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PREFACE 

The research reported in this thesis has been supported by 

D.S.I.R. and conducted within the Department of Nechanical Engin-

een.ng. Gas lubrication studies at Southampton were started in 

1959 by Dr. N. S. Grassam and have been largely concerned "lith ex-

ternally pressurized bearings. The present work was begun ~n 1962, 

about w'hich time evidence was becoming available that small clear

ance externally-pressurized bearings running at high speeds could 

have very significantly enhanced load capacity~ due to the aerodynamic 

pressure generation. However the maximum speeds which could be run 

at "lere limited by self excited instabi ty of the type widely reported 

for aerodynamic bearings. Little concrete evidence appeared to be 

available about the exact nature of this or about the general dynamic 

performance of these hybrid bearings, and the object of this investiga

tion is to try to clarify some of these areas. 

The author wishes to thank supervisor Dr. Grassam for his 

valuable help and guidance in this project. Thanks are also due to 

Dr. K. R. Hr. A. J. Hunday and Dr. J. W. Pm'lell for many 

fruitful discussions concerning the work, and to the former for his 

advice and assistance on techniques of measurement. Except for the 

rotors, "lhich were accurately ground by Dro Powell t s Company) the 

experimental rig has all been constructed by pir. F. Kerens, vlhose 



readiness to carry out the many modifications throughout the work 

has been greatly appreciated. 



SUM}:!ARY 

The thesis contains an introduction to the field of lub cEltion 

in general and gas lubrication in cular. The steady state and 

vibration propert of both externally pressurised and self acting 

journal bearings arQ discussed and an exposition of recent theory con-

cerned unstable free vibrations in self acting bearings given. 

A new description of the general mechanism by whic.h such vibrations 

arise is presented, and the implications of the theory are discussed 

in det 1 th particular reference to the hybrid type of bearing. 

It is found possible to give a concise explanation of the of half 

speed whirl instability widely observed these 

The general principles of constructing an experimental test rig 

for examining the practical performance of hybrid bearings the high 

speed range are given, together with a led description of the ~ in. 

diameter, annular feed hole bearing used. 

A method of examining the aerostatic performance of the bearing, 

under the conditions of variable supply pressure and clearance used, 

is developed from the work of Shires and Robinson. Experimental 

measurements of steady state stiffness are made and correlated to the 

theoretical prediction. 

The free vibration response of the rotor to a shock load is 

examined, being a planar vibration with the rotor stationary, and an 

orbital motion with the rotor revolving. Simple analysis is developed 

J. 
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~ ~he Aerodynam~c Rotating Journal Bearingo 
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lb Where the source area is Ro<jlLo(,;, and the nOVl ~n is w. 2 
J ft sec 

Reynolds equation becomes 
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3.3.1. 

and can be combined with the flow characteristic of the feeding 

restrictor, and solved analytically if the bearing is of the porous 

type, or by finite difference techniques assuming the source area 

to be the same area as the mesh used to define the pressure field 

This has not been attempted except for a simplified analysis of 

squeeze film pressures using an idealized feeding source uniform 

around the bearing in the place of the feed holes, by Mullan and 

Richardson (17) • It seems probable that the value of such solutions 

would be limited as the flow conditions from the feed hole are known 

to be complicated, invalidating the basic assumption that fluid inertia 

can be neglected, and cannot b~ simply described mathematically. 

The theory of Robinson and sterry(23) which uses a jet and slot 

flow model for the aerostatic bearing, predicts steady load capacity 

quite 'well, and hybrid steady operation can be estimated as previously 
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5. 

THE EXPERUIENTAL APPI;\PJI.TUS. 

5.1. Introduction. 

The original 

concerned vlith the high 

of this ect was that it should be 

tics of journal 

bearings. I,. completely new experimental apparatus was to 

be constructed a number of features not availa1)le in 

previous \'lOrk \.;rithin the University 

For the basic vlas decided to use a tvlO 

symmetric, shaft system shown Figure 5.1 as being the 

most of layout. single apparatus would 

have many over that it very difficult in a 

t,w bearing system to make the clearances the same, and to get the 

two aligned parallel to the shaft. Hm-7ever, there are 

the disadvantages that a single of the required rotor 

dimneter would be very small to and it would be 

very difficult to build a rotor "vith an inertia such that 

cylindrical instead of conical whirl could be obtained. Also 

the gas film stiffness to conical notions would be smal1, leading 

to low \vhirl onset speeds. Also the would not as much 

useful information about the of practical gas 

machines which are almost universally of the two bearing type. 

Fron the consideration of reach:ba.g a small 
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rotor vms des , but t had to be set the 

of being able to monitor the of the shaft with accuracy. 

Using the Wayne-Kerr capacitance transducers 

0.75 in diameter rotor \Vas the smallest 

was decided that a 

be used \vithout 

impairing the accuracy of the measurements. A of 300,000 rpm 

should be pos Ie at this using a simple impulse turbine to 

drive the shaft. 

This of 300,000 rpm is well above that which could be 

reached by the some external influence to provide 

stability from vlhirl. One method being used in 

is to provide external to the system mounting the beD-r

do this, but also seal sleeves rubber 70 r~ngs not 

the air to the and allow small amount of self-

Accordingly the 10' r~ngs were initiE!lly installed and 

was that an ~nves 0n coul(:' be made of their 

performance and characteristics. 

Another small rig vIas constructed to arply forced vihrations to 

a of fO' rings means of an 

to map their characteristics 

amplitUde etc. However, this '>'las to be 

and it was discovered that a very e 

vibrator, in order 

v~bration frequency and 

a subsidiary project, 

designed would have 

been necessary to useful information, so this piece of 'tvork 

vIas shelved in favour of a different approach. The other factors 
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vlhich include of the fO' rings, precom-

pression, creep, , sroove SJ.ze rind pressure sealed, Vlould 

mnke dynamic of rubber 10 i rings into a 1 project 

itself • 

The second approach cons \vriS that it might be possible 

to inves the 'a· performance on the actual gas bearing 

, using the gas film its3lf as a transducer. Provision was made 

for four to monitor the comple-te movement of each bearing 

sleeve as shOlffi :1n . (5Jl). a closer look at the problem 

revealed that very little concrete information was available about the 

behaviour of hybrid gas films under dynamic conditions. In view of 

this, apart from one or two experiments which confirmed that '0' rings 

could be effective suppressing half speed 1, the experimental 

effort was concentrated on more knowledge of the gas 

film behaviour 1n 

The rig quite suit for , except that in hindsight a 

larger rotor have boon desirable - possible with lower 

speeds to enable measurement and general accuracy to be ob-

-' 1 t:alnCCL. The le for a ,vide range of further experi-

mental work s features include the possibility of varying 

bearing alignment, mass and of rotor, bearing separation, 

bearing sleeve length to ratio and type, provided that there 

is no more than one central rmv of feed Also a slave bearing 
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could be used for steady state loading experiments. 

