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ABSTRACT

Secondary or Parasitic internal bending moments in statically indeterminate continuous
prestressed concrete beams are produced by the presence of the redundant reactions at the
internal supports, assuming that the tendon profile does not coincide with the line of pressure
produced in the concrete, i.e. that the tendon is not concordant.

Whilst behaving in an elastic manner, these Secondary moments may be separated from the
total internal bending moment (Secondary moment plus moment produced by applied loads)
using various methods such as equivalent loads, together with a stiffness analysis. Beyond
the Serviceability Limit State, the beam will begin to crack, altering the flexural stiffaess as
well as causing local increases in the tendon force, in tumn altering the Secondary Moment.
Therefore if the designer wishes to incorporate Moment Redistribution at the Ultimate Limit
State, assuming that the critical sections have sufficient ductility, how to include Secondary
Moments, if at all, is of much debate.

Many different approaches have been adopted to shed light on the problem, the majority
using nonlinear analyses of various forms. The advent of Finite Elements has seen an

increase in their popularity for application to such nonlinear problems.

This study begins with a Finite Element analysis of simply supported prestressed concrete
beams, followed by an analysis of a two span example with a single curved tendon profile,
fully bonded to the concrete, up to Ultimate Limit State. Although these analyses allowed an
vestigation of the overall nonlinear behaviour, the Secondary moment could not be

separated from the Internal moment in the post cracking stage.

As a result of the Finite Element Analyses, a method of applying equivalent loads past the
Serviceability Limit State in an attempt to estimate the magnitude Secondary Moments up to
the point where the beam is rendered statically determinate, was developed and uiiilised in a
computer program. Two two-span beam examples and a three span beam, both with curved

fully bonded parabolic tendon profiles were analysed to highlight the possible effects the
secondary moment could have on the behaviour at Ultimate Limit State.
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Glossary of Terms

Concordant Tendon Profile. A tendon profile which is concordant is
coincident with the compressive force trajectory in the concrete. This means that there

is no internal moment present, i.e. the secondary moment in a continuous beam 1s zero.

Equivalent Load.  The effects of prestress on any beam system can be represented

by a set of equivalent transverse loads, and moments at the ends of the member. These

equivalent loads are useful in the determination of prestress effects, such as secondary

moments.

Internal Equilibrium and Internal Moment. Regardless of the external forces
acting on a static structure, internal equilibrium of forces must be maintained if 1t is to
remain so. It is well known that the basic idea in reinforced and prestressed concrete
beams is that the concrete, being strong in compression and weak in tension, relies on
the steel to take the tensile forces, whilst the concrete will take the compressive forces.

A short end section of a simply supported prestressed concrete beam, with a
straight tendon profile displaced downwards at an eccentricity e from the section
centroid, is shown in figure 1 as two separate free body diagrams, of the concrete (a),
and the steel tendon (b) . We will assume no applied transverse load, and ignore self
weight of the beam, hence the only force acting on the structure is that due to the
prestress. The concrete will be subject to the compressive force P and the steel will
take the tensile force T. The tensile force in the steel can only act along the profile of
the tendon. At this stage, the trajectory of the compressive force in the concrete must
also act along the line of the tendon, so that equilibrium is maintained. This becomes
obvious when we imagine the two free body diagrams in the composite section, where
P is equal and coincident to T at both the left and right ends of the free body.

Figure 2 shows the same portion of beam with an applied transverse U.D.L.
Again, the beam is divided into free bodies for the concrete (a) and the steel (b) .
Looking at the free body for the concrete (a), and taking moments about the simple
support, the force P acting on the right side of the section must move vertically up the

beam to maintain equilibrium. The force acting on the left end of the section has not
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moved however. Looking at the steel, the tensile force T remains the same and is fixed

In position by the tendon profile. In the composite section, comparing with figure 1,

the compressive force P has moved in relation to T on the right hand side of the
section to create an internal moment. This internal moment can be thought of as an
internal resisting moment which balances the bending moment produced by the
transverse load.

In general it is the line of the compressive force in the concrete which alters its
trajectory (often referred to as the compressive force path CFP, or the line of pressure)
to produce this internal moment to balance any bending moment induced in the beam,
caused by external forces or effects. This has implications when considering statically
indeterminate prestressed concrete beams.

In a statically indeterminate prestressed concrete beam, secondary (sometimes
called parasitic) moments can be produced by the effects of the internal supports
restraining the natural deflection of the beam assuming the internal supports wére not
present. Equivalent loads (section 2.2) can be used to determine secondary moments
prior to cracking. This is achieved by subtracting the primary moment (the product of
prestress force and tendon eccentricity) from the resultant moments (calculated from

the equivalent loads). The secondary moment therefore sets up an internal couple,
where the compressive force path in the concrete is no longer coincident with the

tensile force in the tendon. Hence as load is applied to the beam, the internal moment is
the addition of the bending moment caused by the applied load and any secondary
moment present. This addition 1s valid up to collapse, although the secondary moment

may alter after cracking has commenced.

Linear Transformation. Linear transformation is the process of raising or
lowering the tendon profile of a multispan prestressed concrete beam, at the internal
supports only, so that the basic shape of the tendon profile between the ends of the
member 1s not altered. A linear change in the tendon eccentricity (with distance) from
the internal supports of the member has been applied to the tendon, hence the name
linear transformation This process has the effect of ‘adding’ a linear eccentricity
function to the original eccentricity function, so that the primary moment (the product

of tendon force and eccentricity) is altered in a linear fashion along the beam.
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However, when the equivalent load is calculated from the new primary moment, there
1s no change, as the equivalent load is the second differential of the primary moment,
and any linear function change in the primary moment will disappear during the
differentiation. This means that the resultant moments calculated from the equivalent
loads will also not be altered by the process. The consequences of this are that the
elastic secondary moment (the subtraction of the primary moments from the resultant
moments) can be altered, and if necessary, eliminated totally, producing a concordant
profile. It should be noted that the eccentricity of the tendon at the ends of the member
must not be altered. If they are, the equivalent load (in the form of end moments) will

be altered, and the process is no longer valid.

Primary Moment (M1). The product of tendon force and eccentricity from the

section centroid at all locations along the beam length.

Resultant Moment (M3). The reactant moments in the beam caused by equivalent
loads (and also by the prestress itself). These are effectively the primary bending
moment plus any secondary moment prestress effect caused by the statical
indeterminacy of a beam. They can be calculated from the equivalent load using a

stiffness (e.g. moment distribution) procedure.

Secondary or Parasitic Moment (M2).  The internal moment caused by prestress
only (i.e. a prestress effect), caused by the statical indeterminacy of a beam. This is the

subtraction of the primary moment from the resultant moment.
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The most frequently used abbreviations and symbols are given here. Some less frequently

used symbols do not appear here and are locally explained in the text. The details for the

notation for Appendix F can be found in BS8110 [50]

Abbreviations
C.EF.P. Compressive Force Path
C.S.A. Cross Sectional Area
F.E. Finite Element(s)
R.C. Reinforced Concrete
P.C. Prestressed Concrete
U.D.L. Uniformly Distributed Load
Latin Symbols
A, Area of Concrete

Asor Ay Area of Prestressing Steel

C Carry-Over Factor

d Effective Depth

E Elastic or Youngs Modulus

e; Tendon Eccentricity (where ‘I’ is a reference number)
f., Characteristic Concrete Cube Strength

fo Characteristic Strength of Prestressing Steel

£ Modulus of Rupture (tensile Strength of Concrete)
I Second Moment of Area

L Length

I, Bond Length

M; Bending Moment (where ‘i’ is a reference number)
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Plastic Moment
Primary Moment
Secondary Moment
Resultant Moment

Prestress Force, or Load

Prestress

Load

Stiffness Factor

Total Force in Steel

Bond Stress

Neutral Axis Depth, or Horizontal Cartesian Coordinate of Length
Vertical Cartesian Coordinate of Length

Moment at Section after Redistribution
Moment at Section before Redistribution

Distribution Factor
Strain

Concrete Fibre Strain
Steel Strain
Material Factor

Curvature
Angular Rotation

Stress
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1/ Introduction

Statically indeterminate prestressed concrete beams and frames have a number of
advantages and disadvantages over statically determinate prestressed concrete structures, as
outlined by Nilson, [2]. Firstly, one significant difference is the formation of an internal
moment, referred to as the secondary or parasitic moment, by the presence of redundant
reactions in the statically indeterminate prestressed structure. The centre or line of
compression within the section is no longer coincident with the line of the tendon profile, and
the secondary moment will vary linearly between support sections. In the case of continuous
beams, by treating the prestress as an equivalent load on the beam, the bending moments
within the member may be split into primary, secondary, and total moments, so that the
elastic secondary moments may be calculated. Linear transformation of the tendon profile at
the internal supports will alter the primary and secondary moment so that the total moments
remain the same, and the stresses in the section are unaffected. Therefore if desired, the
secondary moment may be eliminated, and the tendon profile in this case 1s termed
concordant. However, in the design process, this is not always possible or desirable.

Secondly, in certain circumstances, statically indeterminate structures at ultimate limit
state possess the ability to carry loads passed the values predicted by elastic theory. This
overload behaviour is caused directly by the statical indeterminacy of the beam, coupled with
plastic behaviour of the critical sections in the member. Once a critical section has reached its
ultimate moment capacity in a statically indeterminate member, a number of possibilities exist
for the subsequent behaviour. If the section is not ductile and has no rotation capacity, then
the structure will fail immediately, and the failure load is that predicted by elastic theory. If
the structure has ductility and rotation capacity in all of its critical sections, then this wall
allow redistribution of bending moment to the stiffer parts of the structure until the ultimate
moment capacities at enough critical sections have been reached so as to form a collapse
mechanism. The failure load is that predicted by plastic methods, and will be greater than that
predicted by an elastic approach. A structure which is moderately ductile may exhibit partial
redistribution of the ultimate bending moments, until the rotation capacity of a critical section

reaches its ultimate rotation.

In the case of reinforced and prestressed concrete statically indeterminate structures,
if ultimate elastic moments are to be redistributed at the ultimate limit state, then the designer
will try to ensure that enough rotation capacity is available at the critical sections for the
desired amount of redistribution to occur. For prestressed concrete continuous beams, how
to treat secondary moments in the design at the ultimate limit state has been of much debate.
Whilst the beam is behaving elastically, these secondary moments may be readily calculated




using elastic methods such as equivalent loads. In the post cracking stage up to ultimate load,
elastic methods cannot be used, and the secondary moment cannot be monitored by normal
nonlinear analysis techniques or by experimental tests. The tendon force and stiffness
changes at cracks would suggest an alteration of the secondary moment in the post cracking
stage, which casts doubts on current design procedures, and how they incorporate elastic
secondary moments at the ultimate limit state. The following section reviews work related to

the subject of secondary moments and their effect on moment redistribution.

