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This thesis considers inferences about the means of several independently
and normally distributed populations with a common variance. The first part
discusses the constructions of fixed-width simultaneous confidence intervals
when the variance is an unknown parameter by using sequential samplings.
A set of fixed-width simultaneous confidence intervals is often used to make
simultaneous inferences, with a probability that all the inferences made are
simultaneously correct being at least 1 — «, the simultaneous confidence level.
Certain probabilities of making simultaneously correct inferences are often
larger than the confidence level 1 — a. These are considered in the second
part of the thesis. The third and final part of the thesis studies the multiple
tests corresponding to the simultaneous confidence intervals. Some new power

functions are defined and their properties are investigated.
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Chapter 1

Introduction and notation



1.1 Construction of a fixed-width confidence
interval for the mean of a normal popu-

lation

Suppose that we have a normally distributed population N(n,o?) with un-
known mean 7 and positive variance o2, and that independent observations
Yy, Y5, -+ can be taken sequentially from the population. We wish to con-
struct a 100(1 — @)% confidence interval for  of width 2d, in the form of
(Y —d, Y +d), where d > 0 and 0 < o < 1 are two given constants, and Y is
the sample mean of a sample taken from the population.

Inferences about n can be made from this confidence interval. For instance,
if Y > d then we can infer that 7 > 0 since the confidence interval (Y —d, Y +d)
is entirely to the right of zero. Similarly, if Y < —d then we can infer that
n < 0. The width d determines the sensitivity of this confidence interval in
the following sense. If n > 2d then the correct inference “n > 07 will be
made from this confidence interval with probability at least 1 — «, since the
confidence interval for 5, (Y —d, Y + d), will be entirely to the right of zero
with probability at least 1 — «. Similarly, if n < —2d, the correct inference
“n < 0”7 will be made with probability at least 1 — & because the confidence
interval for n will be entirely to the left of zero with probability at least 1 — «.

If 02 is known then such a confidence interval can be easily constructed
in the following way. A random sample of fixed size n is taken from the

population and a confidence interval for 5 is defined to be

_ g _ g )
(Yn_goz/Z ﬁv Yn+2a/2 —\/_7—{) y (11)

where z,, is the upper /2 quantile of the standard normal distribution
and Y, = (1/n)2%,Y;. In order that the width of this confidence inter-

val, 2245 0//n, is at most 2d, the sample size n should satisfy z,pn o /\/n < d,
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which implies that

n>ng=d? (22 Vol

Therefore, if a sample of fixed size ng is taken from the population N(n,o?),
then the confidence interval in (1.1) will satisfy the requirement. The value of
no is the minimum sample size required to achieve our goal when o is known
and is often called the optimal sample size.

If 0% is unknown and a sample of fixed size n is taken, then the usual

confidence interval for n with confidence level 1 — « is given by

_ 5o - 5
(Yn - ta'/2 ﬁ7 Y, + ta/2 7‘5) )

where ¢,/ is the upper «/2 quantile of the Student ¢ distribution with n — 1

degrees of freedom, and

6= SV~ T

1=1

n—1

It is clear that the width of this confidence interval is 2t,p5 0, /\/n, a random

2 is unknown then a

number. Dantzig (1940) proved that if the variance o
fixed-width 100(1 — «)% confidence interval for i can not be constructed by
using a fixed sample size procedure. For unknown o? it is therefore necessary
to use a sequential procedure to achieve our goal.

Stein (1945) proposed a 2-stage procedure to achieve our goal. He showed
that a fixed-width confidence interval for  can be constructed if sampling is
performed in two stages, and the size of the second sample is a random variable
that depends on the observed values of the first sample.

Anscombe (1952) suggested a pure sequential procedure which estimates
o? at each stage n > m by ¢,%, where m > 2 is the size of the first sample,
and stop sampling when, for the first time, n > d=* 22/2 7,2, i.e. stop sampling
at

T=inf{n>m: n>d? ZZ/Z onl}.




On stopping sampling, the confidence interval for 7 is then defined as
I(T)= (Y —d, Y7 + d). (1.2)

First order approximations to the expected sample size E(7T') and the confi-
dence level of this procedure were given by Chow and Robbins (1965). Second
order approximations to the K(7') and the confidence level can be found in
Woodroofe (1977, 1982). In fact Woodroofe considered the following stopping

time which is a simple modification to Anscombe’s procedure
T=inf{n>m: n>d?zl, 1,G,%),
where {[,} is a sequence of constants of the form
1 1
ln:1—}——lo+o<—> as n — oo.
n n

The first part of this thesis is devoted to develop some pure sequential pro-
cedures for constructing fixed-width simultaneous confidence intervals for mul-
tiple comparisons. We shall not consider two-stage procedures because they
often require considerably more observations than the corresponding pure se-
quential procedures, as pointed out by Cox (1952) and Mukhopadhyay (1983).
Possibilities of developing other sequential procedures are discussed in Chapter

6, Directions of Future Research.




1.2 Fixed-width simultaneous confidence in-
tervals for multiple comparisons

Suppose that we have k independently and normally distributed populations,
N(pi,0%), i = 1,2,--- .k, with unknown means y; and a common unknown
positive variance o2, and that we can sample sequentially from each popu-
lation. Let Yii, Yy, Yis, - denote the observations from the :** population,
¢ =1,2,---,k and Y; is the sample mean of a sample taken from the :** pop-
ulation. Our goal is to construct a set of simultaneous confidence intervals
of fixed length 2d and of simultaneous confidence level 1 — « for each of the

following three sets of parameters:
His 3.21727"'7]67

He — H1, i:2737"'7k7

where d > 0 and « € (0,1) are two given constants.
For the first set of parameters {u;, i = 1,2,--- k}, we wish to construct
a set of fixed-width 2d simultaneous confidence intervals with a simultaneous

confidence level 1 — « of the form

This set of simultaneous confidence intervals can be used to make inference
about each individual p; and keep the overall error rate controlled at level
«. For instance, we can infer that u; > 0 for each i satisfying Y; > d, since
the confidence interval for yu;, (Y; — d, Y; + d), is entirely to the right of
zero. Similarly, we can infer that u; < 0 for each ¢ satisfying Y; < —d. The

probability that all the inferences made are simultaneously correct is no less

than the confidence level 1 — a. The value of d determines the sensitivity of
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this set of simultaneous confidence intervals in the following sense. For each
i satisfying p; > 2d (p; < —2d), the correct inference p; > 0(p; < 0) will be
made simultaneously from this set of confidence intervals with probability at
least 1 — a, since the confidence interval for u;, (Y; —d, Y; +d), will be entirely
to the right (left) of zero.

For the second set of parameters {u; — y1, 7 = 2,3,---,k}, we construct
a set of fixed-width 2d simultaneous confidence intervals with simultaneous

confidence level 1 — o of the form

Here, the first population, N(u1,c?), may be regarded as the control, the other
k —1 (k > 2) populations as treatments, and we are interested in comparing
all the treatments with the control in order to find out if any of the treatments
differ from the control. Inferences about p; — p11 can be made from this set of
simultaneous confidence intervals. For instance, if ¥;—Y; > d then we can infer
that p; > pq, since the confidence interval for p; —u1, (Y; =Yy ~d, Y;—Y,+d),
is entirely to the right of zero. Similarly, we can infer that u; < py for each
i satisfying ¥; — ¥Y; < —d. The probability that all the inferences made are
simultaneously correct is no less than the confidence level 1 —a. The sensitivity
of this set of simultaneous confidence intervals is determined by the value of
d as can be seen from follows. For each treatment p; satisfying p; — pq >
2d(< —2d), the correct inference p; > (<)u; will be made from this set of
simultaneous confidence intervals with probability at least 1 — «, since the
confidence interval for p; — u1, (Y; — Yy —d, Y; — Yi + d), will be entirely to
the right (left) of zero.

Finally, for the third set of parameters {u; — p;, 1 <1 # j <k}, we wish
to construct a set of fixed-width 2d simultaneous confidence intervals with a

simultaneous confidence level 1 — a of the form
pi—p € (Yi=Y,—d, Yi=Y,+d), 1<i#j<k
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In this case we are interested in all-pairwise comparisons of the k populations.
Inferences about p; — p; can be made based on this set of simultaneous con-
fidence intervals. For instance, if ¥; — Y; > d then we can infer that u; > y;,
since the confidence interval for u; — yj, (Y; = Y; —d, Y; =Y, +d), is en-
tirely to the right of zero. The probability that all the inferences made are
simultaneously correct is no less than the confidence level 1 — a. The value of
d determines the sensitivity of this set of simultaneous confidence intervals in
the following sense. For each pair of treatments ¢ and j such that p; —pu; > 2d,
the correct inference p; > p; will be made from this set of simultaneous con-
fidence intervals with probability at least 1 — «, since the confidence interval

for p; — uj, (Y; = Y: —d, Y; — Y; 4+ d), will be entirely to the right of zero.



1.3 Probabilities of making correct inferences
simultaneously

Consider case one: inference on {u;, 1 = 1,2,---,k}. From Section 1.2 it is

clear that inferences based on the set of simultaneous confidence intervals
(Y;—dvf/;"}'d% Zzlvak

has the property that the probability of making the correct inference p; >
0(pi < 0) simultaneously for each y; satisfying p; > 2d(p; < —2d) is at least
1 — «. The question is “what is the exact value of this probability?”

The same question stands for the cases two and three.

For case two, we know that inferences about {p; — 1, 2 = 2,3, &k}

based on the simultaneous confidence intervals

have the property that the probability of making the correct inference p; >
pa(ps < pr) simultaneously for each p; satisfying p; — py1 > 2d(p; — py < —2d)
is no less than 1 — a. However we wish to know the exact value of this
probability.

For case three, we know that inferences about {y; — u;, 1 < ¢ # j < k}

based on the following set of simultaneous confidence intervals
(Y; =Y, —d, Yi=Y;+d), 1<i#j<k

have the property that the probability of making the correct inference p; — p; >
0(p; —p; < 0) simultaneously for each pair (i, j) satisfying p; —p; > 2d(< —2d)
is no less than 1 — a. The main problem is to find the exact value of this
probability.

The second part of this thesis is concerned with the answers to these three

questions.
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1.4 Powers of some multiple comparison tests

The inferences about {p;, 1 = 1,2, -+, k} discussed in Section 1.2 based on

the set of simultaneous confidence intervals
(Y;—d,}_/;—l-d), =1,k

are equivalent to the following multiple test approach. The hypotheses that

need to be tested are
Hiog:p; =0 vs Hip:p; >0, or Hi_ :p; <0, 1<e<k

the null hypothesis ;¢ is rejected if and only if |Y;| > d, and if H;q is rejected
then H; 4 (H;_) is preferred if Y; > d (Y; < —d).
Similarly, inferences about {u; — w1, ¢ = 2,3,---,k} based on the set of

simultaneous confidence intervals

are equivalent to the following multiple test approach. The hypotheses that

need to be tested are
Hig:pi—pupr =0 vs Hiy iy >, or Hi_sp<py, 2<1< k

the null hypothesis H;q is rejected if and only if |Y; — V;| > d, and if H, is
rejected then I, (H;_) is preferred if Y; — Y} > d (Y; — Y} < —d).
Inferences about {yu; —p;, 1 <75 j <k} based on the set of simultaneous

confidence intervals

are equivalent to the following multiple test approach. The hypotheses that

need to be tested are
Hijo i ps—p; =0 vs Hyyp opy>py, or Hyooopp <y, 1<i#7 <k

9



the null hypothesis H;;q is rejected if and only if |V; — ;| > d, and if H;jo is
rejected then H,;y (H;;_ ) is preferred if Y; — Y; > d (Y; — Y; < —d). The third
and final part of this thesis studies the powers of these three multiple tests.
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1.5 On the chapters to follow

In Chapter 3, we propose pure sequential procedures for constructing fixed-
width 2d and (nominal) simultaneous level 1 — a confidence intervals for each

of the following three sets of parameters:

pi—pg, 1<i#j <k,

where d > 0 and « € (0,1) are two given constants. Second order approxima-
tions to the expected sample sizes and the confidence levels are derived. Exact
calculations of the distributions of the sample sizes and the confidence levels
are discussed.

The stopping times of all the three procedures are of the form
Te =inf{n >m: n>d?~0,6,"},

where v > 0 is a constant and I, = 1 + Iy + o(X). In Chapter 2, we derive
second order approximations to E(Ty) and E [H (7%)] as ng — 0o where
H(-) is a given function and ng = d72~0?. These results are used in Chapter
3 and the rest of the thesis.

Chapter 4 is devoted to the study of the exact probabilities of making
correct inferences based on the corresponding set of simultaneous confidence
intervals of fixed-width 2d and level 1 — «.

In Chapter 5, we study the power properties of the multiple tests discussed
in Section 1.4.

Finally, in Chapter 6, directions of future research are discussed.

11



1.6 Notation

Throughout this thesis we adopt the following notation.

Lo

10.

11

12

13

. 1.i1.d. — independently identically distributed.

Z1, 2oy -+ — 1.i.d N(0,1) random variables.
é(x) — pdf of the standard normal distribution.
®(2) — cdf of the standard normal distribution.

X% — chi-square random variable with v degrees of freedom.

folz) — pdf of ‘/X?//V'

I'(z) — gamma function.

. Y; — the sample mean of a sample taken from the ;% population.

Kn = (1/71) E?:l K]
|m|¢ — the upper o point of the distribution of the random variable

Ml = max | Zi].

|m|%, — the upper « point of the distribution of the random variable

maxi<i<k | %

[ Ml =
|t|%, — the upper « point of the distribution of the random variable
Tk = max %Zj
|t|§_,, — the upper « point of the distribution of the random variable
|Zi — Z4]

IT|ir, = max il

S V2N

12



14.

15.

16.

17.

18.

19.

21.

22.
23.

o
=1

[~}
0.4

g — the upper a point of the distribution of the random variable

Qk: max (ZZ—ZJ)

1<i <k
g7, — the upper « point of the distribution of the random variable
Zi—Z;
, = max .
O 1<i <k /XZ v
A2 . _
On = k(nl—l) i P (Y =Y )2 n > 2.

l, = 1+%Zo+o(%) as n — oo.
m(> 2) — the initial sample size.

T — a stopping time.

g =inf{n >m: n>d?vl,6,°}.

E(T) — the expected value of the stopping time 7.

CL — confidence level.

k42
2k

1 &1
p= —Enzz:l 5Emax (07X$Lk —2nk‘>.

(z) — the largest integer < z.

. u.c.i.p. — uniformly continuous in probability.
. u.i. — uniform integrable.
. 14 — indicator function of the set A.

. C[A] — number of elements in a finite set A.

o= (s phay oo, k) € RE

13



Chapter 2

The asymptotic theory of the

pure sequential procedure

The stopping times of sampling used for constructing fixed-width simultaneous

confidence intervals for the three sets of parameters are of the form
Te =inf{n>m: n> d_nylnaAnz}, (2.1)

where v > 0 and m(> 2) are given constants, {, = 1 + %Zo +o0 (%) as n — oo,

and

G’ = m;Z% —Yin)% n = m (22)

where YVi;, 1 <1 <k, j =1,2,---, are independent random variables with

Yij ~ N(pi,0?) and Yy, = (1/n) X5, Yi;. The corresponding confidence levels

2l (5]

where H(-) is a given function and ng = d2y02.

are of the form

In this chapter we first give the second order approximations of E (1) and
K [H (’y%)} The proofs of these results follow the lines of Woodroofe (1982),

but we try to give all the details. These results will be applied many times

14



in the subsequent chapters. The exact calculation of the distribution of T¢ is

also discussed.
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2.1 Second order approximation to E(T)

First we write T¢ in a more manageable form. For fixed ¢,1 < ¢ < k, define

(51 (Yij = Yigrn)))?

