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This thesis is concerned with the development of useful engineering techniques to detect
and analyse nonlinearities in mechanical systems. The methods developed are based on the
concepts of higher order spectra, in particular the bispectrum and trispectrum, and the
Volterra series. The study of higher order statistics has been dominated by work on the
bispectrum. The bispectrum can be viewed as a decomposition of the third moment
(skewness) of a signal over frequency and as such is blind to symmetric nonlinearities. To
study such phenomena one has to go a stage further and resort to the trispectrum, or
decomposition of kurtosis over frequency. Techniques are presented here that enable one
to estimate and display both auto and cross, bispectra and trispectra.

Initially auto higher order spectra are studied in detail with particular attention being paid
to normalisation methods. Two traditional methods based on the bicoherence and
skewness function are studied and these are expanded to their fourth order equivalents, the
tricoherence and kurtosis functions. Under certain conditions, notably narrow band signals,
the above normalisation methods are shown to fail and so a new technique based on pre
whitening the signal in the time domain is developed. Examples of these functions are
given both for memoryless and dynamic systems. The Volterra series is presented and
discussed in some detail. Techniques for calculating a system’s Volterra kernels from cross
higher order spectra are derived. New methods are presented for the estimation of higher
order Volterra kernels which are shown to produce better results than traditional
approaches. These are then applied to some simple analytic systems which include the
Duffing oscillator. Some discussion is then given to determine under what circumstances
these Volterra models are suitable for the modelling of a particular nonlinear system.

Finally, the application of these techniques to data from some actual mechanical systems is
performed. The mechanical systems concerned consist of two beams. The first is a simply
supported beam, driven by an electromagnetic shaker, with pairs of repelling magnets
placed at its tip. By varying the position of the magnets the nature and strength of the
nonlinearity can be altered. The second is also a simply supported beam attached to a
shaker. By loosening the attaching bolt to the shaker a rattling nonlinearity can be
introduced into the system. Useful results, that are of practical interest to an engineer, were
obtained from both the auto higher order spectral techniques and Volterra analysis.



Contents

1 Introduction

1.1 General introduction

1.2 Historical perspective and scope of the thesis

2 Auto higher order spectra: the bispectrum and trispectrum

2.1 Introduction
2.2 Probability density functions and moments
2.3 An introduction to auto higher order spectra - the frequency domain
2.3.1 The power spectrum -
2.3.2 The auto bispéctrum
2.3.3 The auto trispectrum
2.4 An introduction to auto higher order spectra - the time domain
2.4.1 Moment functions
2.4.2 Cumulant functions
2.4.3 The relationship between cumulants and higher order spectra
2.5 Estimation of higher order spectra
2.5.1 The indirect method
2.5.2 The direct method
2.5.3 The use of linear windowing
2.5.4 Regions of symmetry and the principle domain
2.5.5 Plotting conventions
2.5.6 Sampling considerations and aliasing

2.6 Conclusions

3 Normalisation techniques and examples of auto higher order spectra

3.1 Introduction - the need for normalisation
3.2 The skewness and kurtosis functions
3.3 The bicoherence function

3.3.1 An example of the bicoherence function: the mixed signal

10
12
12
14
18
21
21
22
23
25
25
26
27
27
29
30
33

35
35
36
37
38



3.3.2 Quadratic Phase coupling
3.4 The tricoherence function
3.4.1 Cubic Phase coupling
3.5 Problems associated with the bicoherence and tricoherence
3.6 Pre-whitening techniques
3.6.1 Bispectrum and trispectrum of a bandlimited signal
3.6.2 An example of pre-whitening: an AM process
3.6.3 The Duffing oscillator
3.7 Periodic Signals

3.8 Conclusions

4 Cross higher order spectra and the Volterra series

4.1 Introduction

4.2 Cross higher order spectra

4.3 The Volterra series

4.4 Linear filters acting on a polynomial input
4.4.1 Higher order spectra solution
4.4.2 Residual spectra solution

4.5 Relationship between the linear filters acting on a polynomial input and the
Volterra series

4.6 The quadratic Volterra model
4.6.1 Estimation of the quadratic Volterra kernel
4.6.2 Example of a quadratic system

4.7 The cubic Volterra model
4.7.1 Example of a cubic system

4.8 A note on higher order coherence functions

4.9 Conclusions

5 Limitations of the Volterra series
5.1 Introduction
5.2 Convergence of the Volterra series

5.3 The Wiener series

40
41
42
45
47
48
49
55
60
63

64

66
69
71
72
78

85
87
90
93
96
100
102
103

105
105
106
108



5.3.1 Conversion between the Volterra and Wiener series 108

5.4 The use of Volterra kernels to find the response of a non-Gaussian signal 109

5.4.1 The cubic Volterra model of the Duffing Oscillator 110

5.4.2 Sine wave input to the Volterra model of the Duffing Oscillator 114
5.5 Solutions for the Volterra models when the input is non-Gaussian 116
5.6 Optimality of the Volterra models 120
5.7 Causality and the Volterra series 124
5.8 Overview of Volterra models 125
5.9 Conclusions 127

6.0 Practical examples of the use of higher order spectra in mechanical systems 128

6.1 Introduction 128

6.2 The nonlinear magnetic beam 129

6.2.1 Auto higher order spectral methods 130

6.2.2 Cross higher order spectral methods 139

6.2.3 The interpretation of higher order impulse response functions 141

6.3 The nonlinear rattling beam 149

6.3.1 Auto higher order spectral methods 150

6.3.2 Cross higher order spectral methods 150

6.4 Conclusions 160

7 Concluding remarks 161
8 Appendices 166
Appendix A: Properties of cumulant functions 166
Appendix B: Second order analysis of stationary random signals 169
Appendix C: Visualisation of the trispectrum 171
Appendix D: Average of the product of Gaussian variables 175
Appendix E: Solution of the cubic Volterra model 180
Appendix F: Optimal linear filtering 186

9 References 189

v



Acknowledgements

My trio of supervisors, Paul White, Joe Hammond and Stuart Dyne are a continual source
of guidance and encouragement. I would like to thank them for all of the help they have

given.

In addition, I would like to thank the following; Justin Fackrell for solving many a problem,
both by regular e-mail and at the various conferences we have attended, Peter Studzinski
for providing expert help on data visualisation, Gill Jewell and Jon Hall for their computing
support, Tim Leighton for his help in reading this thesis, and Maureen Strickland for sorting

all manner of problems and always having an endless supply of biscuits.

Finally I would like to thank Mum and Dad for their support and encouragement and Uncle

Antony for inspiring my interest in engineering.

This work was funded by the EPSRC.



List of Principle Symbols Used

A

b(f,.f)
cum(x, ... X,)
Cl(®)
Coultisty)
Crono(tiobply)
C,,(®
Cy(t,ot,)
Cooy(tpts)
e(n)

E

E[]

E ()
E,.(f.f,)
E,oo(f,5,,5)

h(t)

h,(0)
h,(t)
hy(t)
h(t,.t,)
hy(t,.t,.t)
H(f)
H,()

arbitrary constant

bicoherence function

n" order cumulant operator

second order auto cumulant function
third order auto cumulant function
fourth order auto cumulant function
second order cross cumulant function
third order cross cumulant function
fourth order cross cumulant function
mean square error signal

Young’s modulus

expectation operator

deterministic spectrum

deterministic bispectrum
deterministic trispectrum

resonant frequency

sample frequency

lower frequency of bandlimited signal
upper frequency of bandlimited signal
Fourier operator

arbitrary linear system

impulse response vector

impulse response

linear impulse response

quadratic polynomial impulse response
cubic polynomial impulse response
quadratic impulse response

cubic impulse response

transfer function

linear frequency response

vi



H,(®)
H,()
H(f,.f)
H, ()
H,(f.f,.f)
H[]

i(t)

IH

I
K'(f,,f,.f)
k

K,
K(f,,£)
K,(f,.f,f,)
KD
K(v)

z 2 8 - -

o

p
P(x)

R

R, (t)

R, (t,.t,)
Rxxxx(tl,tz,g)
R,

R, (t,,t,)
R,y (Eotots)
$'(f,.f)

quadratic polynomial frequency response
cubic polynomial frequency response
quadratic Volterra kernel
modified quadratic Volterra kernel
cubic Volterra kernel

n" order Volterra operator

impulse train

Fourier transform of impulse train
second moment of area

kurtosis function

number of blocks used in estimation
linear Wiener kernel

quadratic Wiener kernel

cubic Wiener kernel

derived Wiener kernel
characteristic function

length

residual spectra filters

number of taps in a digital filter
mass

segment size

data length

frequency of sinusoid

cross correlation vector
probability density function

auto correlation matrix

auto correlation function

auto bi-correlation function

auto tri-correlation function

cross correlation function

cross bi-correlation function

cross tri-correlation function

skewness function

vii



Sy
Sy(Fof)

S e (F o Ly)
Sey(D)
S,e(fF)

S ox(F L)
Sij

T oo (F s )
T oo (FoEo )
var

X

%

X(1)

X(®

y(®
Y()
Yin
Y g
Yo

power spectrum
bispectrum

cumulant trispectrum

Cross spectrum

cross bispectrum

cumulant cross trispectrum
cross spectrum of x; and x,
moment trispectrum
moment Cross trispectrum
variance

first derivative of x

second derivative of x

input signal

Fourier transform of x(t)
Fourier transform of process x, conditioned with respect to x,
output signal

Fourier transform of y(t)
linear component of y(t)
quadratic component of y(t)
cubic component of y(t)
conjugate

linear convolution
quadratic coefficient
constant relating to h,(t)
cubic coefficient

linear coherence

quadratic coherence

delta function

Kronecka delta function
spacing between delta functions
error signal

estimate of cross correlation vector

vili



1™ order broad band moment
damping coefficient

variance of x

estimate of auto correlation matrix
average output power

fundamental angular frequency



Chapter 1

Introduction

1.1 General introduction

A fundamental approach to the classification of a random signal is to characterise the
process by its joint probability density functions. The full set of probability density
functions gives a complete description of any stochastic process. From the joint probability
density function it is possible to form the joint moments of a process and from these the
joint camulants, further details of which can be found in Appendix A. Higher order spectra
are defined as multi-dimensional Fourier transforms of the joint cumulant functions. This

thesis is concerned with the use of these higher order spectra to study nonlinear systems.

A Gaussian process can be completely described by its second order joint probability
density function, ie. all joint cumulants of order higher than two vanish for a Gaussian
process. This leads to one of the most useful properties of higher order spectra, that is, if
the process is Gaussian all the spectra of order higher than two are equal to zero. If a
Gaussian signal is operated on by a nonlinear system the resulting signal will be non-
Gaussian. By studying this non-Gausian signal it is possible to obtain information about

any non linearity in the system.

One of the most fundamental and useful tools in signal processing has been the estimation
of the power spectrum. In power spectral estimation, the signal under consideration is
processed 1n such a way that the distribution of power among its frequency components is
estimated. The information present in the power spectrum is exactly that which is present
in the autocorrelation function and is all that is needed for the complete description of a

Gaussian signal. However, there are many practical situations where the power spectrum



cannot provide all the information and it is necessary to look beyond the power spectrum to

extract information regarding deviations from Gaussianity.

Higher order spectra, which are defined in terms of the joint cumulants of a process, do
contain such information. Particular cases of higher order spectra are the third order
spectrum, also known as the bispectrum, which is defined as the Fourier transform of the
third order joint cumulant, and the fourth order spectrum, or trispectrum, which is defined
in terms of the Fourier transform of the fourth order joint cumulant. The power spectrum,
bispectrum and trispectrum are just particular examples of the generalised concept of
polyspectra which were introduced by Tukey [78] and Brillinger [9, 10, 11] in the early
1960’s.

The vast majority of papers published concerning higher order statistics involve the
bispectrum. The bispectrum is a decomposition of the third order moment or skewness of
a process and as such is only able to analyse non-symmetric nonlinearities. In practical
applications, many systems will contain symmetric nonlinear terms or, more likely, a
mixture of skewed and symmetric nonlinearities. It is therefore necessary to consider not
only the bispectrum but also the trispectrum, and to use the two as complementary tools in
the analysis of a system. The aim of this work is to extend much of the work done on the
bispectrum to the trispectrum and then use higher order spectra to analyse practical,

nonlinear systems to produce information useful to an engineer.

In many applications, only a single signal is available, such as from an accelerometer
mounted on a machine in a condition monitoring situation. In these cases auto higher order
spectra must be used. The bispectra and trispectra can then give useful insight into the
nonlinearities occurring in the system which are often related to the onset of faults in the
machine. However, there are other applications where both an input signal and output
signal are available, such as when a mechanical structure is being excited, and in these cases

cross higher order spectra can be used to estimate system properties.

The main techniques used in this work are first, the bicoherence and tricoherence which are

normalised versions of the auto bispectrum and auto trispectrum respectively. These are



used to detect quadratic and cubic phase coupling, that is, the interactions that can occur
when a signal is passed through a system containing quadratic or cubic nonlinearities. The
second technique involves cross higher order spectra and is based on the Volterra series.
From cross higher order spectra, higher order transfer functions and impulse response
functions can be calculated. By summing these and forming a partial Volterra series the

response of a nonlinear system to a range of inputs can be approximated.

Being of lower order, the bispectrum is easier to compute than the trispectrum, which has
many problems associated with its estimation. A fundamental difficulty when dealing with
the trispectrum is simply in displaying it. The bispectrum is a function of two frequency
variables, and so can easily be plotted using a mesh type plot with the bispectral magnitude
rising out of the fj, f, plane. The trispectrum is a function of three frequenc‘y variables and
so requires four dimensional space to display it. Previous work on the trispectrum has
always examined slices or planes through the f;, f;, f; frequency space which have been very
difficult to interpret. It was therefore felt important that a method for displaying the
trispectrum in its entirety should be developed in order to be able to easily distinguish the

different frequency interactions.

Although higher order spectra have been actively researched for the last quarter of a
century, very few useful practical applications have been found and the vast majority of the
work published has concerned theoretical aspects. The aim of this work was not only to
obtain a sound understanding of the theory of the bispectrum and trispectrum but to apply
them to practical situations and obtain information that could be of use to an engineer

studying the particular system.

To this end, two practical systems have been chosen to demonstrate higher order spectra.
They are both mechanical structures and consist of beams driven by electromagnetic
shakers onto which nonlinear forces can be exerted. One has a magnetic nonlinear
restoring force, produced by pairs of repelling magnets placed at its tip. This is used
because of the ease in which both the nature and magnitude of the nonlinearity can be

controlled. The other has a rattling type nonlinearity which can be introduced into the



system so as to be akin to a fault occurring in a machine. Both auto and cross higher order

spectral techniques are used to try to detect and model the nonlinearities.

1.2 Historical perspective and scope of the thesis

A brief summary of the contents of each of the chapters is now given, together with
references to any similar work published by other authors, emphasising the contributions

made here.

In chapter two, the concept of higher order spectra is introduced, first from an intuitive
frequency domain point of view, and then more mathematically in the time domain. A
number of authors, Nikias et al [58, 59, 60], Mendel [52], Priestley [65] and Subba Rao
[73] have written review articles or books on higher order spectra and their approach is
typically a mathematical one. The aim here was to get a ‘feeling’ for the frequency
interactions that can occur in higher order spectra before using the more mathematical
approach of cumulant and moment functions and this is done with simple examples using
sine waves. Many papers have been published on the bispectrum, particularly on its
theoretical aspects but few authors have studied the trispectrum and no one, to the author’s
knowledge, has displayed the trispectrum in its entirety. Dalle Molle [25, 26, 27] is the
most widely quoted author for the trispectrum but his work is very theoretical; other
authors include, Chandran et al [12, 13, 14], Kravtchenko-Berejnoi et al [47], Lutes and
Chen [49] and Walden and Williams [79]. Some of the practical issues concerning the
calculation of higher order spectra are then examined, such as the methods of estimation,
windowing, symmetry, and aliasing. There are two approaches to higher order spectra
estimation: parametric and non parametric. Parametric methods are based on assuming the
signal is the output of a model and estimating the parameters of the model, e.g. AR, MA.
These methods are not studied in this work but more information can be found in {66, 59].
The two main non parametric methods of estimation of higher order spectra are the direct
and indirect methods. These are well understood and detailed in many places, such as
Nikias and Petropulu [59]. The symmetries of the bispectrum have now been well

documented by, for example, Subba Rao [73]. However the symmetries of the trispectrum



are more complicated. Dalle Molle [27] and Williams [80] have both produced papers
suggesting principal domains for the trispectrum and recently this has been extended to a
general procedure for the derivation of the principal domain of an n® order spectra by
Chandran and Elgar [15]. Components of higher order spectra outside the principal
domain have been the basis of a well established test for aliasing by Hinich [39]. Recent
work by Parsons and Williams [61], Le Roux et al [48], and Stogioglou and McLaughlin
[72] have used this to show that a continuous stationary signal sampled at its Nyquist rate
cannot be modelled by a discrete process based on passing independent, identically
distributed (IID) noise through a linear filter. The novel contributions in this chapter are in
extending much of the work on the bispectrum to the trispectrum, and especially in the

display of the trispectrum.

The variance of estimates of the bispectrum and trispectrum are dependent on the second
order statistics of the signal and so it is common practice to normalise the bispectrum and
trispectrum to remove these effects. Possible methods are discussed in chapter three.
These include the well known skewness function, first introduced by Hinich [40] and the
bicoherence function of Kim and Powers [45]. These are extended to their fourth order
equivalents, the kurtosis function and the tricoherence. Examples are given of the
normalisation functions particularly concentrating on the bicoherence and tricoherence and
drawing on the work of Fackrell et al [29, 33, 34] who have studied in detail, some of the
problems associated with the practical use of the bicoherence. Only a small amount of
literature has been published on the tricoherence, notably on its statistics by Chandran et al
[12] and so effort is made here to concentrate on the tricoherence, using examples
wherever possible. These traditional methods of normalisation sometimes fail when narrow
band signals or signals with sharp resonant peaks are considered. Williams [80] has
previously worked on the higher order spectra of band limited signals. A new method is
proposed, based on a pre-whitening technique which has similarities with work recently
presented on phase only spectra (POS) by Lyons et al [50] and is demonstrated with the
use of an amplitude modulated (AM) signal. A brief mention is given to periodic signals,
extending Fackrell’s [32] work on periodic signals in the bispectrum, or the ‘bed of nails’,
to the fourth order. Finally, a detailed example of a cubic nonlinear dynamic system, the

Duffing oscillator, is given. Such a system has previously been modelled using the



trispectrum by Lutes and Chen [49]. This chapter, as in chapter two, mainly deals with
extending concepts from the bispectrum to the trispectrum. The main novel contribution
concerns the work with narrow band signals and the development of the pre-whitening

technique as a normalisation method for the trispectrum.

Chapter four expands the work on auto higher order spectra to study cross higher order
spectra and the Volterra series. A number of methods are proposed, all of which use higher
order spectra, and are based on determining the first three Volterra kernels or parts of
them. Wiener first noticed how the Volterra series could analyse nonlinear systems using
higher order spectra as detailed in Schetzen [70]. Tick [76] then demonstrated how, in the
frequency domain, the linear and quadratic Volterra kernels could be directly estimated in
terms of the input and output characteristics of a system when the input was assumed to be
a zero mean, Gaussian signal. This was extended to the cubic case by Hong et al [41] but
based on a time domain approach. Before studying the full Volterra series model a similar
series based on linear filters acting on a polynomial input is examined. This is shown to be
akin to just examining the main diagonal of the Volterra kernels. Ralston and Zoubir [67]
have recently used this type of series, which they have termed a Hammerstein series, to
study engine knock. This type of model may also be viewed as a multiple input, single
output system. Much work has been done on the concepts of residual spectra and partial
and multiple coherence for this type of system notably by Bendat et al [3], Clarkson and
Hammond [18] and Fitzpatrick et al [35] who have compared this technique to higher
order spectra for modelling such applications as squeeze film dynamics [28]. It is shown
how similar results can be obtained using both higher order spectra and residual spectra and
these two techniques are compared and contrasted. The full Volterra model, based on the
assumption of a Gaussian input, is then described in detail both for the quadratic and cubic
cases. Many authors have used the simple quadratic Volterra model to analyse skewed
type nonlinearities, notably Bondon [5], Zoubir [83], Hinich [37], and Perrochaud [62], but
little use has been made of the cubic model. As with auto higher order spectra, problems
occur in the estimation process due to the variance of the cross bispectrum and trispectrum
containing second order effects. An alternative technique based on successively subtracting
off lower order components is proposed, which is shown to minimise the variance of the

quadratic kernel. Examples are given for both the quadratic and cubic cases. In this work a



block estimation approach is used, however, a possible alternative philosophy, as detailed in
[51], is based on adaptive methods where the estimate is updated for every sample. The
main original contribution in this chapter is the frequency domain technique used for

estimating the Volterra kernels.