1.1/ Research on Secondary Moments and Moment Redistribution in

Continuous Prestressed Structures

A World Conference on prestressed concrete in 1957, [30], saw a gathering of the
current knowledge about the subject, ranging from materials, techniques, buildings,
manufacturing processes, and research. Morice, [25], presented a direct design method for
statically indeterminate prestressed concrete structures, using the 'influence coefficient'
method to calculate the moment envelopes due to both dead and imposed loading, and the
subsequent determination of concordant profiles by an analysis of the line of pressure within
the concrete. This method therefore tried to eliminate any secondary moments caused by the
statical indeterminacy of the structure, by the calculation of a permissible zone in which the
‘concordant tendon' could lie.

Morice and Lewis, [24], carried out a number of analyses on prestressed concrete
continuous beams and plane frames, and concluded that if the tendon profile undergoes a
linear transformation, the stresses in the structure remain the same in the elastic range, and
that at ultimate load, this was also theoretically true. Work carried out by Macchi at the same
time contradicted this. Full redistribution was designed for, and obtained in the tests carried
out by Morice, where the failure at the critical sections was due to failure of the prestressing
steel, giving these sections ductility and rotation capacity. In Macchi's case, there were a
number of failures due to crushing of the concrete, causing only partial redistribution of the

ultimate moments. Hence, this required further research.

Moment-Curvature relationships for both reinforced and prestressed concrete
sections were investigated by a number of researchers, and Burns, [16], describes their
calculation and design implications for partially prestressed (class 3) members. For sections
with differing properties, such as the quantity and location of the steel, the moment curvature
relationships behave differently, with those curves displaying a long plateau being the more
ductile. By knowing either the moment-curvature, or the load-deflection relationship of




various critical sections along the member the ultimate load could be theoretically estimated,

and controlled for design purposes.

Priestley et al.,, [19], began their programme of research into the moment
redistribution of prestressed concrete continuous beams with an investigation of moment-
curvature relationships. Simply supported beams with a constant moment zone, created by
the application of two transverse equidistant point loads in the span, were modelled both
experimentally and theoretically. The theory accounted for the concrete tension between
cracks and attempted to predict average curvatures along the length of the member, as well
as the curvatures at cracks. The results revealed that the differences between the average
curvature in the constant moment zone, and the maximum curvature at a particular crack at a
critical section were significant, and the average curvature gave better results for the
subsequent calculation of deflections. The theory was implemented in a computer program,
and the theoretical and experimental results were in good agreement. To analyse zones
where the bending moment was not constant, the member would have to be broken down
into small segments and the moment treated as constant over the segment length.

These relationships between moment and average curvature were then used to
predict the overload behaviour of continuous beams, Priestley et al.,[20]. A number of two
span beams were constructed and tested to failure with a single point load in each span. The
tendon profile was linear between supports and points of load application (i.e. harped at the
points of load application). Load-deflection and moment-load curves for both theory and
experiment were in good agreement. A number of the beams tested in the experiment were
designed to reach ultimate before full moment redistribution could take place, with an
estimated 10% tolerance on the calculated ultimate load, without the confining effects of the
supports on the crushed concrete at critical sections. No mention was made of the
significance of secondary moments, as their analysis accounted for prestress effects within

the calculation.

Bennet et al., [31], carried out twenty tests on both two and three span prestressed
concrete beams to assess how the curvature distribution along their lengths varied with the
distnibution of both moment and ultimate load. An Institution of Civil Engineers report
dealing with the ultimate load design of prestressed concrete structures put forward three
methods of design, which were tested using the integrated curvature measurements from the
tests. The results showed that the hyperelastic curvature was concentrated over a short
length at critical sections. Hence the calculation of the ultimate load was found to be fairly
accurate by treating the deformations as rotating hinges. Also, they concluded that the linear



transformation of the tendon profile did not affect the ultimate load (i.e. the secondary
moment had no effect), although no mention was made of the secondary moment.

Mallick, [17], carried out tests on 21 continuous two-span beams with similar load
arrangements to those of Priestley. His aim was to apply an analytical method for the
computation of redistribution proposed by Guyon®, although he found that most of his test
results were not as predicted by the method. An alteration (extension) to the method
whereby the curvatures in the vicinity of the plastic hinges were assumed to be concentrated
at the hinge gave a better comparison.

The problem of the treatment in design of secondary moments with regard to moment
redistribution in continuous prestressed concrete beams was addressed by Lin and Thornton,
[18]. Discrepancies in the 1971 ACI Building Code with respect to the inclusion of
secondary moments in the design procedure, suggested that in theory, when enough plastic
hinges are formed to render the member statically determinate, the secondary moments
would disappear. Lin points out that the only case in which this would be true is if full
redistribution of moment can be realised, and that the ultimate load will be the same if the
secondary moment is present or not. Also, because it had been shown that a linear
transformation of the tendon profile had no effect on the ultimate load, this was the basis
behind the statement in the code that only the dead and live load design moments need be
considered at the ultimate limit state. Yet if the redistribution was not allowed (or
incomplete), and the beam was assumed to be behaving in an elastic manner, the secondary
moments were present at their full capacity and should not be neglected, contradicting the
Code's statement about their treatment. Two numerical examples confirmed the difference in
ultimate load carrying capacities in the beam with respect to the influence of secondary
moments. The intermediate case where partial redistribution takes place could be analysed as
before, by considening the moment curvature relationships in the beam up to ultimate. A load
balancing approach was suggested to account for the inclusion of secondary moments in the
ultimate load condition, although the results were somewhat conservative.

In the light of the 1971 ACI code anomaly, there was increasing concern about how
to correctly deal with secondary moments in the design process. Huber, [32], reiterates that
linear transformation of the tendon profile does not affect the total moments or concrete
stresses in the elastic range, and that the ultimate load is unaffected whilst full redistribution
1s assured. Consequently, rather than use a method of analysis which requires proportional
loading up to ultimate limit state, he suggests a 'shakedown' approach such that the applied

* The strength of statically indeterminate prestressed concrete structures. Symposium on the strength of
concrete structures, London May 1956. London C&CA, 1958. Session C, Paper No.2.




loads are varnable, causing residual moments in the beam due to the inelastic deformations,
after which the beam may be treated as elastic once the deformations have stabilised.
However an incremental shakedown collapse is less likely than a proportional short term
loading failure.

A treatise on the Australian Concrete Codes was presented by Wyche et al, [33].
Comparisons were made of the British, American, and Australian codes with respect to
moment redistribution and the inclusion of secondary effects, i.e. secondary moments. This is
discussed in more detail in section 2.1. A simplified moment-curvature approach was used to
theoretically analyse the effects of the inclusion of secondary moments. By incrementing the
load on two, two-span beam examples, one with a concordant tendon profile, the other with
a positive secondary moment, the moment-curvature relationships at the critical sections in
the span and over the centre support were followed. The results showed that the prestress
secondary moments affect the ductility and the ultimate load of the beam, with positive
secondary moments having ductility benefits over negative secondary moments). The analysis
assumed that the secondary moment did not change from its elastically calculated value
during the stage from cracking up to first plastic hinge formation.

Scholtz, [34], presents an analysis of the ductility demand and capacities of partially
prestressed concrete continuous beams, and suggests improved values for the amount of
moment redistribution allowed in the design codes of practice. A unique expression is
developed to allow the secondary moment to be included in the redistribution process. This
yields more economical designs, although shear and bond failures have not been addressed.

Mattock, [35], descnibes how the shape of the tendon profile which causes secondary
moments to occur In a prestressed concrete continuous beam, causes relative rotations at
ultimate moment at the ends of the beam segments, changing the distribution of moments at
ultimate load by an amount equal to the elastic secondary moments. He argues that if a
tendon profile is transformed downward at an internal support (shifting the secondary
moment to a more positive value), then the inelastic rotation required for a given amount of
redistribution of moment is reduced by the amount of relative end rotation caused by the
tendon transformation. If the tendon profile is raised, then the rotational capacity is
increased, increasing the amount of moment distribution, with the amount of
increase/decrease being equal to the elastic secondary moment. In the cases where no
moment redistribution was allowed, these arguments would also hold true, as the secondary
moment would be included at ultimate. From some beam tests, he concludes that the

secondary moment does not change from the cracking stage up to ultimate moment, due to
the rate of increase in the support moment as the load was applied being nearly that predicted



by elastic theory. As to why local increases in the tendon force would not change the
secondary moment, this is attributed to the fact that secondary moments are caused by the
suppression of deformations due to the prestress. The applied loads cause the beam to
deform and increase the tendon force, locally at cracks, although this increase of force does
not cause any extra deformations, hence the secondary moment will remain at its elastically
calculated value.

A non-linear analysis using the imposed deformation method was carnied out by
Aguado et al, [36], and applied to the Glatt Bridge at Opfikon (Switzerland), which was
tested to destruction, [37]. Excellent agreement of internal forces and deformations between
the two was observed, and the non-linear analysis showed that secondary moments should be
included in the design of such structures.

Warner and Faulkes, [38], looked at the treatment of secondary moments and shears
in the limit state design of continuous prestressed concrete beams. Whether to treat the
tendon force as a load or a resistance component was also investigated. It was concluded
that the prestress force could be treated as a load at transfer and under service conditions,
whereas at ultimate, it should be treated as a resistance component. Secondary moments and
shears were to be considered at the serviceability limit state, and at ultimate where the cnitical
sections failed by crushing of the concrete, so that no moment redistribution occurs. For
ductile sections showing high levels of redistribution, secondary moments and shears were
insignificant. The design for ductility requirements of critical sections was left open.

These references reveal a number of conflicting opinions, backed up by empirical
work and theoretical analyses, as to the treatment of prestressing effects in statically
indeterminate structures, especially with regard to their design. A vast amount of current
research involves non-linear analyses which are implemented in various ways, mainly through
finite elements. Research involving non-linear and finite element analyses are discussed in

detail in section 3.1.