M/iT -
r(r+1)o?

, r=1,2,---
Then we have

Lemma 2.1

I Wy, Wi, are i.i.d. x} random variables for each i, 1 <i < k.

Il Foralln 22, Y5, 50 (Y = Vi) = 0?55, 70 Wi, = 02302 U,
where Uy, Uy, -+ are 1.i.d. chi-square random variables with k degrees of free-
dom.

I Wy, -, Wina are independent of Yy, for all n > 2.

Proof: Define random variables Ry, -+, Riny and Qim,n = 2,3,---, by
Rzn = (Rilv T 7Rin—1 7Qin)l = AZ?

7 where A is the following orthogonal ma-

tr1x
— L 0 0 ce 0 0
V2x1 V2X1
—1 -1 2 0 e 0 0
V3X2 V3xX2 V3X2
-1 -1 -1 -1 o -1 n—1
Vix(n-1)  y/nx(n1)  A/ax(n-1)  /nx(n-1) Vinx(n-1)  /nx(n-1)
Vv Vn Vv Vv NG v

and Z" = (Za, -+, L) where Zy = (Y, — ;) /o, i = 1,2,---, k, are i.i.d.

N(0,1) random variables. By noting that
Cov (R}, R!) = ACov (Z", ZM)A' = AA' =1

since A is orthogonal, then R;, -+, R;na , Qi are ii.d. standard normal
distribution random variables. It is also easy to check that

(i (Y — Yoo )J? _

Wi = -
r(r+1)o? Y

r=1,---,n—1

16




and so, Wi, Wiz, ..., Wi,y are i.i.d. x? random variables. Since n > 2 is

arbitrary, Wi, Wi, - -

are i.i.d. x} random variables. This proves (I).

To prove (II), we note that for fixed 1 < ¢ < k

and

and

k

=1 r=1

where U, = Y8 W, ~ x}.
Property (111) is obvious since

Y;n - (J/\/E)Qm + 1

S5 (Ve - V) =

and W, = R?

= \/ﬁZznv
n
_ 2 72
- Z Zir - nZz'na
r=1

r=1
I & e —
g r=1
02 Z(ZW - Zm)2
r=1
o? (Z Z: — ann)
r=1

n—1
(S0 -ax)
r=1

n—1

02 Z ‘/Viv'a
r=1

k n—1
YW,
=1 r=1
n—1
2 Z UT./
=

1

= g

r=1,---,n—1.

Y

This completes the proof of the lemma.

17
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Applying this lemma to write &,°> = 02U, /k, where U, = (1/n) Y%, U,
we have
T = infin>m: n>d?*~l,0*U, [k} (2.4)

= inf{n >m: klj—nU;_ll

> d_2702}.

Hence, T assumes the form Tg = ¢ + 1, where

t=inf{n >m —1: Z, > no}, (2.5)
with
1 _
ng = d*~yo?, Z,= (n + ) knU".
n n+1

Since the distributions of U, are independent of p; and ¢? | then the distribu-
tions of ¢t and T depend only on ng, which in turn depends on the unknown
2. Tt is also noteworthy that ¢ and Ty depend on d and o? only

through o/d.
Note that

variance o

where A, — 1 — [y as n — oo. Using Taylor expansion for 1/z about k, we

have

A
T = <1+ =

where L, is an intermediate point between U, and k,
S, =X1+Xo+---+X,, n>1,

with X; =2 — U;/k for i > 1, and

o = (LLH)B kn(U, — k)* (1 + %—) +AX,, (2.6)

18



with X, =2 — U, /k.
Since Uy, Us, - -+ are i.i.d. random variables, {S,,n > 1} is a random walk
with F(X1) =1, V(X;) = 2/k. Therefore, the stopping time ¢ defined in (2.5)

can be written as
t=inf{n>m—1: S, +& > no}.

We intend to apply Theorem A.3 in the appendix to get an asymptotic expan-
sion of E(t). Let A, = Q where Q denotes the sample space, h, =0, n > 1,
and V,, = &,, we need to check conditions ( A.3 - A.9) are satisfied.

Lemma 2.2 For fited 1 < i < k, and n > 2, {Tg = n} and Y;, are

independent.

Proof: It follows from (2.4) that
Ta = inf{n >m: n>d 3y, /k}

and so {Tg = n} depends only on W;;, Wia, -+, W, , which, by part (I1I) of

Lemma 2.1, are independent of V;,. This finishes the proof.
Lemma 2.3 {£,,n > 1} is slowly changing (see the appendiz for definition).

Proof: Tt suffices to show that conditions (A.1) and (A.2) in the appendix
hold. For (A.2) we use Lemma A.4 to show that §,/n — 0 w.p.1 as n — oo.
Note that

=2 = <—>3 k(U, — k)? (1 + éﬁ) + lAan,
n n n
and
U,—k w.p.l asn— oo,
A X,

n

—0 w.p.l asn— oo,

A,
(1 + —) —1 w.p.l asn— oo,

19



and L, — k w.p.1. since L, is an intermediate point between U,, and k. Hence
é,/n — 0 w.p.1 as required.

To prove {£,} is u.c.i.p., note that

£ = (ﬁ)a 2k ((i Ui — kn) /%)2 (1 + %”—) + A X,

Now by Lemma A.3, {(3>%, U; — kn) /v/2kn,n > 1} is u.c.i.p., and by Lemma

A.2 we have
3 n 1\° A, 1
{<flﬂj> (1 + %—> ,n > 1} is u.c.i.p., since (L—n> (1 + 7) = w.p.1l
{A,X,,n>1} isu.ci.p.,sinceA, X, —1—ly w.p.1.

It therefore follows from Lemma A.1 that {£,,n > 1} is u.c.i.p.. This finishes

the proof.
Lemma 2.4 ¢, 2 (2/k)x}+ (1 =) asn — co.
Proof: Note that

1 3 n 2 A B

¢ = (L—) 22 ((Z U, — m) /\/an) (1 + —”) N

n =1 n
and that ,

((ZUZ — kn) /\/2]671) 2 2 asn — oo,

=1
A X, = (1 —1) w.plasn— oo,

13\° A, 1 ,
<L_n> <1+—n—> — ﬁw.p.l as n — 00,

from which the lemma follows.

Lemma 2.5 Let F,(-) denote the cumulative distribution function of x2 and

i nf2
Cr = ! , C,= ! [n (n/k) +1 } , n>1.
" 2”/2F(1 —}—71/2) 2”/2F(1 —I—n/?) l(n/k)—H

Then we have the following results:

[ F(z)~Cra™ asx — 0, foralln > 1,

20



Il there exist a constant b > 1 such that C, < b"n™? forn > 1,
I P{t =m —1} ~ Cym) nak(m_lm as ng — oo, where t is defined in
(2.5) and m > 2.

Proof: For (I) it suffices to show that, lim,_.¢ F,(z)/(C;z™?) = 1. Note that

T 1
N — n2 -1 ~y/2 g
Foo) = | A2 C W

By using L'Hospital’s rule, it is easy to show that lim,_q F,(2)/(Crz™?) =1,
as required.
To prove (II), we use Stirling’s formula (see Handbook of Mathematical

Function ,1965)
[(z 4 1) = 2™/ 02\ on r>0,0<8<]1.

Then

n/2
(n gn/k}+1 )

ln /)41

a2 (2) " o eson /27

< (n+ 1)n/2 22 e”/z, Vn > ny
1 TL/Z
= (n i ) (2en)™?

n
< b,

where ny; € N is such that lpm > 1/2Vn > nq,and b > 4e > 2e(n+1)/n > 1.
This finishes the proof of (II).

To prove (III), we have

P{t=m -1}

= P{Z,4 >no}

nOZm

m—1

= P{U;}!

km

= P{(m — Ny < (m—1) km }

Lo

21
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= P{Xi(m—l) <{(m-1) km }

lmno
m k(n;—l)
~ iy (K(m =177 as no — 0o (by (1))
k(m—1

1 ( m 2 _ k-1

iy b (B) T
2k & )F (ﬂ_m;_lL + 1) Zm 0
_ E(m-1)

= Chm1) Mo

as required. The proof is thus completed.

Lemma 2.6 For m > 1+42/k, 0 <e <1 andl, = 1+lp/n+o(1/n) as n — oo,
P{t <eNy}=0(1/Ny) asng— oo,

where Ny, = (ng).

Proof: Noting that for sufficiently large ng, we have ng/4 < &Ny, and P{t <

£N,, } can be written as
P{t <eNgpt=P{t<n}+ P{n<t<n*}+ P{nd! <t <eNy b

For fixed n we have

n

P{t<n} = > Plt=j}

7=m—1
= P{t=m—-1}+P{t=m}+ -+ P{t =n}
~  Cim) nak(m—lm as ng — oo,

since for m < j < n it can be shown in a way similar to Lemma 2.5 part (I1I)
that
P{t=j} < P{Z; > no} < Ciyng"”

and C;v.jnaki/‘Z =0 <Ck(m_1) na}”{m—lm ) as ng — oo.



Now, by part (II) of Lemma 2.5, we have

")
Pin<t<mg} = Y P{t=j}
J=nt+l
o)
< > P{Z; > no}
j=n+1
o) "
< 3 Cyng™
J=n+l
") e (4 V"
< Ve (3)
j=nt1 "o
- AL
< L1/2 ik Mg
a J’:En;l( ) o
=3 (P
J=nt+l1
This last summation is of a smaller order of magnitude than ng®"™ ™2 as ny — oo
for sufficiently large n. For this, it suffices to show that
lim i (k17?2 b)jkng(m-l—j/‘i)ﬂ -0,
oo j=n+1
Note that
Z (kM2 b)jkng(m'l‘j/‘*)/z = Z (k1/? b)jkng(_j+m°)/8 where mqg = 4(m — 1)
j=ntl 7=n+1

oo (kl/?b)k(j—mo—l) ((kl/Qb)mo+l>k

j=nt1 né”;“”’"‘) A n(l)/s
(k1/2b)mO+1 Eowo E1/2 k(j-mo-1)
= (' 1/8 ) Z ( 1/8 >
o j=ntl \ g

Now, n > 4(m — 1) is suflicient for this last expression to approach zero as

g — OO.

Finally, ng/4 <t < eN, implies that Z; > ng, i.e. U; < k(j +1)/l;31n0,

2 3
for some j € (né’, ENW} . For j € <n(}, €Nnﬂ] and sufficiently large ng, we
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have

RSN LS 1
noljy1 no L+ (L/(+1)+0(1/(5 +1)))
J+1

= L+ 1)+ o1/ + 1)

= —(i+1=h+o(1)

1
< —(eNy +1—1o+0(1))

IA
8
A
\’}—4

and

U; < kbo implies U; — k < k(6o — 1) = —6 < 0,

where 6y € (0,1) is a constant. Thus for sufficiently large ng

P{nd* <t <eNy} < PLO;—k <=6, 3j € (nd*, Ny}

IA

P{ max  j|U; — k| > 6n3/4}.
J€{eNng)

Now, by Theorems A.2 and A.1 in the appendix, we have

P{ max, ilU; —k|>6n3/4}

35N )
1 WO
S (5 3/4) Z Ui =
ﬁ@MW@NCW’ZW“ Ui~ BN, )
(6n5™)" 2 (e Ny, )

<Cng®, Va>2,

and so P{n8/4 <t < 5Nn0} =0 (nak’(m_l)/2 ) by choosing « to satisfy k(m —

1)/2 < /4.

Combining the above three cases, we have in fact proved that
P{t <eNp} ~ Crim) n&“m 2 a8 ny — oo,
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By noting that
Chime1) ng’“("*”“ =0(1/ng) asng — oo
when m > 14 2/k, therefore
P{t <eNp} =0(1/Ny) asng— oo.

This completes the proof.

Corollary 2.1 form > 1+ 2/k
—Hm-1) f2
P{t <ng/2} ~ Cipmy g as ng — 0o.

_ 2
Lemma 2.7 Let Y, = maxo<s< (7 +5) (Un+s — k) yn>1, then {Y2,n>1}

is uniform integrable. (See the appendiz for definition).
Proof: Note that

P{Orgeg (n+s) (Un+s - k>2 > y}
< P{mg ol — k1> v}

of2
< (i) E|2n (Uzn -~ k> |* fora>1
ny
n U — 2nk|®
— (4F)2 2 Elazl_l___
(4k)*"y T

where the second inequality follows from the Theorem A.2. Applying Theorem

?

A.l we have

o

n U — 2nk
supE—Zl_l——n— < Co, a>2,

n>1 Viank

and so

P max(n+s)<Un+s—k>2>y}<0y“’/2’ a>2, n>1.

0<s<n

The lerama now follows from Lemma A.6 in the appendix by choosing o = 6

say.
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Lemma 2.8 For given r > 0,

1 T
{max ( ) , nZl} 15 U.1..
0<s<n \ Logs

Proof: Again we apply Lemma A.6 in the appendix to prove the lemma. By

noting that L, is an intermediate point between U, and k, we have

P{max( L ) >.r}
0<s<n Ln—}—s

max( ! )>x1/r}
0<s<r \ Ly

1
< P{ min Ly, < —} where 21/ = 2
z

min U, < l} (for large x so that 1/z < k)
z

Now,

AN
—
®
ES
S~ w3
i
N=d
w[,r
L
L
<

AN
W
S
TN
n
o
wn
+
—
~—
I
vl
—~
a]
-~J
p——

d skf2
< ()
4

where d is some constant and the inequality (2.7) follows from part (II) of

Lemma 2.5. Consequently

;ZnnP{Us < é} < gn;) (g)

k(i4n
2
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(70

Since d is a constant, we can choose z sufficiently large such that d/z < 1.

Then Y7, (d/z)% <%, (d/z)% < C < 00, and then

P{max( ! ) >x}§C(d_’:p)“Q_§#, ¥ kn > 2r + 1.

0<s<n nd-s

Now, C'(d~"z)~(+1/2" is integrable with respect to the Lebesgue measure over
(1,00). Therefore {maxo<scn (1/Lnts)" ,n > (2r+1)/k} is ui. by Lemma A.6.
Also it is easy to show that maxocscn (1/Lnts) , V1 <n < 2r/k, is integrable.
So {maxo<scn (1/Lpys)" ,n > 1} is ui..

Lemma 2.9

{max [€nts], > 1} is u.i..

0<s<n

Proof: Since

I0ax [Ents |

< max
0<s<n \ Lygs

+ 01292( |Xn+s Ants |7

° = 2 An-i—s
k(n +s) (Un+s — k) <1 + - +5)

it suffices to show that both

3
1 = 2 An—l—s
{or?s% (Ln+s> ko +5) (nes ~ ) (1 - n—+’§> "z 1}’

and {maxo<s<n | XntsAnts|, n > 1} are wi.. The uniform integrability of

the first sequence of random variables follows directly from Lemmas 2.7, 2.8
and part (II) of Lemma A.7. To show the uniform integrability of the second
sequence of random variables, it suffices to show that {maxp<s<n | Xprsl, n >
1} is u.i. since

OIQS%)%{ an+sAn+s| S Cl Uréls%)z( an+sl'
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By noting that

max [Xops| = max [Xop, +1-1]

< max | X, — 1] +1,
0<s<n

it suffices to show that {maxo<,q, |[Xnys —1|} is w.i.. This follows from Lemma

A.6 by noting that

P{org;gf | Xpps — 1] > l}
< P{Or?% (n+8)|[Xpgs — 1] > n:c}

< P{()gls%)é s| X, — 1] > nx}

< <_1->a E (QnIin — 1|>a < Mz™,

T \nz

where o > 2 and M > 0 are constants.
Theorem 2.1 Form > 1+42/k, k> 1, then

2
E(TG):nO+P+ZO_E+O(1) as ng — 00,

2

where ng = d~2~o? and

Ck+2 o1&

—_— e — p— 2 J——
p=—7 kn; nEmax (O,Xnk an).