In chapter five, before applying the Volterra series to experimental results, a number of
possible pitfalls are examined. These include the convergence, causality, and optimality of
the Volterra models developed in the previous chapter, together with the difficulties that
can occur when the input cannot be assumed to be Gaussian. Boyd and Chua [7] have
given detailed conditions for the convergence of the Volterra series, as has Schetzen [70]
who likened it to a Taylor series with memory. Wright [81] has clarified their conditions
and demonstrated them with examples. In this chapter some more simple examples of
converging and diverging Volterra series are given. During the estimation of the Volterra
kernels in chapter four, the kernels of a related series, the Wiener series [1, 2, 70], are
estimated. The relationship between Wiener and Volterra kernels is detailed in Schetzen
[70] but is also described here as it is closely linked with the way the Volterra kernels are
estimated. Throughout this work, it is always required that the input to the system is
Gaussian. In many cases this assumption may be invalid, and so a method, based on the
work of Powers et al [16, 43, 44, 55, 63, 77] is presented for the quadratic Volterra model
that removes this restriction. Different techniques are described, together with their
advantages and disadvantages, and these are categorised together with their respective
authors. The frequency domain technique developed in the previous chapter to estimate
the Volterra kernels is compared with the optimum least squares time domain technique. It
is shown that the new technique, although not optimum, produces much better results than
traditional methods. Finally the topic of the causality of the estimated Volterra kernels is

briefly mentioned.

In the final chapter, both auto and cross higher order spectra are applied to some real
mechanical systems. Over the past two decades higher order statistics have been applied to
may different types of physical phenomena. Applications have been found in fields as
diverse as speech processing [31], chaos [75], underwater acoustics [68], medical

engineering [71], share prices [39] and condition monitoring. Condition monitoring of



mechanical systems has been one of the largest areas of application of higher order
statistics. Broad band higher order moments, such as kurtosis, are well established as a
condition monitoring tool, as described by Braun [8], so it is likely that higher order
statistics will also be able to offer useful information. Much of the recent work has
concerned the condition monitoring of rotating machines, notably by Fackrell et al [30],
Nandi et al [56, 57], Howard [42], Sato et al [69], and Zhou et al [82] and has tended to
concentrate on the bispectrum. In this work, both the auto bispectrum and trispectrum are
used to detect the nonlinearities in two systems, first for a beam excited by an
electromagnetic shaker with pairs of repelling magnets at its tip producing a nonlinear
restoring force [21], and second for a beam loosely attached to an electromagnetic shaker
so as to produce a rattling type nonlinearity. The auto bispectrum of this last system has
previously been studied by Fackrell et al [30]. Cross higher order spectra are then used to
identify the systems by calculating the cubic Volterra model of the two beams. The novel

contribution in this chapter is in applying the above methods to produce useful results from

real systems.



Chapter 2

Auto higher order spectra:

the bispectrum and trispectrum

2.1 Introduction

This chapter begins by examining the probability density function and moments of a signal.
The concepts of higher order spectra (HOS) are then introduced, initially from a frequency
domain point of view, for both stochastic and deterministic processes. However, the
majority of the work in this thesis assumes that the signal is zero mean, stationary, and
random. The importance of these assumptions are discussed in detail for the second order

case in Appendix B.

To help introduce higher order spectra, a simple example using deterministic signals based
on sine waves is given. This example helps to show some of the frequency interactions that
can occur in higher order spectra and the methods used to display them. Next, a more
mathematical time domain approach is used, to present higher order statistics, deriving

them from joint cumulant and moment functions.

Some of the practical issues concerning the calculation of higher order spectra are
examined, including the different methods of estimation, either in the frequency or time
domain, and the effects of windowing. The symmetrical properties of the bispectrum and
trispectrum are discussed and their principal domains defined. Finally, the implications of
components of higher order spectra appearing in different regions of the bispectrum and

trispectrum are considered with particular attention to aliasing.



2.2 Probability density functions and moments

If x(t) is a stationary, random, signal, the '™ moment of x(t), denoted LL, 1s defined as,
He=E[x ()] 2.1

where E denotes the expectation operator. Note that [, = E[x(t)] = i, the mean of x(t).

Higher order moments [53] are usually calculated as central moments about the mean.

That is:

= E[(x(t)-1o] 22
The second central moment is the variance of a signal,

var[x(t)] = po = E[(x(t)-1,)°] = 6,7 2.3

This gives a measure of the spread of a signal about the mean. The probability density
function of a signal with a Gaussian or normal distribution (see figure 2.1) is completely
described by its mean and variance. Higher order moments are often used to describe the

properties of more complex signals.

The third moment about the mean, 3, is sometimes called skewness and is a measure of
asymmetry of the probability density function. For symmetric distributions p;=0. A
probability density function similar to that shown by the solid line in figure 2.2 is said to be
skewed to the left and has a negative skewness, whilst one similar to that shown by the
dotted line is said to be skewed to the right and has a positive skewness. The ratio /G,
which is dimensionless, is called the coefficient of skewness and gives a measure of the

degree to which a distribution is skewed.
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Figure 2.1: Gaussian pdf, i1,=0, p,=3
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Figure 2.2: Negative skewed pdf, p, <0, (solid line)
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Figure 2.3: Leptokurtic pdf, p, <3, (solid line)
and platykurtic pdf, p, > 3, (dotted line)
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The fourth moment about the mean, s, is used as a measure of kurtosis which is related to
the degree of flatness of a distribution near its centre. The ratio p/c,’ is known as the
coefficient of kurtosis. A Gaussian signal has a kurtosis of three. Values of kurtosis
greater than three indicate that a probability density function is more peaky (as shown by
the solid line in figure 2.3) around its centre than the density function of a normal
distribution and are known as leptokurtic [6]. Kurtosis values of less than three indicate
that the probability density function is flat around its centre (dashed line, figure 2.3) as

compared with a normal distribution and are known as platykurtic.

Within signal processing, higher order moments can give a basic description of the
properties of a signal. In particular the fourth order moment, or kurtosis of a signal, has
successfully been used in the field of condition monitoring [8], for example, to detect

bearing wear in a rotating machine.

2.3 An introduction to auto higher order spectra - the frequency domain

The power spectrum, bispectrum and trispectrum are just particular examples of the
generalised concept of polyspectra [78]. Just as the power spectrum is able to give a
decomposition of power over frequency, it is possible to use higher order spectra to obtain
a decomposition of skewness and kurtosis over frequency and so obtain more information
about the higher order statistics of a signal. The second order polyspectra is the
conventional power spectrum and so this section begins with a brief discussion of the

power spectrum.

2.3.1 The power spectrum

The power spectrum is the main tool of signal analysis and a huge body of literature has
been published concerning its use and properties, for example [64]. It is the most
commonly used of the polyspectra for, being of the lowest order, it is the simplest to

calculate and easiest to interpret. The power spectrum is concerned with the second order
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statistics of a signal and will now be defined both in the context of deterministic and

stochastic processes.

The energy in a signal is:

(1) = [x*(t)dt 2.4
Substituting x(t) = °fX(f )e”™df into equation 2.4 gives,

X2 (1) = [ | [X(6)X(£,)e"™ " dtdf df, 2.5

Integrating equation 2.5 with respect to t and using the shifting property of the 8 function

results in,

X (8) = [ [X(E,)X(E,)8(E, +f,)df,df,

= [X(f,)X(~f,)df, 2.6

From this the energy spectrum can be defined as,
E, (D) =X{HX(1) 2.7

For a stationary stochastic process it is possible to use a similar method, which is detailed in

Appendix B, to obtain the power spectrum which is defined as:
S (f,,1,) = E[X(f,)X(-1,)] 2.8

This simplified notation, which absorbs the time interval into the definition, is explained in

detail in Appendix B. For a stationary process it can be shown [64] that Sxx(f1,f;) is equal
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to zero except along f,=-f,. This results in the following, more usual, definition for the

power spectrum of a stationary stochastic process:

S (F) = E[X(DX (f)] 29

where * denotes the complex conjugate. Note that this is a partial description of the power
spectrum; the full definition can be seen in Appendix B. The power spectrum treats each
frequency component as independent from all others and measures the power of the signal
at each frequency. It is a real quantity and contains no phase information and as such is said

to be phase blind.

2.3.2 The auto bispectrum

Rather than decomposing the energy of a signal to produce the energy spectrum, it is

possible to conduct similar analysis on a cubed signal,

(6 = [x(t)dt 2.10
Substituting x(t) = TX(f )e’*™df into equation 2.10 gives,

X0 = ][] TXE)XE,)X(E,)e = ardf df, df,
= [J TX(E)X(E,)X (B, + 1, + £, )df df, df,

= [ TX(E,)X(£,)X(~t, —£,)df df, 211

From this, the bispectrum of a deterministic signal can be defined as,

E,. (f..f,) = X()X(f,)X(~f, —1,) 2.12
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For a stochastic process, using the same method as for the power spectrum, the bispectrum

is defined as:

S, (F.1,.,) = E[X(f, )X (f,)X(£,)] 2.13

If the process is stationary, it has been shown [80] that Sxxx(fi,f2,f3) is equal to zero except
on the plane fy=-fi-f,. Therefore, the bispectrum of a stationary stochastic process is

defined as:

S e (£ £,) = EIX(£)X(£,)X * (f, +1,)] 2.14

In the same way that the power spectrum is concerned with the power of a signal, or
second order moment, the bispectrum is concerned with the skewness, or third order
moment. The bispectrum is a function of two frequency variables, f; and f;, and while the
power spectrum considers each frequency component independently, the bispectrum
analyses the frequency interactions between the frequency components fi, 5, and fi+f,. Itis
a complex quantity containing both real and imaginary parts. However, throughout this

work only the magnitude of the bispectrum is considered.

Two simple examples, using sine waves, are now given demonstrating some of the possible
frequency interactions that can occur in the bispectrum. Sine waves are used as an example
because they produce easily understood results despite the fact that they do not conform to

the assumption of being stationary random signals.

Consider a complex sine wave of frequency p;. A complex sine wave is used in order to

suppress unwanted cross terms between the positive and negative frequency components.

x(t) = e”™" 2.15

This has a Fourier transform,
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X(f) = &(f-py), 2.16

where J represents the Dirac delta function. This is shown diagrammatically in figure 2.4.

If X(f) is substituted from equation 2.16 into equation 2.12, the bispectrum is equal to:

E . (f;.f,) =8, — p,)d(f, —p,)o(f, +f, - p,) 2.17

This contains the triple product &(fi-p;)&(f-p1)8(fi+f>-p1). There will only be a non-zero
point in the bispectrum when all three terms in the above product are non-zero. Plotting
the three terms in the (fi,f;) plane leads to the three lines, f; = p,, f,=p; and fi+H,=p, as
shown in figure 2.5. For p; # 0 there is no point of intersection of all three lines and hence

the bispectrum of a complex sine wave is zero.

Next consider a signal consisting of two complex sine waves of frequency p; and p,. The

Fourier transform of this signal is,

X() = 8(f-p1) + 6(f-p2) 2.18

This is shown in figure 2.6. The deterministic bispectrum is now equal to,

Exxx(fpfz) = {S(fl -p1)+6(f1 _pz)}{s(fz - p1)+6(f2 - pg)}
{&(f, +f, - p,)+8(f, +f, - p,)}

2.19

This can be shown to consist of eight terms, each of which is a triple product. If these are
plotted in the (f1,f;) plane they appear as the six possible lines fy=pi, L=p1, fi=p2, L=p2,
fi+ f,=p, and f, + f,= p; as shown in figure 2.7. There will be an intersection of the three
terms if p, = 2p;. The intersection will then occur at (p;,p:) as shown by the dot in figure

2.7.
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Figure 2.4: Fourier transform of sine wave
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Figure 2.5: Bispectrum of sine wave
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Figure 2.6: Fourier transform of two sine waves (p, = 2p,)
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Figure 2.7: Bispectrum of two sine waves (p, = 2p,)
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An example of the bispectrum of two sine waves of frequencies 50 Hz and 100 Hz is
shown in figure 2.8, where it can be clearly seen that there is a peak at (50,50) Hz. As the
bispectrum is a function of two frequency variables it is easy to plot it as a three
dimensional function with the bispectral content rising out of the (fi,f;) plane. Here a
‘mesh’ type plot is used to show the magnitude of the bispectrum as a three dimensional
surface. This is predominantly the method used to display bispectra in this work, although
simple ‘contour’ maps occasionally allow one to interpret the fine detail with more

accuracy.

2.3.3 The auto trispectrum

In the previous section, the bispectrum was defined as a decomposition of the average of a
signal cubed and as such is concerned with the skewness of a signal. In many of the
problems that are considered in this work it will be necessary to consider both skewed and
symmetric signals. The trispectrum can be defined as a decomposition of the average of a
signal to the fourth power and as such is concerned with the kurtosis of a signal. Using a
similar analysis as for the bispectrum it is possible to define the trispectrum for a

deterministic process as,

E oo (£ 0 £,) = X(E)X(E)X(ENX (T, =, — £,) 2.20

and the trispectrum for a stochastic process as',

Ty (f,51,,1,) = E[XE) X)X )X * (], +1, +1,)] 2.21

As with the bispectrum a simple example using complex sine waves will now be given in
order to show the frequency interactions that can occur in the trispectrum and the methods
used in this work to display it. It is easy to show that the trispectrum of a single complex

sine wave is zero. This can be done as for the bispectrum but instead of considering lines in

! Note, the change in terminology from Syxxx(f1,£,f3) to Txxxx(fi,f,13) is to denote the difference between
the cumnulant trispectrum and moment trispectrum. This is explained in section 2.4.3.
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the (f,,f;) plane it is necessary to consider planes in the (fi,f,,f3) space. If the trispectrum of
two complex sine waves of frequency p; and p, are calculated, by considering the
interaction of planes in the (fi,f,,f3) space, it can be shown that there will be a peak in the

trispectrum at (py,p1,p1) if p2 = 3p;. Note there will also be a peak if p; = -p».

An example of the trispectrum of two sine waves of frequency 50 Hz and 150 Hz is shown
in figure 2.9. A major problem when calculating the trispectrum is that of deciding how to
display it. Whereas, the bispectrum is a function of two frequency variables and can easily
be plotted using three dimensional space, the trispectrum is a function of three frequency
variables and so requires four dimensional space to display it. All previous work on the
trispectrum has used various slices through the (fi,f,f;) space to display the important
features. However, it was felt in this work that it was important to display it in its entirety

in order to get a ‘feel’ for the various frequency interactions.

The method chosen to do this uses the Application Visualisation System (AVS) software
on a Silicon Graphics machine. For each (f,f,,f;) in the trispectral space, a sphere is drawn.
The size and colour of the sphere represents the magnitude at that point: large red spheres
represent points of large magnitude, reducing across the colour spectrum to small blue
spheres which represent points of smallest magnitude. Very small values are not drawn,
otherwise the (f},f,,f;) space would be covered by small, blue spheres representing very
small magnitude points. This method results in a cube of spheres of varying sizes and
colours representing the frequency interactions. It is possible to rotate the image on the
screen and so precisely determine the points of interaction. When the image is printed on to
paper, a four dimensional image has to be reduced to two dimensions and so inevitably
some clarity is lost. However, it still possible, at a glance, to understand where the
dominant points of interest are. More details of the software used, together with some

demonstrations of simple signals, are given in Appendix C.

For the case of the trispectrum of two complex sine waves it is clear that there is a point of
interaction at (50,50,50) Hz, of magnitude 1, denoted by the red spheres, together with
some points of magnitude 0.5 at other frequency triplets. It will be shown later in this
chapter that these points are caused by the symmetries of the trispectrum and are reflections

of the (50,50,50) Hz interaction.
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Figure 2.8: The bispectrum of two sine waves of frequency 50Hz and 100Hz

Figure 2.9: The trispectrum of two sine waves of frequency 50Hz and 150Hz
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2.4 An introduction to auto higher order spectra - the time domain

The previous section gave an intuitive introduction to higher order spectra starting from the
frequency domain and illustrating some of the frequency interactions that can create
structure in bispectra and trispectra. In this section a more rigorous, mathematical
approach is discussed which arises from considering joint moment and cumulant functions

in the time domain.

2.4.1 Moment functions

In section 2.1 the broad band moments of a signal were considered. Here this is extended
to look at joint moment functions which describe the moments of a signal at different lags
or delays. These moment functions can be used to describe the higher order properties of a

signal. The n™ order moment function of a stationary random signal, x(t) is defined as,

R, ,(T,,7,,...,Ty) = E[X(O)X(t + T)X(t + T,)... x(t + T )] 2.22

The second order moment function of a stationary random signal (see Appendix B), Rxx(7),

is the well known autocorrelation function,

R, (T) = E[x(1)x(t +7)] 2.23

The third and fourth order moment functions, termed the autobicorrelation and

autotricorrelation, for stationary signals, are defined as,

R, (T,,T,) = EIX(DX(t + T)X(t +1,)] 2.24

R (11575, T, ) = B[x(O)x(t + T)x(t + 7,)x(t +T,)] 2.25
For a zero mean Gaussian process all odd order functions are identically zero. The zero lag
component of the second moment or autocorrelation function, Rxx(0), is the signal variance

which can also be found by integrating the power spectrum over all frequencies. In a
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similar way, the zero lag component of the third moment function, Ryxx(0,0), is U3 and the
zero lag component of the fourth moment function, Rxxxx(0,0,0), is ts. These can also be
found by integrating the bispectrum across all frequency pairs and integrating the

trispectrum across all frequency triplets, respectively.

2.4.2 Cumulant functions

The N™ order cumulant function of a stationary random signal x(t) is defined (for N =3, 4)

as,
G
Cy x(1,,7T500 T ) =R, (T,,7,,..,T ) =Ry (T,,T,,...,T,) 2.26

where R, ,(T,,T,,...,Ty) is the N™ order moment function of x(t), and
Ry (T,,T,,-..,Ty) is the N" order moment function of an equivalent Gaussian signal that

has the same mean value and autocorrelation function of x(t). For a real stationary random
process with zero mean, the following relationships exist between the cumulant functions

and moment functions:

C,(D)=R,, (1) 2.27
Cox (7,,7,) =R, (T,,T,) 2.28

The second and third order cumulant functions are identical to the second and third order
moment functions. However, to generate the fourth order cumulant, Cxxxx(T 1,7 2,T3), it is

necessary to use both the second and fourth order moments.

Cxxxx(Tl’Tz’Ts) = Rxxxx(Tl’Tz’Ts) —Rxx(11)'Rxx(Ts _12)
R (1,).R (T, = T,) 2.29
“Rxx(Tz)'Rxx('tz _Tl)
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A more detailed description of the properties of moment and cumulant functions and their

associated generating functions is given in Appendix A.

2.4.3 The relationship between cumulants and higher order spectra

It is well known that Fourier transforming the autocorrelation function results in the power

spectrum,

S0 = [R (e dt = [C,y (1)e ™ dt 2.30

Similar results can be obtained for the bispectrum, Sxxx(fi,f2), and cumulant trispectrum,
Sxxxx(fi,f2.f3) by taking the double Fourier transform of the second order cumulant

function, and the triple Fourier transform of the third order cumulant function respectively,

T ~j2nfyty  —j2nlpt
xxx (fp 2 J. xxx(Tl’Tz)e Ve ’ zdrld’cz

2.31
J- XX(TI, 2) JZﬂltle-Janztsz dT

0 oo oo

Ssoex (Frofanf3) = [ [ [Con (1,51, T, ) e 2 ¥ g d1 d1, 2.32

00000

Ty (155, 3) = | j (R (1,1, T, )¢ e 72 708 g dr dr, 2.33

The difference between the cumulant and moment trispectrum is that the moment
trispectrum is non-zero along three planes even for a Gaussian process. The relationship
between cumulants and higher order spectra is shown in figure 2.10.

If x(t) is Gaussian then C, , (T,,7,,...,Ty) is zero for N>2. This result leads directly to

12 Y23°
one of the most useful properties of higher order spectra. That is, all higher order spectra
of order greater than two vanish when x(t) is a Gaussian process. Hence the bispectrum

and cumulant trispectrum can be regarded as a measure of the departure of the process
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from Gaussianity and many tests, for example [26, 40, 74], have been developed to this

effect.
Sianal Second order Third order Fourth order
:(?t) cumulant function cumulant function cumulant function
C“(T) CXX.X(TlaTZ) Cxxxx(‘rlstzstl)
Power spec Fourier transform
Sux(D
Bispectrum Double Fourier
St Transform
Trispectrum Triple Fourier
Sxxxx(fufz’fz) Transform

Figure 2.10: The relationship between cumulants and higher order spectra.

As, for a Gaussian process, the second and third order moment functions are identical to
the second and third order cumulant functions, no distinction can be drawn between the
moment power spectrum and bispectrum and the cumulant power spectrum and
bispectrum. However, the fourth order cumulant function is equal to the fourth order
moment function minus three terms which consist of second order components.
Throughout this work higher order spectra generated from cumulant functions are studied,
but estimating a trispectrum using equation 2.21, which is the most commonly used form of
estimation, results in a moment trispectrum. It is therefore necessary to separately calculate
the three second order terms and subtract them from the moment trispectrum, to form the

true cumulant trispectrum.
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2.5 Estimation of higher order spectra

The techniques used to estimate higher order spectra are similar to those used in power

spectrum estimation. Essentially there are two commonly used approaches:

The indirect method:-  Estimating the cumulant function and then taking a Fourier
transform.
The direct method:- Calculating raw spectra from segments of the signal and then

averaging across segments in the frequency domain.
Herein, the direct method is predominantly used, although higher order spectra calculated

with the indirect method are sometimes estimated to verify results and so an explanation of

both methods is included for completeness.

2.5.1 The indirect method

To calculate the n™ order cumulant function the time series is split into k blocks, each of

length M points. For each block Rx_x(7i ,...,Tn) is calculated, using equation 2.34.