2/ Procedures in Limit State Design

2.1/ Moment Redistribution in Statically Indeterminate Structures

One advantage of statically indeterminate structures is that in most cases their
ultimate load capacity will be greater than that calculated using elastic theory. This is due to
the presence of redundant reactions which require the structure to reach its ultimate moment
capacity at more than one critical section, so that a collapse mechanism can form, causing
ultimate failure (assuming rotation capacities at plastic hinges have sufficient rotation for full
moment redistribution).

Using a linear-elastic approach, the bending moment envelope can be obtained at
various levels of applied load, and will increase proportionally with the load. When the
bending moment at a particular critical section reaches the ultimate moment capacity, it can
become no larger. A collapse mechanism does not form at this stage due to the statical
indeterminacy of the structure, so as the load is increased, the bending moment envelope
redistributes’ from its elastically calculated shape. When enough critical sections have
reached thetr ultimate moment capacity to form a mechanism, the structure will collapse, and
the applied load 1s deemed the ultimate load.

Full redistribution of bending moments requires the formation of near perfectly plastic
hinges at critical sections, with a large amount of plastic rotation available at each hinge.
Ductile materials such as steel have a large plateau in their stress-strain relationships, and
exhibit excellent plastic behaviour. Statically indeterminate steel structures therefore have a
large amount of rotation available at critical sections, and plastic methods for full
redistribution of moments can be applied. Less ductile materials, those with small ranges of
plastic behaviour on the stress-strain curves, will have only limited rotation capacity when
the formation of plastic hinges occurs at critical sections. When the ultimate moment
capacity at a critical section is reached, a plastic hinge will form and attempt to rotate to
redistribute the bending moment to the stiffer parts of the structure. If the section has limited
ductility, at some stage it is possible that the rotation capacity of the hinge will be reached,
so that it will fail in a brittle manner, causing immediate collapse of the structure. In this case
only partial redistribution of moment occurs before the ultimate load capacity has been
reached, having a value between that predicted by an elastic analysis, and that predicted
using plastic methods. In some cases, a structure may have negligible rotation capacity at its
critical sections, and will fail at a load calculated directly from elastic theory.



Reinforced and prestressed concrete are essentially composite structures, consisting
of the brittle concrete, and the much more ductile steel reinforcement. Depending on the
amount of remnforcement present in a concrete structure, and the particular design, this will
have a bearing on the ductility of a particular section, and hence the amount of rotation
available. An under-reinforced section, where the reinforcement reaches its yield stress
before the concrete fails, (i.e. when the extreme compressive fibre of the concrete reaches a
strain of approximately 0.0035) will exhibit an ability to rotate at its ultimate moment
capacity. The amount of rotation possible depends on how under-reinforced the section is.
Sections where the concrete reaches its ultimate strain simultaneously with the yielding of the
reinforcement will have negligible rotation, and those which are over-reinforced will fail

immediately the ultimate moment capacity is reached.

The neutral axis depth at the ultimate moment gives a good indication as to how the
section will 'fail', governed either by the concrete, or the steel. Figure 2.1.1 shows two
accounts of the same section, figure 2.1.1.(a) with a small neutral-axis depth, and figure
2.1.1.(b) with a large neutral axis depth. It can be seen that the linear strain distribution
across the depth of the section with the small neutral-axis depth will tend to give a large
strain in the steel compared with the compression strain in the top fibre of the concrete, and
hence will tend to produce an under-reinforced section having some plastic rotation capacity.
The large neutral-axis depth will cause the strain in the steel to be small compared with that
at the top concrete compression fibre, and the concrete will reach its compressive strain
capacity before the steel yields, allowing no rotation capacity. Therefore the neutral-axis
depth reflects a vital property in the design of reinforced and prestressed concrete as far as
moment redistribution is concerned.

The major concern in the redistribution of bending moment in reinforced and
prestressed concrete is the provision of enough rotation capacity at critical sections to allow
the amount of redistribution required for the design. Also, as the redistribution is carried out
at the ultimate limit state, the design has been effectively modified, so the desired behaviour
at the serviceability limit states must be ensured. In B.S.8110 this is achieved by a
requirement that the redistributed envelope must not violate a service load envelope, the
latter being calculated either directly from the service loads, or as a percentage (70% for
R.C, 80% for P.C.) of the elastic ultimate moments before redistribution. This percentage
line method will ensure that the points of contraflexure (positions of zero moment) of both

the service and ultimate envelopes remain unaltered in their location along the beam.



2.1.1/ Design procedure for the redistribution of moments for R.C. to B.S.8110

Firstly a definition for the term 'redistribution of moment' must be established, with
regard to the design procedure. A two-span continuous beam subject to two point loads of
magnitude Q in each span is shown in figure 2.1.2.(a). As the load is increased, an elastic

analysis will give the bending moment in the spans and at the central support as
M, =50QL/32 and M, =30L/16 respectively, figure 2.1.2.(b). The bending moment

envelope will, at a particular load, reach its moment of resistance, M, = M, at the central
support, figure 2.1.2.(c), assuming the beam has identical moment of resistance values in the
spans and at the support. Assuming unlimited rotation capacity at this hinge, the moment at
the central support will remain unchanged, whilst the span moments will increase. When the
applied loads are increased, two further hinges will form in each span, producing the collapse
mechanism shown in figure 2.1.2.(d). This ultimate moment diagram is caused by the
collapse load and is based solely on plastic behaviour. The original elastic bending moments
redistribute as the plastic hinges form. However, in B.S.8110, redistribution is considered in
a different manner. Using the same example as in figure 2.1.2., a bending moment envelope
for the collapse load, say Q, is calculated using elastic methods, giving the bending moment

envelope shown in figure 2.1.2.(b). The support moments are then reduced to the plastic
moment value, M, = QL/6 in the example (derived from figure 2.1.2.(d).). To satisfy

equilibrium requirements however, the span moments must be tncreased, so that the free
bending moment remains the same. This is the same as superimposing the free bending
moment on the changed reactant support moments, Moy[11]. The procedures required for
the design to B.S.8110 are illustrated in more detail in the following section.

An elastic bending moment envelope for a continuous beam under ultimate load is
calculated from the following combinations of loading :-

- a/ All spans loaded with 1.4 X Dead Load+ 1.6 X Imposed Load
b/ Alternate spans loaded with 1.4 X Dead Load+ 1.6 X Imposed Load and all

others with 1.0 X Dead Load

B.S.8110 clause 3.2.2.1 requires that the maximum amount by which any moment
may be reduced is 30%, therefore the resistance moment provided by any section must be at
least 70% of this elastically calculated envelope. In this respect it is useful to have an
envelope of 70% of the elastic moments for comparison purposes after redistribution has

been carried out.



To illustrate the procedure, consider a new model of a span in the middle of a
multispan continuous beam system, subject to a point load at its centre. Figure 2.1.3.(c).
shows the ultimate moment envelope obtained from two moment envelopes shown 1n figures
2.1.3.(a). and 2.1.3.(b), obtained from two separate load cases. The support moments in
figure 2.1.3.(a). can be reduced by 30% to -105 kNm and -175 kNm at the left and nght
hand ends respectively, causing an increase in the span moment to 210 kNm, as shown in
figure 2.1.4.(a). Alternatively if the span moment in figure 2.1.3.(b). 1s reduced by 30% to
175 kNm , the support moments would increase to -175 kNm and -225 kNm respectively,
figure 2.1.4.(b)., an increase on the original values in figure 2.1.3.(a). Alternatively by
increasing the support moments in figure 2.1.3.(b). to -105 kNm and -175 kNm, the span
moment may be reduced by 15 kNm to 235 kNm. This redistribution will be adopted, figure
2.1.5.(a). Comparing this with the envelope of ultimate moments in figure. 2.1.3.(c). and
figure 2.1.5.(b), it can be seen that the positions of zero moment (contraflexure), have moved
towards the supports in the negative hogging moment region, and away from the supports in
the positive sagging moment region. An envelope of 70% of the ultimate moments will cross
the axis at the same position as the full ultimate moments, figure. 2.1.5.(b). Thus the
redistributed envelope violates the 70% envelope in the regions of contra flexure. The
redistributed envelope must be revised to comply with the 70% ultimate envelope, to ensure
that sufficient lengths in the hogging and sagging regions are reinforced to satisfy service
conditions as shown in figure 2.1.5.(c).

Clause 3.2.2.1, condition 2, ensures the provision of adequate rotation capacity, and
states that at positions where moments have been reduced by the redistribution, the neutral

axis limit should not be greater than 0.6 of the effective depth, obtained from the expression
x < (B, —04)d , where :

_ Moment at section after redistribution

= . —S ]
Moment at section before redistribution

B,

Where : x = Neutral axis depth

d = Effective depth

This maximum value for x assumes that no redistribution has taken place, and that
B, = 1. At the other extreme, if the full 30% reduction has taken place, the neutral axis depth

x will be 0.3 of the effective depth. For design purposes, assuming that some redistribution
of moments has taken place, the limiting value on the neutral axis depth is obtained from B,
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and the required reinforcement calculated from design equations such that this limit is not

violated.

2.1.2/ Design Procedure for the redistribution of moments for P.C. to B.S.8110

The provisions for the redistribution of moments in prestressed concrete continuous

members are covered by clause 4.2.3. In this case the reduction of the design ultimate
moments is limited to 20%, and hence the neutral axis depth should not exceed (B, —0.5)d .

Therefore the allowed level of adjustment in the ultimate envelope is less than for reinforced
concrete because of the reduced ability to predict rotation capacities in prestressed concrete.
The question of how to treat secondary moments in the analysis is of major concern, as
plastic theory would dictate that the addition of any residual moment such as the secondary
moment would not affect the ultimate load. The only case in which this can be guaranteed
would be when complete redistribution (in the plastic theory sense) has taken place, 1.e. when
the rotation capacity at critical sections is known to be sufficient for full redistribution. Due
to this uncertainty involved with the design of critical sections, how to include the effects of
secondary moments 1s of extreme importance. Plastic theory would suggest that whether to
include the secondary moments at the ultimate limit state or not, will yield the same result,
yet if full redistnibution cannot be assured, (1.e. sections cannot be designed with the required
ductility), this is definitely not the case. B.S.8110 comes to a compromise by including the
secondary moments with a load factor of 1.0 with the ultimate bending moments before
redistribution, so that they are present in the calculation of the limit to the neutral axis depth
(for ductility of critical sections), obtained from Clause 3.2.2.1, condition 2.