Proof: Since T =t + 1, it suffices to show that

2
E(t):no—#p—}—lo—l—z—}—o(l) as ng — 00.

For this, we use Theorem A.3 in the appendix. We show that all the conditions
(A.3-A.9) hold. Let A, =9, h, =0, and V,, = &,, n > 1. Then (A.3-A.5) are

obviously true. Now, (A.8) is true since

£, 2

X;+(l—1l) asn — oo (by Lemma 2.4).

el s
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(A.6) is true by Lemma 2.9, and (A.9) is true by Lemma 2.6. Next, we show
that (A.7) holds, i.e.

> P{t, < —ne} < oo for some 0 < e < 1. (2.8)
n=1
By noting that X,, = 2 — U, /k, we have

P{{, < —ne}
- P{ (-Ll—n)g k(07 — k)2 (1 + —‘i—“) + ALK, < —ne}
< P{A, X, < —ne} i

_ P{nz—: 1A, < An%ﬁ}.

Since lim, . A, = 1—Ig, there are constants Cy and Cy such that —Cy < 2A,,,

ne — Cp > 0, and |A,| < Cy. Therefore for sufficiently large n

k
< P{]{?(HE — Co) < AnUn}

P{ne +2A, < Anﬁ}

< Plk(ne — Co) < |AL|UL}
ke —Co)

= P{_lAn| < Un}
k(ne — Cp)

<P
=75

< Un}.
Now,

P{_n>k_(n_€_—g92} < knP{X%>k(nSO:CO)}

k(ne — Co)}
Cy
knyCy  iec)cy
\/ k(ne — Cop)
kn

_ —kne
= A—ee———m—nuc¢ t

k(ns - Oo)

_ knP{Z >
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where Z denotes a standard normal random variable, A = \/C, /24 ¢ =

€/2C}, and the second inequality follows from the well known inequality

oo 1
/ e du < Ze ¥ forall x> 0.
x X

Therefore (2.8) holds. By Lemma 2.3, £,,n > 1 are slowly changing. We have

therefore shown all the assumptions of Theorem A.3 hold, and so

2
E(Tg):no—#p—klo——l{?%—o(l) as ng — 0.
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2.2 Second order approximationto F [H <7 %)]

In this section we derive a second order expansion of I [H (7%—)] First, we

establish some properties of ¢ which will be used later.
Lemma 2.10 Jisgny 12 dP — 0 as ng — oo.

Proof: Denote Y =2, k,, = 2nZ, then

/ 2dp = / 12 dp
t>2n0 12>4r2)

= [ var
Y>2k,
< 2 (Y — ky, ) dP (since Y > 2k,, =Y <2(Y — ky, )
Y2k,
< 2f  (Vki) P (since {Y > 2k, ) C{Y > k)
Yk,
=2 3 / (Y — k) dP
n=(ing1) © Y
= 2 S (n—ky)P{Y =n)
n={kny+1)
= 2 Y P{Y>n}
n={kng)
= 2 > P{t>n}
n={kng )}
< 2 Y P> (vm)}
7={king )

Let 0 < e < 1—1/v/2, 6 > 0 be so small that ¢ +§ < 1 — 1//2, and
H,, =no/(1 —(e+6)). Since

2
by =202 > [ ——2 ) = H?
’ ”°>(1—<e+6>)

we have

Y PSR €S Pl (vA))

n={kaq) 77:(&30)

i 3rP{t > rj}.

r={Hh )

IA
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Note that

t > r implies S, + £ < ng,

and so
P{t>r} < P{S: + & < nol.
For r > (H,,), we have r > ngo/(1 — (¢ + 6)) and so ng —r < —r(e + 9).

Consequently we have for r > (H,, )

P{t>r} < P{S,+& —r<ng—r},

IN

P{S, +¢& —r < —re —rb}
< P{S, —r+7r§ <0} + P{& < —re},

which is independent of ny > 0. From the proof of Theorem 2.1, we have

S, rP{¢ < —re} < co. Also note

rP{S, —r+r6 <0} = TP{QT—%ZUZ'—TS —7“5}

=1

= TP{{:ZUz—TZT(S}
=1

> 7“6}

—-T

VAN
=
g
—
Coal M
=

|

<

(by Markov’s inequality)

AN
.
3|
|
™

<

=1
23 Eizz:l Uz — k’T 6
7«266k3 \/%
C

5
7"2

< (by Theorem A.1)

and so >0, rP{S, —r + 16 <0} < co. We therefore have

/ 2dP < 6 > rP{t>r}
t>2n9 T:(Hn0>

< 6 Y, rP{&<-rel+6 > rP{S, —r+4r§ <0}

r=(th,) r=(Hn )

= o(l) asng— oo.

This finishes the proof.




Lemma 2.11 Let t* = (t — ng)/\/no, then
/ t2dP -0 asng— 00 .
>2np

Proof: Note that

1
/ P2 gp = — 24P — 2 t dP + no dP
t>2n9 g Jt>2ng t>2ng 1>2mg
< L t2 dP + no dP
no Jt>2n t>2m0
1 ) 1
< — t2dP + = t dP
110 Jt>2n0 2 Jisong
1 1
< — t2dP 4 = t* dP,
no Ji2n 2 Jtsang

from which the lemma follows by using Lemma 2.10.
Lemma 2.12 [fm > 1+ 2/k, then
/ 2 dP -0 asng — oo.
t<o/2

Proof: Note that

2
/ 2 4p S/ (zﬂ;) Jp
<o /2 t<ro/2 vars
9

= oo ap
4 1< /2
o
2
~  Cimm) n(l)—l”(m—l)/2 ,  (by Corollary 2.1)

9
= —-noP{t <
4710{_

which goes to zero as ng — oo for m > 14 2/k.
Corollary 2.2 If m > 1+ 2/k, then

Tr — 1a)2
/ Mdp—)() as ng — oo.
T<ng /2 )

Corollary 2.3 Ifm > 1+2/k, then {t*QItgno/z , ng > 2} and {t*2]t>2,70 , ng >
l} are u.1..
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Proof: Note that E

2 Ly f2 ‘ < 00 since figp £ dP — 0 as ng — oo
by Lemma 2.12. The u.i. of {t*ZItSm/g , Mg > 2} now follows directly from
Lemma A.14 by letting X = 0 and p = 1. A similar argument shows that

{t*2ft>2no , Ny > 1} is u.i..
Lemma 2.13 If m > 1+ 2/k, then {t*,no > 1} is w.i..

Proof: +*? can be written as

2 = 2 lgnpy + P ooy 1 pom) -

By Corollary 2.3, {t*QI{tSnO/Z} } and {t*QI{DznO} } are u... So it remains to
show {t*QI{no/k@m} } is u.i.. By using Lemma A.6, it suffices to show that
there is a function J for which zJ(z) is integrable with respect to Lebesgue

measure over (1,00), and
Ny *
P{E <t < 2mo, |t ;>x} < J(2).
Note that
P{%E <t < 2ng, ] > z}
< P{t > —T;—O < —g} 4 P{t < 2ng, t* > x}

and we shall consider these two probabilities separately.
For the first probability, since t > ng/2 and t* < —z imply that z < |/rg/2,
then

2
For 1 <z < /ng/2, t > no/2 and t* < —z, l.e. ng/2 <t < ng — x/No,

P{t>zl—0, t*<—;l:}:0 for:czl@.

we have Z; > ng for some j € (no/2,n0 — \/noz], i.e. U; < k(j + 1)/(noljy1)
for some j € (no/2,n0 — \/noz]. For sufficiently large = and ng, and j €
(no/2,ng — Vo), we have

S ES 1

noljty no 1+ (/(7+1)+0(l/(j +1)))
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_ j;” (L=1lo/(G+ 1)+ 0o(1/(j +1)))

0

- nio<j+1—zo+o<1>>

1
< n—(n0+1—x\/n — o+ o(1))
0
x 1
= 1- —(1 =1 1
=t el bt ol1)
< _ " .
- 2./ng
Also note that
kx.\/ng
k<< ——— ~ k> ——= Ui — k| > —Y—
U; < 5 :»|U |> :>y] | > YR

for j > ng/2. Consequently

P{f > %Q, "< —r}

:P{%<t<no— nox}

< P{Uj < ko +1) for some j € (ng/2,n0 — \/n—ox]}
nolj

_<_P{ j<k(1—25n_0) for somejE(nO/Z,no—\/%x]}

< P{j|l_]j — k| > kle/% for some j € (no/2,n0 — \/n_ow]}

< Pymaxj|U; — k| > %ﬂ}

I
44
< — /nOlU — k[* dP  (by Theorem A.2)
xin
11245 no 7. _ 4
S l\/ 4: / ZZ:l UZ knO dP
xt v2kng

< Cz™ (by Theorem A.1)

where (' is a constant.
Next, we show that P{t < 2ng, ¢* > 2} < Ca™ for sufficiently large

and ng. Since t < 2ngy and t* > z imply that z < |/ng, and so
P{t <2ng, ">z} =0 for x > /no.
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For1 <z < /ng, t < 2ng and t* > x we have ng + x,/ng < t < 2ng and so
Z; <ngVj < ng+x,/ng. Thisimplies that for j € (no + x\/no/2,n0 + x,/ng),

and for sufficiently large = and ng, we have

_ ) 1
0 > k(j+1)

noljt1

= %(j-{-l—lo%—o(l))
S )

o

>k—+—k$—kx:k

kx
2y/no 4o W

Also note that

= |0, — k] > P/

4\/_
for j € <n0 + x\/ng/2,n0 + :E\/n_o) . Therefore for sufficiently large = and ng

P{t < 2n0,t* > ZZI} = P{no—i—x\/no <t S 2n0}
- kx\/

< P{maleUj — k| > M},
J<2no 4

and a similar argument as above shows that P{t < 2ng,t* > z} < Ca™
Now if we let J(z) = Cz™ then aJ(z) = Cz™ is integrable with respect to

Lebesgue measure over (1, 00). This finishes the proof.
Corollary 2.4 Ifm > 1+ 2/k, then

T n‘)
G . .
> 1 cbos

Proof: The corollary follows by noting that
(TG —710)2 B (t—n0)2 n 1 n 2 (t—no)
A/ Mo \/ o o VAL £/ 1o ’
and the facts that {t**,nq > 1} is w.i. by Lemma 2.13, {(t — no)/\/no} is w.i.
by part (I) of Lemma A.7 and 1/ng is bounded.
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Lemma 2.14 Suppose that
(i) K(z) is a real valued continuous function and |K(z)| < Cz™ for constants
C'>0,a>0and all z >0,
(i) m>2/k)(a+1)+1,
(iii) W is a positive random variable such that
min{@, &(9 <1 + —C—l—>2} <W <L max{ﬂ, &9 (1 + ﬁ>2} w.p. 1
no Ta N Tc

where C; > 0 and 0 > 0 are constants. Then, we have

E{K(W) (% (1 4 %)2 - 1)2} - 22—1((0) +o <i> a5 np — 0.

Proof: Let

2

U = K(W)(TG ( ¢y

Vs ) i)

_ K(W)[(TG _n°)2 + 7%2 (%H)Z + f/i_lo (Tci/;;o) (—TC—; +2)]

and

V= K(W) (TG _ ”0>2.

A/ 1o

First we shall show F(V) — (2/k)K(8) as ng — oo. Noting that W is an
intermediate value between %9 (1 + %)2 and f, and %gi (1 + %)2 —~ 1 w.p.l
as ng — oo by Lemma A.8, so, W — 6 w.p.1 as ng — oo and K(W) — K(6)
w.p.1 as ng — oco. By Lemma A.11, ((TG —ng)/, /no)2 B (2/k)x2. Then the
asymptotic distribution of V' is (2/k)K(0)x3.

Now, let A = {%— > %}, on the event A, Tz > ng/2 and so

Ta 0
—0 > —.
o o 2

So, on event A, /2 < W and |[K(W)] < CW— < Cof™, i.e. K(W) is
bounded on A, |K(W)| < M say, where M is a constant. Hence {V 14} is u.i.

since

VIg < M((Te —no)/ /o),
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and {((TG — no)/\/n_0>2} is u.i. by Corollary 2.4. Also noting that VI, 2
(2/k)K(0)x?, we have

. 2 o

lim E(VI) = E [EA(())XI]

ng—+ 0o

by Lemma A.12.
Next, we show that the expectation of V' on A° goes to zero as ng — oo.

For this we note that on event A® and for sufficient large ng, we have

K(W)| < CW=,

T, 1 T 2
T —1<—G(1+ﬁ) ~1<0
Mo 2 Mo TG
B (irgt) —ilmi- e )
Gl ) =1 -G e 2
= 4 +TG o +TG’ ’
2 2
10— W] 9&<1+—CL> —1':9(1——G<1+ﬁ)>
0 G no Tq

Then

E(VIe) = E[K(W) (TG\/__"(’)QJAC

2\ —& 2
< oof (Z(+9)) (o) an
Ac 0 G 0

< C 713“ dP
A

= COn{t'P(Te < ny/2)

= CCim) ng“na}dm_l)/? , (by Corollary 2.1)
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which goes to zero as ng — oo, since m > (2/k)(a + 1) + 1. Combining the

two cases we have shown that E(V) — (2/k)K(8) as ng — oo. Similarly, we

can show
2 2
E[K(W)—C—l— (ﬁ + 2) ] =0 <i>
ng G no
and
i 201 Te —ng Cl !
[k (L 22)] -0 (L)

() (3 N

Therefore

This completes the proof.
Lemma 2.15 For T define in (2.1) and m > 1+ 2/k, we have
E(L):—l——#o(—}—) as ng — 0Q.
Ta ng no
Proof: Let A = {Z= > 1} then
ng 2
L 1 (no)
Te  no \Tg

al(F) + (7))
= I '_] ‘—‘]c
no[(TG A)t Te “ )P

1 1 no)
E(=—) = —E(=2
(%) = »E
1 ng ) (no )
= -_— E —_— _] c .

no[ (TG]A +E TG A

Note that by Lemma A.8 7= — 1 w.p.l as ng — o0, also on event A, {%é—} is

and

u.i. so, by Lemma A.12

E(E—]A> — 1 as ng — 00.
T

Also note

E(EJAC) < ny [ dP

Ac
No

= nob (TG = 7)

= o(l) (by Corollary 2.1).
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It follows therefore

()=o)
El—)=—+40o|— as ng — 00.
TG Mo o

Theorem 2.2 Suppose that H(zx) is a real valued function of x > 0 such that
H"(z) is a continvous function and |H"(z)| < Cz™, where C >0 and 3 >0
are constants. If m > (2/k)(B+ 1)+ 1, then
2
(G 0 2))
o TG
= H(0) + iH’(G) ( + 1y — 2 +2C ) + L(92H”(0) + <L>
N no po k ! kng ¢ ng

where C7 > 0 and 6 > 0 are constants.

Proof: We expand H(-) in a Taylor series about 6 to get

E [H (%9 (l + %)QH

To . [ Ci\? 1 Ts ciN: o\
— B H0)+ (0 ——0(1 —) —9) 4+ 2H" —9(1 —>— ,
0+ 10 (20 (14 1) <o) gy (T (14 £1) 0
where
2
10— W| < &a(uﬁ) —9{.
no TG
So

g Ta ng T

2 2
H' (W) (i—j (1 4 %) - 1)

0 2
= HO)+ —HO)(p+1lo——+2Cy)
o k

. 2 2
H"(W) (f;j <1 + —%) —~ 1)

since (1/no)E(1/Ts) = o(1/n0) as ng — oo by Lemma 2.15 and E(Tg —ng) =
p+1lo—2/k+0(1) by Theorem 2.1. By Lemma 2.14 we have

H'(W) (E (1 + 9—)2 - 1)2} — —Q—H”(ﬂ) +o <i> as ng — 0o

Un) TG ]CTL() Vi)

o [H (Iﬁa (1 + ﬁf)] — 1)+ e ((TG o) + 201 + C—%)

2

0
-y
3

92
+5E

+ Lo1),

20!