R, ,(m,....my )= 1 %x(n)x(n +m,)...x(n+m_,) 2.34
m+1 =0
For the fourth order moment (the trispectrum) and above, Cx_x(Ti ,...,Tn) is calculated from
Rx. x(Ti,...,Tn) by subtracting off lower order terms, as detailed previously. The k blocks
are averaged to give the n” order cumulant function. This method of averaging small
blocks is used, as opposed to calculating one large block, as it requires much less
computation. However as less averaging is used in the estimation process, it will give
results with a larger variance. Finally, the higher order spectrum is calculated by taking the
n" order Fourier transform of the cumulant function. As is the case of conventional power
spectrum estimation, better estimates can sometimes be obtained using suitable windowing

functions. These will be discussed in section 2.5.3.
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2.5.2 The direct method

The direct method is based on the Welch periodogram technique. The data is divided into a
series of M overlapping blocks. For each block, the FFT is calculated and the product of
the spectral coefficients formed to produce the ‘raw’ higher order spectra. These ‘raw’

higher order spectra are then averaged to lower the variance of the periodogram estimates.

In order to ensure statistical confidence it is necessary to take care when choosing the block
length compared to the data length, N. A larger block size will have a less coarse grid,
resulting in a reduced bias, but a higher variance [73]. Dalle Molle and Hinich in [25] state
that the block length should be the (n-1)" root of the sample size when working with the n"
order spectrum. In the case of the trispectrum when working with a FFT size of 64 the
data length should be 64° or 262144 samples long. This in itself can cause problems as the
data should be stationary over the complete length.

The bispectral estimate obtained from this method can be shown [59] to have a variance of:
1
var(S,, (f,,f,) = —M-[l +0,(f, = )1 S (£)S (£,)S 4 (f, +1,) 2.35

where 0,(0) = 1 and &(f) = 0 for non-zero f. It can be seen that the variance of the estimate
of the bispectrum depends not only on the number of segments but also on the triple
product of power spectral terms, Sxx(fi)Sxx(f2)Sxx(fi+fz). Hence, the variance of the
bispectral estimate is heavily dependent on the power spectrum. This fact will continually
cause problems throughout this work particularly in the estimation and use of auto higher
order spectra in chapter three, where a number of normalisation methods are used to
alleviate the problem, and in the estimation of Volterra kernels in chapter four, where some
novel methods are used to try and reduce the variance of the higher order spectral

estimates.
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2.5.3 The use of linear windowing

In power spectral estimation the need for data windows is well understood. As stated in
the previous section, the length of the window crucially affects the variance and bias of the
estimate. In general, for a fixed length of data, increasing the length of window will
increase the variance but decrease the bias, whilst decreasing the length of window will
decrease the variance but increase the bias. Further discussion on the variance and bias of
higher order spectral estimates is given in the next chapter. The remainder of the section
gives a brief insight into the effect of the shape of the window, particularly where periodic

signals are concerned.

When estimating power spectra, for periodic signals, if there is not an integer number of
signal periods in each FFT frame, sidelobes can become a problem. Similar problems can
occur in bispectral estimation and windowing effects can be very pronounced. Fackrell
[32] gives a detailed study of the use of differently shaped windows when calculating the
higher order spectra of periodic signals and concludes that a rectangular window gives
minimal spreading of the main lobe, but causes high sidelobes which show up very strongly
in the bispectrum. However, using a Hamming window gives much better results by

reducing the side lobes.

This work is predominantly concerned with the higher order spectra of random signals. If
the signal is broad band and has a spectrum which is slowly varying the effects of window
shape will be greatly reduced and the results produced when using a rectangular window
are minimally different from those generated when a Hamming window is used.
Therefore, the majority of simulation and experimental work here uses a rectangular

window.

2.5.4 Regions of symmetry and the principal domain

Just as the continuous power spectrum has symmetrical properties so do the continuous

bispectrum and trispectrum. It is only necessary to evaluate the bispectrum and trispectrum
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in the principal domain or non-redundant area, as all other regions can be found by
symmetrical transformations of this area. In addition to the symmetrical properties of the
continuous bispectrum and trispectrum, the discrete versions, like the discrete power
spectrum, are periodic. In this section, the symmetries and principal domains of the

bispectrum and trispectrum will be defined.

Using the symmetrical properties of the cumulant function, as detailed in Appendix A, it is

easy to show that the continuous bispectrum will have the following symmetries:

!Sxxx (f,.1, )l = ‘Sxxx (f,.1, )l
=[S g (F, )| =[S (-1, = £,. )] 2.36
= ,Sxxx (fl ’—fl - fz )I = 'S XXX (fz ’—fl - fz )I

These are shown in figure 2.11. A star indicates where the symmetries involve a

conjugation.

* *
Principal
domain
< —>f,
* *
* *
v

Figure 2.11: Symmetries of the continuous bispectrum

Thus a knowledge of the bispectrum in the triangular region fi,f;> 0, and f; < f; is enough
for a complete description of the continuous bispectrum. There are in fact twelve regions
of symmetry in the bispectrum. As the discrete Fourier transform is periodic, the discrete
bispectrum will also be periodic which means that there will be added symmetries for the

discrete bispectrum and it can be shown [59, 73] that it is only necessary to estimate the
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discrete bispectrum in the region 0 <f, < fj, and fi+f,<f/2. This region is known as the
principal domain and can be further subdivided into two regions. These are shown by the
two triangles in figure 2.12, the inner triangle and the outer triangle. The importance of
components of the bispectrum appearing in each of these regions will be discussed in the

next section.

The discrete trispectrum has 96 regions of symmetry and has been extensively discussed
[15, 25, 26, 80]. The principal domain is shown in figure 2.13. Like the bispectrum, it is
divided into two regions: an inner volume (shown in dark grey); and an outer volume
(shown in light grey). Referring to figure 2.13, both the inner and outer volume can be
subdivided into two further regions: above and below the f; = O plane. Above the plane, all
the frequency indices are positive and so the sum of three frequencies is equal and opposite
to the fourth. Below the plane, only two of the first three frequencies are positive and so
this region contains interactions where the sum of two frequencies is equal and opposite to
the sum of the other two. Whereas the bispectrum of a narrow band signal is always zero,
these extra frequency interactions allow the trispectrum of a narrow band signal to be non-

zero. This will be extensively discussed in the next chapter.

It is of interest to note that if a slice through the principal domain of the trispectrum is taken
along the f;=0 plane, the principal domain of the bispectrum will be seen. It should
however be noted that it is neither possible to obtain the bispectrum by taking a slice of the

trispectrum nor the power spectrum by taking a slice of the bispectrum.

2.5.5 Plotting Conventions

In the bispectrum, the whole of the principal domain lies in the first quadrant and so in
general when the bispectrum is plotted the whole of the first quadrant is shown. Other
authors often display only the principal domain, setting the rest of the bispectral space to
zero. However, it is often more pleasing to the eye, and the bispectral features are more
easily interpreted, if the whole of the first quadrant is drawn, including all symmetries, and

so predominantly this method is used.
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The trispectrum splits its principal domain between the first and eighth octant. When there
is no extra information in the eighth octant only the first octant is displayed. However,
occasionally, as with narrow band signals, all the information in the trispectrum is in the
eighth octant and in these cases the entire trispectrum is displayed. Again, except in special

cases, all the symmetries are shown, not just the principal domain.

On all of the plots the position of the axes makes it clear exactly which part of the
bispectrum or trispectrum is being displayed. If the axes intersect in the bottom left hand
comner then only the first octant has been plotted whereas if they intersect in the centre of

the trispectrum, all eight octants are plotted.

2.5.6 Sampling Considerations and Aliasing

It has been shown by Hinich [85] that the discrete bispectrum over the outer triangle is zero
if the signal satisfies the following three conditions: 1) It is a random signal, 2) It is a
stationary signal, 3) It has been sampled without aliasing. A statistical test for aliasing using
this information was presented by Hinich [39]. The test proposed by Hinich for the
bispectrum can be directly extended to the trispectrum, that is, significant outer volume
content in the discrete trispectrum of a 4th order stationary random process identifies the
presence of aliasing in the signal. Although aliasing is rarely a problem in electronic signals
since it is standard practice to low pass filter signals to ensure fo< f/2 (where f; is the
highest frequency present in the signal), there are certain circumstances where aliasing can

cause problems.

First, some types of data are only available in discrete form and so analogue filtering is not
possible. Such an example used by Hinich [39], as an application of his test, is in stock
market data. Hinich showed that stock market results sampled at a rate of 1 sample a day
were aliased as they had statistically significant outer triangle content. However, it is

possible that the stock market data failed the test, not because it was aliased, but because
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Figure 2.13: Principal domain of trispectrum
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the data was non-stationary. An important criterion for the test is that the signal is

stationary up to 3rd order for the bispectrum or stationary to 4th order for the trispectrum.

Another important concept involving the bispectral content of the outer triangle was first
noted by Parsons and Williams [61] and has subsequently been developed in more detail by
Stogioglou and McLaughlin [72]. That is, if a continuous stationary signal is sampled at its
Nyquist rate then the higher order properties of the sampled signal cannot be modelled by

passing discrete, independently and identically distributed (IID) noise through a linear filter.

Hinich has shown that the bispectrum of a discrete signal, which results from sampling a
continuous, stationary signal at its Nyquist rate, with no aliasing, has zero bispectral content
in the outer triangle. However, the bispectrum of a discrete stationary signal generated by
passing IID noise through a linear filter will, in general, have a non-zero outer triangle.
These statements are obviously contradictory, indicating the failure of the model to

correctly represent a stationary signal sampled at its Nyquist rate.

Close inspection of Hinich’s test shows that it is not the discrete signal but the parent signal
from which it is sampled that must be stationary. Obviously if the parent signal is stationary
then the discrete signal will also be stationary as it is a subset of its parent signal. However
the converse is not true and the above contradiction implies that the parent signal of the
discrete linear model is non-stationary at third order. Thus the location of components in
the discrete bispectrum is also able to give some indication as to the stationarity of the

continuous signal from which the discrete signal was sampled.

In conventional spectra, the presence or absence of aliasing is usually confirmed by making
sure that the power spectrum is very low at the folding frequency f/2. A simple example of
detecting ‘digital aliasing’ with the trispectrum is now given. If a discrete, broad band,
stationary, Gaussian white process is passed through a cubic type nonlinearity the resulting
signal will be broad band leptokurtic. However the cubing process will have produced
components up to 3y and so the signal may be aliased. The trispectrum detects leptokurtic
components across all frequencies as can be seen in figure 2.14 by the interactions at all

frequency triplets. However close inspection of figure 2.14 will reveal that, rather than the
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trispectrum being uniform across all frequencies as expected, some small almost periodic

structure has been introduced by the aliasing.

If a similar Gaussian process is, before being cubed, first passed through a low pass filter
with cut-off frequency /6, the resulting signal should still be broad band leptokurtic but
with no components above f/2. The trispectrum should have zero outer volume content
and this is shown in figure 2.15, where it can be clearly seen that frequency interactions

only occur in the inner volume.

From this example it is important to note that aliasing can occur not only when sampling
continuous signals but also when working with synthetic discrete signals, and extreme care
must be taken not to allow any frequency components of the signal to exceed fy/2 as this

can lead to spurious results.

2.6 Conclusions

This chapter has aimed to present some of the underlying theory behind higher order
spectra. Initially broad band moments were discussed and their relationship with the
probability density function explained. The bispectrum and trispectrum were introduced for
both deterministic and stochastic processes. The possible frequency interactions which can
occur in higher order spectra were demonstrated using a simple example based on sine
waves. It was then shown, in a more traditional, mathematical, way, how higher order

spectra could be derived from joint moment and cumulant functions.

The practicalities concerned with the estimation of the bispectrum and trispectrum, both in
the frequency domain and time domain, were detailed together with the associated problem
of windowing. Finally, the symmetries of both the bispectrum and trispectrum were
described and the importance of structure occurring in the different regions of the discrete
bispectrum and trispectrum stated. In the next chapter this work will be built upon to see
how the bispectrum and trispectrum can be used to detect nonlinearities, and the many

pitfalls that can occur in the process.
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Figure 2.14: The trispectrum of a leptokurtic signal with aliasing

Figure 2.15: The trispectrum of a leptokurtic signal with no aliasing
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Chapter 3

Normalisation techniques and examples of auto higher

order spectra

3.1 Introduction - the need for normalisation

It was seen in equation 2.35 that bispectral estimates have a variance that is dependent on
the power spectral properties of a signal. In this chapter, the different methods used to

normalise the bispectrum and trispectrum, to remove these effects, are considered.

Two well developed methods which are based on the skewness function and the
bicoherence are presented. The skewness function is used primarily to make decisions,
based on statistical tests, about the symmetry, aliasing and linearity of a signal, whereas the
bicoherence is used to detect the presence of quadratic phase coupling in a signal. These
two third order functions are extended to their fourth order equivalents, the kurtosis
function and tricoherence function, respectively. A series of examples is given showing the
uses of the bicoherence and tricoherence function and some of the computational problems

associated with them.

In section 3.6, narrow band signals are considered and it is shown that the bispectrum of a
narrow band signal will always equal zero, but the trispectrum of such a signal is not
necessarily zero. Traditional methods of normalisation of the trispectrum are often found
to fail when applied to narrow band signals due to bias errors and so a new method is
proposed, based on a pre-whitening technique. Two further examples which utilise this

technique are given.
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3.2 The skewness and kurtosis functions

Equation 2.35 for the variance of the auto bispectrum contains the following product of
power spectral terms: Sxx(fi))Sxx(f2)Sxx(fi+f2). Unless these terms are removed, estimates
of the bispectrum may be contaminated by power spectral effects. One technique for

removing these terms utilises the skewness function which is defined as:

1S (£, £ |
S, (£)S,, (£,)S, (f, +£,)

3.1

s'(f,.f,) =

This is the most commonly used normalisation method for statistical tests since it has the
most useful and well understood statistical properties. Hinich [40], for example, use this
function with some scaling modifications in their tests. It is simple to extend this to the 4th

order kurtosis function for normalisation of the trispectrum:

NN AT
SxX (f1 )SXX (f2 )SXX (f3 )SXX (f] + f2 +f3)

3.2

k' (f,f,.f,) =

It is noted that some authors [59] call the square root of equation 3.1 the 3rd order
coherency function or bicoherency. The major difference of the skewness and kurtosis
functions as compared to the bicoherence and tricoherence respectively, which are

considered next, is that they have no upper bound.

It should be noted that the bicoherence and bicoherency are normalised auto bispectra and
as such should not be confused with the ordinary coherence function. In chapter four,
cross higher order spectra are introduced together with the concepts of quadratic and cubic

coherence which can be thought of as extensions of the ordinary coherence function.
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3.3 The bicoherence function

Another commonly used method of normalisation for the bispectrum is the bicoherence.

The bicoherence is defined as,

IS g 1o )|

EﬂX(f1 X(E,) ]E[]X(fl +1, )]2] 33

b’(f,.f,) =

This has been shown by Kim and Powers [45] to have a variance, assuming

E[X(£)X(E,)X({, +1,)] = S, () )Syx (f,)Sx (£, +1£,) , that satisfies,
2 ]- 2
b*(f,.f,))=—[1-b"(f,,f, 34
var( (f, )) M[ (f,,1,)]

where M is defined as the number of segments used in the estimation. Compared with the
variance of the bispectrum, equation 2.35, there are no terms due to power spectral effects
and so the bicoherence function should be solely dependent on the third order properties of

the signal.
A useful feature of the bicoherence function is that it is bounded between 0 and 1. This can

simply be shown using the Cauchy inequality [32], by making the substitution
Z(f,,f;) = X(fi)X(f,) into equation 3.3 to give,

B[zt £)X ¢, +£)][

b’ (f,.f,) = 3.5
U B[z ) X + 6]
Equation 3.5 is then of the form of the Cauchy inequality,
[zt £0%" ¢, + 8] <[zt £ [E[Ix¢E, +£,)]7] 36

and so the bicoherence takes values satisfying,
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0<b’(f,.f,)<1 3.7

The bicoherence is most often used in the detection of Quadratic Phase Coupling (QPC)
which will be described in section 3.3.2 and is the predominantly used method of

normalisation throughout this work.

3.3.1 An example of the bicoherence function: the mixed signal

The effectiveness of the bicoherence is easily shown by considering the signal, w(t). This
was created, as in figure 3.1, by taking a white Gaussian signal, x(t), and filtering it through
a low pass filter with a cut-off frequency of 0.1 to produce y(t). The frequencies are
normalised to set f;, the sampling frequency, equal to one. The signal y(t) was then squared
to produce a new signal with a low frequency skewed component. Finally, this signal was
added to z(t) which consists of x(t) filtered through a high pass filter with a cut-on
frequency of 0.25. The resulting signal, w(t), now consists of a low frequency skewed
component and a high frequency Gaussian component. This signal is dubbed a mixed
signal and is used throughout the next chapters to demonstrate the properties of both auto
and cross higher order spectra. When the mixed signal 1s used to demonstrate the
properties of the trispectrum, y(t) will be cubed rather than squared so as to produce a low

frequency leptokurtic component.

Low pass | Y() )

filter
x(t) w(t)
LF_ High pass z(t)
|, filter

Figure 3.1: The skewed mixed signal
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The power spectrum of the mixed signal, figure 3.2, shows the two distinct regions but of
course is not able to differentiate the skewed component from the Gaussian component. If
the raw bispectrum of the mixed signal, (see figure 3.3), is estimated, the skewed
component of the signal is visible between fi, f, < 0.2. However the magnitude of the
bispectrum is equally large at high frequencies. This is because the variance of the raw
bispectrum contains terms due to the power spectral effects of the mixed signal and so both
the skewed low pass component and the Gaussian high pass component are detected.
Unless the raw bispectrum is averaged over vastly longer data lengths to reduce its
variance, which is impractical, it is unable to differentiate between the two components.
However, the bicoherence, figure 3.4, normalises the raw bispectrum by removing the

power spectral effects and can be seen to correctly detect just the low frequency skewed
component.

Unless otherwise stated, all estimates of the bispectrum use a data length of 4096 sample
points and a window size of 64 and hence are averaged over 64 segments. Estimates of the

trispectrum use a data length of 262144 and the same window size and are averaged over

4096 segments.

o»

&
o

Powsr spactral density
o

o

b

[ 005 0.1 0.15 62 025 03 035

0.4 0.45 0.5
Normalised frequency

Figure 3.2: Power spectrum of skewed mixed signal
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Figure 3.3: Bispectrum of mixed signal Figure 3.4 Bicoherence of mixed signal

3.3.2 Quadratic Phase Coupling

In a Gaussian signal all of the phases of different frequency components are uniformly
distributed between 0 and 2. When a signal has quadratic phase coupling, the phases of
components at frequencies f and 2f are correlated. Phase coupling occurs due to nonlinear
interactions between components in a signal and it is sometimes of interest to know
whether peaks at harmonically related positions in the power spectrum are caused by this
interaction or not. The power spectrum is phase blind, and so is not able to detect the
presence of phase coupling. However, the magnitude of the bicoherence gives an
indication of the correlation between the phases of the frequency components at f; and f,.

Quadratic phase coupling will occur in a signal with a quadratic nonlinear component.

Consider a signal, x(t), which consists of a white, Gaussian signal passed through a narrow
band filter, bandlimited between the frequencies 0.1 to 0.2, and then passed through a
quadratic, x°, type nonlinearity. A second filter can be generated that has the same
characteristics as the spectrum of x(t). The same Gaussian signal is passed through this
filter to produce a signal, y(t) that has a similar spectrum as x(t) but contains no nonlinear

components.

As can be seen in figures 3.5 and 3.6, although the power spectra of the two signals are

almost identical, x(t) contains quadratic phase coupled components caused by the squaring
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operation and so the bicoherence, figure 3.7, has peaks over the frequency range 0.1 to

0.2.

bicoherence, figure 3.8, is zero.
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Figure 3.5: Power spectrum of signal

with quadratic phase coupling

Bicoherence

Figure 3.7: Bicoherence of signal

with quadratic phase coupling

3.4 The tricoherence function

Bicoherence

However, y(t), contains Gaussian noise with no phase coupling and so the

B
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Figure 3.6: Power spectrum of signal

with no quadratic phase coupling

Figure 3.8: Bicoherence of signal

with no quadratic phase coupling

The bicoherence can be extended to the fourth order case to form the tricoherence which is

defined as:
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t*(f,.f,.f,) =

Using a similar proof as for the bispectrum it can be shown that the tricoherence function
can only take values from O to 1. The effectiveness of the tricoherence as a normalisation
process can be demonstrated by considering the mixed signal described in section 3.3.1,
except rather than considering a low frequency skewed component, a low frequency
leptokurtic component is used. The frequency decomposition of the signal will again have

two distinct regions: a low frequency leptokurtic part and a high frequency Gaussian part.

The fourth order spectrum should only contain components due to the leptokurtic signal
but the trispectrum, figure 3.9, contains components right up to the folding frequency, f/2.
The tricoherence, figure 3.10, picks out only the components due to the low frequency part
of the signal. This confirms that a normalisation process is necessary to separate second
order effects from fourth order just as it is necessary to separate third order effects from

second order in the bispectrum.

