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HIGH-TEMPERATURE SUPERCONDUCTORS

by Hans Fangohr

The vortex state in high temperature superconductors is investigated using com-

puter simulations. Vortices are represented as particles and we employ Langevin

dynamics to study the statics and dynamics of the system.

We show that the long-range nature of the vortex-vortex interaction can result

in numerical artefacts, and provide two techniques to overcome these problems:

(i) using a ‘smooth’ cut-off which reduces the interaction force near the cut-off

smoothly to zero, and (ii) an infinite lattice summation technique applicable for a

K0-Bessel function interaction potential.

Using these methods, we investigate a two-dimensional vortex system driven over

a weak random potential. We observe the moving Bragg glass regime, and study

the recently predicted critical transverse force. Our results agree with and extend

other theoretical and numerical works, and provide important confirmation for the

moving glass theory. We investigate the critical transverse force as a function of

system size, temperature, driving force and disorder strength. We provide numerical

estimates to assist experimentalists in verifying its existence.

We study vortex matter in three-dimensional layered superconductors in the

limit of zero Josephson coupling. The long-range nature of the electromagnetic

interaction between pancake vortices in the c-direction allows us to employ a mean-

field method: all attractive inter-layer interactions are described by a substrate

potential, which pancakes experience in addition to the in-layer pancake repulsion.

Using an averaged pancake-density, we iteratively re-compute the substrate poten-

tial. The self-consistent method converges, depending on temperature, either to a

pancake lattice or a pancake liquid. We investigate different methods to perform

these simulations efficiently, and compute the instability line for the transition from

solid to liquid, the melting line and the entropy jump across the transition.
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Chapter 1

Introduction

Superconductivity has fascinated scientists ever since Kamerlingh Onnes discovered

in 1911 that some materials lose their electric resistance below a critical temper-

ature. The ability to conduct electricity without any dissipation and thus to cre-

ate large magnetic fields is of great technological interest. While superconductors

are already routinely used, for example in Magnetic Resonance Imaging (MRI),

widespread use is limited by two factors. Firstly, the critical temperatures be-

low which superconductivity occurs are below 150 Kelvin (K) even for so-called

“high-temperature” superconductors. Secondly, in the presence of magnetic fields

dissipation occurs through the interaction of the magnetic flux with the current

inside the material.

In this work we will focus on the behaviour of the magnetic flux that enters

the superconductor in form of “vortex lines”. About 15 years ago the discov-

ery of high-temperature superconductors (Bednorz and Müller , 1986) stimulated

strong interest in the physics of vortex lines. High-temperature superconductors

are extreme type-II superconductors and exclude only small magnetic fields below

approximately 10−2 Tesla (T). Stronger fields up to about 100T penetrate as an

array of magnetic flux lines, each consisting of exactly one quantum of magnetic flux

surrounded by circulating supercurrents. These flux lines are called vortices. In the

presence of a transport current, vortices experience a Lorentz force pushing them in

a direction perpendicular to the current and the magnetic field. Motion of vortices

resulting from this force, causes dissipation of energy. Crystal imperfections attract

vortices and can inhibit vortex motion. Thus, it is of great technological interest to

understand how the vortex lines can be pinned to the material most efficiently.

The vortex state is also of great importance for fundamental science. Vortices

are flexible one-dimensional objects that repel each other, and imperfections in the

1



crystal structure impose disorder onto the system. In addition, they can be sub-

jected to a Lorentz force due to a transport current, and show thermal fluctuations.

The vortex-vortex interaction favours a hexagonal vortex lattice, whereas thermal

fluctuations and random pinning favour a liquid or a disordered glassy vortex state.

The vortex state is dominated by the competition between these energies, and the

equilibrium phases include crystalline, liquid, and glassy states. The situation is

complicated further by the anisotropy and layered structure of the high-temperature

superconductors. For driven systems the non-equilibrium states show remarkable

complexity and contain several types of plastic and elastic motion. The statistical

mechanics of driven interacting elastic media in the presence of disordering forces

is not yet fully understood.

The complex behaviour of the statics and the dynamics of the vortex state

can be described theoretically only by highly simplified models; in which case the

properties can be investigated analytically. It is then vital to attempt to assess how

appropriate the chosen simplifications are. Experiments provide a wealth of data

on macroscopic systems (consisting of many millions of vortices) but it is very hard

to deduce from these the microscopic details of the vortex state.

Computer simulations form a bridge between theory and experiments: on the

one hand computational models are based on certain assumptions which simplify

the true situation, but on the other hand computations can be performed for sys-

tems which are much more complex and closer to reality than can be described by

analytical theory. In this respect computer simulations play an important role in

assessing the appropriateness of theoretical models. The microscopic vortex config-

urations can be studied in detail since all vortex positions and velocities are known.

Furthermore, a virtual experiment can be performed numerically and then related

to real experimental data via macroscopic observables (such as the average vortex

velocity and the measured voltage). Due to computational constraints, simulated

vortex systems are currently limited to sizes of a few thousand vortices. In spite

of this restriction, computer simulations provide valuable insight into the different

phases of the vortex state.

One of the challenges for such numerical simulations is that the interaction

between vortices are long-range. Not only does this increase the computational

effort significantly in comparison to short-range interactions, but it also poses the

question whether it is acceptable to cut off the interaction for large distances. In

this work, we start by investigating this problem. We demonstrate that using a
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cut-off can result in artefacts, and we present two methods which can avoid these

problems (Chapter 4). We employ these methods in chapters 5 and 6.

Over the last decade the experimental and theoretical interest has been extended

from the statics of the vortex state (e.g. Larkin and Ovchinnikov , 1979, Blatter

et al., 1994, Giamarchi and Le Doussal , 1995) to the dynamic phases of the vortex

state. Koshelev and Vinokur (1994) first proposed and demonstrated numerically

a dynamic phase transition between the plastically deformed phase and a moving

lattice for the moving vortex lines in the presence of random pinning. Further

theoretical work was done by Giamarchi and Le Doussal (1996), Balents et al. (1997,

1998), Le Doussal and Giamarchi (1998) and Scheidl and Vinokur (1998). The

predicted reordering of a rapidly driven vortex lattice across a disordering pinning

potential is supported by simulations of two-dimensional vortex systems (Shi and

Berlinsky , 1991, Faleski et al., 1996, Moon et al., 1996, Ryu et al., 1996, Spencer

and Jensen, 1997), as well as neutron diffraction (Thorel , 1973, Yaron et al., 1994)

and decoration experiments (Pardo et al., 1997, 1998). The most recent theoretical

descriptions (Balents et al., 1998, Le Doussal and Giamarchi , 1998, Scheidl and

Vinokur , 1998) for high-driving forces predict either a topologically ordered vortex-

system which shows algebraic translational order, or for stronger pinning smectic

order transverse to the direction of motion. Both regimes can be summarised as a

“moving glass” (Le Doussal and Giamarchi , 1998). The existence of both moving-

glass phases is confirmed by numerical results (Olson et al., 1998b, Fangohr et al.,

2001a). Within the moving glass, the existence of a critical transverse force is

predicted.

In this work, we carry further the initial work of Moon et al. (1996), Ryu et al.

(1996) and Olson and Reichhardt (2000) and investigate the critical transverse force

in the moving glass regime of the vortex state in two dimensions. We study the

dependence of the critical transverse force on system size, pinning strength and

temperature. By varying the disorder strength, we show that the critical transverse

force can be used as an order parameter of the moving glass. The critical transverse

force reduces with increasing temperature before it vanishes at the melting temper-

ature of the system. Eventually, we provide data that can assist experimentalists in

providing the experimental confirmation of the existence of the critical transverse

force.

A computationally even more demanding task is the simulation of the three-

dimensional vortex state in layered superconductors. While in moderately anisotropic
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materials the short-range Josephson coupling is the dominating inter-layer interac-

tion, and the vortices can be described as elastic strings (for example Ryu and

Stroud , 1996, Nordborg and Blatter , 1997, Wilkin and Jensen, 1997b, Nordborg and

Blatter , 1998, van Otterlo et al., 1998, Olson et al., 2000b), in very anisotropic

materials on the other hand, the Josephson coupling is weak and the long-range

electromagnetic interaction between the pancakes has to be taken into account.

The challenge for a numerical investigation is that the interlayer interaction

between pancakes extends over a range of approximately 100 layers. In principle,

one can stack a set of two-dimensional pancake systems on top of each other, and

introduce additional interlayer interactions but the computational effort grows with

the square of the number of layers. It is therefore only possible to study relatively

small systems with 10 layers and about 100 pancakes in each layer (e.g. Kolton

et al., 2000b, Olson et al., 2001).

Recently, Dodgson, Koshelev, Geshkenbein and Blatter (2000b) suggested using

a mean-field method to deal with the inter-layer interaction. Using a self-consistent

harmonic approximation, they managed to estimate the melting line for a layered

pancake system in the limit of no Josephson coupling and no pinning.

In chapter 6, we show how to implement and use the mean field method sug-

gested by Dodgson et al. (2000b) to study three-dimensional pancake systems in

the limit of dominating electromagnetic interactions. We compute the interactions

within the layers explicitly rather than using analytical approximations, and em-

ploy a substrate potential to represent the inter-layer interactions. Using this novel

technique, we study the phase diagram of a three-dimensional layered superconduc-

tor in the absence of pinning. In contrast to the Lindemann approach, we can not

only estimate the melting line, but also study the nature of the transition. We map

out the phase diagram and compute the entropy jump across the transition.

In chapter 2, a short overview of superconductivity is given which focuses on as-

pects important for this work. In chapter 3 we describe the computer simulation we

have developed and implemented. Chapter 4 presents our results from investigating

the cut-off approach for systems with long-range interactions, and shows two ways

of solving the resulting problems. We add random pinning to our simulations and

study the critical transverse force in a driven system in chapter 5. In chapter 6 we

extend our model to three dimensions, and study a layered pancake vortex system

in the absence of pinning using a mean field approach. We close with a summary in

chapter 7. The appendices A to C contain additional derivations and details that

have been removed from the preceeding chapters for brevity.
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Chapter 2

The vortex state

2.1 Superconductivity

Kamerlingh Onnes found in 1911 that the electrical resistance of Mercury drops

below any measurable value when it was cooled below a critical temperature of

Tc = 4.2 K. This effect was christened “superconductivity” and many more elements

and compounds have been found to become superconducting at sufficiently low

temperatures, including the recently discovered magnesium diboride (Nagamatsu

et al., 2001). The critical temperature Tc below which the superconductivity exists

has been increased up to well above 100 K in the late 1980s after the discovery by

Bednorz and Müller (1986) of a new class of cuprate superconductors.

The understanding of conventional type-I superconductors, which expel an ex-

ternal magnetic field completely, is relatively good. In 1935 London and London

proposed equations which govern the behaviour of microscopic electric and magnetic

fields and introduced the characteristic length λ, which is now called the London

penetration depth. Bardeen, Cooper and Schrieffer (BCS) produced their Nobel

prize winning theory of superconductivity in 1957 from which the London equa-

tions can be derived. It states that there is a phonon-mediated attraction between

superconducting electrons. Two electrons with equal but opposite momentum and

spin can form a so-called “Cooper pair”. The spatial extension of such a pair is

given by the Pippard coherence length (1953), and the Cooper pairs are separated

from the normal conducting electrons by an energy gap.

Already in 1950 Ginzburg and Landau published their theory which is based on

Landau’s general theory of phase transitions. They introduced a complex pseudo-

wave-function ψ as an order parameter which measures the “superconducting order”

and derived differential equations which couple ψ and the magnetic vector poten-

tial. Ginzburg and Landau introduced the Ginzburg-Landau coherence length ξ(T )
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which, sufficiently far below Tc, is similar to the temperature independent Pippard

coherence length. It has been shown subsequently that the Ginzburg-Landau theory

is a limiting form of a suitably generalised BCS-theory (Gorkov , 1959). The ratio

of the London penetration depth, λ, and the Ginzburg-Landau coherence length, ξ,

defines the Ginzburg-Landau parameter κ = λ/ξ.

The quantitative description of the high-temperature superconductors is based

on the phenomenological Ginzburg-Landau theory, Abrikosov’s work on the vortex

state (as described in section 2.2), and Gorkov’s work. It is therefore occasion-

ally referenced as the GLAG-description. However, a theoretical description of the

pairing mechanism giving rise to superconductivity is still lacking.

2.2 The vortex state

In 1957 Abrikosov investigated theoretically what would happen if the Ginzburg-

Landau parameter, κ, was larger than 1, in contrast to being much smaller than 1,

as it is for classical pure superconductors. He found that the surface energy of an

interface of a superconducting and a normal region would be negative. It turned

out that a sample of such a material being exposed to a magnetic field (near the

upper critical field Hc2) would be subdivided into smaller and smaller domains of al-

ternating superconducting and non-superconducting regions to reduce the system’s

overall energy. Abrikosov called these materials “type-II” superconductors because

their behaviour differs strongly from the classical type-I superconductors.

It is now established that the normal regions are tube-like flux lines which pen-

etrate a type-II superconductor in the form of a regular triangular array (in the

absence of any disordering effects). Each of these flux lines, which are also called

vortices, carries a magnetic flux quantum Φ0 = h/2e, with h being Planck’s constant

and e the electron charge. Each flux line is surrounded by a supercurrent screening

the enclosed magnetic induction. Figure 2.1 on the following page shows the mag-

netic induction and the superconducting order parameter in the neighbourhood of

a vortex.

Type-I superconductors with κ < 1/
√

2 expel an external magnetic field com-

pletely up to a critical field value Hc at which the superconductivity breaks down,

as demonstrated schematically in figure 2.2 on the next page (dotted line). Type-

II superconductors show the same behaviour for small fields but only up to field

strengths Hc1 < Hc. For field strengths between Hc1 and Hc2, the external field

penetrates the bulk in the form of vortices. This regime is called the “vortex state”

or the “mixed state” and it is this situation which has been investigated in this
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Figure 2.1: Spatial variation of the Cooper pair
density |ψ|2, the magnetic induction B, and the su-
percurrent js around the vortex centre. The mag-
netic induction drops to zero over the length scale
given by the London penetration depth, λ, and the
superconducting order parameter, ψ, varies on the
length scale ξ.
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Figure 2.2: Different behaviour of magnetisation M (left) and magnetic induction B (right)
to an external applied magnetic field H in type-I and type-II superconductors. In type-
II superconductors, vortices start penetrating the material at Hc1 and represent B within
the sample. At Hc2 the vortex cores overlap and the external field Hc2 is established as
superconductivity breaks down.

work. Because of the partial flux penetration, the diamagnetic energy cost of ex-

pelling the field is reduced and therefore Hc2 can be significantly larger than Hc.

This property has made high-field superconductors possible.

In the mixed state, vortices tend to align in a hexagonal lattice to minimise their

energy. This will be discussed in more detail in section 2.4.

The critical fields Hc1 and Hc2 are functions of the temperature and decrease

with increasing temperature. In figure 2.3 we show the phase diagram of a type-II

superconductor as a function of magnetic field and temperature. At zero tem-

perature, we can estimate Hc1 ≈ 1
κ
Hc and Hc2 ≈ κHc (Kittel , 1996). For high-

temperature-materials, the Ginzburg-Landau parameter is big (κYBCO ≈ 90 and

κBSCCO ≈ 60) and therefore Hc1 is much smaller than shown in figure 2.2 and 2.3.

In this work the regime H � Hc1 is investigated and hence B ≈ µ0H, where µ0

is the free-space permeability. For convenience both the magnetic field H and the

magnetic induction B are referred to as magnetic fields.
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2.3 Interactions in the vortex state

2.3.1 Lorentz force and flux flow

In the presence of a transport current, a Lorentz force fL per unit length, propor-

tional to the current density j acts on the vortices and pushes them in a direction

perpendicular to the transport current and perpendicular to the orientation of the

magnetic field

fL = j × Φ0, (2.1)

where Φ0 is a vector pointing in the direction of the magnetic field with a magnitude

of the magnetic flux quantum Φ0.

For an ideal homogeneous material, Bardeen and Stephen (1965) showed that

the resulting motion of vortices with velocity v is resisted by a viscous drag force

fvisc = −ηvolumev per unit volume with a viscosity coefficient ηvolume per unit volume

given by

ηvolume = B2/ρff and ρff ≈ ρnB/Bc2, (2.2)

with ρff the flux flow resistivity, ρn the normal state resistivity of the material,

B the magnetic induction, and Bc2 the upper critical value of B at which super-

conductivity breaks down. Equation (2.2) has been confirmed in experiments, for

example by Kunchur et al. (1993). The normal state resistivity enters the expres-

sion because the moving vortices induce local electric fields (due to the magnetic

induction changing with time) which act on the unpaired non-superconducting elec-

trons. There is another contribution coming from the change of the Cooper pair

density on a time scale comparable to the relaxation time of the Cooper pair system

(Buckel , 1993, p.181).

If vortices move, they dissipate energy which is taken from the transport current.

This manifests itself as a voltage across the material, and in such circumstances the

material has a resistance.
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Figure 2.4: a) Schematic plot of the density of Cooper pairs in the neighbourhood of
an imperfection in the crystal structure and a vortex. b) If the vortex is placed into the
imperfection then the system’s energy is reduced.

2.3.2 Pinning

In practice, real materials always have inhomogeneities, which tend to “pin” vortices

to the atomic crystal structure. Therefore, for currents below a critical current

density, the vortices are pinned and do not respond to a small Lorentz force, so no

resistance is measured.

Imperfections in the crystal structure influence the motion of vortices via scat-

tering or the suppression of the superconducting order parameter (Blatter et al.,

1994, p.1143). The latter mechanism can be explained qualitatively in terms of the

energy contribution of the condensation energy to the superconducting state and

is illustrated in figure 2.4. Imperfections in the periodicity of the atomic structure

locally inhibit superconductivity. In these areas, there is no negative contribution

from the condensation energy to the total energy of the superconducting state. The

net reduction in system energy of a vortex in a type-II superconductor is positive,

and the core of the vortex is not superconducting. It is therefore energetically ad-

vantageous if a vortex is located in an imperfection. Any attempt to move it from

there to another position would increase the system energy. For forces which are

not too large the vortex is pinned.

There are different kinds of pinning objects in high-temperature superconduc-

tors such as YBa2Cu3O7−δ (YBCO). On the atomic scale, there are oxygen va-

cancies which locally suppress the superconducting order parameter and appear

spatially uncorrelated. On the other hand, there are correlated defects such as twin

boundaries due to the orthorhombic structure of YBCO which separate domains

in which the crystal a- and b-directions interchange roles. These twin planes and

other extended defects such as grain boundaries, stacking faults, screw dislocations,

and sample surfaces are larger pinning objects and can pin more than one vortex

strongly. Finally, using ionising radiation, columnar defects can be created which

can also be relatively strong pinning centres if a vortex aligns with the defect.
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2.3.3 Vortex-vortex interactions

In addition to the Lorentz force and the pinning interaction a third force acting on

vortices is their mutual repulsion.

All high-temperature superconductors known to date, such as YBCO and

Bi2Sr2CaCu2O8 (BSCCO), are layered materials, i.e. superconducting CuO2 lay-

ers alternate with less superconducting layers. A vortex line can be understood as

a coupled line of two-dimensional “pancake” vortices which occupy the CuO2 layers

(Artemenko and Kruglov , 1990, Feigel’man et al., 1990, Buzdin and Feinberg , 1990,

Clem, 1991). The following is a short summary of the different kinds of electromag-

netic interaction between pancake vortices in single and stacked two-dimensional

layers (Clem, 1991, Blatter et al., 1994, pp.1277, Clem, 1998).

2.3.3.1 Two pancake vortices in an isolated superconducting thin film

The energy U(r) of two pancake vortices separated by a distance r =
√
x2 + y2 in

a thin film of thickness d is given by Pearl’s solution (Pearl , 1964)

U(r) =
Φ2

0d

2πµ0λ2
s

(
H0

( r
Λ

)
− Y0

( r
Λ

))
(2.3)

where λs ≈ 1000Å is the London bulk penetration depth, and Λ = 2λ2
s/d ≈ 3 · 105Å

is the two-dimensional thin film screening length. The quoted numbers are charac-

teristic of an YBCO layer and are given to provide a feel for the order of magnitude

of the different lengths. H0 and Y0 are the Struve function and the Bessel function

of the second kind.

The bulk penetration depth, λs relates to the in-plane penetration depth of a

thin layer, λab ≈ 1400Å, via λs = λab

√
d/s, where d ≈ 6Å is the layer thickness

and s ≈ 12Å is the layer spacing. We re-write Λ = 2λ2
ab/s, and introduce

ε0 =
Φ2

0

4πµ0λ2
ab

, (2.4)

with µ0 = 4π · 10−7 Vs
Am

being the vacuum permeability and Φ0 the magnetic flux

quantum. Eventually, we can express the interaction (2.3) strength in terms of ε0

U(r) = 2ε0s
(
H0

( r
Λ

)
− Y0

( r
Λ

))
. (2.5)
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For small and large r, the following approximations hold:

U(r) ∝ − ln
(

r
Λ

)
: r � Λ (2.6)

U(r) ∝ 1
r

: r � Λ. (2.7)

2.3.3.2 Two pancake vortices in one layer in a system of stacked thin films

Due to induced screening currents in the layers above and below the “central” layer

(which holds one pancake vortex), the resulting current distributions are different

from those in the isolated thin film. For the repulsive force between two vortices

in one layer in an infinite system of stacked layers it has been shown (Clem, 1991,

eqn. 27) that the interaction force F (r) is given by

F (r) = 2ε0s
1

r

[
1 − λab

Λ

(
1 − exp

(
− r

λab

))]
. (2.8)

Since λab/Λ ≈ 10−3, this is effectively

Fr(r) =
2ε0s

r
. (2.9)

This corresponds to a potential

U(r) = −2ε0s ln (r) (2.10)

which is logarithmic at all distances, not just for r � Λ as in the isolated thin film

(2.6).

For the electromagnetic interaction of two pancake vortices in different layers

an attractive force is found that is weaker than the in-layer repulsion by a factor of

approximately λab/Λ. We consider this in detail for the studies of three-dimensional

pancake systems in chapter 6.

2.3.3.3 Two stacks of aligned pancake vortices

For aligned stacks of pancake vortices where the magnetic field is perpendicular

to the superconducting planes as shown in figure 2.5 on the following page, the

interaction energy per unit length between two such stacks is found to be

U(r) = 2ε0K0

(
r

λab

)
. (2.11)

K0 is the modified Bessel function of the second kind. Equation (2.11) shows the

same r-dependence as the result derived from the London theory for the interaction

11



B

x

y

s

z

Figure 2.5: A stack of aligned two-dimensional vortex pancakes.

energy of two vortex lines in a continuous medium (Tinkham, 1996, p. 154). In the

latter result λab is given by λs, the isotropic London penetration depth. K0(r/λab)

can be approximated with

K0

(
r

λab

)
=





√
πλ
2r

exp
(
− r

λab

)
: r → ∞

ln
(

λab

r

)
+ 0.12 : r � λ.

(2.12)

In contrast to equation (2.10) the interaction energy drops off exponentially for

large distances. This is due to the weak attraction of pancakes in different layers.

In the remainder of this work, we are dealing with λab rather than λs. We

therefore use λ ≡ λab to shorten our notation.

The other interaction which is important for vortex pancakes is the Joseph-

son coupling of pancake vortices between different layers. This contribution has to

be considered for a complete treatment of layered superconductors (Clem, 1991).

A theoretical model is given by Lawrence and Doniach (1971) which is a discrete

version of the Ginzburg-Landau theory. This has been further investigated by Bu-

laevskii et al. (1992) who found that three- and four-body interactions between

pancakes have to be considered. However, for this work we will restrict ourselves

to the electromagnetic interactions as they alone provide highly complex physics.

This is justified in the quasi-two dimensional case of rigid vortices in thin-films

and for individual layers of pancakes (chapter 5), and it is a fair first approxima-

tion for simulations of three-dimensional loosely coupled materials such as BSCCO

(chapter 6).
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2.3.4 Summary

The vortex state is determined by the relative strengths of the following energies:

• the vortex-vortex interaction which favours a hexagonal lattice,

• the vortex-pinning energy which (generally) introduces disorder and

• the thermal energy which destabilises the lattice further.

The Lorentz force drives the system over the pinning energy surface and this results

in complex vortex dynamics.

2.4 Static vortex phases

2.4.1 The vortex phases without pinning

We have shown the conventional picture of a clean superconductor (i.e. without

pinning) in figure 2.3 on page 8: in the Meissner phase the material shows perfect

diamagnetism, and between the two critical fields Hc1 and Hc2 vortices penetrate

the sample and arrange in a hexagonal lattice. On crossing the upper critical field

Hc2 the vortex cores overlap, and the material becomes normal.

If one considers the hexagonally arranged vortices as “vortex matter” than it

would be plausible to assume that the vortex crystal could melt at a sufficiently

high temperature. This is indeed the case although in conventional superconductors

the melting transition line lies so close to the upper critical field line that they are

virtually indistinguishable (Brézin et al., 1985). It was first predicted by Nelson

(1988) that due to the increased importance of thermal fluctuations, the vortex

melting transition should be observed to be distinct from the upper critical field

line in high temperature superconductors.
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We add thermal fluctuations to the phase diagram and show the result in figure

2.6, which is based on figure 2 from Blatter et al. (1994). The vortex lattice phase

can melt either due to an increase in temperature (in which case thermal fluctuations

destroy long-range order), or the vortex lattice can melt due to a decrease of the

field. In this case the vortex separation becomes large and the interaction between

vortices becomes exponentially weak. This results in a decaying shear-modulus

which softens the lattice until it melts. Note that the figure is not drawn to scale

in order to emphasise the main structures appearing in the diagram, and that the

dilute vortex liquid exists only for a very small range of H. We will not consider

the Meissner phase and the re-entrant liquid phase at very low fields H ≈ Hc1 in

the remainder of this work.

The position of the melting line can be estimated with a Lindemann1 criterion

(Blatter et al., 1994, 1996, Vinokur et al., 1998), but the nature of the transition

cannot easily be determined. The challenge in defining a theoretical scheme de-

scribing vortex-lattice melting follows from the complexity of the vortex system in

real (three-dimensional) superconductors combined with the general lack of exact

theories of melting (Dodgson et al., 2000b). We address this issue in chapter 6

and study the melting transition for a layered system of pancakes that interact

electro-magnetically with each other.

2.4.2 The static phases in presence of pinning

The theoretical treatment of a system of vortices under the influence of pinning

objects is difficult as it is a many-body problem with competing interactions. Due

to the vortex-vortex interaction, the vortices repel each other and try to establish

the hexagonal Abrikosov lattice as introduced in section 2.2. At the same time, the

underlying pinning potential deforms the vortex lattice such that as many vortices

as possible have a low pinning energy. However, this happens at the expense of

increasing the vortex lattice elastic energy by deforming it. The equilibrium vortex

configuration is the one which minimises the sum of the lattice deformation and the

pinning energy.

For random point pinning, Larkin and Ovchinnikov (1979) presented their elastic

theory of collective pinning which describes the distortion of the flux line lattice in

terms of correlation volumes Vc = R2
cLc in which the vortex lattice is reasonably

1The empirical Lindemann criterion (Lindemann, 1910) assumes that a crystalline lattice be-
comes unstable with respect to thermal fluctuations of its constitutive elements (atoms, vortex
lines, etc.) as the mean-squared amplitude of fluctuations <u2> increases beyond a certain frac-
tion cL of the lattice constant a0: <u

2(Tm)>≈ c2La
2
0, where Tm is the melting temperature. The

Lindemann number cL ≈ 0.1− 0.2 depends weakly on the specific material.
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undistorted. The correlation volume has a length Lc in the field direction and

a transverse size of Rc. Rc and Lc are chosen to optimise the trade-off between

pinning and elastic energies. One of the main conclusions is that for less than four

dimensions any small amount of pinning destroys long-range order.

However, several experimental results were difficult to interpret in this frame-

work. For example Bitter decoration experiments for low fields showed remarkably

large regions free of dislocations (Grier et al., 1991). Following work by Nattermann

(1990), Giamarchi and Le Doussal suggested in 1994 that the Larkin-Ovchinnikov

argument may be too simple. They studied the related problem of an elastic pe-

riodic medium submitted to a random potential (corresponding to uncorrelated

pinning), and found that a “Bragg glass” phase could exist for low fields and weak

disordering potentials.