E

and so the result follows.
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Theorem 2.3 Suppose that H(z) is a real valued function of @ > 0 such that
H"(x) is a continuous function and |H'(z)| < Ayz™ and |H"(z)| < Aja™,

where Ay, Ay and o are positive constants. If m > (1/k)(a+5) + 1, then

ol ()" (0 (- )

I 1 2
_ H(Co— C) = —H (Ci - cl){clcg— S (Co—C1) <p+10_ %)

Co—C)} 4 7 (Co = O B (Co = C) + 0 (=) an—o

4k ( 4kng

where Cy > C and Cy are given positive constants.
Proof: Let M(2) = H(a\/z). Expanding M(z) about 1 gives
' 1 "
M(z)y=MQ1Q)+ (z —1)M (1) + —2—(:17 —~1)2M(V),

where V is an intermediate value between z and 1. Let a = Cy — (] (1 + %)

and z = %— and since M(1) = H(a) and M'(1) = (a/2)H (a), we have

el ((G2)" (coen (i 52)) ) = el (cn- - 2]

o CiOsN o L0
58y =) (e (e )

+%E[<& - 1) () (2.9)

g

Now, we find the first expectation on the right hand side of (2.9). For this we
expand H (Co —Ch - QlT%) in a Taylor series about (Cy — Cy) to get

E[H (CO 0 - Clc'z)
Ta

CiCy c.C
102 47 (Co—C1) + ( 1T2)
G G

_ E[H(Co —Cy) - H"(Wy )]

where W, is an intermediate value between Cy — € and Cy — C; — %%— By

Lemma 2.15 we have

H' (Co — cl)} — O;CQH' (Co—Ch) +o <i> as np — 00,
0 ng

E[0102
G
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By an argument similar to that used in the proof of Lemma 2.14, we can show

1
=0<—— as ng — oC.
no

1
E|H"(W,)—
. (IQ

So, we have

E[H (Co —Ci = C%Czﬂ = H(Co—C)— ClCQ (Cg — Cy)+o <rj ) as ng — 00.
0

e} o

Next, we evaluate the second expectation on the right hand side of (2.9):

() (o1 G2 (- 92

2 \ng G Ta
T C.C
_E[Qf—g(o—a) Q%—a—,iﬂ
T, CiCy a@”
_E[2<no—ﬂ) Te O%"Cl_ 1w
= F1 - F2. (2.10)

We have

El = ELC@—QM%~CQ «%—aﬂ

2 \ng
[< )Cw4g<y<%—cr_%?)_ﬂwg—cnﬂ
_E{Q (i_j_l) (Co ) (W) 2],

where W, is an intermediate value between Cy — € and Cy — C; — —1T—-— Same

as before, we can show

E[(TE—1> 1}:o<i> as ng — o0
No TG Mo
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A similar argument establishes that

N (Te GG ( B _C@)}
E2 o E[2 <7’Lo 1) TG H OO Cl TG
L (Te NG (s _0102)_ o >]
_ E[2(n0 1) - (H (Co Oy 2 ) = H'(Co = C)
+E{l <—T—G. — 1) CICQH/ (Co — 01):‘
5 Ta

g

1
:0<— as ng — o0,
g

Finally, the third expectation on the right hand side of (2.9) is given by

el ()]

no
R To—no\" ( Co—Cy—CiCy/Tg (( clc'2> />
_SnOE[( = ) {_ o 1 ((Co— = =2 ) WV
2 Y
O GBI (¢, ¢, - GZ) 7)),

G

By an argument similar to that used in the proof of Lemma 2.14, we can show

2

%)
2 g

——-(CO — C1) (——HI (Co—Cy) 4+ (Co— Cy)H" (Co — Cl)) + o0 (‘1—> as no — 0.
4]6710

U

Putting these together gets the theorem.
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2.3 Exact calculations of E(T;) and E [H <7—%)]

In this section, we evaluate the exact distribution of the ¢ in (2.11) for small and

moderate values of ng, by using a recursive method. Such a recursive comput-

ing method was used, for example, by Armitage et al. (1969), McPherson and

Armitage (1971) and by Jennison and Turnbull (1991). We set [,, = 1 + ly/n.
From (2.4) and (2.5), we have that T =t + 1 where

3 2
t = inf{n2m~1 : U1+U2+---—|-URSM}

’7[714-10'2

1

= inf{n2m~1 : U1+U2+...+Un§kn(n+ )}
1ol

where mg =m —1, S, =U; + Uy + -+ + U,, U, Us, ... are independent x?

random variables, and

kn(n+1)
C, = — "
no (1+ 5)
If we define
Ro ()= fo (2), (2.12)

k mg

where fiz (-) denotes a pdf of the x2 and
{
Rn<x) = dL'P{SmO > Cmo 5T '7Sn—1 > On—l 7Sn S CB}, n _>_ mo + 17 (213)
x
then we have the following result.

Lemma 2.16 Forn > mqg

Bui(o) = [ Ru(y)fg(e—y) dy. (2.14)

‘T

Proof: By the definitions of R,(z), we have

R”’*'l(g:) = P{Smo >Cmo?"'7‘s’n—1 > Cvn—175n>cn75n+1 :T}
= /OOP{Smo >Cm07"'75n—1 >Cn—175n:y}x

n
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P{Sn+1:$|5'mo >C7710»"'>Sn—1 >Cn—175n:y} dy
= [ R)P{y + Vs =2} dy

= [ R)ig e~ v) d.

as required.

Note that P{t > mg — 1} =1, and
P{t>n+1} = /C Ru1(y) dy, n>mo— 1, (2.15)
41
since {t >n+1} ={Sn, > Cny, 1 > Cry1}. So

E(Tg) = 1+E(t>
= 14 i nP(t =n)

n=mgao

= 14 i n[P(t>n—1)— P(t > n)|. (2.16)

R,1(2) can thus be calculated recursively. The basic method is to evaluate
the right hand side of (2.14) at points on a grid of width A, i.e. for z =
Cn,Cn+ h,Cp + 2h,---,C, + lh, where [ is chosen such that R,11(C, + (k)
is sufficiently small (here we choose [ for which R,y1(C, + [h) < 5 x 107%);
R.+1(z) is approximated by linear interpolation for = € [C,,,C, + [h], and
approximated by zero for z > C, + (h. From (2.15), P{t > n + 1} is then

approximated by f&:ﬁ“h R,1(y) dy. This recursive calculation stops at some

ro such that P{t > ro} is sufficiently small. From (2.16) the F(T¢) can thus

be calculated by a finite summations which sum from n = mg until n = rg.
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Chapter 3

The constructions of
fixed-width confidence
intervales for multiple

comparisons

46




3.1 Fixed-width simultaneous confidence in-
tervals for the means of several indepen-

dent normal populations

3.1.1 Introduction

Suppose we have k independently and normally distributed populations N(g;,0?), i =
1,2, -,k with unknown g;, —0o < p; < oo, and a common unknown positive
variance o2, Assume we can sample sequentially from each population and that
Yi1, Yo, Yis, - - - denote the observations from the %" population, ¢ = 1,2,---, k.
In this section we construct a set of fixed-width 2d simultaneous confidence

intervals for the means y; of the form

with a (nominal) confidence level 1 — «, where Y; is the sample mean of a
sample taken from the :** population, and d > 0 and 0 < o < 1 are two given
constants.

Let Zy,Zy,- -+, Zi, be 1.i.d. N(0,1) random variables, and let 2 be a chi-
square random variable with v degrees of freedom which is independent of

Ly, Ly, -+, Zy. The distribution of

maxi <<k |Zl|
VXY

is called the studentised maximum modulus distribution with parameters k

|A4‘k,u =

and v. If v = oo then x% /oo = 1 and hence the distribution of | M| is the
same as

Ml = max | Z].

Let |m|2, denote the upper « point of the studentised maximum modulus



distribution with parameters £ and v, i.e.
P{Me, <Imlg,}=1-o.

Values of |m|, for some combinations of o, k and v can be found in Hahn
and Hendrickson (1971).
Suppose a sample of fixed size n is taken from each of the £ populations

and let 62 be the pooled sample variance given by

1 kL _
Frm S S (Vi = Vi)t 0 > 2
-1 & 25
then
ma { Yo = 1l
1<i<k Op

has a studentised maximum modulus distribution with parameters k& and v =

k(n —1). Therefore

P ( \/ﬁ(lftn _Nl)

T
which can be written as

\/ﬁ (Ykn - Hk)

~

< |7nlz,u7' !
n

< ]m|zy) =1—«

o _ 0
—= < fy < Yin + |7n|z,u_—

v Vo

A set of simultaneous confidence intervals for y; with confidence level 1 — « 1s

P{Ym—|mtzy 1§i§k}:1—a.

therefore given by

A~ ~

\/ o« 9n 7 o 9n ;
1 € Ym—|m\k’yﬁ, )in+|m$k,v\/—ﬁ , 1=1,2,-- k. (3.1)

This set of confidence intervals was proposed by Tukey (1952b, 1953).

As we can see, the length of these confidence intervals, 2|m|},&,/\/n, is

2 2

a random number since ¢ is unknown and so v < oo. In fact, when o* is

unknown, it is necessary to use a sequential procedure to construct a set of

fixed-width 2d simultaneous confidence intervals for the means y; of the form
ti € (Y;—d, YHLCZ), i=1,2,- k.
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A two-stage procedure based on Stein’s (1945) result was proposed by Healy
(1956). Here we propose a pure sequential procedure. To appreciate the
definition of this pure sequential procedure, we first look at the construction
of a set of fixed-width 2d simultaneous confidence intervals for the means y;

when o2

is assumed to be a known constant.
Had o2 been known, the set of 1 — «a level confidence intervals in (3.1)

becomes

Ui € (Ym - |m|z—\;%, Yin + |m\z%> , =12, k.
In order that the width of these confidence intervals is at most 2d, the sample
size n from each of the k populations should satisfy |m|¢o/\/n < d, which
implies that
n > d2(|m|%)%0. (3.2)

That is, when o2 is known, we take a sample of size n from each of the k
populations where n satisfies (3.2), and then construct a set of simultaneous

confidence intervals for the p; as
pi € (Yin—d, En+(l), i=1,2,---,k.

This set of confidence intervals has width 2d and confidence level at least 1 — .

Now consider our problem in which ¢? is unknown and so the right side of
(3.2) can not be calculated explicitly. A reasonable sample size formula would
be similar to (3.2) but with o? replaced by some estimate. Precisely, we take
the same number of observations, n, from each of the k populations, starting

with m, increasing by one at a time, until
T=inf{n>m: n>d? (jm2) .6.°}, (3.3)

where m > 2 is the initial sample size from each population and 1, = 1+ L1l +

o(L) as n — oo. On stopping sampling the set of simultaneous confidence
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intervals for y; is defined as
i GIZ(T):<Y/;T—d) }_/;T—}—d% 2:1727,]{:

Next we show that the confidence level of this set of confidence intervals is

approximately equal 1 — «.
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3.1.2 Second order approximations to the expected

sample size and the confidence level

As the stopping time 7" defined in (3.3) is of the same form as the stopping
time in (2.1) with v = (|m|¢)?, the following theorem follows directly from

Theorem 2.1.

Theorem 3.1 Fork >1 and m > 1+ 2/k, we have

E(T):a+p+lo—%+0(l) as a — oo,

where a = d72 (|m|¢)%c?.

It is noteworthy that a is the right side of (3.2), which can be regarded as
the optimal sample size had ¢? been known. Form Theorem 3.1 the difference

between the expected sample size of the pure sequential procedure and the

2

7, a constant, at least for large a.

optimal sample size a is about p 4 [y —
In order to deriving the second order approximation to the confidence level,

we need the following lemmas.

Lemma 3.1 For given a > 0,

Pl € L(T),- s € (T)} = E [qﬂf ((1m|g)2 ;)] ,
where U(z) = 20(y/z) — 1 and a = 7% (|m|¢)*c*.
Proof: We have

P{uy € I(T),- -, € I(T)}

:P{Y/lT_d</U’1<Y/lT+d7a?}cT_d<;uk<Y/kT+d}
=S PVir—d<p <Yir+d, - Yig ~d < pp < Yig +d|T =n}P{T =n}

n=m

= ZP{Yin—d<,U1 <§71n+d,---,3_/m—d<pk<Y;m+d|T:n}P{T:n}

n—=m

= Z P{Yi, —d<p <Y, +d- Y, —d< p <Yy +d}P{T =n},

n=m
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where the last equation follows from Lemma 2.2. The lemma now follows by
noting that
P{Yin —d <ju <Yip+d,- o, Vi —d < pip < Y + d}

= P{Vin — | < d,- - Vi — | < d}
- [ia< 22

g

oo (22) - 1r
o ()
= v () 2)

where Z is a standard normal random variable.

Lemma 3.2 Let ¥U(z) = 20(\/z) — | and h(z) = U*(x). Then

I U"(x) is an increasing function of v € (0,00).

I There is a constant C' for which |¥"(z)] < Cz3? for all 2 > 0.
III  There is a constant C for which (V(z))? < Cz™ for all z > 0.
IV There is a constant C for which |h"(z)| < Ca®H72 for all > 0.

Proof: We have

\I//(’L) = \/ﬁe—mh ’
U(z) = -3 12 e~ (—1— + 1) )
2N 2wz T

" . 1 —zf2 l 2 _2_
U (x) = 4\/2_6 x+1 +x2 > 0,
TT

from which the results I, II and III follow directly.

To prove (IV), we note that for z > 0

U(z) = 29(Vz)—1




where B i1s a constant and so

p"(2)] = 176(16 — DU (o) (V'(2))” + £ (2) 9" (2)

IN

(= )2 (@) (W ()| + [0 (2)0(a)

(k=2)/2 -1 (k—1)/2 . —3/2
Az 7 + Aoz T
= (g2

IN

9

where A;, A, and (' are constants, as required.
Now we are ready to give the second order approximation to the confidence

level.

Theorem 3.2 Suppose thatm > 1 if k>4 andm > 14 (6—k)/k if k = 2,3,
then
Pl € L(T), s € I(T)}
=1 —at o[ (R # (i) (o410 - 7)
(i) B () | +0(5).
where h(z) = W(z), and W(z) = 20(/z) — 1.
Proof: It follows immediately from Lemma 3.1, part IV of Lemma 3.2 and

Theorem 2.2 with § = (|m|2)*, C1 = 0 and ng = a.
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3.1.3 Calculations of the approximate values of the ex-

pected sample size and the confidence level

In this subsection we calculate the approximate values of the E(T') and CL.

First, we calculate the values of

F+2 181 ,
p=plk)= Y '];n; gEmaX <07Xnk - QTLk>7
which is required in Theorem 3.1, for £ = 1(1) 20. By noting that

F max (0,Xik — an) = /2 ok (X%, — 2nk) dP
Xnk

* 1 K2 —of2
= e e d
/M o2 T(nk/2) O
0 1
—2nk P 2 gy

amk 2752 T(nk/2)

wnk/? e—x/2 dz

o 1
g
" Jouk R T(T + nk/2)

oo 1 :
—onk nkf2—1 —x/2 d
" o 2% T(kf2) ¢

and using Q(c, z) to denote the incomplete gamma function [° ¢t e dt/I'(c),

p= k;kz_i[cg (”k;Q,nk) — 20 (%ﬁnkﬂ (3.4)

The values of p(k) for k = 1(1) 20 are given in Table 3.1. These are calcu-

then

lated from (3.4) by using the NAG routine S14BAT for the incomplete gamma
function Q(-,-) and keeping only those terms having magnitude > 10719 in the
sum.

