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This thesis considers inferences about the means of several independently

and normally distributed populations with a common variance. The first part

discusses the constructions of fixed-width simultaneous confidence intervals

when the variance is an unknown parameter by using sequential samplings.

A set of fixed-width simultaneous confidence intervals is often used to make

simultaneous inferences, with a probability that all the inferences made are

simultaneously correct being at least 1 — a, the simultaneous confidence level.

Certain probabilities of making simultaneously correct inferences are often

larger than the confidence level I — a. These are considered in the second

part of the thesis. The third and final part of the thesis studies the multiple

tests corresponding to the simultaneous confidence intervals. Some new power

functions are denned and their properties are investigated.
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Chapter 1

Introduction and notation



1.1 Construction of a fixed-width confidence

interval for the mean of a normal popu-

lation

Suppose that we have a normally distributed population N(r],a2) with un-

known mean rj and positive variance a2, and that independent observations

Y\,Y2,--- can be taken sequentially from the population. We wish to con-

struct a 100(1 — a)% confidence interval for 77 of width 2d, in the form of

(Y — d, Y + d), where d > 0 and 0 < a < 1 are two given constants, and Y is

the sample mean of a sample taken from the population.

Inferences about r\ can be made from this confidence interval. For instance,

if Y > d then we can infer that r\ > 0 since the confidence interval (Y — d, Y + d)

is entirely to the right of zero. Similarly, if Y < —d then we can infer that

7/ < 0. The width d determines the sensitivity of this confidence interval in

the following sense. If rj > 2d then the correct inference "77 > 0" will be

made from this confidence interval with probability at least 1 — a, since the

confidence interval for 7/, (Y — d, Y + d), will be entirely to the right of zero

with probability at least 1 — a. Similarly, if 7/ < — 2d, the correct inference

"7/ < 0" will be made with probability at least I — a because the confidence

interval for r\ will be entirely to the left of zero with probability at least I — a.

If a2 is known then such a confidence interval can be easily constructed

in the following way. A random sample of fixed size n is taken from the

population and a confidence interval for 77 is defined to be

Yn — Zaj2 —j=, Yn + Za/2 —7= ) , (1.1)
V \/n

where za/2 is the upper a/2 quantile of the standard normal distribution

and Yn = (1/n) £3"=i ^ - I11 order that the width of this confidence inter-

val, 2za/2 a I y/n, is at most 2d, the sample size n should satisfy za/2 cr/ y/n < r/.



which implies that

n > n0 = d~2 (za/2 fa2.

Therefore, if a sample of fixed size n0 is taken from the population N(r],a2),

then the confidence interval in (1.1) will satisfy the requirement. The value of

n0 is the minimum sample size required to achieve our goal when a2 is known

and is often called the optimal sample size.

If a2 is unknown and a sample of fixed size n is taken, then the usual

confidence interval for rj with confidence level 1 — a is given by

v i &n v -i. t °n\
J-n — lal2 i—i In i W2 i— i

\fn \fn)
where ta/2 is the upper a/2 quantile of the Student t distribution with n — 1

degrees of freedom, and

It is clear that the width of this confidence interval is '2ta/2 6nj^fn^ a random

number. Dantzig (1940) proved that if the variance a2 is unknown then a

fixed-width 100(1 — a)% confidence interval for r] can not be constructed by

using a fixed sample size procedure. For unknown a2 it is therefore necessary

to use a sequential procedure to achieve our goal.

Stein (1945) proposed a 2-stage procedure to achieve our goal. He showed

that a fixed-width confidence interval for r] can be constructed if sampling is

performed in two stages, and the size of the second sample is a random variable

that depends on the observed values of the first sample.

Anscombe (1952) suggested a pure sequential procedure which estimates

a2 at each stage n > m by <fn
2, where m > 2 is the size of the first sample,

and stop sampling when, for the first time, n > d~~2z2
ai2on , i.e. stop sampling

at

T = inf{n > m : n > d~2z2
a/2 dn

2}.



On stopping sampling, the confidence interval for 77 is then defined as

= (YT-d,YT + d). (1.2)

First order approximations to the expected sample size E(T) and the confi-

dence level of this procedure were given by Chow and Robbins (1965). Second

order approximations to the E(T) and the confidence level can be found in

Woodroofe (1977, 1982). In fact Woodroofe considered the following stopping

time which is a simple modification to Anscombe's procedure

T = inf{n > m : n > d~2 z^2 lndn },

where {/„} is a sequence of constants of the form

ln — 1 H /0 + o I — ) as i n oo.

The first part of this thesis is devoted to develop some pure sequential pro-

cedures for constructing fixed-width simultaneous confidence intervals for mul-

tiple comparisons. We shall not consider two-stage procedures because they

often require considerably more observations than the corresponding pure se-

quential procedures, as pointed out by Cox (1952) and Mukhopadhyay (1983).

Possibilities of developing other sequential procedures are discussed in Chapter

6, Directions of Future Research.



1.2 Fixed-width simultaneous confidence in-

tervals for multiple comparisons

Suppose that we have k independently and normally distributed populations,

N(fj,i,a2), i = 1,2, ••-,&, with unknown means fii and a common unknown

positive variance a2, and that we can sample sequentially from each popu-

lation. Let Yn, Yi2, Y{3, • • • denote the observations from the ith population,

i = 1, 2, • • • , k and Y{ is the sample mean of a sample taken from the ith pop-

ulation. Our goal is to construct a set of simultaneous confidence intervals

of fixed length 2c? and of simultaneous confidence level 1 — a for each of the

following three sets of parameters:

... ,• — i 9 . . . h
/ x , , L — i , z,, , / t ,

/ ^ - / " i , « = 2 , 3 , • • • , & ,

where d > 0 and a £ (0,1) are two given constants.

For the first set of parameters {/̂ ;, i = 1,2, • • • , k}, we wish to construct

a set of fixed-width 2d simultaneous confidence intervals with a simultaneous

confidence level 1 — a of the form

This set of simultaneous confidence intervals can be used to make inference

about each individual //» and keep the overall error rate controlled at level

a. For instance, we can infer that /i; > 0 for each i satisfying Y{ > d, since

the confidence interval for fii, {Yi — d, Yi + d), is entirely to the right of

zero. Similarly, we can infer that fii < 0 for each i satisfying Yt < —d. The

probability that all the inferences made are simultaneously correct is no less

than the confidence level I — a. The value of d determines the sensitivity of



this set of simultaneous confidence intervals in the following sense. For each

Hi satisfying Hi > 2d (/i; < —2c?), the correct inference Hi > 0(/x; < 0) will be

made simultaneously from this set of confidence intervals with probability at

least 1 — Q, since the confidence interval for Hi-, {Yi — c?, Yt + c?), will be entirely

to the right (left) of zero.

For the second set of parameters {/i2- — fi\, i = 2, 3, • • • ,&}, we construct

a set of fixed-width 2c? simultaneous confidence intervals with simultaneous

confidence level 1 — a of the form

fH-fii e (Yi-n-d, Yi-Yi + d), i = 2,3,---,k.

Here, the first population, N(HI, a2), may be regarded as the control, the other

k — 1 (k > 2) populations as treatments, and we are interested in comparing

all the treatments with the control in order to find out if any of the treatments

differ from the control. Inferences about Hi — Hi can be made from this set of

simultaneous confidence intervals. For instance, if Yi — Y\ > d then we can infer

that Hi > jii, since the confidence interval for //,• — [i\ •, {Y{ — Y\~d, Y{ — Y\ + d),

is entirely to the right of zero. Similarly, we can infer that //,- < n\ f° r each

i satisfying Y{ — Y\ < —d. The probability that all the inferences made are

simultaneously correct is no less than the confidence level I — a. The sensitivity

of this set of simultaneous confidence intervals is determined by the value of

d as can be seen from follows. For each treatment Hi satisfying Hi ~ A*i >

2d(< —2c?), the correct inference Hi > (<)Mi w m ^ e m a d e from this set of

simultaneous confidence intervals with probability at least 1 — a, since the

confidence interval for Hi ~ /"I? (Yi — Y-y — d, Yi — Yx + d), will be entirely to

the right (left) of zero.

Finally, for the third set of parameters {Hi — Hn 1 ^ * 7̂  j ^ ^}? w e wish

to construct a set of fixed-width 2c? simultaneous confidence intervals with a

simultaneous confidence level 1 — a of the form

Hi ~ lij e {Yi - % -d,Yi- Y3 + d), 1 < i + j < k.

6



Iii this case we are interested in all-pairwise comparisons of the k populations.

Inferences about //; — /J,J can be made based on this set of simultaneous con-

fidence intervals. For instance, if Yi — Yj > d then we can infer that //t- > fj,j,

since the confidence interval for fj,i — [i3. (Yi — Yj — d1 Y{ — Yj + d), is en-

tirely to the right of zero. The probability that all the inferences made are

simultaneously correct is no less than the confidence level 1 — a. The value of

d determines the sensitivity of this set of simultaneous confidence intervals in

the following sense. For each pair of treatments i and j such that //j — [Mj > 2d,

the correct inference fii > \ij will be made from this set of simultaneous con-

fidence intervals with probability at least I — a, since the confidence interval

for jii — fij, {Yi — Yj — d, Y — Y3 + d), will be entirely to the right of zero.



1.3 Probabilities of making correct inferences

simultaneously

Consider case one: inference on {//,-, i = 1,2, • • • ,&}. From Section 1.2 it is

clear that inferences based on the set of simultaneous confidence intervals

has the property that the probability of making the correct inference [i% >

0(fii < 0) simultaneously for each //,- satisfying {i% > 2d(fi{ < —2d) is at least

1 — a. The question is "what is the exact value of this probability?"

The same question stands for the cases two and three.

For case two, we know that inferences about {/it- — fi\, i = 2,3, •••,&}

based on the simultaneous confidence intervals

(Yi-Y-L-d, Yi-Y1 + d), i = 2,---,k

have the property that the probability of making the correct inference fit >

V'lilJ'i < Hi) simultaneously for each m satisfying [ii — fii > 2d(fii — /̂ i < —2c?)

is no less than 1 — a. However we wish to know the exact value of this

probability.

For case three, we know that inferences about {̂ ,- — /ij, 1 < i j^ J' < k}

based on the following set of simultaneous confidence intervals

[Yt - Y3 -d,Yi- Yj + d), \<i + ]<k

have t he proper ty t ha t the probability of making the correct inference \i{ — fij >

0(//j — fij < 0) simultaneously for each pair (i,j) satisfying Hi — fij > 2d(< —2d)

is no less than 1 — a. The main problem is to find the exact value of this

probability.

The second part of this thesis is concerned with the answers to these three

questions.



1.4 Powers of some multiple comparison tests

The inferences about {Hi, i = 1, 2, - - - , A;} discussed in Section 1.2 based on

the set of simultaneous confidence intervals

(Yi-d, Yi + d), i = l,---,k

are equivalent to the following multiple test approach. The hypotheses that

need to be tested are

Hi0 : m = 0 vs Ht + : /it > 0, or H%_ : Hi < 0, 1 < i < k;

the null hypothesis Hio is rejected if and only if \Yt\ > d, and if Hio is rejected

then Hi + (Hi-) is preferred if Y > d (Yt < -d).

Similarly, inferences about {^ — ^ I , i = 2, 3, • • • , k} based on the set of

simultaneous confidence intervals

are equivalent to the following multiple test approach. The hypotheses that

need to be tested are

Hio : m — Hi = 0 vs Ht+ : \i% > /xi, or H, _ : //,- < //l5 2 < i < k;

the null hypothesis Hio is rejected if and only if \Y{ — Yi\ > d, and if Hio is

rejected then Hi + (Hi-) is preferred if Yi — Y\>d (Yi — Y\ < —d).

Inferences about {//t- — fij, 1 < i:^ j < fc} based on the set of simultaneous

confidence intervals

(Y{ - Y2 - d , Yi - Y ^ d ) , \ < i + ] < k

are equivalent to the following multiple test approach. The hypotheses that

need to be tested are

Hijo : m - fij = 0 vs Hij+ : Hi > Hji o r ^n- '• Hi < VJI 1 < ^ J1 < k\



the null hypothesis Hij0 is rejected if and only if \Y,\ — Yj\ > d, and if Hijo is

rejected then Hij+ {Hi3_ ) is preferred if Yt -Y3 > d (Yi - Yj < -d). The third

and final part of this thesis studies the powers of these three multiple tests.
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1.5 On the chapters to follow

In Chapter 3, we propose pure sequential procedures for constructing fixed-

width 2d and (nominal) simultaneous level 1 — a confidence intervals for each

of the following three sets of parameters:

Hi, i = 1 , 2 , - • • , k ,

H i - H i - , z = 2 , 3 , • • • , & ,

where d > 0 and a £ (0,1) are two given constants. Second order approxima-

tions to the expected sample sizes and the confidence levels are derived. Exact

calculations of the distributions of the sample sizes and the confidence levels

are discussed.

The stopping times of all the three procedures are of the form

To = inf{n > m : n > d~2^lndn },

where 7 > 0 is a constant and ln = 1 + -/0 + o(-). In Chapter 2, we derive

second order approximations to E(TQ) and E \H (T^2-) as n0 —> 00 where

-ff(-) is a given function and no = d~2ja2. These results are used in Chapter

3 and the rest of the thesis.

Chapter 4 is devoted to the study of the exact probabilities of making

correct inferences based on the corresponding set of simultaneous confidence

intervals of fixed-width 2c? and level 1 — a.

In Chapter 5, we study the power properties of the multiple tests discussed

in Section 1.4.

Finally, in Chapter 6, directions of future research are discussed.

11



1.6 Notation

Throughout this thesis we adopt the following notation.

1. i.i.d. — independently identically distributed.

2. Z\,Z2,---— i.i.d iV(0,1) random variables.

3. 4>(x) — pdf of the standard normal distribution.

4. $(x) — cdf of the standard normal distribution.

5. xt — chi-square random variable with v degrees of freedom.

6. fy(x) — pdf of

7. F(x) — gamma function.

8. Yi — the sample mean of a sample taken from the ith population.

10. |m|£ — the upper a point of the distribution of the random variable

\M\k = max Zi .1 ' \<i<k

11. |ra|£,, — the upper a point of the distribution of the random variable

12. 1^1^ — the upper a point of the distribution of the random variable

\1_lu — the upper a point of the distribution of the random variable

\T\k-i,v = max

12



14. q^ — the upper a point of the distribution of the random variable

Qk = max (Zi - Zj).
l < < f c

15. q^l/ — the upper a point of the distribution of the random variable

= max

*

17. L = 1 + -L + o(-) as n —> oo.

18. ra(> 2) — the initial sample size.

19. T — a stopping time.

20. TQ = inf{ra > m : n > d~2^/Indn
2}.

21. i?(T) — the expected value of the stopping time T.

22. CL — confidence level.

23.

_k + 2 1 ^ 1 _ ( 2

7 1 = 1

24. (x) — the largest integer < x.

25. u.c.i.p. — uniformly continuous in probability.

26. u.i. — uniform integrable.

27. IA — indicator function of the set A.

28. C[A] — number of elements in a finite set A.

2 9 . ix = (iiuii2,---,iik) G Rk-

13



Chapter 2

The asymptotic theory of the

pure sequential procedure

The stopping times of sampling used for constructing fixed-width simultaneous

confidence intervals for the three sets of parameters are of the form

To = inf{n > m : n > d~2jlnan
2}, (2-1)

where 7 > 0 and m(> 2) are given constants, ln — 1 + ^/0 + o (M as n —> 00,

and

1 k n

- Yin)2, n>m (2.2)

where Y^, 1 < i < k, j' = 1, 2, • • • , are independent random variables with

Yij ~ N(jii1 a
2) and i^n = (l/n) I^j=1 5 ĵ. The corresponding confidence levels

are of the form

where H(-) is a given function and n0 = d~2^a2.

In this chapter we first give the second order approximations of E{TQ) and

E \H (ij2-) • The proofs of these results follow the lines of Woodroofe (1982),

but we try to give all the details. These results will be applied many times

14



in the subsequent chapters. The exact calculation of the distribution of TG is

also discussed.

15



2.1 Second order approximation to E(TQ

First we write TQ in a more manageable form. For fixed i, 1 < i < k, define

W - & l
/ I 1 \ 9

r(r + f )a2

_ i o

Then we have

Lemma 2.1

I Wiii W{2, • • • are i.i.d. \\ random variables for each ?', 1 < i < k.

TT For all n > 2 ^Tk Y^n (Y- —Y )2 — rr2 Vfc V""1 W- — (T2TTn~l II

where U\, U-2, • • • are i.i.d. chi-square random variables with k degrees of free-

dom.

Ill Wn, • • • , Win-i are independent ofY{n for all n > 2.

Proof: Define random variables Rn, • • • , Rin-i and Qin, n = 2, 3, • • • , by

Rf = (Rii, • • • , Rin-i , Qin)' — AZ™, where A is the following orthogonal ma-

trix

-1
/3x2"

- 1

1
/2xl
-1
/3xJ

- 1

0

2
/3X2"

- 1

0

0

-1

/nx(n-l)

1

/nx(n-l)

1

'nx(n-l)

1

/nx(n-l)

_ 1 _
\/n y/n y/n 1/ra

and Z™ = (Zii, • • • , Z t n ) ' where Z8> = (Yir —

), 1) random variables. By noting that

0

0

-i
/nx(n-l)

1

0

0

n-1

\

'nx(n-l)

7̂
z = f, 2, • • • , k, are i.i.d.

Cou (i?^, i?D = -4Cou (Zf, Z?1) A' = A A' = I

since A is orthogonal, then i?,i, • • • , i?,-n_j , Q,-n are i.i.d. standard normal

distribution random variables. It is also easy to check that

rv r̂ iv.. v. M2
W- - , n - 1

16



and so, Wn, Wi2,..., W{n-\ are i.i.d. \\ random variables. Since n > 2 is

arbitrary, Wn, Wi2} • • • are i.i.d. xl random variables. This proves (I).

To prove (II), we note that for fixed 1 < i < k

r = l r=l

r=l r=\

and
n -i n

r=l r=l

It follows therefore

r=l r=l

= o2(±Z2-nZ2\

= <r2(Y:Wir + Q2
n~Ql

\r=l i

n-1
2 V^ rrr

r=l

and

k n k n—1

= /Vt/ri (2.3)

where Ur = Ef=i Ŵv ~ xl

Property (III) is obvious since

Yin = {cr/\/n)Qtn + fii and Wir = i?2,., r = 1, • • • , n - 1.

This completes the proof of the lemma.

17



Applying this lemma to write dn
2 = o2Un-\ /k, where Un = (l/n)

we have

TG = inf{n > m : n > d~2-i!na
2Un-i /&} (2.4)

-jU
*n

= inf jn > m : -j-U~lt > d~27a2}.
*n

Hence, TQ assumes the form TQ = t + 1, where

t = inf{n > m - 1 : Zn > n0}, (2.5)

with

n0 = tr27<r2, Zn = — fcnf/^1.

Since the distributions of Ur are independent of //; and a2 , then the distribu-

tions of t and TG depend only on n0, which in turn depends on the unknown

variance a2. It is also noteworthy that t and TQ depend on d and a2 only

through a I d.

Note that

(n + l \ _ An

\nln+1) n
where A n —> 1 — /0 as n —> oo. Using Taylor expansion for I/a; about A:, we

have

= n (2 - ^ ] + kn ( 1 + ^ ) (Lny
3(Un - k ) 2 + A n [ 2 - ^

where Ln is an intermediate point between Un and k,

Sn = X1 + X2 + • • • + Xn, n > 1,

with Xi = 2 — [/,-/& for z > 1, and

Zn = (j-J kn{Un - k)2 (l + —^J + AnXn, (2.6)

18



with Xn = 2 - Un/k.

Since U\} U2, • • • are i.i.d. random variables, {Sn,n > 1} is a random walk

with E(X1) = 1, V(Xi) = 2/k. Therefore, the stopping time t defined in (2.5)

can be written as

t = mi{n > m - 1 : Sn + £n > n0}.

We intend to apply Theorem A.3 in the appendix to get an asymptotic expan-

sion of E(t). Let An = 0 where fi denotes the sample space, hn = 0, n > f,

and 14 = £n, we need to check conditions ( A.3 - A.9) are satisfied.

Lemma 2.2 For fixed 1 < i < k, and n > 2, {TQ = n} and Yin are

independent.

Proof: It follows from (2.4) that

TG = inf < n > m : n > d~2jlna
2Un-i /k >

and so {TG = n} depends only on Wn, W%2, • • •, W^n-i , which, by part (III) of

Lemma 2.1, are independent of Y{n. This finishes the proof.

Lemma 2.3 {£n,n > 1} is slowly changing (see the appendix for definition).

Proof: It suffices to show that conditions (A.I) and (A.2) in the appendix

hold. For (A.2) we use Lemma A.4 to show that £n/re ~^ 0 w.p.l as n —f 00.

Note that

^ = (±-X k(Un - kf (l )
\LJ
(X k(Un kf (l + )+

n \LnJ \ n J n

and

Un —>• k w . p . l as n —>• 0 0 ,

AnXn

n
A

0 w.p.l a s n - > 00,

1 -) —> 1 w.p.l as n —> 00,
n

19



and Ln —> k w.p.l. since Ln is an intermediate point between Un and k. Hence

in/n —> 0 w.p.l as required.

To prove {£n} is u.c.i.p., note that

Now by Lemma A.3, {(^™=1 U{ — kn) /y2kn, n > 1} is u.c.i.p., and by Lemma

A.2 we have

3
1 A A n \ 1 1^ 7i w.p.l

k3

{AnXn ,n > 1} is u.c.i.p., sinceAnXn —> 1 — /o w.p.l.

It therefore follows from Lemma A.I that {£n, n > 1} is u.c.i.p.. This finishes

the proof.

Lemma 2.4 (2/k) \\ + (1 — ô)

Proof: Note that

2k2
t - kn

and that
\ \

/t- — kn I y2kn
J

as n —>• ex),
i=i

AnXn —> (1 — /o) w.p . l as n —> oo,

n J k3— w.p.l as n -> oo,
k3

from which the lemma follows.

Lemma 2.5 Let Fn(-) denote the cumulative distribution function of x

(1 + n/2)' °" "

e« we have the following results:

I Fn(x) ~ C*xn/2 o s n 0, for all n>\,

n/2)

20



/ / there exist a constant b > 1 such that Cn < bnnnl2 for n > 1,

III P{t = m — 1} ~ Ck(nfi) n.o ' as n0 —> oo, where t is defined in

(2.5) and m > 2.

Proof: For (I) it suffices to show that, lim^o Fn(x)/(C^xn/2 ) = 1. Note that

: /2 - l -y/2

By using L'Hospital's rule, it is easy to show that lim^o Fn(x)/(C*xn^2 ) = 1,

as required.

To prove (II), we use Stirling's formula (see Handbook of Mathematical

Function ,1965)

T(x + 1) = xx+l'2 e-
x+dl12x V2^, x > 0, 0 < 6 < 1.

Then

Cn =
2n/2 (n) e-n/2 e6/6n

V 2

n

< bnnn'2,

where nx £ JV is such that l^) > 1/2 Vn > n1; and b > 4e > 2e(n + l ) /n > 1.

This finishes the proof of (II).

To prove (III), we have

> n0}
nolrt

> km
, km

21



asno^oo (by (I))

_ k(m-l)

fc(m—1) ^ 0Cy 2

• f c ( l ) n

as required. The proof is thus completed.

Lemma 2.6 For m > 1+2/k, 0 < e < 1 andln — l+ / 0 /n+o( l /n) as n —»• oo,

P{t <eiV^} =o(l/iVn o) as n0 -^ oo ,

w/iere iV ,̂ = (n0).

Proof: Noting that for sufficiently large n0, we have n^ < sN^ and P{i <

} can be written as

P{t < eN,,, } = P{t<n} + P{n<t< ns
0

/4} +

For fixed n we have

P{t<n) = j^ P{t=j}
j=m—l

~ C'k(m-1) n0 a S n 0 —* OO,

since for m < j < n it can be shown in a way similar to Lemma 2.5 part (III)

that

P{t = j}<P{ZJ>n0}<

i r-, -kj/2 t n -A<m-l)/2 \

and Ckln0 = o I G^m-i) n 0 j as no —>• oo.
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Now, by part (II) of Lemma 2.5, we have

P{n<t <n3
0
/4} = Yl Pit = f-

j=n+l

< £
j=n+l

P{Z} > n0}

< V C, -n~jk/2

j=n+l
/
nt(k1/2byk

This last summation is of a smaller order of magnitude than nQ "^ as no —> oo

for sufficiently large n. For this, it suffices to show that

lim V (k1/2b)jkn%"*-1-i/4)f2 = 0 .

Note that
OO CO

= V; (k^2byknk{-3+mo)/8 where m0 = 4(m - 1)
j=n+l

1 ~T/8
\ n0

J=n+1 "0
Ki^mo -1)

\ n0 '" / J = n + i V no /8 /

Now, n > 4(m — 1) is sufficient for this last expression to approach zero as

no —> oo.

Finally, n0 < t < eN^ implies that Z? > ?i0, i.e. U3 < k(j +
3

for some j G ( UQ , eA^ ,̂ . For j G ( n^, eÂ ?1<) and sufficiently large n0 , we
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have

3 +
no/,-t

: + 1
n0

n0

- 0 ' + l - / o + o(l))
n0

1 , „

and

[/, < k60 implies U3 — k < k(60 - 1) = — 6 < 0,

where <50 G (0,1) is a constant. Thus for sufficiently large n0

< P{D3 -

max

-6, 3j <E (n

Now, by Theorems A.2 and A.I in the appendix, we have

T-, I -\fT 1 I ^ f 3/4

r< max ]\Un — k > c)nn

< Cn0
 4 , Va > 2,

and so P\nJ < t < eN^ \ = o (no~ ~ ) by choosing a to satisfy k(

l) /2 < a/4.

Combining the above three cases, we have in fact proved that

t(m —

P{t < as no —> 00 .
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By noting that

Ck(m-i) n0 = o(l/n0) as n0 —s- oo

when m > 1 + 2/k, therefore

P{t<eNno}=o(l/Nm) as n0

This completes the proof.

Corollary 2.1 For m > 1 + 2/A;

< no/2} ~ Ck "" oo.

Lemma 2.7 Lei Fn = maxo<s<« (n + s) (Un+S — k) , n > 1, then

is uniform integrable. (See the appendix for definition).

Proof: Note that

P{ max (n + s) (Un+S - k) > y}

< P{ max s\Us - k\ ;
~~ l-0<s<2n

/ i W2

< — E\2n [U2n ~ k)a for a > 1

2 , n > 1}

where the second inequality follows from the Theorem A.2. Applying Theorem

A.I we have

sup E
'\nk

< Co, a> 2,

and so

P{ max (n + s) (Un+S -kf > y\ < Cy^2 , a > 2, n > 1.

The lemma now follows from Lemma A.6 in the appendix by choosing a = 6

say.
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Lemma 2.8 For given r > 0,

{ max , n > 1 > is u.i..
0<s<n \Ln+sJ - J

Proof: Again we apply Lemma A.6 in the appendix to prove the lemma. By

noting that Ln is an intermediate point between Un and k, we have

Now,

r

P< max ] > x
[0<s<n \Ln+sJ

< p { m a x ( ? )
Ln

+s

< P< min Ln+S < - > where xxlr = z
- I 0<< +

 z II 0<s<

<P\ i U\ min Un+S < -> (for large x so that 1/z < k)
I 0<s<n, z I

(2-7)

where d is some constant and the inequality (2.7) follows from part (II) of

Lemma 2.5. Consequently
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kt_
2

- $ £ w •
Since <i is a constant, we can choose x sufficiently large such that d/z < 1.

V < E£o (d/*)^ <C < oo, and then

M V 1

Then JZto

max L
V 2r

Now, C(d r x) (2r>+1)/2r is integrable with respect to the Lebesgue measure over

(l,oo). Therefore {maxo<s<« (l/Ln+s)
r , n > (2r + l)/k} is u.i. by Lemma A.6.

Also it is easy to show that maxo<s<n (1/Ln+S)
r, V 1 < n < 2r/k, is integrable.

So {maxo<s<rc, (l/Ln+s)
r ,n > 1} is u.i..

Lemma 2.9

max
0<s<n

, n > 1 > is
J

Proof: Since

max
0<s<n

< max + 3)fe+,-A-)2fl + ^

+ max |Xn + sAn + s | ,
0<s<n

it suffices to show that both

r / -, \ 3

n+s

Ar

and {maxo<s<n +s^n+s |, n > 1} are u.i.. The uniform integrability of

the first sequence of random variables follows directly from Lemmas 2.7, 2.8

and part (II) of Lemma A.7. To show the uniform integrability of the second

sequence of random variables, it suffices to show that {maxo<s<h |A"

1} is u.i. since

n + s | , n >

max
0<s<n

An+S | < C\ max \X.»+s I
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max = max |A'n+s + 1 —

By noting that

< max \Xn+s - 1| + 1,
0<s<n

it suffices to show that { m a x o ^ \Xn+s —1|} is u.i.. This follows from Lemma

A.6 by noting that

P\ max \Xn+s — 1 > x\
lo<s<n ' n+s J

< P\ max (n + s) \Xn+s — 11 > nx \

< P< max s\X* — ll > nx >

nx

where a > 2 and M > 0 are constants.

Theorem 2.1 For m > f + 2/&, A: > I, then

2
( ) = no + /5 + / o - f + o(l) as ?z0 -* oo,

where nQ = d~2^a2 and

P r o o f : Since TQ = t + 1, it suffices to show that

E(t) = n0 + p + l0 — 1 — — + o(l) as n0 —> oo.

For this, we use Theorem A.3 in the appendix. We show that all the conditions

(A.3-A.9) hold. Let An = SI, hn = 0, and Vn = £n,n>l. Then (A.3-A.5) are

obviously true. Now, (A.8) is true since

£n —> — Xi + (1 — ̂ o) as n —> oo (by Lemma 2.4 ).
k
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(A.6) is true by Lemma 2.9, and (A.9) is true by Lemma 2.6. Next, we show-

that (A.7) holds, i.e.

CO

< -ne} < oo for some 0 < e < 1. (2.8)
ra=l

By noting that Xn — 2 — Un/k, we have

n - kf (l + ^ + AnXn < ~ne

P{AnXn < -ne}

Since lim^oo An = f — /0, there are constants Co and C\ such that —Co < 2An,

ne — Co > 0, and |An | < C\. Therefore for sufficiently large n

<P{k(ne-C0) <AnUn}

<P{k(ne-C0)<\An\Un}

|An

Now,

K\ne — UoJ

A- .
ne — Co)
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where Z denotes a standard normal random variable, A = y/C7e/cG"/2C^ , E\ =

e/2Ci, and the second inequality follows from the well known inequality

e""2/2 du < -e^'2 , for all x > 0.

Therefore (2.8) holds. By Lemma 2.3, ^n, n. > 1 are slowly changing. We have

therefore shown all the assumptions of Theorem A.3 hold, and so

2
E(TG) = no + p + l o - y + o ( l ) as n0 —> oo.
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2.2 Second order approximation to E \H

In this section we derive a second order expansion of E \H (7-^) • First, we

establish some properties of t which will be used later.

Lemma 2.10 $t>2no t2 dP -^- 0 as n 0 —» 00.

Proof: Denote Y = t2, k^ = 2n.g, then

/ t2 dP = I t2 dP

= I Y dP
JY>2kn0

< 2 / (Y - kno) dP (since Y > 2kno => Y < 2{Y - kno))
JY>2kno

< 2 / (Y-kno)dP {since {Y > 2kno} C {Y > k,^})
JY>kn0

00 .

= 2 E L (Y-kno)dP
n=(^+l> J{Y=n}

CO

= 2 £ ( n _^
OO

= 2 E P{Y>n}
n={kn0)

CO

= 2 E
n=(kn0

CO

< 2 T

Let 0 < e < 1 - l / \ /2 , t> > 0 be so small that e + 8 < 1 - 1/^/2, and

i?^ = no /( l — (e 4- 6)). Since

„ 2 . / "0 \ 2
 r r 2

we have
(X) CO

E ^0 > (v^» < E
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t > r implies Sr + £r < n0,

Note that

and so

For r > (ffno), we have r > no / ( l — (e + <5)) and so no — r < — r(e + 6).

