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Age, period and cohort are amongst the most fundamental of demographic 
variables, and many descriptive and theoretical models of aggregate 
level demographic data involving two or all three of these date-related 
variables have been proposed. Models which involve all three variables 
have been criticised as illogical (Goldstein, 1978, 1979) and 
statistically insupportable (Glenn, 1976) because of the logical 
relationship between age, period and cohort.

This thesis shows that simultaneous age, period, cohort models are not 
necessarily illogically conceived, although statistical supportability is 
a more serious problem. The extent to which theoretical considerations 
may usefully be incorporated into such models is examine^ and methods fbr 
doing so are also explored. Particular attention is paid to the additive 
age-period-cohort model, the bimodel (derived from Gabriel's (I97l) Hiplot 
technique), and cohort-experience models (Hobcraft et al, 1979)« 
Developments of these models lead to a technique for model generation, and 
to theoretically Intriguing nuptiality and fertility models.
The use of date-related variables with individual-level data is 

explored using proportional hazards models(Cox, 1972) of World Fertility 
Survey data, and serious biasing mechanisms are found to be in operation in 
these circumstances. This analysis shows that age and the pace of previous 
fertility have a profound effect on current fertility, and finds evidence 
for a risk of infecundity following childbirth.
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Chapter 0. Introduction.

0.1 Age, Period and Cohort,

Age, period ard cohort are the most fundamental of variables for 

demographers. Data on these variables are collected in virtually all 

social surveys and censuses, and also routinely via vital registration 

systems. Age-specific demographic data have been routinely collected 

since the eighteenth century in Sweden and since the nineteenth 

century in most countries of Western Europe. Moreover, age-specific 

data contained in parish burial registers go back much further and have 

enabled latter-day demographers to gain important insights into 

historical populations (see, for example: Jones, 1980). Perhaps the 

popularity of the three variables is due to the fact that they all are 

connected with dates, and consequently are well-defined and often 

reasonably easily measured.

Of the three variables, age might appear to be the least 

important, since it could be argued that there is little point in 

discussing age trends and differentials in ahstract from the time- 

periods and cohorts from which the data are drawn. However, much of 

the work presented in this thesis is oriented towards doing just this; 

abstracting age variation from other sources of variation, in order to 

gain insights into time-invariant substantive processes underlying 

age-specific demographic data. Such processes include biological 

mechanisms, which have profound effects on fertility and mortality, 

and less direct effects on nuptiality and migration. For most types 

of demographic data, age differentials are much greater than period 

or cohort differentials, and this underlines the importance of the age 

dimension in demographic research.
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Undoubtedly economic and social conditions in any time- period 

also have a powerful effect on demographic processes: within the last 

two centuries substantial reductions in mortality and fertility rates 

have been recorded for most countries of the world. However even within 

short periods of time large fluctuations in the rates of demographic 

processes can occur, as evidenced by the recent 'boom' and 'bust' in 

fertility in developed countries, in which fertility almost doubled, then 

halved, within the space of twenty years. Wars and famines are obvious 

examples of conditions which have a direct and immediate effect on 

mortality, and these conditions also affect levels of migration, 

fertility and nuptiality. Standards of education, nutrition, hygiene 

and medical provision vary over time, and have considerable impact on 

cross-sectional mortality and fertility levels in particular.

The cohort variable is of importance since it identifies groups 

of individuals immutably throughout their lifetimes. However, in general 

it is harder to conceive of factors underlying demographic processes 

which may be linked with cohorts, rather than with periods or ages, 

since events and conditions in the history of a birth-cohort may affect 

other birth-cohorts similarly, and may not affect all members of any 

birth-cohort equally, tending to destroy whatever homogeneity each birth- 

cohort may have initially possessed. Much of the ensuing development 

is motivated by the need for a careful evaluation of the usefulness of 

the cohort variable in demographic analysis.

In some situations it is useful to consider other types of 'age' 

variable, such as duration of marriage or motherhood; and also other 

types of 'cohort' variable, such as marriage or motherhood cohort.

Further types of date—related variables include 'age—at—entry' variables 

such as age-at-marriage or motherhood. The usefulness of these varia­

bles is determined in the first place by whether or not the data 

permit their calculation.
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0.2 Modelling with age, period and cohort.

There are In general three main reaaons for modelling data: - 

to gain eabstantive insights, to validate existing substantive theory, 

and to form a basis for projections. Demographers are concerned with 

all three, although the ultimate goal is often to project. Models may 

be placed along a continuum ranging from the purely theoretical to the 

purely descriptive. A theoretical model is one which makes assertions 

about substantive phenomena thought to be underlying the data: these 

assertions may be derived from a combination of intuition, reasoning, 

previous results and possibly the data themselves. A descriptive model 

is one which asserts nothing substantively, and which aspires only to 

describe the variation in the data. For most purposes, a theoretical 

model which also describes the data well would be greatly preferred, 

provided that some reliance could be placed in its substantive assertions, 

However this view is not universally accepted in connection with 

population projection: Brass et al (1968) and Braes (1971, 1974a, b) 

have developed a class of 'relational' model applicable to any demo­

graphic age distribution, which basically requires only the substitution 

of one standard age schedule to become context-specific. This class of 

model is essentially descriptive, and can be used to separately project 

the components of population change. Brass (198O) has taken the 

removal of theoretical considerations one stage further by demonstrating 

that population size may be projected without reference even to the 

separate components of population change. At the other extreme ,

Easterlln and Condran (1976) have explained recent movements in fertility 

in England and Wales and elsewhere in purely theoretical terms involving 

cohort sizes. Projection techniques are not considered in this thesis, 

although some of the models and techniques developed may have consider­

able potential for projection. This thesis does however examine in
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detail the questions of how and to what extent theoretical consider­

ations may usefully he incorporated into models of demographic processes.

Some of the early attempts to Incorporate age into a demographic 

model were motivated by the desire to correiate the over-all level in 

an event rate of a demographic process with the age-structure of the 

process, across time-periods or cohorts. Thus age-specific models were 

proposed, applicable either to cross-sectional or longitudinal data, 

the choice usually being determined by the numbers of reasonably complete 

periods and cohorts available in the data. Most of these models were 

descriptive rather than theoretical. The earliest of such models occur 

in the field of mortality and involve both empirical distributions, as 

in the case of the Breslau life—taole of Halley in 16$^ (see Smith and 

keyfitz, 1977), and mathematical distributions due to Gompertz in 1825 

and Makeham in 1867 (see Smith and Keyfitz, 1977). In the field of 

fertility the earliest age-specific model appears to be that of Tait 

in 1866 (see Yule, 1906) who represented legitimate fertility rates 

with a simple linear function of age.

The Gompertz and Makeham laws of mortality still continue to be 

widely used today. Mortality life—table relational models involving 

one or more empirically determined age distributions have also been 

developed (Ledermann and Breas, 1959; Bourgeois-Pichat, 1962; Coale 

andih^Kmy 1966; Brass et al (1968); Brass (1971, 1974a, b); Zaba, I979;

Be Bras, 1979; Hogan and McNeil, 1979; Hobcraft, 1979).

Recent attempts to find mathematical expressions to describe age- 

specific fertility rates include: polynomials (Brass, 196O; Brass et al, 

1968); the Beta distribution (Mitra, 1967; Romanuik, 1973; Mitra and 

Romanuik, 1973); Johnson's (1949) functions (Talwar, 1974); the 

Lognormal and Gamma distributions (Duchene et al, I974); a specialised 

non-linear form due to Mazur (I965); and the Gompertz and Makeham
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funotiona (Wunsch, I966; Murphy and 1972; Murphy, 1982). As

with mortality, a number of relational models of fertility involving 

empirically determined age distributions have also been proposed (Coale 

and Trussell, 1974; Brass, 1974b; McNeil and Thkey, 1975; Pittenger, 

I98O; Murphy, 1982), Eoem et al (198I) review and test several of these 

age-specific fertility models. Relational marriage-duration-specific 

fertility models have been developed by Farid (197$) and Page (I976).

fheoreticaliy motivated models of age-specific nuptiality rates 

have been put forward by Bernes (1972) who uses a mathematical age 

distribution, and by Coale (1971) and Coale and McNeil (I972) who use 

a relational empirical formulation.

The question of whether age-specific models should be applied to 

cross-sectional or to longitudinal data has long been debated. Derrick 

(1927)has argued that cohorts provide a more consistent basis for 

projecting mortality than do periods, whilst the problems of projecting 

the most recent, incomplete, cohorts has led Brass (l974b) to take the 

opposite view. Kermack et al (19$4), analysing age-specific mortality 

rates for Sweden and Scotland, found greater regularity within cohorts 

than within periods, although Cramer and Wold (19$5) using very similar 

data could not find evidence to support this result. Frost (19$9) and 

Springett (I95O) in connection with tuberculosis mortality, and Case 

(1956a, b) and Townsend (1978) in connection with cancer mortality all 

favour, on empirical and theoretical grounds, the cohort perspective; 

but Osmond and Gardner (1982) find evidence for some cancer sites fOr a 

period perspective. In the context of fertility analysis, various 

arguments have been put forward in favour of the cohort or period 

perspectives: Easterlin (1968, 1975) suggests that 'relative cohort 

size' is responsible for changes in the age pattern of fertility, 

whilst Lee (I98O) proposes a theory of 'target' fertility determined by 

factors operating cross-sectionally. Wunsch (1979) and Preston and



McDonald (l979) come to opposite conclnsiona about period and cohort 

perspectives in the analysis of divorce rates.
The difficulty of deciding on theoretical grounds between the 

period and cohort perspectives of age-specific models has led several 

demographers to attempt to combine age, period and cohort components 

into a sing^ model. The simplest and most commonly used model of 

this form involves additive age, period and cohort parameters. This 

formulation has been used in a variety of applications in the social 

sciences, and in the demographic context has been used by Greenberg et 

al (1950) to model incidence rates of syphilis; by Saoher (1957, I960, 

1977) and Mason and Smith (1979) to model tuberculosis mortality rates; 

by Barrett (l975, 1978a, b). Beard (I965) and Osmond and Gardner (I982), 

to model site-specific cancer mortality; by Thurston (1979) for 

nuptiality rates; and by Sanderson (1979), Isaac et al (1979), Pullum, 

(198O) and Barrett (1979) with fertility data. Bnfortunately this model 

possesses a vexing identification problem, and has also been criticised 

as illiogical (Goldstein, 1978, 1979) and statistically insupportable 

(Glenn, 1976).

Hobcraft et al (1979) have noted that in many situations the concept 

of constant cohort effects within a cohort, implied by the additive age, 

period, cohort model, is unrealistic, and suggest the use of a class of 

'cohort-inversion' or 'cohort-experience' model in which cohort effects 

reflect the accumulated experience of each cohort. Bernes' (1972) 

n^tiality model in which a premrre-to-marry component depends on the 

proportion already married, and Lee's (198O) and Butz andVbrd's (1979) 
target fertility models in which couples take into account existing 

children in order to achieve a target completed fertility, all rep­

resent cohort-experience type models. In the context of mortality, 

cohort-experience elements could include the selectivity effects of
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heterogenous susceptibility to death, investigated by Vaupel et al,

(1979).

Eobcraft et al (1979) review in more detail several of the analyses 

cited above, and a number of these are also examined in the following 

chapters.

0.3 Objectives.

Several of the aims of this thesis have already been alluded to 

in the two sections above. The central objective is to contribute to 

age, period, cohort methodology bycxnsidering a number of more or less 

distinct issues.

In chapter 1, Goldstein's (1978, 1979) argument concerning the 

illogicality of age, period, cohort models is examined, and several 

techniques of dealing with the identification problem of the additive 

model are reviewed. Statistical tests for non—additivity are also 

developed.

Chapter 2 explores the possibility that simultaneoua age, period 

and cohort factors are not necessary to describe the data variation if 

a sufficiently flexible and powerful two-factor model is developed. It 

is shown in chapter 2 that a period- (or alternatively cohort-) weighted 

sum of two empirically determined age-distributions represents such a 

model. This model, termed here the 'bimodel', is therefore of the 

relational type. Its algebraic structure is the same as that of a 

model of age specific fertility suggested by McEeil and Tukey (1975), 

and also belongs to the family of models considered by Hogan and McNeil 

(1979) in the context of mortality. It is equivalent to the algebraic 

basis of the 'Biplot' (Gabriel, 1971); & technique for graphical 

representation of multivariate data, and this connection provides a 

very efficient method of estimating the empirical distributions of the
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bimo&el and a method by which the data may be revealingly displayed. 

The Biplot technique is itself closely connected with other multi­

variate techniques - in particular Principal Component Analysis and 

Correspondence Analysis (see, for example; Benze^ri, 1976), the latter 

having been used in the demographic contect by Brouard (198O) and 

Garenne (I98O). Chapter 2 below also develops some extensions and 

applications of the bimodel in demography.

Chapter $ undertakes the task of comparing cross-sectionally 

and longitudinally applied age-specific models additive age, period, 

cohort models; cohort-experience models and the bimodel on a variety 
of nuptiality, fertility and mortality^ data. The objectives are 

primarily to assess the extent to which theoretical considerations 

may be usefully incorporated into models of demographic age, period, 

cohort data; and to evaluate strategies for such incorporation. As a 

part of this evaluation the case for cohort factors versus period 

factors is examined. Particular attention is paid to the development 

of cohort-experience type models.

The first three chapters are concerned with highly aggregated 

data, which have the advantage that they are often available for long 

time-series and for a number of populations. Individual-level survey 

data, however, generally have the advantage of a much greater depth 

of information, and chapter 4 explores the use of a number of date- 

related variables, including age, period and cohort, derived from 

individual-level maternity-history data obtained from nine World 

Fertility Survey countries. This research builds on, and extends, 

work done by Braun (1980) and Casterline and Eoboraft (198I) who also 

have modelled maternity-history data using date-related variables. The

1. Some of this work, the bulk of which was originated by this 
candidate, has appeared in Eobcraft and Gilks (198I),
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methodology used here is that of proportional hazards modelling 

(Cox, 1^Y2), which has also been used in the demographic context by 

Stoto and Menken (1977), Braun and Eoem (1979), and Menken et al (l98l) 

The results of the analysis of chapter 4 demonstrate that, for 

individual-level data, date-related variables can by very powerful 

in comparison with other background variables.

Finally, in chapter 5, results and conclusions from chapters 1 to 

4 are drawn together, and suggestions for further research are made.
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Chapter 1 - Age, period, cohort models.

1.1 Introduction.

Age, period, cohort models have been in nse for at least thirty 

years, and have appeared in the epidemiological, sociological and 

demographic literatures. Yet in recent years their use has been a 

source of controversy, involving criticlma of illogicality (Goldstein, 

1978 and 1979) and statistical insupportability (Glenn, 1976). An 

Identification problem associated with mapy such models has received 

varied and often misguided attempts at resolution in the literature, 

with frequent mis-interpretations. It is the purpose of this chapter 

to clear the confusion surrounding age, period, cohort models, and to 

contribute to age, period, cohort methodology.

Age, period, cohort models are applied to data which have been 

collected on individuals at various ages (or age—groups), and at 

various points in time (or time-periods). An individual aged a at time 

p is therefore a member of the cohort of individuals born at time c, 

where a, p and c are related as follows:

a - p + c = 0 (1.1)

Typically the data to be analysed relate to categories of age, 

period, cohort, rather than to exact points on these axes, and typically 

the categories of each dimension are evenly and equally spared. In 

this typical situation, if a given observation belongs to the i^^ age, 

j period and k cohort categories, then i, j and k are related as 

follows, by virtue of equation (l.l);

i - j + k = A (1.2)

where A is constant over all the data.

With this arrangement of data, the usual age, period, cohort model 

is of the following form:

''ijk “ " * “l ^ \ (1.3)
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where is the observation of the dependent variable in the i^^ age, 

period and cohort categories, where T, a^, g, and are model 

parameters, and where is an error term. The model may be estimated

as a regression on dummy variates which represent each age, period and 

cohort category. Fienberg and Mason (1979) discuss this approach in 

the specific context of Maximum Likelihood Estimation of Logistic models 

of the form of (l.)), and compare it with the Iterative Proportional 

Pittingtechnique.

Now the parameter estimates of model (1.3) are not unique since, 

for any u , and 1, model (1.3) may be rewritten, using (1.2),

as follows:

^ijk " + (P^+li)] + [gj - (u^+lj)] + [Y^+(Ug+lk^

(1.4)+ e ijk
and replacing the items in square brackets by starred parameters:

Ljk = " V "'’j*" V * (1.5)

which is the same as model (1.3) except thab the model parameters 

differ from those in (1.3) by arbitrary linear quantities, although the 

error term is unaltered. Thus model (1.3) lacks identification due

to the four degrees of freedom in the parameters represented by^L, P ,

Uz and X in equation (I.4). The value of a first-difference in the 

parameters in equation (1.3) may be related to its value in (I.3) in the 

following manner:

^i+h " " [^i+h ^ ^ - ["i +

(1.6)
= "i+h - ^1 +

showing that first-differences in parameters are also inestimable due only 

to the degree of freedom represented by X. The value of a second- 

difference in the parameters in equation (1.3) may be related to its 

value in (I.3) in a similar manner:
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°^+2h ' ^ ^ " ^^i+2h ^ ^ + X(i+h)]

+ [a^ +

= "i+2h - ^^i+h + "i

(1.7)

showing that second-differences of the above form are estimable.

Model (1.3) is of the form of the 3-way ANOVA model for dimensions 

age, period and cohort. For any 3-w^y array, model (l.3) would be 

under-identified due to the three degrees of freedom in the parameters 

represented by and p in (I.4). For the age, period, cohort

data a further lack of identification is present due to the one degree 

of freedom represented by X in (1.4), and this is broughtabout because 

of the logical relationship between age, period and cohort expressed 

in (1.2). (Equation (1.2) effectively means that all the data lie in a 

2-dimen8ional sub-table of the 3-way array.) Thus, because of equation 

(1.2), first-differences as in equation (I.6) are inestimable. The 

problem of constraining this one degree of freedom is sometimes referred 

to as the 'identification problem' of model (l«3).

Other age, period, cohort models appear in the literature; for 

example, Greenberg et al (195O) constrain the age parameters in a 

multiplicative version of model (I.3) to correspond to a Pearson type III 

distribution, which becomes a linear model upon taking logarithms.

Age, period and cohort categories need not be evenly or equally spaced; 

Fienberg and Mason (1979) consider some of the problems which arise in 

this situation. It may also be noted that a 'cohort' may be more 

generally defined as a group of individuals all of whom experiencaia 

given event at the same time, and 'age' may then refer to the time 

elapsed since the event. For example, Barrett (1979) analyses marital 

fertility rates with a marriage-duration, period, marriage-cohort model, 

which is formally equivalent to an age, period, cohort model.
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1.2 Purposes of age, period, cohort modelling.

Some of the confusion which surrounds age, period, cohort modelling 
stems from the failure to distinguish two important purposes of such an 
activity: the descriptive and the theoretical purposes. F(xr each 

purpose the approach to the modelling is quite different, particularly 
in relation to the identification problem of model (1.3), as will be 
seen below;

1.2.1 The descriptive purpose.

Faced with a typical age, period, cohort data set, the analyst may 
well be interested in measuring the variation in the dependent variable 
between ages, between periods and between cohorts purely as a means of 

describing the data, without making any assumptions, assertions, or 
drawing any conclusions about the nature of the causal or random mechanisms 

giving rise to the data. Model (I.3), being the 3^way ANOVA model, 
might seem the appropriate model to fit, and the identification problem 
described above does not prevent adjusted regression sums of squares 
from being calculated, (if the particular model fitting algorithm used 

does not permit under-identified models to be fitted, then model (I.3) 
may be fitted by arbitrarily constraining one first-difference in the 

parameters of one dimension. However, the submodels of model (I.3) 
containing parameters for at most two dimensions, should then be fitted 
without this constraint.) The identification problem does, however, 
frustrate attempts to measure age-effects, period-effects and cohort- 

effects since first differences in the parameters of each dimension are 

not identified, as shown in equation (I.6) above.
The difficulty in measuring variation in age, period, cohort 

is, however, more pernicious than the above account would suggest. An 

age-effect, for example, is defined as the change induced in the
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dependent variable by a specified change in age, while period and cohort 

remain constant. Now Goldstein (1978 and 1979) haa pointed out that, 

by virtue of equation (l.l) above, it is logically impossible to vary age 

whilst holding constant period and cohort; and consequently the separate, 

simultaneous effects of aga, period and cohort are illogically conceived, 

not merely inestimable. It follows that even effects which are 

constructed as second-differences in the parameters of one dimension, 

such as in equation (1.7), are illogically conceived, even though they 

are estimable. Since the purpose of the model was to describe the 

variation in terms of simultaneous age, period and cohort effects, it 

seems that the whole approach is illogical, and thus Goldstein (1979) 

is led to assert that parameters for at most two of the three dimensions 

should be included in the model.

Goldstein's (1978 and 1979) argument is valid, yet second- 

differences in the parameters of one dimension are estimable and so, 

clearly, they do describe an aspect of the data; exactly which aspect 

of the data la shown by equation (1.8). Prom equation (l.^), for all i, 

j and k satisfying (l.2):

[^i+2h,j+h,k-h ^i+h,j+h,k] " [^i+h,j,k-h " ^i,j,k]

^ "i+2h " ^°i+h ^ °i (1.8)

where Y denotes the fitted value for Y. The age, period, cohort cells 

involved in this contrast are depicted in Figure 1.1. In this second- 

difference in fitted values, all three of age, period and cohort vary. 

Thus it is seen that the second-difference in age parameters in equation 

(1.7) describes (and is interpretable as) the typical second-difference 

between observations in the configuration of figure 1.1, over j (or k), 

fixing i and h. Second-differences in the parameters of the period and 

cohort dimensions describe analogous aspects of the data.

It should be noted that second-differences of the form in equation
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Showing (in bold lines) the age, period, cohort cells involved in 
the contrast in equation 0. .8)
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(1.7) are not the only form of estimable second-difference. Any 

estimable linear combination of model parameters relates to a set of 

linear combinations in the fitted values, and consequently describes 

the typical value within that set of linear combinations in the 

observations. Identifying model (1.3) in any particular way merely 

serves to produce parameter estimates which are equivalent to estimable 

second-differences in the unidentified parameters, and their interpreta­

tion is therefore also equivalent. First-differences in the unidentified 

parameters are inestimable, and therefore cannot be expressed in terms 

of the fitted values or observations. Consequently they do not describe 

any aspect of the data, and are of no interest.

The purpose of the above discussion is firstly to demonstrate that 

second-differences in the parameter estimates from model (I.3) de have 

some descriptive power, although the description is not as straighforward 

as might superficially be thought. Indeed the information about the 

data conveyed by these second-differences may be considered to be 

sufficiently obscure to justify abandoning the model as a descriptive 

tool, although with familiarity the method would possibly appear more 

attractive. The second purpose is to show that the inestimability of 

first-differences in the parameters simply means that first-differences 

have no power of data description, it does not mean that some aspects 

of the data are somehow indescribable. Consequently, failing to 

identify the model loses nothing in terms of data description.

1.2.2 The theoretical purpose.

In most circumstances the analyst would not be content merely to 

describe certain aspects of the variation in the data, but would rather 

go further to gain insight into the substantive processes giving rise 

to the observed variation. Model (1.3) is frequently used for this 

purpose, and the parameters of a given dimension are interpreted in terms
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of factors (specified or unspecified) associated with that dimension.

Before going on to discuss in detail the assumptions embedded in 

such a procedure, it is necessary to reconsider Goldstein's (1978 

1979) remark that it is illogical to think of simultaneous age, period 

and cohort effects defined in the conventional way. Since it is illogical 

to conceive of these simultaneous effects is it then illogical to 

conceive of separate simultaneous age, period and cohort factors?

Defining age factors as factors whose levels are indexed only by age, 

and defining period factors and cohort factors similarly, there is 

no logical relationship between the levels of age factors, period 

factors and cohort factors, as there is between age, period and cohort 

in the form of equation (l.l) or (1.2). Consequently it is perfectly 

conceivable that the level of the factors of one dimension may vary 

whilst the levels of the factors of the other two dimension remain 

constant, and thus the concept of separate simultaneous effects of age 

factors, period factors and cohort factors is not illogical. For example, 

Mason and Smith (1979) analyse mortality rates from tuberculosis, and 

hypothesise that age factors include exposure to the tubercle bacillus, 

that period factors include medical innovation and methods of classifying 

the disease, and that cohort factors include resistance to the tubercle 

bacillus. Now although it is logically impossible to vary age, period 

and cohort independently, it is not inconceivable that the levels of 

exposure to disease, medical innovation etc. and resistance to the 

disease can vary independently. In particular, if between two time- 

periods there is no new medical innovation nor any changes in the levels 

of other period factors, then between the two cells defined by these 

two time-periods and a given age group, only resistance to the disease 

and the level of the other cohort factors can vary, and thus the cohort 

factor effects are meaningful quantities.

In a nutshell, the concept of separate simultaneous effects of age.
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period and cohort is illogical, bat the concept of separate 

simultaneous effects of age factors, period factors and cohort factors 

is perfectly logical.

Almost always, in practice, an age, period, cohort model is based 

on the very weakest a priori information or reasoning about the factors, 

their levels and their effects. Thus justification for the assumptions 

embodied in the model usually rests entirely on the goodness-of-fit of 

the model to the data. Furthermore, in general, not all aspects of the 

model can be validated by its goodness-of-fit, as will be seen below.

All age, period, cohort models involve at least two types of 

assumptions. Firstly it must be assumed, for each factor operating on 

the dependent variable, that its levels are indexed by only one 

dimension. In the tuberculosis study mentioned above, for example, it 

is conceivable that 'exposure to the tubercle bacillus' is not a pure 

age factor since its levels might well vary between different periods 

for the same age group. For most, if not all, age, period, cohort data 

sets, factors cannot be considered as treatments in an experiment. 

Consequently, discussion about which factors are in operation, and 

whether they can be considered as age, period or cohort factor effects, 

is usually speculative to a large extent.

The second type of assumption concerns the way in which the faotors 

of each dimension interact. In model (l.3) for example, it is assumed 

that the effects of age, period and cohort factors are additive. Glenn 

(1976) points out that no assumption concerning the way in which age, 

period and cohort factors interact can be supported the data alone, 

since other models always exist which fit the data identically, but 

which involve the factors of only two dimensions. For example, the 

cohort parameters in model (I.3) could be the result of a rather curious 

interaction between age and period factors, in which case the additivity 

assumption would be invalid. Thus, without suitable a priori evidence.
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the effects of age, period and cohort factors are completely confounded. 

Mason et al (1976) reply to Glenn(l976), and defend the additivity 

assumption on the grounds that it is an overt simplification, and that 

models purposively simplify. Nevertheless, without a priori support 

for the additivity assumption, conclusions drawn from the analysis can 

be at best tentative. In section 1«3 below, tests for additivity against 

specific alternative hypotheses are described.

The third type of assumption relates specifically to model (I.3), 

and concerns its identification problem. Under the model, a first- 

difference in the parameters of a dimension represents the effect of a 

change in the levels of the factors indexed by that dimension. Thus a 

first-difference in the parameters is interpretable, yet inestimable, as 

shown in equation (I.6). Estimation of the effects of the factors of 

each dimension is therefore dependent upon a priori information or 

reasoning about factor levels and/or factor effects, sufficient to 

constrain the one degree of freedom represented by X in equation (l.6)« 

Various techniques of identification have appeared in the age, period, 

cohort literature, many of which are unreliable or misguided. Several 

of these are reviewed in section (l,4) below.

1.2.3 Comparing approaches,

It has been seen, under sections 1.2.1 and 1.2.2 above, that the 

two purposes of age, period, cohort modelling result in different 

approaches to modelling, each having quite different problem areas. 

Considering the disparity between the two approaches, it is scarcely 

surprising that controversy and confusion should arise amongst age, period, 

cohort analysts who have failed to perceive the distinction. The above 

discussion should alert analysts to two important differences between 

the two situations. Firstly, when the purpose is description, no 

assumptions are made and so none have to be justified; whereas when the
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purpose is theoretical several strong assumptions require a priori 

information as a basis for support, together with considerable 

discussion about factors thought to be in operation. Secondly, in 

the descriptive case, first-differences in the unidentified parameters 

contain no descriptive information about the data, and are therefore of 

nc interest; whereas in the theoretical case, the unidentified first- 

differences in the parameters from model (l.$) represent the factor 

effects of central interest, and can only be estimated with the help of 

suitable a priori information on the factors.

The following two sections deal with issues arising when the purpose 
is theoretical.
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1.3 Tests for Non-Additivity.

As stated in section 1,2.2 above, for the theoretical approach to 

age, period, cohort modelling, the assumption of additivity in the 

effects of age, period and cohort factors in model (l.)) must be at 

least partly supported by a priori information or reasoning about the 

factors involved, since without such a priori support other, non­

additive, models could be devised which fit the data identically^ for 

example the cohort parameters could represent a curiously constrained 

interaction between age and period factors. Thus, in order to have 

any confidence at all in the interpretations from model (I.3), at least 

some a priori support for the additivity assumption must be found.

In mahy situations a priori information might suggest that non­

additivity between the factors of two or three dimensions should be 

in the form of a low order polynomial defined on those dimensions. In 

these circumstances the parameters of one dimension will be only partially 

confounded with non-additivity in the other two dimensions. To under­

stand the confounding, consider the following sequence of models:

Ijk T + + gj + nij +

+ 'ij

^ijk ^ j + 'ij

(1.10)
(1.11)

(1.12)
where pand ^ are model parameters, (it is assumed here, for ease of 

exposition, that age, period and cohort categories are equally and evenly 

spaced so that (1.2) holds. The following arguments are easily general- 

isable for an irregular table.) Model (l.lO) represents the addition of 

a quadratic polynomial in age and period to the terms in model (1.9).

All but the cross-product term of the polynomial are confounded with the 

terms in model (1.9), Model (l.ll) is the same as model (I.3) and in
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fact model (l.lO) ie a submodel of this model, since by (1.2);
ij = (i^ + - k^)/2 (1.13)

and all of the terms on the right hand side of (l«13) are confounded 
with the terms in model (l.ll). Moreover, equations (1.2) and (l.lj) 

can be used to show that the quadratic component is completely
confounded with the terms in model (l.lO), Model (1.12) represents the 

addition of a cubic polynomial in age and period to the terms in model
(1.11) . All the non-cross-product terms of the polynomial are confounded 

with the terms in model (l.ll), as is the cross product term in ij; by 
virtue of equation (l,l$). The two terms remaining, in i^j and ij^, 

represent only one additional degree of freedom, since by (l.2):
ij^ = i^j - (i^ - + k^)/3 (1.14)

and again the second term on the right hand side of (I.I4) is completely 
confounded with the terms in model (l.ll).

Finally, by (1.2), a polynomial in age and period can be reparamet- 

erised as a general polynomial of the same order in any two or all 

three of age, period and cohort. So, in summary, models (I.9) to (1.12) 
form a nested sequence. Quadratic polynomials in at least two dimensions 
are confounded in all but one degree of freedom with two—factor models 
such as (1.9), and are completely confounded with the three-factor model

(1.11) . Cubic polynomials in at least two dimensions are confounded in 

all but one degree of freedom with the three-factor model (l.ll). Model
(1.11) is distinguishable from model (l.lO) only by cubic order terms in 
k.

Thus two tests may be constructed. Firstly it may be tested whether 
cubic order interactions are present, using model (l.ll) as the null 
hypothesis versus model (1.12) as the alternative. Secondly, if the 

null hypothesis from the latter test is accepted, it may be tested 

whether, say, cohort factor effects in (l.ll) are significantly different 
from a quadratic age-period interaction, using model (1.10) as the null



_ 23.

hypothesis versus model (l.ll) as the alternative.

The two tests may be applied to the tuberculosis data analysed

by Mason and Smith (1979), referred to in section 1.2.2 above. This

data relates to T.B. mortality of white males in Massachusetts, H.S.A.,

in ten-year age-groups, for every tenth calendar year between 1880 and

1970, giving 8 age categories and 10 period categories. The 80 cells

in the age-by-period array encompass I7 cohort categories, each of

width ten years, although most of these cohorts are not represented in

the data for all of the above age categories. Previous analyses of

T.B. mortality had usually reckoned only age and cohort factors to be

operative. Consequently the age, period, cohort model (1.3) may be used

to test for the presence of period factors; and the two tests outlined

above may be used to test the assumption of additivity in model (I.3),

and whether period factor effects are distinguishable from a

quadratic age-cohort interaction, respectively. The analysis of

variance of log T.B. mortality rates is given in table 1.1. (Four

cells for which no deaths were recorded were each assigned 0.9 deaths

in order to avoid zero mortality rates.) The error terms, e.. , aueijk
assumed to be i.i.d. normal random variables.

