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Doctor of Philosophy
POTENTIAL AND VISCOUS FLOW PROBLEMS USING THE
BOUNDARY ELEMENT METHOD

by Luiz Carlos Wrobel

This work is concerned with the application of the Boundary Element
Method for the solution of steady and transient potential and viscous
flow problems. Two—-dimensional, axisymmetric and fully three-
dimensional problems are considered, the general theory developed and
specific numerical procedures derived for each of the above cases.

Initially, the derivation of the boundary integral equation
equivalent to Laplace's equation is reviewed within the framework of
classical potential theory. Numerical procedures for the solution of
this equation are discussed,being the boundary discretised by using
piecewise constant, linear or quadratic variations for the potential
function and its normal derivative.

Integral formulations for the solution of the diffusion equation
are then studied. Three different approaches are considered: using
Laplace transforms, coupling the BEM with the Finite Difference Method
or employing time-dependent fundamental solutions. For the latter case,
specific numerical procedures for the solution of the time-dependent
boundary integral equation equivalent to the diffusion equation are
developed and different time-marching schemes tested.

Finally, a BEM formulation for the solution of incompressible viscous
flow problems governed by the Navier-Stokes equations together with the
continuity equation is derived, following Lighthill's vorticity-
velocity approach, Numerical procedures for the solution of the
resulting set of non-linear integral equations are discussed in detail.

Computer programs incorporating several of these features were

developed, and examples of applications of such programs are presented

throughout this work.
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1. INTRODUCTION

The Boundary Element Method is now firmly established as an
important alternative technique to the prevailing numerical methods
in continuum mechanics. Much attention is being given to its
development over the last few years, as it can be seen by the
number of recently published books and proceedings of international
conferences on the subject ([1] to [10], [90]).

The technique basically consists of the transformation of the
partial differential equation describing the behaviour of the unknown
inside and on the boundary of the domain into an integral equation
relating only boundary values, and the numerical solution of this
equation. If values at internal points are required, they are
calculated afterwards from the boundary data. Since all numerical
approximations take place only at the boundaries, the dimensionality
of the problem is reduced by one and smaller system of equations
obtained in comparison with those achieved through differential methods.

The present work is concerned with the application of the Boundary
Element Method for the solution of steady and transient potential and
viscous flow problems. By steady and transient potential problems
we mean problems governed by the Laplace and diffusion equations,
respectively; viscous flow problems are problems governed by the
Navier-Stokes equations. Two~dimensional, axisymmetric and fully
three~dimensional analyses are considered, the general theory
developed and specific numerical procedures derived for each of the
above cases.

Historically, the application of integral equations to formulate
the fundamental boundary=-value problems of potential theory dates
back to 1903, when Fredholm [11] demons trated the existence of
solutions to such equations, on the basis of a discretisation

procedure. Due to the difficulty of finding analytical solutions,



the use of integral equations has, to a great extent, been limited to
theoretical investigations of existence and uniqueness to solutions
of problems of mathematical physics. However, the advent of high
speed digital computers made it possible to implement discretisation
procedures arithmetically and so enabled numerical solutions to be
readily achieved.

Fredholm integral equations follow from the representation of
harmonic potentials by single-layer or double-layer potentials and
set up the foundations of the so-called Indirect Boundary Element
Method. Vector integral equations analogous to the Fredholm integral
equations of potential theory were introduced by Kupradze [12] in the
context of the theory of elasticity.

Integral equations can alternatively be formulated through the
application of Green's third identity [13], which represents a
harmonic function as the superposition of a single-layer and a double-
layer potentials, Taking the field point to the boundary, an integral
equation relating only boundary values and normal derivatives of the
harmonic function is obtained. Its counterpart in elasticity is
Somigliana's identity [14], and their use gave rise to the Direct
Boundary Element Method.

More recently, it was demonstrated that the same integral
relationships can be obtained through weighted residual considerations [2}.
In this way, it became easier to relate and combine the Boundary
Element Method with other numerical techniques, such as the Finite
Element Method, as well as to extend it for the analysis of problems
governed by more complex partial differential equations, including
non-linearities,

Although integral equations have been extensively employed to

formulate boundary~value problems of potential theory, analytical



solutions to such equations are limited to very simple geometries,
by using the Green's function for the geometry which satisfies the
prescribed boundary conditions of the problem [15], [16], [17]. The
Green's function method of solving boundary-value problems is most
directly applicable to elliptic partial differential equations. In
fact, the concept of a Green's function grew out of a detailed s tudy
of such boundary-~value problems, but the method can also be extended
to solve parabolic and hyperbolic partial differential equations. For
general problems with complex geometry and boundary conditions,
however, it may be assumed that no exact Green's function, or any
other analytical treatment, is available.

In 1963, Jaswon [18] and Symm [19] presented a numerical
technique to solve Fredholm boundary iptegral equations. The
technique consists of discretising the boundary into a series of
small segments (elements), assuming that the source density remains
constant within each segment. By using the method ©of collocation, the
discretised equation is applied to a number of particular points (nodes)
in each element, and the influence coefficients computed approximately
using Simpson's rule. Exception is made for the singular coefficients
resulting from the self-influence of each element, which are computed
either analytically (for Dirichlet problems) or by the summation of
the off-diagonal coefficients plus the free term (for Neumann problems).
This produces a system of linear algebraic equations which can be
solved computationally by a direct method, e.g. Gauss elimination.

Applying such technique, they obtained accurate solutions for
simple two-dimensional Neumann and Dirichlet problems. They also
proposed a more general numerical formulation for solving Cauchy
(mixed) boundary-value problems through the application of Green's

third identity, which yields a boundary integral equation where boundary



values and normal derivatives of the physical variable play the role
of the fictitious source densities. Results using this formulation
are reported by Symm [l9]and Jaswon and Ponter [20].

Hess and Smith [21] developed a parallel work for the solution
of Neumann boundary-value problems, more specifically, the problem of
potential flow about arbitrary bodies. Applying basically the same
(indirect) technique, they computed the quantities of interest
(potential and velocities) from the source density distribution, by
using direct quadratures of the corresponding equations. They extended
the method to analyse a variety of body shapes: two-dimensional,
axisymmetric and fully three-dimensional results were presented. The
influence coefficients were all computed analytically for the two- and
three~dimensional cases although in the latter, in order to improve the
computer efficiency, multipole expansions were employed to calculate
the influence of elements located far from the actual node and the
system of equations was solved iteratively by the Gauss-Seidel method.
For axisymmetric problems, the influence coefficients were computed
numerically using Simpson's rule but the number of sub—elements was
scaled in such a way that the farther the element lies from the actual
node, the fewer the number of sub—elements used in the calculation.

The singular (self-influence) coefficients wefe computed analytically,
by means of series expansions.

Harrington et al. [22] applied the technique to solve some two-
dimensional electrical engineering problems with the more general
impedance boundary condition, which is of the Robin type, i.e. it
prescribes a linear relation between the potential and its normal
derivative. They also proposed a piecewise linear variation for the
- source density. Mautz and Harrington [23]solved axisymmetric electrical

engineering problems with Dirichlet boundary conditions, again employing



the indirect formulation and assuming the source density to remain
constant within each element., Some of their numerical considerations
were later discussed by Jaswon and Symm [1].

In 1970, Rizzo and Shippy [24] applied the direct formulation
of the Boundary Element Method in conjunction with Laplace transforms
to solve problems of transient heat conduction, governmed by the
diffusion equation. Assuming that all pertinent functions possess
Laplace transforms, a boundary integral equation is derived and solved
in the transform space for a sequence of real, positive values of the
transform parameter, A numerical transform inversion procedure is
then employed to compute the physical variables, in the real space.
Using this approach, the time dependence of the problem is temporarily
removed and an elliptic partial differential equation solved rather
than the original parabolic one.

Butterfield and Tomlin [25], [26] extended the method for the
analysis of zoned orthotropic media such as occurring in geotechnical
engineering. The variables located at the interface between adjoining
zones were assumed to satisfy compatibility conditions and the final
system of equations obtained was banded. They solved steady and
transient two-dimensional potential problems using the indirect
formulation. Transient solutions were generated by distributing
instantaneous sources over the problem region at zero time to reproduce
the initial conditions and continuous sources over the region
boundaries and interfaces, satisfying prescribed boundary and interface
condi tions.

Chang et al. [27] employed time-dependent fundamental solutions
in the context of the direct Boundary Element Method to solve two-—
dimensional problems of heat conduction in isotropic and anisotropic
media., The discretisation of the boundary integral equation was

carried out using space and time piecewise constant values for the



variables. A similar approach was discussed by Shaw [28] for the
solution of three~dimensional problems but emphasis was given on the
analytical rather than numerical aspects of the method. This
formulation was later extended by Wrobel and Brebbia [29] in order to
allow higher order space and time interpolation functions to be
included, thus making possible the analysis of more practical problems.
They also derived a numerical procedure to solve transient axisymmetric
problems [30] where the complexity of the fundamental solution requires
the introduction of series expansions in order to enable the time
integrals in the boundary integral equation to be carried out
analytically.

Another alternative integral approach for the solution of
transient problems is the coupled Boundary Element-Finite Difference
Method proposed by Brebbia and Walker [3]. In this formulation, the
time derivative is approximated in a finite difference form and a
step-by-step finite difference-type procedure employed to advance the
solution in time.

Problems of incompressible viscous‘fluid motion are governed
by the Navier-Stokes equations, together with the continuity equation.
The prevailing methods of solution of these equations are based on
their formulation as a system of partial differential equations in
terms of velocity and pressure, stream function and vorticity, or
stream function alone [91]. With each of these systems, it has been
necessary to compute the value of the dependent variables for the
entire flowfield. Besides that, there is a difficulty associated
with problems involving the flow past the exterior of a finite body,
namely the fact that the flow region is infinite in extent and
boundary conditions imposed at infinity need to be satisfied.

An alternative approach was proposed by Lighthill [31] employing



vorticity and velocity as the dependent variables. In this way, it

is possible to separate the set of equations into a kinetic part which
deals with the change of the vorticity field with time and a

kinematic part which relates the velocity field (v) at any instant of
time to the vorticity field (w) at that instant. The advantages of
such approach have already been noticed and several formulations
employing it in conjunction with the Finite Difference Method and

the Finite Element Method have appeared in the literature [32],[33],
[34], [35]. The usual procedure is to recast the kinematic part of
the problem into an integral equation for v in terms of w. For
external flows, this equation is readily recognised as the Biot-
Savart law of induced velocities [31], [36]. An extension of this
equation for internal flows, taking into account the velocity boundary
conditions at the solid boundaries, was derived by Wu and Thompson [331.
An immediate consequence of the above feature is that only the
vorticity distribution in the viscous region of the flow contributes
to the calculation of the velocity anywhere in the flow. Since this
viscous region is generally embedded in a much larger, inviscid region,
a great reduction in the size of the domain involved in the actual
computation is achieved. Moreover, for external flow problems, the
imposed boundary conditions at infinity are implicitly contained in
the integral equation, thus the necessity of truncating the infinite
region at a finite distance is avoided.

For a fluid in contact with a solid in motion, the no-slip
condition provides a mechanism for the generation (or depletion) of
vorticity at the solid surface. In the case where the fluid is
initially at rest, the (irrdtational) flow set up by the motion of the
solid has a non-zero tangential velocity relative to the solid. A
discontinuity in tangential velocity therefore results, at t=0, due

to the no-slip condition, representing a sheet of vorticity at the



boundary [32], [36], [37]. For t>0, the vorticity, which is
concentrated at the boundary at t=0, spreads into the interior of the
fluid domain by diffusion and, once there, is carried away by both
convection and diffusion. This process of transport of vorticity
constitutes the kinetic part of the problem, and is governed by the
vorticity transport equation.

Previous works employing the vorticity-velocity formulation
kept the vorticity transport equation in the differential form, and
advanced the vorticity distribution in time using finite difference
[32], [33], [34] or finite element [35] schemes. However, some
difficulties related to the satisfaction of boundary conditions at solid
boundaries still remained, as pointed out by Wu [37].

As for the kinematic part, this differential equation can also
be recast into an integral equation, and formulations using both
the kinematic and kinetic parts of the problem in integral form have
recently been proposed by Brebbia and Wrobel [38] and Wu and Rizk [921.
For steady state problems, the vorticity transport equation is reduced
to an (elliptic) Poisson equation and a specific formulation for its
solution was proposed by Wu and Wahbah [93].

The present work starts by showing how a problem governed by
Laplace's equation (with prescribed boundary conditions) can be recast
into an integral equation which, through a limiting process, produces
a boundary integral equation relating only boundary values. Both the
indirect and the direct formulations of the Boundary Element Method
are discussed. The weighted residual technique is then employed to
formulate (direct) integral equations equivalent to the diffusion
equation with prescribed boundary and initial conditions.

Numerical formulations for the solution of the boundary integral

equation equivalent to Laplace's equation are presented in chapter 3.



It is shown how several features such as special boundary conditions,
internal sources, non-homogeneity, orthotropy and anisotropy can be
included into the formulation. Two-dimensional, axisymmetric and
fully three-dimensional problems are treated and results of some
applications presented.

Chapter 4 studies numerical solutions to the time-dependent
boundary integral equation equivalent to the diffusion equation,
obtained through the use of time-dependent fundamental solutions.

Two different time-marching schemes are considered, both adopting a
time-stepping technique which allows the time integrals in the
boundary integral equation to be carried out analytically, for time
interpolation functions of any order. The remaining space integrals
are computed numerically, apart from the singular ones. Again, two—
dimensional and axisymmetric problems are treated, being extension

to three dimensions straightforward. Comparison of numerical results
obtained with the different time=marching schemes is effected, as well
as with several finite element results,

Boundary element formulations for the solution of the Navier-
Stokes equations are presented in chapter 5. Both steady and transient
problems are considered, and computational procedures discussed in
detail. Computer programs incorporating these procedures are currently
under way.

A brief description of the computer programs developed throughout
this work, for the solution of the Laplace and diffusion equations, is
presented in chapter 6. All programs were written in FORTRAN, in the
IBM 360/195 computer of the Rutherford Laboratory. Finally,

conclusions and suggestions for further research work are discussed

in chapter 7.
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2. BOUNDARY INTEGRAL EQUATIONS

In this chapter, it is shown how a problem governed by a partial
differential equation with prescribed boundary conditions can be recast
into an integral equation which, through a limiting process, produces a
boundary integral equation relating only boundary values. This trans-
formation, together with the numerical solution of the boundary integral
equation, constitutes the basis of the Boundary Element Method.

In order to clarify the ideas, we start with the simplest partial
differential equation, namely Laplace's equation. The relation of the
method with classical potential theory is outlined through its indirect
formulation, which employs fictitious source density distributions along
the boundary. All regions referred to in this formulation are assumed
to be regular in the sense defined by Kellogg [13] and all surfaces to
be Liapunov surfaces [39], which are smooth surfaces possessing a
tangent plane and ndrmal, but not necessarily a curvature, at each point.

Then the direct formulation of the Boundary Element Method is
presented. For Laplace's equation, it follows from an application of
Green's third identity. More generally, all surfaces in this formula-
tion are assumed to be Kellogg regular surfaces [13], which may have
corners or edges provided they are not too sharp. Alternatively, it
is demonstrated that the same integral relationships can be derived
through weighted residual considerations.

Next, the weighted residual technique is employed to formulate
integral equations equivalent to the diffusion equation with pres-
cribed boundary and initial conditions. The presence of specified
initial conditions gives rise to an integral over the domain but since
all values in this integral are known, the problem is still a boundary
problem. These integral equations are derived in conjunction with all

three previously discussed approaches, i.e. the Laplace transform, the
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coupled Boundary Element — Finite Difference and the time-dependent

fundamental solution methods.

2.1 Elements of Potential Theory

Some basic elements of classical potential theory will now be
briefly reviewed. Concepts that are of importance to the present work
are introduced and on doing so we follow Cruse [40] and Jaswon and
Symm [1]. For a more formal mathematical treatment, including all
necessary and relevant rigorous proofs, see for instance Kellogg [13],
Courant and Hilbert [41],Sternberg and Smith [42].

If a particle of unit mass, subjected only to the force of a
specific field F, is moved from a point s to a point p in space, the

work done on the particle by the field during the motion is given by,

P
W= J F dr (2.1.1)
s - -

where F is the force field vector and dr is the differential motion of
the particle on the path from s to p.

The work is in general dependent not merely on the position of
the points, but also on the path of the particle between them. If the
field is such that the work is independent of the path, i.e. it has the
same value when taken over any two paths connecting s and p which can
be continuously deformed one into the other, the field is called
conservative.

Considering the point s as fixed and p as variable, the integral

(2.1.1) represents a function of p alonme. This scalar function
p

u(p) = J F dr (2.1.2)
s

is called the potential of the field F.
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When the field is gravitational, the potential is a Newtonian
one. The Newtonian potential generated by two particles of masses

m, and m,, located at points s (fixed) and p (variable), respectively,

1 2°

is of the form
p

_ 1 - 1
u(p) = JS G m m Y(r) dE =G mom, = + constant (2.1.3)

where G is the gravitational constant and r is the distance between s

and p, that is,

r(p,s) = [p=s| = {[x,(®) - x,()]2 + [x, (@) - x,(s)]?

Bl==

+ [x3(0) - x5(s)]%) (2.1.4)

Attractional forces of the same character as those occurring
in gravitation also act between electric charges, and between the poles
of magnets. For generality, we will then refer to sources rather than
masses throughout this work and state that a unit simple source,
located at a source point s in space, generates at a field point p the
Newtonian potential

1
t(p,s) (2.1.5)

This potential is a continuous function of p, differentiable to all

orders, everywhere except at the source point s.

Similarly, a discrete distribution of simple sources of inten-

sities Ops Ons +ees Oy located at points S15 Sgps cers Sy respectively,

generates the Newtonian potential

1 (2.1.6)

N
u(p) = I O’(Sn) W
= 2 n

n=1

at point p. Again, this potential is a continuous function of p,
together with its derivatives of all orders, everywhere except when p

is coincident with one of the source points s, -
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Now consider a continuous distribution of simple sources of
volume density p throughout the region Q. The potential associated

with this force field is a volume potential, obtained by the integra-

tion
1
u(p) = j p(8) ——— dQ(s) (2.1.7)
a r(p,s)

This volume potential is a continuous function of p, differen-
tiable to all orders, at all points of free space, that is, points
located outside the attracting region 2. When the field point p lies
inside the region , the integrand in (2.1.7) contains a singularity.
However, if the density p is bounded throughout Q, the potential u(p)
exists at all points p € Q and is everywhere continuous and differen-
tiable throughout space [13]. This amounts to saying that the deriva-
tives of the first order of u may be obtained by differentiating under

the sign of integration as,

su(p) - 3 1 .
Bxi(p) JQ p(s) axi(p) (r(p’s)) do(s) i =1,2,3 (2.1.8)

The same is not valid for the derivatives of the second order.
In fact, the mere continuity of the density does not suffice to
ensure the existence of these derivatives. Therefore, it is necessary
to impose that the density p(s) satisfies a HBlder condition [13],
[41] at p,

lp(s) - o®)| < A r(p,s)® (2.1.9)

where A and o are positive constants, osxl.

In order to investigate the partial derivatives of u of the

second order, we can start by integrating (2.1.8) by parts, obtaining

du(p) _ _ 1 3p (s) 1
Bxi(p) JF p(8) r(p,S) Xi,n(s) r(s) + JQ Bxi(s) r(p,s) di(s)

(2.1.10)
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through the application of the divergence theorem, and noting that

o 1 _ 3 1
ox. (p) (r(p,s))_ ox; (s) oy (2.1.11)
Making use of the identity,

3 d
7y P =3y P - e®)] (2.1.12)

i i :

taking the second derivative of (2.1.10) yields the relation

B%u(p) _ _ 3 1
SEEYTET ; JF p(S) Bxi(p) (r(p,S)) Xi,n(s) dar(s)
¥ J 2~ [p(s) - o] (— ) da(s)
Q aXi(S) aX (p) r(P S) g
(2.1.13)

The second integral in (2.1.13) may be integrated by parts with respect

to xi(s) and subjected to the divergence theorem once more to obtain

22u(p) _ _J 2 |
w2 "7 O e 6 ia® I
3 1
. L[p<s> S @] 5y GG 4 TO
J ch 1.14)
+ q [D(S) - D(P)] K. A(p) (r(P,S)) dQ(S) (2. o

which reduces to,

2 _ 5 -

_ 32 1
+ [Q [p(s) = p(p)] axiz(p) (r(p’s)) dQ(s) (2.1.15)

Thus, adding up the three second order derivatives (equation

(2.1.15) for i =1, 2, 3) yields the Laplacian of u,

d 1
vZu(p) = p(p) Jr ) (r(p,S)) ar(s) + JQ [p(s) = p(p)] v? (r( s 5 do(s)

(2.1.16)
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In the second integral in the above equation, the volume may be
divided into two parts: one is a small sphere of radius e surrounding
the point p, which is called Qe; the other is the entirety of the
remaining volume, denoted Q—QE. As p is exterior to Q—QE and 1/r
is a harmonic function (as will be demonstrated later), the Laplacian
term equals zero throughout this region. The integral over Qs also
approaches zero with € since p(s) satisfies a HBlder condition at p.
Thus there remains the surface integral to be evaluated.

Again, consider a small sphere of radius ¢ around p, with

surface FE. Integrating (2.1.16) around this surface gives,

J g (=) dr_(S) =——lz f dl = =4m (2.1.17)
T € T €

on(S) r(p,S) €
€ €

Since there are no sources in the region between I and T
the Newtonian field is solenoidal, i.e. there is no flux out of
this region. Numerically, we can write

on an T

J 2 @y ar +[ 2 & ar-=o0 (2.1.18)
r S |

€

where the normal is outward on I', but inward on Fe' Combining equa-

tions (2.1.17) and (2.1.18) and noticing the reversal of the normal

on F€ gives

d 1
Jr 30.(35) (r(p,S)) dr(s) = —4= (2.1.19)

Inserting (2.1.19) into (2.1.16) produces the expected result,

vZu(p) = =4mp (p) (2.1.20)
Other Newtonian potentials can be generated, including surface
potentials. In particular, two of them are of importance to what

follows and will be defined next. The first is the potential

associated with a continuous distribution of simple sources extending over
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a surface T' and of surface density o, which is of the form,

_ 1
u(p) = IF a(s) PYEN) dr(s) (2.1.21)

and is called a single~layer potential.

Let us now consider two surfaces TI'(S) and F(Sl) separated by
a small distance h(S,Sl), carrying distributions of attraction of
magnitude o(S) and o(Sl), respectively. These distributions are such
that, for corresponding area elements,

o(8) dr(s) = -O(Sl) dF(Sl) (2.1.22)

The potential due to the two surfaces is then,

up) = L 0(8) Trog) AT + L a(s,) m-)is? ar(s,)
1

1 1 1
(r °(8) h(5,8)) [h(S,SJ o T r(P»Sl))] TE 2123

If we let h»0 and o+, so that ch»u everywhere uniformly on I' and

also compute the limit of the term in brackets,

h(s,S,)-0 [h(s,sl) (r(p,S) - r(p’sl)} } TIO) (r(p,S)) (2.1.24)
the potential
u(p) = J s) —2 (=) dr(s) (2.1.25)
A EYO BTN .

obtained as the limit of the potential of two single-layers of opposite
signs that approach coincidence, is called a double-layer potential.

The function p is the surface density, or moment, of the double-layer.
The potentials in equations (2.1.21) and (2.1.25) are con-
tinuous functions of p, differentiable to all orders, everywhere except
at p € I', where the integrands in these equations contain singularities.

In order to investigate the behaviour of these surface potentials near

the singularity, the boundary T is broken into two surfaces: one is a
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small disc tangent to the surface at a point P, noting that it was
assumed that the surface possesses a unique tangent plane at any point;
the other is the entirety of the remaining surface and contains no
singularity, as P # S.

According to figure 2.1.1, the field point p is located along
the normal to ' that passes through the surface point P. The disc
centred at P has a radius € and is denoted FE; the remainder of the
" surface is denoted r-r_. The point p is located at a distance ) from
P such that [<<e, and such that A<0 if p is outside Q@ and A>0 if p is

inside 2. The integrals in (2.1.21) and (2.1.25) can then be separated

as,
o 1 1
u(p) = 11?»0 L_FO(S) .5 dr(s) + Jr ag(8) T8y dr(s)
€ €
(2.1.26)
u(p) = lim [ 1(S) =t () dr(s)
-0 F_FE an(S) ]'.'(P,S)
+ (8) 3 ( L ) dr(S)1 (2.1.27)
r M an(8) ‘r(p,S) f T

€

It is clear that the integrals over F—FE are continuous as the
field point p passes through the surface and will again produce the
integrals in (2.1.21) and (2.1.25) when the limit is taken.

The integral over FE in (2.1.26) contains a weak singularity
and is also continuous as the field point passes through the surface,
provided the density o is bounded at all points along I'. This state-
ment does not hold for the second integral in (2.1.27) which, because

of the normal derivative term, contains a singularity of higher order.

This integral can be written as,
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Figure 2.1.1 - Discontinuity of three—dimensional
double-layer potential
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g 9 L - _ d 1
{r HEE) an(S) (r(p,S)) ares) = JF [u(s) - u®)] on (S) (r(p,S)) dr(s)
[ [
+ u(P) 8 — ( L ) dr(s) (2.1.28)
B P PYC BRI CN)) o
[

This means that the potential of a surface whose density is
continuous at P is the sum of the potentials of a surface whose density
vanishes at P and of a surface with constant density, equal to that at
P. If the density u(S) satisfies a HBlder condition at P, then the
first integral on the right-hand side of (2.1.28) is continuous as the
field point passes through the surface. The second integral becomes
(refer to figure 2.1.1 for notation),

€
j gi Gl) dar = - J J%— 2mp dp (2.1.29)
1_|1?1r or

Since pdp = rdr for a given |A| <<g, an interchange of variables

produces,
€ €
€
- J 2 2modo = 2m) J - §§ = 21 [%} =212 - 21 sgn ()
0 A 2]

(2.1.30)

where the symbol 'sgn(A)' takes the sign of A.

Taking the limit as e€~0 (noting that A~0 much quicker), (2.1.28)

gives,

lim J J H(S) =2 (=) dAT(S)} = = 27 sgn(A) w(®)  (2.1.31)
S0 | r 5(5) ‘T(p,5)

Thus the limiting form of equation (2.1.25) as p-»P from the

inside can be written as

3
w8 5575

u+(P) = - 2mu(P) + { (r(; S)) dr(s) (2.1.32)

r

and from the outside as,
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u (P) = 27u(P) + J u(s) Bn?s) (r(;_S)) dr(s) (2.1.33)

r

The three-dimensional double~layer potential is then said to have
a discontinuity or jump of -4mu(P) as the point p passes from outside
to inside the region, that is,

u (@) - u(P) = —4mu(P) (2.1.34)

All concepts presented thus far are also valid for two—dimensional
problems, where the equivalent of the Newtonian potential is the

logarithmic potential

1
].Og m (2.1.35)

in which r(p,s) is now,

Ni—

r(p,s) = |p-s| = {[xl(p) - xl(s):l2 + [xz(p) - xz(s)]z}
(2.1.36)
The logarithmic potential can be derived either by starting with
two~dimensional force fields acting on a line source or by integrating
the Newtonian potential for a line source at 3[13}, [41], [42].

The two—dimensional volume potential

_ 1
u(p) = [Q po(s) log T dn(s) (2.1.37)

satisfies Poisson's equation
V2u(p) = - 2mp(p) (2.1.38)

for every p € Q by an analogy to the Newtonian volume potential, noting

that

] 1 1 _
J YO (log mr(p,s)) dl“e(S) = L dr_ 27 (2.1.39)

E €

™

where TE is now a curve in the plame region.

The single-layer potential for two—~dimensional problems is given

by,
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= 1
u(p) = JP og(S) log ) dr(s) (2.1.40)

and, as in the three-dimensional case, is continuous as the field point
passes through the surface, for a density o which is bounded at all

surface points.

The two—-dimensional double-layer potential is of the form,

- 9 1
u(p) = L u(s) o) (log ;—(—P—,—S—)—)dr(S) (2.1.41)

and contains a discontinuity which can be investigated in a similar way
as for the three-dimensional case.

As previously, the bounding curve T is divided into F-Pe and Fe’
the latter being a short, straight line centred at point P (figure
2.1.2), where it was assumed that the surface possesses a smooth contour.
The point p is located along the normal to the surface that passes
through P and the distance X between the two points taken to be much
less than 2¢, the length of Pe.

Dividing the integral in (2.1.41) as was done in equation (2.1.28)

and assuming that u(S) satisfies a H8lder condition at P, the discontin-

uity is given by the term,

]. m 1 :E ~N 7O Og dI S A

€

This integral contains a perfect differential since for 6 defined
as in figure 2.1.2 its integrand can be written as,

d 1 . S A -
on (tog ) A = =gz o) 40 - de

(2.1.43)

Thus, evaluating the limit in (2.1.42) and noting that |Al<<e

gives
. 9 1
llg:o u(P) JP SEYES-(log ?757§7) dr(S) p = = w sgn(A) u(®) (2.1.44)

€
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Figure 2.1.2 - Discontinuity of two-dimensional
double-layer potential
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The limiting form of equation (2.1.41) as the point p approaches

P from the inside becomes

uF @) = —mu(@) + f 1 (8) 3522—5)' (log ?("P'l‘sﬁ) dr (s) (2.1.45)
1" b ]
and from the outside is
u (P) = m(P) + f 1(S) 3-}@7 (log m}-?)) dr(s) (2.1.46)

T
being the jump in the integral now,

ut@) - uw @) = -2m (@) (2.1.47)

2,2 Indirect Formulation

In this section, we study solutions to Laplace's equation,

v2u(s) =0 s €Q (2.2.1)

with boundary conditions of the Dirighlet type,

u(S) = u(s) SET (2.2.2)
or of the Neumann type,
_du(s) _ —
a(8) = 5oEy < 99 sET (2.2.3)

where n(S) is the unit outward normal to surface T' at point S, U and @
are prescribed values of the function and its normal derivative over
the boundary T.
A function u is said to be harmonic within a domain @, bounded by
a closed surface I'y, if it satisfies the following conditions:
a) u is continuous in § + T
b) wu is differentiable to at least the second order in Q
¢) u satisfies Laplace's equation in 0
Any harmonic function can be represented by a potential distribu-
tion and conversely, every potential is a harmonic function [13], [42].
Thus, an effective method of formulating the boundary-value problems

of potential theory is to represent the harmonic function by a single-
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layer or a double-layer potential generated by continuous source distri-
butions over T', provided these potentials satisfy the boundary conditions
prescribed for u. This procedure leads to the formulation of integral
equations which define the source densities concerned. These equations
can be discretised and solved numerically, and values of u at internal
points computed afterwards from the boundary data by using numerical
quadratures as will be shown in the next chapter.

To obtain an integral equation for the solution of the Neumann
problem, we assume that the unknown function u may be expressed solely

as a single-layer potential with unknown density o,

u(p) = J o(8) u*(p,S) dr(s) (2.2.4)
r

The function u*(p,S) is the Newtonian potential (2.1.5) for three-
dimensional problems or the logarithmic potential (2.1.35) for two-
dimensional problems, and is called the fundamental solution to Laplace's
equation.

Taking the derivative of (2.2.4) in the direction of the outward

normal to T as p is taken to P yields the boundary relation,

*
q(P) =~ arc(P) + J o (S) éﬂgﬁ%ﬁgl dr(s) (2.2.5)

r

where o = 1 for two~dimensional problems and o = 2 for three-dimensional

problems.

This constitutes a Fredholm equation of the second kind for ¢ in
terms of g, as the unknown appears both outside and inside the integral.
After solving the system of corresponding algebraic equations, values
of u at any interior or boundary point can be calculated by using (2.2.4),
since u*(p,S) is continuous as p-P.

It is important to note that (2.2.5) has a solution only if the

Gauss condition [13]
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I q(®) dr(®) =0 (2.2.6)
r

holds, and that this solution is unique only to within an arbitrary
additive constant. However, a unique solution of equation (2.2.5) can
be obtained by imposing some extra 'normalising' condition [1]. This
will be discussed in detail in the next chapter.

The above method was extensively employed by Hess and Smith [21]
to solve a series of fluid flow problems, including flow past hydrofoils,
cascades and lifting aerofoils. Numerical results can also be found
in [1], [19], [20].

To obtain an integral equation for the solution of the Dirichlet
problem, the classical approach is to assume that the unknown function

u may be expressed solely as a double~layer potential with unknown

density u,

u(p) =J u(s) q*(p,S) dr(s) (2.2.7)
r
where
*
a*(p,8) = %&l (2.2.8)

Taking into account the jump in the double-layer potential, the
limit of (2.2.7) may be taken as p-P,

u(P) = —qmu(P) + J u(s) q*(,s) dr(s) (2.2.9)

r

As u(P) is known for the Dirichlet problem, the source density p is
the only unknown. Again, (2.2.9) constitutes a Fredholm equation of thé
second kind which, after being solved, enables us to compute u(p)
everywhere in  using (2.2.,7). Numerical results using this formula-
tion wererobtained, for instance, by Kantorowich and Krylov [43].

Since u*(P,S) = u*(S,P), the integral equation (2.2.9) is said

to contain the adjoint kernel of equation (2.2.5). The kernel is the
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function of (P,S) multiplying the density under the integral sign in
the integral equations. For scalar kernels, the adjoint is obtained by
interchanging P and S.

An alternative approach to obtain an integral equation for the
solution of the Dirichlet problem is to assume that the unknown function

u may be expressed solely as a single-layer potential with unknown

density o,
u(p) =J a(8) u*(p,S) dr(s) (2.2.10)
r

Since the kernmel in this equation is continuous as p passes

through the surface, the limit of (2.2.10) as p~P gives
u(P) = J a(s) u*(P,s) dr(s) (2.2.11)
T

and, as u(P) is known, the source density ¢ is the only unknown in
the equation.

Equation (2.2.11) is a Fredholm equation of the first kind, as
the unknown appears only inside the integral. For many Dirichlet
problems, formulations using such equations have proven to be more
illuminating physically and more convenient mathematically then using
equations of the second kind.

Regarding the numerical solution of the system of correspond-
ing algebraic equations, obtained by discretisation, the presence of
the term outside the integral, for equations of the second kind, ensures
that the system matrix will always be diagonally dominant. An equation
of the first kind with anon-singular kernel can be very difficult to
solve, being essentially 1ll-conditioned [44]; however, in the present
case, the singularity of the kermel ensures diagonal dominance in the
system matrix and the problem is in general well conditioned.

For numerical solutions of equation (2.2.11), see for instance

[1], [19], [20], [22], [23].
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2.3 Direct Formulation

A conceptual disadvantage of single—layer and double-layer
potentials is the introduction of formal source densities which usually
bear no physical relation to the problem. This can be overcome by
using Green's third identity, which leads to the direct formulation of
the Boundary Element Method, where values of the function and its
normal derivative over I play the role of the source densities in
generating u throughout Q.

First, let us introduce the Dirac delta function §(p,s), which

has the following properties,

§(p,s) =0 for p # s (2.3.1)
§(p,8) = o for p = s (2.3.2)
[ u(s) §(p,s) da(s) = u(p) (2.3.3)
]

Now, let ¢ and ¥ be two continuous functions with continuous
first and second derivatives in the region {}. Green's theorem in its

second form states that

J (672¥ - yv2¢) do = [ <¢g—i - \y%i-) dr (2.3.4)
Q T

If ¢ and ¥ are harmonic functions in @ then V24 = O and V2Y = O,

and (2.3.4) yields Green's reciprocal identity,
é_lli -— '% =
JF (¢8n Yan) ar =0 (2.3.5)

Similarly, if ¢ is a harmonic function u in @ and ¥ is the fundamental
sclution u”* to Laplace's equation, equation (2.3.4) becomes Green's

third identity,

u(s) q*(p,S) dr(s) = J q(S) u*(p,S) dr(s)

2amu(p) + J
T

r
(2.3.6)
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This relation is derived by noting that inserting (2.1.7) into

(2.1.20) (or (2.1.37) into (2.1.38)) yields the equation,
v2 J o(s) u*(p,s) du(s) = -2amp (p) (2.3.7)
Q

Comparing equations (2.3.3) and (2.3.7), we conclude that the funda-
mental solution u”* satisfies the relation
v2u*(p,s) = -2an8(p,s) (2.3.8)

and so,
J ¢V2WdQ = =2qT [ u(s) §(p,s) da(s) = =2amnu(p) (2.3.9)
9] 9]

Equation (2.3.6) states that a harmonic function may be expressed
as the superposition of a single-layer potential with density q/2om
and a double layer potential with density -u/2am. Moreover, examining
each of the terms in (2.3.6) as the interior point p is taken to the
boundary, we recall that the single-layer potential remains continuous
as p~»P but the double-layer potential jumps by an amount of —omu(p),

thus yielding the boundary formula,

aru(P) + [ u(s) q*(p,s) dr(s) =J q(8) u*(P,s) dr(s)
T T
(2.3.10)

This equation provides a functional constraint between u and q
over I which ensures their compatibility as boundary data. If the
solution of a Neumann problem is required, the right-hand side of
(2.3.10) is known, and we have to solve a Fredholm equation of the
second kind for the unknown boundary values of the function u. If
the solution of aDirichlet problem is required, values of u are pre-
scribed throughout I' and we obtain a Fredholm equation of the first
kind for the unknown boundary values of the normal derivative q.
Solution of Cauchy (mixed) boundary-value problems leads to a mixed

integral equation for the unknown boundary data.
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Note that if the point p crosses the surface I' into the infinite
domain exterior to Q, the double-layer potential again jumps by

-amu(p), so generating the identity,

J u(s) q*(p,s) dr(s) - J q(s) u*(p,S) dr(s) =0 (2.3.11)
r r

This can be viewed as a particular case of (2.3.5), since both functions

* , , ,
u and u” are harmonic outside the region Q.

2.4 Weighted Residual Formulation

The direct Boundary Element Method can alternatively be formu-
lated through wéighted residual considerations [2]. The advantage of
using a weighted residual technique is its generality: it permits a
straightforward extension of the method to solve more complex partial
differential equations; since it can also be employed to formulate other
numerical techniques such as the Finite Element Method, it becomes
easier to relate and combine the Boundary Element Method with more
classical numerical methods.

As we are seeking an approximate solution to the problem governed
by equation (2.2.1) with boundary conditions of the type (2.2.2)
prescribed over the part Fl of the boundary and of the type (2.2.3)
prescribed over F2 (r = Fl + Fz), the error thus introduced can be
minimised by writing the following weighted residual statement,

J v2u(s) u*(p,s) da(s) =f [a(s) - q(8)] u*(p,8) dr(s)
Q

T

- J [u(s) - w(s)] a*(p,s) dr(s) (2.4.1)
T
1

where u* is interpreted as a weighting factor.

The integration of (2.4.1) by parts with respect to xi(s) gives
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_ | duls) au”(p,s) - .
JQ 3%, (5) 3%, (s) 9(s) = [ q(S) u"(p,S) dr(s)
1 1 1-‘1

- J T(s) u*(p,s) dr(s) - j [u(s) - u(s)] q*(p,S) dr(s)
I‘2 I‘l
(2.4.2)

where i = 1,2,3 and Einstein's summation convention for repeated

indices is implied. Integrating by parts once more,

J v2u*(p,s) u(s) da(s) = - I q(s) u*(p,s) dr(s)
Q Fl
(2.4.3)

u(S) q*(p,S) dr(s) + J u(s) q*(p,s) dr(s.

- J q(8) u*(p,S) dr(s) + J
T T

r

2 2 1
or generally,
J v2u*(p,s) u(s) da(s) = - j q(8) u*(p,8) dr(s)
Q2 T
+ J u(s) q*(p,S) dr(s) , (2.4.4)
r

Assuming u* to be the fundamental solution to Laplace's equation
and recalling (2.3.8) and (2.3.9), equation (2.4.4) becones,

u(s) q*(p,s) dr(s) = J q(8) u*(p,S) dr(s)

2omu(p) + J
! (2.4.5)

r

which is of the same form as Green's third identity (2.3.6).

Another advantage of the direct formulation over the indirect one
is that the restriction for the bounding surface to be a Liapunov (smooth)
one can be relaxed. In fact, it can be applied to the more general
Kellogg regular surfaces [13], thus allowing surfaces with corners or
edges to be included.

So, taking the point p to the boundary and accounting for the
jump of the left-hand side integral in (2.4.5) yields the more general

boundary integral equation,
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u(8) q"(P,S) dI(s) = [ q(8) u*(P,s) dr(s) (2.4.6)

c(P) u(®) + [
T

T
of which (2.3.10) is a particulér case, When'the surface I' 1s smooth
everywhere.

Two different procedures can be employed to calculate the value
of the coefficient c: one is through the physical,consideration that
a constant potential applied over a closed body produces no flux, which
is equivalent to the rigid-body tramnslations of the theory of elast-
icity and will be discussed in detail in the next chapter; the other
is herein presented for two-dimensional problems, but a similar approach
is also valid for three-dimensions.

Assume thatvthe body under consideration can be augmented by a
small region FE which is part of a circle of radius ¢ centred at
point P on the boundary T (figure 2.4.1). Proceeding as for evaluating
the jump of the double-layer potential in section 2.1 and assuming
that the function u(S) satisfies a HBlder condition atbP, we have,

¢(P) = 2m + lim f B (log ——) dI'(S) (2.4.7)

cs0 Jp on(S) r(p,S)

which, referring to figure 2.4.1 , reduces to

%
c(P) = 27 - 1lim J -% €dd = + a, — a, (2.4.8)

g0 61 1
that is, c(P) equals the internal angle of theboundary at P.

Since in a well-posed boundary-value problem only half of the
boundary variables in (2.4.6) is prescribed, this equation can be
employed in order to obtain the unknown boundary data. In chapter 3,
a numerical scheme to solve this boundary integral equation will be
presented. Then, values of the function u at any internal point p
can be calculated by a numerical quadrature via equation (2.4.5). The

derivatives of u at p (with cartesian coordinates xi(p),i =1,2,3), if

required, can also be computed by a quadrature via the equation,
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Figure 2.4.1 - Two—dimensional body augmented
by region I _
I
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du(p) __ _1 f 3u* (p,S) _ 3q*(2,5)
0%, (@) 2Gﬂ1 JF 1(8) ox. (8) dr(s) JF u(s) 3%, (8) ar(s)

(2.4.9)

as we may generally differentiate beneath the integral signs in (2.4.5).

