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ABSTRACT 

Secondary or Parasitic internal bending moments in statically indeterminate continuous 
prestressed concrete beams are produced by the presence of the redundant reactions at the 
internal supports, assuming that the tendon profile does not coincide with the line of pressure 
produced in the concrete, i. e. that the tendon is not concordant. 

Whilst behaving in an elastic manner, these Secondary moments may be separated from the 
total internal bending moment (Secondary moment plus moment produced by applied loads) 
using various methods such as equivalent loads, together with a stiffness analysis. Beyond 
the Serviceability Limit State, the beam will begin to crack, altering the flexural stiffness as 
well as causing local increases in the tendon force, in turn altering the Secondary Moment. 
Therefore if the designer wishes to incorporate Moment Redistribution at the Ultimate Limit 
State, assuming that the critical sections have sufficient ductility, how to include Secondary 
Moments, if at all, is of much debate. 

Many different approaches have been adopted to shed light on the problem, the majority 
using nonlinear analyses of various forms. The advent of Finite Elements has seen an 
increase in their popularity for application to such nonlinear problems. 

This study begins with a Finite Element analysis of simply supported prestressed concrete 
beams, followed by an analysis of a two span example with a single curved tendon profile, 
fully bonded to the concrete, up to Ultimate Limit State. Although these analyses allowed an 
investigation of the overall nonlinear behaviour, the Secondary moment could not be 
separated from the Internal moment in the post cracking stage. 

As a result of the Finite Element Analyses, a method of applying equivalent loads past the 
Serviceability Limit State in an attempt to estimate the magnitude Secondary Moments up to 
the point where the beam is rendered statically determinate, was developed and utilised in a 
computer program. Two two-span beam examples and a three span beam, both with curved 
fully bonded parabolic tendon profiles were analysed to highlight the possible effects the 
secondary moment could have on the behaviour at Ultimate Limit State. 
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Glossary of Terms 

Concordant Tendon Profile. A tendon profile which is concordant is 

coincident with the compressive force trajectory in the concrete. This means that there 

is no internal moment present, i. e. the secondary moment in a continuous beam is zero. 

Equivalent Load. The effects of prestress on any beam system can be represented 

by a set of equivalent transverse loads, and moments at the ends of the member. These 

equivalent loads are useful in the determination of prestress effects, such as secondary 

moments. 

Internal Equilibrium and Internal Moment. Regardless of the external forces 

acting on a static structure, internal equilibrium of forces must be maintained if it is to 

remain so. It is well known that the basic idea in reinforced and prestressed concrete 

beams is that the concrete, being strong in compression and weak in tension, relies on 

the steel to take the tensile forces, whilst the concrete will take the compressive forces. 

A short end section of a simply supported prestressed concrete beam, with a 

straight tendon profile displaced downwards at an eccentricity e from the section 

centroid, is shown in figure 1 as two separate free body diagrams, of the concrete (a), 

and the steel tendon (b) 
. 

We will assume no applied transverse load, and ignore self 

weight of the beam, hence the only force acting on the structure is that due to the 

prestress. The concrete will be subject to the compressive force P and the steel will 

take the tensile force T. The tensile force in the steel can only act along the profile of 

the tendon. At this stage, the trajectory of the compressive force in the concrete must 

also act along the line of the tendon, so that equilibrium is maintained. This becomes 

obvious when we imagine the two free body diagrams in the composite section, where 

P is equal and coincident to T at both the left and right ends of the free body. 

Figure 2 shows the same portion of beam with an applied transverse U. D. L. 

Again, the beam is divided into free bodies for the concrete (a) and the steel (b) . 
Looking at the free body for the concrete (a), and taking moments about the simple 

support, the force P acting on the right side of the section must move vertically up the 

beam to maintain equilibrium. The force acting on the left end of the section has not 
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moved however. Looking at the steel, the tensile force T remains the same and is fixed 
in position by the tendon profile. In the composite section, comparing with figure 1, 

the compressive force P has moved in relation to T on the right hand side of the 

section to create an internal moment. This internal moment can be thought of as an 
internal resisting moment which balances the bending moment produced by the 
transverse load. 

In general it is the line of the compressive force in the concrete which alters its 

trajectory (often referred to as the compressive force path CFP, or the line of pressure) 
to produce this internal moment to balance any bending moment induced in the beam, 

caused by external forces or effects. This has implications when considering statically 
indeterminate prestressed concrete beams. 

In a statically indeterminate prestressed concrete beam, secondary (sometimes 

called parasitic) moments can be produced by the effects of the internal supports 

restraining the natural deflection of the beam assuming the internal supports were not 

present. Equivalent loads (section 2.2) can be used to determine secondary moments 

prior to cracking. This is achieved by subtracting the primary moment (the product of 

prestress force and tendon eccentricity) from the resultant moments (calculated from 

the equivalent loads). The secondary moment therefore sets up an internal couple, 

where the compressive force path in the concrete is no longer coincident with the 

tensile force in the tendon. Hence as load is applied to the beam, the internal moment is 

the addition of the bending moment caused by the applied load and any secondary 

moment present. This addition is valid up to collapse, although the secondary moment 

may alter after cracking has commenced. 

Linear Transformation. Linear transformation is the process of raising or 
lowering the tendon profile of a multispan prestressed concrete beam, at the internal 

supports only, so that the basic shape of the tendon profile between the ends of the 

member is not altered. A linear change in the tendon eccentricity (with distance) from 

the internal supports of the member has been applied to the tendon, hence the name 
linear transformation This process has the effect of `adding' a linear eccentricity 
function to the original eccentricity function, so that the primary moment (the product 

of tendon force and eccentricity) is altered in a linear fashion along the beam. 
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However, when the equivalent load is calculated from the new primary moment, there 

is no change, as the equivalent load is the second differential of the primary moment, 

and any linear function change in the primary moment will disappear during the 

differentiation. This means that the resultant moments calculated from the equivalent 

loads will also not be altered by the process. The consequences of this are that the 

elastic secondary moment (the subtraction of the primary moments from the resultant 

moments) can be altered, and if necessary, eliminated totally, producing a concordant 

profile. It should be noted that the eccentricity of the tendon at the ends of the member 

must not be altered. If they are, the equivalent load (in the form of end moments) will 

be altered, and the process is no longer valid. 

Primary Moment (Ml). The product of tendon force and eccentricity from the 

section centroid at all locations along the beam length. 

Resultant Moment (M3). The reactant moments in the beam caused by equivalent 

loads (and also by the prestress itself). These are effectively the primary bending 

moment plus any secondary moment prestress effect caused by the statical 

indeterminacy of a beam. They can be calculated from the equivalent load using a 

stiffness (e. g. moment distribution) procedure. 

Secondary or Parasitic Moment (M2). The internal moment caused by prestress 

only (i. e. a prestress effect), caused by the statical indeterminacy of a beam. This is the 

subtraction of the primary moment from the resultant moment. 
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Notation 

The most frequently used abbreviations and symbols are given here. Some less frequently 

used symbols do not appear here and are locally explained in the text. The details for the 

notation for Appendix F can be found in BS8110 [50] 

Abbreviations 

C. F. P. Compressive Force Path 

C. S. A. Cross Sectional Area 

F. E. Finite Element(s) 

R. C. Reinforced Concrete 

P. C. Prestressed Concrete 

U. D. L. Uniformly Distributed Load 

A, Area of Concrete 

AS or Aps Area of Prestressing Steel 

c Carry-Over Factor 

d Effective Depth 

E Elastic or Youngs Modulus 

e; Tendon Eccentricity (where ̀ I' is a reference number) 

fc� Characteristic Concrete Cube Strength 

fp� Characteristic Strength of Prestressing Steel 

ft� Modulus of Rupture (tensile Strength of Concrete) 

I Second Moment of Area 

L Length 

lb Bond Length 

M; Bending Moment (where `i' is a reference number) 
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MP Plastic Moment 

MI Primary Moment 

M2 Secondary Moment 

M3 Resultant Moment 

P Prestress Force, or Load 

p Prestress 

Q Load 

s Stiffness Factor 

T Total Force in Steel 

u Bond Stress 

x Neutral Axis Depth, or Horizontal Cartesian Coordinate of Length 

y Vertical Cartesian Coordinate of Length 

Greek Symbols 

Pb 

E 

E, 

Es 

Ym 

0 
a 

Moment at Section after Redistribution 
Moment at Section before Redistribution 

Distribution Factor 

Strain 

Concrete Fibre Strain 

Steel Strain 

Material Factor 

Curvature 

Angular Rotation 

Stress 
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1/ Introduction 

Statically indeterminate prestressed concrete beams and frames have a number of 
advantages and disadvantages over statically determinate prestressed concrete structures, as 
outlined by Nilson, [2]. Firstly, one significant difference is the formation of an internal 

moment, referred to as the secondary or parasitic moment, by the presence of redundant 
reactions in the statically indeterminate prestressed structure. The centre or line of 
compression within the section is no longer coincident with the line of the tendon profile, and 
the secondary moment will vary linearly between support sections. In the case of continuous 
beams, by treating the prestress as an equivalent load on the beam, the bending moments 
within the member may be split into primary, secondary, and total moments, so that the 

elastic secondary moments may be calculated. Linear transformation of the tendon profile at 
the internal supports will alter the primary and secondary moment so that the total moments 
remain the same, and the stresses in the section are unaffected. Therefore if desired, the 

secondary moment may be eliminated, and the tendon profile in this case is termed 

concordant. However, in the design process, this is not always possible or desirable. 

Secondly, in certain circumstances, statically indeterminate structures at ultimate limit 

state possess the ability to carry loads passed the values predicted by elastic theory. This 

overload behaviour is caused directly by the statical indeterminacy of the beam, coupled with 

plastic behaviour of the critical sections in the member. Once a critical section has reached its 

ultimate moment capacity in a statically indeterminate member, a number of possibilities exist 
for the subsequent behaviour. If the section is not ductile and has no rotation capacity, then 

the structure will fail immediately, and the failure load is that predicted by elastic theory. If 

the structure has ductility and rotation capacity in all of its critical sections, then this will 

allow redistribution of bending moment to the stiffer parts of the structure until the ultimate 

moment capacities at enough critical sections have been reached so as to form a collapse 

mechanism. The failure load is that predicted by plastic methods, and will be greater than that 

predicted by an elastic approach. A structure which is moderately ductile may exhibit partial 

redistribution of the ultimate bending moments, until the rotation capacity of a critical section 

reaches its ultimate rotation. 

In the case of reinforced and prestressed concrete statically indeterminate structures, 
if ultimate elastic moments are to be redistributed at the ultimate limit state, then the designer 

will try to ensure that enough rotation capacity is available at the critical sections for the 

desired amount of redistribution to occur. For prestressed concrete continuous beams, how 

to treat secondary moments in the design at the ultimate limit state has been of much debate. 

Whilst the beam is behaving elastically, these secondary moments may be readily calculated 



using elastic methods such as equivalent loads. In the post cracking stage up to ultimate load, 

elastic methods cannot be used, and the secondary moment cannot be monitored by normal 
nonlinear analysis techniques or by experimental tests. The tendon force and stiffness 
changes at cracks would suggest an alteration of the secondary moment in the post cracking 
stage, which casts doubts on current design procedures, and how they incorporate elastic 
secondary moments at the ultimate limit state. The following section reviews work related to 
the subject of secondary moments and their effect on moment redistribution. 

1.1/ Research on Secondary Moments and Moment Redistribution in 

Continuous Prestressed Structures 

A World Conference on prestressed concrete in 1957, [30], saw a gathering of the 

current knowledge about the subject, ranging from materials, techniques, buildings, 

manufacturing processes, and research. Morice, [25], presented a direct design method for 

statically indeterminate prestressed concrete structures, using the 'influence coefficient' 
method to calculate the moment envelopes due to both dead and imposed loading, and the 

subsequent determination of concordant profiles by an analysis of the line of pressure within 
the concrete. This method therefore tried to eliminate any secondary moments caused by the 

statical indeterminacy of the structure, by the calculation of a permissible zone in which the 
'concordant tendon' could lie. 

Morice and Lewis, [24], carried out a number of analyses on prestressed concrete 
continuous beams and plane frames, and concluded that if the tendon profile undergoes a 
linear transformation, the stresses in the structure remain the same in the elastic range, and 
that at ultimate load, this was also theoretically true. Work carried out by Macchi at the same 
time contradicted this. Full redistribution was designed for, and obtained in the tests carried 
out by Morice, where the failure at the critical sections was due to failure of the prestressing 
steel, giving these sections ductility and rotation capacity. In Macchi's case, there were a 

number of failures due to crushing of the concrete, causing only partial redistribution of the 

ultimate moments. Hence, this required further research. 

Moment-Curvature relationships for both reinforced and prestressed concrete 

sections were investigated by a number of researchers, and Burns, [16], describes their 

calculation and design implications for partially prestressed (class 3) members. For sections 

with differing properties, such as the quantity and location of the steel, the moment curvature 

relationships behave differently, with those curves displaying a long plateau being the more 
ductile. By knowing either the moment-curvature, or the load-deflection relationship of 
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various critical sections along the member the ultimate load could be theoretically estimated, 
and controlled for design purposes. 

Priestley et al., [19], began their programme of research into the moment 
redistribution of prestressed concrete continuous beams with an investigation of moment- 
curvature relationships. Simply supported beams with a constant moment zone, created by 
the application of two transverse equidistant point loads in the span, were modelled both 

experimentally and theoretically. The theory accounted for the concrete tension between 

cracks and attempted to predict average curvatures along the length of the member, as well 
as the curvatures at cracks. The results revealed that the differences between the average 
curvature in the constant moment zone, and the maximum curvature at a particular crack at a 
critical section were significant, and the average curvature gave better results for the 
subsequent calculation of deflections. The theory was implemented in a computer program, 
and the theoretical and experimental results were in good agreement. To analyse zones 
where the bending moment was not constant, the member would have to be broken down 
into small segments and the moment treated as constant over the segment length. 

These relationships between moment and average curvature were then used to 
predict the overload behaviour of continuous beams, Priestley et al., [20]. A number of two 
span beams were constructed and tested to failure with a single point load in each span. The 
tendon profile was linear between supports and points of load application (i. e. harped at the 
points of load application). Load-deflection and moment-load curves for both theory and 
experiment were in good agreement. A number of the beams tested in the experiment were 
designed to reach ultimate before full moment redistribution could take place, with an 
estimated 10% tolerance on the calculated ultimate load, without the confining effects of the 
supports on the crushed concrete at critical sections. No mention was made of the 
significance of secondary moments, as their analysis accounted for prestress effects within 
the calculation. 

Bennet et al., [31], carried out twenty tests on both two and three span prestressed 

concrete beams to assess how the curvature distribution along their lengths varied with the 
distribution of both moment and ultimate load. An Institution of Civil Engineers report 
dealing with the ultimate load design of prestressed concrete structures put forward three 

methods of design, which were tested using the integrated curvature measurements from the 

tests. The results showed that the hyperelastic curvature was concentrated over a short 
length at critical sections. Hence the calculation of the ultimate load was found to be fairly 

accurate by treating the deformations as rotating hinges. Also, they concluded that the linear 
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transformation of the tendon profile did not affect the ultimate load (i. e. the secondary 
moment had no effect), although no mention was made of the secondary moment. 

Mallick, [17], carried out tests on 21 continuous two-span beams with similar load 
arrangements to those of Priestley. His aim was to apply an analytical method for the 
computation of redistribution proposed by Guyon', although he found that most of his test 
results were not as predicted by the method. An alteration (extension) to the method 
whereby the curvatures in the vicinity of the plastic hinges were assumed to be concentrated 
at the hinge gave a better comparison. 

The problem of the treatment in design of secondary moments with regard to moment 
redistribution in continuous prestressed concrete beams was addressed by Lin and Thornton, 
[18]. Discrepancies in the 1971 ACI Building Code with respect to the inclusion of 
secondary moments in the design procedure, suggested that in theory, when enough plastic 
hinges are formed to render the member statically determinate, the secondary moments 
would disappear. Lin points out that the only case in which this would be true is if full 

redistribution of moment can be realised, and that the ultimate load will be the same if the 
secondary moment is present or not. Also, because it had been shown that a linear 
transformation of the tendon profile had no effect on the ultimate load, this was the basis 
behind the statement in the code that only the dead and live load design moments need be 

considered at the ultimate limit state. Yet if the redistribution was not allowed (or 
incomplete), and the beam was assumed to be behaving in an elastic manner, the secondary 
moments were present at their full capacity and should not be neglected, contradicting the 
Code's statement about their treatment. Two numerical examples confirmed the difference in 

ultimate load carrying capacities in the beam with respect to the influence of secondary 
moments. The intermediate case where partial redistribution takes place could be analysed as 
before, by considering the moment curvature relationships in the beam up to ultimate. A load 
balancing approach was suggested to account for the inclusion of secondary moments in the 

ultimate load condition, although the results were somewhat conservative. 

In the light of the 1971 ACI code anomaly, there was increasing concern about how 
to correctly deal with secondary moments in the design process. Huber, [32], reiterates that 
linear transformation of the tendon profile does not affect the total moments or concrete 
stresses in the elastic range, and that the ultimate load is unaffected whilst full redistribution 
is assured. Consequently, rather than use a method of analysis which requires proportional 
loading up to ultimate limit state, he suggests a 'shakedown' approach such that the applied 

* The strength of statically indeterminate prestressed concrete structures. Symposium on the strength of 
concrete structures, London May 1956. London C&CA, 1958. Session C, Paper No. 2. 
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loads are variable, causing residual moments in the beam due to the inelastic deformations, 

after which the beam may be treated as elastic once the deformations have stabilised. 
However an incremental shakedown collapse is less likely than a proportional short term 
loading failure. 

A treatise on the Australian Concrete Codes was presented by Wyche et al, [33]. 
Comparisons were made of the British, American, and Australian codes with respect to 
moment redistribution and the inclusion of secondary effects, i. e. secondary moments. This is 
discussed in more detail in section 2.1. A simplified moment-curvature approach was used to 
theoretically analyse the effects of the inclusion of secondary moments. By incrementing the 
load on two, two-span beam examples, one with a concordant tendon profile, the other with 
a positive secondary moment, the moment-curvature relationships at the critical sections in 
the span and over the centre support were followed. The results showed that the prestress 
secondary moments affect the ductility and the ultimate load of the beam, with positive 
secondary moments having ductility benefits over negative secondary moments). The analysis 
assumed that the secondary moment did not change from its elastically calculated value 
during the stage from cracking up to first plastic hinge formation. 

Scholtz, [34], presents an analysis of the ductility demand and capacities of partially 
prestressed concrete continuous beams, and suggests improved values for the amount of 
moment redistribution allowed in the design codes of practice. A unique expression is 
developed to allow the secondary moment to be included in the redistribution process. This 

yields more economical designs, although shear and bond failures have not been addressed. 

Mattock, [35], describes how the shape of the tendon profile which causes secondary 
moments to occur in a prestressed concrete continuous beam, causes relative rotations at 
ultimate moment at the ends of the beam segments, changing the distribution of moments at 
ultimate load by an amount equal to the elastic secondary moments. He argues that if a 
tendon profile is transformed downward at an internal support (shifting the secondary 

moment to a more positive value), then the inelastic rotation required for a given amount of 

redistribution of moment is reduced by the amount of relative end rotation caused by the 

tendon transformation. If the tendon profile is raised, then the rotational capacity is 

increased, increasing the amount of moment distribution, with the amount of 
increase/decrease being equal to the elastic secondary moment. In the cases where no 

moment redistribution was allowed, these arguments would also hold true, as the secondary 

moment would be included at ultimate. From some beam tests, he concludes that the 

secondary moment does not change from the cracking stage up to ultimate moment, due to 

the rate of increase in the support moment as the load was applied being nearly that predicted 
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by elastic theory. As to why local increases in the tendon force would not change the 

secondary moment, this is attributed to the fact that secondary moments are caused by the 

suppression of deformations due to the prestress. The applied loads cause the beam to 
deform and increase the tendon force, locally at cracks, although this increase of force does 

not cause any extra deformations, hence the secondary moment will remain at its elastically 
calculated value. 

A non-linear analysis using the imposed deformation method was carried out by 
Aguado et al, [36], and applied to the Glatt Bridge at Opfikon (Switzerland), which was 
tested to destruction, [37]. Excellent agreement of internal forces and deformations between 

the two was observed, and the non-linear analysis showed that secondary moments should be 
included in the design of such structures. 

Warner and Faulkes, [38], looked at the treatment of secondary moments and shears 
in the limit state design of continuous prestressed concrete beams. Whether to treat the 
tendon force as a load or a resistance component was also investigated. It was concluded 
that the prestress force could be treated as a load at transfer and under service conditions, 
whereas at ultimate, it should be treated as a resistance component. Secondary moments and 
shears were to be considered at the serviceability limit state, and at ultimate where the critical 
sections failed by crushing of the concrete, so that no moment redistribution occurs. For 
ductile sections showing high levels of redistribution, secondary moments and shears were 
insignificant. The design for ductility requirements of critical sections was left open. 

These references reveal a number of conflicting opinions, backed up by empirical 
work and theoretical analyses, as to the treatment of prestressing effects in statically 
indeterminate structures, especially with regard to their design. A vast amount of current 
research involves non-linear analyses which are implemented in various ways, mainly through 
finite elements. Research involving non-linear and finite element analyses are discussed in 

detail in section 3.1. 
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2/ Procedures in Limit State Design 

2.1/ Moment Redistribution in Statically Indeterminate Structures 

One advantage of statically indeterminate structures is that in most cases their 
ultimate load capacity will be greater than that calculated using elastic theory. This is due to 
the presence of redundant reactions which require the structure to reach its ultimate moment 
capacity at more than one critical section, so that a collapse mechanism can form, causing 
ultimate failure (assuming rotation capacities at plastic hinges have sufficient rotation for full 

moment redistribution). 

Using a linear-elastic approach, the bending moment envelope can be obtained at 
various levels of applied load, and will increase proportionally with the load. When the 
bending moment at a particular critical section reaches the ultimate moment capacity, it can 
become no larger. A collapse mechanism does not form at this stage due to the statical 
indeterminacy of the structure, so as the load is increased, the bending moment envelope 
'redistributes' from its elastically calculated shape. When enough critical sections have 

reached their ultimate moment capacity to form a mechanism, the structure will collapse, and 
the applied load is deemed the ultimate load. 

Full redistribution of bending moments requires the formation of near perfectly plastic 
hinges at critical sections, with a large amount of plastic rotation available at each hinge. 
Ductile materials such as steel have a large plateau in their stress-strain relationships, and 
exhibit excellent plastic behaviour. Statically indeterminate steel structures therefore have a 
large amount of rotation available at critical sections, and plastic methods for full 

redistribution of moments can be applied. Less ductile materials, those with small ranges of 
plastic behaviour on the stress-strain curves, will have only limited rotation capacity when 
the formation of plastic hinges occurs at critical sections. When the ultimate moment 
capacity at a critical section is reached, a plastic hinge will form and attempt to rotate to 

redistribute the bending moment to the stiffer parts of the structure. If the section has limited 

ductility, at some stage it is possible that the rotation capacity of the hinge will be reached, 

so that it will fail in a brittle manner, causing immediate collapse of the structure. In this case 

only partial redistribution of moment occurs before the ultimate load capacity has been 

reached, having a value between that predicted by an elastic analysis, and that predicted 

using plastic methods. In some cases, a structure may have negligible rotation capacity at its 

critical sections, and will fail at a load calculated directly from elastic theory. 
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Reinforced and prestressed concrete are essentially composite structures, consisting 
of the brittle concrete, and the much more ductile steel reinforcement. Depending on the 
amount of reinforcement present in a concrete structure, and the particular design, this will 
have a bearing on the ductility of a particular section, and hence the amount of rotation 
available. An under-reinforced section, where the reinforcement reaches its yield stress 
before the concrete fails, (i. e. when the extreme compressive fibre of the concrete reaches a 
strain of approximately 0.0035) will exhibit an ability to rotate at its ultimate moment 
capacity. The amount of rotation possible depends on how under-reinforced the section is. 
Sections where the concrete reaches its ultimate strain simultaneously with the yielding of the 
reinforcement will have negligible rotation, and those which are over-reinforced will fail 
immediately the ultimate moment capacity is reached. 

The neutral axis depth at the ultimate moment gives a good indication as to how the 
section will 'fail', governed either by the concrete, or the steel. Figure 2.1.1 shows two 
accounts of the same section, figure 2.1.1. (a) with a small neutral-axis depth, and figure 
2.1.1. (b) with a large neutral axis depth. It can be seen that the linear strain distribution 
across the depth of the section with the small neutral-axis depth will tend to give a large 

strain in the steel compared with the compression strain in the top fibre of the concrete, and 
hence will tend to produce an under-reinforced section having some plastic rotation capacity. 
The large neutral-axis depth will cause the strain in the steel to be small compared with that 
at the top concrete compression fibre, and the concrete will reach its compressive strain 
capacity before the steel yields, allowing no rotation capacity. Therefore the neutral-axis 
depth reflects a vital property in the design of reinforced and prestressed concrete as far as 
moment redistribution is concerned. 

The major concern in the redistribution of bending moment in reinforced and 
prestressed concrete is the provision of enough rotation capacity at critical sections to allow 
the amount of redistribution required for the design. Also, as the redistribution is carried out 
at the ultimate limit state, the design has been effectively modified, so the desired behaviour 

at the serviceability limit states must be ensured. In B. S. 8110 this is achieved by a 
requirement that the redistributed envelope must not violate a service load envelope, the 
latter being calculated either directly from the service loads, or as a percentage (70% for 

RC, 80% for P. C. ) of the elastic ultimate moments before redistribution. This percentage 
line method will ensure that the points of contraflexure (positions of zero moment) of both 

the service and ultimate envelopes remain unaltered in their location along the beam. 

8 



2.1.1/ Design procedure for the redistribution of moments for R. C. to B. S. 8110 

Firstly a definition for the term 'redistribution of moment' must be established, with 
regard to the design procedure. A two-span continuous beam subject to two point loads of 
magnitude Q in each span is shown in figure 2.1.2. (a). As the load is increased, an elastic 

analysis will give the bending moment in the spans and at the central support as 
M, = 5QL / 32 and M2 = 3QL / 16 respectively, figure 2.1.2. (b). The bending moment 
envelope will, at a particular load, reach its moment of resistance, M2 = MP at the central 

support, figure 2.1.2. (c), assuming the beam has identical moment of resistance values in the 

spans and at the support. Assuming unlimited rotation capacity at this hinge, the moment at 
the central support will remain unchanged, whilst the span moments will increase. When the 

applied loads are increased, two further hinges will form in each span, producing the collapse 

mechanism shown in figure 2.1.2. (d). This ultimate moment diagram is caused by the 

collapse load and is based solely on plastic behaviour. The original elastic bending moments 

redistribute as the plastic hinges form. However, in B. S. 8110, redistribution is considered in 

a different manner. Using the same example as in figure 2.1.2., a bending moment envelope 
for the collapse load, say Q, is calculated using elastic methods, giving the bending moment 

envelope shown in figure 2.1.2. (b). The support moments are then reduced to the plastic 
moment value, MP = QL/6 in the example (derived from figure 2.1.2. (d). ). To satisfy 

equilibrium requirements however, the span moments must be increased, so that the free 

bending moment remains the same. This is the same as superimposing the free bending 

moment on the changed reactant support moments, Moy[ 11 ]. The procedures required for 

the design to B. S. 8110 are illustrated in more detail in the following section. 

An elastic bending moment envelope for a continuous beam under ultimate load is 

calculated from the following combinations of loading :- 

a/ All spans loaded with 1.4 x Dead Load+ 1.6 x Imposed Load 

b/ Alternate spans loaded with 1.4 x Dead Load+ 1.6 x Imposed Load and all 

others with 1.0 x Dead Load 

B. S. 8110 clause 3.2.2.1 requires that the maximum amount by which any moment 

may be reduced is 30%, therefore the resistance moment provided by any section must be at 

least 70% of this elastically calculated envelope. In this respect it is useful to have an 

envelope of 70% of the elastic moments for comparison purposes after redistribution has 

been carried out. 
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To illustrate the procedure, consider a new model of a span in the middle of a 
multispan continuous beam system, subject to a point load at its centre. Figure 2.1.3. (c). 

shows the ultimate moment envelope obtained from two moment envelopes shown in figures 

2.1.3. (a). and 2.1.3. (b), obtained from two separate load cases. The support moments in 

figure 2.1.3. (a). can be reduced by 30% to -105 kNm and -175 kNm at the left and right 
hand ends respectively, causing an increase in the span moment to 210 kNm, as shown in 

figure 2.1.4. (a). Alternatively if the span moment in figure 2.1.3. (b). is reduced by 30% to 
175 kNm 

, the support moments would increase to -175 kNm and -225 kNm respectively, 
figure 2.1.4. (b)., an increase on the original values in figure 2.1.3. (a). Alternatively by 

increasing the support moments in figure 2.1.3. (b). to -105 kNm and -175 kNm, the span 

moment may be reduced by 15 kNm to 235 kNm. This redistribution will be adopted, figure 

2.1.5. (a). Comparing this with the envelope of ultimate moments in figure. 2.1.3. (c). and 
figure 2.1.5. (b), it can be seen that the positions of zero moment (contraflexure), have moved 
towards the supports in the negative hogging moment region, and away from the supports in 

the positive sagging moment region. An envelope of 70% of the ultimate moments will cross 
the axis at the same position as the full ultimate moments, figure. 2.1.5. (b). Thus the 

redistributed envelope violates the 70% envelope in the regions of contra flexure. The 

redistributed envelope must be revised to comply with the 70% ultimate envelope, to ensure 
that sufficient lengths in the hogging and sagging regions are reinforced to satisfy service 

conditions as shown in figure 2.1.5. (c). 

Clause 3.2.2.1, condition 2, ensures the provision of adequate rotation capacity, and 

states that at positions where moments have been reduced by the redistribution, the neutral 

axis limit should not be greater than 0.6 of the effective depth, obtained from the expression 
x5 (Pb - 0.4)d, where : 

Moment at section after redistribution 51 fib _ Moment at section before redistribution 

Where :x= Neutral axis depth 

d= Effective depth 

This maximum value for x assumes that no redistribution has taken place, and that 
ßb =1. At the other extreme, if the full 30% reduction has taken place, the neutral axis depth 

x will be 0.3 of the effective depth. For design purposes, assuming that some redistribution 

of moments has taken place, the limiting value on the neutral axis depth is obtained from Pb 
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and the required reinforcement calculated from design equations such that this limit is not 
violated. 

2.1.2/ Design Procedure for the redistribution of moments for P. C. to B. S. 8110 

The provisions for the redistribution of moments in prestressed concrete continuous 
members are covered by clause 4.2.3. In this case the reduction of the design ultimate 
moments is limited to 20%, and hence the neutral axis depth should not exceed (ßb - 0.5)d. 

Therefore the allowed level of adjustment in the ultimate envelope is less than for reinforced 

concrete because of the reduced ability to predict rotation capacities in prestressed concrete. 
The question of how to treat secondary moments in the analysis is of major concern, as 

plastic theory would dictate that the addition of any residual moment such as the secondary 

moment would not affect the ultimate load. The only case in which this can be guaranteed 

would be when complete redistribution (in the plastic theory sense) has taken place, i. e. when 
the rotation capacity at critical sections is known to be sufficient for full redistribution. Due 

to this uncertainty involved with the design of critical sections, how to include the effects of 

secondary moments is of extreme importance. Plastic theory would suggest that whether to 
include the secondary moments at the ultimate limit state or not, will yield the same result, 

yet if full redistribution cannot be assured, (i. e. sections cannot be designed with the required 
ductility), this is definitely not the case. B. S. 8110 comes to a compromise by including the 

secondary moments with a load factor of 1.0 with the ultimate bending moments before 

redistribution, so that they are present in the calculation of the limit to the neutral axis depth 

(for ductility of critical sections), obtained from Clause 3.2.2.1, condition 2. 

2.1.3/ Design Procedure for the redistribution of moments for P. C. to A. C. I. Code 

ACI 318-89 permits a reduction of moments based on 'reinforcement indices' which 
are in turn related to the rotation capacity of the sections which are of concern. Specifically 

the reinforcement indices are, 

A: fy ,., f 
= 

Ap. f 
ps 

bdf; = bdf, 
ý° - bd 

p 
f, 

for non-prestressed tension steel, non-prestressed compression steel, and prestressed steel 

respectively. The elastic ultimate moment envelope is then calculated from all possible 
loading conditions, and the maximum percentages by which negative moments may be 

decreased or increased are, 
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For rectangular sections with prestressed steel only : 

20 1- 
0363 t 

For rectangular sections with prestressed and non-prestressed reinforcement : 

20 1- 
036ß, 

For flanged sections with prestressed and non-prestressed reinforcement : 

20 1- ° 
0.36f3, 

where the term ß, is the factor by which the neutral axis depth is multiplied to obtain the 
depth of the equivalent rectangular stress block, and the subscript w refers to the 
reinforcement indices calculated from the breadth of the flange. It can be seen that the 
maximum possible percentage redistribution, like the British code, is twenty percent. 
However, the moment in the spans must be calculated from the same loading arrangement as 
that which produced the negative support moment values which have been altered. Also, 
there is a requirement to the effect that the reinforcement index (given by any of the three 
numerators in the above fractions) must not exceed 0.24ß,, and a minimum amount of 
bonded reinforcement is required at the support sections. Both of these requirements ensure 
ductility. 
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Secondary moments are included in situations where the required ductility and 
rotation capacity cannot be guaranteed to create the desired full redistribution of bending 

moments, and in these cases they are included with a load factor of 1.0. The difference here 
is that they are included after redistribution of moments has taken place for calculation of the 
design ultimate moment. 