2.4.2.1 Three dimensions

Giamarchi and Le Doussal (1994, 1995) used variational and renormalisation group

techniques to investigate the statics of periodic elastic manifolds in random poten-

tials, such as vortex lines in superconductors. Following the terminology in the

literature, the strength of the random pinning potential is, in short, referred to

as “disorder”. They obtain the following three distinct phases for line vortices in

three dimensions, which are schematically shown in figure 2.7. A dislocation-free

phase with algebraically decaying translational order (i.e. quasi-long-range order)

is predicted to exist for sufficiently weak disorder2 and temperature. In more detail,

the translational order correlation function decays like a power law with distance,

whereas for short-range order it decays exponentially and for a solid it becomes con-

stant for large distances. Although there is no true long-range translational order

2For large ranges of parameter space it can be shown that the relative strength of the disorder
(due to pinning) increases with the magnetic field (Vinokur et al., 1998).
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(as for a perfect lattice with δ-Bragg peaks in the structure factor), the quasi-long-

range order still allows low order algebraically diverging Bragg peaks to be observed

in the structure factor of such a system, and therefore Giamarchi and Le Doussal

called this thermodynamic phase the “Bragg glass” phase. In contrast to a glass in

which no periodic lattice structure is visible, a Bragg glass appears as a deformed

hexagonal lattice, in which all lattice sites have six nearest neighbours. Thus, from

a topological point of view, the Bragg glass is much closer to a solid than a glass, in

which translational order decays exponentially, and topological order is destroyed.

However, it has many meta-stable states and only quasi-long-range translational

order.

For higher fields, Giamarchi and Le Doussal predict an order-disorder transition

to a “pinned vortex liquid” or a “vortex glass” which contains topological defects,

and for temperatures above the melting temperature, a “vortex liquid”.

The phase transition from the Bragg glass to the liquid is predicted to be first

order, whereas the transition from the vortex glass to a liquid is predicted to be

continuous (or second order) (Giamarchi and Le Doussal , 1995).

The results as summarised in figure 2.7 seem to be supported by several ana-

lytical and numerical studies and compare well with the most recent experiments

(for example Kokkaliaris et al., 1999, Klein et al., 2001, and references [47-52] in

Le Doussal and Giamarchi , 1998).

Vinokur et al. (1998) obtained a similar phase diagram using an extended Lin-

demann criterion, where the Bragg glass is referred to as a “quasi-lattice” and the

vortex glass is referred to as an “entangled solid”. The same orders for the phase

transitions are suggested.

2.4.2.2 Two dimensions

The general theoretical belief based on qualitative arguments and simulations (Shi

and Berlinsky , 1991, Blatter et al., 1994, Sec.VIII.D.3) is that no solid phase with

long-range order exists in two dimensions at finite temperatures in the presence

of disorder. However, signatures of melting were observed in experiments in two-

dimensional regimes (Yazdani et al., 1994, Theunissen et al., 1996) although on

large length scales there was no order (Yazdani et al., 1993). This can be explained

by the results of recent theoretical investigations by Carpentier and Le Doussal

(1998) and Le Doussal and Giamarchi (2000) who found that below a length scale

ξD the Bragg glass is stable and that ξD can become arbitrarily large for weak

disorder and low temperatures. On the other hand, it is not even clear whether

the assumptions underlying the theoretical models overestimate the relevance of
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topological defects (Giamarchi and Le Doussal , 1998, Sec.3.5) and there may be a

two-dimensional Bragg glass phase for all length scales.

In summary, there is some evidence that the two-dimensional Bragg glass phase

exists only up to certain length scales, ξD, and not for infinitely large systems, but

the existence of the two-dimensional Bragg glass phase is a subtle issue which cannot

be answered definitely today. However, in either case the two-dimensional situation

is of physical interest, since ξD can be large and, apart from thin-film superconduc-

tors, other two-dimensional physical systems exist such as Wigner crystals (Andrei

et al., 1988) and magnetic bubble arrays (Seshadri and Westervelt , 1992) which

very likely can be described in the same theoretical framework.

2.5 Dynamic vortex phases

Due to the competing interactions (see section 2.3) in the vortex state, vortices

display not only a rich static phase diagram. Also, when being driven by a Lorentz

force in the presence of pinning, a wide range of dynamical behaviour can be ob-

served, including avalanches, stick-slip dynamics, thresholds for motion, nonlinear

and hysteretic response, and plastic and elastic motion.

An important early step concerning the dynamics of the vortex state was made

by Koshelev and Vinokur (1994). Using a molecular dynamics simulation of the

two-dimensional vortex state, they found the “dynamic phase diagram” shown in

figure 2.8. Applying a force to a pinned system of vortices below the melting

temperature of the system results in plastic flow as soon as a critical depinning

force (dotted line) is reached. The term “plastic flow” is defined such that the

nearest neighbours of one vortex change in time. In contrast, after reaching a

second critical force (solid line), the whole system of vortices shows “elastic flow”,

where the nearest neighbours stay the same and the vortices move together in a

coordinated manner. With increasing temperature, the system becomes depinned
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Figure 2.9: Schematic representation of the phase diagram for three-dimensional systems
suggested by Le Doussal and Giamarchi (1998) as a function of disorder strength ∆ and driving
force F (at zero temperature). For weak disorder and a weak driving force, a pinned Bragg
glass phase with quasi-long-range translational order is expected. For larger driving forces,
this depins and becomes a moving Bragg glass. With increasing disorder at low driving forces,
the system transforms into a pinned vortex glass (with topological defects and short-range
order only). Increasing the driving force from the vortex glass regime results in first plastic
flow, then motion in decoupled channels (the moving transverse glass) and for the largest
driving forces, a moving Bragg glass is recovered, in which the separate channels couple. Fc

denotes the depinning force. There are no predictions for the behaviour within the regime of
the grey box.

more easily and the plastic flow regime extends to larger forces. If the temperature

is higher than the melting temperature, the system behaves as a liquid.

For larger driving forces Koshelev and Vinokur observed a dynamical ordering of

the system which is in agreement with other simulation results (Shi and Berlinsky ,

1991, Olson et al., 1998b). They also predicted the existence of a dynamic phase

transition at some characteristic “crystallisation” current. The underlying argument

was that for a strongly driven system the pinning potential is felt as a random force

and that this can be expressed as an effective “shaking temperature” which is

inversely related to the velocity of the system. For large enough driving forces the

system is predicted to crystallise into a perfect lattice.

Recently Giamarchi and Le Doussal (1996) extended their description of the

statics of the vortex state to the dynamics, predicting a “moving” Bragg glass.

Shortly afterwards, Balents et al. (1997) commented on Giamarchi and Le Dous-

sal’s publication, predicting that, in addition to the moving Bragg glass, a moving

“smectic” should exist. They later detailed this (Balents et al., 1998), and their

ideas contributed to the detailed work of Le Doussal and Giamarchi (1998).

2.5.1 Three dimensions

Figure 2.9 shows a schematic sketch of the dynamic phase diagram suggested by

Le Doussal and Giamarchi (1998) as a function of disorder strength ∆ and driving
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along static channels like beads on a string. Vortices in
different channels are coupled and move with the same
average velocity in the horizontal direction. There are
no dislocations in the system.

Figure 2.11: The moving transverse glass. Vortices
move in static channels, but vortices in different chan-
nels can move with different velocities. The channels
are decoupled, and dislocations between different chan-
nels exist.

force F (at zero temperature). For low disorder and weak driving forces the system

is expected to be pinned and to form a Bragg glass as described in the static case

(section 2.4.2.1). For stronger disorder it is expected to be pinned as a disordered

vortex glass, as in the static case. Increasing the driving force in this regime leads

to a plastic flow phase where vortices move more or less independently of their

neighbours. For further increases of the driving force, a moving transverse glass

phase and moving Bragg glass phase are predicted to exist.

2.5.1.1 The moving Bragg glass

For weak disorder or large enough driving forces, a new dynamic phase is predicted

to exist: the “moving Bragg glass”. It is shown schematically in figure 2.10. The

figure shows a two-dimensional cross section of vortex lines, such that each vortex

line is represented by a point. A driving force is acting in the horizontal direction.

The hexagonal vortex system which is free of dislocations is indicated by the dotted

lines connecting nearest neighbours. The vortices move along “static channels”

in the direction of the driving force, which are represented by the solid lines in

the figure. This motion of vortices in the channels is analogous to beads moving

on a string. The static channels are determined by the static disorder and do

not fluctuate in time. They can be visualised in experiments or simulations by

superimposing vortex position images at different times. The channels are the

easiest paths for the vortices to flow, and are determined by a subtle competition

between elastic energy, disorder and dissipation. The channels are correlated in

the vertical direction (perpendicular to the driving force direction), and they are

predicted to be “rough”. This roughness is in contrast to the prediction of Koshelev

and Vinokur (1994) in which straight lines are expected for the vortex paths for

high driving forces. In the moving Bragg glass regime, the vortices in the different
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static channels move with the same average velocity in the direction of the driving

force, and the system retains topological order.

2.5.1.2 The moving transverse glass

In contrast, for smaller driving forces or stronger disorder the “moving transverse

glass” is expected, as sketched in figure 2.11 and first predicted by Balents et al.

(1997). Vortices move along static channels, but the motion between different

channels is not necessarily coupled. The average horizontal velocity can vary from

static channel to static channel such that phase-slips may occur, and thus there

can be topological defects between two channels moving with different velocities.

It is expected in the moving transverse glass that channels are coupled up to a

certain length (perpendicular to the channel orientation), and that phase slips occur

between chunks of such coupled channels. The length scale of coupled channels

increases with the driving force and decreases with the disorder strengths. In the

limit of small pinning or large driving forces, consequently, all channels are coupled,

and the moving Bragg glass is recovered.

In terms of “dynamic Larkin domains” (over which the vortices form a relatively

undisturbed lattice) in the drifting vortex system, the moving transverse glass is due

to a strong anisotropy in the Larkin lengths, R
‖
c -parallel to the driving direction and

R⊥
c -perpendicular to the direction of the driving force (Le Doussal and Giamarchi ,

1998, Scheidl and Vinokur , 1998).

Different names for the Moving Bragg Glass (MBG) and the Moving Transverse

Glass (MTG) are in common use: in the work of Balents et al. (1998) the moving

Bragg glass is termed “moving lattice”, and the moving transverse glass is called

a “moving smectic”. Scheidl and Vinokur (1998) came to similar conclusions for

the dynamic phase diagram as Balents et al. (1998) and Le Doussal and Giamarchi

(1998) using a perturbative approach, and call the moving Bragg glass “coherent

phase” and the moving transverse glass “decoupled channels”.

2.5.2 Two dimensions

In two dimensions it is not clear whether the moving Bragg glass exists as a stable

phase. It seems more likely (Balents et al., 1998, Le Doussal and Giamarchi , 1998)

that the moving transverse glass is the only stable phase, although motion of vortices

in different channels could still couple at high enough driving forces (Le Doussal ,

1999). If one assumes that there is no topologically ordered phase in two dimensions

in the static case (see section 2.4.2.2), then the dynamic two-dimensional phase

diagram is supposed to look like figure 2.12, and so there is no pinned topologically
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Figure 2.13: Numerically obtained dynamic
phase diagram for a two-dimensional vortex-
system (Fangohr et al., 2001a).

ordered state for any finite disorder strength. Above the depinning driving force,

Fc, highly filamentary plastic flow is expected at first, which transforms into a

moving transverse glass for even higher driving forces. Whether the decoupled

static channels that constitute the moving transverse glass couple for large velocities

cannot be decided at present. In the figure no such moving Bragg glass phase is

shown.

Recent two-dimensional Langevin dynamics simulations (Olson et al., 1998b,

Fangohr et al., 2001a) provide phase-diagrams of the dynamic vortex state which

are qualitatively in agreement with figure 2.9 on page 18, for example the data

shown in figure 2.13: there is a vortex glass and a plastic flow phase, the decoupled

channels represent the moving transverse glass phase, and the coherently moving

structure corresponds to the moving Bragg glass phase. The physics at the smallest

pinning strength could not be resolved here: it is not clear whether there is a

static Bragg glass phase at the smallest pinning strengths. The coherently moving
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structure could be a moving Bragg glass, or it could be the decoupled channel

regime in which the channels are so broad that they cover the complete simulation

cell. Thus, it cannot be decided whether the numerical data from a two-dimensional

simulation correspond more closely to the three-dimensional prediction (figure 2.9)

or the two-dimensional prediction (figure 2.12 on the preceding page). However,

the existence of the moving glass phase is confirmed.

2.6 The critical transverse force

Giamarchi and Le Doussal (1996) found that for the moving glass there should

be a finite transverse barrier for a system moving along one of its principal axes

at zero temperature. To investigate this, one drives a system in the moving glass

regime, where it is moving along a principal lattice axis. Once a steady state has

been found and the rough time-independent channels have developed, one applies a

small driving force transverse to the direction of motion. Experimentally, this can

be achieved by applying a small second current transverse to the first current which

drives the system. It is predicted that for small enough transverse driving forces

the system does not leave the static channels. Only for transverse forces exceeding

a critical force, does the system start to move transversely. The expected trans-

verse current–transverse voltage (or equivalently transverse driving force–transverse

velocity) relation is shown figure 2.14.

For zero temperature, it is expected that the system responds non-analytically to

a transverse driving force, such that it is only transversally depinned for transverse

driving forces larger than the critical transverse driving force. In contrast, for finite

temperature the transverse current-voltage characteristic starts for small transverse

driving forces with a linear response in transverse velocity with a small slope, which

depends on the longitudinal velocity of the system. For transverse driving forces
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near to the zero temperature critical transverse force, the curve approaches the

zero-temperature curve.

The transverse critical force is a rather subtle effect, even more so than the

usual longitudinal critical force. It does not exist for a single particle in a random

potential, although a single particle does experience a non-zero longitudinal critical

force. The transverse critical force is a dynamical effect due to barriers preventing

the channels re-orienting. The transverse critical force has been proposed to be the

order parameter of the moving glass phase at zero temperature (Le Doussal and

Giamarchi , 1998). If there is a transverse critical force in a moving state, then

there should be a history dependence in the system.

In numerical work, a critical transverse driving force has been found in two

dimensions (Ryu et al., 1996, Moon et al., 1996, Olson and Reichhardt , 2000), but

to the best of our knowledge, no such experimental results have been published yet.

We address the critical transverse force in chapter 5.

2.7 Summary

The theoretical models introduced here (Giamarchi and Le Doussal , 1996, Balents

et al., 1998, Le Doussal and Giamarchi , 1998, Scheidl and Vinokur , 1998) are the

best description of the statics and dynamics of the vortex state currently available

and increasingly experimental data are interpreted within these frameworks. How-

ever, there are many open questions within these models which cannot be answered

analytically, but have to be investigated experimentally and numerically.

2.8 Applications

Apart from a strong interest in basic research in the (non-equilibrium) statistical

mechanics of (driven) systems with quenched disorder, there is a wide range of

practical applications of high-temperature superconductivity which are currently

used or could be very useful in the future.

Macroscopic superconducting devices are nowadays mainly used to provide strong

magnetic fields for various applications such as medical magnetic resonance imag-

ing (MRI) machines, and for particle accelerators. There are applications such as

non-exploding fault current limiters and superconducting voltage transformers in

the electric power industry.

From a practical point of view, the main challenge is to increase the critical

current in the high-temperature superconductors. The current-carrying capabilities
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are determined by the behaviour of vortex lines, and that is the physical system

under investigation in this thesis.

On a much smaller scale superconducting filters have very high Q-values and im-

prove bandwidths and selectivity of telecommunication receivers. Finally, supercon-

ducting quantum interference devices (SQUIDs) are used to detect magnetic fields of

strengths of a few femto-tesla. This allows magneto encephalography (MEG) mea-

surements of the magnetic fields generated by electric currents in human brains.

Another application of these highly sensitive sensors is non-destructive evaluation

(NDE) of aeroplane wings, wheels and rivets.

Other possible applications of superconductors include high-power cables, mag-

netic levitation, energy storage, very fast digital components and the use of su-

perconducting Josephson junctions to construct qubits for quantum computing.

However, these examples are not practically or economically feasible at the present

time.
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Chapter 3

The Simulation

This chapter describes the computer simulation that has been developed and used

for this work. The central idea is to represent vortices as massless classical particles

that are free to move in a two-dimensional area. Those particles can be identi-

fied with vortex-lines when modelling thin films in which vortices are “stiff”. To

model three-dimensional systems we associate these particles with pancake-vortices,

and use a mean field approach (chapter 6) to account for interactions in the third

dimension.

In section 3.1, an overview of techniques to simulate many-body problems is

given and in section 3.2 these techniques are related to the vortex state, followed

by a detailed description of the simulation software. This includes the derivation of

the central equations of motion in section 3.3 and methods to solve them (section

3.4). In sections 3.5 we describe the boundary conditions and section 3.6 details our

choice of simulation units. Section 3.7 assesses the applicability of the model, and

in section 3.8 the observables to monitor the simulation are introduced. Section 3.9

concentrates on practical aspects of the usage of the simulation software such as the

user interface, and hardware and software requirements. A summary is provided in

section 3.10.

3.1 Computer simulations of many-body systems

Computer simulations have proved to be a valuable tool for problems that cannot be

solved analytically. Numerical solutions are particularly useful for providing results

for specific parameters which are not at all obtainable otherwise.

Following Haile (1997), the simulations used to study many-particle problems

can be ordered from stochastic simulations to deterministic models as shown in

figure 3.1 on the next page.
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Langevin Dynamics

Molecular Dynamics

Force Biased Monte−Carlo

Metropolis Monte−Carlo Figure 3.1: Monte Carlo simulations work
stochastically and molecular dynamics sim-
ulations work deterministically. There are
various techniques that combine both meth-
ods.

Monte Carlo simulations are adopted from general Monte Carlo methods for

solving high-dimensional integrals. In Monte Carlo simulations the integrals of

interest are the statistical mechanics ensemble averages for a property f(rN), for

example in the canonical ensemble:

< f >=

∫
. . .
∫

dr1 dr2 . . .drN f
(
rN
)

exp
(
−U(rN )

kBT

)

∫
. . .
∫

dr1 dr2 . . .drN exp
(
−U(rN )

kBT

) . (3.1)

This is the standard case where the number of particles N , the temperature T ,

and the volume V of the simulation are given. The vector rN has Nd components

when each particle’s position ri has d components, and U(rN ) is the energy of

the system. Since Monte Carlo methods are generally not well suited to study

dynamical quantities, the integration in phase space over the generalised momenta

p1, . . . ,pN has been carried out already in equation (3.1).

Taking the Boltzmann factor exp
(
−U(rN )

kBT

)
into account, it was suggested by

Metropolis et al. (1953) to consider only configurations which contribute most to the

integral. This is known as importance sampling for general Monte Carlo methods

and in the context of Monte Carlo simulations it is referred to as the “Metropolis

algorithm”.

Particle positions are altered by trial moves which are conditionally accepted.

Each new configuration depends only on the previous one and is achieved by moving

one particle a small distance to a new position which is determined by a random

number generator. The configurations encountered in the run of a simulation are

obtained stochastically.
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Molecular dynamics methods can be divided into equilibrium and non-equilibrium

dynamics. Equilibrium dynamics are usually applied in the micro-canonical ensem-

ble to an isolated system with energy E, containing a fixed number of particles

N , in a fixed volume V . However, there exist methods to fix the simulated tem-

perature, which allows investigation of canonical ensembles (for example Rapaport ,

1995). In non-equilibrium molecular dynamics, an external force is applied to the

system to establish non-equilibrium situations of interest. The particles’ positions

are obtained by integrating Newton’s equation of motion. For a set of N particles

with positions ri, the set of equations to solve reads1

mir̈i = Fi (r1,...,N , ṙ1,...,N , t) i = 1, . . . ,N, (3.2)

where mi is the mass of particle i, and Fi is the total force acting on i. The velocity

of particle i is ṙi and r̈i is its acceleration.

To compute a system property f(rN , ṙN), one takes the time average of that

property

< f >= lim
t→∞

1

t

t0+t∫

t0

dt′ f
(
rN(t′), ṙN(t′)

)
. (3.3)

In contrast to the Monte Carlo simulations, it is here easily possible to investigate

dynamical quantities such as transport coefficients and time correlation functions.

According to the ergodicity hypothesis the ensemble average in equation (3.1) and

the time average in equation (3.3) should be the same.

Force biased Monte Carlo methods compute the force exerted from all other par-

ticles on particle i and then move that particle i in this direction. This reduces the

number of trial moves required, but each sweep is computationally more expensive.

Hybrid methods are Monte Carlo simulations that use a sequence of molecular

dynamics steps to generate new random configurations. This ensures that very

different areas in phase space are covered and reduces the number of Monte Carlo

sweeps required to study equilibrium properties of the system.

Langevin dynamics were developed to investigate Brownian Motion (Lenk and

Gellert , 1989, p.537). One studies particles immersed in a continuum, for example a

fluid. Instead of considering all microscopic interactions of all particles establishing

the fluid, one concentrates on one particle and its interactions with the continuum.

The force exerted on the particle by the fluid is broken into two parts: an average

1The following convention is used: the dot notation represents the time derivative: ṙ = dr
dt

and

r̈ = d2
r

dt2
.
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viscous force −ηṙi and a random force χ(t) whose time average is zero (Kubo et al.,

1985, p.14). The equation of motion for particle i is

mir̈i = −ηṙi + χi + F′
i, (3.4)

where F′
i represents all forces not covered in the other two terms. The macroscopic

frictional force represents an averaged value of many microscopic interactions. In

cases where inertial effects are small, the mass mi of the particles can be set to zero.

That reduces the system of differential equations of second order in (3.4) to a system

of first order equations which are occasionally referred to as the “overdamped”

Langevin equations of motion because the absence of the inertial term causes the

motion to be overdamped.

3.2 Methods to simulate the vortex state

The most direct method to investigate the vortex state is to solve the (time-

dependent) Ginzburg-Landau differential equations numerically to obtain solutions

for the complex valued order parameter ψ and the magnetic vector potential. The

set of coupled non-linear partial differential equations can be solved on a discrete

grid, as demonstrated for example by Braun et al. (1996), Gropp et al. (1996) and

Aranson and Vinokur (1998). On the one hand this approach does not simplify

the physical situation, but on the other hand it is computationally very demanding

since it requires many grid points to resolve even a single vortex.

Another starting point is to treat vortices as structureless point- or string-like

objects. Each of the areas in which the superconducting order parameter ψ drops

to zero is mapped to such an object, which is then considered as being a classical

particle. To compute the interactions between these classical particles one uses

effective interaction potentials (for example Clem, 1991, Bulaevskii et al., 1992).

The price which has to be paid for decreasing the computational complexity is

that the small length scale ξ is lost and phenomena like pinning, vortex-anti-vortex

creation or flux cutting do not come intrinsically with these models, but have to

be implemented by other means. To study the statics of the vortex state, Monte

Carlo simulations can be used (for example Täuber and Nelson, 1995, Yates et al.,

1995, Ryu and Stroud , 1996), whereas to study the dynamics, Langevin dynamics

methods are required (for example Brass et al., 1989, Koshelev and Vinokur , 1994,

Grønbech-Jensen et al., 1996, Groth et al., 1996, Moon et al., 1996, Ryu et al.,

1996, Spencer and Jensen, 1997, Olson et al., 1998a, Wilkin and Jensen, 1997b,a,
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van Otterlo et al., 1998, Kohandel and Kardar , 1999). Here, we follow this approach

and use Langevin dynamics to study the static and dynamic behaviour of vortices.

Parts of this work are applicable to particle simulations in general and not

limited to vortex state simulations. Therefore, we frequently use the term “particle”

instead of “vortex”.

In addition to the methods described above, there are other approaches to simu-

late the physics of the vortex state. These range from xy-models (for example Li and

Teitel , 1994, Nguyen and Sudbø , 1999) to the solving of a coarse grained equation

of motion for the displacement field (Aranson et al., 1998), investigating a disor-

dered array of Josephson junctions (for example Domı́nguez , 1999), mapping vortex

lines to bosons (for example Nordborg and Blatter , 1997) and combination of meth-

ods, such as the London-Langevin method coupled to solving the time-dependent

Ginzburg-Landau equation (Bou-Diab et al., 2001).

3.3 Equation of motion

The terms in the equation of motion that influence the behaviour of each vortex

are the viscous force and a stochastic term from the Langevin equation (3.4), the

vortex-vortex interaction, the Lorentz force, and pinning forces. Each of these will

be presented in detail in the following subsections.

3.3.1 Overdamped Langevin dynamics

The Langevin dynamics as introduced in section 3.1 form the physical basis of this

simulation. The flux motion is strongly overdamped since the viscous force is much

greater than any possible inertial forces (Brandt , 1995, Sec. 5.2) and the vortex

mass can be ignored. The mass term mi on the left-hand side of equation (3.4) is set

to zero and the remaining Langevin equation for vortex i reads (with χi = Fthermal
i ):

0 = −ηṙi(t)+Fvv−interaction
i (r1(t), . . . , rN(t))+Fdrive(t)+Fthermal

i (t)+Fpinning(ri(t)).

(3.5)

The terms represent from left to right: the viscosity term, the forces from the

vortex-vortex interaction, the drive or Lorentz force acting on all vortices equally,

the noise term which introduces temperature, and the pinning force which depends

on the position of the vortex.

3.3.2 Viscosity

The viscosity, η, of the vortex state is related to the Bardeen-Stephen expression for

flux-flow resistivity in a homogeneous material (see section 2.3.1 on page 8). The
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viscous drag coefficient per volume is

ηvolume ≈
BBc2

ρn
. (3.6)

Considering that the magnetic induction, B, is represented by N vortices, each

carrying a flux quantum Φ0 over the area A, leads to B = NΦ0/A. Equation (3.6)

can be converted into the viscosity per vortex per unit length η1
length = ηvolume

N
A ≈

Φ0Bc2

ρn
. The viscosity η in equation (3.5) is given by the viscosity per (pancake) vortex

which for a (pancake) vortex of length s is

η = η1
lengths =

Φ0Bc2

ρn
s. (3.7)

3.3.3 Vortex-vortex interaction

The energy U and force F per unit length of interacting stiff vortex lines separated

by a distance r is (see section 2.3.3)

Uline(r) = 2ε0K0

( r
λ

)
⇐⇒ Fline(r) =

2ε0
λ
K1

( r
λ

)
(3.8)

and the interaction energy and force between pancakes in the same layer is effectively

(see section 6.2 for details)

Upancake(r) = 2ε0s ln

(
λ

r

)
⇐⇒ Fpancake(r) =

2sε0
λ

1

r
(3.9)

where ε0 =
Φ2

0

4πµ0λ2 , λ is the London penetration depth, and s is the layer separation.

For simulations of isolated thin-films, the vortex-vortex interaction is given by

Pearl’s solution (2.3).

We have implemented all three relevant interactions ( ln, K0 and Pearl’s solu-

tion), and the interaction potential can be chosen in the configuration file (section

3.9.2.1). We use the smooth cut-off as described in chapter 4 to overcome problems

resulting from truncating the interaction.

Using, for example the logarithmic interaction potential (3.9), the vortex-vortex

interaction force Fvv
ij felt by pancake i from pancake j at positions ri and rj, re-

spectively, reads

Fvv
ij (ri − rj) = 2ε0s

1

|ri − rj|
ri − rj

|ri − rj|
= 2ε0s

ri − rj

|ri − rj|2
, i 6= j. (3.10)
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Antisymmetry of Fvv can be used to optimise its computation. The total force

acting on pancake i is given by

Fvv−interaction
i =

N∑

j=1
j 6=i

Fvv
ij (ri − rj). (3.11)

For practical computation, the chosen boundary conditions and a cut-off must be

taken into account, as explained in section 3.5.

3.3.4 Lorentz force

The Lorentz force per unit length fL = j×Φ0 acts equally on every vortex (assuming

a homogeneous current density). Symbols are as in equation (2.1). The Lorentz

force acting on vortices of length s is given by

Fdrive(t) = s j × Φ0. (3.12)

3.3.5 Temperature

The thermal motion of a particle i in equilibrium overdamped Langevin dynamics

(section 3.3.1) described by

0 = −ηṙi + ζi(t) (3.13)

is given by a stochastic noise term which, for clarity, is here called ζi(t) to distinguish

it from χi(t) which is used in the simulation. ζi(t) must be normally distributed

and have the properties (Chaikin and Lubensky , 1995, p.381)

< ζi(t) > = 0 (3.14)

and

< ζi(t)ζj(t
′) > = 2ηkBTδijδ(t− t′) (3.15)

where η is the viscosity as in equation (3.13), kB the Boltzmann number and T the

effective temperature in Kelvin. The angular brackets indicate time-averages in the

context of Langevin simulations. Thus, the average of the force from the noise term

acting on each particle is zero, and it is neither correlated in time, nor for different

particles.