The conventional test in the present circumstances would be of the 

null hypothesis of age and cohort factor effects, against the alternative 

of additonal period factor effects. This is test B in table 1.1 and 

the P-value in excess of .999 would strongly indicate adopting the 

full age, period, cohort specification. The folly of this step is 

demonstrated by test A, which tests for the presence of non-additivity 

in the form of a cubic-order interaction between any or all of age, 

period and cohort factors. The P-value for test A of approximately 

.997 strongly indicates that the assumption of additivity is inappro-
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Source SSq d.f. MSq

Grand Mean 4822.38 1
Age factor effects 
(adjusted) 101.13 7
Cohort factor 
effects (adjusted) 273.44 16

Quadratic age- 
cohort interaction 
(adjusted) 2.32 1 |2.320

Period factor 
effects (adjusted) 1.60 7* }o.229 ,

7 1

0.490

Cubic interaction 
(adjusted) 0.84 1 |o.840 }o.ll5]

;
\ 0.098 1 0.098

Residual 3.86 47 Jo.082 /

Total 5205.59 80 Test A Test B Test C Test D

F-ratio 10.24 2.34 20.17 5.00
P-value ~ .997 ~.95 > .999 >.999

Table 1.1 Analysis of Variance of log mortality rates from 
tuberculosis. Each component of variance is adjusted for the 
sources of variation listed previously in the table.
*Note that, although there are 10 period categories, the adjusted 
period factor effects represent only 7 degrees of freedom, since 
1 degree of freedom is confounded with the grand mean, 1 
corresponds to the linear identification problem of model (1.3) 
described in section 1.1 and 1 is confounded with the quadratic 
age-cohort interaction.
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priate, and since in the present circumstances no other a priori 

information exists with which to reliably unconfound the effects of 

age, period and cohort factors, this task must remain unattainable. 

TestsB and C demonstrate that the high P-value for test D could be 

largely accounted for by a quadratic interaction between age and cohort 

factors (which, as noted above, is completely confounded with the 

additional period factor effects.)

One of the earliest applications of age, period, cohort models 

appearing in the literature is of incidence rates of syphilis amongst 

black females in the area of North Carolina, U.S.A. (Greenberg et al, 

1950)1 Previous analyses of syphilis incidence rates had been in terms 

of age and period factors only. It is interesting, therefore,to 

examine the evidence for an age, period, cohort model of this syphilis 

data, using the tests described above. The analysis of variance for 

the log of the incidence rates is given in table 1.2. (All rates are 

incremented by one incident per thousand to avoid zero rates, for 

comparability with the analysis of Greenberg et al, 1950)' The data 

matrix consists of I5 single year age groups from 15 to 29 years for 

each of 7 time-periods between I94I and 1947, and therefore contains 21 

single-year width incomplete cohorts.

Test A in table 1.2 indicates that if age, period and cohort 

factors are operative, then they are not additive in their effects.

(Even if the additive model was accepted then test B shows that the 

cohort effects are indistinguishable from a quadratic-order age-period 

factor interaction. However, test C shows there is no evidence for such 

an interaction, the additive model in age and period factor effects 

being quite adequate. The conventional test D also indicates that there 

are no additive cohort factor effects.)

It is interesting to note that in neither of the above examples
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Source SSq d.f. MSq

Grand Mean 508.647 1
Age factor effects
(adjusted) 51.194 14
Period factor
effects (adjusted) 8.985 6
Quadratic age-period
interaction (adjusted) 0.033 1 }0.033

Cohort factor effects 0.285(adjusted) 5.383 18* (0.299 I
Cubic interaction
(adjusted) 1.037 1 i1.037 f

0.262 1 0.270 0.262Residual 15.992 64 10.250

Total 591.271 105 Test A Tests Test C Test D

F-ratio 4.15 1.14 0.12 1.09P-value ~.95 <.75 <.75 <.75

Table 1.2. Analysis of Variance of log incidence rates of
syphilis. Each component of variance is adjusted for the sources
of variation listed previously in the table.
'“Note that the 21 adjusted cohort factor effects only represent 
18 degrees of freedom, since 1 degree of freedom in confounded 
with the grand mean, 1 corresponds to the linear identification
problem of model (1.3) described in section 1.1, and 1 is
confounded with the quadratic age-period interaction.
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does the analyeis of variance point to an additive model in age, period 

and cohort factor effects.
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1.4 A review of methods of resolving the linear identification probl em,

Various techniques for constraining the single degree of freedom 

in the identification problem of model (1.$) have appeared in the 

literature. As stated in section 1,2 above, if the objectives of the 

analysis are purely descriptive then the unidentified first-differences 

in the parameters are of no importance. If the objectives, however, are 

theoretical then the unidentified first-differences are of central 

importance, and can only be identified with the use of suitable a priori 

information on the factors. Many of the identification techniques 

appearing in the literature are either pointless or misguided, depending 

upon objectives of the analysis, which are not always made abundantly 

clear. Several of these techniques are reviewed below, and may be 

discussed under six headings. It is assumed throughout that the 

analyses reviewed are of the theoretical rather than descriptive type.

1.4«1 Internal procedures.

IMason et al (1973) a^d Pullum (1978) both suggest procedures for 

constraining the one degree of freedom in the identification problem 

by purely internal means. It is clear that purely internal techniques 

are bound to fail in the task of producing for each dimension parameter 

estimates which are reliably interpretable in terms of the effects of 

the factors indexed by that dimension; although of course such techniques 

will undoubtedly succeed in constraining the problematical degree of 

freedom, but to no purpose.

Mason et al (1973), noting that different sets of just-identifying 

restrictions on the parameters of the model cannot be assessed on the 

basis of the fit of the model to the data, but that different sets of 

over-identifying restrictions may be assessed in this manner, suggest 

that "a clearer picture of the 'true' effects in a given set of cohort 

data might be obtained by comparing the results from several distinct
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models making more than the minimum aasumptiona needed for estimability", 

and that such a procedure "might provide clues about the nature of ageing, 

cohort and period effects for the analyst unable or unwilling to make 

a priori constraints on the cohort model". They suggest that "if the 

general nature of the estimates is similar for all models ... then it 

is probably safe to interpret these findings in substantive terms",and 

suggest alternative procedures if the various submodels do not yield 

similar parameter estimates.

The technique of Mason et al (197$) could be of value if a priori 

information on the levels and effects of factors indicates the particular 

submodels of model (l.$) which are to be compared. However, without 

such a priori information, even a well-fitting model which omits, say, 

all cohort parameters could be reparameterised to contain a linear 

dependence on cohort, without altering the fitted values. (This is an 

important point, and it complements the fact that, without suitable a 

priori information, a full age, period cohort model may be reparameterised 

in terms of a constrained interaction between just two of the sets of 

factors, without altering the fitted values.)

Pullum (1978) proposes a fully automated identification procedure 

which, loosely speaking, results in the regression slopes in the 

parameter estimates of any given dimension being relatedt^thedegree of 

non-linearity amongst the parameter estimates of that dimension. Thus, 

for example, if the parameter estimates for the cohort dimension fall on 

a straight line, then the procedure would make all cohort parameters 

equal, and thus the cohort dimension would effectively be removed from 

the analysis.

The latter property of Pullum's (1978) technique appears attractive 

and the technique also seems to represent a way of 'hedging one's bets' 

as to the 'correct' identification - avoiding the possibility of 

assigning large linear trends to the effects of factors which show few



other signs of being operative. Nevertheless, no reliable interpre­

tations can arise through the use of this technique. The age factor 

effects resulting from the application of a version of Pullum's (19Y8) 

identification technique to the tuberculosis data of Mason and Smith 

(1979) are shown in figure 1.2.
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factor

Age factor effects from model (l.)) applied to log mortality rates 
from tuberculosis, for four different identifications: (i) a version 
of Pullum's (1978) automatic identification; (ii) no linear trend in 
the first six cohort parameters, as in Sacher's (196O) analysis;
(iii) equality in the first two age parameters, as in Mason and Smith 
(1979)$ (iv) equality in the first six period parameter^ as in Mason 
and Smith (1979).
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The two procedures outlined above are of a general nature. 

Particular cases of identification using internal 'evidence' may also be 

given: both Sacher (196O) and Mason and Smith (1979) have identified 

in this manner. Interestingly, and usefully, Sacher (i960) analyses 

the same data as Mason and Smith (1979), that is the tuberculosis data 

for white Massachussetts males, (although Sacher's (i960) data extends 

only up to 1940). Sacher (i960) constrains the regression line through 

the first six cohort parameters to have zero slope, so that his model 

is just-identified. This he does on the grounds that "the internal 

evidence clearly indicates that conditions were stationary during the 

first half of the 19th century". Mason and Smith (1979) constrain the 

first two age parameters to be equal on the grounds that tuberculosis 

mortality is usually about the same for these two age groups. Of course 

neither of these two identifications are justified since the same 

observations could be made if the ag^ period and cohort factor effects 

were altered by appropriate linear quantities. The age parameters from 

both these identifications are given in figure 1.2.

1.4.2 Grouping categories.

In an age-by-period array, a cohort may be defined as the set of 

cells which correspond to births in a given interval of time. Now there 

is no necessity to define the width of the cohort intervals to be the 

same as the width of the age and period intervals. For example, both 

Greenberg et al (1950) and Isaac et al (1979) define each cohort to be 

three times the width of each age and period category. Having defined 

cohorts in this way model (l.^) may still be fitted to the data, 

although now there will be fewer cohort parameters than would normally 

be the case. However, no relationship such as equation (1.2) holds in 

these circumstances, and consequently model (I.3) does not have an 

identification problem. In both of these examples referred to above, the
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decision to define cohort categories in this way seems to be purely for 

computational convenience, and in neither case is reference made to the 

identification problem of the more usual framework.

Superficially this seems an ideal way to dodge the identification 

problem. However this is a most dangerous illusion. The model in both 

of the above examples implies that, across the width of each of the 

defined cohorts, cohort factor effects are constant. There can be no 

internal evidence to support this, since equal linear trends in cohorts 

factor effects across the width of each of the defined cohorts could 

yield the same fitted values. That is, only a priori information can 

suggest that, within each of the defined cohorts, cohort factor effects 

are constant rather than linear. Consequently, for a given dimension, 

the parameter estimates from such a model cannot be reliably inter­

preted purely in terms of the effects of factors indexed by that 

dimension.

The above discussion demonstrates that age, period, cohort modelling 

is something of a statistical 'minefield', since it is quite possible 

that a researcher can innocently decide to limit the number of parameters 

in model (1.3) by grouping the categories of one dimension in the above 

manner, and neither suspecting nor finding an identification problem, 

proceed to mis-interpret the resulting parameter estimates.

Presumably, in the two examples quoted above, the reasons advanced 

for grouping cohort categories into threes could equally well have been 

advanced in favour of grouping period categories into three instead.

Figure 1.3 contains the age parameters resulting from both over-identifi­

cations of model (I.3), when applied to the syphilis data of Greenberg 

et al (1930).

1«4«3 Intuition

Occasionally in the literature model (I.3) is identified by processes 

which might best be described as intuitive. For example, Sanderson (1979),
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factor
effects

Figure 1,3

Age-factor effects from model (1.5), applied to log incidence rates of 
syphilis, for two alternative over-identifications obtained by grouping 
into threes the categories of (i) the cohort dimensions; and (ii) the 
period dimensions.
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who analyses parity-specific birth probabilities for white females in 

the U.S«A., being faced with a total lack of a priori information on 

the factor levels and their effects, decides to identify in such a way 

that the slopes of the regression lines through the period and cohort 

factor effects are equal. This he justifies with the reasoning that some 

long-run factors could be expected to influence both period and cohort 

factors. However, without a clear idea of exactly what these factors 

are, and which period and cohort factors they operate on, and how 

they do so, this reasoning is highly speculative. Indeed the net result 

of all factors could well produce opposite trends in period and cohort 

factor effects, even if some factors do operate in the above-mentioned 

fashion.

Barrett (1973), in an analysis of mortality from cancer of the 

cervix, obtains an initial identification of model (1.3) by, arbitrarily, 

constraining the last two cohort factor effects to be equal. Observing 

that this produces an "unreasonably large positive trend" in the period 

factor effects, he re-identifies, constraining instead the last two 

period factor effects to be equal. The lack of reliable a priori 

information in this identification will produce a corresponding lack of 

reliability in the resulting parameter estimates.

1.4.4 A priori reasoning

Reliable a priori reasoning can represent a proper means of 

identifying model (l,3). For example Fienberg and Mason (l979) analyse 

educational attainment for white males in the U.S.A.} for each stage 

of formal education they model the logarithm of the odds of continuing 

to the next stage. They note that, for the vast majority of the 

population, formal education is complete by age 30 years, and that after 

age 60 yearn biases creep into the data due to mortality-age-education 

differentials and recall accuracy. Over-identification is obtained by
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equating age factor effects between the ages of ^0 and 60 years. This 

over-identification is selected on the basis that it does not constrain 

period and cohort contributions which are of central interest in this 

study, and it does not constrain the regions of the age dimensions for 

which there are "a priori grounds for interpreting age effects". The 

constancy in age factor levels between the ages of $0 and 60 years 

(which seems reasonable to assume from the above discussion) represents 

a reasonable basis for (over-) identifying model (1.^),

Another example of the use of a priori reasoning in identifying 

model (1.3) is provided by the tuberculosis study of Mason and Smith 

(1979) who check their identification, described in section I.4.I above, 

by equating the first six period parameters instead, on the grounds that 

there is no substantive reason for letting them vary. The validity of 

the latter over-identification depends on the validity of their 

assertion about the period factor effects. The age parameters from the 

over-identification are shown in figure 1.2.

1.4.5 A priori data.

Beard (I963) analyses mortality from cancer of the lung, and 

associates cohort factors with the proportion of smokers in each cohort, 

period factors with the level of consumption of cigarettes in each 

time-period, and age factors with resistance to the disease at each age. 
The model is over identified using external data on the proportion of 

smokers in each cohort and the level of cigarette consumption in each 

time-period.

Farkas (1977) analyses employment rates for white females in the 

n.S.A. Period factors are taken to be business cycle fluctuations, and 

these are measured using unemployment rates for white females. Model 

(1.3) is over-identified by equating period factor effects with the 

unemployment rates. Apparently the relationship between employment and
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unemployment rates is not tautological, and Parkas (1977) claims that 

any one of a number of highly correlated macro-economic variables would 

serve the purpose of measuring business cycle fluctuations.

Both of the above examples demonstrate how a priori data can 

provide a basis for identification or over-identification of model (l.)). 

The reliability of the resulting parameter estimates depends on the 

reliability of the asserted connections with the a priori data.

1.4*6 No identification.

Some researchers, recognising their inability to reliably identify 

model (l.)) have contented themselves with estimating and interpreting 

second-differences in the parameter estimates, of the form of expression 

(1.7). Pullum (1980) defines a 'relative difference' which is a form 

of second difference, and Sanderson (1979) examines trends in first- 

differences between categories of one dimension a fixed distance apart. 

(Although first-differences are identification dependent, such tr^n^p 

in first-differences are identification independent). Barrett (l978b) 

confines his attention to peaks in the structures of parameter estimates, 

but strictly the positions of such peaks are not identification 

independent.

Sometimes there is no need to obtain a reliable identification of 

model (1.3). For example Thurston (1979), in analysing Swedish 

nuptiality, and Pullum (198O) both use model (I.3) as a basis for 

projections. Projecting period and cohort factor effects separately, 

and recombining them with the age factor effects, yields projections 

of the dependent variable which are independent of the choice of 

identification, provided that no attempt is made to compromise the linear 

trend in the period or cohort factor effects. Unfortunately Thurston 

(1979) does just that; by placing bounds on the projected period factor 

effects the projections become identification dependent. As another
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example Sanderson (l979)» wishing only to detect the presence of cohort 

factor effects in parity-specific birth probabilities, in order to test 

an aspect of Easterlin's (197$) work on the economics of fertility, does 

not need to examine the parameter estimates themselves.

1.4.7 Comparison of identification techniques.

Several techniques for identifying model (l.^O have been described 

above, many of them unreliable or misguided. In particular, figure 1.2 

shows various identifications of the tuberculosis data, which could 

lead to markedly differing conclusions concerning the effects of age 

factors. Theperiod and cohort factor effects also differ between 

identifications, and to a similar extent. The two solutions due to 

Mason and Smith (1979) ere vastly different, yet Mason and Smith (1979), 

who actually modelled logit death probabilities by Maximum Likelihood 

Estimation, found the solutions to be similar. The present analysis 

of this data is of log death rates estimated by least squares, and 

corresponds to the analysis of Sacher (196O). Thus the precarious 

nature of these identifications is emphasised. Figure l.$ shows alter­

native over-identifications for the syphilis data. Although the 

solutions here do not vary so dramatically as those in figure 1.2, there 

is nonetheless a substantial difference in trend between the two sets 

of age parameters, the gradients in one set being over 1.5 times the 

corresponding gradients in the other. Again, similar differences would 

be observed for the period and cohort dimensions.

Analyses of variance for different identifications also differ: for 

example, if there is thought to be no age factor effect between the first 

two age groups, then submodels involving age, as well as the full age, 

period, cohort model, should carry the constraint of equality between the 

first two age parameters. For the submodels the constraint tall actually 

afiect their fit to the data. In the case of the tuberculosis data.
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analyses of variance for the various solutions dffer to only a small 

extent, and the same is true for the syphilis data also. However, in 

principle, different Identifications could produce quite different 

analyses of variance.
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1.5 Conclusions

The distinction between the descriptive and theoretical purposes 

of age, period, cohort modelling brings to light some very substantial 

differences between the corresponding approaches to modelling. When the 

purpose is description, no assumptions are made; it is simply required 

to decompose the variance in the data along axes of interest. When the 

purpose is theoretical however, several strong assumptions must be made, 

concerning the presence of true age, period and cohort factors (and no 

other factors) and about the way these factors interact.

The two purposes also differ in respect of the treatment of the 

Identification problem of model (I.5). In the descriptive case, 

unidentified contrasts mean nothing in terms of data description, and 

hence are of no interest. Different identifications merely serve to 

produce parameter estimates which describe the same aspects of data as 

certain second-differences in the unidentified parameters. In the 

theoretical case, however, the unidentified first-differences in the 

parameters of model (I.3) are of central interest since, hypothetically 

at least, they reflect the effects of the factors of each dimension, 

separately.

Both purposes encounter difficulties. In the descriptive case, 

the aspects of the data described by estimable contrasts in the parameters 

are somewhat less straightforward than might at first be imagined. In 

the theoretical case, the analyst is seldom able to find reliable a 

priori support for the necessary assumptions, and without any such 

information the data is incapable of distinguishing between models of 

widely different construction. Furthermore, even if model (I.5) can be 

reliably assumed, further a priori information on the factor levels and 

effects is required in order to estimate the separate factor effects, 

otherwise the estimable second order factor effects will have to suffice.



A proper approach to theoretical age, period, cohort modelling should 

include a full discussion of the factors thought to be in operation, 

together with a priori support for the assumptions embedded in the 

model.

Paced with these difficulties the analyst may well decide to 

abandon the use of age, period, cohort models,deciding instead to use 

models involving at most two of the three dimensions. In the theoretical 

case this could actually be a mistake if it is thought that age, period 

and cohort factors might be in operation, since even a perfectly fitting 

two factor model can be re—expressed in terms of factors from all three 

dimensions, unless a priori Information indicates otherwise. Most of 

the difficulties associated with the theoretical case could be overcome 

with sufficient a priori information. The validity of the assumptions 

embedded in model (1.3) can be assessed with a little such information, 

as demonstrated in section 1.3*

Confusion about age, period, cohort modelling is evident in the 

literature, and exists in the minds of many who have considered using 

the technique. Much of the confusion arises from failure to identify 

the alms of the analysis: descriptive or theoretical, [fhe above 

discussion draws attention to the importance of this distinction.
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Chapter 2. Using the biplot to extract patterns in 
period, cohort data.

2.1 Introdaotion.

Tables of demographic rates or proportions frequently exhibit a 

high degree of regularity, especially across 'age' dimensions such as 

age or duration of marriage, within periods or cohorts. As will be 

seen in Chapter 3, simultaneous age, period, cohort models, apart from 

their problems of confounding discussed in Chapter 1, also often have 

the disadvantage that they fail to capture these age patterns efficiently, 

The biplot (Gabriel, 1971), a graphical technique of multivariate 

analysis designed to extract and display the main components of the 

structure of any two-way data matrix, however, is perfectly suited to 

capturing these age patterns; and this chapter and chapter ^ convincingly 

demonstrate this.

In this chapter the algebraic basis of the biplot is presented 

(section 2.2), and its ability to extract and display trends in demo­

graphic tables is exemplified in section 2,). Summary measures of 'level' 

(e.g. total fertility rate) and 'structure' (e.g. mean age at child­

bearing) across the age dimensions may be conveniently represented on 

the biplot graph by means of level and strudure axes, as is shown in 

section 2,4. Section 2,5 shows how cubic splines may be used to 

construct on the biplot smooth curves related to the age dimensions, for 

the purpose of interpolation. Finally, section 2.6 describes the 

generation of models of demographic schedules using the biplot decompos­

ition, and the method is illustrated for age—specific legitimate live- 

birth rates, and compared with the model of Coale and Trussell (I974).

In the general context, the biplot may be used as a diagnostic tool 

to detect outliers in the data; to detect clusters of individuals or 

variates; to suggest regression models possibly for submatrices of the
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data, (Bradu and Gabriel, 1978); and as a model in its own right 

(McNeil and Tukey, 1975; Eobcraft and Gilks, 1981). The biplot technique 

has a connection with principal component analysis (Gabriel, 1971) and 

with correspondence analysis (Benz^cri, 1976).
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2.2 The Biplot.

2.2,1 Definition,

Any data matrix Y having m rows and n columns, and of rank r, 

may be decomposed as a sum of r components, each component being an 

mxn matrix of rank 1. This decomposition may be written:

(2.1)
where u^ and v^ are vectors of order m and n respectively. The 

decomposition (2.1) is not unique, andthis problem is partly resolved 

with the requirement that the vectors {u^, v, ; &= l,...,r} should be 

chosen so that the mxn rank k matrix:

(2.2)
is the best rank-k approximation to Y in the least-squares sense, for 

each choice of k in the range [l,^.

The decomposition (2.2) of the approximation Y^ forms the basis for 

a useful graphical representation of Y , For the i^^ row (i = l,...,m)

and for the j ^ column (j = 1.... n) of Y^, vectors and h. of order r

may be defined so that the elements of g. and h. are the i^^
-J

element of u^ and the element of v., respectively. Thus the 

elements of g\ and h_ are drawn exclusively from the component of Y , 

The are term^row markers and the h^ are termed column markers. The 

first element of each of the (m + n) markers may be plotted against the 

second; on a separate graph the second element of each of the (m + n) 

markers may be plotted against the third; and so on. Thus (r - l) graphs 

may be produced representing the position vectors of each of the row 

and column markers. This is termed the exact biplot of Y , The purpose 

of the biplot, however, is to portray only the most important information 

contained in Y^, and this is achieved by plotting only the first k



elements of each of the row and column markers; that is, only the 

first (k - l) graphs of the exact biplot of Y^. This is termed the 

rank-k approximate biplot of Y^, and is equivalent to the exact biplot 

Typically k = 2 or $ is sufficient to capture all the variation 

of interest.

Table 2.1 contains a decomposition of a matrix of single-year age- 

specific fertility rates for all women in England and Wales for each 

time period from 1938 to 1979; (O.P.G.S., 1979). The u vectors are the 

columns of panel (a); the v vectors are the columns of panel (b); the 

first two components of the g vectors are the rows of panel (a); the 

first two components of the h vectors are the rows of panel (b). Figure

2.1 contains the rank-2 approximate biplot of this data. For clarity 

the row (age) markers have been joined up, as have been the column 

(period) markers.

The decomposition (2.l) is still not unique despite the requirement 

that Y^, in equation (2.2) should be the least-squares rank k approx­

imation to Y^, for all k. For example simultaneous multiplication of 

u^ by a scalar c^ and division of v^ by c would not alter the 

component, although of course the resulting biplot would be affected.

This lack of identification may be removed by scaling the u and v
— ^ —&

vectors so that both row and column markers are well dispersed over the 

biplot. Gabriel (l97l) shows that any method of removing this lack of 

identification confers certain distance properties on the row and 

column markers, although for present purposes these properties are not 

particularly useful.

2.2.2 Calculation.

The decomposition (2.2) may be calculated using the Singular Value 

Decomposition (s.V.D.) of Y^^ Algorithms for calculating the S.V.D. are 

extremely rapid, having almost cubic powers of convergence, and do not
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Table 2,1 The first two components of the decomposition of the age by 
period array of fertility rates for all women in England and Wales 
(O.P.C.S., 1979), The rows of panels (a) and (b) form the first two 
components of the row(age) and column(period) markers respectively. 
Panel (c) contains the values of the statistic (equation (2 ll'i'i 
for the first two components. ^

— ^ —

AGE
(completed
years)

(a)
% -2 PERIOD

(b)
-1 -2

15 -.007 .009 1938 -.234 -.12916 -.028 .054 1939 -.234 -.11917 -.082 .114 1940 -.224 -.09918 -.156 . 152 1941 -.222 -.08819 -.241 .158 1942 -.250 -.11820 -.328 . 141 1943 -.259 -.14521 -.408 .113 1944 -.282 -.19122 -.472 .082 1945 -.255 -.15223 -.514 .060 1946 -.315 -.20424 -.532 .046 1947 -.350 -.15625 -.531 . 035 1948 -.310 -.09526 -.515 .024 1949 -.297 -.06527 -.486 .007 1950 -.287 -.06328 -.450 -.019 1951 -.283 -.05429 -.408 -.051 1952 -.286 -.04330 -.364 -.084 1953 -.296 -.03431 -.321 -.114 1954 -.296 -.02832 -.281 -.136 1955 -.299 -.01733 -.246 -.146 1956 -.316 -.00234 -.216 -.146 1957 -.332 .00335 -.189 -.139 1958 -.340 .01436 -.163 -.127 1959 -.348 .02037 -.138 -.112 1960 -.360 .01938 -.113 -.096 1961 -.373 .02639 -.089 -.080 1962 -.382 .04040 -.067 -.066 1963 -.389 .04441 -.049 -.054 1964 -.396 .04342 -.037 -.045 1965 -.384 .05743 -.029 -.041 1966 -.372 .07144 -.022 -.044 1967 -.357 .079
1968 -.347 .090
1969 -.333 .101
1970 -.325 .115(c) 1971 -.322 .127

r2 R2 1972 -.300 .1261 2 1973 -.275 .127
.972 .997 1974 -.261 .122

1975 -.246 .105
1976 -.239 .090
1977 -.232 .073
1978 -.243 .066
1979 -.259 .055



46

Z INanOdKOD

13O .-H <<
(DPh »I P4 0) # e K '

"H rH-4-^X5 *
13

!% k -H

m

(Ho
m
5
>)

Py
§
'H-H*HmoI
o0)

0) -H
"4 §
m

o>> (Q
rP rH
q ^

§ 0\ CM

m

p
rH i3
rH m
d 0

00 •H
U w
O o +)

Cm fl
PH o

CQ
CP O

+)
c$
U 00 Tj-

0)
J>s rH C\J

-P eg
■H :z 0
rH o
-H i3 •H
■P 0 p
u d O
0) <D

Ch m
Cm m 0)
O r-j CD

(« m
p 0'o M
p m
A 0 0)

■H o X
fq (H n)



- 47

require user-supplied starting values. More importantly, these algorithms 
are widely available, being contained in most, if not all, scientific 
software libraries.

Any mxn matrix of rank r may be decomposed into three matrices
as follows:

Y = P A Q’ (2.30

where P is an mxr matrix, A is an rxr diagonal matrix and Q is an nxr 
matrix; and where also:

= (2.4)P'P

and

Q'Q = I.

^ ^ > A > 0" r

(2.5)

(2.6)
where is the rxr identity matrix and denotes the diagonal
element of A. This is the S.V.D. of Y .r

Any decomposition satisfying (2.2) may be obtainedfhom the S.V.D. 
simply by setting:

G = P A.

H = Q A.
(2.7)

(2.8)
where G is the mxr matrix whose i^^ row is i = 1, ..., n; where E
is the nxr matrix whose row is b^, j = l, n; and where A, and

V 1
Ag are rxr diagonal matrices satisfying:

Al = A (2.9)
In genera^ setting

Aa 4;
(2.10)

will achieve a reasonable dispersion of the markers over the biplot. It 
may be verified, when equations (2.10) hold, that on any axis, the 
average squared score for the row markers is equal to that for the



column markers. The biplots in figures 2.1 and 2.6 have been identified 
using (2.10).

The S.V.D. also enables measures of goodness-of-fit of Y to Yk r
to be Gonstauded. It may be shown that the sum of squared elements of 
Yk is given by + ... from which the proportion of
variance in Y^ 'explained' by Y. may be calculated:

— ^8 —

(2.11)

where y is the mean of the elements of Y . for the first two com— 
ponents ^the decomposition of the England and Wales fertility data 
(O.P.G.S., 1979) is given in panel (c) of table 2.1.

Missing values in the data matrix Y can be dealt with by omitting 
the rows or columns which contain them, and analysing only the remaining 
sub-matrix. In general the biplot is not greatly influenced by this 
loss of information provided that the proportion of omitted data is 
not large. Alternative a weighted analysis may be performed (Gabriel 
and Zamir, 1979), although the S.V.D. cannotthen be used.

2.2.3 Interpretation.

The uniqueness of the biplot in figure 2.1 was obtained by making 
both the 'least-squares' requirement of equation 2.2 and the 'dispersion' 
requirement of equation(2.10). Had either of these requirements been

ihen a different biplot would have been produced. Consequently 
these requirements should constantly be borne in mind when interpreting 
features of the biplot. Any alternative to the 'least-squares' require­
ment would correspond to a series of reflections in androtations about 
the biplot axes of the row and column markers. Apy alternative to the 
'dispersion' requirement would correspond to scaling the row and column 
markers in the direction of the biplot axes, such that for any given 
axis the scaling of the row markers is the inverse of the scaling of the



coltmm markers.
It is aseful to note a few features of the biplot which remain 

invariant under reflections, rotations and scalings about the biplot 
azes. Such features may be interpreted without regard to the particular 
identification requirements made. They are:

i) linearity within sets of row markers and within sets of 
column markers;

ii) orthogonality between sets of row markers and sets of 
column markers;

iii) inner products between row and column markers (that is
si *lj)-

Inner products between row and column markers are useful because 
they reproduce the data, since it follows from (2.1) that:
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\th

(2.12)
where y^. is the (i, j) element of Y^. Inner products can be 
constructed on the biplot, as is shown in figure 2.2. Dropping the 
perpendicular from the row marker g. onto the position vector of column 
marker h_ gives the projected length of g\ on h_ labelled d in figure 
2.2. If projects onto the negative direction of h. then d should 
be negated. The length of position vector jh multiplied by d gives the 
inner product gj hu. (Of course the same value results if the length 
of g^ is multiplied by the projected length of h^ on g\). This technique 
is particularly useful for comparinK elements of Y in the same row or 
column, since no multiplication need then be carried out. For example, 
from figure 2,2 it is clearly seen that Y^,j ^ since the projected 
length of g , on h. is less than that of g. on h..^ J —j

Another useful property of the biplot is that linear combinations 
of the elements in a column of Y^ can be represented on the biplot since 
by (2.12);
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Figure 2.2
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m
ill

m

(2.1$)

m
where ^^henotee g^, and may be plotted as a row marker. Linear
combinations of the elements in a row of Y can be treated similarly.

Equations (2.12) ard (2.13^ apply exactly if all r components of 
the markers are used. However, when utilising only the first k 
components, as in the rank-k approximate biplot, (2.12) and (2.1^) apply
exactly to and only approximately to Y^.

2The statistic given in equation (2.11) may assist in deciding 
upon the appropriate number of components, k. To this end it is also 
helpful to examine residuals and higher order components in order to 
detect systematic or meaningful aspects of the data which are not 
included in the first few components. When the first three components 
fail to capture all the important variation in the data, it is sometimes 
helpful to partition the data matrix, and biplot each part separately.
In such cases the biplot of the first few components would indicate how 
the partitioning should be arranged.

A detailed examination of the biplot in figure 2.1 of the 
fertility data for England and Wales (O.P.C.S., 1979) is included in 
the following section.
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2.$ Explicating Trends in a Demographic Table.

Regular trends across the dimensions of a demographic table are only 
implicitly represented in the table since they have to be constructed by 
eye. Plotting the raw data in some suitable way may assist the eye in 
its task of discerning trends, but when the table is large this is likely 
to lead to a confusing tangle of lines. It is therefore desirable to 
find a way of explicitly representing the trends across each dimension, 
ideally by means of a single plotted line for each dimension. The biplot 
explicates such trends in precisely this way.

The biplot in figure 2.1 of the decomposition given in table 2.1
presents explicitly the trends in the age and period dimensions of the
fertility data for England and Wales (O.P.C.S. 197$)« The raw data
themselves are only implicitly represented in the biplot. It is
important, however, that the raw data may be reconstructed from the
biplot in order that the trends in the biplot may be interpreted in
terms of the raw data. Strictly the first two components of the
biplot only contain information on a rank 2 approximationto the data

2matrix; however the high Rg value in table 2.1 indicates that little 
information is lost by restricting attention to the first two components. 
Two techniques for interpreting trends in the biplot are now illustrated 
using figure 2.1.

Firstly, the technique of data reconstruction given in section 2.2 
above may be utilised. For example, the age structure of fertility in 
1944 may be visualised by dropping the perpendiculars from each of the 
age—markers onto the position vector of the 1944 period marker, in the 
manner of figure 2.2 above. It will be seen in particular that for 1944 
the modal age of fertility is at 2$ years, that between ages 18 and 22 
there is a very rapid rise in fertility, and only a slight decline between 
ages 29 and 32 years. Repeating the procedure for 1974 reveals a modal
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age at 24 years, a rapid rise in fertility between ages and 21, and 

now a quite marked decline between ages 25 and 34 years. Repeating 

for other time—periods will confirm the impression that moving between 

period markers in a clockwise direction about the origin describes a 

gradual shift in the fertility distribution away from the higher ages 

and towards the lower ages. Thus it may be seen that the period markers 

describe trends towards younger fertility from 1938 to 1941, and from 

1944 to 1974* and trends towards older fertility from 1941 to 1944 and 

from 1974 to 1979" Between 1941 and 1946 the trend is somewhat erratic, 

and between 1946 and 1949 the trend is quite rapid, but elsewhere period 

trends are moderate and remarkably regular.

