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UNIVERSITY OF SOUTHAMPTON

ABSTRACT

FACULTY OF MATHEMATICAL STUDIES

Doctor of Philosophy

ISOMETRIC AND TOPOLOGICAL FOLDING
OF MANIFOLDS

by Entesar Mohamed ELKHOLY

Local isometries between Riemannian manifolds may be characterised
a8 maps that send geodesic segments to geodesic segments of the same length.
Isometric foldings are likewise characterised by such a property, with the
difference that we use piecewise geodesic segments instead of geodesic segments.
The theory of isometric foldings studies the stratification determined by the
folds or singularities, and relates this structure to classical ideas of
Hopf degree, volume and covering spaces.

The idea of topological folding is modelled on that of isometric
folding, but in the sbsence of metrical structure the definition is
necessarily inductive. Again a stratification by folds is obtained, and a
body of theorems concerning neat foldings has been established. These theorems
have a strongly algebraic flavour, and are related to certain aspects of
graphs on surfaces and of covering space theory in general.

The first three chapters deal with the theory for manifolds of any
dimension. In the final chapter, the special case of surfaces is examined in

greater detail.
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CHAPTER 1

ISOMETRIC FOLDINGS

1. Review

This section gives a brief outline of previous work on isometric
foldings. 1t is based on work by S.A. Robertson (11).

Local isometries between Riemannian manifolds may be characterised
as maps that send geodesic segments to geodesic segments of the same

length., Isometric foldings are likewise characterised by such a property

with the difference that we use piecewise geodesic segments instead of
geodesic segments, that is, a map ¢ : M~ N, where M and N are C
Riemannian manifolds of dimensions m, n respectively, is said to be an
isometric folding of M into N, iff for any piecewise geodesic path

vy : J~ M, the induced path ¢oy : J + N is piecewise geodesic and of
the same length as y. The set of points of M where ¢ fails to be

differentiable is called the set of singularities of the isometric folding

¢ and it is denoted by I(¢). This set corresponds to the "folds' of the

map .

We demote the set of all isometric foldings of M intoN by “F(¥,N)

Examgles

(1.). Any local isometry ¢ : M= N is an isometric folding with

5(¢) = ¢, 1In particular, any locally isometric covering map has this
property. For instance, let k be any positive integer, and let M and N be
the circles !Z[ = kR and IZE = R in the plane € of complex nmmbers. Define
¢ : M~ N by é(kReie) = Reike . Then ¢ is an isometric folding with no
singularities.

(1.2). Let R be the real line R with the standard Riemannian structure.

Let ¢ : R > R be given by ¢(x) = Exl. Then ¢ is an isometric folding and
£{¢) is the origin.

(1.3). Let ¢ : RO > R° be given by ¢(x,y,2) = (|x|, |y|, lzD),

Then ¢ is an isometric folding of R> into itself with respect to the standard



flat structure on Rs, and I(¢) = {({x,y,2) : xyz = 0} is the union of the

three coordinate planes.

2 . . .
(1.4), Let M = N = §", the unit sphere in Euclidean 3-space, and let

¢ ¢ M- N be given by ¢(x,y,2) = {x,y,%zg). Then ¢ is an isometric folding

and 2(¢) is the great circle xz + y2 =1, Z = 0. See Figure (1.1} below.

Figure (1.1)

(1.5). Let M =N = Sz, as above, and let ¢ : M* N be given by

o (X,5,2) = (ixl,}yl,!zi). Then ¢ is an isometric folding and &(¢) is a
graph consisting of the intersection of the three coordinate planes x = 0,
y = 0, z = 0, with six vertices (*#1,0,0),(0,%1,0) and (0,0,%1), each of

valency four and with twelve edges. The image ¢(Sz) is the positive octant.

See Figure (1.2), the image is shaded.

Figure (1.2)

There is no assumption about continuity or differentiability of



isometric foldings. However, continuity follows from the definitionm,
since if we denote by dM and dg the metrics induced on M and N by their
Riemammian structures, we have for all x,y in M, éM(x,y} 2 dN($(x},é(y}}.

In general an isometric folding need not be differentiasble, The
local structure of I(¢) has been established in detail by Robertson {ii}ﬁ
and this may be used to build up a general picture of %(¢) for any isometric
folding of M into N, where M and N are complete Riemannian manifolds, as
follows:

There is a decomposition of M into mutually disjoint, connected
totally geodesic submanifolds which we shall call strata, with the following
properties:

(i) Let Zk(¢) denote the union of all strata of dimension k. Then £(¢)
is the union of all Zk(c;)) for 0 ¢ k sm1;
(ii) For each stratum S, ¢§S is a locally isometric immersion into N3
(iii) The frontier of each stratum is a union of strata of lower dimension,
and in case M is compact, of finitely many such strata;
(iv) The frontier of Ek(¢) in M 1s the union of all the set 22(¢) for

0

EN

2 & k-1,

Now, for simplicity, we suppose that dim M = dim N = n and that both
M and N are oriented and M is compact without boundary. Thus the Hopf degree
degd of ¢ is well defined. This can be calculated locally as follows.
Call each n-dimensional stratum S of ¢ positive or negative according as
¢§S orientation~preserving or reversing, and apply the same adjectives to
individual points of these strata. Now let y be a point of ¢(M) that is
not the image of any shgularity of ¢. Then ¢“1(y) = {Xl’ ,..,,xp},where
each X lies in some n-dimensional stratum, i=1, ..., p. Suppose that of
these p points p, are positive and p_ = p- p, are negative, Then

deg ¢ = p_-P_ .



Next. denote by V, V,» V_and V  the n~volume of M, of the

¢

positive n~strata, of the negative n-strata, and of ¢(M) respectively.

Thug V = V* + V_ and it may be shown that V+ =V + kvé, k = deg ¢.

Note that, if deg ¢ = O (which happens, for example, if ¢ ié%ggrjective)

we have, vV,=V_= AR V¢.
For surfaces, the local situation is particularly simple.

Let ¢ ¢’3(M,N), where both M and N are smooth Riemannian 2-manifolds

(i.e. surfaces). Then, for each x ¢ I(¢) the singularities of ¢ near x

form the images of an even number 2r of geodesic rays emanating from X, making

r T
alternate angles s 81, ey O, Br where Z a, = Z B_=m.

o

i=1 i
The set of singularities I(¢) of an isometric folding of a smooth
Riemannian surface M into another N is a graph on M satisfying the local
angle conditions and the area (2-volume) conditions described above. See
example (1.5).
Finally we remark that, for any smooth Riemannian manifolds
X,Y,Z,W and any isometric foldings  ¢e‘F(X,Y),ve F(Y,2)0e F(X,2) and
xe FZ, W), we have
(i)  The composite map Yo HX,Z);
(i1)  (4,0) e F(X,¥x2), and
(i1i1) oxy € F(XxzZ,Yxw).
It follows that'%KM) ="}HM,M) is a semigroup which contains the
isometry group I(M) as a subgroup. If M is compact, then for all ¢ &M,
deg ¢ = O, *1. Moreover, deg ¢ = *1 iff ¢ I(M). We may topologise (M)
by giving it the compact—open topology. Clearly deg ¢ is constant on each
component of this space. An obvious problem is to determine the number of
components for each of the values %1 of deg ¢ . Is there just one component

on which deg ¢ = 07



2, Isometric Foldings and Covering Spaces

In this section, we shall use the term manifold to mean s smooth
connected Riemannian manifold, unless otherwise stated. Liewise, we suppose

that all maps are smooth.

2,1) Invariance

Let M and N be manifolds. Let p : M = N be a regular locally
isometric covering. A covering transformation of p is a homeomorphism
g : M~ M such that pog = p. We denote by G the group of covering trans-—
formations of p. Since p is a regular covering of N, G %:ﬁl(N)/p*wlﬁﬂ},
where p, @ wl(M,x) > WI(N,p(X)) is the homeomorphism induced by p.
2,1.1) Definition:- We say that ¢ eF(M) is p-invariant iff for all g e G,
and all x e M,p(4(x)) = p(¢(g.%x)).

We denote the set of all p~invariant isometric foldings of M by

,}i(M,P) .«

2,1.2) Example

Let Pn(R) denote real projective n-—space, consisting of the
equivalence classes (x} of points x ¢ Rn*i\{o}, where x is equivalent to v
iff v = dx for some real A % 0. Define p : s™ Pn{R) by p(x) = {x)o Thus p
is the standard double covering,

Consider the isometric folding ¢ 8’3(Sn)given by
d{x x )= (x| fx }) Then ¢ €% (s™ p). Here the group

1’ e o3 n+1 1 8 sa &g n+1 @ f i Py ® A

G is Z2 where Z2 is the group generated by the reflexion, x » ~x.

2.1.33 Proposition

For any covering map p : M * N, F. (M,p) is a subsemigroup of (M) .

Proofi—

Since }‘M e%(}{{,p), hence ’3;:&5,?) % ¢ . Let ¢ , ¢ E%(M,P} be
p~invariant isometric foldingsof M. Then for all g € G and all x € M,

p{(o)x) = p(¢(¥(x)) = p(e(¥(g.x))) = p((doy) (g.%)), s0 (émﬁ)ﬁ'}i(&?)»



The next theorem establishes the relaticn between the set of
isometric foldings of a manifold and the set of p—invariant isometric

foldings of its wmiversal covering space, where p is its universal covering.
2.1.4) Theorem

Let N be a manifold and p : M N its universal covering. Let

G be the group of covering transformations of p. Then F(N) is isomorphic

as a semigroup to %(M,p),’(}.

Proofa:—

Let ¢cF (M,P), and define § : N > N, by §(p(x)) =2 (x)),
for any x € M. Since ¢ is p—invariant, ?{ is well—defined. For if
p(x) =p(¥), then (@ (¥)) =2 () = p(4(s-x)) = p(B(x)) = (@ (x)).
The quotient set ’?{N) w@i(M,P)/G has a semigroup structure induced by
that of 'Ji(M,P). Also since p is a local isometry, ¢ €3(M) implies that
Zif e “HN)., Now define a map F :’E-(N) +3(N), by F(G) = §. Since
Gb = Gy iff for all g ¢ G there is h ¢ G such that go$ = hoy, it follows
that if G¢ = Gy, then for all g ¢ G, ¢(p(x)) = p(4(a.x)) = p((¢og) (x)) =
p((g™ o h op)o 8)(X) = p((W o é)€X)) =p((x)) = V@),

Hence . F is well~defined.

Now, let ¢, ¢ ¢F (M,p). Then F(G ¢ o G¥) =F(C ¢ ¥) = (6 o ).
But (3 0 (X)) =p0W(x))) =p(6(y)), where y = y(x), hence
(o WEE) =@ =iEwE) =@ o PI(PK).

Hence F is a homeomorphism.

