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ABSTRACT

This work is concerned with the formation of an 'equivalent' stiffness
matrix for a body, using a Direct Boundary Element Method approach,

which only requires a surface discretisation. This 'equivalent' stiffness
matrix may then be treated in the same way as a Finite Element, and

coupled into a global Finite Element formulation.

The, thus derived, equivalent stiffness matrix is not found to exhibit
the inherent symmetry properties generally expected of a stiffness
formulation, and this problem is examined in depth. A simple symmetrisation
process is adopted, the validity and accuracy of which is also examined

in the context of the overall symmetry considerations.

The difficulties arising due to surface geometry discontinuities are
also examined, and a technique is proposed for their solution. This is
implemented for 2-Dimensional problems, but may readily be extended to

3~Dimensions.

3~Dimensional problems involving finite and semi-infinite regions are
treated using constant Boundary Elements, and both constant and linear

element formulations are presented for the 2-D case.

Finally an explicit formulation is presented for a 2-D half-space,
loaded at the free surface, using constant, linear or quadratic elements,

which does away with the necessity of numerical integration.
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NOTATION

Global cartesian coordinates

Stress components

Stress vector

Strain components

Strain vector

Traction, components and vector

Displacement, components and vector

Body forces, components and vector

Unit normal, components and vector

Elastic compliances, tensor and matricial form
Rigidity Coefficients, tensor and matricial form
Modulus of Elasticity

Poisson Ratio

Shear Modulus
af,
Derivative notation, = 3*3
%]
Volume of body for 3-D
Area of body for 2-D - Domain
Boundary of body- Surface

Energy functional

General linear differential operators

Error functions

General weighting function

Fundamental Solution for displacements - component
and matrical forms.

Fundamental Solution for Tractions ~ component and
matricial forms

Source Point

Field Point
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Vector between Source point and Field point
Distance between Source point and Field point
Constants involved in 2-D Boussinesq Solution
Interpolation functions

Local coordinates

Coefficients of free term relating to point 'i'
Global Boundary Element Matrices

Submatrices of H and G representing integrals of
the influence at 'j' due to a source at 'i’

Global vector containing nodal values of displacements
Global Vector containing nodal vlues of tractions
Global Vector containing equivalent nodal forces
Global Vector containing nodal values of body forces
Finite Element type stiffness matrix

"Equivalent' Stiffness matrix derived from B.E.M.
(generally unsymmetric)

Symmetrised form of gu

Matrix relating nodal values of traction to equivalent

their equivalent nodal forces.
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CHAPTER 1 ~ INTRODUCTION

In recent vears, the Boundary Element Method (B.E.M.) has
increasingly been presented as a powerful alternative to existing
techniques for the solution of problems in continuum mechanics.

(e.g. Brebbia [4], Cruse [8], Lachat and Watson [26]).

The Boundary Element Method involves the transformation of the
governing differential equations within the domain under consideration,
to an integral equation defined on the surface of the domain, thus
enabling the reduction of the dimensionality of the problem by one.

The surface may then be discretised into a number of 'elements' over
which a polynomial form of the solution is assumed; this enables the
evaluation of the relevant integrals, usually by some numerical process,
resulting in a final system of linear algebraic equations. The
advantages of the method are readily apparent and have been extensively
discussed and demonstrated in the literature. (e.g. Cruse [13],[28],
[40] , Nakaguma [10], Tottenham [33]). As only the surface of the
domain need be discretised, the resulting systems of equations are
considerably smaller than those involving domain type solutions (e.g .
Finite Elements,Finite Differences), and considerable savings can also
be achieved in the time required for data preparation. A very important
implication of the method is that there is no interpolation of the
solution within the domain, and for a given solution on the surface,

results at interior points involve no approximations.

The key to the method, in stress analysis applications, is
the adoption of an analytical point load (fundamental) solution which is
used to eliminate the domain integral from the formulation. The first
such solution was developed by Lord Kelvin and following this, work by

Flamant [lSJ, Boussinesq [16], Melan El&}, Mindlin L7], produced

-] -



solutions for semi—-infinite domains in both 2 and 3 dimensions.

Some of the earliest work using boundary integral equations in
elasticity was undertaken by the mathematician Muskhelishvili [}7] as
early as 1953. The late 60's saw work by Rizzo [}4] in the analysis
of 2 dimensional elastostatic problems and by Curse and Rizzo [45]
in the analysis of transient elastodynamic problems, who used the
boundary representation of the governing equations originally derived

by Somigliana [50] in 1885.

In 1969 Cruse [}3] presented a formulation for 3 dimensional
elastostatic problems using the Kelvin fundamental solution and was to
instigate what we know today as the 'Direct Boundary Element Method'.
This work, however, employed elements over which the variables were
assumed to be constant, but work soon followed postulating the use of
localised shape functions to allow for higher order representation of

the dependant variables (see Lachat [48]).

An alternative implementation of the Kelvin solution was first
proposed by Kupradze 1}6? in 1965, thus establishing the foundatipns of
the Indirect Boundary Element Method, but subsequent investigation has
demonstrated the equivalence of the two techniques (e.g. see Brebbia and

Butterfield &lj).

The last decade or so, has seen a great deal of research in the use
of boundary element methods for the solution of problems in many fields
of continuun mechanics and it is impossible to refer to all relevant
or related works directly. As such for a more general background to
developments and different applications of boundary element methods, the

reader is referred to the bibliography at the end of this work.



There are however, many classes of problems, for which the
B.E.M. is unsuitable, or for which its relative advantages over domain
solutions (in particular, Finite Elements) are not sufficiently
pronounced to outweight its disadvantages. The B.E.M. often involves
a very time consuming numerical integration process and results in
a system of equations, which although relatively small, is fully
populated and unbanded. Problems with a large surface to volume ratio,
or problems involving rapid variation of dependent parameters (e.g.
material properties) may be more amenable to solutions using Finite
Elements. Also, the B.E.M., is restricted to classes of problems
for which fundamental (or point load) solutions are available, and
this often makes the application to highly anisotropic fields very
difficult. It would appear therefore, that an examination of Boundary
and Finite Elements should be carried out from a point of view of

compatibility rather than competitiveness.

The Finite Element Method (F.E.M.) is very well established
and understood (e.g. see Brebbia [2@}, Zienkiewicz [30], [ﬁi]) and
an extensive range of computer packages are readily available for

its implementation.

Following some of the early work in Boundary Elements, more
recent work has demonstrated the relationship between the B.E.M.
and F.E.M., and it has been shown that they may both be derived as
special cases of a much more general method - the Weighted Residual
Technique (see Finlayson [6J , Brebbia Ll;]). It is therefore
possible to transform a Boundary Element formulation to an 'equivalent'
Finite Element model, and vice-versa (e.g. see Brebbia and Georgiou

[24]. Georgiou [43], Kelly [36]).



Given the establishment, wide acceptance, and ready availability
of computer codes for the implementation of the F.E.M., it would b
very useful to be able to treat a problem (or part, thereof) using
Boundary Elements, where amenable, and transforming the formulation
to an 'equivalent' stiffness relation, which may then readily
be incorporated into an overall Finite Element system, in the
usual way. It is this which is the objective of the present

work.

In the last few years there has been a fair amount of work
concerned with the combination of Finite and Boundary Element
techniques (e.g. Zienkiewicz, Kelly and Bettess [?9], [ﬁl], Fusco [42],
Georgiou [43], [44] Mustoe [22], [36], [49], shaw [52], [53]).
However, ‘the lack of symmetry of the Boundary Element method is also
reflected in the fact that an 'equivalent' stiffness relation based
on the B.E.M. is also unsymmetric. There have been several attempts
to 'symmetrise' this 'equivalent' stiffness matrix, but the arguments
presented to justify this are far from conclusive, and usually
rest on the notion that any stiffness relation must be symmetric,
from the first principles, and therefore any lack of symmetry is
due to some 'error' in the formulation, for which some'correction'

process is then employed.

The object of this work is to examine the general process of
coupling a B.E.M. solution to an overall F.E. system, by forming
the 'equivalent' stiffness matrix for the region under consideration,
in the context of elastostatic problems. The properties of this

'equivalent' stiffness matrix are extensively tested for various



examples with particular emphasis on the symmetry aspect of the
formulation. From this, it is hoped that a much clearer picture

will emerge of the validity and accuracy of the formulationm,

together with a greater insight into the symmetric properties of
stiffness relations, not only in relation to a B.E.M. based technique,

but from a much more general viewpoint.

One of the main problems with the B.E.M., is that of sharp
geometric discontinuities on the surface, which gave rise to
discontinuous tractions at that point. Adequate provision for this
situation can, for certain cases, present difficulties in solutions
using the B.E.M. However, these difficulties are invariably encountered
in the procedure of forming an 'equivalent' stiffness matrix and
require special consideration. The difficulty is that the problem

t
is ill-defined ag such discontinuities, and extra equations are
required in order to adequately include the effects of the discontinuity
in the model, and to uniquely define the problem. The inclusion of
these 'extra' equations can seriously affect the degree of symmetry
(or lack thereof) exhibited by the final 'equivalent' stiffness matrix,
and this is another key feature of the overall problem which is

examined extensively in this work.

CHAPTER 2 gives a brief outline of the basic relations in
linear elasticity which form the basis for the remainder of the
work. By way of this, the notation and associated sign conventions
are also introduced. Following this, the governing differential
equations are derived from both static equilibrium criteria and
variational energy considerations, and the equivalence of these
processes is demonstrated. Finally the Weighted Residual Technique

is presented, and it is shown that all the forms of the equilibrium



statements can be derived as special cases of this technique.

CHAPTER 3 begins by presenting the fundamental problems and
their solutions for both 2 and 3-Dimensional problems. For bodies
which have fully closed boundaries (either closed intermnal surfaces
representing cavities, or closed external surfaces representing
finite boundaries), the Kelvin solution is applicable, and the 2
and 3-Dimensional cases are quoted. For a 3-Dimensional half-space,
the most general solution is that of Mindlin j}} and represents
a point load acting in the interior of a 3-D semi-infinite space.
(A special case of this, is for the load acting at the surface,
known as the Buossinesq - Cerruti solution). The 2-Dimensional
equivalents of the above are the solutions presented by Melan 114],
and Flamant DS]. The Melan solution is not implemented in
this work, but all the others are given in Chapter 3. Following
this, Chapter 3 then goes on to formulate the B.E.M., and for

completeness, a brief summary of the F.E,M. is also included.

CHAPTER 4 begins by demonstrating the relationship between the
B.E.M. and F.E.M. and shows the basis of forming an 'equivalent'
stiffness matrix using the B.E.M. formulation. Several examples
are then implemented for the case of constant elements. 2-Dimensional
problems are run using the Kelvin solution, and following the
work of Nakaguma [10] some 3-D problems for both finite and semi-

infinite domains are implemented.



CHAPTER 5 then proceeds to examine problems encountered with
higher order elements - namely, those arising at geometric disconti-
nuities, The problem is examined using a 2-Dimensional linear
element formulation, but ideas involved can readily be extended
to higher order elements and to 3-D. The corner problem is dealt
with by supplying 'extra' equations at discontinuities, which
were originally suggested by Chaudonneret [23]. A technique
is developed which considers these 'extra' equations as additional
boundary conditions imposed on the problem, and sets them up in
the form of a series of 'rotation' matrices, reminiscent of
the application of a set of linearly dependent constraints on
a F.E.M. model. Unlike their straight forward imposition, this
largely preserves the eventual symmetry of the formulation, and
several examples are implemented to demonstrate the validity and
accuracy of the 'equivalent' stiffness approach. Chapter 5 also
includes a detailed discussion on the symmetry aspect, and presents
arguments explaining the general 'lack' of symmetry from numerical,

analytical and physical considerations.

CHAPTER 6 presents formulations for a 2-Dimensional half-space
loaded at the free surface. Due to the fact that, for this case, all
influences and effects are defined on a straight line (namely, the
free surface), it is possible to perform all the relevant integrations
analytically. These integrations are in fact performed for the cases
of constant, linear and quadratic elements, thus enabling the explicit
definition of the final linear algebraic equations, without any

recourse to numerical integration. The behaviour of the formulations



is then tested with reference to several examples.

This work deals with the Finite Element displacement technique,
as opposed to the force method, and therefore all the models considered
have the global displacements as the primary system unknowns. As such,
the numerical tests, comparisons, and the examples presented concentrate

on the solutions obtained for displacements.



CHAPTER 2. GOVERNING RELATIONS

2.1 INTRODUCTION.

This chapter reviews the basic relations governing the
theory of linear elasticity and definmes the relationships between
stresses, strains, displacements and tractions, which allow the
mathematical definition of the problem. By way of this, the basic
notation and sign convention for the remainder of this work is
introduced, as well as leading to the definition of the governing
equations of equilibrium,

Equilibrium conditions are then examined using energy consid-
erations and the Principles of Virtual Work and Minimum Potential
Energy are presented.

Finally, the Weighted Residual Technique is discussed, which
is a general method used to formulate numerical solution schemes
for differential equations. Many of the common techniques used in

engineering can be shown to be special cases of this formulation.

2.2 BASIC RELATIONS IN ELASTOSTATICS

2.2.1 Components of Stress

In the general three-dimensional case the reference frame
will be three mutually orthogonal cartesian axes denoted by
Xy, ¥y, X3, O X, (i =1, 3). At any point within the body the
state of stress may be defined by the second order tensor Oij
(i =1, 3; j =1, 3) which denotes the stress on a small differential

element acting on a face perpendicular to the axis X, and in a

direction parallel to the axis xj (fig. 2.2.1). The stress



component Uij is considered positive when acting on the most positive
X, face in the positive Xj direction, or vice-versa.

The surface tractions will be denoted by the vector p with
components p. (i = 1, 3) considered positive when acting in the
positive 3 direction.

The tangent plane at a point on the surface is defined by
the unit normal at that point, =0 , with components n. (fig. 2.2.2).
By considering equilibrium of the trapezoidal element shown in

fig. 2.2.2 it may readily be shown that the surface tractions and

stresses are related as follows

*e

I
|

;= Ojk e (2.2.1)

Where the usual summation convention for repeated indices applies.

2.2.2 Components of Strain

The state of strain at any point may be defined by the strain
tensor Eij , and the displacements of any point, by the vector us .
If the deformations are small, such that u%,. is insignificant
compared to ui’j (the subscript ' denotes the partial derivative

9

T then the strain displacement relations are linear and may
i

be expressed as follows :
1
€., = E{u. Lot u. L) (2.2.2)

It is important to mote that both the stress and strain temsors are
symmetric and hence for the 3-Dimensional case there are only six
independent components and for the 2-Dimensiomal case there are three

such independent components.

..lo...
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Figure 2.2.1
Stress Components.
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Figure 2.2.2
Surface Tractions.



2.2.3 Stress-Strain Relations

GENERAL STRESS~STRAIN RELATIONS

For a linearly elastic material, the most general form of

Hooke's law may be expressed in tensor notation as

£5 ™ S 51%in (2.2.3a)
this may also be written in matrix form :
€11 = 11 €12 €13 ©14 ©15 16 X ‘11
&
22 €22 ©23 24 ©25 €26 S92
e o
33 €33 C34 ©35 ©36 33
(2.2.3b)
(o2
2819 44 45 S46 12
SYM
=3
2213 C55 €54 13
a
28,4 66 23
| ] - L _

The inverse relationship of equation (2.2.3) may be written

= 2.2.ba)
Oi5 = Pijkp B (

or, in matrix notation

9=p & (2.2.4b)

The terms c.. are called the 'elastic compliances' and dij the
1]

rigidity coefficients'.

For a general anisotropic material (i.e. no symmetry in the

- 12 -



material properties) the elements of the matrix ¢ (and correspondingly,
D ), shown in equations (2.2.3) and (2.2.4) are all non-zero and not

interelated, hence there are 21 independent material constants.

In practice, however, real materials exhibit various forms of
symmetry in their material behaviour, which reduces the number of
independent constants in the stress-strain relations for that material.
A method for determining the form of the stress-strain relations in
such a case is as follows : When the material exhibits an elastic
symmetry then there are at least two sets of reference frames which
are, in fact, equivalent due to the symmetry, say X, and xi . The
total energy potential may be expressed in terms of the stress components
Gij and O%j and, of course, the elastic compliances, and will have
the same form in both systems, as they are, in fact, equivalent. The
stresses o%j may be transformed to the X, system using simple stress
transformation, and hence the coefficients of the terms describing the

two energy potentials may be equated. Many of the terms cij will

disappear, depending on the type of symmetry involved.

For a material which has three orthogonal planes of symmetry
(orthotropic), corresponding to the planes containing the coordinate
axes, the matrix C takes the following form, containing nine

independent constants.

-
¢= €11 €12 ©13

€22 €23 0

c33 0
. (2.2.5)

€44
SYM css
“66

- 13 -



1f a material has only one plane of symmetry, say the X X

1 2
plane, (a necessary condition for reduction of a problem to 2-Dimensions),

then the following elements are also non-zero :

140 940 S347 C56 # 0 (2.2.6)

The most symmetric case is that of an orthotropic material
where the properties in each of the planes of symmetry are identical.
This is called an 'isotropic' material, and the number of independent
constants needed to define the stress-strain relations reduce to
two ; - E, the Youngs Modulus, and v , the poisson ratio. The

matrices C and D now take the following form :

C = E c o = 2(1-v)
TG €1 &9 & 1 - a2y
€1 %
€1
1 2v
C, = m—me
2 (1-2v)
SYM 1
1
1
E) = E 1 AV Vv
1 -v
1 (2.2.8)
2(14v)
SYM 2(1+v)
2(1+v)

..14_.



PLANE STRESS AND PLANE STRAIN

Plane stress problems are ones in which the body under

consideration is planar, lying in the x “X, plane with a relatively

1

very small dimension in the x, direction; all body forces act in the

3

plane of the body and are independent of Xy » and the applied forces
and tractions are also planar and act on the edge of the body. In

such a case, o = 0 on the surfaces of the plate, and

33~ 923 T 913

without significant error, may be assumed zero throughout the thickness.
It is also reasonable to assume that the remaining stress components

Oiny Oiq, O remain constant throughout the thickness, i.e. are
12> °11° %22 &

independent of X4

It should be noted that although o,, = O , the transverse

33

displacement uq # 0 , hence £., # 0 and may be calculated using the

33

stress strain relations.

Plane strain problems occur at the other extreme of geometry,

when the X3 dimension is very large compared to Xy and Xy

The conditions that all applied forces, tractions and body forces act

in the X T % plane and are independent of Xy s still apply, and

the remaining initial condition for plame strain is that uy =0 .
In this case it may be assumed that Uy and u, are independent

of Xy and this is equivalent to specifying €43 = €93 T €54 T 0 .

Note that 033 # 0 and may be calculated using the stress
strain relations.
For any two-dimensional problem, the X; T %, plane must be

a plane of symmetry by definition, and for a general case, the stress—strain

- 15 =



relations are given by :

11 €11

€12 “13
€22 €23

33

14

24

34

44

55

56

66

11

o
22

33

g
12

o
13

o
23

(2.2.9)

Note that initial strain components have been omitted for

simplicity but may be easily incorporated by considering the strain

vector ¢

~

For the plane stress

(2.2.9) resulting in,

€11

€92

2512

or,

Inverting (2.2.10),leads to

o
Where C ,

coefficients for the plane stress case, and c® and DF

strain case.

case O

11 712

€22

- 16

33

€14
€24

Cus

Q

to be the difference between the total and initial strains.

is set to zero in equation

11

22

12

(2.2.10)

(2.2.11)

Qo denote the elastic compliances and rigidity

for the plane



For the plain strain case, O3 is not conveniently zero

and must be eliminated from equation (2.2.9).
~1

O.n) —
34 712 c33

Og3 = (€13 997 * €93 Opp * € (2.2.12)

Substitution of 044 in equation (2.2.9), yields the expression

€ . . £
for C , and upon inversion, D

For an orthotropic material (one in which the axes of symmetry

correspond to the x and x

1 2 axes) the stress strain relations may

be expressed explicitly in terms of the material constants

Equation (2.2.11) may be expressed as (plane stress)

11
iy 2 ey 2
(1 nvzl) (1 nv21)

11

11
999 oy 0 2822
21
912 612 2€1)
E
Where n = fll
22
And for an isotropic material Ell = E22 = E 3
Vo1 =y (2.2.14)
= B
C12 = T(1+v)

...17._.



. . . o
Resulting in the expression for D

- T
Do - E vE 0
i 1-v2 1~-v2
E
SYM 0 (2.2.15)
(1-v2)
G

By carrying out the process of first eliminating O34 from
the explicit form of the stress-strain relations and setting €33 = o,
the equivalent relations for the plane strain case are obtained.

QE is found to have the same form as (2.2.15) in terms of E' and

v' , where

E' = _E-«; (2.2.16)
(1=v=)

r e Y

v 1~-v

Hence the same formulation for the solution of any 2-dimensional
problem may be used, by simply adjusting the material constants

according to equation (2.2.16) when the plane strain case is required.

2.3 EQUILIBRIUM CONDITIONS

2.3.1 Equilibrium Equations in Terms of Stresses and Displacements.

Referring to Fig. 2.2.1, consider the force acting in the Xy -
direction due to 911 - The force will be
(variation of 911 with respect to xl) x (increment in Xy direction)

x (area on which the stress acts). Hence force due to 91 is given

by

- 18 -



8011
3%

1

(6x1) (6x2 GXB)

Considering all stresses acting in the X direction, and
denoting b1 as the body force per unit volume acting in the Xy

direction, then equilibrium in the Xy direction requires :

Lol 30 90
a“+821+a31+b1=o (2.3.1)
Xl X2 X3

Similar equations may be written for equilibrium in the %, and %4

coordinate directions. The three equations may now be written :

G.. ,. +b =0 |, (i,j = 1,2,3) (2.3.2)

By considering rotational equilibrium about each of the coordinate

axes in turn, it 1s immediately shown that

Oij = oji . i# ] (2.3.3)

(This is, in fact, the reason why the stress tensor is symmetric).

Equations (2.3.2) define equilibrium for any elastic body,
in terms of stresses, and are applicable to both the 2 and 3-dimensional

cases.

For an isotropic material, Hookes law, (equations (2.2.3)

and (2.2.4)) may be written :

Gij = A €1k 6ij + 2 G Eij (2.3.4)
where G = E (2.3.5)
TOIED) .3.
vE
A= e (2,3.8)

(1+v) (1-2v)
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and sij is the Kronecker Delta

§.. =1 i=j
1] (2.3.7)

8. .
1]

By using the strain displacement relations (2.2.2), the stresses

(2.3.4) may be expressed in terms of displacements
Gij = Auk’k 6ij + G(ui’j + uj’i) (2.3.8)

Using equation (2.3.8), the equilibrium equations (2.3.2) may also be
expressed in terms of displacements, resulting in the well known
Navier Equations of equilibrium.

1 1 -
W ui,ij + uj i1 + "G‘ b = (2.3.9)

As all of the compatibility conditions relating stresses, strains, and
displacements have now been included, equations (2.3.9) uniquely define
the problem, providing 3 equations for the 3 unknown displacements at

any point.

2.3.2 Energy Formulations

THE PRINCIPLE OF VIRTUAL WORK

Consider a body enclosing the domain & with a surface T

(Fig. 2.3.1) and with boundary conditions as follows

ui(S) ui(S) , SeT (2.3.10)

it

p.(S) Ei(s) , SerT (2.3.11)
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unit normal,
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Domaln §

Figure 2.3.1

General Problem Definition.
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The boundary, T , will be considered as the sum Fl + TZ , where
Tl is the part of the boundary where the essential (or geometric)
boundary conditions are applied (equation (2.3.10)), and Fz where

the natural (or mechanical) boundary conditions are applied (equation

(2.3.11)}.

Now, let the body undergo any small virtual displacements
u, such that on the surface Fl the geometric boundary conditions

are identically satisfied and Gui = 0 . Corresponding to these

displacements, the internal strains will also undergo small variations

1
6€ij = 5{}6ui),j + (éuj)’;] (2.3.12)

The work done by the internal stresses is given by :

jg Oij Ggij dq = %-JQ Oij[kéui),j + (Guj)’;] dQ (2.3.13)
Now,
{Q oij(éui)’j dq = Il - 12 (2.3.14)
where,
I1 = IQ (Oij éui)’j dq (2.3.15)
12 = IQ Sui Oij,j dq (2.3.16)

For a vector function F (with components Fi) in a closed

domain § , with boundary I , Gauss theorem states that :

F. . dp =J F. n, df (2.3.17)
[Q 3] B
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Hence,

I, = J .. n. Su, dr (2.3.18)
po i3] i
and using equation (2.2.1)

= S
I1 [r p; ou; ar (2.3.19)

Also, from equations (2.3.2) the term 0i3,3 in equation (2.3.16) for
2
12 , may be replaced by - bi , and hence the work done by the internal

stresses becomes

J P Gui ar + I bi Gui dg (2.3.20)
Tz Q
(noting that dui =0 on F,).

Hence the Principle of Virtual Work may be expressed:

f G.. 8e.. dn =( p. Su. dT +j b. Su., dQ (2.3.21)
0 lJ 1] r 1 1 Q 1 1

The linearity of the material behaviour has not been imposed on the

above equation and hence it is completely general in that sense.