The distance from the origin of a period marker gives an 

indication of the overall level of fertility in that time-period. For 

example, since the I967 and 1979 period markemlie approximately on a 

straight line through the origin, they have approximately the same age- 

structure of fertility. The distance of the I967 marker from the 

origin is about I.4 times that of 1979 marker, which indicates, as 

discussed in connection with figure 2.2 above, that for each age group 

fertility in I967 was about I.4 times that for 1979. Comparing time- 

periods with different age—structures of fertility requires some 

summary measure of fertility such as the Total Period Fertility Rate 
(T.P.F.R.). The use of the T.P.F.R. in conjunction with the biplot 

will be discussed in the next section.

The same information may be viewed from a different perspective by 

projecting each period marker onto the position vector of a given age 

marker, in order to give an impression of the 'period structure' of 

fertility for that age. Doing this, for example, for each age up to I9 

years reveals, for these ages, that at any time after I953 fertility 

was higher than at any time before 1953. Repeating for each age after 

30 years reveals that fertility was higher in I947 than at any other
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time for these ages. It is interesting to note that, excluding age 1$, 
there are no two age markers forming a straight line through the origin; 
consequently none of these ages have the same period structure.

A second technique for interpreting biplot trends, which may be 
utilised when the 'leaet squares' criterion (2.2) holds is to examine 
each biplot component in turn. Prom table 2.1 or figure 2.1 it is seen 
that the basic age-structure of fertility is one of rapidly increasing 
fertility up to age 24 years followed by a more gradual decline. The 
second age component may be viewed as an adjustment to this basic age- 
structure, being a contrast between those ages before 2? years and those 
after, with the greatest weights being given to ages around 1$ and 
years. The first period component shows a basically low level of 
fertility before I946 and after I97I, and a high level of fertility 
between I96O and 1967. The second period component shows that the 
adjustments to the basic age-structure were most extreme in an absolute 
sense in I946 and I97I.
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2.4 Axes for level and structure.

Demographic data classified by an age variable are frequently 
summarised using measures of level and structure across ages. For 
example, for the data analysed in section 2.$, these might be the Total 
Period Fertility Rate (T.P.F.R.) and the Mean Period Fertility Age 
(M.P.F.A.) It would be useful to be able to represent such summary 

measures on the biplot, and it is shown in this section that axes may 
be drawn on the biplot allowing these measures to be read off. The 
development below is conducted in terms of a measure of level (LEV.) 
and structure (STR ) for the j ^ column constructed analogously to the 

T.P.F.R. and M.P.F.A. respectively. Similar measures for rows rather 
than columns may be dealt with by transposing the roles of the rows 
and columns. Techniques for graphical representation of other summary 
measures which are simple functions of linear combinations of the 
elements in rows or columns may be devised.

As shown in equation (2.1$), linear combinations of the elements 
in a row or column may be represented on the biplot. Define:

By (2.12) this is
LEV = I V

j 1 ij

= I

(2.14)

where denotes the row marker Z . Drawing on the biplot would
enable the values of LEVj for each j to be reconstructed, using the
technique described in section 2.2 in connection with figure 2.2. This
technique involves a certain amount of mental arithmetic; however this

may be done away with by means of a slight development of the technique.
The vectors and h_ have been drawn in figure 2.$. The position
vector of the foot of the perpendicular from h_ to g , denoted by h.

J ' --j"
is given by;
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h . 1—J

Figure 2.3
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-j.
= LEV. t J — (2.15)

.-1
using (2.14), where:

1 = CS.\S.)"^.S. (2.16)
Thus, from (2.1$), if an axis is drawn through the origin in the 

direction of and is scaled in units equal to the length of with

the value 0.0 appearing at the origin, then the value of LEV may be 

read off this axis at the foot of its perpendicular from h..

Define
STB. . I

where a_ denotes the value of the interval-level variable defining the 
row categories, at the mid-point of the i^^ row,

= J “1

using (2.12) and (2.14)

= 6^'h./LEVj (2.17)

where denotes the row marker E a. g.. Again, drawing on the 

biplot would enable STB. for each j to be reconstructed using the 

technique described in section 2.2, but a development of the technique 

allows the mental arithmetic involved to be done away with. Figure 2.4 

contains the vectors and g^. In general, the period marker h_ will 

not be in the plane of g^ and g^, and so its projection h. ^ onto that 

plane is drawn in figure 2.4. The position vector of h. ^ is given by; 
h. _ = A(A'A)"^A'h.

where A is the rx2 matrix
./...\-l r= A(A'A)

using (2.14) and (2.17),
STR.

J

LEV

LEV^ (w + STRj s) (2.18)
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where
.-1= cA(A'A) (2.19)

for some arbitrary scalar value c. It may easily be verified from

(2.1$^ that s is orthogonal to g,. Nowlet h.^ be the point lying on

= ct + (STRj - ' t^s

the radius from the origin through which scores a value c on the

t^axis (see figure 2.4). Then the position vector of is given by;

h.. = w + STR. s — J —

using (2.18)

(2.20)
using (2.16) and (2.19). Thus, from (2.20), if an axis is drawn through 

the point ct in the direction of s^ and is scaled in units equal to the 

length of s, with the value (g^ ' t^ appearing at the point ct^ then 

the value of STR. may be read off this axis where it meets the radius 

from the origin through

The t^ and 2" axes defined above are based on r-dimensional vectors 

g, and g^, and in principle permit values of LEV. and STR. to be read 

from the exact biplot of For the rank-k approximate biplot of Y it

is a natural extension of the technique to construct axes which relate 

to values of LEV and STR. corresponding to Y^ rather than Y^^ This may 

be achieved by using only the first k components of g, and in the 

calculation of vectors t and s in equations (2.16) and (2.I9). It is 

important to note that these k^component versions of ^ and s are not in 

general the same as the first k components of the r-componentversions of 

t and g. In practice the t-and 2- axes are most likely to be of use in 

the case when k = 2, stxeinthe higher dimensions it is difficult to 

visually construct orthogonal projections. For k = 2, the points h
-j

identical; this means that radii from the origin are taken 

through the column markers themselves when reading off the values of STR_.

The 2-component versions of g., g^Jkand s for the fertility data for
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England and Wales (O.P.C.S., 1979) are shown in table 2,2, and the _t- 

and axes have been drawn in figure 2.1. The value of the scalar c in 
equation (2.19) has been set to 1.5, as this has the effect of placing 

the £-axis in a convenient position in this biplot. It may be seen 

from figure 2.1, to a rank-2 approximation, for 1946 for example, that 

the T.P.P.R. is 2.45 births per woman, and the M.P.P.A. is 29.2 years.

Table 2.2.The 2-component versions of vectors jt and _s for the
decomposition in table 2.1 

g.
-7.48364
-0.50607

-206.592 

- 33.434

t

-.133017

-.008995

.0052122

.0770676
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2.5 Spline interpolation of biplot markers.

Although the age markers in figure 2.1 have been connected using 

straight lines, the overall impression is that of a smooth curve. Age 

dimensions in demographic tables of rates or proportions typically 

exhibit this property of smoothness when the number of age categories 

is large. When the number of age categories is small, however, as for 

example with five-year age-specific fertility rates for ages 15 to 50 

years, it may be desirable to connect the corresponding markers with a 

smooth line rather than a series of straight lines. It is shown below 

that this may be conveniently done using a set of cubic splines.

Any set of points {(a-, y^): i = 1, ..., m} where the {a.} are 

strictly increasing, may be smoothly connected with a cubic-spline 

function, y(a), as in figure 2.5« The {a^ : i = 1, ..., m} are termed 

the 'knots' of the spline, and the spline is derived so that for each 

interval cetween adjacent knots y(a) is a cubic polynomial, and for 

each open interval (a < a^ or a > a^) y(a) is a straight line. The 

coefficients of these (m - l) cubic polynomials and two straight lines 

are chosen so as to ensure continuity in y(a) and y'(a) at each of the 

knots, and also continuity in y"(a) at all but the first and last knots. 

These requirements are sufficient to uniquely define the cubic spline. 

McNeil et al (1977) describe how the spline may be calculated, and 

algorithms for doing so are commonly available in scientific software 

libraries.

Let u^(a) be the cubic spline passing through the points 

{(a^, u^ ) : i = 1, ..., m} where a^ is the value at the mid-point of 

the i row of the variable defining row categories, and where u. is
the i^^ element of u^ in equation (2.1). Denote;

yj(a) =
(2.21)
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y(a)

Figure 2.5 A cubic spline
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where is the element of in equation (2.1). Since, for each i, 

equals u^^ then yj(a_) equals by equation (2.1). Moreover,

the continuity and polynomial properties of the {u^ (a)} are conferred 

on yj(a) by virtue of (2.2l). Therefore y.(a) is the cubic spline 

passing through the points {(a^, y^ ) ; i = i, m) .

element is equal to u, (a). Then from (2.2l);

^ow, for any a, a vector of order r may be defined so that its

=fia' (2.22)
using the definition of h^. Thus the inner product of a period marker 

with gives the cubic spline interpolated value at a in the column 

of Y^,. Moreover, inner products involving only the first k elements of 

give interpolated values for rather than Y^. Thus ^ is a row 

marker, and may be plotted on the biplot for each of a large number 

of values of a. The u^(a) splines from which the markers are derived 

may be calculated as described by McNeil et al (1977).

Column markers h^^ may be defined, calculated and biplotted 

similarly for each of several values of b, the variable defining column 

categories. The inner product h_ then produces the value of the bi­

cubic spline surface y(a,b) which passes through the elements of Y (or Y
r ^ k

only the first k components are used) at the cell mid—points.

It is interesting to note that, although a cubic—spline is a single-

valued function of its argument (a), the resulting g or h, is not
-^a —b

necessarily single-valued on any of the biplot component axes. For 

example, for figure 2.1, neither nor h^ would be single valued on 

either of the first two component axes.

Table 2.3 contains the biplot markers for five-year age-specific 

legitimate fertility rates for several populations (United Nations, 1963 

and 1975). According to the theory above, in order to connect the seven 

age markers on the 2-component biplot with a smooth line, two cubic
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Table 2.3 The first two components of the decomposition of an array 
of five-year age-spcific legitimate live-birth rates for various 
populations (United Nations, 1965 and 1975). The rows of panels (a) 
and (b) form the first two components of the row (age) and column 
(period x country) markers, respectively. Panel (c) contains the 
values of the R^-statistic (equation (2,11)) for the first 2 components,

(a)
Age

(completed years)
15-19 -.910 .335
20-24 -.670 -.133
25-29 -.478 -.226
30-34 -.293 -.227
35-39 -.172 -.199
40-44 -.066 -.099
45-49 -.011 -.026

(b)
Country x Period -1 ^2

Australia 1961 -.562 .123
1971 -.463 .094

Canada 1961 -.573 .056
1971 -.351 .086

England & Wales 1964 -.477 .116
1973 -.344 .127

Holland 1963 -.542 .037
1974 -.292 .014

Scotland 1964 -.514 .091
1974 -.365 .165

Belgium 1961 -.425 .042
1970 -.405 . 155

France 1963 -.489 .042
1972 -.465 .168

Luxembourg 1960 -.412 .065
1970 -.380 .163

Denmark 1963 -.524 .265
1973 -.337 .087

Sweden 1963 -.473 .216
1974 -.381 .104

Group
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Table 2.3 - (b) continued

Country x Period -1 -2
Austria 1961 -.543 . 174

1974 -.414 .266
Finland 1963 -.507 . 133

1973 -.373 .236
Switzerland 1960 -.569 .191

1970 -.459 .198

Czechoslovakia 1961 -.440 .215
1970 -.436 .289

Norway 1960 - .471 .027
1974 -.461 .284

Poland 1960 -.505 .128
1974 -.518 .276

Cyprus 1960 -.440 -.176
1973 -.500 .083

Portugal 1960 -.491 -.096
1973 -.424 -.042

Spain 1960 -.497 -.183
1970 -.507 -.096

El Salvador 1962 -.607 -.364
1971 -.561 -.191

Panama 1960 -.561 -.115
1969 -.537 -.096

Venezuela 1961 -.634 -.321
1971 -.559 -.147

Greenland 1960 -.646 -.394
1970 -.399 -.029

Hungary 1963 -.304 .111
1974 -.394 .159

Ireland 1961 -.734 -.222
1971 -.740 -.020

Japan 1960 -.398 -.083
1970 -.364 -.183

Macau 1960 -.580 -.690
1970 -.280 -.262

Phillippines 1960 -.360 -.280
1970 -.446 -.269

Group

(c)
R"

,927 991
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splines should he calculated, one for each column of panel (a) of 

table 2.). At ages, say, one year apart both splines may be evaluated, 

and the two values which result for each age may be plotted as an age 

marker on the biplot, and the resulting age markers joined up. Inner 

products of these single-year age markers with a column marker would 

produce estimates of singb-year age-specific legitimate fertility rates 

for the corresponding population. However, these may not be the best 

available estimates of single-year rates, since it is reasonable to insist 

that the average of the single-year rate estimates within each five- 

year age group should equal the corresponding five-year rate estimate, 

which implies that the average of the single-year age markers within 

each five-year age group should equal the corresponding five-year age 

marker, and in general this will not be the case for the spline- 

estimated age markers. To remedy this, the five-year age markers should 

be incremented by the amount which they exceed the average of the 

corresponding spline-estimated single-year age markers, and the splines 

should then be recalculated to pass through these new five-year age 

markers. The process should continue iteratively, at each iteration 

incrementing the current five-year age markers by the amount which the 

original five-year age markers exceed the average of the current 

estimates of the corresponding single-year age markers, until convergence. 

For the age markers in panel (a) of table 2.), the process took just ) 

iterations. The resulting single-year age markers are given in table 

2.4, and it may be verified that although these markers do not pass 

through those in panel (a) of table 2.3, (for example, for age-group 

30 - 34 the marker is (-.293, -.22?) whereas for age 32 the marker is 
(-.289, - .22Y) they do possess the desired averaging property. Figure

2.6 contains the biplot corresponding to table 2.3, in which the single­

year age markers are plotted.
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Table 2.4. Cubic splines u^(a) and Ug(a) based on the and u vectors
in panel (a) of table 2.3, evaluated at single year intervals of »ge.
The rows in the table form the first two components of the g row 
(age) markers. ^

;e (a)
-eted years) “i<“) UgCa)

15 -1.012 0.56816 -0.961 0.45417 -0.910 0.33518 -0.858 0.21719 -0.807 0.10320 -0.757 -0.00121 -0.710 -0.08822 -0.667 -0.15623 -0.626 -0.19924 -0.589 -0.22225 -0.553 -0.23026 -0.517 -0.23027 -0.480 -0.22628 -0.440 -0.22429 -0.400 -0.22330 -0.360 -0.22431 -0.322 -0.22632 -0.289 -0.22733 -0.261 -0.22834 -0.236 -0.22735 -0.215 -0.22436 -0.194 -0.21637 -0.173 -0.20438 -0.150 -0.18739 -0.126 -0.16540 -0.103 -0.14141 -0.081 -0.11842 -0.062 -0.09643 -0.047 -0.07744 -0.035 -0.06245 -0.026 -0.04946 -0.018 -0.03747 -0.011 -0.02648 -0.004 -0.01549 0.004 -0.003
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2.6 The Biplot and Model Schedules,

Models of demographic schedules, such as the Coale-TusseH model 

of age-specific fertility (Coale and Tru88ell,1974), are of considerable 

value to the demographer, particularly in connection with incomplete 

or unreliable data. Fitting models to observed schedules requires only 

a suitable computer program, but at the time of writing there appears 

to be no systematic approach reported in the demographic literature for 

deriving these models.

Typically, model schedules are required in only one or two 

continuous dependent variables, and are based on census and registration 

data from a wide variety of populations. There are good reasons for 

not attempting to build a model from elaborate substantive hypotheses, 

since, as may be seen in chapter $, the data would in general be 

incapable of properly verifying it, and a simple formulation would be as 

likely to fit the observed schedules well. Moreover, a large data base 

and underlying continuity in the dependent variables ensure a high degree 

of regularity in the observed schedules; which means that very close 

approximations to the observed schedules should be attainable by the 

model. Thus a good model should be simple in structure, unambitious in 

its substantive interpretation and provide a very close fit to the data.

A number of different models of demographic schedules have been 

reported in the literature, but each of these have been developed for a 

particular type of schedule, and there is no reason to suppose that any 

of them would be transportable to other types. The decomposition (2.2) 

of the biplot, however, provides a general method of generating models 

for all types of schedule, as is illustrated below for the case of age- 

specific legitimate fertility. Such a method might be criticised for 

being atheoretical, that is, paying no attention to substantive issues. 

However, as argued above, there is little point in constructing



sophisticated theoretical models, and there is no guarantee that the 

parameters in a crudely constructed theoretical model may be validly 

interpreted in the intended way. On the other hand, the parameter 

estimates from a well fitting atheoretical model may be interpreted 

flexibly and powerfully in conjunction with supplementary information 

about the populations concerned.

If a variety of observed schedules of a given type are arranged 

in columns, with the rows corresponding to levels of the independent 

variable(s), then a model schedule 2^ of this type may be given by;
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where the vectors u^ to u^ are obtained from the decomposition (2.2) 

of the resultant data matrix, Y^, and where ^ is a set of k model 

parameters. Model (2.2^) may be fitted by least-squares to any observed 

schedule 2 which need not be amongst those in Y : if, however, 2 is

the column of Y^ then it follows from (2.2) that the estimated y is
th ^

the j column of Y^ and that the estimated ^ are the first k components

of the j column marker, hote that the regression model (2.23Q does not 

contain an 'intercept' term. Now it follows from equations (2.4) and 

(2.7) that the u vectors are mutually orthogonal, and so the usual 

regression formula for calculating parameter estimates simplifies to:-

(2.24)

for &= 1, k, which is simple enough to permit calculation by hand.

The estimated vector ^ may be plotted as a column marker on the k-

component biplot. The R value from the regression model (2.2$) on an

observed schedule 2 would in general be expected to be sightly lower 
2than the value from the decomposition (2.2) of Y , since the 

regression model (2.2$) contains no row parameters.
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Use of the biplot decomposition to obtain model schedules is now 

illustrated for the case of five-year age-specific legitimate fertility 

rates. Observed schedules from 28 countries each at two time-periods 

were selected (United Nations, 196$ and 1975) to provide a basis for 

the calculations of the standard u vectors. The observed schedules were 

arranged in columns and the decomposition (2.2) of the resultant data 

matrix is given in table 2.), and the biplot in figure 2.6. To avoid 

presenting a multiplicity of column markers on the biplot, countries 

having similar pairs of markers have been grouped together as indicated 

in panel (b) of table 2.^, and only the mean markers for the earlier and 

later time-periods have been plotted (joined with an arrow to indicate 

the direction of time) for each country group A to G. Countries which 

could not be grouped in this way constitute group H. The biplot also 

contains Total Period Legitimate fertility Rate (T.P.L.F.R.) and Mean 

Period Legitimate Fertility Age (M.P.L.F.A.) axes, calculated as 

described in section 2.4, although the scale on the T.P.L.F.R. axis 

reflects the fact that the T.P.L.F.R. is five times the sum of the five- 

year age-specific rates. As described in section 2.9, the biplot also

includes spline estimates of single-year of age markers.
2The high R^ value of .991 in panel (c) of table 2.9 suggests that 

model schedules which approximate well a wide variety of observed 

schedules may be generated using only u^ and Ug in equation (2.29), 

whose values are given in panel (a) of table 2.9. To test this, a 

further eight schedules of five-year age-specific legitimate fertility 

(United Nations, I965) together with the standard schedule of 'natural 

fertility' (Henry, I96I; Coale and Trussell,1974) were regressed on the

u vectors in panel (a) of table 2.9, with the results given in table 2.6.
2The overall R value is .982, which is encouraging, although the natural 

fertility schedule is not fitted well. The |6 estimates in table 2.6
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Table 2.5. The 2-component versions of vectors , g^, jt and _s for the 
decomposition in table 2.3.

g.

-2.59942
-0.57487

-63.426
-23.622

.366763

.081111
.018440
.083380
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may be plotted as column markers on figure 2.6. Estimates of single- 
year age-specific legitimate fertility rates for these schedules may be 
obtained as inner products of the corresponding column markers and the 
spline—estimated single—year age markers.

It is interesting to compare these results with those for the 
Coale-IhBsellmodel of age-specific legitimate fertility (Coale and 
iru88ell,1^74) ou the same data. This model may be written;

^CTi = w^^ exp(Y^ w^,)
2 2i' (2.25)

where y^^^ denotes a Coale-TrusseDmodel value for the legitimate 
fertility rate for the i^^ five-yearage group, w^^, and w^. are the 

standard values of natural fertility and departure from natural fertility 
for the i five-year group, provided in Coale and Trussell(l974) 
appendix A, and and Yg are the model parameters. The results from 
fitting model (2.2$) by least-squares to the nine schedules in table 2.6 

are also given in table 2.6, and the overall is .947. The models 
fitted in table 2.6 have the same number of degress of freedom, so, for 
these data at least, model (2.2$) is much more successful than the Coale- 
TrusselLmodel (2.2$), overall accounting for 66% of the amount of 
variation which the Coale-Trussellmodel fails to explain. The success 
of model (2.2$) is probably due to the fact that both standard age- 

structures, u^ and u^, reflect a variety of legitimate fertility age 
schedules, whereas in the Coale-TrusseHmodel (2.2$) one of the standard 
age-structures (w^^) reflects only one, rather extreme, legitimate 
fertility age schedule.

It 18 also interesting to explore the algebraic links between 
models (2.2$) and (2.2$). Taking only the first two terms in the Taylor 
expansion of exp(Y2 Wp.) gives:

yCTl -
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whence

' ^12 ^12 (2.26)
where 2^^, and w^g are vectors whose elements are 

and w^^.Wg^ respectively, and where = YnYg. Comparing 

expressions (2.2^) and (2,26) it is seen that the two models are 

approximately of the same algebraic structure.
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2.Y ConclusionB.

The biplot can be used to provide a graphical summary of any two- 

way data table. When the data are demographic rates or proportions, 

the biplot brings out the underlying regularity which is often present 

in such data; in particular 'age' dimensions usually appear as smooth 

curves in the biplot, as in figure 2.1. This regularity in the data also 

leads to very good approximations to the data with just two biplot 

components, although further components may still contain systematic 

trends of interest. Tables of greater than two dimensions can be dealt 

with by combining two or more dimensions: for example the biplot in 

figure 2.6 was produced by combining the time-period and country 
dimensions to form the dimension listed in table 2.$(b).

When the data table contains age dimensions it is helpful 

to construct axes for 'level' and 'structure' on the biplot 

as detailed in section 2.4. Smooth curves representing the age dimensions 

may be constructed using cubic-splines, as described in section 2.5, 

and used for interpolation.

A particularly useful application of the biplot is in generating 

models of demographic schedules, using the decomposition from which the 

biplot is constructed. It is expected that the technique would work well 

for any 'age' structure of demographic rates or proportions, owing to 

the high regularity of such data, and to the flexibility of the standard 

age structures. In particular, in section 2.6, the technique is shown 

to work better than the model of Coale and Trus8ell(l974) for age- 

specific legitimate fertility rates. Deriving the standard age structures 

is easy, being a by-product of the biplot, and fitting the resulting model 

to further schedules is trivial, requiring only hand-calculation. The 

graphical representation of the results enhances this technique of model 

generation; calculation and plotting of level and structure axes, and of
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spline curves, increases the utility of this model generation 

technique still further.
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Chapter 3 - Modelling vital rates.

3.1 Introduction

3.1.1 Objectives.

For the purposes of understanding and projecting demographic 

processes, tables of vital rates (or proportions) generally possess 

both advantages and disadvantages over individual-level survey data.

On the one hand, published vital rates often extend over long periods 

of time (for example, the Swedish modality data analysed in section

3.3 below), permitting the impact of a variety of social and economic 

conditions to be studied. On the other hand, long series of vital 

rates are frequently accompanied by only one cross-classifying dimen­

sion (usually ageX and consequently the depth of reliable interpreta­

tion might be rather limited. The purpose of this chapter is to 

examine various models or clanses of model in relation to a variety of 

demographic data, not merely to discover for each data set a suitable 

model, but principally to learn what to look for in a model, what to 

expect from a model, and how to approach the task of model building 

for highly aggregated demographic data.

As noted in Chapter 1, two quite different approaches to modelling, 

the theoretical and the descriptive, may be distinguished. The 

theoretical approach seeks to build a model from previous results, 

general experience , intuition and reasoning about factors thought to 

be underlying the data. The descriptive approach seeks only to provide 

a succinct algebraic description of the data, from which substantive 

insights may possibly result. In practice, a combination of these two 

approaches might well be adopted, alternately looking to the data for 

substantive clues, and combining theoretical considerations in a way 

which seems to correspond to the variation in the data. Conceivably it
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is possiole that all approaches would lead to just one mode^the extent 

to which this actually happens is one aspect of the present investiga­

tion.

With a limited depth of information available from the data, there 

seems little or no prospect of validating an elaborate theoretical 

model; equally there is no guarantee that a simple valid theoretical 

explanation exists. This suggests that a simple descriptive model 

might be more useful. However, the case against the existance of a 

simple valid theoretical model is not proven, and the extent to which 

theoretical considerations may usefully be incorporated into a model 

is a central concern of the development below.

Also of central importance is the way in which theoretical 

considerations may be expressed in a model. To explore this issue, 

four different types of model are examined in this chapter: model age- 

schedules, the additive age-period-cohort model, 'cohort-experience' 

models, and the 'bimodel'. These four types of model are discussed 

individually below. Some of these are more theoretical than others; 

that is, the strength of their substantive assertions varies considerably, 

Moreover, they represent a variety of techniques for incorporating 

substantive elements. Of course this set of types of model is not 

exhaustive; nevertheless, it is hoped that they are sufficiently diverse 

to enable general conclusions to be drawn, equally, it is hoped that 

the data examined in this chapter (age-specific nuptiality rates, age- 

specific fertility rates, and age—by—marriage—duration—specific 
legitimate fertility rates for recent time-periods for England and 

Wales; and age-specific mortality rates for Sweden for a long time- 

series up to 1930) are also sufficiently diverse for present purposes.

^^1.2 Models

As noted in Chapter 0 above, the usual strategy for accommodating
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a number of unmeasured or unknown causal mechanisms into a model of 

vital rates is via period specific or cohort specific parameters in 

a model age-schedule derived either empirically (e.g. the marriage 

model of Coale and MoNeil, 1972; or the relational models of Brass,1974 

a, b) or mathematically (e.g. the Gompertz function). Whether 

parameters in a moael age—schedule should be made period—specific or 

cohort-specific has been a matter for some debate (Hobcraft et al ,

1979; see also Chapter 0 above). Model age—schedules of nuptiality, 

fertility and mortality are considered below in order to shed light 

on this issue, and also to explore the possibility of assigning some 

parameters in a model age-schedule to periods and others to cohorts.

Prom a theoretical point of view it may be thought that both 

period-specific and cohort-specific mechanisms are operating in the 

data (in addition to age-related factors). The simplest way of 

combining all three types of factor is by means of additive age-period- 

cohort model (1.3) of Chapter 1. This model assert that cohort factor 

effects are constant over all ages within each cohort; that period 

factor effects are constant over all ages within eand period; and 

that age factor effects are constant over all time-periods (or cohorts) 

wAhm eauh age group. Unfortunately the identification problem assoc­

iated with this model severely hampers the interprekdion of parameter 

estimates resulting from this model (see Chapter l). This model may 

be generalised into a six-factor model for age-by-marriage-duration'by-

period-specific legitimate fertility rates, as will be seen in section 

^.4 below.

ihe identification problem of the additive age—period—cohort 

model is not its only drawback. Theoretical arguments might suggest 

that constant cohort or period factor effects over age are not realistic. 

Hobcraft et al (19/9) advocate the use of models in which cohort 

factor effects are adjusted to reflect the cumulative experience of the
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cohort at each age. These models aje termed 'cohort—inversion*

(Hobcraft et al , 1979) or 'cohort-experience' (Eohcraft and Gilks , 

1981^ models. least four types of cohort-experience mechanism 

may be distinguished. Firstly, for non-renewable

events such as death or first-marriage, when there is heterogenous 

susceptibility to experiencing ths event of interest, there is a tendency 

for the more susceptible individuals to be removed from the population 

earlier than the less susceptible, giving rise to a selection effect 

at the higher ages (Vaupel et al , 1979). This selection effect would 

vary with the amount of selection which has taken place, which in turn 

would vary between cohorts for any given age. Secondly, social and 

economic conditions!^ thehh^ory of a cohort may have an accumulating 

effect on the cohorts event rate; for example, epidemics and famines may 

permanently impair a cohor^a vitality, giving rise subsequently to 

increased levels of mortality within the affected cohorts. Equally, 

some epidemics could actually strengthen a cohorts resistance to disease, 

producing subsequent decreases in its mortality. Thirdly, in the 

particular context of nuptiality, the proportion in a cohort already 

married could have a direct effect on the desire to marry amongst the 

non-married through their fear of being 'left on the shelf': this has 

been suggested by Hernes (l972). Fourthly, in the context of fertility, 

cohorts may aim at a 'target' completed fertility, so that the 

fertility at each age for a cohort would depend on the additional number 

of children required to reach the target, and on the favourability of 

current economic conditions towards childbearing (bee, 1980). Cohort- 

experience models do not have a pre-defined algebraic form, unlike the 

additive age-period-cohort model, although a general framework for such 

models has been suggested by Eobcraft et al (1981). The principle is 

that theoretical considerations should dictate the form of the model.

Tables of vital rates often exhbit a transition from one cross-
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sectional age structure to another. Such a transition may be expressed 

algebraically as a sum of two age-schedules weighted by two period 

parameters: these two age-schedules may be fixed mathematical or 

empirical curves, although if the emphasis is on capturing the 

transition itself, there is no reason to fix these age schedules in 

advance. The resulting model, given in section $.2.4 below, is 

equivalent to the algebraic structure of the biplot technique (Gabriel,

discussed in Chapter 2 above. This model, termed the 'blmodel', 

is not merely descriptive since it asserts that, in addition to age 

factors, only time-period factors are in operation, via the two period 

weights in the model. A cohort factor bimodel may be constructed 

similarly, by replacing the two period weights with cohort parameters.

The bimodel, however, cannot accommodate age, period and cohort factors 

simultaneously. The bimodel can be adapted to correspond to data 

arranged in more than two dimensions as will be seen in section $.4 

below.

The models described above represent a breadth oTmodelling strategies. 

The mathematically derived model age-schedules and the bimodel are 

more descriptive than the additive age-period-cohort and cohort- 

experience models, since they only assert the presence of period (or 

cohort) factors and do not explain why such factors should interact 

with age in the way specified by the model. All but the cohort- 

experience models have a pre-defined algebraic structure. All but the 

additive age-period-cohort model posit non-additive period or cohort 

factor effects. The model age-schedules and the bimodel do not 

accommodate both period and cohort factor effects simultaneously.

These distinctionswill be utilised in section $.6 below in attempting 

to draw from the ensuing analysis general conclusions concerning 

modelling strategies.
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3.1,j Comparing; models.

Before commencing the analyses of models and data, it is convenient 

to consider how models of the same data set might be compared.

The sample base for published tables of vital rates or proportions 

is usually the entire population. This has important consequences for 

the stochastic component of any model. Clearly, discrepancies between 

model and data cannot conveniently be attributed to sampling error; and 

conceiving of the population as a sample from a superpopulation is 

unlikely to account for anything but the most minute discrepancies 

owing to the generally very large 'sample' size. It is desirable 

however to have some way of conceiving of these discrepancies, if only 

to provide a systematic basis for estimating and comparing models, and 

in many situations it might be reasonable to assume that, in addition 

to the factors specified by the model, unknown factom act independently 

between cells and uniformly on individuals within cells of the table. 

Thus an error component may be added to the non-stochastic part of the 

model and assumed to be independently distributed across cells of the 

table. It is advisable to first transform rates using the logarithmic 

transformation, or proportions using the logit transformation, before 

adding the error term, in order to stabilise error variances across 

the table, and to avoid the possibility of estimating negative rates, 

or proportions outside the range (0, l). Error terms may then be 

assumed to be independently and identically distributed normal random 

variables, and with these assumptions models may be fitted on the 

transformed scale by least-squares. This may be done using the Newton- 

Raphson procedure (Bock, 1975), which converges in one iteration for 

least-squares fitting of linear models, but which requires the provision 

of good starting values for rapid convergence in other situations. 

Beast-squares fitting of the bimodel may be achieved more efficiently
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using the Singular Value 'Decomposition provided that the data matrix

contains no missing values (see Chapter 2 above).

With the above error assumptions, the appropriate goodness-of-fit 
2measure is the R statistic, which expresses the proportion of variance

in the transformed data accounted for by the model. For nested models,
2

R values may be used to constructe an F-test. However most of the

models considered below are non-nested, and consequently comparisons of
2 2fit must be less formal. The adjusted R value, R is useful forad j

comparing models with different numbers of free parameters:

(3.1)

where N is the number of non-missing rates or proportions in the table, 

and n is the number of degrees of freedom in the model.

