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UNIVERSITY OF SOUTHAMPTON 

ABSTRACT 

FACUJ"TY OF ENGINEERING AND APPLIED SCIENCE 

CIVIL ENGINEERING 

Doctor of Philosophy 

POTENTIAL AND VISCOUS FLOW PROBLEMS USING THE 

BOUNDARY ELEMENT METHOD 

by Luiz Carlos Wrobel 

This work is concerned with the application of the Boundary Element 

Method for the solution of steady and transient potential and viscous 

flow problems. Two-dimensional, axisymmetric and fully three­

dimensional problems are considered, the general theory developed and 

specific numerical procedures derived for each of the above cases. 

Initially, the derivation of the boundary integral equation 

equivalent to Laplace's equation is reviewed within the framework of 

classical potential theory. Numerical procedures for the solution of 

this equation are discussed,being the boundary discretised by using 

piecewise constant, linear or quadratic variations for the potential 

function ffild its normal derivative. 

Integral formulations for the solution of the diffusion equation 

are then studied. Three different approaches are considered: using 

Laplace transforms, coupling the BEM with the Finite Difference Method 

or employing time-dependent fundamental solutions. For the latter case, 

specific numerical procedures for the solution of the time-dependent 

boundary integral equation equivalent to the diffusion equation are 

developed and different time-marching schemes tested. 

Finally, a BEM formulation for the solution of incompressible v~scous 

flow problems governed by the Navier-Stokes equations together with the 

continuity equation is derived, following Lighthill's vorticity­

velocity approach. Numerical procedures for the solution of the 

resulting set of non-linear integral equations are discussed in detail. 

Computer programs incorporating several of these features were 

developed, and examples of applications of such programs are presented 

throughout this work. 
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1. INTRODUCTION 

The Boundary Element Method is now firmly established as an 

important alternative technique to the prevailing numerical methods 

in continuum mechanics. Much attention is being given to its 

development over the las t few years, as it can be seen by the 

number of recently pub lished books and proceedings of international 

conferences on the subject ([lJ to [lOJ, [90]). 

The technique basically consis ts of the trans formation of the 

partial differential equation describing the behaviour of the unknown 

inside and on the boundary of the domain into an integral equation 

relating only boundary values, and the numerical solution of this 

equation. If values at internal points are required, they are 

calculated afterwards from the boundary data. Since all numerical 

approximations take place only at the boundaries, the dimensionality 

of the problem is reduced by one and smaller system of equations 

obtained in comparison with those achieved through differential methods. 

The present work is concerned with the application of the Boundary 

Element Method for the solution of steady and transient potential and 

viscous flow prob lems. By steady and transient potential prob lems 

we mean problems governed by the Laplace and diffusion equations, 

respectively; viscous flow problems are problems governed by the 

Navier-Stokes equations. Two-dimensional, axisynnnetric and fully 

three-dimensional analyses are considered, the general theory 

developed and specific numerical procedures derived for each of the 

above cases. 

Historically, the application of integral equations to formulate 

the fundamental boundary-value problems of potential theory dates 

back to 1903, when Fredholm ell] demons trated the exis tence of 

solutions to such equations, on the basis of a discretisation 

procedure. Due to the difficulty of finding analytical solutions, 
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the use of integral equations has, to a great extent, been limi ted to 

theoretical investigations of existence and uniqueness to solutions 

of prob lems of mathematical physics. However. the advent of high 

speed digital computers made it possible to implement discretisation 

procedures arithmetically and so enabled numerical solutions to be 

readi ly achieved. 

Fredholm integral equations follow from the representation of 

harmonic potentials by single-layer or double-layer potentials and 

set up the foundations of the so-called Indirect Boundary Element 

Method. Vector integral equations analogous to the Fredholm integral 

equations of potential theory were introduced by Kupradze [12] in the 

context of the theory of elasticity, 

Integral equations can alternatively be formulated through the 

application of Green's third identity [13], which represents a 

harmonic function as the superposition of a single-layer and a double­

layer potentials. Taking the field point to the boundary, an integral 

equation relating only boundary values and normal derivatives of the 

harmonic function is obtained. Its counterpart in elas tid ty 1S 

Somigliana's identity [14J, and their use gave rise to the Direct 

Boundary Element Method. 

More recently. it was demonstrated that the same integral 

relationships can be obtained through weighted residual considerations [2J. 

In this way, it became easier to relate and combine the Boundary 

Element Method with other numerical techniques, such as the Finite 

Element Method, as w~ll as to extend it for the analysis of problems 

governed by more complex partial differential equations, including 

non-lineari ties. 

Although integral equations have been extensively employed to 

formulate boundary-value prob lems of potential theory, analytical 



3 

solutions to such equations are limited to very simple geometries, 

by US1.ng the Green's function for the geometry which satisfies the 

prescribed boundary conditions of the problem [15], [16J, [17J. The 

Green's function method of solving boundary-value problems is most 

directly app li cab Ie to elliptic partial differential equations. In 

fact, the concept of a Green's function grew out of a detailed study 

of such boundary-value problems, but the method can also be extended 

to solve parabolic and hyperbolic partial differential equations. For 

general problems with complex geometry and boundary conditions, 

however, it may be assumed that no exact Green's function, or any 

other analytical treatment, is available. 

In 1963, Jaswon [18] and Symm [19] presented a numerical 

technique to solve Fredholm boundary integral equations. The 

technique consists of discretising the boundary into a series of 

small segments (elements), assuming that the source density remains 

constant within each segment. By using the method -of collocation, the 

discretised equation is applied to a number of particular points (nodes) 

in each element, and the influence coefficients computed approximately 

using Simpson's rule. Exception is made for the singular coefficients 

resulting from the self-influence of each element, which are computed 

either analytically (for Dirichlet problems) or by the summation of 

the off-diagonal coefficients plus the free term (for Neumann problems). 

This produces a system of linear algebraic equations which can be 

solved computationally by a direct method, e.g. Gauss elimination. 

Applying such technique, they obtained accurate solutions for 

simple rno-dimensional Neumann and Dirichlet problems. They also 

proposed a more general numerical formulation for solving CaucllY 

(mixed) boundary-value problems through the application of Green's 

third identi ty, which yields a boundary integral equation ,,,here boundary 



4 

values and normal derivatives of the physical variable play the role 

of the fictitious source densities. Results using this formulation 

are reported by Symm [l9Jand Jaswon and Ponter [20J. 

Hess and Smith [21J developed a parallel work for the solution 

of Neumann boundary-value prob lems, more specifically, the prob lem of 

potential flow about arbitrary bodies. Applying bas ically the s arne 

(indirect) technique. they computed the quantities of interest 

(potential and velocities) from the source density distribution, by 

using direct quadratures of the corresponding equations. They extended 

the method to analyse a variety of body shapes: two-dimensional, 

axisymmetric and fully three-dimensional results were presented. The 

influence coefficients were all computed analytically for the two- and 

three-dimensional cases although in the latter, in order to improve the 

computer efficiency, mUltipole expansions were employed to calculate 

the influence of elements located far from the actual node and the 

system of equations was solved iteratively by the Gauss-Seidel method. 

For axisymmetric problems, the influence coefficients were computed 

numerically using Simpson's rule but the number of sub-elements was 

scaled in such a way that the farther the element lies from the actual 

node, the fewer the number of sub-elements used in the calculation. 

The singular (self-influence) coefficients were computed analytically, 

by means of series expansions. 

Harrington et al. [22] applied the technique to solve some two­

dimensional electrical engineering problems with the more general 

impedance boundary condition, which is of the Robin type, i.e. it 

prescribes a linear relation between the potential and its normal 

derivative. They also proposed a piecewise linear variation for the 

source density. Mautz and Harrington [23Jsolved axisymmetric electrical 

engineering problems with Dirichlet boundary conditions, again employing 
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the indirect formulation and assuming the source density to rema1n 

constant within each element. Some of their numerical considerations 

were later discussed by Jaswon and Symm [1]. 

In 1970, Rizzo and Shippy [24J applied the direct formulation 

of the Boundary Element Method in conjunction with Laplace transforms 

to solve problems of transient heat conduction, governed by the 

diffusion equation. Assuming that all pertinent functions possess 

Laplace transforms, a boundary integral equation is derived and solved 

in the transform space for a sequence of real, positive values of the 

transform parameter. A numerical transform inversion procedure is 

then employed to compute the physical variables, in the real space. 

Using this approach, the time dependence of the problem is temporarily 

removed and an elliptic partial differential equation solved rather 

than the original parabolic one. 

Butterfield and Tomlin [25J, [26] extended the method for the 

analysis of zoned orthotropic media such as occurring in geotechnical 

engineering, The variables located at the interface between adjoining 

zones were assumed to satisfy compatibility conditions and the final 

system of equations obtained was banded. They solved steady and 

transient two-dimensional potential problems using the indirect 

formulation. Transient solutions were generated by distributing 

instantaneous sources over the problem region at zero time to reproduce 

the initial conditions and continuous sources over the region 

boundaries and interfaces, satisfying prescribed boundary and interface 

conditions. 

Chang et ale [27] employed time-dependent fundamental solutions 

in the context of the direct Boundary Element Method to solve two­

dimensional problems of heat conduction in isotropic and anisotropic 

media. The discretisation of the boundary integral equation was 

carried out using space and time piecewise constant values for the 
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variables. A similar approach was discussed by Shaw [28] for the 

solution of three-dimensional problems but emphasis was given on the 

analytical rather than numerical aspects of the method. This 

formulation was later extended by Wrobel and Brebbia [29J in order to 

allow higher order space and time interpolation functions to be 

included, thus making possible the analysis of more practical problems. 

They also derived a numerical procedure to solve transient axisymmetric 

problems [30] where the complexity of the fundamental solution requires 

the introduction of series expansions in order to enable the time 

integrals in the boundary integral equation to be carried out 

analytically. 

Another alternative integral approach for the solution of 

transient problems is the coupled Boundary Element-Finite Difference 

Method proposed by Brebbia and Walker [3]. In this formulation, the 

time derivative is approximated in a finite difference form and a 

step-by-step finite difference-type procedure employed to advance the 

solution in time. 

Problems of incompressible viscous fluid motion are governed 

by the Navier-Stokes equations, together with the continuity equation. 

The prevailing methods of solution of these equations are based on 

their formulation as a system of partial differential equations ~n 

terms of velocity and pressure, stream function and vorti.city, or 

stream function alone [91]. With each of these systems, it has been 

necessary to compute the value of the dependent variables for the 

entire flowfield. Besides that, there is a difficulty associated 

with problems involving the flow past the exterior of a finite body, 

namely the fact that the flow region is infinite in extent and 

boundary conditions imposed at infinity need to be satisfied. 

An alternative approach was proposed by Lighthill [31J employing 
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vorticity and velocity as the dependent variables. In this way, it 

is possible to separate the set of equations into a kinetic part which 

deals with the dlange of the vorticity field with time and a 

kinemati c part which relates the velocity fie ld (v) at any ins tant of 

time to the vorticity field (w) at that instant. The advantages of 

such approacil have already been noticed and several formulations 

employing it in conjunction with the Finite Difference Method and 

the Finite Element Method have appeared in the literature [32J ,[33J, 

[34], [35J. The usual procedure is to recast the kinematic part of 

the problem into an integral equation for v in terms of w. For 

external flows, this equation is readi ly recognised as the Biot-

Savart law of induced veloci ties [31], [36J. An extension of this 

equation for internal flows, taking into account the velocity boundary 

conditions at the solid boundaries, was derived by Wu and Thompson [33J. 

An immediate consequence of the above feature is that only the 

vorticity distribution in the viscous region of the flow contributes 

to the calculation of the velocity anywhere in the flow. Since this 

viscous region is generally embedded in a much larger, inviscid region, 

a great reduction in the size of the domain involved in the actual 

computation is achieved. Moreover, for external flow problems, the 

imposed boundary conditions at infinity are implicitly contained in 

the integral equation, thus the necessity of truncating the infinite 

region at a finite distance is avoided. 

For a fluid in contact with a solid Ln motion, the no-slip 

condition provides a mechanism for the generation (or depletion) of 

vorticity at the solid surface. In the case where the fluid is 

initially at rest, the (~rt'dt'a:f!ional) flow set up by the motion of the 

solid has a non-zero tangential velocity relative to the solid. A 

dis continui ty in tangential veloci ty therefore results, at t=O, due 

to the no-slip condition, representing a sheet of vorticity at the 
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boundary [32J, [36], [37]. For t>O, the vorticity, which is 

concentrated at the boundary at t=O, spreads into the interior of the 

fluid domain by diffusion and, once there, is carried away by both 

convection and diffusion. This process of transport of vorticity 

constitutes the kinetic part of the problem, and is governed by the 

vorticity transport equation. 

Previous works employing the vorticity-velocity formulation 

kept the vorticity transport equation in the differential form, and 

advanced the vorticity distribution in time using finite difference 

[32], [33J, [34J or finite element [35J schemes. However, some 

difficulties related to the satisfaction of boundary conditions at solid 

boundaries still remained, as pointed out by Wu [37]. 

As for the kinematic part, this differential equation can also 

be recast into an integral equation, and formulations using both 

the kinematic and kinetic parts of the problem in integral form have 

recently been proposed by Brebbia and Wrobel [38J and Wu and Rizk [92J. 

For steady state problems, the vorticity transport equation is reduced 

to an (elliptic) Poisson equation and a specific formulation for its 

solution was proposed by Wu and Wahbah [93]. 

The present work starts by showing how a problem governed by 

Laplace's equation (with prescribed boundary conditions) can be recast 

into an integral equation which, through a limiting process, produces 

a boundary integral equation relating only boundary values. Both the 

indirect and the direct formulations of the Boundary Element Method 

are discussed. The weighted residual technique is then employed to 

formulate (direct) integral equations equivalent to the diffusion 

equation with prescribed boundary and initial conditions. 

Numerical formulations for the solution of the boundary integral 

equation equivalent to Laplace's equation are presented in chapter 3. 
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It is shown how several features such as special boundary condi tions > 

internal sources, non-homogeneity, orthotropy and anisotropy can be 

included into the formulation. Two-dimensional, axisymmetric and 

fully three-dimensional problems are treated and results of some 

app 1 i ca ti ons pres ented. 

Chapter 4 studies numerical solutions to the time-dependent 

boundary integral equation equivalent to the diffusion equation, 

obtained through the use of time-dependent fundamental solutions. 

Two different time-marching schemes are considered, both adopting a 

time-stepping technique which allows the time integrals in the 

boundary integral equation to be carried out analytically, for time 

interpolation functions of any order. The remaining space integrals 

are computed numerically, apart from the singular ones. Again, two­

dimensional and axisymmetric problems are treated, being extension 

to three dimensions straightforward. Comparison of numerical results 

obtained \vlth the different time-marching schemes is effected, as well 

as with several finite element results. 

Boundary element formulations for the solution of the Navier­

Stokes equations are presented in chapter 5. Both steady and transient 

problems are considered, and computational procedures discussed in 

detail. Computer programs incorporating these procedures are currently 

under way. 

A brief description of the computer programs developed throughout 

this work, for the solution of the Laplace and diffusion equations, is 

presented in chapter 6. Al1 programs were wri tten in FORTRAN, in the 

IBM 360/195 computer of the Rutherford Laboratory. Finally, 

conclusions and suggestions for further research work are discussed 

l.n chapter 7. 
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2. BOUNDARY IN~EGRAL EQUATIONS 

In this chapter, it is shown how a problem governed by a partial 

differential equation with prescribed boundary conditions can be recast 

into an integral equation which, through a limiting process, produces a 

boundary integral equation relating only boundary values. This trans­

formation, together with the numerical solution of the boundary integral 

equation, constitutes the basis of the Boundary Element Method. 

In order to clarify the ideas, we start with the simplest partial 

differential equation, namely Laplace's equation. The relation of the 

method with classical potential theory is outlined through its indirect 

formulation, which employs fictitious source density distributions along 

the boundary. All regions referred to in this formulation are assumed 

to be regular in the sense defined by Kellogg [13] and all surfaces to 

be Liapunov surfaces [39J, which are smooth surfaces possessing a 

tangent plane and normal, but not necessarily a curvature, at each point. 

Then the direct formulation of the Boundary Element Method is 

presented. For Laplace's equation, it follows from an application of 

Green's third identity. More generally, all surfaces in this formula­

tion are assumed to be Kellogg regular surfaces [13J, which may have 

corners or edges provided they are not too sharp. Alternatively, it 

is demonstrated that the same integral relationships can be derived 

through weighted residual considerations. 

Next, the weighted residual technique LS employed to formulate 

integral equations equivalent to the diffusion equation with pres­

cribed boundary and initial conditions. The presence of specified 

initial conditions gives rise to an integral over the domain but since 

all values in this integral are known, the problem is still a boundary 

problem. These integral equations are derived in conjunction with all 

three previously discussed approaches, i.e. the Laplace transform, the 
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coupled Boundary Element - Finite Difference and the time-dependent 

fundamental solution methods. 

2.1 Elements of Potential Theory 

Some basic elements of classical potential theory will now be 

briefly reviewed. Concepts that are of importance to the present work 

are introduced and on doing so we follow Cruse [40] and Jaswon and 

Symm [1]. For a more formal mathematical treatment, including all 

necessary and relevant rigorous proofs, see for instance Kellogg [13J, 

Courant and Hilbert [41J ,Sternberg and Smith [42J. 

If a particle of unit mass, subjected only to the force of a 

specific field F, is moved from a point s to a point p in space, the 

work done on the particle by the field during the motion is given by, 

P 

W=I.~d~ (2.1.1) 

where F is the force field vector and dr is the differential motion of 

the particle on the path from s to p. 

The work is in general dependent not merely on the position of 

the points, but also on the path of the particle between them. If the 

field is such that the work ~s independent of the path, i.e. it has the 

same value when taken over any two paths connecting sand p which can 

be continuously deformed one into the other, the field is called 

conservative. 

Considering the point s as fixed and p as variable, the integral 

(2.1.1) represents a function of p alone. This scalar function 

u(p) (2.1.2) 

is called the potential of the field F. 
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When the field is gravitational, the potential is a Newtonian 

one. The Newtonian potential generated by two particles of masses 

ml and m2 , located at points s (fixed) and p (variable), respectively, 

1S of the form 

u(p) 1 = G IDl m2 r + constant (2.1.3) 

where G is the gravitational constant and r is the distance between s 

and p, that is, 

r (p, s) 

(2.1.4) 

Attractional forces of the same character as those occurring 

1n gravitation also act between electric charges, and between the poles 

of magnets. For generality, we will then refer to sources rather than 

masses throughout this work and state that a unit simple source, 

located at a source point s in space, generates at a field point p the 

Newtonian potential 

1 (2.1.5) 
r (p, s) 

This potential is a continuous function of p, differentiable to all 

orders, everywhere except at the source point s. 

Similarly, a discrete distribution of simple sources of in ten-

sities aI' a 2 , ••• , aN located at points sl' s2' ... , sN' respectively, 

generates the Newtonian potential 

N 
u(p) = 1 

l: a(sn) rep,s ) 
n=l n 

(2.1.6) 

at point p. Again, this potential 1S a continuous function of p, 

together with its derivatives of all orders, everywhere except when p 

is coincident with one of the source points s . 
n 
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Now consider a continuous distribution of simple sources of 

volume density p throughout the region~. The potential associated 

with this force field is a volume potential, obtained by the integra-

tion 

u(p) = In P (s) 1 d~(s) 
" rep,s) 

(2.1.7) 

This volume potential is a continuous function of p, differen-

tiable to all orders, at all points of free space, that is, points 

located outside the attracting region n. When the field point plies 

inside the region ~, the integrand in (2.1. 7) contains a singularity. 

However, if the density p is bounded throughout ~, the potential u(p) 

exists at all points p ~ ~ and is everywhere continuous and differen-

tiab1e throughout space [13]. This amounts to saying that the deriva-

tives of the first order of u may be obtained by differentiating under 

the sign of integration as, 

dU(p) 
ax. (p) 

1. 

() d (1 ) d~ (s) 
p s dX.(p) rep,s) 

1. 

1. = 1,2,3 (2.1.8) 

The same 1.S not valid for the derivatives of the second order. 

In fact, the mere continuity of the density does not suffice to 

ensure the existence of these derivatives. Therefore, it is necessary 

to impose that the density pes) satisfies a HlHder condition [13J, 

[4lJ at p, 

Ip(s) - pep) I ~ A r(p,s)a (2.1.9) 

where A and a are positive constants, a~l. 

In order to investigate the partial derivatives of u of the 

second order, we can start by integrating (2.1.8) by parts, obtaining 

au(p) 
ax. (p) 

1. 

= - J p (S ) / S) x. (S ) dr (s ) + J r rp, 1.,n ~ 

dP (5) 1 ~(s) 
ax. (5) rep,s) 

1. 

(2.1.10) 
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through the application of the divergence theorem, and noting that 

a 1 a 1 
ax. (p) (r(p,s»= - ax. (s) (r(p,s» 

~ ~ 

(2.1.11) 

Making use of the identity, 

(2.1.12) 

taking the second derivative of (2.1.10) yields the relation 

J 
a 1 

= - r peS) axi(p) (r(p,S» xi,n(S) dr(S) 

+ In axia(s) [p (s) - p (p)] ax: (p) (rlp, s» dn (0) 

(2.1.13) 

The second integral in (2.1.13) may be integrated by parts with respect 

to x. (s) and subjected to the divergence theorem once more to obtain 
~ 

a2u(p) J. d 1 
dx

i
2 (P) = - r peS) axi(p) (r(p,s» xi,n(S) dr(S) 

+ t[P(S) - p(p)] aXi~p) (r(pi,s» xi,n(S) dr(S) 

(2.1.14) 

which reduces to, 

a2 1 
[p (s) - p (p) 1 (---,-=---,-) <ill (s) 

dX. 2 (p) rep,s) 
~ 

(2.1.15) 

Thus, adding up the three second order derivatives (equation 

(2.1.15 ) for i = 1, 2, 3) yields the Laplacian of u, 

V2u(p) = P (p) L a (r(p~s» dr(S) + In [pes) - pep)] 1,72 1 
an(S) (r(p,s» 

(2.1.16) 

dn(s) 
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In the second integral in the above equation, the volume may be 

divided into two parts: one is a small sphere of radius E surrounding 

the point p, which is called Q; the other is the entirety of the 
E 

remaining volume, denoted Q-Q. As P ~s exterior to Q-Q and l/r 
E E 

is a harmonic function (as will be demonstrated later), the Laplacian 

term equals zero throughout this region. The integral over Q also 
E 

approaches zero with E since p(s) satisfies a HH1der condition at p. 

Thus there remains the surface integral to be evaluated. 

Again, consider a small sphere of radius E around p, with 

surface r. Integrating (2.1.16) around this surface gives, 
E 

dr 
£ 

~ -4n (2.1.17) 

Since there are no sources ~n the region between rand r 
E 

the Newtonian field is solenoidal, i.e. there is no flux out of 

this region. Numerically, we can write 

Ir 
a (~) dr + I a (~) dr 0 (2.1.18) 

an r E r an r 
E 

where the normal ~s outward on r, but inward on r. Combining equa­
£ 

tions (2.1.17) and (2.1.18) and noticing the reversal of the normal 

on r gives 
£ 

-4n (2.1.19) 

Inserting (2.1.19) into (2.1.16) produces the expected result, 

v2u(p) = -4np(p) (2.1.20) 

Other Newtonian potentials can be generated, including surface 

potentials. In particular, two of them are of importance to what 

follows and will be defined next. The first is the potential 

associated with a continuous distribution of simple sources extending over 
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a surface r and of surface density a, which ~s of the form, 

u(p) t cr (5) 
1 

rep,S) dr(S) (2.1.21) 

and is called a single-layer potential. 

Let us now consider two surfaces reS) and r(Sl) separated by 

a small distance h(S,Sl)' carrying distributions of attraction of 

magnitude a(S) and a(Sl)' respectively. These distributions are such 

that, for corresponding area elements, 

a(S) dr(S) = -a(Sl) dr(Sl) (2.1.22) 

The potential due to the two surfaces is then, 

u(p) Ir a (S) 1 dr (S) + J a(Sl) 
1 

dr (Sl) rep,S) r(P,Sl) r l 

J (S) h(S S ) [ 1 ( 1 - 1 -)] dr(S) 
= r a '1 h(S,Sl) rep,S) r(p,Sl) (2.1.23) 

If we let h~ and a~, so that ah+f.! everywhere uniformly on rand 

also compute the limit of the term in brackets, 

( 1 
r (p, S) 

1 
(r(p,S» (2.1.24) 

the potential 

(2.1.25) 

obtained as the limit of the potential of two single-layers of opposite 

signs that approach coincidence, is called a double-layer potential. 

The function f.! is the surface density, or moment, of the double-layer. 

The potentials in equations (2.1.21) and (2.1.25) are con-

tinuous functions of p, differentiable to all orders, everywhere except 

at p ~ r, where the integrands in these equations contain singularities. 

In order to investigate the behaviour of these surface potentials near 

the singularity, the boundary r is broken into two surfaces: one is a 
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small disc tangent to the surface at a point P, noting that it was 

assumed that the surface possesses a unique tangent plane at any point; 

the other is the entirety of the remaining surface and contains no 

singularity, as P f s. 

According to figure 2.1.1, the field point p is located along 

the normal to r that passes through the surface point P. The disc 

centred at P has a radius £: and is denoted r; the remainder of the 
£: 

surface 1S denoted r-r. The point p is located at a distance A from 
£: 

P such that IAI«£:, and such that A<O if p is outside rl and A>O if p 1S 

inside rl. The int'egrals in (2.1. 21) and (2.1. 25) can then be separated 

as, 

u(p) 

u(p) 

lim { J o(S) 
1 dr(S) + L a(S) 

1 
dr(S)} 

£:-+0 r-r 
rep,S) rep,S) 

£: €: 

(2.1. 26) 

lim { Jr- r 
jl (S) Cl ( I ) dr(S) 

E:~ 
Cln(S) rep,S) 

£: 

+t jl (S) Cl 1 1 (2.1.27) 
Cln(S) ( r (p , s) dr (S) f 

€: 

It is clear that the integrals over r-r are continuous as the 
£: 

field point p passes through the surface and will again produce the 

integrals in (2.1.21) and (2.1.25) when the limit is taken. 

The integral over r in (2.1.26) contains a weak singularity 
£: 

and is also continuous as the field point passes through the surface, 

provided the density a is bounded at all points along r. This state-

ment does not hold for the second integral in (2.1.27) which, because 

of the normal derivative term, contains a singularity of higher order. 

This integral can be written as, 
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Figure 2.1.1 - Discontinuity of three-dimensional 
double-layer potential 
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a 1 
]l(S) an(S) (r(p,S» dr(S) [ a 1 

]1(S) - ]1(P)] an(S) (r(p,S» dr(s) 

a 1 
an(S) (r(p,S» dr(S) (2.1.28) 

This means that the potential of a surface whose density LS 

continuous at P is the sum of the potentials of a surface whose density 

vanishes at P and of a surface with constant density, equal to that at 

P. If the density ]1(S) satisfies a HHlder condition at P, then the 

first integral on the right-hand side of (2.1. 28) is continuous as the 

field point passes through the surface. The second integral becomes 

(refer to figure 2.1.1 for notation), 

L a (1:) dr J:!> 2'lfpdp (2.1.29) = 
an r 

E 

Since pdp rdr for a given IAI «E, an interchange of variables 

produces, 
c 

- f ::\ 
o r 

where the symbol 'Sgn(A)' takes the sign of A. 

2'lf sgn (A) 

(2.1.30) 

Taking the limit as E~ (noting that A~ much quicker), (2.1.28) 

gives, 

lim 
E:~ 

d 
]1(S) dn(S) (2.1.31) 

Thus the limiting form of equation (2.1.25) as p+P from the 

inside can be wri tten as 

(2.1.32) 

and from the outside as, 
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(2.1.33) 

The three-dimensional double-layer potential is then said to have 

a discontinuity or jump of -4~~(P) as the point p passes from outside 

to inside the region, that is, 

+ -
U (P) - u (P) = -4~~(P) (2.1. 34) 

All concepts presented thus far are also valid for two-dimensional 

problems, where the equivalent of the Newtonian potential is the 

logarithmic potential 

in which rep,s) 1S now, 

rep,s) = jP-sl 

1 
log rep,s) (2.1. 35) 

! 
+ [x (p) - x (S)]2}2 

2 2 

(2.1. 36) 

The logarithmic potential can be derived either by starting with 

two-dimensional force fields acting on a line source or by integrating 

the Newtonian potential for a line source at s [13J, [41J, [42J. 

The two-dimensional volume potential 

u(p) = I p (s) log (1 ) dQ(s) 
Q r p,S 

(2.1.37) 

satisfies Poisson's equation 

V2 u(p) = - 2~p(p) (2.1.38) 

for every p C Q by an analogy to the Newtonian volume potential, noting 

that 

dn(S) dr = -2~ 
E 

(2.1.39) 

where r is now a curve in the plane region. 
E 

The single-layer potential for two-dimensional problems is given 

by, 
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u(p) = J
r 

O"(S) log 1 dr(S) 
r (p ,S) 

(2.1.40) 

and, as in the three-dimensional case, is continuous as the field point 

passes through the surface, for a density 0" which is bounded at all 

surface points. 

The two-dimensional double-layer potential is of the form, 

J 
a 1 

u(p) = r ]1(S) Cln(S) (log r(p,S»dr(S) (2.1.41) 

and contains a discontinuity which can be investigated in a similar way 

as for the three-dimensional case. 

As previously, the bounding curve r is divided into r-r and r , 
£: £: 

the latter being a short, straight line centred at point P (figure 

2.1.2), where it was assumed that the surface possesses a smooth contour. 

The point p is located along the normal to the surface that passes 

through P and the distance A between the two points taken to be much 

less than 2£:, the length of r . 
£: 

Dividing the integral in (2.1.41) as was done in equation (2.1.28) 

and assuming that ]1(S) satisfies a HBlder condition at P, the discontin-

uity is given by the term, 

(2.1. 42) 

This integral contains a perfect differential since for e defined 

as Ln figure 2.1.2 its integrand can be written as, 

Clan (log~) dr = A A 
- ~ (- sin2 e) de = de (2.1.43) 

Thus, evaluating the limit in (2.1.42) and noting that IAI«£: 

gives 

lim 
10:-+0 

Cln~S) (log (1 S» r p, dr(S) } - 1T Sgn(A) ]1(P) (2.1.44) 
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Figure 2.1.2 - Discontinuity of two-dimensional 
double-layer potential 



23 

The limiting form of equation (2.1.41) as the point p approaches 

P from the inside becomes 

u+(P) = -,"(P) + Ir "(S) 
0 1 dr (S) dn (S) (log reP ,S» (2.1. 45) 

and from the outside 1.S 

u-(P) Tf].l (p) +t I1(S) 0 (log 1 dr(S) 
oneS) rep,S»~ (2.1. 46) 

being the jump 1.n the integral now, 

(2.1.47) 

2.2 Indirect Formulation 

In this section, we study solutions to Laplace's equation, 

seQ (2.2.1) 

with boundary conditions of the Diri~blet type, 

u(S) = tieS) s C r (2.2.2) 

or of the Neumann type, 

q(S) = ~~~~~ = q(S) S C r (2.2.3) 

where n(S) is the unit outward normal to surface r at point S, ti and ~ 

are prescribed values of the function and its normal derivative over 

the boundary r. 

A function u is said to be harmonic within a domain Q, bounded by 

a closed surface f, if it satisfies the following conditions: 

a) u is continuous 1.n Q + f 

b) u is differentiable to at least the second order in Q 

c) u satisfies Laplace's equation in Q 

Any harmonic function can be represented by a potential distribu-

don and conversely, every potential is a harmonic function [13], [42J. 

Thus, an effective method of formulating the boundary-value problems 

of potential theory is to represent the harmonic function by a single-
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layer or a double-layer potential generated by continuous source distri-

butions over f, provided these potentials satisfy the boundary conditions 

prescribed for u. This procedure leads to the formulation of integral 

equations which define the source densities concerned. These equations 

can be discretised and solved numerically, and values of u at internal 

points computed afterwards from the boundary data by using numerical 

quadratures as will be shown in the next chapter. 

To obtain an integral equation for the solution of the Neumann 

problem, we assume that the unknown function u may be expressed solely 

as a single-layer potential with unknown density a, 

u(p) ~ Ir u(S) u'(p,S) dr(S) (2.2.4) 

The function u*(p,S) is the Newtonian potential (2.1.5) for three-

dimensional problems or the logarithmic potential (2.1.35) for two-

dimensional problems, and is called the fundamental solution to Laplace's 

equation. 

Taking the derivative of (2.2.4) in the direction of the outward 

normal to r as p is taken to P yields the boundary relation, 

q(P) = - aTIo(P) + I a(S) au*(p,s) 
f an(P) 

df (S) (2.2.5) 

where a = 1 for two-dimensional problems and a 2 for three-dimensional 

problems. 

This constitutes a Fredholm equation of the second kind for 0 in 

terms of q, as the unknown appears both outside and inside the integral. 

After solving the system of corresponding algebraic equations, values 

of u at any interior or boundary point can be calculated by using (2.2.4), 

since u*(p,S) is continuous as p+P. 

It is important to note that (2.2.5) has a solution only if the 

Gauss condition [13J 
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Ir q(P) dr(p) ~ 0 (2.2.6) 

holds, and that this solution is unique only to wi thin an arbitrary 

additive constant. However, a unique solution of equation (2.2.5) can 

be obtained by imposing some extra 'normalising' condition [lJ. This 

will be discussed in detail in the next chapter. 

The above method was extensively employed by Hess and Smith [21J 

to solve a series of fluid flow problems, including flow past hydrofoils, 

cascades and lifting aerofoils. Numerical results can also be found 

~n [1 J, [19 J, [20]. 

To obtain an integral equation for the solution of the Dirichlet 

problem, the classical approach is to assume that the unknown function 

u may be expressed solely as a double-layer potential with unknown 

densi ty ]l, 

u(p) ~ Ir "(S) q*(p,S) dr(S) (2.2.7) 

where 

q * (p, S) * = dU (p,S) 
dn(S) 

(2.2.8) 

Taking into account the jump in the double-layer potential, the 

limit of (2.2.7) may be taken as p+P, 

(2.2.9) 

As u(P) is known for the Dirichlet problem, the source density ]l is 

the only unknown. Again, (2.2.9) constitutes a Fredholm equation of the 

second kind which, after being solved, enables us to compute u(p) 

everywhere. in r.l using (2.2.7). Numerical results using this formula-

tion were obtained, for instance, by Kantorowich and Krylov [43]. 

Since u*(P,S) = u*(S,P), the integral equation (2.2.9) is said 

to contain the adjoint kernel of equation (2.2.5). The kernel is the 
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function of (P,S) multiplying the density under the integral sign in 

the integral equations. For scalar kernels, the adjoint LS obtained by 

interchanging P and S. 

An alternative approach to obtain an integral equation for the 

solution of the Dirichlet problem is to assume that the unknown function 

u may be expressed solely as a single-layer potential with unknown 

densi ty CJ, 

u(p) = Ir o(S) u*(p,S) dr(S) (2.2.10) 

Since the kernel in this equation LS continuous as p passes 

through the surface, the limit of (2.2.10) as p~P gives 

u~) = Ir o(S) u*(P,S) dr(S) (2.2.11) 

and, as u(P) is known, the source density CJ is the only unknown Ln 

the equation. 

Equation (2.2.11) is a Fredholm equation of the first kind, as 

the unknown appears only inside the integral. For many Dirichlet 

problems, formulations using such equations have proven to be more 

illuminating physically and more convenient mathematically then using 

equations of the second kind. 

Regarding the numerical solution of the system of correspond­

Lng algebraic equations, obtained by discretisation, the presence of 

the term outside the integral, for equations of the second kind, ensures 

that the system matrix will always be diagonally dominant. An equation 

of the firs t kind wi th a non-singular kernel can be very difficul t to 

solve, being essentially ill-conditioned [44J; however, in the present 

case, the singularity of the kernel ensures diagonal dominance in the 

system matrix and the problem is in general well conditioned. 

For numerical solutions of equation (2.2.11), see for instance 

[lJ, [19]' [20], [22], [23J. 
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2.3 Direct Formulation 

A conceptual disadvantage of single-layer and double-layer 

potentials is the introduction of formal source densities which usually 

bear no physical relation to the problem. This can be overcome by 

using Green's third identity, which leads to the direct formulation of 

the BOlmdary Element Method, where values of the function and its 

normal derivative over r play the role of the source densities in 

generating u throughout ~. 

First, let us introduce the Dirac delta function o(p,s), which 

has the following properties, 

o(p,s) 0 for p f. s (2.3.1) 

o (p, s) = 00 for p = s (2.3.2) 

tU(S) o(p,s) d~(s) = u(p) (2.3.3) 

Now, let ~ and ~ be two continuous functions with continuous 

first and second derivatives in the region~. Green's theorem in its 

second form states that 

(~~ - ~~) dr 
an an 

(2.3.4) 

If ~ and ~ are harmonic functions 1n n then V2~ = 0 and V2~ = 0, 

and (2.3.4) yields Green's reciprocal identity, 

f (<P~ - ~it) dr = 0 
r an an 

(2.3.5) 

Similarly, if ~ is a harmonic function u in n and ~ is the fundamental 

solution u* to Laplace's equation, equation (2.3.4) becomes Green's 

third identi ty, 

2arru(p) + Ir u(S) q*(p,S) dr(S) Ir q(S) u*(p,S) dr(S) 

(2.3.6) 
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This relation is derived by noting that inserting (2.1.7) into 

(2.1.20) (or (2.1.37) into (2.1. 38») yields the equation, 

V2 t p(s) u*(p,s) dQ(s) = -2.rrp(p) (2.3.7) 

Comparing equations (2.3.3) and (2.3.7), we conclude that the funda-

mental solution u* satisfies the relation 

v2U*(p,s) = -2ano(p,s) (2.3.8) 

and so, 

-2 •• IQ u(s) alp,s) dOts) = -2.rru(p) (2.3.9) 

Equation (2.3.6) states that a harmonic function may be expressed 

as the superposition of a single-layer potential with density q/2an 

and a double layer potential with density -u/2an. Moreover, examining 

each of the terms in (2.3.6) as the interior point p is taken to the 

boundary, we recall that the single-layer potential remains continuous 

as p+P but the double-layer potential jumps by an amount of -anu(p), 

thus yielding the boundary formula, 

•• u(P) + J
r 

u(S) q*(P,S) dr(S) fr q(S) u*(P,S) dr(S) 

(2.3.10) 

This equation provides a functional constraint between u and q 

over r which ensures their compatibility as boundary data. If the 

solution of a Neumann problem is required, the right-hand side of 

(2.3.10) is known, and we have to solve a Fredholm equation of the 

second kind for the unknown boundary values of the function u. If 

the solution of a Dirichle t problem is required, values of u are pre-

scribed throughout r and we obtain a Fredholm equation of the first 

kind for the unknown boundary values of the normal derivative q. 

Solution of Cauchy (mixed) boundary-value problems leads to a mixed 

integral equation for the unknown boundary data. 
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Note that if the point p crosses the surface r into the infinite 

domain exterior to rl, the double-layer potential again jumps by 

-aTIu(p), so generating the identity, 

t u(S) q*(p,S) dr(S) - t q(S) u'(p,S) dr(S) o (2.3.11) 

This can be viewed as a particular case of (2.3.5), since both functions 

u and u* are harmonic outside the region rl. 

2.4 Weighted Residual Formulation 

The direct Boundary Element Method can alternatively be formu-

1ated through weighted residual considerations [2J. The advantage of 

uSLng a weighted residual technique is its generality: it permits a 

straightforward extension of the method to solve more complex partial 

differential equations; since it can also be employed to formulate other 

numerical techniques such as the Finite Element Method, it becomes 

easier to relate and combine the Boundary Element Method with more 

classical numerical methods. 

As we are seeking an approximate solution to the problem governed 

by equation (2.2.1) with boundary conditions of the type (2.2.2) 

prescribed over the part r
1 

of the boundary and of the type (2.2.3) 

prescribed over r 2 (r = r
1 

+ r
2
), the error thus introduced can be 

minimised by writing the following weighted residual statement, 

J 
V2u(s) u*(p,s) drl(s) 

rl 
[q(S) - -q-(S)] u*(p,S) dr(S) 

f [u(S) - u(S) 1 q* (p ,S) dr (S) 
r

1 

(2.4.1) 

where u* is interpreted as a weighting factor. 

The integration of (2.4.1) by parts with respect to x. (s) gives 
L 
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* dUeS) dU (p,s) dQ(s) 
dX. (s) dX. (s) ~ -f q (S) 

r
1 

1. 1. 

