
University of Southampton 

Faculty of Engineering and Applied Science 

Institute of Sound and Vibration Research 

HIGHER ORDER SPECTRA AND THEIR APPLICATION TO NONLINEAR 

MECHANICAL SYSTEMS 

William Beningfield CoUis 

A thesis submitted for the degree of 

Doctor of Philosophy 

February 1996 



University of Southanpton 

Abstract 

Faculty of Engineering and Applied Science 
Institute of Sound and Vibration Research 

Doctor of Philosophy 

Higher Order Spectra and their Application to Nonlinear Mechanical Systems 

by William Beningfield CoUis 

This thesis is concerned with the development of useful engineering techniques to detect 
and analyse nonlinearities in mechanical systems. The methods developed are based on the 
concepts of higher order spectra, in particular the bispectrum and trispectrum, and the 
Volterra series. The study of higher order statistics has been dominated by work on the 
bispectrum. The bispectrum can be viewed as a decomposition of the third moment 
(skewness) of a signal over frequency and as such is blind to symmetric nonlinearities. To 
study such phenomena one has to go a stage further and resort to the trispectrum, or 
decomposition of kurtosis over frequency. Techniques are presented here that enable one 
to estimate and display both auto and cross, bispectra and trispectra. 

Initially auto higher order spectra are studied in detail with particular attention being paid 
to normalisation methods. Two traditional methods based on the bicoherence and 
skewness function are studied and these are expanded to their fourth order equivalents, the 
tricoherence and kurtosis functions. Under certain conditions, notably narrow band signals, 
the above normalisation methods are shown to fail and so a new technique based on pre 
whitening the signal in the time domain is developed. Examples of these functions are 
given both for memoryless and dynamic systems. The Volterra series is presented and 
discussed in some detail. Techniques for calculating a system's Volterra kernels from cross 
higher order spectra are derived. New methods are presented for the estimation of higher 
order Volterra kernels which are shown to produce better results than traditional 
approaches. These are then applied to some simple analytic systems which include the 
Dulfing oscillator. Some discussion is then given to determine under what circumstances 
these Volterra models are suitable for the modelling of a particular nonlinear system. 

Finally, the application of these techniques to data from some actual mechanical systems is 
performed. The mechanical systems concerned consist of two beams. The first is a simply 
supported beam, driven by an electromagnetic shaker, with pairs of repelling magnets 
placed at its tip. By varying the position of the magnets the nature and strength of the 
nonlinearity can be altered. The second is also a simply supported beam attached to a 
shaker. By loosening the attaching bolt to the shaker a rattling nonlinearity can be 
introduced into the system. Useful results, that are of practical interest to an engineer, were 
obtained from both the auto higher order spectral techniques and Volterra analysis. 
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Chapter 1 

Introduction 

1.1 General introduction 

A fundamental approach to the classification of a random signal is to characterise the 

process by its joint probability density functions. The full set of probability density 

functions gives a complete description of any stochastic process. From the joint probability 

density function it is possible to form the joint moments of a process and from these the 

joint cumulants, further details of which can be found in Appendix A. Higher order spectra 

are defined as multi-dimensional Fourier transforms of the joint cumulant functions. This 

thesis is concerned with the use of these higher order spectra to study nonlinear systems. 

A Gaussian process can be completely described by its second order joint probability 

density function, i.e. all joint cumulants of order higher than two vanish for a Gaussian 

process. This leads to one of the most useful properties of higher order spectra, that is, if 

the process is Gaussian all the spectra of order higher than two are equal to zero. If a 

Gaussian signal is operated on by a nonlinear system the resulting signal will be non-

Gaussian. By studying this non-Gausian signal it is possible to obtain information about 

any non linearity in the system. 

One of the most fundamental and useful tools in signal processing has been the estimation 

of the power spectrum. In power spectral estimation, the signal under consideration is 

processed in such a way that the distribution of power among its frequency components is 

estimated. The information present in the power spectrum is exactly that which is present 

in the autocorrelation function and is all that is needed for the complete description of a 

Gaussian signal. However, there are many practical situations where the power spectrum 



cannot provide all the information and it is necessary to look beyond the power spectrum to 

extract information regarding deviations from Gaussianity. 

Higher order spectra, which are defined in terms of the joint cumulants of a process, do 

contain such information. Particular cases of higher order spectra are the third order 

spectrum, also known as the bispectrum, which is defined as the Fourier transform of the 

third order joint cumulant, and the fourth order spectrum, or trispectrum, which is defined 

in terms of the Fourier transform of the fourth order joint cumulant. The power spectrum, 

bispectrum and trispectrum are just particular examples of the generalised concept of 

polyspectra which were introduced by Tukey [78] and Brillinger [9, 10, 11] in the early 

1960's. 

The vast majority of papers published concerning higher order statistics involve the 

bispectrum. The bispectrum is a decomposition of the third order moment or skewness of 

a process and as such is only able to analyse non-symmetric nonlinearities. In practical 

applications, many systems will contain symmetric nonlinear terms or, more likely, a 

mixture of skewed and symmetric nonlinearities. It is therefore necessary to consider not 

only the bispectrum but also the trispectrum, and to use the two as complementary tools in 

the analysis of a system. The aim of this work is to extend much of the work done on the 

bispectrum to the trispectrum and then use higher order spectra to analyse practical, 

nonlinear systems to produce information useful to an engineer. 

In many applications, only a single signal is available, such as from an accelerometer 

mounted on a machine in a condition monitoring situation. In these cases auto higher order 

spectra must be used. The bispectra and trispectra can then give useful insight into the 

nonlinearities occurring in the system which are often related to the onset of faults in the 

machine. However, there are other applications where both an input signal and output 

signal are available, such as when a mechanical structure is being excited, and in these cases 

cross higher order spectra can be used to estimate system properties. 

The main techniques used in this work are first, the bicoherence and tricoherence which are 

normalised versions of the auto bispectrum and auto trispectrum respectively. These are 



used to detect quadratic and cubic phase coupling, that is, the interactions that can occur 

when a signal is passed through a system containing quadratic or cubic nonlinearities. The 

second technique involves cross higher order spectra and is based on the Volterra series. 

From cross higher order spectra, higher order transfer functions and impulse response 

functions can be calculated. By summing these and forming a partial Volterra series the 

response of a nonlinear system to a range of inputs can be approximated. 

Being of lower order, the bispectrum is easier to compute than the trispectrum, which has 

many problems associated with its estimation. A fondanKntal difficulty when dealing with 

the trispectrum is simply in displaying it. The bispectrum is a function of two frequency 

variables, and so can easily be plotted using a mesh type plot with the bispectral magnitude 

rising out of the f,, fi plane. The trispectrum is a function of three frequency variables and 

so requires four dimensional space to display it. Previous work on the trispectrum has 

always examined slices or planes through the fi, fs frequency space which have been very 

difficult to interpret. It was therefore felt important that a method for displaying the 

trispectrum in its entirety should be developed in order to be able to easily distinguish the 

different frequency interactions. 

Although higher order spectra have been actively researched for the last quarter of a 

century, very few useful practical applications have been found and the vast majority of the 

work published has concerned theoretical aspects. The aim of this work was not only to 

obtain a sound understanding of the theory of the bispectrum and trispectrum but to apply 

them to practical situations and obtain information that could be of use to an engineer 

studying the particular system. 

To this end, two practical systems have been chosen to demonstrate higher order spectra. 

They are both mechanical structures and consist of beams driven by electromagnetic 

shakers onto which nonlinear forces can be exerted. One has a magnetic nonlinear 

restoring force, produced by pairs of repelling magnets placed at its tip. This is used 

because of the ease in which both the nature and magnitude of the nonlinearity can be 

controlled. The other has a rattling type nonlinearity which can be introduced into the 



system so as to be akin to a fault occurring in a machine. Both auto and cross higher order 

spectral techniques are used to try to detect and model the nonlinearities. 

1.2 Historical perepective and scope of the thesis 

A brief summary of the contents of each of the chapters is now given, together with 

references to any similar work published by other authors, emphasising the contributions 

made here. 

In chapter two, the concept of higher order spectra is introduced, first from an intuitive 

frequency domain point of view, and then more mathematically in the time domain. A 

number of authors, Nikias et al [58, 59, 60], Mendel [52], Priestley [65] and Subba Rao 

[73] have written review articles or books on higher order spectra and their approach is 

typically a mathematical one. The aim here was to get a 'feeling' for the frequency 

interactions that can occur in higher order spectra before using the more mathematical 

approach of cumulant and moment functions and this is done with simple examples using 

sine waves. Many papers have been published on the bispectrum, particularly on its 

theoretical aspects but few authors have studied the trispectrum and no one, to the author's 

knowledge, has displayed the trispectrum in its entirety. Dalle Molle [25, 26, 27] is the 

most widely quoted author for the trispectrum but his work is very theoretical; other 

authors include, Chandran et al [12, 13, 14], Kravtchenko-Berejnoi et al [47], Lutes and 

Chen [49] and Walden and Williams [79]. Some of the practical issues concerning the 

calculation of higher order spectra are then examined, such as the methods of estimation, 

windowing, symmetry, and aliasing. There are two approaches to higher order spectra 

estimation: parametric and non parametric. Parametric methods are based on assuming the 

signal is the output of a model and estimating the parameters of the model, e.g. AR, MA. 

These methods are not studied in this work but more information can be found in [66, 59]. 

The two main non parametric methods of estimation of higher order spectra are the direct 

and indirect methods. These are well understood and detailed in many places, such as 

Nikias and Petropulu [59]. The symmetries of the bispectrum have now been well 

documented by, for example, Subba Rao [73]. However the symmetries of the trispectrum 



are more complicated. DaUe Molle [27] and Williams [80] have both produced papers 

suggesting principal domains for the trispectmm and recently this has been extended to a 

general procedure for the derivation of the principal domain of an n* order spectra by 

Chandran and Elgar [15]. Components of higher order spectra outside the principal 

domain have been the basis of a well established test for aliasing by Hinich [39]. Recent 

work by Parsons and Williams [61], Le Roux et al [48], and Stogioglou and McLaughlin 

[72] have used this to show that a continuous stationary signal sampled at its Nyquist rate 

cannot be modelled by a discrete process based on passing independent, identically 

distributed (HD) noise through a linear filter. The novel contributions in this chapter are in 

extending much of the work on the bispectrum to the trispectrum, and especially in the 

display of the trispectrum. 

The variance of estimates of the bispectrum and trispectrum are dependent on the second 

order statistics of the signal and so it is common practice to normalise the bispectrum and 

trispectrum to remove these effects. Possible methods are discussed in chapter three. 

These include the well known skewness function, first introduced by Hinich [40] and the 

bicoherence function of Kim and Powers [45]. These are extended to their fourth order 

equivalents, the kurtosis function and the tricoherence. Examples are given of the 

normalisation functions particularly concentrating on the bicoherence and tricoherence and 

drawing on the work of Fackrell et al [29, 33, 34] who have studied in detail, some of the 

problems associated with the practical use of the bicoherence. Only a small amount of 

literature has been published on the tricoherence, notably on its statistics by Chandran et al 

[12] and so effort is made here to concentrate on the tricoherence, using examples 

wherever possible. These traditional methods of normalisation sometimes faU when narrow 

band signals or signals with sharp resonant peaks are considered. Williams [80] has 

previously worked on the higher order spectra of band limited signals. A new method is 

proposed, based on a pre-whitening technique which has similarities with work recently 

presented on phase only spectra (POS) by Lyons et al [50] and is demonstrated with the 

use of an amplitude modulated (AM) signal. A brief mention is given to periodic signals, 

extending Fackrell's [32] work on periodic signals in the bispectrum, or the 'bed of nails', 

to the fourth order. Finally, a detailed example of a cubic nonlinear dynamic system, the 

Duffing oscillator, is given. Such a system has previously been modelled using the 



trispectrum by Lutes and Chen [49]. This chapter, as in chapter two, mainly deals with 

extending concepts from the bispectrum to the trispectrum. The main novel contribution 

concerns the work with narrow band signals and the development of the pre-whitening 

technique as a normalisation method for the trispectrum 

Chapter four expands the work on auto higher order spectra to study cross higher order 

spectra and the Volterra series. A number of methods are proposed, all of which use higher 

order spectra, and are based on determining the first three Volterra kernels or parts of 

them. Wiener first noticed how the Volterra series could analyse nonlinear systems using 

higher order spectra as detailed in Schetzen [70]. Tick [76] then demonstrated how, in the 

frequency domain, the linear and quadratic Volterra kernels could be directly estimated in 

terms of the input and output characteristics of a system when the input was assumed to be 

a zero mean, Gaussian signal. This was extended to the cubic case by Hong et al [41] but 

based on a time domain approach. Before studying the full Volterra series model a similar 

series based on linear filters acting on a polynomial input is examined. This is shown to be 

akin to just examining the main diagonal of the Volterra kernels. Ralston and Zoubir [67] 

have recently used this type of series, which they have termed a Hammerstein series, to 

study engine knock. This type of model may also be viewed as a multiple input, single 

output system. Much work has been done on the concepts of residual spectra and partial 

and multiple coherence for this type of system notably by Bendat et al [3], Clarkson and 

Hammond [18] and Fitzpatrick et al [35] who have compared this technique to higher 

order spectra for modelling such applications as squeeze film dynamics [28]. It is shown 

how similar results can be obtained using both higher order spectra and residual spectra and 

these two techniques are compared and contrasted. The full Volterra model, based on the 

assumption of a Gaussian input, is then described in detail both for the quadratic and cubic 

cases. Many authors have used the simple quadratic Volterra model to analyse skewed 

type nonlinearities, notably Bondon [5], Zoubir [83], Hinich [37], and Perrochaud [62], but 

little use has been made of the cubic model. As with auto higher order spectra, problems 

occur in the estimation process due to the variance of the cross bispectrum and trispectrum 

containing second order effects. An alternative technique based on successively subtracting 

off lower order components is proposed, which is shown to minimise the variance of the 

quadratic kernel. Examples are given for both the quadratic and cubic cases. In this work a 



block estimation approach is used, however, a possible alternative philosophy, as detailed in 

[51], is based on adaptive methods where the estimate is updated for every sample. The 

main original contribution in this chapter is the frequency domain technique used for 

estimating the Volterra kernels. 

In chapter five, before applying the Volterra series to experimental results, a number of 

possible pitfalls are examined. These include the convergence, causality, and optimality of 

the Volterra models developed in the previous chapter, together with the difficulties that 

can occur when the input cannot be assumed to be Gaussian. Boyd and Chua [7] have 

given detailed conditions for the convergence of the Volterra series, as has Schetzen [70] 

who likened it to a Taylor series with memory. Wright [81] has clarified their conditions 

and demonstrated them with examples. In this chapter some more simple examples of 

converging and diverging Volterra series are given. During the estimation of the Volterra 

kernels in chapter four, the kernels of a related series, the Wiener series [1,2, 70], are 

estimated. The relationship between Wiener and Volterra kernels is detailed in Schetzen 

[70] but is also described here as it is closely linked with the way the Volterra kernels are 

estimated. Throughout this work, it is always required that the input to the system is 

Gaussian. In many cases this assumption may be invalid, and so a method, based on the 

work of Powers et al [16,43,44, 55, 63, 77] is presented for the quadratic Volterra model 

that removes this restriction. Different techniques are described, together with their 

advantages and disadvantages, and these are categorised together with their respective 

authors. The frequency domain technique developed in the previous chapter to estimate 

the Volterra kernels is compared with the optimum least squares time domain technique. It 

is shown that the new technique, although not optimum, produces much better results than 

traditional methods. Finally the topic of the causality of the estimated Volterra kernels is 

briefly mentioned. 

In the final chapter, both auto and cross higher order spectra are applied to some real 

mechanical systems. Over the past two decades higher order statistics have been applied to 

may different types of physical phenomena. Applications have been found in fields as 

diverse as speech processing [31], chaos [75], underwater acoustics [68], medical 

engineering [71], share prices [39] and condition monitoring. Condition monitoring of 



mechanical systems has been one of the largest areas of application of higher order 

statistics. Broad band higher order moments, such as kurtosis, are well established as a 

condition monitoring tool, as described by Braun [8], so it is likely that higher order 

statistics will also be able to offer useful information. Much of the recent work has 

concerned the condition monitoring of rotating machines, notably by Fackrell et al [30], 

Nandi et al [56, 57], Howard [42], Sato et al [69], and Zhou et al [82] and has tended to 

concentrate on the bispectrum In this work, both the auto bispectrum and trispectrum are 

used to detect the nonlinearities in two systems, first for a beam excited by an 

electromagnetic shaker with pairs of repelling magnets at its tip producing a nonlinear 

restoring force [21], and second for a beam loosely attached to an electromagnetic shaker 

so as to produce a rattling type nonlinearity. The auto bispectrum of this last system has 

previously been studied by Fackrell et al [30]. Cross higher order spectra are then used to 

identify the systems by calculating the cubic Volterra model of the two beams. The novel 

contribution in this chapter is in applying the above methods to produce useful results from 

real systems. 



Chapter 2 

Auto higher order spectra: 

the bispectrum and trispectrum 

2.1 Introduction 

This chapter begins by examining the probability density function and moments of a signal. 

The concepts of higher order spectra (HOS) are then introduced, initially from a frequency 

domain point of view, for both stochastic and deterministic processes. However, the 

majority of the work in this thesis assumes that the signal is zero mean, stationary, and 

random. The importance of these assumptions are discussed in detail for the second order 

case in Appendix B. 

To help introduce higher order spectra, a simple example using deterministic signals based 

on sine waves is given. This example helps to show some of the frequency interactions that 

can occur in higher order spectra and the methods used to display them. Next, a more 

mathematical time domain approach is used, to present higher order statistics, deriving 

them from joint cumulant and moment functions. 

Some of the practical issues concerning the calculation of higher order spectra are 

examined, including the different methods of estimation, either in the frequency or time 

domain, and the effects of windowing. The symmetrical properties of the bispectrum and 

trispectrum are discussed and their principal domains defined. Finally, the implications of 

components of higher order spectra appearing in different regions of the bispectrum and 

trispectrum are considered with particular attention to aliasing. 



2.2 Probability density functions and moments 

If x(t) is a stationary, random, signal, the r* moment of x(t), denoted is defined as, 

2.1 

where E denotes the expectation operator. Note that |J,i = E[x(t)] = p,*, the mean of x(t). 

Higher order moments [53] are usually calculated as central moments about the mean. 

That is: 

|U.r= E[(x(t)-|ix)n 2.2 

The second central moment is the variance of a signal. 

This gives a measure of the spread of a signal about the mean. The probability density 

function of a signal with a Gaussian or normal distribution (see figure 2.1) is completely 

described by its mean and variance. Higher order moments are often used to describe the 

properties of more complex signals. 

The third moment about the mean, 1I3, is sometimes called skewness and is a measure of 

asymmetry of the probability density function. For symmetric distributions |i3=0. A 

probability density function similar to that shown by the solid line in figure 2.2 is said to be 

skewed to the left and has a negative skewness, whilst one similar to that shown by the 

dotted line is said to be skewed to the right and has a positive skewness. The ratio [is/Ox̂ , 

which is dimensionless, is called the coefficient of skewness and gives a measure of the 

degree to which a distribution is skewed. 
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Figure 2.1: Gaussian pdf, )i3=0, 
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Figure 2.2: Negative skewed pdf, < 0, (solid line) 

and positive skewed pdf, m > 0, (dotted line) 

Figure 2.3: Leptokurtic pdf, < 3, (solid line) 
and platykurtic pdf, > 3, (dotted line) 

11 



The fourth moment about the mean, 1X4, is used as a measure of kurtosis which is related to 

the degree of flatness of a distribution near its centre. The ratio \kAlc5̂  is known as the 

coefficient of kurtosis. A Gaussian signal has a kurtosis of three. Values of kurtosis 

greater than three indicate that a probability density function is more peaky (as shown by 

the solid line in figure 2.3) around its centre than the density function of a normal 

distribution and are known as leptokurtic [6]. Kurtosis values of less than three indicate 

that the probability density function is flat around its centre (dashed line, figure 2.3) as 

compared with a normal distribution and are known as platykurtic. 

Within signal processing, higher order moments can give a basic description of the 

properties of a signal. In particular the fourth order moment, or kurtosis of a signal, has 

successfully been used in the field of condition monitoring [8], for example, to detect 

bearing wear in a rotating machine. 

2.3 An introduction to auto higher order spectra - the frequency domain 

The power spectrum, bispectrum and trispectrum are just particular examples of the 

generalised concept of polyspectra [78]. Just as the power spectrum is able to give a 

decomposition of power over frequency, it is possible to use higher order spectra to obtain 

a decomposition of skewness and kurtosis over frequency and so obtain more information 

about the higher order statistics of a signal. The second order polyspectra is the 

conventional power spectrum and so this section begins with a brief discussion of the 

power spectrum. 

2.3.1 The power spectrum 

The power spectrum is the main tool of signal analysis and a huge body of literature has 

been published concerning its use and properties, for example [64]. It is the most 

commonly used of the polyspectra for, being of the lowest order, it is the simplest to 

calculate and easiest to interpret. The power spectrum is concerned with the second order 
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statistics of a signal and will now be defined both in the context of deterministic and 

stochastic processes. 

The energy in a signal is: 

x ( t ) = J x ( t ) d t 2.4 

Substituting x(t) = JX(f)e^^''"df into equation 2.4 gives. 

xXt) = j j j X ( f 2 . 5 

Integrating equation 2.5 with respect to t and using the shifting property of the 5 function 

results in, 

xXt) = n X ( f , ) X ( f j 6 ( f , + f J d f , d f , 

= jX(fJX(-fJdf , 2.6 

From this the energy spectrum can be defined as, 

E ^ ( f ) = X(f)X(-f ) 2.7 

For a stationary stochastic process it is possible to use a similar method, which is detailed in 

Appendix B, to obtain the power spectrum which is defined as: 

S ^ ( f „ f J = E[X(fJX(-fJ] 2.8 

This simplified notation, which absorbs the time interval into the definition, is explained in 

detail in Appendix B. For a stationary process it can be shown [64] that Sxx(fi,W is equal 
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to zero except along fi = -f2. This results in the following, more usual, definition for the 

power spectrum of a stationary stochastic process: 

S ^ ( f ) = E[X(f)X\f ) ] 2.9 

where * denotes the complex conjugate. Note that this is a partial description of the power 

spectrum; the full definition can be seen in Appendix B. The power spectrum treats each 

frequency component as independent from all others and measures the power of the signal 

at each frequency. It is a real quantity and contains no phase information and as such is said 

to be phase blind. 

2.3.2 The auto bispectrum 

Rather than decomposing the energy of a signal to produce the energy spectrum, it is 

possible to conduct similar analysis on a cubed signal, 

x (t) = Jx (t)dt 2.10 

Substituting x(t) = JX(f)e^^''"df into equation 2.10 gives. 

x'(t) = j j j jX(f,)X(fJX(fJe'''"''"''"'''dtdf,df,df, 

= n j x ( f j x ( f j x ( f j 6 ( f , + f , +fjdf ,df ,df , 

= n X ( f J X ( f J X ( - f , - f J d f , d f , 2.11 

From this, the bispectrum of a deterministic signal can be defined as, 

Exxx(fi,f2) = X(fJX(fJX(-f , - f j 2.12 
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For a stochastic process, using the same method as for the power spectrum, the bispectrum 

is defined as: 

S;xxx(f,.f,,f,) ==]5p((f,))[(f,))(((,)] 2.13 

If the process is stationary, it has been shown [80] that Sxxx(fi,f2,f3) is equal to zero except 

on the plane ^=-fr f2 . Therefore, the bispectrum of a stationary stochastic process is 

defined as: 

:Sxxx(f^,f,) = i;[)[(f,))[(f,))( *(f, Hh f;)] 2.1/1 

In the same way that the power spectrum is concerned with the power of a signal, or 

second order moment, the bispectrum is concerned with the skewness, or third order 

moment. The bispectrum is a function of two frequency variables, fi and f2, and while the 

power spectrum considers each frequency component independently, the bispectrum 

analyses the frequency interactions between the frequency components f;, fi, and fi+fi- It is 

a complex quantity containing both real and imaginary parts. However, throughout this 

work only the magnitude of the bispectrum is considered. 

Two simple examples, using sine waves, are now given demonstrating some of the possible 

frequency interactions that can occur in the bispectrum. Sine waves are used as an example 

because they produce easily understood results despite the fact that they do not conform to 

the assumption of being stationary random signals. 

Consider a complex sine wave of frequency pi. A complex sine wave is used in order to 

suppress unwanted cross terms between the positive and negative frequency components. 

xa) = e^*" 2.15 

This has a Fourier transform. 
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)[(()== 8(f-pi), 2.1() 

where 6 represents the Dirac delta function. This is shown diagrammatically in figure 2.4. 

If X(l) is substituted from equation 2.16 into equation 2.12, the bispectrum is equal to: 

Exxx . f z ) = - Pi ) 8 ( 4 - P i )5 ( f i + f , - P i ) 2.17 

This contains the triple product 6(frpi)%-pi)6(fi+f2-pi). There will only be a non-zero 

point in the bispectrum when all three terms in the above product are non-zero. Plotting 

the three terms in the (fi,]^) plane leads to the three lines, fi = pi, f2 = pi and fi+f2= pi, as 

shown in figure 2.5. For pi 9^0 there is no point of intersection of all three lines and hence 

the bispectrum of a complex sine wave is zero. 

Next consider a signal consisting of two complex sine waves of frequency pi and p2. The 

Fourier transform of this signal is, 

X(f) = 8(f-pi)+6(f-p2) 2.18 

This is shown in figure 2.6. The deterministic bispectrum is now equal to. 

Exxx(fi,f2) = {5(f, - P i ) + 8 ( f i -pJ}{6 ( f , - p j + 5(f; - p j ) 

{5(fl H-f; - P i ) + S ( f i + f ; - P;)} 
2 . 1 9 

This can be shown to consist of eight terms, each of which is a triple product. If these are 

plotted in the (fufz) plane they appear as the six possible lines fi = pi, f2= pi, fi = p2, (2= p2, 

fi + f2 = pi, and fi + f2 = P2 as shown in figure 2.7. There will be an intersection of the three 

terms if P2 = 2pi. The intersection will then occur at (pi,pi) as shown by the dot in figure 

2.7. 
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|X(f)| 

f 

Figure 2.4: Fourier transform of sine wave 

f| -p, 

f. 
M = p , 

Figure 2.5: Bispectrum of sine wave 

|X(f)| 

—> f 
P, P: 

Figure 2.6: Fourier transform of two sine waves (p^ = 2p,) 

= Pi = Pz 

fa = P2 

f2 = Pi 

f,+<2-P, fj+f^ = P: 

Figure 2.7: Bispectrum of two sine waves (p, = 2p,) 
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An example of the bispectrum of two sine waves of frequencies 50 Hz and 100 Hz is 

shown in figure 2.8, where it can be clearly seen that there is a peak at (50,50) Hz. As the 

bispectrum is a function of two frequency variables it is easy to plot it as a three 

dimensional function with the bispectral content rising out of the (f^fa) plane. Here a 

'mesh' type plot is used to show the magnitude of the bispectrum as a three dimensional 

surface. This is predominantly the method used to display bispectra in this work, although 

simple 'contour' maps occasionally allow one to interpret the fine detail with more 

accuracy. 