5.2. The Test RiG Construction. 

Since the gas bearing laboratory ~s situated on the upper 

floor of a two floor building, and the experiements were to be 

concerned with rotor vibrarions, it "las considcr:.:;d desirable to 

Dount the on an anti-vibration bed. This was specially 

constructed and toc'k the fOrIJ. of a twc ton concrete block mounted 

on helical springs, '(\'hioh had a natural c·f 4 cis. Into 

this was set a 11ing nachine table to forn a test bed onto ,,]hich 

a could be bolted, (Figure 5.1.2). 

systeD had been chosen and it was decided to 

mount each bearing in an indep(c'!ndent block. This necessitated 

some means of adjusting the alignment of the bearing sleeves and 

this was the complete asse~bly ins 

the outer track of ;:m ! INA j needle bearing self aligninlj spherical 

housing. The bearing sleeve hous could be locked rigidly once 

up en the split mounting lock. The air supply 

and since to the feed hole res 

the largest 'INA! self 

1n at the s 

unit had an inside diameter of only 

2 inches, the sleeve had to be eccentrically within 

which was positioned at its housing to accol.TlITloclate the r 

the f a I ring grooves ,,rere machined into the early bearing 

sleeves which had a 0.005 ln clearance in the housing, 
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The bearing blocks are such that A.pproximately ! in 

of rotor protrudes A.t each end, and used for the rotor motion 

monitoring probes, Hayne-Kerr are used~ having a 

di2.meter of ! inch beveled at the Gnds, two placed quadrature at 

each end. These are mounted cut-mwy br!1ss r~ngs inserted through 

steel mounting blocks, insulated by 1/16 in 

and locked in pas by screws. 

ment LS possLble: simply the 

black nylon bushes 

sensitive adjust-

carrier and 

or pushing it is possible to set the probe distance from the shaft to 

better than Spin from the desired position, 

Special Jevices run through these rings at each 

the rotating Gnd~ At the hand end for 

shaft to the meter. Originally an elaborate device was 

made for H jet of nercnry, connected to earth, onto the end 

of the shaft, col it and it to a reservoir above 

the rLy,. However ~ this was not vc;ry safe. s 11 certain amount of 

toxic mercury 

This ,'laS siraply to 

which was then 

the end of the sh.rlfto 

013 ~ and a much s lor icea was conceived, 

1 mercury to the end of a glass tube 

at A. maall above the horizontal close to 

The surface tens of the mercury held it in 

the tube Hnd a small needle eeting from the end of the rotor into 

the mercury Dade the earth contact. 

At the other end \.:rere the shaft location thrust bearing and the 
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the shaft a zero can to 

the 

5.3. 

fron the of Ie rotational 

speeds of up to 300,000 rp~ a rotor to be chosen which 

would not t a resonance that fre-

quency. In the shaft 11 not behave as a I 

or a 'free-free' beam the centre of 

to act .2t the free-free node th the the centre 

of the was 1 from the end of the shaft, ~J1d be 

the free-free node for all very short rotors. As 

the the lotver frequency, the 

of rotor would hr!.ve a 

et 5000 c as e beam 

of to the 

The formula for the 

'IT 
=- c 5.1. 

where E Hodulus 

I the ar mcoent 

p s the of the shaft 

to 



cnts 

f 

s 

Bet-

real 

case. 

to 

, . 

5 300 

or In t to 
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mode no prob lems then arise about the 

linear of the 

geonetry used here) the 

is likely to be small. 

, even 

the rotor 

with the 

conical 

A s Ie nay be nade to the of the 

natural of one to the other. 

We assume !:~ s in t,V'o of 

stiffness K a separation, apart. 

in the , we nay write the equation of 

of the rotor for free the trans and 

conical nodes 

+ ::: 0 .3. 

( 6 
+ o 
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the case of th a 6 

+ 

"" o. 

68. 



I..eo the natural 

be 1. 

for 

than that for 

conical motions should 

de-

crease as the rotor 

imposed on one another at 

tvas reduced, the avo modes super-

underes the 

s 

4.6 theory slightly 

does not count the 

due to the sm~ll rotor tilt. 

The onset of unstable vibrations nlshns its mode defined from 

this in the case and the aerodynamic case, 

a condition of zero Here the 

frequency, i. • usually nf the 

Q ! so for the rotor above the becomes 

.732 

The used for the rotors was 'stubs' silver The 

t rotors used were 

buckets led them and 

a 

The rotors rotrtte rthout rtn 

s , and any s t brmc! 

shaft under the shaft 

is not to affect 

makes measurements of rotor def 

It was 
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the centre iYaS the cause of this 

bending, so all later rotors ~,Tere out of 1 diameter 

silver steel bar~ the buckets cut and then nllO';'led to before final 

machining, matters c;)ns ly, but did not cure the 

trouble, "lhich had eventually to be overcome electronic modifica-

tion of the s and also by s t measurement and sub-

traction The final set of rotors used for the ,.;:::xperiments ,vere 

finish gound by ~les t'J7ind Ltd, with an cur grinding 

machine, parallel il7ithin 0.00005 in. The straightness ~'7as such that 

an out-of--straight synchronous vibration of .00008 in vms still 

present, but no out-of-round ,vas detectable at 1. Surface finish 

was measured on a Talysurf as Unfortunately whilst the 

journal dimensions were there vms up to 1/16 in variation in 

length which caused the mass of ep.ch to vary s 1y. 