To prove that F is one-one, let ¢, ¥ a'ﬁ»i(M,p)md suppose that
F(G¢) = F(Gy). Then according to the definition of F this will imply that
% =7, that is, for all x ¢ M and all g ¢ G, § (P(X) =p(H(X) = Y(p(x)
=p(p{x)). It follows that § = § iff for all x ¢ M and all g ¢ G, p($(x)) =
(p(p(x)). This implies that there is h ¢ G such that (h o$) (%) = ¥(x).

Hence G = Gy and F is one—one.



To complete the proof, we have to show that F is onto. For

this purpose, let B c¢“F(N) and choose x € M, x € N such that p(x) = x

1
Now choose any v € M such that p(y) = 8(x1) =y

15
¢ Say- Then, if U and V

are open neighbourhoods of x in M and x, in N such that p} Uis a

1

homeomorphism onto V, then there is a unique map ay ¢ U + M such that

aU(x) =y and poa, = B o(plU). See Figure (1.3).

Figure (1.3)
Now, let v and y' be any two paths in M beginning at x and
having the same end point z and such that p o Y= Y and p o y' =Y' are

two paths beginning at x. with the same end point zl. Let § = Bo(p o ¥ =

1
B ovyand §' =Bo(p o y') = Bo y' be two paths at ¥y with the same end

point w;. Suppose that the wnique path liffings § and §' of § and §°



beginning at y have different end points w and w' respectively.
Since p is a universal covering of N, M is simply
connected, that is every closed path in M is homotopic to a
¥

constant, it follows that o = w'.

Thus we can extend o to the regions enclosed by the paths

U
and so to the whole of M.

A similar theorem can be obtained in the case of regular

covering maps as follows.

2.1.5) Theorem

Suppose that p : M > N is a regular covering map. Suppose

further that, given any points x, v € M and Xis ¥y E N such that p(x) = X,

p(y) = vy and,ﬁ(xl} = ¥, Where 8 eFm, B0 p*)wl(M,x) < p*wl(M3y),

Then}(N) is isomorphic toﬂﬁi(M,p)/G.

Proofi—
The proof of this theorem is the same as of theorem (2.1.4)
except to show that the end points w and w' of the paths § and §'

respectively are the same. This canbe proved as follows:

The loop ll =y 1 o ?W represents an element Ae ﬁl(N,X1>
and so the loop B%; represent the element B (1) of WI(N’YI}‘ But, since
B, carries the image of p, into that of p,, there exist a unique map

o ¢ M+ M, such that a(x) = y and also the element 8 (A} is contained in

the subgroup p, HI(M,y} (?}. Hence there exists a loop Qz at y such

that p £, = 521, and it follows from the uniqueness of path lifting that

2
ﬁz(éﬁ} = § () and 22(1 - 4t) =8 '(t) where t ¢ I and 2, = I > M. In

particular, § (1) =8 '(1) = iz(i). So 8 and 8 ' have the same end point.



2.2 EQUIVARIANCE

Let Mand Nbe manifolds and let p : M + N
be a regular locally isometric covering. Let G be the group of
covering transformations of p as before.

2.2.1) Definition ¢—

We say that ¢ e‘F(M) is p-equivariant iff for all g ¢ G,

the following diagram commutes

¢

ly S S 4

sl s

My M

¢

We denote the set of p-equivariant iscmetric foldings of M

by F, (,0).

2.2.2) Example

Consider the infinite strip =1 £ y < 1 in Euclidean plane
2 , . . .
R”. Remove from this styrip the discs of radius ¢ >o and centres (n,o),
where n is any integer and 1 > €., Let X denote the remaining closed region,

shown in Figure (1.4). Let 6 : X + R be a function such

Figure (1.4)

that 6 is O and has infinite normal derivative on 3X, and zero
derivative in the x-direction whenever x = m + i, for any integer m.
Moreover, let 8(x,¥} = 8(x + m, *y} for all me Z,

Define a surface M in E3 by

M= {(x, v, 2) : {x, y)e X, z = 26 (x, y)}.



10

The group of integers Z acts freely on M by m.(x, v, z)=(x+m, v, 2).
Let N = M/Z and let p : M »~ N be the covering projection. Then N is
homeomorphic to a double torus.

The map ¢ : M > M given by ¢(x, v, z) =(x, ~v, z) is an isometric

folding which is p—equivariant.

2.2,3) Proposition

For any covering map p : M > N,f}é(M,p} is a subsemigroup of
Fw .
Proofi=

Since IM EC%& (Msp),’B@CM,p) % %. Now, let ¢, wsf§é (M,p) be

p-equivariant isometric foldings of M, that is, for all g € G the diagrams

v

Mty M and Moty M
s, e s ls
M M M—pM

are commutative.

Then for all ge G, the diagram

_voy

=

!

g g

M
ey M

is also commutative, Hence, under this composition of maps’gé(M,p)
is a semigroup and it is a subsemigroup of "F(M) .

Consider now the special case in which M is the unit sphere ™.
Every isometry of s" to iﬁself is equivariant with respect to the action
of Z2 on S" generated by reflexion in 0. We now show that there are no
other equivariant isometric foldings of s™.
2.2.4) Lemma

Let é: 5% > s be an isometric foi&img_ﬁach that, for all & §

$(-x) = -¢(x). Then ¢ is an isometry.
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Proof:~

The result follows directly from the Borsuk-Ulam theorem (13}
which can be stated : For n 2 1, there is no continuous map ¢ : s* » g
of degree zero such that, for all x ¢ Sn, ¢(=x) = =¢(x). Since any isometric
folding of any compact manifold to itself has degree 1, -1 or 0, and is an
isometry in either of the first two cases, the lemma is proved.

We remark that the above lemma may be stated in the form

Et(sn, $) = 1(s™), where ¢(x) = -x, X € §".

2.3) Volume Theorems

If ¢ : M~> N is an isometric folding between manifolds M and N of
the same dimension,and M is compact, so that the volume Vol M of M is
finite, then the volume of the image ¢(M) of ¢ in N cannot exceed VolM
itself. The inequality Vol ¢(M) < Vol M is an equality iff ¢ is an isometric
embedding. If ¢ is k-fold covering of ¢(M), then of course k vol (M) = Vol M.

If ¢ is not an isometric embedding, then the sgbove inequality can be
sharpened to 2 Vol ¢(M) < Vol M. However, in certain cases Vol ¢(M) is
necessarily much smaller. We therefore pose the general question. For a
given compact Riemannian manifold, find the infimum e(M) of the ratio
Vol M/Vol ¢(M), over all isometric foldings ¢ : M = M of degree zero.

We have succeeded in proving only a few facts about e(M) for
particular manifolds M. We cannot say, for example, whether e(M) is always

an integer.

2.3.1) Lemma

Let p : S° *‘PRCR) be the double covering given by p(x) = {x}.
Let ¢ sf}i(Sn,p). Then either @sI(Sn), or for all x, v ¢ Sn,

d($(x, ¢(¥)) s-g» .

Proofc~
n L . . _
Let x, v £ § , where x % y. Then there is a unique great circle
. %ﬁ;%m@
C such that x e C and y € C. Hence -x, -yeC, and these points occur on C/" @
@an@y ?f

K%‘ = o nﬁ‘%
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in the cyclic order %, ¥y, =%, ~¥.

. . "
w=hi. Thus min{i, w21} £ T o

i

Let d(x, y) = A. Then d{(x, -y}

it

But A = d(x,v) 2 d(6{x), ¢(y)) and = - x = d(x, -y} » d(e{x),¢{~y)).

Since for all x ¢ Sn, p($(x)) = p(¢(~x)), we observe that either ¢(x) = ¢(~x)
or =¢(x) = ¢(~x). In the later case, ¢ c1(s™) (by lemma (2.2.4)}. So

$(x) = ¢(-x). Hence 7 - A 3d(¢(x), ¢(y)), and so

i

d(e(x)), ¢{y)) < min O, 7 -A) & 5
The above lemma allows us to give estimates for the number

e(Pn(R)), where Pn(R) has its standard Riemannian structure, as explained
below.

For any isometric folding ¢ : s™ » s such that, for all x ¢ Sn,
¢(x) = ¢(~x), the image ¢(Sn) = X of ¢ is a closed subset of s in which
the geodesic (great circle arc) distance d(x, x') bepween any two points
%X, X' € X is at most w/2.

Now consider the family %% of all closed subsets of 5" with this
property. Denote the supremum of the n-dimensional volume Vol Y over all

Y &Cﬁ%vby Mh. Thus M, = w/2. However, we do not know the exact value of

M formn > 1.
n

We now describe two members of&éﬂ. ne is the closed geodesic

b

disc Dn(ﬁ/4> of radius /4, with any centre on s, Then Mo Vol{Dn{w/é}):&%,‘

say. For example, &, = 7/2, A, =7(2 - v/ 2). It is tempting to

1 2

conjecture that M_ = A_.
n n

The second example is the 'Reuleaux' set

R ={xeS;: x 20, i=1, ..., n+l} , see {4} or {10}. Then R s%&h, and

n i
_ n,n+l - -
Yol Rﬁ = VYol § /2 = e_, say. Thus e, = e, = wl2.

Now the map ¢ : s » s® given by ¢€Xl’ cees X4

is an isometric folding such that ¢(S") = R_. Tt follows that e( (R)) ¢ 2.

Thus,



i3

vol(s/2 m, < e(R (R) s 27,
Explicit formula for Vol s” and Vol Bn(r} are derived in the Appendix.

Now, let N be a compact n-manifold and let 5n: N - N be an
isometric folding of degree zero. Then, consider the universal covering
space M of N with projection map p : M » N, which is local isometry, and
induced Riemannian metric. Let G denote the group of covering transformations
of p. Then, by theorem (2.1.4), there is an isometric folding ¢: M ~» M
such that, for all xe M and all g ¢ G, p(¢(x)) = p(¢(g.x)). Equivalently,
for all x € M and for all g € G, there is a unique h € G such that
h o ¢(x) = ¢{(g.%x).

In fact, h depends only on g, since G is finite and h varies
continuously with x. Thus ¢ in the above sense 18 p-invariant. So there
is amap £ : G~ G given by £(g8) = h. 1In fact, £ is a homomorphism. TFor
ifg,g' € G and £(g) = h, £(g') = h', then

b((g'g).x) = ¢(g".(g.x)) = h'.¢(g.x) = h'h.o(0).

Also, 1if 8 = G - ﬂpq denotes the isomorphism induced by p,

then the diagram

G ey
Gl 8
TrlN -—-:—‘"‘% WlN

%

commutes, SO E; of = 8 of,

We now consider in more detail the case in which 5% 18 trivial.
Suppose that E; is trivial. Then so is f, and for all x e M,
$(G.x) = ¢(x). Hence p|é(M) is a homeomorphism onto $(N), and therefore
vol $(N) = Vol¢(M).