2.3.3 The auto trispectrum 

In the previous section, the bispectrum was defined as a decomposition of the average of a 

signal cubed and as such is concerned with the skewness of a signal. In many of the 

problems that are considered in this work it will be necessary to consider both skewed and 

symmetric signals. The trispectrum can be defined as a decomposition of the average of a 

signal to the fourth power and as such is concerned with the kurtosis of a signal. Using a 

similar analysis as for the bispectrum it is possible to define the trispectrum for a 

deterministic process as, 

E xxxx (fi, fz, 4 ) = X(f. )X(f, )X(f, )X(-f, - f, - f J 2.20 

and the trispectrum for a stochastic process as', 

Txxxx , ^ 2 ^ 3 ) = E[X(f, )X(f, )X(f, )X * (f, + f, + f , ) ] 2.21 

As with the bispectrum a simple example using complex sine waves will now be given in 

order to show the frequency interactions that can occur in the trispectrum and the methods 

used in this work to display it. It is easy to show that the trispectrum of a single complex 

sine wave is zero. This can be done as for the bispectrum but instead of considering lines in 

' Note, the change in terminology from Sxxxx(fi.f2:f3) to TxxxxCfi.fiifa) is to denote the difference between 
the cumulant trispectrum and moment trispectrum. This is explained in section 2.4.3. 
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the (fi/i) plane it is necessary to consider planes in the (£1/2/3) space. If the trispectrum of 

two complex sine waves of frequency pi and pz are calculated, by considering the 

interaction of planes in the (f^fz/s) space, it can be shown that there will be a peak in the 

trispectrum at (pi,pi,pi) if P2 = 3pi. Note there will also be a peak if pi = -pz. 

An example of the trispectrum of two sine waves of frequency 50 Hz and 150 Hz is shown 

in figure 2.9. A major problem when calculating the trispectrum is that of deciding how to 

display it. Whereas, the bispectrum is a function of two frequency variables and can easily 

be plotted using three dimensional space, the trispectrum is a function of three frequency 

variables and so requires four dimensional space to display it. All previous work on the 

trispectrum has used various slices through the (fhfz.fa) space to display the important 

features. However, it was felt in this work that it was important to display it in its entirety 

in order to get a 'feel' for the various frequency interactions. 

The method chosen to do this uses the Application Visualisation System (AVS) software 

on a Silicon Graphics machine. For each (fi,f2,f3) in the trispectral space, a sphere is drawn. 

The size and colour of the sphere represents the magnitude at that point: large red spheres 

represent points of large magnitude, reducing across the colour spectrum to small blue 

spheres which represent points of smallest magnitude. Very small values are not drawn, 

otherwise the space would be covered by small, blue spheres representing very 

small magnitude points. This method results in a cube of spheres of varying sizes and 

colours representing the frequency interactions. It is possible to rotate the image on the 

screen and so precisely determine the points of interaction. When the image is printed on to 

paper, a four dimensional image has to be reduced to two dimensions and so inevitably 

some clarity is lost. However, it still possible, at a glance, to understand where the 

dominant points of interest are. More details of the software used, together with some 

demonstrations of simple signals, are given in Appendix C. 

For the case of the trispectrum of two complex sine waves it is clear that there is a point of 

interaction at (50,50,50) Hz, of magnitude 1, denoted by the red spheres, together with 

some points of magnitude 0.5 at other frequency triplets. It will be shown later in this 

chapter that these points are caused by the symmetries of the trispectrum and are reflections 

of the (50,50,50) Hz interaction. 
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Figure 2.8; The bispectrum of two sine waves of frequency 50Hz and lOOHz 
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Figure 2.9: The trispectrum of two sine waves of frequency 50Hz and 150Hz 
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2.4 An introduction to auto higher order spectra - the time domain 

The previous section gave an intuitive introduction to higher order spectra starting from the 

frequency domain and illustrating some of the frequency interactions that can create 

structure in bispectra and trispectra. In this section a more rigorous, mathematical 

approach is discussed which arises from considering joint moment and cumulant functions 

in the time domain. 

2.4.1 Moment ftmctions 

In section 2.1 the broad band moments of a signal were considered. Here this is extended 

to look at joint moment functions which describe the moments of a signal at different lags 

or delays. These moment functions can be used to describe the higher order properties of a 

signal. The n'̂  order moment function of a stationary random signal, x(t) is defined as, 

Rx x , Tz,..., ) = E[x(t)x(t + )x(t + T J. . . x(t + )] 2.22 

The second order moment function of a stationary random signal (see Appendix B), Rxx(T), 

is the well known autocorrelation function, 

R X X ( t ) = E[x(t)x(t + i:)] 2.23 

The third and fourth order moment functions, termed the autobicorrelation and 

autotricorrelation, for stationary signals, are defined as, 

Rxxx ('̂ 1, 'C J = E[x(t)x(t + )x(t + T; )] 2.24 

Rxxxx ('C,, 'Tz' 1:3 ) = E[x(t)x(t + T; )x(t 4- T, )x(t + T J ] 2.25 

For a zero mean Gaussian process all odd order functions are identically zero. The zero lag 

component of the second moment or autocorrelation function, Rxx(O) , is the signal variance 

which can also be found by integrating the power spectrum over all frequencies. In a 
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similar way, the zero lag component of the third moment function, Rxxx(0,0), is 1I3 and the 

zero lag component of the fourth moment function, Rxxxx(0,O,O), is 1I4. These can also be 

found by integrating the bispectrum across all frequency pairs and integrating the 

trispectrum across all frequency triplets, respectively. 

2.4.2 Cumulant functions 

The order cumulant function of a stationary random signal x(t) is defined (for N = 3,4) 

as. 

X̂,..X (''̂ 1''̂ 2 ' • • '̂ N ) X̂...X ('''1''^2 ' • • •''̂ N ) X̂...X ('̂ 1 ''^2 ' • • •''̂ N ) 2.26 

where ^ the order moment function of x(t), and 

R° X is the order moment function of an equivalent Gaussian signal that 

has the same mean value and autocorrelation function of x(t). For a real stationary random 

process with zero mean, the following relationships exist between the cumulant functions 

and moment functions: 

Cx,(T) = Rxx(T) 2.27 

Cxxx(i::.T:J = Rxxx(':i,i:2) 2.28 

The second and third order cumulant functions are identical to the second and third order 

moment functions. However, to generate the fourth order cumulant, Cxxxx(T 1^2,^3), it is 

necessary to use both the second and fourth order moments. 

X̂XXX ('̂ 1 ' '̂ 2 '"̂ 3 ) "" ̂ XXXX ('^1''^2''^3) ^xx(^l)' ^xx(^3 ~ ^2) 

-Rxx(Tj.Rxx(T3-i ; , ) 2.29 
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A more detailed description of the properties of moment and cumulant functions and their 

associated generating functions is given in Appendix A. 

2.4.3 The relationship between cumulants and higher order spectra 

It is well known that Fourier transforming the autocorrelation function results in the power 

spectrum, 

s,« (f) = fRxx 2.30 

Similar results can be obtained for the bispectrum, Sxxx(fi,f2), and cumulant trispectrum, 

Sxxxx(fi,f2,f3) by taking the double Fourier transform of the second order cumulant 

function, and the triple Fourier transform of the third order cumulant function respectively. 

= nCxxx(T„T,)e- j - ' "e -™dT,dT, 
231 

T ^ ( f , , f „ f J = 2.33 

The difference between the cumulant and moment trispectrum is that the moment 

trispectrum is non-zero along three planes even for a Gaussian process. The relationship 

between cumulants and higher order spectra is shown in figure 2.10. 

If x(t) is Gaussian then x ('Cj, ,..., ) is zero for N > 2. This result leads directly to 

one of the most useful properties of higher order spectra. That is, all higher order spectra 

of order greater than two vanish when x(t) is a Gaussian process. Hence the bispectrum 

and cumulant trispectrum can be regarded as a measure of the departure of the process 
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from Gaussianity and many tests, for example [26, 40, 74], have been developed to this 

effect. 

Second order 
cumulant function 

Fourth order 
cumulant fiinction 

CxxXxĈI >"̂25̂3 ) 

Fourier transform 

Triple Fourier 
Transform 

Signal 
x(t) 

Power spectrum 
Sxx(f) 

Third order 
cumulant function 

Cxxx(̂ i;̂ 2) 

Double Fourier 
Transform 

Figure 2.10: The relationship between cumulants and higher order spectra. 

As, for a Gaussian process, the second and third order moment functions are identical to 

the second and third order cumulant functions, no distinction can be drawn between the 

moment power spectrum and bispectrum and the cumulant power spectrum and 

bispectrum. However, the fourth order cumulant function is equal to the fourth order 

moment function minus three terms which consist of second order components. 

Throughout this work higher order spectra generated from cumulant ftinctions are studied, 

but estimating a trispectrum using equation 2.21, which is the most commonly used form of 

estimation, results in a moment trispectrum. It is therefore necessary to separately calculate 

the three second order terms and subtract them from the moment trispectrum, to form the 

true cumulant trispectrum 
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2.5 Estimation of higher order spectra 

The techniques used to estimate higher order spectra are similar to those used in power 

spectrum estimation. Essentially there are two commonly used approaches: 

The indirect method:- Estimating the cumulant function and then taking a Fourier 

transform 

The direct method:- Calculating raw spectra from segments of the signal and then 

averaging across segments in the frequency domain. 

Herein, the direct method is predominantly used, although higher order spectra calculated 

with the indirect method are sometimes estimated to verify results and so an explanation of 

both methods is included for completeness. 

2.5.1 The indirect method 

To calculate the n^ order cumulant function the time series is split into k blocks, each of 

length M points. For each block Rx...x(ti,...,%) is calculated, using equation 2.34. 

1 M 
Rj, x(m^,...,m^) = %x(n)x(n + mJ...x(n + ) 2.34 

m + 1 n=0 

For the fourth order moment (the trispectrum) and above, C x . . . x ( ' C i i s calculated from 

Rx...x(i^i ,...,'Cn) by subtracting off lower order terms, as detailed previously. The k blocks 

are averaged to give the n^ order cumulant function. This method of averaging small 

blocks is used, as opposed to calculating one large block, as it requires much less 

computation. However as less averaging is used in the estimation process, it wiU give 

results with a larger variance. Finally, the higher order spectrum is calculated by taking the 

n"̂  order Fourier transform of the cumulant function. As is the case of conventional power 

spectmm estimation, better estimates can sometimes be obtained using suitable windowing 

functions. These will be discussed in section 2.5.3. 
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2.5.2 The direct method 

The direct method is based on the Welch periodogram technique. The data is divided into a 

series of M overlapping blocks. For each block, the FFT is calculated and the product of 

the spectral coefficients formed to produce the 'raw' higher order spectra. These 'raw' 

higher order spectra are then averaged to lower the variance of the periodogram estimates. 

In order to ensure statistical confidence it is necessary to take care when choosing the block 

length compared to the data length, N. A larger block size will have a less coarse grid, 

resulting in a reduced bias, but a higher variance [73]. Dalle MoUe and Hinich in [25] state 

that the block length should be the (n-l)"" root of the sample size when working with the 

order spectrum. In the case of the trispectrum when working with a FFT size of 64 the 

data length should be 64^ or 262144 samples long. This in itself can cause problems as the 

data should be stationary over the complete length. 

The bispectral estimate obtained from this method can be shown [59] to have a variance of: 

var(S,„ (f„f , )) = i [ l + 6, (f, - f,)] S „ (f , )S„ (f, ) S „ (f, + f , ) 2.35 

where 5k(0) = 1 and 8k(f) = 0 for non-zero f It can be seen that the variance of the estimate 

of the bispectmm depends not only on the number of segments but also on the triple 

product of power spectral terms, Sxx(fi)Sxx(f2)Sxx(fi+f2)- Hence, the variance of the 

bispectral estimate is heavily dependent on the power spectrum. This fact will continually 

cause problems throughout this work particularly in the estimation and use of auto higher 

order spectra in chapter three, where a number of normalisation methods are used to 

alleviate the problem, and in the estimation of Volterra kernels in chapter four, where some 

novel methods are used to try and reduce the variance of the higher order spectral 

estimates. 
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2.5.3 The use of linear windowing 

In power spectral estimation the need for data windows is well understood. As stated in 

the previous section, the length of the window crucially affects the variance and bias of the 

estimate. In general, for a fixed length of data, increasing the length of window will 

increase the variance but decrease the bias, whilst decreasing the length of window will 

decrease the variance but increase the bias. Further discussion on the variance and bias of 

higher order spectral estimates is given in the next chapter. The remainder of the section 

gives a brief insight into the effect of the shape of the window, particularly where periodic 

signals are concerned. 

When estimating power spectra, for periodic signals, if there is not an integer number of 

signal periods in each FFT frame, sidelobes can become a problem. Similar problems can 

occur in bispectral estimation and windowing effects can be very pronounced. FackreU 

[32] gives a detailed study of the use of differently shaped windows when calculating the 

higher order spectra of periodic signals and concludes that a rectangular window gives 

minimal spreading of the main lobe, but causes high sidelobes which show up very strongly 

in the bispectrum. However, using a Hamming window gives much better results by 

reducing the side lobes. 

This work is predominantly concerned with the higher order spectra of random signals. If 

the signal is broad band and has a spectrum which is slowly varying the effects of window 

shape will be greatly reduced and the results produced when using a rectangular window 

are minimally different from those generated when a Hamming window is used. 

Therefore, the majority of simulation and experimental work here uses a rectangular 

window. 

2.5.4 Regions of symmetry and the principal domain 

Just as the continuous power spectrum has symmetrical properties so do the continuous 

bispectrum and trispectrum. It is only necessary to evaluate the bispectrum and trispectrum 
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in the principal domain or non-redundant area, as all other regions can be found by 

symmetrical transformations of this area. In addition to the symmetrical properties of the 

continuous bispectrum and trispectrum, the discrete versions, like the discrete power 

spectrum, are periodic. In this section, the symmetries and principal domains of the 

bispectram and trispectrum will be defined. 

Using the symmetrical properties of the cumulant function, as detailed in Appendix A, it is 

easy to show that the continuous bispectrum will have the following symmetries: 

|SxXx(fl,f2)|=|Sxxx(f2.fl)| 

= |SxxX ("fl " 4 )| = ÎXXX - 2̂ ' ̂ 2 )| 

= l̂ XXX (fl ~fl "^2)1= ÎXXX (̂ 2 - 4 )| 

236 

These are shown in figure 2.11. A star indicates where the symmetries involve a 

conjugation. 

Pnncipal 
domain 

Figure 2.11: Symmetries of the continuous bispectrum 

Thus a knowledge of the bispectrum in the triangular region fi,f^>0, and f2< f, is enough 

for a complete description of the continuous bispectrum. There are in fact twelve regions 

of symmetry in the bispectrum. As the discrete Fourier transform is periodic, the discrete 

bispectrum wiU also be periodic which means that there will be added symmetries for the 

discrete bispectrum and it can be shown [59, 73] that it is only necessary to estimate the 
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discrete bispectrum in the region 0 < fa < fi, and fi+f2< fs/2. This region is known as the 

principal domain and can be further subdivided into two regions. These are shown by the 

two triangles in figure 2.12, the inner triangle and the outer triangle. The importance of 

components of the bispectrum appearing in each of these regions will be discussed in the 

next section. 

The discrete trispectrum has 96 regions of symn^try and has been extensively discussed 

[15, 25, 26, 80]. The principal domain is shown in figure 2.13. Like the bispectrum, it is 

divided into two regions: an inner volume (shown in dark grey); and an outer volume 

(shown in light grey). Referring to figure 2.13, both the inner and outer volume can be 

subdivided into two further regions: above and below the fa = 0 plane. Above the plane, all 

the frequency indices are positive and so the sum of three frequencies is equal and opposite 

to the fourth. Below the plane, only two of the first three frequencies are positive and so 

this region contains interactions where the sum of two frequencies is equal and opposite to 

the sum of the other two. Whereas the bispectrum of a narrow band signal is always zero, 

these extra frequency interactions allow the trispectrum of a narrow band signal to be non-

zero. This will be extensively discussed in the next chapter. 

It is of interest to note that if a slice through the principal domain of the trispectrum is taken 

along the fa = 0 plane, the principal domain of the bispectrum will be seen. It should 

however be noted that it is neither possible to obtain the bispectrum by taking a slice of the 

trispectrum nor the power spectrum by taking a slice of the bispectrum. 

2.5.5 Plotting Conventions 

In the bispectrum, the whole of the principal domain lies in the first quadrant and so in 

general when the bispectrum is plotted the whole of the first quadrant is shown. Other 

authors often display only the principal domain, setting the rest of the bispectral space to 

zero. However, it is often more pleasing to the eye, and the bispectral features are more 

easily interpreted, if the whole of the first quadrant is drawn, including aU symmetries, and 

so predominantly this method is used. 
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The trispectrum splits its principal domain between the first and eighth octant. When there 

is no extra information in the eighth octant only the first octant is displayed. However, 

occasionally, as with narrow band signals, all the information in the trispectrum is in the 

eighth octant and in these cases the entire trispectrum is displayed. Again, except in special 

cases, all the symmetries are shown, not just the principal domain. 

On all of the plots the position of the axes makes it clear exactly which part of the 

bispectrum or trispectrum is being displayed. If the axes intersect in the bottom left hand 

comer then only the first octant has been plotted whereas if they intersect in the centre of 

the trispectmm, all eight octants are plotted. 

2.5.6 Sampling Considerations and Aliasing 

It has been shown by Hinich [85] that the discrete bispectrum over the outer triangle is zero 

if the signal satisfies the following three conditions: 1) It is a random signal, 2) It is a 

stationary signal, 3) It has been sampled without aliasing. A statistical test for aliasing using 

this information was presented by Hinich [39]. The test proposed by Hinich for the 

bispectrum can be directly extended to the trispectmm, that is, significant outer volume 

content in the discrete trispectmm of a 4th order stationary random process identifies the 

presence of aliasing in the signal. Although aliasing is rarely a problem in electronic signals 

since it is standard practice to low pass filter signals to ensure fo < i j l (where fo is the 

highest fi-equency present in the signal), there are certain circumstances where aliasing can 

cause problems. 

First, some types of data are only available in discrete form and so analogue filtering is not 

possible. Such an example used by Hinich [39], as an application of his test, is in stock 

market data. Hinich showed that stock market results sanpled at a rate of 1 sample a day 

were aliased as they had statistically significant outer triangle content. However, it is 

possible that the stock market data failed the test, not because it was aliased, but because 
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Figure 2.13: Principal domain of trispectrum 
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the data was non-stationary. An important criterion for the test is that the signal is 

stationary up to 3rd order for the bispectrum or stationary to 4th order for the trispectrum. 

Another important concept involving the bispectral content of the outer triangle was first 

noted by Parsons and Williams [61] and has subsequently been developed in more detail by 

Stogioglou and McLaughlin [72]. That is, if a continuous stationary signal is sampled at its 

Nyquist rate then the higher order properties of the sampled signal cannot be modelled by 

passing discrete, independently and identically distributed (ED) noise through a linear filter. 

Hinich has shown that the bispectrum of a discrete signal, which results from sanpling a 

continuous, stationary signal at its Nyquist rate, with no aliasing, has zero bispectral content 

in the outer triangle. However, the bispectrum of a discrete stationary signal generated by 

passing HD noise through a linear filter wUl, in general, have a non-zero outer triangle. 

These statements are obviously contradictory, indicating the failure of the model to 

correctly represent a stationary signal sampled at its Nyquist rate. 

Close inspection of Hinich's test shows that it is not the discrete signal but the parent signal 

from which it is sampled that must be stationary. Obviously if the parent signal is stationary 

then the discrete signal will also be stationary as it is a subset of its parent signal. However 

the converse is not true and the above contradiction implies that the parent signal of the 

discrete linear model is non-stationaiy at third order. Thus the location of components in 

the discrete bispectrum is also able to give some indication as to the stationarity of the 

continuous signal from which the discrete signal was sampled. 

In conventional spectra, the presence or absence of aliasing is usually confirmed by making 

sure that the power spectrum is very low at the folding frequency fJ2. A simple example of 

detecting 'digital aliasing' with the trispectrum is now given. If a discrete, broad band, 

stationary, Gaussian white process is passed through a cubic type norJinearity the resulting 

signal will be broad band leptokurtic. However the cubing process will have produced 

components up to 3fo and so the signal may be aliased. The trispectrum detects leptokurtic 

components across all frequencies as can be seen in figure 2.14 by the interactions at all 

frequency triplets. However close inspection of figure 2.14 will reveal that, rather than the 
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trispectrum being uniform across all frequencies as expected, some small almost periodic 

structure has been introduced by the aliasing. 

If a similar Gaussian process is, before being cubed, first passed through a low pass filter 

with cut-off frequency iJ6, the resulting signal should still be broad band leptokurtic but 

with no components above fJ2. The trispectrum should have zero outer volume content 

and this is shown in figure 2.15, where it can be clearly seen that frequency interactions 

only occur in the inner volume. 

From this example it is important to note that aliasing can occur not only when sampling 

continuous signals but also when working with synthetic discrete signals, and extreme care 

must be taken not to allow any frequency components of the signal to exceed f / l as this 

can lead to spurious results. 

2.6 Conclusions 

This chapter has aimed to present some of the underlying theory behind higher order 

spectra. Initially broad band moments were discussed and their relationship with the 

probability density function explained. The bispectrum and trispectrum were introduced for 

both deterministic and stochastic processes. The possible frequency interactions which can 

occur in higher order spectra were demonstrated using a simple example based on sine 

waves. It was then shown, in a more traditional, mathematical, way, how higher order 

spectra could be derived from joint moment and cumulant fimctions. 

The practicalities concerned with the estimation of the bispectrum and trispectrum, both in 

the frequency domain and time domain, were detailed together with the associated problem 

of windowing. Finally, the symmetries of both the bispectrum and trispectrum were 

described and the importance of structure occurring in the different regions of the discrete 

bispectrum and trispectrum stated. In the next chapter this work will be built upon to see 

how the bispectrum and trispectrum can be used to detect nonlinearities, and the many 

pitfalls that can occur in the process. 
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Figure 2.14: The trispectrum of a leptokurtic signal with aliasing 
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Figure 2.15: The trispectrum of a leptokurtic signal with no aliasing 
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Chapter 3 

Normalisation techniques and examples of auto higher 

order spectra 

3.1 Introduction - the need for normalisation 

It was seen in equation 2.35 that bispectral estimates have a variance that is dependent on 

the power spectral properties of a signal. In this chapter, the different methods used to 

normalise the bispectrum and trispectrum, to remove these effects, are considered. 

Two well developed methods which are based on the skewness fiinction and the 

bicoherence are presented. The skewness function is used primarily to make decisions, 

based on statistical tests, about the symmetry, aliasing and linearity of a signal, whereas the 

bicoherence is used to detect the presence of quadratic phase coupling in a signal. These 

two third order functions are extended to their fourth order equivalents, the kurtosis 

function and tricoherence function, respectively. A series of examples is given showing the 

uses of the bicoherence and tricoherence function and some of the computational problems 

associated with them. 

In section 3.6, narrow band signals are considered and it is shown that the bispectrum of a 

narrow band signal will always equal zero, but the trispectrum of such a signal is not 

necessarily zero. Traditional methods of normalisation of the trispectrum are often found 

to fail when applied to narrow band signals due to bias errors and so a new method is 

proposed, based on a pre-whitening technique. Two further examples which utilise this 

technique are given. 
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3.2 The skewness and kurtosis functions 

Equation 2.35 for the variance of the auto bispectrum contains the following product of 

power spectral terms: Sxx(fi)Sxx(f2)Sxx(fi+f2)- Unless these terms are removed, estimates 

of the bispectrum may be contaminated by power spectral effects. One technique for 

removing these terms utilises the skewness function which is defined as: 

Is ^ p 

s ' ( f , , f : ) == 1 3 1 
Sxx (f, )Sx,(f,)Slxx(f, 4-f,) 

This is the most commonly used normalisation method for statistical tests since it has the 

most useful and well understood statistical properties. Hinich [40], for example, use this 

function with some scaling modifications in their tests. It is simple to extend this to the 4th 

order kurtosis function for normalisation of the trispectrum: 

Is ('f f f 
kVf f f ) = Pxxxxv^l'-^2'̂ 3 |̂ 2 2 

'' ' S I x x O F J S x x ( f , ) S x x ( f , H f̂, + f , ) 

It is noted that some authors [59] call the square root of equation 3.1 the 3rd order 

coherency function or bicoherency. The major difference of the skewness and kurtosis 

functions as compared to the bicoherence and tricoherence respectively, which are 

considered next, is that they have no upper bound. 

It should be noted that the bicoherence and bicoherency are normalised auto bispectra and 

as such should not be confused with the ordinary coherence function. In chapter four, 

cross higher order spectra are introduced together with the concepts of quadratic and cubic 

coherence which can be thought of as extensions of the ordinary coherence function. 
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3.3 The bicoherence ftmction 

Another commonly used method of normalisation for the bispectrum is the bicoherence. 

The bicoherence is defined as, 

E[|X(f,)X(f,)| ]E[|X(f, +f,)] ] 

This has been shown by Kim and Powers [45] to have a variance, assuming 

E[X(f,)X(f,)X(f, + f j ] = S ^ ( f , ) S ^ ( f + f j , that satisGes, 

var(b:(f,,f:)) = 3.4 
^ ' M 

where M is defined as the number of segments used in the estimation. Compared with the 

variance of the bispectrum, equation 2.35, there are no terms due to power spectral effects 

and so the bicoherence function should be solely dependent on the third order properties of 

the signal. 

A useful feature of the bicoherence function is that it is bounded between 0 and 1. This can 

simply be shown using the Cauchy inequality [32], by making the substitution 

Z(fi,f2) = X(fi)X(f2) into equation 3.3 to give. 

Equation 3.5 is then of the form of the Cauchy inequality, 

|E[Z(f , , fJX' ( f ,+f j ] | '<E[ |Z( f , , f j | ' ]E[ |X( f ,+f j | ' ] 3.6 

and so the bicoherence takes values satisfying. 
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0 < b X f , , f , ) < l 3.7 

The bicoherence is most often used in the detection of Quadratic Phase Coupling (QPC) 

which will be described in section 3.3.2 and is the predominantly used method of 

normalisation throughout this work. 