2.5 Trarsient Potential Problems

We shall now proceed to study solutions to the diffusion

equation,

v2u(s,t) - %-Egé%iEl =0 sEQ (2.5.1)

with boundary conditions of the same type as previously seen (repeated

here for convenience),

u(S,t) = u(s,t) 5E€T
3u(S, t) _ (2.5.2)
q(S,t) =—§E(—§)—-—=q(s,t) SCFZ

The coefficient k in equation (2.5.1) has different interpretations
according to the physical problem concerned, and is assumed to be const-

ant both in space and time.

Since the problem is now time—dependent, some initial conditions

at time t=t, must also be prescribed,

u(s,t) = uy(s,ty) sEN (2.5.3)
For simplicity, we shall set ty = 0 throughout this work.

The problem represented by equation (2.5.1) with boundary con-—
ditions (2.5.2) and initial conditions (2.5.3) is a mixed (boundary -
initial-value) problem and as for boundary-value problems, the partial
differential equation can be recast into an integral equation for the
unknown function u. Three alternative formulations can be employed in
order to perform this transformation: the first removes the time
the

dependence of the problem by means of a Laplace transform [24];

second replaces the time derivative in (2.5.1) by a finite difference
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approximation and integrates the resulting equation on time in a finite
difference fashion [3] while the third makes use of time—dependent

fundamental solutions [29]. All three schemes will be discussed in

following sections.

2.6 Laplace Transforms

Let us denote the Laplace transform of a function u(s,t),

when it exists (see for instance [45]) by

{os]

U(s,r) = J u(s,t) e“>‘t dt (2.6.1)
0

and assume that the transform parameter A is real and positive.

Equation (2.5.1) in the transform space becomes,

V2U (s, ) —%U(S,A) +% uy(s) =0 (2.6.2)

The boundary conditions must also be transformed and we assume, for

simplicity, that they are constant on time. This gives,

T(S, ) —3(—%—9 €T,

il
[

U(s,n)
(2.6.3)

0,0 = qes,n = 188 sET,

Proceeding as-for Laplace's equation, we can write the following

weighted residual statement,

f [V2U(s, ) —%U(S,A) + % uo(s)] U (p,s,A) da(s)
Q

f [Q(5,1) - Q(S,A)] U*(p,S,1) dr(s)
T
2

- f [U(s,)) - T(S,N)] Q*(p,8,1) dr(s) (2.6.4)
r
1

where Q*(P,S,A) = 30%(p,S,1)/on(s). Integrating by parts twice the

Laplacian in the above equation gives,
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J (V20" (p,5,0) - £ U*(p,s, )] UGs, ) dals) + %—J uy () U (p,s,0) dals
Q ' Q

= - f Q(s,1) U*(p,S,2) dr(s) + J U(s,2) Q*(p,S,1) dr(s)
r r
(2.6.5)
Assuming U* to be the fundamental solution to equation (2.6.2),
which satisfies the following relation,

szU*(p,s,A) - AU*(p,s,A) = - §6(p,s) (2.6.6)

equation (2.6.5) becomes,

U(sS,A) Q*(p,S,A) dr(s) =k J Q(S,2) U*(p,S,1) dr(s)

U(p,2) + k J
T

T
+ [ uo(s) U*(p,s,A) dQ(s) (2.6.7)
Q

The fundamental solution U* for three-dimensional problems is of the

form,

1 1
%* (k))* A2
U*(p,s,1) = [f%(p N oy 2 Ké[(E) r(p,s) ] (2.6.8)

and for two—dimensional problems,

3
V.8, = 5 K [ 1(,9)] (2.6.9)

where Kv is the modified Bessel function of the second kind of order v.
Let us now investigate the singularity of the above fundamental

solutions. As r-»0, so does the argument of the modified Bessel functioms.

The limiting form of Ké(z) as z-0 is [46],

:

K, (2) = (5“;) (2.6.10)
so that,
(kl)% : g 4 1
* _ AL 2y = s
U= 3/2 (Zr) (A) 4rkr (2.6.11)

r? (2mk)

which means that the singularity of the fundamental solution is of the

same type as that to Laplace's equation.

\
/
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Analogously, the limiting form of Ko(z) as z-0 is [46J,

KO(Z) = - log (2) (2.6.12)
which gives,
x _ 1 1 1 A
Uu” = e log = Z;E-log " (2.6.13)

The first term is the fundamental solution to the two-dimensional
Laplace's equation while the second term is a non-singular constant
which adds nothing to the solution.

Taking the point p in equation (2.6.7) to the boundary and noting
that the integral in Q* is discontinuous as p+P then produces,

c(P) U(P,1) + k f U(s,r) Q¥(P,5,1) dr(s) =k J Q(s,r) U*(P,S,1) dr(s)
T T

+J Uy (s) U*(P,s,1) du(s) (2.6.14)
Q

where the coefficient ¢ has the same value as previously.

This equation is discretised and solved numerically for a sequence
of N selected values of the transform parameter A, chosen somewhat
arbitrarily. Notice that the presence of specified initial conditions
gives rise to an integral over the domain Q. One way of evaluating this
integral is to divide the whole domain into cells and numerically
integrate over each cell. However, if N satisfies Laplace's equation,
the domain integral in (2.6.14) can be transformed into equivalent
boundary integrals [47]. Whatever the method of evaluating the domain
integral may be, this integral introduces no further unknown since U, is
prescribed, and equation (2.6.14) is still a boundary integral equation.

The remaining step is the transform inversion of the solution,
which is carried out numerically. Following, for instance, the method of
Schapery [48], we assume that the value of u at any point can be

represented as a finite series by,
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N
u(p,t) = ulp,) + I a (p) exp [-b (p)t] (2.6.15)
n=1

where u(p,») is the steady-state solution, a and bn are functions of
the position., Transforming (2.6.15) gives,
N a_ (p)

(p,>)
U(p,)) = AP,%) ¢ B
A n=1 A+bn(p)

(2.6.16)

The values of the coefficients bn are now assumed to be equal
to the previously selected A. Thus there remain the N values of the
coefficient a to be computed at each boundary point (plus the internal
points where the solution is required). The N solutions of equation
(2.6.14) provide N values of U at each point, which allow the evaluation
of the coefficients a using equation (2.6.16) and consequently, the
evaluation of the physical variable u using equation (2.6.15). A
similar calculation is also required in order to obtain the real boundary
(and internal) fluxes.

Numerical results using this formulation are presented in [24],
[47], [49]. Notice that the transform inversion is essentially a curve
fitting process and as such, it is important for the analyst to have an
idea of the expected behaviour of the solution in order to select values
of the transform parameter A, since choosing too many values would
quickly make equation (2.6.16) unstable while choosing too few values
would not represent the curve adequately [49]. Furthermore, as pointed
out in [47], the formulation is not efficient when the time history of
the boundary conditions is complex and in this case, step-by-step methods

of the type subsequently discussed should be preferred.

2.7 Coupled Bounidary Element-Finite Difference Methods

Let us now assume that the time derivative in equation (2.5.1) can

be approximated in a finite difference form, for a sufficiently small time

step At, as
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du(s,t) _ u(s,t+At) - u(s,t)
Yo T (2.7.1)

Equation (2.5.1) can then be rewritten as,

kv2u(s,t+At) - i%f u(s,t+At) + E%F u(s,t) =0 (2.7.2)

This equation is similar in form to equation (2.6.2) and so its funda-
mental solutions are of the same type as (2.6.8) and (2.6.9), replacing
A by 1/At.

The boundary integral equation for this formulation can be
obtained through weighted residual considerations, in the same way as
was done in the previous section. By an analogy with equation (2.6.14),
we can write

c(P) u(P,t+At) + k J U(S,t+At) q~(P,S,At) dr(S)

r
= kJ Q(S, t+AL) u*(P,S,At) dr(s) + Elff u(s,t) u*(P,s,At) dQ(s)
r 193
(2.7.3)

Starting from known initial values of u at t = ty, We can advance
the process on time by solving equation (2.7.3) numerically. Values of
u at time t = t, + At are then computed, at a sufficient number of

0

internal points, in order to be used as pseudo—initial values for the
next time step.

Numerical results using this formulation are presented in [50].
Notice that very small time steps have to be adopted if approximation
(2.7.1) is to produce good results. As discussed in [50], the accuracy
of this formulation can be significantly improved by employing second

order finite difference schemes, although convergence problems become

more severe.
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2.8 Time-Dependent Fundamental Solutions

Considering the time dependence of the problem directly in the
integration by parts process, wé can write the following weighted
residual statement for the governing equation (2.5.1) with boundary
conditions (2.5;2);

t

F
J J [V2Zu(s,t) - 1 EESE—ELJ u*(p,s, tp,t) da(s) dt
t Y]

t

F
= [ f [a(s,t) = T(s,t)] u*(p,s,tF,t) dr(s) dt
t T

t

F
-I I [u(s,t) - u(s,t)] q*(p,s,tF,t) dr(s) dt - (2.8.1)
t, /T
1

where q*(p,S,tF,t) = Bu*(p,S,tF,t)/Bn(S).
Integrating by parts twice the Laplacian and once the time

derivative in the above equation gives,

tF ‘
. 2u”™(p, 8, tp, )
’:Vzu (P’S’tF’t) +'E, Y ] U(S,t) do(s) dt
t. ‘0 ,
0
t=t, ty
‘% [f u(s, t) u*(p,s,tF,t) dQ(S)] = -J J q(S,t) u*(p,s,tF,t) dr(s) dt
Q t=t, ty ’T
ty
+J f u(s,t) q*(p,s,tF,t) dr(s) dt (2.8.2)
t. /T

0

The time-dependent fundamental solution u* is of the form [15],
[16],

wps, eyt = — exp [- E2e8)] () (2.8.3)

(4tkT)
where 1 = tp-t and d is the number of spatial dimensions of the problem,
e.g. d = 3 for three~-dimensional problems, etc. Note that (2.6.8) and

(2.6.9) are the Laplace transforms of (2.8.3) for d = 3 and d = 2,
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respectively. The Heaviside function H(t) is included to emphasize the
fact that the solution is identically zero for t>te. This condition is

known as the causality condition [15].

The fundamental solution possesses the following properties,

. au*(p,s,tF,t)
kv2u (p,S,tF,t) + =T = - 8(p,s) §(tg,t) (2.8.4)
lim u*(p,s,tF,t) = §(p,s) (2.8.5)
t>ty

Let us now investigate the singularity that occurs in the
integrals in equation (2.8.2) at time t=tF. In order to avoid ending
the integrations exactly at the peak of the Dirac delta function, we
may subtract or add to the upper limit of the integrals an arbitrarily
small quantity €. In the former case, the first integral on the left-
hand side is identically zero for t in the range O, tpme and so,
taking the limit as €+0 and accounting for condition (2.8.3), equation
(2.8.2) yields [16], [17]

t

F
up,ty) + kJ [ us,t) q"(p,8,t,,t) dr(s) dt
t r
(9]
t

F
=k J f q(S,t) u*(p,S,tF,t) dr(s) dc + J uy (s ty) u*(p,s,tF,to) dQ(s)
t. ’T

o Q
(2.8.6)

The same relation can be obtained by adding ¢ to the upper limit of
the integrals in equation (2.8.2). 1In this case, u*(p,s,tF,tF+e) equals
zero due to the causality condition. Thus, taking the limit of (2.8.2)
as ¢20, the inclusion of condition (2.8.4) into the first integral on
the left-hand side produces the expected result [15].

Another property of the time-dependent fundamental solution (2.8.3)
is that, as a steady-state is reached, it reduces to the fundamental

solution to Laplace's equation. That is,
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t

F
1im J u*(p,s,tF,t)(it= u* (p,s) (2.8.7)
tF+m 0

We shall now prove this property for three-dimensional problems,

bearing in mind that a similar approach can also be applied in two-

dimensions. So we have to integrate,
t

r2

F F
u*(p,s,t.,t) dt =J 1 exp (- —) dt (2.8.8)
{0 F 0 (4nkr)372 4kt

This integral can be evaluated analytically by introducing the variable

x = r2/4kt. An interchange of variables then gives,

t

F
* 1 -
{ u (p,S,tF,t) dt =—§7T r X
0 4 kr a

1
4ﬂ3/2kr

Nt

e X dx = r{i,a

(2.8.9)
where a = r2/4ktF and T is the incomplete Gamma function. Taking the

limit of (2.8.9) as ty» [46],

1 . . _ 1
] 372 lim T(3,a) = kT (2.8.10)
m kr tFﬁw

which can be recognised as the fundamental solution to kV%u = 0.

Note that the first two integrals in (2.8.6) represent the
effects of boundary conditions, while the third term includes the effects
of the initial value U, of the function u. As tp®s the initial con-
ditions distribution effect vanishes while the integrations over t for
the boundary terms can be carried out assuming that u and q no longer
depend on t (or at least that the contribution to the integral over t
from O to » from those values of t where u and q were still dependent on
t is negligible compared to the total integral). Thus, by virtue of
(2.8.7), the fundamental solution reduces to that of Laplace's equation

and (2.8.6) becomes the integral equation (2.4.5) for steady potential

problems.
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Taking the point p in equation (2.8.6) to the boundary and
accounting for the jump of the left-hand side integral yields the

boundary integral equation,
t

F
c(P) u(P,ty) + kf [ u(s,t) q*(P,S,tF,t) dr(s) dt
t T

0 (2.8.11)

F
= kj f q(s,t) u*(P,S,tF,t) dr(s) dtc +f uo(s,to) u*(P,s,tF,to) dQ(s)
t. T 9}

where c(P), as previously, is a function of the solid angle of the
boundary at point P (see equation (2.4.8)).

Since the time variation of functions u and q is not known a
priori, a time-stepping technique (not to be confused with the previous
finite difference one) has to be introduced for the numerical solution
of equation (2.8.11). However, as the fundamental solution itself is
time-dependent, large time steps can generally be adopted.

Two different time-marching schemes can be employed on this
numerical solution: the first treats each time step as a new problem
and so, at the end of each step, computes values of the function u at
a sufficient number of internal points in order to use them as pseudo-
initial values for the next step; in the other, the time integration
process always starts at time t, and so, despite the increasing number
of intermediate steps as the time progresses, values of u at internal
points need not be recomputed. Furthermore, if uy satisfies Laplace's
equation, the domain integral in (2.8.11) can be transformed into equiva-
lent boundary integrals. The necessary procedures for numerical imple-

mentation of both time-marching schemes, as well as discussions on their

computer efficiency, are the object of chapter 4.
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STEADY POTENTIAL PROBLEMS

The subject of this chapter is the solution of the boundary integ-

ral equation (2.4.6) relating boundary values and normal derivatives of

the potential function u over the boundary T', repeated here for con-

venience,

u(s) q*(P,s) dr(s) =J q(s) u*(,s) dr(s) (3.1)

c(P) u(®) + f
T

r

Rather than attempting analytical solutions to this equation for

particular geometries and boundary conditions, we seek a suitable reduc-

tion of equation (3.1) to an algebraic form that can be solved by a

numerical approach. This approach generally consists of the following

steps (see, for instance, [L], [2], [3], [40]):

a)

b)

c)

d)

The boundary TI' is discretised into a series of elements over which
the potential and its normal derivative are assumed to vary
according to interpolation functions. The geometry of these
elements can be modelled using straight lines, circular arcs,
parabolas, etc.;

By using the method of moments [51], the discretised equation is
applied to a number of particular nodes within each element where
values of the potential and its normal derivative are associated;
The integrals over each element are carried out by using, in
general, a numerical quadrature scheme;

By imposing the prescribed boundary conditions of the problem, a
system of linear algebraic equations is obtained. The solution of
this system of equations, which can be effected using direct or
iterative methods, produces the remaining boundary data.

Values of the function u at any internal point, if required, can

then be calculated from the boundary data by a numerical quadrature via

equation (2.4.5). Similarly, the derivatives of u at any internal point

can also be computed by a quadrature via equation (2.4.9).
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In the following section, the above-listed steps are examined in
detail in connection with two-dimensional problems defined over finite
regions of homogeneous, isotropic media with Neumann, Dirichlet or Cauchy
boundary conditions. In subsequent sections, it is sﬁown how the method
can be extended to include boundary conditions of the Robin-type, free
surfaces and internal sources. If the region is non-homogeneous but is
constituted of several Homogeneous sub-regions with different physical
properties, the method can be applied by first writing a system of
equations for each sub-region and then introducing compatibility (in
terms of potentials) and equilibrium (in terms of normal derivatives)
conditions between the sub-regions.

Fundamental solutions for orthotropic and anisotropic regions are
derived and it is shown that all concepts presented in the previous
chapter are also valid for infinite regions fulfilling certain regularity
conditions at infinity. By adopting a convenient fundamental solution
which satisfies part of the boundary conditions of the problem under con-
sideration a reduction in the amount of numerical work can be achieved,
as explained in this chapter. Finally, specific numerical procedures for
three—diﬁensional and axisymmetric problems are derived.

Computer programs incorporating several of the features presented
in this chapter were developed. These programs are described in chapter
6. Whenever this is the case, numerical examples are included in order
to show the validity of the numerical procedures. Although many differ-
ent physical problems are governed by Laplace's equation, these examples
are restricted to problems of heat conduction and flow of berfect fluids.

3.1 Two-Dimensional Problems

For the discretisation of equation (3.1), the boundary T is
approximated by using a series of elements. The cartesian coordinates

x of points within each element are expressed (in matricial notation) in
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. . . . . m
terms of suitable interpolation functions ¥ and nodal coordinates X of

each element by

x =y 1 (3.1.1)
where
T m
X Y= 0 X
x = xl gl 2 |° . m _ ]~1 (3.1.2)
2 0 ¥l ) Xy

Also, the potential u and its normal derivative q within each

element are approximated through interpolation functions ¢ as,

(3.1.3)

2

where pn contains the nodal potential values and gn the nodal values of
normal derivatives. Note that different interpolation functions may be
used for u and ¢q [52]. The index m in equation (3.1.1) refers to the
number of boundary points required to define the geometry of each boundary
element while the index n in (3.1.3) refers to the number of boundary
nodes within each element to which nodal values of u and q are associated.

Assuming that the boundary I' is discretised into S elements and
N nodes, the substitution of equations (3.1.3) into equation (3.1) yields

i S x T n S % T n

c, U+ I (J q* ¢ dr) U" = 1 (J u® ¢” dr) Q (3.1.4)

s=1 FS s=1 FS :

Since the interpolation functions ¢ are usually expressed in terms
of some intrinsic system of coordinates, it is necessary to transform the
elements of surface dI' from the global cartesian system of coordinates to
the intrinsic system of coordinates, that is

ar = |J| dg (3.1.5)
where J is the Jacobian relating both systems of coordinates.

The integrals in equation (3.1.4) can be computed analytically only

for simple cases. In general, it is more convenient to compute them
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numerically mainly when considering higher order interpolation functions.
However, when the element s contains the node i these integrals become
singular and special care has to be taken on their evaluation. For i ¢:FS,

the integrals in (3.1.4) may be replaced by summations of the form,

1
(

[
1R

x. T
|71 W (a7

a*(®) ¢ () [7] 4 =
1

f a*(x) ¢ (e) ar
r N Jo1 k

s
1 (3.1.6)
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I
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T
|31 W (w78

[ T
u (8) ¢ (&) [J] dg =
1

[ u¥(x) ¢T(g) dr
r T /-1 k

s

where K is the number of integration points and W is the weighting factor

associated with them.

Applying equation (3.1.4) to all N boundary nodes, a final system

of equations is obtained,

tm o>

gg+ E]:(}Q (3.1.7)
where the vectors U and Q contain all potential and normal derivative
values at the boundary nodes, respectively. The diagonal matrix C may
be incorporated into é to form the matrix H,

HU=GQ (3.1.8)

As referred to in section 2.4, the diagonal coefficients of matrix

H (which include the free terms ci) can be calculated by considering that
a constant potential applied over a closed body produces no flux. This
is equivalent to the rigid-body translations of the theory of‘elasticity [53]
and was first employed in the context of the Boundary Element Method by
Symm [19]. Its use has the further advantage of avoiding evaluating
strongly singular integrals which are only integrable in the Cauchy
principal value sense. Considering U as a unit potential, equation
(3.1.8) then becomes,

HI=0 (3.1.9)
and the diagonal coefficients of H may be computed after all the off-

diagonal terms are known as
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H,, = - Iz\I H,. i=1,2,...,N (3.1.10)
j=1 4
(GA) :

By applying the prescribed boundary conditions of the problem,
equation (3.1.8) can be reordered in sﬁch a way that a final system of
equations is obtained,

KX==f | (3.1.11)
where K is a fully populated matrix of order N and X is a vector con-
taining all the boundary unknowns.

Notice that in computational terms Hij (i#3) and Gij are assembled
directly into K (see chapter 6) so that equation (3.1.8) does not need
to be formed.

Specific numerical procedures will now be developed for computer
implementation purposes. Three different sets of approximations for the
boundary geometry, the potential and its normal derivative are discussed
(see figure 3.1.1), namely: straight line segments with piecewise con-
stant potentials and normal derivatives, hereafter referred to as con-
stant elements; straight line segments with piecewise linear potentials
and normal derivatives (linear elements); parabolic segments with piece-
wise quadratic potentials and normal derivatives (quadratic elements).
Although only the first and second are at present programmed, the latter
is included to show that no special difficulties arise on using higher

order interpolation functions.

3.1.1 Constant Elements

If the geometry of the elements is represented by straight lines,
the interpolation functions ¥ and the vector §m in equation (3.1.1) are
. given by,

L -¢

.
¥ =3 X =4 5
1+ ¢ X

(3.1.12)

where £ is an intrinsic coordinate (figure 3.1.2) and 1 = 1,2, %? being

associated to the extreme points of each element.
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Figure 3.1.1 - Different types of boundary elements:
(a) Constant element; (b) Linear
element; (c¢) Quadratic element

Figure 3.1.2 - Constant element
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Since in this case,

dr ¥%—dg (3.1.13)

the Jacobian J written in equation (3.1.5) is comstant at all points
within each element and equal to half the length of the element.
For the constant element, equation (3.1.3) can be simply written as,

u=71
(3.1.14)

q=Q

that is, the potential and its normal derivative values are assumed to
be constant over each element and equal to their nodal values at the mid-
point (figure 3.1l.1la).

The integrals in equation (3.1.4) for the cases when i €:FS
can be easily computed analytically [1], [40]. Analytical integration
formulae, however, are often more complicated and consequently take
longer to compute than numerical quadrature formulae. Moreover, for
intervals other than straight lines it is seldom possible to obtain these
integrals analytically. For generality, the terms Hij and Gij (i#3) in
equation (3.1.8) are then evaluated numerically using a four-points

Gauss quadrature rule. With reference to equations (3.1.6), this gives,

d.. 4
H, ==L 3 —— W
02 4 T K |
(3.1.15)
B
G., = I log (—/) W
2 e Tik K
il 2 i 10,01 20
where dij = (X1 Xl)(X2 X2) + (X2 XZ)(Xl Xl)’ Zj and dij refer

to the element containing node j.

For the diagonal terms Hii and Gii’ the integrals become singular
and have to be evaluated in the Cauchy principal value sense, that is,
a small segment of length 2¢ around the singular point is deleted from
the integration and the limit as e+0 taken. The Gii coefficients may be

calculated as follows (see figure 3.1.2),
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1

L.
1

2 .2

G.. = — J log dE = £, [log(——o + 1] (3.1.16)
11 2 1 li gl i~ gi

and the Hii terms are computed through equation (3.1.10).

3.1.2 Linear Elements

The geometry of the elements is again represented by straight lines,
thus the interpolation functions g and the vector §m are given by (3.1.12)
and the Jacobian by (3.1.13). As the functions u and q are now also
assumed to vary linearly within each element, the interpolation functions

¢ and the vectors gn and Qn in equation (3.1.3) are of the form,

1-¢ U Q
o =14 vt = Q" = (3.1.17)
1L +¢ U " Q
that is, the functions ¢ are the same as those employed to describe the

geometry of the boundary elements and the potential and its normal

derivative values are also associated to nodal values at the extreme

points of each element.

The terms Hij and Gij (i#3j) in equation (3.1.8) for linear elements

can be computed as,

(3.1.18)

where the indices p and q refer to the elements at the intersection of

which node j is located. 1In general, we have

- ¢
ip k=1 rﬂf k 'k
(3.1.19)
s S B g
fip T2, B Tk

being dip of the same form as previously and m = 1,2.
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The Hii coefficients are computed by using relation (3.1.10) and
the Gii coefficients now result from evaluating integrals of the form

(see figure 3.1.3),

1 1

*o f 2 *q 2

G.. = log &~—~:¢-] (1+€ ) dg + =% | 1log &——————-] (1-g ) dg
ii 4 -1 lp(l gp) p 4 -1 2q(1+€q) q
(3.1.20)
which gives,

BRE TR

Gii = {5 - log lp] * 5 [5 - log lq} (3.1.21)

3.1.3 Quadratic Elements

Here, the boundary I' is modelled by a series of curvilinear

elements using the following Lagrangian interpolation functions [2], [3],

} E(E-1) X
v ={ 1-¢2 X; = xf (3.1.22)
b E(E+D) X

. m . . . . .
being gi in equation (3.1.1) now associated to the extreme and mid-points

of each element (figure 3.1.1c).

The Jacobian related to the transformation of elements of surface
dl' from the global cartesian system of coordinates to the intrinsic
system of coordinates is given by,

dx, 2 dx, 213
} (3.1.23)

_ 1 2
] [(dg) MY
where the derivatives in the above formula can be computed by using

relation (3.1.1).
The interpolation functions ¢ in (3.1.3) are also assumed to
be the Lagrangian functions (3.1.22), thus the potential and its normal

derivative are also associated to nodal values at the extreme and mid-

points of each element.
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Figure 3.1.3 ~ Linear element

Figure 3.1.4 - Quadratic element
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The . terms Hij and Gij (i#j) in equation (3.1.8) for quadratic

elements become,

h, 3 +h, !
H.. =4 P q
1] h. 2
ip
(3.1.24)
3 1
8. + g.
Gij _ J7ip iq
2
gip

the first occurring when node j is located at the intersection of
elements p and q and the second when node j is located at the middle of

element p. In general, we may write

m 4 1 m
hiy = T 4y — o W
k=1 T, :
ik
(3.1.25)
m 4 , 1 m
g, = ¢ |J|, log (+—) ¢, W
ip k=1 k rik k 'k
i k k i k, k . k
h = o= (XY - -
where m = 1,2,3 and d1k (X1 Xl) xl,n + (X2 XZ) X2,n’ being Xl,n
and xg n the direction cosines of the outward normal at point k (figure
3
3.1.4).

The Hii coefficients may again be computed through equation (3.1.10)

while the Gii terms are of the form,
1

G.. = f log (—= (g)) (1-£2) [J(&)| d& (3.1.26)
-1

11

if 1 is a mid-node, or
1

_ L Ll
Gii = ’2'J-1 tog (r(E‘p)) EplEp*l) lJ(gP)I a

11

1
' E'J_l tog (r(a )) Eq(gq) [ | dg (3.1.27)

if i is an extreme node.
The presence of the Jacobian now makes it difficult to compute the

above integrals analytically. Separating the integral in (3.1.26) as,
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1 1

G.. = log (1-27) [ (1-g2) |J(g)| dg +f log (|g]) €2 [3(g)| dg
~-1

ii i
1

—f log ([£]) [3(8)] ag (3.1.28)
-1

we note that only the last integral in (3.1.28) is singular. Thus, we
can evaluate the first and second integrals using a standard Gaussian
quadrature and compute the last one using a Gaussian formula for
integrands with a logarithmic singularity [2], [46]. The same can be
applied in order to compute the integrals in equation (3.1.27).

Example 3.1.1

The first example analysed compares the accuracy of constant and
linear boundary elements for the solution of a Dirichlet problem, that
is, two confocal ellipses with temperatures u, and u, prescribed along
the internal and external surfaces, respectively.

Taking the semi-axes of the ellipses to be [54],

a

e ¢ cosh Mg» b

¢ sinh
e He

a.

i ¢ cosh My b.

i ¢ sinh My
where ¢ is a constant and 0<ui<ue<w, the exact solution of the problem

is given by,

ue-u

o e (ui—ue) » H,. S p <

Figure 3.1.5 presents the relative error in the calculation of
the temperature at the point X = o, X, = ¢ sinh [(ui+ue)/2] obtained
with several discretisations, for two different aspect ratios a/b of
the ellipses. Assuming a unit value for the constant c, the lower
curves in the figure correspond to ellipses with aspect ratios (a/b)i =
1.313 and (a/b)e = 1.037 while the upper curves correspond to

(a/b)i = 10.033 and (a/b)e = 5,066. 1In the second case, the inner

ellipse is much more distorted than the outer one such that their
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Figure 3.1.6 - Normal flux along outer surface
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longer axes almost touch each other (see figure 3.1.5). The convergence
of the solutions is evident in the figure. Normal fluxes along the outer
surface are plotted in figure 3.1.6 for the finest discretisations
employed.

Due to the double symmetry of the problem, only one quarter of
the cross-section needed to be analysed. Symmetry is taken into account
through a direct condensation process witﬁ integration over reflected
elements such that no discretisation of the symmetry axes is necessary
(see chapter 6).

Example 3.1.2

This example studies the temperature distribution over a circular
region of internal radius R. and external radius R, with Neumann
boundary conditions, i.e. radial fluxes specified on both the inner and
outer boundaries (see figure 3.1.7).

Due to condition (2.2.6), the relation qiRi = --qeR.e has to be
accomplished in order for the numerical data to be compatible. The
double symmetry of the problem permits the discretisation of only one
quarter of the cross-section. By adopting the same number of sub-
divisions over each surface, the discretised form of condition (2.2.6)
holds automatically.

The exact solution of this problem is

u = c-q, Ri log r
that is, the solution is unique only to within an arbitrary additive
constant. To enforce a unique solution to the problem, the value of
the constant ¢ must be given and this is introduced into the numerical
analysis by specifying the value of u at any boundary point, for instance.

Recalling relation (3.1.8), we notice that the system matrix H

is singular since, according to equation (3.1.10),

H,. =0 i=1,2,...,N
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Figure 3.1.7 - Geometry and boundary conditions
of circular region
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r BEM (N=4) BEM.. (N=8) EXACT
1.0 | 70.17 . 70.28 . .| 70.25
1.5 | .55.99 |. 57.60 57.60
2.0 | . 47.18. .| . 48.66 .| 48.62
2.5 . .40.35 41.72 41.66
3.0 34.75 36.03 35.96
3.5 30.00 31.20 31.15
4.0 25.80 27.00 26.99
4.5 23.18 23.27 23.31

Table 3.1.1 - Temperature along the xl—axis

r BEM (N=4) BEM (N=8) EXACT
1.5 20.43 20.70 20.81
2.0 15.30 15.54 15.61
2.5 12.27 12.46 12.48
3.0 10. 24 10. 42 10. 40
3.5 8.88 8.96 8.92
4.0 1.77 7.89 7.80
4.5 7.07 6.74 6.94

Table 3.1.2 - Radial flux along the xl—axis
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i.e. the rows of H are linearly dependent. Indeed, each row of H is

a linear combination of the other N-1 rows of the matrix. Then any N-1
of these equations, coupled with the above 'normalising' condition, may
be solved directly for the N boundary values of u.

Results for the temperature and radial flux for two different
discretisations using constant elements are given in tables 3.1.1 and
3.1.2, respectively. The value of the constant ¢ = 70.25 was introduced
by prescribing u = 20°C at a node on the outer boundary.

Example 3.1.3

A case of mixed boundary conditions, i.e. u prescribed on part
Fl and q on part Tz of a boundary T was considered in this example of

a rectangular regionwith cross-section and boundary conditions as shown
in figure 3.1.8.

Since the normal flux along the face X, = 0. presents a singular-
ity at the point x = 1., the discretisation adopted concentrates more
elements around the singular point, as is usually done with finite
elements. The problem was studied with 60 linear elements, with the
following boundary sub-division: 32 elements of equal length along the
faces X = 0., Xl = 2. and Xy = 1.; 28 elements along the face Xy =0.,

being 5 of equal length at 0. < X € 0.5 and 9 of decreasing logarithmic

length at 0.5 ¢ x, < 1., with the remaining 14 symmetrically located with

1

respect to the singular point % 1.

Results for the function u are presented in figure 3.1.10,
compared to an accurate solution obtained by conformal transformation
[55]. The normal flux distribution along the face x, = 0. is plotted in
figure 3.1.9 and it can be seen that it represents well the singularity.
The discontinuity on the boundary conditions at the singular point
and at the three corners (2.;1.), (0.;1.) and (0.;0.) was taken into

account through the use of double nodes (see chapter 6).



ug

60

¥ x

- u=1000 ' q-=0

T
2

Figure 3.1.8 ~ Geometry and boundary conditions
of rectangular region

e to 35.31

[ ]

|

0.2 04 0.6 0.8 1.0

Figure 3.1.9 - Normal flux along the face x,=0



o o 0 0 0 0 0 0 o 0
193 192 187 179 166 148 127 107 92 82
193 192 187 178 166 148 127 107 92 82
388 386 378 363 337 299 254 211 178 157
388 386 378 362 336 298 253 210 177 157
588 585 577 558 520 457 377 303 250 219
588 585 577 558 520 457 376 303 250 219
792 791 785 770 734 638 489 374 301 261
792 791 785 770 733 637 488 373 300 260
547 402 319 275
1000 1000 1000 1000 1000 1000 546 401 318 275
lBEM
\REF.[SG]

Figure 3.1.10 - Values of u at boundary and internal points

79

79

150
150

209
209

247
247

261
261

19



62

The accuracy of the houndary element solution can be further
improved through an analytical treatment of the singularity [1] which
follows basically the same ideas as employed for the finite element

method [56].

3.2 Special Boundary Conditions

Up to now, we have only dealt with the solution of problems with
boundary conditions of the Neumann, Diricﬁlet or Cauchy types. This is
not a restriction to the method presented and other boundary conditions
that frequently appear on practical problems, such as Robin-type con-
ditions and free surfaces, can easily be incorporated [29], [57], [58],
[59].

The Robin condition prescribes a linear combination of the
potential and its normal derivative at points along the boundary T as,

au + bg = d (3.2.1)
where a, b and d are functions of X. Notice that (3.2.1) includes all
previous boundary conditions, since for b = 0 it becomes the Dirichlet
condition (2.2.2) while for a = O we have the Neumann condition (2.2.3).
Physically, relation (3.2.1) can be recognised as the impedance boundary
condition of electromagnetic problems, the convection or 'radiation'
boundary condition of heat conduction problems, etc.

1f equation (3.2.1) is applied at all boundary nodes, we can write,

Q=D-AU (3.2.2)
where the vector D and the diagonal matrix é contain the values of d/b and’a/b,
respectively, at each boundary node.

Substituting (3.2.2) into (3.1.8) yields the system of equations,

(H+ GA) U=6D (3.2.3)

or, more simply,

KU=F ' (3.2.4)
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In computational terms, the system matrix g and the vector F
can be assembled directly so that equation (3.2.3) is not actually
formed (see chapter 6). After solving the system of equations (3.2.4),
the normal derivatives of potentials along the boundary can be evaluated
pointwise by applying condition (3.2.1).

Free surfaces are generally related to problems of groundwater
flow through saturated, unconfined porous media governed by Darcy's
law [60]. If the medium under consideration is homogeneous and iso-
tropic, the problem is reduced to that of Laplace's equation for a
velocity potential u with boundary conditions of the following types
(figure 3.2.1): q = 0 at impervious boundaries, such as the surface of
soil strata and rocks (surface AF in the figure); u = constant at water
boundaries (the upstream and downstream faces ABC and EF of the porous
domain); u = x2 at the seepage face DE where the water seeps out of
the soil into the air; u = X, and q = 0 at the free surface CD. 1In
addition, the exact position of the free surface is not known a priori
and its determination becomes part of the analysis of the problem.

These free surface conditions are also valid for problems such
as flow over spillways when the velocity head can be neglected, i.e.
when the height of water over the nappe is small by comparison with the
spillway.height [61].

For the numerical solution of these problems, an initial position
of the free surface is arbitrarily assumed and the condition q =0
applied at all points on it. The calculated potential at every nodal
point at the free surface is then compared with its elevation; if the
difference between these two values is greater than a maximum acceptable
error, this difference is algebraically added to the elevation of the
nodal point and a new iteration is carried out.

Notice that the coefficients of matrices G and H in equation

(3.1.8) corresponding to the influence of fixed boundary nodes on other
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Figure 3.2.1 — Boundary conditions for free
surface problem

Figure 3.2.2 - Free surface elevation with

relation to the xl—axis
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fixed boundary nodes remain constant during the analysis hence they can
be computed only once and stored. Potential values at internal points,
if required, are calculated after the correct position of the free
surface has been determined.

The Boundary Element Method may also be employed for transient free

surface flow problems. For this case, the kinematic condition on the

free surface is [60],

%%.= 1, - q %ﬁi (3.2.5)
where 4y, 9, are the velocities in the X5 X, directions and n is the
elevation of the free surface with relation to an arbitrary plane
(figure 3.2.2).

From geometric considerations we have that

9 .- tan B (3.2.6)

in which B is the angle the free surface makes with the xl—axis.

Hence

n__ 4 (3.2.7)

where q = 3u/dn is the normal velocity.

Applying the condition u = n at the free surface, equation (3.2.7)

becomes,

du _ q (3.2.8)

t cos B

This equation can be written in finite difference form as,
St E ___A_t__E o ot*%t 4 (1-0) qF] (3.2.9)
cos B
where 6 is a weighting factor that positions the derivative between the
time levels t and t+At. In the equation, the angle B is computed at
time t even though the equation is written for the time t+At. Although
this problem can be avoided by iteration, the use of a small time step

provides sufficient accuracy [58].



66

As an example of how the free surface boundary condition in the
form of equation (3.2.9) can be introduced into (3.1.8), consider the
problem represented by figure 3.2.1 where we assume that there is a

drawdown in the upstream water level. Equation (3.1.8) can be rearranged

for this problem as,

[-Gasc ~Scp ~Cpe ~Cer Hyp) {9pg

| )
AF (3.2.10)

= [-Hype “Hep “Hpp “Hpr Carl |Upm

LqAF J

. . + . . .
Substituting ut At by its value on equation (3.2.9) yields,

Ch

(3.2.11)
YABC )

t _ (1-8)At t
Y t  4cp
cos B

= ["Hpo “Hep “Hpp “Hpp Gapl ) Upg g
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Since all boundary-values on the right-hand side of (3.2.11)
are known, the equation can be solved and the normal velocities along
the free surface at time t+At computed. Condition (3.2.9) is then
employed to find the potential values at the free surface and the com-
putation cycle is completed, so that the solution can be advanced on

time, Numerical results using this formulation are given in [58].

Example 3.2.1

This application deals with a concrete colummn of rectangular
cross—section where part of the boundary surface is subjected to an
interior ambient condition, another part is subjected to outside
weather conditions and the remainder is in contact with an abutting wall
which separates both. The boundary conditions of the problem are of

the 'radiation' type,

q + hu = huS (3.2.12)

where h is the heat transfer coefficient and u is the temperature of
the surrounding medium.

The temperature and surface heat transfer coefficient on the
interior face (x1 = 0) are 100°F and 0.5 Btu/h ftZOF, respectively, and
at the exterior face (x1 = ¢) are 0°F and 6.0 Btu/h ft2°F. The varia-
tion of the temperature and surface heat transfer coefficient along the
faces X, = *a is indicated in figure 3.2.3. Note that the thermal
conductivity was assumed to be 1.0 Btu/h ft°F.

Results corresponding to three different positions for the
abutting wall are presented in figure 3.2.4, compared with finite
elements results [62] and an analytical solution [63] (in terms of a
mean temperature over the width of the cross—-section). The boundary
elements analyses were performed by discretising one half of the
colum into 20 linear elements (see figure 3.2.3), taking into account

the symmetry with respect to the xl—axis, while the finite elements
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ones employed 252 quadrilateral elements. The discontinuity on the
value of u, at the middle of the wall was taken into account through a
double node.

Example 3.2.2

Figure 3.2.5 shows the linear boundary elements discretisation
for a problem of free surface flow through a block of porous medium.
The upstream and downstream water levels are maintained at 19.7 in and
1.3 in, respectively, above the horizontal impervious base. The
boundary conditions of the problem are: u = 19.7 on the upstream face
(nodes 22 to 26); q = O on the bottom (impervious) surface (nodes 1
to 8); u = 1.3 on the downstream face (nodes 9 and 10); 9 = O on the
free surface (nodes 11 to 21). Note that the initial shape of the free
surface was arbitrarily assumed to be a straight line and its initial
position was also guessed. The final position of the free surface was
obtained by iteration as previously explained.

Results are presented in figure 3.2.6 together with a finite
element solution and an experimental solution obtained from an analogue
model [64]. After the seventh iteration the maximum difference between
the computed potential head and the elevation of each node along the
free surface was less than 0.1% of the elevation and the solution was
terminated.

3.3 Intermnal Sources

Assuming that there exist sources inside the domain @, as for
instance internal heat generation for heat conduction problems, the
governing equation of the problem becomes a Poisson-type equation,

V2u = p in @ (3.3.1)
where p is a function of the position.

Boundary-value problems for Poisson's equation may be reduced to
similar problems for Laplace'’s equation by subtracting out a particular

solution independent of the boundary conditions [1], [40].
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For some practical problems, it may occur that the function p
is only defined pointwise such that a particular solution of the
problem is difficult to be found. For these cases, equation (3.1) can

be generalised to include a domain integral involving function p of

the form [2],
J p(s) u*(P,s) da(s) (3.3.2)
Q

to be added to the left~hand side of equation (3.1).

The above integral can be performed by sub-dividing the domain
Q into a series of cells over whigh a numerical integration formula
can be applied.