The implications of this procedure for the inclusion of secondary moments, are 
described by Wyche et. al., [33]. In the same reference the procedures in the Australian 'AS' 

codes and NAASRA, the Australian bridge design code, are compared with the American 
ACI, Canadian, and British Standard 5400 codes, and the advantages and disadvantages are 
examined in detail. 

The conclusions that can be drawn from this is that there are a number of conflicting 
design methods which attempt to include the effects of secondary moments in the design. 

The correct way in which they should be treated has been, and is, a subject of much debate. 

Research has shown that they may have both beneficial and detrimental effects depending on 
their magnitude and sign, and also upon their inclusion or exclusion in the design. When they 

are included, they are assumed to act at their full elastic value, but as tendon forces and 
flexural stiffnesses change after cracking has occurred, this can no longer be valid. Only 

when a statically determinate system has been created due to the formation of a plastic 
hinge(s), will it be true that the secondary moment has become zero and has no further 

effect. However, the secondary moment is present up to statical determinacy, and therefore 

affects both the load at which this occurs, and the available rotation capacity at the critical 

sections thereafter, hence affecting the amount of redistribution which can take place. The 

secondary moment affects when the plastic moment is reached, and thus the amount of 

rotation required before the mechanism forms. 
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2.2/ Equivalent Load Analysis 

The theory of equivalent loads provides a useful tool for the analysis of both simply 
supported and continuous beams, and is sometimes referred to as the tendon reaction 
method of analysis, and is described by Hurst, [1] and Nilson, [2]. By deflecting a stressed 
tendon from a perfectly horizontal profile, the concrete must exert a transverse force on the 

tendon to hold it in position, and hence, the tendon will exert an equal and opposite force on 
the concrete. Tendon profiles which are continuously curved will produce distributed 

transverse loads on the member, whereas those with sharp changes of profile will produce 
concentrated loads at the change points. These transverse loads produce the same bending 

moments as the prestressing force, and are called equivalent loads. Although these 

equivalent loads are treated as transverse loads, theoretically they are directed towards the 

centre of curvature of the tendon profile, in the case of continuously curved tendons, but in 

most cases, as the tendon is of shallow inclination, the equivalent load can be assumed 

vertical. At the ends of the member where the anchorages bear on the concrete, moments are 

produced by the eccentricity of the anchorage from the centroidal axis of the member. As a 

result of this equivalence between these transverse loads and the prestress, prestressed 

concrete beams may be analysed by considering the tendon force as a set of externally 

applied equivalent loads. 

2.2.1/ Elastic analysis of simply supported beams 

Figure 2.2.1. shows a simply supported beam with a continuously curved parabolic 
profile. The equation of the profile is calculated as: 

y=e, -x(e2-e, )+4d, x(LLZx) (2.1) 

where d, is the drape of the tendon. It has be shown in many texts, Hurst [1], that the 

equivalent load is equal to P/rps, where rps is the radius of curvature of the tendon profile. If, 

as is normally assumed, the profile is reasonably flat, /rps can be approximated by 

d2y/dx2 . Differentiating equation (2.1) twice, and multiplying by the tendon force gives the 

equivalent load, in this case a uniformly distributed load of magnitude : 

8Pd, (2.2) 
L2 
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It can be seen that rearrangement of this equation gives the well known formula for the 

maximum bending moment in a simply supported beam subject to a uniformly distributed 

load w, i. e. 

Rd, 
z 

8 
(2.3) 

This is analogous to the relations between load, shear force, and bending moment. The 

equivalent load is thus the second derivative of the bending moment, i. e. 

dV dzM 
(2.4) 

Also, the moments at the ends of the beam are : 

M, =Pe, cos8, M2=Peecos92 (2.5) 

Thus, the primary moment - Py, can be used to calculate the equivalent load using 
the aforementioned method(i. e. W= P(d Z y/dx2) ). It should be noted that if the tendon 
force P varies along the profile as a function of x, this must also be included in equation 
(2.1) before the differentiation process. 

For sharp changes in profile where the tendon has been held down or 'harped', as 
shown in figure 2.2.2., the concentrated load is obtained using W= P(sin a+ sin ß) 

. 

2.2.2/ Elastic Analysis of Continuous Beams 

A beam continuous over three supports is shown in figure 2.2.3., and the primary 

moments, the product of the effective prestress force (4000kN) multiplied by the 

eccentricity of the tendon profile from the section centroid, are displayed in figure 2.2.4. (a)., 

denoted by Mt. For the left hand span, the parabolic tendon profile creates a uniformly 
distributed load as dictated by equation (2.2) : 

8Pd 8x 4000 x 0.5 
LZ 

r 
202 =- 40 kN /m (2.6) 

The same result will be obtained if the change in slope between points A and B is 

calculated, i. e. d2 M/dx2 . This method is employed to calculate the concentrated load in the 

right hand span. At point C the change in slope is equal to : 
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=-l 00kNm /m- 300kNm /m=- 400 kN (2.7) 

Also, as the tendon at end D is non-coincident with the section centroid, an end 

moment of 400 kNm exists here. To obtain the resultant moment in the beam, a number of 

methods can be employed, such as flexibility and stiffness (many software programs are 

available for this). Moment distribution which is based on the stiffness method lends itself 

to hand calculations, and is carried out on the system of equivalent loads, shown in figure. 

2.2.4. (b). 

2.2.3/ Moment Distribution 

The fixed end moments for the spans are : 

First Span: 

Left Hand End -L2 40 x 20Z 1333.3 kNm 
12 12 

Right Hand End =+ 
WL2 

=+ 
40 x 202 

=+ 1333.3 kNm 
12 12 

Right Hand Span: 
Wab 2 400 x8x 122 

Left Hand End =- LZ =- 202 
1152 kNm 

Wa 2b 400 x 82 x 12 
Right Hand End =+V=+ 202 =+ 768 kNm 

Joint No. -- F7; 1 A2 B2 B3 Ext. 

Distn. 

Factors 

0 0.5 0.5 1 0 

F. E. M. s -1333.3 +1333.3 -1152 +768 +400 

Relax +1333.3 -90.7 -90.7 -1168 0 

Carry Over 0 +666.7 -584 0 0 

Relax 0 -41.4 -41.4 0 0 

Total kNm 0 -1867.9 -1868.1 -400 +400 
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The resultant moments are shown in figure 2.2.4. (c), and these represent the total 

moments within the beam, denoted by M3. The difference between these resultant moments 
and the primary moments, M� figure 2.2.4. (a)., is the secondary or parasitic moment, 
M2, (i. e. M3 = M, + M2 ), shown in figure 2.2.4. (d), representing the net internal moment 
within the beam, caused by the statical indeterminacy of the beam. This may also be 

visualised as the central support applying a restraining external reaction, causing the centre 
of compression within the beam to be no longer coincident with the line of the tendon, 

setting up the internal secondary moment. 

2.2.4/ Linear Transformation 

If we imagine a linear transformation of the tendon profile by raising or lowering the 
tendon at internal support sections, the equivalent loads will not alter as the change of slope 
of the primary moment function remains the same. Thus the resultant moments in the beam 

will remain the same if the profile is transformed in this manner, however the primary 
prestress moments will differ due to the change in eccentricity of the profile. As a result, the 

secondary moments are changed, and if so desired, they can be totally eliminated by the 

production of a concordant tendon profile, whereby the tendon is coincident with the 
trajectory of the centre of compression in the beam. There can be a number of different 

concordant profiles for particular continuous beam systems, although in a great deal of cases 
these profiles are impractical, and the secondary moment cannot be completely eliminated. 

2.2.5/ Overload Behaviour 

The equivalent load method provides a means by which total resultant moments in 

the beam can be found. These are a combination of both primary and secondary moments, 
the latter of which reveals itself as the net internal moment. As vertical load is applied to the 

continuous beam, the internal moment becomes the addition of the secondary moment and 
those moments caused directly by the applied load. Whilst operating in the pre-cracked 
stage, in an elastic, serviceable manner, the equivalent load analysis can be applied with 

sufficient accuracy to find total and secondary moments, as the tendon force change due to 

the application of external loads is negligible, and an assumed effective prestress force is 

adequate. As the beam is overloaded, cracking will commence at some stage, and the nature 

of the beam will change. Local increases in tendon force occur at cracks, the magnitude of 
the change depending on bond characteristics, the location of the cracks, and the amount of 

cracking which has taken place. The onset of cracking is also accompanied by a change in 

the beam stiffness. Therefore at the serviceability limit state, the secondary moment due to 
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the prestress and internal moment due to applied loads can be separated readily, with easily 
calculable secondary moments, but beyond these loads up to the ultimate limit state, 
separation of the changing secondary moment from the internal moment becomes a difficult 
task, due to the aforementioned complications. The magnitude of the secondary moment 
may be a significant value at the onset of the formation of plastic hinges when possible 
redistribution of bending moments occurs, affecting the eventual ultimate load. Hence there 
are a number of factors to consider which complicate any attempted analysis of a cracked 
continuous beam using equivalent loads. 

The monitoring of resultant moments has been carried out by a number of 
researchers such as Campbell and Moucessian, [23], and Campbell and Kodur, [29], 

employing finite element (stiffness) techniques and implementing them in computer 
programmes, with various degrees of success. Of concern here is the treatment of secondary 
moments in codes of practice for design purposes, and as this is the root of the problem, it is 
desirable to have a means of estimating them in the post-cracking stage of loading and their 
effect on the ultimate load. The following is an outline of the necessary procedures for an 
equivalent load analysis to determine the magnitude of secondary moments after the 
initiation of cracking. 

2.2.6/ The application of Equivalent Loads to determine the magnitude 
of Secondary Moments in the Post-Cracking stage 

As described in the previous section, the equivalent load can be found directly from 
the primary moment function by evaluating the second derivative with respect to x, 
assuming a continuously curved tendon profile. With no applied load, a stiffness analysis in 

the form of moment distribution (for hand calculation) is carried out with the necessary 
fixed-end moments, carry over factors, and relative stiffnesses of members, due to the 

equivalent loads, to calculate total moments, and secondary moments by subtraction of the 

primary moment. When an external load is applied the procedure remains the same as long 

as the beam is behaving elastically. The primary moment and equivalent loads remain the 

same, yielding the same resultant and secondary moments. The secondary moment may thus 

still be separated from the internal moment. 

With a continuous beam system, let us assume that the first crack occurs at an 
internal support in a region of high negative (hogging) bending moment, at a particular 

magnitude of applied load. At the location of the crack, the tendon force is increased. This 

increase may be calculated by performing a cracked section analysis on the section in 

question, subject to the internal moment at that location. Immediately to the left and right of 
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the crack, the tendon force will decrease in some manner to its effective prestress force 

value, at a distance away from the crack governed by the bond characteristics between the 

steel and the concrete. This change in tendon force will cause an alteration in the primary 
prestress moment, affecting the equivalent load. At the crack, the stiffness (EI value) of the 

section has been reduced, so that the fixed-end moments, carry-over factors, and stiffness 
factors will be different in the moment distribution from the elastically calculated values. If 

these factors can be calculated successfully, the resultant moment due solely to the 

equivalent load may be obtained, and a value for the secondary moment established. The 

main components of the calculation are :- 

I/ To find the second derivative of the primary moment, i. e. the equivalent load. 

2/ To calculate the stiffness and carry-over factors of the beam, and carry out moment 
distribution (or stiffness calculation). 

3/ To perform a cracked section analysis of the prestressed concrete member. 

A calculation involving procedures 1 to 3 would be far too complex to carry out by 

hand, but is suited for solution by computer. A computer programme SMAREL (Secondary 

Moment And Redistribution by Equivalent Load) has been written to estimate the 

magnitude of secondary moments in two and three span prestressed concrete continuous 
beams, up to the point of first plastic hinge formation. The programme procedure is 

described in Appendix A, and its features detailed in section 5. 
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(a) Two Span Beam 

M2 = 3QL/16 

(b) Elastic Bending Moments Envelope 

M2 MP 

(C) Plastic Hinge Forms at Central Support 

M2 =MP 

(d) UMlmate Bending Moment Envelope 

Figure 2.1.2 
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8P d, 
w=- z L 

Figure 2.2.1. Simply Supported Member withContinuously Curved Parabolic Tendon Profile 

W 

Figure 2.2.2. Sharp Changes in Tendon Profile 

P= 4000 kN 

Figure 2.2.3. Two Span Continuous Beam 
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(a). Primary Moment Envelope, M1 (Prestress Force x Tendon Eccentricity) 

4000 kV 

1ý 

40 kN/m 400 kN 

(b). Equivalent Transverse Loads caused by Prestressing 

1nAl. 14,1m 959 kNm 

0 

0 kNm 

1068 kNm 

(d). Secondary Moment Envelope, M2 (= M3-M1) 

400 kNm 

400 kNm 

400 kNm 

0 kNm 

Figure 2.2.4. 
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3/ Finite Element Analysis of P. C and R. C. Structures 

The finite element method provides a powerful tool for analysing a vast range of 
engineering problems, especially in the field of Structural Engineering. Many texts have been 

produced regarding the various finite element techniques and their applications, Scordelis 
[39], accompanied by the production of computer software which is produced commercially 
for both specific purposes and general applications. There has been an increased interest in 
the analysis of reinforced and prestressed concrete using finite element techniques over the 
last twenty five years, and work in this area has yielded many valuable results in comparison 
with laboratory tests, although codes of practice for design are still largely based on 
empirical data. Compared with the application of well established theoretical methods which 
may include approximations for various properties, the actual behaviour of a structure can be 

analysed more accurately using well constructed finite element models, justifying their use in 

a large amount of modern structural research. There is no perfect substitute for 

experimentation, but the finite element method is probably the best alternative, and in most 
cases when it takes far less time, effort and expenditure for modelling a structure using this 

method, it has distinct advantages. 

There are a number of factors associated with the analysis of R. C. or P. C structures 
using finite elements which complicate the process and these require correct modelling . 
Nonlinear stress-strain relationships for both the steel and the concrete must be considered, 
together with the anisotropy of concrete, i. e. it is strong in compression, weak in tension, and 
will crack and crush at particular load levels causing a change in the stiffness matrix. The 

composite action of the steel and the concrete is created by direct bond in ordinary 
reinforced, pretensioned, and post-tensioned grouted members, whereas with unbonded 
tendons, this is done by the anchorage and friction transfer stress, so a means of modelling 
these bond characteristics must be determined. Correct application of the prestress, 
representation of the load, boundary conditions, and discretization of the elements in the 

model are also of importance. 

3.1/ Review of Previous studies involving Nonlinear analyses of R. C. and P. C. 

In the late 1960's a number of researchers were beginning to explore the possibilities 

of using finite elements to aid in the design and analysis of reinforced concrete. 

Mufti et. al. [21], investigated the use of finite elements for the analysis of reinforced 

concrete, creating a computer programme using two-dimensional triangular elements for 

both the concrete and the steel, with an incremental loading procedure for the non-linear 
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analysis. A similar process was used to account for the non-linear bond stress-slip properties. 
Cracking was included by stopping the analysis and effectively deleting the cracked element 
concerned from the global stiffness matrix by making its thickness zero. In this particular 
study this was done automatically, eliminating the need to stop the program, alter the 
boundary conditions, and restart the analysis from zero load, as for earlier work. Bond 
linkage elements were used to connect the steel to the concrete, using bond-slip relationships 
suggested by Nilson in an A. S. C. E. State of the Art Report on Finite Element Analysis of 
R. C. Structures, [40]. Time dependant properties such as creep, shrinkage and steel 
relaxation were also included. The results were good, indicating the usefulness of finite 

elements in the analysis of reinforced and perhaps prestressed concrete. 

This State of the Art Report on the Finite Element Analysis of Reinforced Concrete, 
[40], describes various techniques in the modelling of reinforced concrete using finite 
elements. Nonlinear analyses, both material and geometric, are discussed in detail, as are the 
failure criteria of the concrete, bond representation and shear transfer. Three different 
methods of modelling the reinforcement are dealt with; a distributed representation combined 
the concrete and steel in a constitutive relation, effectively distributing the steel within the 
concrete matrix, specifying an orientation for the reinforcement and assuming full bond; 
isoparametric elements were produced which effectively embedded the steel as an axial 
component in the concrete element (forming a composite element), with compatible 
deflections of each material within the element thereby assuming full bond; discrete 
modelling of the steel by one-dimensional spar or beam elements attached to the concrete, 
allowing any prestress to be modelled by an initial strain, and bond stress-slip relationships 
applied through linkage elements. The latter method of modelling reinforcement was the 
most widely used, as this provided more options such as the inclusion of separate axial, 
bending, and shear for the steel. Bond could be modelled with linkage elements adopting 
non-linear relationships in orthogonal directions, lumping properties at nodes, or alternatively 
with interface elements which distributed the properties along the steel concrete interface. 
Models of common reinforced structures are included, using the techniques discussed in the 
report. 

In 1983, an International Symposium on the Nonlinearity and Continuity in 
Prestressed concrete addressed the problems of hyperstatic moments with regard to moment 
redistribution at the ultimate limit state. Papers on similar themes are gathered in the 

publication with the aim of throwing light onto the current problems by use of modern 
nonlinear techniques, including finite elements. Volume 2 of the 3 volume series deals 

directly with the problems of nonlinear analyses of continuous structures, and includes the 
following three relevant papers : 
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Levi et. al., [41], attempt to study the behaviour of prestressed continuous beams by 

the 'deformation method', analysing a T-section beam of fine mesh subject to an increasing 

externally applied load up to ultimate limit state, including prestress effects. The 
deformations (curvature etc. ) were calculated at each load step, using an iterative procedure 
to ensure compatibility and equilibrium. Results suggested that the secondary moment is not 
affected substantially up to the ultimate limit state. 

Cauvin, [42], outlines a similar nonlinear analysis, including cracking, tension 

stiffening, and plasticity, treating the hyperstatic effects of prestressing as action effects or 
equivalent loads. Time dependant effects such as creep and shrinkage were also included. His 

results suggested that hyperstatic effects decrease as the beam stiffness decreases due to 

cracking, although he does point out the lack of comparisons with experimental work at the 
time. 

Scordelis [39] and [43], outlines computer models which can be used for the 
nonlinear analysis of reinforced and prestressed concrete structures. Material and geometric 
nonlinearities are incorporated, with pretensioned or post-tensioned bonded or unbonded 
tendons. A number of time dependant effects such as creep, shrinkage, and relaxation of the 
prestressing steel are also included, along with a full description of the numerical 
formulations involved in the solution. This spawned a number of computer programmes 
using these proposed computer models, with specific elements developed for the modelling 
of particular prestressed structures, as part of a major research programme at the University 

of California. 

One of these programmes PCFRAME which analyses reinforced and prestressed 
concrete planar frames, beams, and columns was used by Campbell, [23], to investigate the 
failure loads of two-span continuous beams with various load patterns, nonprestressed 
reinforcement and prestressed tendon profiles. From the results of the analyses, two 

parameters, one for the quantitative measurement of moment redistribution available, and 
another which gave consideration to the secondary moment in the analysis, were put forward 

for use in calculation of the load carrying capacity of prestressed two-span beams. A 

subsequent comment by Mattock, [44] suggested that a number of the beams in the study did 

not conform with the American design codes, ACI 318-83, and that a similar parameter for 

measuring available redistribution had already been defined by Bennet, [31] 

Campbell, [29], describes the continuation of the research at Queens University in 

Canada, where a curvature incrementing technique was used for the nonlinear analysis of 
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prestressed concrete continuous beams. A macroscopic model was used in this instance, and 
the nonlinear analysis carried out by incrementing the curvature of a predetermined critical 
section, having already calculated the moment curvature relationships for each segment of 
the structure. An assessment of the acceptable aspect ratios of the macroscopic segments at 
critical sections revealed that a ratio of width to depth of zero would yield exact failure 
loads, but as this was not possible, a range of 0.2 to 0.4 was acceptable for the prediction of 
the beams behaviour, compared with empirical data. 

Seraj et. al., [22], carried out nonlinear finite element analyses of prestressed concrete 
members, using a three dimensional finite element package, designed specifically for 

reinforced concrete. The prestress in this case was applied as an equivalent load, and the 
corresponding portion of the steel stress-strain curve removed to take account of this. 
Results from these tests were favourable with a design procedure based on an analysis of the 
trajectory of the compressive force path (CFP) in the concrete, suggested by Seraj. 

A great deal of more recent work involving the application of finite elements, 
specifically to reinforced or prestressed concrete structures, attempts to refine the ideas 

mentioned in the previous references, presenting solutions to various individual problems. 
One such problem, when dealing with prestressed concrete is the curved profile of the 
tendon. Straight steel profiles either prestressed or non-prestressed can be easily attached to 
the regular concrete mesh, whether horizontal or inclined at an angle. When the profile is 

curved, this requires either the concrete mesh to be irregular so that the steel profile can be 
'picked up' by the concrete nodes, a situation which is not desirable, or the creation of a very 
fine regular concrete mesh, causing increased computer solution time and expense. El- 
Mezaini and Citipitoglu, [45], have presented an isoparametric element of which the edge 
nodes may be shifted to coincide with the line of the tendon profile. Hence, the concrete 
mesh may be created first, regardless of the profile, and then the edge nodes are moved to 
the desired profile, followed by the attachment of the steel. Application to a few examples 
with continuously curved tendon profiles yielded good results. 

A number of general purpose finite element computer software packages have 

evolved such as ANSYS, [46], and have been constantly upgraded since their production, as 
the technology of finite elements grows. Many incorporate specific elements in their libraries 

for the analyses of particular problems such as the modelling of concrete type materials, 

either singly, or in composite action with other materials, i. e. steel. ANSYS has incorporated 

a three-dimensional isoparametric concrete element into its library, formulated by 

Schnobrich, [47]. Each of the eight integration points has the capability of cracking in any of 

the three principal stress directions which may exceed the maximum tensile stress, 
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whereupon corresponding alterations are made to the material property matrix. If the 
concrete reaches its maximum strain, crushing will take place at any integration point where 
this has occurred, and the material property at this location is set to zero. The element also 
includes a variety of other features, including distributed modelling of reinforcement if 

necessary in any direction within the concrete matrix. 

In this research, the ANSYS finite element package has been used to model 
prestressed concrete simply supported and continuous beams of various profiles, in an 
attempt to shed light on moment redistribution and secondary moments up to the ultimate 
limit state. 
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3.2/ ANSYS Overview 

The software package ANSYS, [46], produced by Swanson Analysis Systems Inc., is 

one of the leading general purpose finite element programmes available to both educational 
and commercial establishments. The programme has a comprehensive menu driven system 
with general and time-history preprocessors for model creation, solution phase, and general 
or time-history postprocessors for viewing, analysis and manipulation of the model solution 
data. An overview of version 4.4a is described here. 

After execution of the main program, the user enters the routine begin level of 
ANSYS, and the menu overlay may then be either turned 'on' or'off depending on the users 
preference and familiarity with the program commands. 

3.2.1/ Preprocessor 

On entry to the general preprocessor (PREP7) from the routine begin level, the type 
of analysis is first selected, i. e. structural, thermal, static or dynamic etc. A large element 
library becomes available with general 1,2, and 3 dimensional elements, and elements 
designed for specific purposes, each with their own individual accession or 'STIF number. 
The next step is to select all the element types to be used in the model. During their 
selection, a number of key options are specified for each element type to define certain 
properties specific to the element in question, such as control of solution printout, or control 
of element physical properties. Real constant sets are then created, each with their own 
reference number, for use with these elements to define additional information about their 
geometric characteristics. Linear material properties are defined with reference numbers for 

each material, specifying each property, (such as elastic modulus) for a particular material. 
When a nonlinear stress-strain relationship is required, the form and hysteresis characteristics 
of the stress-strain graph are defined in a nonlinear table for the material, entering co- 
ordinates of points on the curve in the appropriate location in the table. 

Having already planned out the desired finite element mesh, the nodes are generated 
first. Cartesian, cylindrical polar and spherical polar co-ordinates systems are available for 
input of these nodes, with facilities for defining local and global systems. The first 'set' of 
nodes are normally created such that subsequent node creation can be carried out by a 
generation procedure of the primary set, assuming the mesh has been well constructed in 

such a manner as to allow for this. Automatic meshing for more complicated models is also 
available. With all the nodes created, an element type, an associated real constants set, and a 

set of material properties are selected for the subsequent assembly. The elements are formed 
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by assigning them to the correct nodes in a predetermined order. Again, as with the nodes, 

elements may be generated from an initial pattern. To change an element type or any of its 

properties, the selection of the appropriate reference number of a real constant set, material 

property set, or element type will facilitate this. Once the model has been created, boundary 

conditions and applied loads must be defined. Boundary conditions may be entered at set 
displacements in the active co-ordinate system, or as constraint equations, thereby allowing 

an analysis by the specification of a prescribed displacement rather than by direct loading. A 

variety of external load application is available. Pressures over element faces, point loads at 

nodal locations, and accelerations coupled with specific material densities provide several 

means of direct loading. 

The data required for the solution phase is written to a file (either file 27 for a linear 

analysis or file 23 for a nonlinear analysis), and the preprocessing database is written to file 

16. This file may be saved for future resumption of model preparation in the preprocessor. 
Alternatively, each time the preprocessor is used, an ASCII text file, filel8 is written with a 

record of all of the commands for that particular session. This file may be run through the 

preprocessor so as to create the filel6, and as filel8 is generally smaller than filel6, it is 

normally more convenient to save or create this text file. 

3.2.2/ Solution Phase 

After exiting from the preprocessor, the solution phase is initiated at the routine begin 
level. For a static linear analysis the correct file (either 23 or 27) is input directly by issuing 

the command 'INPUT 27', and the solution begins. If the menu is in operation, only a limited 

amount of solution information is displayed, so if the menu is turned off before the solution 

phase is entered, the progress of the solution can be monitored, which is especially useful if 

the analysis is nonlinear. Once the solution procedure has finished (converged), and 

completed the last stress pass, the user is prompted for input of a file (file23) containing the 

next load step information. This is necessary only for nonlinear analyses, so the FINISH 

command can be issued to return to the routine begin level. During the solution phase some 
large files are created on the default directory. Filel2 contains all relevant solution 
information for analysis using the postprocessor, and file02 and file03 contain model restart 
information before and after the last stress pass respectively. If more load steps are required, 
file03 is necessary for continuation of the analysis using the restart procedure. Other large 

files contain geometry and triangularized matrices used for the solution process only, and 

may be discarded. 
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For a linear static analysis the model will require only one pass in the solution phase 
for the correct answer, and before exiting from the preprocessor, the solution fi1e27 is 

written for input for the solution phase. For a non-linear static analysis, a number of 
iterations will be required to ensure equilibrium, and to account for the effects of plasticity, 
geometric nonlinearity, and element specific nonlinearities. Also, it may be required that 
loading occurs in a number of steps of limited size to progress toward a converged solution 
for a particular load level. Therefore all of this subsequent load step data must be recorded 
before exiting from the preprocessor. Preprocessing data for the very first load step is saved 
to file27. Preprocessing data for subsequent load steps must be written to file 23. Assuming 
that an analysis has already been started, and a file03 exists on the directory ANSYS is 

currently using, then from the routine begin level the '/LOAD' command can be issued to 
continue the analysis, and then by typing 'INPUT 23', this will initiate the solution phase 
again. 

3.2.3/ Postprocessor 

In the general postprocessor, the required load step number and iteration are set, and 
filel2 is read into the programme. There are a number of advanced techniques for visualising 
the data graphically, i. e. stresses may be plotted as raster or vector contours superimposed 
upon element plots, which can be viewed from any desired angle. Comprehensive lists of 
data may be compiled for viewing graphically or in its raw form, and a certain amount of 
data manipulation can be performed within the postprocessor, such as summation of forces 
or moments about specified positions in the model. All data associated with each element has 
a specific postdata number allocated to each data item, which may be specified and labelled 
for analysis. Certain 'levels' of data are default for each element and common data may be 

viewed without any prior preparation. Other data which is rarely needed, is stored on higher 
data reference levels, and can be stored on file 12 by issuing a data level storage number for 
the element type in question, in the preprocessor. This data can then be accessed by 
allocating a label to the specific postdata item number in the postprocessor. 

3.2.4/ Batch Processing 

As mentioned earlier, filel8 provides a means of recalling and inputting the 
programme commands of a preprocessing session for recreation of the filel6 containing 
model data. This is the basis of batch processing in its simplest form, where a set of 
commands are entered into a text file and executed in sequence. Hence, with enough 
familiarity with the necessary commands, the preprocessing, solution phase, and 
postprocessing can be accomplished in one run, by the creation of a text file containing these 
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commands. Solution data may also be rerouted to a text file from within ANSYS, or 
externally using the batch process. 

3.2.5/ Suggestions on Running a Nonlinear Analysis with ANSYS Version 4.4a 

It is important to understand the fundamentals of the use and operation of the 
ANSYS 4.4a program, as insufficient knowledge can lead to problems, especially with a 
nonlinear analysis. The size of the model, i. e. the number of elements and nodes created 
within the preprocessor, will directly affect the size of the model solution file 12, and restart 
files 2 and 3. These are the largest files to be created, together with temporary scratch and 
virtual memory swap files which ANSYS uses whilst it is running, therefore a hard disk (or 
local filestore of some description) must have the capacity to cope with these files, otherwise 
the analysis will break down during the solution phase. This can prove both time consuming, 
as the analysis has to be repeated for the load step in question, and disastrous if the model 
information file 3 (or file 2) for the previous load step has not been saved, thereby requiring 
the total restart of the analysis from the first load step. If only limited information is needed 
at the solution of each load step, this can be extracted from file 12 using the postprocessor, 
and then file 12 can be discarded. Otherwise it is sensible to create a backup library of file 
12's, and in any case, have a running backup of the file 3 corresponding to the last load step. 
This can be done using removable disks or tape streamers. Experimentation with load step 
sizes is required at various load levels, so careful batching of load steps is required if more 
than one load step is to be performed in one solution phase, as any breakdown will require 
restart from the first load step of the batch. 

To monitor the progression of the solution of a nonlinear analysis, it is best to turn 
the menu off, as this will allow the user to view the solution information such as convergence 
data for all nonlinear elements and properties, as the solution progresses. Therefore if at an 
early stage the solution appears to be non-converging, the analysis can be stopped and 
restarted with a smaller load step. With the menu on, the user has no idea as to the 

progression of the solution, and no estimate of when the solution will finish, so that it will be 
difficult to enter the next load step promptly. These problems have been addressed with 
ANSYS version 5.0. 
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3.3/ Nonlinear Finite Element Analysis 

With many physical problems, linear relationships provide an adequate means of 
solution, especially with regard to structural mechanics. However, there are some situations 
in which nonlinear effects must be considered, such as when significant stiffness or geometry 
changes occur, or perhaps buckling and time dependent effects may be present. Two of the 

main nonlinearities to be considered in the finite element analysis of prestressed concrete 
beams using ANSYS, material and geometric, have specific solution methods, and are 
described in more detail here. 

3.3.1/ Material Nonlinearity 

A material which has been loaded in a certain way whilst behaving in an elastic 
manner, has the ability to return to its initial state once the load is removed. Plasticity 
however exhibits itself as a permanent straining after the yield stress has been exceeded, so 
that when the load is removed or perhaps reversed, this permanent straining affects how the 
stress-strain curve behaves from that point onwards. This is important when plasticity causes 
redistribution of the load to the stiffer sections of the structure, as load reversal may occur 
in those parts which have become plastic. In other words, the application of the load is path 
dependent, the manner, magnitude and increase to the desired final load must be the same as 
that for the real structure. Load must be applied slowly in small increments to ensure that 
spurious permanent plastic straining does not occur, as this will affect the relative behaviour 

of the structure at higher loads. The standard procedure for the nonlinear analysis is to first 

apply a load so that the section of the model which is most highly stressed is near the yield 
stress, but still in the elastic range. Small increments of load, AP are then applied, and a 
solution is obtained for each load step. The solution is recalculated each time with an initial 

state of stress and strain dictated by the previous load step. Recommended sizes for the 
increment of load can be estimated as the greater of either AP = 

(Ei, /E)P,, or OP = 0.05P,, , 
where E and EP, 

, 
is the tangent modulus of the stress-strain curve before and after the yield 

stress has been reached (see figure 3.2), and P,, is the load at first yield. Trial and error is 

sometimes required in particular cases. For structures where the redistribution of internal 
loads does not take place, the load need not be incremented in this manner. 

The relationship between the applied loads and associated displacement field is 

represented by the stiffness of the structure in question, usually represented in matrix form. 

