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ABSTRACT

This work is concerned with the formation of an 'equivalent' stiffness 

matrix for a body, using a Direct Boundary Element Method approach, 

which only requires a surface discretisation. This 'equivalent' stiffness 

matrix may then be treated in the same way as a Finite Element, and 

coupled into a global Finite Element formulation.

The, thus derived, equivalent stiffness matrix is not found to exhibit 

the inherent symmetry properties generally expected of a stiffness 

formulation, and this problem is examined in depth. A simple symmetrisation 

process is adopted, the validity and accuracy of which is also examined 

in the context of the overall symmetry considerations.

The difficulties arising due to surface geometry discontinuities are 

also examined, and a technique is proposed for their solution. This is 

implemented for 2-Dimensional problems, but may readily be extended to 

3-Dimensions.

3-Dimensional problems involving finite and semi-infinite regions are 

treated using constant Boundary Elements, and both constant and linear 

element formulations are presented for the 2-D case.

Finally an explicit formulation is presented for a 2-D half-space, 

loaded at the free surface, using constant, linear or quadratic elements, 

which does away with the necessity of numerical integration.
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NOTATION

S(u), G(u)

%! Xg Xg Global cartesian coordinates

0 . . 
IJ

Stress components

0 Stress vector

e. . 
ij

Strain components

e Strain vector

^i' 5 Traction, components and vector

u^, u Displacement, components and vector

Body forces, components and vector

Unit normal, components and vector

Elastic compliances, tensor and matricial form

Rigidity Coefficients, tensor and matricial form

E Modulus of Elasticity

Poisson Ratio

G Shear Modulus
9f.

f. . Derivative notation, = -—
0

Volume of body for 3-D

Area of body for 2-D - Domain

r Boundary of body- Surface

n Energy functional

L(u), D(u)
General linear differential operators

E, E^, Eg Error functions

w General weighting function

"*k' Fundamental Solution for displacements - component 

and matrical forms.

Fundamental Solution for Tractions - component and 

matricial forms

X Source Point

Y Field Point



Vector between Source point and Field point 

Distance between Source point and Field point 

Constants involved in 2-D Boussinesq Solution 

Interpolation functions 

Local coordinates 

Coefficients of free term relating to point 'i' 

Global Boundary Element Matrices

Submatrices of H and G representing Integrals of 

the Influence at 'j' due to a source at 'i' 

Global vector containing nodal values of displacements 

Global Vector containing nodal vlues of tractions 

Global Vector containing equivalent nodal forces 

Global Vector containing nodal values of body forces 

Finite Element type stiffness matrix 

’Equivalent' Stiffness matrix derived from B.E.M. 

(generally unsymmetric) 

Symmetrised form of K^ .

Matrix relating nodal values of traction to equivalent 

their equivalent nodal forces.



CHAPTER 1 - INTRODUCTION

In recent years, the Boundary Element Method (B.E.M.) has 

increasingly been presented as a powerful alternative to existing 

techniques for the solution of problems in continuum mechanics, 

(e.g. Brebbia [4], Cruse [s], Lachat and Watson ^26]).

The Boundary Element Method involves the transformation of the 

governing differential equations within the domain under consideration, 

to an integral equation defined on the surface of the domain, thus 

enabling the reduction of the dimensionality of the problem by one. 

The surface may then be discretised into a number of 'elements' over 

which a polynomial form of the solution is assumed; this enables the 

evaluation of the relevant integrals, usually by some numerical process, 

resulting in a final system of linear algebraic equations. The 

advantages of the method are readily apparent and have been extensively 

discussed and demonstrated in the literature. (e.g. Cruse [13] ,[28] , 

[40] , Nakaguma [lo] , Tottenham [39] ) . As only the surface of the 

domain need be discretised, the resulting systems of equations are 

considerably smaller than those involving domain type solutions (e.g . 

Finite Elements,Finite Differences), and considerable savings can also 

be achieved in the time required for data preparation. A very important 

implication of the method is that there is no interpolation of the 

solution within the domain, and for a given solution on the surface, 

results at interior points involve no approximations.

The key to the method, in stress analysis applications, is 

the adoption of an analytical point load (fundamental) solution which is 

used to eliminate the domain integral from the formulation. The first 

such solution was developed by Lord Kelvin and following this, work by 

Flamant [is] , Boussinesq [16] , Melan [14] , Mindlin [?] , produced 



solutions for semi-infinite domains in both 2 and 3 dimensions.

Some of the earliest work using boundary integral equations in 

elasticity was undertaken by the mathematician Muskhelishvili [47j as 

early as 1953. The late 60's saw work by Rizzo [34] in the analysis 

of 2 dimensional elastostatic problems and by Curse and Rizzo [_45j 

in the analysis of transient elastodynamic problems, who used the 

boundary representation of the governing equations originally derived 

by Somigliana [SOj in 1885.

In 1969 Cruse [13] presented a formulation for 3 dimensional 

elastostatic problems using the Kelvin fundamental solution and was to 

instigate what we know today as the 'Direct Boundary Element Method'. 

This work, however, employed elements over which the variables were 

assumed to be constant, but work soon followed postulating the use of 

localised shape functions to allow for higher order representation of 

the dependant variables (see Lachat [48]).

An alternative implementation of the Kelvin solution was first 

proposed by Kupradze [46] in 1965, thus establishing the foundations of 

the Indirect Boundary Element Method, but subsequent investigation has 

demonstrated the equivalence of the two techniques (e.g. see Brebbia and 

Butterfield |51]) .

The last decade or so, has seen a great deal of research in the use 

of boundary element methods for the solution of problems in many fields 

of continuun mechanics and it is impossible to refer to all relevant 

or related works directly. As such for a more general background to 

developments and different applications of boundary element methods, the 

reader is referred to the bibliography at the end of this work.
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There are however, many classes of problems, for which the 

B.E.M. is unsuitable, or for which its relative advantages over domain 

solutions (in particular, Finite Elements) are not sufficiently 

pronounced to outweight its disadvantages. The B.E.M. often involves 

a very time consuming numerical integration process and results in 

a system of equations, which although relatively small, is fully 

populated and unbanded. Problems with a large surface to volume ratio, 

or problems involving rapid variation of dependent parameters (e.g. 

material properties) may be more amenable to solutions using Finite 

Elements. Also, the B.E.M. , is restricted to classes of problems 

for which fundamental (or point load) solutions are available, and 

this often makes the application to highly anisotropic fields very 

difficult. It would appear therefore, that an examination of Boundary 

and Finite Elements should be carried out from a point of view of 

compatibility rather than competitiveness.

The Finite Element Method (F.E.M.) is very well established 

and understood (e.g. see Brebbia [^2o2 , Zienkiewicz [^3o] , [^41] ) and 

an extensive range of computer packages are readily available for 

its implementation.

Following some of the early work in Boundary Elements, more 

recent work has demonstrated the relationship between the B.E.M. 

and F.E.M., and it has been shown that they may both be derived as 

special cases of a much more general method - the Weighted Residual 

Technique (see Finlayson [6] , Brebbia [H])' It is therefore 

possible to transform a Boundary Element formulation to an 'equivalent' 

Finite Element model, and vice-versa (e.g. see Brebbia and Georgiou 

[24]. Georgiou [43], Kelly [36]).



Given the establishment, wide acceptance, and ready availability 

of computer codes for the implementation of the F.E.M., it would ba-^ 

very useful to be able to treat a problem (or part, thereof) using 

Boundary Elements, where amenable, and transforming the formulation 

to an 'equivalent' stiffness relation, which may then readily 

be incorporated into an overall Finite Element system, in the 

usual way. It is this which is the objective of the present 

work.

In the last few years there has been a fair amount of work 

concerned with the combination of Finite and Boundary Element 

techniques (e.g. Zienkiewicz, Kelly and Bettess [29] , [31], Fusco [42j , 

Georgiou [43], [44] Mustoe [22], [36], [49], Shaw [52], [ss]). 

However, the lack of symmetry of the Boundary Element method is also 

reflected in the fact that an 'equivalent' stiffness relation based 

on the B.E.M. is also unsymmetric. There have been several attempts 

to 'symmetrise' this 'equivalent' stiffness matrix, but the arguments 

presented to justify this are far from conclusive, and usually 

rest on the notion that any stiffness relation must be symmetric, 

from the first principles, and therefore any lack of symmetry is 

due to some 'error* in the formulation, for which some'correction' 

process is then employed.

The object of this work is to examine the general process of 

coupling a B.E.M. solution to an overall F.E. system, by forming 

the 'equivalent' stiffness matrix for the region under consideration, 

in the context of elastostatic problems. The properties of this 

'equivalent' stiffness matrix are extensively tested for various 
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examples with particular emphasis on the symmetry aspect of the 

formulation. From this, it is hoped that a much clearer picture 

will emerge of the validity and accuracy of the formulation, 

together with a greater insight into the symmetric properties of 

stiffness relations, not only in relation to a B.E.M. based technique, 

but from a much more general viewpoint.

One of the main problems with the B.E.M., is that of sharp 

geometric discontinuities on the surface, which gave rise to 

discontinuous tractions at that point. Adequate provision for this 

situation can, for certain cases, present difficulties in solutions 

using the B.E.M. However, these difficulties are invariably encountered 

in the procedure of forming an 'equivalent' stiffness matrix and 

require special consideration. The difficulty is that the problem 

t 
is ill-defined a^ such discontinuities, and extra equations are 

required in order to adequately include the effects of the discontinuity 

in the model, and to uniquely define the problem. The inclusion of 

these 'extra' equations can seriously affect the degree of symmetry 

(or lack thereof) exhibited by the final 'equivalent' stiffness matrix, 

and this is another key feature of the overall problem which is 

examined extensively in this work.

CHAPTER 2 gives a brief outline of the basic relations in 

linear elasticity which form the basis for the remainder of the 

work. By way of this, the notation and associated sign conventions 

are also introduced. Following this, the governing differential 

equations are derived from both static equilibrium criteria and 

variational energy considerations, and the equivalence of these 

processes is demonstrated. Finally the Weighted Residual Technique 

is presented, and it is shown that all the forms of the equilibrium 



statements can be derived as special cases of this technique.

CHAPTER 3 begins by presenting the fundamental problems and 

their solutions for both 2 and 3-Dimensional problems. For bodies 

which have fully closed boundaries (either closed internal surfaces 

representing cavities, or closed external surfaces representing 

finite boundaries), the Kelvin solution is applicable, and the 2 

and 3-Dimensional cases are quoted. For a 3-Dimensional half-space, 

the most general solution is that of Mindlin fyj and represents 

a point load acting in the interior of a 3-D semi-infinite space. 

(A special case of this, is for the load acting at the surface, 

known as the BuOssinesq - Cerruti solution). The 2-Dimensional 

equivalents of the above are the solutions presented by Melan Jia], 

and Flamant (15^. The Melan solution is not implemented in 

this work, but all the others are given in Chapter 3. Following 

this, Chapter 3 then goes on to formulate the B.E.M., and for 

completeness, a brief summary of the F.E.M. is also included,

CHAPTER 4 begins by demonstrating the relationship between the 

B.E.M. and F.E.M. and shows the basis of forming an 'equivalent' 

stiffness matrix using the B.E.M. formulation. Several examples 

are then implemented for the case of constant elements. 2-Dimensional 

problems are run using the Kelvin solution, and following the 

work of Nakaguma {joj some 3-D problems for both finite and semi­

infinite domains are implemented.

- 6 -



CHAPTER 5 then proceeds to examine problems encountered with 

higher order elements - namely, those arising at geometric disconti­

nuities. The problem is examined using a 2-Dimensional linear 

element formulation, but ideas involved can readily be extended 

to higher order elements and to 3-D. The corner problem is dealt 

with by supplying 'extra' equations at discontinuities, which 

were originally suggested by Chaudonneret [23j. A technique 

is developed which considers these 'extra' equations as additional 

boundary conditions imposed on the problem, and sets them up in 

the form of a series of 'rotation' matrices, reminiscent of 

the application of a set of linearly dependent constraints on 

a F.E.M. model. Unlike their straight forward imposition, this 

largely preserves the eventual symmetry of the formulation, and 

several examples are implemented to demonstrate the validity and 

accuracy of the 'equivalent' stiffness approach. Chapter 5 also 

includes a detailed discussion on the symmetry aspect, and presents 

arguments explaining the general 'lack' of symmetry from numerical, 

analytical and physical considerations.

CHAPTER 6 presents formulations for a 2-Dimensional half-space 

loaded at the free surface. Due to the fact that, for this case, all 

influences and effects are defined on a straight line (namely, the 

free surface), it is possible to perform all the relevant integrations 

analytically. These integrations are in fact performed for the cases 

of constant, linear and quadratic elements, thus enabling the explicit 

definition of the final linear algebraic equations, without any 

recourse to numerical integration. The behaviour of the formulations 



is then tested with reference to several examples.

This work deals with the Finite Element displacement technique, 

as opposed to the force method, and therefore all the models considered 

have the global displacements as the primary system unknowns. As such, 

the numerical tests, comparisons, and the examples presented concentrate 

on the solutions obtained for displacements.

- 8 ~



CHAPTER 2. GOVERNING RELATIONS

2.1 INTRODUCTION.

This chapter reviews the basic relations governing the 

theory of linear elasticity and defines the relationships between 

stresses, strains, displacements and tractions, which allow the 

mathematical definition of the problem. By way of this, the basic 

notation and sign convention for the remainder of this work is 

introduced, as well as leading to the definition of the governing 

equations of equilibrium.

Equilibrium conditions are then examined using energy consid-- 

erations and the Principles of Virtual Work and Minimum Potential 

Energy are presented.

Finally,the Weighted Residual Technique is discussed, which 

is a general method used to formulate numerical solution schemes 

for differential equations. Many of the common techniques used in 

engineering can be shown to be special cases of this formulation.

2.2 BASIC RELATIONS IN ELASTOSTATICS

2.2.1 Components of Stress

In the general three-dimensional case the reference frame

will be three mutually orthogonal cartesian axes denoted by

X]^, X2, Xg, or x^ (i = 1, 3). At any point within the body the

state of stress may be defined by the second order tensor 

(i = 1, 3; j = 1, 3) which denotes the stress on a small differential 

element acting on a face perpendicular to the axis x^ and in a 

direction parallel to the axis x. (fig. 2.2.1). The stress 

—



component o^j is considered positive when acting on the most positive 

x^ face in the positive Xj direction, or vice-versa.

The surface tractions will be denoted by the vector p with 

components p^ (i = 1, 3) considered positive when acting in the 

positive x^ direction.

The tangent plane at a point on the surface is defined by 

the unit normal at that point, n , with components n^ (fig.- 2.2.2). 

By considering equilibrium of the trapezoidal element shown in 

fig. 2.2.2 it may readily be shown that the surface tractions and 

stresses are related as follows :

Pj = Ojk "k (2.2.1)

Where the usual summation convention for repeated indices applies.

2j;2^2 Components of Straln

The state of strain at any point may be defined by the strain

tensor Ej^j , and the displacements 

If the deformations are small, such

of any point, by the vector u.

compared to u^,.

3
3x.

J
then the

be expressed as

It is important

the subscript

strain displacement

follows

to note

that Up . is insignificant

,j denotes the partial derivative 

relations are linear and may

1,
=ij = 2<"i-j *"i-i (2.2.2)

that both the stress and strain tensors are

symmetric and hence for the 3-Dimensional case there are only six 

independent components and for the 2-Dimensional case there are three

such independent components.

- 10 -
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2.2.3 Stress-Strain Relations

GENERAL STRESS-STRAIN RELATIONS

For a linearly elastic material, the most general form of

Hooke’s law may be expressed in tensor notation as

ij ^ijkS,‘^k£ (2.2.3a)

this may also be written in matrix form :

^11 — ^11 ^^12 ^13 ^^14 ^15

^22 ^22 ^^23 ^24 ^25

^33 ^^33 ^34 ^35

^^12 ^^44 ^45

SYM
2^13 ^55

^^23

X
11

*=26 *^22

^^36

^^46

^3

^^12
(2.2.3b)

^^56 ^13

^66 ^3

6 = C (2.2.3c)

The inverse relationship of equation (2.2.3) may be written

^ij ^ijkg^^kA (2.2.4a)

or, in matrix notation

(2.2.4b)

The terms c^. are called the ’elastic compliances and d^j the

rigidity coefficients’.

For a general anisotropic material (i.e. no symmetry in the 

- 12 -



material properties) the elements of the matrix C (and correspondingly, 

D ), shown in equations (2.2.3) and (2.2.4) are all non-zero and not 

interelated, hence there are 21 independent material constants.

In practice, however, real materials exhibit various forms of 

symmetry in their material behaviour, which reduces the number of 

independent constants in the stress-strain relations for that material. 

A method for determining the form of the stress-strain relations in 

such a case is as follows : When the material exhibits an elastic 

symmetry then there are at least two sets of reference frames which 

are, in fact, equivalent due to the symmetry, say x^ and xl . The 

total energy potential may be expressed in terms of the stress components 

and al. and, of course, the elastic compliances, and will have 

the same form in both systems, as they are, in fact, equivalent. The 

stresses ok may be transformed to the x system using simple stress 

transformation, and hence the coefficients of the terms describing the 

two energy potentials may be equated. Many of the terms c^j will 

disappear, depending on the type of symmetry involved.

For a material which has three orthogonal planes of symmetry 

(orthotropic), corresponding to the planes containing the coordinate 

axes, the matrix C takes the following form, containing nine 

independent constants.

(2.2.5)

^66

- 13 -



If a material has only one plane of symmetry, say the x^ - x^ 

plane, (a necessary condition for reduction of a problem to 2-Dimensions) 

then the following elements are also non-zero :

^14' ^24' ^34' ^56 ° (2.2.6)

The most symmetric case Is that of an orthotropic material 

where the properties in each of the planes of symmetry are identical. 

This is called an 'isotropic* material, and the number of independent 

constants needed to define the stress-strain relations reduce to 

two ; - E, the Youngs Modulus, and v , the poisson ratio. The 

matrices C and D now take the following form :

^2 - Ti^

SYM 

(2.2.8) 

2(l+u)



PLANE STRESS AND PLANE STRAIN

Plane stress problems are ones in which the body under 

consideration is planar, lying in the P^^-ne with a relatively 

very small dimension in the x^ direction; all body forces act in the 

plane of the body and are independent of x^ , and the applied forces 

and tractions are also planar and act on the edge of the body. In 

such a case, a^^ = Ogg ~ '^13 = 0 on the surfaces of the plate, and 

without significant error, may be assumed zero throughout the thickness. 

It is also reasonable to assume that the remaining stress components 

°12’ '^11’ ^22 ^®™^i-n constant throughout the thickness, i.e. are 

independent of x^ •

It should be noted that although 0^3 ~ 0 > Phe transverse 

displacement u^ ^ 0 , hence £^3 )^ 0 and may be calculated using the 

stress strain relations.

Plane strain problems occur at the other extreme of geometry, 

when the x^ dimension is very large compared to x^ and X2 . 

The conditions that all applied forces, tractions and body forces act 

in the x^ - X2 plane and are independent of x^ , still apply, and 

the remaining initial condition for plane strain is that u^ = 0 .

In this case it may be assumed that u^ and U2 are independent 

of Xg and this is equivalent to specifying e^^ = £^^3 - ^2^ = 0 .

Note that 0^3 ?^ () ^^(^ ™^y ^® calculated using the stress 

strain relations.

For any two-dimensional problem, the x^ ~ X2 plane must be 

a plane of symmetry by definition, and for a general case, the stress-strain
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relations are given by :

^11

^22

^33

^^12 

^^13 

^^23

^11 ^12 '^IS ^14

^^22 ^^23 ^24

^33 ^^34

*^44

SYN Cgg Cgg

^66

Note that initial strain components have been omitted for

simplicity but may be easily incorporated by considering the strain

vector e to be the difference between the total and initial strains.

For the plane stress case 0^3 is set to zero in equation

(2.2.9) resulting in,

^11 ^11 ^12 ^14

^22 ^22 ^24

^^12 ^44

X ^11

^22 (2.2.10)

°12

or, E

Inverting (2.2.10),leads to

a = D e (2.2.11)

D°Where C , denote the elastic compliances and rigidity

coefficients for the plane stress case, and C^ and D^ for the plane

strain case.
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For the plain strain case, 0^3 ^^ ’^°^ conveniently zero 

and must be eliminated from equation (2.2.9).

"33 (^13 "11 '*' "23 "22 "34 "12^
-1
Cgg

(2.2.12)

Substitution of 0^3 

for c" , and upon inversion

in equation (2.2.9), yields the expression

D^

For an orthotropic material (one in which the axes of symmetry

correspond to the x^ and X2 axes) the stress strain relations may

be expressed explicitly in terms of the material constants :

Where

Equation (2.2.11) may be

"11

°22

^12

^11

^22

expressed as (plane stress)

^11 

(l-nv^^)

^11 

n (1-11^22)

''21 ^11

(1-nv^^)

And for an isotropic material E 11

^21 (2.2.14)

^12 2(l+v)

^22 = ^

V
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Resulting in the expression for D

D° =
l-v^ 1-v^

SYM — 5— 0

(1-v^)

G

(2.2.15)

By carrying out the process of first eliminating '^33 from 

the explicit form of the stress-strain relations and setting e^^ = 0 ? 

the equivalent relations for the plane strain case are obtained.

D^ is found to have the same form as (2.2.15) in terms of E' and

V’ , where

E' - ------ (2.2.16) 
(1-v^)

Hence the same formulation for the solution of any 2—dimensional 

problem may be used, by simply adjusting the material constants 

according to equation (2.2.16) when the plane strain case is required.

2.3 EQUILIBRIUM CONDITIONS

2.3.1 Equilibrium Equations in Terms of Stresses and Displacements.

Referring to Pig. 2.2.1, consider the force acting in the " 

direction due to o^q ' ^^^ force will be : 

(variation of o.^ ^^^^ respect to x^) x (increment in x^ direction) 

X (area on which the stress acts). Hence force due to o.^ is given 

by :
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3x^
(5X^) (6X2 &Xg)

Considering all stresses acting in the x^ direction, and 

denoting b. as the body force per unit volume acting in the x^ 

direction, then equilibrium in the x, direction requires :

So. . ^"^ 91
—
9x. 8X2 3Xg 1

(2.3.1)

Similar equations may be written for equilibrium in the X2 and x^ 

coordinate directions. The three equations may now be written :

o.,,. + b. = 0 , (i,j = 1,2,3) (2.3.2)

By considering rotational equilibrium about each of the coordinate 

axes in turn, it is immediately shown that

a. . = o.. , i / j (2.3.3)

(This is, in fact, the reason why the stress tensor is symmetric).

Equations (2.3.2) define equilibrium for any elastic body, 

in terms of stresses, and are applicable to both the 2 and 3-dimensional 

cases.

For an isotropic material, Hookes law, (equations (2.2.3) 

and (2.2.4)) may be written 

o. . = 

where G =

X =

, 6..+2Ge.. (2.3.4)
kk ij 1]

2(l+v) (^^^'^)

(l+v)(l-2v)
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and 5.. is the Kronecker Delta 

6. . = 1 i = j 
ij (2.3.7)

6. . = 0 i ?^ j

By using the strain displacement relations (2.2.2), the stresses

(2.3.4) may be expressed in terms of displacements :

“ij ■ *“k>k \i * =<“i’j * "j-p (2.3.8)

Using equation (2.3.8), the equilibrium equations (2.3.2) may also be 

expressed in terms of displacements, resulting in the well known 

Navier Equations of equilibrium.

(l-2v) "I'ij "j'ii G ° ^^^^'^^

As all of the compatibility conditions relating stresses, strains, and 

displacements have now been Included, equations (2.3.9) uniquely define 

the problem, providing 3 equations for the 3 unknown displacements at 

any point.

2.3.2 Energy Formulations

THE PRINCIPLE OF VIRTUAL WORK

Consider a body enclosing the domain Q with a surface F 

(Fig. 2.3.1) and with boundary conditions as follows :

u^(S) = u^(S) , S E F (2.3.10)

p.^S) = p^(S) , S E r (2.3.11)
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Figure 2,3.1 General Problem Definition.
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The boundary, F , will be considered as the sum F^ + V^. ’ where 

F^ is the part of the boundary where the essential (or geometric) 

boundary conditions are applied [equation (2.3.10)), and F^ where 

the natural (or mechanical) boundary conditions are applied [equation 

(2.3.11)}.

Now, let the body undergo any small virtual displacements

6Uj_ such that on the surface F^ the geometric boundary conditions

are identically satisfied and 6uj_ = 0 . Corresponding to these 

displacements, the internal strains will also undergo small variations :

1Se. . =7^ (5u.) . + (5u.) .
ij 2

The work done by the internal stresses is given by :

Now,

Q
0..(5u.) . dQ = I

1] 1 ,Jij 1
T

1 2

where,

For a vector function F (with components

(2.3.12)

(2.3.13)

(2.3.14)

(2.3.15)

(2.3.16)

F.) in a closed

domain 0 , with boundary F , Gauss theorem states that :

F. .
J ,J dn = F. n. dF

P J J
(2.3.17)

— 22 -



Hence

n. 6u. dr
J 1

(2.3.18)

and using equation (2.2.1)

(2.3.19)

Also from equations (2.3.2) the term in equation (2.3.16) for

I , may be replaced by - b^ and hence the work done by the internal

stresses becomes :

p. 6u. dr + b. 5u. dQ (2.3.20)

I
1

I
1

a. . 
r ^^

r
p. u. dr 

1

(noting that du. = 0 on P^).

Hence the Principle of Virtual Work may be expressed:

o. . de.. dQ = 
ij iJ

du. dr +
1

b. du. dfi 
1 1

(2.3.21)

The linearity of the material behaviour has not been imposed on the

above equation and hence it is completely general in that sense. 

Also, by introducing the strain displacement relations (equations (2.2.2))

into (2.3.21), and performing an analysis as above, the equilibrium

equations (2.3.2) may be derived. (see [9]).

THE PRINCIPLE OF MINIMUM POTENTIAL ENERGY

The Principle of Minimum Potential Energy is another of the 

well-known theorems in solid mechanics, and requires that the total 

potential of a body in equilibrium, usually expressed as some energy 

functional, is stationary with respect to some generalised degrees 

of freedom. [_9'].

- 23 -



The potential energy of the system depicted by Fig. 2.3.1 

may be written as, 

(2.3.22) 

^2

and for equilibrium 

6n=o (2.3.23)

Now

(2.3.24)

Because of the symmetry of the rigidity coefficients which

relate the stresses and the strains (equation (2.2.4)),E . .
IJ

it may readily be shown that the first two terms in equation (2.3.24) 

are equal and hence, equations (2.3.23) and (2.3.24) yield equation

(2.3.21) - The Principle of Virtual Work.