In this work, triangular cells were employed to discretise the
domain and the numerical integration carried out by applying Hammer's

scheme [65] as follows,

2
K
p(x) u*(x) do = J { J p(e) u*(e) |J] ag,| de, = = [J], W, (pu®)
JQ - ~ o Lo 2 2 1 %27 5 Mk k

L
(3.3.3)

where £ are intrinsic triangular coordinates and J is the Jacobian

™

relating the elements of area in the two (cartesian and intrinsic)

systems of coordinates.

Example 3.3.1

The equation of motion of a uniform incompressible viscous fluid

in steady unidirectional flow ( in the x3-direction) is [66],

d 3%u | 232

-y Gty =0
X 9% X
3 1 2

where py is the viscosity of the fluid, ap/ax3 = -G 1s a constant
pressure gradient and u is the velocity component in the x3~direction.
This equation can be rewritten as,

v2u = - s
u
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For a pipe of elliptical cross—-section the velocity distribution

is of the form,

x2
= G (1-— 1 -
u Z2ula 2+b %) a2

X

3] ]

)

A

where a and b are the semi-axes of the ellipse.

Taking the value of the constant G/u = 2 and the semi-axes a = 2

and b = 1, the problem to be solved is

u=0 on T

The solution of the above Poisson's equation can be divided into

two parts,

1 2
where u = —(x% + x%)/Z is a particular solution and u, a complementary
one, which satisfies Vzu2 = 0 with boundary condition u, = -u; on T.

Results for the velocity u and for the derivatives Bu/'ax/1 and
Bu/Bx2 (necessary for the evaluation of the tangential stresses Ty x
13

and T ) are presented in tables 3.3.1 to 3.3.3, compared to the

*2%3
analytical solution. Both previously discussed approaches were used
and for the second, the domain was divided into 12 cells and a quintic
(seven points) numerical integration scheme employed. Sub-dividing
the domain into more cells or employing a more refined numerical
integration scheme resulted in no significant improvement of the solution.
Due to the double symmetry of the problem, only one quarter of the cross-—

section needed to be analysed.

Example 3.3.2

Flow in lakes and other water bodies can be approximated to
provide an initial estimate of the circulation, which can then be checked

against the full shallow-water equations. This flow is governed by the
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BEM 1
BEM 2

o [ e [ [ [
1.50 0. 0.334 | 0.345 0.353 | 0.351 0.350
1.20 0.35 0.401 0.410 0.422 0.416 0.414
0.90 0. 0.626 0.634 0.646 0.640 0.638
0.60 0.45 0.557 | 0.563 | 0.576 0.569 0.566
0.30 0. 0.772 | 0.778 | 0.791 0.784 0.782
0. 0.45 0.629 0.634 0.648 0.641 0.638
0. 0. 0.791 0.797 0.809 0.802 0.800

Table 3.3.1 - Results for velocity u

S ?gb——{a% ](311:31128; ?ﬁi{a? ](315148)2 EXACT
2.00 0. 0.759 0.762 0.805 0.788 0.800
1.50 0. 0.602 0.597 0.621 0.604 0.600
1.20 0.35 0.490 | 0.482 0.485 0.481 0.480
0.90 | o. 0.370 | 0.366 | 0.364 | 0.361 | 0.360
0.60 0.45 0.255 0.253 | 0.241 0.240 0.240
0.30 0. 0.119 0.118 0.121 0.120 0.120
0. 0. 0.000 0.000 0.000 0.000 0.000

Table 3.3.2 - Results for derivative Bu/axl &)

*1 *2 ]ng:a; ?Efsi ?ﬁfﬁ ]2?;18? EXACT
0. 1.00 1.611 1.582 1.608 1.604 1.600
0.60 0.45 0.715 0.718 0.719 0.720 0.720
0. 0.45 0.720 0.722 0.719 0.720 0.720
1.20 0.35 0.562 0.562 0.553 0.558 0.560
0. 0. 0.000 0.000 0.000 0.000 0.000

Table 3.3.3 — Results for derivative Bu/'c)x2

- domain sub-divided into 12 cells

- solution divided into particular and complementary
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following linearised equations, obtained by neglecting the inertia

terms in the momentum equations [60],

Cfq = M, (5 - by oo
fay=pgH ox, (g =) =0
9 8 b
fq =pgHil + (1, 1) =0
2

and the continuity formula,

where:
f = Coriolis parameter
4,549, = vertically integrated velocity components in the X)X, directions
p = mass density
g = acceleration of gravity
H=h +n = total depth of water
h = depth with relation to the mean water level
n = elevation of the free surface
T = wind stresses
T = bottom friction stresses

If the n values are much smaller than the h we can write H = h, hence

_ an s _ b -
fq), +p gh 3%, *l -t =0
(3.3.4)
oan s _ by _
fq +pgho + (1,1, =0

2
Assuming the Tb terms to be linearly proportional to the mean momentum
components,
Tb = Y49, » Tb = vdq
1 1 2 2
we can cross-differentiate equations (3.3.4) and afterwards subtract
both equations. Assuming that the derivatives of h are negligible

(i.e. the bottom slope is small) this gives, taking continuity into

consideration, the following equationm,
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= »

S
aT oT aq aq

X ‘a—xl” ['a?l'—a_xg] (3.3.5)
2 1 2 1

(o3

We can propose a stream function ¢ such that

= 9 -1
ql 8x2 ? LY Bxl

and formula (3.3.5) becomes,

2y = 1
vy ” w(x;, x2) (3.3.6)
where s
aTS T
W(xl’ XZ) = axl - sz
2 1

Note that we have included the Coriolis parameter but assumed it
constant for all the lake, i.e. the lake is small enough to allow the

neglect of local variations in the Coriolis forces. If we take,

X X
_ 1 =2
=7 > X =1
w(xl, x2)
WX, X)) =
= v
G

) (fe/ZHZ)% L2
L being the lateral characteristic leﬁgth of the lake, T the character-
istic wind stress and € the eddy viscosity coefficient, equation (3.3.6)
takes the non-dimensional form,
V2 = £ WK (3.3.7)

1, 2)

where

1
_ yL(fe/2)?
TH

8
We analysed, using the above formulation, the wind circulation in
Lagoa dos Patos, Brazil (figure 3.3.la). As a first numerical example,
we calculate the stream lines for the flow in and out of the lake with-
out wind effects, taking ¥ = O for the west shore and y = 1 for the

east shore. Results are shown in figure 3.3.1b. For this case, the

governing equation becomes a Laplace equation.
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Figure 3.3.1 - Lagoa dos Patos: a) Geometry; b) Flow pattern for
potential flow; c¢) Wind driven mean circulation pattern
due to a linear stress distribution; d) Wind driven
mean circulation pattern due to a quadratic stress
distribution

b)
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If we consider the right—~hand side of equation (3.3.7) equal to

1, X, and X this allows for a superposition of three different sets

1 2°
of results in order to obtain any solution of the type,

2y =
vZy = A + BX; + CX,

where the right~hand side represents a quadratic wind stress distribu-
tion. Results are shown in figure 3.3.lc for a linear wind stress
distribution, A =1, B = C = 0, and in figure 3.3.1d for a quadratic
wind stress distribution, A = 1, B = -3, C = 0. All the previous
results were obtained by discretising the boundary of the lake:
using 93 linear elements and subtracting out a particular solution of
equation (3.3.7).
3.4 Sub-Regions

If the problem under consideration is defined over a region
which is only piecewise homogeneous, the numerical procedures described
can be applied to each homogeneous sub-region as they were separated
from the others. The final system of equations for the whole region is
obtained by adding the set of equations (3.1.8) for each sub-region
together with compatibility and equilibrium conditions between their
interfaces [2], [26].

To illustrate these ideas in more detail, consider for simplicity
a region Q consisting of two sub-regions Q! and Q2 (figure 3.4.1). Over
sub-region Q!, we define:
Ul, Q! - nodal potentials and fluxes (q1 = -kl Bul/an) at the

external boundary ri;

g%, 9% -~ nodal potentials and fluxes at the interface PI’ considering
it belongs to 0!}
Similarly, we define over sub-region 02:
U2, Q2 - nodal potentials and fluxes (q2 = -k2 auz/an) at the

external boundary F2;
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q%, Q% ~ nodal potentials and fluxes at the interface s considering

it belongs to ©2;

r‘l \‘
interface N

Figure 3.4.1 - Domain divided into two sub-regions

The system of equations (3.1.8) corresponding to sub-region ol

can be written as,

pl 91
[ il {7 ¢ = [¢! 6] (3.4.1)
oo pl Ql

~1 <1

where, assuming that there are N1 and NI boundary nodes over surfaces

Tl and FI’ respectively, the dimensions of matrices Hl and 91 are

. 1 1
(Nl + NI) X N, and of matrices EI and G: are (N1 + NI) % NI'

1 I

For sub-region 92, we have

U2 Q2
H2 g2 = [G2 2] {~ 3.4.2
wp el (3.4.2)
<1 2T
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where the dimensions of matrices gz and 92 are (N2 + NI) X N2 and of

. 2 2
matrices EI and.gI are (N2 + NI) X NI'

The compatibility and equilibrium conditions to be applied at
the interface FI between Q! and Q2 are, respectively,

1 = -
u} y

~1

{{emi

i
(3.4.3)
9% = '9% =Q;

Equations (3.4.1) to (3.4.3) can be combined to form the system,

Ul 1
gl wr o] |” ¢ 6 of |
U ¢ = Q (3.4.4)
o u2 m2| |t o -g2 g2| |t
S T £ AR Nl
or, more simply,
HU =G6Q (3.4.5)

This system of equations is formally similar to (3.1.8) except
that the matrices H and G are now banded. By imposing the boundary
conditions of the problem and remembering that both the potentials and
fluxes at the interface are considered as unknowns, the system (3.4.4)

can be reordered as,

(1)
H! H! -Gl o U ¢! o Q!
I -1 R (3.4.6)
2 2 2 2 2 )
O Hr & B Y o ¢
\921

According to the prescribed boundary conditions, the sub-matrices
corresponding to TI'! (and I'2) may interchange their positions. Notice
that the final system matrix in (3.4.6) is also banded.

Detailed explanations of the computer implementation of the above
procedures, including numerical results, can be found in [26], [67], [68].

3.5 Orthotropy and Anisotropy

Let us now assume that the medium over which the problem is

defined is orthotropic (see figure 3.5.1). The governing equation in the
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directions of orthotropy can be written as,

32u 32u _
k.l —B—YTZ + kz 3}722 = 0 (3-5.1)

for the two-dimensional case, being ki the medium property coefficient

in the direction of orthotropy i.

A
N
* "? N
Yy } directions of
Yo ) orthotropy
i T

Yin=C€OS a

X2} Yon=sin a

Y

X,

Figure 3.5.1 — Orthotropic medium
The fundamental solution to this equation is [2] (see also chapter
2, section 2.1),

U*(P’S) = S 1og-r-(%—§~)— (3.5.2)

1
2
(klkz)
where

r(p,s) = {ﬁ [yl(p) - yl(s)]2 + é [yz(p) - yz(s)]z} (3.5.3)

Applying the divergence theorem [13] to the terms of equation

(3.5.1) vyields,

3%u 32u du Ju
(k;y == + k, — ) dQ = J (ky — vy +k, sy ) dr
JQ 1 ayl 2 8y2 r 1 Byl 1,n 2 8y2 2,n

(3.5.4)

where Y14 and Y, , are the direction cosines of the outward normal n
b ’

to surface T' (figure 3.5.1). The term enclosed in brackets in the
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right-hand side integral is the normal boundary flux q. Analogously,

we can define

* _ Bu (P S) au ( ’
a*(,8) =k, EACH fs?l + k —ay—z%s)— 58) (3.5.5)

The problem can then be solved in the same way as for isotropic problems,
i.e. by transforming the governing equation (3.5.1) plus boundary con-
ditions into a boundary integral equation similar to (3.1).

For fully anisotropic media, the governing equation becomes,

32u 32u 32 B
k].]. 5—;]’—2 + 2k12 a—xl-'é-}-(—z' 22 2 =0 (3.5-6)

for two-dimensional problems, the coefficients kij defining the medium

properties. This equation has the following fundamental solution [27],

* 1 1
u”(p,s) = log —— 3.5.7)
R S RO (

ij '
where Ikijl is the determinant of the medium property coefficients

matrix and

r(p,s) = {ki [x, () - % (s)]2 + ;2; [x, () = %, ()] [x,() = x,(5)]
11 1

1
2

* k—;; [x, (®) - x2(s)]2} (3.5.8)

The normal boundary flux q is now given by,

_ au Ju du du
q = (kg 3% * ko sz) x; 0 Gy 3% * koo axz) X0 (3.5.9)

Analogously, we have

5 B} 3u” (p, S) 3u™(p,S) 2u*(p,s) 3u*(p,$)
@8 = Gy T R ) MR 1 @ R e, ) M5

(3.5.10)

and the problem can now be solved as previously.

Numerical results for orthotropic problems are presented in [26],

[68] and for anisotropic problems in [27].
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3.6 Infinite Regions

Although the boundary integral equation (3.1) has been derived
considering that the region Q2 is bounded, all concepts presented thus
far are also valid for infinite regular regions in the sense defined by
Kellogg [131, i.e. regions bounded by a regular surface (hence a bounded
surface) and containing all sufficiently distant points. However, for
this extension to be valid, certain regularity conditions concerning
the behaviour of the functions in equation (3.1) on a surface which is
infinitely remote from the origin must be fulfilled.

Let T be the surface of a circle (or a sphere if the problem
is three~dimensional) of radius R surrounding the surface I' and centred
at the point P (figure 3.6.1). A boundary integral eduation similar to
(3.1) for the finite region Q enclosed by the actual surface I' and
the fictitious surface T can be written as,

u(s) q*(2,s) dr(s) + J_ u(s) q*(P,s) dr(s)

c(P) uP) + r
T

r

= J q(s) u*(P,s) dr(s) + J q(s) u*(®,s) dr(s) : (3.6.1)
T T

If we let the radius R»», equation (3.6.1) will only be wvalid

for points in T (and Q) if

lim j_ [a(S) u*(P,8) - u(S) q*(P,8)] dr(s) =0 (3.6.2)
T

R

For three-dimensional problems, since

ar(s) = |J| d¢ deo , |3] = 0(R?)
u*(@,s) = O@R™Y) , SET (3.6.3)
q*(P,8) = 0(R™2)

where O( ) represents the asymptotic behaviour of the functions as
R>®, the condition of equation (3.6.2) is satisfied if the function

u(S) behaves at most as O(R™!), such that its derivative q(S) = O(R™%)
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Figure 3.6.1 - Infinite region with cavity

in the worst case. These are the regularity conditions at infinity
[13], [40] and they ensure that each term in the integral in equation
(3.6.2) behaves at most as O(R™1), i.e. they approach zero as Rr».

For two-dimensional problems, we have that the function u*(P,S)
behaves as the logarithm of R and its derivative q*(P,S) = O(R7!) as
Rr>o. The regularity conditions at infinity for this case imply that
u(S) behaves at most as log R such that q(S) = O(R™!) in the worst case.
Note that now the terms in the integral in equation (3.6.2) do not
approach zero separately as R»w gsince dI'(S) = |J|d£ and IJI = O(R), but
they cancel each other thus fulfilling condition (3.6.2).

Therefore, applying condition (3.6.2) into equation (3.6.1)
yields,

u(8) ¢*(P,s) dr(s) =j q(8) u*(P,S) dr(s) (3.6.4)

c(P) u(P) + J
T

r
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that is, the boundary integral equation obtained for points on the
internal surface I' of the infinite regular region Q is of the same
form as equation (3.1) for finite regions. The same is also valid for
the integral equation for points inside tﬁe infinite region Q.

Consider a three-dimensional Neumann problem defined over the
infinite region Q. Unlike the case of finite regions (see section 2.2),
equation (3.6.4) has a unique solution for arbitrary continuous values
of q prescribed over the internal boundary I'. Moreover, the Gauss
condition (2.2.6) need not be satisfied by q since the integral of q
around T is balanced by a compensating flux at infinity. As the

region 2 enclosed by I and T is solenoidal, we can write

[ q(S) dr(s) + L q(8) dF(s) =0 (3.6.5)
r r
where

f_q(s) dr(s) = 0(1) (3.6.6)
T

since u(S) = O(R™!) as Rs». If u(S) behaves as O(R™2) the flux over

I' vanishes and so equation (3.6.5) becomes the Gauss condition

J q(8) dr(s) =0 (3.6.7)
T

Conversely, if condition (3.6.7) is fulfilled, it follows that u(S)
behaves as O(R™2) as R,

By analogous considerations we can state that, for two-dimensional
Neumann problems, satisfaction of the Gauss condition (3.6.7) ensures
that u(S) behaves at most as O(R™!) as R,

If the function q tends towards a non-zero limiting value at
infinity, this value can be included in the analysis through a

particular solution as will be shown in a following example.
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A final remark concerning infinite regions is that although it
is possible to evaluate the diagonal coefficients of matrix H through
condition (3.1.9) (see section 3.1), care must be taken because the
regularity conditions at infinity are violated as the function u is
now assumed to be constant everywhere in . Since it can easily be

shown that,

lim J_ q*(P,S) dr(s) = -2ar (3.6.8)
R /T
for both two and three-dimensional problems (o = 1 or 2, respectively),

being the surface T defined as previously, we have (see equation

(3.1.10)),

Hi' + 2amw (3.6.9)

Example 3.6.1

Let us consider the problem of a circular cavity of umit
radius in an infinite two—dimensional‘region with Neumann boundary con-
ditions, i.e. a constant radial influx of 31.21°C/cm specified along the
cavity surface.

Since the Gauss condition (3.6.7) is not satisfied, the solution
will have a logarithmic potential behaviour at infinity. The exact
solution of this problem is,

u = =-31.21 log R
which shows the expected behaviour.

Results for the temperature at points on the boundary I' and
inside the region  are given in table 3.6.1 and for the radial flux
at points in Q in table 3.6.2, compared to the exact solution. Taking
symmetry into account, only one quarter of the cavity surface was sub-

divided using constant elements.



R  BEM (N=4) | . BEM (N=8) EXACT
1.0 0.48 0.12 0.00
1.5 12.57 12.63 12.65
2.0 21.49 21.60 21.63
3.0 34.07 34.23 34.28
5.0 - 49.91 50.15 50.22
10.0 71.40 71,75 71.86
100.0 142.81 143.50 143.72
1000.0 214,21 215.24 215.58
Table 3.6.1 - Temperature (~) at points on
infinite region

R BEM (N=4) BEM (N=8) EXACT
1.5 20.68 20,77 20.81
2.0 15.51 15.58 15.61
3.0 10.34 10.39 10.40
5.0 6.20 6.23 6.24
10.0 3.10 3.12 3.12
100.0 0.31 0.31 0.31
1000.0 0.03 0.03 0.03

Table 3.6.2 — Radial flux at points on infinite

region




88

Example 3.6.2

The previously discussed formulation for infinite regions can
be readily applied to practical problems such as potential fluid flow
past obstacles.

As an example, we study a two—dimensional potential flow with
uniform onset velocity U in the X direction around a NACA 0018
aerofoil, whose shape is shown in figure 3.6.2. TFor the solution of
this problem, we employ a stream function ¢ as defined in example
3.3.2.

It is now convenient to separate the stream function ¥ into two

parts,
V=t Y,

where ¥y = Ux, defines the steady omset flow and wz is a perturbation

2
stream function. Since the perturbation decays at infinity, we
require that wz = O(R™!) at most as R+». Furthermore, as V2y = 0, we
also have that Vzwz = 0 and the problem can now be solved in terms of
the perturbation wz.

Considering the surface of the aerofoil as the streamline y = O,
the boundary conditions of the problem are

wz = -wl = ‘sz on T

As the problem is anti-symmetric with respect to the xl-axis,
only one half of the aerofoil needed to be analysed. The linear
boundary elements discretisation employed for the solution is shown in
figure 3.6.2. Results for the tangential velocity presented in the

same figure are in good agreement with analytical results given in [88].

3.7 Special Fundamental Solutions

The fundamental solution we have employed in all problems

studied so far can be immediately recognised as the Green's function
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—— Analytical
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Figure 3.6.2 - NACA 0018 aerofoil:
b) Discretisation

a) Results;
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for an infinite region. Since it was derived without any proper
attention to boundary conditions (see'chapter'Z), the boundary conditions
of the actual problem are introduced by requiring that the function or
its normal derivative (or a linear relétion between both) satisfies
prescribed values at points on the boundary, which was previously
discretised. In some problems, the problem region may be confined in
some regular way and it may be more convenient to find a fundamental
solution specific to the region [3].

As an example, let us derive the fundamental solution for a
semi-infinite region such as occurs in fluid mechanics or geotechnical
problems. Figure 3.7.1 represents a problem of groundwater flow round
a tummel which runs under a river. In a problem of this nature, it
is preferable to remove the infinite boundary T. By choosing a funda-
mental solution which identically satisfies the boundary condition on
the surface I we shall not need to discretise this surface, thus
congsiderably reducing the amount of numerical work involved in the
solution of the problem.

Consider a source of intensity o(S) at a point S € I (figure
3.7.1). The potential generated by this source will somehow be
reflected at the surface T, dependingvon the boundary condition
applied there. In order to represent this reflection, we shall intro-
duce an image source of intensity o(S') at a point S' symmetrically
located with respect to T. Thus, the potential at any field point p
will be the superposition of the ones generated by both sources, i.e.
(see chapter 2), |

ulp) = o(8) u*(p,8) + a(s") u*(p,5") (3.7.1)
wvhere u* is the infinite space fundamental solution.

Applying the boundary condition u = O at the surface T, we

obtain
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o (S) u*(p,S) + g(S") u*(p,S') =0 on XZ(P) =0 (3.7.2)

Taking for instance the two-dimensional Laplace's equation,

condition (3.7.2) implies that

o(S) log - 1 ;

([ @)= (]2 + [-x,(®)]?)

oi—4

+ (') log 1 =0 (3.7.3)
{[xl(p)—xl(s)]2 + [xz(S)]z}

which gives
o(S) ==a(S'") (3.7.4)
Since, by definition, the fundamental solution is equivalent
to the potential genérated by unit sources, the fundamental solution
for the semi-infinite region with zeropotential at the interface is

simply

o=

[x) (@)% ()]? + [x,(p)-x,(s)]?
u*(p,s) = log - (3.7.5)
[x; (P)-x; (8)]% + [x,(p)+x,(s)]?

If the boundary condition at the interface T is that of zero

normal flux, i.e.

ag(S) q*(P,S) +0(s') ¢*(p,S') =0 on xz(p) =0 (3.7;6)

implying the condition

XZ(S) XZ(S)
- (8) + a(s') =
[x, (P)=x; (8) ]2 + [-x,(5)]? [x, (®)=x, ($)]% + [x,(s)]?
(3.7.7)
which gives,
6(S) = o(8") (3.7.8)

then the fundamental solution of the problem is

u*(p,5) = Tog( [ (P)=x, ()]2 + [, ()x, ()]23 {[xx, (p)=x ()]?

+ [Xz(p)+x2(5)]2}%) ' (3.7.9)
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Fundamental solutions for other problems such as parallel
layered regions can be constructed in the same way, as well as three-

dimensional fundamental solutions.

Example 3.7.1

The problem represented in figure 3.7.1, that is, a two-
dimensional problem of groundwater flow round a tunnel with permeable
invert was studied in order to illustrate the ideas developed in this
section. As seen in section 3,2, if the medium is homogeneous and
isotropic the problem is reduced to that of Laplace's equation for the

groundwater pressure u. The boundary conditions of the problem are,

u=4d on T
=0

u on Fl

q = —cosb on F2

where d is the depth of the river and 6 is the angle measured from the
vertical (see figure 3.7.1). The surface ry is the permeable invert
of the tunnel where we assume that water flows in freély and F2 is the
impermeable part of the tunnel lining, where the condition of no flow
across the surface holds. Notice that for a point at infinity we have
the condition u = d—xz.

The problem can be reformulated by subtracting out the solution

at infinity. The groundwater pressure u is divided into two parts,

where u = d-x2 satisfies the infinity condition. Then we have that

u, tends to zero at infinity and furthermore, that Vzu2 = 0 such that

2

the problem can now be solved in terms of u,. The boundary conditions

for U,y become then,

u, =0 on T

[
]

—(d+a—rtcose) on T (3.7.10)

q2=0 on T
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Figure 3.7.1 - Groundwater flow round a tunnel
9 BEM (N=8) BEM (N=16) BEM (N=32) FEM
0 30.51 29.08 28.87 33. 44
/8 31.52 30.03 29.83 34.51
/4 34,60 32.87 32.73 37.76
3n/8 39,96 38.05 37.85 43.46
/2 48,24 45.96 45,72 52.34
51/8 61.43 58.42 58.10 . 66.46.

Table 3.7.1 - Values of u, (-) on tunnel surface
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where r 1s the radius of the tunnel and a is the distance of the
centre of the tunnel below the bottom of the river. The numerical values

adopted for the parameters are d = 60, a = 30, r, = 3.5 and AOB = 3u/4.
The same computer program developed using the infinite space

fundamental solution can be applied to this problem by specifying anti-

symmetry with respect to the xl—axis, thus also satisfying condition

(3.7.4). The solution of the new problem, i.e. Laplace's equation in

the infinite domain bounded internally by I' and its image I'', with

and Fé,

boundary conditions u, = -u; on Fl’ u, =u, on Pi, q, = 0 on Fz
is identical in the lower half-space to the solution of the original
problem with boundary conditions (3.7.10). By taking into account the
symmetry with respect to the xz—axis, only one half of the tunnel
surface needs to be discretised.

Results for the function u, at some boundary points are presented
in table 3.7.1 for three different discretisations using linear boundary
elements and compared to a finite element solution [69] obtained by
discretising the whole semi-infinite region into 152 triangular finite
elements plus some infinite elements (see figure 3.7.2). The dis-
crepancy between both solutions is due to the coarseness of the finite
element mesh around the tunnel (see figure 3.7.2), which does not take

into account properly the discontinuity on the radial flux at the point

B.

Example 3.7.2

This example studies the steady-state heat conduction problem of
a semi-infinite medium bounded internally by two parallel and equal
cylinders, as shown in figure 3.7.3. The interface T is at zero tempera-
ture, the temperature at infinity is also zero and the surfaces of the

cylinders are isotherms.
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If the depth d.is much greater than the cylinder radius a, this
problem can be seen as an approximation to the more practical one of
two equally loaded electricity cables laid direct in the ground in
horizontal formation. Of interest in this kind of problem is the
determination of the external thermal resistance of each cable.

The thermal resistance G per unit length between the surface

I at a temperature c and the surface T' at zero temperature, through a

medium with thermal conductivity k, is given by

[

k [ q dr
r

Results for the non—-dimensional ratio Gk are presented in table

G =-

3.7.2 for several values of d/a, for a unit cylinder surface tempera-
ture ¢. Two different cases were considered, i.e. when the cables
are touching (b = 0) and when the cable spacing equals one diameter
(b = a). These results were obtained by sub-dividing the surface of
one cylinder into 32 linear elements and considering symmetry with
respect to the x2—axis and anti-symmetry with respect to the xl—axis,
using the infinite space Green's function. Also shown in the table
are the results obtained through an approximate analytical solution
[70]; the agreement between both solutions is very good.

Since anti-symmetry was considered the Gauss condition (3.6.7)

is automatically satisfied, thus fulfilling the condition of zero

temperature at infinity.

3.8 Three-Dimensional Problems

The solution of the boundary integral equation (3.1) for three-
dimensional problems can be attempted following basically the same
steps as discussed in section 3.1 for two-dimensions. The boundary T,

now a two-dimensional curve, can be modelled by using flat or curved
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Figure 3.7.3 - Semi-infinite region bounded internally
by two equal cylinders

b d/a BEM | ANALYTICAL
10 0.810 0.810
25 1.102 1.102
b=0
50 1.322 1.322
100 1.543 . 1.543
10 0.726 0.724
25 1.016 1.014
b =a
50 1.236 © 1,235
100 | 1.457 1.456

Table 3.7.2 - Values of ratio Gk
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triangles or quadrilaterals and the potentials and normal derivatives
over it assumed to be piecewise constant, linear, quadratic, etc. The
interpolation functions adopted are generally tﬁe same as employed for
two—~dimensional finite element analyses.

In what follows, the numerical procedures necessary for the
computer implementation of a simple element, namely a flat triangle
with constant potential and normal derivative will be described in
detail. Numerical results are included at the end of the section in
order to show the validity of these procedures and a description of the
computer program developed is given in chapter 6. As for the two-
dimensional case, extension to high order interpolation functions
presents no further theoretical difficulties.

For the discretisation of equation (3.1), the boundary is
modelled by using flat triangles such that the cartesian coordinates

x of points within each element are expressed by equation (3.1.1), being

now
X yT o 0 X0
1 T N T m “h
x = xZJ yt o= |0 y 0 = 1%, (3.8.1)
~ ~ - ~ - &
X4 Y Y ¥ X

where the index m = 1,2,3 is associated to points at the vertices of

each triangle and

1
£ x}
v = i¢, Xy = {x2 (3.8.2)
3
£, X3

in which gi are the intrinsic triangular coordinates (figure 3.8.1).
The functions u and q are assumed to be constant within each
element and associated to their nodal values at the centroid of the

element (figure 3.8.1), i.e. equation (3.1.3) becomes simply,

(3.8.3)
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If the boundary T is discretised into S elements and N nodes,

the substitution of equation (3.8.3) into (3.1) yields

S S
c. Ut + % ¢ dr| " = = .J o* dr| Q% (3.8.4)
= =1 |'r

The transformation of the element of surface dI' from the global
cartesian system of coordinates to the intrinsic system of coordinates
now gives,

ar = |J| dg, dg, (3.8.5)

where the Jacobian J equals twice the area of the triangle [60]. The
unit normal vector, necessary for the evaluation of the function q*,
can be calculated by considering the cross—product between the vectors
(2-1) and (3-1) shown in figure 3.8.1.

The integrals to be calculated in equation (3.8.4) are of the

type
11,
{ q"(x) dr = |J| J [ a*(g) dg;| de,
Ty o ‘o
(3.8.6)
1 1-f
2
u¥(x) dr = |J] u*(g) de, | dg,
Ty 0 (‘0 )

For the cases when i {jFS, these integrals are computed numeri-
cally using Hammer's quadrature scheme [65]. Thus the off-diagonal
coefficients of matrices H and G in equation (3.1.8) are given by

summations of the form,

7
1
H,, =24, d,. L —3—W
+J I3 g T K
(3.8.7)
7
=24, T 2y
13 J k=1 Tix K

in which Aj and dij refer to the element containing node j, being Aj

its area and
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(1,0,0) £5=0 (0,1,0)

Figure 3.8.1 - Intrinsic triangular coordinates

Figure 3.8.2 - Geometrical definitions for analytical
integration
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i_o1 i_g1 i_g1
) (x]-x1)z; + (X,;=X})Z, + (X3-X1)Z,

g 2 2 (3.8.8)
2,772,722
(Zl+22+23)
where
- v2 v3 _ v3 v2
Za Yb YC Yb YC (3.8.9)
being a = 1,2,3 for b = 2,3,1 and ¢ = 3,1,2, and
Y2=X3__Xl
m m m
(3.8.10)
Y3=Y3_X1
m m m

for m = 1,2,3. Notice that seven integration points (quintic scheme)
are employed for the numerical evaluation of the integrals in equation
(3.8.6).

The Hii coefficients may again be calculated by using equation
(3.1.10) for finite regions or equation (3.6.9) for infinite regions.
The Gii coefficients, which contain integrable singularities, can be

evaluated analytically by employing polar coordinates (see figure 3.8.2),

0 Rl(e) 8,+6, Rz(e) 27 R3(6)
G.. = J J dR do + J J dR do + dR ds8
o Jo 0, 0 6,%6, °0
(3.8.11)
where
2Ai
R.(8) = 7 ——
3 3(blcose +ak31ne )
2 2y 3
bj = (rlj - al)
; ; ; (3.8.12)
~ Z1 + 22 + 23
a. =
J rij

23 = xt - xhyt
m m m

m
vl o xb - xE
m m m

in which m = 1,2,3 and j = 1,2,3 for k = 2,3,1 and 2 = 3,1,2. The

angle 6' equals 6 for j =1, 0' = 0-6, for j = 2 and 8' = 6—(61+62) for
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j = 3. Evaluating the integrals in equation (3.8.11) finally yields,

G., = Eﬁi _}_-log [tan[(el+a2)/2]] + log [tan[(62+u3)/2]]
i 3 1r3 tan[az/Z] T31 tan [a4/2]
. tan| (8, ,+a )21}
+ L log { [ty ]] (3.8.13)
f12 tan[a, /2]

Example 3.8.1

The first three—-dimensional example studies the temperature
distribution over a unit cube with Dirichlet boundary conditions as

follows (see figure 3.8.3),

u=1. at x, = +0.5

1
u =2, at X = -0.5
u =0, at X, = 0.5

u =20, at Xq = 0.5
Due to symmetry with respect to the planes Xy7X, and X)"Xgs
only one quarter of the actual cube needed to be analysed. Two
different meshes were employed, the finer of which is shown in figurev
3.8.3. Results for the temperature at some internal points are

presented in table 3.8.1 and compared with an available analytical

solution [16].

Example 3.8.2

In this example, we seek the temperature distribution over a
rectangular parallelepiped with the following mixed boundary con-

ditions (figure 3.8.4),

u = 10, at x, = -0.5

AU L5y =0. at x. = 40.5

on 1

Jdu - _
v + 5u = 0. at x2 = *1.

ou
SE-+ S5u 0. at X3 = +1.
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Figure 3.8.3 - Unit cube: a) Geometry; b) Discretisation
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Figure 3.8.4 — Rectangular parallelepiped: a) Geometry;
b) Discretisation
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X | BEM (N=12)_ _» BEM (N=24) ANALYTICAL
-0.375 .. 1.637 1.7 1.430
-0.250 1.044 . 0.979 . 0.967
-0.125 . | . 0.678 . 0.661 | 0.659
0. 0.500 0.500 . | . .0.500

0.125 | = 0.478 . 0.472 0.472
0.250 0.597 0.566 0.560
0.375 0.855 0.770 0.748

Table 3.8.1 ~ Temperature along the xl—axis

% Xy Xq BEM (N=24) BEM (N=48) | ANALYTICAL
-0.25 | 0. 0. 7.387 7.282 7.259
0. 0. 0. 4.827 4,840 4.837
0. 0.50 | 0.50 3.745 3.843 3.843
0.25 | 0. 0. 2.816 2.843 2.844
0.25 | 0.25 | 0.25 2.612 2.658 2.658
0.25 | 0.50 | 0.50 2.000 2.073 2.089
0.25 | 0.75 | 0.75 1.050 1.144 1.180

Table 3.8.2 - Temperature at internal points
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As in the previous example, we take advantage of the symmetry of

the problem with respect to the planes 17X, and X)~Xg. The finer mesh

employed in this analysis (48 elements) is shown in figure 3.8.4 and
the numerical results at some internal points are compared with the

ones obtained through an analytical solution [16] in table 3.8.2.

Example 3.8.3

Let us now study the problem of a sphericél cavity of unit
, . e e s . . . . o
radius in an infinite region with a constant radial influx of 10 C/cm

prescribed along the cavity surface.

The exact solution of this problem is simply,

which shows that the expected solution behaves as O(R™!) as R+~ since
the Gauss condition (3.6.7) is not satisfied.

By taking symmetry into account, only one eighth of the cavity
surface needed to be analysed. Results for the averaged surface tempera-
ture and for the temperature at some points inside the domain Q are
shown in table 3.8.3, compared to the exact solution. The slow con-
vergence of the numerical solution on and near the cavity surface are

attributed to the geometrical approximation of the sphere using flat

elements.

3.9 Axisymmetric Problems

In chapter 2, it was pointed out that the fundamental solution
to the two-dimensional Laplace's equation (the logarithmic potential)
can be derived by integrating the three-dimern.sional one (the Newtonian
potential) for a line source at a point s. The same idea can be applied
in order to derive the fundamental solution for Laplace's equation over

an axisymmetric domain, which is equivalent to a ring source.
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R BEM (N=7) BEM (N=16). . EXACT
1.0 9.676 9.727 : 10.Q00
1.5 6.505 | 6.569 . 6.667
2.0 4.899 4.922 5.000
3.0 3.274 3.281 3.333
6.0 1.639 1.640 1.667
10.0 0.983 0.984 1.000
100.0 0.098 . 0.098 0.100
1000.0 0.010 0.010 0.010

Table 3.8.3 - Temperature at points on infinite region

Assuming that all boundary values have axial symmetry (and con-—
sequently all domain values are also axisymmetric), equation (3.1) can
be written in cylindrical polar coordinates (R,0,Z) as

2m

c(P) u(P) + J_ u(s) J q¥(P,S) do(S) R(S) dr(s)
r 0

2m

= [_ q(S) J u*(P,S) do(S) R(S) dT (S) | (3.9.1)
T 0

since

dr = dx; dx, dx; = R do dR dZ = R do dr (3.9.2)

Note that T is the generating boundary contour which is the projection

of T in the R'-Z semi-plane (figure 3.9.1).

Writing the three-~dimensional fundamental solution in cylindrical

polar coordinates,

1 1
r(P,S)  {R2(P)+R2(S)-2R(P)R(S)cos[06(P)~0(S)]+[Z(P)-2(S)]?}

u*(P,S) =

=

(3.9.3)
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Figure 3.9.1 - Generating area and boundary contour
of solid of revolution
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the axisymmetric one can be calculated explicitly in terms of the com-

plete elliptic integral of the first kind K(m) as,

2m
—3 _ * _ 4 ‘K(m)
u”(P,S) = J u (P,S) do(8) = ———t (3.9.4)
0 (at+b)?
where
_ 2b
a+h
a = RZ(P)+R?(S)+[z(P)~Z(8)]? (3.9.5)
b = 2 R(P) R(S)

The range of variation of the parameter m is Osmgl. Unlike the two and
three—dimensional cases, the axisymmetric fundamental solution cannot be
written as simply a function of the distance between two points, but

it also depends on the distance of the points to the axis of revolution.

The normal derivative of the fundamental solution along the

boundary contour T is given by,

— _ 4 1 RZ(P)-R2(S)+[2(P)-2(8)]2 _ J
q*(P,S) (a+b)% {ZR(S) [ po E (m)-K(m) R,éS)
Z(P)-Z(S) }
+ =L 2200 F Z, (S 3.9.6)
e (m) é ) (

where E(m) is the complete elliptic integral of the second kind.
From expressions (3.9.4) to (3.9.6), it can be seen that as
R(P)~0 we have that m*0, K(m)»n/2, E(m)»n/2, so that the ring source
tends to a point source with intensity 2m over the axis of revolution.
Substituting (3.9.4) and (3.9.6) into equation (3.9.1) yields
the following boundary integral equation,

u(S) q*(P,S) R(S) dT(S) = J q(8) w*(p,S) r(S) dr(s)
T

c(P) u(P) + f_
T
(3.9.7)

The solution of the above equation can be attempted by using the

same basic calculation procedures as discussed in section 3.1 for two-
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dimensional problems. Again, constant and linear elements were derived
and a description of the computer program developed is given in chapter 6.

For convenience of the numerical computation, tﬁe Cémplete
elliptic integrals are approximated by polynomial expressions [46] which
are given in appendix A.

After discretising equation (3.9.7) and summing the contributions
from all boundary elements, a system of equations of the form (3.1.8)
is obtained. The terms Hij and Gij (i#j) of this system are evaluated
numerically using a standard Gaussian quadrature with four integration
points. The diagonal terms Hii and Gii however, are the result of
evaluating singular integrals for which standard quadratures camnot be
applied.

In order to facilitate the evaluation of these integrals, the
fundamental solution and its normal derivative can be written in

terms of Legendre functions of the second kind as,

PoQ_; ()
u*(p,s) = —§i~_—ri—-— (3.9.8)
b2

3 NCD) _ _ dQ_, (v)q
T@,8) = - — {[Q—g P EOREL@2o] T,
R(S) b2 Y n

dQ_, (v)
Z(P)-2(S) -1
T TR®) & Z’r(ls)} 229
where
Yy =1+ -——a;b lsyse (3.9.10)

This form of the fundamental solution is the same as given by Snow [71].

This Legendre function can be expanded, for small values of

Y, as [72]

Q) = - % oo (35‘51—) (3.9.11)
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dQ_é(.Y) o
— = "3y (3.9.12)

The substitution of expressions (3;9;11) and (3.9.12) into (3.9.8)

and (3.9.9) permits the explicit evaluation of the singular integrals.
As previously, the Hii coefficients may be calculated by using equation
(3.1.10) for finite regions or equation (3.6.9) for infinite regions
(with o=2) while formulas for Gii obtained through analytical integra-
tion are given in appendix B, for both constant and linear elements.

For higher order elements, the complexity of the integrals makes
almost impractical their closed form evaluation. To overcome this
problem, we can integrate in closed form over a short straight line
segment near the singularity and numerically integrate the rest of the
“element. Alternatively, the kernels in these integrals can be expanded
in order to isolate the leading singular term which can then be inte-
grated in closed form, being the remainder of the kernel numerically
integrated.

Notice that for elements located near the axis of revolution (so
with small R(P)) it is not always possible to integrate the whole element
analytically in the way above described, since the value of the parameter
vy will be large for points far from the singularity and therefore, approxi-
mations (3.9.11) and (3.9.12) are no longer valid for these points. Thus,
the scheme adopted for these cases was to integrate analytically over a
short segment near the singularity and numerically integrate the rest of
the element using a standard Gaussian quadrature, as if these parts were
separate elements. For computational purposes, the length L of the

analytically integrated part of the element was assumed to be [73],

1
L _ [R() R(S)]? &
5 < [——-————~50 J <5 (3.9.13)

where £ 1s the total length of the element and R(S) is the distance from

the nearest point of that part to the axis of revolution.
i RARY

Lo
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Example 3.9.1

The first example studied was that of a finite hollow cylinder

a<R<b, —<Z<f, subjected to a discontinuous heat influx on the inner

face as follows,

u=0 at R=D and Z = ¢

g =0 at R = a, —-4<Z<-L

q =0 at R = a, L<Z<«g

q=V at R = a, -L<Z<L
This is a rough approximation to the arrangement in a tube furnace; an
analytical solution of this problem can be found by employing an infinite
series expansion in terms of Bessel functions [16].