With linear material properties, this stiffness matrix is usually independent of both 

displacement and applied load, and the structure will behave elastically. If the stiffness and 

elastic modulus remain constant throughout the loading, then the force-displacement and 
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stress-strain relationships will be linear, with the gradients of each represented by the 
stiffness and elastic modulus respectively. When plasticity is to be included in the analysis, 
this causes nonlinearity in the stress-strain relationship, and hence, the stiffness matrix 
becomes a function of the displacements. Therefore to solve a problem of this nature, an 
iterative process must be incorporated in the solution phase. 

3.3.1.1/ Example with One Stress Component 

A one dimensional example of a bar encastred at its left hand end, figure 3.1, has the 
stress-strain relationship shown in figure 3.2, and is axially loaded such that the stress in the 
bar is a,, a value exceeding the yield stress of the material a, Using the elastic modulus E 

to solve the problem, the result will be above the actual stress-strain curve at position B. The 
strain associated with this result, e,, may be split into an elastic component e,, line D-E, and 
a plastic component e fl, line O-D, separated by line C-D, parallel to O-A, in figure 3.2. To 

obtain the correct strain corresponding to the stress level a, on the stress-strain curve, a full 
Newton-Raphson iterative procedure is best suited for this purpose. The basic Newton- 
Raphson formula for finding the roots of equations, whatever their order, proceeds by 
formulating better approximations to an initial estimate of the root x, given by equation 
(3.1). 

f (x) 
(3.1) 

.f' 
(x) 

Where f (x) is the function of x, and f'(x) is the first derivative. The process is easily 

applied to the current problem. In this case, the position where a particular stress level a, 
cuts the stress-strain axis is to be found. The stress level is known, so the strain e, is the 

approximation to the root. Referring to figure 3.2, the first iteration gives an approximation 
to the state of stress and strain at position C, on the curve at a position above the yield 
stress. For the next iteration, the derivative of the function (i. e. the gradient of the curve, 
often called the tangent modulus E,. ) is equal to EPL, and this produces an approximation 

which is equal to the actual state of stress and strain at F, hence the solution has converged 
after two iterations. The tangent modulus E,, of the curve is updated at each cycle depending 

on the position on the curve of the solution in the previous iteration. Therefore if the stress- 

strain function consists of piece wise linear portions as in our example, the exact solution can 
be derived with only a few iterations at a particular load level. The relationship between 

stress and strain need not comprise discontinuous linear functions but can be of a continuous 

smooth form of a higher order, although the solution will no longer be exact and as the curve 
becomes shallower at the higher strains, the number of iterations required for convergence 

will increase. If the portion of the curve in the plastic range ever becomes horizontal such 
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that the tangent modulus is zero, this would indicate that the solution would never converge 
as there is theoretically no solution for the iteration, and full perfect plasticity has been 

reached. In practice the stiffer elastic parts of the structure attract the load causing a 
redistribution from the plastic sections, increasing the rate of convergence. 

A well used variant of the Newton Raphson method of solution, often referred to as 
the initial-stiffness method, reuses the tangent modulus of the first iteration for successive 
iterations, and the approximations to the root are given by equation (3.2), 

x-- 
fj 

(3.2) 
f xý 

where x, is the first approximation to the root. Obviously this would mean that the number 
of iterations required to obtain the final solution is much greater than for the Full Newton- 
Raphson procedure, although the tangent modulus need only be calculated once in the 
calculation. 

3.3.1.2/ Convergence 

To test for the convergence of the solution to within adequate accuracy of the real 
value, the ratio of the increment in the plastic strain to the elastic strain, is 

compared to a value which is pre-set at the beginning of the analysis by the user. The default 

value for this ratio is 0.01, and gives a measure of the distance away from the actual stress- 
strain curve the converged solution is allowed to be. Thus, for most models, once the 
solution has converged, all of the integration points will be within this criterion. 

3.3.1.3/ Multidimensional Stress Problems 

The problem of the single dimensional bar is relatively easy to idealise, with one 
stress and one strain component in the axial direction, and the stress-strain relationship can 
be plotted immediately on a set of axes. With solid problems where other stress components 
cannot be ignored, an equivalent stress and equivalent strain are used to reduce the problem 
to a single dimension. The stress-strain relationship is then that which exists between the 

equivalent stress and equivalent strain, and the iterative solution can proceed as before. As 

there is now more than one stress component present, this allows redistribution of strain 
between the components, causing an increase in the number of iterations for convergence. It 

is also evident that at an intermediate step towards a converged solution, although the 

equivalent stress and equivalent strain would be on the curve, the uniaxial stress and strain 
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would be above the curve. This has implications for finite element models which use special 
elements such as the concrete STIF 65 element which allows cracking and crushing at 
integration points. At an unconverged iteration, the solution may have a stress state causing 
cracking or crushing (governed by the three principal stresses) which would not otherwise 
have occurred at the converged solution, hence this requires that the load be applied in small 
load steps to avoid this happening. 

3.3.1.4/ Yield Criterion, Flow Rule, and Hardening Rule 

Yielding is initiated at a particular stress level, governed by the Yield Criterion. For a 
one dimensional problem, this normally states that yielding begins once the stress a reaches 
the yield strength 63, . Any plastic deformation which occurs will alter the stress level at 

which continued or renewed yielding can take place. With problems of more than one stress 
component, the equivalent stress is represented as a function of the stress components, 
f ({Q}). Once the equivalent stress is equal to the material yield parameter c),, plastic 

strains form, which reduce the stress to the material yield surface. The yield surface has 

effectively grown with the equivalent stress, so that the equivalent stress can never exceed 
the material yield surface. These yield surfaces can be plotted in stress space (with the 

principal stresses as the axes), and any stress state which falls inside the surface does not 
cause plastic strains, and is therefore elastic. Details of these yield surfaces can be found in 

the ANSYS Manual, [46] 

A flow rule relates the increments of stress to the increments of strain. With a single 
stress component, the stress is related to strain directly by the tangent modulus, i. e. 
da= Etdc. For multidimensional stress components, the flow rule describes the direction of 

plastic straining, where 
{dc') 

= 2{6Q/a'} 
.Q 

is the plastic potential (usually the yield 

function, in which case plastic straining occurs in a direction normal to the yield surface) and 
X is a plastic multiplier. 

To determine how the history of plastic flow changes the yield surface, a hardening 

rule is introduced. The two main types of hardening are isotropic (often called work) 
hardening and kinematic hardening, and are shown for a single tensile stress component in 
figure 3.3. Referring to figure 3.3. (a)., for the isotropic rule, if loading has occurred up to 

point C only, and has then been reversed, for renewed tensile yielding to occur, a> ab. If 

unloading occurs into the compressive range, then the stress would still have to exceed orb 
for compressive yielding to occur. Hence the following condition would hold for isotropic 
hardening :l aj = ab . Kinematic hardening, figure 3.3. (b)., differs in that if loading is reversed 
into the compressive range, yielding would occur at a stress of ab- 2 a, thereby preserving 
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an elastic range of stress of 2Q, between the tensile and compressive yield criterion. For 

problems with more than one stress component, the type of hardening rule adopted will 

effect how the yield surfaces change with plastic flow. If the yield surfaces are drawn in 

stress space, the isotropic hardening rule will effectively increase the size of the surface about 
its axes of symmetry (centreline) as plastic strains develop. The kinematic hardening rule will 
tend to translate the surface in the stress space rather than alter its size. Details of this and 

related topics in material nonlinearity are given in Cook et. al., [ 15], and the ANSYS Manual, 

[46]. 

3.3.2/ Geometric Nonlinearity 

As a structure is progressively loaded, it will deform and deflect accordingly. For 

many structures, the stiffness is such that these deflections are small, and the response of the 

structure, whilst behaving elastically, is predicted accurately enough by linear elastic theory. 
With structures of limited stiffness, the deflections can be large enough to affect the 

equilibrium of the structure. For example, an axially loaded column might undergo sidesway. 
As the transverse deflections increase, the axial load will increase the bending moments (the 

P-A effect) and thus the transverse deflections. The change in the geometry of the slender 

column has altered the behaviour to the extent that the equilibrium equations have become a 
function of the new geometry. This new geometry is not known at the start of the loading, so 

an iterative process such as the Newton-Raphson method is adopted to obtain the converged 

state at which the deformed geometry is in equilibrium with the applied loads. 

The details of the algorithms for the solution of both material and geometric 

nonlinearities by finite elements are not pursued here, but can be found in Cook et. al., [15], 

and the ANSYS Manual, [46]. 
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Figure 3.1. Axially Loaded Bar Fixed at Left Hand End 
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Figure 3.3. Hardening Rules 
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4/ Finite Element Beam Models using ANSYS 

4.1/ Simply Supported Beam Model 

As a forerunner to the analysis of continuous prestressed concrete beams using 
'ANSYS', a number of models of simply supported beams, both normally reinforced and 
prestressed were constructed. These are described in greater detail in Weekes [48]. 

Rectangular section beams with straight normal reinforcement, or prestressing 
tendons which were straight or parabolic were used in these models. The main body of the 
concrete was modelled with STIF 65 three-dimensional isoparametric concrete elements, 
capable of cracking and crushing at each of its eight integration points, arranged in a 
rectangular grid fashion as viewed in the beam elevation, and a single column as viewed in 
the section, with refinement of the mesh in appropriate areas. The representation of the 
reinforcement and application of the prestress force was experimented with. With a straight 
prestressed/non-prestressed steel profile, this was first modelled using STIF 45 three- 
dimensional isoparametric solid elements arranged as a layer in the concrete mesh at the 
reinforcement level, so that full nodal connectivity was present, i. e. full bond. Figure 4.1.1. 

shows clearly the type of element arrangement used. Various methods of applying the 
prestress force through the steel were considered. At first it was applied using direct end 
forces on the STIF 45 layer. The problem with this was that the forces would not follow the 
line of the steel as the beam deformed, thereby causing a buckling effect. 

The eventual arrangement for the steel consisted of two-dimensional spar elements, 
connected externally to the concrete mesh at the level of the reinforcement, allowing the 

prestress to be applied as an initial strain along the whole length of the beam. This also 
meant that there was no discontinuity in the concrete mesh, as was caused by the STIF 45 
layer. The spar elements could be connected directly to the concrete nodes either side of the 
beam for full bond, or through two-dimensional interface elements so that bond stress-slip 

relations could be used. Because the steel had to be connected at the same co-ordinate 
location as the concrete nodes, the shape of the tendon profile dictated the arrangement of 
the concrete mesh. 

At anchorage zones where the stress concentrations were high, the material 
properties were altered to reinforce these sections. Point loads and point support boundary 

conditions also caused stress concentrations, so these had to be monitored carefully. 
Wherever possible, loads were applied as body forces or element surface pressures to 

alleviate this problem. 
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Premature failure of some of the beams was traced to the cracking and crushing 
facilities in the STIF 65 concrete element which had been set to 'on' in the analyses. As 
discussed in section 3.3.1.3, if these facilities are used in a nonlinear analysis with 
multidimensional stress components, the solution at an unconverged iteration will lie above 
the concrete stress-strain curve, which may cause spurious cracking or crushing. Therefore 
to reduce this affect, the load was applied in small increments. Experimentation with the 

value at which crushing of the concrete was to take place appeared to produce little variation 
in the results. The concrete stress-strain curve used in the analyses was based on the design 

stress-strain curve for normal weight concrete taken from B. S. 8110 [50]. The stress-strain 
curve proposed by Hognestad' probably gives a better representation of the compressive 
behaviour of the concrete, as the stress actually falls before failure occurs. As the nonlinear 
procedure of the finite element analysis cannot handle negative gradients in the stress strain 
curve, it appeared sensible to use the representation given by the code. To help with 
convergence, the horizontal portion of the curve past the yield point represented by a strain 
of 2.4 x1 0-' J/ ym was given a slight positive gradient. Again this had little effect on the 

results as the multidimensional stress state allows the convergence of the result on to a 
portion of the curve with zero gradient, as the strains can redistribute from one component 
to the others. Another consideration to note was that the state of stress on the curve used in 

the analysis was an equivalent stress based on a combination of principal stresses, rather 
than just a representation of stress in the concrete in the horizontal x-direction along the axis 

of the beam, as is assumed in design when using the curve from B. S. 8110. However, when 
the stress distributions within the beam were analysed, this did not appear to cause any 

problems. Eventually, the crushing facility with the concrete elements was turned off, and 

any beam failures resulting from crushing of the concrete were monitored by looking at the 

strain within the elements, with crushing occurring at a strain of 0.0035. 

All of the beam models were numbered and named sequentially as they were 
produced, regardless of their intention as models for proper analyses or test models. The 

numbers and names of the following full test models have been retained, and therefore have 

non-sequential model numbers. 

E. Hognestad, N. R. Hanson and D. McHenry, Concrete stress distribution in ultimate strength design, 
j. Am. Concr. Inst., 27(1955) 455-79 
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4.1.1/ Mß]10 

Simply supported rectangular section prestressed concrete beam with a straight 
tendon profile at a constant eccentricity from the section centroid, and fully bonded steel 
tendon. The dimensions and finite element mesh for model 10 are shown in figure 4.1.1., the 
load arrangements are shown in figure 4.1.4., and general information listed in Table 4.1. 

The STIF 65 reinforced isoparametric concrete element was used with the cracking 
facility enabled and the crushing facility disabled. Other relevant properties concerned with 
material behaviour were entered into the nonlinear material table. Refinements of the mesh 
were carried out in the more highly stressed areas, namely at the support and midspan 
sections. The nonlinear stress-strain curve was of the form given in B. S. 81 10 (part 1, figure 
2.1), for the short term design for normal weight concrete. The load factors were removed 
from the curve to obtain actual values rather than conservative design values. To model the 

stress-strain relationship for concrete as accurately as possible, a multilinear approximation 
to the curved portion was employed, as there was no facility for modelling continuous 

smooth curvature. Figure 4.1.8. shows this multilinear approximation to the stress-strain 
curve. As compared to the actual parabolic curve, the multilinear approximation will lie 

slightly beneath this, touching the actual curve only at the line connections. Key points on 
the parabolic curved portion were obtained by calculating stresses on the parabola 
corresponding to strains at equal intervals, hence forming the end points of the lines for the 

multilinear approximation. Care was taken to ensure that the initial elastic modulus 
specified as a linear material property corresponded to the slope of the first line of 
multilinear approximation. These points on the stress-strain curve were then entered into the 

nonlinear material table at the appropriate locations. For the concrete strength in tension, the 

value was calculated using the formula given in Appendix B, equation (bl), in this case set 
to 3N/ mm2 in the nonlinear material table, and the behaviour is assumed linear up to this 

value. The kinematic hardening option, as described in section 3.3.1.4., was chosen for the 

appropriate hardening behaviour with load reversal. For elements which have undergone 

cracking, a shear transfer coefficient, ranging from 0 to 1 across the crack must be specified. 
Tests have shown that the value employed does not have a significant effect as long as the 

value is non-zero, A. S. C. E Report, [40]. Hence values of 0.5 for open cracks and 1.0 for 

closed cracks were specified in the nonlinear material table. For the linear material 
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properties, a Poissons ratio of 0.2 was specified together with an initial elastic modulus, and 
the shear modulus calculated from these two values. 

STIF 1 spar elements were used for modelling the prestressing steel. The nonlinear 
stress-strain curve was of the form given in B. S. 8110 (part 1, figure 2.3), for the short term 
design of prestressing tendons, with load factors removed. A multilinear option with 
kinematic hardening was also used to model the stress-strain curve of the prestressing steel, 
and this was of the form shown in figure 4.1.9. This stress-strain relationship was assumed 
the same in tension and compression. To apply the prestress, an initial strain corresponding 
to the desired prestress was entered into the real constant set for the spar element. 

As the steel spar elements were to lie either side of the concrete, the tendon cross 
sectional area was divided into two equal areas, and the spar elements located either side of 
the beam at the appropriate location corresponding to the placement of the tendon. At the 
tendon level, two sets of nodes at coincident co-ordinate locations were produced. The steel 
spar elements were connected to one set of nodes, and the concrete elements connected to 
the other set, hence producing two separate element systems. These two coincident nodes 
sets were then connected by two dimensional interface elements forming bond between the 
steel and concrete, as shown in figure 4.1.1. The stiffness of the interface elements was 
given an arbitrarily high value to produce full bond, and a negative gap specification 
(interference) to prevent premature separation and sliding. 

In an actual prestressed concrete beam, the cross sectional area of the concrete per 
unit depth is smaller at the tendon level due to the presence of the steel. This change of area 
can be modelled as a reduced relative stiffness in the concrete elements at the level of the 
tendon, Mufti et. al. [21], although in this analysis, the area reduction has been neglected. 
The effects of this are directly related to the amount of steel present in the section, but for 
the amount of steel used here, these effects are minimal. 

To reduce the number of elements in the model, only the left hand side of the beam 

was modelled (the beam being symmetrical about the midspan vertical axis). At midspan the 

nodes in the vertical plane were restrained from moving in the longitudinal (horizontal) x- 
direction, so that these nodes would remain in the vertical plane as the beam deflected 

transversely, effectively holding the rotation about the horizontal z-axis to zero. At the end 
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of the beam, two concrete elements with cracking and crushing removed were arranged at 
the base of the beam, effectively between support and beam. The nodes of this layer of 
elements which were to be in contact with the support were thus restrained in the y- and z- 
directions. 

The loading arrangement for the beam is shown in figure 4.1.4. The point loads were 
applied as a patch pressure on the top surface of the concrete element immediately under the 
load (see figure 4.1.1. ). This alleviated to an extent the stress concentrations which would 
have occurred if a point load was applied at the appropriate node. The bending moment 
produced by this load arrangement is such that there is a constant moment zone between the 
points of load application, with a linear decrease to zero from load point to support. To 

reduce the effects of shear as compared to the bending moment, the ratio of the distance 
between the support and the load position, and the effective depth was made as large as 
possible (in this case a ratio of about 4.5: 1). The closer the load point to the midspan 
position, the greater the bending moment at midspan for a fixed maximum magnitude of 
shear in the beam, therefore the more likely is a beam failure in bending at midspan. 

The ANSYS program automatically set the nonlinear solution procedure to full 
Newton-Raphson option. Fifteen iterations per load step were specified, and default 

convergence criteria for the plasticity ratio and large deflection increment were used. The 

amount of output results for various elements can be controlled by specifying a results 
storage level. The default results storage level for most elements is 3, which covers most of 
the useful data which would normally be required by the user. In this case, the results 
storage level for the concrete elements was set to 6, so that information about cracking etc. 
could be accessed if necessary. 

4.1.2/ Model 11 

The specifications for model 11 were the same as for model 10, only this time the 

whole length of beam was modelled. The purpose of this was to check the validity of using 
the half beam representation for further analyses. A mirror image of nodes, elements, 
boundary conditions, and applied loads from model 10 was created about the beam 

centreline to produce the whole model 11. All of the nodes at the beam centre were released, 

and horizontal x-direction movement was prevented at the left hand support only. 
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4.1.3/ Beams 1 and 2 

General Model Specifications 

These were simply supported prestressed concrete beams with straight tendon 
profiles, based on experimental beams. In the experiment, both beams were pretensioned 
with two steel strands, beam 1 with both strands at the same eccentricity from the section 
centroid, and beam 2 with the strands at different eccentricities. The cross sectional details 

of the two beams are shown in figure 4.1.7. The dimensions and finite element meshes for 
beams 1 and 2 are shown in figures 4.1.2 and 4.1.3. respectively. Load arrangements for 
both beams are shown in figure 4.1.5, and general information listed in table 4.1. 

Concrete Specifications 

STIF 65 concrete elements were used as for models 10 and 11. The stress-strain 
curves were also similar to those used previously, figure 4.1.8., with the necessary 

adjustments made for the different material properties shown in table 4.2. In the experiment 
the concrete characteristic strength for short term (i. e. prestress transfer) and long term were 
different, therefore two separate stress-strain curves were prepared, one for the first load 

step in which the prestress was transferred to the concrete, and the other for subsequent load 

steps. Other nonlinear and linear material properties were changed where appropriate. The 

area (stiffness) reduction of the concrete at the tendon level was again ignored. 

The prestressing steel and bond were modelled in a similar fashion to that for models 
10 and 11. The stress-strain curve was of the form shown in figure 4.1.9., and the material 

properties, both linear and nonlinear altered accordingly. With beam 2, the steel was present 
at two separate levels, so the spar and interface elements were positioned at the appropriate 
locations. The prestress was entered as an initial strain in the corresponding real constant 

set. STIF 45 elements were provided at the ends of the beams at the anchorage zones to 

prevent spalling of the concrete, as shown in figure 4.1.3. 

Half beam models were used for both beams 1 and 2, with all of the midspan 
(centreline) nodes prevented from displacing in the longitudinal (horizontal) x-direction. 
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Layers of concrete were provided under the support sections, with the nodes at the location 
of the support restrained in the vertical y- and horizontal z- directions. 

In the experiments, the loads were applied as two point loads positioned along the 
beam at third points (i. e. equidistant from each other). Therefore the loads were applied as 
patch loads to the top sides of the appropriate elements. Self-weight of the beam was present 
in the analysis, and could be modelled by specifying a density for the concrete, and then 
applying a downward body force, i. e. in the negative y direction. The effects of the self- 
weight as compared to the applied load were investigated and the difference in the ultimate 
moment at midspan with or without the self-weight was found to be minimal. Therefore to 
simplify the analysis only the applied loads were considered. 

Fifteen iterations were specified for each load step, and the default convergence 
criteria used. The results storage level for the concrete elements was set to 6. 

4.1.4. / 

Rectangular section simply supported beam with a downward parabolic tendon 

profile of zero eccentricity at the beam ends, and with a fully bonded tendon. The load 

arrangements are shown in figure 4.1.6., and general information listed in table 4.3. The 
form of the finite element model is similar to that used for model 10, although the parabolic 
profile dictates that the finite element mesh as viewed in the elevation will be highly 
irregular. To show the element mesh sensibly within one diagram would be impossible due 

to the variation in the scale of the elements. The beam and tendon profile layout have 

therefore not been shown here, although an ANSYS plot of the beam can be found in 
Weekes, [48]. Relevant dimensions of the tendon are listed in table 4.1. 

To construct the tendon layout, the equation of the parabolic profile was calculated, 
and a set of co-ordinates which were equally, or conveniently spaced in the vertical plane 
were noted. These co-ordinates then provided the end nodes for a series of straight steel spar 
elements forming the tendon. Towards and at the midspan of the beam, the tendon profile 
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becomes shallower where the gradient of the profile becomes smaller and passes through 

zero. Therefore for a given vertical spacing, the corresponding horizontal spacing becomes 
increasingly larger, causing the spar elements to become longer. Hence smaller vertical 
spacings were used towards the midspan sections to produce steel spar elements of 
approximately equal length throughout the beam. As a result, the concrete elements at the 
level of the base of the parabola were thinner in the vertical dimension, causing abnormal 
aspect ratios. This was a problem which could not be avoided when producing a parabolic 
tendon profile with finite elements, although in the analysis there appeared to be no adverse 
effect caused by this. 

The concrete was represented as with previous models, with a carefully constructed 
mesh as viewed in the elevation. The mesh was highly irregular due to the parabolic tendon 

profile. Refinements of the mesh were introduced at the support and centre sections, 

requiring the calculation of extra co-ordinate locations along the tendon profile to coincide 

with the concrete nodes. Linear and nonlinear material properties were represented as 
before, with appropriate adjustments to the linear properties and the stress-strain curve, 
figure 4.1.8. Effects of the reduction of the concrete area at the tendon level were ignored. 

The steel and bond were represented as for previous models, with spar and interface 

elements. Linear material properties were altered accordingly, together with adjustments to 

the stress-strain curve, figure 4.1.9. The interface elements were set to model full bond, with 

a slightly negative gap specification. The prestress was entered as an initial strain in the 

corresponding real constant set. 

A half beam model was used with restraint in the longitudinal x-direction at the 

centreline. Support layers were present with the centre nodes restrained in the y- and z- 
directions as before. 

The parabolic tendon profile was designed to balance a uniformly distributed load of 

approximately 20 kN/m, as shown in figure 4.1.6.. The self weight of the beam accounted 
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for about a quarter of this load, so this was implemented separately by applying a downward 
body force on the concrete equivalent to the downward acceleration due to gravity, and 
specifying the appropriate density for the concrete. The applied load was then specified as 
surface pressures to the top faces of the elements at the top of the beam. For the first load 

step, the transfer condition consisted of the application of the prestress plus the balanced 
load to produce a uniform stress distribution across the section, and prevent cracking which 
would have occurred with upward camber. At subsequent load steps the downwards surface 

pressure was increased uniformly on the top surface of the elements at the top of the beam. 

Fifteen iterations per load step were specified, default convergence criteria were 

used, and the results storage level of the concrete set to 6. 
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4.2/ Continuous Beam Model 

4.2.1/ Modell2 

Following the analysis of the simply supported beam models, a preliminary analysis 
utilising the data for model 11 was used to construct a continuous beam by the introduction 
of a support at the midspan position, restraining the base of the section from moving in the 
vertical y direction. The load was applied at the same location as for model 11, and 
incremented uniformly at each load point, creating a symmetrical bending moment envelope 
about the central support. The whole beam was modelled to highlight any unsymmetrical 
behaviour which might occur, although this was not to be expected. 

As the tendon profile was straight (horizontal) at a constant eccentricity below the 
section centroid, the equivalent loads are in the form of end moments upon each span. The 
primary moment is a constant negative value along the length of the member which would 
in the absence of the central support cause the section at the central support to hog greatly. 
Therefore the action of the central support is to create a large positive 'internal' secondary 
moment here. This is desirable as there is effectively no reinforcement either prestressed or 
non-prestressed in the tensile region at the central support, where a negative internal 

moment will cause cracking at the top of the beam. The positive secondary moment will 
serve to effectively increase the applied load at which the negative cracking moment occurs 
at the central support. 

Having outlined the effective advantages of using such a tendon profile for a 
continuous beam, it should be noted that it is highly unrealistic and impractical 

. It is more 
of an advantage to have a negative eccentricity of the profile over the central support, so 
that there is prestressed reinforcement present in the tensile region. The equivalent loads 

will tend to cause a resultant moment diagram which is negative in the spans and positive 
over the central support, but in this case the primary moment diagram will be of a similar 
form, rather than a constant negative value as described in the previous example. This 

means that the secondary moment is now probably of a lower value, either negative, 
positive, or zero if the profile is concordant. Past serviceability, the straight profile is of no 
structural use over the central support, as there is no resistance in the tensile region. 

The beam dimensions, prestress details, and material properties are given in Table 
4.1. The materials, application of load, and analysis options were the same as for model 11. 
Boundary conditions were modified with the addition of extra restraints in the y-direction at 
the base of the midspan section. Fifteen iterations per load step were used, with the default 
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convergence criterion for plasticity and large deflection increment. The results storage level 
for the concrete was set to 6. 

4.2.2/ Model 18 

Continuous beam model 18 was constructed as a rectangular section two span beam 

with draped parabolic tendon profiles, symmetrical about the centre support, and fully 
bonded to the concrete. The overall dimensions of the beam and tendon layout are shown in 
figure 4.2.1. As this beam was exactly the same as for model Twospan 1 used in the 
SMAREL30 program, the reader is referred to section 5/ for details. Table 5.1. gives the 

relevant details, together with particulars of prestress and material properties. Due to the 

shape of the tendon profile, the finite element mesh for the main body of the concrete is 

highly irregular in both the longitudinal and transverse directions, and to display the mesh 
diagramatically would produce an untidy representation. For this reason, the reader is 

referred to the ANSYS input data file shown in Appendix D for a breakdown of the finite 

element mesh construction, in terms of Cartesian co-ordinates. The mesh is subsequently 

plotted in the results section 4.3, on the background to the contour plots. 

At the end support, the eccentricity of the tendon profile is zero (coincident with the 

section centroid, and at the centre support, the parabolic profile has been transformed 

upwards from the section centroid a distance of 300 mm. The tendon drape at the midspan 

position was 337.5 mm. Hence, with a prestress force of 2000kN, the primary moment at 

the centre support was : 

M, = 0.3 x 2000 = 600kNm 

The equivalent U. D. L. is : 

_0.3375x2000x8 152 
24kN/m 

This equivalent load produces fixed end moments of : 

T 
24 x 152 

_ T- 450kNm 
12 
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From moment distribution (a stiffness analysis), the resultant moment over the centre 
support is the fixed end moment plus a carry over of half the value of the fixed end moment 
at the end support with a reversed sign, i. e. 

M3 = 450 + (0.5 x 450) = 675kNm 

Hence the magnitude of the secondary moment over the centre support is : 

M2 = M3 - M, = 675 - 600 = 75kNm 

Where the positive value indicates sagging 

Having ascertained the required drapes for the parabolic tendon profiles for each 
span, and the eccentricities at midspan and over the central support, the equation for the 

profile may be calculated using equation 2.1 in section 2.2.1. The required widths of the 

columns of elements at the various sections of importance are calculated, and the steel 
profile will then govern the depth of the elements to be used in each column. Where a steel 
spar element runs across a concrete element, the two opposite corner nodes of the 

corresponding concrete element must have co-ordinates which lie on the tendon profile, in 

order to give the correct tendon shape, as for model 13. At the centre support it can be seen 
that the tendon has a sharp kink with no reversed curvature to 'smooth' the tendon over the 

support section. A model incorporating this feature was attempted, but the elastic secondary 
moment obtained from the finite element analysis was vastly different to that obtained from 

theory. This was caused by the equivalent load actually being applied by the tendon to the 

concrete as a series of point loads rather than a continuous U. D. L. as was used in the theory. 
Hence at the location of the inflexion point of the tendon, the reversal of the equivalent load 

appears as a gradual change in the point loads applied by the tendon, rather than an 
immediate step change from one U. D. L. to another opposite one. Refinements of the 

element mesh at the point of inflexion of the tendon proved to have little effect. 

As a consequence of the tendon profile, the locations and widths of the concrete 

elements are of irregular proportions, and this must be carried through the entire mesh to 

avoid mis-shaped elements. As a result, abnormal aspect ratios are produced in certain rows 

and columns of concrete elements due solely to the fact that the nodes of both steel and 
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concrete elements must coincide. The disadvantages of this are highlighted by El-Mezaini 
[45], but as there appeared to be no alternative approach available in the ANSYS software, 
this was a risk which could not be avoided. Such elements with abnormal aspect ratios were 
used in model 13 with no adverse effect, so it appeared valid to use them in the continuous 
beam model. The effects of these elements are discussed in the results. 

Concrete Specifications 

The main body of the concrete was represented as for previous models, i. e. with 
STIF 65 elements, with cracking capability only. Linear material properties were altered 
accordingly, together with adjustments to the stress-strain curve, figure 4.1.8. The concrete 
stiffness reduction due to the presence of the steel at the tendon level was neglected. The 
transfer properties of the concrete were assumed to be the same as the long term properties. 

Steel and Bond 

The steel and bond were represented as for previous models, with spar and interface 

elements. Linear material properties were altered accordingly, together with adjustments to 
the stress-strain curve, figure 4.1.9. The interface elements were set to model full bond, with 
a slightly negative gap specification. The prestress was entered as an initial strain in the 

corresponding real constant set. From a calculation of the shear resistance of the beam, 
Appendix E, shear reinforcement was supplied in the form of steel spar elements connected 
vertically from top to bottom nodes of the concrete in the required areas (i. e. near the 
support sections). A column of anchorage steel was provided to prevent cracking at the ends 
of the beam at the lower loads. 

A half beam model was used with restraint in the longitudinal x direction at the 

centreline. Support layers were present at the end and centre support sections, with the 

appropriate nodes restrained in the y and z directions as before. 

The parabolic tendon profile was designed to produce an equivalent uniformly 
distributed load of -24 kN/m, so that when this load is applied to the top surface of the 
beam, the stress distribution across the section (in the vertical y direction) would be 
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uniform. The self weight of the beam was neglected in this case, and the load applied as a 
pressure to the top surface of the elements, in steady increments. On the first load step, there 
was no load applied to beam (apart from the equivalent load). The analysis was then 
restarted from the first load step with the balanced equivalent load applied. Subsequent load 

steps were incremented from this load condition. 

Analysis Options 

Ten iterations per load step were specified, default convergence criteria were used, 
and the results storage level of the concrete set to 6. 