3.3.1 An example of the bicoherence function: the mixed signal 

The effectiveness of the bicoherence is easily shown by considering the signal, w(t). This 

was created, as in figure 3.1, by taking a white Gaussian signal, x(t), and filtering it through 

a low pass filter with a cut-off frequency of 0.1 to produce y(t). The frequencies are 

normalised to set fs, the sampling frequency, equal to one. The signal y(t) was then squared 

to produce a new signal with a low frequency skewed component. Finally, this signal was 

added to z(t) which consists of x(t) filtered through a high pass filter with a cut-on 

frequency of 0.25. The resulting signal, w(t), now consists of a low frequency skewed 

component and a high frequency Gaussian component. This signal is dubbed a mixed 

signal and is used throughout the next chapters to demonstrate the properties of both auto 

and cross higher order spectra. When the mixed signal is used to demonstrate the 

properties of the trispectrum, y(t) will be cubed rather than squared so as to produce a low 

frequency leptokurtic component. 

x(t) w(t) 

z(t) 

Low pass 
filter 

High pass 
filter 

Figure 3.1; The skewed mixed signal 
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The power spectrum of the mixed signal, figure 3.2, shows the two distinct regions but of 

course is not able to differentiate the skewed component from the Gaussian component. If 

the raw bispectrum of the mixed signal, (see figure 3.3), is estimated, the skewed 

component of the signal is visible between fi, fa < 0.2. However the magnitude of the 

bispectrum is equally large at high frequencies. This is because the variance of the raw 

bispectrum contains terms due to the power spectral effects of the mixed signal and so both 

the skewed low pass component and the Gaussian high pass component are detected. 

Unless the raw bispectrum is averaged over vastly longer data lengths to reduce its 

variance, which is impractical, it is unable to differentiate between the two components. 

However, the bicoherence, figure 3.4, normalises the raw bispectrum by removing the 

power spectral effects and can be seen to correctly detect just the low frequency skewed 

component. 

Unless otherwise stated, all estimates of the bispectrum use a data length of 4096 sample 

points and a window size of 64 and hence are averaged over 64 segments. Estimates of the 

trispectrum use a data length of 262144 and the same window size and are averaged over 

4096 segments. 

0 ^ ^ Oj ^ M M 
Normalised frequency 

Figure 3.2: Power spectrum of skewed mixed signal 
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Figure 3.3; Bispectrum of mixed signal Figure 3.4 Bicoherence of mixed signal 

3.3.2 Quadratic Phase Coupling 

In a Gaussian signal all of the phases of different frequency components are uniformly 

distributed between 0 and 2n. When a signal has quadratic phase coupling, the phases of 

components at frequencies f and 2f are correlated. Phase coupling occurs due to nonlinear 

interactions between components in a signal and it is sometimes of interest to know 

whether peaks at harmonically related positions in the power spectrum are caused by this 

interaction or not. The power spectrum is phase blind, and so is not able to detect the 

presence of phase coupling. However, the magnitude of the bicoherence gives an 

indication of the correlation between the phases of the frequency components at f and fi. 

Quadratic phase coupling will occur in a signal with a quadratic nonlinear component. 

Consider a signal, x(t), which consists of a white, Gaussian signal passed through a narrow 

band filter, bandlimited between the frequencies 0.1 to 0.2, and then passed through a 

quadratic, x ,̂ type nonlinearity. A second filter can be generated that has the same 

characteristics as the spectrum of x(t). The same Gaussian signal is passed through this 

filter to produce a signal, y(t) that has a similar spectrum as x(t) but contains no nonlinear 

components. 

As can be seen in figures 3.5 and 3.6, although the power spectra of the two signals are 

almost identical, x(t) contains quadratic phase coupled components caused by the squaring 
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operation and so the bicoherence, figure 3.7, has peaks over the frequency range 0.1 to 

0.2. However, y(t), contains Gaussian noise with no phase coupling and so the 

bicoherence, figure 3.8, is zero. 

0 ^ ou AM M ^ Oj 0̂  M MS as 
NonnaKwd(r#(p#n̂  

Figure 3.5; Power spectrum of signal 

with quadratic phase coupling 

0 ^ M ^ OJ 0̂  M MS as 
Normalised frequency 

Figure 3.6: Power spectrum of signal 

with no quadratic phase coupling 

Oj 0 

Figure 3.7; Bicoherence of signal 

with quadratic phase coupling 

0̂  0 

Figure 3.8; Bicoherence of signal 

with no quadratic phase coupling 

3.4 The tricoherence function 

The bicoherence can be extended to the fourth order case to form the tricoherence which is 

defined as; 
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E[|X(f,)X(f,)X(f,)| ]E[|X(f, +f , + f , ) f ] 

Using a similar proof as for the bispectrum it can be shown that the tricoherence function 

can only take values from 0 to 1. The effectiveness of the tricoherence as a normalisation 

process can be demonstrated by considering the mixed signal described in section 3.3.1, 

except rather than considering a low frequency skewed component, a low frequency 

leptokurtic component is used. The frequency decomposition of the signal will again have 

two distinct regions: a low frequency leptokurtic part and a high frequency Gaussian part. 

The fourth order spectrum should only contain components due to the leptokurtic signal 

but the trispectrum, figure 3.9, contains components right up to the folding frequency, fJ2. 

The tricoherence, figure 3.10, picks out only the components due to the low frequency part 

of the signal. This confirms that a normalisation process is necessary to separate second 

order effects from fourth order just as it is necessary to separate third order effects from 

second order in the bispectrum. 

3.4.3 Cubic Phase Coupling 

To demonstrate cubic phase coupling in the tricoherence, the example used in the 

bispectrum is extended to consider a narrow band signal which has been cubed rather than 

squared, thus creating a signal with cubically phase coupled terms. The resulting 

tricoherence contains cubic nonlinear terms and shows a peak over the frequency range 0.1 

to 0.2 (figure 3.11). The tricoherence of the filtered Gaussian signal (figure 3.12) contains 

no such structure. The maximum value of the tricoherence of the filtered Gaussian signal is 

2x10"^ compared with a maximum value of 0.3 for the peak in the tricoherence of the signal 

containing cubic phase coupling. 
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Figure 3.9: Trispectrum of a leptokurtic mixed signal 
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Figure 3.10: Tricoherence of a leptokurtic mixed signal 
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Figure 3.11: Tricoherence of a signal with cubic phase coupling 
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Figure 3.12: Tricoherence of a signal with no cubic phase coupling 
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3.5 Problems associated with the estimation of the bicoherence and tricoherence 

If the bicoherence of a low pass skewed signal is calculated, the low pass filter should 

remove all energy above the cut-off frequency and the bicoherence should only contain 

peaks due to the low frequency skewed component. However prominent vertical and 

horizontal lines are visible in the bicoherence right up to the folding frequency. Fackrell 

[29] showed that these were due to small values occurring in the denominator of the 

bicoherence which cause the estimate to blow up. They can be removed by adding a small 

constant, e, to the denominator across all frequencies and calculating the bicoherence: 

= 3.9 
E[|X{f,,f.)| ]E[|X(f, +f,)j ] + £ 

Where there is no energy in the signal, this results in a non-zero denominator and a zero 

numerator and so the bicoherence is zero. The disadvantage of using this correction 

technique is that e introduces a small amount of negative bias in the bicoherence estimator. 

A similar effect occurs in the fourth order spectrum where small denominator terms can 

cause spurious structure in the tricoherence. A low pass leptokurtic signal was created by 

passing a Gaussian signal through a low pass filter with a normalised cut-off frequency of 

0.1. The resulting signal was then cubed. The tricoherence of this signal should contain no 

energy above three times the cut-off frequency. However it can be seen in figure 3.13 that 

there is dominant structure right up to f j l . As with the bicoherence this is an effect of the 

normalisation process and can be removed by adding a small constant, e, to the 

denominator across all frequencies as in equation 3.10. When £ = 1x10'̂ ^ the tricoherence 

of the above signal, figure 3.14, correctly detects just the leptokurtic component. 

, _ . , n 3.10 
+ £ E[[X(f,)X(f,)X(f,)|']E[|X(f, + f , + f , ) f ]• 
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Figure 3.13: Tricoherence of a low pass leptokurtic signal with 8 = 0 
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Figure 3.14: Tricoherence of a low pass leptokurtic signal with e -1x10 1-14 
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3.6 Pre-whitening techniques 

The bicoherence and tricoherence approaches are the most common methods used for 

normalising the bispectrum and trispectrum. However, problems can occur, due to bias 

errors, if the tricoherence of a very narrow band signal is estimated. The problem has 

never arisen in the bicoherence as it will be shown that the bicoherence of a signal with a 

bandwidth of less than one octave is zero, whereas the tricoherence of such a narrow band 

process is not necessarily zero. 

It was explained in section 2.5 that the window length has to be chosen carefully so as to 

minimise the variance whilst keeping the bias error small. The largest window length that 

can reasonably be used in the estimation of a trispectrum is 64, owing to the large 

computational requirement. Therefore for systems with very narrow resonant peaks the 

tricoherence may be significantly biased. This is due to the coarseness of the spectral 

estimate and the narrowness of the resonant peak, i.e. it will occur when the width of the 

frequency cell is wider than the resonance. Subba Rao [73] has developed theoretical 

expressions for the bias of the bispectrum and these are crucially dependent on the two 

dimensional curvature of the true bispectrum. Therefore around a sharp peak where there 

is large curvature the bias error will be large. Similar expressions exist for the bias of the 

trispectrum which depend on the three dimensional curvature of the true trispectrum. 

In this section a possible method of overcoming the large bias errors often encountered in 

the trispectrum is discussed. The technique used is to pre-whiten the signal before 

estimating the trispectrum. As this can be done in the time domain, using the fuU data 

length, a much greater frequency resolution can be used than for the estimation of the 

trispectrum. The pre-whitening operation is a linear operation, and it wiU be shown that 

linear operations have no effect on the tricoherence. 

The pre-whitening technique is first demonstrated on a narrow band, amplitude modulated 

(AM) type process. It is shown that conventional normalisation techniques fail to 

differentiate between a Gaussian and a kurtotic signal, but pre-whitening can overcome this. 
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3.6.1 Bispectmm and trispectrum of a bandlimited signal. 

Consider a bandlimited signal that has conponents with an upper frequency of fu and lower 

frequency of ft. From the definition of the continuous bispectrum, 

:Sxxx(fiJ&)=j=%)[CF03((f2)]('(frH&)] 3 .11 

for the bispectrum to have non-zero values the following inequalities must all apply: 

fL< S <fu 3 . 1 2 

f L < f 2 < f u 3.13 

fL< < fu 3 . 1 4 

Adding 3.12 and 3.13 gives, 

2 i l <:(f ,+f2) < 2fu 3 . 1 5 

From 3.14 and 3.15, 

f u > f i+f2 3 . 1 6 

3 . 1 7 

Combining equations 3.16 and 3.17 gives the condition: 

fu:> 2fL 3 . 1 8 

Therefore, the upper frequency must be greater than twice the lower frequency for the 

continuous bispectrum to be non-zero and so the bispectrum of a narrow band process, 

with a bandwidth of less than an octave, is zero. An interesting corollary to this is that the 

probability density ftinction of a stationary narrow band signal must always be symmetric. 
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However, the continuous cumulant trispectrum of a bandlimited signal, 

S ^ ( f „ f „ f , ) = E[X(fJX(fJX(fJX*(f , + f , + f j ] 

-E[|X(f.)f ]E[|X(f,)|']5(f,+f,) 

- E [ | X ( f , f ]E[lX(f,)l"]5(f. + f , ) 

-E[|X(f,)|']E[|X(f,)|']5(f.+f,) 

can have non-zero values throughout its range because of its three frequency interactions. 

For example, consider the case where the frequencies fi, fa, 6 take the following values, 

fi = f t , fz = - f t , and fa = fu. 3.20 

Then, 

fl + f2+f3=fu 3.21 

and equation 3.19 can be written as, 

S«xx (f,. .f ,) = E[X(f, )X{-f, )X(f, )X(-f , ) ] - E[ |X(f j f ]E[|X(f„ f ] 

= E[|X(f, )|'|X(f„ )f ] - E[|X(f, )f ]E[|X(f„ )|' ] 

If there is a correlation between the amplitudes of the frequencies at fu and ft then the 

trispectrum is non-zero, as is the case for many amplitude modulated processes. 

3.6.2 An example of pre-whitening: an amplitude modulated process 

A bandlimited signal that contains third order nonlinearities was created by passing a 

Gaussian signal through a low pass filter with a normalised cut-off frequency of 0.1. The 

resulting signal was multiplied by a sine wave to produce an amplitude modulated signal. 

The power spectrum of this signal is shown in figure 3.15. The apparent power at DC is 
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caused by cross terms between the positive and negative frequency components. A 

Gaussian bandlimited signal with a similar spectrum to the leptokurtic signal was also 

created by passing a Gaussian signal through a filter which had the same shape as the 

spectrum of the amplitude modulated signal. 

As both signals have a bandwidth of less than an octave, they both have zero bispectra. 

However the Gaussian signal should have zero trispectrum, whereas the amplitude 

modulated process should have significant structure in the trispectrum 

Normalised frequency 

Figure 3.15: Power spectrum of leptokurtic, bandlimited, amplitude modulated signal. 

The tricoherence of the two signals is shown in figures 3.16 and 3.17. Both signals have 

significant tricoherence and the same structure, and both are dominated by the peak in the 

spectrum. It is expected that the Gaussian signal should have a zero trispectrum, but it can 

be seen that it still has significant structure (maximum value = 0.08) as compared to the 

leptokurtic signal (maximum value = 0.23) which can cause confusion. The normalisation 

of the trispectrum in the fi-equency domain to form the tricoherence has not been effective, 

as both the estimate of the tricoherence of the nonlinear signal and the tricoherence of the 

linear signal are still dominated by their spectra. Owing to the coarseness of the spectral 

estimates, and the narrowness of the resonant peak, normalisation in the frequency domain 

has failed. For such signals, which contain peaks narrow in comparison to a frequency cell, 

the tricoherence produces a biased estimate. 
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Figure 3.16: Tricoherence of a leptokurtic, narrow band, amplitude modulated process 
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I 0.00 

Figure 3.17: Tricoherence of a Gaussian, narrow band process 
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In order to remove the second order effects, the spectra of the signals were flattened, prior 

to calculation of the trispectrum. A finite impulse response filter was calculated that has the 

same frequency response as the square root of the inverse of the spectrum of the signal. 

The original signal was convolved with this inverse filter to produce a signal with a spectral 

density function of unity. The inverse filter must be linear phase to ensure that (correlated) 

frequency components under go the same delay. The phase characteristic of the fiQter used 

here is shown in figure 3.18a. As convolution is a linear operation it should have no effect 

on the tricoherence. It is easy to show that both the bicoherence and tricoherence are 

unaffected by linear transfer functions, except in the case of the tricoherence along the 

planes fi+fz = 0, fi+fs = 0, = 0. 

Consider the bicoherence function, 

b = --Tr ^ nrTZli 3 23 
IE ]((f,))[(f,) ^sgxxf, f , ) ] 

Now apply a linear transfer function with impulse response, h(t), to the signal, x(t), to 

obtain a new signal, y(t). Convolution in the time domain is equivalent to multiplication in 

the frequency domain. This can be written as, 

T%0=H#)X(0 3JW 

If the bicoherence of the filtered version of the signal is now calculated, the following 

expression is obtained, 

];[H(f,XKff,)]3(f:):x:(f,)]a*(f", + f , )) : (f, i f , ) ] 

15 Ii(f,))[(f, XXCf,) t f , XXCf, H-f,) ] 

As H(f) is time invariant, it is unaffected by the expectation operator and so it can be taken 

outside the expectation operation. The numerator transfer functions will then cancel with 

the denominator transfer functions to leave the original expression for the bicoherence. 
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The flattening or 'pre-whitening' of a spectrum of a signal occurs in the time domain before 

the trispectrum is calculated. This means that it can occur at a much finer fi-equency 

resolution (fit size = 1024) as the whole of the data length (262144 samples for a 

trispectrum with a ffi size of 64) can be used to calculate the filter. The power spectrum of 

the flattened amplitude modulated signal is shown in figure 3.18b, plotted against the 

original signal. 

r-120 

0 A M 01 ^ 5 M 0 # oa ^ M 0 ^ &5 
Normalised Frequency 

Figure 3.18a: Phase response of inverse 

filter 

Nomi#&##d frequency 

Figure 3.18b: Power spectrum of 

anplitude modulated signal and flattened 

amplitude modulated signal 

The trispectrum of the flattened Gaussian signal (figure 3.19) now has no structure and a 

maximum value of 0.003, whereas the flattened nonlinear signal (figure 3.20) has peaks of 

value 0.18 at frequencies corresponding to the position of the nonlinearity in the original 

signal. Therefore it has been shown that in order to reduce the bias of the estimate of the 

trispectrum, for such a narrow band process, whilst still ensuring a low variance, it is 

necessary to pre-whiten the signal in the time domain. 

If the signal has been pre-whitened, the spectral effects have been removed and so there is 

no longer any need to normalise the trispectrum with respect to the power spectrum to 

form the tricoherence. However, it is still possible to calculate the tricoherence of a pre-

whitened signal and there is the added advantage that the tricoherence gives a normalised 

measure from 0 to 1, whereas the pre-whitened trispectrum will not have any upper bound. 
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Figure 3.19: Trispectrum of a pre-whitened, leptokurtic, narrow band, amplitude 
modulated process 
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Figure 3.20: Trispectrum of a pre-whitened, Gaussian, narrow band process 
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3.6.3 The DuflHng oscillator 

A second, more practical, example is given, using the pre-whitening technique to detect 

nonlinearity in a dynamic system, the DufFmg oscillator. A process, x(t), is classed as the 

output of a Duffing oscillator if x(t) satisfies the nonlinear differential equation: 

X + Ẑ cOgX + o) /x + ax^ = f(t) 3.26 

In the following, the input, f(t), is assumed to be a bandlimited, Gaussian white noise signal. 

This equation can be used to model many practical applications, for example [14, 36, 49]. 

Figures 3.21-3.24 show the power spectra obtained by simulating the Duffing equation 

using a fourth order, fixed step, Runge Kutta approximation. The system is lightly damped 

(^=0.1) with a linear undamped natural frequency of 0.025 ad/s. Figure 3.21 shows the 

linear case, where a = 0, and then the degree of nonlinearity is increased; a = 0.0001 

(figure 3.22), a = 0.001 (figure 3.23), and a = 0.01 (figure 3.24). 

As expected in the linear case there is a single resonance. As the nonlinear component is 

increased, a number of effects take place. These are explained in more detail in [36]. 

• A component at three times (% appears. This is as expected as the nonlinearity is 

predominantly cubic. 

• The resonant frequency increases. As a increases, the system becomes more stiff for 

large displacements and so the frequency of the resonance effect will increase. 

• The resonant peak broadens. 

When the nonlinearity is introduced, the broad band kurtosis, p.4, decreases from 3 as 

shown in table 3.1, and the probability density function becomes platykurtic, i.e. the tails on 

the probability density function are reduced and the distribution becomes more uniform. 

55 



0 ^ 5̂ oj ^ M ^ a* aw M 
Normalised frequency 

Figure 3.21; Power spectrum of the 

Duffmg oscillator with a = 0 

1 1 0 ° 

0 ^ &i 0^ M ^ oa ^ M ^ &B 
Normalised frequency 

Figure 3.22; Power spectrum of the 

Duffing oscillator with a = 0.0001 

0 0̂  ^ 5̂ 02 M MS &4 M 
NomWi##dlr#qu#ncY 

Figure 3.23: Power spectrum of the 

Dulfmg oscillator with a = 0.001 

0 0.1 ^5 M 0̂  OJ MS M &5 
Normalised frequency 

Figure 3.24: Power spectrum of the 

Duffing oscillator with a = 0.01 

The power spectrum and kurtosis both give some idea of the nonlinearity in the differential 

equation. However, a possible method for accurately detecting the magnitude and 

frequency of the nonlinear terms, is to look at the higher order spectra of the system. As 

the input, f(t), is symmetric, and the system contains only odd order terms, x(t) will be 

symmetric and so the bispectral density function of x(t) wiU be zero. Therefore, in order to 

analyse the nonlinearities in x(t) it is necessary to study the trispectrum. 
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a [l4 

0 3.03 
0.0001 2.23 
OIOl 
&01 233 

Table 3.1: Values of broadband kurtosis, compared with the magnitude of the nonlinear 

term, a, in the DuflHng oscillator 

For each of the four cases, the data was pre-whitened before the trispectra, figures 3.25 -

3.28, were calculated. For the linear case, (figure 3.25), there is no significant structure in 

the trispectrum as when a = 0, the output is Gaussian and so the trispectrum is zero. As 

the nonlinearity is gradually increased (figures 3.26-3.28), structure begins to appear in the 

trispectrum at ( f r , f r , f r ) , where f r is the resonant frequency, and all the symmetrical 

reflections of this point. The magnitude of this structure is directly related to the size of the 

nonlinear term (table 3.2). Note, the broadband kurtosis is not directly related to the size of 

the nonlinear term. These values were calculated for a trispectrum with an FFT size of 64, 

using a data length of 262144 points. 

Value of a Peak in trispectrum 

0 OIWl 
0.00001 1.269 
0.0001 16J^4 
OIWl 25.581 

Table 3.2; Value of the magnitude of the peak in the trispectrum compared with the 

magnitude of the nonlinear term, a, in the Duffing oscillator 

This example has shown that the pre-whitened trispectrum is able to detect the magnitude 

and frequency of the nonlinear terms in the Duffmg equation and is sensitive to relatively 

small digressions from linearity. 
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0.001 

I 0,000 

Figure 3.25: Trispectrum of the Duffing oscillator with a = 0 

- 4 3 ~ 1.3 

10.0 

Figure 3.26: Trispectrum of the Duffing oscillator with a = 0.0001 
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161 

I 0.0 

Figure 3.27: Trispectrum of the Duffing oscillator with a = 0.001 

,25.6 

10.0 

Figure 3.28: Trispectrum of the Duffing oscillator with a = 0.01 
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3.7 Periodic signals 

Throughout this chapter examples of either wideband or narrow band, random, stochastic 

signals have been studied. These are largely the type of signals that are used in the analysis 

of the experiments in chapter six. However, in the past, higher order spectra have been 

applied to situations where periodic signals are likely to be encountered [30, 56, 57, 69], for 

example in some condition monitoring applications where rotating machines are 

investigated. In this section it will be shown that the higher order spectra of periodic signals 

take particular forms known as the 'bed of nails' for the bispectrum and 'box of balls' for 

the trispectrum. 

Any periodic signal can be reconstructed by convolving an impulse response function, h(t), 

with a train of delta functions, i(t). The Fourier transform of the impulse train, 1(f), is also 

an impulse train. 

1(f) ==-]- i i I. :3.27 
V A, 

where A is the spacing of the impulses. By substituting this into equation 2.10 for the 

deterministic bispectrum it can be seen that the bispectrum of an impulse train is a two 

dimensional impulse train. 

S x x x ( f . . 4 ) = 4 i 3.28 
A "2 V A A 

This is known as the 'bed of nails' [32], and is shown in figure 3.29. Substituting equation 

3.27 into the cumulant trispectrum, results in a three dimensional impulse train, or the 'box 

of balls', figure 3.30. 

= i i i i 3.29 
A n i = - i . n 2 = - " 0 3 m _ o . V A A A 

60 



Using the ideas presented in section 3.6.2 it is possible to show that the bicoherence and 

tricoherence of any periodic signal results in the 'bed of nails' and 'box of balls'. As 

convolution in the time domain is equal to multiplication in the frequency domain, any 

periodic signal can be written as, 

330 

where H(f) is the Fourier transform of h(t). When X(f) is substituted into equation 3.3 for 

the bicoherence, the H(f)'s can all be taken outside the expectation operation (as they are 

time invariant) and cancel and so the bicoherence of any periodic signal is the same as the 

bicoherence of an impulse train. Care must be taken to ensure 8 is included in the 

denominator term to avoid 0/0 occurring in the bed of nails and leading to spurious results. 

In the same way, the tricoherence of a periodic signal can always be shown to be the 'box 

of balls'. 

A major limitation on the use of the bicoherence in the detection of quadratic phase 

coupling has recently been highlighted by FackreU et al [34] which concerns phase 

randomisation. For the bicoherence to reliably detect quadratic phase coupling it assumes 

that the signal component phases are randomised for each segment of the signal. For a 

random signal this is a valid assumption. However, the bicoherence has been applied in the 

detection of quadratic phase coupling in signals where such an assumption does not hold, 

for example, in sine waves. In these cases quadratic phase coupling is an unsuitable 

measure of nonlinearity as it will arise because the signal is deterministic and not necessarily 

be due to a nonlinear system. 

Although none of the experimental work in chapter six includes periodic signals, it is useful 

to be able to recognise the 'bed of nails' or 'box of balls' structure if it appears in a higher 

order spectrum and to understand what type of process could have created it. 
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CQ0.4 

Figure 3.29: The bed of nails 

B 1.0 
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- J 

Figure 3.30: The box of balls 
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3.8 Conclusions 

In this chapter a series of normalisation methods for the bispectrum and trispectrum have 

been presented. Their main uses are shown in table 3.3. 

The normalisation processes were then demonstrated with a number of examples using 

both memoryless and dynamic systems. It was shown how the bicoherence and 

tricoherence could be used to detect quadratic and cubic nonlinearities respectively. If only 

an output measurement is available, using auto higher order spectra in this way can give 

very useful information about the nonlinearities in a signal. However, to fmd out more 

about the 'system', both input and output information is needed. It is then possible, with 

the use of cross higher order spectra to carry out a true system identification, as is discussed 

in the next chapter. 

Method Uses 

Skewness function third order statistical tests 

Kurtosis function fourth order statistical tests 

Bicoherence function quadratic phase coupling detection 

Tricoherence function cubic phase coupling detection 

Pre-whitening technique cubic phase coupling detection in narrow band or highly 

resonant systems 

Table 3.3: Normalisation methods and their uses 
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Chapter 4 

Cross higher order spectra and the Volterra series 

4.1 Introduction 

The previous chapters have considered the higher order spectra of a single signal. This 

could be, for example, the output of a (nonlinear) system In this chapter, both input and 

output measurements are used to estimate cross higher order spectra and so identify the 

nonlinearities in a system A major assumption made throughout this chapter is that the 

input to the system is a Gaussian, random signal. A number of methods are proposed, all of 

which use higher order spectra, and are based on determining the first three Volterra 

kernels or parts of them. The method of residual spectra is also used and shown to give 

equivalent results to higher order spectra under certain conditions. 