Results are presented in tables 3.9.1 and 3.9.2, compared to the
analytical solution. Both constant and linear elements were employed
and due to the symmetry with respect to the R-axis only one half of the
cylinder was discretised into 14 equal elements (figure 3.9.2). The
numerical values adopted for this analysis were =2,b=6, 2=5, L=2 and
v=1.

Example 3.9.2

This application considers a finite solid cylinder Osta,
0<Z<g%, over one face of which the 'radiation' boundary condition is
prescribed. The total boundary conditions of the problem are,

u=0 at Z =3
u=V at Z=20
qt+thu=0 at R = a

Again constant and linear boundary elements were employed and
the cylinder surface discretised into 20 equal elements, in both cases
(figure 3.9.3). Notice that there is no need for elements over the
axis of revolution, which is not part of the generating contour. The

numerical values assumed for these analyses were a =1, & = 3, h = 0.1,
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Figure 3.9.2 - Discretisation of hollow cylinder

EY

Figure 3.9.3 - Discretisation of solid cylinder
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R Z BEM (constant) . BEM (limear) . Analytical
3.0 4.0 0.140 . . ... . 0.141 0.141
3.0 | 3.0 o7l 0.320 T0.319
3.0 2.0 0.556 . 0.556 0.556
3.0 1.0 0.762 0.760 . 0.761
3.0 0.0 0.832 0.831 0.831
5.0 4.0 0.043 0.043 0.043
5.0 3.0 0.088 0.088 0.088
5.0 2.0 0.133 0.133 0.133
5.0 1.0 0.167 0.167 0.167
5.0 0.0 0.180 0.180 0.180

Table 3.9.1 - Temperature at internal points
R BEM (constant) BEM (Linear) Analytical
2.0 - 0.148 0.155
2.5 0.155 - 0.149
3.0 - 0.141 0.134
3.5 0.112 - 0.113
4.0 - 0.089 0.090
4.5 0.066 - 0.066
5.0 - 0.043 0.042
5.5 0.017 - 0.020
6.0 - 0.000 0.000

Table 3.9.2 - Normal flux at Z

t2
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Z BEM (constant). .| BEM (linear) .Analytiggl
0.5 0.782. 0.781 0,781
1.0 0.587 0.585 0.585. ..
1.5 0.417 0.416 0.416
2.0 0.267 0.267 0.267
2.5 0.130 0.130 0.130

Table 3.9.3 - Temperature at R = 0.25
Z BEM (constant) BEM (linear) Analytical

.375 0.807 - 0.805
.500 - 0.751 0.751
.875 0.606 - 0.604
.000 - 0.560 0.560
.375 0.437 - 0.436
.500 - 0.397 0.397
.875 0.289 - 0.289
.000 - 0.254 0.254
.375 0.155 - 0.156
. 500 - 0.124 0.124

Table 3.9.4 — Temperature at R = 1.00
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V = 1. Results are compared in tables 3.9.3 and 3.9.4 with an

available analytical solution [16].

Example 3.9.3

The problem of a spherical cavity of unit radius in an infinite
medium already studied with three-~dimensional elements in example 3.8.3
is now re-studied with axisymmetric constant elements in order to assess
a comparison between both types of approximations.

Results are presented in table 3.9.5 for two different dis-
cretisations of one half of the generating contour of the sphere, taking
symmetry into account. This provides a better geometrical representation

of the cavity surface and the improvement of the results reflects this

fact.
R BEM (N=4) BEM (N=8) EXACT
1.0 9.961 9.991 10.000
1.5 6.539 6.634 . 6.667
2.0 4.904 4.976 5.000
3.0 3.269 3.317 3.333
6.0 1.635 1.659 1.667
10.0 0.981 0.995 1.000
100.0 0.098 0.100 0.100
1000.0 0.010 0.010 0.010

Table 3.9.5 — Temperature at points on infinite region

Example 3.9.4

Finally, a more practical application is the analysis of a proto-
type nuclear reactor pressure vessel subjected to an increase of tempera-

ture applied on the inside. This problem was studied using 96 triangular
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finite elements in [74] and the results, as well as the mesh employed,

are reproduced in figure 3.9.4,
Results for a linear boundary elements analysis employing 31
elements and taking into account the symmetry with respect to the R-axis

are plotted in figure 3.9.5, and compare well with the finite elements

solution.
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Figure 3.9.4 - F.E.M. mesh and isotherms
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Figure 3.9.5 - Linear B.E.M. discretisation and isotherms




119

4. TRANSIENT POTENTIAL PROBLEMS

This chapter studies numerical solutions to the time—dependent
boundary integral equation (2.8.11), repeated here for convenience, which
is equivalent to the diffusion equation (2.5.1) with boundary conditions

(2.5.2) and initial conditions (2.5.3),

F
c(P) u(P,t,) + k J f u(s,t) q*(P,S,tF,t) dr(s) dt
t T

(4.1)

F
=k q(s,t) u*(P,S,t ,t) dr¢s) dt + u. (s,t.) u*(P,s,t ,t~) dQ(s)
¢ r F Q 0 0 F>°0

Two different time-marching schemes can be employed on these
numerical solutions. Both adopt a time-stepping technique where the
functions u and q are assumed to vary within each time step according to
interpolation functions which can be constant or of higher orders. This
assumption makes it possible for the time integrals in equation (4.1)
to be carried out analytically. For the first scheme, which treats
each time step as a new problem, the result is a boundary integral
equation similar to (3.1) but including a domain integral that accounts
for the initial conditions at the beginning of each step. For the second,
where the time integration process always starts at time tys it is a
summation of boundary integrals corresponding to the time variation
of functions u and q since the initial time t, plus a domain integral
accounting for the initial conditions at £y which vanishes if the
prescribed initial conditions of the problem are uy = 0 or can be
transformed into equivalent boundary integrals, if uy satisfies Laplace's
equation.

The basic procedures for numerical implementation of both time-
marching schemes in connection with two—dimensional problems are

presented in the following section. Although they are only discussed



120

for problems defined over finite regions of homogeneous, isotropic
media, several other féatures such as internal sources, piecewise
homogeneous regions, orthotropy and anisotropy, infinite or semi-
infinite regions, can be included in the analysis in a similar way
as it has been done in chapter 3 for steady-state problems.

Specific numerical and computational procedures for each time-
marching scheme are then described and their accuracy and computer
efficiency compared,

Next, boundary conditions of the Robin-~type are introduced into
the formulation. For transient heat conduction problems the assumption
of (say) stepwise linear variation for both the heat transfer coefficient
h and the temperature of the surrounding medium uS_(see example 3.2.1)
gives rise to a quasi~quadratic variation for the flux q, and it is
shown how the higher order terms can be properly accounted for.

Finally, transient axisymmetric problems are discussed, the time-
dependent axisymmetric fundamental solution derived and a numerical
formulation for the solution of equation (4.1) over an axisymmetric
domain is presented. The complexity of the fundamental solution requires
the introduction of series expansions in order to enable the time
integrals in the equation to be carried out analytically.

Computer programs incorporating several features discussed in
this chapter were developed and are described in chapter 6. Results

of applications of such programs are presented in sections 4.4 to 4.6.

4,1 Two-Dimensional Problems

For the numerical solution of equation (4.1), the boundary T is
discretised into a series of elements. The geometry of these elements
can be modelled by straight lines, circular arcs, parabolas, etc., as
discussed in section 3.1. Furthermore, functions u and q are assumed
to vary within each element and each time step according to space and

time interpolation functions as,
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(4.1.1)

£
i
e
<
EN

where ? and x are the space and the time interpolation functions,
respectively, The index n refers to the number of boundary nodes
within each element to which nodal values of u and q are associated
and the index m refers to the degree of variation of function x, i.e.
m=11if x is constant, m = 1,2 if x is linear, etc. Let us also

assume that the domain Q is divided into cells, as discussed in section

3.3.

For two-dimensional problems, the fundamental solution and its

normal derivative are given by (see equation (2.8.3)),

* _ 1 - rZ( ’S)

u (P,S,tF,t) = R expl: '—-Z—I%E*-jl (4.1.2)
* _ d(,S) _ r2(p,S)

q (p ’S’tF9 t) = SrkZt eXPI: Lkt :’ (4.1-3)

F

in which t = t_-t and d(p,S) = [Xl(p)-Xl(S)] xl’n(S) + EXz(p) - XZ(S)] X2,n(s)'

If the boundary I' is discretised into S elements and N nodes,
the domain @ sub-divided into L cells and the time dimension sub-divided
into F time steps, the substitution of equations (4.1.1) into equation

(4.1) yields, for scheme 1, the following equation,

i S T tF %
c. UL +k = ¢ q* y dt ar| Uu*
i F b4 2 bt
s=1 r t._
s T ty oL .
=k I ¢ u* x dedr| Q"+ 3 u® up_ do (4.1.4)
s=1 Yr 7 Jt ~ ~ =1 4 -
s F-1 2

t
. s F £
c. U; +k I 3 [J 9T J q* x dt dr} i
] X

s=1 f=1

S F o[ L
=k I % ¢ u® xdt dr| Q" + %
r t =

I u* u, do (4.1.5)
s=1 f=1 1)@ ~

-1 L



122

4,1.1 Constant Time Interpolation

Assuming that functions u and q remain constant on time over

each time step, i.e. the interpolation function ¥ is unity, applying
equation (4.1.4) to all N boundary nodes yields the following system

of equations (see equation (3.1.8)),

HUp=GQp + B Uy, (4.1.6)

The coefficients of matrices H, G and B are constituted of

terms, or combination of terms, of the form (see equations (3.1.15),

(3.1.18), (3.1.24)),

t
F
", =k J o" J q*(i,s,tF,t) dt dr(s)
1" .

H s tF-l
F
g‘fj =k f ¢mJ u*(1,S,t5,t) dt dr(s) (4.1.7)
I|s tF-l
B, = Lz u*(i,s,tF,tF_l) da(s)

L

where the index m refers to the degree of variation of the interpola-

tion function ¢. Note that Hij = H,.

+ c. §.., where §,. is the
< ij i 1] ij

Kronecker delta.

For scheme 2, the application of equation (4.1.5) to all N

boundary nodes gives,

F F
I Hep Up= T Gp Qp + By § (4.1.8)
where
te
m _ m % . ’
hfFij =k Jr ¢ It q"(1,8,t,,t) dt dr(s)
S f-1
te
gtjlfolj =k J ¢m [ u*(i,S,tF,t) dt dr(S) (4.]_.9)
I|s tf-—l
= */-
BOij JQ u (l’s’tF’tO) dQ(S)

L
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A

c. 6 §.. now.. The values of U_ and Qf for

ing H__.. = ..+t oc.
being fFij HfFlJ i fF "1ij -f

f =1,...,F-1 are known from calculations at previous steps.
From (4.1.7) and (4.1.9), it follows that the time integrals can

be carried out analytically. The integral in q* gives,

£ £
% .. _ d r2 . r2
Jt q (l,S,tF,t) dt = 52 jt Wexp [ Z‘E?] dt
_ d
T 2mkr? [exP(_af—l) - exp(—af)] (4.1.10)
where
1'.'2

a (4.1.11)

f 4k(tF-tf)
In order to perform the integral in u*, we need to make an

appropriate change of variables. Calling

x = = (4.1.12)

the integral becomes [75],

w ({,8,tp,t) dt = = ikt °*P AR

g1 Fe-1
= e~ ax =L [E(a_) - B (a)] (4.1.13)
e B Gk F1(2g-p) ~ By lag
£-1

where E1 is the exponential-integral function. From definition (4.1.11),

we note that exp(-aF) =0 in (4.1.10) and El(aF) =0 in (4.1.13).

4.1.2 Linear Time Interpolation

Let us now assume a linear variation on time for functions u and
q within each time step according to the following interpolation

functions,

t -t t-t
I S B o}
Xl - Atf ’ X2 - Atf (4.1.14)

where At te=te_q-
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The system of equations obtained from the application of

equation (4.1.4) to all boundary nodes' is now of the form,

+ g2 Q. +BU . (4.1.15)

1 2 =l
1y HEUp =8 Qe * 6 Qp * B Up

+
~ F-1 < ~F

where the coefficients of the matrices involved are constituted of

terms such as,

l,m k m tF %
> = m— - 3
hij it . ) (tF t) q (1,S,tF,t) dt dr(s)

2,m k m tF *
> = —— — 1
hij At . ) (t tF_l) q (1,S,tF,t) dt dr(s)

(4.1.16)

l,m k m tF *
> = = - 't
gij AT . ) (tF t) u (1,S,tF,t) dt dr(s)

2,m k m %
b4 = -— -
g.j = ¢ (t tp 1) u (l’sftF’t) dt dr(s)

with Bij being calculated as in (4.1.7) and ng = H?. + c.§...

Analogously, the application of (4.1.5) to all boundary nodes

gives,

F 1 2 F 1 2 -

I o lpp Upg *Hep Up) = 2 (Gpp Qe * Gp Q) + By U (4.1.17)
f=1 f=1
where

t
l,m k m |t *,.
Bepiy = ac ¢ (tmt) ' (1,8,t,,t) dt dr(s)
£ I|s tf-l

2.m k m ‘£
hl?. . = —— ¢ (t=t_ .) q¥(i,S,t.,t) dt dI(S)
; £-1 F

£FFij At
£ s tf—l
(4.1.18)
t
l,m k m £ * .
ngij =T ) (tf-t) u (1,S,tF,t) dt dr(s)
f I|s tf—l

t
g2l Kk m | * i %
fFij ~ae_ [, ¢ (t-tz 1) u*(i,S,tg,t) dt dr(s)
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. . , 2 _ 2
with BOij computed as in (4.1.9) and HfFij = HfFij + CinFGij'
The time integrals can now be divided into integrals of the

same form as previously (equations (4.1.10) and (4.1.13)) plus

integrals of the form,

t t
ft *(1,8,t.,t) dt = =9 S (- Xy 4
. q (1,5,tp,t) dt = o . kel exp e 4t
£-1 £-1
a a
= _d.__ tF t e_x d -— —].'.._ £ .e__}.(_ dx
2mk |r2 A X (4.1.19)
8f-1 8f-1
tf * 1 tf r?
. tu (1,S,tF,t) dt = Tk ) - exp (- ZE;) dt
£-1 £-1
af =X 2 af -X
=1 ¢ € 4x - L € a4 (4.1.20)
4k | F X 4k X Tt
arq ar1

The integrals in the above equations are of the same type as
the ones in equations (4.1.10) and (4.1.13) apart from the last one in

(4.1.20), which gives [75]

a
hid -X
e = - - -
J —X—Z dx = F( 1,af_1) F( l,af) (4.1.21)

where T is the incomplete Gamma function.

Thus, adding up all terms and taking into account the relation

between I' and E,;, i.e. [46]

n —a 1 (-1)i il
_ _ (1) [E (a) - e 2 3 ———T———LJ n=1,2,...
rema - [ o & |
n (4.1.22)

the time integrals in (4.1.16) and (4.1.18) finally give,
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tf * . 1 r?2
(tf—t) u (1,S,tF,t) dt = - e {l:(tF—tf) + ZT{] [El(af_l)-El(af)J

tf ) X /e 1 r2
(t—tf_l u (1,S,tF,t) dt = T {[(tF—tf_l) + 7[1?] [El(af_l)-El(af)J

tr1
r2 [ 1 1
T Gk [af_l exp(-ag_y) - a, eXP(‘af)}} (4.1.23)

t

f (t—-t.)

. d F f

(t (tet) q*(l,S,tF,t) dt = - 5= {T [exp(-af_l)-exp(-af)]

£-1

1
) ZE'[#I(af-l) - El(af)]}

t .
f (t—t._.)
J (t-tf_l) q*(i,S,tF,t) dt = Z:k { Frzf 1 [exp(—af_l)-exp(-af)]

1
- [El(af_l) - El(af)J}

4.1.3 Quadratic Time Interpolation

Although the computer programs described in chapter 6 only make
use of stepwise constant or linear time variations, it is interesting
to investigate the difficulties associated with the use of higher order
time interpolation functions.

Consider, for instance, that functions u and q have a quadratic
variation within each time step according to the following interpolation
functions,

X, = 2t? = 3t + 1
(4.1.24)

Xy = 4t(l-t) 3 X3 = t(2rD)
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where t = (t-tf_l)th—tf_l) and the time stations are te 1o tf_% and

being t = (t +tf)/2.

f-1 -1

For simplicity, only time-marching scheme 1 will be considered

tf’

in what follows, extension to scheme 2 being straightforward. 1In this

case, the application of equation (4.1.4) to all N boundary nodes gives,

2 3 —
*H O Up =G Qg *C QF_£ 6 Qp B UL, (4.1.25)

in which the coefficients of the matrices are constituted of terms

such as,
t
l,m _ k m| T s de dr(s
ij = 'A"'E"z" ¢ [(t—tF) (Zt—tF-tF—l)] q (1ssstht) t )
F'r t
s F-1
t
i3 e ¢ [4(t-tF__l)(tF-t)] a*(i,8,tp,t) dt
F/r t
s F-1
t
s T 52 ¢ [(t-tp ) Qtmtpmtp )] a8, byt
Flr t
s F-1
(4.1.26)

1,m _ k n [ F %

’ = - -t - 1 S
g} KE% ' ) [(t tp) (2t-t, tF_l)] u®(i,8,ty,t) dt dr(s)
2,m _ k w [ F %
gy} = Tz @ [4(t ty 1)(tF-t)] u”(i,8,t,,t) dt dr(s)

F
g3’m = KIETJ o J (t-tF_l)(Zt—t —to_q)] u*(i,S,tF,t) dt dr(s)
tp

with B.. being calculated as in (4.1.7) and H?. = ﬁ?. +c, §,..
ij iy tij o i i

Expanding the terms in brackets in (4.1.26), we note that all
the integrals involved have been previously calculated in (4.1.10), (4.1.13)

and (4.1.21), apart from the following,
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t t
F 2 ks d F t2 r2
B St dt =g | Gz e o) &

tr-1 F-1
2 - °° -
=4 Egr- e dx —~EE e ™ dx + —EEZ 21:-d
27k | r 7k p 16k - X
4F-1 -1 -1
(4.1.27)
¥ 2 % 1 F t? r2
. tc u (1,S,tF, t) dt = Tk . —TE— exp (- H(T) dt
F-1 F-1
1 ) ” =X t_r? e-x y -X
= Tk [tF X dx = =% xZ dx 16k2 x3 dx]
4r-1 -1 F-1
(4.1.28)

Again, the integrals in the above equations are of the same
type as the ones in equations (4.1.10), (4.1.13) and (4.1.21) except

the term [75],
e X
ap-1

The final expressions for the time integrals in equaﬁions (4.1.26) can
now be easily written by combining the appropriate terms explicitly
calculated in (4.1.10), (4.1.13), (4.1.21) and (4.1.29), taking into
account relation (4.1,22).

After introducing the boundary conditions of the problem (4.1.25)
becomes a system of N equations with 2N unknowns, since all values

of and QF—l are prescribed (or have been previously calculated)

Yp-1

but only half the boundary values at times too1 and tp are known. This
2

means that for the problem to be well-posed we need to double the

total number of simul taneous equations involved in solving a single
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‘time step. This can be achieved by writing a boundary integral

equation similar to (4.1) for the time t=to_1»
2

t
. F_i
c(®) ulP,tp ) +k J J u(s,t) q*(P,S,tF_£,t) dr(s) dt
T

%o

t
F_l
= kf f q(s,t) u*(P,S,tF_i,t) dr(s) dt +[ uo(s,to) u*(P,s,tF_l,to) dQ(s)
r Q z

(4.1.30)

The upper limit of the time integrals was taken as tpol because of
2

*

the causality condition (see section 2.8) which specifies that u” and
q* are identically zero for t>tF—i'
Discretising the above equation and applying it to all N
boundary nodes yields the system of equations,
Eﬁ Upq EQ Upy * 33 Up = gl Qp_1 * §2 -y * ?3 Q * Eigf-l
(4.1.31)

in which the coefficients of the matrices can be calculated by using
expressions similar to (4.1.26).

The simultaneous solution of equations (4.1.25) and (4.1.31)
now permits determining the unknown boundary values of U and Q at
times tF-i and t. from the knowledge of the initial conditions at tp_,
and prescribed boundary conditions at tF—& and tg.

This procedure can be extended to time functions of higher
orders, noting that the total number of simultaneous equations to

be stepwise solved will be further increased.

4.1.4 Space Integration

The remaining step in the numerical solution of equation (4.1)
is the computation of the space integrals. Although the space

interpolation functions ¢ in equation (4.1.1) can be taken as constant,
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linear, quadratic, etc., as discussed in the previous chapter, only
linear elements were implemented in the computer programs developed,
following the results obtained for steady~state problems. Extension
to higher order elements should involve the same degree of difficulty
as for Laplace's equation and can be done by following the same

procedures as described in section 3.1.

The terms H.,.. and G (excluding the singular terms f=F,

£Fi ] £Fi §

i=j) in equation (4.1.8) for linear elements can be computed as,

2 1
Bepis = Depip * Perig
T (4.1.32)
Esrip * BfFiq

Ceri ;s
where the indices p and q refer to the element at the intersection of
which node j is located. In general, we can evaluate these terms by

using a six-points Gauss quadrature rule,

d, 6
m - _ip 1 _ _ _ m
hfFip 4y kil ;E;-[exp( af—l) exp ( af)]K ¢K wK

(4.1.33)

L 6
= £ : - m
8n kil [Ey(ag ) - By(aply og Wg

m
ngip
= (xt-x1y (x2-x1 O B R L. :
where dip (X1 Xl)(X2 X2) + (X2 X2) (X1 Xl), m=1,2 and ¢ is given in
equation (3.1.17). For convenience of the numerical computation, the
exponential-integral function is approximated by rational and poly-
nomial expansions [46] which are given in appendix A. Note that the
coefficients Hij and Gij (i#j) in equation (4.1.6) can be computed

through the same formulae, with f=F.

For linear time interpolation functions, the terms that form

2

. . 2 . . .
the coefficients HfFij, GfFij (excluding the singular coefficients,
o s 1 1 . . .. .
f=F, i=j), HfFij and GfFij (which have no singular coefficients) in

equations (4.1.15) and (4.1.17) can be evaluated as,
-3
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1.m d.p 6 (tF-tf) [ ]
h. 2., = = ——2— {——2——'— exp(-a,_,) - exp(~a.)
fFip 41rAtf k=1 rix £-1 f

1 m
- 7% [Bylepy) - El(af)]}K 9% Yk

2n  Gp 7 () [exp(-a,_;) - exp(-a)]
fFip 41rAtf k=1 rix f-1 f

m
"7k Byagy) El(af)]} ¥ Wk
(4.1.34)
2 6 r?
l,m _ _ _ iK
Berip ~ T BwAt, Kil { tpty + 7 [Eplap ) - Ej(ap)]
r2
iK 1 - _ m
2 [ ewtay - ewcap]} R
£-1 £
2 6 r2
2,m _ ik
Serip - BmAt, o {[tF 1t ol [Frlagy) ~ Ey(ap)]
r?

1 1 m
= —~— |—— exp(~a__.,) - — exp(-a )]} ¢, W
4k [af—l f-1 af f K K 'K

. . . . 2 .
The coefficients Gii in (4.1.6), GFFii in (4.1.98), Gii in
(4.1.15) and G;Fii in (4.1.17) all contain integrals with a logarithmic
(integrable) singularity. For the first and second of these terms

we can write, with reference to figure 3.1.3,

‘ 1 fP_ 1 o (1"Ep)2
ii = Cprii T % {4. ) Elﬁ—a—z—-—— } (1+)) dE
gt a (1+g )2
+ _49. El[_ﬂ.__..L4 ] (1-£ ) dE} (4.1.35)
-1 q
where
92
= —B
ap TRAE (4.1.36)
F
Expanding the exponential-integral in series [46J,
w -1 & .
El(x) =-C - log x + i -1 — (4.1.37)

n=1
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in which C is the Euler's constant, C = 0.57721566..., the integrals

in equation (4.1.35) can be evaluated in closed form as,

1
Gi; = Cppii = B [zp Fla) + 4 F(aq)] (4.1.38)
where
F@) =3-C-loga + 1 (-1 14 (4.1.39)
P P n(2n+l) (n+1) !

The series that appears in (4.1.39) converges very quickly for
small values of o but slowly as a increases. To overcome this problem,
we can integrate analytically over a segment near the singularity
thus ensuring that the coefficient a is always less or equal one and
numerically integrate the rest of the element using a standard
Gaussian quadrature, as if these parts were separate elements. The
length L of the analytically integrated part of thé element is calculated

through (4-1.36) 9

For computer efficiency, it is more convenient to relate each

term of the series in equation (4.1.39) to the previous one,

_ (1-n)(2n-1)oaP

Sn - n(2n+1) (n+1) Sn-]_ n = 2939’--
(4.1.41)
*p

. . 2 ., 2 .
For the coefficients Gii in (4.1.15) and GFFii in (4.1.17) we

have,
1
62 -l - {2 148 ) E +£ ) d
i T Cpmii T ar (%), [A#8) Ep(By) - em(we)] (1+ey) de
!
4 - - -
L f_lf(l"ﬂq) E)(8p) — exp( Bq)] (1-g) dE} (4.1.42)
where
a (1-¢ )? a (1+£ )2
B, = E—pB— g = 4 9 (4.1.43)

P 4 ’ q A
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Separating the first integral in equation (4.1.42) as,
1 1 1

J-l El(Bp)(1+£p) dg + f_lﬁp El(Bp)(1+Ep) dg - f_leXp(-Bp)(1+Ep) dg
(4.1.44)

we note that only the first integral above is singular and that this

integral is the same as the first integral in equation (4.1.35). Thus

it can be evaluated in closed form as previously (see equation (4.1.38))

and the remaining integrals, which are non-singular, are computed by

using a standard Gaussian quadrature. The same is valid for the

second integral in equation (4.1.42).

2

The coefficients Hii in (4.1.6), HFFii in (4.1.8), Hii in

(4.1.15) and Hé in (4.1.17) all contain integrals with a stronger

Fii
singularity which are only integrable in the Cauchy principal value
sense. The same procedures previously applied for Laplace's equation
can again be employed to calculate these coefficients (which include
the free terms ci).

The application of a constant potential over the whole body now

gives, for instance, for Hii in (4.1.6),

.1.45
. By (4.1.45)

-4
n o~

j=1 i k
(3#i)

where N is the number of boundary nodes and M is the number of internal
points adopted for the domain integration (as will be explained in the
following section). This procedure has the obvious disadvantage that
the whole domain always needs to be discretised, since U is now a
constant potential. For scheme 2, it can be noted from equation
(4.1.5) that no domain integration is needed if the initial conditions
of the problem are uy = 0 everywhere. Thus, the use of equation
(4.1.45) implies an extra (and unnecessary) computational effort.

The alternative procedure is to compute the diagonal coefficients

~

of the matrices by employing the relation Hii = Hii+ci' The value of
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the coefficients c, can be obtained in the same way as for Laplace's

equation (see equation (2.4.7)),

ty

c. =1+ 1lim k q* dt dr (4.1.46)
i .
e-+0 r
)

which, with reference to figure 2.4,1, reduces to

5] T*O, =0
1 .. 21 g2 12
c, =1 -==1lim J = exp [~ — ] € de=
1 27 0 61 € | AthF toi 27
(4.1.47)

~

For linear elements, the terms Hii are identically zero due
to the orthogonality between r and n, whichbmakes d =0 in (4.1.3).
This is not so for higher order elements, and the integrals must
then be carried out in closed form (at least over a short straight
line segment around the singularity) in order to properly account
for their principal values.

It should be pointed out that, for a certain space interpola~
tion function, refining the order of the time approximation
introduces only additional regular terms into the boundary integrals.
This means that for linear elements, for instance, the only singular
integral to be evaluated is the one appearing in equation (4.1.35),

irrespective of the order of the time interpolation function.

4.2° Scheme 1 (Step-by-Step)

At the beginning of the process (time t = to), initial values
u, of function u over @ + ' are specified, The domain is sub-
divided into L (triangular) cells, NI internal points being_used to
define the cells (figure 4.2.1). The initial conditions are taken

into account through a numerical integration over the domain and their

values at a number M of points considered.
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¢ BOUNDARY NODES (N)
o INTERNAL NODES (N,)

Figure 4.2.1 - Region @ + I discretised into S boundary elements
and L cells

Figure 4.2.2 - Polar coordinates for semi-analytical integration
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Since half the boundary values of ﬁ and q are prescribed,
equation (4,1.6) can then be employed to compute the remaining
boundary data for the first time step (F=1). Note that if linear (or
higher orders) time interpolation functions are adopted, initial values
of function q along I' must also be given (equation (4.1.15)).

At the end of the time step (time t = tl), the values of u at
the previously selected M points are recomputed to be used as initial
values for the next step. This can be done by using equation (2.8.6)

which, in matricial form, becomes (for the constant case),

o =
Up = 6" 3 - WU + BT, (4.2.1)

and for the linear case,

— 1 2 1 2 -
= ' ' - 1! — 1
Uy 6 Qp + G Qp - HT Uy —HUU + BYUp
(46.2.2)

where the dimensions of matrices G' and H' are M x N and of matrix

~ -~

B' are M x M,

The coefficients of matrices G, H, G' and H' in equations
(4.1.6), (4.1.15), (4.2.1) and (4.2.2) depend on geometrical data,
properties of the medium and the time step (see (4.1.33), (4.1.34),
(4.1.38) and (4.1.42)). Thus, adopting a constant time step
throughout the analysis, they can all be computed only once and stored.

The same also applies to the coefficients of matrices ? and %'
(see equation (4.1.7)), which result from integrals over the cells.

Two different kinds of approximations for the variation of u within

each cell were tested, as well as two different numerical integration

schemes,
Calling
L M
I u* d» = ¢ B..U . (4.2.3)
o=1 Yr-1 j=1 1 (F-1)j

and applying Hammer's quintic quadrature scheme to numerically integrate
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the cells, assuming that the values of U are calculated directly

at each integration point, gives

L 1 1-¢,
= [ [ ur (&) up_ () Y|J(€)[ dgy } &,

0 0
L 7

= 1 oz ouwt [Tlp W ouo (4.2.4)
=1 k=1~ KK (E-DK

8o the coefficients of matrix B are of the form

-~

2
re..
_ 1 i

and the number of initial-value points is M = 7L.
Alternatively, assuming that function u varies linearly within
each cell, we have

(4.2.6)

M —
=1 B,. U .
1 11 T(F-1)j]

1

where the interpolation functions ¥ are given in (3.8.2).

Transforming the above integral to polar coordinates (R,6) gives,

with reference to figure 4.2.2 [76],

1 : r?
* = seeetccam—— [
J u Wm dé 4TkAt f Wm exp ( 4kAat ) da
Q Q

% Ve

1 8, [Ry(0) r2
T Tmkht ¥ (R8) exp (- —pre-) R dR d6
8, TR, €6)

6, [Rq(6)
- qu(R,e) exp (-

63 Rl(e)

r%

.2.7
4kAt) R dR d@ (4 )
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where
24, EX (i)
2Emj1
Rm(e) = -
b cosb + a sin®
m m
¥ (R,0) = £°(i) + oo (b cosO + a_ sind) (4.2.8)
m> m 2A2 m o co.
= xP _ ¢
a =5 X
D
by, =% - %

in which m = 1,2,3 for n = 2,3,1 and p = 3,1,2, AZ is the area of
cell & and Ei(i) are the triangular coordinates of point i relative to

cell 2,

The integration with respect to R can be performed analytically

as follows,

* 1 %3 .. RZ(8) R%(6)
o Ty Ep{1) |exp [‘ m—r]‘exp [‘ m—t"]

2 61
1 R2(0) R2(9)

(kAt) ® . 3 3 .13 2
*oxy Pwocos® agind) Y I3 e ] Y7 wae | | (9°

0 2 -

2 R2(8) R4 (0)
+ El(i) exp |- —-—1.—_._ - exp --._3_..._..

m 4kAt LkAt
®3
, R2(0) R2(8)

(kat) . 3 3 B

*oh o O cost ¥ el gy g | YD mae |||
(4.2.9)

where Y is the incomplete Gamma function normalized. The integration
with respect to 6 can be carried out numerically using a standard Gaussian
quadrature with four integration points. To effect this, a new variable
n is introduced such that its value, for instance, for 0 in the range
6, <8< i
1 93, 1s

26-91—93
n =—‘—‘6‘—_—é— »~1lgngl (4.2.10)
371
Thus, the coefficients of matrix B for this case are of

~
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the form,
1 1
L 3 \e.=o 0.~6
B,, = %;- Iz 32 1 . dn o+ 22 3 ... dn (4.2.11)
1] 2=1 m=1
-1 -1

and the number of initial-value points is now M=N+NI. Note that

since the values of u at the N boundary points have already been

computed through the solution of the boundary integral equation, there

remain only the values of u at NI internal points to be calculated.
For computer efficiency, the incomplete Gamma function

normalized can be related to the error function as [46] > [75]

2 e

Y Gy X =T@) -TG 0 =T =5 TG, O - x

}

%- ™ erf (x

by _ 4 % (4.2.12)

being the error function evaluated by means of a rational

approximation [46] which is given in appendix A,

The procedures to solve, for example, a problem with time-
independent boundary conditions (e.g. prescribed values of q) usiﬁg
constant time interpolation functions can then be summarized as
follows:

a) Discretise the boundary I' into S elements and N boundary
nodes and the domain @ into L cells, with Ny internal points
defining the cells;

b) Compute the coefficients of matrices G, H, B in equation (4.1.6)
and G', H', B' in (4.2.1) using the specified values of
geometrical data, properties of the medium and time step.
Matrices H (N x N) , H' (M x N), B (N x M) and B' (M x M) are
formed, being H (the system matrix) then inverted. Introduce
the boundary conditions, multiplying them by the G and 9'
coefficients to form the vectors of independent terms ?(N) and

F'(M), respectively. Store the four matrices and two vectors;
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c) Multiply matrix B by the initial conditions, add to vector F
and pre-multiply the result by H—1 to find the unknown
boundary values of uj;

d) Compare the actual values of u with their previous values
to verify if a steady—-state is reached, i.e. if their
difference is less than a prescribed tolerance;

e) Multiply B' by the initial conditions, add to F' and subtract
from the total the result of the product of H' by the computed

boundary values of u to find the initial conditions for next

step;
f) Return to c).
4.3 Scheme 2 (Time Process Starting at t02

The main difference between this scheme and the previous one is
that the time variation of functions u and q is now taken into account
through boundary integrals in such a way that values of u at internal
points need not be computed at the end of each time step. A domain
integral (accounting for the initial conditions at to) is required
only if uo# 0. Furthermore, if V2u0=0 the domain integral can be
transformed into equivalent boundary integrals, As this is the case in
many practical problems a reduction in the dimeﬁsionality of the
problem is effectively achieved. But since the number of boundary
integrals to be evaluated increases as the time progresses, a selective
numerical integration scheme has to be employed for computer efficiency.

In order to clarify the ideas, let us return to equation (4.1.8),
From this equation,we note that computing the unknown boundary data at
a time t = te requires the evaluation of matrices 9fF and ng for

f=1,2,..., F, a total of 2F matrices. The matrices GFF and HFF are

computed as in the previous scheme, i.e. six Gaussian points are
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emp loyed to numerically integrate the corresponding boundary integrals
(

(see equation (4.1.33)). But using six Gaussian points to evaluate
all matrices would require a great computational effort for large
values of F.

| The matrices glF to g(F-l)f’ ?1F to ?(F-l)F will accordingly
multiply the prescribed or calculated values of ¢ and u at previous
time steps to form the vector F of independent coefficients. Because
of the variation of the integrands with time (see equation (4.1.33)), it
is obvious that the contribution of the matrices corresponding to the
initial steps will be smaller than those corresponding to the final
steps. Thus, it is reasonable to use fewer Gaussian integration points
to compute the boundary integrals corresponding to these matrices,
without loss of accuracy. Various tests were carried out in order to
find the optimum integration scheme and it was concluded that only two

. , : H
Gaussian points are necessary to evaluate matrices 91F to G(F-l)F’ E

~

to H with an accuracy that is sufficient for our calculations.

~(F-1)F

A selective integration scheme could also be employed for the
space integrals, i.e. fewer Gaussian points adopted for elements located
far from the singularity. In fact, such a scheme was tested but the
computational savings were not significant. However, the fast
variation of the integrands in (4.1.33) with r results in the
matrices being sparse, since El(a) and exp(-a) quickly tend to zero
as a»», In the computer program developed, a maximum value of a
above which the corresponding coefficients in matrices G and ? are
taken as zero was then fixed (see chapter 6).

Note that if a constant time step 1is adopted throughout the

analysis only two new matrices need to be evaluated for each step.
But this also implies storing two matrices for each step, which would

amount in an unreasonable computer core allocation requirement (since

all matrices are kept in-core) if the number of boundary elements and
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time steps is great. Thus, only matrices GFF and HFF are stored

since their evaluation employ a larger number of integration points,
being all the other matrices recomputed.

The transformation of the domain integral into equivalent
boundary integrals for the case when Ug is harmonic can be carried

out byapplying Green's second identity (equation (2.3.4)) as follows,

ou
u V2U e = ( BU—U—Q) dr (4.3.1)

0 Y0 o0
Since the domain integral to be evaluated is of the form

(equation (4.1)),

u, u* do (4.3.2)

£

. ] 2
we have to determine a function U such that V"U=u*. One such

function can be easily found by,

2
U =J% (J r uk dr ) dr =—£1E B, (g5) (4.3.3)

and (4.3.1) becomes,

u. u* d@ =-£— d e - r? u
0 o Z X (et )| o
Q r
S N S dr=H U+ G Q (4.3.4)
271 | Bty 0 L -0 .0 e

where q5 = Buo/an and d is defined in (4.1.3). The above integrals
can be evaluated numerically in the same way as the ones in equation
(4.1.33) (see also discussion on the computation of the singular terms
in section 4.1.1),

For the sake of comparison, the procedures to solve the same
problem as proposed at the end of the previous section (assuming

that the initial conditions are harmonic) can be summarized as follows:
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a) Discretise the boundary I into S elements and N boundary
nodes ;
b) Compute the coefficients of matrices GFF and HFF in equation

(4.1.8) using the specified values of geometrical data,
properties of the medium and time step. Matrix gFF (the system
matrix) is formed and inverted. Introduce the boundary
conditions, multiplying them by the gFF coefficients to form

the vector F of independent terms. Store matrix HFF and

vector F;

c) Compute the coefficients of matrices G and H in equation
(4.3.4), multiplying them by the initial conditions (qo and uo),
add to vector ? and pre-multiply the results by ?FEI to find
the unknown boundary data (which are also stored);

d) Compare the actual values of u with their previous .values to
verify if a steady-state is reached, i.e. if their difference
is less than a prescribed tolerance;

e) Compute the coefficients of matrices ng and ?fF for £ = 1,2,...,
F-1. Multiply them accordingly by the prescribed or calculated
boundary values of q and u at the corresponding time steps and

add to vector F;

£) Return to c¢).

4.4 Examples of Application

This section presents results of some examples analysed with the
computer programs described in chapter 6, employing the theory and
numerical procgdures discussed in this chapter. In all cases, the
boundary was discretised by using linear elements and whenever necessary,
triangular cells were used to discretise the domain. Both constant
and linear time interpolation functions were adopted to approximate

the variation of functions u and q within each time step. Also, both
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previously discussed time-marching schemes were tested, the results
obtained with scheme 1 being labelled BEMl and with scheme 2, BEM2.
For time-marching scheme 1 we also tested two different ways of
calculating the domain integral, namely using Hammer's (quintic)
quadrature scheme and computing the potential values at each
integration point (hereafter referred to as BEMLA) or assuming a
linear variation for the potentials within each cell with a semi-
analytical integration scheme (BEMIB).

When employing linear time interpolation functions it can be
noted from equations (4.1.15) and (4.1.17) that, apart from the initial
conditions u. at time tO (that form vector U. in these equations),

0 -0

. + .
initial boundary values of u and q at time tO must also be prescribed

(vectors Uy and Q,). Examples 4.4.1, 4.4.3, 4.4.4, 4.4.6 and 4.4.8

0

present as a common feature a discontinuity between the values of U,
and the prescribed boundary values of u, which makes the values of 4,
unbounded at t0+. This problem can be overcome by simply applying
the boundary conditions linearly over the first step thus making the
fluxes equal zero at t0+. The validity of such approximation is
verified in some of these examples.

All problems analysed have zero initial conditions, except
example 4.4.6. This example was selected in order to verify the
transformation of the domain integral into equivalent boundary
integrals as described in section 4.3. Thus, no domain discretisation
is required when employing scheme 2 and the dimensionality of the
problems is effectively reduced by one.

Where symmetry eXxists, it is taken into account as for the
steady=~state case (see chapter 3), i.e. only one half or ome quarter

of the actual region is considered (according to the type of symmetry)

with no discretisation of the symmetry axes (see chapter 6).
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The results of examples 4.4.1 to 4.4.5 are compared with

available analytical solutions, while examples 4.4.6 to 4.4.8 are
also compared against solutions obtained through the Finite Element

Method in order to assess the accuracy of both methods.

Example 4.4.1

The first example studied was that of a rectangular region

1<L, —2<x2<2 with zero initial conditions, subjected to the

Dirichlet boundary condition u=l along I' for any t > ty The

~-L<x

numerical values adopted for the analysis were 2=4, L=5 for the
cross-section and k=1 for the material constant.

Initially, a comparison was carried out between the results
obtained with schemes BEM1A, BEM1B and BEM2 for coarse discretisations
of one quarter of the region, as shown in the left column of figure
4.4,1. Thé results for u at the point x1=x2=0, for a time step
At=1.0 are summarized in table 4.,4.1, together with an analytical
solution of the problem [16]. |

It can be seen from the table that schemes BEMIA and BEM2
present the same level of accuracy, which indicates that the initial
conditions are properly taken into account with BEM1A. Their
calculation implies compﬁting values of u at internal points located
very near the boundary but a check on these values showed no loss of
precision. The results obtained with BEM1B are much less accurate;
since the boundary discretisation is the same as for the other schemes,
the problem is caused by the assumed linear variation of u within each
cell,

The influence of the time step value, whick was arbitrarily chosen,
was verified by running the problem with the same discretisations as
previously and a time step At=0.5. Results are given in table 4.4.2

and they show that the numerical solution converges to the exact one
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for schemes BEM1A and BEM2 but failed to do so for BEMIB. The
convergence of BEMIA and BEM2 was then further tested by adopting a
time step At=0.25; although the solution is still convergent for the
second scheme, the first one does not converge any longer (see table
4.4.3).

