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ABSTRACT

FACULTY OF ENGINEERING, SCIENCE AND MATHEMATICS
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Doctor of Philosophy

COMPUTER SIMULATION STUDIES OF MAGNETIC
NANOSTRUCTURES

Richard Paul Boardman

Scientific and economic interest has recently turned to smaller and smaller mag-
netic structures which can be used in hard disk drives, magnetoresistive random
access memory (MRAM), and other novel devices. For nanomagnets the geomet-
ric shape of the object becomes more important than other factors such as mag-
netocrystalline anisotropy — the smaller the object, the more strongly the shape
anisotropy affects the hysteresis loop.

We investigate the micromagnetic behaviour of ferromagnetic samples of var-
ious geometries using numerical methods. Finite differences and finite elements
are used to solve the Landau-Lifshitz-Gilbert and Brown’s equations in three di-
mensions. Simulations of basic geometric primitives such as cylinders and spheres
of sub-micron size orders provide hysteresis loops of the average magnetisation,
and additionally our computations allow the study of the microscopic configura-
tion of the magnetisation. We show different mechanisms of vortex penetration for
these geometries, and investigate part-spherical geometries whose magnetisation
pattern demonstrates qualities of other primitives.

Developing this further, we calculate the hysteresis loops for a droplet shape —
a part-sphere capped with an half-ellipsoid. This resembles the shapes formed by
some chemical self-assembly methods, a low-cost and efficient way of creating a
commercially viable product. When examining the magnetic microstructure of this
geometry we find different types of vortex behaviour, and reveal the dependence
of this on the physical characteristics of the droplet.

We also examine the hysteresis loops and magnetic structures of other geome-
tries formed through the self-assembly method such as antidots — honeycomb-like
arrays of spherical holes in a thin film. We show magnetisation patterns and com-
parison between experimental and computed magnetic force microscopy (MFM)
measurements.

ii



Contents

1 Introduction 1
1.1 Historical context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Modern magnetism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Hard disk drives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Overview of relevant interactions . . . . . . . . . . . . . . . . . . . . . 5
1.5 Computer simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Micromagnetics 8
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 From quantum mechanics to micromagnetics . . . . . . . . . . . . . . 9
2.3 Interactions between atomic magnetic moments . . . . . . . . . . . . 10

2.3.1 Exchange energy . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3.2 Anisotropy energy . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3.3 Zeeman energy . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3.4 Dipolar energy . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3.5 Total energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.4 Micromagnetic description . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.4.1 Exchange energy . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.4.2 Anisotropy energy . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.4.3 Zeeman energy . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.4.4 Dipolar energy . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.5 From static to dynamic . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.6 Computational models . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.6.1 The Stoner-Wohlfarth model . . . . . . . . . . . . . . . . . . . 20
2.6.2 The Landau-Lifshitz-Gilbert equation . . . . . . . . . . . . . . 21

2.7 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.7.1 Discretisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.7.2 LLG relaxation . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.8 Micromagnetic systems . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.8.1 The hysteresis loop . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.8.2 Domains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

iii



2.8.3 States — microstructures of magnetisation . . . . . . . . . . . 28
2.9 Computational Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.9.1 OOMMF software requirements . . . . . . . . . . . . . . . . . 30
2.9.2 magpar software requirements . . . . . . . . . . . . . . . . . . . 31
2.9.3 Post-processing . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.9.4 Hardware requirements . . . . . . . . . . . . . . . . . . . . . . 34
2.9.5 Disk space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.9.6 Commodity computing . . . . . . . . . . . . . . . . . . . . . . 36
2.9.7 Visualisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.10 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.10.1 Patterned and non-patterned media . . . . . . . . . . . . . . . 40
2.10.2 Magnetoresistive random access memory . . . . . . . . . . . . 41

3 Basic geometries: flat cylinders and spheres 43
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.2 Prior work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.3 Parameterisation of geometry . . . . . . . . . . . . . . . . . . . . . . . 44
3.4 Flat cylinder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.5 Sphere . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.5.1 Finite differences and finite elements . . . . . . . . . . . . . . 50
3.5.2 Reversal mechanism . . . . . . . . . . . . . . . . . . . . . . . . 53
3.5.3 Size dependence . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4 Cones 59
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.2 Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5 Nanodots 65
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.1.1 What is a nanodot? . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.1.2 Lithography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
5.1.3 Self-assembly . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.2 Half-sphere . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.2.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.2.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.3 Part-spherical nanodots . . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.3.1 Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.3.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.3.3 Comparing OOMMF and magpar . . . . . . . . . . . . . . . . . 74

iv



5.4 Multiple vortex states . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
5.5 “Droplet” nanodots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.5.1 Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.5.2 Reversal mechanism . . . . . . . . . . . . . . . . . . . . . . . . 79
5.5.3 Size dependence . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.6 Applying an out-of-plane external field . . . . . . . . . . . . . . . . . 83
5.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

6 Antidots 88
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

6.1.1 The hexagonal lattice . . . . . . . . . . . . . . . . . . . . . . . . 89
6.2 Parameters of the antidot system . . . . . . . . . . . . . . . . . . . . . 91
6.3 Three-dimensional model . . . . . . . . . . . . . . . . . . . . . . . . . 92
6.4 Two-dimensional model . . . . . . . . . . . . . . . . . . . . . . . . . . 93
6.5 Stray field measurement . . . . . . . . . . . . . . . . . . . . . . . . . . 95

6.5.1 Numerical calculation of the stray field . . . . . . . . . . . . . 95
6.5.2 Stray field calculation through analytical techniques . . . . . . 96

6.6 Monte Carlo simulation . . . . . . . . . . . . . . . . . . . . . . . . . . 98
6.7 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
6.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

6.8.1 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

7 Summary and outlook 104
7.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

A Analytical calculation of the stray field 106

B Supporting equations for the 3D/1D Monte Carlo method 113

C Material parameters 116

D CGS and SI (MKS) unit systems 118

E Complete simulation process 119
E.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

F Constructive solid geometries 122

v



List of Tables

2.1 Magnetic moments of important transition metals (Kittel, 1996) . . . . 10
2.2 Exchange energy between parallel ferromagnetic moments . . . . . . 11
2.3 Properties of some common ferromagnetic materials . . . . . . . . . . 24

C.1 Properties of ferromagnetic materials . . . . . . . . . . . . . . . . . . . 117

D.1 The centimetre-gram-seconds (CGS) and the metre-kilogram-seconds
(SI) unit systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

vi



List of Figures

1.1 William Gilbert’s magnetic model of the Earth . . . . . . . . . . . . . 2
1.2 Coulomb’s dipoles and Faraday’s lines of force . . . . . . . . . . . . . 3
1.3 An exploded view of the Hitachi Microdrive . . . . . . . . . . . . . . 5

2.1 Increasing storage density . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 A three-platter IDE hard disk drive, manufactured by Fujitsu in 1999 10
2.3 Energy density due to uniaxial anisotropy . . . . . . . . . . . . . . . . 12
2.4 Cubic anisotropy energy surfaces . . . . . . . . . . . . . . . . . . . . . 13
2.5 The unit vectors of two moments Si and Sj . . . . . . . . . . . . . . . 16
2.6 The functions cos φ and 1 − φ2

2 . . . . . . . . . . . . . . . . . . . . . . . 18
2.7 The effect of altering the number of cells in a geometry . . . . . . . . 23
2.8 Finite difference and finite element meshes . . . . . . . . . . . . . . . 24
2.9 Relaxed magnetisation from edge- and diagonally-aligned states . . 25
2.10 Typical hysteresis loops . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.11 Magnetic recording ideals . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.12 A typical ferromagnet . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.13 Domains formed in sample with closed flux . . . . . . . . . . . . . . . 28
2.14 Micromagnetic system states . . . . . . . . . . . . . . . . . . . . . . . 29
2.15 The simplified simulation process . . . . . . . . . . . . . . . . . . . . . 30
2.16 OOMMF memory requirements . . . . . . . . . . . . . . . . . . . . . . 31
2.17 Memory usage scaling with magpar . . . . . . . . . . . . . . . . . . . . 32
2.18 Memory usage of OOMMF and magpar . . . . . . . . . . . . . . . . . 33
2.19 A visualisation showing surface maps, streamlines, magnetisation

and an isosurface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.20 Massless particles highlighting core vortex . . . . . . . . . . . . . . . 38
2.21 Out-of-plane and in-place vortices . . . . . . . . . . . . . . . . . . . . 39
2.22 Patterned and non-patterned media . . . . . . . . . . . . . . . . . . . 40
2.23 Magnetoresistive random access memory . . . . . . . . . . . . . . . . 41

3.1 Single-domain and vortex states . . . . . . . . . . . . . . . . . . . . . 44
3.2 Anisotropic simulation domain . . . . . . . . . . . . . . . . . . . . . . 45
3.3 Hysteresis loop for a flat nickel cylinder . . . . . . . . . . . . . . . . . 46
3.4 Cylinder overview with magnetisation in a high applied field . . . . 47

vii



3.5 Magnetisation in flat cylinder . . . . . . . . . . . . . . . . . . . . . . . 47
3.6 Flower state and onion state in a cylinder . . . . . . . . . . . . . . . . 48
3.7 Flat cylinder entering the vortex state . . . . . . . . . . . . . . . . . . 49
3.8 Flat cylinder just before leaving the vortex state . . . . . . . . . . . . 49
3.9 Height dependence of state transition in cylinders . . . . . . . . . . . 50
3.10 Phase diagram for nickel cylinders . . . . . . . . . . . . . . . . . . . . 51
3.11 Hysteresis loops for nickel spheres of diameter d=200nm . . . . . . . 52
3.12 Nickel sphere in high applied field showing spin tapering . . . . . . 54
3.13 Sphere at high applied field . . . . . . . . . . . . . . . . . . . . . . . . 55
3.14 Sphere immediately after entering the vortex state . . . . . . . . . . . 55
3.15 Sphere in vortex state . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.16 Sphere in late vortex state . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.17 Size dependence of nickel spheres . . . . . . . . . . . . . . . . . . . . 57
3.18 Hysteresis loops for nickel spheres of diameter 50nm and 80nm . . . 57

4.1 Remanent magnetisation states in conical geometries . . . . . . . . . 60
4.2 Phase diagram of remanent states in cones . . . . . . . . . . . . . . . 61
4.3 Hysteresis loop for cone of d = h =100nm . . . . . . . . . . . . . . . . 62
4.4 Detailed points for cone reversal mechanism where d = h =100nm . 64

5.1 Scanning electron microscope image of a droplet array . . . . . . . . 66
5.2 MOKE measurements for a nickel dot array . . . . . . . . . . . . . . . 67
5.3 The double-template self-assembly technique . . . . . . . . . . . . . . 67
5.4 A typical nanodot “droplet” geometry . . . . . . . . . . . . . . . . . . 68
5.5 Hysteresis loop for a nickel half-sphere of diameter 200nm . . . . . . 69
5.6 Half-sphere at high applied field (point a in figure 5.5) . . . . . . . . 70
5.7 Half-sphere in remanent vortex state . . . . . . . . . . . . . . . . . . . 70
5.8 Half-sphere in late vortex state . . . . . . . . . . . . . . . . . . . . . . 71
5.9 Reversal mechanism phase diagram for part-spheres . . . . . . . . . 72
5.10 Reversal mechanism for d=50nm, h=0.5d . . . . . . . . . . . . . . . . . 73
5.11 Reversal mechanism for d=100nm, h=d . . . . . . . . . . . . . . . . . . 74
5.12 Hysteretic comparison of OOMMF (FD method) and magpar (hybrid

FE/BE method) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
5.13 Hysteresis loop for an isotropic nickel half-sphere of diameter 350nm 76
5.14 Two vortex states in an isotropic nickel half-sphere of diameter 350nm 77
5.15 Hysteresis loop for isotropic nickel half-sphere of diameter 750nm . . 78
5.16 Vortex “pinning” in three-quarter sphere . . . . . . . . . . . . . . . . 78
5.17 Reversal mechanism for nickel droplet of diameter 140nm . . . . . . 79
5.18 Hysteresis loops for droplets of bounding sphere diameter 140nm,

350nm and 500nm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
5.19 Size dependence of coercive field in droplet nanodots . . . . . . . . . 82

viii



5.20 Comparison of experiment and simulation for nickel nanodots . . . . 82
5.21 Different hysteresis characteristics in droplet nanodots . . . . . . . . 83
5.22 Reversal mechanism of a droplet in a perpendicular applied field . . 84
5.23 Size dependence of out-of-plane coercive field in droplet nanodots . 85
5.24 Size dependence of out-of-plane and in-plane coercivity in droplet

nanodots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

6.1 The single-template self-assembly technique . . . . . . . . . . . . . . 89
6.2 Scanning electron microscope image of an antidot array . . . . . . . . 90
6.3 Oscillation of coercivity observed experimentally . . . . . . . . . . . . 90
6.4 Cubically and hexagonally packed spheres . . . . . . . . . . . . . . . 91
6.5 600x600x150nm cut of simple cubic nickel antispheres . . . . . . . . . 92
6.6 Magnetisation of a cobalt hexagonal antidot array in zero field . . . . 93
6.7 Hysteresis loop for permalloy antidot array . . . . . . . . . . . . . . . 94
6.8 Microscopic images of an antidot array . . . . . . . . . . . . . . . . . 96
6.9 Measured and computed demagnetising field of an antidot array in

zero field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
6.10 Measured and computed MFM signal of an antidot sample in a small

applied field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
6.11 Overview of Monte Carlo simulation . . . . . . . . . . . . . . . . . . . 99
6.12 Coercivity of small permalloy nanodots . . . . . . . . . . . . . . . . . 100
6.13 Coercivity of large permalloy nanodots . . . . . . . . . . . . . . . . . 101
6.14 Monte Carlo simulation results . . . . . . . . . . . . . . . . . . . . . . 102
6.15 MOKE and numerical measurements for cobalt antidots . . . . . . . 103

B.1 Polar plot of anisotropy energy and reversal conditions . . . . . . . . 114

E.1 The complete simulation process . . . . . . . . . . . . . . . . . . . . . 120
E.2 The OOMMF Oxs framework . . . . . . . . . . . . . . . . . . . . . . . 121

F.1 Simple constructive solid geometries . . . . . . . . . . . . . . . . . . . 123

ix



Declaration of Authorship

I, Richard Paul Boardman, declare that the thesis entitled Computer simulation stud-
ies of magnetic nanostructures and the work presented in it are my own. I confirm
that:

• this work was done wholly or mainly while in candidature for a research
degree at the University;

• where any part of this thesis has previously been submitted for a degree or
any other qualification at this University or any other institution, this has
been clearly stated;

• where I have consulted the published work of others, this is always clearly
attributed;

• where I have quoted from the work of others, the source is always given.
With the exception of such quotations, this thesis is entirely my own work;

• I have acknowledged all main sources of help;

• where the thesis is based on work done by myself jointly with others, I have
made clear exactly what was done by others and what I have contributed
myself;

• parts of this work have been published as:

– Micromagnetic simulation of ferromagnetic part-spherical particles Jour-
nal of Applied Physics, 95(11), pp. 7037-7039, June 2004 (with H. Fangohr,
A. V. Goncharov, A. A. Zhukov, P. A. J. de Groot and S. J. Cox)

– Micromagnetic simulation studies of ferromagnetic part-spheres Journal
of Applied Physics, 97(10), June 2005 (with J. Zimmermann, H. Fangohr,
A. A. Zhukov and P. A. J. de Groot; also published in the Virtual Journal
of Nanoscale Science and Technology, May 2005)

– Self-assembly routes towards creating superconducting and magnetic
arrays Journal of Low Temperature Physics 139(1/2), pp. 339-349, April
2005 (with A. A. Zhukov, E. T. Filby, A. V. Goncharov, M. A. Ghanem, P.
N. Bartlett, H. Fangohr, V. V. Metlushko, V. Novosad, G. Karapetrov and
P. A. J. de Groot)

– Oscillatory thickness dependence of the coercive field in 3D anti-dot ar-
rays from self-assembly Journal of Applied Physics, accepted, August 2004
(with A. A. Zhukov, A. V. Goncharov, P. A. J. de Groot, M. A. Ghanem, I.
S. El-Hallag, P. N. Bartlett, H. Fangohr, V. Novosad and G. Karapetrov)

x



– Oscillatory thickness dependence of the coercive field in magnetic 3D
anti-dot arrays Physical Review Letters, preprint at cond-mat/0406091, sub-
mitted June 2004 (with A. A. Zhukov, M. A. Ghanem, A. V. Goncharov, V.
Novosad, G. Karapetrov, H. Fangohr, P. N. Bartlett and P. A. J. de Groot)

– Micromagnetic modelling of ferromagnetic cones Physical Review B, sub-
mitted July 2005 (with H. Fangohr, M. J. Fairman, J. Zimmermann, S. J.
Cox, A. A. Zhukov and P. A. J. de Groot)

Signed: ____________________________________________

Date: _____________________

xi



Acknowledgements

The author would like to acknowledge helpful discussions with Michael Donahue
of the Math, Statistics and Computational Science department within the National
Institute of Standards and Technology, to whom I am indebted for affording much
assistance with the finer points of the Object Oriented Micromagnetic Framework.

Many fruitful conversations with Werner Scholz of Seagate Technologies, Inc.
yielded further insight into the workings of magpar, for which I am most grateful.

I have had many indispensable meetings, e-mail and telephone conversations
with Alexander Zhukov, Alexander Goncharov and Peter de Groot of the School
of Physics and Astronomy at the University of Southampton, providing plots of
experimental data and guidance with theory — I am much obliged to you all.

My colleagues Jürgen Zimmermann and Giuliano Bordignon deserve many
thanks for their industrious verification of the equations and derivations found in
both the body of this thesis and the appendices.

My supervisor Hans Fangohr has provided thorough and dependable first-class
supervision and assistance where necessary and I am extraordinarily appreciative
of this.

I would like to thank my family for their tireless proof-reading of this work and
their devoted support, and to them I dedicate this thesis.

xii



Trademarks and copyright information

AMD, Opteron and Athlon are trademarks of Advanced Micro Devices

RenderMan R© and Pixar are registered trademarks of Pixar Animation Studios

The Visualization Toolkit (VTK) is copyright c© 1993-2002 Ken Martin, Will Schroeder,
Bill Lorensen

IBM is a trademark of International Business Machines

Intel, Pentium 4 and Xeon are trademarks of Intel Corp.

Philips is a registered trademark of Koninklijke Philips Electronics N.V.

Hitachi is a trademark of Hitachi Global Storage Technologies

Toshiba is a trademark of Toshiba Corporation.

Linux is a trademark of Linus Torvalds

The left-hand side of figure 1.3 is c© 2004 Griff Wason. http://www.griffwason.com

xiii



Nomenclature

α The Landau and Lifshitz phenomenological damping parameter, see equation (2.36)

µ A magnetic moment, see equation (2.1)

λex The exchange length of a material in metres (m); computed as a function of A and
M . See equation , see equation (2.40)

�
The set of indices for magnetic moments µi that are located inside the volume
V (r, ∆r), see equation (2.17)

E The total energy in a system, see equation (2.15)

E i,j
ex The exchange energy between two neighbouring magnetic moments µi and µj , see

equation (2.2)

Ean The anisotropy energy of a system, see equation (2.27)

E i
cub The cubic anisotropy energy of a magnetic moment µi, see equation (2.8)

Edi The dipolar energy of a system, see equation (2.29)

E i,j

di The dipolar energy between two magnetic moments µi and µj , see equation (2.12)

E i
uni The uniaxial anisotropy energy of a magnetic moment µi, see equation (2.6)

EZe The Zeeman energy of a system, see equation (2.28)

E i
Ze The Zeeman energy of a magnetic moment µi, see equation (2.10)

J The exchange integral, originating from the wave function for two electrons Ψ(r1, r2)

being antisymmetric, see equation (2.2)

N Used to represent nearest neighbours in summations, see equation (2.4)

µ0 The magnetic constant, 4π · 10−7 T · m · A−1, see equation (2.40)

µB The Bohr magneton, 9.2741×10−24 A·m2, see equation (2.1)

H The externally-applied magnetic field, see equation (2.10)

Hde The demagnetising field in a system, see equation (2.30)

Heff The effective magnetic field, a function of the total energy E , see equation (2.36)

L The orbital momentum, see equation (2.1)

M Magnetisation, see equation (2.36)
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M(r) The locally averaged density of magnetic moments assumed to be a continuous and
differentiable function, see equation (2.16)

n In magnetostatics, the vector normal to the surface of a sample, see equation (2.30)

P The positional vector for lattice geometries, see equation (6.5)

rij The distance between two magnetic moments µi and µj at positions ri and rj , see
equation (2.13)

S The electron spin, see equation (2.1)

A The exchange coupling constant, see equation (2.25)

a The distance between nearest neighbours in a crystalline lattice, see equation (2.25)

Bc The coercive field i.e. the applied field where the overall magnetisation of a sample
is zero (Bc = µ0Hc)

d The diameter of the circular or spherical part of a magnetic sample, usually mea-
sured across the xy plane

g The generalised Landé factor, ≈2, see equation (2.1)

h In geometry, the height of an object, usually measured along the z axis, see equa-
tion (3.0)

Hc The coercive field i.e. the applied field where the overall magnetisation of a sample
is zero

K1 The primary anisotropy constant of a material procured through experiment mea-
surements, expressed as a temperature-dependent energy density, see equation (2.6)

K2 The secondary anisotropy constant of a material procured through experimental
measurements, expressed as a temperature-dependent energy density, see equa-
tion (2.6)

lz(e) The physical size of the z component of an ellipsoid in a constructive solid geome-
try, see equation (5.2)

lz(s) The physical size of the z component of a sphere in a constructive solid geometry,
see equation (5.1)

Mr The remanent magnetisation i.e. the magnitude of the magnetisation of a sample
when the applied magnetic field is zero

Ms The saturation point i.e. the magnitude of the maximum possible magnetisation of
a sample

r In geometry, the radius of the circular or spherical part of a sample, usually mea-
sured across the xy plane

z The cell site number; z = 1, 2 or 4 for simple cubic, body-centred cubic and face-
centred cubic respectively, see equation (2.25)
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Chapter 1

Introduction

1.1 Historical context

Lodestone, rich in the mineral magnetite (Fe3O4), was known for its qualities of
attraction thousands of years ago. Historical accounts vary, but they indicate that
ancient Egyptian, Greek and Central American civilisations were familiar with it.
The Chinese first used a compass as a fortune-telling device and subsequently as a
directional indicator somewhere between 400 B.C. and 100 B.C., but surprisingly it
was not until later in the first millennium A.D. that a needle compass was used for
navigation.

In the thirteenth century Petri Pergrinus (Pierre de Maricourt) outlined the di-
rection to which the needle would point at various positions around a lodestone,
and from this ascertained that magnets had two regions, north and south.

