-r"
GRLL R-DBL-K- (Irr 0 1 ^ rF2rrlEP-^
IGl-rK-=0
CELL GiSP-^'-L “• -fi-^-l->-rfP-7:vJC-R^HEL--1- - 
I-GHi<;=-IGHK-HL
G.ELL- G6P-4 "-S "- rS ^ !->rJCR-rNEL rl r:G50>
IG HK: IG
PF ^ I-GHKr .LT-.- 2- > GO TO 150

EiGCEPT "TYPE" t- FOR- LIVER-?- E FOR- SPLEEM-r E
FOR- sy?r DR BDTHv“?-IFLREIF ^ IPLFE ,-EQ,- 1 > GO TO 1000

IF t IFLPE E > iSQ TO 1010
IF ( IFL-B-E -B3-- 3- ->■ GO td: 1020c
GO T-D 500

j

''

1-000 DO EOuO I l.-MP-T
EOOO eUFYETI->=- f+ 4 IP

G
GO TO 3000

1-01-0 DO EOIQ I =» IrMPT
EO10 CUR-VE^IP^ S (I->-
G

GO TO 3000

lOEO DO 2020 I -- IrMPF
EOEO GL'FVE'';i>=^ ptl>+3<l>
G

GO TO 3000

SO 00 CONTINUE

C:

c

CDEFECT FOR- DECRY DF ISOTOPE

FiCGEPT ■ '-EMTEF- TIME- PERIOD BETWEEN- FFPMES 
COMVEFT TO MIMOTES.- IM ^ECS.-....(mTE6EF>--?-IF

T=-- FL-GPT <-IFRFMEF-&0 .- 0

Li-/-E- Df TBCPMEC lUM TS E-.HOURS .- 

Tl-=^ &.-Cf

5000
DO 5000 I=l-?-MFT
CUFVkr't 2-F EHF tO.-&F3-^>-;^'»-TETr-'^E>,-0'>-*‘CiJFVF4T->-
COMTIMUE

L
G

G

FIT THE EXPOMEMTIAL
FS-GEFT- --FIFST POI-HT OF FIT 
FSGEPT "LPST POIMT OF FIT =

M^LP—IP-s-I 
SM= FLQPT4H:>

- "-IP- 
'VLP



177.

G

G

G

64300
G

G
to
C
6-0 tO-

G

rOOO
C

C

C
C

BGGtd^T "i-S PbH-TER)J TD BE- GQMPUTEB VES^t HD=^0 "vK- 
IF 4 K- 0 > 60 TO JO
fiOGEFT “FTFST POir+T OF PEATEFLI "y-I-PP- 
B3GEPT “LBST PGir+T OF F4_-FT-EfRJ =- '-rLPF

r+ =': LPP---- IPF
V =>- FLDAFmF

t

DO 64)00 T =^1-PFt-LPP- 
F =- F GU»VEfT>

F ^ pFy- 
TYFE- “PEBTERO 
60 TO 601-0

AGGEFF “TVPE^ THE- FLRTEfHJ- ^RERb HUI^BER>

S>f =- 0-0 

SXS=- 0-0 

SV == 0-0 

S>fY=^ 0-0

DQ FOOD I =-I-F;'LF-
CURVFfPT^:^: RL-06 (P-----GUFVE6J>->

=-■ FEOFTfTV

3xs=*
SV- =. SY+GUF/E^P>
SXY=^ SHY4-GURVEfT>4fFj*T

XiT=<5:4^SH-
Yrt sy.-^SM-
F =■ fS;fr—43!^S—Sli^Mrt-s^^rtT 
B- 0. 0 - B-

TVFE "TOTBL E)4TRFGTIGH RATE AJHIT-- PEF =- "-F

T =- 0 - 6F6.''E»-64) 0 
TYPE “TF-E- m SECS 'VT

STORE THE- EH-TRBGTIGH RATE BHD PEFTEBU.-

C

C
60 JO

IF- ^IFLBe- --EQ- J> inrO TO 60JO 
JF (-JFLFE .-EQ.- E> 60 TO 6060 
IF fIFL-B6 -BJ.- 6> 60 TO 6060

FI^
Dl=-E
60 TO 6500

6060

C
6060

u
6500

F6=>F
B6=^F
60 TO 6500

P6=>F
B6:'E
160 TO 6500 

CDMTIHUE
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G

O

G

'?000

c

c
c
G
G

G
G E>- 
C

G

G

G
150
500

fiGGEFr "HRVE- ALL. GUR)',^ BEEN- ENTERED ? TYPE- 1 FDR- YES 

IF ^ JFERE I > i30 TD 9D0& ^ FDR- NQ "rJFLAG

ISO TO 5&f>

GONTINOE

GAL-GULATE INBIY^IDUAE EXTRACTION RATES.;