56 



Models 
10,11,12 

Beam 1 Beam 2 Model 13 

Length (mm) 2900 2100 2100 12000 

Breadth (mm) 50 75 75 300 

Overall Depth (mm) 300 125 125 700 

Effective Depth (mm) 250 100 87.5&112.5 650 @ midspan 

Prestress (NI mm2) 300 1082 1082 1228.5 

Area of Tendon Steel (mm2) 100 39.27 39.27 1000 

Prestress Force (kN) 30 42.7 42.7 1228.5 

Tendon Prestrain 0.00154 0.0055 0.0055 0.0063 

Concrete Characteristic 

strength at Transfer (N / mm2) 

N/A 48 48 N/A 

Concrete Characteristic 
Strength (N / mm2) 

40 55 55 55 

Steel Characteristic 
Strength (N / mm2) 

1750 1670 1670 1750 

Elastic Modulus of 
Concrete (NI mm2) 

30855 36229 36229 36229 

Elastic Modulus of 
Steel (NI mm2) 

195000 195000 195000 195000 
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Figure 4.1.4. Load Arrangements for Models 10 and 11 

PF 

1 700 mm 700 mm 700 mm 

Figure 4.1.5. Load Arrangements for Beams 1 and 2 
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Figure 4.1.6. Load Arrangements for Model 13 
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Figure 4.1.8. Stress-Strain Relationship for Concrete in Compression 
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Figure 4.1.9. Stress-Strain Relationship for Tendon Steel 
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4.3/ Results for Simply Supported Beam Analyses 

A summary of the results of the simply supported beam models is presented here. A 
more detailed description of the results can be found in Weekes, [48]. 

4.3.1/ Models 10 and 11 

The very low prestress value which both beams had, accounted for the failure mode 
being governed by the concrete. Comparing the ultimate load from the finite element analysis 
with a value corresponding to the ultimate moment at the centre section, calculated from a 
cracked section analysis, i. e. 25.07 kNm, then the finite element model reached an ultimate 
load of approximately 90% of the theoretical value. It should be remembered that when the 
load steps towards the end of the finite element analysis became unfeasibly small to continue, 
the analysis was stopped, and the final load step taken as the ultimate load. 

At the first load step, only the prestress was present, and elastic shortening of the 

concrete caused a loss of prestress. The theoretical calculatiöns to obtain the force loss are 

given in Weekes, [48]. At the midspan section, the prestress value of 3 00 N/ mm Z is 

reduced to 273.15 N/ mm2, giving extreme fibre stresses in the beam of 1.82 N/ mm2 
tension at the top, and 5.46 N/ mm2 compression at the bottom. These values compare well 

with the finite element values of 275.2 N/ nun 2 for the prestress, with extreme fibre stresses 

of 1.86 N/ mm 2 tension at the top, and 5.5 N/ mm 2 compression at the bottom. Along the 
length of the member, the prestress force is of an approximately constant value from the 

centre of the beam to the quarter position, with a slight decrease towards the end of the 
beam. 

As the load was increased on finite element models 10 and 11, so the maximum 
bending moment at the midspan section increased. On the first load step, the net internal 

moment was zero as expected. This was ascertained by taking moments about any axis in the 

z-direction along a column of nodes at the centre section (ANSYS does this for you). For 

subsequent load steps the internal bending moments agreed exactly with those obtained from 

elastic theory, up to the ultimate load. 

Cracking was initiated at the desired load at the midspan section, with an internal 

moment of 7.3 kNm. An investigation of the concrete stresses at the Midspan section 
revealed that the correct parabolic, and parabolic-linear shape to the compressive stresses 
formed at the higher loads up to ultimate. The orientation and pattern of the cracks at 
concrete integration points revealed that shear was having an effect, although the theoretical 
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ultimate flexural load was nearly reached in the models. The cracks at the quarter span 
position showed a flexure-shear type pattern. 

A typical midspan deflection vs applied load graph was obtained for an over 
reinforced concrete section. The actual plot is not shown here, as the details can be found in 
Weekes, [48]. Graphs comparing the neutral axis depths calculated from a cracked section 
analysis with the finite element values are also given in Weekes, [48], and are not shown 
here. Good agreement between the values was obtained up to ultimate load. 

4.3.2/ Beams 1 and 2 

In both cases the failure was governed by the steel, i. e. under reinforced, as the 

prestress was a lot higher than for models 10 and 11. For beam 1, the theoretical ultimate 
load was found from the ultimate moment at midspan, which was calculated from a cracked 

section analysis, and found to be 5.75 kNm. The failure load from the finite element analyses 

corresponded to 100% of the theoretical load. Beam 2 had a similar ultimate moment at 

midspan and similar results for the finite element model. More details are given in Weekes, 

[48]. 

For beam 1 the theoretical prestress force after losses after the first load step, 

matched with the finite element results exactly, i. e. 40.5 kN, as did the top and bottom 

concrete fibre stresses of 3.46 N/ mm Z tension and 12.1 N/ mm Z compression respectively. 
Again, for beam 2, the results were similar. 

As the load was increased on beams 1 and 2, so the maximum bending moment at the 

midspan section increased. On the first load step, the net internal moment is zero as 

expected. For subsequent load steps the internal bending moments agreed exactly with those 

obtained from elastic beam theory, up to the ultimate load. 

Cracking started in beam 1 at the midspan position at an internal bending moment 

value of 3.33 kNm, corresponding with the theoretical value. For beam 2 the results were 

similar. In both cases the crack pattern near ultimate load showed the cracks to be mainly 

vertical, indicating less interference from shear. 

Midspan deflection was plotted against applied load for beams 1 and 2, and these can 
be found in Weekes, [48]. In both cases, after cracking has begun, the curve which forms is 

of a smaller gradient than for models 10 and 11, indicating that the sections are more ductile. 

Graphs comparing the neutral axis depths calculated from a cracked section analysis with the 
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finite element values are also given in Weekes, [48], and are not shown here. Good 
agreement between the values was obtained up to ultimate load. 

4.3.3/ Model 13 

Model 13 was designed to have a failure mode governed by the steel. The ultimate 
moment at midspan was calculated as 992 kNm from a cracked section analysis. Taking into 

account the self weight of the beam, the total uniformly distributed load on the finite element 
model at ultimate was 55.5 kN/m, corresponding to a bending moment of 992 kNm at 
midspan. 

At the first load step, the prestress plus the balanced load was present, so the 

effective stress in the steel, taking this into account, was calculated as 1197 N/ mm 2. This 

gave a uniform concrete compression across the depth of the section of 5.7 N/ mm 2. The 

results from ANSYS agreed closely with these values, with only a slight moment acting to 

cause a non uniform stress distribution at the first load step. This was probably causes by the 

slight stress loss in the steel due to elastic shortening. 

As the load was increased on model 13, so the maximum bending moment at the 

midspan section increased. On the first 
. 
load step, the net internal moment is zero as 

expected. For subsequent load steps the internal bending moments agreed with those 

obtained from beam theory, up to the ultimate load., 

The theoretical and finite element model cracking moments corresponded well, and 
the subsequent crack pattern was generally vertical indicating pure flexural cracking 
behaviour. 

The plot of midspan deflection versus applied load showed a shallow curve after 
cracking similar to beams 1 and 2, indicating ductile behaviour. This is given in Weekes, 
[48]. Graphs comparing the neutral axis depths calculated from a cracked section analysis 
with the finite element values are also given in Weekes, [48], and are not shown here. Good 

agreement between the values near ultimate load was obtained. 

66 



4.4/ Results for Continuous Beams 

4.4.1/ Model 12 

The nature of the straight tendon profile, although impractical, produced a large 

positive secondary moment at the centre support which increases the load at which cracking 
occurs at this location. With no reinforcement in the tensile region, a certain amount of 
moment redistribution occurred from the centre support to the spans. Details are given in 
Weekes, [48]. 

The stress and strain distributions in the beam before cracking has begun reveals 
linear distributions across the depth of the beam sections. At the centre support, a stress 
concentration manifests, with a larger stress and strain at the bottom of the support section in 
the compression zone. This is probably due to the local effect of the centre support. A plot of 
applied load versus vertical deflection at the point of load application reveals a similar trend 

as for the simply supported beam models with the onset of cracking causing the gradient of 
the graph to become smaller. This plot can be found in Weekes, [48]. 

The results of an equivalent load analysis showed that the theoretical secondary 
moment at the centre support was 4.5 kNm. The results from ANSYS implied that a residual 
internal moment after losses of 4.21 kNm was present at the centre support, mainly due to 

elastic shortening causing a loss of prestress force. In both cases the secondary moment falls 
linearly to zero towards the end of the beam. As the load was applied to the beam the 
secondary moment at the centre support was monitored up to the point where cracking was 
initiated, after which it was impossible to ascertain. A slight linear increase in the secondary 
moment was experienced, reaching a value of 4.7 kNm. This was probably due to slight 
increases in the tendon force as the load was applied to the beam. 

The tendon force along the length of the beam was monitored as the load was 
applied. This appeared to be fairly linear with only slight variations up to the point at which 
cracking was initiated. Cracking at the center support produced little variation in tendon 
force in the vicinity, as the tendon was present in the compressive zone only. Once the spans 
had cracked, the tension was taken by the tendon alone, causing a local increase in the 
tendon force, as expected. These results are shown in more detail in Weekes, [48]. 
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Moment Redistribution 

The internal bending moment increases linearly up to the stage when cracking occurs 
at the centre support. The nature of the cracking and the tendon profile dictates that the 
moment is immediately redistributed from the support to the spans, and the moment becomes 

a constant negative value at the support. The beam was effectively split into two separate 
spans. After the split, the span moments increase with applied load whilst the centre support 
moment remains a its constant negative value. The tendon force at the centre support 
remains at a low value as the steel is present in the compression zone, whereas the tendon 
force increases vastly after the onset of cracking in the spans. Eventual failure appears to be 

caused by a complete split through at the centre support, once the cracks pass the depth of 
the tendon level 
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4.4.2/ Mode118 

The nonlinear analysis of continuous two span beam Mode118 was terminated when 
the applied pressure on the top surface of the beam reached a value equivalent to a load of 
87.6 kN/m after 73 loadsteps. The load step increment required to continue the analysis any 
further was deemed to be unfeasibly small. Cracking occured at the centre support at a load 

of 52 kN/m, and started in the span at a load value of 62.4kN/m. 

Figure 4.4.1 shows internal bending moment versus applied load at the centre 
support and midspan sections, obtained by selecting lines of nodes and elements at the 

section in question, and summing forces and moments about any chosen node. It can be seen 
that a slight deviation from linearity occurs when cracking first begins at the centre support 

at an applied load of 52 kN/m, evident in both lines on the graph. The rate of change of the 
internal bending moment function, shown in the figures 4.4.3 to 4.4.6. series of graphs, can 
be seen to be at a maximum at the centre support, therefore the extent of cracking local to 

this negative moment zone will be confined to an area close to the support. So, once the 

cracks have formed local to the centre support, they are more likely to increase in width and 
depth, rather than spread and increase in number, causing a more gradual change in the 
bending stiffness of the beam. This effect would account for the apparent smoothness of the 
internal moment lines between the applied load values of 52 kN/m and 62.4 kN/m, before 

cracking in the span occurs. During this load stage, the internal bending moment redistributes 
from the support section into the span, evident from the apparent decrease in gradient of the 

centre support line, coincident with an increase in the gradient of the span line. After 

cracking in the span is initiated, the internal moment lines behave more erratically due to the 

spread of smaller cracks in the span, where the internal bending moment envelope is at its 

shallowest in the positive zone, and exceeds the cracking moment envelope over a wider area 
than in the negative zone. The creation of these smaller cracks over a larger section causes 

more irregular bending stiffness changes in the beam, and hence the distribution of the 
bending moment along the beam will have a greater fluctuation. The general pattern shows a 

reversal in the gradient change in both lines, back to values near those before any cracking 
began. 

The tendon force variation with respect to applied load is shown in figure 4.4.2., at 

various locations along the left hand span (indicated by the legend). At a distance of 350mm 

away from the centre support, the tendon force can be seen to be at its maximum value 
throughout the loading. There could be a number of explanations for the causes of this. At 

the first load steps, with no applied load, and then with the balanced load applied, slight 
cracking of the concrete element adjacent to the central support position, occupying the 
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space over which the short (50mm) length of tendon in question acts, would account for a 
small local decrease in stiffness and increased 'elastic' shortening of the concrete, causing a 
marked decrease in tendon force loss. The abnormal aspect ratio of this element could not be 
avoided if the steel was to be discretized correctly. This effect is more evident when the 
balanced and subsequent loads are applied, as seen in the figures 4.4.7. to 4.4.10. series of 
graphs of tendon force envelopes along the left hand span. Also, the concentration of stress 
caused by the point centre support reaction has a significant effect on the distribution of 
stress across the section. 

At zero applied load, the effect of the precompression, primary moment, and internal 
secondary moment causes a tendon force loss along the beam as shown in figure 4.4.7. As 
the applied load is increased to the balanced load, the primary moment is counteracted by the 
internal bending moment caused by the applied load, leaving just the precompression causing 
elastic shortening and tendon force loss, and internal secondary moment. The tendon force 
distribution can be seen to be of a more linear form along the span at the balanced load, with 
a small draw-in at the anchorage zone. As the beam switches from negative bending caused 
by the primary moment to positive bending from the applied load, so the apparent 'curvature' 

of the tendon force distribution in the span alters sign accordingly. Figure 4.4.8 shows the 
marked increase in tendon force local to the centre support as this section cracks, whereas 
the tendon force distribution remains shallow and smooth in the span. Once cracking in the 
span is initiated, figure 4.4.9, local increases in the tendon force reveal themselves as a series 
of spikes spread over a wider area, indicating a greater spread and number of cracks than at 
the centre support. The cracks continue to spread and increase in number as the load 
increases, until the final load is reached, as shown in figure 4.4.10. Between cracks, the 
tendon force is fairly constant in its elastic condition. Obviously the discretization of the steel 
elements has an influence on this tendon force distribution, as the force is distributed evenly 
along the length of a particular spar element which models part of the tendon. Those which 
'span' across concrete elements which have more cracked integration points experience 
higher forces than those with a lesser degree of cracking. The presence of the spikes in the 
tendon force distribution not only indicate that the discretization of the steel in the span was 
adequate, but also suggest that cracked integration points are grouped together (in a near 
vertical orientation), with spaces in between each group, simulating the actual situation of 
cracks forming at a certain spacing. 
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Stress Contour Plots 

A series of contour plots of stresses in the concrete elements in the longitudinal x- 
direction, taken from ANSYS model 18, are shown in figures 4.4.11 to 4.4.16. These 

contours are smoothed by the effect of averaging the stresses across the elements. 
Unaveraged plots were examined and showed a similar form in colour and stress range, 
indicating that the element mesh was satisfactory. All of the contours are colour coded with 
the key on the right hand side. The first plot in figure 4.4.11. shows the behaviour of the left 
hand span with the prestress transferred to the concrete and zero applied load. The tension 
taken as a positive stress is shown as the brighter red colours with the negative compression 

shown as the darker blue colours. The deflections are exaggerated with respect to the beam 

dimensions, and this clearly shows the desired upward camber at the transfer stage. When the 
balanced load of 24 kN/m is applied, figure 4.4.12., the beam appears to have little 

deflection, and the dark blue colour indicates that the stress across the depth of the section is 

uniform as expected. A slight stress concentration exists at the centre support near the 
location of the tendon (as well as near the simply supported end). Figure 4.4.13. shows the 

stresses at a load of 48 kN/m just before first cracking at the centre support. The downwards 

deflection profile has the correct shape and stress distributions in the section are linear as 

expected. After cracking at the centre support at a load of 52 kN/m, figure 4.4.14. shows 
how the tensile stress in the concrete at this location falls, and the stresses increase in the 

span as the moment redistributes. The stress contours just before cracking begins in the span 

are shown in figure 4.4.15., at a load of 62 kN/m. Comparing this figure with the stress 

contours of figure 4.4.16., just after the initiation of cracking in the span, it can be seen that 

there is a decrease in the concrete tensile stresses in the span where the steel begins to take 

significantly more stress than the concrete. Moment then redistributes back to the centre 

support. 

Secondary Moment 

As far as monitoring the secondary moment is concerned, there is no means of 

separating this from the total internal bending moment once the beam stiffness begins to 

change. After cracking has begun, the flexural stiffness of the beam alters, affecting the total 
internal bending moment, which is made up of the secondary moment plus the bending 

moment which is produced by the applied load. At zero applied load, the secondary moment 

was close to that predicted by the classical elastic equivalent load method. As load is 

applied, the internal moment can still be readily seperated into secondary and applied 

moments, as long as the beam is operating in the elastic range. The magnitude of the 
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secondary moment was fairly constant in this phase, with only small changes due to elastic 
shortening effects. 

The section of the beam at the centre support was designed so that the steel would 
yield before the concrete reaches its ultimate strain at its extreme compressed fibre, giving 
potential for rotation, and hence the formation of a plastic hinge for redistribution of the 
bending moment. The load at which the analysis was stopped showed a tendon force below 

the value expected. From figure 4.4.10. it can be seen that this is a local effect close to the 

centre support, as the tendon force peaks a short distance away from the support. At the 

position where the tendon force is at a maximum, the section experiences a bending moment 

which is markedly less than that at the centre support, as the rate of change of the internal 

bending moment envelope is at a maximum here, in the negative moment zone. Comparison 

of the applied internal bending moment envelope with the ultimate bending moment envelope 

shows that the gradient in the negative zone is much greater for the applied moment, 

therefore sections away from the support experience much smaller moments than their 

ultimate values, suggesting that the tendon force should decrease in some manner away from 

the centre support. Also, the effective depth of the tendon also decreases away from the 

centre support, which means that if a section a short distance away from the support were 

subject to a moment of the same magnitude as that at the support, the lever arm between the 

compressive force in the concrete and the tensile force in the steel would be smaller, 

resulting in a higher tendon force. This effect, however, will have no significance as the 

moment across the support cannot be assumed to be constant enough to validate this. 

Elastic shortening of the concrete at all sections along the beam is evident in the 

tendon force profile, with variations at the support sections. At the anchorage zone the 

tendon force profile is similar to that predicted by anchorage draw-in in post-tensioned 

members, as the tendon force at the end of the beam is non-zero. The block of steel elements 

at the end of the beam served to prevent cracking of the concrete at the anchorage zone, 

although the prescence of bursting forces, as for post-tensioned members, has not arisen, 

suggesting that the beam is behaving in a pre-tensioned manner, whereby a transmission 

length at the anchorage causes a steady build up of the tendon force as the steel bonds to the 

concrete further into the span. The actual modelling of the tendon force as a uniform 

prestrain along the tendon would suggest that once the prestress is transferred to the 

concrete, the behaviour is comparable with that of a pre-tensioned concrete beam. 
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Figure 4.4.5. Internal Moment Envelope, F. E. Model 18 

E 
Z 

a, 

c E 

c0 
L 

cu 

c L 
a) 

C 

2000 
r 

i'. 

1000 

0 

1000 

2000 

02468 10 12 14 
Distance along Span (m) 
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Figure 4.4.9. Tendon Force Envelope, F. E. Model 18 
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4.5/ Conclusion to Finite Element Analyses 

Simply Supported Beams 

From an overview of the results, it was concluded that actual behaviour up to 
ultimate was modelled with a great deal of success. All of the models appeared to behave in a 
pretensioned manner with a marked transmission length at the end of the beams. From a 
comparuson of the results of models 10 and 11, it was concluded that the half beam model 
could be used successfully for subsequent analyses. Model 13 confirmed that a parabolic 
profile could be modelled as a series of straight spar segments connected to the concrete 
mesh at the correct loacations. The irregularity of the concrete mesh appeared to cause little 

problem in the analysis, although a slight stress concentration was present at the centreline at 
the support location. More details are given in Weekes, [48]. 

Continuous Beam Model 12 

The tendon profile of model 12 was somewhat unrealistic, although about 50% 

redistribution of moments was obtained. The beam appeared to develop a large crack 

running to the level of the steel at the centre support, effectively dividing the beam into two 

separate spans. Ultimate failure appeared to be caused by cracking through at the centre 

support, indicating a shear type failure. The main problem arising from this model was the 
inability by any means to monitor the secondary moment into the cracking stage, and to 

separate the secondary moment from the total internal bending moment. Details are given in 

Weekes, [48]. 

Continuous beam Model 18 

In the knowledge that the secondary moment could not be seperated from the 
internal bending moment past the onset of cracking, the purpose of model 18 was to 
investigate the variation of the internal bending moments at various sections along the beam 

as the applied load was increased. The centre support section was designed to reach a plastic 
hinge before the span, and was theoretically given the ductility to rotate and redistribute 

moments into the span. As the results indicate, the ultimate load behaviour was not as 
desired. Failure of the beam occurred without any plastic hinges developing, and this was 
due to the tendon force not being of the desired value at the centre support during the 

cracked stage. 
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The most probable cause of the problem was the shape of the tendon profile. In an 
earlier unsuccessful model, a reversed tendon curvature was used over the centre support. 
This produced a downwards equivalent load over a short length, and the angle at which the 
final spar elements were attached to the concrete nodes at the centre support was as close to 
the horizontal as possible. The problem with this layout was that the elastically calculated 
secondary moment was vastly different to that produced by the model. This was most likely 
due to the way in which the equivalent loads, taken as U. D. L. s, were being modelled as point 
loads at the connection of the steel spar elements. Refinements of the concrete and steel 
layout at the point of inflexion and at the support had little effect, so this model was 
abandoned. Model 18 had no reversed curvature, therefore the U. D. L., modelled as point 
loads was uniformly acting upwards along the length of the beam, so the secondary moment 
was as predicted by an equivalent load analysis. The problem with the continuously curved 
tendon is that at the centre support, the tendon joins the concrete at an angle to the 
horizontal, which may be the cause of stress concentrations. The concrete elements were 

particularly narrow in this area so that the lengths of the spar elements adjacent to the 

support were reduced, and the effect of having a uniform stress along the length of the spar 

element was reduced, so that a continuous change in tendon force could be modelled as 

correctly as possible. For simply supported beam model 13, this is also the case at the 

midspan location, that a stress concentration occurs at the location where the tendon joins to 

the centreline nodes, although for this case, the tendon angle to the horizontal at the 

centreline is very small. This supports the idea that the angling of the tendon at the ends of 
the beam models is the probable cause for stress concentrations and undesireable changes in 

the tendon force. It may also be true that the support section may be partly responsible for 

having caused a stress concentration. Another possibility is that the half beam models were 

experiencing a kind of transmission length effect, with local elastic shortening about the 

centreline section, effectively behaving as two separate tendons. Theoretically this should 

not be the case as the tendon is fixed from movement in the longitudinal direction, as well as 
the concrete elements at this location. 

With hindsight, perhaps a linear harped tendon profile which would naturally produce 

point equivalent loads should have been modelled, eliminating the need for major refinements 
in the concrete mesh. This may still have caused stress concentrations at the centre support 

section due to the angling of the tendon. With a lengthy analysis such as this finite element 

approach, it is necessary to have ironed out as many possible problems in the model before 

starting the final analysis. This was the case for model 18, although it was always likely that 

stress concentrations and other factors would have an influence, factors which are difficult to 

assess in the basic theory. It can be said that finite elements model the actual behaviour better 
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than was at first anticipated, but causing complications when making comparisons with 
idealised theories about the behaviour. 

Secondary Moment 

Regardless of the success of model 18, the nature of the problem was such that the 

secondary moment could not be monitored once cracking had begun. It was possible to 

monitor the total internal bending moment, so the results may have been useful for studying 
the amount of moment redistribution available (although this was not the case). It was clear 
at this stage that an alternative approach was necessary to determine the influence of 
secondary moments on moment redistribution. Most of the previous work on the subject 
deals with how the inclusion of the elastically calculated secondary moment would affect the 

ultimate load, with provision for moment redistribution. The fact that the secondary moment 

may be changing in the stages leading up to the point of statical determinacy seems to have 

been somewhat neglected. This is a very important issue in the design of continuous 

prestressed concrete beams, as the inclusion or exclusion of the secondary moment at various 

stages in the design process may have a bearing on whether or by how much a design is 

conservative. If the secondary moment is changing, then this would dramatically complicate 
how the secondary moment should be treated in the design. The next step in the investigation 

was to find a means of separating the secondary moments from the total internal bending 

moment, up to a point where the beam is rendered statically determinate. After this, the 

secondary moment will of course be zero, but the amount of rotation available for moment 

redistribution may be affected by the behaviour of the secondary moment prior to this. 

The next chapter (5) explains the method devised for achieving an estimate of the 

secondary moments through the cracking stage by an equivalent load analysis. 
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5/ Equivalent Load Analysis at Overload 

5.1/ The SMAREL Algorithm 

From the results of the finite element analyses of the continuous prestressed concrete 
beams, it is evident that there are a number of complications involved with regard to the 

correct way in which to model the tendon profile, the separation of secondary moments from 

the internal moments, and determination of the amount of moment redistribution which can 
take place at the ultimate limit state. Ordinary linear methods of calculating the secondary 

moment cannot be used due to the nonlinear behaviour in the post cracking stage. Various 

studies involving nonlinear analyses, as discussed in section 1.1, have attempted to shed light 

on the effects of secondary moments on the amount of redistribution available at plastic 
hinge formation, with suggestions on how they might be included in design. Many of these 

studies have performed nonlinear analyses of continuous prestressed concrete structures with 

regard to the overall behaviour up to the ultimate limit state, and have then attempted to 

relate the elastic secondary moment to the amount of rotation available. Others have 

recognised that the secondary moment may alter between the stages of first cracking and 

ultimate limit state, and suggest a number of alternatives to the effects of this. However, 

none of the previous work has attempted to separate the secondary moment from the 

internal moment during the nonlinear phase, a situation which appears to be logical if the 

effects of the secondary moment are to be included at ultimate limit state. 

A number of methods such as equivalent load analysis are available to separate the 

secondary moment from the internal moment during the elastic phase. Nilson, [2], points out 

that such an analysis is dependent on the superposition of stresses, which is valid only if the 

beam is operating in a linear elastic manner. He also rightly suggests that the task of applying 

such a method into the nonlinear stage would be complicated by various factors such as 

increases in the tendon force at locations such as cracks, along with flexural stiffness 

changes. 

Taking into account the extra complications required to perform such an analysis, it 

was decided to attempt a nonlinear analysis incorporating the equivalent load method to 

separate the secondary moment from the overall internal moment. Attention was paid to the 

correct representation of crack formation, tendon force, and stiffness variations along a 

particular beam span. 

Computer programs were subsequently written to analyse two and three span 

continuous beams with rectangular, I, or T sections, and parabolic tendon profiles present at 

87 



one level in the beam only. These were given the name SMAREL which stands for 

Secondary Moments and Redistribution by Equivalent Load. The core elements fundamental 

to the operation of the program are now described in detail. 

Main Procedures 

The fundamental procedures used in the SMAREL algorithm for the calculation of 

secondary moments by equivalent loads using a nonlinear approach, break down into three 

main categories, as mentioned in section 2.2.6: - 

1/ A double numerical differentiation to obtain equivalent loads 
from the primary moment. 

2/ Calculation of stiffness, carry-over factors, and fixed end 
moments for a member of variable stiffness (created by the 
formation of cracks), for an equivalent load analysis 

3/ A cracked section analysis of a prestressed concrete section, to 
determine the properties of the cracked sections. 

For these procedures to be used in a computer program, it is necessary to somehow 

divide the beam into sections or elements. The finite difference procedure used in the 

numerical differentiation dictates that a nodal system at regular intervals be used. Hence the 

program would take in data relating to material properties, beam dimensions, and profile 

layout, and divide each span into nodes which were of equal spacing. The properties of the 

sections at each node could then be determined for different loading conditions, cracked 

section analyses performed, with tendon force and stiffness variations present over a 

particular length of nodes. The correct way in which to model the flexural stiffness changes 

and tendon force along the length of the beam was of paramount importance. At cracks, 

definite values for the tendon force and flexural stiffness can be ascertained, but at nodes 

adjacent to the crack, these will vary in some manner, depending on whether there are cracks 

immediately to the left, right, both sides or neither side of the crack in question. The 

representation of these variations is discussed in section 5.1.4. 

5.1.1/ The Numerical Differentiation 

To calculate the equivalent load, a numerical differentiation of the primary moment 

function must be incorporated due to the alteration of the tendon force after cracking, as this 
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will be more suited to solution by computer than an analytical method. Finite difference 

techniques are well suited for the solution of problems requiring either numerical integration 

or differentiation. For integration, the Trapezoidal and Simpson's rule can be derived from 

Bessels and Stirling's interpolation formulae, each having increased accuracy as the'width' of 
the interval or differences are made smaller, creating more nodes in the range to be 

integrated. Numerical differentiation is a less 'stable' problem as far as finite differences are 

concerned, as the accuracy will only be optimised at particular interval sizes. Taking the 
general finite-difference formula for the derivative of a function f (x) as : 

df 
= lim 

f(x+h)-f(x-h) 

cfx h->o 2h 

it would appear at first that if h were made smaller, the accuracy of the derivative would 
improve. This is not the case as equation 1 is a ratio of h values, which, when h decreases, 

becomes numerically unstable. Various finite difference formulae are suited to different 

numerical tasks, and in this case, Stirlings interpolation formula is used. 

Stirlin 's Interpolation Formula 

Stirlings finite-difference interpolation formula is best suited for numerical 
differentiation, and is described in detail in Spencer et. al. [7]. It is derived from Gauss's 

central difference interpolation formula, and has the form: 

P(x) =. fo +St(sf-i/2 + fI/2)+'S2S2. fo +s3(S3f 1/2 + S3f 
/2)+S4S4. 

ýoý......, ý2ý 

Where P(x) is the polynomial approximation to the function, f is the actual function value 

at points defined by the subscript, and Sf 's are the central differences, with the superscript 

representing the difference level, and the subscript representing the particular domain data 

point. The coefficients S are the Stirling coefficients, and are defined as follows: 

S, =IU, S2 =I U2, S3 =1 1/(112 -1)/3!, 
S4 = �2(,, 

2 
-1)/4!, 

55 =1 
4U2 

-1)(112 -22)/5!,... 

2222 
where it = (x - x0)/h, h is the interval between` data points, and x is the 

interpolated 
point. 

To obtain the formula for the derivative of the function, the approximating 

polynomial is simply differentiated to the required level. In this case, the chain rule may be 

used to differentiate the polynomial with respect to u, i. e., 
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df dP dudP 1dP 
as u= (x - xo )/h 

dx dx drdu hdu 

In this case we are interested in the second differential, therefore the series solution 
of this will be: 

2ý2 d 
7 h2 

1dP- 
h2 [52f 

+2 u(ö3J-1/2 +u3J1/2)+ iý (6u2 
-1)S°. fo+... (3) 1 

For derivatives at the data points, x is put equal to x0, and therefore u will be zero. 
The series solution of the second derivative of f (x) becomes : 

x2 

d'fo 
- ý4ý hZ 

Z'f0 
_-84f 

12 0+ 90 
86 f0-........ 

l 

J 

With a value of h between 0.01 and 0.1, the formula appears sufficiently accurate for 
most functions, but the accuracy is also dependant on the level of differences taken, i. e. the 
number of terms in the series solution, and also the number of decimal places of the numbers 
in the calculation. A continuous function of the primary moment will be adequately 
differentiated using this formula. 

Extrapolation 

At points where the function alters or becomes discontinuous, it follows that the 
derivatives must also be discontinuous at the same locations. When cracks appear, the 
primary moment function will exhibit such discontinuities. Where the function changes 
abruptly, this 'step' change cannot be dealt with by the finite difference procedure directly, as 
large oscillating spikes in the derivatives occur due to the numerical method involved. 
Therefore it is necessary to flag any points where the function alters, and treat each 
individual function separately. Changes in the primary moment function will occur at the 

ends of the beams, at cracks, between cracks, and where the tendon force begins to deviate 
from its effective prestress value. At the points where each function becomes discontinuous, 

to obtain the required level of finite difference values, an extrapolation of the function must 
be carried out past each end, so that step changes may be modelled correctly. 
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Newton-Grego Interpolation Formula 

This extrapolation is carried out using the Newton-Gregory forward and backward 
difference formulae, using the backward difference formula, equation (5), to extrapolate 
forwards, and the forward difference formula, equation(6), to extrapolate backwards, thus 

P(x) = P(xo+hu)= fo+uVfo+I1ý11+1)V2fo+..... +ný2iu+1)... (u+n-1)V"fo (5) 

P(x) = P(xo +hu) = fo +u4fo +1 u(u-1)OZ fo+..... +1 u(u-1)... (u-n+1)0" fo (6) 
2 ii! 

where V and 0 are backward and forward differences respectively. Details are given in 

Spencer et. al. [7]. 

5.1.2/ Stiffness and Carry-Over factors 

Stiffness Changes in the Beam 

Whilst behaving in an uncracked elastic manner, the flexural stiffness ELI may be 

treated as constant along the length of a member, where E,, is the effective elastic modulus 

of concrete and I is the second moment of area of the uncracked section about the centroidal 
x-x axis. As load is applied to the beam, the curvature 0 will increase linearly with the 

bending moment, assuming the beam is uncracked. Typical approximate moment-curvature 

relationships for different percentages of tendon steel, together with the corresponding 

neutral axis depth at ultimate moment are shown in figure 5.1.1. It can be seen from this 
diagram that higher neutral axis depths at ultimate moment, and the lower the percentage of 

reinforcement tends to form a more ductile section, indicated by the shallower curve, which 
is more suitable for moment redistribution. The curvatureo, is given by 1/R where R is the 

radius of curvature of the beam section. When a particular section of the beam cracks, the 

curvature increases locally as the flexural stiffness ELI has decreased. It can be shown by 

linear elastic theory that the bending moment is related to the deflection of the beam by the 

second derivative, M= ELI d2y/dx2 
, and as the curvature is equal to the second derivative 

of the deflection function, the moment-curvature relationship becomes 0= M/ELI 
. 

