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Age, periocd and cohort are amongst the most fundamental of demographic
variables, and many descriptive and theoretical models of aggregate
level demographic data involving two or all three of these date-related
variables have been proposed. Models which involve all three variables
have been criticised as illogical (Goldstein, 1978, 1979) and
statistically insupportable (Glenn, 1976) because of the logical
relationship between age, period and cohort.

This thesis shows that simultaneous age, period, cohort models are not
necessarily illogically concelived, although statistical supporitability is
a more serious problem. The extent to which theoretical considerations
may usefully be incorporated into such models is examined, and methods for
deoing so are also explored, Particular attention is paid fo the additive
age=-period-cohort model, the bimodel (derived from Gabriel's (1971) Biplot
technique), and cohort-experience models (Hoberaft et al, 1979).
Developments of these models lead to a technigue for model generation, and
to theoretically intriguing nuptiality and fertility models.

The use of date-related variables with individual-level data is
explored using proportional hazards models (Cox, 1972) of World Fertility
Survey data, and serious biasing mechanisms are found to be in operation in
these circumstances. This analysis shows that age and the pace of previous
fertility have a profound effect on current fertility, and finds evidence

for a risk of infecundity following childbirth.
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Chapter 0. Introduction.

0.1 Age, FPeriod and Cohort,

Age, period and cchortare the most fundamental of variables for
demographers. Data on these variables are collected in virtually all
social surveys and censuses, and also routinely via vital registration
systems. Age-8pecific demographic data have been routinely collected
gince the eighteenth century in Sweden and since the nineteenth
century in mest countries of Western Hurope. Moreover, age-specific
data contained in parish burial registers go back much further and have
enabled latter-day demographers to gain important insights into
historical populations (see, for example: Jones, 1980)., Perhaps the
popularity of the three variables is due to the fact that they all are
connected with dates, and conseguently are well-defined and often
reasonably easily measured,

Of the three variables, age might appear to be the least
important, since it could be argued that there is little point in
discussing age trends and differentials in abstract from the time-
periods and cohoris from which the data are drawn. However, much of
the work presented in this thesis is oriented towards doing just this;
abstracting age variation from other sources of variation, in order to
gain insights into time~invariant substantive processes underlying
age-specific demographic data., Such processes include biological
mechanisms, which have profound effects on fertility and mortality,
and less direct effects on nuptiality and migration., For most types
of demographic data, age differentials are much greater than period
or cohort differentials, and this underlines the importance of the age

dimension in demographic research,
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Undoubtedly economic and social conditions in any time- period
also have a powerful effect on demographic processes: within the last
two centuries substantial reductions in mortality and fertility rates
have been recorded for most countries of the world. However even within
short periods of time large fluctuations in the rates of demographic
processes can occur, as evidenced by the recent 'boom? and 'bust' in
fertility in developed countries, in which fertility almost doubled, then
halved, within fthe space of twenity years., Wars and famines are obvious
examples of conditions which have a direct and immediate effect on
mortality, and these conditions also affect levels of migration,
fertility and nuptiality. Standards of education, nutrition, hygiene
and medical provision vary over time, and have considerable impact on
cross=-sectional mortality and fertility levels in particular.

The cohort variable is of importance since it identifies groups
of individuals immutably throughout their lifetimes. However, in general
it is harder to conceive of factors underlying demographic processes
which may be linked with cohorts, rather than with periods or ages,
since events and conditions in the history of a birth~cohort may affect
other birth-cohorts similarly, and may not affect all members of any
birth=cohort equally, tending to destroy whatever homogeneity each birth-
cohort may have initially possessed. Much of the ensuing development
is motivated by the need for a careful evaluation of the usefulness of
the cohort variable in demographic analysis,

In some situations it is useful to consider other types of ‘age!
variable, such as duration of marriage or motherhood; and alsoc other
types of ‘'cohort' variable, such as marriage or motherhood cohort.
Further types of date-related variables include 'age~at-entry' variables
such as age-at-marriage or motherhood, The usefulness of these varig-
bles is determined in the first place by whether or not the data

permit their calculstion,
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0,2 Modelling with age, period and cohort,

There are in general three main reasons for modelling data: -
to gain substantive insights, to validate existing substantive theory,
and to form a basis for projections. Demographers are concerned with
all three, although the ultimate goal is often to project. Models may
be placed along a continuum ranging from the purely theoretical to the
purely descriptive. A theoretical model is one which makes assertions
about substantive phenomena thought to be underlying the data: these
assertions may be derived from a combination of intuition, reasoning,
previous results and possibly the data themselves. A descriptive model
is one which asserts nothing substantively, and which aspires only to
describe the variation in the data, For most purposes, a theoretical
model which also describes the data well would be greatly preferred,
provided that some reliance could be placed in its substantive assertions.

However this view is not universally accepted in connection with
population projection: Brass et al (1968) and Brass (1971, 1974a, b)
have developed a class of 'relational' model applicable to any demo=
graphic age distribution, which basically requires only the substitution
of one standard age schedule to become context-gpecific, This class of
model is essentially descriptive, and can be used to separately project
the components of population change. Brass (1980) has taken the
removal of theoretical considerations one stage further by demonstrating
that population size may be projected without reference even to the
separate components of population change. At the other extreme ’
Easterlin and Condran (1976) have explained recent movements in fertility
in England and Wales and elsewhere in purely theoretical terms involving
cohort sizes, Projection techniques are not considered in this thesis,
although some of the models and techniques developed may have congider-—

able potential for projection. This thesis does however examine in



detail the questions of how and to what extent theoretical consider—
ations may usefully be incorporated into models of demographic processes,

Some of the early attempts to incorporate age into a demographic
model were motivated by the desire to correlate the over-all level in
an event rate of a demographic process with the age~structure of the
process, across time-periods or cohorts, Thus age-specific models were
proposed, applicable either to cross-sectional or longitudinal data,
the choice usually being determined by the numbers of reasonably complete
periods and cohorts available in the data. Most of these models were
descriptive rather than theoretical. The earliest of such models occur
in the field of mortality and involve both empirical distributions, as
in the case of the Breslay life-table of Halley in 1693 (see Smith and
Keyfitz, 1977), and mathematical distributions due to Gompertz in 1825
and Makeham in 1867 (see Smith and Keyfitz, 1977). TIn the field of
fertility the earliest age-specific model appears to be that of Tait
in 1866 (see Yule, 1906) who represented legitimate fertility rates
with a simple linear function of age.

The Gompertz and Makeham laws of mortality still continue to be
widely used today. Mortality life-table relational models involving
one or more empirically determined age distributions have also been
developed (Ledermann and Breas, 1959; Bourgeois-Pichat, 19623 Coale
and Demeny 19663 Brass et al (1968); Brass (1971, 1974a, b); zaba, 1979:
Le Bras, 1979; Hogan and McWeil, 1979; Hoberaft, 1979).

Recent attempts to find mathematical expressions to describe age-
specific fertility rates include: polynomials (Brass, 19603 Brass et al,
1968); the Beta distribution (Mitra, 1967 Romanuik, 197%; Mitra and
Romanuik, 1973); Johnson's (1949) 8y functions (Talwar, 1974); +the
Lognormal and Gamma distributions (DuchBre et al, 1974); a specialised

non-linear form due to Mazur (1963): and the Gompertz and Makeham
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functions (Wunsch, 19663 Murphy and Nagnur, 1972; Murphy, 1982). As
with mortality, a number of relational models of fertility involving
empirically determined age distributions have alsc been proposed (Coale
and Trussell, 1974: Brass, 1974b: McNeil and Tukey, 19753 Pittenger,
19803 Murphy, 1982), Hoem et al (1981) review and test several of these
age-specific fertility models. Relational marriage-duration-specific
fertility models have been developed by Farid (1973) and Page (1976).

Theoretically motivated models of age-specific nuptiality rates
have been put forward by Hernes (1972) who uses a mathematical age
distribution, and by Coale (1971) and Coale and McNeil (1972) who use
a relational empirical formulation.

The question of whether age-specific models should be applied to
cross-sectional or to longitudinal data has long been debated. Derrick
(1927)has argued that cohorts provide a more consistent basis for
projecting mortality than do periods, whilst the problems of projecting
the most recent, incomplete, cohorts has led Brass (1974b) to take the
opposite view, Kermack et al (1954), analysing age-speecific mertality
rates for Sweden and Scotland, found greater regularity within cohorts
than within periods, although Cramer and Wold (19%5) using very similar
data could not find evidence to support this result., Frost (1939) and
Springett (1950) in connection with tuberculosis mortality, and Case
(19562, b) and Townsend (1978) in connection with cancer mortality all
favour, on empirical and theoretical grounds, the cohort perspective:
but Osmond and Gardner (1982) find evidence for some cancer sites for a
period perspective. In the context of fertility analysis, various
arguments have been put forward in favour of the cohort or period
perspectives: Hasterlin (1968, 1973) suggests that ‘relative cohort
gize' is responsible for changes in the age pattern of fertility,
whilst Lee (1980) proposes a theory of 'target' fertility determined by

factors operating cross—sectionally. Wunsch (1979) and Preston and
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MeDonald (1979) come to opposite conclusions about period and cohort
perspectives in the analysis of divorce rates,

The difficulty of deciding on theoretical grounds between the
period and cohort perspectives of age~specific models has led several
demographers to attempt to combine age, period and cohort components
into a single model, The simplest and most commonly used model of
this form involves additive age, period and cohort parameters. This
formulation has been used in a wvariely of applications in the socigl
sciences, and in the demographic context has been used by Greenberg et
al (1950) to model incidence rates of syphilis; by Sacher (1957, 1960,
1977) and Mason and Smith (1979) %o model tuberculosis mortality rates;
by Barrett (1973, 1978a, b), Beard (1963%) and Osmond and Gardner (1982),
to model site-specific cancer mortality; by Thurston (1979) for
nuptiality rates; and by Sanderson (1979), Isaac et al (1979), Pullum,
(1980) and Barrett (1979) with fertility data. Unfortunately this model
possesses a vexing identification problem, and has also been criticised
as illiocgical (Goldstein, 1978, 1979) and statistically insupporitable
(Glenn, 1976).

Hoberaft et al (1979) have noted that in many situations the concept
of constant cohort effects within a cohort, implied by the additive age,
period, cohort model, is unrealistic, and suggest the use of a class of
'cohort-inversion' or 'cohort-experience' model in which cohort effects
reflect the accumulated experience of each cohort. Hernes' (1972)
muptiality model in which a presswe-to-marry component depends on the
proportion already married, and Lee's (1980) and Butz and Ward's (1979)
target fertility models in which couples take into account existing
children in order to achieve a target completed fertility, all rep-
resent cohort-experience type models. In the context of mortality,

cohort-experience elements could include the selectivity effects of



- -

heterogenous susceptibility to death, investigated by Vaupel et al,

(1979).,

Hoberaft et al (1979) review in more detail several of the analyses
cited above, and a number of these are also examined in the following

chapters,

0.% Objectives.

Several of the aims of this thesis have already been alluded to
in the two sections above. The central objective is to contribute to
age, period, cohort methodology by cmsidering a number of mofe or less
distinet issues,

In chapter 1, Goldstein's (1978, 1979) argument concerning the
illogicality of age, period, cohort models is examined, and several
techniques of dealing with the identification problem of the additive
model are reviewed, Statistical tests for non~additivity are also
developed,

Chapter 2 explores the possibility that simultaneous age, period
and cohort factors are not necessary to describe the data variation if
a sufficiently flexible and powerful two-factor model is developed, It
is shown in chapter 2 that a period- (or alternatively cohortm) weighted
sum of two empirically determined age-distributions represents such a
model, This model, termed here the 'bimodel', is therefore of the
relational type. Its algebraic structure is the same as that of a
model of age specific fertility suggested by McNeil and Tukey (1975),
and also belongs to the family of models considered by Hogan and McNeil
(1979) in the context of mortality. It is equivalent to the algebraic
basis of the 'Biplot' (Gabriel, 1971), a technique for graphical
representation of multivariate data, and this connection provides a

very efficient method of estimating the emplirical distributions of the



bimodel and a method by which the data may be revealingly displayed,
The Biplot technigque is itself closely connected with other multi-~
variate technigques - in particular Principal Component Analysis and
Correspondence Analysis (see, for example; Benzéeri, 1976), the latter
heving been used in the demographic contect by Brouard (1980) and
Garenne (1980). Chapter 2 below also develops some extensions and
applications of the bimodel in demography.

Chapter 3 undertakes the task of comparing cross-sectionally
and longitudinally applied age-specific models; additive age, period,
cohort models; cohort-experience models and the bimodel on a variety
of nuptiality, fertility and mortality1 data. The objectives are
primarily to assess the extent to which theoretical considerations
may be usefully incorporated into models of demographic age, period,
cohort data; and to evaluate strategies for such incorporation. As a
part of this evaluation the case for cohort factors wersus period
factors is examined., Particular attention is paid to the development
of cohort~experience type models,

The first three chapters are concerned with highly aggregated
data, which have the advantage that they are often available for long
time-series and for a number of populations. Individual-level survey
data, however, generally have the advantage of a much greater depth
of information, and chapter 4 explores the use of a number of datew
related variables, including age, period and cohort, derived from
individual-level maternity-history data obtained from nine World
Fertility Survey countries. This research builds on, and extends,
work done by Braun (1980) and Casterline and Hoberaft (1961) who also

have modelled maternity~history data using date-related variables. The

1. Some of this work, the bulk of which was originated by this
candidate, has appeared in Hoberaft and Gilks (1981),



methodology used here is that of proportional hazards modelling
{Cox, 1972), which has also been used in the demographic context by
Stoto and Menken (1977), Braun and Hoem (1979), and Menken et al (1981).
The results of the analysis of chapter 4 demonstrate that, for
individual~level data, date-related variables can by very powerful
in comparison with other background variables.

Finally, in chapter 5, results and conclusions from chapters 1 to

4 are drawn together, and suggestions for further research are made,



- 10 -

Chapter 1 ~ Age, period, cohort models.

1.1 Introduction.

Age, period, cohort models have been in use for at least thirty
years, and have appeared in the epidemiological, sociological and
demographic literatures, Yet in recent years their use has been a
source of controversy, involving criticisms of illogicality (Goldstein,
1978 and 1979) and statistical insupportability (Glern, 1976). An
identification problem associated with many such models has received
varied and often misguided attempts at resolution in the literature,
with frequent mis~interpretations. It is the purpose of this chapter
to clear the confusion surrounding age, period, cohort models, and to
contribute to age, period, cohort methodology.

Age, period, cohort models are applied to data which have been
collected on individuals at various ages (or age-groups ), and at
various points in time (or time~-periods). An individual aged a at time
p 1s therefore a member of the cohort of individuals born at time e,
where a, p and ¢ are related as follows:

a-p+c=20 (1.1)

Typically the data to be analysed relate to categories of age,
period, cohort, rather than to exact points on these axes, and typically
the categories of each dimension are evenly and equally spaced. In
this typical situation, if a given observation belongs to the ith age,

3 period and kth cohort categories, then i, j and k are related as
follows, by virtue of equation (1,1):

i-3+k=2 (1.2)
where § is constant over all the data.

With this arrangement of data, the usual age, period, cohort model

is of the following form:

Y ., = + +
ik - T TRyt e g (1.3)
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where Yijk is the observation of the dependent variable in the ith age,
Jth period and kth cohort categories, where T, Qs Bj and Yy are model
parameters, and where Eijk is an error term., The model may be estimated
as a regression on dummy variates which represent each age, period and
cohort category. Fienberg and Mason (1979) discuss this approach in
the specific context of Maximum Likelihood Estimation of Logistic models
of the form of (1.3), and compare it with the Tterative Proportional
Fittingtechnique.

Now the parameter estimates of model (1.3) are not unique since,

for any My, U,y M., and A, model (1.3) may be rewritten, using (1.2),

3

as follows:
= - - - . .} — 3 k
Yijk [T-2% ST u3J + [oci + (u1+)\1)_' + [Bj (u2+)\3):] + [yk+(u3+)\k)]
+ Eijk (1.4)

and replacing the items in square brackets by starred parameters:

= %k 3 % *
Vige T TR O B e (1.5)

which is the same as model (1.3) except that the model parameters

differ from those in (1.3) by arbitrary linear gquantities, although ithe
error term €5 ik is unaltered., Thus model (1.%) lacks identification due
to the four degrees of freedom in the parameters represented byul, UZ’
uz aod ) in equation (1.4). The value of a first-difference in the

parameters in equation (1.5) may be related to its value inm (1.3) in the

following manner:

a* - a: = [@_ + Ul + A(i+hi} - [ai + U
(1.6)

showing that first-differences in parameters are also inestimable due only
to the degree of freedom represented by A. The value of a second-
difference in the parameters in equation (1.5) may be related to its

value in (1.3) in a similar manner:
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- 2 % * = + + A(i+2h)| - 2o, + y, + A(i+h)
Fion " 2 it [ om * ¥y (i+20)] Logn * ¥y ]
+ Lai +oug Ai] (1.7)
= O%son T %%an T M

showing that second-differences of the above form are estimable.

Model (1.%) is of the form of the 3-way ANOVA model for dimensions
age, period and cohort. For any 3-way array, model (1.3) would be
under-identified due to the three degrees of freedom in the parameters
represented by yujs u,s and iy in (1.4). For the age, period, cohort
data a further lack of identification is present due to the one degree
of freedom represented by A in (1.4), and this is broughtabout because
of the logical relationship between age, period and cohort expressed
in (1.2). (Equation (1.2) effectively means that all the data lie in a
2~dimensional sub-table of the 3-way array.) Thus, because of equation
(1.2), first~differences as in equation (1.6) are inestimable. The
problem of constraining this one degree of freedom is sometimes referred
to as the 'identification problem' of model (1,3).

Other age, period, cohort models appear in the literature:; for
example, Greenberg et al (1950) constrain the age parameters in a
multiplicative version of model (1.3) to correspond to a Pearson type IIT
distribution, whichﬂbecomes a linear model upon taking logarithms.

Age, period and cohort categories need not be evenly or equally spaced:
Fienberg and Mason (1979) consider some of the problems which arise in
this situation. It may also be noted that a 'cohort'! may be more
generally defined as a group of individuals all of whom experiencela
given event at the same time, and 'age' may thenrefer to the time
elapsed since the event. For example, Barrett (1979) analyses marital
fertility rates with a marriage~duration, period, marriage-cohort model,

which is formally egquivalent to an age, period, cohort model.,



1.2 Purposes of age, period, cohort modelling,

Some of the confusion which surrounds age, periocd, cohort modelling
stems from the failure to distinguish two important purposes of such an
activity: the descriptive and the theoretieal purposes, For each
purpose the approach to the modelling is guite different, particularly
in relation to the identification problem of model (1.3), as will be

seen below:

1.2.1 The descriptive purpose.

Faced with a typical age, period, cohort data set, the analyst may
well be interested in measuring the variation in the dependent variable
between ages, between periods and between cohorts purely as a means of
describing the data, without making any assumptions, asseriions, or
drawing any conclusions about the nature of the causal or random mechanisms
giving rise to the data. Model (1.%), being the 3-way ANOVA model,
might seem the appropriate model to fit, and the identification problem
described above does not prevent adjusted regression sums of squares
from being calculated. (If the particular model fitting algorithm used
does not permit under-identified models to be fitted, then model (1.3)
may be fitited by arbitrarily constraining one first~difference in the
parameters of one dimension. However, the submodels of model (1.3)
containing parameters for at most two dimensions, should then be fitted
without this constraint.) The identification problem does, however,
frustrate attempts to measure age—-effects, pericd-effects and cohort-—
effects since first differences in the parameters of each dimension are
not identified, as shown in equation (1,6) above,

The difficulty in measuring variation in age, period, cohort &
is, however, more pernicious than the above account would suggest. An

age-effect, for example, is defined as the change induced in the
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dependent variable by a specified change in age, while period and cohort
remain constant. Now Goldstein (1978 and 1979) has pointed out that,

by virtue of equation (1.1) above, it is logically impossible to vary age
whilst holding constant period and cohort; and consequently the separate,
simultaneous effects of age, period and cohort are illogically conceived,
not merely inestimable. It follows that even effects which are
constructed as second-differences in ithe parameters of one dimension,
such as in equation (1.7), are illogically conceived, even though they
are estimable, Since the purpose of the model was to describe the
variation in terms of simultaneous age, period and cohort effects, it
seems that the whole approach is illogical, and thus Goldstein (1979)

is led to assert that parameters for at most two of the three dimensions
should beincluded in the model.

Goldstein's (1978 and 1979) argument is valid, yel second-
differences in the parameters of one dimension are estimable and so,
clearly, they do describe an aspect of the data; exactly which aspect
of the data is shown by equation (1.8). From equation (1.3), for all i,

j and k satisfying (1.2):

A A~
A

E¥i+2h,j+h,k-h - Yi+h,j+h,kJ - [Yim,j,kmh - Yi,j,k]
P - [0
%eon T 2% T Y (1.8)

where Y denotes the fitted value for Y, The age, period, cohort cells
involved in this contrast are depicted in Figure l.l. In this second-
difference in fitted values, all three of age, period and cohort vary,
Thus it is seen that the second-difference in age parameters in equation
(1.7) describves (and is interpretable as) the typical second-difference
between observations in the configuration of figure l.1, over j (or k),
fixing i and h. Second-differences in the parameters of the period and
cohort dimensions describe analogous aspects of the data,

It should be noted that second-differences of the form in equation
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Figure 1.1

Showing (in bold lines) the age, period, cohort cells involved in
the contrast in equation (1.8)
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(1.7) are not the only form of estimable second~difference. Any
estimable linear combinaticn of model parameters relates to a set of
linear combinations in the fitted values, and consequently describes

the typical value within that set of linear combinations in the
observations. Identifying model (1.3) in any particular way merely
serves {0 produce parameter estimates which are equivalent to estimable
second~-differences in the unidentified parameters, and their interpreta-
tion is therefore also equivalent. First-differences in the unidentified
parameters are inestimable, and therefore cannot be expressed in terms
of the fitted values or observations. Consequenily they do not describe
any aspect of the data, and are of no interest,

The purpose of the above discussion is firstly to demonstraite that
second-differences in the parameter estimates from model (1.3) do have
some descriptive power, although the description is not as straighforward
as might superficially be thought. Indeed the information about the
data conveyed by these second-differences may be considered 1o be
sufficiently obscure to justify abandoning the model as a descriptive
tool, although with familiarity the method would possibly appear more
attractive. The second purpose is to show that the inestimability of
first-differences in the parameters simply means that first-differences
have no power of data description, it does not mean that some aspects
of the data are somehow indescribable. Consequently, failing to

identify the model loses nothing in terms of data description.

1.2.2 The theoretical purpose.

In most circumstances the analyst would not be content merely to
describe ecertain aspects of the variation in the data, but would rather
go further to gain insight into the substantive processes giving rise
to the observed variation. Model (1.3) is frequently used for this

purpose, and the paramefers of a given dimension are interpreted in terms
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of factors (specified or unspecified) asgsociated with that dimension.
Before going on to discuss in detail the assumptions embedded in

such a procedure, it is necessary to reconsider Goldstein's (1978 and

1979) remark that it is illogical to think of simultaneous age, period

and cohort effects defined in the conventional way. Since it is illogical

to conceive of these simultaneous effects is it then illogical to

conceive of separate simultaneous age, period and cohort factors?

Defining age factors as factors whose levels are indexed only by age,

and defining period factors and cohort factors similarly, there is

no logical relationship between’the levels of age factors, period
factors and cohort factors, as there is between age, period and cohort
in the form of equation (1.1) or (1.2)., Consequently it is perfectly
conceivable that the level of the factors of one dimension may vary
whilst the levels of the factors of the other two dimension remain
constant, and thus the concept of separate simultaneocus effects of age
factors, period factors and cohort factors is not illogical., For example,
Mascon and Smith (1979) analyse mortality rates from tuberculosis, and
hypothesise that age factors include exposure to the tubercle bacillus,
that period factors include medical innovation and methods of classifying
the disease, and that cohort factors include resistance to the tubercle
bacillus. Now although it is logically impossible to vary age, period
and cohort independently, it is not inconceivable that the levels of
exposure to disease, medical innovation etc. and resistance to the
disease can vary independently. In particular, if between two time—
periods there is no new medical innovation nor any changes in the levels
of other period factors, then between the two cells defined by these

two time-periods and a given age group, only resistance to the disease
and the level of the other cohort factors can vary, and thus the cohort
factor effects are meaningful quantities.

In a nutshell, the concepi of separate simultaneous effects of age,
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period and cohort is illogical, but the concept of separate
simultanecus effects of age factors, period factors and cohort factors
is perfectly logical.

Almost always, in practice, an age, period, cohort model is based
on the very weakest a priori information or reasoning about the factors,
their levels and their effects. Thus justification for the assumptions
embodied in the model usually rests entirely on the goodness~of-fit of
the model to the data. Furthermore, in general, not all aspects of the
model can be validated by its goodness-of-fit, as will be seen below,

A1l age, period, cohort models involve at least two types of
assumptions. Firstly it must be assumed, for each factor operating on
the dependent variable, that its levels are indexed by only one
dimension. In the tuberculosis study mentioned above, for example, it
is econceivable that ‘exposure to the tubercle bacillus' is not a pure
age factor since its levels might well vary between different periods
for the same age group. For most, if not all, age, period, cohort data
sets, factors cannot be considered as treatments in an experiment.
Consequently, discussion about which factors are in operation, and
whether they can be considered as age, period or cohort factor effects,
is usually speculative to a large extent.

The second type of assumption concerns the way in which the factors
of each dimension interact. In model (1.3) for example, it is assumed
that the effects of age, periocd and cohort factors are additive. Glenn
(1976) points out that no assumption concerning the way in which age,

period and cohort factors interact can be supported by the data alone,

since other models always exist which fit the data identically, but
which involve the factors of only two dimensions. For example, the
cohort parameters in model (1.,3) could be the result of a rather curious
interaction between age and period factors, in which case the additivity

assumption would be invalid. Thus, without suitable a priori evidence,



- 19 -

the effects of age, period and cohort factors are completely confounded.
Mason et al (1976) reply to Glenn(1976), and defend the additivity
assumption on the grounds that it is an overt simplification, and that
models purposively simplify. Nevertheless, without a priori suppori

for the additivity assumption, conclusiong drawn from the analysis can

be at best tentative. In section 1.% below, tests for additivity against
specific alternative hypotheses are described,

The third type of assumption relates specifically to model (1.3),
and concerns its identification problem., Under the model, a first-
difference in the parameters of a dimension represents the effect of a
change in the levels of the factors indexed by that dimension. Thus a
firgt-difference in the parameters is interpretable, yet inestimable, as
shown in equation (1.6). Estimation of the effects of the factors of
each dimension is therefore dependent upon a priori information or
reasoning about factor levels and/or factor effects, sufficient to
constrain the one degree of freedom represented by A in equation (1.6).
Various techniques of identification have appeared in the age, period,
cohort literature, many of which are unreliable or misguided. Several

of these are reviewed in section (1.4) below.

1.2.3 Comparing approaches.

It has been seen, under sections 1.2.1 and 1.2.2 above, that the
two purposes of age, period, cohort modelling result in different
approaches to modelling, each having quite different problem areas.
Considering the disparity between the two approaches, it is scarcely
surprising that controversy and confusion should arise amongst age, period,
cohort analysts who have failed to perceive the distinction., The above
discussion should alert analysts to two important differences between
the two situations, Firstly, when the purpose is description, no

assumptions are made and so none have 1o be justified; whereas when the
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purpose is theoretical several sirong assumptions reguire a priori
information as a basis for support, together with considerable
discussion about factors thought to be in operation, Secondly, in

the descriptive case, first~differences in the unidentified parameters
contain no descriptive information about the data, and are therefore of
no interest; whereas in the theoretical case, the unidentified first—
differences in the parameters from model (1.3) represent the factor

effects of central interest, and can only be estimated with the help of

suitable a priori information on the factors.
The following two sections deal with issues arising when the purpose

ig theorstical,
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1,5 Tests for Non-Additivity.

As stated in section 1.2.2 above, for the theoretical approach to
age, period, cohort modelling, the assumption of additivity in the
effects of age, period and cohort factors in model (1.3) must be at
least partly supported by a priori information or reasoning about the
factors involved, since without such a priori support other, non-
additive, models could be devised which fit the data identically} for
example the cohort parameters could represent a curiously constrained
interaction between age and period factors., Thus, in order to have
any confidence at all in the interpretations from model (1.3%), at least
some a priori support for the additivity assumption must be found.

In many situations a priori information might suggest that non-
additivity between the factors of two or three dimensions should be
in the form of a low order polynomial defined on those dimensions. In
these circumstances the parameters of one dimension will be only partially
confounded with non-additivity in the other two dimensions., To under-

stand the confounding, consider the following sequence of models:

Y = T + + + 3
ije Tty TRy e (1.9)
Yijk =T o+ Bj + nij + €53 (1.10)
Y., =T + + + 1.11)
13k o Bj * Y Eij (1.11)
Y =T+ o, +B, +y + gizj + ¢ (1.12)
ijk i 3 k ij )

where nand T are model parameters. (It is assumed here, for ease of
exposition, that age, period and cohort categories are equally and evenly
spaced so that (1.2) holds. The following arguments are easily generale
isable for an irregular table,) Model (1.10) represents the addition of
a quadratic polynomial in age and period to the terms in model (1,9)»

All but the cross-product term of the polynomial are confounded with the

terms in model (1.9). Model (1.11) is the same as model (1.3) and in
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fact model (1.10) is a submodel of this model, since by (1,2):

i = (1% + 55 = D)2 (1.13)
and all of the terms on the right hand side of (1.13) are confounded
with the terms in model (1.,11). Moreover, equations (1.2) and (1.1%)
can be used to show that the quadratic component Qf‘Yk is completely
confounded with the terms in model (1.10)., Model (1.12) represents the
addition of a cubic polynomial in age and period to the terms in model
(1.11). All the non~cross-product terms of the polynomial are confounded
with the terms in model (1.11), as is the cross product term in ij; by
virtue of equation (1.15}» The two terms remaining, in izj and ijz9

represent only one additional degree of freedom, since by (1.2):

132 =1%5 - (10 - P+ D)3 (1.14)

and again the second term on the right hand side of (1.14) is completely
confounded with the terms in model (1.11).

Finally, by (1.2), a polynomial in age and period can be reparamet~
erised as a general polynomial of the same order in any two or all
three of age, period and cohort. So, in summary, models (1.9) to (1.12)
form a nested sequence. Quadratic polynomials in at least two dimensions
are confounded in all but one degree of freedom with two-factor models
such as (1.9), and are completely confounded with the three-factor model
(1.11). Cubic polynomials in at least two dimensions are confounded in
all but one degree of freedom with the ﬁhreemfactor model (1.11). Model
(1.11) is distinguishable from model (1.10) only by cubic order terms in
'

Thus two tests may be constructed. Firstly it may be tested whether
cubic order interactions are present, using model (1.11) as the null
hypothesis versus model (1.12) as the alternative. Secondly, if the
null hypothesis from the latter test is accepted, it may be tested
whether, say, cohort factor effects in (1.11) are significantly different

from a quadratic age-period interaction, using model (1,10) as the null



hypothesis versus model (1.11) as the alternative.

The two tests may be applied to the tuberculosis data analysed
by Mason and Smith (1979), referred to in section 1.2.2 above. This
data relates to T.B. mortality of white males in Massachusetts, U.S.A.,
in ten~year age-groups, for every tenth calendar year between 1880 and
1970, giving 8 age categories and 10 period categories. The 80 cells
in the age-by-period array encompass 17 cohort categories, each of
width ten years, although most of these cohorts are not represented in
the data for all of the above age categories. Previous analyses of
T.Be mortality had usuvally reckoned only age and cohort factors to be
operative., Consequently the age, period, cohort model (1,3) may be used
to test for the presence of period factors; and the two tests outlined
above may be used to test the assumption of additivity in model (1.3),
and whether period factor effects are distinguishable from a
quadratic age-cohort interaction, respectively. The analysis of
variance of log T.B. mortality rates is given in table 1.1. (Four
cells for which no deaths were recorded were each assigned 0,5 deaths
in order to avoid zero mortality rates.) The error terms, Eijk’ are
assumed to be i,i.d. normal random variables.

The conventional test in the present circumstances would be of the
null hypothesis of age and cohort factor effects, against the alternative
of additonal period factor effects, This is test D in table 1.1 and
the P~value in excess of ,999 would strongly indicate adopting the
full age, period, cohort specification. The folly of this step is
demonstrated by test A, which tests for the presence of non-additivity
in the form of a cubic~order interaction between any or all of age,
period and cohort factors. The P-value for test A of approximately

<997 strongly indicates that the assumption of additivity is inappro-



Source SSq d.f. MSq

Grand Mean 4822.38 1

Age factor effects
(adjusted) 101.13 7

Cohort factor
effects (adjusted) 273.44 16

Quadratic age-
cohort interaction

(adjusted) 2.32 1 }2.320
Period factor 0.490
effects (adjusted) 1.60 7% }0.229
Cubic interaction
(adjusted) 0.84 1 }0.840 0.115
0.098 0.098
Residual 3.86 47 }0.082
Total 5205.59 80 Test A Test B Test C Test D
F-ratio 10.24 2.34 20.17 5.00
P-value v .997 A 95 > ,999 >,999

Table 1.1 Analysis of Variance of log mortality rates from
tuberculosis. Each component of variance is adjusted for the
sources of variation listed previously in the table.