Since the numerical problems for BEMIA are related to the domain
integration (and consequently to the domain discretisation), we refined
it by sub-dividing the domain into 12 equal cells. The results obtained
for the time steps At=1.0 and At=0.5 showed no significant changes from
the previous ones, but the results for At=0.25 are now clearly
convergent, as can be seen in table 4.4.3, Further refining the domain
discretisation with 24 cells, however, caused.a different sort of
numerical problem: some domain integration points are now located so
close to the boundary that accuracy is lost in the computation of the
potential value at them. This problem can be overcome by either
refining the boundary discretisation or increasing the number of
integration points adopted for the computation of the boundary
integrals. The latter was employed here, the number of Gaussian points
being increased from six to twelve. Results for a time step value
At=0.25 are shown in table 4.4.3.

Another test was carried out with the more refined discretisations
shown in the right column of figure 4.4.1. Results are given in table
4,4.4 for At=1.0; they are virtually coincident with that of table
4.4.1 for schemes BEMIA and BEM2 but much improved for BEM1B. However,
employing a time step At=0.5 again produced poor results for BEMIB and

no changes for BEM1A and BEM2.

Example 4.4.2

A comparison between the use of constant and linear time
interpolation functions was carried out in this example of a circular

region of unit radius with zero initial conditions, subjected to the
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TIME | BEMIA | BEMIB | BEM2 ANALYT.
2 0.093 | 0.112 | 0.092 | 0.114
4 0.390 | 0.450 | 0.389 | 0.420
6 0.623 | 0.686 0.621 | 0.646
8 0.770 | 0.822 | 0.769 | 0.786
10 0.860 | 0.899 0.860 | 0.871
12 0.915 0.943 | 0.915 | 0.922
14 . 0.948 | 0.968 | 0.948 | 0.953
16 0.968 | 0.982 | 0.968 | 0.972
18 0.981 0.990 | 0.981 | 0.983
20 0.988 | 0.994 | 0.988 | 0.990
CPU(8) | 1.4 2.0 10.7 -
Core 4096 400 224 -
Storage
g:;gs 33 57 21 -

Table 4.4.1 - Results at x1=x2=0 for At=1.0

(coarse discretisation)
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TIME BEM1A BEMI1B BEM2 ANALYT.
2 0.101 0.166 0.101 0.114
4 0.404 0.534 0.404 0.420
6 0.634 0.754 0.633 0.646
8 0.778 0.871 0.778 0.786
10 0.865 0.932 0.865 0.871
12 0.919 0.965 0.919 0.922
14 0.951 0.981 0.951 0.953
16 0.970 0.990 0.970 0.972
18 0.982 0.995 0.982 0.983
20 0.989 0.997 0.989 0.990
CPU(s) 1.4 2.2 42.5 -
Core
Storage | 4096 400 384 -
Data
Cards 33 57 21 -

Table 4.4.2 - Results at X1=X2=O for At=0.5

(coarse discretisation)
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BEM1A

BEM1A

BEM1A

T (8 cells)|(12 cells)|(24 cells) BEM2 ANALYT.
2 0.106 0.106 0.107 0.106 0.114
4 0.414 0.411 0.412 0.412 0.420
6 0.651 0.638 | 0.639 0.639 0.646
8 0.801 0.781 0.781 0.782 0.786
10 0.895 0.868 0.867 0.868 0.871
12 0.953 0.921 0.920 0.920 0.922
14 0.989 0.953 0.951 0.952 0.953
16 1.010 0.972 0.970 0.971 0.972
18 1.024 0.983 0.981 0.982 0.983
20 1.032 0.990 0.988 0.989 0.990
CPU(s) | 1.5 1.9 4.8 234.9 -
gore. 4096 8464 | 30976 704 -
2:535 33 39 57 21 -

Table 4.4.3 - Results at x,=x.,=0 for At=0.25

(coarse discretisation)

172
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TIME BEM1A BEMIB BEM2 ANALYT.
2 0.093 0.097 0.092 | 0.114
4 0.390 0.406 0.389 | 0.420
6 0.623 0.640 0.621 | 0.646
8 0.770 0.784 0.769 | 0.786
10 0.861 | 0.871 0.860 | 0.871
12 0.915 0.923 0.915 | 0.922
14 0.949 0.954 0.948 | 0.953
16 0.969 0.973 0.969 | 0.972
18 0.981 0.984 0.981 | 0.983
20 0.989 0.990 0.988 | 0.990
CPU(8) 2.5 21.0 33.2 -
ggzjage 5041 3969 525 -
oata 47 179 35 -

Table 4.4.4 - Results at x1=x2=0 for At=1.0

(fine discretisation)
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Neumann boundary condition q=5 along I' for any t > ty For
simplicity, the value of the material parameter k was taken to be unity.

Table 4.4.5 presents numerical results for u at a point with
radius r=0.6 for the discretisations shown in the left column of figure
4.4;2 and a time step At=0.01. Note that only 6 boundary elements were
employed in these discretisations. It can be seen that better results
are obtained with stepwise linear functions for all three schemes,
although the results for BEMIB are quite poor.

Further numerical results are given in tables 4.4.6 to 4.4.8 for
the previous discretisations with a time step At=0.005 and for
finer discretisations (shown in the right column of figure 4.4.2)
with At=0.01 and At=0.005, respectively. These results corroborate
the ones from example 4.4.1 for the stepwise constant cases: for
scheme BEM2, convergence was always achieved; for BEM1A convergence
was achieved when the discretisation was refined but not when the time
step was decreased; scheme BEMIB presented the poorest results even
with the fine discretisations employed, and they became meaningless
when the time step value was decreased.

The use of stepwise linear functions, in general, improves
the accuracy of the solution but it appears to aggravate the numerical
problems inherent in scheme BEMIA. However, this example seems to be
particularly sensitive to a precise evaluation of the domain integral
and in order to assess this, we tested a numerical integration scheme
other than Hammer's, namely the one recently proposed by Reddy and
Shippy [77], which the authors claim to be very accurate even for
integrals with singularities. The results obtained with seven

integration points are summarized in table 4.4.9.

Example 4.4.3

A problem with mixed boundary conditions, i.e. u=l prescribed

along the faces X, = *L and q=0 along the faces Xy = +2% of a rectangular
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TIME | BEMIAC | BEMIAL | BEMIBC | BEMIBL | :BEM2C | BEM2L | ANALYT.
0.02 |0.033 | o0.022 0.040 | 0.028 | 0.033 | 0.022 | 0.023
0.04 |0.173 | 0.145 0.208 | 0.182 | 0.166 | 0.145 | 0.139
0.06 |0.358 | 0.318 0.430 | 0.392 | 0.341 | 0.315 | 0.303
0.08 |0.559 | 0.508 0.668 | 0.621 | 0.531 | 0.503 | 0.484
0.10 [0.766 | 0.706 0.913 | 0.859 | 0.727 | 0.698 | 0.674
0.12 0.975 0.908 1.162 1.100 0.926 0.896 0.867
0.14 |1.186 1.110 1.412 | 1.345 1.126 | 1.095 | 1.062
0.16 |1.397 | 1.315 1.664 1.590 | 1.328 | 1.296 | 1.259
0.18 [1.608 | 1.519 1.916 1.836 1.530 | 1.497 | 1.457
0.20 |1.819 1.725 2.168 | 2.084 | 1.732 | 1.698 | 1.655
CPU(s) | 1.7 1.8 7.7 7.7 8.7 9.8 -
giziage 8281 8918 2304 2640 189 238 -
oata | 36 43 132 139 19 26 -

Table 4.4.5 — Results at r=0.6 for At=0.01

(coarse discretisation)
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TIME BEMIAC BEMI1AL BEM2C BEM2L ANALYT.
0.02 0.030 0.025 0.029 0.025 0.023
0.04 |0.165 | 0.153 0.158 | 0.150 0.139
0.06 |0.346 | 0.331 0.33 | 0.323 0.303
0.08 |0.543 | 0.528 0.518 | 0.512 0.484
0.10 |0.746 | 0.733 0.713 | 0.707 0.674
0.12 |0.951 | 0.940 0.911 | 0.906 0.867
0.14 | 1.157 1.149 1.111 1.107 1.062
0.16 |1.363 1.359 1.312 1.308 1.259
0.18 | 1.570 1.569 1.513 1.510 1.457
0.20 |1.776 1.779 1.715 1.712 1.655
CPU(s) | 1.8 2.0 32.9 38.1 -
Core | gog1 8918 329 378 -
Storage

2:;38 36 43 19 26 -

Table 4.4.6 — Results at r=0.6 for At=0.005

(coarse discretisation)
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TIME |BEMIAC | BEMIAL BEMIBC | BEMIBL | BEM2C | BEM2L | ANALYT.
0.02 |0.031 0.020 0.036 0.025 | 0.031 | 0.021 | 0.023
0.04 |0.160 0.133 0.191 0.164 0.159 | 0.137 | 0.139
0.06 |0.329 0.289 0.393 0.353 0.329 | 0.303 | 0.303
0.08 |0.508 0.459 0.611 0.561 0.516 | 0.486 | 0.484
0.10 |[0.69 0.632 0.835 0.775 0.709 | 0.677 | 0.674
0.12 |o0.872 0.807 1.061 0.992 0.905 | 0.871 | 0.867
0.14 | 1.052 0.980 1.288 1.212 1.103 | 1.067 | 1.062
0.16 |[1.23 1.152 1.516 1.432 1.302 | 1.265 | 1.259
0.18 | 1.405 1.322 1.745 1.653 1.501 | 1.464 | 1.457
0.20 | 1.579 1.491 1.973 1.875 1.701 | 1.662 | 1.655
CPU(s) | 2.1 2.4 16.4 16.4 25.0 28.2 -
g°re 9409 10670 5625 6600 429 598 -
torage
i 48 61 226 239 31 4h -

Table 4.4.7 - Results at r=0.6 for At=0.01

(fine discretisation)
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TIME BEM1AC BEMI1AL BEM2C BEM2L ANALYT.
0.02 0.027 0.021 0.027 0.022 0.023
0.04 |0.143 | 0.127 0.151 | 0.140 | 0.139
0.06 (0.298 | 0.274 0.318 | 0.305 | 0.303
0.08 |0.468 | 0.437 0.503 | 0.488 | 0.484
0.10 |o0.642 | 0.606 0.695 | 0.679 | 0.674
0.12 |o0.818 | 0.777 0.890 | 0.873 | 0.867
0.14 |0.996 | 0.950 1.087 | 1.069 | 1.062
0.16 |1.174 | 1.124 1.285 | 1.267 1.259
0.18 [1.353 | 1.300 1.484 | 1.465 | 1.457
0.20 |1.533 | 1.475 1.683 | 1.663 | 1.655
CPU(S) | 2.4 3.4 100.0 | 104.6 -
gii:age 9409 10670 689 858 -
g:;gs 48 61 31 44 -

Table 4.4.8 - Results at r=0.6 for At=0.005

(fine discretisation)
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TIME BEMIAC BEMIAL BEM1AC BEMIAL ANALYT.
(At=0.01) (At=0.01) (At=0.005) | (At=0.005)
0.02 0.035 0.023 0.029 0.024 0.023
0.04 0.171 0.144 0.168 0.155 0.139
0.06 0.349 0.309 0.360 0.344 0.303
0.08 0.543 0.492 0.574 0.557 0.484
0.10 0.745 0.684 0.797 0.781 0.674
0.12 0.951 0.881 1.025 1.010 0.867
0.14 1.160 1.082 1.256 1.244 1.062
0.16 1.371 1.285 1.490 1.480 1.259
0.18 1.583 1.491 1.726 1.720 1.457
0.20 1.797 1.698 1.965 1.962 1.655

Table 4.4.9 - Results at r=0.6 for Reddy and Shippy's

integration scheme (coarse discretisation)
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region with zero initial conditions was the object of this example.
The numerical values adopted for the cross-section and the material
constant were the same as for example 4.4.1. The no-flux condition
reduces the problem to the one-dimensional one of a infinite slab
over both faces of which a constant potential is specified.

Several analyses were carried out using the discretisations shown
in figure 4.4.1, the results of which are presented in tables 4.4.10
to 4.4.13. Note that double nodes had to be introduced at each corner
in order to properly account for the boundary conditions there.

As can be seen from the tables, the results followed basically
the same pattern as the ones for example 4.4.1 regarding convergence
and accuracy of the time-marching schemes. For the stepwise linear
cases, the boundary conditions were applied linearly over the first
time step (instead of suddenly). The effects of this approximation tend

to decay rapidly over few steps and to decrease as smaller values of

time steps are adopted.

Discussion of Results

A mathematical proof of convergence of the Boundary Element
Method as applied to transient potential problems was recently reported
in [78], where it was demonstrated the second order convergence in At
and AT of BEM solutions. Only a sclieme of the type BEM2 was considered
in [78] and although no numerical results were produced, convergence
for this scheme was clearly achieved in the examples studied herein.

The numerical problems presented by BEMIA are mainly associated
to errors introduced in the computation of the domain integral. As
At+0, the integrand in equation (4.2.3) (the fundamental solution.u*)
becomes less and less smooth, being its limit a Dirac delta function
(see figure 4.4.3). Thus, the relative sizes of geometrical data and
time step have to be carefully chosen if accurate results are to be

expected with BEMIA. Furthermore, attention should be paid to the
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TIME BEM].AC BEM1AL BEM1BC BEM1BL BEM2C BEM2L ANALYT.
2 |o0.292 | 0.250 | 0.311 | 0.279 | 0.291 | 0.250 | 0.317
4 10.476 | 0.454 | 0.499 | 0.481 | 0.473 | 0.453 | 0.484
6 |0.583 | 0.564 | 0.609 | 0.592 | 0.579 | 0.563 | 0.587
8 |0.662 | 0.645 | 0.690 | 0.675 | 0.657 | 0.644 | 0.660
10 |0.726 | 0.709 | 0.754 | 0.740 | 0.719 | 0.708 | 0.721
15 |0.837 | 0.823 | 0.862 | 0.851 | 0.828 | 0.822 | 0.830
20 |0.902 | 0.892 | 0.922 | 0.915 | 0.895 | 0.891 | 0.896
25 0.941 | 0.934 | 0.956 | 0.951 | 0.936 | 0.934 | 0.937
30 |0.964 | 0.959 | 0.975 | 0.971 | 0.960 | 0.959 | 0.961
CPU(s) | 1.8 1.9 3.0 3.3 [30.8 |32.0 -
gzgiage 4225 4810 441 630 351 432 -
EZESS 35 44 59 68 23 32 -

Table 4.4.10 - Results at x1=3 for At=1.0

(coarse discretisation)
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TIME BEM1AC BEM1AL BEM1BC BEM1BL BEM2C BEM2L ANALYT.
2 |o0.305 | 0.284 | 0.353 | 0.338 | 0.304 | 0.285 | 0.317
4 |o0.481 | 0.470 | 0.532 | 0.523 | 0.480 | 0.470 | 0.484
6 |0.58 | 0.576 | 0.640 | 0.632 | 0.582 | 0.574 | 0.584
8 |0.665 | 0.654 | 0.721 | 0.714 | 0.659 | 0.652 | 0.660

10 |0.728 | 0.717 | 0.78 | 0.777 | 0.721 | 0.715 | 0.721

15 |0.837 | 0.829 | 0.885 | 0.880 | 0.830 | 0.826 | 0.830

20 | 0.902 | 0.896 | 0.939 | 0.935 | 0.896 | 0.894 | 0.896

25 | 0.941 | 0.936 | 0.967 | 0.965 | 0.937 | 0.936 | 0.937

30 |0.964 | 0.961 | 0.982 | 0.981 | 0.961 | 0.961 | 0.961

CPU(s)| 2.0 2.1 2.8 2.9 (116.7 [122.0 -

gizi. 4225 4810 441 630 621 702 -

e |3 44 59 68 23 32 -

Table 4.4.11 - Results at x1=3 for At=0.5

(coarse discretisation)




TIME

BEM1AC

BEMIAL

BEM1AC

BEMI1AL

BEM1AC

| BEMIAL BEM2C | BEM2L | ANALYT.
(8 cells) (8 cells) | (12 cells) (12 cells) (24 cells) (24 cells)
2 0.313 0.303 0.312 0.301 0.312 0.302 0.311 | 0.301 | 0.317
4 0.490 0.483 0.487 0.479 0.486 0.479 0.483 | 0.477 | 0.484
6 0.598 0.590 0.591 0.584 0.589 0.583 0.584 | 0.579 | 0.584
8 0.680 0.673 0.670 0.663 0.667 0.660 0.660 | 0.656 | 0.660
10 0.748 0.740 0.733 0.726 0.730 0.723 0.721 | 0.718 | 0.721
15 0.871 0.864 0.864 0. 840 0.839 0.833 0.830 | 0.828 | 0.830
20 0.949 0.943 0.915 0.909 0.903 0.899 0.896 | 0.895 | 0.896
25 0.998 0.994 0.956 0.952 0.942 0.938 0.937 | 0.937 | 0.937
30 1.030 1.026 0.981 0.978 10.964 0.962 0.961 | 0.961 | 0.961
CPU(s)| 2.0 2.4 2.6 3.4 6.4 7.2 600.0  |620.0 -
_gizi. 4225 © 4810 8649 9486 31329 32922 1161 | 1242 -
Data 35 44 41 50 57 66 23 32 -
Cards

Table 4.4.12 - Results at x1=0.3 for At=0.25 (coarse discretisation)

9t
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TIME | BEMIAC | BEMIAL | BEMIBC | BEMIBL | BEM2C | BEM2L | ANALYT.
2 0.292 | 0.250 | 0.297 | 0.257 | 0.291 | 0.249 | 0.317
4 0.475 | 0.453 | 0.482 | 0.461 | 0.472 | 0.453 | 0.484
6 0.582 | 0.563 | 0.590 | 0.571 0.577 | 0.562 | 0.584
8 0.661 | 0.643 | 0.670 | 0.653 | 0.655 | 0.643 | 0.660

10 0.724 | 0.708 | 0.733 | 0.717 | 0.718 | 0.707 | 0.721

15 0.835 0.822 0.843 0.830 0.828 0.821 0.830

20 0.902 | 0.892 | 0.907 | 0.897 | 0.895 | 0.891 | 0.896

25 0.941 | 0.934 | 0.944 | 0.937 | 0.935 | 0.933 | 0.937

30 0.965 | 0.960 | 0.966 | 0.961 | 0.960 | 0.959 | 0.961

CPU(s) | 2.6 3.2 23.3 24.0 87.6  |90.0 -

gzziage 5184 6336 4096 5120 736 992 -

oata 49 65 181 197 37 53 -

Table 4.4.13 - Results at x1=3 for At=1.0

(fine discretisation)
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*
Figure 4.4.3 — Variation of u with r for several values
of time steps
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fact that the more refined the domain discretisation employed, the closer
to the boundary cells integration points become, and that this also
implies refining the boundary integration (or discretisation).

The above mentioned numerical problems were also noticed in [79]
where some one-dimensional transient potential problems were analysed
with a scheme of the type BEMl. But the reasons for the non-convergence
with decreasing values of time steps were wrongly attributed to the
use of stepwise constant approximations for u and q (which does not
seem to affect convergence, as can be seen from the results for BEM2)
and to truncation errors inherent in Simpson's rule, which was employed
for the domain integrationm.

For problems with unbounded initial fluxes at time t0+, as 1is
the case for examples 4.4.1 and 4.4.3, it was reported in [79] that the
computed values of u were very accurate for points far from the boundary
but the accuracy decreased as the points became closer to it. No
problems of that kind were detected herein (apart from the previously
discussed), and the accuracy of the results presented can be assumed
to be typical of any internal point,

Note that the semi-analytical integration scheme associated with
BEMIB does not present the previous problem since the integration with
respect to r is performed analytically (equation (4.2.9)). Thus, the
errors obtained with this scheme are basically related to the piecewise
linear variation adopted for u over the domain. This approximation is
similar to the one for linear finite elements and, as in that case,
accurate results are produced only if very refined discretisations
are employed. But even so convergence with decreasing time steps was
not achieved.

An empirical formula to determine the critical value of the time

step (with respect to accuracy) was suggested in [75] as,
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AT?2
L (4.4.1)

where AT is the dimension of the largest boundary element employed in
the discretisation. This formula explores the similarity between the
fundamental solution to the diffusion equation and the probability
density function of a bivariate normal distribution in mathematical
statistics.

Applying the above formula to the previous examples gives
critical time steps of 0.88 and 0.22 for problems 4.4.1 and 4.4.3 and
0.034 and 0.0085 for 4.4.2, for the coarses and fines discretisations,
respectively. These values appear to underestimate the accuracy of
the numerical solutions, since larger time steps than the ones predicted
were employed with the fine discretisation in examples 4.4.1 and 4.4.3
with no deterioration of results. However, the formula is useful in
providing an estimate of the magnitude of the time step to be adopted
for each problem, and further checks will be effected on following
examples.

Regarding the computer efficiency of the time-marching schemes,
we note that the last three rows of each table compare CPU time, core
storage and number of data cards required for each analysis. These
numbers should not be seen as definite since the computer programs
developed can be improved much further. For simplicity, a fixed basic
structure was adopted for all programs and the matrices kept in-core
(see chapter 6). The main purpose of this comparison is to give an idea
of the programming difficulties associated with each scheme. The row
corresponding to core storage refers to the number of positions needed to
store only the relevant métrices in the actual computation, which are as
follows: NxN+2 (NxM)+MxM for schemes BEM1 (see section 4.2) and NxN+FxN for

BEM2 (section 4.3), being F the number of time steps. For stepwise linear
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functions, we should add NxN+NxM to the first case and NxN to the
second.

It can be seen that scheme BEMIA is by far the fastest one.

This appears to be contradictory since scheme BEM1B is a simplified
version of BEM1A, The difference between both lies in the domain
integration: the semi-analytical scheme employed in conjunction with
BEM1B requires a great deal of computer time for the evaluation of the
numerous terms that appear in equation (4.2.11), and this operation is
repeated several times at each integration point. An alternative
procedure for computing the domain integral in BEMIB is by directly
applying Hammer's quadrature scheme to equation (4.2.6). Although the
savings in computer time are enormous, numerical problems become even
more severe.

Another advantage of BEMIA is that the domain discretisation can
be dissociated from the boundary discretisation as opposed to BEMIB where
they are directly related. This permits using very large cells, as can
be seen in figures 4.4.1 and 4.4.2, with no loss of accuracy and making
data preparation easier.

Since the system of equations to be solved in all examples is
always very small, the CPU times reported are almost entirely spent on
computing the coefficients of the matrices. As discussed in section 4.2,
all matrices that appear in the formulaticn of BEM1A and BEMIB are
calculated only once and stored. For BEM2, however, we have decided to
always recompute matrices ?FF and %FF (see section 4.3), but this
strategy led to very large CPU times being required for this scheme.

Consider, for instance, example 3: table 4.4.10 shows that 30.8 s
are needed to solve the problem for 30 time steps. If we assume that 1 s
is spent in input—output, solution of the systems of equations and

computation of matrices GFF and HFF (which is a reasonable assumption,



168

judging from the CPU times reported for BEMI1A), this gives approximately
0.0343 s for the computation of each matrix ng or ng (a total of 870
matrices). For 60 and 120 time steps, the number of matrices to be
computed throughout the process is 3540 and 14280, respectively. Thus,
the large CPU times presented in tables 4.4.11 and 4.4.12 are to be
expected.

If, on the other hand, the matrices calculated for eéch step
are all stored in such a way that only two new matrices need to be
computed for each new step, the total number of matrices ng and ng
(f # F) to be evaluated throughout the process would be 58, 118 and 238

for 30, 60 and 120 time steps, respectively. The expected CPU times and

core storage requirements for the problem can then be summarized as

follows,
Number of time steps 30 60 120
CPU (s) 3.0 5.0 9.2
Core storage 2700 5400 ' 10800

Table 4.4.14 - Expected CPU times and core storage
requirements for example 3 with scheme
BEM2C (modified program)

Note that for problems involving a large number of boundary
elements and time steps the use of disc files appears to be necessary
since the number of coefficients to be stored grows very rapidly.

In what follows several more examples are considered, including
problems with time-dependent boundary conditions and comparisons with
available finite element solutions. Due to the poor performance of
scheme BEM1B in the previous examples, we concentrate our attention
only on BEMIA and BEM2. Further suggestions for improving the computer

efficiency of the time-marching schemes are discussed in chapter 7.
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Example 4.4.4

Lachat and Combescure reported in [47] some results for a
transient heat conduction problem with time—-dependent boundary conditions
using the Boundary Element Method in conjunction with Laplace transforms.
The problem studied was that of a circular region of unit radius,
initially at zero temprerature, subjected to sudden thermal shocks
applied at times t0=0 and ty- They obtained very good results for the
case of only one fhérmal shock imposed at the initial time (t1=0) but
the results deteriorated as the value of t1 was increased (see figures
4.4.5 to 4.4.7). This behaviour was attributed to the numerical inversion
of the Laplace transform and they concluded that step-by-step methods
should be préferred for this kind of problem.

In order to verify the accuracy of the formulation developed in
this work for problems with time-dependent boundary conditions, we
analysed the above problem assuming, for simplicity, a unit value for
the thermal diffusivity k (as was done in [47] ). The discretisation
employed for BEMIA is shown in figure 4.4.4, together with the
variation with respect to time of the boundary temperature. The same
boundary discretisation (6 elements) as shown in the figure was also
adopted for BEM2 and the results obtained with both time-marching schemes
were practically equal. These results are plotted in figures 4.4.5 to
4.4.7 for different values of ty and compared with analytical solutions
[471. The accuracy of the BEM solutions is very good for all values
of tl. It should be pointed out that the values of time steps employed

were At=0.05 for t1=0 and t1=0.5 and At=0.10 for t1=1, compared with

a critical value Atcrit=0.034 given by equation (4.4.1).

Example 4.4.5

In this example, we study the same problem as before but assuming

now a linear time variation for the boundary temperature as indicated in
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Figure 4.4.4 - Circular region with thermal shocks: a) Discretisation;
b) Time variation of surface temperature
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Figure 4.4.5 - Temperature at internal points for thermal shock
applied at t0=t1=0.
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Figure 4.4.6 - Temperature at internal points for thermal shocks
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Figure 4.4.7 - Temperature at internal points for thermal shocks

applied at t0=0. and t1=1
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figure 4.4.8 and a value k=5 for the thermal diffusivity.

Initially, a solution was attempted by adopting stepwise constant
variations for functions u and q such that the prescribed values of u
are equal to their average within each time step. The results obtained
for schemes BEM1A and BEM2 with the same discretisations as previously
(see figure 4.4.4) were coincident and are plotted in figure 4.4.9.

The problem was then re-studied using stepwise linear variationms
for u and q and, in this way, the specified boundary temperature within
each time step can be exactly accounted for. Again, the discretisations
shown in figure 4.4.4 were employed. The results for both schemes
agreed with the analytical solution given by [16] to three significant
figures even for the first time step,and are also plottéd in figure
4.4.9,

All numerical analyses adopted a time step value At=0.02 compared

with a much lower critical value Atcrit=0'0068 predicted by equation

(4.4.1).

Example 4.4.6

The object of the present investigation is a 3x3 m square region
with initial temperature u0=300F and thermal diffusivity k=1.25 Btu/h mOF,
subjected to the Dirichlet boundary condition u=0 along I for any t > tO.
This problem is similar to the one considered in example 4.4.1 and the
actual numerical values were chosen as to allow the results to be
compared with an available finite element solution [80].

Since the initial conditions satisfy Laplace's equation, we can
apply equation (4.3.4) in order to transform the domain integral of
scheme BEM2 into equivalent boundary integrals, as discussed in section
4.3. The results obtained for this analysis, together with the ones
for BEM1A, the finite element solution [80] and an analytical solution
[BO]are presented in tables 4.4.15 and 4.4.16 for two different values

of time steps, with the discretisations shown in figure 4.4.10. It can
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X, X, BEM1A BEM2 FEM ANALYT.
0. 0. 1.988 2.009 2.108 1.812
0.3 0. 1.893 1.913 2.005 1.723
0.6 0. 1.614 1.632 1.706 1.466
0.9 0. 1.180 1.194 1.239 1.065
1.2 0. 0.630 0.639 | 0.652 | 0.560

0.3 0.3 1.802 1.821 1.907 1.639

0.6 0.6 1.310 1.325 1.380 | 1.186

0.9 0.9 0,700 0.710 | 0.728 | 0.626

1.2 1.2 0.199 0.201 | 0.201 | 0.173

Table 4.4.15 - Temperature values at t=1.2h for
a time step At=0.10h

Xl X, BEM1A BEM2 FEM ANALYT.
0. 0. 1.887 1,902 | 1.938 | 1.812
0.3 0. 1.798 1.809 1.843 1.723
0.6 0. 1.534 1.541 1.568 | 1.466
0.9 0. 1.114 1.122 1.139 1.065
1.2 0. 0.589 0.595 | 0.599 | 0.560

0.3 0.3 1.713 1.721 1.753 | 1.639

0.6 0.6 1.214 1.248 | 1.269 1.186

0.9 0.9 0.657 0.663 | 0.670 | 0.626

1.2 1.2 0.184 0.185 | 0.185 | 0.173

Table 4.4.16 - Temperature values at t=1.2h for
a time step At=0.05h
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be seen that the BEM solutions are of the same level of accuracy and
that they are superior to the finite element one at all points, for
both time steps, despite employing coarser discretisations.

To verify if the use of equation (4.3.4) was introducing
additional numerical errors, we re-studied the problem by subtracting
out a constant temperature of 30°F so as to make the initial conditions
equal to zero. This constant value is afterwards added to the new
solution. Results obtained in this way agreed to the previous ones
to the significant figures shown in the tables.

Finally, analyses were carried out using stepwise linear
functions and applying the boundary conditions as described in example
4.4.3. Again, results of the same order of accuracy as shown in the

tables were obtained with both time-marching schemes.

Example 4.4.7

This example studies the one-dimensional problem of constant heat
flux applied to a semi-infinite solid. The material properties of the
solid are assumed to be unit as well as the applied heat flux per
unit time, in order for the results to be compared with a finite
element solution presented in [62]. This FEM analysis considered a
linear variation for the temperature between time steps and produced
results for the surface temperature versus time for two different values
of time steps as shown in figure 4.4.12, but did not comment on the
space discretisation adopted.

Four BEM analyses were carried out using the discretisations
shown in figure 4.4.11 and employing stepwise constant or linear
variations for the functions. The results obtained agreed with the
exact solution given in [16] to three significant figures for scheme
BEM2 with stepwise linear u and q and were slightly less accurate

for the other analyses, being the maximum relative errors 0.7% for
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Figure 4.4.11 - Discretisation of semi-infinite solid:
a) BEM1A; b) BEM2
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Figure 4.4.12 - Surface temperature of semi-infinite solid



178

BEM1A (linear), 2% for BEM2 (constant) and 57 for BEMIA (constant).
No oscillations about the exact solution were observed for the BEM,

as opposed to the FEM results (figure 4.4,12).

Example 4.4.8

Another comparison between BEM and FEM solutions was effected in
this example of a bar with unit material properties, at zero initial
temperature. We assume that for any time t > ty 2 unit temperature
is applied at x1=0, all other surfaces being insulated. The problem
is essentially one~dimensional because of the symmetry imposed by the
non-conducting boundaries.

This problem was analysed with the FEM in[81]'where the space
domain was discretised into four linear, quadratic or cubic isoparametric
elements and the variation with time approximated by the Crank-Nicholson
method. The finite element mesh, together with the BEM discretisations,
is shown in figure 4.4.13.

Again, four BEM analyses of the problem were carried out, the
results for scheme BEM2 being plotted in figure 4.4.14. Notice that
for the stepwise linear case thé unit temperature at x1=0 was applied
linearly over the first time step. The results for scheme BEMIA also
behaved as depicted in the figure and were of the same order of accuracy
for the linear case and slightly less accurate for the constant one
(8% maximum relative error compared to 3.6% for BEM2).

Since a rather large value of time step was employed for the
problem the FEM solutions presented severe oscillations about the exact
solution given in [16] (see figure 4.4.14). This was not the case for
the BEM solutions despite this value being much larger than the critical

value (Atcrit=0.125) predicted by equation (4.4.1).
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4.5 Robin-Type Boundary Conditions

As discussed in section 3.2, many problems of interest present
boundary conditions of the Robin-type,

au+bqg=d (4.5.1)
where a, b and d are functions of the position, being the condition
valid at any instant in time, If this equation is applied to all
boundary nodes we can write, in matricial form (see equation (3.2.2)),

Q=D-AU (4.5.2)

which, substituted into (say) (4.1.8) gives,

(H._ +G_.) A U, = G..D+B.T (4.5.3)

-fF fF £

[ o B
0 & v

f=1

The above recurrence relation can then be employed to advance the
boundary (and internal) values of u in time.
A well~known such condition is the convection or 'radiation'
boundary condition of heat conduction problems (see example 3.2.1),
gq+hu=h g (4.5.4)
It may occur, in many practical situations, that functions h and

u are also time-~dependent. Assuming at first that u and u, have

stepwise linear variations while h is only stepwise constant, condition

(4.5.4) gives,

- _h _
4 = h(ug-u) ~at, [(t'tf-l)(“s,f'uf) ) (ug gy uf—l)]

(4.5.5)
Equation (4.1.17) can then be rearranged for our numerical

solution as,

F
11 2 2
ol {(ng *Opp &) Up g * (Hgp + Cpp A ?f]
| 2 -
"I Cer A0t % A0 v 5 Y% (4.5.6)

where the diagonal matrix A and the vector D now contain the values
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of h and ug s respectively.

Consider now that the heat transfer coefficient h is also
stepwise linear, its variation being prescribed by functions (4.1.14).
Applying condition (4.5.4) then yields [82] ,

1 2
q —A?g(t tf—l) hf (uS,f Uf)
f

¥ (t-tf-l)(tf—t)[ he Cug g = Ypp) * Peoy (ug ¢~ ug)

2
SNCEORS WSO uf_l)[ (4.5.7)

which implies a quasi-quadratic variation for function q.

The application of equation (4.1.5) to all boundary modes gives,

for this kind of problems,

F
11 2 2 | 2
’ [(ﬁfF *Oep Aror * Cpr Ap) Upn t Uep * O A

f

F
3 _ 1
*Ger Ap) Ug ] o [(ng Ap1 * Cer Af) Doy

2 3 _
+ (Gep Ap ) + Gep ) D¢ ] t By U (4.5.8)

where the coefficients of matrices H are computed as in (4.1.18),

of matrix BO as in (4.1.9) and of matrices G as follows

~

t

f
]-:m k m 2 x
o = et -— 1"
Bfrij 2 ¢ (te-t)" u (i,5,t,,t) dt dr(s)
f r
s
te
2 1 . )
gf}::Iinj - cz ¢" (temt) (e-ty_) u (i,8,tp,t) dr dr(s)
At, r. by
(4.5.9)
e
’ k * i
ggFIinj - 2 ¢m (t—tf_l)z u (1,S,tF,t) dt dr(s)
At
f
r t
s f-1

The analytical evaluation of the time integrals in (4.5.9) gives
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(see equations (4.1.13), (4.1.21) and (4.1.29)),

2

ki 2 * de = L
(tf—t) u (1,S,tF,t) £ = e (tf—tF)

te1

(4.5.10)

t
f

{ (tf—t) (t-tf__l) u*(i,S,tF,t) dt = ZTITE i |:(tf—tF) (tF—tf_l)

f-1

r2 T_.2
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Example 4.5.1

This example studies a square region at unit initial temperature
'radiating' into a surrounding medium at zero temperature. The heat
transfer coefficient is constant all over the surface and equal to 2 and
the thermal diffusivity assumed to be unity.

Boundary elements analyses were carried out for schemes BEMIA and
BEM2 with stepwise constant or linear variations for u and q, with the
discretisation shown in figure 4.5.2., Note that for the BEM2 cases only
the boundary is discretisated into 8 elements and the domain integral
evaluated using equation (4.3.4). Coincident results were obtained for
both schemes and they are plotted in figures 4.5.1 and 4.5.2 for the
constant case, compared with an analytical solution [16].

As can be seen in figure 4.5.1, the maximum error occurs at the
corner x.=x,=1, at the time t=0.10 (7.5%7 relative error). Using stepwise

1 72

linear functions, this error is reduced to 27%.

Example 4.5.2

Another comparison with the Finite Element Method is effected in
this example of a plane plate, initially at OOC,,surrounded by a
medium at 100°C. Its cross-section has 0.1 x 0.1 m and the values of
thermal conductivity, heat capacity and heat transfer coefficient are
18 kcal/h m°C, 912 kcal/m> °C and 5000 kcal/h m2 °C, respectively.

Again, four BEM analyses were carried out with the same
discretisations adopted for the previous example (see figure 4.5.2)
and coincident results obtained for both time-marching schemes. The
averaged surface temperature of the plate is plotted in figure 4.5.3.
The FEM analyses employed 5 parabolic isoparametric elements in space
and linear, parabolic and cubic elements in time [83]. Results using

a central finite difference scheme are also presented in the same

reference.
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As pointed out in [83], the time step value At=100 s adopted
from the problem is extremely large (the critical value predicted by
equation (4.4.1) is only Atcrit=14 s). The solution goes from the
initial-state to the steady-state almost in one increment. Because of
this, the linear BEM solution produced oscillations which are, however,
much smaller than the FDM and FEM ones. The constant BEM seems to be

remarkably stable and produced no oscillation at all.

Example 4.5.3

For problems involving regions extending to infinity, BEM
solutions with scheme BEM2 are much more economical than FEM ones. In
order to démonstrate this, we study in this example a circular opening
in an infinite plane region with initial conditions u0=10. The radius
of the hole is unity, its ambient temperature equals zero and the
material properties of the medium are also assumed to be unity, for
simplicity.

The variation of the surface temperature with time is presented
in figure 4.5.5 for various values of the heat transfer coefficient,
compared to an analytical solution given in [16]. The agreement between
the two solutions is very good. A time step value At=0.5 was adopted
and the analyses carried out until the surface temperature began to
drop significantly. The BEM results were obtained with stepwise constant
functions and, due to symmetry, only one quarter of the interface
between hole and medium was discretised into 6 boundary elements
(figure 4.5.4),

This problem was also studied with the FEM in [84] but since the
FEM is a domain-type technique, the infinite region has to be limited
by a finite, non-conducting boundary. In order to achieve the same
level of accuracy, a time step ten times smaller (At=0.05) was adopted

and the domain discretised using 70 triangular elements or 3 cubic
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isoparametric elements (see figure 4.5.4). WNote that a similar kind

of approximation has to be introduced for the BEM if time-marching
scheme BEM1A is utilised: although boundary elements are still
restricted only to the hole-medium interface, cells have to be employed

to integrate over the (infinite) domain.

Example 4.5.4

A more practical problem with complex time-dependent boundary
conditions is studied in “his example, where the temperature distribution
inside an actual turbine disc is sought. Although the real structure is
axigsymmetric, a two-dimensional FEM analysis was carried out for
comparison purposes [85], employing 85 quadratic isoparametric elements
and 348 nodes (figure 4.5.7a).

The initial temperature of the turbine disc is 295.1°K and the
values of the thermal conductivity, density and specific heat of the
material are 15 W/moK, 8221 kg/m3 and 550 J/kgoK, respectively. There
are 18 different zones along the boundary, each of which with a
different set of prescribed values for the heat transfer coefficient
and the temperature of the surrounding gas. Their time variation at
one of such boundary zones is shown in figure 4.5.6.

The BEM discretisation employed 90 elements and 106 nodes (there
are 16 double nodes at the intersections of boundary zones). A stepwise
linear variation was prescribed for the boundary temperature. For the
boundary flux, it was assumed to be linear or quasi-quadratic, according
to the variation of h and u within each time step.

The first BEM analysis was carried out with a step-by-step
time-marching scheme. However, due to core storage limitations of the
computer utilised, a full analysis was only possible with scheme BEMIB,
Previous experiences with such scheme have shown that a refined domain

discretisation is necessary for accurate results to be obtained. So,
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Figure 4.5.8a - Isotherms at t=60
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t =960

Figure 4.5.8b - Isotherms at t=960
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t =970

Figure 4.5.8c - Isotherms at t=970
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Figure 4.5.8d - Isotherms at time t=1060
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t=1065

Figure 4.5.8e¢ - Isotherms at time t=1065
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t = 2565

Figure 4,5,8f - Isotherms at time t=2565
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we sub—divided the domain into 134 triangular cells with 23 internal
points (figure 4.5.7b). Results (isotherms) at several times are
plotted in figure 4.5.8 and compared to the FEM results, showing good
agreement.

Finally, the problem was studied with scheme BEM2 and, in this
case, no domain discretisation 1s needed (figure 4.5.7c). Results for
this analysis are also plotted in figure 4.5.8 and agreed extremely
well with the refined finite element solution. Due to the structure
of the computer program developed, that recomputes the matrices instead
of storing them, this analysis proved to be rather time-consuming, since
a large number of boundary elements and time steps is involved. Note,
however, that this problem is a characteristic of the actual computer
program and not of the time-marching scheme: it was estimated that
storing all matrices in disc files would reduce the total CPU computer

time to the same order of the one required by the BEMIB analysis, i.e.

3 min.