Consequently we have for r > (i7no)

P{t>r} < p{Sr+£r-r<n0-r},

< P{Sr + £r - r < - r e - r<5}

SV - r + r<S < 0}

which is independent of n0 > 0. From the proof of Theorem 2.1, we have

J2?Li rP{£r < —re} < oo. Also note

r__l_Vf/_r<_rrP{Sr - r + rS < 0} =

< rP

1
r5S6

23

> rS

',• — r (by Markov's inequality)

E
E L i Ui - fc

C
< —, (by Theorem A.I)

r2

and so J2^L\ rP{ST - r + rS < 0} < oo. We therefore have

t2 dP < 6

6

> r}

- < -re} r - r + rS < 0}
r={HnQ)

= o ( l ) as no —>• oo.

This finishes the proof.
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Lemma 2.11 Let t* = (t — no)/y/no, then

[ t*2 dP -*• 0 as n0 -* oo .
Jt>2no
[
t>2no

Proof: Note that

/ r2 dP = — / t2 dP-2 [ tdP+f nQdP
Jtyi.no Ho Jt>2no Jt>2r\, Jt>2no

< — f t2 dP+ f nodP

< — I t2 dP + - [
Uo Jt>2no 2 Jt>

[ tdP
Jt>2no 2 Jt>2no

< — I f dP+- [ f dP,
no Jt>2n0 2 Jt>2vo

from which the lemma follows by using Lemma 2.10.

Lemma 2.12 If m > 1 + 2/k, then

/ t*2 dP —* 0 as n0 ^> oo.
Jt<pol2

Proof: Note that

'no/2 + n0
2

f r2 dp < f I " u ; " l " u 1 dp
Jt<po/2 Jt<jio/2

9
= - n 0

4

= -n0P{t < —}

~ Cfc(m_1} n^^"1-1'/2 , (by Corollary 2.1)

which goes to zero as n0 -> oo for m > 1 + 2/k.

Corollary 2.2 If m > 1 + 2/k, then

[ (TG~n0)
2
 Jn

/ — dP —> 0 as n0 —> oo.
JTG<no/2 HQ

Corollary 2.3 / /m > 1 + 2/fc, ^en { t * 2 ^ ^ , n0 > 2} ararf {t*2/f>2?70 ,

are u.i..
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Proof: Note that E t*2I t<no/2 < ° ° since ft<noi2 t*2 dP —> 0 as n0 —> oo

by Lemma 2.12. The u.i. of \t*2 It<naj2 , n0 > 2|- now follows directly from

Lemma A. 14 by letting X — 0 and p = 1. A similar argument shows that

{ i * 2 / ^ ^ , "o > l } is u.i..

Lemma 2.13 If m > 1 + 2/k, then {t*2,n0 > 1} is w.z..

Proof: t*2 can be written as

4*2 .1*2 +*2

By Corollary 2.3, \t*21{t<Jl0/2] \ and jt*21{t>2no} r al'e u.i.. So it remains to

show <U*2/{no/2<t<2)7o} } is u - i - ^y u s i n g Lemma A.6, it suffices to show that

there is a function J for which xJ(x) is integrable with respect to Lebesgue

measure over (1, oo), and

<t<2n0, \t*\ >x\<J(x).

Note that

P< — < t < 2n0, \t*\ > x

< Pit > y , t* < -x} + P{t < 2n0, t* > x\,

and we shall consider these two probabilities separately.

For the first probability, since t > no/2 and t* < —x imply that x < y/no/2,

then

Pit > —, t* < -x\ =0 for x > ^ p .

For 1 < x < y/no/2, t > no/2 and t* < —x, i.e. no/2 < t < n0 — x^/ri^,

we have Zj > n0 for some j G (no/2, no — ̂ /n~ox\, i.e. Uj < k(j + l)/(no/j+i)

for some j G (no/2,no — ̂ /n^x]. For sufficiently large x and no, and j G

(??o/2,?2O — y/nox], we have

1)))
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(
n0

= —(j +
n0

< — (n 0
n0

Also note that

fr 1 kx - kx - .
Uj - k < -—— => Uj -k\> —— ^j\U, - k\

2/n ^vn

for j > no/2. Consequently

- ,

= i3] -£• < t < n0 - y/no'x >

< Pi Uj < —— for some j G (n o /2 , n0 —
L n / j

/y < fc 1 -==. for some j G (no/2, n0

V 2Jn^

< P\j\UJ - k\ > k ^ ^ - for some j G (no/2,no -

44

< - ^ - j / n^U^ - k\4 dP (by Theorem A.2)
x n 0

< Cx"4 (by Theorem A.I)

where C is a constant.

Next, we show that P{t < 2n0, t* > x} < Cx"4 for sufficiently large x

and n0. Since t < 2n0 and t* > x imply that x < -v/n ,̂ and so

P{t < 2n0, t* > x} = 0 for x >

35



For 1 < x < ^/n"^, t < 2no and t* > x we have n0 + x-s/n~o < t < 2n0 and so

Zj < n0 Vj < no + Xy/n^. This implies that for j G m0 + x^/n^/2, n0 +

and for sufficiently large x and n0, we have

3

-
no

Also note that

\Uj - k\ > -—— =$• 3\Uj - k\
fn~Q

 J l J ' 4 '

for j G (n0 + Xy/n^/2,no + â A/no) • Therefore for sufficiently large x and

x} = P{no +x^/n~o~ <t <2n0}

4

and a similar argument as above shows that P{t < 2no,t* > x} < Cx^4.

Now if we let J(x) = Cx~^ then xJ{x) = Cx~3 is integrable with respect to

Lebesgue measure over (1, oo). This finishes the proof.

Corollary 2.4 //m > 1 + 2/k, then

m \ 2
\ .

, no > 1} is u.i..
^n0

Proof: The corollary follows by noting that

(TG-n0\
2 ft-noV , 1 , 2 A -

and the facts that {t*2,n0 > 1} is u.i. by Lemma 2.13, {(t — no)/^/n^} is u.i.

by part (I) of Lemma A.7 and l /n0 is bounded.
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Lemma 2.14 Suppose that

(i) K(x) is a real valued continuous function and \K(x)\ < Cx~° for constants

C > 0, a > 0 and all x > 0,

(ii) m > (2/k)(a + l) + 1,

(Hi) W is a positive random, variable such that

( Tr / Ci \21 { Tr ( Ci x 2

I n 0 V T G / J I n 0 V T G

where C\ > 0 and 0 > 0 are constants. Then, we have

K(W) f — (1 + - 1 ) - 1 ) 1 -> -;—K(9) + o ( — ] as n0 -> oo.1 + 7 ^ 1 *y A ^ + o
\ n 0 V TGJ J ) kn0 \noj

Proof: Let

U = K(W)

and

/n0 )

First we shall show E(V) -> (2/k)K(9) as ?20 ->• oo. Noting that PF is an

intermediate value between ^-9 (1 + ^-J and ^, and ̂  (1 + %~) ~^ 1 w.p.l

as n0 -^ oo by Lemma A.8, so, W —»• ̂  w.p.l as n0 —> oo and /^(W) —> A'(^)

w.p.l as n0 -^ oo. By Lemma A.11, ((TG — no)/y/n^j —* (2/k)xl- Then the

asymptotic distribution of V is {2/k)K(9)x\-

Now, let A = {2s. > i} 7 on the event A, TG > no/2 and so

n0 2

So, on event A, 5/2 < W and |A'(IF)[ < CW^ < C09~a, i.e. /l(JF) is

bounded on A, |/{"(W)| < M say, where M is a constant. Hence {V/^} is u.i.

since

\VIA\ <M((TG-n0)/^T0)\
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and { y(TG - n0)

(2/k)K(6)xl, we have

} 1S u-1- by Corollary 2.4. Also noting that VIA —>

B lim E (VIA) = E [ftf (*)X?

= rK{9)
K

by Lemma A. 12.

Next, we show that the expectation of V on Ac goes to zero as n0 —+ oo.

For this we note that on event Ac and for sufficient large n0, we have

\K{W)\ <CW-°,

n0 2

Then

-W\<9
n0

n0

n0

< C / n«+1 dP
JAC

= C<+1P(rG<n0/2)

6o " o , (by Corollary 2.T
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which goes to zero as n0 —> oo, since m > (2/k)(a + 1) + 1. Combining the

two cases we have shown that E(V) —> (2/k)K(8) as n0 —•» oo. Similarly, we

can show

E\K(W)^- (Q- + 2] 1 = 0 (—)
n0 \la / J \n0/

and

L ' V » o V Vno J K l t + 2]l=0' l

Therefore
1 2 /I

o — I as no —> 00.

This completes the proof.

Lemma 2.15 For To define in (2.1) and m > 1 + 2/k, we have

E{ — )= ho — ) as n 0 - > oo.

\1G/ n0 \n0J
Proof: Let A = {^ > i} , then

J_ - JL
^ G n 0

and

Note that by Lemma A.8 |? > 1 iu.p.1 as ?zn —>• 00, also on event A, 11?-) is

u.i. so, by Lemma A.12

E —LA —>• 1 as n0 ^ 00.
Vie /

Also note

< n0 [ dP

= n0P I TG < — 1

= o(l) (by Corollary 2.1).
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It follows therefore

as

Theorem 2.2 Suppose that H(x) is a real valued function of x > 0 such that

H"(x) is a continuous function and \H"(x)\ < Cx~@, where C > 0 and /3 > 0

are constants. If m > (2/k)(/3 + 1) + 1, then
n \ 2\ i

Le2H"{9) + o f—

E H ^ l + - i
\ n 0 v r G ; ; j

where C\ > 0 arid 0 > 0 are constants.

kn0 n0

Proof: We expand H(-) in a Taylor series about 61 to get

= E

where

H{9) + H'{0) (^9 (l + ~)2-

W <

\H"{W)
n0

•Y x 2

So

E H
n0 •G

= H(9) +

02 F

2

Iff
no

H (VI

n0

H"(M

(9)E ((TG

/ M — ( l

(T /
)̂ M (l

- n0) + 2Ci +

C iV V"
2 + 2 C ^
A; 1}

o \ 2"

since (l/no)E(l/TG) = o(l/??o) as n0 —> oo by Lemma 2.15 and

/) + l0 — 2/k + o(l) by Theorem 2.1. By Lemma 2.14 we have

- f t o ) =

E H"{W) [ — Cl —H"(6) + o(—) as n0
cno Vn0/

oo

and so the result follows.
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Theorem 2.3 Suppose that H(x) is a real valued function of x > 0 such that

H"(x) is a continuous function and \H'(x)\ < A\X~a and \H"(x)\ < A2x~a,

where A\, A2 and a are positive constants. If m > (\jk)(a + 5) + 1, then

= H ( C 0 - d ) - —H' (Co - d ) ( d d ~ U C ° - C l ) (p + h - Tn0 1 2 \ k

+ — (Co - d ) + 77— (Co - d ) ' ^ " (Co - Ci) + o — as n0 -+ ex),
4A: J 4fcn0 \ n /

where Co > Ci anrf C2 are given positive constants.

Proof: Let M(x) = H(a-y/x). Expanding M(x) about 1 gives

M(x) = M ( l ) + {x- l ) M ' ( l ) + i ( x - 1 ) 2 M

where V is an intermediate value between x and 1. Let a = Co — C

and x = 2k and since M(l) = H(a) and Af'(l) = (a/2)H'(a), we have

n n x

( 2 - 9 )

Now, we find the first expectation on the right hand side of (2.9). For this we

expand H fC0 — C\ — Of2-) in a Taylor series about (Co — C\) to get

(Go — GiJ ——ii (Go — GiJ + -

where W\ is an intermediate value between Co — C\ and Co — C\ — c)^i • By

Lemma 2.15 we have

• u' m n \1 C\C2 jji , n n \ \ ( ^ \
-ti (Go — Gi) = rl (Go — GiJ + o I — as reo —> oo.
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By an argument similar to that used in the proof of Lemma 2.14, we can show

E
\

= o [ — as n0 —> oo.
noj

So, we have

E\H I CO - d - ^r1)] =H(C0- dyQQ-H' (Co - d)+° (—) as n0
L V iG /J no Vn0/n0 \n 0 ,

Next, we evaluate the second expectation on the right hand side of (2.9):

2 \ n 0

= E1-E2.
T,G

r
o — O i —

1 T,G
(2.10)

We have

-

2n0
(Co -

1 (TG

2 Vn0

(Co - d ) L + /o - j

where W2 is an intermediate value between Co — d and Co — d —

as before, we can show

Same

rp
—n0 as 0 0

and so

El = - ! - (Co - d ) ^ ' (Co - d ) (p + lo - 7 ) + o (— j as n02n0 \ kj \U
0 0
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A similar argument establishes that

1 TG \ CiC2 / , / CXC2

2 \n0 J TG \ V TG
- i f ' ( C o -

^ l

= o — l as n o -> oo.
Vn0/

Finally, the third expectation on the right hand side of (2.9) is given by

o L V Wn0

C'Q — C\ —

Y3/2
'•H'((Co-Cl-^)VV

(Co - d -
-H"

v vv u l TG

By an argument similar to that used in the proof of Lemma 2.14, we can show

(Co -

4kn0

Putting these together gets the theorem.
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2.3 Exact calculations of E(TG) and E [H

In this section, we evaluate the exact distribution of the t in (2.11) for small and

moderate values of n0, by using a recursive method. Such a recursive comput-

ing method was used, for example, by Armitage et al. (1969), McPherson and

Armitage (1971) and by Jennison and Turnbull (1991). We set ln = 1 + lo/n.

From (2.4) and (2.5), we have that TQ = t + 1 where

. rf kn(n + l)d2

t = inf n > m - l : Ui + U2 + • • • + Un < - '

= mf{n>m~l : Ux + U2 + • • • + Un < -*n(n + 1}

= inf{n >m0 : Sn < Cn), (2.11)

where mo = m — 1, Sn = U\ + U? + • • • + Un, U\, U2, • • • are independent x\

random variables, and
kn(n + l)

[ + ̂
If we define

i?mo(x) = /x2fcmo(x), (2.12)

where /X2 (•) denotes a pdf of the

Rn{x) = ^-P{Smo > Cmo , • • • , 5n_x > Cn-a , 5n < a:}, n > m0 + 1, (2.13)
ax

then we have the following result.

Lemma 2.16 For n > mo

Rn+1(x) = I" Rn(y)fxi(x - y) dy. (2.14)

Proof: By the definitions of Rn(x), we have

R-n+i {x) = P{Smo > Cmo , • • •, Sn-\ > Cn-\ , Sn > Cn, Sn+i = x\

P{Smo > C m o , - - - , 5 n _ ! > C n _ 1 , 5 n = y } x
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P{Sn+1 = xlS^ > Cm , • • • , Sn-i > Cn-x ,Sn = y} dy

Cn
CO

Rn(y)P{Un+1 = x - y) dy

= j^Rn{y)f^x-y)dy,

as required.

Note that P{t > m0 - 1} = 1, and

/•CO

P{t>n + l} = j Rn+I{y)dy, n > m0 - 1, (2.15)

since {t > n + 1} = {Smo > Cmo , • • •, Sn+1 > Cn+1}. So

E(TG) = 1 + E(t)
CO

= 1+ E nP(t = n)
= 1+ J2 n[P(t > n - 1) - P(t > n)]. (2.16)

Rn+i (x) can thus be calculated recursively. The basic method is to evaluate

the right hand side of (2.14) at points on a grid of width h, i.e. for x =

Cn-,Cn + /i, Cn + 2h, • • • , Cn + Ih, where / is chosen such that Rn+i (Cn + Ih)

is sufficiently small (here we choose / for which Rn+i(Cn + Ih) < 5 X 10"6);

Rn+i(x) is approximated by linear interpolation for x £ [Cn,Cn + Ih], and

approximated by zero for x > Cn + Ih. From (2.15), P{t > n + 1} is then

approximated by fc^ Rn+i (y) dy. This recursive calculation stops at some

r0 such that P{t > r0} is sufficiently small. From (2.16) the E(TG) can thus

be calculated by a finite summations which sum from n = m0 until n = r0.
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Chapter 3

The constructions of

fixed-width confidence

intervales for multiple

comparisons
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3.1 Fixed-width simultaneous confidence in-

tervals for the means of several indepen-

dent normal populations

3.1.1 Introduction

Suppose we have k independently and normally distributed populations N(fii,a2), i

1, 2, • • • , k with unknown fi{, —oo < //; < oo, and a common unknown positive

variance a2. Assume we can sample sequentially from each population and that

Yn, Yi2, Y{3, • • • denote the observations from the ith population, i = 1, 2, • • • , k.

In this section we construct a set of fixed-width 2d simultaneous confidence

intervals for the means /i, of the form

Hi G [Yi — d, Yi + dj , i = 1, 2, • • • , k

with a (nominal) confidence level 1 — a, where Yi is the sample mean of a

sample taken from the ith population, and d > 0 and 0 < a < 1 are two given

constants.

Let Z\, Z2, • • •, Zk be i.i.d. ./V(0, f) random variables, and let xl be a chi-

square random variable with v degrees of freedom which is independent of

Z\.t Z2, • • • , Zk- The distribution of

is called the studentised maximum modulus distribution with parameters k

and v. If v = 00 then xL/°° = 1 anc^ hence the distribution of |M|fcjOO is the

same as

\M\k = m a x \Z{\.
\<i<k

Let Im^j, denote the upper a point of the studentised maximum modulus
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distribution with parameters k and u, i.e.

P\\M\u < \m\a \ — 1 — a
r \ \ l y l \k,f _ \"l'\k,i>i —

Values of | m | ^ for some combinations of a, k and v can be found in Hahn

and Hendrickson (1971).

Suppose a sample of fixed size n is taken from each of the k populations

and let b\ be the pooled sample variance given by

k n
1

then

axs
;.<k L

max
Ki<k

Vn\Ym - fii

has a studentised maximum modulus distribution with parameters k and v

k(n — 1). Therefore

P
n[Yin-

G,n
< \m a

n [Ykn -

Or,
< \m = 1 -a

which can be written as

— < . / - i ; < . I i n ~v 1771 ^ — , 1 2 ' _ : ' ' ( -L &•P

A set of simultaneous confidence intervals for \it with confidence level 1 — a is

therefore given by

7 — 1 9 . . . h (^ 1\

, IS

in ' sjn)

This set of confidence intervals was proposed by Tukey (1952b, 1953).

mAs we can see, the length of these confidence intervals, 2

a random number since a2 is unknown and so v < oo. In fact, when a2 is

unknown, it is necessary to use a sequential procedure to construct a set of

fixed-width 2d simultaneous confidence intervals for the means \i% of the form

, % = 1 , Z , • • • , K.
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A two-stage procedure based on Stein's (1945) result was proposed by Healy

(1956). Here we propose a pure sequential procedure. To appreciate the

definition of this pure sequential procedure, we first look at the construction

of a set of fixed-width 2cl simultaneous confidence intervals for the means m

when a2 is assumed to be a known constant.

Had a2 been known, the set of 1 — a level confidence intervals in (3.1)

becomes

* = 1 2 • • • , fc.

In order that the width of these confidence intervals is at most 2d, the sample

size n from each of the k populations should satisfy \m\%oJ\fn < rf, which

implies that

n>d-2{\m\a
k)

2o\ (3.2)

That is, when a2 is known, we take a sample of size n from each of the k

populations where n satisfies (3.2), and then construct a set of simultaneous

confidence intervals for the [i{ as

This set of confidence intervals has width 2d and confidence level at least I — a.

Now consider our problem in which a2 is unknown and so the right side of

(3.2) can not be calculated explicitly. A reasonable sample size formula would

be similar to (3.2) but with a2 replaced by some estimate. Precisely, we take

the same number of observations, n, from each of the k populations, starting

with m, increasing by one at a time, until

T = inf{n > m : n > d~2 (\m\a
kf lndn

2}, (3.3)

where m > 2 is the initial sample size from each population and ln = 1 -f MQ +

oo. On stopping sampling the set of simultaneous confidenceof-) as n

49



intervals for /i; is defined as

Hi e Ii(T) = (?iT - d, ?iT + d), i = 1, 2, • • •, k.

Next we show that the confidence level of this set of confidence intervals is

approximately equal 1 — a.
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3.1.2 Second order approximations to the expected

sample size and the confidence level

As the stopping time T defined in (3.3) is of the same form as the stopping

time in (2.1) with 7 = (|?rz|^)2, the following theorem follows directly from

Theorem 2.1.

Theorem 3.1 For k > 1 and m > 1 + 2/k, we have

2
E(T) = a -\- p -\- l0 — — + o(l) as a —> 00,

k

where a = d"2 (|m|£)2cr2.

It is noteworthy that a is the right side of (3.2), which can be regarded as

the optimal sample size had a2 been known. Form Theorem 3.1 the difference

between the expected sample size of the pure sequential procedure and the

optimal sample size a is about p -\- l0 — | , a constant, at least for large a.

In order to deriving the second order approximation to the confidence level,

we need the following lemmas.

Lemma 3.1 For given a > 0,

• •, nk e h{T)} = E [** ({\m t)2

where V(x) = 2 $ ( ^ ) - 1 and a = d~2 (\m\%)2a2.

Proof: We have

P{li1eh(T),---,fik€lk(T)}

= P{YIT - d < (i! < Y1T + d,- • • ,YKr - d < (ik < YkT + d)
00

T ~d<fn< YlT + d,---,YKr-d<fik<YkT + d\T = n}P{T = n}
71=771

OO

= E p{ym - d < ̂  < Yln + d, • • -,Ykn -d<fik<Ykn+d\T = n}P{T = n}

= £ PiY^ ~d< fr < Yln + d, • • • , Ykn -d< (ik < Ykn + d}P{T = n},
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where the last equation follows from Lemma 2.2. The lemma now follows by

noting that

P{Yln - d < fa < Yln + d,- • • ,Ykn - d < fik < Ykn + d}

= P{\Yin - Hi\ <( / , • • • , lYkn - nk\ < d)

= P\\Z\< dWn

a

'nd2

2 n
a

where Z is a standard normal random variable.

Lemma 3.2 Let *(x) = 2§(yfx) - 1 and h(x) = $k(x). Then

I ty"(x) is an increasing function of x (E (0,oo).

/ / There is a constant C for which \^"(x)\ < Cx~3l2 for all x > 0.

/ / / There is a constant C for which (^'(x))2 < Cx"1 for all x > 0.

IV There is a constant C for which \h"(x)\ < Cx^k^l2 for all x > 0.

Proof: We have

11 = -/2 i

1
D-x/2 2

x2

from which the results I, II and III follow directly.

To prove (IV), we note that for x > 0

= 2
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where B is a constant and so

\h"(x)\ = k(k

k(k

where A1? A2 and C are constants, as required.

Now we are ready to give the second order approximation to the confidence

level.

Theorem 3.2 Suppose that m > 1 if k > 4 and m > l + (6-k)/k if k = 2,3,

then

= I - a + ^

a\4
k)

h' m

m\tf

k) J \P

V

a,

where h(x) = tyk(x), and ^S(x) = 2<f>(y/x) - 1.

Proof: It follows immediately from Lemma 3.1, part IV of Lemma 3.2 and

Theorem 2.2 with 9 = (\m\lf , Ci = 0 and n0 = a.
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3.1.3 Calculations of the approximate values of the ex-

pected sample size and the confidence level

In this subsection we calculate the approximate values of the E(T) and CL.

First, we calculate the values of

p =
k + 2 1 ̂  1 „

7 1 = 1

~ 2nk) >

which is required in Theorem 3.1, for k = 1(1) 20. By noting that

(X2
nk - 2nh) dP

—2nk

r(nib/2)
1

= nk

r(?ifc/2)
1

nifc/2)

-2nk
1

-x
r(nt/2)

and using Q(c, x) to denote the incomplete gamma function f£° t0"1 e~l dt/T(c),

then

(3.4)'-,nk\ -2Q\^-1nk
2k ^ I 'M 2 '"""/ " M ^
^ ^ 71=1 L V Z / \ "

The values of p(k) for AT — 1(1) 20 are given in Table 3.1. These are calcu-

lated from (3.4) by using the NAG routine S14BAF for the incomplete gamma

function Q(-, •) and keeping only those terms having magnitude > 10~10 in the

sum.

From Theorem 3.2 it can be seen that the value of /0 can be chosen to

satisfy

t)2 h' ((\m\t) rn = 0

so that the CL is equal to 1 — a -\- o(l/a). This /Q = lo{k,a) is given by

(o —
h» ((\m\j)

h'{(Ha
k)

2)
~ P, (3.5)
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Table 3.1: p = p{k)

k

1

2

3

4

5

6

7

P

0.817

0.745

0.701

0.671

0.649

0.632

0.618

k

8

9

10

11

12

13

14

P

0.608

0.598

0.590

0.583

0.577

0.572

0.568

k

15

16

17

18

19

20

P

0. 564

0.560

0.557

0.554

0.551

0.549

where ti(x) = mk~l (x)^'{x)7 h"{x) = k(k-l)^k-2 (x) (V'{x))2+ki$k-1 (x)V"(

and ty(x) = 2$(v
/x) — 1. In order to calculate lo(k,a) I have calculated the

values of |m|£ for a = 0.1,0.05,0.01 and k = 1(1) 20 and they are given in

Table 3.2. The value of h(k, a) can be easily calculated from (3.5) and the

results for a = 0.1,0.05,0.01 and k = 1(1) 20 are given in Table 3.3.

From Theorem 2.1, the approximate value of E(T) is

a + p + lo-2/k.

This approximate value corresponding to /0 = lo{k,a), is given in Tables 3.4

and 3.5.
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Table 3.2:

k\a

1

2

3

4

5

6

8

9

10

11

12

13

14

15

16

17

18

19

20

0.1

1.645

1.948

2.114

2.226

2.310

2.378

2.433

2.481

2.522

2.559

2.592

2.622

2.649

2.673

2.696

2.718

2.738

2.756

2.774

2.791

0.05

1.960

2.236

2.387

2.490

2.568

2.631

2.682

2.727

2.765

2.799

2.830

2.857

2.883

2.906

2.927

2.947

2.966

2.983

3.000

3.016

0.01

2.576

2.806

2.934

3.022

3.089

3.142

3.187

3.225

3.259

3.289

3.315

3.340

3.362

3.382

3.401

3.419

3.435

3.451

3.465

3.479
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Table 3.3: l0 = lo(k,a)

k\a

1

2

3

4

5

6

8

9

10

11

12

13

14

15

16

17

18

19

20

0.1

3.0356

1.393

0.814

0.515

0.332

0.207

0.117

0.049

-0.004

-0.048

-0.083

-0.114

-0.139

-0.162

-0.181

-0.198

-0.213

-0.227

-0.239

-0.251

0.05

3.874

1.717

1.044

0.695

0.479

0.333

0.227

0.146

0.082

0.031

-0.011

-0.046

-0.077

-0.103

-0.126

-0.147

-0.165

-0.181

-0.195

-0.208

0.01

5.463

2.462

1.556

1.085

0.796

0.599

0.457

0.349

0.263

0.195

0.138

0.090

0.050

0.015

-0.015

-0.042

-0.066

-0.087

-0.107

-0.124
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3.1.4 Exact calculations of the expected sample size

and the confidence level

In this subsection, we evaluate, by using a recursive method, the exact distri-

bution of T and hence the exact values of E(T) and CL. Let t = T — 1. Then

from the Lemma 2.16 and the argument after Lemma 2.16, we have

Rn+1 (x) = f Rn(y)f4 (x - y) dy (3.6)

and
/•CO

P{t>n + 1}= Rn+i(y) dy, n > m0 - 1, (3.7)

where
kn(n + 1)

Cn — •

and the value of IQ is given in Table 3.3. Consequently

CO

E(T) = 1+ Y, n[P(t > n - 1) - P(t > n)] (3.8)

and

CL = i

11=1710

f; n - 1) - P(t > n)]/. ((|m|«)2 ̂ ±1) , (3.9)
m 0

where /i(a;) = ^fc(a:) and ̂ f(x) = 2$(v
/x) - 1. Now the functions i?n+i(-) and

thus E(T) and CL, can be calculated in the way discussed after Lemma 2.16.

The results of this calculation are given in Subsection 3.1.5 and were based

on a grid of equal width h = 0.1. Calculations based on h = 0.2 and h = 0.05

gave values of the CL differing at the most in the fourth decimal place from

those based on h = 0.1. Simulations on E(T) and CL were also carried out

based on 6,000 experiments and some of the results are given in Table 3.6.
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3.1.5 Some comparisons

In this subsection, we compare the second order approximations with the exact

calculations of the E(T) and the CL. Throughout, the value of l0 is given by

/o = lo(k,a). From these comparisons we can see when the second order

approximations are reasonably accurate.

Firstly, we look at the confidence level CL. The confidence level is equal to

1 — a (nominal level) plus an error term of order o(l/a) as a —> oo and so the

approximate is 1 — a . The true value of the confidence level, however, depends

on a, i.e. CL = CL(a). For m = 2, k = 3,7, fO, and 1 -a = 90%, 99%, the

exact calculation results of C L(a) at a = 5(5)60 are linearly plotted in Figure

1. Figure 2 gives the similar plots for m = 10 and a = 15(5)60. From Figures

1 and 2 it can be seen that CL(a) is generally closer to the nominal level I — a

for: (i) larger a; (ii) larger k; (iii) larger nominal level 1 — a; (iv) larger initial

sample size m.

Next, we look at the expected sample size EiT). When a is large, the

approximation to E(T) is a + p -f /o ~ 2/k. For m = 2, k = 3, 7, 10, and

1 — a = 90%, 99%, Table 3.4 contains the exact values of E(T) calculated using

the recursive method and the approximate values of E(T) at a = 5(5)60. Table

3.5 contains the similar results for m = 10 and a = 15(5)60. From Tables 3.4

and 3.5 it can be seen that the approximate value of E(T) are generally closer

to the value of E(T) for: (i) large a; (ii) large k; (iii) large initial sample size m.

The exact calculations of the E(T) and the CL become quite computationally

intensive for a > 60. However, when a > 60 the approximations are very good,

as can be seen from the results given in this subsection. So approximated

results can be used in this case.

Generally, the values of k, a and d are given. However, we don't know the

value of a2. In most situations we know a range in which a2 falls in from

the prior knowledge. Consequently, we know the range for a = a2(\m\^)2/d2.
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From this we can find the confidence level either by

(1) if a is large, using the approximation, which is just the nominal level 1 — a,

or

(2) calculating CL(a) for all the a in that range.

In particular, if we are free to choose the initial sample size m then we

can bring the true confidence level closer to the nominal level by choosing a

suitable value of m.
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Table 3.4: Comparisons between the exact and approximate values

of E(T) for m = 2 and given values of k, a and a

a = 0.1

a

5

10

15

20

25

30

35

40

45

50

55

60

k

Exact

5.3

10.0

15.1

20.2

25.3

30.3

35.4

40.4

45.4

50.5

55.5

60.5

= 3

Appro.

5.8

10.8

15.8

20.8

25.8

30.8

35.8

40.8

45.8

50.8

55.8

60.8

k--

Exact

5.1

10.7

15.4

20.4

25.4

30.4

35.4

40.4

45.4

50.4

55.4

60.4

= 7

Appro.

5.4

10.4

15.4

20.4

25.4

30.4

35.4

40.4

45.4

50.4

55.4

60.4

k =

Exact

5.1

10.3

15.3

20.3

25.3

30.3

35.3

40.3

45.3

50.3

55.3

60.3

= 10

Appro.

5.3

10.3

15.3

20.3

25.3

30.3

35.3

40.3

45.3

50.3

55.3

60.3
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Table 3.4: Comparisons between the exact and approximate values

of E(T) for m = 2 and given values of k, a and a

a = 0.01

a

5

10

15

20

25

30

35

40

45

50

55

60

k

Exact

5.9

10.8

15.9

21.0

26.1

31.2

36.2

41.2

46.2

51.3

56.3

61.3

= 3

Appro.