Initially, in section 4.2, cross higher order spectra are introduced. This is followed in 

section 4.3 by an explanation of the Volterra series. The Volterra series can be thought of 

as an extension of the linear convolution integral. Rather than calculating the convolution 

of the linear impulse response of a system with its input, it is possible to consider the infinite 

sum of higher order impulse responses convolved with interactions of the input. For 

example, a quadratic Volterra model would consist of the convolution of the linear impulse 

response of the system with its input, plus the two dimensional convolution of the quadratic 

impulse response with a quadratic expansion of the input. These higher order impulse 

response functions are known as Volterra kernels after the mathematician Vito Volterra, 

who first studied this series. By estimating the Volterra kernels of some nonlinear systems 

it is possible to characterise their nonlinear response to any input. 

The Volterra series is an infinite series which in practice must be truncated. In this work 

only the first three terms will be considered. The quadratic terms are included to take 
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account of skewed nonlinearities and the cubic term is included, as it is the first term to take 

account of any symmetric nonlinearities. If the cubic term was not included, the class of 

problem which could be solved would be strictly limited to non-symmetric or skewed type 

nonlinearities. As by truncating the system an approximation is being made, it is important 

to consider what remains of the signal once the linear, quadratic, and cubic components 

have been removed. This will consist of nonlinear terms not accounted for by the model 

and measurement noise. If this remainder is large compared with the linear, quadratic and 

cubic terms then the approximation is likely to be untrustworthy and it may be necessary to 

include more terms in the Volterra series expansion. 

The aim of this work is to try to find separate expressions for: 1) the quadratic components 

of a signal using the quadratic transfer function; 2) the cubic component of a signal using 

the cubic transfer function; 3) the remaining part of the signal which will contain elements 

due to all higher order nonlinearities and noise. The model can be considered as the parallel 

connection of a linear, quadratic and cubic system. 

The initial model of the system, section 4.4, consists of three linear filters acting on 

memoryless nonlinear transformations of the input. Specifically, H2(f) and HsCf) are 

convolved with the input signal, x(t), the input signal squared, and the input signal cubed, 

respectively. This set of inputs is referred to as polynomial inputs. Using higher order 

cross correlation fiinctions, as in section 4.4.1, expressions for Hi(f), HzCf) and H3(f) can be 

found in terms of the cross higher order spectra. 

This model may also be viewed as a multiple input, single output system which, in the past, 

has been modelled using the concepts of residual spectra and partial and multiple coherence 

[3, 4, 18, 28]. It is shown in section 4.4.2 that for the polynomial input used above it is 

possible to obtain expressions for Hi(f), H2(f) and H3(f) whether using higher order cross 

correlation functions and higher order cross spectra or the residual spectra method. These 

two techniques are compared, in section 4.5, as they each have their own estimation 

problems associated with them. 
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Volterra theory is well established in the field of nonlinear system analysis [70] and the 

polynomial input to the linear filters model is shown to be equivalent to simply considering 

the main diagonal of the Volterra kernel. This model is extended to a full Volterra type 

model. Initially, in section 4.6, a quadratic model is assumed, and the Volterra series is 

truncated at the third order and only the first two kernels are calculated in terms of the auto 

spectrum, cross spectrum and cross bispectrum The problems of estimating the linear 

transfer function and in particular the quadratic transfer function are discussed. The linear 

kernel is easily estimated using traditional methods, but the variance of the estimate of the 

second order kernel contains elements due to the signal's spectrum which can corrupt the 

estimation process. In order to make the variance more uniform across all fi-equencies a 

technique is used that removes the linear component from the signal before the quadratic 

transfer function is calculated. For a symmetric input process, the problem of estimating 

the linear and quadratic kernels decouples and so subtracting the linear component wiU not 

bias the quadratic kernel. A simple example of a signal that contains a linear and quadratic 

component is used to demonstrate these problems. Finally, the quadratic Volterra model is 

then extended to a cubic Volterra model (section 4.7). This not only increases the number 

of terms but also increases the complexity of the system as the estimate of the linear kernel 

is affected by the third order kernel. 

4.2 Cross higher order spectra 

In chapters two and three, the concepts of auto higher order spectra were developed. In 

traditional spectral estimation, if both the input and output of a system, such as in figure 

4.1, are available, the cross power spectrum, SxvCf), often contains useful information. This 

can be defined as, 

S^(f) = E[XmY*(f)] 4.1 

This is a partial description of the cross spectrum. A full description is similar to that of the 

power spectrum as in Appendix B. This is not the standard engineering definition of the 
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cross spectrum but is the definition most commonly extended to higher order spectra, e.g. 

[59,701 

x(t) 
System 

y(t) 
System • 

Figure 4.1: A single input single output system 

Equation 4.1 can be extended to higher order spectra such that the cross bispectrum, 

SxxY(fi,f2), and moment cross trispectrum, TxxxyCfi.fz.fs), are defined as, 

= E[X(f,)X(fJY*(f, + f j ] 4.2 

"TxxxYtfi.fz.f,):: E[)[(f, )X(f,):X(f,)Y* (f, + f:-H t,)] 4.3 

AU cross higher order spectra are estimated using the natural extensions to the methods 

described in chapter two, i.e. using the direct method in terms of moments. However, all 

the theory in this chapter is based on cumulant spectra, therefore care must be taken to 

ensure that cumulants rather than moments are used when estimating the cross spectra. As 

with auto cumulants the second and third order cross cumulant functions are the same as 

the cross moment functions and so this causes no confusion. 

CZxyfi:) = IlxY (T) 4.4 

However, the fourth order cross cumulant function is equal to the fourth order moment 

function minus three second order moment functions. 

X̂XXY — X̂XXY ' ̂ 3 ) " {̂ XY (̂ 1 )̂ XY (̂ 3 ~ 2) 

RxY(':2)RxY(':3-'ri)+ 

RxY('r3)RxY('r2-':,)) 
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Taking the three dimensional Fourier transform of equation 4.6 gives the cumulant cross 

trispectrum, 

S%xxY(f„f„f,) = TxxxY(f„f:.f:)-{Sxx(f,)Sxy(f:)6(f,+f,) + 

Sxx(f:)SxY(f,)6(f, + f,)4. 'L? 

Sxx(f,)Sxy(f3)5(f,+fJ} 

To calculate the cumulant cross trispectrum it is necessary to calculate the product of the 

auto spectrum and cross spectrum along the three planes fi+fi = 0, = 0, and f,+f^ = 0 

and subtract this from the moment trispectrum. 

Up to this point conventional definitions of the autocorrelation functions have been used 

(equations 2.23, 2.24 and 2.25). However from now on it is important to realise that the 

following definitions are used for the higher order cross moment functions. It is assumed 

that x(t) and y(t) are zero mean, strictly stationary, random variables. 

Ry, (T) = E[x(t - T)y(t)] 4.8 

E[x(t.Tjx(t-Tjy(t)] 4.9 

RxxxY('':i,':2,'T:3)= E[x(t-T,)x(t-Tjx(t-I:jy(t)] 4.10 

It will be noted that these differ from the more commonly used definitions which are given 

below (equations 4.11, 4.12 and 4.13), and this in the past has caused confusion [59]. 

Notice the x's in equations 4.8, 4.9 and 4.10 represent delays whereas in equations 4,11, 

4.12 and 4.13 they are advances. Some authors [59] prefer to use advances which will lead 

to a conjugate appearing in the final expression for the Volterra kernels. Here, in order to 

simplify the calculations and remove the conjugate, delays are used. This also, in the 

context of system identification, has a more intuitive feel as the current output is related to 

past inputs. 
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R x v ( x ) = E[x(t)y(t + t)] 4.11 

RxxY('::,'':2)= E[x(t)x(t + T,)y(t + Tj] 4.12 

RxxxY(T:,.T2,Tj= E[x(t)x(t + T,)x(t + 'rJy(t + T,)] 4.13 

Equations 4.9 and 4.10 can be thought of as natural progressions of equation 4.8 and 

similarly, equations 4.12 and 4.13 are natural progressions of equation 4.11. Although for 

the second order case, equations 4.8 and 4.11 are equivalent, the same does not hold for 

higher orders, for example, equation 4.9 is not equivalent to equation 4.12. Fourier 

transforming equation 4.8, 4.9, and 4.10 leads to the following expressions for the cross 

spectrum, cross bispectrum, and moment cross trispectrum 

S^(f) = E[X*(f)Y(f)] 4.14 

S ^ / f „ f J = E[X*(f,)X*(fJY(f, + f j ] 4.15 

T^^(f,.f,.f,) = E[X*(f,)X*(fz)X*(f,)Y(f, +f, +f,)] 4.16 

Note, equation 4.14 is a more common definition of the cross spectrum than equation 4.1. 

4.3 The Volterra series 

For a linear system, the relationship between the input x(t), the system's impulse response 

h(t) and the output y(t) is given by the convolution integral, 

y(t)= jh(T)x(t-T)dT 4.17 

Convolution only gives the relationship between the input and the output for a linear 

system. For some nonlinear systems this can be extended to the Volterra series [70] which 
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may be considered as a direct generalisation of the above input/output relationship for a 

linear system. For a linear system, the output is thought of as being the sum of the response 

to each elemental input. The Volterra series extends this to include the responses to pairs 

of elemental inputs, triplets of elemental inputs and so forth. This can be expressed as, 

y(t)= 

+ I jh, (T,,T J X(t - T,)x(t - T, )dT,dT, 

+ j j jh,(T,,T;,T J x(t - T, )x(t - T; )x(t - T, )dT,dT,dT3 4.18 

This is often written in the form [70], 

y(t) = H,[x(t)] + HJx(t)] + ... + H,[x(t)] + ... 4.19 

where, 

H.[x(t)] = j. . .2hXT,,. . . ,Tjx(t-T,).. .x(t-TjdT,.. .d% 4.20 

Hn is called an n'̂  order Volterra operator, and the functions hn(i:i,...,tn) are called the 

Volterra kernels. Identifying these kernels is analogous to identifying the impulse response 

for a linear system, although to fully characterise a system one would need to identify a 

potentially infinite series of kernels. Note that a linear system is just a first order Volterra 

system and hence only has a first order kernel, h,(ti). Fourier transforming the n^ order 

Volterra operator using the n-dimensional Fourier transform gives, 

dT,."dT. 4.21 

which has the inverse transform, 
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hnC'Ci, j2Tt(f,T,+-+f„t„) df,-"df. 422 

One can then show that the relationship between the input and the output in the frequency 

domain for the n"' term is. 

423 

4.4 Linear filters acting on a polynomial input 

Initially, rather than considering a full Volterra series model, a more simple idea is used to 

characterise the system, based on linear filters acting on a polynomial input. Later in the 

chapter, this model wiU be shown to be a subset of the Volterra model. Two different 

methods are presented to solve for the linear, quadratic, and cubic components of the 

system, one using higher order spectra, and the other based on the ideas of residual spectra 

[3,4,18,28] 

Consider a system with three linear filters Hi(f), H2(f) and H3(f), where Hi(f) acts on an 

input signal, x(t), H2(f) acts on the input signal squared, x'(t), and HaCf) acts on the input 

signal cubed, x^(t). This can be viewed as the parallel connection of a linear, quadratic and 

cubic system (figure 4.2). The output of the system, y(t), is due to the sum of these three 

components and a term due to noise and terms not included in the nonlinear model. 

X X 

x ' x ' 

H. 

H, 

H, 

n 

^ y 

Figure 4.2: Cubic model of linear filters acting on a polynomial input 
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Assuming a perfect model, the output y(t) can be formed by the convolution of the impulse 

responses hi(t), h2(t) and hsCt) of the filters with the inputs, x(t), x^(t) and x\t) respectively. 

Hence, 

y(t)= Jh,(T)x(t-T)dx + jh2(T)x^(t -T)dT + jh^(T)x^(t-T)dT 4.24 

Equation 4.24 has been dubbed a Hammerstein series by some authors [67]. 

4.4.1 Higher order spectral method 

To characterise the system it is necessary to find expressions for Hi(f), HiCf), and HaCf) in 

terms of higher order spectra. To do this, higher order cross correlation functions are 

formed between the input and output and then their multiple Fourier transforms taken to 

form higher order moment spectra. This is done separately for the linear, quadratic and 

cubic components. 

Note, SxY(f)/Sxx(l) is often referred to as the estimator Hi(f) which is the optimal linear 

least squares filter relating x(t) and y(t). This is not to be confused with the Hi(f) used here. 

Firstly, y(t) is substituted from equation 4.24 into the cross correlation function, 

RxY(T) = E[x(t-T)y(t)] 4.25 

to give, 

RxY W = I h, (u) E[x(t - T)x(t - u)] du + 

JhjCu) E[x(t-T)x^(t-u)] du + 

J h 3 (u) E[x(t - T ) x d u 
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It is shown in Appendix D and [64, 70, 84] that the expected value of the product of an 

odd number of Gaussian variables is zero and the product of an even number of Gaussian 

variables can be decomposed into the sum of all possible combinations of pairs of the 

products. Specifically the expected value of the product of four Gaussian variables can be 

written as, 

E[X,X,X,XJ = E[X,XJE[X,XJ + E[X,XJE[X,XJ + E[X,XJE[X:X,] 

427 

The second term of equation 4.26 is zero as it contains the product of three Gaussian 

variables and the third term can be expressed as the sum of averages of pairs of variables. 

R X Y = j h, (u) E[x(t - T)x(t - u)] du + 

j h3 (u) {E[x(t - t)x(t - u)]. E[x(t - u)x(t - u)] + 4.28 

E[x(t - t)x(t - u)].E[x(t - u)x(t - u)] + 

E[x(t - T)x(t - u)]. E[x(t - u)x(t - u)]} du 

Expressing this in terms of auto correlation functions gives, 

RxYW= jh,(u)Rx%(T-u)du + 3 o / jh;(u)Rxx(T:-u)du 4.29 

Taking the Fourier transform with respect to T gives, 

S^(f) = H,(f)S^(f) + 3 0 / H,(f)Sxx(0 4.30 

so that. 

§ 2 2 ^ = H,(f) + 3C/H,(0 4.31 
X̂X 
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Note the ratio, SxY(f)/Sxx(f), contains terms due to both H](f) and HsCO, so that if this ratio 

was used as the optimal least squares filter linking x(t) and y(t) then clearly HsCf) will 

influence the result. 

Next, y(t) is substituted from equation 4.24 into the second order cumulant function, 

RxxY ) = E[x(t - T, )x(t - T; )y(t)] 4.32 

to give, 

RxxY(':i,i:2)= jh,(u)E[x(t-i:,)x(t-T2)x(t-u)]du + 

j h2 (u)E[x(t - T, )x(t - T J x - u)] du + 

j h; (u)E[x(t - T, )x(t - T Jx ' ( t - u)] du 

As the expected value of the product of an odd number of Gaussian variables is zero, the 

first and third order terms are zero. This leaves, 

R X X Y (T:,' '̂ 2) = J h2 (u) {E[x(t - T, )x(t - T J] . E[x(t - u)x(t - u)] + 

E[x(t -1 ] )x(t - u)]. E[x(t - T Jx(t - u)] + 4.34 

E[x(t - Tjx(t - u)]. E[x(t - T, )x(t - u)]} du 

which can be written in terms of autocorrelation functions to give, 

RXXY('Ti."^2) = 1 h;(u)R^ (T, - T , ) du + 21 h, (u)Rxx (T, - U)R^ (T, - u) du 4.35 

Taking the double Fourier transform with respect to Ti and X2 gives, 

. f J = (f, )6(f, + f J j h, (u) du + 2S^ (f, )S^ (f, )H, (f, + 4 ) 4.36 
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where SxxY(fi,W is the cross bispectrum The first term contains the delta function 6(fi+f2) 

and so if (fi+j^) ^ 0 then, 

S«Y(f,,f:) = :ZS,x(f,)S,a(f,)fI,(f, +f , ) 4.3'? 

Finally, y(t), is substituted from equation 4.24 into the third order cumulant function, 

RxxxY "Tz. "̂ 3) = E[x(t - T, )x(t - T, )x(t - T, )y(t)] 4.38 

to give, 

RxxxY(i:,,i:z.':3)= jh,(u)E[x(t-T,)x(t-Tjx(t-Tjx(t-u)]dii + 

jh2(u)E[x(t-T,)x(t-Tjx(t-Tjx\ t-u)]du + 

j h, (u) E[x(t - T, )x(t - T; )x(t - T J x \ t - u)] du 

As the expected value of the product of an odd number of Gaussian variables is zero, the 

second term is zero. This leaves, 

RxxxY(T::,':2,T:3)= Jh,(ll)E[x(t-T,)x(t-Tjx(t-T;)x(t-u)]du + 
4.40 

j h, (u) E[x(t - T, )x(t - T; )x(t - T, )x\ t - u)] du 

Expanding the first term of equation 4.40 and rewriting in terms of auto correlation 

functions gives, 

jh,(u) E[x(t - T,)x(t - T;)x(t - T;)x(t - u)] du = jh,(u) {R^x (T, - T;)Rxx(T; - u) + 

R ^ ( T , - T j R ^ ( T , . u ) + 

Rxx(':2-'C3)Rxx('ri-u))du 

4.41 
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The triple Fourier transform of the first part of 4.41 is as follows, 

JJ j jh,(u)Rxx(T3 -u)Rxx(T:, - T j 

Substituting, 8 = T, -T,, dr, = d8 gives 

Substituting, = X3 - u , dt, = dd gives jR^(T))e'' ' di) = Sxx(f3)e" 

= S^(f , )S_(fJ 2h,(u)e'""du 

= S^(f,)S^(fj6(f, + f j jh,(u)e''"'''du 4.42 

Equation 4.42 contains the delta function, 5(fi+f2), and so is equal to zero if (fi+fo) 0. 

Similarly the second and third parts of equation 4.41 are equal to zero if (fi+fs) 0 and 

(f2+f3) ;^0. 

The second term of equation 4.40 contains the product of six Gaussian variables. There are 

fifteen possible ways of arranging three pairs but as three variables are the same there are 

only four different combinations. 

E[X,X,X,X,X,XJ = 3 E[X,X J E[X,XJ E[X,XJ + 

3E[X,XJE[X,XJE[X,XJ+ 

3E[X,XJE[X,XJE[X,XJ + 

6E[X,XJE[X,XJE[X,XJ 

Therefore, the second term in equation 4.40 can be written as, 

J h 3 (u)E[x(t +1:,) x(t +12 )x(t + T 3 )x'(t - u)]du 

Jh,(u){(3c/Rxx(T,-'[2)Rxx('[3-u) + 

3G/Rxx(T,-T3)Rxx('r2-u) + 

3G/Rxx('[3-i:2)Rxx(i:i-u) + 

6R^(T, -u)Rxx(T:2 -u)Rxx(T, -u)} du 

4.44 
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The first three terms are the same integration as equation 4.42 but with hi(u) replaced by 

hsCu) and so contain delta functions which are equal to zero if (fi+fa) ̂  0, (fa+fa) 0, and 

(fi+fa) ^ 0. 

The triple Fourier transform of the last term is: 

jh3(u).Rxx(T, -u)Rxx(T2 -u)Rxx(T3 

= 6S^(f,)S^(fJS^(fJH,(f , +f, + f j 

4.45 

From equations 4.31, 4.37 and 4.45, H20 and HsCl) can now be expressed in terms 

of cross higher order spectra and the input auto spectrum. 

H,(0 = 1̂4.6 
X̂X \ / 

(f)= ^xxY(frf-fi) 4.47 

y _ X̂XXY (f] ' ̂ 2 ' ̂  " 1̂ ' 2̂) 4 48 
6Sxx(f,)Sxx (f,)Sm: (f-f, - f,) 

Equations 4.47 and 4.48 imply that there must be symmetry in both the bispectrum and 

trispectrum. In equation 4.47, fi can be arbitrarily chosen and so, for example, setting 

fi = 172 gives: 
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S X X r e p r e s e n t s the leading diagonal of the bispectrum in the space. Setting f, 

to a different value and evaluating Sxxy(fi,f-fi) over another diagonal will result in the same 

information being obtained as all the other terms in SxxY(fi,f-fi) should consist of 

symmetries of the leading diagonal. A similar result occurs with equation 4.48 except 

rather than considering diagonal lines, diagonal planes in the (fi/a/s) space should be 

considered. 

4.4.2 Residual Spectral Method 

Suppose a series of random processes that are thought to be related are measured. When a 

single component of a random process is influenced by others any distinct relationship 

connecting it with any one of them is likely to be obscured by the action of the remainder. 

It is only by removing the effects of the remainder in some way that the connection can be 

established. For example, if the processes x(t) and y(t) are measured, it is easy to form x(t)^ 

and x(t)^ and the method of residual spectra [3, 4, 18, 28] can then be used to try and find 

the connections between x(t), x(t)^ x(t)^ and y(t). 

The basic building block for residual spectra is shown in figure 4.3. Assuming Xi and Xi are 

two measured random processes Xi can be split into two parts: that fully coherent with X2, 

that is the part of xi that can be accounted for by the optimal linear operation (in the least 

squares sense) on Xi through the filter Li, and the part of Xi that is not coherent with xi 

termed X2.1. 

X, 

Figure 4.3: The basic building block for residual spectra 

To simplify notation, the time and frequency arguments on the signal notation are temporarily suspended. 
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A number of these simple building blocks can be cascaded together to form more complex 

systems such as that in figure 4.4 where the four processes, xi, Xa, X3, and X4 are considered. 

In this case, at the first stage, X2, X3 and X4 are each split into two components: the part 

accounted for by the optimal linear operation on x, through the filters Li, L2, and L3, and 

the parts that are not coherent with X| which are termed x^i X3.1 and X4.1. These are the 

parts of X2 X3 and X4 left over when the linear effect of X; is removed and are termed residual 

random variables. 

L. 

i + X h * -

L. 

u Ls L , 

X4 X4., ^4.12 

Figure 4.4: A multiple input, single output system 

At the second stage X3.1 and X4.1 can be further conditioned with respect to X2.1 through 

filters L4 and L5 to give X3.12 and X4.12, where X3J2 is that part of X3 that is not coherent with 

both Xi and Xz, and, X4,i2 is that part of X4 which is not coherent with X| and X]. L4 is the 

optimal linear filter relating X2.1 to X3.] and L5 the optimal linear filter that relates X2.1 to X4.1. 

At the final stage it is possible to condition X3.12 with respect to X4.12 to produce X4.123, the 

part of the signal that is not coherent with any of the inputs. Lg is the optimal linear filter 

relating X3.12 to X4.12. 

The optimal linear filter Li can be shown to be. 

4.50 

where Sn = ^ (f) etc. That is, L] is equal to the cross spectrum ofx, and X2 divided by 

the auto spectrum of Xi. L2 to Le are defined similarly as follows, 
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II 

L = L , 4 ^ 1 
2̂11 

L, = L , = | a . L , = | ^ 

In section 4.4.1, expressions for Hi, H2, and H3 were obtained from. 

y(t)= Jh,('T)x(t-T)dT + Jh2(t)x^(t-t)dx + jh ; ( ' r )x \ t -T)dT 4.52 

which can be expressed in the frequency domain as. 

If = Ii,]( 4- li^x:: 4- 4.53 

where is defined as the Fourier transform of the input signal squared and is defined as 

the Fourier transform of the input signal cubed. If the four random processes Xj, X2, X3 and 

X4. are now chosen to be the three inputs to the system x, x ,̂ x^ and the output y, it should 

be possible to find similar expressions for Hi(f), H2(f), and HsCf) using residual spectra. 

It is important to realise that Lj, L2 and L3 are least squares optimal filters and not Hi(f), 

H2(f) and H3(f). In order to find H](f), HiCf) and HsCQ an expression for the output X4 in 

terms of the three inputs X,, X2 and X3 must be found. 

From the flow logic of figure 4.4, 

X. = L,X, + L , X „ + L ,X ,„ + X , 4 . 5 4 

Xj , = X , - L , X , 4.55 

X,„ = X, , - L , X „ = X. -L,X, - L.X, + L,L,X, 4.56 
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4 J 7 

Substituting 4.54 and 4.55 into 4.56 gives, 

^4 -(L3-L,L^-L^Lg + L,L^Lg)X, + + (Lg)Xg + 

So expressions for Hi(f), H2(f) and H3(f) can be written in terms of Li to as. 

Hi = L3 - L1L5 - L2L6 + L1L4L6 4.58 

H2 = L5- WW 4.59 

H3 = Le 4.60 

By substituting y, x, x ,̂ x̂  for xi, X2, X3, X4 and assuming that x is a Gaussian process, 

expressions for Li to are calculated as follows: 

L, = & = ?lE[x(t)x'(t^T)])^p 4,6, 
S„ J{E[x(t)x(t + T)]} 

where ^ denotes the Fourier transform The numerator J{E[x(t)x^(t + T)]} is the product of 

an odd number of Gaussian variables and so equal to zero, hence Li=0. 

^ _ S„ _^{E[x(t)x'(t + T)]} ^ ^[3c/R^(T)] ^ , ^^2 

Sji 

L _ S . _ ;{E[x(t)y(t + T)]} 463 
' S,, Sxx(0 

If equation 4.52 is used to substitute for y(t+x) into equation 4.63, the term containing haCt) 

wUl contain the product of an odd number of Gaussian variables and so be equal to zero. 

Hence, 
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j h, (u)Rxx (T - u)du + 3 a / j h, (u)Rxx (% - u)du 

Sxx(f) 

+ H , ( f ) S g ^ = H, (f) + 3 a / H , (f) 
Sxx(f) 

4.64 

4.65 

S23.1 can be expanded by writing it as the average of the conjugate of X2.1 times X3.1. 

Expressions for X2.1 and X3.1 can then be substituted as follows. 

, = E[X,/X„ ] = E[(X/ - L,'X,')(X, - L,X,)] 

= §23 +L,'LjS„ -L,'S,3 -L2S2, 4.66 

Sn Sn '11 O "13 Q "21 "23 
1̂1 1̂1 

S22.1 can be found similarly and substituted into equation 4.65. S21 and S23 contain the 

product of three Gaussian variables and so are equal to zero. Hence the expression for 

L4 is: 

82,8,3 

L. 
82,8,2 

81,823'8218,3 _ 8,3 _ g 
SjjS,, - SjjSjj Sjj 

4.67 

L. = 
822-

s„ _ S ^ _ ^{E[x'(t)y(t + T)]} 
82,8,2 ^{E[x\t)x\t + T)]} 

4.68 

If y(t+T) is substituted from equation 4.52, the terms containing hi(t) and h3(t) will consist 

of the product of an odd number of Gaussian variables and so are equal to zero. Hence, 
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j h 2 (u) E[x ̂  (t)x ̂  (t + T - u)] du 

^fE[x'(t)xXt + T)]} 

o / j h 2 ( u ) d u + 2|h2(u)Rxx^(t:-u)du 

% / + Rxx 

G/a ,g (0 + 2H,(0[S^(f)*S^(f)] 
a / 5 ( 0 + 2[S^(f)*S^(f)] 

H,(f) i f f ^ O 4.69 

where = jh;(u)du and is independent of f. 