The noise term, χ, chosen in the simulation is

χ(t) = σΨ (3.16)
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where Ψ(t) is normally distributed with variance 1.0 with σ as a measure of tem-

perature. It follows that

< χ2 > = σ2. (3.17)

To relate σ to the effective temperature, T , one has to consider that the differen-

tial equation of motion is solved discretised in time. This means that high-frequency

components of the stochastic term, ζ(t), are ignored and that χ(n∆t), n ∈ IN, rep-

resents the average of ζ(t) over a time step ∆t. Therefore, one has to consider the

correlations of the impulses rather than the forces ζ and χ:

〈∫ t+∆t

t

∫ t′+∆t

t′
ζ(t)ζ(t′)dtdt′

〉
=

∫ t+∆t

t

∫ t′+∆t

t′
< ζ(t)ζ(t′) > dtdt′

(3.15)
=

∫ t+∆t

t

∫ t′+∆t

t′
2ηkBTδ(t− t′)dtdt′

= 2ηkBT

∫ t+∆t

t

dt = 2ηkBT∆t (3.18)

and for χ we obtain
〈∫ t+∆t

t

∫ t′+∆t

t′
χ2dtdt′

〉
(3.17)
= σ2(∆t)2. Now the last two ex-

pressions can be equated to relate the effective temperature, T , to the temperature

parameter, σ, in the simulation:

T =
∆t

2ηkB

σ2. (3.19)

We will later express forces in multiples of f0
(3.32)
= 2ε0s/Lscale and the time-step

∆t in units of tscale
(3.35)
= Lscaleη/f0 and denote dimensionless parameters with a

tilde (section 3.6). Eventually we use σ =
√
T̃ f0 where T̃ is the dimensionless

temperature parameter in the simulation, and relates to the real temperature, T ,

via

T =
∆tf 2

0

2ηkB
T̃ =

tscale∆̃tf
2
0

2ηkB
T̃

(3.35)
=

∆̃tLscalef0

2kB
T̃

(3.32)
=

ε0s∆̃t

kB
T̃ . (3.20)

3.3.6 Pinning forces

The values of the pinning potential are stored on a fine two-dimensional grid, and

we interpolate to obtain potential values between the grid-points. In this section

we describe technical details of this interpolation, and have chosen a point like pin

on a very coarse grid for demonstration purposes. The physical pinning potential

we employ in the simulations is described in section 5.3 on page 70.
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Figure 3.2: Demonstration of pinning potential interpolation. Left: Original pinning data
as stored in file, showing − exp(−r2). For demonstration purposes we have chosen the mesh
to be very coarse in order to better visualise the interpolation process. For intermediate
positions we interpolate the pinning data. Middle: Bi-linear interpolation. Right: Bi-cubic
interpolation.

-1 -0.5 0 0.5 1 1.5
x

-1

-0.8

-0.6

-0.4

-0.2

0

pi
nn

in
g 

po
te

nt
ia

l

bi-linear interpolation
bi-cubic interpolation
stored pinning data

-0.2 -0.1 0 0.1 0.2 0.3
x

-1

-0.9

-0.8

-0.7

-0.6

pi
nn

in
g 

po
te

nt
ia

l

linearly
interpolated
pinning
particle’s
positions

Figure 3.3: Left: Comparison of linear interpolation (dashed line) and cubic interpolation
(solid line) between the defined potential values (circles). The cubic interpolation results in
a smooth minimum at x = 0, but overshoots, for example, at 0.5 < x < 1 thus creating an
artifical barrier. Right: Bi-linear interpolation of the pinning potential. Artificial behaviour
can occur on a small scale: Suppose a particle drops into a pinning well, which is as crudely
approximated as shown here. In the absence of other forces it will oscillate around the minimum
in the pinning potential.

To compute potential values between the grid-points, we use either a bi-linear

or a bi-cubic interpolation method. The bi-cubic method results in a smoother

potential. We demonstrate this in figure 3.2.

In figure 3.3 we show a one-dimensional cut through a pinning potential. On the

left plot, we demonstrate the difference between the two interpolation techniques

for an even coarser pinning potential. It can be seen that the cubic method results

in a smooth line, but overshoots. The right plot shows a problem that can occur

from using linear interpolation: a trapped particle may oscillate artificially around

its equilibrium position.

The overshooting of the cubic interpolation is due to the discontinuity of the first

derivative at x = ±0.5, and this problem is unlikely to happen for realistic pinning
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potentials: the vortex core smears pinning over a length scale ξ and the pinning

potential should reflect this and therefore vary smoothly. Therefore, the cubic

interpolation is the safe method to describe a smoothly varying pinning potential,

but for sufficiently fine pinning meshes, the linear interpolation produces the same

results.

To obtain the force Fpinning(ri(t)) for vortex i at position ri(t) one needs the neg-

ative gradient of the pinning potential which we compute numerically. We measure

the strength of a pinning potential by the root-mean-square value of its force

F vp
rms =

(∫
d2r |Fvp(r)|2

) 1
2

. (3.21)

3.3.7 The complete equation of motion

Having considered all the forces contributing to the equation of motion, one obtains

the following system of N two-dimensional first order ordinary differential equations

which describes the motion of vortex pancakes with time in one layer:

ηṙi(t) = Fvv−interaction
i (r1(t), . . . , rN(t)) + Fdrive(t) + Fthermal

i (t) + Fpinning(ri(t))

= 2ε0s

N∑

j=1
j 6=i

ri(t) − rj(t)

|ri(t) − rj(t)|2
+ s · j(t) × Φ0 + Fthermal

i (t) + Fpinning(ri(t))

i = 1, . . . , N and (r1(t0), r2(t0), . . . , rN(t0)) = (r0
1, r

0
2, . . . , r

0
N)

(3.22)

The constants η and ε0 are defined in equations (3.7) and (2.4), respectively, s is

the length of a vortex, j is the current density of the transport current, Φ0 is the

flux quantum directed along the magnetic field perpendicular to the layer, and the

r0
i are the initial positions of the pancakes at time t = t0.

3.4 Solving the equation of motion

The problem to be solved as given in equation (3.22) is an initial value problem for

a coupled set of 2N ordinary first order differential equations. Each equation can

be written as
dx

dt
(t) = f(t, x) with x(t0) = x0. (3.23)
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Integrating equation (3.23) from time tn to time tn+1 yields

x(tn+1) = x(tn) +

tn+1∫

tn

f(t, x(t)) dt. (3.24)

This converts the problem into solving an integral. Integration methods with vary-

ing step size ∆t = tn+1 − tn cannot be used, because a changing step size would

change the effective temperature, as visible in equation (3.19).

In principle, there are a variety of methods available to integrate equation (3.24).

Most of them can quickly be dismissed for the reason that the most expensive

part of the computation is the evaluation of the right-hand side of equation (3.24).

Therefore, any method requiring more than one such calculation per time step is

wasteful, unless it can deliver a proportionate increase in the step size ∆t. However,

due to the strongly repulsive force for vortices approaching each other closely, there

is an effective upper bound for ∆t (Rapaport , 1995, p.57).

For this reason, in molecular dynamics simulations only “predictor-corrector”

methods or low order “leap-frog” methods play important roles (Haile, 1997, p.158).

Predictor-corrector methods use information from several previous time steps to ap-

proximate the function to integrate by a polynomial, but cannot be used in Langevin

simulations as the noise term, Fthermal, in (3.22) introduces discontinuities in the

right-hand side of (3.24) and the predictor-corrector method relies on f(t, x(t)) be-

ing a smooth and continuous function. The typical leap-frog integration employs a

simple Euler-integration step for both the velocity and the positions, but computes

velocities and positions on a staggered grid in time. The leap-frog method is very

stable.

We use a leap-frog type integration scheme which is equivalent to Euler’s method

since we have no second order derivative in (3.22). For zero-temperature runs,

predictor-corrector methods can be employed, but one has to reduce the time step

size in comparison to the leap-frog method to make them stable, and the gain in

accuracy is not worth the effort: Rapaport (1995, p.57) states that a high degree

of accuracy in the trajectories is neither a realistic nor a practical goal, and this

is particularly true for differential equations with a stochastic term. It is more

important that time- and space-dependent correlations can be reproduced. For fi-

nite temperatures in our simulations, predictor-corrector methods are intrinsically

unstable as they are based on the assumption that the right-hand-side of the differ-

ential equation (3.22) can be described by a polynomial. In particular, this requires
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Figure 3.4: Left: Initial hexagonal vortex configuration. Right: Final configuration after
relaxation from configuration shown on the left, using hard boundaries. Due to the strong
repulsion, vortices gather at the boundary and the vortex distribution is spatially inhomoge-
neous. Note, that the apparent thick line around the simulation cell is in fact composed of
overlapping circles which represent the vortices at the system’s boundary.

continuity which is not given with the randomly varying Langevin noise term.

3.5 Boundary conditions

One simple form of boundary conditions are “hard” boundary conditions: we con-

fine the vortices inside the simulation cell and do not to allow them to cross the

boundary. Results of such a run starting from a hexagonal vortex distribution are

shown in figure 3.4. The hexagonal configuration is unstable, and the majority

of vortices moves to the borders because there is no repulsion from outside the

simulation cell.

We are generally interested in the case where the vortex density stays approx-

imately constant. In particular, we would like the hexagonal configuration to be

the ground state and therefore stable. This is easily achieved by the conventional

approach of using periodic boundary conditions, (next section 3.5.1). In section

3.5.2, we present a second method that allows us to use hard boundary conditions

and to achieve a spatially homogenous vortex density. We extend this, and show

how any desired vortex density can be achieved.

3.5.1 Periodic boundary conditions

The standard approach in particle simulations in order to avoid the influence of

surfaces on the system is to use periodic boundary conditions (for example Rapaport ,
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Figure 3.5: Periodic boundary conditions within
the planes. The primary cell is surrounded by eight
image cells (A to H) of itself. One vortex and all its
mirror images are drawn in the lower right corner
of the simulation area. Also, the cut-off range for
the computation of the interaction force of this
vortex with all other vortices is indicated by the
dotted circle.

1995, p.16). A system of infinite size is simulated by tiling space with an infinite

array of identical copies of the finite simulation region, as indicated in figure 3.5

for only eight copies. There are two different approaches how to deal with particle-

particle interactions across the border of the simulation cell:

• The cut-off method cuts off the interaction at some distance shorter than half

the length of the simulation cell. This avoids self-interaction of particles. For

long-range forces this approach can give misleading results (see chapter 4).

• The infinite lattice summation takes into account the interaction of the par-

ticles with all particles in all infinite repeats of the simulation cell in order to

evaluate forces and energies. Every particle interacts with all its mirror im-

ages which is only feasible if the infinite double sum can be simplified. This

method can impose an artificial periodicity onto the system, and is usually

computationally more complex than the cut-off approach.

Both methods will be discussed in detail in chapter 4, where we demonstrate

that long-range potentials have to be cut-off smoothly, and where we derive a fast

method to compute an infinite lattice summation for particles interaction with the

Bessel function potential K0(r). In addition, we have implemented the infinite

lattice summation for logarithmic interaction which was developed by Grønbech-

Jensen in 1996.

In principle, any space-filling convex region can be used as the shape of the

primary cell. We have chosen a rectangular simulation cell with lengths Lx and Ly

being commensurate with a hexagonal lattice to avoid frustration of the system.

Other shapes can be used, but provide no advantage (section 4.3).

3.5.2 Hard boundary conditions

For some applications it is desirable not to use periodic boundary conditions. For

example, vortex positions can be used as nodes for a finite-element mesh where
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Figure 3.6: Using vortex dynamics to create finite-element meshes. The potential on the left
has been used as a “pinning” potential to generate the vortex distribution shown on the right.
The vortex density varies spatially, while the mesh maintains a high regularity. We annealed
from a liquid system to zero temperature and have used periodic boundary conditions.

the edges are constructed using a Delaunay triangulation of the nodes. The finite-

element community requires meshes with a high degree of regularity in order to

minimise the numerical error when solving differential equations on the mesh. Reg-

ularity usually means that (for unstructured meshes in 2 dimensions) the angles of

the triangles should be as close as possible to 60 degrees. This is not trivial as the

node-density is required to vary spatially, and the varying node density leads to

dislocations. We have shown that such meshes can be created by vortex-dynamics

simulations and that they exceed the quality of meshes generated with other avail-

able techniques (Molinari, Fangohr, Generowicz and Cox , 2001). An example of a

finite-element mesh generated using vortex dynamics is shown in figure 3.6.

In this case one would like not to depend on periodic boundary conditions, and

to be able to vary the density of the vortices as a function of their position. We

have developed a way to achieve both targets: hard boundaries and a varying node

density.

3.5.2.1 Spatially constant average vortex density

We start by showing how a constant (spatial) average vortex density can be achieved

without using periodic boundary conditions. The underlying problem is that vor-

tices repel each other strongly, and will therefore push each other towards the

boundaries of the simulation cell (figure 3.4). We compensate for this by assuming

a homogenous anti-vortex distribution within the cell. This is equivalent to having

a homogenous vortex distribution outside the simulation cell, which keeps the vor-

tices homogeneously spread within the cell. The effect of these virtual vortices is

represented by an extra “pinning” potential which will be added to the Hamiltonian

like the pinning potential. In the framework of force computations, the forces from

the extra potential have to be added to the equation of motion (3.22).
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Figure 3.7: Left: Potential Û(r) required for hard boundaries. Right: Final vortex distribution
after relaxation from hexagonal lattice (as shown in figure 3.4) using hard boundary conditions
in the presence of Û(r). The hexagonal lattice is mainly undistorted, only close to the left
and right boundaries some deformation took place.

Suppose vortices interact with an interaction potential f(r) in a rectangular

simulation cell of size LxLy. We compute the potential Û(r) experienced at position

r when interacting with a (hexagonally distributed) set of anti-vortices j at positions

rj:

Û(r) = −
∑

j

f(r − rj)

This will favour vortices at positions rj (we assume the same number of vortices

and anti-vortices). We rewrite

Û(r) = −
∫

d2r′ ρ(r′)f(r − r′) with ρ(r′) ≡
∑

j

δ(r′ − rj) (3.25)

and smear each anti-vortex over the area it occupies

Û(r) ≈ −
∫

d2r′ ρ̄ f(r − r′) with ρ̄ ≡ 1

LxLy

∫
d2r′

∑

j

δ(r′ − rj)

(3.26)

i.e. ρ̄ is just the average (anti) vortex density. Using (3.26) we numerically compute

the potential Û(r) which will (in the absence of any other pinning) result in vortices

being distributed homogeneously in the simulation cell without the need to use

periodic boundary conditions. We demonstrate this in figure 3.7.

3.5.2.2 Spatially varying average vortex density

Equation (3.26) can be read as a convolution of the interaction f(r) with the re-

quired vortex density ρ(r) in the special case of ρ(r) = const. However, we can
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simply write

Û(r) = −
∫

d2r′ρ(r)f(r− r′) (3.27)

which provides a pseudo pinning potential Û(r) which result in a vortex density

distribution following ρ(r).

The hard-boundary techniques described here have been used by us (Molinari

et al., 2001, Grigorenko et al., 2002) and independently discovered and used by

Daniel Shantsev (Johansen et al., 2002).

3.6 Simulation units

It is advisable to scale variables in the simulation such that resulting numbers

are of the order of unity: firstly, numerical overflow and underflow have to be

avoided. Secondly, scaling can simplify tracking down errors because humans are

better in working with number of the order of unity rather than big or small numbers

that have to be expressed with exponents. Finally, universal parameters can be

identified: it may turn out (by investigating the equations) that some parameters

of the problem are irrelevant for the computation, and that numerical results can

be scaled afterwards with these parameters.

We label quantities expressed in dimensionless simulation units with a tilde, and

introduce scaling factors Lscale for length and tscale for time such that

r = Lscaler̃ and t = tscalet̃. (3.28)

We express equation (3.22) schematically as

dri

dt
= vi =

1

η
(Fvv−interaction

i + F
pinning
i + Fthermal

i + Fdrive) (3.29)

with (rij representing the displacement of vortex j from vortex i, and rij = |rij|)

Fvv−interaction
i

(3.11)
=
∑

j 6=i

Fvv
ij (rij)

(3.10)
=
∑

j 6=i

2ε0s
1

rij

rij

rij
. (3.30)

We introduce the scaling length Lscale into Fvv
ij given in (3.10)

Fvv
ij (rij) = 2ε0s

1

rij

rij

rij
=

2ε0s

Lscale

1

r̃ij

r̃ij

r̃ij
≡ f0r̃ij

r̃ij

r̃ij
= f0F̃

vv
ij (r̃ij) (3.31)
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which defines our unit of force, f0, as the repulsion two vortices experience when

they are separated by Lscale:

f0 = |Fvv
ij (Lscale)| =

2ε0s

Lscale

(2.4)
=

Φ2
0s

2πµ0λ2Lscale
. (3.32)

Using

vi =
dri

dt
=
Lscale

tscale

dr̃i

dt̃
=
Lscale

tscale
ṽi (3.33)

we rewrite (3.29) as

dr̃i

dt̃
= ṽi =

tscale
Lscale

f0

η

(
F̃vv−interaction

i + F̃
pinning
i + F̃thermal

i + F̃drive
)
. (3.34)

We fix the time-scale tscale by requiring

tscale
Lscale

f0

η
= 1 ⇐⇒ tscale =

Lscaleη

f0
. (3.35)

We choose

Lscale = λ (3.36)

but any length of the order of the vortex-spacing would suffice. We thus get a

dimensionless equation of motion in which all terms are of the order of unity:

dr̃i

dt̃
= F̃vv−interaction

i + F̃
pinning
i + F̃thermal

i + F̃drive. (3.37)

Table 3.1 shows some typical values for YBa2Cu3O7−δ materials, and table 3.2

shows the resulting scaling factors for a simulation using those values. Our choice

for the scaling parameters and the resulting natural length, Lscale, and time, tscale,

are in line with other simulations (Ryu et al., 1996, van Otterlo et al., 1998).

3.6.1 Smallness of time step

The time scale of the simulation is given by tscale. It turns out that for a typical

field B = 1T, a time step of ∆t ≤ 0.005 tscale has to be used to obtain accurate and

stable solutions of the system of differential equations in equation (3.37). This is

due to the diverging repulsive vortex-vortex interaction term. If the step size is too

large, then vortices come too close to each other and will shoot off in the next time

step because they feel a large repulsive force. The smallness of the time step (in real

units about 0.5 picoseconds) is, in fact, a common feature of molecular dynamics

simulations of microscopic systems (Allen and Tildesley , 1989, p.155, and Haile,
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parameter symbol comment approx. value

YBCO:

anisotropy Γa 5 - 7

penetration depth (parallel to layers) λ 1400Å

coherence length ξ 15Å

layer spacing s 12Å

upper critical field Bc2 at T = 90K 6T

superconductivity transition Tc at B = 0T 93K

normal state resistivity ρn 10−6Ωm

pancake viscosity (3.7) η 1.4 · 10−17kg/s

BSCCO:

anisotropy Γa 50-200

penetration depth parallel to layers λ 1400 − 2000Å

coherence length ξ 20 − 40Å

layer spacing s 15Å

superconductivity transition Tc at B = 0T 110K

Other entities:

Planck’s constant h 2π~ 6.6 · 10−34Js

electron charge e 1.6 · 10−19C

flux quantum Φ0
h
2e

2.1 · 10−15Tm2

vacuum permeability µ0 4π10−7 Vs
Am

vortex lattice spacing a0 a0 =
√

2Φ0√
3B

at B = 1T:

a0 ≈ 500Å

Table 3.1: Typical values for YBa2Cu3O7−δ and Bi2Sr2CaCu2O8 compounds (Blatter et al.,
1994, Tinkham, 1996, Gordeev , 2000) and some physical constants.
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name relation factor typical value (YBCO)

Scaling factors

length (3.36) r = Lscaler̃ Lscale = λ 1400Å

time (3.35) t = tscalet̃ tscale = Lscaleη
f0

9.1 · 10−12s

velocity v = Lscale

tscale
ṽ Lscale

tscale
= f0

η
1.5 · 104m/s

force (3.32) F = f0F̃ f0 = 2ε0s
λ

2.2 · 10−13N

energy E = e0Ẽ e0 = Lscalef0 = 2εos 3 · 10−20Nm ≈ 0.2eV

temperature (3.20) T = T0T̃ T0 =
∆tf2

0

2ηkB
= ε0s

�

∆t
kB

5.6K

Gamma (6.1) Γ = Γ0

T̃
Γ0 = 2

�

∆t
400

Other factors

ε0 (2.4) ε0 =
Φ2

0

4πµ0λ2 1.3 · 10−11N

time step ∆̃t 0.005

Table 3.2: Typical values for simulation scaling factors using physical parameters given in
table 3.1, and some other factors used.

1997, p.163). This limits quantitative simulations to time scales ≈ 0.1µs, since

about one million time steps can be computed in reasonable time (for B = 1T).

The main problem in quantitative high-temperature superconductor simulations

of the vortex state is that the critical Lorentz force, Fc, required to depin the

system can be very small, for example in comparison to the force F drive
j0 exerted by

the Cooper-pair depairing current j0 = Φ0/(3
√

3πλ2
abξµ0) ≈ 3 · 1012Am−2 (Brandt ,

1995, Sec 1.1). Whereas at low temperatures for YBCO the ratio Fc/F
drive
j0 is of the

order of jc/j0 ≈ 0.01 (Higgins and Bhattacharya, 1996), it becomes much smaller for

larger temperatures. At liquid nitrogen temperature the depinning current density

is of the order j = 105Am−2 corresponding to Fc/F
drive
j0

≈ 3 · 10−8. For a driving

force F drive = 3 ·10−8F drive
j0 the resulting free flow velocity is so small that the vortex

system travels less than one lattice spacing a0 within 0.1µs.

In simulation units the de-pairing drive is2 F̃ drive
j0 ≈ 30. The smallest (transverse)

forces investigated in this work are of the order of 10−4f0 and the largest forces are

8f0 corresponding to 3 · 10−6F̃ drive
j0 and ≈ 0.25F̃ drive

j0 , respectively.

In computer simulations of the vortex state, Lorentz forces which are signifi-

cantly larger than realistic for high temperatures are employed to compensate for

the smallness of the time interval (for example Olson et al., 1998a, van Otterlo

et al., 1998). Accordingly, there is a tendency to choose the strength of the pinning

potential to be too big to allow investigation of the depinning transition.

2F̃ drive
j0

= F drive
j0

/f0
(3.12)
= |j0 ×Φ0s|/f0 = . . . = 2Lscale/(3

√
3ξ)
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In other areas of research using molecular dynamics techniques similar problems

exist. Two examples are simulations of protein unfolding, in which unphysically

high temperatures are used to trigger the reaction to happen within the simulation

time window (Tirado-Rives and Jorgensen, 1993), and computations which model

the stretching of a dextran molecule due to an atomic force microscope (AFM), in

which the simulated pulling force used is nine orders of magnitude larger than in

the experiment (Rademacher , 1999).

In summary, whereas the low-temperature regime can be simulated with quan-

titatively reasonable parameters, this is not possible for the dynamics in the high-

temperature regime. This is due to the small time window a computer simulation

can cover.

3.7 Limits of model applicability

The described simulation is a model of a set of classical repelling massless point-like

particles under the influence of thermal fluctuations, a driving force, and an under-

lying potential in two dimensions. This can be related to the vortex state in high-

temperature superconductors in two-dimensional (thin-films, stack of superconduct-

ing layers) and quasi-two-dimensional systems (rigid vortices) with and without pin-

ning, and at zero and finite temperatures. Using the substrate model (chapter 6)

we can also study a three-dimensional layered system in the high anisotropy limit of

zero Josephson coupling with electromagnetic interlayer interactions. Our simula-

tion can also be related to the classical two-dimensional one-component plasma (de

Leeuw and Perram, 1982, Caillol et al., 1982, Choquard , 1983) in which electrons

experience the same logarithmic repulsion. In the context of the vortex state we

mention two limitations:

• The use of classical particles to represent vortices makes it impossible to

include phenomena such as vortex-anti-vortex pair creations. Of course, the

breakdown of superconductivity at too high a field or too high a temperature

cannot be simulated either. Therefore, the simulation should not be applied

to regimes near the upper or lower critical field.

• Quantitative simulations of dynamic systems are restricted by the smallness of

the time scale that can be simulated (subsection 3.6.1). However, the number

of computer simulations being subjected to the same or similar restrictions and

still providing great insight into physical concepts encourages the belief that

the results are qualitatively correct, even if driving forces which are artificially

large have to be used.
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3.8 Observables

3.8.1 Positions and velocities

The governing equation of motion (3.22) automatically provides velocities and po-

sitions of all vortices as a function of time, and we can compute the “centre of

mass”-position and velocity of the system

rcm(t) =
1

N

N∑

i=1

ri(t) and ṙcm(t) =
1

N

N∑

i=1

ṙi(t). (3.38)

Periodic boundary conditions are considered in the computation of the centre of

mass, i.e. a vortex leaving the simulation box to the left and re-entering from the

right will not result in a discontinuity in rcm(t).

3.8.2 Energy

The energy of the system consists of the electromagnetic interaction between vor-

tices (section 2.3.3), and the energy gain from the pinning surface. There is no

kinetic energy since the inertial mass is zero.

3.8.3 Mean square displacement

The running mean square displacement

∆r2(t) =
1

N

N∑

i=1

[ri(t) − ri(t0)]
2 (3.39)

can be used to distinguish between a solid and a liquid state of the system. For a

solid, ∆r2(t) remains nearly constant, whereas for a fluid it increases almost linearly

with time (Haile, 1997, p.209).

3.8.4 Structure factor

The structure factor as the Fourier transform of the local density ρ(r) =
N∑

l=1

δ(r−rl)

for a set of N discrete particles reads

S(k) =

∫
dr

N∑

l=1

δ(r− rl) exp(−ik·r) =
N∑

k=l

exp(−ik·rl). (3.40)

This can be evaluated numerically for every required value of k. An alternative

approach to compute S(k) for many k, is to define a coarse grained density function

ρ̃(r) based on a two-dimensional grid with suitable spatial resolution and equidistant

grid points and then to use a discrete two-dimensional fast Fourier transform (Frigo
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and Johnson, 1998) to obtain S(k). The latter method is more efficient if we require

S(k) for many k.

3.8.5 Delaunay triangulation

The Delaunay triangulation for a set of points in a plane can be defined as in

de Berg et al. (1997, p.188): “A triangulation of a set of points P is the Delaunay

triangulation if and only if the circumcircle of any triangle (going through the three

points of the triangle) in the triangulation does not contain any further points of P in

its interior.” The Delaunay triangulation is unique, if points are not co-circular, i.e.

four particles must not be located on a circle. The Delaunay triangulation allows

easy visualisation of the lattice structure of a set of particles and also provides

further topological data such as the nearest neighbours.

We have used the “Quickhull”-routine in order to obtain Delaunay triangulations

of vortex positions. The source code in C, which has kindly been provided by the

Indianapolis Computation Geometry Centre (Geometry Centre, 1999), has been

integrated in the analysis software. For sets with co-circular points the data is

randomly jiggled to resolve this undefined situation. Details of the very efficient

algorithm employed, are found in Barber et al. (1996).

3.8.6 Number of defects

The Delaunay triangulation provides information about nearest neighbours, and by

counting them we find vortices with more or less than six nearest neighbours. These

are referred to as topological defects.

3.8.7 Local hexagonal order

From the Delaunay triangulation the bond angles, θk, of the vortices can be eval-

uated. Using these, a parameter Ψ6 that represents the local hexatic order of the

system can be computed:

Ψ6 =
1

nbond

∣∣∣∣∣

nbond∑

k=1

exp(i6θk)

∣∣∣∣∣ (3.41)

Here, nbond gives the number of bonds (or equivalently angles) in the Delaunay

triangulation which are considered to be numbered from 1 to nbond. For a perfect

hexagonal lattice Ψ6 = 1.

3.8.8 Other observables

A variety of observables can easily be computed in the framework of the substrate

model, and equations are given in chapter 6.
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3.9 Simulation software

3.9.1 Programming language

We have developed a suite of programs written in platform independent ANSI C++,

complemented with a set of Python3 and Bash4-scripts to assist in data analysis

and job submission.

3.9.2 A computation cycle

3.9.2.1 Input data

The user specifies their requirements by writing the configuration of a run (run-ID,

number of vortices, magnetic induction, vortex-interaction, . . . ), in a simple text-

file, called a configuration file. If a pinning potential is required, then the name

of a data-file5 containing the potential is included in the file. Any time-dependent

events (such as an increase of the driving force) are including in this configuration

file in the form of an event list.