Goodness-of-fit is not the only criterion by which models should 

be assessed. Interpretability is equally important: that is, parameter 

estimates should be consistent with the theoretical assertions of the 

model, which in turn should be consisted with general experience and 

reasoning about substantive processes underlying the data.

3.1.4 The sequel

The following four sections contain, respectively, the analyses 

of the nuptiality data, the fertility data and the legitimate fertility 

data for England and Wales, and the mortality data for Sweden, mentioned 

in section 3«1.1 above. Each section contains subsections correspond­

ing to the four types of model discussed above, together with a 

summary of results. Finally, section 3*6 contains the conclusions 

from the analyses.
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5.2 Nuptiality.

The data analysed here are male and female nuptiality rates 

classified by single years of age and time-periods from I958 to 1976, 

omitting data prior to the 1920 birth cohort, for England and Wales 

(O.P.C.S., 1977a). Figure displays age structures for selected 

periods for both males and females for these data, from which it is 

apparent that female nuptiality is more concentrated abthe younger ages 

than male nuptiality, but for both sexes there is a clear trend 

towards younger marriage throughout the series, this trend being reversed 

briefly in the immediate post war years, presumably through marriages 

delayed by the war. The post-war female cross-sectional age structures 

are characterised by a discontinuity at age 21, which is also slightly 

evident in the male nuptiality data. The 1970 Family haw Reform Act, 

which lowered the age of majority from 21 to 18 years, has presumably 

been responsible for the disappearance of this phenomenon in recent 

years. Similar graphs of cohort age structures show marked irregulari­

ties around the war years.

5.2.1 The Coale-McNeil Model.

A model of the age structure of female cohort nuptiality is 

provided by Coale (l97l)# which is based on schedules of proportions 

ever-married at each age for female cohorts from a wide variety of 

countries, and is of the following form:

G(a) = Y (5^2)

where G(a) denotes the proportion of females in the cohort at age a 

who are ever-married; ^ denotes the proportion at birth who will be 

exposed to risk of marriage (the proportion marriageable); G is a 

standard function of proportions ever-married based on Swedish



Figure 3«1 Age-structures of nuptiality rates for selected time-periods 
between 1936 and 1976 for England and Wales, for a) males and b) females. 
The structures are stacked with that for 1936 uppermost. For each time- 
period nuptiality rates are measured from the corresponding scale-mark 
on the vertical axis.



experience; and uandg specify, respectively, the initial age at, and 

pace of, nuptiality in the cohort. Coale and McNeil (1972) show that 

the shape of the empirical G_ function is consistent with a normally 

distributed age at entry into the marriage market followed by a 

sequence of exponentially distributed delays into subsequent pre­

nuptial stages. Unfortunately a closed form expression for G has not 

been found, although Coale and McNeil (1972) provide a closed form 

expression for the standard function of first marriage frequencies, 

gg, as follows:

gg(x) = .1946 exp{ -.174(x - 6.06)- exp[-.2881(x - 6.06)] } (3.3)

where
g8(%) = ^

dx
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Now the nuptiality rate y(a) at age a is given by; 

y(aO = / {1 - G(a)} (3.3)

^ ^s - G(a)}

using (3.2) and (3.4). Substituting g from equation (3.3) into this 

expression, taking logs and replacing functions of a and g with new 

parameters *, Y and 6 gives a formulation of the original model on the 

scale of log nuptiality rates:

In y(a) = * + Y.0.604a - exp(Ya +6 ) - ^n (l - G(a) ) (3.6)

To apply (3.6) to cohorts in an age by period array of nuptiality rates, 

subscrips i, j, and k may be introduced to denote age, period and 

cohort categories, and an error term may be added, as follows:

^ijk " ^ - exp a^ + 5^9 - &n(l-Gh.^9

"'ijk (3.7)



88

where denotes the mid-point of age group i and G.denotes ther jK
proportion of females ever-married by age a. in cohort k.

This formulation of the marriage model of Coale and McNeil (1972)
IS somewhat less than ideal because it involves the empirical proportions 

ever-married which may be calculated from the data using life-
table techniques; this might be excusable if the calculation of G^j^ 

only involves the nuptiality rates prior to age i for cohort k, but a 

good estimate of actually involves itself, and thus
implicitly appears on both sides of equation ($.7)' An alternative 
procedure would be to replace G(a) in equation ($.6) using (9.2) but 
this leads to an expression which is virtually intractible computation­
ally. Another alternative would be to estimate model ($.2) directly, 

on the scale of porportions ever married, as do Coale and McNeil (1972), 
but the solution would then be non-optimal on the scale of log 

nuptiality rates, and this would exacerbate model comparisons. More­
over, it would then become computationally very difficult to generalise 
the model into a mixed age, period, cohort model as is done below. In 
these circumstances it seems preferable to stick with the relatively 
minor imperfections of model (9.7).

Model (9.7) is therefore applied to female nuptiality rates for 
England and Wales, with the goodness-of-fit reported in the first line 

of table 9.1 . Apart from those for the most recent (and therefore 
most incomplete) cohorts, the parameter estimates are reasonable, and 

indicate for successive female cohorts a slightly decreasing initial 

age-at—marriage, a substantially decreasing pace of marriage, and no 
discernable trend in proportions marriageable. The decreasing pace of 

marriage could reflect a trend towards longer courtships and pre­
nuptial cohabitation. However, time—period influences due to the war 

and its aftermath, which are clearly evident in the data, are not 

accounted for by model (9«7) and could be partly responsible for the
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Sex
Degrees of Freedom 
Model Data R adj

Coale-McNeil
3.7 Cohorts F 180 1513 .911 .899

M 180 1513 .980 .977

3.8 Periods P 180 1513 .862 .843

M 180 1513 .966 .961

3.9 Mixed F 123 1513 .969 .966

M 123 1513 .983 .984

Additive age,
period, cohort.

3.10 Age + period + 
cohort P 153 1513 .973 .970

M 153 1513 .982 .980

3.11 Age + period F 94 1513 .957 .954

M 94 1513 .949 .946

3.12 Age + cohort F 94 1513 .933 .929

M 94 1513 .950 .947

Cohort experience:
Hemes' model.

3.14 Cohorts F 121 1513 .962 .959

M 121 1513 .992 .991

3.15 Periods F 121 1513 .968 .965

M 121 1513 .988 .987
3 • l6 Periods with ) F 180 1513 .996 .995quadratic age)

M 180 1513 .999 .999

Bimodel

3.17 Periods F 121 840 .991 .989

M 121 840 .997 .996

3.18 Periods M + P I6l 1680 .995 .994

Table 3*1: Goodness of fit for models fitted to nuptiality data forEngland and Wales. r2 is the proportion of variance in log
nuptiality rates explained by the model. .. adiusts for degrees of freedom in model and data, “‘^RequaUcn 0.1) )
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above cohort differentials.

To accommodate time-period influences, the marriage model of Coale 
and McNeil (1972), equation ($.2), is often applied cross-sectionally 

rather than longitudinally, although strictly this is illogical because 
G(a) may not be monotonically increasing with age within a cross- 

section. A cross-sectional version of equation ($.7):

^ijk " ^ 0.604a_ - GxpCYj.a_+6j)-in(l-G^j^9+E^.^ (3.8)

does not suffer from this inapplicability since the empirical propor­

tions merried are being used, but it is difficult to interpret this 

model which permits the initial age-at-marriage for a cohort to vary 
with age. Model ($.8) does not fit the female data as well as model 
()'7), (table $.1), which is surprising considering the time-period 

fluctuations in the data around the war-years. The poorer fit of (3.8) 
may be due to the ability of the incomplete cohorts in model ($.7) to 
accommodate recent changes in nuptiality patterns.

A more interpretable way of adapting (3.7) to aocommodate time- 

period influences might be through the addition of a period parameter, 
to give the age, period, cohort model:

0'604a. - exp(Y..a. (3.9)

but it is still difficult to interpret model (3.9) since ideally some 
allowance in the third and fourth terms of this model (which, from 
(3.5), are related to first-marriage frequencies) should be made for 

period fluctuations in nuptiality prior to time-period j. To economise 
on degrees of freedom in (3*9), cohort parameters were assigned to 

three-year width cohort categories. The resulting fit to the female 
data is reasonable (table 3'l)* although the parameter estimates are 

now unstable and too extreme to be interpretable in terms of proportions
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marriageable etc. (Age, period, cohort, formulations of the model of 

Coale and McNeil, 1972,are also considered by Bloom, I98O).

Ewbank (l974) has demonstrated the applicability of the model of 

Coale and McNeil (1972) to Swedish male nuptiality rates. Fitting 

models (3^7) to (^.9) to themale nuptiality rates for England and 

Wales produces results similar to those for the female data, except that 

the fit tends to be better (table 3«l), and this is partly due to the 

greater smoothness of the male profiles.

$.2.2 Additive age, period and cohort factors effects.

ihe age, period, cohort model ($.9) above, derived from the marriage 

model of Coale and McNeil (1972), is difficult to interpret, and 

complex in construction. By comparison, the additive age, period, 

cohort model of equation (l.$) of Chapter 1:

y..^ = p + .. + g. + (3.10)

is attractively simple. Age factors in model ($.10) may be taken to 
include the length of the pre-nuptial stages, as suggested by Coale and 
McNeil (1972), and also length of employment which affects an individual's 

economic readiness for marriage. Macro-economic conditions, which also 

affect individuals' economic readiness for marriage, and wars, represent 

time—period factors. Attitudes to marriage formed during adolescence, 
and educational attainment (which affects economic readiness for marriage 
through earnings) represent cohort factors.

Model ($.10) fits the male and female data no better than model 

($.9), (table $.1), and interpretation of parameter estimates is 

hampered by the lack of identification of the model, discussed in 
Chapter 1. The age-period and age-cohort sub-models of ($.10);

in - p + a. +6. . (3.U)
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and

in y..^ - W + n. + + n. (3.12)
do not fit at all well.

The additive constrnction of (3.IO) does not seem realistic for 

several reasons, firstly, ecnomic readiness for marriage is likely to 

De an important factor only at the younger ages when individuals are 
most insecure financially; consequently macro-economic factors are 
likely to have their greatest impact at the younger ages. Secondly, 

cohorts with high educational attainment would compete successfully for 
employment and marriage at the younger ages, tending to increase early- 

nuptiality, but this advantage would wear off with age, as the better 
educated are selectively removed from the marriage market. Thirdly, 

attitudes towards marriage formed during adolescence could persuade 

couples to form prolonged pre-nuptial cohabitational unions, resulting 

in low initial nuptiality followed by high nuptiality at the later 
ages; again a constant cohort effect across ages for a cohort is not 
indicated. These last two points suggest a cohort-experience approach.

$.2.3 Cohort-experience; Hernes* model.

A cohort-experience type of model of nuptiality has been 

proposed by Eernes (1972), although the cohort-experience element in 

tnis model, pressure-to-marry, does not include the cohort-experience 

mechanisms outlined at the end of section 3.2.2 above.
Hernes (1972) models the proportions ever-married by age in 

a cohort for each sex, by conceptualising that members of the cohort 
are sucject to two opposing, intuitively reasonable forces: the 
increasing pressure to marry as the proportion of the cohort already 
married increases, and the declining marriageability of the single 

members of the cohort as they grow older. It is assumed that the 

pressure to marry is directly proportional to the proportion of the



cohort ever-married by age a, G(a), and that marriageability declines 

exponentially with age. The resulting model may then be written:
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y(a) = (3.13)

where, as before, y(a) denotes the nuptiality rate at age a, and where 

a and g are model parameters. Model (^,1^) is applicable to either 
sex.

G(a) in equation (g.l^) can be removed using equation (3«5), but 

this leads to a rather complicated expression. However, taking 

logarithms in equation (3.13^, reparameterising, adding an error term 
E and introducing subscripts gives the simple linear model:

^ijk = ‘'k Vt" hjfc" =ijk (3.14)

where, as in section 3.2.1, can be estimated from the data using

life-table techniques. As in section 3.2.1, model (3.I4) possesses the 
disadvantage that the calculation of G^.^ involves the dependent 

variable itself, although the model now contains only two parameters 
per cohort.

To accommodate time-period fluctuations, model (3.I4) may be re­
specified for cross-sections, as follows:

in = p. + e.aj + In G..^ + (3,15)

in which the first two terms of the model state that the effect of age 
on marriageability depends on contemporaneous influences, whilst the 
pressure to marry remains dependent on the proportion already married 
in the cohort. Thus this cross-sectional version of Hernes'(l972) 

model is much more readily interpretable than the cross-sectional 

version of the Coale and McHeil (1972) marriage model (equation (3.8)). 

From table 3. 1 , model (3.15) fits the male and female nuptiality



data about as well as the purely cohort specification of equation

The residuals from both models (3.14) and ($.15) show distinct 
age patterns, suggesting that modifications to the marriageability 
component are required. Eastings and Robinson (1973) have also noted 
this lack of fit. The addition of a quadratic age term to the marriage­
ability component of (3.13) gives the model:

in . p. . 6,a. + n.a. . in G,.^ i n. (3.16)

wnich, from table 3.T$ fits tne cata extremely well. Alternative 

modifications to the marriageability component are less successful, 
and relaxing the functional form of the pressure-to-marry component 

yields no improvements in fit. The cross-sectional specification (3.16) 
fits better than the corresponding longitudinal model, as might be 
expected.

Figure 3.2 illustrates the estimates of marriageability from 
model (3.16), and exhibits several interesting features. Interpreting 

these features in terms of the theoretical foundation of the model, 

it appears that marriageability decreases with age, although the rate 
of beeline slows up slightly at the higher ages. For the earlier time- 

periods, males are noticeably more marriageable than females of the 
same age, but male marriageability is steadily decreasing with time, 
especially for the older men. This could reflect the growing economic 
independence of women: in the past the financial security offered by 

older men would have considerably offset the underlying age trend in 

marriageability for males; consequently increased female earnings would 
affect male marriageability particularly at the older ages. Interestingly 
female marriageability has not been affected by changing economic 

circumstances, which suggests that the attractiveness of females to



95

Figure ^.2; The marriageability component (the first three terms) 
of the modicication of Hernes'(l972) model in equation ($.16), for 
time periods 19$0, 1950 and 1970 for males (broken line) and females (continuous line). The female curves are coincident.
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males is not based on economic considerations to any extent.
The time-period parameters in ($.16) soak the effects of the 

war. Interpreted in terms oft^ theoretical assertions of the model, 

both males and females became less marriageable daring the war years.

It is interesting to note that no modifications of the pressure- 

to-marry component of the model were found necessary. This suggests 

that pressure-to-marry is not influenced by economic or social condi­
tions, but only by the fear of being 'left on the shelf which increases 
only with the proportion already married in the cohort. Neither of 
the cohort-experience mechanisms referred to at the end of section 

$.2.2 above could be accommodated properly by the cohort-experience 
component of ($.l6), since they both suggest that early and late 

nuptiality levels within a cohort should be inversely related. However, 

these mechanisms could cause the effects of the pressure-to-marry 
component to be underestimated, but the experiments with the pressure- 

to-marry component suggest that a positive relationship between early 
and late nuptiality within a cohort is dominant.

$.2,4 The bimodel.

Attitudes to marriage may not necessarily be formed in adolescence, 

as assumed in section $.2.2 above. Changing macro-economic conditions 

provide a climate for evolution of attitudes towards marriage and 
patterns of family living, and it is reasonable to suppose that all 
cohorts are exposed to new ideas and norms via the mass media. Macro- 
economic conditions also have a direct affect on economic readiness for 
marriage, and would consequently affect nuptiality levels particularly 
at the younger ages, as noted in section $.2.2 above. These consider­

ations, and also the data themselves, suggest that a model which 

expresses a gradual change from one cross-sectional age-structure of 
nuptiality to another would potential^account for much of the data



variation. Such a moiel assumes that cohort—experience and other 

cohort—related mechanisms are not of great importance.

As noted in section ^^1.2 above, the bimodel represents one way 

of expressing a transition in age—structures for one sex:

-5^ -

- y - r. + e.«, . k. (3.17)

where { and are two age-structures and {y.} and {g.} are

time-period weights, and where y is the mean of the log rates for one 

sex. The logarithmic scale is chosen here merely to ease comparisons 
of fit with other models in this section. The removal of the mean y 

is to prevent the fit reflecting the units of the rates: this effectively 
adds one degree of freedom to the model. Model (^^lY) possesses the 

same parametric structure as the 2-component biplot, given in equation 
(2.2) of Chapter 2, with k = 2. This model, applied separately to the 

male and female nuptiality data, fits very well (table 3.1).

How from figure 3.I, the period trends, but not the age-structures, 
are similar between the sexes: therefore it is worth fitting model
(3.17) to both sexes simultaneously, providing different age-parameters 

but the same period-parameters for each sex. Formally this model may 
be written:

to yijk - ? - (3.18)

where subscript s has just two levels denoting sex, and where y is now 

the mean of both male and female log rates. Model (3.1^)may be 
estimated using the Singular Value Decomposition by arranging the data 
in the form of a matrix whose rows are time-periods, and whose columns 

are combinations of age and sex. From table 3«1 it appears that bimodel
(3.18) provides a comparable fit to that of the bimodel applied 

separately to each sex, equation (3.I7), but is much more efficient
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with degree of freedom.

As discussed in Chapter 2, the use of the Singular Value 
Decomposition to estimate the bimodel requires that the data matrix 
should contain no missing values. The present data matrix has missing 

values corresponding to the pre-l^OO birth cohorts, and so the bimodels 
(3.17) smd (3.18) were estimated only for periods after 19$4 and ages 

below 36 years.

Figure 3.$ contains the biplot corresponding to model ($.18).

The curvature in the age markers reflects the changing age structure of 

nuptiality from one in which marriages at the higher ages are usual to one 

in which marriages are concentrated between ages 20 and 2$. The female 
age markers show even greater curvature, demonstrating that ages- at- 
marriage for females have become more concentrated than for males.
The period markers show a reversal of these trends since 1970*

The impact of the 19)9-45 war can be clearly seen in the period 
markers in figure $.$, which also display a brief reversal in the 

trend toward younger marriage in 1946, presumably due to marriages 
delayed by the war. Glass (1976) has noted that since the war the 

increasing availability, effectiveness, and use of contraception, and 
the improving employment prospects for women after marriage, has 

removed the traditional view of marriage as the start of childbearing 
and that consequently women have become less reluctant to marry at a 

young age. The availability of effective contraception together with 
a recognition of the growing lack of security offered by marriage has 
recently led to the emergence of pre-nuptial 'trial marriages'
(Vilkie, I98I), and this may be partly responsible for the post I97O 

reversal in the trend towards younger marriage. Ermisch (l98l) finds 

that the decline inruptiality at the younger ages in the 1970s is 
largely due to the increase in women's earnings relative to men's.
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$.2,^ Discussion of nuptiality moiels.

In this section a number of causal mechanisms underlying the 
n^tiality data for Ehgland and Wales have been discussed, and it 

is often the case that there is more than one way of accommodating a 

given mechanism into a model. None of these mechanisms, however, 

suggest the formulation of either cohort factor effects which are 
constant for all ages within each cohort or period factor effects 
which are constant for all ages whhmeachtime-period. The best 
fitting models represent either cohort-experience type factors (the 
adaptation of Bernes' (l$Y2) model (3.16) ) or period factors which 
interact with age-structure (the bimodel (3.17) ). On grounds of 

both fit and interpretability, the adaptationsthe Coale-McNeil 
(1972) model (3.8) and (3*9) and the additive age, period, cohort 
model (3*10) may be dismissed. Possibly there is some prospect of 

adapting the Coale-McNeil (1972) model to accommodate period factor 

effects, but the difficulty in doing this is evident from section
3.2.2 above.

The result then is a dilemma; a choice between two extremely well 
fitting, intuitively reasonable, and highly interpretable models which 

make somewhat different substantive assertions. In some respects the 

adaptation of Bernes' (1972) model (3.I6) and the bimodel (3.17) are 

similar: they both contain only period parameters. Potentially the 
period parameters in (3.16) could accommodate the changing age-structure 

in nuptiality; however for females the period parameters have changed 
remarkably little over time: changes in age structure being largely 
accommodated by the pressure-to-marry term. Consequently it cannot be 
said that (3.16) is merely an approximate version of (3.17). Moreover 

the trends in marriageability illustrated in figure 3.2 are tantalisingly 
interpretable. Both models account for the impact of macro-economic
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conaitions and contraceptive availability, but in rather different ways.
Neither (3.16) nor (3.1?) adequately express the 'catching-up'

0i marriage plans postponed by the war, although both models indirectly 
accommodate the consequent post-war bulge in late marriages (figure 3.1)' 
however, this is a minor source of data variation. Also neither model 
explicitly takes into account the effects of imbalances between the 

sexes, which Ermisch (l$8l) has found to be of some importance for 
England and Wales.

So far as projection is concerned, the bimodel (3.18) has the 
advantage since it contains only two period parameters for both sexes 
combined, whereas the adaptation of Hemes' (1972) model (3.16) would 
require six period parameters to be projected for both sexes. Addition­

ally, the use of in model (3.16) complicates its use for projection

since its computation involves the nuptiality rate it is involved in 
projecting.



3.5 All-women fertility.

The data analysed here are fertility rates for all women in 
England and Wales, classified by single years of age and time-periods 
from 1938 to 1979, (O.P.C.S., 1979)^. Figures 3.4 and 3.5 display age 

structures for selected periods and cohorts for these data, from 
which it is apparent that childbearing has become increasingly concen­

trated around age 23 years, and that period age-structures are consider^ 

ably more regular than cohort age-structures.

It might be argued that there is little point in modelling all­

women fertility rates unless the proportions married are explicitly 
taken into account, in which case one may as well model legitimate 
fertility rates directly. An analysis of legitimate fertility is 
given in section 3.4 below, but in defense of the present analysis it 
is noted that not all fertility is legitimate; that some legitimate 

fertility is pre-maritally conceived; and that the timing of marriage 

may in many cases be influenced by fertility intentions or expectations. 

Consequently the case for analysing legitimate fertility alone is not 
clear cut. Thus this section applies the varyious types of model 
discussed in section 3.1.2 above to the all—women fertility data for 

England and Wales. Section 3.4 below contains a similar analysis of 
legitimate fertility.

3.3.1 The Gompertz function.

Many mod^softheage-structure of all-women fertility have been
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1. These data, from an unpublished table, showed marked irregularities 
between five-year age groups for the earlier time-periods, undoubt­
edly reflecting a rather crude apportionment of five-year age- 
specific populations exposed to risk. These irregularities were 
removed using a bi-cubic spline technique (Hayes and Halliday, 1974) 
before commencing the analysis above.
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proposed, including: a polynomial (Brass, i960); Johnson's (l949) 

functions (Talwar, 1974); Gompertz and Makeham functions (Wun8ch,1966; 

Murphy and Nagnur, 1972; Murphy, 1982), Hadwiger's (l940) net maternity 

function, the Lognormal distribution and the gamma (Pearson III) 

distribution (Duchene et al, 1974), the beta (Pearson l) distribution 

(Mitra, 1967;lkassetal ^^k;Romaniuk, l^^^G Mitra and Eomaniuk, 1973; 

and Buchene et al, 1974); srd Mazur (1963), Coale and Trussell (l9YJj 

and Pittenger (1980) have developed their own specialised forms. The 

fit of these models to these data ranges from very bad (Hadwiger's 1940 

function) to good (Gompertz); however these results are not reported in 

full here. Hoem et al (198I) have compared some of these models on 

Danish data, including Brassrelational models. The Gompertz 

model, being a well-known and generally well fitting model, is 

considered here.

Murphy and Nagnur (1972) use the Gompertz function to model 

cumulative fertility within cohorts, and also within periods. The 

Gompertz function takes the following form:

F(a) = (3.19)

where, in this case, F(a) denotes fertility cumulated (within periods 

or within cohorts) up to age a. Dif&mentiating (3.I9) with respect to 

age gives an expression for the fertility rate y(a);
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y(a) = agY Ang.&ny.y' (3.20)

and taking logs, reparameterising, adding an error term and introducing 

subscript notation gives the cross-sectional model;

&n y.+ g..J 1 ijk (3.21)
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Model ($.21) fits the present data well, as may be seen from the 

first line of table $.2. A cohort-oriented version of ($.21) does 

not fit the data well, as might be expected from fignre $.$.

Murphy and Nagnur (1972) note that the three parameters, and 

Y , in ($.19) have a straightforward demographic interpretation: a 

estimates total achieved fertility, g is inversely related to the 

average age of childbearing; andy is related to the spread of the 

age-specific fertility schedule about the average age of childbearing. 

This 'interpretation' however says nothing about the substantive 

processes underlying the data, and the model is therefore descriptive 

rather than theoretical.

The fact that model ($.21) fits better cross-sectionally rather 

than longitudinally indicates that time-period rather than cohort 

mechanisms are dominant. The war, macro-economic conditions and 

contraceptive availability are probably jointly responsible for the 

time-period trends in the data. The temporary bulge in fertility 

following the war is not purely a time-period phenomenon since it is 

confined mainly to the cohorts which were at the prime reproductive 

ages during the war, (some evidence of this may be seen in figure $.$); 

this is clearly a 'making up' of births missed due to the war.

Model ($.21) states that primarily time-period factors are 

responsible for the 'boom' in fertility between 19$1 and I966, and 

the subsequent 'bust'. Many researchers have suggested causes for the 

boom and bust. Some have attempted to find roots of causation in 

cohorts (notably the 'Easterlin hypothesis', Easterlin, I968;applied to 

fertility movements in England and Wales by Easterlin and Condran,

1976, and Samuelson, 1976^, but Lee (1974, 1976, 1978) has developed a 

version of the Easterlin Hypothesis which states that age-specific 

labour-fmce participation rates in a time-period affect fertility
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levels via the level of income compared to anticipated income ('relative 

economic status'). (Congdon (198O) has used this hypothesis to forecast 

births in England and Wales). However, an expanfng economy does not 

necessarily imply increasing levels of fertility: Hutz and Ward (1977, 

1979) have derived models from the 'New Home Ebonomics' theory of 

Becker (i960, I969) and Mincer (196^) which allow for the conflict 

between the husband's level of income (which is associated positively 

with fertility) and the wife's earnings potential (which is negatively 

associated with fertility). Women's earnings potential has been 

assisted by legislation for equal employment opportunities for men and 

women (Glass, 1976). Ermisch (1979) compares models derived from the 

Easterlin Hypothesis and the 'New Home Ehonomics' on data for England 

and Wales, and finds the latter to be more successful.

Model ($.21) also captures the gradual transition towards younger 

fertility which continued throughout the 'boom' and up to 1971. Much 

of this is associated with younger marriage which in turn can be 

partly explained by macro-economic conditions (see section 3.2 above). 

Only since I966 has the fertility of older women declined, which 

suggests that employment opportunities for older women did not improve 

until that time. Since 1971 there has been a trend towards delayed 

fertility which has been accompanied by a rising age-at-marriage. This 

probably partly reflects the increasing difficulty young couples 

experience in affording a home and children in the presence of economic 

recession, and also the increasing employment prospects especially for 

the more educated women. Both Wilkie (I98I) for the H.S.A., and Kiernan 

and Diamond (1982) for England and Wales, have shown that delayed 

parenthood is positively associated with women's educational achievement. 

However tne direction of causation between employment and fertility is 

not one-way: Jones (l9Eh^ considers the effects of childbearing on 

employment.
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l^uation
Number Model

Degrees oi 
Freedom ad .1

^^21 Gompertz 126 .978 .978
Additive age,
period, cohort

^.10 Age + period + 
cohort 140 .986 .984

^ull Age + period 71 .928 .924
3.12 Ag^ + cohort 100 .928 .922

3.22 Cohort-experience:
Achieved fertility 93 .961 .938

3.17 Bimodel, periods 141 .976 .973

Table ^.2: Goodness-of-fit for models fitted to the age by period 
array of fertility rates for all women in England and 
Wales. is the proportion of ^^riance in log fertility 
rates explained by the model. adjusts for model
degrees of freedom,(equation ($.lj^^.
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Additive age, period anicohort effects.

The original version of the Easterlin Hypothesis (Easterli^l968) 

states that 'relative economic status' (economic status relative to 

economic aspirations formed in adolescence) has a positive effect on 

fertility, and that relative economic status is roughly inversely 

related to 'relative cohort size' (the size of a cohort relative to 

the size of the cohort one generation before). Thus relative economic 

status is constant within cohorts. Ryder (1978) states that couples 

have intentions concerning both the quantum and tempo of fertility, 

although the tempo of fertility is often distorted by period phenomena 

(such as wars, economic conditions, etc.) Ryder's (1978) view is not 

inconsistent with that of Easterlin (1968), and both suggest an age, 

period, cohort framework of analysis. Sanderson (1979) has used the 

additive age-period-cohort model (^.10) to test an aspect of the 

Easterlin Hypothesis on data for the U.S.A., and Pullum (1980) has 

also used the model to analyse fertility in the H.8.A.

The results (table 3.2) of fitting model (3.10) (with y.,, denoting 

the fertility rate for all women) and its submodels (3.11) and (3.12) 

to the data for England and Vales show that model (3.10) provides a 

much closer fit than its submodels, the cohort parameters absorbing 

the changing cross-sectional age structure of fertility to some extent. 

However the lack of a reliable means to identify the model once again 

frustrates a more detailed interpretation of parameter estimates.

3.3.3 Cohort-experience: achieved fertility.

Cohorts aiming for a desired quantum of fertility (or 'target' 

fertility) would be expected to adjust their current fertility to take 

into account their achieved fertility (bee, 1977, 1980; Ryder, I978). 

The post-war 'catching-up' of births missed during the war is evidence



of this phenomenon. The additive age, period, cohort model (^.lO) 
discussed in section $.$.2 above does not explicitly accommodate such 
a phenomenon, since it does not posit a dependence on achieved 
fertility. Lee's (1977, 1980) model of marital fertility accommodates 

this phenomenon by relating current fertility to the difference between

target and achieved fertility. This model is discussed in section 3.3.4 
below.

Mow the concept of a target fertility is not the only, nor 

necessarily the best way of bringing achieved fertility into the model; 
to some extent the target fertility itself is dependent on achieved 
fertility, since couples are unlikely to consider existing children 

unwanted. It may be more realistic to assume that each existing 
child makes demands on a couple's resources of time and money, and as 

such represents a disincentive to further childbearing. Assuming that 
in the absence of these disincenthes there is a basic age-structure 
of cniiubearing determined largely by biological factors, that time- 

periou factors such as wars and macro-economic conditions influence 
fertility in all age groups proportionately, and that the disincentive 
which each child represents is constant over time, then a model may be 

constructed as follows;
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"lik ' « - “i - 8. * (3.22)

where subscript h denotes the level of achieved fertility in cell (i, j, 
k). (To determine integer h for a given cell (i,j,k), achieved fertility 

for that cell is first calculated by cumulating fertility rates over 

previous age groups within cohort k. If the achieved fertility falls 
in the range 0.0 to 0.1 children, then h is assigned equal to 1; if 

achieved fertility falls in the range of 0.1 to 0.2 children, then h is 

set equal to 2; and so on. In general if achieved fertility falls in 
the range (h - l)/10 to h/lO then h is the level of achieved fertility
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assig^^d to the cell). Thus model (^.22) assigns one parameter to 

each level of achieved fertility, and consequently the functional form 

of the dependence on achieved fertility is very flexible.

Model (^.22) does not represent a particularly good fit to the 

data, but it does fit very much better than the simple age-period 

additive submodel ($.11). The parameter estimates from model (3.22) 

are interesting and are given in figure 3.6, each panel of which 

reflects an arbitrary normalisation of the parameters. The age affects 

at the higher ages resemble henry's (l^6l) schedule of natural fertility, 

and therefore probably reflect mainly biological factors. At the younger 

ages the age effects are much lower than natural fertility, reflecting 

later exposure to risk of childbirth relative to the natural fertility 

population, due to later marriages or unions and use of effective 

techniques of contraception.

The achieved fertility effects in figure 3.6 show that each child 

achieved, up to two children, represents roughly a halving of the 

fertility rate, other factors being held constant. Above two children, 

however, each additional child achieved represents roughly a ten-fold 

reduction in the fertility rate, other factors being held constant.

This suggests that couples feel a strong disincentive to having more than 

two children.

The period affects in figure 3.6 initially correspond very 

closely to the total period fertility rate (T.P.F.R.), however, they 

increase faster than the T.P.F.R. during the fertility boom, and do not 
turn down until six years after the turning down in the T.P.F.E. This^^^ ^^1 

suggests that the rate of increase in the T.P.F.R. during the boom 

actually underestimates the extent to which those times were propitious 

for childbearing, the reason for the underestimation being that couples 

were having a high pace of fertility despite already larger than average 

family sizes for their age during the boom years. (The inverse relation-
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Figure 3.6: Parameter estimates from model (3.22) showing
(a) exponential age effects and natural fertility.
(b) achived fertility effects; and
(c) exponential period effects and the T.P.F.R.
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ship can be seen during the immediately post-war years, in which the 

T.P.F.R. overestimates the extent to which times were propitious for 

childbearing because much of this fertility was due to the making-up 

of births missed during the war.) how between 196$ and 1971 the period 

effects are roughly constant, indicating that conditions for child­

bearing were not changing; the falling T.P.F.R. during this period 

reflects the excess of children built up during the previous years.