The Elizabethan scientist William Gilbert demonstrated that the Earth was a gi-
ant magnet (Gilbert and Mottelay, 1600, 1991) and that this was responsible for the
directional alignment of a compass needle, additionally observing that the attrac-
tive effects of amber were, contrary to general belief at that juncture, not magnetic:
we now know this is a form of electrical attraction. Gilbert prepared and presented
Queen Elizabeth I of England with a magnetite model to demonstrate the mag-
netic behaviour of the Earth (figure 1.1) called a terrella, or “little earth”. When the
terrella was aligned with the poles of the Earth it would spin on its axis.

Gilbert is also responsible for providing the north-south polar analogy between
magnets and the Earth’s poles, and disposing of most of the magical legends sur-
rounding magnetism, though he did develop the somewhat esoteric notion that
the Earth had an anima, or “soul” which was the source of the magnetic field. The
anima was effective up to the orbis virtutis: the “orb of virtue”.

Gilbert can be credited with establishing magnetism as a scientific field. His
work fascinated Galileo Galilei who, influenced by Gilbert’s work (BBC, 2004), hy-
pothesised that the Earth orbited the Sun rather than the popular perception of the
time which was that the Sun (and everything else) revolved around the Earth.
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Figure 1.1: William Gilbert’s magnetic model of the Earth

In the mid-eighteenth century John Michell proposed that the attractive force
between two magnets can be calculated using the inverse square law, i.e. that if the
two entities are half as far apart, the force between them will be four times greater.
Charles Augustin de Coulomb verified this experimentally and indicated that if
one were to split a magnet then two new poles would be created (figure 1.2, left).

A professor at the University of Copenhagen, Hans Christian Oersted, observed
during a demonstration that the needle of a compass was deflected whenever he
turned on an electric current; this was the first recorded instance of the relationship
between magnetism and electricity. André Ampère, a French physicist, confirmed
this and just one week after the initial observation by Oersted had developed an
equation to calculate the magnetic force between electric currents.

Towards the end of the 1830s Michael Faraday propounded the concept of lines
of force, nowadays known as magnetic field lines, as a way of visualising the mag-
netic field of an object (figure 1.2, right); these can be seen when dusting iron filings
around a traditional bar magnet. Faraday was also responsible for creating the elec-
tric generator and motor.

During the 1850s and 1860s James Clerk Maxwell developed mathematical equa-
tions derived from mechanical models which described the electricity and mag-
netism, the relationship between them, and Faraday’s lines of force. These equa-
tions were published in 1873 and defined classical electromagnetism.
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Figure 1.2: Coulomb’s theory (left) was that if one were to break a magnet into two parts then two
new poles would form at the broken ends. Magnetic field lines or “lines of force” (right)
as demonstrated by Michael Faraday.

1.2 Modern magnetism

Augustin Jean Fresnel, best known for his work with light, mentioned in a letter to
Ampère that the electric currents responsible for magnetic forces might operate at
microscopic lengths.

At the start of the twentieth century another French physicist, Pierre Weiss, de-
veloped his theory of magnetism, which began to describe magnetic interactions at
the microscopic scale. With the advent of quantum mechanics, magnetic interac-
tions became better understood.

Building on these new principles, magnetic recording systems developed at the
end of the nineteenth century were improved and the consequent development of
magnetic tape eventually paved the way for the audio tape recorder in the middle
of the twentieth century.

Today, magnets are pervasive in daily life:

• Cars contain magnets in starter motors, electric windows, door locking sys-
tems, electronic relays and alternators.

• Kitchens have magnetic motors in refrigerators, microwave ovens, washing
machines and tumble dryers.

• Entertainment systems such as video recorders, CD and DVD players, audio
tape recorders and minidisc players all contain motors. These motors contain
magnets.

• Televisions and monitors use magnets to deflect and position the electron
beam used to create an image, as well as high-voltage electromagnets to de-
gauss the tube. Degaussing eliminates apparent colouring problems with the
display tubes in these devices.

• Electric bells in telephones, alarms and doorbells contain magnetic ringers.
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• Medical applications include the use of magnetic fluids in eye surgery and
drug delivery, as guides in keyhole surgery, prosthetics, cancer therapy and
magnetic resonance imaging.

Magnets can also be found on the reverse side of credit cards, in cooling fans,
power station generators and audio speakers. One of the fastest-developing areas
in magnetism is in the area of data storage in computers, particularly hard disk
drives.

1.3 Hard disk drives

Magnetic systems have been used in recent years for the long-term storage of data
in computers. The first hard disk came in 1956 from IBM inside their RAMAC
(Random Access Method of Accounting and Control) computer, capable of storing
100,000 characters on each of fifty 24-inch disk platters and constructed from iron
oxide and aluminium. These disks had a data, or areal, density of around 2 kilobits
per square inch.

Seventeen years later IBM released the Winchester hard disk, containing the
basic technologies used in modern hard disk drives: a very small read/write head
capable of “skiing” around 1/18,000,000 of an inch above the surface of the disk.
The Winchester had an areal density of 1.7 megabits per square inch.

Seagate Storage Technology developed the first hard disk for personal comput-
ers in 1980. Although this disk had a similar capacity to the RAMAC, the entire
assembly fit into a 5.25 inch enclosure (form factor): the same width and double
the height of a standard modern CD-ROM drive. Three years later, Rodime intro-
duced a hard disk in a 3.5 inch form factor, and in 1985 Quantum attached this to a
hard card which plugged directly into a personal computer’s system board.

This form factor evolution continued throughout the late 1980s, until standard
3.5 inch hard drives with integrated electronics appeared. Introduced by Conner in
1988, these had the same physical dimensions as a standard desktop PC hard disk
drive today. The same year saw the first 2.5 inch hard drive, now the de facto stan-
dard for laptop computers, though the 1.8 inch form factor is gaining popularity
with slimline and sub-notebook sized laptops.

Currently the smallest hard disk drive with this configuration is the Hitachi
Microdrive (figure 1.3), having a one inch form factor and a height of just five mil-
limetres but with a capacity of four gigabytes.

Hard disk drive manufacturers are constantly looking for ways to improve areal
density, as this equates to a greater storage capacity. Areal density is widely re-
garded as the crucial metric driving the hard disk industry. The highest areal den-
sity today is more than fifty million times greater than in the late 1950s: the present
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integrated drive electronics

Figure 1.3: An exploded view of the Hitachi Microdrive. The disk platter and read/write head can
be seen in the third layer from the top. The long edge of the disk housing is one inch (base
image artwork credit: c© 2004 Griff Wason).

record is held by Toshiba Corporation at 133 gigabits per square inch and areal
density is presently doubling every twelve months.

This trend cannot, however, continue indefinitely. Present methods of hard disk
production are approaching physical limits, and the areal density will no longer
be able to increase beyond these fundamental limits. To overcome these physical
limitations, we can look to the behaviour of magnets at the microscopic scales used
in hard disks to find potential solutions.

1.4 Overview of relevant interactions

The direction of magnetic moments at a small scale is governed by four competing
energy terms. The dipolar energy is the one most people are familiar with, though
not necessarily by this name: this is the energy which causes magnets to align north
pole to south pole. The exchange energy in ferromagnetic materials will attempt to
make the magnetic moments in the immediately surrounding space lie parallel to
one another. Anisotropy energy is low when the moments are aligned along a partic-
ular crystal direction, and Zeeman energy is smallest when the magnetic moments
lie in the same direction as an external magnetic field.

Since the most efficient magnetic alignment, or configuration, is the one in which
the energy is lowest, these four energy terms will attempt to become as small as
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possible at the expense of their peers: this results in very rich, complex and aes-
thetically attractive physics.

The competition of these interactions under different conditions is responsible
for the overall behaviour of a magnetic system, and the ability to compute this
yields a greater understanding of such systems.

1.5 Computer simulations

Analytical models exist for some magnetic systems, however for these models so-
lutions are only practical for simple cases. Experiments allow observations to be
made of real systems, but we are limited to the detail which can be extracted from
these measurements.

When computational resources are available, more complicated models can be
used which provide a link between experiment and theory. The motivation for us-
ing computer simulations is two-fold: firstly, it is possible to interpret experimental
results, and secondly new designs can be predicted and subsequently developed,
reducing costs.

1.6 Summary

Scientific and economic interest has recently turned to smaller and smaller mag-
netic structures which can be used in hard disk drives, magnetoresistive random
access memory (MRAM), and other novel devices. For nanomagnets — magnets
with a size order of 10−7 metres and below, more than five hundred times smaller
than the width of a human hair — the geometric shape of the object becomes more
important; the smaller the object, the more strongly the shape anisotropy affects the
hysteresis loop.

This thesis reports on investigations of these magnetic nanostructures.
Chapter 2 briefly summarises the origins of magnetism, the applications of mi-

cromagnetism in modern digital data storage — specifically hard disk media and
magnetoresistive random access memory — and some of the theories behind mi-
cromagnetics pertaining to our simulation work. Additionally, this chapter covers
the methods we use in more detail with respect to geometry and computation, and
also touches on post-simulation visualisation.

Chapter 3 investigates the properties of basic primitives. We study numerically
the magnetisation reversal of a flat cylinder and a sphere, and provide studies of
size dependence for these geometries.

Chapter 4 discusses the magnetic reversal behaviour of conical particles, and
presents a magnetisation remanence phase diagram as a function of diameter and
height.
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Chapter 5 considers the simulation of “nanodots”. These tiny part-spherical ge-
ometries can be formed through a chemical self-assembly double template method,
and numerical studies assist with the interpretation of experimental data.

In Chapter 6, we study the magnetic behaviour of close-packed spherical holes,
or antispheres, produced through a self-assembly template method.

Finally in Chapter 7 we summarise our findings and provide an outlook for
future research.
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Chapter 2

Micromagnetics

2.1 Introduction

After IBM attained an areal recording density of 1Gbit/in2 (Tsang et al., 1993, 1990)
— half a million times greater than RAMAC — the growth of areal density of a
consumer hard disk drive has been approaching 100% every twelve months. Fol-
lowing current trends the next decade should witness the advent of an areal density
of 1Tbit/in2 (Tarnopolsky, 2004, Wood, 2000, Wood et al., 2002).

Since modern hard disk drive technology is converging on fundamental limits
(see figures 2.1, 2.2) new approaches must be considered. Micromagnetic simula-
tion is an important method of addressing these limits. Further discussion of the
applications of micromagnetic modelling can be seen in section 2.10.

In sections 2.2 to 2.6 we provide an overview of micromagnetics.
In section 2.3 we describe the different interactions and associated energies of a

system of magnetic moments µ.
Section 2.4 describes the micromagnetic approach when the discrete, atomistic

nature of matter is ignored and the magnetisation is represented as a continuous
function of space.

In sections 2.5 and 2.6 the Landau-Lifshitz Gilbert equations and the Stoner-
Wohlfarth model are introduced.

Sections 2.7 to 2.10 describe the simulation packages used in this work and as-
sociated hardware and software requirements.

Micromagnetism as a field — i.e. that which deals specifically with the be-
haviour of ferromagnetic materials at fine (1 × 10−6 metre) length scales — was in-
troduced in 1963 when William Fuller Brown Jr. published his paper on antiparallel
domain wall structure (Brown, 1963); however until comparatively recently compu-
tational micromagnetics — particularly when three-dimensional problems are con-
sidered — has been prohibitively expensive in terms of computational power, but
now a modern desktop PC is capable of performing small micromagnetic simula-
tions within a few days.
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Figure 2.1: As the area in which a bit can be stored decreases, the overall storage capacity increases
in O(1/n2) assuming a square bit of edge length n; the scale on the right indicates the
capacity of a four-platter double-sided 3.5” hard disk, ignoring spindle size and actuation
overheads.

2.2 From quantum mechanics to micromagnetics

To clarify some of the terminology, concepts and fundamental models which are
essential to computational micromagnetics, this section will briefly discuss some
of these. More detailed accounts can be found in Brown (1963), O’Handley (1999),
Aharoni (2000) and Blundell (2001).

The magnetic moment is derived from the angular momentum of electrons in
an atom. For free atoms, this is a combination of electron spin and orbital momen-
tum (O’Handley, 1999):

µ = −gµB(L + S) (2.1)

where µ is the magnetic moment, g is the generalised Landé factor (≈2), µB is
the Bohr magneton (9.2741×10−24 A·m2), L is the orbital momentum and S is the
electron spin.

When materials are solids, the spin component S dominates the magnetic mo-
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Figure 2.2: A three-platter IDE hard disk drive, manufactured by Fujitsu in 1999

name symbol configuration lattice type moment (A·m2)

iron Fe 3d6 bcc 2.22×10−23

cobalt Co 3d8 hcp 1.72×10−23

nickel Ni 3d7 fcc 0.61×10−23

Table 2.1: Magnetic moments of important transition metals (Kittel, 1996)

ment. The magnetic moment per atom for the important 3d transition metals are
shown in table 2.1.

2.3 Interactions between atomic magnetic moments

2.3.1 Exchange energy

The phenomenon whereby individual atomic magnetic moments will attempt to
align all other atomic magnetic moments within a material with itself is known as
the exchange interaction (Aharoni, 2000). If the magnetic moments align in a parallel
fashion, the material is ferromagnetic; if the magnetic moments align antiparallel,
the material is antiferromagnetic.

The exchange energy between two neighbouring magnetic moments µi and µj

is usually described by:
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name symbol energy between parallel neighbours (J)

iron Fe -1.21×10−21

cobalt Co -5.15×10−21

nickel Ni -4.46×10−21

Table 2.2: Exchange energy between parallel ferromagnetic magnetic moments of important transi-
tion metals. Reversing the sign gives the energy between antiparallel moments

E i,j
ex = −JSi · Sj (2.2)

where S is the unit vector of the direction of the magnetic moment:

S =
µ

|µ| (2.3)

and J is the exchange integral which originates from the wave function overlap of
two electrons.

Consequently, the exchange energy for a system of particles, under the assump-
tion that the exchange energy is short-ranging and subsequently only acts on direct
neighbours, is:

Eex =
1

2

∑

i

∑

j∈Ni

E i,j
ex (2.4)

where Ni represents the nearest neighbours i. The value of J is derived experi-
mentally and expressed as a function of A (see equation 2.25).

The sign of J is important — if J is positive, it indicates the material ex-
hibits ferromagnetic behaviour and the exchange energy is at a minimum when
two neighbouring moments are in parallel alignment.

Antiferromagnetic materials have a negative J , and as such have a minimum
exchange energy when aligned antiparallel.

If a ferromagnet is heated above a critical point known as the Curie tempera-
ture (Curie, 1895), when the applied field is zero, the average magnetisation also
becomes zero.

Typical values of exchange energy between two parallel ferromagnetic mag-
netic moments for iron, cobalt and nickel are given in table 2.2.
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Figure 2.3: Energy density due to uniaxial anisotropy as a function of the angle θ from a magnetic
moment µ. The maximum energy has been normalised to zero for clarity.

2.3.2 Anisotropy energy

Anisotropy is a dependence of energy level on some direction. If the magnetic
moments in a material have a bias towards one particular direction (the easy axis)
then the material is said to have uniaxial anisotropy, like cobalt. If the bias is to-
wards many particular directions, then the material has multiple easy axes and it
possesses cubic anisotropy (see figure 2.4). Cubic crystals such as iron and nickel
have this property (Aharoni, 2000, p86). Uniaxial and cubic anisotropy are forms
of magnetocrystalline anisotropy as their properties in this respect arise from the
crystalline structure of the material.

The anisotropy energy in transition metal magnets arises from spin-orbit cou-
pling. The typical fourth-order approximation of the parameterisation of uniaxial
anisotropy (expressed as an energy density) is (Aharoni, 2000):

E i
uni = −K1 cos2(θi) − K2 cos4(θi) (2.5)

= K1S
2
z + K2S

4
z (2.6)

where θi is the angle between Si and the easy axis (being here the component of S in
the direction of the crystallographic axis, z). K1 and K2 are temperature-dependent
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Figure 2.4: Normalised cubic anisotropy energy surfaces wc(θ, φ) for (left) iron and (right) nickel. The
different shapes of the surfaces are a reflection of the sign of K1 (O’Handley, 1999) — iron
has a positive K1, nickel a negative K1 (see appendix C)

energy densities derived from experiment, and can exist with either a positive or
negative sign. When K1 > 0 the axis is easy, when K1 < 0 the axis becomes hard
(which yields an easy plane).

Since constant terms can be neglected, an equivalent parameterisation is:

E i
uni = K1 sin2(θi) + K2 sin4(θi) (2.7)

The typical parameterisation of cubic anisotropy is not straightforward trigono-
metrically (O’Handley, 1999):

E i
cub = K1(S

2
xS2

y + S2
yS2

z + S2
zS2

x) + K2(S
2
xS2

yS2
z ) (2.8)

A positive sign for K1 yields easy axes along the body edges (100). Conversely, a
negative sign for K1 indicates that the easy axes exist across the diagonals (111) (Blun-
dell, 2001).

The energy for a system of magnetic moments is given by:

Ean =
∑

i

E i
an (2.9)

where Ean is either Euni or Ecub.
It is worth noting that in some materials which are considered isotropic (i.e. K1

= K2 = 0) from a crystalline perspective, such as permalloy, the contribution to the
total energy from the anisotropy is zero.
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There are other types of anisotropy than magnetocrystalline. Magnetostriction is
an anisotropy caused by the expansion or contraction of a ferromagnet along the
direction of the magnetisation (Aharoni, 2000, p87). The so-called shape anisotropy
(Paine et al., 1955) (also known as “configurational stability” (Ha et al., 2003)) is the
direction in which the magnetisation will prefer to lie on account of the physical
geometry of the sample. This becomes more and more influential the smaller one’s
sample becomes. This is one of the properties we investigate in this report.

2.3.3 Zeeman energy

The energy of a magnetic moment µ in an applied magnetic field H is:

E i
Ze = −µ0µi ·Hi (2.10)

For a system of atoms:

EZe =
∑

i

E i
Ze (2.11)

The Zeeman energy is at a minimum when all the magnetic moments in a sam-
ple are in alignment with the applied field.

2.3.4 Dipolar energy

Dipolar energy (often called magnetostatic or demagnetising energy) is the resul-
tant energy from the interaction of magnetic moments with each other. Two mag-
netic moments at positions ri and rj have the dipolar energy:

E i,j
di = µ0

(

µi · µj

|rij |3
− 3(µi · rij)(µj · rij)

|rij |5
)

(2.12)

where

rij = rj − ri (2.13)

For N magnetic moments this becomes:
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Edi =
1

2

N
∑

i=1

∑

j 6=i

E i,j
di (2.14)

Computing the dipolar energy is the most expensive part of any micromagnetic
simulation as the dipolar energy is a long-range interaction and therefore must
consider the interaction of each magnetic moment µi with every other magnetic
moment µj .

2.3.5 Total energy

Combining equations 2.4, 2.9, 2.11 and 2.14 yields the total energy:

E =
1

2

∑

i

∑

j∈Ni

E i,j
ex +

∑

i

E i
an +

∑

i

E i
Ze +

1

2

N
∑

i

∑

j 6=i

E i,j
di (2.15)

The number of atoms in comparatively small systems is large. Assuming a
cubic structure and a lattice spacing of 2.5Å as in iron, cobalt or nickel, a cube of
edge length 100nm would contain 6.4×107 atoms.

2.4 Micromagnetic description

Since numerical computations based on the equations in section 2.3 are at an atomic
level, they are historically limited to simple cases containing not too many degrees
of freedom (Aharoni, 2000, p173). For larger problems other techniques must be
used.

Brown (1963) suggested a theory which is referred to as micromagnetic theory.
Instead of considering individual magnetic moments, a continuous magnetisation
function M is used to approximate the atomic interaction described above. The
magnetisation represents the locally averaged density of magnetic moments:

M(r) =
1

V (r,∆r)

∑

i∈ � (r,∆r)

µi (2.16)

where V (r,∆r) is a sphere of radius ∆r placed at r and
�
(r,∆r) is the set of indices:

�
= {i : ri ∈ V (r,∆r)} (2.17)
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Sj − Si
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ri,j

Figure 2.5: The unit vectors of two moments Si and Sj

for magnetic moments µi that are located inside the volume V (r,∆r).
This averaging can be performed over the scale of the exchange length (see

equation 2.40) and will always contain many magnetic moments.
M(r) is assumed to be a continuous and differentiable function which allows

the expression of the interactions described above using differential operators. The
resulting equations can be solved analytically (if possible) or numerically.

2.4.1 Exchange energy

Taking the atomic representation for exchange energy between two moments (equa-
tion 2.2), we can assume that the angle between two neighbouring spins is φi,j . The
sum of all the exchange energies based on equation 2.4 can be rewritten as:

Eex = −JS2
∑

i

∑

j∈Ni

cos φi,j (2.18)

where S = 1 since S is a unit vector (equation 2.3) and for small values of φi,j we
use the leading terms in the Taylor expansion of cos φi,j (figure 2.6):

cosφi,j ≈ 1 −
φ2

i,j

2
(2.19)

With this assumption, equation 2.18 can be rewritten:

Eex = K +
JS2

2

∑

i

N
∑

j 6=i

φ2
i,j (2.20)
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where K is a constant. Since Si = M(ri)
Ms

and |Si| = |Sj | = 1 (figure 2.5):

|φi,j| ≈ |Si − Sj | (2.21)

= a
|Si − Sj |

a
(2.22)

and |Si−Sj |
a approximates the spatial derivative of S over the lattice spacing a.

If we take ri,j to be a lattice translation vector of magnitude a as in figure 2.5,
the directional derivative ∇ri,jS can be used to express |Si − Sj |.

Inserting this into equation 2.18, the exchange energy can now be represented
as (Blundell, 2001):

Eex = −JS2
∑

i

N
∑

j 6=i

[(ri,j · ∇)S]2 (2.23)

= −JS2a2
∑

i

N
∑

j 6=i

[

(∇mx)2 + (∇my)
2 + (∇mz)

2
]

(2.24)

if we take ri,j outside the summations and redefine this as a (the nearest neighbour
distance). Since we will integrate over volume to obtain the continuous represen-
tation, if we consider a unit cell site number z = 1, 2 or 4 (for simple cubic, body-
centred cubic and face-centred cubic respectively), we can define the exchange cou-
pling constant (Aharoni, 2000):

A =
JS2z

a
(2.25)

We can now ignore the discrete lattice, yielding the continuous form:

Eex = A

∫

V

[

(∇Sx)2 + (∇Sy)
2 + (∇Sz)

2
]

d3r (2.26)

2.4.2 Anisotropy energy

The continuous form of the anisotropy energy is computed by integrating the
anisotropy energy wan (Aharoni, 2000), which is in the form of either equation 2.5
or 2.8:

Ean =

∫

V
wand3r (2.27)
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2.4.3 Zeeman energy

By ignoring the discrete lattice, equation 2.11 becomes (Aharoni, 2000):

EZe = −µ0

∫

V
M(r) · H(r)d3r (2.28)

2.4.4 Dipolar energy

The dipolar energy can be represented continuously by:

Edi = −µ0

∫

V
Hde(r) · M(r)d3r (2.29)

where Hde(r) is the demagnetising field with components contributed from the di-
vergence of magnetisation within the volume and surface poles (O’Handley, 1999):

Hde(r) =
1

4π

(

−
∫

V
d3r′∇ ·M(r′)

r − r′

|r − r′|3 +

∫

S
d2r′n · M(r′)

r− r′

|r − r′|3
)

(2.30)

and n is the surface normal.
A complete derivation of Hde is given in Brown (1963), Aharoni (2000) and Blun-

dell (2001).