MIXED FORMULATIONS

The above energy formulations have been based on the fact 

that the essential boundary conditions (those defining displacements 

on r^) are identically satisfied, and hence the virtual displacements 

are assumed zero on this part of the boundary. This leads to displace­

ment type models where all the applied forces are defined and the 

unknowns are the displacements on the r2 part of the boundary.

However, if the model is of a mixed type, where there are 

both displacements and tractions unknown on the surface then both 
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parts of the boundary have to be considered. As the displacement 

boundary conditions are now not identically satisfied, -a«d--bene^e, 

there is a contribution to the total potential energy due to this 

part of the boundary. The most widely known mixed principle is 

given by the Reissner functional,which includes an extra term in 

the total potential energy functional (equation (2.3.22)), corresponding 

to the work done on the T^ part of the boundary, (see [9]). The 

Reissner energy functional is given by :

0. . e . . d^2 b . u. dn
1 1^R p. u. dr

(2;3.25)

Fl

p.<u. u.) dr

The variation of the extra term is,

5p.(u. - u.) dr
P 1 1 1
1

Thus

Fl
Pi

the Principle of Virtual Work now takes

6u. dr 
1

the modified form :

0. . 6e.. dn = p. 6u. dr p. 5u. dr
1] Jr Jr

1

(2.3.26)

(u. - u.)5p. dr + b. 5u. dfi1 1 J 1 1

2.3.3 The Weighted Residual Technique

Consider the general linear differential operator L(u) in 

n , which must satisfy the equation

L(,u) - b = 0 in fi (2.3.27)

with boundary conditions S(u) = r on F 
(2.3.28)

G(u) = q on !» 
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where the total boundary .T =1^+12, and S and G are differential 

operators giving the essential and natural boundary conditions, 

respectively.

If an approximate solution 'u' is now introduced, this 

will not exactly satisfy equations (2.3.27) and (2.3.28) and there 

will be a resultant error involved. The errors involved may be 

defined as follox^s :

E = L(u) - b 'Z 0

£^ = S(u) - r / 0 (2.3.29)

Eg = G(u) - q ?( 0

The inner product of two functions f^ and fg is defined as

f f dn (2.3.30)

A general method of minimising the errors (2.3.29) is to 

distribute them, by defining a weighting function w , such that the 

following relationship is satisfied. (For further reading, see 

[4], [5], [6]).

<E, w>^ = <62, S(w)>p - <E^, G(w)>p (2.3.31)

or <L(u) - b, w> = <G(u) - q, S(w)> - <S(u) - r., G(w)> (2.3.32) 
" 2 1

This may be considered the starting point for a wide variety of 

weighted residual techniques, such as Finite Differences, Method 

of Moments, Collocation Method, Galerkin technique etc, (see [s]). 
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The Finite Difference technique is simply derived by taking w , 

the weighting function in equation (2.3.32), to be the dirac delta, 

replacing the derivatives by finite difference expressions, and 

identically satisfying all boundary conditions.

The well known original Galerkin technique assumes a 

weighting function w , which is the same type of function as the 

solution, u . However this requires that the assumed function be 

of high enough order to allow for the existence of the derivatives 

imposed by the differential operators. These continuity requirements 

may be relaxed by lowering the order of the function space of which 

u and w must be sub-sets. This is achieved by integrating 

(2.3.32) by parts, obtaining what is known as a 'weak' formulation.

Noting that, for a self adjoint operator, L(u) , integrating 

by parts a sufficient number of times,

<L(u), w>. = - <D(u), D(w)>^ 

(2.3.33) 

+ <G(u), S(w)>p

(where, D is a differential operator) equation (2.3.32) then becomes,

<D(u), D(w)>^ = <q, S(w)>p + <S(u) - r, G(w)>^

(2.3.34) 
+ <G(u), S(w)>p + <b, w>^

where u may now be of lower order, but w of higher order, than 

the functions necessarily required by (2.3.32).

Equation (2.3.34) may now be used as the basis for the Galerkin 

type Finite Element technique as u and w may be chosen to be 

of the same order. It is important to note that by considering the 
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equilibrium equations and boundary conditions for the elasticity 

problem (equations (2.3.2),(2.3.10), (2.3.11)) as a particular case 

of the equations (2.3.27) and (2.3.28), and by choosing the weighting, 

w , to correspond to some virtual displacement field, then equation 

(2.3.34) corresponds exactly to the general Principle of Virtual 

displacements given by equation (2.3.26) in the previous section.

Finally, equation (2.3.34) may be further integrated by 

parts until the original operator, L , now operates on w as 

opposed to u . (This is still assuming L is self-adjoint). If 

w is then chosen such that L(w) = 0 , the problem is reduced to 

integrals only on the boundary, (other than the body force terms). 

A convenient choice for w , is that which forces w to satisfy 

the fundamental problem of a point source, given by the equation

L(w*) + 5. = 0 (2.3.35)

where 6. is the dirac delta function representing a point source 

at 'i’, and xr^ is the corresponding response field within the 

domain, given by the solution of (2.3.35). Now the term

<u, L(w*)>^ = <u, - 6^>^ = - u^ (2.3.36) 

where u^ is the value of the variable u , at the source point 'i'. 

Hence, equation (2.3.34) becomes :

c^ u^ + <r, G(w*)> + <S(u), G(w*)> =

1 2

<q, S(w*)>_ + <G(u), S(w*)>_ + <b, 
2 1

(2.3.37)
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where c^ = 1 for the point i inside 2

c^ = 0 for the point i outside fi

When the point 'i' is on the boundary of the domain, then the 

value of c^ is not trivial for the general case, but this problem 

will be discussed in much greater detail in Chapter 3.

2.3.4 Discussion

This section has reviewed some of the fundamental relations 

for determining the stress state of a body in equilibrium under some 

applied loading. The equations of equilibrium were shown to be 

equivalent to statements of Virtual Work or Minimum Potential Energy, 

and furthermore these were shown to be special cases of a much more 

general technique - that of Weighted Residuals. (For further reading, 

see [11], [12]).
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CHAPTER 3 - THE BOUNDARY ELEMENT AND FINITE ELEMENT FORMULATIONS

3.1 INTRODUCTION

This Chapter begins by defining the fundamental problems of 

a point load in a homogeneous elastic space - both infinite and 

semi-infinite - and presents the relevant solutions for displacements 

and stresses.

This fundamental solution is then used to reduce the governing 

equations of equilibrium, defined on the domain of the problem, to 

a form which involves only integrals on its boundary.

These equations may be solved numerically by dividing the 

boundary into a discrete number of elements and assuming interpolation 

functions for the unknowns, similar to those used in Finite Elements. 

This gives rise to the Boundary Element Method (BEM).

A brief description of the Finite Element Method (FEM) is 

included, and is shown to have a common basis with the BEM.

Finally a brief description is included of the computer 

implementation of the Boundary Element Method for the 2-Dimensional 

linear element case.

3.2 THE FUNDAMENTAL PROBLEMS FOR INFINITE AND SEMI-INFINITE DOMAINS

3.2.1 The Kelvin Problem - Infinite Space

THE 3-DIMENSIONAL CASE.

Consider the problem depicted in Fig. 3.2.1 within 

a domain n ; a unit point load is applied at the source point X
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Q represents the Infinite Domain

X = X(x^) denotes the source point

Y = Y(x^) denotes the field point.

Figure 3.2.1, Kelvins Problem. Force acting in a 
3"Dimensional infinite space. 

- 31 -



and the corresponding displacements and stresses are sought at some 

field point Y . The solution of this problem was originally 

achieved by Kelvin and is readily available in the literature (j^lj , 

[2] , [3]). Cruse [4] gives the expressions for the displacements 

and tractions, using an indicial notation consistent with the 

notation being used in this work.

Consider a unit load applied at a source point X in the 

'k* direction (k = 1,2,3) and the effect of this source at some 

field point Y , on the surface of the domain (defined by the unit 

normal n), and at a distance r from X (Figs.3.2.2). The 

displacements and tractions at Y are given by u* and p* 

respectively. The subscript refers to the direction of the

source (at X), and the subscript ’k' refers to the direction of

the response, (at Y). (This notation is clearly shown in Figs. 3.2.2).

The expressions for the fundamental solutions are :

pc = ----------- ---------------
&k 16'yrG(l-v)r

(3-4v) (3.2.1)

Pile " nJ

(3.2.2)

where:

G is the Shear Modulus

V is the Poisson ratio

5 ., is the kronecker delta;

6 . = 1 £ = k

=0 & k

r is the distance between the source point and the field 

point i.e. :
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Figure 3.2.2, Definition of the displacement and traction
tensor u* and p*
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(3.2.3)

and r,. represents the derivative of r , in the 'i' direction

with respect to the field point , Y

9r _ 1
^'i ay. 2

3 2
hence (3.2.4)

,j=l J
2(Y^ -X^)

THE TWO DIMENSIONAL CASE

The analogous 2-Dimensional solution is given by :

“tk 8tG<1-\,) (r, ^ek ’"'J (3.2.5)

Ptk ■ MT2V)r [Ik B1-2v) 6^^t 2r,^ r,,^] - (1-2g) [r,^ n^^ - r,^ n^]J (3.2.6)

This solution is for the plane strain case, but a formulation 

based on this may be used to solve plane stress problems by adjusting 

the material constants according to equations (2.2.16).

3.2.2 Semi-Infinite Space Solutions

THE THREE DIMENSIONAL CASE

A 3-Dimensional semi-infinite space occupies the domain

- " < x. < 0 < x^ < " i.e. is bounded by the

surface x_ = 0 which is traction free. The most general solution,

for a point load within the domain (see Fig 3.2.3) is given by

MINDLIN [7] . The Boussinesq-Cerruti solution [[2*] , for the fundamental 

problem of the load acting at the free surface, although developed 
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earlier, can be derived as a special case of Mindlin by setting 

c == 0 (Fig. 3.2.3). Also by allowing c -f co , the Kelvin solution 

is obtained.

The general Mindlin solution, [^7] , was developed, implemented, 

and tested extensively by NAKAGUMA [lo]. The solution lacks 

symmetry with respect to the three coordinate axes, and as such 

cannot conveniently be expressed using a neat tensor notation. 

However, for reasons of completeness and easy reference, the explicit 

form of the solution for the displacements and stresses are quoted 

in Appendix B. The Boussinesq-Cerruti solution, however, is very 

simple, as only the response on the free surface is required for 

itb implementation with the BEM. Also, the free surface is traction 

free (by definition), so only the fundamental displacements on the 

surface need be defined. These are given by :

u* = K [(1-v) + V r^^)]

Uqz ^ ^ ^ ^'1 ^'2

u*^ = K (0.5 - V) r,^

(3.2.7)

u*2 = K [(l-v) + V r^^

u*2 = K (0.5 - V) r,2

u* = K (1-v)

where K = —1—
ZrG r '

and "h " "12

"32 " "23

"31 " " "13
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THE TWO DIMENSIONAL CASE

The 2-Dimensional problems analogous to the above are 

depicted in Figs. 3.2.4 and 3.2.5, the domain under consideration 

bounded by the Xg axis (i.e. x^ = 0). The general solution was 

first devised by MELAN Qia], and again may be obtained from Mindlin 

by integrating the solution for a point load, to form a solution 

for a line load, and performing the relevant coordinate transformations. 

A special case of this solution, is again, when the load is applied 

at the free surface. This solution was first devised for a point 

load perpendicular to the surface, FLAMANT [15] , and subsequently 

modified by BOUSSINESQ [16] , for the general case of an inclined 

load at the surface.

This solution is given by TIMOSHENKO [1] , in terms of 

polar coordinates, r , 6. For a point load P , applied at the 

origin, the position of the field point, Y , is defined by its 

distance from the origin, r , and the angle it subtends from the 

line of action of the force, 6 ; (see Fig. 3.2.5).

The stresses at Y are given by :

0 = - ----- COSO 
r Trr

Oq= 0 (3.2.8)

”re = °

and these may be integrated to yield the radial and tangential 

displacements (u and v , respectively), given by : 
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u = - " cos6 ln(r) - -ti^—6sin6 + A sinG + b cosG (3.2.9a)

sinG + ln(r) sinG - G cosG 
irE irE trE 

(3.2.9b)

+ ,Q sinG + A cosG - B sinG + Cr

where A, B, C are constants of integration and must be determined 

from the physical constraints of the problem. In order to facilitate 

the implemention of this solution, using the BEM, equations (3.2.9) 

must be specialised for the case of the field point Y lying on 

the free surface, x^ = 0 , and written in terms of the rectangular 

coordinate system x^, x^ .

For the case of P acting vertically (in the x^ direction), 

we can assume that the constraint is such that there;is no lateral 

displacement along the x^ axis, i.e. v = 0 for 6=0.

This yields A = C = 0 . Furthermore we must restrain the system 

from a rigid body translation and thus assume zero vertical 

displacement at some point on the x^ axis, at a distance, d , 

say, from the origin. We then find

B = -j^ ln(d) (3.2.10)

For the case of P acting horizontally, an anti-symmetric 

condition applies; v^ _ = v, and u. ^ = - u„ . To prevent 
6=0 6=Tr 6=0 6=17 

a rigid body translation we fix the horizontal displacements at the 

surface at some distance, b , say from the origin. The constants 

of integration then become :
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B = ^g ln(b) (3.2.11)

C = 0

Again denoting u* as the displacement in the 'k’ direction (at 

the field point), due to a unit load in the ’£.' direction, 

(at the source point), the solution (3.2.9) may be specialised for 

the free surface, and expressed as follows

u*i = a^ - a. ln(r)

"12 - - "3

(3.2.12) 

u* 
22 a, - ^2 ln(r)

where, X = + 1 for the field point , Y , lying on the positive 

X2 side

and X = - 1 for the field point, Y , lying on the negative 

X2 side.

and where a^(i = 1, 4) are constants given by :

“1 ~ ■^ in(d) - (l+v)J

2 
irE

3 2E

2 
""A = :FE ^^(^)
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free surface - plane

^ ^^3 > ^^ represents the semi-'infinite 
domain

X denotes the source point

Y denotes the field point

Figure 3.2,3. The Mindlin Problem. Force acting in the 
interior of a 3-Dimensional semi-infinite
space.
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free surfacefree surface

Figure 3.2.4. The Melan Problem - Force acting in the 
interior of a 2-Dimensional semi-infinite 
space.

Figure 3.2.5. The Bouosinesq Problem. Inclined force 
acting at the free surface of a 2-Dimen5ional 
semi-infinite space,
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It is important to note that the displacements cannot be 

defined absolutely, only in relation to some chosen fixed datum :- 

thus the constants b and d can be chosen quite arbitrarily 

and not affect the relative values of the displacements, upon which 

the values of the stresses depend.

3.3 REDUCTION OP THE EQUILIBRIUM EQUATIONS TO A BOUNDARY INTEGRAL 
FORM

3.3.1 Boundary Integral Equation for an Interior Point

Referring to Fig. 2.3.1 we require the solution of the 

equilibrium equations

0. + b, = 0 , in Q (3.3.1) 
jk,j k

with boundary conditions

u. = u.
1 1

on Fl

(3.3.2)

Pi ;. on

For an assumed solution the error is minimized by the weighted 

residual statement (2.3.31), which can now be written in the terms 

of this particular problem as, 

(3.3.3) 

where u*, p* are interpreted as weighting functions. 

Pk and u^ are related by virtue of the fact that p^ is the traction 

distribution on the boundary corresponding to the displacement 

field u^
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Integrating equation (3.3.3) by parts and using equations

(2.2.1) and (2.2.2), we have

\ “jk =^ " J Pk "k

L <^" "k’l'k"' L ^k "k 

2

(3.3.4)

At this stage we see that by interpreting the weighting 

functions (denoted by *) as a small virtual displacement field 

5u^ and its corresponding strain and traction field, 

equation (3.3.4) becomes the Principle of Virtual Work (equation (2.3.26)) 

corresponding to the generalised Reissner Energy functional 

(equation (2.3.25)). Furthermore, by assuming that the boundary 

conditions are identically satisfied on the P^ part of the boundary, 

and that the virtual displacements on this part of the boundary are 

zero, equation (3.3.4) reduces to the special case of the Principle 

of Virtual Work (equation (2.3.21)), which is used as the starting 

expression for the Finite Element Method.

Now, making use of Betti' stheorem

o., £*, dQ 
jk jk

E., dfi 
jk jk

(3.3.5)

and again integrating equation (3.3.4) by parts, we have.

b, u* dfi + 
a *= *=

. u, dn 
]k,j kn

'k "k

(3.3.6)

u* dr + 
k

^2^1
he Pk "^^ + Pg ^F
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or in general,

0*1 .
jk,j

u dQ + p* u dr
k Jp ^k k

(3.3.7)
"k Pk'"' + b, u* dO 

k k

We now interpret the weighting field (°jk' "k' ^k^ ^^

the solution to the fundamental problem, for a single unit point

load acting at 'i' This problem is represented by the equation

a ?, .
Jk,j

(3.3.8)

where 6^ represents a point load at *i' acting in the

direction.

For each point ’i' , within the domain Q , the domain 

integral in equation C3.3.7) becomes, - u^, giving,

4 i,. Ptk "k" * ii. “k Pk " £ "*k h ‘‘=

where, u^ represents the displacement at *i* in the ’£’ direction, 

and, ^*£k’P*£k ^^^ *'^® fundamental solutions for displacements 

and tractions, representing the response in the 'k' 

direction due to a unit load (at 'i'), in the *£’ direction. 

(see section 3.2).

Equation (3.3.9) is the well known Somigliana identity, giving the 

displacements of any point 'i' , within the domain ^ , in terms 

of the displacements and tractions on the boundary of the domain, 

r .
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An alternative derivation of the Somigliana identity 

(see, [s] ) , is to write Bettis theorem as ;

("j ^jk ("k) ' ""j ^jk (V) '^^

(3.3.10)

.r("j P* - u* Pj)dr

Which is equivalent to writing the equilibrium equations (3.3.5) 

in terms of displacements and integrating both sides by parts. (It

is interesting to note that (3.3.10) corresponds to Greens second

theorem) . "jk is the differential operator of the Navier equilibrium

equations (2.3.9), in terms of displacements.

l-2v "j,jk "k,jj ° (3.3.11)

The first term in equation (3.3.10) becomes -ut , as u* is 

the fundamental solution ; The second term of equation (3.3.10) 

represents the distribution of the error in the assumed solution, 

u^ , weighted by a function, u* , and summed over the domain. 

Setting this term equal to zero implies the minimisation of this 

error in an average sense over the domain ^^« Equation (3.3.10) then 

results, in the Somigliana identity (3.3.9). (The body force terms 

have been omitted for simplicity).

Although the weighted residual formulation appears more 

cumbersome than the second alternative, the processes are equivalent, 

as the general weighted residual statement simply starts at a degree 

of integration further back; It should be noted that we are still 

using a weighted residual concept in the argument used to set the 

second term of equation (3.3.10) equal to zero. The more general 

formulation presented in the first part of this section has the 
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advantage of enveloping the Finite Element technique in addition to 

showing how the Boundary Element method can be thought of as a 

special case of a much more general process for the numerical 

solution of differential equations.

3.3.2 Boundary Integral Equation for a Boundary Point.

The Somigliana identity [equation (3.3.9)) is valid for the 

source point 'i' inside the domain fi . When this point is moved 

to the boundary, F , the integrals involved in equation (3.3.9) 

become singular at 'i' and must be evaluated in the Gauchy 

Principle Value sense. Consider the body augmented by a small 

hemisphere, radius e , centred at ’i* , such that the boundary is 

now made up of rp_^ + F^ , and the point 'i’ now lies within 

the domain of this augmented body. (See Fig. 3.3.1).

The boundary integrals 

considered as the sum +

0 . The evaluation of the

of equation (3.3.9) may now be 

and evaluated at the limit as

term is facilitated by employing

a spherical system of coordinates (Fig. 3.3.2); details of the 

integration are given here for the 3-Dimensional Kelvin solution. 

(See [5]).

Consider the first integral in equation (3.3.9) as two parts:

“k ’k ‘ j. “k Pk * L "k Pk " (3.3.12)

let :

I
lim 
e-K) "k pk (3.3.13)

F
E
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Substituting for p* ^^j^ from equation (3.2.2),

lim

(3.3.14)

r

- (l-2\))
dr

8^(l-v)r2

Now, for the particular case of the hemispherical region 

— ——— nG,

Where, e. are the projections of the unit normal 

(3.3.15)

vector

on the x^ coordinate axes. The second term in equation (3.3.14) 

becomes,

""’I ■'•k" "’k "’I = °

Noting the fact that = 1 , equation (3.3.14) may now be written,

lim
E-K)

[(1 2v) 6^^ + 3r,^ r,^ dr

8ir(l-v)r^
(3.3.16)

r
e

^k

and expanding (3.3.16) for the instance when (, = 1 ,

[u^ (l-2v) + Su^lim
+ 3u2 ^1^2 ^"3 ^1^3]

sinQ d8 d^ 
8TT(l-v)

(3.3.17)

The integral is now independent of r and may be expressed in terms

of 9 and <{) only.

'2Tr <17/2
I = -

0 0

U2(l-2v) + 3u2 sin^Q cos^(|) + 3u2 sin^O cosif: sinij)

Su^ sin8 COS^l^i sin8 d8 dij)
8 (1-v)

(3.3.18)
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'I' is now reduced to integrals of a standard form which may 

readily be evaluated to yield the following result;

-[(1-2x1)277 » 21]

-4(l-v) i 1 i 
= SCIZ^T '"l '^ " 2 ""l

The same result applies for & = 2 and & = 3 , giving the combined 

result as :

The second integral in the Somigliana identity (3.3.9) may be written

"k "k- J, Pk "k "" j, Pk “k »-3-2u 

r-e c

The fundamental solution for u*^ (^equation 3.2.1)) is of the 

order as opposed to — for p* , and when transforming to 

Spherical coordinates, there remains a factor 'r' in the numerator, 

i .e.

lim
e-K)

f(*, 8) r d(() d8 (3.3.22)

Hence the term disappears in the limit of e-K) and therefore,

this integral does not introduce a new term to the Somigliana identity.

The same analysis may be applied for the 2-Dimensional Kelvin 

solution and in fact yields the same result.

The Somigliana identity may now be written for any point 'i'
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Figure 3.3.2. Definition of Spherical Coordinates
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on the boundary.

=k < * ^J, Pk “k " ■ “tk Pk IP * iy“k k 'P» ».3.23)

where c^^ = ^ 6 . for a closed body (Kelvin solution), and with 'i'

lying on a smooth surface r . The analogous situation for the semi-infinite 

space fundamental solutions are examined in depth by NAKAGUMA [lojand 

equation (3.3.23) is valid for all cases with the following provisos

(i) For infinite and semi-infinite solutions, ’i' e Q

^jk ‘^jk (3.2.24a)

'i’ e r

(3.2.24b)

is now the free

(3.2.24c) 

does not lie on 

term can 

(11) For infinite and semi-infinite solutions

jk 2

(iii) For semi-infinite solution 'i' e T (T 

surface)

For the case when the source point 'i'

a smooth part of the boundary calculation of the

become very complicated. This situation is usually dealt with 

using rigid body motion considerations and will be discussed later. 

in section 3.4.

3.3.3 Solution for an Internal Point

Once the complete solution on the boundary is achieved, 

the response at any interval point is readily available by making 

use of the Somigliana identity (equation (3.3.9)). We have, for 
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for any internal point 'i' , the displacement in the '£' direction, 

given by :

"1 ’ "k Pk 'i'' ’ i^ Ptk "k -IP i^ k "k "I” (3.3.25)

The stress at 'i* can be obtained by differentiation, and for an 

isotropic material, using the Kelvin solution, the solution is given 

by : (see [s]) .

o. . = D, . . p, dr - S, . . u, dr + D, . . b^ dO (3.3.26) 
ij kij kij kij k

where :

^kij {^^"^^) [^ki ^'k^

(3.3.27) 

^^kj 4a(l-v)

- Y r,. rj + gv [n. r,. r,^ + n. r,. r,^ 

(3.3.28) 

+ (l-2v) [gn^ r,. r,. + n. 6.^ + n. 6.^

This solution applies to both the two and three dimensional cases:

For 2-D a = 1, g = 2, y = 4

For 3-D a=2, g=3, Y=5
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3.4 THE BOUNDARY ELEMENT METHOD

As most of the applications presented in this work are 

2-Dimensional, the following matrix formulation will be described 

for problems in two dimensions. However the process involved can 

be readily extended to the 3-Dimensional case.

At this point it is convenient to write the Somigliana

identity (equation (3.3.25)) in a matrix notation :

Define u* as a 2x2 matrix with elements u*

(&, k= 1, 2) and p* ,similarly, with elements

*
21

P12

P^2 *
21

"12

(3.4.2)

The unknown displacements and tractions and the known

body forces, Pk' \^ ^y ^^ written as vectors:

(3.4.2)

The Somigliana identity equation (3.3.25) can then be expressed

in matrix form as.

1 1
c u

or

p* u dr u* p 
r " -

dr + u* b dfi (3.4.3a)

c(S) u(S) + P*(S,Q) 
r '

u^Q) dr(Q)

r

u*(S,Q) p(Q) dr(Q) 
r

u*(S, q) b(q) dD(q) (3.4.3b)
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Figure 3.4.1. Body divided into boundary elements 
and internal cells.

Fig. 3.4.2 Notation for the Somigliana identity.
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Figure 3.-4.3 Two dimensional body divided into boundary 
elements.
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where S is the source point

Q is a field point on the boundary F 

q is a field point in the domain Ci 

(see Fig. 3.4.2)

The type of notation in equation (3.4.3b) is more complete 

and found commonly in the literature, however, for convenience, 

the simpler notation of equation (3.4.3a) will be retained in this 

work. The boundary may now be divided into a discrete number of 

elements with defined nodal points, and the domain divided into cells 

for the numerical evaluation of the body force term in equation 

(3.4.3). See figure 3.4.1

Consider the case of the boundary values of u and p 

given by some interpolation functions, such that;

u =

P =

where, u^ and p’^ are the nodal values of displacements and

The simplest possible elements are those for which u 

(3.4.4)

tractions.

and p

are constant over the element and consist of a straight line with a 

central node. fPig. 3.4.3(a)). The value of p and u over the 

whole element is taken as constant and equal in value to that at the 

node. In general u and p can have any variation (Figs. 3.4.3) 

simply by choosing the appropriate interpolation functions $ and '1 . 

These functions are standard interpolation functions similar to those 

used in Finite Element formulations, the main difference being that 

they vary only along the boundary F as opposed to over the domain

Cl , which in fact lessens their complexity. In order to find the body
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force terms the domain has to be divided into a series of cells 

(Fig. 3.4.1), or internal elements, however, in contrast to finite 

elements this process does not introduce any additional internal 

unknowns.