*Note that, although there are 10 period categories, the adjusted
period factor effects represent only 7 degrees of freedom, since
1 degree of freedom is confounded with the grand mean, 1
corresponds to the linear identification problem of model (1.3)
described in section 1.1 and 1 is confounded with the quadratic
age~cohort interaction.
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priate, and since in the present circumstances no other a priori
information exists with which %o reliably unconfound the effects of
age, period and cohorti factors, this task must remaln unattainable.
Tests B and C demonstrate that the high P-value for test D could be
largely accounted for by a guadratic interaction between age and cohort
factors (which, as noted above, is completely confounded with the
additional period factor effects.)

One of the earliest applications of age, period, cohort models
appearing in the literature is of incidence rates of syphilis amongst
black females in the area of North Carolina, U.S.A. (Greenberg et al,
1950), Previous analyses of syphilis incidence rates had been in terms
of age and period factors only. It is interesting, therefore,to
examine the evidence for an age, period, cohort model of this syphilis
data, using the tests described above. The analysis of wvariance for
the log of the incidence rates is given in table 1.2. {All rates are
incremented by one incident per thousand to avoid zero rates, for
comparability with the analysis of Greenberg et al, 1950). The data
matrix congists of 15 single year age groups from 15 to 29 years for
each of 7 time-periods between 1941 and 1947, andvtherefore contains 21
single~year width incomplete cohoris.

Test A in table 1.2 indicates that if age, period and cohori
factors are operative, then they are not additive in their effects.,
(BEven if the additive model was accepted then test B shows that the
cohort effects are indistinguishable from a quadratic-order age~period
factor interaction., However, test C shows there is no evidence for such
an interaction, the additive model in age and period factor effects
being guite adequate. The conventional test D also indicates that there
are no additive cohort factor effects.)

It is interesting to note that in neither of the above examples
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Source S5q d.f. MEq
Grand Mean 508.647 1
Age factor effects
(adjusted) 51.194 14
Period factor
effects (adjusted) 8.985 6
Quadratic age-period
interaction (adjusted) 0.033 1 }0.033
Cohort factor effects t 0.285
(adjusted) 5.383 18% }0.299
Cubic interaction
(adjusted) 1.037 1 }1.037
0.262)0.270 {0.262
Residual 15.992 64  }0.250
Total 591.271 105 Test A TestB Test C Test D
F-ratio 4.15 1.14 0.12 1.09
P-value V.95 <75 <.75  <.75
Table 1.2, Analysis of Variance of log incidence rates of

syphilis. Each component of variance is adjusted for the sources
of variation listed previously in the table.

*Note that the 21 adjusted cohort factor effects only represent
18 degrees of freedom, since 1 degree of freedom in confounded
with the grand mean, 1 corresponds to the linear identification
problem of model (1.3) described in section 1.1, and 1 is
confounded with the quadratic age-period interaction.
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does the analysis of variance point to an additive model in age, period

and cohort factor effects,



1.4 A review of methods of resolving the linear identification problem.

Various techniques for consiraining the single degree of freedom
in the identification problem of model (1.3%) have appeared in the
literature, As stated in section 1,2 above, if the objectives of the
analysis are purely descriptive then the unidentified first-differences
in the parameters are of no importance., If the objectives, however, are
theoretical then the unidentified first-differences are of central
importance, and can only be identified with the use of suitable a priori
information on the factors, Many of the identification techniques
appearing in the literature are either pointless or misguided, depending
upon the objectives of the analysis, which are not always made abundantly
¢clear. Several of these technigues are reviewed below, and may be
discussed under six headings. It is assumed throughout that the

analyses reviewed are of the theoretical rather than descriptive type.

l.4.1 TInternal procedures.

Mason et al (1973) and Pullum (1978) both suggest procedures for
constraining the one degree of freedom in the identification problem
by purely internal means. It is clear that purely internal technigues
are bound to fail in the task of producing for each dimension parameter
estimates which are reliably interpretable in terms of the effects of
the factors indexed by that dimension; although of course such techniques
will undoubtedly succeed in constraining the problematical degree of
freedom, but to no purpose.

Mason et al (1973), noting that different sets of Just~identifying
restrictions on the parameters of the model cannot be assessed on the
bagis of the it of the model to the data, but that different sets of
over-identifying restrictions may be assessed in this manner, suggest

that "a clearer picture of the 'true' effects in a given set of cohort

data might be obtained by comparing the results from several distinct
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models making more than the minimum assumptions needed for estimability",
and that such a procedure "might provide clues about the nature of ageing,
cohort and period effects for the analyst unable or unwilling %o make

a priori constraints on the cohort model', They suggest that "if the
general nature of the estimates is similar for all models ... then 1t

is probably safe to interpret these findings in substantive terms',and
suggest alternative procedures if the various submodels do not yield
similar parameier estimates.

The technigue of Mason et al (197%) could be of value if a priori
information on the levels and effects of factors indicates the particular
submodels of model (1.3) which are to be compared., However, without
such a priori information, even a well~fitting model which omits, say,
all cohort parameters could be reparameterised to contain a linear
dependence on cohort, without altering the fitted values. (This is an
important point, and it complements the fact that, without suitable a
priori information, a full age, period, cohort model may be reparameterised
in terms of a consirained interaction between just two of the sets of
factors, without altering the fitted wvalues.)

Pullum (1978) proposes a fully automated identification procedure
which, loosely speaking, results in the regression slopes in the
parameter estimates of any given dimension being related to thedegree of
non~-linearity amongst the parameter estimates of that dimension. Thus,
for example, if the parameter estimates for the cohort dimension fall on
a straight line, then the procedure would make all cohort parameters
equal, and thus the cohort dimension would effectively be removed from
the analysis,

The latter property of Pullum's (1978, technique appears attractive
and the technique also seems to represent a way of 'hedging one's bets!
as to the ‘correct' identification - avoiding the possibility of

assigning large linear trends to the effects of factors which show few
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other signs of being operative. Nevertheless, no reliable interpre-
tations can arise through the use of this technigue. The age factor
effects resulting from the application of a version of Pullum's (1978)
identification technigue to the tuberculosis data of Mason and Smith

(1979) are shown in figure 1.2,

an
factor

effects
r 5

iv

Figure 1.2

hge factor effects from model (1.3) applied to log mortality rates
from tuberculosis, for four different identifications: (i) a version
of Pullum's (1978) automatic identification; (ii) no linear trend in
the first six cohort parameters, as in Sacher's (1960) analysis;
(iii) equality in the first two age parameters, as in Mason and Smith
(1979)s (iv) equality in the first six period parameters, as in Mason
and Smith (1979).



The two procedures outlined above are of a general nature.
Particular cases of identification using internal ‘evidence'! may also be
given: both Sacher (1960) and Mason and Smith (1979) have identified
in this manner. Interestingly, and usefully, Sacher (1960) analyses
the same data as Mason and Smith (1979), that is the tuberculosis data
for white Massachussetts males, (although Sacher's (1960) data extends
only up to 1940). Sacher (1960) constrains the regression line through
the first six cohort parameters to have zero slope, so that his model
is just-identified. This he does on the grounds that "the intermal
evidence clearly indicates that conditions were stationary during the
first half of the 19th century". Mason and Smith (1979) constrain the
first two age parameters to be equal on the grounds that tuberculosis
mortality is usually about the same for these two age groups. Of course
neither of these two identifications are justified since the same
observations could be made if the age, period and cohort factor effects
were altered by appropriate linear quantities. The age parameters from

both these identifications are given in figure 1.2.

1.4.2 Grouping categories.

In an age~by-period array, a cohort may be defined as the set of
cells which correspond to births in a given interval of time. Now there
is no necessity to define the width of the cohort intervals to be the
same as the width of the age and period intervals. For example, both
Greenberg et al (1950) and Isaac et al (1979) define each cohort to be
three times the width of each age and period category. Having defined
cohorts in this way model (1.3) may still be fitted to the data,
although now there will be fewer cohort parameters than would normally
be the case, However, no relationship such as equation (1.2) holds in
these circumstances, and consequently model (1.3) does not have an

identification problem. 1In both of these examples referred to above, the
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decision to define cohort categories in this way seems to be purely for
computational convenience, and in neither case is reference made to the
identification problem of the more usual framework,

Superficially this seems an ideal way to dodge the identification
problem. However this is a most dangerous illusion. The model in bhoth
of the above examples implies that, across the width of each of the
defined cohorts, cohort factor effects are constant. There can be no
internal evidence to support this, since equal linear trends in cohorts
factor effects across the width of each of the defined cohorts could
yield the same fitted values. That is, only a priori information can
suggest that, within each of the defined cohoris, cohort factor effects
are constant rather than linear. Consequently, for a given dimension,
the parameter estimates from such a model cannot be reliably inter-
preted purely in terms of the effects of factors indexed by that
dimension.

The above discussion demonstrates that age, period, cohort modelling
is something of a statistical ‘minefield', since it is quite possible
that a researcher can innocently decide to limit the number of parameters
in model (1.3) by grouping the categories of one dimension in the above
manner, and neither suspecting nor finding an identification problem,
proceed to mis-interpret the resulting parameter estimates,

Presumably, in the two examples quoted above, the reasons advanced
for grouping cohort categories into threes could equally well have been
advanced in favour of grouping period categories into three instead,
Figure 1.3 contains the age parameters resulting from both over~identifi-
cations of model (1.3), when applied to the syphilis data of Greenberg

et al (1950).

led,? Intuition

Occasionally in the literature model (1.3) is identified by processes

which might best be described as intuitive. TFor example, Sanderson (1979),
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Figure 1.5

Age~factor effects from model (1,5), applied to log incidence rates of
syphilis, for two alternative over-identifications obtained by grouping
into threes the categories of (i) the cohort dimensions; and (ii) the
period dimensions.
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who analyses parity-specific bifth probabilities for white females in
the U.S.A., being faced with a total lack of a priori information on

the factor levels and their effects, decides to identify in such a way
that the slopes of the regression lines through the pericd and cohort
factor effects are equal. This he justifies with the reasoning that some
long-run factors could be expected to influence both period and cohort
factors. However, without a clear idea of -exactly what these factors
are, and which period and cohort factors they operate on, and how

they do so, this reasoning is highly speculative. Indeed the net result
of all factors could well produce opposite trends in period and cohort
factor effects, even if some factors do operate in the above-mentioned
fashion,

Barrett (1973), in an analysis of mortality from cancer of the
cervix, obtains an initial identification of model (1.3%) by, arbitrarily,
constraining the last two cohort factor effects to be equal. Observing
that this produces an '"unreasonably large positive trend' in the period
factor effects, he re-identifies, constraining instead the last two
period factor effects to be equal. The lack of reliable a priori
information in this identification will produce a corresponding lack of

reliability in the resulting parameter estimates,

1.4.4 A priori reasoning

Reliable a priori reasoning can represent a proper means of
identifying model (1.3). For example Fienberg and Mason (1979) analyse
educational attainment for white males in the U.S.A.; for each stage
of formal education they model the logarithm of the odds of continuing
to the next stage., They note that, for the vast majority of the
population, formal education is complete by age %0 years, and that after
age 60 year biases creep into the data due to mortality-age-education

differentials and recall accuracy. Over-identification is obtained by
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equating age factor effects between the ages of 30 and 60 years, This
over-identification is selected on the basis that it does not constrain
period and cohort contributions which are of central interest in this
study, and it does not consirain the regions of the age dimensions for
which there are "a priori grounds for interpreting age effects". The
constancy in age factor levels between the ages of 30 and 60 years
(which seems reasonable to assume from the above discussion) represents
a reasonable basis for (over-) identifying model (1.3).

Another example of the use of a priori reasoning in identifying
model (1.3) is provided by the tuberculosis study of Mason and Smith
(1979) who check their identification, described in section 1l.4.1 above,
by equating the first six period parameters instead, on the grounds that
there is no substantive reason for letting them vary. The validity of
the latter over-identification depends on the validity of their
assertion about the period factor effects. The age parameters from the

over-identification are shown in figure 1.2.

1.4.5 A priori data.

Beard (1963) analyses mortality from cancer of the lung, and
assoclates cohort factors with the proportion of smokers in each cohort,
period factors with the level of consumption of cigarettes in each
time~period, and age factors with resistance to the disease at each age.
The model is over identified using external data on the proportion of
smokers in each cohort and the level of cigarette consumption in each
time-period,

Farkas (1977) analyses employment rates for white females in the
U.S.A. Period factors are taken to be business cycle fluctuations, and
these are measured using unemployment rates for white females. Model
(1.3) is over~identified by equating period factor effects with the

unemployment rates. Apparently the relationship between employment and
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unemployment rates is not tautological, and Farkas (1977) claims that
any one of a number of highly correlated macro-economic variables would
serve the purpose of measuring business cycle fluctuations.

Both of the above examples demonstrate how a priori data can
provide a basis for identification or over-identification of model (lné)a
The reliability of the resulting parameter estimates depends on the

reliability of the asserted connections with the a priori data,

1l.4.6 HNo identification.

Some researchers, recognising their inability to reliably identify
model (1.3) have contented themselves with estimating and interpreting
second-differences in the parameter estimates, of the form of expression
(1.7). Pullum (1980) defines a 'relative difference' which is a form
of second difference, and Sanderson (1979) examines trends in first-
differences between categories of one dimension a fixed distance apart.
(Although first-differences are identification dependent, such trends
in first-differences are identification independent). Barrett (1978b)
confines his attention to peaks in the structures of parameter estimates,
but strictly the positions of such peaks are not identification
independent,

Sometimes there is no need to obtain a reliable identification of
model (1.3). For example Thurston (1979), in analysing Swedish
nuptiality, and Pullum (1980) both use model (1.3) as a basis for
projections. Projecting period and cohort factor effects separately,
and recombining them with the age factor effects, yields projections
of the dependent variable which are independent of the choice of
identification, provided that no attempt is made to compromise the linear
trend in the period or cohort factor effects. Unfortunately Thurston
(1979) does just that; by placing bounds on the projected period factor

effects the projections become identification dependent., As another
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example Sanderson (1979), wishing only to detect the presence of cohord
factor effects in parity-specific birth probabilities, in order to test
an aspect of Fasterlin's (1973) work on the economics of fertility, does

not need to examine the parameter estimates themselves.

1.4.7 Comparison of identification techniques.

Several techniques for identifying model (1.3) have been described
above, many of them unreliable or misguided. In particular, figure 1.2
shows various identifications of the tuberculosis data, which could
lead to markedly differing conclusions concerning the effects of age
factors, Theperiod and cohort factor effects also differ between
identifications, and to a similar extent., The two solutions due to
Mason and Smith (1979) are vastly different, yet Mason and Smith (1979),
who actually modelled logit death probabilities by Maximum Likelihood
Estimation, found the solutions to be similar. The present analysis
of this data is of log death rates estimated by least squares, and
corresponds to the analysis of Sacher (1960), Thus the precarious
nature of these identifications is emphasised. Figure 1,3 shows alter-
native over-identifications for the syphilis data. Although the
solutions here do not vary so dramatically as those in figure 1.2, there
is nonetheless a substantial difference in trend between the two sets
of age parameters, the gradients in one set being over 1.5 times the
corresponding gradients in the other. Again, similar differences would
be observed for the period and cohort dimensions.

Analyses of variance for different identifications also differ: for
example, if there is thought to be no age factor effect between the first
two age groups, then submodels involving age, as well as the full age,
period, cohort model, should carry the constraint of equality between the
first two age parameters. For the submodels the constraint will actual ly

affect their fit to the data. In the case of the tuberculosis data,



- 38 -

analyses of variance for the various solutions differ to only a small
extent, and the same is true for the syphilis data also., However, in
principle, different identifications could produce quite different

analyses of variance.,
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1,5 Conclusions

The distinction between the descriptive and thecretical purposes
of age, period, cohort modelling brings to light some very substantial
differences between the corresponding approaches to modelling, When the
purpose is description, no assumptions are made; it is simply required
to decompose the variance in the data along axes of interest, When the
purpose is theoretical however, several sirong assumptions must be made,
concerning the presence of true age, period and cohort factors (and no
other factors) and about the way these factors interact.

The two purposes also differ in respect of the treatment of the
identification problem of model (1.3). In the descriptive case,
unidentified contrasts mean nothing in terms of data description, and
hence are of no interest, Different identifications merely serve to
produce parameter estimates which describe the same aspects of data as
certain second-differences in the unidentified parameters. In the
theoretical case, however, the unidentified first-differences in the
parameters of model (1,3) are of central interest since, hypothetically
at least, they reflect the effects of the factors of each dimension,
separately,

Both purposes encounter difficulties. In the descriptive case,
the aspects of the data described by estimable contrasts in the paramelers
are somewhat less straightforward than might at first be imagined. In
the theoretical case, the analyst is seldom able to find reliable a
priori support for the necessary assumptions, and without any such
information the data is incapable of distinguishing between models of
widely different construction. Furthermore, even if model (1.3) can be
reliably assumed, further a priori information on the factor levels and
effects is required in order to estimate the separate factor effects,

otherwise the estimable second order factor effects will have to suffice.



A proper approach to theoretical age, period, cohort modelling should
include a full discussion of the factors thoughtto be in operation,
together with a priori support for the assumptions embedded in the
model.,

Faced with these difficulties the analyst may well decide to
abandon the use of age, period, cohort models,deciding instead to use
models involving at most two of the three dimensions. In the theoretical
case this could actually be a mistake if it is thought that age, period
and cohort factors might be in operation, since even a perfectly fitting
two factor model can be re-expressed in terms of factors from all three
dimensions, unless a priori information indicates otherwise. Most of
the difficulties associated with the theoretical case could be overcome
with sufficient a priori information. The validity of the assumptions
embedded in model (1.3) can be assessed with a little such information,
as demonstrated in section 1.3.

Confusion about age, period, cohort modelling is evident in the
literature, and exists in the minds of many who have considered using
the technique. Much of the confusion arises from failure %o identify
the aims of the analysis: descriptive or theoretical. The above

discussion draws attention to the importance of this distinction.
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Chapter 2, Using the biplot to extract patterns in age,
period, cohort data.

2.1 Introduction.

Tables of demographic rates or proportions fregquenitly exhibit a
high degree of regularity, especially across 'age' dimensions such as
age or duration of marriage, within periods or cohorts. As will be
seen in Chapter 3, simultaneous age, period, cohort models, apart from
their problems of confounding discussed in Chapter 1, alsc often have
the disadvantage that they fail to capture these age patterns efficiently.
The biplot (Gabriel, 1971), a graphical technique of multivariate
analysis designed to extract and display the main components of the
structure of any two-way data matrix, however, is perfectly suited to
capturing these age patterns; and this chapter and chapter 3 convincingly
demonstrate this,

In this chapter the algebraic basis of the biplot is presented
(section 2.2), and its ability to extract and display irends in demo~
graphic tables is exemplified in section 2,3, Summary measures of ‘level!
(e.g. total fertility rate) and 'structure' (e.g. mean age at child-
bearing) across the age dimensions may be conveniently represented on
the biplot graph by means of level and structire axes, as is shown in
section 2.4. Section 2.5 shows how cubic splines may be used to
construct on the biplot smooth curves related to the age dimensions, for
the purpose of interpolation. Finally, section 2.6 describes the
generation of models of demographic schedules using the biplot decompos-~
ition, and the method is illustrated for age-gpecific legitimate live-
birth rates, and compared with the model of Coale and Trussell (1974).

In the general context, the biplot may be used as a diagnostic tocl
to detect outliers in the data; to detect clusters of individuals or

variates; to suggest regression models possibly for submatrices of the



data, (Bradu and Gabriel, 1978); and as a model in its own right
(McNeil and Tukey, 1975; Hoberaft and Gilks, 1981)., The biplot technigue
has a connection with principal component analysis (Gabriel, 1971) and

with correspondence analysis (Benzécri, 1976).
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2.2 The Biplot.

2.2.,1 Definition,

Any data matrix Yr having m rows and n columns, and of rank r,
may be decomposed as a sum of r components, each component being an

mxn matrix of rank 1., This decomposition may be written:

uv'

27y
1 (2.1)

<t
i
I ooar

L

where b and v, are vectors of order m and n respectively. The

decomposition (2.1) is not unique, andthis problem is partly resolved
with the requirement that the vectors {Egr Yo 3 L= 1l,...3%} should be

chosen so that the mxn rank k matrix:

k *
' 251 LIAL) ‘
o (2.2)

is the best rank-k approximation to Yr in the least-squares sense, for
each cheice of k in the range [l,r].

The decomposition (2.2) of the approximation Yk forms the basis for
a useful graphical representation of Yr“ For the ith row (i = lgaoesm)
and for the jth column (j = 1,..0,n) of Y., vectors g, and’gé of order r

may be defined so that the Kth elements Gf‘gi andxgj are the ith

element of Eg and the jth element of XR’ respectively, Thus the ﬁth

elements of g and Ej are drawn exclusively from the Zth component of Yr’

%,

The g, are termed row markers and the EJ are termed column markers. The
first element of each of the (m + n) markers may be plotted against the
second; on a separate graph the second element of each of the (m + n)
markers ﬁay be plotted against the third; and so on. Thus (r - 1) graphs
may be produced representing the position vectors of each of the row

and column markers. This is termed the exact biplot of Yr' The purpose

of the biplot, however, is to portray only the most important information

contained in Yr’ and this is achieved by plotting only the first k
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elements of each of the row and column markers; that is, only the

first (k - 1) graphs of the exact biplot of Y_ . This is termed the

rank-k approximate biplot of Yrg and is equivalent to the exact biplot
of Yk“ Typically k = 2 or % is sufficient to capture all the variation
of interest,

Table 2,1 contains a decomposition of a matrix of single~year age=-
specific fertility rates for all women in England and Wales for each
time period from 1938 to 1979; (0.P.C.S., 1979)9 The u vectors are the
columns of panel (a); the v vectors are the columns of panel (b); the
first two components of the g vectors are the rows of panel (a); the
first two components of the h vectors are the rows of panel (b). Figure
2.1 contains the rank-2 approximate biplot of this data. For clarity
the row (age) markers have been Joined up, as have been the columm
(period) markers.

The decomposition (2.1) is still not unique despite the requirement
that Yk’ in eguation (2,2) should be the leasti-squares rank k Approx-—
imation to Yr’ for all k. For example simultaneous multiplication of
u, by a scalar ¢, and division of,zx by ¢, would not alter the s

component, although of course the resulting biplot would be affected,

This lack of identification may be removed by scaling the u, and v

p2 )

vectors so that both row and column markers are well dispersed over the
biplot. Gabriel (1971) shows that any method of removing this lack of
identification confers certain distance properties on the row and

column markers, although for present purposes these properiies are not

particularly useful,

2.2.2 Calculation.

The decomposition (2.2) may be calculated using the Singular Value
Decomposition (S.V.D.) of Y. Algorithms for calculating the S.V.D. are

extremely rapid, having almost cubic powers of convergence, and do not
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Table 2.1The first two components of the decomposition of the age by
period array of fertility rates for all women in England and Wales
(0.P.C.S., 1979). The rows of panels (a) and (b) form the first two
components of the row(age) and column(period) markers respectively.
Panel (c) contains the values of the Ri statistic (equation (2.11))
for the first two components.

(a) (b)
AGE u u PERIOD v \
(completed 1 —2 —1 —2
years)
15 -, 007 . 009 1938 ~.234 -.129
16 -.028 .054 1939 -.234 ~.119
17 -.082 114 1940 -,224 -.099
18 -.156 .152 1941 -.222 -.088
19 -.241 .158 1942 -.250 -.118
20 ~, 328 141 1943 ~,259 ~-.145
21 -.408 . 113 1944 ~.282 -.191
22 -.472 . 082 1945 -,255 -.152
23 ~-.514 . 060 1946 -.315 -.204
24 -.532 . 046 1947 -.,350 ~,156
25 ~.531 . 035 1948 -,310 -.095
26 -.515 . 024 1949 ~.297 -.,065
27 -.486 . 007 1950 ~.287 ~-,063
28 ~.450 -.019 1951 -.283 -.054
29 -.408 -.051 1952 -.286 -.043
30 -.364 -.084 1953 ~.296 -.034
31 -.321 -.114 1954 -.296 -.028
32 ~,281 ~,136 1955 -.299 -,017
33 ~,246 ~.146 1956 -.316 -.002
34 -,216 -.146 1957 -,332 . 003
35 ~.189 -.139 1958 -.340 .014
36 ~.163 -.127 1959 -.,348 .020
37 -.138 -.112 1960 -,360 .019
38 -.113 ~.096 1961 -.373 . 026
39 ~.089 -.080 1962 -.382 . 040
40 -.067 -.066 1963 -.389 . 044
41 -.049 -.054 1964 -.396 . 043
42 -.037 -.045 1965 -, 384 . 057
43 ~-.029 -, 041 1966 -, 372 .071
44 -.022 ~-.044 1967 -.357 .079
1968 -.347 .090
1969 -.333 .101
1970 -.325 .115
(e) 1971 -.322 127
R2 R2 1972 -.300 .126
1 2 1973 -.275 .127
1974 -,261 .122
- 972 - 997 1975 -.246 .105
1976 -.239 . 090
1977 -.232 .073
1978 -~,243 , 066

1979 ~.259 . 055
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require user-supplied starting values., More importantly, these algorithms
are widely available, being contained in most, if not all, scientific
software libraries,

Any mxm matrix Yr of rank r may be decomposed into three matrices

as follows:

Y =PAQ (2.3)

where P is an mxr matrix, A is an rxr diagonal mairix and Q is an nxr

matrix; and where also:

PP = I (2.4)
g o
QrQ = I (2.5)
and M ZA, 22 20 (2.6)

where Ir is the rxr identity matrix and szenotes the Kth diagonal
element of A, This is the 8.V.D. of Y.

Any decomposition satisfying (2.2) may be obtained from the S.V.D.
simply by setting: |

G=pA (2.7)

Q A2

s}
it

(2.8)

where G is the mxr matrix whose ith row is §£, 1 =1, eeey n: where H
. . .th . .
is the nxr matrix whose j row is gé, J = 1y eses nj and where Ay and

A2 are rxr diagonal matrices satisfying:

Ay Ay =h (2.9)
In general, setting
1
A = (E)4 A
1 n
(2.10)
A, = E)% I
2 <m

will achieve a reasonable dispersion of the markers over the biplot. It
may be verified, when egquations (2.10) hold, that on any axis, the

average squared score for the row markers is equal to that for the
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column markers. The biplots in figures 2.1 and 2.6 have been identified
using (2.10).

The 5.V.D. also enables measures of goodness-of-fit of Y. to Yr

k
to be comstructed., It may be shown that the sum of syuared elements  of

2

k) from which the mroportion of

. . 2 2
Y, is given by (kl AL A e A

variance in Yr texplained? by Yk may be calculated:

r 2/ 2
W2, - ol AE - mn§ ) \
k f=k+1 [ \&=1 (2.11)

where ¥ is the mean of the elements of Y. Ri for the first two com-
ponents of the decomposition of the England and Wales fertility data
(0.P.C.S.y 1979) is given in panel (c) of table 2.1.

Missing values in the data maitrix Yr can be dealt with by omitting
the rows or columns which contain them, and analysing only the remaining
sub-matrix. In general the biplot is not greatly influenced by this
loss of information provided that the proportion of omitted data is
not large. Alternative a weighted analysis may be performed (Gabriel

and Zamir, 1979), although the S.V.D. cannotthen be used.

2.2,% TInterpretation.

The uniqueness of the biplot in figure 2.1 was obtained by making
both the 'least-squares' requirement of equation 2.2 amdthe 'dispersion!
requirement of equation(2.,10)., Had either of these requirements been
different then a different biplot would have been produced. Consequently
these requirements should constantly be borne in mind when interpreting
features of the biplot. Any alternative to the 'least-squares’ require-
ment would correspond to a series of reflections in ardrotations about
the biploi axes of the row and column markers, Any alternative to the
‘dispersion' requirement would correspond to scaling the row and column
markers in the direction of the biplot axes, such that for any given

axis the scaling of the row markers is the inverse of the scaling of the
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column markers.

It is useful to note a few features of the biplot which remain
invariant under reflections, rotations and scalings about the biplot
axes. Such features may be interpreted without regard to the particular
identification requirements made., They are:

i) linearity within sets of row markers and within sets of

column markers;
ii) orthogonality belween sets of row markers and sets of
column markers:
iii) inner products between row and column markers (that is
&} by).
Inner products between row and column markers are useful because

they reproduce the data, since it follows from (2.1) that:

Vi3 T 8 2 (2.12)
where vis is the (i, j}th element of Y . Inner products can be
constructed on the biplot, as is shown in figure 2.2, Dropping the
perpendicular from the row marker &; onto the position vector of column
marker Ej gives the projected length of &; on'gj labelled d in figure
2.20 1If &; projects onto the negative direction of Eé then d  should
be negated. The length of position vector Ej multiplied by d gives the
inner product gi‘ﬁj, (Of course the same value results if the length
Of,ﬁi is multiplied by the projected length of gj on'gi). This technique
is particularly useful for comparing elements of Yr in the same row or
column, since no multiplication need then be carried out. For example,
from figure 2,2 it is clearly seen that yi'j < yij gince the projected
length of“gi9 on‘gj is less than that Ongi Dn.§j°

Another useful property of the biplot is that linear combinations

of the elements in a column of Yr can be represented on the biplot since

by (2.12):
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Figure 2.2
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i & n
iB1 % Yig T g oy 8 By
— ¢ h r:alv/\
g, 23 ( >)
) m
where g denotes I o, g , and may be plotted as a row marker. Linear
a i=1 1~

combinations of the elements in a row of Yr can be treated similarly.

Equations (2.12) and (2.13) apply exactly if all T components of
the markers are used. However, when utilising only the first k
components, as in the rank-k approximate biplot, (2,12) and (2.13) apply
exactly to Yk and only approximately to Yr’

The Ri statistic given in equation (2,11) may assist in deciding
upon the appropriate number of components, k. To this end it is also
helpful to examine residuals and higher order components in order to
detect systematic or meaningful aspects of the data which are not
included in the first few components. When the first three components
fail to capture all the important variation in the data, it is somelimes
helpful to partition the data matrix, and biplot each part separately.
In such cases the biplot of the first few components would indicate how
the partitioning should be arranged.

A detailed examination of the biplet in figure 2.1 of the
fertility data for England and Wales (O,P.C.S,, 1979) is included in

the following section,
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2.3 lIxplicating Trends in a Demographic Table,

Regular trends across the dimensions of a demographic table are only
implicitly represented in the table since thev have to be constructed by
eye. Plotiing the raw data in some suitable way may assist the eye in
its task of discerning trends, but when the table is large this is likely
to lead to a confusing tangle of lines. It is therefore desirable to
find a way of explicitly representing the trends across each dimension,
ideally by means of a single plotted line for each dimension. The biplot
explicates such trends in precisely this way.

The biplot in figure 2,1 of the decomposition given in table 2.1
presents explicitly the trends in the age and period dimensions of the
fertility data for England and Wales (0.P.C.S. 1979). The raw data
themselves are only implicitly represented in the biplot. It is
important, however, that the raw data may be reconstructed from the
biplot in order that the trends in the biplot may be interpreted in

terms of the raw data. Strictly +the first two components of the

biplot only contain information on a rank 2 approximationto the data
matrix; however the high Rg value in table 2.1 indicates that little
information is lost by restricting attention to the first two components,
Two techniques for interpreting trends in the biplot are now illustrated
using figure 2.1.

Firstly, the technique of data reconstruction given in section 2.2
above may be utilised., For example, the age structure of fertility in
1944 may be visualised by dropping the perpendiculars from each of the
age-markers onto the position vector of the 1944 period marker, in the
manner of figure 2.2 above., It will be seen in particular that for 1944
the modal age of fertility is at 25 years, that between ages 18 and 22
there is a very rapid rise in fertility, and only a slight decline between

ages 25 and 32 years, Repeating the procedure for 1974 reveals a modal
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age at 24 years, a rapid rise in fertility between ages 15 and 21, and
now & quite marked decline between ages 25 and 34 years. Repeating

for other time-periods will confirm the impression that moving between
period markers in a clockwise direction about the origin describes a
gradual shift in the fertility distribution away from the higher ages
and towards the lower ages. Thus it may be seen that the period markers
describe trends towards younger fertility from 19%8 to 1941, and from
1944 to 1974, and trends towards older fertility from 1941 to 1944 and
from 1974 to 1979. Between 1941 and 1946 the trend is somewhat erratic,
and between 1946 and 1949 the trend is quite rapid, but elsewhere period
trends are moderate and remarkably regular.