2.5 From static to dynamic

In order to study dynamical phenomena we can combine the equations above with
the work of Landau, Lifshitz and Gilbert. Taking Brown’s equations for energy and
the effective field Heff :

E = Eex + Ean + EZe + Edi (2.31)

= −
∫

µ0Heff(r) · M(r)d3r (2.32)

where

Heff = − 1

µ0
∇ME (2.33)

then the time development of the magnetisation can be written as (Landau and Lif-
shitz, 1935):
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dM(r)

dt
= γM(r) ×Heff(r) − ᾱ

Ms
M(r) × (M(r) ×Heff(r)) (2.34)

where γM(r) × Heff(r) is representative of the precession of M(r) in a local field
Heff(r) and ᾱ

Ms
M(r) × (M(r) ×Heff(r)) is an empirical damping term.

The damping constant ᾱ is not well understood but at zero temperature it is
due to spin waves quantised as magnons (Blundell, 2001, p122), and at finite tem-
perature due to atomic lattice oscillations quantised as phonons.

2.6 Computational models

Equation 2.15 requires the evaluation of a number of sums. The computational
effort for n magnetic moments scales as O(n2) as a result of the dipolar term (see
section 2.3.4).

Brown’s continuum approximation postulates that the magnetisation M (i.e. the
magnetic moment per unit volume) can be regarded as a continuous function of
space. This allows an approximation of equation 2.15 to be expressed as a par-
tial differential equation (equation 2.32) for which the standard mathematical tech-
niques for solving PDEs can be used.

The following sections describe different approaches attacking this challenge.
In section 2.6.1 the Stoner-Wohlfarth model is described which reduced the number
of degrees of freedom to tackle the reversal of small magnetic particles.

In section 2.6.2 we show how the Landau-Lifshitz-Gilbert (LLG) equations can
be used to determine the time development of the magnetisation once the effective
field is determined through Brown’s static equations.

Section 2.7 introduces the simulation packages used n this work which solve the
equations of Brown and Landau-Lifshitz-Gilbert numerically — this is commonly
referred to as computational micromagnetism.

2.6.1 The Stoner-Wohlfarth model

The Stoner-Wohlfarth model (Stoner and Wohlfarth, 1948) is the model of coherent
rotation of magnetisation. This makes the assumption that the direction of mag-
netisation of all moments within the system are parallel leaving only two degrees
of freedom and reducing the exchange energy factor to zero. One then only need
consider the interaction with the applied field and the anisotropic energy of the
system (Aharoni, 2000):

E = K1V sin2(θ − φ) − µH cos φ (2.35)
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where K1 is the anisotropy energy density, V is a particle volume, µ is the magnetic
moment, φ is the direction of the magnetic moment to the easy axis (that is, the axis
with which the magnetisation prefers to align), θ is the angle between the easy axis
and the applied field.

The Stoner-Wohlfarth model is applicable to smaller systems with a compara-
tively large contribution to anisotropy, where one can consider all magnetic mo-
ments to be aligned. If single-domain behaviour can be expected then the Stoner-
Wohlfarth model is appropriate. For larger systems the approximation breaks down
as it neglects the dipolar component and consequently more complicated magnetic
microstructures, such as domains and vortices, are unable to form with this model.

2.6.2 The Landau-Lifshitz-Gilbert equation

With the rapidly-increasing processing capability of modern computers, there has
been a surge of interest in the field of computational micromagnetics, and indeed
computer-based simulation in general. An important differential equation was de-
rived by Landau and Lifshitz (1935).

The Landau-Lifshitz-Gilbert equation, briefly introduced in section 2.5, is a fun-
damental part of time-dependent computational micromagnetics. Different arrange-
ments of this equation are used in calculations and simulations.The OOMMF sim-
ulation software (Donahue and Porter, 1999) uses the Landau and Lifshitz form:

dM(r, t)

dt
= −|γ̄|M(r, t) ×Heff (M(r, t))

−|γ̄|α
Ms

M(r, t) × (M(r, t) ×Heff (M(r, t))) (2.36)

which is more commonly written as

dM

dt
= −|γ̄|M ×Heff − |γ̄|α

Ms
M× (M ×Heff ) (2.37)

where M is the magnetisation (i.e. the magnetic moment per unit volume), Heff is
the effective magnetic field, α is the Landau and Lifshitz phenomenological damp-
ing parameter (where ᾱ from equation 2.34 is equivalent to |γ̄|α) and γ̄ is the Lan-
dau and Lifshitz electron gyromagnetic ratio (the ratio of the magnetic dipole mo-
ment to the mechanical angular momentum of some system). If one assumes

γ = (1 + α2)γ̄ (2.38)

then this can be shown to be mathematically equivalent to the Gilbert form (Gilbert,
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1955)

dM

dt
= −|γ|M×Heff +

α

Ms

(

M× dM

dt

)

(2.39)

2.7 Simulation

There are two software packages underpinning the simulations performed for this
work. The first is the Object Oriented MicroMagnetic Framework, or OOMMF (Don-
ahue and Porter, 1999) provided by the National Institute of Standards and Tech-
nology. OOMMF employs the finite difference (FD) method which requires the
discretisation (or segmentation, see section 2.7.1) of a chosen geometry over a grid
of cells each of identical volume and cuboidal shape.

The second is magpar (Scholz, 2003, Scholz et al., 2003a), developed by Werner
Scholz and the group of Prof. Fidler and Prof. Schrefl of the Technische Univer-
sität Wien. This software uses the hybrid finite element/boundary element method
(FE/BE) and as such requires that the chosen geometry be discretised with tetrahe-
dral volume elements which can be of variable volume and shape.

The aspect of these software packages which shifts the configuration of the mag-
netisation on a step-wise basis is an evolver, based on the Landau-Lifshitz-Gilbert
(LLG) differential equation (2.37).

2.7.1 Discretisation

When a particular geometry is decided upon for simulation, this must be discre-
tised into lots of smaller cuboidal cells to be able to use the finite difference method.
Each cell is considered to be homogeneously magnetised, i.e. within a micromag-
netic simulation all of the atomic magnetic moments inside this cellular domain are
thought to behave as a single particle. This is an acceptable assumption because at
an atomic length scale the exchange interaction, responsible for the homogeneous
alignment of magnetic moments, is overwhelmingly the most significant energy
term. These smaller cells can then be used to perform the simulation. The sepa-
rate simulation cells represent a certain amount of magnetic material. Obviously in
this instance a finer discretisation mesh — a smaller simulation cell size — is more
desirable than a coarser mesh, particularly when there are curved surfaces in the
geometry.

Figure 2.7 demonstrates the effect of altering the number of cells in a geometry.
In the case of extremely coarse discretisation using the finite difference method, a
sphere can resemble more a cuboid than a sphere (figure 2.7, left). A poor repre-
sentation of the shape in the discrete model can affect the influence of the shape
anisotropy (see section 2.3.2) on the magnetisation, and subsequently negatively
affect the results.
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Figure 2.7: The effect of altering the number of cells in a geometry, in this instance a sphere. 43 =
64 cells (left) gives poor shape resolution for the sphere. Increasing this to 93 = 729
cells (centre) improves the resolution but 193 = 6859 cells (right) gives a much more
“spherical” representation

Figure 2.8 shows the discretisation of a sphere using both fixed size cubic cells
(finite difference) and variable sized tetrahedral cells (finite element). In this sphere
example, there are four times fewer cells in the finite element example yet it is
aesthetically more sphere-like.

The exchange length is a length scale over which the direction of M does not
change significantly, as across this length the exchange energy is overwhelmingly
the dominant component and other influences have little effect. A coarse mesh will
not allow the software to resolve the exchange length properly, so independent
domains will not form correctly. The exchange length is calculated by consider-
ing (Kronmüller and Fähnle, 2003, Seberino and Bertram, 2001):

λex =

√

A
1
2µ0M2

s

(2.40)

where A is the exchange energy (measured in J/m), µ0 is the magnetic constant
(4π10−7 T · m · A−1) and Ms is the magnetisation in A/m.

The exchange length λex therefore gives us a quantitative measure for the re-
quired mesh resolution.

The derivation of the exchange energy in the micromagnetic theory uses the
Taylor series expansion of the cosine between two moments (equation 2.19) to the
second-order. It is crucial that the maximum angle between these two adjacent
moments is not high (Donahue and McMichael, 2002) — indeed if the angle becomes
larger than π/2 radians, then the results of the simulation are highly inaccurate
as the torque between the two spins begins to decrease when the angle is further
increased; this could potentially lead to the scenario where the angle between two
adjacent spins is π radians — according to the second-order Taylor expansion of
the cosine, this would be a perfectly legitimate low-energy state, although this is
clearly not the case as the exchange energy and consequently the torque between
these two spins in this state would be extremely large.
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material exchange energy magnetisation anisotropy exchange length
A (J/m) Ms (A/m) K1 (J/m3) λex (nm)

nickel 9 × 10−12 4.9 × 105 −5.7 × 103 (cubic) 7.72

iron 2.1 × 10−13 1.70 × 106 4.8 × 104 (cubic) 3.40

cobalt 3.0 × 10−13 1.40 × 106 5.2 × 105 (uniaxial) 4.94

supermalloy 1.05 × 10−13 8.0 × 105 0 5.11

permalloy 5.85 × 10−12 1.11 × 106 0 2.76

Ni50Fe50

permalloy 1.30 × 10−13 8.6 × 105 0 5.29

Ni80Fe20

iron-palladium 1.5 × 10−11 1.36 × 106 3.5 × 106 (uniaxial) 3.59

iron-platinum 1.0 × 10−11 1.14 × 106 7.7 × 106 (uniaxial) 3.50

Table 2.3: Properties of some common ferromagnetic materials

Figure 2.8: Finite difference (left) and finite element (right) meshes. For adequate shape resolution,
the finite difference model requires more cells than the finite element model; in this case
27000 and 5000 respectively
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Figure 2.9: Cutplane showing the relaxed magnetisation from an edge-aligned initial state (left) and
a diagonally-aligned initial state (right)

Incidentally, it is worth noting that since the simulation is not atomistic, (i.e. it
doesn’t compute the exchange energy using equation 2.2), the use of the discretised
version of the micromagnetic expression for the exchange energy 2.26 is always
slightly inaccurate from a quantitative perspective, however if the angle between
two spins is greater than π/2 radians then the behaviour becomes qualitatively
wrong.

The answer to these problems is of course to create a finer mesh; however if one
makes the mesh n times as fine, then the number of the cells in the simulation in-
creases by n3 (since the system is three-dimensional) and this results in a massively
increased computational overhead.

2.7.2 LLG relaxation

For problems where we are only interested in a static metastable magnetisation
state — i.e. those for which we do not need to know the coercive field value or
indeed need the hysteresis loop — these can be simply “relaxed”. Relaxing the sys-
tem involves defining some initial magnetisation configuration, usually homoge-
neous or random, and then allowing the system to iterate over the Landau-Lifshitz-
Gilbert equation until the rate of change of magnetisation is below a certain thresh-
old. The configuration, complete with any domains and states in which it might
prefer to exist, can be observed and then the magnetic microstructure can be anal-
ysed. This should, of course, be repeated several times to verify that the rema-
nent magnetisation states are consistent. Figure 2.9 shows the relaxation states of a
100nm × 100nm × 20nm supermalloy (79% nickel, 17% iron and 4% molybdenum)
nanomagnet from our computations; virtually identical results can be seen in the
paper by Cowburn (2000).
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2.8 Micromagnetic systems

2.8.1 The hysteresis loop

The hallmark of a magnetic system is the hysteresis loop. This is traditionally repre-
sented graphically as the overall magnetisation of the sample against some applied
magnetic field. The value of the applied field where the loop crosses zero mag-
netisation is known as the coercive field Hc or Bc, and this therefore represents the
amount of applied field required to reverse the magnetisation direction of the mag-
net. The remanent magnetisation Mr is the magnetisation which remains when the
applied field is reduced to zero.

Comparing the hysteresis loops, such as those in figure 2.10, of a soft and a
hard magnet, one can make the observation that the softer magnet will have a nar-
row hysteresis loop, i.e. the applied field necessary to reverse the magnetisation is
relatively low, and the hard magnet will possess a comparatively wide hysteresis
loop.

The point at which the overall magnetisation of a sample can no longer be in-
creased (as all the magnetisation is pointing utterly in a single direction) — the
saturation point or Ms — is identified as a plateau at the extremes of applied field
in a hysteresis loop.

Also one should note that the area underneath the hysteresis loop is equivalent
to the energy which, when the field is reversed, is converted into heat.

For the long-term storage of data, it is desirable to have a material with a wide
hysteresis loop, and therefore a large coercive field, as this makes it more difficult
for the said material to lose its magnetisation state. A narrow hysteresis loop is a
characteristic beneficial for applications such as recording heads, as in these tem-
porary magnetisation promotes easy switching between magnetisation states. The
ideal hysteresis loops for applications in magnetic media can be seen in figure 2.11.

2.8.2 Domains

Figure 2.12 shows a relatively large (i.e. a size order of 10−6 metres) ferromagnet
which contains domains. Domains can be thought of as the magnetic structures
which form at small scales within magnets in particular circumstances (Hubert and
Schäfer, 1998, 2000). Within these domains the magnetisation is parallel, though the
overall magnetisation of any given domain is not in a particular direction. This
gives rise to a mean magnetisation of approximately zero across a sample in zero
field. Figure 2.13 illustrates an example of domains formed in a sample with a
simple closed flux.

At high applied fields — what defines a high field is dependent on the type,
size and shape of the magnet; it must be enough to fully saturate the magnetisation
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Figure 2.10: Two typical hysteresis loops — the left loop shows some permanently magnetic material,
the right loop a softer magnet. The solid blue line indicates reducing field, the dashed
red line indicates increasing field
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Figure 2.11: Magnetic recording ideals. A square loop with a high coercivity is good for the long-
term storage of data; an infinitely narrow loop with diagonal characteristics is desirable
for the field switching required of read heads in magnetic media applications
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Figure 2.12: A typical ferromagnet in zero field (left) and in an applied field (right)
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Figure 2.13: Flux closure (left), and (right) a larger sample attempting to close its flux through do-
mains.

— no individual domains will form as the overall magnetisation in the sample is
homogeneous at these fields; this can be considered to be a single domain. However,
when these fields are reduced, other domains can form in order to minimise the
overall magnetisation, which often remains at zero field.

Smaller ferromagnets exhibit the property of magnetisation alignment with an
applied magnetic field, though below a certain critical size they will not form do-
mains but may form states (see section 2.8.3).

2.8.3 States — microstructures of magnetisation

At nanometre length scales in magnetic samples, particularly interesting states oc-
cur (see figure 2.14) as a result of the system attempting to reduce its overall energy.

The single-domain state, also called the monodomain state (see figure 2.14, top
left), occurs when an infinitely large external field is applied to a magnetic material.
In small particles, the single-domain state is often maintained as the field is reduced
since the exchange energy is the most dominant term.

The C state (see figure 2.14, top centre) is known as such because the magneti-
sation direction roughly reflects the curve of the letter “C”, tending to point along
some direction in one part of the sample and gradually changing to the opposite
direction in another part of the sample.

The S state (see figure 2.14, top right) is also named after the shape of the letter
it reflects. The magnetisation undulates along the sample pointing initially in one
direction, gradually turning towards another direction and then finally pointing
back in the initial direction.

A cuboidal geometry of a certain size with a saturated magnetisation can fall
into the flower state when an applied field is removed (see figure 2.14, bottom
left). In this state the magnetic moments at the extremities point out of the sam-
ple along the overall magnetisation, and into the sample at the other side of the
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Figure 2.14: Common metastable states of magnetisation microstructures. Top row: (left) single-
domain state — homogeneous magnetisation, (centre) C state and (right) S state. Bottom
row: (left) flower state, (centre) vortex state and (right) onion state. The colour indicates
the in-plane angle of magnetisation; the square samples are of size order ≈200nm, the
circular samples of size order ≈500nm. Parameters for isotropic nickel (A = 8.5×10−12

J/m, Ms = 4.93×105 A/m, K1 = K2 = 0 J/m3) were used in these sample simulations.

overall magnetisation. Further examples showing the C, S and flower states can be
seen in Huang (2003).

At lower fields, or in larger sample sizes, the vortex state might occur (see fig-
ure 2.14, bottom centre). This is where the magnetisation in a sample curls in order
to minimise its dipolar energy, except at the centre, or core, of the vortex, where
a minimisation of exchange energy causes the magnetisation here to point in one
particular direction; in this case out of the plane.

In ring samples the onion state (see figure 2.14, bottom right) is likely to occur
as an applied field is reduced. This state often occurs prior to vortex nucleation.
The majority of the magnetisation is homogeneous, however towards the edges
the magnetisation tends to follow the shape of the sample.

2.9 Computational Issues

To perform micromagnetic simulations, two different procedures are necessary de-
pending on whether the OOMMF software (Donahue and Porter, 1999) or magpar
(Scholz et al., 2003a) is used to determine the demagnetising field.
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MIF file

OOMMF VTK file

xmgrace file

magpar options file

magpar

magpar material parameters file

AVS UCD format mesh file

Figure 2.15: The simplified simulation process. The left-hand side of the chart represents the
input files for the simulation packages for OOMMF (finite difference method; the
micromagnetic information f ormat file contains material, simulation and geometric pa-
rameters) or magpar (hybrid finite element/boundary element method, material; sim-
ulation and geometric (mesh) parameters as individual files). The results from each of
these packages are transformed into unified output formats (right-hand side) for analysis
(xmgrace (Turner, 1995)) and visualisation (VTK)

2.9.1 OOMMF software requirements

We use three pieces of software to perform micromagnetic studies with the fi-
nite difference method. Each of these packages is an extension on other widely-
available applications (see figures 2.15 and E.1).

The first piece of software is a proprietary program, mifmaker, which we devel-
oped to create simulation environments. Ordinarily a significant amount of manual
effort is required to generate a simulation, as the problem must be directly defined
in a Tcl-based format which OOMMF can recognise. There is no method built-
in to OOMMF which allows this process to be automated for three-dimensional
problems. The mifmaker program is a command-line application which can ac-
cept a series of geometric, material and simulation parameters and generate a valid
OOMMF problem description.

Using mifmaker it is straightforward to generate batches of valid simulation
problems which can subsequently be solved. This is ideal for performing size-
dependence studies and generating phase diagrams. The operation of mifmaker de-
pends on Python (Hetland, 2002, Lutz and Ascher, 2003, van Rossum and Drake, 2001).

After the appropriate magnetic problem has been generated by mifmaker, this
is sent to OOMMF — the Object Oriented MicroMagnetic Framework — developed
by the National Institute of Standards and Technology. OOMMF can then solve
the micromagnetic problem which we have presented to it. OOMMF is heavily
dependent on Tcl/Tk (Ball, 1999, Flynt, 1999, Raines and Tranter, 1999, Smith, 2000,
Welch, 1999).

Figure 2.16 shows how the requirements for system memory in OOMMF scale
in a cubic system (i.e. the length of the x, y and z sides of the cube are the same
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Figure 2.16: The memory requirements of OOMMF as a function of the number of discrete simulation
cells per edge for a three-dimensional geometry

length and have the same discrete cell size) as a function of the number of cells.

2.9.2 magpar software requirements

The procedure for hybrid finite element/boundary element problems is more com-
plicated. The magpar software (Scholz et al., 2003a) requires that the geometry of
the problem be defined with a finite element mesh. For this, any finite element
modelling software can be used, provided that its output is converted to the AVS
unstructured cell data (UCD) format. We used the finite element mesh generator
NETGEN (Schöberl, 2003). Natively, this software does not create AVS/UCD format
files, however it does have a fairly flexible approach to constructive solid geometry
(CSG) allowing for the creation of complex geometries.

Figure 2.17 shows how the memory requirements of magpar scale as a function
of both the number of surface elements and the volume elements, while figure 2.18
demonstrates magpar and OOMMF memory scaling.

In order to prepare the neutral file format created by NETGEN for magpar we
created a custom Python script to convert this file to an AVS/UCD-compliant mesh.

The simulation problem and material parameters are generated with another

31



 0
 20

 40
 60

 80
 100volume elements (10^3)  0

 5

 10

 15

 20

 25

surface elements (10^3)
 0 M

 100 M

 200 M

 300 M

 400 M

 500 M

 600 M

 700 M

 800 M

 900 M

RAM (bytes)

Figure 2.17: Memory usage scaling with magpar derived from runtime measurements

bespoke Python script to create the complex input files required for simulation with
magpar. At this point the problem can now be solved using either a standalone
uniprocessor or symmetric multi-processing workstation, or a clustered supercom-
puter.

Further details can be found in appendix E.

2.9.3 Post-processing

Finally, to visualise the results of the simulation, the magnetisation vector datasets
are transformed from either the OOMMF format or the magpar format to the Vi-
sualisation Toolkit (VTK) format, an open standard for visualisation. These results
are visualised with MayaVi, a piece of data visualisation software initially devel-
oped to assist with the visualisation of computational fluid dynamics environ-
ments. MayaVi depends on VTK.

All of these applications should run in any operating system environment for
which an ANSI-compliant C/C++ compiler is available, however in this project we
have only made extensive use of GNU/Linux and Microsoft Windows machines
running on either Intel or AMD processors.

We have written many other smaller tools to assist with pre- and post-processing
of data files generated by all of the aforementioned applications.
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2.9.4 Hardware requirements

Theoretically, these pieces of software have modest hardware requirements, how-
ever as with all simulation problems of this nature “bigger is better”. Ideally, a
machine with a minimum of one gigabyte of RAM should be used to maximise the
size of the potential problem which can be solved.

Each discrete cell within a micromagnetic problem to be solved with
OOMMF consumes approximately one kilobyte of RAM, therefore to solve a sys-
tem with 1 × 106 cells, one gigabyte of RAM is required just to run the simulation.
This is without taking into account the size of the simulation package itself, which
must be loaded into RAM and creates a fixed overhead.

Once operating system overheads are considered, it is clear that the amount of
physical system RAM available to a machine should be greater than the amount of
RAM required by the simulation — this is primarily to avoid “thrashing”, a situ-
ation where the operating system is forced to temporarily write (“swap”) areas of
the RAM to the hard disk and read other areas back into RAM from the disk. The
precise amount of RAM required for operating overheads will vary from system
to system; a system dedicated and optimised for performing only simulations may
only need a few megabytes reserved for the operating environment, but a worksta-
tion which is running other applications concurrently (e.g. visualisation software,
e-mail clients, document editors and Internet web browsers) may require several
hundreds of megabytes.