SPL-ENIG EXTRACTION RATE

EE =*= PE^^E 
RE =- EE

L F^^ER- ENTRAG-T ION. RATE

El =- F1*BT
RI =*^’ El ( E,-0 — EE >

TrPE “EXTRAGTIQN- RATE OF SPLEEN PER- NI-N 
TYPE "EXTRACTION RATE DE LIVEE PER-NIN

ISO TO 3-0 D

'ERE
"rRI

CALL TEXT ^"CREATE CURVES <-L>- AND fS> “rlrlrT
CALL WRDLRtlr-Oy-NAtlriJ'-rSEy-IER;*-
GALL CLOSE ■fl^IERT
GALL E4IT
END



1020
30
40
50
60
70
80
90
100
110
120

130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290

REM: PROGRAM TO PLOT ELLIPSES BY APPROXIMATE METHOD
SCALE 
DISP 
INPUT 
PRINT 
DISP 
INPUT S 
IF S2<1

1,23,1,
L="L;
L
"L="L;
INPUTl IF GRAPH R0D'

THEN 120 
TO 23FOR 11=1 

XAXIS II 
YAXIS II 
NEXT II 
DIM A[22,22]
MAT A=ZER[22,22]
GOTO 150
X1=Y1=Z1=0
X2=-l
Y2=-l
Z2=-10
X=X1-X2
Y=Y1-Y2

C0=X^^+Y*Y
D0=C0+Z*Z
C=SQRC0
D=SQRD0
C1=X/C
S1=Y/C
C2=Z/D
T2=C/Z

300 DISP "TAN PHI=";
310 INPUT T3

PRINT "TANPHI="T3 5
330 T4=(T 2+13) /(I-T2+ T3)
340 T5=(T 2-T3) /(1+T2+ T3>
350 DISP "HEIG HT OF S LICE H=
3 6 0 INPUT H
370 PRINT "H=" H;

P=H*( T4+T5
:730 A=H*( T4-T5
400 R=H4T
410 S0=H4 T2-(H *T5)
420 S=A-S 0
430 B=A4S ^SQR( (A-R)+( A + R>>
440 K=:B*B "(A + A )
450 Ji = J2 = (P + A >401+12
460 J3 = J4 = (P-A )401+12
4/0 K1=K2 = (P+A >481+12
430 K3=K4 = (P-A >4S1+12
490 1=0
500 IF J1 >23 THEN 590
510 IF J1 (1 THEN 590
520 IF K1 >23 THEN 590
530 IF K1 (1 THEN 590
540 A[ INI" (Jl), IMT(K1> ]=A[TNT l-M



550 
5b y 
570 
580 
590 
600 
610 
620 
630 
640 
650 
660 
670 
680 
690 
700 
710 
720 
730 
740 
750 
760 
770 
780 
790 
800 
810 
820 
830 
840 
850 
y !.:< 0 
870 

:d
890
900
s; 10

920
930
940
950
960
970
980
990
1000
1010
1020
1030
1040
1050
1060
1070
1080
1090
1100
1110
1120

PLOT Jl,Kl,-2 
PEN
LABEL (*)A[INT(J1),INTCK;:']
GOTO 600 
1 = 1
IF J3>23 THEN 680 
IF J3<1 THEN 680 
IF K3>23 THEN 680 
IF K3<1 THEN 680
ALlNT(J3),INT<K3)]=A[IHT(J3),lNTtK3^1+l 
PLOT J3,K3 ' "
LABEL (*)A[INT(J3),INT^K3:']
GOTO 730 
1 = 1 + 1
IF 1=2 THEN 710 
GOTO 730
PRINT "ELLIPSE ENDS OUT OF RAHOE"
GOTO 1880
U=INT(A)*L
PRINT "U="U
Y2=0
Z2=l
''/=!