2.1.3/ Design Procedure for the redistribution of moments for P.C. to A.C.I. Code

ACI 318-89 permits a reduction of moments based on 'reinforcement indices' which
are in turn related to the rotation capacity of the sections which are of concern. Specifically

the reinforcement indices are,

A.rfy w' — A;fy O = Apfp.s

bdf’ bdf, ? bd,f,

Q=

for non-prestressed tension steel, non-prestressed compression steel, and prestressed steel
respectively. The elastic ultimate moment envelope is then calculated from all possible
loading conditions, and the maximum percentages by which negative moments may be

decreased or increased are,
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For rectangular sections with prestressed steel only :

0,
20| 1 ——— |%
0360,
For rectangular sections with prestressed and non-prestressed reinforcement -

aJp+—5-(aJ-a)')

200l -——F—————— |
0368, i

For flanged sections with prestressed and non-prestressed reinforcement

036,

where the term f3, is the factor by which the neutral axis depth is multiplied to obtain the

depth of the equivalent rectangular stress block, and the subscript w refers to the
reinforcement indices calculated from the breadth of the flange. It can be seen that the
maximum possible percentage redistribution, like the British code, is twenty percent.
However, the moment in the spans must be calculated from the same loading arrangement as
that which produced the negative support moment values which have been altered. Also,
there is a requirement to the effect that the reinforcement index (given by any of the three
numerators in the above fractions) must not exceed 0.24f,, and a minimum amount of
bonded reinforcement is required at the support sections. Both of these requirements ensure

ductility.
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Secondary moments are included in situations where the required ductility and
rotation capacity cannot be guaranteed to create the desired full redistribution of bending
moments, and in these cases they are included with a load factor of 1.0. The difference here
s that they are included after redistribution of moments has taken place for calculation of the
design ultimate moment.

The implications of this procedure for the inclusion of secondary moments, are
described by Wyche et. al.,[33]. In the same reference the procedures in the Australian 'AS'
codes and NAASRA, the Australian bridge design code, are compared with the American
ACI, Canadian, and Bnitish Standard 5400 codes, and the advantages and disadvantages are
examined in detail.

The conclusions that can be drawn from this is that there are a number of conflicting
design methods which attempt to include the effects of secondary moments in the design.
The correct way 1n which they should be treated has been, and 1s, a subject of much debate.
Research has shown that they may have both beneficial and detrimental effects depending on
their magnitude and sign, and also upon their inclusion or exclusion in the design. When they
are included, they are assumed to act at their full elastic value, but as tendon forces and
flexural stiffnesses change after cracking has occurred, this can no longer be valid. Only
when a statically determinate system has been created due to the formation of a plastic
hinge(s), will it be true that the secondary moment has become zero and has no further
effect. However, the secondary moment is present up to statical determinacy, and therefore
affects both the load at which this occurs, and the available rotation capacity at the critical
sections thereafter, hence affecting the amount of redistribution which can take place. The
secondary moment affects when the plastic moment is reached, and thus the amount of

rotation required before the mechanism forms.
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2.2/ Equivalent Load Analysis

The theory of equivalent loads provides a useful tool for the analysis of both simply
supported and continuous beams, and is sometimes referred to as the tendon reaction

method of analysis, and is described by Hurst, [1] and Nilson, [2]. By deflecting a stressed
tendon from a perfectly horizontal profile, the concrete must exert a transverse force on the

tendon to hold it in position, and hence, the tendon will exert an equal and opposite force on
the concrete. Tendon profiles which are continuously curved will produce distributed
transverse loads on the member, whereas those with sharp changes of profile will produce
concentrated loads at the change points. These transverse loads produce the same bending
moments as the prestressing force, and are called equivalent loads. Although these
equivalent loads are treated as transverse loads, theoretically they are directed towards the

centre of curvature of the tendon profile, in the case of continuously curved tendons, but 1n
most cases, as the tendon is of shallow inclination, the equivalent load can be assumed
vertical. At the ends of the member where the anchorages bear on the concrete, moments are
produced by the eccentricity of the anchorage from the centroidal axis of the member. As a
result of this equivalence between these transverse loads and the prestress, prestressed
concrete beams may be analysed by considering the tendon force as a set of externally

applied equivalent loads.
2.2.1/ Elastic analysis of simply orted beam

Figure 2.2.1. shows a simply supported beam with a continuously curved parabolic
profile. The equation of the profile is calculated as:

I —
y=e,--§(e2-e,)+4d,x( sz) (2.1)

where d, is the drape of the tendon. It has be shown in many texts, Hurst [1], that the
equivalent load is equal to P/rss, where rps is the radius of curvature of the tendon profile. If,
as is normally assumed, the profile is reasonably flat, /r» can be approximated by
d’y/dx*® . Differentiating equation (2.1) twice, and multiplying by the tendon force gives the
equivalent load, in this case a uniformly distributed load of magnitude :

8 Pd.
- = (2.2)

W =
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It can be seen that rearrangement of this equation gives the well known formula for the
maximum bending moment in a simply supported beam subject to a uniformly distributed

load w, 1.e.
2
p.d =-Y= (2.3)
8
This i1s analogous to the relations between load, shear force, and bending moment. The

equivalent load is thus the second derivative of the bending moment, i.e.

dV d* M
- - . = - 2.4
q s T2 (2.4)
Also, the moments at the ends of the beam are :
M, = Pe cos 6, M, = Pe, cos 0, (2.5)

Thus, the primary moment - Py, can be used to calculate the equivalent load using
the aforementioned method(i.e. W = P(d*y/dx?)). It should be noted that if the tendon

force P varies along the profile as a function of x, this must also be included in equation

(2.1) before the differentiation process.

For sharp changes in profile where the tendon has been held down or 'harped’, as
shown in figure 2.2.2., the concentrated load is obtained using W = P(sina +sin ).

=

2.2.2/ Elastic Analysis of Continuo

A beam continuous over three supports is shown in figure 2.2.3., and the primary
moments, the product of the effective prestress force (4000kN) multiplied by the
eccentricity of the tendon profile from the section centroid, are displayed in figure 2.2.4.(a).,
denoted by M,. For the left hand span, the parabolic tendon profile creates a uniformly

distributed load as dictated by equation (2.2) :

W= — 8pd, _ _ 8x4000x05 _ _ ,0iN/m (2.6)

I 20°

The same result will be obtained if the change in slope between points A and B 1s
calculated, i.e. d* M/dx*. This method is employed to calculate the concentrated load in the

right hand span. At point C the change in slope is equal to :
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= — 100kNm/m - 300kNm/m = - 400 kN (2.7)

Also, as the tendon at end D is non-coincident with the section centroid, an end
moment of 400 kNm exists here. To obtain the resultant moment in the beam, a number of
methods can be employed, such as flexibility and stiffness (many software programs are
available for this). Moment distribution which is based on the stiffness method lends itself

to hand calculations, and is carried out on the system of equivalent loads, shown 1n figure.
2.2.4.(b).

2.2.3/ Moment Distribution

The fixed end moments for the spans are :

First Span:
2 2
Left Hand End = — who _ _ 80x20 1333.3 kKNm
12 12
2 2
Right Hand End = + Y& = 4+ 29200 _ | 13333 kNm
12 12
Right Hand Span:
2 2
Left Hand End = - —@-3—- = - w = ~ 1152 kNm
L 20
2 2
Right Hand End = + szb = 4 59-(1’-;-%5-’-‘33 = + 768 kNm

=0 N
Factors

-1152 +768 +400
507|907
comyowr | 0 | e

I R Y

-41.4

towiwm | o | seny | seer | 400
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The resultant moments are shown in figure 2.2.4.(c), and these represent the total
moments within the beam, denoted by A/,. The difference between these resultant moments
and the primary moments, M,, figure 2.2.4.(a)., is the secondary or parasitic moment,
M, (1e. M; = M,+ M, ), shown in figure 2.2.4.(d), representing the net internal moment
within the beam, caused by the statical indeterminacy of the beam. This may also be
visualised as the central support applying a restraining external reaction, causing the centre
of compression within the beam to be no longer coincident with the line of the tendon,

setting up the internal secondary moment.

2.2.4/ Linear Transformation

If we imagine a linear transformation of the tendon profile by raising or lowering the
tendon at internal support sections, the equivalent loads will not alter as the change of slope
of the primary moment function remains the same. Thus the resultant moments in the beam
will remain the same if the profile is transformed in this manner, however the primary
prestress moments will differ due to the change in eccentricity of the profile. As a result, the
secondary moments are changed, and if so desired, they can be totally eliminated by the
production of a concordant tendon profile, whereby the tendon is coincident with the
trajectory of the centre of compression in the beam. There can be a number of different
concordant profiles for particular continuous beam systems, although in a great deal of cases
these profiles are impractical, and the secondary moment cannot be completely eliminated.

2.2.5/ Qverload Behaviour

The equivalent load method provides a means by which total resultant moments in
the beam can be found. These are a combination of both primary and secondary moments,
the latter of which reveals itself as the net internal moment. As vertical load is applied to the
continuous beam, the internal moment becomes the addition of the secondary moment and
those moments caused directly by the applied load. Whilst operating in the pre-cracked
stage, in an elastic, serviceable manner, the equivalent load analysis can be applied with
sufficient accuracy to find total and secondary moments, as the tendon force change due to
the application of external loads is negligible, and an assumed effective prestress force is
adequate. As the beam is overloaded, cracking will commence at some stage, and the nature
of the beam will change. Local increases in tendon force occur at cracks, the magnitude of

the change depending on bond characteristics, the location of the cracks, and the amount of

cracking which has taken place. The onset of cracking is also accompanied by a change in
the beam stiffness. Therefore at the serviceability limit state, the secondary moment due to
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the prestress and internal moment due to applied loads can be separated readily, with easily
calculable secondary moments, but beyond these loads up to the ultimate limit state,
separation of the changing secondary moment from the internal moment becomes a difficult
task, due to the aforementioned complications. The magnitude of the secondary moment
may be a significant value at the onset of the formation of plastic hinges when possible
redistribution of bending moments occurs, affecting the eventual ultimate load . Hence there
are a number of factors to consider which complicate any attempted analysis of a cracked

continuous beam using equivalent loads.

The monitoring of resultant moments has been carried out by a number of
researchers such as Campbell and Moucessian, [23], and Campbell and Kodur, [29],
employing finite element (stiffness) techniques and implementing them in computer
programmes, with various degrees of success. Of concern here is the treatment of secondary
moments 1n codes of practice for design purposes, and as this is the root of the problem, it is
desirable to have a means of estimating them in the post-cracking stage of loading and their
effect on the ultimate load. The following is an outline of the necessary procedures for an
equivalent load analysis to determine the magnitude of secondary moments after the

initiation of cracking.