Let F be a3 fundamental region for & in M. Thus F is a
(non empty) closed subset of M such that U g.F =¥ and, for all x,y ¢ 7,

geG
if g € G is such that g(x) = vy, then x and y both lie in the fromtier of F.
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Now vol F = vol N = (1/k) vol M, where k = |G|, is the order of
the covering p. Moreover, for all y e M,
$(y) = ¢{g.x) for some x ¢ F

= ¢(x) e ¢(F).

Hence ¢(M) = ¢(F). It follows that vol¢() = vol¢(F),

and we conclude that
Vol N/Vol $(N) = Vol F/Vol¢(F) .

We remark that if'g% is trivial, then each fibre of p is
mapped by ¢ to a single point of M. In general, when E; need not be trivial,
¢ is p~fibre preserving.

Tt seems likely that such results on volume can be strengthened
considerably. A simple example of what is intended by this remark ig
obtained by taking N to be a circle Sl of circumfersunce 2A. Thus M .is the

1 N ) 7 s t
real line R, and p : R > 8 may be given by p{(24t) = A/ eéﬂl .

) - L
Suppose that ¢ e’%&(?,p) is such that ¢, ﬁi{S‘} = (O, where

- . . 1 i ‘ )

& is the corresponding element of T}(& y. Then for all x, v ¢ R, d{¢(x),¢{y)i% &
For under these assumptions, for any %, y € R, there is a point

x' = x + 2Am, for some integer m, such that Alx',¥)s A, and since o{x")=¢(%),

the result follows.

2.4 Concluding Remarks

It seems difficult to establish any general theorems about the
number e(M) for an arbitrary compact manifold M. 1f Bﬂ‘% @, then we can
also study the number e(M, 3M), where the isometric foldings concerned lie
in the semigroup (M, oM). Clearly, F(M, 3 is a subsemigroup of WF(M) .
Also, there is a homeomorphism 6 : F(M, M) ~>3@D given by’6{¢} = 6] M.

tven in the case of surfaces, these problems seem quite difficult.
For instance, let M be the flat Mobius band represented by the rectangle in
Euclidean plane Rz with vertices (xa, #b), in which the edges joining
A= (-a, =b) to B = (~a, b) and C = (a, b} to D = (a, -b) are identified with

the direction reversal as shown in Figure (1.5).
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The map %ﬁ:: M- M induced by the map ¢: Rz - ﬁzg given by
¢ (x,y) = (Ex%, fyf} is such that ¢e"XM, M) and 4 vol ¢(M) = vol M = 4 ab.

Thus e(M, M) < 4.

B"*"("‘&»b) C=¢a,b)
¥\ ~/
A=(~a,~b) D=(a,-b)

Figure (1.5)

We have failed both to construct any yYee(M, oM} of degree O such that
vol (M) > ab, and to prove that e(M, oM) = 4.

1t is clear that the concept of isometric folding may be extended with
only trivial modification to pseudo-riemannian manifolds. There are, however,
considerable difficulties in attempting to find analogues of the preceding
theorems. The partial results that have been obtained so far are not
reported in detail here. A first step is to establish the precise relation~
ship between the isometric foldings of Minkowski (n+l)-space M;+1 to itself
that keep o fixed and the isometric foldings of the 'positive spheres' S(u)

given by

XKy * oo T X F X + 0, X >0, a % 0.
£

1 n n+l n+l
We can show that the hypersurfaces S(a) carry induced Riemannian
metrics (positive definite in case a> O, megative definite in case o <0),
and there are natural isomorphisms™¥(S(z)) ~HS(1)),KsB)) *Hs(-1))
for « > 0,8 < 0 induced by radial homothefy.
The next step is to establish whether “}(S(a)) embeds naturally in
E%(Mn+1) where E%(M?+z) denotes the semigroup of isometric foldings of

+1 . .
o that fix 0. To carry out this step would lead naturally to a theory
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of isometric foldings for Lorentz manifolds and perhaps to a theory for

pseudoriemannian manifolds in general.
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CHAPTER 2

TOPOLOGICAL FOLDINGS

The theory described in Chapter 1 made essential use of the
Riemannian structure., We now construct a more general theory of a
purely topological character. To achieve this, we abandon the definition
of isometric folding, which has no obvious analogue in the topological
case, and instead we adopt an inductive procedure. We restrict attention to
the case in which domain and codomain have the same dimension.

1. Manifolds Without Boundary

. P . - . n
We defipne the following standard subsets of Euclidean n—space E
for any n > o2
n T
D™ = {x e B" : |x| £ 1}
n-1 n - N
s = {y e BV ¢ |y| = 11
. T n-1 s s . , . ny
We ¢call D and S the unit disc and the unit sphere in Euclidean
. . n-1 . . . . . .
n-space respectively. Thus § =D . It follows from the definition that
no. . . . .
for each x € 0 with x % 0, there is 2 unique real number t and a unique
. n~1 n~1
point v € § such that x = t v, o <t g 1. Of course for ally ¢ S s

0 = Oy. See figure (Z.1).

Figure (2.1)
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Now suppose that £ : Sn-1 +~Sn"1 is any map. <Tthen f induces a

map £, : Dt > Dn, given by f*{tx) = tf(x) where 0 g t £ 1, x ¢ Sﬂni
and £, (0) = O.

By using this comstruction we can define a topological folding
by the following induction. Let M and N be topological manifolds. Where
dimM=dimN=mn >o0 and oM = 9N = (), For all x € M, a disc chart at
% is a homeomorphism & : " - Vx’ where Vx is .a neighbourhood of x in M
and £(0) = x. Hence every x € M has a disc chart.

Now let ¢ : M~ N be a continuous map. We say that ¢ is a

topological folding of M into N iff, for each x € N, there are disc charts

£ D"+ Vx for M at x and n @ p" Wy for N at vy = ¢(x) together with a

topological folding £ : ST+ » s% such that n o £, = ¢ o E.

To complete the definition we say that any map f : $s° > 5% is a
topological folding. Since §° consists of the two real numbers 1, -1,
there are exactly four topological foldings of $° to itself. We denote
by “3(M,N) the set of all topological foldings of M into N, and put
3 =T .

If ¢e7XM,N), then x ¢ M is sald tobe a singularity of ¢ iff ¢

is not a local homeomorphism at x. The set of all sinmgularities of ¢ is

denoted by IL(¢).

2. Foldingg of 1-Manifolds

2.1) Progosition
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Let ¢eV(M,N), where M and N are I-manifolds without boundary.

Then L{é) iz a discrete subset of M.

Proof:—

let x ¢ Mand vy = ¢(x). Then there are disc charts £ : I + ng
n s I *‘Wy on M and N respectively, and a topological folding £ 159 + 59
such that n o fﬁ =¢ o £ , where I = {*1, 1} = Eza How suppose that
x e I(¢). Then £(1) = £(~1) = 1, say £(1) = £(-1) = 1. Then £, (t) = |t].

"s

Hence ¢ is a local homeomorphism on VX\\{xf. Hence x is an isolated

point of Z(¢), and so I(¢) is discrete.

2.2)Corollary
Let ¢cJ(M,N). If M & R, then I(p) is countable. If M A S', then

Z(¢) is finite and # L(¢) is even.

Proof:-

The first statement follows immediately from the proposition.

Suppose then that M & Sl, and let % e Z(¢}, then there are disc charts
E: I~ Sl, n: I~ 51 such that £(o) = x, n{o) = ¢(x) =y and
¢ o &= nofy, where £, : I >~ I is giwen by £,(t) = %tig Hence f, induces
orientations on rays I (o < t < 1) and I, (-1 < £ < o) and hence local
opposite orientations on £(I_) and 5(1*)* These local orientations can
be chosen so that each region has a unique orientation induced by disc
charts. This shows that the singulaerities of ¢ partition 81 into arcs in
such a way that successive arcs have opposite orientations. Thus the
number of arcs is even, and so the number of singularities is also even.
In contrast isometric foldings, topological foldings of S1 to

itself can be of any degree. For example, the power map @k : Si + S1

given by %k{elg} = elk%y iz a topological folding (without singularities),

for any k % O
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3. Foldings of Surfaces

Consider now any topological folding ¢ e 7)) (M,N), where M and N
are connected surfaces without boundary. The disc charts provide local
models for the set of singularities r({(¢), as follows. Let f : S1 - Sl
be a topological folding. Then 2(f) consists of 2k points py, <.y Py -
Hence ) (f,) consists of the rays joining each p; to 0. That is
£(f,) = {¢ py 20 tg 1, i=1, ..., 2k}.

It follows that the set £{(¢) has the structure of a locally finite

graph K embedded in M, for which every vertex has even valency.

¢
A connected subset of M\K¢ is called a ¢-region. We note that
the ¢-regions, together with the edges and vertices of K¢ constitute a
topological stratification of M.

Any isometric folding of a surface M to another N is an example
of a topological folding.

Note also thatif M is compact, then K¢ is finite and the number
of ¢~ regions is finite. Moreover, every ¢-region is bounded by a closed
polygon in K¢.

4. Foldings of Manifolds

From the previous two sections, we can begin to form a picture of
how the structure of I(¢) may be described, for any ¢ £ “_}(M,N), where
M and N are topological n-manifolds without boundary. We proceed
inductively as in the case of isometric foldings, and conclude that I(¢)
partitions M into disjoint strata that fit together to form a topological
stratification § of M. We refer to the r-~dimensionsal strata as r-strata ,
and to the n-strata as ¢-regions . This stratification is locally finite
and, if M is compact, is finite. Again, any isometric folding is a

topological folding.
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We observed in chapter 1 that if ¢ € "F(X,Y) and ¢y ¢ % (Z,W),
then ¢ x ¢ ¢ S} (xZ, YxW). Likewise, 1f ¢ ¢ 7 (M,N)and y ¢ fj (P,Q),

then ¢ x ¢ ¢ :} (MxP, NxQ). Also, it is easy to check that
L(¢ x ¢) = (E($)%®) U (M x Z(¥)).

For example, let ¢ ¢ J (I) and ¢ ¢ 7J {8}} be the topological
foldings given by for all xe I, ¢(x) = §x§ and for all (v, z} 551,
i . .
Y(v,2) = (y, ). Then ¢ x we:](l x §7). The set (¢ X ¢}, and its relation

to L(¢) and I(y), is indicated in Figure (2.2).

(6 x ¥)

RTINS \ """""" TN, S
‘n / B ‘ ? .
0 i i i T
i ’ / . > L e W)

L 4
)
! } J
SN A \_ L \\'i/
I x st S
S e
T
£(¢)

Figure (2.2)

However, the composite of any two topological foldings is not in
general a topological folding. We give an example to illustrate the
phenoﬁenon,

Let ¢ 3 82 > Sz be given by ¢{(x, v, 2z} = (%, v, fz{). Then
¢ € f} (Sz), the image of this topological folding being the "Northern'
hemisphere H. Let n be an ewbedding of the equator z=0 of 52 into st
given by n(x,y,0) = (x,¥, €x sin i?, where o < g < 1,x % O and

n{0,v,0} = (0,y,0). By the Schoenflies theorem, since n : 3H Sz is a

topological embedding,n extends to a homeomorphism 7 : Sz *'Szk Let
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1 = Mo ¢. Then ¥ ¢ i}(sz}a But ¢ o ¢ %jxsz}5 since L{¢ o ¢} has
infinitely many strata.