Also, by introducing the strain displacement relations [equations (2.2.2))
into (2.3.21), and performing an analysis as above, the equilibrium

equations (2.3.2) may be derived. (see [5]).
THE PRINCIPLE OF MINIMUM POTENTIAL ENERGY

The Principle of Minimum Potential Energy is another of the
well-known theorems in solid mechanics, and requires that the total
potential of a body in equilibrium, usually expressed as some energy
functional, is statiomary with respect to some generalised degrees

of freedom. [9].
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The potential energy of the system depicted by Fig. 2.3.1

may be written as,

ij i3
(2.3.22)
- [F pi u1 dar
2
and for equilibrium
§T =0 (2.3.23)
Now
1 1
§II = = 8¢ €.. do + = 0 Se.. dQ
a 2 il 1] Jg 2 713 1]
(2.3.24)

Because of the symmetry of the rigidity coefficients which
relate the stresses, oij , and the strains, Eij’ (equation (2.2.4)),
it may readily be shown that the first two terms in equation (2.3.24)
are equal and hence, equatioms (2.3.23) and (2.3.24) yield equation

(2.3.21) - The Principle of Virtual Work.
MIXED FORMULATIONS

The above energy formulations have been based on the fact
that the essential boundary conditions (those defining displacements
on Fl) are identically satisfied, and hence the virtual displacements
are assumed zero on this part of the boundary. This leads to displace-
ment type models where all the applied forces are defined and the

unknowns are the displacements on the F2 part of the boundary.

However, if the model is of a mixed type, where there are

both displacements and tractions unknown on the surface then both
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parts of the boundary have to be considered. As the displacement
boundary conditions are now not identically satisfied, and-hence,

there is a contribution to the total potential energy due to this

part of the boundary. The most widely known mixed principle is

given by the Reissner functional,which includes an extra term in

the total potential enmergy functional (equation (2.3.22)), corresponding
to the work done on the T, part of the boundary, (see [§]). The

1

Reissner energy functional is given by :

1
M, = J = 0.. €., d9 - [ b, u, d0 - J p. u, dTl
R Q 2 713 13 o t 1 r 1 1

2 (2.3.25)
+ JT pi(ui - ui) dr
1
The variation of the extra term is,
[F cSpi(ui - ui) dr - JF 1 Sui dr
1 1
Thus the Principle of Virtual Work now takes the modified form :
X = p. Su, + . Su,
L) 013 5813 <19) JT p: 61_11 dr Jr ps 5ul dar (2.3.26)

1

. JP (ui - ui)dpi 4r + JQ bi 6ui a0

2.3.3 The Weighted Residual Technique

Consider the general linear differential operator L(u) in

Q¢ , which must satisfy the equation

L{u) - b=0 in Q (2.3.27)

with boundary conditions S(u) = r on Tl
(2.3.28)

G(u) = g on F2
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where the total boundary .I' = Fl + T2 , and S and G are differential
operators giving the essential and natural boundary conditions,

respectively.

If an approximate solution 'u' 1is now introduced, this

will not exactly satisfy equations (2.3.27) and (2.3.28) and there
will be a resultant error involved. The errors involved may be

defined as follows

e =L(u) -b#0
e, = S(u) -~ r #0 (2.3.29)
€, = G(u) = q# 0

The inner product of two functions f1 and f2 is defined as

<f

1° f2§z= JQ f1 f2 daQ (2.3.30)

A general method of minimising the errors (2.3.29) is to
distribute them, by defining a weighting function w , such that the

following relationship is satisfied. (For further reading, see

[«], [5], [sD-

<g, w>_ = <g

a 0 S(w)>F - <€1, G(W>>F (2.3.31)

2 1

or <L(u) - b, W = <G(u) - q, S(w)>r - <§(u) =-v., Glw)> (2.3.32)
) 1

This may be considered the starting point for a wide variety of
weighted residual techniques, such as Finite Differences, Method

of Moments, Collocation Method, Galerkin technique etc. (see Eﬂ).
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The Finite Difference technique is simply derived by taking w ,
the weighting function in equation (2.3.32), to be the dirac delta,
replacing the derivatives by finite difference expressions, and

identically satisfying all boundary conditions.

The well known ofiginal Galerkin technique assumes a
weighting function w , which is the same type of function as the
solution, u . However this requires that the assumed function be
of high enough order to allow for the existence of the derivatives
imposed by the differential operators. These continuity requirements
may be relaxed by lowering the order of the function space of which
u and w must be sub-sets. This is achieved by integrating

(2.3.32) by parts, obtaining what is known as a ‘'weak' formulation.

Noting that, for a self adjoint operator, L(u) , integrating

by parts a sufficient number of times,

<L(u), wro = <D(u), D(W)>Q

(2.3.33)
* <G(u), S(w)>,

(where, D is a differential operator) equation (2.3.32) then becomes,

D(w), D>, = <q, SG>, + <S@) - 1, G
’ 2 I-'l'
(2.3.34)
+ <G(u), S(w)>r + <b, w>

1 Q

where u may now be of lower order, but w of higher order, than

the functions necessarily required by (2.3.32).

Equation (2.3.34) may now be used as the basis for the Galerkin
type Finite Element technique as u and w may be chosen to be

of the same order. It is important to note that by considering the
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equilibrium equations and boundary conditions for the elasticity
problem (equations (2.3.2),(2.3.10), (2.3.11)) as a particular case

of the equations (2.3.27) and (2.3.28), and by choosing the weighting,
w , to correspond to some virtual displacement field, then equation
(2.3.34) corresponds exactly to the general Principle of Virtual

displacements given by equation (2.3.26) in the previous section.

Finally, equation (2.3.34) may be further integrated by
parts until the original operator, L , now operates on Ww as
opposed to u . (This is still assuming L is self-adjoint). If
w 1is then chosen such that L(w) = 0 , the problem is reduced to
integrals only on the boundary, (other than the body force terms).
A convenient choice for w , is that which forces w to satisfy

the fundamental problem of a point source, given by the equation
L{w*) + éi =0 (2.3.35)

where Gi is the dirac delta function representing a point source
at 'i', and w* 1is the corresponding response field within the

domain, given by the solution of (2.3.35). Now the term

<u, L(w*)>Q = <yg, - <Si> =~y (2.3.36)

i . . . .
where u~ is the value of the variable u , at the source point 'i'.

Hence, equation (2.3.34) becomes

Cl ul + <r, G(w*)> + <S(u), G(w*)> =
r r
1 2
(2.3.37)
<q, S(w*)>_ + <G(u), S(w*)>_, + <b, w*>
Tz 1‘1 Q
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i . . e
where ¢ 1 for the point 1 1inside

0 for the point i outside

0
[

When the point 'i' 1is on the boundary of the domain, then the
value of ¢ 1is mot trivial for the general case, but this problem

will be discussed in much greater detail in Chapter 3.

2.3.4 Discussion

This section has reviewed some of the fundamental relations
for determining the stressstate of a body in equilibrium under some
applied loading. The equations of equilibrium were shown to be
equivalent to statements of Virtual Work or Minimum Potential Energy,
and furthermore these were shown to be special cases of a much more

general technique -~ that of Weighted Residuals. (For further reading,

see [11], [12]).
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CHAPTER 3 ~ THE BOUNDARY ELEMENT AND FINITE ELEMENT FORMULATIONS

3.1 INTRODUCTION

This Chapter begins by defining the fundamental problems of
a point load in a homogeneous elastic space =~ both infinite and
semi-infinite - and presents the relevant solutions for displacements

and stresses.

This fundamental solution is then used to reduce the governing
equations of equilibrium, defined on the domain of the problem, to

a form which involves only integrals on its boundary.

These equations may be solved numerically by dividing the
boundary into a discrete number of elements and assuming interpolation
functions for the unknowns, similar to those used in Finite Elements.

This gives rise to the Boundary Element Method (BEM).

A brief description of the Finite Element Method (FEM) is

included, and is shown to have a common basis with the BEM.

Finally a brief description is included of the computer
implementation of the Boundary Element Method for the 2-Dimensional

linear element case.

3.2 THE FUNDAMENTAL PROBLEMS FOR INFINITE AND SEMI-INFINITE DOMAINS

3.2.1 The Kelvin Problem —~ Infinite Space

THE 3-DIMENSIONAL CASE.

Consider the problem depicted in Fig. 3.2.1 within

a domain § 3 a unit point load is applied at the source point X
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0  represents the Infinite Domain

X = X(xi) denotes the source point

4
]

Y(xi) denotes the field point,

Figure 3.2.1. Kelvins Problem. Force acting in a
3-Dimensional infinite space.
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and the corresponding displacements and stresses are sought at some
field point Y . The solution of this problem was originally
achieved by Kelvin and is readily available in the literature (Eﬂ,
[2], [3]). cruse (4] gives the expressions for the displacements
and tractions, using an indicial notation consistent with the

notation being used in this work.

Consider a unit load applied at a source point X in the
k' direction (k = 1,2,3) and the effect of this source at some
field point Y , on the surface of the domain (defined by the unit
normal g), and at a distance r from X (Figs.3.2.2). The
displacements and tractions at Y are given by uik and pik
respectively. The subscript 'R' refers to the direction of the
source (at X), and the subscript 'k' refers to the direction of
the response, (at Y). (This notation is clearly shown in Figs. 3.2.2).

The expressions for the fundamental solutions are

1
= e - S
Uzk IO [(3 4v) gkt Trg T> ] (3.2.1)
p%, = 1 = [(1-2v) s, + 3r r, | = (1-2v) [r,, n,-r, n ]
2k > |%n 2k o Tk s " N
8m(l-v) r
(3.2.2)
where:
G 1is the Shear Modulus
v is the Poisson ratio
sz is the kronecker delta;
52k = 1 2 =k
62k = 0 2 #F k

r is the distance between the source point and the field

point i.e.



* *
P11°Y11

(a)

(b)

Figure 3.2.2. Definition of the displacement and traction

% %
tensor udy and Prk
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4

3 2
= . - X, 2.
T ;Z (YJ XJ) (3.2.3)

i=1
and r,. represents the derivative of r , in the 'i' direction

with respect to the field point , Y .

3 —
= -1 - x.)2 -
hence, t,, =g =5 | L (Y, = %) 2(Y, - %) (3.2.4)

Nl

THE TWO DIMENSIONAL CASE

The analogous 2-Dimensional solution is given by :

i 8né(l~\)) [(3"*") In H S T Ty r,J (3.2.5)

% = 1 ar - - (1=~ -
Pik T Gn (1wt [Bn [a-2v) 6y + 2rsg xy ] = -29) [ryp my -y “2]] (3.2.6)

This solution is for the plane strain case, but a formulation
based on this may be used to solve plane stress problems by adjusting

the material constants according to equations (2.2.16).

3.2.2 Semi-Infinite Space Solutions

THE THREE DIMENSIONAL CASE

A 3-Dimensional semi-infinite space occupies the domain
e <X <w, @<, <, 0 < Xy <@ i.e. 1s bounded by the
surface Xy = 0 , which is traction free. The most general solutionm,
for a point load within the domain (see Fig. 3.2.3) is given by

MINDLIN [7]. The Boussinesq—-Cerruti solution [2], for the fundamental

problem of the load acting at the free surface, although developed
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earlier, can be derived as a special case of Mindlin by setting
c =0 (Fig. 3.2.3). Also by allowing c¢ =+ « , the Kelvin solution

is obtained.

The general Mindlin solution,[?l, was developed, implemented,
and tested extensively by NAKAGUMA [1@]. The solution lacks
symmetry with respect to the three coordinate axes, and as such
cannot conveniently be expressed using a neat tensor notation.
However, for reasons of completeness and easy reference, the explicit
form of the solution for the displacements and stresses are quoted
in Appendix B. The Boussinesq-Cerruti solution, however, is very
simple, aé only the response on the free surface is required for
its implementation with the BEM. Also, the free surface is traction
free (by definition), so only the fundamental displacements on the

surface need be defined. These are given by

ux, =K T(1~v) + v r%li
up, = KV T,y T,

u¥, = K (0.5 -~ V) T,y

13
(3.2.7)
ug, = K L) +v 15,
u§3 = K (0.5 -~ V) sy

u%*, = K (1-v)

33
where K = 1
2nG r
* = *
and u21 u12
% o= - yk
Y32 Y23
% = *x
Y31 Y13
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THE TWO DIMENSIONAL CASE

The 2-Dimensional problems analogous to the above are
depicted in Figs. 3.2.4 and 3.2.5, the domain under consideration
9 axis (i.e. X, = 0). The general solution was
first devised by MELAN [14], and again may be obtained from Mindlin

bounded by the x

by integrating the solution for a point load, to form a solution
for a line load, and performing the relevant coordinate transformations.
A special case of this solution, is again, when the load is applied
at the free surface. This solution was first devised for a point
load perpendicular to the surface, FLAMANT [15], and subsequently
modified by BOUSSINESQ [16], for the general case of an inclined

load at the surface.

This solution is given by TIMOSHENKO [1], in terms of
polar coordinates, r , 6. For a point load P , applied at the
origin, the position of the field point, Y , is defined by its
distance from the origin, r , and the angle it subtends from the

line of action of the force, 6 ; (see Fig. 3.2.5).

The stresses at Y are given by :

2P
g = = — cosB
T Y
oe= 0 (3.2.8)
Gre = 0

and these may be integrated to yield the radial and tangential

displacements (u and v , respectively), given by :
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u o= - 2P cos® 1In(r) - (-v)P 0sin® + A sin® + B cosf (3.2.9a)
TE TE
_2vp . 2p . (1-v)P
v o= n;E-51n6 + - In(r) siné = 0 cost
(3.2.9b)
+ Sl:ng-sin@ + A cos® -~ B sin® + Cr

TE

where A, B, C are constants of integration and must be determined
from the physical constraints of the problem. In order to facilitate
the implemention of this solution, using the BEM, equations (3.2.9)
must be specialised for the case of the field point Y 1lying on

the free surface, X = 0 , and written in terms of the rectangular

p: &

coordinate system X5 %,

For the case of P acting vertically (in the X, direction),

we can assume that the constraint is such that there .is no lateral

displacement along the x, axis, i.e. v =0 for 6 =20 .

1

This yields A = C = 0 . Furthermore we must restrain the system
from a rigid body translation and thus assume zero vertical

displacement at some point on the Xy axis, at a distance, d

3

say, from the origin. We then find

_ 2P
B = = In(d) (3.2.10)

For the case of P acting horizontally, an anti-symmetric

v and

condition applies; Va0 = g=1 ue=0 =

- u . To prevent

B=m
a rigid body translation we fix the horizontal displacements at the
surface at some distance, b , say from the origin. The constants

of integration then become
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. . %
Again denoting Uty

_ (-

A= g
2
= S b
B — 1In(P)
cC=0

as the displacement in the

the field point), due to a unit load in the 'gf

(3.2.11)

'k" direction (at

direction,

(at the source point), the solution (3.2.9) may be specialised for

the free surface, and expressed as follows

where, A = + 1 for the
X, side
and A= ~—-1 for the
%, side.

and where ai(i = 1, 4)

u#® =

22

field

field

are constants given by :

1

nE

§
= ino
ies ]

mE

o, = a, In(r)

2

(3.2.12)

point , Y , lying on the positive

point, Y , lying on the negative

[2 1n(d) - (1+v)]

(1-v)
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free surface - X1 %, plane

9] (XB > 0) represents the semi~infinite
domain

X denotes the source point

Y denotes the field point

Figure 3.2,3. The Mindlin Problem. Force acting in the
interior of a 3-Dimensional semi~infinite
space.,
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free surface free surface

x2 - x2 -
boundary at «

Figure 3.2.4. The Melan Problem ~ Force acting in the
interior of a 2-Dimensional semi-infinite
space.

P
x2 free surface ,////
-
X

boundary
at =

Figure 3.2.5. The Bouosinesq Problem. Inclined force

acting at the free surface of a 2-Dimensional
semi~infinite space,
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It is important to note that the displacements camnnot be
defined absolutely, only in relation to some chosen fixed datum :-
thus the constants b and d can be chosen quite arbitrarily
and not affect the relative values of the displacements, upon which

the values of the stresses depend.

3.3 REDUCTION OF THE EQUILIBRIUM EQUATIONS TO A BOUNDARY INTEGRAL
FORM

3.3.1 Boundary Integral Equation for an Interior Point

Referring to Fig. 2.3.1 we require the solution of the

equilibrium equations

ojk,j + bk =0, 1in Q (3.3.1)

with boundary conditions

(3.3.2)

For an assumed solution, u s the error is minimized by the weighted
residual statement (2.3.31), which can now be written in the terms

of this particular problem as,

) R x == —r *
[Q(GJR,J * by ug 4 JT (py Py Juf dT
2

+JF (uk~uk)p§ dr
1

(3.3.3)

where uﬁ, pﬁ are interpreted as weighting functions.

* * . '
Pk and u; are related by virtue of the fact that pﬁ is the traction
distribution on the boundary corresponding to the displacement

field ui .
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or in general,

- % *
I ij,j uk dq + { pk uk ar
Q r
(3.3.7)

= * *x
JT uE Py dr + Jo bk ux dQ

We now interpret the weighting field (o?k, ui, pﬁ) as

the solution to the fundamental problem, for a single unit point

load acting at 'i' . This problem is represented by the equation
o¥, . + Ai = 0 (3.3.8)
3k, %
where Ai represents a point load at 'i' acting in the 'Q'
direction,

For each point 'i' , within the domain & , the domain

. . . i .
integral in equation (3.3.7) becomes, - u , giving,

i % = % f *
up * [ PR Uy dar [ u% p, dl + ) uk, bk dQ (3.3.9)
r T Q
where, u' represents the displacement at 'i' in the 'g' direction.
and, U*Qk’p*zk are the fundamental solutions for displacements

and tractions, representing the response in the 'k’
direction due to a unit load (at 'i'), in the '&' direction.

(see section 3.2).

Equation (3.3.9) is the well known Somigliana identity, giving the

'1' , within the domain @ , in terms

displacements of any point
of the displacements and tractions on the boundary of the domain,

T .
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An alternative derivation of the Somigliana identity

(see, [8]), is to write Bettis theorem as :

IQ (uj Dy (uf) - uwk Dy (w)) dn
(3.3.10)

= J u. p¥ - u¥ p.)dr
T( i P] ] pJ)

Which 1is equivalent to writing the equilibrium equatioms (3.3.5)

in terms of displacements and integrating both sides by parts. (It

is interesting to note that (3.3.10) corresponds to Greens second
theorem) . Djk is the differential operator of the Navier equilibrium

equations (2.3.9), in terms of displacements.

1

D.. (u.) = =y, .. +u ..=20 3.3.11
jk ] 1-2v 73,3k K,3] ( )

The first term in equatiocn (3.3.10) becomes 'u§ , as uﬁ is

the fundamental solution ; The second term of equation (3.3.10)
represents the distribution of the error in the assumed solution,
wos weighted by a function, uﬁ , and summed over the domain.
Setting this term equal to zero implies the minimisation of this
error in an average sense over the domain €. Equation (3.3.10) then

results, in the Somigliana identity (3.3.9). (The body force terms

have been omitted for simplicity).

Although the weighted residual formulation appears more
cumbersome than the second altermative, the processes are equivalent,
as the general weighted residual statement simply starts at a degree
of integration further back; It should be noted that we are still
using a weighted residual concept in the argument used to set the
second term of equation (3.3.10) equal to zero. The more general

formulation presented in the first part of this section has the
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advantage of enveloping the Finite Element technique in additiom to
showing how the Boundary Element method can be thought of as a
special case of a much more general process for the numerical

solution of differential equations.

3.3.2 Boundary Integral Equation for a Boundary Point.

The Somigliana identity (equation (3.3.9)) is valid for the
source point 'i' 1inside the domain Q . When this point is moved
to the boundary, I , the integrals involved in equation (3.3.9)

become singular at 'i' and must be evaluated in the Gauchy

Principle Value sense. Consider the body augmented by a small

1

hemisphere, radius ¢ , centred at i' , such that the boundary is

now made up of T + FE , and the point 'i' now lies within

I'~¢
the domain of this augmented body. (See Fig. 3.3.1).

The boundary integrals of equation (3.3.9) may now be
+ J and evaluated at the limit as
T

TF"E €

considered as the sum J
¢ + 0 . The evaluation of the term J is facilitated by employing
r

a spherical system of coordinates (Fig. 3.3.2); details of the

integration are given here for the 3-Dimensional Kelvin solution.

(See Dﬂ).

Consider the first integral in equation (3.3.9) as two parts:

x = * *
JT Y POk dr [ U Py dal + J Uy plk dar (3.3.12)
r r
I'-¢ €
let
_ lim N
I = 0 JF u PRy ar (3.3.13)
€
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Substituting for P*Qk from equation (3.2.2),

_ lim [ _ or g
= 0 [ Jr “k{an [1-2v) s, + 30, 7]

€

(3.3.14)
- (-2v) [ry) =Ty my } ;22%%3325 ]
Now, for the particular case of the hemispherical region
or i
Eii =——=n, =e; (3.3.15)

Where, e, are the projections of the unit normal vector
on the X coordinate axes. The second term in equation (3.3.14)

becomes,

r, r,k - r,k r,g =0

Noting the fact that dr _ 1 , equation (3.3.14) may now be written,

dn
_ lim | a dar

I= 5 { u [(1-2v) 8 + 3r,, Ty - (3.3.16)

FE gn{l-v)r

and expanding (3.3.16) for the instance when £ =1 ,
_ lim | i, i i i
I= 2% Jr [ﬁl (1-2v) + 3u1 eje, + 3u, e,e, + 3u3 e1e3]
€
& (3.3.17)
sind do dg
Y 8m(1-v)

The integral is now independent of r and may be expressed in terms

of & and ¢ omnly.

27 (w/2 ; ; 5
I = - J J ul(l—Zv) + 3u1 sin?8 c052¢ + 3u2 sin%@ cos¢ sind
0 0
i . 2 sinb do dé¢ (3.3.18)
3u3 sinf cos<¢ ENGEDE
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'I' is now reduced to integrals of a standard form which may

readily be evaluated to yield the following result:

—[(l~2v)2w + Zw]ui

1= T EED) (3.3.19)
_-4@-v) i 1 i
hence, 1= m ul = 5 Ul

The same result applies for £ =2 and £ = 3 , giving the combined

result as

1
I= J u, p*, dI' = - 5 Uy (3.3.20)

The second integral in the Somigliana identity (3.3.9) may be written

-

* = * *
J Pr Uik dr [ P Uy dar + J P, Uk dar (3.3.21)
T FI’-E TE

The fundamental solution for uik (equation 3.2.1)) is of the

order % as opposed to L for pik , and when transforming to

r2

L

spherical coordinates, there remains a factor 'r' in the numerator,
i.e.
1
1= 0 £($, 9) r do do (3.3.22)
>0 re

Hence the term disappears in the limit of e+0 , and therefore,

this integral does not introduce a new term to the Somigliana identity.

The same analysis may be applied for the 2-Dimensional Kelvin

solution and in fact yields the same result.

The Somigliana identity may now be written for any point 'i'
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part of surface
(enclosing Q),
containing the

Figure 3.3.1. Augmented Surface.

point 'i'.
(Note : As the surface Fg is hemi-
spherical, r and n aré in the same
direction i.e. «
H.
ar _ 1) A 3
an
D
w
0
[&]
-
i
T D
E]
P .
2 - ol
& LN,
® N
& &,
o N,
< N
© N
Z N
LN N
AN
r, =7t sin® sing

Figure 3.3.2. Definition of Spherical Coordinates
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for any internal point 'i' , the displacement in the 'R' direction,

given by :

= * - % *
u, Jr uf Py dr {r PEL Y dr + JQ bk uk a0 (3.3.25)

The stress at 'i' can be obtained by differentiation, and for an

isotropic material, using the Kelvin solution, the solution is given

by : (see [5]).

055 = [r Dy Py 4T - Jr S o 4T J D ;s by 49 (3.3.26)

Q
where :
:l - —
Dkij ;a‘ {(1 2v) [ﬁki r,j + 6kj T, dij T, ]
(3.3.27)
Tsg Tos Topf Za(l~w)
S, .. = 1o B 3L [(1-2v) 6., t,, + v(b., t,. + 6., t,.)
kij ~ B an iji Tk ik T3 ik T
Y Ty r,k] + Bv [ni r,j r,k + nj L. T, ]

(3.3.28)

- )
+ (1-2v) [}nk Ly r,j + nj Sik + 0y éjé]

1
- (174v) 5ij} e

This solution applies to both the two and three dimensional cases:

For 2-D «a

[
—
w
i
e
<
i
~

For 3-D «a

[t}
N
w
i}
W
-
L1}
w
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3.4 THE BOUNDARY ELEMENT METHOD

As most of the applications presented in this work are
2-Dimensional, the following matrix formulation will be described
for problems in two dimensions. However the process involved can

be readily extended to the 3-Dimensional case.