The mean as meA-sured by Solex and masses 

of the rotors numberic:d from 1 -- r are table 6.1. 0 

Rotor No. Ivlass • 

1 0.74%5 .75 Isb 

2 0.7',·92 .75 

3 0.7489 .75 Lb 

4 0.7486 .7 L; I .. b 

5 0.7482 .7lt Lb 

6 0.7459 in .71, Lb 
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A 

Initial 

, 
Cylindricql response to static unbalanceo 

Conical response to dynamic unbalance o 

.... ... 
L---__ ~-===~=~==~=a_~~~-----~ 

t:'I1. CON 

After static balancing 

balance forcing is 1800 out of phase 1.iith the displacement. Once 

the rotor is ,(Tell balanced in the cylindrical mode, there is vir-

tually no response at all from this mode above the conical resonance. 

By similarly adjusting the grub screws and removing metal the rotors 

were then dynamically balancedc The residual unbalance after this 

process was in all cases better than 0 75. 5 Lb-in, equivalent to 

a mass shift of 10-5 1.n or 10% of the lowest unbalance used in the 

experimental work. It should be noted that for the purposes oj: bal~ 

ancing in a gas bearing, the further separated the modes arc the better. 

Also the mode occurring first should ahvays be treated first since after 

resonance its response amplitude tends to a constant value, equal to the 

distance betvlcen the geometric and mass axes 0 
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5.4. Bearing Design. 

The sleeves (fig. 5.1.4.) '(vere made of brass to 

proper the steel shafts. The 1e 

to diameter 'was t,vo and all, tes ts "vere conduc ted th bear-

ings using a c~ntral row of six annular, 0.014 nominal diameter 

feed holes. th.nt the Ie orifice feed holes 

exhibit a but th a of 2 in they 

would be more t to mnnufncture. These holes "lere lIed 

'tv-ith a No. 80 a 11 machine, and t 

an check that the mean of all six holes Has approx-

imately correct, there I-laS some ~n the holes. 

Original the 

size on the lathe, an(~ then 

ever, "Yith this process it 

sleeves v11 0.0003 

of! 

bore. 

ing 

paneled 

matched mean 

t jntex:ual , 

The has a 

<'. mandrel th 

rouncl and 

tc are use(1 tq 

bores were by boring close to 

machine. How-

not app2ar to produce bear-

of roundness and parallel, or to protluce 

vlaS overcome by the purchase 

te having a 

slot ::lOiVll its ane
'
. by knock-

m<ltche(l the can be ex-

leI. 'I\.;ro of diamon:-1 lapping 

rates. Us these it 

became possible th some care to bores thin .0001 in in 

roundness leI and 
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to shaft as 

one have been 

t !neaSUrClTIen t 

but never 

lable s to-

the 

tho 

Llovementso th it to 
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achieve bett\l'een 80% and 90% of the movement all 

tions. s was probably not helel n.t all 

replacing rotors could sna11 movements, but no 

change vms observed. 

5.5. Ins -- -------
The of the work vTere to observe and 

measure the anrl of the rotor under 

condi , to knm·J the of an(~ the of 

vibrations to ttw forces producing them, 

The movenents of the shaft were all neasured the 

Kerr B731A ty sys the principle of is laid 

0ut 1. THO meters were used unction with the 

four shaft , the left hand cal fed directly 

to one meter, 1st other three were fed a a mul ti-vmy tch 

to the seconu. Probes an electrode of .063 

I scale deflec on the meters of 0.002 in, 

and the neters couLl easily read to an rlccurncy of 2xlO-5 

al the accuracy of the trument 5 x 10-5 Some 

care has to be taken when usinG flat surface relative to a 

curveu surface. Reference 32 8ho'l\l'S that the Deter is con-

siderably fferent fron the nctual for small shafts, 

but that the constant for all tances. 

Thus if only differences of tance are taken no inaccuracy 

76. 



es 

curves 

the 

shaft i 

TF as 

77. 





fact 

used because 

posi off 

tude 

s 

l()scope 

out-of true 

its for each 

tes Deasureraent, 

I 100 or 

Iter 
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th the fnrc;ore 

All the valves used were valves, snaIl ones 

used for the cnCl. thrust 1st a sensi 

Has used for the for accurate control of speed. 

The "Jere could ther fed 

on the same valve and pressure on systems, and 

betvleen zero and 80 us had three 

jets feel s an on-off 

placed bctv7CQn the pressure thQ for con-

and control 

seen ~n .5.15 
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.' 

particular bearing sleeve vd th varying clearances and supply 

pressures will be presented in the next sectiono This is the 

type of analysis vlhich would be necessary for selecting ts 

in a practical gas bearing machine. The performance 

chosen for examination is the radial stiffness of the gas 

since this is required in the later work, and is fa"> 

to measure in practice than load capacity, 

6.2. Theoretical iso 

TIle method of analysis to consider each of the feed 

holes round the bearing to feed into a discreet slot of a 

and depth h. TIle shaft centre is displaced by the load H' 

distance EC from the bearing centre where s is the eccentricity 

With a single rot" of feed holesl> the 

c the radial clear-

ance 0 The local 

ance at any point h can 

be approximated by 

the 

from the line of centres. 

flow through a jet, \ . 11 
I 



tvlO, half f each ,.;ray the s 

( to pressure. presDure Ie 

each slot found, and thus the net pressure force 

to oppose load, the flow in the 

clearance space to that 

loVl pressure 

around 

accounted for 

Ref 6) to the load as found 

below. 

If the pressure the feed and 

the exhaus pressure from the feed hole the clearance 

space, the 

S 

\vhere 

R 

y 

For 

for the flov! 

coef 

area 

upstream dens and 

con81:ant 

y 

J 
I 
2 

a cheats (1.41 for 

the pressure a slot 
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th a, for 

Hhere the 

"tv-here d 

th slot 

6.2 to an express 

terms of 

2 =-----

and 

annular 

feed hole 

of the 

been shown 

of 

subs tute for 

a the centre 

clearances 

F 6. • 

feed ho area 

some doubt, but 

cd as follows -



= .014 

0075 

feed holes 

L .5 

0,75 

.3 Lb/lb 

520 

the pressure 011 becones :-

.51 
6,4 

useful ,.;ark has been found to 

pressure 

Thus a re b;::; eonstructed and is 

pressure of 10, 30, 50 and 

Lb/ are those 

The pressure in s from to , so 



the 

mean 

s (1- U 

\vhere 

of 

I 
,~ 

pressure 

TI 

n 

slots 

cos - .. + --

the datum (8 etc. 

has been 

1 

a forr:lul 

the value has been 

-1 + ( . 