3.4.3 Cubic Phase Coupling

To demonstrate cubic phase coupling in the tricoherence, the example used in the
bispectrum is extended to consider a narrow band signal which has been cubed rather than
squared, thus creating a signal with cubically phase coupled terms. The resulting
tricoherence contains cubic nonlinear terms and shows a peak over the frequency range 0.1
to 0.2 (figure 3.11). The tricoherence of the filtered Gaussian signal (figure 3.12) contains
no such structure. The maximum value of the tricoherence of the filtered Gaussian signal is
2x10” compared with a maximum value of 0.3 for the peak in the tricoherence of the signal

containing cubic phase coupling.
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Figure 3.10: Tricoherence of a leptokurtic mixed signal
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Figure 3.11: Tricoherence of a signal with cubic phase coupling
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Figure 3.12: Tricoherence of a signal with no cubic phase coupling



3.5 Problems associated with the estimation of the bicoherence and tricoherence

If the bicoherence of a low pass skewed signal is calculated, the low pass filter should
remove all energy above the cut-off frequency and the bicoherence should only contain
peaks due to the low frequency skewed component. However prominent vertical and
horizontal lines are visible in the bicoherence right up to the folding frequency. Fackrell
[29] showed that these were due to small values occurring in the denominator of the
bicoherence which cause the estimate to blow up. They can be removed by adding a small

constant, €, to the denominator across all frequencies and calculating the bicoherence:

IS £, )|
E[IX(t,. )] [E[X¢t, + £ ]+e

b'(f,f,) = 3.9

Where there is no energy in the signal, this results in a non-zero denominator and a zero
numerator and so the bicoherence is zero. The disadvantage of using this correction

technique is that € introduces a small amount of negative bias in the bicoherence estimator.

A similar effect occurs in the fourth order spectrum where small denominator terms can
cause spurious structure in the tricoherence. A low pass leptokurtic signal was created by
passing a Gaussian signal through a low pass filter with a normalised cut-off frequency of
0.1. The resulting signal was then cubed. The tricoherence of this signal should contain no
energy above three times the cut-off frequency. However it can be seen in figure 3.13 that
there is dominant structure right up to f/2. As with the bicoherence this is an effect of the
normalisation process and can be removed by adding a small constant, € to the
denominator across all frequencies as in equation 3.10. When & = 1x10™ the tricoherence
of the above signal, figure 3.14, correctly detects just the leptokurtic component.
1S 0 (£ 5, )|

X XX, R, 1, + 6, v 3.10

t*(f,,f,.f,) =
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Figure 3.14: Tricoherence of a low pass leptokurtic signal with € =1x10™
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3.6 Pre-whitening techniques

The bicoherence and tricoherence approaches are the most common methods used for
normalising the bispectrum and trispectrum. However, problems can occur, due to bias
errors, if the tricoherence of a very narrow band signal is estimated. The problem has
never arisen in the bicoherence as it will be shown that the bicoherence of a signal with a
bandwidth of less than one octave is zero, whereas the tricoherence of such a narrow band

process is not necessarily zero.

It was explained in section 2.5 that the window length has to be chosen carefully so as to
minimise the variance whilst keeping the bias error small. The largest window length that
can reasonably be used in the estimation of a trispectrum is 64, owing to the large
computational requirement. Therefore for systems with very narrow resonant peaks the
tricoherence may be significantly biased. This is due to the coarseness of the spectral
estimate and the narrowness of the resonant peak, i.e. it will occur when the width of the
frequency cell is wider than the resonance. Subba Rao [73] has developed theoretical
expressions for the bias of the bispectrum and these are crucially dependent on the two
dimensional curvature of the true bispectrum. Therefore around a sharp peak where there
is large curvature the bias error will be large. Similar expressions exist for the bias of the

trispectrum which depend on the three dimensional curvature of the true trispectrum.

In this section a possible method of overcoming the large bias errors often encountered in
the trispectrum is discussed. The technique used is to pre-whiten the signal before
estimating the trispectrum. As this can be done in the time domain, using the full data
length, a much greater frequency resolution can be used than for the estimation of the
trispectrum. The pre-whitening operation is a linear operation, and it will be shown that

linear operations have no effect on the tricoherence.
The pre-whitening technique is first demonstrated on a narrow band, amplitude modulated

(AM) type process. It is shown that conventional normalisation techniques fail to

differentiate between a Gaussian and a kurtotic signal, but pre-whitening can overcome this.
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3.6.1 Bispectrum and trispectrum of a bandlimited signal.

Consider a bandlimited signal that has components with an upper frequency of fy and lower

frequency of fi. From the definition of the continuous bispectrum,

Sxxx(fi.E)=E[X ()X (L)X (fi+£)] 3.11

for the bispectrum to have non-zero values the following inequalities must all apply:

fi<fi<fy 3.12
fL< fz < fU 3.13
fi< (f1+f2) < fU 3.14

Adding 3.12 and 3.13 gives,

2fL < (f]'{'fz) < ZfU 3.15

From 3.14 and 3.15,

fy > fi+f, 3.16
2fy < fi+f, 3.17

Combining equations 3.16 and 3.17 gives the condition:

fu>2f, 3.18
Therefore, the upper frequency must be greater than twice the lower frequency for the
continuous bispectrum to be non-zero and so the bispectrum of a narrow band process,

with a bandwidth of less than an octave, is zero. An interesting corollary to this is that the

probability density function of a stationary narrow band signal must always be symmetric.
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However, the continuous cumulant trispectrum of a bandlimited signal,

S xxx (1515, 1,) = E[X(F )X () XENX *(f, +f, +1,)]

~B[[xct, )" [xct, ) Joct, +1,)

o . 3.19
~E[Xt, ) [B[xct ) ok, +1,)

- E[xct,)f' [ [xct, ) oet, +1,)

can have non-zero values throughout its range because of its three frequency interactions.

For example, consider the case where the frequencies fj, f;, f; take the following values,
fi=f, fh=~f, and fi=fy. 3.20
Then,
fi+6L+6=1 3.21

and equation 3.19 can be written as,

S ooex (i Fa. 1) = EIX(E X (=F)X(6,)X (—£,)] = E[X (A [E[IX(F)f ]
= E[x (O [xct, ) |~ Efxcof [, ]

If there is a correlation between the amplitudes of the frequencies at fy and fi. then the

trispectrum is non-zero, as is the case for many amplitude modulated processes.

3.6.2 An example of pre-whitening: an amplitude modulated process

A bandlimited signal that contains third order nonlinearities was created by passing a
Gaussian signal through a low pass filter with a normalised cut-off frequency of 0.1. The

resulting signal was multiplied by a sine wave to produce an amplitude modulated signal.

The power spectrum of this signal is shown in figure 3.15. The apparent power at DC is
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caused by cross terms between the positive and negative frequency components. A
Gaussian bandlimited signal with a similar spectrum to the leptokurtic signal was also
created by passing a Gaussian signal through a filter which had the same shape as the

spectrum of the amplitude modulated signal.

As both signals have a bandwidth of less than an octave, they both have zero bispectra.
However the Gaussian signal should have zero trispectrum, whereas the amplitude

modulated process should have significant structure in the trispectrum.
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Figure 3.15: Power spectrum of leptokurtic, bandlimited, amplitude modulated signal.

The tricoherence of the two signals is shown in figures 3.16 and 3.17. Both signals have
significant tricoherence and the same structure, and both are dominated by the peak in the
spectrum. It is expected that the Gaussian signal should have a zero trispectrum, but it can
be seen that it still has significant structure (maximum value = 0.08) as compared to the
leptokurtic signal (maximum value = 0.23) which can cause confusion. The normalisation
of the trispectrum in the frequency domain to form the tricoherence has not been effective,
as both the estimate of the tricoherence of the nonlinear signal and the tricoherence of the
linear signal are still dominated by their spectra. Owing to the coarseness of the spectral
estimates, and the narrowness of the resonant peak, normalisation in the frequency domain
has failed. For such signals, which contain peaks narrow in comparison to a frequency cell,

the tricoherence produces a biased estimate.
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Figure 3.17: Tricoherence of a Gaussian, narrow band process

3l



In order to remove the second order effects, the spectra of the signals were flattened, prior
to calculation of the trispectrum. A finite impulse response filter was calculated that has the
same frequency response as the square root of the inverse of the spectrum of the signal.
The original signal was convolved with this inverse filter to produce a signal with a spectral
density function of unity. The inverse filter must be linear phase to ensure that (correlated)
frequency components under go the same delay. The phase characteristic of the filter used
here is shown in figure 3.18a. As convolution is a linear operation it should have no effect
on the tricoherence. It is easy to show that both the bicoherence and tricoherence are
unaffected by linear transfer functions, except in the case of the tricoherence along the

planes fi +f2 =0, f] +Hh= 0, f2+f3 =0.

Consider the bicoherence function,

b B[ X)X €, +1£,)]|

0 E[xdoxd,)f X d, + £ ] >

Now apply a linear transfer function with impulse response, h(t), to the signal, x(t), to
obtain a new signal, y(t). Convolution in the time domain is equivalent to multiplication in

the frequency domain. This can be written as,
Y(H)=H{HX) 3.24

If the bicoherence of the filtered version of the signal is now calculated, the following

expression is obtained,

) jE[H(fl YX(E ) H(E)X(E,H * (£, +£,)X (£, +1, )]]2

b (f,.f,) = - 2 3.25
E[H¢t, )X () HE )X, [E[JHE, +£)X(E, +£,)] ]

As H(f) is time invariant, it is unaffected by the expectation operator and so it can be taken
outside the expectation operation. The numerator transfer functions will then cancel with

the denominator transfer functions to leave the original expression for the bicoherence.
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The flattening or ‘pre-whitening’ of a spectrum of a signal occurs in the time domain before
the trispectrum is calculated. This means that it can occur at a much finer frequency
resolution (fft size = 1024) as the whole of the data length (262144 samples for a
trispectrum with a fft size of 64) can be used to calculate the filter. The power spectrum of
the flattened amplitude modulated signal is shown in figure 3.18b, plotted against the
original signal.
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Figure 3.18a: Phase response of inverse Figure 3.18b: Power spectrum of
filter amplitude modulated signal and flattened

amplitude modulated signal

The trispectrum of the flattened Gaussian signal (figure 3.19) now has no structure and a
maximum value of 0.003, whereas the flattened nonlinear signal (figure 3.20) has peaks of
value 0.18 at frequencies corresponding to the position of the nonlinearity in the original
signal. Therefore it has been shown that in order to reduce the bias of the estimate of the
trispectrum, for such a narrow band process, whilst still ensuring a low variance, it is

necessary to pre-whiten the signal in the time domain.

If the signal has been pre-whitened, the spectral effects have been removed and so there is
no longer any need to normalise the trispectrum with respect to the power spectrum to
form the tricoherence. However, it is still possible to calculate the tricoherence of a pre-
whitened signal and there is the added advantage that the tricoherence gives a normalised

measure from O to 1, whereas the pre-whitened trispectrum will not have any upper bound.
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Figure 3.19: Trispectrum of a pre-whitened, leptokurtic, narrow band, amplitude
modulated process

,—/‘ . i
[ —
————
]
.
——— ‘-w-‘--:-:‘,—‘f:-—/»
,-/_
- *
.
‘o
&
e e
EX
o
/«/ ;
,,/'
o
e

0.003

0.000

Figure 3.20: Trispectrum of a pre-whitened, Gaussian, narrow band process
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3.6.3 The Duffing oscillator

A second, more practical, example is given, using the pre-whitening technique to detect
nonlinearity in a dynamic system, the Duffing oscillator. A process, x(t), is classed as the

output of a Duffing oscillator if x(t) satisfies the nonlinear differential equation:
X+ 200,k + 0, x +0x’ = f(t) 3.26

In the following, the input, f(t), is assumed to be a bandlimited, Gaussian white noise signal.

This equation can be used to model many practical applications, for example [14, 36, 49].

Figures 3.21-3.24 show the power spectra obtained by simulating the Duffing equation
using a fourth order, fixed step, Runge Kutta approximation. The system is lightly damped
({=0.1) with a linear undamped natural frequency of 0.025 ad/s. Figure 3.21 shows the
linear case, where o0=0, and then the degree of nonlinearity is increased; o =0.0001

(figure 3.22), oo = 0.001 (figure 3.23), and o = 0.01 (figure 3.24).

As expected in the linear case there is a single resonance. As the nonlinear component is

increased, a number of effects take place. These are explained in more detail in [36].

e A component at three times oy appears. This is as expected as the nonlinearity is
predominantly cubic.

e The resonant frequency increases. As ¢, increases, the system becomes more stiff for
large displacements and so the frequency of the resonance effect will increase.

e The resonant peak broadens.
When the nonlinearity is introduced, the broad band kurtosis, [s, decreases from 3 as

shown in table 3.1, and the probability density function becomes platykurtic, i.e. the tails on

the probability density function are reduced and the distribution becomes more uniform.
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Power spectral density

The power spectrum and kurtosis both give some idea of the nonlinearity in the differential
equation.
frequency of the nonlinear terms, is to look at the higher order spectra of the system. As
the input, f{(t), is symmetric, and the system contains only odd order terms, x(t) will be

symmetric and so the bispectral density function of x(t) will be zero. Therefore, in order to
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Figure 3.24: Power spectrum of the

Duffing oscillator with o = 0.01

However, a possible method for accurately detecting the magnitude and

analyse the nonlinearities in x(t) it is necessary to study the trispectrum.
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o L4
0 3.03
0.0001 2.23
0.001 2.17
0.01 2.33

Table 3.1: Values of broadband kurtosis, L4, compared with the magnitude of the nonlinear

term, @, in the Duffing oscillator

For each of the four cases, the data was pre-whitened before the trispectra, figures 3.25 -
3.28, were calculated. For the linear case, (figure 3.25), there is no significant structure in
the trispectrum as when o = 0, the output is Gaussian and so the trispectrum is zero. As
the nonlinearity is gradually increased (figures 3.26-3.28), structure begins to appear in the
trispectrum at (f;,f;,f;), where f. is the resonant frequency, and all the symmetrical
reflections of this point. The magnitude of this structure is directly related to the size of the
nonlinear term (table 3.2). Note, the broadband kurtosis is not directly related to the size of
the nonlinear term. These values were calculated for a trispectrum with an FFT size of 64,

using a data length of 262144 points.

Value of o | Peak in trispectrum
0 0.001
0.00001 1.269
0.0001 16.114
0.001 25.581

Table 3.2: Value of the magnitude of the peak in the trispectrum compared with the

magnitude of the nonlinear term, ¢, in the Duffing oscillator
This example has shown that the pre-whitened trispectrum is able to detect the magnitude

and frequency of the nonlinear terms in the Duffing equation and is sensitive to relatively

small digressions from linearity.
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Figure 3.26: Trispectrum of the Duffing oscillator with o= 0.0001
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Figure 3.28: Trispectrum of the Duffing oscillator with o= 0.01
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3.7 Periodic signals

Throughout this chapter examples of either wideband or narrow band, random, stochastic
signals have been studied. These are largely the type of signals that are used in the analysis
of the experiments in chapter six. However, in the past, higher order spectra have been
applied to situations where periodic signals are likely to be encountered [30, 56, 57, 69], for
example in some condition monitoring applications where rotating machines are
investigated. In this section it will be shown that the higher order spectra of periodic signals
take particular forms known as the ‘bed of nails’ for the bispectrum and ‘box of balls’ for

the trispectrum.

Any periodic signal can be reconstructed by convolving an impulse response function, h(t),
with a train of delta functions, i(t). The Fourier transform of the impulse train, I(f), is also

an impulse train.

1 = n
I(f)—z )y S(f-z), 3.27

where A is the spacing of the impulses. By substituting this into equation 2.10 for the
deterministic bispectrum it can be seen that the bispectrum of an impulse train is a two

dimensional impulse train,

= = n n
Sw(uf== £ 5 {1260 328

1
A
This is known as the ‘bed of nails’ [32], and is shown in figure 3.29. Substituting equation

3.27 into the cumulant trispectrum, results in a three dimensional impulse train, or the ‘box

of balls’, figure 3.30.

1 = = &= n n n
SXXXX(flv 29f )_Z' § ; Z:._ ( Al’f -1 "'""?") 329
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Using the ideas presented in section 3.6.2 it is possible to show that the bicoherence and
tricoherence of any periodic signal results in the ‘bed of nails’ and ‘box of balls’. As
convolution in the time domain is equal to multiplication in the frequency domain, any

periodic signal can be written as,

XO=I(OH(®), 3.30

where H(f) is the Fourier transform of h(t). When X(f) is substituted into equation 3.3 for
the bicoherence, the H(f)’s can all be taken outside the expectation operation (as they are
time invariant) and cancel and so the bicoherence of any periodic signal is the same as the
bicoherence of an impulse train. Care must be taken to ensure € is included in the
denominator term to avoid 0/0 occurring in the bed of nails and leading to spurious results.
In the same way, the tricoherence of a periodic signal can always be shown to be the ‘box

of balls’.

A major limitation on the use of the bicoherence in the detection of quadratic phase
coupling has recently been highlighted by Fackrell et al [34] which concerns phase
randomisation. For the bicoherence to reliably detect quadratic phase coupling it assumes
that the signal component phases are randomised for each segment of the signal. For a
random signal this is a valid assumption. However, the bicoherence has been applied in the
detection of quadratic phase coupling in signals where such an assumption does not hold,
for example, in sine waves. In these cases quadratic phase coupling is an unsuitable
measure of nonlinearity as it will arise because the signal is deterministic and not necessarily

be due to a nonlinear system.
Although none of the experimental work in chapter six includes periodic signals, it is useful

to be able to recognise the ‘bed of nails’ or ‘box of balls’ structure if it appears in a higher

order spectrum and to understand what type of process could have created it.
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Figure 3.30: The box of balls
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3.8 Conclusions

In this chapter a series of normalisation methods for the bispectrum and trispectrum have

been presented. Their main uses are shown in table 3.3.

The normalisation processes were then demonstrated with a number of examples using
both memoryless and dynamic systems. It was shown how the bicoherence and
tricoherence could be used to detect quadratic and cubic nonlinearities respectively. If only
an output measurement is available, using auto higher order spectra in this way can give
very useful information about the nonlinearities in a signal. However, to find out more
about the ‘system’, both input and output information is needed. It is then possible, with
the use of cross higher order spectra to carry out a true system identification, as is discussed

in the next chapter.

Method Uses
Skewness function third order statistical tests
Kurtosis function fourth order statistical tests
Bicoherence function quadratic phase coupling detection
Tricoherence function cubic phase coupling detection
Pre-whitening technique cubic phase coupling detection in narrow band or highly
resonant systems

Table 3.3: Normalisation methods and their uses
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Chapter 4

Cross higher order spectra and the Volterra series

4.1 Introduction

The previous chapters have considered the higher order spectra of a single signal. This
could be, for example, the output of a (nonlinear) system. In this chapter, both input and
output measurements are used to estimate cross higher order spectra and so identify the
nonlinearities in a system. A major assumption made throughout this chapter is that the
input to the system is a Gaussian, random signal. A number of methods are proposed, all of
which use higher order spectra, and are based on determining the first three Volterra
kernels or parts of them. The method of residual spectra is also used and shown to give

equivalent results to higher order spectra under certain conditions.

Initially, in section 4.2, cross higher order spectra are introduced. This is followed in
section 4.3 by an explanation of the Volterra series. The Volterra series can be thought of
as an extension of the linear convolution integral. Rather than calculating the convolution
of the linear impulse response of a system with its input, it is possible to consider the infinite
sum of higher order impulse responses convolved with interactions of the input. For
example, a quadratic Volterra model would consist of the convolution of the linear impulse
response of the system with its input, plus the two dimensional convolution of the quadratic
impulse response with a quadratic expansion of the input. These higher order impulse
response functions are known as Volterra kernels after the mathematician Vito Volterra,
who first studied this series. By estimating the Volterra kernels of some nonlinear systems

it is possible to characterise their nonlinear response to any input.

The Volterra series is an infinite series which in practice must be truncated. In this work

only the first three terms will be considered. The quadratic terms are included to take



account of skewed nonlinearities and the cubic term is included, as it is the first term to take
account of any symmetric nonlinearities. If the cubic term was not included, the class of
problem which could be solved would be strictly limited to noh-symmetric or skewed type
nonlinearities. As by truncating the system an approximation is being made, it is important
to consider what remains of the signal once the linear, quadratic, and cubic components
have been removed. This will consist of nonlinear terms not accounted for by the model
and measurement noise. If this remainder is large compared with the linear, quadratic and
cubic terms then the approximation is likely to be untrustworthy and it may be necessary to

include more terms in the Volterra series expansion.

The aim of this work is to try to find separate expressions for: 1) the quadratic components
of a signal using the quadratic transfer function; 2) the cubic component of a signal using
the cubic transfer function; 3) the remaining part of the signal which will contain elements
due to all higher order nonlinearities and noise. The model can be considered as the parallel

connection of a linear, quadratic and cubic system.

The initial model of the system, section 4.4, consists of three linear filters acting on
memoryless nonlinear transformations of the input. Specifically, H,(f), Ho(f) and Hj(f) are
convolved with the input signal, x(t), the input signal squared, and the input signal cubed,
respectively. This set of inputs is referred to as polynomial inputs. Using higher order
cross correlation functions, as in section 4.4.1, expressions for H;(f), Hx(f) and Hs(f) can be

found in terms of the cross higher order spectra.