Substituting equation (3.4.4) into the matrix equation (3.4.3), 

we can write for each particular node, 1

(3.4.5) 

where: NE is the number of boundary elements

M is the number of internal cells

r^ is the surface of the ' SL’ boundary element 

Qj^ is the area of the 'k' internal cell.

For the general case of an element with 'n' nodes the integrals 

in equation (3.4.5) will be of the form:

&1 ♦2-r "

(3.4.6)

The products ,()^ p* and ip. u* (i= l,n) are evaluated 

numerically, usually employing some local homogeneous system of 

coordinates for the interpolation functions, and using a one dimensional 

Gauss Quadrature scheme. Details of the interpolation functions and 

integration scheme are readily available in the literature (e.g. see 

[5]) , and will be briefly discussed in Section 3.6. 
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Evaluation of expressions (3.4.6) and (3.4.5) produce, 

for each element, a set of submatrices :

and (3.4.7) 

4^*

where; ht?™ and are 2^2 submatrices

(k,& = 1, 2)

'i* refers to the source point

and p refers to the 'm'th node of element 'p' , over which 
m

the integration is being carried out.

These submatrices may then be assembled into global matrices H and 

G such that contributions at a node common to two elements 

are added together. For a particular node 'i' , this will produce 

a set of equations (2, for the 2-D case) in the H and G matrices, 

and when this process is carried out for all nodes, equation (3.4.5) 

may now be written :

6 U + H U = G P + B (3.4.8)

Where U and P are global vectors containing the displacements and 

tractions at the NN nodes on the boundary, and B is a vector 

containing the values of the body forces at the internal nodes.

Let us now call :

*■4 ’ ’"4 j
**4 ■ 4i 1 - j (3.4.10) 
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hence, equation (3.4.8) may now be written

H U = G P + B (3.4.11)

Note that N1 values of displacements and N2 values of 

tractions (N = N1 + N2) are known on the boundary, and hence in 

the U and P vectors, there remain N unknowns, which may all 

be gathered into a left hand side vector X ; after reordering the 

equations, we obtain;

^ = F + B (3.4.12)

Equation (3.4.12) may now be solved to yield all remaining 

unknown displacements and tractions on the boundary. Equations 

(3.2.26) and (3.2.27) may now be implemented to yield the solution 

at any internal point.

It should be noted that in the general case of using linear 

or higher order elements, the nodes do not necessarily lie on a 

smooth boundary, and as such the diagonal submatrices of H (i.e. 

h^^) cannot be calculated using equation (3.4.10). However this 

may be overcome using rigid body motion considerations:

For a closed body with zero applied tractions undergoing a 

rigid body translation, equation (3.4.11) becomes:

HU= 0 (3.4.13)

(body forces have been omitted for simplicity).

In order for equation (3.4.13) to be satisfied for a unit 

translation in each of the coordinate directions in turn, the sum of 

the submatrices corresponding to each node ’i' must be zero. i.e. 
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NN
X h^: = g (3'4.14) 

j=l

Hence, once the off diagonal submatrices of the H matrix 

are known, the diagonal terms may be calculated by a simple summation. 

For infinite or semi-infinite regions, the boundary at infinity must 

be considered in order to allow the 'body' to undergo a rigid 

translation. The terms in the H matrix will now consist of two 

integrals :-

, r Ptk “^" j^ pk "

The second integral may be evaluated analytically, to produce 

an extra contribution in equation (3.4.14), i.e.

NN

For an infinite region using the Kelvin Solution, the 

r surface is taken as a sphere of infinite radius and has been 

evaluated, yielding the result g , = 6 . ([^6], [2?]). Similarly 

for a semi-infinite problem, using a Mindlin or Boussinesq Solution, 

the additional surface is considered as a hemi-sphere of infinite 

radius, and again gives g , • (E^o]).

3.5 THE FINITE ELEMENT FORMULATION

This work will be concerned with the Finite Element Displacement 

Method (FEM) and, as such, a brief description of the formulation will 

be given here. Full details are readily available in the literature 

(e.g. [19], [20]).
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Consider a body as shown in Fig. 2.3.1 in which the equation

o. - . + b, = 0
Jk,j k 

must be satisfied, with boundary conditions

Pj, = p^ on Fg 

u. = u. on r,

(3.5.1)

(3.5.2)

If we assume that the displacement boundary conditions on

r. are identically satisfied then the Weighted Residual Statement 

(equation (2.3.31)) may be written,

and integrating by parts, we have,

a., dQ = p, u* dr + b, u* dQJa Jk jk J fk k k k (3.5.4)

which is in fact the Principle of Virtual Work derived in section

2.3.2 (equation (2.3.21)); e^^ and u* are any mutually compatible

virtual strain-displacement fields Equation (3.5.4) may be written

in matrix notation as:

Te*' 0 dn = u*' p dr

(3.5.5)

4- u*'^ b dn

We now divide the domain into a discrete number of 'Finite Elements'

and assume that over each element, the variation of u and u* 

can be approximated using their values at the nodes of each element 

and a set of interpolation functions - the same for both. i.e.

- 59 -



(3.5.6)

Differentiating these displacements (equation (2.2.2)), the strains

may be expressed as :

*n 
u (3.5.7)

and the stress-strain relations (equation (2.2.4)) give,

o=De=DBu^ (3.4.8)

The tractions on the boundary are interpolated as,

p = Y^ p" (3.5.9)

and the body forces,

b = t"^ b^ (3.5.10)

Substituting (3.5.6) - (3.5.10) in equation (3.5.5) and replacing the

integrals by a summation over the elements.

*n,T 
u

where KE is the number of elements in 0

and NS is the number of boundary segments on r .

or (3.5.12)

E* = B

K U = F + D
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where K is the global stiffness matrix obtained by assembling 

f T 
the element contributions (K = B D B dQ) 

in the normal way.

U is the global vector of displacements

F is the global vector of equivalent nodal loads -obtained 

by weighting the distribution of tractions as shown in 

the second term of equation (3.5.11)

and D is a vector containing the influence of the body forces 

(known), given by the third term of equation (3.5.11).

The displacement boundary conditions may now be imposed on 

equations (3.5.12) and the system solved to yield the remaining 

unknown displacements.

3.6 COMPUTER IMPLEMENTATION OF THE BOUNDARY ELEMENT METHOD

3.6.1 General Structure of Program

This section will give a brief description of the computer 

program developed (using linear elements), as a basis for the 

2-Dimensional formulations described in this work.

(Chapter 4 will include some 3-Dimensional applications using 

constant elements; the program developed for this part of the work is 

very similar in structure to that of the 2-D case, the main differences 

being in the description of the element geometry and in the numerical 

integration scheme employed. This part of the program was largely based 

on the work of NAKAGUMA [16] and all relevant details pertaining to 

these aspects are fully documented in the above reference. As such 

they will not be repeated here).
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The macro flow chart of the program is shown in Fig. 3.6.1.

The MAIN program is used to define the work areas required 

to solve the problem :

Several 1-Dimensional arrays required are :

X : stores the x coordinate of each node

Y : stores the y coordinate of each node

FLAG : contains 2 flags for each node (one for each coordinate 

direction) defining the type of boundary condition.

(Integer array).

: FLAG = 0 indicates the displacement is prescribed.

FLAG = 1 Indicates the traction is prescribed.

VALUE : Contains the two prescribed values of either displacement 

or traction at each node (one in each coordinate direction).

RHSV : Right hand side vector of the final system of equations. 

(See equation (3.4.12)}.

One 2-Dimensional array is required :

A(N,N) : used to store the left hand side coefficients of the 

final system of equations (see equation (3.4.12)}.

(N is the order of the system, = {Total number of nodes} x 2.)

The MAIN program then calls the routines as shown in Fig. 3.6.1.

The INPUT routine reads in all the parameters necessary to 

define the problem :- The number of nodes, and then for each 

node, in each coordinate direction :-

(i) the global coordinate; (X, Y)

(ii) the flag defining the type of boundary condition; (FLAG)

(iii) the value of the prescribed boundary condition; (VALUE).
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MAIN

PROGRAM

SUBROUTINE INPUT

SUBROUTINE FMAT

SUBROUTINE SLNPD

SUBROUTINE OUTPUT

END

Figure 3.6.1 Macro flow chart used as a basis for the
implementation of the B.E.M.
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The routine, FMAT forms the final system of equations

C3.4.12).

For node I, the routine loops on each element forming the 

integrals shown in equation (3.4.5). (The details of the integration 

process will be shown in the following section). For each element 

two sets of terms (see expression (3.4.7))will be formed, (as there 

are 2 nodes per element) and are stored in local work areas H(L,K,J), 

G(L,K,J). J takes the value 1 for the first node of the element and 

2 for the second node, (h and G dimensioned (2,2,2)}

For each node of the element (J = 1,2) and for the response 

in each coordinate direction (K = 1, 2) the FLAG is tested. If 

the traction is prescribed then H(L, K, J) is assembled in the 

global matrix A , (L = 1, 2, for each coordinate direction at node I), 

and G(L, K, J) is multiplied by the known VALUE and assembled in 

RHSV. If the displacement is prescribed then the product of H(L, K, J) 

and VALUE is placed in RHSV (with a sign change) and G(L, K, J) 

is assembled in the matrix A (again with a sign change).

This process is repeated for each node I in turn, and hence 

all the rows of the left hand side coefficient matrix are formed 

together with the corresponding terms in the right hand side vector.

The routine SLNPD is a standard solver using Guass Elimination 

and is fed the left hand side coefficient matrix and the right hand 

side vector of a general non-symmetric, unbanded set of linear equations. 

After the elimination process, RHSV is returned containing the solution 

vector.
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The OUTPUT routine sorts out the solution vector into displace 

ments and tractions by checking the values in FLAG, and outputs the 

results.

3.6.2 Numerical Integration

For each node 'i' , on the boundary, the Somigliana identity 

in its discretised form (equation (3.4.5))requires the evaluation 

(for each element), of the terms:

p* (}) dr and u* (j) dl (3.6.1) 
J p -. -V J P ~ ~

To facilitate the process a local coordinate § is used, 

which varies between + 1 and - 1 at the 2 ends of the element, 

(see Fig. 3.6.2(a)}. The shape functions can now be expressed :

(3.6.2) 

*2 " 7 (^ '^ ^)

The integrals in expressions (3.6.1) are performed using a 

4-point Gauss integration scheme. The sample points are placed 

symmetrically along the element (see Fig. 3.6.2(b)} with local 

coordinates

E, = - E. = 0.86113631

(3.6.3) 

^3 " ^2 '^ 0'33998104

and corresponding weightings,

W. = W, = 0.34785485 
(3.6.4) 

^2 ^2 '^ 0.65214515 
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tirintegrals (3.6.1), for each source node ’i’ may now be expressed :

p. ^ dr . h^ - X Ptk((.) »„ I- (=>)

, E‘ »2 ‘‘'' - t-tt - t E$i,(e„) */€„) W„ L (b)

J dr = g^,^ - y u*^(6„) *1(6^) w^ L (c)

( 9 u. ar . g^^ . I u.^(e„) w^ L (d)

(3.6.5)

The expressions p* and u* are the fundamental solutions 

given in section 3.2. The value of the fundamental solution at each 

integration point 'n’ can be defined in terms of the coordinates of 

the node ’i' and the end nodes of the element under consideration.

For a more refined integration scheme the local coordinates

and appropriate weightings are readily available in the literature.

(e.g. [37]).

For the special case of the source node being coincident with 

one of the end nodes of the element under consideration, the terms 

g^^ and g^^ may be calculated analytically. These terms will 

contribute to the dominant diagonal coefficients of the G matrix, 

and as the fundamental solution becomes singular at the source node, 

an exact analytic answer for the integrals is desirable; this is 

relatively simple as the variable of the fundamental solution only 

varies along the line of integration. Although the expressions are 

long and complicated, all the integrals reduce to standard forms; as 

such, only the resulting expressions are given here :
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node 2

(a) local coordinate, £ ,

\ Numerical integration point *k',

' local coordinate 5, 

weighting W,
node 2

(b) Numerical integration

Figure 3.6.2. Local coordinates and numerical integration
along an element with a linear variation.
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Ic^ C2 - Iti(^)

where :

^1

for m = k (3.6.7)

^1 ^2 ^^2 

1

(3 - 4\))

for m (3.6.8)^mk

=

?^ k

*^2

& ^2

1 
16TrG(l-\))

length of the element

^1 projection of element on the coordinate axes

projection of element on the
'2

coordinate axis

1

^2

a 3 for i = j

1 for i )^ ja

Remember, the diagonal submatrices of the H matrix are calculated 

by rigid body motion considerations as discussed at the end of section 

3.4. As both the H and G matrices are not stored before any 

re-ordering is carried out, when the element contributions for each 

set of rows 'i' (i.e. 1?^ are calculated, a running total of 

their sums must be kept, so that after the completion of each set of 

rows, equation (3.4.15) may be applied to compute the diagonal 

submatrices.

— 68 —



CHAPTER 4 - 2 AND 3-DIMENSIONAL PROBLEMS 

USING CONSTANT ELEMENTS

4.1 INTRODUCTION

This Chapter will give a general outline of the technique used 

for combining Finite and Boundary Element solutions. The common 

basis of the two techniques has been fully demonstrated in Chapter 3, 

and this is used (in section 4.2) to enable a linking of the two 

methods. Two approaches are available ; the first is to form an 

'equivalent' stiffness matrix for the Boundary Element region, which 

may then be thought of as simply an additional element in an overall 

F.E. system; and the second approach entails converting the F.E. part 

of the solution into a Boundary Element form, and solving the problem 

as an overall B.E.M. system.

This work is predominantly concerned with the formation of an 

'equivalent' stiffness approach and as such we will concentrate on the 

first of the above two alternatives. However using both techniques 

in order to demonstrate their equivalence.

The'equivalent' stiffness formulation is implemented for 

several examples using constant Boundary Elements. This is relatively 

simple, as the discontinuity problems exhibited at corners, do not 

arise in this case.

The stiffness matrix obtained using the 'equivalent' stiffness 

approach, k’^ , is not inherently symmetric, and a simple technique 

has been proposed to form a symmetric matrix K^ . Comparisons of the 

solutions obtained using both k'^ and K^ are performed.

Unlike the B.E.M., the 'equivalent' stiffness approach is a 
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displacement technique and does not immediately yield the solution for 

surface tractions (or reactions). However, once the displacements 

are obtained the surface tractions are readily obtained by substitution 

into the original Boundary Element equations. As such, the examples 

presented here concentrate on the displacements, which are of primary 

importance.

Some F.E.M./B.E.M. combination examples are run for the 2-D 

case. However no standard Finite Element package was readily available 

to facilitate such examples in 3-D, and once the behaviour of the 

’equivalent’ stiffness matrix had been established, it was decided 

that combination examples would have served only in a purely demonstra- 

tional capacity^, and did not warrant the time needed to develop the 

necessary computer package.

4.2 MATHEMATICAL BASIS FOR THE COUPLING OF FINITE AND BOUNDARY ELEMENTS

In the previous Chapter, both the B.E.M. and F.E.M,, have been 

shown to have a common basis for their formulation; and it is this 

common basis which allows the relationship between them to become 

apparent, and thus a linking of the two methods is possible.

The final expressions for the B.E.M, and F.E.M. are repeated here 

for completeness (see sections 3.4 and 3.5).

The B.E.M. results in,

H U = G P + B (4.2.1)

The F.E.M. results in,

K y = F + D (4.2.2)
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The relationship between the two is readily established by examining 

the relationship between the vectors P and F»P contains the values 

of the nodal tractions on the boundary and F contains their 

equivalent nodal forces.

The vector F arises from the term representing the work

done by the applied tractions Pk in the statement of the Principle

of Virtual Work as does the vector (see equations (3.3.7) and (3.5.4));P

i.e. the term

r

A
■k Pk dr (4.2.3)

The discretised form of this term (see equation (3.5.11)), gives,

NS

F = 1 
r=i

T
(4.2.4)P

r

or

F M P (4.2.5)

where M is a matrix formed by evaluating the expression

T
(5) ip dr on each boundary segment, and assembling the contributions 

into M in the same way as the stiffness matrix, K , is built up.

Hence equation (4.2.2) becomes

K U = M P + D (4.2.6)

which is now of the same form as equation (4.2.1)

Consider a problem consisting of two domains H^ , 0^ joined 

by an Interface r^ , and which makes use of a finite element 

formuation in fi^ and a boundary element formulation in 2^ (Fig. 4.2.1). 
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In order to join the two parts we apply compatability and equilibrium 

conditions along the interface F^ , i.e.

ul = U^ (4.2.7)

+P^ =0 (4.2.8) 

where, U , P_ refer to the displacements and tractions on the 

Interface F^ for the region £ (Z. = 1, 2) .

We now have 2 alternatives as to how to approach the problem. 

We may develop the boundary element region Q^ as an equivalent finite 

element, assemble the effective stiffness matrix with those of the 

finite elements of region Q^ and solve the overall system as a 

stiffness problem. Alternatively we can consider Q^ and Q^ as 

if they were both boundary element formulations.

APPROACH 1.

Using the first approach, we can transform equation (4.2.1) by

inverting G , such that

G \HU - B) = P (4.2.9)

and premultiply by the matrix M described by equation (4.2.5),

giving

(MC"^ H)U - (NG ^ B) = M P (4.2.10)

We can now define
u '^1 
K = MG H

D' = MG B

F' = M P

(4.2.11)

(4.2.12)

(4.2.13)
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(a) Body divided into Boundary and Finite Element

(total boundary for region 2)

(b) Labelling of the boundary segments for the combination 
problem.

Figure A.2.1 The Combination Problem. 
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Hence equation (4.2.10) has the following Finite Element form

K" U = F' + D' (4.2.14)

Although equation (4.2.14) is in fact a stiffness type relation, 

the coefficient matrix K^ is not symmetric, in the general case. The 

numerical reason for this, is that the integration process for forming 

the starting equations (4.2.1) is not a symmetric one. If the domain 

under consideration could be described by a regular polyhedron with one 

element on each side, then the symmetrical way in which the problem 

is set up would be reflected in the symmetrical way in which the 

integrations would be carried out, and symmetric matrices would ensue. 

However, for a general problem elements are not of equal length or 

at equivalent inclination to each other.

Figure 4.2. 2 clearly demonstrates how the integration over 

element B from a source at A is not equivalent to the integration 

over element A from a source at B .

The lack of symmetry arising from the different lengths of the 

elements is scaled out to a large degree when the M matrix is introduced 

into the formulation (equation 4.2.10). However this is not exact and 

there still remains the unsymmetric inclination of elements towards 

each other. It was found that the degree of unsymmetry is very slight 

and when the matrix is symmetrised using the equation,

K^ = i(K" + K^'^) (4,2.15)

the solution using the now symmetric matrix K^ gives very good 

answers, especially for the 2-Dimensional case.
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(a) Integration over element B , due to a source at A .

(b) Integration over element A , due to a source at B

Figure 4.2.2 Reciprocal Integrations for Two Elements.
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The whole problem of the symmetry aspect is analysed in much 

greater depth in Chapter 5, when higher order elements are also 

considered. As such any arguments which are applicable here, are 

fully encompassed in later discussions, and the reader is referred 

to Section 5.7.

The lack of symmetry

pronounced for 3-Dimensional

due to the integration process is more

problems, and as such, the 3-D examples

are run using both K" and K^ in order to examine the effect of the

symmetisation process.

APPROACH 2.

Using the second approach, mentioned above, for combining

the two methods, we can consider region 2 as boundary elementa

type region.

For region 1 we can write

pl
cl b1 (a)Hl Rl

U^

?1
(4.2.16)

and for region 2

P2 1U2 1

D^M^k2 (b)

= u^By writing P pl = and = U1 
1

we automatically satisfy conditions (4.2.7) and (4.2.8), and equations

(4.2.16 a) and (4.2.16 b) can be rearranged as follows
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and

m2

Writing these two equations

(4.2.17)

U2

together,

(4.2.18)

as a single matrix equation,

H^ H^ - G^

1^1 = r m2

we have

Notice that on the boundary of the finite element region 

^2 , only the displacements on T^ have to be prescribed, whilst 

on the boundary of q2 ^g prescribe the displacements or tractions 

and consequently need to re-order the equations.

The advantage of the second approach is that it does not 

require an inversion.

This second approach is the same as the technique used for 

solving problems with sub-regions using the B.E.M. If we use a 

Boundary Element formulation for region 2, equation (4.2.19) is 

applicable when the submatrices k2, k2 , m2, m2 ^^^ replaced by 

h2, h2, g2, g2 , respectively.
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4.3 TWO-DIMENSIONAL PROBLEMS USING CONSTANT ELEMENTS

EXAMPLE 1.

As a test of the 'equivalent* stiffness formulation, and of 

the coupling of Finite and Boundary Elements, a T-shaped plate 

problem was considered, as shown in Fig. 4.3.1. The domain is 

divided into two regions, the first of which is discretised into 

normal Finite Elements (linear strain triangles), and the second 

using constant Boundary Elements, (Fig. 4.3.1(a)). The H and G 

matrices for the boundary region are used to form an 'equivalent* 

stiffness matrix, K^ , and this is assembled with the element 

contributions from region 1 to form a global stiffness matrix for 

the system.

Region 2 was first considered separately as a check on the 

validity of the idea of formulating an 'equivalent* stiffness matrix. 

The domain was discretised and loaded, as shown in Fig. 4.3.1 (b). 

This region was firstly analysed using the B.E.M., i.e. the H and 

G matrices were formed, mixed boundary conditions applied, and the 

equations then re-ordered and solved to yield the unknown displacements 

and tractions. (Method 1). Secondly, the matrix K^ was formed, 

and the stiffness system K^ U = F was solved to yield the unknown 

displacements . (Method 2). The displacements along the top face are 

shown in Table 4.3.1, and their agreement clearly demonstrates 

the validity of K^ representing the * equivalent* stiffness of the 

system. Differences in the solution do not occur until the 4th or 

5th significant figure.
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The equivalent stiffness matrix for region 2 was then assembled 

with the finite elements of region 1 (Fig. 4.3.1 (a)) to form the 

overall system K U = F . The results are shown as Approach 1 in 

Table 4.3.2. A program to implement the second of the two alternatives 

combination procedures (i.e. the equivalent boundary element approach) 

equation (4.2.19) was then developed. The matrix M is formed by 

integration around the perimeter of the finite element region and 

the M , K , H , G matrices are broken down and reassembled in an 

overall system as given by equation (4.2.19). The equations are then 

reordered and solved, and the results are shown as Approach 2 in 

Table 4.3.2.

Two loading cases were considered, the first being a uniformly 

distributed vertical load equal to 4.0 on the top edge, producing a 

symmetrical problem, and the second included a concentrated horizontal 

load equal to 3.0 on the top corner node (see Figure 4.3.1 (a)).

In order to make a comparative study, the system was also 

analysed as a whole, using both the finite element and boundary 

element techniques. The meshes used are shown in Figures 4.3.2 (c) 

and 4.3.2. (d), and the results obtained for displacements are also 

tabulated in Table 4.3.2.

This application shows the validity of developing an equivalent 

stiffness matrix from a boundary element formulation-. The example 

also demonstrates that either of the two different combination approaches - 

equivalent finite elements or the equivalent boundary elements approach - 

can be equally well applied to solve the problem.
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Node
Displacements

Method 1 Method 2

16 0.070 0.071

17 0.224 0.224

18 0.549 0.549

19 1.304 0.304

20 1.605 1.605

21 1.684 1.684

E = 2 X 10^ V = 0.2

Table 4.3.1 Displacements in the 
for Boundary Element 
CFig. 4.3.1 (b)).

direction of the load 
region of Example 1.

EXAMPLE 2.

This example consists of a rectangular plate resting on a 

large semi-circular foundation (Fig. 4.3.2 (a)). In this section,, 

the Kelvin solution is used for the bounded Boundary Element region 

(Fig. 4.3.2. (b)).

It should be noted that by using a half-space fundamental solution in 

the Boundary Element formulation, only the discretisation of the loaded 

(or interface) segment is required. A formulation based on the 

Bousinesq solution is presented in Chapter 6. This example serves as 

a useful demonstration of the coupling technique, and facilitates 

comparison with a Finite Element model, which also requires a bounded 

domain.
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The foundation part of the problem is first considered 

separately. A large F.E. mesh is used to discretise this region 

(Fig. 4.3.3. (b)), and a uniform strip loading is applied along the 

interface elements. This F.E. solution gives a maximum displacement 

at the centre of 64.8 x 10 ^.

The B.E.M. discretisation was then used and the 'equivalent' 

stiffness matrix K^ was formed. The solution of this 'equivalent' 

Finite Element system yields a maximum central displacement of 

66.2 X 10 .

The above answers are in good agreement with the analytical 

solution, fora strip loading on a semi-infinite half-space,given by 

Timoshenko [1] , of 71.5 x 10 ^. The numerical solutions are expectedly 

lower bounds, as there is an artificial restraint imposed by the 

inclusion of the boundary. It is interesting to note that the B.E.M. 

based solution gives a slightly better answer than the classical F.E.M., 

although the B.E.M. uses only a constant interpolation for displacements, 

as opposed to a quadratic interpolation, used in the F.E.M. model. 

This is because the B.E.M. based formulation imposes no restriction 

on the displacement variation within the domain, only on the boundary; 

and as such the domain discretisation of the F.E.M. introduces an 

additional artificial stiffness in the model.

The overall problem was then run using the 'equivalent' stiffness 

matrix K® for region 2. Two loading cases were used, and the 

vertical displacements obtained at the top of the cantilever type 

structure are compared.
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E = 2 X io5

V = 0.2

(a) Finite and Boundary Element Combination Mesh.

I O I O 1-0 I O IO
1—1—I----1___ I 1 I Loaded segment

- -----------5------------

(b) Boundary Element mesh for foundation part 
of problem.

Figure 4.3.2 Structure resting on a large foundation. 
Discretisation for coupling problem.

- 84 -



•40------

(a) Structure

2'5
9-5

49 5
92-5

(b) Foundation

Figure 4.3.3. Structure resting on a large foundation 
Finite Element Mesh.
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Finite Element

Method

Combination

Method

1.41 1.40

r-4 1.34 1.33
Qj

M
U 1,32 1.32

'TD 
CO 
O 1.34 1.33

hJ

1.41 1.40

- 3.39 - 3.55

CN
- 0.97 - 1.05

to

u 1.35 1.35

cti
3.61 3.70

6.00 6.17

Displacements x 10

Table 4.3,3, Vertical displacements along the top of the 
Cantilever - Example 2.