For 

::::: 314 

terms of 

pressure 

ex-

] 
.5 

feed hole round 

to be 

reduce 

the real load 
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Derived from .6.2.4., 6.2.5. slwvlS how changing 

pressure affects the curve at various clearances. Increas-

the supply pressure alvlays increases the stiffness, the highest 

stiffness thus occurring, with fixed bearing parameters, as 

tends to zero. However, readjus the bearing parameters to 

bring K back to 0.55 
go 

the stiffness back to its max-

inurn value at that pressure. It ~s observed from 6.3. 

6.6. that L or D have a but not the same effect. 

Changing any other parameter not occurring in equation 7.6. may 

value of K = 0.55 
go 

change the value of s but not 

at occurs. A three dimensional derived from 

these two shows the actual of stiffness th c1ear-

ance and pressure .6.2.6.) over the range covered in the 

mental work. It may be seen that as pressure reduced the clear-

ance for s ffness , but also the sharpness of the 

peak diminishes, so that a is designed for maximum s 

ness at the highest to be used, it 11 be close to 

the optimum for all 10\ver pressures. 

6.3. Experimental Measurement of Stiffness~ 

Apart from the fact that stiffness specifically needed for 

later experiments, it provides by far the eas t parameter th 

to compare theoretical predictions practical bearings. 

because of the necessity when measurinC load capaci to be able to 
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a zero eccentricity and for to the zero load 

condi The t is s the menu 

of the top to bottom movement of the rotor the zero eccen-

tricity at the centre of the 

bearing it should be remembered that the 

crease 11 be than one 

1 become sooner. 

more since 

However, with a aligned 

eccentrici 

1el to the 

The second 

some 

and non-

tion 1.S 

hole S1.ze is inevitable, and at zero load the shaft will assume 

an eccentric tion. It is now difficult to relate 

results to the 

S ffness, on the hnnd, constant up to eccen-

does not suffer from a small zero load displacement. Some 

the eccentrici at the s misalignment \vi11 

starts to fall but 11 nut affect it at low eccentrici 

therefore it 

ini load e •• in a self loaded sys 

small, nor the tial eccentricity, 

All that 

produced. 

necessary is to knovi the 

This was done for each nevl set of 

ther necessary to know the 

that this 

ect to the same condition. 

in deflection that 

sleeves used for all 

the rotors at the four test pressures - 10, 30, 50 and 80 ps A 
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was used the 

(the shaft 

zero load It 

errors the s ffness could 

sleeve vms 

about 

of 

ected and the 

cope. 

was 

on 

so s 

soon 

Her 

pas over 

was 

measured the 

due to feed hole 

Later 

measured 

revealed a 

For the t 

to 

each end the shaft to ensure that each vms loaded 

s 

as 

s was found not to be necessary for the second 

, however~ was tant that the aeros 

of each so the 

of the ted to uniform 

ffnesses at each 1 s was then the same 

that of the left hand 

A sample set of out more than a dozen such sets 

table 6.1. (for the 

that for each 

from the and 
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load. 
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Us .002 

load. 

lied 
Load 

Lb 

::::: 30 

0 
1 
2 

"" 50 

0 
1 
2 

4 
5 

::: f, 

0 
1 
2 
3 
4 
5 
6 
8 

Table 6.1. 

for rotor If 

Clearance::: .0009 

Left Hand 
Meter 

10 
,25 
2 

10 
9.55 
9.05 
8.55 
8. 
7,0 

10 
9.7 
0 
./ . 
9.0 
8.6 

.15 
7.9 
7 1 

o 
15 

0 
9 

19 

40 

0 
6 

13 
20 

37 
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10 represents .003 

set at 10 for zero 

Heter 

9 3 
.6 

10 
9 6 
9 2 
n o. 
8,3 
7 n .0 

10 
9.75 
9.4 
9.1 
8.3 

45 
.15 

7.4 

Htmd 

o 
14 
28 

0 
8 

16 
24 
34 

0 
5 

12 
18 
24 
31 

52 



These are 

calcu.lated from the 

are as follows. 

ly 
Pressure 

ps 

30 

50 

so 

These are plotted 

Left Hand 

x 

10.3 x 

.4 x 

against pressure 

.6.3.1a and the s 

of the load 

1n 

Hand 

7 x 10
3 

~ .5 x 10
3 

.7 x 10
3 

.6.3.l.b. The 

set of s resu ob by method, for the 

of in Table 6.3. 

Table 6.3. 

S Lb 10-3) 
Pressure 10 30 50 80 

BE.t'L"R.ING L-H R-H L-11 L-H R-H 
Clearance 

in 

.0005 15 25 

.0006 2.2? 6.0 13.2 27.2 30.0 

.0007 8.7 () 
() . 15.5 21 25 32.7 

• 0009 6.0 7.0 10 3 12.5 14.4 16.7 
.0011 1.25 5.25 7.0 9.25 
.00235 0.6 1. 26 1.8 2.46 
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The results the second of are 

table 9.1. page 

c at 101'1 clearances, of ffnesses very 

be. ttveen the of 

vJell bore , and the 

better than movement , it reasoned that 

feed hole fferences must caus At c1ear-

the feed holes mos effect on 

s 

these Its, the results ob for the second 

sleeves, and ther stiffness results 

the are to the 

pressures clearances, but 

as as that c1 , but 

the feed hole 
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be 

cons as 
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aero-

of 

can also be 

,iThere 
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of the exper

actual measured values 



the thes results 

had been found 

tests that 

ffnr;;ss and es 

cou found als 

app 

7.2. 

The aeros for the postulated method 

calculated measured values are 1-

assumed that the pressure does not 

leaves c squeeze 1m force to 

calculated. 