6.6

11.6

16.6

21.6

26.6

31.6

36.6

41.6

46.6

51.6

56.6

61.6

k

Exact

5.5

10.6

15.7

20.7

25.7

30.7

35.7

40.7

45.7

50.7

55.7

60.7

= 7

Appro.

5.8

10.8

15.8

20.8

25.8

30.8

35.8

40.8

45.8

50.8

55.8

60.8

k =

Exact

5.4

10.5

15.5

20.6

25.6

30.6

35.6

40.6

45.6

50.6

55.6

60.6

= 10

Appro.

5.6

10.6

15.6

20.6

25.6

30.6

35.6

40.6

45.6

50.6

55.6

60.6
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Table 3.5: Comparisons between the exact and approximate values

of E(T) for m = 10 and given values of k, a and a

a = 0.1

a

15

20

25

30

35

40

45

50

55

60

k = 3

Exact

15.8

20.7

25.7

30.7

35.8

40.8

45.8

50.8

55.8

60.8

Appro.

15.8

20.8

25.8

30.8

35.8

40.8

45.8

50.8

55.8

60.8

fc = 7

Exact

15.4

20.4

25.4

30.4

35.4

40.4

45.4

50.4

55.4

60.4

Appro.

15.4

20.4

25.4

30.4

35.4

40.4

45.4

50.4

55.4

60.4

k = 10

Exact

15.3

20.3

25.3

30.3

35.3

40.3

45.3

50.3

55.3

60.3

Appro.

15.3

20.3

25.3

30.3

35.3

40.3

45.3

50.3

55.3

60.3
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Table 3.5: Comparisons between the exact and approximate values

of E(T) for m = 10 and given values of k,a and a

a = 0.01

a

15

20

25

30

35

40

45

50

55

60

k

Exact

16.4

21.4

26.5

31.5

36.5

41.5

46.5

51.5

56.5

61.5

= 3

Appro.

16.6

21.6

26.6

31.6

36.6

41.6

46.6

51.6

56.6

61.6

k--

Exact

15.7

20.7

25.8

30.8

35.8

40.8

45.8

50.8

55.8

60.8

= 7

Appro.

15.8

20.8

25.8

30.8

35.8

40.8

45.8

50.8

55.8

60.8

k =

Exact

15.6

20.6

25.6

30.6

35.6

40.6

45.6

50.6

55.6

60.6

= 10

Appro.

15.6

20.6

25.6

30.6

35.6

40.6

45.6

50.6

55.6

60.6

64



Table 3.6: Comparisons between the exact and simulated values of

E(T) and CL for m = 10 and k = 10 and given values of a and a

a = 0.1

a

15

20

25

30

35

40

45

50

55

60

CL

Exact

0.898

0.899

0.899

0.899

0.899

0.900

0.900

0.900

0.900

0.900

Simul.

0.902

0.897

0.892

0.901

0.898

0.898

0.893

0.904

0.898

0.896

E(T)

Exact

15.3

20.3

25.3

30.3

35.3

40.3

45.3

50.3

55.3

60.3

Simul.

15.3

20.4

25.3

30.3

35.3

40.3

45.3

50.3

55.3

60.3
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Table 3.6: Comparisons between the exact and simulated values of

E(T) and CL for m = 10 and fc = 10 and given values of a and a

a = 0.01

a

15

20

25

30

35

40

45

50

55

60

CL

Exact

0.990

0.990

0.990

0.990

0.990

0.990

0.990

0.990

0.980

0.980

Simul.

0.990

0.989

0.991

0.989

0.991

0.990

0.990

0.991

0.990

0.991

E(T)

Exact

15.6

20.6

25.6

30.6

35.6

40.6

45.6

50.6

55.6

60.6

Simul.

15.6

20.6

25.5

30.6

35.5

40.5

45.5

50.6

55.6

60.6
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3.2 Fixed-width simultaneous confidence in-

tervals for comparing several treatments

with a control

3.2.1 Introduction

Suppose we have k independently and normally distributed populations iV(//,-, a2), i —

1, 2, • • • , k with unknown /i;, — oo < //,- < oo, and a common unknown positive

variance a2 and that we can sample sequentially from each population. In this

section we construct a set of fixed-width 2d simultaneous confidence intervals

for

( ) i = 2, 3, • • •, k,

with a (nominal) confidence level f — a, where d > 0 and 0 < a < 1 are

two given constants and Y{ is the sample mean of a sample taken from the ith

population. The first population, JV(jUi,cr2), may be regarded as a control

and the other k — 1 {k > 2) populations as treatments. This set of confidence

intervals can therefore be used to compare the treatments with the control.

Let |T|fc_i;t/ denote the random variable

\Zi-Zx\
\T\k-x,u = max

where Zi, Z2, • • •, Zk are i.i.d. random variables and xl is independent of

Zi, Z2, • • • , Zk- Suppose that |t|^_x v is the upper a point of the distribution

of |r|fc_iiiy . The value of |t|fc_lt/ for some combinations of k — 1, v and a can

be found in Bechhofer and Dunnett (1988). If v = oo we have

I T V i ^ = |T|fc_! = max

Suppose a sample of fixed size n is taken from each of the k populations
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i, a2)7 i = 1, 2, • • • , k. Let a2
n be the pooled sample variance. Then

\fn\Yin - Yln - (fa -
max
2<i<k

has the same distribution as |X"|fc—1 ,t- with v = k(n — 1) and so

" • - " •> ! < | . |JU,, i = 2 , 3 , - , * ) = 1 -

This can be written as

< Hi—jix < Yin—Yin-\-\t ? i any2/n, 2 < i < k \ — I—a.

A set of simultaneous confidence intervals for the /Xj — fii with confidence level

1 — a is thus given by

* - /*i € ^-n - Yln - \t\U, ^ , Ym - Yln + \t\U ^ )

(3.10)

This set of confidence intervals was proposed by Dunnett (1955, 1964).

As can be seen, the length of these confidence intervals is 2|£|£_lj/ anJ2/n,

which is a random number. As a matter of fact, in order to construct a set

of fixed-width 2c? and (1 — a)-level simultaneous confidence intervals for the

Hi — fi\ when a2 is unknown, it is necessary to use a sequential procedure.

A two-stage procedure based on Stein's (1945) result was proposed by Tong

(1969). Here we suggest a pure sequential procedure. To see the motivation

behind the definition of this pure sequential procedure. Let us first look at

the construction of a set of fixed-width 2d simultaneous confidence intervals

for the /ii — Hi when a2 is assumed to be a known constant.

Had a2 been known, the set of 1 — a level confidence intervals in (3.10)

becomes

Yln - \t\U ^ , Yin - Yln \ ,2<i<k.

J
In order that the width of these confidence intervals is at most 2c?, the sample

size n from each of the k populations should satisfy \/2|^|fc-i cr/y/n < c?, which
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implies that

n>2d-2(\t\a
k_l)

2a2. (3.11)

That is, when a2 is known, we take a sample of size n from each of the k

populations where n satisfies (3.11), and then construct a set of simultaneous

confidence intervals for the \i{ — \i\ as

Hi - / J i £ {Yin - Yln - d, Ym - Yln + d), 2 < i < k.

This set of confidence intervals has width 2c? and confidence level at least 1 — a.

Now consider our problem in which a2 is unknown and so the right side

of (3.11) can not be calculated explicitly. A reasonable sample size formula

would be similar to (3.11) but with a2 replaced by some estimate. Precisely,

we take the same number of observations, n, from each of the k populations,

starting with m, increasing by one at a time, until

T = inf{n > m : n > 2d~2 ( | i | ^ )* ln<?n
2}, (3.12)

where m > 2 is the initial sample size from each population and ln — 1 +

-/o + o(-) as n —> oo. On stopping sampling a set of simultaneous confidence

intervals for //,- — fi\ is defined as

IH - / i i G h { T ) = { Y l T - Y1T - d, YtT ~Y1T + d), 2 < i < k.

Next we show that the confidence level of this set of confidence intervals is

approximately equal 1 — a.
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3.2.2 Second order approximations to the expected

sample size and the confidence level

Applying the general results of Chapter 2, we can find the second order ap-

proximations to the expected sample size E(T) and confidence level CL. By

noting that the stopping time T in (3.12) is of the same form as the stopping

time defined in (2.1) with 7 = 2(|£|£_1 )
2, and so the following theorem follows

directly from Theorem 2.1.

T h e o r e m 3.3 for k > 1 and m > 1 + 2/k, we have

E(T) = b + p + l o - l + o(l) as b -> 00,
K

whereb=2d~2(\t\^_1)
2a2.

Note that b is the right side of (3.11), which can be regarded as the optimal

sample size had a2 been known. From Theorem 3.3, the difference between the

expected sample size of the pure sequential procedure and the optimal sample

size b is about p + IQ — -|, a constant, at least for large b.

To obtain the second order approximation to the confidence level we first

prove the following two lemmas.

Lemma 3.3 For given b > 0

P{fH - /Z! G 7 t - ( r ) , 2 < i < k } =

where H(x) = P{max2<;<a- \Z{ — Z\\ < y/2x}.

Proof: We have

P{YtT - Y1T - d < fn - /i! < YiT - YlT + d, 2 < i < k}
CO
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YkT -Y1T-d<fjLk-lii< YkT - Y1T + d\T = n}P{T = n)
CO

= E P{Y2n ~ Yln - d < fl2 - fix < Y2n - Yln + d, • • • ,
n=m

Ykn -Yxn-dKfik-mK Yhn - Yln + d\T = n}P{T = n}

= £ P{Y2n - Yln - d < n2 - ^ < Y2n - y l n + d, • • •,

n - Vln - d < fik - fn < Yhn - Yln + d}P{T = n}

P{\Ym - y l n - (m - Ml)l < d, 2<i< k}P{T = n}

= n}= E

as required.

Lemma 3.4 Let H(x) = P{max2<;<& |Zj — Z\\ < \/2x\, and Co > 0 is a

given constant. Then, for 0 < x < Co, \H"(x)\ < Cx^k~5^2 where C is a

constant.

Proof: Let g(x) = H(x2), then

H"(x) = l- [

Let h(x,y) = $(y + \/2x) - $(y - A/2X), then

= /

—CO

oo

/ <t>{y)(P{\Zi-y\<V2x}) dy
J —OO

/*OO r-

/ <f,{y) $(y
J—CO

(3.13)

(3.14)

= y}dy
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g'(x) = V2(k - 1) i" </>(y) U(y + v^x) + <j>{y - V2xj) (h(x,y))k-2 dy,
J —oo

(3.15)

<j>(y)(h(x,y))k-3 x (3.16)

</»(j/ + \ / 2x ) + (y- V2x)4>{y - V2x)] fe(x, y)

- 2) ̂ ( y + y/2x) + <f>(y - V^x) ] | rfy. (3.17)

By noting that

h{x,y)= / ^=e^/2 ^ < d x
Jy~\/2x

where Ci is a constant, we have that

g\x) = v^(A;-l) / </>(?/) U(y + V2x) + <j>{y - V2xj) {h{x, y))k~2 dy
J

dy

= Mxk~2 (3.18)

where M is a constant, and that

j ^ {-(y + V2x)<j)(y + y/lx) + (y - V^x^y - V2x)\} dy

+Lxk-3

< D2x
k-2 j°° <f>(y) {\y\<j>{y + V2x) + V2xcj>(V2x + y) + \y\^{y - V2x)} dy

/"OO

+D2x
k-2 / 4>{y)V2x<f>(y - V2x) dy + Lxk-3

O roo /"oo \

f y<t>(y) dy + V2x <f>(y) dy + Lxk"3

0 J-oo /

< Dxk~2 (A + Bx) + Lxk"3

< Lxx
k~3 , for 0 < x < Co (3.19)

where £>i, D2, D3, D, A, Ax, B, 5 i , L, and L\ are constants. It now follows from

(3.18), (3.19) and (3.14) that
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<

The proof is thus completed.

The following theorem gives the second order approximation to the con-

fidence level and follows directly from Lemma 3.3 and Theorem 2.2 with

6 = ( i t ^ ) 2 , Cx = 0, p = (5 - k)/2 and n0 = b.

Theorem 3.4 Suppose that m > I if k > 5, and m > 1 + (7 — k)/k if

k = 2,3,4, then

1

~a + 1

- /*! e /fc-i

fc-1

a
fc-1

where H(x) = P{max2<i<fc \Z{ — Z\\ < ^/2x}.
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3.2.3 Calculations of the approximate values of the ex-

pected sample size and the confidence level

From Theorem 3.4 it can be seen that the value of /0 can be chosen to satisfy

so that the CL is equal to 1 — a + o(l/b). This l0 = lo(k, a) is given by

,2 / / , . \ 2\ -\

o

a
k-l

a
k-l

E> a
k-l

~ Pi (3.20)

where the functions H'(-), and H"(-) are given in (3.13), and (3.14). In order

to calculate lo(k,a), I have calculated the values of |i|£_4 for a = 0.1, 0.05, 0.01

and k = 2(1) 20 and they are given in Table 3.7. The value of /0(fc, a) can now

be calculated from (3.20) and the results for a = 0.1,0.05,0.01 and k = 2(1) 20

are given in Table 3.8.

From Theorem 3.3, the approximate value of E(T) is

b + p + l0 - 2/k.

This approximate value, corresponding to l0 = lo[k,a), is given in Tables 3.9

and 3.10.
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Table 3.7: \t\a
k_r

k-l\a

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

0.1

1.645

1.916

2.062

2.160

2.233

2.292

2.340

2.381

2.417

2.448

2.476

2.501

2.525

2.546

2.566

2.583

2.600

2.615

2.631

0.05

1.960

2.213

2.350

2.442

2.511

2.567

2.613

2.652

2.686

2.716

2.743

2.767

2.789

2.810

2.828

2.846

2.862

2.877

2.892

0.01

2.574

2.794

2.916

2.990

3.062

3.111

3.150

3.189

3.219

3.248

3.272

3.292

3.316

3.331

3.351

3.365

3.380

3.394

3.409

76



Table 3.8: l0 = lo(k,a)

k~l\a

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

0.1

1.182

0.697

0.425

0.255

0.138

0.053

0.012

-0.063

-0.104

-0.137

-0.165

-0.189

-0.210

-0.228

-0.243

-0.257

-0.270

-0.281

-0.291

0.05

1.466

0.906

0.590

0.391

0.253

0.154

0.078

0.019

-0.029

-0.069

-0.103

-0.131

-0.155

-0.176

-0.195

-0.211

-0.226

-0.240

-0.251

0.01

2.162

1.402

0.977

0.708

0.524

0.389

0.285

0.206

0.140

0.087

0.042

0.002

-0.030

-0.056

-0.085

-0.108

-0.128

-0.146

-0.162
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3.2.4 Exact calculations of the expected sample size

and the confidence level

Let t = T — 1, then from Lemma 2.16 and the argument after Lemma 2.16,

we have

Rn+1 (x) = f Rn{y)f4 (x - y) dy (3.21)
J Cn

and
POO

P{t>n + 1} = J Rn+I(y)dyi n>mo-l, (3.22)

where

and the value of l0 is given in the Table 3.8. Consequently

E(T) = 1+ J2 n[P(t > n - 1) - P(t > n)]
rv=m0

(3.23)

and

CL = E[H ({\t\uY j

= n)H((\t
CO

E a

n=m0

, (3.24)

where -ff(x) = P{max2<i<fc \Zi — Z\\ < \/2x}. The functions i?n+1(-) and, thus

£'(T) and CL, can be calculated.

In Subsection 3.2.5, we give the results of this calculation which are based

on a grid of equal width h = 0.1. We also use grids based on h = 0.2 and

h = 0.05 to find the values of CL, we find some difference in the fourth decimal

place from those based on h = 0.1. We simulate the E(T) and CL based on

6,000 experiments and some of the results are given in Table 3.11.
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3.2.5 Some comparisons

The aim of this subsection is to compare the second order approximations with

the exact calculations of the E(T) and the CL. Throughout, the value of IQ

is given by l0 = lo(k, a). From these comparisons we can see when the second

order approximations are reasonably accurate.

Firstly, we look at the confidence level CL. The confidence level is equal to

I — a (nominal level) plus an error term of order o(l/6) as b —> oo and so the

approximate is f — a . The true value of the confidence level, however, depends

on 6, i.e. CL = CL(b). For m = 2, k - 1 = 3, 7, f 0, and 1 - a = 90%, 99%, the

exact calculation results of CL(b) at b = 5(5)60 are linearly plotted in Figure

3. Figure 4 gives the similar plots for m = fO and b = 15(5)60. From Figures

3 and 4 it can be seen that CL(b) is generally closer to the nominal level 1 — a

for: (i) larger b; (ii) larger k; (iii) larger nominal level I — a; (iv) larger initial

sample size in.

Next, we look at the expected sample size E(T). When b is large, the

approximation to E(T) is b + p + IQ — 2/k. For m = 2, k — 1 = 3, 7, 10, and

1 - a = 90%, 99%, Table 3.9 contains the exact values of E(T) calculated using

the recursive method and the approximate values of E(T) at b = 5(5)60. Table

3.10 contains the similar results for m = 10 and b — 15(5)60. From Table 3.9

and 3.10 it can be seen that the approximate value of E{T) are generally closer

to the value of E(T) for: (i) large b; (ii) large k; (iii) large initial sample size m.

The exact calculations of the E(T) and the CL become quite computationally

intensive for b > 60. However, when b > 60 the approximations are very good,

as can be seen from the results given in this subsection. So approximated

results can be used in this case.
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Table 3.9: Comparisons between the exact and approximate values

of E{T) for m — 2 and given values of k, a and b

a - 0.1

b

5

10

15

20

25

30

35

40

45

50

55

60

k

Exact

5.1

10.1

15.2

20.3

25.3

30.4

35.4

40.4

45.4

50.5

55.5

60.5

= 4

Appro.

5.6

10.6

15.6

20.6

25.6

30.6

35.6

40.6

45.6

50.6

55.6

60.6

k

Exact

5.1

10.2

15.3

20.3

25.3

30.3

35.3

40.3

45.3

50.3

55.3

60.3

= 8

Appro.

5.3

10.3

15.3

20.3

25.3

30.3

35.3

40.3

45.3

50.3

55.3

60.3

k =

Exact

5.1

10.2

15.2

20.2

25.2

30.2

35.2

40.2

45.2

50.2

55.2

60.2

= 11

Appro.

5.3

10.3

15.3

20.3

25.3

30.3

35.3

40.3

45.3

50.3

55.3

60.3
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Table 3.9: Comparisons between the exact and approximate values

of E(T) for m = 2 and given values of k, a and b

a = 0.01

b

5

10

15

20

25

30

35

40

45

50

55

60

k

Exact

5.6

10.7

15.8

20.9

25.9

31.0

36.0

41.0

46.0

51.0

56.0

61.0

= 4

Appro.

6.1

11.1

16.1

21.1

26.1

31.1

36.1

41.1

46.1

51.1

56.1

61.1

k

Exact

5.4

10.5

15.6

20.6

25.6

30.6

35.6

40.6

45.6

50.6

55.6

60.6

= 8

Appro.

5 .6

10.6

15.6

20.6

25.6

30.6

35.6

40.6

45.6

50.6

55.6

60.6

k =

Exact

5.3

10.4

15.5

20.5

25.5

30.5

35.5

40.5

45.5

50.5

55.5

60.5

= 11

Appro.

5.5

10.5

15.5

20.5

25.5

30.5

35.5

40.5

45.5

50.5

55.5

60.5
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Table 3.10: Comparisons between the exact and approximate values

of E{T) for m = 10 and given values of k, a and b

a = 0.1

b

15

20

25

30

35

40

45

50

55

60

k = 4

Exact

15.6

20.5

25.5

30.5

35.6

40.6

45.6

50.6

55.6

60.6

Appro.

15.6

20.6

25.6

30.6

35.6

40.6

45.6

50.6

55.6

60.6

k = 8

Exact

15.3

20.3

25.3

30.3

35.3

40.3

45.3

50.3

55.3

60.3

Appro.

15.3

20.3

25.3

30.3

35.3

40.3

45.3

50.3

55.3

60.3

k = 11

Exact

15.2

20.2

25.3

30.3

35.3

40.2

45.2

50.2

55.2

60.2

Appro.

15.3

20.3

25.3

30.3

35.3

40.3

45.3

50.3

55.3

60.3
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Table 3.10: Comparisons between the exact and approximate values

of E(T) for m = 10 and given values of k, a and b

a = 0.01

b

15

20

25

30

35

40

45

50

55

60

k

Exact

16.1

21.1

26.1

31.1

36.1

41.1

46.1

51.1

56.1

61.1

= 4

Appro.

16.1

21.1

26.1

31.1

36.1

41.1

46.1

51.1

56.1

61.1

k

Exact

15.6

20.6

25.6

30.6

35.6

40.6

45.6

50.6

55.6

60.6

= 8

Appro.

15.6

20.6

25.6

30.6

35.6

40.6

45.6

50.6

55.6

60.6

k =

Exact

15.5

20.5

25.5

30.5

35.5

40.5

45.5

50.5

55.5

60.5

= 11

Appro.

15.5

20.5

25.5

30.5

35.5

40.5

45.5

50.5

55.5

60.5
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Table 3.11: Comparisons between the exact and simulated values of

E(T) and CL for m = 10 and k = 11 and given values of a and b

a = 0.1

b

15

20

25

30

35

40

45

50

55

60

CL

Exact

0.899

0.899

0.899

0.900

0.900

0.900

0.900

0.900

0.900

0.900

Simul.

0.899

0.894

0.898

0.890

0.896

0.897

0.904

0.899

0.899

0.899

E(T)

Exact

15.2

20.2

25.3

30.3

35.3

40.2

45.2

50.2

55.2

60.2

Simul.

15.2

20.3

25.2

30.3

35.2

40.3

45.3

50.3

55.3

60.3
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Table 3.11: Comparisons between the exact and simulated values of

E(T) and CL for m = 10 and k = 11 and given values of a and b

a = 0.01

b

15

20

25

30

35

40

45

50

55

60

CL

Exact

0.990

0.990

0.990

0.990

0.990

0.990

0.990

0.990

0.990

0.990

Simul.

0.990

0.991

0.990

0.989

0.991

0.989

0.990

0.989

0.990

0.991

E(T)

Exact

15.5

20.5

25.5

30.5

35.5

40.5

45.5

50.5

55.5

60.5

Simul.

15.5

20.6

25.5

30.5

35.5

40.5

45.6

50.6

55.5

60.6
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3.3 Fixed-width simultaneous confidence in-

tervals for all-pairwise comparisons of the

means of several independent normal pop-

ulations

3.3.1 Introduction

Suppose we have k independent, normally distributed populations N(m, CT2), i =

1, 2, • • • , k with unknown /it, — oo < //t- < oo, and a common unknown positive

variance a2. Assume we can sample sequentially from each population and that

Yn, Yi2, Y~i3, • • • denote the observations from the ith population, i = 1,2, • • • , k.

In this section we construct a set of fixed-width Id simultaneous confidence

intervals for all-pairwise differences fii — [i3 of the form

Hi - HJ E (Yi - Yj -^Yi-Yj+d), 1 < i + j < k

with a (nominal) confidence level 1 — a, where Y{ is the sample mean of a

sample taken from the ilh population, and d > 0 and 0 < a < 1 are two given

constants.

Suppose Zi, Z21 • • • ,Zk are i.i.d. iV(0,1) random variables, and xt is inde-

pendent of Zi, Z2, • • • , Zk- Let Qkj, denote the random variable

kv = max
l<itj<

2 l v

The distribution of Q^ is called the studentised range distribution with pa-

rameters k and v. If v = 00 then x L / 0 0 = ^ anc^ hence the distribution of

Qk,oo is the same as

Qk = max (Zi- Zj).
1 <j<k

Suppose that q%u is the upper a point of the studentised range distribution
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with parameters k and v. The value of q^u for some combinations of k, a and

v can be found in Harter (1969).

Suppose a sample of size n is taken from each of the k populations N(fii,

o"2)? \ <i < k and a\ is the pooled sample variance. Then

max
I an J

has the same distribution as Q^v with v = k(n — 1) and so

This can be written as

* i n * j n H k v /— — r^i r 1 ~ * m I i n ~ T y ^ v /—^ J- S^ ^ ~r~ J _ ^ l -̂

A set of simultaneous confidence intervals for the jj,i — /i7 with confidence level

1 — a is thus given by

(3.25)

This set of confidence intervals was proposed by Tukey (1952a, 1953).

The length of these confidence intervals is 2q^van/y/n, which is a random

number. In order to construct a set of fixed-width 2d and 1 — a level si-

multaneous confidence intervals for all-pairwise differences //,- — fij when a2 is

unknown, it is necessary to use a sequential procedure. A two-stage procedure

based on Stein's (1945) result was proposed by Hochberg and Lachenbruch

(1976). Here we look at a pure sequential procedure, which was proposed by

Liu (1995a). To motivate the definition of this pure sequential procedures,

let us first look at the construction of a set of fixed-width 2d and 1 — a level

simultaneous confidence intervals for the //,- — fj,j when a2 is assumed to be a

known constant.
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Had a2 been known, the set of f — a level confidence intervals in (3.25)

becomes

~ fij € [Yin - YJn - q%^=, Yin - Yjn + qk

V \/n \/n

In order that the width of these confidence intervals is at most 2d, the sample

size re from each of the k populations should satisfy ql<JI\fn < d, which implies

that

n><T2(tf)V. (3.26)

That is, when a2 is known, we take a sample of size re from each of the k

populations where re satisfies (3.26), and then construct a set of simultaneous

confidence intervals for the /i; — fij as

Hi - fi3 G (?in - Yin - d, Y^ - Yjn + d), 1 < i ^ j < k.

This set of confidence intervals has width 2d and confidence level at least f — a.

Now consider our problem in which a2 is unknown and so the right side

of (3.26) can not be calculated explicitly. A reasonable sample size formula

would be similar to (3.26) but with a2 replaced by some estimate. Precisely,

we take the same number of observations, re, from each of the k populations,

starting with m, increasing by one at a time, until

T = inf{re > m : re > d~2 {qa
kf lndn

2}. (3.27)

where m > 2 is the initial sample size from each population and ln = 1 + - / 0 +

o(-) as re —> oo. On stopping sampling the set of simultaneous confidence

intervals for fii — fXj is defined as

^ - ^ G Iij(T) = (YiT - YjT - d, YiT -YjT + d ) , \<i + 3 < k.

Next we show that the confidence level of this set of confidence intervals is

approximately equal I — a.
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3.3.2 Second order approximations to the expected

sample size and the confidence level

In this subsection, we use the results of Chapter 2 to find the second order

approximations to the expected sample size E(T) and confidence level CL. As

we can see the stopping time T in (3.27) is of the same form as the stopping

time defined in (2.1) with 7 = (g£) , and so the following theorem follows

directly from Theorem 2.1.

Theorem 3.5 For k > 1 and m > 1 -f 2/k, we have

2
E(T) = c + p + l0 — — + o(l) as c —> 00,

k

where c = d~2 (q%)2o~2.

The value of c, given on the right side of (3.26), can be regarded as the optimal

sample size had a2 been known. From Theorem 3.5, at least for large c, the

difference between the expected sample size of the pure sequential procedure

and the optimal sample size c is about p + /0 — | , a constant.

Now we derive the second order approximation to the confidence level. For

this, we require the following lemmas.

Lemma 3.5 For given c > 0,

CL = ̂ { m a x \YiT - m - YjT d} = E

where H(x) =

Proof: We have

Z{ — Zj\ < \/x}.

max - m ~ j T

]T P max
^~* I 1 <iJi j<k

00
= n}
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rv=m
oo

\Ym - ^ - Yjn + N\ < d\P{T = n}

2, as required.where c = d

Lemma 3.6 Let H(x) = P{maxi<j^j<fc \Z{ — Zj\ <

given constant. Then, for 0 < x < Co, \H"(x)\ <

constant.

Proof: Let g(x) = H(x2), then

Co > 0 is a

where C is a

H"{x) = i [x-'g'\

(3.28)

} (3.29)

Let h(x,y) = $(?/) — $(y — x), then

g(x) = P^m^ \Zt~Z3\<x}

= kP{Zx -x<Z2<ZuZ1-x<Zz<Zu-'-,Zx-x<Zk<Zx}

—CO

CO

= k

/

c

- x < Z2 < y, • • •, y - x < Zk < y

fc-i

fc—1

- x) (3.30)

/

c

/

co

(y - x y - x)
fc—2

dy.(3.31)
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By noting that

h(x,y)= I -^=e-*'2 dz<C\x

where C\ is a constant, we have

g'(x)<Axk-2 / <j>(y) dy = Ax1*-2 , (3.32)
J

and

|</'(x)| < Dxx
k^ / ^(y) dy + D2x

k

J -co

k~2 /
-co
oo

/
/ —CO

k ~ 3< Dxk~3 , (3.33)

where D\, D2 D3. and D are constants. It now follow from (3.32), (3.33) and

(3.29) that

\H"(x)\ < \[x-'\g"{x^

This finishes the proof.

By using Theorem 2.2 with 9 = (q%)2, C\ = 0, f3 = (5 - k)/2 and n0 = c,

and using Lemma 3.6, we have the following theorem.

Theorem 3.6 Suppose that ln = 1 + lo/n + o(l/n) as n -^ oo, and m > I if

k > 5 and m > 1 + (7 — k)/k if k = 2, 3,4, i/ien

where H{x) = PjmaxK^jot |Z; — Zj\ < \/x} and c = d~2 (q%)2a
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3.3.3 Calculations of the approximate values of the ex-

pected sample size and the confidence level

From Theorem 3.6 it can be seen that the value of l0 can be chosen to satisfy

so that the CL is equal to 1 — a + o(l/c). This /0 is given by

'"=1 2 - "{(k\ty (3.34)
H> {{\q\lf)

where the functions H'(-) and H"(-) are given in (3.28) and (3.29). In order

to calculate lo(k,a), I have calculated the values of q^ for a = 0.1,0.05,0.01

and k = 2(1) 20 and they are given in Table 3.12. The values of p = p(k) have

already been given in Table 3.1. The value of lo(k,a) can now be calculated

from (3.34) and the results for a = 0.1, 0.05, 0.01 and k = 2(1) 20 are given in

Table 3.13.

From Theorem 3.5, the approximate value of E(T) is

This approximate value corresponding to l0 = lo(k}a) is given in Tables 3.14

and 3.15.
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Table 3.12: \q\%

k\a

2

3

4

5

6

8

9

10

11

12

13

14

15

16

17

18

19

20

0.1

2.326

2.902

3.240

3.478

3.661

3.808

3.931

4.037

4.129

4.211

4.284

4.351

4.411

4.468

4.519

4.568

4.612

4.654

4.694

0.05

2.771

3.314

3.633

3.857

4.030

4.170

4.286

4.386

4.474

4.551

4.621

4.685

4.743

4.796

4.846

4.891

4.933

4.973

5.011

0.01

3.644

4.120

4.405

4.605

4.756

4.886

4.986

5.076

5.156

5.226

5.291

5.346

5.401

5.446

5.496

5.536

5.576

5.611

5.646
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Table 3.13: lQ = lo(k,a)

k\a

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

0.1

1.181

0.732

0.480

0.319

0.207

0.125

0.061

0.010

-0.031

-0.066

-0.095

-0.120

-0.142

-0.161

-0.178

-0.193

-0.207

-0.220

-0.231

0.05

1.465

0.960

0.661

0.481

0.348

0.251

0.174

0.114

0.064

0.022

-0.013

-0.043

-0.0693

-0.093

-0.113

-0.132

-0.148

-0.163

-0.177

0.01

2.165

1.486

1.093

0.835

0.652

0.520

0.413

0.330

0.262

0.205

0.157

0.114

0.079

0.046

0.019

-0.006

-0.029

-0.044

-0.068
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3.3.4 Exact calculations of the expected sample size

and the confidence level

In this subsection, we evaluate, by using the recursive method discussed in

Section 2.3, the exact distribution of T and hence the exact values of E(T)

and CL. In this case, we have

j-X
Rn+i(x) = Rn(y)f^(x -y) dy, n > m0 (3.35)

J Cn

and
oo

P{t>n + 1}= Rn+l{y)dy, n>mQ-l, (3.36)
Jcn+1

where
kn(n + 1)

cn =
and the value of /0 is given in Table 3.13. Consequently

CO

E(T) = 1+ J2 n[P(t > n - 1) - P(t > n)] (3.37;

and

CL = J

L V I J

= n)H[(\q\tf70=777-0

> n)]H i(\q\lY — , (3.38)
n=m0 ^ C '

where H(x) — P{maxi<^j<^ \Zt — Zj\ < y/x~}. The results of calculation are

given in Subsection 3.3.5 and were based on a grid with h = 0.1. Calculations

based on h = 0.2 and h — 0.05 gave values of the CL differing at the most in

the fourth decimal place from those based on h = 0.1. Simulations on EiT)

and CL were also carried out based on 6,000 experiments and some of the

results are given in the Table 3.16.
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3.3.5 Some comparisons

In this subsection, the second order approximations and the exact calculations

of the E(T) and the CL are compared, from which we can judge when the

second order approximations are reasonably accurate.