It is advantageous to have configuration files stored in plain text as they can

easily be created and modified by scripts, which is useful for parameter space ex-

ploration.

3.9.2.2 Pre-processing of input data

The configuration file is processed by the first program of our suite. This checks

for correct syntax and plausibility. If required, further parameters — which usually

the user does not need to care about — are computed (such as coefficients for the

smoothing of the interaction close to the cut-off), and eventually a parameter file,

based on the user input configuration file, is written by the program. This file con-

tains all information that the simulation software needs to perform the simulation.

There are two reasons for this step: firstly, we check for typos and other mistakes

so we can be reasonably sure that the computation based on this parameter file will

not fail for trivial reasons. Secondly, having all information in a text file means

that by simply storing this file (and the corresponding pinning data), a run can be

reproduced. Note also, that no re-compilation is required at any stage because no

configuration details are hard-coded.

3.9.2.3 The computation

At the beginning of the computation the parameter file is read, the pinning potential

is loaded, and tables (for infinite lattice summations, and pinning interpolation) are

3Python is on object oriented, interactive, interpreted language. (http://www.python.org)
4Bash is the “Bourne again shell” and available for Linux/Unix and windows operating systems.
5We have a selection of input formats for pinning potentials, for example a two-dimensional

table in plain text, or a bitmap such as a jpeg or png-file.
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precomputed. Then all requested time-steps are computed, and vortex positions are

saved to disk regularly. We have developed a compression algorithm to store the

vortex position data as efficiently as possible, and this is detailed in appendix A.

If requested in the parameter file, the driving force, pinning strength or temper-

ature can change at specified time steps. No user intervention is required to perform

the complete computation which is important when running jobs on computational

(non-interactive) clusters.

3.9.2.4 Data analysis

A third program operates on the saved data files and allows to extract the raw stored

data as well as derived observables. We have provided methods to write data to

a variety of formats to be able to use different tools for data analysis. We mainly

use OpenDX6 and Xmgrace7 to visualise static and dynamic data. For high-quality

presentations and animations of the pinning surface, we use PovRay.8

3.9.3 Computational infrastructure

We have used the Beowulf cluster of the University of Southampton with 324 CPUs

running at 1GHz and 1.5GHz. Jobs are submitted via a queuing system.

3.10 Summary

A model of the vortex state in high-temperature superconductors has been pro-

posed and implemented efficiently. The model is based on a Langevin dynamics

simulation. Vortices are considered as massless point-like particles that repel each

other due to their electromagnetic interactions, and are free to move continuously

in a two-dimensional area with (periodic) boundary conditions. Vortices experi-

ence an underlying pinning potential representing atomic inhomogeneities of the

sample, and a Lorentz force representing a transport current. The model describes

the physics of a many-body system with competing interactions, and is a good

description of a system of pancake vortices (which are not coupled with the other

layers) and vortices in thin film superconductors. Such a system is equivalent to

the two-dimensional one-component plasma (apart from scaling factors). Using the

substrate model (chapter 6) we can also model a three-dimensional layered pancake

vortex system in the high anisotropy limit of zero Josephson coupling.

6OpenDX is an open-source project based on IBM’s Visualization Data Explorer.
(http://www.opendx.org)

7Xmgrace is a scriptable WYSIWYG 2D plotting tool, and a descendant of ACE/gr, also
known as Xmgr. (http://plasma-gate.weizmann.ac.il/Grace)

8PovRay is a Raytracing software to create photo-realistic images of 3D-scenes.
(http://www.povray.org)
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Chapter 4

Efficient methods for handling

long-range forces in particle

simulations

Preface

The work described in this chapter started in the final-year project of my under-

graduate degree and I have created figures 4.1, 4.2 and 4.4 during that time. In

my postgraduate studies I continued and completed the investigation. The central

ideas of this chapter have been published (Fangohr, Price, Cox, de Groot, Daniell

and Thomas, 2000).

4.1 Introduction

Considerable effort has been invested in handling long-range forces for particle-

particle simulations. The conventional cut-off approach truncates the potential

in a single unit cell for separations greater than half the system dimension. In

general, it is better to sum the potential over a number of repeats of the unit

cell. Infinite summation methods include the Ewald summation (Ewald , 1921, de

Leeuw et al., 1980, Allen and Tildesley , 1989), multipole methods (Greengard and

Rohklin, 1987), lattice summation methods (Berman and Greengard , 1994), the

Lekner summation method (Lekner , 1989, 1991) and a novel method for logarithmic

interactions (Grønbech-Jensen, 1996). In this paper we review some of the problems

which can occur when the potential is näıvely truncated, which have not previously

been widely reported in the literature. We then derive two methods which overcome

these problems. The first is suitable for phenomenological studies of systems and

smooths the potential within a single unit cell. The second is a new real-space

49



summation method appropriate for potentials governed by Bessel functions. This

provides a speed-up factor of at least 20,000 compared to the current method of

summing in a series of shells of increasing radius (Ryu et al., 1996).

In section 4.2 we introduce our model system, which is a simulation of the vortex

state in a superconductor. We discuss the problems which arise with cutting off

the interaction potential in a single unit cell in section 4.3, and give a method of

smoothing the potential which overcomes these problems in section 4.4. We detail

the implementation of this method in section 4.5. In section 4.6 we consider an

infinitely tiled periodic system and derive our new summation method. Section 4.7

describes a simulation of shearing a lattice using our new methods and contrast

it with the results obtained when the potential is cut off. Two ways to speed up

computations using the suggested methods are described in section 4.8, and we

draw our conclusions in section 4.9.

4.2 Model system

We will consider the long-range forces which arise in the simulation of vortices

in high-temperature superconductors (Clem, 1998). The interaction potential for

vortex lines is (Tinkham, 1996):

U(r)

c
= K0

( r
λ

)
(4.1)

where λ is the penetration depth of the magnetic field, r is the distance between

the particles and c is a constant. This may be approximated as

U(r)

c
=





√
πλ
2r

exp
(
− r

λ

)
: r → ∞

ln
(

λ
r

)
+ 0.12 : r � λ.

(4.2)

Since λ in thin films can be several orders of magnitude larger than r (Ryu et al.,

1996), the K0 potential has a very long range (logarithmic) character. It is therefore

necessary to either (i) only consider the interaction inside a single unit cell which

contains a large number of particles, or (ii) sum the interaction over periodic repeats

of the unit cell. Our findings are also of relevance to the simulation of other systems

governed by long-range forces such as logarithmically interacting pancake vortices

and the two-dimensional one-component electron plasma (Caillol et al., 1982, de

Leeuw and Perram, 1982) as well as the interaction of electrically charged rods

(Grønbech-Jensen, 1996). We will show results for Monte Carlo simulations, and

for molecular dynamics simulations with a friction term and a random noise term
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Figure 4.1: A
long-range force
(solid line), force
cut-off at a distance
rcut−off (dotted line),
and smoothed force
(dashed line). Dis-
tances are measured
in multiples of the
ground-state lattice
spacing, a0.

(known as Langevin dynamics, section 3.1). The two-dimensional unit cell geometry

can be chosen to be a rectangle, a parallelogram or a hexagon. In all cases periodic

boundary conditions are employed.

4.3 Cut-off potential

The standard approach is to cut off the potential to be constant outside a circle

of radius smaller or equal to min(Lx/2, Ly/2), where Lx and Ly are the lengths

of the sides of the unit cell. Since the force is the gradient of the potential, it is

zero outside the cut-off radius. Considering periodic boundary conditions, we then

define the distance between particles, r, to be the minimum image distance (Allen

and Tildesley , 1989).

In figure 4.1 the real force dependence F (r) (solid line) is compared to that for

a simulation system with a simple geometrical cut-off (dotted line). For vortices

in superconductors, Abrikosov (1957) demonstrated theoretically that the lowest

energy configuration for an infinite lattice is the hexagonal lattice, or so-called

Abrikosov lattice, with an associated Abrikosov lattice energy. However, when

using a sharp cut-off in our simulations we find many configurations with energies

lower than the Abrikosov lattice energy.

Figure 4.2 on the following page shows the results from a Langevin dynamics

simulation of a small number of particles in which the temperature in the system

is cycled from 0K to half the melting temperature of the vortex solid and is then

returned to 0K. The temperature is introduced via a stochastic noise term (3.4).

The Delaunay triangulation of the vortex configuration at the end of the simulation

is elastically deformed and shown on the right in figure 4.2. Detailed examina-

tion of the triangulation shows that the elastic deformations arise due to particles
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Figure 4.2: Left: Langevin dynamics simulation of 90 particles using a cut-off potential,
which start in a hexagonal configuration at 0K (with Abrikosov lattice energy, Ea), are heated
to half their melting temperature (Tm) and then returned to 0K. Temperature is introduced
via a stochastic noise term (3.4). The system finds a new configuration with energy lower
than the energy of the regular lattice. Right: Delaunay triangulation of the final configuration
of the particles at time step 5000. Two cut-off circles are shown to demonstrate that particles
align along these circles.

gathering on the boundaries of the cut-off circles. In this position they minimise

their contribution to the energy in the system. This gives rise to the “wavy lines”

visible in figure 4.2, with a curvature characterised by the cut-off radius. To demon-

strate this, we have shown the cut-off circles corresponding to two of the particles.

The wavy lines are less evident in larger systems, since their curvature is inversely

proportional to the cut-off radius.

If the system is heated above its melting temperature and then annealed slowly,

the final equilibrium state (i) has an energy lower than the Abrikosov energy, and

(ii) contains topological defects. A topological defect is a particle which does not

have six nearest neighbours in the Delaunay triangulation. We have repeated these

results for molecular dynamics and Monte Carlo simulations with up to 2000 parti-

cles. The result in figure 4.3 for a Monte Carlo simulation of a system annealed from

a liquid state exhibits low energy and contains defects. We have verified that our

results are independent of the geometry of the unit cell (rectangular, parallelogram,

or hexagonal).

These problems are clearly artificial, and are caused by imposing a sharp cut-off

on the very long range nature of the interaction. It is possible that these finite size

effects disappear for much larger systems, which — depending on the penetration
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Figure 4.3: Monte Carlo simulation of 432 particles using a conventional cut-off potential.
The system starts in a regular hexagonal Abrikosov lattice and is heated above its melting
point to approximately 2Tm then annealed slowly to zero temperature in steps of 0.01Tm

each step consisting of 5000 Monte Carlo-sweeps. Left: The energy of the system drops
below the Abrikosov lattice energy, Ea. Right: Delaunay triangulation of the final disordered
configuration. The topological defects are circled.

depth, λ — would require systems with several hundred thousand particles before

the effects of this problem began to become less significant. Methods to deal with

such large systems with the Bessel function interaction potential are currently being

developed (Cox et al., 2001), but here we focus on system sizes ≤ 3000 particles

which is feasible with today’s technologies.

In studies of high temperature superconductors, interest has recently developed

in the formation of topologically ordered states which exhibit quasi-long range trans-

lational order: the so-called Bragg glass. These states occur when the vortices are

weakly pinned and have been investigated both theoretically and experimentally

(for example Giamarchi and Le Doussal , 1995, Kokkaliaris et al., 1999). Other

studies have focused on the structural properties of the dynamics of vortex systems

(for example Higgins and Bhattacharya, 1996, Spencer and Jensen, 1997). In both

cases it is important that the ground state for an unpinned system should be a

hexagonal lattice without topological defects. Furthermore, for the calculation of

numerical phase diagrams as a function of disordering pinning, it is vital that the

disorder is not introduced by the model itself.

We therefore propose two methods which avoid the problems described above.

The first involves modifying the potential near to the cut-off, and allows qualitative

simulation of small systems using only a single unit cell. The second is a fast

summation method which allows the infinitely tiled periodic system to be considered

and enables quantitative simulations to be performed.
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Figure 4.4: The magnitude of the force field that a particle at position (0,0) experiences
from a system of 418 particles using (left) the sharp cut-off and (right) the smooth cut-off.
Smoothing the potential removes the discontinuities in the force field.

4.4 Smoothed potential

In figure 4.4 (left) we show the force field experienced by a vortex due to its sur-

rounding particles in a hexagonal configuration. The discontinuities are caused by

the artificial step in the force function shown in figure 4.1 on page 51. It is natural

to introduce a smoothed potential, which reduces the force smoothly to zero over

a region from rfade to rcut−off . We impose C1 continuity of the force at r = rfade

and r = rcut−off , i.e. we require the derivative of the force to be continuous at at

r = rfade and r = rcut−off . The smoothed potential is shown in figure 4.1 (dashed

line), with the resulting smooth force field in figure 4.4 (right). The smoothing

distance rcut−off −rfade is a free parameter which should be kept as small as possible

to maintain the original force over the largest possible range. Numerical experi-

ments show that three lattices spacings is sufficient. Figure 4.5 shows the results

of a Monte Carlo simulation using a similarly smoothed energy. Simulations using

this modified potential do not find configurations below the Abrikosov energy and

topological defects only occur when the system is annealed very rapidly.

The interpretation is that due to the slow force change at the cut-off (enforced

by the derivative being zero) a particle pair separated by a distance of ≈ rcut−off

experiences continuous and small changes in force if the relative displacement of the

particles is perturbed. This is in contrast to the large discontinuous fluctuations

that occur when the sharp cut-off is being used, which can enable the system to
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Figure 4.5: Monte Carlo simulation of 432 particles using a potential smoothed over three
lattice spacings. Left: The energy of the system never drops below the Abrikosov lattice
energy, Ea. Right: Delaunay triangulation of the final configuration shows the system has a
hexagonal ground state.

discover configurations with energies less than the Abrikosov energy. We have also

used interpolating polynomials of higher order and an exponential function in the

smoothing region: in all cases the system does not discover energy states below the

Abrikosov energy.

It is important to consider whether the modification of the original force with the

smooth cut-off affects the system’s behaviour. Applying a cut-off to the long-range

interaction is a major change of the long-range interaction. However, introducing

the smoothing distance and altering the force in the region between rfade and rcut−off

cannot be worse than using a slightly smaller system with r′cut−off = rfade. The

enormous advantage of using a smooth cut-off is that the structural properties of

the system can be simulated correctly and that the lowest energy configuration is

identical to the known ground state. For studies of the dynamics of vortices, recent

results show that the precise details of the long-range particle interaction are not

crucial (Zhu et al., 1999), and this is in agreement with our results (for example

figure 6.11) which show no differences between using an infinite lattice summation

and using a smooth cut-off. We therefore recommend using the smoothed potential

instead of the sharp cut-off.

4.5 Implementation of smooth cut-off

We now describe how to implement a smooth cut-off using a third order polynomial

for the force F (r) r
|r| = −∇U(r), and a fourth order polynomial for the energy U(r).
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Figure 4.6: Demonstrating the shape of the interpolating polynomial p(r) (thick line) which
smoothly reduces the vortex-vortex interaction force F (r) to zero. For clarity we have chosen
F (r) = 1/r. The interpolation starts at the fading distance a = 7.5a0 and reduces the
interaction force to zero at the cut-off distance b = 10.5a0, where a0 is the average vortex
lattice spacing.

For short-ranged interactions it is sufficient to use an interaction F̂ (r) which is

equal to F (r) for r ≤ b and zero otherwise:

F̂ (r) =

{
F (r) : r ≤ b

0 : r > b.
(4.3)

However, to avoid the artificial configurations described above we reduce the long-

range force F (r) smoothly to zero near the cut-off distance b as shown in figure 4.6.

One needs to introduce another distance, a, and a polynomial p(r), such that a < b

and that p(r) interpolates between F (a) at a and and zero at b:

F̂ (r) =





F (r) : r ≤ a

p(r) : a < r ≤ b

0 : r > b.

(4.4)

It is required that F̂ (r) has C1 continuity at a and b, and its gradient at b is zero:

F (a) = p(a), (4.5)

p(b) = 0, (4.6)

dF

dr

∣∣∣∣
r=a

=
dp

dr

∣∣∣∣
r=a

, (4.7)

dp

dr

∣∣∣∣
r=b

= 0. (4.8)

We have used a third order polynomial

p(r) =

3∑

i=0

cir
i = c3r

3 + c2r
2 + c1r + c0 (4.9)
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and the coefficients ci are completely determined by equations (4.5) to (4.8). Writing

F ′(r) for dF
dr

(r) one finds




c3

c2

c1

c0




=
1

(a− b)3




F ′(a)a− F ′(a)b− 2F (a)

−F ′(a)a2 + 3F (a)(a+ b) − aF ′(a)b + 2F ′(a)b2

(2F ′(a)a2 − aF ′(a)b− 6F (a)a− F ′(a)b2) b

−F ′(a)b2a2 + 3F (a)ab2 + F ′(a)ab3 − b3F (a)




. (4.10)

The cut-off distance, b, is determined by geometrical constraints, i.e. half the system

size, or by the computational resources available. We choose the distance b − a

over which the interaction is reduced to zero to be three lattice spacings, so that

a = b − 3a0. Figure 4.6 shows a schematic plot of the smooth cut-off and the

interpolating polynomial.

To compute the similarly smoothed potential energy of the system, it is required

to integrate −p(x) to represent the smoothed interaction potential for a < r < b.

The integration constant is determined by requiring continuity of the interaction

potential at r = a.

4.6 Fast infinite summation

An alternative approach to modifying the potential is to sum the potential function

over periodic repeats of the unit cell, which provides the best representation of the

system given only a finite number of particles. We write the potential (4.1) in the

form (Ryu et al., 1996):

U(|r|)
c

= K∗
0

( |r|
λ

)
=
∑

mx,my

K0

( |r| + Lxmxx̂ + Lymyŷ

λ

)
, (4.11)

where mx and my are integers and Lx and Ly are the lengths of the edges of the

simulation cell. This is truncated such that m2
x +m2

y ≤ N2
m; we sum the potential

in shells of increasing radius, Nm, until it has converged.

In order to be able to compare our findings with the results of Ryu et al. (1996),

we follow their choice of parameter values. We use a value for the penetration depth,

λ, at 0K of 7700Å for Mo77Ge23. We will return to the temperature dependence

of λ later. In figure 4.7, we show the exponentially fast convergence of the energy

between two particles in a simulation of 300 vortices in the Abrikosov lattice state,

as more image cells are included. We also show the time taken to perform this

calculation on a 450 MHz Pentium II using Compaq (Digital) Visual Fortran under
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Figure 4.7: Fractional error (E∞ − En)/E∞ and time taken to compute the energy En

between two particles separated by a single lattice spacing in an infinitely tiled periodic system
when n image cells are used. Here, E∞ is estimated by allowing the summation to converge
to machine accuracy.

Windows NT 4.0. For the particle-particle energy to converge to a relative error

better than 1×10−8 requires Nm ∼ 300, which takes approximately πN 2
m ≈ 300, 000

calls to the K0 function. This ensures that the total system energy is accurate to

better than 0.01%.

We now derive a new method to perform this infinite summation. In figure 4.8

we have:

Z2 = (mxLx)
2 + (myLy)

2

z2 = (xi − xj)
2 + (yi − yj)

2

θ = tan−1

(
xi − xj

yi − yj

)
+
π

2

ϕ = tan−1

(
myLy

mxLx

)
. (4.12)

We define

φ = θ + ϕ
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Figure 4.8: Two particles in a unit cell with infinite periodic repeats. Z is the distance from
particle i to its own mirror image, z is the distance between i and j, and w is the distance
between i and the mirror image of j.

which yields

w2 = Z2 + z2 − 2zZ cos(φ). (4.13)

We may use the Gegenbauer addition formulae (Watson, 1944) to write

K0

(w
λ

)
=

∞∑

k=−∞
Kk

(
Z

λ

)
Ik

( z
λ

)
cos(kφ) (4.14)

for the energy between a particle i and one of the periodic images of j, where

Ik and Kk are modified Bessel functions. This formula requires z ≤ Z, which is

automatically satisfied since z is the minimum image distance between i and j. We

can therefore write the total energy (4.11) of two particles i and j summed over all

periodic images in the form:

K∗
0

( |r|
λ

)
= K∗

0

(w
λ

)
= K0

( z
λ

)
+

∑

mx,my

not mx=my=0

∞∑

k=∞
Kk

(
Z

λ

)
Ik

( z
λ

)
cos(kφ),

(4.15)

where the case mx = my = 0, for which z 6< Z, is the contribution to the energy

from the unit cell which must be explicitly included as a separate term. Further
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re-arrangement and use of (4.13) gives

K∗
0

(w
λ

)
= K0

( z
λ

)
+

∞∑

k=−∞
Ik

( z
λ

)
[ck cos(kθ) − sk sin(kθ)] (4.16)

where

ck =
∑

mx,my

not mx=my=0

Kk

(
Z

λ

)
cos(kϕ)

sk =
∑

mx,my

not mx=my=0

Kk

(
Z

λ

)
sin(kϕ). (4.17)

Equations (4.16) and (4.17) have the remarkable property that the coefficients

corresponding to the infinite summation over the periodic repeats of the unit cell

can be pre-computed. This reduces the double summation in (4.11) to a single

summation. Furthermore, due to the exponential convergence of the Gegenbauer

addition formulae, the sum may be truncated at ktrunc ∼ 5 − 20 terms. A further

factor of two in performance can be obtained by using symmetry to convert the

summation from k = −∞ . . .∞ to the range k = 0 . . .∞.

The form (4.16) closely resembles a Fourier type summation method, yet the

whole calculation proceeds in real space in contrast to the Ewald summation method

(Olive and Brandt , 1998).

The convergence of the energy between two particles in the Abrikosov lattice

is identical to the convergence shown in figure 4.7 as we add more terms to the

calculation of the coefficients ck and sk. We have chosen the case of two nearest

neighbours, which yields the slowest convergence of (4.16) since z takes its smallest

value.

In a superconductor, λ is a function of the temperature. For our model system

(Mo77Ge23) λ(T ) = λ(0)/(1 − T/Tc)
1/2 (Ryu et al., 1996), where Tc = 5.63K is

the critical temperature at which the material loses its superconducting properties.

Hence the coefficients ck and sk need to be re-computed at each temperature. As the

temperature increases additional image cells need to be included in both (4.11) and

the pre-computation (4.17). The crucial difference, however, between (4.11) and

(4.16) is that the time taken to evaluate the energy using (4.16) remains virtually

constant once the coefficients are available, whereas the na”ıve summation requires

considerable numbers of additional image cells to converge to the solution. In

figure 4.9 we show the speedup of our method when computing the energy between
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Figure 4.9: Speedup of fast infinite summation method over näıve implementation when
the relative error in the energy between each pair of particles is fixed to be 1 × 10−5: both
methods yield identical results.

two particles at a fixed accuracy of 1 × 10−5 (relative to the energy computed to

machine accuracy by either method). In all cases the resulting energies are shown

to be identical to the stated accuracy. At 0K and using 5 terms in the truncation of

(4.16), we have a speedup of 20,000 over the näıve summation method. This rises

to 400,000 for temperatures approaching Tc. If the particle energy is required to be

accurate to 1 × 10−8, then, using 30 coefficients, the speedups are between 50,000

(T = 0K) and 1,000,000 (T ≈ Tc).

Since the coefficients ck and sk depend on λ (and hence temperature); the

method may appear to be costly if the temperature is changed at every Langevin

dynamics or Monte Carlo step. We now discuss several ways to overcome this.

Firstly, it is possible to perform Monte Carlo simulations at a small number of tem-

peratures and use the data from these to obtain information about the behaviour

of the system as a continuous function of temperature (Ferrenberg and Swendsen,

1988, 1989). Thus improving the sophistication of the analysis of the results can

reduce the number coefficients ck and sk which need to be pre-calculated. Secondly

it is possible to compute the ck and sk at a small set of temperatures and use inter-

polation to derive their values at other temperatures. Finally, since only ∼ 5 − 20

coefficients are needed, it is straightforward to compute once and store on disk the
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values of ck and sk for each temperature to be explored. These values will be re-used

a large number of times in a typical set of numerical simulations.

We implement (4.16) using a recurrence relation (Press et al., 1992) for the

trigonometric terms and a vendor-optimised vector Bessel function. Goertzel’s al-

gorithm (Goertzel , 1958) could be employed for additional efficiency, though the

improvement is likely to be marginal. The remarkable speedup obtained is due

to the fixed work equivalent to roughly five calls to a Bessel function routine re-

quired for (4.16), compared to ∼ 100, 000 calls required for (4.11) (at 0K). The five

calls are: two to initialise the Bessel recurrence, one to evaluate the contribution

from the unit cell, and the equivalent of roughly a further two for the remaining

trigonometric terms. Our infinite summation is correspondingly five times slower

than using the smoothed potential in a single unit cell, which requires evaluation

of a single Bessel function or a polynomial. This is confirmed by experiments. For

simulations using the fast infinite lattice summation, results are similar to those

of figure 4.5. The infinite lattice summation method is suitable for quantitative

studies of superconductors.

4.7 Results

In the previous sections we have demonstrated that the phenomenological potential

and the infinitely summed potential ensure that the Abrikosov lattice is the mini-

mum energy configuration for our system. We now show that the incorrect handling

of the long-range potential seriously affects the elastic properties of a lattice.

We have considered a simulation of shearing of a hexagonal lattice, which is

a simplified version of the simulations required to perform current-voltage charac-

terisations. Inset (a) in figure 4.10 shows a Delaunay triangulation for half the

simulation cell demonstrating the experimental set-up: a shearing force is applied

to the central row of particles marked by black points, and the particles marked by

open circles are not allowed to move in the x-direction. The main diagram shows

the resulting change in energy as a response to the shearing force. The upper part

of the figure shows data for the smooth cut-off, and the lower part shows the re-

sults for the sharp cut-off. The smooth cut-off and the infinite lattice summation

produce the expected behaviour: with increasing shear stress the energy increases.

The slope of the energy-change as a function of the displacement characterises the

shear elastic modulus of the crystal. Inset (b1) shows a triangulation of a system

which has been slightly tilted by the applied force. In contrast, employing the sharp

cut-off, the energy decreases for applied shear stress, i.e. the material appears to

62



Figure 4.10: Change in energy, ∆E, (in simulation units) as a function of a shearing force,
fshear, (in simulation units) for the smooth and the sharp cut-off. For the infinite lattice
summation we obtain qualitatively similar results. Insets (a), (b1) and (b2) show different
snap shots of vortex configurations. Insets (c1) and (c2) show the local hexagonal order, Ψ6,
as the experiment progresses (see text for details).

collapse after applying a shearing force! We show the triangulation of the particle

configuration after shearing in inset b2.

Insets (c1) and (c2) show the time evolution of the local hexatic order (sec-

tion 3.8.7),

Ψ6 =
1

nbond

∣∣∣∣∣
∑

k

exp(i6θk)

∣∣∣∣∣ , (4.18)

where the sum runs over all bond angles θk in the Delaunay triangulation. Every

50,000 time steps the system starts as a hexagonal lattice (Ψ6 = 1) and a new

shearing force is applied for the next 50,000 time steps.

In (c1), which shows results computed using the smoothed potential, Ψ6 de-

creases continuously until a static state is reached, reflecting the shearing of the

system. The energy data in the main plot are taken from these static states. In

(c2) (sharp cut-off) Ψ6 drops suddenly to a much smaller value, representing the
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Figure 4.11: Infinite lattice inter-
action potential U(r) as a function
of particle-pair displacement vector
r ∈ S within the simulation cell S.
For r → 0 the particles approach
each other and feel a strong repul-
sive force, which is reflected in the
divergence in the centre (at r = 0).
Note that the isolines are not equally
spaced, which reveals the periodicity
of the system close to the corners.

sudden change to configurations similar to those shown in (b2). Thus, using a

sharp cut-off, the mechanical properties of the lattice are severely affected by the

incorrect handling of the long-range potential: this would seriously affect numerical

simulations aimed at studying elastic properties of the vortex state in superconduc-

tors. The smooth cut-off and the infinite lattice summation produce the correct

physical behaviour and can be used in more complex numerical simulations for phe-

nomenological (smoothed potential) or quantitative (infinite summation) studies of

the vortex state.

In comparative studies, we have found that it makes no difference whether the

infinite lattice summation or the smooth cut-off is used for our simulations (for

example, figure 6.11 on page 103 shows the agreement of data computed with either

method).

4.8 Efficiency improvements

We describe how to further speed up particle simulations when using an infinite

lattice summation (section 4.8.1) and a cut-off (section 4.8.2).