At this point it is convenient to write the Somigliana

identity (equation (3.3.25)) in a matrix notation :

Define u* as a 2 x 2 matrix with elements uik ,

~

(L, k =1, 2), and p* ,similarly, with elements pzk i.e.
% * * x|
P11 P12 "1 Y12
p* = ; u* = (3.4.2)
* y % %
P P “21 Y22
The unknown displacements and tractions, and the known
body forces, (uk, Py > bk) may be written as vectors:
u = ; p = 3 b = (3.4.2)

The Somigliana identity, equation (3.3.25) can then be expressed

in matrix form as,

tout o+ J p* u dI = [ u* p dT + [ u* b dQ (3.4.3a)
r r Q

or

c(8) u(s) + J p*(5,Q) u(Q) dr(Q)
. -

= J u*($,Q) p(Q) dI(Q)
T

+ jQ u*(S, q) b(q) da(q) (3.4.3Db)
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Element

A

Nodes

v

(a) Constant elements

/ ~&—

Element

*— Nodes

(b) Linear elements

Element (curved)

End
Nodes

™~~~
Mid-side
S~ Nodes

(¢) Quadratic elements

Figure 3.4.3 Two dimensional body divided into boundary

elements.
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where S 1is the source point
Q 1is a field point on the boundary T
q 1is a field point in the domain

(see Fig. 3.4.2)

The type of notation in equation (3.4.3b) is more complete

and found commonly in the literature, however, for convenience,

the simpler notation of equation (3.4.3a) will be retained in this
work. The boundary may now be divided into a discrete number of
elements with defined nodal points, and the domain divided into cells
for the numerical evaluation of the body force term in equation

(3.4.3). See figure 3.4.1

Consider the case of the boundary values of u and p

-~

given by some interpolation functions, such that;

T n
u = u

~ ~

(3.4.4)

e}
]
r e
el

n n . .
where, u and p are the nodal values of displacements and tractions.

The simplest possible elements are those for which u and p
are constant over the element and consist of a straight line with a
central node. (Fig. 3.4.3(a)). The value of p and u over the
whole element is taken as constant and equal in value to that at the
node. In general u and p can have any variation (Figs. 3.4.3)
simply by choosing the appropriate interpolation functions ¢ and VY
These functions are standard interpolation functions similar to those
used in Finite Element formulations, the main difference being that

they vary only along the boundary T© as opposed to over the domain

Q0 , which in fact lessens their complexity. 1In order to find the body
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force terms the domain has to be divided into a series of cells
(Fig. 3.4.1), or internal elements, however, in contrast to finite
elements this process does not introduce any additional internal

unknowns.

Substituting equation (3.4.4) into the matrix equation (3.4.3),

we can write for each particular node, i

(3.4.5)

where: NE 1is the number of boundary elements
M is the number of intermal cells
Iy is the surface of the '%' boundary element

Q is the area of the 'k' internal cell.

.1

For the general case of an element with 'n' nodes the integrals

in equation (3.4.5) will be of the form:

j- [61 05---0,] p# ar
Ty
(3.4.6)

Jrz [oy ¥geeew ] woar

The products ¢s p* and vy g* (i= 1,n) are evaluated
numerically, usually employing some local homogeneous system of
coordinates for the interpolation functions, and using a one dimensional
Gauss Quadrature scheme. Details of the interpolation functions and
integration scheme are readily available in the literature (e.g. see

{}]), and will be briefly discussed in Section 3.6.
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Evaluation of expressions (3.4.6) and (3.4.5) produce,

for each element, a set of submatrices

ipz
th IR of
ip,

gg)k ‘..Qg

ipn
Lk

ipp
2k

(3.4.7)

i iy .
where; pIm ang gqi? are 2 X 2 submatrices

'm'th node of element

ip1
h%k
and -
ipl
ok
Lk
(k,2 =1, 2)
'i' refers to the source point
and P refers to the

the integration is

These submatrices may then
G such that contributions
are added together. For a

a set of equations (2, for

being carried out.

1

P

t

, over which

be assembled into global matrices H and

at a node common to two -elements

particular node

1ot

the 2-D case) in the

B

i' , this will produce

and G matrices,

and when this process is carried out for all nodes, equation (3.4.5)

may now be written :

g U+

4

T >
]
[P
3av]

Jes}

(3.4.8)

Where U and P are global vectors containing the displacements and

tractions at the NN nodes on the boundary, and B

is a vector

containing the values of the body forces at the internal nodes.

Let us now call :

1]
gk

1]
Bgs

i

~
L3

A~

h

1]
2k

i]
Lk

i
+
ok

.-,56._
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hence, equation (3.4.8) may now be written

o

U= g P+ B (3.4.11)

Note that N1 wvalues of displacements and N2 values of
tractions (N = N1 + N2) are known on the boundary, and hence in
the U and P vectors, there remain N unknowns, which may all
be gathered into a left hand side vector X ; after reordering the

equations, we obtain;

AX = F + B (3.4.12)

Equation (3.4.12) may now be solved to yield all remaining
unknown displacements and tractions on the boundary. Equations
(3.2.26) and (3.2.27) may now be implemented to yield the solutiom

at any internal point.

It should be noted that in the general case of using linear
or higher order elements, the nodes do not necessarily lie on a
smooth boundary, and as such the diagonal submatrices of H (i.e.
hii) cannot be calculated using equation (3.4.10). However this

may be overcome using rigid body motion considerations:

For a closed body with zero applied tractions undergoing a

rigid body translation, equation (3.4.11) becomes:

(e

Uu=0 (3.4.13)

(body forces have been omitted for simplicity).

In order for equation (3.4.13) to be satisfied for a unit
translation in each of the coordinate directions in turn, the sum of

the submatrices corresponding to each node 'i' must be zero. i.e.
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NN i3
) onil =0 (3.4.14)
Lo P TR

i=1

Hence, once the off diagonal submatrices of the H matrix
are known, the diagonal terms may be calculated by a simple summation.
For infinite or semi~-infinite regions, the boundary at infinity must
be considered in order to allow the 'body' to undergo a rigid
translation. The terms in the H matrix will now consist of two
integrals :-

% %
JF pzk dr + Jr pﬂk dar

<]

The second integral may be evaluated analytically, to produce

an extra contribution in equation (3.4.14), i.e.

8o (3.4.15)

N? 13

h? =8
P

For an infinite region using the Kelvin Solution, the

I surface is taken as a sphere of infinite radius and has been
evaluated, yielding the result §2k = §2k ([26], [?7]). Similarly
for a semi~infinite problem, using a Mindlin or Boussinesq Solution,
the additional surface is considered as a hemi-sphere of infinite

radius, and again gives §2k = sz . ([10]).

3.5 THE FINITE ELEMENT FORMULATION

This work will be concerned with the Finite Element Displacement
Method (FEM) and, as such, a brief description of the formulation will

be given here. Full details are readily available in the literature

(e.g. [19], [20]).
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Consider a body as shown in Fig. 2.3.1 in which the equation

o. , + b, =0 3.5.1
sk, Pk (3.5-1)

must be satisfied, with boundary conditions

(3.5.2)

If we assume that the displacement boundary conditions on
Fl are identically satisfied then the Weighted Residual Statement

(equation (2.3.31)) may be written,

% = -5 %
IQ (Ojk,j + bk) u¥ dg J (pk pk) uf ar (3.5.3)

Iy

and integrating by parts, we have,

% do = b u¥* % .5,
J ij Ejk g J P U ar + j bk uk a (3.5.4)
Q r : Q
2
which is in fact the Principle of Virtual Work derived in section
2.3.2 (equation (2.3.21)); €§k and uﬁ are any mutually compatible,

virtual strain-displacement fields. Equation (3.5.4) may be written

in matrix notation as:

J s*’T o do = f u*’T p dr
f T

(3.5.5)

+J u** L b do
-

We now divide the domain into a discrete number of 'Finite Elements'
and assume that over each element, the variation of u and u¥*
can be approximated using their values at the nodes of each element

and a set of interpolation functions - the same for both. i.e.
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u=4¢ u
(3.5.6)
*
ux = d)T u n

Differentiating these displacements, (equation (2.2.2)), the strains

may be expressed as

%
ex =Bu (3.5.7)
and the stress~strain relations (equation (2.2.4)) give,
n
c=Dc=DBuy (3.4.8)
The tractions on the boundary are interpolated as,
T n
p="Yp (3.5.9)
and the body forces,
b=¢l b" (3.5.10)

Substituting (3.5.6) - (3.5.10) in equation (3.5.5) and replacing the

integrals by a summation over the elements,

*n,T RE T n *n, T s T
TR J B" DB do| ul =u" ) J ¢ v dr| p"
6 - - - Pt P

B
) NE ’
L
) J 5 ¢ an| B" (3.5.11)
Q
e
where NE 1is the number of elements in @
and NS is the number of boundary segments on T .
or KU=F+D (3.5.12)
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where K 1is the global stiffness matrix obtained by assembling
the element contributions (ge = Jp BT D B dQ)
in the normal way. e
U 1is the global vector of displacements
F is the global vector of equivalent nodal loads —obtained
by weighting the distribution of tractions as shown in
the second term of equation (3.5.11)
and D is a vector containing the influence of the body forces

(known) , given by the third term of equation (3.5.11).

The displacement boundary conditions may now be imposed on
equations (3.5.12) and the system solved to yield the remaining

unknown displacements.

3.6 COMPUTER IMPLEMENTATION OF THE BOUNDARY ELEMENT METHOD

3.6.1 General Structure of Program

This section will give a brief description of the computer
program developed (using linear elements), as a basis for the

2-Dimensional formulations described in this work.

(Chapter 4 will include some 3-Dimensional applications using
constant elements; the program developed for this part of the work is
very similar in structure to that of the 2-D case, the main differences
being in the description of the element geometry and in the numerical
integration scheme employed. This part of the program was largely based
on the work of NAKAGUMA [10] and all relevant details pertaining to
these aspects are fully documented in the above reference. As such

they will not be repeated here).
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The macro flow chart of the program is shown in Fig. 3.6.1.

The MAIN program is used to define the work areas required

to solve the problem :

Several 1-Dimensional arrays required are

X : stores the x coordinate of each node
Y : stores the y coordinate of each node
FLAG : contains 2 flags for each node (one for each coordinate

direction) defining the type of boundary condition.

(Integer array).

FLAG = 0 indicates the displacement is prescribed.
FLAG = 1 indicates the traction is prescribed.
VALUE : Contains the two prescribed values of either displacement

or traction at each node (one in each coordinate direction).
RHSV : Right hand side vector of the final system of equationms.

(See equation (3.4.12)).

One 2-Dimensional array is required
A(N,N) : wused to store the left hand side coefficients of the

final system of equations (see equation (3.4.12)).

(N is the order of the system, = {Total number of nodes} x 2.)

The MAIN program then calls the routines as shown in Fig. 3.6.1.

The INPUT routine reads in all the parameters necessary to
define the problem :~ The number of nodes, and then for each

node, in each coordinate direction :-=

(1) the global coordinate; (X, Y)
(ii) the flag defining the type of boundary conditiom; (FLAG)

(1ii1) the value of the prescribed boundary condition; (VALUE).
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MAIN
PROGRAM

SUBROUTINE INPUT

SUBROUTINE FMAT

SUBROUTINE SLNPD

SUBROUTINE OUTPUT

NN N O
NN N\

Figure 3.6.1 Macro flow chart used as a basis for the
implementation of the B.E.M.
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The routine, FMAT forms the final system of equations

(3.4.12).

For node I, the routine loops on each element forming the
integrals shown in equation (3.4.5). (The details of the integration
process will be shown in the following section). For each element
two sets of terms (see expression (3.4.7))will be formed, (as there
are 2 nodes per element) and are stored in local work areas H(L,K,J),
G(L,K,J). J takes the value 1 for the first node of the element and

2 for the second node. (H and G dimensioned (2,2,2))

For each node of the element (J = 1,2) and for the response
in each coordinate direction (K = 1, 2) the FLAG is tested. If
the traction is prescribed then H(L, K, J) 1is assembled in the
global matrix A , (L = 1, 2, for each coordinate direction at node I),
and G(L, K, J) 1is multiplied by the known VALUE and assembled in
RHSV. If the displacement is prescribed then the product of H(L, X, J)
and VALUE is placed in RHSV (with a sign change) and G(L, K, J)

is assembled in the matrix A (again with a sign change).

This process is repeated for each node I in turnm, and hence
all the rows of the left hand side coefficient matrix are formed

together with the corresponding terms in the right hand side vector.

The routine SLNPD is a standard solver using Guass Elimination
and is fed the left hand side coefficient matrix and the right hand
side vector of a general non-symmetric, unbanded set of linear equations.
After the elimination process, RHSV is returned containing the solution

vector.
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The OUTPUT routine sorts out the solution vector into displace-
ments and tractions by checking the values in FLAG, and outputs the

results.

3.6.2 Numerical Integration

For each node 'i' , on the boundary, the Somigliana identity
in its discretised form (equation (3.4.5))requires the evaluation

(for each element), of the terms:

j p* ¢T dl' and f u* ¢T dar (3.6.1)
TQ - FQ -

To facilitate the process a local coordinate & 1is used,
which varies between + 1 and = 1 at the 2 ends of the element,

[see Fig. 3.6.2(3)). The shape functions can now be expressed :

1 -9

BOf -

¢, =
(3.6.2)

1

DO}

b, =5 (1+8)

The integrals in expressions (3.6.1) are performed using a
4~point Gauss integration scheme. The sample points are placed

symmetrically along the element (see Fig. 3.6.2(b)) with local

coordinates

£4 = - gl = 0.86113631
(3.6.3)
E3 = 7 &y = 0.33998104
and corresponding weightings,
W4 = wl = (0.34785485
(3.6.4)
W2 = W2 = 0,65214515
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tat

tleintegrals (3.6.1), for each source node

i' may now be expressed :
. 4
p* 6. Al = Rt = T pE (E) 6. (E) W L (a)
Jr - 1 Lk 0=l 2k 7n 1 °n n
2
( ~i2 B
J Br ey dr =gy s Zl pr (€ ) 6,(E ) W L (b)
3 n -
. 4
wk 6. dr = gb = ) uk (E) ¢, (E) W L ()
ro- 1 2k n=l 2k °n 1 °n n
L
. 4
wk ¢ dT = g2 = T uk () 6.(E) W L (d)
ro- 2 g%k n=1 2k 7n 2 7°n n
£

(3.6.5)

The expressions pzk and uzk are the fundamental solutions

given in section 3.2. The value of the fundamental solution at each

1. f

integration point 'm' can be defined in terms of the coordinates of

the node 'i' and the end nodes of the element under consideration.

For a more refined integration scheme, the local coordinates

and appropriate weightings are readily available in the literature.

(e.g. [37]).

For the special case of the source node being coincident with
one of the end nodes of the element under consideration, the terms
gii and gii may be calculated analytically. These terms will
contribute to the dominant diagonal coefficients of the G matrix,
and as the fundamental solution becomes singular at the source node,
an exact analytic answer for the integrals is desirable; this is
relatively simple as the variable of the fundamental solution only
varies along the line of integration. Although the expressions are

long and complicated, all the integrals reduce to standard forms; as

such, only the resulting expressions are given here :

..66_.



node 2

dr = L d§

+1
or, [ f(r) dr =L I £(&) dg
Ty -1

(a) local coordinate, £ ,

\h\ Numerical integration point 'k',

local coordinate €k
weighting Wk
node 2

1”4 ) /
3

\KA%/
Tit -~ T

1
source point

node 1

(b) Numerical integration

Figure 3.6.2. Local coordinates and numerical integration
along an element with a linear variation.

- H7 -



ij . e _ 22 -
8 % ch ¢y {2 1n(2)} = Cy for m=k (3.6.7)
.. 2, R, C
i3 o172 72
g8 = for m# k (3.6.8)
where
¢ = (3 - 4v)
1
o =

2 167G(1-v)

2 = length of the element
21 = projection of element on the Xy coordinate axes
22 = projection of element on the X, coordinate axis
a =3 for 1= j

o =1 for 1 # j

Remember, the diagonal submatrices of the H matrix are calculated
by rigid body motion considerations as discussed at the end of sectiom
3.4, As both the H and G matrices are not stored before any

~ -~

re—ordering is carried out, when the element contributions for each

set of rows 'i' (i.e. h;i) are calculated, a running total of
their sums must be kept, so that after the completion of each set of
rows, equation (3.4.15) may be applied to compute the diagonal

submatrices.
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CHAPTER 4 -~ 2 AND 3-DIMENSIONAL PROBLEMS

USING CONSTANT ELEMENTS

4.1 INTRODUCTION

This Chapter will give a general outline of the technique used
for combining Finite and Boundary Element solutions. The common
basis of the two techniques has been fully demonstrated in Chapter 3,
and this is used (in section 4.2) to enable a linking of the two
methods. Two approaches are available : the first is to form an
'equivalent' stiffness matrix for the Boundary Element region, which
may then be thought of as simply an additional element in an overall
F.E. system; and the second approach entails converting the F.E. part
of the solution into a Boundary Element form, and solving the problem

as an overall B.E.M. system.

This work is predominantly concerned with the formation of an
'equivalent' stiffness approach and as such we will concentrate on the
first of the above two alternatives. However using both techniques

in order to demonstrate their equivalence.

The'equivalent' stiffness formulation is implemented for
several examples using constant Boundary Elements. This is relatively
simple, as the discontinuity  problems exhibited at cormers, do not

arise in this case.

The stiffness matrix obtained using the 'equivalent' stiffness
approach, gu , is not inherently symmetric, and a simple technique
has been proposed to form a symmetric matrix gs . Comparisons of the
solutions obtained using both gu and gs are performed.

Unlike the B.E.M., the 'equivalent' stiffness approach is a
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displacement technique and does not immediatel} yield the solution for
surface tractions (or reactions), However, once the displacements

are obtained the surface tractions are readily obtained by substitution
into the original Boundary Element equations. As such, the examples
presented here concentrate on the displacements, which are of primary

importance.

Some F.E.M./B.E.M. combination examples are run for the 2-D
case. However no standard Finite Element package was readily available
to facilitate such examples in 3-D, and once the behaviour of the
"equivalent' stiffness matrix had been established, it was decided
that combination examples would have served only in a purely demonstra-
tional capacity, and did not warrant the time needed to develop the

necessary computer package.

4.2 MATHEMATICAL BASIS FOR THE CQOUPLING OF FINITE AND BOUNDARY ELEMENTS

In the previous Chapter, both the B.E.M. and F.E.M,, have been
shown to have a common basis for their formulation; and it is this
common basis which allows the relationship between them to become

apparent, and thus a linking of the two methods is possible.

The final expressions for the B.E.M, and F.E.M. are repeated here

for completeness (see sections 3.4 and 3.5).

The B.E.M. results in,

HU =GP + B (4.2.1)

The F.E.M. results in,

KU=F+D 4.2.2)



The relationship between the two is readily established by examining
the relationship between the vectors P .and F+.P contains the values

of the nodal tractions on the boundary and F contains their

equivalent nodal forces.

The vector F arises from the term representing the work
done by the applied tractions Ek in the statement of the Principle
of Virtual Work as does the vector P (see equations (3.3.7) and (3.5.4));

i.e. the term,

J ui_pk dr (4.2.3)
T

The discretised form of this term, (see equation (3.5.11)), gives,
NS

F= 7 [ J ¢ vt ar } P (4.2.4)
r=1 ~ )
T
L

oxr

F=MP (4.2.5)

Where M 1is a matrix formed by evaluating the expression

-~ o~

J ) wT dT' on each boundary segment, and assembling the contributions
T

into M in the same way as the stiffness matrix, X , is built up.

Hence equation (4.2.2) becomes

S

KU=MP +D (4.2.6)

~

which is now of the same form as equation (4.2.1)

Consider a problem consisting of two domains 0! , Q2 joined
by an interface TI , and which makes use of a finite element

formuation in 02 and a boundary element formulation in Q! (Fig. 4.2.1).
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In order to join the two parts we apply compatability and equilibrium

conditions along the interface FI , lL.e.

up = U2 (4.2.7)
P; + P2 =0 (4.2.8)

where, U% , P% refer to the displacements and tractions on the

interface FI for the region 2 (& =1, 2) .

We now have 2 alternatives as to how to approach the problem.
We may develop the boundary element region Q! as an equivalent finite
element, assemble the effective stiffness matrix with those of the
finite elements of region 02 and solve the overall system as a
stiffness problem. Alternatively we can consider Q! and 02 as

if they were both boundary element formulations.

APPROACH 1.

Using the first approach, we can transform equation (4.2,1) by

inverting G , such that
¢y - B = (4.2.9)

and premultiply by the matrix M described by equation (4.2.5),

giving
(6™ WY - e B = w e (4.2.10)
We can now define u .
K° =MG H (4.2.11)
D' = MG B (4.2.12)
F' =MP (4.2.13)



>
EIX
K/

(a) Body divided into Boundary and Finite Element

1 = pl ml
I TI + LI_I

(total boundary for region 1)

[l

I1

IT

2 2 2
re=Tr I

(total boundary for region 2)

(b) Labelling of the boundary segments for the combination
problem.

Figure 4.2.1 The Combination Problem.
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Hence equation (4.2.10) has the following Finite Element form

"u=F"+0D (4.2.14)

~

e

Although equation (4.2.14) is in fact a stiffness type relation,
the coefficient matrix %? is not symmetric, in the general case. The
numerical reason for this, is that the integration process for forming
the starting equations (4.2.1) is not a symmetric one. If the domain
under consideration could be described by a regular polyhedron with one
element on each side, then the symmetrical way in which the problem
is set up would be reflected in the symmetrical way in which the
integrations would be carried out, and symmetric matrices would ensue.
However, for a general problem elements are not of equal length or

at equivalent inclination to each other.

Figure 4.2. 2clearly demonstrates how the integration over
element B from a source at A 1is not equivalent to the integration

over element A from a source at B

The lack of symmetry arising from the different lengths of the
elements is scaled out to a large degree when the M matrix is introduced
into the formulation (equation 4.2.10). However this is not exact and
there still remains the unsymmetric inclination of elements towards
each other. It was found that the degree of unsymmetry is very slight

and when the matrix is symmetrised using the equation,

K = 5_1-(15” + gt

~

) (4.2.15)

the solution using the now symmetric matrix KS gives very good

answers, especially for the 2-Dimensional case.
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Numerical Integration
Points

(a) Integration over element B , due to a source at A .

A
Numerical /f:::::”'
Integration
Points

(b) Integration over element A , due to a source at B

Figure 4.2.2 Reciprocal Integrations for Two Elements.
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The whole problem.of the symmetry aspect is analysed in much
greater depth in Chapter 5, when higher order elements are also
considered. As such any arguments which are applicable here, are
fully encompassed in later discussioms, and the reader is referred

to Section 5.7.

The lack of symmetry due to the integration process is more
pronounced for 3-Dimensional problems, and as such, the 3-D examples
. s . .
are run using both K" and K° in order to examine the effect of the

symmetisation process.

APPROACH 2.

Using the second approach, mentioned above, for combining
the two methods, we can consider region 2 as a boundary element

type regiomn.

For region 1 we can write,

yl p!
1 vl ~ - 1 1 ~ 1
B o o] P @

1 1
Uy P1
(4.2.16)
and for region 2,
u2 p?
72 2 = 2 2 2
[5‘ 151} y2 [M MI] p2 [ * 0 ®)
~1 ~T
1 E1 = 1 = - 2 = 1 = 2
By writing P 31 ?I and HI QI ?I

we automatically satisfy conditions (4.2.7) and (4.2.8), and equations

(4.2.16 a) and (4.2.16 b) can be rearranged as follows,
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Displacements
Node
Method 1 Method 2
16 0.070 0.071
17 0.224 0.224
18 0.549 0.549
19 1.304 0.304
20 1.605 1.605
21 1.684 1.684

E=2x105 v =0.2

Table 4.3.1 Displacements in the direction of the load
for Boundary Element region of Example 1.
(Fig. 4.3.1 (b)).

EXAMPLE 2.

This example consists of a rectangular plate resting on a
large semi-circular foundation (Fig. 4.3.2 (a)). In this section,.
the Kelvin solution is used for the bounded Boundary Element region
(Fig. 4.3.2. (b)).
It should be noted that by using a half-space fundamental solution in
the Boundary Element formulation, only the discretisation of the loaded
(or interface) segment is required. A formulation based on the
Bousinesq solution is presented in Chapter 6. This example serves as
a useful demonstration of the coupling techmique, and facilitates
comparison with a Finite Element model, which also requires a bounded

domain.
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The foundation part of the problem is first considered
separately. A large F.E. mesh is used to discretise this region
(Fig. 4.3.3. (b)), and a uniform strip loading is applied along the
interface elements. This F,E. solution gives a maximum displacement

-6
at the centre of 64.8 x 10 .

The B.E.M. discretisation was then used and the 'equivalent'
stiffness matrix K° was formed. The solution of this 'equivalent'
Finite Element system yields a maximum central displacement of

66.2 x 10 °.

The above answers are in good agreement with the analytical
solution, fora strip loading on a semi-infinite half-space,given by
Timoshenko [i], of 71.5 x 10—6. The numerical solutions are expectedly
lower bounds, as there i1s an artificial restraint imposed by the
inclusion of the boundary. It is interesting to note that the B.E.M.
based solution gives a slightly better answer than the classical F.E.M.,
although the B.E.M. uses only a constant interpolation for displacements,
as opposed to a quadratic interpolation, used in the F.E.M. model.