The distance from the origin of a period marker gives an
indication of the overall level of fertility in that time-period. For
example, since the 1967 and 1979 period markers lie approximately on a
straight line through the origin, they have approximately the same age~
structure of fertility. The distance of the 1967 marker from the
origin is about 1.4 times that of 1979 marker, which indicates, as
discussed in connection with figure 2.2 above, that for each age group
fertility in 1967 was about 1.4 times that for 1979. Comparing time~
periods with different age-structures of fertility requires some
summary measure of fertility such as the Total Period Fertility Rate
(T.P,F.R.)» The use of the T,P,F.R. in conjunction with the biplot
will be discussed in the next section.

The same information may be viewed from a different perspective by
projecting each period marker onto the position vector of a given age
marker, in order to give an impression of the 'period structure! of
fertility for that age. Doing this, for example, for each age up to 19
years reveals, for these ages, that at any time after 1953 fertility
was higher than at any time before 1953, Repeating for each age after

30 years reveals that fertility was higher in 1947 than at any other



m54»

time for these ages. It is interesting to note that, excluding age 15,
there are no two age markers forming a straight line through the origing
consequently none of these ages have the same period structure.

A second technique for interpreting biplot trends, which may be
utilised when the ‘'least squares' criterion (2.2) holds is to examine
each biplot component in turn. From table 2.1 or figure 2,1 it is seen
that the basic age-struciture of fertility is one of rapidly increasing
fertility up to age 24 years followed by a more gradual decline, The
second age component may be viewed as an adjustment to this basic age-
structure, being a contrast between those ages before 27 years and those
after, with the greatest weights being given to ages around 19 and 33
years. The first period component shows a basically low level of
fertility before 1946 and after 1971, and a high level of fertility
between 1960 and 1967, The second period component shows that the
adjustments to the basic age-structure were most extreme in an absolute

senge in 1946 and 1971,
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2.4 Axes for level and structure.

Demographic data classified by an age variable are frequently
summarised using measures of level and structure across ages, For
example, for the data analysed in section 2.3, these might be the Total
Period Fertility Rate (T.P,F.R.) and the Mean Period Fertility Age
(MJP.F.A.) Tt would be useful to be able to represent such summary
measures on the biplot, and it is shown in this section that axes may
be drawn on the biplot allowing these measures to be read off. The
development below is conducted in terms of a measure of level (LEVJ)
and structure (STRJ) for the jth column constructed analogously to the
T.P.F.R. and M.P,F.A. respectively. Similar measures for rows rather
than columns may be dealt with by transposing the roles of the rows
and columns, Techniques for graphical representation of other summary
measures which are simple functions of linear combinations of the
elements in rows or columns may be devised,

As shown in eguation (2.13), linear combinations of the elements

in a row or column may be represented on the biplot. Define:

LEV = I .
J i yiJ

By (2,12) this is

It
™
N
1=d
Cude

3 (2.14)

where g, denotes the row marker f g, - Drawing g, on the biplot would
enable the values of LEVj for each j to be reconstructed, using the
technique described in section 2.2 in connection with figure 2,2. This
technique involves a certain amount of mental arithmetic; however thisg
may be done away with by means of a slight development of the technique,

The vectors &, and Qj have been drawn in figure 2,%, The position

vector of the foot of the perpendicular from‘gj to g,+ denoted by‘gj

is given by:
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Figure 2.3
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-1
h, =g 'h, '
By, =&k (8'8) 7 &,
= LEV, & (2.15)
using (2.14), where:
-1
-‘E = (ﬁwaﬁw) .ﬁw (2'16>

Thus, from (2.15), if an axis is drawn through the origin in the
direction of g.» and is scaled in units equal to the length of t, with
the value 0.0 appearing at the origin, then the value of LE’V(j may be
read off this axis at the foot of its perpendicular from Ej'
Define
TRy =5 %1 Vag/§ Y
where a, denotes the value of the interval-level variable defining the

row categories, at the mid-point of the ith TOW,

=1 a,
i

g.' h./LEV,
i71 =] J

using (2,12) and (2.14)
= 'h./LEV, 2.1

&'hs/ ; (2.17)
where g, denotes the row marker E ai g Again, drawing g, on the
biplot would enable STRj for each j to be reconstructed using the
technique described in section 2.2, but a development of the technigue
allows the mental arithmetic involved to be done away with, Pigure 2.4
contains the vectors g, andlg*. In general, the pericd marker ﬁj will
not be in the plane of g, and g,, and so its projection qu* onto that
plane is drawn in figure 2.4. The position vector of‘gj

x 18 glven by:

-1
h, = A(AFA A'h,
"”'J"* ( ) -

where A is the rx2 mairix [g', 5&]

mA(A'A)ml 1 LEVJ.

STR,
using (2.14) and (2.17), ’
= LEVJ. (i + STRj i) (2018)

C
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where
-1
[w, 8] =ca(ara) (2.19)
for some arbitrary scalar value ¢, It may easily be verified from
(2,19) that s is orthogonal fo g,. Nowlet ES* be the point lying on
the radius from the origin through QJ‘* which scores a value ¢ on the
t~axis (see figure 2.4). Then the position vector of Ej* is given by:
h., =w+ STR. s

using (2.18)

i

ot + (STR, ~ g, ' t)s (2.20)

using (2.16) and (2,19). Thus, from (2,20), if an axis is drawn through
the point ¢t in the direction of s, and is scaled in units equal to the
length of s, with the value (g, ' t) appearing at the point ct, then
the value of STRj may be read off this axis where 1t meels the radius
from the origin through_gj,*o

The t- and s~ axes defined above are based on r-dimensional vectors
g, and g , and in principle permit values of LEVj and STRj to be read
from the exact biplot of Yra For the rank~k approximate biplot of Yr it
is a natural extension of the technique to construct axes which relate
to values of LEI‘*’J:j and STRj corresponding to Yk rather than Yr“ This may
be achieved by using only the first k components of g, and g, in the
calculation of vectors t and s in equations (2,16) and (2.19). Tt is
important to note that these k-component versions of t and s are not in
general the same as the first k components of the r-componentversions of
t and s. In practice the t-and s~ axes are most likely to be of use in
the case when k = 2, sinceinthe higher dimensions it is difficult to
visually construct orthogonal projections. For k = 2, the points E;
and‘£j~* are ldentical; this means that radii from the origin are taken
through the column markers themselves when reading off the values of STRj.

The 2-component versions of 8.0 8ptand g8 for the fertility data for
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England and Wales (0.P.C.S., 1979) are shown in table 2,2, and the t-

and s- axes have been drawn in figure 2.l. The value of the scalar ¢ in

equation (2.19) has been set to 1.5, as this has the effect of placing

the s-axis in a convenient position in this biplot.

It may be seen

from figure 2.1, to a rank-2 approximation, for 1946 for example, that

the T.P.F.R. is 2.45 births per woman, and the M.P.F.A. is 29.2 years.

Table 2,2.The 2-component versions of vectors g,, g,, t and 8 for the

decomposition in table 2.1

2. j: t
-7.48364 -206.592 ~.133017
-0.50607 - 33.434 -.008995

s

s

.0052122

.0770676



- 61

2.5 Spline interpolation of biplot markers.

Although the age markers in figure 2,1 have been connected using
straight lines, the overall impression is that of a smooth curve, Age
dimensions in demographic tables of rates or proportions typically
exhibit this property of smoothness when the number of age categories
is large. When the number of age categories is small, however, as for
example with five-year age-specific fertility rates for ages 15 to 50
years, it may be desirable to connect the corresponding markers with a
smooth line rather than a series of straight lines. It is shown below
that this may be conveniently done using a set of cubic splines.,

Any set of points {{ai, yi): i=1, ..., m} where the {a ]} ave
strictly increasing, may be smoothly connected with a cubic~gpline
function, y(a), as in figure 2.5. The fa; s 1 =1, ..., m} are termed
the 'knote' of the spline, and the spline is derived so that for each
interval between adjacent knots y(a) is a cubic polynomial, and for
each open interval (a < a, or a2 am) y(a) is a straight line. The
coefficients of these (m - 1) cubic polynomials and two straight lines
are chosen so as to ensure continuity in y(a) and y'(a) at each of the
knots, and also continuity in y"(a) at all but the first and last knots,
These requirements are sufficient to uniquely define the cubic spline.
McNeil et al (1977) describe how the spline may be calculated, and
algorithms for doing so are commonly available in scientific software
libraries,

Let ugl(a) be the cubic spline passing through the points
{(ai, uy )t i=1, ..., m} where a; is the value at the mid-point of
the ith row of the variable defining row categories, and where Usy is
the i element of v, in equation (2.1). Denote:

r
yi;(@ = §  u,(ayv,
J R=1 J (2.21)
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y(a)

Figure 2.5 A cubjic spline
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where Vig is the jﬁh element of v, in equation (2.1). sSince, for each i,
ug(ai) equals u , then yj(ai) equals Vi by equation (2.1). Moreover,
the continuity and polynomial properties of the {u, (a)} are conferred
on yj(a) by virtue of (2.21). Therefore yj(a) is the cubic spline
passing through the points {{ai, yij> :i= 1, we., ml .

Now, for any a, a vector 5; of order r may be defined so that its

t
% n element is equal to u, (a). Then from (2.21):

yj(a) = g b, (2.22)

using the definition of ﬁj’ Thus the imner product of a period marker
with‘ga gives the cubic spline interpolated value at a in the jth column
of Yr, Moreover, inner products involving only the first k elements of
8, 8ive interpolated values for ¥, rather than Yru Thus_ga is a row
marker, and 8, may be plotted on the biplot for each of a large number

of values of a. The uy (a) splines from which the g, markers are derived
may be calculated as described by McNeil et al (1977).

Column markers Qb may be defined, calculated and biplotted
similarly for each of several values of b, the variable defining column
categories. The inner product §é' Eb then produces the value of the bi-
cubic spline surface y(a,b) which passes through the elements of Yr(or Yk
if only the first k components are used) at the cell mid=points.

It is interesting to note that, although a cubic~spline is a single-
valued function of its argument (a), the resulting g, or ﬁb is not
necessarily single~valued on any of the biplet component axes. For
example, for figure 2.1, neither 8, nor Eb would be single valued on
either of the first two component axes.

Table 2.3 contains the biplot markers for five~year age-specific
legitimate fertility rates for several populations (United Nationas, 1965
and 1975). According to the theory above, in order to connect the seven

age markers on the 2~component biplot with a smooth line, two cubic
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Table 2,3 The first two components of. the decomposition of an array

of five-year age-spcific legitimate live-~birth rates for various
populations (United Nations, 1965 and 1975). The rows of panels (a)

and (b) form the first two components of the row (age) and column
(period x country) markers, respectively. Panel (c) contains the
values of the Ri—statistic (equation (2.11)) for the first 2 components.

(a)
Age Sl L
(completed years)
15~19 -.910 .335
20-24 ~.670 -.133
25-29 -.478 -.226
30-34 ~.293 -.227
35-39 -.172 -.199
40-44 -.066 -.099
45-49 ~.011 -.026
(b)
Country X Period 'Xl v, Group
Australia 1961 -, 562 .123
1971 -.463 . 094
Canada 1961 ~.573 . 056
1971 -.351 . 086
England & Wales 1964 -.477 .116
1973 -.344 . 127 A
Holland 1963 -.542 .037
1974 -.292 .014
Scotland 1964 ~.514 .091
1974 -.365 .165
Belgium 1961 -.425 . 042
1970 -.405 .155
France 1963 -.489 .042 B
1972 -.465 .168
Luxembourg 1960 -.412 . 065
1970 -.380 .163
Denmark 1963 -.524 .265
1973 -.,337 . 087 c
Sweden 1963 -.473 .216

1974 -, 381 .104
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Table 2.3 - (b) continued
Country X Period Xl v, Group
Austria 1961 ~.543 .174
1974 ~.414 . 266 -
Finland 1963 -.507 .133 D
1973 -.373 .236
Switzerland 1960 -, 569 191
1970 -.459 .198
Czechoslovakia 1961 -.440 215
1970 -.436 289
Norway 1960 -.471 . 027 E
1974 -,461 .284
Poland 1960 -.505 128
1974 -.518 276
Cyprus 1960 -.440 -.176
1973 -, 500 . 083
Portugal 1960 -.491 -.096 F
1973 -.424 -.042
Spain 1960 -.497 -.183
1970 -.507 -,096
El Salvador 1962 -.607 -.364
1971 -~-.561 -.191
Panama 1960 ~-.561 ~-.115 G
1969 -,537 -.,096
Venezuela 1961 ~,634 -.321
1971 ~,559 -.,147
Greenland 1960 -.646 -,394
1970 -,399 -.029
Hungary 1963 -.304 2111
1974 -,394 . 159
Ireland 1961 -,734 -.222
1971 -, 740 ~,.020 H
Japan 1960 -.398 -.083
1970 -, 364 -.183
Macau 1960 -.580 -,690
1970 -.,280 ~.262
Phillippines 1960 -.360 -.280
1970 -.446 -.269
(c)
2 2
Rl R2
. 927 . 991
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splines should be calculated, one for each column of panel (a) of

table 2.3, At ages, say, one year apart both splines may be evaluated,
and the two values which result for each age may be plotted as an age
marker on the biplot, and the resulting age markers Joined up. Inner
products of these single~year age markers with a column marker would
produce estimates of single-year age-specific legitimate fertility rates
for the corresponding population. However, these may not be the best
available estimates of single~year rates, since it is reasonable to insist
that the average of the single-year rate estimates within each five-
year age group should equal the corresponding five~vear rate estimate,
which implies that the average of the single-year age markers within
each five~year age group should equal the corresponding five-year age
marker, and in general this will not be the case for the spline=
estimated age markers. To remedy this, the five-year age markers should
be incremented by the amount which they exceed the average of the
corresponding spline~estimated single-year age markers, and the splines
should then be recalculated to pass through these new five-year age
markers, The process should continue iteratively, at each iteration
incrementing the current five-year age markers by the amount which the
original five~year age markers exceed the average of the current
estimates of the corresponding single~year age markers, until convergence,
For the age markers in panel (a) of table 2,3, the process took just 3
iterations. The resulting single-year age markers are given in table
2.4, and it may be verified that although these markers do not pass
through those in panel (a) of table 2.3, (for example, for age-group

50 = 34 the marker is (-.293, ~,227) whereas for age 32 the marker is
(~.289, - #227) they do possess the desired averaging property. Figure
2.6 contains the biplot corresponding to table 2.3, in which the single-

year age markers are plottied,



Table 2.4, Cubic splines ul(a) and uz(a) based on the Ei
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and 32 vectors

in panel (a) of table 2.3, evaluated at single year intervals of age,
ponents of the g, Tow

The rows in the table form the first two com

(age) markers.

Age (a)

(completed years) ul(a) “2(a)
15 -1.012 0.568
16 ~0,961 0.454
17 -0.910 0.335
18 ~0.858 0.217
19 ~0.807 0.103
20 -0.757 -0.001
21 ~0.,710 ~-0.088
22 ~0.667 -0.156
23 -0.626 -0.199
24 -0.589 ~0,222
25 -0.553 -0.230
26 ~0.517 -0.230
27 -0.480 -0.226
28 -0.440 -0.224
29 ~0.400 ~0.223
30 -0.360 -0.224
31 -0. 322 -0.226
32 -0.289 ~0.227
33 -0.261 ~0.228
34 -0.236 ~0.227
35 ~0.215 ~0.224
36 -0.194 -0.216
37 -0.173 ~0.204
38 -0.150 -0.187
39 -0.126 -0.165
40 -0.103 ~-0.141
41 -0.081 -0.118°
42 -0.062 ~0.096
43 ~0.047 ~-0.077
44 -0.035 -0.062
45 ~0.026 ~0.049
46 ~0.018 -0.037
47 ~0.011 ~-0.026
48 ~-0.004 -0.015
49 0.004 -0.003
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2.6 The Biplot and Model Schedules.

NModels of demographic schedules, such as the Coale~Tussell model
of age~specific fertility (Coale and Trussell,1974), are of considerable
value to the demographer, particularly in comnmection with incomplete
or unreliable data. Fitting models to observed schedules requires only
a suitable computer program, but at the time of writing there appears
to be no systematic approach reported in the demographic literature for
deriving these models.

Typically, model schedules are required in only one or two
continuous dependent variables, and are based on census and registration
data from a wide variety of populations. There are good reasong for
not attempting to build a model from elaborate substantive hypotheses,
since, as may be seen in chapter %, the data would in general be
incapable of properly verifying it, and a simple formulation would be as
likely to fit the observed schedules well. Moreover, a large data base
and underlying continuity in the dependent variables ensure a high degree
of regularity in the observed schedules; which means that very close
approximations to the observed schedules should be attainable by the
model. Thus a good model should be simple in structure, unambitious in
its substantive interpretation and provide a very close fit to the data,

A number of different models of demographic schedules have been
reported in the literature, but each of these have been developed for a
particular type of schedule, and there is no reason to suppose that any
of them would be transportable to other types. The decomposition (2.2)
of the biplot, however, provides g general method of generating models
for all types of schedule, as is illustrated below for the case of age~
specific legitimate fertility. Such a method might be criticised for
being atheoretical, that is, paying no attention to substantive issues.

However, as argued above, there is little point in constructing
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sophisticated theoretical models, and there is no guarantee that the
parameters in a crudely constructed theoretical model may be validly
interpreted in the intended way. On the other hand, the parsmeter
estimates from a well fitting atheoretical model may be interpreted
flexibly and powerfully in conjunction with supplementary information
about the populations concerned.,

If a variety of observed schedules of a given type are arranged
in columns, with the rows corresponding to levels of the independent

variable(s), then a model schedule Iy of this type may be given by:

y=83+8u vae + B 1
=~k 11 2 —2 k —k (2325)

where the vectors 1, to u are obtained from the decomposition (2.2)

of the resultant data matrix, Y.+ and where B is a set of k model
parameters. Model {2.23) may be fitted by least-squares to any observed
schedule y which need not be amongst those in Yr: ify however, y is

the jth column of Yr then it follows from (2.2) that the estimated Yy is
the jth column of Yk and that the estimated B are the first k components
of the jth column marker. Note that the regression model (2e23) does not
contain an 'intercept'! term, Now it follows from equations (2Q4) and
(2.7) that the u vectors are mutually orthogonal, and so the usual

regression formula for calculating parameter estimates simplifies to:z-
By =y v uy 'y
(2.24)
for &= 1, ..., k, which is simple enough to permit calculation by hand.
The estimated vector_é may be plotted as a column marker on the k-
component biplot., The R2 value from the regression model (2.23) on an
observed schedule ¥ would in general be expected to be slghtly lower

2
than the R, value from the decomposition (2.2) of Y, since the

regression model (2,23) contains no row parameters,



Use of the biplot decomposition to obtain model schedules is now
illustrated for the case of five-year age-specific legitimate fertility
rates. Observed schedules from 28 countries each at two time-periods
were selected (United Nations, 1965 and 1975) to provide a basis for
the calculations of the standard u vectors., The observed schedules were
arranged in columns and the decomposition (2.2) of the resultant data
matrix is given in table 2.3, and the biplot in figure 2,6. To avoid
presenting a multiplicity of column markers on the biplot, countries
having similar pairs of markers have been grouped together as indicated
in panel (b) of table 2.3, and only the mean markers for the earlier and
later time-periods have been plotted (joined with an arrow to indicate
the direction of time) for each country group A to G. Countries which
could not be grouped in this way constitute group H. The biplot also
contains Total Period Legitimate Fertility Rate (T.P.L.F.R.) and Mean
Period Legitimate Fertility Age (M.P,L.F.A.) axes, calculated as
described in section 2.4, although the scale on the T.P.L.F.R. axis
reflects the fact that the T,P,L.F.R. is five times the sum of the five-
year age-specific rates. As described in section 2,5, the biplot also
includes spline estimates of single~year of age markers.,

The high Rg value of .991 in panel (¢) of table 2.3 suggests that
model schedules which approximate well a wide variety of observed
schedules may be generated using only Uy and U, in equation (2@23)9
whose values are given in panel (a) of table 2.3, To test this, a
further eight schedules of five~year age-specific legitimate fertility
(United Nations, 1965) together with the standard schedule of 'matural
fertility' (Henry, 1961; Coale and Trussell,1974) were regressed on the
u vectors in panel (a) of table 2.3, with the results given in table 2.6,
The overall R2 value is ,982, which is encouraging, although the natural

fertility schedule is not fitted well, The B estimates in table 2,6
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Table 2.5. The 2-component versions of vectors £,
decomposition in table 2,3,

- t and s for the

£, £y t s
~2.59942 -63.426 -.366763 .018440

-0.57487 ~23.622 ~.081111 -.083380
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may be plotted as column markers on figure 2.6. Estimates of single-
year age-specific legitimate fertility rates for these schedules may be
obtained as inner products of the corresponding column markers and the
spline-estimated single-year age markers.

It is interesting to compare these results with those for the
Coale-Frussell model of age-specific legitimate fertility (Coale and

Trussell,l974) on the same data. This model may be written:

Yorps = Y1 Wy exe(yy vy,.) (2.25)

where yCTi denotes a Coale~Trussell model value for the legitimate
fertility rate for the ith five-yearage group, Wy and Wy, are the
standard values of natural fertility and departure from natural fertility
for the ith five=-year group, provided in Coale and Trussell(l974)
appendix A, and Y, and Y, are the model parameters. The results from
fitting model (2.25) by least-squares to the nine schedules in table 2.6
are also given in table 2.6, and the overall RZ is .947. The models
fitted in table 2.6 have the same number of degrees of freedom, so, for
these data at least, model (2.23) is much more successful than the Coale
Trussell model (2.25), overall accounting for 66% of the amount of
variation which the Coale~Trussell model fails to explain. The success
of medel (2,23) is probably due to the fact that both standard age~
structures,)gl and Tos reflect a variety of legitimate fertility age
schedules, whereas in the Coale~Trussell model (2.25) one of the standard
age~structures <wli> reflects only one, rather extreme, legitimate
fertility age schedule,

It is also interesting to explore the algebraic links between
models (2.23) and (2.25). Taking only the first two terms in the Taylor

expansion of exp(y2 w2i) gives:

~ 1
Yopi = Y1 W11+ Yo¥ay?



whence

Yor == Y1 ¥ Y Vi ¥y (2.26)

. th
where XET’ Wy and Wi, are vectors whose i elements are yCTig Wy
and WygeWos respectively, and where Yio = YqVpe Comparing
expressions (2.23) and (2,26) it is seen that the two models are

approximately of the same algebraic structure.
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2.7 Conclusions.

The biplot can be used to provide a graphical summary of any two-
way data table. When the data are demographic rates or proportions,
the biplot brings out the underlying regularity which is often present
in such data; in particular 'age' dimensions usually appear as smooth
curves in the biplot, as in figure 2.1. This regularity in the data also
leads to very good approximations to the data with just two biplot
components, although further components may still contain systematic
trends of interest. Tables of greater than two dimensions can be dealt
with by combining two or more dimensions: for example the biplot in
figure 2.6 was produced by combining the time-period and country
dimensions to form the dimension listed in table 2.3(b).

When the data table contains age dimensions it is helpful
to construct axes for 'level' and ‘'structure! on the biplot
as detailed in section 2.4. Smooth curves representing the age dimensions
may be constructed using cubic-splines, as described in section 205,
and used for interpolation.

A particularly useful application of the biplot is in generating
models of demographic schedules, using the decomposition from which the
biplot is constructed. It is expected that the technique would work well
for any 'age' structure of demographic rates or proportions, owing to
the high regularity of such data, and to the flexibility of the standard
age structures. In particular, in section 2.6, the technique is shown
to work better than the model of Coale and Trussell(1974) for age-
specific legitimate fertility rates, Deriving the standard age structures
is easy, being a by-product of the biplot, and fitting the resulting model
to further schedules is trivial, requiring only hand-calculation. The
graphical representation of the results enhances this technique of model

generation; calculation and plotting of level and struciure axes, and of
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spline curves, increases the utility of this model generation

technique still further,



Chapter 3 — Modelling vital rates,

3,1 Introduction

3.1.1 Objectives,

For the purposes of understanding and projecting demographic
processes, tables of vital rates (or proportions) generally poOSsess
both advantages and disadvantages over individual-level survey data,

On the one hand, published vital rates often extend over long periods
of time (for example, the Swedish mortelity data analysed in section
3.5 below), permitting the impact of a variety of social and economic
conditions to be studied. On the other hand, long series of vital
rates are frequently accompanied by only one cross~classifying dimen-—
sion (usually age% and consequently the depth of reliable interpreta-
tion might be rather limited. The purpose of this chapter is to
examine various models or classes of model in relation to a variety of
demographic data, not merely to discover for each data set a suitable
model, but principally to learn what to look for in a medel, what to
expect from a model, and how to approach the task of model building
for highly aggregated demographic data,

As noted in Chapter 1, two quite different approaches to modelling,
the theoretical and the descriptive, may be distinguished, The
theoretical approach seeks to build a model from previous results,
general experience , intuition and reagoning about factors thought to
be underlying the data., The descriptive approach seeks only to provide
& succinct algebraic description of the data, from which substantive
insights may possibly result. In practice, a combination of these two
approaches might well be adopted, alternately looking to the data for
substantive clues, and combining theoretical considerations in a way

which seems to correspond to the variation in the data. Conceivably it
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is possible that all approsches would lead to Just one modelthe extent
to which this actually happens is one aspect of the present investiga~
tione.

With e limited depth of information available from the data, there
seems little or no prospect of validating an elaborate theoretical
model; equally there is no guarantee that a simple valid theoretical
explanation exists. This suggests that a simple descriptive model
might be more useful., However, the case against the existance of a
simple valid theoretical model is not proven, and the extent to which
theoretical considerations may usefully be incorporated into a model
is a central concern of the development below,

Alsc of central imporiance is the way in which theoretical
considerations may be expressed in a model. To explore this issue,
four different types of model are examined in this chapter: model age-
schedules, the additive age-period-cohort model, 'cohort-experience!
models, and the 'bimodel'., These four types of model are discussed
individually below., Some of these are more theoretical than others;
that is, the strength of their substantive assertions varies considerably.
loreover, they represent a variety of techniques for incorporating
substantive elements, Of course this set of types of model is not
exhaustive; nevertheless, it is hoped that they are sufficiently diverse
to enable general conclusions to be drawn. bgually, it is hoped that
the data examined in this chapter (age-specific nuptiality rates, age~
specific fertility rates, and age-by~marriage~duration~specific
legitimate fertility rates for recent time~periods for England and
Wales; and age-specific mortality rates for Sweden for & long time~

series up to 1930) are also sufficiently diverse for present purposes.

9:1e2 Models

As noted in Chapter O above, the usual strategy for accommodatin
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a number of unmeasured or unknown causal mechanisme into a model of
vital rates is via period specific or cohort specific parameters in
a model age-schedule derived either empirically (e.g. the marriage
model of Coale and McNeil, 1972; or the relational models of Brags, 1974
a, b) or mathematically (e.g. the Gompertz function). Whether
parameters in a model age-schedule should be made pericd—gpecific or
cohort-specific has been a matter for scme debate (Hobecraft et al ,
1979; see also Chapter O above). Model age~-schedules of nuptiality,
fertility and mortality are considered below in order to shed light
on this issue, and also to explore the possibility of assigning some
parameters in a model age~-schedule to periods and others to cohoris.
From a theoretical point of view it may be thought that both
period-specific and cohort-specific mechanisms are operating in the
data (in addition to age-related factors)* The simplest way of
combining all three types of factor is by means of additive age-period-
cohort model (1.3) of Chapter 1. This model ascerts that cohort factor
effects are constant over all ages within each cohort; that periecd
factor effects are constant over all ages within each period; and
that age factor effects are constant over all time-periods (or cohorts)
within each age group. Unfortunately the identification problem assocw
iated with this model severely hampers the interpretation of parameter
estimates resulting from this model (see Chapter 1). This model may
be generalised into a six-factor model for age-by-marriage-duration-by-
period-specific legitimate fertility rates, as will be seen in section
5.4 below,
The identification problem of the additive age-periocd~cohort
model is not its only drawback., Theoretical arguments might suggest
that constant cohort or period factor effects over age are not realistic.
Hoberaft et al (1979) advocate the use of models in which cohort

factor effects are adjusted to reflect the cumulative experience of the



cohort at each age. These models are termed 'cohort-inversion!
(Hoberaft et al , 1979) or 'cohort-experience’ (Hoberaft and Gilks ,
1981) models., At least four types of cohort~experience mechanism

may be distinguished. Firstly, for non-renewable

events such as death or first-marriage, when there is heterogenous
susceptibility to experiencing tle event of interest, there is a tendency
for the more susceptible individusls to be removed from the population
earlier than the less susceptible, giving rise to a selection effect

at the higher ages (Vaupel et al , 1979). This selection effect would
vary with the amount of selection which has taken place, which in turn
would vary between cohorts for any given age, Secondly, social and
economic conditionsin the history of a cohort may have an accumulating
effect on the cohorts event rate; for example, epidemics and famines may
permanently impair a cohorts vitality, giving rise subsequently to
increased levels of mortality within the affected cohoris. Egually,
some epidemics could actually strengthen a cohorts resistance to disease,
producing subsequent decreases in its mortality, Thirdly, in the
particular context of nuptiality, the proportion in a cohort already
married could have a direct effect on the desire to marry amongst the
non-married through their fear of being 'left on the shelf': this has
been suggested by Hernes (1972). Fourthly, in the context of fertility,
cohorts may aim at a 'target!' completed fertility, so that the

fertility at each age for a cohort would depend on the additional number
of children required to reach the target, and on the favourability of
current economic conditions towards childbearing (Lee, 1980). Cohort-
experience models do not have a pre-defined algebraic form, unlike the
additive age~period-cohort model, although a general fremework for such
models has been suggested by Hoberaft et al (1981). The principle is
that theoretical considerations should dictate the form of the model.

Tables of vital rates often exhbit a transition from one crogge



sectional age structure to another. Such & transition may be expressed
algebraically as a sum of two age~schedules weighted by two period
parameters: these two age-schedules may be fixed mathematical or
empirical curves, although if the emphasis is on capturing the
transition itself, there is no reason to fix these age schedules in
advance. The resulting model, given in section 3.2.4 below, is
equivalent to the algebraic structure of the biplot technique (Gabriel,
1971 ) discussed in Chapter 2 above, This model, termed the 'bimodel!,
is not merely descriptive since it asserts that, in addition to age
factors, only time-period factors are in operation, via the two period
weights in the model, A cohort factor bimodel may be constructed
similarly, by replacing the two period weights with cohort parameters.
The bimodel, however, cannot accommodate age, period and cohort factors
simultaneously. The bimodel can be adapted to correspond to data
arranged in more than two dimensions as will be seen in section 5e4
below,.

The models described above represent a breadth of modelling strategies.
The mathematically derived model age-schedules and the bimodel are
more descriptive than the additive age~period-cohort and cohorte-
experience models, since they only assert the presence of period (or
cohort) factors and do not explain why such factors should interact
with age in the way specified by the model. All but the cohort—
experience models have a pre~defined algebraic structure. A1l but the
additive age~period-cohort model posit non-additive period or cohort
factor effects. The model age-schedules and the bimodel do not
accommodate both period and cohort factor effects simultaneously.
These distinctionswill be utilised in section 3%.6 below in attempting
to draw from the ensuing analysis general conclusions concerning

modelling strategies,.



5.1,3 Comparing models,

Before commencing the analyses of models and data, it is convenient
to consider how models of the same data set might be compared,

The sample base for published tables of wvital rates or proportions
is usually the entire population. This has importaent consegquences for
the stochastic component of any model. Clearly, discrepancies between
model and data cannot conveniently be attributed to sampling error; and
concelving of the population as a sample from a superpopulation is
unlikely to account for anything but the most minute discrepancies
owing to the generally very large 'sample’ size. It is desirable
however to have some way of conceiving of these discrepancies, if only
to provide a systematic basis for estimating and comparing models, and
in many situations it might be reasonable to assume that, in addition
to the factors specified by the model, unknown factors act independently
between cells and uniformly on individuals within cells of the table.,
Thus an error component may be added to the non-stochastic part of the
model and assumed to be independently distributed across cells of the
table. It is advisable to first transform rates using the logarithmic
transformation, or proportions using the logit transformation, before
adding the error term, in order to stabilise error variances across
the table, and to avoid the possibility of estimating negative rates,
or proportions outside the range (0, 1). Error terms may then be
assumed to be independently and identically distributed normal random
variables, and with these assumptions models may be fitted on the
transformed scale by least~squares. This may be done usging the Newton-
Raphson procedure (Bock, 1975), which converges in one iteration for
least~squares fitting of linear models, but which requires the provision
of good starting values for rapid convergence in other situations.