We observe that for any ¢ € 7J (M,N) and for each stratum o € §,
¢ic is a topological immersion of o in N. Suppose now that v € 7} (N,P) is
a topological folding. Then Yo will be a topological folding if for each
stratum ¢ €S, where S in the topological stratification induced by ¢ on
M, ¢(o) is topologically transverse to each stratum of ¢. This condition

is not, however, necessary.

5. Manifolds with Boundary

Let M and N be topological manifolds, where dim M = dim N = 0 > §,
and oM = 3N % ¢. For all x eInt M (Int M means interior of M), a disc chart
at % can be defined as before. If x ¢ oM a disc chart at x is a
homeomorphism £ = bR +'§;, where V; is a half disc heighbourhood of x in M,
=] ; n i - .

D ={xeE : fx; g1, % 3 o} and £{o) = x. Hence every x ¢ M has a disc
chart,

Now, let ¢: M+ N be a continuous map. We say that ¢ is a

topological folding of M into N iff for each x ¢ M, there are disc charts

g D" - Vx or £ : 7 - ?% for M at x € Int M or x € 3 M respectively, and

T . o
n:D *W orn:D »W, for Naty = ¢(x) eInt N or y = ¢(x)e 2N,

y vy
togehter with one of the following topological foldings:

(iy £ Snm1 > Sn-l such that no £, = ¢of (x € Int M and y ¢ Int N);
(i1) T : s, gt , where ERalE {xe B” : x| =1, Xz o},

B

such that W o £, = %0 T (xe oM and y €3 N);
(iii)fl : Snm1 +'§n~1 such that To f*l = ¢of (xe Int M and y €3 N);

(iv) fz §n~1 - Sn~1 such that No f*z = ¢o £ (x €3 M and y ¢ IntN).

[X3

Again we say that any map £: s° +vSO, F:5°57%° ’fl : 89 > %°

or fz : 89 5> 5%4s a topological felding.
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These definitions imply immediately that : If ¢ & T|(M,N)
is a topological folding of M onto N where 3M = 3N + @, and ¢(3M)CIN ,

then ¢|sM e J (aM, aN).

As before, any such topological folding determines a stratification
S on M in which each stratum is a manifold without boundary, and § restricts
to a stratification 38 on 3M. In constructing this stratification we have
considered points in 3M separately. Thus the set L(¢) of singularities of
¢ is a proper subset of the union of the stra® of dimension ¢ m~1. This
is becuase the ¢f3Mﬂregions of M are (m1)~strata in S but ¢ is not

singular on these strata.

6. The Graph of a Topological Folding

Let ¢ ¢ "] (M,N). Then, as we saw in §(2.4) there is a topological
stratification § on M by singularities of ¢. In this section we show that there

is a graph T, associated to this stratification in a natural way. In fact

¢
the vertices of P¢ are just the n-strata of S, and its edges are the (n-1)-
strata. If E ¢ Sn—l’ then E lies in the frontiers of exactly two n—strata

g, 0% Sn. We then say that E is an edge in T¢ with end points o, o'

The graph T', can be realised as a graph ¥ embedded in M, as

¢ 9
4]

follows. For each n~stratum ¢ € Sn’ choose any point ¢ eg. 1If o,0f esn

. e "
are end-points of E ¢ Snnl’ then we can join ¢ to ¢’ by an arc E in M that

\u Ty . - «
runs from ¢ through ¢ and ¢'to ov', crossing E transversely at a single point,

V] - » >
Trivially, the correspondence ¢ + g, E » ¥ is a graph isomorphism from
ot

T¢to Fé' Figure (2.3) below illustrate this relationship in case n=2.

In this case, the cell complex subdivision of the surface M
induced by %é is the dual of that induced by K¢ . These constructioms have

a greater significance in the case of neat foldings, as we show in the

next chapter.
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Figure (2.3)

It should be noted that the graphb I' may have more than one edge

¢

joining a given pair of vertices. For instance, consider the topological
folding ¢ of the torus T into itself shown in Figure (2.4) below, induced

by the map ¢ : R% given by ¢(x,y,2) ={x,y,|2|)., The graph I' has just two

&

vertices but has two edges. See figure (2.4).

Qg

Figure (2.4)
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CHAPTER 3

NEAT FOLDINGS

We have seen that any topelogical folding ¢ : M * N determines a
topological stratification S on M. However, no such stratification is
induced on N itself. In this chapter, we consider a special class of
foldings ¢ : M > N for which N does have a stratification related to the

folding ¢.

1. Definitions and Examples

Let ¢ : M > N be a topological folding and let S be the topological
stratification on M whose starta are the singularity manifolde of .
We denote the union of the strata of codimension j by Z§, The set of
i-dimensional strata in § denoted by Sia

We say that ¢ is a peat folding iff there is a topological
stratification S' on N such that Xé consists of the single n~stratum
Int N and for each i-stratum oc Si’ ¢{o) € S% s L= 0, o0, me It will
be moticed that for any neat folding ¢ : M+ N, ¢(BM)C 8N. In fact
¢(BMUM5"1) = ogN, where Moo= U Sj and M = M,

. n
1€k
We denote the set of all neat foldings from M to N byJﬁ(M,N). For

any neat folding ¢3¢U{M,N), the number of ¢~ regions of M is called the
index of ¢ and the number#¢ *(y) of points in the inverse image of any
y € Int N is called the order of ¢. A meat folding of oxder r is called

a neat r-folding. The order of any ¢~region A is the number of points in

éuiéy)!} A for any ¥y ¢ Int N. Thus if ¢ has index k and its regions are

Ai’ son Ak of ordersal, cosgp ak, then the order of ¢ is ¢ ﬂ-31 * aee F G -
We denote the order of ¢e$€ﬁ;ﬁ) by w(¢) and its index by i(¢).

Examples

(1.1). Let p : M N be any covering map. Then p is a neat folding without

singularities. Also, the composite of any covering map p : M~+ N and any

neat folding ¢: N~ Q is a neat folding, and if the orders of the covering

map and the neat folding are s and r respectively, then the order of
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¥ = ¢op i8 rs.
{(1.2) Let M = Rz, and let N be the submenifold of Rg given by the
inequalities x 2 0, ¥ 2 0. Defime ¢ : M > N by ¢(x,y) = (|x| , Ivl).

Then ¢ is a neat folding in which the strata of N are the sets given

i) O0<x<=» vy 2> Q;
ii) x = 0, v > 03

iii) vy = 0, x > O;

f

iv) x =0, vy = 0,

See Figure (3.1).

t
b
i 3’5 o EE oy

N A AV A A
A b P
<
o g
/ 7,
/ iy
p A s
) . ;
. “
&
- B e e e 2 /”;/ e
x ¢ b4

|
§
i
!
Figure (3.1). M

The stratification § on M has only ome O-stratum {(0,0)}, and has
four l-strata consisting of the four half-axes obtained by removing the
origin from the coordinate axes. There are four 2-strata consisting of the
open quadrants into which the awes divide Rz.

The set I(¢) of singularities of ¢ is the umion of the two coordinate

aXe8.
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(1.3) let ¥ = DZ = {(x,y) € Rg: xz + yz & 1} be the closed wumit disc in
the plane R? with centre (0,0). ILet ¥ be the submanifold of 92 glven
by the inequalities O § x g 1, 0%y ¢l and (x,) € Dz. Define

¢ : M* N by ¢(x,y) = {ixé), Eyi). Then ¢ is a2 neat folding. The
stratificatiou S of M induced by ¢ comsists of five O-strata, eight
l1-strata (four open lime segments and four open circular arcs), and

four open disc quadrants, as indicated in Figure (3.2).

Y,\ Y a
0,1)]
Py
\ (0,0) x s 0,00 ¥ (1,0 =
2

M=D
Figure (3.2)

The corresponding stratification S' of N is made up three O-strata,
three l-strata (two open line-segments and open circular arc), and a single
Z2-gtratum.

Notice that the four circular arcs of 9M are l-strata of S but do mot
lie in the set IL(¢) of singularities. Thus Z(¢) comnsists of the points

(x,0) for -1 £ x § 1 and (0,y) for -1 § y & 1.

(1.4) Let M be the closed half-space{ (x,¥) € Rz :y 2 0}, and let

: 2 .
Ne={(x9) e R :vy20,08x% 4. Define ¢ : M7 N by ¢(x,y) = (£(x),y)
where £(x) = min%x~n§.- Then ¢ is a neat folding in which the strata of N

neZ
are the sets given by:
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i) 0<x< i, y * 0;

ii) 2 = 0, v > 0

iii)xm%—, ¥y > 03

iv) x = 0, y = 0;
1

v):{%? v = 03

vi)@ﬁx<%-, v = 0.

and the boundary strata of M
The set Z(¢) of singularities of @?is composed of:

(i) == < x < &, y = 0;
(ii) x =n, n = 0, %i AL, ..., :f:%—, ceey ¥ 7 O
See Figure (3.3).
t 1 t ! 1
¥ i 3 [3
My
- *;--—- M?é_m.v —
(-1,0)  (=4,0) (0,00 (4,00 (1,0)
M N
Figure (3.3)
(1.5) let M = B, N = {(x,7) e &% :Oﬁxﬁ%sﬁ‘éyé%}.

Let ¢ ¢ M~ N be given by ¢(x,y) = (£(x), £(y)), where the map f is
defined as in example (1.4). Then ¢ is a neat folding from M to N and
the strata S' of N consists of four O-strata (the points (0,0), (0,}),
(1,0) and (},3)), four l-strata (the four open segments x = 0, x = %
mra0<y<z’~ &ad}rm{hyz%} where O < x<-§»), a single Z-stratum

2
0<x< %} » O <€ ¥ < %» . See Figure (3.4). The set of singularities
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b b
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Figure (3.4). M

of ¢ is composed of:

(1) X%nwnmowi%’a***wi%’so»sgaﬁd”‘”(y{m
¥

(1.6). Let M = Tz be & torus obtained from fhe square

Q= {(x,v) ¢ R? -1l g xg 1, -1 £y s 1 by identifying opposite sides,
so that the points (L,y) and (~1,y) are to be identified for -1 & v € 1
and the points (x,1) and (x,-1) are to be identified for -1 ¢ x s 1.
See Figure (3.5).

Let N = {{x,y) ¢ Rz : 0¢€ x< 1, 0¢ve< 1l . Define a map
¢ : M+ N by ¢(x,v) = (|x],|y]). Then ¢ is a neat folding. The
stratification S of M consists of four O-strata, eight - I-strata (open
line~segments) and four 2-strata.