Firstly, we look at the confidence level CL. The confidence level is equal to

1 — a (nominal level) plus an error term of order o(l/c) as c —+ oo and so the

approximate is 1 — a. The true value of the confidence level, however, depends

on c, i.e. CL = CL(c). For m = 2, k = 3,7,10, and 1 - a = 90%, 99%, the

exact calculation results of CL(c) at c = 5(5)60 are linearly plotted in Figure

5. Figure 6 gives the similar plots for m = 10 and c = 15(5)60. From Figures

5 and 6 it can be seen that CL(c) is generally closer to the nominal level 1 — a

for: (i) larger c; (ii) larger k; (iii) larger nominal level I — a; (iv) larger initial

sample size m.

Next consider the expected sample size E(T). By Theorem 3.5, we know

that for large c, E(T) = EC(T) = c + p + /o — 2/k as c —> oo. Table 3.14

contains the values of E(T) calculated using the recursive method and the

approximation formula at c = 5(5) 60, for m = 2, k = 3, 7, 10, and 1 — a =

90%, 99%. Similar results are given in Table 3.15 for m = 10 and c = 15(5) 60.

We note from Table 3.14 and 3.15 that the approximate value of E(T) is

generally closer to the value of E{T) for: (i) large c; (ii) large k; (iii) large m.

The exact calculations of the E(T) and the CL become quite computationally

intensive for c > 60. However, when c > 60 the approximations are very good,

as can be seen from the results given in this subsection. So approximated

results can be used in this case.
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Table 3.14: Comparisons between the exact and approximate values

of E(T) for m = 2 and given values of k, a and c

a = 0.1

c

5

10

15

20

25

30

35

40

45

50

55

60

k--

Exact

5.2

9.9

15.0

20.1

25.2

30.2

35.3

40.3

45.3

50.4

55.4

60.4

= 3

Appro.

6.0

11.0

16.0

21.0

26.0

31.0

36.0

41.0

46.0

51.0

56.0

61.0

k

Exact

5.8

10.9

16.0

21.0

26.0

31.0

36.0

41.0

46.0

51.0

56.0

61.0

= 7

Appro.

6.1

11.1

16.1

21.1

26.1

31.1

36.1

41.1

46.1

51.1

56.1

61.1

k =

Exact

6.0

11.0

16.1

21.1

26.1

31.1

36.1

41.1

46.1

51.1

56.1

61.1

= 10

Appro.

6.1

11.1

16.1

21.1

26.1

31.1

36.1

41.1

46.1

51.1

56.1

61.1
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Table 3.14: Comparisons between the exact and approximate values

of E{T) for rn = 2 and given values of k, a and c

a = 0.01

c

5

10

15

20

25

30

35

40

45

50

55

60

k

Exact

6.0

11.0

16.0

21.0

26.0

31.1

36.1

41.1

46.2

51.2

56.2

61.2

= 3

Appro.

6.5

11.5

16.5

21.5

26.5

31.5

36.5

41.5

46.5

51.5

56.5

61.5

k

Exact

5.6

10.7

15.8

20.8

25.8

30.8

35.8

40.8

45.8

50.8

55.8

60.8

= 7

Appro.

5.8

10.8

15.8

20.8

25.8

30.8

35.8

40.8

45.8

50.8

55.8

60.8

k =

Exact

5.5

10.6

15.6

20.6

25.6

30.6

35.6

40.6

45.6

50.6

55.6

60.6

= 10

Appro.

5.6

10.6

15.6

20.6

25.6

30.6

35.6

40.6

45.6

50.6

55.6

60.6
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Table 3.15: Comparisons between the exact and approximate values

of E(T) for m = 10 and given values of k, a and c

a = 0.1

c

15

20

25

30

35

40

45

50

55

60

k

Exact

15.7

20.6

25.6

30.7

35.7

40.7

45.7

50.7

55.7

60.7

= 3

Appro.

15.7

20.7

25.7

35.7

35.7

40.7

45.7

50.7

55.7

60.7

k

Exact

16.0

21.0

26.0

31.0

36.0

41.0

46.0

51.0

56.0

61.0

= 7

Appro.

16.0

21.0

26.0

31.0

36.0

41.0

46.0

51.0

61.0

61.0

k =

Exact

16.1

21.1

26.1

31.1

36.1

41.1

46.1

51.1

56.1

61.1

= 10

Appro.

16.1

21.1

26.1

31.1

36.1

41.1

46.1

51.1

56.1

61.1
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Table 3.15: Comparisons between the exact and approximate values

of E(T) for m = 10 and given values of k, a and c

a = 0.01

c

15

20

25

30

35

40

45

50

55

60

k

Exact

16.4

21.4

26.4

31.4

36.4

41.4

46.4

51.4

56.4

61.4

= 3

Appro.

16.5

21.5

26.5

31.5

36.5

41.5

46.5

51.5

56.5

61.5

k

Exact

15.8

20.8

25.8

30.8

35.8

40.8

45.8

50.8

55.8

60.8

= 7

Appro.

15.8

20.8

25.8

30.8

35.8

40.8

45.8

50.8

55.8

60.8

fc =
Exact

15.6

20.6

25.6

30.6

35.6

40.6

45.6

50.6

55.6

60.6

= 10

Appro.

15.6

20.6

25.6

30.6

35.6

40.6

45.6

50.6

55.6

60.6
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Table 3.16: Comparisons between the exact and simulated values of

E(T) and CL for m — 10 and k = 10 and given values of a and c

a = 0.1

c

15

20

25

30

35

40

45

50

55

60

CL

Simul.

0.904

0.894

0.897

0.899

0.903

0.897

0.892

0.896

0.905

0.899

Exact

0.916

0.913

0.910

0.909

0.908

0.907

0.906

0.905

0.905

0.904

E(T)

Simul.

15.4

20.4

25.3

30.3

35.3

40.3

45.3

50.4

55.4

60.4

Exact

15.4

20.4

25.4

30.4

35.4

40.4

45.4

50.4

55.4

60.4

102



Table 3.16: Comparisons between the exact and simulated values of

E(T) and CL for m = 10 and k = 10 and given values of a and c

a = 0.01

c

15

20

25

30

35

40

45

50

55

60

CL

Simul.

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

Exact

0.989

0.990

0.990

0.990

0.990

0.990

0.990

0.990

0.990

0.990

E(T)

Simul.

15.7

20.7

25.6

30.6

35.6

40.6

45.6

50.6

55.6

60.6

Exact

15.6

20.6

25.6

30.6

35.6

40.6

45.6

50.6

55.6

60.6
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Figure 5. The exact confidence level

as a function of c = c(a) for m = 2.
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Chapter 4

The exact probabilities of

making correct inferences
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4.1 The exact probability of making correct

inference about the means of several in-

dependent normal populations

4.1.1 Introduction

Suppose that we have the following set of 2J-width and (1 — a)-level simulta-

neous confidence intervals for the fi^s

P{[*i e(Yi-d,Yi + d), i = 1, 2, • • • , k} = 1 - a.

As has already been pointed out in Section 3.1, simultaneous inference about

each Hi can be made from this set of confidence intervals. For example, we

can infer that m > 0(/i, < 0) if Yt — d > O(YJ + d < 0). Furthermore, the

probability of making correct inferences, either [i% > 0 or fj,i < 0, for every \ii

satisfying |/it-| > 2d, is at least I — a, the confidence level. The problem that we

want to study in this section is " what is the exact value of this probability?"

More precisely, we want to investigate the following probability

Pjmaking correct inferences, either [ii > 0 or pn < 0? f° r each //,• satisfying |/i,-| > 2c?}.

Let

ftu(d) = {i : fn > 2d} and nL(d) = {j : fij < -2d}.

The above probability is then equal to

P{making correct inferences //,- > 0 for each i £ £lu(d) and

making correct inferences JJ,J < 0 for each j

This probability is of course dependent on the true value of fi = (//i, /i2, • • • , Hk)

Rk, and let it be denoted by /?(/£, d). For obvious reason, we impose /?(//, d) = 1
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if for a given value of /J, and d both the sets Vtu{d) and fij,(c?) are empty. We

wish to assess

0(d) = min /3(/i,d)

in this section. As one should expect, (3(d) must be no less than 1 — a.

Two different situations will be considered. In Subsection 4.1.2 we consider

the known variance case in which the set of confidence intervals for /̂ - is given

in (4.1). In Subsection 4.1.3 we consider the unknown variance case in which

the set of confidence intervals for /i; is constructed by using the pure sequential

procedure of Section 3.1.
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4.1.2 When the variance is known

In this subsection we suppose that a2 is known. Take a random sample of

fixed size a = (|m|£) a2dr2 from each of the k populations and construct the

following set of simultaneous confidence intervals for /i;

l*i € ( Y i a - d , Yia + d) , z = 1 , 2 , • • • , £ . (4.1)

From Section 3.1.1, we know that this set of confidence intervals has exact

level 1 — a. In order to compute the exact value of j3(d), we require

Theorem 4.1 For a > 0

0(d) = Sk (^J = Qk (\m\a
k). (4.2)

Proof: By definition we have

= P{Yta >dViG Qu(d) and Yja < ~d Vj G ftL(d)}

P{Yia>d} I I P{Yja<-d}

From this, it is clear that f3([i, d) attains its minimum at fJ,*(d) = (/i^, • • • , fi*k),

where each //* is equal to either 2d or — 2<i. Consequently

This finishes the proof.

It is interesting to note that the value of (3(d) depends only on a and A,',

but not on d and a2. This is because of the way in which we set the sample

size a = {\m\%f a2d~2. Table 4.1 presents the values of j3(d) for k = 2(1)20

and a = 0.1,0.05,0.01. It can see that the value of the f3(d) = §k (|m|£) is

very stable to the value of k, and is strictly large than 1 — a, the confidence

level. In fact it is close to 1 — a/2, as it is a sort of one saided probability.
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Therefore, if a = 0.10 say, we can claim that, with probability at least 0.95,

rather than 1 — a = 0.90, correct inference, based on the set of confidence

intervals in (4.1), will be made for each jii satisfying |/̂ ,-| > 2d.
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Table 4.1:

A : \ l - a

2

3

4

5

6

{

8

9

10

11

12

13

14

15

16

17

18

19

20

0.90

0.949

0.949

0.949

0.949

0.949

0.949

0.949

0.949

0.949

0.949

0.949

0.949

0.949

0.949

0.949

0.949

0.949

0.949

0.949

0.95

0.975

0.975

0.975

0.975

0.975

0.975

0.975

0.975

0.975

0.975

0.975

0.975

0.975

0.975

0.975

0.975

0.975

0.975

0.975

0.99

0.995

0.995

0.995

0.995

0.995

0.995

0.995

0.995

0.995

0.995

0.995

0.995

0.995

0.995

0.995

0.995

0.995

0.995

0.995
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4.1.3 When the variance is unknown

In this subsection, we suppose a2 is unknown and consider inferences based

on the set of confidence intervals

j " t e (YT -d,YtT + d), l < i < k

constructed by using the pure sequential procedure given in Subsection 3.1.1,

in which the stopping time T is given by

T = inf{n > m : n > d~2 (\m\a
k)

2ln(an)
2}.

We know that, for each treatment satisfying //; > 2d(< —2d), the correct

inference /i; > 0(< 0) will be made from this set of simultaneous confidence

intervals with a probability of at least 1 — a + o(d2), since the confidence level

of this set of confidence intervals is equal to 1 — a + o(d2). We wish to assess

= min

where

Puin,d) = p{YtT >dVie rtu(d), YJT < -d \/j G nL(d)}. (4.3)

In particular, we define f3u([i,d) = 1 if all treatments satisfy |//,-| < Id. First

we have

Lemma 4.1

where ty(x) = $(i/x) and a = (\m\%) d 2 a2.

Proof: By definition we have

f3u(jJ,,d) = P{YiT > d \/i G $lu(d), Y3T < —d Vj G fi
CO

~~ ,>dVie Slu(d), Y3n < -d Vj G nL(d)}P{T = n}.
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From Theorem 4.1 we know that for each n, the minimum value of

p{Ym >dVie nu{d), Yjn < -d Vj e nL(d)}

over fi G Rk is attained at /J*(CQ = (2d, • • • , 2<i) say, and given by

So the minimum of /?[/(/*, d) over /J £ Rk is given by

This completes the proof.

An argument similar to the proof of Lemma 3.2 establishes

Lemma 4.2 LetH(x) = x$>k(x) andty(x) = <&(y^Jx). Then, there is a constant

C for which \H"(x)\ < Cx^V2 for x > 0.

The following theorem, which follows directly from Theorem 2.2, gives the

second order approximation to (5\j{d).

Theorem 4.2 Let H(x) = ̂ >k(x) and 'J(x) = <&(y/x), and suppose m > 1 if

k > 4 and m > 1 + (6 - k)/k if k = 2,3. Then

where a = d~2 (\m\%)2 o2.

The exact value of fiu{d) can be calculated by using a recursive method

similar to that discussed in Subsection 3.1.4 since the stopping time is the

same as before and

n=m0

[P(t>n-l)-P(t>n)]yk((\m\a
k
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where $>(x) = $(v
/x) and mo = m — 1. Simulation to estimate j3jj(d), based

on 6,000 experiments, was also carried out.

For k = 5,7,10 and 1 - a = 0.90,0.99, Tables 4.2 and 4.3 give the exact,

simulated and second order approximate values of /3u(d) at a = 5(5)60 and

a = 15(5)60. For m = 3,10, k = 5, 7,10, and 1 - a = 90%, 99%, the exact cal-

culation results and approximations of fiu(d) at a = 5(5) 60 and a = 15(5)60

are linearly plotted in Figures 7-12. From these tables and figures it can be

seen that the exact values and the second order approximations of the f3u(d)

are generally closer together for: (i) larger a; (ii) larger k; (iii) larger initial

sample size m. For larger k, the exact values and approximations of the flu{d)

are almost 0.05 larger than I — a when a = 0.1. When a = 0.01 the exact

values and approximations of the (3u(d) are almost 0.005 larger than 1 — a.
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Table 4.2: Comparisons between the exact, approximate

and simulation results of

for m = 3 and given values of k, 1 — a and a

1 -a = 0.90

a

5

10

15

20

25

30

35

40

45

50

55

60

k = 5

Exact

0.942

0.939

0.945

0.947

0.948

0.948

0.948

0.948

0.948

0.948

0.948

0.949

Appro.

0.948

0.949

0.949

0.949

0.949

0.949

0.949

0.949

0.949

0.949

0.949

0.949

Simul.

0.942

0.938

0.946

0.946

0.945

0.949

0.949

0.949

0.951

0.948

0.951

0.950

fc = 7

Exact

0.940

0.942

0.946

0.948

0.948

0.948

0.948

0.948

0.948

0.948

0.949

0.949

Appro.

0.948

0.949

0.949

0.949

0.949

0.949

0.949

0.949

0.949

0.949

0.949

0.949

Simul.

0.932

0.945

0.945

0.953

0.948

0.950

0.946

0.948

0.949

0.950

0.948

0.950

k = 10

Exact

0.945

0.947

0.948

0.948

0.948

0.948

0.948

0.948

0.948

0.948

0.948

0.948

Appro.

0.948

0.949

0.949

0.949

0.949

0.949

0.949

0.949

0.949

0.949

0.949

0.949

Simul.

0.931

0.947

0.949

0.949

0.944

0.951

0.946

0.949

0.946

0.953

0.947

0.950
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Table 4.2: Comparisons between the exact, approximate

and simulation results of flu(d)

for m = 10 and given values of k, 1 — a and a

1 - a = 0.90

a

15

20

25

30

35

40

45

50

55

60

k = 5

Exact

0.946

0.945

0.946

0.946

0.946

0.945

0.945

0.945

0.945

0.945

Appro.

0.949

0.949

0.949

0.949

0.949

0.949

0.949

0.949

0.949

0.949

Simul.

0.952

0.951

0.944

0.946

0.951

0.953

0.949

0.949

0.949

0.952

k = l

Exact

0.951

0.946

0.946

0.948

0.949

0.947

0.949

0.949

0.949

0.949

Appro.

0.948

0.948

0.948

0.948

0.948

0.949

0.949

0.949

0.949

0.949

Simul.

0.953

0.948

0.949

0.949

0.954

0.950

0.949

0.948

0.952

0.946

k = 10

Exact

0.949

0.949

0.949

0.949

0.949

0.949

0.949

0.949

0.949

0.949

Appro.

0.948

0.948

0.948

0.948

0.948

0.949

0.949

0.949

0.949

0.949

Simul.

0.949

0.949

0.949

0.949

0.949

0.949

0.949

0.949

0.949

0.949
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Table 4.3: Comparisons between the exact, approximate

and simulation results of flu(d)

for m = 3 and given values of k, 1 — a and a

1 - a = 0.99

a

5

10

15

20

25

30

35

40

45

50

55

60

k = 5

Exact

0.993

0.992

0.994

0.994

0.995

0.995

0.995

0.995

0.995

0.995

0.995

0.995

Appro.

0.995

0.995

0.995

0.995

0.995

0.995

0.995

0.995

0.995

0.995

0.995

0.995

Simul.

0.991

0.991

0.994

0.994

0.994

0.995

0.995

0.996

0.994

0.996

0.996

0.996

k = 7

Exact

0.993

0.993

0.994

0.995

0.995

0.995

0.995

0.995

0.995

0.995

0.995

0.995

Appro.

0.995

0.995

0.995

0.995

0.995

0.995

0.995

0.995

0.995

0.995

0.995

0.995

Simul.

0.985

0.988

0.993

0.995

0.994

0.993

0.996

0.995

0.996

0.994

0.996

0.995

k = 10

Exact

0.993

0.994

0.995

0.995

0.995

0.995

0.995

0.995

0.995

0.995

0.995

0.995

Appro.

0.995

0.995

0.995

0.995

0.995

0.995

0.995

0.995

0.995

0.995

0.995

0.995

Simul.

0.983

0.993

0.996

0.994

0.995

0.994

0.995

0.994

0.994

0.995

0.995

0.995
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Table 4.3: Comparisons between the exact, approximate

and simulation results of flu{d)

for m = 10 and given values of k, 1 — a and a

1 - a = 0.99

a

15

20

25

30

35

40

45

50

55

60

k = 5

Exact

0.995

0.995

0.995

0.995

0.995

0.995

0.995

0.995

0.995

0.995

Appro.

0.995

0.995

0.995

0.995

0.995

0.995

0.995

0.995

0.995

0.995

Simul.

0.996

0.996

0.996

0.995

0.996

0.996

0.995

0.995

0.995

0.995

k = 7

Exact

0.994

0.995

0.996

0.995

0.996

0.995

0.996

0.996

0.995

0.995

Appro.

0.995

0.995

0.995

0.995

0.995

0.995

0.995

0.995

0.995

0.995

Simul.

0.996

0.995

0.993

0.993

0.995

0.995

0.995

0.995

0.995

0.995

k = 10

Exact

0.995

0.995

0.995

0.995

0.995

0.995

0.995

0.995

0.995

0.995

Appro.

0.995

0.995

0.995

0.995

0.995

0.995

0.995

0.995

0.995

0.995

Simul.

0.995

0.995

0.995

0.995

0.995

0.995

0.995

0.995

0.995

0.995
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Figure 7. The exact (-) and approximate (• • •) values of /3u(d)

and 1 — a (- -) as a function of a — a(a) for m = 3, k = 5

and a = 0.10, 0.01.
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Figure 8. The exact (-) and approximate (• • •) values of @u{

and 1 — a (- -) as a function of a = a(a) for m = 10, k = 5

and a = 0.10, 0.01
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Figure 9. The exact (-) and approximate (• • •) values of (5jj{d)

and 1 — a (- -) as a function of a = a(a) for m = 3, k = 7

and a = 0.10, 0.01.

100% -]

99% = -

95% -

90% —

10

a = 0.01

= 0.10

I
15 20

I
25 30 35 40 45 50 55

I
60

120



Figure 10. The exact (-) and approximate (• • •) values of j3u{d)

and 1 — a (- -) as a function of a = a(a) for m = 10, k = 7

and a = 0.10, 0.01.
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Figure 11. The exact (-) and approximate (• • •) values of 0u{d)

and 1 — a (- -) as a function of a = a(cr) for m = 3, k = 10

and a = 0.10, 0.01.
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Figure 12. The exact (-) and approximate (• • •) values of (3u{d)

and 1 — a (- -) as a function of a = a(a) for m = 10, k = 10

and a = 0.10, 0.01
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4.2 The exact probability of making correct

inference for comparing several treatments

with a control

4.2.1 Introduction

Suppose the first population, N(pua
2), is the control, the other k — \{k > 2)

populations are treatments, and the set of 2d-width and (1 — a)-level simulta-

neous confidence intervals for the pi — p\ is given by

Mi € [Yi-Y1-d, Yi-Y^d), i = 2,-.-,k} = l a.

Based on this set of confidence intervals, simultaneous inference about each

Hi — iii can be made. For example, if Yt — Y\ — d > 0(Y{ — Y\ + d < 0) we can

infer that /i; — fii > 0(^t — fii < 0). Furthermore, the probability of making

correct inferences, either /it — \i\ > 0 or fit — ji\ < 0, for every /̂ - satisfying

Hi — Mi | > 2d, is at least f — a, the confidence level. The purpose of this

section is to study the exact value of this probability.

Let j3*{jJ.; d) be the probability of making correct inferences, either fj,i — fii >

0 or fii — Hi < 0, for each /i; satisfying |/j,- — /ii| > 2d, and

l } and £l*L(d) = {j : /Xj - Mi <

Then f3*(fi,d) is equal to

Pjmaking correct inferences fit — jii > 0 for each z £ ^^(^) and

making correct inferences fj,j — /ii < 0 for each j G n

In particular, we impose f3*(/.i,d) = f if for a given value of fj, both the sets

Clir(d) and ft*L(d) are empty. Let the minimum value of f3*(p,d) over p, G Rk

be

= min 8
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As one should expect, f3*(d) must be no less than 1 — a, but we want to assess

the exact value of f3*(d).

Two different cases, known and unknown variance, will be considered sep-

arately. In Subsection 4.2.2 we consider the known variance case in which the

set of confidence intervals for //,- — pL\ is given in (4.4). In Subsection 4.2.3 we

consider the unknown variance case in which the set of confidence intervals for

Hi — H\ is constructed by using the pure sequential procedure of Section 3.2.
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' -2

4.2.2 When the variance is known

Let a2 be known, we draw a random sample of fixed size b = 2 (|i|£_i

from each of the k populations and construct the following set of simultaneous

confidence intervals

Ytb - Ylb -d,Yib-Ylb + d ) , 2 < i < k. (4.4)

It is known from Subsection 3.2.1 that this set of confidence intervals has

simultaneous level 1 — a. In order to compute the exact value of f3*(d), we

need the following theorem.

Theorem 4.3 Letk>3} p = ({k + l ) /2) and fi*(d) = (0, 2d, • • • , 2d, -2d,

• • • , —2d) £ Rk where the first component is zero, the last k — p components

are —2d and the rest p — 1 components are 2d. Then

Proof: From the definition of /?*(//, d), we have

/?*(//, d)

% -Ylb>d\/ie n*v(d), Yjb - Ylb < -d VJ e n

= p f y/b(Yib - fa) _ Vb{Ylb - //!) > Vb(d - (fa - fn)) ^ ^ ^
\ a cr a u

O" (7 cr

7 ^ Vb(d- (//,• -
Z > Vz

cr

cr

cr

z, < x + ^ M U i ^ 0 ) Vj
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n / yb(d — (iii —

It is clear that

n 4—
attains its minimum value over \x £ i?fc when /z,- — \x\ = 2d for all i G 0^(f/),

^ - ^ = -2d for all j G nj,(<Z) and C[fi^(d)] + C[fi2,(d)] = A; - 1. Without

loss of generality, let jii — ̂  = 2c? for 2 < i < I and \i,rj ~ \i\ — —2d for

/ < j < k. Now, let

-x

It is easy to show that M(l) > M(l + 1) for 2 < / < p by using the inequality

s~2(r+1) + 65-2( r+1> ) < as-2r + bs~2r, for a,beR+ a n d s > 2 r + 1.

Also, it is clear that Mil) = M(k + l — I). So M(l) is minimized over 2 < / < k

at / = p = ((A: + l ) /2 ) . Consequently

= f
= r

J —
-x

This finishes the proof.

It is interesting to note that the value of /3*(d) depends only on a and k,

but not on d and a2. This is because of the way in which we set the sample

size 6 = 2 (|t|g_x)
2cr2rf-2.

Table 4.4 shows the values of fi*{d) for k-1 =2(1)20 and a = 0.1,0.05,0.01.

As we can see, the values of the fJ*(d) are always larger than I — a. For exam-

ple, if Q = 0.10 and k = 4, we can claim that, with probability 0.945, rather

127



than 1 — a = 0.90, correct inference, based on the set of confidence intervals

in (4.4), will be made for each /i; — //i satisfying |//,- — //i| > 2d.
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Table 4.4: (3*(d) = * p*([i,d)

k - l \ l - a

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

0.90

0.945

0.945

0.943

0.943

0.942

0.942

0.942

0.941

0.941

0.941

0.941

0.940

0.940

0.940

0.940

0.940

0.940

0.940

0.939

0.95

0.973

0.973

0.972

0.972

0.972

0.972

0.972

0.972

0.972

0.971

0.971

0.971

0.971

0.971

0.971

0.971

0.971

0.971

0.971

0.99

0.995

0.995

0.995

0.995

0.995

0.995

0.995

0.995

0.995

0.995

0.995

0.995

0.995

0.995

0.995

0.995

0.995

0.995

0.995
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4.2.3 When the variance is unknown

Suppose that a2 is unknown, we consider inferences based on the set of confi-

dence intervals

P i - P i e {YlT - Y1T - d, YiT -Y1T + d)} 2 < i < k7

where the stopping time T is given in Subsection 3.2.f by

T = inf{n > m : n > 2d~2 ({t^ )2ln{dn)
2}.

We know that, for each treatment satisfying /i; — fj,\ > 2d(< —2d), the correct

inference fii — fi\ > 0(< 0) will be made from this set of simultaneous confidence

intervals with a probability of at least 1 — a + o(d2), since the confidence level

of this set of confidence intervals is equal to 1 — a + o(d2). We wish to assess

where

#K/z, d) = P{YiT -Y1T>dVie n*u(d), Y]T - Y1T < -d Vj G fll(rf)}. (4.5)

In particular, we define /^(/U, d) = 1 if all the treatments satisfy |/ij — /-i\\ < 2d.

For this we need the following lemma, which can be proved in a way similarly

to Lemma 4.1.

L e m m a 4 . 3 For k>3

,2T

where

H(x) = P { ~ J ^ > ~ v^7, 2 < i < p, Z ' Z l < V £ , p < j < A;}, (4.6)

andp={(k + l)/2).
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L e m m a 4 . 4 Letk>3,p = ((k + l ) / 2 ) and

H(x) = < * < P, < J <

ITien, for 0 < x < x0, we have \H"(x)\ < Cx(k 6)/2 , where C is a constant.

Proof: Let g(x) = H(x2), then

H"(x) = -\x-1g"{ (4.7)

and

= P{ZZ -Zx> ~xV2,2 < i < p, Z2-Zx< xV2,p+ 1 < j < k}

= y} dy2 < i < p, Zj-y < xV2, p + 1 < j < k

/-co _ _

/ <f>(y)P{Zi-y>-xV2,2<t<p7 Z, - y < x^p + 1 < j < k} dy
J —CO

/•CO

/ HvW*-1 (^V2 - y)$fc^ (x^2 + y) dj,,

First, observe that

g\x) < /
J —

< /
J —

OO

oo

- y)
—oo

OO

dy

Bxkk~3

y)) dy.

xV2 + y) dy

2 + y))k~3 dy

(4.8)
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where B,Bi,B2, and B3 are constants. Next, we have

g"(x) =

(p - l)(y - Xy/2)<j>{xy/2 (x ̂ 2 + y)

x \/2 + y)

- p)<j>(xV2 -

-(k- p){x\/2 + y)<f>(xy/2

- p)(p - l)(j>(xV2

~p)(k~p- l)(f>2(xV2

2 + y)

y)

1 (xy/2

2 + y)

y)) dy

and so

W'(x)\

< A,

+ \(y

\(y - - y)

(xy/2 + y)

y)

+A3(U(xV2 - y)<j>{xV2 x

y)\\ dy

) (\y\(f>{xV2 - y)

2 + y)\ dy

- y)

(A + 5x) + D2x
k~4

Dx k~4 (4.9)

where D\, D2, A, _B, and D are constants. By substituting (4.8) and (4.9) in

to (4.7), we get

\H"(x)\ < i ( x -V
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and the proof is thus completed.

Now, by using Theorem 2.2 with 0 = ( ( t ^ ) 2 , n0 = b, Cx = 0, (5 =

(6 — k)/2 and Lemma 4.4 we have following second order approximation to

the fc(d).

Theorem 4.4 For H{x) defined in (4.6), and suppose m > 1 if k > 6 and

m > 1 + (8 - k)/k if k = 3, 4, 5. Then

where b = 2d-2 (\t\t_-,)2 a2.

The exact value of ^(d) can be calculated by using the recursive method

discussed in Subsection 3.2.4 since the stopping time is the same as before and

(WtO2^)
2 n + 1

where H(x) is denned in (4.6) and m0 = m — 1. Simulation to estimate ^y(d),

based on 6,000 experiments, was also carried out.

For fc = 5,7,10 and 1 - a = 0.90,0.99, Tables 4.5 and 4.6 give the exact,

simulated and second order approximate values of (3jj(d) at b = 5(5)60 and

b = 15(5)60. For m = 2,10, k = 5,7,10, and 1 - a = 90%, 99%, the exact

calculation results and approximations of /3^(d) at b = 5(5) 60 and b = 15(5)60

are linearly plotted in Figures 13-18.
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Table 4.5: Comparisons between the exact, approximate

and simulation results of (3jj(d)

for m — 2 and given values of k, 1 — a and b

1 -a = 0.90

b

5

10

15

20

25

30

35

40

45

50

55

60

k = 5

Exact

0.915

0.923

0.933

0.938

0.940

0.941

0.941

0.942

0.942

0.942

0.942

0.942

Appro.

0.949

0.946

0.945

0.944

0.944

0.944

0.944

0.944

0.944

0.944

0.944

0.943

Simul.

0.908

0.924

0.939

0.938

0.938

0.945

0.938

0.945

0.941

0.950

0.942

0.941

k = 7

Exact

0.915

0.930

0.938

0.940

0.941

0.941

0.942

0.942

0.942

0.942

0.942

0.942

Appro.

0.952

0.947

0.945

0.945

0.944

0.944

0.943

0.943

0.943

0.943

0.943

0.943

Simul.

0.920

0.931

0.940

0.942

0.945

0.943

0.946

0.942

0.943

0.941

0.942

0.942

k = 10

Exact

0.916

0.935

0.939

0.940

0.941

0.941

0.941

0.941

0.941

0.941

0.941

0.941

Appro.