* u (p,S) dr(S) 

dr(S) - J rutS) - u(S)] 
r

1 

q*(p,S) dr(S) 

(2.4.2) 

where i = 1,2,3 and Einstein's summation convention for repeated 

indices is implied. Integrating by parts once more, 

I V2u*(p,s) u(s) dQ(s) 
Q 

-I q(S) u*(p,S) dr(S) 
r

1 (2.4.3) 

u*(p,S) dr(S) + I u(S) q*(p,S) 
r2 

dr(S) + J u(S) q*(p,S) 
r

1 

or generally, 

f V2u*(p,s) u(s) dQ(S) 
Q 

+ Ir u(S) q*(p,S) dr(S) 

- Ir q(S) u*(p,S) dr(S) 

(2.4.4) 

Assuming u* to be the fundamental solution to Laplace's equation 

and recalling (2.3.8) and (2.3.9), equation (2.4.4) becomes, 

2anu(p) + I u(S) q*(p,S) dr(S) = f q(S) u*(p,S) dr(S) 
r r (2.4.5) 

which is of the same form as Green's third identity (2.3.6). 

Another advantage of the direct formulation over the indirect one 

1.S that the restriction for the bounding surface to be a Liapunov (smooth) 

one can be relaxed. In fact, it can be applied to the more general 

Kellogg regular surfaces [13], thus allowing surfaces with corners or 

edges to be included. 

S~ taking the point p to the boundary and accounting for the 

ju~ of the left-hand side integral in (2.4.5) yields the more general 

boundary integral equation, 
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c{P) u{P) + Ir u{S) q*{P,S) dr{S) ~ Ir q{S) u*{P,S) df{S) (2.4.6) 

of which (2.3.10) is a particular case, when the surface r is smooth 

everywhere. 

Two different procedures can be employed to calculate the value 

of the coefficient c: one is through the physical consideration that 

a constant potential applied over a closed body produces no flux, which 

is equivalent to the rigid-body translations of the theory of elast-

icity and will be discussed in detail in the next chapter; the other 

1S herein presented for two-dimensional problems, but a similar approach 

is also valid for three-dimensions. 

Assume that the body under consideration can be augmented by a 

small region r which is part of a circle of radius £ centred at 
£ 

point P on the boundary r (figure 2.4.1). Proceeding as for evaluating 

the jump of the double-layer potential in section 2.1 and assuming 

that the function u(S) satisfies a HBlder condition at P, we have, 

c(P) = 2n + lim I 
£~ r 

£ 

an(S) 
1 

(log rep,S)) dr(S) 

which, referring to figure 2.4.1, reduces to 

c(P) = 2n - lim 
E-+O I

e
2 1. Ede = n + Ct - Ct

2 eEl 
1 

that is, c(P) equals the internal angle of the 'boundary at p. 

(2.4.7) 

(2.4.8) 

Since in a well-posed boundary-value problem only half of the 

boundary variables in (2.4.6) is prescribed, this equation can be 

employed in order to obtain the unknown boundary data. In chapter 3, 

a numerical scheme to solve this boundary integral equation will be 

presented. Then, values of the function u at any internal point p 

can be calculated by a numerical quadrature via equation (2.4.5). The 

derivatives of u at p (with cartesian coordinates x. (p),i = 1,2,3), if 
1 

required, can also be computed by a quadrature via the equation, 
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Figure 2.4.1 - Two-dimensional body augmented 
by region r 

E: 



dU(p) 
ax. (p) 

~ 

= - ..L{ J q (S) 
2a'Jf r 

au*(p,s) 
dX. (S) 

1 
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dr(S) - Ir u(S) aq*(p,s) 
ax. (s) 

~ 

df(Sl} 

(2.4.9) 

as we may generally differentiate beneath the integral signs in (2.4.5). 

2.5 Transient Potential Problems 

We shall now proceed to study solutions to the diffusion 

equation, 

v2u(s,t) 1 au(s,t) = 0 
- k at (2.5.1) 

with boundary conditions of the same type as previously seen (repeated 

here for convenience), 

u(S,t) 

q(S,t) 

u(S,t) 

= au(S,t) = q(S,t) 
an(S) 

(2.5.2) 

The coefficient k in equation (2.5.1) has different interpretations 

according to the physical problem concerned, and is assumed to be const-

ant both in space and time. 

Since the problem is now time-dependent, some initial conditions 

at time t=to must also be prescribed, 

(2.5.3) 

For simplicity, we shall set to = 0 throughout this work. 

The problem represented by equation (2.5.1) with boundary con-

ditions (2.5.2) and initial conditions (2.5.3) is a mixed (boundary -

initial-value) problem and as for boundary-value problems, the partial 

differential equation can be recast into an integral equation for the 

unknown function u. Three alternative formulations can be employed ~n 

order to perform this transformation: the first removes the time 

dependence of the problem by means of a Laplace transform [24J; the 

second replaces the time derivative in (2.5.1) by a finite difference 
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approximation and integrates the resulting equation on time in a finite 

difference fashion [3] while the third makes use of time-dependent 

fundamental solutions [29J. All three schemes will be discussed in 

following sections. 

2.6 Laplace Transforms 

Let us denote the Laplace transform of a function u(s,t), 

when it exists (see for instance [45J) by 

U(S,A) J

oo 

-At o u(s,t) e dt (2.6.1) 

and assume that the transform parameter A is real and posi ti ve. 

Equation (2.5.1) in the transform space becomes, 

2 A V U(S,A) - k U(s,A) 
I 

+­
k 

(2.6.2) 

The boundary conditions must also be transformed and we assume, for 

simplicity, that they are constant on time. This gives, 

U (8, A) = U (8, A) = u(S,t) 
A 

Q(S,A) = Q(S,A) = q(~,t) 

SLf I 

(2.6.3) 

Proceeding as-for Laplace's equation, we can write the following 

weighted residual statement, 

In [.2U(s,A) - ~ U(s,A) + f liO(S)J U"(p,s,A) dn(s) 

t [Q(S,A) - 'l(S,A)] U*(p,S,A) dr(S) 

2 

- I [U(S,l) - i(S.l)J Q*(p,S,l) dr(S) 
fl 

(2.6.4) 

where Q*(p,S,A) = aU*(p,S,A)/Cln(S). Integrating by parts twice the 

Laplacian in the above equation gLves, 
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= - Ir Q(S,A) U*(p,S,A) dr(S) + Ir U(S,A) Q*(p,S,A) dr(S) 

(2.6.5) 

Assuming U* to be the fundamental solution to equation (2.6.2), 

which satisfies the following relation, 

kV2 U*(p,S,A) - AU*(p,S,A) = - 6(p,s) (2.6.6) 

equation (2.6.5) becomes, 

U(p,A) + k Ir U(S,A) Q*(p,S,A) dr(S) = k Ir Q(S,A) U'(p,S,A) dr(S) 

+ In "Q(6) U*(p,S,A) dQ(s) (2.6.7) 

The fundamental solution U* for three-dimensional problems 1S of the 

form, 

(2.6.8) 

and for two-dimensional problems, 

(2.6.9) 

where K is the modified Bessel function of the second kind of order v. 
v 

Let us now investigate the singularity of the above fundamental 

solutions. As r~, so does the argument of the modified Bessel functions. 

The limi ting form of K! (z) as 'z-7() is [46], 

so that, 

U* = 

! 
= (.2!....) 

2z 

1 

(k;\) 1; 

r!(2'ffk)3/2 

1 1 

(~) 
2 

(k) " 1 
- 41Tkr 2r A 

(2.6.10) 

(2.6.11) 

which means that the singularity of the fundamental solution is of the 

same type as that to Laplace's equation. 
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Analogously, the limiting form of KO(z) as z-+O is [46J, 

Ka(Z) = - log (z) (2.6.12) 

which gives, 

u* III A 
= 21Tk log r - 41Tk log k (2.6.13) 

The first term is the fundamental solution to the two-dimensional 

Laplace's equation while the second term is a non-singular constant 

which adds nothing to the solution. 

Taking the point p in equation (2.6.7) to the boundary and noting 

that the integral in Q* is discontinuous as p+P then produces, 

e(P) U(P,A) + k Ir U(S,A) Q*(P,S,A) dr(S) ~ k Ir Q(S,A) U*(P,S,A) dr(S) 

+ In uO(s) U*(P,S,A) dills) (2.6.14) 

where the coefficient c has the same value as previously. 

This equation is discretised and solved numerically for a sequence 

of N selected values of the transform parameter A, chosen somewhat 

arbitrarily. Notice that the presence of specified initial conditions 

gives rise to an integral over the domain Q. One way of evaluating this 

integral is to divide the whole domain into cells and numerically 

integrate over each cell. However, if uo satisfies Laplace's equation, 

the domain integral in (2.6.14) can be transformed into equivalent 

boundary integrals [47]. Whatever the method of evaluating the domain 

integral may be, this integral introduces no further unknown since Uo is 

prescribed, and equation (2.6.14) is still a boundary integral equation. 

The remaining step is the transform inversion of the solution, 

which LS carried out numerically. Following, for instance, the method of 

Schapery [48], we assume that the value of u at any point can be 

represented as a finite series by, 
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u(p,t) = u(p,oo) + r 
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a (p) exp [-b (p) tJ 
n n 

(2.6.15) 

where u(p,oo) is the steady-state solution, a and b are functions of 
n n 

the position. Transforming (2.6.15) gives, 

U(p, A) (2.6.16) 

The values of the coefficients b are now assumed to be equal 
n 

to the previously selected A. Thus there remain the N values of the 

coefficient a to be computed at each boundary point (plus the internal 

points where the solution is required). The N solutions of equation 

(2.6.14) provide N values of U at each point, which allow the evaluation 

of the coefficients a using equation (2.6.16) and consequently, the 
n 

evaluation of the physical variable u using equation (2.6.15). A 

similar calculation is also required in order to obtain the real boundary 

(and internal) fluxes. 

Numerical results using this formulation are presented in [24], 

[47], [49]. Notice that the transform inversion 1S essentially a curve 

fitting process and as such, it is important for the analyst to have an 

idea of the expected behaviour of the solution in order to select values 

of the transform parameter A, since choosing too many values would 

quickly make equation (2.6.16) unstable while choosing too few values 

would not represent the curve adequately [49J. Furthermore, as pointed 

out in [47J, the formulation is not efficient when the time history of 

the boundary conditions is complex and in this case, step-by-step methods 

of the type subsequently discussed should be preferred. 

2.7 Coupled BoundaryElement~Finite Difference Methods 

Let us now assume that the time derivative in equation (2.5.1) can 

be approximated in a finite difference form, for a sufficiently small time 

step l\t, as 
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u(s,t+t.t) - u(s,t) 
t.t 

Equation (2.5.1) can then be rewritten as, 

1 
u(s,t+t.t) + kt.t u(s,t) 

(2.7.1) 

a (2.7.2) 

This equation is similar in form to equation (2.6.2) and so its funda-

mental solutions are of the same type as (2.6.8) and (2.6.9), replacing 

A by 1/ t. t. 

The boundary integral equation for this formulation can be 

obtained through weighted residual considerations, in the same way as 

was done in the previous section. By an analogy with equation (2.6.14), 

we can wri te 

c(F) u(F,t+~t) + k Ir U(S,t+~t) q'(F,S,~t) dr(S) 

k Ir Q(S,t+~t) u*(F,S,~t) dr(S) + ~~ In u(s,t) u*(F,s,~t) dais) 

(2.7.3) 

Starting from known initial values of u at t = to' we can advance 

the process on time by solving equation (2.7.3) numerically. Values of 

u at time t = to + t.t are then computed, at a sufficient number of 

internal points, in order to be used as pseudo-initial values for the 

next time step. 

Numerical results using this formulation are presented in [SO]. 

Notice that very small time steps have to be adopted if approximation 

(2.7.1) is to produce good results. As discussed ~n [SO], the accuracy 

of this formulation can be significantly improved by employing second 

order finite difference schemes, although convergence problems become 

more severe. 
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2.8 Time-Dependent Fundamental Solutions 

Considering the time dependence of the problem directly in the 

integration by parts process, we can write the following weighted 

residual statement for the governing equation (2.5.1) with boundary 

conditions (2.5.2), 

1 au(s,t)] * ( ) - k at u (p,s,tF,t) dn s dt 

~ (F L [q(s,t) - (j(S,t)] u*(p,S,tF,t) dr(S) dt 

o 2 

tF 

- f f [u(S,t) - u(S,t)] q*(p,S,tF,t) dr(S) dt 
to r 1 

where q*(p,S,tF,t) = au*(p,S,tF,t)/an(S). 

(2.8.1) 

Integrating by parts twice the Laplacian and once the time 

derivative in the above equation g~ves, 

* 
+ 

_1 au (P,s,tF,t)] 
k at u(s,t) cin(s) dt 

-t [f u(s,t) U*(P,s,tF'~ dn(S)]t=t
F 

n t=t 

tF 

+ f f u(S,t) q*(p'S''F,t) dr(S) dt 
to r 

o 

(2.8.2) 

The time-dependent fundamental solution u* ~s of the form [15J, 

[16]', 

(2.8.3) 

where T = tF-t and d is the number of spatial dimensions of the problem, 

e.g. d = 3 for three-dimensional problems, etc. Note that (2.6.8) and 

(2.6.9) are the Laplace transforms of (2.8.3) for d = 3 and d = 2, 
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respectively. The Reaviside function R(T) is included to emphasize the 

fact that the solution is identically zero for t>t
F

• This condition ~s 

known as the causality condition [15]. 

The fundamental solution possesses the following properties, 

au*(p,s,tp,t) 
kV2u*(p,s,tF,t) + at = - 8(p,s) 8(tF ,t) (2.8.4) 

* lim u (p,s,tp,t) = 8(p,s) 
t+tF 

(2.8.5) 

Let us now investigate the singularity that occurs in the 

integrals in equation (2.8.2) at time t=t
F

. In order to avoid ending 

the integrations exactly at the peak of the Dirac delta function, we 

may subtract or add to the upper limit of the integrals an arbitrarily 

small quantity E. In the former case, the first integral on the left-

hand side is identically zero for t in the range 0, tF-E and so, 

taking the limit as E+O and accounting for condition (2.8.3), equation 

(2.8.2) yields [16], (17J 

* u(S,t) q (p,S,tF,t) dr(S) dt 

(2.8.6) 

The same relation can be obtained by adding E to the upper limit of 

the integrals in equation (2.8.2). 

zero due to the causality condition. Thus, taking the limit of (2.8.2) 

as E+O, the inclusion of condition (2.8.4) into the first integral on 

the left-hand side produces the expected result [15J. 

Another property of the time-dependent fundamental solution (2.8.3) 

1S that, as a steady-state is reached, it reduces to the fundamental 

solution to Laplace's equation. That is, 
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tF 

Ie u*(p,s,tF,t) dt= u*(p,s) (2.8.7) 

We shall now prove this property for three-dimensional problems, 

bearing in mind that a similar approach can also be applied in two-

dimensions. So we have to integrate, 

1 r2 
-( 4-1T-k-';;'r)-':3::""'lJ'"="2 e xp (- 4k T ) d t (2.8.8) 

This integral can be evaluated analytically by introducing the variable 

x = r 2/4kT. An interchange of variables then gives, 

* u (p,s,tF,t) dt [ 
_1 -x 1 

x 2 e dx = 3/2 
a 4n kr 

rO ,a) 

(2.8.9) 

where a = r2/4ktF and r is the incomplete Gamma function. Taking the 

limi t of (2.8.9) as tF~ [46], 

1 lim 
4n 3/ 2kr 

r 0 ,a) = 1 
4nkr 

(2.8.10) 

which can be recognised as the fundamental solution to kV2u = O. 

Note that the first two integrals in (2.8.6) represent the 

effects of boundary conditions, while the third term includes the effects 

of the initial value uo of the function u. As tF~' the initial con­

ditions distribution effect vanishes while the integrations over t for 

the boundary . terms can be carried out assuming that u and q no longer 

depend on t (or at least that the contribution to the integral over t 

from 0 to 00 from those values of t where u and q were still dependent on 

t is negligible compared to the total integral). Thus, by virtue of 

(2.8.7), the fundamental solution reduces to that of Laplace's equation 

and (2.8.6) becomes the integral equation (2.4.5) for steady potential 

problems. 
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Taking the point p in equation (2.8.6) to the boundary and 

accounting for the jump of the left-hand side integral yields the 

boundary integral equation, 
tF 

c(P) u(P,ty) + k I I u(S,t) q*(P,S,tF,t) dr(S) dt 
to r 

(2.8.11) 

where c(P), as previously, is a function of the solid angle of the 

boundary at point P (see equation (2.4.8». 

Since the time variation of functions u and q is not known a 

priori, a time-stepping technique (not to be confused with the previous 

finite difference one) has to be introduced for the numerical solution 

of equation (2.8.11). However, as the fundamental solution itself is 

time-dependent, large time steps can generally be adopted. 

Two different time-marching schemes can be employed on this 

numerical solution: the first treats each time step as a new problem 

and so, at the end of each step, computes values of the function u at 

a sufficient number of internal points in order to use them as pseQdo-

initial values for the next step; in the other, the time integration 

process always starts at time to and so, despite the increasing number 

of intermediate steps as the time progresses, values of u at internal 

points need not be recomputed. Furthermore, if Uo satisfies Laplace's 

equation, the domain integral in (2.8.11) can be transformed into equiva-

lent boundary integrals. The necessary procedures for numerical imple-

mentation of both time-marching schemes, as well as discussions on their 

computer efficiency, are the object of chapter 4. 
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3. STEADY POTENTIAL PROBLEMS 

The subject of this chapter is the solution of the boundary integ­

ral equation (2.4.6) relating boundary values and normal derivatives of 

the potential function u over the boundary r, repeated here for con­

venience, 

c(P) u(P) + Ir u(S) q*(P,S) dr(S) = Ir q(S) u*(P,S) dr(S) (3.1) 

Rather than attempting analytical solutions to this equation for 

particular geome tries and boundary condi tions, we seek a sui table reduc­

tion of equation (3.1) to an algebraic form that can be solved by a 

numerical approach. This approach generally consists of the following 

steps (see, for instance, [1], [2J, [3], [40]): 

a) The boundary r is discretised into a series of elements over which 

the potential and its normal derivative are assumed to vary 

according to interpolation functions. The geometry of these 

elements can be modelled using straight lines, circular arcs, 

parabolas, etc.; 

b) By using the method of moments [51], the discretised equation ~s 

applied to a number of particular nodes within each element where 

values of the potential and its normal derivative are associated; 

c) The integrals over each element are carried out by using, in 

general, a numerical quadrature scheme; 

d) By imposing the prescribed boundary conditions of the problem, a 

system of linear algebraic equations is obtained. The solution of 

this system of equations, which can be effected using direct or 

iterative methods, produces the remaining boundary data. 

Values of the function u at any internal point, if required, can 

then be calculated from the boundary data by a numerical quadrature via 

equation (2.4.5). Similarly, the derivatives of u at any internal point 

can also be computed by a quadrature via equation (2.4.9). 
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In the following section, the abDve-listed steps are examined in 

detail in connection with two-dimensional problems defined over finite 

regions of homogeneous, isotropic media with Neumann, Dirichlet or Cauchy 

boundary conditions. In subsequent sections, it ~s shown how the method 

can be extended to include boundary conditions of the Robin-type, free 

surfaces and internal sources. If the region is non-homogeneous but is 

constituted of several homogeneous sub-regions with different physical 

properties, the method can be applied by first writing a system of 

equations for each sub-region and then introducing compatibility (in 

terms of potentials) and equilibrium (in terms of normal derivatives) 

conditions between the sub-regions. 

Fundamental solutions for orthotropic and anisotropic regions are 

derived and it is shown that all concepts presented in the previous 

chapter are also valid for infinite regions fulfilling certain regularity 

conditions at infinity. By adopting a convenient fundamental solution 

which satisfies part of the boundary conditions of the problem under con­

sideration a reduction in the amount of numerical work can be achieved, 

as explained in this chapter. Finally, specific numerical procedures for 

three-dimensional and axisymmetric problems are derived. 

Computer programs incorporating several of the features presented 

~n this chapter were developed. These programs are described in chapter 

6. Whenever this is the case, numerical examples are included in order 

to show the validity of the numerical procedures. Although many differ­

ent physical problems are governed by Laplace's equation, these examples 

are restricted to problems of heat conduction and flow of perfect fluids. 

3.1 Two-Dimensional Problems 

For the discretisation of equation (3.1), the boundary r is 

approximated by using a series of elements. The cartesian coordinates 

e of points within each element are expressed (in matricial notation) in 
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terms of suitable interpolation functions ~ and nodal coordinates Xm of 

each element by 

x (3.1.1) 

where 

X : {:~} ~T (3.1.2) 

Also, the potential u and its normal derivative q within each 

element are approximated through interpolation functions ~ as, 

(3.1.3) 

where un contains the nodal potential values and gn the nodal values of 

normal derivatives. Note that different interpolation functions may be 

used for u and q [52]. The index m in equation (3.1.1) refers to the 

number of boundary points required to define the geometry of each boundary 

element while the index n in (3.1.3) refers to the number of boundary 

nodes within each element to which nodal values of u and q are associated. 

Assuming that the boundary r is discretised into S elements and 

N nodes, the substitution of equations (3.1.3) into equation (3.1) yields 

S J ~ ( 
s=l r 

s 

S 
~ 

s=l 
(3.1.4) 

Since the interpolation functions p are usually expressed in terms 

of some intrinsic system of coordinates, it is necessary to transform the 

elements of surface dr from the global cartesian system of coordinates to 

the intrinsic system of coordinates, that is 

(3.1.5) 

where J is the Jacobian relating both systems of coordinates. 

The integrals in equation (3.1.4) can be computed analytically only 

for simple cases. In general, it is more convenient to compute them 
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numerically mainly when considering higher order interpolation functions. 

However, when the element s contains the node i these integrals become 

singular and special care has to be taken on their evaluation. For it r 

the integrals ~n (3.1.4) may be replaced by summations of the form, 
1 

L pT (EJ L ~T (~) 
K 

IJlk Wk(q*~T)k * q* (~) IJI d~ q (:.c) dr = l: 
k=l 

s 

1 (3.1.6) 

t 2T(~) L 2T (~) 
K 

IJlk Wk(u*~T)k * dr u*(O IJI d~ u (x) = l: 
k=l 

s 

where K is the number of integration points and W ~s the weighting factor 

associated with them. 

Applying equation (3.1.4) to all N boundary nodes, a final system 

of equations is obtained, 

C U + H U G Q (3.1.7) 

where the vectors U and Q contain all potential and normal derivative 

values at the boundary nodes, respectively. The diagonal matrix ~ may 

be incorporated into H to form the matrix ~, 

H U = G Q (3.1.8) 

As referred to in section 2.4, the diagonal coefficients of matrix 

H (w'hich include the free terms c.) can be calculated by considering that 
~ 

a constant potential applied over a closed body produces no flux. This 

s' 

is equivalent to the rigid-body translations of the theory of elasticity [53J 

and was first employed in the context of the Boundary Element Method by 

Symm [19]. Its use has the further advantage of avoiding evaluating 

strongly singular integrals which are only integrable in the Cauchy 

principal value sense. Considering ~ as a unit potential, equation 

(3.1.8) then becomes, 

H I = 0 (3.1.9) 

and the diagonal coefficients of H may be computed after all the off-

diagonal terms are known as 



H .. = 
1.1. 

N 
L H •. 

j=l 1.J 

(j#i) 
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i = 1,2, .•. ,N (3.1.10) 

By applying the prescribed" boundary conditions of the problem, 

equation (3.1.8) can be reordered in such a way that a final system of 

equations is obtained, 

K X = F (3.1.11) 

where K is a fully populated matrix of order N and X 1.S a vector con-

taining all the boundary unknowns. 

Notice that in computational terms H .. (iFj) and G .. are assembled 
1.J 1.J 

directly into ~ (see chapter 6) so that equation (3.1.8) does not need 

to be formed. 

Specific numerical procedures will now be developed for computer 

implementation purposes. Three different sets of approximations for the 

boundary geometry, the potential and its normal derivative are discussed 

(see figure 3.1.1), namely: straight line segments with piecewise con-

stant potentials and normal derivatives, hereafter referred to as con-

stant elements; straight line segments with piecewise linear potentials 

and normal derivatives (linear elements); parabolic segments with piece-

wise quadratic potentials and normal derivatives (quadratic elements). 

Although only the first and second are at present programmed, the latter 

is included to show that no special difficulties arise on using higher 

order interpolation functions. 

3.1.1 Constant Elements 

If the geometry of the elements is represented by straight lines, 

the interpolation functions ~ and the vector Xm in equation (3.1.1) are 

given by, 

X~ .= {.X~} 
-1. 2 X. 

1. 

where ~ is an intrinsic coordinate (figure 3.1.2) and 1. 

associated to the extreme points of each element. 

(3.1.12) 

m . 
1,2, X. be1.ng 

-1. 
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a 

c 

Figure 3.1.1 - Different types of boundary elements: 
(a) Constant element; (b) Linear 
element; (c) Quadratic element 

2 

Figure 3.1.2 - Constant element 
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Since in this case, 

dr = ~ d~ (3.1.13) 

the Jacobian J written in equation (3.1.5) is constant at all points 

within each element and equal to half the length of the element. 

For the constant element, equation (3.1.3) can be simply written as, 

u = U 
(3.1.14) 

q = Q 

that is, the potential and its normal derivative values are assumed to 

be constant over each element and equal to their nodal values at the mid-

point (figure 3.l.la). 

The integrals in equation (3.1.4) for the cases when i ~ r 
s 

can be easily computed analytically [lJ, [40J. Analytical integration 

formulce,. however, are often more complicated and consequently take 

longer to compute than numerical quadrature formulce. Moreover, for 

intervals other than straight lines it is seldom possible to obtain these 

integrals analytically. For generali ty, the terms H .. and G .. (i!j) in 
1.J 1.J 

equation (3.1.8) are then evaluated numerically using a four-points 

Gauss quadrature rule. With reference to equations (3.1.6), this gives, 

d.. 4 1 
H.. = -2:l. l: -::--2 W

k 1.J 2 k=l r ik 
(3.1.15) 

L 4 1 
G .. = -1.2 2: log (-) Wk 1.J k=lrik 

h d (X1. - Xl) (X2 - Xl) (X1. _ Xl) (Xl _ X2) were ij = 1 1 2 2 + 2 2 1 1; s/,. and d .. refer 
J 1.J 

to the element containing node j. 

For the diagonal terms H .. and G .. , the integrals become singular 1.1. 1.1 

and have to be evaluated in the Cauchy principal value sense, that is, 

a small segment of length 2£ around the singular point is deleted from 

the integration and the limit as £~ taken. 

calculated as follows (see figure 3.1.2), 

The G .. coefficients may be 1.1. 
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and the H .. terms are computed through equation (3.1.10). 11 

3.1.2 Linear Elements 

(3.1.16) 

The geometry of the elements is aga1n represented by straight lines, 

m thus the interpolation functions 'l' and the vector X are given by (3.1.12) 

and the Jacobian by (3.1.13). As the functions u and q are now also 

assumed to vary linearly within each element, the interpolation functions 

p and the vectors Un and Qn in equation (3.1.3) are of the form, 

(3.1.17) 

that is, the functions ~ are the same as those employed to describe the 

geometry of the boundary elements and the potential and its normal 

derivative values are also associated to nodal values at the extreme 

points of each element. 

The terms H .. and G .. (i~j) in equation (3.1.8) for linear elements 
1J 1J 

can be computed as, 

2 1 
H .. = h. + h. 

1J 1p 1q 

G •• 
1J 

(3.1.18) 

where the indices p and q refer to the elements at the intersection of 

which node j is located. In general, we have 

d. 4 1 
= 2E.. t: 

2 k=l 2 r ik 

.~ 4 1 m n ( __ )m 
g. = -L. L: log ~k Wk 1p 2 k==l r ik 

being d. of the same form as previously and m 1,2. 1p 

(3.1.19) 
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The H .. coefficients are computed by us~ng relation (3.1.10) and 
~~ 

the G .. coefficients now result from evaluating integrals of the form 
~~ 

(see figure 3.1. 3) , 
1 

G .. = ~4 f 
~~ -1 

which gives, 

3.1.3 Quadratic Elements 

1 

+ Q,4
q flOg 

-1 

(3.1.20) 

(3.1.21) 

Here, the boundary r is modelled by a series of curvilinear 

elements using the following Lagrangian interpolation functions [2J, [3], 

I E;(E;-l) 

r 
:1 

X~ = x~ Ijf l-E;2 (3.1.22) 
~~ ~ 

I E; (E;+l) X~ 2 
, ~ 

being X~ in equation (3.1.1) now associated to the extreme and mid-points 
~~ 

of each element (figure 3.l.lc). 

The Jacobian related to the transformation of elements of surface 

dr from the global cartesian system of coordinates to the intrinsic 

system of coordinates is given by, 

[ 
dXl 2 dX2 21! I J I = (-) + (-) 
dE; dE; 

(3.1.23) 

where the derivatives in the above formula can be computed by us~ng 

relation (3.1.1). 

The interpolation functions p in (3.1.3) are also assumed to 

be the Lagrangian functions (3.1.22), thus the potential and its normal 

derivative are also associated to nodal values at the extreme and mid-

points of each element. 
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I· 
Ip 

'1 
i-1 r 
• I .. • 

~ p =-1 ~p::O ~p =1 

I-
Iq ., 

r i+1 
• .. I • 

~ ::-1 q ~q=O ~ =1 q 

Figure 3.1.3 - Linear element 

X1,n= COS a 

x 2 ,n= sin a 

Figure 3.1.4 - Quadratic element 
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The terms H .. and G .. (irj) in equation (3.1.8) for quadratic 
1.J 1.J 

elements become, 

H .• 
1.J {

h. 3 
= 1.p 

h. 2 
1.p 

+ h. 1 
1.q 

_ {gip3 + giql 
G •. -

1.J 2 
gip 

(3.1.24) 

the first occurring when node j is located at the intersection of 

elements p and q and the second when node j is located at the middle of 

element p. In general, we may write 

4 1 h. m 
L IJ Ik dik 

m 
= <Pk Wk 1.p 

k=l r
ik 

2 

(3.1. 25) 
4 

(_1_) m 
L 1J1k log 

m 
gip = <Pk Wk k=l r

ik 

where m = 1,2,3 and dik 
(Xi _ Xk) k (Xi _ Xk) k b' k = x + x2 ' e1.ng Xl 1 1 l,n 2 2 ,n ,n 

k 
and x2 the direction cosines of the outward normal at point k (figure ,n 

3.1.4). 

The H .. coefficients may again be computed through equation (3.1.10) 1.1. 

while the G •• terms are 

if i is 

1.1. 
1 

G .. -L log 1.1. 

a mid-node, or 
1 

G •• = -2
1 f 

1.1. -1 

1 

+If 
2 -1 

if i 1.S an extreme node. 

of the form, 

1 
(dO) (1-~2) 1 J (~) 1 d~ (3.1.26) 

(3.1.27) 

The presence of the Jacobian now makes it difficult to compute the 

above integrals analytically. Separating the integral in (3.1.26) as, 



G •• 
~~ 

= log (~) 
9.,. 

1 
~ 

1 

L 
-L 10 g (I t; I) I J (t;) I dt; 
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1 

L 
(3.1.Z8) 

we note that only the last integral in (3.l.Z8) is singular. Thus, we 

can evaluate the first and second integrals using a standard Gaussian 

quadrature and compute the last one using a Gaussian formula for 

integrands with a logarithmic singularity [Z], [46]. The same can be 

applied in order to compute the integrals in equation (3.l.Z7). 

Example 3.1.1 

The first example analysed compares the accuracy of constant and 

linear boundary elements for the solution of a Dirichlet problem, that 

is, two confocal ellipses with temperatures u. and u prescribed along 
~ e 

the internal and external surfaces, respectively. 

Taking the semi-axes of the ellipses to be [54J, 

ae = c cosh J.l e ' 

ai = c cosh ]1i' 

be = c sinh ]1e 

b. = c sinh ]1. 
~ ~ 

where c is a constant and 0<]1.<]1 <00, the exact solution of the problem 
~ e 

is given by, 

u 

Figure 3.1.5 presents the relative error ~n the calculation of 

the temperature at the point x = 0, xz = c sinh [(J.l.+]1 )/2] obtained 
1 ~ e 

with several discretisations, for two different aspect ratios alb of 

the ellipses. Assuming a unit value for the constant c, the lower 

curves in the figure correspond to ellipses with aspect ratios (a/b). = 
~ 

1.313 and (a/b) = 1.037 while the upper curves correspond to 
e 

(a/b). = 10.033 and (a/b) = 5.066. In the second case, the inner 
~ e 

ellipse is much more distorted than the outer one such that their 
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Figure 3.1.5 - Convergence of the solution 
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Figure 3.1.6 - Normal flux along outer surface 
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longer axes almost touch each other (see figure 3.1.5). The convergence 

of the solutions is evident in the figure. Normal fluxes along the outer 

surface are plotted in figure 3.1.6 for the finest discretisations 

employed. 

Due to the double symmetry of the problem, only one quarter of 

the cross-section needed to be analysed. Symmetry is taken into account 

through a direct condensation process with integration over reflected 

elements such that no discretisation of the symmetry axes is necessary 

(see chapter 6). 

Example 3.1.2 

This example studies the temperature distribution over a circular 

region of internal radius R. and external radius R with Neumann 
1 e 

boundary conditions, i.e. radial fluxes specified on both the inner and 

outer boundaries (see figure 3.1.7). 

Due to condition (2.2.6), the relation q.R. = -q R has to be 
1 1 e e 

accomplished in order for the numerical data to be compatible. The 

double symmetry of the problem permits the discretisation of only one 

quarter of the cross-section. By adopting the same number of sub-

divisions over each surface, the discretised form of condition (2.2.6) 

holds automatically. 

The exact solution of this problem 1S 

u = c-q. R. log r 
1 1 

that is, the solution is unique only to within an arbitrary additive 

constant. To enforce a unique solution to the problem, the value of 

the constant c must be given and this is introduced into the numerical 

analysis by specifying the value of u at any boundary point, for instance. 

Recalling relation (3.1.8), we notice that the system matrix H 

is singular since, according to equation (3.1.10), 

N 
L 

j=l 
H •. 

1J 
o i = 1,2, .•. ,N 
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Figure 3.1.7 - Geometry and boundary conditions 
of circular region 
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r BEM (N=4) BEM. (N=8) EXACT 
.. 

1.0 70.17 .70 •. 28 70.25 

1.5 55.99 57.60 57.60 

2.0 47.18 .. 48.66 48.62 

2.5 40.35 41.72 41.66 

3.0 34.75 36.03 35.96 

3.5 30.00 31.20 31.15 

4.0 25.80 27.00 26.99 

4.5 23.18 23.27 23.31 

Table 3.1.1 - Temperature along the xl-axis 

r BEM (N=4) BEM (N=8) EXACT 

1.5 20.43 20.70 20.81 

2.0 15.30 15.54 15.61 

2.5 12.27 12.46 12.48 

3.0 10.24 10.42 10.40 

3.5 8.88 8.96 8.92 

4.0 7.77 7.89 7.80 

4.5 7.07 6.74 6.94 

Table 3.1.2 - Radial flux along the xl-axLs 
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i.e. the rows of ~ are linearly dependent. Indeed, each row of H is 

a linear combination of the other N-l rows of the matrix. Then any N-l 

of these equations, coupled with the above 'normalising' condition, may 

be solved directly for the N boundary values of u. 

Results for the temperature and radial flux for two different 

discretisations using constant elements are given in tables 3.1.1 and 

3.1.2, respectively. The value of the constant c = 70.25 was introduced 

o by prescribing u = 20 C at a node on the outer boundary. 

Example 3.1.3 

A case of mixed boundary conditions, i.e. u prescribed on part 

fl and q on part f2 of a boundary f was considered in this example of 

a rectangular region with cross-section and boundary conditions as shown 

in figure 3.1. 8. 

Since the normal flux along the face x2 = O. presents a singular­

ity at the point Xl = 1., the discretisation adopted concentrates more 

elements around the singular point, as is usually done with finite 

elements. The problem was studied with 60 linear elements, with the 

following boundary sub-division: 32 elements of equal length along the 

faces Xl = 0., Xl = 2. and x2 1.; 28 elements along the face x2 = 0., 

being 5 of equal length at O. ~ Xl ~ 0.5 and 9 of decreasing logarithmic 

length at 0.5 ~ Xl ~ 1., with the remaining 14 symmetrically located with 

respect to the singular point Xl = 1. 

Results for the function u are presented in figure 3.1.10, 

compared to an accurate solution obtained by conformal transformation 

[55]. The normal flux distribution along the face x2 = O. is plotted ~n 

figure 3.1.9 and it can be seen that it represents well the singularity. 

The discontinuity on the boundary conditions at the singular point 

and at the three corners (2. ;1.), (0. ;1.) and (0. ;0.) was taken into 

account through the use of double nodes (see chapter 6). 
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The accuracy of the boundary element solution can be further 

improved through an analytical treatment of the singularity [1] which 

follows basically the same ideas as employed for the finite element 

method [56J. 

3.2 Special Boundary Conditions 

Up to now, we have only dealt with the solution of problems with 

boundary conditions of the Neumann, Dirichlet or Cauchy types. This is 

not a restriction to the method presented and other boundary conditions 

that frequently appear on practical problems, such as Robin-type con­

ditions and free surfaces, can easily be incorporated [29J, [57], [58], 

[59] . 

The Robin condition prescribes a linear combination of the 

potential and its normal derivative at points along the boundary r as, 

au + bq = d (3.2.1) 

where a, band d are functions of x. Notice that (3.2.1) includes all 

previous boundary conditions, since for b = 0 it becomes the Dirichlet 

condition (2.2.2) while for a = 0 we have the Neumann condition (2.2.3). 

Physically, relation (3.2.1) can be recognised as the impedance boundary 

condition of electromagnetic problems, the convection or 'radiation' 

boundary condition of heat conduction problems, etc. 

If equation (3.2.1) is applied at all boundary nodes, we can write, 

(3.2.2) 

where the vector D and the diagonal matrix A contain the values of d/b and alb, 

respectively, at each boundary node. 

Substituting (3.2.2) into (3.1.8) yields the system of equations, 

(H + GA) U G D (3.2.3) 

or, more simply, 

K U = F (3.2.4) 
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In computational terms, the syste.m matrix K and the vector F 

can be assembled directly so that equation (3.2.3) is not actually 

formed (see chapter 6). After solving the system of equations (3.2.4), 

the normal derivatives of potentials along the boundary can be evaluated 

pointwise by applying condition (3.2.1). 

Free surfaces are generally related to problems of groundwater 

flow through saturated, unconfined porous media governed by Darcy's 

law [60]. If the medium under consideration is homogeneous and iso­

tropic, the problem is reduced to that of Laplace's equation for a 

velocity potential u with boundary conditions of the following types 

(figure 3.2.1): q = 0 at impervious boundaries, such as the surface of 

soil strata and rocks (surface AF in the figure); u = constant at water 

boundaries (the upstream and downstream faces ABC and EF of the porous 

domain); u = x
2 

at the seepage face DE where the water seeps out of 

the soil into the air; u = x
2 

and q = 0 at the free surface CD. In 

addition, the exact position of the free surface is not known a priori 

and its determination becomes part of the analysis of the problem. 

These free surface conditions are also valid for problems such 

as flow over spillways when the velocity head can be neglected, i.e. 

when the height of water over the nappe is small by comparison with the 

spillway height [6lJ. 

For the numerical solution of these problems, an initial position 

of the free surface is arbitrarily assumed and the condition q = 0 

applied at all points on it. The calculated potential at every nodal 

point at the free surface is then compared with its elevation; if the 

difference between these two values is greater than a maximum acceptable 

error, this difference is algebraically added to the elevation of the 

nodal point and a new iteration is carried out. 

Notice that.the coefficients of matrices G and H in equation 

(3.1.8) corresponding to the influence of fixed boundary nodes on other 
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reference plane 

Figure 3.2.1 - Boundary conditions for free 
surface problem 

Figure 3.2.2 - Free surface elevation with 
relation to the xl-axis 
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fixed bou~dary nodes remain constant during the analysi~ hence they can 

be computed only once and stored. Potential values at internal points, 

if required, are calculated after the correct position of the free 

surface has been determined. 

The Boundary Element Method may also be employed for transient free 

surface flow problems. For this case, the kinematic condition on the 

free surface is [60J, 

(3.2.5) 

where ql' q2 are the velocities in the Xl' x2 directions and n is the 

elevation of the free surface with relation to an arbitrary plane 

(f i gure 3. 2 . 2) . 