When a 

particular section of the beam cracks, the curvature increases locally as the flexural stiffness 
ELI has decreased and the linear relationship between moment and curvature no longer 

holds true. The direct relationship between bending moment and curvature is now given 
accurately byM = ELI d2y/dx2 

, so that EcIg is the flexural stiffness of the gross cross- 

section of the beam, and is now equal to the gradient of the moment-curvature relationship. 
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Hence, for an accurate calculation of flexural stiffness, the moment-curvature relationships 
for each section of the beam should be known, as each section will have different properties 
especially after the onset of cracking. 

Having ascertained these relationships, there are a number of methods available 
which can use them for the analysis of continuous beams, such as compatibility of 
deformations, Priestley et. al. [20]. El-Dib, [49], has produced a method for calculating 
stiffness factors, carry-over factors, and fixed-end moments of steel rectangular, I, and T 

section members subject to transverse and longitudinal loads. This method is extended here 

to reinforced and prestressed concrete sections. The evolution of the following calculations is 

given in detail in EI-Dib [49]. 

A beam shown in figure 5.1.2 is simply supported at the left hand end and encastred 
at the right hand end. If a moment M, is applied to the left end, causing a rotation 9, of 

magnitude of 1 radian, a moment M2 occurs at the right hand encastred end, where the 

rotation °2 is zero. The first moment-area theorem, with this information, is given by 

equation(7). The general equation for the bending moment is given by equation (8). 
Substitution of equation (7) into equation (8) yields equation (9). Two parameters A and RL 

, given by equation (9a) are then used to simplify equation (9) to equation (10). 

L 
e, -02= 

M 
(7) fm dx 

0 EI 

M=(LLx)M1 _(L)M2 (8) 

1= J M' (L - x) 
-f 

MZ x dx 
0EI 

L Jo EI L 

Let R1=r1 51(L dx and IZý = 
f--idx (9a) 

J EI L) EI L) C 00 

Then R, M, - R2 M2 =1 (10) 

The second moment area theorem, given by equation (11) is then substituted into 

equation (8), yielding equation (12). Parameters R.,, and R.,, are introduced in equation 

(12a), so that equation (12) can be simplified to equation (13). 
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x202-x, 9, =Le2-o. el =f 
EI dx =0 (11) 

0 

f '' x 1x 
dx -Jz 

(i) 

Ldx =0 (12) 
J 0L0 

L(L 
Let R,,, =f1 

L- xx dx and Rx2 =J1 dx (12a) 
Ef L) 

(x)x 

00 

Then Rx, M, -Rx2M2 =0 (13) 

Solving the simultaneous equations (10) and (13) gives: 

M, =1 R2 and M2= R 
(14) 

R, - R,,, Rx2 !- RZ R 
. x2 

Rx, 

As the rotation 8, is equal to 1 radian, the stiffness factor s becomes: 

s=j (15) 

The carry-over factor c becomes: 

M2 

(16) 
M, 

The calculation of these factors requires the integration in equations (9a) and (12a) 
for the determination of the coefficients R, 

, 
R2 

, 
Rx, 

, and Rx2 
. 

Assuming that the EI values 

along the length of the beam may alter as a function of x, these integrations must be carried 

out numerically. There are a number of methods available for this, although one method in 

particular, based on the conversion of the required terms into curvatures, and representing 
them as 'equivalent concentrated loads' for integration, is best suited for reasons which will 
become apparent when the beam stiffness changes due to cracking. This procedure is 

analogous to the 'conjugate beam' method, and is described in detail in Allen [5]. 
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The Numerical Integration 

Assuming the beam is divided into 'n' nodes, the curvature of the beam at node 'i' will 
be : 

(1) i= _M, 

EI, 
(17) 

The total curvature is the combination of the curvatures caused by the couples M, and M2 as 
dictated by equation (8), hence : 

MI 
* 

Ml 

EI, EI, 

For convenience, the curvatures are altered such that: 

21 
ý19ý ol, = IMý, 

I, 
I and 0z, = IM021 

These curvatures are then represented as equivalent point loads W located at nodes, as 
detailed in Allen [5]. The moment due solely to M, gives the following equivalent point 
loads. 

W1=4 7011+6012 
-013) 

W, = 12 
(0i(, 

-1) 
+100 , +i1(, +4)) 

(20) 

4 
701,, +601(,, 

-, ) - 01(n-2) 

The coefficients R, and Rx, now become: 

and R1=ýW,, x, (21) 
r=1 r=1 

Similarly, for the moments due to M2, the equivalent point loads are : 
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W21 = 
24 

(7021 
+ 6022 

- 
023 ) 

W21 =2 0z(i-1) +10021 +0z(i+l)) (22) 

Wen = 24 
(702,, +60 (n-1) - 0z(n-z)) 

and the coefficients R2 and Rx2 are : 

nn 

RZ = W; and Rx2 = WZ, x; (23) 

The results for the calculation of stiffness and carry-over factors of elastic prismatic 

members elastic members in El-Dib [49], using this procedure were excellent, and the 

method was applied to elastic-plastic non-prismatic members, also with good results. 

Elastic-Plastic Non-Prismatic Members 

The main feature of non-prismatic members is the variation of the flexural rigidity, 
EI. The effects of plasticity can be included by modelling the member as a pseudo non- 

prismatic member, as discussed in El-Dib [49]. Exact calculation of the flexural rigidity 

requires knowledge of moment curvature relationships at each nodal section, then the EI 

values may be obtained from the gradient of the graph, dM/dd. In this case, the curvature at 

a particular applied moment can be found directly from a cracked section analysis by dividing 

the extreme compressive fibre strain by the neutral axis depth, i. e., E, /x. Therefore, the 

specific point on the curve is known, and not the whole relationship required for exact 

calculation of EI. However it is sufficient to define an effective flexural rigidity as 
Elef = M/0 

, equal to the gradient of the secant at the point, as these values are to be used 

to calculate curvatures used for the integration procedure previously defined. 

Fixed End Moments of a Variable Distributed Load 

Details of a similar procedure for finding the fixed end moments of a member subject 

to a uniformly distributed load are given in El-Dib [49]. To calculate the fixed end moments 

of a beam subject to a varying load a similar procedure to that used for calculating stiffness 

and carry-over factors was used, based on the theory in El-Dib [49]. The total curvature at 
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node 'i' is the addition of the curvatures calculated by equation (19), and the curvature due to 

the transverse load: - 

_ 
M. 

ý9' 
EI; 

(24) 

Where Mqj is the free bending moment function. The integration processes involved for 

calculating the free bending moment for a varying distributed load are described in appendix 
D, (the common method for calculating fixed end moments for an elastic prismatic beam is 

also included ). The equivalent concentrated loads W9; obtained from the curvature are 

calculated as before. Using the first moment area theorem gives :- 

-MIR, -MZR2+Rq=0 (25) 

Note that M, has changed sign from equation (10), as it is now a fixed end moment, rather 
than an applied clockwise positive moment. The end rotations are also zero. Rq is calculated 

n 

from W9; using the same procedure as in the previous section, and R, and R2 are as 
" l=1 

before. The second moment area theorem leads to :- 

-MIRx, - M2Rx2 + Rq =0 (26) 

n 

Where Rqx = W9; x;, and Rxl and Rx2 are as before. Solving the simultaneous equations 

(25) and (26) for Ml and M2 gives :- 

_R- 

Rg 

_ 
R,,, 

Rqx - RQ 
Rz 

Ml _R and MZ -R (27) 
R, ?- RI Rx2 1- R2 

Rx2 Rx, 

Which are the fixed end moments at the left and right hand ends respectively. 

It should be stressed that to calculate relevant curvatures for the calculation of 

stiffness and carry over factors, it is necessary to include the equivalent load with any applied 

load when calculating the free bending moment. The primary as well as secondary moments, 

and those due to the applied load are to be included in the calculation for the stiffness, carry- 

overs, and fixed end moments, as it is the total moments which affect the curvature. 
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5.1.3/ Cracked Section Analysis 

It is necessary for the calculation of curvatures, stiffnesses and general section 
properties that a cracked section analysis of prestressed concrete members be performed. 
Appendix B describes in detail the required calculations for such an analysis of rectangular, I, 

and T sections, in a separate module CSA. The prestressed reinforcement is at one level in 

the beam only, and at present there is no option for the inclusion of non-prestressed 

reinforcement. In the CSA algorithm, the prestress effects manifest themselves as a resistance 

component. Therefore the cracking moment is calculated using a superposition of stress, 

with the prestress effects included. This does not, however, include secondary moments, as 
these are internal moments created by restraining the beam from deforming at the internal 

support, i. e. the support acts as an external transverse load. The secondary moments must 
therefore be included with the internal moment caused by the applied loads. Once the internal 

moment in the beam has surpassed the cracking moment, the cracked section analysis 
balances the forces in the steel and the concrete for equilibrium, iterating the concrete 

extreme compressive fibre until the correct internal moment is reached. 

The neutral axis depth and concrete fibre strain can then be used directly to 

calculate the local curvature at the section. Of course, not all of the sections where the 

resultant bending moment envelope exceeds the cracking moment envelope will actually be 

cracked, therefore a procedure based on the bond length is incorporated to calculate an 

effective crack spacing. 

5.1.4/ Tendon Force and Stiffness Variations 

When the internal bending moment envelope exceeds the cracking moment envelope 

at a particular location, the beam must crack to a certain extent in the zone where the 

cracking moment has been exceeded. If the primary crack forms at the node where the 

maximum difference between the cracking and internal bending moment envelopes occurs, a 

cracked section analysis will yield a number of useful properties at the particular node, such 

as curvature, which can be related to the flexural stiffness, and the tendon force. The location 

of other cracks in the cracked moment zone need to be determined, cracked section analyses 

performed at the cracked nodes, and the variation of the tendon force and flexural stiffness 

between and either side of cracks must then be addressed. 
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Bond length and Crack Spacing 

Let the primary crack be the only crack to occur in a particular moment zone which 
exceeds the cracking moment envelope. At the crack the tension is taken all by the steel 
tendon. At some distance away from the crack, there will be a section which has been 

unaffected by the formation of the crack. Moving from the cracked section to the unaffected 

section, the bond between the steel and the concrete increases so that the steel gradually 
transfers tension back to the concrete. The bond length lb is defined as the length between 

these two sections over which sufficient tension can be transferred to the concrete so as to 

cause the cracking moment (modulus of rupture) to be reached at the unaffected section. 

The bond length can be estimated from the following equation (28): 

__ 
P, - PZ lb 
U,,, 10 

(28) 

Where: P, Tendon Force at section just after cracking when the applied 

moment equals the cracking moment. 
PZ Tendon Force at section just before cracking when the applied 

moment equals the cracking moment. 
up� Average bond stress between the steel and the concrete 

0 Total surface area of the prestressing steel per unit length. 

A value for the average bond stress was taken as half that of the ultimate bond stress. 
This is obtained from the ultimate anchorage bond stress, given in B. S. 8110: clause 
3.12.8.4., as ß feu 

, where ß is a bond coefficient. Values for the bond coefficient for 

various bar types are given in B. S. 8110: table 6.6-1. In this case, the value for plain bars in 

tension was used, i. e. 0.28. The values for the bond coefficient all include a partial factor of 

safety of 1.4, which must be multiplied out to obtain an actual bond stress. Thus, an 

approximation to the average bond stress used in the SMAREL programs is given by 

equation (29) as: 

O. 28x1.4x fcu 

2 
(29) 

In an actual prestressed concrete beam, the first primary crack will occur at the 

section which has the weakest modulus of rupture, assuming the beam is subject to a 

constant moment zone. Subsequent cracks will then form at sections with higher moduli of 

rupture. The nearest distance an adjacent crack can be to the primary crack is equal to the 
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bond length. Assuming that cracks form at a further distance apart than the bond length, then 
the nearest distance apart that two cracks may be from each other so that another crack may 
form in between them, is a distance equal to twice the bond length. This is so that there will 
be a distance equal to the bond length either side of the new crack, allowing the build up of 
enough tension in the concrete for it to form. Hence this means that the crack spacing can 
vary between values of lb and 21b, so that the average crack spacing is taken as 1.51b. In the 

program, the primary crack forms at the node where the internal bending moment envelope 

exceeds the cracking moment envelope by the greatest amount. Either side of this crack, at a 
distance of 1.51b, the nearest nodes to this distance are scanned to see if the cracking moment 

envelope has been exceeded. If this is the case then the node is deemed to have cracked, if 

not then the node remains uncracked. This process is repeated until all of the nodes which 
have cracked have been ascertained. 

Variations of Tendon Force and Stiffness Between Cracks 

The flexural bond stress distribution between cracks is complex and a vast amount of 
experimental and theoretical work related to the subject has been produced. Nilson and 
Winter [4] explain how the bond stress is actually distributed in a flexural reinforced concrete 

member, and Priestley et. al. [19] produced a simplified version to correspond with the 

average crack spacing of 1.51b. This simplified version is used here and gives rise to methods 

of modelling the variation of tendon force and flexural stiffness between and either side of 

cracks. 

Figure 5.3a shows two isolated cracks, spaced a distance of 1.51b apart. The bond 

stress distribution between the cracks can be seen in figure 5.3b, with the maximum bond 

stress um occurring at the cracks, and decreasing linearly to a value of 0.25um midway 

between the cracks. On the other side of the cracks the bond stress is assumed to fall to zero. 
Assuming a constant effective prestress before any cracking has occurred, the tendon force 

at the cracks is increased from this to the values calculated from the cracked section 

analyses. Priestley et. al. [19] suggest a relationship between the bond stress and the 

reduction of the stress in the steel away from the crack. However to reduce the 

complications involved with this, it was decided to fit a continuous curved function for the 

tendon force reduction, rather than a linear one as for the bond stress. A cosine function 

appeared suitable for this purpose, figure 5.3c. The value of the tendon force midway 

between the cracks was calculated from the following formula: - 

0.25(P, +P2 2Peff)+Pef 
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The cosine function was then fitted between the values at the cracks and the midway value 
calculated with this formula. Where there is no adjacent crack, the cosine function was fitted 
between the value at the crack and the effective prestress force at a distance of lb away from 

the crack. Therefore, after the cracked section analysis of all of the cracked nodes has been 

performed, then the tendon force variations are fitted to the relevant nodes in the vicinity of 
the cracked zone. 

A similar procedure was used for the effective flexural stiffness variation. The 

effective stiffnesses at the cracked nodes was calculated from the curvature obtained from 
the cracked section analyses. Again, a cosine function was applied to the stiffness variation in 

exactly the same manner as for the tendon force. In this case it was then decided to perform 

a parametric study on the effects of altering the stiffness variation from the cosine function to 

a series of three linear variations symmetrical about each particular crack. The form of these 

variations is shown in figure 5.3d. 

5.1.5/ SMAREL Solution Algorithm 

A general outline of the steps involved in the SMAREL algorithm is as follows: - 

1/ Input Model Data, giving an initial applied U. D. L. (elastic), and an 

estimate of the corresponding net internal moments at the supports 
(SM's). 

2/ Calculate the primary moment, the product of the tendon force and 

eccentricity. 

3/ Calculate the equivalent load, the second differential of the primary 

moment. 

4/ Add the applied and equivalent loads, giving the total load. 

5/ Calculate the free bending moment for the total load. 

6/ Calculate the fixed end moments, stiffness, and carry-over factors. 

7/ Perform moment distribution on the continuous beam system to 

calculate the total support moments. 
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8/ Calculate the net internal support moments (SM1's) by subtracting the 

primary moments from the total moments (i. e. reactant moments). 

9/ Recalculate the free bending moment for the applied load only (any 

secondary moment is included in the reactant moments calculated in 

step 8, as they are linear between supports). 

10/ Add the free and reactant moments at supports to obtain the actual net 
internal bending moment envelope. 

11/ Calculate the cracking moment envelope (positive and negative regions 
of the cracking envelope are calculated based on the sign of the net 
internal bending moment envelope). 

12/ Compare cracking and actual internal moment envelopes to obtain 

zones (nodes) where the cracking moment has been exceeded, and 
isolate the node(s) in both the positive and negative regions at which 

the maximum difference occurs (if any). These are the primary cracked 

nodes, and there can be only one in any cracked region, positive or 

negative. 

13/ Calculate the ultimate moment envelopes(positive and negative regions 

of the ultimate envelope are calculated based on the sign of the net 
internal bending moment envelope) . 

14/ Calculate the section properties (effective stiffness, tendon force etc. ) at 

the primary cracked nodes by carrying out a cracked section analysis at 

the node(s) in question. 

15/ Calculate the corresponding bond length for the negative and positive 

moment zones where cracking has occurred. This will relate to the crack 

spacing in these cracked zones. 

16/ Obtain all other secondary cracked nodes using the bond length 

calculated in step 15, spaced from the primary cracked node across the 

length of the cracked zone. 
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17/ At all secondary cracked nodes, calculate the section properties 
(effective stiffness, tendon force etc. ) using a cracked section analysis. 
Functions to represent changes in the Stiffness and tendon force 
between cracks are fitted to the relevant nodes. 

18/ Recalculate the primary moment from the new tendon force. 

19/ Recalculate the new equivalent load. 

20/ Add the equivalent and applied loads to give the total load. 

21/ Calculate the free bending moment for the total load. 

22/ Calculate the fixed end moments, stiffness, and carry-over factors. 

23/ Perform moment distribution on the continuous beam system to 
calculate the total support moments. 

24/ Calculate the net internal support moments (SM2's) by subtracting the 

primary moments from the total moments (i. e. reactant moments). 

25/ If the support moments are such that ((SM2's-SMI's)/SM2's) are 

greater than a predetermined criterion, then the cycle is repeated from 

step 2, else step 26 

26/ If the support moments are such that ((SM's-SM2's)/SM's) are greater 
than a predetermined criterion, then the origional estimate to the 
internal support moments are altered to the mean of the old estimate and 
the new, i. e. SM's=(SM's+SM2's)/2, and the cycle is repeated from step 
2, else step 27. 

27/ Recalculate the equivalent load from the primary moment. 

28/ Recalculate the free bending moment due to the equivalent load only. 
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29/ Calculate the fixed end moments, stiffness, and carry-over factors due 

to the equivalent load only (i. e. the curvature contribution from the 

equivalent load is considered only). The effective stiffness values (EI's) 

used in the calculation are those for the actual beam with the total loads 

applied. 

30/ Perform moment distribution on the continuous beam system to 

calculate the total support moments (in the case the resulting moments). 

31/ Subtract the primary moment from the resultant moment to give the 

secondary moments at the supports. 

32/ Check if the ultimate moment envelope has been violated at any point 

along the length of the beam. If not, add the next increment of load 
, and 

cycle from step 2. If so, then the analysis is complete up to first plastic 
hinge formation. 
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5.1.3a Prestressed Concrete Beam Cracked at Two Locations 

5.1.3b Idealised Distribution of Bond Stress 

Pz P, 

025(' +P2 
/ 

-2P° +P ° Pe 
1T 

5.1.3c Idealised Distribution of Tendon Force 

0.751,1.51, In 

1 Node Space <- 
I 0.221, ý 
<-ý 

106 

1.516 

CIBfUt -"I 2 

EI EI,,. m -0.25 2 EI2 

5.1.3d Idealised Distribution of Effective Flexural Stiffness 



5.2/ Two Span Beam Examples with SMAREL30 

Program SMAREL30 was written to analyse two-span continuous beams with 
continuously curved tendon profiles at one level in the beam. Two models were used, 
Twospan 1 and Twospan 2, with the properties listed in Table 5.1. 

Twospan 1 

Twospan 1 had exactly the dimensions and tendon layout as for finite element model, 
Model 18, shown in figure 4.2.1. The calculations for the equivalent load and elastic 
secondary moment at the centre support were exactly the same, i. e. 24 kN/m and 75 kNm 

respectively. The program reads in the data from Table 5.1 stored in the file INPUT. DAT, 

and then prompts the user for an applied U. D. L., and a corresponding value for the internal 
bending moment for the centre support. On the first load step, a load and internal support 
moment which are below the cracking value are chosen. After these values have been 

entered, the program proceeds to alter the internal support moment specified by the user 
until it agrees with the value calculated by the program using a moment distribution 

procedure. Only the left hand span is used in the calculation, assuming symmetry about the 

centre support. The internal bending moment and secondary moment at the centre support 

are then written to an output file SEC. DAT, and the next load increment of 0.1 kN/m is 

added to the applied load. The internal bending moment at the centre support for the last 
load step is used as an estimate for the value at the next load step, hence the load increments 

must be small, as any cracking can affect the stiffness and carry-over factors greatly. This 

process is repeated for each load step, with successive results written to SEC. DAT. If the 

program begins to oscillate between two cracked states whilst it tries to find a solution, this 

requires an exit after a number of attempts. This value was set to thirty, after which the 

results are again written to SEC. DAT, and the next load increment applied. 

When the ultimate moment at a particular section (namely the centre support) is 

reached, a plastic hinge is deemed to have formed. At this stage, the envelopes of internal 

bending moment, tendon force, effective flexural stiffness, and equivalent load are written to 
four separate data files for later analysis. The program is then terminated. 

Parametric Study of Effective Flexural Stiffness 

Four separate runs of the program were performed with different stiffness variations 
between cracks. These were namely a cosine variation, and linear variations between 
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effective flexural stiffness values at cracks and the elastic flexural stiffness value, at nodal 
distances of 0.751b, 0.221b, and 1 node spacing away from the cracks. 

Twospan 2 

Twospan 2 was similar to Twospan 1 but with an altered drape of the tendon profile, 
and an eccentricity of the tendon above the section centroid at the centre support of 400mm. 
This had the effect of altering the equivalent load and primary moment so that the secondary 
moment was of opposite sign and identical magnitude to that for Twospan 1. The 

calculations for the equivalent load and secondary moment at the centre support are : 

M, = 0.4 x 2000 = 800kNm 

The equivalent U. D. L. is : 

_0.3625 
x2000 x8 
15 2 =_25.78kN/m 

This equivalent load produces fixed end moments of : 

+ 
25.78 x 152 

=+ 483.33kNm 
12 

From moment distribution, the resultant moment over the centre support is the fixed end 
moment plus a carry over of half the value of the fixed end moment at the end support with a 

reversed sign, i. e. 

M3 = 483.33 + (0.5 x 483.33) = 725kNm 

Hence the magnitude of the secondary moment over the centre support is : 

M2 = M3 -Ml = 725 - 800 = -75kNm 

The information in table5.1 was used in the data file INPUT. DAT, and the program 

procedure was the same as for Twospan 1. The parametric study for the stiffness variation 

was also carried out. 
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In both instances, the program was terminated at the formation of the first plastic 
hinge. Therefore no analysis of the available rotation and moment distribution is carried out 
by the program. 

5.3/ Three Span BeamExample with SMARELIT 

The SMARELIT program was used to analyse a three span beam example prepared 
by the Consulting Engineers Roughton and Partners for the A127 Durham Western Bypass, 

Club Lane Bridge. Calculations and relevant design information of the T-section prestressed 

concrete bridge are given in Roughton and Partners [51] and the idealised dimensions of the 

bridge and tendon layout are also shown in figures 5.3.1 and 5.3.2. All of the relevant data 

for the file INPUT. DAT are listed in table 5.2, and information relating to each of the spans, 

files SPAN. DAT, are listed in table 5.3. 

Elastic Secondary Moments 

To calculate the elastic secondary moments at the internal supports an equivalent 
load analysis using moment distribution can be performed. The notation in figure 5.2a. is 

used :- 

Equivalent Loads: - 

Equation for the calculation of the equivalent U. D. L. for a parabolic profile is: 

8xPxe 
LZ 

For Span A, equivalent load = 

For Span B, equivalent load = 

For Span C, equivalent load = 

_8x13600x0.171 12.5 2 =_119.1 kN/m 

_8x13600x0.739 26.02 __118.9kN/m 

_8x13600x0.249 118.8kN/m 
15.12 
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Distribution Factors: 

Joint Member Stiffness EStiffness Distribution 

Factor 8 
1 A 4E1 12.5 = 0.32EI 0.32EI 1.0 

2 A 

B 

3E1/12.5 = 0.24EI 

4E1 26.0 = 0.15E1 

0.39EI 0.61 

0.39 
3 B 

C 

4E1/26.0 = 0.15E1 

3EI/15.1= 0.2E1 
0.35EI 0.44 

0.56 

4 C 4E1 15.1= 0.26E1 0.26EI 1.0 

Fixed End Moments: 

Member Joint Formula Value 

A 1 qL2/12 -1549.5 
2 - qLZ /12 1549.5 

B 2 qL2 /12 
-6703.7 

3 - qL2 /12 6703.7 

C 3 qLZ /12 
-2261.1 

4 - qLZ /12 2261.1 

Moment Distribution for Resultant Moments M,: 

Member/Joint Al A2 B2 B3 C3 C4 

5 1 0.61 0.39 0.44 0.56 1 

Initial State -1549.5 1549.5 -6703.7 6703.7 -2261.1 2261.1 

Relax 1549.5 3144.1 2010.1 -1954.7 -2487.9 -2261.1 
Carry-Over 0 774.8 -977.35 1005.1 -1130.6 0 

Relax 123.6 79.0 55.2 70.3 

Carry-Over 0 0 27.6 39.5 0 0 

Relax -16.8 -10.8 -17.4 -22.1 
Carry-Over 0 0 -8.7 -5.4 0 0 

Relax 5.3 3.4 2.4 3.0 

Carry-Over 0 0 1.2 1.7 0 0 

Relax -0.7 -0.5 -0.7 -1.0 
Carry-Over 0 0 -0.4 -0.3 0 0 

Relax 0.2 0.2 0.1 0.2 

Total 0 5580.0 -5580.0 5829.2 -5829.2 0 
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Primary Moment at Support 2: M, =Pxe= 13600 x 0.274 = 3726.4 kNm 

Primary Moment at Support 3: M, =Pxe= 13600 x 0.274 = 3726.4 kNm 

Secondary moment at Support 2: M2=M3-Ml = 5580 - 3726.4 = 1853.6 kNm 

Secondary moment at Support 3: M2=M3-Ml = 5829.2 - 3726.4 = 2102.8 kNm 

Analysis Procedure 

The load was applied uniformly to all spans simultaneously, with the first load 

application being the approximate balanced load of 120 kN/m. At first, the load steps were 
quite large whilst the beam was behaving elastically, up to the point of first cracking at a 
critical section. Subsequent load steps were applied at intervals of 0.1 kN/m, and the 

program allowed to iterate until the net internal bending moments at supports 2 and 3 had 

stabilised to within the required accuracy. A maximum number of iterations of 30 per load 

step was introduced to avoid non-convergence at particular load steps, hence after 30 
iterations at one load level, the next load step would be applied. After each load step, the 
internal bending moment and the secondary moments at supports 2 and 3 are recorded in a 
data file for analysis. The ultimate bending moment envelope is compared with the internal 

moment envelope after each load step to see if it has been exceeded at any location long the 
length of the beam. Once this has occurred, a plastic hinge is deemed to have formed at the 

critical section, and the tendon force, stiffness, equivalent load, and internal bending moment 
envelopes are all written to the appropriate data files. A normal exit is then made from the 

program. At the stage of the formation of one plastic hinge, unlike the 2-span beam, the 3- 

span beam will still be statically indeterminate, but the program cannot be continued past one 

plastic hinge due to the physical alterations of the structure which effects the analysis 

procedure. 

Stiffness Variation 

As for the Twospan models four separate runs of the program were performed with 
different stiffness variations between cracks. These were namely a cosine variation, and linear 

variations between effective flexural stiffness values at cracks and the elastic flexural stiffness 

value, at nodal distances of 0.7516,0.221b, and 1 node spacing away from the cracks. 
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Output 

The internal and secondary bending moments for each load step were recorded for 

comparison of each analysis. At plastic hinge formation of each run, the envelopes of 
internal bending moment, equivalent load, effective flexural stiffness, and tendon force can be 

compared for each stiffness variation. 
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Figure 5.3.1a. Layout of Tendon Profile for Three Span Example 
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Figure 5.3.1 b. Primary Bending Moment Envelope (M1) 
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Figure 5.3.1 c. Resulting Bending Moment Envelope (M3) 
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Figure 5.3.1 d Secondary Bending Moment Envelope (M2) 
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Table 5.1 

Input Data for Two-Span Models for SMAREL30, Twospan 1 and 2 

Twospan 1 Twospan 2 

AS Area of Steel (mm2) 1700.0 1700.0 

DE Overall Depth (mm) 1000.0 1000.0 

ES Elastic Modulus of Steel 

(kN/mm2) 

200.0 200.0 

EC Elastic Modulus of Concrete 
(kN/mm2) 

37.83 37.83 

El Drape of Parabolic Profile (mm) 337.5 362.5 

FCU Characteristic Strength of 
Concrete (N/mm2) 

60.0 60.0 

FPU Characteristic Strength of 
Prestressing Steel (N/mm2) 

1750.0 1750.0 

PF Prestress Force (kN) 2000.0 2000.0 

L Span Length (m) 15.0 15.0 

GAM I 71 1.0 1.0 

GAM2 Y2 1.0 1.0 

BW Breadth of Web (mm) 400.0 400.0 

BFI Breadth of top Flange (mm) 400.0 400.0 

BF2 Breadth of bottom Flange (mm) 400.0 400.0 

DF 1 Depth of top Flange (mm) 200.0 200.0 

DF2 Depth of bottom Flange (mm) 200.0 200.0 
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Table 5.2 

Input Data for Three-Span Model for SMARELIT, Beam 
(File INPUT. DAT) 

Threespan 

AS Area of Steel (mm2) 12000.0 
DE Overall Depth (mm) 937.15 
ES Elastic Modulus of Steel (kN/mm2) 200.0 

EC Elastic Modulus of Concrete (kN/mm2) 34.7 

FCU Characteristic Strength of Concrete (N/mm2) 40.0 
FPU Characteristic Strength of Prestressing Steel 

(N/mm2) 
1750.0 

PF Prestress Force (kN) 13600.0 

GAM1 yl 1.0 

GAM2 Y2 1.0 

BW Breadth of Web (mm) 2625.0 

BF1 Breadth of top Flange (mm) 3900.0 

BF2 Breadth of bottom Flange (mm) 2625.0 

DF 1 Depth of top Flange (mm) 275.13 

DF2 Depth of bottom Flange (mm) 100.0 
STRAND Number of Prestressing Strands 3 

Table 5.3 

Input Span Data for Three-Span Model for SMARELIT, Threespan 

(Files: - SPANI. DAT, SPAN2. DAT, SPAN3. DAT) 

Span1 Span2 Span3 

L Length of Span (m) 12.5 26.0 15.1 

ELH Eccentricity (mm) 0.0 274.0 274.0 

ERH Eccentricity (mm) 274.0 274.0 0.0 

EN Eccentricity (mm) 171.0 739.0 249.0 
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5.4/ Results for SMAREL Programs 

5.4.1/ Twospan Beam Models 

The first model analysed using the SMAREL30 program, Twospan 1, had the same 

specifications as ANSYS model 18. This was so that both sets of results might be compared. 

Figure 5.4.1. shows the variation of internal bending moment at the centre support 
versus the applied U. D. L., for the four different cases of flexural stiffness variation between 

cracks. In each case, cracking was initiated at the centre support at an internal bending 

moment value of -1239 kNm. The lines are linear and coincident up to this point. After 

cracking, the gradients of all of the lines decrease slightly as the flexural stiffness at the 

support decreases, causing a redistribution of moment from the support into the span. Once 

cracking has begun in the span, the lines increase in gradient approximately to the values of 

when they were behaving linearly, as the moment redistributes back from the span to the 

support. 

It can be seen that after first cracking in the span, the greatest decrease in gradient is 

associated with the stiffness representation which causes the widest variation (reduction) in 

the stiffness over the largest range of nodes, i. e. the cosine variation will have the greatest 
influence, followed by the linear 0.751b, and 0.221b variations, and the linear variation over 

one node spacing has virtually no recognisable effect. 

The moment at which the plastic hinge is formed at the centre support is -2090 kNm, 

and is obtained by all the stiffness models. Again, from figure 5.4.1., it can be seen that the 

applied U. D. L. at which this occurs will be greater for the widest stiffness reduction between 

cracks, i. e. the cosine variation. 

The estimated secondary bending moments for each stiffness case are plotted against 

applied load in figure 5.4.2. In each case, the value remains constant at 75 kNm up to the 

point where cracking is initiated. After cracking has begun at the centre support, the 

secondary moments can be seen to curve downwards with a negative gradient. As the cracks 

widen in the negative zone, the gradient becomes steeper, and the formation of new cracks in 

the negative moment zone causes a step decrease in the secondary moment. As the span 

starts to crack, a series of smaller steps which increase the secondary moment appear. The 

cracks in the positive moment zone in the span, although they may be greater in number, are 

not as large (wide) as the cracks in the negative moment zone over the centre support, and 

will not have as much influence on the overall flexural stiffness and distribution of moments 
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in the beam, as those in the negative zone. Hence the secondary moment decreases in 

magnitude from its originally positive value, and may become negative, as seen with the 
cosine stiffness variation. Also, the secondary moments could not be monitored after the 
plastic hinge had formed at the centre support, as the structure had become statically 
determinate. 