2.2.6/ The application of Equivalent Loads to determine the magnitude

of Secondary Moments i > Post-Cracking stagg

As described in the previous section, the equivalent load can be found directly from
the primary moment function by evaluating the second derivative with respect to x,
assuming a continuously curved tendon profile. With no applied load, a stiffness analysis in

the form of moment distribution (for hand calculation) is carried out with the necessary
fixed-end moments, carry over factors, and relative stiffnesses of members, due to the

equivalent loads, to calculate total moments, and secondary moments by subtraction of the
primary moment. When an external load is applied the procedure remains the same as long

as the beam is behaving elastically. The primary moment and equivalent loads remain the
same, yielding the same resultant and secondary moments. The secondary moment may thus

still be separated from the internal moment.

With a continuous beam system, let us assume that the first crack occurs at an
internal support in a region of high negative (hogging) bending moment, at a particular
magnitude of applied load. At the location of the crack, the tendon force is increased. This

increase may be calculated by performing a cracked section analysis on the section in
question, subject to the internal moment at that location. Immediately to the left and right of
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the crack, the tendon force will decrease in some manner to its effective prestress force
value, at a distance away from the crack governed by the bond characteristics between the
steel and the concrete. This change in tendon force will cause an alteration in the primary
prestress moment, affecting the equivalent load. At the crack, the stiffness (EI value) of the
section has been reduced, so that the fixed-end moments, carry-over factors, and stiffness
factors will be different in the moment distribution from the elastically calculated values. If
these factors can be calculated successfully, the resultant moment due solely to the
equivalent load may be obtained, and a value for the secondary moment established. The

main components of the calculation are :-
1/ To find the second derivative of the primary moment, i.e. the equivalent load.

2/ To calculate the stiffness and carry-over factors of the beam, and carry out moment

distribution (or stiffness calculation).
3/ To perform a cracked section analysis of the prestressed concrete member.

A calculation involving procedures 1 to 3 would be far too complex to carry out by
hand, but 1s suited for solution by computer. A computer programme SMAREL (Secondary
Moment And Redistribution by Equivalent Load) has been written to estimate the
magnitude of secondary moments in two and three span prestressed concrete continuous
beams, up to the point of first plastic hinge formation. The programme procedure is
described in Appendix A, and its features detailed in section 3.
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Figure 2.2.1. Simply Supported Member withContinuously Curved Parabolic Tendon Profile
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3/ Finite Element Analysis of P.C and R.C. Structures

The finite element method provides a powerful tool for analysing a vast range of
engineering problems, especially in the field of Structural Engineering. Many texts have been
produced regarding the various finite element techniques and their applications, Scordelis
[39], accompanied by the production of computer software which is produced commercially
for both specific purposes and general applications. There has been an increased interest in
the analysis of reinforced and prestressed concrete using finite element techniques over the
last twenty five years, and work in this area has yielded many valuable results in comparison
with laboratory tests, although codes of practice for design are still largely based on
empirical data. Compared with the application of well established theoretical methods which
may include approximations for various properties, the actual behaviour of a structure can be
analysed more accurately using well constructed finite element models, justifying their use in
a large amount of modern structural research. There is no perfect substitute for
experimentation, but the finite element method is probably the best alternative, and in most
cases when 1t takes far less time, effort and expenditure for modelling a structure using this
method, it has distinct advantages.

There are a number of factors associated with the analysis of R.C. or P.C structures

using finite elements which complicate the process and these require correct modelling .
Nonlinear stress-strain relationships for both the steel and the concrete must be considered,
together with the anisotropy of concrete, i.e. it 1s strong in compresston, weak in tension, and
will crack and crush at particular load levels causing a change in the stiffness matrix. The
composite action of the steel and the concrete is created by direct bond in ordinary

reinforced, pretensioned, and post-tensioned grouted members, whereas with unbonded
tendons, this is done by the anchorage and friction transfer stress, so a means of modelling
these bond characteristics must be determined. Correct application of the prestress,
representation of the load, boundary conditions, and discretization of the elements in the

model are also of importance.

3.1/ Review of Previous studies involving Nonlinear analyses of R.C. and P.C.

In the late 1960's a number of researchers were beginning to explore the possibilities
of using finite elements to aid in the design and analysis of reinforced concrete.

Mufti et.al. [21], investigated the use of finite elements for the analysis of reinforced

concrete, creating a computer programme using two-dimensional triangular elements for
both the concrete and the steel, with an incremental loading procedure for the non-linear
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analysis. A similar process was used to account for the non-linear bond stress-slip properties.
Cracking was included by stopping the analysis and effectively deleting the cracked element
concerned from the global stiffness matrix by making its thickness zero. In this particular
study this was done automatically, eliminating the need to stop the program, alter the
boundary conditions, and restart the analysis from zero load, as for earlier work. Bond
linkage elements were used to connect the steel to the concrete, using bond-slip relationships
suggested by Nilson in an A.S.C.E. State of the Art Report on Finite Element Analysis of
R.C. Structures, [40]). Time dependant properties such as creep, shrinkage and steel
relaxation were also included. The results were good, indicating the usefulness of finite
elements in the analysis of reinforced and perhaps prestressed concrete.

This State of the Art Report on the Finite Element Analysis of Reinforced Concrete,
[40], describes various techniques in the modelling of reinforced concrete using finite
elements. Nonlinear analyses, both material and geometric, are discussed in detail, as are the
failure criteria of the concrete, bond representation and shear transfer. Three different
methods of modelling the reinforcement are dealt with; a distributed representation combined
the concrete and steel in a constitutive relation, effectively distributing the steel within the
concrete matrix, specifying an orientation for the reinforcement and assuming full bond:
1soparametric elements were produced which effectively embedded the steel as an axial
component in the concrete element (forming a composite element), with compatible
deflections of each matenial within the element thereby assuming full bond; discrete
modelling of the steel by one-dimensional spar or beam elements attached to the concrete,
allowing any prestress to be modelled by an initial strain, and bond stress-slip relationships
applied through linkage elements. The latter method of modelling reinforcement was the

most widely used, as this provided more options such as the inclusion of separate axial,
bending, and shear for the steel. Bond could be modelled with linkage elements adopting
non-linear relationships in orthogonal directions, lumping properties at nodes, or alternatively
with interface elements which distributed the properties along the steel concrete interface.
Models of common reinforced structures are included, using the techniques discussed in the

report.

In 1983, an International Symposium on the Nonlinearity and Continuity in
Prestressed concrete addressed the problems of hyperstatic moments with regard to moment
redistribution at the ultimate limit state. Papers on similar themes are gathered in the
publication with the aim of throwing light onto the current problems by use of modern
nonlinear techniques, including finite elements. Volume 2 of the 3 volume series deals
directly with the problems of nonlinear analyses of continuous structures, and includes the

following three relevant papers :
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Levi et.al., [41], attempt to study the behaviour of prestressed continuous beams by
the ‘deformation method', analysing a T-section beam of fine mesh subject to an increasing
externally applied load up to ultimate limit state, including prestress effects. The
deformations (curvature etc.) were calculated at each load step, using an iterative procedure
to ensure compatibility and equilibrium. Results suggested that the secondary moment is not
affected substantially up to the ultimate limit state.

Cauvin, [42], outlines a similar nonlinear analysis, including cracking, tension
stiffening, and plasticity, treating the hyperstatic effects of prestressing as action effects or
equivalent loads. Time dependant effects such as creep and shrinkage were also included. His
results suggested that hyperstatic effects decrease as the beam stiffness decreases due to
cracking , although he does point out the lack of comparisons with experimental work at the

time.

Scordelis [39] and [43], outlines computer models which can be used for the
nonlinear analysis of reinforced and prestressed concrete structures. Material and geometric
nonlinearities are incorporated, with pretensioned or post-tensioned bonded or unbonded
tendons. A number of time dependant effects such as creep, shrinkage, and relaxation of the
prestressing steel are also included, along with a full description of the numerical
formulations involved in the solution. This spawned a number of computer programmes
using these proposed computer models, with specific elements developed for the modelling
of particular prestressed structures, as part of a major research programme at the University

of California.

One of these programmes PCFRAME which analyses reinforced and prestressed
concrete planar frames, beams, and columns was used by Campbell, [23], to investigate the
failure loads of two-span continuous beams with various load patterns, nonprestressed
reinforcement and prestressed tendon profiles. From the results of the analyses, two
parameters, one for the quantitative measurement of moment redistribution available, and
another which gave consideration to the secondary moment in the analysis, were put forward
for use in calculation of the load carrying capacity of prestressed two-span beams. A
subsequent comment by Mattock, [44] suggested that a number of the beams in the study did
not conform with the American design codes, ACI 318-83, and that a similar parameter for

measuring available redistribution had already been defined by Bennet, [31]

Campbell, [29], describes the continuation of the research at Queens University in
Canada, where a curvature incrementing technique was used for the nonlinear analysis of
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prestressed concrete continuous beams. A macroscopic model was used in this instance, and
the nonlinear analysis carried out by incrementing the curvature of a predetermined critical
section, having already calculated the moment curvature relationships for each segment of
the structure. An assessment of the acceptable aspect ratios of the macroscopic segments at
critical sections revealed that a ratio of width to depth of zero would yield exact failure
loads, but as this was not possible, a range of 0.2 to 0.4 was acceptable for the prediction of
the beams behaviour, compared with empirical data.

Seraj et.al., [22], carried out nonlinear finite element analyses of prestressed concrete
members, using a three dimensional finite element package, designed specifically for
reinforced concrete. The prestress in this case was applied as an equivalent load, and the
corresponding portion of the steel stress-strain curve removed to take account of this.
Results from these tests were favourable with a design procedure based on an analysis of the
trajectory of the compressive force path (CFP) in the concrete, suggested by Seraj.

A great deal of more recent work involving the application of finite elements,
specifically to reinforced or prestressed concrete structures, attempts to refine the ideas
menttoned 1n the previous references, presenting solutions to various individual problems.
One such problem, when dealing with prestressed concrete is the curved profile of the
tendon. Straight steel profiles either prestressed or non-prestressed can be easily attached to
the regular concrete mesh, whether horizontal or inclined at an angle. When the profile is
curved, this requires either the concrete mesh to be irregular so that the steel profile can be
'picked up' by the concrete nodes, a situation which is not destrable, or the creation of a very
fine regular concrete mesh, causing increased computer solution time and expense. El-
Mezaini and Citipitoglu, [45], have presented an isoparametric element of which the edge
nodes may be shifted to coincide with the line of the tendon profile. Hence, the concrete
mesh may be created first, regardless of the profile, and then the edge nodes are moved to
the desired profile, followed by the attachment of the steel. Application to a few examples

with continuously curved tendon profiles ytelded good results.