From geometric considerations we have that 

~ 
aX

l 
= - tan B (3.2.6) 

~n which B is the angle the free surface makes with the Xl-axis. 

Hence 

~ = - q 
at cos B 

(3.2.7) 

where q = au/an is the normal velocity. 

Applying the condition u = n at the free surface, equation (3.2.7) 

becomes, 

au q 
- = - --=---
at cos B 

This equation can be written in finite difference form as, 

t+t.t t 
u = u 

t.t 
t cos B 

(3.2.8) 

(3.2.9) 

where e is a weighting factor that positions the derivative between the 

time levels t and t+t.t. In the equation, the angle B is computed at 

time t even though the equation is written for the time t+t.t. Although 

this problem can be avoided by iteration, the use of a small time step 

provides sufficient accuracy [58J. 
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As an example of how the free surface boundary condition in the 

form of equation (3.2.9) can be introduced into (3.1.8), consider the 

problem represented by figure 3.2.1 where we assume that there is a 

drawdown in the upstream water level. Equation (3.1.8) can be rearranged 

for this problem as, 

(3.2.10) 

~F 

t+l:It Substituting u
CD 

by its value on equation (3.2.9) yields, 

(qABC 

[ G (G eAt ) 1 
- ABC - CD + RCD t -GDE -GEF R~ qDE 

cos S 

(3.2.11) 

t (1-8)At t 
uCD -

t qCD 
cos S 

~E 

~F 

l qAF 
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Since all boundary-values on the right-hand side of (3.2.11) 

are known, the equation can be solved and the normal velocities along 

the free surface at time t+~t computed. Condition (3.2.9) is then 

employed to find the potential values at the free surface and the com-

putation cycle is completed, so that the solution can be advanced on 

time. Numerical results using this formulation are given in [S8J. 

Example 3.2.1 

This application deals with a concrete column of rectangular 

cross-section where part of the boundary surface is subjected to an 

interior ambient condition, another part is subjected to outside 

weather conditions and the remainder is in contact with an abutting wall 

which separates both. The boundary conditions of the problem are of 

the 'radiation' type, 

q + hu = hu 
s 

(3.2.12) 

where h is the heat transfer coefficient and u is the temperature of 
s 

the surrounding medium. 

The temperature and surface heat transfer coefficient on the 

interior face (xl = 0) are 1000F and 0.5 Btu/h ft20F, respectively, and 

at the exterior face (xl = £) are OOF and 6.0 Btu/h ft20F. The varia-

tion of the temperature and surface heat transfer coefficient along the 

faces x2 = ±a is indicated in figure 3.2.3. Note that the thermal 

o conductivity was assumed to be 1.0 Btu/h ft F. 

Results corresponding to three different positions for the 

abutting wall are presented in figure 3.2.4, compared with finite 

elements results [62J and an analytical solution [63J (in terms of a 

mean temperature over the width of the cross-section). The boundary 

elements analyses were performed by discretising one half of the 

column into 20 linear elements (see figure 3.2.3), taking into account 

the symmetry with respect to the xl-axis, while the finite elements 
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ones employed 252 quadrilateral elements. The discontinuity on the 

value of u at the middle of the wall was taken into account through a 
s 

double node. 

Example 3.2.2 

Figure 3.2.5 shows the linear boundary elements discretisation 

for a problem of free surface flow through a block of porous medium. 

The upstream and downstream water levels are maintained at 19.7 in and 

1.3 in, respectively, above the horizontal impervious base. The 

boundary conditions of the problem are! u = 19.7 on the upstream face 

(nodes 22 to 26); q = 0 on the bottom (impervious) surface (nodes 1 

to 8); u = 1.3 on the downstream face (nodes 9 and 10); q = 0 on the 

free surface (nodes 11 to 21). Note that the initial shape of the free 

surface was arbitrarily assumed to be a straight line and its initial 

position was also guessed. The final position of the free surface was 

obtained by iteration as previously explained. 

Results are presented in figure 3.2.6 together with a finite 

element solution and an experimental solution obtained from an analogue 

model [64]. After the seventh iteration the maximum difference between 

the computed potential head and the elevation of each node along the 

free surface was less than 0.1% of the elevation and the solution was 

terminated. 

3.3 Internal Sources 

Assuming that there exist sources inside the domain Q, as for 

instance internal heat generation for heatl conduction problems, the 

governing equation of the problem becomes a Poisson-type equation, 

in Q (3.3.1) 

where p is a function of the position. 

Boundary-value problems for Poisson's equation may be reduced to 

similar problems for Laplace's equation by subtracting out a particular 

solution independent of the boundary conditions [lJ, [40]. 
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Figure 3.2.6 - Converged solution for the free surface 
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For some practical problems, it may occur that the function p 

is only defined pointwise such that a particular solution of the 

problem is difficult to be found. For these cases, equation (3.1) can 

be generalised to include a domain integral involving function p of 

the form [2 J , 

f pes) u*(P,s) d~(s) 
~ 

to be added to the left-hand side of equation (3.1). 

(3.3.2) 

The above integral can be performed by sub-dividing the domain 

n into a series of cells over which a numerical integration formula 

can be applied. 

In this work, triangular cells were employed to discretise the 

domain and the numerical integration carried out by applying Hammer's 

scheme [65J as follows, 
1 l-~ t p (:) u* (~) dQ : fa [fa 2 P (P 

Q, 

(3.3.3) 

where ~ are intrinsic triangular coordinates and J is the Jacobian 

relating the elements of area in the two (cartesian and intrinsic) 

systems of coordinates. 

Example 3.3.1 

The equation of motion of a uniform incompressible viscous fluid 

~n steady unidirectional flow ( in the x3-direction) is [66J, 

~ a2 u a2 u 
- ax + l.I (W + W) = 0 

3 1 2 

where l.I is the viscosity of the fluid, 3p/ax
3 

= -G is a constant 

pressure gradient and u is the velocity component in the x
3
-direction. 

This equation can be rewritten as, 
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For a pipe of elliptical cross-section the velocity distribution 

1S of the form, 

where a and b are the semi-axes of the ellipse. 

Taking the value of the constant G/~ = 2 and the semi-axes a = Z 

~db 1, the problem to be solved 1S 

with boundary conditions, 

u = 0 on r 

The solution of the above Poisson's equation can be divided into 

two parts, 

where ul = -(xi + x~)/2 is a particular solution and Uz a complementary 

one, which satisfies v2u2 = 0 with boundary condition u2 = -ul on r. 

Results for the velocity u and for the derivatives au/ax1 and 

au/axz (necessary for the evaluation of the 

and T ) are presented in tables 3.3.1 to 
x

Z
x

3 

tangential stresses T x
l
x

3 
3.3.3, compared to the 

analytical solution. Both previously discussed approaches were used 

~d for the second, the domain was divided into 12 cells and a quintic 

(seven points) numerical integration scheme employed. Sub-dividing 

the domain into more cells or employing a more refined numerical 

integration scheme resulted in no significant improvement of the solution. 

Due to the double symmetry of the problem, only one quarter of the cross-

section needed to be analysed. 

Example 3.3.Z 

Flow in lakes and other water bodies can be approximated to 

provide an initial estimate of the circulation, which can then be checked 

against the full shallow·water equations. This flow is governed by the 
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BEM 1 BEM 1 BEM 2 BEM 2 EXACT xl x2 (N=4) (N=8) (N=4) (N=8) 

1.50 o. 0.334 0.345 0.353 0.351 0.350 

1.20 0.35 0.401 0.410 0.422 0.416 0.414 

0.90 o. 0.626 0.634 0.646 0.640 0.638 

0.60 0.45 0.557 0.563 0.576 0.569 0.566 

0.30 O. 0.772 0.778 0.791 0.784 0.782 

O. 0.45 0.629 0.634 0.648 0.641 0.638 

o. O. 0.791 0.797 0.809 0.802 0.800 

Table 3.3.1 - Results for velocity u 

BEM 1 BEM 1 BEM 2 BEM 2 EXACT xl x2 (N=4) (N=8) (N=4) (N=8) 

2.00 O. 0.759 0.762 0.805 0.788 0.800 

1.50 o. 0.602 0.597 0.621 0.604 0.600 

1.20 0.35 0.490 0.482 0.485 0.481 0.480 

0.90 o. 0.370 0.366 0.364 0.361 0.360 

0.60 0.45 0.255 0.253 0.241 0.240 0.240 

0.30 o. 0.119 0.118 0.121 0.120 0.120 

O. O. 0.000 0.000 0.000 0.000 0.000 

Table 3.3.2 - Results for derivative aU/dx
1 

(-) 

BEM 1 BEM 1 BEM 2 BEM 2 EXACT xl x
2 (N=4) (N=8) (N=4) (N=8) 

O. 1.00 1.611 1.582 1.608 1.604 1.600 

0.60 0.45 0.715 0.718 0.719 0.720 0.720 

o. 0.45 0.720 0.722 0.719 0.720 0.720 

1.20 0.35 0.562 0.562 0.553 0.558 0.560 

o. o. 0.000 0.000 0.000 0.000 0.000 

Table 3.3.3 - Results for derivative dU/aX2 
* BEM 1 - domain sub-divided into 12 cells 

BEM 2 - solution divided into particular and complementary 
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following linearised equations, obtained by neglecting the inertia 

terms in the momentum equations [60] , 

- f q = p H an s b 0 + (. - ·1) = 
2 g ax 1 

1 

H an s b 0 f ql = P + (. - ·2) = g ax 2 2 

and the continuity formula, 

where: 

f Coriolis parameter 

ql,q2 = vertically integrated velocity components in the xl ,x2 directions 

p = mass density 

g = acceleration of gravity 

H = h + n = total depth of water 

h = depth with relation to the mean water level 

n = elevation of the free surface 

s • = wind stresses 

b 
T = bottom friction stresses 

If the n values are much smaller than the h we can write H ~ h, hence 

(3.3.4) 

f ql + P gh :~2 + (.~ - T~) = 0 

b Assuming the, terms to be linearly proportional to the mean momentum 

components, 

b 
'1 = yql ' 

we can cross-differentiate equations (3.3.4) and afterwards subtract 

both equations. Assuming that the derivatives of h are negligible 

(i.e. the bottom slope is small) this gives, taking continuity into 

consideration, the following equation, 
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(3.3.5) 

We can propose a stream function W s~ch that 

and formula (3.3.5) becomes, 

V2~ = ~ w(xI ' xZ) (3.3.6) 

where 

Note that we have included the Coriolis parameter but assumed it 

constant for all the lake, i.e. the lake is small enough to allow the 

neglect of local variations in the Corio lis forces. If we take, 

L being the lateral characteristic length of the lake, T the character-

istic wind stress and E the eddy viscosity coefficient, equation (3.3.6) 

takes the non-dimensional form, 

where 
1 

<5 = yL(fE/Z)2 
TH 

(3.3.7) 

We analysed, using the above formulation, the wind circulation in 

Lagoa dos Patos, Brazil (figure 3.3.la). As a first numerical example, 

we calculate the stream lines for the flow in and out of the lake with-

out wind effects, taking ~ = 0 for the west shore and ~ = I for the 

east shore. Results are shown in figure 3.3.lb. For this case, the 

governing equation becomes a Laplace equation. 
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a) 

c) d) 

Figure 3.3.1 - Lagoa dos Patos: a) Geometry; b) Flow pattern for 
potential flow; c) Wind driven mean circulation pattern 
due to a linear stress distribution; d) Wind driven 
mean circulation pattern due to a quadratic stress 
distribution 

b) 
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If we consider the right-hand side of equation (3.3.7) equal to 

1, Xl and X2 , this allows for a superposition of three different sets 

of results in order to obtain any solution of the type, 

V2~ = A + BXl + CX
2 

where the right-hand side represents a quadratic wind stress distribu­

tion. Results are shown in figure 3.3.lc for a linear wind stress 

distribution, A = 1, B = C = 0, and in figure 3.3.ld for a quadratic 

wind stress distribution, A = 1, B = -3, C = 0. All the previous 

results were obtained by discretising the boundary of the lake· 

using 93 linear elements and subtracting out a particular solution of 

equation (3.3.7). 

3.4 Sub-Regions 

If the problem under consideration is defined over a region 

which is only piecewise homogeneous, the numerical procedures described 

can be applied to each homogeneous sub-region as they were separated 

from the others. The final system of equations for the whole region is 

obtained by adding the set of equations (3.1.8) for each sub-region 

together with compatibility and equilibrium conditions between their 

interfaces [2], [26]. 

To illustrate these ideas in more detail, consider for simplicity 

a region ~ consisting of two sub-regions ~l and ~2 (figure 3.4.1). Over 

sub-region ~l, we define: 

nodal potentials and fluxes (ql 

external boundary r1; 

nodal potentials and fluxes at the interface r1 , considering 

it belongs to ~l; 

Similarly, we define over sub-region ~2: 

nodal potentials and fluxes (q2 = -k2 au2/an) at the 

external boundary r2; 
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nodal potentials and fluxes at the interface rr' considering 

it belongs to ~2; 

Figure 3.4.1 - Domain divided into two sub-regions 

The system of equations (3.1.8) corresponding to sub-region ~1 

can be written as, 

(3.4.1) 

where, assuming that there are Nl and Nt boundary nodes over surfaces 

r 1 and fr' respectively, the dimensions of matrices ~1 and C1 are 

(N l + Nr ) x Nl and of matrices ~i and gi are (N 1 + Nr ) x Nr · 

For sub-region ~2, we have 

[~2 ~iJ {~;} = [g2 gil {:;} (3.4.2) 
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where the dimensions of matrices H2 and G2 are (N
2 

+ NI ) x N2 and of 

matrices gi and gi are (N2 + NI ) x NI · 

The compatibility and equilibrium conditions to be applied at 

the interface r I between Ql and Q2 are, respectively, 

11£ = 11i = 111 

_Q2 = Q 
-I -I 

(3.4.3) 

Equations (3.4.U to (3.4.3) can be combined to form the system, 

ul QI 

~1 
HI 

:2] 
- [:1 GI 

:2] -I 
\II 

-I 
91 

= 
H2 -G2 
-I U2 -I 

92 

(3.4.4) 

or, more simply, 

H U = g 9 (3.4.5) 

This system of equations is formally similar to (3.1.8) except 

that the matrices g and g are now banded. By imposing the boundary 

conditions of the problem and remembering that both the potentials and 

fluxes at the interface are considered as unknowns, the system (3.4.4) 

can be reordered as, 

U1 -
[:1 HI -Gl 

:2J 
~I [:1 :2 J {::} 

-I -I (3.4.6) = 
H2 G2 91 -I -I 

U2 

According to the prescribed boundary conditions, the sub-matrices 

corresponding to rl (and r2) may interchange their positions. Notice 

that the final system matrix in (3.4.6) is also banded. 

Detailed explanations of the computer implementation of the above 

procedures, including numerical results, can be found in [26], [67], [68J. 

3.5 Orthotropy and Anisotropy 

Let uS now assume that the medium over which the problem is 

defined is orthotropic (see figure 3.5.1). The governing equation in the 
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directions of orthotropy can be written as, 

(3.5.1) 

for the two-dimensional case, being k. the medium property coefficient 1. 

in the direction of orthotropy i. 

(\ 

directions of 

orthotropy 

Y1,n = cos a 

Y2,n = si n a 

Figure 3.5.1 - Orthotropic medium 

The fundamental solution to this equation is [2J (see also chapter 

2, section 2.1), 

u*(p,s) 1 1 
log rep,s) (3.5.2) 

where 

Applying the divergence theorem [13J to the terms of equation 

J (k ~ k au ) dr 
r 1 aYl Yl,n + 2 oY2 Y2,n 

(3.5.4) 

where Yl and Y2 are the direction COS1.nes of the outward normal n 
,n ,n 

to surface r (figure 3.5.1). The term enclosed in brackets in the 
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right-hand side integral is the normal boundary flux q. Analogously, 

we can define 

* au*(p,S) 
q (p,S) = kl aYl (S) Yf~~ + k au*(p,S) yeS) 

2 aY2(S) t,n 
(3.5.5) 

The problem can then be solved in the same way as for isotropic problems, 

i.e. by transforming the governing equation (3.5.1) plus boundary con-

ditions into a boundary integral equation similar to (3.1). 

For fully anisotropic media, the governing equation becomes, 

(3.5.6) 

for two-dimensional problems, the coefficients k .. defining the medium 
1.J 

properties. This equation has the following fundamental solution [27J, 

* I u (p,s) = ! 
Ik. ·1 1.J 

1 I 
og rep,s) (3.5.7) 

where Ik .. 1 is the determinant of the medium property coefficients 
1.J 

matrix and 

rep,s) {k I [Xl (p) - Xl (s) F Z 
[Xl (p) - Xl (s) ] [xz(p) - xZ(s)] = +--

11 
klZ 

! 
+ 1 

[Xz(p) - XZ(S)]2} kZZ 

The normal boundary flux q is now given by, 

Analogously, we have 

x + l,n x 2,n 

(3.5.8) 

(3.5.9) 

* * * * q*(p,S) = (k
ll 

au (p,S) + k
lZ 

au (p,S» xfS,) + (k
12 

au (p,S) + k22 au (p,S» xeS) 
aXI (S) ax

z 
(S) fl aX

I 
(S) aX2 (S) 2,fl 

(3.5.10) 

and the problem can now be solved as previously. 

Numerical results for orthotropic problems are presented 1.n [26J, 

[68] and for anisotropic problems in [27]. 
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3.6 Infinite Regions 

Although the boundary integral equation (3.1) has been derived 

considering that the region Q is bounded, all concepts presented thus 

far are also valid for infinite regular regions in the sense defined by 

Kellogg [13J, i.e. regions bounded by a regular surface (hence a bounded 

surface) and containing all sufficiently distant points. However, for 

this extension to be valid, certain regularity conditions concerning 

the behaviour of the functions in equation (3.1) on a surface which is 

infinitely remote from the origin must be fulfilled. 

Let r be the surface of a circle (or a sphere if the problem 

~s three-dimensional) of radius R surrounding the surface r and centred 

at the point P (figure 3.6.1). A boundary integral equation similar to 

(3.1) for the finite region Q enclosed by the actual surface rand 

the fictitious surface f can be written as, 

c(P) u(P) + Ir u(S) q*(P,S) dr(S) + IF u(S) q*(P,S) dr(S) 

I q(S) u*(P,S) dr(S) + 1- q(S) u*(P,S) dr(S) 
r r 

(3.6.1) 

If we let the radius R+oo, equation (3.6.1) will only be valid 

for points ~n r (and Q) if 

lim If [q(S) u*(P,S) - u(S) q*(P,S)] 
R+oo 

For three-dimensional 

dr(S) = IJI dq, d~ 

u*(P,S) = O(R- I ) 

q*(P ,S) = O(R-2) 

problems, since 

S E::: r 

dr(S) = 0 (3.6.2) 

(3.6.3) 

where O( ) represents the asymptotic behaviour of the functions as 

R+oo, the condition of equation (3.6.2) is satisfied if the function 

u(S) behaves at most as O(R- I ), such that its derivative q(S) = O(R-2) 
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r 

Figure 3.6.1 - Infinite region with cavity 

in the worst case. These are the regularity conditions at infinity 

[13J, [40J and they ensure that each term in the integral in equation 

(3.6.2) behaves at most as O(R- I ), i.e. they approach zero as R~. 

For two-dimensional problems, we have that the function u*(P,S) 

behaves as the logarithm of R and its derivative q*(P,S) = O(R~I) as 

R~. The regularity conditions at infinity for this case imply that 

uCS) behaves at most as log R such that q(S) = O(R- I) in the worst case. 

Note that now the terms in the integral in equation (3.6.2) do not 

approach zero separately as R~ since dr(S) = iJid~ and iJi = OCR), but 

they cancel each other thus fulfilling condition (3.6.2). 

Therefore, applying condition (3.6.2) into equation (3.6.1) 

yields, 

e(P) u(P) + Ir u(S) q*(P,S) dr(S) = Ir q(S) u*(P,S) dr(S) (3.6,4) 
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that is, the boundary integral equation obtained for points on the 

internal surface r of the infinite regular region n is of the same 

form as equation (3.1) for finite regions. The same is also valid for 

the integral equation for points inside the infinite region n. 

Consider a three-dimensional Neumann problem defined over the 

infinite region n. Unlike the case of finite regions (see section 2.2), 

equation (3.6.4) has a unique solution for arbitrary continuous values 

of q prescribed over the internal boundary r. Moreover, the Gauss 

condition (2.2.6) need not be satisfied by q since the integral of q 

around r is balanced by a compensating flux at infinity. As the 

region n enclosed by r and r is solenoidal, we can write 

Ir q(S) dr(S) + Ir q(S) dr(S) = 0 (3.6.5) 

where 

Ir q(S) dr(s) - 0(1) (3.6.6) 

s1nce u(S) = O(R-l) as R400. If u(S) behaves as O(R-2) the flux over 

r vanishes and so equation (3.6.5) becomes the Gauss condition 

I q(S) dr(S) 
r 

o (3.6.7) 

Conversely, if condition (3.6.7) is fulfilled, it follows that u(S) 

behaves as O(R-2) as R400. 

By analogous considerations we can state that, for two-dimensional 

Neumann problems, satisfaction of the Gauss condition (3.6.7) ensureS 

that u(S) behaves at most as O(R-I) as R~. 

If the function q tends towards a non-zero limiting value at 

infinity, this value can be included in the analysis through a 

particular solution as will be shown in a following example. 
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A final remark concerning infinite regions is that although it 

1S possible to evaluate the diagonal coefficients of matrix H through 

condition (3.1.9) (see section 3.1), care must be taken because the 

regularity conditions at infinity are violated as the function u is 

now assumed to be constant everywhere in Q. Since it can easily be 

shown that, 

lim 
R-+«> 

If q*(P,S) dr(s) ~ -2 •• (3.6.8) 

for both two and three-dimensional problems (a = 1 or 2, respectively), 

being the surface r defined as previously, we have (see equation 

(3.1.10» , 

H .. = 
11 

Example 3.6.1 

N 
L 

j=l 
(j;'i) 

H •. + 2a1T 
1J 

(3.6.9) 

Let us consider the problem of a circular cavity of unit 

radius in an infinite two-dimensional region with Neumann boundary con-

ditions, i.e. a constant radial influx of 3l.2loC/cm specified along the 

cavity surface. 

Since the Gauss condition (3.6.7) is not satisfied, the solution 

will have a logarithmic potential behaviour at infinity. The exact 

solution of this problem is, 

u = -31.21 log R 

which shows the expected behaviour. 

Results for the temperature at points on the boundary rand 

inside the region Q are given in table 3.6.1 and for the radial flux 

at points in Q in table 3.6.2, compared to the exact solution. Taking 

symmetry into account, only one quarter of the cavity surface was sub-

divided using constant elements. 
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R BEM (N:;::4) BEM (N=8) EXACT 

.1.0 0.48 0.12 0.00 

1.5 12.57 12.63 12.65 

2.0 .21. 49 21.60 21.63 

3.0 34.07 34.23 34.28 

5.0 49.91 50.15 50.22 

10.0 71.40 71.75 71.86 

100.0 142.81 143.50 143.72 

1000.0 214.21 215.24 215.58 

Table 3.6.1 - Temperature (-) at points on 
infini te region 

R BEM (N=4) BEM (N=8) EXACT 

1.5 20.68 20.77 20.81 

2.0 15.51 15.58 15.61 

3.0 10.34 10.39 10.40 

5.0 6.20 6.23 6.24 

10.0 3.10 3.12 3.12 

100.0 0.31 0.31 0.31 

1000.0 0.03 0.03 0.03 

Table 3.6.2 - Radial flux at points on infinite 
region 
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Example 3.6.2 

The previously discussed formulation for infinite regions can 

be readily applied to practical problems such as potential fluid flow 

past obstacles. 

As an example, we study a two-dimensional potential flow with 

uniform onset velocity U in the Xl direction around a NACA 0018 

aerofoil, whose shape is shown in figure 3.6.2. For the solution of 

this problem, we employ a stream function ~ as defined in example 

3.3.2. 

It is now convenient to separate the stream function ~ into two 

parts, 

where ~l = UX2 defines the steady onset flow and ~2 is a perturbation 

stream function. Since the perturbation decays at infinity, we 

require that ~2 = O(R-I) at most as R~. Furthermore, as V2~ = 0, we 

also have that V2~2 = 0 and the problem can now be solved in terms of 

the perturbation ~2' 

Considering the surface of the aerofoil as the streamline ~ = 0, 

the boundary conditions of the problem are 

~ = -~ = -Ux 2 I 2 on r 

As the problem is anti-symmetric with respect to the Xl-axis, 

only one half of the aerofoil needed to be analysed. The linear 

boundary elements discretisation employed for the solution is shown in 

figure 3.6.2. Results for the tangential velocity presented in the 

same figure are in good agreement with analytical results given in [88]. 

3.7 ~ecial Fundamental Solutions 

The fundamental solution we have employed in a11 problems 

studied so far can be immediately recognised as the Green's function 
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Figure 3.6.2 - NACA 0018 aerofoil: a) Results; 
b) Discretisation 
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for an infinite reg~on. Since it was derived without any proper 

attention to boundary conditions (see chapter 2), the boundary conditions 

of the actual problem are introduced by requiring that the function or 

its normal derivative (or a linear relation between both) satisfies 

prescribed values at points on the boundary, which was previously 

discretised. In some problems, the problem region may be confined in 

some regular way and it may be more convenient to find a fundamental 

solution specific to the region [3J. 

As an example, let us derive the fundamental solution for a 

semi-infinite region such as occurs in fluid mech.anics or geotechnical 

problems. Figure 3.7.1 represents a problem of groundwater flow round 

a tunnel which runs under a river. In a problem of this nature, it 

is preferable to remove the infinite boundary r. By choosing a funda­

mental solution which identically satisfies the boundary condition on 

the surface r we shall not need to discretise this surface, thus 

considerably reducing the amount of numerical work involved in the 

solution of the problem. 

Consider a source of intensity a(S) at a point S L r (figure 

3.7.1). The potential generated by this source will somehow be 

reflected at the surface r, depending on the boundary condition 

applied there. In order to represent this reflection, we shall intro­

duce an 1mage source of intensity a(S') at a point S' symmetrically 

located with respect to r. Thus, the potential at any field point p 

will be the superposition of the ones generated by both sources, i.e. 

(see chapter 2), 

u(p) = a(S) u*(p,S) + a(S') u*(p,S') (3.7.1) 

\lhere u* is the infinite space fundamental solution. 

Applying the boundary condition u = 0 at the surface r, we 

obtain 
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a(S) u*(p,S) + a(S') u*(p,S') = 0 on x
2 

(p) = 0 (3.7.2) 

Taking for instance the two-dimensional Laplace's equation, 

condition (3.7.2) implies that 

0.7.3) 

which gives 

a (S) = - a (S ' ) (3.7.4) 

Since, by definition, the fundamental solution is equivalent 

to the potential generated by unit sources, the fundamental solution 

for the semi-infini te region with zero potential at the interface is 

simply 

(3.7.5) 

If the boundary condition at the interface r is that of zero 

normal flux, i.e. 

a(S) q*(p,S) + a(S') q*(p,S') = 0 (3.7.6) 

implying the condition 

+ a (S') 
X

2 
(S) 

[xl (p)-xl (S)]2 + [x2 (S)]2 
= 0 

(3.7.7) 

which gives, 

a (S) = a (S') (3.7.8) 

then the fundamental solution of the problem is 

u*(p,s) = log({ [xl (p)-x
I 

(s)J2 + [x
2

(p)-x
Z

(s)]2}! {[xl (p)-x
I 

(s)J2 

1 
+ [x2 (p)+X

Z
(s)J2}2) (3.7.9) 
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Fundamental solutions for other problems such as parallel 

layered regions can be constructed in the same way, as well as three-

dimensional fundamental solutions. 

Example 3.7.1 

The problem represented in figure 3.7.1, that is, a two-

dimensional problem of groundwater flow round a tunnel with permeable 

invert was studied in order to illustrate the ideas developed in this 

section. As seen in section 3.2, if the medium is homogeneous and 

isotropic the problem is reduced to that of Laplace t s equation for the 

groundwater pressure u.The boundary conditions of the problem are, 

u = d on r 

u 0 

q = -cose 

where d is the depth of the r1ver and e is the angle measured from the 

vertical (see figure 3.7.1). The surface r l is the permeable invert 

of the tunnel where we assume that water flows in freely and r 2 is the 

impermeable part of the tunnel lining, where the condition of no flow 

across the surface holds. Notice that for a point at infinity we have 

the condition u = d-x
2

. 

The problem can be reformulated by subtracting out the solution 

at infinity. The groundwater pressure u is divided into two parts, 

where ul = d-x2 satisfies the infinity condition. Then we have that 

u
2 

tends to zero at infinity and furthermore, that v2u
2 

= 0 such that 

the problem can now be solved in terms of u2 . The boundary conditions 

for u2 become then, 

o 

u = -(d+a-r cose) 
2 t 

o 

on r 

on r
l 

on r 2 

(3.7.10) 
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Figure 3.7.1 - Groundwater flow round a tunnel 

BEM (N=8) BEM (N=16) BEM (N=32) 

30.51 29.08 28.87 

31.52 30.03 29.83 

34.60 32.87 32.73 

39.96 38.05 37.85 

48.24 45.96 45.72 

61.43 58.42 58.10 

r 

FEM 

33.44 

34.51 

37.76 

43.46 

52.34 

66.46. 

Table 3.7.1 - Values of u2 (-) on tunnel surface 
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where r t is the radius of the tunnel and a is the distance of the 

centre of the tunnel below the bottom of the river. The numerical values 

adopted for the parameters are d = 60, a = 30 r = 3.5 and AOB = 3~/4. , t 

The same computer program developed using the infinite space 

fundamental solution can be applied to this problem by specifying anti-

symmetry with respect to the xl-axis, thus also satisfying condition 

(3.7.4). The solution of the new problem, ~.e. Laplace's equation ~n 

the infinite domain bounded internally by r and its image r', with 

boundary conditions Uz = -ul on r l , u2 = ul on ri' q2 = a on r2 and ri, 

is identical in the lower half-space to the solution of the original 

problem with boundary conditions (3.7.10). By taking into account the 

symmetry with respect to the x2-axis, only one half of the tunnel 

surface needs to be discretised. 

Results for the function u2 at some boundary points are presented 

~n table 3.7.1 for three different discretisations using linear boundary 

elements and compared to a finite element solution [69J obtained by 

discretising the whole semi-infinite region into 152 triangular finite 

elements plus some infinite elements (see figure 3.7.2). The dis-

crepancy between both solutions is due to the coarseness of the finite 

element mesh around the tunnel (see figure 3.7.2), which does not take 

into account properly the discontinuity on the radial flux at the point 

B. 

Example 3.7.2 

This example studies the steady-state heat conduction problem of 

a semi-infinite medium bounded internally by two parallel and equal 

cylinders, as shown in figure 3.7.3. The interface r is at zero tempera-

ture, the temperature at infinity is also zero and the surfaces of the 

cylinders are isotherms. 
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Figure 3.7.2 - Finite element mesh for groundwater 
flow round a tunnel 
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If the depth d is much greater than the cylinder radius a, this 

problem can be seen as an approximation to the more practical one of 

two equally loaded electricity cables laid direct in the ground in 

horizontal formation. Of interest in this kind of problem is the 

determination of the external thermal resistance of each cable. 

The thermal resistance G per unit length between the surface 

r at a temperature c and the surface r at zero temperature, through a 

medium with thermal conductivity k, is given by 

G = _ __ ____ c __ __ 

Results for the non-dimensional ratio Gk are presented in table 

3.7.2 for several values of d/a, for a unit cylinder surface tempera­

ture c. Two different cases were considered, i.e. when the cables 

are touching (b = 0) and when the cable spacing equals one diameter 

(b = a). These results were obtained by sub-dividing the surface of 

one cylinder into 32 linear elements and considering symmetry with 

respect to the x2-axis and anti-symmetry with respect to the Xl-axis, 

using the infinite space Green's function. Also shown in the table 

are the results obtained through an approximate analytical solution 

[70]; the agreement between both solutions is very good. 

Since anti-symmetry was considered the Gauss condition (3.6.7) 

1S automatically satisfied, thus fulfilling the condition of zero 

temperature at infinity. 

3.8 Three-Dimensional Problems 

The solution of the boundary integral equation (3.1) for three­

dimensional problems can be attempted following basically the same 

steps as discussed in section 3.1 for two-dimensions. The boundary r, 

now a two-dimensional curve, can be modelled by using flat or curved 
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Figure 3.7.3 - Semi-infinite region bounded internally 
by two equal cylinders 

b d/a BEM ANALYTICAL 

10 0.810 0.810 

25 1.102 1.102 
b = 0 

50 1.322 1.322 

100 1.543 1.543 

10 0.726 0.724 

25 1.016 1.014 
b = a 

50 1.236 1.235 

100 .1..457 1.456 

Table 3.7.2 - Values of ratio Gk 
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triangles or quadrilaterals and the potentials and normal derivatives 

over it assumed to be piecewise constant, linear, quadratic, etc. The 

interpolation functions adopted are generally the same as employed for 

two-dimensional finite element analyses. 

In what follows, the numerical procedures necessary for the 

computer implementation of a simple element, namely a flat triangle 

with constant potential and normal derivative will be described in 

detail. Numerical results are included at the end of the section in 

order to show the validity of these procedures and a description of the 

computer program developed is given in chapter 6. As for the two-

dimensional case, extension to high order interpolation functions 

presents no further theoretical difficulties. 

For the discretisation of equation (3.1), the boundary is 

modelled by using flat triangles such that the cartesian coordinates 

x of points within each element are expressed by equation (3.1.1), being 

now 

(3.8.1) 

where the index m = 1,2,3 is associated to points at the vertices of 

each triangle and 

1;1 X! 
~ 

IjI = 1;2 X~ = X? (3.8.2) 
-~ ~ 

l;3 X? 
1 

in which 1;. are the intrinsic triangular coordinates (figure 3.8.1). 
~ 

The functions u and q are assumed to be constant within each 

element and associated to their nodal values at the centroid of the 

element (figure 3.8.1), i.e. equation (3.1.3) becomes simply, 

u = U 
(3.8.3) 

q = Q 
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If the boundary r is discretised into S elements and N nodes, 

the substitution of equation (3.8.3) into (3.1) yields 

g 

L: 
s=l 

S 
L: 

s=l 
(3.8.4) 

The transformation of the element of surface dr from the global 

cartesian system of coordinates to the intrinsic system of coordinates 

now gives, 

(3.8.5) 

where the Jacobian J equals twice the area of the triangle [60]. The 

unit normal vector, necessary for the evaluation of the function q*, 

can be calculated by considering the cross-product between the vectors 

(2-1) 

type 

and (3-1) shown in figure 3.8.1. 

The integrals to be calculated in equation (3.8.4) are of the 

L q* (x) dr IJI ( [C<2 q*(I;) dOll d1;2 
s 

1 I-I; 
(3.8.6) 

If * IJI Io [Io 2 u*(P d<l] d<2 u (x) dr = 

s 

For the cases when i ( r , these integrals are computed numer~­
s 

cally using Hammer's quadrature scheme [65 J. Thus the off-diagona.l 

coefficients of matrices Hand G in equation (3.1.8) are given by 

summations of the form, 

7 
H .• = 2A. d.. L: :+- W

k ~J J ~J k=l r ik . 

(3.8.7) 
7 

G .. = 2A. L: _1_ W
k 1.J J k=l r ik 

in which A. and d .. refer to the element containing node J' being A. 
J ~J ' J 

its area and 



100 

~ =~ 
k A. 

I 
I 
I 
I 
I 
I 

A2 
I 

A1 I 
I 

~13I13Il3) 
.; .... 

.; .... .... ..... 
.; 

A 
.... .... 3 .... 

~3=O 

Figure 3.8.1 - Intrinsic triangular coordinates 
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Figure 3.8.2 - Geometrical definitions for analytical 
integration 
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d .. 
LJ 

(3.8.8) 

where 

z = y2 y3 _ y3 y2 
abc b c 

(3.8.9) 

being a 1,2,3 for b = 2,3,1 and c = 3,1,2, and 

y2 = X3 - Xl 
m m m 

(3.8.10) 
y3 = y3 Xl 

m m m 

for m = 1,2,3. Notice that seven integration points (quintic scheme) 

are employed for the numerical evaluation of the integrals in equation 

(3.8.6). 

The Hii coefficients may again be calculated by using equation 

(3.1.10) for finite regions or equation (3.6.9) for infinite regions. 

The G .. coefficients, which contain integrable singularities, can be 
LL 

evaluated analytically by employing polar coordinates (see 

where 

81 Rl (e) 8l +e 2 R2<e) 

Gii = fa fa dR de + t fa dR de 

1 

R. (e) 
J 

b. = 
J 

a. = 
J 

zJ = m 

yJ = 
m 

2A. 
L 

I 

(r~j - a2 )2 
~ 

zj 
1 

+ zj 
2 

+ zj 
3 

r .. 
LJ 

(Xi _ 
m 

xj)y~ 
m m 

x~ _ xk 
m m 

f

27T 

+ e +e 
1 2 

fi gure 3. 8 • 2) , 

f

R3 <e) 

a dR de 

(3.8.11) 

(3.8.12) 

in which m = 1,2,3 and j = 1,2,3 for k = 2,3,1 and ~. = 3,1,2. The 

angle e' equals e for j = 1, e' = e-8 l for j = 2 and 8' = 8-(81+8 2) for 
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J 3. Evaluating the integrals in equation (3.8.11) finally yields, 

G .. 
11 

+ 

Example 3.8.1 

1 [tan[(82+CX 3)/2]] 
+ -- log 

r 31 tan [cx3/2] 

(3.8.13) 

The first three-dimensional example studies the temperature 

distribution over a unit cube with Dirichlet boundary conditions as 

follows (see figure 3.8.3), 

u = 1. at +0.5 

u = 2. at Xl -0.5 

u = O. at x
2 

= ±O.S 

u = o. at x3 = ±O.S 

Due to symmetry with respect to the planes xl -x2 and xl -x3' 

only one quarter of the actual cube needed to be analysed. Two 

different meshes were employed, the finer of which is shown in figure 

3.8.3. Results for the temperature at some internal points are 

presented in table 3.8.1 and compared with an available analytical 

solution [16J. 

Example 3.8.2 

In this example, we seek the temperature distribution over a 

rectangular parallelepiped with the following mixed boundary con-

ditions (figure 3.8.4), 

u = 10. at Xl = -0.5 

~+ 
an 5u O. at Xl = +0.5 

au 5u o. ±l. -+ = at x
2 an 

au + 
an 

5u = o. at x3 ±l. 
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Figure 3.8.3 - Unit cube: a) Geometry; b) Discretisation 
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Figure 3.8.4 - Rectangular parallelepiped: a) Geometry; 
b) Discretisation 
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Xl BEM (N=12) BEM (N=24) ANALYTICAL 

~.375 1.637 1.472 1.430 

-0.250 1.044 0.979 0.967 

-0.125 0.678 0.661 0.659 

O. 0.500 0.500 0.500 

0.125 0.478 0.472 0.472 .,. 

0.250 0.597 0.566 0.560 

0.375 0.855 0.770 0.748 

Table 3.8.1 - Temperature along the Xl-axis 

Xl x2 x3 BEM (N=24) BEM (N=48) ANALYTICAL 

-0.25 O. O. 7.387 7.282 7.259 

O. O. O. 4.827 4.840 4.837 

O. 0.50 0.50 3.745 3.843 3.843 

0.25 O. O. 2.816 2.843 2.844 

0.25 0.25 0.25 2.612 2.658 2.658 

0.25 0.50 0.50 2.000 2.073 2.089 

0.25 0.75 0.75 1.050 1.144 1.180 

Table 3.8.2 - Temperature at internal points 
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As in the previous example, we take advantage of the symmetry of 

the problem with respect to the planes x l -x2 and x l -x3 . The finer mesh 

employed in this analysis (48 elements) is shown in figure 3.8.4 and 

the numerical results at some internal points are compared with the 

ones obtained through an analytical solution [16J in table 3.8.2. 

Example 3.8.3 

Let us now study the problem of a spherical cavity of unit 

radius in an infinite region with a constant radial influx of 10oe/cm 

prescribed along the cavity surface. 

The exact solution of this problem is simply, 

10 u =-
R 

which shows that the expected solution behaves as O(R- I ) as R~ s~nce 

the Gauss condition (3.6.7) is not satisfied. 

By taking symmetry into account, only one eighth of the cavity 

surface needed to be analysed. Results for the averaged surface tempera-

ture and for the temperature at some points inside the domain Q are 

shown in table 3.8.3, compared to the exact solution. The slow con-

vergence of the numerical solution on and near the cavity surface are 

attributed to the geometrical approximation of the sphere using flat 

elements. 