Internal bending moment envelopes for the left hand span are shown in figure 5.4.3., 
illustrating the parabolic form in each case. The effective flexural stiffness envelopes in each 
case are shown in figure 5.4.4., illustrating the pattern of cracking, and the different forms of 
the stiffness variation between cracks. Figure 5.4.5. shows how the tendon force varies in a 
cosine fashion along the span, with the greatest increases in the negative moment zone. The 
form of the equivalent load is shown in figure 5.4.6., and clearly shows a form similar to that 
for the tendon force, i. e. a cosine function. This is to be expected, as the primary moment 

will be a combination of cosine functions superimposed (added) to the elastic parabolic 
function. When this is differentiated twice, the parabolic function becomes linear, and the 

cosine function will remain of the same form. Hence in the regions where the tendon force 

changes from the parabolic form to the cosine plus parabolic form, the second differential 

will be of cosine form, superimposed on a linear function. Referring to figure 5.4.6, the 
horizontal portions between the cracked zones are not zero, but actually correspond to an 

equivalent load of -24 kN/m. The large fluctuation of equivalent load is such that this does 

not show clearly on the graph. 

For Twospan 2, the same response can be seen from a plot of internal bending 

moment versus applied load, shown in figure 5.4.7. In this case cracking is initiated at a value 

of -1470 kNm over the centre support, and a plastic hinge forms at the centre support at a 

value of -2390 kNm. Similar trends as for Twospan 1 for the distribution of bending 

moments occur for the four different stiffness models. 

The secondary moments are shown in figure 5.4.8.. The elastic value of -75 kNm is 

held up to the point of first cracking, after which the secondary moments decrease in a 

manner similar to that described for Twospan 1. However, as the secondary moment is 

negative to start with, this means that the secondary moment becomes even more negative, 
i. e. larger in magnitude. In the case of the cosine stiffness variation, this decreases to -220 
kNm at the formation of the plastic hinge. 

Envelopes of internal bending moment, effective flexural stiffness, tendon force, and 

equivalents load are shown in figures 5.4.9., 5.4.10., 5.4.11., 5.4.12., respectively, and are 

similar in form to that for Twospanl. 
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5.4.2/ Threespan model 

Although a limit of 30 iterations per load step was specified for the three span 
example, the analysis passed through a number of stages in which the solution would 
oscillate between a number of different cracked states. Even so the results show a general 
trend similar to that for the twospan examples. Support 3 cracked first at a moment of -7853 
kNm, followed by support 2 at a moment of -8080 kNm (at loads of 207 and 218 kN/m 

respectively), and finally the centre span developed a few cracks before a plastic hinge 
formed at support 3, at a load of approximately 300 kN/m 

Figures 5.4.13. and 5.4.14. show the variation of internal bending moment with 
applied load at supports 2 and 3 respectively. Concentrating on the cosine stiffness variation 
model, it can be seen that the onset of cracking at support 3 causes a small step decrease in 

the bending moment at this location due to the local softening, and redistributes moment to 

support 2. Once support 2 begins to crack, the reverse happens, where the moment 

redistributes back to support 3. As the load at which the plastic hinge forms is approached, 
the cosine stiffness variation has a pronounced decrease in gradient, more so than for the 

other stiffness models. 

The variation of secondary moment with applied load is shown for support 2 and 3 in 

figures 5.4.15. and 5.4.16 respectively. It can be seen that when support 3 cracks, the 

secondary moment reduces here in a step fashion, corresponding to an increase at support 2. 

Once support 2 begins to crack, the situation is reversed, with the secondary moment 
increasing again at support 3 and reducing at support 2. The secondary moment then passes 
through a series of stages where the crack pattern cannot settle and the solution has not 

converged. However, there appears to be a general increase in both of the secondary moment 

values at the supports, accompanied by the onset of cracking in the centre span. Towards the 

load at which the plastic hinge forms at support 3, the secondary moment tends to remain 
fairly constant at support 2, at values higher than the origional elastically calculated value, 

whilst the secondary moment at support 3 is reducing to values below the elastic value. All 

of the stiffness models show similar results with the widest stiffness reductions having the 

greatest effect. 

The internal bending moment envelopes at plastic hinge formation for all four 

stiffness models are shown in figure 5.4.17. This shows only very slight differences between 

the internal bending moments at this stage, due to slight differences in the applied load. The 

maximum positive bending moment occurs in the centre span as this is the longest of the 

119 



three spans. Envelopes of effective flexural stiffness, tendon force and equivalent load are 

shown in figures 5.4.18., 5.4.19., and 5.4.20. respectively. These clearly show the expected 
forms and reveal the crack pattern. Three cracks are present over each support section, with 
three cracks in the centre span. Also the effects of the cracks at the supports appear to be 

greater than those in the span, probably due the cross sectional properties in the cracked 

section analysis at these locations. 
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5.5/ Conclusion to SMAREL Results 

The SMAREL algorithm, in the form of a computer program, has given an estimate 
of the magnitude of secondary moments in 2 and 3 span continuous prestressed concrete 
beams up to first plastic hinge formation. Referring to the results for the two span beam 

examples, there appears to be a general pattern emerging. As the load is increased, cracking 
in the section at the centre support causes a local decrease in flexural stiffness. This 

reduction in flexural stiffness causes a change in the stiffness and carry over factors for the 
beam, such that the increase in the internal moment at the centre support is reduced as more 
load is applied, i. e. the gradient of the graph shown in figure 5.4.1. and 5.4.7. decreases. If 
the equivalent load were not to alter in the analysis, then the rate of increase of the resultant 
moment M3 would decrease with the onset of cracking at the centre support. Assuming that 
the primary moment M, remains the same, then figure 5.4.2. shows that a positive elastic 
secondary moment decreases after the onset of cracking, becoming negative at some stage. 
Figure 5.4.8. shows that for a negative elastic secondary moment the trend is similar after 
cracking has begun, having a larger negative value as the load is applied. The onset of 
cracking in the span causes the stiffness and carry-over factors to alter so that the gradient of 
the graph of internal moment vs applied load is increased. This can be seen in figures 5.4.1 

and 5.4.7. This has the opposite effect on the secondary moment, causing a series of small 
jumps in the graph of secondary moment vs applied load, shown in figures 5.4.2. and 5.4.8. 
In the analysis, as the tendon force increased at the location of the cracks, the primary 
moment and equivalent load were recalculated in each cycle of the program. However, these 
alterations in primary moment and equivalent load have little effect on the behaviour of the 

secondary moment throughout the loading. Cracking at the centre support consisted of larger 

cracks spread over a smaller cracking zone in the region of negative moment, as compared to 

the centre of the spans, where smaller cracks were spread over a larger cracking zone in the 

positive moment region. Figures 5.4.3 and 5.4.4. clearly show this to be the case. This meant 
that in general, the secondary moment would become smaller if it was originally positive, or 
have a larger negative value if originally negative as the load at which the plastic hinge 

formed was approached. 

With the three span example, a similar behaviour was observed. In this case the 
distribution of moments is different, with the support cracks causing redistribution from one 
support to the other. Assuming that both of the supports have cracked, and the stiffness and 

carry-over factors have somewhat stabilised at a particular cycle of the program, it would be 

fair to assume that the internal moments would continue to increase with load at a constant 

gradient. The secondary moments both continue to redistribute from one support to the other 

until the centre span cracks, and then both increase positively with applied load. This effect 
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can be seen clearly from figures 5.4.15. and 5.4.16. As the load is increased further, at 
support 2 the secondary moment reaches a stage where it is fairly constant, whilst the 
secondary moment at support 3 decreases until the plastic hinge is reached here. 

It should be stressed that some of the factors used in the SMAREL program are 
based on empirical data, and a number of details assumed, e. g. the form of the variation of 
tendon force between cracks was assumed to follow a cosine function. The cracked section 
analysis has been idealised to comply with information from BS8110, and bond lengths and 
crack spacing based on data for beams subject to constant moment zones. Regardless of the 

specification for items such as crack spacing etc. the general trend has emerged, and it is 

clear that the secondary moment will alter due to the changes in stiffness and tendon force 

caused by cracking. Experiments (for parameters such as stiffness variations and tendon 
force changes between cracks) may shed light on the correct values to use in the program to 

give a better model of the actual beam behaviour. 

Rotation Capacity 

An attempt was made to analyse the beam Twospanl for rotation capacity once the 

plastic hinge had formed at the centre support. Two subroutines were written to continue the 

analysis up to ultimate. A. L. L. Bakers method was used in one subroutine to calculate the 

maximum rotation available at the plastic hinge, described in Massonet and Save [8], and the 

other subroutine made an attempt to calculate the rotation which was occurring at successive 
load steps by using an integration procedure involving the flexural stifFnesses at the node 
locations, explained in Matheson [6]. The idea was to compare the calculated rotation with 

the rotation capacity, and terminate the analysis when the rotation capacity had been reached. 
Unfortunately the calculated hinge rotation predicted by the subroutine was greater than the 

calculated rotation capacity, therefore these routines were abandoned. One possible 

explanation for the problem could have been that the stiffnesses used were effective flexural 

stiffnesses (secant stiffnesses) rather than the actual stiffnesses (tangent stiffnesses). To 

calculate actual stiffnesses would require the calculation of moment curvature relationships 

at each node for the full range up to ultimate moment, a procedure which would be very time 

consuming. This approach is currently being pursued by Ove Arup and Partners with the 

program ADSEC, for the analysis and design of reinforced and prestressed concrete sections. 
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Moment Redistribution 

The general design procedure for moment redistribution at the ultimate limit state has 
been explained in section 2. How to include secondary moments in the analysis has been a 
problem in a number of design codes, and there are conflicting methods of design. 
Concentrating on the design to BS8110, this can be broken down into specific problem 
areas. The idea is to provide enough ductility at plastic hinges so that full specified 
redistribution of moments can be attained. If this can be achieved, then the secondary 
moments need not be included in the analysis, as the ultimate moments and load will be 
insensitive to their inclusion, according to plastic theory. 

Taking the example of a two span beam, we will assume that the designer has 

calculated the ultimate load and the elastic bending moment envelope associated with this, 

and wishes to reduce the ultimate moment at the centre support by the allowable limit of 
20%. Let us also assume that the designer has attempted to ensure that the required amount 

of rotation capacity for full redistribution has been supplied at the centre support so that full 

redistribution occurs into the span. He has checked that the limit to the neutral axis depth at 
the centre support section meets the requirements stipulated in BS8110, and highlighted in 

section 2.1.1. The code requires that the ultimate moments before redistribution should 
include any secondary moment present multiplied by a factor of 1.0, hence if the limit of 20% 

redistribution is in force, this means that the secondary moments must also be included in the 

redistributed envelope with a factor of 1.0. If it could be ensured that the elastic secondary 

moments remained constant up to plastic hinge formation, then this procedure is adequate to 

ensure the required ductility needed for the full specified redistribution, ensuring that the 

secondary moments need not be included in the redistribution process. 

As mentioned earlier, if the ductility of the section cannot be guaranteed, then the 

complications arise as to how to include the secondary moment. As the results of the 

program showed, the secondary moment is altering, in some instances going from positive to 

negative. It is the elastically calculated secondary moment which is used in the design for 

ductility, and if it is changing as the program predicts, the design will clearly be erroneous. If 

an erroneous design for ductility of a plastic hinge occurs, this may lead to only partial 

moment redistribution, compared to the full specified redistribution. Regardless of the fact 

that the secondary moment disappears once the beam becomes statically determinate, the 

changing secondary moments have affected the load at which the first plastic hinge forms, 

and hence the available rotation capacity left in the hinge. So if the full specified 

redistribution cannot be realised, then the secondary moment will have had some influence on 

the failure of the beam. If the ductility of the hinge which depends on the secondary moment 
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has altered and full specified redistribution cannot be achieved, the secondary moments have 

influenced the redistribution process. 

The results of the program cannot in anyway suggest a change to design procedures 

as they stand. They only serve the purpose, like the majority of other research on the subject, 

of highlighting problems in the design procedure. Patterns in the results have emerged, but 

these would need to be reinforced by experimental studies before positive steps could be 

taken to test changes in design. 
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6/ General Conclusion 

A method for estimating how the elastic secondary moments change with respect to 
applied loads in continuous prestressed concrete beams has been presented in the SMAREL 

algorithm. The effects of cracking have been explicitly modelled, rather than to smear the 
cracks (altered section properties) over `a cracked zone' in the beam. This was done in order 
to search for an improvement in the accuracy of the results, as the program strives to model 
the cracks as realistically as possible. It should be stressed that this only provides an estimate, 
and can really only be used to highlight patterns in the secondary moment change, as the 

quantitative measurements are subject to interpretation 

Trends in the Secondary Moment. SMAREL Results 

The results of the two span beams highlight the effects of the flexural stiffness 
variation along the length of the beam. All show similar trends in the patterns of change in 
the internal and secondary moments throughout the loading. The greater stiffness variations 
have greater effects on both of these moments, significantly the secondary moments. 

In general, cracking at the support causes the secondary moment to become more 
negative, and cracking in the span causes the secondary moment to become more positive, 
highlighted in figures 5.4.2. and 5.4.8. Comparing the effects of cracking in the negative 
moment regions over internal supports, with cracking in the positive moment regions in the 

span, it can be seen that the results are more significant. Cracking at the supports produces 
larger (deeper) cracks over a smaller length than those which occur in the span. They 

therefore have a greater overall effect on the flexural stiffness than those cracks occurring in 

the span. For the two-span beams, the result of this is an overall change in the negative 
direction of the secondary moment, as load is applied, as discussed in section 5.5. 

This change in the secondary moment with applied load would at first appear 
detrimental, as a negative secondary moment over the centre support might decrease the load 

at which a plastic hinge forms. Any negative secondary moment would add to the negative 
internal moment at the centre support caused by the applied load, which in turn might cause 

a greater extent of cracking at the centre support. This effect would tend to alter the tendon 

force, stiffness, and carry over factors in a manner which would make the secondary moment 

even more negative. Also, the effect of the negative secondary moment in the span would be 

to decrease the extent of cracking in the positive moment region in the span, hence the step 

changes which make the secondary moment more positive (highlighted in figures 5.4.2. and 

5.4.8) would be smaller. The main conclusion from this would be that a secondary moment 
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which is tending to become more negative as load is applied, is having an effect on the beam 
which will enhance this alteration of the secondary moment becoming more negative. 

However, when looking at the overall effect, and examining what is happening to the 
total internal moment, it can be seen that the conclusion in the previous paragraph is not 
correct. From figures 5.4.1. and 5.4.7., the results clearly show that with the models with a 
more severe flexural stiffness variation between cracks, the applied load at which the plastic 
hinge forms at the centre support is slightly greater, which obviously contradicts the previous 
statements. These results can be explained by looking at the portion of the internal moment 
caused by the applied loads only (i. e. subtracting the secondary moment from the internal 

moment, so that prestress effects are ignored). The effects of the cracking at the centre 
support are such that the internal moment due to the applied loads only, redistributes to the 
span. With the increase in applied load, the relative amount by which the internal moment is 

magnified over the support appears to be less with the greater flexural stiffness variations 
between cracks, as more moment is redistributed to the span with increased load and 
cracking. This effect on the portion of internal moment due to applied loads only, when 
compared to the effect caused by the changing secondary moment, has a greater influence on 
the total internal moment. It is also significant that the secondary moment becomes a smaller 

percentage of the total internal bending moment as the applied load is increased. Hence, the 
load at which the plastic hinge forms will be larger for the more severe flexural stiffness 
variations between cracks. 

Moment Redistribution 

How to handle secondary moments in the design process is now of concern. The 

present method of including the secondary moments with a factor of 1.0 was described in 

section 5. Concentrating on the two span beam problem, it is normally required that 

redistribution if any will occur from the internal support into the span section. The designer 

would normally take account of any elastic secondary moment by adding this to the elastic 
bending moment envelope calculated from the ultimate loads before the redistribution 

process. 

The change in total internal moment with applied load for the two span beams, shown 
in figures 5.4.1. and 5.4.7. give clues as to the effect of the secondary moment on the 

redistribution process. During the load stage before cracking, it can be seen that in both 

cases, the relationships between total internal moment and applied load are linear, as 

expected. Once cracking has commenced, the relationships deviate somewhat from this linear 

relationship, with a slightly reduced gradient, with the more severe stiffness variations 
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between cracks causing a greater gradient reduction. If the secondary moment is subtracted 
from the total internal moment, and the resulting internal moment due to applied load only 
plotted against applied load, then any deviations from linearity after cracking are slightly 
more exaggerated than in figure 5.4.1. and 5.4.7., but the graphs will essentially be of the 
same form, and a higher applied load would eventually be necessary for plastic hinge 
formation. This is true for the two possible cases where the elastic secondary moment is 
initially positive or negative. Regardless of how the secondary moment is changing with 
applied load, it seems reasonable to assume that the secondary moment should be included in 

the analysis, as the internal moments due to applied load only, and the secondary moment 
change to complement one another. It also appears reasonable that a factor of 1.0 should be 

applied to the secondary moment. The ultimate loads are factored in any case, therefore 

producing a larger elastic bending moment with respect to the secondary moment. The main 
conclusion which can be drawn from this is that the present approach adopted in BS8110 

appears to be adequate. But the reasons for this are more complex than the simplified 

approach adopted in the code. A similar conclusion can be drawn for the results of the three 

span model. 

Rotation Capacity 

In the SMAREL program for the two span beams, two subroutines were written with 
the aim of continuing the analysis past first plastic hinge formation, up to formation of a 
collapse mechanism. One subroutine would calculate the rotation of the hinge at the internal 

support, updating the effective flexural stiffnesses at each load step. The actual rotation thus 

obtained would be compared with the rotation capacity (maximum rotation) at each load 

step, and the analysis terminated when either rotation capacity of the hinge (partial 

redistribution) is reached, or a plastic hinge forms in the span (full redistribution). The 

methods used for these subroutines are described briefly here. 

Maximum Rotation Capacity 

A method proposed by A. L. L. Baker for calculating the maximum allowable rotation 
(rotation capacity) of a plastic hinge in reinforced or prestressed concrete is described in 

Massonet and Save, [8]. The maximum allowable rotation is given as :- 

SDIP 

»,, d 
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Where S, is the difference between the ultimate strain in the concrete at fracture and the 
strain in the concrete when the steel starts to yield, 1p is the length of the plastic region which 
is replaced by a hinge at one section, and n,, d is the depth of the neutral axis. This method 
assumes that the curvature is distributed over a plastic hinging length lo. 

Available Rotation 

A procedure involving the integration of stiffness along the length of the beam was 

used to calculate the actual rotation at a particular load level. The calculations involved in 

the process were taken from Matheson [6], and will not be dealt with here. A stand alone 

program was first written to analyse the end rotations for different combinations of applied 
load and end moments on a particular single span beam. This was then incorporated as a 
subroutine, so that the left hand span of the two span beam system could be analysed as a 
single span. This single span was then treated as a simply supported beam with end moments 

of zero at the left hand end, and a moment equal to the plastic moment (at the centre support 
in the actual two span beam), at the right hand end. 

When the model with the cosine stiffness variation was used, after the plastic hinge 

was reached, the analysis terminated with the maximum rotation capacity having been 

exceeded. After this attempt, the relevant subroutines were abandoned for improvement and 

use at a later stage. 

Subsequent (stand alone) analysis of the left hand span has shown that the rotations 

at the right hand end where the plastic moment is applied, are highly dependant upon the 

model of the flexural stiffness variation used. The more severe the stiffness variation the less 

actual rotation occurs for a particular applied load, and the actual rotation can be less than 

the predicted rotation capacity. In some cases, namely with the cosine stiffness variation, the 

predicted rotation can be in the opposite direction, which is clearly erroneous, and indicates 

that this model may be incorrect. This perhaps gives an indication of the better stiffness 

models which should be used in the analysis. 

Alternatively, if the method of calculation of the maximum and actual rotations are 

studied, it can be seen that there is a discrepancy in the treatment of the plastic hinge. For the 

rotation capacity, the curvature and rotation of the hinge is assumed to be distributed over a 

plastic hinging length, giving an average rotation over this length. For the calculation for the 

actual rotation at a particular applied load, the hinge rotation is assumed to be concentrated 

at a single nodal location over the centre support. Hence the values for actual rotation and 

rotation capacity may be in conflict as a result of the calculation methods. 

138 



The correct way to approach the problem of available redistribution is to study the 
rotations at the hinges. Due to the aforementioned complications, it is not appropriate to give 
any quantitative values (for rotations etc. ) to any of the analyses at this stage. 

Comparison with Finite Element Analysis Results 

The finite element analysis results of model 18 were affected to an extent by 

unexpected reduction in predicted tendon force at the centre support. This may be due to a 
number of factors as previously explained in section 4.5. The most probable causes may be 

the sharp angling of the tendon at the centre support, or the cracking of the thin concrete 
element at the level of the tendon. The effect appears similar to that at the end of the beam 

where a transmission length is occurring, as would be present in a pretensioned member. At 

the centre support, all of the elements on the vertical centreline have been restrained from 

movement in the longitudinal horizontal direction, including the tendon spar element, so the 
transmission length analogy is an unlikely cause of this problem. 

The internal moment at the centre support of model 18 appears similar in form to that 

obtained from the SMAREL program for Twospan 1. The gradients do not match exactly, 
but behaviour is comparable with the beams with smaller flexural stiffness variations. 
Improvement in the finite element models would be necessary to continue the analyses 
further. The choice of continuous beam model would also need to be looked at carefully 

Improvements in the SMAREL Algorithm 

At present, the SMAREL program code can deal with two and three span continuous 

prestressed concrete beams, and takes the analysis up to the formation of the first plastic 
hinge. As previously explained, a subroutine to continue the analysis for the two span beam 

program was written, with the aim of comparing the actual rotation at a particular load with 

the rotation capacity. The idea was to update the effective flexural stiffnesses at each 
increment of load and to calculate the rotation of the hinge over the support. The analysis 

would then ideally terminate when either a plastic hinge formed in the span, thereby creating 

a mechanism (full redistribution), or when the plastic hinge at the support reaches its rotation 

capacity (partial redistribution). However when this subroutine was 'tied' in to the rest of the 

program (for the cosine stiffness variation), the analysis would not continue due to the 

rotation capacity being surpassed immediately after the plastic hinge has formed at the 

internal support. As the two methods for calculating the maximum and available rotations are 
based on different principles, alternative ways for calculating these rotations based on similar 

139 



basic principles need to be applied. In the case of the three span beam, when a plastic hinge 
forms at an internal support, the program will terminate, although the beam is still statically 
indeterminate, and requires the formation of two hinges to become statically determinate, 
three to form a mechanism (assuming all hinges have adequate rotation capacity). For 

continuous beam systems with more than three spans, the failure modes become more 
complicated and there are more of them, each depending on how the load is applied. So 

perhaps the program could be modified to encompass some of these failure modes, and 
analyse the beam up to the stage at which a mechanism forms. 

Actual (tangent) flexural stiffnesses rather than effective (secant) flexural stiffnesses 
should ideally be used in any such calculations. These can only be obtained by calculation of 
the moment-curvature relationships at each node along the beam. This is possible, but could 
be demanding on both computer time and storage space. The moment-curvature 

relationships at a large number of load levels would be required, and would need to be stored 
in a database before the main SMAREL program is executed. In any calculation for 

rotations, given the bending moment diagram, the consideration of compatibility 

requirements is useful. Moment-area methods and the 'conjugate beam' method which treats 

the curvatures as applied loads, requires the integration of the curvatures along the beam 

length. Whichever method is used, knowledge of the stiffness or curvature variation along 
the beam is necessary. Each moment-curvature relationship would require storage, and some 
kind of iterative method of solution. 

The solution algorithm for SMAREL has something of a trial and error convergence 

process, and it is possible for the solution at a particular load to oscillate between a number 

of states, never reaching a stable solution. This was particularly evident with the three span 

program. There are more stiffness and carry-over factors involved in the moment 
distribution, and therefore there are more unconverged states which may be obtained whilst 

the program searches for a stable solution. In a number of cases, the program cycles through 

the unconverged states and will never reach a stable one. The cracking pattern and final state 

of the beam depends heavily on the load path, and any analysis must have an incremental 

loading procedure. Therefore a better means of assessing whether the beam has reached a 

stable cracked condition is required. 

So far, only continuously curved tendon profiles that yield distributed equivalent 
loads can be input into the program (tendons exhibiting reversed curvature over supports 

may be used), and the applied loads are also uniformly distributed across the spans. It would 
be desirable to be able to apply point loads in combination with distributed loads, and to have 

a facility to enable sharp changes in the tendon profile to be modelled (i. e. harped tendons). 
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The program has a large number of arrays to handle, with double precision accuracy 
required for the finite difference method used for the double differentiation. In some cases it 

might be possible to improve the code throughout the program so that the execution is 
faster. A large amount of array ordering processes could be made redundant by simplifying 
the source code in certain areas. 

After the program has been improved, as far as required, a user interface for the input 

of data would allow people who are not familiar with the workings to use it. At present, the 
data is inserted by means of pre prepared data files. 

Further Study 

Improvements required in the SMAREL algorithm for the prediction of secondary 

moments up to statical determinacy have been presented. With regard to the amount of 
moment redistribution available, SMAREL has not adequately addressed the problem, and it 

appears that an alternative approach would be necessary. The effects of secondary moments 

and how they change throughout loading have been estimated, but this does not appear to 

give a many clues as to how the moments should be redistributed in the design process. A 
better approach to the design of prestressed concrete continuous beams at the ultimate limit 

state would be to look at the overall problem, by applying section property analysis at small 
increments in load using moment-curvature relationships, rather than separate out the various 
bending moments. Analysis of continuous beam systems with different elastic secondary 

moments, and how they behave at the ultimate limit state, might produce relations that could 
be used to incorporate the elastic secondary moment in a better way into the design. The 

designer would like the design process to be as simple as possible, and therefore does not 

want to be dealing with complicated methods or analyses of continuous beam systems. 
Hence it appears that nonlinear methods such as finite elements (backed up with empirical 

work) would be more useful in the long term research, and concentration on reaching the 

desired failure loads with various elastic secondary moments, should be the aim. 
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AppendixA 

SMAREL Program Procedure 

Two programmes, SMAREL30 and SMARELIT were written in Fortran77, the 
former for the analysis of two span prestressed concrete beams, and the latter for three span. 
Their purpose is to produce an estimate of the magnitude of secondary moments through 

serviceability and up to the stage at which a plastic hinge forms. Both programmes have a 

cracked section analysis module, details of which are given in appendix B, which can handle 

rectangular, I, or T sections, with prestressed reinforcement with a parabolic profile, present 

at one level only in the beam. The two span version analyses the left hand span only, 
therefore all models have to be symmetrical about the central support, with identical tendon 

profiles, and uniformly distributed loading level. With the three span version, all data for the 

spans are read into the programme separately, catering for unsymmetrical beam systems. At 

present, the transverse load can only be applied as a uniformly distributed along the spans, 

although it should not be a hard task to upgrade the programme to cope with individual 

loadings on spans. Non-prestressed reinforcement has been excluded in the cracked section 

analysis, and the prestressed reinforcement is assumed to be fully bonded to the concrete. 
The program flow for SMARELIT is described here. 

Program Flow 

Relevant model data are read into the programme from the file 'INPUT. DAT', 

containing the following information :- 

AS => Area of prestressing steel mm2 
DE _> Overall depth of section m 
ES => Elastic modulus of steel kN /mm2 

EC => Initial elastic modulus of concrete kN /mm2 

FCU => Characteristic strength of concrete N lmm2 

FPU => Characteristic strength of steel N/mm2 

PF => Prestress force kN 

GAM1 => Material factor for concrete ---- 
GAM2 => Material factor for steel ---- 
BW => Breadth of web m 
BF1 => Breadth of top flange m 
BF2 => Breadth of bottom flange m 
DF1 => Depth of top flange m 
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DF2 => Depth of bottom flange m 
STRAND => Number of prestressing tendons ---- 

Individual span data are then read into the programme from files 'SPANI. DAT', 
'SPAN2. DAT', and 'SPAN3. DAT', corresponding with the spans working from left to right. 
Each of these data files contains the following information: - 

L* => Length of span m 
ELH => Eccentricity of tendon at left hand end m 
ERH => Eccentricity of tendon at right hand end m 
EN => Drape of tendon at midspan m 

('*' is a number associated with the corresponding span number) 

After each one of these data files is read, the information is processed by the 
subroutine SPANSET where nodes, cross sectional areas, second moments of area, 
eccentricity arrays and prestress force arrays are calculated for each span. A nodal interval of 
0.05 m is used for each span, as dictated by the subsequent numerical differentiation required 
to calculate the equivalent load. A number of variables and arrays involved with flagging and 
allocation of cracks are initialised by the subroutine INITIAL1 for the uncracked state, 
therefore only points where the tendon eccentricity and prestress forces (the primary moment 
function) alters are flagged and recorded, i. e. at the ends of each span. 

The primary moment envelope for each span is calculated by the subroutine 
PRIMARY by direct multiplication of the eccentricity array E*(I) with the prestress force 

array P*(I), and the applied load set into the matrix AL(I). This process is given a label for 
loop back at the end of the programme. The primary moment is stored in the first column of 
a seven column wide matrix FD*(I, J), which is passed to the subroutine EQUIV, along with 
the crack flags. This takes the first column and calculates the finite differences between the 

values in each row, placing these in the next column. This process is repeated six times so 
that the required six levels of differences are obtained for the series solution given by 

Stirlings interpolation formula to find the second differential, i. e. the equivalent load. 

Extrapolation procedures are used at function change points to obtain the correct difference 

values in the last column. This requires that no adjacent changes in primary moment function 

be within six nodes of one another unless they are coincident. Therefore care is needed to 

ensure that this does not occur, as cracks may appear near to where tendons change in 

curvature along the beam. This may be a problem when the curvature of the tendon profile is 

reversed near the supports. The equivalent load is stored in the array C*(I), and the first 
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value of a particular length of continuous function is stored in the array C1*(I), so that two 

values are stored for a particular node at which the function change occurs (the last value of 
a function is stored in the C*(I) matrix). The theory is detailed in section 5.1. 

The equivalent load is passed back to the main programme, and added to any applied 
uniformly distributed load by the subroutine LOADSUM. This combination of load is passed 
to subroutine FREEBM which carries out an integration procedure to determine the free 
bending moment envelope on the span in question, taking into account any function 
discontinuities. The matrix D*(I) is returned with the correct bending moment values. Next, 

the stiffness, carry-over factors, and fixed-end moments are obtained using the method 
described in section 5.1, by subroutine FEM. Curvatures are calculated from EI effective 
(secant) flexural stiffness values using the free bending moment envelope calculated from the 
total load, and two unit end couples. These curvatures are integrated along the beam to 

obtain the necessary values for the determination of stiffness factors, carry-over factors, and 
fixed-end moments. For each span this process must be carried out twice for the 
determination of the relevant factors for each end of the span, so in between the calls of the 
FEM subroutine, a procedure to reverse the direction in which the x co-ordinate traverses 

the length of the span, the EI values, and the free bending moment is carried out by 

subroutine REVERSE to facilitate this. 

The fixed end moments, carry-over factors, and relative stiffnesses are passed to the 

subroutine MDIST which carries out a moment distribution on a three span beam with 

simply supported external supports. The resulting moments at the four supports are stored in 

the array TOTAL(I) which is returned to the main routine. Another small subroutine 

calculates the internal moment at the supports from these total moments by subtracting the 

primary moment at these points. Hence we have the reactant internal moments at the internal 

supports, with those at the outer supports being zero. 

The free bending moment is calculated for each span again, this time with the applied 
load only. The reason for this is that the algorithm for the cracked section analysis takes into 

account any initial strain in the steel and concrete caused by the prestress, and therefore gives 

the internal moment at which the section will crack. If the equivalent load is used in 

conjunction with the applied load, the effects of the prestress are effectively being used twice 

in the calculation, and will obviously cause erroneous results. The free bending moment 

envelope is added to the reactant internal moment envelope, calculated from the internal 

support moments, carried out by the subroutine RESM, to calculate the resultant internal 

moment envelope, and store it in the matrix RES*(I) for each span. 
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The cracking moment envelope is then calculated by subroutine MCRACK, and 
stored in the matrix CR*(I). This is carried out at this stage of the programme, rather than at 
the beginning, as a precaution for the change in length of the negative and positive moment 
zones. The resultant moment is checked for its sign, and the cracking moment of the same 
sign is calculated for comparison purposes at a later stage, albeit that the range of the change 
in the position of zero moment is unlikely to encroach upon the zones of major cracking. 

Subroutine ENDS and CENTRE perform a comparison of the cracking and resultant 
moment envelopes for each span, and stores the values of the differences where the resultant 
moment envelope exceeds the cracking moment envelope. The nodes at which the maximum 
differences in both negative and positive moments occur are then also isolated, and the 
difference values stored. Subroutine BONDS then calculates a value for the bond stress 
based on the concrete characteristic strength, Kong [12]. 