Least-squares fitting of the bimodel may be achieved more efficiently



- 84 -

using the Singular Value Decomposition provided that the data matrix
contains no missing values (see Chapter 2 above).
With the above error assumptions, the appropriate goodness-of-fit

. 2 o . . . .
measure is the R~ statistic, which expresses the proportion of variance
in the transformed data accounted for by the model., For nested models,
2 . N - o
k™ values may be used to constructe an F-test, However most of the
models considered below are non-nested, and consequently comparisons of

. . 2 2 .
it must be less formal. The adjusted R value, R is useful for

ad i’

comparing models with different numbers of free parameters:

2 N~ 1 2
Radjmlmm<1MR) (501}

where N is the number of non-missing rates or proportions in the table,
and n 1s the number of degrees of freedom in the model,

Goodnegs—cf~fit is not the only criterion by which models should
be assessed. Interpretability is equally important: that is, parameter
estimates should be consistent with the theoretical assertions of the
model, which in turn should be consistent with general experience and

reasoning about substantive processes underlying the data.

o 1.4 The sequel

The following four sections contain, respectively, the analyses
of the nuptiality data, the fertility data and the legitimate fertility
data for England and Wales, and the mortality data for Sweden, mentioned
in section 3.1.1 above, Hach section contains subsections correspond-
ing to the four types of model discussed above, together with a
summary of results. Finally, section 3.6 contains the conclusions

from the analyses,
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5,2 Nuptiality.

The data analysed here are male and female nuptiality rates
classified by single years of age and time~periods from 1938 to 1976,
omitting data prior to the 1920 birth cohort, for Ingland and Wales
(0ePeCa8s, 19772). Figure 3.1 displays age structures for selected
periods for both males and females for these data, from which it is
apparent that female nuptiality is more concentrsted at the younger ages
than male nuptiality, but for both sexes there is a clear trend
towards younger marriage throughout the series, this trend being reversed
briefly in the immediate post war years, presumably through marrviages
delayed by the war. The post-war female cross-sectional age structures
are characterised by a discontinuity at age 21, which is also slightly
evident in the male nuptiality data. The 1970 Family Law Reform Aect,
which lowered the age of majority from 21 to 18 years, has presumably
been responsible for the disappearance of this phenomenon in recent
years. OSimilar graphs of cohort age structures show marked irregulari-

P

ties around the war years.

3.2,1 The Coale~McNeil Model.

A model of the age structure of female cohort nuptiality is
provided by Coale (1971), which is based on schedules of proportions
ever-married at each age for female cohorts from a wide variety of

countries, and is of the following form:
6(a) = vo, (35 (3.2)

where G(a) denotes the proportion of females in the cohort at age a
who are ever-married; ¢ denotes the proportion at birth who will be
exposed to risk of marriage (the proportion marriageable); GS is a

standard function of proportions ever-married based on Swedish
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Figure 3.1 Age-structures of nuptiality rates for selected time-periods
between 1936 and 1976 for England and Wales, for a) males and b) females.
The structures are stacked with that for 1936 uppermost. For each time-

period nuptiality rates are measured from the corresponding scale-mark
on the vertical axis.
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experience; and aand B specify, respectively, the initial age at, and
pace of, nuptiality in the cohort. Coale and McNeil (1972) show that
the shape of the empirical GS function is consistent with a normally
distributed age at entry into the marriage market followed by a
sequence of exponentially distributed delays into subsegquent pre-
nuptial stages. Unfortunately a closed form expression for GS has not
been found, although Coale and McNeil (1972) provide a closed form
expression for the standard function of first marriage freguencies,

g,y 28 follows:

g (x) = .1946 exp{ ~.174(x - 6.06)~ exp [ ~.2881(x - 6.@6}] } (3.3)

where

g (x) = & Gs(¥) (5.4)
ax

Now the nuptiality rate y(a) at age a is given by:

y(a) = £H& /g - gla) (3.5)

=4e, 59/ 0 - o)

using (3.2) and (3.4). Substituting g, from equation (3.%) into this
expression, teking logs and replacing functions of y, « and g with new
parameters ¢, Yy and 6 gives a formulation of the original model on the

scale of log nuptiality rates:

In y(a) = ¢ + Y¥.0.604a ~ exp(ya +8 ) - tn (1 - G(a) ) (3.6)

To apply (3.6) to cohorts in an age by period array of nuptiality rates,
subscrips i, J, and k may be introduced to denote age, period and
cohort categories, and an error term may be added, as follows:

in yijk = ¢K *+ Y .0.60451:.L - exp (YK. a, + GK) - 2n(1~Gijk)

+ Eijk (3.7)
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where aj denotes the mid-point of age group i and Gigk denotes the
proportion of females ever-married by age a, in cohort k.

This formulation of the marriage model of Cozle and McNeil (1972)
is somewhat less than ideal because it involves the empirical proportions
ever-married Gi%k which may be calculated from the data using life-

U

table techniques; this might be excusable if the calculation of Gijk
only involves the nuptiality rates prior to age i for cohort k, but a

good estimate of G,. actually involves y.

.. itself, and thus v. .
ijk ijk ! I3

Jk
implicitly appears on both sides of equation (3.7). An alternative
procedure would be to replace G(a) in equation (3.6) using (3.2) but
this leads to an expression which is virtually intractible computation-
ally. Another alternative would be to estimate model (3.2) directly,
on the scale of porportions ever married, as do Coale and MclNeil (1972),
but the solution would then be non-optimal on the scale of log
nuptiality rates, and this would exacerbate model comparisons. More-
over, it would then become computationally very difficult to generalise
the model into a mixed age, period, cohori model as is done below. In
these circumstances it seems preferable to stick with the relatively
minor imperfections of model (3.7).

Model (3.7) is therefore applied to female nuptiality rates for
England and Weles, with the goodness-of-fit reported in the first line
of table 3.1 . Apart from those for the most recent (and therefore
most incomplete) cohorts, the parameter estimates are reasonable, and
indicate for successive female cohoris a slightly decreasing initial
age-at-~marriage, a substantially decreasing pace of marriage, and no
discernable trend in proportions marriageable., The decreasing pace of
marriage could reflect a trend towards longer courtships and pre-
nuptial cohabitation. However, time-period influences due to the war
and its aftermath, which are clearly evident in the data, are not

accounted for by model (3%.7) and could be partly responsible for the
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Equation Degrees of Freedom > 5
Number Model Bex . Model Data R R ad j
Coale-}chNeil
3.7 Cohorts F 180 1513 911 .899
M 180 1513 .980 977
3.8 Periods F 180 1513 .862 .843
M 180 1513 | . 966 961
3.9 Mixed F 123 1513 .969 . 966
M 123 1513 .985 . 984
Additive age,
period, cohort.
3.10 Age + period +
cohort F 153 1513 973 <970
M 153 1513 .982 .980
3.11 Age + period F 94 1513 . 957 «954
M 94 1513 <949 <946
3,12 Age + cohort F 94 1513 933 .929
M 94 1513 «950 <947
Cohort experience:
Hernes' model.
3.14 Cohorts F 121 1513 .962 . 959
M 121 1513 .992 .991
3.15 Periods F 121 1513 .968 .965
M 121 1513 .988 . 987
3,16 Periods with ) F 180 1513 .996 .995
quadratic age)
M 180 1513 <999 <999
Bimodel
3.17 Periods F 121 840 .991 . 989
M 121 840 «997 .996
3,18 Periods M+ F 161 1680 .995 .994

Table 3.1: Goodness of fit for mgodels fitted to nuptiality data for
England and Wales. R< is the proportion of wvariance in log
nuptiality rates explained by the model. R i+ adjusts for
degrees of freedom in model and data, #*J(equation (5.1) ).
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above cohort differentials.,

To accommodate time-period influences, the marriage model of Coale
and McNeil (1972), equation (3.2), is often applied cross-sectionally
rather than longitudinally, although strictly this is illogical because
G(a) may not be monctonically increasing with age within a crosg-—

section. & cross—sectional version of equation (3_7):

in yijk = ¢,

+ v.. 0.604a. - ced.t8,) - -G, . y .
; YJ 6 a; exp(yJ a1+GJ) in(1 Gl]k)+€ljk (3.8)

does not suffer from this inapplicability since the empirical Propor-
tionsmarried are being used, but it is difficult to interpret this
model which permits the initial age~at-marriage for a cohort to vary
with age. Model (3.8) does not fit the female data as well as model
(3.7), (table 3.1), which is surprising considering the time-period
fluctuations in the data around the war-vears. The pobrer fit of (3.8)
may be due to the ability of the incomplete cohorts in model (3.7) to
accommodate recent changes in nuptiality patterns,

A more interpretable way of adapting (3%.7) to accommodate time=-
period influences might be through the addition of a period parameter,

to give the age, period, cohort model:

n yijk=6j+¢k+yk. O.6O4ai - exp(yj.ai +6k)*§n(1~cijk)+e.

i3k (3.9)

but it is still difficult to interpret model (3.9) since ldeally some
allowance in the third and fourth terms of this model (which, from
{3.5), are related to first-marriage frequencies) should be made for
period fluctuations in nuptiality prior to time-period j., To economise
on degrees of freedom in (5.9), cohort parameters were assigned to
three-year width cohort categories. The resulting fit to the female
data is reasonable (table %.1), although the parameter estimates are

now unstable and too extreme to be interpretable in terms of proportions



marriageable etc. (Age, period, cohort, formulations of the model of

Coale and McNeil, 1972,are also considered by Bloom, 1980).,

Fwbank (1974) has demonstrated the applicability of the model of
Coale and McNeil (1972) to Swedish male nuptiality rates., Fitting
models (3.7) to (3.9) to themale nuptiality rates for England and
Wales produces results similar to those for the female data, except that
the fit tends to be better (table 3.1), and this is partly due to the

greater smoothness of the male profiles,

3:2.2 Additive age, period and cohort factors effects.,

The age, period, cohort model (3.9) above, derived from the marriage
model of Coale and McNeil (1972), is difficult to interpret, and
complex in construction. By comparison, the additive age, period,
cohort model of equation (1,3) of Chapter 1:

= . . 3.10
2n Yise =M ta, ¥ 63 *oy t €1 ik (3.10)

is attractively simple., Age factors in model (%.10) may be taken to
include the length of the pre~nuptial stages, as suggested by Coale and
MeNeil (1972), and also length of employment which affects an individusl's
economic readiness for marriage, Macro-economic conditions, which also
affect individuals' economic readiness for marriage, and wars, represent
time-period factors, Attitudes to marriage formed during adolescence,
and educational attainment (which affects economic readiness for marriage
through earnings) represent cohort factors,

Model (%.10) fits the male and female data no better than model
(%.9), (table 3,1), and interpretation of parameter estimates is
hampered by the lack of identification of the model, discuassed i

Chapter 1. The age-period and age~cohort sub-models of (3,10):

in yijk =W tag+ Bj + Eijk (3.11)



n yijk =W ta,+ Ve * i (3.12)
do not fit at all well,

The additive construction of (%,10) does not seem realistic for
several reasons. Firstly, ecnomic readiness for marriage is likely to
be an important factor only at the younger ages when individuals are
most insecure financially; consequently macro-economic factors are
likely to have their greatest impact at the younger ages., Secondly,
cohorts with high eduoationai attainment would compete successfully for
employment and marriage at the younger ages, tending to increase early-
nuptiality, but this advantage would wear off with age, as the better
educated are selectively removed from the merriage market. Thirdly,
attitudes towards marriage formed during adolescence could persuade
couples to form prolonged pre-nuptial cohabitational unions, resuliing
in low initial nuptiality followed by high nuptiality at the later
ages; again a constant cohort effect across ages for a cohort is not

indicated, These last two points suggest a cohort-experience approach,
P PI

3s203 Cohort-experience: Hernes' model.

A cohort-experience type of model of nuptiality has been
proposed by Hernes (1972), although the cohori=experience element in
this model, pressure-to-marry, does not include the cohort~experience
mechanisms outlined at the end of section 3.2.2 above,

Hernes (1972) models the proportions ever-married by age in
a cohort for each sex, by conceptualising that members of the cohort
are subject to two opposing, intuitively reasonable forces: the
increasing pressure to marry as the proportion of the cohort already
married increases, and the declining marriageability of the single
members of the cohort as they grow older. It is assumed that the

pressure to marry is directly proportional to the proportion of the
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cohort ever-married by age a, G(a), and that marrviageability declines

exponentially with age. The resulting model may then be written:

y(a) = ap?a(a) (3.13)

where, as before, y(a) denotes the nuptiality rate at age a, and where
a and B are model parameters. NHodel (5a13) is applicable to either
SeX.

G(a) in equation (3.13%) can be removed using equation (3.5), but
this leads to a rather complicated expression, However, taking
logarithms in equation (3.13), reparameterising, adding an error term

€ and introducing subscripts gives the simple linear model:

R + .+ G.,. + €., (3.14
n lek M ekal n ijk Ele )
where, as in section 3.2.1, Gijk can be estimated from the data using
life~table techniques, As in section 30241, model (5.14) possesses the

disadvantage that the calculation of C.

., involves the dependent
1K

variable itself, although the model now contains only two paraneters
per cohort,
To accommodate time-period fluctuations, model (3.14) may be re-
specified for cross-sections, as followss
2n Yije = M Gjai + &n Gijk + €55k (3.15)
in which the first two terms of the model state that the effect of age

on marriageability depends on contemporaneous influences, whilst the

pressure to marry remains dependent on the proportion already married
in the cohort. Thus this cross-sectional version of Hernes' (1972)
model is much more readily interpretable than the cross-sectional
version of the Coale and NeNeil (1972) marriage model (equation (3.8)).

From table 3, 1, model (3.15) fits the male and female nuptiality
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data about as well as the purely cohort specification of eguation
(3.14).

The residuals from both models (3.14) and (3.15) show distinct
age patterns, suggesting that modifications 1o the marriageabllity
component are reguired. Hastings and Robinson (1973) have also noted
this lack of fit. The addition of a guadratic age term to the marriage~

ability component of (3.15) gives the models

2
in yijk = oy, o+ ejai + Ujai + n Gi' + e (3.16)

N jk o Tijk
which, from table 3.1, fits the data extremely well. Alternative
modifications to the marriageability component are less successful,
and relaxing the functional form of the pressure~to-marry component
yields no improvements in fit. The cross~-sectional specification (3.16)
fits better than the corresponding longitudinal model, as might be
expected.

Figure 3.2 illustrates the estimates of marriageabllity from
model (3.16), and exhibits several interesting features. Interpreting
these features in terms of the theoretical foundation of the model,
it appears that marriageability decreases with age, although the rate
of decline slows up slightly at the higher ages. For the earlier time-
periods, males are noticeably more marriageable than females of the
same age, but male marriageability is steadily decreasing with time,
especially for the older man. This could reflect the growing economic
independence of women: in the past the financial security offered by
older men would have considerably offset the underlying age trend in
marriageability for males; consequently increased female earnings would
affect male marriageability particularly at the older ages., Interestingly
female marriageability has not been affected by changing economic

ircumstances, which suggests that the attractiveness of females to
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males is not based on economic considerations to any extent.

The time-period parameters in (3.16) soak up the effects of the
war., Interpreted in terms of the theoretical assertions of the model,
both males and females became less marriageable during the war years.

It is interesting to note that no modifications of the pressure-

This suggests

o

to-marry component of the model were found necessar

e
=
-

that pressure~to-marry is not influenced by economic or social condi-
tions, but only by the fear of being ‘leflt on the shelf' which increases
only with the proportion already married in the cohort, Neither of

the cohort-experience mechanisms referred to 2t the end of section
5.2+2 above could be accommodated properly by the cohort-experience
component of (3.16), since they both suggest that early and latle
nuptiality levels within a cohort should be inversely related. However,
these mechanisms could cause the effects of the pressure~to-marry
component to be underestimated, but the experiments with the pressure~
to-marry component suggest that a positive relationship between early

and late nuptiality within a cohort is dominant.

34204 The bimodel.

Attitudes to marriage may not necessarily be formed in adolescence,
as assumed in section %.2.2 above, Changing macro-economic conditions
provide a climate for evolution of attitudes towards marriage and
patterns of family living, and it is reasonable to suppose that all
cohorts are exposed to new ideas and norms via the mass media. Macrow
economic conditions also have a direct affect on economic readiness for
marriage, snd would consequently affect nuptiality levels particularly
at the younger ages, as noted in section 3%.2.2 above. These consider-—
ations, and also the data themselves, suggest that a model which
expresses a gradual change from one cross-sectional age-structure of

nuptiality to another would potentially account for much of the data
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variation, Such z model assumes that cohort~experience and other
cohort-related mechenisms are not of great importance.
As noted in section 3.1.2 asbove, the bimodel represents one way

of expressing a transition in age~structures for one sex:

~

in yijk ¥ =0 Yj + eisj + eijk (3.17)
where { ai} and {Bi} are two age-structures and {Yj} andg {53} are
time-period weights, and where § is the mean of the log rates for one
sex. The logarithmic scale is chosen here merely to ease comparisons
of fit with other models in this section. The removal of the mean ¥
is to prevent the fit reflecting the units of the rates: this effectively
adds one degree of freedom to the model. Model (3.,17) possesses the
same parametric structure as the 2-component biplot, given in equation
(2.2) of Chapter 2, with k = 2, This model, applied separately to the
male and female nuptiality data, fits very well (table 3.1).

Now from figure 3.1, the period trends, but not the age-structures,
are similar between the sexes: therefore it ig worth fitting model
(3.17) to both sexes simultaneously, providing different age~parameters

but the same period-paramelers for each sex. Formally this model may

be written:

Y T T %Yyt 8BSy teig (3.18)

where subscript s has just two levels denoting sex, and where ¥ is now
the mean of both male and female log rates, Model (5,1@1nay be
estimated using the Singular Value Decomposition by arranging the data
in the form of a matrix whose rows are time~periods, and whose columns
are combinations of age and sex, From table 3.1 it appears thait bimodel
(5318) provides a comparable it to that of the bimodel applied

separately to each sex, equation (3,17), but is much more efficient
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with degrees of freedom.

As discussed in Chapter 2, the use of the Singular Value
Decomposition to estimate the bimodel regquires that the data matrix
should contain no missing values, The present data matrix has missing
values corresponding to the pre-1900 birth cchorts, and so the bimodels
(3.17) and (3.18) were estimated only for periods after 19%4 and ages
below 36 years.

Figure 3.3 contains the biplot corresponding to model (3.18),

The curvature in the age markers reflects the changing age structure of
nuptiality from one in which marriages at the higher ages are usual to one
in which marriages are concentrated between ages 20 and 25. The female
age markers show even greater curvature, demonstrating that ages~ at-
marriage for females have become more concentrated than for males,

The period markers show & reversal of these trends since 1970.

The impact of the 1939~-45 war can be clearly seen in the period
markers in figure 3.3, which also display a brief reversal in the
trend toward younger marriage in 1946, presumably due to marriages
delayed by the war. Glass {1976) has noted that since the war the
increasing availability, effectiveness, and use of contraception, and
the improving employment prospects for women after marriage, has
removed the traditional view of marriage as the start of childbearing
and that consequently women have become less reluctant to marry at a

lability of effective contraception together with

fds

young age, The ava
a recognition of the growing lack of security offered by marriage hes
recently led to the emergence of pre-nuptial 'trial marriages’

(Wilkie, 1981), and this may be partly responsible for the post 1970
reversal in the trend towards younger marriage. Ermisch (1981) finds
that the decline inmptiality at the younger ages in the 1970s is

largely due to the increase in women's earnings relative to men's,
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5.2+5 Discussion of nuptiality models,

In this section a number of causal mechanisms underlying the
nptiality data for ¥ngland and Wales have been discussed, and it
is often the case that there is more than one way of accommodating a
given mechanism into a model. None of these mechanisms, however,
suggest the formulation of either cohort factor effects which are
constant for all ages within each cohort or period factor effects
wnich are constant for all ages within eachtime~period., The best

fitting models represent either cohort-experience type factors (the

g

aptation of Hernes' (1972) model (3.16) ) or period factors which
interact with age~structure (the bimodel (3.17) ). On grounds of
both fit and interpretability, the adaptations of the Coale-McNeil
(1972) model (3.8) and (3.9) and the additive age, period, cohort
model (3.10) may be dismissed. Possibly there is some prospect of
adapting the Coale-McNeil (1972) model to accommodate period factor
effects, but the difficulty in doing this iz evident from section
3.2.2 above.

The result then is a dilemmaj a choice between two extremely well
fitting, intuitively reasonable, and highly interpretable models which
make somewhat different substantive assertions. In some respecis the
adaptation of Hernes' (1972) model (%.16) and the bimodel (%.17) are
similar: they both contain only period parameters. Potentially the
period parameters in (3.16) could accommodate the changing age-structure
in nuptiality; however for females the period parameters have changed
remarkably little over time: changes in age structure being largely
accommodated by the pressure-to-marry term. Consequently it cannot be
said that (3,16) is merely an approximate version of (%3.17). Moreover
the trends in marriageability illustrated in figure 3.2 are tantalisingly

interpretable. Both models account for the impact of macro-economic
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conditions and contraceptive availability, but in rather different WaYS .

Neither (3.16) nor (3,17) adequately express the ‘catching-up’
of marriage plans postponed by the war, although both models indirectly
accommodate the consequent post-war bulge in late marriages (figure 3,1).
However, this is a minor source of data variation. Also neither model
explicitly takes into account the effects of imbalances between the
sexes, which Ermisch (1981) has found to be of some impertance for
England and Wales.,

So far as projection is concerned, the bimodel (3,18) has the
advantage since it contains only two period parameters for both sexes
combined, whereas the adaptation of Hernes' (1972) model (3.16) would
require six pericd parameters to be projected for both sexes. Addition-
ally, the use of Gijk in model (3,16) complicates its use for projection
since its computation involves the nuptiality rate it is involved in

projecting,
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5.5 All-women fertility.

The data analysed here are fertility rates for all women in
England and Wales, classified by single years of age and time-periods
from 1938 to 1979, (0.F.C.S., 1979}1e Figures 3.4 and 3,5 display age
structures for selected periods and cohorts for these data, from
which it is apparent that childbearing has become increasingly concen-
trated around age 25 years, and thal period age-structures are consider—
ably more regular than cohort age-struciures.

It might be argued that there is little point in modelling all~
women Tertility rates unless the proportions married are explicitly
taken into account, in which case one may as well model legitimate
fertility rates directly. An analysis of legitimate fertility is
given in section 3.4 below, but in defense of the present analysis it
is noted that not all fertility is legitimate; that some legitimate
fertility is pre-maritally conceived; and that the timing of marriage
may in many cases be influenced by fertility intentions or expectations.
Consequently the case for analysing legitimate fertility alone is not
clear cut, Thus this section applies the varyious types of model
discussed in section 3,1.2 above to the all-women fertility data for
England and Wales, Section 3.4 below contains a similar analysis of

legitimate fertility.

5:3s1  The Gompertz function.

Many models of theage-structure of all-women fertility have been

1. These data, from an unpublished table, showed marked irregularities
between five-year age groups for the earlier time-periods, undoubt-
edly reflecting a rather crude apportionment of five~year age-—
specific populations exposed to risk, These irregularities were
removed using a bi-cubic spline technique (Hayes and Halliday, 1974)
before commencing the analvsis above.
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proposed, including: a polynomial (Brass, 1960); Johnson's (1949) Sy
functions (Talwar, 1974); Compertz and Makeham functions (Wunsch, 1966
Murphy and Nagnur, 1972; Murphy, 1982), Hadwiger's (1940) net maternity
function, the Lognormal distribution and the gamma (Pearson I11)
distribution (Duch€ne et al, 1974), the beta (Pearson I) distribution
(Mitra, 19673 Brass et al 1968; Romaniuk, 19733 Mitra and Romaniuk, 1973;
and Duchne et al, 1974); and Mezur (1963), Coale and Trussell (1974)
and Pittenger (1980) have developed their own specialised forms. The
fit of these models tc these data ranges from very bad (Hadwiger's 1940
function) to good (Gompertz); however these results are not reported in
full here. Hoem et al (1981) have compared some of these models on
Danish data, including Brazss's @9]&gtﬁrﬁlationa1 models. The Gomperiz
model, being a well~known and generally well fitting model, is
considered here,

Murphy and Nagnur (1972) use the Gompertz function to model

cumulative fertility within cohorts, and also within periods. The

Gompertz function fakes the following form:

Fa) = op¥ (3.19)
where, in this case, F(a) denotes fertility cumulated (within periods
or within cohorts) up to age a. Differentiating (3.19) with respect to

age gives an expression for the fertility rate y(a):

a
y(a) = ag? Rns.zny.ya (3.20)

and taking logs, reparameterising, adding an error term and introducing

subscript notation gives the cross-sectional model:

.as
in y... =, + v.a, + g.eVi%l + £

.2
i3k "3 j1 3 ijk (3.21)
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Model (5,21) fits the present data well, as may be seen from the
first line of table 3.2, 4 cohort - oriented version of (%,21) does
not fit the data well, as might be expected from figure 345

Murphy and Nagnur (1972) note that the three parameters, a,f and
v ¢ in (5,19) have a straightforward demographic interpretation: o
estimates total achieved fertility, 8 is inversely related to the
average age of childbesring; and y is related to the spread of the
age-specific fertility schedule about the average age of childbearing.
This 'interpretation' however says nothing about the substantive
processes underlying the data, and the model is therefore descriptive
rather than theoretical,

The fact that model (3.21) fits better cross-sectionally rather
than longitudinally indicates that time-period rather than cohort
mechanisms are dominant, The war, macro-economic conditions and
contraceptive availability are probably jointly responsible for the
time~period trends in the data. The temporary bulge in fertility
following the war is not purely a time-period phenomenon since it is
confined mainly to the cohorts which were at the prime reproductive
ages during the war, (some evidence of this may be seen in figure 3%.5);

g s

this is clearly a 'making up' of births missed due to the war.
Model {3.21) states that primarily time-period factors are

responsible for the 'boom' in fertility between 1951 and 1966, and

the subsequent 'bust'. Many researchers have suggested causes for the
boom and bust. Some have attempted to find roots of causation in
cohorts (notably the 'Hasterlin Hypothesis', masterlin, 1968;applied to
fertility movements in England and Wales by kasterlin and Condran,
1976, and Samuelson, 1976), but Lee (1974, 1976, 1978) has developed a
version of the Easterlin Hypothesis which states that age-specific

labour~force participation rates in a time-pericd affect fertility
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levels via the level of income compared to anticipated income ('relative
economic status'). (Congdon (1980) has used this hypothesis to forecast
births in England and Wales). However, an exparding econony does not
necessarily imply increasing levels of fertility: Butz and Ward (1977,
1979) have derived models from the 'New Home JFconomies! theory of
Becker (1960, 1965) and Mincer (1963) which allow for the conflict
between the husband's level of income (which is associsted positively
with fertility) and the wife's earnings potential (which is negativel
associated with fertility). Women's earnings potential has been
assisted by legislation for equal employment opportunities for men and
women (Glass, 1976). Ermisch (1979) compares models derived from the
Basterlin Hypothesis and the 'New Home Economics' on data for England
and Wales, and finds the latter to be more successful.,

Model (3.21) also captures the gradual transition towards younger
fertility which continued throughout the 'boom' and up to 1971. WMuch
of this is associated with younger marriage which in turn can be
partly explained by macro-economic conditions (see section 3,2 above ).
Only since 1966 has the fertility of older women declined, which
suggests that employment opporiunities for older women did not improve
until that time. Since 1971 there has been a trend towards délayed
fertility which has been accompanied by a rising age-at-marriage. This
probably partly reflects the increasing difficulty young couples
experience in affording a2 home and children in the presence of economic
recession, and also the increasing employment prospects especially for
the more educated women. Both Wilkie (1981) for the UsSehe, and Kiernan
and Diamond (1982) for England and Wales, have shown that delayed
parenthood is positively associated with women's educational achievement.
However the direction of causation between employment and fertility is
not one-way: Jones (1982) considers the effects of childbearing on

employment.,
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Eguation Degrees of 5 5
Number Model Freedom R R
ad ]
.21 Gompertz 126 978 976
Additive age,
period, cohort
5,10 Age + period +
cohort 140 . 986 . 984
3.11 Age + period 71 . 928 0924
3.12 Age + cohort 100 »928 2922
5622 Cohort—experiences
Achieved fertility 95 2961 . 958
3,17 Bimodel, periods 141 .976 2973
Table 3.2: Goodness~of-fit for models fitted to the age by period
ge Dy

array ol fertility rates for all women in England and
Wales. R“ is the proportion of gariance in log fertility
rates explained by the model, R”_.. adjusts for model
degrees of freedom,(equation {5.1?Q9.
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55,2 Additive age, period ardcchort effects.

The original version of the Hasterlin Hypothesis (Basterlin, 1968)
states that 'relative economic status® (economic status relative to
economic aspirations formed in adolescence) has a positive effect on
fertility, and that relative economic status is roughly inversely
related to 'relative cohort size' (the size of a cohort relative to
the size of the cohort one generation vefore), Thus relative economic
status is constant within cohorts. Ryder (1978) states that couples
have intentions concerning both the quantum and tempo of fertility,
although the tempo of fertility is often distorted by period phenomena
(such as wars, economic conditions, etc.) Ryder's (1978) view is not
inconsistent with that of Easterlin (1968), and both suggest an age,
period, cohort framework of analysis. Sanderson (1979) has used the
additive age-period=-cohort model (5.10) to test an aspect of the
Basterlin Hypothesis on data for the U.S.h., end Pullum (1980) has
also used the model to analyse fertility in the U.S.A.

The results (table 3.2) of fitting model (3.10) (with Vi ik denoting
the fertility rate for all women) and its submodels (3.11) and (3.12)
to the data for England and Wales show that model (%.10) provides &
much closer fit than its submodels, the cohort parameters absorbing
the changing cross-sectional age structure of fertility to some extent.
However the lack of a reliable means to identify the model once again

frustrates a more detailed interpretation of parameter estimates,

2+3.3 Cohort-experience: achieved fertility.

Cohorts aiming for a desired quantum of fertility (or ‘target!
fertility) would be expected to adjust their current fertility to take
into account their achieved fertility (Lee, 1977, 1980; Ryder, 1978).

The post-war 'catching=-up' of births missed during the war is evidence
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of this phenomenon., The additive age, period, cohort model (3.10)
discussed in section 3.3.2 above does not explicitly accommodate such

a phenomenon, since it does not posit a dependence on achieved
fertility. Lee's (1977, 1980) model of marital fertility accommodates
this phenomenon by relating current fertility to the difference between
target and achieved fertility. This model is discussed in section 3.3.4
below,

Now the concept of a target fertility is not the only, nor
necessarily the best way of bringing achieved fertility into the model:
to some extent the target fertility itself is dependent on achieved
fertility, since couples are unlikely to consider existing children
unwanted., It may be more realistic to assume that each existing
child makes demands on a couple's resources of time and money, and as
such representsa disincentive to further childbearing. Assuming that
in the absence of these disincentives there is a basic age-structure
of childbearing determined largely by biological factors, that time-
period factors such as wars and macro~economic conditions influence
fertility in all age groups proportionately, and that the disincentive
which each child represents is constant over time, then a model may be

constructed as follows:

n yijk =u o+ Bj + Yyt Eijkh (3.22)

where subscript h denotes the level of achieved fertility in cell (i, 3
k). (To determine integer h for & given cell (i,3,k), achieved fertility
for that cell is first calculated by cumulating fertility rates over
previous age groups within cohort k. If the achieved fertility falls

in the range 0.0 to 0,1 children, then h is assigoed equal to 13 if
achieved fertility falls in the range of 0.1 to 0,2 children, then h is
set equal to 23 and so on. In general 1if achieved Tertility falls in

the range (nh - 1)/10 to h/10 then h is the level of achieved fertility
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assigned to the cell), Thus model (5,22) assigns one parameter to
each level of achieved fertility, and consequently the functional form
of the dependence on achieved fertility is very flexible,

Model (3.22) does not represent a particularly good fit to the
data, but it does fit very much better than the simple age~pericd
additive submodel (3.11). The parameter estimates from model (3.22)
are Interesting and are given in figure 3.6, each panel of which
reflects an arbitrary normalisation of the parameters. The age affects
at the higher ages resemble Henry's (1961) schedule of natural fertility,
and therefore probably reflect mainly biological factors. At the younger
ages the age effects are much lower than natural fertility, reflecting
later exposure to risk of childbirth relative to the natural fertility
population, due to later marriages or unions and use of effective
techniques of contraception,

The achieved fertility effects in figure 3.6 show that each child
achieved, up to two children, represents roughly a halving of the
fertility rate, other factors being held constant. Above two children,
however, each additional child achieved represents roughly a ten-fold
reduction in the fertility rate, other factors being held constant,

This suggests that couples feel a strong disincentive to having more than
two children,

The period affects in figure 3.6 initially correspond ver;
closely to the total period fertility rate (T.P.F.R.), however, they

increase faster than the T.T.F.R. during the fertility boom, and do not

turn down until six years after the turning down in the T,P.F.R., Thisf® gAY
btBma sy Ty
-

suggests that the rate of increase in the T.P.F.R. during the boom %%g 2
b g e B

actually underestimates the extent to which those times were propitious

for childbearing, the reason for the underestimation being that couples
were having a high pace of fertility despite already larger than average

family sizes for their age during the boom years. (The inverse relation-
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ship can be seen during the immediately post-war years, in which the
T.P.F.R. overestimates the extent to which times were propitious for
childbearing because much of this fertility was due to the making-up

of births missed during the war.) Now between 1965 and 1971 the period
effects are roughly constant, indicating that conditions for child-
bearing were not changing; the falling T.P.F.R. during this period
reflects the excess of children built up during the previous years.
This is a most useful result, since on the assumption of constant

.
b

period factor effects after 1965 one could have predicted the fall in

3

T.P.F'uRs between 1965 and 1971 (however, the age and achieved fertility

.

parameter estimsates based on the pre~1965 data are unstable; this is

discussed further below)g Similarly the increase in T.P.F.R. after 1977
could have been predicted even on the basis of falling period effecis
after 1977.