This 1s because the B.E.M. based formulation imposes no restriction
on the displacement variation within the domain, only on the boundary;
and as such the domain discretisation of the F.E.M. introduces an

additional artificial stiffness in the model.

The overall problem was then run using the 'equivalent' stiffness
. s . .
matrix K~ for region 2. Two loading cases were used, and the

vertical displacements obtained at the top of the cantilever type

structure are compared.
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Finite Element Combination

Method Method

1.41 1.40

~ 1.34 1.33
[}
o

3 1.32 1.32
e

g 1.34 1.33
[

1.41 1.40

- 3.39 - 3.55
o~

o - 0.97 - 1.05
0
@

© 1.35 1.35
o
8

S 3.61 3.70

6.00 6.17

) bt
Displacements x 10

Table 4.3.3, Vertical displacements along the top of the
Cantilever - Example 2.

4.4 THREE-DIMENSIONAL PROBLEMS USING CONSTANT ELEMENTS

A three~dimensional constant element program, based on the
work of NAKAGUMA [10], was developed and used to examine the behaviour
of the 'equivalent' stiffness formulation for several examples of

three~dimensional problems.

4.4.1 TFinite Domains. Kelvin Solution

EXAMPLE 1. CUBE UNDER UNIFORM COMPRESSION

A cube of side length 4 is loaded with a uniform traction of

1/unit area on opposing faces. Due to symmetry, only one eighth

- 86 -~



of the cube need be considered with appropriate boundary conditions,
Fig. 4.4.1 . Each face is divided in 8 triangular elements, and

the face Xy = 0 1is loaded in the X4 direction.

The problem was first run using the normal B.E.M. The matrices

s .
k" and K were then formed, and the system solved as a stiffness

problem. As expected the solution obtained using Kp is the same

as the normal B.E.M. (The same equations are being solved in both
instances; the only difference being the way the boundary conditions
are applied, and the solution procedure). The only differences occur

in the 4th or 5th significant figures, which are due to rounding

errors.

The displacements in the direction of the load, for different

values of x. , are given in Table 4.4.1.

3

The solution given by K" is expectedly a little lower than
the exact solution, due to the artificial stiffness imposed on the
system by the constant elements. The solution obtained using %s
definitely introduces an error, and this seems to be of greater
magnitude than with 2-Dimensional problems. This again is to be
expected as the degree of unsymmetry due to the unsymmetric reciprocal
integration process is more marked in 3-Dimensions. The error is as
much as 15 ~ 207 in one or two of the displacements in the non-principal
directions (i.e. x. and X, ), but if taken as a proportion of the

1

maximum displacement is only 2 - 37%.

The relatively large differences (compared to the 2-D examples
of the previous section) are due to the fact that typical distances
between elements are of the same order of magnitude, as the representative

dimensions of the elements themselves. This causes the unsymmetric



2
1 48 Constant Elements

xq

Boundary Conditions : face X, = o, u; = 0
x, =0, u, =0
X3 = 2, ug = 0

Figure 4.4.1 Cube under uniform Compression.
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effect due to the inclination of the elements towards each other to have

a more pronounced effect on the values of the integrals.

B.E.M., and "Equivalent'
Xy EXACT 'equivalent' stiffness stiffness method,
SOLUTION method, using using
- %S
0.0 ’ 2.0 1.9760 2.0081
0.3333 1.6667 1.6416 1.5444
0.6667 1.3333 1.3025 1.2921
1.3333 0.6667 0.6657 0.6796
1.6667 0.3333 0.3274 0.3638

Table 4.4.1 Displacements in the Direction of the Load
for a Cube under Uniform Compression.

EXAMPLE 2. THICK CYLINDER UNDER INTERNAL PRESSURE

As a further example of a 3-D application, a thick cylinder
under internal pressure was analysed. The problem description
and discretisation is depicted in Fig. 4.4.2, (only a 90° sector need
be considered, due to symmetry). In order to faciliate comparisons
of displacements with an exact solution, all displacements in the axial
direction of the cylinder were set equal to zero. The 3-D problem then
corresponds to the 2-D plane strain case, for which the stress
distribution is readily available (e.g. TIMOSHENKO,[}]).By integrating

these stresses, the analytical solution for the displacements is obtained.
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E =2 x 10°
v = 0.3
p = 10

10 10

Figure 4.4.2 Thick cylinder under internal pressure.
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In order to obtain an idea of the level of accuracy available
from the constant element formulation, the problem was first run
as a normal B.E.M. system. The same mesh was then used for a run
using the 'equivalent' stiffness approach. (Both the unsymmetric
and symmetrised stiffness matrices were formed - gu and gs -
and boundary conditions applied as in the usual Finite Element
displacement technique). Table 4.4.2 gives a comparison of the results
obtained, which are in good agreement. As expected, the B.E.M.
and the solution obtained using gp are the same, and are a lower
bound on the exact solution. Although the solution obtained using

s

K® is closer to the exact solution, this is only due to the fact

that the error introduced by the symmetrisation process happens to
shift the solution in that direction. (The 'equivalent' stiffness

solution can only be as accurate as the Boundary Element solution

on which it 1s based).

It should be noted that when comparing the solution obtained
using gu and gs , the degree of the differences in the solution
depends on the relative size of the displacement components, so that
the relatively large discrepancies occur in the relatively small
components of displacement. e.g. say that at a particular point,
the displacement in the Xy direction 1s 10 times as large as the

displacement in the x., direction; then the difference in solution,

1

obtained using gs as opposed to K" , may be 2 -~ 37 in the %,

direction, but as much as 20 -~ 307 in the X direction. This is
definitely a numerical problem and needs to be studied in further

quantitative detail. However, these relatively large errors in the

small components of the solution become insignificant compared to the



dominant terms, as can be seen by the good agreement of the radial

components of displacement given in Table 4.4.2.

Radial displacements, u, X ]_O‘L1L
Radius 'Equivalent' K
EXACT | B.E.M. K" K® EXACT | B.E.M.
10.0 9.53 9.38 9.38 9.68
13,33 7.65 7.26 7.26 7.41 10.84 11.02
16.67 6.64 6.29 6.29 6.40 8.13 8.22
20.0 6.07 5.93 5.93 6.13

Table 4.4.2 Solutions for thick cylinder under internal
pressure.

4.4.2 Semi-infinite Domains. Mindlin Solution

The explicit form of the fundamental solution is given in Appendix
B, and for details of the numerical integration scheme used, see
NAKAGUMA {10]. Similar physical examples as those presented in Euﬂ
are run, firstly serving as a useful check on the program and secondly
facilitating comparisons between the 'equivalent' stiffness formulation
and the Direct Boundary Element Method.

EXAMPLE 1. HALF-SPACE WITH SURFACE LOADING.

In this example a semi-infinite, three dimensional half-space
carries a uniformly distributed load on a circular area at the
As such the Bousinesq-Cerruti fundamental solution is

surface.

applicable, easily derived as a special case of the Mindlin formulae
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by setting the term 'c' equal to zero. (See Chapter 3 and Appendix B).

In this case only the loaded segment of the free surface need
be discretised, but in order to examine more general aspects of the
solution, additional elements were used on non-loaded areas. The
circular loaded area (of radius 1.) is approximated by a hexagon,

comprised of six triangles.

The problem was first run using a mesh discretising a circular
area of radius 10, as shown in Fig. 4.4.3. The additional elements
serve to give the displacement profile outside the loaded segment, and

also enable the use of the Kelvin solution, for comparison.

The problem was first run using the normal B.E.M., employing,
in turn, the Mindlin and Kelvin fundamental solutions, and the vertical
displacement profile at the surface is compared to the analytical
solution in Fig. 4.4.4. (The exact solution for a distributed load
is used for r = 0 , but at other values of r , this requires a
complex evaluation of some elliptic integrals (see [i]), and so, the
solution was taken as that for the load concentrated at the origin,

for r >2) .

The Mindlin solution is in excellent agreement with the
analytical solution; this is to be expected as the Mindlin solution
inherently assumes a traction free surface. The Kelvin solution is
also in good agreement, but gives slightly smaller aﬁswers for
displacements, due to the fact that an artificial stiffness is
introduced into the model by cutting off the mesh on the surface at

a finite radius.
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The problem was then run by forming the 'equivalent' stiffness
matrices gu and %s , and solving the problem as a Finite Element
type displacement model. The displacements obtained using Eu are
the same as those for the B.E.M., and these are compared to the
solution obtained using %s , in Table 4.4.1. As expected, 59 R
exhibits a lack of symmetry, mainly due to the differing sizes of the
elements (their odd orientation to each other also contributes a

small effect), but this assymmetry is very slight, as can be seen

by the small differences introduced in the results when using K° .

With using the Mindlin solution, elements only on the loaded
segments are required and need not be interconnected. As a check on
the level of unsymmetry due to the differing sizes of the elements,
the same problem was run again using elements of equal size placed
unconnected, on the X and Xy axis, as shown in Fig. 4.4.5.

The Mindlin solution was used, and, as expected, the B.E.M. and gu
solutions agreed exactly with the previous run. A comparison of
radial and vertical displacement components on the surface, obtained
using %u and %S , 1s given in Table 4.4.2. As can be seen, any

differences do not occur until about the 5th significant figure,

. . uo, . . ;
showing that the degree of unsymmetry in K is very minor indeed.

EXAMPLE 2. CYLINDRICAL CAVITY IN A HALF-SPACE

A cylindrical cavity, with its axis parallel to %4 carries
a uniformly distributed load, as shown in Fig. 4.4.6. The developed
surface of the cylinder, discretised into 36 Boundary Elements, is

shown in Fig. 4.4.7. Although the use of the Mindlin solution does

not necessitate discretisation of the free surface, Boundary Elements
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were in fact placed on the surface : this enables comparison with the
Kelvin solution, and also allows examination of the response at

the surface, using the 'equivalent' stiffness approach, which is
important as this surface could form the interface of some combination
problem. The Boundary Element mesh used to discretise the free surface

is shown in Fig. 4.4.8.

For both the Kelvin and Mindlin solutions, the problem was
first run using the B.E.M., and then the 'equivalent' stiffness
matrices %U and %S were formed, and the problem solved in its
stiffness form. The displacement profiles obtained for the free
surface are given in Tables 4.4.3. Table 4.4.4 compares the vertical

displacements of the top and bottom faces of the cylindrical cavity

for all the runs.

The results for this problem again exhibit the expected
behaviour. Solutioms obtained using %u are the same as for the
B.E.M., the very slight differences being attributable to the different
numerical process of solving the equations. The Kelvin solution
gives smaller values of displacements, but this stiffness is expected,
as the semi-infinite boundaries of the physical problem are not
accounted for, as with the Mindlin solution. The differences in the
solutions between %P and %s are again present and are due to the
error introduced in the symmetrisation process. The magnitude of
these errors are of the order of 3 - 47, less for the most dominant

values (i.e. at the loaded face), than the least dominant.

The above results clearly demonstrate that there definitely
. . . . . u
exists a lack of unsymmetry in the ‘equivalent' stiffness matrix K ,

which is independent of the type of fundamental solution used, and
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the degree of which relies on the relative sizes of the elements and

their orientation towards each other.

However, if for economy reasons, a symmetric 'equivalent'
stiffness matrix is demanded, then the cost, in terms of the lost
accuracy, seems to be of a quite acceptable degree for most engineering

applications.

MINDLIN SOLUTION KELVIN SOLUTION
Radius K" K® K" K®
0.5773 1.4426 1.4441 1.3785 1.3821
1.5773 0.4996 0.5245 0.4894 0.5146
2.2555 0.3410 0.3478 0.3322 0.3414
3.8982 0.1944 0.1962 0.1901 0.1928
4.8365 0.1563 0.1573 0.1503 0.1525
7.1357 0.1057 0.1062 0.1000 0.1018
8.3873 0.0899 0.0900 0.0817 0.0847

. -3
Vertical Displacements x 10

Table 4.4.1 Half-space with Surface Loading; Comparison of
displacement profile obtained using K" and KS
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q=1
: E = 1000
Y
3 v = 0.3
“‘Txl

Figure 4.4.3 Half-space Loaded over Circular Area
(72 Elements — Elements 1 -~ 6, loaded)
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Figure 4.4.5 Mesh for half-space, using equal size elements.
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Displacements X 10° , Displacements X 10"3,
Radius ﬁsing using
kY K®
radial ~ vertical radial ) vertical
0.5773 ~-0.07574 1.44262 ~-0.07540 1.44263
1.1547 ~0.18371 0.71514 -0.18432 0.71497
2.8867 -0.07448 0.26408 ~0.07446 0.26402
4.6187 ~0.04655 0.16374 -0.04655 0.16374
6.3507 ~0.03386 0.11881 -0.03386 0.11880
8.0827 ~0.02660 0.09325 ~-0.02660 0.09325
Table 4.4,2 Half-space solution using gu and KS , for
mesh of equal sized elements.
"Equivalent' Stiffness
Radius B.E.M, K" K®
0.2887 5.730 5.727 5.914
0.9553 5.587 5.588 5.770
1.3213 5.453 5.451 5.616
2.6547 4.737 4.738 4.892
3.2647 4.360 4.359 4.427
5.4313 3.169 3.169 3.240
6.9333 2.572 2.572 2.617
(a) Mindlin Solution
Table 4.4.3 Half-Space with a cylindrical Cavity. 5
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Free Surface vertical Displacements ( x 10
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1:1250

Figure 4.4.8 Boundary Element Mesh for the Surface

\ Si ‘:3 / Elements 1 — 6 loaded

Figure 4.4.7 Developed Boundary Element Mesh for Cavity
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*Equivalent' Stiffness
Radius B.E.M, K" K®
0.2287 5.607 5.604 5.406
0.9553 5.452 5.451 5.272
1.3213 5.291 5.291 5.150
2.6547 4.593 4.592 4 .468
3.2647 4,215 4.214 4.093
5.4313 3.035 3.035 2.989
6.9333 2.424 2.424 2.390
(b) Kelvin Solution
Table 4.4.3 Half-Space with a cylindrical Cavity. -

Free Surface vertical Displacements ( x 10 ).

B.E.M. '"Equivalent’' Stiffness
ISu xS
Top Bottom Top Bottom Top Bottom
Kelvin 0.086 0.557 0.087 0.557 0.081 0.563
Mindlin 0.096 0.570 0.096 0.570 0.088 0.591

Table 4.4.4 Half-Space with a cylindrical Cavity.
Vertical displacements of Top and Bottom
faces of cylinder.
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CHAPTER 5

2-D PROBLEMS WITH TRACTION DISCONTINUITIES

5.1 INTRODUCTION

This Chapter will deal with the problem of forming an
'equivalent' stiffness matrix based on the Boundary Element Method,
and using higher order elements (i.e. higher than constant elements).
The use of higher order elements entails the placing of nodes at
geometric discontinuities on the boundary at which discontinuities
of the surface tractions often exist, and this aspect requires special

attention for accurate modelling of the problem.

The above difficulties are discussed in depth and a formulation
is presented, for the 2-Dimensional linear element case, which overcomes
these problems to a very large degree. The ideas in this formulation
may readily be extended to the 3-Dimensional problem, and the inclusion
of higher order elements presents no further difficulties once the
discontinuity problem at the ends of the elements is adequately

dealt with.

Several examples, testing the behaviour of the thus derived
'effective' stiffness matrix are presented and finally several combination

problems are run as an overall finite element displacement type model.

This chapter also includes a discussion of the symmetric
properties of stiffness relations, in particular those derived from
a Boundary Element formulation. The reasons for lack of symmetry in
certain cases are analysed and considered in the context of classical

Finite Element interpretations of the physical systems concerned.

5.2 SURFACE TRACTION DISCONTINUITIES

Consider a general problem of the mixed type, where displacement

boundary conditions are defined on Fl and traction boundary conditions
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are defined on I, . The discretisation of the surface using linear

or higher order elements will entail nodes positioned at geometric
discontinuities on the surface at which points the tractions are
different on the two elements adjacent to the node. (e.g. nodes B-G,
fig. 5.2.1). In principle, at such nodes, there are three sets of
variables :— (i) the displacement vector, (ii) the traction components
on the firsﬁ element; (iii) the traction components on the second

element.

At this point a notation is introduced which will facilitate

the mathematical definition of the problem : Consider a geometric

trf

discontinuity existing at a node 'i' with adjacent nodes

1

i~1' and

LIR4 §

'i+1', linking two elements 'j' and 'j+1' , as shown in Fig. 5.2.2.
. i i, m
Define the vectors u and p as follows :
. i,m
i 1 i,m "1
= . 2 -
u ui ; p i (5.2.1)
2 P2

where :
i . . .
u is the displacement component in the 'k'(k=1,2)
direction, at node 'i' .
i,m . . . . .
p;’ is the traction component in the 'k' direction
on the 'm'th element at the'i'th node. (m = j, j + 1)
Qj is the length of element 'j'.
In general the discontinuity problem is overcome using the
concept of a 'double node'. The 'extra' node at any such discontinuity

point gives rise to an extra set of equations in the final system
(equations (3.4.11)) thus allowing for the consideration of the 'extra'
traction. Only one of the three variables need be defined by the

boundary conditions, at a discontinuous node, and the remaining two
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Figure 5.2.1 General problem demonstrating traction
discontinuities.
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Figure 5.2.2 Definition of Discontinuity Problem
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will be yielded by the solution of the equations, as there are two

equations corresponding to that point.

However, the rows of the H and G matrices (equations (3.4.11))

corresponding to the double points are identical -other than the
diagonal submatrices of H , due to the gi term in equation
(3.4.8). The system of equations is represented diagrammatically

in Fig. 5.2.3, showing the double set of equations for one particular

point 'i'.

Consider points such as 'B, C, D', Fig. (5.2.1) at which both

. . i,1 i,2
tractions (i.e. p~’ and p~’") are known.

-~ -~

. . i i .
There is no interchange of the columns Hm and Gm in order
to form the final system, and solution of the equations will yield

1
the value of u” .

For points such as 'E' (Fig. 5.2.1) where pl’2 is unknown,

the columns Hé are added to Hi forming Hi , and these columns
are now interchanged with Gé (corresponding to the unknown Ei,Z)’
so that all the unknowns are on the left hand side of the equations.
The columns originally occupied by the Hi terms (and their

corresponding rows) are now superfluous and may be replaced by dummy

equations - i.e. zero's everywhere, with unity on the leading diagonal.

For points such as 'A' , (Fig. 5.2.1) where pl’1 is unknown,

~

the same applies except that the columns Gi are now interchanged

as opposed to G;

It should be noted that the actual inclusion of these extra
sets of equations is not necessary and the same effect as that described

above may be accomplished by modifying the elemental contributions to
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the G matrix in the assembly process. The H matrix may be assembled
. i . . .
in the normal way, as the u vector is unique, thus forming only

one set of equations for that point, and adding the contributions

tyt

at node i due to the 2 adjoining elements. For nodes where the
displacements are prescribed, these may be immediately used to
multiply out the corresponding columns and added to the right hand
side. The g matrix need not be formed as such; the contributions
corresponding to known tractions being multiplied out and added to the
right hand side vector, and the contributions corresponding to the
unknown tractions being assembled in the appropriate columns of the

left hand side matrix. A final system with all the unknowns on the

left hand side is then achieved (equation 3.4.12).

There is, however, one special case where the above technique
breaks down. If at the discontinuous node the boundary condiﬁions are
not mixed, and only the displacements are prescribed (e.g. nodes 'G'
and 'F'. Fig. 5.2.1) then there are two sets of independent unknown

i,2

tractions, corresponding to that point, (pl’1 , p 7). 1If both

the columns Gi and GE are interchanged with the columns Hi

2 . . . . . .
and Hl , then the final left hand side coefficient matrix will
contain two sets of identical rows and thus the solution will be singular.
Clearly, the problem is that there are two sets of unknown tractions

at that point and only one set of independent equations corresponding

to it, giving rise to more unknowns than equations.

This unfortunately, is a problem which arises when trying to
formulate the 'equivalent' stiffness matrix using the Boundary Element
Method. The technique always requires the inversion of the G matrix
{see equation (3.6.11)) and the two sets of identical rows arising for

each discontinuity clearly prohibits this.
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by applying discontinuous sources at the double nodes. This technique

certainly seems interesting and warrants further investigation.

A further alternative was first suggested by Chaundoneret [?3]
in which an independent set of equations is derived for any such double
point. For the case of two dimensional elastostatics, two extra
equations for each point are required. The first of these expresses
the symmetry of the stress tensor at this point and relates the surface
tractions to the normals of each element. The second equation relates
the discontinuous tractions and the boundary normals to the displace-—
ments at the discontinuity and at its two adjacent nodes. This is,
in fact, a simple 'finite difference' type of equation expressing the
invariance of the trace of the strain tensor at that point. This set
of indgpendent equations may then be used to replace one of the non~

independent sets (see Fig. 5.2.3), and thus allow inversion of the G

matrix. (See also Wardle and Crotty, [25]).

The formulation presented in this Chapter will be based on
the use of these 'extra' independent equations for any double node.
The actual mechanics of the implementation of these 'extra' equations
(hereafter referred to as the 'Corner Condition') 1s very important
as far as the symmetry of the final system is concerned; also their
implementation must be such, that the final system is reduced to only
one set of equations for any double point,in order to allow matching

with a finite element mesh.

5.3 DERIVATION OF THE CORNER CONDITION

The following derivation was first presented by Chaudoneret EQQ},
but will be detailed here for completeness, as well as introducing

a notation for its further implementation in the formation of an
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'equivalent' stiffness matrix for the system.

Consider two elements,

et

LR §

J

and

'3+1' which meet at a

and

The

node i Their incidences are measured by the angles ej
8j+1 , respectively, considered positive when measured in the anti-
clockwise sense from the positive X, global coordinate axis.

discontinuous outward unit normals at

1

i .
at?d
~

and

n

1,j+1

i

' are denoted by the vectors,

The geometry is depicted in Fig. 5.3.1 (in the

diagram the elements are not joined for reasons of clarity).

Figures 5.3.2 (a) and (b) show a differential surface element,

and the acting stresses, along

LD §

]

and

'j+1' respectively. The

lengths of the sides of these differential elements are given by the

components of the respective unit normals, as shown in the diagram.

Equilibrium of the two differential elements in each of the

coordinate directions yield the following relationship between the

internal stresses at

1,35+1
pl,J
i3
P J
i,j+1
2
1,3
Py

LIRS |

i
rni”j+1

1,]
1

O

i,3+1
R
n;,J

and the surface tractions :

0 %11
91

ni,j+1 n2i,j+1 51y (5.3.1)
“i’j “g’j %22

Equations (5.3.1) are valid for the unit normals lying in any

of the four quadrants of the global axes

may now be inverted

to yield
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Figure 5.3.1 Notation for Corner Condition
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Figure 5.3.2 Tractions and stresses on the two elements
adjacent to the discontinuous node.

- 115 -

i,j+1



—_ -

o ]2 L[ ahd v i,j+1 |
‘1|7 v ™ ™ o P1
5y _nvlt,J “i’ﬁl p;,J
(5.3.2)
i,j 1,3+l i,j+1
012 n2 nz pz
0 i, i,3+1 i,j
~ - s ’ s
22 ™ ™ P2
5 LS IO N O L G I
where D= n, n; - 0] 0, (5.3.3)
When the angle between the two elements is O or 7/2 , equation

(5.3.3) gives D = 0 , the thus equations (5.3.2) are not valid.
This is to be expected, as in this case, a discontinuous traction
at 'i' entails a stress singularity at that point, thus prohibiting

unique definition of the stress tensor.

From equations (5.3.2), the symmetry of the stress tensor

(012 = 021) requires that

i,j i,j] 1,3+1 [~i,j+1 i,j+1] i,j ] _
[“1 ) Py LTy T, Py =0
i,j+1 i,]
2 Py
(5.3.4)

Consider two sets of reference axis - (Z, T), and , (X, ¥) -

originating at 'i' , as shown in Fig. 5.3.3. The state of stress

and strain at 'i' may then be expressed with reference to either sets

of axes, and for a unique state of strain the trace of the strain

tensor remains invariant. i.e. @

€ + ¢ = ¢ + £ (5.3.5)

This is an expression of the bulk constantancy of volume of the material.
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Figure 5.3.3 Coordinate reference systems at a geometric
discontinuity.
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Figure 5.4.1 Integration around a discontinuity.
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kp kp
where h ™ and g ™ are 2 x 2 submatrices of H and G respectively,

and represent the contribution of the integration at the m'th node

of the p'th element due to a source at 'k' .

If we now only use one set of rows and columns for point

'i', we assemble allowing for only one variable at 'i' . There are
3 cases :

(i) For the case where the discontinuous tractions (Ei’j . Ei’j+l)
are known :

. i . .
The displacement, wu” , is unique and thus the sum

k(3 k(j+1

is assembled in k'th rows and i'th columns of H .

The corresponding contributions to the G matrix (expression
(5.4.2)) need not be assembled, as all the terms are known and may
be multiplied out and added to the right hand side vector of the final

set of equations (3.4.12).