The ultimate moment envelope is calculated for each span next, so that the maximum 
compressed concrete fibre strain values at the two extremes of cracking and ultimate moment 
are known for iteration purposes of calculating section properties at intermediate moments. 
Again, as a precaution this is carried out at this stage rather than at the beginning of the 

programme. 

Maximum difference values of resultant and cracking moment in each moment zone 
of each span are checked to see if they are non-zero, i. e. to check if cracking has occurred. 
Any non-zero differences cause the programme to enter an IF loop which calls the subroutine 
BICHOP. This routine performs a binary chop process as described for the algorithm in 
Appendix B, iterating the extreme compressed concrete fibre strain until the correct moment 
is obtained from the subroutine MCALC. In this case the applied moment is made equal to 
the cracking moment, so that the bond lengths for use in determining crack spacing may be 

calculated from the difference between the effective prestress, and the tendon force 

immediately cracking has occurred. Subroutine BONDL is used for this purpose, using a 

calculation formulated from the analysis of constant moment zones, Priestley et. al. [19]. 

Tendon force is set to the effective prestress value, and various items associated with 

crack flagging are initialised in the subroutines INITIAL2 for the end spans, and INITIAL2A 

for the centre span, for subsequent procedures. Using the bond lengths calculated for each 

moment zone (assuming cracking has occurred), subroutines CRACKS1 and CRACKS2 

ascertain other cracked nodes by scanning the area over which the differences between the 

resultant and cracking moment envelopes are non-zero. If any non zero differences occur at 
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1.5 times the bond length away from the primary or other cracks, these nodes at 1.5 times 
the bond length are also deemed to have cracked. 

Subroutines TFORCEP and TFORCEN then take each individual moment zone of 
each span and call subroutine BICHOP to perform cracked section analyses at cracked nodes 
in the positive and negative moment regions respectively. The change of tendon force 
between cracks and at the end of the cracked zones are modelled using a cosine function. 
Assuming the crack is question is the first or last in a series of cracks, the tendon force will 
drop to its effective prestress force value at a distance equal to the bond length away from 
the cracked zone, described by a cosine function. As the distance between cracks is equal to 
1.5 times the bond length, the tendon force halfway between cracks is taken as the effective 
prestress force plus one quarter of the difference between the average of the tendon forces of 
the adjacent cracks and the effective prestress force. The cosine function is then fitted 

appropriately between the peaks and troughs of the tendon force. A similar procedure is 

applied to the EI stiffness values along the beam, although the functions and lengths over 
which stiffnesses change are the subject of a parametric study. 

Next, the crack flags need to be ordered and tidied after the new tendon forces and 
EI values have been created, and this is done by subroutines BUBBLE, which performs an 
ordinary bubble sort, and RESET, which checks and sets the location of the cracked node 
numbers in the CRACK(I) matrix. 

The primary moment and equivalent load are then recalculated with the new tendon 
force. The equivalent load is added to the applied load, the free bending moment 
recalculated, and the fixed end moments established, as before. The moment distribution is 

performed to obtain the resultant moments, and the primary moment is again subtracted to 
give the internal moments at the supports. Hence, two cycles are performed in one ̀ loop' of 
the programme. These moments are compared with those calculated from the first cycle, and 
if they are outside the prescribed convergence criterion, a counter for crack control is 
increased by one, and looped back to where the first primary moment was calculated. If the 

counter is set to anything other than one, then the crack pattern formed on the first run is 
kept to for subsequent iterations. When the internal support moments obtained at the end of 
the programme after the second cycle are in agreement with those from the first cycle, the 

values which were input at the start of the programme for the internal support moments are 
then compared with those from the second cycle. If they are not within the desired criterion, 
the averages of these two moment values at the internal supports is taken, and are made 

equal to the input moment values. The programme loops back with the counter reset to one 
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to initiate a new crack pattern. Once these moments agree, the secondary moment may then 
be calculated. 

The equivalent load is recalculated, but this time it is not added to the applied load. 
The corresponding free bending moment envelope, fixed-end moments, stiffness, and carry- 
over factors are obtained, ready for the moment distribution. After this has been carried out, 
the result is the total moments at the supports due to equivalent load only, then the primary 
moment is subtracted from these to give the secondary moments. A check for failure is then 

carried out by comparing the resultant internal moment (due to the total load) with the 

ultimate bending moment envelope. If at any section the ultimate envelope has been 

exceeded, a plastic hinge is deemed to have formed, and the programme is terminated. If this 
is not the case, a variety of information is written to an output file SEC 1. DAT, and a small 
increment is added to the applied U. D. L. The program reruns with this new load. 

Depending on the convergence criteria, the load increment, and the initial support 

moment estimate gives a bearing on the results obtained. If the number of full repeats of the 

core of the programme exceeds a pre-set value, the next load step is initiated, as it is possible 
for the process to oscillate between a number of unstable states. 
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Flow Chart: - For Main Program 

Read Input Files: -'Input. dat' and'Span*. dat' 

L Initialize Variables, Calculate Span Data, etc. 

NO-1 

CONV-CONV+1 

Call Subroutine PRIMARY (calculates primary moments) 

Call Subroutine EQUIV (calculates equivalent loads) 

Call Subroutine LOADSUM 
(adds Equivalent and Applied Loads) 

Call Subroutine FREEBM 1 (calculates the free bending moments due to total load) 

Call Subroutine FEM 
(calculates Stiffness, Carry-Over Factors, and Fixed End Moments. 

Call Subroutine MDIST (carries out moment distribution) 
T 

Call Subroutine SM to Calculate 
Internal Bending Moments at Supports (variables SM**'s) 

Call Subroutine FREEBM (calculates freebm due to Applied Load only) 

T 
Call Subroutine RESM 

(adds free and reactant bending moments, i. e. the resultant moment) 

Call Subroutine MCRACK (calculates the cracking moment envelope) 

Call Subroutines ENDS and CENTRE 
(To calculate and store differences between cracking 

and resultant moment envelopes) 
(Maximum differences stored in variables Tempp and Tempn) 

Next 
Page 
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NO = NO+1 

From From 
Next Next 
Page Page 



Last 
Page 

Call Subroutine BONDS (calculates bond stress) 

Call Subroutine MULI (calculates ultimate moment envelope) 

=0 
or Tempn 

>0 

Call Subroutine BICHOP 
(performs binary chop on Subroutine MCALC) 

(isolates the cracked applied moment 
and calculates the properties) 

Call Subroutine BONDL (calculates the bond length) 

Initialize crack flags and othe variables associated with cracking 

Call Subroutine CRACKS (Calculates all nodes which are cracked) 

Call Subroutine TFORCE 
(Calculates tendon force and stiffness profiles at and between cracks) 

Call Subroutine BUBBLE 
(performs bubble sort to order crack flags again) 

Call Subroutine PRIMARY 

Call Subroutine EQUIV 

Call Subroutine LOADSUM 

Next 
Page 

To To 
Last Last 
Page Page 

From From 
Next Next 
Page Page 
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Last 
Page 

Call Subroutine FREEBM (for total load) 

Call Subroutine FEM 

Call Subroutinc MDIST 

Call Subroutine SM to Calculate Internal 
Bending Moments at Supports (variables SM*'s) 

=15 
CONY 

<IS.. 

ABs(csM2-sM22>/sM2) 

<0.0001 

>0.0001 

ABS((SM3-SM33)/SM3) 

<0.0001 

BS((SM21-SM2)/SM21 

<0.000111 

BS((SM31-SM3)/SM31 

<0.0001 

If Load > Load at which 
plastic hinge forms 

No 

FT Call Subroutine EQUIV 

Next 
Page 

>0.0001 

>0.0001 

>0.0001 

Yes 

To To 
Last Last 
Page Page 

SM21 = (SM21+SM2)/2 
SM31 = (SM31+SM3)/2 

Write Various Results 
Output Files 

From 
Next 
Page 
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Last To 
Pagc Last 

Page 

I Call Subroutine FREEBM (for equivalent load only) 

Call Subroutinc FEM 

Call Subroutine MDIST 

Call Subroutine SM to Calculate Internal 
Bending Moments at Supports (secondary moments) 

Print Sccondary momcnts at supports 

Yes Plastic Hinge Reached 
(Resultant Moment Envelope 
> Ultimate Moment Envelope) 

No 

Write Load and Secondary Moment 
to output file SEC. DAT 

Load -Load +0.1 1 

CONV=o 1 

END 

157 



Flow Chart: - For Subroutine BICHOP 

EPUO = ECR/(EC*1000) 
EPU 1= EPU 

I EPU2 - (EPUI+EPUO)/2 I 

Call Subroutine MCALC 
Calculates applied bending moment MN for fibre strain EPU2 

MN> ABS(RES(I)*1000000) 7 

YES 

EPU 1R EPU2 

NO 

EPUO = EPU2 

AB = ABS((EPUI-EPUO)/EPUI) 

AB > 0.0001 ? 
YES 

NO 

YES NO 
RES(I) <0? 

DEFF = Y-(E(I)* 1000) II DEFF = Y+(E(I)* 1000) 

PHI = EPUI/Z(I) 
EI(I) = ABS(RES(I)/(PHI* 1000.0)) 

P(I) = T(I)/1000 

RETURN 
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General Flow Chart :- For Subroutine MCALC 

<0 >0 
RES(I) --ýýL 

DEFF = (DEPTH-Y)-(E(I)* 1000.0) DEFF = Y+(E(I)* 1000.0) 
ECN = -E(I) ECN = E(I) 
BR = BF2 BR = BF1 
DE=DF2 DE=DFI 

LIMIT1= 0.8*FPU*AS/GAM2 

No 

CODE 14 1 
No EPU2 > 

0.00024* 
SQRT(FCU/GAM2) 

Yes 
CODE 11 

No 

No 

Z(I) < DE 

Yes 

Yes 
(I) < LIMITI 

CODE 19 1 

Z(I) < DE 

Yes 

Yes 
T(I) > LIMIT2 

CODE 15 1 

Yes 
T(I) < LIMITI 

No 

CODE 110 

Next 
Page 
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Z(I) < DE 

Yes 

Yes 
T(I) < LIMIT1 

No 

CODE 16 

No 
Z(I) < DE 

Yes 

Yes 
T(I) > LIMIT1 

No 

CODE 13 

No 
CHANGE > DE 

Yes 

Yes 
T(I) < LIlVIITI 

Next 
Page 
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General Flow Chart :- For Subroutine MULT 

II=1, N+1,1 

<o >o 
RES(I) ý 

DEFF = Y+(E(I)* 1000) 
ECN = E(I) 
BR = BF1 
DE = DF1 

CODE Fl 
EPU = 0.0035 

LIMITI = 0.8*FPU*AS/GAM2 

Z(I) 

<DE 

T(I) 
< LIMITI 

> LIMITI 

> DE 

CODE F3 

< DE 
CHANGE 

> DE 

T(I) 
< LIMTTI 

CODE F4 
LIMIT2 = FPU*AS/GAM2 

> DE 
CHANGE 

< DE 

T(J) 
LIMIT2 

> LIMIT2 

CODE F6 

> DE 

T(I) 
<umrrl 

> LIMITI 

From To 
Next Next 
Page Page 

DEFF a (DEPTH-Y)-(E(I)*1000) 
ECN = -E(I) 
BR=BF2 
DE = DF2 
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To From 
Last Last 
Page Page 

CHANGE 

> DE 

T(I) 
<UMIT2 

> LIMTM 

CODE F2 

CHANGE 

<DE 

T(I) 
< LIMITI 

> UMITI 

CODE F5 

CHANGE 

< DE 

T(I) 
< UMIT2 

> UMIT2 

CODE F7 

<DE 

zm 
> DE 

CODE F9 

< DE 

> DE 

> DE 

CHANGE 
> DE 

< DE 
CODE F8 

CHANGE 
< DE 

> DE 
CODE Fl l 

Z(I) 
<DE 
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CODE F 10 RETURN 



INr1 = IN I2 =o Flow Chart 
For Subroutine FREEBM 

K=1, X-1,1 

INT1= INT1+C1(K)+C(CRACK(K+1)) 
INT2 = INT2+(XL(CRACK(K))*C1(K))+(XL(CRACK(K+1))*C(CRACK(K+1))) 

I= (CRACK(K)+1), (CRACK(K+1)-I), -1 

INT1= INT1+(2*C(I)) 
INT2 = INT2+(2*XL(I)*C(I)) 

I =1, N+1,1 

D(I) = XL(I)*(Ii/2)*(INT1-(INT2/L)) 

INT3 = INT4 = INT5 = INT6 =0 

--ý K=1, X-1,1 

D(CRACK(K)+1) = D(CRACK(K)+1)+(-XL(CRACK(K)+1)*(C 1(K)+C(CRACK(K)+1)+INT5) 
+XL(CRACK(K)) *C 1(K)+XL(CRACK(K)+ I) * C(CRACK(K)+ I)+INT6) * (H/2 ) 

J= CRACK(K)+1 
INTS = INT3 
INT6 = INT4 J(<or-)CRACK(K+I}1 

J> CRACK( 

K-1 

INT3 = C1(K) 
INT4 = XL(CRACK(K))*C1(K) 

K 
K>1 

INT3 = INT5+C I (K) 
INT4 = INT6+XL(CRACK(K))*CI(K) 

I= (CRACK(K)+1), J, 1 

INT3 = INT3+(2C(I)) 
INT4 = INT4+(2*XL(I)*C(I)) 

INT3 = INT3+C(I) 
J= J+1 INT4 = INT4+XL(I)*C(I) 

D(I) = D(I)+((INT4-XL(I)*INT3)*(W2)) 
RETURN 
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Flow Chart :- For Subroutine FEM 

I= 1, N+1,1 

CURI(I) = ((L-XL(I))/L)/EI(I) 
CUR2(I) = (XL(I)/L)/EI(I) 

CUR3(I) = (D(I)/EI(I)) 

R1= (H/24)*(7*CUR1(1)+6*CUR1(2)-CUR1(3)) 
R2 = (H/24)*(7*CUR2(1)+6*CUR2(2)-CUR2(3)) 
R3 = (H/24)*(7*CUR3(1)+6*CUR3(2)-CUR3(3)) 

RX1= XL(1)*Rl 
RX2 = XL(1)*R2 
RX3 = XL(1)*R3 

I=2, N, I 

W1= (H/12)*(CUR1(I-1)+10*CURI(I)+CUR1(I+1)) 
W2 = (H/12)*(CUR2(I-1)+10*CUR2(I)+CUR2(I+1)) 
W3 = (H/12)*(CUR3(I-1)+10*CUR3(I)+CUR3(I+1)) 

RI = R1+W1 
R2 = R2+W2 
R3 = R3+W3 

RX1=RXI+W1*XL(I) 
RX2 = RX2+W2*XL(I) 
RX3 = RX3+W3*XL(I) 

R1= Rl+(H/24)*(7*CURI(N+1)+6*CUR1(N)-CUR1(N-1)) 
R2 = R2+(H/24)*(7*CUR2(N+1)+6*CUR2(N)-CUR2(N-1)) 
R3 = R3+(H/24)*(7*CUR3(N+1)+6*CUR3(N)-CUR3(N-I)) 

RX1= RX1+XL(N+1)*(H/24)*(7*CURI(N+1)+6*CURI(N)-CURI(N-1)) 
RX2 = RX2+XL(N+1)*(H/24)*(7*CUR2(N+1)+6*CUR2(N)-CUR2(N-1)) 
RX3 = RX3+XL(N+1)*(1Y24)*(7*CUR3(N+1)+6*CUR3(N)-CUR3(N-1)) 

M1= (((pes)*(RX3))-R3)/(((RX1*R2)/RX2)-R1) 
M2 = -(((Rl/RX1)*(RX3))-R3)/(((RX2*R1)/RXI)-R2) 

MXI = 1/(R1-((R2*RX1)/RX2)) 
MX2 = 1/(((R1*RX2)/RX1)-R2) 

CO = MX2/MXI 

RETURN 
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Flow Chart :- For Subroutine EQUIV 

K=1, (x-1), 1 

J=1,6,1 

I= CRACK(K), CRACK(K+1), 1 

FD(I+3,1) =FD1(I+3) 
FD(I+4,1) =FD(I+4) 

FD(1+3, J+1) =FD(I+4, J) - FD(1+3, J) 

I 1= CRACK(K)+3, CRACK(K)+1, -1 

I FD(I-1,1)=FD(1,1)-FD(I, 2)+FD(I, 3)-FD(1,4)+FD(I, 5)-FD(1,6)+FD(I, 7) 

J=1,6,1 

FD(I-I, J+1)=FD(I, J)-FD(I-1, J) 

I=CRACK(K+1), CRACK(K+1)+2,1 

FD(I+4,1)=FD(I+3,1)+FD(1+2,2)+FD(I+1,3)+FD(I, 4)+FD(I-1,5)+FD(I-2,6)+FD(I-3,7) 

J=1,6,1 

FD(I-J+4, J+1)=FD(I-J+5, J)-FD(I-J+4, J) 

L COUNT=1 

I=CRACK(K), CRACK(K+1), 1 

COUNT-1 COUN1>I 
COUNT ----ý 

C1(K)=-((FD(I+2,3)-((FD(I+1,5))/12)+ C(I)--((FD(I+2,3)-((FD(1+1,5))/12)+ 
((FD(I, 7))/90))/(H^2)) ((FD(1,7))/90))/(I I"2)) 

COUNT =COUNT+I I 

RETURN 
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COF(1) = CO 1, COF(3) = CO3 
COF(4) - C04, COF(6) = C06 

COF(2) = COF(5) -0 Flow Chart : - 
For Subroutine MDIST 

CO(I)=Ml, CO(2)=M2, CO(3)=M3 
CO(4)=M4, CO(5) - M5, CO(6) - M6 

DF(1)=DF(6)-1 
DF(2) = ((1-CO1 *CO2)*MX2Y(((1-CO1 *CO2)*MX2)+MX3) 

DF(3) - MX3/(((1-CO1"CO2)"MX2)+MX3) 
DF(4) = MX4/(MX4+((1-CO5*CO6)*MX5)) 

DF(5) _ ((1-Co5*CO6)"Mx5)/(Mx4+((1-CO5"CO6)"MX5)) 

I=1,6,1 

TOTAL(I) - CO(I) 

I=1,6,1 

TOTALI(I) = TOTAL(I) 

R(1) --(DF(1)"CO(1)) 

I=2,4,2 

R(I) - -DF(D*(CO(I)+CO(I+1)) 
R(I+1) _ -DF(I+1)"(CO(I)+CO(I+1)) 

R(6) _ -(DF(6)"CO(6)) 

I=1,5,2 

CO(I) = COF(I+1'R(I+1) 
CO(I+1) = COF(I)"R(I) 

I 

TOTAL(I) - TOTN. (I)+R(I)+CO(I) 

I-0 

I=I+l 

ABS(TOTAL(I)-TOTALI(I))> 0.001 ? 
YES 

NO 

I<6T 
YES 

NO 

RETURN 
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Flow Chart :- For Subroutine TFORCEP 

TEMPP -0 
PýgN Tj? 

N0+2. 
coP+1 

TEMPP > 

I-I+1 
NODE 

NODEI(n >0 

J 
J< COUNTP 

II Call Subroutine BICHOP 

SPACE4 = SPACEI/2 I 
THETA =180/SPACE4 

THETAI=0 

V= (I-SPACEI+I), (I-SPACE4), I 

THETAI- THETAI+THETA 
SCALE - 0.25"(((P(I-SPACEI)+P(I))/2)-P(I+SPACE4)) 

P(V) _ ((P(I-SPACEI)-P(I+SPACE4)-SCALEY2) 
"((COS(THETAI *(3.142/180))+1))+P(I+SPACE4)+SCAL. E 

THETA -180/SPACE4 
THETAI - 0.0 

CRACK(XB+2'J-1) - I-SPACE4 
CRACK(XB+2'J) -I 

V- (I-1), (I-SPACE4), -1 

THETAI - THETAI+THETA 
P(V) - ((P(I)-P(I-SPACE4))V2) 

'((COS(THETAI "(3.142/180))+1))+P(I-SPACE4) 

J 

NODEI(I) -0 

I J-1 

Call Subroutine 13ICIlOP 

SPACES - SPACEI/1.5 
THETA-180/SPACES 

TI IETAI -0 
CRACK(XD+J) - I-SPACES 

CRACK(XD+J+1) -1 

FV - (1-1), (I-SPACES), -1 

TIIETAI - TIIETAI+TIIETA 
P(V) - ((P(I)-P(I-SPACE3y2) 

"((COS(TI IETA1 "(3.142/180))+1))+P(I-SPACES) 

Call Subroutine 1IC1IOP 

TIiETA -180/SPACES 
TIIETAI -0 

CRACK(XD+(2"J)+1) - I+SPACE3 

1 

V- (I+1), (I+SPACE3), 1 

TIIETAI-TIIETAI+TIIETA 
P(V) - ((P(¢P(I+SPACE3))/2) 

"((COS(TI ZETA I "(3.142/ 180))+ I ))+P(I+S PACES) 

LJ-Jri 

i 
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11 

Appendix B 

Cracked-Section Analysis of Reinforced and Prestressed Concrete I and T Sections 

The SMAREL algorithm requires the program to perform cracked-section analyses 
of various prestressed and reinforced concrete sections. In Weekes, [48], a procedure has 
been described for the calculation of cracked-section properties of rectangular P. C. or R. C. 
sections, with a fully bonded single tendon and no non-prestressed reinforcement, a process 
which can be time consuming if carried out by hand, and is therefore best solved using a 
programmable calculator or computer programme. 

The analysis is performed by three subroutines, MCRACK, MULT, and MCALC. 
MCRACK and MULT calculate the applied bending moment at which cracking of the 
concrete section occurs, and the ultimate moment of resistance of the section respectively. 
Having ascertained the two 'boundary' bending moments of the cracked stage, together with 
the corresponding values of strain at the extreme compressed concrete fibre, bending 

moments between these two boundary values are applied to the section. Subroutine MCALC 

calculates an applied bending moment for a particular extreme concrete fibre strain, and a 
binary chop process is used to alter the strain until a moment is obtained that is equal to the 
applied moment. 

The calculations for the cracked section properties of I and T sections follow similar 
procedures, with a number of refinements. 

Modes of Cracked I and T Sections 

The material stress-strain relationships for steel and concrete are shown in figures 

Bla and Blb respectively, extracted from B. S. 8110, and are used here for the calculation of 
the cracked section properties. The steel is represented by a conventional multilinear stress- 

strain relationship, and the concrete has a parabolic-linear form, representative of concrete 

compression in flexure. 

Failure and Intermediate Modes 

Subroutine MULT consists of eleven possible failure conditions, shown in figure 

B2a, and are listed in Table Bi. Assuming that the steel reaches its ultimate stress of 
fpu/y,,,, and the concrete compressive fibre strain is less than 2.4 x l0 jam, /y, the profile 

of the concrete compression zone will be parabolic. The depth of the neutral axis will decide 

whether the profile resides within the flange only, or in both flange and web. If the concrete 
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compressive fibre strain is in the range 2.4 x 1Ofjrm < e, < 0.0035, then the stress 
profile is of parabolic-linear form. Again, the value of the neutral axis depth will decide the 
prescence of the profile in the flange only, or in both flange and web. The location of the 
position where the stress profile changes from parabolic to linear is also of importance, Le, 

either in the flange or web. When the concrete compressive fibre strain reaches 0.0035, the 

concrete is deemed to have crushed. In this instance, the concrete stress profile is of 
parabolic-linear form, either entirely within the flange, or in both flange and web, with 
function changeover from parabolic to linear in flange or web. The steel stress in this case is 
less than the ultimate value, and there are two cases to consider, where the stress is less than 
0.8fp,, ly, 

�, or in the range 0.8fpýýYm < 0p < fpu/Y, 
� 

Having ascertained the various failure modes, the intermediate modes which the 
section may experience as the bending moment increases from the cracking to the ultimate 
stage must be considered, and these are implemented in subroutine MCALC. With regards to 
the state of the stress in the steel, the two aforementioned ranges apply. The concrete 
compressive fibre strain, a, will be less than 0.003 5, therefore the profile may be parabolic or 
parabolic-linear, with five possible profile variations. This gives rise to ten modes in all, as 
shown in figure B2a, and listed in table B2. 

Calculation of the Cracking Moment 

To ascertain the bending moment at which the onset of cracking occurs, the tensile 

strength of the concrete in flexure (modulus of rupture) is calculated as approximately :- 

. 
fn = 0.59 75 Ym (b1) 

The ultimate tensile stress and the bending moment at which cracking occurs either in 

rectangular, I, or T sections is given by :- 

P Pe Mn 
Jý, =A 

0 
+Z +Z (b2) 

This equation can easily be rearanged to give the cracking moment Ma in terms of 
the concrete tensile strength. The section modulus Z is calculated from I/y for either top or 

bottom. 
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Cracked Sections 

The dimensions of the I and T sections are shown in figure B3. From the design 

stress-strain curve for concrete shown in figure B1a, values 'a' and 'b' are assigned such that 
'a' represents the ultimate stress, and b' represents the strain at which the curve changes from 

parabolic to linear, i. e. 

a=0.67 
f' 

and b= 2.4 x 10-4 
ri;. 

- (b3) 
Ym 

1/ Concrete Parabolic, Steel Elastic 

Assuming that the concrete section has cracked, and that the extreme concrete fibre 

strain is less than b, the concrete compressive stress profile will be parabolic, either entirely 
within the flange, or in both flange and web. In this instance we will consider the stress in the 
steel when it is less than 0.8 fpu/ym. 

a/ Concrete profile in flange only. 

The equation of the parabola for 0<c, < 2.4 x 10'4fN/ym is: 

CE- bl: 
Q=a-a bJ (b4) 

Given the applied moment M, we will also assume that the extreme concrete fibre 

strain a is also known, and the neutral axis depth x is to be calculated from this. The 

concrete strain at a distance x, from the neutral axis is : 

CC. xI (b5) 
x 

Substitution for c from equation (b5) into equation (b4), yields an equation for the stress as: 

x 
Q=a - aE- (b6) 

x,.. bý 

The total compressive force is the the product of the area within the compression 

profile and the breadth of the flange, Bf, : 
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X 

C=Bf fa d, 

0 

(b7) 

Substituting equation (b6) into this integral (b7) and solving, the compressive force in the 

concrete becomes: 

C=B 3abec-a&2 x 1' (32 (b8) 

For the tendon steel stress-strain curve shown in figure BIb, the steel is deemed to be 
in the 'elastic' or first stage when the stress is less than 0.8 fpýýym. In this range, the concrete 

prestrain is : 

1 p. Ap3 
+ p. Ap,. e (b9) 

& Ac 1 

The concrete strain at the tendon level is equal to : 

d& (-- 
(bIO) 

x 

Tendon prestrain is : 

p 
Eo (b i i) 

The addition of equations, (b9), (b10), and (b11), leads to the total force in the steel : 

T=A,. Eý A°' 
+ 

dc. 
+1' I (b12) 

E. 4ý IEý x ZJ 

Equating the concrete compression (b8), the steel tension (b12), and rearranging gives a 

quadratic equation in x: 

B fI(3ab )x2 
- A,, E, I ELP AP vm Cc+-P-J/ x- (A,. cla) =0 (b 13) 

This equation can be solved to yield a value x for the neutral axis depth. The internal 

moment which produces this value of x is calculated as : 
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M=C. z = T. z (b14) 

where z is the internal lever arm between the centre of compression and tension : 

z=d-x-x (b15) 

The distance from the neutral axis to the centroid of the parabolic profile is : 

(8b - 3&)x 
(W) 

4(3b 

b/ Concrete profile in web and flange. 

The total compressive force in this case is the addition of the areas of the parabolic 
compression profile within the web and flange, multiplied by the corresponding breadths. 

The required integrals are : 

x-df 1x 
B. f 

adxi + Bf1 JU dxi 

0 x-djl 

(b17) 

Substituting equation (b6) into (b17), and performing the integration gives a compressive 
force of: 

C_BfI(3abe. -a&2Jx+(BW-Bfi) a&'(x-dfi)'-3abx&(x-dfl)2 (bl8) l 352 J 3x2b2 

Equating the compressive force C, equation (b18), and the tendon force T in equation (b12), 

rearrangement gives a cubic equation in x of the form: 

i 
Zr. a&2 d5 [B! 

I(3ab 
)+ (BW - Bf I) 3b2 x3 

1(A, 
-p- 

MApw 2- pA,, + (Bf - Bw) acc=df 1 aco 
x2 + & IEý F4, , b2 b 

+[(Bw -Bf i) 
a&bdf 1Z +a bf 

i-Adx 

+[w' - BW)aec2df, 
3 

-0 (b19) 
3b2 
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Once this cubic has been solved to give the neutral axis depth x, the bending moment is 
calculated as in equation (b 14). The distance from the neutral axis to the centroid of the 
parabolic profile is : 

(Bw-Bf i)(8abx&(x-df i)3 -3a&(x-df i)4)+Bf i(8ab&x4 -3aec2x4) (b20) 4(Bw - Bf i)(ap2 (x -df i)3 - 3abxr, (x -df i)Z) +Bf ix' (3ab& - a&2 ) 

2/ Concrete Parabolic, Steel Inelastic 

The stress in the steel in this case lies in the range 0.8Fp. /ym < Up < Fpw/ym 

a/ Concrete profile in flange only. 

The concrete compressive force C is given by equation (b8). When calculating the 
tendon force T, the concrete prestrain, concrete strain at the tendon level, and tendon 
prstrain are given by equations (b9), (b10), (b11) respectively. The slope of the steel stress 
strain curve in the range 0.8Fpu/ym < Qp < Fyu/ym is assigned the value &i. The tensile force 

in the tendon becomes : 

T= Ap. cE, ý 
AP, 

+ 
Ad_0.8f; ,+0.8 fv�Ap, 

(b21) 
EA IE x E, F. ym y. 

Where : 

£1= ++0.005 
(o. 

iu) 
Ym 

l -Y 

Equating the concrete compressive force, equation (b18), and the steel tension equation 
(b21), gives a quadratic in x of the form : 

(3 ab -a&2lx 2 Ap. ýErý 
4! Ate- 

F,, + 
0.8 fpMAp, 

BA f`32/ 
EýAý JET yýE, y, � 

, ýdýý =0 

(b23) 

This can be solved to give the neutral axis depth, and the distance from the neutral axis to 

the centroid of the compression profile, internal lever arm, and bending moment are 

calculated from (b 16), (b 15), and (b 14) respectively. 
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i 

b/ Concrete profile in flange and web. 

The concrete compressive force C and the steel tensile force T are given by equations 
(b18) and (b21) respectively. Equating these two, the resultant cubic equation in x is : 

B +(Bw-BfI) 
2_ 

x3 33 

i2 + AprErý F, ý -p- 
pApie2 

- 
pApr + 

0.8 fps 
- 

0.8 fpuApr 
+ (BJi 

- Bw) aec2df 1 

Eý I& E. 4, b2 +bx 

+ (BW-Bfl) a ýdf1Z 
+a 

bf' 
-Ap. &id x 

Bf - Bw) a2df 13 =0 3b 2 (b24) 

Once the neutral axis depth is obtained, the distance from the neutral axis to the centroid of 
the compression profile, internal lever arm, and bending moment are given by equations 
(b20), (b 15), and (b 14) respectively. 

3/ Concrete Parabolic, Steel Broken 

a/ Concrete profile in flange only. 

The steel tensile force T in this case is f. A,. /ym, (at this value the steel is deemed to 
have failed). The concrete compressive force C given by equation (b8) is set equal to the 

ultimate tensile force T, and the resulting equation rearranged to make x the subject in terms 

of the concrete fibre strain £. The steel tensile force given by equation (b2l) is set to the 

ultimate value, and a straight substitution for x performed. A cubic equation in terms of Cc 

can then be solved : 

(ad l3 f i)&' -(3abdBf i)cc2 +3 
f°"A, 2+3f . 4p b'Fi 

_0 (b25) 
Y. Y. 

Where : 

0.2 fp 
_ 

pA,. 
_ 

pAo., e2 
_p0.8 

fu) 
F. + = 

y�E. i EA, I& y, 
b26 

The neutral axis is : 
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_ 
di 

x (Fi + ec) 
(b27) 

The distance from the neutral axis to the centroid of the compression profile, internal lever 

arm, and bending moment are given by equations (b16), (b15), and (b14) respectively. 

b/ Concrete profile in flange and web. 

The concrete compressive force C given in equation (b18) is set equal to the ultimate 
tensile force T. The substitution of equation (b21) for either x or & will result in a cubic in 

either x or &. In this case, the cubic in x has the form : 

[(Bw - 
Bf 1)(äF12) - 

Bf lI 3abF1 + aFi2)Jx3 

+[(3abFldBf l) + (Bw - Bf i)(3abF1- 3aF12d)Jx2 
(b28) 

+[(Bw - Bf i)(3aFi)(Fldf 12 - bd - bdfi) + 6Tdb2 ]r 

+[(Bw - Bf 1)(3abdf 1Fld - aFi2df 13) +(3Tb2d2)J =0 

The distance from the neutral axis to the centroid of the compression profile, internal lever 

arm, and bending moment are given by equations (b20), (b15), and (b14) respectively. 