This model may also be viewed as a multiple input, single output system which, in the past,
has been modelled using the concepts of residual spectra and partial and multiple coherence
[3, 4, 18, 28]. It is shown in section 4.4.2 that for the polynomial input used above it is
possible to obtain expressions for Hy(f), Ho(f) and Hj(f) whether using higher order cross
correlation functions and higher order cross spectra or the residual spectra method. These
two techniques are compared, in section 4.5, as they each have their own estimation

problems associated with them.
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Volterra theory is well established in the field of nonlinear system analysis [70] and the
polynomial input to the linear filters model is shown to be equivalent to simply considering
the main diagonal of the Volterra kernel. This model is extended to a full Volterra type
model. Initially, in section 4.6, a quadratic model is assumed, and the Volterra series is
truncated at the third order and only the first two kernels are calculated in terms of the auto
spectrum, cross spectrum and cross bispectrum. The problems of estimating the linear
transfer function and in particular the quadratic transfer function are discussed. The linear
kernel is easily estimated using traditional methods, but the variance of the estimate of the
second order kernel contains elements due to the signal’s spectrum which can corrupt the
estimation process. In order to make the variance more uniform across all frequencies a
technique is used that removes the linear component from the signal before the quadratic
transfer function is calculated. For a symmetric input process, the problem of estimating
the linear and quadratic kernels decouples and so subtracting the linear component will not
bias the quadratic kernel. A simple example of a signal that contains a linear and quadratic
component is used to demonstrate these problems. Finally, the quadratic Volterra model is
then extended to a cubic Volterra model (section 4.7). This not only increases the number
of terms but also increases the complexity of the system as the estimate of the linear kernel

is affected by the third order kernel.

4.2 Cross higher order spectra
In chapters two and three, the concepts of auto higher order spectra were developed. In
traditional spectral estimation, if both the input and output of a system, such as in figure

4.1, are available, the cross power spectrum, Sxy(f), often contains useful information. This

can be defined as,
S« () =E[X({DY *()] 4.1

This is a partial description of the cross spectrum. A full description is similar to that of the

power spectrum as in Appendix B. This is not the standard engineering definition of the
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cross spectrum but is the definition most commonly extended to higher order spectra, e.g.

[59, 701.

X(t t
———(—l————+ System y >

Figure 4.1: A single input single output system

Equation 4.1 can be extended to higher order spectra such that the cross bispectrum,

Sxxy(f1,f2), and moment cross trispectrum, Txxxy(f1,f2,f3), are defined as,

Sy (F1. £,) = EIX(E)X(E)Y * (£, +1,)] 4.2

Toooer (£ £ ) = EIX(E )X, )X(E,)Y *(, +£, +1,)] 4.3

All cross higher order spectra are estimated using the natural extensions to the methods
described in chapter two, i.e. using the direct method in terms of moments. However, all
the theory in this chapter is based on cumulant spectra, therefore care must be taken to
ensure that cumulants rather than moments are used when estimating the cross spectra. As
with auto cumulants the second and third order cross cumulant functions are the same as

the cross moment functions and so this causes no confusion.

Cyo (D =R, (1) 44

CXXY(TI’Tz)':Rxxy(TnTz) 45

However, the fourth order cross cumulant function is equal to the fourth order moment

function minus three second order moment functions.

CXXXY(TI’T2’T3) = R)(xxy(Tx’Tz’Ta)'{va(Tl)ny(Ts - Tz) +
ny(Tz)ny(Ta ”Tl) + 4.6
ny(T3)ny(Tz "Tl) }
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Taking the three dimensional Fourier transform of equation 4.6 gives the cumulant cross

trispectrum,

S oy (s B £3) = Ty (B, £y ) = {S e (£)S e (£,)8(E, +£,) +
Sy (£,)S, (£)3(F, +£,) + 4.7
Syx £)S ()8, +£,)}

To calculate the cumnulant cross trispectrum it is necessary to calculate the product of the
auto spectrum and cross spectrum along the three planes fi+f,=0, f,+f;=0, and fi+{3=0

and subtract this from the moment trispectrum.

Up to this point conventional definitions of the autocorrelation functions have been used
(equations 2.23, 2.24 and 2.25). However from now on it is important to realise that the
following definitions are used for the higher order cross moment functions. It is assumed

that x(t) and y(t) are zero mean, strictly stationary, random variables.

R (1) = E[x(t- 1)y(t)] 4.8
R, (T,,T,) = E[X(t-1,)x(t-1,)y®] 4.9
R (11,7,,7,) = E[x(t-1,)x(t-7,)x(t-1,)y(t)] 4.10

It will be noted that these differ from the more commonly used definitions which are given
below (equations 4.11, 4.12 and 4.13), and this in the past has caused confusion [59].
Notice the T’s in equations 4.8, 4.9 and 4.10 represent delays whereas in equations 4.11,
4.12 and 4.13 they are advances. Some authors [59] prefer to use advances which will lead
to a conjugate appearing in the final expression for the Volterra kernels. Here, in order to
simplify the calculations and remove the conjugate, delays are used. This also, in the
context of system identification, has a more intuitive feel as the current output is related to

past inputs.
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R (1) = E[x(Dy(t + T)] 4.11

Ry (1,,1,) = EXOX(t +7T,)y(t +1,)] _ 4.12

Ry (115 7,5T,) = E[XOX(t+7T,)X(t +7T,)y(t +T,)] 4.13

Equations 4.9 and 4.10 can be thought of as natural progressions of equation 4.8 and
similarly, equations 4.12 and 4.13 are natural progressions of equation 4.11. Although for
the second order case, equations 4.8 and 4.11 are equivalent, the same does not hold for
higher orders, for example, equation 4.9 is not equivalent to equation 4.12. Fourier
transforming equation 4.8, 4.9, and 4.10 leads to the following expressions for the cross

spectrum, cross bispectrum, and moment cross trispectrum.

Sy () =E[X* (DY ()] 4.14
Sy (£, £,) = EIX * (£)X * (£,) Y(f, +1,)] 4.15
T (£, 65, £,) = BIXH (E)X* @)X * (E)Y(E, +1, +1,)] 4.16

Note, equation 4.14 is a more common definition of the cross spectrum than equation 4.1.

4.3 The Volterra series

For a linear system, the relationship between the input x(t), the system's impulse response

h(t) and the output y(t) is given by the convolution integral,
y(®) = [h(T)x(t-T)dT 4.17

Convolution only gives the relationship between the input and the output for a linear

system. For some nonlinear systems this can be extended to the Volterra series [70] which
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may be considered as a direct generalisation of the above input/output relationship for a
linear system. For a linear system, the output is thought of as being the sum of the response
to each elemental input. The Volterra series extends this to include the responses to pairs

of elemental inputs, triplets of elemental inputs and so forth. This can be expressed as,

y®) = [h,(t,)x(t-1,)dr,
+]h,(x,.7,) x(t - T,)x(t - 1, )dt,dr,

+ [ Th,(t,.7,.1,) X(t = T, )x(t = T, )x(t - T, )d7,dt,dr, 4.18
+ j °j"hn('rl,---,'cn)x(t— T, )-x(t—7, )dt,---dT,
This is often written in the form [70],

y® =H,[x®)] + H,[x(] + -+ + H [x(D)] + - 4.19

where,

H [x(@®] = [ [h (T,,T, )X(t-T,)}X(t-T ) dT, --dr, 420

H, is called an n™ order Volterra operator, and the functions hy(Ty,...,T,) are called the
Volterra kernels. Identifying these kernels is analogous to identifying the impulse response
for a linear system, although to fully characterise a system one would need to identify a
potentially infinite series of kernels. Note that a linear system is just a first order Volterra
system and hence only has a first order kernel, h(t;). Fourier transforming the n" order

Volterra operator using the n-dimensional Fourier transform gives,

H (f, o) = [or [h (T, 7, )™ @75 g1 dr, 421

which has the inverse transform,
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b, (T, T,) = oo TH, (f e £, )™ df o 422

n

One can then show that the relationship between the input and the output in the frequency

domain for the n" term is,

Y, (f,f) = H (£, £)X(E ) X({E,) 4.23

4.4 Linear filters acting on a polynomial input

Initially, rather than considering a full Volterra series model, a more simple idea is used to
characterise the system, based on linear filters acting on a polynomial input. Later in the
chapter, this model will be shown to be a subset of the Volterra model. Two different
methods are presented to solve for the linear, quadratic, and cubic components of the
system, one using higher order spectra, and the other based on the ideas of residual spectra

[3, 4,18, 28]

Consider a system with three linear filters H;(f), Hy(f) and Hs(f), where H;(f) acts on an
input signal, x(t), Hy(f) acts on the input signal squared, x’(t), and Hs(f) acts on the input
signal cubed, x’(t). This can be viewed as the paralle]l connection of a linear, quadratic and
cubic system (figure 4.2). The output of the system, y(t), is due to the sum of these three

components and a term due to noise and terms not included in the nonlinear model.

n
X H,
X
X H2 4 Y
x’ H,

Figure 4.2: Cubic model of linear filters acting on a polynomial input
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Assuming a perfect model, the output y(t) can be formed by the convolution of the impulse
responses h;(t), hy(t) and hs(t) of the filters with the inputs, x(t), x*(t) and x3(t) respectively.

Hence,
y® = [h,(Dx(t-1)dt + [h,(Dx*(t-1dt + [h, (DK (t-1)dt 4.24

Equation 4.24 has been dubbed a Hammerstein series by some authors [67].

4.4.1 Higher order spectral method

To characterise the system it is necessary to find expressions for H(f), Hx(f), and Hs(f) in
terms of higher order spectra. To do this, higher order cross correlation functions are
formed between the input and output and then their multiple Fourier transforms taken to

form higher order moment spectra. This is done separately for the linear, quadratic and

cubic components.

Note, Sxy(f)/Sxx(f) is often referred to as the estimator H;(f) which is the optimal linear

least squares filter relating x(t) and y(t). This is not to be confused with the H,(f) used here.
Firstly, y(t) is substituted from equation 4.24 into the cross correlation function,

R, (1) = E[x(t- T)y(1)] 425
to give,

R, ()= h, (@ EX(- Dx(t-w] du +
fh, (u) E[x(t- Dx’ (t-u)] du + 4.26

[h,(w) E[x(t- 1)x’(t-w)] du
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It is shown in Appendix D and [64, 70, 84] that the expected value of the product of an

odd number of Gaussian variables is zero and the product of an even number of Gaussian

variables can be decomposed into the sum of all possible combinations of pairs of the

products. Specifically the expected value of the product of four Gaussian variables can be

written as,

E[X,X,X,X,]=E[X,X,] EIX,X,] + E[X X,]E[X,X,] + E[X,X,]E[X,X,]

4.27

The second term of equation 4.26 is zero as it contains the product of three Gaussian

variables and the third term can be expressed as the sum of averages of pairs of variables.

R, (1) = [h, () Bx(t-T)x(t-w)] du +

[h, () {EIx(t - T)x(t - u)]. E[x(t - w)x(t - w)] +

Elx(t-x(t-w].Ex(t-u)x(t-u)] +
E[lx(t-)x(t- w].E[x(t-u)x(t-u)]} du

Expressing this in terms of auto correlation functions gives,
RXY(T)=zhl(u)Rxx (t-u)du + 30’ _];hs(u)Rxx(r-u) du
Taking the Fourier transform with respect to T gives,
Sw(® = H, (DS, () + 30,” H,(HS ()
so that,

SXY<f) _ 2
————-Sxxm = H,(f) + 30,” H,(f)
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Note the ratio, Sxy(f)/Sxx(f), contains terms due to both H;(f) and Hs(f), so that if this ratio
was used as the optimal least squares filter linking x(t) and y(t) then clearly H;(f) will

influence the result.

Next, y(t) is substituted from equation 4.24 into the second order cumulant function,
R, (1,,17,) = B[x(t - T,)x(t - T,)y()] 432
to give,

R, (T,,7,) = | h, E[X(-T,)x(t-1,)x(t-u)] du +

[h, (WE[x(t-T,)x(t - 1,)x*(t-w)] du + 4.33

[h, (WE[x(t-T,)x(t-1,)x’ (t - )] du

As the expected value of the product of an odd number of Gaussian variables is zero, the

first and third order terms are zero. This leaves,

R, (1,,T,)= Thz(u) {E[x(t-7,)x(t- 7,)]. E[x(t - wx(t —u)] +

E[x(t - T,)x(t - u)]. E[x(t - T,)x(t — )] + 4.34
E[x(t-1,)x(t-u)].E[x(t- T,)x(t —u)]} du

which can be written in terms of autocorrelation functions to give,

R, (1,,1,) =062 [h,@R o (T, —7,) du+2[h, @R, (T, -uR (T, —w)du 435

Taking the double Fourier transform with respect to T; and 1, gives,

Sy (£,5,) =0 S (£)(f, + fz)Thz(u) du+2S,, (f)S,, f,)H,(f +£,) 4.36
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where Sxxy(f1,f2) is the cross bispectrum. The first term contains the delta function §(f;+f,)

and so if (fj+f;) # O then,

Sy (1,1,) = 285, (£))S (£, ) H, (f, +£,) 4.37
Finally, y(t), is substituted from equation 4.24 into the third order cumulant function,

Ry (T157,,T,) = E[x(t - T,)x(t - T,)x(t - T,)y(t)] 4.38
to give,

Rxxxy(Tl’Tz’Ta) = ]:hl(u) E[X(t'Tx)X(t' Tz)x(t - 13)x(t—u)] du +

[h,(u) E[x(t- T, )x(t- T,)x(t - T,)x"(t - w)] du + 4.39

[h,(w) E[x(t - T,)x(t - T,)x(t - T,)x " (t - w)] du

As the expected value of the product of an odd number of Gaussian variables is zero, the

second term is zero. This leaves,

R, (1,.1,.7,) = [h, @) E[x(t—T,)x(t- T,)x(t-T,)x(t - w)] du +
| = 4.40

[, (w) B[x(t - 7,)x(t- T,)x(t - T,)x’ (t - w)] du

Expanding the first term of equation 4.40 and rewriting in terms of auto correlation

functions gives,

Thl(u) E[x(t- T )x(t-7,)x(t-7,)x(t-u)]du = Thl(u) {Ry (T, -1, )R (T, -1u) +

Ry (t,-T,)R (T, -u) +
R, (7,-T, )R (T,-u)} du

4.41
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The triple Fourier transform of the first part of 4.41 is as follows,

11 Th )R (5, )R g (5, ) €6 ™ 25,
Substituting, 6 =1, -1,, dr,=d6 gives ]“Rm(e)e-jml(eu,)de =S, Je 2

Substituting, Y= "Ea -1, dT3 = do giVCS ]:Rxx(ﬂ)e-jzms(ﬂw)dﬂ - SXX (f3 )e~2nr3u

= Sxx (fl )Sxx (fs) ]:hl (e -j2xf3udu ]Te-jz;nzm +2) d

pres

2

=S, (£,)S,, (£,)8(f, +£,) [h, (we ™ du 4.42

Equation 4.42 contains the delta function, 8(fj+f;), and so is equal to zero if (fi+f2) % 0.
Similarly the second and third parts of equation 4.41 are equal to zero if (fi+f3) # 0 and
(f4f) #0.

The second term of equation 4.40 contains the product of six Gaussian variables. There are
fifteen possible ways of arranging three pairs but as three variables are the same there are

only four different combinations.

E[X,X,X,X,X,X,]=3E[X X,]EBIX,X,]E[X,X,]+
3 E[X,X,] E[X,X,] E[X,X,]+ 443
3 E[X,X,]EIX,X,] E[X,X,]+
6 B[X,X,] E[X,X,]E[X,X,]

Therefore, the second term in equation 4.40 can be written as,

[h, ELX(t +T,)x(t+T,)x(t + T,)x (¢ - u)]du

= [h,(@){(36,’R (1, -T,)R (T, -u) +

36 "R (T, -T,)R (T, -u) + 4.44

36 Ry (T, - T,) R (T, -0) +
6R,, (T, -wWR,, (T, -wR,, (T, -u)} du
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The first three terms are the same integration as equation 4.42 but with h;(u) replaced by
hs(u) and so contain delta functions which are equal to zero if (f;+f;) # 0, (f,+f3) # 0, and

(fi+f,) #0.

The triple Fourier transform of the last term is:

6JJJ‘ ]:ha(u) Rxx (Tl - u) R (T _ U)R (T _ u)e'ﬂﬂfme"jlﬂztze'ﬂﬂs‘tsd,c d,c dT du
M XX 2 XX 3 1 2 3

= 68, (F)S, (£,)S (F,)  [h,@e ™™ "> du
= 685 (F. )8 (F,)S 1 (£, H, (f, +1, +,)
445

From equations 4.31, 4.37 and 4.45, H,(f), Hx(f) and Hs(f) can now be expressed in terms

of cross higher order spectra and the input auto spectrum.

S ®

—3g 2 4.46
5_® 36 "H, ()

H, )=

()= e Tul-L) 4.47
28, ()8, (F- 1)

Sxxxv (fx’fz’f'fx 'f2> 448

H,(f) =
6S . (£)S,, (£,)S,, (F -, - £,)

Equations 4.47 and 4.48 imply that there must be symmetry in both the bispectrum and
trispectrum. In equation 4.47, f; can be arbitrarily chosen and so, for example, setting

fi=1/2 gives:

S... (E,i
2'2 4.49
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S ey [.f. -;_) represents the leading diagonal of the bispectrum in the (f),f;) space. Setting f;

?

to a different value and evaluating Sxxy(f;,f-f;) over another diagonal will result in the same
information being obtained as all the other terms in Sxxy(fi,f-f;)) should consist of
symmetries of the leading diagonal. A similar result occurs with equation 4.48 except
rather than considering diagonal lines, diagonal planes in the (f},f;,f;) space should be

considered.

4.4.2 Residual Spectral Method

Suppose a series of random processes that are thought to be related are measured. When a
single component of a random process is influenced by others any distinct relationship
connecting it with any one of them is likely to be obscured by the action of the remainder.
It is only by removing the effects of the remainder in some way that the connection can be
established. For example, if the processes x(t) and y(t) are measured, it is easy to form x(t)*
and x(t)* and the method of residual spectra [3, 4, 18, 28] can then be used to try and find

the connections between x(t), x(t)°, x(t)’ and y(t).

The basic building block for residual spectra is shown in figure 4.3. Assuming X, and X, are
two measured random processes 2, X, can be split into two parts: that fully coherent with xa,
that is the part of x; that can be accounted for by the optimal linear operation (in the least

squares sense) on x; through the filter L, and the part of x, that is not coherent with x»

termed X, ;.

Figure 4.3: The basic building block for residual spectra

2 To simplify notation, the time and frequency arguments on the signal notation are temporarily suspended.
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A number of these simple building blocks can be cascaded together to form more complex
systems such as that in figure 4.4 where the four processes, X, X,, X3, and x4 are considered.
In this case, at the first stage, x,, X3 and x4 are each split into two components: the part
accounted for by the optimal linear operation on x; through the filters L;, L,, and L, and
the parts that are not coherent with x; which are termed x,; X3, and x4;. These are the
parts of x; X3 and x4 left over when the linear effect of x; is removed and are termed residual

random variables.

Figure 4.4: A multiple input, single output system

At the second stage X3; and Xs4; can be further conditioned with respect to x,; through
filters Ly and Ls to give X3, and X412, Where X3 5, is that part of x5 that is not coherent with
both x; and X,, and, x4, is that part of X4 which is not coherent with x; and x,. L, is the
optimal linear filter relating X, to X3, and Ls the optimal linear filter that relates x; to Xa.1.
At the final stage it is possible to condition X3 ;, with respect to X412 to produce X423, the
part of the signal that is not coherent with any of the inputs. Ls is the optimal linear filter

relating X3.12 1O X4.12.

The optimal linear filter L; can be shown to be,

L o= o 4.50
Sll

1

where S;; =S, , (f) etc. Thatis, L; is equal to the cross spectrum of x; and x, divided by

the auto spectrum of x;. L, to L¢ are defined similarly as follows,

79



721

L =22
Sll
L o= Ss L =Sm0 4.51
’ SH ) SZZ,!
S
L3 = u L5 = Sz441 La — S34.12
Sll SZZ‘I S33.12
In section 4.4.1, expressions for H,;, H,, and H; were obtained from,
y® = [h,(Ox(t-1)dt + Jh, (X (t-1)dt + [h, (D)X’ ¢-1)d 452
which can be expressed in the frequency domain as,
Y=HX+ HX’ + H.X’ 4.53

where X is defined as the Fourier transform of the input signal squared and X is defined as
the Fourier transform of the input signal cubed. If the four random processes x,, X2, X3 and
X4, are now chosen to be the three inputs to the system x, x%, x> and the output y, it should

be possible to find similar expressions for H;(f), Hx(f), and Hs(f) using residual spectra.
It is important to realise that L;, L, and L; are least squares optimal filters and not H;(f),
H,(f) and H;(f). In order to find H;(f), Hx(f) and Hi(f) an expression for the output X4 in

terms of the three inputs X;, X, and X3 must be found.