From Theorem 3.2 it can be seen that the value of {; can be chosen to

satisfy
. o 2 1 a4 o
() 0 ((ml2)?) (o + 1o = 2 ) + 7 (ml)* B ((fmlz)?) = 0
so that the C'L is equal to 1 — a + o(1/a). This Iy = lp(k, @) is given by
1 [ (Imlg)* b ((lml%f)}
lo=—+|2- > — P,
W ((mlz)?)

k
54
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Table 3.1: p = p(k)

110817 | 8 | 0.608 15| 0. 564

0.745 1 9 10.598 | 16 | 0.560

0.701 | 10 | 0.590 | 17 | 0.557

0.671 | 11 |1 0.583 | 18 | 0.554

0.649 | 12 | 0.577 | 19 | 0.551

0.632 | 13 | 0.572 | 20 | 0.549

1| O W N

0.618 | 14 | 0.568

where h'(z) = kU ()0 (2), B"(2) = k(k—=1)TF2 (z) (V' (2))* +ETF (2)0"(z)
and ¥(z) = 20(y/z) — 1. In order to calculate lo(k, ) I have calculated the
values of |m|g for & = 0.1,0.05,0.01 and k = 1(1) 20 and they are given in
Table 3.2. The value of lo(k,a) can be easily calculated from (3.5) and the
results for a = 0.1,0.05,0.01 and k£ = 1(1) 20 are given in Table 3.3.

From Theorem 2.1, the approximate value of E(T') is
a+p+lo—2/k.

This approximate value corresponding to lg = lo(k, @), is given in Tables 3.4

and 3.5.
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Table 3.2: |m|§

E\a| 01 | 005 | 0.01
1 | 1.645 | 1.960 | 2.576
2 |1.948 | 2.236 | 2.806
3 | 2.114 | 2.387 | 2.934
4 | 2.226 | 2.490 | 3.022
5 |2.310 | 2.568 | 3.089
6 |2.378 | 2.631 | 3.142
7 2433|2682 | 3.187
8 | 2481 | 2.727 | 3.225
9 |2.522 2765 | 3.259
10 | 2.559 | 2.799 | 3.289
11 |2.592 | 2.830 | 3.315
12 | 2.622 | 2.857 | 3.340
13 | 2.649 | 2.883 | 3.362
14 |2.673 | 2.906 | 3.382
15 | 2.696 | 2.927 | 3.401
16 | 2.718 | 2.947 | 3.419
17 | 2.738 | 2.966 | 3.435
18 | 2.756 | 2.983 | 3.451
19 | 2.774 | 3.000 | 3.465
20 |2.791 | 3.016 | 3.479
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Table 3.3: Iy = lo(k, @)

E\a| 01 | 0.05 | 0.01
1 |3.0356 | 3.874 | 5.463
2 | 1.393 | 1.717 | 2.462
3 | 0.814 | 1.044 | 1.556
4 | 0515 | 0.695 | 1.085
5 | 0.332 | 0.479 | 0.796
6 | 0.207 | 0.333 | 0.599
7 | 0.117 | 0.227 | 0.457
8 | 0.049 | 0.146 | 0.349
9 | -0.004 | 0.082 | 0.263
10 | -0.048 | 0.031 | 0.195
11 | -0.083 |-0.011 | 0.138
12 | -0.114 | -0.046 | 0.090
13 | -0.139 | -0.077 | 0.050
14 |-0.162 | -0.103 | 0.015
15 | -0.181 | -0.126 | -0.015
16 | -0.198 | -0.147 | -0.042
17 | -0.213 | -0.165 | -0.066
18 | -0.227 | -0.181 | -0.087
19 | -0.239 | -0.195 | -0.107
20 | -0.251 |-0.208 | -0.124
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3.1.4 [Exact calculations of the expected sample size

and the confidence level

In this subsection, we evaluate, by using a recursive method, the exact distri-
bution of 1" and hence the exact values of E(T) and C'L. Let t =T — 1. Then

from the Lemma 2.16 and the argument after Lemma 2.16, we have

Bun(@) = [ Ru(y)fg (e —y) dy (3.6)
and
P{t>n+1}:/oo Ry (y) dy, n > mg— 1, (3.7)
Cn+1
where
C = kn(n + 1)
a (1+35)
and the value of [y is given in Table 3.3. Consequently
TY=1+ > n[P(t>n—1)—P(t > n)] (3.8)

and

o= )

= % Pe=mph ((mf)

n=mqg

n+1)

o0

I
M

P(t>n—1)— P(t>n)h ((|m|z)2 n Z 1) 3.9

=10

where h(x) = U*(z) and ¥(z) = 2®(\/z) — 1. Now the functions R, (-) and
thus E(T) and C'L, can be calculated in the way discussed after Lemma 2.16.

The results of this calculation are given in Subsection 3.1.5 and were based
on a grid of equal width A = 0.1. Calculations based on h = 0.2 and A = 0.05
gave values of the C'L differing at the most in the fourth decimal place from
those based on h = 0.1. Simulations on E(T') and CL were also carried out

based on 6,000 experiments and some of the results are given in Table 3.6.
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3.1.5 Some comparisons

In this subsection, we compare the second order approximations with the exact
calculations of the E(T') and the C'L. Throughout, the value of [y is given by
ly = lo(k,a). From these comparisons we can see when the second order
approximations are reasonably accurate.

Firstly, we look at the confidence level C'L. The confidence level is equal to
1 — « (nominal level) plus an error term of order o(1/a) as a — oo and so the
approximate is 1 —a . The true value of the confidence level, however, depends
on a,i.e. CL =CL(a). Form =2,k = 3,7,10, and 1 — a = 90%,99%, the
exact calculation results of CL(a) at @ = 5(5)60 are linearly plotted in Figure
1. Figure 2 gives the similar plots for m = 10 and a = 15(5)60. From Figures
1 and 2 it can be seen that C'L(a) is generally closer to the nominal level 1 — o
for: (i) larger a; (ii) larger k; (iii) larger nominal level 1 — a; (iv) larger initial
sample size m.

Next, we look at the expected sample size E(T). When «a is large, the
approximation to E(T)is a+ p + lp — 2/k. For m = 2, k = 3, 7, 10, and
1—a = 90%, 99%, Table 3.4 contains the exact values of E(1") calculated using
the recursive method and the approximate values of F(T') at « = 5(5)60. Table
3.5 contains the similar results for m = 10 and a = 15(5)60. From Tables 3.4
and 3.5 it can be seen that the approximate value of £(T') are generally closer
to the value of E(T) for: (i) large «; (ii) large k; (iii) large initial sample size m.
The exact calculations of the £(T') and the C'L become quite computationally
intensive for a > 60. However, when a > 60 the approximations are very good,
as can be seen from the results given in this subsection. So approximated
results can be used in this case.

Generally, the values of k, a and d are given. However, we don’t know the
value of o?. In most situations we know a range in which &? falls in from

the prior knowledge. Consequently, we know the range for a = o?(|m|¢)?/d?.
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From this we can find the confidence level either by
(1) if @ is large, using the approximation, which is just the nominal level 1 —«,
or
(2) calculating C'L{a) for all the a in that range.

In particular, if we are free to choose the initial sample size m then we
can bring the true confidence level closer to the nominal level by choosing a

suitable value of m.
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Table 3.4: Comparisons between the exact and approrimate values
of E(T) for m = 2 and given values of k,c and a

o =0.1

k= k= k=10

a | Exact | Appro. | Exact | Appro. | Exact | Appro.

10 | 10.0 10.8 10.7 10.4 10.3 10.3

15| 15.1 15.8 15.4 15.4 15.3 15.3

20 | 20.2 20.8 20.4 20.4 20.3 20.3

251 25.3 25.8 25.4 25.4 25.3 25.3

30 | 30.3 30.8 30.4 30.4 30.3 30.3

351 354 35.8 35.4 35.4 35.3 35.3

40 | 40.4 40.8 404 40.4 40.3 40.3

45 | 454 45.8 45.4 45.4 45.3 45.3

50 1 50.5 50.8 50.4 50.4 50.3 50.3

55 | 55.5 55.8 55.4 55.4 55.3 55.3

60 | 60.5 60.8 60.4 60.4 60.3 60.3
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Table 3.4:  Comparisons between the exact and approzimate values
of E(T) for m = 2 and given values of k, o and a

a = 0.01

k=3 k=7 k=10

a | Exact | Appro. | Exact | Appro. | Exact | Appro.

5 5.9 6.6 5.5 5.8 5.4 5.6

10| 10.8 11.6 10.6 10.8 10.5 10.6

15| 15.9 16.6 15.7 15.8 15.5 15.6

20 | 21.0 21.6 20.7 20.8 20.6 20.6

25| 26.1 26.6 25.7 25.8 25.6 25.6

30 | 31.2 31.6 30.7 30.8 30.6 30.6

35| 36.2 36.6 35.7 35.8 35.6 35.6

40 | 41.2 41.6 40.7 40.8 40.6 40.6

45 | 46.2 46.6 45.7 45.8 45.6 45.6

50 | 51.3 51.6 50.7 50.8 50.6 50.6

55 1 56.3 56.6 55.7 55.8 55.6 55.6

60 | 61.3 61.6 60.7 60.8 60.6 60.6
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Table 3.5: Comparisons between the exact and approximate values
of E(T) for m =10 and given values of k, o and a

a=0.1

k=3 k=1 k=10

a | Exact | Appro. | Exact | Appro. | Exact | Appro.

15| 15.8 15.8 15.4 15.4 15.3 15.3

20 | 20.7 20.8 20.4 204 20.3 20.3

25| 25.7 25.8 25.4 254 25.3 25.3

30 | 30.7 30.8 30.4 30.4 30.3 30.3

35| 35.8 35.8 35.4 35.4 35.3 35.3

40 | 40.8 40.8 40.4 40.4 40.3 40.3

45 1 45.8 45.8 45.4 45.4 45.3 45.3

50 | 50.8 50.8 50.4 50.4 50.3 50.3

55| 55.8 55.8 55.4 55.4 55.3 55.3

60 | 60.8 60.8 60.4 60.4 60.3 60.3
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Table 3.5:  Comparisons between the exact and approximate values
of E(T) for m =10 and given values of k,a and a

o= 0.01

=3 k=7 =10

a | Exact | Appro. | Exact | Appro. | Exact | Appro.

15 ] 16.4 16.6 15.7 15.8 15.6 15.6

20| 214 21.6 20.7 20.8 20.6 20.6

25 | 26.5 26.6 25.8 25.8 25.6 25.6

30 | 31.5 31.6 30.8 30.8 30.6 30.6

35| 36.5 36.6 35.8 35.8 35.6 35.6

40 | 41.5 41.6 40.8 40.8 40.6 40.6

45 ) 46.5 46.6 45.8 45.8 45.6 45.6

50 | 51.5 51.6 50.8 50.8 50.6 50.6

55 1 56.5 56.6 55.8 55.8 55.6 55.6

60 | 61.5 61.6 60.8 60.8 60.6 60.6
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Table 3.6: Comparisons between the exact and simulated values of
E(T) and CL for m =10 and k = 10 and given values of o and a

a=0.1

CrL E(T)

a | Exact | Simul. | Fxact | Simul.

151 0.898 | 0.902 | 15.3 15.3

20 | 0.899 | 0.897 | 20.3 20.4

251 0.899 | 0.892 | 25.3 25.3

30 | 0.899 | 0.901 | 30.3 30.3

351 0.899 | 0.898 | 35.3 35.3

40 | 0.900 | 0.898 | 40.3 40.3

451 0.900 | 0.893 | 45.3 45.3

50 1 0.900 | 0.904 | 50.3 50.3

55| 0.900 | 0.898 | 55.3 55.3

60 | 0.900 | 0.896 | 60.3 60.3
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Table 3.6:  Comparisons between the exact and simulated values of
E(T) and CL for m =10 and k = 10 and given values of o and a

a =0.01

CL E(T)

o | Exact | Simul. | Exact | Simul.

151 0.990 | 0.990 15.6 15.6

20 | 0.990 | 0.989 | 20.6 20.6

251 0.990 | 0.991 | 25.6 25.5

30 1 0.990 | 0.989 | 30.6 30.6

35 | 0.990 | 0.991 35.6 35.5

40 | 0.990 | 0.990 | 40.6 40.5

45 | 0.990 | 0.990 | 45.6 45.5

50 [ 0.990 | 0.991 50.6 50.6

55 | 0.980 | 0.990 | 55.6 55.6

60 | 0.980 | 0.991 | 60.6 60.6
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3.2 Fixed-width simultaneous confidence in-
tervals for comparing several treatments

with a control

3.2.1 Introduction

Suppose we have k independently and normally distributed populations N(u;,0?), ¢

1,2, -+, k with unknown p;, —oo < p; < 00, and a common unknown positive
variance o2 and that we can sample sequentially from each population. In this
section we construct a set of fixed-width 2d simultaneous confidence intervals
for
pi—m e (Yi—Yi—d, Yi-¥i+d), i=23k

with a (nominal) confidence level 1 — o, where d > 0 and 0 < o < 1 are
two given constants and Y; is the sample mean of a sample taken from the :**
population. The first population, N(u;,0?), may be regarded as a control
and the other k—1 (k > 2) populations as treatments. This set of confidence
intervals can therefore be used to compare the treatments with the control.

Let |T'|k-1, denote the random variable

Tlss = max 2221
LS VRN
where Zy,Z,,-++,Z; are ii.d. random variables and x2 is independent of

Zy, Za, -+, Zy. Suppose that [t|7_; , is the upper « point of the distribution
of [Ty, . The value of |t[7, , for some combinations of k¥ — 1, v and a can
be found in Bechhofer and Dunnett (1988). If v = oo we have
_ _ |Zi — 7]
Tl =Tl = mrax 2=t

Suppose a sample of fixed size n is taken from each of the & populations
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N(p;,0%), i =1,2,---,k. Let 62 be the pooled sample variance. Then
ITI&X{\/E}Y;% - Yin - (Ml - Ml)‘}
2<i<k &a\2
has the same distribution as |T'|y—, with v = k(n — 1) and so
p (=Y~ =)
&2

This can be written as

< [t 522,3’-“,19) =1-a.

P{Yin=Viu— [t Guy/2/n < pimpn < Yi—=Viu |t , 60y/2/n, 2 <0 < k}=1-a.

A set of simultaneous confidence intervals for the p; — p1 with confidence level
1 — « is thus given by

NG

V25,

Yo = Y+ 15, N

(3.10)
This set of confidence intervals was proposed by Dunnett (1955, 1964).

As can be seen, the length of these confidence intervals is 2|t[, , &4, 2/n,
which is a random number. As a matter of fact, in order to construct a set
of fixed-width 2d and (1 — «)-level simultaneous confidence intervals for the
w; — w1 when o? is unknown, it is necessary to use a sequential procedure.
A two-stage procedure based on Stein’s (1945) result was proposed by Tong
(1969). Here we suggest a pure sequential procedure. To see the motivation
behind the definition of this pure sequential procedure. Let us first look at
the construction of a set of fixed-width 2d simultaneous confidence intervals

2 is assumed to be a known constant.

for the y; — gy when o
Had o? been known, the set of 1 — « level confidence intervals in (3.10)

becomes

[Qﬁvﬁn—iﬂnﬂtiz_l @) 2 < i<k
Vn n

In order that the width of these confidence intervals is at most 2d, the sample

b e (y Y — 2

size n from each of the k populations should satisfy v/2|¢|3; o//n < d, which
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implies that
n > 2d72(|t|¢, )t (3.11)

That is, when o? is known, we take a sample of size n from each of the k
populations where n satisfies (3.11), and then construct a set of simultaneous

confidence intervals for the p; — uy as

This set of confidence intervals has width 2d and confidence level at least 1 —«.