v b =2 + K * (. U +1J -!■ 1
PRINT "Y2="Y2;
IF Z2>Y2 THEN 1320
J1=J1-S1/L
J2=J2+S1/L
J3=J3-S1/L
J4=J4+S1/L
K1=K1+C1/L
K2=K2-C1/L
K3=K3+C1/L
K4=K4-C1/L
IF JI>23 THEN 970
IF J1(0 THEN 970
IF Kl>23 THEN 970 -
IF K1<0 THEN 970
A[INT(Jl),INT(Kl)]=A[IHT(Jl),iHT^Kijl+l
PLOT J1,K1
LABEL (*)A[IHT(J1),INT(K1)]
GOTO 980 
1 = 1
IF J2>23 THEN 1060 
IF J2<1 THEN 1060 

IF K2)23 THEN 1060 
IF K2<1 THEN 1060 
A[INl(J2),INT(K2)]=AriNT(U2 
PLOT J2,K2 
LABEL (+)A[INT(J2),INT(K2:'] '
GOTO 1070 
1 = 1 + 1
IF J3>23 THEN 1150 
IF J3<1 THEN 1150 
IF K3>23 THEN 1150 
IF K3<1 THEN 1150
ALINI(J3),INT(K3;]=A[INT(J3:'4TNT(K3)1+1 
PLOT J3,K3 . '

INT(K2)]+l



1130 LABEL i +)A[INT(J3),INr(K3)]
1140 GOTO 1160
1150 1 = 1 + 1
1160 IF J4>Z 3 THEN 1240
1170 IF J4<1 THEN 1240
1180 IF K4>Z 3 THEN 1240
1190 IF K4<1 THEN 1240
1200 A[INT(._ 4),INT(K4)]=A[IHT(J4
1210 PLOT 34,K4
1220 LABEL ( +)A[INT(J4),INT(K4)]
1230 GOTO 12 90
1240 1 = 1 + 1
1250 IF 1=4 THEN 1270
1260 GOTO 12 90
1270 PRINT " ELLIPSE OUT OF RANGE
1280 GOTO 18 80
1290 Z2=22+'v ^^ + 1
1300 V=V-1
1310 GOTO 80 0
1320 U=U-1
1330 J1=J1-C i/L
1340 1/L
1350 J3=J3+C 1/L
1360 J4=J4+L 1/L
1370 K1=K1-S 1/L
1380 1/L
1390 K3=K3+8 i/L
1 400 K4=K4+8 i/L *
1410 1=0
1 420 IF Jl>2 3 THEN 1500
1 4 30 IF J1<0 THEN 1500
1440 IF Kl>2 3 THEN 1500
1450 IF K1(0 THEN 1500
1460 Fi[ IHl-( l),INT(Kl)]=ALlNTiJl
1470 PLOT J1 K 1
1480 LABEL ( +)A[INT(J1),IHT(K1)]
1490 GOTO 15 1 0
1500 1 = 1 + 1
1510 IF J2>2 3 THEN 1590
1520 IF J2<1 THEN 1590
1530 IF K2>2 3 THEN 1590
1540 IF K2<1 THEN 1590
1550 A[IHT(.. , I NT (1(2) ]:=A[ IrlT-f 0:2
1560 PLOT J2 :: K2:
1570 LABEL' ( +)A[IHT(J21,IHT(K2)]
1580 GOTO 1600
1590 1 = 1 + 1
1600 IF .J3>2 3 THEN 1680
1610 IF J3<1 THEN 1680
1620 IF K3>2 3 THEN 1680
1630 IF K3<1 THEN 1680
1640 A[IHT<._ 3>,INT(K3)]=A[iNT(J3
1650. PLOT J2 > K3
1660 LABEL ( +)A[INT(J3/,IHT\K3)]
1670 GOTO 16 90
1680 1 = 1 + 1