4.8.1 Look-up table for infinite lattice summation

For every interacting particle-pair (ri, rj) with i 6= j, the infinite lattice summation

can be seen as computing the interaction between two lattices that are displaced
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relative to each other by the displacement vector r = ri − rj, where the unit cell for

the displaced lattices is the simulation cell. The displacement vector r will always

be located within the simulation cell S = [−Lx/2, Lx/2] × [−Ly/2, Ly/2] ⊂ IR2.

We can use this property, and pre-compute a look-up table for (4.16) for all

r ∈ S. We know that the interaction potential U(r) diverges1 at r = 0, but varies

slowly and smoothly for all other r ∈ S. Due to the strong repulsion, particles will

not come close to each other so that it is not necessary to pay special attention to

the divergence.

Figure 4.11 shows the infinite lattice interaction potential U(r) with r ∈ S for

a logarithmic particle interaction as described by Grønbech-Jensen (1996), which

shows qualitatively the same features as the infinite-lattice interaction potential for

K0, only with the central divergence decaying slower with increasing r. The figure

demonstrates the regularity of this function for r 6= 0.

Such a smooth function (apart from r = 0) can easily be interpolated by a two-

dimensional look-up table using bi-linear or bi-cubic interpolation for intermediate

positions. In the beginning of a simulation, we have a small overhead to compute

the look-up table which can be done within a couple of minutes (for 600 particles,

2000 table-entries per area occupied by one particle, on a 700 MHz PIII). However,

subsequently we profit strongly from the look-up table: it is (i) about as fast as the

smooth cut-off, and (ii) we can pre-compute the table with a high accuracy without

slowing down the subsequent main computation.

4.8.2 Neighbour list for smooth cut-off

Having confirmed that using a (smooth) cut-off is an appropriate method to study

a system, one can consider to cut off the interaction not at the largest possible

value (i.e. half the simulation cell size), but for example at a distance of 10 lattice

spacings. It is advisable to perform finite size scaling to ensure that this does

indeed not affect the system. Having done so, we can keep a neighbour list for

every particle which keeps all particles within the cut-off range and particles just

outside the cutoff range. This method is known as a Neighbour-list or Verlet-list

(Verlet , 1967).

The left plot in figure 4.12 demonstrates the concept of the skin layer. In the

very first time-step, we create the neighbour lists. Subsequently, in every time step

1We do not take into account here the attraction that real vortices experience when their cores
start to overlap.
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Figure 4.12: Left: For the neighbour look-up, we keep for each particle a list containing
all other particles inside the cut-off circle and inside the skin-layer (shaded in gray). Middle:
Performance results for a cut-off at 6.5a0, where a0 is the average particle spacing. The
thickness of the skin-layer has been varied from 0 to 6.5a0. Each line is for another number of
particles, as indicated in the legend. Right: Speed-up relative to using no neighbour list. The
optimum skin thickness varies with the system size, and shifts from ≈ 0.4a0 for 504 particles
to ≈ 1.5a0 for 5016 particles.

n, we find the maximum displacement ∆rn

∆rn = max
i

|ṙn
i ∆t| (4.19)

where ṙn
i is the velocity of particle i in time-step n. We recompute the neighbour

list when ∑

n

∆rn ≥ dskin (4.20)

where dskin is the thickness of the skin-layer. To compute the interaction of a particle

with all others, we now only consider particles within the cut-off circle and within

the skin-layer, and these can be looked up quickly from the neighbour list.

Apart from the re-computation of the neighbour list, the time complexity scales

linear with the number of particles for a given cut-off and a fixed thin thickness. The

performance data shown in figure 4.12 help us to chose the optimum skin-thickness:

if the skin-layer is too thick, then many unnecessary interaction computations are

attempted with the particles in the skin-layer. On the other hand, if the skin-layer

is too thin, then the neighbour list needs to be updated very frequently, which is

quite expensive. The data show that even for small systems there is a performance

gain using the neighbour look-up, and for large systems it can be substantial. Even

if the cut-off is chosen to be half the system size, there is still a performance increase
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by using a thin skin-layer in comparison to not using a neighbour list.

4.9 Conclusions

For particle-particle simulations using long-range interactions subject to periodic

boundary conditions, a sharp cut-off for the interaction energy (or force) can yield

misleading results. We have considered the case of superconductors, in which the

potential is governed by a Bessel function. Monte Carlo and molecular dynamics

simulations are often used to study phase diagrams numerically and it is vital

that the phase behaviour of the system is not affected by the model itself. We

find that using a sharp cut-off the system can find irregular lattice configurations

with an energy below the theoretical ground state of a regular hexagonal lattice.

Therefore, the (dynamical) phase diagram of the system under investigation can be

dramatically affected by incorrect handling of the long-range potential.

We have presented two methods which overcome these problems. The first is

suitable for phenomenological studies of systems and uses a smoothed potential, but

still truncates the interaction over a single unit cell. Annealing a system governed by

this modified potential yields a perfect hexagonal lattice which is the global energy

minimum. This is the least computationally expensive option and is applicable to

any potential. The second method sums the interaction over the infinitely tiled

unit cell and is suitable for quantitative system studies. Previous methods for

performing this, add the tiled images in a series of shells of increasing radius. We

have shown that with the pre-computation of a set of Fourier type coefficients, the

whole infinite summation can be computed using a summation which converges

exponentially fast and results in a speed-up of between 20,000 and 1,000,000 over

the näıve summation, depending on the range of the interaction and the desired

accuracy. The derivation of the summation proceeds in real space, and the results

converge exactly to those obtained from other summation methods. This is roughly

five times as slow as using the smoothed potential, but is the most accurate method

for systems of finite size. Both methods can be made faster by using looking look-up

tables for the interaction (infinite lattice summation) and for neighbours (smooth

cut-off). The suggested methods have been used in chapter 5 and 6 of this report,

and in a number of other works (Price et al., 2000, Fangohr et al., 2001a, Molinari

et al., 2001, Fruchter , 2002b,a, Grigorenko et al., 2002).
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Chapter 5

Two-dimensional studies: The

critical transverse force in weakly

pinned driven vortex systems

Preface

The work described in this chapter has been published in Fangohr, de Groot and Cox

(2001b). For this report we have slightly extended the introduction, and shorted

section 5.2 as it duplicates information given already in Chapter 3. For clarity,

section 5.4.7 is extended compared to the published version.

5.1 Introduction

The vortex state is dominated by the competition of ordering and disordering in-

teractions. Vortex-vortex repulsion tends to order the system whereas thermal

fluctuations and pinning from material imperfections introduce disorder into the

vortex lattice. Recently, interest has developed in the nature of the non-equilibrium

states and dynamical phases in the presence of a Lorentz force driving the system.

There is evidence from experiments (Bhattacharya and Higgins, 1993, Yaron et al.,

1994, Hellerqvist et al., 1996, Pardo et al., 1997), simulations (Jensen et al., 1988,

Koshelev and Vinokur , 1994, Moon et al., 1996, Ryu et al., 1996, Olson et al.,

1998b) and theory (Koshelev and Vinokur , 1994, Giamarchi and Le Doussal , 1996,

Balents et al., 1998) that for small driving forces the vortex system is disordered

and shows turbulent plastic flow, and that for larger driving forces the system be-

comes ordered and shows elastic flow (see section 2.5 for details). For the ordered

system Koshelev and Vinokur (1994) proposed that the vortices may form a moving

hexagonal crystal. Subsequently, Giamarchi and Le Doussal (1996) predicted that
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this highly driven phase may be a topologically ordered moving glass (the mov-

ing Bragg glass) in which vortices move in elastically coupled static channels like

beads on a string (figure 2.10 on page 19). It was also suggested (Balents et al.,

1997, 1998, Le Doussal and Giamarchi , 1998, Scheidl and Vinokur , 1998) that the

motion of vortices in different channels may be decoupled (the moving transverse

glass) and thus shows smectic order (figure 2.11). In computer simulations (Moon

et al., 1996, Ryu et al., 1996, Olson et al., 1998b) and in experiments (Pardo et al.,

1998, Troyanovski et al., 1999) both the moving transverse glass (MTG) with de-

coupled channels and the moving Bragg glass (MBG) with coupled channels have

been observed.

A remarkable property of the moving glass (with either coupled or de-coupled

channels) is that, in the presence of random pinning and once the static channels

are established, the application of a small force transverse to the direction of motion

does not result in transverse motion (Giamarchi and Le Doussal , 1996, Le Dous-

sal and Giamarchi , 1998) as described in section 2.6. Only if a critical transverse

force has been exceeded, is the system transversely depinned. Computer simula-

tions have demonstrated the existence of such a critical transverse force for random

pinning (Moon et al., 1996, Ryu et al., 1996, Kolton et al., 1999, Olson and Re-

ichhardt , 2000), and for periodic pinning (Reichhardt and Nori , 1999, Marconi and

Domı́nguez , 1999).

In this work we use a more realistic representation of random pinning in high

purity single crystals used in fundamental studies of vortex dynamics; we investigate

regimes with a high density of vortices with long-range logarithmic vortex-vortex

interaction potentials as in Kolton et al. (1999) and we employ a weak smoothly

varying pinning potential rather than many strong point-like pins as in Moon et al.

(1996), Ryu et al. (1996), Kolton et al. (1999) and Olson and Reichhardt (2000).

We find and explain that the magnitude of the critical transverse force is of the

order of 10% of the static depinning force in the regime investigated, in contrast to

previous works (Moon et al., 1996, Ryu et al., 1996, Olson and Reichhardt , 2000)

which report it to be ≈ 1%. We report on novel results for the critical transverse

force in the presence of weak pinning which (i) verify the theory of Giamarchi and

Le Doussal (1996) and (ii) provide the first numerical data which may be compared

directly with current experimental efforts to demonstrate the existence of the critical

transverse force.

In section 5.2 we describe our method, and in section 5.3 the random pinning

potential we have used. Section 5.4 presents the results, and we summarise our
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conclusions in section 5.5.

5.2 Langevin dynamics simulation

We model the vortex motion of a two-dimensional system with over-damped Langevin

dynamics. The total force acting on vortex i is given by

Fi = −ηvi + FL + Fvv
i + F

vp
i + Ftherm

i = 0, (5.1)

where η is the viscosity coefficient, vi the velocity, FL the Lorentz force, Fvv
i the

vortex-vortex interaction, F
vp
i the vortex-pinning interaction, and Ftherm

i a stochas-

tic noise term to model temperature. The vortex-vortex interaction force appro-

priate for rigid vortices in thin films and pancakes in decoupled layers of layered

materials is effectively (section 2.3.3)

Fvv
i = 2ε0s

∑

j 6=i

ri − rj

|ri − rj|2
. (5.2)

ε0 is given in (2.4) and s the length of the vortex. We employ periodic boundary

conditions and cut off the logarithmic vortex-vortex repulsion potential at half the

system size. It is important to reduce the vortex-vortex interaction near the cut-off

distance smoothly to zero (section 4.3). We investigate systems with a magnetic

induction of B = 1 T and a penetration depth of λ = 1400Å which yields a vortex

density of ≈ 10/λ2. System sizes from 100 to 3000 vortices have been investigated.

Forces are expressed in units of the force, f0, that two vortices separated by λ

experience.

5.3 Random pinning

We use a random pinning potential that varies smoothly on a length scale of λ/25,

which is of the order of the coherence length ξ. This is a representation of random

pinning on the atomic length scale (for example due to oxygen vacancies or small

clusters of oxygen vacancies) since the vortex cores effectively smooth the pinning

potential over a length scale of the core diameter 2ξ. Figure 5.1 (a) demonstrates

the construction of the pinning potential in one dimension. Figure 5.1 (b) shows a

part of the pinning structure used for the two dimensional system. The root mean

square value of the corresponding pinning forces is denoted by F vp
rms.

This choice of the pinning potential is more realistic for high-quality single

crystal samples than the pinning of few, relatively strong point-like pinning centres.

We demonstrate the different shapes of the pinning potential in figure 5.2.
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Figure 5.1: A sample pinning potential.
Distances are given in multiples of the vor-
tex lattice spacing, a0. (a) Demonstration
of construction of the pinning potential in
one dimension: firstly, we assign random
pinning energies at discrete sites (shown as
open circles) with spacing w. Secondly, we
interpolate between those sites using cubic
splines to obtain an effectively continuous
pinning potential. This results in a random
pinning potential with a short-range correla-
tor V (r)V (r′) = g(r − r′) of range w. We
follow an analogous procedure in two dimen-
sions. (b) A part of a pinning potential as
used in the simulations. The seven black
cylinders indicate vortex lines separated by
a0 to demonstrate the length scale.

Figure 5.2: Comparison of different pinning potentials. Top: Point-like pinning centres as
employed by most other simulations of the vortex state. Parameters taken from Olson et al.
(1998b), Olson and Reichhardt (2000). Bottom: Smoothly varying pinning potential as used
in this work. Both plots show an area which is occupied by ≈ 90 vortices.
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5.4 Results

5.4.1 Simulation scenario

Initially, we anneal the vortex system in the presence of random pinning from a

molten state to zero temperature. Then a driving force is applied which is increased

every 4 · 104 time steps. With increasing driving force we find a pinned system,

turbulent plastic flow and finally the moving Bragg glass (see figure 2.13 on page 21

for a phase diagram, and figure 2.10 for the moving Bragg glass).

For sufficiently strong pinning there is an intermediate regime between turbulent

plastic flow and the moving Bragg glass (MBG), in which the vortex motion in

different channels is decoupled (Fangohr et al., 2001a). This is called the moving

transverse glass (MTG) because the transverse order remains (see figure 2.11). We

find a critical transverse force for both the MBG and the MTG. Here, we report on

the small pinning strengths at which only the MBG is observed in our simulations.

A representation of the time-averaged paths of the vortices in the moving Bragg

glass phase is shown in figure 5.3. A snap-shot of vortex positions in one time-step

is shown in figure 5.4. These simulation results agree very well with the prediction

shown in figure 2.10 on page 19.

To find the critical transverse force we start with a MBG driven by a constant

force F L
x in the x-direction and slowly increase the transverse force F L

y in the y-

direction, until the system starts moving transversely. The lower ends of the bars

shown in figure 5.5 to 5.8 represent the largest probed transverse force which did

not yield any transverse motion, and the upper ends of the bars show the smallest

transverse force that could depin the system transversally.

5.4.2 Finite-size effects

Figure 5.5 on page 74 shows that there is a decrease in the ratio of the critical

transverse force F c
y to the static depinning force F c

x for system sizes below 1000

vortices. However, for larger systems this ratio remains constant, showing that

the observed F c
y is not a finite-size effect. We have increased the cut-off with the

system size to ensure that effects due to the long-range interactions between the

additional particles in the simulation are taken into account, which contrasts to

a similar finite-size study (Olson and Reichhardt , 2000) where the cut-off for the

vortex-vortex interaction was kept constant and the results were reported to be

independent of the system size.
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Figure 5.3: The moving Bragg glass. Top: The rendered wavy surface represents the pinning
potential shown in figure 5.1 on page 71 and in the lower plot of figure 5.2. The surface is
coloured in black where there is a high probability of finding a vortex and white where the
probability is zero. The driving force F L

x is acting from the left to the right, and vortices
follow on average the direction of the force, but the paths in which they move show a certain
roughness. These data are consistent with the prediction shown in figure 2.10 on page 19.
Bottom: Same as the top-image, but from a slightly changed viewpoint. This projection
allows to see where vortices travel “in” the pinning potential. It can be seen that vortices
avoid areas with a high pinning potential if possible.
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Figure 5.4: Vortices are
represented by spheres, and
are plotted on top of the
pinning potential. Shown
is one time step of a mov-
ing Bragg glass. Note that
the vortices align in the
viewing direction which co-
incides with the direction
of the driving force, which
is in agreement with figure
2.10.
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Figure 5.5: The ratio of the critical
transverse force F c

y to the static depin-
ning force F c

x for various numbers of vor-
tices, N . The lower curve is for strong
pinning with F vp

rms/f0 = 1.0 and the
upper curve is for weak pinning with
F vp

rms/f0 = 0.12.
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5.4.3 Magnitude of critical transverse force

Previous estimates (Moon et al., 1996, Ryu et al., 1996, Olson and Reichhardt , 2000)

for the ratio F c
y/F

c
x give a value ≈ 0.01. We find F c

y/F
c
x ≈ 0.1 and identify two

reasons for this order of magnitude discrepancy. Firstly, we study the weak pinning

regime in which the hexagonal structure of the static vortex system (i.e. without an

applied driving force) is not completely destroyed due to the vortex pinning, whereas

previous studies focused on the strongly pinned regime in which the static system

is strongly disordered. Both systems — with weak and strong pinning — move

elastically and show topological order under the influence of the driving force in the

x-direction. The critical force required to depin the static system, F c
x , is greater

for the strongly pinned system which shows disorder, because a disordered system

can adapt better to the pinning potential. However, the force required to depin the

moving system transversely, the critical transverse force F c
y , depends less strongly on

the pinning strength because the elastically moving system is topologically ordered

for either pinning strength. Thus, the ratio F c
y/F

c
x is higher for weak pinning. We

demonstrate this in figure 5.5 on the preceding page where we show that the change

from strong to weak pinning increases the ratio F c
y/F

c
x by a factor 2 to 3. Secondly,

the pinning potentials employed by Moon et al. (1996), Ryu et al. (1996) and Olson

and Reichhardt (2000) consist of (strong) point-like randomly distributed pins (as

shown in the top of figure 5.2), which we find increase the static depinning force F c
x

by another factor 2 to 3 compared with using a smoothly varying pinning potential

(bottom in figure 5.2). We would thus get to the same order of magnitude for the

ratio F c
y/F

c
x as Moon et al. (1996), Ryu et al. (1996) and Olson and Reichhardt

(2000) if we used the simulation scenario they employed. We find that for different

random pinning configurations the critical transverse force can vary up to a factor

2 in the weak pinning limit.

5.4.4 Critical transverse force can be an order parameter

Figure 5.6 on the next page shows the variation of F c
y as a function of the pinning

strength for systems driven with a constant driving force F L
x = 0.3f0 in the x-

direction. The absence of transverse barriers for zero pinning strength shows that

it is not the (periodic) boundary conditions which result in a critical transverse

force. With increasing pinning strength, F c
y increases linearly until it starts to

decay for pinning strengths of F vp
rms ≈ 0.25f0 and reaches zero at F vp

rms ≈ 0.35f0. The

decay of the F c
y is caused by the strength of the pinning producing turbulent plastic

flow of the vortices: in this region the MBG breaks down. This is demonstrated

by the second curve in figure 5.6 which shows that the fraction of vortices that are
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Figure 5.6: Critical transverse force and topological defect fraction ndef as a function of
pinning strength. The critical transverse force reduces to zero where the system changes from
elastic flow to turbulent plastic flow and the number of topological defects increases rapidly.

topological defects, ndef, increases rapidly for pinning strengths greater than 0.325f0.

We define a topological defect to be a vortex which does not have six nearest

neighbours in the periodic Delaunay triangulation of the vortex positions. The slight

increase of ndef for pinning strengths 0.3f0 and 0.325f0 is due to strong temporary

deformations of the MBG such that pairs of topological defects appear next to each

other and disappear after a few time steps. This indicates the weakness of the MBG,

but not its breakdown (because the system shows elastic motion). In contrast, the

transition to turbulent plastic flow is accompanied by a proliferation of topological

defects. This confirms theoretical expectations (Le Doussal and Giamarchi , 1998)

that the critical transverse force, F c
y , can be used as an order parameter for the

moving glass, which, in the weak pinning regime, is represented by the MBG. The

data shown in figure 5.6 are obtained for a system of 576 vortices. For larger systems

we get qualitatively the same curves, with a slightly reduced height of F c
y .

5.4.5 Dependence on longitudinal velocity of moving Bragg glass

Le Doussal and Giamarchi (1998) predicted that the critical transverse force, F c
y ,

depends on the longitudinal velocity, vx, in a way that F c
y decays with increasing vx.

For an isotropic system one expects that the critical “transverse” force F c
y for a static

system is the same as the critical force (acting in any direction) that is required

to depin the system. Our computations confirm that in particular F c
y = F c

x for a

static system. However, as soon as the system of vortices is depinned and moves

elastically in the x-direction, the critical transverse force reduces to much smaller
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Figure 5.7: Critical transverse force F c
y

normalised by the static depinning force
F c

x for various longitudinal velocities vx

in the moving Bragg glass regime.

values because the system is not sticking to the pinning potential, but is depinned

in the x-direction.

Figure 5.7 shows results of our simulations using a pinning strength of F vp
rms =

0.12f0 and a system size of 1200 vortices. We could not resolve the smallest veloc-

ities because these are computationally expensive, and we have omitted the datum

at vx = 0. The curve starts for small vx with a F c
y of ≈ 10% of the static depinning

force F c
x . With increasing vx, we find that F c

y decreases quickly up to velocities

of approximately 2 simulation units, and then F c
y decreases less strongly for larger

velocities. Our findings are compatible with the prediction that the critical trans-

verse force decays for higher velocities as additional dynamic disorder weakens the

transverse barriers (Le Doussal and Giamarchi , 1998).

The velocities given here in simulation units are directly comparable with the

data shown in Fangohr et al. (2001a) and comparable with the phase-diagram1 in

figure 2.13, where 0.1 represents a small velocity for the system, and 10 is large.

Figure 5.7 suggests therefore that small driving forces are most appropriate for an

experimental verification of the critical transverse force, because F c
y will be large

and easier to detect.

It is worth noting that using a system size of less than 1000 vortices (figure 5.5)

gives qualitatively different results; for such small systems the F c
y(vx) in figure 5.7

remains constant above a small velocity of vx ≈ 0.3 simulation units, which is a

finite size effect.

1Note that due to the scaling chosen (3.37), for forces much larger than the depinning force,
ṽ ≈ F̃ drive. This is especially the case for driving forces large enough to result in a moving Bragg
glass.
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5.4.6 Finite temperatures

For finite temperatures it is predicted (Le Doussal and Giamarchi , 1998) that there

is no true critical transverse force but all transverse stimuli result in a small response

in the transverse motion of the system, as shown in figure 2.14 on page 22. However,

there is a transverse force at which the transverse velocity increases much stronger

than linearly with the transverse drive. This transverse force is the apparent critical

transverse force, and can be seen in figure 2.14 where the slope of the T>0-curve

increases to approach the T =0-curve.

Data on the apparent critical transverse force in figure 5.8 show that it decays

with increasing temperature and vanishes at the melting temperature of the sys-

tem. The depinning force of the static system, F c
x , decays similarly with increasing

temperature, such that F c
x/F

c
y ≈ const.

5.4.7 Experimental verification

The existence of a critical transverse force has yet to be confirmed experimentally.

The required experiments are complicated to perform as one has to measure a very

small transverse voltage resulting from the application of small transverse currents.

Additionally, at finite temperatures no true critical transverse force is expected, but

only an “apparent” critical transverse force (section 5.4.6). The samples in question

have complicated current-voltage characteristics. Writing V = (Vx, Vy) for the

longitudinal and transverse components of the measured voltage, and I = (Ix, Iy)

for the applied currents, this means that

V = V(I) (5.3)

is a nontrivial vector-valued function.

Thus, it is hard to say whether a small transverse voltage is a signature of

transverse barriers, or whether at such a small current this is the normal response.

In order to resolve this issue we define the new observable, σ, to be the differential
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transverse resistance Rdiff
y = dvy

dFL
y

normalised by the longitudinal resistance Rx = vx

FL
x
:

σ =
Rdiff

y

Rx
=

dVy

dIy
Vx

Ix

. (5.4)

The experimentally measured voltage, V , is proportional to the vortex velocity, v,

and the applied current, I, is proportional to the driving force, F , in the simulation.

The differential resistance can be measured either by taking numerically the deriva-

tive of the resistance, or by applying an ac-current with a dc-offset using lock-in

techniques.

We will now prove that the current-voltage characteristic V(I) cannot be iso-

tropic, if σ < 1. If V(I) is anisotropic then there are transverse barriers and hence

a critical transverse force (assuming the sample has no extended defects or other

intrinsic anisotropy within the layers).
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Proof: Assume that the current voltage relation V(I) is isotropic. It can

then be written as

Vi = Iiρ(I) with i = x, y (5.5)

where we use the notation I = |I| =
√
I2
x + I2

y . The resistivity function

ρ(I) is non-negative, and monotonically increasing with I. Therefore,

∂ρ

∂I
(I) ≥ 0. (5.6)

We find

Rdiff
y =

dVy

dIy

(5.5)
= ρ(I) + Iy

dρ

dIy
(I) (5.7)

= ρ(I) + Iy
∂ρ

∂I
(I)

∂I

∂Iy
(5.8)

= ρ(I) + Iy
∂ρ

∂I
(I)

Iy
I

(5.9)

= ρ(I) +
I2
y

I

∂ρ

∂I
(I) (5.10)

where in (5.9) we have used

∂I

∂Iy
=

∂

∂Iy

√
I2
x + I2

y =
Iy
I

(5.11)

Eventually,

σ =

dVy

dIy

Vx

Ix

=
ρ(I) +

I2
y

I
∂ρ
∂I

(I)

ρ(I)
= 1 +

I2
y

I
∂ρ
∂I

(I)

ρ(I)
≥ 1 (5.12)

Thus, σ ≥ 1 for an isotropic V(I). On the contrary, if σ < 1, then the

current voltage relation must be anisotropic. �

To assist in the experimental demonstration of the existence of the critical transverse

force, we provide in figure 5.9 data on σ. We use central differences to approximate

the differential transverse resistance numerically

Rdiff
y =

dvy

dF L
y

≈
vy(F

L
y + ∆) − vy(F

L
y − ∆)

2∆
(5.13)

where ∆ is a small change in force. We compute σ = Rdiff
y /Rx, which is a function
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of temperature, T , and both components, F L
x and F L

y , of the driving force: σ =

σ(T, F L
x , F

L
y ). We choose a small transverse force, F L

y , and keep it constant for each

curve in figure 5.9. In the left plot we show σ(T, F L
x =1f0, F

L
y =0.00225f0), i.e. we

vary the temperature T . And in the right plot we show two curves with slightly

different transverse forces at zero temperature: σ(T =0, F L
x , F

L
y =0.00225f0) and

σ(T=0, F L
x , F

L
y =0.00275f0), i.e. we vary the longitudinal driving force F L

x . Note

that for all data shown in figure 5.9, Rx in (5.4) is virtually constant because we

are in the free-flow regime. Thus, σ is essentially a normalised Rdiff
y .

In the left plot in figure 5.9 the constant longitudinal force F L
x = 1f0 results

in a velocity of vx ≈ 1 simulation unit, and the transverse force F L
y =0.00225f0 is

chosen to be slightly smaller than the critical transverse force at T = 0 for these

simulations. The plot shows that for very small temperatures σ ≈ 0. This means

that an increase in the transverse force does not result in an increase in transverse

motion, and at this temperature the apparent critical transverse force is larger than

the applied transverse force F L
y =0.00225f0.

With increasing temperature, σ shows a significant peak. Here, an increase in

the transverse force results in a strong increase in the transverse velocity, and this

is where the system starts quickly moving transversely, and the applied transverse

force is greater than the apparent critical transverse force.

For a further increase in temperature, σ comes down to σ ≈ 1.2, before it drops
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to 1.0 at the melting temperature Tm. The reason for σ ≈ 1.2 for intermediate

temperatures is that even after transverse depinning, the moving system feels some

transverse pinning up to transverse forces many times larger than the critical trans-

verse force: Olson and Reichhardt (2000) have shown that the transversely depinned

system moves in an oscillating pattern: when the vortices have moved one lattice

spacing in the transverse direction, they are pinned again for a short time, or at

least slowed down. On average, the vortices move slower because of this repeated

interruption of their transverse motion.

This remaining transverse pinning reduces with increasing transverse drive, F L
y ,

and therefore vy increases stronger than linearly with F L
y , and σ = (dvy/dF

L
y )/Rx ≈

1.2 > 1.

The right plot in figure 5.9 shows zero temperature data for various longitudinal

driving forces F L
x and two different constant transverse forces F L

y = 0.00225f0 and

F L
y = 0.00275f0. For small F L

x the system does not move transversely and σ = 0.

When F L
x increases, it increases the velocity, vx, of the system and thus reduces the

critical transverse force (as shown in figure 5.7). Therefore, for sufficiently large F L
x

the system starts moving transversely and σ shows a peak which decays to 1.0 for

larger F L
x . The slow decay of σ is due to remaining transverse pinning above the

transverse depinning force (Olson and Reichhardt , 2000). The magnitude of the

constant transverse driving force F L
y determines the position of the peak of σ, as

the two curves in the right plot in figure 5.9 demonstrate. In experimental work,

the presence of a critical transverse force should manifest itself in σ changing as

shown in figure 5.9 on the page before.