Bearing in mind that the access times in modern hard disks are several orders
of magnitude greater than those of RAM (these access times are measured in mil-
liseconds for hard disk drives and nanoseconds for RAM), this will slow down any
particular simulation by this factor, making successful completion of the simula-
tion impossible from a practical standpoint. Even in an optimised scenario where
data seek latency is eliminated, the hard disk can be expected to deliver data ap-
proximately 100 times more slowly than RAM (Barclay et al., 2003).

The speed at which the processor can perform floating point calculations is
overwhelmingly the primary factor when considering the time a simulation will
take to complete. Any processor which has a fast floating point unit coupled with
a compiler which is able to take maximum advantage of this floating point unit
when optimising the simulation source code is ideal — through our own studies
we note that carefully chosen compiler options can increase the execution speed of
the simulation threefold.

Additional methods such as high-throughput batch processing (Litzkow, 1987,
Litzkow et al., 1988) and clustering (Ridge et al., 1997) allow either sets of simulations
to be performed (e.g. many small computations such as those needed for phase dia-
grams) or larger computations which would be impossible to compute with neither
the memory capacity nor the processing power of a supercomputer. OOMMF, un-
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like magpar, is unable to take advantage of the message-passing interface (Snir et al.,
1995, Walker, 1992) common to computational clusters.

2.9.5 Disk space

A collection of large hard disks is also beneficial to allow the long-term storage
of previous simulation runs, assisting with the rapid retrieval of past vector data
created by simulations.

Either 32-bit (single precision) or 64-bit (double precision) floating point num-
bers (IEEE, 1985) can be used to store the components of the vector data. The case
for selecting one precision over another can be argued (Goldberg, 1991) from two
perspectives: storing 32-bit numbers will save disk space if the extra precision of-
fered by 64-bit numbers is not necessary, however vector interpolation used by cer-
tain visualisation techniques (e.g. the calculation of streamlines, figure 2.20) may
benefit from a higher-precision. Further arguments for the use of single or double
precision numbers can be found in Bennett Goldberg (1967), Demmel (1984), Goldberg
(1991) and Knuth (1998). It is worth noting that OOMMF will perform the simu-
lation using double precision numbers irrespective of the precision of the output
format, and the solver component of magpar (Balay et al., 2002, 1997) uses double
precision numbers.

Double precision floating point numbers usually require eight bytes of storage
each. To store the magnetisation vectors for a given mesh in OOMMF, each position
of the mesh requires three 64-bit numbers to describe it (x, y and z components).
This gives a simple equation for calculating the amount of space needed to store
one set of magnetisation data for a simulation:

s = a +
lx
cx

ly
cy

lz
cz

3p

8
(2.41)

where a is the space consumed by a header describing the relationship between the
vector data and the simulation, lx, ly and lz represent the size of the complete mesh,
cx, cy and cz are the edge lengths of the discrete cell and p is the number of bits used
to store one floating point number. Note that with OOMMF, even empty cells (i.e.
where |M| = 0) are stored by default.

For example, to store the magnetisation vectors for a sphere of diameter 120nm
(lx = ly = lz = 120 × 10−9m) with a cubic mesh cell size of 5nm3 (cx = cy = cz =

5 × 10−9m) with 64-bit precision (p = 64), (120/5)3 ∗ (8 ∗ 3) = 331776 bytes of disk
space are needed, plus a small fixed overhead. If a coarser mesh were used, such
that cx = cy = cz = 10 × 10−9m, then only 41472 bytes of disk space are necessary
to store the magnetisation data for one timestep.

For a complete simulation many sets of magnetisation vector data are stored,
each usually representing a particular “stage” — a point where the magnetisation
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configuration for an externally adjustable factor, such as applied magnetic field, is
considered stable. A typical simulation might have 100 of these stages. In the case
of the sphere example above, this equates to over 31 megabytes of disk space. For a
sphere of double the diameter with a high field step resolution (giving 1000 stages
if −500mT ≤ Bx ≤ 500mT and Bx is reduced in 1mT steps), over 2.5 gigabytes of
storage space would be necessary. Doubling the mesh resolution and the diameter
further, such that cx = cy = cz = 2.5nm and d = 480nm, the amount of required
disk space grows to well over 150 gigabytes.

2.9.6 Commodity computing

Although it is possible to perform micromagnetic simulations on a local worksta-
tion, throughput is limited. Having only one CPU means only one simulation
can be effectively performed at one time. When more CPUs are available to use
then more simulations can be performed simultaneously, making parameter de-
pendence studies such as phase diagrams practical.

By configuring several powerful local workstations with MPI (Snir et al., 1995),
it is possible to perform simulations normally impractical; code which can take ad-
vantage of MPI environments such as magpar is capable of using the total available
memory of those MPI-enabled machines effectively as one contiguous block — this
allows larger simulations to be performed.

Condor (Litzkow et al., 1988) provides another mechanism for distributing and
computing smaller problems. Whereas high-performance commodity computing
systems such as Beowulf require dedicated compute resources, Condor is designed
to take advantage of the CPU cycles left idle on “normal” workstations. Since these
workstations are not dedicated, the jobs which run on them generally relinquish
their resources when the owner of the workstation returns. Useful results can there-
fore only be acquired if the jobs which run via Condor are capable of completing in
a short time.

Iridis is the University of Southampton’s Linux-based clustered computational
facility, consisting of several hundred Intel and AMD processors. Time is reserved
in advance on this system and scheduling priority organised according to the size
of the job in terms of CPU hours and node availability. As a dedicated compute re-
source it is designed to handle both batch and MPI jobs according to requirements,
however competition for CPU cycles means that only a relatively small proportion
of the total power can be used by an individual.

By using Iridis for extended studies with several variables, Condor for phase
diagrams on smaller samples and optimised local workstation clusters for the most
extreme situations, a varied cross-section of results from the different software can
be acquired.
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Figure 2.19: A visualisation showing a surface map (A), translucent surface map (B), area mean mag-
netisation vectors (C), isosurface (D) and streamlines (E)

2.9.7 Visualisation

Visualisation is an important part of scientific computation, both for the analysis of
results and their presentation. To visualise computed results, we use MayaVi (Ra-
machandran, 2001), which makes use of Kitware’s VTK (Schroeder et al., 1996, 1997)
as the middleware for preparing the data prior to being rendered in either POV-Ray
or a Pixar Renderman R© (Pixar, 1989, 2000) compliant raytracer.

We can exploit the features of these tools, particularly by adding features com-
monly found in computational fluid dynamics to further our understanding of the
magnetisation patterns resulting from our simulations.

Figure 2.19 shows a typical visualisation. Point A in the upper image shows the
surface map of a scalar, in this instance the xy angle of magnetisation. For clarity
a wireframe map showing the outline of the finite element mesh is visible. In the
lower image, the scalar surface map remains, though it is translucent (point B). The

37



Figure 2.20: Vortex at the core of a droplet object (see section 5.5) highlighted with streamlines (mass-
less particles, or tracers) injected into the material. At the edges of the sample these
follow the magnetisation as if it were a velocity field; at the core these follow the curl of
the magnetisation.

cones indicated by point C represent the mean magnetisation of the small area im-
mediately surrounding the cones; the colour shows a scalar (the z component of
the magnetisation) and the direction of the cone reflects the magnetisation vector
itself. Where smaller cones are present in a visualisation, these represent an inter-
polation of the vector where source data is only available around that point rather
than at the point itself. This usually takes place at boundaries, arising from a linear
interpolation between M and 0.

To highlight points of interest, an isosurface of a scalar (such as that indicated
by point D) may be shown. The isosurface in this example is again based on the z

component of the magnetisation and attaches a visual representation to the core of
a vortex. Finally, point E shows streamlines, which are the result of tracer particles
being “dropped” into the system. These tracers follow the path of the magnetisa-
tion and provide a visual cue for interesting features of the visualisation; here they
gradually follow the magnetisation around the surface of the sample, spiralling in
until they reach the vortex core.

Where the volume of the sample is of particular interest, a random point mask
can be applied to the visualisation, such as that in figure 2.20. Here streamlines
have again been used to add depth to the visualisation and by operating on a de-
rived vector (in this case, the curl of the magnetisation) the bounds of the vortex

38



x

y

z

B B

C

D

A

Figure 2.21: Schematic of out-of-plane (left) and in-plane (right) vortices. The dotted red arrow indi-
cates the vortex core direction; the solid blue arrows show the magnetisation circulating
around the core

core are clear.
Python (van Rossum, 2003) and Linux shell scripts (Ramey, 2003) were employed

extensively in coordinating the process to take raw simulation results and pro-
duce camera-ready images and animations suitable for the analysis of magnetic
microstructures.

Schematic drawings are occasionally used to assist understanding physical ge-
ometry or aspects of magnetisation. Figure 2.21 shows two schematics of a generic
sample with arbitrary shape and a symmetry in the xy plane (point A), here repre-
sented by a rhombus. The axes on the left indicate the three-dimensionality of the
sample. If the applied field (point B) were initially applied along the x direction,
then two possible vortex types emerge. The vortex shown in the left sample has
an out-of-plane vortex, where the magnetisation circulates in the xy plane (point C,
solid blue arrow) and the core of the vortex (point D, dotted red arrow) points per-
pendicular to this symmetric plane, i.e. in z. The vortex shown in the right sample
has an in-plane vortex — the circulation of the magnetisation (point C, solid blue
arrow) is in the yz plane and the core of the vortex (point D, solid red arrow) is
aligned with the direction of the initial applied field, i.e. in x.

2.10 Applications

Micromagnetic modelling is important to understand the behaviour of modern
hard disk media and the research of novel materials and designs which could be
incorporated into future hard disk platters.

Other emerging applications such as magnetic RAM can also benefit greatly
from the investigation of micromagnetic systems offered through simulation tech-
niques.
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1000nm

Figure 2.22: A schematic representation of non-patterned media is shown on the left, such as that
used in traditional hard disk media (Albrecht et al., 2003, Süß, 2002); the thicker line de-
limits one bit. The representation shown on the right is that of patterned media with
each “dot” containing a single bit

2.10.1 Patterned and non-patterned media

Most modern hard disk drives have non-patterned media platters. The platter con-
sists of a substrate, usually made of glass (though in the past aluminium and mag-
nesium have been used), and is plated with nickel-phosphorous. On top of this
substrate a magnetic cobalt-chromium-platinum-tantalum (CoCrPtTa) film is de-
posited by evaporation. This results in an irregular structure approximated in fig-
ure 2.22; the sizes of the individual grains within this structure are approximately
20nm in size (IBM, 2002), though the grain size in the most recent disks is around
5mn (de Groot, 2005). When pieces of data are written to this film, they are written
along tracks shown by the dashed lines in the figure; the magnetisation of the crys-
tals within the area representing that bit is set to a binary state. When the pieces of
data are read back, the drive takes a mean of the magnetisation as measured by the
head and decides whether that particular segment should be a ‘zero’ or a ‘one’, i.e.
a bit of data. Typically, one bit is made up of 20 grains by 50 grains, giving a total
physical bit size of 400nm × 1000nm (0.4µm × 1µm) (IBM, 2002). Figure 2.1 shows
the relationship between bit size and storage capacity.

Advancements in hard disk drive technologies have allowed capacity and per-
formance increases in a similar order of magnitude to that of computer processors
— traditionally doubling approximately every eighteen months but recently ev-
ery twelve months; for example, the giant magnetoresistance (GMR) effect discov-
ered in 1988 (Baibich et al., 1988) gave manufacturers a head technology capable of
reading smaller physical data bits on account of their increased sensitivity. Subse-
quently, to increase data density, manufacturers can reduce the width of the tracks;
at 6 Gbit/in2 this is approximately 1µm.

At some point it becomes impossible to reduce the track width any further
whilst ensuring reliability, and consequently data integrity, as there are too few
CoCrPtTa grains within the track width to guarantee a particular overall state (i.e.
zero or one); a very narrow track may reduce the strength and therefore the “clar-
ity” of the read signal. To increase reliability, manufacturers must reduce the size
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Figure 2.23: A depiction of how data can be accessed in MRAM; light blue areas represent the read
path. Between the purple tracks, from top to bottom: free ferromagnet (yellow), tunnel
junction (dark blue), pinned ferromagnet (green), antiferromagnet (red), seed layer (dark
green)

of the particles which coat the substrate, thereby increasing the relative number of
grains representing one state; if these particles fall below a certain critical size, the
superparamagnetic effect may reverse the magnetisation in individual grains due
to thermal fluctuations.

Patterned magnetic arrays (Ross, 2001) at a nanoscopic level are becoming fea-
sible as hard disk storage media (Chou, 1997, Chou et al., 1996) owing to advance-
ment in fabrication processes (Cowburn et al., 1999a,b), including self-assembly tech-
niques (Bartlett et al., 2003a, Hoinville et al., 2003, Mayes et al., 2003, Zhukov et al.,
2004a, 2003). However, to understand what precisely should be assembled, a study
is needed into the relative merits of the entities making up the array; indeed, as
nanoscopic length scales are approached, the physical shape of an entity becomes
more important (Aharoni, 2000, p115) than other factors, such as magnetocrystalline
anisotropy, because it will affect increasingly the characteristics of the hysteresis
loop (see section 2.8.1). In chapter 5 we investigate the properties of such nanodots.

2.10.2 Magnetoresistive random access memory

In 1974 IBM Research developed the magnetic tunnel junction, the main component
of magnetostatic random access memory (MRAM). This tunnel junction is a sand-
wich of ferromagnetic and antiferromagnetic material between columns of bits and
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rows of words, allowing an “[x, y]”-like access to individual bits within the mem-
ory; this can be seen in figure 2.23.

MRAM has the potential to be fast and dense, but even more importantly, it
is non-volatile i.e. it does not require a constant application of power to retain
its state), unlike standard dynamic random access memory (DRAM). This non-
volatility provides another benefit in the form of low-power consumption, mak-
ing MRAM ideal for applications where power is paramount, such as laptop and
palmtop computers, mobile telephones and portable music systems.

To help understand which particle shapes are useful as part of a typical MRAM
configuration (Teherani et al., 1999), it is beneficial to study these through simulation.
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Chapter 3

Basic geometries: flat cylinders
and spheres

3.1 Introduction

The knowledge which can be acquired from micromagnetic simulation reveals the
underlying physical processes that govern the hysteresis loop. This complements
experimental work in which the average magnetisation as usually shown in hys-
teresis loops is observed.

The ability to examine numerically the micromagnetic behaviour of a given fer-
romagnetic system is of particular interest to experimentalists because it allows us
to investigate in great detail the microstructures of the magnetisation which form
inside the system and observe their effects.

We wish to understand the micromagnetic behaviour of the droplets later pre-
sented in chapter 5 which our collaborators in Prof. Bartlett’s group can fabricate
and our collaborators in Prof. de Groot’s group investigate experimentally. In this
chapter we study some more fundamental geometries to prepare this investigation.

3.2 Prior work

Previous work with flat cylinders, i.e where the diameter of the circular plane is sig-
nificantly larger than the height, has been done by Cowburn et al. (1999a,b). These
papers present hysteresis loops and SEM micrographs for supermalloy
single-domain circular nanomagnets (flat cylinders). The diameter d of these cylin-
ders is between 55nm and 500nm, and their height h is between 6nm and 15nm.
Cowburn concludes that there is a distinct behaviour switch between the vortex
state and the single-domain state (see figure 3.1) dependent on the diameter of
the nanomagnet, confirmed by micromagnetic simulation (Dao et al., 2001). Two-
dimensional simulation studies by Gubbiotti et al. (2002) show the vortex behaviour
in circular permalloy dots of diameter 200nm. Other single-domain to vortex state
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Figure 3.1: Two states: the single domain state (left) and the vortex state (right)

transitions and phase studies have been performed by Scholz et al. (2003b).
Ha et al. (2003) suggest that many interesting states are formed in permalloy

cylinders, which are dependent on height, radius and applied field. In flat cylinders
at zero field with a diameter of 200nm, they observe the onion state; when the
diameter is doubled, the vortex state is apparent at zero field.

Initial micromagnetic studies of spheres have been previously performed (Aha-
roni, 1980, C. H. Stapper, 1969, Eisenstein and Aharoni, 1975) and the results of these
studies indicate that there is a smooth, gradual reduction in the overall magneti-
sation of a sphere as the applied field is reduced. Later work (Aharoni, 1983) notes
there is a form to the magnetisation transition which is not certain.

Mayes et al. (2003) and Hoinville et al. (2003) discuss the practicality of storing
data on spherical cobalt-platinum nanoparticles, created using a biological process
and provide experimental results when used directly as a coating on a hard disk
platter.

In this chapter, we take this work further, and simulate and observe the be-
haviour of a sphere (C. H. Stapper, 1969, Eisenstein and Aharoni, 1975, Lam, 1992),
with a diameter d of 200nm and a flat cylinder (disc) of diameter d = 100nm and
height 2/5d = 80nm; in both cases we use the material parameters for isotropic
nickel (Ms = 493380 A/m, A = 8.5×10−12 J/m, K1 = 0 J) with a damping parame-
ter α of 0.25 to assist with convergence. We also demonstrate the different magnetic
microstructures when the height of the cylinder is altered, and perform a diameter
dependence study with the cylinder.

3.3 Parameterisation of geometry

To instruct OOMMF what geometry to simulate, a Tcl function (Flynt, 1999, Welch,
1999) describing a constructive solid geometry (see appendix F) needs to be written
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Figure 3.2: Anisotropic simulation domain. The image on the left has the physical x, y and z com-
ponents of the simulation domain equal to each other — as such the inscribed geometry
is a sphere — while the image on the right has the physical z component half the size of
the physical x and y components, causing the inscribed geometry to be ellipsoidal. Both
inscribed geometries are described by equation F.1

that is part of a problem configuration file. The convention chosen by OOMMF is to
always operate in a geometric simulation space with internal coordinates ranging
from 0 to 1 in all three dimensions (see figure 3.2). In addition, OOMMF requires
knowledge about the absolute size of this simulation cell and will scale the nor-
malised cell accordingly.

We have found this approach counterintuitive at times and have therefore writ-
ten a Python program (mifmaker) which takes the size of the object we wish to in-
vestigate in absolute units, and will then create the necessary configuration file for
OOMMF automatically, including the Tcl function to describe the geometry in nor-
malised units. To generate a problem which will simulate a cobalt cylinder of di-
ameter 100nm and height 40nm, with a mesh resolution of 2.5nm and an in-plane
applied field ranging from 500mT to -500mT in 1mT steps, we need to issue the
following command to mifmaker:

mifmaker --cylinder --material=cobalt --xy=100e-9 -z 40e-9 \

-c 2.5e-9 -h 500 -l -500 -s 1000 --direction=down

The investment in creating this “one-shot” approach to generating micromag-
netic problems pays off when the parameter space is to be explored systematically.

When OOMMF interprets the problem configuration file, it tests each point in
the normalised geometric simulation space against the geometry function. At this
point, the function can return results of either Ms or zero, depending on whether
or not material is present at the point of test. By inverting the results when the
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Figure 3.3: Hysteresis loop for a flat nickel cylinder of height 40nm and diameter 200nm. The points
on the graph correspond to the states described in the text and figures 3.5, 3.7 and 3.8

conditions are met, negative geometries can be built up, such as the “antisphere”
— a spherical hole in an otherwise solid (cubic) geometry.

3.4 Flat cylinder

We compute a hysteresis loop as shown in figure 3.3 in the following way: initially,
a magnetic field is applied in the simulation such that the magnetisation across the
cylinder is homogeneous (see figure 3.4).

For Bx = 0mT (point a in figure 3.3) the magnetisation appears roughly homo-
geneous (figure 3.5) but closer inspection (figure 3.6) reveals a slight out-of-plane
magnetisation shift at either end of the sample due to a small contribution from the
dipolar interaction. This can also be seen in figure 3.5 (Bertram, 1994), and over-
all an onion state occurs, present to minimise the dipolar surface charges (Ha et al.,
2003); this is shown in figure 3.6, and the homogeneous magnetisation state at this
point can be seen with a normalised colour scale in figure 3.5 and corresponds to
point a in figure 3.3.

As the applied field is reduced further a vortex forms in the x-y plane (fig-
ure 3.7). Note that this vortex (point b in figure 3.3) does not appear until after
the applied field has passed zero; the vortex appears here as there is an energy
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Figure 3.4: Overview of the cylindrical geometry (left) with the magnetisation (represented by the
cones) in a high applied field (right). The rectangular surface on the right is a cut-plane
through the sample, the colour of which reflects the scalar value of the in-plane x − y
angle.

x

z
y

Figure 3.5: Flat cylinder with homogeneous magnetisation (point a in figure 3.3). The colour is rep-
resentative of the in-plane x-y angle. There is a small out-of-plane magnetisation shift
due to demagnetising energy at the edges which is not present in a high applied field
(figure 3.4)
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Figure 3.6: The flower state and the onion state shown together in a cylinder of diameter 200nm and
height 40nm in zero applied field. The flower state is shown by the coloured cut-plane
(xz) and exists in the x-z plane. The onion state is shown by monochrome streamlines
which follow the magnetisation direction; this exists in the x-y plane.
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Figure 3.7: Flat cylinder entering the vortex state (point b in figure 3.3). The direction of the cones
corresponds to the direction of the magnetisation; their colour shows their angle in the
x-y plane — yellow is 0◦ from +x, blue is 180◦ from +x. The translucent cutplane in
y-z shows the magnetisation pattern is consistent throughout the height, and the grey
isosurface outlines the core of the vortex.
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Figure 3.8: Flat cylinder just before leaving the vortex state (point c in figure 3.3).

barrier which it must first overcome. This results in the vortex forming slightly
off-centre, so that when the vortex is created the magnetisation jumps from a high
positive value to approximately −0.1MS , where Ms is the saturation magnetisation
(see figure 3.5). The position of the core of the vortex is a reflection of the amount of
magnetisation which is following the applied field to minimise the Zeeman energy.

As the field is further reduced, the core of the vortex can be seen to pass through
the cylinder in the negative y direction until Mx = −0.7Ms (figure 3.8), correspond-
ing to point c in figure 3.3; at this point the core of the vortex is close to the edge of
the cylinder and disappears with another increase in the magnitude of the applied
magnetic field, leaving the magnetisation once more homogeneous in the direction
of the applied field, which is the opposite situation to that in figure 3.5.

Taking a cylinder of diameter 200nm, we study the microstructures of the mag-
netisation which form for different heights of a cylinder between 5nm and 100nm.
Using the technique outlined in section 2.7.2 we assign a uniform magnetisation in
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Figure 3.9: Height dependence of the remanent state in cylinders - vertical cutplanes in the xz plane
of a cylinder of diameter 200nm in zero applied field are shown. The images are (left) a
cylinder of height 35nm, (centre) h =75nm and (right) h =85nm. The colour variation
represents the z component of the magnetisation.

the x direction, allow the system to relax in zero applied field, and make observa-
tions.