1590 
1700 
1710 
1720 
1730 
1740 
1750 
1750 
1770 
1780 
1 yw

00
10

20
30
40
50
50
70
80
90

IF J4>23 THEN 1770 -
IF J4<1 THEN 1770 
IF K4>23 THEN 1770 
IF K4<1 THEN 1770
A[INT(J4),INT(K4)]=A[INT(J4),INT(K4)]+1 
PLOT J4,K4
LAUEL (t)A[IHT(J4))INT(K4)]
GOTO 1790 
1=1+1.
IF 1=4 THEN 1270 
Y2=Y2+K*(U+U+1)
IF U>0 THEN 800
FOR J=22 TO 1 STEP -1
FOR 1=1 TO 21
WRITE (15,1870)A[I,J];
NEXT I
WRITE (15,1870)A[I,J]
NEXT J 
FORMAT F2.0 
STOP 
END
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3313 
0 323 
0030 
0040 
0050 
0 060 
0 070 
0 380 
0 090 
0 103 
0113 
3 120 
0 130 
0140 
0 150 
0160 
0173 
3180 
0190 
0200 
0210 
0220 
0230 
0240 
0250 
0260 
0270 
3280 
0 293 
3300 
0310 
0 320 
0330 
0340 
0350 
0360 
0370 
0380 
0390 
0430 
0410 
0423 
0 433 
0443 
0 450 
0463 
0470 
0480 
0490 
0503

PROGRAM CODE TO EVALUATE THE SYSTEM IDEMTIFTCATIOM 
TECHHiaUE DESCRIBED IN CHAPTERS I 6 IV BY;
(1) SIMULATION OF POSSIBLE MEASUREMENTS OF

RADIOACTIVE TRACER INJECTED INTO THE HEPATIC 
FLOW, GIVEN KNOWN RATES OF EXTRACTION OF THE 
TRACER FROM THE LIVER SPLEEN AND BONE MARROW, 
OBTAINING THE BEST ESTIMATE OF THE FLOW RATE FROM 
THESE SIMULATED MEASEURBMENTS USING THE STOCHASTIC 
SYSTEM IDENTIFICATION TECHNIQUE, USING SNYDER'S 
FILTER.
COMPARISON OF THE KNOWN AND ESTIMATED RESULTS.

(2)

(3)

REM:
REM;
REM;
REM;
REM:
REM:
REM:
REM:
REM:
REM:
REM;
REM 
TAB =10 
CLOSE
LET AS="DATA"
INPUT "DATA TO BE STORED IN DATA FILE NO ",B$
LET C5=AS,BS
OPEN FILE (3,0),CS
OPEN FILE (0,3),"SLPT"
INPUT "HARD COPY REQUIRED ? CR FOR YES",AS 
IF AS<>"" THEN GOTO 0240 
OPEN FILE (1,3),"$TT01"
GOTO 0250
OPEN FILE (l,3),"STTO"
DIM A(500)
DIM M(3),M1(5),M2(5),M3(5),Z9(3)
DIM H1(3,3),H2(3,3),H3(3,3),0(3,3),P(3,3)
DIM R1(6),R2(6),R3(6),S(3),U(3),G(3),A0(6),A1(6),E(3),S1(3),N(3)  
DIM Ul(3)
PRINT FILE (1),"DATA STORED I^ FILE ";CS
REM:SIMULATION OF THE ESTIMATION OF BLOOD FLOW RATES TO THE LIVER 
REM:SPLEEN AND BONE MARROW.
REM
REM: FLOW DIAGRAM 
REh
REM: LIVER <
REM:
REM:
REM:
RE:1
REM:SET INITIAL 
REM: N0=LOOP NO 
LET N0=0
INPUT "ENTER NO OF 
INPUT "ENTER TOTAL 
LET L9=N1 
LET N2=0
REM: Q=TOTAL DOPANT 
INPUT "TOTAL DOPANT

----- PLASMA ----- >
I
V

BONE MARROW

SPLEEN

VALUES
Nl=LOOPS BETWEEN PRINTOUTS N2=NEXT PRINTOUT NO.

ITERATIONS BETWEEN EACH PRINTOUT",N1 
NO OF PRINTOUTS REQD ",N5

INTENSITY 
INTENSITY = Q

PRINT FILE (1),"TOTAL DOPANT INTENSITY=



3510 
0523 
3533 
3543 
3553 
3560 
3573 
3583 
3593 
3 603 
3613 
0 620 
3630 
0640 
0653 
0663 
0670 
0680 
3693 
0730 
0710 
0720 
0733 
0740 
0753 
0763 
0773 
3780 
3790 
0800 
0313 
0820 
0 833 
0840 
0850 
0860 
0870 
0 383 
0 890 
0 930 
0913 
0920 
0930 
0943 
0953 
3960 
0973 
0933 
0993 
1033 
1010 
1323 
1033 
1040 
1350