3.9 Axisymmetric Problems 

In chapter 2, it was pointed out that the fundamental solution 

to the two-dimensional Laplace's equation (the logarithmic potential) 

can be derived by integrating the three-dimer.sional one (the Newtonian 

potential) for a line source at a point s. The same idea can be applied 

in order to derive the fundamental solution for Laplace's equation over 

an axisymmetric domain, which is equivalent to a ring source. 
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R BEM (N=7) BEM (N=16) EXACT 

1.0 9.676 9.727 10.000 

1.5 6.505 6.569 6.667 

2.0 4.899 4.922 5.000 

3.0 3.274 3.281 3.333 

6.0 1.639 1.640 1.667 

10.0 0.983 0.984 1.000 

100.0 0.098 0.098 0.100 

1000.0 0.010 0.010 0.010 

Table 3.8.3 - Temperature at points on infinite region 

Assuming that all boundary values have axial symmetry (and con-

sequently all domain values are also axisymmetric), equation (3.1) can 

be written in cylindrical polar coordinates (R,e,Z) as 

s1nce 

2rr 

c(P) u(P) + Ir u(8) I q*Cp,S) de(S) R(S) df(S) 
o 

Ir q(S) 

2rr 

I u*(P,S) de(S) R(S) df(S) 
o 

dr = dXl dX2 dX 3 = R de dR dZ = R de df 

(3.9.1) 

(3.9.2) 

Note that f is the generating boundary contour which 1S the projection 

of f in the R+-Z semi-plane (figure 3.9.1). 

Writing the three-dimensional fundamental solution 1n cylindrical 

polar coordinates, 

u*(P,S) = _1 __ 

reP,S) 

1 

(3.9.3) 
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Figure 3.9.1 - Generating area and boundary contour 
of solid of revolution 
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the axisymmetric one can be calculated explicitly in terms of the com-

plete elliptic integral of the first kind K(m) as, 

u*CP,S) 

where 

2'IT 

- f u*CP,S) de(S) - 0 
4 KCm) 

1 
(a+b) 2 

2b 
m - a+b 

a = R2(p)+R2 CS)+[Z(P)-Z(s)F 

b 2 R(P) R(S) 

(3.9.4) 

(3.9.5) 

The range of variation of the parameter m is O~m~l. Unlike the two and 

three-dimensional cases, the axisymmetric fundamental solution cannot be 

written as simply a function of the distance between two points, but 

it also depends on the distance of the points to the axis of revolution. 

The normal derivative of the fundamental solution along the 

boundary contour f is given by, 

q*(P,S) = ___ 4 __ ~1 
(a+b) 2 

+ Z (P)-Z (S) 
a-b 

(3.9.6) 

where E(m) is the complete elliptic integral of the second kind. 

From expressions (3.9.4) to (3.9.6), it can be seen that as 

RCP)~ we have that ~, KCm)~/2, E(m)+'IT/2, so that the ring source 

tends to a point source with intensity 2'IT over the axis of revolution. 

Substituting (3.9.4) and (3.9.6) into equation (3.9.1) yields 

the following boundary integral equation, 

e(P) u(P) + Ir u(S) q*(P,S) R(S) dr(S) • Ir q(S) U*(P,S) reS) dr(S) 

(3.9.7) 

The solution of the above equation can be attempted by using the 

same basic calculation procedures as discussed in section 3.1 for two-
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dimensional problems. Again, constant and linear elements were derived 

and a description of the computer program developed is given in chapter 6. 

For convenience of the numerical computation, the complete 

elliptic integrals are approximated by polynomial expressions [46} which 

are given in appendix A. 

After discretising equation (3.9.7) and summing the contributions 

from all boundary elements, a system of equations of the form (3.1.8) 

is obtained. The terms R .. and G .. (i#j) of this system are evaluated 
~J ~J 

numerically using a standard Gaussian quadrature with four integration 

points. The diagonal terms R .. and G .. however, are the result of 
~~ ~~ 

evaluating singular integrals for which standard quadratures cannot be 

applied. 

In order to facilitate the evaluation of these integrals, the 

fundamental solution and its normal derivative can be written in 

terms of Legendre functions of the second kind as, 

q* (P ,S) 

where 

8! Q_ t (Y) "li'* (P , S ) = ___ "'-1 a.2 __ 

+ Z(P)-Z(S) 
R(P) 

y = 1 + a-b 
b 

b 2 
(3.9.8) 

(3.9.9) 

(3.9.10) 

This form of the fundamental solution ~s the same as given by Snow [71]. 

This Legendre function can be expand~d, for small values of 

y, as [72J 

(3.9.11) 
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dy = 
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1 (3.9.12) 
2(y-l) 

The substitution of expresHons (3.9.11) and (3.9.l2) into (3.9.8) 

and (3.9.9) permits the explicit evaluation of the singular integrals. 

As previously, the R .. coefficients may be calculated by using equation 
1.1. 

(3.1.10) for finite regions or equation (3.6.9) for infinite regions 

(with a=2) while formulas for G .. obtained through analytical integra-
1.1. 

tion are given in appendix B, for both constant and linear elements. 

For higher order elements, the complexity of the integrals makes 

almost impractical their closed form evaluation. To overcome this 

problem, we can integrate in closed form over a short straight line 

segment near the singularity and numerically integrate the rest of the 

element. Alternatively, the kernels in these integrals can be expanded 

in order to isolate the leading singular term which can then be inte-

grated in closed form, being the remainder of the kernel numerically 

integrated. 

Notice that for elements located near the axis of revolution (so 

with small R(P» it is not always possible to integrate the whole element 

analytically in the way above described, since the value of the parameter 

y will be large for points far from the singularity and therefore, approxi-

mations (3.9.11) and (3.9.12) are no longer valid for these points. Thus, 

the scheme adopted for these cases was to integrate analytically over a 

short segment near the singularity and numerically integrate the rest of 

the element using a standard Gaussian quadrature, as if these parts were 

separate elements. For computational purposes, the length L of the 

analytically integrated part of the element wa~ assumed to be [73J, 
I 

L [R(P) R(S)] 2 .Q, 
2" $ 50 .:S 2" (3.9.13) 

where .Q, is the total length of the element and R(S) is the distance from 

the nearest point of that part to the axis of revolution. 
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Example 3.9.1 

The first example studied was that ,of a finite hollow cylinder 

a<R<b, -£<Z<£, subjected to a discontinuous heat influx on the inner 

face as follows, 

u = 0 at R = band Z = ±£ 

q 0 at R = a, -£<Z<-L 

q 0 at R = a, L<Z<£ 

q = V at R a, -L<Z<L 

This is a rough approximation to the arrangement in a tube furnace; an 

analytical solution of this problem can be found by employing an infinite 

series expansion in terms of Bessel functions [16J. 

Results are presented in tables 3.9.1 and 3.9.2, compared to the 

analytical solution. Both constant and linear elements were employed 

and due to the symmetry with respect to the R-axis only one half of the 

cylinder was discretised into 14 equal elements (figure 3.9.2). The 

numerical values adopted for this analysis were 

V=l. 

Example 3.9.2 

a=2,b=6, £=5, L=2 and 

This application considers a finite solid cylinder ~R<a, 

O<Z<£, over one face of which the 'radiation' boundary condition is 

prescribed. The total boundary conditions of the problem are, 

u = 0 at Z = £ 

u = V at Z = 0 

q + hu = 0 at R = a 

Again constant and linear boundary elements were employed and 

the cylinder surface discretised into 20 equal elements, in both cases 

(figure 3.9.3). Notice that there is no need for elements over the 

axis of revolution, which is not part of the generating contour. The 

numerical values assumed for these analyses were a = 1, t= 3, h = 0.1, 
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Figure 3.9.3 - Discretisation of solid cylinder 
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R Z BEM (constant) BEM (linear) Analytical 
, . 

3.0 4.0 0.140 , 0.141 . 0.141 

3.0 3.0 0.317 . 0.320 0.319 

3.0 2.0 0.556 0.556 0.556 

3.0 1.0 0.762 0.760 0.761 

3.0 0.0 0.832 0.831 0.831 

5.0 4.0 0.043 0.043 0.043 

5.0 3.0 0.088 0.088 0.088 

5.0 2.0 0.133 0.133 0.133 

5.0 1.0 0.167 0.167 0.167 

5.0 0.0 0.180 0.180 0.180 

Table 3.9.1 - Temperature at internal points 

R BEM (constant) BEM (Linear) Analytical 

2.0 - 0.148 0.155 

2.5 0.155 - 0.149 

3.0 - 0.141 0.134 

, 3.5 0.112 - 0.113 

4.0 - 0.089 0.090 

4.5 0.066 - 0.066 

5.0 - 0.043 0.042 

5.5 0.017 - 0.020 

6.0 - 0.000 0.000 

Table 3.9.2 - Normal flux at Z = ±~ 
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Z BEM (constant) BEM (linear) Analytical 

0.5 0.782. 0.761 0.781. 

1.0 0.587 0.585 0.585 . 

1.5 0.417 0.416 0.416 

2.0 0.267 0.267 0.267 

2.5 0.130 0.130 0.130 

Table 3.9.3 - Temperature at R = 0.25 

Z BEM (cons tan t) BEM (linear) Analytical 

0.375 0.807 - 0.805 

0.500 - 0.751 0.751 

0.875 0.606 - 0.604 

1.000 - 0.560 0.560 

1. 375 0.437 - 0.436 

1.500 - 0.397 0.397 

1. 875 0.289 - 0.289 

2.000 - 0.254 0.254 

2.375 0.155 - 0.156 

2.500 ~ 0.124 0.124 

Table 3.9.4 - Temperature at R = 1.00 
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v = 1. Results are compared in tables 3.9.3 and 3.9.4 with an 

available analytical solution [16]. 

Example 3.9.3 

The problem of a spherical cavity of unit radius in an infinite 

medium already studied with three-dimensional elements in example 3.8.3 

is now re-studied with axisymmetric constant elements in order to assess 

a comparison between both types of approximations. 

Results are presented in table 3.9.5 for two different dis-

cretisations of one half of the generating contour of the sphere, taking 

symmetry into account. This provides a better geometrical representation 

of the cavity surface and the improvement of the results reflects this 

fact. 

R BEM (N=4) BEM (N=8) EXACT 

1.0 9.961 9.991 10.000 

1.5 6.539 6.634 6.667 

2.0 4.904 4.976 5.000 

3.0 3.269 3.317 3.333 

6.0 1.635 1.659 1.667 

10.0 0.981 0.995 1.000 

100.0 0.098 0.100 0.100 

1000.0 0.010 0.010 0.010 

Table 3.9.5 - Temperature at points on infinite region 

Example 3.9.4 . 

Finally, a more practical application is the analysis of a proto-

type nuclear reactor pressure vessel subjected to an increase of tempera-

ture applied on the inside. This problem was studied using 96 triangular 
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finite elements in [74] and the results, as well as the mesh employed, 

are reproduced in figure 3.9.4. 

Results for a linear boundary elements analysis employing 31 

elements and taking into account the symmetry with respect to the R-axis 

are plotted in figure 3.9.5, and compare well with the finite elements 

solution. 
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Figure 3.9.4 - F.E.M. mesh and isotherms 
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4. TRANSIENT POTENTIAL PROBLEMS 

This chapter studies numerical solutions to the time-dependent 

boundary integral equation (2.8.11), repeated here for convenience, which 

is equivalent to the diffusion equation (2.5.1) with boundary conditions 

(2.5.2) and initial conditions (2.5.3), 

ktL 
o 

q (S, t) 

+ k ItF I u(S,t) q*(P,S,tF,t) dr(S) dt 
to r 

u*(P,S,,>,t) dr(S) dt + In 

(4.1) 

Two different time-marching schemes c~n be employed on these 

numerical solutions. Both adopt a time-stepping technique where the 

functions u and q are assumed to vary within each time step according to 

interpolation functions which can be constant or of higher orders. This 

assumption makes it possible for the time integrals in equation (4.1) 

to be carried out analytically. For the first scheme, which treats 

each time step as a new problem, the result is a boundary integral 

equation similar to (3.1) but includiI1g a domain integral that accounts 

for the initial conditions at the beginning of each step. For the second, 

where the time integration process always starts at time to' it is a 

summation of boundary integrals corresponding to the time variation 

of functions u and q since the initial time to plus a domain integral 

accounting for the initial conditions at to' which vanishes if the 

prescribed initial conditions of the problem are Uo = 0 or can be 

transformed into equivalent boundary integrals, if u
o 

satisfies Laplace's 

equation. 

The basic procedures for numerical implementation of both time-

marching schemes in connection with two-dimensional problems are 

presented in the following section. Although they are only discussed 
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for problems defined over finite regions of homogeneous, isotropic 

media, several other features such as internal sources, piecewise 

homogeneous regions, orthotropy and anisotropy, infinite or semi-

infinite regions, can be included in the analysis in a similar way 

as it has been done in chapter 3 for steady-state problems. 

Specific numerical and computational procedures for each time-

marching scheme are then described and their accuracy and computer 

efficiency compared. 

Next, boundary conditions of the Robin-type are introduced into 

the formulation. For transient heat conduction problems the assumption 

of (say) stepwise linear variation for both the heat transfer coefficient 

h and the temperature of the surrounding medium u(see example 3.2.1) 
s 

gLves rise to a quasi-quadratic variation for the flux q, and it is 

shown how the higher order terms can be properly accounted for. 

Finally, transient axisymmetric problems are discussed, the time-

dependent axisymmetric fundamental solution derived and a numerical 

formulation for the solution of equation (4.1) over an axisymmetric 

domain is presented. The complexitJ of the fundamental solution requires 

the introduction of series expansions in order to enable the time 

integrals in the equation to be carried out analytically. 

Computer programs incorporating several features discussed Ln 

this chapter were developed and are described in chapter 6. Results 

of applications of such programs are presented in sections 4.4 to 4.6. 

4.1 Two-Dimensional Problems 

For the numerical solution of equation (4.1), the boundary r is 

discretised into a series of elements. The geometry of these elements 

can be modelled by straight lines, circular arcs, parabolas, etc., as 

discussed in section 3.1. Furthermore, functions u and q are assumed 

to vary within each element and each time step according to space and 

time interpolation functions as, 
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u = <pT X Un 
_m 

<pT 
(4.1.1) 

q = X ~ -

where <p and X are the space and the time interpolation functions, 

respectively. The index n refers to the number of boundary nodes 

within each element to which nodal values of u and q are associated 

and the index m refers to the degree of variation of function ~, i.e. 

m = 1 if 0 is constant, m 1,2 if X is linear, etc. Let us also 

assume that the domain n is divided into cells, as discussed in section 

3.3. 

For two-dimensional problems, the fundamental solution and its 

normal derivative are given by (see equation (2.8.3», 

u*(p,S,tF,t) = _1_ exp [- r
2

(p,s)] 
47fkT 4kT 

(4.1.2) 

q*(p S t t) - d(p,S) exp [- r
2

(p,s)] 
, 'F' - 87fk2T2 4kT (4.1.3) 

If the boundary r is discretised into S elements and N nodes, 

the domain n sub-divided into L cells and the time dimension sub-divided 

into F time steps, the substitution of equations (4.1.1) into equation 

(4.1) yields, for scheme 1, the following equation, 

Ui S [Ir 9? JtF q* ~ dt dr] ~n c. + k L 
1 F 

s=l t F- l s 

S [J tT (F dt dr] L t k L * Qn + L * ~-l dn u X u 
8=1 r s tF- l 

Q,=l 
Q, 

(4.1.4) 

and for scheme 2 the equation, 

U
i S F [J .T t dt dr] + k L L * Un c. q X 1 F s=l f=l -r s t f-l 

S F 

[Ir 
<pT (f dr] ~n L 

In, k L L * xdt * u + L u ~O dn 
s=l £=1 t f - l Q,=l 

s 

(4.1.5) 
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4.1.1 Constant Time Interpolation 

Assuming that functions u and q remain constant on time over 

each time step, i.e. the interpolation function X is unity, applying 

equation (4.1.4) to all N boundary nodes yields the following system 

of equations (see equation (3.1.8», 

(4.1.6) 

A 

The coefficients of matrices ~, G and B are constituted of 

terms, or combination of terms, of the form (see equations (3.1.15), 

(3.1.18), (3.1.24», 

L rF 
h~. = k cpm q*(i,S,~,t) dt dr(S) 

1.J 
t F- l s 

L 
tF 

m 
k ~m f u*(I,S,tF,t) dt dr(S) (4.1. 7) g .. 

1.J 
S t F- l 

where the index m refers to the degree of variation of the interpola-

tion function cp. Note that H .. = H .. + C. 0 .. , where 0 •. is the 
1.J 1.J 1. 1.J 1.J 

Kronecker delta. 

For scheme 2, the application of equation (4.1.5) to all N 

boundary nodes gives, 

where 

F 

l: ~fF ~f = 
f=l 

F 

l: ~fF 9f + ~O ~O 
f=l 

= k I cpm Itf q·(i.S,~,t) ~ dr(S) 
rs t f - l 

B .. 
01.J 

t
f 

~m I u*(i,S,~,t) dt dr(S) 
t f - l 

(4.1.8) 

(4.1.9) 
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being HfFij = HfFij + ci ofF 0ij now. The values of ~f and 9f for 

f = 1, ••. ,F-l are known from calculations at previous steps. 

From (4.1.7) and (4.1.9), it follows that the time integrals can 

be carried out analytically. The integral in q* gives, 

where 

t
f 

q' (i. s. t,.. t) dt = 2.~r2 I 4~~2 exp [- 4~TJ dt 
t f - l 

(4.1.10) 

(4.1.11) 

In order to perform the integral in u*, we need to make an 

appropriate change of variables. Calling 

r2 
x = 4kT (4.1.12) 

the integral becomes [75J, 

u * (i, S, t
F

, t) [-~) dt 4kT 

-x 
ex dx = 4;k [El(af - 1) - El (af )] (4.1.13) 

where El is the exponential-integral function. From definition (4.1.11), 

we note that exp(-~) = 0 in (4.1.10) and El(~) = 0 in (4.1.13). 

4.1.2 Linear Time Interpolation 

Let us now assume a linear variation on time for functions u and 

q within each time step according to the following interpolation 

functions, 

(4.1.14) 
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The system of equations obtained from the application of 

equation (4.1.4) to all boundary nodes is now of the form, 

(4.1.15) 

where the coefficients of the matrices involved are constituted of 

terms such as, 

k t = --

s 

h~~m = ~ t (F pm (t-tF_
l

) q*(i,S,tF,t) dt dr (S) 
~J lItF 

s t F- l 
(4.1.16) 

l,m k 

Ir i"F g .. = -- pm (tF-t) u*(i,S,tF,t) dt dr(S) 
~J lItF 

t F- l s 

2,m 
g .. =-
~J 1I tF 

k t 
s 

with 
. 2 A2 

B .. bemg calculated as in (4.1.7) and R .. = R .. 
~J ~J ~J 

+ c.IS ••• 
~ ~J 

g~ ves, 

where 

Analogously, the application of (4.1.5) to all boundary nodes 

h l,m 
fFij 

h2 ,m 
fFij 

l,m 
gfFij 

2,m 
gfFij 

k t 
k t = --

lItf 

k t = --
lItf 

k t - --lIt f 

(4.1.17) 

s 

ff rpm (t-tf _
l

) q*(i,S,tF,t) dt dr (S) 

s t f - l 
(4.1.18) 

i"f rpm (tf-t) u*(i,S,tF,t) dt dr(s) 

s t f - l 

ff rpm (t-tf _l ) u*(i,S,tF,t) dt dr(S) 
s t f - 1 
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2 
with BOij computed as in (4.1.9) and HfFij = 

The time integrals can now be divided into integrals of the 

same form as previously (equations (4.1.10) and (4.1.13» plus 

integrals of the form, 

-x 
e f

a 
f -x 

dx - ..!... ~ dX] 4k x 
a f - l 

(4.1.19) 

t r2 
~ exp (- 4kT) dt 

1 = --41Tk 

-x 
e 
-- dx x 

-x e 
xr dX] (4.1.20) 

The integrals in the above equations are of the same type as 

the ones in equations (4.1.10) and (4.1.13) apart from the last one ~n 

(4.1.20), which gives [75J 

(4.1.21) 

where r is the incomplete Gamma function. 

Thus, adding up all terms and taking into account the relation 

between rand El , i.e. [46J 

(_l)n [ -a n-l (-1) ~ i! J 
r(-n,a) = E1 (a) - e ~ i+l 

i=O a . 
n=1,2, ..• 

n! (4.1.22) 

the time integrals in (4.1.16) and (4.1.18) finally give, 
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- 4rk
2 

r_l_ exp(-a ) - 1- exp(-a )]} 
Laf - l f-l af f 

r2 [_1_ exp(-a ) _ 1- exp(-a )]} 
4k [af - l £-1 a£ f (4.1.23) 

4.1.3 Quadratic Time Interpolation 

Although the computer programs described in chapter 6 only make 

use of stepwise constant or linear time variations, it is interesting 

to investigate the difficulties associated with the use of higher order 

time interpolation functions. 

Consider, for instance, that functions u and q have a quadratic 

variation within each time step according to the following interpolation 

functions, 

(4.1.24) 

X2 = 4t(l-"t) x = t(2t-l) 3 . 
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where t = (t-tf_l)/(tf-tf_l) and the time stations are t f - l , t f _! and 

t f , being t f _! = (tf_l+tf)/Z. 

For simplicity, only time-marching scheme 1 will be considered 

in what follows, extension to scheme 2 being straightfo1~ard. In this 

case, the application of equation (4.1.4) to all N boundary nodes gives, 

(4.1.25) 

in which the coefficients of the matrices are constituted of terms 

such as, 

h~~m 
1J 

h~~m 
1.J 

I,m g .. 
1.J 

Z,m g .. 
1.J 

3,m 
g .. 
1J 

k J =~ 
.6.tF r 

s 

k I = -;::::-T 
.6.tF r 

s 

k I = -;::::-T 
.6.tF r 

s 

k 

Ir = .6.·t2 
F s 

f'F <pm [4(t-tF_l )(tF-t)] q*(i,S,tF,t) dt dr(S) 
t F- l 

i"F <pm 

t F- l 

[(t-t
F

_
l

) (2t-t
F
-tF_

l
)] q*(i,S,tF,t) dt dr(S) 

t 
(4.1.26) 

<pm [(t-tF) (2t-tF-tF_1)] u*(i,S,tF,t) dt dr(S) 
t F- l 

t <pm 

t F- l 

[4(t-tF_l ) (tF-t)J u*(i,S,tF,t) dt dr(S) 

dt dr(S) 

3 "3 with B .. being calculated as in (4.1. 7) and H .. = H .. + C. 0 ..• 
1J 1.J 1.J 1. 1J 

Expanding the terms in brackets in (4.1.26), we note that all 

the integrals involved have been previously calculated in (4.1.10), (4.1.13) 

and (4.1.21), apart from the following, 
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= 47fk 

-x 
e dx --2k 
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tF [ 

~-1 
r 
~-1 

-x J e
x2 

dx 

(4.1.27) 

-x 
~dx 

x 
t r2 [-x 4 [ -X] Fer e 

- """2k XL dx + 16k2 7 dx 
~-1 aF- 1 

(4.1.28) 

Again, the integrals in the above equations are of the same 

type as the ones in equations (4.1.10), (4.1.13) and (4.1.21) except 

the term [75J, 

(4.1.29) 

The final expressions for the time integrals in equations (4.1.26) can 

now be easily written by combining the appropriate terms explicitly 

calculated in (4.1.10), (4.1.13), (4.1.21) and (4.1.29), taking into 

account relation (4.1.22). 

After introducing the boundary conditions of the problem (4.1.25) 

becomes a system of N equations with 2N unknowns, since all values 

of ~F-l and 9F- 1 are prescribed (or have been previously calculated) 

but only half the boundary values at times t F_! and tF are known. This 
2 

means that for the problem to be well-posed we need to double the 

total number of simultaneous equations involved in solving a single 
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time step. This can be achieved by writing a boundary integral 

equation similar to (4.1) for the time t=tF_!, 

dr(S) dt 

(4.1.30) 

The upper limit of the time integrals was taken as tF_~ because of 

the causality condition (see section 2.8) which specifies that u* and 

q* are identically zero for t>tF I. 
-~ 

Discretising the above equation and applying it to all N 

boundary nodes yields the system of equations, 

G
3 

of B U 
';S + - -F-l 

(4.1.31) 

in which the coefficients of the matrices can be calculated by using 

expressions similar to (4.1.26). 

The simultaneous solution of equations (4.1.25) and (4.1.31) 

now permits determining the unknown boundary values of ~ and 9 at 

times ~_! and tF from the knowledge of the initial conditions at t F- l 

and prescribed boundary conditions at t F_! and t F • 

This procedure can be extended to time functions of higher 

orders, noting that the total number of simultaneous equations to 

be stepwise solved will be further increased. 

4.1.4 Space Integration 

The remaining step in the numerical solution of equation (4.1) 

is the computation of the space integrals. Although the space 

interpolation functions ~ in equation (4.1.1) can be taken as constant, 
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linear, quadratic, etc., as discussed in the previous chapter, only 

linear elements were implemented in the computer programs developed, 

following the results obtained for steady-state problems. Extension 

to higher order elements should involve the same degree of difficulty 

as for Laplace's equation and can be done by following the same 

procedures as described in section 3.1. 

The terms HfFij and GfFij (excluding the singular terms f=F, 

i=j) ~n equation (4.1.8) for linear elements can be computed as, 

HfFij 
2 1 

= hfFip + hfFiq 

2 + 1 
(4.1. 32) 

GfFij = gfFip gfFiq 

where the indices p and q refer to the element at the intersection of 

which node j is located. In general, we can evaluate these terms by 

using a six-points Gauss quadrature rule, 

Q, 6 

g~Fip = a; k:l IEI (af - l ) - El (af)]K ~~ WK 

where d. 
~p 

(4.1. 33) 

equation (3.1.17). For convenience of the numerical computation, the 

exponential-integral function is approximated by rational and poly-

nomial expansions [46J which are given in appendix A. Note that the 

coefficients H .. and G .. (i~j) in equation (4.1.6) can be computed 
~J ~J 

through the same formulae, with f=F. 

For linear time interpolation functions, the terms that form 

the coefficients H
f
2
F.. Gf

2
F .. (excluding the singular coefficients, 

~J, ~J 

f=F, i=j), H~Fij and G~Fij (which have no singular coefficients) ~n 

equations (4.1.15) and (4.1.17) can be evaluated as, 
II< 



hl,m 
fFip 

h 2 ,m 
fFip 

2,m 
gfFip 
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= -

(4.1.34) 

r?K [ II]} - -~- -- exp(-a ) - - exp(-a ) <pm W 
4k a f - l f-l af f KKK 

2 

- r4ikK [_l_exp(_a ) -J:..exp(-a )]} <pmW 
af- l f-l af f KKK 

The coefficients Gii in (4.1.6), GFFii in (4.l.~, G~i in 

(4.1.15) and G;Fii in (4.1.17) all contain integrals with a logarithmic 

(integrable) singularity. For the first and second of these terms 

we can write, with reference to figure 3.1.3, 

where 

a 
p 

Expanding the exponential-integral in series [46 J , 
00 

- C - log x + L 
n=l 

n 
(_l)n-l x 

nn! 

(4.1.35) 

(4.1. 36) 

(4.1.37) 
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in which C is the Euler's constant, C = 0.57721566 ••• , the integrals 

in equation (4.1.35) can be evaluated in closed form as, 

where 

F(a ) = 3 - C - log a 
p p 

00 

+ E 
n=l 

n 
a 

(_l)n-l p 
n(2n+l) (n+l) : 

(4.1.38) 

(4.1. 39) 

The series that appears in (4.1.39) converges very quickly for 

small values of a but slowly as a increases. To overcome this problem, 

we can integrate analytically over a segment near the singularity 

thus ensuring that the coefficient a is always less or equal one and 

numerically integrate the rest of the element using a standard 

Gaussian quadrature, as if these parts were separate elements. The 

length L of the analytically integrated part of the element is calculated 

through (4.1.36), 

(4.1.40) 

For computer efficiency, it is more convenient to relate each 

term of the series in equation (4.1.39) to the previous one, 

have, 

2 
G •• 

11 

where 

(l-n) (2n-1)a 
S = p S 
n n(2n+l) (n+l) n-1 

a 
S =...E. 

1 6 

For the coefficients G~. in 
u. 

a (l-~ )2 
P p 

4 

n = 2,3, •..• 

(4.L41) 

2 (4.1.15) and GFFii in (4.1.17) we 

exp(-S )J (1+~ ) d~ 
p p 

(4.1.42) 

a (l+~ )2 
q q 

4 
(4.1.43) 
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Separating the first integral in equation (4.1.42) as, 

II El(S )(1+< ) d< + II S E1(B )(1+< ) d< - II exp(-S )(l+~ ) d~ 
-1 P P -1 P P P -1 P P 

(4.1. 44) 

we note that only the first integral above is singular and that this 

integral is the same as the first integral in equation (4.1.35). Thus 

it can be evaluated in closed form as previously (see equation (4.1.38» 

and the remaining integrals, which are non-singular, are computed by 

using a standard Gaussian quadrature. The same is valid for the 

second integral in equation (4.1.42). 

The coefficients Hii in (4.1.6), HFFii in (4.1.8), Hii in 

(4.1.15) and H:Fii in (4.1.17) all contain integrals with a stronger 

singularity which are only integrable in the Cauchy principal value 

sense. The same procedures previously applied for Laplace's equation 

can again be employed to calculate these coefficients (which include 

the free terms c.). 
1. 

The application of a constant potential over the whole body now 

gives, for instance, for H .• in (4.1.6). 
1.1. 

N M 
H .. = L H .. + L Bik 1.1. 

j=l lJ k=l 
(j;t.i) 

(4.1. 45) 

where N is the number of boundary nodes and M is the number of internal 

points adopted for the domain integration (as will be explained in the 

following section). This procedure has the obvious disadvantage that 

the whole domain always needs to be discretised, since ~ is now a 

constant potential. For scheme 2, it can be noted from equation 

(4.1.5) that no domain integration is needed if the initial conditions 

of the problem are Uo = 0 everywhere. Thus, the use of equation 

(4.1.45) implies an extra (and unnecessary) computational effort. 

The alternative procedure is to compute the diagonal coefficients 

of the matrices by employing th~ relation H .. 
1.1. 

H .. +c.. The value of 
1.1. 1. 
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the coefficients c, can be obtained in the same way as for Laplace's 
1 

equation (see equation (2.4.7)), 

ci = 1 + lim kJ f
tFq

* dt dr 
e:+O r 

e: 1> 
which, with reference to figure 2.4.1, reduces to 

1 1 l' c, = -- 1m 
1 2 'IT e:~ 

" 

(4.1. 46) 

(4.1.47) 

For linear elements, the terms R., are identically zero due 
11 

to the orthogonality between rand n, which makes d = 0 in (4.1.3). 

This is not so for higher order elements, and the integrals must 

then be carried out in closed form (at least over a short straight 

line segment around the singularity) in order to properly account 

for their principal values. 

It should be pointed out that, for a certain space interpola-

tion function, refining the order of the time approximation 

introduces only additional regular terms into the boundary integrals. 

This means that for linear elements, for instance, the only singular 

integral to be evaluated is the one appearing in equation (4.1.35), 

irrespective of the order of the time interpolation function. 

4.2 Scheme 1 (Step-by-Step) 

At the beginning of the process (time t = to)' initial values 

uo of function u over D + r are specified. The domain is sub­

divided into L (triangular) cells, NI internal points being used to 

define the cells (figure 4.2.1). The initial conditions are taken 

into account through a numerical integration over the domain and their 

values at a number M of points considered. 
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Since half the boundary values of u and q are prescribed, 

equation (4.1.6) can then be employed to compute the remaining 

boundary data for the first time step (F=l). Note that if linear (or 

higher orders) time interpolation functions are adopted, initial values 

of function q along r must also be given (equation (4.1.15». 

At the end of the time step (time t = t l ), the values of u at 

the previously selected M points are recomputed to be used as initial 

values for the next step. This can be done by using equation (2.8.6) 

which, in matricial form, becomes (for the constant case), 

= H' ~F . B' U 
+ ~F-l (4.2.1) 

and for the linear case, 

= 

where the dimensions of matrices G' and H' are M x N and of matrix 

B' are M x M. 

The coefficients of matrices G, H, G' and H' in equations 

(4.1.6), (4.1.15), (4.2.1) and (4.2.2) depend on geometrical data, 

properties of the medium and the time step (see (4.1.33), (4.1.34), 

(4.l.38) and (4.l.42»). Thus, adopting a constant time step 

throughout the analysis, they can all be computed only once and stored. 

The same also applies to the coefficients of matrices Band B' 

(see equation (4.l.7», which result from integrals over the cells. 

Two different kinds of approximations for the variation of u within 

each cell were tested, as well as two different numerical integration 

schemes. 

Calling 

i~l I u* ~-l dQ 

n.Q, 

= 
M 

I: BiJ· U(F-l)J' 
j=l 

(4.2.3) 

and applying Hammer's quintic quadrature scheme to numerically integrate 
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the cells, as~uming that the values of U are calculated directly 

at each integration point, gives 

'~l r [ r-~2 u*(I;) ~-l (:) IJ(O I d!;l ] d~2 
o 0 

so the coefficients of matrix B are of the form 

B .. = 
1.J 

1 
41fkb. t 

exp IJI. w. 
J J 

and the number of initial-value points is M = 7L. 

(4.2.4) 

(4.2.5) 

Alternatively, assuming that function u varies linearly within 

each cell, we have 

~ i I u* ~m dn U(F-1)m ='~1 B .. 
n -1 I J -_ 1.J 
Ifv- m= Q 

R, 

(4.2.6) 

where the interpolation functions ~ are given in (3.8.2). 

Transforming the above integral to polar coordinates (R,8) gives, 

with reference to figure 4.2.2 [76J, 

f u* ~ dQ I 
J ~m exp ( -

r2 
) dQ = m 41Tkb. t 4kL\ t 

QR, Sl 
.R. 

1 

1 t3 t3(eJ R2 
) R dR d8 = ~m(R,8) exp(- 4kflt' 41Tkb. t 

81 
R

2
(8) 

+ R dR de I (4.2.7) 
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where: 

R (e) = 
m b cose + a sine m m 

(e) cfl.(l.') R (b ' ) 'lim R, = 'om + 2Afl. m cos e + am Sl.ne (4.2.8) 

a = xP - Xn 
m 1 1 

b = Xn - xP 
m 2 2 

in which m = 1,2,3 for n = 2,3,1 and p = 3,1,2, Afl. is the area of 

cell fl. and i;;fl.(i) are the triangular coordinates of point i relative to 
m 

cell fl.. 

The integration with respect to R can be performed analytically 

as follows, 

fl., r [R~(e)J [R~(e) ] J 
~m (1.) leJ!;p - 4k~ t - exp - 4k~ t 

[ [
3 R~(e) J r3 R~(e) J] 

y 2" 4k~ t - Y L2' ' 4k~ t de 
1 

+ (k~t) 2 (b cos e + a sine) 
Afl. m m 

[exp [- R~(e) ] _ [_ R~(e) J] 
4kLl t exp 4kt. t 

R~ ( e) J _ [1 Rt ( e) J] 
4kLl t 'Y 2' 4k~ t de I 

(4.2,9) 

where y is the incomplete Gamma function normalized. The integration 

with respect to e can be carried out numerically using a standard Gaussian 

quadrature with four integration points. To effect this, a new variable 

n is introduced such that its value, for instance, for e in the range 

n (4.2.10) 

Thus, the coefficients of matrix B for this case are of 
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the form, 

1 
L 3 63-8 1 r.. 8

2
-6

3 roo dn I B •• - L: >: 
2 dn + (4.2.11) 

1J 21T ,Q,=1 m=l 2 

-1 -1 

and the number of initia1-va1ue points is now M=N+N
I

• Note that 

since the values of u at the N boundary points have already been 

computed through the solution of the boundary integral equation, there 

remain only the values of u at Nr internal points to be calculated. 

For computer efficiency, the incomplete Gamma function 

normalized can be related to the error function as [46], [75] 

3 
Y (2' x) 

(4.2.12) 

being the error function evaluated by means of a rational 

approximation [46] which is given in appendix A. 

The procedures to solve, for example, a problem with time-

independent boundary conditions (e. g. pres cribed values of q) using 

constant time interpolation functions can then be summarized as 

follows: 

a) Discretise the boundary r into S elements and N boundary 

nodes and the domain Q into L cells, with Nr internal points 

defining the cells; 

b) Compute the coefficients of matrices G, H, B in equation (4.1.6) 

and G', H', B' in (4.2.1) using the specified values of 

geometrical data, properties of the medium and time step. 

Matrices H (N x N) , H' (M x N), B (N x M) and B' (M x M) are 

formed, being H (the system matrix) then inverted. Introduce 

the boundary conditions, mUltiplying them by the G and G' 

coefficients to form the vectors of independent terms F(N) and 

F'(M), respectively. Store the four matrices and two vectors; 
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c) Multiply matrix B by the initial conditions, add to vector F 

and pre-multiply the result by H- l to find the unknown 

boundary values of u; 

d) Compare the actual values of u with their previous values 

to verify if a steady-state is reached, i.e. if their 

difference is less than a prescribed tolerance; 

e) Multiply B' by the initial conditions, add to F' and subtract 

from the total the result of the product of H' by the computed 

boundary values of u to find the initial conditions for next 

step; 

f) Return to c). 

4.3 Scheme 2 (Time Process Starting at taL 

The main difference between this scheme and the prev10us one is 

that the time variation of functions u and q is now taken into account 

through boundary integrals in such a way that values of u at internal 

points need not be computed at the end of each time step. A domain 

integral (accounting for the initial conditions at to) is required 

only if uO~ O. Furthermore, if v2uo=0 the domain integral can be 

transformed into equivalent boundary integrals. As this is the caSe 1n 

many practical problems a reduction in the dimensionality of the 

problem is effectively achieved. But since the number of boundary 

integrals to be evaluated increases as the time progresses, a selective 

numerical integration scheme has to be employed for computer efficiency. 

In order to clarify the ideas, let us return to equation (4.1.8). 

From this equation,we note that computing the unknown boundary data at 

a time t = tF requires the evaluation of matrices ~fF and ~fF for 

f = 1,2, ... , F, a total of 2F matrices. The matrices ~FF and ~FF are 

computed as in the previous scheme, i.e. six Gaussian points are 
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employed to numerically integrate the corresponding boundary integrals 
I 

(see equation (4.1.33». But using six Gaussian points to evaluate 

all matrices would require a great computational effort for large 

values of F. 

The matrices ~lF to ~(F-l)F' ~lF to ~(F-l)F will accordingly 

mUltiply the prescribed or calculated values of q and u at previous 

time steps to form the vector F of independent coefficients. Because 

of the variation of the integrands with time (see equation (4.1.33», it 

is obvious that the contribution of the matrices corresponding to the 

initial steps will be smaller than those corresponding to the final 

steps. Thus, it is reasonable to use fewer Gaussian integration points 

to compute the boundary integrals corresponding to these matrices, 

without loss of accuracy. Various tests were carried out in order to 

find the optimum integration scheme and it was concluded that only two 

Gaussian points are necessary to evaluate matrices GlF to ~(F-l)F' ~lF 

to ~(F-l)F with an accuracy that is sufficient for our calculations. 

A selective integration scheme could also be employed for the 

space integrals, i.e. ~ewer Gaussian points adopted for elements located 

far from the singularity. In fact, such a scheme was tested but the 

computational savings were not significant. However, the fast 

variation of the integrands in (4.1.33) with r results in the 

matrices being sparse, since El(a) and exp(-a) quickly tend to zero 

as a~. In the computer program developed, a maximum value of a 

above which the corresponding coefficients in matrices G and Hare 

taken as zero was then fixed (see chapter 6). 

Note that if a constant time step is adopted throughout the 

analysis only two new matrices need to be evaluated for each step. 

But this also implies storing two matrices for each step, which would 

amount in an unreasonable computer core allocation requirement (since 

all matrices are kept in-core) if the number of boundary elements and 
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time steps is great. Thus, only matrices 9FF and ~FF are stored 

since their evaluation employ a larger number of integration points, 

being all the other matrices recomputed. 