0.956

0.948

0.946

0.945

0.944

0.943

0.943

0.943

0.943

0.942

0.942

0.942

Simul.

0.907

0.929

0.929

0.935

0.935

0.938

0.935

0.935

0.936

0.936

0.934

0.935
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Table 4.5: Comparisons between the exact, approximate

and simulation results of fly{d)

for m = 10 and given values of k, 1 — a and b

1 - a = 0.90

b

15

20

25

30

35

40

45

50

55

60

k = 5

Exact

0.942

0.942

0.942

0.943

0.943

0.943

0.943

0.943

0.943

0.943

Appro.

0.945

0.944

0.944

0.944

0.944

0.944

0.944

0.944

0.944

0.943

Simul.

0.944

0.939

0.949

0.942

0.938

0.944

0.945

0.943

0.942

0.943

k = 7

Exact

0.941

0.941

0.942

0.942

0.942

0.942

0.942

0.942

0.942

0.942

Appro.

0.945

0.945

0.944

0.944

0.943

0.943

0.943

0.943

0.943

0.943

Simul.

0.941

0.944

0.945

0.944

0.938

0.939

0.945

0.941

0.940

0.942

k = 10

Exact

0.940

0.941

0.941

0.941

0.941

0.941

0.941

0.941

0.941

0.941

Appro.

0.946

0.945

0.944

0.943

0.943

0.943

0.943

0.942

0.942

0.942

Simul.

0.939

0.933

0.936

0.938

0.935

0.941

0.934

0.934

0.933

0.940
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Table 4.6: Comparisons between the exact, approximate

and simulation results of j3y

for m = 2 and given values of k, 1 — a and b

1 -a = 0.99

b

5

10

15

20

25

30

35

40

45

50

55

60

k = 5

Exact

0.985

0.987

0.990

0.992

0.993

0.993

0.994

0.994

0.994

0.994

0.994

0.994

Appro.

0.996

0.995

0.995

0.995

0.995

0.995

0.995

0.995

0.995

0.995

0.995

0.995

Simul.

0.987

0.985

0.990

0.994

0.994

0.993

0.993

0.993

0.993

0.994

0.995

0.996

k = 7

Exact

0.986

0.990

0.993

0.994

0.994

0.994

0.994

0.994

0.994

0.994

0.994

0.994

Appro.

0.997

0.996

0.995

0.995

0.995

0.995

0.995

0.995

0.995

0.995

0.995

0.995

Simul.

0.986

0.990

0.992

0.994

0.994

0.994

0.995

0.995

0.994

0.995

0.995

0.995

k = 10

Exact

0.987

0.993

0.994

0.994

0.994

0.994

0.994

0.994

0.994

0.994

0.994

0.994

Appro.

0.997

0.996

0.996

0.996

0.995

0.995

0.995

0.995

0.995

0.995

0.995

0.995

Simul.

0.986

0.990

0.992

0.994

0.994

0.994

0.995

0.995

0.994

0.995

0.995

0.995
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Table 4.6: Comparisons between the exact, approximate

and simulation results of ^(d)

for m = 10 and given values of k, 1 — a and a

1 - a = 0.99

b

15

20

25

30

35

40

45

50

55

60

k = 5

Exact

0.994

0.994

0.994

0.994

0.994

0.994

0.995

0.995

0.995

0.995

Appro.

0.995

0.995

0.995

0.995

0.995

0.995

0.995

0.995

0.995

0.995

Simul.

0.995

0.997

0.996

0.994

0.993

0.993

0.993

0.994

0.995

0.994

k = l

Exact

0.994

0.994

0.995

0.995

0.995

0.995

0.995

0.995

0.995

0.995

Appro.

0.995

0.995

0.995

0.995

0.995

0.995

0.995

0.995

0.995

0.995

Simul.

0.996

0.995

0.994

0.995

0.996

0.995

0.996

0.994

0.995

0.995

k = 10

Exact

0.994

0.994

0.995

0.995

0.995

0.995

0.995

0.995

0.995

0.995

Appro.

0.996

0.996

0.995

0.995

0.995

0.995

0.995

0.995

0.995

0.995

Simul.

0.994

0.993

0.995

0.993

0.993

0.995

0.995

0.995

0.995

0.993
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Figure 13. The exact (-) and approximate (• • •) values of {3jj(d)

as a function of b = b(a) and 1 — a (- -) for m = 2, k = 5

and a = 0.10, 0.01.
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Figure 14. The exact (-) and approximate (• • •) values of /3y(d)

as a function of b = b(a) and 1 — a (- -) for m = 10, k = 5

and a = 0.10, 0.01.
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Figure 15. The exact (-) and approximate (• • •) values of f3jj(d)

as a function of b = b(a) and 1 — a (- -) for m = 2, k = 7

and a = 0.10, 0.01.
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Figure 16. The exact (-) and approximate (• • •) values of @jj{

as a function of b = b{a) and 1 — a (- -) for m = 10, k = 7

and a - 0.10, 0.01.
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Figure 17. The exact (-) and approximate (• • •) values of ^

as a function of b = b(a) and 1 — a (- -) for m = 2, k = 10

and a = 0.10, 0.01.
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Figure 18. The exact (-) and approximate (• • •) values of ^(

as a function of b = 6(<r) and 1 — a (- -) for m = 10, k = 10

and a = 0.10, 0.01.
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4.3 The exact probability of making correct

inference for all-pairwise comparisons of

the means of several independent normal

populations

4.3.1 Introduction

From a set of 2d-width and (1 — a)-level simultaneous confidence interval for

t h e fi{ — /.ij

Pi IH - fij e [Yi -Yj-d,Yi-Yj + d), 1 < i ^ j < k> = 1 - a

simultaneous inferences about each fit — fij can be made. For example, we

can infer that //,- — fij > 0 if Yi — Y3• — d > 0. Furthermore, the probability of

making correct inferences ^ — fij > 0 , for each pair satisfying m — fj,j > 2d,

is at least 1 — a, the confidence level. The question we want to answer in this

section is " what is the exact value of this probability?" More precisely, we

want to investigate the following probability

P{making correct inferences /i,,- — pLj > 0, for each pair satisfying //, — fij > 2d}.

Let

nZ(d) = {(i,j):fii-tij>2d}.

The above probability is then equal to

P{making correct inferences fi% — fij > 0 for each (i,j) G fl^j(d)}.

This probability is of course dependent on the true value oi fi = (/ii, /i2, • • • , fik) £

Rk, and let it be denoted by /3**(fi, d). For obvious reason, we impose f3**(fi, d) =

1 if for given values of fi and d the set fly'(d) is empty. In this section, we

144



wish to assess

f3**(d) — min f3**(/j,,d).

It is clear that /3**(d) must be no less than I — a, the confidence level. We shall

compute the exact value of (3** (d) when k = 3 and a lower bound on /3**(d)

when k = 4. Although /?**(//, d) and f3**(d) are well defined for general k > 2,

to find an explicit formula for /3**(d) when k > 4 encounters great difficulty

and might be impossible.

Two different situations are considered. In Subsection 4.3.2 we consider

the known variance case in which the set of confidence intervals for \n — \i2 is

given in (4.10). In Subsection 4.3.3 we consider the unknown variance case in

which the set of confidence intervals for m — fij is constructed by using the

pure sequential procedure of Section 3.3.

The following notation is used. Let //[!] < JJL^2] < M[3] 5: M[4] denote the

ordered values of /Ji,/i2,/^3 and /i4, and let Y^ denote the sample mean from

the population with mean fi[q,i = 1,2,3,4.
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4.3.2 When the variance is known

Suppose that a2 is known and a random sample of fixed size c = (q%) u2d~2

is taken from each of the k populations, we construct the following set of

simultaneous confidence intervals for fa — ji3

Ylc - YJC - d} Yic -YJC + d ) , 1 < i ± j < k . (4.10)

It is known from Subsection 3.3.1 that this set of confidence intervals has

simultaneous level 1 — a.

First, when k = 3, in order to compute the exact value of /3**(d), we have

the following theorem.

Theorem 4.5 For given d > 0,c = d~2 {q°f a2 and /x*(d) = (0,-2d,2d) e

R3. We have

-oo a a
oo

-oo

Proof: Dividing the whole space of /i = (jii, fi2, 1^3), R3, into five regions as

follows:

1. Ri = {/i[3] - //[i] < 2d)

4. i?4 = \/U[3] — /i[i] ̂  2 a , /i[3] — /i[2] ^ 2 a , /i[2] — /^[i] ^ 2 a |

5 . XI5 = \/^[3] — AH2] ^ 2w, ^[2] — AHil — 2dj.

Now consider the function j3**((i,d) for fi = (^1,^2,^3) in each of the five

regions. When [i G R\, fl**(f.i,d) — 1 by definition since \in — fj,j\ < 2c?, VI <
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i < j < 3. So, the minimum value of /3**(̂ f, d) will not be attained at fi E R\.

When fj, e i?2,

r*(/ i ,d) = P { F ( 3 ) - y ( 1 ) > r f } . (4.11)

When ft e R3,

When fi e R4,

When fi €

I, Y{2) -

, y ( 3 ) - y ( 2 )

% ) - y(2) > rf, y(2) - y(

(4.12)

(4.13)

(4.14)

Now, we compare min^gR, f3**(fi,d) for i = 2,3,4,5. When fx 6 -R5, we have

— a/\/c a a

>
a

~Z2>
0" <T O" O"

which clearly attains its minimum at

= 0,

So

= P(Z3 ~Z2> -q^ Z2-Zx> -
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where (X5,F5) has a bivariate normal distribution with mean (0,0) and a

covariance matrix

1 , - 1 /2

-1 /2 , 1

Similarly, when /i G i?4, we have

A4 = min f3**{u,d)
M6R4

= P(Z3 - Zx > -<g, Z3 - Z2 > -qf

where (X4,y4) has a bivariate normal distribution with mean (0,0) and a

covariance matrix

1 , 1 / 2

1/2 , 1

When fi £ i?3, we have

A3 = min/?**()<, d)

a

where (X3,y3) has a bivariate normal distribution with mean (0,0) and a

covariance matrix

1 , 1 / 2

1/2 , 1

Now, by Slepians's inequality (Theorem A.4), we have A5 < A3 = A4. Also,

min^H, P**(pid) ^ A3 is obvious. So, (3**(jj,,d) attains its minimum in R$ at

l_i = (0, — 2d, 2cf), and the minimum is given by

/T"(<f) = P(Z3 -Z2> -q%, Z2-Zx> -ql)

<p(x)P(Z3 > -q% + x, Z1 < q% + x) dx

- *Mq% + *) dx (4.15)
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as required. This completes the proof.

Table 4.7 shows the values of /?**(c?) for k = 3, a = 0.1,0.05,0.01.

Table 4.7: f3**(d) for k = 3

l-a

0.90

0.95

0.99

f3**(d)

0.960

0.981

0.996

Now we consider k = 4. The following theorem gives a lower bound,

on min^gRi (3**([j,,d).

Theorem 4.6 For given d > 0 and c = d"2 (q%)2 cr2, we have

where

/ /
J— CO J—

Proof: Divide the whole space of \x — (/<i, ̂ 2, M3, ^4),

as follows:

into fourteen regions

2. i?2 =

3. R3 =

4. i?4 =

5. i?5 =

2rf, /i[3] - //.[!] > 2c?, 2c?}

> 2c?, /i[4] - /i[2] > 2C?, 2C?,
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6. # 6 = 2c/,

> 2c/}

7. # 7 =

8.

9. R9 = {fi[4] - ji{1] > 2d,

M[3] - /"[2] > 2c/,

10. i?io

ZCi, yiMi — AM2] _ ^Ct, p[4] — r^[3] ^ Z u ,

C 2c/, /ir2] —

> 2c/, /ira — / in i > 2c/,

2c/, 2c/,

> 2c/, / i [ 4 ] - / i [ 2 ] > 2c/, //[4] -

fi[3] - /i[!] > 2c/,/i[2] - //[!] < 2c/}

1 1 . # 1 1 = 1M4] — /^[i] ^ 2c/, /j,[41 — /i[2] ^ 2d} fiui — /ip] > 2c/,

C 2c/, //[3] — /i[ij > 2c/, /i[2] — /i[i] ^ 2c / |

2c/,/i[4] - ^[3] > 2c/,

2d,fi[2] - /i[i] < 2c/}

- //[2] > 2c/, //[4] -

> 2c/, //[3] - /l[i] > 2c/, //[2] - /i[i] < 2c/}

12.

13.

14. Jt l4 — \/^[4l — /^[ll ~ 2ct, fA\4] — A f̂2l ~ 2u, /^f4j —

\ Q 7 \ r) 7 \ r) 7~1

/^[3l — AH2l _ ^Ct, p[3] — /^[ l l — ^Ci, /^[2] — r^[ll — ^CZj.

Now consider the function /?** (;«, d) for /x in each of the fourteen regions. When

f.i G # 1 , /?**(/!<, c/) = 1, since l̂ i; — /i j | < 2c/, VI < ?; < j < 4. So the minimum

value of /5**(/^,c/) will not be attained in # 1 . Let Bi = m i n ^ ^ j3**(/i,d).

When \x e #2,

and

= P{^4 - 2i
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When n € R3,

and

When fi e R

B3 = P{Z4 -

d, y(3) - y(i) > d}

-qa
4}.

• 4 ,

, y (3 ) -

and

B4 = P{Z4 —

When fi e i?5,

-q%, Z2~Z1> -

, d) = P{Y{4) - y(1) > d, Y{4) - y(2) > d, Y{3) -

and

B5 = P{Z4 -Zx>

When fi £ R6l

-q%, Z4-Z2> -qa
4,

, d) = P{Y{4) - y(2) > d, y(3) - y(1) > rf, y (2) -

and

B6 = P{Z4 -Z2> -<£ , Z3 - Zx > -qa
A, Z2 - Zx

When fi e R7,

,d) = P{Y{4) - y(1) > d, y(4) - y

and

W h e n fi <E R8,

= P{Z4 -Z1> -q%, Z4-Z2> -<

i , ^ = P{F (4) - y(i) > rf, y(4) - y (2) > rf, y(3) - y(2) > d, y (3)
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and

B8 = P{Z4 -Zx> -qa
A, Z4-Z2> -q%, Z3-Z2> -qa

4, Z3 - Zx > -

When fi G i?9,

r > , d) = P{Y(4) - y(2) > d, y(3) - y(2) > <z, y(2) - y(1) > d)

and

B9 = P{Z4 -Z2> -q\, Zz-Z2> -q%, Z2~Z1> -q«}.

When ft G Rw,

13** (fi, d) = P{Y{4) - y(2) > d, Y(4) - y(3) > d, y(3) - y(1) >

and

-?4
Q, z4 -

When

- y(2) > d, y(4) - y(3) > d, y (3) - y (1) > d, y (2) -

and

= P{Z4 -Z2> -q^ Z4-Z3> - -q", Z2-Zx> -qa
A}.

When fi e R12,

and

, y (4) - y (2) > d, y (4) - y (3)

-q%, Z4-Z3>-q°}.

When JJL e i?i3,

- ( ^ d ) = P{Y(4) - y(3) > <*, y(3) - y(2) > d, y (3)
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and

B13 = P{Z4 -Z3> -qa
4, Z3-Z2> - # , Z3 - Zx > -<£}.

When fj, G Ru,

P**(fi,d) = P{Y(4) - Y{3) > d, Y{3) - Y{2) > d, Y{2) - y (1) > d}

and

B14 = P{Z4 ~Z3> -q°4., Z3 - Z2 > -qa
A, Z2-Zx> -q%).

Now, it is clear that B4 < B3 < B2 and B5 < B7, and so the minimum is

among B4, B5, B6, B8, B9, Bw, Bn, Bi2, B13 and B14.

Dividing these B^s in to two groups, one group contains B4, B5, B6, B9, BWl

B121B12 and Bi4, and the other group contains Bs,Bn. Now by using Slepi-

ans's inequality it can be shown that B\4 is the minimum in the first group

and that B\\ < B8. Consequently

It is straightforward to show that

B14 = min P**([i,d) = l3**((-2d,0

oo roo
//

co

= P(Z4 — Z3 > —q4, Z3 — Z2 > —q4, Z2 — Z\> —q4)

<j)(x)(f)(y)P(Z4 > -qA + x, Z2 < qA + x, Z2 > -q% + y) dy dx

and

Bu = min l3**(n,d) = /?*>K((-2^ 0, 0, 2d), J)

/•oo rx+2(£
= 4>(y)<i)(x)[<&((i4 + x) ~ ®{y ~ Q4')] dy dx,

J—CO J —OO

from which the theorem follows clearly. The proof is thus completed.

153



From this proof, we see that

B 14)

The numerical calculation shows that for some values of q%, i?14 < B\\ and for

other values of q%, Bu > B\\. For example, if q% = 1 then B14 = 0.369 and

Bn = 0.377, but if q° = 3 then B14 = 0.949 and Bn = 0.938. It is therefore

most unlikely that an explicit expression of f3**(d) can be given.

Table 4.8 presents the values of p**(d) and (3*L*(d) for k = 4, a = 0.1,0.05,0.01.

From these, it seems that ^(d) is a reasonably tight lower bound on f3**(d).

It is interesting to note that both the values of (3**(d) and /?£*((/) depend only

on a and k, but not on d and a2.

Table 4.8: P**(d) and for k = 4

1-Q

0.90

0.95

0.99

P~(d)

0.959

0.981

0.996

P?(d)

0.949

0.976

0.996
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4.3.3 When the variance is unknown

In this subsection, we suppose a2 is unknown and consider inferences based

on the set of confidence intervals

fii - fij e {YlT - YjT - d, Yir - YjT +d), 1 < i ̂  j < k,

where the stopping time T is given in Subsection 3.3.1 by

T = inf{n > m : n > d'2 (q%)2ln{an)
2}.

We know that, for each pair (i,j) of treatments satisfying in — ji3 > 2c/,

the correct inference /J,1 — n3 > 0 will be made from this set of simultaneous

confidence intervals with a probability of at least 1 — a + o((i2), since the

confidence level of this set of confidence intervals is equal to 1 — a + o(d2). We

wish to assess

where

ffi(li,d) = P{YtT - YjT > d V(z, j ) € n%(d)}. (4.16)

In particular, we define (3u(fi,d) — 1 if all treatments satisfy \\i{ — fi3\ < 2d.

We again consider only k = 3 and k = 4.

When k = 3, an argument similar to the proof of Lemma 4.1 establishes

Lemma 4.5

where

H{x) = P{Z3-Z2>-yfi, Z2-Z1>-^} (4.17)

and c = (crq^ jd) .

The following lemma can be proved similarly as before.
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Lemma 4.6 Let H(x) = P{Z3 - Z2 > -yfe, Z2 - Zx > -y/x], and Co > 0

is a given constant. Then for 0 < x < Co, \H"(x)\ < Dx~3l2, where D is a

constant.

Now Lemma 4.6 and Theorem 2.2 with 0 = (q%)2, C\ = 0 and n0 = c give

the second order approximation to the f3y(d).

Theorem 4.7 For H(x) defined in (4-17) and m > 2 we have

7 j_2 / a\2 2

where c = a (q^) a .

For k — 3 and 1 — a = 0.90, 0.99, Tables 4.9 gives the values of the second

order approximations to f3]j(d) at c = 5(5)60 and c = 15(5)60

Next, when k = 4, by using Lemma 4.6, we have the following lemma.

Lemma 4.7

where

/•oo rt+2^/x
H(r\— / / (h(t)6(r)<$>(*/r—t)l<$>(-\/r 4-t) — <£>(r —-\/T)] drdt (4 18)

J—oo J—oo

and c = (crq%/d) .

Lemma 4.8 Suppose H(x) is given by (4-18) and Co > 0 is a given constant.

Then for0<x< Co, \H"{x)\ < Mx"3!2 , where M is a constant.

Proof: Let g{x) = H(x2). Then

poo rt-\-2x
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and

poo rt+2xA /-

g'(x) = —
(IX «/—

/-co ^ f

= / 7T /
J—oo OX J—

j- f\ — <f>(r — r^l drdt
—CO J — OO

co r) rt+2x
<f>{t)<j)(r)§(x — t)[<&(x + t) — $ ( r — x)] drdt

•CO

co f /-t+2x f) fl(i i

[ OX OX

where

AT(t, r, x) = <?i(t)(/>(r)$(x - t)[$(x + t) - $(r - x)]2

and so

/-co /-t+2a;

g'(x) = / //
—oo */—oo

- x)

/•oo /-t+2a; f *|
= / / (j>(t)(f>(r)\4>(x-t)W2+ 2§(x-t)(^(x + t) + 0(r-x))W\ dr dt,

J—oo J —oo L J

where

T/t/ — Wit T T l — Cl) I T -I- / I — <J> ( 7̂  — 7* I

By noting that

W= —J==e~:?l2 ds <2x +t — r,

we have

/•CO /"OO , v

W{x)\ < A / <j)(t)<i>{r){W2 + W) drdt
/*oo /*

< A2 / /
J — oo J —

/
oo J —oo

poo /*oo

A3 / ^>(t)^)(r)(2x + t - r) drdt,
J—oo J—oo

< A3 /
J—oo J—oo

where Aj, A2, A3, and A are constants.

Now we find g"(x).

< Ax, (4.19)
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d r°° ff+2

(XX J —oo J —oo

co ( ft+2x Q
r, x) dr + N(t, t + 2x, x)U{ J J \ dt,

OX J

where

, r, x) =

and so, we have

(x - t)W2

OX J

t)

poo rt-\-2x

g"(x) = I / <j>(t)<f>(r)\-(x-t)<f>(x-t)W*/
co J — oo

x - t) (<f>(x + t) + <j>(r - x ) ) W + 2 $ ( x - t) (

x - t) (-(x + t)(f>{x + t) + ( r - x)(f>(r - x))

Therefore

- x)) w\,

+ t) + <f>(r - x)f

drdt.

oo poo
/

- c o J —co
CO /*OO

/
—oo J—oo

2

) ((a; + \t\)W2 + W + D + (2x + \t\ + \r\)W) drdt

< B3x
2 + B4x + BB, for 0 < x < Co, (4.20)

where Bi, B2, B3, B4, B5 and Do are constants. It now follows from (4.19),

(4.20) that

\H"(x)\ < 1-(x-i\g"(x^)\ +

where M is a constant.

Now Lemma 4.8 and Theorem 2.2 with 6 = (q%)2 , C\ = 0 and n0 = c give

the second order approximation to the f3™u(d).

Theorem 4.8 For H(x) defined in (4-18) and m > 2, we have
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where c = d~2 (q%)2 a2.

Table 4.10 presents the values of the second order approximation to the

The exact values of ftxj(d) when k = 3 and fl™u{d) when k = 4 can be

calculated by using the recursive method discussed in Subsection 3.3.4, since

the stopping time is the same as before,

°° / n
> n)\H

n=rriQ

where H(x) is defined by (4.17), and

^9 n + 1

where iJ(x) is defined by (4.18), where m0 = m — 1. Simulations to estimate

flu (d) and ^^(d), based on 6,000 experiments, were also carried out.

For k = 3,4 and 1 - a = 0.90,0.99, Tables 4.9 and 4.10 give the exact,

simulated and approximate values of /3^(d) and fi™u{d) at c = 5(5)60 and

c = 15(5)60.
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Table 4.9: Comparisons between the exact, approximate

and simulation results of flu (d)

for ra = 2 and given values of k = 3, 1 — a and c

1 - a = 0.90

c

5

10

15

20

25

30

35

40

45

50

55

60

k = 3

Exact

0.936

0.931

0.938

0.944

0.948

0.951

0.952

0.954

0.955

0.955

0.956

0.956

Appro.

0.943

0.951

0.954

0.956

0.956

0.957

0.957

0.958

0.958

0.958

0.958

0.958

Simul.

0.939

0.941

0.952

0.953

0.954

0.955

0.956

0.958

0.952

0.958

0.963

0.963
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Table 4.9: Comparisons between the exact, approximate

and simulation results of j3ff (d)

for m = 10 and given values of k = 3, 1 — a and c

1 - a = 0.90

c

15

20

25

30

35

40

45

50

55

60

k = 3

Exact

0.959

0.958

0.958

0.959

0.959

0.959

0.959

0.959

0.959

0.959

Appro.

0.954

0.956

0.956

0.957

0.957

0.958

0.958

0.958

0.958

0.958

Simul.

0.967

0.963

0.961

0.962

0.962

0.962

0.960

0.963

0.965

0.967
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Table 4.9: Comparisons between the exact, approximate

and simulation results of /3jj(d)

for m = 2 and given values of k — 3, 1 — a and c

1 - a = 0.99

c

5

10

15

20

25

30

35

40

45

50

55

60

k = 3

Exact

0.989

0.985

0.987

0.989

0.990

0.991

0.992

0.993

0.993

0.994

0.994

0.994

Appro.

0.995

0.995

0.996

0.996

0.996

0.996

0.996

0.996

0.996

0.996

0.996

0.996

Simul.

0.990

0.987

0.991

0.991

0.993

0.994

0.995

0.993

0.995

0.994

0.995

0.996
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Table 4.9: Comparisons between the exact, approximate

and simulation results of /3jj(d)

for m = 10 and given values of k = 3, 1 — a and c

1 - a = 0.99

c

15

20

25

30

35

40

45

50

55

60

k = 3

Exact

0.996

0.996

0.996

0.996

0.996

0.996

0.996

0.996

0.996

0.996

Appro.

0.996

0.996

0.996

0.996

0.996

0.996

0.996

0.996

0.996

0.996

Simul.

0.998

0.995

0.995

0.997

0.997

0.997

0.997

0.997

0.996

0.997
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Table 4.10: Comparisons between the exact, approximate

and simulation results of j3^jj (d)

for m = 2 and given values of k = 4, 1 — a and c

l-a = 0.90

c

5

10

15

20

25

30

35

40

45

50

55

60

k = 4

Exact

0.942

0.946

0.949

0.949

0.949

0.949

0.949

0.949

0.949

0.949

0.949

0.949

Appro.

0.940

0.944

0.946

0.946

0.947

0.947

0.947

0.947

0.948

0.948

0.948

0.948

Simul.

0.928

0.932

0.947

0.944

0.947

0.951

0.944

0.950

0.950

0.950

0.945

0.949
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Table 4.10: Comparisons between the exact, approximate

and simulation results of /3^u(d)

for m = 10 and given values of k = A, 1 — a and c

1 - a = 0.90

c

15

20

25

30

35

40

45

50

55

60

k = A

Exact

0.949

0.949

0.949

0.949

0.949

0.949

0.949

0.949

0.949

0.949

Appro.

0.946

0.946

0.947

0.947

0.947

0.947

0.948

0.948

0.948

0.948

Simul.

0.952

0.948

0.951

0.954

0.944

0.953

0.949

0.951

0.945

0.949
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Table 4.10: Comparisons between the exact, approximate

and simulation results of /3£*y (d)

for m — 2 and given values of k = 4, 1 — a and c

l-a = 0.99

c

5

10

15

20

25

30

35

40

45

50

55

60

k = 4

Exact

0.995

0.995

0.995

0.995

0.995

0.995

0.995

0.995

0.995

0.995

0.995

0.995

Appro.

0.995

0.995

0.995

0.995

0.995

0.995

0.995

0.995

0.995

0.995

0.995

0.995

Simul.

0.989

0.988

0.993

0.994

0.995

0.994

0.993

0.994

0.994

0.996

0.995

0.995
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Table 4.10: Comparisons between the exact, approximate

and simulation results of ^ v (d)

for m = 10 and given values of k = 4, 1 — a and c

1 - a = 0.99

c

15

20

25

30

35

40

45

50

55

60

k = 4

Exact

0.995

0.995

0.995

0.995

0.995

0.995

0.995

0.995

0.995

0.995

Appro.

0.995

0.995

0.995

0.995

0.995

0.995

0.995

0.995

0.995

0.995

Simul.

0.995

0.996

0.996

0.994

0.994

0.994

0.994

0.996

0.995

0.995
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Chapter 5

Some power functions of

multiple tests
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5.1 A power function for testing the means of

several independent normal populations

5.1.1 Introduction

Suppose we have k independently and normally distributed populations N(pt, <x2),

1 < i < k, with unknown means fii and a common positive variance a2. We

are again interested in making inferences about the m and in particular, we

want to test the family of two-sided hypotheses

H l O : p i t = 0 v s H n i f i i ^ O , \ < i < k . (5.1)

Assume that Y{n denotes the sample mean of a sample of fixed size n from

the ith population, 1 < i < k, and that S2 is an estimate of a2 which is

independent of the Yin and distributed as a xllv random variable. If a2 is

known then v — oo, otherwise 0 < v < oo. It is well known that the family of

hypotheses (5.1) can be tested in the following way

l\/nYin
S

reject Hi0 in favour of Htl iff | V o
 m | > \m\%,, 1 < i < k, (5.2)

and accompany the rejection of any H{Q by the directional decision that fii > 0

if Yin > 0 and ^; < 0 if Y{n < 0, where \m\% is the upper a point of the

distribution of the random variable

Zi\

This multiple test procedure controls strongly the type I error rate at a (see

appendix for definition), since it is actually derived from the following set of

simultaneous confidence intervals of level 1 — a

( S - S \
± in ' ku i—i x tn

'n
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To assess the sensitivity of this test procedure, we want to calculate the prob-

ability that this test will detect, with a correct directional decision, each treat-

ment whose mean //; is significantly different from zero in terms of |/i,-| > da,

where d > 0 is a given constant. For this we define a power function 7 ^ , d)

to be

P{all false Hio with \/j>i\ > da are rejected with correct directional decisions}

(5.3)

and, in particular, j(/i,d) = 1 if all the treatments satisfy |//t-| < da. The

sensitivity of this multiple test procedure can then be measured by j(d) =

min̂ gflfc 7(//,rf). The problem that we want to investigate is how large the

sample size n should be if we require test (5.2) has the sensitivity *y(d) = 7

for preassigned values of d > 0 and 0 < 7 < 1. This is treated in Subsection

5.1.2.

Note that, in the definition of power function 7(/f, d) in (5.3), the departure

of the [ii from the origin, \fii\, is measured in unit of a. It certainly makes

sense to define a power function, j({i, d), to be

P{all false H{0 with |/i;| > d are rejected with correct directional decisions}

and, in particular, j(fJ., d) = 1 if all the treatments satisfy \fj,i\ < d. The sensi-

tivity of a test of (5.1) can be measured by the quantity 'y(d) = min̂ ĝ fe 7(/", d).

Now assume a2 is an unknown parameter and we wish to design a test of (5.1)

such that this test has type I error rate a and sensitivity ^f(d) = 7, for given

values of a, d and 7. For this it is necessary to use a sequential sampling

scheme. In Subsection 5.1.3 we discuss a pure sequential procedure.
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5.1.2 A fixed sample size procedure

In order to determine the sample size n so that test (5.2) has *y(d) = 7 for

given values of k, v, d > 0 and 0 < 7 < 1, we first find a configuration of the

population means fi at which the power function 7(/i, d) attains its minimum.

We have the following result. The proof is similar to that of Theorem 4.1 and

omitted.