3̂4.12 _ 3̂.12 4̂.12 
c y "y 
3̂3.12 "̂ 3.12 

From the flow logic of figure 4.4 and Li = L4= 0, expressions for X3.12 and X4.12 follow, 

X3.12 — X3-L2X1 4.70 

X4,12 — X4-L3X]-L5X2 4J1 

Substituting 4.70 and 4.71 into 4.69 gives, 

^ ( X / - L / X , ' ) ( X , . L , X , . L , X J 

( X / . L / X ; ) ( X , . L , X , ) 

_ S34 -L3S3, -Lj S,4 +Lj L;S„ 
S , , - L / S „ . L / S „ + L / L , S „ 

Substituting for L2 and L3 gives. 

4J2 

s 
S„ S^-3G/S„ 

S ^3'^" 533-30/8,3 
s . 

4J3 
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If the spectral terms in equation are expanded and y(t+t) is substituted from equation 4.52, 

the term containing hzCt) will consist of the product of an odd number of Gaussian variables 

and so is equal to zero. Hence, 

J h, (u)E[x' (t)x(t + T - u)] du + J h 3 (u)E[x' (t)x ̂  (t +1 - u)] du 

- 3 a / J h, (u)E[x(t)x(t + T - u)] du - J h, (u)E[x(t)x^(t + T - u)] du 

^[E[x'(t)x\t + %)]- 3G/E[x(t)x'(t + %)]] 

3a/|h,(u)Rxx('C-u)du +9a/Jh3(u)du +6 jh;(u)Rxx'(T-u)du 

- So / j h, (u)Rxx (-[ - u)du - 9 o / j h,(u)Rxx (i: - u)dii 

^[9G/R«,(T) + 6R^XT).9a/R^(T)] 

6jh,(u)Rxx^(T-u) du 

^[6R^XT)] 
H3(0 4.74 

Thus, the equations for Li to 1^ are, 

L, =0 

Lj =3a. 

L3 =H, +3a, H3 

= 0 

L , = H , 

Lft - H3 

4.75 

4.76 

4.77 

4.78 

4.79 

4.80 

With these expressions for Li to Lg figure 4.4 can be redrawn for a system with a Gaussian 

input as figure 4.5. For such a system, to find Hi(f), H2(f) and HaCf) only L3, L5 and Le 

need to be calculated. 
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"3.12 

"4.1 

Figure 4.5: Gaussian input to multiple input, single output system 

4.5 Relationship between the linear filters acting on a polynomial input and the 

Volterra series 

It has been shown how it is possible to find expressions for Hi(f), HzCf) and HsCf) by either 

using a higher order spectral approach or by using residual spectra and both methods have 

their advantages and disadvantages. 

The main difference between the methods is that the residual spectral method has the 

advantage of allowing the inputs to be arbitrary functions of x(t) and not strictly limited to 

simple powers of x(t) as with the higher order spectral method. Hence, with the residual 

spectral method, if there is prior knowledge of the type of nonlinearity it is possible to 

construct a model based on that knowledge, as in [28]. For example if is known to 

be important it can be used as an input. 

To determine Hi(f), Hg(f) and H3(f) by the residual spectra method for a Gaussian input 

only L3, L5 and Le need to be calculated. These are one dimensional spectra and so can be 

calculated by standard methods. If the higher order spectral approach is used both the 

bispectrum and trispectrum must be calculated which requires two and three dimensional 

matrix calculations which can be very computationally expensive. Also, considerably longer 

lengths of data may be required when calculating higher order spectra than with ordinary 

spectra as more averaging is required due to the large variance terms. 
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However, in this section, the overall problem has been simplified by assuming H2(f) 

and HsCf) are linear filters acting on a polynomial input. It is possible to write the 

expression for the linear filters model in the form of the Volterra series as, 

y(t)= ;h , (T jx( t -T , )dT , 

+ I -Tjx(t-T,)x(t-TjdT,dT2 4.81 

+ I j J ) 8(T, - T, )8(T, - T, )x(t - T, )x(t - T, )x(t - T JdT.dT.dT, 

If this is compared with a cubic Volterra series model, 

y(t)= jh .CTjxCt-TjdT, 

+ j j h; (T,, ) x(t - T) )x(t - T; )dT,dT2 4.82 

+ j j j h, (T,, T;, T,) X(t - T, )x(t - T Jx(t - T JdT,dT;dl, 

it can be seen that Volterra kernels are equivalent to the linear filters multiplied by delta 

functions. That is, 

h X T j ^ h ^ T j 4.83 

hXT],Tj = h , ( T j 6 ( T , - T j 4.84 

haCTi.Tz.Tj = h3(Tj6(T; - T j 4.85 

It can now be seen that the linear filters calculated in this section, Hi(l), HaCf) and HsCf), are 

equivalent to considering only the main diagonal of the fi"equency domain Volterra kernels 

H2(fi,f2) and H3(fi,fi,fj). So in using residual spectra to solve this type of nonlinear 

identification problem, much of the information in the data is being ignored and it is 

possible that the problem is being over simplified. 
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4.6 Quadratic Volterra model 

Rather than just considering the main diagonal of the Volterra kernels, the model is now 

extended to try and identify the whole of the Volterra kernels. Suppose a stationary, zero 

mean signal, x(t), is acted on by a nonlinear system which can be described by a 2nd order 

Volterra model. 

y(t) = f h, (T J x(t - T, )di;, + 1 j h, (T,, T,) x(t - T, )x(t - )dT,dT: 486 

To characterise the system it is necessary to determine the first order impulse response or 

kernel, hi(t) and the two dimensional impulse response or second order kernel, hiCTi.Tz). 

This can be viewed as the parallel connection of a Imear and quadratic system (figure 4.6). 

X 
• 

X 
• 

HZCT,,-!::) HZCT,,-!::) 

Figure 4.6: Quadratic Volterra model 

In all of the following a Gaussian input to the system is assumed. The cross correlation 

function is formed, 

RxY(T)= E[x(t-T)y(t)] 

Substituting for y(t) from equation 4.86 gives, 

R x y ( t ) = Jh,(u)E[x(t-x)x(t-u)] du + 

I j h J (u, v)E[x(t - x)x(t - u)x(t - v)] du dv 

488 
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As the expected value of the product of an odd number of Gaussian variables is zero, the 

second order term is zero. This leaves the first order linear term, 

RxY(i:)=jh,(u)Rxx(T-u)du 4.89 

Taking the Fourier transform with respect to x gives, 

Hence, if the input is Gaussian then the linear kernel can be estimated by use of standard 

cross correlation methods. 

To identify the quadratic component of the signal, the second order cross correlation 

function or second order cumulant function of the signal is formed, 

RxxY ("̂ 1' ) = E[x(t - T, )x(t - T; )y(t)] 4.91 

Substituting for y(t) from equation 4.86 gives, 

f^xxY(':,.':2)= Jh,(u)E[x(t-T,)x(t-Tjx(t-u)]du + 

IJ h J (u, v) E[x(t - XI )x(t - Tjx(t - u)x(t - v)] du dv 

4.92 

As the expected value of the product of an odd number of Gaussian variables is zero, the 

first order term is zero. This leaves just the second order term which contains the product 

of four Gaussian variables and so can be written as the sum of three pairs of products. 

Hence 4.92 can be written in terms of three pairs of auto correlation functions. 

= -Tj .R^(v-u) + 

R^(T,-u)R^(T,-v)+ 4.93 

Rxx(T,-v)Rxx(T2-u)}dudv 
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Taking the first term of 4.93 and calculating the double Fourier transform with respect to t i 

and T2 gives, 

Jjj}h2(u,v)Rxx(T, -iJRxxCv-u)e''''''"e'^'^'''dT,dT;,dudv 

= Sxx(f,)5(f, + f j j jh2(u,v)R^(v-u)dudv 4.94 

= 0 

The Fourier Transform of the second term of 4.93 is, 

j j j jhXu,v)Rxx(T, -u)Rxx(T2 -v)e''"''"e''"'' ' 'dT,dT,dudv 

substituting 0 = -u, dT, = d9, gives = S^x(f, 

substituting = Tj - V, d t j =di}, gives j R ( i } ) e = S(f% )e 

= Sxx (f, )Sxx (f;) j j h(u, v)e """''dudv 

= S ^ ( f , ) S ^ ( f J H ( f „ f J 4.95 

The third term is the same as the second but with the roles of u and v reversed. Hence, 

JJi jh,(u,v) R^(T, - v)Rxx(T2 - u ) dT,dT,du dv 

= S^(f , )S^(fJH(f„f , ) 4.96 

Exploiting the (assumed) symmetry of the second order kernel gives H2(fi,f2)=H2(f2,fi) and 

so adding the three terms 4.94,4.95 and 4.96 results in, 

S ^ , ( f „ f J = 2 S ^ ( f J S ^ ( f J if(fi+fz) 0 4.97 

Hence, even in the presence of Hi(f), an unbiased estimate of the quadratic component of 

the second order Volterra system is, 

89 



as shown by, for example, [59, 62,76]. 

4.6.1 Estimation of the quadratic transfer function 

A major difficulty when estimating the auto bispectrum, which was discussed extensively in 

chapter three, is that the variance of the bispectrum contains terms due to power spectral 

effects. Averaging over longer data lengths will reduce the variance. However, if some 

form of normalisation is performed on the estimate to down weight the estimate of the 

bispectrum at frequencies where the second order properties are large, then the variance 

can be made more uniform across all &equencies. For this reason, the bicoherence or 

skewness function was usually estimated. 

The variance of the real and imaginary parts of the cross bispectrum [38] can be easily 

obtained from the variance of the auto bispectrum and is given by. 

var(S^, (f,, f J) = ̂  [1 + 8, (f, - f,)] (f, )S^ (f, )Sy, (f, + f,) 4.99 

where M is the number of blocks used in the estimation, 5k(0) = 1, and 6k(f) = 0 for non-

zero f. 

This contains the triple product Sxx(fi)Sxx(f2)SYY(fi+f2) and so an estimate of the cross 

bispectrum will be sensitive to power spectral effects. As HzCfi.fi) contains the cross 

bispectrum, the variance of HzCfi.fi) will be affected by the spectrum of x(t) which is in turn 

dependent on Hi(f). Hence whilst the mean of the estimate of the second order kernel is 

independent of the linear kernel; its variance is not. In order to reduce the variance of 

HzCfi.fiz) it is either necessary to average over more data or to normalise it to down weight 

the estimate where the linear component is large. 
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The technique used here to normalise the quadratic transfer function differs from the 

bicoherence. Taking the quadratic Volterra model, it is possible to place in parallel with it 

an arbitrary linear system, G(f). The value of G(f) will not affect the mean of the estimate 

of the quadratic transfer function as it only contains linear components and referring to 

figure 4.7 it can be shown that. 

SxxY(f„f2) = Sxxz(f„f2) 4U00 

Arbitrary linear 
system { G(f) } 

x(t) ^ 

/Quadratic System \ y(0 

z(t) 

Figure 4.7: Quadratic and linear systems in parallel 

A modified transfer function estimate, H2(mod) (fi.fz), can be defined as, 

Sxxz(f,,f2) 

2Sxx(f,)Sxx(f,) 
4J01 

Theoretically, this is the same as H2(fi,f2). However whilst estimates based on 4.98 can be 

unbiased (assuming sufficient resolution), prudent choice of the linear filter G(f) can yield 

estimates, based on 4.101, with smaller variances. It will now be shown that the choice 

G(f) = Hi(f) gives the minimum output power (E[z^(t)]) and hence minimises the variance 

of the transfer function estimate. From figure 4.7, z(t) can be written as. 

Z(t) = I (h, (T,) - g(T, ))x(t - T, jd t , + n h:(T„T:)x(t - T,)x(t - T, idTidT, 
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d*? 
To minimise the output power, it is necessary to solve = 0 where W = E[z(t)^]. 

dg 

y can be seen to consist of the following three terms: 

j(hXTi)-g(Tj)h2(T2,T3)x(t-T,)x(t- 'C2)x(t-TjdT,dT,dTg + 

Y = E j j j jh^Ti,Tz)h2 (T3,T, )x(t - )x(t - Tz)x(t - T, )x(t - T, )dTidT2dT3dT, 

j 2^^ I ('̂ 1) " 1 ('̂ 2 ) " SCCz ))x(t - T Jx(t - T, )dT,dT, 

4.103 

The first term contains the product of three Gaussian variables and so will equal zero; the 

second does not contain g(t) and so dY/dg will equal zero; and intuitively, as T is a 

squared expression the third term cannot be negative and so will be minimised when it is 

equal to zero, i.e. when g(T) = hi(t). 

To implement this, z(t), is created by forming the output of the system, y(t), minus yim(t). 

yi,n(t) is the convolution of the impulse response, h(t), and the input to the system, x(t). 

z(t) = y(t) - h(t)*x(t) 4.104 

This produces a new 'delinearised' signal from which it is possible to calculate the modified 

version of H2(fi,f^). The modified transfer f u n c t i o n , H ( f f % ) , will have a more 

uniform variance as the second order properties have been removed. Double inverse 

Fourier transforming (^,,^2) with respect to fj and fi will produce the two 

dimensional impulse response function h2(Ti,T2)- The quadratic component of the signal 

can be formed by a two dimensional convolution of h2(Ti,T2) with the input to the system, 

x(t), to produce, yquad(t). 
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4.6.2 Example of a simple quadratic system 

The same skewed, mixed signal, as used in chapter three, is now used to demonstrate the 

quadratic Volterra model. The system consists of the sum of a Gaussian signal filtered 

through a low pass filter and squarer and the same Gaussian signal high pass filtered. It 

therefore contains only linear and quadratic elements and so can be solved with the second 

order Volterra model. Figure 4.8 shows SyvCf), the power spectrum of the output which 

shows the two distinct regions of the signal: a low frequency skewed component, and a 

high frequency Gaussian component. The coherence function, figure 4.9, is approximately 

unity at higher frequencies due to the linear part of the signal. Hi(f), the linear transfer 

function, is calculated but not shown here. It is high pass in form as expected. 

Figure 4.10 shows the quadratic transfer function calculated using an FFT size of 64 and a 

sample length of 4096 points. It can be seen that the quadratic component is correctly 

detected as shown by the data in the low bifrequency region. However the features in the 

mid bifrequency region are unexpected and are caused by the linear component. Hence 

when the quadratic transfer function is averaged over 64 segments, the quadratic and linear 

components are seen to have similar strengths. If the data length is increased to 262144 

data points and the cross bispectrum averaged over 4096 segments the variance of the 

linear component decreases and the quadratic transfer function correctly detects only the 

low frequency quadratic component of the signal (figure 4.12). However, if the data length 

is reduced to 4096 data points, and the modified quadratic transfer function calculated, 

H2(mod)(fj,6), that is with the linear component of the signal removed, the variance is 

reduced and the quadratic transfer function only detects the quadratic component of the 

signal (figure 4.11). In this case, the magnitude of the linear component due to the variance 

of HzCfi.fz) is of similar value as when the signal was averaged over 4032 more realisations. 

Note that by subtracting the linear component of the signal, the variance of the linear 

component has been rnirurnised but the variance of the quadratic component has not been 

altered. This can be seen by comparing the roughness of the low frequency component of 

the quadratic transfer function in figure 4.11 with that of figure 4.12, where a longer data 

length was used. Figure 4.13 shows the modified quadratic transfer function calculated 

using a data length of 262144 sample points. Normalising the signal by removing the linear 

93 



component or 'delinearising' allows improved estimation of the quadratic transfer function, 

suppressing troublesome linear terms. 

The linear and quadratic impulse responses, calculated using a data length of 4096 samples, 

are shown in figures 4.14 and 4.15 respectively. By convolving these with the Gaussian 

input data, x(t), two separate components are calculated: the signal due to the linear part, 

and the signal due to the quadratic part. The power spectra of these two signals are shown 

in figures 4.16 and 4.17 respectively. The original output power spectrum is shown by the 

dotted line. Figure 4.18 shows the power spectrum of the sum of the two components 

which is the same as the original signal, thus showing the quadratic Volterra model has 

correctly accounted for all the terms in the signal. Since in this simulation the system is 

known to be only second order, this is to be expected. 

0 0^ ^ ^5 Oj ^ M ^ &4 Q.W M 
Normalised frequency 

0 ^ 01 0^ M M AM 04 0̂  M 
NofmW«#dk#qu«ncy 

Figure 4.8: Output power spectrum of 
mixed signal 

Figure 4.9: Coherence function of mixed 
signal 
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Figure 4.10: Quadratic transfer function of 
mixed signal 

(Data length = 4096, FFT size = 64) 

Figure 4.11: Quadratic transfer function of 
mixed signal with linear component 
removed 
(Data length = 4096, FFT size=64) 

Oj 0 

Figure 4.12: Quadratic transfer function of 
mixed signal 

(Data length = 262144, FFT size = 64) 

Figure: 4.13 Quadratic transfer function of 
mixed signal with linear component 
removed 
(Data length = 262144, FFT size=64) 

Figure 4.14: Linear impulse response Figure 4.15: Quadratic impulse response 
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Figure 4.16: Power spectrum of the linear Figure 4.17: Power spectrum of quadratic 
component (solid) and power spectrum of component (solid) and power spectrum of 
the output (dots). the output (dots). 

0 0̂15 0.1 0.15 Oj OjB oa 0̂ 5 0.4 0.45 0.5 
Normalised frequency 

Figure 4.18: Power spectrum of sum of 
linear and quadratic components (solid) 
and power spectrum of the output (dots). 

4.7 Cubic Volterra Model 

The second order Volterra model, equation 4.86, can be extended to a cubic model. 

y(t)= jhXT.)x(t-T,)dT,+ 

j Jh, (T,,T J X(t - T Jx(t - T JdT,dT, + 4.105 

j j j h , (T,, T;, T3) x(t - T, )x(t - T; )x(t - T,)dT,dT^dT, 
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This can be viewed as the parallel connection of a linear, quadratic and cubic system (figure 

4.19). 

Figure 4.19; Cubic Volterra model 

For a Gaussian input it is possible, as in the second order case, to find the following 

expressions involving Hi(f), H2(fi,f2) an HaCfufa.fs). This is shown in Appendix E. 

4J06 

^XX /^XX / 

4.107 

H; (f,, f;, f]) = if (fi+fz) ^ 0, (f^+^) # 0 and 9̂  0 
6Sxx(f,)Sxx(f,)Sxx(f,) 

4J^8 

N.B. The ratio, Sxy(f)/Sxx(0. now includes a term due to H3(fi,(2,fj) namely, 

3 jSxx(g)H,(-f,g,-g)dg 4.109 

H3(fi,f2,f3) is a function of three frequency variables but the linear transfer function is only a 

function of a single frequency variable. Therefore equation 4.109 represents a projection of 

a function in three dimensional space onto a fiinction in one dimensional space. 
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As in the quadratic model, before calculating the quadratic transfer function the linear 

component should be removed. However, knowledge of H3(fi,f2,f3) is needed to form an 

unbiased estimate of the linear transfer fiinction but this is not yet known. One estimate of 

Hi(f) available is SxY(f)/Sxx(f)- Such an estimate is biased but this should be corrected at a 

later stage. The biased estimate of the linear transfer function is used to generate an 

estimate of the linear component of the signal. Having 'delinearised' the signal an estimate 

of the quadratic transfer function, can be calculated. From this an estimate of the 

quadratic impulse response function, and hence of the quadratic component of the system, 

can be generated. 

Equation 4.108 for H3(fi,f2,f3) contains no terms in either HzCfiJz) or Hi(f) so before 

H3(fi,f2,f3) is calculated the linear component and quadratic component of the signal are 

removed. An estimate of H3(fi,f2,f3) is made and by triple inverse Fourier transforming this 

with respect to fi, fz and fs, an estimate of the cubic impulse response function can be made. 

The triple convolution of the input data with the cubic impulse response gives the estimate 

of the cubic component of the signal. 

The residual error is formed by subtracting the linear, quadratic, and cubic components of 

the signal. This error consists of components of orders higher than three, measurement 

noise, and components due to inaccurate estimation of the first three terms in the model. 

However, as it was assumed that H3(f;,f2,f3) was equal to zero when the 'delinearising' filter 

was estimated, there is room to improve the kernel estimates. The estimated value for 

H3(fi,f2,f3) can now be substituted into equation 4.106 to form a more accurate 

delinearising filter. From this a new estimate of the quadratic transfer function and then the 

cubic transfer function can be calculated. This process can be continued in an iterative 

manner until the estimates of Hi(f), H2(fi,f2) and H3(fi,f2,fj) achieve steady state values. 

The whole process is depicted in figure 4.20. 
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Assume H,(f,,n,f;)=0 

Estimate H,(f) with the 
term using: 

X as input 
y as output 

Inverse Fourier 
transform H,(f) 
to form h,(x) 

1 r 

Convolve 
X with h,(t) 

' 

Estimate H^Cfj.fj) using: 
X as input 
(y-y J as output 

Double inverse Fourier 
transform ^[^(f^f;) 
to form 

I 
y...o Convolve y...o 

X with 

1 

Estimate HjCfpf .̂f,) using: 
X as input 
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Triple inverse Fourier 
transform H3(f„f2,f3) 
to form hjCXiJz.Xj) 

1 

y.uh 
Convolve 

y.uh X with hjCXpX̂ .Xj) 

Substitue for new 
value of HXfi.fz.f;) 

Figure 4.20: Flow diagram of cubic Volterra model 
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4.7.1 Example of a simple cubic system 

An example of a simple system than contains only cubic elements is now given to illustrate 

some of the difficulties when estimating the cubic transfer function and impulse response. 

A more complex example will be given in the next chapter. 

If a Gaussian white signal is taken and passed through a cube law device (i.e. y(t) = x(t)^) 

the resulting signal will contain only cubic terms. This simplifies the estimation of the third 

order Volterra kernel as there are no first or second order terms and so there is no need for 

an iterative solution. 

The third order frequency domain Volterra kernel of this system is shown in figure 4.21 and 

has an approximately constant value of unity throughout. This has been calculated by 

taking the cross moment trispectrum and dividing through by the power spectral terms as in 

equation 4.108. As the moment trispectrum has been calculated it is then necessary to 

remove the effect of the second order terms to form the cumulant trispectrum. These 

second order terms appear as three planes, fi+f2= 0, fz+f; = 0, and fi+fs = 0. By calculating 

the product of the auto and cross spectrum along each of the planes and then subtracting 

this from the moment trispectrum, the true cumulant trispectrum can be calculated. 

Triple Fourier transforming this with respect to Xi, X2 and X3 will give the cubic impulse 

response of the system. This is shown in figure 4.22 and is seen to be a single delta 

function at the origin. If the original input data is convolved with this three dimensional 

impulse response the resulting data should be identical to the output signal. Figures 4.23 

and 4.24 show the original output signal, and the result of convolving the input data with 

the impulse response. The difference between these two signals is shown in figure 4.25. 
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Figure 4.21: Third order frequency domain Volterra kernel of the cubic system 
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Figure 4.22: Cubic impulse response of the system 

101 



0 100 200 300 400 ^ 600 700 800 800 1000 

Figure 4.23; Output of the cubic system 
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T k r m 

Figure 4.24: Output of the convolution of 
the cubic impulse response with the input 
data 

0 100 200 300 400 500 600 700 800 800 1000 

Figure 4.25; Difference between actual 

output and predicted output of the 

cubic system 

4.8 A note on higher order coherence functions 

In section 4.6.2, in the example of the mixed signal, the results are displayed by looking at 

the power spectra of the linear, and quadratic terms and comparing these with the known 

output power spectrum of the signal. In this way, from an engineering point of view, it is 

easy to see what part of the signal accounts for the power at every fi"equency. 

Some authors [63] prefer to take this one stage further and calculate higher order 

coherence functions to display the same information. For the simple quadratic model the 

linear and quadratic coherences are defined as: 
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In a similar fashion to the traditional second order coherence function these will take values 

on a scale from zero to unity depending on how well the models fit the data. 

Although this may seem a logical extension, many unhelpful contradictions can occur. For 

example although the coherence functions theoretically should take values between zero 

and one in some cases it can be either negative or greater than one. This may occur for a 

number of reasons: if the model does not correctly account for the data it could be possible 

that the power spectrum of the model is greater than the power spectrum of the actual 

output. This would lead to a coherence function taking values greater than unity. Also in 

the case of the cubic model, cross terms would be present which can lead to negative 

coherence values. 

4.9 Conclusions 

In this chapter, techniques using cross higher order spectra have been presented for 

calculating the Volterra kernels of a system. Two methods have been proposed, the first 

calculates only the main diagonal of the Volterra kernel, which although simpler, has limited 

applicability. The second calculates the full Volterra kernel. 

Both quadratic and cubic Volterra models have been presented. The quadratic model 

produces a closed form solution and no iteration is needed to solve it. However, an iterative 

procedure has been proposed to solve the cubic model. There are methods of producing 

closed form solutions for the cubic model and these will be examined in the next chapter. 

Although the cubic model is considerably more complex than the quadratic model, for the 

103 



experiments considered in chapter six it is found to be necessary. The problenis that may 

occur when too low an order model is used for a particular situation will also be discussed. 

As with the auto bispectrum, calculations of the cross bispectrum can easily be corrupted 

by second order properties. For the auto bispectrum the usual technique to avoid this is to 

calculate the bicoherence or skewness function. For the cross bispectrum, in the calculation 

of Volterra kernels, this is not possible, and so a new method has been proposed which 

involves subtracting off lower order terms. This has been demonstrated to work very well 

for a simulated quadratic system 

This whole chapter has been based on the assumption that the input to the system is 

Gaussian. If this assumption is invalid, all the products of an odd number of Gaussian 

variables can no longer be set to zero and must be included in the solution of the Volterra 

model. This obviously leads to a far more complex problem. In chapter five, some of the 

possible methods of calculating the Volterra kernels when the input is non-Gaussian will be 

discussed. 
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Chapter 5 

Limitations of the Volterra series 

5.1 Introduction 

In the previous chapter, it was shown how the Volterra series could be used to model some 

nonlinear systems. Before studying the experimental results in the next chapter, a number 

of difficulties which can arise with the practical application of Volterra models will be 

examined and some possible solutions presented. 