4.4 THREE-DIMENSIONAL PROBLEMS USING CONSTANT ELEMENTS

A three-dimensional constant element program, based on the 

work of NAKAGUMA flo] , was developed and used to examine the behaviour 

of the 'equivalent' stiffness formulation for several examples of 

three-dimensional problems.

4.4.1 Finite Domains. Kelvin Solution

EXAMPLE 1. CUBE UNDER UNIFORM COMPRESSION

A cube of side length 4 is loaded with a uniform traction of 

1/unit area on opposing faces. Due to symmetry, only one eighth
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of the cube need be considered with appropriate boundary conditions, 

Fig. 4.4.1 . Each face is divided in 8 triangular elements, and 

the face x^ = 0 is loaded in the x^ direction.

The problem was first run using the normal B.E.M. The matrices 

K^ and K^ were then formed, and the system solved as a stiffness 

problem. As expected the solution obtained using k“ is the same 

as the normal B.E.M. (The same equations are being solved in both 

instances; the only difference being the way the boundary conditions 

are applied, and the solution procedure). The only differences occur 

in the 4th or 5th significant figures, which are due to rounding 

errors.

The displacements in the direction of the load, for different 

values of x^ , are given in Table 4.4.1.

The solution given by K^ is expectedly a little lower than 

the exact solution, due to the artificial stiffness imposed on the 

system by the constant elements. The solution obtained using K^ 

definitely introduces an error, and this seems to be of greater 

magnitude than with 2-Dimensional problems. This again is to be 

expected as the degree of unsymmetry due to the unsymmetric reciprocal 

integration process is more marked in 3-Dimensions. The error is as 

much as 15 - 202 in one or two of the displacements in the non-principal 

directions (i.e. x^ and X2 ), but if taken as a proportion of the 

maximum displacement is only 2 - 32.

The relatively large differences (compared to the 2-D examples 

of the previous section) are due to the fact that typical distances 

between elements are of the same order of magnitude, as the representative 

dimensions of the elements themselves. This causes the unsymmetric
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Boundary Conditions : face x^ = 0 , u^ = 0

X = 0 , u^ = 0

Xg = 2 , Ug = 0

Figure 4.4.1 Cube under uniform Compression. 
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effect due to the inclination of the elements towards each other to have 

a more pronounced effect on the values of the integrals.

Table 4.4.1 Displacements in the Direction of the Load 
for a Cube under Uniform Compression.

*3 EXACT

SOLUTION

B.E.M., and 

'equivalent' stiffness 

method, using

'Equivalent' 

stiffness method, 

using

K^

0.0 2.0 1.9760 2.0081

0.3333 1.6667 1.6416 1.5444

0.6667 1.3333 1.3025 1.2921

1.3333 0.6667 0.6657 0.6796

1.6667 0.3333 0.3274 0.3638

EXAMPLE 2. THICK CYLINDER UNDER INTERNAL PRESSURE

As a further example of a 3-D application, a thick cylinder 

under internal pressure was analysed. The problem description 

and discretisation is depicted in Fig. 4.4.2, (only a 90° sector need 

be considered, due to symmetry). In order to faciliate comparisons 

of displacements with an exact solution, all displacements in the axial 

direction of the cylinder were set equal to zero. The 3-D problem then 

corresponds to the 2-D plane strain case, for which the stress 

distribution is readily available (e.g. TIMOSHENKO,QJ).By integrating 

these stresses, the analytical solution for the displacements is obtained.
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Figure 4.4.2 Thick cylinder under internal pressure.
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In order to obtain an idea of the level of accuracy available 

from the constant element formulation, the problem was first run 

as a normal B.E.M. system. The same mesh was then used for a run 

using the 'equivalent' stiffness approach. (Both the unsymmetric 

and symmetrised stiffness matrices were formed - K^ and K^ - 

and boundary conditions applied as in the usual Finite Element 

displacement technique). Table 4.4.2 gives a comparison of the results 

obtained, which are in good agreement. As expected, the B.E.M. 

and the solution obtained using K^ are the same, and are a lower 

bound on the exact solution. Although the solution obtained using 

K® is closer to the exact solution, this is only due to the fact 

that the error introduced by the symmetrisation process happens to 

shift the solution in that direction. (The 'equivalent' stiffness 

solution can only be as accurate as the Boundary Element solution 

on which it is based).

It should be noted that when comparing the solution obtained 

using K^ and K^ , the degree of the differences in the solution 

depends on the relative size of the displacement components, so that 

the relatively large discrepancies occur in the relatively small 

components of displacement, e.g. say that at a particular point, 

the displacement in the x^ direction is 10 times as large as the 

displacement in the x^ direction; then the difference in solution, 

obtained using K® as opposed to k'^ , may be 2 - 3% in the x^ 

direction, but as much as 20 - 30% in the x^ direction. This is 

definitely a numerical problem and needs to be studied in further 

quantitative detail. However, these relatively large errors in the 

small components of the solution become insignificant compared to the 
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dominant terms, as can be seen by the good agreement of the radial

components of displacement given in Table 4.4.2.

Radius

Radial displacements, u^
-4

X 10 0 
c

'Equivalent' K

EXACT B.E.M, EXACT B.E.M.

10,0 9.53 9.38 9.38 9.68

13,33 7.65 7.26 7.26 7.41 10.84 11.02

16.67 6.64 6.29 6.29 6.40 8.13 8.22

20.0 6.07 5.93 5.93 6.13

Table 4.4.2 Solutions for thick cylinder under internal 
pressure.

4.4.2 Semi-infinite Domains. Mindlin Solution

The explicit form of the fundamental solution is given in Appendix 

B, and for details of the numerical integration scheme used, see 

NAKAGUMA |_10) . Similar physical examples as those presented in [loj 

are run, prstly serving as a useful check on the program and secondly 

facilitating comparisons between the 'equivalent’ stiffness formulation 

and the Direct Boundary Element Method.

EXAMPLE 1. HALF-SPACE WITH SURFACE LOADING.

In this example a semi—infinite, three dimensional half—space 

carries a uniformly distributed load on a circular area at the 

surface. As such the Bousinesq-Cerruti fundamental solution is 

applicable, easily derived as a special case of the Mindlin formulae 
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by setting the term -c’ equal to zero. (See Chapter 3 and Appendix B).

In this case only the loaded segment of the free surface need 

be discretised, but in order to examine more general aspects of the 

solution, additional elements were used on non-loaded areas. The 

circular loaded area (of radius 1.) is approximated by a hexagon, 

comprised of six triangles.

The problem was first run using a mesh discretising a circular 

area of radius 10, as shown in Fig. 4.4.3. The additional elements 

serve to give the displacement profile outside the loaded segment, and 

also enable the use of the Kelvin solution, for comparison.

The problem was first run using the normal B.E.M., employing, 

in turn, the Mindlin and Kelvin fundamental solutions, and the vertical 

displacement profile at the surface is compared to the analytical 

solution in Fig. 4.4.4. (The exact solution for a distributed load 

is used for r = 0 , but at other values of r , this requires a 

complex evaluation of some elliptic integrals (see [1]), and so, the 

solution was taken as that for the load concentrated at the origin, 

for r > 2 ) .

The Mindlin solution is in excellent agreement with the 

analytical solution; this is to be expected as the Mindlin solution 

inherently assumes a traction free surface. The Kelvin solution is 

also in good agreement, but gives slightly smaller answers for 

displacements, due to the fact that an artificial stiffness is 

introduced into the model by cutting off the mesh on the surface at 

a finite radius.

~ 93 -



The problem was then run by forming the 'equivalent* stiffness 

matrices K^ and K® , and solving the problem as a Finite Element 

type displacement model. The displacements obtained using k“ are 

the same as those for the B.E.M., and these are compared to the 

solution obtained using K , in Table 4.4.1. As expected, K , 

exhibits a lack of symmetry, mainly due to the differing sizes of the 

elements (their odd orientation to each other also contributes a 

small effect), but this assymmetry is very slight, as can be seen 

by the small differences introduced in the results when using K® .

With using the Mindlin solution, elements only on the loaded 

segments are required and need not be interconnected. As a check on 

the level of unsymmetry due to the differing sizes of the elements, 

the same problem was run again using elements of equal size placed 

unconnected, on the x^ and X2 axis, as shown in Fig. 4.4.5. 

The Mindlin solution was used, and, as expected, the B.E.N. and K^ 

solutions agreed exactly with the previous run. A comparison of 

radial and vertical displacement components on the surface, obtained 

using K*^ and K® , is given in Table 4.4.2. As can be seen, any 

differences do not occur until about the Sth significant figure, 

showing that the degree of unsymmetry in K^ is very minor indeed.

EXAMPLE 2. CYLINDRICAL CAVITY IN A HALF-SPACE

A cylindrical cavity, with its axis parallel to x^ carries 

a uniformly distributed load, as shown in Fig. 4.4.6. The developed 

surface of the cylinder, discretised into 36 Boundary Elements, is 

shown in Fig. 4.4.7. Although the use of the Mindlin solution does 

not necessitate discretisation of the free surface. Boundary Elements 
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were in fact placed on the surface ; this enables comparison with the 

Kelvin solution, and also allows examination of the response at 

the surface, using the 'equivalent' stiffness approach, which is 

important as this surface could form the interface of some combination 

problem. The Boundary Element mesh used to discretise the free surface 

is shown in Fig. 4.4.8.

For both the Kelvin and Mindlin solutions, the problem was 

first run using the B.E.M., and then the 'equivalent' stiffness 

matrices K^ and K® were formed, and the problem solved in its 

stiffness form. The displacement profiles obtained for the free 

surface are given in Tables 4.4.3. Table 4.4.4 compares the vertical 

displacements of the top and bottom faces of the cylindrical cavity 

for all the runs.

The results for this problem again exhibit the expected 

behaviour. Solutions obtained using k'^ are the same as for the 

B.E.M., the very slight differences being attributable to the different 

numerical process of solving the equations. The Kelvin solution 

gives smaller values of displacements, but this stiffness is expected, 

as the semi-infinite boundaries of the physical problem are not 

accounted for, as with the Mindlin solution. The differences in the 

solutions between k’^ and K® are again present and are due to the 

error introduced in the symmetrisation process. The magnitude of 

these errors are of the order of 3 - 4%, less for the most dominant 

values (i.e. at the loaded face), than the least dominant.

The above results clearly demonstrate that there definitely 

exists a lack of unsymmetry in the 'equivalent' stiffness matrix k“ , 

which is independent of the type of fundamental solution used, and 
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the degree of which relies on the relative sizes of the elements and 

their orientation towards each other.

However, if for economy reasons, a symmetric 'equivalent* 

stiffness matrix is demanded, then the cost, in terms of the lost 

accuracy, seems to be of a quite acceptable degree for most engineering 

applications.

Radius

MINDLIN SOLUTION KELVIN SOLUTION

0.5773 1.4426 1.4441 1.3785 1.3821

1.5773 0.4996 0.5245 0.4894 0.5146

2.2555 0.3410 0.3478 0.3322 0.3414

3.8982 0.1944 0.1962 0.1901 0.1928

4,8365 0.1563 0.1573 0.1503 0.1525

7.1357 0,1057 0.1062 0.1000 0.1018

8.3873 0,0899 0,0900 0.0817 0.0847

Vertical Displacements x 10

Table 4.4.1 Half-space with Surface Loading; Comparison of 
displacement profile obtained using K^ and K®
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1

Figure 4.4.3 Half-space Loaded over Circular Area 
(72 Elements - Elements 1-6, loaded)
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I

I

I

I

I 
1

I

I

I
I

E = 1000

0.3

24 Elements 1 - 6,loaded

Figure 4.4.5 Mesh for half-space, using equal size elements.
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Table 4.4,2 Half-space solution using K^ and K® , for 

mesh of equal sized elements.

—3
Displacements x lo , Displacements x lo ,

Radius
using using

K"

radial vertical radial vertical

0.5773 -0.07574 1.44262 -0.07540 1.44263

1.1547 -0.18371 0.71514 -0.18432 0.71497

2.8867 -0.07448 0.26408 -0.07446 0.26402

4.6187 -0.04655 0.16374 -0.04655 0.16374

6.3507 -0.03386 0.11881 -0.03386 0.11880

8.0827 -0.02660 0.09325 -0.02660 0.09325

Radius B.E.N,

’Equivalent' Stiffness

0.2887 5.730 5.727 5.914

0.9553 5.587 5.588 5.770

1.3213 5.453 5.451 5.616

2,6547 4.737 4.738 4.892

3.2647 4,360 4.359 4.427

5.4313 3.169 3.169 3.240

6.9333 2.572 2.572 2.617 
. .

(a) Mindlin Solution

Table 4.4.3 Half-Space with a cylindrical Cavity.
Free Surface vertical Displacements ( x lo )

- 100 -



f
r
e
e
 
s
u
r
f
a
c
e

H >

F
i
g
u
r
e
 
4
.
4
.
6
 

H
a
l
f
-
S
p
a
c
e
 
w
i
t
h
 
a
 
C
y
l
i
n
d
r
i
c
a
l
 
C
a
v
i
t
y

- 101 -



Figure 4.4.8 Boundary Element Mesh for the Surface

loaded

Figure 4.4.7 Developed Boundary Element Mesh for Cavity
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(b) Kelvin Solution

Radius B.E.M.

’Equivalent’ Stiffness

0.2287 5.607 5.604 5.406

0.9553 5.452 5.451 5.272

1.3213 5.291 5.291 5.150

2.6547 4.593 4.592 4.468

3.2647 4.215 4.214 4.093

5.4313 3.035 3.035 2.989

6.9333 2.424 2.424 2.390

Table 4.4.3 Half-Space with a cylindrical Cavity. _2 
Free Surface vertical Displacements ( x 10 ).

Table 4.4.4 Half-Space with a cylindrical Cavity.
Vertical displacements of Top and Bottom 
faces of cylinder.

B.E.M. ’Equivalent’ Stiffness

Top

K" K^

Bottom Top BottomTop Bottom

Kelvin 0.086 0.557 0.087 0.557 0.081 0.563

Hindiin 0.096 0.570 0.096 0.570 0.088 0.591
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CHAPTER 5

2-D PROBLEMS WITH TRACTION DISCONTINUITIES

5.1 INTRODUCTION

This Chapter will deal with the problem of forming an 

’equivalent' stiffness matrix based on the Boundary Element Method, 

and using higher order elements (i.e. higher than constant elements). 

The use of higher order elements entails the placing of nodes at 

geometric discontinuities on the boundary at which discontinuities 

of the surface tractions often exist, and this aspect requires special 

attention for accurate modelling of the problem.

The above difficulties are discussed in depth and a formulation 

is presented, for the 2-Dimensional linear element case, which overcomes 

these problems to a very large degree. The ideas in this formulation 

may readily be extended to the 3-Dimensional problem, and the inclusion 

of higher order elements presents no further difficulties once the 

discontinuity problem at the ends of the elements is adequately 

dealt with.

Several examples, testing the behaviour of the thus derived 

'effective' stiffness matrix are presented and finally several combination 

problems are run as an overall finite element displacement type model.

This chapter also includes a discussion of the symmetric 

properties of stiffness relations, in particular those derived from 

a Boundary Element formulation. The reasons for lack of symmetry in 

certain cases are analysed and considered in the context of classical 

Finite Element interpretations of the physical systems concerned.

5.2 SURFACE TRACTION DISCONTINUITIES

Consider a general problem of the mixed type, where displacement 

boundary conditions are defined on P. and traction boundary conditions 
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are defined on r2 . The discretisation of the surface using linear 

or higher order elements will entail nodes positioned at geometric 

discontinuities on the surface at which points the tractions are 

different on the two elements adjacent to the node. (e.g. nodes B-G, 

fig. 5.2.1). In principle, at such nodes, there are three sets of 

variables :- (i) the displacement vector, (ii) the traction components 

on the first element; (iii) the traction components on the second 

element.

At this point a notation is introduced which will facilitate 

the mathematical definition of the problem : Consider a geometric

discontinuity existing at a node ’i' with adjacent nodes 'i-1' and

'i+1', linking two elements ’j’ and 'j+1' , as shown in Fig. 5.2.2.

Define the vectors u^ and p^’™

(5.2.1)

where :

u^ is the displacement component in the ’k’(k=l,2) 

direction, at node 'i’ .

p^’™ is the traction component in the ’k* direction 

the'i'th node, (m - j, j + 1)

problem is overcome using the

on the m th element at 

£j is the length of element 

In general the discontinuity

concept of a 'double node'. The 'extra' node at any such discontinuity 

point gives rise to an extra set of equations in the final system 

(equations (3.4.11)) thus allowing for the consideration of the 'extra' 

traction. Only one of the three variables need be defined by the 

boundary conditions, at a discontinuous node, and the remaining two
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/I

Figure 5.2.1 General problem demonstrating traction 
discontinuities.
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Figure 5.2.2 Definition of Discontinuity Problem
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will be yielded by the solution of the equations, as there are two 

equations corresponding to that point.

However, the rows of the H and G matrices (equations (3.4.11)) 

corresponding to the double points are identical -other than the 

diagonal submatrices of H , due to the c^ term in equation 

(3.4.8). The system of equations is represented diagrammatically 

in Fig. 5.2.3, showing the double set of equations for one particular 

point 'i'.

Consider points such as 'B, C, D’, Fig. (5.2.1) at which both 

tractions (i.e. p^’^ and p^’^) are known.

There is no interchange of the columns H^ and G^ in order 
mm

to form the final system, and solution of the equations will yield 

the value of u^ .

i 2
For points such as ’e' (Fig. 5.2.1) where p ' is unknown, 

the columns H^ are added to H^ forming H^ , and these columns 

are now interchanged with G^ (corresponding to the unknown p^’^), 

so that all the unknowns are on the left hand side of the equations. 

The columns originally occupied by the H^ terms (and their 

corresponding rows) are now superfluous and may be replaced by dummy 

equations - i.e. zero's everyv/here, with unity on the leading diagonal.

For points such as 'A' , (Fig. 5.2.1) where p^’^ is unknoxm, 

the same applies except that the columns gJ are now interchanged 

as opposed to G^ .

It should be noted that the actual inclusion of these extra 

sets of equations is not necessary and the same effect as that described 

above may be accomplished by modifying the elemental contributions to
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the G matrix in the assembly process. The H matrix may be assembled 

in the normal way, as the u^ vector is unique, thus forming only 

one set of equations for that point, and adding the contributions 

at node 'i* due to the 2 adjoining elements. For nodes where the 

displacements are prescribed, these may be immediately used to 

multiply out the corresponding columns and added to the right hand 

side. The G matrix need not be formed as such; the contributions 

corresponding to known tractions being multiplied out and added to the 

right hand side vector, and the contributions corresponding to the 

unknown tractions being assembled in the appropriate columns of the 

left hand side matrix. A final system with all the unknowns on the 

left hand side is then achieved (equation 3.4.12).

There is, however, one special case where the above technique 

breaks down. If at the discontinuous node the boundary conditions are 

not mixed, and only the displacements are prescribed (e.g. nodes *G' 

and 'F\ Fig. 5.2.1) then there are two sets of independent unknown 

tractions, corresponding to that point, (p^^^ , p^'^). If both 

the columns G^ and G^ are interchanged with the columns H^ 

2
and H^ , then the final left hand side coefficient matrix will 

contain two sets of identical rows and thus the solution will be singular. 

Clearly, the problem is that there are two sets of unknown tractions 

at that point and only one set of independent equations corresponding 

to it, giving rise to more unknowns than equations.

This unfortunately, is a problem which arises when trying to 

formulate the 'equivalent' stiffness matrix using the Boundary Element 

Method. The technique always requires the inversion of the G matrix 

(see equation (3.6.11)) and the two sets of identical rows arising for 

each discontinuity clearly prohibits this.
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A simple way of overcoming this problem is to ignore the 

discontinuity and only consider a single node. The formulation will 

then assume a continuous traction, and this effect has been observed 

to only cause a local error in the solution. (e.g. Lachat and Watson 

[26]). This can be acceptable, especially for a fine mesh, but if the 

elements are not particularly small compared to the whole surface, 

and if there are many such nodes, then the solution can be quite false; 

especially if the discontinuities are quite sharp. Also, in a general 

combination problem; refining the Boundary Element mesh around discont­

inuities in order to reduce the local effect entails the refining 

of the adjoining Finite Element mesh to allow matching of the nodes, 

and this may lead to a substantial increase in the total number of 

nodes. Furthermore, if an accurate appraisal of the stresses around 

the discontinuity is required, then this technique is clearly 

unsuitable.

Other attempts have been made to overcome this problem, 

and Mustoe Qs], proposes two. The first is to simply move the double 

nodes away from the actual discontinuity either side of the point 

involved, and modify the interpolation functions along those elements 

accordingly. This seems to give acceptable results as a Boundary 

Element technique, but problems of matching a Finite Element mesh 

around that point will be incurred. Alternatively Mustoe [22] presents 

a formulation based on weighting the Somigliana identity [equation 3.3.25) 

with the interpolation functions used for the displacements and tractions. 

This, in effect, means that each equation is formed by applying a 

distributed source at around a node, (as opposed to a point source), 

and integrating the effect of this around the boundary. This 

substantially increases the amount of numerical integration involved

but has the advantage of allowing for inclusion of the discontinuities 



by applying discontinuous sources at the double nodes. This technique 

certainly seems interesting and warrants further investigation.

A further alternative was first suggested by Chaundoneret [23] 

in which an independent set of equations is derived for any such double 

point. For the case of two dimensional elastostatics, two extra 

equations for each point are required. The first of these expresses 

the symmetry of the stress tensor at this point and relates the surface 

tractions to the normals of each element. The second equation relates 

the discontinuous tractions and the boundary normals to the displace­

ments at the discontinuity and at its two adjacent nodes. This is, 

in fact, a simple 'finite difference' type of equation expressing the 

invariance of the trace of the strain tensor at that point. This set 

of independent equations may then be used to replace one of the non- 

independent sets (see Fig. 5.2.3), and thus allow inversion of the G 

matrix. (See also Wardle and Crotty, [25]).

The formulation presented in this Chapter will be based on 

the use of these 'extra' independent equations for any double node. 

The actual mechanics of the implementation of these 'extra' equations 

(hereafter referred to as the 'Corner Condition') is very important 

as far as the symmetry of the final system is concerned; also their 

implementation must be such, that the final system is reduced to only 

one set of equations for any double point,in order to allow matching 

with a finite element mesh.

5.3 DERIVATION OF THE CORNER CONDITION

The following derivation was first presented by Chaudoneret [23] 

but will be detailed here for completeness, as well as introducing 

a notation for its further implementation in the formation of an 
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'equivalent' stiffness matrix for the system.

Consider two elements, 'j' and 'j+l* which meet at a

node 'i' Their incidences are measured by the angles 9. and

^j+1 respectively, considered positive when measured in the anti­

clockwise sense from the positive x^ global coordinate axis. The

discontinuous outward unit normals at 'i' are denoted by the vectors, 

n^’J and The geometry is depicted in Fig. 5.3.1 (in the 

diagram the elements are not joined for reasons of clarity).

Figures 5-3.2 (a) and (b) show a differential surface element, 

and the acting stresses, along 'j' and 'j+l' respectively. The 

lengths of the sides of these differential elements are given by the 

components of the respective unit normals, as shown in the diagram.

Equilibrium of the two differential elements in each of the

coordinate directions yield the following relationship between the

internal stresses at i' and the surface tractions ;

=:

0
^11

4’^ °21

0 ^12
(5.3.1)

^22

Equations (5.3.1) are valid for the unit normals lying in any 

of the four quadrants of the global axes x^ and x^ . These equations 

may now be inverted to yield ;
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Figure 5.3.1 Notation for Corner Condition
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(b) Element j+1

Figure 5.3.2 Tractions and stresses on the two elements
adjacent to the discontinuous node.
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4''

where

'^ll

^^21

^12

^22

When the angle

(5.3.3) gives

This is

i,j+l
1

l,j+l 
2

between the

D = 0 , the

to be expected, as

1,1
2

i,j+l
1

i,j+l
1

two elements is 0 or 7r/2

pH

Pz’j

(5.3.2)

(5.3.3)

equation

thus equations (5.3.2) are not valid.

in this case, a discontinuous traction

D 2
0

at

D

0

1

4" 4"

entails a stress singularity at that point, thus prohibiting

unique definition of the stress tensor.

From equations (5.3.2), the symmetry of the stress tensor

12 " ^^21^ requires that ;

n 0

(5.3.4)

Consider two sets of reference axis - (Z, T), and (X, Y)

originating at 'i' , as shown in Fig. 5.3.3. The state of stress

and strain at ’i’ may then be expressed with reference to either sets

of axes, and for a unique state of strain the trace of the strain

tensor remains invariant, l.e.

XX YY ^ZZ ^TT (5.3.5)

This is an expression of the bulk constantancy of volume of the material.
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z

Figure 5.3.3 Coordinate reference systems at a geometric 
discontinuity.
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Now consider the displacement at any point, X , along the 

element 'j+1' in the global x^, x^ reference system. Assuming a 

linear variation, 

i+1 i 
i " "^k

""k = ^k , k = 1,2, (5.3.6)

The component of the displacement along the X axis is given 

by :

X "1 g sin8.
2 1 (5.3.7)

Using equations (5.3.6) we may now differentiate (5.3.7)

to obtain the strain ^XX

XX BX
^1 ^2 . Q

— sin6. (5.3.8)

Similarly, by considering the element 'j', the strain

^ZZ may be expressed as follows :

the

^ZZ
^"z 

3Z

i-1
2

i-1 
^1

J
sinQ . 

J
(5.3.9)

Now, consider the relationship between the stress tensors and

tractions at Along element

cosa i,j+l .
s ma

"5----  cos6 .
j+1 J

1^^

“1

= P2

^YY " Pl’j ^^’^Qj+l - P2’j^^ ^°5®j+i (5.3.10)

and similarly along element 'j’ :

°TT
p^’j sin6j - p^’j"*"^ cosOj

(5.3.11)
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Introducing Hooke's Law, for the (X,Y) system

°YY - ^1 ^YY ^2 ^XX (5.3.12)

and for the (Z,T) system

"^TT =" ^1 ^TT ^ ^2 ""ZZ (5.3.13)

where E = --- ---- • e = '^
E(1-v2) ' 2

Subtracting equation (5.3.13) from (5.3.12) 

1 ^1
Eg ("^YY = ^ (^YY - ^Tl) (5.3.14)

Equation (5.3.5) may be written :

° ' ("n - =TI> "■ ('a - <=22) (5.3.15)

and subtracting (5.3.15) from (5.3.14) we have

^YY ■ "tT " 2G(£Yy - e^^) (5.3.16)

where

Now expressions for o^, o^, E^, c^^ are given by 

equations (5.3.8) - (5.3.11), and on substitution into equation 

(5.3.16), we have :
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2G

r- sinQ . 
J

cosQ . "1 
J 1^ " p°p®jf-l J ’1

P2

[7 cos6. sin9 . 
J

+ 2G
cos6 .
__ 1

£.
J

sin8. sinO.
-- 1 + __ ill

1 
^2

]

cos6. _
j+1

1

1

(5.3.17)

Equation (5.3.17) expresses the invariance of the trace of 

the strain tensor using a finite difference type approximation to 

describe the strains, based on a linear variation along an element. 