The transformation of the domain integral into equivalent 

boundary integrals for the case when Uo is harmonic can be carried 

out byapplying Green's second identity (equation (2.3.4» as follows, 

= (4.3.1) 

Since the domain integral to be evaluated is of the form 

(equation (4.1», 

(4.3.2) 

we have to determine a function U such that V2U=u*. One such 

function can be easi 1y found by, 

U = J rl (J r u* dr) dr = ~ E ( ~) 47T 1 4kT 

and (4.3.1) becomes, 

1 
u* dn =-27T J 1 ~ exp [- 4k(~;-to)J llO 

r 

(4.3.3) 

(4.3.4) 

where qo = dUO/dn and d is defined in (4.1.3). The above integrals 

can be evaluated numerically in the same way as the ones in equation 

(4.1.33) (see also discussion on the computation of the singular terms 

~n section 4.1.1). 

For the sake of comparison, the procedures to solve the same 

problem as proposed at the end of the previous section (assuming 

that the initial conditions are harmonic) can be summarized as follows: 
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a) Discretise the boundary r into S elements and N boundary 

nodes; 

b) Compute the coefficients of matrices ~FF and ~FF in equation 

(4.1.8) using the specified values of geometrical data~ 

properties of the medium and time step. Matrix ~FF (the system 

matrix) is formed and inverted. Introduce the boundary 

conditions, mUltiplying them by the ~FF coefficients to form 

the vector F of independent terms. Store matrix ~FF and 

vector F; 

c) Compute the coefficients of matrices G and H in equation 

(4.3.4), multiplying them by the initial conditions (qo and uO)' 

-1 
add to vector F and pre-multiply the results by ~FF to find 

the unknown boundary data (which are also stored); 

d) Compare the actual values of u with their previous values to 

verify if a steady-state is reached, i.e. if their difference 

is less than a prescribed tolerance; 

e) Compute the coefficients of matrices ~fF and ~fF for f = 1,2, ... , 

F-1. Multiply them accordingly by the prescribed or calculated 

boundary values of q and u at the corresponding time steps and 

add to vector F; 

f) Return to c). 

4.4 Examples of Application 

This section presents results of some examples analysed with the 

computer programs described in chapter 6, employing the theory and 

numerical procedures discussed ~n this chapter. In all cases, the 

boundary was discretised by using linear elements and whenever necessary, 

triangular cells were used to discretise the domain. Both constant 

and linear time interpolation functions were adopted to approximate 

the variation of functions u and q within each time step. Also, both 
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previously discussed time-marching schemes were tested~ the results 

obtained wi th scheme 1 being labelled BEMI and wi th scheme 2, BEM2. 

For time-marching scheme 1 we also tested two different ways of 

calculating the domain integral, namely using Hammer's (quintic) 

quadrature scheme and computing the potential values at each 

integration point (hereafter referred to as BEMlA) or assuming a 

linear variation for the potentials within each cell with a semi-

analytical integration scheme (BEMlB). 

When employing linear time interpolation functions it can be 

noted from equations (4.1.15) and (4.1.17) that, apart from the initial 

conditions Uo at time to (that form vector ~o in these equations), 

+ initial boundary values of u and q at time to must also be prescribed 

(vectors ~o and ~o). Examples 4.4.1, 4.4.3, 4.4.4, 4.4.6 and 4.4.8 

present as a common feature a discontinuity bebNeen the values of U o 

and the prescribed boundary values of u, which makes the values of qo 

+ unbounded at to. This problem can be overcome by simply applying 

the boundary conditions linearly over the first step thus making the 

+ fluxes equal zero at to. The validity of such approximation is 

verified in some of these examples. 

All problems analysed have zero initial conditions, except 

example 4.4.6. This example was selected in order to verify the 

transformation of the domain integral into equivalent boundary 

integrals as described in section 4.3. Thus, no domain discretisation 

is required when employing scheme 2 and the dimensionality of the 

problems is effectively reduced by one. 

Where symmetry exists, it is taken into account as for the 

steady-state case (see chapter 3), i.e. only one half or one quarter 

of the actual region is considered (according to the type of symmetry) 

with no discretisation of the symmetry axes (see chapter 6). 
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The results of examples 4.4.1 to 4.4.5 are compared with 

available analytical solutions, while examples 4.4.6 to 4.4.8 are 

also compared against solutions obtained through the Finite Element 

Method in order to assess the accuracy of both methods. 

Examp Ie 4.4.1 

The first example studied was that of a rectangular region 

-L<xl<L, -£<x2<£ with zero initial conditions, subjected to the 

Dirichlet boundary condition u=l along r for any t > to. The 

numerical values adopted for the analysis were £=4, L=5 for the 

cross-section and k=l for the material constant. 

Initially, a comparison was carried out between the results 

obtained with schemes BEMLA, BEM1B and BEM2 for coarse discretisations 

of one quarter of the region, as shown in the left column of figure 

4.4.1. The results for u at the point x l =x2=O, for a time step 

~t=l.O are summarized in table 4.4.1, together with an analytical 

solution of the problem [16J. 

It can be seen from the table that schemes BEMLA and BEM2 

present the same level of accuracy, which indicates that the initial 

conditions are properly taken into account with BEM1A. Their 

calculation implies computing values of u at internal points located 

very near the boundary but a check on these values showed no loss of 

precision. The results obtained with BEMIB are much less accurate; 

since the boundary discretisation is the same as for the other schemes, 

the problem is caused by the assumed linear variation of u within each 

cell. 

The influence of the time step value, which was arbitrarily chosen, 

was verified by running the problem with the same discretisations as 

previously and a time step ~t=O.5. Results are given in table 4.4.2 

and they show that the numerical solution converges to the exact one 
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Figure 4.4.1 - Discretisations of one quarter of rectangular 
region: a) BEM1A; b) BEMIB; c) BEM2 
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for schemes BEMlA and BEM2 but failed to do so for BEMlB. The 

convergence of BEMlA and BEM2 was then further tested by adopting a 

time step ~t=O.25; although the solution is still convergent for the 

second scheme, the first one does not converge any longer (see table 

4.4.3) . 

Since the numerical problems for BEMlA are related to the domain 

integration (and consequently to the domain discretisation), we refined 

it by sub-dividing the domain into 12 equal cells. The results obtained 

for the time steps ~t=l.O and ~t=O.5 showed no significant changes from 

the previous ones, but the results for 6t=O.25 are now clearly 

convergent, as can be seen in table 4.4.3. Further refining the domain 

discretisation with 24 cells, however, caused a different sort of 

numerical pcoblem: some domain integration points are now located so 

close to the boundary that accuracy is lost in the computation of the 

potential value at them. This problem can be overcome by either 

refining the boundary discretisation or increasing the number of 

integration points adopted for the computation of the boundary 

integrals. The latter was employed here, the number of Gaussian points 

being increased from six to twelve. Results for a time step value 

~tmO.25 are shown in table 4.4.3. 

Another test was carried out with the more refined discretisations 

shown in the right column of figure 4.4.1. Results are given in table 

4.4.4 for 6t=1.O; they are virtually coincident with that of table 

4.4.1 for schemes BE MIA and BEM2 but much improved for BEMIB. However, 

employing a time step 6t=O.5 again produced poor results for BEMlB and 

no changes for BEMlA and BEM2. 

EXample 4.4.2 

A comparison between the use of constant and linear time 

interpolation functions was carried out in this example of a circular 

region of unit radius with zero initial conditions, subjected to the 
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TIME BEM1A BEM1B BEM2 ANALYT. 

2 0.093 0.ll2 0.092 0.114 

4 0.390 0.450 0.389 0.420 

6 0.623 0.686 0.621 0.646 

8 0.770 0.822 0.769 0.786 

10 0.860 0.899 0.860 0.871 

12 0.915 0.943 0.9l5 0.922 

14 0.948 0.968 0.948 0.953 

16 0.968 0.982 0.968 0.972 

18 0.981 0.990 0.981 0.983 

20 0.988 0.994 0.988 0.990 

CPU(s) 1.4 2.0 10.7 -

Core 4096 400 224 -Storage 

Data 33 57 21 -Cards 

Table 4.4.1 - Results at x1=x2=0 for ~t=I.0 

(coarse discretisation) 
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TIME BEMIA BEMIB BEM2 ANALYT. 

2 0.101 0.166 0.101 0.114 

4 0.404 0.534 0.404 0.420 

6 0.634 0.754 0.633 0.646 

8 0.778 0.871 0.778 0.786 

10 0.865 0.932 0.865 0.871 

12 0.919 0.965 0.919 0.922 

14 0.951 0.981 0.951 0.953 

16 0.970 0.990 0.970 0.972 

18 0.982 0.995 0.982 0.983 

20 0.989 0.997 0.989 0.990 

CPU(s) 1.4 2.2 42.5 -

Core 
Storage 4096 400 384 -

Data 
Cards 33 57 21 -

Table 4.4.2 - Results at x1=x2=0 for ~t=O.5 

(coarse discretis ation) 
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TIME BEM1A BEM1A BEM1A 
BEM2 

(8 cells) (12 cells )(24 cells) 

2 0.106 0.106 0.107 0.106 

4 0.414 0.411 0.412 0.412 

6 0.651 0.638 0.639 0.639 

8 0.801 0.781 0.781 0.782 

10 0.895 0.868 0.867 0.868 

12 0.953 0.921 0.920 0.920 

14 0.989 0.953 0.951 0.952 

16 1.010 0.972 0.970 0.971 

18 1.024 0.983 0.981 0.982 

20 1.032 0.990 0.988 0.989 

CPU(s) 1.5 1.9 4.8 234.9 

Core 4096 8464 30976 704 Star. 

Data 33 39 57 21 Cards 

Table 4.4.3 - Results at x1=x2=0 for ~t=0.25 

(coarse discretisation) 

ANALYT. 

0.114 

0.420 

0.646 

0.786 

0.871 

0.922 

0.953 

0.972 

0.983 

0.990 

-

-

-
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TIME BEM1A BEM1B BEM2 ANALYT. 

2 0.093 0.097 0.092 0.114 

4 0.390 0.406 0.389 0.420 

6 0.623 0.640 0.621 0.646 

8 0.770 0.784 0.769 0.786 

10 0.861 0.871 0.860 0.871 

12 0.915 0.923 0.915 0.922 

14 0.949 0.954 0.948 0.953 

16 0.969 0.973 0.969 0.972 

18 0.981 0.984 0.981 0.983 

20 0.989 0.990 0.988 0.990 

CPU(~) 2.5 21.0 33.2 -

Core 5041 3969 525 -Storage 

Data 
47 179 35 -Cards 

Table 4.4.4 - Results at x1=x2=0 for ~t=1.0 

(fine discretisation) 
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Neumann boundary condition q=5 along r for any t > to' For 

simplicity, the value of the material parameter k was taken to be unity. 

Table 4.4.5 presents numerical results for u at a point with 

radius r=O.6 for the discretisations shown in the left column of figure 

4.4.2 and a time step ~t=O.Ol. Note that only 6 boundary elements were 

employed in these discretisations. It can be seen that better results 

are obtained with stepwise linear functions for all three schemes, 

although the results for BEM1B are quite poor. 

Further numerical results are given in tables 4.4.6 to 4.4.8 for 

the previous discretisations with a time step ~t=O.005 and for 

finer discretisations (shown in the right column of figure 4.4.2) 

with ~t=O.Ol and ~t=O.005, respectively. These results corroborate 

the ones from example 4.4.1 for the stepwise constant cases: for 

scheme BEM2, convergence was always achieved; for BEM1A convergence 

was achieved when the discretisation was refined but not when the time 

step was decreased; scheme BEM1B presented the poorest results even 

with the fine discretisations employed, and they became meaningless 

when the time step value was decreased. 

The use of stepwise linear functions, Ln general, Lmproves 

the accuracy of the solution but it appears to aggravate the numerical 

problems inherent in scheme BEM1A. However, this example seems to be 

particularly sensitive to a precise evaluation of the domain integral 

and in order to assess this, we tested a numerical integration scheme 

other than Hammer's, namely the one recently proposed by Reddy and 

Shippy [77J, which the authors claim to be very accurate even for 

integrals with singularities. The results obtained with seven 

integration points are summarized in table 4.4.9. 

Example 4.4.3 

A problem with mixed boundary conditions, i.e. u=l prescribed 

along the faces Xl = ±L and q=O along the faces x
2 

= ±~ of a rectangular 
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a) BEMlA; b) BEMlB; c) BEM2 
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TIME BEMlAC BEM1AL BEM1BC BEM1BL 

0.02 0.033 0.022 0.040 0.028 

0.04 0.173 0.145 0.208 0.182 

0.06 0.358 0.318 0.430 0.392 

0.08 0.559 0.508 0.668 0.621 

0.10 0.766 0.706 0.913 0.859 

0.12 0.975 0.908 1.162 1.100 

0.14 1.186 1.110 1.412 1.345 

0.16 1.397 1.315 1.664 1.590 

0.18 1. 608 1.519 1.916 1.836 

0.20 1.819 1.725 2.168 2.084 

CPU(s) 1.7 1.8 7.7 7.7 

Core 8281 8918 2304 2640 Storage 

Data 36 43 132 139 Cards 

Table 4.4.5 - Results at r=O.6 ~or ~t=O.Ol 
(coarse discretisation) 

:BEM2C BEM2L ANALYT. 

0.033 0.022 0.023 

0.166 0.145 0.139 

0.341 0.315 0.303 

0.531 0.503 0.484 

0.727 0.698 0.674 

0.926 0.896 0.867 

1.126 1.095 1.062 

1.328 1.296 1.259 

1.530 1.497 1. 457 

1.732 1.698 1. 655 

8.7 9.8· -

189 238 -

19 26 -
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TIME BEMlAC BEM1AL BEM2C BEM2L 

0.02 0.030 0.025 0.029 0.025 

0.04 0.165 0.153 0.158 0.150 

0.06 0.346 0.331 0.330 0.323 

0.08 0.543 0.528 0.518 0.512 

0.10 0.746 0.733 0.713 0.707 

0.12 0.951 0.940 0.911 0.906 

0.14 1.157 1.149 1.111 1.107 

0.16 1.363 1.359 1. 312 1.308 

0.18 1.570 1.569 1.513 1.510 

0.20 1.776 1.779 1.715 1. 712 

CPU (s) 1.8 2.0 32.9 38.1 

Core 8281 8918 329 378 Storage 

Data 36 43 19 26 Cards 

Table 4.4.6 - Results at r=0.6 for ~t=0.005 
(coarse discretisation) 

ANALYT. 

0.023 

0.139 

0.303 

0.484 

0.674 

0.867 

1.062 

1.259 

1.457 

1.655 

-

-

-
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TIME BEM1AC BEM1AL BEM1BC BEM1BL 

0.02 0.031 0.020 0.036 0.025 

0.04 0.160 0.133 0.191 0.164 

0.06 0.329 0.289 0.393 0.353 

0.08 0.508 0.459 0.611 0.561 

0.10 0.690 0.632 0.835 0.775 

0.12 0.872 0.807 1.061 0.992 

0.14 1.052 0.980 1.288 1.212 

0.16 1. 230 1.152 1.516 1.432 

0.18 1. 405 1.322 1. 745 1.653 

0.20 1. 579 1.49l 1.973 1. 875 

CPU (e) 2.1 2.4 16.4 16.4 

Core 
9409 10670 5625 6600 Storage 

Data 
48 61 226 239 Cards 

Table 4.4.7 - Results at r=0.6 for ~t=O.Ol 
(fine discretisation) 

BEM2C BEM2L ANALYT. 

0.031 0.021 0.023 

0.159 0.137 0.139 

0.329 0.303 0.303 

0.516 0.486 0.484 

0.709 0.677 0.674 

0.905 0.871 0.867 

1.103 1.067 1.062 

1.302 1. 265 1. 259 

1.501 1.464 1. 457 

1.701 1.662 1.655 

25.0 28.2 -

429 598 -

31 44 -
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TIME llEMlAC BEM1AL BEM2C BEM2L 

0.02 0.027 0.021 0.027 0.022 

0.04 0.143 0.127 0.151 0.140 

0.06 0.298 0.274 0.318 0.305 

0.08 0.468 0.437 0.503 0.488 

0.10 0.642 0.606 0.695 0.679 

0.12 0.818 0.777 0.890 0.873 

0.14 0.996 0.950 1.087 1.069 

0.16 1.174 1.124 1.285 1.267 

0.18 1.353 1.300 1. 484 1. 465 

0.20 1.533 1. 475 1.683 1.663 

CPU(s) 2.4 3.4 100.0 104.6 

Core 9409 10670 689 858 Storage 

Data 48 61 31 44 Cards 

Table 4.4.8 - Results at r=O.6 for ~t=O.005 
(fine discretisation) 

ANALYT. 

0.023 

0.139 

0.303 

0.484 

0.674 

0.867 

1.062 

1.259 

1. 457 

1. 655 

-

-

-



TIME 

0.02 

0.04 

0.06 

0.08 

0.10 

0.12 

0.14 

0.16 

0.18 

0.20 
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BEM1AC BEM1AL BEMIAC BEM1AL ANALYT. 
(L':It=O.Ol) (L':It=O.Ol) (I:J. t=O .005) (L':It=O .005) 

0.035 0.023 0.029 0.024 0.023 

0.171 0.144 0.168 0.155 0.139 

0.349 0.309 0.360 0.344 0.303 

0.543 0.492 0.574 0.557 0.484 

0.745 0.684 0.797 0.781 0.674 

0.951 0.881 1.025 1.010 0.867 

1.160 1.082 1.256 1.244 1.062 

1.371 1.285 1.490 1.480 1.259 

1.583 1.491 1.726 1.720 1.457 

1.797 1.698 1.965 1.962 1.655 

Table 4.4.9 - Results at r=0.6 for Reddy and Shippy's 
integration scheme (coarse discretisation) 
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region with zero initial conditions was the object of this example. 

The numerical values adopted for the cross-section and the material 

constant were the same as for example 4.4.1. The no-flux condition 

reduces the problem to the one-dimensional one of a infinite slab 

over both faces of which a constant potential is specified. 

Several analyses were carried out using the discretisations shown 

1n figure 4.4.1, the results of which are presented in tables 4.4.10 

to 4.4.13. Note that double nodes had to be introduced at each corner 

in order to properly account for the boundary conditions there. 

As can be seen from the tables, the results followed basicallY 

the same pattern as the ones for example 4.4.1 regarding convergence 

and accuracy of the time-marching schemes. For the stepwise linear 

cases, the boundary conditions were applied linearly over the first 

time step (instead of suddenly). The effects of this approximation tend 

to decay rapidly over few steps and to decrease as smaller values of 

time steps are adopted. 

Discussion of Results 

A mathematical proof of convergence of the Boundary Element 

Method as applied to transient potential problems was recently reported 

in [78], where it was demonstrated the second order convergence in At 

and ~r of BEM solutions. Only a scileme of the type BEM2 was considered 

in [78J and although no numerical results were produced, convergence 

for this scheme was clearly achieved in the examples studied herein. 

The numerical problems presented by BEMlA are mainly associated 

to errors introduced in the computation of the domain integral. As 

~t+O, the integrand in equation (4.2.3) (the fundamental solution u*) 

becomes less and less smooth, being its limit a Dirac delta function 

(see figure 4.4.3). Thus, the relative S1zes of geometrical data and 

time step have to be carefully chosen if accurate results are to be 

expected with BEMIA. Furtherrr~re, attention should be paid to the 
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TIME BEM1AC BEMIAL BEM1BC BEMIBL BEM2C 

2 0.292 0.250 0.311 0.279 0.291 

4 0.476 0.454 0.499 0.481 0.473 

6 0.583 0.564 0.609 0.592 0.579 

8 0.662 0.645 0.690 0.675 0.657 

10 0.726 0.709 0.754 0.740 0.719 

15 0.837 0.823 0.862 0.851 0.828 

20 0.902 0.892 0.922 0.915 0.895 

25 0.941 0.934 0.956 0.951 0.936 

30 0.964 0.959 0.975 0.971 0.960 

CPU(s) 1.8 1.9 3.0 3.3 30.8 

Core 
Storage 4225 4810 441 630 351 

!Data 
Cards 35 44 59 68 23 

Table 4.4.10 - Results at x1=3 for ~t=I.0 

(coarse discretisation) 

BEM2L ANALYT. 

0.250 0.317 

0.453 0.484 

0.563 0.587 

0.644 0.660 

0.708 0.721 

0.822 0.830 

0.891 0.896 

0.934 0.937 

0.959 0.961 

32.0 -

432 -

32 -



TIME 

2 

4 

6 

8 

10 

15 

20 

25 

30 

CPU(s) 

Core 
Star. 

Data 
Cards 

161 

BEM1AC BEM1AL BEM1BC BEM1BL BEM2C 

0.305 0.284 0.353 0.338 0.304 

0.481 0.470 0.532 0.523 0.480 

0.586 0.576 0.640 0.632 0.582 

0.665 0.654 0.721 0.714 0.659 

0.728 0.717 0.784 0.777 0.721 

0.837 0.829 0.885 0.880 0.830 

0.902 0.896 0.939 0.935 0.896 

0.941 0.936 0.967 0.965 0.937 

0.964 0.961 0.982 0.981 0.961 

2.0 2.1 2.8 2.9 116.7 

4225 4810 441 630 621 

35 44 59 68 23 

Table 4.4.11 - Results at x1=3 for 6t=0.5 

(coarse discretisation) 

BEM2L ANALYT. 

0.285 0.317 

0.470 0.484 

0.574 0.584 

0.652 0.660 

0.715 0.721 

0.826 0.830 

0.894 0.896 

0.936 0.937 

0.961 0.961 

122.0 -

702 -

32 -



TIME BEM1AC BEM1AL BEMlAC BEM1AL BEM1AC BEM1AL BEM2C 
(8 cells) (8 cells) (12 cells) (12 cells) (24 cells) (24 cells) 

2 0.313 0.303 0.312 0.301 0.312 0.302 0.311 

4 0.490 0.483 0.487 0.479 0.486 0.479 0.483 

6 0.598 0.590 0.591 0.584 0.589 0.583 0.584 

8 0.680 0.673 0.670 0.663 0.667 0.660 0.660 

10 0.748 0.740 0.733 0.726 0.730 0.723 0.721 

15 0.871 0.864 0.864 0.840 0.839 0.833 0.830 

20 0.949 0.943 0.915 0.909 0.903 0.899 0.896 

25 0.998 0.994 0.956 0.952 0.942 0.938 0.937 

30 1.030 1.026 0.981 0.978 0.964 0.962 0.961 

CPU(s) 2.0 2.4 2.6 3.4 6.4 7.2 600.0 

Core 4225 4810 8649 
Stor. 

9486 31329 32922 1161 

Data 35 44 41 
Cards 

50 57 66 23 

-- -

Table 4.4.12 - Results at x l =0.3 for ~t=0.25 (coarse discretisation) 

BEM2L 

0.301 

0.477 

0.579 

0.656 

0.718 

0.828 

0.895 

0.937 

0.961 

620.0 

1242 

32 

ANALYT. 

0.317 

0.484 

0.584 

0.660 

0.721 

0.830 

0.896 

0.937 

0.961 

-

-

-

! 

t-' 
0\ 
N 



163 

TIME BEMlAC BEM1AL BEM1BC BEM1BL BEM2C 

2 0.292 0.250 0.297 0.257 0.291 

4 0.475 0.453 0.482 0.461 0.472 

6 0.582 0.563 0.590 0.571 0.577 

8 0.661 0.643 0.670 0.653 0.655 

10 0.724 0.708 0.733 0.717 0.718 

15 0.835 0.822 0.843 0.830 0.828 

20 0.902 0.892 0.907 0.897 0.895 

25 0.941 0.934 0.944 0.937 0.935 

30 0.965 0.960 0.966 0.961 0.960 

CPU(s) 2.6 3.2 23.3 24.0 87.6 

Core 
Storage 5184 6336 4096 5120 736 

Data 
Cards 49 65 181 197 

Table 4.4.13 - Results at x1=3 for ~t=1.0 

(fine discretisation) 

37 

BEM2L ANALYT. 

0.249 0.317 

0.453 0.484 

0.562 0.584 

0.643 0.660 

0.707 0.721 

0.821 0.830 

0.891 0.896 

0.933 0.937 

0.959 0.961 

90.0 -

992 -

53 -
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u* 

0.5 

0.4 At = 0.1 

0.3 

0.2 

0.1 

o. 0.1 0.2 0.3 0.4 r 

* Figure 4.4.3 - Variation of u with r for several values 
of time steps 



165 

fact that the more refined the domain discretisation employed, the closer 

to the boundary cells integration points become, and that this also 

implies refining the boundary integration (or discretisation). 

The above mentioned numerical problems were also noticed ln [79J 

where some one-dimensional transient potential problems were analysed 

with a scheme of the type BEMI. But the reasons for the non-convergence 

with decreasing values of time steps were wrongly attributed to the 

use of stepwise constant approximations for u and q (which does not 

seem to affect convergence, as can be seen from the results for BEM2) 

and to truncation errors inherent in Simpson's rule, which was employed 

for the domain integration. 

For problems with unbounded initial fluxes at time to+' as is 

the case for examples 4.4.1 and 4.4.3, it was reported in [79J that the 

computed values of u were very accurate for points far from the boundary 

but the accuracy decreased as the points became closer to it. No 

problems of that kind were detected herein (apart from the previously 

discussed), and the accuracy of the results presented can be assumed 

to be typical of any internal point. 

Note that the semi-analytical integration scheme associated with 

BEMlB does not present the previous problem since the integration with 

respect to r is performed analytically (equation (4.2.9)). Thus, the 

errors obtained with this scheme are basically related to the piecewise 

linear variation adopted for u over the domain. This approximation is 

similar to the one for linear finite elements and, as in that case. 

accurate results are produced only if very refined discretisations 

are employed. But even so convergence with decreasing time steps was 

not achieved. 

An empirical formula to determine the critical value of the time 

step (with respect to accuracy) was suggested in [78J as, 



~r2 
~t. = 

cr~t 2k 

166 

(4.4.1) 

where ~r is the dimension of the largest boundary element employed in 

the discretisation. This formula explores the similarity between the 

fundamental solution to the diffusion equation and the probability 

density function of a bivariate normal distribution in mathematical 

statistics. 

Applying the above formula to the previous examples g~ves 

critical time steps of 0.88 and 0.22 for problems 4.4.1 and 4.4.3 and 

0.034 and 0.0085 for 4.4.2, for the coarses and fines discretisations, 

respectively. These values appear to underestimate the accuracy of 

the numerical solutions, since larger time steps than the ones predicted 

were employed with the fine discretisation in examples 4.4.1 and 4.4.3 

with no deterioration of results. However, the formula ~s useful in 

providing an estimate of the magnitude of the time step to be adopted 

for each problem, and further checks will be effected on following 

examples. 

Regarding the computer efficiency of the time-marching schemes, 

we note that the last three rows of each table compare CPU time, core 

storage and number of data cards required for each analysis. These 

numbers should not be seen as definite since the computer programs 

developed can be improved much further. For simplicity, a fixed basic 

structure was adopted for all programs and the matrices kept in-core 

(see chapter 6). The main purpose of this comparison is to give an idea 

of the prograrnudng difficulties associated with each scheme. The row 

corresponding to core storage refers to the number of positions needed to 

store only the relevant matrices in the actual computation, which are as 

follows: NxN+2(NxM)+MxM for schemes BEMI (see section 4.2) and NxN+FxN for 

BEM2 (section 4.3), being F the number of time steps. For stepwise linear 
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functions, we should add NxN+NxM to the first case and NxN to the 

second. 

It can be seen that scheme BEMlA is by far the fastest one. 

This appears to be contradictory since scheme BEMlB is a simplified 

version of BEMlA. The difference between both lies in the domain 

integration: the semi-analytical scheme employed in conjunction with 

BEMlB requires a great deal of computer time for the evaluation of the 

numerous terms that appear in equation (4.2.11), and this operation is 

repeated several times at each integration point. An alternative 

procedure for computing the domain integral in BEMlB is by directly 

applying Hammer's quadrature scheme to equation (4.2.6). Although the 

savings in computer time are enormous, numerical problems become even 

more severe. 

Another advantage of BEMlA is that the domain discretisation can 

be dissociated from the boundary discretisation as opposed to BEMlB where 

they are directly related. This permits using very large cells, as can 

be seen in figures 4.4.1 and 4.4.2, with no loss of accuracy and making 

data preparation easier. 

Since the system of equations to be solved in all examples is 

always very small, the CPU times reported are almost entirely spent on 

computing the coefficients of the matrices. As discussed in section 4.2, 

all matrices that appear in the formulation of BEMlA and BEMlB are 

calculated only once and stored. For BEM2, however, we have decided to 

always recompute matrices ~FF and ~F (see section 4.3), but this 

strategy led to very large CPU times being required for this scheme. 

Consider, for instance, example 3: table 4.4.10 shows that 30.8 s 

are needed to solve the problem for 30 time steps. If we assume that 1 s 

is spent in input-output, solution of the systems of equations and 

computation of matrices GFF and HF (which is a reasonable assumption, _ _ F 
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judging from the CPU times reported for BEMlA), this gives approximately 

0.0343 s for the computation of each matrix ~fF or ~fF (a total of 870 

matrices). For 60 and 120 time steps, the number of matrices to be 

computed throughout the process is 3540 and 14280, respectively. Thus, 

the large CPU times presented in tables 4.4.11 and 4.4.12 are to be 

expected. 

If, on the other hand, the matrices calculated for each step 

are all stored in such a way that only two new matrices need to be 

computed for each new step, the total number of matrices ~fF and ~fF 

(f # F) to be evaluated throughout the process would be 58, 118 and 238 

for 30, 60 and 120 time steps, respectively. The expected CPU times and 

core storage requirements for the problem can then be summarized as 

follows, 

Number of time steps 30 60 120 

CPU (s) 3.0 5.0 9.2 

Core storage 2700 5400 10800 

Table 4.4.14 - Expected CPU times and core storage 

requirements for example 3 with scheme 

BEM2C (modified program) 

Note that for problems involving a large number of boundary 

elements and time steps the use of disc files appears to be necessary 

since the number of coefficients to be stored grows very rapidly. 

In what follows several more examples are considered, including 

problems with time-dependent boundary conditions and comparisons with 

available finite element solutions. Due to the poor performance of 

scheme BEMlB in the previous examples, we concentrate our attention 

only on BEMlA and BEM2. Further suggestions for improving the computer 

efficiency of the time-marching schemes are discussed in chapter 7. 
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Example 4.4.4 

Lachat and Combescure reported in [47] some results for a 

transient heat conduction problem with time-dependent boundary conditions 

using the Boundary Element Method in conjunction with Laplace transforms. 

The problem studied was that of a circular region of unit radius, 

initially at zero temprerature, subjected to sudden thermal shocks 

applied at times to=O and t l . They obtained very good results for the 

case of only one thermal shock imposed at the initial time (tl=O) but 

the results deteriorated as the value of tl was increased (see figures 

4.4.5 to 4.4.7). This behaviour was attributed to the numerical inversion 

of the Laplace transform and they concluded that step-by-step methods 

should be preferred for this kind of problem. 

In order to verify the accuracy of the formulation developed 1n 

this work for problems with time-dependent boundary conditions ,we 

analysed the above problem assuming, for simplicity, a unit value for 

the thermal diffusivity k (as was done in [47]). The discretisation 

employed for BEMIA is shown in figure 4.4.4, together with the 

variation with respect to time of the boundary temperature. The same 

boundary discretisation (6 elements) as shown in the figure was also 

adopted for BEM2 and the results obtained with both time-marching schemes 

were practically equal. These results are plotted in figures 4.4.5 to 

4.4.7 for different values of tl and compared with analytical solutions 

[47J. The accuracy of the BEM solutions is very good for all values 

of t l . It should be pointed out that the values of time steps employed 

were 6t=O.05 for tl=O and t l =O.5 and 6t=O.IO for tl=l, compared with 

a critical value 6t 't=O.034 given by equation (4.4.1). cr1 

Example 4.4.5 

In this example, we study the same problem as before but assuming 

now a linear time variation for the boundary temperature as indicated in 
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Figure 4.4.4 - Circular region with thermal shocks: a) Discretisation; 
b) Time variation of surface temperature 
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Figure 4.4.5 - Temperature at internal points for thermal shock 
applied at to=tl=O. 
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Figure 4.4.6 - Temperature at internal points for thermal shocks 
applied at to=O. and tl=O.S 
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figure 4.4.8 and a value k=5 for the thermal diffusivity. 

Initially, a solution was attempted by adopting stepwise constant 

variations for functions u and q such that the prescribed values of u 

are equal to their average within each time step. The results obtained 

for schemes BEM1A and BEM2 with the same discretisations as previously 

(see figure 4.4.4) were coincident and are plotted in figure 4.4.9. 

The problem was then re-studied using stepwise linear variations 

for u and q and, in this way, the specified boundary temperature within 

each time step can be exactly accounted for. Again, the discretisations 

shown in figure 4.4.4 were employed. The results for both schemes 

agreed with the analytical solution given by [16] to three significant 

figures even for the first time step,and are also plotted in figure 

4.4.9. 

All numerical analyses adopted a time step value ~t=0.02 compared 

with a much lower critical value ~t 't=0.006S predicted by equation 
cr~ 

(4.4.1). 

Example 4.4.6 

The object of the present investigation is a 3x3 m square region 

with initial temperature uO=30oF and thermal diffusivity k=1.25 Btu/h mOF, 

subjected to the Dirichlet boundary condition u=O along r for any t > to' 

This problem is similar to the one considered in example 4.4.1 and the 

actual numerical values were chosen as to allow the results to be 

compared with an available finite element solution [SO]. 

Since the initial conditions satisfy Laplace's equation, we can 

apply equation (4.3.4) in order to transform the domain integral of 

scheme BEM2 into equivalent boundary integrals, as discussed in section 

4.3. The results obtained for this analysis, together with the ones 

for BEMlA, the finite element solution [80] and an analytical solution 

[80] are presented in tables 4.4.15 and 4.4.16 for two different values 

of time steps, with the discretisations shown in figure 4.4.10. It can 
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Figure 4.4.8 - Time variation of surface temperature 
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Figure 4.4.10 - Discretisations of one quarter of square region: 
a) FEM; b) BEM1A; c) BEM2 



175 

Xl x2 BEM1A BEM2 FEM ANALYT. 

o. o. 1.988 2.009 2.108 1. 812 

0.3 o. 1.893 1.9l3 2.005 1. 723 

0.6 o. 1.614 1.632 1.706 1. 466 

0.9 o. 1.180 1.194 1.239 1.065 

1.2 o. 0.630 0.639 0.652 0.560 

0.3 0.3 1.802 1.821 1.907 1.639 

0.6 0.6 1.310 1.325 1. 380 1.186 

0.9 0.9 0.700 0.710 0.728 0.626 

1.2 1.2 0.199 0.201 0.201 0.173 

Table 4.4.15 - Temperature values at t=1.2h for 
a time step /:::; t=O . 10h 

Xl x2 
BEM1A BEM2 FEM ANALYT. 

O. O. 1.887 1.902 1.938 1. 812 

0.3 O. 1. 798 1.809 1.843 1. 723 

0.6 o. 1.534 1.541 1.568 1. 466 

0.9 O. 1.114 1.122 1.139 1.065 

1.2 O. 0.589 0.595 0.599 0.560 

0.3 0.3 1.713 1. 721 1.753 1.639 

0.6 0.6 1.214 1.248 1.269 1.186 

0.9 0.9 0.657 0.663 0.670 0.626 

1.2 1.2 0.184 0.185 0.185 0.173 

Table 4.4.16 - Temperature values at t=1.2h for 
a time step /:::;t=0.05h 
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be seen that the BEM solutions are of the same level of accuracy and 

that they are superior to the finite element one at all points, for 

both time steps, despite employing coarser discretisations. 

To verify if the use of equation (4.3.4) was introducing 

additional numerical errors, we re-studied the problem by subtracting 

out a constant temperature of 300 F so as to make the initial conditions 

equal to zero. This constant value is afterwards added to the new 

solution. Results obtained in this way agreed to the previous ones 

to the significant figures shown in the tables. 

Finally, analyses were carried out using stepwise linear 

functions and applying the boundary conditions as described in example 

4.4.3. Again, results of the same order of accuracy as shown in the 

tables were obtained with both time-marching schemes. 

Example 4.4.7 

This example studies the one-dimensional problem of constant heat 

flux applied to a semi-infinite solid. The material properties of the 

solid are assumed to be unit as well as the applied heat flux per 

unit time, in order for the results to be compared with a finite 

element solution presented in [62J. This FEM analysis considered a 

linear variation for the temperature between time steps and produced 

results for the surface temperature versus time for two different values 

of time steps as shown in figure 4.4.12, but did not comment on the 

space discretisation adopted. 

Four BEM analyses were carried out using the discretisations 

shown in figure 4.4.11 and employing stepwise constant or linear 

variations for the functions. The results obtained agreed with the 

exact solution given in [16] to three significant figures for scheme 

BEM2 with stepwise linear u and q and were slightly less accurate 

for the other analyses, being the maximum relative errors 0.7% for 
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BEM1A (linear), 2% for BEM2 (constant) and 5% for BEM1A (constant). 

No oscillations about the exact solution were observed for the BEM, 

as opposed to the FEM results (figure 4.4.12). 

Example 4.4.8 

Another compar~son between BEM and FEM solutions was effected in 

this example of a bar with unit material properties, at zero initial 

temperature. We assume that for any time t > to a unit temperature 

~s applied at x1=0, all other surfaces being insulated. The problem 

is essentially one-dimensional because of the symmetry imposed by the 

non-conducting boundaries. 

This problem was analysed with the FEM in[8l] where the space 

domain was discretised into four linear, quadratic or cubic isoparametric 

elements and the variation with time approximated by the Crank-Nicholson 

method. The finite element mesh, together with the BEM discretisations, 

~s shown in figure 4.4.13. 

Again, four BEM analyses of the problem were carried out, the 

results for scheme BEM2 being plotted in figure 4.4.14. Notice that 

for the stepwise linear case the unit temperature at x1=0 was applied 

linearly over the first time step. The results for scheme BEM1A also 

behaved as depicted in the figure and were of the same ord~r of accuracy 

for the linear case and slightly less accurate for the constant one 

(8% max~mum relative error compared to 3.6% for BEM2). 

Since a rather large value of time step was employed for the 

problem the FEM solutions presented severe oscillations about the exact 

solution given in [16J (see figure 4.4.14). This was not the case for 

the BEM solutions despite this value being much larger than the critical 

value (At . =0.125) predicted by equation (4.4.1). 
cr~t 
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4.5 Robin-Type Boundary Conditions 

As discussed in section 3.2, many problems of interest present 

boundary conditions of the Robin-type, 

a u + b q = d (4.5.1) 

where a, band d are functions of the position, being the condition 

valid at any instant in time. If this equation is applied to all 

boundary nodes we can write, in matricia1 form (see equation (3.2.2», 

Q = D - A U (4.5.2) 

which, substituted into (say) (4.1.8) gives, 

F F 

f:l (~fF + ~fF) ~ ~f =f:l ~fF ~ + ~O ~O (4.5.3) 

The above recurrence relation can then be employed to advance the 

boundary (and internal) values of u ~n time. 

A well-known such condition is the convection or 'radiation' 

boundary condition of heat conduction problems (see example 3.2.1), 

q+hu=hll 
S 

(4.5.4) 

It may occur, in many practical situations, that functions hand 

u are also time-dependent. Assuming at first that u and u have s s 

stepwise linear variations while h is only stepwise constant, condition 

(4.5.4) gives, 

(4.5.5) 

Equation (4.1.17) can then be rearranged for our numerical 

solution as, 

F 
~ 

f=l 
(4.5.6) 

where the diagonal matrix A and the vector D now contain the values 



of hand u • respectively. s 
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Consider now that the heat transfer coefficient h is also 

stepwise linear, its variation being prescribed by functions (4.1.14). 

Applying condition (4.5.4) then yields [82J , 

q =_1_ ~ (t-t )2 h (us,f-uf) 
.6t2 ~ f-1 f 

f 

+ (t-tf _l ) (tf-t) [ hf (us ,f-1 - uf - l ) + hf _l (us,f - uf ) ] 

+ (tf -t)2 h f _1 (us,f-l - uf _l ) I (4.5.7) 

which implies a quasi-quadratic variation for function q. 