From the flow logic of figure 4.4,

X4 = L3X1 +L5X2.1 +L6X3.12 +X4.123 4.54
X, =X,-LX, 455
X3.12 = X3.1 - L4X2.1 = X3 _L2X1 'L4X2 +L1L4X1 4.56
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Substituting 4.54 and 4.55 into 4.56 gives,

X,=L;-LL,-LLi+LLL)OX, + (L,-L.L)X, + L)X, + X, 5

4.57

So expressions for H;(f), Hao(f) and Hj(f) can be written in terms of L; to Lg as,
Hi=Ls-LiLs- LLe+ LiLalsg 4.58
Hy=Ls-Lels 4.59
H;=1¢ 4.60

By substituting y, X, xz, x> for X1, X2, X3, X4 and assuming that x is a Gaussian process,

expressions for L, to L are calculated as follows:

L = S, _ HEx®x (t+r)]}=0 461
S, J{E[x(D)x(t + 1)1}

where J denotes the Fourier transform. The numerator J {E[x(t)x” (t +1)]} is the product of

an odd number of Gaussian variables and so equal to zero, hence L;=0.

L, = S, _JEXOX t+ D] _IB6, Ry (W] _ 36, Sy _ 36,2 4.62
Sn SXX SXX Sxx

L S _ F(EOYG+9) 4.63
S, Sy ()

If equation 4.52 is used to substitute for y(t+7) into equation 4.63, the term containing ha(t)
will contain the product of an odd number of Gaussian variables and so be equal to zero.

Hence,
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ff’Uh, R (T-uXdu+30* ];h3(u)Rxx(‘c— u)du}
S ()

_ H (08 (0) + H,DS ()
S ()

L,=

= H,(f)+30,°H, ) 4.64
L4 = —S—Zz—l 4.65
SZZ.]

Sz31 can be expanded by writing it as the average of the conjugate of X,; times Xs;.

Expressions for X, and X3 can then be substituted as follows,

Szu = E[Xll‘X}.l] = E[(X; - thxxt)(Xs - LZXI)]

=S, +L1'Lzsn 'L;Sxa -L.S,, 4.66
S.. S S S S, S,
=Szz+§f‘§:’j'sn "S_ZLSU'_S'E'Szx =S,- g :

11 1n 11

S;2.1 can be found similarly and substituted into equation 4.65. S,; and S; contain the
product of three Gaussian variables and so are equal to zero. Hence the expression for

L, is:

8,8,
Sp-—
L = Sui - S, =SnSza"SzlS;3 =§2—3=O 4.67
4
Sy S22 - a8, SxS, -S,8., Sy
SH
S -SZISM
oo Sa 0 Sw o _Sw _ HEXOye+D)]) 4.68
S, SZZ_SﬂSn S,  HEX'®x'(t+D]})
S

If y(t+7) is substituted from equation 4.52, the terms containing h;(t) and hs(t) will consist

of the product of an odd number of Gaussian variables and so are equal to zero. Hence,
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3[?h2(u)E[x2(t)xz(t+t-u)] du]
Ls = F{E[x’®x"(t +1)])

3[03 [h,@du+2]h,@R (- u)du:|

Io,* +R (- w)]

_0,'0,8(f) + 2H, (B[S () * S, (D]
6,'8(f) + 2[S,, () *S,, (D]

=H,() iff=0

where ¢, = Thz(u)du and is independent of f.

L6=S ) 4.12
S

34.12 = X3.12 X 3
x
3312 X3A12 XllZ

4.69

From the flow logic of figure 4.4 and L, = L, = 0, expressions for X3, and X4 1, follow,

X312 = X5-LoX|
Xann=XaLsX;-LsXo
Substituting 4.70 and 4.71 into 4.69 gives,

LK -LyX X, LK, LX)
’ (X3‘ - L2‘X1‘)(X3 'szx)
S34 'Lssax _LZ,SM +L2‘Lasn

Szz _L2‘SIS - LZ’SSl +L2.Lzsu

Substituting for L, and L gives,

S - S3lsl4
L = * Sn — 834 _BGxZSM
’ S _ﬁ Sy _SGxZSn
3 S

1
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If the spectral terms in equation are expanded and y(t+t) is substituted from equation 4.52,
the term containing h,(t) will consist of the product of an odd number of Gaussian variables

and so is equal to zero. Hence,

Th,EX’ (Ox(t+T-w] du + [h,@EX ®)x(t+1-u)]du
F -
-30,” [h,@EX@®x(t+T-u)]du - Th3(u)E[x(t)x3(t+ 7-u)] du

I[BIX’OX (¢ +D)]- 30, Blx X (t + 1)]]

36, [h,(WR  (t—wdu +96,* [, (u)du +6]:h3(u)R,o(3('c——u)du
g B % N - o0
-36,% [h, @R (T~ w)dn -9, * [ h, @R, (T~ u)cln

I[ 96 *R (1) +6R 1, *(1)- 96, *R 1 (7)]

?(:6]:h3(u)R)o(3(’r-—u) du }

= =H 474
I[6R,’' (D] (0
Thus, the equations for L, to Ly are,

L =0 4.75
L,=30 4.76
L, =H, +30,°H, 4.77
L,=0 478
L, =H, 4.79
L =H 4.80

With these expressions for L; to Lg figure 4.4 can be redrawn for a system with a Gaussian
input as figure 4.5. For such a system, to find H;(f), Ho(f) and Hs(f) only L, Ls and Le

need to be calculated.
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Figure 4.5: Gaussian input to multiple input, single output system

4.5 Relationship between the linear filters acting on a polynomial input and the

Volterra series

It has been shown how it is possible to find expressions for H;(f), Hx(f) and H;(f) by either
using a higher order spectral approach or by using residual spectra and both methods have

their advantages and disadvantages.

The main difference between the methods is that the residual spectral method has the
advantage of allowing the inputs to be arbitrary functions of x(t) and not strictly limited to
simple powers of x(t) as with the higher order spectral method. Hence, with the residual
spectral method, if there is prior knowledge of the type of nonlinearity it is possible to

construct a model based on that knowledge, as in [28]. For example if /x(t) is known to

be important it can be used as an input.

To determine H;(f), Hy(f) and Hs(f) by the residual spectra method for a Gaussian input
only Ls, Ls and Ls need to be calculated. These are one dimensional spectra and so can be
calculated by standard methods. If the higher order spectral approach is used both the
bispectrum and trispectrum must be calculated which requires two and three dimensional
matrix calculations which can be very computationally expensive. Also, considerably longer
lengths of data may be required when calculating higher order spectra than with ordinary

spectra as more averaging is required due to the large variance terms.
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However, in this section, the overall problem has been simplified by assuming H;(f), Hy(f)
and Hs(f) are linear filters acting on a polynomial input. It is possible to write the

expression for the linear filters model in the form of the Volterra series as,

yO= [h,(t)x(t—1,)dr,
+ [ Th,(t,) 8(t, - T, )x(t - T,)x(t — 1, )dr,dt, 4.81

+ [ [h,(z,)8(7, -1,)d(T, - T,)x(t - T,)x(t — T, )x(t — ,)dt,dt,dT,
If this is compared with a cubic Volterra series model,

y(t) = ]:hl (Tx) X(t - T,)dT]
+ [ Th,(z,,1,) x(t — 7, )x(t — T, )dr,dt, 4.82

+ 11 h,(x,,7,,T,) X(t = T,)X(t - T,)x(t - T,)dt,d1,dr,

it can be seen that Volterra kernels are equivalent to the linear filters multiplied by delta

functions. That is,

h (t,)=h,(1,) 4.83
h,(t,,7,) =h,(1,)d(7, - 1,) 4.84
h,(t,,7,,7,) =h,(1,)8(1, - 7,)8(1, - 1,) 4.85

It can now be seen that the linear filters calculated in this section, H;(f), Hy(f) and Hi(f), are
equivalent to considering only the main diagonal of the frequency domain Volterra kernels
H;(), Hy(f,,f;) and Hi(f},f,,f5). So in using residual spectra to solve this type of nonlinear
identification problem, much of the information in the data is being ignored and it is

possible that the problem is being over simplified.
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4.6 Quadratic Volterra model
Rather than just considering the main diagonal of the Volterra kernels, the model is now
extended to try and identify the whole of the Volterra kernels. Suppose a stationary, zero

mean signal, x(t), is acted on by a nonlinear system which can be described by a 2nd order

Volterra model.
yt) = [h (1)) x(t—1)dt, + [ [h,(1,,T,) x(t —T,)x(t - T,)dt dT, 4.86

To characterise the system it is necessary to determine the first order impulse response or
kernel, h;(7) and the two dimensional impulse response or second order kernel, hy(11,72).

This can be viewed as the parallel connection of a linear and quadratic system (figure 4.6).

x [ L@ >®l
hy(t,1,) |

Figure 4.6: Quadratic Volterra model

In all of the following a Gaussian input to the system is assumed. The cross correlation

function is formed,
Ryy (1) = Elx(t-1)y(0)] 4.87

Substituting for y(t) from equation 4.86 gives,

R, (1) = [h,(WEx(t-t)x(t-w)] du +
] 4.88

[ Th, (u, v)E[x(t - D)xX(t = w)x(t - v)] du dv
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As the expected value of the product of an odd number of Gaussian variables is zero, the

second order term is zero. This leaves the first order linear term,

R,,(t)=[h,WR (T-u)du 4.89

Taking the Fourier transform with respect to T gives,
Sy () =H, () Sy (D 4.90

Hence, if the input is Gaussian then the linear kernel can be estimated by use of standard

cross correlation methods.

To identify the quadratic component of the signal, the second order cross correlation

function or second order cumulant function of the signal is formed,
Ry (1,,7,) = E[x(t - T )x(t- T,)y(1)] 491
Substituting for y(t) from equation 4.86 gives,

R, (%,,T,) = | h, @) EX(t-1,)x(t-7,)x(t—w)] du +
= 4.92

[ Th, (u,v) E[x(t-T,)X(t - T, )x(t — wx(t - v)] du dv

As the expected value of the product of an odd number of Gaussian variables is zero, the
first order term is zero. This leaves just the second order term which contains the product
of four Gaussian variables and so can be written as the sum of three pairs of products.

Hence 4.92 can be written in terms of three pairs of auto correlation functions.

R, (T,.7,) = [ Th,(, V) {R, (T, - T,).R o (v-u) +

R (T, -w)R, (T, - V) + 493
Ry (1,-VIR (T, —w)}dudv
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Taking the first term of 4.93 and calculating the double Fourier transform with respect to 7

and 1, gives,
17 Th, V) R o (T, = T,)R o (v-0) e ™ e ™ dr dt_du dv

=S, (£)8(F, +£,)] [h,(w,v) R, (v—1u) du dv 4.94
=0 if(f +£,)#0

The Fourier Transform of the second term of 4.93 is,

{1 j_{ h,(u, V)R (T, -wR,, (1, - v) e "™ e d1 d1,du dv
substituting © =1, -u, dt, =d6, gives TR w0 =8 (F)e ™
substituting 9 =1, -v, dt, =d9, gives TRXX (e =8 (f,)e™™

=S, (£)S,, (£,)] [h(u,v)e ™™ e ™™ dudv

=S, (f,)S,, (£, H(E .1, 4.95

The third term is the same as the second but with the roles of u and v reversed. Hence,

[1] Th,(nv) R, (T, - VIR, (T, — 1) e *™ e ™™ 4t dt_du dv

=S, (f,)S,, (f,)H(,,f) 4.96

Exploiting the (assumed) symmetry of the second order kernel gives H,(fi,f,)=H,(f,,f;) and
so adding the three terms 4.94, 4.95 and 4.96 results in,

Sy (1) =28 (F)S . (F)H(E,,T,)  if (fi+f;) 2 0 4.97

Hence, even in the presence of H;(f), an unbiased estimate of the quadratic component of

the second order Volterra system is,
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B, f,) = —mefifs) N
285 (E)Sx (F,)

as shown by, for example, [59, 62, 76].

4.6.1 Estimation of the quadratic transfer function

A major difficulty when estimating the auto bispectrum, which was discussed extensively in
chapter three, is that the variance of the bispectrum contains terms due to power spectral
effects. Averaging over longer data lengths will reduce the variance. However, if some
form of normalisation is performed on the estimate to down weight the estimate of the
bispectrum at frequencies where the second order properties are large, then the variance
can be made more uniform across all frequencies. For this reason, the bicoherence or

skewness function was usually estimated.

The variance of the real and imaginary parts of the cross bispectrum [38] can be easily

obtained from the variance of the auto bispectrum and is given by,

var(S,., (£,.f,)) = .;Z (148, (f, -£,)] Soe (,)S s (F,)Sy (F, +1,) 4.99

where M is the number of blocks used in the estimation, 8(0) = 1, and &(f) = O for non-

zero f.

This contains the triple product Syx(fi)Sxx(f2)Syy(fi+f;) and so an estimate of the cross
bispectrum will be sensitive to power spectral effects. As H,(f1,f;) contains the cross
bispectrum, the variance of H,(f},f;) will be affected by the spectrum of x(t) which is in turn
dependent on H,(f). Hence whilst the mean of the estimate of the second order kernel is
independent of the linear kernel; its variance is not. In order to reduce the variance of
H,(fi,f) it is either necessary to average over more data or to normalise it to down weight

the estimate where the linear component is large.
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The technique used here to normalise the quadratic transfer function differs from the
bicoherence. Taking the quadratic Volterra model, it is possible to place in parallel with it
an arbitrary linear system, G(f). The value of G(f) will not affect the mean of the estimate
of the quadratic transfer function as it only contains linear components and referring to

figure 4.7 it can be shown that,

SXXY(f]’fz)zsxxz(f]’fz) 4.100

Arbitrary linear
system { G(f) }

x(t) @@ z(t)

Quadratic System
{ H,(D), Hy(f,,£)) }

Figure 4.7: Quadratic and linear systems in parallel

A modified transfer function estimate, Hymeq) (f1,f2), can be defined as,

S f,f
H2(mod)(f1’f2)= e (1-1) 4,101
2S,, ()8, ()

Theoretically, this is the same as Hy(f;,f,). However whilst estimates based on 4.98 can be
unbiased (assuming sufficient resolution), prudent choice of the linear filter G(f) can yield
estimates, based on 4.101, with smaller variances. It will now be shown that the choice
G(f) = Hy(f) gives the minimum output power (E[z%(t)]) and hence minimises the variance

of the transfer function estimate. From figure 4.7, z(t) can be written as,

2(t) = [(h,(t,)— g(T,))x(t—1,)dt, + | [h,(T,,1,)x(t - T,)x(t—1,)dt,dT,

4.102
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To minimise the output power, it is necessary to solve %‘?_ =0 where ¥ = E[z(t)"].
g

¥ can be seen to consist of the following three terms:

21 fihy(x,)- 8T, )h, (1,,T)x(t = T,)x(t — T,)x(t — T,)dt,dr,dT, +

=B [[fh,(1,,t,)h,(T,,T,)x({t—T,)X(t—T,)X(t - T,)x(t - T,)dt,dT,d1,dT,

1 b, (1,) = 8(T,))(h, (T,) ~ 80T, )X(t = T,)x(t - T, )dt,dt,

4.103

The first term contains the product of three Gaussian variables and so will equal zero; the
second does not contain g(t) and so d¥/dg will equal zero; and intuitively, as ¥’ is a
squared expression the third term cannot be negative and so will be minimised when it is

equal to zero, i.e. when g(1) = hy(7).

To implement this, z(t), is created by forming the output of the system, y(t), minus yj(t).

yin(t) is the convolution of the impulse response, h(t), and the input to the system, x(t).
z(t) = y(t) - h(t)*x(t) 4.104

This produces a new ‘delinearised’ signal from which it is possible to calculate the modified

version of Hy(fi,f;). The modified transfer function,H,, (f,,f,), will have a more

uniform variance as the second order properties have been removed. Double inverse

Fourier transforming H, ., (f,f,) with respect to f; and f, will produce the two

dimensional impulse response function h,(1,,7,). The quadratic component of the signal
can be formed by a two dimensional convolution of hy(1;,%,) with the input to the system,

X(t), to produce, Yquad(t).
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4.6.2 Example of a simple quadratic system

The same skewed, mixed signal, as used in chapter three, is now used to demonstrate the
quadratic Volterra model. The system consists of the sum of a Gaussian signal filtered
through a low pass filter and squarer and the same Gaussian signal high pass filtered. It
therefore contains only linear and quadratic elements and so can be solved with the second
order Volterra model. Figure 4.8 shows Syy(f), the power spectrum of the output which
shows the two distinct regions of the signal: a low frequency skewed component, and a
high frequency Gaussian component. The coherence function, figure 4.9, is approximately
unity at higher frequencies due to the linear part of the signal. H(f), the linear transfer

function, is calculated but not shown here. It is high pass in form as expected.

Figure 4.10 shows the quadratic transfer function calculated using an FFT size of 64 and a
sample length of 4096 points. It can be seen that the quadratic component is correctly
detected as shown by the data in the low bifrequency region. However the features in the
mid bifrequency region are unexpected and are caused by the linear component. Hence
when the quadratic transfer function is averaged over 64 segments, the quadratic and linear
components are seen to have similar strengths. If the data length is increased to 262144
data points and the cross bispectrum averaged over 4096 segments the variance of the
linear component decreases and the quadratic transfer function correctly detects only the
low frequency quadratic component of the signal (figure 4.12). However, if the data length
is reduced to 4096 data points, and the modified quadratic transfer function calculated,
Hoimoa(f1,f2), that is with the linear component of the signal removed, the variance is
reduced and the quadratic transfer function only detects the quadratic component of the
signal (figure 4.11). In this case, the magnitude of the linear component due to the variance
of Hy(fy,f7) is of similar value as when the signal was averaged over 4032 more realisations.
Note that by subtracting the linear component of the signal, the variance of the linear
component has been minimised but the variance of the quadratic component has not been
altered. This can be seen by comparing the roughness of the low frequency component of
the quadratic transfer function in figure 4.11 with that of figure 4.12, where a longer data
length was used. Figure 4.13 shows the modified quadratic transfer function calculated

using a data length of 262144 sample points. Normalising the signal by removing the linear
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component or ‘delinearising’ allows improved estimation of the quadratic transfer function,

suppressing troublesome linear terms.

The linear and quadratic impulse responses, calculated using a data length of 4096 samples,
are shown in figures 4.14 and 4.15 respectively. By convolving these with the Gaussian
input data, x(t), two separate components are calculated: the signal due to the linear part,
and the signal due to the quadratic part. The power spectra of these two signals are shown
in figures 4.16 and 4.17 respectively. The original output power spectrum is shown by the
dotted line. Figure 4.18 shows the power spectrum of the sum of the two components
which is the same as the original signal, thus showing the quadratic Volterra model has

correctly accounted for all the terms in the signal. Since in this simulation the system is

known to be only second order, this is to be expected.
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Figure 4.11: Quadratic transfer function of

mixed signal with linear component

removed

Figure 4.10: Quadratic transfer function of

mixed signal
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Figure 4.12: Quadratic transfer function of
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Figure 4.15: Quadratic impulse response

Figure 4.14: Linear impulse response
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4.7 Cubic Volterra Model

The second order Volterra model, equation 4.86, can be extended to a cubic model,

y®) = [h,(1,) x(t-1,)dt, +
[ Th,(t,,7,) x(t - T,)x(t - 7,)dt,dT, + 4.105

] Th3(11,12,13) x(t =1, )x(t—1,)x(t—1,)dt,d1,dT,
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This can be viewed as the parallel connection of a linear, quadratic and cubic system (figure

4.19).
h,(7)
x hy(t,,1,) }L Y

h3(’[1,,1:2,1:3)

Figure 4.19: Cubic Volterra model

For a Gaussian input it is possible, as in the second order case, to find the following

expressions involving H,(f), Hx(f},f2) an Hs(f},f,,f3). This is shown in Appendix E.

H®=220_37s, (@H,(fg-gde if %0 4.106
Sxx (f) s
¢ f,) = —oo @) gy 20 4.107
) 28, (£)S (f,)
(6 ) = Bl D) e 20, (f46) 2 0 and (fi+) # 0
: 68, (£)S,, (£,)S,, (f,)
4.108
N.B. The ratio, Sxy(f)/Sxx(f), now includes a term due to Hy(f1,f2,f3) namely,
3 IS (@ Hy(f.g-9) dg 4.109

Hi(f,,f>,13) is a function of three frequency variables but the linear transfer function is only a
function of a single frequency variable. Therefore equation 4.109 represents a projection of

a function in three dimensional space onto a function in one dimensional space.

97



As in the quadratic model, before calculating the quadratic transfer function the linear
component should be removed. However, knowledge of Hs(f,,f,,f3) is needed to form an
unbiased estimate of the linear transfer function but this is not yet known. One estimate of
H;(f) available is Sxy(f)/Sxx(f). Such an estimate is biased but this should be corrected at a
later stage. The biased estimate of the linear transfer function is used to generate an
estimate of the linear component of the signal. Having ‘delinearised’ the signal an estimate
of the quadratic transfer function, Hy(f},f2), can be calculated. From this an estimate of the
quadratic impulse response function, and hence of the quadratic component of the system,

can be generated.

Equation 4.108 for Hj(f},f,,f3) contains no terms in either H,(fi,f;) or Hy(f) so before
Hs(fi,f,,f3) is calculated the linear component and quadratic component of the signal are
removed. An estimate of Hs(f},f,,f3) is made and by triple inverse Fourier transforming this
with respect to fj, f; and f3, an estimate of the cubic impulse response function can be made.
The triple convolution of the input data with the cubic impulse response gives the estimate

of the cubic component of the signal.

The residual error is formed by subtracting the linear, quadratic, and cubic components of
the signal. This error consists of components of orders higher than three, measurement

noise, and components due to inaccurate estimation of the first three terms in the model.