REM: T1=CURREMT TIME
REM: T2=DISCRETTSATI0M PERIOD
REM: T3=5IMULATTOM PERIOD
REM: T4=UAXIS GOLLISIOM INTERVAL
REM: T5=UAXI5 COLLISION POINTS
REM: T6=TAXIS TIME + T2
REM: T7=TAXIS TIME + 2*T2
REM: T8=EMD OF TAXIS INTERVAL
REM: T9=EMD OF FOLLOWING TAXIS INTERVAL
LET T1=0
INPUT "DISCRETISATION PERIOD = ",T2 
PRINT FILE (1),"DISCRETISATION PERIOD = 
REM: SET UP THE STATE TERMS 
REM; 1 * THE FIRST
REM: 2 * DERIVATIVES OF
REM: 3 * THE ESTIMATE
REM: 4 * THE ESTIMATE
REM: 5 » THE ACTUAL VALUE
REM: 6 * THE 2ND DERIVATIVE
REM: SET THE DIFFERENTIALS OF 
LET RI(1)=1 
LET R2(2)=l 
LET R3(3)=l
REM: SET ACTUAL FLOW RATES

T2

THE RATE VECTORS

INPUT "FIRST FLOW RATE 
INPUT "SECOND FLOW RAT: 
INPUT "THIRD FLOW RATE

',RI(5) 
",R2(5 

',R3(5)
REM:SET ESTIMATES OF FLOWS 
INPUT "FIRST ESTIMATE",R1(4) 
INPUT "SECOND ESTIMATE ",R2(4) 
INPUT "THIRD ESTIMATE ",R3(4) 
INPUT "UNCERTAINTY OF KNOWLEDGE 
REM: STATE IS DEFINED 
LET S(1)=R1(4)
LET S(2)=R2(4)
LET S(3)=R3(4)
PRINT FILE (I),"ACTUAL FLO'

OF FLOW RATES U1
ESTIMATE OF FLOW

RATES
RATES:

RI(5),R2(5),P3(5)
R1(4),R2(4),R3(4)PRINT FILE (1),"ESTIMATE OF 

PRINT FILE (1),"UNCERTAINTY U1
REM: SET INITIAL COWARIANCE
REM: U=UNCERTAINTY OF KNOWLEDGE OF FLOW RATE 
MAT U=CON(3)
MAT U=(U1)*U
REM:CALCULATE INITIAL COVARIANCE MATRIX P 
FOR 1=1 TO 3

LET P(I,I)=U(I)f2/12 
NEXT I
REM:SET INITIAL COUNT REQUIREMENTS 
REM: G(I)=1 IF A COUNT GENERATION IS REQUIRED 
FOR I=I TO 3 

LET G(I)=1 
NEXT I
REM: PRINT THE RESULTS 
GOSUB 2533 
GOSUB 2590



1373
1383
1393
1133
1113
1123
1133
1140
1153
1163
1173
1183
1190
1230
1210
1220
1230
1243
1250
1263
1970
1283
1290
1333
1313
1320
1330
1343
1350
1363
1370
1303
1390
1433
1410
1423
1433
1440
1453
1463
1473
1403
1493
1530
1510
1520
1533
1540
1^^3
1563
1570
1580
1593
1633
1610
1620
1630
1640
1653

OF THE TIME PERIODS OM THE U AXES

MEASUREMEMT RATES AMD THEIR DERIVATIVES

VTA FILTERING ALGORITHM

REM: MAIM ALGORITHM 
IF T2*M0>30 THEM STOP 
REM: (1) SET THE LIMIT.
GOSUB 1670 
REM: (2) DERIVE THE 
GOSUB 1300
REM: (3) GENERATE THE COUNT VECTOR 
GOSUB 1030
REM: APPLY CORRECTION FOR 
LET D(I)=M(1)/M1(4)-T2 
LET D(2)=M(2)/M2(4)-T2 
LET D(3)=M(3)/M3(4)-T2 
GOSUB 2020
REM: INCREMENT THE TIME PERIOD 
LET T1=T1+T2
REM: PRINT RESULTS AMD CHECK FOR END OF TEST PERIOD 
GOSUB 2590
REM: REINITIALISE THE MEASUREMENT VECTOR 
GOSUB 2820 
GOTO 1060 
REM