The corresponding stratification S' on N is made up four O-strata,
four l-strata and a single 2 stratum.

It should be noted that the eight l-strata of 5¢3M do nmot lie

in Z(é). Thus IZ($) consists of the points (¥,0) for -1 ¢ x £ 1 and (o,¥)

for -1 £y & 1.
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Figure (3.5).

(1.7). Let N be a double torus consisting of a sphere with two handles
embedded in R3 with a plane of symmetry as shown in Figure (3.6). Let C
be a generator of one of these handles, see Figure (3.6). Cut N along C,
so that N becomes a surface with two boundary curves C' and C".

Take two copies N, = N x {1} and N_ = N x {-1} of this surface,
and a fourth surface M by identifying (c,1) e C' x {1} with
(e,~1) € C" x {=1} and (e,1) & C€" x {1} with (c,~1) ¢ C" % {~1}. Then M

is a closed surface of genus 3, and if we write {xﬁj} for the point of M

o . ﬁ “ 5
obtainmed from (x,]) ¢ N UN_, then there is a map p : M ™ N given by plx,i)= =

This is a 2-fold covering map. ?

Figure (3.6).
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Let us now compose p with a neat folding ¢ : K + M given by

$(x,¥,2) = (x, §y[, z}. Then ¢ = po¢ is a neat 4~folding with stratification
S on M consisting of no O-strata, two l-strata (two simple closed curves)

and three 2-strata. The neat folding ¢ has index 3 and the regions
have orders 1, 1 and 2.

The corresponding stratifications §' on ¢(N) consists of no
O-strata, one l-stratum and one 2-stratum. The set Z{¢) of singularities
consists of the two l-strata of M,

For any @aJkM,N), and ior any oe S,@%G is a covering of
o' = ¢{(0). From now on we denote the ¢-rvegions by the letters A,B, ...

We say that a neat folding @aJJ(M,N) is simple or is a simple folding

iff é!A is a homeomorphism onto Int N, for each ¢-region A of M, that is
to say ¢aJKM,N} is simple iff each ¢~region is of order 1.

We denote the set of all simple foldings from M to N by & (M,N),

Each of examples (1.2), (1.3), (1.4), (1.5) and (1.6) is a simple
folding, but examples (1.1) and 1.7) are not.
Note that a covering map is simple iff it is a homeomorphism.

For any ¢e®(M,N), w(¢) = i{¢).

(1.8) Lemma

let p : M+ N be a covering. Let ¢ : N + P be a neat folding

such that ¢ = ¢op is simple. Then ¢ is simple,

Proof :-

let A be an Y-region. Then WEA is a homeomorphism onto Imt P.
Now ¢ = ¢op, and if we put p(A) = A', thend(A’) =(¢op) (A) = ¢(4) = Int F.
Hence A' is a union of ¢-~regioms. But A’ is connected, since A is
connected. Hence A'is a¢-region. Since ¢§A is a homeomorphism, it follows

that both pfﬁ»&nd &E&* are homeomorxphisms. In particular, ¢ is simple.
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(1.9) Corollary

If ¢ = ¢ope & (M,P) as above, and p is of order r, then

iy) = w(@) = rw(¢) = ri(g).

We observe that example (1.7) gives a neat folding ¢ that is
formed by composing a covering map with a simple folding, although ¢ itself
is not simple. By removing one of the y~-regions of order 1 from M, we
obtain a surface M' of genus 2 with boundary and w‘M' cannot be expressed
in the form 8oq for a covering map ¢ and a simple folding 6.

We have shown in §(2.4) that the composite of topological foldings
is not in general a topological folding. This is still true for neat
foldings, We give a simple example of two neat foldings that do compose to

give a third.

(1.10) Example

Embed a torus T = S1 X SI in R3 in such a way that the set
%X = {(x,y,2)e T : x & 0} is homeomorphic to Dz, Let M' = c1{(T\X), and let
M be union of M' with its reflexion in x = 0. Then M is homeomorphic to
a double torus, and we can choose cartesian coordinates so that M is
invariant under reflexion in any of the coordinate planes. Thus the map
b : M+ M given by ¢{x,y,2) = (=l , Iyl, [z%) is g simple 8-folding of
M onto N = ¢ (M} M, where N is homeomorphic to D2 and has a stratification
determined by five vertices (and edges) on its boundary. So we can

(2wik} /5

. 2, . .
represent N as the disc D with vertices e k=0, 1, 2, 3, 4, and

consider the simple 10~folding y:N - P <N, where P is the sector

z and\F(éﬁkfﬁ&A}l} = ekz for k even and e@f‘;ﬁmm1

fe" : 0565 w/5}inD
for k odd. Thus P carries the stratification of a triangle A, and
go¢ : M+ P is a simple 80-folding.

We remark that if éeJfM,N) and Yejf{P,Q), then ¢ x ¢ e MM x P,N x ),
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Also Z(d x ) = (E(¢) x PIU (M x L(P)). See §€2.4),

2. Neat 2-Foldings

Let H be a topological hypersurface in an n-manifold M, where
oM = ¢. Suppose that H is tamely embedded, so that H has a collar V with
the structure of l-disc bundle over H, and 3V = H' is a double-covering
of H,

Let M' = M\Int V. Then 3M' = H', and there is a continuous map
f : M' + M such that flint M' is a homeomorphism onto MMH, and £lH" is
the above double covering of H.

We may apply these remarks tothe case of a 2~folding
¢ : M~ N where M and N are n-manifolds and 3M = $. Then it is implicit
in the definition of topological folding that Z(¢) is a hypersurface B of M
which is tamely embedded, since I(¢) has only (n=-1)~strata,

Now suppose that ¢ is neat. Then ¢{H is a homeomorphism onto
3N, and continuing the use of the above notation, we note that p = ¢of

is a 2-fold covering of N. In particular, f{H’ is a 2-fold covering of

aN,

Conversely, we can construct, for any n-manifold N with.houndazy
a neat 2-folding ¢ : M~ N as follows. Let p : W > N be a 2-fold coveriug
(W need not be connected even if N is connected), and define an equivalence
relation ~ on Wby x v y iff x, ye Int W and x = y or %,v68 W and
p(x) = p{y). Then M = W\v 1is a topological n~manifold without boundary,
and there is a unique neat 2-folding ¢ : M + N such that, if 8: W » M
denotes the quotient map, then Yo8 = p.

To illustrate this comstruction, we consider a couple of examples.

(2.1) If ¢ + M~ p® is a neat 2~folding, them M is homeomorphic to s”,
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(2.2) Let ¢ : M+ N be a neat 2-folding, where N is a connected
aKlein bottle
surface. If N is a Mobius band, then M ista torus. If N is an

annulus, then M is a torus or a Klein bottle.

3. The Graph of a Neat Folding.

We showed in §(2.6) that to each folding ¢ HM,N) there is

associated a certain graph T We now show that if ¢e W (M,N), then T@

¢G
has the following special features.

(a) Edge~Colouring: The (n-1)-strata of N form a countable set, and we

can label them NO’ Nl’ co s Nr’ eees regarding the indices i "colours'.
Each edge of ?¢ is mapped by ¢ to one of these. We may then give F@ an
edge~colouring by assigning to each edge E the colour i of its image

$(E) = N, .

(b) Sources and Sinks : Tt will be noticed that if N igsorientable, then

any orientation of N induces an orientation for each n~stratum of M. TIf A
and B are regions with a common (n~1)-stratum in their frontiers, then A
and B are given opposite orientations by this process. It follows that each

edge of the graph I' may be oriented in such a way that every vertex is

¢
either a source or a sink (where a vertex v is a source if all the oriented

edges with v as a vertex begin at v, and is a sink if all the edges end

at v). See Figure (3.7).

source sink

Figure (3.7).
For such a graph, every circuit has an even number of edges {and

hence of vertices),
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(c¢) Regularity: If ¢ed(M,N), so that every ¢-region of M is mapped
homeomorphically by ¢ to Int N, then the graph F¢ is regular. This follows
immediately from the fact that the (n~l)-strata in the frontier of each
region are in one-one correspondence under ¢ with those of N. It is also
worth observing that every colour i occurs exactly once in the set of
coloured edges at each vertex of ?é’ Consequently, the valency of each
vertex of I', is the cardinality of the set of (n~1)-strata of N, that is

¢

te say, of the set of colours.

We say that ¢ is a Cayley~folding iff I' 1is a Cayley coleour graph.

¢

4, Balanced Foldings.

Let ¢eg® (M,N). Then for any ¢-regions A and B there is a
homeomorphism ¢AB : A~ B given by ¢AB(a) = b iff ¢$(a) = ¢(b), where
ae A and be B, We can always extend ¢AB to a homeomorphiSm,EgB s A > E;

but there need not exist an extension to any open neighbourhood of A. For

instance, congider the following two examples.

4,1) Example

Let M = {(x,y)e Rz : =2 gxg1l, -2 g v g 1} be a square in the
plane Rz. Let N = {(x,y) ng : 0 xg¢l, 0gvyvg 1} and define a map
¢ 2 R2 + N, by ¢(x,y) = (2£(x), 2£(y)),where £(x) = min{§r~ nL Then
@g M is a simple folding from M to N which maps eachnzéregian of M
homeomorphically onto Int N.

Let A, B be the ¢=regions given by 0 < x < 1, ~1 < vy < {0 and
0<x=<1l, =2 <y < ~1 respectively (see Figure (3.8)). Then there is a
homeomorphism ¢,, : A > B, given by ¢A3€x,y) = (x',y"Jiff ¢(x,7) = ¢(x",¥y"),

where (x,y)e A and (x',y"')e B. This homeomorphism has an extension to a
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homaomorphism.agB P A g'given by EAB<X’Y) = (x',y") iff ¢(x,y) = ¢(x",¥")
where (x,¥)e A and (x', yv")e £. Now consider sny open neighbourhoods

X, B of A, B respectively.

(~2,1 ' (131) (091) (}»91)
LT — ™ =
4 b S s
i T T oo o @
(oA
£
%p,,« uuuuu it e e e
'
{
f B
i
'
{
(~2;2) M a,-2)

Figure (3.8).

. o , 0% oY
We see that there is no extension of ¢AB to a homeomorphism of ¢AB 3 A > %.
This is because three edges of A are interior to M, while only two edges

of B have this property.

4,2 Example,

Let M be the unit sphere in Euclidean 3~space, that 1is,
M= (xe g2 . [|x|| = 1}. Then M can be partitioned by a triangulation

whose vertices avre given by U = (cosd

k

= (0, cos6, , sinﬁk), where ek = 2x/k, k= |, ..., 88, 8 3 2, together

== (cos@k, sinego), 0, sinek),

vk k’
e
with the vertices (o , *a, *a), where a = 1/V3 .

There is an essentially unique neat folding ¢: Szadefined by

mapping the vertices (ta,ta,ta) to (a,a,a) and the vertices gkﬁ K Wk to
ﬂ' or VS according as k is even or odd. For imstance, consider the case

g = 2. In this case we have a sphere with the triangulation shown in

Figure (3.9).