The application of equation (4.1.5) to all boundary nodes gives, 

for this kind of problecs, 

(4.5.8) 

where the coefficients of matrices H are computed as in (4.1.18), 

of matrix ~O as in (4.1.9) and of matrices G as follows 

I,m 
gfFij 

2,m 
gfFij 

3,m 
gfFij 

= 

k 

.6 t 2 
f 

Ie 

.6t 2 
f 

k 

.6 t 2 
f 

t ~m J 
t f 

s 

I ~m rf 

rs t f - l 

(t
f
-t)2 * u (i,S,tF,t) dt dr(S) 

* (tf-t) (t-tf _ l ) u (i, S , t F , t) dt df(S) 

(4.5.9) 

The analytical evaluation of the time integrals in (4.5.9) gives 
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(see equations (4.1.l3), (4.1.21) and (4.1.29», 

(4.5.10) 

ft
f * . 1 1 [ (tf-t) (t-t

f
_

1
) u (L,S,tF,t) dt = 4TIk (tf-tF) (tF-tf _ 1) 

t
f

_
1 

+ ~: (tf-tF) - (tF-tf _ 1) - ~:) ] [El (af - 1) - E\ (af ) J 

f
t

f 
2 *. 1 ~ [ 2 

(t-t f _1) U (L,S,tF,t) dt = 47fk 1 (tF-t f - 1) 
t

f
_

1 
( 

+ ~~ (tF-tf _1) + 1~~) ] [ El (af -1) -El (af ) J 
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Example 4.5.1 

This example studies a square region at unit initial temperature 

'radiating' into a surrounding medium at zero temperature. The heat 

transfer coefficient is constant aIr over the surface and equal to 2 and 

the thermal diffusivity assumed to be unity. 

Boundary elements analyses were carried out for schemes BEM1A and 

BEM2 with stepwise constant or linear variations for u and q, with the 

discretisation shown in figure 4.5.2. Note that for the BEM2 cases only 

the boundary is discretisated into 8 elements and the domain integral 

evaluated using equation (4.3.4). Coincident results were obtained for 

both schemes and they are plotted in figures 4.5.1 and 4.5.2 for the 

constant case, compared with an analytical solution [16]. 

As can be seen in figure 4.5.1, the maximum error occurs at the 

corner x l =x2=1, at the time t=O.lO (7.5% relative error). Using stepwise 

linear functions, this error is reduced to 2%. 

Example 4.5.2 

Another comparison with the Finite Element Method is effected in 

o this example of a plane plate, initially at 0 C, surrounded by a 

medium at lOOoC. Its cross-section has 0.1 x 0.1 m and the values of 

thermal conductivity, heat capacity and heat transfer coefficient are 

/
0 /30 /20 .1 18 kcal h m C, 912 kcal m C and 5000 kcal h m C, respect~ve y. 

Again, four BEM analyses were carried out with the same 

discretisations adopted for the previous example (see figure 4.5.2) 

and coincident results obtained for both time-marching schemes. The 

averaged surface temperature of the plate is plotted in figure 4.5.3. 

The FEM analyses employed 5 parabolic isoparametric elements in space 

and linear, parabolic and cubic elements in time [83]. Results using 

a central finite difference scheme are also presented in the same 

reference. 
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As pointed out in [83J, the time step value ~t=lOO s adopted 

from the problem is extremely large (the critical value predicted by 

equation (4.4.1) is only ~t . =14 s). 
cr~t 

The solution goes from the 

initial-state to the steady-state almost in one increment. Because of 

this, the linear BEM solution produced oscillations which are, however, 

much smaller than the FDM and FEM ones. The constant BEM seems to be 

remarkably stable and produced no oscillation at all. 

Example 4.5.3 

For problems involving regions extending to infinity, BEM 

solutions with scheme BEM2 are much more economical than FEM ones. In 

order to demonstrate this, we study in this example a circular opening 

in an infinite plane region with initial conditions uO=lO. The radius 

of the hole is unity, its ambient temperature equals zero and the 

material properties of the medium are also assumed to be unity, for 

simplicity. 

The variation of the surface temperature with time is presented 

~n figure 4.5.5 for various values of the heat transfer coefficient, 

compared to an analytical solution given in [16J. The agreement between 

the two solutions is very good. A time step value ~t=0.5 was adopted 

and the analyses carried out until the surface temperature began to 

drop significantly. The BEM results were obtained with stepwise constant 

functions and, due to symmetry, only one quarter of the interface 

between hole and medium was discretised into 6 boundary elements 

(figure 4.5.4). 

This problem was also studied with the FEM in [84] but since the 

FEM is a domain-type technique, the infinite reg~on has to be limited 

by a finite, non-conducting boundary. In order to achieve the same 

level of accuracy, a time step ten times smaller (~t=0.05) was adopted 

and the domain discretised using 70 triangular elements or 3 cubic 
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isoparametric elements (see figure 4.5.4). Note that a similar kind 

of approximation has to be introduced for the BEM if time-marching 

scheme BEM1A is utilised: although boundary elements are still 

restricted only to the ho1e-medi~m interface, cells have to be employed 

to integrate over the (infinite) domain. 

Example 4.5.4 

A more practical problem with complex time-dependent boundary 

conditions is studied in 'his example, where the temperature distribution 

inside an actual turbine disc is sought. Although the real structure is 

axisymmetric, a two-dimensional FEM analysis was carried out for 

comparison purposes [85], employing 85 quadratic isoparametric elements 

and 348 nodes (figure 4.5.7a). 

The initial temperature of the turbine disc is 295.1oK and the 

values of the thermal conductivity, density and specific heat of the 

material are 15 W/moK, 8221 kg/m3 and 550 J/kgOK, respectively. There 

are 18 different zones along the boundary, each of which with a 

different set of prescribed values for the heat transfer coefficient 

and the temperature of the surrounding gas. Their time variation at 

one of such boundary zones 1S shown in figure 4.5.6. 

The BEM discretisation employed 90 elements and 106 nodes (there 

are 16 double nodes at the intersections of boundary zones). A stepwise 

linear variation was prescribed for the boundary temperature. For the 

boundary flux, it was assumed to be linear or quasi-quadratic, according 

to the variation of hand u within each time step. s 

The first BEM analysis was carried out with a step-by-step 

time-marching scheme. However, due to core storage limitations of the 

computer utilised, a full analysis was only possible with scheme BEM1B. 

Previous experiences with such scheme have shown that a refined domain 

discretisation is necessary for accurate results to be obtained. So, 
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Figure 4.5.7 - Discretisations of turbine disc: a) FEM; b) BEM1B; 
c) BEM2 
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we sub-divided the domain into 134 triangular cells with 23 internal 

points (figure 4.5.7b). Results (isotherms) at several times are 

plotted in figure 4.5.8 and compared to the FEM results, showing good 

agreement. 

Finally, the problem was studied with scheme BEM2 and, in this 

case, no domain discretisation is needed (figure 4.5.7c). Results for 

this analysis are also plotted in figure 4.5.8 and agreed extremely 

well with the refined finite element solution. Due to the structure 

of the computer program developed, that recomputes the matrices instead 

of storing them, this analysis proved to be rather time-consuming, since 

a large number of boundary elements and time steps 1S involved. Note, 

however, that this problem is a characteristic of the actual computer 

program and not of the time-marching scheme: it was estimated that 

storing all matrices in disc files would reduce the total CPU computer 

time to the same order of the one required by the BEM1B analysis, i.e. 

3 min. 

4.6 Axisymmetric Problems 

Assuming that all boundary and internal values have axial 

symmetry, equation (4.1) can be written in cylindrical polar 

coordinates (R,S,Z) as, 

c(P) u(P,tp) + k ft y 
J_U(S,t) J2

'q*(p,S,tF ,t) d6(S) R(S) df(S) dt 

to r 0 

= k ftF f- q(S,t) J2
'u*(p,S,tF't) d6(S) R(S) df(S) dt 

to r 0 

+ f:'u*(p,s,tF,tO) d6(.) R(s) dQ(s) (4.6.1) 

where Q and r are the generating area and boundary contour of the solid 

of revolution, i.e. the projections of Q and r, respectively, iR the 

R+-Z semi-plane (see figure 3.9.1). 
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Writing the three-dimensional fundamental solution (equation 

(Z.8.3» in cylindrical polar coordinates and integrating over a ring 

of radius R(S) at the plane Z=Z(S) we have, 

~~P,S,tF,t) - f:".*'P,S,tF,t) delS) 

1 d fZ1T 
----::3:-77-=-z e xp (- --) exp 
(4'ITkT) 4kT 0 

[ RIP) RIS) cos [8(P)-8(S)Jj d8(S) 

2kT 

2 2 [ ] 2 where T=tF-t and d=R (P)+R (S)+ Z(P)-Z(S) . 
(4.6.2) 

The axisymmetric fundamental solution then becomes [86] , 

-* u (p ,S , tF ' t) = 2 'IT / exp (- ~) 10 (~) 
(4'ITkT) 3 2 4kT 2kT 

(4.6.3) 

where £=R(P) R(S)'and 10 is the modified Bessel function of the first 

kind of order zero. The normal derivative of the fundamental solution 

along the boundary contour can be obtained by differentiating 

expression (4.6.3), 

1 d 1 [ £ ! 5/2 exp (- -) R(S) 10 (-) 
8'IT (kT) 4kT 2kT 

where 11 is the modified Bessel function of the first kind of order one. 

From the above expressions, it can be seen that as R(P)~ we 

have that £~, I O(£/2kT)+1, Il(£/2kT)~, so that the ring source tends 

to a point source with intensity 2'IT over the axis of revolution. 

Substituting (4.6.3) and (4.6.4) into equation (4.6.1) yields 

the following time-dependent boundary integral equation, 

c(P) u(P, t F) + k -* -q (P,S,tF,t) R(S) dr(S) dt 

to r 

+ L .Is, to) ~*IP ,s, t F , to) Rls) dlils) (4.6.5) 
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The solution of equation (4.6.5) can be attempted by using the 

same calculation procedures as discussed in the previous sections. 

For simplicity, only time-marching scheme BEMIA with stepwise constant 

variation for the functions u and q will be considered in what follows. 

After discretising the surface and interior of the actual 

domain into boundary elements and cells, respectively, an equation 

similar to(4.l.6)is obtained, the coefficients of the matrices involved 

being computed as in (4.1.7). In order to perform the time integrals 

analytically, an appropriate change of variables is needed. Calling, 

c = Q, 

d 
d 

x = 4kT 

-* the integral in u becomes, 

d a = -,----
4kll.tF 

(4.6.6) 

-x 
e dx (4.6.7) 

The Bessel function 10 can be expanded in series as [46J, 

and the 

co 

10 (2cx) I 
n=O 

integration ~n 

-* 

(ex) 2n 
--,2-

n. 

(4.6.7) 

fF u (i, S , tF ' t) dt 
t F- l 

-* 

is then performed 

1 
2n 

00 c 
I I 7 2k Crrd) :1 n=O n. 

For the integral ~n q , we have 

- R(P) R,u(S) J" I 1(2cx) 

a 

r a 

1 
x 2 e 

! -x 
10 (2cx) x 2 e 

-x 
dx ! 

(4.6.8) 

term-by-term, giving 

r(2n + 
1 
2' a) 

(4.6.9) 

dx 

(4.6.10) 
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Expanding the Bessel function II as [46J, 

11 (2cx) 
.L 

00 

Z 
n=O 

the integral becomes, 

- [Z (P) - Z (S ) J 

R(P) R, (S) 
00 

Z 

(cx)2n+l 
2 n! (n+l) 

Z'n(S)] 
00 

Z 
n=O 

2n+l c 
n n=O 2 

n~ (n+l) 

1 l[R(S) R, (S) 
kd(rrd)! n 

2n 
3 c 

,2 r(2n + 2' a) 
n. 

5 
a) i r(2n + 2' 

(4.6.11) 

(4.6.12) 

All the incomplete Gamma functions that appear ~n the above 

series can be evaluated in terms of r(!,a) by using the following 

recurrence relation [75], 

r(n+l, a) = nr(n, a) n -a 
+ a e (4.6.13) 

and, for computational purposes, r(!,a) can be related to the error 

function by [46J, [75], 

(4.6.14) 

being the complementary error function computed through a rational 

approximation [46J which is riven in appendix A. 

From definition (4.6.6) we notice that the value of c varies 

between 0 (for R(P) or R(S)=O or for d~) and 0.5 (for P=S). All the 

series that appear in expressions (4.6.9) and (4.6.12) converge very 

quickly for small values of c but slowly as c-+0.5. In fact, they do 

not converge for c=O.5 due to the singularity at P=S. So, from the 

computational point of view, i t ~s not convenient to use expans~ons 

(4.6.8) and (4.6.11) for values of c ~n the vicinity of c=0.5. 

To overcome this problem, we can use asymptotic expansions of 

the Bessel functions that are valid for large values of their arguments. 

Thus, whenever x is large we can write [46J, 



202 

2cx 
[1 f1 (0) 1 e 00 

1 + L: 
2( 7fcx) 2 n=l n! (l6cx)n 

2cx f2 (n) 1 e [1 d r 
2 (7fcx):1 n=l n! (l6cx)n 

II (2cx) 

f1 (n) 

f2 (n) 

2 2 (2n-1) (2n-3) ..• 1 

= (_l)n [4-(2n-l)2] [4-(2n-3)2] •.. [4-1] 

The time integrals can then be carried out as follows, 

n=l n! (Lic)n 
r(-n,B)] 

1 ! [El (B) 
47fkQ,2 

x [[R(P)-R(S)]R'n(S) + [Z(P)-Z(S)] Z'n(S)] 

(4.6.15) 

(4.6.16) 

(4.6.17) 

(4.6.18) 

f1 (n)bn- l 

+ [ ReS) R'n(S) - [Z(P)-Z(S)] Z'n(S)Jn~_l --- r(l-n,B) 
n!(16c)n 

f
2

(n)bn- l 

- R(P) R'n(S) I ----n r(l-n,B) l 
n=l n! (l6c) ~ 

(4.6.19 ) 

where b=1-2c and B=ab. The incomplete Gamma functions can now be 

computed from r(O,B) through the recurrence relation [46], 

r(-n,B) = - ~ r(l-n B) 
[ 

_ e -B ] 

n ' Bn 
(4.6.20) 

r(O,B) = El (B) 

When the value of c tends to 0.5 but x is small over part of the 

integration interval (a,oo) we cannot apply expansions (4.6.15) and 

(4.6.]6) directly. Alternatively, equation (4.6.7) may be written as, 
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j"F u'(i ,S, "F' t) dt 
t F_l 

1 

2k(TId) £ 

+ JOO IO(2cx) x-I e-x dx 1 (4.6.21) 

a' 

where x is sufficiently large in the interval (a' ,00). Thus 

r 2n 
I

O
(2cx) -! -x 00 c [ r (2n+i,a') - r( 2n+i,a) ] x e dx L -;2 a n=O n. 

(4.6.22) 

and expansion (4.6 15) is now used to evaluate the second integral in 

(4.6.21). The same idea can be applied on calculating the time 

-* integral in q • 

The remaining step in the numerical solution of the boundary 

integral equation (4.6.5) is the computation of the space integrals. 

As for the two-dimensional case, the program developed employs only 

linear boundary elements with triangular cells. The terms H.. and 
1.J 

G .. (i/j) of the final system of equations (similar to (4.1. 6» can be 
1.J 

calculated using a six-points Gauss quadrature rule (see section 4.1.4). 

The diagonal terms H .. and G .. however, need to be investigated 
1.1. 1.1. 

more carefully since their calculation involves the evaluation of 

singular integrals. 

The coefficients G .. contain an integral with a logarithmic 
1.1. 

(integrable) singularity. Expanding the exponential-integral in 

equation (4.6.l8)~ we can isolate the logarithmic term and integrate 

it analytically (see appendix C). All the remainder is non-singular 

and can be computed by using a standard Gaussian quadrature. 

The coefficients H .. contain a logarithmic plus a lib 
1.1. 

singularity. The first one is directly integrable but the second 

is only integrable in the Cauchy principal value sense. For the 

present case (linear elements) however, we can write with reference 

to figure 4.6.1, 
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Figure 4.6.1 - Definitions for linear element 

R, (S) = cos a 
n 

R(P) R(S) = 

Z(P) - 2(S) 

2, (S) 
n 

sin a 

JI, • 
l; '2 S1.n a 

JI, 
1; 2: cos a 

(4.6.23) 

such that the first term in the right-hand side of (4.6.19), which is 

the Cauchy singular one, becomes identically zero. Expanding the first 

term of each series in (4.6.19) in order to isolate the logarithmic 

singularity, we can then evaluate it analytically (see appendix C) 

and all the remainder, which is non-singular, using a standard 

Gauss ian quadrature. 

* 
The free coefficients c. account for the jump that the integral 1. 

1.n q experiences as it approaches the boundary r from the internal 

domain~. Their values are the same if the limit is taken for the 

steady-state or the time-integrated transient fundamental solutions, 

as shown in equations (2.4.8) and (4.1.47) for two-dimensional problems, 

a result to be expected following the discussion in section 2.8 (see 

equation (2.8.7». For three-dimensional problems, we have 

c. 1. 1 - 4; lim 
E:-+O J 

f 

1 7 df (4.6.24) 

E: 
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~1ere B ~s the solid angle of the boundary at ~ and dr = £2 d~ d~. 

For the actual (axisymmetric) case, B = 2(n + a
l 

- a
2

) (see figure 

2.4.1) and the values of c. become the same as for two-dimensional 
~ 

problems. equation (4.1.47). 

A computer program using time-marching scheme BEM1A with 

stepwise constant variations for functions u and q and incorporating 

the numerical procedures derived ~n this section was developed. Its 

structure follows the ideas discussed ~n section 4.2 and again Hammer's 

quintic quadrature rule was employed for the domain integral. The 

program is described in detail in chapter 6. 

Example 4.6.1 

The first example analysed was that of a solid cylinder with 

unit initial conditions, subjected to the following boundary conditions, 

u = 0 at R = a 

q 2u at Z ±£ 

The discretisation adopted is shown in figure 4.6.3. Note that 

due to the symmetry with respect to the R-axis, only one half of the 

cross-section needed to be discretised. The numerical values assumed 

for the cross-section were a=l, £=1 and for simplicity, the material 

coefficient k was also taken to be unity. 

Results are compared in figures 4.6.2 and 4.6.3 with an 

available analytical solution [16], showing good agreement. The analysis 

was performed with a time step ~t=0.025 and took about 4s of CPU time 

to converge to a steady-state (20 time intervals). 

Example 4.6.2 

This example studies the heat conduction problem of a 

prolate spheroid initially at zero temperature and subjected to a 

unit surface temperature at t=O. A parametric representation of points 
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Figure 4.6.2 - Values of u along the faces Z=±£ 
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Figure 4.6.3 - Values of u at internal points 
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on its surface, in the R-Z plane, may be written as 

R Ll cos ~ 

Z = L2 sin ~ 

where the ~ angle is indicated in figure 4.6.4. 

The discretisation adopted is also shown ~n the figure and the 

numerical values assumed for this analysis were k=l, Ll=l, L2=2. 

Results for the temperature at the centre point (R=Z=O) are compared 

in figure 4.6.4 with an analytical solution [87] and a finite element 

solution [84] obtained with parabolic three-dimensional isoparametric 

elements. The finite element analysis was performed with a time step 

value ~t=0.025 'mereas the boundary element solution employed a 

~t=0.050. The total CPU time for 20 time steps was 4.5 s. 

Example 4.6.3 

A problem similar to the one studied in example 4.4.4 was 

considered in this example of a sphere of unit radius, initially at 

zero temperature, subjected to sudden thermal shocks applied at times 

to~O and t l . The discretisation and numerical values adopted here 

were the same as for example 4.4.4 (see figure 4.4.4). 

Results are plotted ir. figures 4.6.5 to 4.6.7 for differ~nt 

values of tl and compared with analytical solutions [16]. The agreement 

between the two solutions is of the same order as for the two­

dimensional cases, and uniform for all values of t
l

• It is 

interesting to note that the CPU time required for each analysis was 

about 4 s compared with 2 s for example 4.4.4. 
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Figure 4.6.5 - Temperature at internal points for thermal 
shock applied at to=tl=O. 
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Figure 4.6.6 - Temperature at internal points for thermal shocks 
applied at to=O. and t l =0.25 
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Figure 4.6.7 - Temperature at internal points for thermal shocks 
applied at to=O. and t l =0.7 
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5. VISCOUS FLOW PROBlEMS 

This chapter considers prob lems of incompressib Ie vis cous fluid 

motion, governed by the Navier-Stokes equations together with the 

continuity equation. Following the concepts developed by Lighthill [31], 

the vorticity-velocity formulation is employed and the flow problem 

is partitioned into its kinetic aspect, expressed as a transport equation 

describing the rate of change of vorticity through convection 

and diffusion, and its kinematic part, which determines the velocity 

distribution at any instant of time from the (known) vorticity 

distribution at that instant ([~2] to [35J). 

The prevailing Finite Difference and Finite Element methods of 

solution treat the above equations in differential form. The major 

difficulty experienced by these methods is associated with the fact 

that implicit numerical procedures are necessary for the kinematic part 

of the computation. As a consequence, the solution field must comprise 

the entire flowfield, inclusive of the viscous and the inviscid regions. 

Furthermore, for problems of external flow past finite bodies, 

satisfaction of boundary conditions prescribed at infinity implies 

the truncation of the infinite region at a finite distance. 

Earlier works ([32J to [35]) employing Lighthill's formulation 

rec~st the kinematic part of the problem into an integral equation for 

the velocity in terms of the vorticity. The main advantage of doing so 

is that it permits the explicit, point-by-point, computation of the 

velocity, in much the same way as the potential in Laplace's equation 

is computed through (2.4.5). Since only the vorticity distribution 

in the viscous region contributes to the calculation of the velocity 

anywhere in the flow, the solution field can be confined to the 

viscous region of the flow. Moreover, the imposed boundary conditions 

at infinity are implicitly contained in this integral equation, 

therefore there is no need of specifying them at a (truncated) finite 
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distance from the body. The kinetic part of the problem,however, 

was kept in the differential form. 

In the next section, we review the vorticity-velocity 

formulation of the Navier-Stokes equations, showing how the problem 

can be partitioned into its kinetic and kinematic aspects, and how 

the kinematic part can be recast into a convenient integral equation. 

Then, steady-state problems are discussed and the kinetic part 

of the problem also transformed into an integral equation. An iterative 

scheme for the solution of the resulting set of (non-linear) equations 

is discussed, following basically the numerical procedures derived 

in chapter 3. 

Finally, transient problems are considered and, again, it is 

shown how the kinetic part of the problem can be recast into an integral 

equation. Since the vorticity transport equation can be interpreted 

as a non-homogeneous diffusion equation with a (non-linear) convective 

term, the numerical procedures derived in chapter 4 are directly 

applicable to this case. 

5.1 Navier-Stokes Equations 

Three-dimensional problems of incompressible viscous fluid 

motion are governed by the following set of partial differential 

equations [66J, 

Clw 

at v x (v x w) + v V2w (5.1.1) -= 

v • v = 0 (5.1.2) 

v x V = W (5.1.3) 

where v and ware the velocity and vorticity vectors, respectively, 

and v is the kinematic viscosity of the fluid. In the above equations, 

"\7 x" means curl, "V ." stands for divergence and the gradient vector 

v is defined as, 
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a!3 } 
(5.1.4) 

Equation (5.1.1) can be readily recognised as the vorticity 

transport equation, describing the rate of change of the vorticity 

field through convection (as stated by the first term in the right-hand 

side) and diffusion (second term in the right-hand side). Equations 

(5.1.2) and (5.1.3) are the continuity equation and the definition 

of vortici ty, respectively. 

The kinematic relation between v and w is described by equations 

(5.1.2) and (5.1.3). For a given distribution of w, the velocity 

distribution throughout the flowfield is usually evaluated by using a 

vector Poisson's equation obtained by taking the curl of (5.1.3), 

accounting for (5.1.2), 

(5.1.5) 

Comparing this equation with equation (3.3.1) in chapter 3 and 

reminding the derivation of equation (2.4.5) in chapter 2, we can write 

the following integral equation as equivalent to (5.1.5), 

+L * 
41fv(p) v(S) au (p ,S) dr(S) an(S) 

av(S) 

an(S) u*(p,S) dr(S) + In [~ x ~(.)l u*(p,s) dQ(s) 

* 

(5.1. 6) 

where u (p,s) is the fundamental solution to Laplace's equation defined 

~n section 2.2 and n(S) is the unit normal vector. 

The correct boundary conditions for the physical problem are 

~rescribed velocities. Therefore, prior to calculate the values 

of v throughout the flowfield (for a known vorticity distribution), 

it is necessary to take the above equation to the boundary (employing 

the same limiting process as described in chapter 2), thus yielding 

a boundary integral equation whose solution produces the values of 
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avIan along r. These values are then placed in equation (5.1.6) to allow 

the prediction of the velocity distribution in Q. 

Wu and Thompson [33] contested the validity of the use of equation 

(5.1.5) to represent the kinematics of the flow. They pointed out that 

the solution of equations (5.1.2) and (5.1.3) for v is unique if either 

vt (the tangential component of v) or v (its normal component) is _ n 

prescribed over the boundary f, but the solution of (5.1.5) for v is 

unique only if both vt and vn are prescribed over f. Thus, while 

solutions of (5.1.2) and (5.1.3) with prescribed v t or v also satisfy . n 

(5.1.5) the converse is not necessarily true, i.e. solutions of (5.1.5) 

for prescribed v t and vn may not satisfy (5.1.2) and (5.1.3). 

A more convenient integral representation for the kinematic part 

of the flow was then derived by Wu and Thompson [33] directly from 

equations (5.1.2) and (5.1.3). It follows from an application of 

Green's theorem for vectors, which can be written as [15], 

J (E 
Q 

= t [E x (V x F) 

+ E(Y' F) - F x (Y' x E) - F(Y' E) ] • n dr (5.1.7) 

where 

(5.1.8) 

being equation (5.1.7) the vector analogue to equation (2.3.4). 

* Let v (p ,s) be a vector fundamental solution to the vector 

Laplace's equation Y'2F = 0, given by 

* * v (p,s) = Y' [ u (p,s)] x a (5.1.9) 

where a is a constant unit vector. By direct substitution, it can be 

seen that 

* v = 0 (5.1.10) 
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* * 'i/ x v = 'i/ (a • 'i/u ) ,for p ::f s (5.1.11) 

By virtue of equation (5.1.2), there exists a vector potential 

'¥ such that [66J 

'i/x'¥=v (5.1.12) 

'i/ • '¥ = ° (5.1.13) 

Thus, considering F in equation (5.1.7) to be the fundamental 

* solution v and E to be the vector potential '1', accounting for equations 

(5.1.3) and (5.1.9) to (5.1.13) and assuming, as in section 2.1, t.ut 

a small sphere of radius E surrounding the point p, with surface r , is 
E 

excluded from tLe domain n of integration, equation (5.1.7) becomes, 

J 
* ('i/u 

n 
x a). w dn = J 

* ('i/u x a) x V 

r+r 
E 

n dr 

* '1' x 'i/ (a • 'i/u ). n df 

The above equation may be rewritten as 

J a. 
n -

a 

* (w x 'i/u ) dn 

* [(v x n) x 'i/u J 

* 'i/u )(v n) dr 

dr 

(5.1.14) 

(5.1.15) 

Taking the limit as € + 0, the volume n in the integral in the 1eft-

hand side of (5.1.15) becomes the entire volume bounded by r, since the 

volume integral over the interior of r
E 

goes to zero as £ + 0. The 

integrals over r in the right-hand side of equation (5.1.15) give, 
£ 

lim {J (a. 
£+0 -r 

* J 'i/u )(v • n) dr -
r 

a . [( v x n) x 'i/u* ] dr} 

E IS 

= L [(0 n)(v n) - a • [ (v x n) x ~ ] ] dr} 

IS 

= 41Ta v(p) 
(5.1.16) 
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Inserting the above result into equation (5.1.15) and noting 

that the direction of the vector a is arbitrary, we obtain the following 

equation 

4.v(p) + L (v * (v x n) x \lu df 

+ * \lu d&1 (5.1.17) 

A similar expression for two-dimensional flow problems can be 

* obtained by taking u (p,s) to be the two-dimensional fundamental 

solution defined in section 2.2, for which case the result of the 

limit (5.1.16) ~s (2na . v(p». Thus, the general expression for the 

velocity v is of the form [33J, 

v(p) 1 

J

'f oo(9} x rCp,s) 
&1-':;"--r-d::-(-p";';~-s-) -- d&1(s) 

2a.1f 

+ 

[v(S) x ~(S») x r(p,S) 

L d .. 
r (p, S) 

df(S) 

[v(S) • n(S)] rep,S) 

- ff - -
rd(p,S) 

df (S) ! 
(5.1.18) 

where a. = 2, d = 3 and 

rep,s) = {Xl (p) - Xl (s) 

for three-dimensional problems, a. = 1, d = 2 and 

for two-dimensional prob lems . 

Note that the use of equation (5.1.18) for the evaluation of v 

throughout the flowfield requires the knowledge of both vt and vn 

over f. Provided that these values are compatible with each other, 

L.e. one of them is identical to the value obtained from the solution 

of (5.1.2) and (5.1.3) using the other as the prescribed boundary 

condition, the specification of both in (5.1.18) is admissible, and 
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does not overspecify the problem. 

For problems of external flow past finite bodies, we can 

consider the region ~ in equation (5.1.18) to be the entire 

(infinite) region occupied by the fluid. Then, following section 

3.6, the boundary r is divided into two parts: the fluid-solid 

interface on which the no-slip condition (v = 0) applies and a 

surface infinitely remote from (and enclosing) the body on which the 

freestream velocity boundary condition (v = v
oo

) applies. The surface 

integrals in (5.1.18) can then be evaluated, giving 

v(p) = 
1 

w(s) x rep,s) r rd(:.s) 
d~(s) + v 

00 
(5.1. 19) 

2a:rr 

The above equation can be recognised as the Biot-Savart law of 

induced velocities [36], [66]. Thus we can consider the integral equation 

(5.1.18) to be an extension of the Biot-Savart law to a region bounded 

by r. 

With prescribed values of v in r and known values of w in ~, 

equation (5.1.18) permits the explicit, point-by-point, computation of 

the velocity anywhere in the f1owfie1d. Since only the vorticity 

distribution in the viscous region of the flow contributes to the 

calcnlation of the ve10ci ty, as the integrand in the domain integral 

vanishes for w = 0, the solution field can be confined to the viscous 

region of the flow. Furthermore, the prescribed boundary conditions 

at infinity are now implicitly contained in equation (5.1.18) ~ as can 

be seen in (5.l~19). 

5.2 Steady Problems 

Before proceeding to the solution of the transient Navier-Stokes 

equations as depicted in (5.1.1), it is convenient to discuss the 

numerical procedures related to the solution of steady incompressible 

viscous flow problems. Although many numerical studies of steady flow 

problems employ the time-depnndent equations to obtain the desired 
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stea~y-state asymptotically, this approach introduces an additional 

dependent variable (the time) into the solution procedure and 

consequently additional numerical complexities. 

As discussed earlier, the kinematic aspect of the flow is 

described by equation (5.1.18). The kinetic aspect of the flow is 

represented by the Navier-Stokes equations which, for a steady motion, 

can be written in the form [66], 

IJ x w 1 = - (v x w - 1Jh) v _ 

where h is the total head defined by, 

h=.E.. 
p 

2 
v 

+2 

(5.2.1) 

(5.2.2) 

2 being p the pressure, p the density of the fluid and v = v • v • 

From the definition of vorticity (equation (5.1.3», it is 

clear that 

1J ..• w=O (5.2.3) 

Thus, the differential equations (5.2.1) and (5.2.3) for the vorticity 

are analogous to the set of equations (5.1.2) and (5.1.3) for the 

velocity. Therefore, an integral equation for the kinetic part of the 

flow can be obtained by simp 1y replacing v by wand U) by the term 

(v x W - 1Jh)/v in equation (5.1.18). This gives, 

eves) x w(s) - lJh(s) ] x rep,s) 

d 
r (p, s) 

dQ(s) 

+ L [w(S) 
x n(S) J )( rep,S) 

rd(p,S) Ir 
[w {S) 

dr (S) -
n(S)] rep,S) 

dr (S) } 
d 

r (p ,S) 

(5.2.4) 

By applying the divergence theorem [13] to the term in h; 

= 

Ir 
[h(S) ~:S) ] x 

r (p, S) 

r (p, S) 
dQ(s) dr(s) 

(5.2.5) 

equation (5.2.4) can be rewritten as, 
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w(p) 1 {1: J 
[v(s) x w(s) ] x rep ,s) 

d 
dn(s) 

2a:rr v Q r (p,s) 

[w(S) x n(8)] x rep,S) :... [w(S) • n(S)] rep,S) 

d 
r (p,S) 

- - dr (S) } 

J 

[h(S)n(S) ] x rep ,8) 

r rd(p ,s) 

dr(S) 

(5.2.6) 

The calculation of w throughout the flovlfield can be carried out 

iteratively using the above equation, for known values of v in Q and w 

and h in r. The contribution of the inviscid part of the flow to the 

computation of w anywhere in the flow is zero (as it was in the 

calculation of v). Thus, only the values of v in r (which are the 

prescribed boundary conditions) and in the viscous region of the flow 

are needed in the calculation of w. 

We can now devise a numerical formulation for the solution of 

steady incompressible viscous flow problems using equations (5.1.18) 

and (5.2.6), employing basically the same procedures as derived in 

chapter 3. For simplicity, only the two-dimensional case is considered, 

being extension to three-dimensional and axisymmetric problems carried 

out by using the concepts outlined in sections 3.8 and 3.9, respectively. 

The present formulation is based on the one discussed in [93J. 

For the present case, the flow motion is described by the following 

set of scalar equations, obtained by specialising equations (5.1.18) 

&ad (5.2.6) for two-dimensions, 

wee) Y2(P,s) 
2 dQ(s) 

r (p,s) 

(5.2.7) 
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___ 1 {J w(s) Yl (p ,s) 
2 dQ(s) 

2n Q r (p,s) 

Y2(p,S) - k2(S) Yl(p,S) 

r
2 (p,S) 

df(S) } (5.2.8) 

=- { 
_1 J vl(s) w(S) Yl(p,s) + v2(s) w(s) 12(p,s) 

-------,2=----------- dQ(s) 
2n v Q r (p ,8) 

w(p) 1 

-L w(S)[nl(S) Yl(p,f.') + n2(8) Y2(p,S) ] 

2 df(S) 
r (p, S) 

- l f h(S)[n1(S) Y2 (p ,S) - n2 (S) Y1(p,S) ] } 
2 • df (S) 

v f r (p,S) (5.2.9) 

where: 

Y. (p,s) = x. (p) - X. (8) 1 = 1,2 
1 1 1 

kl (8) = vl(S) n l (8) + v2(S) n2 (8) 

k2(S) = v l (S) n2(S) - v2(S) nl(S) 

The surface f is discretised into S boundary elements, with Nb 

boundal~ nodes, and the domain Q into L cells, with Nt cells nodes. 

Let us also assume that the values of the variab les wi thin each 

boundary element and cell are related to their nodal values through 

suitable interpolation functions, which are at least linear. This 

assumption is important since it permits us to obtain a relation 

between boundary and internal vorticities using equation (5.1.18), as 

will be shown in what follows. 

The N~ cells nodes may be divided into Ni internal nodes in Q but 

not in f and the remaining Nb nodes in r, which coincide with the 

boundary nodes. Applying equations (5.2.7) to (5.2.9) at the N. internal 
1 

nodes, replacing the integrals in these equations by summations of 
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integrals over individual boundary elements and cells and employing 

numerical integration schemes to evaluate these integrals '(see sections 

3. I and 3.3), we ob tain matricial equations of the form, 

~ki = :kii ~i + ~kib ~b + ~kib ~lb + :kib ~2b (5.2.10) 

(5.2.11) 

where k = 1,2 and the subscripts band i stand for boundary and internal 

quantities, respectively, being 2 = b+i. The notation adopted implies 

that the matrix E. b , for instance, relates the contribution of th~ 
_1 

boundary values of w (~) to the internal values of w (~i)' All matrices 

in the above eouations depend only on geometrical data and physical 

properties of the fluid, thus they need to be computed only once 

during the whole iteration process. 

Note that the result of the domain integral in (5.2.7) and 

(5.2.8) was separated into two parts in (5.2.10), being the first term 

in the right-hand side representative of the contribution of the internal 

nodes and the second term that of the boundary nodes. 

The iirst two terms in the right-hand side in equation (5.2.11) 

involve the field variables v1w and v
2

w. The use of these two variables 

(instead of VI' v2 and w) was suggested in [93] because they lead to 

coefficient matrices A and B that are proportional to the coefficient 

matrices :k and 9k in equation (5.2.10), as can be seen from (5.2.7) to 

(5.2.9). As a consequence, it is not necessary to evaluate and store A and 

B; since these matrices are usually large, this feature leads to a 

sig~ificant reduction in computer time and storage requirements. 

Equation (5.2.10) gives a set of 2N. algebraic equations which 
1 

relates the values of VI and v2 at the Ni internal nodes to the N2 values 

of w in Q and the Nb boundary values of VI and v 2• A similar set of 

equations can be obtained by applying equations (5.2.7) and (5.2.8) to the 

Nb boundary nodes, 
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(5.2.12) 

where the coefficients of the diagonal matrix ~k can be determined 

through a limiting process (see equations (2.4.8) and (5.1.16». 

Since the appropriate boundary conditions of the problem are 

prescribed ve1ocities,equation (5.2.12) gives a set of 2Nb algebraic 

equations in which ~i and ~ are the only unknowns. Reminding, however, 

that the prescribed velocities are linked through equations (5.1.2) and 

(5.1.3), in the sense that for a given distribution of wand the 

specification of (say) vn there is one and only one value of v t which 

satisfies (5.1.2) and (5.1.3), we note that only Nb equations of the 

above set are independent of one another. These Nb equations can be 

written in the form, 

(5.2.13) 

where, assuming that the boundary values of ~l are used to evaluate 

the ::b values, we have 

-1 
~bi = - ~lbb :lbi 

[ -1 
:\ = ~lbb 

(5.2.14) 

(5.2.15) 

Analogously to (5.2.10), equation (5.2.11) gives a set of N. 
1. 

algebraic equations relating the values of w at the N. internal nodes 
1. 

to the N~ values of v1w and v2w in Q and the Nb boundary values of w 

and h. Applying equation (5.2.9) to the Nb boundary nodes gives, 

(5.2.16) 

This equation may be rearranged as, 

[ 
-1 ] -1 -1 

~b = ~bb (~ - ~bb) ~b - (~bb ~t) (vlw)t - (~bb ~bt) (v2w)~ 

(5.2.17) 

Since ~, ~1 and ~2 are all expressib Ie in terms of ~i (see equations 
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(5.2.10) and (5.2.l3»,the above set of Nb equations can ultimately 

be seen as an expression of the ~b values in terms of non-linear 

functions of w •• 
_1 

The previous development demonstrates that, with properly 

specified velocity boundary conditions, all the unknowns in equations 

(5.2.7) to (5.2.9) (which are equivalent to (5.1.2), (5.1.3) and (5.2.1» 

are expressible in terms of w .• Consequently, steady incompressible 
_1 

viscous flow problems can be solved using an iterative procedure 

involving equations (5.2.i) to (5.2.9), starting with a set of assumed 

values of w .• This iterative procedure can be summarised as follows: 
_l. 

a) Discretise the boundary r into S elements and Nb boundary nodes 

and the domain Q into Lcells, with Nt (= Nb + Ni ) cells nodes; 

b) Compute the coefficients of matrices C, D, E, F, G, Hand P 

in equations (5.2.10) to (5.2.12) and (5.2.16) using the 

specified values of geometrical data and physical properties of 

the fluid. Of these, matrices D(N. x Nb), E(N. x Nb), F(N. x N.) _ 1 _ l. _ 1 1 

and G(N. x Nb) are stored for subsequent use; the matrices _ 1 

appearing in equation (5.2.17) (dimensions: Nb x Nb + 2(Nb x Nt» 

are computed and stored, together with matrix Q(Nb x N.) in _ 1 

(5.2.13). Introduce the prescribed velocity boundary conditions 

to calculate vector T(N.), corresponding to the sum of the last _ 1 

two terms in equation (5.2.10), and vector ~(Nb) in (5.2.13), all 

of which are also stored; 

c) Multiply matrix Q by the assumed (or previously calculated) values 

of ~i and add to vector T to find the vorticity boundary values ~b 

(equation (5.2.13»; 

d) Multiply matrix F by the assumed (or previously calculated) values 

of ~i' add to the product of matrix ~ by the values of ~b calculated 

in the previous step and add the total to vector T to find the 

velocity values vk . (equation (5.2.10»; _ 1 
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e) Multiply the matrices appearing ~n equation (5.2.17) accordingly 

by the new values of ~,(vlw)t and (v2w)~ previously computed 

and add the result of the products to find the ~b values; 

f) Employ the prescribed velocity boundary conditions and the assumed 

g) 

(or previously calculated) values of w., together with the values 
_1-

of ~b' ~ki and ~b computed in steps c) to e), to find a new 

distribution of w. through equation (5.2.11); 
-~ 

Compare the actual values of w. with their previous values to 
_1 

check if their difierence is less than a prescribed tolerance, so 

the iteration cycle can be terminated; 

h) Return to c). 