Now consider our problem in which ¢? is unknown and so the right side
of (3.11) can not be calculated explicitly. A reasonable sample size formula
would be similar to (3.11) but with o? replaced by some estimate. Precisely,
we take the same number of observations, n, from each of the & populations,

starting with m, increasing by one at a time, until
. —2 o 2 A 2
T=inf{n>m: n>2d <|t[k_1) lnon}, (3.12)

where m > 2 is the initial sample size from each population and [, = 1 +
Ll + 0(%) as n — oo. On stopping sampling a set of simultaneous confidence

intervals for p; — pq 1s defined as
pi—p € L(T)=Yir —Yir—d, Yir ~Yir +d), 2<i<k

Next we show that the confidence level of this set of confidence intervals is

approximately equal 1 — a.
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3.2.2 Second order approximations to the expected

sample size and the confidence level

Applying the general results of Chapter 2, we can find the second order ap-
proximations to the expected sample size E(1') and confidence level C'L. By
noting that the stopping time 7" in (3.12) is of the same form as the stopping
time defined in (2.1) with v = 2(]¢|¢ )?, and so the following theorem follows
directly from Theorem 2.1.

Theorem 3.3 for k>1 and m > 1+ 2/k, we have
2
E(T):bﬁ—p—l—lo—z—l—o(l) as b — oo,
where b= 2d™2 (|t|¢; )20,

Note that b is the right side of (3.11), which can be regarded as the optimal
sample size had 0? been known. From Theorem 3.3, the difference between the
expected sample size of the pure sequential procedure and the optimal sample
size b is about p + lo — £, a constant, at least for large b.

To obtain the second order approximation to the confidence level we first

prove the following two lemmas.

Lemma 3.3 For given b > 0

. T
P{,MZ' — i1 € L’(T), 2<e<k}=F [H ((‘tlg_l )2_1;)] :
where H(x) = P{max,a, |Z; — Z1| < V2z}.
Proof: We have

Plpi—p e L(T), 2<1 <k}
=P{Yqr—Vig—d<p—pm<Yqg—Vir+d, 2<i<k}

= > PYor~Vir—d < pg—ju <Yor—Yip+d,---,

n=m
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YkT——KT*d<,UJk—[L1<YkT*Y/1T+dIT:n}P{T:n}

n:};;:n~}_’ —d < pip — 1 < Vi — Yin +d|T = n}P{T = n}
:ZP{an—f —d <= < Yor— Yip +d,- -,
Ykn_f/ln_d<ﬂk_ﬂ1<}7kn—)71n+d}P{T:n}
= S P{IVi— Vi — (i — )| < d, 23 < FYP{T = n}
_ g:n Plpax |7~ 21| < ﬂg—\l—fg—/—%}P{T -
= [m (7).

as required.

Lemma 3.4 Let H(z) = P{maxoqi |Z; — Z1] < V2z}, and Cy > 0 is a
given constant. Then, for 0 < z < Co, |H"(2)] < C2* 52 where C is a

constant.
Proof: Let g(z) = H(2?), then

H(z) = g(2*/?)

H'(z) = 2P ¢ (a) (3.13)
H”(m) _ i [w 1g//( 1/2) _ 32 g/($1/2>] ) (3‘14)

Let h(z,y) = ®(y + v/22) — ®(y — v/22), then

g(z) = P{|Zi— Zi| <2z, 2<i<k}
_ /oo SV PIZi — 7| <22, 2< i <k

Zy =y} dy
/ W)P{1Z: — y| < V22, 2< i < k} dy

= [ P{lZ—y!<\/_:c})
/ [®(y + V2a) - (y—\/ir)] o,
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o@) = vatk=1) [~ o) (6(y +V22) + 9ly — VE) (h(x,9))? dy,

—00

(3.15)

@) = 20k=1) [ ¢y (hlay)" x (3.16)

{[~+ vEo)aty + vE) + (3~ V) 8ly — V22| hia,0)
H(k—2) [qs(y +v22) + oy — \/ix)r} dy. (3.17)

By noting that

v 2 ]
ha,y) = | 21z < ¢
v =, Vo s

where (; 1s a constant, we have that

@) = Valk=1) [ oly) (4l + VE2) + 8y — VE2)) (bl ) dy

< Mz*? /_Z $y) dy
= Ma"? (3.18)

where M is a constant, and that

IA

IN

VAN VAN

IA

9"« >|
2 [7 o) { — (4 VEr)aly + V) + (y — VER)dly — VBx)I} dy
+L k-3

Dat [ o) {luloly + V2x) + V326 (2o + y) + lylély — v22)} dy
+ Dyt /Oo $(y)V2zé(y — V2zx) dy + Lz

Dy ([*ysty) dy +v3e [~ oly) dy) + L2k
Dz*% (A + Bz) + Lz™3

Lia"3, for 0 < 2z < Cy (3.19)

where Dy, Dy, D3, D, A, Ay, B, By, L, and L; are constants. It now follows from
(3.18), (3.19) and (3.14) that

1

(H'(2)] <~ (a7 g" (@) + 27 |g/ (211*)])

e
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§ Cx(k—5)/2 .

The proof is thus completed.
The following theorem gives the second order approximation to the con-
fidence level and follows directly from Lemma 3.3 and Theorem 2.2 with

6=ty )", C1 =0, B=(5—k)/2 and np = b.

Theorem 3.4 Suppose that m > 1 if k > 5, and m > 1 + (7 — k)/k if
k=2,3,4, then

Ppa — € L(T), -+ o — 1 € Lea (T)}
= t-at g () # (1)) (p+ 10— 7)
e () 1 ((022) ) |+ (5)

where H(z) = P{maxoq« |Z; — Z1| < V2z}.
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3.2.3 Calculations of the approximate values of the ex-

pected sample size and the confidence level

From Theorem 3.4 it can be seen that the value of Iy can be chosen to satisfy

(s ) 7 (1)) (o4 o= 2) + 5 (i ) 87 (1t ) ) = 0

so that the C'L is equal to 1 — a + o(1/b). This [y = ly(k, ) is given by

[ G ) e ()

lo— 2—

k (1))

where the functions H'(-), and H"(-) are given in (3.13), and (3.14). In order

—p, (3.20)

to calculate ly(k, o), [ have calculated the values of [t|¢, for a = 0.1,0.05,0.01
and k = 2(1) 20 and they are given in Table 3.7. The value of lo(k, o) can now
be calculated from (3.20) and the results for & = 0.1,0.05,0.01 and £ = 2(1) 20
are given in Table 3.8.

From Theorem 3.3, the approximate value of E(T') is
b+p+1l—2/k.

This approximate value, corresponding to ly = lo(k, ), is given in Tables 3.9

and 3.10.
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Table 3.7: [t|¢,

k—1\a| 0.1 0.05 | 0.01
1 1.645 | 1.960 | 2.574
2 1.916 | 2.213 { 2.794
3 2.062 | 2.350 | 2.916
4 2.160 | 2.442 | 2.990
5 2.233 | 2.511 | 3.062
6 2.292 | 2.567 | 3.111
7 2.340 | 2.613 | 3.150
8 2.381 | 2.652 | 3.189
9 2417 | 2.686 | 3.219
10 2.448 | 2.716 | 3.248
11 2.476 | 2.743 | 3.272
12 2.501 | 2.767 | 3.292
13 2.525 | 2.789 | 3.316
14 2.546 | 2.810 | 3.331
15 2.566 | 2.828 | 3.351
16 2.583 | 2.846 | 3.365
17 2.600 | 2.862 | 3.380
18 2.615 | 2.877 | 3.394
19 2.631 | 2.892 | 3.409
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Table 3.8: [y = ly(k, )

k—1\a| 0.1 0.05 0.01
1 1.182 | 1.466 | 2.162
2 0.697 | 0.906 | 1.402
3 0.425 | 0.590 | 0.977
4 0.255 | 0.391 | 0.708
5 0.138 | 0.253 | 0.524
6 0.053 | 0.154 | 0.389
7 0.012 |} 0.078 | 0.285
8 -0.063 | 0.019 | 0.206
9 -0.104 | -0.029 | 0.140
10 -0.137 | -0.069 | 0.087
il -0.165 | -0.103 | 0.042
12 -0.189 | -0.131 { 0.002
13 -0.210 | -0.155 | -0.030
14 -0.228 | -0.176 | -0.056
15 -0.243 | -0.195 | -0.085
16 -0.257 | -0.211 | -0.108
17 -0.270 | -0.226 | -0.128
18 -0.281 | -0.240 | -0.146
19 -0.291 | -0.251 | -0.162
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3.2.4 Exact calculations of the expected sample size

and the confidence level

Let t = T — 1, then from Lemma 2.16 and the argument after Lemma 2.16,

we have
Fasi(2) = [ Bul)fg (2= ) dy (3:21)
and
P{t>n+1}:/coo R (y) dy, n > mg— 1, (3.22)
1
where
. - kn(n +1)
b1+ 3r)
and the value of [y is given in the Table 3.8. Consequently
E(T)=1+ Y n[P({t>n-1)—P(t>n)) (3.23)

and

ot = sl (i)' )
(

o o \27n+1
- 5 Pt:n)H((ltlk_l) - )
_ :Zf (P> n—1) = P> () %1-) L (3.24)

where H(z) = P{maxs<q, |Z;—Z1] < v/2z}. The functions R, (-) and, thus
E(T) and CL, can be calculated.

In Subsection 3.2.5, we give the results of this calculation which are based
on a grid of equal width A = 0.1. We also use grids based on A = 0.2 and
h = 0.05 to find the values of 'L, we find some difference in the fourth decimal
place from those based on h = 0.1. We simulate the E(T) and C'L based on

6,000 experiments and some of the results are given in Table 3.11.
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3.2.5 Some comparisons

The aim of this subsection is to compare the second order approximations with
the exact calculations of the E(T') and the C'L. Throughout, the value of [
1s given by Iy = lo(k, @). From these comparisons we can see when the second
order approximations are reasonably accurate.

Firstly, we look at the confidence level C' L. The confidence level is equal to
1 — o (nominal level) plus an error term of order o(1/b) as b — oo and so the
approximate is 1 —« . The true value of the confidence level, however, depends
on b, i.e. CL =CL(b). Form=2k—1=23,7,10, and 1 —a = 90%, 99%, the
exact calculation results of C'L(b) at b = 5(5)60 are linearly plotted in Figure
3. Figure 4 gives the similar plots for m = 10 and b = 15(5)60. From Figures
3 and 4 it can be seen that C'L(b) is generally closer to the nominal level 1 — «
for: (i) larger b; (ii) larger k; (iii) larger nominal level 1 — a; (iv) larger initial
sample size m.

Next, we look at the expected sample size E(7T'). When b is large, the
approximation to E(T)is b+p+lo—2/k. Form =2, k—1=3,7, 10, and
1—a = 90%, 99%, Table 3.9 contains the exact values of E(T') calculated using
the recursive method and the approximate values of E(1") at b = 5(5)60. Table
3.10 contains the similar results for m = 10 and b = 15(5)60. From Table 3.9
and 3.10 it can be seen that the approximate value of £(1") are generally closer
to the value of E(T") for: (i) large b; (ii) large k; (iii) large initial sample size m.
The exact calculations of the £(T") and the C'L become quite computationally
intensive for b > 60. However, when b > 60 the approximations are very good,
as can be seen from the results given in this subsection. So approximated

results can be used in this case.
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Table 3.9: Comparisons between the exact and approrimate values
of E(T) for m =2 and given values of k, o and b

a=0.1

k= k=38 =11

b | Exact | Appro. | Exact | Appro. | Exact | Appro.

10| 10.1 10.6 10.2 10.3 10.2 10.3

15| 15.2 15.6 15.3 15.3 15.2 15.3

20 20.3 20.6 20.3 20.3 20.2 20.3

251 235.3 25.6 25.3 25.3 25.2 25.3

30 | 304 30.6 30.3 30.3 30.2 30.3

35| 354 35.6 35.3 35.3 35.2 35.3

40 | 40.4 40.6 40.3 40.3 40.2 40.3

45 | 454 45.6 45.3 45.3 45.2 45.3

50 | 50.5 50.6 50.3 50.3 50.2 50.3

55 | 95.5 55.6 55.3 55.3 55.2 55.3

60 | 60.5 60.6 60.3 60.3 60.2 60.3
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Table 3.9:  Comparisons between the exact and approzimate values
of E(T) for m = 2 and given values of k, o and b

a =0.01

b | Exact | Appro. | Exact | Appro. | Exact | Appro.

5 5.6 6.1 5.4 5.6 5.3 5.5

10 | 10.7 11.1 10.5 10.6 10.4 10.5

15| 15.8 16.1 15.6 15.6 15.5 15.5

20 1 20.9 21.1 20.6 20.6 20.5 20.5

25 | 25.9 26.1 25.6 25.6 25.5 25.5

30 31.0 31.1 30.6 30.6 30.5 30.5

35| 36.0 36.1 35.6 35.6 35.5 35.5

40 | 41.0 41.1 40.6 40.6 40.5 40.5

45 | 46.0 46.1 45.6 45.6 45.5 45.5

50 | 51.0 51.1 50.6 50.6 50.5 50.5

55| 56.0 56.1 55.6 55.6 55.5 55.5

60 | 61.0 61.1 60.6 60.6 60.5 60.5
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Table 3.10: Comparisons between the exact and approzimate values
of E(T) for m =10 and given values of k, a and b

a=0.1

k= k=38 k=11

b | Exact | Appro. | Exact | Appro. | Exact | Appro.

15| 15.6 15.6 15.3 15.3 15.2 15.3

20 | 20.5 20.6 20.3 20.3 20.2 20.3

25| 255 25.6 25.3 25.3 25.3 25.3

30 ] 30.5 30.6 30.3 30.3 30.3 30.3

35| 35.6 35.6 35.3 35.3 35.3 35.3

40 | 40.6 40.6 40.3 40.3 40.2 40.3

45 | 45.6 45.6 45.3 45.3 45.2 45.3

50 | 50.6 50.6 50.3 50.3 50.2 50.3

55 ] 55.6 55.6 55.3 55.3 55.2 55.3

60 | 60.6 60.6 60.3 60.3 60.2 60.3
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Table 3.10:  Comparisons between the exact and approzimate values
of E(T') for m =10 and given values of k, « and b

a = 0.01

b | Exact | Appro. | Exact | Appro. | Exact | Appro.

15| 16.1 16.1 15.6 15.6 15.5 15.5

20 | 21.1 21.1 20.6 20.6 20.5 20.5

25§ 26.1 26.1 25.6 25.6 25.5 25.5

30 | 31.1 31.1 30.6 30.6 30.5 30.5

351 36.1 36.1 35.6 35.6 35.5 35.5

40 | 41.1 41.1 40.6 40.6 40.5 40.5

45 | 46.1 46.1 45.6 45.6 45.5 45.5

50 | 51.1 ol.1 50.6 50.6 50.5 50.5

55 | 56.1 56.1 55.6 55.6 55.5 55.5

60 | 61.1 61.1 60.6 60.6 60.5 60.5
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Table 3.11: Comparisons between the exact and simulated values of
E(T) and CL for m =10 and k = 11 and given values of o and b

a=0.1

CL E(T)

b | Exact | Simul. | Exact | Simul.

151 0.899 | 0.899 | 15.2 15.2

20 | 0.899 | 0.894 | 20.2 20.3

251 0.899 | 0.898 | 25.3 25.2

30 | 0.900 | 0.890 | 30.3 30.3

35| 0.900 | 0.896 | 35.3 35.2

40 | 0.900 | 0.897 | 40.2 40.3

451 0.900 | 0.904 | 45.2 45.3

50 | 0.900 | 0.899 | 50.2 50.3

551 0.900 | 0.899 | 55.2 55.3

60 | 0.900 | 0.899 | 60.2 60.3
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Table 3.11:  Comparisons between the exact and simulated values of
E(T) and CL for m =10 and k = 11 and given values of o« and b

a = 0.01

CL E(T)

b | Fxact | Simul. | Exact | Simul.