4.6 Axisymmetric Problems

Assuming that all boundary and intermal values have axial
symmetry, equation (4.1) can be written in cylindrical polar

coordinates (R,0,Z) as,

te 2m —
c(P) u(P,tF) + k [ J u(S,t) J q (P,S,tF,t) de(S8) R(8) dr(s) dt

tO T 0
tF 2T * _
= k J J q(S,t) J u (P,S,tF,t) de(s) R(s) dr(s) dtc
t, T 0
2T 4 _
+ L uo(s,to) [ u (P,s,tF,tO) de(s) R(s) da(s) (4.6.1)
Q 0

where @ and T are the generating area and boundary contour of the solid
of revolution, i.e. the projections of Q@ and I, respectively, im the

R+-Z semi-plane (see figure 3.9.1).
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Writing the three-dimensional fundamental solution (equation
(2.8.3))in cylindrical polar coordinates and integrating over a ring

of radius R(S) at the plane Z=Z(S) we have,
2w

E*(P,s,tF,t) = Jo u*(P,s,tF,t) de(s)
21
1 d R(P) R(S) cos[8(P)-6(S)]
S W a0 )
(4wkr)3 2 bkt 0 2kt

9 9 ) (4.6.2)
where T=tF—t and d=R"(P)+R (S)+[Z(P)—Z(S)] .

The axisymmetric fundamental solution then becomes [86],

—% 27 d 3
u (P,S,t_,t) = ~—377 exp (- — 1. (—) (4.6.3)
F (4ﬂkT)3 2 4kt 0 2kt

where 2=R(P) R(S) and IO is the modified Bessel function of the first
kind of order zero. The normal derivative of the fundamental solution
along the boundary contour can be obtained by differentiating

expression (4,6.3),

— % 1 d [
q (P’S’t ’t) == "'! 7 exp (— —)B[R(S) I (—_-')
F 87 (kT)5 2 4kt 0 2kt
£ £
- R(P) I. (—) |R, (8) -[z(P)-z(8)] 1 (—) Z, (S)
L ok o Ooxr B
(4.6.4)
where I1 is the modified Bessel function of the first kind of order onme.
From the above expressions, it can be seen that as R(P)->0 we
have that 2-0, Io(l/ZkT)+1, Il(l/ZkT)+O, so that the ring source tends
to a point source with intensity 2m over the axis of revolution.

Substituting (4.6.3) and (4.6.4) intc equation (4.6.1) yields

the following time-dependent boundary integral equation,

c(P) u(P,tF) + k F u(S,t) E*(P,S,tF,t) R(S) dr(s) dt
g o _

=k q(S,t) u (P,S,tF,t) R(S) dT(s) dt
t, T

+ | uls,t)) T(P,s,t,,t,) R(s) diis) (4.6.5)

Q
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The solution of equation (4.6.5) can be attempted by using the
same calculation procedures as discussed in the previous sections.

For simplicity, only time-marching scheme BEMIA with stepwise constant
variation for the functions u and q will be considered in what follows.
After discretising the surface and interior of the actual

domain into boundary elements and cells, respectively, an equation
similar to(4.1.6)is obtained, the coefficients of the matrices involved
being computed as in (4.1.7). In order to perform the time integrals

analytically, an appropriate change of variables is needed. Calling,

— 2 . —3 d . — d
€= T *T k2" BBt (4.6.6)

—*
the integral in u becomes,

N "*(' S t) dt = 1 I _(2cx) "Xy (4.6.7)
u 1, ’tF’ = ———————; ol2cx) x e X .b.
tpq 2k (nd)® |

The Bessel function I can be expanded in series as [46],

0

I. (2 _p (o™ 4.6.8
o (2¢cx) = I 2 (4.6.8)

n=0 n.

and the integration in (4.6.7) is then performed term-by-term, giving

t
Fo_x 1 = c2n 1
u (iys,tF’t) dt = —T X 2 I‘(2n + E,a)
t 2k(wd)? n=0 n!
ol (4.6.9)

—%
For the integral in q , we have

t

[F '"*(‘ S,t.,t) dt 1 [R(S) R, (S)
q 1,0, s = - ’

. F kd(nd)? o

F-1

- [z@) - z(s)] Z,n(S)] J IO(2cx) x% e ¥ dx

a

- R(P) R, (S) J I, (2cx) xt e 7% dxg (4.6.10)
a
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Expanding the Bessel function I1 as [46],

- ( )2n+1
I,(2cx) = £ —S—r (4.6.11)
+ n=0 n! (n+l)

the integral becomes,

t
J ! (.8, t.,t) dt 1 3[R(S) R, (S)
1,0, ’ = = s
t F kd(nd)? n

F-1
- C2n 3
- [z®) - z(9)] Z,n(S)] niO - I(2n + 3, a)
. 2n+1 5
- R@®) R, ()T ———T(m + 3, a)g (4.6.12)
=0 n'"(n+l)

All the incomplete Gamma functions that appear in the above
series can be evaluated in terms of ['(},a) by using the following

recurrence relation [75],
. n -a
I'(n+l, a) = nl'(n, a) + a e (4.6.13)

and, for computational purposes, I'(},a) can be related to the error

function by [46], [75],

T(l,a) = ﬂ% erfc(a%) (4.6.14)
being the complementary error function computed through a rational
approximation [46] which is piven in appendix A,

From definition (4.6.6) we notice that the wvalue of ¢ varies
between 0 (for R(P) or R(S)=0 or for d»~) and 0.5 (for P=S). All the
series that appear in expressions (4.6.9) and (4.6.12) converge very
quickly for small values of ¢ but slowly as ¢+ 0.5. In fact, they do
not converge for c¢=0.5 due to the singularity at P=S. So, from the
computational point of view, it is not convenient to use expansions
(4.6.8) and (4.6.11) for values of c in the vicinity of ¢=0.5.

To overcome this problem, we can use asymptotic expansions of
the Bessel functions that are valid for large values of their arguments.

Thus, whenever x is large we can write [46],
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2¢cX [ o fl(n)
I,(2cx) = ———x |1 +1 (4.6.15)
2(mex)? || =l n!(l6cx)™
2¢cx F ® fz(n)
I,(2cx) = =——— |1+F —w— (4.6.16)
2(mcex)? . n=1 n!(16cx)n_
_ 2 2
fl(n) = (2n-1)° (2n-3)"...1 (4.6.17)
£, = (D" [4-(2n-1)?]  [4=(20-3)7] ... [4-1]
The time integrals can then be carried out as follows,
t
P, 1
u (1,S,tF,t) dt = ——r [ El(B)
t 4k 4 ?
F~1
o £ @b"
+ 3 —— F(—n,B)] (4.6.18)
n=1 n!(l&c)n
! -
—% 1 1 -B
q (1,5,t_,,t) dt =~ g- — e
t F 2mkd b
F-1
x [[R(P)-R(S)]R,n(s) + [z2(P)-Z(8)] z,n<s>]
- fl(n)bn“1
+ [R(S) R’H(S) - [Z(P)_Z(S)] Z, (S)] z F(l_n,B)
n n=1 n!(16c)n
- fz(n)bn_1
- R(P) R, (S) & F(l—n,B)$ (4.6.19)
n n=1 n!(16c)n

where b=1-2c¢ and B=ab. The incomplete Gamma functions can now be

computed from I'(0,B) through the recurrence relation [46],

-B

r(-n,B) = - %[F(l-n,B) - e—n—} (4.6.20)
B

r¢o,B) = El(B)

When the value of ¢ tends to 0.5 but x is small over part of the
integration interval (a,») we cannot apply expansions (4.6.15) and

(4.6.16) directly. Alternatively, equation (4.6.7) may be written as,
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t 1
JF_*('St t) dt L {aI(Z)'i X4
u (1,0,C,, = _—————E- CX) X e X
teol F 2k(nd) Ia 0

+ { IO(2cx) x-% e ¥ dx } (4.6.21)

a'

where x is sufficiently large in the interval (a',~). Thus

2n

a
I (2cx) x_% e Tdx =31 S P(2n+l,a') - P(2n+l,a)

0 ) 2 2
a n=0 n.

(4.6.22)
and expansion (4.6 15) is now used to evaluate the second integral in

(4.6.21). The same idea can be applied on calculating the time

—%
integral in q ,

The remaining step in the numerical solution of the boundary
integral equation (4.6.5) is the computation of the space integrals.
As for the two—dimensional case, the program developed employs only
linear boundary elements with triangular cells. The terms Hij and
Gij(i#j) of the final system of equations (similar to (4.1.6?) can be
calculated using a six-points Gauss quadrature rule (see section 4.1.4).
The diagonal terms Hii and Gii however, need to be investigated
more carefully since their calculation involves the evaluation of
singular integrals.

The coefficients Gii contain an integral with a logarithmic
(integrable) singularity. Expanding the exponential-integral in
equation (4.6.18), we can isolate the logarithmic term and integrate
it analytically (see appendix C). All the remainder is non-singular
and can be computed by using a standard Gaussian quadrature.

The coefficients ﬁii contain a logarithmic plus a 1/b
singularity. The first one is directly integrable but the gecond

is only integrable in the Cauchy principal value sense. For the

present case (linear elements) however, we can write with reference

to figure 4.6.1,
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Figure 4.6.1 - Definitions for linear element

R,n(S) = cos o 3 Z,n(S) = sin
R(P) - R(S) = - £ -g—sin o (4.6.23)
Z(P) - 2(S) = & % cos a

such that the first term in the right-hand side of (4.6.19), which is
the Cauchy singular one, becomes identically zero. Expanding the first
term of each series in (4.6.19) in order to isolate the logarithmic
singularity, we can then evaluate it analytically (see appendix C)

and all the remainder, which is non-singular, using a standard

Gaussian quadrature.

The free coefficients c; account for the jump that the integral
in q* experiences as it approaches the boundary T from the internal
domain Q. Their values are the same if the limit 1s taken for the
steady~-state or the time-integrated transient fundamental solutions,
as shown in equations (2.4.8) and (4.1.47) for two—dimensional problems,

a result to be expected following the discussion in section 2.8 (see

equation (2.8.7)). For three-dimensional problems, we have

c. =1 - - lim Lo oa-= 2% (4.6.24)
1 47 €
e~>0
T
€
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where B is the solid angle of the boundary at i and dT = €2 d¢ do.
For the actual (axisymmetric) case, B = 2(m + a, - az) (see figure
2.4.1) and the values of c; become the same as for two—dimensional
problems, equation (4.1.47).

A computer program using time-marching scheme BEMLA with
stepwise constant variations for functions u and q and incorporating
the numerical procedures derived in this section was developed. Its
structure follows the ideas discussed in section 4.2 and again Hammer's
quintic quadrature rule was employed for the domain integral. The

program is described in detail in chapter 6.

Example 4.6.1

The first example analysed was that of a solid cylinder with

unit initial conditions, subjected to the following boundary conditions,

u=0 at R = a

2u at Z g')

q

The discretisatinn adopted is shown in figure 4.6.3. Note that
due to‘the symmetry with respect to the R-axis, only one half of the
cross—section needed to be discretised. The numerical values assumed
for the cross-section were a=1, %=1 and for simplicity, the material
coefficient k was also taken to be unity.

Results are compared in figures 4.6.2 and 4.6.3 with an
available analytical solution [16], showing good agreement. The analysis
was performed with a time step At=0.025 and took about 4s of CPU time

to converge to a steady-state (20 time intervals).

Example 4.6.2

This example studies the heat conduction problem of a
prolate spheroid initially at zero temperature and subjected to a

unit surface temperature at t=0. A parametric representation of points
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on its surface,in the R-Z plane, may be written as

R =1L, cos ¢

1

L2 sin ¢

where the ¢ angle is indicated in figure 4.6.4.

Z

The discretisation adopted is also shown in the figure and the
numerical values assumed for this analysis were k=1, L1=1, L2=2.
Results for the temperature at the centre point (R=Z=0) are compared
in figure 4.6.4 with an analytical solution [87] and a finite element
solution [84] obtained with parabolic three-dimensional isoparametric
elements. The finite element analysis was performed with a time step
value At=0.025 ‘thereas the boundary element solutioﬁ employed a

At=0.050. The total CPU time for 20 time steps was 4.5 s.

Example 4.6.3

A problem similar to.the one studied in example 4.4.4 was
considered in this example of a sphere of unit radius, initially at
zero temperature, subjected to sudden thermal shocks applied at times
tOuO and ty- The discretisation and numerical values adopted here
were the same as for example 4.4.4 (see figure 4.4.4).

Results are plotted ir figures 4.6.5 to 4.6.7 for different
values of ty and compared with analytical solutions [16]. The agreement
between the two solutions is of the same order as for the two-
dimensional cases, and uniform for all values of tl' It is

interesting to note that the CPU time required for each analysis was

about 4 s compared with 2 s for example 4.4.4.
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5. VISCOUS FLOW PROBLEMS

This chapter considers problems of incompressible viscous fluid
motion, governed by the Navier-Stokes equations together with the
continuity equation. Following the concepts developed by Lighthill [31],
‘the vorticity-velocity formulation is employed and the flow problem
is partitioned into its kinetic aspect, expressed as a transport equation
describing the rate of change of vorticity through convection
and diffusion, and its kinematic part, which determines the velocity
distribution at any instant of time from the (known) vorticity
distribution at that instant ([32] to [35]).

The prevailing Finite Difference and Finite Element methods of
solution treat the above equations in differential form. The major
difficulty experienced by these methods is associated with the fact
that implicit numerical procedures are necessary for the kinematic part
of the computation. As a consequence, the solution field must comprise
the entire flowfield, inclusive of the viscous and the inviscid regions.
Furthermore, for problems of external flow past finite bodies,
satisfaction of boundary conditions prescribed at infinity implies
the truncation of the infinite region at a finite distance.

Earlier works ([32] to [35]) employing Lighthill's formulation
recast the kinematic part of the problem into an integral equation for
the velocity in terms of the vorticity. The main advantage of doing so
is that it permits the explicit, point~by-point, computation of the
velocity, in much the same way as the potential in Laplace's equation
is computed through (2.4.5). Since only the vorticity distribution
in the viscous region contributes to the calculation of the velocity
anywhere in the flow, the solution field can be confined to the
viscous region of the flow. Moreover, the imposed boundary conditions
at infinity are implicitly contained in this integral equation,

therefore there is no need of specifying them at a (truncated) finite
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distance from the body. The kinetic part of the problem,however,
- was kept in the differential form.
In the next section, we review the vorticity=-velocity
formulation of the Navier-Stokes equations, showing how the problem
can be partitioned into its kinetic and kinematic aspects, and how
the kinematic part can be recast into a convenient integral equation.
Then, steady-state problems are discussed and the kinetic part
of the problem also transformed into an integral equation. An iterative
scheme for the solution of the resulting set of (non-linear) equatiqns
is discussed, following basically the numerical procedures derived
in chapter 3.
Finally, transient problems are considered and, again, it is
shown how the kinetic part of the problem can be recast into an integral
equation. Since the vorticity transport equation can be interpreted
as a non-homogeneous diffusion equation with a (non-linear) convective
term, the numerical procedures derived in chapter 4 are directly

applicable to this case.

5.1 Navier-Stokes Equations

Three~dimensional problems of incompressible viscous fluid
motion are governed by the following set of partial differential

equations [66],

Jw _
5%—= Vx (vxaw) +v Ve (5.1.1)
V.v=20 (5.1.2)
VX vs=gy (5.1.3)

where v and w are the velocity and vorticity vectors, respectively,

~

and v is the kinematic viscosity of the fluid. In the above equations,

t E

"y x" means curl, "V ." stands for divergence and the gradient vector

V is defined as,
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{3 3 @
v 5 8X3} (5.1.4

Equation (5.1.1) can be readily recognised as the Qorticity
transport equation, describing the rate of change of the vorticity
field through convection (as stated by the first term in the right-hand
side) and diffusion (second term in the right-hand side). Equations
(5.1.2) and (5.1.3) are the continuity equation and the definition

of vorticity, respectively.

The kinematic relation between v and w is described by equations
(5.1.2) and (5.1.3). For a given distribution of w, the velocity
distribution throughout the flowfield is usually evaluated by using a
vector Poisson's equation obtained by taking the curl of (5.1.3),
accounting for (5.1.2),

V2y = =V x @ (5.1.5)

~ ~ -~

Comparing this equation with equation (3.3.1) in chapter 3 and
reminding the derivation of equation (2.4.5) in chapter 2, we can write
the following integral equation as equivalent to (5.1.5),

*
du (p,S)

47TY(P) + [ Y(S) W dr(s)
1" -~

v (S) * .
= ———z—”; u (p,S) dr(s) +[ [V x m(a)] u (p,s) do(s) (5.1.6)
T ~ ~
Q

where u*(p,s) is the fundamental solution to Laplace's equation defined
in section 2.2 and n(S) is the unit normal vector.

The correct boundary conditions for the physical problem are
prescribed velocities. Therefore, prior to calculate the values
of v throughout the flowfield (for a known vorticity distribution),
it is necessary to take the above equation to the boundary (employing

the same limiting process as described in chapter 2), thus yielding

a boundary integral equation whose solution produces the values of
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dv/3n along I'. These values are then placed in equation (5.1.6) to allow
the prediction of the velocity distribution in 2.

Wu and Thompson [33] contested the validity of the use of equation
(5.1.5) to represent the kinematics of the flow. They pointed out that
the solution of equations (5.1.2) and (5.1.3) for v is unique if either
v, (the tangential component of Y) or v (its normal component) is
prescribed over the boundary I', but the solution of (5.1.5) for v is
unique only if both v _ and v are prescribed over I'. Thus, while
solutions of (5.1.2)'and (5.1.3) with prescribed v, or v, also satisfy
(5.1.5) the converse is not necessarily true, i.e. solutions of (5.1.5)
for prescribed v and v may not satisfy (5.1.2) and (5.1.3).

A more convenient integral representation for the kinematic part
of the flow was then derived by Wu and Thompson [33] directly from

equations (5.1.2) and (5.1.3). It follows from an application of

Green's theorem for vectors, which can be written as [15],

] (E ., V2F - F . V2E) do = J [E x (Vx F)
Q - ~ ~ - r ¥ - -
+E(V .F) -Fx (VxE) -F(WV .E) ] .ndl (5.1.7)
where
VZF =V(V . F) =V xVxF (5.1.8)

being equation (5.1.7) the vector analogue to equation (2.3.4).
*
Let v (p,s) be a vector fundamental solution to the vector

Laplace's equation V2F = 0, given by
* %*
v (p,s) =V [u (p,s)] x a (5.1.9)

where a is a constant unit vector. By direct substitution, it can be

~

seen that

*
V.v =0 (5.1.10)

~



214

*
Vxv =V (a.Vu) ,for p # s (5.1.11)

~ ~ ~ ~

By virtue of equation (5.1.2), there exists a vector potential

¥ such that [66]

VxVY¥s=v (5.1.12)

~ ~ ~

V.¥=0 ' (5.1.13)

Thus, considering F in equation (5.1.7) to be the fundamental
* -
solution v and E to be the vector potential ¥, accounting for equations
(5.1.3) and (5.1.9) to (5.1.13) and assuming, as in section 2.1, taat
a small sphere of radius € surrounding the point p, with surface PE, is
excluded from tle domain $ of integration, equation (5.1.7) becomes,
* *
[ (Vu x a). w df2 = J ¥xV(a.Vu). ndl
& r«+r
€

*
- J (Vu xa) xv . ndl (5.1.14)
P+F€

The above equation may be rewritten as

* *
J a ., (wxVu) do = [ (a . Vu)(v . n) drI
2 T'4T

£

*
- J a. [(vxn) xvu ] dr (5.1.15)
T+T
£
Taking the limit as € -+ 0, the volume Q in the integral in the left-

hand side of (5.1.15) becomes the entire volume bounded'by I', since the

volume integral over the interior of PE goes to zero as € » 0. The

. [(v x n) x vu" ] dr}

t

integrals over TE in the right-hand side of equation (5.1.15) give,
T

1lim {
e+0
€

= lim {-4£ J [ (a.n) .n) -
eolez J oL~ - -

(a . Vu*)(v . n) dl' - J
r

[w}

[ (v xn) xn ] ] dr}

t

(5.1.16)
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Inserting the above result into equation (5.1.15) and noting

that the direction of the vector a is arbitrary, we obtain the following

equation

* *
4rv(p) + f (v .n) Vu 4dr = [ (v x n) x Vu drI
r T

*
+ J w x Vu df (5.1.17)
£

A similar expression for two-dimensional flow problems can be
obtained by taking u*(p,s) to be the two;dimensional fundamental
solution defined in section 2.2, for which case the result of the
limit (5.1.16) is (2ma . v(p)). Thus, the general expression for the

velocity v is of the form [33],

1 row(s) x x(p,s)
v(p) = — ? J —g da(s)
~ 2o N r (p,s)
[v(®) x n(s)] x 2(p,8) [v($) . n(s)] £(p,8)
+ 5 dr(s) =~ < dr(s)€
T r (Pss) r r (Pss)
(5.1.18)

where o = 2, d = 3 and

r@ie) = {X 0 - () %) - K Xy(p) - Xy(s) |

for three-dimensional problems, o = 1, d = 2 and

r(p,s) = { X, (p) - X,(s) X,(p) - XZ(S)}
for two-dimengional problems.

Note that the use of equation (5.1.18) for the evaluation of v
throughout the flowfield requires the knowledge of both v, and v
over I'. Provided that these values are compatible with each other,
i.e. one of them is identical to the value obtained from the solution
of (5.1.2) and (5.1.3) using the other as the prescribed boundary

condition, the specification of both in (5.1.18) is admissible, and
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does not overspecify the problem.

For problems of external flow past finite bodies, we can
consider the region 2 in equation (5.1.18) to be the entire
(infinite) region occupied by the fluid. Then, following section
3.6, the boundary T is divided into two parts: fhe fluid-solid
interface on which the no-slip condition (v = 0) applies and a
surface infinitely remote from (and enclosing) the body on which the
freestream velocity boundary condition (v = v_) applies. The surface

integrals in (5.1.18) can then be evaluated, giving

@(s) x f(p,S)
v(p) = ! 3 da(s) + v (5.1.19)
- 2o r (p,s) ~

Q
The above equation can be recognised as the Biot-Savart law of
induced velocities [36], [66]. Thus we can consider the integral equation
(5.1.18) to be an extension of the Biot-Savart law to a region bounded

by T.

With prescribed values of v in T and known values of w in §,

~ ~

equation (5.1.18) permits the explicit, point-by-point, computation of
the velocity anywhere in the flowfield. Since only the vorticity
distribution in the viscous region of the flow contributes to the
calculation of the velocity, as the integrand in the domain integral
vanishes for w = 0, the solution field can be confined to the viscous
region of the flow. Furthermore, the prescribed boundary conditions
at infinity are now implicitly contained in equation (5.1.18)., as can

be seen in (5.1.19).

5.2 Steady Problems

Before proceeding to the solution of the transient Navier-Stokes
equations as depicted in (5.1.1), it is convenient to discuss the
numerical procedures related to the solution of steady incompressible
viscous flow problems. Although many numerical studies of steady flow

problems employ the time-dependent equations to obtain the desired
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steady-state asymptotically, this approach introduces an additional
dependent variable (the time) into the solution procedure and
consequently additional numerical complexities.

As discussed earlier, the kinematic aspect of the flow is
described by equation (5.1.18). The kinetic aspect of the flow is

represented by the Navier-Stokes equations which, for a steady motion,

can be written in the form [66],

<=

V x g = (v x w - Vh) (5.2.1)

where h is the total head defined by,

2
h=-1pl +‘2’— (5.2.2)

being p the pressure, p the deﬁsity of the fluid and v2 =v .v.

From the definition of vorticity (equation (5.1.3)), it is

clear that

V..w=20 (5.2.3)

Thus, the differential equations (5.2.1) and (5.2.3) for the vorticity
are analogous to the set of equations (5.1.2) and (5.1.3) for the
velocity. Therefore, an integral equation for the kinetic part of the
flow can be obtained by simply replacing v By w and ® by the term

(v xw = Vh) /v in equation (5.1.18). This gives,

1 1 [v(s) x w(s) - h(s)] x r(p,s)
- (1 OO 2OL0
~ 20m v o r (p,s)
[0(8) x n(S)] x r(p,S) [0¢S) . n(8)] r(p,S)
+J = 5 ~ dar (s) -J ~ s > dr(s)}
r r (p,S) r r (p,S)
(5.2.4)

By applying the divergence theorem [13] to the term in h,

Vh(s) x r(p,s) [h(S) n(s)] x r(p,S)
= = dQ(s) = = =~ dr(s)

rd(P,S) T rd(p,s)

f
(5.2.5)

equation (5.2.4) can be rewritten as,
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| =

dQ(s)

9(p) - {

2am

[ [v(s) x w(s)] x x(p,s)
Q

rd(p ,S)

<

[0(5) x n(8)] x r(p,S) - [w(S) . n(8)] r(p,S)
+ J = = =~ 3 = = = dr(s)
r r (p,S)
1 [b(s)n(s)] x £(p,8)
- = J = g = dr(s) } (5.2.6)
vor r (p,S)

The calculation of w throughout the flowfield can be carried out
iteratively using the above equation, for known values of v in Q@ and w
and h in I'. The contribution of the inviscid part of the flow to the
computation of w anywhere in the flow is zero (as it was in the
calculation of v). Thus, only the values of v in T (which are the
prescribed boundary conditions) and in the viscous region of the flow
are needed in the calculation of w.

We can now devise a numerical formulation for the solution of
steady incompressible viscous flow problems using equations (5.1.18)
and (5.2.6), employing basically the same procedures as derived in
chapter 3. For simplicity, only the two-dimensional case is considered,
being extension to three-dimensional and axisymmetric problems carried
out by using the concepts outlined in sections 3.8 and ‘3.9, respectively.
The present formulation is based on the one discussed in [93].

For the present case, the flow motion is described by the following
set of scalar equations, obtained by specialising equations (5.1.18)

and {5.2.6) for two~dimensions,

w(s) Y, (p,s)
ﬁ@>=—L{[ 2 aa(s)
27 q T (p,s)
k,(S) ¥.(p,S) + k.(38) Y, (p,S)
+J 1 1 > 2 2 dI‘(S)} (5.2.7)
T r (pss)
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w(s) Y. (p,s)
v,() = = { [ S dn(s)
27 Q r (P,S)

i f k,(8) ¥,(p,8) - k,(8) Y (p,S)
r

dr(s) (5.2.8)
rz(P,S) }

v,(s) w(S) Y (p,s) + v, (s) w(s) Y, (p,s)
w(p) = 1—-{ 1-[ L i 2 2 dn(s)
2n v g r (p,s)
[ 0 [ () ¥,(p,8) + ny(8) ¥,(p,S) ]
_ 5 dr(s)
r r (p,S)
L 1 B0, Y,(,8) - n,(8) Y, (p,9) ]
_1 . dr<s)}
Vo r (p,S) (5.2.9)
where:
Yi(P9S) = Xi(P) - Xi(s) » 1 =1,2

kl(S) = vl(S) nl(S) + VZ(S) n2(S)

kz(S) vl(S) n2(S) - VZ(S) nl(S)

The surface I' is discretised into S boundary elements, with Nb
boundary nodes, and the domain { into L cells, with Ny cells nodes.
Let us also assume that the values of the variables within each
boundary element and cell are related to their nodal values through
suitable interpolation functions, which are at least linear. This
assumption is important since it permits us to obtain a relation
between boundary and internal vorticities using equation (5.1.18), as
will be shown in what follows,

The N, cells nodes may be divided into Ni internal nodes in £ but
not in I' and the remaining Nb nodes in ', which coincide with the
boundary nodes. Applying equations (5.2.7) to (5.2.9) at the Ni internal

nodes, replacing the integrals in these equations by summations of
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integrals over individual boundary elements and cells and employing
numerical integration schemes to evaluate these integrals (see sections

3.1 and 3.3), we obtain matricial equations of the form,

(5.2.10)

<
1

Vi~ Frii Y4 Y Ckib “b T Ykivp Vb T Pkib Yob

€
i

o = Ajg (VW)p F By (Vpwlp + Dy By F Epp oy (5.2.11)

where k = 1,2 and the subscripts b and 1 stand for boundary and internal
quantities, respectively, being 2 = b+i, The notation adopted implies
that the matrix ?ib’ for instance, relates the contribution of th=
boundary values of w (Tb) to the internal values of w (?i)' All matrices
in the above equations depend only on geometrical data and physical
properties of the fluid, thus they need to be computed only once

during the whole iteration process.

Note that the result of the domain integral in (5.2.7) and
(5.2.8) was separated into two parts in (5.2.10), being the first term
in the right-hand side representative of the contribution of the internal
nodes and the second term that of the boundary nodes.

The first two terms in the right-hand side in equation (5.2.11)
involve the field variables v W and Vyw. The use of these two variables
(instead of Vis Yy and w) was suggested in [93] because they lead to
coefficient matrices A and B that are proportional to the coefficient
matrices B and gk in equation (5.2.10), as can be seen from (5.2.7) to
(5.2.9). As a consequence, it is not necessary to evaluate and store é an
B; since these matrices are usually large, this feature leads to a
significant reduction in computer time and storage requirements.

Equation (5.2.10) gives a set of 2Ni algebraic equations which
relates the values of vy and v, at the Ni internal nodes to the NR values

of w in @ and the Nb boundary values of vy and Voo A similar set of

equations can be obtained by applying equations (5.2.7) and (5.2.8) to the

Nb boundary nodes,
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C, v = F w

S b T Fini 95t Cuvb %t Mevb Vbt Fipp Vop (50212

where the coefficients of the diagonal matrix 9k can be determined
through a limiting process (see equations (2.4.8) and (5.1.16)).

Since the appropriate boundary conditions of the problem are
prescribed velocities,equation (5.2.12) gives a set of ZNb algebraic
equations in which w, and w, are the only unknowns. Reminding, however,
that the prescribed velocities are linked through equations (5.1.2) and
(5.1.3), in the sense that for a given distribution of w and the
specification of (say) v there is one and only one value of v, which
satisfies (5.1.2) and (5.1.3), we note that only Nb equations of the

above set are independent of one another, These Nb equations can be

written in the form,

Wy = Qp; w5 + By (5.2.13)

where, assuming that the boundary values of v, are used to evaluate

the W values, we have

_ -1
i =~ C1bb Fibi (5.2.14)
= [e (¢ -He ) Tvy - @ 2y ) v, (5.2.19)
% b C1 7 Hppy) 4V 1bb 2b -2.

Analogously to (5.2.10), equation (5.2.11) gives a set of Ni
algebraic equations relating the values of w at the Ni internal nodes
to the N‘Q values of vy and V,w in Q and the Nb boundary values of w

and h. Applying equation (5.2.9) to the N, boundary nodes gives,

b

Cup = Ay (wpw)y + By (vpw)y + Dy by + By (5.2.16)

~

This equation may be rearranged as,

r -l -1
by =[ Dy (€= B) Ty = 0y ) (), = (B B0) (v,
(5.2.17)

Since Wy vy and v, are all expressible in terms of ws (see equations
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(5.2.10) and (5.2.13)),the above set of N equations can ultimately

be seen as an expression of the hb values in terms of non-linear

functions of w, .

-~

The previous development demonstrates that, with properly
specified velocity.boundary conditions, all the‘unknowns in equétions
(5.2.7) to (5.2.9) (which are equivalent to (5.1.2)? (5.1.3) and (5.2.1))
are expressible in terms of w, . Consequently, steady incomp;essible
viscous flow problems can be sblved using an iterative procedure
involving equations (5.2.7) to (5.2.9), starting with a set of assumed
valueé of w,. This‘iterativé procedure can be summarised as follows:
a) Discretise the boundary T into S elements and Nb Boundary nodes

and the domain @ into L_célls, with sz(¥ N, + Ni) éells nodes;

E,

b) Compute the coefficients of matrices C, D, F, G, H and P

in equations (5.2.10) to (5.2.12) and (5.2.16) usiﬁg the
specified values of geometrical data and physical properties of
the fluid. Of these, matrices‘P(Ni x Nb), F(Ni x Nb)’ F(Ni X‘Ni)
and 9(Ni x Nb) are stored for subsequent use; the matrices
appearing in equation (5.2.17) (dimensions: Nb X'Nb'+ Z(Nb x Nz))
are computed and stored, together with matrix 9(Nb X Ni) in
(5.2.13). Introduce the preséribed velocity boundary conditions
to calculate vector T(Ni), cbrresponding to the sum of the last
two terms in equatioﬁ (5.2.10), and vector B(Nb) in (5.2.13), all
of which aré aléo stored; |

c) Multiply matrix Q by the assumed (or previously calculated) values

of w, and add to vector T to find the vorticity boundary values Wy

-~

(equation (5.2.13));

d) Multiply matrix ? by the assumed (or previously calculated) values
of Wy add to the product of matrix 9 by the values of w calculated
in the previous step and add the total to vector T to find the

velocity values Vi (equation (5.2.10));
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e) Multiply the matrices appearing in equation (5.2.17) accordingly
by the new values of Tb’ (Vlw)l and (V2w)2 previously computed
and add the result of the products to find the hb values;

f) Employ the prescribed velocity boundary conditions and the assumed

(or previously calculated) values of W, together with the values

of Wy v and hb computed in steps c) to e), to find a new

ki
distribution of ws through equation (5.2.11);

g) Compare the actual values of ws with their previous values to
check 1f their difference is less than a prescribed tolerance, so

the iteration cycle can be terminated;

h) Return to c).

5.3 Transient Problems

As discussed in section 5.1, transient problems of incompressible
viscous fluid motion are governed by the set of equations (5.1.1) to
(5.1.3). An integral equation equivalent to the kinematic part of the
flow as represented by equations (5.1.2) and (5.1.3) has already been
derived in section 5.1 (equation (5.1.18)). In what follows, we derive
an integral representation for the kinetic aspect of the flow and discuss
numerical procedures for the solution of the resulting set of integral
equations [38], [92].

Rewriting the vorticity transport equation (5.1.1) as,

<l

V2 - %- = = - V x (v x w) (5.3.1)

~

and comparing to equation (2.5.1), we note that (5.3.1) can be
interpreted as a (non-linear) non-homogeneous diffusion equation, the
non-linearity being included through the convective term in the right-
hand side. Thus, an integral equation equivalent to (5.3.1) can be

readily obtained as (see equation (2.8.6)),
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t

F *
w(p,tF) + Vv [ J w(s,t) [ Vu (p,S,tF,t) . n(S) ] dr(s) dct
- .

%

te * v
=V ] J u (P’S’tF’t) {[ Vv x ?(S,t) :I X ?(S)} dr(s) dt
T .

%

+ f TO(S’tO) u*(p,s,tF,tO) da(s)
Q

t
[ *
+ [ ¥ [ {v x [ v(s,t) x w(s,t) ] }u (p,s,tF,t) do(s) dt (5.3.2)
to il

where u (p,s,tF,t) is the fundamental solution to the diffusion equation,

defined in (2.8.3).

The calculation of w throughout the flowfield,at any time t, can be
carried out iteratively using the above equation. Following a discussion
in page 41, we note that the third integral in (5.3.2) represents the
effects of an initial vorticity distribution. Since a stationary fluid
cannot co-exist with a non-zero vorticity field, the vorticity
distribution changes as a result of a convective process, represented
by the last term in (5.3.2). Finally, the boundary integrals in (5.3.2)
include the effects of generation (or depletion) of vorticity at the
surface I', being this process a result of the no-slip condition (see
discussion in page 7). The generated vorticity leaves the boundary
only through diffusion.

4s for the steady-state problem the contribution of the inviscid
region of the flow to the computation of w anywhere in the flow is zero.
Thus, only the values of v along I' and in the viscous region of the flow
are needed in the calculation of w.

A numerical formulation for the solution of transient problems
of incompressible viscous fluid motion as represented by equations (5.1.18)
and (5.3.2) will now be derived, following the ideas discussed in [38] and

[92] and employing basically the same procedures presented in chapters 3
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and 4, For simplicity, only the two-dimensional case is considered,
thus the flow motion is described by the scalar equations (5.2.7) and

(5.2.8) for the velocity and the following scalar equation for the
vorticity,

w(p,ty) =[ wo(8,t,) u*(p,s,tF,to) da(s)
Q

t
F d
[ f sty [0 w0 )
.to Q

o r %
* 3%, () L v,(s,t) w(s,t) ] } u (p,s,ty,t) do(s) dt

.
t Ju (P’S’t ,t)

+ v I F J [ u*(p,s,tF,t) Egé%éél-- 0(8,t) ——res F ] ar(s) dt
b /T

(5.3.3)
Integrating by parts the second integral in the above equation
gives,
F

t
a
Jto L {ﬁ?s-)_ [Vl(-"',t) w(s,t) |

+

sz(s) [Vz(s,t) w(s,t) ]} u*(p,s,tF,t) do(s) dt

t
f F [ u*(p,S,tF,t) w(S,t) [ vl(S,t) n,(8) + v,(8,t) n,(S) ] dar(s) dt
T

to

i

*

t du (p,s,t,t)
fFJ w(s,8) [ v (5,0 e
Q Bxl(s)

to

Bu*(p,s,tF,t)
vz(s,t) ] dQ(s) dt (5.3.4)
axz(s)

+

The surface T is discretised into S elements and Nb boundary modes,
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the domain Q sub-divided into L cells, with NZ(=N1 + Nb) cells nodes,
and the time dimension sub-divided into F time steps. Let us assume,
as in the previous section, that the values of the variables within
each boundary element and cell are related to their nodal values
through suitable interpolation functions. For simplicity, the flow
variables are assumed to remain constant on time within each time step,
this assumption corresponding to the use of constant time interpolation
functions as discussed in section 4.1.1. Clearly, linear or higher
order time interpolation functions can easily be introduced, following
sections 4.1.2 and 4.1.3. The stepwise variation of the functions
permits the analytical evaluation of the time integrals in equation
(5.3.3). Applying this equation at the Ni internal nodes in Q but not
in T (accounting for (5.3.4)), replacing the resulting spéce integrals
by sumnations of integrals over individual boundary elements and cells
and employing numerical integration schemes to evaluate these integrals

(see section 4.1,4), we obtain the following equation in matricial form,

1 ~ ~

~

Wi = Apy (o), + ]fii (vgudg *+ Doy by + By wy + T; (5.3.5)
where matrices A, B, D and E are dependent only on geometrical data,
physical properties of the fluid and the time step value, thus they all
need to be computed only once during the whole time process (for a
fixed time step value). Vector ?i contains the contribution of the
vorticity distribution at the beginning of the step. Note that if (say)
linear time interpolation functions are employed, the second and third
integrals in equation (5.3.3) also contribute to vector ?i'

Equation (5.3.5) gives a set of Ni algebraic equations relating

the values of w, at the Ni internal nodes to the NZ values of vlm and

vow in 2 and the Nb boundary values of Pb and wp being hb = (Sm/Sn)b.

In principle, an assumed initial distribution of wy at the

beginning of the process, together with prescribed velocity boundary
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conditions, permits the iterative use of equation (5.3.5) to determine
a new distribution of wy at the end of the first time step, and its
subsequent progressing with time. Initially, the distribution of wy
at the beginning of the time step (together with the velocity boundary
conditions) is employed to calculate the velocity values at the Ni
internal nodes through (5.2.7) and (5.2.8), whose matricial form is

repeated here for convenience,

Vii T Frie %0t B Vin * Tiin Von (5.3.6)
Unlike the steady-state case, we cannot now apply equations
(5.2.7) and (5.2.8) to the Nb boundary nodes and directly enforce
satisfaction of the velocity boundary conditions. This is due to the
fact that in general, the velocity ka calculated through (5.2.7) and
(5.2.8) using the vorticity distribution obtained from equation (5.3.3)
need not necessarily satisfy thé no-slip condition at the solid
boundaries. In particular, there may be a slip component tangential to
the surface. Thus, according to the discussion in page 7, sufficient
vorticity must be produced at the boundary I' to enforce that the
velocity field v due to this new vorticity, when combined with that
previously determined, reduces the slip velocity to zero. According
to the classical definition of the aerodynamics theory [36], a surface

across which tangential velocity changes abruptly is a vortex sheet.

The velocity induced by the vortex sheet is given by [36},

dar(s) (5.3.7)

S) Y S
v.(p) = - 1J w($) ¥, (p,5)
1 2
r r (p,S)

dr(s) (5.3.8)

;é(P) - Pl

1 w(S) Yl(P:S)
2 r r (P,S)

where Yi(p,S) = Xi(p) - Xi(S) (i=1,2).
The requirement that the tangential velocity as calculated from

(5.2.7)and (5.2.8) plus (5.3.7) and (5.3.8) satisfies the no-slip

v



228

condition then produces the equation,

v @ = £, @ [v® + T @] + ,®[v,@) +¥,®] (5.3.9)
where ti(P) are the components of the unit vector tangent to the
surface T at P.

Applying the above equation to the Nb boundary nodes yields the

following system of algebraic equations,

By + 0wy = Q) + Ry v + 20 v (5.3.10)

-~ ~ ~

where the diagonal matrix C accounts for the singularity of the
kernels in the integrals in (5.3.7) and (5.3.8).

This kinematic treatment of the boundary vorticity distribution,
i.e, its calculation through an enforcement of the no-slip condition
at solid boundaries,was first stated by Lighthill [31] and later expressed
numerically in [34], [35], [37] and [94] . Note that the vorticity
generation (or depletion) at the solid boundaries is prescribed rather
than actual vorticity values. This avoids employing one-sided difference
formulae to calculate vorticity boundary values from values of velocity
(or stream function) at points in the vicinity of the boundary, as is
usually done in prevailing methods of solution.

A set of N equations similar to (5.3.5) can be cobtained by

b
applying equation (5.3.3) at the Nb boundary nodes,

C w = Abz(vlw)g + Bbz(vzw)2 *+ Dy hb +E o+ T (5.3.11)
This equation may be rearranged as follows,
Dop Bp = (C = Eppuy = A (vjw)y = By (vpw)y = Ty (5.3.12)

The previous development shows that, with properly specified
velocity boundary conditions, transient incompressible viscous flow
problems can be efficiently solved by using an iterative process

involving equations (5.2.7), (5.2.8) and (5.3.3). Consider that some
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time has elapsed since the fluid was set in motion, the actual values

of all flow variables are known and the no-slip condition on T is

satisfied. The following procedure then constitute an iteration loop

to advance the solution by one time step:

a)

b)

c)

d)

e)

£)

g)

Compute an initial distribution of wy using equation (5.3.5),

being the Wy values evaluated by directly taking the equation

to the boundary;
Compute new values of Vies using equation (5.3.6);
Compute new vorticity boundary values using equation (5.3.10),

where the (known) right-hand side corresponds to the actual slip

velocity;

Compute ney values of hb using equation (5.3.12);

~

Compute new values of w, using (5.3.5), employing the values

of v ;s

Verify convergence of w3

Wy and hb calculated in steps b) to d);

Return to b).
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6. PROGRAMMING

This chapter describes the computer programs developed throughout
this work, employing the theory and numerical procedures derived in
chapters 3 and 4. Some results of applications of the programs have
already been presented in these chapters.