5.3 Trans ient Prob lems 

As discussed in section 5.1, transient problems of incompressible 

viscous fluid motion are governed by the set of equations (5.1.1) to 

(5.1.3). An integral equation equivalent to the kinematic part of the 

flow as represented by equations (5.1.2) and (5.1.3) has already been 

derived in section 5.1 (equation (5.1.18». In what follows, we derive 

an integral representation for the kinetic aspect of the flow and discuss 

numerical procedures for the solution of the resulting set of integral 

equations [38J, [92J. 

Rewriting the vorticity transport equation (5.1.1) as, 

1 
\i 

1 
~t = - - V x (v x w) o \i _ _ _ 

ow 
(5.3. 1) 

and compar~ng to equation (2.5.1), we note that (5.3.1) can be 

interpreted as a (non-linear) non-homogeneous diffusion equation, the 

non-linearity being included through the convective term in the right-

hand side. Thus, an integral equation equivalent to (5.3.1) can be 

readily obtained as (see equation (2.8.6», 
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* w(S,t) [Vu (p,S,tF,t) . n(S) ] dr(S) dt 

* u (p,S,tF,t) {[ v x w(S,t) ] x n(S)} dr(S) dt 

+ fF f (~x [ :,(s,t) x ~(s,t) ] ) u,<p,s,tF,t) dQ(s) dt (5.3.2) 

to ~ 

* where u (p,s,tF,t) is the fundamental solution to the diffusion equation, 

defined in (2.8.3). 

The calculation of w throughout the flowfield,at any time t, can be 

carried out iteratively using the above equation. Following a discussion 

in page 41, we note that the third integral in (5.3.2) represents the 

effects of an initial vorticity distribution. Since a stationary fluid 

cannot co-exist with a non-zero vorticity field, the vorticity 

distribution changes as a result of a convective process, represented 

by the last term in (5.3.2). Finally, the boundary integrals ~n (5.3.2) 

include the effects of generation (or depletion) of vorticity at the 

surface r, being this process a result of the no-slip condition (see 

discussion in page 7). The generated vorticity leaves the boundary 

only through diffusion. 

As for the s teady-s tate prob lem the contribution of the invis cid 

region of the flow to the computation of w anywhere in the flow is zero. 

Thus, only the values of v along r and in the viscous region of the flow 

are needed in the calculation of w. 

A numerical formulation for the solution of transient problems 

of incompressible viscous fluid motion as represented by equations (5.1.18) 

and (5.3.2) will now be derived, following the ideas discussed in [38] and 

[92J and employing basically the same procedures presented in chapters 3 
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and 4. For simplicity, only the two-dimensional case is considered, 

thus the flow motion is described by the scalar equations (5.2.7) and 

(5.2.8) for the velocity and the following scalar equation for the 

vorticity, 

w(p,t,.) ~ t WO(8,'D) u*(p,S,t,.''D) dills) 

-rF J {ax:(s) [v1 (s,t) w(s,t) ] 

-to Q 

* 
+ V J~ Ir [ * dW(S ,t) au (p,5, t F , t) ] 

" u (p ,S, t F , t) antS) - w(S, t) an(S) dr (S) dt 

(5.3.3) 

Integrating by parts the second integral 1n the above equation 

gives, 

J~ In {~ax-:"""'(s---) [vl(s,t) w(s,t) ] 

i"F J u' (p ,S, t F , t) w(S, t) [vI (S, t) n
1 

(S) + V
2
(S, t) u

2
(S) ] dr(S) dt 

to r 

* dU (p ,s ,t
F

, t) 

dXl(s) 

* 
+ v

2
(s ,t) 

dU (p,s, t
F

, t) 
] dQ(s) dt (5.3.4) 

The surface r is discretised into S elements and Nb boundary nodes , 
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the domain n sub-divided into L cells, with N~(=Ni + N
b

) cells nodes, 

and the time dimension sub-divided into F time steps. Let us assume, 

as in the previous section, that the values of the variables within 

each boundary element and cell are related to their nodal values 

through suitable interpolation functions. For simplicity, the flow 

variables are assumed to remain constant on time within each time step, 

this assumption corresponding to the use of constant time interpolation 

functions as discussed in section 4.1.1. Clearly, linear or higher 

order time interpolation functions can easily be introduced, following 

sections 4.1.2 and 4.1.3. The stepwise variation of the functions 

permits the analytical evaluation of the time integrals in equation 

(5.3.3). Applying this equation at the N. internal nodes in n but not 1. 

1.n r (accounting for (5.3.4», replacing the resulting space integrals 

by summations of integrals over individual boundary elements and calls 

and employing numerical integration schemes to evaluate these integrals 

(see section 4.1.4), we obtain the following equation in matricial form, 

where matrices A, B, D and E are dependent only on geometrical data, 

physical properties of the fluid and the time step value, thus they all 

need to be computed only once during the whole time process (for a 

fixed time step value). Vector T. contains the contribution of the _1. 

vorticity distribution at the beginning of the step. Note that if (say) 

linear time interpolation functions are employed, the second and third 

integrals in equation (5.3.3) also contribute to vector T .• _1. 

the 

v2w 

Equation (5.3.5) gives a set of N. algebraic equations relating 
1. 

values of w. at the N. internal nodes to the NR, values of v1w and _1. 1. -
in n and the Nb boundary values of ~b and ~b' being hb = (aw/3n)b' 

In principle, an assumed initial distribution of ~R, at the 

beginning of the process, together with prescribed velocity boundary 
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conditions, permits the iterative use of equation (5.3.5) to determine 

a new distribution of ~~ at the end of the first time step, and its 

subsequent progressing with time. Initially, the distribution of ~~ 

at the beginning of the time step (together with the velocity boundary 

conditions) is employed to calculate the velocity values at the N. 
~ 

internal nodes through (5.2.7) and (5.2.8), whose matricial form is 

repeated here for convenience, 

(5.3.6) 

Unlike the steady-state case, We cannot now apply equations 

(5.2.7) and (5.2.8) to the Nb boundary nodes and directly enforce 

satisfaction of the velocity boundary conditions. This is due to the 

fact that in general, the velocity ~kb calculated through (5.2.7) and 

(5.2.8) using the vorticity distribution obtained from equation (5.3.3) 

need not necessarily satisfy the no-slip condition at the solid 

boundaries. In particular, there may be a slip component tangential to 

the surface. Thus, according to the discussion in page 7, sufficient 

vorticity must be produced at the boundary r to enforce that the 

velocity field v due to this new vorticity, when combined with that 

previously determined, reduces the slip velocity to zero. According 

to the classical definition of the aerodynamics theory [36J, a surface 

across which tangential velocity changes abruptly is a vortex sheet. 

The velocity induced by the vortex sheet is given by [36J, 

vl(p) 2~ L 
w(S) Y

2 
(p,S) 

= 2 dr(S) 
r (p ,S) 

(5.3.7) 

v2(p) I 

L 
w(S) YI(p,S) 

dr (S) = 
2 21f r (p,S) 

(5.3.8) 

where Y. (p,S) = x. (p) - x. (S) (i=1,2). 
~ ~ ~ 

The requirement that the tangential velocity as calculated from 

(5.2.7)and (5.2.8) plus (5.3.7) and (5.3.8) satisfies the no-slip 

/ 
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condition then produces the equation, 

where t.(P) are the components of the unit vector tangent to the 
1. 

surface r at P. 

Applying the above equation to the Nb boundary nodes yields the 

following system of algebraic equations, 

(5.3.10) 

where the diagonal matrix C accounts for the singularity of the 

kernels in the integrals in (5.3.7) and (5.3.8). 

This kinematic treatment of the boundary vorticity distribution, 

i.e. its calculation through an enforcement of the no-slip condition 

at solid boundaries,was first stated by Lighthi11 [31J and later expressed 

numerically in [34J, [35J, [37] and [94J. Note that the vorticity 

generation (or depletion) at the solid boundaries is prescribed rather 

them actual vortici ty va.lues. This avoids employing one-sided difference 

formulae to calculate vorticity boundary values from values of velocity 

(or stream function) at points in the vicinity of the boundary, as is 

usually done in prevailing ~thods of solution. 

A set of Nb equations similar to (5.3.5) can be obtained by 

applying equation (5.3.3) at the Nb boundary nodes, 

(5.3.11) 

This equation may be rearranged as follows, 

(5.3.12) 

The previous development shows that, with properly specified 

velocity boundary conditions, transient incompressible viscous flow 

prob lems can be efficiently solved by using an iterative process 

involving equations (5.2.7), (5.2.8) and (5.3.3). Consider that some 
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time has elap3ed since the fluid was set in motion, the actual values 

of all flow variables are known and the no-slip condition on r 1S 

satisfied. The following procedure then constitute an iteration loop 

to advance the solution by one time step: 

a) Compute an initial distribution of ~~ using equation (5.3.5), 

being the ~ values evaluated by directly taking the equation 

to the boundary; 

b) 

c) 

Compute new values of v-k . using equation (5.3.6); _ l. 

Compute new vorticity boundary values using equation (5.3.10), 

where the (known) right-hand side corresponds to the actual slip 

ve10ci ty; 

d) Compute new values of ~ using equation (5.3.12); 

e) Compute new values of w. using (5.3.5), employing the values 
_l. 

of ~ki' ~ and ~b calculated in steps b) to d); 

f) Verify convergence of ~~; 

g) Return to b). 
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6. PROGRAMMING 
= 

This chapter describes the computer programs developed throughout 

this work, employing the theory and numerical procedures derived in 

chapters 3 and 4. Some results of applications of the programs have 

already been presented in these chapters. 

In developing the programs related to chapter 4, for transient 

problems, emphasis was placed in simplicity of coding rather than in 

maximum computer efficiency. The same modular structure was adopted for 

all programs. In this way, the various moduli that form the programs 

could be easily modified (for instance, for the testing of clifferent 

numerical integration schemes, interpolation functions, etc.) and 

readily implemented. This strategy, however, led to some limitations 

of the actual programs: when solving practical problems such as the 

turbine disc analysis of example 4.5.4, the use of disc files was 

obviouslv necessary to allow for a large number of cells to be employed 

in conjunction with time-marching scheme BEM1A and to avoid the need of 

(unnecessarily) recomputing matrices, thus reducing the required computer 

CPU time for scheme BEM2. Furthermore, for problems involving a large 

number of boundary elements like this one, more effective system solver 

algorithms exploring the sparsity of the system matrix should also be 

developed. These and other suggestions for improving the efficiency of 

the programs are further discussed in chapter 7. 

The main characteristics of the programs developed are as follows: 

Program BEM2DSP: solution of two-dimensional steady potential problems 

governed by Laplace's or Poisson's equation. Includes constant and 

linear boundary elements and allows for Dirichlet, Neumann, Cauchy (mixed), 

Robin oy free surface boundary conditions, internal sources, finite, 

infinite or semi-infinite domains. The theory and examples of 

applications are discussed in sections 3.1 to 3.7; 
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Program BEM3DSP: solution of three-dimensional steady potential 

problems governed by Laplace's equation, employing constant elements 

(flat triangles). Allows for Dirichlet, Neumann, Cauchy or Robin 

boundary conditions and finite or infinite domains (section 3.8); 

Program BEMASSP: solution of axisymmetric steady potential problems 

governed by Laplace's or Poisson's equation. Presents the same 

features as the two-dimensional program (section 3.9); 

Program BEM2DTPl: solution of two-dimensional transient potential 

problems governed by the diffusion equation using time-marching schemes 

BEM1A or BEMlB with linear boundary elements and triangular cells. 

Allows for Dirichlet, Neumann, Cauchy or Robin boundary conditions, 

finite or infinite domains, stepwise constant u and q, stepwise linear 

u and q or stepwise linear u and quasi-quadratic q (sections 4.1 to 4.5); 

Program BEM2DTP2: same, using time-marching scheme BEM2; 

Program BEMASTPl: solution of axisymmetric transient potential problems 

governed by the diffusion equation using time-marching scheme BEMlA 

with linear boundary elements, triangular cells and stepwise constant 

u and q. Allows for Dirichlet, Neumann, Cauchy or Robin boundary 

conditions, finite or infinite domains (section 4.6). 

6.1 Description of Program BEM2DSP 

The macro flow diagram of the main structure of th2 program is 

presented in figure 6.1.1, and the subroutines called by it are shown 

in figure 6.1.2. The operations performed in each subroutine are 

described in what fol1ow8. 

I SL~ROUTINE INPUT 

In this subroutine, all the input data required by the program 

are read and printed. The input data consist of the following groups 

of cards: 
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START 

INPUT 

BLOCKD 

GENER 

FMAT 

SLNPD NO 

YES SNORM 

NO YES 

~-,O_RD ________ ~----------------------------~ 

INTER 

OUTPT 

END 

Figure 6.1.1 - Macro flaw diagram of program BEM2DSP 
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INPUT 
(I) 

BLOCKD 
(II) 

FMAT 
(IV) 

SLNPD 
(V) 

SNORM 
(VI) 

OUTPT 
(IX) 

SYMMET(a) 

INTEC(b) 

INLOC(c) 

INTEL(d) 

INLOL(e) 

INTD(f) 

SYMMET(a) 

INTEC(b) 

INTEL (c) 

INTD(d) 

Figure 6.1.2 - Subroutines called by program BEM2DSP 
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READ: ITP, N, NE, L, NC, NN, M, NS, MC, MI, FA 

ITP: code for type of element (0: constant; l:linear); 

N: number of extreme points of boundary elements (including double 

nodes) ; 

NE: number of boundary elements; 

L: number of internal points where the potential and its derivatives 

1n the xl and x2 directions are required; 

NC: number of cells; 

NN: number of internal points to define the cells; 

M: number of surfaces; 

NS: code for type of symmetry (0: no symmetry; l:symmetry with respect 

to xl; 2:symmetry w.r.t. x2 ; 3:anti-symmetry w.r.t. xl; 4:anti-symmetry 

w.r.t. x2 ; 5:symmetry w.r.t. xl and x2 ; 6:anti-symmetry w.r.t. xl and x2 ; 

7:symmetry w.r.t. xl' anti-symmetry w.r.t. x2 ; 8:anti-symmetry w.r.t. 

xl' symmetry w.r.t. x2); 

MC: code for type of region (0: bounded; l:unbounded); 

Ml: code fur type of boundary conditions of the problem (O:Dirichlet, 

mixed or Robin; number of boundary node with specified potential value: 

~cumann; 1000:free surface); 

FA: specified potential value (Neumann boundary conditions only). 

If the boundary conditions are of the free surface type, 

READ: NFS, NLS, SN 

NFS: number of f~rst node on the free surface; 

NLS: number of last npae un the free surface; 

SN: maximum acceptable error for free surface location. 

READ: (1PR(I), NL(I) , NFN(I), NLN(I), I=l,M) 

IPR(I): code for type of each surface (0: closed; 1: open); 

NL(I): number of last node on each surface; 
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NFN(1): code for the first node on each surface (1: node located over 

a symmetry axis; 2: node located over an anti-symmetry axis; 0: otherwise); 

NLN(1): code for the last node on each surface (as previously). 

The above data are necessary for the automatic generation of the 

connectivity of the boundary elements since multiply-connected regions 

can be considered. By closed surface, we mean a surface whose first 

and last nodes form a boundary element (see figure 6.1.3). 

6 
7~--------__ --------~ 

5 
a) 

6 
7 .---------4---------~ 

5 

b) 

8 4 4 

~----------.---------~~--~X1 ~----------._----------~-----X1 
2 3 1 2 3 

Figure 6.1.3 - Types of surfaces: a) Closed; b) open 

READ: (X1(1), X2(1), 1=1, N) 

Xl(I), X2(I): cartesian coordinates of extreme points of boundary 

elements (coincident with the boundary nodes for the linear case). 
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The sequence is given 1n counter-clockwise direction for external 

surfaces or in clockwise direction for internal surfaces. 

READ: (KODE(I) , FI(I), TO(I) , 1=1, Nl) 

Nl: parameter that equals NE for constant elements or N for linear 

elements; 

KODE(I): code for type of boundary condition at each node (0: prescribed 

potential; 1: prescribed flux; 2: Robin-type); 

FI(I): prescribed value (the value of alb in equation (3.2.1) or h in 

equation (3.2.12) if KODE(I)=2); 

TO(I): the value of dla in equation (3.2.1) or u 1n equation (3.2.12) 
s 

(KODE(I)=2 only). 

If there are internal sources, 

READ: (Xl(I), X2(I), I=N+l, N+NN) 

Xl(I), X2(I): cartesian coordinates of cell nodes. 

READ: (NOl(I), N02(I), N03(I), N4(I), (PI(J), J=1,7), I=l,NC) 

NOl(I), N02(I), N03(I): connectivity of cell I; 

N4(I): code for variation of function p (equation (3.3.1» 

within each cell (0: constant; 1: given by points); 

PI(J): value of function p at each integration point 1n the cells 

(if N4(I)=0, only the value of PI(l) is needed). 

If the potential and its derivatives with respect to xl and x2 

are required at a number of internal points, 

READ: (Xl(I), X2(I), I=N+NN+l, N+NN+L) 

Xl(I), X2(I): cartesian coordinates of internal points. 

II SUBROUTINE BLOCKD 

In this subroutine, the coordinates of integration points and 

the weighting factors for the Gaussian and Hammer's numerical integration 

methods are given and kept in COMMON. 
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III SUBROUTINE GENER 

The boundary elements connectivity 1S generated and their length 

calculated. If constant elements are employed, the coordinates of the 

boundary nodes (mid-point of each element) are computed. A parameter 

for the symmetry loop is set and, if there are internal sources in the 

problem, the area of the cells is also calculated. All values are 

printed, so that they can be checked for input errors. 

For the case when linear elements are employed, the discontinuities 

1n the boundary conditions at corners or singular points are taken into 

account through double nodes, i.e. nodes with the same coordinates but 

different boundary conditions. The zero-length elements formed by 

them do not affect the computation and therefore are not considered as 

elements in the program. Note that it is not possible to specify the 

potential at both nodes forming a double node since this would cause 

the system matrix to be singular. 

IV SUBROUTINE FHAT 

This subroutine computes the coefficients of matrices G and H 

1n equation (3.1.8) and introduces the prescribed boundary conditions 

of the problem 1n su~h a way that the system matrix K and the vector F 

of independent terms (equation 3.1.11)) are directly assembled. 

If the problem under consideration presents symmetry (or anti­

symmetry), only one half or one quarter of the actual region needs to 

be discretised and so, for each position of the source point, we need 

to reflect the discretised region over the axes of symmetry (or anti­

symmetry) in order to form the final system of equations. This means 

that although only NE ~r N) p0sitions of the source point are considered, 

the integration is performed over the entire regLon (2NE or 4NE elements). 

The resulting coefficients, however, are directly condensed such that 

the final system of equations is of order NE x NE (or N x N). For 
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computational purposes, it is more convenient to reflect the source 

points instead of the boundary elements, and this strategy is adopted 

in the program. 

For Neumann problems, a 'normalising' condition (see example 

3.1.2) 18 imposed and the order of the system of equations reduced 

by one. 

IVa SUBROUTINE SYMMET 

The coordinates of the source point are reflected over the 

symmetry axes according to the type of symmetry of the problem. 

IVb SUBROUTINE INTEC 

The off-diagonal coefficients of matrices G and H,for constant 

elements, are computed through numerical integration (see equations 

(3.1.15». 

IVc ~,UBROUTINE INLOC 

The diagonal coefficients of matrix G, for constant elements, 

are computed through analytical integration (equation (3.1.16». The 

diagonal coefficients of matrix H are directly taken as TI. 

IVd SUBROUTINE INTEL 

Same as INTEC but for linear elements (see equations (3.1.19». 

IVe SUBROUTINE INLOL 

Computes only the diagonal coefficients of matrix G, for linear 

elements, through analytical integration (equation (3.1. 21». The 

diagonal coefficients of matrix H are computed in FMAT through co.nstant 

potential considerations (equ~tion (3.1.10) or (3.6.9». 

If there are internal sources, 
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IVf SUBROUTINE INTD 

Computes the contribution of the internal sources to the 

vector F of independent terms through numerical integration (equation 

(3.3.3». The Jacobian in this equation is simply twice the area of 

the cell. 

V SUBROUTINE SLNPD 

This is a standard subroutine to solve a system of equations 

using Gauss elimination, considering a full, non-synnnetric, non-positive 

definite matrix [89]. 

If there is a free surface, 

VI SUBROUTINE SNORM 

The calculated potential at every nodal point along the free 

surface is compared with its elevation; if the difference (SNA) between 

these two values is greater than the maximum acceptable error (SN), 

this difference is algebraically added to the elevation of the nodal 

point and the program returns to subroutine GENER to recalculate the 

length of the modified elements. 

VII SUBROUTINE REORD 

In this subroutine, the arrays containing the prescribed and 

calculated boundary values of u and q are reordered. If a Robin-type 

condition was specified, the values of q are computed through 

equations (3.2.1) or (3.2.12). 

If there are internal points where the values of u, au/axl and 

au/ax2 are required, 

VIII SUBROUTINE INTER 

The values of u, au/axl 

equations (2.4.5) and (2.4.9). 

* 

and au/ax2 are computed by using 

* The kernels au (p,s)/ax.(s) and 
1. 

aq (p,s)/ax. (S) (i =1,2) in (2.4.9) are of the form, 
1. 



* au (p,S) 
ax. (S) 

1. 

* aq (p ,s ) 
ax. (S) 

1. 

= 

= 
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x. (p) - x. (S) 
1. 1. 

2 yep,S) [x. (p) - x. (S)] 
1. 1. 

n. (S) 
1. 

being n.(S) the components of the unit normal vector. 
1. 

This subroutine calls SYMMET, INTEC or INTEL (where the above 

coefficients are also calculated) and INTD, all of which have been 

previously described. 

IX SUBROUTINE OUTPT 

This subroutine outputs the results for boundary and required 

internal points. 

6.2 Description of Program BEM3DSP 

The structure of this program is simpler than the previous one, 

since it does not include options of different types of elements (only 

flat triangles with piecewise constant u and q variations were 

implemented), it does not consider free surface problems nor anti-

s:;mmetry. Furthermore, the connectivity of the boundary elements is 

given as input data instead of being automatically generated. But 

all these features can be easily included in the program since they 

present no theoretical problems and were not considered only for the 

sake of simplicity. 

The macro flow diagram of the main structure of the program is 

the same as previously (figure 6.1.1) without the IF statement and 

the subroutines called by it are the ones labelled I to V and VII to IX 

in figure 6.1.2, with subroutine FMAT(V) calling only SYMMET(a), INTEC(b) 

and INLOC(c) and subroutine INTER(VIII) calling SYMMET(a) and INTEC(b). 

The operations performed it. each subroutine are now as follows: 
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I SUBROUTINE INPUT 

READ: N, NE, L, NS, Ml, FA 

N: number of points to define the boundary elements; 

NE: as in 6.1; 

L: as in 6.1; 

NS: code for type of symmetry (0: no symmetry; 1: symmetry with respect 

to the plane x2-x
3

; 2: symmetry w.r.t. xl -x3; 3: symmetry w.r.t. xl -x2; 

4: symmetry w.r.t. x2-x3 and xl -x3 ; 5: symmetry w.r.t. x2-x3 and xl -x2 ; 

6: symmetry w.r.t. xl -x2 and x l -x3 ; 7: symmetry w.r.t. xl -x2' xl -x3 and 

x
2
-x

3
); 

Ml: code for type of boundary conditions of the problem (0: Dirichlet, 

mixed or Robin; number of boundary node with specified potential value: 

Neumann); 

FA: as in 6.1. 

READ: ,Xl(I) , X2(I) , X3(I) , 1=1, N) 

Xl(I), X2(I), X3(I): cartesian coordinates of points defining the 

boundary elements. 

READ: (NOl(I), N02(I) , N03(I), 1=1, NE) 

NOl(I) , N02(I) , N03(I): connectivity of the boundary elements. These 

three values are given in counter-clockwise direction for internal 

surfaces or in clockwise direction for external surfaces. 

READ: (KODE(I) , FI(I), TO(I), 1=1, NE) 

As defined in section 6.1. 

If the potential and its derivatives with respect to xl' x2 and x3 are 

required at a number of internal points, 

READ: (Xl(I), X2(I), X3(I), I=N+l, N+L) 

Xl(I), X2(I) , X3(I): cartesian coordinates of internal points. 
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II SUBROUTINE BLOCKD 

In this subroutine, the coordinates of integration points and 

the weighting factors for Hammer's numerical integration scheme are 

given and kept in COMMON. 

III SUBROUTINE GENER 

The coordinates of the boundary nodes (centroid of each element) 

are calculated. A parameter for the symmetry loop is set. The area 

and unit normal vector for each boundary element are computed, being 

the latter obtained through the cross-product, 

n(I) = N02 (I) -NO 1 (I) N03(1)-NOl(l) 
N02 (I) -NOI (I) N03(I)-NOl(I 

All the above values are printed, so that they can be checked for 

input errors. 

IV SUBROUTINE FMAT 

All remarks made for two-dimensional problems are also valid here, 

being the off-diagonal coefficients of matrices G and H now computed 

through equations (3.8.7), the diagonal coefficients of G computed by 

using (3.8.13) and the diagonal coefficients of H directly taken as 2TI. 

V SUBROUTINE SLNPD 

As in section 6.1. 

VI SUBROUTINE REORD 

As in section 6.1. 

If there are internal points where the values of u, au/ax1 , 

au/ax2 and au/ax
3 

are required, 

VII SUBROUTnm INTER 

* * As in 6.1, being the kernels au (p,s)/ax. (5) and 
1. 

aq (p ,S) lax. (S) 
1. 

(i=1,2,3) in equation (2.4.9) of the form, 



* 3u (p,S) 
3x. (s) 

~ 

* 3q (p ,S) 
3x. (8) 

~ 

= 

Xi (p)-Xi (S) 

r3(p,S) 
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3Y(p,S) [X. (p)-X. (S)J 
~ ~ 

r 5(p,S) 

n. (S) 
1. 

- r 3(p,S) 

where yep,S) =[~(p)-~(S)] nl(S) + [~(p)-~(S)] n2(S) 

+ [X3(P)-~(S)J n3(S) and niCS) are the components of the unit 

normal ve ctor . 

VIII SUBROUTINE OUTPT 

As in section 6.1. 

6.3 Description of Program BEMASSP 

TIle structure of this program is exactly the same as the one for 

two-dimensional problems (see figure 6.1.1), as well as the subroutines 

called by it (figure 6.1.2). Note, however, that the system of 

coordinates is now cylindrical instead of cartesian, and that some 

of the subroutines undergo the following modifications: 

I SUBROUTINE INPUT 

In the first data card, it should be noted that s~nce symmetry 

with respect to the Z-axis (the axis of revolution) is implied in the 

formulation, the parameter NS refers only to the R-axis and can take 

the values 0 (no symmetry), 1 (symmetry) or 2 (anti-symmetry). 

II SUBROUTINE BLOCKD 

Apart from the data mentioned in section 6.1, the coefficients 

of the polynomial approximations of the complete elliptic integrals 

(see appendix A) are also given. 

IVb SUBROUTINE INTEC 

The off-diagonal coefficients of matrices G and H, for constant 

elements, are computed through numerical integration as (see equations 
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(3.1.6). (3.1.15) and (3.9.7», 

where 

H .. 
~J 

G .• 
~J 

-* u 

= 

and 

JL. 4 
J 2" 2: 

k=l 

JL. 4 -* J 2: uik 2 k=l 

-* q are given 

IVc SUBROUTINE INLOG 

\: Wk 

in (3.9.4) and (3.9.6), respectively. 

The length of the boundary element under consideration is tested 

to see if it satisfies equation (3.9.13). If this is not so, the element 

is divided into a part of length L around the singularity fulfilling 

condition (3.9.13) and where approximations (3.9.11) and (3.9.12) are 

valid and the remainder which is to be numerically integrated. This 

numerical integration is carried out by calling subroutine INTEG while 

the contribution of the part around the singularity (the whole element 

if equation (3.9.13) is initially satisfied) is computed through 

analytical integration (equation (B.4) or (B.S». The diagonal 

coefficients of matrix H are now computed in FMAT through constant 

potential considerations (equation (3.1.10) or (3.6.9». 

IVd SUBROUTINE INTEL 

Same as INTEG but for linear elements, being J .. and G .. now 
~J ~J 

given by (see equations (3.1.6), (3.1.19) and (3.9.7», 

where the interpolation functions ~ are given in (3.1.17). 

IVe SUBROUTINE INLOL 

Same as INLOG but for linear elements, thus the contribution 

of the analytically integrated part of the element to the diagonal 
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coefficients of matrix G is given by (B. 11) , (B.12), (B.14), (B.lS) or 

(B.16). 

IVf SUBROUTINE INTD 

Same as in section 6.1, being the contribution of the internal 

sources to the vector F of independent terms now given by (see 

equations (3.3.2) and (3.3.3», 

IQ p(s) u 'h.B) R(s) dQ(s) 

VIII SUBROUTINE INTER 

Only the value of function u is computed at the required 

internal points. If its derivatives with respect to the Rand Z 

directions are also required, expressions for the kernels 

-* -* -* -* au (p,S)/aR(S), au (p,s)/az(s), aq (p,S)/aR(S) and aq (p,S)/~Z(S), 

although cumbersome, can be easily derived. 

6.4 Description of Program BEM2DTPl 

The macro flow diagram of the main structure of the program is 

shawn in figure 6.4.1, and the subroutines called by it are depicted 

in figure 6.4.2. The operations performed in each subroutine are as 

follows: 

I SUBROUTINE INPUT 

The input data required by the program consist of the following 

groups of cards: 

READ: ITP, N, NE, L, NC, NN, M, NS, NBC, NUO 

ITP: code for type of analysis (1: stepwise cons tant u and q, scheme 

BEMlA; 2: same, sCheme BEMlB; 3: stepwise linear u and q, sCheme BEMlA; 

4: same, scheme BEMlB; 5: stepwise linear u and quasi-quadratic q, 

scheme BEMIA; 6: same, scheme BEMlB); 
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START 

INPUT 

BLOCKD 

GENER 

DO 1=1, NBC 

FMAT 

DO J=l, 1TM(1) 

FVEC 

BOUNCD 

SLNPD 

INTER 

OUTPT 

STEAD 

YES 

NO 
NO 

YES 
NO 

YES 

END 

Figure 6.4.1 - Macro flow diagram of Program BEM2DTPl 
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INPUT 
(I) 

BLOCKD 
(II) 

GENER 
(III) 

FMAT 
(IV) 

FVEC 
(V) 

BOUNCD 
(VI) 

LNPD 
(VII) 

SYMMET(a) 

INANC(b) 

INMATC(c) 

INANL(d) 

INMATL(e) 

INANQ(f) 

INMATQ(g) 

ANG(h) 

INCONl(i) 

INCON2(j) 

Figure 6.4.2 - Subroutines called by program BEM2DTPl 

INANC 

INANe 
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N: number of extreme points of boundary elements (including doubles 

nodes); 

NE: number of boundary elements; 

L: number of internal points where the value of u is required; 

NC: number of cells; 

NN: number of internal points to define the cells; 

M: number of surfaces; 

NS: code for type of symmetry (0: no symmetry; 1: symmetry with 

respect to Xl; 2: symmetry w.r.t. x2; 3: symmetry w.r.t. Xl and x2); 

NBC: number of different boundary conditions in time; 

NUO: code for variation of initial conditions (0: constant; 1: given 

by points). 

READ: TD, TI, SN 

TD: material parameter k; 

TI: ini~ial value uo (only if NUO = 0); 

SN: tolerance for the absolut norm (to consider that a steady-state 

was reached), 

READ: (IFR(I), NL(I), 1=1, M) 

IPR(I): code for type of each surface (0: closed; 1: open); 

NL(I): number of last node on each surface. 

READ: (Xl(I), X2(I), KODE(I) , 1=1, N) 

Xl(I), X2(I): cartesian coordinates of extreme points of boundary 

elements (coincident "lith the boundary nodes). The sequence is 

given in counter-clockwise direction for external surfaces or in 

clockwise direction for internal surfaces; 

KODE(I): code for type of boundary condition at each node (0: 

pres cribed potential; 1: pres cd bed flux; 2: Rob in-type) . 
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If ITP is greater than 2, 

READ: (FIO(I). DFIO(I), 1=1, N) 

FIO(I): initial boundary value of u (the value of alb in equation 

(4.5.1) or h in (4.5.4) if KODE(I)=2); 

DFIO(I): initial boundary value of q (the value of dla in equation 

(4.5.1) or u in (4.5.4) if KODE(I)=2). 
s 

READ: (ITM(I), TS(I), 1=1, NBC) 

lTM(I): number of time steps; 

TS(I): time step value. 

READ: (FI(Il,J), TO(Il,J), J==l,N, 1=1, NBC) 
I 

II = E ITM(i) TS(i) 
i=l 

FI(II,J): prescribed boundary value at time II (the value of 

alb in (4.5.1) or h 1n (4.5.4) if KODE(J)=2); 

TO(Il,J): the value of d/a in (4.5.1) or u in (4.5.4) at time s 

II (KODE(J)=2 only). 

READ (Xl(I), X2(I), I=N+l, N+NN) 

Xl(I), X2(I): cartesian coordinates of cell nodes. 

READ: (NOl(I), N02(I), N03(I), N4(I), (TU(J), J=1,7), I=I,NC) 

NOl(I), N02(I), N03(I): connectivity of cell I; 

N4(I): code for variation of initial conditions within each cell 

(0: constant; 1: given by points); 

TU(J): initial value of u at each integration point in the cells 

(if N4(I)=O, only the value of TU(l) is needed). 

If the value of u is required at a number of internal points, 

READ: (Xl(I), X2(I), I=N+NN+l, N+NN+L) 

Xl(I), X2(I): cartesian coordinates of internal points. 
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II SUBROUTINE BLOCKD 

In this subroutine, the following numerical data are given and 

kept in COMMON: 

(a) The coordinates of integration points and the weighting factors 

for the (six-points) Gaussian numerical integration scheme, 

employed in the computation of boundary integrals; 

(b) The same for the (quintic) Harmner's numerical quadrature, 

employed in the computation of the domain integral with 

scheme BEMlA; 

(c) The san~ for the (four-points) Gaussian numerical integration 

method, employed Ln the computation of the domain integral 

with scheme BEMlB; 

(d) The coefficients of the polynomial and rational approximations 

of the exponential-integral and the error functions (see 

appendix A) . 

III SUBROUTINE GENER 

The boundary elements connectivity is generated and their length 

calculated. A parameter for the syrmnetry loop is set. The area of the 

cells is calculated, as well as the coordinates of the integration 

points in each cell. All values are printed (apart from the last ones), 

so that they can be checked for input errors. 

IV SUBROUTINE FMAT 

This subroutine computes one of the following: 

(a) The coefficients of matrices G, Hand B in equation (4.1.6) and 

of matrices G' , HI and B' Ln (4.2.1), if lTP=l or 2; 

(b) The coefficients of matrices Gl , G2 , HI , H2 and B in equation 

(4.1.15) and of matrices Gil , G,2, Hil , H,2 and "S' in (4.2.2), 

if ITP=3 or 4; 
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(c) The coefficients of matrices Gl , G
2

, G3, HI, H2 and B in the BEMI 

equivalent of equation (4.5.8) and of the corresponding 

. ,1 ,2 ,3 ,1 ,2 d I' • matr1ces G ,G ,G ,H ,H an B for 1nternal p01nts, 

if ITP=5 or 6. 

All the integrands of the integrals that form the coefficients 

of the above matrices are strongly dependent on the non-dimensional 

parameter a defined in (4.1.11) and quickly tend to zero as the 

value of this parameter becomes large. Thus, a maximum value of a 

above which the corresponding coefficients in the matrices are taken 

as zero was then fixed, by trial and error, as 12. 

Finally, the matrices are conveniently reordered and stored. 

IVa SUBROUTINE SYMMET 

The coordinates of the source point are reflected over the 

syn~try axes according to the type of symmetry of the problem. 

IVb SUBROUTINE INANC 

The off-diagonal coefficients of matrices G and H and all the 

coefficients of matrices G' and H' (which present no singular terms), 

for the case when ITP=l or 2, are computed through numerical 

integration (see equations (4.1.33». 

IVc SUBROUTINE INMATC 

The diagonal coefficients of matrix G, for ITP=l or 2, are 

computed through analytical integration (see equation (4.1.38». The 

diagonal coefficients of matrix H are set to zero (see discussion at 

the end of section 4.1) . 

IVd Su~ROUTINE INANL 

The off-diagonal coefficients of matrices G2 , HI and H2 and all 

the coefficients of matrices Gl , G,l, G,2, H,l and H,2,for ITP=3 or 4, 
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are computed through numerical integration (equations (4.1.34». 

IVe SUBROUTINE INMATL 

The diagonal coefficients of matrix G2 , for ITP=3 or 4" are 

computed partly by analytical integration and partly by numerical 

integration (see equation (4.1. 42». The contribution of the 

analytically integrated part is evaluated in INMATC. The diagonal 
Al A2 

coefficients of matrices Hand H are set to zero. 

IVf SUBROUTINE INANQ 

3 I 2 The off-diagonal coefficients of matrices G ,H and H and all 

the coefficients of matrices Gl , G2, G'\ G12 , G,3, Hil and HI2 , for 

ITP=5 or 6, are computed through numerical integration (equations 

4.5.10» . 

IVg SUBROUTINE INMATQ 

Computes the diagonal coefficients of matrix G3 , for ITP=5 or 6, 

in a similar way as is done in INMATL. The diagonal coefficients of 
Al A2 

matrices Hand H are set to zero. 

Iml SUBROUTINE ANG 

Computes the coefficients c. (equation (4.1.47». 
1 

Ivi SUBROUTINE INCONl 

This subroutine computes the coefficients of matrices 13 and B' , 

for ITP=l,3 or 5, through numerical integration (equation (4.2.5». 

IVj SUBROUTINE INCON2 

The Same as INCONl, for ITP=2,4, or 6 (equation (4.2.11». 

V SUBROUTINE FVEC 

This subroutine updates the vector of initial conditions uS1ng 
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equation (4.2.1) if ITP=l or 2, equation (4.2.2) if ITP=3 or 4 or 

equivalent if ITP=5 or 6. 

VI SUBROUTINE BOUNCD 

In this subroutine, the vector F of independent terms is 

computed through appropriate products of matrices G or H by the 

prescribed boundary conditions for the actual time step plus the 

product of matrix B by the initial conditions at the beginning of 

the step. 

VII SUBROUTINE SLNPD 

As described in section 6.1. 

If there are internal points where the value of u is required, 

VIII SUBROUTINE INTER 

Computes the value of u at internal points by using equation 

(2.8.6). If the derivatives of u with respect to xl and x2 are also 

required, they can be calculated as for the steady-state case. 

IX SUBROUTINE OUPT 

As described in section 6.1. 

X SUBROUTINE STEAD 

Computes the absolut norm of the unknowns. 

6.S Description of P~ogram BEM2DTP2 

The macro flow diagram of the main structure of this program 

and the subroutines called by it are presented ~n figures 6.S.1 and 

6.5.2, respectively. The operations performed in each subroutine 

are now as follows: 

I SUllIROU'tINE INPUT 

READ: ITP, N, NE, L, M, NS, NBC, NUO 

ITP: code for type of analysis (1: stepwise constant u and q; 2: 
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START 

INPUT 

BLOCKD 

GENER 

DO 1=1, NBC 

DO J=l, ITM(I) 

BOUNCD 

FMAT 

SLNPD 

REORD 

INTER 

OUTPT 

STEAD 

YE 

NO 

NO 

END 

Figure 6.5.1 - Macro flow diagram of Program BEM2DTP2 
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INPUT 
(I) 

BLOCKD 
(II) 

GENER 
(III) 

BOUNCD 
(IV) 

FMAT 
(V) 

SYMMET(a) 

INANC(b) 

INMATC(c) 

INANL(d) 

INMATL(e) 

INANQ(f) 

INMATQ(g) 

ANG(h) 

INCON(i) 

Figure 6.5.2 - Subroutines called by program BEM2DTP2 

INANC 

INANC 
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stepwise linear u and q; 3: stepwise linear u and quasi-quadratic q); 

N, NE, L, N, NS, NBC, NUO: as in 6.4. 

READ: TD, TI, SN 

As in 6.4. 

READ: (IPR(I), NL(I). I=l,M) 

As in 6.4. 

READ: (Xl(I) , X2(I), KODE (I), I=l,N) 

As in 6.4. 