151 0.990 | 0.990 | 15.5 15.5

201 0.990 | 0.991 | 20.5 20.6

25 ] 0.990 | 0.990 | 25.5 25.5

30 | 0.990 | 0.989 | 30.5 30.5

351 0.990 | 0.991 | 35.5 35.5

40 | 0.990 | 0.989 | 40.5 40.5

451 0.990 | 0.990 | 45.5 45.6

50 | 0.990 | 0.989 | 50.5 50.6

551 0.990 | 0.990 | 55.5 55.5

60 1 0.990 | 0.991 60.5 60.6
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3.3 Fixed-width simultaneous confidence in-
tervals for all-pairwise comparisons of the
means of several independent normal pop-

ulations

3.3.1 Introduction

Suppose we have k independent, normally distributed populations N(u;,0?), i =
1,2, -,k with unknown u;, —oc < p; < 0o, and a common unknown positive
variance o2. Assume we can sample sequentially from each population and that
Vi1, Y, Yis, - - - denote the observations from the :** population, ¢ = 1,2,---, k.
In this section we construct a set of fixed-width 2d simultaneous confidence

intervals for all-pairwise differences p; — p; of the form

;Li—,LLJ-E(Y;—YJ-—d, Y=Y, +d), 1<:#;<k
with a (nominal) confidence level 1 — «, where Y; is the sample mean of a
sample taken from the +% population, and d > 0 and 0 < o < 1 are two given
constants.
Suppose Zy, Zy, - -+, Zy, are i.i.d. N(0,1) random variables, and x? is inde-
pendent of 7y, Zy, -+, Zi. Let (), denote the random variable

i — 4
Qr, = max ———2=.
1< i<k \/X2/l/
The distribution of ¢k, is called the studentised range distribution with pa-
rameters k and v. If v = co then x2 /oo = 1 and hence the distribution of
Q ko 1s the same as

G A

Suppose that ¢f, is the upper a point of the studentised range distribution
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with parameters k and v. The value of i, for some combinations of £, « and
v can be found in Harter (1969).
Suppose a sample of size n is taken from each of the £ populations N{y;,

0?), 1 <1 <k and &2 is the pooled sample variance. Then

Vit (Vi = ) = (Yo = 15))
{ }

On

max
1<i <k

has the same distribution as @, with v = k(n — 1) and so

~

On

P (\Ym = Vi — (i = i)l < a2, NG

,1§i7éj§k):l—a.

This can be written as
P (Yi —Y}n—qi,,ﬂ < i — Sﬁn—ﬁnirq?,y&—n-/ 1<i#j Sk) =1—a.
Vn vn
A set of simultaneous confidence intervals for the y; — p; with confidence level
1 — « is thus given by
_ _ C Gn - _ o o,
Wi — i € (Yi —an—q;?,y\/—ﬁ, Y;n—y}n‘*‘qay%)v 1<i#5 <k
(3.25)
This set of confidence intervals was proposed by Tukey (1952a, 1953).

The length of these confidence intervals is 2¢, &, /+/n, which is a random
number. In order to construct a set of fixed-width 2d and 1 — « level si-
multaneous confidence intervals for all-pairwise differences y; — p; when o2 is
unknown, it is necessary to use a sequential procedure. A two-stage procedure
based on Stein’s (1945) result was proposed by Hochberg and Lachenbruch
(1976). Here we look at a pure sequential procedure, which was proposed by
Liu (1995a). To motivate the definition of this pure sequential procedures,
let us first look at the construction of a set of fixed-width 2d and 1 — « level
simultaneous confidence intervals for the p; — u; when o? is assumed to be a

known constant.
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Had 0% been known, the set of 1 — « level confidence intervals in (3.25)

becomes
. _ 0 0 = _ 0 O L
i — i € 5m—an—qk—\/—h—, Y;'n—an—l—qkﬁ , 1 <i#5 <k

In order that the width of these confidence intervals is at most 2d, the sample
size n from each of the k populations should satisfy ¢fo//n < d, which implies
that

n>d2(q))%0". (3.26)

That is, when ¢? is known, we take a sample of size n from each of the k
populations where n satisfies (3.26), and then construct a set of simultaneous

confidence intervals for the p; — p1; as

pi— i € (Yo =Y —d, Yoy = Vi +d), 1<i#j <k
This set of confidence intervals has width 2d and confidence level at least 1 —«a.
Now consider our problem in which o2 is unknown and so the right side
of (3.26) can not be calculated explicitly. A reasonable sample size formula
would be similar to (3.26) but with o2 replaced by some estimate. Precisely,
we take the same number of observations, n, from each of the & populations,

starting with m, increasing by one at a time, until
T=inf{n>m: n>d? () ,5.°} (3.27)

where m > 2 is the initial sample size from each population and 7, =1+l +
o(i—) as n — oo. On stopping sampling the set of simultaneous confidence

intervals for u; — p; is defined as
pi —p; € Li(T)= Yir = Yir —d, Yir = Yir +d), 1<i#j<k.

Next we show that the confidence level of this set of confidence intervals is

approximately equal 1 — a.
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3.3.2 Second order approximations to the expected

sample size and the confidence level

In this subsection, we use the results of Chapter 2 to find the second order
approximations to the expected sample size £(T') and confidence level C'L. As
we can see the stopping time 7' in (3.27) is of the same form as the stopping
time defined in (2.1) with v = (¢f)? and so the following theorem follows
directly from Theorem 2.1.

Theorem 3.5 Fork >1 and m > 1+ 2/k, we have
2
E(T):C—Jf—p—{-lg——g—}-o(l) as ¢ — 0o,
where ¢ = d7% (q%)*c?.

The value of ¢, given on the right side of (3.26), can be regarded as the optimal
sample size had 0% been known. From Theorem 3.5, at least for large ¢, the
difference between the expected sample size of the pure sequential procedure
and the optimal sample size ¢ is about p + [y — %, a constant.

Now we derive the second order approximation to the confidence level. For

this, we require the following lemmas.

Lemma 3.5 For given ¢ > 0,

CL=P{ max Ve — i~ Vi + il < d} = B [1 (27
where H(x) = P{maxigzja |Zi — Z;] < /x}-
Proof: We have
P{léﬁ% Yir — pi = Yir + 4] < d}
= 2 P{é&% Yir — pi = Yir + 5] < d\T = n}P{T =n}
= 2 P{lgrgé%%(k Yin — pti — Yin + ] < le = n}P{T =n}
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= > P{ max Wi — s — Vil < dfP{T =}

= 1<e£5<k
_ P{ max |7 — 7] < d\/—}P{T—n}
— 1<i#5<k

- el ().

where ¢ = d72(qg)%0?, as required.

Lemma 3.6 Let H(.’E) = P{maxlg#jgk IZ2 - ZJ| S \/E}, and Oo >0 15 a
given constant. Then, for 0 < z < Cy, |H"(z)| < Cz* )2 where C is a

constani.

Proof: Let g(z) = H(x?), then

H'(z) = -2—x'1/2 g (2%, (3.28)
HII( ) i [x—lg//( 1/2) _ 3 g'(:ﬁl/z)} ' (3.29)

Let h(z,y) = ®(y) — ®(y — ), then

glz) = P ey |Z; — Z|<:z:}
= kP{Z1—$<Z2<Zl,Z1—$<Z3<Z1,"‘,Zl—$<Zk<Z1}

= ]{j/ P{y—x<Z2<y, y—$<Zk<yZ1:y}dy
k-1
= k/ [P{y—x<Z2<y}] dy
o k-1
o olo-so—o] o
k-2

@) = k=1 [ dw)ely - olew) - o o) dy,  (3.30)




By noting that

hz,y) = /y: —\/%6—2/2 dz < Cha

where (' is a constant, we have

g@) < 42 [ o(y) dy = Ax*2, (3.32)

—00

and

l9"(z)] < Dyt /:; o(y) dy + Dyz*? /: é(y) dy

+ Dt [ 6(y) dy
< Dz, (3.33)

where Dy, Dy D3, and D are constants. It now follow from (3.32), (3.33) and
(3.29) that

Ly 4,4, _ ;
7 [ @) 2 | ()]

Cat9/2

|H"(z)

IN

IA

This finishes the proof.
By using Theorem 2.2 with 8 = (¢2)*, C; =0, f = (5 — k)/2 and ng = c,

and using Lemma 3.6, we have the following theorem.

Theorem 3.6 Suppose that |, =1+ ly/n + o(1/n) asn — oo, and m > 1 if
k>5andm>1+(T—Fk)/k if k=2,3,4, then
Pl —pj € (1), 1<i#j<k}
. _ l a\2 ! a2 ( _g)
=1—at | @ (@) (p 4l
1, 4 o2 1
b @ (@) | o (2),

where H(z) = P{maxi<zjw |Z; — Z;| < /a} and ¢ = d7*(qf)*0”.
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3.3.3 Calculations of the approximate values of the ex-

pected sample size and the confidence level

From Theorem 3.6 it can be seen that the value of Iy can be chosen to satisty
a2 / «@\2 2 1 o4 " a2
() H ((62)) (p+to — 7) + 7 (a2 B ((g5)%) = 0
so that the C'L is equal to 1 — a4 o(1/¢). This [y is given by

VT (gl)? (<Iql%>2)]
— 2 — - M
k [ 1 ((lal2)?) '

where the functions H'(-) and H”(-) are given in (3.28) and (3.29). In order

lo = (3.34)

to calculate lo(k, ), I have calculated the values of ¢f for o« = 0.1,0.05,0.01
and k = 2(1) 20 and they are given in Table 3.12. The values of p = p(k) have
already been given in Table 3.1. The value of [y(k, @) can now be calculated
from (3.34) and the results for & = 0.1,0.05,0.01 and k = 2(1) 20 are given in
Table 3.13.

From Theorem 3.5, the approximate value of F(7') is
c+p+lo—2/k.

This approximate value corresponding to ly = lo(k, &) is given in Tables 3.14

and 3.15.
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Table 3.12: |g|¢

\al| 0.1 0.05 | 0.01
2 2.326 | 2.771 | 3.644
3 2.902 | 3.314 | 4.120
4 3.240 | 3.633 | 4.405
5 3.478 | 3.857 | 4.605
6 3.661 | 4.030 | 4.756
7 3.808 | 4.170 | 4.886
8 3.931 | 4.286 | 4.986
9 4.037 | 4.386 | 5.076
10 | 4.129 | 4.474 | 5.156
11 | 4.211 | 4.551 | 5.226
12 | 4.284 [ 4.621 | 5.291
13 | 4.351 | 4.685 | 5.346
14 | 4.411 | 4.743 | 5.401
15 | 4.468 | 4.796 | 5.446
16 | 4.519 | 4.846 | 5.496
17 | 4.568 | 4.891 | 5.536
18 [ 4.612 [ 4.933 | 5.576
19 | 4.654 | 4.973 | 5.611
20 | 4.694 | 5.011 | 5.646
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Table 3.13: Iy = lo(k, a)

\al| 0.1 0.05 0.01

2 1.181 | 1.465 | 2.165
3 0.732 | 0.960 | 1.486
4 0.480 | 0.661 1.093
5 0.319 | 0.481 | 0.835
6 0.207 | 0.348 | 0.652
7 0.125 { 0.251 | 0.520
3 0.061 | 0.174 | 0.413
9 0.010 | 0.114 | 0.330
10 | -0.031 ] 0.064 | 0.262
11 |-0.066 | 0.022 | 0.205
12 | -0.095 | -0.013 | 0.157
13 |-0.120 | -0.043 | 0.114
14 | -0.142 | -0.0693 | 0.079
15 | -0.161 | -0.093 | 0.046
16 | -0.178 | -0.113 | 0.019
17 1-0.193 | -0.132 |} -0.006
18 | -0.207 | -0.148 | -0.029
19 ]-0.220 | -0.163 | -0.044
20 [-0.231 | -0.177 | -0.068

95




3.3.4 Exact calculations of the expected sample size

and the confidence level

In this subsection, we evaluate, by using the recursive method discussed in
Section 2.3, the exact distribution of T and hence the exact values of E(1")

and C'L. In this case, we have

Fan(2) = [ Raly)fg (e = y) dy, n > mo (3.35)
and
P{t>n+1} = /COO Roy1(y) dy, n > mg—1, (3.36)
n+1
where
C. = ﬂ(”“L_ll)
C (1 + n—jT)
and the value of [y is given in Table 3.13. Consequently
E(T)=1+ Y n[P{t>n-1)—P(t>n)] (3.37)

and

cr = el (dr 7))

=y Pi=wi (o E)
= fﬁ [P(t>n—1)— P(t>n)H ((IqI%V n“), (3.38)

where H(z) = P{maxyzj< |Zi — Z;| < /x}. The results of calculation are
given in Subsection 3.3.5 and were based on a grid with A = 0.1. Calculations
based on h = 0.2 and h = 0.05 gave values of the C'L differing at the most in
the fourth decimal place from those based on A = 0.1. Simulations on F(T)
and C'L were also carried out based on 6,000 experiments and some of the

results are given in the Table 3.16.
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3.3.5 Some comparisons

In this subsection, the second order approximations and the exact calculations
of the E(T') and the C'L are compared, from which we can judge when the
second order approximations are reasonably accurate.

Firstly, we look at the confidence level C'L. The confidence level is equal to
1 — « (nominal level) plus an error term of order o(1/c¢) as ¢ — oo and so the
approximate is 1 — . The true value of the confidence level, however, depends
on ¢, i.e. CL = CL(c). Form =2,k = 3,7,10, and 1 — a = 90%,99%, the
exact calculation results of C'L(c) at ¢ = 5(5)60 are linearly plotted in Figure
5. Figure 6 gives the similar plots for m = 10 and ¢ = 15(5)60. From Figures
5 and 6 it can be seen that C'L(c) is generally closer to the nominal level 1 — «
for: (i) larger ¢; (i) larger k; (iii) larger nominal level 1 — «; (iv) larger initial
sample size m.

Next consider the expected sample size E(T'). By Theorem 3.5, we know
that for large ¢, E(T) = E(T) = ¢+ p+ lo — 2/k as ¢ — oo. Table 3.14
contains the values of E(T) calculated using the recursive method and the
approximation formula at ¢ = 5(5) 60, for m =2, k=3, 7,10, and 1 — o =
90%, 99%. Similar results are given in Table 3.15 for m = 10 and ¢ = 15(5) 60.
We note from Table 3.14 and 3.15 that the approximate value of E(T) is
generally closer to the value of E(T") for: (i) large ¢; (ii) large k; (iii) large m.
The exact calculations of the F(T') and the C'L become quite computationally
intensive for ¢ > 60. However, when ¢ > 60 the approximations are very good,
as can be seen from the results given in this subsection. So approximated

results can be used in this case.

97



Table 3.14: Comparisons between the exact and approximate values
of E(T) for m =2 and given values of k, o and ¢

a=0.1

k= k=17 k=10

¢ | Exact | Appro. | Exact | Appro. | Exact | Appro.

101 9.9 11.0 10.9 11.1 11.0 11.1

151 15.0 16.0 16.0 16.1 16.1 16.1

20 | 20.1 21.0 21.0 21.1 21.1 21.1

25 1 25.2 26.0 26.0 26.1 26.1 26.1

30 | 30.2 31.0 31.0 31.1 31.1 31.1

351 353 36.0 36.0 36.1 36.1 36.1

40 | 40.3 41.0 41.0 41.1 41.1 41.1

45 | 45.3 46.0 46.0 46.1 46.1 46.1

50 | 50.4 51.0 51.0 51.1 51.1 51.1

55 | 95.4 56.0 56.0 56.1 56.1 56.1

60 | 604 61.0 61.0 61.1 61.1 61.1
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Table 3.14:  Comparisons between the exact and approzimate values
of E(T') for m = 2 and given values of k, o and ¢

a=0.01

k=3 k=1 k=10

¢ | Exact | Appro. | Exact | Appro. | Exact | Appro.