The first difficulty concerns the convergence of the Volterra series. A brief discussion of 

some of the types of system that are likely to have converging or diverging Volterra series 

are given, with references to more analytic work on the subject. The second difficulty, 

concerning the calculation of the Volterra kernels of a system, is that estimation is only 

possible if the contributions of each of the system's operators can be separated from the 

total system response. No exact method of isolating an individual Volterra operator exists, 

except by truncating the series, as in this work. The techniques derived in the previous 

chapters, in the process of estimating the Volterra kernels, do in fact estimate the kernels of 

a related series, the Wiener series, whose kernels can be calculated without truncating the 

series. Although a detailed description of the Wiener series is not given here, it is of interest 

to note the relationship between the Volterra and Wiener kernels. 

In many situations, it is important to know the response of a system to a particular input. A 

possible technique to find the response, is to apply a Gaussian input to the system and 

determine the Volterra kernels which can then be used to predict the response of the system 

to any input. This method is demonstrated using the example of the Duffing oscillator. 

The Volterra kernels are calculated using a Gaussian input and then the response of the 
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DufFing oscillator to a sine wave is predicted and compared with the actual response 

evaluated using numerical techniques. 

Throughout this work, it has always been assumed that the input to the system is Gaussian. 

In many practical applications this assumption may be invalid, and so a method is presented 

for the quadratic Volterra model that removes this restriction. The solution of this new 

quadratic Volterra model differs from the previous one, because it is no longer possible to 

assume that the product of an odd number of input terms is equal to zero or that the 

product of an even number of input terms can be decomposed into pairs of terms. These 

expressions must now be solved explicitly using higher order correlation functions. This 

vastly increases the complexity of the model and it is shown that the quadratic model 

requires that higher order spectra up to the fourth order, the trispectrum, are studied. It is 

noted that a cubic model would require the calculation of sixth order spectra. 

The topic of causality is briefly mentioned. In the solution of the Volterra models, the 

Volterra kernels have not been restricted to be zero in negative time and so could well be 

non-causal. However, it is seen that for the practical examples studied, all the estimated 

kernels are causal in nature. 

A number of different Volterra models, all calculated using higher order spectra, have now 

been presented. They can be broadly split into a number of categories such as the order of 

the model, the assumptions placed on the input, and the highest order spectra required for 

the solution of the model. Therefore, a summary of the different models, their restrictions, 

features, and the techniques that different authors have used to solve them is given. 

5.2 Convei^ence of the Volterra Series 

The Volterra series has been termed 'a Taylor series with memory' [70] and the 

convergence properties of the Volterra series are closely linked to the convergence of the 

Taylor series. For example, consider the memoryless system, with an input, x(t), and 

output, y(t), defined by. 
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y(t) = Asgn[x(t)] 

A for y(t) >0 ^ ^ 

0 for y(t) = 0 

-A for y(t) < 0 

where A is a constant. There is no convergent Taylor series for equation 5.1 about y(t) = 0 

and so a nonlinear system, which has such characteristics, cannot be represented by a 

Volterra series model. 

For the Volterra series to be convergent, any memory it possesses must be finite. That is, 

the effect of any input on a Volterra series will die away and become insignificant in finite 

time. An example, given by Schetzen [70], of a system which does not possess finite 

memory is a fuse which, after its rated current has been exceeded will never return to its 

original equilibrium state no matter how long one waits. 

In general, any system which has multiple equilibria cannot be modelled by a Volterra series 

except locally around one equilibrium and with the class of inputs restricted so as to ensure 

that none of the other equilibrium states will be reached. In the next chapter, a practical 

example, based on a beam constrained by pairs of repelling magnets is given. This system 

will have a convergent Volterra series. However, there is a very similar experiment [54], 

which is often used to demonstrate chaotic vibrations, in which a vibrating beam, rather 

than being constrained by two pairs of repelling magnets, is attracted by either of two pairs 

of magnets. This experiment would have multiple equilibria and so it would not be possible 

to find a convergent Volterra series representation for it, except locally around one of the 

magnets. 

The above three criteria have given very simple guidelines as to the types of system that will 

have a convergent Volterra series. No attempt has been made to prove any of the 

statements but further discussion on the convergence of the Volterra series can be found in 

Boyd and Chua [7] and Wright [81]. 
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5.3 The Wiener series 

The two main difficulties associated with the practical application of the Volterra series are, 

first, the problem of convergence which was discussed in the previous section, and second, 

the difficulty concerning the measurement of the Volterra kernels of a given system. As the 

Volterra series is an infinite series, it is only possible to measure a system's Volterra kernels 

if the contribution of each of the Volterra operators can be separated from the total system 

response. In this work, this problem has been circumvented by truncating the Volterra 

series and so making a finite order system. However, no exact n^thod of isolating an 

individual Volterra operator exists for systems that are not of finite order. 

Wiener [70] avoided these problems by forming a new series from the Volterra series. The 

Wiener series allows the identification of an individual operator without the need for 

truncation but only when the input is a white, Gaussian signal. Higher order spectral 

methods are particularly suited for the estimation of the Wiener kernels and it can be seen in 

the next section how the methods that have been used in the previous chapters closely 

relate to the conversion between Wiener and Volterra kernels. 

5.3.1 Conversion between Wiener and Volterra functions 

For a system truncated at third order the relationship between the Volterra kernels and 

Wiener kernels is [70]: 

l i , ( ( ) = * [ , 5 . 2 

5.3 

where Ki(f), K2(fi,f2), and K3(fi,f2,f3) are the systems Wiener kernels and Ki(3)(f) is the 

derived Wiener kernel, defined as: 
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K.O) (f) = 3 A j ( - f , g -g)dg 5.5 

where A is a constant. If this is compared with the cubic Volterra model from chapter four, 

strong similarities can be seen. 

c m 
= ;s^(g)HX-f,g.-g)dg 5.6 

In order to solve the cubic Volterra model, the H3 term in the estimation of the linear kernel 

was set to zero, and the linear, quadratic, and cubic kernels estimated. It can now be seen 

that at this stage, the Wiener kernels were in fact being estimated. The substitution of H3 

into equation 5.6 can be interpreted as attempting to obtain the Volterra kernels from their 

Wiener counterparts. 

5.4 The use of Volterra models to find the response of a non-Gaussian signal 

Although the methods described in chapter four for the calculation of the Volterra kernels 

assume a Gaussian input, once the Volterra kernels of a system have been calculated, they 

can be used to predict the response to any input. In this section, the Volterra kernels of the 

Duffing oscillator will be calculated and then the response of the Duffing oscillator to a sine 

wave predicted. In chapter three, the auto higher order spectra of the output from a 

Duffing oscillator was studied. Cross higher order spectral analysis will now be used to 

study the Duffing oscillator and estimate its Volterra kernels. 
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5.4.1 The cubic Volterra model of a Duffing oscillator 

In chapter three, the Duffmg oscillator was defined as, 

X + 2(o)gX + (Oĝ x + = f(t) 5.9 

where the input, f(t), was assuired to be a Gaussian process. For this work, a small 

quadratic nonlinearity is included to generalise the Duffing equation to. 

x + 2^c0j)x + c0(,̂ x + ax^+px^ = f (t) 5.10 

The system was simulated using a fourth order Runge Kutta model, with fixed step length, 

to obtain, x(t), the output. The coefficients of the cubic and quadratic terms were set to 

0.25 and 0.1 respectively and the system is lightly damped (^=0.1) with a natural frequency 

(ocb) of 0.2 rad/s. It is possible, using traditional sinusoidal probing methods [81], to find 

analytical expressions for the first three Volterra kernels of the Duffing Oscillator. These 

are quoted as [55]; 

H i ( 0 = 2 ; 5.11 
-47tf + j47t^f + 1 

f J = -2PH, (f, )H, (f, )H, (f, + f J 5.12 

H , ( f „ f „ f J = - 6 a H X f J H , ( f J H , ( f J H , ( f , + f , + f J 5.13 

Note that the magnitude of the quadratic and cubic Volterra kernels are directly 

proportional to P and a respectively. Using the cubic Volterra model developed in chapter 

four, the first three Volterra kernels can be calculated from the simulated input/output data. 

These estimated kernels are depicted in figures 5.1-5.6: figures 5.1 and 5.2 show the linear 

time domain and frequency domain Volterra kernels, respectively; figures 5.3 and 5.4 show 
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the quadratic time domain and frequency domain Volterra kernels, respectively; and figures 

5.5 and 5.6 show the cubic time domain and frequency domain Volterra kernels, 

respectively. 

Figure 5.7, shows the power spectrum of the linear (thick solid line), quadratic (dashed 

line), and cubic (thin solid line) components of the signal, plotted against the actual output 

of the Runge Kutta model (dotted line). It can be seen, as expected, that the linear 

conq)onent accounts for the most power in the signal, followed by the cubic conponent, 

and then the quadratic component. The nonlinearity is distributed across all frequencies, 

although it is most dominant at the resonance, which is not unexpected as the resonant 

frequency is where most of the energy of the signal can be found. The sum of these three 

components gives the output of the Volterra model, which is shown in figure 5.8 by the 

solid line, again plotted against the output of the Runge Kutta model (dotted line). The 

complete Volterra model can be seen to account very well for the vast majority of the 

power across all frequencies 
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Figure 5.1: Linear impulse response of the 
Duffing oscillator. 

Figure 5.2: Linear transfer function of the 
Duffing oscillator. 
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Figure 5.5; Cubic impulse response of the Duffing oscillator 
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Figure 5.6: Cubic transfer function of the Duffing oscillator 
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Figure 5.3: Quadratic inpulse response of 
the Dufifmg oscillator . 

(16 0 

Figure 5.4: Quadratic transfer iunction of 
the Duffing oscillator. 
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Figure 5.7: Power spectra of the linear, quadratic and cubic 
components of the Volterra model and the power spectrum 
of the output of Duffmg oscillator. 
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Figure 5.8: Power spectra of the Volterra model and output 
of the DufFing oscillator 
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5.4.2 Sine wave input to the Volterra model of a DufBng oscillator 

Having used the input and output from the Runge Kutta model to calculate the first three 

Volterra kernels, these can now be used to predict the response to any other input. In this 

case the response to a sine wave is calculated, first by simulating the Duffmg oscillator with 

the Runge Kutta method, using the sine wave as an input, and then by using the sine wave 

as the input to the Volterra kernels, as shown diagrammatically in figure 5.9. The results 

from both HKthods can then be compared. 

Sine wave 
input 

Compare 
outputs from 

models 

Output 
x(t) 

Gaussian 
input 

Runge Kutta 
DufiTmg Oscillator 

model 

Cubic Volterra 
Duffing Oscillator 

model 

Caculate HXfi.fJ, 
and H,(f„f;,f;) using 
cubic Volterra model 

Runge Kutta 
Duffing Oscillator 

model 

Figure 5.9; Method for comparison of the Runge Kutta model with the Volterra model 

If the Runge Kutta simulation is repeated, but with a sine wave as the input, the power 

spectrum of the output, figure 5.10, dotted line, can be seen to consist of four resonant 

peaks. The response of the linear, quadratic, and cubic Volterra kernels to the sine wave is 

also shown in figure 5.10 by the power spectra of the linear (thick solid line), quadratic 
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(dashed line), and cubic (thin solid line) components. It can be seen that the linear 

component contributes to the first resonance in the spectrum, the quadratic component to 

the second resonance, and the cubic component to both the third and first resonant peaks. 

As only a cubic Volterra model is used, there will be no components at frequencies higher 

than the third resonance. 

By summing the linear, quadratic, and cubic components the total output of the Volterra 

model can be obtained as shown by the solid line in figure 5.11. If this is conpared with the 

output of the Runge Kutta solution, figure 5.11 (dotted line), it can be seen that it accounts 

fairly well for the first three resonances. All higher order odd kernels wHl contribute some 

power to the first and third resonance, and as only two have been considered, it is 

unreasonable for the magnitude of the power of the Volterra model to be as high as the 

Runge Kutta solution. Similarly, all even kernels wUl contribute some power to the second 

resonance. However, allowing for the limitations caused by truncation, the Volterra model 

has performed quite well at predicting the response of the Duffing oscillator to a sine wave. 
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output 
quadratic component 

unear component 
cubic component 
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Figure 5.10: Power spectra of the linear, quadratic and cubic 
components of the Volterra model and the output of the Runge 
Kutta model for the Duffing oscillator with a sine wave input 
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Figure 5.11: Power spectra of the Volterra model and output 
of the Runge Kutta model for a Duffing oscillator with a sine 
wave input. 

5.5 Solutions for the Volterra models when the input is non-Gaussian 

The derivation of estimators for the quadratic and cubic Volterra models in chapter four 

rely on the properties of the higher statistical moments of a Gaussian process. They are 

therefore subject to error if used with signals whose higher order moments deviate from 

those of a true Gaussian signal. In this section, the quadratic Volterra model is solved with 

no assumptions placed on the statistics of the input. 

In section 4.6, by substituting the quadratic Volterra model (equation 4.86) into the cross 

correlation function (equation 4.87) the following expression is obtained: 

R XY (-t) = j h, (u)E[x(t - T)x(t - u)] du + 

J J h J (u, v)E[x(t - T)x(t - u)x(t - v)] du dv 

5U4 

As with the original quadratic Volterra model, the linear component can be found by 

calculating the Fourier transform of equation 5.14 to give: 
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SxY W = f Ih,(u)E[x(t - t)x(t - u)]e"'̂ "" du dx + 

J J Jh^ (u, v)E[x(t - T)x(t - u)x(t - du dv dT 

Evaluating the first term of equation 5.15 leads to the same expression as found for the 

previous quadratic model. That is, 

||h,(u)R^(i:-u)e"^^""dTdu = H,(D)S^('u) 5.16 

The second term of equation 5.15 would previously have contained the product of an odd 

number of Gaussian variables and so be set to zero. However, it now must be solved, and 

so is rewritten in terms of an auto bicorrelation function as, 

J J h J (u, v)E[x(t - x)x(t - u)x(t - v)] du dv 
5.17 

= j Jh2(u,v)Rxxx(i:-u,T-v)dudv 

can be written in the frequency domain as j j S ( f , , ' d t ^ d t ^ . 

Substituting this into equation 5.17 and taking a Fourier transform gives, 

j j j nh , (u .v )S_ , ( f „ f Je^""" - ' " : ' - ' e ^ -dTdudvdf ,d f , 

= f J 6(f, + f, -D) df, df, 

= j r H , ( D . f „ f J S ^ ( D . f „ f J df, 5.18 

Therefore, the Fourier transform of equation 5.14 can be written as the sum of equations 

5.16 and 5.18 as, 
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S^(D) = H , M S ^ ( D ) + j H , ( D . f , . f J S ^ ( D . f „ f J df, 5.19 

Previously, to identify the quadratic component of the signal, the quadratic Volterra model 

(equation 4.86) was substituted into the second order cross correlation function (equation 

4.91) to give. 

Rxxy(T î''T2)= |h,(u)E[x(t-'C,)x(t-T2)x(t-u)]du + 
5.20 

I Jh^ (u, v) E[x(t - T,)x(t - Xj )x(t - u)x(t - v)] du dv 

The first term of equation 5.20 can no longer be set to zero and but now be solved 

explicitly and so is expressed in terms of an auto bicorrelation function as, 

I h, (u) E[x(t - X, )x(t - T 2 )x(t - u)] du = J h, (u) R (u -1,, u - T 2) du 5.21 

Rxxx(t^i''̂ 2) can again be written in the frequency domain as J /Sxxx(f,,f])e' 

Substituting this into equation 5.21 and taking a two dimensional Fourier transform gives, 

= + f J S ^ ( f „ f j 6 ( D , +f,)8(D, + f jd f ,d f , 

= HX^,+DjSxxx"(^,. 'uJ 5.22 

The second term of equation 5.20 can be rewritten in terms of an auto tricorrelation 

function as. 

J J h J (u, v) E[x(t - X, )x(t - X; )x(t - u)x(t - v)] du dv 
5.23 

j |h,(u,v) Rxxxx(:, - T z T , - v) 
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As before, it is possible to write the auto tricorrelation function, Rxxxx(''^i'T^2''^3)' ^ Ae 

frequency domain as j j ( f , , , f , S u b s t i t u t i n g this into 

equation 5.23 and taking a two dimensional Fourier transform gives, 

df^df^dfgdT^dT^dudv 

= JJ jHaCfjjfj) Sxxxx(fl.f2'f3)S('^l ~fi - 4 "^3)̂ (1^2 + f] Xf^df^dfg 

= /HjCt), +t)j -f3,f3)Sxxxx(~1^2''^l +"̂ 2 -f;,f3)dfg 5.24 

Hence the two dimensional Fourier transform of equation 5.20 can be written as the sum of 

equations 5.22 and 5.24 as, 

SxxY(l)r'U2) = H,(^,+^2)Sxxx'(^,,D2) + 
5.25 

+^2 -f3,f3)Sxxxx(-l)2.'U, +^ : 

Therefore, in order to solve the quadratic Volterra model, in the general case, it is necessary 

to simultaneously solve equations 5.19 and 5.25. Note, that if x(t) is Gaussian the second 

term of equation 5.19 is zero, the first term of equation 5.25 is zero, and the second term of 

equation 5.25 can be expressed as the product of two power spectra, to give the familiar 

result from chapter four. 

It is possible to solve equations 5.19 and 5.25 in an iterative manner in order to obtain 

expressions for Hi(fi) and However, Kim and Powers [46] have produced a 

closed form solution using matrix methods. With both methods, care must be taken to 

ensure that the variance of the bispectrum and trispectrum is minimised. By removing the 

assumption of a Gaussian input, the complexity of the solution has increased and it can now 

be seen that there is a term involving the trispectrum in the expression for the quadratic 
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kernel. The same rmthod can be used to solve a cubic Volterra model, however, the 

complexity is vastly increased and it is found necessary to use a sixth order spectrum. This 

is impractical using current technology. 

5.6 Optimality of the Volterra models 

In the previous chapters, frequency domain techniques for estimating Volterra kernels have 

been discussed and a modification based on subtracting off lower order terms in order to 

minimise the variance suggested. In this section these frequency domain rmthods are now 

compared with the optimal least squares time domain method. 

It is shown in Appendix F that the optimal least squares estimate for a linear filter h is given 

by the solution of, 

Xh = y 5.26 

where X and y are as defined in Appendix F. This leads to, 

ii== fiirf 

The same method can be extended to obtain a solution for the optimum n'̂  order filters for 

a system that contains nonlinear elements. Here, just the linear and quadratic filters will be 

considered, and so the matrix, X, will now contain quadratic terms as well as the linear 

terms and is defined as. 

x(L) x ( L - l ) . . . x { L - N + l) x(L)' x(L)x(L - 1) x(L)x{L - N + 1) X(L - 1)' x(L - N + 1) 

x { L - l ) x { L - 2 ) ••• x ( L - N ) x ( L - l ) ' x ( L - l ) x { L - 2 ) x ( L - l ) x ( L - N ) X ( L - 2 ) ' -- x ( L - N ) ' 

x ( L - 2 ) x ( L - 3 ) ••• x ( L - N - l ) x ( L - 2 ) ' x(L - 2)x{L - 3) x(L - l)x{L - N - 1) X(L - 3)' x(L - N - 1)' 

x = 

x^) 0 " 0 0 
x^) 0 x#/ " 0 0 
x(l) 0 0 x( l ) ' 0 ••• 0 0 ••• 0 
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From this X^X can be formed which can be seen to consist of three distinct components; a 

linear component which is the same as for the linear solution; a quadratic conponent; and a 

component consisting of linear/quadratic cross terms. However, for a system with a 

Gaussian input, as in this case, the cross terms, on average, will be zero. 

X^X = 

LIN LQ 

LQ" QUAD 

Multiplying the inverse of this matrix with the cross correlation vector formed by the 

multiplication of X^ with y, as in Appendix F, gives the linear and quadratic filter vector, h, 

which is of the form, 

h 
' Q U A D 

From h it is possible to reconstruct in full the linear and quadratic filters. 

This least squares optimal time domain method was then used to solve for the linear and 

quadratic Volterra kernels for the quadratic mixed system as in section 4.6.2. The 

following results are based on using a data length of 10000 samples and a FFT size of 32. 

Figure 5.12 shows the quadratic iirpulse response estimated by this method. These results 

are compared with the frequency domain methods for estimating the quadratic impulse 

response: firstly without subtracting of the linear term, figure 5.13; and secondly with the 

linear term removed, figure 5.14. 

It can be seen that the least squares time domain method gives a solution containing less 

noise than its frequency domain counterparts. This is as expected as it represents an 
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optimal solution. However, the modified frequency domain method produces reasonable 

results which are far better than traditional frequency domain methods. The standard 

deviation of the residual error, e(n), is defined as. 

p Z e ( n ) ' 528 

(Further explanation can be found in Appendix F.) This was calculated for each of the 

methods and is shown in table 5.1. The time domain method has the smallest standard 

deviation (0.03), followed by the modified frequency domain method (0.06). However the 

traditional frequency domain n^thod can be seen to have a significantly larger error, the 

standard deviation of which is 0.25. 

Figure 5.12: Quadratic impulse response of mixed system calculated 

using the least squares optimum time domain method. 

#041 

Figure 5.13; Quadratic impulse response of mixed system calculated 

using the traditional frequency domain method. 
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:o.a2 

Figure 5.14; Quadratic impulse response of mixed system calculated 

using the modified traditional frequency domain method. 

Although the time domain method gives the best results it is far more computationally 

intensive. For the above quadratic model with an EFT size of 32 it requires the 

multiplication of two 1024 by 560 matrices and then the inversion of a 560 by 560 matrix. 

For a more realistic FFT size of 64 these dimensions are increased to 4096 and 2144. If a 

cubic model is attempted using this method both these figures are increased by 

approximately a factor of 64 and the computation becomes unfeasible large, using available 

compute power. However it can be seen that although the modified frequency domain 

method is not optimal, it is much closer to optimal than traditional frequency domain 

methods and has the major advantage that it can be easily calculated. 

Method Standard deviation 
of error 

Time domain least squares 0.032 
Frequency domain 0251 

Modified frequency domain 0.060 

Table 5.1: Standard deviation of error for the different methods 

123 



5.7 Causality and the Volterra series 

Consider the linear system identification problem shown in figure 5.15 where x(t) and y(t) 

are the input and output measurements of the system The problem is to establish a linear 

transfer characteristic linking the two. Let yo(t) be a stationary random process produced 

by operating on x(t) linearly. That is, 

yo(0= jh(i;)x(t-T)dT &29 

and e(t) = y(t)-yo(t) denote the error. The system identification problem is to find the 

transfer function, h(x) that rninirnises E[e^(t)]. This can be easily solved to give the Wiener-

Hopf equation: 

R^(T)= jh(T)Rxx(t-T)dT 530 

Fourier transforming equation 5.30, leads to the standard results: 

Sxx(f) 
531 

System 
y(t) 

x(t) . 
- • 

System 

x(t) . 
- • 

h(T) 
yo(t) T 

h(T) 

^ G(t) 

Figure 5.15: Linear system identification 

Note however that the limits of the integral in equation 5.30 are from minus infinity to 

infinity. This means that H(f) will not necessarily be causal. If the restriction that h(t) = 0, 

t > 0 is applied, the estimated system will always be causal, but, it is then not possible to 
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simply Fourier transform equation 5.30 to obtain equation 5.31. In order to obtain a 

solution in the frequency domain, the method of spectral factorisation [64] has to be used. 

The same problem will occur with the Volterra kernels. On all the Volterra models used in 

this work, the limits on the integral are from minus infinity to infinity. This means that the 

Volterra kernels estimated will not necessarily be causal. One possible approach to this 

problem would be to generalise the concepts of spectral factorisation but this is not pursued 

here. Another approach to avoiding non causality would be to use a parametric method in 

which the model could be limited to being causal. However, for the practical systems 

studied in chapter six, aU the Volterra kernels are in fact causal, as would be hoped with a 

real system, and so in these cases there is not a problem 

5.8 Overview of Volterra models 

A number of different methods for estimating Volterra kernels have now been presented, 

each of which require certain assumptions and have certain features. Different techniques 

have also been used by other authors to solve some of the Volterra models. In this section, 

a summary of the main models, together with references to other work, is given. 

Some of the more important features of estimation schemes for Volterra models are listed 

below: 

• The order of the model - either quadratic (can only analyse skewed type nonlinearities) 

or cubic (can analyse both skewed and symmetric nonlinearities). 

• The conditions imposed on the input - either Gaussian or non-Gaussian. 

• The method used to solve the model - either an iterative or closed form solution. 

• The highest order spectra needed to calculate the Volterra kernels - realistically it is 

only possible to calculate the bispectrum and trispectrum. 
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Figure 5.16 shows some of the possible quadratic Volterra models that can be created. The 

simplest of all is the quadratic Volterra model, assuming a Gaussian input, which was first 

proposed by Tick [76] in 1961. It requires only the calculation of the spectrum and 

bispectrum. However it is strictly limited to skewed type nonlinearities. If the assumption 

of Gaussianity is relaxed, to solve the quadratic model it is necessary to utilise the 

trispectrum. The Volterra model must then be solved either in an iterative manner or by a 

closed from solution as in Kim and Powers [46]. 

Gaussian 
input 

non 
Gaussian 

input 

Quadratic 
Volterra 
Model 

Requires up to 
the bispectrum 

Requires up to 
the trispectrum 

e.g. Kim, Powers [46] 
Cho, Powers [16] 
Choi, Miksad, 
Powers [17] 
Zoubir [83] 

e.g. Tick [76] 
Collis, \ ^ t e , 
Hammond [19,20] 
Perrochaud [62] 
Hinich [37] 

Figure 5.16: Types of quadratic Volterra model 

Figure 5.17 shows the possible cubic Volterra models. A general solution, with no 

restrictions on the statistics of the input has been presented by Nam and Powers [55]. 

However, this requires the calculation of up to a sixth order spectrum and so is of little 

practical use. If the input is assumed to be Gaussian, only the power spectrum, bispectrum 

and trispectrum are required. As this model can handle both skewed and symmetric 

nonlinearities, it is likely to be of most practical use, and is the model used for the 

experimental work in chapter six. 
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Gaussian 
input 

non 
Gaussian 

input 

Cubic 
Volterra 
Model 

Requires up to 
the trispectrum 

Requires up to 
the sixth order 
spectrum 

e.g. Hong, Kim, 
Powers [41] 
Collis, A^te, 
Hammond [19,20] 

e.g. Nam, Powers [55] 
Tseng, Powers [77] 
Im, Kim, 
Powers [44] 

Figure 5.17: Types of cubic Volterra model 

5.9 Conclusions 

In this chapter it has been shown that care must be taken when estimating the Volterra 

kernels of the system, firstly to check that the Volterra series is likely to converge for the 

particular system, and also to check that the calculated Volterra kernels are causal. Having 

estimated the Volterra kernels of a particular system it has been shown that it is then 

possible to predict the response of the system to any input. 