The achieved fertility effects in panel (b) of figure 3.6 curiously
resemble the natural fertility age schedule in panel (a), It is tempting
to try to make some substantive links between the two schedules, and it
is not difficult to express the relationship algebraically. However,
the relationship is extremely difficult to interpret, and it seems more
likely that the similarity is merely coincidental.,

The need to determine how much of the variation in levels of
fertility is due to time-period factors, and how much is due to achieved
or desired family size, has motivated much of the research into target.
fertility, and recently both Butz and wWard (1979} and Ryder (1980}
have proposed essentially the same method of decomposing the T.P.F.R,
into two such components. However their methods do not make explicit
the underlying model, although their basic assumptions are clear enough.
Model (3.22) explicitly decomposes fertility rates into period and

achieved fertility components, and leads directly to a method of

decomposition of the T.P,F.R. which is very similar to that of Butz
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and Ward (1979) and Ryder (1980), the main difference being that
achieved fertility replaces target fertility in their method.

Model (3.22) makes quite strong substantive assertions: Firstly,
the disincentive to further childbearing represented by existing
children is assumed to be constant over all ages. This is very different
from a model based on the concept of target fertility in which a high
parity at one age would tend to have a much greater impact on sub~
sequent fertility than the same parity at an older age, 1In the target
model couples are far-sighted, planning their future fertility in order
to avoid missing their target; in the achieved fertility model (3.22)
couples are more short-sighted, only reacting to how many children they
already have, tending to drastically reduce the risks of childbirth
after the second child,

Secondly, model (3.22) asserts that the disincentive due to
existing children is constant over all time~-periods. This assumption
seems unlikely to be true over long periods of time, since family size
norms have undoubtedly reduced over the last century. However the
assumption may be approximately valid for the period 1938 - 79. Attempts
to relax this assumption have unfortunately led to models whose paraneter
estimates are uninterpretable, although room for further exploration
certainly exists.

Thirdly, model (3.22) asserts that time-period factors affect
fertility in all age groups and achieved fertility groups proportion—
ately. Now panel (a) of figure 3,6 suggests that mainly biological
factors are operating at the older ages, and consequently time-period
Tfactors would not be expected to have much influence in this region.

At the younger ages time~period factors may have a powerful impact on
fertility primarily via delayed exposure t0 risk of childbirth: it is
interesting to note that the time-period parameter estimates in panel

(¢c) of figure 3.6 start to decline after the boom in 1971, which
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coincides with the initiation of the trend towards delayed merriage
discussed in section 3.2 above. Thus it seems that the proportionality
in the effects of time~period factors is not realistic, Again there is
room to explore methods of adjusting this aspect of the model,

If the data contained no variation across time~periods, model
<§a22> would not be able to distinguish between age and achieved
fertility effects. This identifies a potential source of instability
in the parameler estimates: as noted above, estimating the model on
the basis of the pre~1965 data produces irregular and uninterpretable
parameter estimates. Consequently, it seems that a fairly long run
of data, containing both upward and downward movements in fertility,
is necessary in order to obtain stable and interpretable parameter
estimates from model (3.22).

In summary, some of the assumptions embedded in model (3,22)
are over-restrictive. Nevertheless, the model as it stands is highly
interpretable owing mainly to its simplicitys this could easily be
lost with more sophisticated versions, Moreover, for projection,

model (3.22) requires a long run of data, but only one period parameter

need be projected.

3.3.4 The bimodel.

Several time-period factors of fertility are discussed in section

5.5.1 above in connection with the cross-sectional Gompertz model (3,21).
This model contains three period parameters. The bimodel (5.17) (with
yijk denoting a fertility rate for zll women ), which contains only two
period parameters, may represent a more efficient way of accommodating
time-period factors,

In Chapter 2 the present data are biplotted on the untransformned

pe . . , 2 . .
scale (figure 2.1), and for two components the R value is .997 (table
2

2.1). However, model (3.17) for the present data obtains an R value
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of only .976. Lxamination of the residuals from model (3.17) suggests
that ite poorer fit is partly due to the dominating effect on the fif
of very small fertility rates at the extreme ages, which become large
and negative on the log scale. As stated in section %.2,4 above, the
only reason for wishing to use the bimodel on the log scale is to
permit comparisons between the fit of different models. It is susgested
that for most purposes the bimodel of the natural scale data would be
. . . s , L2

more easily interpreted and better fitting. Nevertheless, the R™ value
of .976 for the log scale biplot (3,17) is only marginally worse than
that for the Gompertz model (5»2»1). The biplot corresponding to
(3.17)for these date is given in figure 3.7, from which is may be seen
that ages 22 to 29 years are not well distinguished, and consequently
not well fitted,

Like the cross-sectional Gompertz model (3.21), the bimodel (3.17)
does not explicitly take account of the cohort~experience 'catch-up?
effect following the war, although the time-period parameters do

account for much of the consequent varistion in the data,

3.3.,5 Discussion of all-~women fertility models,

The best fitting of the models discussed above is the additive
age-period=-cohort model (3.10): yet this model is also the least
interpretable, not only because of the lack of identification in the
parameters, but also because reasoned discussion of the factors undepr-—
lying the data does not indicate constant cohort effects within
cohorts, Much of this discussion suggests that time-period factors
operate in such a way as o change the age-pattern of fertility: the

Y21 ) and the bimodel (3.17) both capture this

5\

N

Gompertz model (

A

phenomenon. Consequently the success of the additive age-period-cohort
model seems to be due to the ability of the cohort parameters assigned

to the earliest and latest cohorts (which are all incomplete) to
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accommodate a trend in cross-sectional age-structures.

By contrast, the most interpretable and interesting model, the
cohort—experience achievad-fertility model (5,22), is also the worst
fitting model (excepting the submodels of age-period~cohort model
(%3.10) ). Some of the assumptions embedded in model (3.22) are perhaps
too rigid, and further research might indicate ways in which to
improve the model and its fif{ without detracting from its essential
simplicity, which is the key to its interpretability. Usefully,
model (3.22) represents an additive age-period-cohort model of sorts,
which does not have a built-in identification problem. Despite its
poor fit, the model has considerable potential for projection , since
1t takes into account previous levels of fertility in a direct and
intuitively reasonable way, without recourse to unreliable or internal

estimates of 'target' fertility.
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5.4  Marital Fertility.

From figures 3.1 and 3,4 it is clear that both nuptiality and
fertility for all women in Ingland and wales have, up to 1971,
gradually become more concentrated at the younger ages, and that these
trends have revergsed since 1971: this may be seen more clearly in the
biplots of figures %.% and 3,7. This suggests that an examination
of marital fertility might reveal simpler patterns. Consequently this
section analyses marriage duration specific fertility rates for England
and Wales (0.P.C.S., 1977b). These data are classified by five year
age~at-marriage categories and single~year duration and marriage-cohort
categories.

Figure 3,8 illustrates these data for selected cross-sections,
and reveals some very interesting features. The smooth  durational
profiles within age-at-marriage groups are striking; the decline in
fertility with age-at-marriage is also marked, Time~period influences
may also be seen, for example between 1941 and 1946, or between 1971
and 1976. The durational profiles have gradually changed throughout
the series, initially being monotonically decreasing after duration
zero, but later becoming humped, exhibiting & growing trend towards
delayed fertility following marriage. This trend towards delayed
fertility may be defected as early as 1956 in the youngest age-at-
marriage group, but it is not observable in the older age-at-marriage
groups until 1971, (The humping in the 1946 profiles is of a different
form}m Simultaneously fertility at the higher durations has become
much reduced. Such a high degree of regularity is not displayed when
the data are plotted longitudinally.

The models which follow were fitted for time periods 1950 to 1976,
durations 1 to 14 years and five-year age-at-marriage groups from 1%

to 45 years. (Duration zero is omitted because of its evident anomalous
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Figure 3%.8: Fertility rates in England and Wales for gelected
time-periods, showing duration of marriage structures
for age-at-marriage groups (a) under 20, (b) 20 - 24,
(e) 25 - 29, (d) 30 - 34, (e) 35 - 39, and (f) 40 - 44

years,
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behaviour. Incomplete (up to duration 14 years) cohorts are also

omitted),

J.4.1 Additive age, period and cohort effects,

Page (1976) analyses Swedish fertility rates classified by age,
duration of marriage and time-period. Her model essentially consists
of age and duration effects which are allowed to vary with time-period.,
These, time-period interacHons represent a large number of degrees of
freedom, although Page (1976) goes some way to modelling these inter—
actions with fewer degrees of freedom. Gilks (1979) shows that the
resultant model does not contain some main-effect terms corresponding
to its interaction terms. Moreover, there is some evidence from the
Swedish data that age-at-marriage effects are present. EKepeating the
analysis on similar data for England and Wales, Gilks (1979) finds that
there is clearer evidence bf age-at-marriage effects,

It is possible that interactionswith time~period might be
efficiently parameterised with the addition of birth-cohort or marriage-
cohort factor effects to a model involving age, period, duration and

age-at-marriage factor effects?

v+ oy + Bj + Vi + 8§+ T + En +e. . (3.23)

n yiijLmn L 1ikemn

where ¥, denotes the fertility rate in age grou i, time~periocd j,
¥ y & P p J

1ikgmm
birth~cohort k, duration-of-marriage L, merriage-cohort m and age~at-
marriage group n., Now there are three logical relationships between

these six dimensions, which may be expressed as followse

riod + birth~cohort = 0O

<

age - e

TN
AN
E:4
Ny
B
S

duration =~ period + marriage-cohort = 0O
age ~ duration + age-at-marriage = 0

and each of these represents a source of confounding of the age, period,



cohort type discussed in Chapter 1. Conseguently model {5,25} poOsSsesses
three 'linear' identificastion problems. Submodels of (%.23%) which do
not contain any of the sets of three loglcally related variables
represented in (3.24) may still have linear identification problems,
since by (5324) $ age, period, age-at-marriage and marriage-cohort are
logically related; as are: age, duration, birth-cohort and marriage-
cohort. A complete list of these logical relationships is given in
Casterline and Hoberaft (1981).

In addition to these, further identification problems exist due
to the fact that age-at-marriage categories for the present data are
five times longer than the duration and period categories. Fienberg

and Mason (1979) demonstrate these.

Sinece age-at-marriage categories are five years in length for the

N

present data, there seems 1ittle point in calculating single-vear width
categories of age and birth~cohort, since the calculations involve age-at-
marriage(equation (3.24)). Single-year width marriage-cohort categories
however may be usefully calculated., Using five-year width categories

of age and birth~cohort the identification problems associated with
unequal width categories disappear, as do some of the 'linear!
identification problems. However, linear identification problems which
are apparently resolved by grouping categories do not solve the
associated interpretational problems: this is explained in section

1.4.2 of Chapter 1.

Ag may be seen from table 3%.%, model (5*23) does not represent a
very convincing fit to data. In fact there seems little justification
for retaining age-st-marriage, marrisge-cohort or birth-cohort effects
in the model since they account for little variation. This leaves the

submodel:

Y

N
L
S

n yijz =y + a, + Bj + 62 + € (3.

i
s
=
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Eguation Degrees of 5 5
Number Model Freedom I R ..
adj
Additive Effects
3.2% A£11 six effects 102 2964 5962
3.25 Age, duration,
period 45 2954 2955
3.26 Age-at-marrizge,
duration, period 47 . 859 »855
Cohort experiences
Lee's Model,
5652 period targets 28 » 020 005
3:35% period, age-at-—
marriage targets 3% .609 2602
%454 Bimodel (periods) 189 « 994 »99%

mﬂbla 5'5:

Goodness-of=fit for models fitted to the duration-of-
marriage by age-at-marriage by p@?zoc table of fertility
r“ﬁes for England and wales, R' is the proportion of
variance explained by the model R .. adjust for degrees
of freedom in model and data, (equi%f on (3.1) ).
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which has the merit of not possessing any identification problems. It
is perhaps surprising that this model performs better than the nmodel
containing the original dimensions of the tables

in vy,

ien = Y o+ Bj + 52 + £ + Ejzn (3.26)

n
since five-year age groups actually encompass a total range of ten
years of age as may be seen from figure 3.9. This emphasises the

importance of the age variable. Nevertheless,mdel (3.25) cannot be

considered a good model: its structure asserts that age-at-marriage

by duration profiles should be proportional between time~periocds: an

N

, N . - 4 - Ve .
assertion which clearly does not correspond to the reality (figure 3.8).

A

Thus model (3.,25) fails to capture the most interesting developments in
fertility observable from figure 3.8. Casterline and Hoberaft (1981)
have fitted additive effect models of the above type to World Fertility
Survey data from a variety of countries, and, as above, find that the

best of these models is the age, duration, period model (3.25).
tel 4

3.4,2 Cohort-~experience: Lee's model.

From survey data for the U.S.A., Lee (1977) finds that each married
women, at any point in her reproductive history, may be considered to be
either a 'terminator’ (i.e. she wants no more children) or a ‘non-
terminator' (i.e. she does want more children), and that her status
(terminator or non-terminator) may change back and forth with tinme,
depending on further births and on economic circumstances, etc., which

might cause her to alter her desired family size. Lee (1977) further

finds that, for non-terminators, both the fertility rate and the average

additional number of children desired remain approximately constant over
age and time-period. Consequently, assuming no contraception failure

amongst women who are terminators:
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Pigure %,9:
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Showing five-year age-at~-marriage groups by
single-year duration-of=-marriage groups, and

resultant five-year age groups.

Cells whose

midpoints fall within a five-year age range,

denoted

'a' on the figure, are allocated to
one age group, and are shown shaded,

These

shaded cells encompass a total age range of
ten years ('b'),
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ylast) = pla,t)y* (3.27)

5 ~ Y

Ma,t) = p(agt)ﬁ% (3.208)

where y(a,t) and A(a,t) are the fertility rate and average additional
number of children desired for all married women aged a at time %,

where y¥ and A% are the corresponding quantities for non-terminators

(which do not depend on a or t), andwhere p(a,t) is the proportion of
women at age a and time t who are non-terminators. Equation (3.28) nay

be substituted into equation (3.27) to eliminate pla,t) to gives

y(a,t) = A. ala,t) (%.29)

where A = y*/A%, Empirically Lee (1977) finds that A= 0.2, but
adjusting for contraceptive failure amongst terminators, suggests
gsetting A= 0,18,

The average desired family size for a group of married women may
be termed its 'target fertility!. Ryder (1978} has proposed a model
of fixed targets within each cohort. Lee (1980) considers a ‘moving
target' model in which targets are determined by time-period rather
than cohort factors, and assumes, in order to use equation (5@29)9 that
target fertility for married women is equal to the sum of their average
achieved fertility and average additional desired fertility. This
agsumption implies that no achieved fertility is unwanted. Conceivably
individuals may retrospectively consider all their children to be
'wanted': such retrospective rationalisation represents an additional
factor., Pure time-period factors may be considered as producing a

target fertility which relates to desires in the absence of retrospective

rationalisation. Such a target ferility should be permitted to fall
below the levels of achieved fertility, and would not in general be
equal to the sum of achieved fertility and additional desired fertility.

By equation (3.27), fertility should depend on target fertility
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via the proportion of married women who are non~terminators. It may
be realistic to assume thats

fn p(a,t) = u + B(T(t) - Fla,t) ) ;
(3.30)
where T(t) is the target produced by time-period factors at time 1,
and F(a,t) is the average achieved fertility for married women aged a
at time t. (Since pla,t) is a proportion, it might be more appropriate
to use the logit rather than the log transformation on the left of
(3.30), but the log transformation simplifies subsequent development

considerably). Substituting (3.%0) into (3.27) gives:

v(a,t) = y* exp{ u + B(T(t) - F(a,t) )} (3.31)
Now the present data are also duration-specific. Since (3.31) is
proposed for all ages it may be reascnable to apply it to all durations
alsc. Taking logs in (5,51), reparameterising, adding an error term

and introducing the subscripts defined in section 3e4.1 above, gives:

fny, =T. - BF.

o ; T T 3 3 JORORS I b 5T 2 s
where Fj = gn y¥ + HT‘BT(tjj, and Fjﬂn denctes achieved fertility,
calculated by cumulating fertility over previous duration categories
within the marriage-cohort, age-at-marriage group . More realistically,
target fertility should vary rnot only with time-period, but also with

age—-at-marriage, giving the model:

in vy, = T, + - )
i 070 T B e (3.33)

Table 3,3 shows that the period target model (%.32) explains
almost no more variation than the grand mean model; the addition of the
age-at-marriage term in (3.33) is essential but the fit is still very
poor. In fact to obtain an adeguate fit the six main-effect terms in

model (3.23) must all be added to model (%.32). The poor performance
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%) is partly attributable to the recent trend in delayed
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fertility (figure 3.8) which causes fertilifty rates to rise with
duration within age-at-marriage groups: model (3.%3) basically posits
decreasing durational profiles.

Despite iis poor fit, the parameter estimates for model (3,3%3)
are reasonably interpretable: model (5,53} does not permit individual
targets to be estimated but differences between targets are estimable
and suggest that target fertility decreases by about 1 child per ten
year increase in age-at-marriage, and that between 1966 and 1976 target

fertility has dropped by about half a child on average.

3,45 The bimodel.

It is apparent from section 3.4.1 above that main effects in the
six dimensions underlying the table are not sufficient to capture the
intricate cross-sectional patterns cbeervable from figure 3.8. Figure
5.8 essentially demonstrates a gradual transition from one age~-at~
marriage by duration-of-marriage pattern to another. This may be

represented on the log scale by a bimodel:

n vy, ¥ = a, i ¥ gzns. + €. (3.34)

jen ~ 7 i j " fim

where y denotes the mean of the log fertility rates and where the
remaining notation is as defined in section %.4,1 above, This model
fits the data well, as may be seen from table 5¢%. The biplot

®

AN

corresponding to model ( 4) is given in figure 3,10, The curvature

N

in the age-at-marriage profiles at the early durations in figure 3,10
represents the introduction of delayed parenthood following marriage:
it may be seen that the 20 - 24 years age-at-marriage group has the
greatest curvature, suggesting that delayed parenthood is most

pronounced for this group. The period markers show that the trend
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towards delayed parenthood within marriage began in earnest in 1961,

The youngest age~at-marriage group is separated to some extent from
the others in figure 3,10, revealing that for the earlier time-periods
fertility was higher for this group, and that the trend has been to
reduce this differential,

hs mentioned in section 3.2.4 above, Glass (1976) attributes the
trend towards delayed fertility within marriage to the increased
availability of reliable means of contraception and the increasing
opportunities for women to work after marriage, which have combined to

remove the traditional view of marriage as theinitiation of childbearing.

3.4.4 Discussion of legitimate fertility models.,

It is difficult to argue convinecingly for the existence of factors
which operate uniquely via birth-cohort or marriage-cohort dimensions,
and which futhermore have an equal effect over all levels of other
factors underlying the data, Consequently it is not surprising that
little evidence for such factors is found in section 3.4.1 above.
Additive effect mouels invelving the period, duration, age and age-at-
marriage dimensions are incapable of expressing the recent transition
in cross—sectional patterns of marital fertility. Thus none of the

additive models in section %.4.1 above represent a satisfactory

AN

theoretical or descriptive account of the data. Section 5.4.1 does,
however, demonstrate that variation is much more effectively summarised
by the age dimension rather than the age-at-marriage dimension, and by
the period dimension rather than by cohort dimensions.

The adaptation of Lee's (1977, 1980) model (3.3%3), although

theoretically very interesting and perhaps plausible, fits the data

o

badly. MNevertheless, the parameter estimates do seem interpretable,
suggesting declines in desired family size with age~at-marriage and

time~periocd. The model is however incapable of accommedating the trend






5.5 Mortality.

The data analysed here are age-specific mortality rates in five~
year age groups above age 30 years for five-year time-periods between
1801 and 1930 for Swedish males and females, obtained from Cramer and
wold (1935)., Cramer and Wold (19%5) found these data to show greater
regularity within periods than within cohoris. Curiousliy, Kermack et
al (1934) found greater regularity within cohorts when using a very
similar data set for Sweden, and so it seems worth reanalysing these
data here.

Figure 3.11 contains cross-sectional age-structures for these data,
and figure 3,12 longitudinal age~structures. It is immediately apparent
that there is a high degree of regularity cross~sectionally which
does not exist longitudinally, supporting the findings of Cramer and
wWold (1935). Because of its anomalous age-structure, the first time-

period is omitted in the following analysis.

2.5,1 The Gompertz function.,

Cramer and Wold (1955) fitted Makeham functions to the cross-
sectional and longitudinal age-structures in the Swedish mortality data,
The Makeham function for the proporiion surviving, S(a), to age a in

a cohort is:
S(a) = g’ 62 (3.35)

Setting 0= 1 gives the Gompertz function defined in equation (3.19).
Both the Makeham and Gompertz functions are commonly used for graduation
of mortality data (Miller, 1949; Wolfenden, 1954),

Now the mortality rate y(a) at age a is related to S(a) by:

_ =S'(a)
y(a) 502

i

]

n B. foy. y2 (3.36)
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Figure 3.,11: Age-specific log mortality rates for selected time=
;eri@dg for Swedish males (broken line) and females
{continuous line).
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Flgure 3.12: Age-specific log mortality rates for selected cohorts
for Swedish males (broken line) and females
(continuous line).
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for the Gompertz function, using (3.10). The corresponding expression
for the Makeham function is much more complicated, and consequently will
not be used here, Taking logs, reparameterising an error term and

introducing the usual subscripts gives the cross-sectional model:

n Yijk = ¥ + S + €5k (3.37)
L cohort oriented version of (3.37) is not considered here because of
the evident lack of longitudinal regularity (figure 3.12).

Model (5[57} preoduces & rather poor fit to the Swedish data, for

both males and females, as may be seen from table 3.4. Generalising

the Gompertz to include a guadratic dependence on ages

2

n vs + aj.ai + ¢j.ai + e (3.38)

L= U, ..
Jk ] 1ik
improves the fit considerably. Model (%.38) asserts that time-period
rather than cohori-specific factors are in operation: these time-
period factors could include wars, famines, epidemics, sanitary

conditions, etc. The follewing section suggests some possible cohort

factors which might be operating in addition to period factors.

3.5.2 Additive age, period and cohort effects.

Many researchers have analysed aggregate level mortality data
using age, period, cohort model (3.10) (with ¥i 5k denoting a general or
cause specific mortality rate); for example : Greenberg et al (1950);
Sacher (1957, 1960, 1977); Beard (1963); Barrett (1973, 1978a, b); Osmond
and Gardner (1982). 1Ineachcase the intention is to galn insight

into disease processes., For the present data cohort factors may
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Degrees of Freedom

HDguation 5 5
Number NModel Sex Model Data R R ..
adj
Gompertz
3,37 linear age B 50 300 . 961 <953
M 50 500 974 969
3,38 Guadratic age F 75 200 997 .996
M 5 500 - 999 « 999
Additive age,
period, cohort.
%,10 Age, period B 70 500 «998 997
cohort
M 70 300 -998 997
2,11 Age,period i %6 500 0997 « 997
M 36 300 994 - 99
5012 Age, cohort I 47 300 .995 .994
M 47 500 «994 995
Cohort~experience:
Selection and debilitation.
3.39 Proportion ¥ 37 254 .998  .998
surviving
M 57 254 <997 996
340 Log proportion F %7 2%4 <999 .999
dead
M 57 254 +999 +999
Bimodel
3.17 periods F 7 300 .999 .99
M 71 500 »999 +999
%.18 periods Foa M 95 600 <999 -999

Table 3%.4: Goodness, of fit for models fitted to the Swedish mortality
data. R" is the proportion of wvariance in log mortality
rates explained by the model. R34+ adjusts for the degrees
of freedom in model and data (equation (2.1) ).
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include lifetime experiences up to the age of 30 vears, since this is
where the present data commence. HNutritional standards and exposure
to disease may have a lasting effect on an individual, particularly
those experienced during childhood. This appears to be particularly
true for moritality from tuberculosis (Sacher, 1957, 1960, 1977; Mason

and

U

. : A B . 5 3
mith, 19793 see also Chapiter 1 above)}, Period factors may
include famines and epidemics as well as medical innovation, and the
biological process of ageing clearly represents an age factor.

es

oot

Fitting model (3,10) to the present data for males and fema

separately produces a good fit (table 3.4). The age, period submodel

. N~ o -
(%2.11), however, also produces a high R, but figure 3.11 clearly

does not suggest an additive age, period model on the
for each sex the age siructures are not parallel. This demonstrates

ES) LI} 2 i} } ]
that even very high B values do not necessarily represent a very good

fit when the date are very regular,

595+5 Cohort experience: selection and debilitation.

Model (3%.9) assumes that only experiences below age 30 years have
a lasting effect on individual healthiness. It may be safer to assume
that experiencesafter age 30 years alsc have lasting effects, The
direction of this effect is uncertain since some experiences could leave
the individual debilitated whilst others could improve resistance to
disease, Selectivity represents another type of cohort-experience
factor; those individuals who are more frail are more likely to die
young leaving a relatively less frail population surviving to the
later ages. Vaupel et al (1979) have examined the impact of selectivity
mechanisms on mortality.

To build these cohort-experience factors into a model the propor-

tion surviving from age 30 to age a, $*(a), may be used as & measure
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of the amount of selectivity that has taken place and simultanecusly
as a measure of the exposure to debilitating conditions. Replacing the

fixed cohort effect in (3%.10) with a dependence on $*(a) gives:

‘ *
2o y,.. =p+oa., +B. + 68S,. + ¢g.. (3.39
lek H i i 1k ijk
where S*i'k is the proportion surviving to age a; in cohort k. The
‘?i * "
ik
earliest, incomplete, cohorts were omitted when fitting model {3%.3%9)

since S*i%k cannot be calculated f

or these cohorts using the present
data. It may be seen from table 3.4 that model (3.39) fits about as
well as the additive age, period, cohort model (%,10), but uses only
about half the degrees of freedom. The estimates of 8 are hard to
interpret, being positive for males and negative for females.

Further experimentation with models of the form of (3.%9) reveals

that using log proportiondead in place of proportion surviving:

%
in Vi = M T Bj + 84n (1 - Sijk) + €5 ik (3.40)

produces an even better fit., The 6 estimates are more easlly inter-
preted with this model being .64 for males and .78 for females,
suggesting that high previous mortality predisposes towards high
subsequent mortality in a cohort, through the debilitating effect of

poor nutrition and disease,

%.5.4 The bimodel

As for the other data analysed in this chapter, these data exhibit
a gradual transformation from one cross-sectional pattern to another
(figure 3,11). The bimodel (3.17), with Yi ik denoting a mortality rate,
may be applied to these data, for each sex separately. Although for

each time-period the mortality age structures for males and females

differ, the general trend towards reduced mortality especially at the
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younger ages 1s common to both sexes, suggesting bimodel (5m18> for
both sexes simultaneously. All these bimodels fit the data well
(table 3.4), the both-sex bimodel (3.18) being more efficient with
degress of freedom,

The biplot corresponding to bimodel (3.18) is given in figure 3%.13%.
The male and female age markers are very close above age 55 years,
reflecting a siight excess in male mortality which diminishes with time.
Below age 55 the differentials between the sexes are greater, but these
also diminish with time. The curvature in the age markers reflects the
greater fall in mortality for the younger age groups. The pericd
markers show that these trends had begun by 1806 but halted in 1821
and did not continue their path until the 1850s., The direction of the
period markers indicates that for all age-sex groups, mortality was
declining up to 1916, when the first World War and its aftermath
appear to have reversed this trend.

Bimodel (5,18) asserts that primarily period-specific causes were
responsible for the above trends. Declining mortality at the younger
ages suggests that improving standards of hygiene and nutrition were

largely responsible.

+ 0.5 Summary of models of mortality,

The Gompertz model (%.38) and the bimodel (3.17) make the same
substantive assertions: that time-period influences are responsible
for the changing level and structure of mortality in the Swedish data;
and there is little to choose between the two in terms of fit. The
bimodel has the advantage that for both sexes combined, model (3,18)
has only two parameters for projection whereas the Gompertz model (3.38)

has slx.

The additive age=-period-cohort model (3.10) and the cohort-
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experience models (3.39) and (3.40) produce fits which are as close as
those of the Gompertz (3.38) and bimodel (%,17), but make quite
different substantive assertions. The interpretation of models (3%.10),

(3.%9) and (3.40) is not easy: the effects of age, period and cohort

factors in model (3%,10) are inestimahle, and the sensitivity of the

3

x

cohorti-experience parameter in (5a39> and (5@40> to changes in the
functional form of the cohort-experience covariate is not at all
reagsuring. Model (3,40), however, does make Teasonable substantive
assertions, and the parameter estimates are in accord with intuition:
that high mortality up to any age leads to high subsequent mortality.
Model (3.40) also has the property that only one period parameter
need be projected for each sex: given the similarity in period trends
between the sexes, it looks as if a model which contains only one period
parameter for both sexes combined might be developed from model (3.40).
That so many models fit this data extremely well is probably due
to the small number of cells associated with each time-period: better
discrimination between models might be attainable on the basis of
single~year age-specific mortality data. It would also be interesting
to compare these models for cause~specific mortality data: in particular
different disease processes could indicate different formulations of

cohort-experience type models.
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3,6 Conclusions.

Several models or types of model have been fitted to a variety
of aggregate level data above., The purpose in doing this was not
simply to find explanations for these particular data sets, bubt to
draw some wider conclusions concerning approaches to constructing and
evaluating models of aggregate level demographic data in general,
This section aims to draw together the experiences and results of this

chapter under three headings: sirategies for comparing models

e

evaluation of modelling strategies; and summary remarks.

3.6.1 Strategies for comparing models.

As stated in section 3,13 above, models should be compared on
the basis of two criteria: goodness-of-fit and interpretability. The
results of this chapter throw considerable light on how these two
criteria should be evaluated and compared.

The very high degree of regularity in each of the data sets above,

particularly when viewed from a cross-sectional perspective, suggests

e

that very close fits should be attainable. In most cases very high

2 . i . . e -
R~ values have been obtained, but these can be deceptive: this is well
illustrated by the additive age-period model (3.11) applied to log

. . . - Ca L2 - .

mortality rates in section 3.5.2, which gives an R” value of ,997 for
females despite the evidently non-parallel age-profiles of the log
rates in figure 3,11. TFurthermore, all of the models produce clumping
in the residuals: that is, areas of the datae table which are consistently
underestimated, or consistently over-estimated; although the clumping
is generally less severe for the better fitting models., Thus even the
best fitting models fail to capture all the systematic variation in

the data,



Closeness of fit is influenced by model degrees of freedom: as

©

general rule, any model can be made to fit well by incorporation of
sufficient period, cohort or age parameters, In order to take degrees
. . , e w 1 .
of freedom into account, the adjusted R statistic defined in eguation
(3.1) is presented in tables 3.1 to 3.4. However, as may be seen from
these tables, this statistic does not seem repsonsive enought to
degrees of freedom and rarely alters the ranking of models implied by
3 . "‘2 : : s y Fa TS - FAR 2
the unadjusted R statistic, Other methods of taking degrees of freedom
into account alsoc failed to produce satisfactory results,
Discrimination between models on the basis of fit is further
impeded by the fact that often several equally well fitting models
exist for one data set, This is particularly evident for the male
mortality data of section 3.5, for which no fewer than three models

2 o
score an R~ value of ,999 in table

ola

A

Thus itis seen that goodness~of-fit cannot be relied on toisolate
one good model for a table of vital rates. The R2 value may however
be useful in eliminating models which fit badly, and models with large
numbers of degrees of freedom may also be discounted.

Interpretability is a much less tangible quality, and may be
thought of as comprising two separate components: the intuitive
reasonableness of the theoretical foundation of the model, and the
extent to which the parameter estimates may be reasonably interpreted
in terms of that theoretical foundation. 4 model which does well in
terms of the first of these components should make substantive asser—
tions which strike a delicate balance between being too vague to be of
any practical use, and being so specific that no account is taken of
other processes which might well be of importance, The second
component, concerning parsmeter estimates, can provide an acid test of

the viability of a model: for example & model of fertility which
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produces estimates of target fertility which are either negative or
greater than a certain amount would be immediately dismissed,

Interestingly in practice there seems to be a trade-off bebween
goodness-of~-fit and interpretability; for example, one of the most
interesting and interpretable models discussed in this chapter is the
achieved fertility model (3,22}, yet its fit is not good. This trade~
of{ is probably mainly due to the greater flexibility available when
formulating models whose substantive assertions are very vague,

In concluding this subsection, it may be said that models of
aggregate level demographic date may be compared only by an informal
and intuitive balancing between closeness~of-fit, model degrees of

freedom, reasonableness in theoretical assertions, and consistency

of parameter estimates with those assertions.