A number of general purpose finite element computer software packages have
evolved such as ANSYS, [46], and have been constantly upgraded since their production, as
the technology of finite elements grows. Many incorporate specific elements in their libraries
for the analyses of particular problems such as the modelling of concrete type materials,
either singly, or in composite action with other materials, i.e. steel. ANSYS has incorporated
a three-dimensional isoparametric concrete element into its library, formulated by

Schnobrich, [47]. Each of the eight integration points has the capability of cracking in any of
the three principal stress directions which may exceed the maximum tensile stress,
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whereupon corresponding alterations are made to the material property matrix. If the
concrete reaches i1ts maximum strain, crushing will take place at any integration point where

this has occurred, and the material property at this location is set to zero. The element also
includes a variety of other features, including distributed modelling of reinforcement if

necessary in any direction within the concrete matrix.

In this research, the ANSYS finite element package has been used to model
prestressed concrete simply supported and continuous beams of various profiles, in an
attempt to shed light on moment redistribution and secondary moments up to the ultimate
limit state.
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3.2/ ANSYS Overview

The software package ANSYS, [46], produced by Swanson Analysis Systems Inc., is
one of the leading general purpose finite element programmes available to both educational
and commercial establishments. The programme has a comprehensive menu driven system
with general and time-history preprocessors for model creation, solution phase, and general
or time-history postprocessors for viewing, analysis and manipulation of the model solution
data. An overview of version 4.4a is described here.

After execution of the main program, the user enters the routine begin level of
ANSYS, and the menu overlay may then be either turned 'on' or 'off depending on the users
preference and familiarity with the program commands.

3.2.1/ Preprocessor

On entry to the general preprocessor (PREP7) from the routine begin level, the type
of analysis is first selected, i.e. structural, thermal, static or dynamic etc. A large element
library becomes available with general 1, 2, and 3 dimensional elements, and elements
designed for specific purposes, each with their own individual accession or 'STIF' number,
The next step 1s to select all the element types to be used in the model. During their
selection, a number of key options are specified for each element type to define certain
properties specific to the element in question, such as control of solution printout, or control

of element physical properties. Real constant sets are then created, each with their own
reference number, for use with these elements to define additional information about their

geometric characteristics. Linear material properties are defined with reference numbers for
each material, specifying each property, (such as elastic modulus) for a particular material.
When a nonlinear stress-strain relationship is required, the form and hysteresis characteristics
of the stress-strain graph are defined in a nonlinear table for the material, entering co-

ordinates of points on the curve in the appropriate location in the table.

Having already planned out the desired finite element mesh, the nodes are generated
first. Cartesian, cylindrical polar and spherical polar co-ordinates systems are available for
input of these nodes, with facilities for defining local and global systems. The first 'set' of
nodes are normally created such that subsequent node creation can be carried out by a
generation procedure of the primary set, assuming the mesh has been well constructed in
such a manner as to allow for this. Automatic meshing for more complicated models is also

available. With all the nodes created, an element type, an associated real constants set, and a
set of material properties are selected for the subsequent assembly. The elements are formed
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by assigning them to the correct nodes in a predetermined order. Again, as with the nodes,
elements may be generated from an initial pattern. To change an element type or any of its
properties, the selection of the appropriate reference number of a real constant set, material
property set, or element type will facilitate this. Once the model has been created, boundary
conditions and applied loads must be defined. Boundary conditions may be entered at set
displacements in the active co-ordinate system, or as constraint equations, thereby allowing
an analysis by the specification of a prescribed displacement rather than by direct loading. A
variety of external load application 1s available. Pressures over element faces, point loads at
nodal locations, and accelerations coupled with specific material densities provide several

means of direct loading.

The data required for the solution phase 1s written to a file (either file 27 for a linear
analysis or file 23 for a nonlinear analysis), and the preprocessing database is written to file
16. This file may be saved for future resumption of model preparation in the preprocessor.
Alternatively, each time the preprocessor is used, an ASCII text file, filel18 is written with a
record of all of the commands for that particular session. This file may be run through the
preprocessor so as to create the filel6, and as file18 is generally smaller than filel6, 1t 1s

normally more convenient to save or create this text file.

3.2.2/ Solution Phase

After exiting from the preprocessor, the solution phase is initiated at the routine begin
level. For a static linear analysis the correct file (either 23 or 27) 1s input directly by issuing
the command 'INPUT 27, and the solution begins. If the menu is in operation, only a limited
amount of solution information 1s displayed, so if the menu is turned off before the solution
phase is entered, the progress of the solution can be monitored, which is especially useful if
the analysis is nonlinear. Once the solution procedure has finished (converged), and
completed the last stress pass, the user is prompted for input of a file (file23) containing the
next load step information. This is necessary only for nonlinear analyses, so the FINISH

command can be issued to return to the routine begin level. During the solution phase some
large files are created on the default directory. Filel2 contains all relevant solution
information for analysis using the postprocessor, and file02 and fileO3 contain model restart
information before and after the last stress pass respectively. If more load steps are required,
fileO3 is necessary for continuation of the analysis using the restart procedure. Other large
files contain geometry and triangularized matrices used for the solution process only, and

may be discarded.
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For a linear static analysis the model will require only one pass in the solution phase
for the correct answer, and before exiting from the preprocessor, the solution file27 is
written for input for the solution phase. For a non-linear static analysis, a number of
iterations will be required to ensure equilibrium, and to account for the effects of plasticity,
geometric nonlinearity, and element specific nonlinearities. Also, it may be required that
loading occurs in a number of steps of limited size to progress toward a converged solution
for a particular load level. Therefore all of this subsequent load step data must be recorded
before exiting from the preprocessor. Preprocessing data for the very first load step 1s saved
to file27. Preprocessing data for subsequent load steps must be written to file 23. Assuming
that an analysis has already been started, and a file03 exists on the directory ANSYS is
currently using, then from the routine begin level the YLOAD' command can be issued to

continue the analysis, and then by typing 'INPUT 23, this will initiate the solution phase

again.

3.2.3/ Postprocessor

In the general postprocessor, the required load step number and iteration are set, and
file12 1s read into the programme. There are a number of advanced techniques for visualising
the data graphically, 1.e. stresses may be plotted as raster or vector contours superimposed
upon element plots, which can be viewed from any desired angle. Comprehensive lists of
data may be compiled for viewing graphically or in its raw form, and a certain amount of
data manipulation can be performed within the postprocessor, such as summation of forces
or moments about specified positions in the model. All data associated with each element has
a specific postdata number allocated to each data item, which may be specified and labelled
for analysis. Certain ‘levels' of data are default for each element and common data may be
viewed without any prior preparation. Other data which is rarely needed, is stored on higher
data reference levels, and can be stored on file12 by issuing a data level storage number for
the element type in question, in the preprocessor. This data can then be accessed by

allocating a label to the specific postdata item number in the postprocessor.

3.2.4/ Batch Processing

As mentioned earlier, file18 provides a means of recalling and inputting the
programme commands of a preprocessing session for recreation of the filel6 containing
model data. This 1s the basis of batch processing in its simplest form, where a set of
commands are entered into a text file and executed in sequence. Hence, with enough

familiarity with the necessary commands, the preprocessing, solution phase, and
postprocessing can be accomplished in one run, by the creation of a text file containing these
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commands. Solution data may also be rerouted to a text file from within ANSYS, or
externally using the batch process.

3.2.5/ Suggestions on Running a Nonlinear Analysis with ANSYS Version 4.4a

It 1s important to understand the fundamentals of the use and operation of the
ANSYS 4.4a program, as insufficient knowledge can lead to problems, especially with a
nonlinear analysis. The size of the model, i.e. the number of elements and nodes created
within the preprocessor, will directly affect the size of the model solution file 12, and restart
files 2 and 3. These are the largest files to be created, together with temporary scratch and
virtual memory swap files which ANSYS uses whilst it is running, therefore a hard disk (or
local filestore of some description) must have the capacity to cope with these files, otherwise
the analysis will break down during the solution phase. This can prove both time consuming,
as the analysis has to be repeated for the load step in question, and disastrous if the model
information file 3 (or file 2) for the previous load step has not been saved, thereby requiring
the total restart of the analysis from the first load step. If only limited information is needed
at the solution of each load step, this can be extracted from file 12 using the postprocessor,
and then file 12 can be discarded. Otherwise it is sensible to create a backup library of file
12's, and in any case, have a running backup of the file 3 corresponding to the last load step.
This can be done using removable disks or tape streamers. Experimentation with load step
sizes is required at various load levels, so careful batching of load steps is required if more
than one load step 1s to be performed in one solution phase, as any breakdown will require
restart from the first load step of the batch.

To monitor the progression of the solution of a nonlinear analysis, it is best to turn
the menu off, as this will allow the user to view the solution information such as convergence
data for all nonlinear elements and properties, as the solution progresses. Therefore if at an
early stage the solution appears to be non-converging, the analysis can be stopped and
restarted with a smaller load step. With the menu on, the user has no idea as to the

progression of the solution, and no estimate of when the solution will finish, so that it will be
difficult to enter the next load step promptly. These problems have been addressed with

ANSYS version 5.0.
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3.3/ Nonlinear Finite Element Analysis

With many physical problems, linear relationships provide an adequate means of
solution, especially with regard to structural mechanics. However, there are some situations
in which nonlinear effects must be considered, such as when significant stiffness or geometry
changes occur, or perhaps buckling and time dependent effects may be present. Two of the
main nonlinearities to be considered in the finite element analysis of prestressed concrete
beams using ANSYS, material and geometric, have specific solution methods, and are

described in more detail here.