1m 

form 

the effects of and 

and no shaft 

the 

2 
+ 

d 

where cr queeze Number 

== 
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where £ 

£0 being the static eccentricity ratio and E:I a small dynamic 

variation at vibration frequence WI 

experimental 

system it is possible to assume the lubricant to be incompressible 

and the Reynold's equation then reduces to 

~ F-h3 2i] + (~)2 d ~h3 2i] __ -0 [d£ . d¢ J 
a¢ l a<p L 1; 1:1 al; WI dt' cos¢ + £Sl.ncp dt 

• h II' dcp NOv7 w~ t on y p anar mot10n dt 

Also 

. . a 
acp 

== 

== a 

Since both pos and negative pressures exist 

dynamic journal squeeze the pressure gradients 

cos¢ 

an aero= 

7.2.2. 



are all 

to the 

further pressure t 

• • the 

i cos 7.2. 

for C5 1. and 7.2. . 
<P 

h :::: 7.2.5 

where cons 

=: = 0 

:::: 

second 

+ 

zero the pressure the 

i.e. p = 1 



lienee 

The t :fo~cce U1 the 

cos ¢ ¢ 
If 

f 

sl.. 383 thflt i 

i ? 

Hhere 0, J 1, k ::: 2, =: 

01 1 1 ~ - --, + t: tan tan 
J 

Hence 

reduces to 

or 

the s of that the 
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lacement, and there force th 

Thus, force all for 

the case. 

VJe nay force a 

w e 

Hence 

c =: 7,2,8. 

are that E: « 

the 

constant 

The enables the the 

on the to be demons 

of and Ie have been the 

11 net be accurate for the real caSe 

of the full 7.2.1. an 

method. The latter has been used 

Ivlu lla.n and 
( 

,,,here the zero case has been 

Ie fluicl both 

s ffness 

7.2.1. It that the 

of for squeeze numbers of less than 

100. 



1. 

aeros 

where 

c 

7 •• 

reaches and falls. 

squeeze s squeeze 

, th 

fncssQ 

th clearance 

.7 22 to 

and r:tlso 

tude. .7.2. 

clearances 1st 

as 

of vlBS UB the t of 

led on • 74. clearance at end ,vas 

es on p 93, the s s ffness 

pressure cas 

However, effect was s 

measurements were at 

Thus 1. woule: be 

the same, but 

a 

to be 

left hand 

Free shaft trans mode were 

shock A of 'i';as used to s the shaft 



tes 1m'J resonance of shaft 

on Y, such as 

te 

resonance of shock response 

was observed on the and 

the 

camera shutter or to the 

use made 

as to of the 

be 

level such that the 

base 

base. 

at 

the 

It 

;;vas four traces be recorded on one 

a 

\'TaS 

Zero 

to 

nakes 

so easy 

tance 

,002 

the 

to ust 

1;vas 

.0015 

duced the shock 

care to to ensure that the 

• of the surface. or to 

outside the range 

However, 

the c18arance th the 

checked or reset befon" each a 

The ion 

'{vere usual small~ of the 

102. 



d '0-5 . or,er 1. ~n. 

At each concIi of clearance and pressure, the 

was led loads ac 

It was assumed for s that -vihen the shaft was 

exact belanced, zero ted. Due to feed 

held was not exact true but the errors 

were not to have a effect on the 

results # The the added loads was thus 

calculable from the previously measured vlas 

used because some cases the DDvement of shaft was too 

for one of the 0 - 002 in. 

The of the shaft mass from the had 

to be te careful It 1:>JaS found for low loads that 

the the cient low s ffness 

, but as the app were increased these 

were s out, the no 

\'las overcome 

the then to fac under al1 

condi tions " 

Results be ob under at which the 

shafts would float on the s no forced were 

At the very values of gauge pressure the shafts 

103. 



11 not float even under zero to 

up effect s ffness very shaft 

The controls the the 

the smaller 

nne the 

the actual to the 

i:!hcre the total 

the f:1ass~ 

the becomes cri , 1.. , the response 

curve an func both 

ffness and OVl values these tvlO may be 

the rate 

cases we mus t 

it 

mass. 8eB 74 

but it vlaS found poss le the 1'rE!.8s mass shown in 

5.L5, masses to < 6 ,2 Lb 



reduces 

lower cleexnnce 

up to • 

s 

to use 

o 

7 

- nass eys 

:: 

an 

to 

than 

105. 



The experimental case appears to be a combination of both,but 

after the first half cycle the response is the same in any case. 

The response output s from the computer was displayed on an 

oscilloscope and repeated every second so that a visuA'! match 

be t'\veen the and computer solution could be obtained 

This was done by adjustinr, the stiffness, danping and initial con

dition potentiometers until the two curves matched exactly for size 

and form. 

A good match was simply obtained for the 10"\<7 damping 

cases. Here the technique v7as first to match the vib fre-

quency, and then to adjust the damping to get the correct decay rate 
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These s£1tis £11 the results 

Bet the rQ.sulta for more 

than In Ie 7,1, for 

rotor 3, clearance ,0007 and the mass 4.27 Lb, 

TABLE 7,1. 

r:.J 
~'l 

I>-i C1 Q -"""-
Volts l; OJ C~ O:l 

,.c ...-l ri 

9 ...-l 
.. ' 

r:::! V 

5 30 ,12 5 .56 204 1.5.7 
IS .29 Q 2!+5 .57 202 115 15.8 
C .245 .89 202 180 ,8 
D .5 .55 1 0 202 330 06 

.12 5 .232 292 118 16.3 
B 2 .18 ,282 295 133 18.4 
C 6 .31 .168 .36 57 23,2 
D 10 .98 10 Lr58 .7 

80 0 .12 5 ~20 .32 324 104 14.4 
B 4 .2 .33 98 13 .5 
C 8 .31 .209 11S 15.9 
D 12 .4 161 .39 308 118 .3 

108. 



In case th,~ zero error was 0.12 
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8. 

FREE VIBTATIONS HITH SFLtiFT ROTATION • . 
8.1. Introduction. 

In the last section the gas film properties have been exam-

ined for the experimental bearing system with no shaft rotation. 

This is of limited interest, more important being the effects of 

journal rotation on the dynamic bearing damping and stiffness char-

ac ter is tics. This LS all the more important due to the occurrence 

of self excited rotor instability which can completely preclude 

operation at any higher rotational speed. The onset of instability 

may be considered as the speed at which the effective gas film damp-

ing to free vibrations becomes zero, and it is of some interest to 

examine the rate at which rlanping changes at this boundary to get an 

idea of the 'violence' of the whirl instability i. e. the rate of 

growth of vibration after the onset. 