This is a most useful result, since on the assumption of constant 

period factor effects after 196$ one could have predicted the fall in 

T.P.F.P. between 196$ and 1971 (however, the age and achieved fertility 

parameter estimates based on the pre-196$ data are unstable; this is 

discussed further below). Similarly the increase in T.P.F.R. after 1977 

could have been predicted even on the basis of falling period effects 

after 1977.

The achieved fertility effects in panel (b) of figure $.6 curiously 

resemble the natural fertility age schedule in panel (a). It is tempting 

to try to make some substantive links between the two schedules, and it 

IS not difficult to express the relationship algebraically, However, 

the relationship is extremely difficult to interpret, and it seems more 

likely that the similarity is merely coincidental.

The need to determine how much of the variation in levels of 

fertility is due to time-period factors, and how much is due to achieved 

or desired family size, has motivated much of the research into target 

fertility, and recently both Butz and Ward (1979) and Pyder (l980) 

have proposed essentially the same method of decomposing the T.P.F.R. 

into two such components. However their methods do not make explicit 

the underlying model, although their basic assumptions are clear enough. 

Model ($.22) explicitly decomposes fertility rates into period and 

achieved fertility components, and leads directly to a method of 

decomposition of the T.P.F.R. which is very similar to that of Butz
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Ward (1979) ard dyder (198O), the main difference being that 

achieved fertility replaces target fertility in their method.

Model (3.22) makes quite strong substantive assertions: Firstly, 

the disincentive to further childbearing represented by existing 

children is assumed to be constant over all ages. This is very difgrent 

from a model based on the concept of target fertility in which a high 

parity at one age would tend to have a much greater impact on sub- 

sequenu fertility than the same parity at an older age. In the target 

model couples are far-sighted, planning their future fertility in order 

to avoid missing their target; in the achieved fertility model ($.22) 

couples are more short-sighted, only reacting to how many children they 

already have, tending to drastically reduce the risks of childbirth 

after the second child.

Secondly, model ($.22) asserts that the disincentive due to 

existing children is constant over all time—periods. This assumption 

seems unlikely to be true over long periods of time, since family size 

norms have undoubtedly reduced over the last century. However the 

assumption may be approximately valid for the period 19$8 - 79. Attempts 

to relax this assumption have uniortunately led to models whose parameter 

estimates are uninterpretable, although room for further exploration 

certainly exists.

Thirdly, model ($.22) asserts that time-period factors affect 

fertility in all age groups and achieved fertility groups proportion­

ately. How panel (a) of figure $.6 suggests that mainly biological 

factors are operating at the older ages, and consequently time-period 

factors would not be expected to have much influence in this region.

At the younger ages time-period factors may have a powerful impact on 

fertility primarily via delayed exposure to risk of childbirth; it is 

interesting to note that the time-period parameter estimates in panel

(c) of figure $.6 start to decline after the boom in I97I, which



coincides with the initiation of the trend towards delayed marriage 

discussed in section $.2 above. Thus it seems that the proportionality 

in the effects of time-period factors is not realistic. Again there is 

room to explore methods of adjusting this aspect of the model.

If the data contained no variation across time—periods, model 

would not be able to distinguish between age and achieved 

fertility effects. This identifies a potential source of instability 

in the parameter estimates: as noted above, estimating the model on 

the oasis of the pre-1965 data produces irregular and uninterpretable 

parameter estimates. Consequently, it seems that a fairly long run 

of data, containing both upward and downward movements in fertility, 

is necessary in order to obtain stable and interpretable parameter 

estimates from model ().22).

In summary, some of the assumptions embedded in model ($.22) 

are over-restrictive. Nevertheless, the model as it stands is highly 

interpretable owing mainly to its simplicity: this could easily be 

lost with more sophisticated versions. Moreover, for projection, 

model (3.22) requires a long run of data, but only one period parameter 

need be projected.

3.3.4 The bimodel.

- 115 -

Several time-period factors of fertility are discussed in section 

3.3«1 above in connection with the cross-sectional Gompertz model (3.21), 

This model contains three period parameters. The bimodel (3.I7) (with 

^ijk ^Gnoting a fertility rate for all women), which contains only two 

period parameters, may represent a more efficient way of accommodating 

time-period factors.

In Chapter 2 che present data are biplotted on the untransformed 

scale (figure 2.1), and for two components the value is .997 (table 

2.1). however, model (3.I7) Ibr the present data obtains an R^ value
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of only .976. Examination of the resihnals from mohel (3.I7) suggests 
that its poorer fit is partly due to the dominating effect on the fit 

of very small fertility rates at the extreme ages, which become large 

and negative on the log scale. As stated in section 3.2.4 above, the 
only reason for wishing to use the bimodel on the log scale is to 

permit comparisons between the fit of different models. It is suggested 

that for most purposes the bimodel of the natural scale data would be 

more easily interpreted and better fitting. Nevertheless, the value 
of .976 for the log scale biplot (3.17) is only marginally worse than 
that for the Gompertz model (3.2.1). The biplot corresponding to 
(^'i7)ibr these data is given in figure 3«7* from which is may be seen 

that ages 22 to 29 years are not well distinguished, and consequently 
not well fitted.

bike the cross-sectional Gompertz model (3.21), the bimodel (3.I7) 

does not explicitly take account of the cohort-experience 'catch-up* 

effect following the war, although the time-period parameters do 

account for much of the consequent variation in the data.

3.3.5 Discussion of all-women fertility models.

The best fitting of the models discussed above is the additive 

age-period-cohort model (3.IO); yet this model is also the least 

interpretable, not only Peoause of the lack of identification in the 

parameters, but also because reasoned discussion of the factors under­

lying the data does not indicate constant cohort effects within 

cohorts, ^uch of this discussion suggests that time-period factors 

operate in such a way as to change the age-pattern of fertility: the 

Gompertz model (3.2l) and the bimodel (3.17) both capture this 

phenomenon. Consequently the success of the additive age-period-cohort 

model seems to be due to the ability of the cohort parameters assigned 

to tne earliest and latest cohorts (which are all incomplete) to
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accommodate a trend in cross-sectional age-strnctnres.
By contrast, the most interpretable and interesting model, the 

cohort-experience achieved-fertility model ($.22), is also the worst 
fitting model (excepting the submodels of age-period-cohort model 
($.10) ). Some of the assumptions embedded in model ($.22) are perhaps 

too rigid, and further research might indicate ways in which to 

improve the model and its fit without detracting from its essential 

simplicity, which is the key to its interpretability, Usefully, 
model ($.22) represents an additive age-period-cohort model of sorts, 

which does not have a built-in identification problem. Despite its 
poor fit, the model has considerable potential for projection , since 
it takes into account previous levels of fertility in a direct and 
intuitively reasonable way, without recourse to unreliable or internal 
estimates of 'target' fertility.



- 119 -

$.4 Marital Fertility.

From figures 3«4 it is clear that both nuptiality and

fertility for all women in England and Wales have, up to 1971, 

gradually become more concentrated at the younger ages, and that these 

trends have reversed since 1971: this may be seen more clearly in the 

biplots of figures and 3'7. This suggests that an examination 

of marital fertility might reveal simpler patterns. Consequently this 

section analyses marriage duration specific fertility rates for England 

and Wales (O.P.C.S., 1977h). These data are classified by five year 

age-at-marriage categories and single-year duration and marriage-cohort 

categories.

Figure $.8 illustrates these data for selected cross-sections, 

and reveals some very interesting features. The smooth durational 

profiles within age-at-marriage groups are striking; the decline in 

fertility with age-at-marriage is also marked. Time-period influences 

may also be seen, for example between 1941 andl946, or between 1971 

and 1976. The durational profiles have gradually changed throughout 

the series, initially being monotonically decreasing after duration 

zero, but later becoming humped, exhibiting a growing trend towards 

delayed fertility following marriage. This trend towards delayed 

fertility may be detected as early as 1956 in the youngest age-at- 

marriage group, but it is not observable in the older age-at-marriage 

groups until 1971. (The humping in the 1946 profiles is of a different 

form). Simultaneously fertility at the higher durations has become 

much reduced. Such a high degree of regularity is not displayed when 

the data are plotted longitudinally.

The models which follow were fitted for time periods 1950 to 1976, 

durations 1 to I4 years and five-year age-at-marriage groups from 1$ 

to 45 years. (Duration zero is omitted because of its evident anomalous
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fertility rate

duration (years)

Figure $.8: Fertility) rates in Englann and wales for selected 
time—periods, snowing duration of marriage structures 
for age-at-marriage groups (a) under 20, (b) 20 - 
(c) 25 - 25, (d) 50 - (e) 55 - ^5, and (f) 40
years.

24,
- 44
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behaviour. Incomplete (up to duration I4 years) cohorts are also 
omitted).

^.4.1 Additive a^a, period and cohort effects.

Page (1^/6) analyses Swedish fertility rates classified by age, 

duration of marriage and time—period. Her model essentially consists 

of age and duration effects which are allowed to vary with time—period. 
These, time—period interachons represent a large number of degrees of 
freedom, although Page (1976) goes some way to modelling these inter­

actions with fewer degrees of freedom. Gilks (1979) shows that the 

resultant model does not contain some main-effect terms corresponding 

to its interaction terms. Moreover, there is some evidence from the 

Swedish data that age-at-marriage effects are present. Repeating the 

analysis on similar data for England and Wales, Gilks (1979) finds that 
there is clearer evidence of age-at-marriage effects.

It 18 possible that interactions with time-periodrmght be 
efficiently parameterised with the addition of birth-cohort or marriage- 
cohort factor effects to a model involving age, period, duration and 

age-at-marriage factor effects:
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jk&mn (3.23)

where fertility rate in age group i, time-period j,
birth-cohort k, duration-of-marriage^, marriage-cohort m and age-at- 

marriage group n. how there are three logical relationships between 
these six dimensions, which may be expressed as follows: 

age - period + birth-cohort = 0

duration - period + marriage-cohort = 0 (^.24)

age - duration + age-at-marriage = 0 
and each of these represents a source of confounding of the age, period.
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cohort type discussed in Chapter 1. Consequently model (3.23) possesses 

three 'linear' identification problems. Submodels of (3.23) which do 

not contain any of the sets of three logically related variables 

represented in (3.24) may still have linear identification problems, 

since by (3.24) : age, period, age-at-marriage and marriage-cohort are

logically related; as are: age, duration, birth-cohort and marriage- 

cohort. A complete list of these logical relationships is given in 

Casterline and Hobcraft (l$8l).

In addition to these, further identification problems exist due 

to the fact that age-at-marriage categories for the present data are 

five times longer than the duration and period categories. Fienberg 

and Mason (1979) demonstrate these.

SinK age-at-marriage categories are five years in length for the 

present data, there seems little point in calculating single-year width 

categories of age and birth-cohort, since the calculations involve age-at- 

marriage(equation(3.24)^ Single-year width marriage-cohort categories 

however may be usefully calculated. Using five-year width categories 

of age and birth-cohort the identification problems associated with 

unequal width categories disappear, as do some of the 'linear' 

identification problems. However, linear identification problems which 

are apparently resolved by grouping categories do not solve the 

associated Interpretational problems: this is explained in section 

1.4.2 of Chapter 1.

As may be seen from table 3«3# model (3.23) does not represent a 

very convincing fit to data. In fact there seems little justification 

for retaining age-at-marriage, marriage-cohort or birth-cohort effects 

in the model since they account for little variation. This leaves the 

submodel;

y.t . 6, + (3.2[
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Equation Degrees of
Number Model Freedom “'ad.

Additive Effects

3.23 All six effects 102 .964 .962
3.23 Age, duration, 

period 43 .934 .933
3.26 Age-at-marriage, 

duration, period 47 .839 .833
Cohort experience:
Lee's Model.

3.32 period targets 28 .020 .003
3.33 period, age-at- 

marriage targets 33 .609 .602
3.34 Rimodel (periods) 189 .994 .993

?ahle Goodness-of-fit for models fitted to the duration-of-
marriage by age-at-marriage by geriod table of fertility 
rates for England and wales. ^s the proportion of 
variance explained by the model adjust for degrees
of freedom in model and data, (equar^on (3.1) ).
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which has the merit of not possessing any identification problems, it 
is perhaps surprising that this model performs better than the model 

containing the original dimensions of the table:

&n y.■j£„ u + Bj + (3.26)

since five-year age groups actually encompass a total range of ten 

years of age as may be seen from figure 5«9« This emphasises the 

importance of the age variable. Nevertheless,aodel ($.25) cannot be 

considered a good model: its structure asserts that age-at-marriage 

by duration profiles should be proportional between time-periods: an 

assertion which clearly does not correspond to the reality (figure 3.8). 
Thus model (3.2$) fails to capture the most interesting developments in 

fertility observable from figure 3.8. Casterline and Hobcraft (igGl) 
have fitted additive effect models of the above type to World Fertility 

Survey data from a variety of countries, and, as above, find that the 

best of these models is the age, duration, period model (3.25).

3«4.2 Cohort-experience: Lee's model.

Prom survey data for the U.S.A., Lee (1977) finds that eaoh married 
women, at any point in her reproductive history, may be considered to be 
either a 'terminator' (i.e. she wants no more children) or a 'non­
terminator' (i.e. she does want more children), and that her status 
(terminator or non-terminator) may change back and forth with time, 

depending on further births and on economic circumstances, etc., which 
might cause her to alter her desired family size. Lee (1977) further 
finds that, for non-terminators, both the fertility rate and the average 
additional number of children desired remain approximately constant over 
age and time-period. Consequently, assuming no contraception failure 
amongst women who are terminators:
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igure Showing five-year age—at—marriage groups by
single-year duration-of-marriage groups, and 
resultant five-year age groups. Cells whose 
midpoints fall within a five-year age range, 
denoted 'a' on the figure, are allocated^to 
one age group, and are shown shaded. These 
shaded cells encompass a total age range of 
ten years ('b').



127 -

(3^27)
and.

A(a,t) = p(a,t)A* (^.28)
where y(a,t) and A(a,t) are the fertility rate and average additional 

number of children desired for all married women aged a at time t, 

where y* and A* are the corresponding quantities for non-terminators 
(which do not depend on a or t), andwhere p(a,t) is the proportion of 

women at age a and time t who are non-terminators. Equation (3.28) may 

be substituted into equation (3.27) to eliminate p(a,t) to give:

y(a,t) = X. A^a,t^ (3.2$^

where A = y*/A*. Empirically bee (1977) finds that X= 0.2, but 

adjusting for contraceptive failure amongst terminators, suggests 
setting X= 0.18.

The average desired family size for a group of married women may 
be termed its 'target fertility'. Ryder (1978) has proposed a model 

of fixed targets witnin each cohort, lee (198O) considers a 'moving 
target' model in which targets are determined by time-period rather 

than cohort factors, and assumes, in order to use equation (3.29), that 
target fertility for married women is equal to the sum of their average 
achieved fertility and average additional desired fertility. This 

assumption implies that no achieved fertility is unwanted. Conceivably 
individuals may retrospectively consider all their children to be 
'wanted'; such retrospective rationalisation represents an additional 
factor. Pure time-period factors may be considered as producing a 
target fertility which relates to desires in the absence of retrospective 

rationalisation. Such a target ferility should be permitted to fall 
below the levels of achieved fertility, and would not in general be 

equal to the sum of achieved fertility and additional desired fertility.

By equation (3.27), fertility should depend on target fertility
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via the proportion of married women who are non-terminators. It may 
be realistic to assume that:

&n p(a,t) = p + g(T(t) - F(a,t) )
(3.30)

where T(t) is the target produced by time-period factors at time t, 

and ^(a,t) is the average achieved fertility for married women aged a 

at time t. (Since p(a,t) is a proportion, it might be more appropriate 

to use the logit rather than the log transformation on the left of 
(3*30), but the log transformation simplifies subsequent development 

considerably). Substituting (3.30) into (3.27) gives:

y(a,t) = y* exp{ p + g(T(t) - F(a,t) )} (3.31)

Now the present data are also duration-specific. Since (3.31) is 
proposed for a±l ages it may be reasonable to apply it to all durations 
also. Taking logs in (3.3I), reparameterising, adding an error term 

and introducing the subscripts defined in section 3.4.I above, gives:

(3.32)
where fj = ^n y* + gT(t^), and denotes achieved fertility,
calculated by cumulating fertility over previous duration categories 
within the marriage-cohor^age-at-marriage group . More realistically, 
target fertility should vary not only with time-period, but also with 
age-at-marriage, giving the model:

An yjAn (3.33)

Table 3.3 shows that the period target model (3.32) explains 

almost no more variation than the grand mean model; the addition of the 
marriage term in (3.33) is essential out the fit is still very 

poor, in fact to obtain an adequate fit the six main—effect terms in 
model (3.23) must all be added to model (3.32). The poor performance



of model ($.)$) is partly attributable to the recent trend in delayed 
fertility (figure which causes fertility rates to rise with

duration within age-at-marriage groups: model (3.33) basically posits 

decreasing durational profiles.

Despite its poor fit, the parameter estimates for model (3«33) 
are reasonably interpretable: model (3.33) does not permit individual 

targets to be estimated but differences between targets are estimable 
and suggest that target fertility decreases by about 1 child per ten 
year increase in age-at-marriage, and that between I966 and 1976 target 
fertility has dropped by about half a child on average.

3.4.3 The bimodel.

It is apparent from section 3.4.1 above that main effects in the 

six dimensions underlying the table are not sufficient to capture the 

intricate cross-sectional patternscteervable from figure 3.8. Figure 
3.8 essentially demonstrates a gradual transition from one age-at- 
marriage by duration-of-marriage pattern to another. This may be 
represented on the log scale by a bimodel:
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- S’ - “fal'j * (3.34)

where y denotes the mean of the log fertility rates and where the 

remaining notation is an defined in section 3.4.I above. This model 
fits the data well, as may be seen from table 3'3« The biplot 

corresponding to model (3.34) is given in figure 3.10. The curvature 
in the age-at-marriage profiles at the early durations in figure 3.10 
represents the introduction of delayed parenthood following marriage; 

it may be seen that the 20 - 24 years age-at-marriage group has the 
greatest curvature, suggesting that delayed parenthood is most 

pronounced for this group. The period markers show that the trend
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towards delayed parenthood within marriage began in earnest in 1961.

The youngest age-at-marriage group is separated to some extent from 

the others in figure ^.10, revealing that for the earlier time-periods 

fertility was higher for this group, and that the trend has been to 

reduce this differential.

As mentioned in section $.2.4 above, Glass (1976) attributes the 

trend towards delayed fertility within marriage to the increased 

availability of reliable means of contraception and the increasing 

opportunities for women to work after marriage, which have combined to 

remove the traditional view of marriage as theinitiation of childbearing

$.4.4 Discussion of legitimate fertility models.

It is difficult to argue convincingly for the existence of factors 
which operate uniquely via birth-cohort or marriage-cohort dimensions, 

and which futhermore have an equal effect over all levels of other 
factors underlying the data. Consequently it is not surprising that 

little evidence for such factors is found in section $.4.1 above. 
Additive effect mouels involving the period, duration, age and age-at- 

marriage dimensions are incapable of expressing the recent transition 
in cross-sectional patterns of marital fertility. Thus none of the 
additive models in section $.4.1 above represent a satisfactory 
theoretical or descriptive account of the data. Section $.4.1 does, 

however, demonstrate that variation is much more effectively summarised 

by the age dimension rather than tne age—at—marriage dimension, and by 
the period dimension rather than by cohort dimensions.

The adaptation of bee's (1977, 1980) model ($.$$^ although 

theoretically very interesting and perhaps plausible, fits the data 

badly. Nevertheless, the parameter estimates do seem interpretable, 

suggesting declines in desired family size with age—at—marriage and 

time-period. The model is however incapable of accommodating the trend
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towards delayed parenthood within marriage.
The bimodel (3-34) fits the data extremely well. This model does 

not attempt to express algebraically the complex patterns within 
cross-sections, and only concentrates on how these patterns change 
between cross-sections: this is undoubtedly the reason for its success. 

However the price is a relatively large number of degrees of freedom. 
Moreover, although the cross-sectional patterns may be interpreted in 

substantive terms, these substantive mechanisms are not explicit in 

the model, and consequently the model is merely descriptive to an 
extent. (The model is theoretical to an extent also, asserting that 

time-period influences are primarily responsible for the transition 
in cross-sectional patterns.) It is interesting to compare the bimodel 
(5-34) with Page's (1976) model: whilst the former concentrates on 

changes between cross-section, the latter concentrates on patterns 
within cross-sections. Consequently bimodel (3.34) should be more more 

useful for projections, since it has fewer (only two) period parameters.

The trend towards delayed parenthood within marriage, which has 

affected all age-at-marriage groups since 1971, is coincident with a 
trend towards delayed marriage (section 3.2 above). It seems likely 
that both trends reflect the combined effect of contraceptive avail­

ability and macro-economic conditions described by Glass (1976). It 
is possible that fertility rates by age-at-motherhood and duration-of- 
motherhood would exhibit less complex patterns; many recent researches 
have indicated the usefulness of motherhood related variables (for 

example: Bumpass et al , 1978; Finnas and Hoem, I98O; Marini, 1981; 
Casterline and Hobcraft, I98I). Although such data for England and 
Wales are not published by O.P.C.S., the O.P.C.S. Longitudinal Study 

might prove a suitable source for such data.
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$,) Mortality.

The data analysed here are age-specific mortality rates in five- 

year age groups above age ^0 years for five-year time-periods between 

1801 and 1930 for Swedish males and females, obtained from Cramer and 

Wold (l933y. Cramer and Wold (1935) found these data to show greater 

regularity within periods than within cohorts. Curiously, Kermack et 

al (1934) found greater regularity within cohorts when using a very 

similar data set for Sweden, and so it seems worth reanalysi^ these 

data here.

Figure 3'11 contains cross-sectional age-structures for these data, 

and figure 3.12 longitudinal age-structures. It is immediately apparent 

that there is a high degree of regularity cross-sectionally which 

does not exist longitudinally, supporting the findings of Cramer and 

Wold (1935). Because of its anomalous age-structure, the first time- 

period is omitted in the following analysis.

3.3.1 The Gompertz function.

Cramer and Wold (1935) fitted Makeham functions to the cross- 

sectional and longitudinal age-structures in the Swedish mortality data. 

The Makeham function for the proportion surviving, S(a), to age a in 

a cohort is:

S(a) = 6^ (3.35)

Setting 6= 1 gives the Gompertz function defined in equation (3.I9). 

Both the Makeham and Gompertz functions are commonly used for graduation 

of mortality data (Miller, 1949; Wolfenden, 1954).

Bow the mortality rate y(a) at age a is related to s(a) by:

y(a) = 'S'(a)
S(a)

&n g. &ny. y' (3.36)



134

*0 50 *0 70 *0

Figure ).ll: Age-specific log mortality rates for selected, time- 
periods for Swedish males (broken line) and females 
(continuous line).
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Figure $.12: Age-specific log mortality rates for selected, cohorts 
for Swedish males (broken line) and females 
(continuous line).
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for the Gompertz function, using (^.10). The corresponding expression 

for the Makeham function is much more complicated, and consequently wil 
not he used here. Taking logs, reparameterising an error term and 

introducing the usual subscripts gives the cross-sectional model;

yijk = + "ijk (3.37)

^ cohort oriented version of ().37) is not considered here because of 

the evident lack of longitudinal regularity (figure $.12).
Model ($.$?) produces a rather poor fit to the Swedish data, for 

both males and females, as may he seen from table $.4. Generalising 
the Gompertz to include a quadratic dependence on age:

>'ijk p. + a..a. + *..a. + e... J ] 1 J 1 ijk (3.38)

improves the fit considerably. Model ($.$8) asserts that time-period 

rather than cohort-specific factors are in operation: these time- 
period factors could include wars, famines, epidemics, sanitary 
conditions, etc. The following section suggests some possible cohort 

factors which might be operating in addition to period factors.

$.5.2 Additive age, period and cohort effects.

Many researchers have analysed aggregate level mortality data 
using age, period cohort model ($.10) (with denoting a general or

cause specific mortality rate); for example ; Greenberg et al (I950); 
Sacher (19$7, I960, 1977); heard (196$); Barrett (l97$, 1978a, b); Osmond 
and Gardner (I982). InesKhcase the intention is to gain insight 

into disease processes. For the present data cohort factors may
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Equation
Number Model Sex

Degrees
Model

of Freedom
Data

Gompertz

5.57 linear age P 50 500 .961 .955

M 50 500 .974 .969

5.58 Quadratic age P 75 500 .997 .996

M 75 500 .999 .999

Additive age, 
period, cohort.

5.10 Age, period P 70 5U0 .998 .997
cohort

M 70 500 .998 .997

5.11 Age,period F 56 500 .997 .997

M 56 500 .994 .995

5.12 Age, cohort F 47 500 .995 .994

M 47 500 .994 .995

Cohort-experience;
Selection and debilitation.

5.59 Proportion F 57 254 .998 .998
surviving

M 57 254 .997 .996

5.40 Log proportion 
dead

P 57 254 .999 .999

M 57 254 .999 .999

Rimodel

5.17 periods P 71 500 .999 .999

M 71 500 .999 .999

5.18 periods ] + M 95 600 .999 .999

Cable $.4: Goodness of fit for models fitted to the Swedish mortality 
data. R is the proportion of variance in log mortality 
rates explained by the model. R^adi adjusts for the degrees
)f freedom in model and data (equation (3'lj
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include lifetime experiences up to the age of )0 years, since this is 

where the present data commence. Nutritional standards and exposure 

to disease may have a lasting effect on an individual, particularly 

those experienced during childhood. This appears to be particularly 

true for mortality from tuberculosis (Sacher, 1957, I960, 1977; Mason 

and Smith, 1979; see also Chapter 1 above). Period factors may 

include famines and epidemics as well as medical innovation, and the 

biological process of ageing clearly represents an age factor.

Fitting model (3.10) to the present data for males and females 

separately produces a good fit (table 3.4). The age, period submodel 

(3.11), however, also produces a high but figure 3'11 clearly

does not suggest an additive age, period model on the lo^ scale since

for each sex the age structures are not parallel. This demonstrates
2that even very high R values do not necessarily represent a very good 

fit when the data are very regular.

3.5«3 Cohort experience: selection and debilitation.

Model (3«9) assumes that only experiences below age 30 years have 

a lasting effect on individual healthiness. It may be safer to assume 

that experiencesafter age 30 years also have lasting effects. The 

direction of this effect is uncertain since some experiences could leave 

the individual debilitated whilst others could improve resistance to 

disease. Selectivity represents another type of cohort-experience 

factor: those individuals who are more frail are more likely to die 

young leaving a relatively less frail population surviving to the 

later ages. Taupel et al (1979) have examined the impact of selectivity 

mechanisms on mortality.

To build these cohort-experience factors into a model the propor­

tion surviving from age 30 to age a, S*(a), may be used as a measure
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of the amount of selectivity that has taken place and simultaneously 

as a measure of the exposure to debilitating conditions. Replacing the 

fixed cohort effect in (^.lOj with a dependence on S*(a) gives:

y..^ = p + a. + g. + 6S..^ + (3.39)

where S*.is the proportion surviving to age a. in cohort k. The1
earliest, incomplete, cohorts were omitted when fitting model (3.39) 

since cannot be calculated for these cohorts using the present

data. It may be seen from table 3.4 that model (3.39) fits about as 

well as the additive age, period, cohort model (3.10), but uses only 

about half the degrees of freedom. The estimates of 8 are hard to 

interpret, being positive for males and negative for females.

Further experimentation with models of the form of (3.39) reveals 

that using log proportionckad in place of proportion surviving:

in - y * aj ♦ e. + e*n (1 - S..p + e, (3.40)

produces an even better fit. The 8 estimates are more easily inter­

preted with this model being .64 for males and .78 for females, 

suggesting that high previous mortality predisposes towards high 

subsequent mortality in a cohort,through the debilitating effect of 

poor nutrition and disease.

3.3.4 The bimodel

As for the other data analysed in this chapter, these data exhibit 

a gradual transformation from one cross-sectional pattern to another 

(figure 3.11). The bimodel (3.I7), with y^^^ denoting a mortality rate, 

may be applieu to these data, for each sex separately. Although for 

each time-period the mortality age structures for males and females 

differ, the general trend towards reduced mortality especially at the
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younger ages is common to both sexes, suggesting bimodel ($.18) for 

both sexes simultaneously. All these bimodels fit the data well 
(table $.4), the both-sex bimodel ($.18) being more efficient with 

degress of freedom.
The biplot corresponding to bimodel ($.18) is given in figure $.1$. 

The male and female age markers are very close above age $$ years, 

reflecting a slight excess in male mortality which diminishes with time. 

Below age $$ the differentials between the sexes are greater, but these 

also diminish with time. The curvature in the age markers reflects the 
greater fall in mortality for the younger age groups. The period 
markers show that these trends had begun by 1806 but halted in 1821 
and did not continue their path until the 18$0s. The direction of the 
period markers indicates that for ail age-sex groups, mortality was 

declining up to I9I6, when the first World War and its aftermath 
appear to have reversed this trend.

Bimodel ($.18) aaserts that primarily period-specific causes were 

responsible for the above trends. Declining mortality at the younger 

ages suggests that improving standards of hygiene and nutrition were 
largely responsible.

$.$.$ Summary of models of mortalitv.

The Gompertz model ($.$8) and the bimodel ($.1?) make the same 

substantive assertions: that time-period influences are responsible 
for the changing level and structure of mortality in the Swedish data; 
and there is little to choose between the two in terms of fit. The 
bimodel has the advantage that for both sexes combined, model ($.18) 
has only two parameters for projection whereas the Gompertz model ($.$8) 
has six.

The additive age-period-oohort model ($.10) and the cohort-
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experience models (^.^9) and().40) produce fits which are as close aa 

those of the Gompertz (3.38) and himodel (3.I7), but make quite 

different substantive assertions. The interpretation of models (3.IO), 

(3.39) and (3.40) is not easy; the effects of age, period and cohort 

factors in model (3.10) are inestimable, and the sensitivity of the 

cohort-experience parameter in (3«39) ard (3.40) to changes in the 

functional form of the cohort-experience covariate is not at all 

reassuring. Model (3.40), however, does make reasonable substantive 

assertions, and the parameter estimates are in accord with intuition: 

that high mortality up to any age leads to high subsequent mortality. 

Model (3.40) also has the property that only one period parameter 

need be projected for each sex: given the similarity in period trends 

between the sexes, it looks as if a model which contains only one period 

parameter for both sexes combined might be developed from model (3.4O).

That so many models fit this data extremely well is probably due 
to the small number of cells associated with each time-period; better 
discrimination between models might be attainable on the basis of 

single-year age-specific mortality data. It would also be interesting 

to compare these models for cause-specific mortality data: in particular 
different disease processes could indicate different formulations of 

cohort-experience type models.
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3.6 Conclusions.

Several models or types of model have been fitted to a variety 

of aggregate level data above. The purpose in doing this was not 

simply to find explanations for these particular data sets, but to 

draw some wider conclusions concerning approaches to constructing and 

evaluating models of aggregate level demographic data in general.

This section aims to draw together the experiences and results of this 

chapter under three headings: strategies for comparing models; 

evaluation of modelling strategies; and summary remarks.

3.6.1 Strategies for comparing models.

As stated in section 3.13 above, models should be compared on 

the basis of two criteria: goodness-of-fit and interpretability. The 

results of this chapter throw considerable light on how these two 

criteria should be evaluated and compared,

The very high degree of regularity in each of the data sets above, 

particularly when viewed from a cross-sectional perspective, suggests

that very close fits should be attainable. In most cases very high
2R values have been obtained, but these can be deceptive: this is well 

illustrated by the additive age-period model (3.11) applied to log 

mortality rates in section 3.5.2, which gives an R value of .997 for 

females despite the evidently non-parallel age-profiles of the log 

rates in figure 3.11. Furthermore, all of the models produce clumping 

in the residuals: that is, areas of the data table which are consistently 

underestimated, or consistently over-estimated; although the clumping 

is generally less severe for the better fitting models. Thus even the 

best fitting models fail to capture all the systematic variation in 

the data.
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Closeness of fit is influenced by model degrees of freedom: as

a general rule, any model can be made to fit well by incorporation of

sufficient period, cohort or age parameters. In order to take degrees

of ireedom into ancount, the adjusted R statistic defined in equation

(3.1) is presented in tables $.1 to 3«4. However, as may be seen from

these tables, this statistic does not seem repsonsive enought to

degrees of freedom and rarely alters the ranking of models implied by 
2the unadjusted R statistic. Other methods of taking degrees of freedom 

into aocount also failed to produce satisfactory results.

Discrimination between models on the basis of fit is further 

impeded by the fact that often several equally well fitting models 

exist for one data set. This is particularly evident for the male

mortality data of section ).$, for which no fewer than three models
2score an R value of .$$9 in table $.4.

^hus it 18 seen that goodness-of-fit cannot be relied on to isolate 
one good mouel for a table of vital rates. The R^ value may however 

be useful in eliminating models which fit badly, and models with large 

numbers of degrees of freedom may also be discounted.

Interpretability is a much less tangible quality, and may be 

thought of as comprising two separate components; the intuitive 

reasonableness of the theoretical foundation of the model, and the 

extent to which the parameter estimates may be reasonably interpreted 

in terms of that theoretical foundation. A model which does well in 

terms of the first of these components should make substantive asser­

tions which strike a delicate balance between being too vague to be of 

any practical use, and being so specific that no account is taken of 

other processes which might well be of importance. The second 

component, concerning parameter estimates, can provide an acid test of 

the viability of a model: for example a model of fertility which
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produces estimates of target fertility which are either negative or 

greater than a certain amount would be immediately dismissed.