A quadratic Volterra model has been developed which places no restrictions on the 

statistics of the input. However, it is far more complex than the Volterra model that 

assumes a Gaussian input, and requires the calculation of the trispectrum. The quadratic 

model can of course only analyse skewed nonlinearities and so is fairly limited. If the cubic 

model, which can analyse both skewed and symmetric type nonlinearities, is extended to 

any input it is found that spectra up to the sixth order have to be calculated which prohibits 

its practical use. It is therefore suggested, that the cubic Volterra model that assumes a 

Gaussian input is likely to be of the most practical use. In the next chapter, it is this model 

that is used to analyse the experimental results. 
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Chapter 6 

Practical examples of the use of higher order spectra in 

mechanical systems 

6.1 Introduction 

In this chapter higher order spectral techniques are applied to some simple mechanical 

systems. The first system studied is the nonlinear magnetic beam. This is a simply 

supported beam, driven by an electromagnetic shaker. At the free end, pairs of repelling 

magnets are placed. By varying the position and number of magnets, the nature of the 

nonlinearity can be changed, be it skewed or symmetric, and by varying the distance 

between the magnets the strength of the nonlinearity can also be altered. Using this 

controllable system, auto higher order spectral methods are applied, assuming only a 

knowledge of an output signal. These are then compared with the results obtained from 

cross higher order spectral techniques, where both an input and output are known. 

For the magnetic beam, the expected nature of the nonlinearity was known; however, in the 

second example, there is no prior knowledge of the type of the nonlinearity. This system 

consists of a beam attached to electromagnetic shaker. By loosening the attachment bolt, a 

rattling type nonlinearity can be introduced to the system Varying the degree of tightness 

will vary the degree of nonlinearity. As in the previous example both auto and cross higher 

order spectral techniques are compared. In this system the precise nature of the 

nonlinearity is unclear, and it is not certain that the Volterra series will converge. However, 

a cubic Volterra model is applied to the system and seems to produce useful results. 
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6.2 The nonlinear magnetic beam 

The experimental set up for the symmetric nonlinear magnetic beam experiment, figure 6.1, 

consists of a beam, clamped at one end and attached to a shaker which is excited by a 

Gaussian signal. At its tip two pairs of repelling magnets are placed such that there is a 

symmetric nonlinear restoring force that tries to centralise the beam between the magnets. 

The strength of the nonlinearity can be varied by changing the distance between the 

magnets. By removing the top pair of magnets, as in figure 6.2, this symmetric restoring 

force becomes skewed as the beam is no longer constrained from above. 

to acquistion 

beam 

shaker 

accelerometer i 
magnets 

magnets 

adjustable 
height 

Figure 6.1: Experimental set up for symmetric magnetic beam 

to acquistion 

beam 

shaker 

accelerometer 

magnets 

adjustable 
height 

Figure 6.2: Experimental set up for skewed magnetic beam 
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The input signal to the shaker and the output signal from the accelerometer were both 

synchronously sampled into a P C. and stored ready for analysis. The input to the shaker 

was recorded as opposed to the force on the beam as it is a requirement that the input to 

the Volterra model is Gaussian. Although the input to the shaker is Gaussian, the force on 

the beam will not necessarily be as the beam will induce a nonlinear force onto the shaker. 

6.2.1 Auto higher order spectral methods 

Initially all magnets are removed from the beam to produce a predominantly linear system 

A Gaussian signal, with an upper frequency of 50 Hz was passed through a power amplifier 

and into the shaker. The signal from the accelerometer on the beam was sampled at 

100 Hz having been passed through an anti-alias filter with cut-off frequency 40 Hz. 

Approximately 262144 samples were recorded. 

The power spectrum of the response from the beam with no magnets is shown in figure 6.3. 

It can be seen that there are a number of resonances and anti-resonances in the system and 

the first resonance is at approximately 5 Hz. This can be predicted using the BemouUi-

Euler equation. For a clamped free beam it can be shown that the frequency of the first 

resonance is given by [24], 

==(].!56 -̂ -== 4.9Hz 6.1 
V rn 7= 

where m is the mass (0.102 kg), E is the Young's modulus (68.9x10"® Nm" )̂, I is the 

second moment of area (7.03x10"'^ m'*), and I is the length (0.494 m). 

The auto bicoherence is shown in figures 6.4 and 6.5. Figure 6.5 is a mesh plot, used to 

give an idea of the overall magnitude of the bicoherence, which in this case is approximately 

zero. Figure 6.4 is a contour plot which shows the precise detail of the bicoherence. The 

dashed lines on the contour plots of the bicoherence mark the position of the peaks and 

troughs in the spectrum, as it is often useful to be able to correlate power spectral effects 
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with peaks in the bicoherence. The same contour levels are used for all the contour plots in 

this chapter so as to allow for easy comparison between plots. In this case, there is no 

significant structure in the bicoherence, indicating that there are no quadratic type 

nonlinearities in the system. The incoherence is shown in figure 6.6, and again, there is no 

significant structure, indicating that there are no cubic type nonlinearities. As both the 

bicoherence and tricoherence are approximately zero, it is reasonable to suppose that the 

beam can be approximated by a linear system. 

The lower set of magnets are replaced to produce a system that should be dominantly 

skewed, as shown by the configuration in figure 6.2. The power spectrum is shown in 

figure 6.7. It can be seen that the position of the main resonance has increased which is 

partly due to the weight of the magnets on the tip of the beam. A number of possible 

harmonics of the fundamental frequency at approximately 8 Hz have also appeared close to 

16 Hz and 23 Hz. 

The bicoherence, figures 6.8 and 6.9, show significant quadratic phase coupling (maximum 

value = 0.7) between the harmonically related peaks in the spectrum, in particular between 

the 8 Hz and 16 Hz peaks which produce the largest interaction at (8,8) Hz. There is some 

structure in the tricoherence, figures 6.10 and 6.11, although it is not of particularly large 

magnitude (maximum value = 0.1) and again it occurs at (8,8,8) Hz. Two different angles 

are used to display the trispectrum, so as to gain an overall view of where the interactions 

occur as well as more accurate positioning of their frequencies. 

With the use of auto higher order spectra, it has been possible to determine that the 

nonlinearity has more dominant quadratic terms than cubic terms. It is also easy to teU 

from the bicoherence that the fundamental frequency and its first two harmonics are related 

by quadratic phase coupling, something that the power spectrum can give us no 

information about. 

Finally, both sets of magnets are replaced, to obtain a system with a symmetric nonlinearity, 

the power spectrum of which is shown in figure 6.12. However, because of the strength of 

the magnets, and the fact they were not perfectly aligned, not all the vibration was in the 
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vertical plane. For this experiment the sampling frequency was increased to 200 Hz and the 

signal passed through an anti-alias filter with cut off frequency 90 Hz. This is to account 

for the fact that the dominant modes have increased in frequency. 

The bicoherence (figures 6.13 and 6.14) shows a single peak at (35,35) Hz, indicating the 

presence of some quadratic phase coupling, although it is half the magnitude of the peak for 

the skewed system (maximum value = 0.3). The tricoherence (figures 6.15 and 6.16) 

shows a large peak of magnitude 0.4 indicating a very strong cubic interaction. Although 

the nonlinearity is domrnantly symmetric as seen by the peak in the trispectrum, there still 

appears to be significant skewed activity, which could be caused by the extra vibration that 

is not in the vertical plane. 

In this experiment, auto higher order spectral methods have been shown to provide useful 

and interesting information. They can be used to detect whether there is nonlinearity 

present in a system, what the dominant nature of the nonlinearity is, and can also give 

information about phase coupling between peaks in the spectrum. In the next section the 

same experiment will be used to see how much more information about the system can be 

obtained by assuming knowledge of the input, and using cross higher order spectral 

techniques. 
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Frequency (Hz) 

Figure 6.3: Normalised power spectrum of the linear beam 

5 10 ^ M 3 M * 40 # W 

Figure 6.4: Contour plot of the bicoherence of the linear beam 

Figure 6.5: Mesh plot of the bicoherence of the linear beam 
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Figure 6.6; Tricoherence of the linear beam 
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Frequency (Hz) 

Figure 6.7: Normalised power spectrum of the skewed magnetic beam 
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Figure 6.8: Contour plot of the bicoherence of the skewed magnetic beam 

Figure 6.9: Mesh plot of the bicoherence of the skewed magnetic beam 
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Figure 6,10: Tricoherence of the skewed magnetic beam 
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Figure 6.11: Tricoherence of the skewed magnetic beam (end view) 
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Frequency (Hz) 

Figure 6.12: Normalised power spectrum of the symmetric magnetic beam 
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Figure 6.13: Contour plot of the bicoherence of the symmetric magnetic beam 

Figure 6.14: Mesh plot of the bicoherence of the symmetric magnetic beam 
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Figure 6.15: Tricoherence of the symmetric magnetic beam 
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Figure 6.16: Tricoherence of the symmetric magnetic beam (end view) 
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6.2.2 Cross higher order spectral methods 

Using the measurements of the system input and output it is possible to calculate a measure 

of the ordinary coherence function for the beam in each state. The ordinary coherence 

function takes a value of unity if there is a linear relationship between the input and output. 

For the beam with all the magnets removed, the coherence function is shown in figure 6.17. 

It is close to unity everywhere, indicating a linear transmission path between the input and 

output. The coherence does dip in the regions where there are resonances in the system but 

this feature is well understood, being due to the resolution of the estimate, and not 

necessarily to nonlinearity. The linear transfer function, figure 6.19, and the impulse 

response, figure 6.18, are estimated, and from these, the output of this linear approximation 

can be calculated. The power spectrum of the linear component is shown in figure 6.20 by 

the solid line, together with the actual output spectrum of the beam, shown by the dotted 

line. It can be seen to account for nearly all the power in the signal, apart from a small 

amount around the first resonance, thus verifying that with no magnets the beam can be 

adequately modelled by a linear system. 

The coherence is reduced, figure 6.21, for the beam with the lower set of magnets in place, 

indicating that there is no longer a purely linear relationship between input and output. 

Using the cubic Volterra model, figure 6.22, it is now hoped to shed more light on what 

type of nonlinearities are acting in the system and what frequencies they affect most. 

X(f) 

Beam Y(f) 

H,(f) 
Y,Jf) 

H,(f) 

Figure 6.22; Frequency domain cubic Volterra model of beam 
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With the lower set of magnets in place, the iterative procedure, described in chapter four 

for calculating the Volterra kernels of a cubic system is carried out. Initially it is assumed 

that the cubic term is zero. The figures in this chapter, are all shown for the second 

iteration of the process, although for a system such as this, with no significant cubic term, 

the differences between the results for the first and second iteration are negligible. 

The linear transfer function, Hi(f), figure 6.24, and impulse response, hi(t), figure 6.23, for 

the system are calculated. The linear component of the signal is then obtained 6om the 

convolution of the impulse response with the original input data. Having removed the 

linear component, the cross bispectrum and hence the second order fi-equency domain 

Volterra kernel, H2(fi,f2), are calculated, figure 6.25. From this, the quadratic component 

of the signal is estimated by performing a two dimensional convolution of the input signal 

with the quadratic time domain kernel, figure 6.26. Finally, the trispectrum and hence the 

third order frequency domain Volterra kernel, H3(fi,f2,f3), figure 6.27, is calculated and 

from this the cubic component of the signal is formed by a three dimensional convolution of 

the cubic time domain kernel, figure 6.28, with the input signal. 

Figure 6.29 shows the power spectrum of the linear (thick solid Une), quadratic (dashed 

line) and cubic (thin solid line) components together with the output power spectrum 

(dotted line) of the system. The linear component can be seen to account for the main 

resonance at 8 Hz but the peaks at 16 Hz and 23 Hz are accounted for by the quadratic 

kernel, thus confirming the results obtained from the auto bispectrum. Since the restoring 

forces are skewed then one anticipates that the quadratic kernel wiU be more important than 

the cubic one. The cubic terms caused by symmetric nonlinearities are seen to produce no 

significant power at any frequency. Figure 6.30 shows the output of the Volterra model 

(solid line) and the output of the beam (dotted line). The model accounts for the majority 

of the output power from the beam apart from at low frequencies which is possibly due to 

the poor signal to noise ratio. 

The final experiment involved replacing both the upper and lower magnets, thus producing 

a system with a symmetric nonlinear restoring force. The coherence function of this system 
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can be seen in figure 6.31. The same procedure as above was followed and the linear 

(figure 6.33), quadratic (figure 6.35), and cubic (figure 6.37) frequency domain Volterra 

kernels estimated from higher order spectra. Multi-dimensional inverse Fourier transforms 

were then used to create the time domain kernels (figures 6.32, 6.34, and 6.36 respectively) 

which were then convolved with the original input data to give the linear, quadratic, and 

cubic components of the signal. These are shown in figure 6.38. It can be seen that the 

cubic component (thin solid line) is now more significant than the quadratic component 

(dashed line) thus indicating that the dynamics are now dominated by symmetric rather than 

skewed nonlinearities. However there are still parts of the signal generated by skewed 

nonlinearities and it can be seen that the slight peak between 70 Hz and 90 Hz is only 

present in the quadratic term. Figure 6.39 shows the output of the Volterra model (solid 

line) together with the output of the beam (dotted line) and again, barring low fi-equencies, 

the model has correctly accounted for most of the power across all fi-equencies. 

6.2.3 The interpretation of higher order impulse response functions 

A 'typical' linear impulse response function will hopefully oscillate and then die away. The 

quadratic and cubic impulse response functions behave similarly although a brief 

explanation of how to interpret this from the plots is needed. 

The quadratic impulse response function in figure 6.25 can be seen to have a large peak at 

the origin and decay away along the main diagonal. It wiU also fade along other diagonals 

fi-om the origin, but in this case, these diagonals reduce in magnitude much faster and so 

cannot be obviously seen. 

Interpretation is yet more difficult for the cubic impulse response. This can be seen in 

figure 6.36 where the impulse response function oscillates and dies away mainly along the 

main diagonal. This is shown in the plot by the colours changing fi-om red (large positive) 

through to blue (large negative) and back again. Further examples on the interpretation of 

this type of plot are given in Appendix C. 
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Figure 6.17: Coherence function of the beam Figure 6.18: Linear impulse response of the 
with no magnets beam with no magnets 
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Figure 6.19: Transfer function of the beam 
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Figure 6.20: Power spectra of the linear component of the 
beam with no magnets and power spectrum of the output 
of the beam 
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Figure 6.21; Coherence function of the 
skewed magnetic beam 
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Figure 6.23: Linear impulse response of the Figure 6.24: Linear transfer function of the 
skewed magnetic beam. skewed magnetic beam 
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Figure 6.25: Quadratic impulse response of Figure 6.26: Quadratic transfer function of 
the skewed magnetic beam the skewed magnetic beam 
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Figure 6.27: Cubic impulse response of the skewed magnetic beam 
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Figure 6.28; Cubic transfer function of the skewed magnetic beam 
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Figure 6.29: Power spectra of the linear, quadratic and cubic 
components of the Volterra model and the power spectrum 
of the output of the skewed magnetic beam. 
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Figure 6.30: Power spectra of the Volterra model and output 
of the skewed magnetic beam. 
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Figure 6.31: Coherence function of the 
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Figure 6.32: Linear impulse response of the Figure 6.33: Linear transfer function of the 
symmetric magnetic beam. symmetric magnetic beam. 
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Figure 6.34: Quadratic impulse response of Figure 6.35: Quadratic transfer function of 
the symmetric magnetic beam the symmetric magnetic beam. 
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Figure 637; Cubic transfer fonction of the symmetric magnetic beam 
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Figure 6.38: Power spectra of the linear, quadratic and cubic 
components of the Volterra model and the power spectrum 
of the output of the symmetric magnetic beam 
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Figure 6.39: Power spectra of the Volterra model and output 
of the symmetric magnetic beam. 
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6.3 The nonlinear rattling beam 

In the second experiment, a beam was attached to a shaker, and a 'fault' was introduced 

into the system by loosening the attaching nut. Higher order spectra were then used, as a 

condition monitoring tool, first to try and detect the fault, and second to determine 

something about the nonlinearity produced by it. 

A 10 cm long aluminium beam was attached at one end to a shaker, and the other end was 

free to vibrate, figure 6.40. The beam was excited by passing a Gaussian signal through a 

power ampHfier and into the shaker. The signal from the accelerometer and the input signal 

to the shaker were sampled at 5 kHz having passed through an anti-alias filter with a cut-

off frequency of 2.2 kHz. Approximately 262144 samples of each channel were 

synchronously sampled into a P.C. and stored ready for analysis. It was possible to 

introduce nonlinearity into the system by loosening the nut that connected the beam to the 

shaker. Recordings of the data were made both with the nut tightened and loosened. 

Adjustable Bolt 

, a 

Shaker 

Beam 
Accelerometer 

To acquistion 

Figure 6.40: Experimental set up for nonlinear beam experiment 

The only control over the nonlinearity in this experiment is the degree to which the nut is 

loosened. The aim is therefore to try and determine what the nature of the nonlinearity is 

and around what frequencies it is most dominant. As with the magnetic beam, first it will 

be assumed that only an output measurement is available, and auto higher order spectra 

used to find out as much as possible about the beam. Cross higher order spectra will then 

be used to try and obtain more information about the system. 
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6.3.1 Auto higher order spectral methods 

With the nut tight, the power spectrum of the beam, figure 6.41, shows a number of 

resonances. There is no significant structure anywhere in either the bicoherence, figures 

6.42 and 6.43, or the tricoherence, figure 6.44. This indicates that the system is linear up to 

third order. Figure 6.45 shows the power spectrum of the beam with the nut loosened. 

Loosening the nut, produces significant structure in both the bicoherence and tricoherence. 

Figures 6.46 and 6.47 show a large number of frequency interactions, indicating a large 

amount of quadratic phase coupling between the peaks in the spectrum and similarly, 

figures 6.48 and 6.49, show significant cubic phase coupling. Using only auto higher order 

spectra, this experiment has shown that signals measured from mechanical systems with 

loose fastenings can have much more bispectral and trispectral content than correctly 

fastened systems. 

6.3.2 Cross higher order spectral methods 

With the nut in the tight position, the coherence ftinction, figure 6.50 is approximately 

unity, apart from around regions of resonance. An estimate of the first order transfer 

function is shown in figure 6.52. Fourier transforming this gives the linear impulse 

response, figure 6.51. By convolving this with the original input data to the shaker, x(t), it 

is possible to obtain an estimate of just the linear component of the system. The power 

spectrum of this linear component is shown by the solid line in figure 6.53 together with the 

output power spectrum of the system, shown by the dotted line. The linear component can 

account for nearly all the power across all frequencies, indicating that the beam with the nut 

tight can be modelled as a linear system 

If the nut is loosened through 90 degrees the coherence function falls dramatically, figure 

6.54, indicating that there is no longer a purely linear transmission path between the input 

and output. As it is not clear what the nature of the nonlinearity is, it is not obvious that it 

is possible to model this type of nonlinearity using the Volterra series; however, a cubic 

Volterra model is fitted to the system. The standard procedure for estimating the Volterra 
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model was carried out and after the second iteration the linear, quadratic, and cubic transfer 

functions are as shown in figures 6.56, 6.58 and 6.60 respectively. Their time domain 

equivalents are also shown in figures 6.55, 6.57 and 6.59. By convolving these with the 

input it was possible to obtain a measure of the linear, quadratic and cubic components of 

the system. The linear component, shown by the thick solid line in figure 6.61, accounts for 

a large proportion of the power of the signal but by no means all. In the regions of the 

resonances and at the high frequencies there are discrepancies which may be due to the 

nonlinearities in the system. As a quadratic nonlinearity results in a doubling of frequency 

and a cubic nonlinearity may result in a trebling of frequency, it is not unexpected that that 

regions of nonlinearity appear at higher frequencies. The power spectrum of the quadratic 

component is shown by the dashed line in figure 6.61. It is considerably smaller than the 

linear component and accounts for only a small proportion of the total signal strength. 

Intuitively it is more likely that the beam wHl have a symmetric nonlinearity rather than a 

skewed nonlinearity as the driving force is symmetric. The cubic component is shown by 

the thin solid line in figure 6.61. It accounts for much of the signal that was not accounted 

for by the linear or quadratic components. This mainly occurs at the higher frequencies for 

the reasons discussed previously. It would be expected for the cubic component to account 

for the nonlinearities in the regions of resonance but, due to the poor resolution of the cubic 

Volterra kernel, this does not happen. 

Figure 6.62 shows the spectrum of the sum of the linear, quadratic and cubic components 

together with the spectrum of the output of the system. The difference between these two 

signals is that part of the signal which cannot be accounted for by our cubic Volterra model. 

These will be due to a combination of a number of reasons such as: nonlinearities of order 

higher than three, measurement noise, the incorrect assumption of a Gaussian input, or 

difficulties caused by the signal processing algorithms such as the poor resolution in the 

cubic term. Overestimates typically occur due to the incorrect assumption that the input is 

Gaussian. If the input is non-Gaussian, there will be cross terms present in the Volterra 

analysis which will lead to an overestimate. Also, it was assumed that this rattling 

nonlinearity could be modelled by the Volterra series and so some of the discrepancies 

could be due to the unsuitability of a Volterra model for this application. However, over 

most of the frequency range the model fits the data reasonably well. 
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Figure 6.41: Normalised power spectrum of the beam with nut tight 
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Figure 6.42: Contour plot of the bicoherence of the beam with nut tight 

Figure 6.43: Mesh plot of the bicoherence of the beam with nut tight 
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Figure 6.44; Tricoherence of the beam with nut tight 
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Figure 6.45: Normalised power spectrum of the beam with nut loose 
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Figure 6.46: Contour plot of the bicoherence of the beam with nut loose 

Figure 6.47: Mesh plot of the bicoherence of the beam with nut loose 
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Figure 6.48; Tricoherence of the beam with nut loose 
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Figure 6.49: Tricoherence of the beam with nut loose (end view) 
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Figure 6.53: Power spectra of the linear component of the 
beam with nut tight and power spectrum of the output 
of the beam 
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Figure 6.57: Quadratic impulse response of Figure 6.58: Quadratic transfer function of 
the beam with nut loose the beam with nut loose 
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Figure 6.59: Cubic impulse response of the beam with nut loose 
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Figure 6.60: Cubic transfer function of the beam with nut loose 
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Figure 6.61: Power spectra of the linear, quadratic and cubic 
components of the Volterra model and the power spectrum 
of the output of the beam with nut loose 
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Figure 6.62: Power spectra of the Volterra model and output 
of the beam with nut loose 

159 



6.4 Conclusions 

In this chapter two experiments have been successfully analysed with the use of higher 

order spectra. Although cross higher order spectra and the Volterra series can give a much 

more complete picture of the system, the importance of the results obtained using auto 

higher order spectra must not be ignored. 

In many applications, particularly in condition monitoring, only a single measurement will 

be available. In these cases it has been shown that enough information can be obtained to 

tell an engineer: 

1) If there is any nonlinearity in the system. This is often a good indication that 

there may be a fault in the system. 

2) The dominant nature of the nonlinearity and the frequencies at which it occurs. 

This information is often helpful in determining where, in the system, the fault is. 

When the input to the system is available, the cubic Volterra model has been shown to 

work well with the nonlinear systems studied. Volterra kernels up to third order have been 

successfully identified for all the systems studied using the methods proposed in chapter 

four. Using these kernels it is possible for an engineer to take the information which can be 

obtained from auto higher order spectra a stage further and to predict the response of the 

system to any input. 
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Chapter 7 

Concluding Remarks 

This thesis has discussed some of the issues associated with the use of higher order spectra 

and the application of such techniques to the detection and classification of nonlinearity in 

mechanical systems. Techniques have been developed which use both the bispectrum and 

trispectrum as complimentary tools in the analysis of nonlinear systems. Chapter two 

introduced higher order spectra and discussed some of the basic theory and difficulties 

associated with the bispectrum and trispectrum, the key features of which can be 

summarised as follows: 

• A signal can be completely described its joint probability density functions. Higher 

order spectra are defined as multiple Fourier transforms of joint moment and cumulant 

functions which can in turn be defined in terms of the joint probability density function. 

Hence, higher order spectra can be used to describe the properties of a signal. 

• The bispectrum and trispectrum can be thought of as decompositions of skewness and 

kurtosis over frequency respectively, in the same way as the power spectrum gives a 

decomposition of power over frequency. 

• The magnitude of the bispectrum is a function of two frequency variables and so can be 

easily displayed using three dimensions. The magnitude of the trispectrum, however, is 

a function of three frequencies and so requires four dimensions to display it. A new 

method has been proposed where for every frequency triplet, a sphere is drawn; the size 

and colour of the sphere represent its magnitude. 

• Higher order spectra can be estimated via either the time domain (indirect method) or 

frequency domain (direct method). As with power spectral estimation the length of 
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window used in the calculation crucially affects the variance and bias of the estimate. 

Considerably longer data lengths are needed to ensure statistical convergence of higher 

order spectra than with ordinary power spectral estimation. 

• Just as the discrete power spectrum has symmetry about its folding frequency the 

bispectrum and trispectrum have many regions of symmetry. It is only necessary to 

evaluate the bispectrum and trispectrum in the principle domain. 

• The principle domain can be further subdivided into the inner and outer region. It was 

shown how the position of components of higher order spectra in these regions could 

form the basis of tests for aliasing and stationarity. 

An important consideration is that estimates of higher order spectra have a variance which 

is dependent upon the signal's spectrum. In chapter three, the possible methods that can be 

used to normalise the bispectrum and trispectrum to remove these power spectral effects 

were explained and a number of examples given to illustrate the processes. The main 

normalisation methods can be outlined as follows: 

• The skewness and kurtosis functions are normalised bispectra and trispectra 

respectively. They are mainly used to make decisions, based on statistical tests, about 

the symmetry, aliasing, and linearity of a signal. 

• The bicoherence and tricoherence are normalised bispectra and trispectra receptively 

and are predominantly used to measure quadratic and cubic phase coupling. Their main 

advantage over the skewness and kurtosis function is that they give results which are 

bounded between zero and one. 

• Under certain circumstances, notably systems with sharp resonant peaks, the above 

normalisation methods have been shown to fail due to bias problems. An alternative 

technique has been developed to alleviate this problem based on pre-whitening the 

signal. The pre-whitening can be carried out using a very much larger window length, 

and hence greater resolution, than the estimation of the higher order spectra in which 

162 



the window length is constrained by computational requirements. It has been 

successfully demonstrated both with a narrow band amplitude modulated process and a 

simulation using the DufFmg oscillator. 