.. . i .
(ii) For the case when the displacement, u ,» and one of the tractions
P

.. N
(either pl’J or pl’J 1)

~ -~

are known.

In this case the displacement is used to multiply both the
h contributions (expression 5.4.3) to form a term in the right
hand side vector, as does the known traction with its corresponding
g contribution. The remaining unknown traction becomes an unknown
in the left hand side vector, and its corresponding g sub-matrix is

placed in the appropriate column of the left hand side coefficient

matrix.
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s . 1
(iii) For the case when only the displacements, u” , are known:

‘ . .o iy
In this case both tractions (pl’J ’ pl’J 1) are unknown and

we require the additional relationship provided by the 'Corner Condition'
(equation (5.3.18)) in order to uniquely define the problem. Consider

the integration performed over the element 'j' (Fig. 5.4.1), which

will produce the following elemental contributions for assembling in

H and G .

~ ~

Kj kj = kj kj i-1,]

i i,]
u ot

~

¢

+ terms due to integration along the rest of the elements.

We may now write equation (5.3.18) as

prd = -t ph It gy (ITh gy (B 5s
where
A -1
T2 = T1 T2
I3 = T1 T3
- (5.4.5)
T4 = T1 ~ T4
~ -1
T5 = T1 ~ T5
Substituting equation (5.4.5) into (5.4.4), we have :
~kj ~kj - .
(o7 2 2] Mo T+ 8] [o] -
i
u
Akj Akj i""l ]
[’:g 1 g 2] p s ]
i1 (5.4.6)
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where

~kjl B bka _ gka %? -
£ ®

E = - gij T4 () (5.4.7)
e (@
L ©

These modified contributions to the H and G matrices
(denoted by h and g) may then be assembled in the normal way, and
. . 1,3+ . .
we are left with only one traction (pl’J l) to work with in the
equations. E is an additional 2 X 2 submatrix which is added in the
columns of H corresponding to mode 'i + 1' . The equationms may mnow
. . . i,3+1 .
be solved, yielding a solution for »p » which may then be
substituted in equation (5.3.18) to compute the remaining traction

pi,j ]

The above process may be shown to be equivalent to employing
a double node, replacing one of the sets of equations by (5.3.18),
and then proceeding to eliminate the rows and columns corresponding
to this equation by linear row and column operations on the matrices.
Although the technique above may seem complicated and cumbersome,
this is partly due to the necessary number of small matrices within
the formulation, and also the indicial notation, necessary to distinguish
between the relevant parameters, which appears awkward; however,
definition of the 'Cornmer Condition' (equation 5.3.18) is very simple,
as it only depends on the coordinates of the discontinuous node, and

its neighbours; once these matrices have been defined, the computation
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of the modified contributions to the H and G matrices (5.4.6)
is in fact very simple, and may be programmed directly using

equations (5.4.7).

5.5 FORMING AN 'EQUIVALENT' STIFFNESS MATRIX

5.5.1 General Remarks

The formulation outlined here is based on the technique
outlined in section 3.6 and involves the inversion of the G matrix.
With the use of double nodes for a discontinuity this matrix is
singular; however, upon inclusion of the extra 'Corner Condition'
equations, the singularities are removed. The formulation must be
developed with certain important considerations in mind : the final
stiffness type relation must contain only one set of equations
corresponding to each point in order to allow matching to a Finite
Element mesh; and also, the final right hand side vector, containing
the equivalent nodal loads must be formed considering the accumulative
effect of both tractions at a discontinuous node, in order to give
the correct nodal load at that point. Finally, consideration for
the degree of symmetry of the final equations must be made
Chaudonneret[?3] presents a formulation which gives good results for
the simple test cases published, however the 'equivalent' stiffness matrix
is very unsymmetric. A similar approach to [éj] was originally
attempted in the early stages of this work and similar results were
obtained. Upon consideration of the problem, the inclusion of this
extra 'Corner Condition' can be thought of as a necessary boundary
condition on the problem, reminiscent of the imposition of a set of
linearly dependent constraints on a classical Finite Element type

model. This type of boundary condition usually takes the form of a
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a linear dependence between a sub-set of the displacements and hence
this equation must also be satisfied by the final solution; as such
the equation relating the prescribed displacements must be included
in the stiffness matrix of the system. The classical Finite Element
formulation produces an inherently symmetric stiffness matrix, K 3
however if a linear comstraint of this type is simply used to replace

a non-independent equation in the Finite Element system,
KU=F (5.5.1)

then the symmetry of K 1is destroyed. As a result the linear
constraints are usually written in terms of a rotation matrix R ,

such that
U=RUT (5.5.2)

where equations (5.5.2) contain the necessary boundary conditions,

and may be substituted in equation (5.5.1) to yield

KU-=F (5.5.3)
. T
where K=R KR
FoRF

)

The final coefficient matrix thus retains symmetry.

The problem of imposing the extra 'Corner Condition' in the
formation of an 'equivalent' stiffness matrix using the BEM is similar
to the Finite Element problem described above, except that the linear
constraint also relates surface tractions to a set of displacements.
(equation (5.3.18)). A formulation was thus developed based on the
idea of setting up the necessary constraints as a set of rotation
matrices and imposing these on the Boundary Element system. The

details of this formulation are given below.
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5.5.2 Matrix Formulation

The ensuing formulation will use the following notation

L ]
t g

» ¥ are vectors containing values of the displacements,
tractions, nodal forces, respectively at each node.
(a set of two values for any node, and two sets for any

double node.)

[ S ol
g >
[ 8]

are vectors containing only one set of values for any

double node.

. . . i . .

U will contain one set of values, u , for point 'i'

~ . . i,j+1 . .

P will contain p 2] at point 1

- . . 1 . . .

F will contain £~ , total equivalent force, at point 'i'.

NN = order of overall system = (total number of nodes) x (number
of degrees of freedom at each node).
NI = order of reduced system = (number of independent nodes) X

(number of degrees of freedom at each node).

The standard B.E.M. formulation, with the inclusion of double

nodes, yields,
HU=GP (5.5.4)

The 'Corner Condition', equation (5.3.18), may be written in
the form given by equation (5.4.5), and this may be expressed for the

whole system as
P=R P+R U (5.5.5)

where, R_  and Ru are rotation matrices of order NN X NI and

contain equation (5.4.5) for each double node, on the rows corresponding

to pl’J. These matrices are depicted diagrammatically in Fig. 5.5.1
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and show the 2 x 2 submatrices for one particular double node, 'i'.

(The columm vectors, é and Q , are also shown above the matrices
in order to clarify the positions of the relevant terms in the Ru

and Rp matrices., 'I' is the unit matrix of order 2).

The condition of a unique set of displacements at any double

point may be written :

U=R, 0 (5.5.6)
The condition that the total equivalent nodal force at any
double point, 'i' , is the sum fl’J + §1’3+1 may be written :
~ T
F = R4 F (5.5.7)

For reasons of clarity, the form of the matrix R (equations (5.5.6)

d
and (5.5.7)) is depicted diagrammatically in Fig. 5.5.2.

The relationship between the equivalent nodal forces and the

surface tractions may be written (see equation (3.6.5)):
F =M P (5.5.8)

Using equation (5.5.4), substituting for P fromequation

(5.5.5), and premultiplying by gd , we have
(Rg BBy ~RgOR) G = R GR) D (5:5.9)
or Ki=7 (5.5.10)
where
Pocr)Tar -6k (5.5.11)
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Figure 5.5.2 Diagrammatic representation of equations

(5.5.6) and (5.5.7).
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Using equation (5.5.8), substituting for P from equation (5.5.5),

and premultiplying by RT , we have :

~d
T T . T 3
R, F = (gd M gp) P+ (R, M Bu) U (5.5.12)
which, from equation (5.5.7) gives
}:=15113+1321~J (5.5.13)
where,
T
= (R, MR
R, = (Rg MR)
(5.5.14)
T
and 32 = (Bd M 3u)
writing equation (5.5.10) as
R, KU=R P (5.5.15)
and substitutingequation (5.5.15) into (5.5.13), we have,
F=R ROU+R T (5.5.16)
or
u ~ A
K"U=7F (5.5.17)
where gu = (gl g + R ) (5.5.18)

This final relationship between the equivalent nodal loads
and the nodal displacements, (equation (5.5.17)] is a stiffness
relationship, and gu is the 'equivalent' stiffness matrix of the

' denotes the fact that this matrix is not

system., The superscript 'u
inherently symmetric as in the classical Finite Element case. The

degree of the unsymmetry is examined in the following section of this
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Chapter (5.6) by forming the symmetric matrix KS , whose elements

are given by :

s _1l.u u

(which is simply the symmetric part of gu) and comparing the relative

performance of the two matrices for a series of examples:

The symmetry aspect of the formulation is discussed further
in the following sections of this chapter, in the light of results
given by the symmetric and unsymmetric ‘'equivalent' stiffness matrices,
Ks and Ku .

5.6 NUMERICAL EXAMPLES

5.6.1 Computer Programming

A computer program was written, using linear elements,
implementing the Boundary Element Method, as described in section (3.4).
The shape functions for the displacements and traction, ¢ and ¢ are

taken to be the same, and for the linear case are given by :

¢ =[o; 9l
_ 1 -
!

¢2 - "2" (l + g)

where & is a dimensionless local coordinate, along the element
taking the values £ = - 1 at node 1 and £ = + 1 at node

2 (see Fig. 5.6.1).
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Figure 5.6.1 Linear element coordinates
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The integrals of the fundamental solution, weighted by the shape
functions, are carried out numerically in the general case, using

a 4-point Gauss Quadrature integration scheme. The accuracy of a
4-point scheme was tested by experimenting with up to a 10-point scheme,
and the differences in the numerical values of the integrals were found

to be negligible.

The singular integrals which contribute to the diagonal
sub-matrices of H and G are calculated as a special case. For
the case of the H matrix these terms are computed using rigid body

motion considerations, as described in section (3.4) - see equation

(3.4.15).

The diagonal terms of the G matrix, which arise from the
integration along an element which also contains the source node, are
calculated analytically. This is relatively simple as the variable

involved, r, lies along the element of integration,

The matrix M 1linking the traction distribution along the
boundary to the equivalent nodal forces is calculated using equation

(3.6.4). The contribution from each element to the M matrix is

M = J $ ¢~ dr = L J ¢% 419, | & (5.6.2)
r

2
0201 9

Taking into account the two coordinate directions and

evaluating the integral in equation (5.6.2), we have,
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L
M =312 010 (5.6.3)
0 2 0 1
1 0 2 0
01 0 2|

The contributions Me from each element may then be assembled

into the global matrix M , in the usual way.

The rotation matrices which describe the 'Corner Condition'
are simply set up, as described in the previous section, and the
matrix operations, described by equations (5.5.9) - (5.5.19), are then

. . . u s
performed to form the 'equivalent' stiffness matrices K and K~ .

~

It is important to note that the whole process involves only
one inversion (see equation (5.5.11)), which is required whether or
not these 'Corner Conditions' are implemented. The remaining
operations are either multiplication, addition or subtraction of
matrices, and although there are a great deal of operations, most
of these involve matrices which are predominantly null, containing
terms in specified rows, or unity on the leading diagonals. As such,
subroutines to perform these operations may be written taking into
account these properties, substantially reducing the amount of

computation involved.

The program developed for this work is very modular in structure
using general routines to perform the matrix operations. The program
was written this way largely for reasons of expediency, related to
the period available for the development, implementation and testing of
the formulation. As such, the efficiency of the existing program
could be improved for this particular problem, but is perfectly

adequate for performing a series of test examples. Further work in
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this field could most certainly be directed towards the computational

optimisation of the technique.

There are no particularly special or innovative techniques
used in the actual programming, and as such, details of the program
will not be included in this work. Such details would not provide
any further insight into the formulations described, but would only
serve as a translation into FORTRAN of the equations and matrices,

fully described in previous sections of this chapter.

5.6.2 Testing the 'Corner Condition'

As a test on the validity of the 'Corner Condition' and of the
techniques proposed for its implementation, the problem of a square
plate with a circular hole, in tension was analysed. (Fig. 5.6.2a).
Due to symmetry only one quarter of the plate need be considered,
with the appropriate boundary conditions (Fig. 5.6.2b). The five
points (A - E) in Fig. 5.6.2b are those at which there exists a

traction discontinuity.

The analytical solution for the stresses in an infinite plate
with a circular hole, is given by TIMOSHENKO [}]. This solution was
integrated to derive expressions for the displacements in order to

allow a full set of comparisons.

The problem was first analysed as a mixed value Boundary
Element problem, using the discretisation shown in Fig. 5.6.2b. By
defining a mixed set of boundary conditions, as shown in Fig. 5.6.2b ,
there is always only one unknown value in each coordinate direction at
each of the corners. As such the situation at the corners is always

one of the cases, (i) or (ii) described in section 5.4; hence the extra
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Figure 5.6.2 Plate with a circular hole. Problem definition
and Boundary Element Mesh,
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'Corner Condition' need not be implemented and the problem may be
solved using a single node at the corners and assembling the equations

as described in section 5.4.

The displacements and tractions along the lines of symmetry
are compared to the analytical solution given by TIMOSHENKO [i} in
Tables 5.6.1. The results are in good agreement and serve as a useful
confirmation of the linear element program, and the integration scheme
used. It should be remembered that the analytical solution is for a
plate of infinite extent, and as such, a model of a finite plate with
a free boundary results in a slight reduction of stiffness and hence

yields slightly large displacements than the analytical solution.

The analytical solution was then used to calculate the displace-
ments at all points, and these values used to define all the boundary
conditions of the problem. At the discontinuous points (A - E,

Fig. 5.6.2b), we now have a situation where there are two unknown

sets of tractions, and the extra equations given by the 'Corner
Condition' need to be implemented. This is done by modfying the
contributions to the H and G matrices as described in section 5.4 -
case (iii). The resulting stress distributions are shown in Table
5.6.2. This solution corresponds to a unit traction in the Xy
direction, along the top face, and the resulting tractions given by

the program, along this face, vary between 0.994 and 1.001. The
remaining tractions, which should all be zero, are mostly of the order
10_3 - 10‘5 , the largest error occurring at the point of maximum

stress concentration (point A, Fig. 5.6.2b), where the program gives

a shear of 0.062, as opposed to zero.
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Displacements, Uy, along Displacements, Ui along
RADIUS Xy axis X, axis

r

ANALYTICAL B.E.M. ANALYTICAL B.E.M.
1.0 - 0.500 - 0.520 1.500 1.520
1.1 ~ 0.494 - 0.514 1.498 1.518
1.2 - 0.480 -~ 0.501 1.497 1.516
1.3 - 0.463 - 0.483 1.498 1.518
1.5 ~ 0,426 - 0.441 1.509 1.521
2.5 - 0.284 - 0,302 1.734 1.752
4.0 - 0.184 - 0.204 2.309 2.329
(a) Displacements along axes of symmetry.

Stresses, 022, along Stresses, oll’ along

RADIUS X axis X, axis

T

ANALYTICAL B.E.M, ANALYTICAL B.E.M.
1.0 - 3.000 - 3.040 1.000 1.045
1.1 -~ 2.438 - 2.515 0.611 0.644
1.2 ~ 2,071 - 2.100 0.376 0.391
1.3 - 1.821 - 1.838 0.229 0.238
1.5 - 1.519 - 1.499 0.074 0.096
2.5 - 1.118 - 1.103 - 0.042 - 0.053
4.0 - 1.037 - 1.046 - 0.025 - 0.021
(b) Stresses along axes of symmetry.
Table 5.6.1 B.E.M, Solution for plate with circular hole with

mixed boundary conditions.
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Radius Onn along Xy axis 011 along X, axis
T ANALYTICAL B.E.M.#% ANALYTICAL B.E.M.*
1.00 - 3.000 - 3.026 1.000 0.952
1.02 - 2.866 - 2.853 0.905 0.882
1.06 - 2.633 - 2.620 0.743 0.728
1.14 - 2.273 - 2.250 0.503 0.490
1.3 - 1.821 - 1.795 0.229 0.215
1.6 - 1.424 - 1.400 0.034 0.026
2.2 - 1.167 ~ 1.151 - 0.039 - 0.041
3.4 - 1.054 - 1.046 - 0.032 - 0.033
5.4 - 1.019 - 1.016 - 0.015 -~ 0.017
7.5 - 1.009 - 1.009 - 0.008 - 0.008
10.0 ~ 1.005 - 1.005 - 0.005 ~ 0.004
(* denotes the additional implementation of the 'Corner

Condition' at geometric discontinuities).

Table 5.6.2 B.E.M. Solution for plate with circular hole,
with displacement boundary conditions only.
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5.6.3 Examples Using the 'Equivalent' Stiffness Approach

A series of examples were run using the formulation described
in Section 5.5.2 to calculate the 'equivalent' stiffness matrix
of the system. The problems were set up as Finite Element displacement
type models and any boundary conditions imposed in the usual way.
Resulting displacement profile given by both the unsymmetric and
symmetrized 'equivalent' stiffness matrices, gu and gs (equation (5.5.18)
and (5.5.19)) are compared to classical Finite Element and Boundary

Element solutions, and to analytical solutions, when available.

EXAMPLE 1 : RECTANGULAR PLATE IN TENSION

The geometry of the problem is depicted in Fig. 5.6.3 below.
The problem is solved for the case of plane strain with E = 2.4
v =0.2, G=1.0. The bottom of the plate is simply supported and the
top is loaded with a uniformly distributed load of 1/unit length. The
displacements in the X, direction at sample points A, B, C, D, E
are compared using various discretisations, the results being shown

in Table 5.6.3.

EXAMPLE 2 : DEEP CANTILEVER WITH END LOAD

A solution for problem (Fig. 5.6.4a) is presented by Timoshenko

[l], giving a tip deflection of 15.2.

This, however, 1s not totally exact as the stress function used
to calculate the solution does not exactly satisfy both the applied
loading and boundary conditions. The loading requires a small correction

to allow for the fact that the fixed end is not free to warp.
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P = 1.0/unit length
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(a) Problem Definition

(b) 12 Element Mesh (¢) 18 Element Mesh

(d) 24 Element Mesh (e) 36 Element Mesh

Figure 5.6.3 Rectangular Plate in Tensicn.
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(a) Problem Definition

(b)

Finite Element Mesh

()

Boundary Element Mesh

Figure 5.6.4 Deep Canitlever with End Load
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Four solutions are compared in Table 5.6.4 below :

(i) A F.E.M. solution using 91 nodes and 36 linear strain triangles.
(Mesh shown in Fig. 5.6.4b).

(i1) A B.E.M. solution using 36 linear elements (mesh shown in
Fig. 5.6.4c).

(iii) A B.E.M. equivalent stiffness approach with gu and gs

using the same discretisation as (ii).
EXAMPLE 3 : DEEP CANTILEVER WITH U.D.L.

The B.E.M. was employed to solve the problem (Fig. 5.6.5)
using three different discretisations; 30, 48 and 96 elements. The
same meshes were then used for the equivalent stiffness approach
examining the solution for both gu and Ks . The solution was also
compared to a F.E.M. run which used 54 linear strain triangles with

133 nodes. The discretisations used are shown in Figs. 5.6.5b -~ 5.6.5c.

A comparison of the results obtained for the horizontal
displacement uy along the centre-line of the cantilever is given
in Table 5.6.5. The analytical result for the tip deflection given

by Timoshenko [i], is 396.1.
EXAMPLE 4 : THICK CYLINDER UNDER INTERNAL PRESSURE

Because of symmetry only one quarter of the problem need
be considered. The geometry and boundary conditions are shown in
Fig. 5.6.6:the radial displacements obtained using a B.E.M. method and
an equivalent stiffness approach are compared to the exact solution

in Table 5.6.6.
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(¢) 30 Boundary (d) 48 Boundary (e) 96 Boundary
Elements Elements Elements

Figure 5.6.5. F.E.M., and B.E.M. Discretisations for
deep cantilever with U.D.L.
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(a) Problem Definition

(b) Boundary Element Discretisation

Figure 5.6.6 Thick Cylinder under Internal Pressure.
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EXACT 12 ELEMENTS + 18 ELEMENTS
POINT
SOLUTION g4 Ks Ku Ks
A 1.2 . 200 1.215 1.200 1.211
B 2.4 . 400 2.474 2.400 2.463
C 2.4 . 400 2.412 2.400 2.376
D 2.4 .400 2.478 2.400 2.461
E 1.2 .200 1.216 1.200 1.210
EXACT 24 ELEMENTS 36 ELEMENTS
POINT
SOLUTION Ku Ks Ku Ks
A 1.2 .200 1.203 1.200 1.201
B 2.4 .400 2.446 2.400 2.432
C 2.4 .400 2.399 2.400 2.400
D 2.4 .400 2.446 2.400 2.433
E 1.2 .200 1.203 1.200 1.201

Table 5.6.3 Displacements

for a rectangular plate
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B.E.M. 'Equivalent'

F.E.M. B.E.M. Stiffness Method
36 Elements 36 Elements 36 Elements

kY K®

u, u, U, u,
1. 5.245 0.357 0.376 0.439
2. 0.779 0.943 0.931 0.928
3. 1.560 1.759 1.750 1.759
4, 2.544 2.701 2.687 2.695
5. 3.709 3.816 3.800 3.815
6. 5.026 5.082 5.064 5.080
7. 6.479 6.479 6.459 6.476
8. 8.040 7.984 7.961 7.978
9. 9.692 9.576 9.546 9.581
10. 11.410 11.400 11.340 11.420
11. 13.670 13.470 13.150 13.390
12. 14.960 14.660 14.610 14.670

Table 5.6.4 Displacements along the centre line of a deep

cantilever with an end load.
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X B.E.M. B.E.M. B.E.M. F.E.M.
2 30 Elements 48 Elements 96 Elements 54, 6 noded Tr|

1.0 12.12 14.34 14.86 14.61
2.0 36.33 41.85 43.25 42.94
3.0 68.65 78.90 81.55 81.50
4.0 106.80 122.85 127.00 127.30
5.0 148.60 171.30 177.20 177.80
6.0 192.50 222.30 230.00 231.20
7.0 237.30 274 .40 284.10 285.80
8.0 282.00 326.60 338.30 340.60
9.0 339.30 378.50 392.10 394.80
X2 30 Elements 48 Elements 96 Elements

KU KS KU KS KU KS
1.0 12.83 13.38 14.71 15.21 15.01 16.11
2.0 38.33 42.50 42 .43 43.62 44 .36 46.23
3.0 71.75 77.30 79.52 81.05 83.17 85.41
4.0 111.30 118.70 125.90 126.80 129.70 132.10
5.0 154.60 164.20 175.40 178.10 181.20 184.60
6.0 200.10 212.10 226.30 229.40 233.20 238.10
7.0 246.50 260.90 279.40 284.30 287.40 292.70
8.0 292.90 309.70 330.40 334.60 341.20 345.70
9.0 338.80 359.50 382.60 386.50 395.10 402.60

Table 5.6.5. Displaceme

nts
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B.E.M. B.E.M. Equivalent Stiffness Approach
r Exact 32 Elements K" K®
1.0 0.5333 0.5295 0.5328 0.5364
1.1 0.4872 0.4824 0.4846 0.4938
1.2 0.4390 0.4445 0.4467 0.4436
1.35 0.4027 0.3987 0.4005 0.4009
1.8 0.3119 0.3089 0.3100 0.3055
2.3 0.2552 0.2528 0.2535 0.2554
3.4 0.1957 0.1940 0.1940 0.1921
4.2 0.1765 0.1746 0.1751 0.1783
5.0 0.1667 0.1645 0.1644 0.1635

Table 5.6.6. Radial displacements for thick cylinder under
internal pressure.
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5.7 THE SYMMETRY OF THE 'EQUIVALENT'STIFFNESS FORMULATION

5.7.1 General Observations

The 'equivalent' stiffness matrix, gu R (equation(5.5.18))
is not quite symmetric, although the unsymmetric part only has a minor
effect on the behaviour of the model, as is shown by the results of the
examples of section 5.6.3. The results obtained using K" are always
very close to the B.E.M. solution, for the same degree of discretisation.
These results also compare favourably with Finite Element and
analytical solutions; for the examples involving bending (examples
2 and 3) a relatively refined Boundary Element mesh is needed to
approach the accuracy of the Finite Element solution. This is easily
attributed to the fact that the Finite Elements used are linear strain
triangles, allowing for quadratic variation of the displacement profile,
(as opposed to the linear Boundary Elements) and these elements are
known to perform much better in bending than elements allowing only
linear displacement variations. A much more accurate solution, for
a given discretisation, would be expected if quadratic Boundary

Elements were used for these cases.