Interestingly in practice there seems to be a trade-off between 

goodness-of-fit and interpretability; for example, one of the most 

interesting and interpretable models discussed in this chapter is the 

achieved fertility model ($.22), yet its fit is not good. This trade­

off is probably mainly due to the greater flexibility available when 

formulating models whose substantive assertions are very vague.

In concluding this subsection, it may be said that models of 

aggregate level demographic data may be compared only by an informal 

and intuitive balancing between closeness-of-fit, model degrees of 

freedom, reasonableness in theoretical assertions, and consistency 

of parameter estimates with those assertions.

3.6.2 Evaluation of modelling strategies,

The experiences of this chapter may be drawn together in order 

to evaluate various aspects of modelling strategy. Firstly the case 

for period factor effects versus cohort factor effects may be examined. 

The raw data themselves, in each of the data sets analysed, exhbit 

much greater regularity within periods than within cohorts. This may 

be seen in figures 3.4, 3.3, 3.11 and 3.12. It is hardly surprising 

therefore that cross-sectional specifications fit better than longi- 

tundinal specifications. In all of the data sets considered, the most 

recent cohorts are incomplete - as is generally the case for census 

and registration based data. All models fitted which contain cohort 

specific parameters produce very unstable and quite uninterpretable 

parameter estimates corresponding to these incomplete cohorts, and this 

also means that the closeness-of-fit of these models is artificially 

high. The instability of longitudinal specifications leads Brass (1374
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to advocate the use of cross-sectional specifications for projections. 
Thus, if a choice must be made between longitudinal and cross-sectional 

specifications mfa model, the latter should be preferred.
Secondly, the question of whether age, period and cohort factor 

effects should be simultaneously built into a model may be addressed. 

The experience here seems to suggest that such factors can be usefully 
considered simultaneously, although automatically including all such 
dimensions is of little value, and this is well illustrated by the six- 

factor model of legitimate fertility. The cohort-experience

models demonstrate the variety of ways in which age, period and cohort 

can be combined, however, the period oriented bimodel generally fits 
as well as any age, period, cohort formulation, and the structure of 
the bimodel is in accord with many substantive mechanisms which would 

be expected to produce different age-structures at different times. 
Consequently, a clear case for the existence of any substantial cohort 

phenomena in addition to period phenomena cannot be made on the basis 
of the analysis above.

Thirdly, the way in which factors should be represented in a model 

may be considered, it may be said that none of the data sets examined 
above provide any real evidence of the existence of additive period or 

cohort factor effects on the scale of log rates. Furthermore, none of 
the substantive arguments lend much support to the notion either, 
although as a first approximation an additive period effect can be 
useful, as in the achieved fertility model ($.22). The bimodel, and 
mathematical trend curves such as the Gompertz, when applied cross— 
sectionally, do accommodate time-period factors which do not have an 
equal effect over all age groups within a time period; equally the 
cohort-experience models allow for cohort oriented mechanisms which do 

not produce equal effects over all age-groups within a cohort. These
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non-constant effect models are more reasonable intuitively, and also 
often fit better than models containing simple additive period or 
cohort factor effects.

If theoretical arguments suggest that age,period and cohort 
factors should be simultaneously represented in the model, then the way 

in which they are combined should be as simple as possible without being 
grossly inconsistent with the theoretical considerations; a certain 
amount of inconsistency may be tolerated in the interests of simplicity 

and interpretability, as in the case of the achieved fertility model 
(3^22) in which the possibility of a time-varying existing-children- 

effect is not accommodated. As intimated above, simply adding age, 

period and cohort factor effects together is perhaps too inconsistent 
witn theory to be useful, and the attendent identification problem 

prohibits any compensation in terms of interpretability. Moreover, 
simply assigning some parameters to periods and others to cohorts in 
a theoretically based model age-schedule can produce serious inter- 

pretational difficulties, as in the treatment of the Coale-McNeil (1972) 
model in section ^.2.1 above.

Fourthly, the relative merits of the theoretical and the descriptive 

approaches to modelling may be assessed. On the one hand, a purely 
theoretical model (such as the versions of bee's (1977, 1980) model 
(j^92) and ) may veil fall to correspond to the data; and on theiader,

a model such as the bimodel (which might be suggested purely on the basis 
of the observed trends in cross-sectional age-structures) perhaps says 
too little about what types of period factors are involved, although 
the parameter estimates might lead to hypotheses. Interestingly, with 

highly aggregateidata, it seems unlikely that an age, period, cohort 
formulation would be adopted through a purely descriptive approach, 

ainve clear differencials attributable to each dimension are generallv
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a model could be re-expressed as a form of age- period interaction.

By definition, therefore, age, period, cohort formulations are theoret­

ical. Conversely, theoretically it is hard to ignore altogether 

cohort-related phenomenon. Consequently it seems as though the two 

approaches cannot lead to the same model.

$.6.3 Summary remarks.

Aggregate level demographic data must surely conceal a wealth of 

impotant and potentially illuminating differentials on unmeasured 

variables, produced by a great complexity of causal processes. In fact 

the observed high levels of regularity across age (or duration) 

dimensions is itself evidence of a smoothing effect obtained from using 

an imprecise control for underlying variables. In these circumstances 

it IS reasonable to ask whether there is any point in constructing 

inevitably vastly over-simplified theoretical explanations of the data. 

The answer lies in the hope that 'aggregate level substantive phenomena' 

exist; that is, causal mechanisms which dominate the variation in 

aggregated data. In this chapter the search for aggregate level 

phenomena has led to some interesting yet equivocal hypotheses, and 

perhaps more importantly, some sound perspectives on modelling highly 

aggregated demographic data.

The regularity across age or duration dimensions provides an 

impetus to discover an extremely well fitting model. In fact, it is

not difficult to find several models of the same data having very high
2^ values, buu it seems impossible to capture all of this regularity 

since residual patterns persist. This represents a double blow to the 

nopes 01 discovering a unique theoretical explanation of the data. 

Consequently purely objective criteria cannot be relied on to 

distinguish between models, and subjective assessments involving
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interpretability and substantive reasonableness must be heavily relied 

upon. 5ven so, for a given set of data, there is generally no one 

model indicated.

Accepting then, that there may be several equally good explanations 

of the data, it is still possible to use a theoretical model to examine 

the implications of theoretical assertions rather than to validate 

them. For example, Lee's (1977, 1980) model (5«))) 8e used to 

estimate trends in period target fertility, on the assumption that such 

a concept has validity. Such an approach can lead to much deeper 

interpretations and more useful insights than wouldamore descriptive 

approach, as is well illustrated by the cohort-experience models of 

marriage and fertility. These interpretations however can only be 

held tentatively until suitable individual level data can be found to 

test the model.

The theoretical arguments in the preceding sections suggest that 

additive period or cohort factor effects are often somewhat 

implausible and that period factors are more easily defined and probably 

more powerful than cohort mechanisms, although it is generally more 

reasonable to accommodate both period and cohort related factors. The 

cohort-experience models possess all of these desired properties, and 

usually produce highly interpretable estimates (unlike the additive 

age, period, cohort model ($.10) whose parameters are not even 

estimable), even in the case of Lee's (1977, 1980) model ($.$$) which 

does not fit at all well. However, this is not always the case: 

mortality cohort-experience model ($.$9) is evidence of this. Moreover 

the slight change in specification of this model ($.$9) to produce 

model ($.40) gives quite different results for males; also the achieved 

fertility model ($.22) gives unstable parameter estimates when estimated 

on khe basis of a subset of the data. Thus it is suggested that steps
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are taken when nsuing a cohort-experience formulation to investigate 

the roDustness of rhe model to minor modifications in its algebraic 

structure and in its data base.

There are also attractions in using a less theoretical, more 

descriptive model such as the bimodel. To begin with, the cohort- 

experience term in the cohort-experience models approximates an age- 

structure, and consequently it could be held that the cohort—experience 

models sometimes accommodate the data simply because they approximate 

the two age-structure formulation of the bimodel. The bimodel, by 

making only weak substantive assertions, can in principle reflect a 

large number of causai processes, although the depth of interpretation 

may be limited. The bimodel is therefore less pretentious in a sense 

than the more theoretical models. The graphical capability of the 

bimonel, and its ability to easily incorporate both sexes, represent 

additional advantages. The Gompertz model essentially fulfills the 

same roie as the blmodel, and has the advantage that it does not require 

age parameters, and the disadvantage that it generally requires three 

period parameters to achieve the same closeness-of-fit as the two period 

parameters of the bimodel, thus making projections less reliable. 

Interestingly the algebraic structure of the Gompertz model is not 

dissimilar to that of the cohort-experience models above, and as such 

these cohort-experience models represent generalisations of the Gompertz. 

Murphy (1982) has developed other generalisations of the Gompertz.

Both the bimodel and the cohort—experience models must sometimes 

be fluted to a subset of the available data. When the earliest cohorts 

in an age by period array are missing, the use of the Singular Value 

Decomposition in fitting the bimodel prohibits the use of the earliest 

incomplete periods. When the younger ages of the earliest cohorts are 

missing, the cohort-experience component in the cohort-experience
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models cannot be calculated, and so those eanly incomplete cohorts 
must he omitted. However, provided a long run of data is available, 

neither of these limitations should be of great consequence.

It would be interesting to apply the modification of Bernes (l972) 

model (3^16) and the achieved fertility model (5.22) to data from other 

countries. It would also be interesting to compare the cohort- 

experience models and the bimodel in relation to projection. To do 

this properly it would be necessary to try to link trends in period 

parameters with external data including macro-economic indicators.

The two-sex bimodel would have an advantage over the cohort-experience 

models applied separately to each sex, through having only two period 

parameters to link externally. However, the achieved fertility model 

^3.22) has only one period parameter, and this could prove to be a 

powerful tool for projections. Projections are inevitably subject to 

wide margins of error, and therefore it is perhaps not important that 

model (5.22) does not fit as well as other models of the same data.
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Chapter 4 - Proportional hazards models of World Fertility Survey 
data using birth-hirstory covariates.

4.1 Introduction

As seen in Chapter 3 above, there are severe limitations on the 

depth of reliable interpretation obtainable from highly aggregated 

demographic data. This is principally for two reason; firstly, 

realistic hypotheses usually involve unmeasured factors (such as the 

marriage model of Hernes (l972j, which is based on 'marriageability' 

and 'pressure to marry' factors); and secondly, several quite different 

hypotheses can usually be found which fit the data equally well. In 

this chapter, individual level fertility data from a wide variety of 

World Fertility Survey (WFS) countries are analysed. The larger 

number of variables available with the data permit a much greater 

depth of reliable interpretation.

The approach in this chapter is to attempt to find a 'universal' 

model of fertility in developing countries. Such a model (if it 

exists) could provide valuable insights into mechanisms affecting 

fertility, and provide a firm basis for projection and for comparisons 

between countries. Casterline and Hobcraft (1981) have also set out 

withthis aim, using variables derived from the birth-history including: 

'age'variables (age, duration of marriage, duration of motherhood); 

'age-at-entry' variables (age-at-marriage, age-at- motherhood);

'cohort' variables (birth-cohort, marriage-cohort, motherhood-cohort); 

and time-period. These and other variables calculated from dates in 

the birth-history may be referred to collectively as 'birth-history 

oovariates'. The attractions of using birth-history covariates are 

that they are well-defined, generally well-measured, and can reflect 

underlying factors of fertility which have been poorly recorded or
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or which have not been recorded at all. The disadvantages are that they 

cannot themselves be considered to be direct causal factors, and there 

can be no guarantee that their relationships with fertility should 

have the same causal interpretation for different countries.

The present analysis, like that of Casterline and Hobcraft (1981), 

concentrates mainly on fertility differentials with respect fo birth- 

history covariates, although in the present analysis a more extensive 

set of birth-history covariates and a different technique of analysis 

are used. The data used here are, however, the same as those used by 

Casterline and Hobcraft (198I), being W?S data from Bangladesh, Columbia, 

Indonesia, Jamaica, Jordon, Kenya, Korea, Mexico and Sri Lanka. Amongst 

the developing countries these nine are believed to be geographically, 

economically and demographically diverse, and their data are of reason­

able quality and sample size. Any model which holds across such a 

diversity of populations might reasonably be expected to hold for a 

large number of other populations.

Some of the birth-history covariates which previous research has 

shown to be important in fertility analysis are now discussed.

Numerous researches have demonstrated and modelled the relation­

ships between age and fertility, (for example: Coale and Trussell,

1974; Page, 1976; Hoem et al, I98I: Casterline and Hobcraft, I98I),

The popularity of the age variable derives partly from its availability 

in registration, census and survey data; but its association with 

fecundity (Henry, 196I), the biological ability to reproduce, is 

undoubtedly the principal causal factor underlying the relationship 

(although Rindfuss and Bumpass (1978) discuss age effects which are not 

simply physiological in origin).

Recent work has shown the importance of age-at-marriage (Ruzicka, 

1978; McDonald et al, I98O; Finnas and Hoem, 1980) and age-at-mother-
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hood (Bumpass et al , 1978) In determining subsequent fertility. One 

explanation (Bumpass et al , 1978) is that early fertility limits the 

pursuit of other life optione which might later compete with child­

bearing; another is the so-called 'catch-up' effect (Kendall, 1979; 

McDonald et al, 1980; Freedman and Casterline, 1981) of more rapid 

childbearing among women with later ages-at-marriage or motherhood; 

educational attainment may also be reflected in fertility differentials 

by age-at-marriage or motherhood.

Duration of marriage (Page, 1976) and of motherhood (Casterline 

and Hobcraft, 1981) have also been shown to be associated with fertility. 

Coital frequency could be partly responsible, but:h is possible that 

these duration variables are largely a substitute for birth-order.

Braun (198O) demonstrates a dominant relationship between the average 

length of previous birth-intervals and current fertility; this variable 

is a function of duration and birth-order, and measures previous 

fertility levels.

Birth-, marriage-, and motherhood-cohort may also be useful 

variables, although it is difficult to argue convincingly for the 

presence of causal mechanisms which would be clearly linked to them. 

Hobcraft et al (1979) and Casterline and Hobcraft (1981) suggest 

possible mechanisms, but it has not been demonstrated empirically 

that they are efficiently represented by the cohort dimensions.

Time-period may act as a surrogate for a whole set of contempor­

aneous influences, including economic circumstances and availability 

of contraception. Page (1976) and Casterline and Hobcraft (198I) 

have clearly demonstrated the importance of this variable.

Lastly, the time since the previous birth is also responsible 

for large differentials in fertility, since within this time fertility 

may be affected by post-partum abstinence and amenorrhoea; also
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gestation time effectively prevents births occurring within eight 

months of the previous birth.

The analysis of Casterline and Hobcraft (198I) does not take 

explicit account of birth—order or time since the previous birth: 

these are potentially series omissions. Their methodology is essen­

tially multiple classification analysis, in which a model parameter 

is assigned to each category of each control (as in the additive age- 

period-cohort model (l.$) of chapter l): this is a rather extravagant 

use of degrees of freedom in the present circumstances, where a large 

number of effects and interactions are to be modelled. The present 

analysis concentrates on efficiently parameterising effects and 

interactions, and pays particular attention to the effects of, and 

interactions with, birth-order and time—since—previous—birth.

The use of 'time-since-previous-birth' indicates a life-table 

approach to the analysis of fertility within birth-intervals. Eobcraft 

and Rodriguez (1980) and Rodriguez and Robcraft (198O) have performed 

non-parametric life-table analyses of fertility within birth-intervals 

for World Fertility Survey data, controlling for various birth-history 

covariables. Finnas and Hoem (198O) and Bumpass et al (1978) have 

treated other birth-history data in a similar way. The difficulty 

with these non-parametric analyses is that the numbers of women within 

subgroups become too small for useful analysis unless the number of 

control variables is strictly limited (to about two variables) and the 

number of categories for each control variable is also strictly limited 

(to at most four categories).

Because of these limitations, several researches have attempted 

to model birth-interval life-tables, so that only two or three 

parameters are needed forsubgroup. Hobcraft and Rodriguez (l980) 

make a start at this, suggesting several possible models. Their
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attention, however, is focussed on capturing the general shape of the 

hazard function (see definition below) of birth—intervals rather than 

on comparisons between subgroups. Stoto and Menken (l977) attempt to 

build a model of the birth-interval hazard function from substantive 

considerations; again, their interest is with what happens within 

the birth-interval rather than between subgroups. The present analysis 

requires a model which parameterises efficiently not only the hazard 

function, but also the impact of birth-history covariates on the shape 

and level of the hazard function.

Braun (1980) represents the birth-interval density function with 

a Gamma density; this analysis incorporates birth-history covariates 

in the manner of a regression, but is applicable only to closed birth- 

intervals - that is, birth-intervals which are terminated by a 

subsequent birth. This approach is inappropriate to the present data 

in which many birth-intervals are censored (i.e. terminated by inter­

view); omitting the censored birth-intervals can cause series biases. 

Nevertheless this approach is much closer to the present requirements. 

Braun and Hoem (l979) model the birth-interval hazard function using 

a Gamma distribution, where birth-intervals may be either closed or 

censored, but the algebraic structure of their model does not easily 

generalise to accommodate covariables.

Cox (1972) sets out a much more general class of life-table models, 

called 'proportional hazards' models, incorporating regression on any 

choice of covaridles and applicable even in the presence of censoring. 

These models are therefore ideally suited to the present requirements. 

Menken et al (I98I) have used proportional hazards models to investi­

gate socio-demographic influences on marriage dissolution. A general 

class of proportional hazards models may be written;



-157

X(t) = .X(t) (4.1)

where X(t) is the hazard at survival-time t (that is, the instant­

aneous rate of decrement from the life-table population, due to the 

event of interest, t units of time after the start of the life-table), 

g is a vector of parameters and x(t) is a vector of covariate values 

at t. (Expression (4.I) implies that the survival-time main-effect 

term, usually referred to as the 'baseline hazard', is parameterised 

as a linear combination of known functions of survival-time. Cox (1972) 

does not attempt to parameterise the baseline hazard, treating it as 

a nuisance function. For present purposes, however, the shape of the 

baseline hazard is of interest).

In the present context, the life-table population comprises a 

set of individuals about to commence a birth-interval, the event of 

interest is a subsequent birth, censoring occurs when the interview 

occurs before a subsequent birth, and the hazard at t is the instant­

aneous fertility (or 'force' of fertility) t units of time after 

commencing the birth-interval amongst those individuals who have 

survived to time t (i.e., who have not been removed from the life- 

table population before time t by interview or by a subsequent birth). 

Note that, for present purposes, a woman may represent more than one 

'individual' if she has more than one birth-interval; for each birth- 

interval her covariates X may take different values (for example, one 

covariate could be birth-order).

Now the birth-history covariates discussed above may all be 

considered as fixed for an individual within the birth-interval (even 

age and duration of marriage or motherhood, which actually vary with 

survival-time, may be accommodated within this framework, as will be 

shown below), and it is both realistic and efficient to assume that
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the effects of these covariates on the hazard function vary smoothly 

with survivial-time. Consequently the model required here should he 

in the form:

&n X(t)= ^(t) + $'(t) X (4.2)

where h(t) is the baseline hazard,g(t) is a vector of the effects of 

the fixed covariates, and h(t) and all theare smooth functions 

of t. ^ow model (4*2) looks rather different to model (4.1), huh it 

is demonstrated in appendix 4.B that provided that each of the functions 

^ (t), G^t), is a linear combination of known functions of survival­

time, then (4.2) is a special case of (4.I). Choosing an appropriate 

functional form for p(t) and g^^)' example a cubic polynomial, 

will ensure their required smoothness. Polynomials, however, are likely 

to produce undesirable characteristics at the extremes of survival­

time; consequently the functional form of a cubic spline with 'knots' 

at 10, 20, 40, and 80 months survival-time is chosen. Further details 

of this are given in appendix 4.B but for the present all that need be 

understood is that each of the functions p(t),j8(t) is completely 

determined by specifying the values of four model parameters which 

represent the function values at 10, 20, 40 and 80 months survival­

time; the function values at other survival-times being generated by 

drawing a special type of smooth curve (called a cubic spline) through 

these four known points. This param^hrisation permits efficiency and 

flexibility in accommodating the data,

Cox (1572) maximises a 'partial' likelihood function to estimate 

the parameters of model (4.I). This is not convenient for the present 

data and models, and instead an approximate maximum likelihood solution 

is obtained, as described in appendix 4,Abelow.

Model (4.2) provides a framework for a wide variety of specific­
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ations. For example, age-at-marriage may be represented by a sot of 

dummy covariates, one for each five year category of age-at-marriage; 

alternatively and more efficiently, a quadratic or even simply linear 

dependence on age-at-marrlage may be utilised. Variables such as age, 

or duration of marriage or motherhood, which vary with survival-time, 

may be accommodated within the model by replacing them with their values 

at the start of the birth-interval. For example, for a linear 

dependence on age, this substitution does not affect the estimated age 

effects, although it does affect the baseline hazard.

Sets of variables such as age-at-marriage, marriage duration and 

age; or birth-cohort, age and time-period; are logically related since 

in each case the third variable is equal to the sum of the other two.

If all three variables in a logical relationship are included in the 

model then estimation problems arise (see Chapter 1). In the 

present analysis this problem is avoided by including at most two of 

a set of three logically related variables. Since, for the greater 

part of the analysis, only linear dependences on birth-history 

variables are utilised, and since a linear dependence on any two of 

the variables in a logical relationship automatically embodies a linear 

dependence on the remaining variable, thmthis procedure does not 

represent any disadvantage to the omitted variable.

In the sequel a 'current* birth-interval is a birth-interval 

contributing to the life-table population currently being investigated; 

the 'previous' birth-interval is the birth-interval immediately 

preceding the current birth-interval; a 'prior' birth-interval is any 

birth-interval which precede the current birth-interval; and the 
birth-interval is the birth-interval following the (k - l)^^ birth 

(or marriage or first union if k = l).

In this section a class of proportional hazards model (4.2) with
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survival-time varying covariate effects has been developed, and the use 

of Govariates constructable from the birth-history has been discussed. 

The following section, 4.2, outlines the stages gone through in select­

ing from these covariates to derive a final model of the form of (4.2) 

applicable to all nine countries analysed here. The emphasis in thus 

derivation is on the extraction of patterns, and detailed interpretation 

of the intermediate and final models is postponed until section 4.3.
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4.2 Deriving the Model.

There are a large number of effects and interactions which could 

be present in the data, but it is not practical to look for them all 

simultaneously as this would involve excessive computation. Therefore, 

the initial stages in the analysis reflect some prior judgements 

concerning the likely importance of effects and interactions, although 

later stages include checks on some of these assumptions. Specifically, 

it was thought that fertility control mechanisms might produce 

interesting interactions with survival-time and with birth-order, and 

so these were given full expression where possible. In general only 

linear or quadratic relationships with other variables were considered.

The first stage of the analysis involved the use of a forward 

sd^ction procedure to indicate terms which help to provide a good 

fit to the data. The procedure begins with the baseline hazard, and 

at each subsequent step examines each of the remaining terms before 

adding to the model that term which gives the greatest improvement in 

fit, as measured by the X statistic. However, it does not examine 

terms already in the model for possible exclusion, and it is possible 

that this deficiency could lead to terms of importance being over­

looked.

To begin with, for countries and birth-orders separately, the 

forwards selection procedure was used on the linear main-effect variables 

listed in table 4.1. Some separate checks indicated that omission of 

interactions with survival-time at this stage would not cause any 

variable of importance to be overlooked. The results for birth-order 

$ (that is, the birth-interval following the third birth) are shown in 

table 4.1. Hesults for birth-orders 1, 3 and 5 are given in appendix 

tables 4.El to 4.E3. The results indicate, for brth-orders 2 to 6,
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Step 1 Step 2 Step 3
Bangladesh ABI 215. FBA,PBA 12. FBI 6.(FBI)
Columbia ABI 129. FBD.PBD 96. EDU 41.(PBD.PBA ,PBI) (FMD)
Indonesia ABI 251, FBD,PBD 62. FBI,FMD 16.

(FBA,PBA,OBD)
Jamaica ABI 42. FMD 9. EDU 4.

(FBA,PBA,FMA,OBD)
Jordan ABI 55. EDU 47. OBD 13.(PBI.EDU)
Kenya FBI 109. ABI 14. EDU 11.(ABI) (EDU,FBD)
Korea PBA 187. EDU 117. FBI 27.(EDU) (ABI,FBA)
Mexico PBA 197. EDU 63. ABI,FBA 64.(ABI)
Sri Lanka PBA 281. ABI,FBA 65. EDU 31. 1

(FBI) (FBD,PBD,OBD,FMD)|

FBI length of first birth-interval (from first marriage or firstunion to first birth)
FBI length of previous birth-intervalABI average length of birth-intervals between first and previousbirths
FBA age at first birth
PBA age at previous birth
FMA age at first marriage or first union
FBD date of first birth
FED date of previous birth
FMD date of first marriage or first union
OBD date of mother's own birth
EDU length of full-time education

Table 4.1.The first three steps of a forwards selection amongst linear 
main-effect terms for birth-order 3, with values corresponding to 
the selected terms. Terms enclosed in parentheses have values 
within 75% of that for the selected term, and are listed in order of decreasing x^ - When more than one term is selected in a single step, 
this is due to logical relationships between the selected terms 
(see section 4.1) Terms with x^ < 3.0 are not shown. (Each m^in-effect 
term represents one degree of freedom.)
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that ABI (average length of birth-intervals between first and previous 

births), PBA (age at previous birth), EDU (length of full-time 

education) and PBD (date of previous birth) are, in that order, the 

most important variables to include in the model. For birth-order 1 

the pattern is different, not surprisingly since ABI is not defined 

for this interval, and other variables are identical to each other; 

here FMA (age at first marriage or first union) and FBI (length of 

first bhth-interval, from first union to first birth) are the most 

important.

Further experiments using the forwards selection procedure 

revealed that duration of marriage is unimportant, as are quadratic 

components in these variables with the possible exceptions of ABI 

and PBD.

In view of these results, for the next stage, the model:

An X(t)= p(t) + a(t).ABI + g(t).PBA + Y(t).PBD + 8(c)EDU (4.3)

was fitted for countries and birth-orders separately. (The same 

model, but without the ABI interaction, was fitted for birth-order 1, 

despite the anomalous behaviour of this birth-order noted above, in 

the interests of finding a model consistent over all birth-orders 

and countries.) It was found that the ABI and PBA interactions with 

survival-time are fairly regular and consistent across birth—orders 

and countries, but the PBD and EDD interactions are quite erratic.

Replacing the PBD and EDD terms with their main-effect counter­

parts yields the model:

An A(t) = p(t) +a(t).ABI + g(t).PBA + y.PDB + 6.EDU (4.4)

which was fitted for countries and birth-orders separately, and the 

results are given in figure 4*1« All parameter structures are broadly 

similar across countries, excepting Korea. Across birth-orders the
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w(t) and $(t) estimates are remarkably consistent, although the 

smaller sample sizes for the higher birth-orders introduce some 

instability. The most striking feature of these results, however, is 

the roughly linear trend in the a(t), y and 6 estimates across 

birth-orders. In particular a(t) is roughly proportional to (birth- 

order - l). This is illustrated more clearly for a(20) and a(40) 

in figure 4-2. It was found that the addition of quadratic component; 

to the ABI and PBD terms in model (4*4) does little to improve the fil 

although the quadratic ABI parameter estimates do tend to moderate 

the effects of the larger ABI.

The results above suggest that a model for all birth orders 

including the first may be constructed as follows:

X(t) = u(t) + e^.BOR + a(t).(ABI + e2).(B0R - 1)

+ g(t).PBA + y.PBD + 8.BOR.PBD + 6.EDU + B0R.EDU (4.5)

where BOR denotes birth-order. Mote that a. is introduced to prevent 

the model reflecting the arbitrary normalisations of PBD and EDU given 

in table 4*2, and is similarly introduced in respect of ABI. Model 

(4*5) may be reparamakrised and written;

&n A(t) = p(t) + n(b).B0R + a(b).M0D + g(t).PBA 

+ y.PBD + 6.BOR.PBD + 5.EDU + B0R.EDU (4.6)

where MOD is duration of motherhood (which appears because MOD is 

equivalent to ^ABI. (BOR - 1^ ignoring multiple-births), and where 

the following parameter constraint holds:

n(t) + Gg.aCt) (4.7)
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Figure 4«1. Parameter estimates from model (4.4). In panels (a),

(b) and (c), for each country and birth-order, parameter estimates at 

10, 20, 40 80 months of survival-time are connected with straight

llne8(although strictly they should be connected with cubic spline 

curves). In panels (d) and (e) straight lines connect parameter 

estimates across birth-orders. Vertical lines of length one standard 

error are drawn to each side of each parameter estimai^e, (standard 

errors for the baseline hazard are too small to be shown). The scale 

for each panel is indicated in its upper right corner. 4 broken line 

indicates that the line should continue. The normalisation of the 

variables is given in table 4*2.
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Figure 4.1: d) PBD effecfs.y, and e) ]EDU effects,5, from model (4.4)
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Table 4.2 Normalisation of Variables^

Variate Location Scale
ABI 3 years 1 year
PBA 25 years 1 year
PBD 1960 years 1 year

EDU 3 years 1 year
BOR 3 1
MOD 10 years 1 year
PBI 2.5 years 1 year
LNPBI In (2 years) 1
CEP 0 1
BED 0 1

a. For example , EDU is the number of years oi
full-time education, less 3.
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ligure 4»2. Estimates of ABI effects in model (4.4) &t a) t « 20 
months and b) t = 40 months, across birth-orders. Vertical lines of 
length one standard error are drawn to each sice of each parameter 

eatimaue. The scare for each panel is indicated in its upper right 

corner. Normalisation is given in table 4,2.
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Figure 4.2: ABI effects a) a(20), and b) a(40) from model (4.4)
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figure 4«$« Parameter estimates from model (4«6). For p (t), P(t), 
a (t^ and g(ty, estimates at t = 10, 20, 40 and 80 months are connected 
with straight lines, Vertical lines of length one standard error 
are drawn to each side of each parameter estimate. The scale for each 
effect is the same for all countries and is indicated for Bangladesh.
A broken line indicates that the line should continue. Normalisation 

is given in table 4.2.
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Table 4.3 Difference in between inodel(4.4)fitted to birth-orders 

1 to 6 separately, representing a total of 80 degrees of freedom, 
and model(4,6)fitted to birth-orders 1 to 6 simultaneously, 
representing 20 degrees of freedom.

Country

Bangladesh 93.
Columbia 153.
Indonesia 151.
J amaica 68.
Jordan 99.
Kenya 120.
Korea 200.
Mexico 103.
Sri Lanka 141.

d.f. 60
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Fitting model (4.6) with constraint (4.7) is inconvenient 
because of the non-linearity of (4.7). Alternatively, sn^ ^
are roughly estimated for each country from previous results, then 
constraint (4.7) is linear in the free parameters and consequently 
less inconvenient. The approach adopted, however, was to ignore 
constraint (4.7) temporarily, and the resulting parameter estimates 
are given in figure 4.^. As anticipated, the n(t) and a(t) parameter 
estimates in general reflect relationship (4.7), the only exception 
being Jordan where evidently the n(t) parameters are picking up
the slight trend across birth-orders in p(t) in figure 4.1(a).

2
Table 4.^ contains the % differences between model (4.4) applied to 

birth-orders separately, and model (4.6) applied to birth-orders 

simultaneously. These values are generally in the upper 1% tail 

of the distribution and so, on the basis of a strict statistical test, 

model (4.4) would be preferred. However, model (4.6) does conven­

iently summarise the results in figure 4.I, and the x^values in 

table 4.3 in general much less significant than the corrected 
X^ values for the remaining terms in model (4.6), given in appendix 

table 4.F4. In balance, therefore, it seems sensible to proceed with 

model (4.6).

The fact that relationship (4.7) holds suggests that inter­

pretations should De in terms of model (4.5) rather than unconstrained 

model (4.6), i.e. in terms of factors underlying AHI rather than MOD.

The interpretation is then as follows: ABI is acting as a proxy for 
underlying factors such as length of breastfeeding, use of contra­
ception and fecundity; the accuracy with which ABI captures the effects 
of these factors increases with the additional information contributed 
by each successive birth-interval, giving rise to thecbserved trend 
of increasing effects of ABI with increase in BOR. This is discussed
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in more detail in the next section, and demonstrated algebraically 
in appendix 4.D.

If the above interpretation is correct then PBI (the length of 
the previous birth-interval) should act as an alternative to ABI, since 

it should be able to capture the effects of the factors underlying ABI. 

However, the effects of PBI would not be expected to increase with 

BOR since PBI only ever contains information from one birth-interval.
It would be expected, then, that replacing ABI in model (4.4) with 
PBI to give:

&n X(t) = p(t) + a(t).PBI + B(t).PBA + y.PBD + 6. EDU (4.8)

and fitting to birth-orders separately would produce parameter 
estimates similar to those for model (4.4) except that a(t) would be 

unaffected by changing BOR. This would permit construction of a 
simultaneous birth-orders model analogous to model (4.6):

x(t) = p(t) + ^(t).BOR + a(t).PBI + B(t). PBA 

+ y.PBD + 8.B0R.PBD + 6.EDU + BOR.EDU

where, in place of constraint (4.7):

(4.9)

n(t) = n (4.10)

because the second term in (4.9) is introduced only to prevent the 

model reflecting the arbitrary normalisations of PBD and EDU. It 
would be expected that parameter estimates from model (4.9) would be 

similar to those from model (4.6) except that the h(t) estimates 
should correspond to oonstraint(4.10), but the fit of model (4.9) 

would be expected to be worse than that for model (4.6) owing to the 

omission of information from earlier birth-intervals.