Theorem 5.1 Let k > 2, p = (k/2) and fi*(d) = (da, • • •, da, —da, • • •, —da)

which has the first p components equal to da and the last k — p components

equal to —da. Then

/
o

where fv(x) denotes a pdf of the J

Notice that, if the variance a2 is known then

= min ̂ {u,d) = $fc (d^/n — \m

For given values of k,v,a and 7, Tables 5.1 and 5.2 give the values of

such that ~f(d) = 7.
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Table 5.1: Values of the parameter dy/n satisfying -f(d) = 7

for a = 0.05 and 7 = 0.90

i/=10

i/=12

i/=14

i/=16

i/=18

z/=20

z/=30

z/=40

z/=60

i/=120

^=00

fc = 2

4.411

4.309

4.239

4.188

4.149

4.119

4.031

3.989

3.948

3.908

3.869

k = 3

4.869

4.744

4.659

4.596

4.549

4.512

4.405

4.353

4.303

4.254

4.206

k = 4

5.189

5.047

4.950

4.879

4.825

4.783

4.660

4.602

4.544

4.488

4.434

k = 5

5.434

5.278

5.172

5.094

5.035

4.989

4.854

4.789

4.726

4.665

4.605

fc = 6

5.632

5.466

5.351

5.268

5.204

5.154

5.010

4.940

4.872

4.806

4.742

k = 7

5.798

5.622

5.501

5.413

5.346

5.293

5.139

5.105

4.993

4.923

4.855

k = 8

5.941

5.757

5.630

5.538

5.467

5.412

5.250

5.172

5.097

5.023

4.951

k = 9

6.066

5.875

5.743

5.647

5.573

5.515

5.347

5.266

5.187

5.110

5.034

fc = 10

6.177

5.980

5.843

5.743

5.667

5.608

5.433

5.349

5.267

5.186

5.108
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Table 5.1: Values of the parameter dy/n satisfying ^j(d) = 7

for a = 0.05 and 7 = 0.90

i/=12

v=\A

v=l&

^=18

^=20

^=30

v=AQ

^=60

J / = 1 2 0

) f e = 1 1

6.278

6.074

5.933

5.831

5.752

5.720

5.510

5.423

5.338

5.255

5.174

k = 12

6.368

6.160

6.015

5.910

5.829

5.795

5.580

5.491

5.403

5.318

5.234

k = 13

6.452

6.238

6.090

5.982

5.899

5.865

5.644

5.552

5.462

5.374

5.289

k = 14

6.528

6.310

6.159

6.049

5.964

5.929

5.703

5.609

5.517

5.427

5.339

k= 15

6.560

6.377

6.223

6.111

6.024

5.989

5.758

5.661

5.567

5.475

5.385

k= 16

6.666

6.440

6.283

6.168

6.080

6.044

5.809

5.710

5.614

5.520

5.428

k = 17

6.728

6.498

6.339

6.222

6.133

6.096

5.856

5.756

5.658

5.562

5.468

k= 18

6.786

6.553

6.391

6.273

6.182

6.144

5.901

5.799

5.699

5.601

5.506

k = 19

6.841

6.605

6.441

6.321

6.229

6.190

5.943

5.839

5.738

5.638

5.541

fc = 20

6.893

6.654

6.488

6.366

6.272

6.233

5.983

5.877

5.774

5.673

5.575
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Table 5.1: Values of the parameter d^fn satisfying j(d) = 7

for a = 0.05 and 7 == 0.95

i/=10

i/=12

i/=14

i/=16

z^=18

j/=20

z/=30

z/=40

i/=60

i/=120

z/=oo

k = 2

4.799

4.683

4.603

4.546

4.503

4.469

4.371

4.324

4.278

4.234

4.191

k = 3

5.251

5.109

5.012

4.942

4.889

4.848

4.728

4.671

4.615

4.561

4.509

k = i

5.569

5.408

5.230

5.218

5.158

5.110

4.974

4.909

4.846

4.784

4.725

k = 5

5.814

5.637

5.517

5.429

5.363

5.311

5.161

5.089

5.020

4.953

4.887

fc = 6

6.013

5.823

5.694

5.600

5.529

5.473

5.312

5.234

5.160

5.087

5.017

k = 7

6.180

5.980

5.842

5.743

5.668

5.608

5.437

5.355

5.276

5.199

5.125

k = 8

6.324

6.114

5.971

5.866

5.787

5.725

5.545

5.459

5.376

5.295

5.217

k = 9

6.450

6.232

6.083

5.974

5.892

5.827

5.640

5.550

5.463

5.378

5.297

k = 10

6.563

6.338

6.183

6.070

5.985

5.918

5.723

5.630

5.540

5.452

5.368
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Table 5.1: Values of the parameter dy/n satisfying ^f(d) = 7

for a = 0.05 and 7 = 0.95

z/=12

v=14

z/=16

v=l%

v=2Q

^=30

^=40

i/=60

z/=120

^= 00

fc = 1 1

6.664

6.432

6.273

6.157

6.069

5.999

5.799

5.702

5.609

5.518

5.431

k = 12

6.757

6.518

6.355

6.236

6.145

6.074

5.867

5.768

5.672

5.578

5.488

k = 13

6.841

6.597

6.430

6.308

6.215

6.142

5.930

5.828

5.729

5.633

5.540

k = 14

6.919

6.670

6.499

6.374

6.279

6.204

5.987

5.883

5.782

5.683

5.589

k= 15

6.992

6.738

6.563

6.436

6.339

6.262

6.041

5.934

5.831

5.730

5.633

k- 16

7.059

6.801

6.623

6.493

6.394

6.317

6.090

5.982

5.876

5.773

5.674

k = 17

7.122

6.860

6.679

6.547

6.447

6.367

6.137

6.026

5.918

5.814

5.713

k= 18

7.182

6.916

6.732

6.598

6.496

6.415

6.181

6.068

5.958

5.852

5.749

k = 19

7.238

6.968

6.782

6.646

6.542

6.460

6.222

6.107

5.996

5.888

5.783

fc = 20

7.291

7.018

6.829

6.691

6.586

6.503

6.261

6.145

6.031

5.922

5.815
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Table 5.1: Values of the parameter dy/n satisfying ~f(d) = 7

for a = 0.05 and 7 = 0.99

i/=10

i/=12

i/=14

i/=16

i/=18

z/=20

^=30

y=40

z/=60

i/=120

z^=oo

k = 2

5.541

5.340

5.302

5.233

5.181

5.140

5.023

4.967

4.914

4.862

4.811

k = 3

5.986

5.813

5.695

5.611

5.547

5.497

5.355

5.288

5.223

5.160

5.100

fc = 4

6.303

6.105

5.972

5.876

5.803

5.747

5.586

5.509

5.436

5.365

5.297

k = 5

6.548

6.332

6.186

6.080

6.001

5.939

5.762

5.678

5.598

5.520

5.446

fc = 6

6.749

6.517

6.359

6.246

6.161

6.094

5.904

5.814

5.728

5.645

5.565

k = 7

6.918

6.673

6.506

6.386

6.296

6.225

6.024

5.928

5.837

5.749

5.664

& = 8

7.065

6.807

6.633

6.507

6.412

6.338

6.126

6.026

5.930

5.837

5.749

k = 9

7.194

6.926

6.744

6.613

6.514

6.437

6.216

6.112

6.011

5.915

5.823

k = 10

7.309

7.032

6.844

6.708

6.605

6.525

6.297

6.188

6.084

5.984

5.889
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Table 5.1: Values of the parameter dy/n satisfying "f(d) = 7

for a = 0.05 and 7 = 0.99

v=lQ

v=Yl

v=lA

v=l&

j/=18

j/=20

j/=30

j/=40

^=60

^=120

0 0

k = 11

7.413

7.128

6.934

6.793

6.687

6.605

6.368

6.256

6.149

6.046

5.947

Jfc = 1 2

7.508

7.215

7.015

6.871

6.762

6.677

6.434

6.319

6.208

6.102

6.000

k = 13

7.595

7.295

7.091

6.943

6.831

6.744

6.494

6.376

6.262

6.153

6.049

k = 14

7.675

7.369

7.160

7.009

6.894

6.805

6.549

6.428

6.312

6.201

6.094

k = 15

7.750

7.438

7.224

7.070

6.953

6.862

6.601

6.477

6.358

6.244

6.135

k= 16

7.820

7.502

7.285

7.127

7.008

6.915

6.649

6.522

6.401

6.285

6.174

Jfe = 1 7

7.885

7.562

7.341

7.181

7.060

6.965

6.693

6.565

6.441

6.323

6.210

k= 18

7.947

7.619

7.394

7.232

7.109

7.012

6.736

6.605

6.478

6.358

6.243

k = 19

8.005

7.672

7.445

7.280

7.154

7.057

6.776

6.643

6.515

6.392

6.276

k = 20

8.061

7.723

7.492

7.325

7.198

7.099

6.813

6.678

6.548

6.424

6.305
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Table 5.2: Values of the parameter dy/n satisfying j(d) = 7

for a = 0.01 and 7 = 0.95

i/=10

i/=12

i/=14

z/=16

i/=18

z/=20

z/=30

//=40

i/=60

i/=120

z/=oo

k = 2

5.961

5.718

5.556

5.440

5.354

5.287

5.096

5.007

4.921

4.839

4.761

k = 3

6.453

6.170

5.980

5.845

5.745

5.680

5.445

5.341

5.241

5.146

5.055

k = 4

6.801

6.487

6.278

6.129

6.017

5.931

5.686

5.571

5.461

5.356

5.256

k = 5

7.069

6.732

6.507

6.347

6.227

6.133

5.879

5.746

5.628

5.515

5.408

k = 6

7.288

6.931

6.693

6.523

6.396

6.297

6.018

5.887

5.762

5.643

5.522

k = 7

7.472

7.099

6.849

6.672

6.539

6.435

6.142

6.005

5.874

5.749

5.630

k = 8

7.631

7.243

6.984

6.800

6.661

6.554

6.249

6.106

5.969

5.839

5.716

k = 9

7.770

7.370

7.103

6.912

6.769

6.658

6.342

6.194

6.053

5.919

5.791

k = 10

7.895

7.484

7.209

7.012

6.865

6.750

6.425

6.273

6.128

5.989

5.857
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Table 5.2: Values of the parameter d^/n satisfying 'y(d) = 7

for a = 0.01 and 7 = 0.95

^ = 1 0

;y=12

i/=14

i/=16

i/=18

j/=20

j/=30

j/=40

^=60

i/=120

j/=oo

k= 11

8.007

7.586

7.304

7.102

6.951

6.834

6.500

6.344

6.194

6.052

5.917

k = 12

8.109

7.679

7.391

7.184

7.030

6.979

6.568

6.408

6.255

6.109

5.970

k = 13

8.203

7.764

7.470

7.259

7.102

7.101

6.630

6.467

6.310

6.161

6.020

k = 14

8.289

7.843

7.543

7.329

7.168

7.043

6.688

6.521

6.361

6.210

6.065

k= 15

8.370

7.916

7.612

7.394

7.230

7.103

6.741

6.571

6.409

6.254

6.107

k= 16

8.445

7.984

7.675

7.454

7.288

7.158

6.791

6.618

6.453

6.295

6.146

k = 17

8.515

8.048

7.735

7.510

7.342

7.210

6.837

6.662

6.494

6.334

6.182

k = 18

8.581

8.108

7.791

7.563

7.392

7.259

6.881

6.703

6.532

6.370

6.216

k = 19

8.643

8.165

7.844

7.613

7.440

7.306

6.922

6.742

6.569

6.404

6.248

k = 20

8.703

8.219

7.894

7.661

7.486

7.349

6.961

6.778

6.603

6.437

6.279
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Table 5.2: Values of the parameter dy/n satisfying j(d) = 7

for a = 0.01 and 7 = 0.99

i/=10

i/=12

u=U

i/=16

i/=18

i/=20

^=30

i/=40

z/=60

z/=120

z/=oo

k = 2

6.804

6.509

6.314

6.176

6.073

5.994

5.769

5.665

5.566

5.471

5.381

fc = 3

7.298

6.955

6.727

6.566

6.446

6.368

6.093

5.973

5.858

5.749

5.646

k = A

7.651

7.271

7.020

6.842

6.709

6.607

6.320

6.187

6.061

5.941

5.828

k = 5

7.925

7.517

7.247

7.055

6.913

6.803

6.493

6.351

6.215

6.087

5.966

k = 6

8.150

7.718

7.432

7.229

7.078

6.961

6.634

6.483

6.340

6.204

6.077

k = 7

8.340

7.888

7.588

7.376

7.218

7.095

6.752

6.594

6.444

6.302

6.169

k = 8

8.504

8.035

7.724

7.503

7.338

7.211

6.854

6.700

6.533

6.386

6.248

k = 9

8.649

8.165

7.843

7.615

7.444

7.313

6.943

6.773

6.612

6.460

6.317

k = 10

8.779

8.281

7.950

7.714

7.539

7.404

7.023

6.848

6.682

6.525

6.378
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Table 5.2: Values of the parameter ds/n satisfying "f(d) = 7

for a = 0.01 and 7 = 0.99

v=Yl

v=lA

j/=16

z/=18

i/=20

^=30

i/=40

!v=60

^=120

j/=oo

k = 11

8.896

8.386

8.046

7.805

7.625

7.486

7.095

6.915

6.744

6.584

6.433

k = 12

9.003

8.481

8.134

7.887

7.703

7.764

7.161

6.976

6.801

6.637

6.483

fc= 13

9.101

8.569

8.215

7.962

7.775

7.629

7.221

7.032

6.853

6.686

6.528

k = 14

9.192

8.650

8.289

8.032

7.841

7.693

7.276

7.084

6.902

6.731

6.570

k = 15

9.277

8.726

8.359

8.097

7.902

7.752

7.327

7.131

6.946

6.772

6.609

k= 16

9.355

8.796

8.424

8.158

7.960

7.807

7.376

7.176

6.988

6.811

6.646

k = 17

9.429

8.863

8.485

8.215

8.014

7.859

7.421

7.218

7.027

6.847

6.678

k= 18

9.499

8.925

8.542

8.269

8.065

7.907

7.463

7.258

7.064

6.881

6.710

k = 19

9.565

8.984

8.596

8.420

8.113

7.953

7.503

7.295

7.098

6.913

6.741

k = 20

9.627

9.040

8.647

8.368

8.159

7.997

7.541

7.330

7.131

6.944

6.769
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5.1.3 A pure sequential procedure

In this subsection, a2 is assumed to be an unknown parameter. We want to

design a test of the family of hypotheses (5.1) which has, at least approxi-

mately, type I error rate a and power j(d) = 7, where 0 < a < 1, 0 < 7 < l

and d > 0 are prefixed constants. To motivate the definition of a pure sequen-

tial procedure, we first look at the known a2 case which is covered in the last

subsection.

had a2 been known, we would take a sample of size n0 from each of the k

populations and test the family of hypotheses (5.1) by:

reject H{Q in favour of Hn iff \Yino I > > 1 < 2 <
/n

and accompany the rejection of any Hio by the directional decision that /i,- > 0

if Yino > 0 and /xt < 0 if Yino < 0, where no satisfies

This last equation gives

n0 = a2d"2 (\m\t + $ - 1 ("f1^)) (5-4)

and so the test can be rewritten as

reject Ht0 in favour of H%x iff \Ytno | > — _^ 1 < i < A;,

and accompany the rejection of any H{0 by the directional decision that fii > 0

if Fmo > 0 and //,- < 0 if Kno < 0.

Based on these observations, we can now define a sequential procedure for

the situation of unknown a2 that is assumed in this subsection. Take a sample

of size m from each of the k populations, then take one observation from each

populations at a time until

T = inf{n > m : n > (1 + £i/n)c/~2C2crn
2},
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where 0 < C = |m|£ + <& x(jllk) and ^ is a given constant whose value will

be determined later. On stopping sampling,

reject Hi0 in favour of Hn iff \YtT\ > -^^ ( l + %] , 1 < i < fc,

and accompany the rejection of any Hi0 by the directional decision that //; > 0

if YIT > 0 and //,• < 0 if F ^ < 0, where ^ is a given constant whose value is

given below.

Note that the stopping time T uses formula (5.4) adaptively by replacing

a2 with a2
n to check whether enough observations have already been drawn,

and the test mimics the test for the known a2 situation. Next we show that

this procedure has the required properties, at least for large n0.

First, we show that this procedure controls strongly the type I error rate

at a, at least for large n0. For this, it is sufficient to show that

is equal to 1 — a + o(l) as n0 -> oo. By noting that

where

it therefore follows from Theorem 2.2 with 6 = 1 and C\ = 771 that

CL = l - a + —H\l)(p + ^ - j + 2r]l) + -^H"(l) + o(

= 1 — a + o(l) a s n o - > 00.

Next, we find the second order approximation to the value of ^f(d) of this

procedure. Let

Slu(d) = {1 : m > d) and VtL{d) = {j : N < -d}.
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From the definition, we have

7(<f) = min P{all false Hi0 with |/4,-| > d

are rejected with correct directional decisions}

= min P{YIT >
6 i

< -
d\m

C

n

% < " + ^ ) Vj 6 ilL(d) \P{T = n}

= mm
n

V !

< - 6 V
i + 51

n
e

a

6 a

= £**((<?- 771 m
n

P{T =

-\m T

It therefore follows from Theorem 2.3 with H(x) =

and C2 = ?/i that

, Co = C,

= 7 -
n0

x

6 $"

From (5.5) and (5.6), we set the values of ^ and 7/1 satisfying simultane-

ously
2 #"(1)
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so that the procedure has type I error rate a -\- o(l/n0) and power j(d) =

7 + o(l/n0) as n0 —>• oo.

Table 5.3 presents the values of £1 and rj\ for given values of 0,7 and k.

The expected sample size from each population of this sequential procedure

is given by
2

E(T) = n0 + p + ^ — — + o(l) as n0 -> 00,

which follows directly from Theorem 2.1. A simulation exercise has been

carried out to assess the performance of this procedure for small and moderate

values of no- Table 5.4 shows the values of $ - 1 (j1^) and Table 5.5 presents the

simulated and approximate values of E(T). Table 5.6 shows the simulation

results of (1— type I error rate) and 7(0?) = 7 for m = 10, k = 3,10 and

a = 0.1,0.05.
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Table 5.3: Values of £1 and

for a = 0.05 and given values of ^ and k

k

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

7 =

6
1.269

0.653

0.354

0.178

0.062

-0.019

-0.080

-0.127

-0.164

-0.194

-0.219

-0.240

-0.259

-0.274

-0.288

-0.300

-0.311

-0.320

-0.329

0.6

m
0.225

0.196

0.171

0.151

0.135

0.123

0.113

0.105

0.098

0.092

0.086

0.082

0.077

0.074

0.070

0.067

0.065

0.062

0.060

7 =

6
1.144

0.571

0.291

0.126

0.018

-0.058

-0.115

-0.158

-0.193

-0.221

-0.244

-0.264

-0.280

-0.295

-0.308

-0.319

-0.328

-0.337

-0.345

0.7

m
0.287

0.237

0.202

0.177

0.158

0.143

0.130

0.120

0.112

0.105

0.099

0.093

0.088

0.084

0.080

0.077

0.074

0.071

0.068

7 =

6
0.986

0.463

0.208

0.058

-0.040

-0.109

-0.160

-0.199

-0.230

-0.255

-0.276

-0.294

-0.309

-0.321

-0.333

-0.342

-0.351

-0.359

-0.366

0.8

m
0.366

0.291

0.244

0.211

0.187

0.168

0.153

0.141

0.131

0.122

0.115

0.108

0.102

0.097

0.093

0.089

0.085

0.082

0.078

7 =

6
0.733

0.289

0.073

-0.052

-0.133

-0.190

-0.232

-0.264

-0.289

-0.309

-0.326

-0.340

-0.352

-0.362

-0.371

-0.379

-0.386

-0.392

-0.397

0.9

Vi

0.492

0.378

0.311

0.266

0.233

0.209

0.189

0.173

0.160

0.149

0.140

0.131

0.124

0.118

0.112

0.107

0.102

0.098

0.094
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Table 5.3: Values o/£i and

for a = 0.1 and given values 0/7 and k

k

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

7

6
0.987

0.462

0.210

0.062

-0.035

-0.103

-0.154

-0.193

-0.223

-0.248

-0.269

-0.287

-0.302

-0.314

-0.326

-0.336

-0.344

-0.352

-0.359

0.6

Vi

0.203

0.176

0.153

0.135

0.121

0.110

0.101

0.094

0.088

0.082

0.078

0.073

0.070

0.066

0.063

0.061

0.058

0.056

0.054

7 =

6
0.872

0.385

0.150

0.012

-0.078

-0.141

-0.187

-0.223

-0.252

-0.275

-0.294

-0.310

-0.323

-0.335

-0.345

-0.354

-0.362

-0.369

-0.375

0.7

Vi

0.261

0.214

0.183

0.160

0.143

0.129

0.118

0.109

0.102

0.095

0.090

0.085

0.080

0.077

0.073

0.070

0.067

0.065

0.062

6
0.723

0.282

0.070

-0.054

-0.134

-0.191

-0.232

-0.264

-0.288

-0.309

-0.325

-0.339

-0.351

-0.361

-0.370

-0.378

-0.384

-0.391

-0.396

0.8

Vi

0.335

0.266

0.223

0.193

0.171

0.154

0.141

0.130

0.120

0.112

0.106

0.100

0.094

0.090

0.086

0.082

0.078

0.075

0.072

7 =

6
0.477

0.112

-0.062

-0.162

-0.226

-0.271

-0.303

-0.328

-0.347

-0.362

-0.375

-0.385

-0.394

-0.401

-0.408

-0.414

-0.419

-0.423

-0.427

0.9

m
0.458

0.351

0.289

0.247

0.217

0.194

0.176

0.161

0.149

0.139

0.130

0.123

0.116

0.110

0.105

0.100

0.096

0.092

0.088
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Table 5.4: Values of &'1 (71/*)

for given values of 7 and k

k =2

k = 3

k = A

k = 5

k = 6

k = 7

Jb = 8

k = 9

k = 10

fc = 1 1

fc = 1 2

A; = 1 3

fc = 14

fc = 15

fc = 16

fc = 17

fc = 18

fc = 19

fc = 20

7 = 0.6

0.754

1.009

1.176

1.298

1.394

1.473

1.539

1.597

1.647

1.691

1.732

1.768

1.801

1.832

1.860

1.887

1.911

1.934

1.956

7 = 0.7

0.981

1.215

1.370

1.484

1.574

1.648

1.710

1.764

1.811

1.854

1.891

1.926

1.957

1.986

2.013

2.038

2.062

2.084

2.104

7 = 0.8

1.250

1.463

1.605

1.710

1.793

1.861

1.919

1.969

2.013

2.052

2.087

2.120

2.149

2.176

2.202

2.225

2.247

2.268

2.287

7 = 0.9

1.632

1.818

1.943

2.036

2.111

2.172

2.224

2.269

2.309

2.344

2.376

2.406

2.433

2.457

2.480

2.502

2.522

2.541

2.559
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Table 5.5: Comparisons between the simulated and approximate values

of E(T) for m = 10, k = 3, a = 0.1 and given values of no and 7

nQ

15

20

25

30

35

40

45

50

55

60

7 =

Simul.

15.6

20.4

25.3

30.3

35.4

40.4

45.4

50.4

55.6

60.6

0.6

Appro.

15.5

20.5

25.5

30.5

35.5

40.5

45.5

50.5

55.5

60.5

7 =

Simul.

15.5

20.3

25.2

30.2

35.3

40.3

45.3

50.3

55.5

60.5

0.7

Appro.

15.4

20.4

25.4

30.4

35.4

40.4

45.4

50.4

55.4

60.4

7 =

Simul.

15.4

20.2

25.1

30.1

35.2

40.2

45.2

50.2

55.4

60.4

0.8

Appro.

15.3

20.3

25.3

30.3

35.3

40.3

45.3

50.3

55.3

60.3

7 =

Simul.

15.3

20.0

25.0

30.0

35.0

40.0

45.0

50.1

55.2

60.2

0.9

Appro.

15.1

20.1

25.1

30.1

35.1

40.1

45.1

50.1

55.1

60.1
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Table 5.5: Comparisons between the simulated and approximate values

of E(T) for m = 10, k — 10, a = 0.1 and given values of no and 7

n0

15

20

25

30

35

40

45

50

55

60

7 =

Simul.

15.2

20.2

25.1

30.1

35.1

40.1

45.1

50.2

55.2

60.2

0.6

Appro.

15.2

20.2

25.2

30.2

35.2

40.2

45.2

50.2

55.2

60.2

7 =

Simul.

15.1

20.1

25.1

30.1

35.0

40.1

45.1

50.1

55.1

60.1

0.7

Appro.

15.1

20.1

25.1

30.1

35.1

40.1

45.1

50.1

55.1

60.1

7 =

Simul.

15.1

20.1

25.1

30.1

35.0

40.1

45.1

50.1

55.1

60.1

0.8

Appro.

15.1

20.1

25.1

30.1

35.1

40.1

45.1

50.1

55.1

60.1

7 =

Simul.

15.0

20.0

25.0

30.0

35.0

40.0

45.0

50.0

55.0

60.0

0.9

Appro.

15.0

20.0

25.0

30.0

35.0

40.0

45.0

50.0

55.0

60.0
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Table 5.5: Comparisons between the simulated and approximate values

of E(T) for m = 10; k = 3, a = 0.05 and given values of nQ and 7

n0

15

20

25

30

35

40

45

50

55

60

7 =

Simul.

15.8

20.6

25.5

30.5

35.6

40.5

45.6

50.6

55.8

60.8

0.6

Appro.

15.7

20.7

25.7

30.7

35.7

40.7

45.7

50.7

55.7

60.7

7 =

Simul.

15.5

20.5

25.4

30.4

35.5

40.5

45.5

50.5

55.7

60.7

0.7

Appro.

15.6

20.6

25.6

30.6

35.6

40.6

45.6

50.6

55.6

60.6

7 =

Simul.

15.5

20.4

25.3

30.3

35.4

40.4

45.4

50.4

55.6

60.6

0.8

Appro.

15.5

20.5

25.5

30.5

35.5

40.5

45.5

50.5

55.5

60.5

7 =

Simul.

15.3

20.2

25.1

30.2

35.2

40.2

45.2

50.2

55.4

60.4

0.9

Appro.

15.3

20.3

25.3

30.3

35.3

40.3

45.3

50.3

55.3

60.3
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Table 5.5: Comparisons between the simulated and approximate values

of E(T) for m — 10, k = 10; a = 0.05 and given values of no and 7

n0

15

20

25

30

35

40

45

50

55

60

7 =

Simul.

15.2

20.2

25.2

30.2

35.2

40.2

45.2

50.2

55.3

60.3

0.6

Appro.

15.2

20.2

25.2

30.2

35.2

40.2

45.2

50.2

55.2

60.2

7 =

Simul.

15.2

20.2

25.2

30.2

35.1

40.2

45.2

50.2

55.2

60.2

0.7

Appro.

15.2

20.2

25.2

30.2

35.2

40.2

45.2

50.2

55.2

60.2

7 =

Simul.

15.1

20.2

25.1

30.1

35.1

40.1

45.1

50.2

55.2

60.2

0.8

Appro.

15.2

20.2

25.2

30.2

35.2

40.2

45.2

50.2

55.2

60.2

7 =

Simul.

15.1

20.1

25.1

30.1

35.0

40.1

45.1

50.1

55.1

60.1

0.9

Appro.

15.1

20.1

25.1

30.1

35.1

40.1

45.1

50.1

55.1

60.1
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Table 5.6: Simulation values of ac = (1— type I error rate) and ~f{d)

for m = 10, k = 3, a = 0.1 and given values of no and 7

n0

15

20

25

30

35

40

45

50

55

60

7 =

7(d)

0.598

0.591

0.584

0.592

0.596

0.587

0.591

0.606

0.590

0.600

0.6

ac

0.904

0.897

0.894

0.899

0.898

0.898

0.897

0.903

0.891

0.907

7 =

l(d)

0.696

0.695

0.692

0.686

0.690

0.687

0.699

0.698

0.701

0.689

0.7

ac

0.906

0.897

0.893

0.896

0.900

0.900

0.902

0.896

0.901

0.900

7 =

7(d)

0.783

0.784

0.787

0.787

0.789

0.786

0.793

0.795

0.798

0.802

0.8

ac

0.907

0.894

0.895

0.894

0.897

0.902

0.903

0.900

0.901

0.903

7 =

7(d)

0.879

0.884

0.892

0.888

0.898

0.894

0.902

0.888

0.897

0.899

0.9

ac

0.904

0.895

0.901

0.888

0.896

0.902

0.904

0.899

0.900

0.900
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Table 5.6: Simulation values of ac = (1— type I error rate) and "f(d)

for m = 10, k = 10, a = 0.1 and given values of n0 and 7

n0

15

20

25

30

35

40

45

50

55

60

7 =

lid)

0.592

0.593

0.574

0.595

0.598

0.599

0.603

0.601

0.594

0.598

0.6

ac

0.897

0.899

0.899

0.903

0.905

0.902

0.898

0.899

0.901

0.898

lid)

0.688

0.693

0.689

0.686

0.702

0.700

0.697

0.705

0.703

0.707

0.7

ac

0.904

0.896

0.899

0.896

0.904

0.902

0.901

0.907

0.900

0.899

lid)

0.783

0.789

0.797

0.793

0.793

0.794

0.805

0.796

0.796

0.801

0.8

ac

0.904

0.901

0.902

0.900

0.904

0.895

0.901

0.904

0.895

0.897

7 =

lid)

0.888

0.882

0.891

0.894

0.897

0.900

0.899

0.896

0.897

0.905

0.9

ac

0.921

0.917

0.905

0.904

0.908

0.913

0.903

0.903

0.907

0.904
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Table 5.6: Simulation values of ac = (1— type I error rate) and j(d)

for m = 10, k = 3, a = 0.05 and given values of no and 7

n0

15

20

25

30

35

40

45

50

55

60

7 =

l(d)

0.588

0.591

0.592

0.594

0.593

0.595

0.585

0.593

0.599

0.604

0.6

ac

0.952

0.947

0.949

0.946

0.952

0.953

0.946

0.948

0.953

0.949

7 =

j(d)

0.696

0.698

0.684

0.694

0.693

0.692

0.692

0.703

0.693

0.695

0.7

ac

0.951

0.947

0.944

0.948

0.953

0.949

0.951

0.954

0.952

0.952

7 =

l(d)

0.787

0.789

0.788

0.793

0.794

0.785

0.793

0.809

0.796

0.806

0.8

ac

0.953

0.945

0.947

0.949

0.947

0.949

0.945

0.953

0.946

0.952

l(d)

0.880

0.882

0.886

0.891

0.894

0.889

0.896

0.892

0.892

0.900

0.9

ac

0.952

0.947

0.950

0.947

0.947

0.953

0.950

0.949

0.950

0.947
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Table 5.6: Simulation values of ac = (1— type I error rate) and j(d)

for m = 10, k — 10, a = 0.05 and given values of n0 and -y

n0

15

20

25

30

35

40

45

50

55

60

7 = 0.6

lid)

0.597

0.595

0.589

0.595

0.600

0.590

0.587

0.598

0.602

0.591

ac

0.953

0.951

0.952

0.947

0.945

0.953

0.945

0.948

0.950

0.947

7 = 0.7

lid)

0.685

0.690

0.689

0.699

0.701

0.694

0.711

0.695

0.699

0.697

ac

0.947

0.951

0.952

0.952

0.947

0.954

0.949

0.949

0.953

0.944

7 = 0.8

lid)

0.787

0.787

0.785

0.789

0.796

0.794

0.801

0.789

0.798

0.803

ac

0.950

0.947

0.951

0.951

0.952

0.950

0.947

0.950

0.951

0.950

7 = 0.9

lid)

0.886

0.888

0.894

0.890

0.895

0.891

0.900

0.891

0.892

0.902

ac

0.950

0.948

0.954

0.948

0.951

0.948

0.951

0.951

0.946

0.947
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5.2 A power function for comparing several

treatments with a control

5.2.1 Introduction

Suppose we have k independently and normally distributed populations iV(//;, a2),

1 < i < k, with unknown means /it- and a common positive variance a2. As-

sume that the first population, N(fii,a2), is the control, and that the other

k — 1 {k > 2) populations are treatments. We are interested in making infer-

ences about fii — fix and, in particular, testing the family of two-sided hypothe-

ses

Hio : [i% — \i\ = 0 vs Hn : fii — fii ^ 0. 2 < i < A;. (5-7)

Assume that Y;n denotes the sample mean of a sample of fixed size n from

the ith population, f < i < k, and that S2 is an estimate of a2 which is

independent of the Yin and distributed as a xl/v random variable. If a2 is

known then v = oo, otherwise 0 < v < oo. Then it is well known that the

family of hypotheses (5.7) can be tested in the following way

reject # i 0 in favour of Htx iff ^ ^ " " ^ > {t^ 2 < i < k, (5.8)
Sy2

and accompany the rejection of any Hi0 by the directional decision that fii —

fj,i > 0 if Yin — Yin > 0 a n d m — Hi < 0 if Yin ~ Yln < 0, where \t\%_x^ is the

upper a point of the distribution of the random variable

\Zi-Zx\
= max

This multiple test procedure controls strongly the type I error rate at a, since

it is actually derived from the following set of simultaneous confidence intervals

of level 1 — a

n
Yin - Yln - \t\%_x v —^r, Ym - Yln + \t\l4 „ ̂ r- ,
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To assess the sensitivity of this test procedure, we calculate the probability

that this test will detect, with a correct directional decision, each treatment

whose mean fit is significantly different from fi\ in terms of |/i; — //i| > da,

where d > 0 is a given constant. For this we define a power function 7*(//, d)

to be

P{all false i7j0 with \fi{ —fi\\ > da are rejected with correct directional decisions}

(5.9)

and, in particular, j*(fi, d) — I if all the treatments satisfy \fii — fii\ < da. The

sensitivity of this multiple comparisons procedure can then be measured by

7*(GQ = min^g/y; ~f*(fi,d). We shall investigate that how large the sample size

n should be if we require test (5.8) has the sensitivity 7*(GQ = 7 for preassigned

values of d > 0 and 0 < 7 < 1. We consider this in Subsection 5.2.2.