The important result to emerge is that the 'equivalent'
stiffness matrix, gu, provides a Finite Element type displacement
model which is as accurate as the standard B.E.M. Furthermore, by
discarding the unsymmetric part of the matrix, to form, gs , the results
do not significantly suffer, but there is clearly some error introduced;

it is this symmetry aspect which will be discussed below.
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5.7.2 Factors Pertaining to the Unsymmetry

The reason why the 'equivalent' stiffness matrix is not
inherently symmetric is simply that the standard Direct Boundary
Element method integration scheme is not a symmetric process, for
similar reasons as those described for the constant elements in the
previous chapters. This is demonstrated in Figs. 5.7.1 by considering

two typical nodes, 'i' and 'j' ; for the system submatrices i3t o,

' T

we apply a source at i and integrate the fundamental solution,
weighted by the shape functions, along the elements adjacent to
'i', (Fig. 5.7.la). Similarly for the submatrices 'ji' (Figs. 5.7.1b)

Unless the elements are symmetrically oriented towards each other

1 1

(e.g. Fig. 5.7.1lc), then the submatrices 'ij and 'ji' are clearly
different, and we have an unsymmetric set of starting equations for the
formulation. The degree of unsymmetry is clearly exaggerated if the
elements differ : greatly in length as one of a set of reciprocal terms
will contain an integration along a much longer element. This property
however, is greatly reduced when the M matrix (equation 5.6.2) is
introduced as it has the effect of scaling the terms in relation to

the lengths of the corresponding elements. The resulting 'equivalent'
stiffness matrix for the system will always exhibit some degree of
unsymmetry, and in order to retain the overall symmetry savings from

a Finite Element model, this matrix is "symmetrized". This "symmetrization"

process, (in order to form KS) is given by equation (5.5.19) - i.e.

the unsymmetric part of the matrix is simply discarded.

The other important factor which affects the degree of symmetry
is the way in which the corner discontinuity problem is included in
the formulation. If this effect is simply ignored at the expense of

accuracy at the points concerned, then the lack of symmetry is totally
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Figure 5.7.1 Reciprocal integration for two typical

source points, 'i' and 'j'.
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attributable to the integration processes, discussed above. The direct
inclusion of any 'extra' equations will cause a large degree of

unsymmetry and provide a totally errcneous solution if the "symmetrisation'
process is introduced; the formulation presented in section 5.5.2
introduces the 'extra' equations into the overall system in such a

way as to provide a final system, which when symmetrised, yields a

solution with an acceptable level of error.

5.7.3 Comments on the Symmetrisation Process

Brebbia and Georgiou [24] consider the symmetrisation process
as a minimisation of the square of the errors in the non-symmetric

off diagonal terms of K” .

i

The error coefficient 'ij can be written as the average

difference between k;j and k?i and the still unknown coefficient

s . . . .
kij , which is symmetric, 1.e.

_ %_ s _ ,u _ /.8 _ ,u
Eij =3 { (k. k..) (k. kji)} (5.7.1)

1] 1] 1]

The square of this error is now minimised with respect to the symmetric

PR s
coefficient k.. :
1]

(e..) =2k, - k%, - k% =0 (5.7.2)

Hence the new symmetric coefficient is given by :

kS, = %-(k?. + k%)

i i 34 (5.7.3)
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are now enough to uniquely define each element of the matrix, but
terms are interrelated, thus requiring the solution of a further set
of linear equations. In fact, for an original system of order N , the
. N(N+1) . , . .
solution of a system of order ——5— 1s required to define the matrix
B above, This matrix may then be used to premultiply the unsymmetric
equations (5.7.8), thus restoring symmetry. This process is clearly
unsuitable for practical applications, but the whole problem of trans-

forming sets of linear equations is certainly an interesting one, and

warrants further investigatiocn.

AN ALTERNATIVE APPROACH

An interesting technique for overcoming the symmetry problems
arising from the form of the integration process is mentioned briefly
by Zienkiewicz [29], and presented with further detail by Mustoe [49],
for 2-Dimensional elastostatics. Silvester [32] presents an anologous

formulation for the solution of magnetic field problems.

The technique is based on the further weighting of the
Somigliana Identity by a general set of functions, Wi , say. The
formulation presented in this work is the standard direct B.E.M.
approach (e.g. Watson [33], Cruse [8}, Rizzo [34]), where for each
point 'i' we apply a unit load at that point and integrate around the
boundary. This may be thought of as a Collocation Method using the
more generalised form of the Somigliana Identity, and corresponds to

ro

taking W. as a dirac function equal to 'one' at 'i' and 'zero'

elsewhere.)

If we now choose Wi to be the same as the interpolation
functions, used to describe the tractions and displacements, the integration

process becomes symmetric, and symmetric system matrices ensue. This
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is equivalent to applying a distributed load over the adjacent elements
to each point 'i' (the form of which corresponds to the interpolation
functions), as opposed to a point load; but this process very

significantly increases the amount of numerical integration involved.

However, this technique seems to provide an elegant way of
dealing with the surface traction discontinuity problem (see Mustoe
[221). For a node at which the traction is continuous, a continuous
distributed source is applied to form the equation for that point.

If a discontinuity exists, then the necessary extra set of equations is
provided by applying 2 sets of discontinuous distributed sources :-

one set on each element either side of the node concerned.

GENERAL CONSIDERATIONS RELATING TO SYMMETRY

Looking at the problems relating to the symmetry of a stiffness
matrix from a more general viewpoint, there are certain apparent
discrepancies which immediately spring to mind pertaining to the
general reciprocal theorems of elastic behaviour, i.e. Betti's theorem,

or Maxwell's reciprocal theorem.

These reciprocal theorems are often used as an argument for
stating that any stiffness type relation must be symmetric, and hence
any unsymmetry is due to some 'error' in the formulation. This is not
necessarily true, as has been demonstrated by the examples of this

chapter.

The reciprocal theorems of elasticity show that for a given
body there does exist 'a' relation between displacements and applied
forces such that the influence coefficients form a symmetric matrix.

However, this does not mean that for a given system, 'no other' set of
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influence coefficients can be written which yield a perfectly valid
solution. This situation would arise, for example, in a Finite Difference
Scheme where the collocation points for defining the derivatives

were not placed symmetrically, or, in a Finite Element scheme where

shape functions for the real and virtual fields were not chosen the

same. The reasons why this situation arises with the Boundary Element

based formulation have been fully discussed above.

The physical significance of the lack of perfect symmetry
exhibited by the technique expounded in this work is easily explained
The Boundary Element Forumulation is based on the application of
distributed surface tractions as opposed to point loads, and when forming
the 'equivalent' stiffness matrix the equivalence between the tractions
and nodal loads is represented by the matrix M (equation (5.5.8)).
This means that the final right hand side vector contains a set of
nodal forces which have been weighted in such a way as to correspond
to a required traction distribution, the form of which is given by

equation (4.2.4) and depends on the local geometry of the element.

With a Boundary Element based formulation, the application of
a point load cannot be represented exactly, i.e. placing a 'one' in
the final right hand side vector (representing equivalent nodal
forces ) does not physically represent a unit load at that point, but
some traction distribution around the node, the form of which is given
by the inverse of equation (5.5.8). If a set of elements are symmetrically
placed (i.e. Fig. 5.7.1lc) then applying a unit load at 'i' will

correspond to a traction distribution around 'i' the same as
P ’

that around 'j' , for a unit load at 'j' , and the computed stiffness

coefficients 'ij' and 'ji' will be equal. However, in the
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general case this reciprocal interpretation of a point source does not
apply and hence the argument for a symmetric matrix is invalid (although

the reciprocal theorems of elasticity are of course still true).

The easiest way of demonstrating this effect is to consider
Maxwell's reciprocal theorem applied to a simple case (e.g. constant
elements). Consider two points on a body, 'i' and 'j' and their
respective elements of length li and ﬁj , as shown in Figs. 5.7.2.
(The shape of the remaining body is irrelevant, and for convenience
we will consider only one degree of freedom at each node). The inverse

of the stiffness relation between the responses and the sources

(i.e. displacements and forces for elastiticy problems) may be written:
U=S§F (5.7.9)

where

s = g”l (5.7.10)

(remember, the inverse of a symmetric matrix is also symmetric).

Tt tx

If we apply a unit load at i' , then the response at 17,
given by equation (5.7.9), will be uj = Sji' (Fig. 5.7.23(1)). Noy
for Fj =1, u, = sij y (Fig. 5.7.2a(ii)) . Maxwell's reciprocal
theorem says that these two responses are equal, hence the matrix

S is symmetric, as is its inverse K . However, with a Boundary
Element representation, applying Fi = 1 , physically represents a
traction along element 'i' of P. = l/SLi (Fig. 5.7.2b(i)), and again

'3' is s, . Similarly for F. =1, u. = s...

the response at
Ji 3 1 1]

(Fig. 5.7.2b(ii)).

As can readily be seen, the two sets of applied tractions are

not exactly equivalent and the reciprocal theorem does not apply.
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Hence the coefficients sij and sji are not equal, and S (hence

K) 1is not symmetric.

~

(Note that if the elements were of the same length, then
Maxwell's theorem is applicable, and symmetric coefficients would be
expected. This would in fact arise, due to the symmetry of the

integration process involved in forming the two terms).

The same argument applies to higher order discretisations,
but it should be noted that the two sets of applied tractions are
almost equivalent in the 'average'sense, as the same total load is
being applied in each case. (The only difference being in the local
distribution of the load, depending on the local geometry). This is
the reason why the matrices are 'almost' symmetric, and that when the
"unsymmetric' part is discarded, only relatively small errors are

introduced.

An interesting academic point worth noting, is that if we
continually refine the Boundary Element mesh such that the element
lengths tend to zero, then the applied tractions will tend to point
loads, and the Finite Element interpretation of the applied sources

would give rise to symmetric matrices.

Another important observation is that for two nodes 'i'

and 'j' which are far apart (in relation to the size of their

adjacent elements), by St. Venant's principle, the local distribution of

LA

the source at 1' , say, will have very little effect on the response

at 'j' , and vice-versa. For this situation the influence coefficients
are almost identical, and any difference has a negligible effect as the

terms will be several orders of magnitude lower than the principal

diagonal coefficients.
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5.8 EXAMPLES OF COMBINATION PROBLEMS

The examples of this section are run as Finite Element
displacement models. The Finite Element region is discretised
using linear strain triangles (6-noded), and the 'equivalent' stiffness
matrix for the Boundary Element region is formed in the manner described

in section 5.5 i.e. K° , as given by equations (5.5.18) and (5.5.19)]

~

The element stiffnesses are then assembled together and the
equations solved in the usual Finite Element manner. (i.e. making use

of the symmetry in the storage and solution schemes).

EXAMPLE 1. DEEP CANTILEVER (with parabolically varying end load)

This is the same problem as example 2 of section 5.6.3.
Two degrees of discretisation are used, and in each case a Finite
Element, Boundary Element, and Combination run is made. The overall
problem is again depicted here, (for easy reference) in Fig. 5.8.1

and the meshes used are shown in Figs. 5.8.2, 5.8.3 and 5.8.4.

Table 5.8.1 shows the deformation along the centre line of the
cantilever, in the direction of the load. The exact solution given

by Timoshenko [1], for the tip deflection is 15.1.

Table 5.8.2 shows the shear stress distribution over a cross-
section, half way along the cantilever, corresponding to the interface
of the Combination run, (i.e. along the line X, = 6.0). As we
approach the fixed end of the cantilever, the shear stress becomes
unbounded at the edges, and an analytical solution is not available
unless special boundary conditions are imposed to allow the fixed
end to warp. (See [l]). However, this effect is quite localised,
and at a reasonable distance from the fixed end the stress distribution

is the same as that applied at the loaded end. (St. Vennant's Principle).
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(a) Mesh 1F, 36 Finite Elements

(b) Mesh 2F, 144 Finite Elements

Figure 5.8.2 Deep Cantilever. F.E.M, Discretisations.
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(a) Mesh 1B, 36 Linear Boundary Elements.

(b) Mesh 2B, 72 Linear Boundary Elements.

Figure 5.8.3. Boundary Element Discretisation.
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(a) Mesh 1C, 18 Finite Elements, 24 Boundary Elements.

(b) Mesh 2C, 72 Finite Elements, 48 Boundary Elements.

Figure 5.8.4 Deep Canitlever. COMBINATION Discretisations.

- 171 -



Finite Element Boundary Element Combination
Method Method Method

xl MESH MESH MESH MESH MESH MESH

1F 2% 1B 2B 1C 2¢C
1.0 0.245 0.252 0.357 0.362 0.326 0.315
2.0 0.779 0.813 0.943 1.004 0.892 0.962
3.0 1.560 1.594 1.759 1.862 1.623 1.614
4.0 2.544 2.579 2.701 2.831 2.694 2.603
5.0 3.709 3.755 3.816 3.942 3.771 3.672
6.0 5.026 5.076 5.082 5.204 5.142 5.113
7.0 6.479 6.503 6.479 6.613 6.501 6.572
8.0 8.040 8.104 7.984 8.115 8.022 8.156
9.0 9.692 9.742 9.576 9.776 9.604 9.736
10.0 '11.410 11.901 11.400 11.635 11.408 11.817
11.0 13.670 13.734 13.270 13.510 13.236 13.715
12.0 14.960 - 15.110 14.660 14.973 14.815 15.062

Table 5.8.1 Displacements along the centre line of a deep
cantilever with an end load.

FEM BEM COMBINATION
%y EXACT MESH MESH MESH MESH MESH MESH
SOLUTION 1F 2F 1B 2B 1C 2C
-3.0 0.0000 0.0187 0.0047 0.0000 0.0000 0.0000 0.0000
-2.0 } 0.1389 0.1389 0.1409 0.1352 0.1396 0.1334 0.1405
~1.0 | 0.2222 0.2402 0.2232 0.2356 0.2227 0.2516 0.2234
0.0 } 0.2500 0.2487 0.2508 0.2491 0.2504 0.2479 0.2511
1.0 | 0.2222  0.2402 0.2234 0.2355 0.2227 0.2518 0.2234
2.0 | 0.1389 0.1344 0.1410 0.1355 0.1394 0.1329 0.1406
3.0 0.0000  0.0192 0.0048 0.0000 0,0000 0.0000 0.0000
Table 5.8.2 Shear Stress distribution along the mid-section/

interface of a deep cantilever.
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EXAMPLE 2. HOLLOW BEAM

The overall problem is depicted in Fig. 5.8.5a; However,
due to symmetry, only half of the domain need be considered, with the
appropriate boundary conditions, as shown in Fig. 5.8.5b. This problem
was run using Finite Element (linear strain triangles) by Vasilopoulos
[38], and his results are compared against a Boundary Element and
a Combination run. The discretisations used, for the three solutions,

are shown in Figs. 5.8.6, 5.8.7 and 5.8.8.

The combination runs were performed using Both the unsymmetrised
. . . . s
and symmetrised 'equivalent' stiffness matrices, gu and K" , for

the Boundary Element region.

Comparisons of the displacements at all the corner points on
the boundary of the problem (points 1 - 10, Figs. 5.8.6 ~ 5.8.8)

are shown in Table 5.8.3.

Table 5.8.4 shows the displacement profile along the internal
axis AA (Figs. 5.8.6 - 5.8.8), which also corresponds to part of the

interface of the combination problem.

The stresses along this interface are calculated, for the
combination problem, by substituting the final solution for the
displacements into BEM equations for this region. These values are

compared to the FEM and BEM solutions in Table 5.8.5.
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Figure 5.8.5 Hollow Beam Example Problem Definition.
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10

Figure 5.8.6 Hollow Beam, Finite Element Mesh.
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Internal Points

Figure 5.8.7 Hollow Beam, Boundary Element Mesh.
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FEM BEM COMB?NATIQN COMB?NATION
Point using K using K
u 1% 1 2 ! % 1 "2
1 -304.75 -303.3 ~305.5 ~-306.4
2 -313.80 -311.7 -315.6 -317.2
3 -333.54 -331.1 -335.4 ~338.9
4 -10.47 -119.89 | -11.80 -124.8 | -11.10 -121.32| -12.04 -124.3
5 -16.86 -87.53 | -17.11 -93.27 | -17.53 -90.75 | -17.44 -92.94
6 -88.20 -94.17 -91.37 -93.56
7 -86.87 ~92.84 -88.82 -91.02
8 -85.50 ~91.46 ~87.63 ~89.83
9 -28.27 -65.63 -29.05 -70.02 ~-28.62 -68.35 -29.29 -71.73
10 ~56.69 -60.15 -56.72 -58.11
(position of points 1 - 10 are shown in Figs. 5.8.6 - 5.8.8 )

Table 5.8.3.

Hollow Beam example. Displacements at

geometric discontinuities on the boundary
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FEM BEM COMBINATION COMBINATION

X, using gu using gs

u u, Uy u, uy uy uy u,
15.0 | -20.89 -82.39 -21.13 -87.48 | -23.27 -91.88 | -22.89 -93.13
14.0 | ~20.68 -82.81 ~-20.84 -87.90 | -22.82 -92.33 | -22.54 ~93.73
13.0 | -20.35 -83.23 -20.84 -88.32 | -22.21 -92.66 | =22.06 -94.01
12.0 | -19.84 -83.66 ~19.83 -88.75 | -21.49 -83.27 | -21.36 -94.59
11.0 | -18.99 -84.14 -18.89 -89.23 | -20.35 -93.61 | -20.23 -94.52
10.0 | ~-17.82 -84.68 ~-17.57 -89.74 | -19.01 -94.30 | -18.93 -95.61
9.0 | -15.96 -85.03 -15.80 -90.25 | -17.03 -94.68 | ~-16.97 -96.00
8.0 | -13.81 -85.62 -13.47 -90.68 | -14.68 -95.23 | ~14.70 -96.61
7.0 | -10.98 -85.89 -10.40 -90.94 | -11.36 =95.37 | -11.41 -96.90
6.0 -6.97 -85.85 ~-6.29 -90.95 ~7.22 =95.38 | -8.04 -97.17
5.0 -1.67 -85.6 -0.85 -90.70 -1.24 =95.55 | -2.62 -96.49

Table 5.8.4 Hollow Beam. Displacement profile along an internal

axis (x, =
Combina%ion

15.05)
problem).

(corresponding to interface
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FEM BEM COMBINATION COMBINATION
using gu using gs
)
11 %12 °11 %12 11 %12 °11 %12

15.0 | -0.504 0.866 | -0.517 0.842 | -0.532 0.942 | =-0.539 0.951
14.0 | -0.323 0.908 | -0.329 0.908 | -0.352 0.981 | -0.356 0.991]
13.0 | =-0.151 0.954 | =-0.163 0.934 | -0.178 1.040 | -0.184 1.056
12.0 | -0.022 0.962 | -0.027 0.940 | -0.031 1.058 | -0.039 1.061
11.0 0.109 0.969 0.093 0.945 0.104 1.046 0.108 1.058
10.0 0.276 0.973 0.224 0.953 0.246 1.061 0.252 1.065
9.0 0.442 0.976 0.398 0.954 0.431 1.054 0.441 1.057
8.0 0.714 0.932 0.637 0.913 0.672 1.016 0.679 1.023
7.0 1.003 0.813 0.929 0.773 0.987 0.870 1.014 0.881
6.0 1.207 0.412 1.194 0.471 1.283 0.494 1.304 0.506
5.0 1.316 -0.044 1.289 0.015 1.379 -0.021 1.392 -0.032

Table 5.8.5 Hollow Beam.
(x1 = 15.05)

Combination Problem).
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EXAMPLE 3. RETAINING WALL-FOUNDATION PROBLEM

A large rectangular shaped foundation with its perimeter
(other than the free surface) fixed, supports a cantilever- retaining
wall type structure, which is inset into the foundation, as shown in
Fig. 5.8.9. The retaining wall is descretised using 48 Finite
Elements (linear strain triangles), Fig. 5.8.10, and the stiffness
of the foundation is computed using both the Boundary Element based
formulation and classical Finite Elements. (The meshes used are shown

in Figs. 5.8.11 and 5.8.12, respectively).

The combination runs were performed using both the unsymmetric
and symmetrised 'equivalent' stiffness matrices, Ku and KS. The
displacement profiles, thus obtained, are compared to the Finite
Element results. Table 5.8.6 shows the displacement profiles along
the length (centre 1line) of the cantilever; and Table 5.8.7 shows
the displacements at the wall - foundation interface (which also

corresponds to the interface for the combination problem).

The results are in excellent agreement, again confirming the
validity of the 'equivalent' stiffness approach, and also the fact
that the symmetrisation of the 'equivalent' stiffness matrix introduces

a very negligible error in the formulation.

-~ 181 -



*uOTITUTJA(Q WBTqoid

cuoTaEpUNOI-TTBM BuTuTER1dY £°§°G 2IN31J

Nf

PEOT POINQIIISTP
Butdaea A1aesuly

0°9¢
70 = C
$2PIs poxI] - ¢ SOpIs pax1J
\ 0'1 = NM /
0761
0°21 0°21 0721
0°¢
yaduay ITun/0°z1 = d

- 0°21

£°0 = Ia

N 0'¢ = 'a

- 182 -~



2.0

125 Nodes

48 Elements

12.0
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Figure 5.8.10 Finite Element Mesh, for retaining Wall
part of the problem. (mid-side nodes
not shown).
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FINITE ELEMENTS COMBINATION COMBINATION
x using %u using %S
uy u, u u uy u
15. ~-813.7 60.28 -837.6 59.32 ~-838.2 59.62
16. ~744 .4 54.47 -766.3 53.34 ~-766.8 53.76
17. -674.9 48.62 -694.8 47.33 -695.3 47 .46
18. ~605.2 42.76 -623.1 41.31 -623.6 41.44
19. -535.6 36.91 -551.4 35.30 ~-552.0 35.42
20. ~466.6 31.04 ~-480.5 29.26 -480.9 29.38
21. -398.8 25.30 ~410.9 23.36 ~411.2 23.48
22. -333.3 19.69 =343.3 17.59 ~343.7 17.70
23. -270.8 14.38 -279.0 12,11 ~-279.3 12.22
24, ~212.7 9.32 -218.9 6.95 -219.2 7.01
25. -160.0 4.71 -164.3 2.17 -164.5 2.28
26. ~-114.8 1.61 -117.2 -0.92 ~117.4 -0.81
27. ~-80.99 ~-0.97 - 81.56 -3.33 ~81.78 ~-3.23

Table 5.8.7 Displacement profile along centre line of Cantilever.
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Coordinates | Finite Elements Combination Combination
of point using gu using gs
1% Y1 92 Y1 i ! )
12.0 15.0 ~50.27 -39.69 -49,22 -40.17 =49.62 -40.14
12.0 13.5 -49.58 =41.81 ~49.35 =—~42.07 ~49,45 =42.26
12.0 12.0 ~44.75 =40.97 -45.33 ~41.28 -45.43 -41.40
14.0 12.0 ~45.43 ~41.65 ~46.24 -42.88 ~46.30 =42.95
16.0 12.0 -36.94 -31.63 -38.44 -32.52 -38.53 -32.50
18.0 12.0 -32.01 0.26 -31.38 -0.69 -31.50 -0.61
20.0 12.0 -37.32 31.31 -36.55 30.94 -36.71 31.06
22.0 12.0 ~45.44 41.14 ~44 . 48 42,36 -44.73 42.43
24.0 12.0 ~45.62 40.51 ~46.30 41.04 ~46.76 40.69
24.0 13.5 ~49.71 41.78 ~48.94 43.02 -49.02 42.85
24,0 15.0 -50.01 39.12 ~49.86 40.81 ~49.65 40.89

Table 5.8.6 Displacements around the Retaining Wall-Foundation

Interface




CHAPTER 6 A 2~DIMENSIONAL HALF~SPACE FORMULATION

6.1 INTRODUCTION

In this chapter, formulations are developed for a 2-Dimensional
semi~infinite domain loaded on the free surface. TFor this case the
2-D Boussinesq sclution is applicable (see section 3.2.2) and only
requires discretisation of the loaded segment. As such, all the primary
influences and effects are defined on the free boundary, and once these
have been established, solutions for internal displacements and stresses
are readily obtainable. As the boundary segment under consideration now
has a consistent and simple geometry, the integrals involved in the
Boundary Element Method may be performed analytically, for the general
case, thus allowing explicit definition of the algebraic, discretised

form of the governing equations.

This chapter presents formulations for constant, linear and
quadratic Boundary Elements, and compares their performances for a series

of test problems.

The 'equivalent' stiffness matrix is then formed, for each type
of element, and its performance 1s examined with respect to both its
accuracy and symmetric properties. Finally a problem combining Finite
Elements with the above formed 'equivalent' stiffness matrix is run, in

order to demonstrate the applicability of the techmnique.

There is an important point worth a mention here; As the funda-
mental solution for the B.E.M. yields a traction on the surface which is
zero, the left hand side, H, matrix is null, other than the

free term, (see Chapter 4, for the analogous situation in 3~D). This
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means that no interpolation for the displacements is required, and

if the interpolation for the applied tractions is of high enough order
to represent these tractions exactly, then the solution for the
displacementsshould also be exact, as the use of analytic integration

introduces no approximations in the formulation.

It should also be remembered that the displacements cannot be
calculated absolutely, as there are arbitrary constants involved in the
fundamental solution (See Section 3.2.2). This means that the
displacements can only be defined in relation to some datum, and it is
their relative magnitude which is important. For consistency, all the
examples presented in this Chapter were run using the same values for

the constants involved.

6.2 TMPLEMENTATION OF THE BOUNDARY ELEMENT METHOD.

6.2.1 General Features of the Formulation.

Consider the loaded segment of the free surface of a 2-Dimensional
half-space which we divide into a number of elements, as depicted in
Figure 6.2.1. An interpolation of the variables along each element
is achieved with the usual dimensionless, normalised shape functions,

T

¢~ , linking the variables to their nodal values; see Equations (3.4.4).