In developing the programs related to chapter 4, for transient
problems, emphasis was placed in simplicity of coding rather than in
maximum computer efficiency. The same modular structure was adopted for
all programs. In this way, the various moduli that form the programs
could be easily modified (for instance, for the testing of different
numerical integration schemes, interpolation functions, etc.) and
readily implemented. This strategy, however, led to some limitations
of the actual programs: when solving practical problems such as the
turbine disc analysis of example 4.5.4, the use of disc files was
obviouslv necessary to allow for a large number of cells to be employed
in conjunction with time-marching scheme BEM1A and to avoid the need of
(unnecessarily) recomputing matrices, thus reducing the required computer
CPU time for scheme BEM2. Furthermore, for problems involving a large
number of boundary elements like this one, more effective system solver
algorithms exploring the sparsity.of the system matrix should also be
developed. These and other suggestions for improving the efficiency of
the programs are further discussed in chapter 7.

The main characteristics of the programs developed are as follows:

Program BEM2DSP: solution of two-dimensional steady potential problems
governed by Laplace's or Poisson's equation. Includes constant and

linear boundary elements and allows for Dirichlet, Neumann, Cauchy (mixed),
Robin or free surface boundary conditions, internal sources, finite,
infinite or semi~infinite domains. The theory and examples of

applications are discussed in sections 3.1 to 3.7
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Program BEM3DSP: solution of three-dimensional steady potential
problems governed by Laplace's equation, employing constant elements
(flat triangles). Allows for Dirichlet, Neumann, Cauchy or Robin

boundary conditions and finite or infinite domains (section 3.8);

Program BEMASSP: solution of axisymmetric steady potential problems
governed by Laplace's or Poisson's equation. Presents the same

features as the two-dimensional pregram (section 3.9);

Program BEM2DTP1l: solution of two-dimensional transient potential
problems governed by the diffusion equation using time-marching schemes
BEMIA or BEMIB with linear boundary elements and triangular cells.
Allows for Dirichlet, Neumann, Cauchy or Robin boundary conditions,
finite or infinite domains, stepwise constant u and q, stepwise linear

u and q or stepwise linear u and quasi-quadratic q (sections 4.1 to 4.5);
Program BEM2DTP2: same, using time-marching scheme BEM2;

Program BEMASTP1: solution of axisymmetric transient potential problems
governed by the diffusion equation using time-marching scheme BEMIA
with linear boundary elements, triangular cells and stepwise constant
u and q. Allows for Dirichlet, Neumann, Cauchy or Robin boundary

conditions, finite or infinite domains (section 4.6).

6.1 Description of Program BEM2DSP

The macro flow diagram of the main structure of thz program is
presented in figure 6.1.1, and the subroutines called by it are shown
in figure 6.1.2. The operations performed in each subroutine are

described in what follows.

I SUBROUTINE INPUT
In this subroutine, all the input data required by the program

are read and printed. The input data consist of the following groups

of cards:
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G

INPUT

BLOCKD

GENER

FMAT

SLNPD NO

M1=1000 YES SNORM SNA<S>

NO YES

REORD

INTER

OUTPT

=D

Figure 6.1.1 - Macro flow diagram of program BEM2DSP
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INPUT
(1)
BLOCKD
(1I1)
GENER
(III)
SYMMET (a)
INTEC(b)
FMAT INLOC(c)
(Iv)
INTEL(d)
INLOL(e)
' INTD(£)
BEM2DSP SLNPD
"
SNORM
(v1)
REORD
(VII)
SYMMET (a)
INTEC(b)
INTER
(VIII) INTEL (e¢)
INTD(d)

OUTPT
(IX)

Figure 6.1,2 - Subroutines called by program BEM2DSP
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READ: ITP, N, NE, L, NC, NN, M, NS, MC, M1, FA
ITP: code for type of element (0O: constant; l:linear);

N: number of extreme points of boundary elements (including double
nodes) ;

NE: number of boundary elements; .

L: number of internal points where the potential and its derivatives
in the X and X, directions are required;

NC: number of cells;

NN: number of internal points to define the cells;

M: number of surfaces;

NS: code for type of symmetry (O: no symmetry; l:symmetry with resgpect

to X,3; 2:symmetry w.r.t. X3 3:anti-symmetry w.r.t. X3 4:anti-symmetry

1;
W.r.t. X3 S5:symmetry w.r.t. % and Xy5 6:anti-symmetry w.r.t. Xy and Xy 3
7:symmetry w.r.t. X5 anti-symmetry w.r.t. Xy3 8:anti-symmetry w.r.t.

X,, symmetry w.r.t. xz);

1
MC: code for type of region (0: bounded; 1:unbounded);

Ml: code for type of boundary conditions of the problem (0:Dirichlet,
mixed or Robin; number of boundary node with specified potential value:

Neumann; 1000:free surface);

FA: specified potential value (Neumann boundary conditions only).

If the boundary conditions are of the free surface type,
READ: NFS, NLS, SN
NFS: number of first node on the free surface;
NLS: number of last node on the free surface;

SN: maximum acceptable error for free surface locatiom.

READ: (TPR(I), NL(I), NFN(I), NLN(I), I=1,M)
IPR(I): code for type of each surface (0: closed; 1: open);

NL(I): number of last node on each surface;
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NFN(I): code for the first node on each surface (l: node located over
a symmetry axis; 2: node located over an anti-symmetry axis; O: otherwise);

NLN(I): code for the last node on each surface (as previously).

The above data are necessary for the automatic generation of the
connectivity of the boundary elements since multiply-connected regions
can be considered. By closed surface, we mean a surface whose first

and last nodes form a boundary element (see figure 6.1.3).

X2 x2
6 5 I 6 5
7 —-—
! . 1 a) fﬁ b)
!
|
]
I
8 'r e 4 : ¢ 4
]
1
{
|
1
!
L o - X4 & A - X4
1 2 3 1 2 3

Figure 6.1.3 - Types of surfaces: a) Closed; b) OQpen

READ: (X1(I), X2(I), I=1, N)
X1(I), X2(I): cartesian coordinates of extreme points of boundary

elements (coincident with the boundary nodes for the linear case).
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The sequence is given in counter—clockwise direction for external

surfaces or in clockwise direction for internal surfaces.

READ: (KODE(I), FI(I), TO(I), I=1, N1)

N1: parameter that equals NE for constant elements or N for linear
elements;

KODE(I): code for type of boundary condition at each node (0: prescribed
potential; 1: prescribed flux; 2: Robin-type);

FI(I): prescribed value (the value of a/b in equation (3.2.1) or h in
equation (3.2.12) if KODE(I)=2);

TO(I): the value of d/a in equation (3.2.1) or u_ in equation (3.2.12)

(KODE (I)=2 only).

If there are internal sources,
READ: (X1(I), X2(I), I=N+1, N+NN)

X1(I), X2(I): cartesian coordinates of cell nodes.

READ: (NO1(I), N0O2(I), NO3(I), N4(I), (PI(J), J=1,7), I=1,NC)
NO1(I), NO2(I), NO3(I): connectivity of cell I;

N4(I): code for variation of function p (equation (3.3.1))

within each cell (0: constant; 1: given by points);

PI(J): value of function p at each integration point in the cells

(if N4(I)=0, only the value of PI(l) is needed).

If the potential and its derivatives with respect to %y and Xy
are required at a number of internal points,
READ: (X1(I), X2(I), I=N+NN+1, N+NN+L)

X1(I), X2(I): cartesian coordinates of internal points.

IT SUBROUTINE BLOCKD

In this subroutine, the coordinates of integration points and

the weighting factors for the Gaussian and Hammer's numerical integration

methods are given and kept in COMMON.
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III SUBROUTINE GENER

The boundary elements connectivity is generated and their length
calculated. If constant elements are employed, the coordinates of the
boundary nodes (mid—-point of each element) are computed. A parameter
for the symmetry loop is set and, if there are internal sources in the
problem, the area of the cells is also calculated. All values are
printed, so that they can be checked for input errors.

For the case when linear elements are employed, the discontinuities
in the boundary conditions at cormers or singular points are taken into
account through double nodes, i.e. nodes with the same coordinates but
different boundary conditions. The zero-length elements formed by
them do not affect the computation and therefore are not considered as
elements in the program. Note that it is not possible to specify the
potential at both nodes forming a double node since this would cause

the system matrix to be singular.

v SUBROUTINE FMAT

This subroutine computes the coefficients of matrices 9 and ?
in equation (3.1.8) and introduces the prescribed boundary conditions
of the problem in such a way that the system matrix K and the vector F
of independent terms (equation 3.1.11)) are directly assembled.

If the problem under consideration presents symmetry (or anti-
symmetry), only one half or one quarter of the actual region needs to
be discretised and so, for each position of the source point, we need
‘to reflect the discretised region over the axes of symmetry (or anti-
symmetry) in order to form the final system of equations. This means
that although only NE (or N) positions of the source point are considered,
the integration is performed over the entire region (2NE or 4NE elemenfs).

The resulting coefficients, however, are directly condensed such that

the final system of equations is of order NE x NE (or N x N). For
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computational purposes, it is more convenient to reflect the source
points instead of the boundary elements, and this strategy is adopted
in the program.

For Neumann problems, a ‘normalising' condition (see example

3.1.2) is imposed and the order of the system of equations reduced

by omne.

Iva SUBROUTINE SYMMET

The coordinates of the source point are reflected over the

symmetry axes according to the type of symmetry of the problem.

Ivw SUBROUTINE INTEC
The off-diagonal coefficients of matrices G and H, for constant

elements, are computed through numerical integration (see equations

(3.1.15)).

IVe LUBROUTINE INLOC
The diagonal coefficients of matrix G, for constant elements,
are computed through analytical integration (equation (3.1.16)). The

diagonal coefficients of matrix H are directly taken as .

Ivd SUBROUTINE INTEL

Same as INTEC but for linear elements (see equations (3.1.19)).

Ive SUBROUTINE INLOL
Computes only the diagonal coefficients of matrix G, for linear
elements, through analytical integration (equation (3.1.21)). The

diagonal coefficients of matrix H are computed in FMAT through constant

potential considerations (equation (3.1.10) or (3.6.9)).

If there are intermal sources,
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IVE - SUBROUTINE INTD
Computes the contribution of the internal sources to the
vector F of independent terms through numerical integration (equation

(3.3.3)). The Jacobian in this equation is simply twice the area of

the cell.

Vv SUBROUTINE SLNPD
This is a standard subroutine to solve a system of equations
using Gauss elimination, considering a full, non-symmetric, non-positive

definite matrix [89].

If there is a free surface,
VL SUBROUTINE SNORM

The calculated potential at every nodal point along the free
surface is compared with its elevation; if the difference (SNA) between
these two values is greater than the maximum acceptable error (SN),
this difference is algebraically added to the elevation of the nodal

point and the program returns to subroutine GENER to recalculate the

length of the modified elements.

VII SUBROUTINE REORD

In this subroutine, the arrays containing the prescribed and
calculated boundary values of u and q are reordered. If a Robin-type
condition was specified, the values of q are computed through

equations (3.2.1) or (3.2.12).

If there are internal points where the values of u, 8u/8x1 and
8u/8x2 are required,
VIII SUBROUTINE INTER

The values of u, au/ax1 and 8u/8x2 are computed by using
equations (2.4.5) and (2.4.9). The kernels au*(p,S)/Bxi(S) and

*
aq (p,S)/axi(S) (i =1,2) in (2.4.9) are of the form,
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' (p,S) _ X.(p) -X.(8)

8Xi(s) r‘(p,S)

Bq*(p,S) _ 2 Y(p,5) [Xi(P) - Xi(S)] ) ni(s)
ox. (5) - r*(p,S) 2.9

vhere Y(p,5) = [X.(p) - X.(S)] n () + [X (») - X,(8)] n,(S),
1 1 1 2 2 2
being ni(S) the components of the unit normal vector.
This subroutine calls SYMMET, INTEC or INTEL (where the above

coefficients are also calculated) and INTD, all of which have been

previously described.

IX SUBROUTINE OUTPT

This subroutine outputs the results for boundary and required

internal points.

6.2 Description of Program BEM3DSP

The structure of this program is simpler than the previous one,
since it does not include options of different types of elements (only
flat triangles with piecewise constant u and q variations were
implemented), it does not consider free surface problems nor anti-
symmetry. Furthermore, the connectivity of the boundary elements is
given as input data instead of being automatically generated. But
all these features can be easily included in the program since they
present no theoretical problems and were not considered only for the
sake of simplicity.

The macro flow diagram of the main structure of the program is
the same as previously (figure 6.1.1) without the IF statement and
the subroutines called by it are the ones labelled I to V and VII to IX
in figure 6.1.2, with subroutine FMAT(V) calling only SYMMET(a), INTEC(b)
and INLOC(c) and subroutine INTER(VIII) calling SYMMET(a) and INTEC(b).

The operations performed ir. each subroutine are now as follows:
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I SUBROUTINE INPUT

READ: N, NE, L, NS, M1, FA

N: number of points to define the boundary elements;

NE: as in 6.1;

L: as in 6.1;

NS: code for type of symmetry (0: no symmetry; l: symmetry with respect

to the plane x2—x3; 2: symmetry w.r.t. X)"Xq3 3: symmetry w.r.t. xl—xz;

4: symmetry w.r.t. x2--x3 and X)"Xq3 5: symmetry w.r.t. x2--x3 and X17Xy3

~Xy» xl—x3 and

6: symmetry w.r.t. X "X, and X "X43 7: symmetry w.r.t. X,
X,"X3) 3

Ml: code for type of boundary conditions of the problem (0: Dirichlet,
mixed or Robin; number of boundary node with specified potential value:

Neumann) ;

FA: as in 6.1.

READ: XL(I), X2(I), X3(I), I=1, N)

X1(I), X2(I), X3(I): cartesian coordinates of points defining the

boundary elements.

READ: (NO1(I), N02(I), NO3(I), I=1, NE)
NO1(I), NO2(I), NO3(I): connectivity of the boundary elements. These
three values are given in counter-clockwise direction for internal

surfaces or in clockwise direction for external surfaces.

READ: (KODE(I), FI(I), TO(I), I=1, NE)

As defined in section 6.1.

If the potential and its derivatives with respect to X5 X, and X, are
required at a number of internal points,
READ: (X1(I), X2(I), X3(I), I=N+1, N+L)

X1(I), X2(I), X3(1): cartesian coordinates of internal points.
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II  SUBROUTINE BLOCKD
In this subroutine, the coordinates of integration points and
the weighting factors for Hammer's numerical integration scheme are

given and kept in COMMON.

ITI SUBROUTINE GENER

The coordinates of the boundary nodes (centroid of each element)
are calculated. A parameter for the symmetry loop is set. The area
and unit normal vector for each boundary element are computed, being

the latter obtained through the cross-product,

|NO2(I)-NO1(I)| x [NO3(I)-N01(I)|
[[N02(T)-NO1(I)| x [NO3(I)-NOI(T)|]

n(I) =

All the above values are printed, so that they can be checked for

input errors.

Iv SUBROUTINE FMAT
All remarks made for two-dimensional problems are also valid here,
being the off-diagonal coefficients of matrices G and H now computed

through equations (3.8.7), the diagonal coefficients of G computed by

using (3.8.13) and the diagonal coefficients of H directly taken as 2m.

\ SUBROUTINE SLNPD

As in section 6.1,

VI SUBROUTINE REORD

As in section 6.1.

If there are internal points where the values of u, Bu/Bxl,

Bu/Bx2 and 3u/3x, are required,

3
VII SUBROUTINE INTER
* *
As in 6.1, being the kernels 3u (p,S)/Bxi(S) and o9 (p,S)/Bxi(S)

(i=1,2,3) in equation (2.4.9) of the form,
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out(p,s) i@ KB

Bxi(S) - r3(p,S)

0t (p,s) | @S [xi<p)—xi(s)]_ n, (8)
ax, (5) - r3(p,S) r>(p,S)

where Y(p,8) =[X, (=% ()] n,(8) + [X(p)-%,(5)] n,(5)
+ [XB(P)—X3(S)] n3(S) and ni(S) are the components of the unit

normal vector.

VIII SUBROUTINE OUTPT

As in section 6.1.

6.3 Description of Program BEMASSP

The structure of this program is exactly the same as the one for
two-dimensional problems (see figure 6.1.1), as well as the subroutines
called by it (figure 6.1.2). Note, however, that the system of
coordinates is now cylindrical instead of cartesian, and that some

of the subroutines undergo the following modifications:

I SUBROUTINE INPUT

In the first data card, it should be noted that since symmetry
with respect to the Z-axis (the axis of revolution) is implied in the
formulation, the parameter NS refers only to the R-axis and can take

the values 0 (no symmetry), 1 (symmetry) or 2 (anti-symmetry).

IT SUBROUTINE BLOCKD

Apart from the data mentioned in section 6.1, the coefficients
of the polynomial approximations of the complete elliptic integrals

(see appendix A) are also given.

IVb SUBROUTINE INTEC

The off-diagonal coefficients of matrices G and H, for constant

elements, are computed through numerical integration as (see equations
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(3.1.6), (3.1.15) and (3.9.7)),

L4 .
B3 7 3 kil 9 R Y
b4 .
Gy = 7 kil 4y Re Wi

— —%
where u and q are given in (3.9.4) and (3.9.6), respectively.

Ive SUBROUTINE INLOC

The length of the boundary element under consideration is tested
to see if it satisfies equation (3.9.13). If this is not so, the element
is divided into a part of length L around the singularity fulfilling
condition (3.9.13) and where approximations (3.9.11) and (3.9.12) are
valid and the remainder which is to be numerically integrated. This:
numerical integration is carried out by calling subroutine INTEC while
the contribution of the part around the singularity (the whole element
if equation (3.9.13) is initially satisfied) is computed through
analytical integration (equation (B.4) or (B.5))ﬂ The diagonal
coefficients of matrix H are now computed in FMAT through constant

~

potential considerations (equation (3.1.10) or (3.6.9)).

Ivd SUBROUTINE INTEL

Same as INTEC but for linear elements, being Eij and Gij now

given by (see equations (3.1.6), (3.1.19) and (3.9.7)),

4
h®._ P =% .m
ip = 32 kil Uk %% B Wi
m 2p & —* m
8ip T2 2 ik %% R Yk

where the interpolation functions ¢ are given in (3.1.17).

Ive SUBROUTINE INLOL

Same as INLOC but for linear elements, thus the contribution

of the analytically integrated part of the element to the diagonal
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coefficients of matrix G is given by (B.11), (B.12), (B.14), (B.15) or

(B.16).

IvE SUBROUTINE INTD

Same as in section 6.1, being the contribution of the internal
sources to the vector F of independent terms now given by (see

equations (3.3.2) and (3.3.3)),

J_pG)E7Pﬁ)R®)dmw
Q

VIII SUBROUTINE INTER

Only the value of function u is computed at the required
internal points, If its derivatives with respect to the R and Z
directions are also required, expressions for the kernels
30 (p,5) /0R(S), 3T (p,S)/02(S), 87 (p,S)/BR(S) and g (p,S)/d%(S),

although cumbersome, can be easily derived.

6.4 Description of Program BEM2DTP1

The macro flow diagram of the main structure of the program is
shown in figure 6.4.1, and the subroutines called by it are depicted

in figure 6.4.2. The operations performed in each subroutine are as

follows:

I SUBROUTINE INPUT

The input data required by the program consist of the following

groups of cards:

READ: ITP, N, NE, L, NC, NN, M, NS, NBC, NUO
ITP: code for type of analysis (1l: stepwise constant u and q, scheme
BEM1A; 2: same, scheme BEMlB; 3: stepwise linear u and q, scheme BEMIA;

4: same, scheme BEMIB; 5: stepwise linear u and quasi-quadratic q,

scheme BEM1A; 6: same, scheme BEMI1B);
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)

INPUT

BLOCKD

GENER

I

/\ DO 1=1l, NBC >

FMAT

*—< DO J=1, ITM(I) >

FVEC

Figure 6.4.1 - Macro flow diagram of Program BEM2DTP1
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INPUT
(1)
BLOCKD
(I1)
GENER SYMMET (a)
(III)
INANC(b)
INMATC(c)
INANL(d) ——  INANC
FMAT INMATL(e)
(V) - |
INANQ (£) __  INANC
INMATQ (g)
ANG (h)
BEM2DTP 1§ FVEC INCON1(i)
] v
M INCON2(J)
BOUNCD
(VD)
INPD
(VII)
INTER
(VIII)
OUTPT
(IX)
TEAD
(x)

Figure 6.4.2 - Subroutines called by program BEM2DTP1
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N: number of extreme points of boundary elements (including doubles
nodes) ;

NE: number of boundary elements;

L: number of internal points where the value of u is required;

NC: number of cells;

NN: number of internal points to define the cells;

M: number of surfaces;

NS: code for type of symmetry (0: no symmetry; l: symmetry with
respect to X5 2: symmetry w.r.t. x2; 3: symmetry w.r.t. X1 and x2);
NBC: number of different boundary conditions in time;

NUO: code for variation of initial conditions (0: constant; 1l: given

by points).

READ: TD, TI, SN
TD: material parameter k;

TI: initial wvalue U, (only if NUO = 0);

SN: tolerance for the absolut norm (to consider that a steady—state

was reached).

READ: (IPR(I), NL(I), I=1, M)
IPR(I): code for type of each surface (0: closed; l: open);

NL(I): number of last node on each surface.

READ: (X1(I), X2(I), KODE(I), I=1, N)

X1(I), X2(I): cartesian coordinates of extreme points of boundary
elements (coincident with the boundary nodes). The sequence is

given in counter—clockwise direction for external surfaces or in

clockwise direction for internal surfaces;

KODE (L) : code for type of boundary condition at each node (O:

prescribed potential; l: prescribed flux; 2: Robin-type).
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If ITP is greater than 2,
READ: (FIO(I), DFIO(I), I=1, N)
FIO(I): initial boundary value of u (the value of a/b in equation
(4.5.1) or h in (4.5.4) if KODE(I)=2);
DFIO(I): initial boundary value of q (the value of d/a in equation

(4.5.1) or ug in (4.5.4) if KODE(I)=2).

READ: (ITM(I), TS(I), I=1, NBC)
ITM(I): number of time steps;
TS(I): time step value.
READ: (FI(I1,J), TO(Il,J), J=1,N, I=1, NBC)
I
I1 = % 1ITM(i) TS(i)
i=1
FI(I1,J): prescribed boundary value at time Il (the value of
a/b in (4.5.1) or h in (4.5.4) if KODE(J)=2);

TO(I1,J): the value of d/a in (4.5.1) or u in (4.5.4) at time

I1 (KODE(J)=2 only).

READ (X1(I), X2(1I), I=N+1, N+NN)

X1(I), X2(I): cartesian coordinates of cell nocdes.

READ: (NO1(I), NO2(I), NO3(I), N4(I), (TU(J), J=1,7), I=1,NC)
NO1(I), NO2(I), NO3(I): connectivity of cell I;

N4(I): code for variation of initial conditions within each cell
(0: constant; 1:'given by points);

TU(J): initial value of u at each integration point in the cells

(if N4(I)=0, only the value of TU(l) is needed).

If the value of u is required at a number of internal points,
READ: (X1(I), X2(I), I=N+NN+1, N+NN+L)

X1(I), X2(I): cartesian coordinates of internal points.
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SUBROUTINE BLOCKD

In this subroutine, the following numerical data are given and

kept in COMMON:

(a)

()

(c)

(d)

IIT

The coordinates of integration points and the weighting factors
for the (six-points) Gaussian numerical integration scheme,
employed in the computation of boundary integrals;

The same for the (quintic) Hammer's numerical quadrature,
employed in the computation of the domain integral with

scheme BEMIA;

The same for the (four—points) Gaussian numerical integration
method, employed in the computation of the domain integral
with scheme BEMIB;

The coefficients of the polynomial and rational approximations
of the exponential-integral and the error functions (see

appendix A).

SUBROUTINE GENER

The boundary elements connectivity is generated and their length

calculated. A parameter for the symmetry loop is set. The area of the

cells is calculated, as well as the coordinates of the integration

points in each cell. All values are printed (apart from the last ones),

so that they can be checked for input errors.

v

(a)

(®)

SUBROUTINE FMAT
This subroutine computes one of the following:
The coefficients of matrices G, H and B in equation (4.1.6) and

of matrices G', H' and B' in (4.2.1), if ITP=1 or 2;

The coefficients of matrices Gl, G2, Hl, H2 and B in equation

(4.1.15) and of matrices G'Y, ¢'2, H'!, H'? and B' in (4.2.2),

~ ~

if ITP=3 or 4;
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(c) The coefficients of matrices Gl, G2, G3, Hl, H2 and B in the BEM1

equivalent of equation (4.5.8) and of the corresponding

. 1 . .
matrices G', G'2, G'3, H'l, H'2 and B' for internal points,

if ITP=5 or 6.

All the integrands of the integrals that form the coefficients
of the above matrices are strongly dependent on the non-dimensional
parameter a defined in (4.1.11) and quickly tend to zero as the
value of this parameter becomes large. Thus, a maximum value of a
above which the corresponding coefficients in the matrices are taken
as zero was then fixed, by trial and error, as 12.

Finally, the matrices are conveniently reordered and stored.

Iva SUBROUTINE SYMMET

The coordinates of the source point are reflected over the

symmetry axes according to the type of symmetry of the problem.

Ivb SUBROUTINE INANC

The off-diagonal coefficients of matrices G and H and all the

~ ~

coefficients of matrices G' and H' (which present no singular terms),

for the case when ITP=1 or 2, are computed through numerical

integration (see equations (4.1.33)).

Ive SUBROUTINE INMATC

The diagonal coefficients of matrix G, for ITP=1 or 2, are

computed through analytical integration (see equation (4.1.38)). The

diagonal ccoefficients of matrix H are set to zero (see discussion at

the end of section 4.1).

Ivd SUBROUTINE INANL

The off-diagonal coefficients of matrices G2, H1 and H2 and all

the coefficients of matrices Gl, G'l, G'2, H'1 and H'Z,for ITP=3 or 4,
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are computed through numerical integration (equations (4.1.34)).

Ive SUBROUTINE INMATL

The diagonal coefficients of matrix G2, for ITP=3 or 4, are
computed partly by analytical integration and partly by numerical
integration (see equation (4.1.42)). The contribution of the
analytically integrated part is evaluated in INMATC. The diagonal

. . . ~1 "2
coefficients of matrices H™ and H™ are set to zero.

IVE SUBROUTINE INANQ

The off-diagonal coefficients of matrices G3, H1 and H2 and all

-~ ~

the coefficients of matrices Gl, G2, G'l, G'2, G'3, H'1 and H'z, for

ITP=5 or 6, are computed through numerical integration (equations

4.5.10)).

IVg SUBROUTINE INMATQ
Computes the diagonal coefficients of matrix G3, for ITP=5 or 6,

in a similar way as is done in INMATL. The diagonal coefficients of

~

. 2
matrices H and H W are set to zero.

Ivh SUBROUTINE ANG

Computes the coefficients ¢; (equation (4.1.47)).

Ivi SUBROUTINE INCON1

This subroutine computes the coefficients of matrices B and B',

~ ~

for ITP=1,3 or 5, through numerical integration (equation (4.2.5)).

IVj SUBROUTINE INCON2

The same as INCON1l, for ITP=2,4, or 6 (equation (4.2.11)).

v SUBROUTINE FVEC

This subroutine updates the vector of initial conditions using
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equation (4.2.1) if ITP=1 or 2, equation (4.2.2) if ITP=3 or 4 or

equivalent if ITP=5 or 6.

Vi SUBROUTINE BOUNCD

In this subroutine, the vector F of independent terms is
computed through appropriate products of matrices G or H by the
prescribed boundary conditions for the actual time step plus the

product of matrix B by the initial conditions at the beginning of

the step.

VII SUBROUTINE SLNPD

As described in section 6.1.

If there are internal points where the value of u is required,
VIIT SUBROUTINE INTER

Computes the value of u at internal points by using equation
(2.8.6). If the derivatives of u with respect to Xy and x, are also

required, they can be calculated as for the steady-state case.

IX SUBROUTINE OUPT

As described in section 6.1.

X SUBROUTINE STEAD

Computes the absolut norm of the unknowns.

6.5 Description of Program BEM2DTP2

The macro flow diagram of the main structure of this program
and the subroutines called by it are presented in figures 6.5.1 and
6.5.2, respectively. The operations performed in each subroutine

are now as follows:

1 SUBROUTINE INPUT
READ: ITP, N, NE, L, M, NS, NBC, NUO

ITP: code for type of analysis (1l: stepwise constant u and q; 2:
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C

INPUT
l

BL.OCKD

l

GENER

DO I=1, NBC :>>

l

<
— DO J=1, ITM(I) j:>

l
BOUNCD

|

FMAT

Figure 6.5.1 - Macro flow diagram of Program BEM2DTP2
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INPUT

(1)
BLOCKD
(11)
GENER
(I1I) '
BOUNCD SYMMET (a)
(IV)
INANC(b)
INMATC(c)
INANL(d) ——  INANC
BEM2DTP 2 FMAT INMATL(e)
(v
INANQ (f) —  INANC
INMATQ(g)
ANG (h)
SINPD INCON (i)
(VI)
REORD
(VII)
INTER
(VIII)
QUTPT
(IX)
STEAD

(X)

Figure 6,5.2 ~ Subroutines called by program BEM2DTP2
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stepwise linear u and q; 3: stepwise linear u and quasi-quadratic q);

N, NE, L, M, NS, NBC, NUO: as in 6.4.

READ: TD, TI, SN

As 1in 6.4.

READ: (IPR(I), NL(I), I=1,M)

As in 6.4,

READ: (X1(I), X2(I), KODE(I), I=1,N)

As in 6.4,

If NUO is equal to 1,
READ: (DUO(I), DFUO(I), I=1,N)

DUO(I): initial value u, of function u;

0
DFUO(I): initial value 45 of function q.

If ITP is greater than 1,
READ: (FIO(I), DFIO(I), I=1,N)

As in 6.4,

READ: (ITM(I), TS(I), I=1,NBC)

As in 6.4.

READ: (FI(I1,J), DFI(Il,J), J=1,N, 1=1,NBC)

As in 6.4.

If the value of u is required at a number of internal points,
READ (XL1(I), X2(I), I=N+l, N+L)

As in 6.4,

II SUBROUTINE BLOCKD

In this subroutine,the following numerical data are given and

kept in COMMON,
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The coordinates of integration points and the weighting

factors for the (six-points and two-points) Gaussian numerical

integration schemes, employed in the computation of boundary

of the polynomial and rational approximations

of the exponential—integral (appendix A).

(a)

integrals;
(b) The coefficients
ITI SUBROUTINE GENER

The boundary elements connectivity is generated, their length

calculated and a parameter for the symmetry loop is set, being all

these values printed.

JRY

SUBROUTINE BOUNCD

This subroutine computes and stores the actual boundary

condition values.

This subroutine computes one of the following:

\Y SUBROUTINE FMAT

(a) The coefficients
in equation (4.1

(b) The coefficients
(f=1,2,...,F) in

(c) The coefficients
(f=1,2,...,F) in
Matrices GFF and
2 —

and %FF (for 1TP=2) or

conveniently reordered
when TS(I)# TS(I-1)).
step are multiplied by

of independent terms.

and ng (f=1,2,...,F)

of matrices ng

.8), if ITP=1;

. 1 2 1 2
of matrices ng, ng, ng and ng
equation (4.1.17), if ITP=2;
. 1 2 3 1 2
of matrices ng, ng, ng, ng and %fF
equation (4.5.8), if ITP=3.
H__ (for th hen ITP=1), G, ¢_2, B_.
Hpp (for the case when =1), Ggps Gpps Hpp
1 2 3 1 2 _
GFF’ gFF’ GFF’ %FF and %FF (for ITP—B) are

and stored (they only need to be recomputed
The boundary conditions for the actual time
some of these matrices to form the vector F

The coefficients of matrices GfF and H

fF
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_ 12 1 2 1,2 3 .1
(ITP=1), Geps Gepo Hep and Hep (ITP=2) or Geps Geps Geps Hep and

H 2 (I1P=3), for f=1,2,...,F-1, are accordingly multiplied by the

-fF

prescribed or calculated boundary values of q and u at previous

time steps and the result added to vector F. If the initial

conditions of the problem are not zero, the coefficients of matrices

G and H in equation (4.3.4) are computed, multiplied by the initial

conditions and the result of the product also added to vector F.
Note that the coefficients of the matrices corresponding to

the actual time step are calculated using six Gaussian points while

the coefficients of the matrices corresponding to the previous time

steps are computed using only two integration points, and that the

remarks made in section 6.4 regarding the variation of the parameter

a are also valid here.

Va SUBROUTINE SYMMET

As described in section 6.4.

Vb SUBROUTINE INANC

The off-diagonal coefficients of matrices GFF and ng
(f=1,2,...,F) and all the coefficients of matrices ng (f=1,2,...,F~1),
for the case when ITP=1, are computed through numerical integration

(equations (4.1.33)).

Ve SUBROUTINE INMATC

The diagonal coefficients of matrix GFF’ for ITP=1, are computed

through analytical integration (equation (4.1.38)). The diagonal

coefficients of matrices HfF (f=1,2,...,F-1) and HFF are set to zero.

vd SUBROUTINE INANL

. o . . 2 1 2
The off-diagonal coefficients of matrices GFF’ ng and ng

- . . . 1 1 2
(£=1,2,...,F) and all the coefficients of matrices GFF’ ng and ng

~

(f=1,2,...,F-1), for ITP=2, are computed through numerical
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integration (equations 4.1.34)).

Ve SUBROUTINE INMATL
The diagonal coefficients of matrix GF%’ for ITP=2, are
computed partly by analytical integration and partly by numerical

integration (equation (4.1.42)). The contribution of the analytically

integrated part is evaluated in INMATC. The diagonal coefficients of

. 1 2 1 2
matrices ng and ng (f=1,2,...,F-1), %FF and %FF are set to zero.
vt SUBROUTINE INANQ
Th ff-di 1 fficient f tri G 3 H 1 d H 2
he o iagonal coefficients of matrices Gpps Hep an H e p
2 1

(f=1,2,...,F) and all the coefficients of matrices GFF’ GFF’ Geps

Gfi and Gfg (f=1,2,...,F-1) are computed through numerical

integration (equations (4.5.10)).

Vg SUBROUTINE INMATQ
The diagonal coefficients of matrix GF;’ for ITP=3, are

computed in a similar way as is done in INMATL. The diagonal

2 q 1

.. . 1 _ :
coefficients of matrices ng and ng (f=1,2,...,F~1), Her and %F

F

are set to zero.

Vh SUBROUTINE ANG

As described in section 6.4.

If NUO=1,
Vi  SUBROUTINE INCON

This subroutine computes the coefficients of matrices G and H

through numerical integration (equation 4.3.4)).

VI SUBROUTINE SLNPD

As described in section 6.1.
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VII SUBROUTINE REORD

In this subroutine, the values of q are calculatedbat the nodes
with KODE(I)=2 using equation (4.5.4) if ITP=1, (4.5.5) if ITP=2 or
(4.5.7) if ITP=3. For the latter, the values of

h up_p) *hp (o p - o)

f(us,f—l - - ,

in equation (4.5.7) are also calculated. All these values are stored.

If there are internal points where the value of u is required,

VIII SUBROUTINE INTER

As described in section 6.4.

IX SUBROUTINE OUTPT

As described in section 6.1.

X SUBROUTINE STEAD

As described in section 6.4.

6.6 Description of Program BEMASTP1

The structure of this program is identical to the one for two-
dimensional problems (figure 6.4.1), and the subroutines called by it
are therefore the ones shown in figure 6.4.2, However, since only
stepwise constant variations for u and q with time-marching scheme
BEM1A were considered, only subroutines SYMMET, INANC, INMATC, ANG and
INCON1 are now called by FMAT. Again, the system of coordinates
adopted is cylindrical instead of cartesian and the subroutines that

undergo some modifications are discussed in what follows.

I SUBROUTINE INPUT

In the first data card, it should be not~d that the only admissible
value for the parameter ITP is 1, therefore this parameter need not be
given. Furthermore, since symmetry with respect to the Z-axis is
implied, the parameter NS refers only to the R-axis and can assume the

values O (no symmetry) or 1 (symmetry). In addition to that, initial



261

boundary values of u and g are not required anymore.

II SUBROUTINE BLOCKD

The data described in (c) (see section 6.4) are not any

longer necessary.

Iv SUBROUTINE F¥FMAT

This subroutines computes the coefficients of matrices G, H
and B in the axisymmetric equivalent of equation (4.1.6) and of

matrices G', H' and B' in the equivalent of (4.2.1) (see equation

~ ~

(4.6.5)). These matrices are conveniently reordered and stored.

Ivb SUBROUTINE INANC

The off-diagonal coefficients of matrices G and H and all the

~ ~

coefficients of matrices G' and H' are computed through numerical
integration. Three different cases are considered: when the coefficient
¢ defined in equation (4.6.6) is less than 0.3 (value determined
empirically), equations (4.6.9) and (4.6.12) are employed; when c is
greater than 0.3 but the product axc (being the parameter a also

defined in (4.6.6)) is less than 1.5, equation (4.6.21) and its
equivalent for a-*are used; finally, when c¢ is greater than 0.3 and

the product axc is greater than 1.5, equations (4.6.18) and (4.6.19)

are employed in the calculation.

Ive SUBROUTINE INMATC

~

The diagonal coefficients of matrices G and H are computed partly
by analytical integration and partly by numerical integration. The
contribution of the analytically integrated part is computed through

the appropriate set of formulae discussed in appendix C.

IVe SUBROUTINE INCON1

This subroutine computes the coefficients of matrices B and B'

~ ~
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through 2 numerical integration over the domain which gives (see

equations (4.2.5) and (4.6.3)),

d.. L
2 o o
B.. = '—Tr—w-z— exp(- 1J) Iofu-l.'l—-) lJlj Rj wj

Y (4mkAt) LkAt OkAL

If there are internal points where the value of u is required,

VILII SUBROUTINE INTER

Computes the value of u at internal points by using equation

(4.6.5).
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7. CONCLUSIONS

The present work basically intended to review and extend the range
of applications of the Boundary Element Method in connection with steady
and transient potential and viscous flow problems.

To this end, chapter 2 started by discussing both the direct and
the indirect formulations of the method as applied to steady potential
problems governed by Laplace's equation. It was shown that the same
integral relationships obtained for the direct formulation through
Green's third identity can also be derived employing the weighted
residual technique.

Several formulations for the BEM analysis of the diffusion
equation were then discussed and boundary integral equations for each
case derived by using weighted residual considerations. Since the
formulation employing time-dependent fundamental solutions appears to
be the most promising for general use, we concentrated our attention
on the study of different time-marching schemes that can be adopted in
association with it,

Numerical procedures for the solution of the boundary integral
equation (3.1) for steady potential problems defined over two-
dimensional, three—dimensional or axisymmetric regions were presented
in chapter 3. Computer programs incorporating several of the features
discussed in this chapter were developed (see chapter 6) and results of
applications of such programs presented. For the axisymmetric case, new
formulae for the analytical integration of the singular coefficients
were derived (see appendix B) and found to be both accurate and efficient,
I1f the solution of geotechnical engineering problems are to be attempted,
a more realistic modelling of the soil should consider orthotropy,
anisotropy or regions with different material properties. Although not
implemented at present, these features can easily be included in the
programs as shown in sections 3.4 and 3.5. Fundamental solutions for

layered regions can also be derived as shown in section 3.7.
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The programs developed (see description in sections 6.1 to 6.3)
seem to predict reasonably accurate solutions and to be computationally
efficient, thus they can be recommended for general applications. The
use of quadratic elements should further improve the overall performance
of the BEM since fewer elements (and probably fewer nodes) could be
employed with a better description of the geometry and variation of
the functions (see section 3.1.3).

The numerical solution of the boundary integral equation
(4.1) for two-dimensional transient potential problems was discussed
in chapter 4, where comparisons between results obtained with different
time-marching schemes were also carried out. The advantages and
disadvantages of each time-marching scheme can be summarized as

follows:

a) BEMIA: as presently programmed, solutions obtained with this
scheme were by far the fastest ones. Its accuracy, in general, was of
the same order as that of scheme BEM2 (which produced the most accurate
results), with the domain divided into only a few cells. However, as
discussed in section 4.4, convergence with decreasing time step values
was not always achieved, this problem being associated to truncation
errors introduced in the computation of the domain integral. The choice
of the domain integration scheme adopted (Hammer's) was largely
influenced by-its wide application in conjunction with the Finite
Element Method. Tests were carried out regarding the number of
integration points to be used, but few comparisons were made with other
numerical integration schemes (see example 4.4.2). If a large number
of cells is employed, implying that some domain integration points afe
located very near the boundary, a more refined boundary discretisation
(or integration) is generally required (see tables 4.4.3 and 4...12).

The relationship between the distance from the domain integration
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points to the boundary and the size of the nearest boundary element
needs to be further studied in order that guidelines regarding the
boundary and domain discretisations can be set.