The bispectrum and trispectrum can be used to detect non-Gaussianity in a signal. If a 

Gaussian signal is operated on by a nonlinear system then the resulting signal will be non-

Gaussian. By studying this non-Gaussian signal it is possible to obtain information about 

possible nonlinearity in the system. However, to fully characterise the system it is necessary 

to have some knowledge of both the input and the output. In chapter four, the Volterra 

series was introduced and a detailed analysis of how it could be used to model a nonlinear 

system, using cross higher order spectra, was given. The key points of this analysis can be 

summarised as: 

• Before analysing a nonlinear system with the Volterra series, a more simple model, 

based on the polynomial input to linear filters was used. With this model and using 

both higher order spectra and residual spectra, it is possible to calculate expressions for 

the linear, quadratic, and cubic components of the system. However, although this 

model is more simple to analyse, it is equivalent to just calculating the main diagonal of 

the full Volterra kernels, and for many systems, is an over simplification. 

• A quadratic Volterra model has been developed to analyse nonlinear systems with 

skewed components. However, it was found that, as with auto higher order spectra, 

estimates of cross higher order spectra have variances which depend on the signals 

spectrum. A technique has been developed to calculate the Volterra kernels, which 

minimises the variance of the bispectrum and so minimises the effect of the second 

order properties. This is based on successively subtracting of lower order terms. 

• The quadratic Volterra model can be extended to a cubic Volterra model which is 

capable of analysing both skewed and symmetric type nonlinearities. Whereas, the 

quadratic model produced a simple closed form solution, the cubic model is more 

complex and an iterative procedure is adopted. 
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Chapter four was based on the assumption that the input to the system is Gaussian. In 

chapter five the possible approaches that can be used when this assumption is invalid were 

discussed, together with the following pitfalls that can occur whilst using the Volterra 

series. 

• The Volterra series has been likened to a Taylor series with memory and so as some 

functions have a diverging Taylor series then some systems will also have a diverging 

Volterra series. To converge, the system must posses finite memory, that is, the 

response to any input must die away with time. Also, systems with multiple equilibria 

wiU not have convergent Volterra series except if modelled locally around one 

equilibrium point. 

• If the input to the system cannot be assumed to be Gaussian then it is still possible to 

find solutions to the quadratic and cubic Volterra models, however, the complexity of 

the algorithms involved is vastly increased. The quadratic Volterra model requires 

knowledge of up to the fourth order statistics and the cubic model assumes knowledge 

of up to the sixth order. 

« Having calculated the Volterra kernels of a system it is possible to find the response of 

that system to any input. This has been demonstrated by firstly calculating the Volterra 

kernels of a Duffmg oscillator using a Gaussian input and then using them to predict the 

response of the system to a sine wave. 

® The causality of the Volterra kernels is checked after calculation. Although, the theory 

developed does not necessarily force the Volterra kernels to be causal, it has been 

found that for the practical systems analysed, all the kernels estimated, were causal. 

• The frequency domain technique developed in chapter four to estimate the Volterra 

kernels, although not optimal, has been shown to be a great improvement on traditional 

methods, when compared to the optimum least squares time domain technique. 
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Finally, in chapter six two mechanical systems were successfully analysed with the use of 

higher order spectra. It was shown how higher order spectra could provide the following 

useful information to an engineer: 

• If only an output signal is available, as with many condition monitoring applications, 

auto higher order spectra are able to detect for nonlinearity in a process, so long as the 

input can be assumed to be Gaussian. It is possible to determine both the nature and 

the dominant frequencies of the nonlinearity. This information can help diagnose if 

there is a fault in a system and, if so, the nature and likely position of the fault. 

• If both input and output signals are available, it is possible to use cross higher order 

spectra and the Volterra series to model the system. 

There are a number of possible extensions to this work some of which are listed below. 

It would be of interest, for real data, to compare the approach used in this thesis with 

other techniques e.g. a model based parametric approach. 

Further work could be carried out on the time domain methods discussed in chapter 

five in order to produce leaner algorithms that are capable of coping with greater 

resolution and higher orders. These could be based around a sparse Volterra model as 

suggested in [63]. 

Having estimated the Volterra kernels of the beams in chapter six it would be of interest 

to excite them with a sine wave and compare the actual output measured from the 

beam with the output of the Volterra models. In might be expected that these results 

would be similar for the case of the magnetic beam, where the nonlinearity is analytic, 

but not for the rattling beam. 

Further work needs to be done to fully address the topic of the causality of the 

estimated kernels. One possible approach would be to generalise the concepts of 

spectral factorisation to higher order spectral factorisation. 
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Chapter 8 

Appendix A 

Properties of cumulant functions 

The following appendix gives a brief explanation of cumulant functions, how they are 

derived from the joint probability density function, and some of their important properties. 

A more detailed discussion can be found in [26]. The appendix is written in terms of auto 

cumulants although it is all equally applicable to cross cumulants. 

Let V = (vi,v2,...vk)^ and x = (xi,x2,...xkf where (X],X2,...,Xk) denotes a collection of random 

variables. The k'*' order cumulant of these random variables is defined as the coefficient of 

(vi,v2,...vk) in the Taylor series expansion of the logarithm of the order joint 

characteristic function. The k'̂  order characteristic function, K(v), is defined as the k*̂  

order Fourier transform of the k"̂  order joint probability density function. 

K( v) = In E[exp( j V x)] A. 1 

The second, third, and fourth order cumulants of a real, zero mean, random variable are 

thus defined as, 

cum(x,,x^,xJ = E[X;X^xJ A.3 
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cum(xi,x2,x3,x J = E[X1X;X3XJ -E[x^x JE[XgX J 

- E [ x , x J E [ x 2 x J A.4 

-E[X;X,]E[X2XJ 

Let x(t) be a zero mean, strictly stationary, random process. The k* order cumulant of this 

process, denoted Cx_x(Ti,T2,...,Tk), is defined as the joint k* order cumulant of the random 

variables x(t), x(t+Xi), x(t+T2), x(t+tk). Hence, the second, third, and fourth order 

cumulants of x(t), are: 

C^(T) = E[x(t)x(t + t)] A.5 

Cxxx ('C,, 'C;) = E[x(t)x(t + T, )x(t + T, )] A.6 

Cxxxx (i:,, 1:2,1:3 ) = E[x(t)x(t + 1 Jx(t + T, )x(t + T J ] - Cxx (Ti )Cxx - T, ) 

-Cxx('C3)Cxx(i:.-':2) 

A.7 

For a zero mean stationary random process and for k = 3,4 the k'̂  order cumulant of x(t) 

can also be defined as, 

Cx...x , 1:2 ) = E[x(T,)... X(T,_,)] - E[g(T,)... )] A.8 

where g(t) is a Gaussian random process with the same second order statistics as x(t). 

Cumulants therefore, not only display the amount of higher order correlation, but also 

provide a measure of the distance of the random process from Gaussianity. 

The following are important properties of cumulants, some of which are used in this work: 

• Cumulants are symmetric in their arguments, i.e. 

cum(xj , . . . ,xJ = cum(x. , . . . , X ; ) A.9 
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where is a permutation of Hence for the third order cumulants, the 

following symmetries exist: 

= Cxxx('C2-':i-i:i) A.10 

— X̂XX (^1 

~ X̂XX (""'̂ 1 ' '̂ 2 ~ '̂ 1 ) 

• If a is a constant then, 

cum(a + x j , . . . , x j = cum(xj,...,x J A. 11 

• Cumulants are additive in their arguments; 

cum(xQ +yo,z^ , . . . ,z j = cum(xo,z; , . . . ,zj + cum(yo,z^,. . .zj A.12 

• If the random variables {Xi} are independent of the random variables {y,}, then, 

cum(Xj +y,,...,Xj^ + y j = cum(x^,. . . ,xj + cum(y^, . . .y j A. 13 

• If Xi are constants then, 

cum(X^x,,...,%^xJ = |^n^k j c u m ( x ; , . . . , x j A. 14 
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Appendix B 

Second order analysis of stationary random signals 

In this appendix, some details of second order analysis are discussed. Three topics are 

briefly mentioned, the stationarity of a signal, the auto correlation function, and the power 

spectrum. Further explanation can be found in Priestley [64]. 

In general, the properties of a stochastic process are time dependent but to simplify matters 

it is often assumed that a sort of 'steady state' has been reached in the sense that the 

statistical properties are unchanged under a shift in time and the following two properties 

hold: 

P()LJ)== P(x) 13.1 

P(xi,ti;x2,t2) is a function of t2-ti and not both ti and tz B.2 

where P(x,t) denotes the probability density function at time, t. 

If the above conditions hold, the process is said to be weakly stationary. If similar 

conditions hold for aU the higher orders then the process is said to be completely stationary. 

A widely used statistic for a random signal, x(t), is the autocorrelation function, which, for 

a zero mean signal, is defined as: 

Rxx(t,.t2) = E[x( t Jx( t J ] B.3 

If x(t) is stationary, its statistical properties are unchanged under a time shift so that. 
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Rxx(t2 - t ] ) B.4 

Equation B.4 can then be written in its more common form in terms of a lag, x, as; 

Rxx(T) = E[x(t)x(t + T)] B.5 

By assuming that the process x(t) is ergodic with respect to its mean and auto correlation 

function it is possible to replace the ensemble average in equation B.5 with a time average. 

Rxx (T̂ ) - T% %% J x(t)x(t + T)dt B.6 
Z i - T 

Fourier transforming equation B.3 leads to an expression for the power spectrum, 

where XxCf) is the Fourier transform of x(t) from -T/2 to T/2. This is written in this form as 

it is not strictly possible to Fourier transform x(t). This is because x(t) is stationary and 

extends from -oo to and as such has unbounded energy, i.e. it is not a function in L .̂ 

However, this is often of no practical importance and it is common to write equation B.7 

as: 

:Sxx(f,,f,) ==]3[]((f,)]((f,)] IS.8 

For a stationary signal it can be shown, as in Priestley [64], that equation B.8 is equal to 

zero except along ft = -f2. Hence, for a stationary signal the power spectrum is defined as, 

S ^ ( f ) = E[X(f)X'(f)] B.9 
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Appendix C 

Visualisation of the trispectrum 

The methods used to display the trispectrum were introduced in chapter two. In this 

appendix some examples of simple, analytic signals will be used to help familiarise the 

reader with this visualisation technique. 

The signals used are the three dimensional versions of an exponential, a sine wave, and an 

exponentially decaying sine wave. They are defined as: 

== (2.1 

Xj = sin(0.5(i + j + k)) C.2 

X, = sin(0.5(i + j + C.3 

where i, j, k are the three axes scaled from 0 to 31. 

Figures CI, C2, and C3 show the three dimensional representations of xi, Xi, and xg 

respectively. The method used was stated in detail in chapter two but a few key points will 

be noted here: For every (i,j,k) a sphere is plotted and the size and colour of the sphere 

represent its magnitude. Spheres of very small magnitudes are not plotted. Note, a sphere 

of small magnitude means one that is approximately zero, not a large negative value. It is 

always important to look at the key along side the graph as the colour scales are not the 

same between different plots. 
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The exponential signal, figure CI, can be seen to decay away from the origin, (0,0,0), in all 

three dimensions. Points whose magnitudes are close to zero, which would be displayed in 

dark blue, have zero radius and so do not appear in the plot. The sine wave, figure C2, can 

be seen to oscillate from -1 to 1, going away from the origin. Again, points of magnitude 

that are approximately equal to zero, in this case coloured green, are omitted. The 

decaying exponential, figure C3, oscillates and dies away from the origin. This particular 

signal is very typical of a three dimensional impulse response function, examples of which 

were seen in the experiments in chapter 6. 

The software used for this visualisation technique was Application Visualisation System 

(AVS). AVS is a system which allows users to visualise their data by constructing 

applications from a series of software components called modules. Modules are assembled 

into networks where each module performs a specific task. For completeness, a diagram of 

the network used for the trispectral visualisation, figure C4, is included. For more 

information on AVS see [22]. 

1 7 2 



1.0 

i 0.0 

Figure CI: Three dimensional exponential 
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Figure C2: Three dimensional sine wave 
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Figure C3; Three dimensional decaying sine wave 
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Figure C4: AVS network used to display the trispectrum 
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Appendix D 

Average of the Product of Gaussian Variables 

If X is a Gaussian variable with a zero mean and a standard deviation of one then the 

probability distribution is, 

1 4''̂  
P(x) = - p = e D.l 

The expected value of a product of such Gaussian variables, obeys the following law, 

E [ x , x , . . x , J = i n E [ x , x J D . 2 

]5[x^c,---x,M+i ] == 1)3 

where Z f l means the sum of all completely distinct ways of arranging Xi, Xz, ... X2n into 

pairs. The number of ways of doing this is (2N)! / N!2^. 

For example for N=2, 

( 2 N ) ! 4 ! 

(N)!2'' 212= 
= 3 1&4 

and, 

E [ X , X ; X 3 X J = E [ x , x J E [ x , x J + E [ X , X J E [ X ; X J + E [ x , x J E [ x , x J 

D . 5 
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To prove this result, as in Schetzen [70], some results wiU be used based on the 

characteristic function of a Gaussian variable. The characteristic function for a Gaussian 

variable, x, is defined as: 

Af, (a) = ]== cbi I).6 

where P(x) is the probability density function of x. This can be extended to the 

characteristic function of the joint probability density function of N random variables, 

P(xi, X2,... XN) as, 

MXa,,a,,..-,aM)= j j-"jp(x,,x2,---,x J dx,dx/--dx^ 

D.7 

Equation D.7 can be expanded to give, 

, a, , . . . , a , ) = jr ... a^a!: - --ai:" I).8 
k,=0 k2=0 kN=U 

where 

kN ,1, , . . 1 , , 3 ^ k, 3 ^ k . k» 8a/ ' 9a/" Ba^*" 
= 9 9 * ' = a M = 0 

D.9 

Differentiating equation D.7 gives 

3^ 3^ 
O O Cr ^ f / \ -I—I r kj k2 ^NT'̂ 1'̂ 2 '̂ N 

3a 3a M,(a, ,a2,". ,a^) — E[x, x, - -x^ ] j j •••j 

D.IO 
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Substituting equation D. 10 and D.9 into D.8 produces, 

M . ( a „ a , , - , a „ ) = f X - X ' 
k,=o kz-o kN=(i k j k j "k^! 

D.ll 

The only term in equation D.ll that will contain the term E[x,x2---x^] is if 

ki = k2 = ... = kw = 1. So taking only this term gives, 

M X a , , a ; , . " , a M ) = E[x,x,...x^](ja,)(ja J ' - 'Cax) 

= E[x,X;---xJ(j)' '(a,a2"-a^) 
D.12 

Another expression for the characteristic function of N normalised jointly Gaussian random 

variables Xi,X2...Xn is given by Cramer [23] as. 

M X a r a 2 , - - - , a M ) = e 

i f N N -T ZIE(XiXj]a|aj 
2 W W ^ ^ 

D.13 

It is possible to express e* as the following series. 

X ^ X 
e = E — 

p=" p! 
D.14 

Writing equation D.13 in this format gives 

MXa, ,a2 , -" ,a^) - %—-f - -
p=op!v 2 

ZZE[x,x Ja^a 
i=i j=i 

D.15 

Equation D. 15 can then be expressed as. 
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2 y k2=l 

\ ( l Y * N N N N 

1)16 

Equation D.16 contains no odd products of a, so equating this with equation D.12 means 

that all odd terms in equation D.12 must be zero. Hence, 

= 0 D.17 

Thus proving equation D.2. 

Taking equation D. 15 and setting N=2M, P=M, and using the expansion, 

Ix^yk I = I Z - Z KXk/"XkJ(yk,yu'"ykJ D.is 
k=l J k,=lk2=l kM=l 

will give the term of equation D.15 that contains only the product (â â̂ ^ ) as in 

equation D.12. Hence, 

M,(a , ,a , , . - .a^) = 

Taking the term for which ki9̂ k2#...̂ k2M produces an equation of the form of equation 

D.12. That is. 

1 r 1^" 

1X20 

M,(a,,a2,-",a,M) = — 1 - - | ( a , a ; . . . a^ )ZE[x , ,x , J . . .E [x ,^ ,x ,^ ] 
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where the sum is over all terms where ki#k2#...#k2M • However there are many terms in 

equation D.20 which are the same. There are 2^ of the form XiXj=XjXi and M! of the form 

E[XjXj E[x^x,] = E[x^xJ E[X;Xj. Rewriting equation D.20 summing all these terms 

gives, 

E[x,_x,̂  ] D.21 

where f l E[x^ x^ ] means E[x^ x J E [ x x J - - - E [ x ^ x ] and the sum is over all 

distinct ways of forming the product. 

Equating equation D. 12 with equation D.21, 

E [ x , x , - x , ] a ) ' ' ( a , a , - a „ ) = ( - l ) " ( a , a , - a „ ) i ; n E [ x , , x , ^ ] D.22 

Therefore, 

E[x.x, . .x^] = i n E [ X : X j D.23 

Thus proving equation D.2. 
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Appendix E 

Solution of the Cubic Volterra Model 

The solution to the third order Volterra model is a straight extension to the second order 

model. The third order Volterra model is, 

y(t)= |hi(u)x(t-u)du + 

j jh; (u, v)x(t - u)x(t - v)du dv + E.l 

J11 h 3 (u, V , w)x(t - u)x(t - v)x(t - w)du dv dw 

Using the cross correlation function, 

R XY (T) = E[x(t - %)y(t)] E.2 

and substituting from equation E. 1 for y(t) gives, 

RxYM= jh,(u)E[x(t-i:)x(t-u)]du + 

J J h J (u, v) E[x(t - T)x(t - u)x(t - v)] du dv + 

J J J h 3 (u, v, w) E[x(t - T)x(t - u)x(t - v)x(t - w)] du dv dw 

As the expected value of an odd number of Gaussian variables is zero, the quadratic term is 

zero. The cubic term is the product of four Gaussian variables and so can be written as the 

sum of three pairs of products. Hence, 
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RxY(T)=fh,(u)Rxx(i:-u)du + jjjh,(u,v,w){Rxx(T-u)R^(v-w) + 

Rxx(T-v)Rxx(u-w) + 
R m ( t - w ) R x x ( u - v)}du dv dw 

E.4 

Taking the Fourier transform with respect to t gives, 

S XY (f) = H, (f)SXX (f) + S XX (f) J J I h 3 (u, V, w) R XX (V - w)e du dv dw 

+Sxx(f) j j jh3(u, V, w) RXX (u - w ) e d v dw 

+ S x x ( f ) J J | h 3 (u, V, w) R x x (u - v)e^^"^"du dv dw 

Substituting Rxx(v-w) = dg into the first part of the cubic term, 

Sxx(f) JJ Jh; (u, V, w) RXX (v - w ) e d v dw E.6 

gives, 

Sxx (f) 11 jSxx(g) h;(u,v,w) dv dw dg 

= S X X (f) j S X X (g) H, (-f, g,-g) dg E.7 

The other parts can be treated similarly giving, 

= H,(f) + jSxx(g)H,(-f.g,-g) dg 

x̂x W 
+ jSxx(g)HX-g,-f,g)dg 

+ jSxx(g)H,(g,-g,-f)dg 
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The symmetrical properties of the third order kernel follow on from those of the 

trispectrum, as described in chapter two. Using these properties equation E.8 can be 

written as, 

c Cf\ 
- ^ = H,(f) + 3 jS^(g)H,(.f,g,-g)dg E.9 

X̂X W 

Using the 2nd order cumulant function, 

RxxY ('[], ) = E[x(t - T] )x(t - T; )y(t)] E. 10 

and substituting from equation E. 1 for y(t) gives, 

RxxY(T:,.':z)= jh,(u)E[x(t-T,)x(t-Tjx(t-u)]du + 

j jh;(u, v) E[x(t - T,)x(t - T; )x(t - u)x(t - v)] du dv + ^ 

J J J h j (u, V, w) E[x(t - T, )x(t - Tj )x(t - u)x(t - v)x(t - w)] du dv dw 

The linear and cubic terms contain the product of an odd number of Gaussian variables and 

so are equal to zero. Hence, 

RxxY (T:,. 1:2) = i Ih, (u, v) { ( T , - T J.Rxx (u - v) + 

X̂X ("̂1 - ")̂ XX ("̂ 2 - v) + 
Rxx(T, - v)Rxx(T; -u)} du dv 

The double Fourier transform of the first term of equation E. 12 is; 

J J n h; (u, v) R^ (T, - T JR^x (u - v) e e dT,dT,du dv 

= Sxx (f, )5(f, + )J j h Xu, v) R ̂  (u - v) du dv 

= 0 i f ( f , + f J / 0 E.13 
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The double Fourier transform of the second term of equation E. 12 is, 

JJj jh;(u.v)R^(T, -u)Rxx(i:2 -v)e''"''"e''"^"'dT;,dT2du dv 

substituting 6 = x, -u , dx, = d9 gives 

substituting •d = x, - v, dx^ = d0 gives = Sxx(f2)e 

= Sxx(f,)Sxx(f:)Jjh(u,v)e**"'e':*"dudv 

= Sxx(f,)Sxx(f,)H(f,,f,) E.!/! 

The third term of equation E.12 is the same as the second but with the roles of u and v 

reversed. Hence, 

jjj jh,(u,v)R^(x, -v)R^(T^ -u)e'"''"e'"':"dT,dT,dudv 

= S x x ( f , ) S x x ( f , ) H ( f r f , ) 13.15 

Therefore adding the three terms gives, 

S,aTXf,.f2)==:2Sxx(f,)Sxx(f,)Ii(fnf:) if(f,+f2)=f 0 ]E.16 

Using the third order moment function, 

RxxxY ('[i,'Cz,'̂ 3) = E[x(t - T,)x(t - T,)x(t - T3)y(t)] E. 17 

and substituting from equation E. 1 for y(t) gives, 

R XXXY 1, 1=2, ^ 3 ) = i h , ( u ) E [ x ( t - T , ) x ( t - T ; ) x ( t - T , ) x ( t - u ) ] d u + 

J Jh^(u, v) E[x(t - X,)x(t - Xj)x(t - T,)x(t - u)x(t - v)] du dv + 

J J I h 3 (u, V, w) E[x(t - X I )x(t - X J )x(t - X j )x(t - u)x(t - v)x(t - w)] du dv dw 

E.18 
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The linear term of equation E. 18 is, 

j h, (u)E[x(t - T,)x(t - T;)x(t - T,)x(t - u)] du = jh, (u)(Rxx (T, - T;)Rxx (T3 - u) + 

Rxx(T,-'r3)Rxx(T2-u) + 
Rxx('r2-'r3)Rxx('[,-u)}du 

E.19 

Taking the triple Fourier transform of the first term of equation E. 19 gives: 

= S^(fJS^(f,)6(f, +f,)H,(fJ = 0 if(f, + f j ,^0 E.20 

Similarly the other two terms of equation of equation E.19 are equal to zero if %+f^) 9̂  0 

and (fi+fa) 9̂  0. 

As the expectation of the product of an odd number of Gaussian variables is zero, the 

quadratic term of equation E.18 is zero. This leaves just the cubic term, 

J J I h 3 (u, V, w) E[x(t - X, )x(t - Tj )x(t - Tj )x(t - u)x(t - v)x(t - w)] du dv dw E.21 

There are 15 possible ways of arranging 3 pairs of six variables. Here they can be arranged 

into two classes. 

There are nine of the form, 

RxxC'Cx -':y)RxxK -a)Rxx(b-c) 

where {x,y,z} 6 {1,2,3} and {a,b,c} € {u,v,w}. 
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The Fourier transform of these combinations contain delta functions and so equal zero if 

(fi+f2) 0, (fz+fi) # 0, and (fi+fs) # 0. 

There are six of the form, 

RxxK +a)Rxx(Ty +b)RxxK +c) 

where {x,y,z} e {1,2,3} and {a,b,c} e {u,v,w} 

The Fourier transform of these six terms are: 

6 S „ (f. )S „ (f, )S „ (f3 )H, (f,, f„ f,) E.22 

Therefore adding all the terms together gives, 

S ^ ( f , . f „ f J = 6S^(f , )S^(fJS^(fJH,( f„f„f , ) E.23 

if (fi+f]) # 0, (fz+fs) # 0, and (fi+fs) ^ 0 

Hence the three equations for Hi(f), H2(fi,f2) and H3(fi,f2,f3) are. 

SxyCO 
Sxx(f) 

= H,(f) + 3 ;s^(g)H,(-f.g.-g)dg E.24 

Sxx(f,)Sxx(f:) 

S m (f, ) S x x ( f , ) S x x ( f , ) 

185 



Appendix F 

Optimal linear filtering 

Consider a linear system as in figure F.l. The object is to design an L point digital finite 

impulse response filter, h, to modify the input, x(n), in such a way as to minimise the mean 

square error, e(n), between the filter output and the desired signal, y(n). It is assumed that 

the process x(n) is ergodic. 

The mean squared error solution is given by: 

min{ E[e(n)^] }=min{ E[(y(n)-h\nf] } F l 

where h = [h(0) h(l) ...h(L-l)]^ and Xn= [x(n) x(n-l)... x(n-L+l)]^. 

An expression for the minimum of equation F.l can be found by differentiating it with 

respect to h and equating to zero to yield: 

-2(Ii[y(n)]tJ-I3[XoXnT]ht,0 = 0 I\2 

By defining the auto correlation matrix for x(n) as R = E[Xn Xn̂ ] ,and the cross correlation 

vector between x(n) and y(n) as p = E[y(n)Xn] then equation F.2 can be solved for h to give 

the optimal filter vector as: 

h = R'p F.3 

This is referred to as the Wiener filter or the minimum mean squared error solution. 
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In practise it is not possible to evaluate F.3 as only a finite data length is available and so 

given L samples of a time history, by replacing the expectations in the Wiener solution by 

time averages, the optimal least squares solution arises by solving: 

m i n | l e ( n ) ^ j where e(n)=y(n)-h^Xn 

This differs from the Wiener solution by virtue of the fact that it is data dependent. The 

optimum least squares solution is the solution which minimises the sum of the past n 

squared errors. The least squares filter is given by the solution of: 

Xh = y F.4 

where 

and 

X 

x(L) x ( L - l ) 

x(L — 1) x(L — 2) 

x(L-2) x(L-3) 

x(3) x(2) 
x(2) x(l) 
x(l) 0 

x(L - n +1) 

x ( L - n ) 

x(L — n — 1) 

0 

0 

0 

y = [ y(L) y(L-l) y(L-2)... y(3) y(2) y(l) f 

Assuming n > L the least squares solution to this system of equations is given by: 

h = (0n)-'(en) F.5 

where 

4>. 
n = 0 

8. =X''y 
n = 0 

F.6 
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From this is can be seen that the matrix On is an estimate of the auto correlation matrix R, 

to within a scaling factor. Similarly 6n is an estimate of the cross correlation vector p. The 

scaling factors in both estimates are the same and in the calculation of h these cancel out. 

y(n) 

x(n) 
h(n) 

e(n) 

Figure F. 1: Linear filtering 
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