3.6.,2 Fvaluation of modelling strategies,

The experiences of this chapter may be drawn together in order
to evaluate various aspects of modelling strategy. Firstly the case
for period factor effects versus cohort factor effects may be examined.
The raw data themselves, in each of the data sets analysed, exhbit
much greater regularity within periods than within cohorts. This may
be seen in figures 3.4, 3.5, 3.11 and 3,12, 1t is hardly surprising
therefore that cross-sectional specifications fit better than longi-
tundinal specifications. In all of the data sets considered, the most
recent cohorts are incomplete -~ as 1s generally the case for census
and registration based data, A1l models fitited which contain cohort
specific parameters produce very unstable and gquite uninterpretable
parameter estimates corresponding to these incomplete cohorts, and this
also means that the closeness—of-Tit of these models is artificially

high., The instability of longitudinal specifications leads Brass (1974D)

¥
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to advocate the use of cross~sectional specifications for projections.
Thus, if a choice must be made between longitudinal and cross-secticnal
specifications of a model, the latter should be preferred.

Secondly, the question of whether age, period and cohort factor

effects should be simultaneously built into a model may be addressed,

The experience here seems to suggest that such factors can be usefully
considered simultaneously, althcugh automatically including all such
dimensions is of little value, and this is well illustrated by the six=-
factor model (3.2%) of legitimate fertility. The cohori-experience
models demonstrate the variety of ways in which age, period and cohort
can be combined. However, the period oriented bimodel generally fits
as well as any age, period, cohort formulation, and the structure of
the bimedel is in accord with many substantive mechanisms which would
be expected to produce different age-structures at different times.
Consequently, a clear case for the existence of any substantial cohort
phenomena in addition to period phenomena cannot be made on the basis
of the analysis above,

Thirdly, the way in which factors should be represented in a model
may be considered, It may be said that none of the data sets examined
above provide any real evidence of the existence of additive period or
cohort factor effects on the scale of log rates, Furthermore, none of
the substantive arguments lend much support to the notion either,

although as a first approximation an additive period effect can be

)

). T

AW

useful, as in the achieved fertility model (5*2 > bimodel, and
mathematical trend curves such as the Gompertz, when applied crosg-
sectionally, do accommodate time-period factors which do not have an
equal effect over all age groups within & time period; equally the
cohort~experience models allow for cohort oriented mechanisms which do

ey

not produce equal effects over all age-groups within a cohort, These
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non~constant effect models are more reasonable intuitively, and also
often fit better than models containing simple additive period or
cohort factor effects.

If theoretical arguments suggest that age,period and cohort
factors should be simultaneously represented in the model, then the way

in which they are combined should be as simple as possible without being
grossly inconsistent with the theoretical considerations: a certain
amount of inconsistency may be tolerated in the interests of simplicity
and interpretability, as in the case of the achieved fertility model
(5@22) in which the possibility of a time-varying existing-children=
effect is not accommodated. As intimated above, simply adding age,
period and cohort factor effects together is perhaps too inconsistent
with theory to be useful, and the attendent identification problem

prohibits any compensation in terms of interpretability. Moreover,

simply assigning some parameters to periods and others to cohoris in
a theoretically based model age~schedule can produce serious inter-—

pretational difficulties, as in the treatment of the Coale-FcNeil (1972)
model in section %.2.1 above,
Fourthly, the relative merits of the theoretical and the descriptive

b

approaches to modelling may be assessed. On the one hand, a purely

;

theoretical model (such as the versions of Le s (1977, 1980) model
(3.22) and (3.%3) ) maywell fail to correspond to the data; and on the other,
a model such as the bimodel (which might be suggested rurely on the basgis
of the observed irends in cross-sectional agemstructures) perhaps says
too little about what types of period factors are involved, although

the parameter estimates might lead to hypotheses, Interestingly, with

highly aggregateddata, it seems unlikely that an age, period, cohort

formulation would adopted through a purely descriptive approach,
since clear differentiasls attributable to each dimension are generall
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difficult to pick out by eye: indeed any cohor -gpecific component to

a model could be re-expressed as a form of age~ period interaction.

By definition, therefore, age, period, cohort formulaticns are theoret—
ical. Conversely, theoretically it is hard to ignore altogether
cohort-related phenomenon, Consequently it seems as though the two

approaches cannot lead to the same model.

3.6.%  Summary remarks,

hggregate level demographic data must surely conceal a wealth of
important and potentially illuminating differentials on unmeasured
vaeriables, produced by a great complexity of causal processes. In fact
the observed high levels of regularity across age (or duration)
dimensions is itself evidence of a smoothing effect obtained from using
an imprecise control for underlying variables. In these circumstances
it is reasonable to ask whether there is any point in constructing
inevitably vastly over-simplified theoretical explanations of the data,
The answer lies in the hope that 'aggregate level substantive phenomens’
exist; that is, causal mechanisms which dominate the variation in
aggregated data. In this chapter the search for aggregate level
phenomena has led to some interesting yet equivocal hypotheses, and
perhaps more importantly, some sound perspectives on modelling highly
aggregated demogravhic data,

The regularity across age or duration dimensions provides an
impetus to discover an extremely well fitting model, In fact, it is
not difficult to find several models of the same data having very high

~

2 . . . . . ; N .
R values, but it seems impossible to capture all of this regularity
since residual patterns persist. This represents a double blow to the
hopes of discovering a unique theoretical explanation - of the data,

Consequently purely objective criteria cannot be relied on to

distinguish between models, and subjective assessments involving
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interpretability and substantive reasonableness must be heavily relied
upon, Even so, for a given set of data, there is generally no one
model indicated.

Accepting then, that there may be several egually good explanations
of the data, it is still possible to use a theoretical model to examine

the implications of theoretical assertions rather than to validate

them, Por example, Lee's (19?7, 1980) model (3.%3) may be used to
estimate trends in period target fertility, on the assumption that such
a concept has wvalidity. Such an approach can lead to much deeper
interpretations and more useful insights than woulda more descriptive
approach, as is well illustrated by the cohort-experience models of
marrisge and fertility. These interpretations however can only be
held tentatively until suitable individual level data can be found to
test the model.

The theoretical arguments in the preceding sections suggest that
additive period or cohorit factor effects are often scmewhat
implausible and that period factors are more easily defined and probably
more powerful than cohort mechanisms, although it is generally more
reasonable to accommodate both period and cohort related factors. The
cohort-experience models possess all of these desired properties, and
usually produce highly interpretable estimates (unlike the additive
age, period, cohort model (3.10) whose parameters are not even
estimable), even in the case of Lee's (1977, 1980) model (3.%3) which
does not fit at all well. However, this is not always the case:
mortality cohort-experience model (%.39) is evidence of this. MNoreover
the slight change in specification of this model (3.39) to produce

model (5¢40) gives quite different results for males: also the achieved

-

ertility model (3.22) gives unstable parameter estimates when estimated

on the basis of a subset of the data, Thus it is suggested that steps
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are taken when usuing a cohort-experience formulation to investigate
the robusitness of the model to minor modifications in its algebraic
structure and in its data base.

There are also attractions in using a less theoretical, more
descriptive model such as the bimodel. To begin with, the cohort-
experience term in the cohort-experience models approximates an age-
structure, and consequently it could be held that the cohort—experience
models sometimes accommodate the data simply because they approzimsie
the two age-structure formulation of the bimodel. The bimodel, by
making only weak substantive assertions, can in principle refleci a
large number of causal processes, although the depth of interpretation
may be limited. The bimodel is therefore less pretentious in a sense
than the more theoretical models. The graphical capability of the

bimodel, and its ability to easily incorporate both sexes, represent

additional advantages. The Gompertz model essentially fulfills the
same role as the bimodel, and has the advantage that it does not require
age parameters, and the disadvantage that it generally requires ithree
period parameters to achieve the same closeness—of-fit as the two period
parameters of the bimodel, thus making projections less reliable,
Interestingly the algebraic structure of the Gompertz model is not
dissimilar to that of the cohort-experience models above, and as such
these cohort-experience models represent generalisations of the Gompertz.
Murphy (1982) has developed other generalisations of the Gompertz.,

Both the bimodel and the cohort—experience models must sometimes
be fitted to a subset of the available data. Uhen the earliest cohorts
in an age by periocd array are missing, the use of the Singular Value
Decomposition in fitting the bimodel pronibits the use of the earliest

incomplete periods, When the younger ages of the earliest cohorts sre

missing, the cohort-experience component in the cohort~experience
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models cannot be calculated, and so those early incomplete cohorts
must be omitted. However, provided a long run of data is available,

neither of these limitations should be of great consequence.

i~

t would be interesting to apply the modification of Hernes (1972)
model (3.16) and the achieved fertility model (%.22) to data from other
countries. It would also be interesting to compare the cohort-
experience models and the bimodel in relation to projection. To do
this properly it would be necessary to try to link trends in period
parameters with external datae including macro-economic indicators,

The two-sex bimodel would have an advantage over the cohort-experience
models applied separately to each sex, through having only two period
parameters to link externally. However, the achieved fertility model
(3,22) has only one period parameter, and this could prove to be a
powerful tool for projections. Projections are inevitably subject to

ore 1t is perhaps not important that

-~

wide margins of error, and theref

o

model (%.22) does not fit as well as other models of the same data.

N
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Chapter 4 - Proportional hazards models of World Fertility Survey
data using birth-hirstory covariates.

4,1 Introduction

As seen in Chapter 3 above, there are severe limitations on the
depth of reliable interpretation obtainable from highly aggregated

demographic data. This is principally for two reason: firstly,

n

realistic hypotheses usually involve unmeasured factors (such as the
marriage model of Hernes (1972), which is based on '‘marriageability!
and 'pressure to marry'! factors); and secondly, several quite different
hypotheses can usually be found which fit the data equally well., In
this chapter, individual level fertility data from a wide variety of
World Fertility Survey (WFS) countries are analysed. The larger
number of wvariables available with the date permit a much greater
depth of reliable interpretation.

The approach in this chapter is to attempt to find a 'universal’
model of fertility in developing countries. Such a model (if it
exists) could provide valuable insights into mechanisms affecting
fertility, and provide a firm basis for projection and for comparisons
between countries. Casterline and Hobcraft (1981) have also set out
withthis aim, using variables derived from the birth-history including:
tage!variables {age, duration of marriage, duration of motherhood)s

'age-at-entry' variables (age-at-marriage, age-at— motherhood )

.

‘cohort' variables {birth~cohort, marrisge-cohort, motherhood~cohort )
and time-period. These and other varisbles calculated from dates in
the birth-history may be referred to collectively as ‘birth-history
covariates', The attractions of using birth-history covariates are
that they are well-defined, generally well~measured, and can reflect

underlying factors of fertility which have been poorly recorded or
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or which have not been recorded at all, The disadvaniages are that they

cannot themselves be congidered to be direct causal factors, and th
can be no guarantee thait their relationships with fertility should
have the same causal interpretation for different countries,
The present analysis, like that of Casterline and Hoberaft (1981,
concentrates mainly on fertility differentisls with respect fo birth-
history covariates, although in the present anzlysis a more extensive

set of birth-history covariates and a different fechnigue of analysis
are used. The data used here are, however, the same as those used by
Casterline and Hoberaft (1981), being WFS data from Bangladesh, Columbia,

Indonesia, Jamaica, Jordon, Kenya, Korea, Mexico snd Sri Lanka. Amongst
2 ? 9 J e ]

H*

the developing countries these nine are believed to be geographically,
economically and demographically diverse, and their data are of reason-
able quality and sample size. Any model which holds across such s
diversity of populations might reasconably be expected to hold for

large number of other populations,

some of the birth-hisitory covariates which previous research has
shown to be important in fertility analysis are now discussed,

Numerous researches have demonstrated and modelled the relaition-
ships between age and fertility, (for example: Coale and Trussell,
19745 Page, 1976; Hoem et al, 1981: Casterline and Hoberaft, 1981),

The popularity of the age variable derives partly from its availability
in registration, census and survey data; but its association with
fecundity (Henry? 1961), the biolégic&l ability to reproduce, isg
undoubtedly the principal causal factor underlying the relationship
(although Rindfuss and Bumpass (1978) discuss age effects which are not
simply physiological in origin).

Recent work has shown the importance of age-at-marriage (Ruzicka,

js}

19763 MeDonald et al, 1980; Finnas and Hoem, 1980) and sge-at-mother—
2 2 2
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hood {Bumpass et al , 1978) in determining subseguent fertility., One
explanation {Bumpass et al , 1978) is that early fertility limits the
pursuit of other life options which might later compete with child-
bearing; another is the so-called 'catch-up' effect (Kendall, 1979;
McDonald et al, 1980; Freedman and Casterline, 1981) of more rapid
childbearing among women with later ages-at-marriage or motherhood:
educational attainment may also be reflected in fertility differentials
by age-at-marriage or motherhood,

Duretion of marriage (Page, 1976} and of motherhood (Casterline
and Hoberaft, 1981) have also been shown to be associated with fertility,
Coital frequency could be partly responsible, but it is possible that
these duration variables are largely a substitute for birth-order.
Braun (1980) demonstrates a dominant relationship between the average
length of previous birth-intervals and current fertility: this variable
is & function of duration and birth-order, and measures previous
fertility levels,

Birth~, marriage~-, and motherhood~cohort may also be useful
variables, although it is difficult to argue convincingly for the
presence of causal mechanisms which would be clearly linked to them.
Hoberaft et al (1979) and Casterline and Hoberaft (1981) suggest
possible mechanisms, but it has not been demonstrated empirically
that they are efficiently represented by the cohort dimensions.

Time~period may act as a surrogate for a whole set of contempor-
anecus influences, including economic circumstances and availsbility
of contraception. Page (1976) and Casterline and Hobcraft (1981)
have c¢learly demonstrated the imporiance of this variable,

Lastly, the time since the previous birth is also responsible
for large differentials in fertility, since within this time fertility

may be affected by post-parium abstinence and amenorrhoes; also



gestation time effectively prevents births occurring within eight
months of the previous birth,

The analysis of Casterline and Hoberaft (1981) does not take
explicit account of birth-order or time since the previous birth:
these are potentially series omissions. Their methodology is essen~
tially multiple classification analysis, in which a model parameter
is assigned to each category of each control (as in the additive age
period-cohort model (1,%) of chapter 1): this is a rather extravagant
use of degrees of freedom in the present circumstances, where a large
number of effects and interactions are to be modelled, The present
analysis concentrates on efficiently parameterising effects and
interactions, and pays particular attention to the effects ofy and
interactions with, birth-~order and time~gince~previous-birth.

The use of 'time-since-previous-birth' indicates a life-table
approach to the analysis of fertility within birth-intervals. Hoberaft
and Rodriguez (1980) and Rodriguez and Hoberaft (1980) have performed
non=-parametric life-table analyses of fertility within birth-intervals
for World Fertility Survey data, controlling for various birth-history
covariables. Finnas and Hoem (1980) and Bumpass et al (1978) have
treated other birth-history data in a similar way. The difficulty
with these non-parametric analyses is that the numbers of women within
subgroups become too small for useful analysis unless the number of
control variables is strictly limited (to about two variables) and the
number of categories for each control variable is also strictly limited
(to at most four categories).

Because of these limitations, several researches have attempted
to model birth~interval life-tables, so that only two or three
parameters are needed for each subgroup., Hoberaft and Rodriguez (1980)

make a start at this, suggesting several possible models. Their
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attention, however, is focussed on capturing the general shape of the
hazard function (see definition below) of birth-intervals rather than
on comparisons between subgroups. Stoto and Menken (1977) attempt to
build a model of the birth-interval hazard function from substantive
considerations; agaln, their interest is with what happens within

the birth-interval rather than between subgroups. The present analysis
requires a model which parameterises efficiently not only the hazard
function, but also the impact of birth~history covariates on the shape
and level of the hazard function.

Braun (1980) represents the birth-interval density function with
a Gamma density; this analysis incorporates birth-history covariates
in the manner of a regression, but is applicable only to closed birth~
intervals - that is, birth-~intervals which are terminated by a
subsequent birth., This approach is inappropriate to the present data
in which many birth~intervals are censored (i.e. terminated by inter-
view): omitting the censored birth-intervals can cause series biases.
Nevertheless this approach is much closer to the present requirements.
Braun and Hoem (19?9) model the birth~interval hazard function using
a Gamma distribution, where birth-intervals may be either closed or
censored, but the algebraic structure of their model does not easily
generalise to accommodate covariables,

Cox (1972) sets out a much more general class of life-table models,
called 'proporticnal hazards' models, incorporating regression on any
choice of covaridles and applicable even in the presence of censoring.
These models are therefore ideally suited to the present regquirements.
Menken et al (1981) have used proportional hazards models to investi-
gate socio-demographic influences on marriage dissolution. 4 general

class of proportional hazards models may be written:



- 157 o

tn A(t) = B' X(t) (4.1)
where A(t) is the hazard at survival-time t (that is, the instant-
aneous rate of decrement from the life-table population, due to the
event of interest, t units of time after the start of the life~table),
8 is & vector of parameters and E(t) is a vector of covariate values
at t. (Expression (4.1) implies that the survival-time main-effect
term, usually referred to as the 'baseline hazard', is parameterised
as a linear combination of known functions of survival-time. Cox (1972)
does not attempt to parameterise the baseline hazard, reating it as
a nuisance function. For present purposes, however, the shape of the
baseline hazard is of interest).

In the present context, the life-table population comprises a
set of individuals about to commence a birth-~interval, the event of
interest is a subsequent birth, censoring occurs when the interview
occurs before a subsequent birth, and the hazard at t is the instant~
aneous fertility (or 'force' of fertility) t units of time after
commencing the birth-interval amongst those individuals who have
survived to time t (i.e., who have not been removed from the life-
table population before time t by interview or by a subsequent birth).
Note that, for present purposes, a woman may represent more than one
‘individual' if she has more than one birth-interval; for each birth-
interval her covariates X may take different values (for example, one
covariate could be birth-order).

Now the birth-history covariates discussed above may all be
considered as fixed for an individual within the birth-interval (even
age and duration of marriage or motherhood, which actually vary with
survival-time, may be accommodated within this framework, as will be

shown below), and it is both realistic and efficient to assume that



the effects of these covariates on the hazard function vary smoothly
with survivial-time., Consequently the model required here should be

in the form:

fn A(t)= u(t) + B'(v) X (4.2)

where u{t) is the baseline hazard, B(t) is a vector of the effects of

X, the fixed covariates, and u(t) and all the (%) are smooth functions
of t., Now model (4.2) looks rather different to model (4.1), but it

is demonstrated in appendix 4.8 that provided that each of the functions
w (t), B(t), is 2 linear combination of known functions of survival-
time, then (4.2) is a special case of (4.1). Choosing an appropriate
functional form for wu(t) and B(%t), for example a cubic polynomial,
will ensure their required smoothness. Polynomials, however, are likely
to produce undesirable characteristics at the extremes of survival-
time; consequently the functional form of & cubic spline with 'knots?

at 10, 20, 40, and 80 months survival-time is chosen., Purther details
of this are given in appendix 4.B but for the present all that need be
understood is that each of the functions u(t), 8(t) is completely
determined by specifying the values of four model parameters which

N

ent the function values at 10, 20, 40 and 80 months survivale

]

repres

{

time; the function values at other survival-times being generated by
drawing a special type of smooth curve {called a cubic apline) through
these four known points. This parameterisation permits efficiency and
flexibility in accommodating the data,

Cox (1972) maximises a 'partial' likelihood function to estimate
the parameters of model (4,1). This is not convenient for the present
data and models, and instead an approximate maximum likelihood solution
is obtained, as described in appendix 4.Abelow,

Model (4”2} provides a framework for a wide variety of specific-
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ations. For example, age-ai-marriage may be represented by a set of
dummy covariates, one for each five year category of age-at-marriage;
alternatively and more efficiently, a guadratic or even simply linear
dependence on age-at-marriage may be utilised, Variables such as age,
or duration of marriage or motherhood, which vary with survival-tine,
may be accommodated within the model by replacing them with their values
at the start of the birth-interval. For example, for a linear
dependence on age, this substitution does not affect the estimated age
effects, although it does affect the baseline hazard,

Agiol

Y

Sets of wvariables such as age-at-marrisge, marriage duration
Bges or birth-cohort, age and iTime-pericd; are logically related since
in each case the third wariable is equal to the sum of the other two.
If all three variables in a logical relationship are included in the
model then estimation problems arise (see Chapter 1). In the
present analysis this problem ilg avoided by including at most twe of
a set of three logically related variables., Since, for the greater
part of the analysis, only linear dependences on birth-history
variables are utilised, and since a linear dependence on any two of
the variables in a logical relationship automatically embodies a linear
dependence on the remaining variable, thenthis procedure does not

represent any disadvantage to the omitted variable.

In the sequel 2 'current' birth-interval is a birth-interval
contributing to the life-table population currently being investigated;
the 'previous' birth-interval is the birth-interval immediately
preceding the current birth-interval; a 'prior' birth-interval is any

b . . . g s th
birth-interval which precedes the current birth-interval; and the k

1}ﬁh birth

birth-interval is the birth~interval following the (k -
(or marriage or first union if k = 1),

In this section a class of proporiionsl hazards model {4@2} with
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survival~time varying covariate effects has been developed, and the use
of covariates constructable from the birth-history has been discussed.
The following section, 4.2, outlines the stages gone through in select~
ing from these covariates to derive a final model of the form of (4.2)
applicable to all nine countries analysed here., The emphasis in this
derivation is on the extraction of patterns, and detailed interpretation

of the intermediate and final models is postponed until section Aa¥e
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4,2 Deriving the Model.

There are a large number of effects and interactions which could
be present in the data, but it is not practical to look for them all
simultanecusly as this would involve excessive computation. Therefore,
the initial stages in the analysis reflect some prior Jjudgements
concerning the likely importance of effects and interactions, although
later étages include checks on some of these assumptions, Specifically,
it was thought that fertility control mechanisms might produce
interesting interactions with survival-itime and with birth-order, and
so these were given full expression where possible. In general only
linear or quadratic relationships with other variables were considered,

The first stage of the analysis involved the use of a forward
selection procedure to indicate terms which help to provide a good
fit to the data. The procedure begins with the baseline hazard, and
at each subsequent step examines each of the remaining terms before
adding to the model that term which gives the greatest improvement in
fit, as measured by the 2 statistic. However, it does not examine
terms already in the model for possible exclusion, and it is possible
that this deficiency could lead to terms of importance being over-
looked,

To begin with, for countries and birth-orders separately, the
forwards selection procedure was used on the linear main-effect variables
listed in table 4.1. Some separate checks indicated that omission of
interactions with survival-time at this stage would not cause any
variable of importance to be overlooked. The results for birth-order
3 (that is, the birth-interval following the third birth) are shown in
table 4.1, KHesults for birth-orders 1, 3 and 5 are given in appendix

tables 4.E1 to 4.E3. The results indicate, for brth-orders 2 to 6,
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Step 1 Step 2 Step 3
Bangladesh ABI 215. FBA,PBA 12, PBI 6.
(PBI)
Columbia ABI 129, FBD,PBD 96, EDU 41,
(PBD, PBA, PBI) (FMD)
Indonesia ABI 251. FBD,PBD 62. FBI,FMD 16.
(FBA,PBA,OBD)
Jamaica ABI 42, FMD 9. EDU 4,
(FBA,PBA, FMA, OBD)
Jordan ABI 55, EDU 47. OBD 13.
(PBI,EDU)
Kenya PBI 109. ABI 14. EDU 11.
(ABI) (EDU,F¥BD)
Korea PBA 187. EDU 117, PBI 27.
(EDU) (ABI,FBA)
Mexico PBA 197, EDU 63. ABI,FBA 64.
(ABI)
Sri Lanka PBA 281, ABI,FBA 65. EDU 31.
(PBI) (FBD, PBD,0BD, FMD) |

FBI

PBI
ABI

FBA
PBA
FMA
FBD
PBD
FMD
OBD
EDU

length of first birth-interval (from first marriage or first
union to first birth)

length of previous birth-interval

average length of birth-intervals between first and previous
births

age at first birth

age at previous birth

age at first marriage or first union

date of first birth

date of previous birth

date of first marriage or first union

date of mother's own birth

length of full-time education

Table 4.1.The first three steps of a forwards selection amongst linear
main-effect terms for birth-order 3, with X2 values corresponding to
the selected terms. Terms enclosed in parentheses have x2 values
within 75% of that for the selected term, and are listed in order of
decreasing X2 . When more than one term is selected in a single step,
this is due to logical relationships between the selected terms

(see section 4,1) Terms with x° < 3.0 are not shown. (Each main-effect
term represents one degree of freedom.)
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that ABI (average length of birth-intervals between first and previous
births), PBA (age at previous birth), EDU (length of full-time
education) and PBD (date of previous birth) are, in that order, the
most important variables to include in the model., For birth-order 1
the pattern is different, not surprisingly since ABI is not defined
for this interval, and other variables are identical to each other;
here FMA (age at first marriage or first union) and FBI (length of
first birth-interval, from first union to first birth) are the most
important.

Purther experiments using the forwards selection procedure
revealed that duration of marriage is unimportant, as are quadratic
components in these variables with the possible exceptions of ARBI
and PBD.

In view of these results, for the next stage, the model:

n A(t)= u(t) + a(t).ABI + B(t).PBA + v(t).PBD + §(t)EDU (4.3)

was fitted for countries and birth-orders separately. (The same
model, but without the ABI interaction, was fitted for birth-order 1,
despite the anomalous behaviour of this birth-order noted above, in
the interests of finding a model consistent over all birth-orders
and countries.) It was found that the ABI and PBA interasctions with

s

survival~time are fairly regular and consistent across birth-orders
and countries, but the PBED and EDU interactions are guite erratic,

Replacing the PBD and EDU fterms with their main-effect counter—

parts ylelds the model:
¢n A(t) = u(t) +a(t).ABI + R(t).PBA + vy.PDB + &.EDU (4.4)
which was fitted for countries and birth-orders separately, and the

results are given in figure 4.1. 41l parameter siructures are broadly

gimilar acrossg countries, excepting Korea. Across birth-orders the
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U(t) and B(t) estimates are remarkably consistent, although the
smaller sample sizes for the higher birth-~orders introduce some

instability. The most striking feature of these results, however, is

ar

the roughly linear trend in the o(t), y and § estimates across
birth~orders. In particular a(t) is roughly proportional to (birth-
order = 1). This is illustrated more clearly for af{20) and «(40)
in figure 4.2. It was found that the addition of quadratic components
to the APT and PED terms in model (4.4) does little to improve the fit,
although the quadratic ABI parameter estimates do tend o moderate
the effects of the larger ABI.

The resulte above suggest that a model for all birth orders

including the first may be constructed as follows:

n A(t) = u(L) + el.BOR + a(t).(ABT + 52).(BOR - 1)

+ 8(t).PBA + y.PBD + 6.BOR.PBD + §.EDU + ¢.BOR.EDU (4.5)

where BOR denotes birth~order. Note that eiis introduced to prevent
the model reflecting the arbitrary normalisations of PBD and EDU given

in table 4.2, and €, is similerly introduced in respect of ABI. Model

(4.5) may be reparamelerised and written:
n A(t) = u(t) + n(t).BOR + a(t).MOD + B(t).PBA

+ y.PBD + ©.BOR.PBD + §.EDU + ¢.BOR.EDU (4.6)

where MOD is duration of motherhood (which appears because MOD is
equivalent to {ABE, (BOR - 1)} ignoring multiple-births), and where

the following parameter constraint holds:

n(t) = e, + ez.oa(t) (4.7)
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Figure 4.1, Parameter estimates from model (4.4). In panels (a),
(b) and (¢), for each country and birth-order, parameter estimates at
10, 20, 40 and 80 months of survival-time are comnnected with straight
lines(although strictly they should be connected with cubic spline
curves)., In panels (d) and (e) straight lines connect parameter
estimates across birth-orders, Vertical lines of length one standard
error are drawn to each side of each parameter estimate, (standard
errors for the baseline hazard are too small to be shown). The scale
for each panel is indicated in its upper right corner. A broken line
indicates that the line should continue, The normalisation of the

variables is given in table 4,2,
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Table 4.2 Normalisation of Variablesa

Variate Location Scale
ABI 3 years 1 year
PBA 25 years 1 year
PBD 1960 years 1 year
EDU 3 years 1 year
BOR 3 1
MOD 10 years 1 year
PBI 2,5 years 1 year
LNPBI n (2 years) 1
CEP 0 1
BFD 0 1

a, For example, EDU is the number of years of

full-time education, less 3.
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Figure 4.2. Estimates of ABI effectsin model (4.4) at a) + = 20
months and b) t = 40 months, across birth-orders. Vertical lines of
length one standard error are drawn to each side of each parameter

estimate. The scale for each panel is indicated in its upper right

corner. Normalisation is given in table 4.2.
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Figure 4.3%. Parameter estimates from model (4.6). For n (t), ﬂ{t},
a (t) and g(t), estimates at t = 10, 20, 40 and 80 months are connected
with straight lines, Vertical lines of length one standard error

are drawn to each side of each parameter estimate. The scale for each

ke

effect is the same for all countries and is indicated for Bangladesh.
A broken line indicates that the line should continue, Normalisation

P

is given in table 4.7.
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Table 4,3 Difference in X2 between model(4.4)fitted to birth-orders
1 to 6 separately, representing a total of 80 degrees of freedom,
and model(4.6)fitted to birth-orders 1 to 6 simultaneously,

representing 20 degrees of freedom.

Country X2
Bangladesh 93.
Columbia 153.
Indonesia 151.
Jamaica 68.
Jordan 99.
Kenya 120.
Korea 200,
Mexico 103.
Sri Lanka 141,
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Fitting model (4n6> with constraint (4.7) is inconvenient
because of the non-linearity of (4,7)@ Alternatively, i:f‘eq and %
are roughly estimated for each country from previous results, then
constraint (4.7) is linear in the free parameters and consequently
less inconvenient. The approach adopted, however, was to ignore
constraint (4.7) temporarily, ardthe resulting parameter estimates

are given in figure 4.3. As anticipated, the n(t) and a(t) parameter

estimates in general reflect relationship (4,7), the only exception
being Jordan where evidently the n{%) parameters are picking up
the slight trend across birth-orders in u(t) in figure 4.1(a).
2

Table 4.3 contains the x differences between model (4.4) applied to
birth-orders separately, and model (4.6) applied to birth-orders
simultaneously. These 2 values are generally in the upper 1% tail
of the distribution and so, on the basis of a strict statistical test,
model (4.4) would be preferred. However, model (4.6) does conven-
iently summarise the results in figure 4.1, and the szalues in
table 4.3 are in general much less significant than the corrected
szalues for the remaining terms in model (4a6), given in appendix
table 4.E4, In balance, therefore, it seems sensible to proceed with
model (4.6).

The fact that relationship (4.7) holds suggests that inter—
pretations should be in terms of model (4¢5) rather than unconstrained

model (4.6), i.e. in terms of factors underiying ABI rather than MOD.

n

The interpretaﬁiou is then as followss ABI is acting as a proxy for
underlying factors such as length of breastfeeding, use of contra-
ception and fecundity; the accuracy with which ABI captures the effects
of these factors increases with the additional information contributed
by each successive birth-interval, giving rise to the dserved trend

of increasing effects of ABI with increase in BCR. This is discussed



in more detail in the next section, and demonstrated algebraically
in appendix 4 .De
If the above interpretation is correct then PBI (the length of
the previous birth-interval) should act as an alternative to ABI, since

it should be able to capture the effects of the factors underlying ABI.

o

However, the effects of PBI would not be expected to increase with
BOR since PBI only ever contains information from one birth-interval,

It would be expected, then, that replacing ABI in model (4@4) with

PBI to give:

n A(t) = p(t) + a(t) .PBI + g(t).PBA + y.PBD + §.EDU (4.8)

and fitting to birth-orders separately would produce parameter
estimates similar to those for model (4.4) except that a(t) would be
unaffected by changing BOR. This would permit construction of a

simultaneous birth-orders model analogous to model (4.6);

gn A(t) = () + n(t).BOR + a(t).PBI + g(t). PBA

+ y.PBD + §.BOR.PBD + §.EDU + 4¢.BOR.EDU (4.9

where, in place of constraint (4.7):

n(t) = n (4.10)

because the second term in (4.9) is introduced only to prevent the
model reflecting the arbitrary normalisations of PBD and EDU. It
would be expected that parameter estimates from model (4.9) would be
similar to those from model (4.6) except that the n(t) estimates
should correspond to constraint(4.10), but the fit of model (4.9)
would be expected to be worse than that for model (4.6) owing to the
omission of information from earlier birth-intervals,

411 of these expectations are fulfilled. The constancy of PBI



- 178 =

effects in model (4.8) across BOR may be seen from figure 4.4, and
the profiles of the unconstrained n(t) estimates from model (4.9)
shown in figure 4.5 are considerably attenuated in comparison with those
in figure 4.3 from model (4.6). Table 4.4 shows that with one
exception model (4.9) does not fit as well as model (4.6)

Model (4.9) possesses a distinct advantage over model (4.6)
despite the fact that it does not fit as well: it is not encumbered
with an awkward non~linear constraint. Moreover, the loss in
precision through using PBI rather than MCD is not great in comparison
to the total explanatory power accountable to MOD, as may be Judged
by comparing table 4.1 and appendix table 4.B4. For these reasons
the ensuing analysis develops model (4.9) rather than model (4.6).