If NUO is equal to 1, 

READ: (DUO(I), DFUO(I), I=l,N) 

DUO(I): initial value uo of function u; 

DFUO(I): initial value qo of function q. 

If ITP is greater than 1, 

READ: (FIO(I), DFIO(I), I=l,N) 

As in 6.4. 

READ: (ITH(I), TS (I), I=l,NBC) 

As in 6.4. 

READ: (FI(Il,J), DFI(Il,J), J=l,N, l=l,NBC) 

As in 6.4. 

If the value of u is required at a number of internal points, 

READ (Xl(I), X2(I) , I=N+l, N+L) 

As in 6.4. 

II SUBROUTINE BLOCKD 

In this subroutine,the following numerical data are given and 

kept in COMMON, 
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(a) The coordinates of integration points and the weighting 

factors for the (six-points and two-points) Gaussian numerical 

integration schemes, employed in the computation of boundary 

integrals; 

(b) The coefficients of the polynomial and rational approximations 

of the exponential-integral (appendix A). 

III SUBROUTINE GENER 

The boundary elements connecti vi ty 1.S generated, their length 

calculated and a parameter for the symmetry loop is set, being all 

these values printed. 

IV SUBROUTINE BOUNCD 

This subroutine computes and stores the actual boundary 

condition values. 

V SUBROUTINE FMAT 

This subroutine computes one of the following: 

(a) The coefficients of matrices ~fF and ~fF (f=I,2, ... ,F) 

in equation (4.1.8), if ITP=l; 

(b) 

(c) 

and 

I 2 I 2 
The coefficients of matrices ~fF' ~fF' ~fF and ~fF 

(f=1,2, .•. ,F) in equation (4.1.17) , i.f ITP=2; 

The coefficients of matrices 1 
~fF' 

2 
~fF' 

3 GfF , 1 
~fF 

2 
and ~fF 

(f=1,2, .•. ,F) 

Matri ces ~FF 

in equation (4.5.8) , if ITP=3. 

121 
and ~FF (for the case when ITP=l) , ~FF' ~FF' HFF 

2 
~FF (for 

1 2 3 1 2 
ITP=2) or ~FF' GFF , ~FF' ~FF and ~FF (for ITF=3) are 

conveniently reordered and stored (they only need to be recomputed 

when TS(I)~ TS(I-l». The boundary conditions for the actual time 

step are multip lied by some of these matrices to form the vector F 

of independent terms. The coefficients of matrices ~fF and ~fF 
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I 2 I 2 I 
(ITP=I), ~fF' GfF , ~fF and ~fF (ITP=2) or ~fF' 

2 3 I 
~fF' GfF , ~fF and 

~f: (ITP=3) , for f=1,2, ... ,F-I, are accordingly mUltiplied by the 

prescribed or calculated boundary values of q and u at previous 

time steps and the result added to vector F. If the initial 

conditions of the problem are not zero, the coefficients of matrices 

G and H in equation (4.3.4) are computed, multiplied by the initial 

conditions and the result of the product also added to vector F. 

Note that the coefficients of the matrices corresponding to 

the actual time step are calculated using six Gaussian points while 

the coefficients of the matrices corresponding to the previous time 

steps are computed using only two integration points, and that the 

remarks made in section 6.4 regarding the variation of the parameter 

a are also valid here. 

Va SUBROUTINE SYMMET 

As described in section 6.4. 

Vb SUBROUTINE INANe 

The off-diagonal coefficients of matrices ~FF and ~fF 

(f=l,2, ••. ,F) and all the coefficients of matrices ~fF (f=1,2, ... ,F-l), 

for the case when ITP=l, are computed through numerical integration 

(equations (4.1.33». 

Vc SUBROUTINE INMATe 

The diagonal coefficients of matrix ~FF' for ITP=1, are computed 

through analytical integration (equation (4.1.38». The diagonal 

coefficients of matrices ~fF (f=I,2, .•• ,F-l) and ~FF are set to zero. 

Vd SUBROUTINE INANL 

2 I 2 
The off-diagonal coefficients of matrices GFF , ~fF and ~fF 

1 1 2 
(f=1,2, ..• ,F) and all the coefficients of matrices ~FF' ~fF and ~fF 

(f=1,2, .•. ,F-I), for ITP=2, are computed through numerical 
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integration (equations 4.1.34». 

Ve SUBROUTINE INMATL 

2 
The diagonal coefficients of matrix 9FF' for ITP=2, are 

computed partly by analytical integration and partly by numerical 

integration (equation (4.1.42»). The contribution of the analytically 

integrated part is evaluated in INMATC. The diagonal coefficients of 

1 2 1 " 2 
matrices RfF and ~fF (f=1,2, .•• ,F-l), ~FF and ~FF are set to zero. 

Vf SUBROUTINE INANQ 

3 1 
The off-diagonal coefficients of matrices 9FF' ~fF and 

(f=1,2, ... ,F) and all the coefficients of matrices 9F~' 9F;' 

2 3 
9fF and 9fF (f=1,2, .. "F-l) are computed through numerical 

integration (equations (4.5.10». 

Vg SUBROUTINE INMATQ 

3 
The diagonal coefficients of matrix 9FF' for ITP=3, are 

computed in a similar way as is done in INMATL. The diagonal 

1 2 1 A 2 
coefficients of matrices ~fF and RfF (f=1,2, .•• ,F-l) , ~FF and ~FF 

are set to zero. 

Vh SUBROUTINE ANG 

As described in section 6.4. 

If NUO=l, 

vi SUBROUTINE INCON 

This subroutine computes the coefficients of matrices G and H 

through numerical integration (equation 4.3.4». 

VI SUBROUTINE SLNPD 

As described in section 6.1. 
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VII SUBROUTINE REORD 

In this subroutine, the values of q are calculated at the nodes 

with KODE(I)=2 using equation (4.5.4) if ITP=I, (4.5.5) if ITP=2 or 

(4.5.7) if ITP=3. For the latter, the values of 

hf(us,f-l - uf - l ) + hf - l (us,f - uf ) 

in equation (4.5.7) are also calculated. All these values are stored. 

If there are internal points where the value of u is required, 

VIII SUBROUTINE INTER 

As described in section 6.4. 

IX SUBROUTINE OUTPT 

As described in section 6.1. 

X SUBROUTINE STEAD 

As described in section 6.4. 

6.6 Description of Program BEMASTP1 

The structure of this program is identical to the one for two­

dimensional problems (figure 6.4.1), and the subroutines called by it 

are therefore the ones shown in figure 6.4.2. However, since only 

stepwise constant variations for u and q with time-marching scheme 

BEM1A were considered, only subroutines SYMMET, INANC, INMATC, ANG and 

INCONI are now called by FMAT. Again, the system of coordinates 

adopted is cylindrical instead of cartesian and the subroutines that 

undergo some modifications are discussed in what follows. 

I SUBROUTINE INPUT 

In the first data card, it should be not~d that the only admissible 

value for the parameter ITP is 1, therefore this parameter need not be 

given. Furthermore, since symmetry with respect to the Z-axis is 

implied, the parameter NS refers only to the R-axis and can assume the 

values 0 (no symmetry) or 1 (symmetry). In addition to that, initial 
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boundary values of u and q are not required anymore. 

II SUBROUTINE BLOCKD 

The data described in (c) (see section 6.4) are not any 

longer necessary. 

IV SUBROUTINE FMAT 

This subroutines computes the coefficients of matrices G, H 

and B 1n the axisymmetric equivalent of equation (4.1.6) and of 

matrices G', H' and B' in the equivalent of (4.2.1) (see equation 

(4.6.5». These matrices are conveniently reordered and stored. 

IVb SUBROUTINE INANC 

The off-diagonal coefficients of matrices G and H and all the 

coefficients of matrices G' and H' are computed through numerical 

integration. Three different cases are considered: when the coefficient 

c defined in equation (4.6.6) is less than 0.3 (value determined 

empirically), equations (4.6.9) and (4.6.12) are employed; when c is 

greater than 0.3 but the product axc (being the parameter a also 

defined 1n (4.6.6» is less than 1.5, equation (4.6.21) and its 

-* equivalent for q are used; fin~lly, when c is greater than 0.3 and 

the product axc is greater than 1.5, equations (4.6.18) and (4.6.19) 

are employed in the calculation. 

IVc SUBROUTINE INMATC 

The diagonal coefficients of matrices G and H are computed partly 

by analytical integration and partly by numerical integration. The 

contribution of the analytically integrated part is computed through 

the appropriate set of r'ormulae dis cussed in appendix C. 

IVe SUBROUTINE INCONI 

This subroutine computes the coefficients of matrices Band B' 
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through a. numerical integration over the domain which gives (see 

equations (4.2.5) and (4.6.3)), 

2'Tf d .. L. 
B .. = 

(4'Tfk~ t) 3/2 
exp (- --2:1.) 10 (o-2:L) IJI· R. w. 

1.J 
4k~t 2k~t J J J 

If there are internal points where the value of u is required, 

VIII SUBROUTINE INTER 

Computes the value of u at internal points by using equation 

(4.6.5) • 
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7. CONCLUSIONS 

The present work basically intended to rev~ew and extend the range 
, 

of applications of the Boundary Element Method in connection with steady 

and transient potential and viscous flow problems. 

To this end, chapter 2 started by discussing both the direct and 

the indirect formulations of the method as applied to steady potential 

problems governed by Laplace's equation. It was shown that the same 

integral relationships obtained for the direct formulation through 

Green's third identity can also be derived employing the weighted 

residual technique. 

Several formulations for the BEM analysis of the diffusion 

equation were then discussed and boundary integral equations for each 

case derived by using weighted residual considerations. Since the 

formulation employing time-dependent fundamental solutions appears to 

be the most promising for general use, we concentrated our attention 

on the study of different time-marching schemes that can be adopted in 

association with it. 

Numerical procedures for the solution of the boundary integral 

equation (3.1) for steady potential problems defined over tRo-

dimensional, three-dimensional or axisymmetric regions were presented 

in chapter 3. Computer programs incorporating several of the features 

discussed in this chapter were developed (see chapter 6) and results of 

applications of such programs presented. For the axisymmetric case, new 

formulae for the analytical integration of the singular coefficients 

were derived (see appendix B) and found to be both accurate and efficient. 

If the solution of geotechnical engineering prob lems are to be attempted, 

a more realistic modelling of the soil should consider orthotropy, 

anisotropy or regions with different material properties. Although not 

imrlemented at present, these features can easily be included in t~e 

programs as shown in sections 3.4 and 3.5. Fundamental solutions for 

layered regions can also be derived as shown in section 3.7. 
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The programs developed (see description in sections 6.1 to 6.3) 

seem to predict reasonably accurate solutions and to be computationally 

efficient, thus they can be recommended for general applications. The 

use of quadratic elements should further improve the overall performance 

of the BEM since fewer elements (and probab ly fewer nodes) could be 

employed with a better description of the geometry and variation of 

the functions (see section 3.1.3). 

Th€ numerical solution of the boundary integral equation 

(4.1) for two-dimensional transient potential problems was discussed 

in chapter 4, where comparisons between results obtained with different 

time-marching schemes were also carried out. The advantages and 

disadvantages of each time-marching scheme can be summarized as 

follows: 

a) BEMlA: as presently programmed, solutions obtained with this 

scheme were by far the fastest ones. Its accuracy, in general, was of 

the same order as that of scheme BEM2 (which produced the most accurate 

results), with the domain divided into only a few cells. However, as 

discussed in section 4.4, convergence with decreasing time step values 

was not always achieved, this problem being associated to truncation 

errors introduced in the computation of the domain integral. The choice 

of the domain integration scheme adopted (Hammer's) was largely 

influenced by its wide application in conjunction with the Finite 

Element Method. Tests were carried out regarding the number of 

integration points to be used, but few comparisons were made with other 

numerical integration schemes (see example 4.4.2). If a large number 

of cells is employed, implying that some domain integration points are 

located very near the boundary, a more refined boundary discretisation 

(or integration) is generally required (see tables 4.4.3 and 4 .... 12). 

The re 1ationship be tween the d is tance from the comain integration 



265 

points to the boundary and the size of the nearest boundary element 

needs to be further studied in order that guidelines regarding the 

boundary and domain discretisations can be set. 

Another problem inherent in scheme BEMlA is the total amount 

of coefficients to be stored in the computer memory. As discussed 

in section 4.3, this number is dominated by the dimensions of matrix 

B' (M x M), being M the product of the number of integration points in 

each ce1l (seven at present) by the total number of cells. If the 

geometry of the prob lem was such that a large number of boundary eilements 

and cells was required in order to adequately represent it, the 

dimensions of matrix B' would be large and, consequently, disc files 

would be necessary to store all the coefficients. This would probably 

occur in many practical situations, like the problem analysed 1n 

example 4.5.4. But due to the fast variation of the fundamental solution 

with r a large number of zero coefficients appears in this matrix (as 

well as in all the other matrices in the formulation), and advantage 

can be taken of this fact by storing only non-zero coefficients. 

b) BEMIB: this scheme required the larges t number of input data 

cards since very refined discretisations were usually needed. This 

seems to be more dependent on the assumption of linear variation for the 

function u within each cell than on the domain integration itself, which 

is accurately performed through a semi-analytical scheme. As pointed 

out in section 4.4, this approximation is similar to the one for linear 

fini te elements and, as for FEM, great improvement should be obtained 

if higher order interpolation functions are employed. In fact, the 

only difference between this scheme and the prev;'ous one is the way the 

domain integral is computed, since the previous scheme does not place 

any restriction regarding the variation of u within each cell and 

* directly integrates the function (u u
F

-
I
) using a quintic quadrature. 
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With relation to the examples analysed with this scheme, we 

note that 4.4.1 and 4.4.3 involve problems with unbounded fluxes at 

+ t = to' So, as the time step value decreases, not only the behaviour 

of the fundamental solution tends to a Dirac delta but also the 

behaviour of function u itself tends to a step function. The 

assumption of linear variation of u within each cell then fails to 

adequately represent this behaviour. This can be clearly seen in 

tables 4.4.2 and 4.4.11 where the results for scheme BEM1B at early 

times were very poor; since the calculations at each time step use 

information from the previous one, these errors propagate, deteriorating 

the solution. Example 4.4.2 was seen to be particularly sensitive to 

the domain integration, and even the more accurate scheme BEMlA did not 

produce good results.' It is worth pointing out that further analyses 

were carried out employing scheme BEMlB, with reasonably accurate 

solutions. 

c) BEM2: this time-marching scheme presented the most accurate 

solutions and required the smallest number of data cards. It also proved 

to be convergent with decreasing time step values and refining 

discretisations. Its main problem, however, was the large computer CPU 

times reported even for solving some simple problems. This was mainly 

attributed to the way the corresponding computer program was devised, 

i.e. to the fact that the matrices accounting for the influence of 

previous time steps were always recomputed rather than stored. A 

discussion in section 4.4 showed that drastic reductions in the 

required CPU times can be achieved by storing these matrices (see table 

4.4.14), although the use of disc files would then be necessary for 

problems involving a large number of boundary elements and time steps 

2 
since the number of coefficients to be stored ~s proportional to N x F. 

Note that, as for scheme BEMlA, advantage can be taken of the sparsity 
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of the matrices and algorithms developed to store only non-zero 

coefficients. 

Since this scheme appears to be the most promising,mainly if 

extension to three-dimensional prob lems are to be attempted, some 

work still needs to be directed towards improving its computer 

efficiency. For instance, a more selective time integration scheme 

could probably be adopted sLch that, after a certain number of steps, 

the number of integration points could be dropped to one or even zero. 

Another idea would be to take average values as representatives of the 

influence of a certain number of steps: if the actual value of time is 

large, consider that the influence of steps 1 to 5, for instance, is 

approximately given by that of step 3 times the number of steps it is 

representing (5 in this case). Yet another idea is to update the initial 

conditions after a certain number of steps, i.e. combine schemes 

BEMIA and BEM2 in order to explore the advantages of both. 

Other improvements regarding computer efficiency can be made in 

all transient programs developed. Since most of the computer time is 

spent in calculating the coefficients of matrices G and H (and B, for 

schemes BEMl) , some other quantities like unit normal vectors, coordinates 

of integration points, etc., can also be stored. The selective space 

integration scheme tested, although not presenting significant savings 

for the simple prob 1 ems analysed, would probab ly produce additional 

savings for large problems. In this case, refined system solver 

algorithms that take advantage of the sparsity of the system matrix are 

also of importance. 

The use of quadratic boundary elements, as for the s teady-s tate 

case, should improve the overall performance of the method. On the 

other hand, the use of stepwise quadratic variations for u and 4 as 

discussed in section 4.1.3 implies the computaticn of a much larger 
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number of coefficients and the stepwise solution of a system of equations 

of order 2N x 2N instead of N x N: the advantages of such approximation 

(if any) remain an open question. 

The previous discussion also applies to three-dimensional and 

axisymmetric problems. Although numerical solutions of equation (4.1) 

for problems defined over fully three-dimensional regions were not 

explicitly considered, they follow almost exactly the same procedures 

derived in chapter 4. In particular, for stepwise constant variations 

of u and q, the analytical time integration of the fundamental solution 

and its normal derivative (see equations (4.1.10) and (4.1.13» 

produces the incomplete Gamma functions r(1/2, a) and r(3/2, a), 

respectively. The resulting expressions can then be numerically 

integrated with respect to space following the procedures discussed 

in section 3.8 and employing polynomial approximations for the incomplete 

Gamma functions (see equations (4.6.13), (4.6.14) and appendix A). If 

a step-by-step time marching scheme of the type BEMI is employed, the 

domain integration can be performed by using the numerical integration 

scheme suggested in [67J. 

The numerical solution of the boundary integral equation (4.1) 

for problems defined over axisymmetric regions (assuming that all 

variables are also axisymmetric) was dealt with in section 4.6. The 

axisymmetric fundamental solution was explicitly obtained by directly 

integrating ~he three-dimensional one over R ring (as was done in the 

steady-state case). Since both the fundamental solution and its 

normal derivative were expressed in terms of Bessel functions, serLes 

expansions of these functions had to be introduced in order to permit 

the analyti cal evaluation of the time integrals in the boundary integral 

equation. The resulting space integrals were calculated numerically, 

apart from the singular ones. Analytical expressions for the singular 

integrals were derived in appendix C, where the different situations 
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that may occur Ln practice were all accounted for. Results of several 

analyses were presented, with an accuracy comparable to that of two­

dimensional problems. Despite the complexity of the arithmetics 

involved, the computer CPU times required were not large. 

Comparisons between BEM solutions and available FEM solutions 

showed that, in general, the BEM results are more accurate for equivalent 

(or even coarser) discretisutions. This suggests that computer programs 

emp loying the BEM, if efficiently progrannned, can be a viable al ternati ve 

to the FEM for the solution of many practical problems (see example 

4.5.4). Note that features like sub-regions, orthotropy and anisotropy, 

internal sources and semi-infinite regions can be incorporated in the 

computer programs in a similar way as was done for the steady-state case 

(see chapter 3). 

No error analysis was attempted in the present work. As pointed 

out in [lJ, any error analysis which seeks to trace the accumulation of 

error as it arises from the many different sources (approximation of the 

geometry of the body, piecewise approximation Ln space and time of each 

unknown in equation (4.1), approximate evaluation of integrals using 

numerical integration schemes, etc.) is likely to be very complicated, 

if indeed it is possible at all. The analysis performed in [78J only 

considers errors arising from the piecewise approximation of the functions 

in space and time and suggests a criterion for determination of the 

critical time step value (relative to accuracy) somewhat arbitrarily. 

This criterion was seen to predict rather low critical values and much 

larger time steps were emp loyed in the prob lems analysed wi th no 

deterioration of the numerical solution. 

l-Jith regard to stability considerations, we note that the BEM 

formulation is implicit in character and thus relatively free from 

stability problems, as can be seen from the results of several of the 
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examples analysed (for instance 4.4.7, 4.4.8, 4.5.2 and 4.5.3). 

Finally, a formulation of the BEM for the solution of problems 

of incompressible viscous fluid motion governed by the Navier-Stokes 

equations (together with the continuity equation) was derived, employing 

the concepts presented by Lighthill [31]. 

For steady-state problems, the numerical method of solution 

follows that proposed in [93J, where it appears under the name of 

integral representation method. As showed here, this method is 

basically an extension of the BEM and as such, the numerical ~~chniques 

discussed in chapter 3 can be directly applied in its formulation. A 

numerical result for a square cavity flow problem with Reynolds number 

equals to 600 was presented in [93J, employing linear boundary elements 

and triangular cells within which the functions w, vlw and v2w were 

also assumed to vary linearly. The accuracy of the solution seems to 

be quite reasonable. 

The numerical method of solution of transient problems follows 

the ones proposed in [38J and [92J. In [92J, the method 

appears as a completely novel technique, totally unrelated to all 

previous formulations and, according to the authors, requiring the 

development of entirely new numerical procedures. Again, it was shown 

here that this formulation is a direct extension of the BEM as applied 

to the diffusion equation, where the vorticity transport equation is 

treated as a non-homogeneous diffusion equation, the non-homogeneity 

accounting for the non-linear convective term. 

Some numerical results were presented in [92J for asymptotically 

obtained steady-state solutions, employing stepwise linear variations 

for all functions, linear boundary elements and triangular cells with 

linear interpolation functions. However, no details were given about 

the numerical integration schemes adopted and numerical problems arising 

in the formulation. 
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Clearly, the use of a time-marching scheme of the type BEM2 is 

impractical in this case due to the presence of the convective term, 

which would have to be included through a summation of domain integrals. 

The time-marching scheme adopted in [92J is of the type BEM1B: although 

the variation of the vorticity within the domain is generally smooth, 

care has to be taken due to the numerical problems that appear when 

using very small time step values. 

Note that since for transient problems the vorticity boundary 

values are not computed from a direct enforcement of satisfaction of 

the no-slip condition at solid boundaries using equations (5.2.7) 

and (5.2.8) (as was done in the steady-state case), there is no reason 

to preclude the use of a time-marching scheme of the type BEM1A. 

Computer programs for the solution of the above-mentioned 

problems are currently under way, and it is hoped that the experience 

gained in the solution of the Laplace and diffusion equations will help 

in deciding which numerical procedures are best suited for these 

problems, and that extensions to three-dimensional and axisymmetric 

analyses can also be developed following the numerical procedures 

derived in this work. 
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APPENDIX A 

For convenience of the numerical computation, the special 

functions that appear throughout the main text can be evaluated by 

using polynomial and rational approximations as follows [46]: 

Con~lete Elliptic Integrals 

K(m) 
2 1.3862944 + 0.1119723 m1 + 0.0725296 m1 

2 + (0.5 + 0.1213478 ~ + 0.0288729 m1 ) log(l/ml ) + sCm) 

o ~ m < 1, m1 = 1 - m, Is(m)1 ~ 3 x 10-5 

E (m) 2 = 1. + 0.4630151 m1 + 0.1077812 ml + (0.2452727 ml 
2 

+ 0.0412496 ~ ) log(1/m1) + sCm) 

o ~ m < 1, Is(m)/ < 4 x 10-5 

~xponentia1-Integra1 

E1 (x) = -0.57721566 + 0.99999193 x - 0.24991055 x
2 

+ 0.05519968 x3 - 0.00976004 x4 + 0.00107857 x5 - log x + sex) 

o ~ x ~ 1,/s(x) I < 2 x 10-7 

E1 (x) (x4 
+ 8.5733287401 x3 

+ 18.0590169730 x2 
+ 8.6347608925 x 

+ 0.2677737343)/ [(x4 + 9.5733223454 x3 + 25.6329561486 x
2 

+ 21.0996530827 x + 3.9584969228) xe
x 

] + dx) 

1 ~ x < co, I E: (x) / < 2 x 10-8 

Error Function 

2 erf(x) = 1 - (0.3480242 - 0.0958798 m + 0.7478556 m ) 

1 
m = 1+0.47047 x ' erfc(x) = 1 - erf(x) 

o ~ x < "", /dx)1 ~ 2.5 x 10-5 

2 -x m e + s (x) 
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APPENDIX B 

In this appendix, the G .. coefficients for axisymmetric steady 
1.1. 

potential problems are derived by means of analytical integration of 

the corresponding singular integrals. 

Constant Elements 

With reference to figure B.l, we can write: 

R(S) R(P) t 
= - ~ '2 sin a 

Z (S) Z(P) + ~ 
t = '2 cos a (B .1) 

y = 1 + 
~2 t2 

8R(P)R(S) 

Thus, the expression to be evaluated is of the form, 

G •• 
1.1. 

u (P ,S) R(S) dr(S) = - - log ( ) R (S) d~ 
I 

t/2 * t 1 1 R,2 II! 
R!(P) 2 256R(P)-1 

-'1./2 

+ i Jl R!(S) 10g[R(S)] dt­

-1 

r R!(S) logl. I dl; ( 

-1 (B.2) 

where the first and second integrals are regular and the last one is 

calculated in the normal sense of improper integrals. 

Calling: 

R(P) b J1.. 
a = = - - sin a 2 (B.3) 
c = a + b D = a -b 

the integrals give, 

G •• 
1.1. 

= ~ [~ - log (~)J (C3/ 2 - D3/ 2) + C3/ 2 log G 
3ba~ 256a 

(B.4) 
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Figure B.l - Definitions for constant element 

R 

~ =-1 

Figure B.2 - Definitions for linear element 
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For sin a = 0 (b = 0), we can take the limit of each term 

~n (B.4) and the expression becomes simply, 

G .. = 2~[1 - log (~)J 
~~ 16a 

Linear Elements 

(B .5) 

The G •• coefficients now consist of the sum of two terms (see 
~~ 

equations (3.1.18) and (3.1.20», 

2 1 
G •• = g. + g. 
~~ ~p ~q 

(B .6) 

where we have, for element p (with reference to figure B.2), 
~ 

R(S) = R(f) + (1-~) ~ sin a p 

~ 

Z(S) = Z(P) - (l-~) -1 cos a p 
(B.7) 

(1_~)2~ 2 
Y = 1 + p 

8R(P)R(S) 

and for element q, 
~ 

R(S) = R(P) - 0+0 ...s sin a 
2 q 

~ (B.8) 
Z(S) = Z(P) + (1+0 -i cos a 2 q 

(1+~) 2~ 2 
Y = 1 + q 

8R(P) R(S) 

The expressions to be eValuated can now be written as, 

2 ~ 1 1 g. = IP - - log 
~p 2R2 (P) 2 

~ 2 1 
( p ) f R!(S) (1+~) d~ 
256R(P) -1 

+ i I1 R!(S) log[R(S)] (1+~) d~ - I1 R~(S) 
-1 -1 

log(1-~) (l+EJ d~ l 
(B.9) 

2 
1 ~ 1 1 ~ I1 1 g. = I q - - log ( q ) R 2 (S) 

~q 2R 2 (P) 2 256R(P) 
-1 

(1-~) d~ 

+ ~ I1 R!(S) log[R(S)] 

-1 

(1-<) d< -f R!(S) log(l+<) (1-<) d< ! 
-1 (B.lO) 
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in which R(S) is accordingly given by (B.7) or (B.B) and the last 

integral in each of the above formulas is calculated in the normal 

sense of improper integrals. 

form, 

where: 

The final expressions for the G.. coefficients are of the 
1.1. 

+ i (C 3/ 2 log C - D3/ 2 log D) + ~b (C5/ 2 log C - D5/ 2 log D) 

- ~ [D5/2 (~ _ log 2) + 2C(.k3/ 2 + CDI/2) - C5/ 2 (46 + A )] l 
5b 5 3 15 2) 

(B .11) 

+ v (C3/ 2 log C - D3/ 2 log D) - ~ (C5/ 2 log C - D5/ 2 log D) 
3 Th 

+ ~[c3/2(~ - log 2) + 2DC l / 2 - D3/2(~ + A ) ] 
3 3 3 4 

- ~b [c5/2(~ - log 2) + 2D (~ C3/ 2 + DC
l

/ 2) - D
5

/
2 (i~ + A4) ] ! 

(B.12) 

It 2 It 2 

Al = log (256Rtp) ) A3 = log (256im-) 

I I ! 1 

A2 = log 
b(C~+D2) 

A4 = log 
b (C 2+D2) 

4c(cLD!) 4D(Ctnl) (B.l3) 

with a = R(P) - b, v = 1 - alb in equation (B. 11) and 

a = R(P) + b, v = 1 + alb in (B.12), being b, C and D computed as 

in (B.3). 
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For SLn a = 0 (b = 0), these expressions simplify to 

2 1 Q, r89 8a J 
gip = giq ="2 L30 + 2 log (r-) (B.14) 

in which Q, equals Q, or Q, , according to the element under 
p q 

consideration. 

For the case when R(P) = 0, the fundamental solution becomes 

the three-dimensional one (multiplied by 2~) and the coefficients G .. LL 

are equal to g. 2 or g. 2, being these terms calculated as follows, 
Lp Lq 

2 
~Q, r (1+,,) 

r a d~ ~Q, sin a gip = -2- SLn = 
p 

-1 

(B.lS) 

-IT' r 1 q 
a d~ -~Q, sin a g. = -- (l-~) SLn Lq 2 q 

-1 

(B.16) 
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APPENDIX C 

In this appendix, the integration of the logarithmic singular 

terms that appear in the calculation of the G .. and H .. coefficients 
~~ ~~ 

for axisymmetric transient potential problems is carried out 

analytically. 

Two different cases have to be considered. As discussed in 

section 4.6, when the coefficient c + 0.5 and the value of x is large 

throughout the integration interval (a,oo), asymptotic expansions of the 

Bessel functions can be directly employed. Thus, expanding the exponential-

integral in equations (4.6.18) and (4.6.19) in order to isolate the 

logarithmic term (see equation (4.1.37», the G .. and H .. coefficients 
~~ ~~ 

can be divided as, 

G •• 
2 2 1 1 

gip,s + gip,ns + g. + g. 
~~ ~q,s ~q ,ns 

(C .1) 

H .. h. 2 + h. 2 + h. 1 + h. 
1 

~~ ~p,s ~p,ns ~q,s ~q ,ns 
(C.2) 

~here the subscript s stands for singular and ns for non-singular. 

For elel!lent p, we can wri te with reference to figure B.2, 
JI., 

R(S) = R(P) + (l-S) ....E. sin a 
2 p 

Z(S) = Z(P) (l-S) ~ cos a (C.3) 
2 p 

(l-S) 2 JI., 2 
B P 

l6kt, t 

and for element q, 
JI., 

R(S) = R(P) - (1+S) .3.. sin a 
2 q 

JI., 

Z(S) Z(P) + (l+~) q 
cos a 2 q (C.4) 

(1+0
2 JI., 2 

B = q 
l6kt, t 

The expressions to be evaluated are now of the form, 
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gip,s = 
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JI, I Jl,2 
PI log ( P ) 

161fR 2 (P) 16kfl t 

+2 II R!(8) log(l-E;) (1+E;) dE; 

-1 

I
I I 

R2 (8) 

-1 

(1+E;) dE; 

I 
JI, I Jl,2 1 

g.l = - 1 log ( q) I R!(8) (I-E;) dl; 
l.q,s l61fR (P) 16kflt_

l 

+2 I~IR!(S) log(I+<) (1-<) d< I 
h. 2 = Jl,p cos ap I log ( JI,~) II R-~(8) (l+l;) dE; 

l.p,S ?21fR!(P) l6kflt 
-1 

(C.5) 

(C.6) 

+2 II R-! (8) log(l-O (l+l;) dE; I (C.7) 

-1 

1 JI, cos a I Jl,2 
h. = q q log ( q) 

l.q,s 321fR1(P) l6kflt 

+2 II R-!(S) log(I+<) (1-<) d< I 
-1 

(I-E;) dE; 

(C.8) 

~n which R(S) is accordingly given by (C.3) or (C.4) and the last 

integral in each of the above formulas is calculated in the normal 

sense of improper integrals. 

Carrying out the integrals give, 

+ ~ [D5/2 (~_ log2) + 2C(2:. D3/ 2 + CDI/2) - C5/ 2 (46 + A )] I 
5b 5 3 15 2 \ 

(C.9) 
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+ ~ [ C5 / 2 (~- 10g2) + 2D (l C3 / 2 + DC l / 2 ) - D5 / 2 (46 + A ) J l 
5b 5 3 15 4 ~ 

h. 2 
l.p ,s 

(C.lO) 

= p Al (C l 2 _ Dl 2) + 2v Dl (2-log2) - C (2+A
2

) £ cos 0'. 1 / / [ /2 1/2 ] 

l6'ITbR! (P) 

+ ;b Al [ C
l

/
2 

(D-b) + Dl/2 (C+b) J + ;b [D3/2 (~- 10g2) 

+ 2CD
l

/
2 

- C
3

/
2 (~ + A2) ] ! 

h.l 
l.q,s 

(C.ll) 

- ;b A3 [ C
l

/
2 

(D-b) + Dl/2 (C+b) ] + ;b [ C
3

/
2 (~ - 10g2) 

(C.12) 

where 
£2 

Al == log (16tlt) 

£2 

A3 = log (16~t) (C.13) 

th a = R(P)-b, v = l-a/b in equations (C.9) and (C.ll), a == R(P)+b, 

v = l+a/b in equations (C.IO) and (C.12), being b, C and D computed 

as in (B.3) and A2 and A4 as in (B.13). 

For sinO'. =0 (b=O) , these expressions simplify to 

2 1 ~ [89 Q,2 ] 
Sip ,8 

== giq,s = 8'IT 30 - log (4kt.t) (C 14) 

2 ::: h. 1 ::: Q.cosa [10 £2 17 J 
,8 lq,S 16'ITa g (4kllt)-6 

(C.15) 

"Thieh cosa=±l and Q, equals £ or Q. , according to the element under 
p q 

consi 

The other Case to be considered is when the value of the 
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coefficient c tends to 0.5 but the value of x is small over part of 

the integration interval (a,oo). In this case, the integrals are 

divided into two parts (see equation (4.6.21»: evaluation of one 

results in a quickly convergent series (see equation (4.6.22» while 

the asymptotic expansions (4.6.15) and (4.6.16) can now be applied 

to the other. The value of the coefficient a' was empirically 

determined to be a' = 1.5/c and this gives 

being 

B = alb = 1.5 [CR(P)-R(S)]2 +[Z(P)-z(s)]21 

R(P) R(S) J 
Thus, we have for element p, 

3(1-~)2 Q,2 

B = -----"-p 
8R(P) R(S) 

R(S) and Z(S) given by 

3(1+~)2 Q,2 

B = ----~q 
8R(P) R(S) 

(C.3), and for element q, 

(C.16) 

(C .17) 

(C.18) 

with R(S) and Z(8) computed as in (C.4). 

The singular components of G .. and R .. can now be written as, 
~~ ~~ 

Q, 1 p log 
161fR! (P) 

3 Q,2 1 
( p) I R~ (8) (l+t;) d~ 
8R(P) -1 

1 

- I R~(S) log[R(S)] 

-1 

(l+~) d~ + 2 J1 R!(S) log(l-~) (1+~) d~ 
-1 (C.19) 

Q,2 1 3 Q,2 1 
q log ( q) I R! (S) (1-0 d~ 

l61fR~(P) 8R(P)_1 
= -

- 11 RA(S) log[R(S)] (1-~) d~ + 2 II R~(S) log(l+~) (1-~) d~ I 
-1 -1 ) 

(C.20) 
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1 cos a ~12 
p P { log ( P ) 

321fR! (P) 8R(P) II R- ~ (S) (1+1;) dl; 

-1 

+ 2 Jl R-!(S) log(l-I;) (1+1;) dl; } 

-1 (C.2l) 

1 cos a 
= q q 

1 
321fR 2 (P) 

3 12 

{
log ( q ) 

8R(P) 

1 II I } R-Z(S) log[R(S)] (1-1;) dl;+2 R- 2 (S) log(l+l;) (1-1;) dl; 

-1 (C.22) 

where, again, R(S) is accordingly given by (C.3) or (C.4) and the last 

integral in each of the above formulas is calculated in the normal 

sense of improper integrals, being all the others regular. 

Comparing expressions (C.19) to (C.22) with (C.5) to (C.8) we 

notice that one more integral is included in each of the new 

expressions and apart from that, the only difference between them is 

in the log term mUltiplying the first integral. Thus, the analytical 

evaluation of (C.l9) to (C.22) give 

(C.9) lp {v [3/2 2 3/2 2 ] ----!;-- - C (- - logC) - D (-3 - logD) 
81fbR~ (P) 3 3 

+ ~b [c5
/
2 (t - logC) - D

5
/

2 (t - lOgD)] } (C.23) 

1 1 
giq,s = giq,s (C.lO) 

1 [c5 / 2 (~ _ logC) - D5/ 2 (~- logD) J} (C.24) - 5b 5 

h. 2 = h.
2 1 cos a { v[ c1

/ 2 1/2 J (C. 11) + p E (2 - loge) - D (2 - logD) 
~p,s l.p,S l61fbR! (P) 

+ .!.... [c3/ 2 2 3/2 ? 
lOgD)1 } (C.25) (- - logC) - D (:::.. -

3b 3 '3 
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= h. 1 
l.q,s 

(C.12) + )l,qCOS~ aq {v[ Cl/2 (2 -logC) _ Dl/2 (2 - lOgD)] 
l67fbR (P) 

- ~ [ c3
/ 2 (; _ logC) - D

3
/

2 (~- lOgD)] } 

where the coefficients 

3)1,2 
Al = log ( P ) 

8R(P) 

Al and A3 in (C.9) to (C.12) 

3)1,2 
A3 = log ( q ) 

8R(P) 

(C.26) 

are now computed as, 

(C.2]) 

and all the other coefficients are calculated as previously. 

For sina=O (b=O) , these expressions simplify to 

h.
2 

l.p,S 

:: g 1 = ~[ ~ _ log (3)1,2)] 
iq,s 87f 30 2a2 

= h.l = )l,cosa [ log (3)1,2) -.!2.] 
l.q,s l67fa 2a2 6 

(C.28) 

(C.29) 

For the caSe when R(P)=O, the fundamental solution and its 

jormal derivative along the boundary contour become (see equations 

(4.6.3) and (4.6.4», 

- * 27f d u (P ,S, tF,t) = 7 exp ( - --) 
(47fkT)3 2 4kT 

q* (P,S,tF,t) = - ---, 1 J [R(S) R, (S) 
87f2(kT)5 2 n 

d 
exp(- -) 

4k 

(C.30) 

(C.31) 

The time integrals that appear in the boundary integral equation 

(4.6.5) can be performed analytically and they give, for stepwise 

constant variations of u and q, 

-* 1 
u (i,S,tF,t) dt ~ -2k-(-7f-d-)~! (C.32) 
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-* q (i,S,tF,t) dt = ~ [R(S) R'n(S) 
kd(Tfd)~ 

- [Z(P) - Z(S)J Z'n(S) ] r(~, a) 

where d=R2(S) +[Z(P)-Z(S)]2 and a=d/(4k~t). 

The coefficients G .. and H .. are now obtained by 
11 11 

(C.33) 

analytically integrating in space the result of the time integrals 

(C.32) and (C.33). However, since only linear elements are 

considered in this work, we have that 

R ( S ) R , ( S ) - [ Z (P) - Z (S)] z, ( S ) = 0 
n n 

and the coefficients H .. become identically zero. 
11 

(C.34) 

In order to compute the coefficients G .. , we expand the 
11 

incomplete Gamma function in equation (C.32) in series as [75J, 

r (.~ 1 co ( -1) n an+! ( ) - ,a) = 1T2 - l: C.35 
2 n=O 

n! (n+D 

The integrals to be evaluated are now of the form, 

1 r(Z' a) (1+~) R(S) d~ 

where we have, for element p, 

,Q. . 
R(S) = (l-~) 2 sina 

2 ,Q.2 
d = (1-~) -

4 

and for element q, 

R(S) = (l+~) ~ sina 

2 ,Q,2 
d = (1+0 4" 

(C.36) 

(C.37) 

(C.38) 

(C.39) 

Thus, the final expressions for the coefficients G.. (which 
11 
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equal gip 
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1 or g. ) are as follows, 1q 

11- sin a. [I 00 

= P 1 P ~2 - L 
41T:! nr=(} 

(_l)n 11- 2n+l 1 
p (C.40) 

(4k6t)n+! n! (n+~)(2n+3) (n+l) 

11- sin 
= q 

00 

+ l: 
n=O 

(_l)n 11- 2n+l j 
q (C.4l) 

(4k~t)n+! n~(n+~)(2n+3)(n+l) 

and for computer efficiency, each term of the above series can be 

related to the previous one as, 

S = 
(2n+l) O-n) 11-2 

S n=l, 2,3, ... n (4k6t) (n+!) (2n+3) (n+l) n-l 

(C.42) 

So 
211-= I 

3(4Mt)2 