Another problem inherent in scheme BEM1A is the total amount
of coefficients to be stored in the computer memory. As discussed
in section 4.3, this number is dominated by the dimensions of matrix
B' (M x M), being M the product of the number of integration points in
each cell (seven at present) by the total number of cells, If the
geometry of the problem was such that a large number of boundary elements
and cells was required in order to adequately represent it, the
dimensions of matrix B' would be large and, consequently, disc files
would be necessary to store all the éoefficients. This would probably
occur in many practical situations, like the problem analysed in
example 4.5.4. But due to the fast variation of the fundamental solution
with r a large number of zero coefficients appears in this matrix (as

well as in all the other matrices in the formulation), and advantage

can be taken of this fact by storing only non-zero coefficients.

b) BEMIB: this scheme required the largest number of input data
cards since very refined discretisations were usually needed. This
seems to be more dependent on the assumption of linear variation for the
function u within each cell than on the domain integration itsélf, which
is accurately performed through a semi-analytical scheme. As pointed
out in section 4.4, this approximation is similar to the one for linear
finite elements and, as for FEM, great improvement should be obtained
if higher order interpolation functions are employed. In fact, the
only difference between this scheme and the previous one is the way the
domain integral is computed, since the previous scheme does not place
any restriction regarding the variation of u within each cell and

. . . * . . .
directly integrates the function (u uF_l) using a quintic quadrature.
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With relation to the examples analysed with this scheme, we
note that 4.4.1 and 4.4.3 involve problems with unbounded fluxes at

+ . :
t =t, . So, as the time step value decreases, not only the behaviour

0
of the fundamental solution tends to a Dirac delta but also the
behaviour of function u itself tends to a step function. The
assumption of linear variation of u within each cell then fails to
adequately represent this behaviour. This can be clearly seen in
tables 4.4.2 and 4.4.11 where the results for scheme BEMIB at early
times were very poor; since the calculations at each time step use
information from the previous one, these errors propagate, deteriorating
the solution. Example 4.4.2 was seen to be particularly sensitive to
the domain integration, and even the more accurate scheme BEMIA did not

produce good results.- It is worth pointing out that further analyses

were carried out employing scheme BEMIB, with reasonably accurate

solutions.

c) BEM2: this time-marching scheme presented the most accurate
solutions and required the smallest number of data cards. It also proved
to be convergent with decreasing time step values and refining
discretisations. Its main problem, however, was the large computer CPU
times reported even for solving some simple problems. This was mainly
attributed to the way the corresponding computer program was devised,
i.e. to the fact that the matrices accounting for the influence of
previous time steps were always recomputed rather than stored. A
discussion in section 4.4 showed that drastic reductions in the
required CPU times can be achieved by storing these matrices (see table
4.4.14) , although the use of disc files would then be necessary for
problems involving a large number of boundary elements and time steps

since the number of coefficients to be stored is proportional tn N” x F.

Note that, as for scheme BEMIA, advantage can be taken of the sparsity
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of the matrices and algorithms developed to store only non-zero
coefficients.

Since this scheme appears to be the most promising,mainly if
extension to three-dimensional problems are to be attempted, some
work still needs to be directed towards improving its computer
efficiency. For instance, a more selective time integration scheme
could probably be adopted such that, after a certain number of steps,
the number of integration points could be dropped to one or even zero.
Another idea would be to take average values as representatives of the
influence of a certain number of steps: if the actual value of time is
large, consider that the influence of steps 1 to 5, for instance, is
approximately given by that of step 3 times the number of steps it is
representing (5 in this case). Yet another idea is to update the initial
conditions after a certain number of steps, i.e. combine schemes

BEMIA and BEM2 in order to explore the advantages of both.

Other improvements regarding computer efficiency can be made in
all transient programs developed. Since most of the computer time is
spent in calculating the coefficients of matrices G and H (and %, for
schemes BEM1), some other quantities like unit normal vectors, coordinates
of integration points, etc., can also be stored. The selective space
integration scheme tested, although not presenting significant savings
for the simple problems analysed, would probably produce additional
savings for large problems. In this case, refined system solver
algorithms that take advantage of the sparsity of the system matrix are
also of importance.

The use of quadratic boundary elements, as for the gteady-state
case, should improve the overall performance of the method. On the

other hand, the use of stepwise quadratic variations for u and ¢ as

discugsed in section 4.1.3 implies the computaticn of a much larger
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number of coefficients and the stepwise solution of a system of equations
of order 2N x 2N instead of N x N: the advantages of such approximation
(if any) remain an open question.

The previous discussion also applies to three-dimensional and
axisymmetric problems. Although numerical solutions of equation (4.1)
for problems defined over fully three-dimensional regions were not
explicitly considered, they follow almost exactly the same procedures
derived in chapter 4. 1In particular, for stepwise constant variations
of u and q, the analytical time integration of the fundamental solution
and its normal derivative (see equations (4.1.10) and (4.1.13))
produces the incomplete Gamma functions T'(1/2, a) and T(3/2, a),
respectively. The resulting expressions can then be numerically
integrated with respect to space following the procedures discussed
in section 3.8 and employing polynomial approximations for the incomplete
Gamma functions (see equations (4.6.13), (4.6.14) and appendix A). If
a step-by-step time marching scheme of the type BEMl is employed, the
domain integration can be performed by using the numerical integration
scheme suggested in [67].

The numerical solution of the boundary integral equation (4.1)
for problems defined over axisymmetric regions (assuming that all
variables are also axisymmetric) was dealt with in section 4.6. The
axisymme tric fundamental solution was explicitly obtained by directly
integrating che three-dimensional one over a ring (as was done in the
steady-state case). Since both the fundamental solution and its
normal derivative were expressed in terms of Bessel functions, series
expansions of these functions had to be introduced in order to permit
the analytical evaluation of the time integrals in the boundary integral
equation. The resulting space integrals were calculated numerically,
apart from the singular ones. Analytical expressions for the singular

integrals were derived in appendix C, where the different situations
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that may occur in practice were all accounted for. Results of several
analyses were presented, with an accuracy comparable to that of two-
dimensional problems. Despite the complexity of the arithmetics
involved, the computer CPU times required were not large.

Comparisons between BEM solutions and available FEM solutions
showed that, in general, the BEM results are more accurate for equivalent
(or even coarser) discretisctions. This suggests that computer programs
employing the BEM, if efficiently programmed, can be a viable alternative
to the FEM for the solution of many practical problems (see example
4.5.4). Note that features like sub-regions, orthotropy and anisotropy,
internal sources and semi-infinite regions can be incorporated in the

computer programs in a similar way as was done for the steady-state case

(see chapter 3).

No error analysis was attempted in the present work. As pointed
out in [1], any error analysis which seeks to trace the accumulation of
error as it arises from the many different sources (approximation of the
geometry of the body, piecewise approximation in space and time of each
unknown in equation (4.1), approximate evaluation of integrals using
numerical integration schemes, etc.) is likely to be very complicated,
if indeed it is possible at all. The analysis performed in [78] only
considers errors arising from the piecewise approximation of the functions
in space and time and suggests a criterion for determination of the
critical time step value (relative to accuracy) somewhat arbitrarily.
This criterion was seen to predict rather low critical values and much
larger time steps were employed in the problems analysed with no
deterioration of the numerical solution.

With regard to stability considerations, we note that the BEM
formulation is implicit in character and thus relatively free from

stability problems, as can be seen from the results of several of the



270

examples analysed (for instance 4.4.7, 4.4.8, 4.5.2 and 4.5.3).

Finally, a formulation of the BEM for the solution of problems
of incompressible viscous fluid motion governed by the Navier-Stokes
equations (together with the continuity equation) was derived, employing
the concepts presented by Lighthill [31].

For steady-state problems, the numerical method of solution
follows that proposed in [93], where it appears under the name of
integral representation method. As showed here, this method is
basically an extension of the BEM and as such, the numerical techniques
discussed in chapter 3 can be directly applied in its formulation. A
numerical result for a square cavity flow problem with Reynolds number
equals to 600 was presented in [93], employing linear boundary elements
and triangular cells within which the functions w, v, apd v, were
also assumed to vary linearly. The accuracy of the solution seems to
be quite reasonable.

The numerical method of solution of transient problems follows
the ones proposed in [38] and [92]. In [92], the method
appears as a completely novel technique, totally unrelated to all
previous formulations and, according to the authors, requiring the
-development of entirely new numerical procedures, Again, it was shown
here that this formulation is a direct extension of the BEM as applied
to the diffusion equation, where the vorticity transport equation is
treated as a non-homogeneous diffusion equation, the non~homogeneity
accounting for the non-linear convective term.

Some numerical results were presented in [92] for asymptotically
obtained steady-state solutions, employing stepwise linear variatioms
for all functions, linear boundary elements and triangular cells with
linear interpolation functions. However, no details were given about

the numerical integration schemes adopted and numerical problems arising

in the fermulation.
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Clearly, the use of a time-marching scheme of the type BEM2 is
impractical in this case due to the presence of the convective term,
which would have to be included through a summation of domain integrals.
The time-marching scheme adopted in [92J is of the type BEMIB: although
the variation of the vorticity within the domain is generally smooth,
care has to be taken due to the numerical problems that appear when
using very small time step values.

Note that since for transient problems the vorticity boundary
values are not computed from a direct enforcement of satisfaction of
the no-slip condition at solid boundaries using equations (5.2.7)
and (5.2.8) (as was done in thevsteady-state case), there is no reason
to preclude the use of a time-marching scheme of the type BEMIA.

Computer programs for the solution of the above-mentioned
problems are currently under way, and it is hoped that the experience
gained in the solution of the Laplace and diffusion equations will help
in deciding which numerical procedures are best suited for these
problems, and that extensions to three-dimensional and axisymmetric
analyses can also be developed following the numerical procedures

derived in this work.



10.

11.

12.

13.

272

REFERENCES

M.A. JASWON and G.T. SYMM, Integral Equation Methods in Potential
Theory and Elastostatics, Academic Press, London, 1977.

C.A. BREBBIA, The Boundary Element Method for Engineers, Pentech
Press, London, 1978,

C.A. BREBBIA and S. WALKER, Boundary Element Techniques in
Engineering, Newnes-Butterworths, London, 1980.

T.A. CRUSE and F.J. RIZZO (eds.), Boundary Integral Equation
Method: Computational Applications in Applied Mechanics, ASME,
AMD-11, New York, 1975.

T.A. CRUSE, J.C. LACHAT, F.J. RIZZC and R.P. SHAW (eds.),

First Int. Symp. on Innovative Numerical Analysis in Applied
Engineering Science, CETIM, Versailles, 1977.

C.A. BREBBIA (ed.), Recent Advances in Boundary Element Methods,
Pentech Press, London 1978.

P.K. BANERJEE and R. BUTTERFIELD (eds.), Developments in Boundary
Element Methods, Applied Science Publishers, London, 1979.

C.A. BREBBIA (ed.), New Developments in Boundary Element Methods,
C.M.L. Publications, Southampton, 1980.

R.P. SHAW et al. (eds.), Innovative Numerical Analysis for the
Engineering Sciences, University Press of Virginia, Charlotesville,
1980.

C.A. BREBBIA (ed.), Progréss in Boundary Elements, Vol. 1, Pentech
Press, London, 1981.

I. FREDHOLM, Sur une classe d'equations fonctionelles, Acta Math.
27, 365-390, 1903.

V.D. KUPRADZE, Potential Methods in the Thepry of Elasticity,
Israel Program for Scientific Translations, Jerusalem, 1965.

0.D. KELLOGG, Foundations of Potential Theory, Springer,

Berlin, 1929.



14.

15.

16.

17.

18.

19.

20,

21.

22.

23,

25.

273

C. SOMIGLIANA, Sopra l'equilibrio di un corpo elastico
isotropo,Il Nuovo Cimento, t. 17-19, 1886.

P.M. MORSE and H. FESHBACH, Methods of Theoretical Physics,
McGraw-Hill, New York, 1953.

H.S. CARSLAW and J.C. JAEGER, Conduction of Heat in Solids,

2nd edn, Clarendon Press, Oxford, 1959.

G.F. ROACH, Green's Functions: Introductory Theory with
Applications, Van Nostrand Reinhold, London, 1970.

M.A. JASWON, Integral equation methods in potential theory I,
Proc. Royal Society A, 275, 23-32, 1963.

G.T. SYMM, Integral equation methods in potential theory II,
Proc. Royal Society A, 275, 33-46,.1963.

M.A. JASWON and A.R. PONTER, An integral equation solution of
the torsion problem, Proc. Royal Society A, 273, 237-246, 1963.
J.L. HESS and A.M.0. SMITH, Calculation of potential flow about
arbitrary bodies, Progress in Aeronautical Sciences, Vol. 8,

D. Ktichemann (ed.), Pergamon Press, London, 1967,

R.F. HARRINGION, K. PONTOPPIDAN, P. ABRAHAMSEN and N.C. ALBERTSEN,
Computation of Laplacian potentials by an equivalent-source method,
Proc. IEE, Vol. 116, No. 10, 1715-1720, 1969.

J.R. MAUTZ and R.F. HARRINGTON, Computation of rotationally
symumetric Laplacian potehtials, Proc. IEE, Vol. 117, No. 4,
850-852, 1970.

F.J. RIZZO and D.J. SHIPPY, A method of solution for certain
problems of transient heat conduction, ATAA Journal, Vol. 8,

No. 11, 2004-2009, 1970.

R. BUTTERFIELD and G.R. TOMLIM, Integral techniques for solving
zoned anisotropic continuum problems, Proc. Int. Conf. on
Variational Methods in Engineering, Vol. 2, C.A. Brebbia and H.

Tottenham (eds.), Southampton University Press, Southampton, 1972.



26.

27.

28.

29.

31.

32.

33.

34.

35,

274

G.R. TOMLIM, Numerical Analysis of Continuum Problems in Zoned
Anisotropic Media, Ph.D. Thesis, Southampton University,
Southampton, 1972.

Y.P. CHANG, C.S. KANG and D.J. CHEN, The use of fundamental
Green's functions for the solution of problems of heat conduction
in anisotropic media, Int. Journal Heat Mass Transfer, Vol. 16,
1905-1918, 1973.

R.P. SHAW, An integral equation approach to diffusion, Int.
Journal Heat Mass Transfer, Vol. 17, 693-699, 1974.

L.C. WROBEL and C.A. BREBBIA, The boundary element method for
steady-state and transient heat conduction, Proc. First Int.
Conf. on Numerical Methods in Thermal Problems, R.W. Lewis and

K. Morgan (eds.), Pineridge Presé, Swansea, 1979.

L.C. WROBEL and C.A. BREBBIA, A formulation of the boundary
element method for axisymmetric transient heat conduction, Int.
Journal Heat Mass Transfer, Vol. 24, 843-850, 1981.

M.J. LIGHTHILL, Introduction. Boundary layer theory, chapter 2
in Laminar Boundary Layer, L. Rosenhead (ed.), Oxford
University Press, 1963,

R.B. PAYNE, Calculations of unsteady viscous flow past a
circular cylinder, J. Fluid Mechanics, Vol. 4, 81-86, 1958.

J.C. WU and J.F. THOMPSON, Numerical solutions of time-dependent
incompressible Navier-Stokes equations using an integro-differential
formulation, Computer and Fluids, Vol. 1, 197-215, 1973,

R.A, SCHMALL and R.B. KINNEY, Numerical study of unsteady viscous
flow past a lifting plate, AIAA Journal, Vol. 12, No. 11,»1566-
1573, 1974.

T. BRATANOW and T. SPEHERT, Computational flow development

for unsteady viscous flow, NASA CR~-2995, 1978.



36.

37.

38.

39.

40,

41.

42.

43,

ba,

45.

46.

47.

275

L.M. MIINE-THOMPSON, Theoretical Aerodynamics, 4th edn,
Dover, New York, 1958.

J.C. WU, Numerical boundary conditions for viscous flow
problems, AIAA Journal, Vol. 14, No. 8, 1042-1049, 1976.

C.A. BREBBIA and L.C. WROBEL, The boundary element method,
chapter 2 in Computer Methods in Fluids, K. Morgan, C. Taylor
and C.A. Brebbia (eds.), Pentech Press, London, 1980.

W. POGORZELSKI, Integral Equations and Their Applications,
Pergamon Press, Oxford, 1966,

T.A. CRUSE, Boundary Integral Equation Methods in Solid
Mechanics, Report SM~73-17, Dept. of Mechanical Engng,
Carnegie-Mellon University, Pittsburgh, 1973.

R. COURANT and D. HILBERT, Methods of Mathematical Physics,
Vol. 2, Interscience Publishers, New York, 1962.

W.J. STERNBERG and T.L. SMITH, The Theory of Potential and
Spherical Harmonics, University of Toronto Press, Toronto, 1944.
L.V. KANTOROWICH and V.1, KRYLOV, Approximate Methods of
Higher Analysis, Noordhoff, Groningen, 1958.

G.F. MILIER, Fredholm equations of the first kind, chapter 13
in Numerical Solution of Integral Equations, L.M. Delves

and J. Walsh (eds.), Clarendon Press, Oxford, 1974.

V.D. WIDDER, The Laplace Transform, Princeton University Press,
Princeton, 1946,
M. ABRAMOWITZ and I.A. STEGUN (eds.), Handbook of Mathematical
Functions, Dover, New York, 1965.

J.C. LACHAT and A. COMBESCURE, Laplace transform and boundary
integral equation: application to transient heat conduction

problems, in [5] .



48.

49,

50.

51.

52,

53.

54.

55.

56.

57.

276

R.A. SCHAPERY, Approximate methods of transform inversion for
viscoelastic stress analysis, Proc. Fourth U.S. National Congress
on Applied Mechanics, Vol. 2, 1962.

J.A. LIGGETT and P.L.F. LIU, Unsteady flow in confined aquifers:
a comparison of two boundary integral methods, Water Resources
Research, Vol. 15, No. 4, 861-866, 1979.

D.A.S. CURRAN, M, CRNSS and B.A. LEWIS, Solution of parabolic
differential equations by the boundary element method using
discretisation in time, Applied Mathematical Modelling, Vol. 4,
No. 5, 398-400, 1980.

R.F. HARRINGTON, Field Computation by Moment Methods, MacMillan,
New York, 1968.

A. MARTIN, I. RODRIGUEZ and E. ALARCON, Mixed elements in the
boundary theory, in [8].

T.A. CRUSE, An improved boundary integral equation method for
three-dimensional elastic stress analysis, Computers and
Structures, Vol. 4, 741-754, 1974.

P. MOON and D.E. SPENCER, Field Theory Handbook, 2nd edn,
Springer Verlag, Berlin, 1971.

N. PAPAMICHAEL and J.R. WHITEMAN, A numerical conformal
transformation method for harmonic mixed bouidary-value problems
in polygonal domains, J. Appl. Math. Phys. (ZAMP), Vol. 24,
304-316, 1973.

R. WAIT and A.R. MITCHELL, Corner singularities in elliptic
problems by finite element methods, J. Comp. Phys., Vol. 8,

No. 1, 45-52, 1971.

C.A. BREBBIA and L.C. WROBEL, Applications of boundary

elements in fluid flow, Proc. Second Int. Conf. on Finite Elements

in Water Resources, Pentech Press, London, 1978.



58.

59.

60,

61.

62.

63.

64,

65.

66.

67.

68.

277

J.A. LIGGETIT, Location of free surface in porous media,

ASCE J. Hydraulics Division, Vol. 103, No. 4, 353-365, 1977.
C.A. BREBBIA and L.C. WROBEL, Steady and unsteady potential
problems using the boundary element method, chapter 1 in

Recent Advances in Numerical Methods in . Fluids, C. Taylor

and K. Morgan (eds.), Pineridge Press, Swansea, 1980.

J.J. CONNOR and C.A. BREBBIA, Finite Element Techniques for Fluid
Flow, Newnes—Butterworths, London, 1976,

V.T. CHOW, Open—Channel Hydraulics, McGraw-Hill, New York, 1959.
E.L., WILSON and R.E. NICKELL, Application of the finite element
method to heat conduction analysis, Nuclear Engng Design, Vol. 4,
276-286, 1966,

B.A. PEAVY, Steady-state heat conduction in an exposed exterior
column of rectangular cross-section, J. Res. Natl Bur. Stand.,
Vol. 69C, 145-~151, 1965,

P.W. FRANCE, C.J. PAREKH, J.C. PETERS and C. TAYLOR, Numerical
analysis of free surface seepage problems, J. Irrigation and
Drainage Division, ASCE, Vol. 97, No. IR1l, 165-179, 1971.

P.C. HAMMER, 0.J. MARLOWE and A.H. STROUD, Numerical integration
over simplexes and cones, Mathematics of Computation, Vol, 10,
130-137, 1956.

G.K., BATCHELOR, An Introduction to Fluid Dynamics, Cambridge
University Press, Cambridge, 1967,

R.K. NAKAGUMA, Three~Dimensional Elastostatics using the
Boundary Element Method, Ph.D. Thesis, Southampton University,
Southampton, 1979,

0.V, CHANG, Boundary Elements applied to Seepage Problems in

Zoned Anisotropic Soils, M.Sc. Thesis, Southampton University,

Southampton, 1979.



69.

70.

71.

72.

74,

75,

76‘

77.

78.

79.

278

W.L. WOOD, On the finite element solution of an exterior
boundary=-value problem, Int. Journal Num. Methods Engng, Vol. 10,
No. 4, 885-891, 1976.

H. GOLDENBERG, External thermal resistance of two buried cables,
Proc. IEE, Vol. 116, No. 5, 822-826, 1969.

C. SNOW, Hypergeometric and Legendre Functions with Applications
to Integral Equations of Potential Theory, Applied Mathematical
Series No. 19, National Bureau of Standards, Washington, D.C.,1952.
A, ERDELYI et al., Higher Transcendental Functions, Vol. 1,
Bateman Manuscript Project, McGraw~Hill, New York, 1953.

L.C. WROBEL and C.A. BREBBIA, Axisymmetric potential problems,

in [8].

0.C. ZIENKIEWICZ and Y.K. CHEUNG, Finite elements in the

solution of field problems, The Engineer, Vol. 220, 507-510, 1965.
I.S. GRADSHTEYN and I.M. RYZHIK, Table of Integrals, Series

and Products, Academic Press, London, 1965.

L.C. WROBEL and C.A. BREBBIA, Boundary elements in thermal problems,
chapter 5 in Numerical Methods in Heat Transfer, R.Lewis, K.
Morgan and O.C.Zienkiewicz (eds.), J.Wiley, Chichester, 1981,

C.T. REDDY and D.J. SHIPPY, Alternative integration formulae for
triangular finite elements, Int. Journal Num. Methods Engng,

Vol. 17, No. 1, 133-139, 1931.

K. ONISHI and T. KUROKI, Boundary Element Method in Transient
Heat Transfer Problems, Report No. 3, Civil Engineering and
Applied Mathematics, The Institute for Advanced Research, Fukuoka
University, Japan, 1980.

D, CURRAN, M. CROSS and B.A. LEWIS, A preliminary analysis of
boundary element methods applied to parabolic partial differential

equations, in [8].



81.

82.

83.

84.

85.

86.

87.

88.

89.

90,

91.

279

J.C. BRUCH, JR. and G. ZYVOLOSKI, Transient two~dimensional
heat conduction problems solved by the finite element method,
Int. Journal Num. Methods Engng, Vol. 8, No. 3, 481-494, 1974.
W.L. WOOD and R.W. LEWIS, A comparison of time marching schemes
for the transient heat conduction equation, Int. Journal Num.
Methods Engng, Vol. 9, No. 3, 679-689, 1975.

L.C. WROBEL and C.A. BREBBIA, Time-dependent potential problems,
in [10].

W. KOHLER and J. PITTR, Calculation of transient temperature
fields with finite elements in space and time dimensions,

Int. Journal Num. Methods Engng, Vol. 8, No. 3, 625-631, 1974.
0.C. ZIENKIEWICZ and C.J. PAREKH, Transient field problems:
two-dimensional and three~dimensional analysis by isoparametric
finite elements, Int. Journal Num. Methods Engng, Vol. 2, No. 1,
61-71, 1970.

ROLLS ROYCE LTD. (DERBY), Private Communication.

G.N. WATSON, A Treatise on the Theory of Besgsel Functions,

2nd edn, Cambridge University Press, Cambridge, 1944.

A, HAJI-SHEIK and E.M. SPARROW, Transient heat conduction in

a prolate spheroidal solid, J. Heat Transfer, Trans. ASME,

Vol. 88C, 331-333, 1966,

I.H. ABBOTIT and A.E. VON DOENHOFF, Theory of Wing Sectioms,
Dover, New York, 1959.

C.A., BREBBIA and A.J. FERRANTE, Computational Methods for the
8olution of Engineering Problems, Pentech Press, London, 1978.
C.A. BREBBIA (ed.), Further Developments in Boundary Element
Methods, C.M.L. Publications, Southampton, 1981.

K.H. HUEBNER, The Finite Element Method for Engineers, J. Wiley,

New York, 1975.



92.

93.

94.

280

J.C. WU and Y.M. RIZK, Integral-representation approach for
time-dependent viscous flow, Lecture Notes in Physics, Vol. 90,
558-564, Springer Verlag, New York, 1978.

J.C. WU and M.M. WAHBAH, Numerical solution of vi;cous flow
equations using integral representations, Lecture Notes in
Physics, Vol. 59, 448-453, Springer Verlag, New York, 1976.
Z.M. CIELAK and R.B. KINNEY, Analysis of unsteady viscous

flow past an airfoil: Part I - theoretical development, AIAA

Journal, Vol. 15, No. 12, 1712-1717, 1977.



281

APPENDIX A
For convenience of the numerical computation, the special
functions that appear throughout the main text can be evaluated by

using polynomial and rational approximations as follows [46]:

Conplete Elliptic Integrals

K(m) = 1.3862944 + 0.1119723 m, + 0.0725296 m, "
+ (0.5 + 0.1213478 m, + 0.0288729 mlz) Log(1/m)) + e (m
0<sm<1, m = 1-m, |€(m)| £ 3 x 10—5
E(m) = 1. + 0.4630151 m + 0.1077812 m12 + (0.2452727 m,
+0.0412496 m *) log(1/m) + < (m)

0<m«<1, |e(m)| < 4 x 10--5

Exponential-Integral

~0.57721566 + 0.99999193 x - 0.24991055 x>

El(X) =
+ 0.05519968 x> - 0.00976004 x* + 0.00107857 x° - log X + €(x)
Osxs<l,|e®| <2x1077
El(x) = (x4 + 8.5733287401 % + 18.0590169730 X2 + 8.6347608925 x

+

0.2677737343) / [(x* + 9.5733223454 x> + 25.6329561486 x°

21.0996530827 x + 3.9584965228) x e* ]+ e
8

+

1 g x < o, |E(X)| <2 x10

Error Function

2
1 - (0.3480242 - C.0958798 m + 0.7478556 m2) m e * + e (x)

erf(x)

1

= 170427047 = ° erfe(x) = 1 -~ erf(x)

0 £ X <o, |€(x)| £ 2.5 x 10-5
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APPENDIX B
P e

In this appendix, the Gii coefficients for axisymmetfic steady
potential problems are derived by means of analytical integration of

the corresponding singular integrals.

Constant Elements

With reference to figure B.l, we can write:

R(S) = R(P) - £ %-sin o
Z(S) = Z(P) + & j—zl-cos a (3.1)
_ 5_;2 22
Y =1+ R ®RE

Thus, the expression to be evaluated is of the form,

/2 ) 1
G.. = T®,9) R(S) dT(S) = —&-—;— 1iog( 2y | =hs) a
tt riepy {2 256R(P) -1
~-2/2
A J 1 4
t 5 J R%(S) log[R(S)] <& - J R*(S) logle]| d& f
-1 -1 (B.2)

where the first and second integrals are regular and the last one is
calculated in the normal sense of improper integrals.
Calling:
A
RF) ; b ==-3%sina

2 (B.3)
c=a+b ;3 D=a-b

"

a

the integrals give,

2 [2 22 } 3/2  _3/2 3/2
G.. = = =~ log ( ) (C -D7'7) + C log ©
i 3,03 2564
4 3
- D3/2 log D + 4a(C% - Dé) - 2a3/2 <1og c ts
C* - a
4 4 )
D + a
- log T I (B.4)
D? - a
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Figure B.1 - Definitions for constant element

Figure B.2 ~ Definitions for linear element
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For sina = 0 (b = 0), we can take the limit of each term

in (B.4) and the expression becomes simply,

G = 22[1 - log (Tz_;)J (B.5)

Linear Elements

The Gii coefficients now consist of the sum of two terms (see

equations (3.1.18) and (3.1.20)),

2 1
Gii = gip + giq (B.6)

where we have, for element p (with reference to figure B.2),
2

R(S) = R(P) + (1-£) ——g-sin o
2
7(S) = 2(P) - (1-%) —g- cos o (3.7)
(1-5)% 2

Y = 1+ S 5RE

and for element q,

2
R(S) = R(P) - (1+&) —c21—sin oy
% (B.8)
7(S) = Z(P) + (1+£) _c21 cos a,
2 2
(1+8) zq

Y =1t SRR

The expressions tc be evaluated can now be written as,

) 2 1 2 1 )
g~ = ——TB—~§— 5 log (—B—) | RE(S) (1+£) dg
p 2R2 (P) 256R(P) 1
1 1 1 . 1 1
+-2-J RZ(S) log[R(S)] (l+g) d& —[ RZ(S) log(l-g) (1+&) dg
-1 -1 (5.9)
e 22,
o ——Tﬂ——@— > log (—3—) | RE(S) (1-8) d&
M 9rZI(p) 256R(P) .
1

RE(S) log(1+) (1-E) dag

1 (b
+ E—I R2(S) 1og[R(5)] (1-8) dg —J
-1 -1 (B.10)
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in which R(S) is accordingly given by (B.7) or (B.8) and the last

integral in each of the above formulas is calculated in the normal

sense of improper integrals,

The final expressions for the Gii coefficients are of the

form,
2
2 P _v,2 3/2 / _ 2 5/2 5/2
Sip ~ 2bR? (P) g 3374 ) Sb R @275

+ 3 32 10g ¢ - D272 10g D) + ;—b c>? 10 ¢ - 0°/2 105 D)

- 31-{03/2 (%-— log 2) + 200%/? = 372 (—-+ A )}

- E_.[DS/Z (—-— log 2) + 2C(1 3/2 + CD1/2) - C5/2 (%%-+ Az)}

5b
(B.11)
'3
1__ 4 _v.2 3/2 . 3/2, .1 2 5/2 _ 5/2
iq—mg 3(3+A3)(C -D )+§B-(§+A)(C D )

+ \—:;-(C?’/2 log C - D?’/2 log D) - %F (C5/2 log C - D5/2 log D)

+ 3 [ 3/2(—-- log 2) + 2DC1/2 3/2(—-+ A )]

_ g__[?5/2(g ~ 105 2) + 20 (L c¥2 4 pcl/2y - p5/2 (45 4 )}

5b
(B.12)
where: . 9 , 9
A, = log (Eﬁzﬁ%F7° : Ay = log (§§€%z§79
A = 1o b(C%+D%) . A =1 b(C%+D%)
2 ¢ 4c(ci-D?) | 4“7 7% ol (B.13)

with a = R(P) = b, v = 1 = a/b in equation (B.11) and
=R(P) +b, v=1+ a/b in (B.12), being b, C and D computed as

in (B.3).
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For sin oo = 0 (b = 0), these expressions simplify to

2 12 (89 8a
in which % equals Qp or Qq’ according to the element under

consideration.

For the case when R(P) = 0, the fundamental solution becomes

the three-dimensional one (multiplied by 2m) and the coefficients Gy

are equal to gipz or giqz, being these terms calculated as follows,
2 NQF 1
gip = 5 J (1+8) sin a d¢ = NQP sin o (B.15)
-1

1 =L 1
g. = k! [ (1-&) sin o dE
-1

—ﬂlq sin o (B.16)

iq 2



APPENDIX C

In this appendix, the integration of the logarithmic singular
terms that appear in the calculation of the G, and Hii coefficients
for axisymmetric transient potential problems is carried out
analytically.

Two different cases have to be considered. As discussed in
section 4.6, when the coefficient ¢ - 0.5 and the value of x is large
throughout the integration interval (a,»), asymptotic expansions of the
Bessel functions can be directly employed. Thus, expanding the éxponential—
integral in equations (4.6.18) and (4.6.19) in order to isolate the
logarithmic term (see equation (4.1.37)), the G and ﬁii coefficients

can be divided as,

2 2 1 1
Gi; 7 gip,s * gip,ns +'g:'Lq,s * giq,ns (€.
o=h2 +n? +nl apt (€.2)
ii ip,s ip,ns iq,s iq,ns

where the subscript s stands for singular and ns for non-singular.

For elewent p, we can write with reference to figure B.2,
L

R(S) = R(P) + (1-£) z—p—sin @,
2
Z(S) = Z(P) ~ (1-¢) 52 cos o (€.3)
(1-5)% 5 2
B=—o_ P
16kAt
and for element q,
2
R(S) = R(P) - (1+&) = si
(8) (P) - (1+2) 7 sin o
Qq
Z = 1
(s) Z(P) + (1+&) 7 cos aq (C.4)
(1+g)2 qu
B = —siat

The expressions to be evaluated are now of the form,
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) % 22 1,
g, S=———E-1————§log( )J R¥(S) (1+£) dg
P> 167R2 (P) l6kAt | _,
b
+2 J R2(S) log(l-g) (1+&) d& g (€.5)
-1
1 Y Yyt
g. = - log (—) R*(S) (1-g) dg
14,8 16nR? (2) 3 16kAt J_l
b
+2 J R*(S) log(l+g) (1-&) dg S (C.6)
-1

9 Qp cos ap 3 2; 1 -
h, = log ( ) R ?(8) (1+48) dg
R 16kAt [

+2 J R(S) log(1-8) (1+€) dag .7
-1
1 2q cos aqg 1 -
h. = log ( R 4(8) (1-g&) dg&
i, grpd(p) 16kAt J
+2 J R (s) log(1+g) (1-g) dg % (c.8)
-1

in which R(S) is accordingly given by (C.3) or (C.4) and the last
integral in each of the above formulas is calculated in the normal

sense of improper integrals.
Carrying out the integrals give,

3/2  3/2, .1 L IRTEN

D ) + =5 A

£

2

it | 3
8mbR%(P)

+ 2 [ p3/2 & - 10g2) + 200"/% - 32 G+ Az)]

+ 2 [ p>/2 (é—— log2) + 2C(%-D3/2 + cnllz) 5/2 (——-+ A )]

(c.9)
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2
1 q v 3/2 3/2 1
A. (C - D7) - Ay (c

g. = - =
14,8 8ﬂbR£(P) 373

5/2 _ 5/2,

- 2v | 3/2 (%-— log2) + 2nci/2 - p3/2 cg + A ]

v 212 E -t v G 2w ne P -0 (R vy }E

55 |
(c.10)
£ cos q )
2 1/2 1/2 1/2 1/2
h. = A (C -D') + 2v [D (2-1log2) =~ C (2+A )]
1p,8 16ﬂbR£(P) 1 ~ 2

+ l—-Al[ Cl/2 (D-b) + Dl/2 (C+b)} + g__[}B/Z (%—- log2)

3b 75
+ ocpl/2 - ¢3/2 (§-+ A,) } € (C.11)
L cos o
hil s . | — A3 (Cl/z - Dl/z) - 2v [Cl/z (2-1o0g2) - Dl/2 (2+A4)]
955 167bR?(P)

1 A [ Cl/2 (D-b) + Dl/2 (C+b)] + Z—[ C3/2 (%-~ log2)

36 %3 3b
+ o2 _p3/2 (B o,y (C.12)
374
where
2{2 2{2
= __P. . = I
Ay = log (fgxp) 3 A5 = log g (€.13)

with a = R(P)-b, v = l-a/b in equations (C.9) and (C.1ll), a = R(P)+b,
v = l+a/b in equations (C.1Q) and (C.12), being b, C and D computed
as in (B.3) and A2 and A4 as in (B.13).

For sino =0 (b=0), these expressions simplify to

2 _ 1 _ 2 (89 22 \
8ip,s ~ Biq,s ~ B Eﬁi log <z;339} (C.14)
2 _ .1 _ fcoso 22 17
hip,s “Diq,s T Toma [108 e g-] (C.15)

in which coso=t1 and £ equals QP or lq’ according tc the element under
consideration.

The other case to be considered is when the value of the
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coefficient ¢ tends to 0.5 but the value of x is small over part of
the integration interval (a,®). In this case, the integrals are
divided into two parts (see equation (4.6.21)): evaluation of one
results in a quickly convergent series (see equation (4.6.22)) while
the asymptotic expansions (4.6.15) and (4.6.16) can now be applied
to the other. The value of the coefficient a' was empirically

determined to be a' = 1.,5/c and this gives

[R®)-R(5)]? +[2(®)-2(5)]° (C.16)
R(P) R(S)

Thus, we have for element p,

B =a'b =1.5 [

2
1- 22
=,3( £) 0

B (C.17)
8R(P) R(S)
being R(S) and Z(S) given by (C.3), and for element q,
3(1+5) 2 22
B = q (C.18)

) 8R(P) R(S)
with R(S) and Z(S) computed as in (C.4).

The singular components of Gii and Hii can now be written as,

9 ' i 3 25 1y
8. = - log ( ) R4(5) (1+&) dg
1p,S 16nR£(P) 8R(P) j_l
1 1
- J R%(S) log[R(S)] (1+g) dg + 2 J R%(S) log(l-g) (1+g) dg
-1 -1 (C.19)

1 zé 3 zé 1
g. =1 log ( ) R*(S) (1-g) dg
14,8 167R? (P) ; 8R(P) J_l

1
! 1
- J R?(S) log[R(S)] (1-E) dE + 2 [ RE(S) log(1+£) (1-E) de
-1 -1

(C.20)
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\ Qpcos ap 3%; 1 -
h.” = log (——) R %(S) (1+&) dg
ipss  3ppp! (®) { 8R(P) [_1

1
1
—J R3(5) 1og[R(S)] (1+8) d& + 2J RTE(S) log(1-8) (1+) di}
-1
-1 (c.21)
1 % cos a 342 1
n!l -2 4 {log( ) | RIs) (1-8) de
125 321R%(P) 8R(P) J_;
1

1 1
—[ RH(s) 10g[R(8)] (1-0) da+2[ R 2(S) log(1l+g) (1-8) d& }
=1

1 -1 (C.22)

where, again, R(S) is accordingly given by (C.3) or (C.4) and the last
inteéral in each of the above formulas is calculated in the normal
sense of improper integrals, being all the others regular.

Comparing expressions (C.19) to (C.22) with (C.5) to (C.8) we
notice that one more integral is included in each of the new
expressions and apart from that, the only difference between them is
in the log term multiplying the first integral. Thus, the analytical

evaluation of (C.19) to (C.22) give

3
2 2 p v [.3/2 .2 3/2 2 }
. =g, c.9) - - |c S - logC) - D (3 - logD}
8in,s - Bip,s (C.9) ;;;5;;{3[ 3 0gC) 3
1 {.5/2 2 5/2 ,2 :
g o1 - Qq v | 32 (3-— logC) - p3/2 (2-- 1ogD)}
iq,S giq,S (C.].O) —"%_—SﬂbR (P) 3 3 g 3
-1 132 (2 2 1000) - D22 (2 - 10gD) (C.24)
Sb 5 Og 5 Og .
2 cos a
b = hin g (D + =2 { V[ /2 2 - 1og0y -0 2 - 1°gD)J
P>5 1P 167bR2 (P)

+ L [03/2 (%- - 1ogC) - p3/2 (% - logD)] } (C.25)
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L cos a
byl (1) o« q {V[ M2 (9 1050y - V2 (2 - 10gD)]
t4.8 14,8 167bR? (P)
- %E-[ c3/2 (%—- logC) - D3/2 (%-— logD)J } (C.26)

where the coefficients Al'and A3 in (C.9) to (C.12) are now computed as,

322 322
A1 = log ( P ) : A3 = log ( ! ) (c.27)
8R(P) 8R(P)

and all the other coefficients are calculated as previously.

For sino=0 (b=0), these expressions simplify to

2 1 _2 { 8 _ 1og (éﬁfg] (C.28)

Bip,s ~ 8iq,s  8r| 30 942
1 ’ 2
h.2  =h, =Xcosa | g0 (325 17 (C.29)
ip,s iq,s 16Ta 242 6

For the case when R(P)=0, the fundamental solution and its

normal derivative along the boundary contour become (see equations

(4.6.3) and (4.6.4)),

—_% 27 d
u (P,5,t_,t) = —377 exp (- —) (€.30)
F (4ﬂkT)3 2 4kt

—% 1
q (P,S,t at) = = & ] [ R(S) Ra (S)
F E;E(kT)S 2 n
d ,
—[z(P) - z(S)] z,n(s)] exp(- 75 (C.31)

The time integrals that appear in the boundary integral equation
(4.6.5) can be performed analytically and they give, for stepwise
constant variations of u and q,

t
[F ) 1

-_—%
u (i,S5,t_,t) dt = T(=, a)
J F e(rd): 2

byt

(C.32)
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t
Fo_, )
T (S,tp,t) de = - —— [R(S) R, (S)
[tF—l F kd(nd) o
- [2@) - 2(9)] 2,,(5) ] '3, @) (c.33)

where d=R%(S) +[2(P)-2(5)]% and a=d/(4kat).

The coefficients Gii and ﬁii are now obtained by
analytically integrating in space the result of the time integrals
(C.32) and (C.33). However, since only linear elements are
considered in this work, we have that

R(S) R, (5) - [2(®) - z(9)] 2, (5) =0 (C.34)

A~

and the coefficients»Hii become identically zero.
In order to compute the coefficients Gii’ we expand the

incomp lete Gamma function in equation (C.32) in series as [75],

+4
1‘(% ,a) = "5 _n"z_‘;’o i'_l_)f_éi_ (C.35)
7 n!(n+})

The integrals to be evaluated are now of the form,

% 1
g.z = _PFJ d—% r(l, a) (1+&) R(S) dg (C.36)
1p 8 b 2

i)

1
% 1
1 Tq -1 -1 _

Biq 8_“{ [_1d r(i, a) (1-z) R(S) dg (€C.37)

where we have, for element p,

R(S) = (1-£) -g-sind (C.38)

2
a= -0

and for element q,
2 .
R(S) = (1+E) E“ sino (C.39)

2
4=

Thus, the final expressions for the coefficients Gii (which
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equal giﬁ or g.l ) are as follows,

iq
g = ——T1—— T - L 7 (C. 40)
P 4r? | n=0 (4kAt) n! (n+}) (2n+3) (n+l)]
. 2n+1 y
L sin a ® D" 2
gil = —3———r—li(—n% + I T 4 (C.41)
4 wm? o | n=0 (4kAt)™ % n!(n+}) (2n+3) (n+1) |

and for computer efficiency, each term of the above series can be

related to the previous one as,

(2n+1) (4-n) 22

S = S 1 n=1,2,3,...
T (4kAt) (n+)) (20+3) (n+1)  °
(C.42)
28
SO=-—————-—-r-
3(4kAt)?