Intuitively a proportionate increase in PBI might be expected
to correspond $0 a proporitionate decrease in current fertility,
indicating a linear relationship between log PRI and log hazard.

This suggests that large PBI might be detrimentally affecting the

fit of model (4.9), and a better formulation would be as follows:

fn A(E) = u(t) + n(t).BOR + o(t).LNPBI + B8(t).PBA
+ v.PBD + 6.BOR.PBD + §.EDU + ¢.BOR.EDU (4.11)

here LNPBI is &n(PBI ~ 6 months), (removing from PBI a conservative
estimate of gestation time)., From table 4.4 model (4.11) tends to
fit better than either (4.9) or (4.6). All parameter estimates in
model (4,11) are similar to those in model (4.9).
Constraint (4.10) is applicable to model (4.11) and table 4.5
shows that the X2 differences produced by this constrainit, and by the
additional constraint ¢ = 0, are small in comparison to the corrected

x? values for other terms in the model (see table 4. ), There is less
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Justification for additionally setting 0 = O, although if this is
done then one could reasonably omit BOR from the model altogether,

by placing n = 0. These results suggest the model:

n A(t) = u(t) + a(t).LNPBI + 8(t).PBA

+ n.BOR + v.PBD + 6.BOR.PBD + &§.EDU (4.12)

and the correctedxz values for terms in this model are given in
table 4.6, from which it may be seen that PBA and especially LNPBT
are much more important than any other terms in the model. Figure

4.6 and appendix table 4.E5 contain the parameter estimates for model

(4.12).
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Figure 4.4. ZEstimates of PBI effects in model (4.8) at 10, 20, 40
and 80 months survival-time, for birth-orders 2 to 6 separately.
Vertical lines of length one standard error are drawn to each side of
each parameter estimate., The scale for all countries is the same

and is indicated for Bangladesh. Normalisation is given in table 4,2,
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Figure 4,5. Estimates of BOR effects in model (4.9) at 10, 20, 40
and 80 months survival-time, for birth-orders 2 to 6 simultaneously.
Vertical lines of length one standard error are drawn to sach side
of each parameter estimate. The scale is the same for all countries

and is indicated for Bangladesh. Normalisation is given in table 4.2.
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Table4 .4 Differences in X2 between models (4.6), (4.9) and (4.11)

fitted to birth-orders 2 to 6 simultaneouslya.

Model (4.6)-Model(4.9) Model (4.6)- Model(4,11)

Bangladesh +33. +269°
Columbia -46. +42°
Indonesia ~99, +232¢
Jamaica —29? —70?’c
Jordan ~-66. -28,
Kenya -40. +41.
Korea -85, -39.
Mexico ~98. -42,
Sri Lanka -125, +39.

a. Birth-intervals commencing with a multiple birth omitted.
b. Adjusted due to one case for which date of first birth is unknown.
c. Adjusted due to birth-intervals where length of previous birth-interval

£ 6 months.
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Table 4,5 Successive xz differences produced by cumulatively placing
constraints on model (4.11)

Constraints
n(t) =n $ =0 0 =0 n=2=0
Bangladesh 18. 1. 51. 6.
Columbia 11, 0. 4, 6.
Indonesia 17. 10. 100, 17.
Jamaica 17. 2. 20, 17.
Jordan 17. 5. 23. 3.
Kenya 5, 5. 24. 7.
Korea 63. 32. 305, 11.
Mexico 27. 0. 20. 8.
Sri Lanka 5. 2. 52. 11,
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Table 4.6 x? contributions of terms in model (4.12)corrected for
remaining terms.

BOR.PBD BOR.PBD

LNPBI PBA  BOR.PBD ;gg ;gg EDU
Bangladesh 632. 277, 51. 77. 57, 2.
Columbia 322. 86. 4. 243, 10, 122,
Indonesia 712, 301, 100. 226. 117. 5,
Jamaica 61. 76, 20. 78. 37. 17.
Jordan 171. 124, 23. 40, 26. 149,
Kenya 322, 56. 24. 24. 31. 7.
Korea 222, 438. 305. 318. 316, 314,
Mexico 427, 345, 20, 169. 63, 23.
Sri Lanka 473. 476 52. 36. 28. 212,




Figure 4.6. Parameter estimates for model (4.12). For u(t), of(t)
and B(t), estimates at t = 10, 20, 40 and 80 months are connected with
straight lines. Vertical lines of length one standard error are drawn
to each side of each parameter estimate. Normalisation is given in
table 4.2, The scale for each effect is the same for all countries

and is indicated for Bangladesh.



Baseline LNPBI PBA
hazard effect effects
n(t) a(t) B(t)
-3, -.0 -y
8
Bangladesh \\
-5, A~.5
Columbia /
_ - ot
Indonesia K\k\\\%
- o -
Jamaica
b o
Jordan g/fwﬂ%M4 a\%NM&\w
» \K%M*xﬂ n
Kenya
. .
Korea K
ek o
ey f\ ey
Mexico g////FW4 xLW*\W
o e
Sri Lanka h\x\*\x
- .

Figure 4.6: Parameter estimates from model (4.12)

5|= BOR

=< PBD

@ BOR.PBD
w|oEDU

.01

.03



- 189 -

4o5 Discussion

4.3.1 Adequacy of the model,

To some extent the motivation to discover a universal model has
led to a rather forced application of model to data, notably in the
case of Korea which resists most attempts at model simplification
(see tables 4.3 to 4.5). Considering however the geographic, ethnic
and soclo~economic diversity between the nine countries involved in
the analysis, the degree to which they support the same medel is
encouraging; moreover, the similarity between all countries except
Korea in survival-time profiles of parameter estimaies lends further
support to the notion of a common model.

So far the analysis has not allowed for interactions other than
with survival-time or birth-order, Interactions with current time-
period, or PBD, might be anticipated however, reflecting changes in
family building patterns brought about by various aspects of modern-
isation. To indicate the presence of such interactions, model (4.12)
without its PBD terms was fitted to that part of each birth-interval
for each woman which falls within the five vears before interview.
The resulting parameter estimates were virtually no different than
those based on the full data, apart from some slight instability in the
LNPBI effects which may be seen by comparing panels (a) and (b) of
figure 4.9, This indicates that model (4.12) adequately incorporates
time-period influences.

Some loss in precision results from using PBI in place of ABI in
model (4.6), although this is regained by using LNPBI instead (table
4,4)~ This suggests that birth-~intervals prior to the previous one
contain useful information about the current birth-interval, but that

ABI is not the best way of combining this information. Intuitively
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it might be expected that of the prior birth~intervals, ithe previous
one would be most relevant to current fertility. To explore this
possibility, correlation coefficients between birth-interval lengths
have been constructed and are given in table 4.7. (To avoid select-
ivity bias, due to the fact that only the shortest of the more
recently commenced birth-intervals are completed before interview,
all birth-intervals commenced up to 100 months before interview have
been omitted from this calculation, as have been all those of length
greater than 100 months). Generally the greater the differences in
birth~orders, the lower is the correlation between corresponding
birth~interval lengths. All this suggests that perhaps the logarithm
of a weighted geometric mean of prior birth-interval lengths would

be an efficient way of summarising their information about current
fertility (i.e. a weighted average of log birth-interval lengths,
with higher weights assigned to the more recent prior birth-intervals
to reflect their greater relevance to current fertility). However
these refinements must await further research,

The correlations between birth-interval lengths may seem
surprisingly small considering the large corrected szalues in table
4.6 for LNPBI in model (4,12). Appendix 4C shows theoretically that
the correlation between two ad jacent birth-interval lengths should be
approximately {nm(l year)/}}, and the empirical results in table 4.7

and figure 4.6 are consistent with this relationship.

4.%3,2 Biasing Mechanisms

Age and the length of the previous birth-interval appear 1o be
the key determinants of current fertility. Variables such ag fecundity
(the biological capacity to reproduce), coital frequency, and ability

to breastfeed probably depend on age, and so it is possible that age
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Table 4.7 Correlations between birth-interval lengths for birth-orders
(BOR) 1 to 42,

Bangladesh Columbia Indonesia

BOR 2 3 4 BOR 2 3 4 BOR 2 3 4
1 .20 .14 .04 1 .18 .13 .04 1 .18 .13 .11
2 .26 .13 2 L1711 2 .18 .14
3 .21 3 .12 3 .19

Jamaica Jordan Kenya

BOR 2 3 4 BOR 2 3 4 BOR 2 3 4
1 03 ~.02 ~-,01 1 .07 .05 .07 1 .09 .08 .05
2 .01 .07 2 .01 .02 2 .15 .05
3 .04 3 .08 3 .04

Korea Mexico Sri Lanka

BOR 2 3 4 BOR 2 3 4 BOR 2 3 4
1 .10 .12 .10 1 .09 .07 .08 1 .12 ,09 .07
2 .08 .05 2 .06 .09 2 .14 .14
3 .10 3 .17 3 .14

a. For women reaching Sth birth whose birth-intervals for birth-orders

1 to 4 are all

interview (to avoid selectivity bias due to censoring).

<

<

100 months and whose 4th birth was >

100 months before
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effects reflect all of these factors., The role of the other variable,
the length of the previous birth~interval, however, is quite different:
it cannot be considered to be a cause of factors underlying current
fertility, but it is a consequence of them.

Before attempting to associate possible causal factors with the
observed survival-time profiles in the parameter estimates, it is
important to gain understanding concerning the potential direction
and size of various sourcesof bias.

The age-~related factors listed above would all be expected
ultimately to affect the length of the current birth-interval. Since
age would not normally be much different for the previous birth-
interval, it is reasonable to suppose that the length of the previous
birth~interval reflects some of the current age-related factors,
perhaps to a large extent. The length of the previous birth-interval
may also reflect other factors of current fertility: consequently it
is likely that age effects would tend to be diminished when controll-
ing for the length of the previous birth-interval.

Now the length of the previous birth-interval undoubtedly also
contains a component of 'noise! due to factors which have no bearing
on current fertility. The consequent correlation between the length
of the previous birth~interval and its noise component will produce
biased parameter estimates: this is analogous to the classical
'errors-in-variables' situation (Kendall and Stuart, 1951). As a
result of its noise component, the length of the previous birth-
interval does not controel precisely for its underlying factors, and
this will tend 1o moderate its ameliorating action on the age effects,
described above. The 'errors-in-variables' biases are demonstrated
in panel (a) of figure 4.7. The solid diagonal line represents the

expected value of the length of the previous birth-interval variable
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(LNPBI) given the value of one factor which underlies it, at the

start of the birth-~interval, controlling for age. The presence of
noise, which is assumed at the start of the birth~interval to be
distributed symmetrically and independently of the factor, produces
the initial joint probability density of the factor and LNPBI, which
is indicated on the figure by ellipses representing its contours;

note that for each value of the factor, the contour lines are
symmetrically placed about the solid diagonal line, reflecting the
assumed symmetry and independence of the noise. Now for each value

of LNPBI, the contour lines are symmetrically placed about the broken
diagonal line, not the solid one. The expected value of the factor
given LNPBI is therefore biased in comparison to the factor value which
would be associated with LNPBI in the absence of noise. The presence
of noise therefore causes factor differences to be underestimated
(because the solid diagonal line is steeper than the broken line)

and consequently the impact on current fertility of factors underlying
LNPBI will be underestimated,

As survival-time increases, controlling for age and LNPBI, the
level of the factor underlying LNPBI is reduced through the tendency
for individuals with high factor scores 1o be removed from the birth-
interval at the shorter survival-times. Simultaneously, and for the
same reason, the variability in factor levels within these controls
is reduced, and ultimately vanishes. However, no such selectivity
mechanism operates on the noise component, since it is independent
of current fertility. As survival-time increases, the noise component
maintains its independence of the factor, and its variability is
unaffected. Ultimately, therefore, LNPBI will reflect purely noise,
and at intermediate survival-times the joint probability density of

LNPBI and the factor will take the form indicated in panel (b) of
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figure 4.7. The solid diagonal line and the broken line represent

the same relationships as in panel (a), for a survival-time greater
than zero., The broken line is now even less steep than before, and
consequently the impact on current fertility of factors underlying
LNPBT will be even more severely underestimated. Thus, as survival-
time increases, the baseline hazard should become increasingly negative,
and the effects of LNPBI should disappear. This is an agreement with
the results in figure 4.6.

From figure 4.7, the size of biases are determined by the relative
size of the variance in the noise component in comparison to that of
the underlying factor, The low correlation between birth-interval
lengths (table 4,7) suggests that the noise component is relatively
large, and this indicates the LNPBI severely underestimates the impact
of factors which it reflects. By using information from several prior
birth~intervals when measuring previous fertility, the noise variance
is reduced and the effects of previous fertility are correspondingly
increased, providing less biased estimates of the impact of factors
underlying previous fertility. This is in agreement with the results
of figure 4.1(b).

The large noise component of LNPBI means that LNPBI exerts little
control over age~related factors initially, and this control becomes
inereasingly ineffective as the noise content of LNPBI increases with
survival time. However, the trend of increasing PBA effects with
survival-time cannot be attributed to the increasing inability of LNPRI

to control for age-related factors, since the age-only models

n A(t) = u(t) + B8(t).PRA (4.13)

produces age-effects which are similar to those obtained from model

(4.12), as may be seen from figure 4.8, Now the rapidity with which
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Figure 4.8, Effects of PBA from a) model (4,12) and b) model (4.13).
Parameter estimates for R(%) at t = 10, 20, 40 and 80 months are
connected with straight lines., Vertical lines of length one standard
error are drawn to each side of each parameter estimate. The scale

is indicated in the upper right corner of the figure.
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the age~effects increase with survival-time seems to rule out a purely
behavioural explanation; this could, however, be explained by age-
related infecundity. Infecund individuals can only be removed from the
birth-interval by interview, and so they tend to sccumulate at the
higher survival-times. If infecundity following the previous birth is
related to age, then initially, and increasingly with survival-time,
the age-effects will be dominated by the proportions fecund at each age,
and all other effects will tend to disappear. This provides an
additional explanation for the diminishing effects of ILNPBI with
survival-time. The anomalous behaviour of the Korean data could be
explained by high levels of infecundity.

It is possible that a major source of age-related infecundity
is the menopause. To check this, individuals were artificially censored
upon reaching 40 years, and model (4,12) was refitted; but no change
in the parameter estimates was produced. Menopause, therefore, does
not contribute substantially to selection biases due to age-related
infecundity; it seems likely that infecundity occurs at all ages,
although more often at the higher ages. It is possible that infecundity
occurs as a side-effect of the physiological processes of pregnancy,
childbirth and breastfeeding.

It is unlikely that the age effects substantially reflect age
related factors other than infecundity, since initially these are
partly controlled for by LNPBI and as survival-time increases the age
effects are increasingly dominated by infecundity.

All of the above assertions concerning biasing mechanisms are
supported theoretically in appendix 4D. In particular, appendix 4D
shows that the impact of factors underlying LNPBI could be about ten

times those of LNPBI itself.
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4.3.% Breastfeeding and Contraception.

To gain further insight into the behavioural factors underlying
the age and the length of the previous birth-interval variables, the
impact of breastfeeding and contraception on the hazard function may
be examined.

Breastfeeding and contraception data were collected only for the
last clogsed birth-interval and the following open {censored) birth-
interval, for each woman interviewed. Serious selectivity problems,
additional to those described above, can result from the use of data
for the last two birth-intervals (Hobecraft and Rodriguez, 1980) because
the closed birth~intervals of the more fertile women (whose last two
birth~intervals tend to be short) are under-represented. To control
for this, only the experience within the five years prior to inter-
view was used when analysing data for the last two birth~intervals:
this avoids these selectivity bilases to & large extent because the
last two birth~intervals together generally exceed five years, and
consequently selection is approximately solely on the basis of time-
period rather than fertility. To restrict the period before interview
still further would reduce further these selectivity biases, but
stability in parameter estimates would be lost due to the contraction
of the sample base.

Panel (c) of figure 4.9 displays the estimates of «(t) in model
(4.12) estimated on the basis of the last two birth-intervals, within
the five years before interview. Panel (b) contains the corresponding
estimates for all experience within the five years before interview.
Columbia and Sri Lanka show some signs of bias in (%) due to the
restriction to the last two birth-intervals, The remaining effects

show no signs of such bias, for any of the countries analysed., KXorea
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Figure 4.9. Effects of LNPBI in model (4.12)
a) on full data
b) within the five years before interview
c) within the five years before interview,
for the last two birth~intervals.
d) as for (c) when breastfeeding and contraception

variables are included (model (4.14) ).

Parameter estimates for &(t) at t = 10, 20, 40 and 80 months are
connected with siraight lines. Vertical lines of length one standard
error are drawn to each side of each parameter estimate., Panels (c¢)
and (d) are omitted for Korea through lack of convergence, and for
Mexico because data on contraception in the last closed birth-interval
was not collected., The scale is indicated in the upper right corner

of the figure.
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Figure 4.9: LNPBI effects, a(t) under various conditions
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and Mexico are not analysed in this section owing to instability in
parameter estimates when breastfeeding and contraception variables are
included for the former, and to the fact that information on contra-
ception in the last closed birth-interval is not available for the
latter,

S0 far in this analysis all the variables utilised have been such
that, for each woman, they do not wvary within the birth-interval.
Neither breasifeeding nor contraception can be considered to be constant
within the birth~interval. This is not a problem provided that states
of breastfeeding and contraception are known for each woman at each
point in the birth-interval. This information is known for breast-
feeding, although the distributions of reported durations of breast-
feeding exhibit considerable clumping, indicating rather unreliable
data. For contraception, however, it is only known whether it was
ever used within the birth-interval (and if so, what type). It may
not be unreasonable, however, to assume that use of contraception is
uniform throughout the birth-interval, although this will probably
lead to slight underestimates of the impact of contraception. However,
this assumption can lead to yet another source of bias: for several
countries in the analysis rapid changes in contraceptive practices are
taking place, with the result that substantial numbers of women have
changed their practice of contraception within the last two birth-
intervals; for such women it is unreasonable to assume uniform use of
contraception within the birth~interval, and the remedy 1s simply to
omit these cases from the analysis,

In the interests of simplicity it was decided to ignore inform-
ation on method of contraception. Thus, model (4.12) was augmented by

full survival-time interactions with current contraceptive status,
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CEP (O = not using; 1 = using), and current breastfeeding status,l

BFD (0 not breastfeeding; 1 = breastfeeding), but the dependence on

H

date of previous birth was simultaneously dropped since this is
effectively controlled by the restriction to the five years before

interview, giving the models

fn A(t) = p(t) + o(t) .INPBI + B8(t).PBA + n.BOR + &8.EDU

+ p(t).CEP + t(t).BFD (4.14)

The parameter egtimates for contraceptive and breastfeeding
status are given in figure 4,10. Contraception tends to have an
initial negative impact on fertility, becoming positive after about
40 months survival~-time (with the exception of Bangladesh). The
negative lmpact of contraception on fertility is obviously due to the
decreased risk of conception for contracepting women., The subsequent
positive effect is possibly due to a tendency for non-contraception
amongst infecund women, and is in the wrong direction to support the
idea that contraceptive slerilisation is a primary source of infecund-
itye

FPigure 4,10 does not show breastfeeding effects above 40 months
survival-time due to their extreme instability, resulting from the
small numbers still breastfeeding at these survival-times. The
initial negative impact of breastfeeding is expected (see, for example,
Jain and Bongaarts, 1980), and its diminishing effect with increasing
survival-time is probably due partly to the decreasing intensity of

breastfeeding with survival-time amongst women who are still breagt—

1. It would have been better to use breastfeeding status nine months
before the current survival-time, This oversight has probably led
to slight underestimates of the impact of breastfeeding on fertility.
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feeding, partly to measurement errors in the breastfeeding variable
resulting in the errors-in-variance biases described above, and partly
to the biasing effects of age-related infecundity, also described
above,

With perhaps the exception of the education effects, the remaining
effects in model (4.14) are virtually identical to those estimated from
model (4.12). However, this does not imply that the LNPBI variable
does not contain any variation originating from contraceptive or
breastfeeding practices, To check this, corrected x? -statistics for
each term in model (4.14) are given in table 4.8, and these may be
compared with those in table 4.9 for the model which omits the LNPBI
terms

gn A(t) = u(t) + B(t).PBA + n.BOR + S8.EDU + p(t).CEP

+ t(t).BFD (4.15)

Comparing these two tables reveals that age is the only variable
which gains any explanatory power through the omission of the LNPBI
variable, proving that the LNPBI effects do not reflect contraception,
breastfeeding, birth-order or education to any real extent.

It may also been seen from table 4.8 that breastfeeding has a
powerful impact on fertility, but that the impact of contraception

is much more variable belween countries,

4,%.4 The remaining effects.

To this point the birth-order, time-period and education effects
have not been discussed. From figure 4.6 it is evident that fertility
at the higher birth-orders is decreasing with time-period, indicating
increasing use of fertility control, and also that education

plays a part in reducing fertility in some countries, although further
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rigure 4,10, Contraception effects, p(t), and breastfeeding effects,
T(t) from model (4.14). BEstimates of p(t) at 10, 20, 40 and 80 months
of survival-time, and of t(%t) at 10, 20 and 40 months of survival-

time are connected with straight lines (estimates of t (80 months) have
very large standard errors, and are therefore omitted). Vertical

lines of length one standard error are drawn to each side of each
parameter estimate., The scale for each effect is the same for all
countries and is indicated for Bangladesh. The normalisation of the

variables is given in table 4.2.
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Table 4.8 2 contributions of terms in model (4.14)corrected for
remaining terms, based on the last two birth-intervals, within the

five years before interview,

LNPBI PBA ‘BOR EDU CEP BFD
Bangladesh 20 84 1 2 6 125
Columbia 53 35 2 23 48 33
Indonesia 35 131 2 3 85 113
Jamaica 10 26 1 6 20 21
Jordan 26 45 0 8 66 87
Kenya 32 34 1 15 10 101
Sri Lanka 25 136 4] 15 4 231
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Table 4.9 .XZ contributions of terms in model(4.15) corrected for

remaining terms, based on the last two birth-intervals, within

the five years before interview,.

"PBA BOR EDU CEP BFD
Bangladesh 127 0 1 5 131
Columbia 87 0 24 54 33
Indonesia 199 8 1 83 123
Jamaica 51 2 4 19 21
Jordan 71 0 6 80 99
Kenya 59 0 16 11 103
Sri Lanka 217 0 11 4 246
d. £ 4 1 1 4 4



experimentation shows this to be partly through its association with
contraception, However it is evident from table 4.6 that these

terms are less important than age and the length of the previous birth-
interval,

Figure 4.6 also shows substantial differences in baseline hazard
functions between countries. These persist when controlling for
breastfeeding and constraception, as may be seen from figure 4.11. The
present research can throw very little light on the causes of these
differentials, except to rule out those variables which have been

investigated above.
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4,4 Conclusions

A woman's age and her previous level of fertility are the
components of her birth~history which are most strongly associated
with her current fertility. Age acts principally to control for
infecundity following the previous birth, and previous fertility
simply predicts current fertility amongst those individuals who are
st1ll fecund., Survival-~time trends in the effects of age and
previous fertility are the results of sélection associated with
terrors—in-variables? and infecundity biases.

Factors underlying the effects of previous fertility are unknown,
but could ineclude sub-fecundity, coital fregquency and proneness to
miscarry; they do not include breastfeeding or contraception. The
impact on current fertility of factors underlying previous fertility
are underestimated because of ‘'errors-in-variables' bias, but could be
about ten times the impact of the length of the previous birth-interval,
Using several prior birth-intervals to measure previous fertility
substantially reduces this bias., The age effects do not reflect
infecundity due to the menopause.

Cortraception and especially breastfeeding have a negative impact
on fertility at the shorter survival~times, Later in the birth~
interval breastfeeding is less effective partly through less intensive
usage amongst those still breastfeeding, and contraception effects
become positive, possibly through the tendency for non-contraception
amongst fecund women, Fertility at the higher birth-orders is
decreasing with time-~period indicating increasing usage of fertility
control. Education also has a negative effect on fertility partly
through its association with contraception. Substantial differences

in the baseline hazard persist despite these controls, as illustrated



in figure 4,113 the present analysis provides little insight into the
causes of these differentials. Figure 4,12 illustrates the effects on
the hazard function of the more important variables.

The aim of this research was to develop 2 model of fertility
applicable to a wide variety of countries, using birth-history variables,
This has been achieved, and the most important result is the strong
suggestion of unknown factors associzted with previous fertility which
have a profound effect upon current fertility. This result is not
entirely new: Braun (1980) in his analysis of closed birth-intervals
for three historical populations also found that the level of previous
fertility, as measured by the average length of prior birth~intervals
was the most, indeed the only, important determinant of current
fertility. The present research extends the result of Braun (1980)
through its application to modern developing populations; through its
assessment of the roles of breastfeeding and contraception; through
its suggestion of the magnitude of the true impact of the underlying
factors; and through its demonstration of the importance of age when
analysis is not confined to cloged birth-intervals. The present
results are also consistent with those of Bumpass et al (1978) who
find that women who commence childbearing at a young age generally
continue with a rapid pace of childbearing.

An important aspect of the birth-history model (4.12) is its lack
of dependence on marriage variables (above the second birth-interval),
cohort variables, duration of motherhood and quadratic age and time-~period
variables. The absence of duration effects and quadratic age and time-
period effects is particularly interesting since Casterline and
Hobecraft (1981) on the same data have demonstrated the existence of
such effects. This apparent contradiction is probably mainly due to

the omission of birth-order effects in the Casterline and Hoberaft (1981)
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analysis (it will be recalled from section 4,2 above that birth-

order and duration of motherhood effects are mainly the effects of
previous fertility measured as the average of the lengths of prior
birth-intervals),

The present research also contributes understanding about
biasing mechanisms in the field of proportional hazards models in
general.

The most important objective of further research should be
to iscolate the factors of current fertility which underlie previous
fertility. In particular the impact of wasted pregnancies could be
investigated with the present data and methods. It is also important
to learn more about the causes of infecundity. However, the
proportional hazards approach may not be the best framework within
which to pursue these objectives, because of the influences of
biasing mechanisms.

Another objective should be to apply the model to data from
developed countries, (one would anticipate much greater birth-order
effects); and to extend the model to first and second birth-intervals.

Finally, the model may serve as the basis of a demographic
tool for assessing current levels of fertility and projecting future
fertility., Further research could show how best to measure previous

fertility, and how best to predict infecundity.
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Appendix 4.A The approximatevmaximumVlikelihood solution

th
The probability that the ith woman survives in her j birth~interval

to survival-time t months is:

t
exp ) ~ J Aij(s!g)ds (4.A1)

o
where Aij(s[g)ds is the hazard function times ds: that is, the probability that
she has a birth in the interval (s, s+ds) given that she has already
survived s months in the birth-interval; and where o is a vector of
parameters.  The likelihood function may therefore be written:

o ‘ ti.
L(a) =11 I A,,J(t,,za) exp —f J A.‘(s[a)ds (4.A2)
— N ij'— ij -
13
’ o
. . . .th . .
where tij is the survival-time at closure of the j birth-interval of
the ith woman and Eijzl if closure is by a birth, and 0 if by interview.
(In fact, dates in the survey data are recorded in century-month form,
and so exact dates are taken to be at the mid-point of the century-month,
except when a birth occurs in the same century-month as the interview,
in which case the birth is taken to occur one-third of the way through
the century month, to avoid bias.)
The proportional hazards model may be written (as in equation (4.1)

b : v
above) gn A, (tlo) =o' X, (B (4.A3)
1) - - 1]

th .
where zﬁj(t) is a set of covariate values for the j birth-interval

of the ith woman. Substituting (4.A3) into (4.A2) gives:

t, .
fn L(a) =o' T Ze, . X (t.)-zz [ exp(a'X, ,(s))ds (4.A4)
i

e ..
J 713 1] i3
o
Now let H be a partition of the space {i,j,s,X}. Let 6h=1

th
if i,j,s and X are such that they correspond to the h subset of H.

Let 6h = 0 otherwise. Thus Gh is a function Sh(i,j,shg).
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Denote
t,
N =33 [ s (i,5,s,%,.(s))ds
h . .f h )J’ ’___ij
ij
(o}
t, .
X =2 235 (Y s (15,8% .60 % (s)ds
2p TN f nttrdo ity =5
hilj
(¢}
t, —
$2=2 51 [ Y5 (1,58X,.()) (K. . ()X ) (X. (s)-X.)'ds
n N ©° it dsdyy S A T R
hij
(o]
and X =
25 €15 X155

then if the partition H is chosen so that, within each subset h of the

partition, zij(s) is approximately equal to.g then from (4.A4)

h’
o'X,
fn L(a) = a'X_ - I N, (1+3a'S%a)e (4.A5)
= == h =T
and hence:
39 nL o'X
= - ' X 2 — ~h 4,
5 X5 121 N, [(l%—%@ S, X+ shg):l e (4.A6)
and
'X,
520 nL - - - &Sy
T = LY 1.t [ 2 [ X ra? 2 (4_A7)
Bgﬁgf Nh [(1+22‘Sh2)§h§h + Shgg'h +.~hg Sh + Sh e

Thus only the information: X {Nh, E%, Si} need be retained

from the data. Equations (4.A5) to (4A7) may be used to obtain approximate

maximum likelihood estimates of the o using the Newton Raphson procedure.
Empirically it was found that the approximation (4A5) is adequate

1f the partition H subdivides the survival-time axis as follows:

6-9 months; 9-15 months; 15-60 months; 60-90 months; 90+ months,

Subdivisions with respect to the covariates was found to be unnecessary.



Appendix 4.B Modelling with cubic splines

It is reasonable to suppose that the effects of variates
vary smoothly with survival-time. If s0, then the proportional
hazards model may be written:

gn A(t]X) = o' ()X (4.B1)

where A(tlg) is the hazard function at survival-time t, given a vector
of covariates_g, and where g(t) is a vector of hazard functions. Thus
a(t) represents the effect of X at time t. The smooth functions o(t)
must be specified in some way, and then estimated.

Each function ai(t) may be specified as a cubic spline. A cubic
spline is a smooth function which is defined on a set of n positions
or 'knots' tl...tn along an axis. Between each pair of adjacent knots
the function is a cubic polynomial. Before the first knot and after
the last knot the function is a straight line. The coefficients of
these (n+1l) polynomials are chosen so that, at each knot, the function
is continuous and twice differentiable at each of the knots. Specifying
the values of aij = ai(tj) at each of the knots tl...tn then uniquely
determines the spline function ai(t) for all t. Of course these values
aij’ j=1...n are not known in advance in the present circumstances:
they must be estimated, and they consequently form a set of n model
parameters. The number and positions of the knots may however be set
in advance to obtain the desired flexibility in ai(t)*

Now, for each j, a spline function sj(t) may be defined on the
knots t ...tn so that at each knot sj(t) is zero except at tj where it

1

is 1. It is easily shown that:

a,(t) =
1 N
J

[ i

a,.s (t) (4.B2)
1 *J

since the linear combination of the set of splines {sj(t)} possesses all
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the continuity properties of the individual Sj(t)’ and since at the jth

knot only sj(t) is non-zero. Formula (4,B2)isextremely valuable for
computational purposes since, substituting (4.B2) into (4.Bl) gives:

tn A(t|X) = 8" Y (4.B3)

Oppe v s O 5w )

Q91 %22 %9y

o o

where ' is th t e
B' is e vector of parameters (all’ 12 in’

and where Y is the vector of variates (Xl sl(t), Xlsz(t)'""xlsn(t)’
Xzsl(t), Xzsz(t).A,Xzsn(t)...), Note. that, at each survival-time t,
the variates Y may be calculated before model fitting since the functions
sj(t) do not depend on the unknown parameters B. McNeil and Trussel
(1977) explain how the coefficients of the sj(t) splines may be
calculated. Note also that (4.B3) is now a linear model.

Empirically it was found that 4 knots were amply sufficient to
accommodate the intricacies of the data, and that setting these at
10, 20, 40 and 80 months survival-time ensured that the hazard function
tends to zero as t>0 or t»». Concentrating the knots at the shorter
survival-times is sensible since this is where most of the exposure to
risk of birth is situated.