However, as it was assumed that Hy(fi,f,,f;) was equal to zero when the ‘delinearising’ filter
was estimated, there is room to improve the kernel estimates. The estimated value for
H;(f,,f5,f5) can now be substituted into equation 4.106 to form a more accurate
delinearising filter. From this a new estimate of the quadratic transfer function and then the
cubic transfer function can be calculated. This process can be continued in an iterative
manner until the estimates of Hi(f), Hy(f,,f;) and Hj(f},f,,f;) achieve steady state values.

The whole process is depicted in figure 4.20.
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Figure 4.20: Flow diagram of cubic Volterra model
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4.7.1 Example of a simple cubic system

An example of a simple system than contains only cubic elements is now given to illustrate
some of the difficulties when estimating the cubic transfer function and impulse response.

A more complex example will be given in the next chapter.

If a Gaussian white signal is taken and passed through a cube law device (i.e. y(t) = x(t)*)
the resulting signal will contain only cubic terms. This simplifies the estimation of the third
order Volterra kernel as there are no first or second order terms and so there is no need for

an iterative solution.

The third order frequency domain Volterra kernel of this system is shown in figure 4.21 and
has an approximately constant value of unity throughout. This has been calculated by
taking the cross moment trispectrum and dividing through by the power spectral terms as in
equation 4.108. As the moment trispectrum has been calculated it is then necessary to
remove the effect of the second order terms to form the cumulant trispectrum. These
second order terms appear as three planes, fi+f;= 0, f,+3=0, and f,+f; = 0. By calculating
the product of the auto and cross spectrum along each of the planes and then subtracting

this from the moment trispectrum, the true cumulant trispectrum can be calculated.

Triple Fourier transforming this with respect to 1, T, and 75 will give the cubic impulse
response of the system. This is shown in figure 4.22 and is seen to be a single delta
function at the origin. If the original input data is convolved with this three dimensional
impulse response the resulting data should be identical to the output signal. Figures 4.23
and 4.24 show the original output signal, and the result of convolving the input data with

the impulse response. The difference between these two signals is shown in figure 4.25.
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Figure 4.21: Third order frequency domain Volterra kernel of the cubic system
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Figure 4.22: Cubic impulse response of the system
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4.8 A note on higher order coherence functions

In section 4.6.2, in the example of the mixed signal, the results are displayed by looking at

the power spectra of the linear, and quadratic terms and comparing these with the known

output power spectrum of the signal. In this way, from an engineering point of view, it is

easy to see what part of the signal accounts for the power at every frequency.

Some authors [63] prefer to take this one stage further and calculate higher order

coherence functions to display the same information. For the simple quadratic model the

linear and quadratic coherences are defined as:
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In a similar fashion to the traditional second order coherence function these will take values

on a scale from zero to unity depending on how well the models fit the data.

Although this may seem a logical extension, many unhelpful contradictions can occur. For
example although the coherence functions theoretically should take values between zero
and one in some cases it can be either negative or greater than one. This may occur for a
number of reasons: if the model does not correctly account for the data it could be possible
that the power spectrum of the model is greater than the power spectrum of the actual
output. This would lead to a coherence function taking values greater than unity. Also in
the case of the cubic model, cross terms would be present which can lead to negative

coherence values.

4.9 Conclusions

In this chapter, techniques using cross higher order spectra have been presented for
calculating the Volterra kernels of a system. Two methods have been proposed, the first
calculates only the main diagonal of the Volterra kernel, which although simpler, has limited

applicability. The second calculates the full Volterra kernel.

Both quadratic and cubic Volterra models have been presented. The quadratic model
produces a closed form solution and no iteration is needed to solve it. However, an iterative
procedure has been proposed to solve the cubic model. There are methods of producing
closed form solutions for the cubic model and these will be examined in the next chapter.

Although the cubic model is considerably more complex than the quadratic model, for the
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experiments considered in chapter six it is found to be necessary. The problems that may

occur when too low an order model is used for a particular situation will also be discussed.

As with the auto bispectrum, calculations of the cross bispectrum can easily be corrupted
by second order properties. For the auto bispectrum the usual technique to avoid this is to
calculate the bicoherence or skewness function. For the cross bispectrum, in the calculation
of Volterra kernels, this is not possible, and so a new method has been proposed which
involves subtracting off lower order terms. This has been demonstrated to work very well

for a simulated quadratic system.

This whole chapter has been based on the assumption that the input to the system is
Gaussian. If this assumption is invalid, all the products of an odd number of Gaussian
variables can no longer be set to zero and must be included in the solution of the Volterra
model. This obviously leads to a far more complex problem. In chapter five, some of the
possible methods of calculating the Volterra kernels when the input is non-Gaussian will be

discussed.
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Chapter 5

Limitations of the Volterra series

5.1 Introduction

In the previous chapter, it was shown how the Volterra series could be used to model some
nonlinear systems. Before studying the experimental results in the next chapter, a number
of difficulties which can arise with the practical application of Volterra models will be

examined and some possible solutions presented.

The first difficulty concerns the convergence of the Volterra series. A brief discussion of
some of the types of system that are likely to have converging or diverging Volterra series
are given, with references to more analytic work on the subject. The second difficulty,
concerning the calculation of the Volterra kernels of a system, is that estimation is only
possible if the contributions of each of the system’s operators can be separated from the
total system response. No exact method of isolating an individual Volterra operator exists,
except by truncating the series, as in this work. The techniques derived in the previous
chapters, in the process of estimating the Volterra kernels, do in fact estimate the kernels of
a related series, the Wiener series, whose kernels can be calculated without truncating the
series. Although a detailed description of the Wiener series is not given here, it is of interest

to note the relationship between the Volterra and Wiener kernels.

In many situations, it is important to know the response of a system to a particular input. A
possible technique to find the response, is to apply a Gaussian input to the system and
determine the Volterra kernels which can then be used to predict the response of the system
to any input. This method is demonstrated using the example of the Duffing oscillator.

The Volterra kernels are calculated using a Gaussian input and then the response of the
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Duffing oscillator to a sine wave is predicted and compared with the actual response

evaluated using numerical techniques.

Throughout this work, it has always been assumed that the input to the system is Gaussian.
In many practical applications this assumption may be invalid, and so a method is presented
for the quadratic Volterra model that removes this restriction. The solution of this new
quadratic Volterra model differs from the previous one, because it is no longer possible to
assume that the product of an odd number of input terms is equal to zero or that the
product of an even number of input terms can be decomposed into pairs of terms. These
expressions must now be solved explicitly using higher order correlation functions. This
vastly increases the complexity of the model and it is shown that the quadratic model
requires that higher order spectra up to the fourth order, the trispectrum, are studied. It is

noted that a cubic model would require the calculation of sixth order spectra.

The topic of causality is briefly mentioned. In the solution of the Volterra models, the
Volterra kernels have not been restricted to be zero in negative time and so could well be
non-causal. However, it is seen that for the practical examples studied, all the estimated

kernels are causal in nature.

A number of different Volterra models, all calculated using higher order spectra, have now
been presented. They can be broadly split into a number of categories such as the order of
the model, the assumptions placed on the input, and the highest order spectra required for
the solution of the model. Therefore, a summary of the different models, their restrictions,

features, and the techniques that different authors have used to solve them is given.

5.2 Convergence of the Volterra Series

The Volterra series has been termed ‘a Taylor series with memory’ [70] and the
convergence properties of the Volterra series are closely linked to the convergence of the
Taylor series. For example, consider the memoryless system, with an input, x(t), and

output, y(t), defined by,
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y(0) = Asgn[x(t)]
A fory(t)>0 51
=¢ 0 fory(t)=0
-A fory(t)<0

where A is a constant. There is no convergent Taylor series for equation 5.1 about y(t) =0
and so a nonlinear system, which has such characteristics, cannot be represented by a

Volterra series model.

For the Volterra series to be convergent, any memory it possesses must be finite. That is,
the effect of any input on a Volterra series will die away and become insignificant in finite
time. An example, given by Schetzen [70], of a system which does not possess finite
memory is a fuse which, after its rated current has been exceeded will never return to its

original equilibrium state no matter how long one waits.

In general, any system which has multiple equilibria cannot be modelled by a Volterra series
except locally around one equilibrium and with the class of inputs restricted so as to ensure
that none of the other equilibrium states will be reached. In the next chapter, a practical
example, based on a beam constrained by pairs of repelling magnets is given. This system
will have a convergent Volterra series. However, there is a very similar experiment [54],
which is often used to demonstrate chaotic vibrations, in which a vibrating beam, rather
than being constrained by two pairs of repelling magnets, is attracted by either of two pairs
of magnets. This experiment would have multiple equilibria and so it would not be possible
to find a convergent Volterra series representation for it, except locally around one of the

magnets.

The above three criteria have given very simple guidelines as to the types of system that will
have a convergent Volterra series. No attempt has been made to prove any of the
statements but further discussion on the convergence of the Volterra series can be found in

Boyd and Chua [7] and Wright [81].
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5.3 The Wiener series

The two main difficulties associated with the practical application of the Volterra series are,
first, the problem of convergence which was discussed in the previous section, and second,
the difficulty concerning the measurement of the Volterra kernels of a given system. As the
Volterra series is an infinite series, it is only possible to measure a system’s Volterra kernels
if the contribution of each of the Volterra operators can be separated from the total system
response. In this work, this problem has been circumvented by truncating the Volterra
series and so making a finite order system. However, no exact method of isolating an

individual Volterra operator exists for systems that are not of finite order.

Wiener [70] avoided these problems by forming a new series from the Volterra series. The
Wiener series allows the identification of an individual operator without the need for
truncation but only when the input is a white, Gaussian signal. Higher order spectral
methods are particularly suited for the estimation of the Wiener kernels and it can be seen in
the next section how the methods that have been used in the previous chapters closely

relate to the conversion between Wiener and Volterra kernels.

5.3.1 Conversion between Wiener and Volterra functions

For a system truncated at third order the relationship between the Volterra kernels and

Wiener kernels is [70]:
Hi()=Ki(®)-Kie 52
Hy(f1,£)=Ka(f1,12) 5.3
H;(f1,5,65)=Ks(f1,[,f5) 5.4

where K(f), Ky(f}.f;), and Ks(fi,f5,f5) are the systems Wiener kernels and K,;y(f) is the

derived Wiener kernel, defined as:
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K., (f)=3A[K,(-f,g—g)dg 55

where A is a constant. If this is compared with the cubic Volterra model from chapter four,

strong similarities can be seen.

S.(f) -
H,(f) ==~ 3 [S (@H, (f.g-2)d 5.6
@ S () IS (@H;(f.g-g) dg
Hz(fl,fz)z__s_ﬁXL(ﬁ’_f;zl__ N
28, ()8 xx (£,)
H,(f,. £, f,) = oo G fnF) 5.8
68 (f,)S (f,)S« (f,)

In order to solve the cubic Volterra model, the H; term in the estimation of the linear kernel
was set to zero, and the linear, quadratic, and cubic kernels estimated. It can now be seen
that at this stage, the Wiener kernels were in fact being estimated. The substitution of Hs
into equation 5.6 can be interpreted as attempting to obtain the Volterra kernels from their

Wiener counterparts.

5.4 The use of Volterra models to find the response of a non-Gaussian signal

Although the methods described in chapter four for the calculation of the Volterra kernels
assume a Gaussian input, once the Volterra kernels of a system have been calculated, they
can be used to predict the response to any input. In this section, the Volterra kernels of the
Duffing oscillator will be calculated and then the response of the Duffing oscillator to a sine
wave predicted. In chapter three, the auto higher order spectra of the output from a
Dulffing oscillator was studied. Cross higher order spectral analysis will now be used to

study the Duffing oscillator and estimate its Volterra kernels.
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5.4.1 The cubic Volterra model of a Duffing oscillator

In chapter three, the Duffing oscillator was defined as,
X+200 % + 0, x +0x’ = f(t) 5.9

where the input, f(t), was assumed to be a Gaussian process. For this work, a small

quadratic nonlinearity is included to generalise the Duffing equation to,
X+ 20w x+ @, x+ox’ +Bx* =f(t) 5.10

The system was simulated using a fourth order Runge Kutta model, with fixed step length,
to obtain, x(t), the output. The coefficients of the cubic and quadratic terms were set to
0.25 and 0.1 respectively and the system is lightly damped ({=0.1) with a natural frequency
(oy) of 0.2 rad/s. It is possible, using traditional sinusoidal probing methods [81], to find
analytical expressions for the first three Volterra kernels of the Duffing Oscillator. These

are quoted as [55];

H.(f) = ——— 5.11
—4nf” + j4nEf +1

H, (f,,f,) = —2BH, (f, )H, (f,)H, (f, +1,) 5.12

H, (f,,f,.f,) = —60H, (f)H, (f,)H,(f,)H,(f, +f, +,) 5.13

Note that the magnitude of the quadratic and cubic Volterra kernels are directly
proportional to B and o respectively. Using the cubic Volterra model developed in chapter
four, the first three Volterra kernels can be calculated from the simulated input/output data.
These estimated kernels are depicted in figures 5.1-5.6: figures 5.1 and 5.2 show the linear

time domain and frequency domain Volterra kernels, respectively; figures 5.3 and 5.4 show
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the quadratic time domain and frequency domain Volterra kernels, respectively; and figures

5.5 and 5.6 show the cubic time domain and frequency domain Volterra kernels,

respectively.

Figure 5.7, shows the power spectrum of the linear (thick solid line), quadratic (dashed
line), and cubic (thin solid line) components of the signal, plotted against the actual output
of the Runge Kutta model (dotted line). It can be seen, as expected, that the linear
component accounts for the most power in the signal, folowed by the cubic component,
and then the quadratic component. The nonlinearity is distributed across all frequencies,
although it is most dominant at the resonance, which is not unexpected as the resonant
frequency is where most of the energy of the signal can be found. The sum of these three
components gives the output of the Volterra model, which is shown in figure 5.8 by the
solid line, again plotted against the output of the Runge Kutta model (dotted line). The
complete Volterra model can be seen to account very well for the vast majority of the

power across all frequencies
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Figure 5.5: Cubic impulse response of the Duffing oscillator

Figure 5.6: Cubic transfer function of the Duffing oscillator
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5.4.2 Sine wave input to the Volterra model of a Duffing oscillator

Having used the input and output from the Runge Kutta model to calculate the first three
Volterra kernels, these can now be used to predict the response to any other input. In this
case the response to a sine wave is calculated, first by simulating the Duffing oscillator with
the Runge Kutta method, using the sine wave as an input, and then by using the sine wave

as the input to the Volterra kernels, as shown diagrammatically in figure 5.9. The results

from both methods can then be compared.

Gaussian
input

f{t)

Runge Kutta
Duffing Oscillator
model

Output
x(1)

Caculate H,(f), H,(f,.f)),
and Hy(f,,f,,f,) using
cubic Volterra model

Sine wave
input

)

Runge Kutta
Duffing Oscillator
model

Cubic Volterra
Duffing Oscillator
model

Compare
outputs from
models

Figure 5.9: Method for comparison of the Runge Kutta model with the Volterra model

If the Runge Kutta simulation is repeated, but with a sine wave as the input, the power
spectrum of the output, figure 5.10, dotted line, can be seen to consist of four resonant
peaks. The response of the linear, quadratic, and cubic Volterra kernels to the sine wave is

also shown in figure 5.10 by the power spectra of the linear (thick solid line), quadratic
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(dashed line), and cubic (thin solid line) components. It can be seen that the linear
component contributes to the first resonance in the spectrum, the quadratic component to
the second resonance, and the cubic component to both the third and first resonant peaks.
As only a cubic Volterra model is used, there will be no components at frequencies higher

than the third resonance.

By summing the linear, quadratic, and cubic components the total output of the Volterra
model] can be obtained as shown by the solid line in figure 5.11. If this is compared with the
output of the Runge Kutta solution, figure 5.11 (dotted line), it can be seen that it accounts
fairly well for the first three resonances. All higher order odd kernels will contribute some
power to the first and third resonance, and as only two have been considered, it is
unreasonable for the magnitude of the power of the Volterra model to be as high as the
Runge Kutta solution. Similarly, all even kernels will contribute some power to the second
resonance. However, allowing for the limitations caused by truncation, the Volterra model

has performed quite well at predicting the response of the Duffing oscillator to a sine wave.
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5.5 Solutions for the Volterra models when the input is non-Gaussian

The derivation of estimators for the quadratic and cubic Volterra models in chapter four
rely on the properties of the higher statistical moments of a Gaussian process. They are
therefore subject to error if used with signals whose higher order moments deviate from
those of a true Gaussian signal. In this section, the quadratic Volterra model is solved with

no assumptions placed on the statistics of the input.

In section 4.6, by substituting the quadratic Volterra model (equation 4.86) into the cross

correlation function (equation 4.87) the following expression is obtained:

R, (1) = |h (WE[X(t-T)x(t—u)]du +
e 5.14

[ Th, (u, VE[X(t - D)X(t = u)x(t - v)] du dv

As with the original quadratic Volterra model, the linear component can be found by

calculating the Fourier transform of equation 5.14 to give:
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S, (V) = [ [h,@E[X(t- T)x(t = u)]e ™™ du dt+
- 5.15
[] [h, @, VE[X(t- TX(t — u)x(t - v)]e *™ du dv d1

Evaluating the first term of equation 5.15 leads to the same expression as found for the

previous quadratic model. That is,

[Th, @R (t-we™ dtdu = H, (1)S,, (V) 5.16

The second term of equation 5.15 would previously have contained the product of an odd
number of Gaussian variables and so be set to zero. However, it now must be solved, and

so is rewritten in terms of an auto bicorrelation function as,

[ Th, (u, VELX(t - T)x(t = w)x(t - v)] du dv
! 5.17

=-[-.£h2(uﬁv) Rx)(x(T-u,T‘V) du dV

R, (1,,T,) can be written in the frequency domain as jnj’s oo (£, 5, )67 g dr, .

Substituting this into equation 5.17 and taking a Fourier transform gives,

”HThZ(U,V) Sxxx(f]yfz)eJ2n(f1(1~u)+rz(‘r~V)e-1'21rm dT du dv df] dfz
= ][ TH, (. £,) Sy (F,. £,) € 77457 dudf, df,

= [ [H,(f,,£,) S o (£..£,) 8(F, +f£, - v) df, df,

H,(v-f,,f,) S, (v-f,,f,) df, 5.18

g

Therefore, the Fourier transform of equation 5.14 can be written as the sum of equations

5.16 and 5.18 as,
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Sy (V) = H,(0)S, (V) + [H, (v-1,,£,) S (0-£,.1,) df, 5.19

Previously, to identify the quadratic component of the signal, the quadratic Volterra model
(equation 4.86) was substituted into the second order cross correlation function (equation

4.91) to give,

R,y (T,,7,) = [h, @) Bx(t-T,)x(t-1,)x(t - w)] du +
- 520

[ Th, (u,v) BIx(t-T,)X(t - T, )x(t — wx(t - v)] du dv

The first term of equation 5.20 can no longer be set to zero and but now be solved

explicitly and so is expressed in terms of an auto bicorrelation function as,

Thl(u) E[x(t-T,)x(t-7,)x(t—u)]du= Thl(u) R x@u-1,u-1,)du 5.21

R, (T,,T,) can again be written in the frequency domain as | Dfsm (. f,)e”" ™" dr dr,

Substituting this into equation 5.21 and taking a two dimensional Fourier transform gives,

.”_” ]:hl(u)sxxx (fvfz )ejZn(ﬁ(u-r1)+fz(u—rz))e—j21mme-j21ruzrz df]dfzdu dTlde
— J-}-J» ]?Hl'(fl + fz )Sxxx (fl’f2)e'JZn(f11}+szz+\)1n+U212)dfldfz dTldTZ

= [TH, (f, +£,)S o (.. £,)8(0, +£,)8(v, +f£,)df df,

=H, (v, +9,)Sx (V,,0,) 522

The second term of equation 5.20 can be rewritten in terms of an auto tricorrelation

function as,

[ Th, (,v) E[x(t - T,)X(t - T, )x(t = w)x(t - v)] du dv
= 523

= jihz(u,v) R (T, = T,,T,~1,T, — V)
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As before, it is possible to write the auto tricorrelation function, R,,,,(1,,7,,1,), in the

17722

frequency domain as |J Tsxxx(f f,,f,)e”" ¥ dr,dr,  Substituting this into

equation 5.23 and taking a two dimensional Fourier transform gives,

TS T0200,9) S, £ ) 2200 g sty

df,df,df,d, dt,dudv

= jj_” THz(fz’fa) SXXxx (fl’fz’f3)e-jznm(m—ﬁ_tz_mﬂz(“Hm)dfldfzdfa)d’t]d‘tz
=[] TH,(£,,£,) Ssopue (£ o £,) 80, = £, = £, — £,)8(v, + f, )df df, df,

= [H,(v, +v, -f,,f,) S (-0, 0, + 0, - f,, £, )df, 5.24

Hence the two dimensional Fourier transform of equation 5.20 can be written as the sum of

equations 5.22 and 5.24 as,

Sy (V,0,) =H (v, +v,)S,,, (v,,0,) +
- 5.25
JH,(v, +v, -f,,f,) Sy (-0,,0, + 0, - f,, £, )df,

Therefore, in order to solve the quadratic Volterra model, in the general case, it is necessary
to simultaneously solve equations 5.19 and 5.25. Note, that if x(t) is Gaussian the second
term of equation 5.19 is zero, the first term of equation 5.25 is zero, and the second term of
equation 5.25 can be expressed as the product of two power spectra, to give the familiar

result from chapter four.