SUBROUTINES
*********f*

REM
REM
REi
REM
REM
REM
FOR

GENERATE THE MEASUREMENTS: ACTUAL,ESTIMATED AND REQUIRED DERI5 
OBTAIN THE ESTIMATED AMD ACTUAL RATES 
STORE IN VECTOR M, ELMENTS 4 AND 5 RESPECTIVELY 

[=4 TO 5
LET R3(I)=R1(I)+R2(I)+R3(I) 
LET A3(I)=1-EXP(-R0(I)*T6) 

A1(I)=Q*A0(I)/R0(I) 
M1(I)=R1(I)*AI(I) 
M2(I)=R2(I)»AI(I) 
M3(I)=R3(I)*AI(I)

LET
LET 
LET 
LET 

NEXT I 
REM: FIR 
FOR I=I

ST DERIVATIVES 
TO 3

LET R3(I)=1
LET A0(I)=T6*(1-A0(4))
LET A1(I)=(R0(4)*A0(I)-A3(4)*R3(I))/R0(4)T2 
LET A1(I)=Q*A1(I)
LET M1(I)=R1(I)*A1(4)+A1(I)*P1(4)
LET M2(I)=R2(I)*A1(4)+A1(I)*R2(4)
LET M3(I)=R3(I)*A1(4)+A1(I)*R3(4)

NEXT I
REM: SECOND DERIVATIVES 
REM: STORE IN H MATRICES
FOR 1=1 

FOR J= 
LET 
LET 
LET 
LET 
LET 
LET 
LET 
LET 

NEXT 
NEXT I 
RETURN

TO 3 
1 TO 3 
R3(6)=0
A0(6)=-T6*A0(I)
A1(6)=R0(4)*A3(6)+A3(I)*R0(J)-R3(6)*A0(4)-R3(I)*A3(J)
A1(6)=AI(6)-2»R0(4)*R0(J)*(R0(4)*A0(I)-A0(4)*R3(J))/R0(4)T2
A1(6)=Q*AI(6)
H1(I,J)=R1(4)*A1(6)+R1(I)*A1(J)+R1(J)*A1(I)+R1(6)*A1(4)
H2(I,J)=R2(4)*A1(6)+R2(I)*A1(J)+R2(J)*AI(I)+R2(6)^A1(4)
H3(I,J)=P3(4)*A1(6)+R3(I)*A1(J)+R3(J)*A1(I)+P3(6)»A1(4)

J



1660
1670
1680
1690
1730
1710
1723
1730
1740
1750
1760
1770
1780
1793
1800
1810
1820
1830
1840
1853
1863
1870
1880
1390
1900
1910
1920
1933
1940
1950
1960
1973
1980
1990
2333
2313

FI^D THE TERMS WITH C^LLISIOM TIMES OH THE U AXIS 
LESS THAM THE TIMES 0^ THE PROJECTION OF THE END 
OF THE CURRENT DISCRETISATION PERIOD ON THE U AXIS 
T6=T1+T2

1730/ 1750/ 1770

REM 
REM 
REM 
REM 
LET
FOR 1=1 TO 3

ON I THEN GOTO 
:LET R9=R1(5)
I GOTO 1780 

LET R9=R2(5)
GOTO 1780 
LET R9=R3(5)
LET R3(5)=R1(5)+R2(5)+R3(5)
LET T8(I)=Q»R9*(T6-(l-EXP(-R3(5)»T6))/R0(5))/n3(5) 

NEXT I 
RETURN 
REM
REM: INCREMENT MEASUREMENT TERMS IF COLLISION HAS TAKEN PLACl

TIME INTERVAL.

920

REM: IN PRESENT 
FOR 1=1 TO 3 

LET M(I)=0 
IF T5(I)=0 THEN GOTO 
IF T5(I)>T8(I) THEN GOTO 1970 
REM; COLLISION HAS TAKEN PLACE 

INCREMENT COUNT. 
M(I)=M(I)+1 

OBTAIN NEW U-AXI5 
T4=-L0G(RND(1)) 
T5(I)=T5(I)+T4 

CHECK WHETHER POINT 
1880

IN PRESENT TIME INTERVAL.
REM;
LET
REM:
LET
LET
REM:
GOTO

POINT

IS WITHIN CURRENT TIME INTERVA

NEXT I
REM: OBTAIN THE TOTAL COUNTS IN EACH MEASUREMENT.
MAT Z9=Z9+M 
RETURN
REM: *********************»******A****************^******^*********
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9323 
2333 
2 343 
2353 
236]
2 373 
2 353 
2393 
2 133 
2113 
2 123 
2 133 
2143 
2153 
2163 
2170 
^133 
2 190 
2233 
2213 
2223 
3)/T2 
2233 ^ZX 
2243 
2250 
2 269 
2270 