~

Referring to. the discretised form of the Boundary Integral

equations (3.4.5), in order to obtain the equations for each point , 'i',

we apply a set of unit tractions at 'i' , and then require the evaluation,

on each element, e , of the integrals,

J uk oL dT 6.2.1)
r
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Figure 6.2.1 2-D Half Space, with loaded segment discretised
using Boundary Elements.
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|

If there are 'n' nodes on each element, (n = 1, for constant

elements, n = 2, for linear elements, etc. See Figures 6.2.3) then there
will be 'n' 2 x 2 contributions to the G matrix, corresponding to

rows 'i' , i.e.

= * ] =
8ok JT uf, ¢j dar G 1, n) (6.2.2)

(Fe refers to the element containing

vt

node 'j' )

and, is the fundamental solution for the problem, discussed in

*
Yok
detail in section 3.2.2. The form of the solution is repeated here

for easy reference, and expressed in terms of the local coordinates,

£ , (see Figure 6.2.2).

u¥, =g, - qa zn(r3 + A L&)

11 1 2
% = -
Y a3 A
(6.2.3)
% =
u21 + a3 A
Upy = 0y az Rn(r3 + A L &)

where A = + 1 for the field point on positive X, side.

i

X = -1 for the field point on negative x, side.

2

and ai(i = 1, 4) are defined in equations (3.2.13).

The left hand side integral of the Somigliana identity (3.4.5)

does not contribute, as is identically zero on the free surface,

Pox

(by definition). As a result, the H matrix, is null, other than the
. . .. i . ..

diagonal submatrices arising from the Co term. This term 1is in fact

the unit matrix of order 2 (see Chapter 3), making H the identity matrix,

(of the same order as G). An alternative argument for concluding the
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Figure 6.2.2 Geometry and local geometry of typical Boundary
Element.
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Figure 6.2.3 Nodal points on Boundary Elements.
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form of H , is to develop the discretised form of the equations by

1t
Lo

applying the principle of superposition. Consider the point
and apply a load P> Py at some point S on the boundary. The

displacements at 'i' will be given by:

——

= u*
Y11 P1

)

%k
T ugy Py

o

(6.2.4)

N .

= % %
Uy T Uiy Py T Uy) Py

where the Eﬁk denotes the fundamental soclution, at 'i' for a source

at the field point, S . Now, Gik differs from Uik (equation 6.2.3)

only by a sign change of ufz and uél » (as the sign of these terms

depends on which side of the source the effect is being measured).

Hence
g%k = - pk = u*
"21 "21 T "12
(6.2.5)
and a
* — * == *
) Y12 T U9 -
Equation (6.2.4) may then be written:
ui = u* P + u* P
1 11 %1 12 ¥2
(6.2.6)
1 = * *
Yp T UZp Py T UG, Py

If a continuous loading is applied, we may introduce an interpolation
function for P > and integrate equations (6.2.6) along the loaded
et

segment, to find the displacement at 'i' . Summing these integrals

on each element,

. NE T
ut = 7 { j uk ¢ dT} P (6.2.7)
r
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Repeating this process for each point 'i' on the boundary, equations

(6.2.7) result in,

U=¢CP (6.2.8)

where the contributions to G are given by equation (6.2.2), and (6.2.8) now

corresponds to the BEM equations, with H equal to the identity matrix.

When evaluating the terms given by equation (6.2.2), certain integrals
involving products of algebraic and logarithmic terms will commonly
arise. In order to keep the final expressions as compact as possible,
these standard integrals will be referred to as Ii (1 =1, 6) and are

defined and explicitly evaluated in Appendix A.

6.2.2 BEM - Constant Elements

With constant elements, the shape function is trivial (being equal
to unity), and the integral of expression (6.2.2) produces only omne
LI

2 x 2 submatrix for each element (i.e. gzi » 'J' is the node corresponding

to the element under consideration). -

tst

For each source node 'i' , and field point 'j' , the 2 x 2
submatrix of G 1is given by ,

+1

ij _ -
g3 = IF u¥ dl = L [~1 ut, (&) dE (6.2.9)
2

and upon evaluation yields

(i) For i # j

ij _ _
g%% L(2<11 o, 1)
gié = - 2 oq AL
i3 (6.2.10)
By] = + 2 oy AL
i _ -
8yp = L(2¢, =, I)
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where ai(i = 1, 4) are defined by equations (3.2.13), and we define
+1

I = I(r3, AL) = I ln(r3 + ALE)dE (6.2.11)
-1

which is readily integrable, giving,

r

_2.} In(r, = AL) =2 (6.2.12)

r
I=[l+-~—] ln(r3+>\L)+{l~)\L

(ii) For i = j , we must split the integral into two parts (as there
are sign changes in the fundamental solution when passing from ome side

of the source to the other), and upon evaluation, equations (6.2.2)

yield:

ii _ _ _

8, = ZL[&l az(ln(L) l)

ii

g2 = 0
. (6.2.13)
ii

8y = 0

ii

855 = ZL[a4 - az(ln(L) + 1)}

6.2.3. B.E.M. Linear Elements

The geometry and node numbering is shown in Figures 6.2.2 and
6.2.3.b. The relevant shape functions corresponding to nodes 1 and 2
are :

B

(6.2.14)
1
¢2 "‘2"(1 + g)

There will now be two 2 x 2 submatrices corresponding to each element.

Consider the term gi% for a typical element :
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. +1
il _ _ :
8] = Ir u¥; ¢, dr = L J~1 uf, (8) ¢1(£) dg (6.2.15)

Substituting from equations (6.2.3) and (6.2.14), we have:

i1 L 1 +
8] =51 % J (1 - &) dg - e, { ln(r3 + ALE)dE

-1 -1
+1 (6.2.16)
+ oo, J—l £ 1n(r3 + ALE) dg
or
il _ L
81 =% 2 a; ", Il(r3, AL) - 12(r3, L) (6.2.17)
where I1 and I, are given in Appendix A.
Consider the term gi% for a typical element:
. +1
1l _ %
gy = L [ wt, () ¢ (8) dg
-1
. +1
gry = = oy ) %-I (1-8de=-a;Lxr (6.2.18)

-1

All other terms can immediately be written using the form of equations

(6.2.17) and (6.2.18). The (2# k) terms differ by a sign change,

8ok

and the (2 = k) terms differ by the value of the first constant.

ok
The ¢2 terms simply differ by a sign change of the Iz integral.

Hence we may express all the 81 submatrices as follows

for 8=k g3 =21 28 -a. |T.(cy, ML) - vI,(r,, AL) ) (6.2.19)
ok 2 2 |f1'se 2'%3 I :

where, B = a for 2 =%k =1

=2
i}
+
p—
Fh
o]
[
ta
i
—



for % # k lJ=-ya3>\Lj=1,2 (6.2.20)

Bok
and y=+1 for £ =1, k =2
y==-1 for 2 =2, k=1

There is a special case when the element under consideration contains

the source node. 1In this instance, the integrals Il and 12 are

indeterminate as rq

using L'Hopital's rule. (see Appendix A).

+ L, but may be evaluated in the limiting sense

6.2.4 B.,E.M. Quadratic Elements

The relevant shape functions corresponding to the 3 nodes of the

element, (see Figure 6.2.3. c¢), are given by,

6, = 5 (2 =€)
=L o2

¢, =5 (E°+ &) (6.2.21)
= -2

by = (1 - &2)

We now require the evaluation of the 3 gzi (j =1, 3) terms given by

equation (6.2.2). Consider the term g;%
. +1
il _ L
= 2 *
811 = 3 Ll u¥, () ¢, () d& (6.2.22)

Substituting from equations (6.2.3) and (6.2.21), we have,

: oL [*1 a1, (+1
gﬁ=._2—,_J (82- g ag- 2 j 2 1n(r, +A LD dE

z2 2 14
agy *t
+ TJ £ 11‘1(1‘3 + ZLE) dg (6.2.23)
-1
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or

i1 alL azL
gll = T - '—'2"-' [13(1‘3, )\L) - Iz(l‘3, )\L)} (6.2.24)
. il
Consider the term 81y
. o,AL +1
11 - 3 2
glz - ) f (E + £ ) dg
-1
or . o, AL
1 3
giz = - = (6.2.25)
As ¢l and ¢2 are of the same form (with a change of sign

of the & term), we may express all the gzi(j = 1, 2) terms as follows

i3 s %oF
for 2 =k 8k = % T o 13(r3, AL) - YIZ(r3, AL)} (6.2.26)
B = al for L =%k =1
B=oc4 for 2 =%k = 2
y=+1for j =1
y= =1 for j =2
for 2 # k
r a3kL
g = Y 3 (6.2.27)
where,
y=+1 for 2=1, k=2
y==-1 for 2 =2, k=1
Consider the terms g;i . Equation (6.2.2) gives,
for £ = k
i3 *1 1
g2 = gL (1 -£82)df -a, L In(r, + ALE)dE
2k 2 3
-1 -1
+1
+ 0o, L £2 In(r, + ALE) d& (6.2.26)
2 -1 3
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or

i3 _ 4 _ _ i
8ok = 3 RL azL [Il(IB, AL) 13(r3, XL)} (6.2.27)
where g = al for £ =Lk =1
g = N for 2 =k =2
for L # k
i3 +1
i3 _ )
8o Y oy AL {—1 (1 - ¢g°) dg
or
i3 _ _ 4
Bix = " Y 3% AL (6,2.28)
where y=+1 for 2 =1, k=2
y==1 for £ =2, k=1

Again, when the source node, 'i' , is coincident with either of

I must be evaluated

Lyr I3

the end nodes of the element (j =1, 2), Il,

using L'Hopital's rule as the limiting case for ry > Lo (See Appendix A).

There now remains only one special case; when the source node, 'i', "

is coincident with the centre node of the element under consideration.
In this instance, the source point lies within the integration limits,
and in order to keep track of the sign changes involved in the local
coordinate and the cross terms of the wu%* , it is convenient to divide

2k

the element intc 2 parts.

(i) the left side, (denoted by superscript, L)

(ii) the right side, (denoted by superscript, R)

On the right side we define n = - £ , write u*i and ¢§ in

terms of n . (See Figure 6.2.4), and then divide the integral into

two parts. For any function £(£) we have,
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ub - ! Loy
12 %3 12 7%
uL + Q UR = )
21 3 21 3
ub o, = a. In(EL) o’ o, ~ a, In{nl)
22 5 2 22 5 2

Figure 6.2.4 Source at Centre of Element.
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it

+1 +1 0
j £(¢) dg I £(8) dg + J £(8) dg (6.2.29)
-1 0 -1

Now,

0 1
*j f(n) dn = { f(n) dn (6.2.30)

0
J £(g) dg
-1 0

For the general case, we have,

ij _ *
g = L J by (B) 05 (8) ds

or
1

. 0
ij _ *R R L L
Bop = L J~1 Yok (&) ¢j(€) dg + L J ugk(i) ¢j(€) dg

0

(6.2.31)

using equation (6.2.30) for the first term, equation (6.2.31) may be

written as,

1 1
] *R R *7, L
gii =L JO uy (M) ¢y (n) dn+ L JO u (B ¢1(E) dE (6.2.32)

*1,
i ?

the expressions given by equation (6.2.32) may be readily evaluated.

*R L R . .
The terms ugy o U ¢j ’ ¢j are given on Figure 6.2.4, and

For the terms containing ¢1 and ¢2 , we have the following result:

(G =1, 2)
for £ =k
gij=L LA ¢S (6.2.33)
1k 3 276 e
where B = &y for 2 =1, k=1
B = ay for 2 =2, k=2
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for 2 # k

ij _ _ 3
Yy < T 1 for 31 =1

Yy < + 1 for j =2

]
el
=

]
N

Y, = + 1 for &

H
N
b

it
Pt

Yo = 1 for 2

And, for the terms containing ¢3 (3 = 3), we have

for ¢ =k
i3 _ 28 _ } -
8ok 2L 3 o, [ IA(L) 16(L)} (6.2.35)
for 2 # k
i3 .
Bo = O (6.2.36)

6.2.5 Stresses at Internal Points

Given a particular distribution of tractions on the surface, the
stresses at any internal point within the domain may be calculated by

numerical integration.

The stresses due to a point load at the surface are given by a simple

radial distribution (See [1]). Referring to Figure 6.2.5, and denoting

*k * . .
Oij as the stress component Oij , at q , due to a point load in the

'k' direction at S , the fundamental solution for the stress components

is given by :

* 2 * 2

1 = - kg . 2 2 . . 2 2
011 why €050 5 o) T A, M0 8 cos™®
*1 . _ _2 L2 2 « 5°2 = ~ _2_ gin%p 6.2.37
022 = ﬂAl sin“® cos<o ; 55 ﬂAz sin (6. )
* 2 * 2 .

| 3g - 2 o o~ e 3
915 WAl sinf cos°H ; %1% WAZ sin”8 cosd



For a general load P> Py at the surface, the stress at ¢

is given by
- ok
oij(q) =05 (8, @) p (S) (6.2.38)

Given the interpolation for p, » over each element, equation
(6.2.38) may be integrated to yield the stress at q due to some arbitrary
load on the surface.

NE J§=+l

o;5(a) = { L L, (&) dt } P (6.2.39)

A simple Gauss Quadrature numerical integration scheme may be
used to evaluate the above expression. For 'n' sample points on each
element, with weightings wn, and at a local coordinate along the element,

En , equation (6.2.39) becomes:

NE n *k T ‘
o;5(a) = ezl ) { Moo (6e ) ¢ (an>} P (6.2.40)

where NE is the number of elements

and Le is (the length of element e)/2

6.3 FORMATION OF AN 'EQUIVALENT' STIFFNESS MATRIX

The final discretised formed of the B.E.M. equatioms, (6.2.8)

may be written:

-1
G U=P (6.3.1)

~

Premultiplying by the M matrix, relating the traction distribution

to the equivalent nodal forces, (see equation (3.6.4)), we have
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P, =1 free surface , T

(o

Domain, Q

boundary at
infinity

Figure 6.2.5 Geometry of problem for the calculation of
the internal stresses.



-1

MeHu-up-F (6.3.2)
or
K' U =F (6.3.3)
Assuming the same interpolation for displacements and tractions,
?T , the matrix M is given by, (see section 4.2)
NE T
M= ] LJ ® ¢ di (6.3.4)
e=1 |

The integral may be evaluated for each element, forming the submatrix

Me , which can then be assembled into M in the usual manner. Evaluating

~

the integral yields the following results:

(i) For Constant Elements
1 0
M, =L (6.3.5)
Lo 1
(ii) For Linear Elements '
"2 o' 1 0
! N1
0 2 ' o 1
L ]
Ll - - (6.3.6)
1 0 2 0
! N2
L0 1: o 2
N1 : N2
(ii1) For Quadratic Elements
2 o '-1L o' 1 0
;2 | N1
0 21 o =Lt g 1
S A I SO
. —%— 0:2 o' 1 0
M, = {z i : N2 (6.3.7)
O‘“‘-z- 0 2 0 1
R S R -
1 o' 1 o' 8 0
{ { N3
0 1: 0 1: o 8
N1 : N2 : N3



where, L 1is the length of the element, e , and N1, N2, N3 refer

to nodes 1, 2, 3 of the element.

For reasons, which have been discussed at length in Chapters 4
- . N u . . .
and 5, the ‘equivalent' stiffness matrix, K , is not inherently symmetric

~

in the general case. The usual symmetisation process is adopted, i.e.

T

kS = % «“ + x0T (6.3.8)

~

The behaviour of the symmetric 'equivalent' stiffness matrix is

examined, upon implementation, in the following section.

6.4 NUMERICAL TESTING OF THE FORMULATIONS

6.4.1 . Examples

A series of examples were run, implementing the B.E.M. and 'equivalent'
stiffness formulations described in the preceding sections. The examples
run are all of the form depicted by Figure 6.2.1, with the distribution
of the applied load taken to be of the same order as the shape functions
used in the formulation. As such, we expect the model to yield the

analytic solution for the deformed shape.

Each of the three problems were run by discretising the loaded
segment into 4 elements. (It should be noted that as the shape functionms,
in each case, can represent the traction distribution exactly, the solution
is independent of the number of elements used. This was in fact found
to be the case, and was used as one of the first tests on the program.
However, using one element, only implements the special cases of the
integrals described in Section 6.2, and the use of more elements not only
enables solution at more points, but will serve as a better illustration

of the general behaviour of the model). For each problem, 2 discretisations
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were used; firstly dividing the loaded segment into elements of equal
length, (Mesh A, Figure 6.4.1.a), and secondly employing elements of

varying lengths (Mesh B, Figure 6.4.1.b).

In each case, the G matrix was calculated (equation (6.2.8)), from
which the displacements are immediately available (B.E.M.). Following
this, the 'equivalent' stiffness matrices, gu and gs were formed
and the tractions weighted in the appropriate manner to calculate the
equivalent nodal forces for each type of traction distribution. The
equations were then solved as a stiffness problem. The solution using
gu and the B.E.M. give exactly the same results as the same equations
are being solved in both cases, (and this served as a useful check on
the 'equivalent' stiffness program). Also, the fundamental solution

may in fact be integrated along the loaded segment to yield the analytic

solution. (This is in fact what the B.E.M. formulation presented in this

chapter does, but employs a segmented integration process).

In order to facilitate comparisons, all calculations were performed
using identical values of the arbitrary constants of integration involved
in the fundamental solution i.e. all displacements in the direction of the

load are.effectively being measured from the same datum.

In all cases it was found that, as expected, the analytic solution,
the B.E.M. solution, and the gu solution were in exact agreement.
Comparisons of this solution with that obtained using the symmetrised

'equivalent' stiffness matrix, K- , is given in tables 6.4.1 - 6.4.3.

The same series of examples were also used as a basis for further

examination of the behaviour of the 'equivalent' stiffness matrices,

K and K° . The resulting displacement profile was substituted back

~

into the B.E.M. equations (6.3.1), in order to obtain the corresponding

starting form of the traction distribution. This serves as a useful
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%) o o o o O Mesh A
(a) l E = 3.0
%1 v = 0.2
4
X, O O- O O O
Mesh B
(b) 1
*1
1 P, constant
(c)
4 P, linear
(d)
16
P, Quadratic
(e)

Figure 6.4.1 Boundary Element discretisations and load
distributions.
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Analytic, B.E.M.,
u
X, and K K
uy u, uy u,
- 1.50 3.800 0.360 3.800 0.360
- 0.50 4,032 0.120 4.032 0.120
0.50 4.032 - 0.120 4,032 - 0.120
1.50 3.800 ~ 0.360 3.800 - 0.360
(a) MESH A
Analytic, B.E.M.,
x2 and gu K
Y1 ) Y1 Y2
- 1.50 3.800 0.360 3.801 0.360
- 0.60 4.021 0.144 4.012 - 0.108
0.45 4.037 - 0.108 4.045 - 0.108
1.55 3.780 - 0.372 3.775 - 0.372
(b) MESH B
Table 6.3.1 Displacement Profile for Constant Traction

using Constant Elements.
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Analytic, B.E.M.,

X, and Ku K
- 2.00 uy U, 1 u,
- 2,00 6.172 0.960 6.157 0.956
- 1.00 7.160 0.840 7.167 0.838
0.00 8.116 0.480 8.107 0.491
1.00 8.646 - 0.120 8.680 - 0.165
2.00 7.802 - 0.960 7.778 - 0.810
(a) MESH A
Analytic, B.E.M.,
Xy and gp gs
Y1 ) Y1 Y2
- 2.00 6.172 0.960 6.147 0.944
- 1.00 7.160 0.840 7.198 0.860
- 0.20 7.946 0.571 7.926 0.532
1.10 8.655 - 0.193 8.663 - 0.167
2.00 7.802 - 0.960 7.809 - 0.861
(b) MESH B
Table 6.3.2. Displacement Profile for Linear Traction

Distribution using Linear Elements.
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Analytic, B.E.M.,
Xy and Ku gs
Y1 Y2 ! )
- 2.00 22.253 2.560 21.959 2.405
~ 1.50 24.335 0.867 24,564 0.931
- 1.00 23.819 - 0.400 23.505 - 0.470
- 0.50 22.510 - 1.310 22.636 - 1.276
0.00 20.919 - 1.920 20.782 - 1.959
0.50 19.320 - 2.290 19.367 - 2.272
1.00 17.874 - 2.480 17.830 - 2.500
1.50 16.670 - 2.550 16.681 ~ 2.543
2.00 15.734 - 2.560 15.728 - 2.566
(a) MESH A
Analytic, B.E.M.,
%, and Ku KS
Y1 92 "1 %2
- 2.00 22.253 2.560 21.962 2.410
- 1.50 24,337 0.867 24.566 0.927
- 1.00 23.819 - 0.400 23.502 - 0.457
- 0.60 22.810 ~ 1.153 22.944 - 1.125
- 0.20 21.574 - 1.708 21.429 - 1.764
0.45 19.479 - 2.262 19,538 - 2.233
1.10 17.615 - 2.502 17.563 - 2.528
1.55 16.567 - 2.553 16.578 ~ 2,546
2.00 15.737 - 2.560 15,728 - 2.567
(b) MESH B
Table 6.3.3. Displacement Profile for Quadratic Traction

Distribution using Quadratic Elements.
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of the sensitivity of the respective formulations in obtaining a solution

for the tractions at the surface, once the displacements have been established
by some overall F.E.M, displacement technique. The same problems as those
depicted in Figures 6.4.1 were run using the formulations based on

constant, linear and quadratic elements. The loaded segment was

discretised using (i) 4 equal length elements (as shown in Figure 6.4.1.a,
Mesh A), and, (ii) 8 unequal length elements (as shown in Figure 6.4.1.Db,

with each element divided into 2-Mesh B).

As no approximations are introduced when using gu , then the tractions
given by equation 6.3.1 should be exactly equal to the original
distributions (Figures 6.4.1, ¢, d, e), and this was simply used as a
check on the programming. Comparisons of the traction distributions
obtained using the displacements derived after the symmetrisation process

of K% (i.e. using k%) as shown in Figures 6.4.2 - 6.4.4.

6.4.2 Discussion of Results

The B.E.M., or alternatively, the 'equivalent' stiffness approach,
using gu , always yield the exact deformed shape of the free surface.
In general, therefore, the accuracy of the solution for some arbitrary
loading will only depend on how closely the chosen interpolation
functions can model the actual traction distribution at the surface.
This is of course to be expected, and the improvement of accuracy with
increasing orders of approximating functions, is a feature true for
all numerical approximation techniques; but the powerful aspect of the
present formulation is the fact that there is no approximation for

displacements, and the solution is exact for the given loading.
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Solution obtained using displacements given

by K° U =F

Figure 6.4.2 Traction Distibution for Constant Element Run.
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Figure 6.4.3 Traction Distribution for Linear Element Run.
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The behaviour of solutions obtained using the symmetrised form
of the 'equivalent' stiffness matrix, gs , follows the established
pattern, shown by the examples of the previous chapters. The level
of error introduced by the symmetrisation process is of an acceptable
magnitude for most practical engineering applications, but it is
interesting to note that the higher the order of the elements, the
larger the error; especially for the case of obtaining the traction
distribution from a given set of 'approximate' displacements. This is

an important aspect of the formulation and requires further discussion.

In this case, the unsymmetry in %u arises due to the differing
sizes of the elements and differing forms of interpolation functions
associated with particular points. As before, the effect of the differing
lengths is largely scaled out by the M ﬁatrix, and as can be seen
by tables 6.3.1 - 6.3.3, the degree of error is not gemnerally
increased by having an unsymmetric discretisation (i.e. varying the
lengths of the elements). The exception is of course the case of
constant elements, which form a perfectly symmetric matrix, if all the

lengths are the same.

For higher order elements, there is an additional factor involved
in the lack of symmetry: Consider the case of linear elements, and
2 nodes i, j, one of which is one of the end nodes (Figure 6.4.5.a).
When forming the subelement ggi , a source is applied at 'j' and

tae
1,

the integral performed over both the elements adjacent to the
and their contributions added. However, there is only one contribution
for the term g;i , as there is only one element adjacent to 'j' .
(See Figures 6.4.5.b, ¢). For the use of quadratic elements there is

still a further factor involved. The shape functions associated with

midside nodes are of a different form to those associated with nodes
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at the end of the element, and this introduces a further lack of symmetry

in the integration process. (See Figure 6.4.6).

It is perfectly clear, therefore, that the symmetrisation process
introduces an error into the solution, but does not seem to greatly
affect the displacement profile, in the general case. However, when
using this 'erroneous' displacement profile to calculate the traction
distribution, the sensitivity of the system to the degree of 'error'
in the displacements increases as does the order of the elemeﬁts:

The constant element solution (Figure 6.4.2) is very good, and this

is to be expected as the formulation exhibits the least problems with
regards to symmetry. The linear element solution is again in good
agreement, most of the error occurring at the end of the segment, which
again is to be expected due to the unsymmetric effect of the end nodes.
The quadratic element solution is comparatively poor in this aspect.
and is due to the combined unsymmetry effects described above, which

make the system very sensitive to differences in displacements.