Anderson and Senthilselvan (1980) use a cubic spline to model

the baseline hazard in a proportional hazards model.
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Appendix 4.C Relationship tetween the coefficient of LNPBI and the

correlation between adjacent birth-interval lengths

Let p(tzftl) denote the instantaneous probability of a birth at

survival-time t_ conditional on t the length of the previous birth

2 1’
interval. The coefficient a(tz) of LNPBI (ﬁn(tl—ﬁ months)) in model
(4.12) is such that an increase in tl produces a decrease in the hazard
A(tzltl) for small tz and no change in A(tzltl) for large t2, and hence

a decrease in p(tzitl) for small t_. but an increase in p(tzftl) for

2
large tz. Hence for some value 6, roughly:

p(tylt) = pt {1 + Bt -1 ) (tymu ) (4.C1)
where p(t) is the unconditional instantaneous probability of a birth
at t, and where “t is the unconditional expectation of t (it is assumed
that tl and tz have the same unconditional distributions).
Now it follows from (4.Cl) that the correlation between tl and t2
is:

T = gg2 4.C2)

where o% is the unconditional variance of t. It also follows from (4.C1)

that:

4.C3
94n p(tzltl) ( )

Btl

Now from model (4.12):

34n x<t2[tl)

= ._~i§£22_?§;. (4.C4)
- mon s
Btl ut o
t e

and for small tz(say t2 = 12 months)
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A(12 monthsltl) % p(12 months[tl) (4.C5)

hence from (4.C3), (4.C4) and (4.C5):

(12 months) . 1 (4.C6)

ut - 6 months 12 months - Ut

g =~

and substituting (4.C6) into (4.C2) gives:

2
o}
- ~ 0(12 months) . t (4.C7)
tltz “t - 6 months 12 months ~ ut

Empirically ut = 30 months, Gt = 12 months. Substituting these values

in (4.C7) gives:

_ 0(12 months) (4.C8)
t.t 3

which is in agreement with table 4.7 and figure 4.6,
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Appendix 4.D Biases

Suppose the hazard function 3 (t [.géY) at survival~-time t depends
only on observed factors X and unobserved factor Y, which for each
individual do not alter within the birth interval, and suppose also, for

ease of exposition, that this hazard function does not depend on t,

so that:
fn A(e [X, V) = p+ o’ X+ ¥ (4.D1)

Assume that, at t = 0, Y is distributed normally and independently of
X with zero mean and variance aé. Let T be the time to failure, then
from (4.D1) it can easily be shown that at t = 0, the conditional

expectation of T given X and Y is:

Eo(T| X, ¥) = exp {~(u +ao X+ Y)i (4.D2)

and the conditional variance at t = 0 is:

v LY = exp -2 + 2t x 4+ v} (4.D3)

let Z = 4n T and assume that at t = 0 the conditional distribution of
Z given X and Y is approximately normal, then from equations (4.D2) and

(4.D3), using the moment generating function of the normal distribution:

Eo Z | X% ¥ = -p=a'"X-Y-4V, ]| x 9 (4.D4)

Vo (Z | X, ¥) = ¢n2 (4.D5)
Hence from (4.D4) and (4.D5), Z may be expressed as:

Z=-u-o' X-Y-4io. 46 (4.D6)

where, at t = 0 the noise term ¢ is distributed normally and

independently of X and Y with zero mean and variance Gg

suppose that X and Y for each individual are approximately the same for

= fn Z. Now

the previous birth~interval as for the current birth~interval, and
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suppose that Z actually represents the length of the previous birth=-
interval. Then (4.D6) still holds approximately and Z contains
information about the unmeasured factor Y.

Now the hazard at time t given X and Z is:

Me | X,02) = £(T=¢t | T>¢, X,2)

where here, and below, f denotes a probability density,

[ee]
= @@=,y | T3¢, x,200
-0

using the addition law of probability,
= ffr =t |Tst, X,Y,2) £00 | T3 £,%,2) d¥
w0
using the multiplication law of probability,
@
= Jae | XY £ | T s t,X,2)47

assuming that the hazard does not depend on Z if X and Y are
specified,
0

= fae | XY £(T oyt | X,Y,2) £(V | X,2) dy

D

fere e | xv,2) £0 | %, 2) ay

Using a form of Bayes Theorem,

28

AMe | %Y £(T > | X2 | XY £ | X ay

i
o3 —

e

3

8> e | X,V £z | X,Y) £(Y | X)ay

ey

using again the assumption that the hazard does not depend on Z if X and

Y are specified, and using Bayes Theorem again also,
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oo B v 2
= jexp Ufgﬂng~te“ﬁ2»§fY - im7(2+u ﬁg'ng*%cg)z + E"?] dy
oo i o ‘ ‘ 20’8 . . ZO’Y
© . ) ‘ 2
jéxp LA S mliﬁ(z+pfgf§ﬁY+«%-c§)2 + zm§ dy
oo | 266 ZUY

using equations (4.D1) and (4.D6), elementary life-table theory and the

distribution assumptions for Y and ©; and rearranging gives:

o 7
goa(e |x,2) =M FLX
- p) 2
1+ % 1+ %
o o2
6 Y
+ J r::e woAg'X Z 1 1 hé?
P 5 5 s |5 + 5 (4.D7)
1+ % 1+ % % %
8 8 Y
where
o
}’ bw+%b2 2
2 exp(-ae - iw") dw
J(a,b) = n 5 (4.D8)
J bw~ib 1.2
exp(~ae - w") dw

00

It can be shown numerically, for moderate values of a and b, that

J(a,b) = - ab?

and hence, from (4.D7) and (4.D8):
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¥
gn (¢ | xz) =FFteX 2
02 2
1+ %y 1 + f_g
62 2
9 %
3 ¥
- t exp A 2 1 (4.D9)
0'2 0-2 ' ...n}-'. -+ m]-:-
1+°Y 1+°9 2
2 2 Y 5
% 9%
and linearising (4.D9) with respect to X and Z gives:
YRR AP S
o A(t | X,2) - (4.D10)
g
1 +7Y 1
';"2"
8

Thus, from (4.D10) it can be seen that if Y is a very important
underlying factor, ( 0§<< cé ), then the X variables would produce only
minor differentials in the hazard when controlling for Z, although an
increasing downward bias would accrue to the estimated effects of the
underlying factor with increasing survival time. When Y is an
unimportant underlying factor, ( c§>>0§ ) then the effects of the under-
lying factor would be badly underestimated, but the X variables would
then produce differentials, which would diminish only slowly with
survival-time,

Note that (4.D10) holds well only for moderate t, Z and 0%.

However, similar sorts of trends would be produced even for somewhat

extreme values of these elements.

The relative size of the noise component.

Let W denote the natural logarithm of the length of the birth~
interval which immediately precedes the previous birth-interval, then,

like (4.D6):
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2
w””u”g'__)ﬂ”Y“%Ge+ew (4—.D11)

and assuming that the noise terms & and by are independent then it is
easily shown, using (4.D6) and (4.D11), that the correlation between

Z and W, given X, is:

Powlx (4.D12)

e

e
+
bdqz\;i CDQM

Now empirically, approximately, from table 4‘7’DZWIX' = .1, and so,

from (4.D12):

= 8,0 (4.D13)

PQQMI CDQN
|

Substituting (4.D13) into (4.D10) gives, at t = 0:

st | X,2) = 9 + a'X) - .1Z (4.D14)

This suggests that, at t = 0 the estimated X effects are a slight under-
estimate of those which would result if 7 was omitted, and the Z effect

is about one tenth of the size of the effect of the underlying factor Y.

The effect of measuring previous fertility more accurately.

Now let Z denote the average of the natural logarithms of the lengths
of n prior birth~intervals. Z in equation (4.D6) may be replaced by Z
but the variance of the noise term would then be Ug/n. Consequently,
when replacing Z in (4.D10) by E}dg should be replaced by dg/n,
Substituting (4.D13) in the result gives, approximately, for n less than

about 6, at t = 0:

o A(t [X,2) = (1 - .1n)(u + a'X - .1nZ) (4.D15)

analogously to (4.D14). Thus it may be seen that increasing the number

of birth-intervals in the measure of previous fertility, Z, has the
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effect of approximately proportionately increasing the estimated effect

of that wvariable.

‘Selection due to infecundity.

Now suppose that, in addition to the mechanisms described above,
there are individuals at t = 0 who are infecund; and suppose that the

proportion infecund q(Xl) depends only on Xl’ where

logit q(Xl) = R 4 gXl (4.D16)

Now let A denote the hazard when the infecund individuals are excluded,
and let A* denote the hazard when they are included, The using (4.D1)

and elementary life~table theory:

-At
2% (t’§§Y>="A(1' q (Xl).)e o 6.p17)

q (X)) + (1-q x)e "

where ) represents k(t[gijg Hence from (4.D17) using (4.D1) and (4.D16):

il

fn A% (tisz) pta'X+y - 2n.§1+exp(8+yx +eet’e X+Y)§

l+exp(R+te )%

(a' X+Y) g te §
1 + exp(~g~te")

- ! (4.D18)
1 + exp(~R=~tel)

R
PN

+

using the Taylor series expansion in X and Y.

Thus from (4.D18), when t is small:

An X*(tfzﬁY) =y - Qn(1+e8) + gfzﬁY - (4.D19)

showing that initially the infecund women cause a negative bias in the
baseline hazard and a bias proportional to =y in the effects of Xls

Now suppose that initially only a very few individuals are infecund,
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so that g is large and negative and so that for some large t, say t_,

tBeU =1 + exp(~8~t8e

Then as t increases towards t

)

g? from (4.D18):
Y
o A% (t]X,Y) >y = —— X

B

(4.D20)

(4.D21)

showing that, if initially only a few women are infecund, for moderately

large t the effects of all variables except X1 disappear, and the

effect of X1 is biased.
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Step 1 Step 2 Step 3

Bangladesh FBI 37.

Columbia FMA 24.{ EDU 6. | FMD,OBD 4,
(PBD,FMD,OBD) (PBD)

Indonesia FBI 198 EDU 65,
Jamaica FMA 13.
Jordan FBI 19. | PBD,FMD 11, ! EDU 13.
(FMD,OBD) (OBD)
Kenya EDU 22. ] FBI 25,
Korea FMD 246. | FBI,PBD 35.| EDU 10,
(OBD) (PBA)
Mexico PBA 25. | FMD 7.1 EDU 8.
{OBD)
Sri Lanka FBI 104. | PBA,FMA 24.

Appendix Table 4.E1 The first three steps of a forwards selection amongst
the linear main-effect terms listed in table 4.1 for birth-order 1, with

2 values corresponding to the selected terms. Terms enclosed in

X
parentheses have X2 values within 75% of that for the selected term,
and are listed in order of decreasing in When more than one term is
selected in a single step, this is due to logical relationships between

the selected terms. Terms with 32 < 3.0 are not shown. (Each main-effect

term represents one degree of freedom).
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Step 1 Step 2 Step 3
Bangladesh ABI 215. | FBA,PBA 12.|PBI 6.
(PBI)
Columbia ABI 129. | FBD,PBD 96. | EDU 41,
(PBD,PBA,PBI) (FMD)
Indonesia ABI 251. | FBD,PBD 62. | FBI,FMD 16.

(FBA,PBA,OBD)

Jamaica ABI 42. | FMD 9. |EDU 4.
(FBA,PBA,FMA, OBD)

Jordan ABI 55. | EDU 47, ]0BD 13.
(PBI,EDU)

Kenya PBI 109. | ABI 14.EDU 11.
(ABI) (EDU,FBD)

Korea PBA 187. | EDU 117, | PBI 27.
(EDU) (ABI,FBA)

Mexico PBA 197. | EDU 63.] ABI,FBA 64.
(ABI)

Sri Lanka PBA 281. | ABI,FBA 65.| EDU 31.

(PBI) (FBD, PBD, DBD, FMD)

Appendix Table 4.E2.The first three steps of a forwards selection
amongst the linear main-effect terms listed in table %:lfor birth-
order 3, with X2 values corresponding to the selected terms. Terms
enclosed in parentheses have x2 values within 75% of that for the
selected term, and are listed in order of decreasing xzﬂ When more
than one term is selected in a single step, this is due to logical re-
lationships between the selected terms. Terms with X2 < 3.0 are

not shown. (Each main effect term represents ome degree of freedom.)
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Step 1 Step 2 Step 3
Bangladesh ABI 177. FBD,PBD 26, | PBI 20,
(PBA) (PBI)

Columbia PBD 94, PBA, OBD 48. | EDU 21.
(PBA) (FMD, ABI,FBD) (FMA,FMD)

Indonesia ABI 187, FBD,PBD 52. | PBI 22,
(PBA)

Jamaica ABI 48. FBD, PBD 22, | PBI 10.
(PBI)

Jordan ABI 65. EDU 35.

Kenya ABI 46. ¥BD,PBD 17. | PBI 12.
(PBI)

Korea PBA 160, EDU 81. | PBD,OBD 54,
(PBD) (PBD, OBD) (FMD)

Mexico ; ABI 177, EDU 40. | FBA,PBA 25,
(PBA) ; (FBA,PBA)

Sri Lanka PBA 233. ABI,FBA 58. | FBD,PBD,OBD 51.
(PBI) : (PBD,OBD)

Appendix Table 4.E3 The first three steps of a forwards selection
amongst the linear main-effect terms listed in table4.l for birth-
order 5, with X2 values corresponding to the selected terms. Terms
enclosed in parentheses have X2 values within 75% of that for the
selected term, and are listed in order of decreasing xz. When more
than one term is selected in a single step, this is due to logical re-
lationships between the selected terms. Terms with y2 < 3.0

are not shown. (East main-effect term represents one degree of freedom).



Appendix Table 4.E4 XZ contributions of terms in model (4.6)corrected

for remaining terms

BOR MOD PBA BOR.PBD BOR.EDU

Bangladesh 74, 371. 97. 60. 2
Columbia 66, 298, 64. 50. 28.
Indonesia 96, 599, 179. 140. 91,
Jamaica 53. 105. 48, 50, 4,
Jordan 2. 214, 84, i5. 34.
Kenya 21, 316. 47. 7. 6,
Korea 151. 268, 363. 685, 166.
Mexico 32. 452, 274, 38. 54.
Sri Lanka 59, 574. 394, 82. 71.

d.f 3 4 4 1 1
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Chapter 5 ~ Conclusions

This chapter discusses the aims, methods, results and conclusions
of the research presented above in Chapters 1 to 4 under two headings:
an overview of the contribution to age, period, cohort methodology; and
suggestions for further research, Finally, section 5.% closes this

thesis with a few summary remarks.

5.1 Overview of contributions to age, period, cohort methodology.

Chapters 1 to 4 above represent a number of quite different
avenues of exploration of age, periocd, cohort methodology: The first
three of these chapters concentrate on highly aggregated demographic
data from the fields of fertility, nuptiality, mortality and morbidity,
and the fourth is concerned with individual level fertility data.

The first three chapters are principally methodological, whereas the
fourth is principally substantive in motivation. Chapters 1 and 3
discuss issues relating to the simultaneous incorporation of age,
period and cohort into a model, and the models in chapters 2 and 4 do
not explicitly include period and cohort dimensions simultanecusly.
Chapter 1 is primarily motivated by a need to justify simultaneous
incorporation of age, period and cohort into a model; chapter 2

develops applications of a particular model; chapter 3 explores

models; and chapter 4 explores data wusing these and related dimensions.

Although chapters 1 to 4 do not systematically explore all avenues of
potential research into age, period, cohort methodology, the variety
of problems and approaches considered do facilitate a broad perspective
on the subject. A brief revew of the contributions to age, period,
cohort methodology contained in the above chapters now follows,

Purely as a means of data description, demographers often summarise

variation across time-periods or cohorts using measures such as, in the



context of fertility for example, the total fertility rate or completed
family size. The opportunity afforded by the additive age, period,
cohort model of simultanecusly ascribing some variation to each of these
three dimensions must have seemed to early age, period, cohort analysts
a useful aid to description, In fact many of these early analyses
contain interpretations which go no further than a descriptive account
of the data, The recent accusations of statistical insupportability
(Glenn, 1976) and illogicality (Goldstein, 1978 and 1979) aimed at
these analyses would seem a serious blow to the spparently modest
aspirations of those analysts. In chapter 1 above it is demorstrated
that there is nothing illogical about describing the data in terms of
separate components of variation ascribed to each dimension, and

figure 1,1 demonstrates the type of variation which is described by
estimated contrasts in the parasmeter estimates from the model. However,
none of the analysts indicate that this is the type of wvariation being
described,

It is also shown in chapter 1, that for purely descriptive
purposes, the particular identification chosen for the parameters of
the additive age, periocd, cohort model is immaterial, However, in
most applications of the model an attempt is made to find some
Justifications for the chosen identification, and consequently it must
be concluded either that such justification is misguided or that really
the purpose of the analysis is not purely descriptive.

When using the additive age, period, cohort model for theoretical
purposes, Goldstein's (1978, 1979) accusation of illogicality can be
avoided provided that parameter estimates are interpreted in terms
of non-interacting un@erlying factors which are each associated with
at most one of age, period and cohort. When these assumptions are
made, theeffects of changes in the levels of factors are usually of

central interest, but unfortunately cannot be estimated without
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reliable supplementary information on the underlying facitors, owing to
the identification problem. Various attempts to resolve the identi~
fication problem, many of which are unreliable or simply invalid, have
been reported in the literature, and several of these are reviewed in
chapter 1,

Thus 1t is clear that in many researches the use of the additive
age, period, cohort model has been accompanied with confusion, much of
which has been brought about by failure to distinguish between the
descriptive and the theoretical purposes, which differ totally in respect
of asgsumptions, identification and interpretation. In particular, the
way of avoiding Goldstein's (1978, 1979) charges of illogicality differs
between the two purposes. The main contribution of chapter 1 to age,
period, cohort methodology is the drawing of this distinction.

The assumption of non-interaction (or additivity) between the
underlying factors of the additive age, period, cohort model has led
to Glenn's (1976) accusation of statistical insupportability. Glenn's
(1976) argument essentially rests on the fact that any cohort factor
effect or interaction can be re-expressed as a form of interaction
between age, and period factors., The argument is valid, yet if a
simple siructure underlying the data can be found in terms of age,
period and cohort factors, then it makes sense to tentatively
interpret the cohort factors literally rather than in terms of some
curiously constrained interaction between age and period factors for
which there may be no clear theoretical explanation., Chapter 1
provides statistical tests of the additive model versus alternative
formulations involving factors from only two dimensions interacting
in a simple way. However in most circumstances there can be no
guarantee that interactions between factors are not more complex, and

consequently such tesis may often be of limited value. Moreover, as
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noted in chapter 3%, residual patterns in highly aggregated data tend
to persist irrespective of the model, which immediately invalidates
these strict statistical procedures. Nevertheless, the algebra
developed for these tests does demonstrate how simple interactions are
particularly or wholly confounded with age, period and cohort factor
main effects.

The additivity assumption is put under further scrutiny in chapter
% where it is shown, for a variety of data, that theoretical arguments
do not lead to additive age, period and cohort factors effects. Simple
cohort~experience models are theoretically much more satisfactory and
often capable of fitting the data well. Moreover, they are not
encumbered with interpretation-blocking identification problems. However
Glenn's (1976) arguments still apply, and interpretations must
necessarily be tentative. In fact interpretations from cohort-experience
models should be held extremely tentatively, since usually there are
good substantive reasons for expecting simple interactions (as expressed
by the bimodel) between period and age factors to account for much of
the variation in the data. In general it is difficult to choose between
a cohort—experience model or the bimodel on grounds of either fit or
interpretability., Cohort-experience models can make much stronger
substantive assertions than the bimodel and this is both a strength
and a weakness, since on the one hand a clear theoretical framework
could prove a powerful tool in many areas including projection, but on
the other hand these assertions could be wrong and consequently
misleading.,

Chapter % succeeds in demonsitrating the difficulty in choosing
between models, but some clear general results do emerge: that period
factors tend fto be more important than cohort factors; that there is

little point in adding on period parameters to a cohori-oriented



- 237 -

theoretical model age-structure, or changing some of the cohort
parameters to period parameters in order to accommodate time-period
influences, unless this is done with close and careful reference to the
theoretical foundation of the original model; that {as noted above)
additive age, period and cohort factors are not usually indicated by
either theory or data; and that cohort—experience models can produce
interesting interpretations but sometimes unstable parameter estimates.
Perhaps chapter 2 might be criticised for attempting to find
general results applicable to a wide variety of aggregate level
demographic data, when the only valid approach is to consider each datsa
set independently of unrelated sets of data, However the intention of
the chapter is not to present a formula for model derivation; indeed
the results strongly suggest that pre-consiructed models such as the

additive age, period, cohort model should not automatically be applied

wherever there is a sugpicion of factors related to all three dimensions:
hence the attraction of the cohort-experience models which are only
loosely specified in general form. The main purpose of the chapter is
to make clear what can realistically be expected of theoretical
models of highly aggregated data, and to discuss some of the possible
advantages and disadvantages of different approaches to modelling such
data,

Two models in particular, both cchort-experience models, emerge
from chapter 3 as being of particular interest: the modification
of Hernes' (1972) nuptiality model (%.16) and the achieved fertility
model (3%,22). The nuptiality model (3.16) leads to some rather
interesting interpretations. Specifically, male marriageability has
been declining presumably because women no longer need to find a
husband in order to be secure financially, owing to their improved

employment and earnings potentials assisted by equal opportunities
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legislation. This has particularly affected the marriagability of
older males, whose principle advantage in the marriage market in the
past may have been financial. Contrastingly, female marriageability
seems hardly to have been affected (apart from slight fluctuations due
to the war), suggesting that economic and social conditions are not
important ingredients of female marriagability. The pressure-to-marry
component of the model also appears to be time-invariant, indicating
that pressure~to-marry is simply determined by the anxiety of being
"left on the shelf', as Hernes' (1972) originally suggested.

The achieved fertility model (3.22) also produces some fascinating
results. According to the parameter estimates from the model, up
to (on average) the second child, each additiomal child achieved
produces a halving of the fertility rate, but after (on average) the
second child each additional child produces a ten~fold reduction in
fertility. This suggests that couples do not look ahead to plan their
fertility in accordance with a desired family size, but rather react
spontaneously to the number of children they already have, drastically
reducing fertility when {on average) two children have been achieved.
One of the intriguing possibilities for this model is that turning
peints in fertility might be predicted on the basis of constant period
factor effects. Although the interpretations from this model can at
this stage be held only tentatively, the theoretical foundation = of
the model and the consequent parameter estimates are in close agreement
with 'common sense', and this adds some degree of reassurance concerning
at least the approximate validity of the model.

In many sifuations the analyst might wish to avoid the risk of
making strong theoretical assumptions of uncertain validity, and a
model such as the period-specific bimodel could provide a convenient

alternative, being generally capable of succinctly capturing the data
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variation, at the same time making somewhat unspecific theoretical
assertions. Chapter 2 shows how Gabriel's (1971) biplot may be used
to display the parameter estimates from the bimodel. OCne of the
advantages of plotting the data in this way is that trends across ages
and across time~periods may be separately and explicitly represented,
revealing clearly even very minor features which could easily be
overlooked when inspecting the raw data by eye. A certain amount of
familiarity with interpreting biplots is however required in order to
make the most of this graphical technigue, but interpretation is greatly
assisted by constructing axes representing 'level' {e.g. the total
fertility rate and 'structure' (e.g. the mean age of fertility) on the
biplot. For a data table of dimensionality higher than two, the bimodel
and the biplot can still be used to great effect, as is demonstrated in
chapter 2 and in several places in chapter 3.

Chapter 2 also shows how the bimodel may be used as a basis for

constructing simple linear regression models for any type of demographic

schedule. By collecting together schedules of any given type from a
variety of countries and time-periods, and applying the bimodel, two
or three standard structures may be empirically determined, and these
may then be used as the 'independent' variables in a regression model
for the given type of schedule. The model may then be used to improve
the quality of other data, requiring only two (or at most three)
relevant items of information from a population to estimate its
regression parameters and hence to complete its schedule., Each
population used in the construction of the regression model, and also
all other populations for which there is at least some relevant data,
may be presented on the biplot, revealing possibly clusters of
populations and simultaneously trends over time,

The utility of the bimodel in model generation is enhanced still
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further by the possibility of using cubic splines to graduate the
extracted standard structures thereby permitting, say, quinguennial
age-specific data to form the basis of a single~year-of-age specific
regression model., This has been done in chapter 2 using quinquennial
age~specific legitimate fertility rates from a variety of populations.
The resulting regression model is shown to be similar in structure to
the usual model for such data: that of Coale and Trussell (1974). This
technique of model generation is a powerful demographic tool, and could
find wide application especially in comnection with deficient data and
for projection,

The above discussion concerns aggregate level data. At the
individual level differentials may be examined at much greater depth
and interpretations need not be so speculative although in order to
explore many dimensions simultaneously it is often convenient to model
variation across interval-level variables using only linear or quadratic
components, rather than with a whole set of dummy covariates as in the
additive age, period, cohort model for example. Thus in chapter 4,
only linear or quadratic terms in the many dimensions constructable
from the birth-~history data are considered. Those dimensions include
many types of ‘'cohort' variables (e.g. birth-cohort, marriage-cohort
and motherhoodmcohort) and 'age' variables (e.g. age, duration of
marriage, duration of motherhood, duration since previous birth) as
well as 'age-at-entry' variabes (e.g. age~si-marriage, age—at-mother~
hood). Thus many sources of confounding of the age period, cohort type
are present when using several of these variables simultaneously. By
restricting attention to only the linear components of these variables,
some variables become completely confounded with others. This seems at
first sight a severe problem, but it could alternatively be considered

an advantage since some variables are automatically controlled for when
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others are explicitly included in the model. This should cause no
problems provided that interpretations are expressed appropriately,
although of course it may be impossible to ascertain whether period or
cohort factors are responsible for some aspects of the data,

The main purpose of chapter 4 however is not to systematically
explore the use of age-period-cohort models in connection with
individual level data in the same way as was done with aggregate level
data in chapter 3, although the results of chapter 4 certainly feed
back into age, period, cohort type methodology. The purpose of chapter
4 is to explore birth-history data from diverse developing countries
with the hope of discovering patterns which are not country~specific,
which might lead to fundamental hypotheses applicable to developing
countries in general,

The analysis of chapter 4 demonstrates strong patterns in fertility
common to all countries examined (although Korea conforms less well
than the remaining countries). The variasbles which dominate a woman's
fertility at a given age are: some measure of her previous pace of
fertility (such as the length of her previous birth-interval, or the
average length of her previous inter-birth intervals); and her age .,
These results may seem unsurprising, but it should be noted that these
results also show what ie not important in determining fertility for
these populations, for example: the various cohort variables; duration-—
of-marriage and mtherhood; age-gt-marrisge and motherhood. More
surprisingly, even parity and time-period are of minor importance
compared to age and the pace of previous fertility, although there are
signs that parity is becoming more important. Xducation, which has
been shown to be of major importance in many other analyses of fertility
data, also appears as a minor variable here,

As with aggregate level data, variables constructed from dates



cannot be considered to have a direct causative effect on fertilitys;
rather they represent measures of underlying causal factors. It is
reasonable to question the usefulness of such variables when more
proximate variables may be available in the data. The use of date-
related variables may be justified on the grounds that they reflect a
number of underlying factors, many of which may not beavailable or
even known. However chapter 4 well illustrates the biasing effect of
measurement errors: the effect of including more prior birth-intervals
when calculating the pace of a woman's previous fertility is to
decrease the measurement errors on the factors underlying 'pace', and
to consequently decrease the errors-in-variable bias and increase the
magnitude of the effects. In fact statistical arguments suggest that
if the factors underlying 'pace' were measured accurately, their effects
could be about ten times the size of those estimated using the measure
defined by thelength of the previous birth-interval. Interestingly,
when using the average length of prior hirth-intervals as the 'pace'variable,
precigsion increases in proportion to the number of prior birth-
intervals included in the average, causing an apparent duration-of-
motherhood effect which is constant across birth~order. It isgiown

in chapter 4 that selectivity mechanisms operating within the birth-
interval produce errors~in-variables biases which increase with ftime~
since-previous~birth. This result is not context-specific, and the
principle is applicable in all fields in which life~table models are
used.,

The interpretation of the 'pace' variable is that it measures
underlying factors such as biological fecundity and coital frequency.
Surprisingly, contraceptive usage and length of breastfeeding evidently
do not underlie the pace variable to a noticeable extent, although they

both have substantial effects on fertility. In particular, some of
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the effects of education appear to operate through the contraception
variable. The age variable has little effect shortly following the
previous birth butbt, as time since the previous birth increases, the
age variable becomes increasingly important, The only plausible
explanation for this is that there is substantial heterogeneity in
fecundity associated with age, possibly due to an age-related risk of
impairment to fecundity occuming as a by-product of the physiclogical
changes which take place during pregnancy, childbirth, and lactation.
This is an important new suggestion which reguires further work to
properly substantiate.

Before this chapter is drawn to a close, the following section
delineates areas for further research suggested by the foregoing

results,
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5.2 Suggestions for further research.

Both methodological and substantive areas for further research
are suggested by the work presented above. On the methodological front
it would be interesting to find further applications of the bimodel
technique of model generation described in chapter 2. In particular
this technique could prove useful in constructing model life-tables,

The use of component-type models of mortality life~tables is however
not new: Bourgeois-Pichat (1962), Hogan and McNeil (1979), Hoberaft
(1979), and Zaba (19?9) have uvsed similar types of component life-
table model, Nevertheless, the bimodel and its developments in chapter
2 could prove superior to all of these since: firstly, the Singular
Value Decomposition used in estimating the bimodel is very efficient,
and very widely available; secondly, cubic splines may be used to
graduate extracted components; and thirdly, the biplot allows both age
and country parameters to be simultaneously displayed. It would also
be interesting to consider how the bimodel could be applied to migration
data - an area of demography which has not been investigated at all in
the present thesis.

Still on the methodological front, further work should be done to
discover an optimum way of combining information from the birth-history
to provide a measure of current fertility. The log of a weighted
geometric mean of prior birth-interval lengths, suggested in chapter 4,
is a useful starting point for such an investigation. For developed
countries, and increasingly for developing countries, parity should be
brought into account (this is also suggested by the achieved fertility
model of chapter 5), Ls well as leading to better estimates of current
fertility, such a model would be useful for projection.,

The analysis of chapter 4 also opens up the way for investigation
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of biasing mechanisms in proportional hazards models. Although this
arez has implications well beyond the demographic context, proportional
hazards models are becoming increasingly utilised by demographers, and
consequently further research in this area should have important
consequences for some demographic analyses,

On the substantive front, the cohort-experience models of chapter
5 are of considerable interest, in particular the modification of
Hernes' (1972) nuptiality model (3.16) and the achieved fertility model
(3.22). As has been stressed above, at this stage these models can be
held only tentatively, and further research should therefore concentrate
on discovering their applicability to other populations, and to finding
support for them from suitable individual level data, The breadth and
depth of available data on fertility should prove a useful testing
ground for the achieved fertility model. This model does not easily
accommodate changing age-patterns of entry into exposure to childbearing,
and consequently it might be informative to apply and if necessary adapt
the model for use with legitimate fertility data, or perhaps more
usefully with age-at~ and duration~of- motherhood data. The basic
precept of the model is that fertility is a spontaneous response to
parity, and consequently the most incisive test of the model would be
in conjunction with parity specific data; this could also produce an
interesting extension to the model. Unfortunately, reither duration-—of-
motherhood nor parity specific data of a suitable form are available in
a long time~series for England and Wales, although it may be possible
to find some way of utilising such data as is available. The 0.P.C.S.
Longitudinal Study could represent a valuable alternative source of
data,

Chapter 4 raises some important questions about the presence of

infecund or subfecund individuals in each parity group. The hypothesis
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that physiological changes wrought during pregnancy, childbirth and
lactation sometimes result in lasting impairment to fecundity
especially for older women, deserves further scrutiny, even though only
a small proportion of women may be affected. The difficulty in
persuing this line of research is that evidence for such a phenomenon
is necessarily circumstantial, since involuntary infecundity would not
normally be directly measurable. Nevertheless it would be interesting
to estimate, albeit somewhat tentatively, differentials in subfecundity
with respect fo country, parity, age and other background variables.

It is also important to extend the work of chapter 4 to investigate
the reasons for differences between couniries in the baseline hazard
for birth-intervals, which persist despite making several controls,
and even though differentials on these controls are similar across

countries.



5.3 Closing remarks.,

In conclusion, it may be said that the work contained in this
thesis demonstrates the usefulness and the limitations of models
involving date-related variables such as age, period and cohort. The
focus of much of the research was methodological, yet interesting
substantive hypotheses have emerged from chapters 3 and 4. The potential
of the bimodel and the cohort-experience type of model, and the
comparative lack of utility of the additive age, period, cohort model,
in conjunction with aggregate level demographic data, have been
established. Brrors-in-variables biases associated with date-related
variables have been demonstrated in connection with individual level
data, yet despite these biases such variables prove to be a powerful
source of control. The work suggests several avenues for further
development and exploration which could lead to important contributions

to demographic methodology and understanding,
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