5.5 Conclusions

We have investigated numerically the critical transverse force of two-dimensional

vortex systems in the presence of a random pinning potential. We find a critical

transverse force for both the moving Bragg glass and the moving transverse glass,

but not for turbulent plastic flow. We study in more detail the weak pinning limit

in which only the moving Bragg glass with coupled vortex channels can be found.

The ratio of the critical transverse force to the static depinning force depends on

the random pinning and can be as large as of the order of 10% at zero temperature

for a smoothly varying pinning potential. For individual stronger point-like pins,

this ratio is smaller.

We have performed a finite size study including up to 3000 vortices which reveals

that the critical transverse force is overestimated for systems with less than 1000
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vortices, but remains constant for larger systems. This is in contrast to an earlier

study where the cut-off distance was not increased with system size but kept at a

constant value, and where no size-dependence of the critical transverse force was

observed (Olson and Reichhardt , 2000).

We find that the critical transverse force increases with increasing pinning

strength up to a value at which the elastic motion changes to turbulent plastic

flow and the critical transverse force goes rapidly to zero. By comparing these data

with other observables, we conclude that the critical transverse force is indeed an

order parameter of the moving glass, as predicted in Le Doussal and Giamarchi

(1998).

The critical transverse force is inversely proportional to the longitudinal velocity

and is compatible with recent predictions (Le Doussal and Giamarchi , 1998). At

finite temperatures, the apparent critical transverse force decays with increasing

temperature and vanishes at the melting temperature of the system. Our results

suggest that in an experimental search for the critical transverse current, low tem-

peratures and small longitudinal driving forces (which, however, will have to be

large enough to cause elastic motion) should be used.

We suggest measuring the differential transverse resistance normalised by the

longitudinal resistance to decide whether transverse barriers are observed in ex-

periments. We have simulated such an experiment and provide the dependence of

this observable on temperature and on the longitudinal driving force, which can be

compared directly with experimental results.
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Chapter 6

Three-dimensional studies: The

electromagnetically interacting

pancake system

Preface

The work presented in this chapter started as a collaboration with Matthew J. W.

Dodgson. We later realised that Alexei E. Koshelev was working on a similar model,

and started to collaborate (Fangohr, Koshelev and Dodgson, 2002).

6.1 Introduction

In chapter 5 we have investigated the behaviour of two-dimensional vortex systems.

In this chapter we extend our model, and investigate the three-dimensional case

in the absence of pinning (with the exception of section 6.4.9 where we introduce

random pinning).

Vortex lines within the layered high-temperature materials, such as BSCCO and

YBCO, can be understood as (wiggling) stacks of pancake vortices (Artemenko and

Kruglov , 1990, Feigel’man et al., 1990, Buzdin and Feinberg , 1990, Clem, 1991,

Blatter et al., 1994). The pancakes are located in the superconducting layers and

interact with each other via two mechanisms: (i) electromagnetic interaction and

(ii) Josephson coupling. The electromagnetic interaction is due to interaction of

supercurrents circulating around each pancake, whereas the Josephson coupling

results from a phase shift of the superconducting wave function between the layers.

To be able to understand the phase diagram of high temperature superconduc-

tors, we need to gain an insight into the behaviour of this vortex matter under a

variety of experimental conditions. In moderately anisotropic materials, such as
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YBCO, the short-range Josephson coupling is the dominating inter-layer interac-

tion, and the vortices can be described as elastic strings or as pancakes coupled

between neighbouring layers (Ryu et al., 1992, Ryu and Stroud , 1996, Nordborg

and Blatter , 1997, Wilkin and Jensen, 1997b,a, Nordborg and Blatter , 1998, van

Otterlo et al., 1998, Olson et al., 2000b). In very anisotropic materials on the

other hand, such as BSCCO, the Josephson coupling is weak, and the long-range

electromagnetic interaction between the pancakes has to be taken into account.

As a first step, we consider very anisotropic materials in the absence of Joseph-

son coupling, and neglect pinning. The electromagnetic coupling alone is a compli-

cated problem and the phase diagram of the system cannot be computed solely by

analytical methods.

The challenge for a numerical investigation is that the interlayer interaction

between pancakes extends over a range of 2λ/s ∼ 100 − 150 layers, where λ is the

London penetration depth and s the layer spacing.

In principle, one can stack a set two-dimensional pancake systems on top of

each other, and introduce additional interlayer interactions. Several groups have

modelled the three-dimensional vortex state in this way (Kolton et al., 2000a,b,

Olson and Grønbech-Jensen, 2000, Olson et al., 2000a, 2001) in the limit of zero

Josephson coupling, in order to study the dynamics of such a system in the presence

of pinning. However, because every pancake in one layer interacts with all other

pancakes in its own layer and all pancakes in all other layers, these numerical

investigations have been performed on small systems using about 10 layers and of

the order of 100 vortices per layer.

With today’s computational resources it is not feasible to fully compute such

a system because the necessary computational effort grows quadratically with the

number of layers.

Dodgson, Koshelev, Geshkenbein and Blatter (2000b) showed that the problem

of the long-range electromagnetic interactions between the layers can be overcome

by exploiting it and by applying a mean-field approach in the c-direction (perpendic-

ular to the layers). One averages the pancake positions over all layers, and computes

a “substrate” potential which pancakes in each layer feel as the cumulative effect

from attraction of pancakes in all other layers (see figure 6.1 on the following page).

Pancakes within one layer interact directly with each other, whereas the interaction

with pancakes in other layers is mediated via the substrate potential. Thus, each

layer is treated individually, until a new substrate potential can be computed. This

process is iterated, until the substrate has converged to a steady solution.
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Figure 6.1: Schematic representation of the substrate model for a system with one-
dimensional layers. (A) The pancake positions, ρn(x), in each layer n, are (B) averaged
over the layers in order to obtain the averaged pancake density, ρ(x). From the average pan-
cake density, ρ(x), we compute (C) the substrate potential, VMF(x), which is smeared over a
length of the order of λ. The vortex lattice spacing is a0 and s is the layer spacing.

In this chapter, we present the first numerical implementations of this substrate

model and show results which we compare with the semi-analytic approximations

given by Dodgson et al. (2000b).

We express magnetic induction in units of Bλ ≡ Φ0/λ
2, where Φ0 is the magnetic

flux quantum and λ is the penetration depth, such that the average pancake-spacing

in a hexagonal lattice is a0 =
√

2√
3
λ ≈ 1.07λ at B = Bλ. Temperature T is

expressed in reduced units t as a multiple of the pre-factor 2ε0s of the logarithmic

pancake-pancake interaction

t ≡ 1

Γ
≡ kBT

2ε0s
, (6.1)

where ε0 = Φ2
0/(4πµ0λ

2), µ0 is the vacuum permeability, and s is the layer spac-

ing. This allows to compare our results with outcomes from two-dimensional one-

component Coulomb plasma simulations (de Leeuw and Perram, 1982, Caillol et al.,
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Figure 6.2: Left: Snapshot of the pancakes (visualised by spheres) placed onto the substrate
potential (visualised as a surface) at B = Bλ and t = 1/59 ≈ 0.017 just below the melting
transition, demonstrating how the substrate potential constrains the pancakes’ motion. Right:
The phase diagram computed using the substrate method. The transition line divides the
system into a three-dimensional pancake lattice below the line and decoupled two-dimensional
pancake liquids above the line.

1982, Choquard , 1983), where frequently Γ = 1/t is used to express temperatures.

We summarise this chapter in figure 6.2. On the left plot the central idea

is visualised: pancakes experience attractive inter-layer interactions through the

substrate potential which stabilises the pancake crystal. On the right we show

the computed phase diagram for the layered pancake system. At low fields B, the

electromagnetic attraction of range λ � s between pancakes in different layers

stabilises the three-dimensional pancake vortex lattice. Increasing the magnetic

field decreases the relative strength of the inter-layer coupling. At high fields,

B � Bλ, the long-range repulsive interaction within the layer dominates, and the

three-dimensional pancake lattice melts into decoupled two-dimensional liquids.

6.2 Mean field approach (Substrate model)

6.2.1 The mean-field inter-layer coupling

The in-layer energy E in and the inter-layer energy E inter of a system of electromag-

netically interacting pancakes in a layered superconductor is, respectively,

E in =
∑

n

E in
n =

∑

n

1

2

∑

j

∑

j′ 6=j

U(Rn
j − Rn

j′, 0) (6.2)
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and

E inter =
∑

n

E inter
n =

∑

n

1

2

∑

n′ 6=n

∑

j

∑

j′

U(Rn
j − Rn′

j′ , n− n′). (6.3)

Indices n and n′ count over layers, and j and j ′ over pancakes in the layers, Rn
j is

the (two-dimensional) position of pancake j in layer n, and U(R, n) is the coupling

energy for two pancakes separated by a vector (R, z), where z = ns, with s being

the layer spacing. The z-axis is chosen perpendicular to the layers.

The in-layer pancake interaction is (Clem, 1991)

U(r, 0) = 2ε0s

((
1 − s

2λ

)
ln

(
L

r

)
+

s

2λ

∫ ∞

r

dr′
exp(−r′/λ)

r′

)
(6.4)

and the inter-layer interaction (n 6= 0) is

U(r, n) = −ε0s
2

λ

(
exp

(
−ns
λ

)
ln

(
L

r

)
−
∫ ∞

r

dr′
exp(−

√
r′2 + (ns)2/λ)

r′

)
, (6.5)

where L is the size of the system. Using

ρn(r) =
∑

j

δ(r − Rn
j ) (6.6)

we rewrite

E inter =
1

2

∑

n

∑

n′ 6=n

∫
d2r d2r′ ρn(r)ρn′(r′)U(r − r′, n− n′). (6.7)

We separate pancake density fluctuations from the layer-average density

ρ(r) ≡ 〈ρn(r)〉, (6.8)

ρn(r) = ρ(r) + δρn(r), (6.9)

and obtain from (6.7)

E inter =
1

2

∑

n

∑

n′ 6=n

∫
d2rd2r′U(r − r′, n− n′)

×
[
ρ(r)ρ(r′) + 2ρ(r′)δρn(r) + δρn(r)δρn′(r′)

]
,

(6.10)
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where we have used

∑

n

∑

n′ 6=n

∫
d2rd2r′U(r − r′, n− n′)ρ(r′)δρn(r) (6.11)

=
∑

n

∑

n′ 6=n

∫
d2rd2r′U(r − r′, n− n′)ρ(r)δρn′(r′). (6.12)

In the mean field approach we neglect the last term in (6.10), and obtain the mean

field interlayer energy EMF from (6.10)

EMF =
∑

n

EMF
n (6.13)

=
∑

n

1

2

∑

n′ 6=n

∫
d2rd2r′U(r − r′, n− n′) [ρ(r)ρ(r′) + 2ρ(r′)δρn(r)]

=
1

2

∑

n

∫
d2r VMF(r)ρ(r) +

∑

n

∫
d2r VMF(r)δρn(r) (6.14)

(6.9)
= −1

2

∑

n

∫
d2r VMF(r)ρ(r) +

∑

n

∫
d2r VMF(r)ρn(r). (6.15)

The last term in (6.15) describes fluctuations in the fixed substrate potential VMF,

VMF(r) =

∫
d2r′

[
∑

n6=0

U(r − r′, n)

]
ρ(r′) (6.16)

=

∫
d2r′U(r − r′)ρ(r′) (6.17)

≡ (U ∗ ρ)(r) (6.18)

with

U(r) ≡
∑

n6=0

U(r, n). (6.19)

U(r) is the interaction potential of a pancake separated by r from a stack of pancakes

minus the interaction of the (missing) pancake in the same layer. We show in

appendix B that

U(r) = 2ε0sK0

( r
λ

)
− U(r, 0), (6.20)

with K0 being a modified Bessel function of the second kind. Ignoring terms of the

order of s/2λ, the pancake-pancake repulsion (6.4) simplifies to

U(r, 0) = 2ε0s ln

(
L

r

)
. (6.21)

89



6.2.2 Algorithm

1. Assume initial pancake densities ρn(r), for example a hexagonal lattice in each

layer n.

2. Average the pancake density ρn(r) over all layers to obtain ρ(r), (6.8).

3. Compute the substrate potential VMF(r), (6.18) by convoluting the substrate

interaction kernel U(r), (6.20), with the average pancake density ρ(r)

VMF(r) = (U ∗ ρ)(r). (6.22)

4. For each layer n compute the pancake distribution ρn(r) using Langevin dy-

namics simulations. The total energy for layer n contains the direct pancake-

pancake interaction within the layer (6.2)

E in
n =

1

2

∑

j

∑

j′ 6=j

U(Rn
j − Rn

j′, 0), (6.23)

and the relevant interaction with pancakes in other layers via the substrate

potential (6.15)

EMF
n

(6.15)
= − 1

2

∫
d2r VMF(r)ρ(r)

︸ ︷︷ ︸
Ecoup

+

∫
d2r VMF(r)ρn(r)

(6.6)
= −Ecoup +

∑

j

VMF(Rn
j ), (6.24)

Ecoup is constant for a given ρ(r) and can therefore be ignored within the

Langevin dynamics simulation as it only shifts the energy scale.

5. Go to 2, until VMF (or ρ) has converged.

Since the substrate potential VMF in equation (6.24) in step 4 is the same for all

layers, we can compute ρn(r) for many Langevin-dynamics time-steps rather than

for many layers. Therefore, in order to obtain the averaged pancake density ρ(r)

in step 2, we average over time-steps computed in one layer rather than averaging

over layers.

Using the substrate potential, we reduce the solution of the three-dimensional

problem to performing one two-dimensional simulation in the presence of the iter-

atively refined substrate potential. However, employing this mean field approach,

we lose the ability to compute spatial correlations in the c-direction perpendicular

to the layers.
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6.3 Numerical implementation

6.3.1 Computation of the substrate potential

We have already developed a simulation of the two-dimensional vortex state (chap-

ter 3), and have to extend it to contain the substrate potential. The substrate can

be seen as an additional pinning potential (which, however, stabilises the hexagonal

vortex system). We are left with the challenge of computing the substrate potential

(6.17)

VMF(r) = (U ∗ ρ)(r) (6.25)

=

∫
d2r′ U(r − r′)ρ(r′) (6.26)

(6.20),(6.21)
=

∫
d2r′ 2ε0s

[
K0

( |r − r′|
λ

)
+ ln

( |r − r′|
L

)]
ρ(r′). (6.27)

To compute this, we need a pancake density ρ(r), which we can obtain by

creating a two-dimensional histogram of pancake positions. The histogram allows

us to compute ρ(r) at discrete positions

rij = i∆x + j∆y, (6.28)

where i ∈ [−Nx/2, Nx/2 − 1] and j ∈ [−Ny/2, Ny/2 − 1]. Nx is the even number

of points in the x-direction in the histogram, and Ny is defined accordingly for the

y-direction. The kernel (6.20) for the convolution is derived analytically, and can

thus be evaluated for all required rij. We can then compute (6.26) numerically

VMF(r) =

∫
d2r′ U(r − r′)ρ(r′)

≈
∑

i

∑

j

∆x∆y U(r − r′ij)ρ(r
′
ij) (6.29)

and thus evaluate VMF(r) at positions rij for a look-up table.

There are two problems with equation (6.29):

1. The convolution requires a large number of operations. To evaluate VMF(r) for

one r using (6.29), requires of the order of NxNy operations. Thus, the total

effort to compute VMF for all rij scales as O(N 2
xN

2
y ) (assuming we evaluate

VMF on the mesh given by the rij). For Nx = Ny = 1000, this is a number

of operations of the order of 1012, which takes about a day to compute on a

modern workstation.
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2. The kernel shows a spherical symmetry, i.e. U(r) = U(r), and the data ρ(r) are

periodic. To preserve the spherical symmetry, a cut-off for the kernel would

have to be introduced at a distance of the length of half the simulation cell.

(Otherwise the rectangular symmetry of the simulation cell would be visible

artificially in the convolution). Since we want to compare runs at different

field strengths, the size of the simulation cell changes with the magnetic field,

and thus the cut-off would have to change. A changing cut-off would prevent

the comparison of results at different field strengths.

Both problems can be overcome by performing the convolution (6.25) in Fourier-

space and exploiting the convolution theorem.

We define the forward Fourier transform operator F , and use the short-hand

notation f̂(q) for a Fourier-transformed function f(x), with i =
√
−1

f̂(q) = F{f(x)} =

∞∫

−∞

dx f(x) exp(−iqx) (6.30)

and the inverse Fourier transform

f(x) = F−1{F{f(x)}} =

∞∫

−∞

dq

2π
F{f(x)} exp(iqx). (6.31)

The convolution theorem reads

F{(a ∗ b)(x)} = F{a(x)}F{b(x)} ⇐⇒ (̂a ∗ b)(q) = â(q)b̂(q) (6.32)

We label the discrete Fourier transform operator with a subscript D to distinguish

it from the analytical transform, and make use of (6.32) by re-writing (6.25) as

VMF(r) = F−1
D {FD{ρ(r)}FD{U(r}} . (6.33)

This solves problem 1, as the computational effort for a discrete (fast) Fourier

transform is O(N ln(N)) where N = NxNy is the total number of points in the

matrix.
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Problem 2 can be solved by using the analytical Fourier transform Û(q) of the

kernel in (6.33):

Û(q) = F{U(r)} = F{K0(r)} − F{r}

= 4πε0s
1

λ−2 + q2
− 4πε0s

1

q2

= −4πε0s
λ−2

q2(q2 + λ−2)
(6.34)

Eventually, we compute

VMF(r) = F−1
D

{
FD{ρ(r)}︸ ︷︷ ︸

ρ(q)

Û(q)
}

(6.35)

=

∫
d2q

(2π)2
Û(q)ρ(q) exp(iq·r) (6.36)

which is fast and overcomes the need for a cut-off. We have introduced the ab-

breviation ρ(q) = FD{ρ(r)} to keep the notation efficient. Appendix C contains

more technical information on performing the discrete Fourier transforms (6.35)

numerically. Equation (6.34) diverges for q → 0 but we can set Û(0) arbitrarily, for

example Û(0) = 0, as this fixes only the absolute value of the energy VMF.

We have used three different methods for computing VMF(r) numerically.

6.3.2 The full method

The “full method” computes the substrate potential VMF using the full spectrum

ρ(q) of Fourier-components of the average pancake density ρ(r) as shown in (6.36).

In our simulations we use a resolution of roughly 1002 grid-cells per pancake in

order to compute ρ(r) as an average over time-steps. This results in reciprocal

lattice vectors up to magnitudes of about 100Q0, where Q0 = 4π/(
√

3a0), be-

cause |Qmax|/Q0 ≈ 2π/(∆xQ0) ≈ a0/∆x ≈ 100. The necessary discrete Fourier-

transform of ρ(r), and the inverse transform of VMF(q) = Û(q)ρ(q) can be done

efficiently using an implementation of the Fast Fourier Transform (Frigo and John-

son, 1998).

We pre-compute the substrate potential VMF(r) on a mesh and interpolate sub-

sequently for intermediate pancake positions while performing Langevin-dynamics

time-steps in the fixed substrate. We compute a new substrate every 200,000 time-

steps. It is important to average over so many time-steps to reduce density fluctu-

ations (due to poor statistics) in the pancake histogram, which would result in a

deformed substrate potential.
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Note that ρ(r) and ρ(q) are discretised out of numerical necessity to compute a

histogram but not for conceptual reasons.

6.3.3 The Fourier-filtered method

The average density ρ(r) must be a periodic function if we are in the solid phase,

and can be represented by a discrete set of Fourier components. Therefore, the

second method uses only a subset Qµ ⊂ q of the Fourier components q to represent

ρ(q):

ρFF(q) =
∑

µ

ρQµ
δ2(q − Qµ) (6.37)

where the Qµ-vectors are the reciprocal lattice vectors which we determine from

the maxima of the structure factor, and

ρQ =<
(2π)2

LxLy

∑

j

exp(−iRc
j·Q) >c (6.38)

with LxLy being the area of the simulation cell. We average over a set of configu-

rations c of pancake positions Rc
j (i.e. time-steps) to compute ρQ.

Using

ρFF(r) =

∫
d2q

(2π)2
ρFF(q) exp(iq·r)

to present ρ(r), we Fourier-filter ρ(r), and keep only the relevant components for

the computation of the periodic substrate. We can write

V FF
MF(r)

(6.36)
=

∫
d2q

(2π)2
Û(q)ρFF(q) exp(iq·r) (6.39)

(6.37)
=

1

(2π)2

∑

µ

Û(Qµ)ρQµ
exp(iQµ·r) (6.40)

(6.34)
=

−4πε0s

(2π)2

∑

µ

λ−2ρQµ
exp(iQµ·r)

Q2
µ(λ−2 +Q2

µ)
. (6.41)

This is equivalent to using the full-method, but setting ρ(q) = 0 if q 6∈ {Qµ}.
The advantage of the Fourier-filtered method is that we need to average over

less iterations before we can compute a new pancake density, and subsequently

a new substrate, because the substrate is per construction periodic. Using the

Fourier-filtered method we use 500 time-steps for each substrate iteration.
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Figure 6.3: Set of Qµ-vectors up to third order
(i.e. three “shells” around the origin) in recip-
rocal space used in the reduced-Q Fourier-filtered
method to compute (6.41). Due to the reality of
ρ(r) we have ρ(q) = ρ̄(−q) and it is therefore
sufficient to compute only half of the 36 terms
containing ρQµ in (6.41).

It turns out that it is not necessary to take the average (6.38) over different

configurations but it is sufficient to use just one configuration (i.e. one time-step):

ρQ =
(2π)2

LxLy

∑

j

exp(−iRj·Q). (6.42)

Nevertheless, we run a simulation for 500 time-steps with the same fixed substrate

potential to reduce re-computation of ρQ, and to give the pancakes some time to

explore the system with a new substrate potential.

6.3.4 The reduced-Q (Fourier-filtered) method

In addition to Fourier-filtering ρ(r) we can speed up the computation further be-

cause close to the melting temperature, ρQµ
decays quickly for higher-order Qµ

due to the Debye-Waller factor. We can estimate the reduction of ρQ due to the

Debye-Waller factor

exp

(
−<u

2>Q2

4

)
= exp

(
−1

4

<u2>

a2
0

16π2Q2

Q2
0

)
(6.43)

with Q0 = 4π/(
√

3a0). Depending on <u2> we can ignore all ρ(Qµ) with |Qµ| >
Q′. For all but the smallest fields, we find that close to the melting transition

<u2>/a2
0 ≈ 0.02− 0.03 (see inset of figure 6.14), and it is sufficient to include up to

3rd-order vectors Qµ in the summation in (6.41) as shown in figure 6.3.

For the reduced-Q Fourier-filtered method it is more efficient to evaluate (6.41)

for each pancake position occurring in the Langevin dynamics simulation rather

than pre-computing VMF on a mesh.

We demonstrate the equivalence of the full and the Fourier-filtered method for

the determination of the instability line in section 6.4.1, and we compare with the

reduced-Q Fourier-filtered method in section 6.4.5.
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Figure 6.4: Convergence to pancake lattice at B = Bλ and t = 1/59 ≈ 0.017. Top: pancake
histogram n(x, y0) taken along y = y0. Bottom: substrate potential VMF(x, y0).

6.4 Results

6.4.1 Convergence

As described in section 6.2.2, we start each run with a hexagonal pancake distribu-

tion corresponding to zero temperature.

6.4.1.1 Convergence to solid state

Figure 6.4 shows results for the Fourier-filtered method at B = Bλ and at a tem-

perature t = 1/59 ≈ 0.017. The top plot shows a one-dimensional slice of the

two-dimensional pancake histogram n(x, y0) taken along x at y = y0. The his-

togram relates to the pancake density via n(x, y) = ρ(x, y)∆x∆y where ∆x and ∆y

are the spacings of the grid used to create the histogram. For the 0th substrate-

iteration we set the histogram to have narrow and high peaks at the pancake equilib-

rium positions corresponding to delta-peaks in a zero-temperature pancake density

ρ(r). Based on this initial pancake distribution, we compute the substrate poten-

tial, VMF(r), for the first substrate-iteration, of which a one-dimensional slice at

y = y0 is shown in the lower part of figure 6.4. Using this substrate potential,
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Figure 6.5: Convergence to pancake liquid. As figure 6.4 but at t = 1/50 = 0.02 above the
melting temperature at B = Bλ.

we run the Langevin dynamics simulation for 200,000 steps which results in the

histogram for iteration 1 as shown in the upper plot of figure 6.4. Based on these

data, we compute the substrate potential for iteration 2. We iterate the substrate

re-computation until the substrate potential has reached a steady state (typically

after 10 substrate-iterations). The figure demonstrates that the system converges

quickly to a pancake solid at this temperature below melting.

The dotted line in the lower part of figure 6.4 shows for comparison a substrate

potential for iteration 10 computed using the full method. While the amplitude

and width of the wells (and thus the resulting force) are virtually identical to the

Fourier-filtered data, the magnitude of the substrate from the full method varies

slightly. This is due to (long wavelength) density fluctuations in the histogram data

and reduces further if one uses more time-steps for each substrate iteration.

6.4.1.2 Convergence to liquid state

Figure 6.5 shows data for B = Bλ and a higher temperature t = 1/50 = 0.02 which

is above the melting temperature. Here, the pancake distribution broadens and

consequently the substrate potential flattens quickly within the first few substrate
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iterations. Eventually, the system has become a disordered liquid with an approx-

imately constant pancake density and the substrate is virtually flat, as shown for

iteration 10. We conclude that for this temperature and magnetic field the pancake

lattice is unstable with respect to melting into a pancake liquid.

Figure 6.6 on the next page shows the first four substrate-iterations for a system

above the melting temperature using the full method. While using the Fourier-

filtered method the substrate shows (per definition) a perfect periodicity (see fig-

ure 6.2 on page 87), the full method allows irregularities in the substrate potential.

Also visible are the long-wavelength fluctuations of the substrate as mentioned in

section 6.4.1.1.

For figure 6.4, 6.5 and 6.6 we have used 200,000 time-steps for each substrate-

iteration in order to be able to compare the full and the Fourier-filtered method,

but it would be sufficient to use far fewer time-steps per substrate-iteration for the

Fourier-filtered methods. For production purposes, we use the reduced-Q Fourier-

filtered method and update the substrate every 500 time-steps (section 6.3.3). Al-

though more substrate-iterations than with the full method are required before the

system reaches a steady state, the reduced-Q Fourier-filtered approach is more effi-

cient. The full method and both Fourier-filtered methods find that at B = Bλ the

pancake lattice becomes unstable for 0.017 ≤ t ≤ 0.018.

6.4.2 Comparison Monte-Carlo and Langevin dynamics

Recently, we learned that Alexei E. Koshelev (AEK) had started investigating the

same system numerically. We decided to join forces and collaborate. AEK wrote a

Monte-Carlo simulation, and this allows us to compare data from the Monte-Carlo

simulation, which is based on energy evaluations, with data from our Langevin dy-

namics simulation, which is based on force calculations. As an example, figure 6.7 on

page 100 shows how the substrate fluctuates, comparing data from both methods.

The results in this figure are representative of the excellent agreement between the

results of both methods.

6.4.3 Finite size scaling

Figure 6.8 on page 100 shows how the instability temperature varies as a function of

system size. For small numbers of vortices, Np, the temperature oscillates slightly

and for larger systems it becomes constant. Most importantly, there is no general

trend visible although the data ranges from Np = 90 to Np = 1512. This insensi-

tivity to the system size demonstrates the local nature of the transition from solid

to liquid.
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Figure 6.6:
The melting process computed using the full method for the substrate potential. Each row
shows one substrate iteration with the substrate potential VMF on the left, and the resulting
pancake density ρ on the right. The initial substrate potential as shown in the upper left
corner, is computed based on a hexagonal delta-peak pancake density, corresponding to the
zero-temperature situation. When running the Langevin simulation, the pancakes fluctuate in
the (strong) substrate potential, and this is reflected in the pancake density on the right, and
in the second row which shows a flatter substrate potential (which is based on ρ as shown
in the upper right corner.) The resulting pancake density after the second substrate-iteration
shows an irregularity (indicated by circle). This is reflected in the substrate potential of the
third iteration, which still shows regular patters. Both, the substrate and the pancake density,
in the fourth iteration do not represent a solid anymore.
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computation of the substrate potential using the reduced-Q Fourier-filtered method. Both
plots show VMF(r)/2ε0s. Left: Results from Langevin dynamics simulations for 100,000
time-steps, one line for 500 time-steps. Right: Results from a Monte-Carlo simulations of
100,000 sweeps, one line for every 2000 sweeps. The agreement of the data is excellent. The
anomalous curves (dotted, dashed, dash-dotted) in the Langevin plot on the left are the first
three substrate-iterations which are not shown for the Monte-Carlo data.
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Figure 6.8: Finite-size investigation of instability temperature at B = 0.398Bλ. The lower
end of each error bar shows the highest temperature probed for which the system remains
a solid, and the higher end of each bar shows the lowest temperature at which we found
the system to melt into a liquid. The error bar at Np = 90 is bigger, because for this
small pancake number, the system switches between solid and liquid state for a range of
temperatures around the melting temperature. Note, that the temperature axis does not start
from zero: for Np = 1020 the error bar shown corresponds to a relative error of less than 1%.
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Figure 6.9: Example of a hysteresis loop obtained by heating a crystal (circles) and cooling
a liquid (squares) at B ≈ 0.4Bλ. The crystal melts at t = 0.027, while the liquid freezes at
t = 0.0247. Rhombs represent results obtained by simulations starting from an intermediate
defective configuration with ndef ≈ 0.17, and this configuration melts at t = 0.0262, which we
take as an estimate for the thermodynamic melting temperature. The insets on the right show
dependencies of the defect concentration on the Monte-Carlo sweep N at the temperatures
where the intermediate configuration melts (top) and the liquid configuration freezes (bottom).