Figure (3.9)

By following the same process explained in example (4.1) it can

be checked that a homeomorphism ¢ : A~ B (where A and B are the

AB
é~regions shaded in Figure (3.9)) can not be extended to a homeomorphism
of any mneighbourhoods X, B of A, B respectively. This is because the
valencies of the vertices of the ¢~region A are 12, 4, 4 while those of

B are 12, 8, 4,

We say that ¢ is balanced if such an extension exists, for all

¢~regions A and B. We denote the set of all balanced foldings from M to N

by @ (M,N) .
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4,35 Example

LetMbe the unit sphere in Euclidean 3-~space, Consider a
triangulation whose vertices are given by Uk = (cos%k, sinek, ay,

Vk = (cosek, 0, szn@k), wk = (0, ccs@k, sznek) where Gk = 2n/k,

@O

=14, ..., 8, together with the vertices (#a , *o, *n) where a = 1/V3.

This triangulation partitions the sphere into 48 triangles and an
essentially unique simple 48~folding ¢ ¢ SZQ is defined again by mapping the
vertices (*o , *a, *a) to (a,ax,a) and the vertices U» V. W to Ul or \%

according: as k is even or odd., See Figure (3.10).

Figure (3.10)
If we comnsider any ¢~regions A, B of M, for example the ones
shaded in the figure, then there is a homeomorphism ¢AB : A B, given

by ¢,0(x,y,2) = (x', y', 2") iff ¢(x,y,2) = ¢(x", y', 2z'), where (x,y,2) eA

and (x', v', 2z') €B. This homeomorphism has an extension ¢AB : A+ 3B
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LA T ¥ [,
defined in the same way. Now consider any open neighbourhoods A, B of A4, B
respectively. A homeomorphism 353 : A > B can be defined because the
valencies of the vertices of A4 and B are 6, &, 4. 1t follows that ¢ is

balanced.

5. Cayley CGraphs and Cayley Foldings

The properties of the graph I', that we bave already discussed,

¢
in section 3, suggest that in certain cases the graph Té may be a Cayley
colour graph. We now show that this is indeed the case, for a large class of
balanced foldings.

Note first,that, for any map ¢ ¢ M+ N, we can associate a group
G(¢) namely the group of all homeomorphisms h : M + M such that ¢ch = 9.
In case ¢ is a neat folding, we may ask whether the induced action of G(¢)
on the stratification S of M is transitive on the set of ¢~regions. In
particular, we ask whether there is a subgroup H (¢) of G(¢) that acts
l-transitively on the set of ¢~regions.

In general, this is not true. For instance, consider example (1.7).
There are three y~regions two of order one andone of order two. Hence no
subgroup H(Y) of G(y) act l-transitively on the y~regions in this case.
However the following theorem gives us the conditions under which the group

H{é), where ¢ : M~ N is a neat folding, may act l~transitively on the set

of ¢-regions.

5.1) Theorem

Let ¢ : M > N be a balanced folding, and M be simply connected.

Then there is a subgroup H(¢) of G(¢) that acts l-transitively on the set

of ¢~regions. Moreover Fé is a Cayley colour graph of the group H(9).

Proof i=

Let $c®(M,N) be a balanced folding. Let A,B be ¢-regioms. Then

I

e A A 1
¢&B t A+ B extends to a homeomorphism éAB t A+ B, where K and B are open



40

neighbourhoods of A and B respectively. Let C be a ¢~vegion such that

C4 A and CcRA ¢ . Let EAB(Q)C; D. Then there are open neighbourhoods

Y
1%

Ny - % e
C and of C and D such that ¢FD extends to a homeomorphism ¢CE;% > Dy

- i

a, ", : .
cD and éAB agree on A.f\%. Iterate this procedure to extend ¢

ere & 4
wher AR

to a map @%B: M-+ M, The existence and uniqueness of the extension are

Cho

yi

guwanteed by the fact that M is l-connected. TFor, let o = a v a0

1 k

be an edge path in 8%, the dual graph of S, starting at a € A, and joining

i

equivalent points g = G5 By sees R x, where ai £ Ai (by equivalent

points we mean that they have the same image under ¢). Let a' = aé m% »@aaé
be another edge path in S* starting at a e A1 and joining equivalent points
a = a{, aé, ooy aé+1 = %, where ag £ AE. let B = 6352 ,,é%k and

B'=88, .8 be the images of o and o' underé@AE with vertices

b = blg b2§ eens bk+1 =y and b = b{, b%, seas bé@l = y' respectively,

Since M is l-comnected, there is & subgraph 7' of F¢ that gpang a
disc and whose boundary is made up of the edge paths o and o' from a to x.

Thené@AB maps [’ onto a subgraph I''" of T , in which o and o' are mapped to

d)?
Band B ', both of which must have the same end point. Then y = y' and it

follows that @AB is well~defined.
Now, to prove that%égg is onto, let ¥ ¢ M a nonsingular point.

Then y belongs to an m~stratum Y. Let Bi’ 823 vo as Bk+1 = ¥, be a seguence

of m-strata such that Bj5 B, are contigous, 1 = 1, 2, ..., k. The sequence

i+l

B Bz, ceos Ek+1 of mstrata is the image unéer’%%£ of a unique sequence

R4

kA

A}, ﬁz, coag ﬂk+* = X of mrstrata such that Aﬁ’ Aj*

1 are contiguous,

1

i=1, 2, ..., k and each @A g oA Bi extends to a homeomorphism

i
s “y v " 1o, v o )
%ﬁ,'%wﬁimwa%ﬁ.w&%.ﬁ, %mem&ﬂ%%ﬂ,ﬁ%w
S il i+l i+l

%%B is onto.

We have now shown that @%3 is a local homemorphism of the simply~
connected manifold M onto itself. 1In fact,ﬁéﬁg is a covering map. Thus

S

is a homeomorphism.
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The set of all such homeomorphisms is the required group H{¢),
which by its comstruction acts l-transitively on the set of  ¢-regions.

The relationship of H(¢) to the graph T is as follows. Choose

¢

some ¢-region A. Thus A is a vertex of T@‘ Tdentify any other vartex

(p~region) B of I' with the unique element @35 of H{$) such that%%AB{A) = B,

¢

It follows trivially that the graph F¢ iz a Cayley colour graph

of H{$), with generators ¢B = ¢AB’ where B runs through the set of w-strata

o . " . . . s ek
B $ A having an (m~i)-stratum in its common frontier with A.

Note that for surfaces M,N and any ¢eAJ(M,N) the singularity sets

21 and ZZ

the valencies of the vertices agreinvariant under any of the extended

form the edges and vertices of a graph K¢. If ¢ is balanced, then

ny
home omorphisms @AB. In particular, if ¢e® (M,N) be such that K¢ is a
regular graph embedded in M, then ¢ef®M,N). Moreover, if M is simply
connected, then H(¢) will act l-transitively on the set of ¢-regions and

r. will be a Cayley colour graph of the group H(¢).

7.2 Example

Let M = 8% = {x e ol ng}E = 1} , be the unit sphere in
Euclidean 3-space. Let ¢ : M » Mbe given by ¢(x,v,2) = (ix[, Ey{, fz{)a
Then ¢ is a simple folding and the graph K¢ is a regular graph of

valency 4, with 6 vertices (*1, 0, 0), (0, 1, 0), (0, O, t1), twelve edges

W

and eight regions. The image of ¢ is the positive octant x 3 0, v 2 0,

z 2 0. See Figure {3.11)(z} below.
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A Ag
§
§
§
A2 ;
i A1
i
ﬁé AS
}'0___,_..., [ .
,/
A3 A4
(a) S2 with the graph K@ (b} The graph Y@ is a Cayley colour
graph.

Figure (3.11)

Since K¢ is a regular graph, it follows that ¢ is a balanced
folding and the graph T¢ , which is a Cayley colour graph, has the form
given by Figure (3.11) (b). Hence H(¢) is isomorphic to 22 x ZZ x ZZ
and it acts l—transitively om the set of eight regions &1, Az? seep ﬁgo

We now explore the relationship between balanced foldings and

covering maps.

5.3)Theoren.

Let ¢6J@(M,N) and let p % + M be the universal covering.

Suppose that $ = $op e@%(%,N) and that G(p) < H(g)“ Then there is a

subgroup H(¢) of G(¢), isomorphic to H(X)/G(p), acting l-transitively

on the set of @”t&ﬁiens.
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Proofs=-

m ket
We first construct the group H(¢). Let h & H(¢). We now show
N U
that h covers a (unique) homeomorphism h : M + M, that is hop = poh. Let

a e M, and let 2 £ pml(a). Put b = p(%),where b = %(2). The point b is
A\

ul(a). For if p(ec) = a, and 4 = (3)

independent of the choice of 3 e P p
o non . A, A
where d = h(c), then there is an element g ¢ G(p) such that g(a) = c

S

ny O s

Consider g = ho goh 1. Then g‘(%) =

g
4. since G{p) <« H(%); g' e G(p),
Thus b = p(%) = p(g) = d, Define h : M+ M by h(a) = b, Then h is a

. , n vy
homeomorphism of M, and, trivially, the set H(¢) = {h : he H(¢)} is a

subgroup of G(¢) isomorphic to H(%)/G(p). Thus there is an epimorphism

2

o H(g) -+ H(¢) given by @(g) = h,

Secondly, we show that H(¢) acts l-tramsitively on the set of
¢-regions. By lemma (1.8) in this chapter,ée H(M,N). Let 4,B be ¢-regions.
Then there are g?regions X and ¥ such that ?(X} = A and p(%) = B, Let B be
the unique element of H(%} such that %(K} = % and let h = 8(%)g Then
h(A) = B, and there is only one such element of H({¢).
Remark: If p @ MM is a covering map, and % = dop, where ¢e\J{(M,N),

then gd&(ﬁ;N) implies that ¢c®(M,N).

5.4 Example
n+l ntl
Let M = Pﬂ{R}, and let N be the n-simplex {t & R : Z £, = i,
i=1
0z £, § 1}. Define ¢ : M > N by ¢((x}) = (fxll y ea e fxn+1t)/lix{£5 Thes

ﬁrmay be identified with Sn, and p : M~ M is given by p(x) = {x}. In this

case G(p) = z, is generated by the map g : s® +~Sn, g(x) = -x, and

H(g) = (22)n+1 is generated by the reflexions &; ¢ Rn*l + Rn+1,

AX PR X = X e s . ~& . . 8 a
gl( 10 3 'L'H‘l) { 1° 9 xl"l’ Kl’ X}J@‘l’ 2 KZH”}.} and

g(x) = (¢ opy(x) = (Exlf, cees Exn+1D/![xflas above.,
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%.5) Theorem

Let %, ¢ be as in theorem (5.3) such that G(p) < H(%}. ety : P> M

be a regular covering, Then H{y), where ¢ = ¢oy , acts Il-transitively on

the set of Y~regions of P.