In this section only free vibrations are consi(~eree., ane. for 

rotating systems these Hill not normally yield information useful in 

examining response to forced vibrations. The most COr.1mon case of 

the letter, out-of-balance forcing, will be examined in the next 

section. However certain uses of hybrid journal bearings lead to 

inrposed vibration which is not of e periodic nature, and which can 

most easily be considered as discreet shock loads. It is des ir ab Ie 

to examine the rotor response to such loading to see if it will be 
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v 

74 A ,575 202 190 102 2 46 

14 .253 190 .4 ,6 

C 9 1 .207 206 200 7 L03 

24 205 .9 

75 30 .31 187 .295 1 208 

03 2 .135 .2 400 385 85,2 2. 

C 32 2°,) --''- 365 3,80 54 10 1 

,7 ,13 .040 2 3.82 14.5 

2 7 125 3 ,53 

" 455 Q 2.19 oL ./ 

, 76 0131 452 041 

.228 17 .8 

7 132 3. 

9 7 512 2. 

C .1 c: 50. L J 

.102 0 10 512 .8 .19 
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The bOi-led shafts again presented a rroblem in extracting 

the required data from the capacity probe signals 'Vlhich included 

the synchronous out-of-true signal component. This time the 

cowman mode rejection technique used for the free vibration 

was not feasible since the output from the photo-diode light 

pickup ,vas needed for phase angle measurement. 

The vector diagram shoHs the out-of-true signal T at an 

2.ngle 1jJ 1:0 the out-of-balance force vector. The signal actually 

me2.sured is of magnitude R at an angle S to the force vector. 

a 
/1\ 

T/r'\R 
b{~ I .~ 
a~-, .. '\ 

f t B'~"· c 

The required information 

is the out-of-balance 

response B and phase 

angle a. 

Angular position monitoring was achieved by feeding the . , 
amplified square wave output fron the photo-diode on the Z-mod 

of the oscilloscope, arranged such that the bright up operated 

off the trailing e~ge of the square Have. The trailing edge 

cut off remained sharp at all speeds whilst the leading edge 

deteriorated at high speed. Hence a bright spot was obtained 

on the oscilloscope representing a knovffi angular position of 

the rotor. 

16 



The tl to 

force reia d lac vee 

hody of the Ii to always raintain bTi 

spot at the 1 ir,na The e coul 

read off the 

A t nnit ';Jould be 

lIse the square t as a s'Yi teb so tha t the "inu:;o 1 

can he o half a cycle 

J 

1.Il full 1 

i 11:3 ted for 

1 nc(" 

1'1 or 

The ou i 

/ 1 1 



frequency limitation on the vibration meter. The 

amplitude was read off the meter and the angle found as described 

above. Unbalance was then applied by screvring out the grub screws 

by a certain number of turns, and tude R and phase angle S 

read at discreet speeds up to the onset of half speed whirl or 

synchr onous 'iihir 1 lure. A graphical method was devised to ob-

tain the required vector B and angle a, using polar graph paper. 

The point 1jJ) 'tV'as plotted on a transparent graph sheet and this 

was plc~ced over a normal sheet of the same scale such that the tiiJ 

of the (T,1jJ) vector was at the origin of the lmver sheet. The 

vectors <at various speeds CR, S) \vere nO~7 plotted on the transparent 

sheet and the vectors (B,a) read directly off the graph paper below. 

Examples of the final polar plot are given in Fig. 9.5.1.-9.5.5. anu 

these are transcribed on to 11 presentation vlith speed, Fig. 

9.5.6. 

By meaDuring vibrations "(-lith t"VlO probes and the phase unit, 

the amplitudes of vibration in two directions could be monitored 

simultaneously. The results for the aerodynamic case are the mean 

of the vertical and horizontal response but the hybrid are for the 

vertical direction only. This becomes important only if significant 

static load is applied resulting in a non-circular orbit. 

A method of obtaining a direct plot of B,a was evolved, but 
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this \,;rould only be suitable for an unloaded ver rotor system 

s~nce it measured a lacement vector relative to a 

fixed load vector. Iileans tha t if the displacement 

vector mas measured :Ln the vcr plane, as was increased 

it would be measured in \'lhich rotated foruards 1800 from 

vertical. Thus any the tics of tIle gas 

1m in each uoul:.l serve to cl(m(~ the effects of 

(compress li ty number). 

The technique vlaS to form a ous on the osci110-

scope us 

The trace 

two 

circle, and at low 

The J 

at one end of the rotor. 

us or8 on the 

\Vas at the centre of the 

the centre of the 

to the 

the spot. 

the vee tor T the 

sajous circle 

,pain t b being 

The brightness contrr)l was so that the spot 

'Iv-as visible, and as 

balance eccentrici 

relative to point 'b'. 

at discreet speeds to 

as the derived graph 

methoc1~ but :it Vlas extreme 

, the traced out the out'"'of-

e angle locus Le, the l0cus of point 'C
l 

a j 

can be scale,l. anc: the spot photographed 

t record in exactly the same form 

No measun;ments Here made by this 

useful for obtainin~ a rapid visual 

picture of the system behaviour; 

running the shaft up tc full 

this could best be achieved by 

and then stopping it rapidly. 
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9.5. 

were taken wi th various unbalances for fferent 

rotors. Due to the half 1 encounterec. series 

of , cons Ie took place and the bearing 

cleanmcGS at thG the results Here takGn vlGre as follows. 

Rotor NumbGr 

1 ,00062 

2 ,00075 

3 .0009 

5 .0012L, 

6 .00235 

The us were clearance pressure and 

UnbalancG ,'lias varied at each clearance, but s was not 

to effects, one value at Gach clearance 

1.n recorded, ThG pressures U::Hld werG, as before 10, 30, 
'1 

50 end 80 Lb/in
L

< gauge. In TablG 9.3. below~ a typical set of results 

is for rotor 3 pressure 30 ps Tabulated against 

speee are A and (3, the measured half amp tude and phase 

which include the out-of-true shaft and the values 

of synchrc,nous unbalance amp tude e, ty E: and phase 

angle a. 
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Table 9.3. 