A more refined approximation could be developed by assuming a higher 

order interpolation of the displacements along an element.

Equations (5.3.17) and (5.3.4) may now be used to provide the 

additional equations for the definition of the extra set of tractions 

at any discontinuity.

It is convenient for the further implementation of these 

equations to express them in a matrix notation. The variables involved 

are the nodal values of displacements and tractions at the discontinuity 

and adjacent points, and the incidences of the elements and their 

normals; Defining X^ as the projection of the m'th element (ni=j,j+l) 

on the x^’th global coordinate axis, divided by the length of the 

element, then equations (5.3.17) and (5.3.4) may be written :
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T1 p^’j + T2 p

where :

-==2

T1

+X'
T2

-4

and
2(l+v)

(Note

T3

T4

T5

= T3 + T4 u + T5 u (5. .18)

-4"'

2G
1.

J

2G

2G

-4

5 A.

"41

^1

the shear modulus.

G is invariant for the cases of plane stress and plane

(5.3 19)

strain)

+xj*^

0

*^1

^1

^1

-^1
0

0

0

0

J

0

ill

5.4 IMPLEMENTATION OF THE CORNER CONDITION IN THE BOUNDARY ELEMENT 
METHOD ----

For any discontinuous point a double node may be employed, 

giving rise to two sets of equations, as shown diagramatically in 

Fig. 5.2.3. If the boundary conditions are such that the displacement 

is prescribed and both sets of tractions are unknown, then equation 
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(5.3.18) provides the extra, necessary relationship between the 

tractions and neighbouring displacements. This equation may be used 

to replace one^the repeated equations arising from the double node 

and thus render the system solvable.

In practice, however, the use of a double node and twin sets 

of equations for discontinuous points is not necessary, as the same 

effect may be achieved in the assembly process of the equations. 

This will be demonstrated below using as an example the case of linear 

elements.

Consider the formation of the equation for point 'k' 

We apply a point source at 'k' and integrate the corresponding 

fundamental solution (weighted by the appropriate shape functions) 

around the boundary. Figure 5.4.1 represents the situation when 

integrating along two elements, ('j' and 'j+1') at whose intersection, 

(point 'i') there exists a traction discontinuity. We seek to form 

the appropriate set of rows, for point 'k' , in the H and G 

matrices of equation (3.4.11). if we had a double node at 'i', with 

two sets of rows and columns in the H and G matrices, then the 

terms corresponding to node 'i' would be;

a) On the left hand side of the equations :

b) On the right hand side of the equations :

pi,j+1
(5.4.2)
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Figure 5.4.1 Integration around a discontinuity.
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kpm ^P 
where h and g ® are 2x2 submatrices of H and G respectively, 

and represent the contribution of the integration at the m'th node 

of the p'th element due to a source at 'k* .

If we now only use one set of rows and columns for point 

'i', we assemble allowing for only one variable at 'i' . There are

3 cases :

(i) For the case where the discontinuous tractions (p^'^ , p^'^^^) 

are known :

The displacement, u^ , is unique and thus the sum 

h'«'^ h'"""l (5.4.3,

is assembled in k'th rows and i'th columns of H .

The corresponding contributions to the G matrix (expression 

(5.4.2)J need not be assembled, as all the terms are known and may 

be multiplied out and added to the right hand side vector of the final 

set of equations (3.4.12).

(ii) For the case when the displacement, u , and one of the tractions 

(either p^'^ or p^'^^^) are known.

In this case the displacement is used to multiply both the 

h contributions (expression 5.4.3) to form a term in the right 

hand side vector, as does the known traction with its corresponding 

g contribution. The remaining unknown traction becomes an unknown 

in the left hand side vector, and its corresponding g sub^matrix is 

placed in the appropriate column of the left hand side coefficient 

matrix.
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(iii) For the case when only the displacements, u^ , are known:

In this case both tractions (p^'^ , p^'^^^) are unknown and 

we require the additional relationship provided by the 'Corner Condition' 

(equation (5,3.18)) in order to uniquely define the problem. Consider 

the Integration performed over the element 'j' (Pig. 5.4.1), which 

will produce the following elemental contributions for assembling in 

H and G .

+ terms due to integration along the rest of the elements. 

We may now write equation (5.3.18) as :

- T2 p^'^^^ + T3 u^"^ + T4 u^^^ + T5 u^ 

where

^ = Tl"^ ]^ 

'O = n"^ T3 

^ = Tl"^ T4 

^ = Tl"^ T5

(5.4.5)

Substituting equation (5.4.5) into (5.4.4), we have :

[fl
(5.4.6)
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where

T3 (a)

h = h - g T5 (b)

E = - g T4 (c) (5.4.7)

^kj kj :
g - g T2 (d)

Ail kj
(e)

These modified contributions to the H and G matrices

(denoted by A and g) may then be assembled in the normal way, and 

we are left with only one traction (p^'^^^) to work with in the 

equations. E is an additional 2x2 submatrix which is added in the 

columns of H corresponding to node 'i + 1' . The equations may now 

be solved, yielding a solution for p^'^^^ , which may then be 

substituted in equation (5,3.18) to compute the remaining traction

The above process may be shown to be equivalent to employing 

a double node, replacing one of the sets of equations by (5.3.18), 

and then proceeding to eliminate the rows and columns corresponding 

to this equation by linear row and column operations on the matrices. 

Although the technique above may seem complicated and cumbersome, 

this is partly due to the necessary number of small matrices within 

the formulation, and also the indicial notation, necessary to distinguish 

between the relevant parameters, which appears awkward; however, 

definition of the 'Corner Condition' (equation 5.3.18) is very simple, 

as it only depends on the coordinates of the discontinuous node, and 

its neighbours; once these matrices have been defined, the computation 
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of the modified contributions to the H and G matrices (5.4.6) 

is in fact very simple, and may be programmed directly using 

equations (5.4.7).

5.5 FORMING AN 'EQUIVALENT* STIFFNESS MATRIX

5.5.1 General Remarks

The formulation outlined here is based on the technique 

outlined in section 3.6 and involves the inversion of the G matrix. 

With the use of double nodes for a discontinuity this matrix is 

singular; however, upon inclusion of the extra 'Corner Condition' 

equations, the singularities are removed. The formulation must be 

developed with certain important considerations in mind : the final 

stiffness type relation must contain only one set of equations 

corresponding to each point in order to allow matching to a Finite 

Element mesh; and also, the final right hand side vector, containing 

the equivalent nodal loads must be formed considering the accumulative 

effect of both tractions at a discontinuous node, in order to give 

the correct nodal load at that point. Finally, consideration for 

the degree of symmetry of the final equations must be made : 

Chaudonneret[23] presents a formulation which gives good results for 

the simple test cases published, however the 'equivalent' stiffness matrix 

is very unsymmetric. A similar approach to [23] was originally 

attempted in the early stages of this work and similar results were 

obtained. Upon consideration of the problem, the inclusion of this 

extra Corner Condition' can be thought of as a necessary boundary 

condition on the problem, reminiscent of the imposition of a set of 

linearly dependent constraints on a classical Finite Element type 

model. This type of boundary condition usually takes the form of a 
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a linear dependence between a sub-set of the displacements and hence 

this equation must also be satisfied by the final solution; as such 

the equation relating the prescribed displacements must be Included 

in the stiffness matrix of the system. The classical Finite Element 

formulation produces an inherently symmetric stiffness matrix, K ; 

however if a linear constraint of this type is simply used to replace 

a non-independent equation in the Finite Element system,

K U = F (5.5.1)

then the symmetry of K is destroyed. As a result the linear 

constraints are usually written in terms of a rotation matrix R , 

such that

y = R U (5.5.2)

where equations (5.5.2) contain the necessary boundary conditions, 

and may be substituted in equation (5.5.1) to yield

K y = F (5.5.3)

where K = R^ K R

F = F

The final coefficient matrix K thus retains symmetry.

The problem of imposing the extra 'Corner Condition' in the 

formation of an 'equivalent' stiffness matrix using the BEM is similar 

to the Finite Element problem described above, except that the linear 

constraint also relates surface tractions to a set of displacements, 

^equation (5.3.18)1. A formulation was thus developed based on the 

idea of setting up the necessary constraints as a set of rotation 

matrices and imposing these on the Boundary Element system. The 

details of this formulation are given below.
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5.5.2 Matrix Formulation

The ensuing formulation will use the following notation :

U, P, F are vectors containing values of the displacements, 

tractions, nodal forces, respectively at each node, 

(a set of two values for any node, and two sets for any 

double node.)

U, P, F are vectors containing only one set of values for any 

double node.

U will contain one set of values, u^, for point 'i' 

P will contain p^’^"*"^ at point i

F will contain f , total equivalent force, at point ’i'.

NN = order of overall system = (total number of nodes) x (number 

of degrees of freedom at each node).

M - order of reduced system = (number of independent nodes) 

(number of degrees of freedom at each node).

The standard B.E.M. formulation, with the inclusion of double 

nodes, yields,

H U = G P (5.5.4)

The Corner Condition*, equation (5.3.18), may be written in 

the form given by equation (5.4.5), and this may be expressed for the 

whole system as

- " !p ^ + 5u y (5.5.5)

^p ^^(^ R^ are rotation matrices of order NN x NI and 

contain equation (5.4.5) for each double node, on the rows corresponding 

to p^'^. These matrices are depicted diagrammatically in Fig. 5.5.1
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and show the 2x2 submatrices for one particular double node, ’i'.

(The column vectors, P and U , are also shoxm above the matrices

in order to clarify the positions of the relevant terms in the R^ 

and R matrices. 'I' is the unit matrix of order 2).~p

The condition of a unique set of displacements at any double

point may be written :

y = Rj U (5.5.6)

The condition that the total equivalent nodal force at any 

double point, 'i’ , is the sum f^’^ + f^’-^"*"^ may be written :

- T
F =Rd ? (5.5.7)

For reasons of clarity, the form of the matrix R^ (equations (5.5.6) 

and (5.5.7)) is depicted diagrammatically in Fig. 5.5.2.

The relationship between the equivalent nodal forces and the 

surface tractions may be written (see equation (3.6.5)):

F =MP (5.5.8)

Using equation (5.5.4), substituting for P fromequation 

T(5.5.5), and premultiplying by R , we have

(^I H - R^ G RJ y = (Rj G Rp) P (5.5.9)

or K U = P (5.5.10)

where :

F = (G R )'^(H R. - G R ) (5.5.11)

- 131 -



u"'

u u

F rI

Figure 5.5.2 Diagrammatic representation of equations
(5.5.6) and (5.5.7).
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Using equation (5.5.8), substituting for P from equation (5.5.5),

T
and premultiplying by R^ , we have :

T T A rp
R. F = (R. M R^) P + (Rj N R ) U (5.5.12)

which, from equation (5.5.7) gives

F = R. P + R_ U (5.5.13) 

where,

R. = (R^ M R )

(5.5.14)

and R. = (R, M R )

xvriting equation (5.5.10) as

K U = R, P (5.5.15)

and substituting equation (5.5.15) into (5.5.13), we have,

F = R^ R U + Rg y (5.5.16)

or

K" y = F (5.5.17)

where K" = (R ^ + R ) (5.5.18)

This final relationship between the equivalent nodal loads 

and the nodal displacements, (equation (5.5.17)) is a stiffness 

relationship, and K^ is the 'equivalent* stiffness matrix of the 

system. The superscript 'u' denotes the fact that this matrix is not 

inherently symmetric as in the classical Finite Element case. The 

degree of the unsymmetry is examined in the following section of this 
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Chapter (5.6) by forming the symmetric matrix K^ , whose elements 

are given by :

K?. = T(K?. + K?.) (5.5.19)

(which is simply the symmetric part of K^) and comparing the relative 

performance of the two matrices for a series of examples:

The symmetry aspect of the formulation is discussed further 

in the following sections of this chapter, in the light of results 

given by the symmetric and unsymmetric 'equivalent' stiffness matrices, 

K^ and K^ .

5.6 NUMERICAL EXAMPLES

,11111__^2SRH1^L.2S2 Rtamming _

A computer program was written, using linear elements, 

implementing the Boundary Element Method, as described in section (3.4). 

The shape functions for the displacements and traction, ^ and ijj are 

taken to be the same, and for the linear case are given by :

"*"1 " 7 " ^^ (5.6.1)

4:2 " y (^ '"' S)

where 5 is a dimensionless local coordinate, along the element 

taking the values 5 = ~ 1 at node 1 and 5 = + 1 at node

2 (see Fig. 5.6.1) .
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Figure 5.6.1 Linear element coordinates
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The integrals of the fundamental solution, weighted by the shape 

functions, are carried out numerically in the general case, using 

a 4-point Gauss Quadrature integration scheme. The accuracy of a 

4-point scheme was tested by experimenting with up to a 10-point scheme, 

and the differences in the numerical values of the integrals were found 

to be negligible.

The singular integrals which contribute to the diagonal 

sub-matrices of H and G are calculated as a special case. For 

the case of the H matrix these terms are computed using rigid body 

motion considerations, as described in section (3.4) - see equation 

(3.4.15).

The diagonal terms of the G matrix, which arise from the 

integration along an element which also contains the source node, are 

calculated analytically. This is relatively simple as the variable 

involved, r, lies along the element of integration,

The matrix M linking the traction distribution along the 

boundary to the equivalent nodal forces is calculated using equation

(3.6.4). The contribution from each element to the M matrix is :

(5.6.2)

Taking into account the two coordinate directions and 

evaluating the integral in equation (5.6.2), we have,
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(5.6.3)

0 2 0 1

10 2 0

0 10 2

The contributions M
~e from each element may then be assembled 

into the global matrix M , in the usual way.

The rotation matrices which describe the 'Corner Condition' 

are simply set up, as described in the previous section, and the 

matrix operations, described by equations (5.5.9) - (5.5.19), are then 

performed to form the 'equivalent' stiffness matrices K" and K^ .

It is important to note that the whole process involves only 

one inversion [see equation (5.5.11)), which is required whether or 

not these 'Corner Conditions' are implemented. The remaining 

operations are either multiplication, addition or subtraction of 

matrices, and although there are a great deal of operations, most 

of these involve matrices which are predominantly null, containing 

terms in specified rows, or unity on the leading diagonals. As such, 

subroutines to perform these operations may be written taking into 

account these properties, substantially reducing the amount of 

computation involved.

The program developed for this work is very modular in structure 

using general routines to perform the matrix operations. The program 

was written this way largely for reasons of expediency, related to 

the period available for the development, implementation and testing of 

the formulation. As such, the efficiency of the existing program 

could be improved for this particular problem, but is perfectly 

adequate for performing a series of test examples. Further work in 
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this field could most certainly be directed towards the computational 

optimisation of the technique.

There are no particularly special or innovative techniques 

used in the actual programming, and as such, details of the program 

will not be included in this work. Such details would not provide 

any further insight into the formulations described, but would only 

serve as a translation into FORTRAN of the equations and matrices, 

fully described in previous sections of this chapter.

5.6.2 Testing the 'Corner Condition'

As a test on the validity of the 'Corner Condition' and of the 

techniques proposed for its implementation, the problem of a square 

plate with a circular hole, in tension was analysed. (Fig. 5.6.2a). 

Due to symmetry only one quarter of the plate need be considered, 

with the appropriate boundary conditions (Fig. 5.6.2b). The five 

points (A - E) in Fig. 5.6.2b are those at which there exists a 

traction discontinuity.

The analytical solution for the stresses in an infinite plate 

with a circular hole, is given by TIMOSHENKO [1]. This solution was 

integrated to derive expressions for the displacements in order to 

allow a full set of comparisons.

The problem was first analysed as a mixed value Boundary 

Element problem, using the discretisation shown in Fig. 5.6.2b. By 

defining a mixed set of boundary conditions, as shown in Fig. 5.6.2b , 

there is always only one unknown value in each coordinate direction at 

each of the corners. As such the situation at the corners is always 

one of the cases, (1) or (11) described in section 5.4; hence the extra
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(a)

(b)

1.0/unit length

^2

Figure 5.6.2 Plate with a circular hole. Problem definition 
and Boundary Element Mesh.
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'Corner Condition' need not be implemented and the problem may be 

solved using a single node at the corners and assembling the equations 

as described in section 5.4.

The displacements and tractions along the lines of symmetry 

are compared to the analytical solution given by TIMOSHENKO Q in 

Tables 5.6.1. The results are in good agreement and serve as a useful 

confirmation of the linear element program, and the integration scheme 

used. It should be remembered that the analytical solution is for a 

plate of infinite extent, and as such, a model of a finite plate with 

a free boundary results in a slight reduction of stiffness and hence 

yields slightly large displacements than the analytical solution.

The analytical solution was then used to calculate the displace- 

ments at all points, and these values used to define all the boundary 

conditions of the problem. At the discontinuous points (A - E, 

Fig. 5.6.2b), we now have a situation where there are two unknown 

sets of tractions, and the extra equations given by the 'Corner 

Condition' need to be implemented. This is done by modfying the 

contributions to the H and G matrices as described in section 5.4 - 

case (iii) . The resulting stress distributions are shoxm in Table 

5.6.2. This solution corresponds to a unit traction in the X2 

direction, along the top face, and the resulting tractions given by 

the program, along this face, vary between 0.994 and 1.001. The 

remaining tractions, which should all be zero, are mostly of the order 

10"^ - 10 5 , the largest error occurring at the point of maximum 

stress concentration (point A, Fig. 5.6.2b), where the program gives 

a shear of 0.062, as opposed to zero.
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(a) Displacements along axes of symmetry.

RADIUS

r

Displacements, U2, along 

x^ axis

Displacements, u^, along 

x^ axis

ANALYTICAL B.E.M. ANALYTICAL B.E.M.

1.0 -0.500 -0.520 1.500 1.520

1.1 - 0.494 -0.514 1.498 1.518

1.2 -0.480 -0.501 1.497 1.516

1.3 — 0.463 -0.483 1.498 1.518

1,5 - 0,426 -0.441 1.509 1.521

2.5 -0.284 -0.302 1.734 1.752

4.0 - 0.184 -0.204 2.309 2.329

(b) Stresses along axes of symmetry.

RADIUS

r

Stresses, o.?* along

X. axis

Stresses, 0^^, along 

x- axis

ANALYTICAL B.E.M. ANALYTICAL B.E.M.

1.0 - 3.000 - 3.040 1.000 1.045

1.1 - 2.438 - 2.515 0.611 0.644

1.2 - 2.071 - 2.100 0.376 0.391

1.3 - 1.821 - 1.838 0.229 0.238

1.5 - 1.519 - 1.499 0.074 0.096

2.5 - 1.118 - 1.103 - 0.042 - 0.053

4.0 - 1.037 - 1.046 - 0.025 - 0.021

Table 5.6.1 B.E.M. Solution for plate with circular hole with 
mixed boundary conditions.
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Radius 

r

0^2 along x^ axis 0.. along x- axis

ANALYTICAL B.E.M.* ANALYTICAL B.E.M.*

1.00 -3.000 - 3.026 1.000 0.952

1.02 - 2.866 - 2.853 0.905 0.882

1.06 - 2.633 - 2.620 0.743 0.728

1.14 - 2.273 - 2.250 0.503 0.490

1.3 - 1.821 - 1.795 0.229 0.215

1.6 - 1.424 - 1.400 0.034 0.026

2.2 - 1.167 - 1.151 - 0.039 -0.041

3.4 - 1.054 - 1.046 - 0.032 -0.033

5.4 - 1.019 - 1.016 - 0.015 - 0.017

7.5 - 1.009 - 1.009 - 0.008 -0.008

10.0 - 1.005 - 1.005 - 0.005 -0.004

(- denotes the additional implementation of the ’Corner 
Condition' at geometric discontinuities).

Table 5.6.2 B.E.M. Solution for plate with circular hole, 
with displacement boundary conditions only.
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5.6.3 Examples Using the''Equivalent' Stiffness Approach

A series of examples were run using the formulation described 

in Section 5.5.2 to calculate the 'equivalent* stiffness matrix 

of the system. The problems were set up as Finite Element displacement 

type models and any boundary conditions imposed in the usual way. 

Resulting displacement profile given by both the unsymmetric and 

symmetrized 'equivalent* stiffness matrices, K*^ and K^ (equation (5.5.18) 

and (5.5.19)) are compared to classical Finite Element and Boundary 

Element solutions, and to analytical solutions, when available.

EXAMPLE 1 : RECTANGULAR PLATE IN TENSION

The geometry of the problem is depicted in Fig. 5.6.3 below.

The problem is solved for the case of plane strain with E = 2.4

V = 0.2, G = 1.0. The bottom of the plate is simply supported and the 

top is loaded with a uniformly distributed load of 1/unit length. The 

displacements in the X2 direction at sample points A, B, C, D, E 

are compared using various discretisations, the results being shown 

in Table 5.6.3.

EXAMPLE 2 : DEEP CANTILEVER WITH END LOAD

A solution for problem (Fig. 5.6.4a) is presented by Timoshenko 

[1], giving a tip deflection of 15.2.

This, however, is not totally exact as the stress function used 

to calculate the solution does not exactly satisfy both the applied 

loading and boundary conditions. The loading requires a small correction 

to allow for the fact that the fixed end is not free to warp.
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P = 1.0/unit length

(a) Problem Definition

(b) 12 Element Mesh (c) 18 Element Mesh

(d) 24 Element Mesh (e) 36 Element Mesh

Figure 5.6.3 Rectangular Plate in Tension.
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12

E = 2.4

v = 0.2

(a) Problem Definition

(b) Finite Element Mesh (c) Boundary Element Mesh

Figure 5.6.4 Deep Canitlever with End Load

- 145 -



Four solutions are compared in Table 5.6.4 below :

(i) A F.E.M. solution using 91 nodes and 36 linear strain triangles. 

(Mesh shown in Fig. 5.6.4b).

(ii) A B.E.M. solution using 36 linear elements (mesh shown in 

Fig. 5.6.4c).

(iii) A B.E.M. equivalent stiffness approach with K^ and K® 

using the same discretisation as (ii).

EXAMPLE 3 : DEEP CANTILEVER WITH U.D.L.

The B.E.M. was employed to solve the problem (Fig. 5.6.5) 

using three different discretisations; 30, 48 and 96 elements. The 

same meshes were then used for the equivalent stiffness approach 

examining the solution for both k’^ and K^ . The solution was also 

compared to a F.E.M. run which used 54 linear strain triangles with 

133 nodes. The discretisations used are shown in Figs. 5.6.5b - 5.6.5c.

A comparison of the results obtained for the horizontal 

displacement u^ along the centre-line of the cantilever is given 

in Table 5.6.5. The analytical result for the tip deflection given 

by Timoshenko [^l] , is 396.1.

EXAMPLE 4 : THICK CYLINDER UNDER INTERNAL PRESSURE

Because of symmetry only one quarter of the problem need 

be considered. The geometry and boundary conditions are shown in 

Fig. 5.6.6:the radial displacements obtained using a B.E.M. method and 

an equivalent stiffness approach are compared to the exact solution 

in Table 5.6.6.

- 146 -



(a) Problem Definition (b) Finite Element Mesh

(c) 30 Boundary 
Elements

(d) 48 Boundary 
Elements

(e) 96 Boundary
Elements

Figure 5.6.5. F.E.M. and B.E.M. Discretisations for 
deep cantilever with U.D.L.
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Ca) Problem Definition

(b) Boundary Element Discretisation

Figure 5.6.6 Thick Cylinder under Internal Pressure.
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POINT
EXACT

SOLUTION

12 ELEMENTS '18 ELEMENTS

k“ K^

A 1.2 1.200 1.215 1.200 1.211

B 2.4 2.400 2.474 2.400 2.463

C 2.4 2.400 2.412 2.400 2.376

D 2.4 2.400 2.478 2.400 2.461

E 1.2 1.200 1.216 1.200 1.210

Table 5.6.3 Displacements for a rectangular plate in tension.

POINT
EXACT

SOLUTION

24 ELEMENTS 36 ELEMENTS

X^ x" K®

A 1.2 1.200 1.203 1.200 1.201

B 2.4 2.400 2 .446 2.400 2.432

C 2.4 2.400 2.399 2.400 2.400

D 2.4 2.400 2.446 2.400 2.433

E 1.2 1.200 1.203 1.200 1.201
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Table 5.6.4 Displacements along the centre line of a deep 
cantilever with an end load.

F.E.M.
36 Elements

B.E.M.
36 Elements

B.E.M. 'Equivalent'
Stiffness Method 

36 Elements

Ur. Ur.
1 2 2 2 2

1.0 0.245 0.357 0.376 0.439

2.0 0.779 0.943 0.931 0.928

3.0 1.560 1.759 1.750 1.759

4.0 2.544 2.701 2.687 2.695

5.0 3.709 3.816 3.800 3.815

6.0 5.026 5.082 5.064 5.080

7.0 6.479 6.479 6.459 6.476

8.0 8.040 7.984 7.961 7.978

9.0 9.692 9.576 9.546 9.581

10.0 11.410 11.400 11.340 11.420

11.0 13.670 13.470 13.150 13.390

12.0 14.960 14.660 14.610 14.670
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^2
B.E.M.

30 Elements
B.E.M.

48 Elements
B.E.M.

96 Elements
F.E.M. i

54, 6 noded Tr.

1.0 12.12 14.34 14.86 14.61

2.0 36.33 41.85 43.25 42.94

3.0 68.65 78.90 81.55 81.50

4.0 106.80 122.85 127.00 127.30

5.0 148.60 171.30 177.20 177.80

6.0 192.50 222.30 230.00 231.20

7.0 237.30 274.40 284.10 285.80

8.0 282.00 326.60 338.30 340.60

9.0 339.30 378.50 392.10 394.80

Table 5.6.5. Displacements for a cantilever with U.D.L.

^2
30 Elements 48 Elements 96 Elements

K" K^ K" K® K" K^

1.0 12.83 13.38 14.71 15.21 15.01 16.11

2.0 38.33 42.50 42.43 43.62 44.36 46.23

3.0 71.75 77.30 79.52 81.05 83.17 85.41

4.0 111.30 118.70 125.90 126.80 129.70 132.10

5.0 154.60 164.20 175.40 178.10 181.20 184.60

6.0 200.10 212.10 226.30 229.40 233.20 238.10

7 .0 246.50 260.90 279.40 284.30 287.40 292.70

8.0 292.90 309.70 330.40 334.60 341.20 345.70

9.0 338.80 359.50 382.60 386.50 395.10 402.60
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Table 5.6.6. Radial displacements for thick cylinder under 
internal pressure.

r Exact
B.E.N.