2 283 
2293 
2303 
2310 
2323 
2333 
2 343 
2 358 
2363 
2370 
2383 
2393 
2433

REM:
REM:
REM:
PEM:
REM:
REM:
RZ:I:
LET
LET
LET
REM:
REM:
REM:
MAT
:REM:
MAT

REM:
MAT
FOR

BSTVEE-l THE ACTUAL COUMT AMD TH]

THE
THE

FILTERING ALGORITHM 
FORM THE DIFFERENCE 
ESTIMATED COUNT,
DIVIDE DY THE MEASUREMEMT RATE.
(2) APPLY THE FILTERING EQUATION TO FORM 
PPZMULTIPLY BY THE FIRST DIFFERENTIAL OF 
MEASUREMENT RATE

E(])=M1(1)*D(1)+M2(1)*D(2)+M3(])*D(3) 
E(2)=M1(2)*D(I)+M2(2)*D(2)+M3(2)*D(3) 
E(3)=M1(3)*D(1)+M2(3)*D(2)+M3(3)*DC3)
(3) PRBMULTIPLY BY THE COVARIANCE MATRIX 
REQUIRED CHANGE IN STATE 
STORE IN SI

S1=P*E
PRODUCE THE MEW STATE VECTOR $

S=S+S1
(A) FORM THE OUTER PRODUCT OF THE DERIVATIVE OF TRR 
LOGARITHM Or THE MEASUREMEMT RATES.

0=ZER(3,3)
1=1 TO 3

MEW STATE VECTOR 
ESTIMATE OF THE

TO OBTAIN THE

Lt^ 0(I,I)_(Ml(I)T2*M(I)/MI(4)T3+M2(I)i2*M(I)/M2(4)i3+M3(I)t2*M(m

REM
REM:
REM:
REM:
REM:
MAT

THE BY
HI=(D(1))*HI

MAT H2=(D(2))*H2 
MAT H3=(D(3))*H3 
REM: SUM THE THREE 
MAT H1=H1+H2 
MAT H2=H1+H3 
REM: SUBTRACT 
MAT Hl=HI-0 
GOTO 2433 
PTIMT "MATRIX 
MAT PRINT HI 
REM: PRE AMD :

HI

MATRICES. STORE IM

THE OUTER PRODUCT TERM.

MI

2413 REM: CHANGE 
2423 MAT H2=P»H1 
2433 MAT H3=H2+P 
2443 REM: PRODUCE 
2453 MAT P1=P+H3 
2463 MAT P2=INV(R1)
2473 LET D1=DET(P1)
2483 REM: STORE THE 
2493 LET R1(4)=S(I)
2533 LET R2(4)=S(2)
2513 LET R3(4)=S(3)
2520 MAT P=RI 
2533 REM: OBTAIN THE 
2543 LET U1(1)=SQR(12*R(1,1)) 
2553 L^T U1(2)=S3R(12*P(2,2)) 
2563 L^T Ul(3)=SQR(12*p(3,3)) 
2573 RETURN

OS^ MULlIPLY Df THE COVARIANCE TO PRODUCE
REQUIRED IN THE COVARIANCE.

THE NEW COVARIANCE MATRIX

UPDATED VERSIONS OF THE STATE AND COVARIANCE.

APPROXIMATE UNCERTAINTY OF THE ESTIMATE.