Figure 3.9 shows the flower state, clearly visible in the shorter cylinders; how-
ever as the height is increased, the dipolar energy exerts a greater influence, as in
figure 3.6. The dipolar energy continues to exert more and more pressure on the
cylinder to abandon its flower state in favour of a vortex — at a height of 75nm
the top and bottom of the cylinder are completely dominated by the magnetostatic
energy. Increasing the height a little further from here to 80nm causes this structure
to collapse and fall into the vortex state at zero field.

Figure 3.10 shows the reversal behaviour of nickel cylinders dependent on height
and diameter. As height is increased, the single domain behaviour disappears and
vortex reversal behaviour occurs; the same is true as the diameter is increased.

3.5 Sphere

3.5.1 Finite differences and finite elements

Figure 3.11 depicts the hysteresis loops obtained from simulations of a nickel sphere
(diameter d=200nm, K1=0). The loops in the upper left, upper right and lower left
of the figure show loops yielded with the OOMMF software, whilst the lower right
loop was computed with magpar.

For each simulation, the applied field direction was varied in θ and φ, respec-
tively the azimuth and polar angle of the applied field. These are relative to the
orientation of the finite difference grid, aligned with the x-, y- and z-axes.

All the loops show a similar pattern just below saturation, with small openings
in the hysteresis where the magnetisation moves from the single domain state into
the vortex state.

It is interesting to note that in the loops computed with OOMMF there is an
“opening” in the hysteresis loop around Bx=0, the size of which varies with the
direction of the applied field, although it is never quite eliminated. The results
from magpar do not display this characteristic.

These data show that the inner loop depends on the angles θ and φ. For the
spherically symmetric system that we wish to simulate, how the coordinate system
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Figure 3.10: Phase diagram of the remanent magnetisation state for nickel cylinders of varying height
and diameter
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Figure 3.11: Hysteresis loops for nickel spheres of diameter d=200nm with no magnetocrystalline
anisotropy with varying applied field offsets in xy (θ) and xz (φ). The top left hysteresis
loop was performed with OOMMF with applied field offsets θ=45o, φ=0o. The top right
loop (OOMMF) has θ=10o, φ=0o. The bottom left loop (OOMMF) has θ=30o, φ=18o. The
bottom right hysteresis loop was performed with magpar using an applied field offset of
θ=4o, φ=6o

52



of the simulation software is aligned relative to the direction of the applied field
should be irrelevant. It is therefore likely that the inner openings in the hystere-
sis loops are an artefact of the finite difference simulation technique as these vary
substantially as a function of this direction.

Initially, we assume the applied field is zero and the magnetisation forms a vor-
tex with the core pointing in the x direction as shown later in figure 3.15, and a very
small field is applied in the opposite direction (i.e. −x) such that the vortex struc-
ture of the magnetisation is not significantly affected. Since the overall magnetic
moment of the magnetisation is finite and points in the direction of the moments
in the vortex core, it is therefore energetically favourable for the system to align the
vortex core with the applied field.

In order for this to happen, the vortex core needs to turn around by 180 degrees
(i.e. point in −x rather than +x. If there is no magnetocrystalline anisotropy in the
system, the spherically symmetric sphere should allow the core to rotate round in
either θ or φ, similar to a typical Stoner-Wohlfarth particle. The spherical symmetry
should not allow the occurrence of the “inner” hysteresis loop indicated in figure
3.11; this is supported by the results presented in the lower right of figure 3.11
computed with the finite element code.

It is plausible therefore to assume that directions along the discretisation axis are
either favoured or avoided by the system when a finite difference grid is introduced
for symmetric geometries.

3.5.2 Reversal mechanism

A strong magnetic field applied across a nickel sphere of diameter 200nm gives a
homogeneous magnetisation. As this field is reduced the magnetisation at the sur-
face of the sphere diverges as a consequence of the dipolar interactions (figure 3.12
corresponding to point a in figure 3.11; also shown in figure 3.13); this behaviour is
similar to that in small cylinders.

As the field is reduced, the sphere falls into the vortex state a little above 100mT
(see figure 3.14, corresponding to point b in figure 3.11), but, contrary to the cylin-
der, this vortex forms around the axis of the applied field. The majority of the mag-
netisation at this stage is pointing in the direction of the applied field rather than
against it, as the core of the vortex is aligned with the direction of the initial mag-
netisation. The magnetisation around the core of the vortex is able to maintain its
circular vortex pattern and adjust its alignment with the present applied field.

At zero field, the magnetisation in the vortex core remains pointing in the di-
rection of the applied field (figure 3.15, corresponding to point c in figure 3.11),
however if the field is increased in the −x direction then the magnetisation in the
core is reversed (figure 3.16, point d in figure 3.11).

Further increasing the field eventually results in the vortex dissipating at around
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Figure 3.12: Nickel sphere in high applied field showing spin tapering owing to demagnetising en-
ergy; the left image shows a cut-plane through x and y, the right image shows a cut-plane
through x and z. This corresponds to point a in figure 3.11

180mT. This results in the magnetisation of the sample pointing entirely in the di-
rection of the applied field as in figure 3.13, only in the opposite direction.

3.5.3 Size dependence

A size dependence study was performed on the diameter of nickel spheres; the
results of this can be seen in figure 3.17, showing a change in behaviour at a certain
diameter.

There is a qualitative change in the magnetisation reversal when the diameter
is reduced; the hysteresis loops for spheres of diameter 50nm and 80nm are shown
in figure 3.18.

The following equation (O’Handley, 1999) gives the critical radius (i.e. the radius
above which a sphere changes from single domain behaviour to vortex behaviour)
of a spherical sample of some material which has a low anisotropy value.

rn+1 =

√

9A

µ0M2
s

[

ln

(

2rn

a

)

− 1

]

(3.1)

Using this equation, one can quickly converge on the critical radius for nickel by
iterating equation 3.1 until rn+1 − rn = 0. The calculated critical radius of 34nm
agrees well with our simulations of nickel spheres; these studies show that the
magnetisation pattern of a nickel sphere of diameter 60nm (r = 30nm) reverses
as a single-domain, and the magnetisation pattern when the diameter is 70nm is
vortex-like.

3.6 Summary

We have studied the magnetisation reversal in nickel cylinders and spheres of the
size order 200nm. Around this size, in nickel the samples will not tend to form
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Figure 3.13: Sphere at high applied field (point a in figure 3.11); see also figure 3.12.
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Figure 3.14: Sphere immediately after entering the vortex state (point b in figure 3.11).
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Figure 3.15: Sphere in vortex state (point c in figure 3.11).
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Figure 3.16: Sphere in vortex state at a further reduced field (point d in figure 3.11).
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Figure 3.17: Size dependence of the domain state in nickel spheres. The vertical dotted line shows
the critical radius for state transition computed with equation 3.1
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Figure 3.18: Hysteresis loops for nickel spheres of (left) diameter 50nm and (right) diameter 80nm.
The 50nm sphere reverses through the single-domain state; the 80nm sphere through the
vortex state
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domain walls as the samples are physically too small — the energy from dipolar
interaction is not great enough to counteract the domain wall energy — and neither
will the shapes behave as single-domain states as the dipolar energy is then too
great (Wachowiak et al., 2002).

Below a certain critical diameter, cylinders exhibit single-domain behaviour.
Above this critical diameter, the cylinders enter the vortex state. In this regime,
the vortex penetrates and moves to adapt Mx to Bx after the field is reversed. In
all cases, nickel cylinders cannot maintain a single-domain reversal method once
their height is above a critical value; we find that the vortex reversal method is
present in all cylinders with a height greater than 60nm. The results for the simu-
lated cylinders are qualitatively in agreement with work by Cowburn et al. (1999b),
however these cannot be compared directly because different materials have been
investigated.

With the simulated spheres, vortex behaviour exists for a sufficiently large sys-
tem, however the vortex penetrates at a greater applied field than that in a cylinder
of comparable size. The vortex in spheres is also static with the core of the vortex
pointing in the original direction of the applied field, as opposed to the vortex ap-
pearing in cylindrical samples, where the core of the vortex is able to move through
the system to compensate for a change in applied field. In cylindrical samples, the
core of the vortex is perpendicular to the direction of the applied field, i.e. it points
out of the circular plane.

We have shown that for non-cuboidal structures, great care has be taken to en-
sure that the finite difference simulation technique does not introduce artefacts that
do not reflect the behaviour of the physical system. In subsequent chapters we have
used finite element simulations to corroborate finite difference simulation results,
and varied the directions of applied field to ensure to exclude such artefacts from
our observations.
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Chapter 4

Cones

The work described in this chapter has been submitted to Physical Review B (Board-
man et al., 2005a).

4.1 Introduction

Tapered structures such as pyramids and cones are commonly used in magnetic
force microscopy (Dahlberg and Proksch, 1999, Sáenz et al., 1987); the phase shift in-
duced by the movement of a cantilever attached to the structure can be interpreted
to yield the stray field pattern of a sample (McVitie et al., 2001).

Part-conical samples of size order 1µm and above have previously been fabri-
cated for bubble devices (Sanders et al., 1981). Nanolithographically defined struc-
tures created through electron beam lithography (Chou, 1997, Chou et al., 1996) re-
sult in arrays of tapered pillars which are geometrically conical. The coercivity of
arrays of shorter cones created with interference lithography has been previously
investigated experimentally and numerically (Ross et al., 2001).

In this chapter, we study the magnetic reversal behaviour of cones systemati-
cally and compute a magnetisation remanence phase diagram as a function of di-
ameter and height.

4.2 Parameters

We use the material parameters for Ni80Fe20 permalloy (Js = 1.0 T, A = 1.3×10−11

J/m, K1 = 0.0 J/m3) (Skomski and Coey, 1999) and a damping constant α of 0.25 to
improve convergence.

We perform simulations on cones where the overall diameter d of the base
ranges from 10nm to 100nm, the height h between the base and the tip ranges from
10nm to 100nm and the external magnetic field is applied along the x direction of
the cone (see figure 4.1).
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Figure 4.1: Representation of remanent magnetisation states; the solid arrows indicate the magnetisa-
tion direction, the dotted arrow shows the vortex core direction. From left to right: single
domain state in x, single domain state in +z (filled arrow) and −z (hollow arrow), buckle
state (Koltsov et al., 2000), C state and out-of-plane vortex state.

The mesh for the magpar hybrid FE/BE simulation is created using NETGEN
(Schöberl, 2003). For the cone where d = 100nm and h = 100nm, the mesh contains
210825 tetrahedra, with the largest element having an edge length smaller than
4nm, which is below (Donahue and McMichael, 1997) the calculated exchange length
λex =

√

2A/µ0M2
s (Kronmüller and Fähnle, 2003) of 5.71nm.

The remanent magnetisation configurations using OOMMF and magpar are in
agreement providing the shape is sufficiently well resolved in both cases. To ensure
this is the case with OOMMF, the cones were discretised into 8000 cells, in the
largest case the cell edge length is 5nm with a maximum adjacent cell spin angle of
0.5 radians.

Starting from an initially uniform magnetisation state pointing in the +x direc-
tion, we apply a magnetic field of 500mT capable of maintaining a nearly homoge-
neous magnetisation and reduce this field in steps of 1mT until the magnetisation
is reversed to compute the hysteresis loop. When the applied field is reduced to
zero, we classify the magnetisation pattern to create the remanence phase diagram.
Figure 4.1 shows schematic plots of the observed remanent states.

4.3 Results

Figure 4.2 shows the phase diagram for the remanent magnetisation states in cones
where 10nm ≤ d ≤ 100nm and 10nm ≤ h ≤ 100nm and the applied field was orig-
inally in the +x direction (see figure 4.1). Where h is less than 20nm, the remanent
state is a single domain state with the magnetisation pointing in the x direction
(figure 4.1, left). If h is above 50nm and the ratio h/d is high (i.e. a tall, thin cone)
then the single domain state in z is preferable due to shape anisotropy (figure 4.1,
second from left). We have observed two types of single domain states in z: one
with the magnetisation pointing up towards the tip of the cone and the other with
the magnetisation pointing down towards the base. The single domain states in x
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Figure 4.2: Phase diagram of the remanent magnetisation states for cones where the applied field was
originally in the +x direction. The symbols represent computed points, dashed lines are
guides to the eye.
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Figure 4.3: Hysteresis loop and reversal mechanism for a cone where d = h =100nm and the applied
field is across the diameter. Points E, F, G and H are explained in figure 4.4.

and z are in agreement with experimental data in Ross et al. (2001).
For larger h and d the demagnetising energy grows and the remanent state is

the vortex state with the magnetisation in the core of the vortex pointing out of the
xy plane (figure 4.1, right).

For intermediate values of h we find at large d the buckle state (figure 4.1, cen-
tre), in which the overall magnetisation points in x but around the centre of the xy

plane this bends slightly upwards and downwards in z. The buckling is an indica-
tion of the growing dipolar energy of the single-domain state.

At smaller d for intermediate h the remanent state is a C-shaped configuration
(figure 4.1, second from right). The C state is related to the single domain state in
z by the shape anisotropy driving the magnetisation to point primarily in the -z
direction. In larger diameters the magnetisation will attempt to reduce the demag-
netisation energy — the bending of the magnetisation in the +x direction close to
the base of the cone shows the history of the system: prior to the field being reduced
to zero the magnetisation was pointing in the +x direction.

Figure 4.3 shows the complete hysteresis loop for a cone with d=h=100nm, com-
puted using magpar. When the applied field is reduced from saturating the mag-
netisation in the +x direction, it forms an in-plane vortex (i.e. where the mag-
netisation circulates in yz and the vortex core points in the x direction) shown at
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point A. The same behaviour is observed for the magnetisation reversal of spheres
(Boardman et al., 2005b, Eisenstein and Aharoni, 1975) of similar size. Note that this
configuration is not observed in the absence of an applied field and therefore this
state is not shown in figure 4.1.

The in-plane vortex is replaced by an out-of-plane vortex (i.e. where the mag-
netisation circulates in xy and the vortex core points in the z direction) shown at
point B after overcoming an energy barrier. The core of this vortex is anchored at
the tip of the cone and compensates for the applied field by tilting the core, allowing
the majority of the magnetisation to align with the applied field, thus minimising
Zeeman energy.

A further reduction of the field (point C) causes the core of the vortex to shift to
the centre of the cone. Reducing the field below zero causes the vortex to bend in
the opposite direction to point B. At Bx = 0mT the magnetisation is in the vortex
state as shown in figure 4.1 (right). Another energy barrier needs to be overcome to
destroy the out-of-plane vortex, leaving the magnetisation with an in-plane vortex
(point D) with the core pointing in the opposite direction to the vortex at point A.

Once the field is sufficiently high the in-plane vortex aligns into a homogeneous
saturated magnetisation in the -x direction for |Bx| ≥ 250mT.

Figure 4.4 shows specifically the magnetisation at points E, F, G and H from
figure 4.3 to explain the subtle “kinks” in the hysteresis loop. The top row shows
a magnetisation cross section along the height of the cone and the bottom row that
along the base. The middle row is a schematic representation of the two vortices
corresponding to the cross sections above and below.

Starting at point E, the system contains two vortices: the out-of-plane vortex
with the core pointing in the +z direction introduced at point B, and the formation
of an in-plane vortex with the core in the -x direction parallel to the applied field.
Increasing the field in the -x direction causes the in-plane vortex to become more
dominant (point F). A further increase of the applied field in the -x direction allows
the in-plane vortex to become even more influential, moving the out-of-plane vor-
tex to the edge of the sample (point G). There is a small energy barrier present to
force the out-of-plane vortex from the system; once this has been overcome only
the in-plane vortex remains (point H).

4.4 Summary

We have simulated the magnetisation reversal in conical samples, and five separate
remanent states — single-domain in x, single-domain in z, out-of-plane vortex,
buckle and C-state — have been observed.

By analysing the remanent magnetisation configuration for a series of simula-
tions, we have created a phase diagram showing these results. The dynamics of the

63



z

y

x

y

z

y

x

E F G H

Figure 4.4: Reversal mechanism detail for points E, F, G and H in figure 4.3. Top: yz cutplanes of
magnetisation shaded by the x component of the magnetisation (Mx). Middle: schemat-
ics indicating vortex behaviour (solid arrows for the in-plane vortex shown the in top
row, dashed arrows for the out-of-plane vortex shown in the bottom row). Bottom: xy
cutplanes of the magnetisation at the base of the cone.

magnetisation reversal are more complicated to classify and describe.
We have investigated and presented in more detail the magnetisation reversal

of larger cones (height greater than 70nm and diameter greater than 50nm) and
find that for parts of the hysteresis loop, two coexisting vortices can be found in the
magnetisation (with cores pointing in approximately perpendicular directions).
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Chapter 5

Nanodots

The work described in this chapter has been published in two papers in the Journal
of Applied Physics (Boardman et al., 2004, 2005b).

5.1 Introduction

Figure 5.1 shows an array of nanodots created using the novel “double template”
method imaged using a scanning electron microscope.

Figure 5.2 shows the experimentally measured hysteresis loop for such an ar-
ray of nickel nanodots (see section 5.1.1) with a bounding sphere diameter d of
500nm (Zhukov, 2004) obtained through magneto-optical Kerr effect (Argyres, 1955)
microscopy. The motivation here is to reveal the physics in this hysteresis loop
through micromagnetic simulation.

Although the precise shape of the nanodot is not known, we do know the man-
ufacturing method (see section 5.1.3) and from this we can derive an approximate
representation of the nanodot.

It is not feasible to perform a three-dimensional micromagnetic simulation of a
large array of nanodots so instead a single nanodot is modelled numerically. De-
spite some inevitable dipolar interaction in the real system, particularly when the
nanodots are close together, it remains of interest to investigate the magnetisation
of an independent nanodot.

5.1.1 What is a nanodot?

We define a nanodot to be a magnetic sample with a physical edge size lx of less
than 1µm and “short” in geometry, i.e. lz ≤ 0.5lx. Arrays of nanodots are strong
candidates for use in patterned media, as the consistency of shape from one nan-
odot to the next promotes predictable behaviour; one nanodot will behave in the
same way to another nanodot, in contrast to irregular grains where clusters of
grains are required to reduce the effects of this irregularity.
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Figure 5.1: Scanning electron microscope image of a droplet array

5.1.2 Lithography

There are several different ways of creating nanodots. Lithographic methods such
as those used by Cowburn et al. (1999a), Li et al. (2002) and discussed in chapter 3,
although successful, are limited in the grain size they can produce; in photolithog-
raphy the wavelength of light used in the fabrication process effectively limits the
dot size to those above 0.4µm, and electron beam lithography is still a prohibitively
expensive process.

5.1.3 Self-assembly

Self-assembly methods (Denkov et al., 1993) appear to be a cost-effective way to
create templates, from which an array of structures as shown in figure 5.1 can be
formed (Ghanem et al., 2004, Zhukov et al., 2003). These structures are the motiva-
tion behind this chapter. One particular method of chemical self-assembly involves
the formation of templates through the evaporation of an aqueous suspension of
polystyrene latex spheres (Bartlett et al., 2002, 2003a), initiating the self-assembly.
Figure 5.3 shows this process schematically.

Using these templates, it is possible to create magnetic structures from sizes of
50nm to 1000nm by filling the spaces between the close-packed spheres with some
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Figure 5.2: Normalised MOKE measurements for a nickel dot array of diameter 500nm
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Figure 5.3: The double-template self-assembly technique. First, an aqueous suspension of latex
spheres (top left) of diameter d is poured onto a substrate. As the water evaporates,
the latex spheres are attracted to each other (top centre), forming a regular close-packed
structure. This template can be filled with a non-magnetic material (top right) and the
latex spheres etched away (bottom left). The resulting gaps can be filled with a magnetic
material to a varying height h (bottom right) to form arrays of connected or disconnected
part-spherical nanodots.
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Figure 5.4: A typical nanodot “droplet” geometry arranged in a hexagonal lattice (artist’s impression
on the left) and a schematic of the droplet (right)

material through electrochemical deposition. By etching away the polystyrene
spheres, another template is formed. This template can then be filled with magnetic
material, and by varying the fill amount of the resulting spherical holes, connected
or disconnected arrays of dots can be formed. This is known as the double-template
self-assembly method.

The resulting structures have several applications, such as photonic materi-
als (Bogomolov et al., 1997, Vlasov et al., 2001), microchip reactors (Gau et al., 1999)
and biosensors (Velev and Kaler, 1999). The application in which we are interested
for this work pertains to magnetism.

We present here the results for two types of nanodot geometry — part-sphere
and “droplet”. The droplet geometry can be considered to be a part-sphere with a
rounded upper; this is described in more detail in section 5.5.

5.2 Half-sphere

We wish to simulate a half-sphere so we can see what effect the rounded upper
dome (which can be seen in figure 5.1) has on the results; these can then be com-
pared to “droplet” systems (section 5.5) which reflect the shape in figure 5.1. The
half-sphere nanodot we simulate here is isotropic nickel (Ms = 493380 A/m, A =

8.5 × 10−12 J/m, K1 = 0 J), with a diameter of 200nm. We use OOMMF to simulate
this geometry with a finite difference cubic cell of edge length 5nm.

5.2.1 Results

Applying a sufficiently large magnetic field across the circular plane of a half-
sphere results in an initially homogeneous magnetisation pattern, and as with the
sphere in section 3.5, a slight deviation at the surface resulting from the demagnetis-
ing field. This corresponds to point a in figure 5.5; the homogeneous magnetisation
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Figure 5.5: Hysteresis loop for a nickel half-sphere of diameter 200nm

is illustrated in figure 5.6.
Reducing the field further causes the nucleation of a vortex at around 30mT,

resulting in the magnetisation drop immediately following point a in figure 5.5.
The vortex core moves in the −y direction while the field is reduced further

(point c in figure 5.5; illustrated in figure 5.8), until the vortex leaves the system
and a homogeneous magnetisation in the −x direction is established.

5.2.2 Discussion

Although hysteretically this exhibits a qualitative similarity with the sphere (fig-
ure 3.11) insofar as their possession of two minor loops, the magnetic microstruc-
ture is more reminiscent of the flat cylinder in that the vortex nucleates out of the
plane and moves through the geometry in the same fashion as the flat cylinder (fig-
ures 3.3 to 3.8), however the vortex appears prior to the applied field being reduced
below zero.

Figure 5.7 illustrates that at zero field the direction of the vortex core is perpen-
dicular to and in the centre of the xy plane; see point b in figure 5.5. For isolated
half-spheres we always find the magnetisation in the core of the vortex to point
“down” (i.e. towards the spherical surface). We attribute this to the asymmetry of
the half-sphere in the z direction.
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Figure 5.6: Half-sphere at high applied field (point a in figure 5.5)

Figure 5.7: Half-sphere in vortex state in zero applied field (point b in figure 5.5). Axes are the same
as those in figure 5.6
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Figure 5.8: Half-sphere in late vortex state (point c in figure 5.5). Axes are the same as those in fig-
ure 5.6

5.3 Part-spherical nanodots

We have seen above that the magnetisation reversal in the half-sphere occurs via
vortex nucleation similar to the mechanism in the flat cylinder shown in section 3.4.
We have shown in section 3.5 that a full sphere reverses via a different mechanism.
From this it can be concluded that for some height h > d/2 of a part-sphere a
transition between the two reversal mechanisms takes place.