32 Elements

B.E.M. Equivalent Stiffness Approach

1.0 0.5333 0.5295 0.5328 0.5364

1.1 0.4872 0.4824 0.4846 0.4938

1.2 0.4390 0.4445 0.4467 0.4436

1.35 0.4027 0.3987 0.4005 0.4009

1.8 0.3119 0.3089 0.3100 0.3055

2.3 0.2552 0.2528 0.2535 0.2554

3.4 0.1957 0.1940 0.1940 0.1921

4.2 0.1765 0.1746 0.1751 0.1783

5.0 0.1667 0.1645 0.1644 0.1635
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5.7 THE SYMMETRY OF THE 'EQUIVALENT'STIFFNESS FORMULATION

5.7.1 General Observations

The 'equivalent' stiffness matrix, K^ , (equation(5.5.18)) 

is not quite synmietric, although the unsymmetric part only has a minor 

effect on the behaviour of the model, as is shown by the results of the 

examples of section 5.6.3. The results obtained using K" are always 

very close to the B.E.M. solution, for the same degree of discretisation. 

These results also compare favourably with Finite Element and 

analytical solutions; for the examples involving bending (examples

2 and 3) a relatively refined Boundary Element mesh is needed to 

approach the accuracy of the Finite Element solution. This is easily 

attributed to the fact that the Finite Elements used are linear strain 

triangles, allowing for quadratic variation of the displacement profile, 

(as opposed to the linear Boundary Elements) and these elements are 

known to perform much better in bending than elements allowing only 

linear displacement variations. A much more accurate solution, for 

a given discretisation, would be expected if quadratic Boundary 

Elements were used for these cases.

The important result to emerge is that the 'equivalent' 

stiffness matrix, k", provides a Finite Element type displacement 

model which is as accurate as the standard B.E.M. Furthermore, by 

discarding the unsymmetric part of the matrix, to form, K^ , the results 

do not significantly suffer, but there is clearly some error introduced; 

it is this symmetry aspect which will be discussed below.
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5.7.2 Factors Pertaining to the Unsymmetry

The reason why the 'equivalent' stiffness matrix is not 

inherently symmetric is simply that the standard Direct Boundary 

Element method integration scheme is not a symmetric process, for 

similar reasons as those described for the constant elements in the 

previous chapters. This is demonstrated in Figs. 5.7.1 by considering 

two typical nodes, 'i' and 'j' ; for the system submatrices *ij' , 

we apply a source at 'i' and integrate the fundamental solution, 

weighted by the shape functions, along the elements adjacent to 

j ; (Fig. 5.7.1a). Similarly for the submatrices 'ji* (Figs. 5.7.1b) 

Unless the elements are symmetrically oriented towards each other 

(®•g• Fig. 5.7.1c) , then the submatrrces 'ij' and 'ji' are c1early 

different, and we have an unsymmetric set of starting equations for the 

formulation. The degree of unsymmetry is clearly exaggerated if the 

elements differ greatly in length as one of a set of reciprocal terms 

will contain an integration along a much longer element. This property 

however, is greatly reduced when the N matrix (equation 5.6.2) is 

introduced as it has the effect of scaling the terms in relation to 

the lengths of the corresponding elements. The resulting 'equivalent' 

stiffness matrix for the system will always exhibit some degree of 

unsymmetry, and in order to retain the overall symmetry savings from 

a Finite Element model, this matrix is "symmetrized". This "symmetrization 

process, (in order to form K^) is given by equation (5.5.19) - i.e. 

the unsymmetric part of the matrix is simply discarded.

The other important factor which affects the degree of symmetry 

is the way in which the corner discontinuity problem is included in 

the formulation. If this effect is simply ignored at the expense of 

accuracy at the points concerned, then the lack of symmetry is totally
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Figure 5.7.1 Reciprocal integration for two typical 
source points, 'i* and 'j*.
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attributable to the integration processes, discussed above. The direct 

inclusion of any 'extra' equations will cause a large degree of 

unsymmetry and provide a totally erroneous solution if the 'symmetrisation 

process is introduced; the formulation presented in section 5.5.2 

introduces the 'extra' equations into the overall system in such a 

way as to provide a final system, which when symmetrised, yields a 

solution with an acceptable level of error.

5.7.3 Comments on the Symmetrisation Process

Brebbia and Georgiou [24] consider the symmetrisation process 

as a minimisation of the square of the errors in the non-symmetric 

off diagonal terms of K*^ .

The error coefficient 'ij' can be written as the average 

difference between kV. and kV. and the still unknown coefficient 

k®j , which is symmetric, i.e.

1 f /. s , u ^ s , u \ ]

The square of this 

coefficient kT. :

2 [ " ji

error is now minimised with respect to the symmetric

(e..) = 2k!. - kV. - k!. = 0 (5.7.2) 
n n n

ij

Hence the new symmetric coefficient is given by :

k!. = (k?. + k?.) 
iJ 2 ij JI (5.7.3)
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The above argument, however, assumes that there exists an error in 

K^ , by virtue of the fact that it is non-symmetric. This is not 

correct. A stiffness relation is not necessarily symmetric, as will 

be discussed later, and by using equation (5.7.3) to form our stiffness 

matrix, we are in fact introducing an error rather than minimising 

the effects of an existing one. However, we may think of the above 

technique as a ’minimisation of the error introduced by symmetrisation' 

as opposed to a'minimisation of an already existing error'.

Zienkiewicz et al. (e.g. [29], [30], [22]) presents an 

alternative approach to forming the 'equivalent' stiffness matrix, 

based on an energy formulation. The relationship between displacements 

and tractions is formed using the B.E.M., and then this equation is 

used in forming the energy functional [of the form of equation (2.3.22)) 

used as the starting expression of the Finite Element Method. The 

minimisation of this functional enables the derivation of the stiffness 

matrix for the system; the expression for this being of the form of 

equation (5.7.3).

The derivation of the BEM expressions requires the inclusion 

of an extra surface term in the energy functional [see equation (2.3.25)) 

as we do not assume that the displacement boundary conditions are 

identically satisfied. However this fact is neglected when performing 

the Finite Element part of the formulation.

The situation may be further clarified by considering the 

expressions of the Principle of Virtual Work. The extended general 

expression is given by equation (2.3.26) and includes surface terms 

from both parts of the boundary, and is the expression used to derive 

the Somigliana identity for the BEM (see Section 3.3); this is done 
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by considering the weighting functions, (alternatively interpreted 

as any virtual field), as the fundamental solutions for displacements 

and tractions. For the Finite Element formulation we do not impose 

this restriction on the virtual field, but assume it is of the same 

form as the real solution and can thus be made to identically satisfy 

the displacement boundary conditions. This enables the specialised 

form of the Principle of Virtual Work (equation (2.3.21)) to be used 

as the starting expression.

The effect of mixing the two formulations without examining the 

effect of this different interpretation of the weighting fields is 

suspect and requires much further investigation in a rigorous mathematical 

sense.

The lack of symmetry, in the general case, may also be examined 

by considering the nature of the arithmetic operations used to derive

an expression for the stiffness matrix of an element ConsiderK
e

a typical F.E. type stiffness matrix, which is usually written in the

form

~e
T

B D B dQ (5.7.4)K

where D is a matrix containing the coefficients of the stress-strain 

relations (symmetric) and B describes the strain-displacement 

relations, using the derivatives of the shape functions used to model 

both the real and virtual displacements. K^ is clearly symmetric, 

by virtue of the very nature of the arithmetic operations used to 

derive it, and the F.E. type relationship then exists :

K
-’e

U = F (5.7.5)
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However, at this point, it is important to note that in the 

original integral statement of equilibrium,there are two functions :- 

the solution and its weighting (this weighting is equivalent to an 

arbitrary virtual field used in the Principle of Virtual Displacements). 

The Galerkin formulation, used in the classical F.E. technique requires 

that both these functions be described by polynomials of the same 

order and, hence, the same shape function is used for both.

It is this fact which eventually allows K to be written 
~e 

as in equation (5.7.4). In principle, there is no reason why different 

approximations cannot be made for each of the functions, and although 

the ensuing matrix relationship would be perfectly valid, it would 

not necessarily be symmetric. This is the case in the B.E.M. 

formulation, where the weighting field is of a fixed form given by the ■ 

fundamental solution.

In fact, by considering the problem of a set of linear algebraic 

equations, from a purely arithmetic point of view, it is possible to 

show that the coefficients of the influence matrix may undergo an 

infinite number of transformations and still retain uniqueness of 

solution for a given right hand side vector. Consider equation 

(5.7.5), where K^ is symmetric, and consider a matrix A , the same 

order as K^ , which may be written in terms of its spectral decomposition 

as :

' " ~ ' ~ (5.7.6)

V is a matrix whose columns are all eigenvectors of A and A 

is a diagonal matrix with the corresponding eigenvalues on the 

diagonal.
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If we now choose any column of V to equal F^ (the right- 

hand-side vector of equation (5.7.5)} and the corresponding diagonal 

coefficient of A to be unity, then F^ is an eigenvector of A 

with the corresponding eigenvalue equal to one. We may then write.

A Fg = F^ (5.7.7)

and still allow an arbitrary choice of the remaining terms of V and 

A , the only restriction being that V is non-singular, Hence, an 

infinity of matrices A exist which satisfy equation (5.7.7).

Now,premultiply equation (5.7.5) by the matrix A ,

A K U = A F = F

or

t y = F^ (5.7.8)

where

K = A K

If K is symmetric, and as there are an infinity of possible 

matrices A , it is clearly possible to rewrite equations (5.7.5) in 

the form of (5.7.8) destroyingthe symmetry of the influence coefficients.

The natural question which follows from the above discussion 

is : 'given that a symmetric set of linear equations can be transformed 

to a non-symmetric form, is it possible to reverse the process?'.

The answer must clearly be 'yes';however, the problem is not a simple 

one. Consider a matrix B , with the same property as A (B F = F ), 

with the additional requirement that the product B K^ is symmetric; 

this does not uniquely define B , and in order to do so we may also 

impose symmetry on B . The restrictions on the nature of this matrix 
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are now enough to uniquely define each element of the matrix, but 

terms are interrelated, thus requiring the solution of a further set 

of linear equations. In fact, for an original system of order N , the 

solution of a system of order ^tSl_12- £g required to define the matrix 

B above, This matrix may then be used to premultiply the unsymmetric 

equations (5.7.8), thus restoring symmetry. This process is clearly 

unsuitable for practical applications, but the whole problem of trans­

forming sets of linear equations is certainly an interesting one, and 

warrants further investigation.

AN ALTERNATIVE APPROACH

An interesting technique for overcoming the symmetry problems 

arising from the form of the integration process is mentioned briefly 

by Zienkiewicz [29], and presented with further detail by Mustoe [49], 

for 2-Dlmensional elastostatics. Silvester [32] presents an anologous 

formulation for the solution of magnetic field problems.

The technique is based on the further weighting of the 

Somigliana Identity by a general set of functions, W. , say. The 

formulation presented in this work is the standard direct B.E.N. 

approach (e.g. Watson [33], Cruse [s], Rizzo [34]), where for each 

point i we apply a unit load at that point and integrate around the 

boundary. This may be thought of as a Collocation Method using the 

more generalised form of the Somigliana Identity, and corresponds to 

taking W^ as a dirac function equal to 'one' at 'i' and 'zero' 

elsewhere.)

If we now choose W^ to be the same as the interpolation 

functions, used to describe the tractions and displacements, the integration 

process becomes symmetric, and symmetric system matrices ensue. This 
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is equivalent to applying a distributed load over the adjacent elements 

to each point ’i' (the form of which corresponds to the interpolation 

functions), as opposed to a point load; but this process very 

significantly increases the amount of numerical integration involved.

However, this technique seems to provide an elegant way of 

dealing with the surface traction discontinuity problem (see Mustoe 

[22]). For a node at which the traction is continuous, a continuous 

distributed source is applied to form the equation for that point. 

If a discontinuity exists, then the necessary extra set of equations is 

provided by applying 2 sets of discontinuous distributed sources :- 

one set on each element either side of the node concerned.

GENERAL CONSIDERATIONS RELATING TO SYMMETRY

Looking at the problems relating to the symmetry of a stiffness 

matrix from a more general viewpoint, there are certain apparent 

discrepancies which immediately spring to mind pertaining to the 

general reciprocal theorems of elastic behaviour, i.e. Betti's theorem, 

or Maxwell's reciprocal theorem.

These reciprocal theorems are often used as an argument for 

stating that any stiffness type relation must be symmetric, and hence 

any unsymmetry is due to some 'error' in the formulation. This is not 

necessarily true, as has been demonstrated by the examples of this 

chapter.

The reciprocal theorems of elasticity show that for a given 

body there does exist 'a* relation between displacements and applied 

forces such that the influence coefficients form a symmetric matrix. 

However, this does not mean that for a given system, 'no other' set of 
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influence coefficients can be written which yield a perfectly valid 

solution. This situation would arise, for example, in a Finite Difference 

Scheme where the collocation points for defining the derivatives 

were not placed symmetrically, or, in a Finite Element scheme where 

shape functions for the real and virtual fields were not chosen the 

same. The reasons why this situation arises with the Boundary Element 

based formulation have been fully discussed above.

The physical significance of the lack of perfect symmetry 

exhibited by the technique expounded in this work is easily explained : 

The Boundary Element Forumulation is based on the application of 

distributed surface tractions as opposed to point loads, and when forming 

the 'equivalent' stiffness matrix the equivalence between the tractions 

and nodal loads is represented by the matrix M (equation (5.5.8)). 

This means that the final right hand side vector contains a set of 

nodal forces which have been weighted in such a way as to correspond 

to a required traction distribution, the form of which is given by 

equation (4.2.4) and depends on the local geometry of the element.

With a Boundary Element based formulation, the application of 

a point load cannot be represented exactly, i.e. placing a 'one' in 

the final right hand side vector (representing equivalent nodal 

forces ) does not physically represent a unit load at that point, but 

some traction distribution around the node, the form of which is given 

by the inverse of equation (5.5.8). If a set of elements are symmetrically 

placed (i.e. Fig. 5.7.1c) then applying a unit load at 'i' will 

correspond to a traction distribution around 'i' , the same as 

that around 'j' , for a unit load at 'j' , and the computed stiffness 

coefficients 'ij' and 'ji' will be equal. However, in the 
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general case this reciprocal interpretation of a point source does not 

apply and hence the argument for a symmetric matrix is invalid (although 

the reciprocal theorems of elasticity are of course still true) .

The easiest way of demonstrating this effect is to consider 

Maxwell’s reciprocal theorem applied to a simple case (e.g. constant 

elements). Consider two points on a body, ’i’ and 'j' and their 

respective elements of length £. and £. , as shown in Figs. 5.7.2. 

(The shape of the remaining body is irrelevant, and for convenience 

we will consider only one degree of freedom at each node). The inverse 

of the stiffness relation between the responses and the sources 

(i.e. displacements and forces for elastiticy problems) may be written:

U = S F (5.7.9)

where

s - K~* (5.7.10)

(remember, the inverse of a symmetric matrix is also symmetric).

If we apply a unit load at ’i’ , then the response at ’j’ , 

given by equation (5.7.9), will be Uj = s.^. [Fig. 5.7.2a(i)). Now 

for Fj = 1 , UH = s^. , [Fig. 5.7.2a(ii)) . Maxwell's reciprocal 

theorem says that these two responses are equal, hence the matrix 

S is symmetric, as is its inverse K . However, with a Boundary 

Element representation, applying F. = 1 , physically represents a 

traction along element 'i' of P^ = l/&^ [Fig. 5.7.2b(i)), and again 

the response at ’j’ is s.. . Similarly for F. = 1, u. = s... 
Ji J 1 ij 

[Pig. 5.7.2b(ii)).

As can readily be seen, the two sets of applied tractions are 

not exactly equivalent and the reciprocal theorem does not apply.
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(a)

(b)

Figure 5.7.2 Physical 
theorem.

interpretation of Maxwell's reciprocal
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Hence the coefficients s^j and Sj^ are not equal, and S (hence 

K) is not symmetric.

(Note that if the elements were of the same length, then 

Maxwell's theorem is applicable, and symmetric coefficients would be 

expected. This would in fact arise, due to the symmetry of the 

integration process involved in forming the two terms).

The same argument applies to higher order discretisations, 

but it should be noted that the two sets of applied tractions are 

almost equivalent in the 'average'sense, as the same total load is 

being applied in each case. (The only difference being in the local 

distribution of the load, depending on the local geometry). This is 

the reason why the matrices are 'almost' symmetric, and that when the 

'unsymmetric' part is discarded, only relatively small errors are 

introduced.

An interesting academic point worth noting, is that if we 

continually refine the Boundary Element mesh such that the element 

lengths tend to zero, then the applied tractions will tend to point 

loads, and the Finite Element interpretation of the applied sources 

would give rise to symmetric matrices.

Another important observation is that for two nodes '!' 

and 'j' which are far apart (in relation to the size of their 

adjacent elements), by St. Venant's principle,the local distribution of 

the source at 'i' , say, will have very little effect on the response 

at 'j' , and vice-versa. For this situation the influence coefficients 

are almost Identical, and any difference has a negligible effect as the 

terms will be several orders of magnitude lower than the principal 

diagonal coefficients.
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5.8 EXAMPLES OF COMBINATION PROBLEMS

The examples of this section are run as Finite Element 

displacement models. The Finite Element region is discretised 

using linear strain triangles (6-noded), and the ^equivalent' stiffness 

matrix for the Boundary Element region is formed in the manner described 

In section 5.5 i.e. K^ , as given by equations (5.5.18) and (5.5.19))

The element stiffnesses are then assembled together and the 

equations solved in the usual Finite Element manner, (i.e. making use 

of the symmetry in the storage and solution schemes).

EXAMPLE 1. DEEP CANTILEVER (with parabolically varying end load)

This is the same problem as example 2 of section 5.6.3.

Two degrees of discretisation are used, and in each case a Finite 

Element, Boundary Element, and Combination run is made. The overall 

problem is again depicted here, (for easy reference) in Fig. 5.8.1 

and the meshes used are shown in Figs. 5.8.2, 5.8.3 and 5.8.4.

Table 5.8,1 shows the deformation along the centre line of the 

cantilever, in the direction of the load. The exact solution given 

by Timoshenko [1], for the tip deflection is 15.1.

Table 5.8.2 shows the shear stress distribution over a cross™ 

section, half way along the cantilever, corresponding to the interface 

of the Combination run, (i.e. along the line x^ = 6.0). As we 

approach the fixed end of the cantilever, the shear stress becomes 

unbounded at the edges, and an analytical solution is not available 

unless special boundary conditions are imposed to allow the fixed 

end to warp. (See [1]). However, this effect is quite localised, 

and at a reasonable distance from the fixed end the stress distribution 

is the same as that applied at the loaded end. (St. Vennant's Principle).
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(b) Mesh 2F, 144 Finite Elements

Figure 5.8.2 Deep Cantilever. F»E.M, Discretisations.
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(a) Mesh IB, 36 Linear Boundary Elements.

(b) Mesh 2B, 72 Linear Boundary Elements.

Figure 5.8.3. Boundary Element Discretisation.
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(a) Mesh IC, 18 Finite Elements, 24 Boundary Elements.

(b) Mesh 2C, 72 Finite Elements, 48 Boundary Elements.

Figure 5.8.4 Deep Canitlever. COMBINATION Discretisations.
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Table 5.8.1 Displacements along the centre line of a deep 
cantilever with an end load.

""1

Finite Element

Method

Boundary Element 

Method

Combination

Method

MESH

IF

MESH

2F

MESH

IB

MESH

2B

MESH

IC

MESH

2C

1.0 0.245 0.252 0.357 0.362 0.326 0.315

2.0 0.779 0.813 0.943 1.004 0.892 0.962

3.0 1.560 1.594 1.759 1.862 1.623 1.614

4.0 2.544 2.579 2.701 2.831 2.694 2.603

5.0 3.709 3.755 3.816 3.942 3.771 3.672

6.0 5.026 5.076 5.082 5.204 5.142 5.113

7.0 6.479 6.503 6.479 6.613 6.501 6.572

8.0 8.040 8.104 7.984 8.115 8.022 8.156

9.0 9.692 9.742 9.576 9.776 9.604 9.736

10.0 11.410 11.901 11.400 11.635 11.408 11.817

11.0 13.670 13.734 13.270 13.510 13.236 13.715

12.0 14.960 15.110 14.660 14.973 14.815 15.062

Table 5.8.2 Shear Stress distribution along the mid-section/ 
interface of a deep cantilever.

*2 EXACT 
SOLUTION

FEM BEM COMBINATION

MESH 
IF

MESH 
2F

MESH 
IB

MESH
2B

NESH
IC

MESH 
2C

-3.0 0.0000 0.0187 0.0047 0.0000 0.0000 0.0000 0.0000

-2.0 0.1389 0.1389 0.1409 0.1352 0.1396 0.1334 0.1405

-1.0 0.2222 0.2402 0.2232 0.2356 0.2227 0.2516 0.2234

0.0 0.2500 0.2487 0.2508 0.2491 0.2504 0.2479 0.2511

1.0 0.2222 0.2402 0.2234 0.2355 0.2227 0.2518 0.2234

2.0 0.1389 0.1344 0.1410 0.1355 0.1394 0.1329 0.1406

3.0 0.0000 0.0192 0.0048 0.0000 0.0000 0.0000 0.0000
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EXAMPLE 2. HOLLOW BEAM

The overall problem is depicted in Fig. 5.8.5a; However, 

due to symmetry, only half of the domain need be considered, with the 

appropriate boundary conditions, as shown in Fig. 5.8.5b. This problem 

was run using Finite Element (linear strain triangles) by Vasilopoulos 

[38], and his results are compared against a Boundary Element and 

a Combination run. The discretisations used, for the three solutions, 

are shown In Figs. 5.8.6, 5.8.7 and 5.8.8.

The combination runs were performed using both the unsymmetrised 

and symmetrised 'equivalent' stiffness matrices, k“ and K^ , for 

the Boundary Element region.

Comparisons of the displacements at all the corner points on 

the boundary of the problem (points 1 10, Figs. 5.8,6 ^ 5,8.8) 

are shown in Table 5.8.3.

Table 5.8.4 shows the displacement profile along the internal 

axis AA (Figs. 5.8.6 - 5.8.8), which also corresponds to part of the 

interface of the combination problem.

The stresses along this interface are calculated, for the 

combination problem, by substituting the final solution for the 

displacements into BEM equations for this region. These values are 

compared to the FEM and BEM solutions in Table 5.8.5.
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(b)

Figure 5.8.5 Hollow Beam Example Problem Definition.
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10

Figure 5.8.6 Hollow Beam, Finite Element Mesh.
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Figure 5.8.7 Hollow Beam, Boundary Element Mesh.
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10

Boundary Element Region

Figure 5.8.8 Hollow Beam. Combination Mesh.
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Point

^1

FEM BEM COMBINATION 
using K 

""1 "2

COMBINATION 
using K

Ui u^’^1 ^2

1 -304.75 -303.3 -305.5 -306.4

2 -313.80 -311.7 -315.6 -317.2

3 -333.54 -331.1 -335.4 -338.9

4 -10.47 -119.89 -11.80 -124.8 -11.10 -121.32 -12.04 -124.3

5 -16.86 -87.53 -17.11 -93.27 -17.53 -90.75 -17.44 -92.94

6 -88.20 -94.17 -91.37 -93.56

7 -86.87 -92.84 -88.82 -91.02

8 -85.50 -91.46 -87.63 -89.83

9 -28.27 -65.63 -29.05 -70.02 -28.62 -68.35 -29.29 -71.73

10 -56.69 -60.15 -56.72 -58.11

(position of points 1 - 10 are shown in Figs. 5.8.6 - 5.8.8 )

Table 5.8.3. Hollow Beam example. Displacements at 

geometric discontinuities on the boundary
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Table 5.8.4 Hollow Beam. Displacement profile along an internal 
axis (x^ = 15.05) (corresponding to interface 
Combination problem).

""2

FEM

Ui Ug

BEM

"1 "2

COMBINATION

using K

COMBINATION

using K

Ui Ug“1 "2

15.0 -20.89 -82.39 -21.13 -87.48 -23.27 -91.88 -22.89 -93.13

14.0 -20.68 -82.81 -20.84 -87.90 -22.82 -92.33 -22.54 -93.73

13.0 -20.35 -83.23 -20.84 -88.32 -22.21 -92.66 -22.06 -94.01

12.0 -19.84 -83.66 -19.83 -88.75 -21.49 -93.27 -21.36 -94.59

11.0 -18.99 -84.14 -18.89 -89.23 -20.35 -93.61 -20.23 -94.52

10.0 -17.82 -84.68 -17.57 -89.74 -19.01 -94.30 -18.93 -95.61

9.0 -15.96 -85.03 -15.80 -90.25 -17.03 -94.68 -16.97 -96.00

8.0 -13.81 -85.62 -13.47 -90.68 -14.68 -95.23 -14.70 -96.61

7.0 -10.98 -85.89 -10.40 -90.94 -11.36 -95.37 -11.41 -96.90

6.0 -6.97 -85.85 -6.29 -90.95 -7.22 -95.38 -8.04 -97.17

5.0 -1.67 -85.6 -0.85 -90.70 -1.24 -95.55 -2.62 -96.49
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Table 5.8.5 Hollow Beam. Stress Profile along an internal axis 
(x^ = 15.05) (corresponding to interface of 

Combination Problem).

*2

FEM BEM COMBINATION 

using K

COMBINATION 

using K

^11 °12 °11 ^12 °11 ^12 "^11 ^12

15.0 -0.504 0.866 -0.517 0.842 -0.532 0.942 -0.539 0.951

14.0 -0.323 0.908 -0.329 0.908 -0.352 0.981 -0.356 0.991

13.0 -0.151 0.954 -0.163 0.934 -0.178 1.040 -0.184 1.056

12.0 -0.022 0.962 -0.027 0.940 -0.031 1.058 -0.039 1.061

11.0 0.109 0.969 0.093 0.945 0.104 1.046 0.108 1.058

10.0 0.276 0.973 0.224 0.953 0.246 1.061 0.252 1.065

9.0 0.442 0.976 0.398 0.954 0.431 1.054 0.441 1.057

8.0 0.714 0.932 0.637 0.913 0.672 1.016 0.679 1.023

7.0 1.003 0.813 0.929 0.773 0.987 0.870 1.014 0.881

6.0 1.207 0.412 1.194 0.471 1.283 0.494 1.304 0.506

5.0 1.316 —0.044 1.289 0.015 1.379 --0.021 1.392 --0.032
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EXAMPLE 3. RETAINING WALL-FOUNDATION PROBLEM

A large rectangular shaped foundation with its perimeter 

(other than the free surface) fixed, supports a cantilever- retaining 

wall type structure, which is inset into the foundation, as show in 

Fig. 5.8.9. The retaining wall is descretised using 48 Finite 

Elements (linear strain triangles), Fig. 5.8.10, and the stiffness 

of the foundation is computed using both the Boundary Element based 

formulation and classical Finite Elements. (The meshes used are shown 

in Figs. 5.8.11 and 5.8.12, respectively).