3.3.1/ Material Nonlinearity

A material which has been loaded in a certain way whilst behaving in an elastic
manner, has the ability to return to its initial state once the load is removed. Plasticity
however exhibits itself as a permanent straining after the yield stress has been exceeded, so
that when the load 1s removed or perhaps reversed, this permanent straining affects how the
stress-strain curve behaves from that point onwards. This is important when plasticity causes
redistribution of the load to the stiffer sections of the structure, as load reversal may occur
in those parts which have become plastic. In other words, the application of the load is path
dependent, the manner, magnitude and increase to the desired final load must be the same as
that for the real structure. Load must be applied slowly in small increments to ensure that
spurious permanent plastic straining does not occur, as this will affect the relative behaviour
of the structure at higher loads. The standard procedure for the nonlinear analysis is to first
apply a load so that the section of the model which is most highly stressed is near the yield
stress, but still in the elastic range. Small increments of load, AP are then applied, and a
solution is obtained for each load step. The solution is recalculated each time with an initial

state of stress and strain dictated by the previous load step. Recommended sizes for the
increment of load can be estimated as the greater of either AP =(E ol /E)}':;, or AP=0.05F,,

where E and E , , 1s the tangent modulus of the stress-strain curve before and after the yield
stress has been reached (see figure 3.2), and P, is the load at first yield. Trial and error is

sometimes required in particular cases. For structures where the redistribution of internal
loads does not take place, the load need not be incremented in this manner.

The relationship between the applied loads and associated displacement field 1s
represented by the stiffness of the structure in question, usually represented in matrix form.
With linear material properties, this stiffness matrix is usually independent of both
displacement and applied load, and the structure will behave elastically. If the stiffness and
elastic modulus remain constant throughout the loading, then the force-displacement and
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stress-strain relationships will be linear, with the gradients of each represented by the
stiffness and elastic modulus respectively. When plasticity is to be included in the analysis,
this causes nonlinearity in the stress-strain relationship, and hence, the stiffness matrix
becomes a function of the displacements. Therefore to solve a problem of this nature, an
iterative process must be incorporated in the solution phase.

3.3.1.1/ Example with One Stress Component

A one dimensional example of a bar encastred at its left hand end, figure 3.1, has the

stress-strain relationship shown in figure 3.2, and is axially loaded such that the stress in the
bar is 0y, a value exceeding the yield stress of the material o,. Using the elastic modulus E

to solve the problem, the result will be above the actual stress-strain curve at position B. The
strain associated with this result, g,, may be split into an elastic component &', line D-E, and

a plastic component &7, line O-D, separated by line C-D, parallel to O-A, in figure 3.2. To
obtain the correct strain corresponding to the stress level o, on the stress-strain curve, a full

Newton-Raphson iterative procedure is best suited for this purpose. The basic Newton-
Raphson formula for finding the roots of equations, whatever their order, proceeds by
formulating better approximations to an initial estimate of the root x, given by equation

3.1).

f(x) .
f'() e

Where f(x) is the function of x, and f'(x) is the first derivative. The process is easily

applied to the current problem. In this case, the position where a particular stress level o,
cuts the stress-strain axis is to be found. The stress level is known, so the strain g, is the
approximation to the root. Referring to figure 3.2, the first iteration gives an approximation
to the state of stress and strain at position C, on the curve at a position above the yield
stress. For the next iteration, the derivative of the function (i.e. the gradient of the curve,
often called the tangent modulus E.) is equal to £,,, and this produces an approximation

which is equal to the actual state of stress and strain at F, hence the solution has converged
after two iterations. The tangent modulus E, of the curve is updated at each cycle depending

on the position on the curve of the solution in the previous iteration. Therefore if the stress-
strain function consists of piece wise linear portions as in our example, the exact solution can
be derived with only a few iterations at a particular load level. The relationship between
stress and strain need not comprise discontinuous linear functions but can be of a continuous

smooth form of a higher order, although the solution will no longer be exact and as the curve
becomes shallower at the higher strains, the number of iterations required for convergence

will increase. If the portion of the curve in the plastic range ever becomes horizontal such
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that the tangent modulus is zero, this would indicate that the solution would never converge
as there 1s theoretically no solution for the iteration, and full perfect plasticity has been
reached. In practice the stiffer elastic parts of the structure attract the load causing a
redistribution from the plastic sections, increasing the rate of convergence.

A well used variant of the Newton Raphson method of solution, often referred to as
the initial-stiffness method, reuses the tangent modulus of the first iteration for successive
iterations, and the approximations to the root are given by equation (3.2),

- J(x)
X (%) (3.2)

where x, is the first approximation to the root. Obviously this would mean that the number

of iterations required to obtain the final solution is much greater than for the Full Newton-
Raphson procedure, although the tangent modulus need only be calculated once in the
calculation.

3.3.1.2/ Convergence

To test for the convergence of the solution to within adequate accuracy of the real
value, the ratio of the increment in the plastic strain to the elastic strain, (A ¥ /8}") , 18

compared to a value which is pre-set at the beginning of the analysis by the user. The default
value for this ratio is 0.01, and gives a measure of the distance away from the actual stress-
strain curve the converged solution is allowed to be. Thus, for most models, once the

solution has converged, all of the integration points will be within this criterion.

3.3.1.3/ Multidimensional Stress Problems

The problem of the single dimensional bar is relatively easy to idealise, with one
stress and one strain component in the axial direction, and the stress-strain relationship can
be plotted immediately on a set of axes. With solid problems where other stress components
cannot be ignored, an equivalent stress and equivalent strain are used to reduce the problem
to a single dimension. The stress-strain relationship is then that which exists between the
equivalent stress and equivalent strain, and the iterative solution can proceed as before. As
there is now more than one stress component present, this allows redistribution of strain
between the components, causing an increase in the number of iterations for convergence. It
is also evident that at an intermediate step towards a converged solution, although the
equivalent stress and equivalent strain would be on the curve, the uniaxial stress and strain
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would be above the curve. This has implications for finite element models which use special
elements such as the concrete STIF 65 element which allows cracking and crushing at
integration points. At an unconverged iteration, the solution may have a stress state causing
cracking or crushing (governed by the three principal stresses) which would not otherwise
have occurred at the converged solution, hence this requires that the load be applied in small

load steps to avoid this happening.

3.3.1.4/ Yield Criterion, Flow Rule, and Hardening Rule

Yielding is initiated at a particular stress level, governed by the Yield Criterion. For a
one dimensional problem, this normally states that yielding begins once the stress o reaches
the yield strength o,. Any plastic deformation which occurs will alter the stress level at

which continued or renewed yielding can take place. With problems of more than one stress

component, the equivalent stress is represented as a function of the stress components,
S ({0'}) Once the equivalent stress is equal to the material yield parameter o, plastic

strains form, which reduce the stress to the material yield surface. The yield surface has
effectively grown with the equivalent stress, so that the equivalent stress can never exceed
the material yield surface. These yield surfaces can be plotted in stress space (with the
principal stresses as the axes), and any stress state which falls inside the surface does not
cause plastic strains, and is therefore elastic. Details of these yield surfaces can be found in

the ANSYS Manual, {46]

A flow rule relates the increments of stress to the increments of strain. With a single

stress component, the stress is related to strain directly by the tangent modulus, i.e.
do = E de. For multidimensional stress components, the flow rule describes the direction of

plastic straining, where {da”' } = }L{éQ/ﬁa} . Q 1s the plastic potential (usually the yield
function, in which case plastic straining occurs in a direction normal to the yield surface) and

Alsa p'lastic multiplier.

To determine how the history of plastic flow changes the yield surface, a hardening
rule is introduced. The two main types of hardening are isotropic (often called work)
hardening and kinematic hardening, and are shown for a single tensile stress component in

figure 3.3. Referring to figure 3.3.(a)., for the isotropic rule, if loading has occurred up to
point C only, and has then been reversed, for renewed tensile yielding to occur,o> o,. If

unloading occurs into the compressive range, then the stress would still have to exceed o,

for compressive yielding to occur. Hence the following condition would hold for isotropic
hardening : [ol = o, . Kinematic hardening, figure 3.3.(b)., differs in that if loading is reversed

into the compressive range, yielding would occur at a stress of o, —20,, thereby preserving
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an elastic range of stress of 2o, between the tensile and compressive yield cnterion. For

problems with more than one stress component, the type of hardening rule adopted will
effect how the yield surfaces change with plastic flow. If the yield surfaces are drawn in
stress space, the isotropic hardening rule will effectively increase the size of the surface about

its axes of symmetry (centreline) as plastic strains develop. The kinematic hardening rule will
tend to translate the surface in the stress space rather than alter its size. Details of this and
related topics in material nonlinearity are given in Cook et. al.,[15], and the ANSY'S Manual,
[46].

3.3.2/ Geometric Nonlinearity

As a structure is progressively loaded, it will deform and deflect accordingly. For
many structures, the stiffness is such that these deflections are small, and the response of the
structure, whilst behaving elastically, is predicted accurately enough by linear elastic theory.
With structures of limited stiffness, the deflections can be large enough to affect the
equilibrium of the structure. For example, an axially loaded column might undergo sidesway.
As the transverse deflections increase, the axial load will increase the bending moments (the

P — A effect) and thus the transverse deflections. The change in the geometry of the slender
column has altered the behaviour to the extent that the equilibrium equations have become a

function of the new geometry. This new geometry is not known at the start of the loading, so
an iterative process such as the Newton-Raphson method is adopted to obtain the converged
state at which the deformed geometry is in equilibrium with the applied loads.

The details of the algorithms for the solution of both material and geometric
nonlinearities by finite elements are not pursued here, but can be found in Cook et. al.,[15],

and the ANSYS Manual, [46].

40



Figure 3.1. Axially Loaded Bar Fixed at Left Hand End
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Figure 3.2. Material Stress-Strain Relationship
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(b). Kinematic Hardening Rule

Figure 3.3. Hardening Rules
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4/

4.1/ Sim sSupported Bea el

As a forerunner to the analysis of continuous prestressed concrete beams using
'ANSYS', a number of models of simply supported beams, both normally reinforced and
prestressed were constructed. These are described in greater detail in Weekes [48].

Rectangular section beams with straight normal reinforcement, or prestressing
tendons which were straight or parabolic were used in these models. The main body of the
concrete was modelled with STIF 65 three-dimensional isoparametric concrete elements,
capable of cracking and crushing at each of its eight integration points, arranged in a
rectangular grid fashion as viewed in the beam elevation, and a single column as viewed in
the section, with refinement of the mesh in appropriate areas. The representation of the
reinforcement and application of the prestress force was experimented with. With a straight
prestressed/non-prestressed steel profile, this was first modelled using STIF 45 three-
dimensional isoparametric solid elements arranged as a layer in the concrete mesh at the
reinforcement level, so that full nodal connectivity was present, i.e. full bond. Figure 4.1.1.
shows clearly the type of element arrangement used. Various methods of applying the

prestress force through the steel were considered. At first it was applied using direct end
forces on the STIF 45 layer. The problem with this was that the forces would not follow the
line of the steel as the beam deformed, thereby causing a buckling effect.