In the definition of the power function 7*(//,c?) in (5.9), the departure of

the fa from fi\ is measured in unit of a. It certainly makes sense to define a

power function, 7*(//,cf), to be

P{all false Hi0 with |//t-—//i| > d are rejected with correct directional decisions}

and, in particular, 7*(/i,<i) = I if all the treatments satisfy \/.ii — fii\ < d.

The sensitivity of a test of (5.7) can be measured by the quantity j*(d) =

min̂ jgRfc j*(fi,d). Now assume cr2 is unknown and we wish to design a test oi

(5.7) such that this test has type I error rate a and sensitivity 7*(cZ) = 7, for

given values of a, d and 7. For this it is necessary to use a sequential sampling

scheme. In Subsection 5.2.3 we discuss a pure sequential procedure.
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5.2.2 A fixed sample size procedure

In this subsection, we determine the sample size n so that test (5.8) has J*(d) =

7 for given values of A;, v, d > 0 and 0 < 7 < 1. For this, we have the following

theorem, whose proof is similar to that of Theorem 4.3.

T h e o r e m 5.2 Let k > 3, p= ((k + l ) / 2 ) and (i*(d) = (0, da,---, da, -da,

• • • , —da) G Rk which has the first component equal to zero, the last k — p

components equal to —da and the rest p — 1 components equal to da. Then

= / / W~\d^i - s\t\l_hu V2 - x) x
JO J ^XD

°k_^ V2 + X)<f>{x)fv(s) dxds, (5.10)~ S\t\°

where fu(x) denotes a pdf of the

Notice that, if a2 is known then

l*(d) =

x)(f>{x) dx.

For given values of k,v,a and 7, Tables 5.7 and 5.8 give the value of

such that 7*(d) = 7.

199



Table 5.7: Values of the parameter d\Jn satisfying -y*(d) ~ 7

for a = 0.05 and 7 = 0.90

i/=10

i/=12

v=U

V=\<0

z/=18

z/=20

z/=30

z/=40

y=60

z/=120

k = 3

6.216

6.072

5.973

5.902

5.848

5.805

5.682

5.622

5.565

5.509

5.454

k = 4

6.761

6.592

6.476

6.392

6.329

6.279

6.134

6.065

5.997

5.932

5.868

k = 5

7.158

6.970

6.841

6.748

6.677

6.621

6.460

6.382

6.307

6.234

6.163

k = 6

7.442

7.241

7.102

7.002

6.925

6.866

6.692

6.609

6.528

6.450

6.373

k = 7

7.680

7.466

7.320

7.213

7.132

7.069

6.885

6.796

6.711

6.627

6.546

k = 8

7.870

7.646

7.493

7.382

7.298

7.231

7.039

6.946

6.856

6.770

6.685

k = 9

8.037

7.805

7.646

7.531

7.443

7.374

7.174

7.078

6.984

6.894

6.806

k = 10

8.179

7.940

7.776

7.657

7.566

7.495

7.288

7.189

7.092

6.999

6.908

k = 11

8.307

8.062

7.893

7.771

7.677

7.604

7.391

7.289

7.190

7.094

7.000
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Table 5.7: Values of the parameter d^/n satisfying 7*(cf) = 7

for a = 0.05 and 7 = 0.90

i/=10

z/=12

z/=14

z/=16

i/=18

iy=20

^=30

1^=40

j/=60

i/=120

k= 12

8.419

8.168

7.996

7.870

7.775

7.700

7.482

7.377

7.275

7.177

7.081

k = 13

8.523

8.267

8.091

7.962

7.865

7.788

7.565

7.458

7.354

7.253

7.155

k= 14

8.616

8.355

8.175

8.044

7.945

7.867

7.640

7.531

7.424

7.321

7.222

k = 15

8.703

8.437

8.254

8.121

8.020

7.940

7.709

7.598

7.490

7.385

7.284

k- 16

8.781

8.512

8.327

8.191

8.088

8.007

7.773

7.660

7.550

7.443

7.340

k= 17

8.856

8.583

8.394

8.257

8.153

8.071

7.832

7.717

7.606

7.498

7.393

k = 18

8.924

8.647

8.457

8.318

8.212

8.129

7.887

7.771

7.658

7.548

7.442

fe= 19

8.989

8.709

8.516

8.376

8.268

8.184

7.939

7.821

7.707

7.595

7.488

k = 20

9.050

8.766

8.571

8.429

8.321

8.235

7.7987

7.868

7.752

7.640

7.531
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Table 5.7: Values of the parameter d^/n satisfying 7*(cf) = 7

for a = 0.05 and 7 = 0.95

u=10

i/=12

i/=14

i/=16

i/=18

z/=20

^=30

/y=40

z/=60

^=120

k = 3

6.745

6.583

6.472

6.393

6.332

6.285

6.149

6.084

6.021

5.960

5.900

k = A

7.290

7.100

6.971

6.877

6.806

6.750

6.591

6.515

6.441

6.369

6.300

k = 5

7.686

7.473

7.329

7.224

7.145

7.083

6.905

^>.82O

6.738

6.659

6.582

k = 6

7.973

7.744

7.589

7.477

7.392

7.325

7.133

7.042

6.953

6.868

6.785

fc = 7

8.211

7.969

7.805

7.685

7.595

7.524

7.321

7.224

7.130

7.040

6.952

k = 8

8.404

8.151

7.979

7.854

7.759

7.686

7.473

7.371

7.273

7.178

7.087

k = 9

8.573

8.310

8.131

8.001

7.903

7.826

7.605

7.499

7.398

7.299

7.204

k = 10

8.716

8.446

8.261

8.127

8.026

7.946

7.718

7.609

7.504

7.402

7.304

k = 11

8.847

8.568

8.378

8.241

8.136

8.055

7.820

7.708

7.599

7.494

7.393
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Table 5.7: Values of the parameter d^Jn satisfying 7*(cf) = 7

for a = 0.05 and 7 = 0.95

z/=12

i/=14

^=16

^=18

z/=20

^=30

i/=40

^=60

i/=120

z/=oo

k = 12

8.961

8.676

8.482

8.340

8.234

8.150

7.909

7.794

7.683

7.575

7.472

k = 13

9.066

8.775

8.577

8.432

8.323

8.238

7.991

7.873

7.760

7.650

7.544

fc = 14

9.161

8.864

8.662

8.515

8.404

8.316

8.065

7.945

7.829

7.717

7.609

fc = 15

9.249

8.948

8.741

8.592

8.478

8.389

8.134

8.011

7.893

7.779

7.670

k=16

9.330

9.023

8.814

8.662

8.547

8.456

8.196

8.072

7.952

7.836

7.724

k = 17

9.405

9.095

8.882

8.728

8.611

8.520

8.255

8.129

8.007

7.889

7.776

fc = 18

9.475

9.161

8.945

8.789

8.670

8.578

8.310

8.182

8.058

7.939

7.823

fc= 19

9.542

9.223

9.005

8.847

8.727

8.633

8.361

8.232

8.106

7.985

7.869

fc = 20

9.604

9.282

9.061

8.901

8.779

8.684

8.409

8.278

8.151

8.029

7.910

203



Table 5.8: Values of the parameter ds/n satisfying 7*(cf) = 7

for a = 0.01 and 7 = 0.90

z/=10

z/=12

z/=14

^=16

z/=18

i/=20

z/=30

z/=40

^=60

i/=120

k = 3

7.808

7.503

7.299

7.152

7.042

6.957

6.712

6.597

6.486

6.380

6.277

k = 4

8.397

8.052

7.821

7.656

7.531

7.434

7.159

7.029

6.904

6.784

6.669

k = 5

8.830

8.455

8.204

8.023

7.888

7.783

7.483

7.341

7.205

7.074

6.949

k = 6

9.140

8.744

8.477

8.287

8.143

8.032

7.714

7.564

7.420

7.282

7.149

k = 7

9.400

8.985

8.706

8.506

8.356

8.240

7.906

7.749

7.598

7.453

7.315

k = 8

9.608

9.178

8.889

8.682

8.527

8.406

8.060

7.898

7.741

7.591

7.447

k = 9

9.792

9.349

9.051

8.838

8.677

8.552

8.196

8.028

7.866

7.712

7.563

k = 10

9.947

9.493

9.188

8.969

8.804

8.676

8.311

8.138

7.972

7.814

7.662

k = 11

10.089

9.624

9.312

9.088

8.920

8.789

8.415

8.238

8.068

7.905

7.750
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Table 5.8: Values of the parameter dsjn satisfying J*(d) = 7

for a = 0.01 and 7 = 0.90

i/=12

i/=14

iv=16

f=18

z/=20

i/=30

i/=40

z/=60

z/=120

^ = OO

k= 12

10.212

9.739

9.421

9.192

9.021

8.887

8.506

8.326

8.152

7.987

7.828

jfc = 13

10.327

9.845

9.521

9.289

9.114

8.978

8.590

8.406

8.230

8.061

7.899

k= 14

10.429

9.940

9.611

9.375

9.198

9.060

8.665

8.478

8.299

8.128

7.963

k = 15

10.525

10.029

9.695

9.456

9.276

9.136

8.735

8.546

8.364

8.189

8.023

k= 16

10.612

10.110

9.772

9.529

9.347

9.205

8.799

8.607

8.423

8.246

8.077

k= 17

10.694

10.186

9.844

9.599

9.414

9.270

8.859

8.665

8.478

8.299

8.128

fc = 18

10.770

10.256

9.911

9.662

9.476

9.330

8.915

8.718

8.529

8.348

8.175

k= 19

10.842

10.323

9.974

9.723

9.534

9.388

8.967

8.769

8.578

8.395

8.220

k = 20

10.909

10.385

10.032

9.974

9.589

9.441

9.016

8.816

8.623

8.438

8.261
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Table 5.8: Values of the parameter dy/n satisfying 7*(d) = 7

for a = 0.01 and 7 = 0.95

i/=10

i/=12

i/=14

i/=16

i/=18

i/=20

z/=30

z/=40

z/=60

i/=120

z/=oo

k = 3

8.410

8.069

7.841

7.679

7.557

7.463

7.195

7.069

6.949

6.834

6.723

fc = 4

9.007

8.620

8.362

8.178

8.040

7.934

7.631

7.489

7.354

7.224

7.101

k = h

9.442

9.022

8.741

8.541

8.391

8.274

7.945

7.791

7.643

7.502

7.368

k = 6

9.759

9.313

9.016

8.804

8.645

8.521

8.172

8.009

7.853

7.704

7.562

k = l

10.022

9.556

9.245

9.022

8.856

8.727

8.361

8.189

8.026

7.869

7.721

k = 8

10.235

9.752

9.429

9.199

9.026

8.892

8.513

8.335

8.165

8.003

7.849

k = 9

10.423

9.925

9.592

9.354

9.176

9.038

8.646

8.463

8.287

8.121

7.961

k = 10

10.583

10.072

9.730

9.486

9.303

9.161

8.759

8.571

8.391

8.221

8.057

k = 11

10.727

10.205

9.855

9.606

9.419

9.274

8.862

8.669

8.485

8.310

8.143
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Table 5.8: Values of the parameter ds/n satisfying 7*(cf) = 7

fora = 0.01 and 7 = 0.95

z/=10

i/=12

i/=14

i/=16

i/=18

z/=20

i/=30

^=40

^=60

^=120

^=00

fc= 12

10.854

10.322

9.965

9.711

9.520

9.372

8.952

8.755

8.568

8.389

8.219

k = 13

10.972

10.430

10.067

9.808

9.613

9.463

9.035

8.835

8.644

8.461

8.288

k=U

11.077

10.526

10.158

9.895

9.697

9.544

9.109

8.906

8.712

8.527

8.350

fc = 15

11.175

10.617

10.243

9.976

9.776

9.620

9.179

8.972

8.775

8.587

8.408

k= 16

11.265

10.699

10.321

10.050

9.847

9.690

9.243

9.033

8.833

8.643

8.461

k= 17

11.350

10.777

10.394

10.120

9.915

9.755

9.302

9.090

8.888

8.695

8.511

k = 18

11.428

10.849

10.462

10.184

9.977

9.816

9.358

9.142

8.938

8.743

8.557

k= 19

11.502

10.917

10.526

10.246

10.036

9.873

9.410

9.193

8.986

8.789

8.601

k = 20

11.571

10.981

10.585

10.303

10.091

9.926

9.459

9.239

9.030

8.831

8.641
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Table 5.8: Values of the parameter dy/n satisfying 7*(cf) = 7

for a = 0.01 and 7 = 0.99

i/=10

z/=12

u=U

i/=16

i/=18

z/=20

z/=30

z;=40

^=60

z/=120

^=00

A; = 3

9.574

9.164

8.892

8.700

8.556

8.446

8.134

7.989

7.851

7.720

7.594

fc = 4

10.184

9.719

9.411

9.193

9.031

8.905

8.553

8.389

8.234

8.086

7.946

k = 5

10.627

10.120

9.784

9.547

9.370

9.233

8.850

8.672

8.503

8.343

8.191

k = 6

10.955

10.417

10.061

9.809

9.622

9.477

9.070

8.882

8.704

8.534

8.373

k = 7

11.226

10.663

10.290

10.026

9.829

9.678

9.252

9.054

8.867

8.689

8.522

k = 8

11.448

10.865

10.478

10.203

9.999

9.842

9.399

9.195

9.000

8.817

8.643

k = 9

11.643

11.041

10.641

10.359

10.148

9.985

9.529

9.318

9.117

8.927

8.748

k = 10

11.810

11.192

10.782

10.492

10.276

10.109

9.640

9.423

9.218

9.023

8.838

k = 11

11.961

11.329

10.910

10.612

10.391

10.220

9.740

9.517

9.307

9.108

8.919
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Table 5.8: Values of the parameter d^/n satisfying j*(d) = 7

for a = 0.01 and 7 = 0.99

IA=10

v=Yl

i/=16

v=2Q

^=30

z/=40

i^=60

1^=120

z/=oo

fc= 12

12.094

11.450

11.022

10.719

10.493

10.318

9.828

9.601

9.387

9.183

8.991

k = 13

12.217

11.561

11.125

10.816

10.586

10.409

9.910

9.678

9.459

9.252

9.057

k= 14

12.328

11.662

11.219

10.905

10.671

10.490

9.983

9.747

9.525

9.315

9.116

k = 15

12.431

11.755

11.306

10.987

10.750

10.566

10.051

9.812

9.586

9.373

9.171

k= 16

12.526

11.841

11.386

11.063

10.822

10.636

10.114

9.872

9.642

9.426

9.221

k= 17

12.615

11.922

11.461

11.133

10.890

10.701

10.172

9.927

9.695

9.476

9.269

k = 18

12.697

11.996

11.530

11.199

10.953

10.762

10.227

9.979

9.744

9.522

9.313

k= 19

12.775

12.067

11.596

11.262

11.012

10.820

10.278

10.027

9.790

9.566

9.354

k = 20

12.848

12.133

11.658

11.320

11.068

10.873

10.326

10.073

9.833

9.607

9.393
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5.2.3 A pure sequential procedure

Let a2 be an unknown parameter. We want to design a test of the family of

hypotheses (5.7) which has, at least approximately, the type I error rate a

and power 7*(cQ = 7, where 0 < a < 1, 0 < 7 < l and d > 0 are prefixed

constants. To motivate the definition of a pure sequential procedure, we first

look at the known a2 case which is covered in the last subsection.

had a2 been known, we would take a sample of size n0 from each of the k

populations and test the family of hypotheses (5.7) by:

reject Hi0 in favour of Hn iff \Yino — Yino \ > ^~~—, 2 < i < k,
Jno

and accompany the rejection of any if,o by the directional decision that Hi ~

Hi > 0 if Yim — Yino > 0 and Hi — //i < 0 if Ymo — Yino < 0, where n0 satisfies

X I (T)\ If I (IT — V̂

(5.11)

where p = ((k + l)/2). Denote

t7 = ^ n ° - 1 ^ ^ y/2, (5.12)

which can be solved from equation (5.11). Then sample size no is given by

n0 = a2d~2 (t7 + \t\a
k_x V2)2 (5.13)

and so the test can be rewritten as

reject Hi0 in favour of H{ 1 iff \Ymo -Ylno\> / ^ ^ ^ 2<i<k,

and accompany the rejection of any H{0 by the directional decision that pa ~

Hi > 0 if Ymo - Yino > 0 and //,• - ^ < 0 if Yino - Ylno < 0.

Based on these observations, we can now define a sequential procedure for

the situation of unknown a2 that is assumed in this subsection. Take a sample
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of size m from each of the k populations, then take one observation from each

population at a time until

T = M{n > m : n > (1 + £i/n)(T2CVn
i !},

where 0 < C = t7 + \t\%_x \[2 and £1 is a given constant whose value will be

determined later. On stopping sampling

reject Hi0 in favour of Hn iff \YlT-Y1T\ > ^ ^ ^ (l + ^ , 2<i<k,

and accompany the rejection of any iJ j0 by the directional decision that //,• —

//i > 0 if 5̂ x — YIT > 0 a n d /J>i — f-i < 0 if l^x — F ^ < 0, where ^ is a given

constant whose value is given below.

Note that the stopping time T uses formula (5.13) adaptively by replacing

a2 with a^ to check whether enough observations have already been drawn,

and the test mimics the test for the known a2 situation. Next we show that

this procedure has the required properties, at least for large n0.

First, we show that this procedure controls strongly the type I error rate

at a, at least for large no- For this, it is sufficient to show that

is equal to 1 — a + o(l) as n0 —> oo. By noting that

' T
= E\H

L \n0

where

H(x) = P (max \Z{ - .

it therefore follows from Theorem 2.2 with 6 = 1 and C\ = ?]i that

CL = 1 - Q + ^ i H ( , + 6 - | + 2 , , 1 ) + ^ i l l + 0 ( l ) (5.14)
no V k I kn \n/

= 1 — a -f o ( l ) as nQ —> CXD.
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Next, we find the second order approximation to the value of 7*(G?) of this

procedure. Let

ftu(d) = {l • Hi - Hi>d) a n d fl*L(d) — {j : fj,j - /j,l < - d ) .

From the definition and Theorem 4.3, we have

7*(cO = min Plall false H{0 with \fii — Hi > d
£Rk

are rejected with correct directional decisions}

= mm pfa - ?„ > * ! ^ H (l + I ) Mi

where

G ( x ) = P { Z t - Z i > - x , 2 < i < p , Z , - Z 1 < x } p + 1 < i < k }

and p = ((jfc + l)/2). It therefore follows from Theorem 2.3 with H(x)

G(x), Co = C, C\ = 1*1^ \/2 and C2 = T/X that

Note that

/

C

+ (k -

and
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+ (p - l)(p - 2)f-(t1 - y)^-3 (i, - y)$fc^ (t7 + y)

+ (p-l)(k~ p)<j>(^ - y)<F-2 (i, - y)^ + y)®^1 (t7 + y)

-(k - p)(Ut + y)^ + y)^'1 (t, - y)®^1 (L( + y)

+ (k -p)(p- \)4>{U, + y)^ - y)^-2 (t7 - y)^^-1 (t7 + y)

-p)(k-p- l)«^2(t7 + y)^-1 (t7 - y)<$>k^2 (ty + y)) dy.

From (5.14) and (5.15), we set the values of £1 and r/i satisfying simulta-

neously
2 H"(l)

so that the procedure has type I error rate a + o(l/n0) and power 7*(GQ =

7 + o(l/n0) as n0 —> oo.

Table 5.9 presents the values of £1 and rji for given values of 0,7 and k.

By Theorem 2.1, the expected sample size from each population is given

by

E{T) = no + p + £,\ — - + o(l) as n0 -> 00 .

A simulation exercise has been carried out to assess the performance of this

procedure for small and moderate values of n0. Table 5.10 shows the values

of ty for k = 2(1)20 and Table 5.11 presents the simulated and approximate

values of E(T). For m = 10, k = 3,10 and a = 0.1,0.05, Table 5.12 shows the

simulation results of (1— type I error rate ) and 7*(<i).
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Table 5.9: Values of ^ and

for a = 0.05 and given values of 7 and

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

7 =

6
0.949

0.606

0.394

0.252

0.150

0.073

0.012

-0.036

-0.076

-0.109

-0.137

-0.162

-0.183

-0.201

-0.218

-0.232

-0.246

-0.257

0.6

m
0.138

0.124

0.110

0.098

0.088

0.080

0.073

0.068

0.063

0.059

0.055

0.052

0.049

0.047

0.044

0.042

0.040

0.039

7 =

6
0.927

0.596

0.391

0.252

0.152

0.075

0.015

-0.033

-0.072

-0.106

-0.134

-0.158

-0.179

-0.198

-0.214

-0.229

-0.242

-0.254

0.7

Vi

0.150

0.129

0.111

0.098

0.087

0.079

0.072

0.066

0.061

0.057

0.053

0.050

0.047

0.045

0.043

0.041

0.039

0.037

7 =

6
0.920

0.598

0.398

0.260

0.160

0.083

0.023

-0.025

-0.065

-0.099

-0.127

-0.152

-0.173

-0.192

-0.208

-0.223

-0.237

-0.249

0.8

Vi

0.153

0.128

0.108

0.094

0.083

0.075

0.068

0.062

0.057

0.053

0.050

0.047

0.044

0.042

0.04(T

0.038

0.036

0.034

7 =

6
0.950

0.628

0.427

0.286

0.184

0.106

0.044

-0.005

-0.047

-0.081

-0.111

-0.136

-0.158

-0.178

-0.195

-0.210

-0.224

-0.237

0.9

Vi

0.138

0.113

0.094

0.081

0.071

0.063

0.057

0.052

0.048

0.045

0.042

0.039

0.037

0.035

0.033

0.031

0.030

0.028
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Table 5.9: Values of £\ and rj\

for a = 0.1 and given values of 7 and k

k

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

6
0.713

0.427

0.250

0.131

0.046

-0.019

-0.070

-0.110

-0.144

-0.171

-0.195

-0.215

-0.233

-0.249

-0.262

-0.275

-0.286

-0.296

0.6

»?i

0.109

0.097

0.086

0.076

0.069

0.062

0.057

0.052

0.049

0.045

0.043

0.040

0.038

0.036

0.034

0.033

0.031

0.030

7 =

0.704

0.427

0.255

0.137

0.052

-0.012

-0.063

-0.104

-0.137

-0.165

-0.189

-0.210

-0.227

-0.243

-0.257

-0.270

-0.281

-0.291

0.7

m
0.113

0.097

0.083

0.073

0.065

0.059

0.053

0.049

0.045

0.042

0.040

0.037

0.035

0.033

0.032

0.030

0.029

0.027

7 =

6
0.715

0.441

0.271

0.152

0.067

0.001

-0.050

-0.092

-0.126

-0.155

-0.179

-0.200

-0.219

-0.235

-0.249

-0.262

-0.273

-0.284

0.8

Vi

0.108

0.090

0.076

0.066

0.058

0.052

0.047

0.043

0.040

0.037

0.035

0.032

0.031

0.029

0.027

0.026

0.025

0.024

7 =

6
0.768

0.487

0.312

0.189

0.100

0.031

-0.023

-0.066

-0.102

-0.133

-0.158

-0.181

-0.200

-0.217

-0.232

-0.246

-0.258

-0.269

0.9

Vi

0.081

0.067

0.055

0.047

0.041

0.037

0.033

0.031

0.028

0.026

0.024

0.023

0.021

0.020

0.019

0.018

0.017

0.016
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Table 5.10: Values of t^

for given values of 7 and k

k

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

7 = 0.6

1.167

1.430

1.639

1.769

1.883

1.967

2.045

2.106

2.164

2.212

2.258

2.297

2.335

2.368

2.400

2.429

2.456

2.481

2.506

7 = 0.7

1.456

1.707

1.903

2.027

2.136

2.217

2.292

2.351

2.407

2.453

2.497

2.536

2.572

2.604

2.635

2.663

2.690

2.714

2.738

7 = 0.8

1.809

2.047

2.229

2.348

2.451

2.528

2.599

2.656

2.709

2.754

2.797

2.834

2.869

2.900

2.930

2.957

2.983

3.006

3.029

7 = 0.9

2.326

2.546

2.710

2.821

2.916

2.989

3.055

3.109

3.159

3.202

3.242

3.277

3.310

3.339

3.368

3.394

3.418

3.441

3.463
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Table 5.11: Comparisons between the simulated and approximate values of

E{T) for m — 10; k = 3, a = 0.05 and given values of no and 7

n0

15

20

25

30

35

40

45

50

55

60

7 =

Simul.

16.0

20.9

25.9

30.8

36.0

41.0

45.9

50.9

55.9

60.9

0.6

Appro.

16.0

21.0

26.0

31.0

36.0

41.0

46.0

51.0

56.0

61.0

7 =

Simul.

16.0

20.9

25.9

30.8

35.8

40.9

45.9

50.9

56.0

61.0

0.7

Appro.

16.0

21.0

26.0

31.0

36.0

41.0

46.0

51.0

56.0

61.0

7 =

Simul.

16.0

20.9

25.8

30.8

35.8

40.9

45.9

50.9

56.0

61.0

0.8

Appro.

16.0

21.0

26.0

31.0

36.0

41.0

46.0

51.0

56.0

61.0

7 =

Simul.

16.0

20.9

25.9

30.8

35.8

40.9

45.9

50.9

56.0

61.0

0.9

Appro.

16.0

21.0

26.0

31.0

36.0

41.0

46.0

51.0

56.0

61.0
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Table 5.11: Comparisons between the simulated and approximate values of

E(T) for m — 10, k = 10, a = 0.05 and given values of no and 7

n0

15

20

25

30

35

40

45

50

55

60

7 =

Simul.

15.4

20.4

25.3

30.3

35.3

40.3

45.3

50.3

55.4

60.4

0.6

Appro.

15.4

20.4

25.4

30.4

35.4

40.4

45.4

50.4

55.4

60.4

7 =

Simul.

15.4

20.4

25.3

30.3

35.3

40.3

45.3

50.4

55.4

60.4

0.7

Appro.

15.4

20.4

25.4

30.4

35.4

40.4

45.4

50.4

55.4

60.4

7 =

Simul.

15.4

20.4

25.3

30.4

35.3

40.3

45.4

50.4

55.4

60.4

0.8

Appro.

15.4

20.4

25.4

30.4

35.4

40.4

45.4

50.4

55.4

60.4

7 =

Simul.

15.4

20.4

25.3

30.4

35.3

40.4

45.4

50.4

55.4

60.4

0.9

Appro.

15.4

20.4

25.4

30.4

35.4

40.4

45.4

50.4

55.4

60.4
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Table 5.11: Comparisons between the simulated and approximate values of

E(T) for m = 10, k = 3, a = 0.1 and given values of n0 and 7

n0

15

20

25

30

35

40

45

50

55

60

7 =

Simul.

15.8

20.7

25.6

30.6

35.6

40.7

45.7

50.7

58.8

60.8

0.6

Appro.

15.7

20.7

25.7

30.7

35.7

40.7

45.7

50.7

55.7

60.7

7 =

Simul.

15.8

20.7

25.6

30.6

35.6

40.7

45.7

50.7

55.8

60.8

0.7

Appro.

15.7

20.7

25.7

30.7

35.7

40.7

45.7

50.7

55.7

60.7

7 =

Simul.

15.8

20.7

25.6

30.6

35.6

40.7

45.7

50.7

55.8

60.8

0.8

Appro.

15.7

20.7

25.7

30.7

35.7

40.7

45.7

50.7

55.7

60.7

7 =

Simul.

15.9

20.7

25.6

30.7

35.7

40.7

45.7

50.7

55.8

60.9

0.9

Appro.

15.8

20.8

25.8

30.8

35.8

40.8

45.8

50.8

55.8

60.8
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Table 5.11: Comparisons between the simulated and approximate values of

E(T) for m = 10, k = 10; a = 0.1 and given values of n0 and 7

n0

15

20

25

30

35

40

45

50

55

60

7 =

Simul.

15.3

20.3

25.3

30.3

35.2

40.3

45.3

50.3

55.3

60.3

0.6

Appro.

15.3

20.3

25.3

30.3

35.3

40.3

45.3

50.3

55.3

60.3

7 =

Simul.

15.3

20.3

25.3

30.3

35.2

40.3

45.3

50.3

55.3

60.3

0.7

Appro.

15.3

20.3

25.3

30.3

35.3

40.3

45.3

50.3

55.3

60.3

7 =

Simul.

15.3

20.3

25.3

30.3

35.3

40.3

45.3

50.3

55.3

60.3

0.8

Appro.

15.3

20.3

25.3

30.3

35.3

40.3

45.3

50.3

55.3

60.3

7 =

Simul.

15.3

20.4

25.3

30.3

35.3

40.3

45.3

50.3

55.4

60.4

0.9

Appro.