The combination runs were performed using both the unsymmetric 

and symmetrised 'equivalent' stiffness matrices, K^ and K^. The 

displacement profiles, thus obtained, are compared to the Finite 

Element results. Table 5.8.6 shows the displacement profiles along 

the length (centre line) of the cantilever; and Table 5.8.7 shows 

the displacements at the wall - foundation interface (which also 

corresponds to the interface for the combination problem).

The results are in excellent agreement, again confirming the 

validity of the 'equivalent' stiffness approach, and also the fact 

that the symmetrisation of the 'equivalent' stiffness matrix introduces 

a very negligible error in the formulation.
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2.0

Figure 5.8.10 Finite Element Mesh, for retaining Wall 
part of the problem. (mid-side nodes 
not shoxm) .
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Table 5.8.7 Displacement profile along centre line of Cantilever.

""2

FINITE ELEMENTS

"1 "2

COMBINATION 

using K^

COMBINATION 

using K^ 

"1 "2“1 "^2

15.0 -813.7 60.28 -837.6 59.32 -838.2 59.62

16.0 -744.4 54.47 -766.3 53.34 -766.8 53.76

17.0 -674.9 48.62 -694.8 47.33 -695.3 47.46

18.0 -605.2 42.76 -623.1 41.31 -623.6 41.44

19.0 -535.6 36.91 -551.4 35.30 -552.0 35.42

20.0 -466.6 31.04 -480.5 29.26 -480.9 29.38

21.0 -398.8 25.30 -410.9 23.36 -411.2 23.48

22.0 -333.3 19.69 -343.3 17.59 -343.7 17.70

23.0 -270.8 14.38 -279.0 12.11 -279.3 12.22

24.0 -212.7 9.32 -218.9 6.95 -219.2 7.01

25.0 -160.0 4.71 -164.3 2.17 -164.5 2.28

26.0 -114.8 1,61 -117.2 -0.92 -117.4 -0.81

27.0 -80.99 -0.97 - 81.56 -3.33 -81.78 -3.23
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Table 5.8.6 Displacements around the Retaining Wall-Foundation 
Interface

Coordinates 

of point

Finite Elements Combination

using K

Combination

using K

^1 ^2 "1 "2 ^1 “2 “1 "2

12.0 15.0 -50.27 -39.69 -49.22 -40.17 -49.62 -40.14

12.0 13.5 -49.58 -41.81 -49.35 -42.07 -49.45 -42.26

12.0 12.0 -44.75 -40.97 -45.33 -41.28 -45.43 -41.40

14.0 12.0 -45.43 -41.65 -46.24 -42.88 -46.30 -42.95

16.0 12.0 -36.94 -31.63 -38.44 -32.52 -38:53 -32.50

18.0 12.0 -32.01 0.26 -31.38 -0.69 -31.50 -0.61

20.0 12.0 -37.32 31.31 -36.55 30.94 -36.71 31.06

22.0 12.0 -45.44 41.14 —44.48 42,36 -44.73 42.43

24.0 12.0 -45.62 40.51 —46.30 41.04 -46.76 40.69

24.0 13.5 -49.71 41.78 -48.94 43.02 -49.02 42.85

24.0 15.0 -50.01 39.12 -49.86 40.81 -49.65 40.89

- 187 -



CHAPTER 6 A 2-DIMENSIONAL HALF-SPACE FORMULATION

6.1 INTRODUCTION

In this chapter, formulations are developed for a 2-Dimensional 

semi-infinite domain loaded on the free surface. For this case the 

2-D Boussinesq solution is applicable (see section 3.2.2) and only 

requires discretisation of the loaded segment. As such, all the primary 

influences and effects are defined on the free boundary, and once these 

have been established, solutions for internal displacements and stresses 

are readily obtainable. As the boundary segment under consideration now 

has a consistent and simple geometry, the integrals involved in the 

Boundary Element Method may be performed analytically, for the general 

case, thus allowing explicit definition of the algebraic, discretised 

form of the governing equations.

This chapter presents formulations for constant, linear and 

quadratic Boundary Elements, and compares their performances for a series 

of test problems.

The 'equivalent' stiffness matrix is then formed, for each type 

of element, and its performance is examined with respect to both its 

accuracy and symmetric properties. Finally a problem combining Finite 

Elements with the above formed 'equivalent' stiffness matrix is run, in 

order to demonstrate the applicability of the technique.

There is an important point worth a mention here; As the funda­

mental solution for the B.E.M. yields a traction on the surface which is 

zero, the left hand side, H, matrix is null, other than the 

free term, (see Chapter 4, for the analogous situation in 3-D). This 
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means that no interpolation for the displacements is required, and 

if the interpolation for the applied tractions is of high enough order 

to represent these tractions exactly, then the solution for the 

displacements should also be exact, as the use of analytic integration 

introduces no approximations in the formulation.

It should also be remembered that the displacements cannot be 

calculated absolutely, as there are arbitrary constants involved in the 

fundamental solution (See Section 3.2.2). This means that the 

displacements can only be defined in relation to some datum, and it is 

their relative magnitude which is important. For consistency, all the 

examples presented in this Chapter were run using the same values for 

the constants involved.

6.2 IMPLEMENTATION OF THE BOUNDARY ELEMENT METHOD,

6.2.1 General Features of the Formulation.

Consider the loaded segment of the free surface of a 2-Dimensional 

half^space which we divide into a number of elements, as depicted in 

Figure 6.2.1. An interpolation of the variables along each element 

is achieved with the usual dimensionless, normalised shape functions, 

$ , linking the variables to their nodal values; see Equations (3.4.4).

Referring to the discretised form of the Boundary Integral 

equations (3.4.5), in order to obtain the equations for each point , *i’, 

we apply a set of unit tractions at 'i' , and then require the evaluation 

on each element, e , of the integrals,

T
u* $ dr (6.2.1)
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Figure 6.2.1 2-D Half Space, with loaded segment discretised
using Boundary Elements.
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If there are 'n' nodes on each element, (n = 1, for constant 

elements, n = 2, for linear elements, etc. See Figures 6.2.3) then there 

will be 'n' 2x2 contributions to the G matrix, corresponding to 

rows ’i' , i.e.

4k- “kh '^’' 0 -1’ "> 

e

(r refers to the element containing 

node 'j' )

and, u*^ is the fundamental solution for the problem, discussed in 

detail in section 3.2.2. The form of the solution is repeated here 

for easy reference, and expressed in terms of the local coordinates, 

5 , (see Figure 6.2.2).

"11

"12 " " "3

"21 °^3

"22 -

(6.2.3)

where X = + 1 for the field point on positive X2 side. 

X = - 1 for the field point on negative x^ side, 

and “‘i^^ ” ^’ “^^ ^^® defined in equations (3.2.13).

The left hand side integral of the Somigliana identity (3.4.5) 

does not contribute, as p“^ is identically zero on the free surface, 

(by definition). As a result, the H matrix, is null, other than the 

diagonal submatrices arising from the c^^ term. This term is in fact 

the unit matrix of order 2 (see Chapter 3), making H the. identity, matrix, 

(of the same order as G). An alternative argument for concluding the
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r

Source point,* i'

1

Figure 6.2.2 Geometry and local geometry of typical Boundary 
Element.

(a) CONSTANT Variation

O
1

(b) LINEAR Variation

(c) QUADRATIC Variation

Figure 6.2.3 Nodal points on Boundary Elements.
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form of H , is to develop the discretised form of the equations by

applying the principle of superposition. Consider the point 'i' , 

and apply a load p^, P2 at some point S on the boundary. The

displacements at 'i' will be given by:

“2 ■ "12 "1 * "22 "2
(6.2.4)

where the u* denotes the fundamental solution, at 'i' for a source 

at the field point, S . Now, u*^ differs from u*^ (equation 6.2.3) 

only by a sign change of u*2 and u*^ , (as the sign of these terms 

depends on which side of the source the effect is being measured).

Hence

"21 - " "21 "12

and
(6.2.5)

"12 - "12 = "21

Equation (6.2.4) may then be written;

"1 = "11 Pl + "12 P2

(6.2.6)

"2 = "^1 Pl + "^2 P2

If a continuous loading is applied, we may introduce an interpolation 

function for p. , and integrate equations (6.2.6) along the loaded 

segment, to find the displacement at ’i’ . Summing these integrals 

on each element,

u = X 1 P (6.2.7)
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Repeating this process for each point 'i* on the boundary, equations 

(6.2.7) result in,

U =GP (6.2.8)

where the contributions to G are given by equation (6.2.2), and (6.2.8) now 

corresponds to the BEM equations, with H equal to the identity matrix.

When evaluating the terms given by equation (6.2.2), certain integrals 

involving products of algebraic and logarithmic terms will commonly 

arise. In order to keep the final expressions as compact as possible, 

these standard integrals will be referred to as I^ (i = 1, 6) and are 

defined and explicitly evaluated in Appendix A.

6.2.2BEM - Constant Elements

With constant elements, the shape function is trivial (being equal 

to unity), and the integral of expression (6.2.2) produces only one 

2 X 2 submatrix for each element (i.e. , 'j' is the node corresponding 

to the element under consideration).

For each source node ’i' , and field point 'j' , the 2x2 

submatrix of G is given by , 

+1
4k - L “k , "k <» ■16 (6.2.9)

and upon evaluation yields

(i) For i # j 

g^^ = L(2o^ - ag I)

(6.2,10) 
^21 " 

^22 - ^^^^4 - ^2
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where “^(i = 1, 4) are defined by equations (3.2.13), and we define

z+l
I = Kr^, al) = ln(r. + XL5)d5 

^-1
(6.2.11)

which is readily integrable, giving,

I ^^(^3 + AL) +
^3

XL
ln(r. - XL) - 2 (6.2.12)1

(ii) For i = j , we must split the integral into two parts (as there 

are sign changes in the fundamental solution when passing from one side 

of the source to the other), and upon evaluation, equations (6.2.2)

yield:

gll = 2L

11
gl2 = 0

11
821 =

(6.2.13)

0

11
822 = 2L a, - (%2[^"(^) ^ ^)

6j 2j3j B^E21L Linear E]^amen^

The geometry and node numbering Is shown in Figures 6.2.2 and

6.2.3.b. The relevant shape functions corresponding to nodes 1 and 2 

are :

<#>1 = |-(1 - ^)

(6.2.14)
*2 = 1(1 + E)

There will now be two 2x2 submatrices corresponding to each element. 

Consider the term g^^ for a typical element :
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Substituting

il 
^11

or

il 
^11

from

where I^ and

Consider

+1
u*2 (S) 4^(5) dS

equations (6.2.3) and (6.2.14), we have:

the

r+1

(6.2.15)

“1
-1

(1 - E) dE - Og
'+1

ln(rg + XLE)dE

r+1
(6.2.16)

E ln(r. + XLE) dE"

are

term

02 (6.2.17)

given in Appendix A.

il 
gl2 for a typical element:

41 -

r
'"11 *1 "^^ =

L
2

^2
^-1

2
2 n^ I^^(rg, XL) - I^Cr^, XL) y

42 = L
'+1

u*2(^) *i(S) dE

il
S12 = -

, L
"3 2

'+1
(1 - E) dE = - a (6.2.18)

-1
. L X

All other terms can immediately he written using the form of equations

(6.2.17) and (6.2.18). The ^^^^(^t^ ^) terms differ by a sign change, 

and the g^^ (£ = k) terms differ by the value of the first constant. 

The 4)2 terms simply differ by a sign change of the I2 integral. 

Hence we may express all the g^^ submatrices as follows

for £ = k g^j
26 - °2 I^(rg, XL) - YigCrg, XL) j (6.2.19)

where, g = a. for £ = k = 1

for £ = k = 2

Y = +1 for j = 1

Y = - 1 for j = 2
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for 2. 7^ k (6.2.20)

and for 2, = 1, k = 2

for 2 = 2, k = 1

There is a special case when the element under consideration contains

the source node. In this instance, the integrals I^ and I^ are

Indeterminate as but may be evaluated in the limiting sense

using L'Hopital's rule, (see Appendix A).

^.Z^^^BjE^Mk^QuadTati^Elemen^

The relevant shape functions corresponding to the 3 nodes of the

element, (see Figure 6.2.3. c), are given by

"^1

(6.2.21)

We now require the

equation (6.2.2).

Substituting

^3 (1 - 5^)

evaluation of the

Consider the term

^11 2

'+1

from equations (6.2.3) and

r+1

-1

= 1, 3) terms given by

de (6.2.22)

(6.2.21), we have

S^ ln(rg +X LQ dS.£ ■ ¥

3

r+1

-'-1

- "^3 L j = 1, 2

Y = + 1

^2

1

= ^ (5^ - e)

= ^ (e^ + e)

(5^ - Q dS -

+1
+

2 , “1
e ln(r + XLC) dS (6.2.23)
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or

XL) - l2(rg, XL) (6.2.24)
il _ °1^ "2^

^11 -1--- r ^3(^3

Consider the term g^2 :

a„XL r+l

il °3^^
S12 ----- f- (6.2.25)

As 41^ and 4)2 are of the same form (with a change of sign

of the 5 term), we may express all the gJ^Cj ~ I? 2) terms as follows

ij _ 6L "^2^ 

3 2
for j?. = k Ig(rg, XL) - Yl2(rg, XL) (6.2.26)

6 = a^ for 2 = k = 1

g = a^ for Jl = k = 2

Y = + 1 for j = 1

Y = - 1 for j = 2

for £. ^ k
OgXL
1*&k (6.2.27)

where,

Y = + 1 for & = 1, k = 2

Y = - 1 for & = 2, k = 1

Consider the terms
i3

g&k ' Equation (6.2.2) gives,

for & = k

i3
g&k = BL

f+1
ln(r_ + XLG)dE 

^-1

r+1
(1 - 5^) dS - ^2 ^

+ ("2 ^ g2 ln(r_ XLg) d? (6.2.26)
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or

I^(r^, XL) - Ig(r^, XL) (6.2.27)

where g = a^ f°^ 2. = k = 1

g = ct^ for 2, = k = 2

13
8&k = - XL

or

(6.2.28)

4k - J Bl - .^B-

for & 9^ k

*ik Y
4
3 ^3 X L

where

(1 - 5^) dg

Y = + 1 for 2 = 1, k = 2

Y = - 1 for 2 = 2, k = 1

Again, when the source node, 'i' , is coincident with either of 

the end nodes of the element (j = 1, 2), I., I2, I^ must be evaluated 

using L'Hopital's rule as the limiting case for ^3 ** L . (See Appendix A).

There now remains only one special case; when the source node, 'i', 

is coincident with the centre node of the element under consideration. 

In this instance, the source point lies within the integration limits, 

and in order to keep track of the sign changes involved in the local 

coordinate and the cross terms of the u*^ , it is convenient to divide 

the element into 2 parts.

(i) the left side, (denoted by superscript, ) 

(ii) the right side, (denoted by superscript, ^)

On the right side we define p = - g , write u*^ and 4>j in 

terms of n . (See Figure 6.2.4), and then divide the integral into 

two parts. For any function f(O we have. 
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r = + 5L

X

r = + nL = - SL

2 (LEFT)

111

(RIGHT) 1

..... O—.. .

L L

S = + 1 = + 1

5 := 0

= 0

*l = I (S^ - O

2 - + O *2 " ^^

3 " " ^^) (|lg = (1 - n^)

' u^ = a. - In(nL)
11 1 2

L ^ R

12 3 12 3
L R

U f , = - a „
21 '3 21 3

Figure 6.2.4 Source at Centre of Element.
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Now,

For the

or

+1
f(g) dg =

f(G) dE =

general case, we

using equation (6.2.30)

^0
f(G) dg +

—1

fO
f(G) dg

0
[(n) dn =

+1

have

(G)

(6.2.29)

rO *R 
"Ak (G)

for the

rl
f(n) dn (6.2.30)

>0

*j(G) dS

*j(G) dg

(6.2.31)

first term, equation (6.2.31) may be

^-1

. . r+1 *
'^Ak

rl
L

0

AT T

written as.

1 .
u

0

ij 
gf-k (n) *^ (n) dn + L u*^(E) *^^E) dE (6.2.32)

The terms U)^^ , ug^^ , i)i. , ((). are given on Figure 6.2.4, and

the expressions given by equation (6.2.32) may be readily evaluated.

For the terms containing (}>^ and i^^ we have the following result:

(j = 1, 2)

for A = k

T ' "2 h<^> (6.2.33)

where 6 = a^ for $- = 1, k = 1

6 = a, for j^ = 2, k = 2
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for 2 "^ k

La- 
g&k = - ^1 ^2 — (6.2.34)

Y. = - 1 for j = 1 

y. = + 1 for j = 2

Yg = + 1 for & = 1, k = 2

Y2 = " 1 for & = 2, k = 1

And, for the terms containing (fi^ (j =3), we have

for £ = k

for St ?( k

4k^-"2 [k^u -:6("]' (6.2.35)

13 
g&k (6.2.36)0

6.2.5 Stresses at Internal Points

Given a particular distribution of tractions on the surface, the 

stresses at any internal point within the domain may be calculated by 

numerical integration.

The stresses due to a point load at the surface are given by a simple

radial distribution (See [1]). Referring to Figure 6.2.5, and denoting 

0j as the stress component o^j , at q , due to a point load in the 

’k' direction at S , the fundamental solution for the stress components 

is given by :

*1 - 2 cos'^G 2 sln^G cos^G(^11 ttA^ ' 11

"22 ’ - rA^ sln^G cos^G *2
' °22 - sin^e (6.2.37)

°12 =
2 sinG cos^G *2 —

' °12 - - —_— sln^G cosG 
tTA2
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For a general load p^, P2 at the surface the stress at q

is given by

Ojj(q) = a^j (S, q) p^(S) (6.2.38)

Given the interpolation for p^ , over each element, equation 

(6.2.38) may be integrated to yield the stress at q due to some arbitrary 

load on the surface.

r NE rS=+l «
^4;(q) = 1 L 0^. (8(E)) * (E) (6.2.39)

A simple Gauss Quadrature numerical integration scheme may be

used to evaluate the above expression. For 'n' sample points on each

element, with weightings W^, and 

E^ , equation (6.2.39) becomes:

at a local coordinate along the element,

o^j(q) = (6.2.40)

where NE is the number of elements

and L is (the length of element e)/2

6.3 FORMATION OF AN 'EQUIVALENT' STIFFNESS MATRIX

The final discretised formed of the B.E.M. equations, (6.2.8) 

may be written:

cT^ U = P (6.3.1)

Premultiplying by the M matrix, relating the traction distribution 

to the equivalent nodal forces, (see equation (3.6.4)), we have
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Figure 6.2.5 Geometry of problem for the calculation of
the internal stresses.
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or

(M G ) U = M P - F

^" y " y

(6.3.2)

(6.3.3)

Assuming the same interpolation for displacements and tractions, 

T
$ , the matrix M is given by, (see section 4.2)

e=l ,(
(6.3.4)

The integral may be evaluated for each element, forming the submatrix

M , which can then be assembled into M in the usual manner. Evaluating 

the integral yields the following results:

(i) For Constant Elements

1
M = L 
-e (6.3.5)

0

For Linear Elements

' 2 0

M L 0 2

- 0 1

N1

(6.3.6)

(iii) For (Quadratic Elements 

-e
L
15

I I

2 0 o'

0 2'0-1'

-1 0'2 o'
2 I i
0 - 1 ' 0 2 '

2 I I

1 0'1 o'

0 1'0 1 '
I I

N1 ' N2 ' 
I I

1 0
N1

0 1

1 0
N2

0 1

8 0
N3

0 8

N3

(6,3,7)M
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where, L is the length of the element, e , and Nl, N2, N3 refer 

to nodes 1, 2, 3 of the element.

For reasons, which have been discussed at length in Chapters 4 

and 5, the ’equivalent’ stiffness matrix, k'^ , is not inherently symmetric 

in the general case. The usual symmetisation process is adopted, i.e.

K^ = 1 (K" + K"'"'^) (6.3.8)

The behaviour of the symmetric ’equivalent’ stiffness matrix is 

examined, upon implementation, in the following section.

6.4 NUMERICAL TESTING OF THE FORMULATIONS

6.4.1 - Examples

A series of examples were run, implementing the B.E.M. and 'equivalent 

stiffness formulations described in the preceding sections. The examples 

run are all of the form depicted by Figure 6.2.1, with the distribution 

of the applied load taken to be of the same order as the shape functions 

used in the formulation. As such, we expect the model to yield the 

analytic solution for the deformed shape.

Each of the three problems were run by discretising the loaded 

segment into 4 elements. (It should be noted that as the shape functions, 

in each case, can represent the traction distribution exactly, the solution 

is independent of the number of elements used. This was in fact found 

to be the case, and was used as one of the first tests on the program. 

However, using one element, only implements the special cases of the 

integrals described in Section 6.2, and the use of more elements not only 

enables solution at more points, but will serve as a better illustration 

of the general behaviour of the model). For each problem, 2 discretisations 
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were used; firstly dividing the loaded segment into elements of equal 

length, (Mesh A, Figure 6.4.1.a), and secondly employing elements of 

varying lengths (Mesh B, Figure 6.4.l.b).

In each case, the G matrix was calculated (equation (6.2.8)), from 

which the displacements are immediately available (B.E.M.). Following 

this, the 'equivalent* stiffness matrices, k“ and K® were formed 

and the tractions weighted in the appropriate manner to calculate the 

equivalent nodal forces for each type of traction distribution. The 

equations were then solved as a stiffness problem. The solution using 

K^ and the B.E.M, give exactly the same results as the same equations 

are being solved in both cases, (and this served as a useful check on 

the 'equivalent' stiffness program). Also, the fundamental solution 

may in fact be integrated along the loaded segment to yield the analytic 

solution. (This is In fact what the B.E.M. formulation presented in this 

chapter does, but employs a segmented integration process).

In order to facilitate comparisons, all calculations were performed 

using identical values of the arbitrary constants of integration involved 

in the fundamental solution i.e. all displacements in the direction of the 

load are effectively being measured from the same datum.

In all cases It was found that, as expected, the analytic solution, 

the B.E.M. solution, and the K solution were in exact agreement. 

Comparisons of this solution with that obtained using the symmetrised 

'equivalent' stiffness matrix, K^ , is given in tables 6.4.1 - 6.4.3.

The same series of examples were also used as a basis for further 

examination of the behaviour of the 'equivalent' stiffness matrices, 

K and K . The resulting displacement profile was substituted back 

into the B.E.M. equations (6.3.1), in order to obtain the corresponding 

starting form of the traction distribution. This serves as a useful
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Figure 6.4.1 Boundary Element discretisations and load 
distributions.
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Analytic, B E.M.,

*2
and K^

"2 Ui "2

- 1.50 3.800 0.360 3.800 0.360

-0.50 4.032 0.120 4.032 0.120

0.50 4.032 0.120 4.032 -0.120

1.50 3.800 0.360 3.800 -0.360

(a) MESH A

*2

Analytic, B.E.M.,

and K"

""1 7'2 "1 "2

- 1.50 3.800 0.360 3.801 0.360

-0.60 4.021 0.144 4.012 -0.108

0.45 4.037 -0.108 4.045 -0.108

1.55 3.780 -0.372 3.775 -0.372

(b) MESH B

Table 6.3.1 Displacement Profile for Constant Traction 
using Constant Elements.
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*2

Analytic, B.E.M., 

and K^

- 2.00 '"l "2

- 2.00 6.172 0.960 6.157 0.956

- 1.00 7.160 0.840 7.167 0.838

0.00 8.116 0,480 8.107 0.491

1.00 8.646 - 0.120 8.680 -0.165

2.00 7.802 0.960 7.778 -0.810

(a) MESH A

*2

Analytic, B.E.M., 

and K^

"1 "2 "1 ^2

- 2.00 6.172 0.960 6.147 0.944

- 1.00 7.160 0.840 7.198 0.860

-0.20 7.946 0.571 7.926 0.532

1.10 8.655 0.193 8.663 -0.167

2.00 7.802 0.960 7.809 -0.861

(b) MESH B

Table 6.3.2. Displacement Profile for Linear Traction 
Distribution using Linear Elements.
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Ca) MESH A

*2

Analytic, B.E.M.,

K^and

"1 "2 "1 ^2

-2.00 22.253 2.560 21.959 2.405

-1.50 24.335 0.867 24.564 0.931

- 1.00 23.819 0.400 23.505 - 0.470

-0.50 22.510 — 1.310 22.636 - 1.276

0.00 20.919 — 1.920 20.782 - 1.959

0.50 19.320 — 2.290 19.367 - 2.272

1.00 17.874 2.480 17.830 -2.500

1.50 16.670 — 2.550 16.681 - 2.543

2.00 15.734 2.560 15.728 - 2.566

''2

Analytic, B.E.M.,

K^and

-2.00

"^1

22.253

"2 ^1

2.560 21.962

"2

2.410

- 1.50 24.337 0.867 24.566 0.927

- 1.00 23.819 - 0.400 23.502 - 0.457

-0.60 22.810 - 1.153 22.944 - 1.125

-0.20 21.574 - 1.708 21.429 - 1.764

0.45 19.479 - 2.262 19.538 - 2.233

1.10 17.615 - 2.502 17.563 - 2.528

1.55 16.567 - 2.553 16.578 - 2.546

2.00 15.737 - 2.560 15.728 - 2.567

(b) MESH B
Table 6.3.3. Displacement Profile for Quadratic Traction 

Distribution using Quadratic Elements. 
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of the sensitivity of the respective formulations in obtaining a solution 

for the tractions at the surface, once the displacements have been established 

by some overall F.E.M. displacement technique. The same problems as those 

depicted in Figures 6.4.1 were run using the formulations based on 

constant, linear and quadratic elements. The loaded segment was 

discretised using (i) 4 equal length elements (as shown in Figure 6.4.1.a. 

Mesh A), and, (ii) 8 unequal length elements (as shown in Figure 6.4.l.b, 

with each element divided into 2-Mesh B).