The eventual arrangement for the steel consisted of two-dimensional spar elements,
connected externally to the concrete mesh at the level of the reinforcement, allowing the
prestress to be applied as an initial strain along the whole length of the beam. This also
meant that there was no discontinuity in the concrete mesh, as was caused by the STIF 45
layer. The spar elements could be connected directly to the concrete nodes either side of the
beam for full bond, or through two-dimensional interface elements so that bond stress-slip
relations could be used. Because the steel had to be connected at the same co-ordinate
location as the concrete nodes, the shape of the tendon profile dictated the arrangement of

the concrete mesh.

At anchorage zones where the stress concentrations were high, the material

properties were altered to reinforce these sections. Point loads and point support boundary
conditions also caused stress concentrations, so these had to be monitored carefully.

Wherever possible, loads were applied as body forces or element surface pressures to

alleviate this problem.
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Premature failure of some of the beams was traced to the cracking and crushing
facilities in the STIF 65 concrete element which had been set to 'on' in the analyses. As
discussed in section 3.3.1.3, if these facilities are used in a nonlinear analysis with
multidimensional stress components, the solution at an unconverged iteration will lie above
the concrete stress-strain curve, which may cause spurious cracking or crushing. Therefore
to reduce this affect, the load was applied in small increments. Experimentation with the
value at which crushing of the concrete was to take place appeared to produce little variation
in the results. The concrete stress-strain curve used in the analyses was based on the design
stress-strain curve for normal weight concrete taken from B.S.8110 [50]. The stress-strain
curve proposed by Hognestad® probably gives a better representation of the compressive
behaviour of the concrete, as the stress actually falls before failure occurs. As the nonlinear
procedure of the finite element analysis cannot handle negative gradients in the stress strain
curve, it appeared sensible to use the representation given by the code. To help with
convergence, the horizontal portion of the curve past the yield point represented by a strain
of 2.4x107*/f. /y. was given a slight positive gradient. Again this had little effect on the
results as the multidimensional stress state allows the convergence of the result on to a
portion of the curve with zero gradient, as the strains can redistribute from one component
to the others. Another consideration to note was that the state of stress on the curve used in
the analysis was an equivalent stress based on a combination of principal stresses, rather

than just a representation of stress in the concrete in the horizontal x-direction along the axis
of the beam, as is assumed in design when using the curve from B.S.8110. However, when

the stress distributions within the beam were analysed, this did not appear to cause any
problems. Eventually, the crushing facility with the concrete elements was turned off, and

any beam failures resulting from crushing of the concrete were monitored by looking at the
strain within the elements, with crushing occurring at a strain of 0.0035.

All of the beam models were numbered and named sequentially as they were
produced, regardless of their intention as models for proper analyses or test models. The
numbers and names of the following full test models have been retained, and therefore have

non-sequential model numbers.

* E.Hognestad, N.R.Hanson and D.McHenry, Concrete stress distribution in ultimate strength design,
j.Am.Concr.Inst.,27(1955) 455-79
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Simply supported rectangular section prestressed concrete beam with a straight
tendon profile at a constant eccentricity from the section centroid, and fully bonded steel
tendon. The dimensions and finite element mesh for model 10 are shown in figure 4.1.1., the
load arrangements are shown in figure 4.1.4., and general information listed in Table 4.1.

. Specificati

The STIF 65 reinforced isoparametric concrete element was used with the cracking
facility enabled and the crushing facility disabled. Other relevant properties concerned with
material behaviour were entered into the nonlinear material table. Refinements of the mesh
were carried out in the more highly stressed areas, namely at the support and midspan
sections. The nonlinear stress-strain curve was of the form given in B.S.8110 (part 1, figure
2.1), tor the short term design for normal weight concrete. The load factors were removed
from the curve to obtain actual values rather than conservative design values. To mode] the
stress-strain relationship for concrete as accurately as possible, a multilinear approximation
to the curved portion was employed, as there was no facility for modelling continuous
smooth curvature. Figure 4.1.8. shows this multilinear approximation to the stress-strain
curve. As compared to the actual parabolic curve, the multilinear approximation will lie
slightly beneath this, touching the actual curve only at the line connections. Key points on
the parabolic curved portion were obtained by calculating stresses on the parabola
corresponding to strains at equal intervals, hence forming the end points of the lines for the
multtlinear approximation. Care was taken to ensure that the initial elastic modulus
specified as a linear material property corresponded to the slope of the first line of
multilinear approximation. These points on the stress-strain curve were then entered into the
nonlinear material table at the appropriate locations. For the concrete strength in tension, the
value was calculated using the formula given in Appendix B, equation (b1), in this case set
to 3 N/ mm? in the nonlinear material table, and the behaviour is assumed linear up to this
value. The kinematic hardening option, as described in section 3.3.1.4., was chosen for the
-appropriate hardening behaviour with load reversal. For elements which have undergone
cracking, a shear transfer coefficient, ranging from 0 to 1 across the crack must be specified.
Tests have shown that the value employed does not have a significant effect as long as the
value 1s non-zero, A.S.C.E Report, [40]. Hence values of 0.5 for open cracks and 1.0 for
closed cracks were specified in the nonlinear material table. For the linear material
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properties, a Poissons ratio of 0.2 was specified together with an initial elastic modulus, and
the shear modulus calculated from these two values.

Steel and Bond

STIF 1 spar elements were used for modelling the prestressing steel. The nonlinear
stress-strain curve was of the form given in B.S.8110 (part 1, figure 2.3), for the short term
design of prestressing tendons, with load factors removed. A multilinear option with
kinematic hardening was also used to model the stress-strain curve of the prestressing steel,
and this was of the form shown in figure 4.1.9. This stress-strain relationship was assumed
the same in tension and compression. To apply the prestress, an initial strain corresponding
to the desired prestress was entered into the real constant set for the spar element.

As the steel spar elements were to lie either side of the concrete, the tendon cross
sectional area was divided into two equal areas, and the spar elements located either side of
the beam at the appropriate location corresponding to the placement of the tendon. At the
tendon level, two sets of nodes at coincident co-ordinate locations were produced. The steel
spar elements were connected to one set of nodes, and the concrete elements connected to
the other set, hence producing two separate element systems. These two coincident nodes
sets were then connected by two dimensional interface elements forming bond between the
steel and concrete, as shown in figure 4.1.1. The stiffness of the interface elements was
given an arbitrarily high value to produce full bond, and a negative gap specification

(interference) to prevent premature separation and sliding.

In an actual prestressed concrete beam, the cross sectional area of the concrete per

unit depth is smaller at the tendon level due to the presence of the steel. This change of area
can be modelled as a reduced relative stiffness in the concrete elements at the level of the

tendon, Mufti et. al. [21], although in this analysis, the area reduction has been neglected.
The effects of this are directly related to the amount of steel present in the section, but for

the amount of steel used here, these effects are minimal.

Boundary Conditi

To reduce the number of elements in the model, only the left hand side of the beam
was modelled (the beam being symmetrical about the midspan vertical axis). At midspan the
nodes in the vertical plane were restrained from moving in the longitudinal (horizontal) x-
direction, so that these nodes would remain in the vertical plane as the beam deflected
transversely, effectively holding the rotation about the horizontal z-axis to zero. At the end
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of the beam, two concrete elements with cracking and crushing removed were arranged at
the base of the beam, effectively between support and beam. The nodes of this layer of
elements which were to be in contact with the support were thus restrained in the y- and z-
directions.

[ oad Applicat

The loading arrangement for the beam is shown in figure 4.1.4. The point loads were
applied as a patch pressure on the top surface of the concrete element immediately under the
load (see figure 4.1.1.). This alleviated to an extent the stress concentrations which would
have occurred if a point load was applied at the appropriate node. The bending moment
produced by this load arrangement is such that there is a constant moment zone between the
points of load application, with a linear decrease to zero from load point to support. To
reduce the effects of shear as compared to the bending moment, the ratio of the distance
between the support and the load position, and the effective depth was made as large as
possible (in this case a ratio of about 4.5:1). The closer the load point to the midspan
position, the greater the bending moment at midspan for a fixed maximum magnitude of
shear in the beam, therefore the more likely is a beam failure in bending at midspan.

\nalvsis Opt;

The ANSYS program automatically set the nonlinear solution procedure to full

Newton-Raphson option. Fifteen iterations per load step were specified, and default
convergence criteria for the plasticity ratio and large deflection increment were used. The

amount of output results for various elements can be controlled by specifying a results
storage level. The default results storage level for most elements is 3, which covers most of
the useful data which would normally be required by the user. In this case, the results
storage level for the concrete elements was set to 6, so that information about cracking etc.

could be accessed if necessary.

4.1.2/ Model 11

The specifications for model 11 were the same as for model 10, only this time the
whole length of beam was modelled. The purpose of this was to check the validity of using
the half beam representation for further analyses. A mirror image of nodes, elements,
boundary conditions, and applied loads from model 10 was created about the beam
centreline to produce the whole model 11. All of the nodes at the beam centre were released,
and horizontal x-direction movement was prevented at the left hand support only.
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These were simply supported prestressed concrete beams with straight tendon
profiles, based on experimental beams. In the experiment, both beams were pretensioned
with two steel strands, beam 1 with both strands at the same eccentricity from the section
centroid, and beam 2 with the strands at different eccentricities. The cross sectional details
of the two beams are shown in figure 4.1.7. The dimensions and finite element meshes for
beams 1 and 2 are shown in figures 4.1.2 and 4.1.3. respectively. Load arrangements for
both beams are shown in figure 4.1.5, and general information listed in table 4.1.

Concrete Specificati

STIF 65 concrete elements were used as for models 10 and 11. The stress-strain
curves were also similar to those used previously, figure 4.1.8., with the necessary
adjustments made for the different material properties shown in table 4.2. In the experiment
the concrete characteristic strength for short term (i.e. prestress transfer) and long term were
different, therefore two separate stress-strain curves were prepared, one for the first load
step in which the prestress was transferred to the concrete, and the other for subsequent load
steps. Other nonlinear and linear material properties were changed where appropriate. The
area (stiffness) reduction of the concrete at the tendon level was again ignored.

Steel and Bond

The prestressing steel and bond were modelled in a similar fashion to that for models
10 and 11. The stress-strain curve was of the form shown in figure 4.1.9., and the mate<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>