However, it should be noted, that in a combined problem, where
the surface nodes are joined to some Finite Element model, the degree
of the unsymmetry effect will be diminished. This 1s due to the fact
that the terms of g“ will be assembled into a global stiffness matrix,
and will be added to the terms of the Finite Element stiffness matrices
corresponding to the nodes on the interface. These terms will be symmetric,
and as such the relative error introduced by the symmetisation process
will be reduced. The degree of this 'reduction' in the error will
depend on the relative stiffness of the two regions, which is the
determining factor governing the orders of the terms involved. This
aspect is discussed in greater detail, following the combination

examples of the following section.
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Figure 6.4.5 Linear Elements Reciprocal integration.
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Figure 6.4.6 Quadratic Elements. Reciprocal Integration.
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6.5 COMBINATION PROBLEMS

6.5.1 General Remarks

The equivalent stiffness matrix whichmodels the behaviour of the
semi~infinite half space, may now be incorporated in a Finite Element
package in order to model a structure resting on a semi inifinite
foundation, (Figure 6.5.1). The Finite Elements employed, are 6-noded
linear strain triangles, and are used to form an overall displacement

type model,
KU=F (6.5.1)

Solution of (6.5.1) yields all unknown displacements; the stresses
in the Finite Element domain 4, may then be calculated in the normal
way. The tractions at the interface may now be computed using equation
(6.3.1) for the semi-infinite region. Integration of these tractions

yield the internal stresses at any points in QZ . (See Section 6.2.5).

A Finite Element program was written which also forms the
additional stiffness matrices (gu and gs) representing the semi-infinite
foundation, and assembles the extra contributions into the global
stiffness matrix in the usual manner. The program was written with
the option of using linear or quadratic elements to model the half-space,
and also solved each problem twice : firstly using gu and secondly gs .
The constant element formulation was omitted due to its inability to
make a good approximation of an arbitrary load variation, without a
very fine discretisation. For reasons of expediency in performing the
tests, the program developed, stored the whole of the stiffness matrix,
when using gu , and used a solver which took no account of any symmetry.

This is in fact very uneconomical especially in a problem where the



Finite element domain representing
a structure, Q1

free surface

@_
_“

Semi-infinite domain, QZ Equivalent stiffness,

S . . .
K™ , K° , using Boussinesq solution.

~ ~

___—/

Boundary at
infinity.

Figure 6.5.1 Semi-infinite domain combination problem.
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unsymmetric part is relatively small, but the efficiency may be
greatly improved by partitioning the solution : Consider the general

combination problem shown in Figure 6.5.2 (a). All contributions to

K from the Finite Element part, (gll’ KIJ’ KJI) , are symmetric,
LT . . .
(KIJ = gJI) , and the only unsymmetric part 1is KJJ . (See Figure
6.5.2.(b)). We may now write the equations as follows:
S S0 SRR SR RA (6.5.1)
RO IS SRR RS SN (6.5.2)
Equation (6.5.1) may be written
g -
Up = Bp (EI &g gJ) (6-5.3)
Substituting equation (6.5.3) in equation (6.5.2),
- _ -1 - '
K0 Y = B~ K &g (Fp =%y Uy (6.5.4)
or
Kyy Uy = Ey (6.5.5)
where
K=K, _-K._K_.K
~JJ ~JJ ~J1 ~11 ~1J
(6.5.6)

n -1
Fyp=F; ~ Ry K T

This process is more efficient than storing the full band of the
equations and not making use of any symmetry during solution , =
especially if the 'JJ' part of the equations is relatively small.

The inversion of the KII part of the matrix is performed independently

and full use of symmetry may be made in both the storage and solution
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nodes unconnected to
region 1, denoted by

Region 1 ’//////,v—-subscrlpt I (NI nodes)

nodes connected to
region 2, denoted
by subscript J.

(NJ nodes)
+
+ region 2
(bounded, infinite or semi-infinite) f (a)
N1 NJ
KII KIJ UI FI NI
KJI KJJ UJ FJ NJ
K U g
(b)

Figure 6.5.2 Partitioning of the system of equations for the
combination problem.



schemes. The relatively small unsymmetric equations (6.5.5) may now

be solved for UJ and the solution substituted in equatioms (6.5.3)

to yield the remaining unknowns, UI .

6.5.2 Examples

A series of examples were run for a deep beam, axially loaded,
resting on a semi-infinite foundation, which may be used to demonstrate
a typical soil structure interaction problem. The deep beam represents
a structure and is modelled using Finite Elements to discretise its
domain, whereas, the semi~infinite foundation is modelled using a
Boundary Element discretisation of the interface segment. Due to the
expected stress concentrations at the bottom corners of the beam, the
mesh is quite refined in that neighbourhood. The Finite and Boundary

element discretisations employed, are shown in Figure 6.5.3.

The series of examples were run for a point load of 6.0 acting at
the top of the beam, in the direction of its length, and solutions were
obtained for varying values of the relative stiffness of the beam and
foundation. The Young's Modulus of the semi-infinite space was kept
constant at E2 = 2.4, and E1 took the values 2.4, 24, 240, 2400,
in turn; each problem was run using, firstly, 16 linear, and secondly,

8 quadratic Boundary Elements for the interface segment (the nodal points,
of course, corresponding to those of the Finite Element mesh). Also,
each case was run using both gu and gs , to represent the stiffness

of the foundation.

Tables 6.5.1 - 6.5.4 show the traction profile (in the direction
of the load) along the interface, for each case, and these results

demonstrate some interesting features of the behaviour of the technique :-



12.0

free surface

8 Quadratic Boundary Elements

16 Linear Boundary Elements

Figure 6.5.3 Deep Beam supported on a semi-infinite half-space.
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As the relative stiffness of the structure increases, the actual
traction profile becomes more and more singular at the ends of the loaded
segment, the numerical results exhibit an oscillation from the true
path in this vicinity. This is to be expected, as it is a common feature
of many numerical techniques. However, in these cases, the results
obtained using linear and quadratic elements are in excellent agreement,
and the symmetrisation process introduces very negligible differences
in the results. This is because the contributions to the overall
stiffness arising from the boundary element part are of a much lower
order of magnitude, and hence the differences due to the lack of symmetry
in this part of the system do not produce a significant effect when they
are removed. (e.g. see results in Tables 6.5.3 and 6.5.4, where the
stiffness of the structure is 100 and 1000 times greater than that
of the foundation,respectively). The very good agreement between the
linear and quadratic element formulation is due to the fact that for

a very stiff structure, the interface traction distribution approaches

ES it

a form of (9 - x%)_ (see TIMOSHENKO Ll}), and although this is singular

as %, > 3 ~hence the oscillation of the results mentioned above-,
there are no sign changes in the function or its derivative, in the
region O < X, < 3 . This means that linear elements can provide almost

as good an approximation to the form of the solution as can the quadratic

elements.

The situation changes, however, when the structure and foundation
have stiffnesses of similar magnitudes. The effects of this are most
marked in the results in Table 6.5.1, which represent the situation

of a 1/1 ratio in the relative stiffness.

We do not know the expected form of the solution from analytical

- 229 -



techniques, but there is no reason to expect the real solutiom, and
its derivative to be as well behaved in this situation. This is
confirmed by the greater differences obtained by using linear or
quadratic elements. Furthermore, the structure and foundation
stiffnesses provide terms of the same order of magnitude in the global
stiffness matrix and hence the symmetisation process of the foundation

terms have a much more pronounced effect on the overall solution.

In conclusion, it must be remembered that for typical soil-structure
interaction problems, the structure is usually about one order of
magnitude stiffer than the soil. As such, the errors introduced by
the symmetisation process are relatively small, (e.g. see Table 6.5.2),
and gs may confidently be used to represent the stiffness of the
foundation. As to the choice of the type of Boundary Elements, clearly
the quadratic elements will always provide a better model, although the
difference between these and linear elements may not be very marked if
the actual variation of the interface tractions is of relatively low
order. However, as the number of nodes on the surface is determined
by the Finite Element mesh to which they must be joined, quadratic
elements may as well be employed as no extra work is required im doing
so (other than slightly longer expressions for the terms of the G
matrix, which in relation to the overall solution represents a negligible

amount of computation).
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CHAPTER 7 GENERAL DISCUSSION AND SUMMARY

After presenting the basic principles leading to the Direct
Boundary Element formulation, this work has been predominantly
concerned with the development, implementation, and testing of an
'equivalent' Finite Element stiffness matrix, derived using a

boundary discretisation, for the region under consideration.

The simple transformation of the final set of equations from
their Boundary Element form to the form of a Finite Element stiffness
type relation is shown in Chapter 4, and the technique was implemented
for 2 and 3-Dimensional problems using constant elements. This
avoided many of the problems, generally incurred at geometric
discontinuities and served as a useful check on the basic formulation.
The 'equivalent' stiffness matrix, thus derived, was always found to
give the same solution as the Direct B.E.M. which is to be expected,
as the same equations are being solved in a different form, without
introducing any further approximations than those originally

contained in the Boundary Element formulation.

The interesting feature to emerge from this initial part of
the work was the general lack of symmetry of the 'equivalent'
stiffness matrix, gu . Upon consideration it was evident that the
way in which the original B.E.M. equations are set up (i.e. evaluating
the H and G matrices) involves an integration process around the
boundary which is not symmetric, unless all elements are placed in
such a way that they are all reflections of each other about some
symmetry axis or plane. As such the starting equations are unsymmetric,

and there 1s no reason to expect any final set of equations, based

on these, to be exactly symmetric,
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This explained the numerical reason for the lack of symmetry
but immediately lead to questions relating to the general symmetry
properties of a stiffness type relation. The current school of thought,
generally expressed in the literature, was that due to the fundamental
reciprocal theorems of elasticity (Maxwell's theorem, Betti's theorem),
any stiffness type set of equations, relating nodal values of
displacement and forces, should have symmetric coefficients, as
does the classical Finite Element technique. As such the stiffness
matrix %u is 'symmetrised' to form gs . Several arguments are
used to justify this, usually based on some 'error minimisation' or
on a variational approach; but the 'symmetrisation' process always
takes the form of discarding the unsymmetric part of gu , by adding
it to its transpose and taking the average value of all terms. This
in fact was the technique implemented here, and examples were run
comparing the behaviour of the two ‘equivalent' stiffness matrices,

u s . . .
K™ and K . However, before we discuss the relative merits and

~

. u s . .
behaviour of K and K, some further discussion on the lack of

u .
symmetry of K 1s warranted.

~

To facilitate further understanding of the lack of symmetry
of Ku , the classical Finite Element Galerkin formulation, which does
inherently produce symmetric matrices, was considered. (At this stage,
it should be remembered that both the F,E.M. and B.E.M., - as well
as other numerical techniques, such as Finite Differences - can all
be derived from the same starting expression of the general Weighted
Residual Technique — see Chapter 2)., The differential equations of
equilibrium are expressed in an integral form using the Weighted

Residual Technique (also shown to be equivalent to the genmeral statement

of the Principle of Virtual Work), and this integral form always
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contains terms which are products of the 'actual solution' and some
'weighting function'. 1In the classical Finite Element Galerkin
approach, we interpret this 'weighting function' to be any virtual
stress-strain~displacement field, and then make the assumption that
this field has the same variation as the 'approximate' solution. It
is this assumption that allows the same shape functions to be used
for both fields, and this choice of identical shape functions is the
fact that leads to symmetric matrices. There is however no reason
why some other choice of shape functions cannot be made, still

retaining the validity of the formulation.

When comparing this procedure to the B,E.M. formulation,
we immediately see the discrepancy which destroys the symmetric
properties of the final set of equations in the general case. With
the B.E.M., we interpret the 'weighting function' of our original
statement of equilibrium as a fundamental solution of the problem (thus
eliminating the domain integral). This is of a fixed form and varies
completely independently of the actual solution. Thus, the property
of the method which leads to symmetric matrices in the Finite Element

technique, is not exhibited in the Boundary Element formulation.

The lack of symmetry of gu is now well explained from numerical
and analytical considerations. However, we are now faced with reconciling
this lack of symmetry with the physical requirements imposed on the
system by the fundamental reciprocal theorems of elasticity. This is
easily done by considering the physical interpretation of the relevant
terms. A stiffness relation (for the elasticity problems considered
in this work) links a set of displacements to a set of nodal forces.

These nodal forces are equivalent to some traction distribution and

are obtained by the appropriate weighting of this traction distribution,
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around the boundary. So, applying a nodal load of éne, say, at any
point does not physically represent a point source, but some localised
traction distribution depending on the local geometry and shape functions.
Therefore, by applying a load equal to one, say, at different points,
the physical interpretation of the total loads applied, is the same,
but the way in which these loads are distributed can be different.

It is this difference in the physical interpretation of the exact form
of the load state which does not allow the reciprocal theorems to be
applied, and explains the lack of symmetry of Fu . (This is discussed
in greater detail, with reference to an example in Chapters 5 and 6).
The important point, however, is that as the physical magnitude of the
load is the same, we do not expect the differences in its effect
(especially at a distance) to be very marked; and thus do not expect
the lack of symmetry of Ku to be very pronounced. This is, in fact,

the behaviour found when comparing results obtained using K" and K®.

Chapter 4 describes several exaples, in 2 and 3 dimensions,
using constant elements, and the results obtained using the symmetrised
matrix gs were always close to the answers given by the B.E.M,, for
the same discretisation, and the degree of the differences were such
as to make the use of gs quite acceptable for most engineering

applications.

There are however situations when the tractions on the Boundary
Element region surface obtained using gs can be misleading, especially
in the following circumstances : If the solution for displacements is
such that on a particular part of the surface of the Boundary Element
region the magnitude of these displacements is of much lower order than

the dominant terms of the solution, then these values will be much
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more susceptable to numerical instability. It is the rate of change

of these values which define the stresses in that region and if the
errors are quite large in relation to their absolute values, then the
errors in calculating the stresses can also be significant. However,
this boils down to numerical problems involved in the solution of

linear equations and in this context could warrant further investigation

in its own right.

The behaviour of linear elements was also investigated, in
Chapter 5, and their behaviour with regards to the symmetry properties
of the 'equivalent' stiffness matrix, was found to be similar to the
constant elements, used in the examples of Chapter 4. The important
feature of the work presented in Chapter 5 is the way in which the
discontinuity problem is dealt with. This problem arises at geometric
discontinuities, where the tractions have different values either side
of the node concerned. Additional equations are required for these
points, in order to uniquely define the problem, and following the
work of CHAUDONERRET [23], a technique was developed for dealing with
this problem. It was found that the straight forward inclusion of
any extra equations completely destroyed the 'almost' symmetric
properties of g“ , although the solutions obtained were quite correct.
A method for introducing these extra 'Cornmer Conditions' into the
global system of equations was developed, which sets up these equations
as a set of rotation matrices; these are then included in the overall
formulation in a manner similar to the inclusion of a set of linearly

dependent constraints on a Finite Element model.
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The process is more complicated, as the 'Corner Condition'
is expressed as a linear dependence of neighbouring displacements and
tractions. The process involves a great deal of matrix multiplication;
however, the rotation matrices contain a very large proportion of
null terms, and the non-zero terms appear in positions well defined
by the overall nodal numbering system. As such, specialised routines
could be written, would take full advantage of this property, thus

considerably reducing the computational effort involved.

The technique was implemented for several examples, and found
to work very well. The solutions obtained using %u were almost the
same as the standard B.E,M,, for the same discretisation. The
differences are attributable to numerical errors, which arise in the
matrix manipulations involved. Upon symmetrisation, the solutions
obtained using K° were also in good agreement, exhibiting small

discrepancies, usually of the order of 3 - 5%.

An interesting general feature of the 'equivalent' stiffness
approach is that the differences in the displacments obtained using
%u and gs are greater for the displacment components which are of
lesser magnitude (compared to the dominant values). This could be a

numerical problem due to the differing orders of the terms in the

solution.

Once the validity of the 'equivalent' stiffness approach
had been demonstrated, several combination examples were run, which
coupled a classical Galerkin Finite Element Displacement type model,
with the 'equivalent' stiffness matrix, obtained using the Boundary
Element formulation. The combination results were always in good
agreement with the F.E.M. or B.E.M. results obtained using the same degree

of discretisation.
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. . u
Comparisons were also made of results using both K~ and
KS , and any differences occurring due to the symmetrisation process

were always found to again be of the order of 3 - 5% in the dominant

terms.

A formulation for a 2-Dimensional half-space, loaded at the
free surface was presented in Chapter 6, employing the Bousinesq
fundamental solution, and performing the necessary intergrations
analytically. Constant, Linear and Quadratic elements were used, and
their behaviour with regards to symmetry properties of the 'equivalent'
stiffness matrix thus formed, was found to be consistent with the
previous work. The important feature of the formulationm is that no
numerical integration is mnecessary and that there is no interpolation
of displacements on the surface. The governing factor, therefore, in
the performance of each type of element is the degree tc which the
chosen interpolation for the surface tractions can adequately approximate
the real loading. However, very little extra computation is necessary
when employing the higher order elements, and as such their use is

recommended.

In conclusion, the following areas are recommended for further

investigation :

(1) The development and programming of higher order isoparametric
elements, with the provision for corner discontinuities. This work
does not indicate that any additional problems would arise in forming
an 'equivalent' stiffness matrix using such elements, and their
generally better performance would greatly improve the efficiency

of the method.
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(i1) The 2-Dimensional half~space solution presented in Chapter 6
could be generalised for influences acting in the criterior of the domain
(i.e. using the Melan solution). This would of course necessitate the
use of numerical integration procedures, but there is no reason to

expect any additional problems in this case, and it would enable the

application of the technique to a wider class of practical problems.

(i11) A general investigation into the numerical problems associated
with solving large sets of linear equations could prove quite fruitfull,
In certain cases such solutions are very sensitive, especially in
situations where material properties differ significantly, producing
ill-conditioned matrices. Also, there are situations where high stress
concentrations occur at such interfaces and when using the approximate
solution for displacements (obtained using gs) to calculate the

stresses at such an interface, significant errors may ensue. (see 6.4.1).
For such cases it would be advisable to use the more 'exact' form

. . . u . -
of the 'equivalent' stiffness matrix, K”, and in order to optimise

the solution procedure, a partitioning scheme (see 6.5.1) should be

built into the program.

Following the demonstration of the validity and applicability
of the 'equivalent' stiffness formulation presented in this work,
the algorithm may now readily be incorporated into standard finite
element packages as an additional type of element in the library.
This will enable great savings in the solution of problems, large

parts of which are amenable to a boundary element treatment.
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APPENDIX A

QUADRATIC INTERPOLATION FUNCTIONS,

AND SOME USEFUL INTEGRALS

For a quadratic interpolation of a function over an element we
require three nodes at which the value of the function is to be defined.
A local system of coordinates (f) along the element length allow
the problem to be non-dimensionalised. (See Figure A.1). The variation
of a function, F , along the element may now be expressed in terms of

its nodal values, Fi , (1 =1, 2, 3).
3
F = Z o, F, (A.1)

The following integrals will be useful:

+1 (+1
1 1

o, dE = = 3 g ¢, df = - =
I—l 1 3 )1 1 3
+1 1 (+1 1
J @2 d§ = T 5 g @2 dg = + £Y (A.2)
-1 -1
{-#l 4 +1

0, dE = 7 ; J £ ¢, dg =0
-1 3 3 -1 3

When dealing with logarithmic functions the following integrals will

appear.

r+1

Il(a, b) = In(a + bx) dx (A.3)
=t
+1

Iz(a, b) = x ln(a + bx) dx (A.4)
/=1
(+1

13(a, b) = x2 1n(a + bx) dx (A,5)
...1 :

where, a and b are constants.
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These may readily be evaluated using integration by parts.

are then given by:

The integrals

|+1
Il(a, b) = (x + %} 1n(a + bx) - x
-1
I,(a, b) = (1 + %} In(a + b) + {1 - %}ln(a -b) -2 (A.6)
r +1
o (L2 - 22 _Lx2 _ax
Iz(a, b) = ik 2} In(a + bx) 2[2 ) }
\ b ._.1
I.(a, b) = lfl - EE} 1n atbl . a (A.7)
A 2 b2 a-b| b :
1
1{ 5 &l 1{x3  ax2  a2x)|”
I.(a, b) = |=|{x3 + = 1n(a + bx) - &=~ - == + ==
3 3\ b3J 313 2b b2 -1
1] al ad 2a 2
I.(a, b) = %|1 + =—| In(a + b) + |1 - =] In(a - b) - = - = (A.8)
’ ] b3 b b2 2

When dealing with singular nodes, the

integrals Ii(a, b) (i

lim Ii(a, A L), A

a-L

These limits may readily be evaluated

in equations (A.6 - A.8) and applying

following limiting cases of the

1, 2, 3) will appear.

=z 1 (A.9)

by differentiating the products

L'Hopitals rule.

Consider 1lim Il(a, - L) (A ==1)
a~L
lim I.(a, = L) = lim (l - é} In(a - L) + [1 + EJ In(a + L) - 2] (A.10)
1 L L
a~L a~L



using L'Hopitals rule on the first term

- 1 _ 2
Lim RED] gy |GEED) | = tin e L2 DT o a1
L ——— (L a) L
a L | a-L L a-L
(L-a) e
(L - a)?
Hence,
lim Il(a - L) =2 1In(2L) - 2 (A.12)
a~>L

The remaining integrals may be evaluated in the same manner, and the

resulting values are:

lim Il(a, A L) =2 In(2L) - 2 (A.13)
a-L
lim Iz(a, A L) = A (A.14)
a~L
. 1 8
lim I,(a, A L) = = |2 In(2L) -~ = (A.15)
3 3 3
a~L

When the source (which produces a response given by the function, F),
is at the centre of the element under consideration, additionmal integrals

will appear.

1
IA(L) = In(Lx) dx
0
(L) = |x In(x) - x é (A.16)
IA(L) = ~}n(L) - 1}
1
IS(L) = J x In(Lx) dx
0
x2 1 1
IS(L) = |3 (ln(LX) - 5} o (A.17)

! -1
I (L) = 5 [1:1(1,) 2]
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1
x2 1n(Lx) dx
0

1 1
L [mm »-3} (4.18)

[
S——

I (L)
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APPENDIX B

THE MINDLIN FUNDAMENTAL SOLUTION

The formulas quoted here were originally derived by MINDLIN [7].
For more details on the solution's behaviour on implementation with the

Boundary Element method, see NAKAGUMA [10&.

The notation refers to Figure B.l.

= 2
T (riri)
%

R = (RiR )

r. =Y, - X

1 1 1
R. =Y. - X!
i i

C = X3 > 0

Z = Y3 > 0
K =...1_..j..._Y.___
d 87E (1~v)

_ 1

Kg 7 8 (1-v)

The fundamental displacements are given by:

2 2 2
_ r (3-4v)r 3r
uil_Kd34v+%i+~£+ 1, 20z, _ T,
r r3 R3 R3 R2
e
L 4a-wa-av | 1
R+ R, R(R + Kj) J
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X'

Y

{
components of wu* and p*

Q0 ¢ Semi-infinite space
X : load point

Y : field point

Figure B.1 Mindlin Fundamental Problem.

- 245 -



12

*
13

*
21

22

%
23

*
31

32

*
33

The

KT, 1, 34y _ 6CZ _ 4(1-v)(1-2v)
r3 R3 R® R(R + 33)2

T (3~&v)r 6CZR
. rl{ 3, R 4(1~v)(1—2v>}

d 3 R3 RS R(R + R3)

[}

uty

2 _ 2 2
(] 3hv L1 ry G-y o I 35
4 = + E—+ — 1 +

r3 R3 R3 R?

22
4(1~-v) (1-2v) 1 2
R+ R, R(R + R,)
r
2 u
rl 3
. I, . (3~4v)r3 4 (1) (1-2v) 6CZ R,
a f1] R(R* B T
r3 R3 3 RS
T
= uiy
1
2 _ 2

C 13y 802 - Geawy T3 BTRIRS g
d T R r3 R R3

components of the fundamental tractions pij are given by:



k, = *i .
piJ Ujk N (.2)

where the index 'i' refers to the direction of the source load.

. i .
The expressions for the stresses O?k are written below, so
that the fundamental tractions pij can be evaluated using equation

(B.2).
The fundamental stresses are given by:

2 - 2
3r1 ) 3(3 4v)rl X

i - X r AN + (lf2v)(5-4v) _
T r3 rd RO

I 2
~ - rp R + Ry) Srel
Eryewe {3 o % L‘C - (3-20)R, + —
R(R + R3)2 RZ2(R + Ry) RS | 2
2 —hu) 72
o*l = K r _1-2v 1-2v 31‘1 _ 3(3 Av)hl
12 s 2 3 3 5 5 +
r R r R
2 2
_4d-v)(A-2v) |, r] (3R + Ry) ez |, 5r2
R(R + R3)2 R2 (R + R,) RS ~——*R2

- - 2 - 2
6*1 _ el (1 Zv)r3 . 1 Zv)r3 ) 3rlr3 _ 3(3 4v)r1R3 .
13 s r3 R3 r® RS
\
B 5r2ZR
Y ZR3 - (I*Zv)r% - *—l-3
R5 R2
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