Procf:~—

Since % is simply-connected, for any other covering map v : P - M there
exists a universal covering map h : §'+ P asuch that yoh = p.

Now G{p) = W1<M} and G{h) = Wl{?}, Since v ¢ P > M is regular
Y WI(P,y) < vl(M,x}, where v{(y} = x. There are isomorphisms f : G(p) - w}(M‘

and g : G(h) + WE(P) such that the following diagram is commutative,

&(n) —Ey 8
[+ Y*

G(p }‘é’mm "1 ()

It follows from elementary group theory that, since wli?} is embedded
in ﬁl(M} as a normal subgroup, then G(h) is embedded by o in G(p) as a
normal subgroup. But G(p) <« H(E) by assumption. Hence G(h) < H {5) and
theorem (5.3) can be applied for ¢, yielding that G(y) = H(%)/G(h} acts

i-transitively on the set of Y—~regions of P.

5.6) Example

. ~ 2 N
Let M = Sz X Sl, M =R , and let p : §‘+ M be given by

] 3 3
plx,y) = (azwxx . ezWKy}. Let N = §% x T where I = {ﬁgié and let
. . _ . . . 2wiy e e el
4 2 M~ N be given by ¢{(a,b) = (a,¢}, and if b = e = cos 27y + 1 sin Zny,
then cosc = |cos 2wy|, sinc = [sin 2ny|. Let P = Rx st. Sso that

h s RZ -+ P is given by h{x,v) = (x, ezﬁly) and y: P > M be given by

24i 24 2wl .
v(x, e Yy = (“™F Yy Thus G{p) = ZxZ is generated by the

®
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a4

translations (x,y) - (x+1,v), (x,y) - (x,y+1), while H($) = ZxZ,
generated by (x,y) - (x+1,y) and (x,y)'+ (x,y+4). The quotient group
H($)= H(g)/G(p) = Z,. Also G(h) = Z and it is generated by the
translations (x,y) - (x,y+1). Finally, H(y) is isomorphic to zx2, and

is generated by (x, QZWIY) - Qx*laQZﬂly} and (x, eZle} + (x, e ATy

6. Uniform Foldings

In this section we consider a class of neat foldings a little more general
than simple foldings. Suppose that ¢ : M > N is 2 neat folding. Then for
any ¢~regions A and B the maps ¢A = ¢|A and o % ¢|B are coverings of
Int N, If, for any such A and B, the coverings 94 and g are igsomorphic,
that is to say there is a homeomorphism 6: A - B such that @Boa = Gy then

6 is said to be uniform folding. It follows that all the coverings ¢|A

in a uniform folding are of the same order. If this order is finite, say k,
then ¢ is said to be k-wmiform.
Note that l-uniform foldings are just simple foldings.
We remark that if ¢ is a k~uniform folding of index j and order r,
then r = kj,
We have observed previously that a covering map is a neat folding.
Also,if p : ¥ Mis a covering and ¢: M+ N is a neat folding, then
% = ¢$op is a meat folding. It i8S natural then to consider whether
% is uniform if ¢ is uniform. In general, this will not be so. However,
the following remarks may help to clarify the positionm.
Let ¢ : M~ N be a uniform folding , and let A and B be ¢-regions.

Then there is homeomorphism 6: A » B such that $500 = ¢A. Now suppose

N, - »
that p : M> M is a covering, and let X, % be connected components of
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~1 -1 . n A
p (A)) and p "(B) respectively, and let Py = plA and Py = p|B. Thus

N
Py and py are covering maps. In order that ¢ = ¢op be a uniform folding,
~ "
we require that for all such A and B the covering maps QA =¢A ° P, and

EB ﬂQB o Py be equivalent. We therefore seek conditions that guarantee
such an egquivalence,
MLV Y]
Consider base points acA, beB, ach, BeB such that é(a) = b, pla) = a,
v YAV . SYINAY]
p(b) =b, Let G =rp, (r. (A,a)) < 7, (4,a), B =p, (n.(B,b)) < m (B,b.)
Ag 1 1 By 1 1
Suppose that 6, : ﬂl(A,a)+ ﬂl(B,b) maps G isomorphically onto H. Then
4 3 . u 47 Y YY) N
there is a unique hoeomorphism & : A - B such that 6(a) = b, and

Py o g = GopA. See Figure (3.12) below. It follows that % is uniform in

: N “"\_\
: -
AN
™ pA }
%4
\ / j

A
¢A

this case,

@

e
Y/
e

Figure (3.12)
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CHAPTER 4

POLDINGS OF SURFACES

As the theory has built up, we have noted at many points that
surfaces are particularly interesting because of the fact that the set
of singularities of any folding ¢ of a surface M forms a graph K¢ on M.

In this chapter we examine a few simple aspects of the relationships

between the topology of M and the structure of K@

1. Geneal Comsideratiouns

Consider a neat folding ¢ : M - N where M and N are surfaces. To
avoid too many complications, let us suppose that M is compact, connected
and with empty boundary, and let N be connected., Thus the boundary of
N is composed of fimitely many closed curves.

Since M is compact, ¢ is of finite order k > 1, and the graph

K = K¢ is a finite graph. Let K divide M into ¢~regions A}, AZT vy An
n !

say ,and let ¢[Aj be a covering map of order kj,Thus Tg= Z kja
j=1

1.1 Proposition

1f ON % ¢, then k is even,

Proofi~

Suppose 0N # @, Then there is at least one component € of &N,
Suppose that K has a vertex v such that ¢(v) = w €C. Then @miéw) ig a

subset of the set of vertices of X, say @mi(w) = {vl, cebs vh}a Now

§ gy

each Vs 8 % 1, ..., I has even wvalency ZZS, say, Hence k =
s

2Z

s
is even,

Suppose on the other hand that K has no vertices. Since 3N § &,

K comsists of closed curves. Choose any point weC, and let
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éﬂl{W) = f

12 mees vh} as ahove. 1t follows that k = 2h, and so again
k is even.

Remark: If oM = # then k can be odd, since ¢ is then just a covering map.

2, Fuler Numbers

Let ¢ : M ~> N be a neat folding, as above, We can triangulate N by
a simplicial complex TN such that every vertex of the ¢~stratification of

3N is a vertex of T Let T, be the triangulation of M induced by ¢.
144 .

N

B

Consider the regions A 13 cees B

s ssa3 A and their closuresg B

1 T

Then for j = 1, 2, ..., n,¢IBj is a kj - fold covering of N, Thus

e(Ej) = kj e(N), where e(X) is the Euler number of X. If we now calculate

the Euler number e(M) of M using the triamgulation TMQ then we can compare
n el *

e(M) with E e(B.) = E k. e(N) = k e(N}). We note that for each vertex
o

of K with valency v exactly v vertices have been counted in the calculation

of the Euler number k e (N) of the disjoint union of Bi’ fonsy BR. Likewise,

every edge of K appears twice in these calculations., Figure (4.1) which

shows the neighbourhood of a vertex with valency 4, may help to clarify

these remarks.

Figure (4.1)



49

h
Thus to obtain e(M) from X e(Bj) we must. subtract v-1

j=1
for each vertex of K (of valency v) and add the number of edges of K. The
first of these is V-pk, where V is the number of vertices of K, and p is

the number of vertices of 3N. The second is equal to ipk. We conclude that

e(M) =k(e(M)) + V-ipk. (4.1)

It may be worth observing that the number of closed curves

(without vertices) in 3N does not influence this relation.

3. Neat Foldings Over a Disc

We now study the case in which N is the disc DZ. In this case
. N . 2
e(N) =1 and each ¢~-region A is itself homeomorphic to D°, It follows that

¢[A is a homeomorphism, and so ¢ is simple. Equation (4.1) now reduces to

2¢ (M) = k(2~-p) +2vV (4.2)

. . 2
Notice that if N = D" hasg no O-strata, then p =V = 0, k = 2 and
M is homeomorphic to the 2-gphere Sz. Thus for a neat folding over a disc,
with no O-strata, the graph K consists of a single simple closed curve, and

$ is a 2~folding of SZ.

4, Balanced Foldings Over a Disc

Equations (4.1) and (4.2) can be refined slightly when ¢ is balanced.
In this case, if we label the vertices of the disc D2 as Vl’ ey Vp, then
each vertex in the set ¢”1(Vi) has the same valency 2qi, i=1, .v., P

It follows that ¢»1(Vi) contains k/Zqi elements., Thus the number of

vertices of K, is

¢

V= (k/2) § 1/q, - (4.3)
i=1

Hence for a balanced folding over a disc, (4.2) may be reduced to

2e(M) = k{(2-p) + E I/qi} N (4.4)
i=1

Certain cases of relation (4.4) are of special interest. For
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instance, let p = 3, so that M is triangulated by K, and (4.4) becomes

2e0 = k(= +1 +L1 _ 1y, (4.5)
9 92 9
] ) [1 1 1
Thus if M is a sphere, then {~» + = 4+ — | > ] and k 2 4., The only
9 92 93

possibilities are listed in the following table

9, | 9] 93] k [H)
2 2 n 4n D
2n
n>1
2 3 3 24 0
2 3 4 48 o
2 3 5 120 T

The group H{¢) associated with ¢ according to theorem (5.1) in
chapter 3 is shown in columm 5, and the corresponding triangulation of S2
are shown in Figure (4.2) (i), (ii), (iii) and (iv). ©Note that in
Figure (4.2) (iv) we have drawn only one side. The vertices are labelled

in such a way that vertices with the same image under ¢ are labelled alike.

(i) (2, 2, 8) (ii) (2, 3, 3)
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(iii) (2, 3, 4) (iv) (2, 3, 5)

Figure (4.2)

5. Regular Folding Over a Disc

For any surfaces M and N, we say that ¢e®(M,N) is regular iff the
graph K = K¢ of the set of singularities of ¢ is a regular graph. We

2 .
concentrate on the case N = D and denote the set of all regular foldings

of M onto D2 by$H(M). TFor each non-negative integer p, we examine the

set 5%(M) of regular foldings of M over a disc DZ for which the stratification
of DZ has p vertices. Thus (for p 2 3 at least), we study the problem of
folding regular subdivisions of a surface M into topological p-sided polygons
that correspond to some neat foldings.

As we have already observed,ﬁi)(M)c:G%(M,Dz), and I' is a Cayley

¢
colour graph for a group H(¢) acting l-transitively on the ¢-regions,
for each ¢ 8I(M).