15.3

20.3

25.3

30.3

35.3

40.3

45.3

50.3

55.3

60.3
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Table 5.12: Simulation values of ac = (1— type I error rate) and j*(d)

for m = 10, k = 3; a = 0.05 and given values of no and 7

n0

15

20

25

30

35

40

45

50

55

60

7 =

Y(d)

0.597

0.597

0.599

0.591

0.599

0.583

0.583

0.598

0.599

0.688

0.6

ac

0.951

0.950

0.951

0.951

0.948

0.948

0.948

0.949

0.951

0.952

T{d)

0.697

0.697

0.700

0.691

0.693

0.698

0.694

0.697

0.695

0.702

0.7

ac

0.952

0.950

0.949

0.952

0.948

0.951

0.949

0.947

0.952

0.952

7 =

r(d)
0.797

0.804

0.796

0.796

0.798

0.799

0.797

0.795

0.797

0.808

0.8

ac

0.952

0.949

0.949

0.951

0.949

0.950

0.948

0.947

0.953

0.956^

7 =

r(d)
0.900

0.898

0.899

0.900

0.893

0.897

0.896

0.900

0.900

0.905

0.9

ac

0.952

0.951

0.951

0.951

0.948

0.948

0.948

0.949

0.951

0.951
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Table 5.12: Simulation values of ac = (1— type I error rate) and 7*(cf)

for m = 10, k = 10; a = 0.05 and given values of n0 and 7

n0

15

20

25

30

35

40

45

50

55

60

7 =

Y(d)

0.607

0.587

0.601

0.594

0.602

0.603

0.604

0.603

0.592

0.599

0.6

ac

0.955

0.948

0.951

0.947

0.956

0.948

0.952

0.953

0.951

0.951

7 =

nd)
0.708

0.690

0.701

0.698

0.698

0.703

0.698

0.703

0.697

0.696

0.7

ac

0.956

0.950

0.952

0.949

0.958

0.950

0.953

0.953

0.951

0.950

Y(d)

0.806

0.799

0.807

0.801

0.799

0.795

0.800

0.799

0.798

0.801

0.8

ac

0.953

0.950

0.951

0.953

0.955

0.951

0.951

0.951

0.953

0.951

7 =

nd)
0.900

0.896

0.905

0.904

0.905

0.891

0.898

0.900

0.898

0.893

0.9

ac

0.953

0.952

0.951

0.947

0.953

0.948

0.946

0.950

0.949

0.948
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Table 5.12: Simulation values of ac = (1— type I error rate) and 7*(cT)

for m = 10, k = 3, a = 0.1 and given values of no and 7

n0

15

20

25

30

35

40

45

50

55

60

7 =

T{d)

0.586

0.588

0.581

0.587

0.594

0.594

0.595

0.586

0.594

0.593

0.6

ac

0.902

0.899

0.893

0.897

0.902

0.902

0.904

0.896

0.901

0.909

7 =

Y(d)

0.696

0.692

0.694

0.696

0.699

0.697

0.701

0.686

0.697

0.690

0.7

ac

0.902

0.901

0.893

0.900

0.903

0.900

0.903

0.896

0.898

0.911

7 =

Y(d)

0.800

0.793

0.798

0.801

0.799

0.805

0.801

0.789

0.799

0.796

0.8

ac

0.902

0.899

0.893

0.897

0.903

0.902

0.907

0.896

0.902

0.907

7 =

T(d)

0.902

0.900

0.900

0.897

0.895

0.904

0.901

0.901

0.892

0.905

0.9

ac

0.904

0.900

0.897

0.899

0.902

0.900

0.900

0.899

0.897

0.912
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Table 5.12: Simulation values of ac = (1— type I error rate) and 7*(o?)

for m = 10, k = 10̂  a = 0.1 and given values of n0 and 7

n0

15

20

25

30

35

40

45

50

55

60

7 =

T(d)

0.602

0.585

0.604

0.599

0.601

0.595

0.606

0.601

0.601

0.608

0.6

ac

0.904

0.895

0.901

0.899

0.901

0.893

0.892

0.895

0.905

0.902

Y(d)

0.702

0.697

0.709

0.693

0.697

0.696

0.702

0.706

0.702

0.701

0.7

ac

0.905

0.900

0.903

0.898

0.904

0.900

0.900

0.899

0.901

0.900

7 =

nd)
0.795

0.802

0.795

0.800

0.803

0.802

0.798

0.805

0.806

0.798

0.8

ac

0.898

0.900

0.905

0.900

0.901

0.898

0.896

0.903

0.904

0.896

7 =

T(d)

0.902

0.900

0.899

0.900

0.900

0.903

0.892

0.906

0.905

0.897

0.9

ac

0.899

0.903

0.904

0.899

0.902

0.900

0.891

0.908

0.907

0.902

224



5.3 A power function for all pairwise com-

parisons of several treatments

5.3.1 Introduction

Suppose we have k independently and normally distributed populations N(fii, a2),

1 < i < k, with unknown means /i8- and a common positive variance a2. We

are interested in making inferences about \i{ — \Xj and, in particular, we want

to test the family of two-sided hypotheses

Hijo : m - fj,j -0 vs Hiji : fj,i - fij ^ 0, 1 < i ^ j < k. (5.16)

Assume that Yin denotes the sample mean of a sample of fixed size n from

the ith population, 1 < i < fc, and that S2 is an estimate of a2 which is

independent of the Yin and distributed as a x2
ul

v random variable. If a2 is

known then // = oo, otherwise 0 < v < oo. It is well known that the family of

hypotheses (5.16) can be tested in the following way

reject Hi jo in favour of Hij\ iff ^ — > q%u , 1 < i'• ^ j < k,

(5.17)

and accompany the rejection of any Hij0 by the directional decision that //,• —

[ij > 0 if Yin ~ Yjn > OJ where q^v is the upper a point of the distribution of

the random variable
Zi — Zj

Qkv = max

This multiple test procedure controls strongly the type I error rate at a, since

it is actually derived from the following set of simultaneous confidence intervals

of level \ — a

'n '

To assess the sensitivity of this test procedure, we calculate the probability

that this test will detect, with a correct directional decision, each pair (i,j)

225



of treatments whose means \i{ and fij are significantly different in terms of

\Hi — fij\ > da, where d > 0 is a given constant. For this we define a power

function 7**(^,cf) to be

P{all false Hyo with |/Ui—jUj| > <icr are rejected with correct directional decisions}

(5.18)

and, in particular, 7** (//,</) = 1 if all pair of the treatments satisfy |/jt- —

/ / j | < da. The sensitivity of this multiple comparisons procedure can then

be measured by j**(d) = m i n ^ ^ j**(/j,,d). In this section we investigate

that how large the sample size n should be if we require test (5.17) has the

sensitivity 7**(d) = 7 for preassigned values of d > 0 and 0 < 7 < 1. This is

treated in Subsection 5.3.2 for k = 3. When k = 4 we find the sample size n

necessary to guarantee 7**(<i) > 7. Although, the power function defined here

is suitable for general k > 4, to find an explicit formula for the minimum of

the power function when k > 4 seems impossible.

Note that, in the definition of the power function 7**(fJ,,d) in (5.18), the

departure of the \il from the /.ij, is measured in unit of a. We may define a

power function, 7**(/i, d), to be

P{all false i/j-jo with \fii—fij\ > d are rejected with correct directional decisions}

and, in particular, 7**(/J, c?) = 1 if all pair of the treatments satisfy |/is- — / / j | < J.

The sensitivity of a test of (5.16) can be measured by the quantity J**(d) =

min̂ gftft j**(/j,,d). Now assume cr2 is an unknown parameter and we wish to

design a test of (5.16) such that this test has type I error rate a and sensitivity

7**(J) = 7̂  for given values of a, d and 7. For this it is necessary to use a

sequential sampling scheme. A pure sequential procedure will be discussed in

Subsection 5.3.3.
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5.3.2 A fixed sample size procedure

This subsection is devoted to determine the sample size n so that test (5.17)

has 7** (of) > 7 for given values of is, d > 0, 0 < 7 < 1 and k = 3, 4.

First, when k = 3, we have the following theorem, whose proof is similar

to Theorem 4.5.

Theorem 5.3 Let k = 3 and /i*(d) = (0,-da,da) G R3, then

7**(d) = 7 " V (<*),<*)

- sqlu - x) X
0 J—oo

$(dy/n - sq^u + x)<j>(x)fv{s)dxds, (5.19)

where fv(x) denotes a pdf of the \]x1lv-

Notice that, if the variance a2 is known then
/•oo

J —CO

Table 5.13 presents the values of dyfn for given values of k — 3, v, a and 7.

Now, when k = 4, we have the following theorem which can be proved in

a way similar to Theorem 4.6.

Theorem 5.4 Let

M = <f>(

/•oo rx+ia^n r(x-y)/CZq^ j + a^/n/q^

A= / ' ' Mfv(s) ds dy dx,
J —00 J —00 Jo

poo rx
B= /

J —OO «/ —C

Then

Table 5.14 presents the values of d-̂ /n for which 7** (c/) = 7 for given values

of v. a, k = i and 7.
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Table 5.13: Values of the parameter dy/n satisfying 7**(cf) = 7

for a = 0.05, k = 3 and 7 = 0.95

V

10

12

14

16

18

20

d^/n

7.039

6.856

6.732

6.642

6.574

6.521

V

30

40

60

120

00

dy/n

6.367

6.293

6.223

6.153

6.086

Table 5.13: Values of the parameter d^Jn satisfying 7**(cf) = 7

for a = 0.01, k = 3 and 7 = 0.95

V

10

12

14

16

18

20

dyfn

8.755

8.378

8.127

7.947

7.812

7.708

V

30

40

60

120

00

d^Jn

7.413

7.274

7.139

7.014

6.892
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Table 5.13: Values of the parameter d^fn satisfying j**(d) = 7

for a = 0.01, k = 3 and 7 = 0.99

V

10

12

14

16

18

20

dsjn

9.950

9.497

9.196

8.983

8.825

8.703

V

30

40

60

120

00

d^fn

8.361

8.200

8.047

7.903

7.763

Table 5.14: Values of the parameter d-sfn satisfying j**(d) = 7

for a = 0.05, k = 4 and 7 = 0.95

V

10

12

14

16

18

20

dyfn

15.323

14.827

14.443

14.181

13.974

13.799

V

30

40

60

120

00

ds/n

13.319

13.073

12.825

12.659

12.437
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Table 5.14: Values of the parameter dyjn satisfying J**(d) = 7

for a = 0.01, k = 4 and 7 = 0.95

V

10

12

14

16

18

20

dyjn

20.294

20.216

19.450

19.216

18.549

18.423

V

30

40

60

120

00

d^fn

17.634

17.182

16.725

16.572

16.321

Table 5.14: Values of the parameter d^fn satisfying "f**(d) — 7

for a = 0.01, k = 4 and 7 = 0.99

V

10

12

14

16

18

20

d^fn

29.345

27.826

25.988

24.530

24.471

23.385

V

30

40

60

120

00

d^/n

22.108

21.723

20.795

19.664

19.431
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5.3.3 A pure sequential procedure

Let a2 be an unknown parameter and k = 3. In this section we design a test

of the family of hypotheses (5.16) which has, at least approximately, type I

error rate a and power 7**(cf) = d, where 0 < a < 1, 0 < 7 < l and d > 0 are

prefixed constants. To motivate the definition of a pure sequential procedure,

we first look at the known a2 case which is discussed in the last subsection.

had a2 been known, we would take a sample of size UQ from each of the k

populations and test the family of hypotheses (5.16) by:

(TQa

reject Hij0 in favour of Hi3l iff \Yino - Yjno \ > —==, 1 < i ^ j < 3,
/n0

and accompany the rejection of any Hijo by the directional decision that fii —

jij > 0 if Yino — Yjno > 0, where no satisfies

_ q» - X $ ^ Y ^ _ qa + x\ ^x) dx = 7_ ( 5 2 0 )

-°° v a / V G J
Denote

= V^£ _ ̂  (5.21)
(7

which can be solved from the equation (5.20). Then sample size no is given by

n0 = a2dT2 (r7 + q«)2 . (5.22)

and so the test can be written as
dqa

reject Hij0 in favour of HljX iff |yino - Yjno \ > — - 2 - ^ , 1 < i ^ j < 3,

and accompany the rejection of any Hi0o by the directional decision that [i{ —

fij > 0 if Ymo - Yjno > 0.

Based on these observations, we can now define a sequential procedure for

the situation of unknown a2 that is assumed in this subsection. Take a sample

of size m from each of the k = 3 populations, then take one observation from

each population at a time until

T = inf{n > m : n > (1 + 6/n)cr*CVn
2},

231



where 0 < C = r1-\-q^ and £1 is a given constant whose value will be determined

later. On stopping sampling,

reject Hijo in favour of Hiji iff \Yi? — YJT\ > -77- (1 + 7̂7

and accompany the rejection of any Hij0 by the directional decision that //,• —

fij > 0 if YiT — YJT > 0 , where rji is a given constant whose value is given

below. Next we show that this procedure has the required properties, at least

for large n0.

First, we show that this procedure controls strongly the type I error rate

at a, at least for large n0. For this, it is sufficient to show that

CL = P { \ Y I T - YjT - (fa - fij)\ < - j r ( l + Y) ' l < l ^ 3 <Z

is equal to 1 — a + o(l) as n0 —* 00. By noting that

w here

H(x) = P < max \Z{ - Z3\ < q%

it therefore follows from Theorem 2.2 with 9 = 1 and C\ = 771 that

L \ (5.23)
0 3 0 0

= 1 — a + o(l) as n0 —> 00.

Next, we find the second order approximation to the value of 7** (of) of this

procedure. Let

From the definition and Theorem 4.5 we have

j**(d) = min Piall false ifJ?0 withl/i; — jiA > d
neR3

are rejected with correct directional decisions}

M6R3
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where

G(x) = P{Z3 - Z2 > -x, Z2-Zx> -x}.

It therefore follows from Theorem 2.3 with H(x) = G(x), Co = C, C\ = q$ and

C*2 = rji that

o (—) as n0 (5.24)

Note that

y) - y)} dy

and

y-y)-{r-v-

From (5.23) and (5.24), we set the values of £1 and r)i satisfying simulta-

neously

2 H"{\)
Vl ~~ ~P + 3 ~ 3H'(1)

+ 6 " | ) G'(r7) = (12^93° + r7)G'(r7) - r ^ G " ^ ,

so that the procedure has the type I error rate a -\- o(l/n0) and power 7**(of) =

7 + o(l/no) as n0 —> 00.

Table 5.15 presents the values of £1 and ^ for given values of a, 7 and A;

and Table 5.16 shows the values of r7.

The expected sample size from each population of this sequential procedure

is given by

E(T) = nQ + p + £1 — - + o(l) as n0 —* 00,

which follows directly from Theorem 2.1. A simulation exercise has been car-

ried out to assess the performance of this procedure for small and moderate
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values of n0. Table 5.17 presents the simulated and approximate values of

E(T). For m = 10, k = 3 and a = 0.1,0.05, Table 5.18 shows the simulation

results of (1— type I error rate) and j**[d).
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Table 5.15: Values o/£i and

for k = 3 and given values of 7 and a

a

0.05

0.1

0

0

7

6
.128

.127

0.

0

0

6

Vi

.002

.002

0

0

7 =

£1

.129

.129

0.7

Vi

0.001

0.001

0

0

7 =

6
.131

.130

0.

0

0

8

Vi

.001

.001

0

0

6
.132

.131

0.

0

0

9

m
.000

.000

Table 5.16: Values of

for k = 3 and given values of 7

7 z

1

= 0.6

167

7

1

= 0.7

.456

7 :

1

= 0.8

809

7 :

2

= 0.9

326
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Table 5.17: Comparisons between the simulated and approximate values of

E(T) for m = 10, k = 3, a = 0.05 and given values of no and 7

15

20

25

30

35

40

45

50

55

60

7 =

Simul.

15.3

20.1

25.0

30.0

35.0

40.0

45.1

50.1

55.2

60.2

0.6

Appro.

15.2

20.2

25.2

30.2

35.2

40.2

45.2

50.2

55.2

60.2

7 =

Simul.

15.3

20.2

25.0

30.0

35.0

40.0

45.0

50.1

55.2

60.2

0.7

Appro.

15.2

20.2

25.2

30.2

35.2

40.2

45.2

50.2

55.2

60.2

7 =

Simul.

15.3

20.1

25.0

30.0

35.0

40.0

45.0

50.0

55.2

60.2

0.8

Appro.

15.2

20.2

25.2

30.2

35.2

40.2

45.2

50.2

55.2

60.2

7 =

Simul.

15.3

20.1

25.0

30.0

35.0

40.0

45.0

50.0

55.2

60.2

0.9

Appro.

15.2

20.2

25.2

30.2

35.2

40.2

45.2

50.2

55.2

60.2
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Table 5.17: Comparisons between the simulated and approximate values of

E(T) for m = 10; k = 3, a = 0.1 and given values of no and 7

n0

15

20

25

30

35

40

45

50

55

60

7 =

Simul.

15.3

20.1

25.0

30.0

35.0

40.0

45.1

50.1

55.2

60.2

0.6

Appro.

15.2

20.2

25.2

30.2

35.2

40.2

45.2

50.2

55.2

60.2

7 =

Simul.

15.3

20.1

25.0

30.0

35.0

40.0

45.1

50.1

55.2

60.2

0.7

Appro.

15.2

20.2

25.2

30.2

35.2

40.2

45.2

50.2

55.2

60.2

7 =

Simul.

15.3

20.1

25.0

30.0

35.0

40.0

45.0

50.1

55.2

60.2

0.8

Appro.

15.2

20.2

25.2

30.2

35.2

40.2

45.2

50.2

55.2

60.2

7 =

Simul.

15.3

20.1

25.0

30.0

35.0

40.0

45.0

50.0

55.2

60.2

0.9

Appro.

15.2

20.2

25.2

30.2

35.2

40.2

45.2

50.2

55.2

60.2
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Table 5.18: Simulation values of ac = (1— type I error rate) and

for m = 10, k = 3, a = 0.1 and given values of n0 and 7

n0

15

20

25

30

35

40

45

50

55

60

7 =

r*(d)

0.607

0.599

0.600

0.592

0.605

0.602

0.611

0.598

0.594

0.609

0.6

ac

0.895

0.890

0.888

0.888

0.893

0.896

0.893

0.896

0.902

0.899

7-(d)

0.704

0.699

0.696

0.692

0.703

0.695

0.707

0.698

0.698

0.707

0.7

ac

0.895

0.890

0.888

0.886

0.893

0.895

0.893

0.897

0.901

0.897

7 =

r*{d)

0.805

0.791

0.801

0.793

0.797

0.798

0.808

0.794

0.795

0.803

0.8

ac

0.895

0.889

0.888

0.887

0.893

0.896

0.893

0.897

0.902

0.897

7 =

r*{d)

0.907

0.894

0.905

0.894

0.902

0.896

0.901

0.891

0.901

0.901

0.9

ac

0.895

0.890

0.889

0.887

0.892

0.896

0.893

0.896

0.903

0.897
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Table 5.18: Simulation values of ac = (1— type I error rate) and 7**(<i)

for m = 10, k = 3, a = 0.05 and given values of no and 7

n0

15

20

25

30

35

40

45

50

55

60

7 =

7**(i)

0.606

0.599

0.601

0.592

0.605

0.603

0.612

0.599

0.594

0.609

0.6

ac

0.945

0.941

0.941

0.945

0.945

0.947

0.946

0.949

0.948

0.948

7 =

Y*(d)

0.704

0.699

0.696

0.692

0.703

0.695

0.706

0.698

0.698

0.707

0.7

ac

0.944

0.941

0.941

0.942

0.944

0.947

0.946

0.950

0.948

0.947

7

7~(<0

0.805

0.791

0.801

0.793

0.797

0.798

0.808

0.794

0.795

0.803

0.8

ac

0.945

0.941

0.941

0.942

0.943

0.947

0.946

0.949

0.949

0.947

'Y m

r*(d)

0.907

0.894

0.905

0.894

0.902

0.896

0.901

0.891

0.901

0.901

0.9

ac

0.945

0.941

0.941

0.942

0.943

0.947

0.946

0.949

0.949

0.948
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Chapter 6

Directions of future research

In this thesis, we have applied Anscombe-Chow-Robbin's pure sequential sam-

pling scheme to some multiple comparison problems. Two obvious directions

of further research are to use different sequential sampling schemes and to

consider other problems which require prescript accuracy when some nuisance

parameters are involved.
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6.1 Other sequential sampling schemes

Hall (1981) proposed a triple stage procedure to construct a fixed-width con-

fidence interval of length 2d and (nominal) confidence level 1 — a. for the mean

of a normal population, where d > 0 and 0 < a < 1 are two given constants.

This triple sampling procedure involves only three sampling operations. By

sampling in bulk, a considerable saving in time and money can be achieved.

It also requires an average sample size which is comparable to the correspond-

ing Anscombe-Chow-Robbin's (ACR) " one-by-one" sampling scheme. Hall's

procedure operates as follows. Let m be the initial sample size. Calculate

M = max{m, (cA<r̂ ) + 1},

where A = (zaf2/d)2 and c G (0,1). If M = ra, we do not take any more

sample, otherwise, if M > m, we draw a second sample of size M — m, and

calculate a\j. Now based on M observations we define

T = max{M, (\cr2
M + nit) + 1}

where m\ = (5 — z2,2 — c)/2c, and draw a sample of size T — M. Let YT be

the mean of the pooled sample of size T, Then an approximate (1 — a)-level

confidence interval for fi is given by

IT = (YT-d, YT + d).

Hall showed that

P{\YT-n\ <d} = l - a + o(d2),

E(T) = n0 + (1 + zip )/2c + o(l) as n0 -* oo,

where no = ACT2.

Liu (1995b) generalized Hall's three-stage procedure to the general k(> 3)-

stage procedure.
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Hall (1983) proposed another sequential procedure which uses an ACR

procedure only to determine a preliminary sample and then jump ahead to

obtain the final sample. After taking the initial sample of size m, it takes

observations one by one until

w

Ni = inf{n > m : n > cA<r̂ },

here A = (za/2 jd)2 and c £ (0,1). Then draw a final sample of size

Mi = max{iVi, (c\a2
Ni + m2) + 1},

where ra2 = (5 + z\2 )/(2c) + f3 for any (3 > 0, and a confidence interval for fj,

is defined as

I Mr = (YMl ~ d, YMl + d).

It has been shown in Hall (1983) that IMI has a confidence level greater than

(1 — a) for all sufficiently small d and

E(Mi) = n0 + (1 + z2
a/2 )/2e + p + o(l) as n0 -> oo,

where n0 = Xa2.

In contrast to Hall's (1983) procedure, Liu (1995c) proposed a new pro-

cedure which starts with two samples followed by pure sequential sampling.

Take a " pilot" sample of size m. Fix c in the range 0 < c < 1 and take second

sample of size Mi — m where

Mi = max{m, {c\a2
m) + 1}.

Continue sampling one observation at a time until

M2 = inf{re > Mi : n>Xlna
2
n}.

The confidence interval for fi is given by

IM2 — {YM2 - d, YM2 + d).
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The motivation behind this new procedure is that when we are far away from

the target we can leap forward by taking clusters of observations, and when

we are getting closer to the target we should approach with care by taking one

observation at a time. The new procedure not only inherits the great efficiency

of the ACR procedure in that it has the same large sample property as the ACR

procedure, but also has the ability to reduce the number of sampling operations

by an arbitrary factor (which is about 1 — c). Under the assumptions as in

Hall (1981), it has been shown that

E(M2) = no + p + lo — 2 + o(l) , as n0 —> oo,

P{» £lM2} = l - a + -{z24>'(z2)(p + /o - 2) + z4<f>"(z2)} + o( — ) ,
no UQ

where <j>(x) = 2$(v/a:) — 1 and n0 = Xa2.

All these sequential sampling ideas can be used to replace the pure sequen-

tial sampling idea to solve the problems considered in this thesis. It would be

interesting to compare the performance of these procedures.
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6.2 Other problems

The basic idea behind sequential sampling is to achieve a prescribed accuracy,

e.g. fixed-width confidence interval, fixed type I and type II error of a test,

when some nuisance parameters are involved, such as the unknown a2 when

we want to make inference about fj, of a normal population JV(//,<72). There

are many such problems, and most of these problems have been solved only

by using the pure sequential sampling scheme and the two-stage sampling

method. Applying the new sequential sampling schemes, such as Hall's three-

stage scheme and Liu's (1995b) scheme, to solve these problems is certainly

worthwhile and requires a lot of research.
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Appendix

Some definitions and theorems

in probability theory

Definition A.I : A sequence of random variables {£,„,, n > 1} is said to be

uniformly continuous in probability ; abbreviated u.c.i.p., if and only if

for every e > 0 there is a 8 > 0 for which

P\ max \£n+k -£n\ > e\ < e for all n> 1. (A.I)

Definition A.2 ; A sequence of random variables {£n,n > 1} is said to be

stochastically bounded if and only if for every e > 0 there is a number

C > 0 for which

C } < £ for all n> 1.

Note that, if £n converges in distribution, then {£n,n ^ 1} is stochastically

bounded.

Lemma A.I : If {Xn,n > 1} and {Yn,n > 1} are u.c.i.p., then so is {Xn +

Yn,n > 1}. If in addition {Xnin > 1} and {Ynin > 1} are stochastically

bounded, and f is any continuous function on R2, then {f(Xn,Yn),n > 1} is

u.c.i.p. (see Woodroofe ,1982, page 10).

Lemma A.2 ; If Xn —> C w.p.l, then {Xn,n > 1} is u.c.i.p..
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Proof: Suppose that Xn —> C w.p.l, then Xn — C —> 0 w.p.l. By Lemma

A.13 supm>n \Xm — C\ —> 0 in probability as n —> oo. Therefore, for given

£ > 0, there exist No, such that for all n > No

ntpn

Now

P\sup\Xm-Xn\> < P\snp\Xm-C\>-

e e
+

Also note

UJ : sup \Xn+k — Xn\> e
0<Kn£

C <u : sup \Xm — Xn\ > e

and so

sup \Xn+k -Xn\ > e\ < P\ sup \Xm-Xn\> e\ < e.

Therefore, if n > A ô, (A.I) is correct for all 6 > 0. If 1 < n < No, (A.I) is

correct for all 6 < 1/NO + 1 since the probability in (A.I) is zero. So, (A.I)

holds for 8 < 1/JVo + 1 and n > 1.

Lemma A.3 ; If Xi,X?,- • • are i.i.d. with finite mean \i and finite positive

variance a2, then

is u.c.i.p. (see Woodroofe ,1982, page 11).

Theorem A.I ; (Von Bahr's Theorem) LetX1^X2l • • • be i.i.d. random vari-

ables with finite mean fi, finite positive a2, and finite ath absolute moment

i|Q < oo, then

7T
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where 5* = (Sn — n^jcx^Jn, and Sn = X\ + X2 + • • • + Xn (see Woodroofe

,1982, page 12).

The following theorem follows directly from the submartingale inequality

(see Woodroofe ,1982, page 8).

Theorem A.2 : Let Xi,X2,- • • be independent random variables for which

E(Xi) = 0 and E\Xt\
a < oo for i > 1, where a > 1. Then

P { m a x | S * | >y}<—[ \Sn\
adP

k^n ya »'rnaxfc<n \Sk\>y

for all y > 1 and n > 1.

Definition A.3 : A sequence of random variables {£n,n > 1} is said to be

slowly changing if and only if

, |£2 | , • • • , \in\] —> 0 in probability as n 00, (A.2)

and {< n̂,n > 1} is uniform continuous in probability.

Lemma A.4 ; (A.2) holds if'(n/'n —> 0 w.p.l as n —> 00.

Proof: Suppose that ^njn —* 0 w.p.l as n —> 00, we want to show (A.2)

holds. Note that

1
n

1 1
~ n i i i o n

< — max-|
n jo Jo + 1 n

, • • • , \£jo-i |} —> 0 in probability forfor all 1 < jo < n, and (1/ra)

each fixed j0 as n —> 00. By Lemma A.13, £n/n —> 0 w.p.l implies that

maxn>j \in\/n —•> 0 in probability as j —> 00, and so for given e > 0, there

exist jo, such that
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Consequently

f

and

P(lmax{In

£ £

< 9 + 9 =

f \ik
I Jo

6.1

e as

l&o+i

io+i

n —• oo .

1 o 1 — 1 ^ •

- l | j > 2 / + n m a X l .Q

£ \

2)

Isjo+i

' Jo + 1

£

" 2

n

This completes the proof.

Definition A.4 : A sequence of random variables {Xn, n > 1} is said to be

uniform integrable , abbreviated u.i., if for every e > 0 there is a 8 > 0

such that
r

sup / \Xn\ dP < e,

whenever P{A] < 8 and, in addition,

sup n | < oo.

The following result is well known ( see Chow and Teicher ,1978, page 93).

Lemma A.5 : A sequence of random variables {Xn, n > 1} is u.i. if and

only if
r

lim sup / LYn dP = 0.
a ^°° n>\ J(\Xn\>a)

The next lemma is often useful in establishing the u.i., and taken from

Woodroofe (1982).

Lemma A.6 : Let {Xn,n > 1} be random variables and

G(x)=supP{\Xn\> x], x > 0.
n>l

If r > 0 and x1'^ G(x) is integrable with respect to Lebesgue measure over

(A 0 , oo ) -where Ao > 0 is a given constant, then {\Xn\
r,n > 1} is u.i..
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The next result follows easily from the definition of u.i. and the Cauchy-

Schwarz inequality.

Lemma A.7 :

I {Xn,n > 1} is u.i. if {X^,n > 1} is u.i..

II {XnYn,n > 1} is u.i. if {X%,n > 1} and {Y^}n > 1} are u.i..

n:
Let {{n,n > 1} denote random variables for which (Xl7 £x), • • • , (X

are independent of {X^, k > n} for every n > 1, where Xi,X2, • • • are i.i.d.

random variables with \x = E{X\). Let fi is the sample space, 3?o = {p^}

and 3ftn = (j{(Xk,t,k)] k < n},n > 1. Suppose that there are ?R:n measurable

events An, n > 1, constants /in, n > 1, and 3?n measurable random variables

Vn, n > 1, such that
CO

^ ( u r = n - ^ ) < o o , (A.3)

Cn = K + K Oil An, 72 > 1, (A.4)

sup max \hn+k — hn\ —>• 0 as ^ —> 0, (A.5)

max
0<k<n

i > 1, are uniformly integrable, (A-6)

/n < — ne} < oo for some e, 0 < e < fi, (A.7)
7 1 = 1

K converges in distribution to a random variable V, (A.8)

P{t < sNa} = o (—) , as a -> oo, Ve > 0, (A.9)

where Na = (a//x), a > 0 and t is defined in (A.10).

Let F be the common distribution of i.i.d. random variables A"; with

E(Xi) = //, 0 < // < oo and ^ = X1 + Â 2 + • • • + A'n, n > 1, denotes the

partial sums. Next, let

^ n = ^ 7 1 T ^715 1 £ i

and

t = inf{n > 1 : Zn > a}. (A.10)
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Theorem A.3 ; Suppose that F has a finite positive variance a2 and a finite

positive mean fi, and also that conditions (A.3- A.9) hold and Vn,n > 1, are

slowly changing. If F is nonarithmetic, then

E(t) = - (a + p-hNa - E{V)) + o(l) as a -> oo,

where

and Sk denotes the negative part of Sk- (See Woodroofe ,1982, page

Lemma A.8 : Let £n/n —> 0 w.p.l as n —> oo, and t = inf{n > 1 : Zn > a],

then
1 l 1

> — w.p.l as a —> oo.

a n

(See Woodroofe ,1982, page 42).

Lemma A.9 ; Suppose that Xi,X2: • • • are i.i.d. with — oo < \x < oo ;

0 < a2 < oo and t/a —> c, 0 < c < oo, in probability as a —> oo; then

as a

(See Woodroofe ,1982, page 12).

Lemma A.10 : If {Xn, n > 1} is a sequence of i.i.d. random variables with

finite variance. Then X2/n —> 0 in probability as n —> oo.

Proof: Note that

7 1 = 1

oo

7 1 = 1

< E—±- < oo,
e
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the last inequality follows from the well known inequality (see Chow and Te-

icher ,1978, page 89)

OO OO

y P\\X\ ^_ n \ ^ E\X\ ^ / P 11 A-1 ̂  n |.
ra=l n = 0

Therefore P{X2/n > e} —> 0 as n —>• oo and so X^/n —> 0 as r n oo.

Lemma A. 11 : Suppose that F has a finite variance a2, and inl\fn —>• 0 in

probability as n —> oo. Then

t* = L z S ^ A^(0,^2 a2) as a -> oo,

where Na = (a/fi). (See Woodroofe ,1982, page J^2).

Lemma A.12 : If {Xn}n > 1} is u.i. and Xn converge in distribution to a

random variable X, then E\X\ < oo and E(Xn) —> E(X). (See Woodroofe

,1982, page 12).

-p

LeiTima A.13 ; Xn —> X w.p.l iff supJ>n \Xj — X\ —»• 0. (See Chow and

Teicher ,1978, page 66).

Definition A.5 : A sequence {Xn,n > 1} of tp random variables (i.e. E\Xn\
p <

ooj is said to converge in mean of order p (to a random variable X) if
p

E\Xn — X\p —> 0 as n —> oo. This will be denoted by Xn -A X.

Lemma A.14 : If Xn,n > I, are £p random variables and Xn -4 X, then

{\Xn\
p,n > 1} is u.i.. (See Chow and Teicher ,1978, page 98).

Definition A.6 :Type I error rate is defined as the probability of at least one

Type I error.

Theorem A.4 (Slepian's inequality). LetX = (Xa ,X2 , • • • ,Xk)' be distributed

according to N(0, E), where S is a correlation matrix. Let R = (pi3), T = (TT;J)
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be two positive semidefinite correlation matrices. If Pij > 7Ty holds for all i,j,

then

= l

> a,-}

Tong ,1980, pages 10 and 11).
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