As no approximations are introduced when using K*^ , then the tractions 

given by equation 6.3.1 should be exactly equal to the original 

distributions (Figures 6.4.1, c, d, e), and this was simply used as a 

check on the programming. Comparisons of the traction distributions 

obtained using the displacements derived after the symmetrisation process 

of K^ (i.e. using K^) as shown in Figures 6.4.2 - 6.4.4.

6.4.2 Discussion of Results

The B.E.M., or alternatively, the ’equivalent' stiffness approach, 

using K^ , always yield the exact deformed shape of the free surface.

In general, therefore, the accuracy of the solution for some arbitrary 

loading will only depend on how closely the chosen interpolation 

functions can model the actual traction distribution at the surface.

This is of course to be expected, and the improvement of accuracy with 

increasing orders of approximating functions, is a feature true for 

all numerical approximation techniques; but the powerful aspect of the 

present formulation is the fact that there is no approximation for 

displacements, and the solution is exact for the given loading.
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^1

0.

1.

Mesh A

1
^1

1. 1

x»^—— }—*—I----»——j—#—|—«-- 1-—«—|—*—h—* 1—-®~H B.E.M., Mesh B

--------- - Exact Solution

X Solution obtained using displacements given 

by K^ U=F

Figure 6.4.2 Traction Distibution for Constant Element Run.
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---------  Exact Solution

X Solution obtained using displacements given by

Kgu= F

Figure 6.4.3 Traction Distribution for Linear Element Run.
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---------  Exact Solution

^ Solution obtained using displacements given 

by K^U= F

Figure 6.4.4 Traction distribution for Quadratic Element Run.
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The behaviour of solutions obtained using the symmetrised form 

of the 'equivalent' stiffness matrix, K® , follows the established 

pattern, shown by the examples of the previous chapters. The level 

of error introduced by the symmetrisation process is of an acceptable 

magnitude for most practical engineering applications, but it is 

interesting to note that the higher the order of the elements, the 

larger the error; especially for the case of obtaining the traction 

distribution from a given set of 'approximate' displacements. This is 

an important aspect of the formulation and requires further discussion.

In this case, the unsymmetry in k’^ arises due to the differing 

sizes of the elements and differing forms of interpolation functions 

associated with particular points. As before, the effect of the differing 

lengths is largely scaled out by the M matrix, and as can be seen 

by tables 6.3.1 - 6.3.3, the degree of error is not generally 

increased by having an unsymmetric discretisation (i.e. varying the 

lengths of the elements). The exception is of course the case of 

constant elements, which form a perfectly symmetric matrix, if all the 

lengths are the same.

For higher order elements, there is an additional factor involved 

in the lack of symmetry; Consider the case of linear elements, and 

2 nodes i, j, one of which is one of the end nodes (Figure 6.4.5.a). 

When forming the subelement g^^ , a source is applied at 'j' and 

the integral performed over both the elements adjacent to the 'i' , 

and their contributions added. However, there is only one contribution 

for the term g^^ , as there is only one element adjacent to 'j' . 

(See Figures 6.4.5.b, c). For the use of quadratic elements there is 

still a further factor involved. The shape functions associated with 

midside nodes are of a different form to those associated with nodes 
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at the end of the element, and this introduces a further lack of symmetry- 

in the integration process. (See Figure 6.4.6).

It is perfectly clear, therefore, that the symmetrisation process 

introduces an error into the solution, but does not seem to greatly 

affect the displacement profile, in the general case. However, when 

using this 'erroneous' displacement profile to calculate the traction 

distribution, the sensitivity of the system to the degree of 'error' 

in the displacements increases as does the order of the elements; 

The constant element solution (Figure 6.4.2) is very good, and this 

is to be expected as the formulation exhibits the least problems with 

regards to symmetry. The linear element solution is again in good 

agreement, most of the error occurring at the end of the segment, which 

again is to be expected due to the unsymmetric effect of the end nodes. 

The quadratic element solution is comparatively poor in this aspect, 

and is due to the combined unsymmetry effects described above, which 

make the system very sensitive to differences in displacements.

However, it should be noted, that in a combined problem, where 

the surface nodes are joined to some Finite Element model, the degree 

of the unsymmetry effect will be diminished. This is due to the fact 

that the terms of K^ will be assembled into a global stiffness matrix, 

and will be added to the terms of the Finite Element stiffness matrices 

corresponding to the nodes on the interface. These terms will be symmetric, 

and as such the relative error introduced by the symmetisation process 

will be reduced. The degree of this 'reduction' in the error will 

depend on the relative stiffness of the two regions, which is the 

determining factor governing the orders of the terms involved. This 

aspect is discussed in greater detail, following the combination 

examples of the following section.
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Figure 6.4.5 Linear Elements Reciprocal integration.

Figure 6.4.6 Quadratic Elements. Reciprocal Integration.
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6.5 COMBINATION PROBLEMS

6.5.1 General Remarks

The equivalent stiffness matrix which models the behaviour of the 

semi-infinite half space, may now be incorporated in a Finite Element 

package in order to model a structure resting on a semi inifinite 

foundation, (Figure 6.5.1). The Finite Elements employed, are 6-noded 

linear strain triangles, and are used to form an overall displacement 

type model,

K y = F (6.5.1)

Solution of (6.5.1) yields all unknown displacements; the stresses 

in the Finite Element domain ^2 ”^7 then be calculated in the normal 

way. The tractions at the interface may now be computed using equation 

(6.3.1) for the semi-infinite region. Integration of these tractions 

yield the internal stresses at any points in 0^ . (See Section 6.2.5).

A Finite Element program was written which also forms the 

additional stiffness matrices (K^ and K^) representing the seml-lnfinlte 

foundation, and assembles the extra contributions into the global 

stiffness matrix In the usual manner. The program was written with 

the option of using linear or quadratic elements to model the half-space, 

and also solved each problem twice : firstly using K^ and secondly K® . 

The constant element formulation was omitted due to its inability to 

make a good approximation of an arbitrary load variation, without a 

very fine discretisation. For reasons of expediency in performing the 

tests, the program developed, stored the whole of the stiffness matrix, 

when using k“ , and used a solver which took no account of any symmetry. 

This is in fact very uneconomical especially in a problem where the
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Figure 6.5.1 Semi-infinite domain combination problem.
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unsymmetric part is relatively small, but the efficiency may be 

greatly improved by partitioning the solution : Consider the general 

combination problem shown in Figure 6.5.2 (a). All contributions to 

K from the Finite Element part, (K^t> » ^^^ symmetric,

T
(Kt T Ktt) ) and the only unsymmetric part is K^ . (See Figure 
~1J ~JI ~JJ

6.5.2 .(b)). We may now write the equations as follows;

^I -I -IJ -J -I

'JI -I -jj Fj

Equation (6.5.1) may be written

(F - K U)
-11 -1 ~1J -J

(6.5.1)

(6.5.2)

(6.5.3)

+
-J

Substituting equation (6.5.3) in equation (6.5.2),

-JJ -J L -JI -II (Fl - Ku y^ (6.5.4)

or

-J (6.5.5)

where

!5jj Pj

-JJ -JJ " -JI -II -IJ

(6.5.6)

'J L -JI -II -I

This process is more efficient than storing the full band of the 

equations and not making use of any symmetry during solution , - 

especially if the 'JJ' part of the equations is relatively small. 

The inversion of the K^^ part of the matrix is performed independently 

and full use of symmetry may be made in both the storage and solution
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K U F
(b)

Figure 6.5.2 Partitioning of the system of equations for the 
combination problem.



schemes. The relatively small unsymmetric equations (6.5.5) may now

be solved for U^ and the solution substituted in equations (6.5.3) 
J

to yield the remaining unknowns, U^ .

6.5.2 Examples

A series of examples were run for a deep beam, axially loaded, 

resting on a semi-infinite foundation, which may be used to demonstrate 

a typical soil structure interaction problem. The deep beam represents 

a structure and is modelled using Finite Elements to discretise its 

domain, whereas, the semi-infinite foundation is modelled using a 

Boundary Element discretisation of the interface segment. Due to the 

expected stress concentrations at the bottom corners of the beam, the 

mesh is quite refined in that neighbourhood. The Finite and Boundary 

element discretisations employed, are shown in Figure 6.5.3.

The series of examples were run for a point load of 6.0 acting at 

the top of the beam, in the direction of its length, and solutions were 

obtained for varying values of the relative stiffness of the beam and 

foundation. The Young's Modulus of the semi-infinite space was kept 

constant at E2 = 2.4, and E^ took the values 2.4, 24, 240, 2400, 

in turn; each problem was run using, firstly, 16 linear, and secondly, 

8 quadratic Boundary Elements for the interface segment (the nodal points 

of course, corresponding to those of the Finite Element mesh). Also, 

each case was run using both K^ and K^ , to represent the stiffness 

of the foundation.

Tables 6.5.1 - 6.5.4 show the traction profile (in the direction 

of the load) along the interface, for each case, and these results 

demonstrate some interesting features of the behaviour of the technique :
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F = 6.0

Figure 6.5.3 Deep Beam supported on a semi-infinite half-space.
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As the relative stiffness of the structure increases, the actual 

traction profile becomes more and more singular at the ends of the loaded 

segment, the numerical results exhibit an oscillation from the true 

path in this vicinity. This is to be expected, as it is a common feature 

of many numerical techniques. However, in these cases, the results 

obtained using linear and quadratic elements are in excellent agreement, 

and the symmetrisation process introduces very negligible differences 

in the results. This is because the contributions to the overall 

stiffness arising from the boundary element part are of a much lower 

order of magnitude, and hence the differences due to the lack of symmetry 

in this part of the system do not produce a significant effect when they 

are removed, (e.g. see results in Tables 6.5.3 and 6.5.4, where the 

stiffness of the structure is 100 and 1000 times greater than that 

of the foundation,respectively). The very good agreement between the 

linear and quadratic element formulation is due to the fact that for 

a very stiff structure, the interface traction distribution approaches 

a form of (9 - x^) (see TIMOSHENKO [_1]), and although this is singular 

as X2 3 -hence the oscillation of the results mentioned above-, 

there are no sign changes in the function or its derivative, in the 

region 0 < %« < 3 . This means that linear elements can provide almost 

as good an approximation to the form of the solution as can the quadratic 

elements.

The situation changes, however, when the structure and foundation 

have stiffnesses of similar magnitudes. The effects of this are most 

marked in the results in Table 6.5.1, which represent the situation 

of a 1/1 ratio in the relative stiffness.

We do not know the expected form of the solution from analytical 
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techniques, but there is no reason to expect the real solution, and 

its derivative to be as well behaved in this situation. This is 

confirmed by the greater differences obtained by using linear or 

quadratic elements. Furthermore, the structure and foundation 

stiffnesses provide terms of the same order of magnitude in the global 

stiffness matrix and hence the symmetisation process of the foundation 

terms have a much more pronounced effect on the overall solution.

In conclusion, it must be remembered that for typical soil-structure 

interaction problems, the structure is usually about one order of 

magnitude stiffer than the soil. As such, the errors introduced by 

the symmetisation process are relatively small, (e.g. see Table 6.5.2), 

and K^ may confidently be used to represent the stiffness of the 

foundation. As to the choice of the type of Boundary Elements, clearly 

the quadratic elements will always provide a better model, although the 

difference between these and linear elements may not be very marked if 

the actual variation of the interface tractions is of relatively low 

order. However, as the number of nodes on the surface is determined 

by the Finite Element mesh to which they must be joined, quadratic 

elements may as well be employed as no extra work is required in doing 

so (other than slightly longer expressions for the terms of the G 

matrix, which in relation to the overall solution represents a negligible 

amount of computation).
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CHAPTER 7 GENERAL DISCUSSION AND SUMMARY

After presenting the basic principles leading to the Direct 

Boundary Element formulation, this work has been predominantly 

concerned with the development, implementation, and testing of an 

'equivalent' Finite Element stiffness matrix, derived using a 

boundary discretisation, for the region under consideration.

The simple transformation of the final set of equations from 

their Boundary Element form to the form of a Finite Element stiffness 

type relation is shown in Chapter 4, and the technique was implemented 

for 2 and 3-Dimensional problems using constant elements. This 

avoided many of the problems, generally incurred at geometric 

discontinuities and served as a useful check on the basic formulation. 

The 'equivalent' stiffness matrix, thus derived, was always found to 

give the same solution as the Direct B.E.M. which is to be expected, 

as the same equations are being solved in a different form, without 

introducing any further approximations than those originally 

contained in the Boundary Element formulation.

The interesting feature to emerge from this initial part of 

the work was the general lack of symmetry of the 'equivalent' 

stiffness matrix, k’^ . Upon consideration it was evident that the 

way in which the original B.E.M. equations are set up (i.e. evaluating 

the H and G matrices) involves an integration process around the 

boundary which is not symmetric, unless all elements are placed in 

such a way that they are all reflections of each other about some 

symmetry axis or plane. As such the starting equations are unsymmetric 

and there is no reason to expect any final set of equations, based 

on these, to be exactly symmetric.

- 231 -



This explained the numerical reason for the lack of symmetry 

but immediately lead to questions relating to the general symmetry 

properties of a stiffness type relation. The current school of thought, 

generally expressed in the literature, was that due to the fundamental 

reciprocal theorems of elasticity (Maxwell’s theorem, Betti's theorem), 

any stiffness type set of equations, relating nodal values of 

displacement and forces, should have symmetric coefficients, as 

does the classical Finite Element technique. As such the stiffness 

matrix K^ is ’symmetrised’ to form K® . Several arguments are 

used to justify this, usually based on some ’error minimisation’ or 

on a variational approach; but the ’symmetrisation ’ process always 

takes the form of discarding the unsymmetric part of K^ , by adding 

it to its transpose and taking the average value of all terms. This 

in fact was the technique implemented here, and examples were run 

comparing the behaviour of the two ’equivalent' stiffness matrices, 

k“ and K^ . However, before we discuss the relative merits and 

behaviour of K^ and K^ , some further discussion on the lac’x of 

symmetry of K^ is warranted.

To facilitate further understanding of the lack of symmetry 

of K^ , the classical Finite Element Galerkin formulation, which does 

inherently produce symmetric matrices, was considered. (At this stage, 

it should be remembered that both the F.E.M. and B.E.M., -as well 

as other numerical techniques, such as Finite Differences - can all 

be derived from the same starting expression of the general Weighted 

Residual Technique - see Chapter 2). The differential equations of 

equilibrium are expressed in an integral form using the Weighted 

Residual Technique (also shown to be equivalent to the general statement 

of the Principle of Virtual Work), and this integral form always 
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contains terms which are products of the 'actual solution' and some 

'weighting function'. In the classical Finite Element Galerkin 

approach, we interpret this 'weighting function' to be any virtual 

stress-strain-displacement field, and then make the assumption that 

this field has the same variation as the 'approximate' solution. It 

is this assumption that allows the same shape functions to be used 

for both fields, and this choice of identical shape functions is the 

fact that leads to symmetric matrices. There is however no reason 

why some other choice of shape functions cannot be made, still 

retaining the validity of the formulation.

When comparing this procedure to the B.E.M. formulation, 

we immediately see the discrepancy which destroys the symmetric 

properties of the final set of equations in the general case. With 

the B.E.M., we interpret the 'weighting function' of our original 

statement of equilibrium as a fundamental solution of the problem (thus 

eliminating the domain integral). This is of a fixed form and varies 

completely independently of the actual solution. Thus, the property 

of the method which leads to symmetric matrices in the Finite Element 

technique, is not exhibited in the Boundary Element formulation.

The lack of symmetry of K^ is now well explained from numerical 

and analytical considerations. However, we are now faced with reconciling 

this lack of symmetry with the physical requirements imposed on the 

system by the fundamental reciprocal theorems of elasticity. This is 

easily done by considering the physical interpretation of the relevant 

terms. A stiffness relation (for the elasticity problems considered 

in this work) links a set of displacements to a set of nodal forces, 

These nodal forces are equivalent to some traction distribution and 

are obtained by the appropriate weighting of this traction distribution, 
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around the boundary. So, applying a nodal load of one, say, at any 

point does not physically represent a point source, but some localised 

traction distribution depending on the local geometry and shape functions. 

Therefore, by applying a load equal to one, say, at different points, 

the physical interpretation of the total loads applied, is the same, 

but the way in which these loads are distributed can be different.

It is this difference in the physical interpretation of the exact form 

of the load state which does not allow the reciprocal theorems to be 

applied, and explains the lack of symmetry of k'^ . (This is discussed 

in greater detail, with reference to an example in Chapters 5 and 6). 

The important point, however, is that as the physical magnitude of the 

load is the same, we do not expect the differences in its effect 

(especially at a distance) to be very marked; and thus do not expect 

the lack of symmetry of k“ to be very pronounced. This is, in fact, 

the behaviour found when comparing results obtained using K^ and K®.

Chapter 4 describes several exaples, in 2 and 3 dimensions, 

using constant elements, and the results obtained using the symmetrised 

matrix K^ were always close to the answers given by the B.E.M., for 

the same discretisation, and the degree of the differences were such 

as to make the use of K® quite acceptable for most engineering 

applications.

There are however situations when the tractions on the Boundary 

Element region surface obtained using K® can be misleading, especially 

in the following circumstances : If the solution for displacements is 

such that on a particular part of the surface of the Boundary Element 

region the magnitude of these displacements is of much lower order than 

the dominant terms of the solution, then these values will be much 
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more susceptable to numerical instability. It is the rate of change 

of these values which define the stresses in that region and if the 

errors are quite large in relation to their absolute values, then the 

errors in calculating the stresses can also be significant. However, 

this boils down to numerical problems involved in the solution of 

linear equations and in this context could warrant further investigation 

in its own right.

The behaviour of linear elements was also investigated, in 

Chapter 5, and their behaviour with regards to the symmetry properties 

of the ’equivalent' stiffness matrix, was found to be similar to the 

constant elements, used in the examples of Chapter 4. The important 

feature of the work presented in Chapter 5 is the way in which the 

discontinuity problem is dealt with. This problem arises at geometric 

discontinuities, where the tractions have different values either side 

of the node concerned. Additional equations are required for these 

points, in order to uniquely define the problem, and following the 

work of CHAUDONERKET [23j, a technique was developed for dealing with 

this problem. It was found that the straight forward inclusion of 

any extra equations completely destroyed the ’almost' symmetric 

properties of K^ , although the solutions obtained were quite correct. 

A method for introducing these extra 'Corner Conditions’ into the 

global system of equations was developed, which sets up these equations 

as a set of rotation matrices; these are then included in the overall 

formulation in a manner similar to the inclusion of a set of linearly 

dependent constraints on a Finite Element model.
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The process is more complicated, as the 'Corner Condition' 

is expressed as a linear dependence of neighbouring displacements and 

tractions. The process involves a great deal of matrix multiplication; 

however, the rotation matrices contain a very large proportion of 

null terms, and the non-zero terms appear in positions well defined 

by the overall nodal numbering system. As such, specialised routines 

could be written, would take full advantage of this property, thus 

considerably reducing the computational effort involved.

The technique was implemented for several examples, and found 

to work very well. The solutions obtained using k'^ were almost the 

same as the standard B.E.M,, for the same discretisation. The 

differences are attributable to numerical errors, which arise in the 

matrix manipulations involved. Upon symmetrisation, the solutions 

obtained using K^ were also in good agreement, exhibiting small 

discrepancies, usually of the order of 3 ’- 5^.

An interesting general feature of the 'equivalent' stiffness 

approach is that the differences in the displacments obtained using 

K^ and K^ are greater for the displacment components which are of 

lesser magnitude (compared to the dominant values). This could be a 

numerical problem due to the differing orders of the terms in the 

solution.

Once the validity of the 'equivalent* stiffness approach 

had been demonstrated, several combination examples were run, which 

coupled a classical Galerkin Finite Element Displacement type model, 

with the 'equivalent' stiffness matrix, obtained using the Boundary 

Element formulation. The combination results were always in good 

agreement with the F.E.M. or B.E.M. results obtained using the same degree 

of discretisation.
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Comparisons were also made of results using both K and 

K^ , and any differences occurring due to the symmetrisation process 

were always found to again be of the order of 3 - 5% in the dominant 

terms.

A formulation for a 2-Dimensional half-space, loaded at the 

free surface was presented in Chapter 6, employing the Bousinesq 

fundamental solution, and performing the necessary intergrations 

analytically. Constant, Linear and Quadratic elements were used, and 

their behaviour with regards to symmetry properties of the ’equivalent' 

stiffness matrix thus formed, was found to be consistent with the 

previous work. The important feature of the formulation is that no 

numerical integration is necessary and that there is no interpolation 

of displacements on the surface. The governing factor, therefore, in 

the performance of each type of element is the degree to which the 

chosen interpolation for the surface tractions can adequately approximate 

the real loading. However, very little extra computation is necessary 

when employing the higher order elements, and as such their use is 

recommended.

In conclusion, the following areas are recommended for further 

investigation ;

(i) The development and programming of higher order isoparametric 

elements, with the provision for corner discontinuities. This work 

does not indicate that any additional problems would arise in forming 

an 'equivalent' stiffness matrix using such elements, and their 

generally better performance would greatly improve the efficiency 

of the method.
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(ii) The 2-Dimensional half-space solution presented in Chapter 6 

could be generalised for influences acting in the criterior of the domain 

(i.e. using the Melan solution). This would of course necessitate the 

use of numerical integration procedures, but there is no reason to 

expect any additional problems in this case, and it would enable the 

application of the technique to a wider class of practical problems.

(iii) A general investigation into the numerical problems associated 

with solving large sets of linear equations could prove quite fruitfull. 

In certain cases such solutions are very sensitive, especially in 

situations where material properties differ significantly, producing 

ill-conditioned matrices. Also, there are situations where high stress 

concentrations occur at such interfaces and when using the approximate 

solution for displacements (obtained using K^) to calculate the 

stresses at such an interface, significant errors may ensue, (see 6.4.1). 

For such cases it would be advisable to use the more 'exact' form 

of the 'equivalent' stiffness matrix, K^, and in order to optimise 

the solution procedure, a partitioning scheme (see 6.5.1) should be 

built into the program.

Following the demonstration of the validity and applicability 

of the 'equivalent' stiffness formulation presented in this work, 

the algorithm may now readily be incorporated into standard finite 

element packages as an additional type of element in the library. 

This will enable great savings in the solution of problems, large 

parts of which are amenable to a boundary element treatment.
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APPENDIX A 

QUADRATIC INTERPOLATION FUNCTIONS, 

AND SOME USEFUL INTEGRALS

For a quadratic interpolation of a function over an element we 

require three nodes at which the value of the function is to be defined. 

A local system of coordinates (5) along the element length allow 

the problem to be non-dimensionalised. (See Figure A.l). The variation 

of a function, F , along the element may now be expressed in terms of 

its nodal values, F^ , (i = 1, 2, 3).

3 
F = I F (A.l) 

i=l

The following Integrals will be useful:

+1

' -1
^1 " I :

J -1

1 1 (A. 2)

dS = T ; S $o d^ = 0
J-1 ? ^-1

When dealing with logarithmic functions the following integrals will

appear.

I^(a, b) =
-1

In(a + bx) dx (A.3)

'+1
I2 (^« b) =

-1
X ln(a + bx) dx (A.4)

'+1
Ig(a, b) =

-1

x^ In(a + bx) dx (A,5)

where, a and b are constants.
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S = + 1 c = 0

node 2 node 3 node 1

"^1

"^2 ^ T^^^ '*' ^^

*3 = (1 - g^)

Figure A.l Quadratic interpolation functions
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These may readily be evaluated using integration by parts. The integrals

are then given by:

I^Ca b) = X
a 
b

ln(a + bx) - X
-1

I^Ca b) = 1
a 
b

ln(a + b) 4- 1 - ^ ln(a - b) -2 (A.6)

b) = 1 2 x^
2)

— — In (a +
b^'

bx) -
2 2

ax 
b

+1

-1

b) = In
a+b 
a-b

a
b

(A.7)

I^(a b) = 1
3

x^ 51' 
b3

In (a + bx)
1 x^
3 3

ax^ 

2 b
+ a^x 

b^

+1

-1

Ig(a b) = 1
3

1
a^ 

b3
ln(a + b) + 1-4 

bH
ln(a - b) -

2a^

b2

1
" 3 (A.8)

When dealing with singular nodes, the following limiting cases of the 

integrals I.(a, b) (i = 1, 2, 3) will appear.

lim I.(a, X L), X = ± 1 (A.9) 
a+L

These limits may readily be evaluated by differentiating the products 

in equations (A.6 - A.8) and applying L'Hopitals rule.

Consider lim I.(a, - L) (X = - 1)
a^L

lim Ij, (a, - L) = lim 
a->-L a-»-L

a
L.

ln(a - L) + 1 + ^ ln(a + L) -2 (A.10)1
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using L'Hopitals rule on the first term

(A.11)

Hence,

lim (a - L) =2 ln(2L) - 2 
a^L

The remaining integrals may be evaluated in the same manner, 

(A,12)

and the

resulting values are:

lim I.(a, X L) = 2 ln(2L) - 2 
a-^L

(A,13)

lim l2(a, X L) = A
a+L

lim In(a, A L) = T 2 ln(2L) - T

(A.14)

(A.15)

When the source (which produces a response given by the function, F), 

is at the centre of the element under consideration, additional Integrals 

will appear.

1^(1) = In(Lx) dx

I/L) . X In(Lx) - X (A.16)

I^(L) = ln(L) - 1

Ig(L)
rl

X In(Lx) dx 
-^0

Ig(L) = In(Lx) (A.17)

Ig(L) = y ln(L) - y
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fl
x^ In(Lx) dx 

''O

l6(L) - ln(L)
f
3_

(A.18)1^
3
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APPENDIX B

THE MINDLIN FUNDAMENTAL SOLUTION

The formulas quoted here were originally derived by MINDLIN [7J. 

For more details on the solution's behaviour on implementation with the 

Boundary Element method, see NAKAGUMA [lo] .

The notation refers to Figure B.l.

r = (r.r.)^

R = (R.R.)^

r.
1

= Y. - X.
1 1

R.
1

Y.
1

- X:
1

C = X > 0

Z = Y_ > 0 

- 
d 8'tTE(l—v)

^s 8Tr(l-v)

The fundamental displacements are given by:

4(1-v)(l-2v)

2
1
3

(3-4v)r^

R^

2CZ

R^
1 fit

R(R + R.)
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Q : Semi-infinite space

X : load point

Y : field point

Figure B.l Mindlin Fundamental Problem.
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The components of the fundamental tractions p*. are given by:
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(B.2) 

where the index 'i' refers to the direction of the source load.

The expressions for the stresses are written below, so 

that the fundamental tractions pj^ can be evaluated using equation 

(B.2).

The fundamental stresses are given by:
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