These results are also relevant to the experimentally manufactured nanodots
because the amount of material that is deposited through the self-assembly method
described in section 5.1.3 can be varied to grow spheres of heights h ≤ d.

We calculate numerically the magnetisation reversal of soft part-spherical par-
ticles. The observed reversal mechanisms range from single domain reversal at
small radii, to vortex movement in shallow systems at larger radii and vortex core
reversal at larger heights as observed in spheres.

In this section we study the behaviour of the new class of part-spherical struc-
tures and compute a magnetic reversal phase diagram as a function of diameter
and height.

5.3.1 Parameters

Geometrically we consider the part-spheres to have one flat surface when h < d; in
the case h = 0.5d the geometry will resemble the half-sphere from section 5.2.
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Figure 5.9: Phase diagram of reversal mechanisms for Ni50Fe50 permalloy part-spheres. The dotted
and dashed lines are guides to the eye indicating reversal mechanism boundaries

We perform the phase diagram studies using the material parameters for
Ni50Fe50 permalloy (Ms = 1.11×106 A/m, A = 5.85×10−12 J/m, K1 = 0 J/m3, see
also appendix C) and a damping constant α of 0.25 to improve convergence.

5.3.2 Results

Figure 5.9 shows a phase diagram of remanent magnetisation states for systems
simulated with magpar where the height h increases from 1/8d to d in 1/8d steps
and d varies between 12.5nm and 125nm.

We observe three distinct reversal mechanisms. Taking d=50nm, for h/d ≤ 0.375

the reversal is coherent; all the magnetic moments remain aligned and rotate ho-
mogeneously. Between h/d = 0.5 and h/d = 0.875 an out-of-plane vortex forms
with a core perpendicular to the applied field after some initial energy barrier is
overcome and this can freely move around the inside of the part-sphere with the
applied field. This is similar to the behaviour seen in cylindrical particles shown
in figures 3.3 to 3.8 and in other works (Boardman et al., 2004, Cowburn et al., 1999b,
Ha et al., 2003, Li et al., 2002). We will now discuss the reversal mechanism in more
detail.

Figure 5.10 shows the perpendicular vortex reversal behaviour. Point A shows
the homogeneously aligned state at high applied field, though there is a small C-
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Figure 5.10: Reversal mechanism for d=50nm, h=0.5d

state-like shift in the x-z direction at the extremities in order to minimise dipolar
energy. At point B there is a shift into an S-like state in the x-y direction, where
the magnetic moments at the edges of the half-sphere persist in the applied field
direction while the moments towards the centre are aligned a few degrees away
from the x direction into the y direction. Reducing the field further overcomes
an energy barrier and a perpendicular (i.e. the core of the vortex points in the z

direction) vortex is formed. Point C shows the remanent state of the half-sphere
with this vortex in the centre; the net magnetisation in the x direction is now zero.
Point D shows the effects of a continued field reduction; the vortex has shifted
further into the y direction appropriate for allowing the majority of the magnetic
moments to point in the negative x direction. Finally, at point E the external field is
now sufficiently low to remove the vortex from the system, and a homogeneously
aligned state remains.

Figure 5.11 shows the reversal mechanism with an in-plane vortex for a sphere
(i.e. h/d = 1.0). Although the size and material differ from the sphere in section 3.5,
there is a qualitative similarity we will review. Point A shows a homogeneous
alignment of the magnetic moments in the x direction, which persists until point B,
where the field has been lowered enough to overcome the energy barrier and allow
an in-plane (i.e. where the core points in the x direction) vortex to form; this also
allows the majority of the magnetisation to continue pointing in the x direction.
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Figure 5.11: Reversal mechanism for d=100nm, h=d

As the field is further reduced, the x component of the magnetisation outside
the vortex core continues to follow the applied field; however the core remains
pointing wholly in the direction of the initial applied field. At point C, after the
field is reduced below zero the core of the vortex flips over, which is responsible
for the “minor” hysteresis loop around Bx = 0. The vortex can exit the system
when the field is further reduced and the magnetisation becomes homogeneous
(point D).

Our simulation results agree with the computation of the critical radius
(O’Handley, 1999, p305) of single-domain to vortex state transition (equation 3.1)
for Ni50Fe50 permalloy in spheres of radius 12.4nm (d=24.8nm): a single-domain
remanent state is observed in our simulations of spheres of diameter 24nm and
below where the exchange energy is dominant, whilst an in-plane vortex is in the
remanent state when the diameter is 25nm or greater as the dipolar energy becomes
preponderant.

5.3.3 Comparing OOMMF and magpar

Figure 5.12 shows results computed during the simulation of a half-sphere of diam-
eter 50nm using two different simulation packages that employ the finite difference
method (Donahue and Porter, 1999) and the hybrid finite element/boundary element
method (Scholz et al., 2003a) respectively. There is good agreement between the two
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Figure 5.12: Hysteresis loops for a d=50nm half-sphere obtained with (solid line) OOMMF (finite
difference method) and (dashed line) magpar (finite element/boundary element method)

packages.
The results obtained from both OOMMF (FD method) and magpar (hybrid FE/BE

method) display an energy barrier which is overcome when Bx is below 50mT. Ad-
ditionally, reversible behaviour around Bx = 0 is present in both cases.

The slight aberration in the hysteresis loop for the hybrid FE/BE case is caused
by a slight shift in the magnetisation towards the centre of the sample (figure 5.10,
point B), present in the simulation as a result of the improved shape resolution over
the FD case.

5.4 Multiple vortex states

As the diameter of a part-spherical geometry is increased, further characteristics
are observed which resemble those of the full sphere.

Figure 5.13 shows the hysteresis loop for an isotropic nickel half-sphere of di-
ameter 350nm. This hysteresis loop shares some similarity with that of a smaller
half-spherical system, such as that in figure 5.10 — it has zero remanence and there
are openings in the hysteresis loop. The characteristic difference between the two
loops is there are two energy barriers: the first occurs when Bx is around 100mT,
followed by another when Bx is approximately 70mT, corresponding to the kink in
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Figure 5.13: Hysteresis loop for an isotropic nickel half-sphere of diameter 350nm. Two energy barri-
ers can be seen: one at ≈100mT and another at ≈70mT. The first indicates the transition
from the single-domain state to the in-plane vortex state, the second the transition from
the in-plane vortex state to the perpendicular vortex state.

the curve at 60mT in figure 5.10.
Figure 5.14 reveals the magnetic microstructures in this model. The image on

the left shows the magnetisation when Bx is 80mT. An in-plane vortex has formed
and the magnetisation circulates in the yz plane, with the core of the vortex point-
ing in the x direction with the applied field. The image on the right shows the
magnetisation after Bx has been reduced to 65mT. The in-plane vortex has been re-
placed by a perpendicular vortex: the magnetisation now circulates in the xy plane
with the core of the vortex pointing in the z direction. The core of the vortex is
off-centre to allow the majority of the magnetisation to point in the direction of the
applied field.

Figure 5.15 shows the hysteresis loop when the diameter of the nickel half-
sphere is increased to 750nm. Qualitatively, the same behaviour is observed as
when the half-sphere diameter is 350nm. Point A shows the fully-saturated mag-
netisation at a high applied field in the +x direction. When this is reduced to over-
come the first energy barrier (point B) then the in-plane vortex forms, with the core
of the vortex pointing in the direction of the applied field. As the field is reduced to
immediately prior to the second energy barrier at around 75mT (point C), the mag-
netisation around the core of the vortex deviates further away from the x direction

76



y
x

z

Figure 5.14: Two vortex states in an isotropic nickel half-sphere of diameter 350nm. The images show
vector cut-planes of magnetisation in the y-z direction — applied field was in the x direc-
tion. The in-plane vortex (left) is clearly visible at Bx ≈80mT. The perpendicular vortex
(right) is in a field of ≈65mT, and is off-centre to compensate for the applied field.

to minimise dipolar energy.
Point D shows the magnetisation immediately after the second energy barrier

has been overcome. The in-plane vortex has disappeared to be replaced by a per-
pendicular vortex, with the core pointing in the z direction. The majority of the
magnetisation remains in the direction of the applied field. Reducing the field to
zero (point E) sees the vortex core move across the sample in the y direction, caus-
ing the average Mx to be zero. Increasing the applied field in the opposite direction
(−x) causes the vortex core to move further along the y direction (point F) allowing
the majority of the magnetisation to point in the −x direction, similar to point D.

Increasing the field further in the −x direction overcomes another energy bar-
rier present around -125mT (point G), causing the perpendicular vortex to disap-
pear and an in-plane vortex with the core pointing in −x to form, which disappears
when the applied field is increased to -140mT (point H).

5.5 “Droplet” nanodots

5.5.1 Parameters

In this instance, the geometry of the nanodot is similar to that of a “droplet”; we
consider the shape to be split into two parts — the lower part follows a “bounding
sphere” to some fraction, at which point it is cut off to form a part-sphere. This
is then provided with an ellipsoidal top, giving the geometry a dome-topped ap-
pearance, which can be seen more clearly in figure 5.4, in order to approximate the
experimentally grown droplets (figure 5.1) as well as possible..

For these simulations, we define the height of the geometry thus (as figure 5.4,
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Figure 5.15: Hysteresis loop for isotropic nickel half-sphere of diameter 750nm simulated with mag-
par. The coloured sections of the smaller images represent the magnetisation in the x
direction
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Figure 5.16: Vortex “pinning” in a part-sphere of height 0.75d. After entering an in-plane vortex state
(left), the upper part of the vortex core is situated about the centre of the xy plane while
the lower part is towards +y. When the field is reduced to zero (centre), the upper and
lower parts of the vortex core are around the centre of the xy plane. If a negative field
is then applied (right), then the lower part of the vortex core moves towards −y, but the
upper part remains at the centre of xy.
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Figure 5.17: The hysteresis loop for the 140nm droplet with inset x-y cut-planes showing vortex prop-
agation

right):

lz(s) = 2/7d (5.1)

lz(e) = 1/7d (5.2)

∴ lz = 3/7d (5.3)

< 1/2d (5.4)

where lz(s) is the part which follows the outline of some bounding sphere of diam-
eter d, and lz(e) is the upper ellipsoidal dome part. These parameters most closely
reflect the geometry of droplets resulting from the partial filling of templates with
spherical voids. We study the results of simulations performed on such nanodots
with d between 50nm and 500nm.

5.5.2 Reversal mechanism

Figure 5.17 shows the hysteresis loop for a droplet with bounding sphere diameter
d = 140nm. From an initially homogeneous magnetisation brought about through
the application of a saturating magnetic field in the x direction, a slight tapering
effect appears at the surface as this field is reduced owing to long-range dipolar
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Figure 5.18: Hysteresis loops for droplets of bounding sphere diameter 140nm, 350nm and 500nm;
note that the loops are offset in the y direction for clarity. Inset is the hysteresis loop for
a droplet of bounding sphere diameter 50nm.
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interactions (see figure 5.17, point A).
Further reduction of the applied field causes the dipolar energy to become more

dominant. At slightly above zero field this causes the formation of a vortex slightly
away from the sample centre (see figure 5.17, point B), the direction of which allows
the overall magnetisation direction to remain in that of the applied field. The vortex
moves closer to the centre of the sample as the field tends towards zero, and when
there is no applied field, the Zeeman energy term is also zero and the vortex moves
to the centre.

The net magnetisation Mx of the sample at this point is now zero (see figure 5.17,
point C). Reducing the field further (i.e. increased in the opposite direction) shifts
the vortex further across the sample (see figure 5.17, point D), until the Zeeman
energy term influences the magnetisation more than the other energy terms and the
magnetisation of the sample becomes homogeneous in the direction of the applied
field.

It is interesting to note that if the height lz(s) from equation 5.1 is increased to
around 0.5d, the reversal mechanism is slightly different. Although the magneti-
sation falls into the vortex state, only the lower half of the vortex moves through
the system; the upper half is ‘pinned’ to the centre of the ellipsoidal part during the
entire reversal in a similar fashion to the three-quarter sphere in figure 5.16. This
gives the vortex a pendulum-like movement throughout the system. Indeed, im-
mediately after nucleation, the vortex is almost flat across the droplet in the plane
of the applied field in a similar way to the sphere in section 3.5.

5.5.3 Size dependence

We have varied the diameter d of the droplet from 50nm to 500nm and computed
a hysteresis loop for every d in steps of 10nm. We find two different régimes. Fig-
ure 5.19 reflects the size dependence of the coercive field for these droplets.

When d < 140nm, the magnetisation reversal mechanism is single-domain (see
figure 5.21, left and centre). When d ≥ 140nm, the magnetisation reverses through
the vortex state (see figure 5.17 and figure 5.21, right).

The relatively consistent coercivity of 5mT between 60nm and 130nm in fig-
ure 5.19 is a result of a coherent rotation reversal process, unlike that shown by
dots smaller than 60nm. The hysteresis loops at 60nm ≤ d ≤ 130nm are substan-
tially less “square” than those shown with sub-60nm bounding sphere sizes and
bear a resemblance to the loops from 140nm and greater droplets, as indicated by
the centre loop (d=90nm)in figure 5.21.

Above 140nm the coercivity of the droplets is zero. For droplets of greater size
the hysteresis characteristics are similar, although as the size is increased the rever-
sal takes place over an increasingly large applied field, and the smaller loops at the
top and bottom of the hysteresis graph become more rounded (see figure 5.18).
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Figure 5.19: Size dependence of coercive field in droplet nanodots. An error of ±1mT is present as
this is the applied field step size. Where Bc > 0mT, the remanent state is single domain,
where Bc = 0mT there is a vortex remanent state.
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Figure 5.20: Two hysteresis curves for nickel nanodots with bounding sphere diameter of 500nm. The
hysteresis loop on the left shows results obtained from experiment. The right-hand loop
shows the results of the numerical modelling.
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Figure 5.21: Hysteresis loops for droplet nanodots of (from left to right) bounding sphere diameter d
of 30nm, 90nm and 140nm

There is a good agreement between the experimental hysteresis curve measured
across a nickel nanodot of bounding sphere diameter 500nm (figure 5.20, left) and
the results of the numerical simulation for the droplet of the same bounding sphere
diameter (figure 5.20, right).

5.6 Applying an out-of-plane external field

By adjusting the direction of the applied field such that it is now along the short
axis of the droplet, or out-of-plane, rather than across the symmetry plane we can
perform further studies on the droplet nanodot.

Figure 5.22 demonstrates a typical hysteresis loop obtained from these simula-
tions and also the associated reversal mechanism. The vignette images along the
hysteresis loop show a cut-plane of the magnetisation in the xz plane, z being the
short axis and that of the applied field. Initially, a high external magnetic field is
applied such that the magnetisation becomes homogeneous in +z (point A), then
this field is gradually lowered until it is sufficiently high in the opposite direction
(−z) to maintain a homogeneous magnetisation in this direction.

As the field is reduced, the system falls into the out-of-plane vortex state with
no apparent energy barrier to overcome (point B), with the core pointing in the di-
rection of the initial applied field (point C). Further reduction of the applied field
results in the magnetisation surrounding the core pointing more towards the di-
rection of the applied field, so that when the applied field is < 0mT the overall
magnetisation is in −z (point D). The core, however, remains pointing in +z until
around −50mT, at which point the core flips causing the small jump in magnetisa-
tion around this point (point E).

Finally, once the magnetisation is sufficiently large in −z, the vortex disappears
completely and the magnetisation is homogeneous in −z (point F).

Figure 5.23 shows the size dependence of the droplets when the applied field
is out of the plane. The coercive field of the droplets decreases as the bounding
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Figure 5.22: Reversal mechanism of a nickel droplet of bounding sphere diameter 200nm in a per-
pendicular applied field
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Figure 5.23: Size dependence of the out-of-plane coercive field in droplet nanodots.

sphere radius is increased, with the rate of coercivity reduction decreasing as the
radius is further increased.

Figure 5.24 places the coercive field size dependence of the droplets where the
initial applied field is out of the plane into context by comparing this to the coer-
civity of the same droplets when the original applied field is in the plane. It is clear
from these results that applying the field across the short out-of-plane axis of the
droplets increases the coercivity significantly; for a coercive field of 20mT a droplet
of bounding sphere diameter of around 25nm is sufficient with an in-plane applied
field, however with an out-of-plane field a bounding sphere diameter of ≈160nm
is required.

5.7 Summary

We have simulated the magnetisation reversal in part-spherical and droplet nan-
odots. In droplet nanodots, we observe two different mechanisms for this reversal
— the single-domain state and the vortex state.

If the overall size of the droplet system is increased then we notice a distinct
transition from the single domain state to the vortex state, which we identify for
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Figure 5.24: Size dependence of the out-of-plane (see figure 5.19) and in-plane coercive field (see fig-
ure 5.23 in droplet nanodots. Mx is the in-plane magnetisation, Bx the in-plane applied
field, Mz the out-of-plane magnetisation and Bz the out-of-plane applied field
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isotropic nickel (see appendix C) as being at a droplet bounding sphere diameter of
140nm (physical droplet diameter in this instance is around 90% of the bounding
sphere diameter, approximately 126nm, and h =3/7d = 60nm). This change occurs
at a smaller diameter than for thin (h ≤ 30nm) circular nanodots (see figure 3.10).

The “soft” vortex behaviour — i.e. the vortex will readily adjust its position to
accommodate a change in applied field — observed in the large droplets is a useful
characteristic in sensor applications; smaller droplets have the square hysteresis
loops desirable for data storage.

In part-spherical particles, three separate remanent states — single-domain,
out-of-plane vortex and in-plane vortex — have been observed.

As the diameter of the part-spherical particle decreases, a larger h/d is necessary
for a vortex to form. As h is increased, the magnetisation is more likely to form a
vortex. Below a critical radius of 12.4nm for Ni50Fe50, all h/d values will result in a
single-domain remanent state.

The hysteresis loops observed experimentally agree well with the numerical
results from the simulation.

We observe good agreement between the finite difference method in OOMMF
and the hybrid finite element/boundary element model in magpar.
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Chapter 6

Antidots

Parts of this work have been submitted for publication as Zhukov et al. (2004a)
and Zhukov et al. (2004b). Experimental measurements were obtained by Dr. Alexan-
der Zhukov of the School of Physics and Astronomy (University of Southampton)
and the Monte Carlo simulations performed by Dr. Hans Fangohr of the School of
Engineering Sciences (University of Southampton).

6.1 Introduction

Lithographic techniques have allowed researchers to create ordered structures on
the sub-micron scale (Cowburn et al., 1997, Fruchart et al., 1999, Hehn et al., 1996,
Martı́n et al., 2003, Van Roy et al., 1993), either as well-formed small magnetic ele-
ments such as the cylindrical and spherical objects described in chapters 3 and 5
or as regular arrays of holes in magnetic films. Antidots are the ‘opposite’ of the
nanodots discussed in the previous chapter. If one creates a hole in a thin sam-
ple, the hole can be considered to be an antidot. Lithographic techniques generally
yield cylindrical holes, but emerging self-assembly techniques (Bartlett et al., 2002)
promise a wider range of shapes.

Figure 6.1 shows the single-template self-assembly technique. Electrochemical
deposition can be used to create nanoscale magnetic materials by creating an or-
dered template from polystyrene latex spheres of size order 50nm ≤ d ≤ 1000nm
(Bartlett et al., 2003b, Xu et al., 2000). Initially, an aqueous solution of monodisperse
latex spheres is deposited on a glass substrate. On this substrate sputtered buffer
layers of chromium and gold have been deposited, with thicknesses of 10nm and
200nm respectively.

Over a period of between three and five days the evaporation of the water leads
to the formation of the template: the combination of the electrostatic repulsion be-
tween the latex spheres and the attractive capillary forces provided by the evapo-
ration of the water produces a well-ordered close-packed structure (Bartlett et al.,
2002, 2000, 2003b).
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Figure 6.1: The single-template self-assembly technique. Latex spheres of diameter d are poured on
to a substrate (left). As the water evaporates, the latex spheres become close-packed,
forming a template (centre) which can then be filled with a magnetic material from the
substrate upwards to a height h (right).

Using electrodeposition from the gold layer, the electrodeposited material fills
the spaces between the latex spheres, using the spheres as a mould. By dissolving
the latex spheres in toluene, 3D antidot arrays with spherical holes are formed.

Different thicknesses of antidot arrays can be formed by adjusting the charge
during the electrodeposition process, while the period of the antidots is controlled
by altering the diameter of the latex spheres.

Figure 6.2 shows a scanning electron microscope image of an antidot array cre-
ated through the self-assembly template method, and demonstrates the regular
structure formed with this process.

Figure 6.3 shows the experimentally-measured coercivity of Ni50Fe50 antidot
arrays with a diameter d of 550nm when the external field is applied in-plane. The
coercivity oscillates as a function of height (thickness) h. When the height of the
film is close to the sphere centres, the coercivity reaches a local maximum. This
oscillatory behaviour is what we wish to understand and explain in this chapter.

6.1.1 The hexagonal lattice

For a hexagonal lattice with base vectors:

a1 = ax̂ (6.1)

a2 =
1

2
ax̂ +

√
3

2
aŷ (6.2)

a3 =

√

8

3
aẑ (6.3)

the lattice points are:

P = n1a1 + n2a2 + n3a3 (6.4)

(n1, n2, n3) ∈ � 3 (6.5)
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Figure 6.2: Scanning electron microscope image of an antidot array created by the self-assembly tem-
plate method. The image on the left shows the top of the array; the right-hand image
shows the honeycomb-like structure at the edge of the sample
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Figure 6.3: Experimentally observed coercivity oscillation in Ni50Fe50 antidot arrays of d=550nm
against the height (thickness) h of the film. The dashed lines indicate the positions of
sphere centres for each layer in the close-packed structure. The coercivity shows maxima
close to the sphere centres. The solid line is a guide to the eye
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Figure 6.4: Two layers of spheres packed cubically (left) and hexagonally (right)

Shown in figure 6.4 on the right is a hexagonal structure which exhibits this prop-
erty. However, one should note that there are two ways of packing this layer as
there are two positions in which the first sphere can be placed. The two structures
are called hexagonal close-packed and face-centred cubic. The hexagonal close-packed
structure, or hcp, has the third layer in c having the same x and y coordinates as
the first layer, the second layer has the same x and y coordinates as the fourth layer
(ABABAB. . . ) and so on (Kittel, 1996). The face-centred cubic structure has an alter-
native arrangement of spheres in the third layer where the spheres share the same
x coordinate with the first layer but have different y coordinates (ABCABC. . . ).
Although this arrangement appears at the outset to be hexagonal, by rotating its
primitive cell the vectors can be shown to be a variant of a cubic lattice.

6.2 Parameters of the antidot system

Since three-dimensional arrays of objects become rapidly impractical to simulate
even across modern supercomputing clusters, a feasibility study was conducted to
assess the limits of the available hardware when computing the hysteresis loops for
these systems.