Suppose then that M is a closed connected surface with Euler

number e, and let ¢s§g(M) be such that the graph K has E edges, and

V vertices. Then there are k ¢-regions, where

k~-E+V=e,



Since ¢ is regular, each vertex has valency Zs for some positive

integer 8. Also k = 2m for some positive integer m, Thus,
Vv = pk/2s, (4.6)
Also, since K is regular, 28V = 2E, and so
E = pk/2 (4.7}
Equation (4.4} now reduces to
2e() = k{(2-p) + £} (4.8)

Note that k 2 Zs., It is convenient to denote by ﬁ);{ﬁ) the set of
all @a@ﬁ%(M} with k ¢~regions. We are only interested in foldings up
to equivalence, where ¢, PeSOHM) are eguivalent iff for gome homeomorphisms
f:M>Mand g : Dz *~Dz, vof = g o ¢, and when we refer to a folding we
mean the equivalence class of that folding. Thus to say that®(M) contains
only one element means that all ¢e§XM) are equivalent.

From equation (4.8) we see that if p = O then k = e = 2, and so

2 . e . . ;
M= S . 1In this case K is a single closed curve, and ¢ is represented by

the map ¢(x,y,z) = (x,v, Ezf)w Thusﬁi)i(ﬂ} * @ iff k = 2 and M = Ség

2,.2
muigbﬁ(s } has only one element.

. . k F -
Likewise, §3E<M) = @ for all M, an&fﬁ}é(ﬁ} = ¢ for all M. Reference

to (4.8) also show that;gﬁg(ﬁ) ¢ iff M= 82 , and the only element of

4 2, . R
532 (S7) is represented by the map ¢(x,v,z) = (x, |y| , Ezi}. In

this case, E = 4, V= 2,and s = 2, See Figure (4.3).

4
Figure (4.3). ¢¢ g:&(sz)
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Aisa,%i)g{M) % G iff M = Sz ané%§>g(84) contains only one element.

A representative graph K is shown in Figure (4.4). 71t has 6 edges, and

2 vertices, each of valency 6.

Figure (4.4).¢é§3§(52)

A corresponding map ¢ can be defined as follows. Let
p(6,¥) = (sinBcosy, sinfginy , cosb) be a point on the sphere where
056 £2r,0¢ v &n, Let B = &%-+ a where 0 £ o £ 7/3. Then ¢ is defined
by mapping P(6,¥) to P(a,¥) or ?(%-* a,¥) if £ is even or odd respectively.

2

; ;
In general%{}E(M) £ 0 iff M= S and%i);(sz) has only one element.

The graph K has k edges, and 2 vertices each of valency k. A representative
map for the k-regular foldings of the sphere over a disc with two vertices
on its boundary can be defined as sbove, where 6 in this case is given by
2w . . 2m

§ = ——+ 0, 0§ as~— and ¢ is mapping p(6,¥) to p(a,¥) or pim;; ~ asy)
if £ is even or odd respectively.

I i Dk ;

n the next three sections we study the sets p(M} for p= 3, 4 and 5.
The results give some indication of how a choice of p restricts the
topology of M and the value of k, and serve to illustrate the force of the

relation (4.8).

6. Regular Foldings Over a Triangle

From a topological point of view, a triangle may be regarded as a disc

which has a stratification on the boundary consisting of 3 vertices and 3 edges
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i)

Hence e vk(ﬁ—s)/%s, We study the setﬂg}ééﬁ‘w So if k=2, then e = (3-a}/s.

i

Hence e = 2 and 8 = 1 or e = 0 and s = 3 are the only solutions. But

. . 2
neither of these can be realised. So %i)Q(M} = ¢ for any compact surface M.

Now if k = 4, then e = 2(3-s)/s, and the only solution is given by
s = 2. In this case e = 1 and so M = ?Z(R). The graph K has 3 vertices and

6 edges, amigaé{Pz(R)) contains only one element represented by the map

o(x,v,2) = (x|, |¥|, |z|} . That is@é(l\i) t 0 iff M =P, (R).

If k = 6, then e = 3(3~s)/s, and the only solution is given by s = 3,

Tn this case e = 0, V= 3, E = 9, Such a graph cannot be constructed and

hence 3:?2(M) = @,

If k = 8, then e = 4(3-8)/s, and the only solutions are given by
§ =2, 8 =3 and s = 4. For the first case e = 2 and we have a sphere. A
representative graph K is shown in Figure (4.5). It has 12 edges, and 6
vertices each of valency 4. The corresponding map is given by
|

P (x,v,2z) = ({x{, lyis iz%)s The image of the sphere is the positive

octant.

Figure (4.5). ¢e 3:32(52}
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In the second case (s = 3), e = 0 and we have a torus or a Klein bottle.
In both cases the graph has 12 edges, and 4 vertices each of valency

6. See Figure (4.6) below.

a b a

d d
¢

a .

a

Figure (4,6)¢€§)§(T or K)

A representative map is indicated by the labelling of the vertices
of the graph as shown in Figure (4.6).

In the third case (s = 4) we have the closed surface of Euler
number e = ~1 . Thus M is homeomorphic to Pz(R):$$ ?Z(R):$? ?Z(R}. A
representative graph K would have V= 3, E = 12 and F = 8, but no such

graph exists, Henceﬁi}i(%) % $ iff M = 82 or M= T or M = K.

If k = 10, then e = 5(3-s)/s. The only solutions given by s = 3
and s = 5, In the first case e = 0 and we have a torus or a Klein
bottle. The graph in both cases has 15 edges, and 5 vertices each of
valency 6. Such a graph does not exists. In the second case e = -2, and
a representative graph K would have V = 3, E = 15, F = 10. Again such a

graph does not exist. It follows ﬂuﬂ:&)éO(M} = @,



Now, we consider the case k = 12. 1In this case e = 6{3-s)}/s. The only
solutions are given by s = 3 and s = 6. This corresponds to e = 0 and e = -3
respectively. In the first case a representative graph K has 18 edges and &
vertices. See Figure (4.7). The corresponding map is indicated by

labelling of the vertices of the graph.

a d c a
“t b

b £

a d c a

Figure (4.7).¢6%3§2(T or K).

In the second case E = 18, V=3, and F = 12. Such a graph does not

oceur. Henceggjéz(M} + 0 iff M=T or M = K,

There is no difficulty in carrying on for k 3 14 to know the sets
g}?{M), k 2 14. Anyhow from the sbove discussions we can pick out the following
results.
1L 956 + g ifrk =8,
2. D5, ®) + 0 iff k= 4,

3,@§(T)+@if5k= bmy, m= 2, 3, ... o

i

[a]
-

L
"

®

-

°

4.‘@%(&) +§ iff k = 4m, m =

It seems likely that no other closed surface can be regularly folded

over a triangle.
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7. Regular Foldings Over a Square

As in the case of foldings over a triangle, we regard a square as

a topological disc whose frontier is stratified into 4 vertices and 4 arcs.

Putting p = 4 in (4.8), we get e = k(2-s)/s. TFor eachk = 4, 6, 8, ..., Zm,...

we can calculate e, E, V and s, and attempt to comstruct a corresponding
graph on a surface of Euler number e.

We observe first ﬂuﬁ:i}i(sz) = ¢ for all k, since if e = 2, then

s = 2m/(l+m) which is not positive for any integer m 2 2.
On the other hand, @i(M} has many elements for M a torus or klein
@y o

bottle. In fact, if k = 23+2p1 Py oeo prr , where j 2 O and Pys wees P

T
are distinct odd primes, then there are at least n mutually inequivalent

regular foldings of a torus over a square where n is the smallest integer
such that 2n 2 (j+1){al + 1) ...(ar + 1). For, let k = 4rs. Then we can

partition a rectangle into 4rs rectangles as in Figure (4.8), to obtain

such a folding.

NG

& 2r

g e g

Figure (4.8). The graph K¢ of @)i(T or K)

Then the decomposition into 2r columns and 2s rows is equivalent to
that into 28 columns and 2r rows when the edges of the rectangle are
identified to give a torus.

Note, however that if we identify the vertical ends oppositely to

give a Klein bottle, then this symmetry is lost for r % s, and so even more

%



58

foldings are obtained in this case.
. 3 .
To illustrate these remarks, let k = 24 = 27 .3, Then j = v = a, = 1.
So we construct two inequivalent foldings of a torus, and four for a Klein

bottle. 8See Figure (4.9).

a a
b C b c b c b
a d a d a | d a
b c b c b fe b
a d a d a d a

L e S

Figure (4-9)0 The graph K . ¢€®24 (T)

¢

We note thatg)‘gﬂﬁ ¢ iff M is a torus or Klein bottle. For
4

k > 4, other possibilities may exist, but we bave not succeeded in comstructing

any example, In fact, it may be conjectured that non exists.

8. Regular Foldings Over Polygons

One may continue to explore the possibilities indicated by equation
(4.8), for p = 5, 6, ... . Unfortunately the information so obtained gives
no help in deciding whether a regular folding exists with such a specification.
In this context, the use of many regular tessellatiomns of the

hyperbolic plane may prove fruitful.



59

To conclude, we point out that there is a regular 8-folding
with valenecy 4 of the double torus M over a pentagon. This indicated
in Figure (4.10), belvw.We embed M in E3 in such a way that M is
invariant under the group Z2 X Zz % 22 generated by reflexions in the
three coordinate planes. Then the familiar map f E3 +-E3 given by
f(x, v, 2) = ([x{9 !yf, fzf} restricts to M to give an 8-regular
folding ¢ : M - M whose image is a topological disc with pentagonally

subdivided rim.

Figure (4.10). K

. 4 DX

¢
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APPENDTX

THE VOLUME OF SPHERES AND GEODESIC DISCS

In chapter 1,8(2.3), we discussed certaiu inequalities involving
. . Loan . . n+l - p s
the n~volume Xn = Vol § of the unit n-sphere in E . In fact, it is

ossible te give explicit formulae for ¥ , and I, .
P £ P ’ 2n+l © n
It may be shown by straightforward integration (see, for example,

Coxeter 13}) that

2t (O™ G (1

™~
i

Vo

joe’
o
o
=i
~~
o
-’
#

, 80

1
ro= 20t ey, (2)
4lso, from the recurrence relation
[lu+l) = ml(m),
we can deduce that
= 7 1
Zn+2 27T/An/(ﬂ+ ). (3
Since ?1 =2 adeZ = 4y, we find that
o _ “g n+l
“on+l  @r " > (4)
and
. ,.Zp+l n 1, p
LZn = (2 ™) (n) T (5
) . . n+l . .
Now the n-volume Zn{R) of a sphere of radius R in E is given
by
. o mi . -,
r (R =R I . (A)
Thus
. 2 n+l _Zn+l '
= i R
Pons () = gr ™ RO, 7
and
W edutl m Tl Zn ,
EZn(R) = (2 Ty TS R, (8)
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Now, denote by Dn{r) the volume of a closed geodesic disc of

. - 3} .
radius r and with any centre on S . Then, from (7) and (8) we have ,

and

where R = sin6, 0O

o+l rr

2n . In+l

D, ,q (1) = F JOe,smesx de, (9)
2n+l n nt (T, . . 2n

D, (1) (2 ™) Ty }O(srnﬁ) as, (10)

See Figure (1) in the case of 82.

Figure (1)
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