2580 
2590 
2600 
2610 
2620 
2630 
2640 
2 650 
2 663 
2 670 
2683 
2693 
2700 
2710 
2720 
2733 
2743 
2750 
2760 
2770 
2783 
2790 
2803 
2813 
2820 
2833 
2840 
2353 
2863 
2870 
2883

THE STATE VECTOR
R|EZ'l
R^M: PRIHT 
LET F=0 
MAT
IF M0<M2 THEM GOTO 2800 
IF M0=M2 THEM LET F=1 
PRINT FILE (F),"ITERATION 

CF),"COUNTS IMFILE
FILE
FILE
FILE
FILE
FILE

(F),
(F)^
(F),
(F)/
(F),

"TOTAL COUIITS 
"CURRENT TIME= 
"STATE";5(1);"+- 
"STATE"; S(2); "+- 
'STATE";S(3);"+-

c

PRINT 
PRINT 
PRINT 
PRINT 
PRINT 
PRINT
LET A=N(1)/T2/Q/N1 
LET 3=N(2)/T2/0/Nl 
LET C=N(3)/T2/3/Nl 
LET L8=N0/L9+1 
NRITE FILE (3,L8),A 
PRINT FILE (F),A,B,C,Lg 
IF L8>N5 THEN STOP 
MAT N=ZER 
LET N2=N0+N1 
LET N3=N3+1 
RETURN
REM:INITIALISE THE MEA5UREM 
FOR 1=1 TO 3 

LET N(I)=0 
NEXT I 
RETURN
"PINT "D(1)=";D(1),"D(2)=";D(2), 
RETURN

AB(20);"EVENT' 
CURRENT PERIOD ";N(:

MCI); 
1(2)•)

M(2);M(3)
;N(3)

";Z9(I);
"/T2*N0

Z9(2>;Z9(3)

;ui(i)
;ui(2>
;ui(3)

VECTOR

"D( 3) )(3)
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ziqg 
0333 
3 343 
3 353 
0 363 
0 373 
8333 
3393 
0 103 
0113 
0 123 
0130 
0 140 
0 150 
0 160 
0 173 
0 180 
0 190 
0203 
0210 
0223 
0 233 
0243 
0250 
0263 
0273 
0280 
3290 
0333

REM:
PEM:
PE:4:
RE}1;
REM:
REM:
REM;

ESTIMATE OF THE TOTAL EXTRACTION 
RATES Or ORGANS BY CURVE FITTING TECHNIQUES.

THE DATA PRODUCED BY THE SIMULATION ROUTINE IS US^D 
TO OBTAIN AN ESTIMATE OF THE ORGAN EXTRACTION RATES 
USING DETERMINISTIC METHODS FOR COMPARISON WITH THE 
ACTUAL VALUE, AND THE VALUE OBTAINED BY THE STOCWa^^ 
TIC TECHNIQUE.

CLOSE
INPUT "HO OF DATA POINTS",M9 
DIM A(M9),3(M9),C(M9)
INPUT "DISCRETISATION PERIOD",TI 
LET T=T1
INPUT "TYRE ^ILE NAME IN WHICH DATA IS STORED",A$
OPEN FILE (0,0),AS 
FOR 1=1 TO M9

READ FILE (0,Z),A(I),B(I),C:I)
I^ INT(I)=INTCI+1) THEN PRIMy 

NEXT I
INPUT "FIRST POINT OF FIT",PI 
INPUT "LAST POINT OF FIT",P2 
LET N=P2-PI+1
INPUT "IS PLATEAU TO BE COMPUTED ? TYPE YES OR NO",as 
IF AS="NO" THEN GOTO 0330 
INPUT "FIRST POINT OF PLATEAU",QI 
INPUT "LAST POINT OF PLATEAU",32
LET M=Q2-Q1+1 
FOR I=ni TO Q2 

LET P=P+A(I)
NEXT I 
LET P=P/H

3310 PRINT "PLATEAU=",P 
3323 GOTO 0340 
0330 INPUT "PLATEAU ",P 
0343 REM :FIT EXPONENTIAL.
0353 FOR I=P1 TO P2 
0363 IF A(I)>P THEN LET A(I): 
0373 LET A(I)=LOG(P-A(I))
3383 LET X=I 
3 393 LET 51 =
3403 LET 52:
3413 LET S3:
3423 LET 54 =
0433 NEXT I 
3443 LET X=S1/N 
0453 LET Y=S3/N
0463 LET 3=(S4-N»X*Y)/(S2-N*Y*y) 
0473 LET B=-B
0483 PRINT "TOTAL FLOW PER MIN ='
0493 LET T=.693/B*60
0533 PRINT "Tl/2 IN SEC5=",T

'3301

S1+X*T
S2+(X*T)T2
S3+A(I)
S4+A(I)*X*T