A set of different self-assembled experimental samples were prepared from
nickel, iron, cobalt and Ni50Fe50 permalloy from spheres sized 20nm ≤ d ≤ 1000nm.
For the initial micromagnetic study we chose to model the nickel sample. Nickel
has a relatively large exchange length (λex ≈ 7.5nm) when compared to Ni50Fe50

permalloy (λex ≈ 2.75nm), allowing for physically larger systems to be computed
within a simulation domain of a comparable discrete cell count.

For the simulations, the parameters for amorphous nickel were selected (Ms =

4.93×105 A/m, A = 8.5×10−12 J/m, K1 = 0 J/m3) and to improve convergence a
damping constant α of 0.25 was chosen.
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Figure 6.5: 600x600x150nm cut of simple cubic nickel antispheres in zero applied field. The colouring
represents the angle between x and y in radians; the lower left inset shows an x-y cut-
plane through the centre of the sample, the lower right shows a cut-plane through a lower
part of the same sample

6.3 Three-dimensional model

A cubic arrangement of antispheres of radius 150nm cut from a sample of nickel of
dimensions 600nm × 600nm × 150nm was prepared and the remanent magnetisa-
tion computed for this system with a finite difference cell edge length of 5nm. These
particular dimensions were chosen as they represent the largest system which can
be simulated in a timely fashion.

The magnetic microstructures which this system creates in zero applied field
after being relaxed from an initially homogeneous state in the x direction can be
seen in figure 6.5. Unfortunately it would appear that the effect of the edges in
this system overwhelmingly influences the microstructure, so such a small sample
does not provide a particularly useful insight into an effectively infinite array of
antispheres. In particular, the relatively thin physical walls in the z direction which
exist in this arrangement apparently act as pinning centres of sorts; since it is dif-
ficult for the system to influence the middle of these walls, the system must have
a significantly large external magnetic field applied to it for these spins to reverse
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Figure 6.6: Magnetisation of a cobalt hexagonal antidot array in zero field; direction of initial applied
field θ = 30o, d = 300nm, r

R
= 0.4, h = 0.05d

their direction of magnetisation.
For more useful results to be obtained, a much larger system is required. Instead

of 3 × 3 antisphere centres being present in the system, we estimate 5 × 5 or more
centres would be necessary to reduce the effects of the sample edges enough to
accurately reflect the microstructures which form within the experimental sample.

Zhukov et al. (2003) perform experimental measurements on large hexagonal ar-
rays of isotropic Ni50Fe50 permalloy antispheres (Ms = 1.1×106 A/m, A = 5.85×10−12

J/m, K1 = 0 J/m3); this permalloy variant has a particularly small exchange length
(λex = 2.76 nm) and as such requires a finer mesh. When this fine mesh is combined
with the need for a large number of antisphere centres, it becomes unrealistic to
perform even one simulation of the resulting structure.

6.4 Two-dimensional model

By considering only two-dimensional cut-planes of the hexagonal antispheres —
assuming that the individual layers behave independently — it is possible to simu-
late significantly larger systems in the x and y directions than if attempting to per-
form a simulation across a three-dimensional sample of similar proportions. We
can then measure the coercive field for different layers.

The hexagonal antisphere systems in Zhukov et al. (2003) can be mapped to
two-dimensional samples by considering hexagonally-spaced circular holes — flat
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Figure 6.7: Hysteresis loop for a 2d array of hexagonally arranged permalloy antidots (d = 100nm,
hole radius to spacing period radius ratio r/R = 0.4) in an in-plane applied field offset 30
degrees from the x direction
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antidots — in a thin film. By varying the ratio of hole radius r to spacing radius R

the surface of the antisphere geometry at different heights can be modelled reason-
ably accurately. Since larger systems can be simulated, the influence of the sample
edges detailed in section 6.3 is substantially reduced (figure 6.6).

6.5 Stray field measurement

The development of the scanning tunnelling microscope (STM) allowed scientists
to determine the electronic topography of a sample with a resolution down to a
few ångstroms (Binnig and Rohrer, 1985, Binnig et al., 1982, 1983). The atomic force
microscope (AFM) is a further development of the STM which exploits the defor-
mation of a spring attached to a cantilever to allow the measurement of the force
exerted on the sharp AFM tip (Binnig et al., 1986).

To characterise the magnetic properties of a sample, the standard diamond tip
of the AFM is replaced by a ferromagnetic tip (Rugar et al., 1990, Sáenz et al., 1987)
allowing the observation of magnetic domain structures by measuring the force
gradient exerted on the tip by the stray field as a function of the position — a tech-
nique known as magnetic force microscopy (MFM) . Rather than the tip following
the surface contours of the sample as in STM, the MFM operates with the tip at a
fixed z point in space.

To assess the appropriateness of the two-dimensional approximation above, we
compute the stray field and compare this to the experimental images provided
through magnetic force microscopy.

The tip of an MFM is magnetic and we assume that it is a dipole d. In the
absence of knowledge of the precise magnetisation of the tip, this is the simplest
approach possible (Barthelmeß et al., 2003). The signal which the MFM records is
proportional to the gradient of the demagnetising field Hde.

6.5.1 Numerical calculation of the stray field

We compute the stray field from our simulation data as it would be read from a
magnetic force microscope by simulating several layers of “empty space” above
the sample and measuring the demagnetising field. This has the advantage that
the efficient OOMMF algorithm for the computation of the demagnetising field can
be used. However, we need to compute the second derivative numerically (using
central differences):

∂2f

∂x2
=

f(x + h) − 2f(x) + f(x − h)

h2
+ O(h2) (6.6)
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Figure 6.8: Microscopic images of an antidot array. The tunnelling image on the left shows the lo-
cation of the antidots; the magnetic force microscopy image on the right highlights the
demagnetisation field

where h is the distance between the upper and lower layers of the demagnetising
field.

6.5.2 Stray field calculation through analytical techniques

Alternatively, we can interpret the discrete magnetisation vector M(r) at the sur-
face of the sample as a layer of dipoles and compute the stray field at the MFM tip
and consequently the second derivative analytically.

This approach is more accurate in determining the second derivative because
h in equation 6.6 cannot be made arbitrarily small. Additionally, an analytical ap-
proach is more flexible with respect to the fly height of the MFM tip.

It should be noted that this approach ignores the higher order magnetic mo-
ments associated with each simulation cell in OOMMF by replacing them with the
leading dipole term. This is justified if the height of the MFM tip above the sample
surface is much greater than the OOMMF cell spacing.

The second derivative of the demagnetising energy should be proportional to
the signal at the tip of a magnetic force microscope and can be shown (see ap-
pendix A) to be:
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Figure 6.9: Demagnetising field of an antidot sample in zero applied field as measured by the tip of
the magnetic force microscope (left) and the second derivative as computed through the
analytical techniques from equation 6.7 (right)

∂2Ed

∂z′2
= µ0

(−3 · m · m′

|r − r′|5

+
15 ·m · m′(z − z′)2

|r− r′|7

−6 · m′
zmz

|r − r′|7

+
30(m · (r− r′))m′

z(z − z′)

|r− r′|7

+
30(m′ · (r − r′))mz(z − z′)

|r − r′|7

+
15(m · (r− r′))(m′ · (r− r′))

|r − r′|7

−105(m · (r − r′))(m′ · (r − r′))(z′ − z′)2

|r − r′|9
)

(6.7)

This assumes that the tip of the MFM is a dipole:

m′ =









0

0

C









(6.8)

The full derivation of this can be found in appendix A.
Figure 6.9 shows the comparison between the experimental data measured with

a magnetic force microscope in zero applied field and the second derivative of the
demagnetising field as calculated by the above equation. There is a significant sim-
ilarity between the images; both show a characteristic periodic parallelogram pat-
tern. The tip distance, both experimental and computed, was half of the distance
between the antidot centres.

Figure 6.10 shows a clear agreement between the measurements from the MFM
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Figure 6.10: Measured MFM signal of a three-dimensional antidot sample in a small (≈10mT) ap-
plied field (left) and simulated MFM signal of a simulated two-dimensional layer using
equation 6.7 (right)

in a small applied field (approximately 10mT) and the computed stray field from
the simulation results.

Figures 6.9 and 6.10 suggest that the simulation of a two-dimensional layer with
cylindrical holes produces a magnetisation which is at least qualitatively in agree-
ment with the measured magnetisation in the top layer of a three-dimensional sam-
ple with spherical holes.

6.6 Monte Carlo simulation

In section 6.4 we described a method for extracting the coercive field of the two-
dimensional antidot layers. The assumption with this approach is that the layers
are independent, however different layers interact via the exchange coupling. A
Monte Carlo simulation is used to simulate the reversal behaviour of a stack of
exchange-coupled two-dimensional layers. It is assumed that all magnetic mo-
ments in one two-dimensional layer point in the same direction, i.e. each layer
is treated as a single Stoner-Wohlfarth particle (see figure 6.11).

By taking the computed coercive field Bc from the two-dimensional model as
a function of r/R, we can determine an effective anisotropy energy K (arising
from the adapted Stoner-Wohlfarth model described in appendix B considering
anisotropy and Zeeman components) for each Stoner-Wohlfarth layer with holes
of the size r:

K(r) =
m(r)Bc(r)

18
(6.9)
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Figure 6.11: Overview of Monte Carlo simulation. A ‘stack-of-spins’ model (A) is used as a basis
for simulation. The ‘spins’ are coupled by an exchange energy component computed
through neighbouring interface atoms (B) between layers. An anisotropy component is
computed from the coercivity of the 2D layer (C) and the magnetisation contribution is
calculated from the volume of material in each layer. See appendix B for the derivation
of the anisotropy component.

where m(r) is the magnetic moment of a two-dimensional layer of 5nm thickness
with holes of radius r. Thus, each Stoner-Wohlfarth layer will — if it is decou-
pled from the other layers — switch at the coercive field as measured in the two-
dimensional simulations (see appendix B for the full derivation of equation 6.9).

The layers are coupled by the exchange interaction and the exchange energy
can be computed between two neighbouring layers A and B:

EexA,B = −2NJSA · SB (6.10)

= −2NJ S2 cos(φAB) (6.11)

where N is the number of neighbouring atoms, J is the exchange integral, S is
the atomic magnetic moment and φAB is the angle between the magnetisation in
the neighbouring layers. The exchange energy component yielded by this equa-
tion represents the energy between the interface of layers A and B (point B in fig-
ure 6.11).

By performing a Monte Carlo simulation of the system of coupled
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Figure 6.12: Coercivity of a 6x6 permalloy hexagonal antidot array with applied fields 10, 15, and 30
degrees from the x direction (d = 100nm).

Stoner-Wohlfarth layers using the equations above and input parameters for Bc(r/R)

from the two-dimensional simulations shown in figure 6.12, we are able to more ac-
curately compute the coercive field with respect to the height of the film, and there-
fore use the results of the two-dimensional simulations to understand a simplified
model of the three-dimensional system.

6.7 Results

The calculated hysteresis loop for a two-dimensional permalloy hexagonal antidot
sample is shown in figure 6.7, showing a relatively large coercive field of around
25mT. The dot spacing in this sample is 100nm between centres, with the dot diam-
eter being 40% of the dot spacing.

Figure 6.12 shows the effect the radius ratio r/R of the hole to spacing has on
the coercivity of the sample. Simulations were performed on permalloy antidots d

= 100nm with applied fields offset by 10, 15 and 30 degrees from the x direction.
When r/R is below 0.1, the antidots have little effect on the overall coercive field
of the sample in all three cases. However, when r/R increases above 0.1, the co-
ercivity doubles sharply for offsets of 10 and 15 degrees; the 30 degree coercivity
measurement also increases, but more gradually.

A more drastic change in behaviour is observed when r/R increases to 0.8 and
above; the coercivity rapidly increases as a result of the reduction in material be-
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Figure 6.13: Coercivity of a larger 6x6 permalloy hexagonal antidot array with the applied field offset
30 degrees from the x axis (d = 200nm).

tween the antidots; this makes it more difficult for the system to reverse the mag-
netisation between these thin ‘walls’ of material. In the most extreme case, the co-
ercivity of the 30 degree sample when r/R is 0.9 is approximately ten times greater
than that when r/R is 0.1 and below.

Any simulation performed in the situation where r/R is 1.0 is likely to be in-
accurate as the finite resolution of the simulation will not allow the extremely fine
walls around the point where the antidots touch to be precisely resolved.

Figure 6.13 shows a coercive field graph of a 30o offset permalloy antidot sys-
tem, similar to that shown in figure 6.12 only with d = 200nm. In this larger system,
the jump in the system at r/R = 0.1 is less pronounced and the coercivity increases
in a less abrupt fashion.

Figure 6.14 shows the results of the Monte Carlo simulation using values of Bc(r)

from the d = 200nm permalloy dataset demonstrated in figure 6.13, comparable to
the experimental results shown in figure 6.3.

Figure 6.15 shows on the left an experimental magnetic force microscope im-
age of a cobalt antidot film (d = 700nm, h = 100nm) in zero applied field. The
holes at the surface of the antidot film are indicated by the blue circles. The image
on the right-hand side shows the remanent magnetisation pattern from the two-

101



10

15
co

er
ci

ve
 fi

el
d 

(m
T

)

h / d
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

Figure 6.14: Monte Carlo simulation results with Bc(r/R)
values from figure 6.13

dimensional micromagnetic modelling case when r/R = 0.5. In both cases the
applied field was 30 degrees from the indicated x axis.

The numerical results show that the magnetisation follows around the holes,
forming a consistent periodic microstructure. The magnetisation between neigh-
bours in a1 (see equation 6.1) is 90 degrees from x (60 degrees from the applied
field), but between neighbours in a2 the magnetisation is 60 degrees from x (30 de-
grees from the applied field). The magnetisation between neighbours in
(−a2(x),a2(y)) is 30 degrees from x (aligned with the applied field).

6.8 Summary

We have calculated hysteresis loops, magnetisation patterns and stray fields over
antidot samples, and whilst three-dimensional micromagnetic simulations will al-
ways be the most accurate way of simulating these shapes, it is not always practical.

In certain situations, particularly where a large simulation domain is desir-
able, a two-dimensional simulation which accurately reflects the three-dimensional
physical sample can offer insight into the magnetisation patterns and in particular
the stray field patterns in these physical samples.

In addition, the strong similarity between the experimental MFM results and
the computed stray field from the simulation allows us to conclude that the two-
dimensional model is a reasonably accurate reflection of the three-dimensional ex-
perimental system.
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Figure 6.15: Experimental and numerical images for a cobalt antidot film (left) MFM image of film
prepared with spheres of diameter 700nm with thickness 100nm; blue circles indicate
the position of the holes in the film and (right) magnetisation direction from numerical
modelling with r/R = 0.5; the colour scale represents the magnetisation angle in the xy
plane in radians

6.8.1 Outlook

By using periodic boundary conditions, unfortunately not available in the
simulation software, it would be possible to compute a system in three dimen-
sions by making the sample periodic in the x and y directions. Parallel execution
of the simulation code coupled with a shared memory model would also make the
three-dimensional simulation case feasible.

The next steps in following up the presented results would be to further un-
derstand the three régimes in Bc(r/R) for two-dimensional systems shown in fig-
ure 6.12, in addition to modelling the full three-dimensional system.
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Chapter 7

Summary and outlook

7.1 Summary

We have investigated the properties of micromagnetic samples through simulation
paying particular attention to shape anisotropy — the influence the shape has on
the hysteresis loop and magnetic microstructure.

Most magnetic samples at a nanometre scale possess characteristics desirable
for magnetic data storage applications, either as data read/write heads or sensors,
where the magnetisation is sensitive to small changes in B, or as storage media
with a high coercivity.

We note that cylinders are particularly suitable candidates for storage media
when considering their comparatively large coercivity, and our phase diagram iden-
tifies the behavioural dependence on diameter and height. Spherical geometries
exhibit properties useful for magnetic sensors. Our studies reveal how coercivity
decreases when overall diameter is increased.

More complex shapes, such as the cone, half-sphere and the droplet are more
flexible, and by subtle alterations in their sizes can be manipulated for use in any
data storage application. Size dependence studies in the droplet geometry show
that the transition between the single-domain and the vortex state occurs at a bound-
ing sphere diameter of 140nm in nickel. Larger droplets which have reversible
characteristics and zero coercivity are ideal for magnetic sensor applications.

Antidots show interesting characteristics when considered in arrays of their
peers, and given the flexibility of the coercive field through altering the size of the
dots as a fraction of the spacing distance, make good candidates for storage media.

Comparisons between our simulations and experimental results demonstrate a
high degree of similarity. We can use micromagnetic simulation to observe hys-
teretic behaviour and coercivity trends with high confidence, and the study of sam-
ples with other geometries and sizes which are not yet feasible for experimentalists
to physically produce can yield possible directions for future experimental work.

Overall, we conclude the coercivity of magnetic samples can be controlled by
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their physical shape and size.
Possible candidates for further simulation include the remainder of the prim-

itive set — torii and pyramids — as well as constructive solid geometries based
upon these primitives, for example a tear-drop shape built from a conical upper
and a half-ellipsoid lower section. Shapes such as these could be created by com-
bining the self-assembly double-template method outlined in chapter 5 with elec-
tron beam lithographic techniques. Using this method it is also possible to create
films manufactured from different materials — for example, it might be possible to
create a cobalt half-sphere which has a permalloy “hat”.

The simulations presented in this thesis were computed as zero temperature.
Thermal effects, even at low temperatures, can introduce subtle changes in be-
haviour. As such, the contribution to the results through finite temperature would
be studied in a continuation of this work. Initial studies indicate that the size of
secondary hysteresis loop energy barriers in the case of the sphere is reduced at
finite temperature.

The work discussed in section 5.5.2 revealed some interesting properties of
vortex behaviour in the droplets. Initial studies have shown that the droplets,
especially larger ones, demonstrate similar vortex orientations to those found in
spheres, although they quickly fall into a more disc-like out-of-plane vortex state
as the applied field is further reduced.

A more detailed study will be performed into how the variation of lz(s) and lz(e)

from equations 5.1 and 5.1 affects the vortex formation, movement and subsequent
disappearance. The effect of magnetostatic energy between adjacent nanodots will
also be investigated.

Finally, in chapter 6 we compared experimental data with simulation results
produced through two-dimensional simulations, Monte Carlo methods and found
a strong similarity between experimental MFM and computed stray field results,
corroborating the two-dimensional model presented in that chapter.
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Appendix A

Analytical calculation of the
stray field

Since the phase shift of the cantilever attached to the sharp tip in a magnetic force
microscope (Sáenz et al., 1987) when measured corresponds to the measured sig-
nal (McVitie et al., 2001), the second derivative of the stray field (Hug et al., 1998, Ru-
gar et al., 1990) is proportional to the rate of change of the force on the tip (Barthelmeß
et al., 2004).

If the second derivative is evaluated at a fixed height above a demagnetising
energy dataset of micromagnetic simulation results then this is comparable to a
magnetic force microscope. This derivative is presented in this appendix.

The dipolar energy between two points in a magnetic system, assuming each
discrete cell is a dipole, can be considered to be

Epot = µ0
m ·m′ − 3(m · e)(m′ · e)

|r − r′|3 ∀r 6= r′ (A.1)

where e is the unit vector of r.
For fixed m′ (such as that in the magnetic tip in magnetic force microscopy), the

effective field is

Hd =
m− 3(m · e)e

|r − r′|3 (A.2)

because E = −µ0m ·Hd, noting that m is located at r and m′ — the tip — is located
at r′. We define:

e =
r− r′

|r− r′| (A.3)

For the MFM data:

∂2Epot

∂z′2
∝ ∂2Hz

d

∂z′2
(A.4)

106



Expand A.1 by substituting A.3:

Epot = µ0
m · m′

|r − r′|3 − 3(m · (r − r′)) · (m′ · (r − r′))

|r − r′|5 (A.5)

We precompute some expressions:

g(r, r′) ≡ |r − r′| (A.6)

=
√

(x − x′)2 + (y − y′)2 + (z − z′)2 (A.7)
(

=
√

(r − r′)2
)

(A.8)

∂g(r, r′)

∂z′
=

1

2
√

(r − r′)2
· 2(−1)(z − z′) (A.9)

=
1

√

(r − r′)2
· −1(z − z′) (A.10)

=
−(z − z′)

|r− r′| (A.11)

=
z′ − z

|r − r′| (A.12)

f ≡ g3 (A.13)

= |r − r′|3 (A.14)

∂f

∂z′
=

∂f

∂g
· ∂g

∂z′
(A.15)

= 3 · g(r, r′)2 · ∂g

∂z′
(r, r′) (A.16)

= 3|r − r′|2 · z′ − z

|r− r′| (A.17)

= 3|r − r′|(z′ − z) (A.18)

f̃ ≡ 1

f
(A.19)

=
1

g3
(A.20)

=
1

|r − r′|3 (A.21)

= g−3 (A.22)
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∂f̃

∂z′
=

∂f̃

∂g

∂g

∂z′
(A.23)

= −3g−4 · ∂g

∂z′
(A.24)

= −3
1

|r − r′|4 · z′ − z

|r − r′| (A.25)

= −3
z′ − z

|r − r′|5 (A.26)

h ≡ g5 (A.27)

so

∂h

∂z′
=

∂h

∂g

∂g

∂z′
(A.28)

= 5g4 · z′ − z

|r − r′| (A.29)

= 5|r − r′|3 · (z′ − z) (A.30)

h̃ ≡ g−5 (A.31)

so

∂h̃

∂z′
=

∂h̃

∂g

∂g

∂z′
(A.32)

= −5g−6 z′ − z

|r− r′| (A.33)

= −5
z′ − z

|r− r′|7 (A.34)

Looking at the mixed terms in A.5:

Ψ(r, r′) ≡
[

m · (r − r′)
][

m′ · (r − r′)
]

(A.35)

=
[

mx(x − x′) + my(y − y′) + mz(z − z′)
]

·
[

m′
x(x − x′) + m′

y(y − y′) + m′
z(z − z′)

]

(A.36)

∂Ψ

∂z′
=

[

m(r − r′)
]

· ∂

∂z′
(

m′
x(x − x′) + m′

y(y − y′) + m′
z(z − z′)

)

+
[

m′(r − r′)
]

· ∂

∂z′
(

mx(x − x′) + my(y − y′) + mz(z − z′)
)

= m(r − r′) · (−m′
z) + m′(r− r′) · (−mz) (A.37)
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φ ≡ Ψ

|r − r′|5 (A.38)

=
Ψ

h
(A.39)

∂φ

∂z′
=

h · ∂Ψ
∂z′ − Ψ · ∂h

∂z′

h2
(A.40)

=
g5 · ∂Ψ

∂z′ − Ψ · 5g3(z′ − z)

g10
(A.41)

=
∂Ψ
∂z′

g5
− 5Ψ(z′ − z)

g7
(A.42)

=
−m · (r− r′) · m′

z −m′ · (r − r′)mz

|r− r′|5

−5(m · (r− r′))(m′(r− r′))(z′ − z)

|r− r′|7 (A.43)