6.4.4 Hysteresis loop and melting temperature

In section 6.4.1 we have determined the instability temperature by starting the

simulation from a hexagonal crystal configuration for each temperature value. Here

we describe another approach where we subsequently increase the temperature in

one long simulation until the system melts. Data from such a Monte-Carlo run

are shown in figure 6.9. By subsequent cooling of the liquid configuration, we can

determine a freezing temperature. The Langevin dynamics method yields similar

results. Animations of the freezing and melting process (computed with Langevin

dynamics) can be found1 in Fangohr et al. (2002).

The thermodynamic melting temperature is the temperature for which the free

energy F = U − TS of the liquid and the solid state cross, and will be located

between the freezing temperature and the instability temperature. We therefore

know in which range the thermodynamic melting temperature is located. We have

used an empirical method to obtain a better estimate of the melting temperature:

1There is a webpage specified in reference [32] given in the caption of figure 7 of this paper
http://xxx.lanl.gov/abs/cond-mat/0210580 which shows animations at different fields and tem-
peratures.
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Figure 6.10: The intermedi-
ate configuration. Taken from
a Langevin dynamics simulation
at the very moment the sys-
tem started melting. Circles
mark topological defects, i.e.
vortices with 5 nearest neigh-
bours (black) and 7 nearest
neighbours (gray). The defect
density is ndef = 0.1709.

Firstly, we create a configuration of vortices which is close to melting, and which

we call “intermediate configuration” (IC) because it is not fully molten, but it is

not a solid either. An example is shown in figure 6.10. To create this intermedi-

ate configuration, we run a two-dimensional simulation (i.e. without the substrate

potential) which we start from a hexagonal lattice configuration. We increase the

temperature to a value just above the two-dimensional melting temperature T 2d
m .

As the number of simulated time-steps increases, the system will become more and

more disordered due to the thermal fluctuations, and eventually start to melt. At

that point the structure factor peaks start decaying strongly, and the defect frac-

tion increases similarly. We take the vortex positions from this time-step, and store

them in a file. This is the intermediate configuration as shown in figure 6.10.

Secondly, we use the intermediate configuration as the starting condition for a set

of runs in the three-dimensional system (i.e. with the substrate). In comparison to

the two-dimensional system which we used to create the intermediate configuration,

the substrate potential stabilises the vortices but at the same time we study higher

temperatures which compensate for this. For each field value, we probe different

temperatures between the freezing temperature and the instability temperature,

starting from the intermediate configuration. Figure 6.9 (rhombs) shows how these

runs either melt (for t ≥ 0.0262) or stay solid (for t < 0.0262). We take this

transition point (here at tIC = 0.0262) as the best estimate for the thermodynamic

melting temperature.

102



0.00

0.50

1.00

1.50

2.00

2.50

3.00

α s / 
( 

2ε
0s 

/ λ
2  )

self-consistent (2VSCHA)

3
rd

 order Q

20
th

 order Q

infinite lattice summation (3
rd

order Q)

0 0.005 0.01 0.015 0.02
t = kBT / 2ε0s

0

0.01

0.02

0.03

<
 u

2 >
 / 

a 02

Figure 6.11: Top: The substrate curvature αs at B = Bλ. Shown is our numerical solution
using the Fourier-filtered method with Q-vectors up to 20th order (stars), and up to 3rd

order (circles) in comparison with the 2VSCHA from Dodgson et al. (2000b) (solid line). We
have also shown results for Qmax = 3Q0 using an infinite lattice summation for the in-layer
interaction (squares). Bottom: The pancake fluctuation width <u2> (stars) in comparison
with the 2VSCHA result (solid line).

Although it is hard to formally justify this approach, we argue that the interme-

diate configuration is as close to melting as possible, such that it is very sensitive as

to whether the environment (substrate and temperature) favour a liquid or a solid

state.

6.4.5 Substrate curvature α

We can quantify the strength of the substrate potential with

αs =
1

Np

∑

j

∂2

∂x2
VMF(Rj − R0

j). (6.44)

This is the curvature of the potential evaluated at deviations Rj − R0
j from the

equilibrium lattice positions R0
j and averaged over pancake positions Rj. The

second derivative can be taken analytically from (6.41).

Figure 6.11 shows in the upper plot how αs varies with temperature. The solid

line is the semi-analytical prediction using a two-vertex self-consistent harmonic ap-

proximation (2VSCHA) (Dodgson et al., 2000a) which includes cubic anharmonici-

ties, and is taken from Dodgson et al. (2000b). All other data are simulation results
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from the Fourier-filtered method. The stars show αs computed using the reduced-Q

Fourier-filtered method with Qµ-vectors up to 20th order. For low temperatures the

data nearly coincide with the 2VSCHA-solution. Close to melting, the 2VSCHA-αs

is larger than the numerical result. The circles show results using Qµ-vectors up to

3rd order, as shown in Fig 6.3. Close to the transition from solid to liquid around

t ≈ 0.0175 these data agree perfectly with the higher-order data. At lower tem-

peratures the 3rd order results deviate from the 20th order because <u2> becomes

smaller in the Debye-Waller factor (6.43). However, as long as we are interested in

temperatures close to the transition, the 3rd order approach is sufficient.

The square boxes are computed using the 3rd order approach, but instead of

smoothly reducing the pancake interaction (Section 4.4) at a distance of 7a0, we use

an infinite lattice summation technique for the logarithmic interaction (Grønbech-

Jensen, 1996). This demonstrates that it is sufficient to use a (smooth) cut-off for

the in-layer pancake interactions.

6.4.6 Pancake fluctuation width

We compute the average pancake fluctuation width <u2> by fitting to a distribution

where each pancake is normally smeared around its equilibrium position R0
j

ρ(r) =
1

2πσ2

∑

j

exp

(
−
|r − R0

j |2
2σ2

)
. (6.45)

The Fourier transform of ρ(r) is

ρ(q) = exp

(−σ2q2

2

)∑

j

exp(−iq·R0
j)

= (2π)2n0 exp

(−σ2q2

2

)∑

µ

δ2(Qµ + q).

The Fourier components ρ(Qµ) have the Debye-Waller factor as an envelope, and

by fitting a Gaussian to it, we can determine <u2> = 2σ2. We use the standard

Levenberg-Marquardt algorithm to find σ2 numerically (Press et al., 1995).

The lower part of figure 6.11 shows computed values for <u2>. We express <u2>

in units of a2
0 and it increases from 0 at zero temperature towards 0.028 close to the

transition, which corresponds to a Lindemann number cL ≈ 0.168 at B = Bλ. In

agreement with an over-estimation of αs by the 2VSCHA, <u2> is underestimated

in comparison with the numerical results close to the melting transition.
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Figure 6.12: Phase diagram of the electromagnetically coupled three-dimensional pancake
system. Numerically computed instability line (circles on dashed line) in comparison with
instability line from 2VSCHA (dash-dotted line). Also shown is an estimate for the melting
line (Dodgson et al., 2000b) to be compared with the crosses which show the temperatures
at which the intermediate configuration melts. We have shaded the solid phase underneath
the semi-analytical melting line in gray. The melting temperature t2dm of a two-dimensional
system is shown by a dotted line.

6.4.7 Phase diagram

As demonstrated in section 6.4.1, we can determine for each parameter pair (B, T )

whether the pancake system remains a three-dimensional pancake lattice, or whether

it is unstable towards the liquid phase which consists of decoupled two-dimensional

liquids and is sometimes called pancake gas, even though there are still very strong

in-plane correlations in the decoupled layers. In the absence of Josephson coupling,

a line-like liquid regime is expected only at extremely small magnetic fields (Blatter

et al., 1996).

We investigate the parameter space in the B − T -plane, and plot an instability

line into the phase diagram of the system, which is shown in Fig 6.12 (circles on

dashed line). We have also shown an estimate of the instability line that has been

computed using the two-vertex self-consistent harmonic approximation (2VSCHA,

dash-dotted) for the substrate model (Dodgson et al., 2000b). Since in this work

we explicitly compute the pancake positions without using approximations (within

the substrate model), we expect our result to be more accurate than the 2VSCHA.
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It can be seen that the 2VSCHA slightly overestimates the temperature for the

instability line but predicts the field-dependence rather well.

Melting occurs when the free energy F = U−TS of the liquid and the solid state

cross, and this happens below the instability temperature and above the freezing

temperature (section 6.4.4). We have shown the melting line computed using a semi-

analytical approach (Dodgson et al., 2000b) for the substrate model (solid line) and

the temperatures tIC at which the intermediate configuration melts, which is our

best estimate of the melting temperature. The data are in good agreement.

For increasing fields B, the substrate becomes weaker and weaker and the melt-

ing temperature drops. In the limit of B → ∞ we recover a two-dimensional system

with logarithmic interactions for which melting has been estimated (de Leeuw and

Perram, 1982, Caillol et al., 1982, Choquard , 1983) to occur at Γ2d
m ≈ 140 ± 10 ⇔

t2dm ≈ 0.007, which is consistent with our results.

At low fields the pancake stacks are widely separated and interact only weakly

with each other. In this limit the system melts below the evaporation transition of

an isolated stack of pancakes (Clem, 1991, Bulaevskii et al., 1991) at Γ = 4 ⇔ t =

0.25. In agreement with this, we find that the transition line approaches t ≈ 0.25

for B → 0 (see figure 6.2).

6.4.8 Latent heat and jump in entropy

We compute the latent heat per pancake, Lp, by taking the difference of the internal

energy between the solid and the liquid phase at the melting temperature Tm (and

we use Tm = TIC)

Lp =
1

Np
(Uliquid − Usolid) (6.46)

=
1

Np

(
E in

liquid − (E in
solid + Ecoup)

)
. (6.47)

The internal energy U of one layer in the solid phase consists of the in-plane energy

E in (6.23) and the inter-layer coupling energy Ecoup, whereas Ecoup = 0 in the liquid

phase in our model. In order to compute Ecoup for the solid phase, we use (6.14)

where the second sum vanishes due to the definition of δρn:

Ecoup =
1

2

∫
d2r VMF(r)ρ(r). (6.48)
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Figure 6.13: Top: Latent heat Lp per pancake across the melting transition as a function of
field. Bottom: Jump in inter-layer coupling ∆U coup = Ecoup normalised by latent heat Lp.

For the Fourier-filtered methods

Ecoup (6.40)
=

1

2

∫
d2r

1

(2π)2

∑

µ

U(Qµ)ρQµ
exp(iQµ·r)ρ(r)

=
1

2

1

(2π)2

∑

µ

U(Qµ)ρQµ

∫
d2r ρ(r) exp(iQµ·r)

(6.6)
=

1

2

1

(2π)2

∑

µ

U(Qµ)ρQµ

∑

j

exp(iRj·Q)

(6.42)
=

1

2

LxLy

(2π)4

∑

µ

U(Qµ)|ρQµ
|2. (6.49)

For the full method, we have ρ(r) as a histogram available, and we can integrate

(6.48) numerically.

The top plot of figure 6.13 shows how the latent heat per pancake, Lp, varies

as a function of field. We have shown the jump in inter-layer coupling energy

normalised by the latent heat in the bottom part to demonstrate the contribution

of the inter-layer coupling to the latent heat. This plot shows that the substrate

contribution to the latent heat dominates at low fields, and becomes less and less

important towards high fields.

Figure 6.14 shows the entropy jump across the transition as a function of field,

which we have computed using ∆Sp = Lp/Tm. For large B, we expect ∆Sp to

approach the value for a two-dimensional system with logarithmic interactions, for

which estimates range from ≈ 0.4kB (Caillol et al., 1982, 256 particles) to ≈ 0.17kB

107



0 1 2 3 4
B / Bλ

0.0

0.5

1.0

1.5

2.0

∆S
p / 

k B

0

0 1 2 3 4
B / Bλ

0

0.01

0.02

0.03

<
 u

2 >
 / 

a 02
Figure 6.14: Entropy jump ∆Sp per pancake as a function of field B. Inset: Pancake
fluctuation width <u2>.

(Choquard , 1983, 511 particles) and lower.2

At low fields the entropy weakly diverges for B → 0. We understand this as

follows: the possible configurations in the liquid state scale as ∼ a2
0/ξ

2, where ξ2

is the size of a pancake, and a2
0 is the space it can occupy. For the solid state

close to the transition the reduced configuration space is ∼ <u2>/ξ2, because the

pancake is confined to an area ∼ <u2>. We get thus an entropy difference ∆Sp ∼
ln(a2

0/<u
2>). Since <u2> approaches a finite field-independent value of the order

of λ2 this explains the observed divergence of ∆Sp at B → 0.

The value of the entropy jump across the transition is consistent with experi-

mental measurements in BSCCO (Zeldov et al., 1995) which report for low fields

values for ∆Sp up to ≈ 1.5kB, and Morozov et al. (1996) find ∆Sp up to ≈ 6kB.

However, Rae et al. (1998) pointed out that for the same measurements, the real

entropy jump might be higher by a factor of 2 when re-interpreting the data. They

also state that in simulations, the entropy associated with additional vortex-lines

in the liquid phase (due to the increased density in comparison to the solid phase)

cannot be accounted for.

The pancake fluctuation width <u2> relative to the vortex lattice spacing a0,

changes as a function of field (inset figure 6.14), and decays for small fields. The

reason for this is that at low fields the pancake fluctuation width is bounded by the

width of the substrate potential, which is of the order of λ (see figure 6.2), while

a0(B) =
√

(2Φ0)/(
√

3B) ∝ 1/
√
B grows for decreasing B. A field-dependent ratio

2In preliminary results of two-dimensional melting studies with 4080 particles, Koshelev (2002)
finds an entropy jump ≤ 0.0005kB.
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<u2>/a2
0 has been observed before (Ryu et al., 1992), and needs to be considered

when using the Lindemann criterion (see footnote on page 14).

6.4.9 Phase diagram in the presence of pinning

The model we have described can be extended to study the same pancake system

in the presence of pinning using either the full method or the (reduced-Q) Fourier-

filtered method.

Using the full method, it is not sufficient to add random disorder to the layer

simulated, because the substrate minima can follow the pancakes towards minima in

the pinning potential. This would correspond to using the same (random) pinning

potential in all layers, and is not representative of real samples. Instead, we have to

perform a parallel simulation of p two-dimensional layers, each experiencing its own

individual pinning potential in addition to a common substrate potential. After a

number of time steps (or sweeps), the common substrate is re-computed using an

average of the pancake density taken over the p parallel simulations. The number

of necessary layers p has to be sufficiently large, maybe of the order of p ≈ 10,

to ensure that the pinning potential is sufficiently averaged over the layers. This

is computationally p times as hard as performing the simulations described in the

previous sections.

However, using the Fourier-filtered method, the substrate potential cannot fol-

low pancakes to minima in the pinning potential. Instead, a displacement of a

vortex from its ideal lattice position (due to the pinning potential) will result in

a reduced depth of the substrate potential, in the same way that a displacement

due to thermal fluctuations weakens the substrate. If our system has sufficiently

many pancakes, then the average of the pancake displacements in one layer approxi-

mates well the pancake displacements averaged over different layers due to different

random pinning potentials.

Initial results which were computed using the Fourier-filtered method are shown

in figure 6.15. The random pinning potential is similar to the one shown in fig-

ure 5.1 on page 71, and is correlated over a length ≈ 0.07λ which is of the order of

the coherence length ξ. For small fields the hexagonal pancake lattice is nearly as

stable as without disordering pinning. For larger fields, the transition line from an

ordered pancake lattice to a disordered system deviates from the instability line, and

the transition temperature reduces to zero at B ≈ 3Bλ. The shape of this disorder

transition is in good agreement with theoretical predictions (section 2.4.2.1), and

experimental results for BSCCO (Cubitt et al., 1993, Doyle et al., 1997, Khaykovich

et al., 1997).
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Figure 6.15: Phase diagram in presence of pinning

The transition line can be understood as follows. The pancakes experience two

potentials: Firstly, the substrate potential which stabilises the hexagonal config-

uration. Without the substrate, the system would melt (at all fields) above the

two-dimensional melting temperature (see figure 6.12). Secondly, pancakes experi-

ence the random pinning potential which tends to destroy hexagonal order because

(in general) it displaces pancakes from their ideal position. We can simply super-

impose these two contributions to see the effective potential, and this is shown in

figure 6.16 on the following page.

For low fields, say B ≈ 0.5Bλ, the substrate is strong and the vortex spacing is

large. This is the case shown in figure 6.16: While the effective pinning is slightly

rough and not as regular as the substrate potential, it clearly shows the periodicity

of the substrate. The random pinning might displace a pancake slightly, but the

displacement distance — which is of the order of the correlation length of the

random pinning — is small in comparison to the vortex lattice spacing.

Figure 6.17 shows how the effective potential changes with increasing field. At

higher fields, the vortex density is higher and the substrate is weaker. Therefore, the

(unchanged) random pinning is now relatively more important. Also, the displace-

ment of a pancake due to the random pinning is still of the order of the correlation

length of the random pinning, but since the vortex lattice spacing is much smaller
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Figure 6.17: Each of the four plots shows the superposition (solid line) of the substrate
potential and the random pinning potential (see figure 6.16) for increasing fields. For the first
(B = 0.5λ) and the last field (B = 3Bλ) we have also shown the substrate potential (dotted
line) for clarity. The axis limits are identical for all four plots. It can be seen that the amplitude
of the substrate potential decreases with increasing field (because the vortex-lattice spacing
decreases), but the random pinning remains constant (no change in the atomic structure of
the material as a function of field). The resulting effective potential loses its periodic nature
and appears completely disordered at high fields.
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at high fields, this displacement relative to the vortex lattice spacing is much higher,

and can de-stabilise the hexagonal system more easily.

Increasing the field increases the relative importance of the random pinning and

at some point the hexagonal configuration breaks down, resulting in the disorder

transition line as shown in figure 6.15.

We cannot conclude what type of vortex solid we find for temperatures below the

disorder transition line (i.e. Bragg glass or crystal), because we impose a hexagonal

crystal structure through the Fourier-filtered substrate potential. Further studies

should be able to reveal the nature of the system above the transition line (vortex

glass or liquid).

6.5 Conclusions

In this chapter we have applied a numerical simulation to the suggestion of Dodg-

son, Koshelev, Geshkenbein and Blatter (2000b) to treat the three-dimensional

layered pancake system with a mean field approach for the inter-layer interac-

tions, turning the problem into solving a two-dimensional system in the presence

of a self-consistent substrate potential. Dodgson et al. (2000b) studied this model

with semi-analytical methods. The 2-vertex self-consistent harmonic-approximation

(2VSCHA) was used to estimate the instability line of the pancake lattice. Also

the melting line was estimated by comparing the elastic free energy of the lattice

within the substrate model to the free energy of independent 2D liquids, taken from

numerical simulations.

Here we have presented results from full numerical simulations of the substrate

model. We have directly calculated both the instability and melting lines. We

find the transition to be of first order, in agreement with theoretical expectations

(section 2.4.2.1) and experimental measurements (for example Zeldov et al., 1995).

Our result for the instability line has a very similar field-dependence to that of

the 2VSCHA, which we find to slightly overestimate the instability temperature.

Our estimate of the melting line is in good agreement with the data given by

Dodgson et al. (2000b). We compute the pancake fluctuation width <u2> and

show how it varies as a function of temperature: the variation is significantly non-

linear below the melting transition. We also calculate the entropy jump across the

melting transition, which diverges weakly towards small fields and large melting

temperatures.

While we have found a satisfying agreement between our results here and the

earlier approximate work of Dodgson et al. (2000b), the true motivation of this
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project are the possible extensions that can be studied. There is now the exciting

prospect to study this pancake vortex system in the presence of pinning disorder

for which we have shown initial results. Also, by extending the model to use several

layers, it is possible to include Josephson coupling between them, which will fully

describe an anisotropic layered high-temperature superconductor.
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Chapter 7

Conclusions

7.1 Summary of main findings

We have implemented and used a numerical model of the vortex state. Vortices are

represented by massless point-like particles that repel each other. The equation of

motion is based on Langevin dynamics, i.e. vortices experience a viscous drag force

proportional to their velocity and a stochastic noise force that emulates thermal

fluctuations, in addition to vortex-vortex interactions, the Lorentz force, and pin-

ning forces. The resulting set of differential equations is integrated numerically. The

model is appropriate for the study of pancake vortices in high-temperature super-

conductors. It can also be employed to study “rigid” vortex lines in thin films and

bulk material as well as the two-dimensional one component electron plasma. More

generally, the model describes the statics and dynamics of a many-body system

with competing interactions.

In chapter 4 we investigate a two-dimensional vortex system in the absence

of pinning, and demonstrate that employing a cut-off to long-range interactions

introduces disordered vortex configurations with energies below the energy of the

ground state of the system, which is known to be a hexagonal lattice. We have

simulated the shearing process of a two-dimensional vortex lattice, and find that

using the simple cut-off the shear modulus is negative, i.e. the material does not

act against a shearing force, but instead collapses.

These problems are numerical artefacts and severely hinder the numerical in-

vestigation of the vortex state with its subtle combination of elastic, thermal and

pinning energies.

We have revealed that the reason for these artificial configurations is that the cut-

off of the long-range vortex-vortex interaction introduces a variety of local energy
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minima in phase space which are energetically located below the hexagonal lattice

energy, and are thus quickly occupied by the simulations which aim to minimise

energy. In real space there is a tendency for vortices to align along the cut-off

circles.

The reported problems have been resolved by reducing the interaction smoothly

over a few lattice spacings. To ensure that vortices hardly experience any difference

between being in- or outside the cut-off circle, the derivative of the smooth function

at the cut-off needs to be zero, which can be achieved by interpolating with a cubic

polynomial. In simulations employing the modified force, the hexagonal lattice is

the global energy minimum. The smooth cut-off can be applied to any long-range

interaction in particle simulations.

For studies of rigid vortices in bulk material, the vortex-interaction potential

is given by the modified Bessel function K0(r). We have developed a new infinite

lattice summation which is at least 20,000 faster than similar methods used previ-

ously. The infinite lattice summation removes the need to cut off the interaction,

and therefore overcomes the artificial configurations as well.

We have compared results from simulations using the infinite lattice summa-

tions with simulations employing a smooth cut-off and find no difference in their

statistical behaviour.

In chapter 5 we apply the methods we have developed to deal with the long-

range interactions, and study two-dimensional vortex systems in the presence of

pinning and a Lorentz force. We drive the vortices over a weak random pinning

potential, and they form a moving Bragg glass. Once the static rough channels have

developed, we determine the critical transverse force by applying a small and slowly

increasing transverse force until the system de-pins in the transverse direction.

We have performed a finite-size analysis, and have shown how the critical trans-

verse force scales with system size up to 3000 vortices. We find that it decreases up

to a system size of ≈ 1000 vortices, but stays constant for larger system sizes. This

is in contradiction to Olson and Reichhardt (2000), where the critical transverse

force was found to be constant for all system sizes investigated. We also find that

it is important to study systems with more than 1000 vortices, as the behaviour for

smaller systems can differ qualitatively.

We show how the critical transverse force varies as a function of the pinning

strength, and we demonstrate that it is an order parameter of the moving glass.

We find that the critical transverse force decreases with an increasing velocity of the

system. Data on the apparent critical transverse force at finite temperatures have
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been obtained, and these findings are in agreement with predictions from analytical

work. Our results support the moving glass theory of Giamarchi and Le Doussal

(1998).

We have also addressed the issue of the outstanding experimental verification

of the critical transverse force. We introduce the quantity σ which can be obtained

experimentally, and provide simulated data for σ to allow comparison with exper-

iments. If experimental measurements showed a σ < 1, then this would prove the

existence of transverse barriers, such as the critical transverse force (assuming it

is a single domain sample with no twin-boundaries or other extended defects that

could channel vortices). We predict, that the largest critical transverse force can

be found for low temperatures and small longitudinal driving forces.

In chapter 6, we extend our model to study the vortex state in three-dimensional

layered high temperature superconductors and study vortex matter in layered super-

conductors in the limit of zero Josephson coupling. We have applied a numerical

implementation to the suggestion of Dodgson et al. (2000b) to exploit the long-

range nature of the electro-magnetic interaction between pancake vortices in the

c-direction and to employ a mean-field method. All attractive inter-layer interac-

tions are described by a substrate potential, which pancakes experience in addition

to the in-layer pancake repulsion.

For the in-layer interactions we employ our simulation of the two-dimensional

vortex state, and add extra forces and energies resulting from the superimposed

substrate potential. Using a time-averaged pancake density, we re-compute the

substrate potential iteratively, until the self-consistent method converges, depending

on temperature, either to a pancake lattice or a pancake liquid. This mean-field

approach reduces the dimensionality of the problem from 3 to 2, and results in a

speed-up of about 1002 in comparison to performing the simulation in a straight-

forward manner by stacking two-dimensional simulations on top of each other.

Using this model, we compute the melting line and the instability line of the

three-dimensional weakly coupled pancake system which we compare with semi-

analytical approximations. Our numerically obtained instability line is located at

slightly smaller temperatures than the approximate solution, but the methods agree

well on the field-dependence of the temperature. Our melting line is in good agree-

ment with the semi-analytic prediction.

We compute the pancake fluctuation width <u2> and demonstrate its depen-

dence on both temperature and field. For a fixed field, we find that the variation of

<u2> is non-linear below the melting transition. The ratio <u2>/a2
0 at the melting
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transition is a function of the field (a0 is the average vortex spacing), and decreases

strongly for low fields. This has to be taken into account when employing the

Lindemann criterion.

We also calculate the entropy jump, ∆Sp, across the melting transition, which

diverges weakly towards small fields and large melting temperatures. This is in

agreement with the decay of the relative pancake fluctuation width <u2>/a2
0 at

small fields because qualitatively ∆Sp ∼ ln(a2
0/<u

2>).

In summary, we have found a satisfying agreement between our results as pre-

sented in this report and the earlier approximate work of Dodgson et al. (2000b).

The usefulness of our numerical implementation lies in its versatility: the method

can be extended to include pinning effects, which cannot be achieved by analytical

means. We provide results from initial computations, and find a order-disorder

transition with increasing field in agreement with experimental data and analytical

predictions.

The implementation of the substrate method can be extended further: by using

several layers, Josephson coupling can be included between them, and this will fully

describe anisotropic layered high temperature superconductors.

7.2 Suggested future work

It would be interesting to carry further the work presented in chapter 6, and to

investigate the three-dimensional vortex state in the presence of random pinning in

depth.

The detailed shape of the disorder transition line, its connection to the melting

line and its dependence on the pinning strength are obvious questions to follow.

In order to be able to better compare our results with experiments, we suggest to

combine these studies with dynamic simulations in which we determine the critical

force required to de-pin a (two-dimensional) vortex system in the presence of the

same pinning as used for the phase-diagram studies. Doing so, one could relate a

critical current to the magnetic induction at which we expect the order-disorder

line.

In the limit of high fields, the individual layers are virtually decoupled and

behave like two-dimensional systems with logarithmic repulsion. This limiting case

of the substrate model has not been fully understood: the transition temperature

has been predicted by computer simulations 20 years ago, to be t2dm ≈ 1/142 ≈ 0.007.