Speed :Heasured Heasured Unbalcmce Unbalance Actual 

10-3 tuc1.el., Phase ty Phase 
rpm 

A in x 10' An§le 
E: ct 

0 0.6 -30 0 0 0 

10 ,65 -27 .1 .Oll 0 

15 ,8 -15 .3 .033 20 

20 LOS 0 .072 30 

25 ,4 20 L12 .125 45 

30 1.7 50 1.7 .19 70 

35 L8 80 2.1 .23 95 

40 1 7 100 2.1 .23 ll2 

45 1.4 110 L9 .21 122 

50 1.3 120 1,75 .195 130 

.4 130 L9 .21 136 

The set of 16 results are ln graphical form. 

Figures ,5.L 9 .5 .5. s hm7 an ty - phase angle plot as 

derived from the neasured amp tude - plot. The un'-

balanced used narked on each terms of the mass axis shift 

The s?..me 9.5.6, - 9.5,11. 

otted t The reason thes,:; have not been plotted 

7 



t the compressib numb or later. 

9.6. of Resul ts. 

In oreer to the bet~veen the 

resul ta anr~l the s presented Sec .3. it is ei ther 

poss Ie to plot out response curves for each value of 

measured aeros c s ffness shOv7n 9.6.1.) or to break 

dOv7n the results and 

would the 

method be to do for a te LID , but 

also Id less useful than the latter, 

the system be a one, the 

force 11 the s 

ness fClrce, the direct superpos the 

and aeros forcesq The 

considered tc the 

can be lec"! force. measured 

the planar repres seen mus 

be s Thus an l r as on 

qu~ con-

not 

curve at any part, but the 1 j that the 

datum 1.0.. 
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Also it shoul:: be noted tl13 t the s s ffness for s 

state not the same as 

former l8 

s controlled the 

sc 

force 

stiffness. 

t the 
i"T rH 
Sc 

The 

It nm.; poss Ie to consider the results terms ()f 

The 

'ivhere 

and the 

\·,here C is the 

NOH for one 

= + 

force 

== 

is the aeros 

is the 

:= C ECW 

cons 

EC 

169. 

+ 

n:!presented es 

s ffness Lb/ 

stiffness Lb/in 

casa 
E 

cos 

9,6.1. 

9.6.3. 



and 
::s Cscw s 

C :::: 

Thus the results can reduced values of s ffness 

for each the !1eros stiffness 

cens constant, can be used the 

results. 

plots of s s and can 

fr0m the Ausman 1st order so For 

accuracy the te 2, 1 be us 

taken from Ref. 
i\f r~ 1 and tude ::::: 

J 
at 

£ 
where 

¢ are p t I1Uml}er. 

can up 

- cos ¢ ~ sin 

c 
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t 

E 

c 

c 
s 

c 

These curves are accurate at low 

at other hes 

the 

then the 

ness curve t 

also that th and 

Hence 

lOYl values Thus 

and its 

it for of the 

use with the 

17L 

S 1 number 

and 

at 

numl,er for 

t l any value 

nf for 

on the pressure 

should make 

pressure 
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Table 

Ecc 
s C* 

d values for rotor 5 lotted t 

• G • cnd i 6 1., that 

(or 

the 

ence possible 

th the errors 

s SentH 

error error vlaS 

assumoc' shown 

correct 

Thus I10 

the O"\lCr [.~l curves;: s func ins ens i-

73. 



errors vt::..lues arc 

11 eS3811.tial accuracy 

of the 

tained ccch cas 

the FroB these 

~s cc.lculated prc:ssuro the correct 

Ci< from the dOHTIstrcan 

aeros pres 

Ie .5. 

Rotor 



It results 

Ie rulos gas 

1m ferce in pas tuia tes • 

However, the resul that as 

would expec 

compress eater mean pressure 

pressure, means 

ffness es 

r::luch 

than the clearance 

, and 

trend beloH clearance rotor 5. 

The but has to con-

other four clearances. 

Further s hes been 

ob from Dr. Powel the author 

meRsurements 11S the 

s Thea can 

also be rec1ucell the tClnts ) anrl C>'< as the author s 

In this case the lest clearance 

c :;:: has C~~ the theoretical, anc the 

found tc' further the values as 

clear.:lnce 
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In s e 

the a 

express 

Ie squeeze 

tnnt~ 

Ie con-

value 

new 

In 

is con-

the syn-

chronuus f Cif the 

ts 

zerc: 

et 

effects les8 of 

value at thG 
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The s curvas 

that in increases from the aarostat value 

not as 

but this 

and the 

the smc,ller clcarcmce st.iffness8G to be too loVl 

correct e It 

been made at values of the 

not affect the 

that another errer 

s from the 

was felt thet 

f theoretical 

The stete results 

are less 

marked the lowes learance, 

the 

belovl the neros value, 

9 07 , COITLsen ts 0 

These s S f1..nd 

poss a 

177, 

s 

s 

s 

noted that 

the 

have 

where the errors 

does mean however 

the results 

to 

of the 1st order 

s results 

much 

seen the free 

one cases falls 

but is 

results lead to the con-

s 

than the actual 



the Thus tiffness 

the 10l7, 

tvlO tends to e'Jen Pm.Jell (1 

but u.red vp.lues. The 

s on f 1 used 

a mean pressure pressure 

But the atti 

It felt thD.t author r have con-

the repres 

the does not appear to be tho case. 

, hm-lever, the very accurate 

results needed 

This should of that all 

COIltrollocl to accuracy. FrOIi' tho of 

infonaation for out-of-

superpOSl 

la\\fS mean pressure 

have to S 

phase and forces The result should thon bo 

s Ie to use but would not very 1 

70. 



ther the onsC!t of 

half pO'i'ler 

Has fas t [lR et 

It has been 
( 

thAt SY'U·· 

ehronous unbalance t the 

lead to offs 

unbalance so some notes I'Jere the 

ser of unb anee 

For the three clearances detail, rotors 2, 

3, 5, no effects due out-of-balance were found, 

some of s 

th unbalance F:.'lSS centre 

Rotor I, hm?ever, 

alid 

,01J057 :m to 

The 

to start the rotor, 

The of 

1 offset and then 

unbalcmce load 

of the hal t 

2.79, 

aero-

clearance was 

had 

a small amount of pressure 

to e sivitched off 

stable above 

off the not Hark for 

s some forn of seems 

179. 



to occur as pressure turned dmvn 0 

s all cases rotor could 

be run at well above onset. 