Combining the above to give the first derivative of the dipolar interaction energy
as A.5:

Epot = µ0

( m · m′

|r − r′|3 − 3(m · (r − r′))(m′ · (r − r′))

|r − r′|5
)

(A.44)

With respect to z′:

∂Epot

∂z′
= µ0

(

m · m′ · 3(z − z′)

|r − r′|5

+
3m · (r − r′) · m′

z + 3m′(r− r′)mz

|r − r′|5

+3
5(m · (r − r′))(m′ · (r − r′))(z′ − z)

|r − r′|7
)

(A.45)

= µ0(A + D + E + F) (A.46)

A ≡ 3m · m′(z − z′)

|r − r′|5 (A.47)

D ≡ 3m(r − r′) · m′
z

|r − r′|5 (A.48)

E ≡ 3m′(r − r′) · mz

|r − r′|5 (A.49)

F ≡ 15(m · (r− r′))(m′ · (r− r′))(z′ − z)

|r − r′|7 (A.50)
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A =
B
C (A.51)

To find ∂2Epot

∂z′2
, we need the derivatives of A, D, E and F :

∂A
∂z′

=
C · ∂B

∂z′ − B · ∂C
∂z′

C2
(A.52)

=
|r − r′|5 · 3m ·m′(−1) − 3m ·m′(z − z′) · 5|r − r′|3(z′ − z)

|r − r′|10 (A.53)

=
−3m ·m′

|r − r′|5 +
15m ·m′(z − z′)2

|r− r′|7 (A.54)

∂D
∂z′

=
C · ∂

∂z′ (3m · (r − r′) · m′
z) − 3m(r − r′) · m′

z · 5|r − r′|3(z′ − z)

|r − r′|10 (A.55)

=
3m′

z
∂

∂z′ (mx(x − x′) + my(y − y′) + mz(z − z′))

|r − r′|5

+
15m(r − r′)m′

z(z − z′)

|r− r′|7 (A.56)

=
3m′

z(−mz)

|r− r′|5 +
15m′

z(z − z′)(r − r′) ·m
|r− r′|7 (A.57)

∂E
∂z′

=
3|r − r′|5 ∂

∂z′ (m
′
x(x − x′) + m′

y(y − y′) + m′
z(z − z′)) · mz

|r− r′|10

−3m′(r− r′) · mz · 5|r − r′|3(z′ − z)

|r− r′|10 (A.58)

=
3(−m′

zmz)

|r− r′|5 +
15m′(r− r′)mz(z − z′)

|r− r′|7 (A.59)

r0 = 15(m · (r− r′)) · (m′ · (r − r′)) (A.60)

= 15(mx(x − x′) + my(y − y′) + mz(z − z′))

·(m′
x(x − x′) + m′

y(y − y′) + mz(z − z′)) (A.61)

F1 = r0(z
′ − z) (A.62)

In the derivative, only the terms with z ′ matter:

F0 =
F1

z′ − z
(A.63)
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∂F0

∂z′
=

∂

∂z′
(

15
(

mx(x − x′)m′
z(z − z′)

+my(y − y′)m′
z(z − z′)

+mz(z − z′)m′
z(z − z′)

))

(A.64)

∂

∂z′
= mzm

′
z · 2(z − z′)(−1) (A.65)

∂F0

∂z′
= 15(mx(x − x′)m′

z(−1)

+my(y − y′)m′
z(−1)

+mzm
′
z · 2(z − z′)(−1)

+mzm
′
x(x − x′)(−1)

+mzm
′
y(y − y′)(−1))

= −15(m · (r − r′) · m′
z + m′ · (r − r′) · mz) (A.66)

∂F1

∂z′
= F0

∂

∂z′
(z′ − z) + (z′ − z)

∂F0

∂z′
(A.67)

= 15(m · (r− r′))(m′ · (r− r′)) · 1
+(z′ − z)(−15)(m · (r − r′)m′

z + m′(r− r′)mz) (A.68)

= 15((m · (r − r′))

+m · (r − r′)m′
z(z − z′)

+m′ · (r − r′)mz(z − z′)) (A.69)

q ≡ g7 (A.70)

= |r− r′|7 (A.71)

∂q

∂z′
=

∂q

∂g

∂g

∂z′
(A.72)

= 7g6 ∂g

∂z′
(A.73)

=
7g6(z′ − z)

g
(A.74)

= 7|r − r′|5(z′ − z) (A.75)
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∂F
∂z′

=
g7 · ∂F1

∂z′ −F1 · ∂g7

∂z′

(g7)2
(A.76)

=
∂F1
∂z′

g7
− F1 · ∂g7

∂z′

g14
(A.77)

=
15

|r− r′|7 · ((m(r − r′))(m′(r− r′))

+m(r− r′)m′
z(z − z′) + m′(r− r′)mz(z − z′))

−15(m · (r − r′)m′(r − r′)(z′ − z) · 7|r − r′|5(z′ − z))

|r− r′|14 (A.78)

=
15

|r− r′|7 · ((m(r − r′))(m′(r− r′))

+m(r− r′)m′
z(z − z′) + m′(r− r′)mz(z − z′))

+
105(m · (r− r′)m′(r − r′)(z − z′)(z′ − z))

|r − r′|9 (A.79)

The second derivative is:

∂2Epot

∂z′2
= µ0(A′ + D′ + E ′ + F ′) (A.80)

Where possible, collecting terms and expanding gives:

∂2Epot

∂z′2
= µ0

(−3 ·m ·m′

|r− r′|5

+
15 · m ·m′(z − z′)2

|r − r′|7

−6 · m′
zmz

|r− r′|5

+
30(m · (r − r′))m′

z(z − z′)

|r − r′|7

+
30(m′ · (r − r′))mz(z − z′)

|r− r′|7

+
15(m · (r − r′))(m′ · (r − r′))

|r− r′|7

−105(m · (r − r′))(m′ · (r − r′))(z − z′)2

|r− r′|9
)

(A.81)

This is the final second derivative, which should be proportional to the signal at
the tip of the MFM — assuming the MFM tip is a dipole:

m′ =









0

0

C









(A.82)
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Appendix B

Supporting equations for the
3D/1D Monte Carlo method

Since the three-dimensional OOMMF model is not computationally feasible for the
antidot system, by assuming two-dimensional layers (see section 6.4) we can extract
the coercive field as a function of the radius of the antidots.

By blending these figures for coercivity with a Stoner-Wohlfarth-like (see sec-
tion 2.6.1) approach and Monte Carlo stochastic mathematical simulation methods
we can approximate the three-dimensional system.

The coercive field of the 2D layers Bc is a function of the radius of the holes
r with a periodicity of 2R defined as r/R. An induced anisotropy can be derived
from two points — first, the magnetisation within the sample will prefer to shift be-
tween the holes rather than across the empty space inside the holes and second, the
holes are arranged hexagonally. By assuming that the magnetisation in the sam-
ple is a single-domain, we can describe the induced anisotropy with the following
equation:

Uan = K sin2(3φ) (B.1)

where φ is the angle in the plane between the magnetisation and a symmetry axis.
The left-hand side of figure B.1 shows a polar plot of this antidot-induced aniso-

tropy, with the solid black line emerging from the centre representative of φ = 0.
Adding the Zeeman term:

Utot = Uan + UZe (B.2)

= K sin2(3φ) + mB cos(φ) (B.3)

If we assume some overall magnetisation direction in the plane such that it is
a single domain, we can use the anisotropy term from equation B.1 in the Stoner-
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Figure B.1: Polar plot of the anisotropy energy Uan = K sin2(3φ) when K = 1 (left) and reversal
condition determination with competing anisotropy energy (Uan) and Zeeman energy
(UZe) with B = m = 1, K = Bm/18.

Wohlfarth model described in section 2.6.1. To determine the reversal conditions,
we can compute the first derivative of Utot:

dUtot

dφ
= K2 sin(3φ)3 cos(3φ) − mB sin(φ) (B.4)

The energy barriers dominating the system are shown to be around φ = 0 (fig-
ure B.1, right). Expanding sin and cos around zero:

sin(φ) ≈ φ (B.5)

cos(φ) ≈ 1 (B.6)

when φ ≈ 0.
Inserting this into equation B.4 yields:

dUtot

dφ
≈ 6K3φ − mBφ (B.7)

If we assume φ 6= 0:

K =
mB

18
(B.8)

The right-hand side of figure B.1 shows graphically the resulting energies with
B = 1, m = 1 and K = Bm/18.

The value B in equation B.8 is the coercivity Bc obtained from the
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two-dimensional antidot simulation layer dependent on r/R. Since K and m are
the anisotropy constant and the saturation magnetisation respectively for the whole
simulated layer rather than per unit volume:

K(r/R) =
m(r/R)Bc(r/R)

18
(B.9)

These equations, coupled with an exchange energy approximation outlined in
equation 6.10, can be used to perform a Monte Carlo simulation on the computed
two-dimensional coercivity values. This simulation results in a coercivity oscilla-
tion as a function of the thickness of the film which more accurately reflects the
experimental results shown in figure 6.3.
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Appendix C

Material parameters

material† magnetisation Ms exchange parameter A K1 K2

(T (A/m)) (J/m) (J/m3) (J/m3)

barium iron oxide (1/12/19)1 0.48 (3.82×105) 6.3×10−12 4.50×105 3.00×105

barium iron oxide (1/12/19) room temper-
ature2

0.48 (3.82×105) 6.3×10−12 3.20×105 1.00×105

cobalt1 1.79 (1.42×106) 3.02×10−11 7.00×105 1.80×105

cobalt(3) platinum3 1.38 (1.10×106) 9.93×10−12 2.00×106 0
cobalt iron nickel silicon boron
(58/5/10/16/11) amorphous alloy4

0.53 (4.22×105) 2.7×10−12 0 0

cobalt platinum3 1.01 (8.04×105) 1.01×10−11 4.90×106 0
cobalt platinum chromium3 0.37 (2.94×105) 9.99×10−12 2.00×105 0
cobalt (room temperature)2 1.79 (1.42×106) 3.02×10−11 4.53×105 1.45×105

cobalt1 1.79 (1.42×106) 3.14×10−11 7.00×105 1.80×105

cobalt type 2 (room temperature)2 1.79 (1.42×106) 3.14×10−11 4.53×105 1.45×105

cobalt3 1.76 (1.40×106) 9.99×10−12 4.50×105 0
iron nickel boron (20/60/20) sputtered5 0.56 (4.46×105) 2.1×10−12 0 0
iron(40) nickel(40) boron(20) - amorphous
alloy4

1.05 (8.36×105) 8.07×10−12 0 0

iron nickel boron (40/40/20) sputtered5 1.05 (8.36×105) 5.5×10−12 0 0
iron nickel phosphorous boron
(40/40/14/6) amorphous alloy4

0.8 (6.37×105) 3.1×10−12 0 0

iron nickel boron (60/20/20) sputtered5 1.46 (1.16×106) 7.9×10−12 0 0
iron silicon niobium copper boron
(73.5/13.5/3/1/9) nanocrystalline alloy6

1.2 (9.55×105) 1×10−11 0 0

iron boron (80/20) - amorphous alloy4 1.6 (1.27×106) 5×10−12 0 0
iron boron (80/20) sputtered5 1.56 (1.24×106) 5.4×10−12 0 0
iron palladium3 1.38 (1.10×106) 1.03×10−11 1.80×106 0
iron platinum (maximum)3 1.43 (1.14×106) 1.54×10−11 1.00×107 0
iron platinum (minimum)3 1.43 (1.14×106) 1.02×10−11 6.60×106 0
iron - amorphous alloy4 2.185 (1.74×106) 2.07×10−11 0 0
manganese aluminium3 0.7 (5.57×105) 1.02×10−11 1.70×106 0
neodymium iron boron (2/14/1)1 1.61 (1.28×106) 7.3×10−12 -1.80×107 4.80×107

neodymium iron boron (2/14/1) room
temperature2

1.61 (1.28×106) 7.3×10−12 4.30×106 6.50×105

neodymium iron boron(2/14/1) type 21 1.61 (1.28×106) 8.4×10−12 -1.80×107 4.80×107

neodymium iron boron (2/14/1) type 2
(room temperature)2

1.61 (1.28×106) 8.4×10−12 4.30×106 6.50×105

nickel1 0.62 (4.93×105) 7.2×10−12 -1.20×105 3.00×104

1Micromagnetism and the microstructure of ferromagnetic solids, pp. 17-22, first edition, Kronmüller and

Fähnle
2as 1; figures are for materials at room temperature
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material† magnetisation Ms exchange parameter A K1 K2

(T (A/m)) (J/m) (J/m3) (J/m3)

nickel (3) iron1 1.1 (8.75×105) 7.1×10−12 0 0
permalloy (50/50)7 1.39 (1.11×106) 5.85×10−12 0 0
permalloy (80/20)8 1.0 (7.96×105) 1.3×10−11 0 0
nickel (room temperature)2 0.62 (4.93×105) 7.2×10−12 -4.50×103 -2.50×103

nickel - amorphous alloy4 0.62 (4.93×105) 8.5×10−12 0 0
nickel (type 2)1 0.62 (4.93×105) 8.5×10−12 -1.20×105 3.00×104

nickel (type 2) room temperature2 0.62 (4.93×105) 8.5×10−12 -4.50×103 -2.50×103

praseodymium iron boron (2/14/1)1 1.56 (1.24×106) 1.2×10−11 2.40×107 -7.00×106

praseodymium iron boron (2/14/1) room
temperature2

1.56 (1.24×106) 1.2×10−11 5.60×106 0

samarium (2) cobalt (17)1 1.29 (1.03×106) 1.4×10−11 6.50×106 0
samarium(2) cobalt(17) at room tempera-
ture2

1.29 (1.03×106) 1.4×10−11 4.20×106 0

samarium iron nitrogen (2/17/3)1 1.56 (1.24×106) 1.2×10−11 1.20×107 3.00×106

samarium iron nitrogen (2/17/3) room
temperature2

1.56 (1.24×106) 1.2×10−11 8.60×106 1.90×106

samarium cobalt(5)1 1.05 (8.36×105) 1.2×10−11 2.60×107 0
samarium cobalt(5) room temperature2 1.05 (8.36×105) 1.2×10−11 1.70×107 0
alpha iron2 2.185 (1.74×106) 2.07×10−11 5.20×104 -1.80×104

alpha iron at room temperature2 2.185 (1.74×106) 2.07×10−11 4.80×104 -1.00×104

alpha iron (type 2) room temperature2 2.185 (1.74×106) 2.28×10−11 5.20×104 -1.80×104

alpha iron room temperature2 2.185 (1.74×106) 2.2×10−11 4.80×104 -1.80×104

gamma magnetite9 0.61 (4.85×105) 1.32×10−11 -1.36×104 0

Table C.1: Properties of ferromagnetic materials

3Klemmer and Weller, (Scholz, 2003)
4as 1; figures are for an amorphous alloy
5as 1; figures are for sputtered material
6as 1; figures are for nanocrystalline alloy
7Alexander Zhukov, School of Physics and Astronomy, University of Southampton
8Smith, Markham and LaTourette (1989)
9Afremov and Panov (1998)

†Note that where the temperature is not specified, measurements have been taken at low temper-
ature. Neodymium iron boron (2/14/1) was measured at 20K, all others at 4.2K.
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Appendix D

CGS and SI (MKS) unit systems

description cgs unit SI (mks) unit factor

acceleration galileo Gal metre per second squared m·s−2 0.01
dynamic viscosity poise P pascal second Pa·s 0.1
electric charge franklin Fr coulomb C 3.34×10−10

electric current biot Bi ampere A 10
electric dipole moment debye D coulomb metre C·m 3.34×10−30

energy (work) erg joule J 10−7

force dyne dyn newton N 10−5

heat energy calorie cal joule J 4.187
heat transmission langley kilojoule per square metre kJ·m−2 41.84
illumination phot ph lux lx 104

kinematic viscosity stokes St square metres per second m2·s−1 10−4

luminance
lambert Lb

candela per square metre cd·m−2 3183.1
stilb sb 104

magnetic dipole moment emu ampere square metre A·m2 10−3

magnetic field strength oersted Oe ampere per metre A·m−1 79.577

magnetic flux
line li

weber Wb
10−8

maxwell Mx 10−8

unit pole 1.257×10−7

magnetic flux density gauss G tesla T 10−4

magnetomotive force gilbert Gi ampere A 0.796
permeability darcy square metre m2 0.987×10−12

pressure barye ba pascal Pa 0.1
wave number kayser K per metre m−1 100

Table D.1: The centimetre-gram-seconds (CGS) and the metre-kilogram-seconds (SI) unit systems.
To convert from one system to the other, cgs unit × factor = mks unit. Data from Purcell
(1985) and Jackson (1999)
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Appendix E

Complete simulation process

This section discusses the complete simulation process, centred around the dia-
gram in figure E.1. This diagram shows the major supporting libraries, compilers,
interpreters, scripts, data stores and outputs of the method.

E.1 Notation

• Hexagonal boxes with green text indicate one of the two simulation packages
involved: OOMMF for the finite difference method, or magpar for the hybrid
finite element/boundary element method.

• Diamonds containing red text show a source compiler or a script interpreter,
such as gcc or Python.

• Parallelograms show a fundamental library necessary for the compilation of
one of the simulation packages.

• Ellipses with purple text show an intermediate data set necessary for “gluing”
components together.

• Boxes with blue text indicate a complex custom application designed to con-
vert or otherwise handle the input and output of one application or library.

• Trapezoids with grey text demonstrate a presentation output file; numerical
data
would be a hysteresis loop, for example, whereas graphical data would be
a magnetisation visualisation.

• Ellipsoids with red text show a supporting external application necessary for
visualisation, pre- or post-processing or runtime.

Conversion between data sets or to interpret a data set as the input of another
program is performed by a custom application not necessarily indicated on the
diagram in figure E.1 for clarity.
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Figure E.1: The complete simulation process, from supporting libraries and compilers to visualisa-
tion and post-processing
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Problem Specification

Director
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Driver

General Mesh

Energy

Tcl Control Script Evolver

Minimisation Evolver
Rectangular Mesh

Six Neighbour Exchange

Const Mag Demag

Uniaxial Anisotropy

Cubic Anisotropy

Figure E.2: The OOMMF extensible solver framework. Blue items in boxes indicate extensible areas

The build of the hybrid finite element/boundary element package magpar is
much more complicated than that of its finite difference peer, OOMMF. OOMMF is
available from the NIST website as either a source code package with a straightfor-
ward build process or as a precompiled binary application for many architectures
and operating systems, such as GNU/Linux or Microsoft Windows. The frame-
work of the three-dimensional micromagnetic problem solver, Oxs (the OOMMF
Extensible Solver), is shown in figure E.2. The blue items in boxes here show ar-
eas which can be straightforwardly extended to include, for example, a twenty-six
neighbour exchange energy contribution rather than the standard six neighbour ex-
change provided as standard with OOMMF. Oxs provides a powerful mechanism
for extending this micromagnetics package.

Conversely, magpar is dependent on many highly optimised mathematics li-
braries which have been developed by different organisations and individuals for
many years. While the result of each of these is a library which is extremely power-
ful with respect to its individual application (linear algebra, matrix transformation,
differential equation solvers), compatibility and ease-of-use suffer. Although these
issues will be addressed in due course, it alienates many members of the physics
community as one must be familiar with software development in a UNIX-like en-
vironment to successfully use the software when provided in this form.

In theory, of course, binaries of magpar could be provided just as for OOMMF,
however given the automatic calibration and tuning of the mathematical libraries
involved, performance would be adversely affected, and there is no guarantee that
the results would be accurate. Taking advantage of the features provided by one
particular architecture can introduce dangerous imprecision when run on another
similar architecture, especially when considering floating point computation can-
cellation and round-off errors (Schulte and Swartzlander, 2000).
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Appendix F

Constructive solid geometries

In order to create micromagnetic problem input sources, such as MIF files for
OOMMF or to describe boundaries for magpar’s finite element meshes, we need
to define the basic geometry of the problem.

A basic geometry is one described by a simple mathematical equation, and these
are generally accepted by three-dimensional graphics modellers to be primitives —
constructive solid geometries (CSGs) (see figure F.1). The primitives can be consid-
ered to be the set of spheres, torii, cylinders, cuboids, pyramids and cones, as well
as the associated two-dimensional shapes. By adding or removing conditions for
satisfying the equations, the shape can be modified. For example, if one considers
a sphere where the volume conditions are defined by:

x2 + y2 + z2 ≤ 1 (F.1)

where x, y and z are between −1 and 1 then it is straightforward to modify this
such that the conditions in equation F.1 are met and z ≤ 0, then a half-sphere is
produced. This could be called a Boolean shape because the resultant geometry
shows a “negative” cuboid has been cut away from the sphere. A section of a
sphere could be created as though two cuboids have been subtracted from it by, in
addition to satisfying the above equations, satisfying z ≥ −0.5. If this is satisfied,
and the conditions for a cone:

x2 + y2 ≤
(

z + 1

2

)2

(F.2)

are also met, then a section of a cone results and so forth. By continuing in this
fashion, it is possible to use a handful of primitives to build more complex objects
and subsequently arrays of these objects (see figure F.1).

122



Figure F.1: Simple constructive solid geometries as described by the equations in 3.3. From left to
right: sphere, half-sphere, quarter-sphere and quarter-cone
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Scholz W, Guslienko KY, Novosad V, Süß D, Schrefl T, Chantrell RW and Fidler J.
Transition from single-domain to vortex state in soft magnetic cylindrical nan-
odots. Journal of Magnetism and Magnetic Materials, 266, 155–163 (2003b).

Schroeder WJ, Martin KM and Lorensen WE. The design and implementation
of an object-oriented toolkit for 3D graphics and visualization. In R Yagel and
GM Nielson, editors, IEEE Visualization ’96, pages 93–100 (1996).

Schroeder WJ, Martin KM and Lorensen WE. The Visualisation Toolkit (VTK): An
object-oriented approach to 3D graphics. Pearson Education (1997).

Schulte MJ and Swartzlander Jr. EE. A family of variable-precision interval arith-
metic processors. IEEE Transactions on Computers, 49(5), 1–11 (2000).

Seberino C and Bertram HN. Concise, efficient three-dimensional fast multipole
method for micromagnetics. IEEE Transactions on Magnetics, 37, 1078–1086 (2001).

130



Skomski R and Coey JMD. Permanent Magnetism. Series in Condensed Matter
Physics. Institute of Physics (1999).

Smith C. [incr Tcl/Tk] from the ground up. Osborne (2000).

Smith N, Markham D and LaTourette D. Magnetoresistive measurement of the
exchange constant in varied-thickness permalloy films. Journal of Applied Physics,
65(11), 4362–4365 (1989).

Snir M, Otto SW, Huss-Lederman S, Walker DW and Dongarra J. MPI: the complete
reference. MIT Press (1995).

Stoner EC and Wohlfarth EP. A mechanism of magnetic hysteresis in heterogeneous
alloys. Philosophical Transactions of the Royal Society London, A240, 599–642 (1948).
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