4/ Concrete Parabolic-Linear, Steel Elastic 

a/ Concrete profile in flange only. 

The equation for the parabolic portion of the stress profile in the 

range0 < Cc < 2.4 x 10ý` fcu/ym is given by equation (b4). For the linear portion in the 

range2.4 x 10-4 fý, /ym < Cc < 0.0035, then Q= a. The area under the parabolic portion of 

the compression profile is : 

bx bx 
f2Äxliic Äx12Fo= 

ýa dx' _ 
Sow 

xb - b2x2 
dxi (b29) 

This integral is solved as : 

2abx 
3e 

(b30) 
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The area under the linear portion of the profile is : 

axl 1- 
b) 

(b31) 

Therefore the total area is the addition of expressions (b30), and (b31), and the compressive 
force in the concrete becomes : 

C= ax(1 3 )Bf i (b32) 

The tensile force in the steel is given by equation (b12), and equating with equation (b32), 

gives a quadratic equation of the form: 

cc 
Ips A,, e I Bf a 1- xZ - 

(ApZP-1- b31+x- 
Ap. E4 )=0 (b33) C)lJ 

The distance from the neutral axis to centroid of the compression profile is: 

(1- 
5b2x xb + 1-2 
12 

2 

&2 2 

b 
(1,34) 

Cl 3&J 

The internal lever-arm, and internal bending moment are given by equations (b 15), and (b 14) 

respectively. 

b/ Concrete profile in flange and web, function change in web. 

The area under the parabolic portion of the compression profile is given by equation 
(b4), and the contribution to the compressive force is : 

BI2abx) (b35) 
3) 

For the linear portion of the profile, the contribution to the compressive force is : 

x-df x 

B. Ja dci +Bfi ja dxi (b36) 
bx x-dyl 
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Solving this integral and adding the result to the parabolic portion, equation (b35), gives the 
total compression as : 

C= B»[ ax-adf l ahx I+ Bf i(adf i) (b37) 

The tension in the steel is given by equation (b12), and equating compression and tension 
gives a quadratic in x as : 

1i 
B. a, x2 + 

{(Bfi 
- Bw)(adf i) + (AptE, ) - 

pA'' 
- 

pA`'e 
-px-A, 1E. de =0 

(-ý 

FE. 4., IE, E, 

)I 

(b3 8) 

The distance from the neutral axis to the centroid of the compression profile is calculated as : 

B. 
a`x - 

df 1)2 
- 

ab 
2x2 

+ Bf I 
ar 

ta (x - df 12 

2 12c2) 22 
x ýz 

(b39) 
B�(ax-adfi- 

) 
3 

The lever arm and internal bending moment are calculated as in equations (b15), and (b 14). 

c/ Concrete profile in flange and web, function change in flange. 

The contribution to the total compression by the parabolic portion of the profile is: 

bx 
x-dli & 

B. fad ci + Bf ifa dx, (b40) 
0 x-tfi 

Where or is given by equation (b4). The contribution from the linear portion of the 

compression profile is : 
x 

Bfifadxi 
bx 

of 

Adding integrals (b40), and (b41), and solving gives the total compressive force : 

(b41) 
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k 

aýx-dfýý2 
_ 

aýx-dfl)3cc2 (ax ýxl 
) (Bw-Bfi) 

xb 3b2x2 +Bf- 
3& ) (b42 

Equating the compression and tension given by equations (b42), and (b 12) gives a cubic 
equation in x: 

z ab Ff 
IBfi(+a1_P_))+(Bw_Bf, 

) 
b 3b2 x3 

a_2df i2 asdf i PAP, pA,, e2 p 
b2 

+ (B. -Bfl) bZ - A,. ýE. Eý4ý+ IEý -C, +- x E. 

a i2 a&2dfi2 + (Bw - Bf , )(;, 
d 
b- b2 - ApsE, d x (b43) 

+ (Bfl-B. ) 
f12 

=0 
3b2 

The distance from the neutral axis to the centroid of the compression profile is calculated as : 

z= 

(Bw-Bf, ) 2a x-dfi)' ace(x-dfl)4 
+Bfi axe 

- 
ab2x= 

3bx 4b2x2 2 12- 

(Bw - Bf, )a&(x - df )2_ ac2(x - df i)3 r2abx r bl 
bx 3b2x2 + Bf iI 3& +ax l 1- JJ 

(b44) 

The lever arm and internal bending moment are calculated as in equations (b15), and (b 14) 

respectively. 

5/ Concrete Parabolic-Linear, Steel Inelastic 

a/ Concrete profile in flange only. 

The compressive force in the concrete is given by equation (b32), and is equated to 
the steel tension in equation (b21). The resulting quadratic equation in x is : 

Bf, 
Ca- )X2 

- 
(, 

4j, -&i[Pc+M- +0.8j, 
""Ao. 

x-dcAýi =0 
YY 

(b45) 

The distance from the neutral axis to the centroid of the compression profile, the lever arm, 

and the internal bending moment are given by equations (b34), (b15), and (b14) respectively. 
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b/ Concrete profile in flange and web, function change in web. 

The compressive force in the concrete is given by equation (b37), and is equated to 
the steel tension in equation (b21). The resulting quadratic equation in x is: 

Boa 
]-aZX2+ý(Bfj_Bw)(adfj) 0.8 fpuAp, 

+ (Ap, EI) pA°' pApe sp0.8 fo�1 
z- AaEidý =0 3 ym ESA, IF. E yE, 

J 

(b46) 

The distance from the neutral axis to the centroid of the compression profile, the lever arm, 
and the internal bending moment are given by equations (b39), (b 15), and (b 14) respectively. 

c/ Concrete profile in flange and web, function change in flange. 

The compressive force in the concrete is given by equation (b42), and is equated to 
the steel tension in equation (b21). The resulting cubic equation in x is : 

2 IBf{. kýa(1_! )) +(Bw-Bfi) b 3b2 X3 

(a Zdf, 2aedf pAP, pAa, e2 p 0.8 f, ý 0.8 f u4p1 + (Bw - Bf 
b 

A, ,, + IE, -+- Z+ - x: 
YY 

+ (Bw - Bf') a ýf iZ- aýbdf i2 
- Ap. &id x 

l f'3&2 j=() 
(b47) + (Bf - Bw) 

3b2 
J 

The distance from the neutral axis to the centroid of the compression profile, the lever arm, 

and the internal bending moment are given by equations (b44), (b 15), and (b 14) respectively. 

6/ Concrete Parabolic-Linear, Steel Broken 

a/ Concrete profile in flange only. 

The steel tensile force in this case is T=fpuAp, /ym, and this is equated to the concrete 

compressive force given in equation (b32). Following a similar procedure as in section 3a/, 

the value of & is calculated as : 
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bdym +3 fpuA psFi 
(b48) ec _ 3Of idym-3fp�Ap, 

The neutral axis depth, the distance from the neutral axis to the centroid of the compression 
profile, internal lever arm, and bending moment are given by equations (b45), (b34), (b IS), 

and (b 14) respectively. 

b/ Concrete profile in web and flange, function change in web. 

The concrete compressive force C given by equation (b37), is set equal to the 
ultimate tensile force T= fpuA pt/ ym. Substitution for Cc from equation (b27) is performed, 
and the neutral axis depth becomes: 

T-Bfiadfi+B»ýabd +adfil 

B�ýa + ab 
(b49) 

J 

3Fi) 

The extreme compressive fibre strain, distance from the neutral axis to the centroid of the 
compression profile, lever arm, and internal bending moment are given by equations (b46), 
(b39), (b15), and (b14), respectively. 

c/ Concrete profile in web and flange, function change in flange. 

The concrete compressive force C given by equation (b42), is set equal to the 
ultimate tensile force T=fpvApa/ym. Substitution for Cc from equation (b27) is performed, 
and a cubic equation for the neutral axis depth is obtained : 

3 {(Bf 
i- Bw)(3abFi + aFi2) +Bf, 

Fý 
+3ab2 x3 

+ (Bw-Bf, )(3abF, d+6abF, df, +3adf, F, 2)-Bfi 3 

'd 
+6abd -3b2T x2 ý Fi 

+ (Bf, -Bw)(6abdf, F, d+3abF, df, 2+3aF, 2df, 2)+Bf, 3ab=d2+3 
ýd : F 

+6Tb2d x 

+ (Bw-Bf, )(3abdf, 2F, d+aF, 2df, 3) - 
Bf' 3d3 

-3Tb=d2 =0 (b50) 
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The extreme compressive fibre strain, distance from the neutral axis to the centroid of the 

compression profile, lever arm, and internal bending moment are given by equations (b27), 
(b44), (b 15), and (b 14), respectively. 

7/ Concrete Extreme Compressive Fibre reaches Ultimate Strain 

a/ Steel elastic. 

All of the equations in section 4 apply, with the concrete fibre strain Cc set to 
0.003 5. 

b/ Steel inelastic. 

All of the equations in section 5 apply, with the concrete fibre strain & set to 0.0035. 
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Table B1 : Failure Modes of Prestressed Concrete I and T Sections 

State of Concrete Stress State of Steel Stress Failure Code 
e. = 0.0035 
Parabolic-Linear, all within T<0.8 fpu Code F1 
flange. 
&= 0.0035 
Parabolic-Linear, within 
web and flange, function T<0.8f, Code F2 
changeover in flange. 
&= 0.0035 
Parabolic-Linear, within 
web and flange, function T<0.8 fp., /y, 

� Code F3 
changeover in web. 
&= 0.0035 
Parabolic-Linear, all within 0.8 fDy/ym <T<f, /y, 

� Code F4 
flange. 
&= 0.0035 
Parabolic-Linear, within 
web and flange, function 0.8 fpW/ym <T< fpu/y�, Code F5 
changeover in flange. 
&= 0.0035 
Parabolic-Linear, within 
web and flange, function 0.8 f¢. ly, 

� <T< fo/y, 
� Code F6 

changeover in web. 
2.4x10"4<e <0.0035 
Parabolic-Linear, all within T =f, u/Yr Code F7 
flange. 
2.4x10"4<e <0.0035 
Parabolic-Linear within 
web and flange, function T =. fpu/Y'" Code F8 

changeover in flange. 
2.4x10"4<e, <0.0035 
Parabolic-Linear within 
web and flange, function T= fpu/ m Code F9 

changeover in web. 
e, <2.4x10"a 
Parabolic within flange T -. fog/Y'" Code F10 

onl . 
E, <2.4x10"a 
Parabolic within flange and T= fP°/Y'" Code Fl 1 

web. 
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Table B2 : Intermediate Cracked Modes of Prestressed Concrete I and T Sections 

State of Concrete Stress State of Steel Stress Cracked Section Code 
2.4x10-4<s <0.0035 0 
Parabolic-Linear, all within T<0.8 fp� /Y, 

� Code I1 
flange 
2.4x10-4<s,, <0.0035 
Parabolic-Linear within 
web and flange, function T<0.8ipu t im Code I2 

changeover in flange 
2.4x10-4<e <0.0035 
Parabolic-Linear within 
web and flange, function T<0.8 fpuýY, 

� Code 13 

changeover in web 
s,, <2.4 x 10-4 
Parabolic within flange only T<0.8fp. IY� Code 14 

e,, <2.4 x 10-' 
Parabolic within flange and T<0.8. f 

pu 
ýY, 

� Code I5 

web 
2.4x10-4<c, <0.0035 
Parabolic-Linear, all within 0.8 fp. /y, 

� <T< f¢. /y, 
� Code 16 

flange 
2.4x10-4<E, <0.0035 
Parabolic-Linear within 
web and flange, function 08fp, IY, 

� <T<. f pý lY, Code 17 

changeover in flange 
2.4 x 10- 4< e< 0.0035 
Parabolic-Linear within 
web and flange, function 08f,. lY,. <T<. f,. /Y. Code 18 

changeover in web 
E, <2.4x10"4 
Parabolic within flange only 0.8 f pu/y, � <T< f¢u /ym Code 19 

E, <2.4x10-4 
Parabolic within flange and 0.8 f u/y, � <T<f, 1y, 

� Code 110 

web 
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Stress 

0.67f. 

Ym 

Figure B1. a. Design Stress-Strain Curve for Normal-Weight Concrete 

Stress 
(tensile) 

fpu 
Ym 

0.8, f, »ß 
Ym 

Figure BI. b. Design Stress-Strain Curve for Prestressing Tendons 
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Appendix C 

Free Bending Moment and Fixed End Moments due to Varying Distributed Load 

A simply supported beam with a varying distributed load q= q(x) is shown in figure 

C1. The free bending moment may be calculated by using the conventional method, by 

cutting the beam at a general point x, and ensuring that the moments about this point are in 

equilibrium 

First the reactions RA and RB must be established, taking vertical and moment 

equilibrium : 

L 

R4 + R8 = 
jq(x) dc (cl) 
0 

L 

MA RBL = if q(x) dx (c2) 
0 

L 

j q(x)x dc 

where L (c3) 
f q(x) 
0 

Therefore RB = 
Jq(x)x dc R4 = 

jq(x) dx -- 
jq(x)x dx (c4) 

Lo 00 

Cut the beam At point x, and take moments about this point, figure. C2 : 

x 

M= R�x-(x-x, )jq(x) dx (c5) 
0 

j q(x)x dx 

c6 -0 where xi -x jq(x) `x 
0 
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Substituting for RA and x gives the full moment equation in terms of x: 

M=j q(x) dc -Lj q(x)x the - 
jq(x) 

dx x+ 
jq(x)r 

dx (c7) 
0000 

Hence there are four different integrals to be evaluated numerically, which can be done 
readily using Simpsons rule, Spencer et al, [7]. The last two integrals in equation (c7) need 
to be updated at each node as the x value is increased by the nodal interval h, causing an 
increase in the number of strips on each cycle to calculate the next moment value. 

Elastic Fixed-End Moments 

The details of the general calculation with the required steps is given by T. R. Gravcs- 
Smith, Linear Analysis of Frameworks, Ellis Horwood. The general equation for the fixed- 
end moments is : 

PF = -ICdQ (c8) 

1 Ell 4.0 2.0 
where k= member stiffness matrix = j--ft20 

4.0 
(c9) 

LL 

1 -f Mdx+L f Mdx 

and do =xL0 (CIO) 
LfMdx 

0 

are the end rotations of the simply supported member due to transverse loads Q, with M 
being the free bending moment. Multiplying (c8) through by the mcmbcr stiffness matrix 
gives the fixed end moments : 

PFI=L 6j 
ýxdx-4fMdr 

(cl1) 
00 

PF2 = 
1(6f 

Lx clx - 2f M clx (c 12) 
00 
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RA 

Figure Cl. Simply Supported Beam with Varying Distributed Load 

RA 

Figure C2. Beam cut at Point x for Moment Equilibrium 

RB 

M 
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Appendix D 

ANSYS Input Data File (Model 18) 

/prep? 
c ******************************************************************* 
/title, CONTINUOUS BEAM MODEL16 
C ******************************************************************* 
kan, 0 
C ******************************************************************* 
ct, 1,65,0,0,0,0,2,3 *Concrete element main body 

e42,45,0,0,0,1,2,3 *3D-isoparametric solid (for embedded tendon) N. A. 
et, 3,23,0,1,0,1,0,2 *2D-plastic beam N. A. 
et, 4,12,0,0,1,0,0,2 *2D-interface element (for bond) 
et, 5,45,0,0,0,0,0,0 *3D"isoparametric solid (for end support conc. ) 
et, 6,1,0,0,0,0,0,0 *Spar element (for prestressing steel) 

r, 1,0,0,0,0,0,0 
r, 2,7.979, *Radius of tendon steel N. A. 
r, 3,0,5e 12,0.1,0,5e 12 *Interface Stiffness 
r, 4,850,5.882e-3 *Initial prestrain of tendon steel 
r, 5,7,0,0,0 *no Rebar 
r, 6,600,0 *end shear 
r, 7,600,0 *shear 
r, 8,850,0.00 *c. s. tendon 
C ####*####*##########*##**#*################i«##««##i#ii««««i«#«#««« 

c ******Concrete multilinear (non-linear) material properties******** 
C #################*#########*######i####«####ii###«««##«««««««««i««« 

kn1,1 
mp, ex, 1,37827 
mp, nuxy, 1,0.2 
mp, gxy, 1,15761 
mp, dens, 1,2.3544e-5 
nltab, 1,0 
n1,1,13,17,0.465e-3,0.93e-3,0.140e-2,0.186e-2,0.35e-2 
nl, 1,19,0,17.59,30.15,37.74,40.2,40.2 
n1,1,55,1 
nl, 1,61,1 
n1,1,67,4.473 
n1,1,73, -1 
C i#*#*«******#************#««*####iii«#«i#««i##«i««««i««ii«««iii«i«« 

c ******Concrete multilinear (non-linear) material properties******** 
C #*#*#*i*#*#****#******##i**#«#**««#««*ii«««i««i««i«i«ii««i««««i«««« 

knl, 8 
mp, ex, 8,37827 
mp, nuxy, 8,0.2 
mp, gxy, 8,15761 
mp, dcns, 8,2.3544e-5 
nltab, 8,0 
nl, 8,13,17,0.465e-3,0.93 e-3,0.140e-2,0.186c-2,0.3 5c-2 

n1,8,19,0,17.59,30.15,37.74,40.2,40.2 
n1,8,55,1 
n1,8,61,1 
n1,8,67, -1 
n1,8,73, -1 
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C ********#******************##***###*#************ii##k##k#*kttkkk«t 

c ******Tendon bilinear (non-linear) material properties************* 
C ##k#k****#**#k**################*#k###**kk####k##i*k##kiiki##iiiii« 

mp, ex, 2,0.2e6 
mp, nuxy, 2,0.3 
mp, gxy, 2,76923 
nltab, 2,0 
nl, 2,13,17,0.7e-2,0.1375e-1,0.35e-1 
nl, 2,19,0,1400,1750,1750 
C ############################t###################i##########ik##kit« 

c ************shear reinforcement material props ******************** 
C *************#*#####****###***##****###****####k*k##k#iikktttitiiii 

mp, ex, 7,0.2e6 
mp, nuxy, 7,0.3 
mp, gxy, 7,76923 
C *****************#*********#**************##***k#***k#*kkkkttttikkt 

c ************end anchoragesteel******#***#####k******###kk#******** 
C #k#k####**#*#*##*#****###*#*i##*#***k**k###k«***#t**ik#iikttkttkkkt 

mp, ex, 6,0.2e6 
mp, nuxy, 6,0.3 
mp, gxy, 6,77000 
C #########*#*#################################i######ittttttikktttt« 

c ******End support concrete linear material properties************** 
C ************#****************##**####*##ii*###i««i#ii#kikt«ikkiiiit 

mp, ex, 4,25232 
mp, nuxy, 4,0.2 
mp, gxy, 4,10513 
C ################################**####t##ttk##ti#ttk#kktt#ktttttkkk 

c ******Interface friction material property************************* 
C #########################################i#i#tiiit#«iiiiiiitktiiiii 

mp, mu, 5,4e10 
C #############*##k########*##############kiiiiiiikt«kiii«iiiiiikti«« 

c ******Node generation********************************************** 
C #####*k########################ti«###t##it#ttiitiik44#iiiiikiiiiikt 

n, 1,0,0,0 
n, 2,0,0,400 
ngen, 6,2,1,2,1,0,50,0 
ngen, 2,2,11,12,1,0,36,0 
ngen, 2,2,13,14,1,0,0.5,0 
ngen, 2,2,15,16,1,0,2,0 
ngen, 2,2,17,18,1,0,11.5,0 
ngcn, 2,2,19,20,1,0,4,0 
ngcn, 2,2,21,22,1,0,8.5,0 
ngcn, 2,2,23,24,1,0,3.5,0 
ngen, 2,2,25,26,1,0,8,0 
ngcn, 2,2,27,28,1,0,14.5,0 
ngen, 2,2,29,30,1,0,5.5,0 
ngcn, 2,2,31,32,1,0,12,0 
ngcn, 2,2,33,34,1,0,20.5,0 
ngcn, 2,2,35,36,1,0,7.5,0 
ngen, 2,2,37,38,1,0,16,0 
ngcn, 2,2,39,40,1,0,36,0 
ngcn, 2,2,41,42,1,0,20,0 
ngcn, 2,2,43,44,1,0,44,0 
ngcn, 2,2,45,46,1,0,25,0 
ngcn, 2,2,47,48,1,0,79,0 
ngen, 2,2,49,50,1,0,92,0 
ngen, 2,2,51,52,1,0,51,0 
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ngen, 2,2,53,54,1,0,31,0 
ngen, 2,2,55,56,1,0,16.5,0 
ngen, 2,2,57,58,1,0,5.5,0 
ngen, 5,2,59,60,1,0,50,0 
ngen, 2,68,1,68,1,500,0,0 
ngen, 6,68,69,136,1,1000,0,0 
ngen, 11,68,409,476,1,500,0,0 
ngen, 5,68,1089,1156,1,1000,0,0 
ngen, 2,68,1361,1428,1,500,0,0 
ngen, 2,68,1429,1496,1,300,0,0 
ngen, 2,68,1497,1564,1,150,0,0 
ngen, 3,68,1565,1632,1,50,0,0 
n, 1769,0,525,0 

n, 1770,0,525,400 
n, 1771,500,500,0 
n, 1772,500,500,400 
n, 1773,1500,436,0 
n, 1774,1500,436,400 
n, 1775,2500,384,0 
n, 1776,2500,384,400 
n, 1777,3500,344,0 
n, 1778,3500,344,400 
n, 1779,4500,316,0 
n, 1780,4500,316,400 
n, 1781,5500,300,0 
n, 1782,5500,300,400 
n, 1783,6000,286.5,0 
n, 1784,6000,286.5,400 
n, 1785,6500,286,0 
n, 1786,6500,286,400 
n, 1787,7000,288.5,0 
n, 1788,7000,288.5,400 
n, 1789,7500,304,0 
n, 1790,7500,304,400 
n, 1791,8000,312.5,0 
n, 1792,8000,312.5,400 
n, 1793,8500,324,0 
n, 1794,8500,324,400 
n, 1795,9000,338.5,0 
n, 1796,9000,338.5,400 
n, 1797,9500,356,0 
n, 1798,9500,356,400 
n, 1799,10000,376.5,0 
n, 1800,10000,376.5,400 
n, 1801,10500,400,0 
n, 1802,10500,400,400 
n, 1803,11500,456,0 
n, 1804,11500,456,400 
n, 1805,12500,525,0 
n, 1806,12500,525,400 
n, 1807,13500,604,0 
n, 1808,13500,604,400 
n, 1809,14500,696,0 
n, 1810,14500,696,400 
n, 1811,15000,747,0 
n, 1812,15000,747,400 
n, 1813,15300,778,0 
n, 1814,15300,778,400 
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n, 1815,15450,794.5,0 
n, 1816,15450,794.5,400 
n, 1817,15500,800,0 
n, 1818,15500,800,400 
C *******k****#**k***************************#****#k**##*k#k*k#k****i 

c ******Concrete element generation********************************** 
C #******#**k*******#**##*******************k*************#******ikk# 

mat, 6 
real, 1 
type, 5 
e, 1,2,4,3,69,70,72,71 
egen, 33,2,1 
mat, 1 
real, 5 
type, 1 
e, 69,70,72,71,137,138,140,139 
egen, 33,2,34 
egen, 20,68,34,66 
mat, 8 
e, 1429,1430,1432,143 1,1497,1498,1500,1499 
egen, 9,2,694 
mat, 1 
e, 1447,1448,1450,1449,1515,1516,1518,1517 
egen, 24,2,703 
egen, 4,68,694,726 
C ###***##**************#*###************************#i##*****iiiikii 

c ******Steel generation********************************************* 
C ##**##########*#######################*#*####**ii##*i**i*i#iiiiiiii 

mat, 2 
real, 4 
type, 6 
e, 1769,1771 
e, 1770,1772 
egen, 24,2,826,827 
C *#####t################k##########*##ii##*i*k**k**ikikiiiiiiiiiiiii 

c ******Interface bond element generation**************************** 
C #k##############*#############**##*k##**##*ki*ii#t**Miiiiiiiiikiiii 

mat, 5 
rcal, 3 
type, 4 
e, 47,1769 
e, 48,1770 
e, 113,1771 
c, 114,1772 
e, 177,1773 
c, 178,1774 
c, 241,1775 
c, 242,1776 
c, 303,1777 
e, 304,1778 
c, 365,1779 
e, 366,1780 
e, 427,1781 
e, 428,1782 
c, 491,1783 
c, 492,1784 
e, 557,1785 
c, 558,1786 
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e, 629,1787 
e, 630,1788 
e, 701,1789 
e, 702,1790 
e, 771,1791 
e, 772,1792 
e, 843,1793 
e, 844,1794 
e, 913,1795 
e, 914,1796 
e, 985,1797 
e, 986,1798 
e, 1055,1799 
e, 1056,1800 
e, 1127,1801 

e, 1128,1802 
e, 1199,1803 
e, 1200,1804 
e, 1271,1805 

e, 1272,1806 
e, 1341,1807 
e, 1342,1808 
e, 1411,1809 
e, 1412,1810 
e, 1481,1811 
e, 1482,1812 
e, 1551,1813 
e, 1552,1814 
e, 1621,1815 
e, 1622,1816 
e, 1691,1817 
e, 1692,1818 

«*******«************«*«*****«««««*«**«*«««««««««««««««««""««««"««w 
c ************endsupport«««**««*««"««««««""««««««««««««www". ««««"««« 

«***«"********«*«**«***«*****www***«««««««««««««««««w«««««w«w""«««. 

n, 1819,0, -30,0 
n, 1820,0, -30,400 
n, 1821,500, -30,0 
n, 1822,500, -30,400 
n, 1823,1500, -30,0 
n, 1824,1500, -30,400 
mat, 4 
real, 1 
type, 5 
e, 18 19,1820,2,1,1821,1822,70,69 
e, 1821,1822,70,69,1823,1824,138,137 

*«****«««**«*«*****«««*«*«*««**«w"w«w«««««««««««wwww"«""www""""www" 

n, 1825,15500, -20,0 
n, 1826,15500, -20,400 
n, 1827,15500, -40,0 
n, 1828,15500, -40,400 
n, 1829,15500, -60,0 
n, 1830,15500, -60,400 
n, 1831,15550, -20,0 
n, 1832,15550, -20,400 
n, 1833,15550,40,0 
n, 1834,15550,40,400 
n, 1835,15550, -60,0 
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n, 1836,15550, -60,400 
e, 1565,1633,1825,1825,1566,1634,1826,1826 
e, 1497,1498,1566,1565,1827,1828,1826,1825 
e, 1429,1430,1498,1497,1829,1830,1828,1827 
e, 1825,1826,1634,1633,1831,1832,1702,1701 
e, 1827,1828,1826,1825,1833,1834,1832,1831 
e, 1829,1830,1828,1827,1835,1836,1834,1833 
C *#*****#***#**#****##*******************#*##«*##*«*««###***«#*«i#ii 

c ***** spar elements for shear ************************************* 
C *#****************#*#****##***i#************##*««#*««#«##*««««*i*ii 

mat, 7 
real, 7 
type, 6 
e, 69,135 
e, 70,136 
egen, 6,68,932,933 
egen, 6,136,942,943 
egen, 8,68,952,953 
C ***#*i**#***#*****#*«******#**######**«*###«*«««***##«*«#«««««#«««« 
c ****** Boundary conditions ***************«iii**##*««ii#i«iiii««««« 
C ************#******##********************«**i##******«**«i«««ii*iii 

d, 1821, uy, 0,, 1822,1 
d, 1821, uz, 0,, 1821,1 
d, 1829, uy, 0,, 1830,1 
d, 1825, ux, 0,, 1830,1 
d, 1633, ux, 0,, 1700,1 
d, 1749, ux, 0,, 1750,1 
C #####*##########*################i######i###i#««ii#i«#«««iiii#«i««i 

c ****** Applied pressure *«##*##**##**##*#««***#««#####«««««iii«i*** 
C #########################«#*##«##««««###««i#«««#««#««««««««««i«iiii 

ep, 66,4,0.0�792,33 
C *#****#*****##«******##**#ii««iii««««#**«ii««ii««««««««««ii«««iiiii 

c ****** Output control 
r, ****###******#***********««*««««iii**«*#««««#««««««««««ii«iiiii«««« 

wsort 
iter, -10,10,10 
postrs� 1,6,3,5,4,3 
afwrite 
finish 
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Appendix F 

Calculations for Shear Reinforcement for Finite Element Model 18 

The finite element model of the two-span continuous beam Model 18 require shear 
reinforcement designed to the following approximate calculations: 

The utilmate moments at the centre support and in the spans are calculated from the cracked 
section analysis programme C. S. A., and have the values -1880 kNm, and 1880kNm 

respectively. Assuming full redistribution of moments, the ultimate bending moment envelope 
is shown in figure fl. The ultimate uniformly distributed load can be calculated by the following 

equation 

8xdrap 
8xl 

120+1800) 

=97.4kN/m; vl00kN1m (fl) U. D. L. =Wý L2 
e 

15' 

The equation of the bending moment on the left hand span in terms of x is :- 

M_ lyLX 
_ 

JVx= 
_ 

1880x 
22L 

The shear force is calculated as the first differential of equation (f2) :- 

S= ciNf 
= 

JVL 
jux -1880 

cbc 2L 

Inserting the appropriate values of JV = IOOkN /m and L= 15m, equation (f3) simplifies to :- 

S= 625- 100x (r4) 

The resulting shear force diagram for the whole beam is shown in figure f2. Values of the 

maximum shear force occur at the supports, where at x=0 the shear force is 625 kN, and at 
x= 15 the shear force is -875 kN, varying linearly between these two values. 

Ignoring the contribution from the prestress, the maximum allowable design shear force 

is calculated from clause 4.3.8.2. as 0.8A, jam, 
. 
Hence, this gives a value as :- 

0.8 x 400 x 1000 x 40 = 2024kN (IS) 
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The design ultimate shear resistance must then be calculated for the two conditions 
where the critical sections are either cracked or uncracked in flexure. 

Section uncracked in flexure 

The design ultimate shear resistance V,,, is given by the following equation, outlined in 

clause 4.3.8.4., equation 54 

Via = 0.67b, h (f pn + 0.8f 
p, f 

f 
p) 

(f6) 

The design compressive stress at the centroidal axis, f,, is calculated as follows :- 

f_P_ 
2000 

x 10- 3= 5kN /mm2 (fl) 
°p A,, 400 x 1000 

Table 4.5 from B. S. 8110 gives values of V»/b,, h for corresponding values of fop at various 

concrete grades, obtained from equation (f6). Hence, for grade 40 concrete, this corresponds 

to :- 

b 
1.95 (fa) 

Therefore, K, z 1.95 x 400 x 1000 = 780kN (f9) 

Section Cracked in Flexure 

In this case, the design ultimate shear resistance is given by equation 55, outlined in 

clause 4.3.8.5. 

Vc, = 
(1-0.55 

f výbyd + Mo (f10) 
fow 

The design concrete shear stress vv is obtained from table 3.9, B. S. 81 10, having calculated the 

percentage of steel present in the section :- 

100A, 
_ 

100 x 1700, 
= 0.531 (fl l) 

bd 400 x 800 
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Using the value calculated in equation (f11), from table 3.9, the design concrete shear stress is 

calculated as :- 

vý 0.5N/mm2 (f12) 

To calculate the moment Mo necessary to produce zero tension in the extreme tension fibre, 

the prestress is :- 

P Pey ( 2000 2000 x 300 x 5001 32 f 
pt =l + Jx10 =14.01Nlmm (fl 3) 
p` A1 400 x 1000 333 x 1010 

Therefore, 

Mo=0.8fp, 
l 3.33 x 

=746kNm (fl4) 
y 

Equation (d10) then gives a value of V, as :- 

V, =(1-0.55x0.69)x0.5x400x800x10"' +(746x 1880)=446.7kN 
(f15) 

This complies with the stipulation that Vc must be greater than 0. lbd7 = 202. The lesser of 
V» and Vc,, is taken as the design ultimate shear resistance, in this case :- 

Vc=446.7kN 

Provision of shear reinforcement 

(f16) 

Clause 4.3.8.8 states that where the shear exceeds V, +0.4býd, shear links must be 

provided according to equation 57 :- 

Ate, 
- 

V-V, 

sý 0.87 frd 

Hence, 
A,, 

- 
(875 - 446.7) x 10' 

= 1338 - S, (0.87 x 460 x 800) 

216 



Therefore, per metre length of the beam, the area of shear reinforcement to be provided is 

1388 mm2 
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M kNm 

-ve 

0 

+1e ' 1880 kNm 

Figure Fl. Ultimate Bending Moment Envelope for L. H. Span 

S kN 

+ve 

625 kN 

0 

-ve 

-1880 kNm 

-875 kN 

Figure F2. Shear Force Envelope corresponding to Ultimate Bending Moment 
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