The measured ons offset are table 9.6. 

below 

Unb:::l::1ce 
mass centre 

° 
1-

-4 
x 

L53 

1.72 

2.04 

2 3 

2.55 

:~ half 

up to 90,000 

rpm, 

1 

Table .6 

5750 

5 

not 

Onset 
rpm 

) 

) 
) 

'* 

from 

l'Ji th zero unbalance the oear 

• 02.10 unbalance 

1 

at 

at 30000 rpm • 

occurred Hith any other unbalance up to the 

speed The above are . 9. . L (a) 

the s form as ~n Ref. It 

IDO. 



that an unb 

ensure that hal 

factor cen 

the 

not here affected 

the 

ever 

it 

the 

less 

Hith 

it 

0,5, 1.8 

shift 

1. 

10VI 

2nd offset 

6000 rpm, 

ons2t 

es 

that ~ 

the 

centrici 

merge. 

the 

shaft 

unbalance 

just 



load set 

\·;rhen exact r1 

ratio each be to 

The 1 to 

ratioo 

iv-ill load 

smal a 

s es 

no raeasuremeni:s 

1. 

mode, HOVlever~ 

no 

et observed for 

pressure of i . 

These T 
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the 

Unbalance 
mass 

o 

L 

L53 

L 

2.3 

-4 

cases where no 

occurred up to 90,000 rpm. 

Onset 

37000 

offs 

) 
) 
) 
) 

5 

,000 

ervecl 

All are the resonant for case so that 

increases here But the onset 

here an(~ s so that 

unbalance has a the onset 

one offset Has ob very clese to the of 1 

Thus not does the 1 amount of pressure 

a belenced half 1 bu tit ::.::educes the 

amount of unbalance needed to low onset al ther. 



HO'wever, the 

set charac 

systems 

normal 

of unbalance 

as for the aer case. 

can affect the off-

,,-,here the offset below the resonant 

unbalance , anJ 

On the other hand whenever ty is 

the onset may b In the case of 

for the aeTas 

and i t wauL~ be that the resonance 

occur before any 1 offset. 

184. 



100 

CONCLUSIONS. 

10. • General. 

Sever,:;l tant aspects of 

ance hAve , and areas of 

so the 

or 

are noss Ie Is 

have been backed and these have 

that cases, s Ie 

Ie other cases 1 lS noto 

, but has the accurate 

Imvs where 

However, 

b annular 

10,2. Aeros ----------------
From s annular feed hole 

it is 

around. = 0.5, and is fixed, best 

s ThGS suppor other 
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workers 

of s pressures, 

the clearance much more 

Thus 

mcasurcd s 

may have been due to 

the accurate 

hole 

exac should carco 

For lanar no shaf 

al 

com-

1L The as 

( 

cons clearance t 

that of 

the gas 

ref. 7 However, the 

author f 

aspects~ sure effects, and 



no 

ps the 

return need be no 

than .5 ci 

the s be treated 

that 

a 

t 

the 

cons to 

decreases, 

In reduces 

solut 

the 



also ~ecreases very but 

s 

it should rather less 

very small clearance 

, the s weakness 

, even 

unstable 

f 

close to 

rotational close to 

be excess 

has all 

may be 

th 

the aeros 

unbalance 

certain 

eccentr ty 

1"" .~U() (I 

10v] 

Thus 

at very lot" 

as 

very much 

c 

unless the 

res 

ons respons 1 not 

the onset 

natural 

this 

leaves 

of 

effects 

trated un-

Ie 

a half offset. 



is 

1st offset 

to 

hnlf 

occurs, hnlf of that for 

one-half 

Free t annular 

response 

The of Ie 

, and 

for 

s 

10.4, 

c 

is 

less unbalance 



response us 

of leads 

centres, 

the for smn.ll clear-

ances of 

accuracy 

c 

exists 

If exceeded 

Ie to run 

res Ulie'.LL-1.:: 

Hm'lever, 

be 

s 

better 0 • :lnce it 

been 

aerostatic 

force force 

force 

11 



Also that force occurs 

before resonance, not as 

used to such 

Ho\lever, inves not ack the 

appears 

that the cannot 

force as \'7as Ie in How-

ever, the serves 

cl er 

than the 

L 



" 1. 

FURTHER 

The 1.S open to 

more exact up to nmv. 

But the c un-

work 

areas not covered Rob 

repor should 

1ilOuld have 

under the 

to 

response 

the 

clef of cri are further 

areas ,-lQuld s ful In 

journal 

F 

clone on the journA.l 
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has not 
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current 

reference 

of a stable 50 

the 

P.PPENDIX I 

a 

os Hator. 

amp 

connected to the 

current 

'10 fed back to the 

between the shaft and the 

the 

on 

the 



But 

that e « Vo 

or 

::: 

== 

~.e. ::::: 

but '" d 

is c,s. , 

s 

Va = 

:1.e VA d 

Thus s 

mean 

shaf n 

th 

ltied -+- 0 

of 

p~ 

:::: 

and 

= 

:=:: 

V 
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0 

1 

of shaft 

from 

tance 

tude 

so 

tant 

amp 

of the the 

upon the 



of the shaft. 

meter, fed 

50 kc from the 

t rec the 

the mean tanee betv78en the shaft and the 

A circuit demodulates 

and feeds a meter to 

then the p 

fro:'l the neter 

detector. 

tude 

meter 

th3 shaft. 

, h01:cJever, 

vlave form an 

us ter shown 
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has 

conc 

s 

After the 

meters 

etween the 

unbalance 

t 

reached, s 

results taken 

Ie. 

the 

11 turn 

results 

One 

anrl errors of 

affects the 

pres 

, however, 

have 

s 

a small 

the 

for the syn-

9. 

alters the 

were 

between force 

the 

the sys tern. 

a 

ttle effec 
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