It is possible to solve equations 5.19 and 5.25 in an iterative manner in order to obtain
expressions for H;(f;) and Hy(f,,f;). However, Kim and Powers [46] have produced a
closed form solution using matrix methods. With both methods, care must be taken to
ensure that the variance of the bispectrum and trispectrum is minimised. By removing the
assumption of a Gaussian input, the complexity of the solution has increased and it can now

be seen that there is a term involving the trispectrum in the expression for the quadratic
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kernel. The same method can be used to solve a cubic Volterra model, however, the
complexity is vastly increased and it is found necessary to use a sixth order spectrum. This

is impractical using current technology.

5.6 Optimality of the Volterra models

In the previous chapters, frequency domain techniques for estimating Volterra kernels have
been discussed and a modification based on subtracting off lower order terms in order to
minimise the variance suggested. In this section these frequency domain methods are now

compared with the optimal least squares time domain method.

It is shown in Appendix F that the optimal least squares estimate for a linear filter h is given

by the solution of,

Xh=y 5.26

where X and y are as defined in Appendix F. This leads to,

h=X"X)'X"y) 5.27

The same method can be extended to obtain a solution for the optimum n™ order filters for
a system that contains nonlinear elements. Here, just the linear and quadratic filters will be
considered, and so the matrix, X, will now contain quadratic terms as well as the linear

terms and is defined as,

x(L) X(L-1) . x(L-N+1) x(L)  x@xL-1) - xLXL-N+1) X©L-1 - xL-N+1
XL -1) x(L-2) -« x(L-N) x(L-1 x(L=Dx(L-2) - x(L-Dx(L-N) X(@L-2) -+ x@L-N)
2(L=2) x(L=3) - x(L=N-1) x(L-2)" x(L=2)x(L-3) - x(L-1Dx(L = N-1) X(L-3) - x(L-N=-1)

X =
2 2
x(3) x(2) - 0 x(3) x(3)x(2) 0 x(2)
x(2)  x(D) - 0 x(2) (DK e 0 XD 0
L x(D 0 e 0 x(1)’ 0 0 0 0 |
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From this X"X can be formed which can be seen to consist of three distinct components: a
linear component which is the same as for the linear solution; a quadratic component; and a
component consisting of linear/quadratic cross terms. However, for a system with a

Gaussian input, as in this case, the cross terms, on average, will be zero.

LIN LQ

LQ" QUAD

Multiplying the inverse of this matrix with the cross correlation vector formed by the

multiplication of X" with y, as in Appendix F, gives the linear and quadratic filter vector, h,

which is of the form,
- -
h LIN
h=
h QUAD

From h it is possible to reconstruct in full the linear and quadratic filters.

This least squares optimal time domain method was then used to solve for the linear and
quadratic Volterra kernels for the quadratic mixed system as in section 4.6.2. The
following results are based on using a data length of 10000 samples and a FFT size of 32.
Figure 5.12 shows the quadratic impulse response estimated by this method. These results
are compared with the frequency domain methods for estimating the quadratic impulse
response: firstly without subtracting of the linear term, figure 5.13; and secondly with the

linear term removed, figure 5.14.

It can be seen that the least squares time domain method gives a solution containing less

noise than its frequency domain counterparts. This is as expected as it represents an
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optimal solution. However, the modified frequency domain method produces reasonable
results which are far better than traditional frequency domain methods. The standard

deviation of the residual error, e(n), is defined as,

J%ge(n)z 528

(Further explanation can be found in Appendix F.) This was calculated for each of the
methods and is shown in table 5.1. The time domain method has the smallest standard
deviation (0.03), followed by the modified frequency domain method (0.06). However the
traditional frequency domain method can be seen to have a significantly larger error, the

standard deviation of which is 0.25.

.04+

impulse response

Figure 5.12: Quadratic impulse response of mixed system calculated

using the least squares optimum time domain method.

0.04

0.034

0.024

Impuise response

Figure 5.13: Quadratic impulse response of mixed system calculated

using the traditional frequency domain method.
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Impulse response

Figure 5.14: Quadratic impulse response of mixed system calculated

using the modified traditional frequency domain method.

Although the time domain method gives the best results it is far more computationally
intensive. For the above quadratic model with an FFT size of 32 it requires the
multiplication of two 1024 by 560 matrices and then the inversion of a 560 by 560 matrix.
For a more realistic FFT size of 64 these dimensions are increased to 4096 and 2144. If a
cubic model is attempted using this method both these figures are increased by
approximately a factor of 64 and the computation becomes unfeasible large, using available
compute power. However it can be seen that although the modified frequency domain
method is not optimal, it is much closer to optimal than traditional frequency domain

methods and has the major advantage that it can be easily calculated.

Method Standard deviation
of error
Time domain least squares 0.032
Frequency domain 0.251
Modified frequency domain 0.060

Table 5.1: Standard deviation of error for the different methods
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5.7 Causality and the Volterra series
Consider the linear system identification problem shown in figure 5.15 where x(t) and y(t)
are the input and output measurements of the system. The problem is to establish a linear

transfer characteristic linking the two. Let yo(t) be a stationary random process produced

by operating on x(t) linearly. That is,

¥o(t) = Jh(Dx(t-T)de 5.29
and e(t) = y(t)-yo(t) denote the error. The system identification problem is to find the
transfer function, h(t) that minimises E[ez(t)]. This can be easily solved to give the Wiener-

Hopf equation:

R, (1) = [h(DR (t—T)dt 5.30

Fourier transforming equation 5.30, leads to the standard results:

H(f) = 2D 531
S ()
System y(®)
X(t) e(t)
h(T) yo(t)

Figure 5.15: Linear system identification
Note however that the limits of the integral in equation 5.30 are from minus infinity to

infinity. This means that H(f) will not necessarily be causal. If the restriction that h(t) =0,

t >0 is applied, the estimated system will always be causal, but, it is then not possible to
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simply Fourier transform equation 5.30 to obtain equation 5.31. In order to obtain a

solution in the frequency domain, the method of spectral factorisation [64] has to be used.

The same problem will occur with the Volterra kernels. On all the Volterra models used in
this work, the limits on the integral are from minus infinity to infinity. This means that the
Volterra kernels estimated will not necessarily be causal. One possible approach to this
problem would be to generalise the concepts of spectral factorisation but this is not pursued
here. Another approach to avoiding non causality would be to use a parametric method in
which the model could be limited to being causal. However, for the practical systems
studied in chapter six, all the Volterra kernels are in fact causal, as would be hoped with a

real system, and so in these cases there is not a problem.

5.8 Overview of Volterra models

A number of different methods for estimating Volterra kernels have now been presented,
each of which require certain assumptions and have certain features. Different techniques
have also been used by other authors to solve some of the Volterra models. In this section,

a summary of the main models, together with references to other work, is given.

Some of the more important features of estimation schemes for Volterra models are listed

below:

e The order of the model - either quadratic (can only analyse skewed type nonlinearities)

or cubic (can analyse both skewed and symmetric nonlinearities).
e The conditions imposed on the input - either Gaussian or non-Gaussian.
e The method used to solve the model - either an iterative or closed form solution.

o The highest order spectra needed to calculate the Volterra kernels - realistically it is

only possible to calculate the bispectrum and trispectrum.
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Figure 5.16 shows some of the possible quadratic Volterra models that can be created. The
simplest of all is the quadratic Volterra model, assuming a Gaussian input, which was first
proposed by Tick [76] in 1961. It requires only the calculation of the spectrum and
bispectrum. However it is strictly limited to skewed type nonlinearities. If the assumption
of Gaussianity is relaxed, to solve the quadratic model it is necessary to utilise the
trispectrum. The Volterra model must then be solved either in an iterative manner or by a

closed from solution as in Kim and Powers [46].

e.g. Tick [76]
Gaussian Requires up to Collis, White,
input the bispectrum Hammond [19,20]
Perrochaud [62]
Quadratic Hinich [37]
Volterra

Model

e.g. Kim, Powers [46]

non Requires up to Cho, Powers [16]
Gaussian th qtr' ﬁu Choi, Miksad,
input ¢ trspectrum Powers [17]
Zoubir [83]

Figure 5.16: Types of quadratic Volterra model

Figure 5.17 shows the possible cubic Volterra models. A general solution, with no
restrictions on the statistics of the input has been presented by Nam and Powers [55].
However, this requires the calculation of up to a sixth order spectrum and so is of little
practical use. If the input is assumed to be Gaussian, only the power spectrum, bispectrum
and trispectrum are required. As this model can handle both skewed and symmetric
nonlinearities, it is likely to be of most practical use, and is the model used for the

experimental work in chapter six.
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I

e.g. Hong, Kim,
Gaussian Requires up to Powers [41]
input the trispectrum Collis, White,
Hammond [19,20]

Cubic
Volterra
Model

: .g. Nam, Powers [55]
non Requires up to g i
Gaussian the sixth order grielllg;niowers (771
input 3
d spectrum Powers [44]

Figure 5.17: Types of cubic Volterra model

5.9 Conclusions

In this chapter it has been shown that care must be taken when estimating the Volterra
kernels of the system, firstly to check that the Volterra series is likely to converge for the
particular system, and also to check that the calculated Volterra kernels are causal. Having
estimated the Volterra kernels of a particular system it has been shown that it is then

possible to predict the response of the system to any input.

A quadratic Volterra model has been developed which places no restrictions on the
statistics of the input. However, it is far more complex than the Volterra model that
assumes a Gaussian input, and requires the calculation of the trispectrum. The quadratic
model can of course only analyse skewed nonlinearities and so is fairly limited. If the cubic
model, which can analyse both skewed and symmetric type nonlinearities, is extended to
any input it is found that spectra up to the sixth order have to be calculated which prohibits
its practical use. It is therefore suggested, that the cubic Volterra model that assumes a
Gaussian input is likely to be of the most practical use. In the next chapter, it is this model

that is used to analyse the experimental results.
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Chapter 6

Practical examples of the use of higher order spectra in

mechanical systems

6.1 Introduction

In this chapter higher order spectral techniques are applied to some simple mechanical
systems. The first system studied is the nonlinear magnetic beam. This is a simply
supported beam, driven by an electromagnetic shaker. At the free end, pairs of repelling
magnets are placed. By varying the position and number of magnets, the nature of the
nonlinearity can be changed, be it skewed or symmetric, and by varying the distance
between the magnets the strength of the nonlinearity can also be altered. Using this
controllable system, auto higher order spectral methods are applied, assuming only a
knowledge of an output signal. These are then compared with the results obtained from

cross higher order spectral techniques, where both an input and output are known.

For the magnetic beam, the expected nature of the nonlinearity was known; however, in the
second example, there is no prior knowledge of the type of the nonlinearity. This system
consists of a beam attached to electromagnetic shaker. By loosening the attachment bolt, a
rattling type nonlinearity can be introduced to the system. Varying the degree of tightness
will vary the degree of nonlinearity. As in the previous example both auto and cross higher
order spectral techniques are compared. In this system the precise nature of the
nonlinearity is unclear, and it is not certain that the Volterra series will converge. However,

a cubic Volterra model is applied to the system and seems to produce useful results.
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6.2 The nonlinear magnetic beam

The experimental set up for the symmetric nonlinear magnetic beam experiment, figure 6.1,
consists of a beam, clamped at one end and attached to a shaker which is excited by a
Gaussian signal. At its tip two pairs of repelling magnets are placed such that there is a
symmetric nonlinear restoring force that tries to centralise the beam between the magnets.
The strength of the nonlinearity can be varied by changing the distance between the

magnets. By removing the top pair of magnets, as in figure 6.2, this symmetric restoring

force becomes skewed as the beam is no longer constrained from above.

to acquistion

beam

accelerometer

magnets

i

shaker

adjustable
height

magnets

!

ANNANANAN

Figure 6.1: Experimental set up for symmetric magnetic beam

to acquistion

beam

accelerometer

shaker

adjustable
height

magnets

!

ANAANANAN

Figure 6.2: Experimental set up for skewed magnetic beam
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The input signal to the shaker and the output signal from the accelerometer were both
synchronously sampled into a P.C. and stored ready for analysis. The input to the shaker
was recorded as opposed to the force on the beam as it is a requirement that the input to
the Volterra model is Gaussian. Although the input to the shaker is Gaussian, the force on

the beam will not necessarily be as the beam will induce a nonlinear force onto the shaker.

6.2.1 Auto higher order spectral methods

Initially all magnets are removed from the beam to produce a predominantly linear system.
A Gaussian signal, with an upper frequency of 50 Hz was passed through a power amplifier
and into the shaker. The signal from the accelerometer on the beam was sampled at
100 Hz having been passed through an anti-alias filter with cut-off frequency 40 Hz.

Approximately 262144 samples were recorded.

The power spectrum of the response from the beam with no magnets is shown in figure 6.3.
It can be seen that there are a number of resonances and anti-resonances in the system and
the first resonance is at approximately 5 Hz. This can be predicted using the Bernoulli-
Euler equation. For a clamped free beam it can be shown that the frequency of the first

resonance is given by [24],

f, =0.56 JE lz =49Hz 6.1
m !/

where m is the mass (0.102 kg), E is the Young’s modulus (68.9x10° Nm?), I is the

second moment of area (7.03x10™% m*), and [ is the length (0.494 m).

The auto bicoherence is shown in figures 6.4 and 6.5. Figure 6.5 is a mesh plot, used to
give an idea of the overall magnitude of the bicoherence, which in this case is approximately
zero. Figure 6.4 is a contour plot which shows the precise detail of the bicoherence. The
dashed lines on the contour plots of the bicoherence mark the position of the peaks and

troughs in the spectrum, as it is often useful to be able to correlate power spectral effects
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with peaks in the bicoherence. The same contour levels are used for all the contour plots in
this chapter so as to allow for easy comparison between plots. In this case, there is no
significant structure in the bicoherence, indicating that there are no quadratic type
nonlinearities in the system. The tricoherence is shown in figure 6.6, and again, there is no
significant structure, indicating that there are no cubic type nonlinearities. As both the
bicoherence and tricoherence are approximately zero, it is reasonable to suppose that the

beam can be approximated by a linear system.

The lower set of magnets are replaced to produce a system that should be dominantly
skewed, as shown by the configuration in figure 6.2. The power spectrum is shown in
figure 6.7. It can be seen that the position of the main resonance has increased which is
partly due to the weight of the magnets on the tip of the beam. A number of possible
harmonics of the fundamental frequency at approximately 8 Hz have also appeared close to

16 Hz and 23 Hz.

The bicoherence, figures 6.8 and 6.9, show significant quadratic phase coupling (maximum
value = 0.7) between the harmonically related peaks in the spectrum, in particular between
the 8 Hz and 16 Hz peaks which produce the largest interaction at (8,8) Hz. There is some
structure in the tricoherence, figures 6.10 and 6.11, although it is not of particularly large
magnitude (maximum value = 0.1) and again it occurs at (8,8,8) Hz. Two different angles
are used to display the trispectrum, so as to gain an overall view of where the interactions

occur as well as more accurate positioning of their frequencies.

With the use of auto higher order spectra, it has been possible to determine that the
nonlinearity has more dominant quadratic terms than cubic terms. It is also easy to tell
from the bicoherence that the fundamental frequency and its first two harmonics are related
by quadratic phase coupling, something that the power spectrum can give us no

information about.
Finally, both sets of magnets are replaced, to obtain a system with a symmetric nonlinearity,

the power spectrum of which is shown in figure 6.12. However, because of the strength of

the magnets, and the fact they were not perfectly aligned, not all the vibration was in the
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vertical plane. For this experiment the sampling frequency was increased to 200 Hz and the
signal passed through an anti-alias filter with cut off frequency 90 Hz. This is to account

for the fact that the dominant modes have increased in frequency.

The bicoherence (figures 6.13 and 6.14) shows a single peak at (35,35) Hz, indicating the
presence of some quadratic phase coupling, although it is half the magnitude of the peak for
the skewed system (maximum value =0.3). The tricoherence (figures 6.15 and 6.16)
shows a large peak of magnitude 0.4 indicating a very strong cubic interaction. Although
the nonlinearity is dominantly symmetric as seen by the peak in the trispectrum, there still
appears to be significant skewed activity, which could be caused by the extra vibration that

is not in the vertical plane.

In this experiment, auto higher order spectral methods have been shown to provide useful
and interesting information. They can be used to detect whether there is nonlinearity
present in a system, what the dominant nature of the nonlinearity is, and can also give
information about phase coupling between peaks in the spectrum. In the next section the
same experiment will be used to see how much more information about the system can be
obtained by assuming knowledge of the input, and using cross higher order spectral

techniques.
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Figure 6.3: Normalised power spectrum of the linear beam
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Figure 6.5: Mesh plot of the bicoherence of the linear beam
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Figure 6.7: Normalised power spectrum of the skewed magnetic beam

o ' ]
& R

5 10 15 20 25 30 35 40 45 50

Figure 6.9: Mesh plot of the bicoherence of the skewed magnetic beam
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Figure 6.10: Tricoherence of the skewed magnetic beam
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Figure 6.11: Tricoherence of the skewed magnetic beam (end view)
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Figure 6.14: Mesh plot of the bicoherence of the symmetric magnetic beam
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Figure 6.15: Tricoherence of the symmetric magnetic beam
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Figure 6.16: Tricoherence of the symmetric magnetic beam (end view)
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6.2.2 Cross higher order spectral methods

Using the measurements of the system input and output it is possible to calculate a measure
of the ordinary coherence function for the beam in each state. The ordinary coherence
function takes a value of unity if there is a linear relationship between the input and output.
For the beam with all the magnets removed, the coherence function is shown in figure 6.17.
It is close to unity everywhere, indicating a linear transmission path between the input and
output. The coherence does dip in the regions where there are resonances in the system but
this feature is well understood, being due to the resolution of the estimate, and not
necessarily to nonlinearity. The linear transfer function, figure 6.19, and the impulse
response, figure 6.18, are estimated, and from these, the output of this linear approximation
can be calculated. The power spectrum of the linear component is shown in figure 6.20 by
the solid line, together with the actual output spectrum of the beam, shown by the dotted
line. It can be seen to account for nearly all the power in the signal, apart from a small
amount around the first resonance, thus verifying that with no magnets the beam can be

adequately modelled by a linear system.

The coherence is reduced, figure 6.21, for the beam with the lower set of magnets in place,
indicating that there is no longer a purely linear relationship between input and output.
Using the cubic Volterra model, figure 6.22, it is now hoped to shed more light on what

type of nonlinearities are acting in the system and what frequencies they affect most.

Beam Y(f)

XM X €

Y.,
Hao e
(g | g YelD
HGLL) —=®

Figure 6.22: Frequency domain cubic Volterra model of beam
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With the lower set of magnets in place, the iterative procedure, described in chapter four
for calculating the Volterra kernels of a cubic system is carried out. Initially it is assumed
that the cubic term is zero. The figures in this chapter, are all shown for the second
iteration of the process, although for a system such as this, with no significant cubic term,

the differences between the results for the first and second iteration are negligible.

The linear transfer function, H,(f), figure 6.24, and impulse response, h(t), figure 6.23, for
the system are calculated. The linear component of the signal is then obtained from the
convolution of the impulse response with the original input data. Having removed the
linear component, the cross bispectrum and hence the second order frequency domain
Volterra kernel, Hy(f1,f), are calculated, figure 6.25. From this, the quadratic component
of the signal is estimated by performing a two dimensional convolution of the input signal
with the quadratic time domain kernel, figure 6.26. Finally, the trispectrum and hence the
third order frequency domain Volterra kernel, Hs(f),f,,f5), figure 6.27, is calculated and
from this the cubic component of the signal is formed by a three dimensional convolution of

the cubic time domain kernel, figure 6.28, with the input signal.

Figure 6.29 shows the power spectrum of the linear (thick solid line), quadratic (dashed
line) and cubic (thin solid line) components together with the output power spectrum
(dotted line) of the system. The linear component can be seen to account for the main
resonance at § Hz but the peaks at 16 Hz and 23 Hz are accounted for by the quadratic
kernel, thus confirming the results obtained from the auto bispectrum. Since the restoring
forces are skewed then one anticipates that the quadratic kernel will be more important than
the cubic one. The cubic terms caused by symmetric nonlinearities are seen to produce no
significant power at any frequency. Figure 6.30 shows the output of the Volterra model
(solid line) and the output of the beam (dotted line). The model accounts for the majority
of the output power from the beam apart from at low frequencies which is possibly due to

the poor signal to noise ratio.

The final experiment involved replacing both the upper and lower magnets, thus producing

a system with a symmetric nonlinear restoring force. The coherence function of this system
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can be seen in figure 6.31. The same procedure as above was followed and the linear
(figure 6.33), quadratic (figure 6.35), and cubic (figure 6.37) frequency domain Volterra
kernels estimated from higher order spectra. Multi-dimensional inverse Fourier transforms
were then used to create the time domain kernels (figures 6.32, 6.34, and 6.36 respectively)
which were then convolved with the original input data to give the linear, quadratic, and
cubic components of the signal. These are shown in figure 6.38. It can be seen that the
cubic component (thin solid line) is now more significant than the quadratic component
(dashed line) thus indicating that the dynamics are now dominated by symme<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>