All of these expectations are fulfilled. The constancy of PBI
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effects in model (4«8) across BOR may be seen from fignre 4*4, and 

the profiles of the unconstrained n(t) estimates from model (4*9) 

shown in figure 4.$ are considerably attenuated in comparison with tho5 

in figure 4*3 from model (4*6). Table 4*4 shows that with one 

exception model (4*9) does not fit as well as model (4.6).

Model (4.9) possesses a distinct advantage over model (4.6) 

despite the fact that it does not fit as well: it is not encumbered 

with an awkward non-linear constraint. Moreover, the loss in 

precision through using PBI rather than MOD is not great in comparison 

to the total explanatory power accountable to MOD, as may be judged 

by comparing table 4*1 and appendix table 4*E4* For these reasons 

the ensuing analysis develops model (4*9) rather than model (4.6).

Intuitively a proportionate increase in FBI might be expected 

to correspond to a proportionate decrease in current fertility, 

indicating a linear relationship between log PBI and log hazard.

This suggests that large PBI might be detrimentally affecting the 

fit of model (4.9), and a better formulation would be as follows;

Ah X(t) = p(t) + n(t).BOR + a(t).LNPBI + B(c).PBA 
+ y.PBD + e.BOR.PBD + 6.EDU + BOR.EDU (4.11)

where DNPBI is An(PBI - 6 months), (removing from PBI a conservative 

estimate of gestation time). From table 4*4 model (4.11) tends to 

fit better than either (4.9) or (4.6). All parameter estimates in 

model (4*11) are similar to those in model (4.9).

Constraint (4*10) is applicable to model (4.11) and table 4.9 

shows that they^ differences produced by this constraint, and by the 

additional constraint^ = 0, are small in comparison to the corrected 

values for other terms in the model (see table 4.6). There is less



179

justification for additionally setting 8= 0, although if this is 

done then one could reasonably omit BOR from the model altogether, 

by placing = 0. These results suggest the model;

X(t) = p(t) + a(t).LNPBI + g(t).PBA

+ n.BOR + y.PBD + 8.B0R.PBD + g.EDU (4.12)

and the corrected)^ values for terms in this model are given in 

table 4.6, from which it may be seen that PEA and especially LNPBI 

are much more important than any other terms in the model. Figure

4.6 and appendix table 4'E5 contain the parameter estimates for model

(4.12).
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Figure 4.4, Estimates of FBI effects in model (4.8) at 10, 20, 40 

and 80 months survival-time, for birth-orders 2 to 6 separately. 

Vertical lines of length one standard error are drawn to each side of 

each parameter estimate. The scale for all countries is the same 

and is indicated for Bangladesh. Normalisation is given in table 4.2,
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Figure 4.5. Estimates of BOR effects in model (4.9) at 10, 20, 40 
and 80 months survival-time, for birth-orders 2 to 6 simultaneously. 
Vertical lines of length one standard error are drawn to each side 

of each parameter estimate. The scale is the same for all countries 

and is indicated for Bangladesh. Normalisation is given in table 4«2.
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Table4.4 Differences in
fitted to birth-orders 2

between models (4,6),
to 6 simultaneously^.

Model (4.6)-Model(4.9)

(4.9) and (4.11)

Model(4.6)- Model(4,11)
Bangladesh +33. +269?

Columbia -46. +42?

Indonesia -99. +232?

Jamaica -29^ -70“''

Jordan -66. -28.

Kenya -40. +41.

Korea -85. -39.

Mexico -98. -42.

Sri Lanka -125. +39.

a. Birth-intervals commencing with a multiple birth omitted.

b. Adjusted due to one case for which date of first birth is unknown.
c. Adjusted due to birth-intervals where length of previous birth-interval 

g 6 months.
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Table 4.5 Successive differences produced by cumulatively placing
constraints on model (4.11)

Constraints
n(t) = n (f) = 0 0 = 0 n = 0

Bangladesh 18. 1. 51. 6.
Columbia 11. 0. 4. 6.
Indonesia 17. 10. 100. 17.

Jamaica 17. 2. 20. 17.

Jordan 17. 5. 23. 3.
Kenya 5. 5. 24. 7.
Korea 63. 32. 305. 11.

Mexico 27. 0. 20. 8.

Sri Lanka 5. 2. 52. 11.

d. f. 3 1 1 1
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Table 4.6 contributions of terms in model (4.12)corrected for
remaining terms.

BOR.PBD BOR.PBD
LNPBI PBA BOR,PBD and

PBD
and
BOR EDU

Bangladesh 632. 277. 51. 77. 57. 2.

Columbia 322. 86. 4. 243. 10. 122.

Indonesia 712. 301. 100. 226. 117. 5.
Jamaica 61. 76. 20. 78. 37. 17.

Jordan 171. 124. 23. 40. 26. 149.

Kenya 322. 56. 24. 24. 31. 7.
Korea 222. 438. 305. 318. 316. 314.

Mexico 427. 345. 20. 169. 63. 23.

Sri Lanka 473. 476 52. 36. 28. 212.

d.f. 4 4 1 2 2 1
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Figure 4«6, Parameter estimates for model (4.12)« Per p(t), a(t) 
and B(t), estimates at t = 10, 20, 40 and 80 months are connected with 
straight lines. Vertical lines of length one standard error are drawn 
to each side of each parameter estimate. Normalisation is given in 
table 4.2. The scale for each effect is the same for all countries 
and is indicated for Bangladesh.
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4.$ Discussion

4.3«1 Adequacy of the model.

To some extent the motivation to discover a universal model has 

led to a rather forced application of model to data, notably in the 

case of Korea which resists most attempts at model simplification 

(see tables 4.3 to 4.5). Considering however the geographic, ethnic 

and socio-economic diversity between the nine countries involved in 

the analysis, the degree to which they support the same model is 

encouraging; moreover, the similarity between all countries except 

Korea in survival-time profiles of parameter estimates lends further 

support to the notion of a common model.

So far the analysis has not allowed for interactions other than 

with survival-time or birth-order. Interactions with current time- 

period, or PBD, might be anticipated however, reflecting changes in 

family building patterns brought about by various aspects of modern­

isation. To indicate the presence of suoh interactions, model (4.12) 

without its PBD terms was fitted to that part of each birth-interval 

for each woman which falls within the five years before interview.

The resulting parameter estimates were virtually no different than 

those based on the full data, apart from some slight instability in the 

LNPBI effects which may be seen by comparing panels (a) and (b) of 

figure 4.9. This indicates that model (4.12) adequately incorporates 

time-period influences.

Some loss in precision results from using PBI in place of ABI in 

model (4.6), although this is regained by using INPBI instead (table 

4.4). This suggests that birth-intervals prior to the previous one 

contain useful information about the current birth-interval, but that 

ABI is not the best way of combining this information. Intuitively



it might be expected that of the prior birth-intervals, the previous 

one would be most relevant to current fertility. To explore this 

possibility, correlation coefficients between birth-interval lengths 

have been constructed and are given in table 4.7. (To avoid select­

ivity bias, due to the fact that only the shortest of the more 

recently commenced birth-intervals are completed before interview,

&11 birth—intervals commenced up to 100 months before interview have 

been omitted from this calculation, as have been all those of length 

greater than 100 months). Generally the greater the differences in 

birth—orders, the lower is the correlation between corresponding 

birth-interval lengths. All this suggests that perhaps the logarithm 

of a weighted geometric mean of prior birth-interval lengths would 

be an efficient way of summarising their information about current 

fertility (i.e. a weighted average of log birth-interval lengths, 

with higher weights assigned to the more recent prior birth-intervals 

to reflect their greater relevance to current fertility). However 

these refinements must await further research.

The correlations between birth—interval lengths may seem 

surprisingly small considering the large corrected values in table

4.6 for LNPBI in moCel (4.12). Appendix 4C shows theoretically that 

the correlation between two adjacent birth-interval lengths should be 

approximately {-w(l year)/3j, and the empirical results in table 4.7 

and figure 4.6 are consistent with this relationship.

4.5.2 Biasing Mechanisms

- 190 -

Age and the length of the previous birth-interval appear to be 

the key determinants of current fertility. Variables such as fecundity 

(the biological capacity to reproduce), coital frequency, and ability 

to breastfeed probably depend on age, and so it is possible that age
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Table 4.7 Correlations between birth-interval lengths for birth-orders
(BOR) 1 to 4^.

Bangladesh Columbia Indonesia
BOR 2 3 4

1 .20 .14 .04
2 .26 .13
3 .21

Jamaica
BOR 2 3 4
1 .03 - ,02 - . 01
2 .01 .07
3 .04

Korea
BOR 2 3 4

1 .10 ,, 12 . 10
2 , 08 ..05
3 , 10

BOR 2 3 4 BOR 2 3 4

1 18 .13 .04 1 .18 .13 .11
2 .17 . 11 2 .18 .14
3 .12 3 .19

Jordan Kenya
BOR 2 3 4 BOR 2 3 4

1 07 .05 .07 1 .09 .08 .05
2 .01 .02 2 .15 .05
3 .08 3 .04

Mexico Sri Lanka
BOR 2 3 4 BOR 2 3 4
1 09 .07 .08 1 .12 .09 .07
2 .06 .09 2 .14 .14
3 .17 3 .14

a. For women reaching 5^^ birth whose birth-intervals for birth-orders 

1 to 4 are all $ 100 months and whose 4^^ birth was $ 100 months before 

interview (to avoid selectivity bias due to censoring).
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effects reflect all of these factors. The role of the other variable, 

the length of the previous birth-interval, however, is quite different: 

it cannot be considered to be a cause of factors underlying current 

fertility, but it is a consequence of them.

Before attempting to associate possible causal factors with the 

observed survival-time profiles in the parameter estimates, it is 

important to gain understanding concerning the potential direction 

and size of various sourcescf bias.

The age-related factors listed above would all be expected 

ultimately to affect the length of the current birth-interval. Since 

age would not normally be much different for the previous birth- 

interval, it is reasonable to suppose that the length of the previous 

birth-interval reflects some of the current age-related factors, 

perhaps to a large extent. The length of the previous birth-interval 

may also reflect other factors of current fertility: consequently it 

is likely that age effects would tend to be diminished when controll­

ing for the length of the previous birth-interval.

Now the length of the previous birth-interval undoubtedly also 

contains a component of 'noise' due to factors which have no bearing 

on current fertility. The consequent correlation between the length 

of the previous birth-interval and its noise component will produce 

biased parameter estimates: this is analogous to the classical 

'errors-in-variables' situation (Kendall and Stuart, 195l)« As a 

result of its noise component, the length of the previous birth- 

interval does not control precisely for its underlying factors, and 

this will tend to moderate its ameliorating aotion on the age effects, 

described above. The 'errors-in-variables' biases are demonstrated 

in panel (a) of figure 4.7" The solid diagonal line represents the 

expected value of the length of the previous birth-interval variable
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Figure 4.7 Errors-in-variables and selectivity biases 
controlling for age, in LNPBI effects a) initially - 
b) late in birth-interval.
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(LNPBI) given the value of one factor which underlies it, at the 

start of the birth-interval, controlling for age. The presence of 

noise, which is assumed at the start of the birth-interval to be 

distributed symmetrically and independently of the factor, produces 

the initial joint probability density of the factor and INPBI, which 

is indicated on the figure by ellipses representing its contours; 

note that for each value of the factor, the contour lines are 

symmetrically placed about the solid diagonal line, reflecting the 

asumed symmetry and independence of the noise. Now for each value 

of BNPBI, the contour lines are symmetrically placed about the broken 

diagonal line, not the solid one. The expected value of the factor 

given hNPBI is therefore biased in comparison to the factor value which 

would be associated with hNPBI in the absence of noise. The presence 

of noise therefore causes factor differences to be underestimated 

(because the solid diagonal line is steeper than the broken line) 

and consequently the impart on current fertility of factors underlying 

hNPBI will be underestimated.

As survival-time increases, controlling for age and hNPBI, the 

level of the factor underlying hNPBI is reduced through the tendency 

for individuals with high factor scores to be removed from the birth- 

interval at the shorter survival—times. Simultaneously, and for the 

same reason, the variability in factor levels within these controls 

is reduced, and ultimately vanishes. However, no such selectivity 

mechanism operates on the noise component, since it is independent 

of current fertility. As survival-time increases, the noise component 

maintains its independence of the factor, and its variability is 

unaffected. Ultimately, therefore, hNPBI will reflect purely noise, 

and at intermediate survival—times the joint probability density of 

hNPBI and the factor will take the form indicated in panel (b) of



figure 4»7« The solid diagonal line and the broken line represent 

the same relationships as in panel (a), for a survival-time greater 

than zero. The broken line is now even less steep than before, and 

consequently the impact on current fertility of factors underlying 

iNPBI will be even more severely underestimated. Thus, as survival­

time increases, the baseline hazard should become increasingly negative, 

and the effects of LNPBI should disappear. This is an agreement with 

the results in figure 4.6.

From figure 4.7# the size of biases are determined by the relative 

size of the variance in the noise component in comparison to that of 

the underlying factor. The low correlation between birth-interval 

lengths (table 4.7) suggests that the noise component is relatively 

large, and this indicates the INPBI severely underestimates the impact 

of factors which it reflects. By using information from several prior 

birth-intervals when measuring previous fertility, the noise variance 

is reduced and the effects of previous fertility are correspondingly 

increased, providing less biased estimates of the impact of faotors 

underlying previous fertility. This is in agreement with the results 

of figure 4.1(b).

The large noise component of LNPBI means that LNPBI exerts little 

control over age-related factors initially, and this control becomes 

increasingly ineffective as the noise content of LNPBI increases with 

survival time. However, the trend of increasing PBA effects with 

survival-time cannot be attributed to the increasing inability of LNPBI 

to control for age-related factors, since the age-only model:

- 195 -

&n X(t) u(t) + B(t).PBA (4.13)

produces age-effects which are similar to those obtained from model 

(4.12), as may be seen from figure 4.8. Now the rapidity with which
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Figure 4,8. Effects of PBA from a) model (4.12) and b) model (4.I3). 

Parameter estimates for 6(t) at t = 10, 20, 40 a^d 80 months are 

connected with straight lines. Vertical lines of length one standard 

error are drawn to each side of each parameter estimate. The scale 

is indicated in the upper right corner of the figure.
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Figure 4.8: PBA effects, 8(t), from models a) (4.12) and b) (4.13)
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the age-effects increase with survival-time seems to rule out a purely 

behavioural explanation; this could, however, be explained by age- 

related infeoundity. Infecund individuals can only be removed from the 

birth-interval by interview, and so they tend to accumulate at the 

higher survival-times. If infecundity following the previous birth is 

related to age, then initially, and increasingly with survival—time, 

the age-effects will be dominated by the proportions fecund at each age, 

and all other effects will tend to disappear. This provides an 

additional explanation for the diminishing effects of LEPBI with 

survival-time. The anomalous behaviour of the Korean data could be 

explained by high levels of infecundity.

It is possible that a major source of age-related infecundity 

is the menopause. To check this, individuals were artificially censored 

upon reaching 40 years, and model (4.12) was refitted; but no change 

in the parameter estimates was produced. Menopause, therefore, does 

not contribute substantially to selection biases due to age-related 

infecundity; it seems likely that infecundity occurs at all ages, 

although more often at the higher ages. It is possible that infecundity 

occurs as a side—effect of the physiological processes of pregnancy, 

childbirth and breastfeeding.

It is unlikely that the age effects substantially reflect age 

related factors other than infeoundity, since initially these are 

partly controlled for by INPBI and as survival-time increases the age 

effects are increasingly dominated by infecundity.

All of the above assertions concerning biasing mechanisms are 

supported theoretically in appendix 4D. In particular, appendix 4D 

shows that the impact of factors underlying INEBI could be about ten 

times those of LNRBI itself.
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4.3«3 Breastfeeding and Contraception.

To gain further InBight into the behavioural factors underlying 

the age and the length of the previous birth-interval variables, the 

impact of breastfeeding and contraception on the hazard function may 

be examined.

Breastfeeding and contraception data were collected only for the 

last closed birth-interval and the following open (censored) birth- 

interval, for each woman interviewed. Serious selectivity problems, 

additional to those described above, can result from the use of data 

for the last two birth-intervals (Hobcraft and Rodriguez, 1^80) because 

the closed birth-intervals of the more fertile women (whose last two 

birth-intervals tend to be short) are under-represented. To control 

for this, only the experience within the five years prior to inter­

view was used when analysing data for the last two birth-intervals: 

this avoids these selectivity biases to a large extent because the 

last two birth-intervals together generally exceed five years, and 

consequently selection is approximately solely on the basis of time- 

period rather than fertility. To restrict the period before interview 

still further would reduce further these selectivity biases, but 

stability in parameter estimates would be lost due to the contraction 

of the sample base.

Panel (c) of figure 4.9 displays the estimates of ^^t) in model 

(4.12) estimated on the basis of the last two birth-intervals, within 

the five years before interview. Panel (b) contains the corresponding 

estimates for all experience within the five years before interview. 

Columbia and Sri Lanka show some signs of bias in ^^t) due to the 

restriction to the last two birth-intervals. The remaining effects 

show no signs of such bias, for any of the countries analysed. Korea
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Figure 4.$. Effects of LKPBI in model (4.12)

a) on full data

b) within the five years before interview

c) within the five years before interview, 

for the last two birth-intervals.

d) as for (c) when breastfeeding and contraception 

variables are included (model (4.14) ).

Parameter estimates for/X(t) at t = 10, 20, 40 ani80 months are 

connected with straight lines. Vertical lines of length one standard 

error are drawn to each side of each parameter estimate. Panels (c) 

and (d) are omitted for Korea through lack of convergence, and for 

Mexico because data on contraception in the last closed birth-interval 

was not collected. The scale is indicated in the upper right corner 

of the figure.
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(a) (b) (c) (d)

Bangladesh

Columbia

Indonesia

J amaica

Jordan

Kenya

Korea

Mexico

-1

Sri Lanka

Figure 4.9: LNPBI effects, a(t) under various conditions
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and Mexico are not analysed in this section owing to instability in 

parameter estimates when breastfeeding and contraception variables are 

inclnded for the former, and to the fact that information on contra­

ception in the laet closed birth-interval is not available for the 

latter.

So far in this analysis all the variables utilised have been such 
that, for each woman, they do not vary within the birth-interval.
Neither breastfeeding nor contraception can be considered to be constant 

within the birth-interval. This is not a problem provided that states 

of breastfeeding and contraception are known for each woman at each 

point in the birth-interval. This information is known for breast­

feeding, although the distributions of reported durations of breast­

feeding exhibit considerable clumping, indicatingnather unreliable 

data. For contraception, however, it is only known whether it was 

ever used within the birth-interval (and if so, what type). It may 

not be unreasonable, however, to assume that use of contraception is 

uniform throughout the birth-interval, although this will probably 

lead to slight underestimates of the impact of contraception. However, 

this assumption can lead to yet another source of bias: for several 

countries in the analysis rapid changes in contraceptive practices are 

taking place, with the result that substantial numbers of women have 

changed their practice of contraception within the last two birth- 

intervals; for such women it is unreasonable to assume uniform use of 

contraception within the birth-interval, and the remedy is simply to 

omit these cases from the analysis.

In the interests of simplicity it was decided to ignore inform­

ation on method of contraception. Thus, model (4.12) was augmented by 

full survival-time interactions with current contraceptive status.
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CEP (O = not using; 1 = using), and current breastfeeding status,^ 

BED (O = not breastfeeding; 1 = breastfeeding), but the dependence on 

date of previous birth was simultaneously dropped since this is 

effectively controlled by the restriction to the five years before 

interview, giving the model:

&n A(t) = p(t) + a(t).INPBI + $(t).PBA + n.BOR + 6.EDU 

+ p(t).CEP + T(t).BFD (4.14)

The parameter estimates for contraceptive and breastfeeding 

status are given in figure 4«10. Contraception tends to have an 

initial negative impact on fertility, becoming positive after about 

40 months survival-time (with the exception of Bangladesh). The 

negative impact of contraception on fertility is obviously due to the 

decreased risk of conception for contracepting women. The subsequent 

positive effect is possibly due to a tendency for non-contraception 

amongst infecund women, and is in the wrong direction to support the 

idea that contraceptive ^erilisation is a primary source of infecund­

ity.

Figure 4«10 does not show breastfeeding effects above 40 months 

survival-time due to their extreme instability, resulting from the 

small numbers still breastfeeding at these survival-times. The 

initial negative impact of breastfeeding is expected (see, for example, 

Jain and Bongaarts, l^BO), and its diminishing effect with increasing 

survival-time is probably due partly to the decreasing intensity of 

breastfeeding with survival-time amongst women who are still breast-

1. It would have been better to use breastfeeding status nine months 
before the current survival-time. This oversight has probably led 
to slight underestimates of the impact of breastfeeding on fertility.
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feeding, partly to meaenrement errors in the breastfeeding variable 

resulting in the errors—in-variance biaaes described above, and partly 

to the biasing effects of age-related infecundity, also described 

above.

With perhaps the exception of the education effects, the remaining 

effects in model (4,14) are virtually identical to those estimated from 

model (4.12). However, this does not imply that the HNPHI variable 

does not contain any variation originating from contraceptive or 

breastfeeding practices. To check this, corrected -statistics for 

each term in model (4.14) areg^ven in table 4«8, and these may be 

compared with those in table 4«9 for the model which omits the LHPHI 

term:

An X(t) = p(t) + B(t).PBA + n.BOR + 6.EDU + p(t).CEP

+ T(t).BFD (4.15)

Comparing these two tables reveals that age is the only variable 

which gains any explanatory power through the omission of the HNPBI 

variable, proving that the LHPHI effects do not reflect contraception, 

breastfeeding, birth-order or education to any real extent.

It may also been seen from table 4«8 that breastfeeding has a 

powerful impact on fertility, but that the impact of contraception 

is much more variable between countries.

4.3*4 The remaining effects.

To this point the birth-order, time-period and education effects 

have not been discussed. From figure 4.6 it is evident that fertility 

at the higher birth-orders is decreasing with time-period, indicating 

increasing use of fertility control, and also that education 

plays a part in reducing fertility in some countries, although further
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Figure 4.10. Contraception effects, p(t), and breastfeeding effects, 

T(t) from model (4.14). Estimates of p(t) at 10, 20, 40 aud 80 mcmths 

of survival-time, and of T(t) at 10, 20 and 40 months of survival­

time are connected with straight lines (estimates of T(80 months) have 

very large standard errors, and are therefore omitted). Vertical 

lines of length one standard error are drawn to each side of each 

parameter estimate. The scale for each effect is the same for all 

countries and is indicated for Bangladesh. The normalisation of the 

variables is given in table 4.2.
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p(t) T(t)

Bangladesh

Columbia

Indonesia

Jamaica

Jordan

Kenya

-2.

Sri Lanka
1

Figure 4.10: Contraception effects p(t), and
breastfeeding effects T(t), from model (4.14)
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Table 4.8 contributions of terms in model(4.14)corrected for

remaining terms, based on the last two birth-intervals, within the 
five years before interview.

LNPBI PDA BOR EDU CEP BED
Bangladesh 20 84 1 2 6 125
Columbia 53 35 2 23 48 33
Indonesia 35 131 2 3 85 113
Jamaica 10 26 1 6 20 21
Jordan 26 45 0 8 66 87
Kenya 32 34 1 15 10 101
Sri Lanka 25 136 0 15 4 231

d. f. 4 4 1 1 4 4
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Table 4.9 contributions of terms in mode](4.15) corrected for 

remaining terms, based on the last two birth-intervals, within 

the five years before interview.

PBA BOR EDU CEP BED

Bangladesh 127 0 1 5 131

Columbia 87 0 24 54 33

Indonesia 199 8 1 83 123
Jamaica 51 2 4 19 21

Jordan 71 0 6 80 99

Kenya 59 0 16 11 103
Sri Lanka 217 0 11 4 246

d.f. 4 1 1 4 4
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experimentation shows this to be partly through its association with 

contraception. However it is evident from table 4.6 that these 

terms are less important than age and the length of the previous birth- 

interval.

Figure 4'6 also shows substantial differences in baseline hazard 

functions between countries. These persist when controlling for 

breastfeeding and constraception, as may be seen from figure 4.11. The 

present research can throw very little light on the causes of these 

differentials, except to rule out those variables which have been 

investigated above.
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4«4 Conclusions

A woman's age and her previous level of fertility are the 

components of her birth-history which are most strongly associated 

with her current fertility. Age acts principally to control for 

infecundity following the previous birth, and previous fertility 

simply predicts current fertility amongst those individuals who are 

still fecund. Survival-time trends in the effects of age and 

previous fertility are the results of selection associated with 

'errors-in-variahles' and infecundity biases.

Factors underlying the effects of previous fertility are unknown, 

but could include suh-fecundity, coital frequency and proneness to 

miscarry; they do not include breastfeeding or contraception. The 

impact on current fertility of factors underlying previous fertility 

are underestimated because of 'errors-in-variables' bias, but could be 

about ten times the impact of the length of the previous birth-interval. 

Using several prior birth-intervals to measure previous fertility 

substantially reduces this bias. The age effects do not reflect 

infecundity due to the menopause.

Contraception and especially breastfeeding have a negative impact 

on fertility at the shorter survival-times. Later in the birth- 

interval breastfeeding is less effective partly through less intensive 

usage amongst those still breastfeeding, and contraception effects 

become positive, possibly through the tendency for non-contraception 

amongst fecund women. Fertility at the higher birth-orders is 

decreasing with time-period indicating increasing usage of fertility 

control. Education also has a negative effect on fertility partly 

through its association with contraception. Substantial differences 

in the baseline hazard persist despite these controls, as illustrated
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in figure 4.11; the present analysis provides little insight into the 

causes of these differentials. Figure 4.12 illustrates the effects on 

the hazard function of the more important variables.

The aim of this research was to develop a model of fertility 

applicable to a wide variety of countries, using birth-history variables. 

This has been achieved, and the most important result is the strong 

suggestion of unknown factors associated with previous fertility which 

have a profound effect upon current fertility. This result is not 

entirely new; Braun (l^GO) in his analysis of closed birth-intervals 

for three historical populations also found that the level of previous 

fertility, as measured by the average length of prior birth-intervals 

was the most, indeed the only, important determinant of current 

fertility. The present research extends the result of Braun (1980) 

through its application to modern developing populations; through its 

assessment of the roles of breastfeeding and contraception; through 

its suggestion of the magnitude of the true impact of the underlying 

factors; and through its demonstration of the importance of age when 

analysis is not confined to closed birth-intervals. The present 

results are also consistent with those of Bumpass et al (1978) who 

find that women who commence childbearing at a young age generally 

continue with a rapid pace of childbearing.

An important aspect of the birth-history model (4.12) is its lack 

of dependence on marriage variables (above the second birth-interval), 

cohort variables, duration of motherhood and quadratic age and time-period 

variables. The absence of duration effects and quadratic age and time- 

period effects is particularly interesting since Casterline and 

Hobcraft (198I) on the same data have demonstrated the existence of 

such effects. This apparent contradiction is probably mainly due to 

the omission of birth-order effects in the Casterline and Bobcraft (I98I)
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analysis (it will be recalled from section 4*2 above that birth- 

order and duration of motherhood effects are mainly the effects of 
previous fertility measured as the average of the lengths of prior 
birth-intervals).

The present research also contributes understanding about 
biasing mechanisms in the field of proportional hazards models in 
general.

The most important objective of further research should be 

to isolate the factors of current fertility which underlie previous 
fertility. In particular the impact of wasted pregnancies could be 

investigated with the present data and methods. It is also important 
to learn more about the causes of infecundity. However, the 
proportional hazards approach may not be the best framework within 
which to pursue these objectives, because of the influences of 
biasing mechanisms.

Another objective should be to apply the model to data from 
developed countries,(one would anticipate much greater birth-order 
effects); and to extend the model to first and second birth-intervals.

Finally, the model may serve as the basis of a demographic 

tool for assessing current levels of fertility and projecting future 

fertility. Further research could show how best to measure previous 
fertility, and how best to predict infecundity.
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Appendix 4.A The approximate maximum likelihood solution
The probability that the i^^ woman survives in her birth-interval 

to survival-time t months is:

exp
tt X(s 1^) ds (4A1)

where (s^a)ds is the hazard function times ds: that is, the probability that 

she has a birth in the interval (s, s+ds) given that she has already 

survived s months in the birth-interval; and where a is a vector of

parameters. The likelihood function may therefore be written:
e. .

L(a) = n n X..^(t..|a) exp
- i j ij iJ

ft.ij X . .(s a) dsij --

.th

(4.A2)

where t^^ is the survival-time at closure of the j birth-interval of 
the i^^ woman and 6^^=! if closure is by a birth, and 0 if by interview.

(In fact, dates in the survey data are recorded in century-month form, 

and so exact dates are taken to be at the mid-point of the century-month, 

except when a birth occurs in the same century-month as the interview, 

in which case the birth is taken to occur one-third of the way through 
the century month, to avoid bias.)

The proportional hazards model may be written (as in equation (4.1)

(4J^U
above) &n X. . (t a) = a' X. . (t)

ij — — —ij

.thwhere ^ (t) is a set of covariate values for the j birth-interval
of the i^^ woman. Substituting (4.A3) into (4.A2) gives:

t,
L(a) = a' E E e.. X..(t..) - E E- - i j ij . j

ij exp(a'X. (s))ds---ij (4.A4)

Now let H be a partition of the space {i,j,s,3(}. Let 5 =1
"tilif i,j,s and X are such that they correspond to the h subset of H.

Let 6=0 otherwise. Thus 6. is a function 6^(i,j,s,X). n n n —



Denote

= Z Z
" ijj

r ^^(i,j,8,_X^j(s))ds

r ij ^^(i,j,s,X..(8)) X_ (s)dsn —ij 13

ij . j. 8^1 j (s) ) j ( = j («)

and ^ ^ ^ 'ij

then if the partition H is chosen so that, within each subset h of the

partition, X..(s) is approximately equal to X , then from (4A4 )13 —h

2n L(a) = a'X. - Z Nf (l+&a'8^a)e—--------B , n — h~h
(4A5)

and hence:

9a (1+ia'S 10) + S^a)hr— —h h—
a'XL

(4^^)

and

9^&nL
9aBa' Z N. (l+&a'S io)X X' + S^oX'^ + X,a'S^ +— h--h—h h— h —b— h h

a'X.
(4jV7)

Thus only the information: X , {N , X^, S^} need be retained—B h —h h
from the data. Equations (4.A5 ) to (4A7 ) may be used to obtain approximate 
maximum likelihood estimates of the jO using the Newton Raphson procedure.

Empirically it was found that the approximation (4A5 ) is adequate 
if the partition H subdivides the survival-time axis as follows:

6-9 months; 9-15 months; 15-60 months; 60-90 months; 90+ months. 

Subdivisions with respect to the covariates was found to be unnecessary.
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Appendix 4.B Modelling with cubic splines

It is reasonable to suppose that the effects of variates 

vary smoothly with survival-time. If so, then the proportional 
hazards model may be written:

&n X(t|%^ = a/(t)X (4.B1)

where A(t|x) is the hazard function at survival-time t, given a vector 

of covariates X, and where ^(t) is a vector of hazard functions. Thus 
o/t) represents the effect of X at time t. The smooth functions o/t) 
must be specified in some way, and then estimated.

Each function a (t) may be specified as a cubic spline. A cubic 

spline is a smooth function which is defined on a set of n positions 

or 'knots’ t^...t^ along an axis. Between each pair of adjacent knots 

the function is a cubic polynomial. Before the first knot and after 
the last knot the function is a straight line. The coefficients of 
these (n+1) polynomials are chosen so that, at each knot, the function 
is continuous and twice differentiable at each of the knots. Specifying 

the values of a . = a.(t.) at each of the knots t_...t then uniquely 

determines the spline function a^(t) for all t. Of course these values 

j=l...n are not known in advance in the present circumstances: 

they must be estimated, and they consequently form a set of n model 

parameters. The number and positions of the knots may however be set 
in advance to obtain the desired flexibility in a^(t).

Now, for each j, a spline function s^Ct) may be defined on the

knots t ...t so that at each knot s.(t) is zero except at t. where it in j j
is 1. It is easily shown that:

n
a.(t) = Z a..8.(t) 

j=l ^
(4.B2)

since the linear combination of the set of splines {s (t)} possesses all
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the continuity properties of the individual s (t), and since at the 

knot only s^(t) is non-zero. Formula (4.B2) is extremely valuable for 
computational purposes since, substituting (4.B2) into (4.B1) gives:

^n X(t|x^ = gy Y (4.B3)

where _g' is the vector of parameters (a , a ... a. , a__, ...)ii In 2n
and where Y is the vector of variates (X s_(t), X^s_(t)...X. s (t),

^^Sg(t)...XgS (t)...). Note that, at each survival-time t,
the variates Y may be calculated before model fitting since the functions
s (t) do not depend on the unknown parameters g. McNeil and Trussel j —
(1977) explain how the coefficients of the Sj(t) splines may be 
calculated. Note also that (4.B3) is now a linear model.