This value is compatible with more recent investigations by ourselves, and Koshelev

(2002). However, the order of the transition is not unambiguous (see section 6.4.8).
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One of the challenges is the required equilibration of the defects and the diverging

correlation time close to the melting transition. Recent work on a more complicated

vortex system with inter-layer interactions (Price, 2000) suggests that using a novel

Hybrid Monte-Carlo method could help to overcome these problems. The two-

dimensional melting transition in the scale-free system with logarithmic interactions

could be well suited to evaluate the Hybrid Monte-Carlo method in comparison to

Monte-Carlo and Langevin dynamics methods, and to assist in the determination

of the order of the melting transition.

Eventually, the addition of Josephson coupling to the substrate model would

remove the main approximation in this method and make it suitable for a broader

range of materials. It will be necessary to consider a couple of layers (≈ 4) to be

able to compute the Josephson coupling between them. A multi-scale approach is

required, where based on the pancake positions in the layers, the phase of the super-

conducting wave functions is computed. The relative phase difference determines

the energy contribution due to the Josephson coupling which has to be integrated

with the computation of the electromagnetic interaction.
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Appendix A

Vortex state data compression

A.1 Introduction

We need to store the (three dimensional) positions of a set of particle-like vortices

for many time steps to be able to post process the data at a later point. The

z-position of a particle is determined by its layer, and this can easily be encoded

efficiently. Thus, we have effectively sets of two-dimensional positions to deal with.

To store NT = 10000 time-steps for a system with Nv = 1000 particles, each

having f = 2 degrees of freedom, and using B = 8 byte per floating point number,

we need NvNT fB ≈ 150 Megabyte of disk space. It is desirable to reduce this

number.

In general, it is not necessary to store the data with the same accuracy which

is used in the computation (8 byte per floating point number), and for different

investigations, different precision may be acceptable. Thus, we are looking for a

compression scheme with an adjustable accuracy.

A.1.1 Test data

Figure A.1 shows four different sets of test data which are used to evaluate the

compression algorithms. The first three sets are simulation results from runs with

598 vortices confined in a simulation cell of size 8.027× 7.859 simulation units. We

have taken 100 time steps out of much longer simulations, and every 10th time step

has been stored and plotted.

A.1.2 Absolute and relative error

In order to represent a real number x ∈ IR we use an approximation x̃ which is in

general not equal to x. Instead, there is a small deviation. The absolute error ε is

ε(x) = |x̃− x| (A.1)
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Figure A.1: The data used for the various compression approaches. Each run consists of 598
vortices, and 10 (out of 100) time steps have to be stored. The plots show the accumulation
of vortex positions over the 10 time steps. The elastic (chapter 5) and plastic flow, and
the thermal fluctuations (chapter 6) are realistic configurations. The Gaussian distribution
of particles is only used to be able to compare our results with other works, and we have
neglected the particle-particle interaction in this set.
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and the relative error is
ε(x)

x
=

∣∣∣∣
x̃− x

x

∣∣∣∣ . (A.2)

For the simulation data we are mainly interested in the absolute error: the range

of possible numbers x and y is fixed to x ∈ [−Lx/2, Lx/2] and y ∈ [−Ly/2, Ly/2],

where Lx and Ly are the length of the simulation cell, which is centred around the

origin. Typical values for Lx and Ly are in the range of 1 to 100.

A.2 Compression methods

A.2.1 ASCII-files

The simplest approach to save the positions is to use a plain text file, and to write

two-dimensional positions in clear text:

-3.931962 -2.322394

-3.443380 -2.375557

-3.917671 -2.629709 ...

This is very portable because no problems with conversion to Big or Little

Endian format occur (see section A.2.2), and it is irrelevant how many bytes the

system uses to represent a floating point number. However, such a data format

needs 20 characters (i.e. 20 bytes) for each vortex position, i.e. 5 byte per floating

point number with an error of ≈ 10−6. This is very inefficient because one byte is

used to represent one out of only ten items (the digits 0 to 9) although a byte can

encode 256 items.

A.2.2 Binary files

An floating point number can be written to disk “as it is stored” in the computer.

The number of bytes used for a floating point number is not fixed, and may vary

for different platforms and compilers. Usually a float (in “C”-terminology) is a

floating point number which is 4 byte long, and a double is 8 bytes long, and we

assume this to be true in this section.

For floats, the relative error is ≈ 10−7, and this is sufficiently accurate for our

purposes. By simply writing the binary numbers to a file, we can achieve a higher

accuracy than writing ASCII-files, and need only 4 bytes per floating point number.

To be able to read and write data on different hardware architectures, one has

to ensure that the bytes representing one floating point are written in the correct

order: either as Big Endian (least significant byte last) or as Little Endian (least

significant byte first). We found it most convenient to store data always as Little

Endian and to convert to and from Big Endian on the fly while writing and reading

files on Big Endian-based platforms.
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Figure A.2: Demonstrating the integer method and the
resulting error. Instead of storing a particle’s x and y
position as floating point numbers, we store two indices i
and j for the box it is located in. Error estimation: When
reconstructing particle positions from indices, we always
assume the particle was in the middle of its associated
box. In the worst case it was at a corner of the box. Thus,

the error is E =
√
r2x + r2y, where rx and ry are half the

length of a box in the x and y direction, respectively.

A.2.3 Integer method

A 4-byte long floating point number uses 24 bits to store the mantissa (in the binary

system), and (nearly) 8 bits to encode the exponent.1 The exponent is useful to

extend the range of valid floating point numbers. This however, is for our data not

advantageous, i.e. 8 of the 32 bits are not efficiently used, and this can be exploited.

The idea is to map all floating point numbers ∈ [a, b] to integer numbers

[0, 2n − 1], where n ≈ 24 to obtain a comparable accuracy as for 4-byte floats.

Then these integers are stored tightly following each other in a file, i.e. every in-

teger occupies exactly n bits (which requires the implementation of special input

and output routines). The absolute error for this approach (in one dimension) is

ε = |b− a|/2n+1.

Using 24 bits, i.e. n = 24, this approach reduces storage requirements by 1
4

in

comparison to storing 4-byte floats, while not reducing the accuracy. This lossless

compression is possible because the data is bounded to lie within the simulation

cell.

The absolute error ε when using nx and ny bits to discretise the x and y direction

can be estimated as follows (see figure A.2). For nx bits we have 2nx boxes, and thus

each box has a length lx = 2rx = Lx/2
nx. As shown in figure A.2 the maximum

error when reconstructing the position from the integer data is

E =
√
r2
x + r2

y =

√(
Lx

2 · 2nx

)2

+

(
Ly

2 · 2ny

)2

=
√

2(−2nx−2)L2
x + 2(−2ny−2)L2

y.

(A.3)

1Using gcc version egcs-2.91.66 19990314 (egcs-1.1.2 release).
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Figure A.3: The path p = 1411 is used
to point to the shaded box in the lowest
level l = 4 of the quad-tree. The figure
demonstrates how the path grows: in level
1 it is p = 1, in level 2 p = 14, in level
3 p = 141, and in level 4 p = 1411 (not
explicitly shown).

A.2.4 Tree method

A.2.4.1 Quad-tree method

We now try to exploit spatial and temporal coherence in our data. Figure A.3

introduces the quad-tree. Each node has four children, which are the quadrants of

the node. These are labelled 1, 2, 3, and 4. The root-node (at level l = 0) is the

simulation cell. The boxes in the deepest level (here l = 4) are the leaves of the

quad-tree, which determine the accuracy.

We associate the x- and y-position of a particle with the centre of a leaf. Instead

of storing the indices i and j to label leaves (as for the integer method), we encode

leaves with a path through the quad-tree. In figure A.3, starting from the root-node

at level l = 0 we add a 1 to the path to branch into the lower left quarter of the

current box in the next level (l = 1). Now we add a 4 to the path because in the

next level (l = 2) we branch into the upper right quarter of the current box. Thus

the path grows, until — in the example in figure A.3 at level l = 4 — the leaves are

reached. The final path is 1411. This describes the position of one particle. Paths

for a quad-tree with 24 levels look like this:

123333333343421121121223

141111141423443124112134

141111311344321224443212 ...
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An upper bound for the absolute error occurring when particle positions are

approximated with box positions can be estimated in the same way as for the

integer method, since the deepest level corresponds to figure A.2. To obtain the

same accuracy as for the integer method we need as many levels in the tree as bits for

the integer method (assuming Lx = Ly and nx=ny for simplicity). For the integer

method we need two numbers with n bits to encode one particle’s position, whereas

for the quad-tree method we need one path with n-levels to encode a particle’s

position. Since one level needs two bits to be stored (to code 4 possibilities), both

methods have exactly the same compression and accuracy.

A.2.4.2 Spatial coherence

Sorting the paths shows that particles can be “close” too each other in the quad-tree

description of their positions:

111111123212243141334313

111111442412344444342312

111112214134323413321131 ...

These data can be compressed by not storing the first k identical levels in the

paths for two subsequent particles in the sorted list of paths. In the example shown

above, this would eliminate “111111” for the second particle because it is identical

with the preceeding particle (k = 6). Accordingly, we would not store “11111” for

the third particle (k = 5).

However, somewhere we have to store k to be able to reconstruct the complete

path at a later point. By sorting the paths, we also lose the identity of particles. If

we wish to be able to recover which particle went where, i.e. to retain the particle’s

identity, we have to store a particle number together with each path.

Sorting the paths of the quad tree is equivalent to ordering particles along space-

filling z-curves in the simulation cell (Pilkington and Baden, 1996). In the picture

of z-curves, the compression resulting from not storing leading identical levels for

subsequent particles, corresponds to storing the relative displacement between two

particles next two each other along the z-curve.

The spatial coherence appears to have great potential when the particles cluster

in certain places, as in many astronomy and chemistry simulations, and when it

doesn’t matter which particle goes where. Unfortunately, vortices repel each other

and thus distribute as uniformly as possible, and we would like to keep track of

paths of individual particles.
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A.2.4.3 Temporal coherence

The simulation data describe particle positions as a function of time. Now we

address the temporal correlation between the positions in two subsequent time

steps. We first compute the relative displacement of each particle with respect to

its position in the previous time-step. We then create a quad-tree to describe the

displacements. Finally, we sort and shorten this quad-tree as described in section

A.2.4.2.

The underlying idea is that the displacements of a set of vortices are less widely

spread than the (uniformly distributed) particle positions if the positions are stored

sufficiently frequently.

Periodic boundary conditions will result in huge jumps of a particle once it

moves across the simulation cell border. These jumps will be stored inefficiently,

which can be overcome if we — in such cases — store their new position outside

the simulation cell, and apply periodic boundary conditions when reading the data

back from the file.

A.3 Results

Table A.1 shows file sizes and compression ratios for the described methods. The

data used are taken from the elastically moving system as shown in figure A.1 and

investigated in chapter 5. We have used 24 bits for the integer method, and 24

levels for the quad-tree method. The obtained compression is thus lossless with

respect to storing binary floats.

As expected, the integer method achieves a compression of 4/3 ≈ 1.33 as ex-

plained in section A.2.3 on page 122, and so does the simple quad-tree method

(section A.2.4.1).

The quad-tree method using spatial coherence (section A.2.4.2) performs worse

than the simple quad-tree. This is because we have to add 10 bit to every path

to keep the particle’s identity, but we cannot gain much by sorting the quad-tree

paths and cutting of the first identical digits because spatial correlation is poor for

the vortex system with it’s homogenous vortex distribution. (This method performs

much better on the normally distributed particle positions as shown in figure A.1 on

page 120 because there is more spacial correlation.)

The data can be compressed losslessly by nearly a factor of two using the tree

method exploiting the temporal coherence of the system (section A.2.4.3).

Table A.2 shows the same data as table A.1 but for lossy compression: only 14

bits and levels have been used to store the data. For 14 bits and Lx = Ly, we find
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comp. bytes bytes method
ratio per per pos.

position (gzipped)
1.0 8.00 6.67 binary floats (2×4 byte)
1.1 7.02 6.96 quad-tree, spatial coherence
1.3 6.00 6.00 quad-tree
1.3 6.00 5.73 integer method
1.9 4.23 4.23 quad-tree, temporal coherence

Table A.1: Comparison of different compression techniques for elastic flow data using 24
bits for the integer method and 24 levels for the tree methods. The first column shows the
compression ratio in comparison to storing binary floating point numbers. The second column
shows the (average) number of bytes required to encode one particle’s position. The third
column shows the number of bytes required after compressing further the compressed data
file using gzip. The last column shows the employed compression method.

comp. bytes bytes method
ratio per per pos.

position (gzipped)
1.0 8.00 6.67 binary floats (2×4 byte)
1.8 4.40 4.35 quad-tree, spatial coherence
2.3 3.51 3.51 quad-tree
2.3 3.51 3.47 integer method
4.3 1.88 1.88 quad-tree, temporal coherence

Table A.2: Same as table A.1 but with only 14 bits/levels.

using (A.3) for the error E ≈ 4 · 10−5Lx which is acceptable for most simulations.

This yields compression rates as high as 4 in comparison to using binary floats.

In both, table A.1 and table A.2, the second column shows the number of re-

quired bytes per position after the compressed data file has been compressed using

gzip. Generally, the gzipped-file is slightly smaller, except for the temporal coher-

ence quad-tree method where it is actually marginally larger (not visible in tables).

This indicates that we are close to the maximum compression of these data.2

A.3.1 Dependence on bits/levels

Figure A.4 shows how the achieved compression varies as a function of number of

bits/levels used. For comparison we have shown the 8 bytes per position that are

required for storing binary floats. For more than 16 bits all other four curves have

the same slope, albeit different offsets. The curve for the integer method and the

2Gzip operates with a dictionary which is based on characters (i.e. 8 bit units). To be sure
we use gzip most efficiently, we have also written our path-data as ASCII-text instead of closely
packed bits before using gzip, but no better compression rates were achieved.
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Figure A.4: Required number of bytes for coding one position for different accuracies. The
best compression is achieved using the temporal coherence quad tree method. The compressed
data is taken from an elastically moving system with 598 particles.

simple quad tree coincide as expected. The best compression is obtained with the

temporal coherence quad tree method, which — for less than 10 levels — approaches

a constant value of ≈ 1.5 bytes per position. This is due to the extra information

included in the data file which allows to undo the sorting of the paths (this actually

requires 10 bit per path for 598 particles), and starts to dominate for less than 10

levels. Using the spatial coherence quad tree method is actually worse than storing

the tree directly. This, again, is due to the extra information about the order of

the particles that has to be included.

At least for data from elastically moving systems the temporal coherence quad

tree is the best compression method for more than 6 bits resolution, and less than

6 bit is not accurate enough to be useful.

A.3.2 Dependence on simulation data

Figure A.5 compares the compression properties of the temporal coherence quad

tree method with the integer method (gzipped) and with storing floats (gzipped).

With the temporal coherence quad tree method, the elastically moving system com-

presses best, thermal fluctuations compress well, and plastic flow has the smallest

compression rate. However, in comparison to the gzipped float file with ≈ 7.4 bytes
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Figure A.5: Required number of bytes per position for compression of qualitatively different
data. Shown are results for gzipped binary floats (2×4 bytes), the gzipped integer method
(2×14 bits), and the temporal coherence quad-tree method (14 levels). Whereas the first two
shrink by approximately 20% when being gzipped, the temporal coherence quad tree results
do not shrink at all.

per position, the temporal coherence quad-tree method achieves a reduction in file

size by a factor of three for plastic flow. Averaged over the three different kinds

of data, the temporal coherence quad-tree method reduces the file size by about a

factor of three in comparison to the (more accurate) float file, and by a factor of

≈ 1.5 in comparison to (gzipped) integer method files (of same accuracy).

A.3.3 Comparison with other works

Similar works (Yang et al., 1999, Omeltchenko et al., 2000) have employed the tech-

nique of sorting quad-trees (or oct-trees for three-dimensional systems) to compress

data. In contrast to their simulations we need to keep track of our particles, and

it is not likely that our particles cluster in some places of the simulation cell. Both

groups compare their results for lossy compression with storing double floats (each

requiring 8 byte) and achieve compression ratios of about a factor ten. The ac-

cepted error, for example in the work of Omeltchenko et al. (2000), is comparable

to using 14 levels for our system (for a system size of ≈ 500 − 1000 vortices).

Our temporal coherence quad-tree method needs ≈ 2.1 byte per particle position

(averaged over different data types, figure A.5) using 14 levels. Thus, in comparison

to using twice 8 byte per position, we get a compression of 16/2.1 ≈ 7.6. However, in
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contrast to the order-of-magnitude compression by Omeltchenko et al., this contains

the order of the particles. Dropping the order of the objects, we only need ≈ 0.85

bytes per particle (because we need 10 bit = 1.25 byte to store the ID of a particle

for the chosen system size of 598), and get a compression of 16/0.85 ≈ 19. While we

only store positions, Omeltchenko et al. also store velocities which are not bounded

and might compress worse. It is also possible that exploiting temporal coherence

improves the compression.

A.4 Summary

We have developed a compression technique by extending quad-tree methods and

exploiting the temporal coherence we find in our simulation data. In comparison

to storing data with 4-byte floating point numbers, our method achieves a lossless

compression of a factor ≈ 2, and for a lower but practically acceptable accuracy

(14 levels), it reaches a compression of ≈ 4. Our method for uniformly distributed

particle positions compares well with similar implementations.
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Appendix B

Derivation of U

We show how (6.19) can be transformed into (6.20) on page 89. We start with the

Fourier representation of U(r, n), and show by taking the inverse Fourier transform

the equivalence to (6.4) for z = 0. This provides several expressions that we need

in order to perform the sum

U(r) ≡
∑

n6=0

U(r, n). (B.1)

The Fourier representation of U(r, n) is (Feigel’man et al., 1990)

U(R, n) = 4πε0s
2

∫
d2q

(2π)2

dk

2π

(q2 + k2)eiknseiq·R

q2(λ−2 + q2 + k2)
(B.2)

where q is the in-layer variable and k is the out-of-layer variable in Fourier space.

We write the z-position as z = ns where n is an integer and s is the layer spacing.

In-plane interaction

We start with the in-plane interactions, n = 0

U(R, 0) = 4πε0s
2

∫
d2q

(2π)2

dk

2π

(q2 + k2)eiq·R

q2(λ−2 + q2 + k2)

= 4πε0s
2

∫
d2q

(2π)2

1

q2
eiq·R

π/s∫

−π/s

dk

2π

q2 + k2

λ−2 + q2 + k2

︸ ︷︷ ︸
I1(q)
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We simplify I1(q)

I1(q) =

π/s∫

−π/s

dk

2π

q2 + k2

λ−2 + q2 + k2

=

π/s∫

−π/s

dk

2π
1 − −λ−2

λ−2 + q2 + k2

=
1

s
−

π/s∫

−π/s

dk

2π

−λ−2

λ−2 + q2 + k2

use k = x
√
λ−2 + q2

=
1

s
− λ−2

2π
√
λ−2 + q2

π/s∫

−π/s

dx
1

1 + x2

note that
π

s
≈ 109

≈ 1

s
− λ−2

2π
√
λ−2 + q2

∞∫

−∞

dx
1

1 + x2

︸ ︷︷ ︸
π

=
1

s
− 1

2λ
√

1 + λ2q2
. (B.3)

Thus,

U(R, 0)

= 4πε0s
2

∫
d2q

(2π)2

1

q2
eiq·R

(
1

s
− 1

2λ
√

1 + λ2q2

)

= 4πε0s

∫
d2q

(2π)2

1

q2
eiq·R

︸ ︷︷ ︸
1
2π

ln(L
R)

−4πε0s
2

λ

∫
d2q

(2π)2

1

q2
√

1 + λ2q2
eiq·R

︸ ︷︷ ︸
I2(R)

(B.4)
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We simplify I2(R)

I2(R) =

∫
d2q

(2π)2

1

q2
√

1 + λ2q2
eiq·R (B.5)

=
1

(2π)2

∞∫

0

qdq

2π∫

0

dθ
1

q2
√

1 + λ2q2
eiqR cos(θ)

=
1

2π

∞∫

0

dq
1

q
√

1 + λ2q2

1

2π

2π∫

0

dθeiqR cos(θ)

︸ ︷︷ ︸
J0(qR)

where Jn(qR) is the Bessel function of first kind and n-th order, with the property

J0(x) =

∞∫

x

dy J1(y) (B.6)

and therefore

J0(qR) =

∞∫

qR

dy J1(y)
x= y

q
=

∞∫

R

q dx J1(xq) = q

∞∫

R

dx J1(xq) (B.7)

I2(R) =
1

2π

∞∫

0

dq
1

q
√

1 + λ2q2
q

∞∫

R

dx J1(xq)

=
1

2π

∞∫

R

dx

∞∫

0

dq
J1(xq)√
1 + λ2q2

=
1

2πλ

∞∫

R

dx

∞∫

0

dq
J1(xq)√
λ−2 + q2

(B.8)

We use the identity (Watson, 1944)

∞∫

0

dq
J1(xq)√
λ−2 + q2

= I 1
2

( x
2λ

)
K 1

2

( x
2λ

)
(B.9)

where In(x) is the modified Bessel function of first kind and n-th order and Kn(x)

is the modified Bessel function of second kind and n-th order. We use the special
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properties (Gradshteyn and Ryzhik , 1994) of I 1
2

and K 1
2

I 1
2

(x
2

)
=

2√
πx

sinh
(x

2

)
=

2√
πx

1

2

(
e

x
2 −e−x

2

)

K 1
2

(x
2

)
=

√
π

x
e−

x
2 ,

I 1
2

(x
2

)
K 1

2

(x
2

)
=

1

x

(
1 − e−x

)
. (B.10)

It follows that

I2(R) =
1

2πλ

∞∫

R

dx
λ

x

(
1 − e−

x
λ

)
(B.11)

=
1

2π

∞∫

R

dx
1

x
− 1

2π

∞∫

R

dx
e−

x
λ

x

=
1

2π
ln

(
L

R

)
+

1

2π
Ei

(
−R
λ

)
,

where L is the system size, and Ei(x) the exponential-integral function

Ei(−x) = −
∞∫

x

dx′
exp(−x′)

x′
. (B.12)

We continue from (B.4) and write

U(R, 0) = 2ε0s

[
ln

(
L

R

)
− s

2λ
ln

(
L

R

)
− s

2λ
Ei

(
−R
λ

)]
(B.13)

which reproduces (6.4).
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Derivation of U
We solve the sum in (B.1):

∑

n6=0

U(R, n)

(B.2)
=

∑

n6=0

4πε0s
2

∫
d2q

(2π)2

dk

2π

(q2 + k2)eiknseiq·R

q2(λ−2 + q2 + k2)

= 4πε0s
2

∫
d2q

(2π)2

dk

2π

q2 + k2

q2(λ−2 + q2 + k2)
eiq·R

∑

n6=0

eikns

︸ ︷︷ ︸
2π
s

δ(k)−1

= 4πε0s
2

∫
d2q

(2π)2
eiq·R

[
q2

q2(λ−2 + q2)

1

s
− 1

q2

∫
dk

2π

q2 + k2

λ−2 + q2 + k2

]

︸ ︷︷ ︸
(B.3)
= I1(q)

(B.3)
= 4πε0s

∫
d2q

(2π)2
eiq·R

[
1

λ−2 + q2
− s

q2

(
1

s
− 1

2λ
√

1 + λ2q2

)]

= 4πε0s

∫
d2q

(2π)2
eiq·R

[
1

λ−2 + q2
− 1

q2

]
+

4πε0s
2

2λ

∫
d2q

(2π)2

eiq·R

q2
√

1 + λ2q2

︸ ︷︷ ︸
(B.5)
= I2(R)

(B.11)
= 4πε0s

∫
d2q

(2π)2
eiq·R

[
1

λ−2 + q2

︸ ︷︷ ︸
1
2π

K0(R
λ )

− 1

q2

]
+

2ε0s
2

2λ

[
ln

(
L

R

)
+ Ei

(
−R
λ

)]

= 2ε0sK0

(
R

λ

)
− 4πε0s

∫
d2q

(2π)2

eiq·R

q2

︸ ︷︷ ︸
1
2π

ln(L
R)

+
2ε0s

2

2λ

[
ln

(
L

R

)
+ Ei

(
−R
λ

)]

= 2ε0s

[
K0

(
R

λ

)
− ln

(
L

R

)
+

s

2λ

[
ln

(
L

R

)
+ Ei

(
−R
λ

)]]

= 2ε0s

[
K0

(
R

λ

)
−
(
1 − s

2λ

)
ln

(
L

R

)
+

s

2λ
Ei

(
−R
λ

)]

(B.13)
= 2ε0sK0

(
R

λ

)
− U(R, 0) = U(R).
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Appendix C

Notes on discrete Fourier transforms

To complement the information given in chapter 6, we investigate the difference

between the analytical Fourier transform and the discrete version in its typical

form (Press et al., 1995, Frigo and Johnson, 1998). We extend our analysis from

discrete Fourier transforms to discrete convolutions using Fourier transforms.

The discrete Fourier transform

Per definition (6.30)

f̂(k) =

∞∫

−∞

dx f(x) exp(−
√
−1kx). (C.1)

The discrete Fourier transform (DFT) can only be taken over a certain interval of

length X, so the first alteration of f̂(k) is

f̂1(k) =

X∫

0

dx f(x) exp(−
√
−1kx). (C.2)

The data, f(x), are only available at discrete points, so we approximate the integral

with a sum. We use

xi = i∆x with i = 0, 1, . . . , N − 1 ∆x =
X

N
(C.3)

and N is the even number of data for f .

f̂2(k) =

N−1∑

i=0

∆x f(xi) exp(−
√
−1kxi). (C.4)
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Eventually, we compute f̂(k) only at discrete points kj

f̂3(kj) =

N−1∑

i=0

∆x f(xi) exp(−
√
−1kjxi) (C.5)

where

kj = j∆k k = 0, 1, . . . , N − 1 (C.6)

with

∆k =
2π

X
and ∆x =

2π

K
. (C.7)

K is the range of the data in Fourier-space. The exponent in (C.5) can be written

as

kjxi = j ∆k i∆x = j
2π

X
i
X

N
= ij

2π

N
. (C.8)

Thus, we rewrite (C.5) using fi = f(xi)

f̂3(kj)

∆x
= f̂j ≡

N−1∑

i=0

fi exp

(
−
√
−1

ij2π

N

)
(C.9)

and define f̂j to be the discrete Fourier transform of N points fi. This is the ex-

pression that is evaluated in the numeric computation. The spacing ∆x of the data

points fi can be excluded from the sum in (C.5) and that makes f̂j dimensionless

(assuming the fi are dimensionless).

To formalise this, we introduce

FDP =
1

∆x
F (C.10)

which is the Fourier operator for a Discrete set of Points, fi, as defined in (C.9),

and F is defined in (6.30).

The inverse Fourier transform for a discrete set of points is defined as

fi =

N−1∑

j=0

f̂j exp

(√
−1

ij2π

N

)
(C.11)

and we introduce the inverse Fourier operator for a discrete set of points

F−1
DP =

2π

∆k
F−1. (C.12)
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The division by ∆k is in analogy to dividing (C.10) by ∆x and the reason for the

factor 2π can be seen by comparing (C.11) with F−1 as defined in (6.31).

While composition of the forward and the backward Fourier transform F−1 ◦ F
is an identity operator, i.e. F is self-inverse, the same is not true for

F−1
DP ◦ FDP =

2π

∆k

1

∆x
= N. (C.13)

The discrete convolution in Fourier space

The relation (C.10) is important for the computation of (6.35) as we compute

FDP{ρ(r)} and multiply it pointwise with F{U(r)}. To be consistent, we divide

the analytical transform F{U(r)} by ∆x.

A similar issue arises for the result of the convolution (6.35):

VMF,DP(r) = F−1
DP

{
FDP{ρ(r)}

F{U(r)}
∆x

}
(C.14)

=
2π

∆k
F−1

{
1

∆x
F{ρ(r)}F{U(r)}

∆x

}
(C.15)

=
2π

∆k

1

∆x

1

∆x
F−1 {F{ρ(r)}F{U(r)}} (C.16)

(C.8)
=

N

∆x
F−1 {F{ρ(r)}F{U(r)}} (C.17)

(6.33)
=

N

∆x
VMF(r) (C.18)

(C.19)

Therefore, the convolution data, VMF,DP, obtained using the discrete Fourier trans-

forms for a set of points has to be scaled by ∆x
N

to get the required VMF. In two

dimensions the scaling factor is ∆x
Nx

∆y
Ny

.

Implementation

We use the libraries of the “Fastest Fourier Transform in the West” (FFTW1). The

algorithm (Frigo and Johnson, 1998) is self-optimising and one of the fastest Fast

Fourier Transform implementations available.

1FFTW is available at http://www.fftw.org.
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