Empirically it was found that 4 knots were amply sufficient to 

accommodate the intricacies of the data, and that setting these at 

10, 20, 40 and 80 months survival-time ensured that the hazard function 
tends to zero as t->0 or t-K». Concentrating the knots at the shorter 

survival-times is sensible since this is where most of the exposure to 
risk of birth is situated.

Anderson and Senthilselvan (1980) use a cubic spline to model 

the baseline hazard in a proportional hazards model.
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Appendix 4.C Relationship between the coefficient of LNPBI and the 
correlation between adjacent birth-interval lengths

Let pCt^jt^) denote the instantaneous probability of a birth at 

survival-time t^ conditional on t , the length of the previous birth 
interval. The coefficient a(t_) of LNPBI (&n(t,-6 months)) in model

(4.12) is such that an increase in t produces a decrease in the hazard
^^tg|t^) for small t^ and no change in Kt^jt^) for large t , and hence

a decrease in p(t It ) for small t but an increase in p(t It ) for 
^ ^ ^ 2 1

large t^. Hence for some value 0, roughly:

Pftgiti) = p(tg){l + G(t^-p^)(tg-p^)} (4.Cl)

where p(t) is the unconditional instantaneous probability of a birth 

at t, and where p is the unconditional expectation of t (it is assumed 

that t^ and t^ have the same unconditional distributions).

Now it follows from (4.Cl) that the correlation between t and t1 2
is:

(4.C2)

where o^ is the unconditional variance of t. It also follows from (4.Cl) 

that:

9^n Pftglt^)
at.

(4.C3)

Now from model (4.12):

3£n ^^tg|t^)
at.

a(t)
y^-6 months (4.C4)

and for small t^(say t = 12 months)
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A(12 months 11^) - p(12 months11^) (4.C5)

hence from (4.C3), (4.C4) and (4.C5):

a(12 months) .
- 6 months 12 months - (4.C6)

and substituting (4.C6) into (4.C2) gives:

H^2
a(12 months) . _____ ^t
y^ - 6 months 12 months - y (4.C7)

Empirically y^ = 30 months, - 12 months. Substituting these values 
in (4.C7) gives:

a(12 months)
H^2 (4.C8)

which is in agreement with table 4.7 and figure 4.6,
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Appendix 4.D Biases

Suppose the hazard function x(t | X^y) at survival-time t depends 
only on observed factors ^ and unobserved factor Y, which for each 
individual do not alter within the birth interval, and suppose also, for 
ease of exposition, that this hazard function does not depend on t, 
so that:

&n X(t Y) = p+ a/ X + Y (4.D1)

Assume that, at t 0, Y is distributed normally and independently of 
X with zero mean and variance o^. Let T be the time to failure, then 
from (4.D1) it can easily be shown that at t = 0, the conditional 
expectation of T given X and Y is:

E.( T| Y) = exp ^-(p + a' X + Y){ 

and the conditional variance at t = 0 is:

(4.D2)

V^(T I X,Y) = exp{-2(^ + a' X + Y)} (4.D3)

let Z = &n T and assume that at t = 0 the conditional distribution of 
Z given X and Y is approximately normal, then from equations (4.D2) and 
(4.D3), using the moment generating function of the normal distribution:

E, (Z I X, Y) = - p- a: X - Y - ^ (Z | X, Y) (4.D4)

V. (Z I X^ Y) = &n2 (4.05)
Hence from (4.D4) and (4.D5), Z may be expressed as:

^ - a' ^ ^ ^ Og + 8 (4.D6)

where, at t = 0 the noise term 8 is distributed normally and 
independently of ^ and Y with zero mean and variance = &n Z. Now 
suppose that_X and Y for each individual are approximately the same for 
the previous birth-interval as for the current birth-interval, and
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suppose chat Z actually represents the length of the previous birth- 
interval. Then (4.D6) still holds approximately and Z contains 
information about the unmeasured factor Y.

Now the hazard at time t given X and Z is:

X(c I ,X^ Z) = f(T = t I T ^ t, X^Z) 
where here, and below, f denotes a probability density,

= jf(T = C, Y I T ^ C, X^Z)dY
—00

using the addition law of probability,

= Jf(T = C I T > t, X^Y,Z) f(Y I T ^ t,2^Z) dY
—CO

using the multiplication law of probability,
OO

= j\(c I X^Y) f(Y I T ^ t,Z^Z)dY

assuming that the hazard does not depend on Z if X and Y are 
specified,

= j X(t I X^Y) f(T ) t I X^Y,Z) f(Y I X^Z) dY

f f(T > t I X,Y,Z) f(Y I X^ Z) dY

Using a form of Bayes Theorem,

= jx(c I X,Y) f(T ^ C I X^f)f(Z I X^Y) f(Y I X) dY
—CO

%f(T ^ t f X^Y) f(Z I X^Y) f(Y I 2pdY
—CO

using again the assumption that the hazard does not depend on Z if X and 
Y are specified, and using Bayes Theorem again also.
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= jexp u+d'X+Y-te^'^--'*'^ - l_(Z+p +a«X+Y4&^)^ + 1-, 
- ^ 2a; -- ^ ^ . 2a^j dY

exp
« 2.1 dY

using equations (4.D1) and (4.D6), elementary life-table theory and the 
distribution assumptions for Y and Oj and rearranging gives:

&nX(t |X,Z) p + d'X

1 + ''Y
2
V
2

1 +

+ J t exp/^
2

^ + °Y

where

(4.D7)

00

/ expC-ae””"*'’' -

J(a,b) = An
^w ) dw

J exp(-ae^^ - ^w^) dw
-oo

It can be shown numerically, for moderate values of a and b, that

(4.D8)

J(a,b) = - ab'

and hence, from (4.D7) and (4.D8)
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(t I X,Z) . ^
21 + °Y

t exp fr -

1 + °Y

1 +

a2
0

(4.D9)

and linearising (4.D9) with respect to X and Z gives:

2n X(t I X,Z) -
4
2

1 1 
7 + ~2

6

(4.DIO)

Thus, from (4.DIO) it can be seen that if Y is a very important 
2 2underlying factor, ( Og<< ), then the X variables would produce only

minor differentials in the hazard when controlling for Z, although an

increasing downward bias would accrue to the estimated effects of the

underlying factor with increasing survival time. When Y is an
2 2unimportant underlying factor, ( ) then the effects of the under­

lying factor would be badly underestimated, but the X variables would 

then produce differentials, which would diminish only slowly with 

survival-time.

Note that (4.DIO) holds well only for moderate t, Z and 

However, similar sorts of trends would be produced even for somewhat 

extreme values of these elements.

The relative size of the noise component.

Let W denote the natural logarithm of the length of the birth- 

interval which immediately precedes the previous birth-interval, then, 

like (4.D6):



225-

W . - p _ _ Y - i (4.Dll)

and assuming that the noise terms e and are independent then it is 
easily shown, using (4.D6) and (4.Dll), that the correlation between 
Z and W, given is:

1
ZW X

1 + 8
—

(4.D12)

Now empirically, approximately, from table = .1, and so,
from (4.D12):

= 9.0 (4.D13)

Substituting (4.D13) into (4.DIO) gives, at t = 0: 

^n A(t I X^Z) = .9(w + a'X) - .IZ (4.D14)

This suggests that, at t - 0 the estimated X effects are a slight under­
estimate of those which would result if Z was omitted, and the Z effect 
is about one tenth of the size of the effect of the underlying factor Y.

The effect of measuring previous fertility more accurately.

Now let Z denote the average of the natural logarithms of the lengths 
of n prior birth-intervals. Z in equation (4.D6) may be replaced by Z 
but the variance of the noise term would then be a^/n. Consequently, 
when replacing Z in (4.DIO) by Z;0^ should be replaced by Og/n.

Substituting (4.D13) in the result gives, approximately, for n less than 
about 6, at t = 0:

&n X(t [x^Z) = (1 - .ln)(p + a'X - .InZ) (4.D15)

analogously to (4.D14). Thus it may be seen that increasing the number 
of birth-intervals in the measure of previous fertility, Z, has the
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effect of approximately proportionately increasing the estimated effect 

of that variable.

Selection due to ihfeCuhdity.

Now suppose that, in addition to the mechanisms described above, 

there are individuals at t = 0 who are infecund; and suppose that the 

proportion infecund q(X^) depends only on X , where

logit q(X^) (4.D16)

Now let X denote the hazard when the infecund individuals are excluded, 

and let X* denote the hazard when they are included. The using (4.D1) 

and elementary life-table theory:

-XtX* (t|x,Y)= - q (x^) )e'

q (X^) + (1 - q (X^))e-Xt
(4.D17)

where X represents X(t|x^Y9. Hence from (4.D17) using (4.D1) and (4.D16) 

An X* (t)X^Y) = p + a'X + Y - &n jl+expCg+yX^+te^^S/^^^^

= p - An ^l+exp(S+te^)j 

+ (a'X+Y) (l - te^^ ?
1 + exp(-g-te^)

YX,
1 + exp(-g-te^)

using the Taylor series expansion in X and Y. 

Thus from (4.D18), when t is small:

g. YX,

(4.Dig)

X.*(t|x^Y) = p - An(l+e^) + a'X+Y -
1 + e-g

(4.D19)

showing that initially the infecund women cause a negative bias in the 

baseline hazard and a bias proportional to -y in the effects of X^.

Now suppose that initially only a very few individuals are infecund.
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so that g is large and negative and so that for some large t, say t ,

t^e^ = 1 + exp(-g-t e^)

Then as t increases towards t , from (4.D18):
p

Y&n A*(t|X^Y) ^
t_e-W 1

(4.D20)

(4.D21)

showing that, if initially only a few women are infecund, for moderately 

large t the effects of all variables except X. disappear, and the

effect of X_ is biased.
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Step 1 Step 2 Step 3
Bangladesh FBI 37.
Columbia FMA 24. EDU

(PBD,FMD,
6.

OBD)
FMD,OBD
(PBD)

4.

Indonesia FBI 198 EDU 65.
Jamaica FMA 13.
Jordan FBI

(FMD,0BD)
19. PBD,FMD

(OBD)
11. EDU 13.

Kenya EDU 22. FBI 25.
Korea FMD

(OBD)
246. FBI,PBD

(PBA)
35, EDU 10.

Mexico PBA 25. FMD
(OBD)

7. EDU 8.

Sri Lanka FBI 104. PBA,FMA 24.

Appendix Table 4.El The first three steps of a forwards selection amongst 

the linear main-effect terms listed in table 4.1 for birth-order 1, with 

values corresponding to the selected terms. Terms enclosed in 

parentheses have values within 75% of that for the selected term, 
and are listed in order of decreasing x^- When more than one term is 

selected in a single step, this is due to logical relationships between 
the selected terms. Terms with x^ < 3.0 are not shown. (Each main-effect 

term represents one degree of freedom).
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Step 1 Step 2 Step 3
Bangladesh ABI 215. PBA,PBA 12. PBI 6.

(PBI)
Columbia ABI 129. FBD,PBD 96. EDU 41.

(PBD, PBA,PBI) (FMD)
Indonesia ABI 251. FBD,PBD 62. FBI,FMD 16.

(FBA,PBA,OBD)
Jamaica ABI 42. FMD 9. EDU 4.

(FBA,PBA,FMA,OBD)
Jordan ABI 55. EDU 47. OBD 13.

(PBI, EDU)
Kenya PBI 109. ABI 14. EDU 11.

(ABI) (EDU,FBD)
Korea PBA 187. EDU 117. PBI 27.

(EDU) (ABI.FBA)
Mexico PBA 197. EDU 63. ABI,FBA 64.

(ABI)
Sri Lanka PBA 281. ABI,FBA 65. EDU 31.

(PBI) (FBD,PBD,DBD,FMD)

Appendix Table 4.E2.The first three steps of a forwards selection 
amongst the linear main-effect terms listed in table ‘^•Ifor birth- 
order 3, with values corresponding to the selected terms. Terms 
enclosed in parentheses have values within 75% of that for the 
selected term, and are listed in order of decreasing x^- When more 
than one term is selected in a single step, this is due to logical re­
lationships between the selected terms. Terms with < 3.0 are 
not shown. (Each main effect term represents one degree of freedom.)
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Step 1 Step 2 Step 3
Bangladesh ABI

(PBA)
177. FBD,PBD

(PBI)
26. PBI 20.

Columbia PBD
(PBA)

94. PBA,0BD
(FMD,ABI,

48.
FBD)

EDU
(FMA,FMD)

21.

Indonesia ABI
(PBA)

187. FBD,PBD 52. PBI 22.

Jamaica ABI
(FBI)

48. FBD.PBD 22. PBI 10.

Jordan ABI 65. EDU 35.
Kenya ABI

(PBI)
46. FBD,PBD 17. PBI 12.

Korea PBA
(PBD)

160. EDU
(PBD,0BD)

81. PBD,0BD
(FMD)

54.

Mexico ABI
(PBA)

177. EDU
(FBA.PBA)

40. FBA.PBA 25.

Sri Lanka PBA
(PBI)

233. ABI.FBA
(PBD.OBD)

58. FBD,PBD,0BD 51.

Appendix Table 4.E3 The first three steps of a forwards selection 

amongst the linear main-effect terms listed in tableA.l for birth- 
order 5, with values corresponding to the selected terms. Terms 
enclosed in parentheses have x^ values within 75% of that for the 

selected term, and are listed in order of decreasing When more
than one term is selected in a single step, this is due to logical re­
lationships between the selected terms. Terms with < 3.0 

are not shown. (East main-effect term represents one degree of freedom)
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Appendix Table 4.E4 contributions of terms in model(4.6)corrected
for remaining terms

BOR MOD PBA BOR.PBD BOR.EDU

Bangladesh 74. 371. 97. 60. 2
Columbia 66. 298. 64. 50. 28
Indonesia 96. 599. 179. 140. 91
Jamaica 53. 105. 48. 50. 4
Jordan 2. 214. 84. 15. 34
Kenya 21. 316. 47. 7. 6
Korea 151. 268. 363. 685. 166
Mexico 32. 452. 274. 38. 54
Sri Lanka 59. 574. 394. 82. 71

d. f. 3 4 4 1 1
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Chapter 5 - Conclusions

This chapter discusses the aims, methods, results and conclusions 

of the research presented above in Chapters 1 to 4 under two headings; 

an overview of the contribution to age, period, cohort methodology; and 

suggestions for further research. Finally, section 5.$ closes this 

thesis with a few summary remarks.

5.1 Overview of contributions to age, period, cohort methodology.

Chapters 1 to 4 above represent a number of quite different 

avenues of exploration of age, period, cohort methodology: The first 

three of these chapters concentrate on highly aggregated demographic 

data from the fields of fertility, nuptiality, mortality and morbidity, 

and the fourth is concerned with individual level fertility data.

The first three chapters are principally methodological, whereas the 

fourth is principally substantive in motivation. Chapters 1 and $ 

discuss issues relating to the simultaneous incorporation of age, 

period and cohort into a model, and the models in chapter 2 and 4 do 

not explicitly include period and cohort dimensions simultaneously. 

Chapter 1 is primarily motivated by a need to justify simultaneous 

incorporation of age, period and cohort into a model; chapter 2 

develops applications of a particular model; chapter $ explores 

models; and chapter 4 explores data using these and related dimensions. 

Although chapters 1 to 4 do not systematically explore all avenues of 

potential research into age, period, cohort methodology, the variety 

of problems and approaches considered do facilitate a broad perspective 

on the subject. A brief revew of the contributions to age, period, 

cohort methodology contained in the above chapters now follows.

Purely as a means of data description, demographers often summarise 

variation across time-periods or cohorts using measures such as, in the
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context of fertility for example, the total fertility rate or completed 

family size. The opportunity afforded by the additive age, period, 

cohort model of simultaneously ascribing some variation to each of these 

three dimensions must have seemed to early age, period, cohort analysts 

a useful aid to description. In fact many of these early analyses 

contain interpretations which go no further than a descriptive account 

of the data. The recent accusations of statistical insupportability 

(Glenn, 1976) and illogicality (Goldstein, 1978 and 1979) aimed at 

these analyses would seem a serious blow to the apparently modest 

aspirations of those analysts. In chapter 1 above it is demoKtrated 

that there is nothing illogical about describing the data in terms of 

separate components of variation ascribed to each dimension, and 

figure 1.1 demonstrates the type of variation which is described by 

estimatedcontrasts in the parameter estimates from the model. However, 

none of the analysts indicate that this is the type of variation being 

described.

It is also shown in chapter 1, that for purely descriptive 

purposes, the particular identification chosen for the parameters of 

the additive age, period, cohort model is immaterial. However, in 

most applications of the model an attempt is made to find some 

justifications for the chosen identification, and consequently it must 

be concluded either that such justification is misguided or that really 

the purpose of the analysis is not purely descriptive.

When using the additive age, period, cohort model for theoretical 

purposes, Goldstein's (1978, 1979) accusation of illogicality can be 

avoided provided that parameter estimates are interpreted in terms 

of non-interacting underlying factors which are each associated with 

at most one of age, period and cohort. When these assumptions are 

made, the effects of changes in the levels of factors are usually of 

central interest, but unfortunately cannot be estimated without
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reliable supplementary information on the underlying factors, owing to 

the identification problem. Various attempts to resolve the identi­

fication problem, many of which are unreliable or simply invalid, have 

been reported in the literature, and several of these are reviewed in 

chapter 1.

Thus it is clear that in many researches the use of the additive 

age, period, cohort model has been accompanied with confusion, much of 

which has been brought about by failure to distinguish between the 

descriptive and the theoretical purpioses, which differ totally in respect 

of assumptions, identification and interpretation. In particular, the 

way of avoiding Goldstein's (1978, 1979) charges of illogicality differs 

between the two purposes. The main contribution of chapter 1 to age, 

period, cohort methodology is the drawing of this distinction.

The assumption of non-interaction (or additivity) between the 

underlying factors of the additive age, period, cohort model has led 

to Glenn's (1976) accusation of statistical insupportability. Glenn's 

(1976) argument essentially rests on the fact that any cohort factor 

effect or interaction can be re-expressed as a form of interaction 

between age, and period factors. The argument is valid, yet if a 

simple structure underlying the data can be found in terms of age, 

period and cohort factors, then it makes sense to tentatively 

interpret the cohort factors literally rather than in terms of some 

curiously constrained interaction between age and period factors for 

which there may be no clear theoretical explanation. Chapter 1 

provides statistical tests of the additive model versus alternative 

formulations involving factors from only two dimensions interacting 

in a simple way. However in most circumstances there can be no 

guarantee that interactions between factors are not more complex, and 

consequently such tests may often be of limited value. Moreover, as
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noted in chapter residual patterns in highly aggregated data tend 

to persist irrespective of the model, which immediately invalidates 

these strict statistical procedures. Nevertheless, the algebra 

developed for these tests does demonstrate how simple interactions are 

particularly or wholly confounded with age, period and cohort factor 

main effects.

The additivity assumption is put under further scrutiny in chapter 

$ where it is shown, for a variety of data, that theoretical arguments 

do not lead to additive age, period ard cohort factors effects. Simple 

cohort—experience models are theoretically much more satisfactory and 

often capable of fitting the data well. Moreover, they are not 

encumbered with interpretation-blocking identification problems. However 

Glenn's (1976) arguments still apply, and interpretations must 

necessarily be tentative. In fact interpretations from cohort-experience 

models should be held extremely tentatively, since usually there are 

good substantive reasons for expecting simple interactions (as expressed 

by the bimodel) between period and age factors to aocount for much of 

the variation in the data. In general it is difficult to choose between 

a cohort-experience model or the bimodel on grounds of either fit or 

interpretability. Cohort-experience models can make much stronger 

substantive assertions than the bimodel and this is both a strength 

and a weakness, since on the one hand a clear theoretical framework 

could prove a powerful tool in many areas including projection, but on 

the other hand these assertions could be wrong and consequently 

misleading.

Chapter ^ succeeds in demonstrating the difficulty in choosing 

between models, but some clear general results do emerge: that period 

factors tend to be more important than cohort factors; that there is 

little point in adding on period parameters to a cohort-oriented
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theoretical model age-structure, or chaugiug some of the cohort 

parameters to period parameters in order to accommodate time-period 

influences, unless this is done with close and careful reference to the 

theoretical foundation of the original model; that (as noted above) 

additive age, period and cohort factors are not usually indicated by 

either theory or data; and that cohort-experience models can produce 

interesting interpretations but sometimes unstable parameter estimates.

Perhaps chapter 3 might be criticised for attempting to find 

general results applicable to a wide variety of aggregate level 

demographic data, when the only valid approach is to consider each data 

set independently of unrelated sets of data. However the intention of 

the chapter is not to present a formula for model derivation; indeed 

the results strongly suggest that pre-constructed models such as the 

additive age, period, cohort model should not automatically be applied 

wherever there is a suspicion of factors related to all three dimensions: 

hence the attraction of the cohort-experience models which are only 

loosely specified in general form. The main purpose of the chapter is 

to make clear what can realistically be expected of theoretical 

models of highly aggregated data, and to discuss some of the possible 

advantages and disadvantages of different approaches to modelling such 

data.

Two models in particular, both cohort-experience models, emerge 

from chapter 3 as being of particular interest: the modification 

of Bernes' (l$72) nuptiality model (3*16) andihe achieved fertility 

model (3*22). The nuptiality model (3.16) leads to some rather 

interesting interpretations. Specifically, male marriageability has 

been declining presumably because women no longer need to find a 

husband in order to be secure financially, owing to their improved 

employment and earnings potentials assisted by equal opportunities
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legislation. This has particularly affected the marriagability of 

older males, whose principle advantage in the marriage market in the 

past may have been financial. Contrastingly, female marriageability 

seems hardly to have been affected (apart from slight fluctuations due 

to the war), suggesting that economic and social conditions are not 

important ingredients of female marriagability. The pressure-to-marry 

component of the model also appears to be time-invariant, indicating 

that pressure-to-marry is simply determined by the anxiety of being 

'left on the shelf', as Bernes' (1972) originally suggested.

The achieved fertility model ($.22) also produces some fascinating 

results. According to the parameter estimates from the model, up 

to (on average) the second child, each additional child achieved 

produces a halving of the fertility rate, but after (on average) the 

second child each additional child produces a ten-fold reduction in 

fertility. This suggests that couples do not look ahead to plan their 

fertility in accordance with a desired family size, but rather react 

spontaneously to the number of children they already have, drastically 

reducing fertility when (on average) two children have been achieved.

One of the intriguing possibilities for this model is that turning 

points in fertility might be predicted on the basis of constant period 

factor effects. Although the interpretations from this model can at 

this stage be held only tentatively, the theoretical foundation of 

the model and the consequent parameter estimates are in close agreement 

with 'common sense', and this adds some degree of reassurance concerning 

at least the approximate validity of the model.

In many situations the analyst might wish to avoid the risk of 

making strong theoretical assumptions of uncertain validity, and a 

model such as the period-specific bimodel could provide a convenient 

alternative, being generally capable of succinctly capturing the data
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variation, at the same time making somewhat unspecific theoretical 

assertions. Chapter 2 shows how Gabriel's (l97f) biplot may be used 

to display the parameter estimates from the bimodel. One of the 

advantages of plotting the data in this way is that trends across ages 

and across time-periods may be separately and explicitly represented, 

revealing clearly even very minor features which could easily be 

overlooked when inspecting the raw data by eye. A certain amount of 

familiarity with interpreting biplots is however required in order to 

make the most of this graphical technique, but interpretation is greatly 

assisted by constructing axes representing 'level' (e.g. the total 

fertility rate and 'structure' (e.g. the mean age of fertility) on the 

biplot. For a data table of dimensionaUty higher than two, the bimodel 

and the biplot can still be used to great effect, as is demonstrated in 

chapter 2 and in several places in chapter 3.

Chapter 2 also shows how the bimodel may be used as a basis for 

constructing simple linear regression models for any type of demographic 

schedule. By collecting together schedules of any given type from a 

variety of countries and time-periods, and applying the bimodel, two 

or three standard structures may be empirically determined, and these 

may then be used as the 'independent' variables in a regression model 

for the given type of schedule. The model may then be used to improve 

the quality of other data, requiring only two (or at most three) 

relevant items of information from a population to estimate its 

regression parameters and hence to complete its schedule. Each 

population used in the construction of the regression model, and also 

all other populations for which there is at least some relevant data, 

may be presented on the biplot, revealing possibly clusters of 

populations and simultaneously trends over time.

The utility of the bimodel in model generation is enhanced still
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further by the possibility of using cubic splines to graduate the 

extracted standard structures thereby permitting, say, quinquennial 

age—specific data to form the basis of a single—year—of—age specific 

regression model. This has been done in chapter 2 using quinquennial 

age-specific legitimate fertility rates from a variety of populations. 

The resulting regression model is shown to be similar in structure to 

the usual model for such data; that of Coale and Trussell (1974). This 

technique of model generation is a powerful demographic tool, and could 

find wide application especially in connection with deficient data and 

for projection.

The above discussion concerns aggregate level data. At the 

Individual level differentials may be examined at much greater depth 

and interpretations need not be so speculative although in order to 

explore many dimensions simultaneously it is often convenient to model 

variation across interval-level variables using only linear or quadratic 

components, rather than with a whole set of dummy covariates as in the 

additive age, period, cohort model for example. Thus in chapter 4, 

only linear or quadratic terms in the many dimensions constructable 

from the birth-history data are considered. Those dimensions include 

many types of 'cohort' variables (e.g. birth-cohort, marriage-cohort 

and motherhood-cohort) and 'age' variables (e.g. age, duration of 

marriage, duration of motherhood, duration since previous birth) as 

well as 'age-at-entry' variabes (e.g. age-at-marriage, age-at-mother- 

hood). Thus many sources of confounding ^ the age period, cohort type 

are present when using several of these variables simultaneously. By 

restricting attention to only the linear components of these variables, 

some variables become completely confounded with others. This seems at 

first sight a severe problem, but it could alternatively be considered 

an advantage since some variables are automatically controlled for when
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others are explicitly included in the model. This should cause no 

problems provided that interpretations are expressed appropriately, 

although of course it may be impossible to ascertain whether period or 

cohort factors are responsible for some aspects of the data.

The main purpose of chapter 4 however is not to systematically 

explore the use of age-period-cohort models in connection with 

individual level data in the same way as was done with aggregate level 

data in chapter although the results of chapter 4 certainly feed 

back into age, period, cohort type methodology. The purpose of chapter 

4 is to explore birth—history data from diverse developing countries 

with the hope of discovering patterns which are not country-specific, 

wnich might lead to fundamental hypotheses applicable to developing 

countries in general.

The analysis of chapter 4 demonstrates strong patterns in fertility 

common to all countries examined (although Korea conforms less well 

than the remaining countries). The variables which dominate a woman's 

fertility ab a given age are: some measure of her previous pace of 

fertility (such as the length of her previous birth-interval, or the 

average length of her previous inter-birth intervals); and her age.

These results may seem unsurprising, but it should be noted that these 

results also show what is not important in determining fertility for 

these populations, for example: the various cohort variables; duration- 

of-marriage andnotherhood; age-at-marriage and motherhood. More 

surprisingly, even parity and time—period are of minor importance 

compared to age and the pace of previous fertility, although there are 

signs that parity is becoming more important. Education, which has 

been shown to be of major importance in many other analyses of fertility 

data, also appears as a minor variable here.

As with aggregate level data, variables constructed from dates
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cannot be considered to have a direct causative effect on fertility; 

rather they represent measures of underlying causal factors. It is 

reasonable to question the usefulness of such variables when more 

proximate variables may be available in the data. The use of date- 

related variables may be justified on the grounds that they reflect a 

number of underlying factors, many of which may not besyailable or 

even known. However chapter 4 well illustrates the biasing effect of 

measurement errors: the effect of including more prior birth-intervals 

when calculating the pace of a woman's previous fertility is to 

decrease the measurement errors on the factors underlying 'pace', and 

to consequently decrease the errors-in-variable bias and increase the 

magnitude of the effects. In fact statistical arguments suggest that 

if the factors underlying 'pace' were measured accurately, their effects 

could be about ten times the size of those estimated using the measure 

defined by the length of the previous birth-interval. Interestingly, 

when using the average length of prior bhth-intervals as the 'pace'vadable, 

precisian increases in proportion to the number of prior birth- 

intervals included in the average, causing an apparent duration-of- 

motherhood effect which is constant across birth-order. It is shown 

in chapter 4 that selectivity mechanisms operating within the birth- 

interval produce errors-in-variables biases which increase with time- 

since-previous-birth. This result is not context-specific, and the 

principle is applicable in all fields in which life-table models are 

used.

The interpretation of the 'pace' variable is that it measures 

underlying factors such as biological fecundity and coital frequency. 

Surprisingly, contraceptive usage and length of breastfeeding evidently 

do not underlie the pace variable to a noticeable extent, although they 

both have substantial effects on fertility. In particular, some of
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the effects of education appear to operate through the contraception 

variable. The age variable has little effect shortly following the 

previous birth but, as time since the previous birth increases, the 

age variable becomes increasing^ important. The only plausible 

explanation for this is that there is substantial heterogeneity in 

fecundity associated with age, possibly due to an age-related risk of 

impairment to fecundity occurdng as a by-product of the physiological 

changes which take place during pregnancy, childbirth, and lactation. 

This is an important new suggestion which requires further work to 

properly substantiate.

Before this chapter is drawn to a close, the following section 

delineates areas for further research suggested by the foregoing 

results.
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5.2 Suggestions for further research.

Both methodological and substantive areas for further research 

are suggested by the work presented above. On the methodological front 

it would be interesting to find further applications of the bimodel 

technique of model generation described in chapter 2. In particular 

this technique could prove useful in constructing model life-tables.

The use of component-type models of mortality life-tables is however 

not new: Bourgeois-Pichat (1962), Hogpn and McNeil (1979), Bobcraft 

(1979), and Zaba (1979) have used similar types of component life- 

table model. Nevertheless, the bimodel and its developments in chapter 

2 could prove superior to all of these since: firstly, the Singular 

Value Decomposition used in estimating the bimodel is very efficient, 

and very widely available; secondly, cubic splines may be used to 

graduate extracted components; and thirdly, the biplot allows both age 

and country parameters to be simultaneously displayed. It would also 

be interesting to consider how the bimodel could be applied to migration 

data - an area of demography which has not been investigated at all in 

the present thesis.

Still on the methodological front, further work should be done to 

discover an optimum way of combining information from the birth-history 

to provide a measure of current fertility. The log of a weighted 

geometric mean of prior birth-interval lengths, suggested in chapter 4 

is a useful starting point for such an investigation. For developed 

countries, and increasingly for developing countries, parity should be 

brought into account (this is also suggested by the achieved fertility 

model of chapter 3). As well as leading to better estimates of current 

fertility, such a model would be useful for projection.

The analysis of chapter 4 also opens up the way for investigation
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of biasing mechanisms in proportional hazards models. Although this 

area has implications well beyond the demographic context, proportional 

hazards models are becoming increasingly utilised by demographers, and 

consequently further research in this area should have important 

consequences for some demographic analyses.

On the substantive front, the cohort-experience models of chapter 

3 are of considerable interest, in particular the modification of 

Bernes'(1972) nuptiality model (3^16) and the achieved fertility model 

(5*22). As has been stressed above, at this stage these models can be 

held only tentatively, and further research should therefore concentrate 

on discovering their applicability to other populations, and to finding 

support for them from suitable individual level data. The breadth and 

depth of available data on fertility should prove a useful testing 

ground for the achieved fertility model. This model does not easily 

accommodate changing age-patterns of entry into exposure to childbearing, 

and consequently it might be informative to apply and if necessary adapt 

the model for use with legitimate fertility data, or perhaps more 

usefully with age-at- and duration-of- motherhood data. The basic 

precept of the model is that fertility is a spontaneous response to 

parity, and consequently the most incisive test of the model would be 

in conjunction with parity specific data; this could also produce an 

interesting extension to the model. Unfortunately,reither duration-of- 

motherhood nor parity specific data of a suitable form are available in 

a long time-series for England and Wales, although it may be possible 

to find some way of utilising such data as is available. The O.P.G.S. 

Longitudinal Study could represent a valuable alternative source of 

data.

Chapter 4 raises some important questions about the presence of 

infecund or subfecund individuals in each parity group. The hypothesis
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that physiological changes wrought during pregnancy, childbirth and 

lactation sometimes result in lasting impairment to fecundity 

especially for older women, deserves further scrutiny, even though only 

a small proportion of women may be affected. The difficulty in 

persuing this line of research is that evidence for such a phenomenon 

is necessarily circumstantial, since involuntary infecundity would not 

normally be directly measurable. Nevertheless it would be interesting 

to estimate, albeit somewhat tentatively, differentials in subfecundity 

with respect to country, parity, age and other background variables.

It is also important to extend the work of chapter 4 to investigate 

the reasons for differences between countries in the baseline hazard 

for birth-intervals, which persist despite making several controls, 

and even though differentials on these controls are similar across 

countries.
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5.) Closing remarks.

In oonclnsion, it may be said that the work contained in this 

thesis demonstrates the usefulness and the limitations of models 

involving date-related variables such as age, period and cohort. The 

focus of much of the research was methodological, yet interesting 

substantive hypotheses have emerged from chapters ^ and 4« The potential 

of the bimodel and the cohort-experience type of model, and the 

comparative lack of utility of the additive age, period, cohort model, 

in conjunction with aggregate level demographic data, have been 

established. Errorsih-variables biases associated with date-related 

variables have been demonstrated in connection with individual level 

data, yet despite these biaees such variables prove to be a powerful 

source of control. The work suggests several avenues for further 

development and exploration which could lead to important contributions 

to demographic methodology and understanding.
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