5 6.0 6.5 5.6 5.8 5.5 5.6

10 ] 11.0 11.5 10.7 10.8 10.6 10.6

151 16.0 16.5 15.8 15.8 15.6 15.6

20| 21.0 21.5 20.8 20.8 20.6 20.6

25 | 26.0 26.5 25.8 25.8 25.6 25.6

30| 31.1 31.5 30.8 30.8 30.6 30.6

351 36.1 36.5 35.8 35.8 35.6 35.6

40 | 41.1 41.5 40.8 40.8 40.6 40.6

45 | 46.2 46.5 45.8 45.8 45.6 45.6

50 | 51.2 51.5 50.8 50.8 50.6 50.6
55 | 56.2 56.5 55.8 55.8 55.6 55.6

60 | 61.2 61.5 60.8 60.8 60.6 60.6
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Table 3.15: Comparisons between the exact and approzimate values
of E(T) for m =10 and given values of k, a and c

a=20.1

k=3 k= k=10

¢ | Exact | Appro. | Exact | Appro. | Exact | Appro.

15 | 15.7 15.7 16.0 16.0 16.1 16.1

20 | 20.6 20.7 21.0 21.0 21.1 21.1

25| 25.6 25.7 26.0 26.0 26.1 26.1

30 | 30.7 35.7 31.0 31.0 31.1 31.1
35| 35.7 35.7 36.0 36.0 36.1 36.1

40 | 40.7 40.7 41.0 41.0 41.1 41.1

45 | 45.7 45.7 46.0 46.0 46.1 46.1

50 | 50.7 50.7 - | 51.0 51.0 51.1 51.1

55| 55.7 55.7 56.0 61.0 56.1 56.1

60 | 60.7 60.7 61.0 61.0 61.1 61.1
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Table 3.15:  Comparisons between the eract and approximate values
of E(T) for m =10 and given values of k, o and c

o =0.01

k= k=1 k=10

¢ | Exact | Appro. | Exact | Appro. | Exact | Appro.

151 16.4 16.5 15.8 15.8 15.6 15.6

20| 214 21.5 20.8 20.8 20.6 20.6

25 | 264 26.5 25.8 25.8 25.6 25.6

30 | 31.4 31.5 30.8 30.8 30.6 30.6

351 36.4 36.5 35.8 35.8 35.6 35.6

40 | 414 41.5 40.8 40.8 40.6 40.6

45| 46.4 46.5 45.8 45.8 45.6 45.6

50 | 51.4 51.5 50.8 50.8 50.6 50.6

55 1 56.4 56.5 55.8 55.8 55.6 55.6

60 | 61.4 61.5 60.8 60.8 60.6 60.6
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Table 3.16: Comparisons between the exact and simulated values of
E(T) and CL for m =10 and k = 10 and given values of o and c

a=0.1

CL E(T)

¢ | Simul. | Exact | Simul. | Exact

15 0.904 | 0.916 15.4 154

201 0.894 | 0913 | 20.4 20.4

25| 0.897 | 0.910 | 25.3 254

30 | 0.899 | 0.909 { 30.3 30.4

351 0,903 | 0.908 | 35.3 35.4

40 | 0.897 | 0.907 | 40.3 40.4

45 | 0.892 | 0.906 | 45.3 45.4

50 1 0.896 | 0.905 | 50.4 50.4

551 0.905 | 0.905 | 55.4 55.4

60 | 0.899 | 0.904 | 604 60.4
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Table 3.16:  Comparisons between the exact and simulated values of
E(T) and CL for m =10 and k = 10 and given values of o and ¢

o = 0.01

CL E(T)

¢ | Simul. | Exact | Simul. | Exact

151 1.000 | 0.989 15.7 15.6

20 | 1.000 | 0.990 | 20.7 20.6

25| 1.000 | 0.990 { 25.6 25.6

30| 1.000 | 0.990 | 30.6 30.6

35| 1.000 | 0.990 | 35.6 35.6

40 | 1.000 | 0.990 | 40.6 40.6

45| 1.000 | 0.990 | 45.6 45.6

50 | 1.000 | 0.990 | 50.6 50.6

55 | 1.000 | 0.990 | 55.6 55.6

60 | 1.000 | 0.990 | 60.6 60.6
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Chapter 4

The exact probabilities of

making correct inferences
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4.1 The exact probability of making correct
inference about the means of several in-

dependent normal populations

4.1.1 Introduction

Suppose that we have the following set of 2d-width and (1 — a)-level simulta-

neous confidence intervals for the pu;’s

As has already been pointed out in Section 3.1, simultaneous inference about
each p; can be made from this set of confidence intervals. For example, we
can infer that u; > 0(g; < 0) if ¥; —d > 0(Y; + d < 0). Furthermore, the
probability of making correct inferences, either p; > 0 or u; < 0, for every y;
satisfying |u;| > 2d, is at least 1 —«, the confidence level. The problem that we

4

want to study in this section is “ what is the exact value of this probability?”

More precisely, we want to investigate the following probability
P{making correct inferences, either u; > 0 or u; < 0, for each y; satisfying |u;| > 2d}.

Let
Quid)={i:pi>2d} and Qp(d)={j:p; < —2d}.

The above probability is then equal to

P{making correct inferences p; > 0 for each i € Qy(d) and

making correct inferences p; < 0 for each j € Qp(d)}.

This probability is of course dependent on the true value of 1 = (1, pra, -+, i) €
RF and let it be denoted by 8(u, d). For obvious reason, we impose 3(y, d) = 1
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if for a given value of p and d both the sets Qp(d) and Qr(d) are empty. We

wish to assess

B(d) = min B(,d)

uERE
in this section. As one should expect, 3(d) must be no less than 1 — a.

Two different situations will be considered. In Subsection 4.1.2 we consider
the known variance case in which the set of confidence intervals for y; is given
in (4.1). In Subsection 4.1.3 we consider the unknown variance case in which
the set of confidence intervals for p; is constructed by using the pure sequential

procedure of Section 3.1.
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4.1.2 When the variance is known

In this subsection we suppose that o2 is known. Take a random sample of
fixed size a = (Jm|%)* 02d~2 from each of the k populations and construct the

following set of simultaneous confidence intervals for y;

wi€ (Vio—d, Yio+d), i=12,-- k (4.1)

From Section 3.1.1, we know that this set of confidence intervals has exact

level 1 — a. In order to compute the exact value of 3(d), we require

Theorem 4.1 Ffora >0

sty = 9 (2] 8¢ ). (12)

Proof: By definition we have

Bl d) = P{Yi, >dVieQy(d) and Y}, < —d ¥j € Qr(d)}

= JI Pu>d} J] P{Vi<-d}

i€Qy(d) JEQL(d)

_ H (D(_\/C_L(d“ﬂi)> H (_\/E(d‘kﬂj))‘
4 o . c
i€Qy(d) 7€QL(d)

From this, it is clear that 5(u, d) attains its minimum at p*(d) = (p3,- -, p3),

where each u¥ is equal to either 2d or —2d. Consequently

Jad
ag

sty = o )=WQM@.

This finishes the proof.

It is interesting to note that the value of 3(d) depends only on « and k,
but not on d and o2 This is because of the way in which we set the sample
size a = (|m|2)? 02d=2. Table 4.1 presents the values of B(d) for k = 2(1)20
and o = 0.1,0.05,0.01. It can see that the value of the 5(d) = ®* (Iml¢) is
very stable to the value of k, and is strictly large than 1 — «, the confidence

level. In fact it is close to 1 — «/2, as it is a sort of one saided probability.
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Therefore, if @ = 0.10 say, we can claim that, with probability at least 0.95,
rather than 1 — o« = 0.90, correct inference, based on the set of confidence

intervals in (4.1), will be made for each y; satisfying |u;| > 2d.
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Table 4.1: ®* (jm|2)

E\N1—a| 090 | 095 | 0.99

0.949 | 0.975 | 0.995

0.949 | 0.975 | 0.995

0.949 | 0.975 | 0.995

0.949 | 0.975 | 0.995

0.949 | 0.975 | 0.995

0.949 | 0.975 | 0.995

2
3
4
5
6 0.949 | 0.975 { 0.995
7
3
9

0.949 | 0.975 { 0.995

10 0.949 | 0.975 | 0.995

11 0.949 | 0.975 | 0.995

12 0.949 | 0.975 | 0.995

13 0.949 | 0.975 | 0.995

14 0.949 | 0.975 | 0.995

15 0.949 | 0.975 | 0.995

16 0.949 | 0.975 | 0.995

17 0.949 | 0.975 | 0.995

18 0.949 | 0.975 | 0.995

19 0.949 | 0.975 | 0.995

20 0.949 | 0.975 | 0.995
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4.1.3 When the variance is unknown

2

In this subsection, we suppose ¢? is unknown and consider inferences based

on the set of confidence intervals

constructed by using the pure sequential procedure given in Subsection 3.1.1,

in which the stopping time 7' is given by
T =inf{n >m: n>d2(Im|)*.(5)*}.

We know that, for each treatment satisfying p; > 2d(< —2d), the correct
inference p; > 0(< 0) will be made from this set of simultaneous confidence
intervals with a probability of at least 1 — a4 o(d?), since the confidence level

of this set of confidence intervals is equal to 1 — o + o(d?). We wish to assess
Bu(d) = ;21;{1 Bu(u,d),
i where
Bu(p,d) = P{Yir > d Vi € Qu(d), Y;r < —dVj e Q(d)}. (4.3)

In particular, we define By (g, d) = 1 if all treatments satisfy |pi| < 2d. First

we have

Lemma 4.1

o) = B [0 () )]
where W(z) = ®(\/z) and a = (|m|3)* d 2o,
Proof: By definition we have

5U(,u,d) = P{Y;T >d Vi e QU(d), Y]'T < —dVje QL(d)}
= S PV > d¥ieQu(d), Vi < —dVj € Qu(d)}P{T = n}.
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From Theorem 4.1 we know that for each n, the minimum value of
P{Y;, > dVie Qu(d), V;, < —dVj € Qr(d)}
over y € RF is attained at u*(d) = (2d,---,2d) say, and given by W* (“J#)

So the minimum of fy(u,d) over u € R* is given by

Bu(d) = Z\Ifk(‘m"“) )P{Tzn}

= v ((mly )]

This completes the proof.

An argument similar to the proof of Lemma 3.2 establishes

Lemma 4.2 Let H(x) = U*(2) and ¥(z) = ®(\/x). Then, there is a constant
C' for which |H"(z)| < Ca* M2 for z > 0.

The following theorem, which follows directly from Theorem 2.2, gives the

second order approximation to Sy (d).

Theorem 4.2 Let H(z) = V*(z) and ¥(z) = O(/), and suppose m > 1 if
! k>4 andm >14 (6—k)/k if k=2,3. Then

/ [o3 2
Guld) = @ )+ =[ (il H () (p+ 00— )
1 " o2 1

, g () B ()7 | +0(5).

where a = d=2 (Jm|3)? o2

The exact value of fy(d) can be calculated by using a recursive method
similar to that discussed in Subsection 3.1.4 since the stopping time is the

same as before and

sud) = & [t ((mlp? 2 )]

= > Pl= (ol )
= n;i;m [Pt>n-—-1)— P(t > n)]\Ilk ((|m|f)2 E—Z;l—) ,
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where U(z) = ®(\/z) and mg = m — 1. Simulation to estimate By (d), based
on 6,000 experiments, was also carried out.

For £k =5,7,10 and 1 — a = 0.90,0.99, Tables 4.2 and 4.3 give the exact,
simulated and second order approximate values of fy(d) at @« = 5(5)60 and
a = 15(5)60. For m = 3,10,k = 5,7,10, and 1 — o = 90%, 99%, the exact cal-
culation results and approximations of fy(d) at « = 5(5) 60 and ¢ = 15(5)60
are linearly plotted in Figures 7-12. From these tables and figures it can be
seen that the exact values and the second order approximations of the Sy(d)
are generally closer together for: (i) larger a; (ii) larger k; (iii) larger initial
sample size m. For larger k, the exact values and approximations of the fy(d)
are almost 0.05 larger than 1 — o when « = 0.1. When « = 0.01 the exact

values and approximations of the Jy(d) are almost 0.005 larger than 1 — «.
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Table 4.2: Comparisons between the exact, approzimate

and simulation results of Sy(d)

Jor m =3 and given values of k, 1 —« and a

1 —a=20.90
k= k=T k=10
a | Exact | Appro. | Simul. | Exact | Appro. | Simul. | Exact | Appro. | Simul.
5 | 0.942 | 0.948 0.942 | 0.940 | 0.948 0.932 | 0.945 | 0.948 0.931
10 1 0.939 | 0.949 | 0.938 | 0.942 | 0.949 0.945 | 0.947 | 0.949 0.947
157 0.945 [ 0.949 0.946 | 0.946 | 0.949 0.945 | 0.948 | 0.949 0.949
20 | 0.947 | 0.949 0.946 | 0.948 | 0.949 0.953 | 0.948 | 0.949 0.949
251 0.948 | 0.949 0.945 | 0.948 | 0.949 0.948 | 0.948 | 0.949 0.944
30 | 0.948 | 0.949 | 0.949 | 0.948 | 0.949 0.950 | 0.948 | 0.949 0.951
351 0948 | 0.949 0.949 | 0.948 | 0.949 0.946 | 0.948 | 0.949 0.946
40 | 0.948 | 0.949 0.949 | 0.948 | 0.949 0.948 | 0.948 | 0.949 0.949
451 0.948 | 0.949 | 0.951 | 0.948 | 0.949 | 0.949 | 0.948 | 0.949 0.946
50 1 0.948 | 0.949 0.948 | 0.948 | 0.949 0.950 | 0.948 | 0.949 0.953
55 1 0.948 | 0.949 0.951 | 0.949 | 0.949 0.948 | 0.948 | 0.949 0.947
60 | 0.949 | 0.949 0.950 | 0.949 ; 0.949 0.950 | 0.948 | 0.949 0.950
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Table 4.2:

Comparisons between the exact, approzimate

and simulation results of By(d)

for m =10 and given values of k, 1 — «a and a

1 —-—a=0.90
k= k= k=10
a | Exact | Appro. | Simul. | Exact | Appro. | Simul. | Exact | Appro. | Simul.
15 ] 0.946 | 0.949 0.952 § 0.951 | 0.948 0.953 | 0.949 | 0.948 0.949
20 { 0.945 | 0.949 0.951 | 0.946 | 0.948 0.948 | 0.949 | 0.948 0.949
251 0.946 | 0.949 0.944 | 0,946 | 0.948 0.949 | 0.949 | 0.948 0.949
30 | 0.946 | 0.949 0.946 | 0.948 | 0.948 0.949 | 0.949 | 0.948 0.949
351 0.946 | 0.949 0.951 | 0.949 | 0.948 0.954 | 0.949 | 0.948 0.949
; 40 | 0.945 | 0.949 0.953 | 0.947 | 0.949 0.950 | 0.949 | 0.949 0.949
45 1 0.945 | 0.949 0.949 | 0.949 | 0.949 0.949 | 0.949 | 0.949 0.949
50 1 0.945 { 0.949 0.949 | 0.949 | 0.949 0.948 | 0.949 | 0.949 0.949
55 1 0.945 | 0.949 0.949 | 0.949 [ 0.949 0.952 | 0.949 | 0.949 0.949
60 | 0.945 | 0.949 0.952 | 0.949 | 0.949 0.946 | 0.949 | 0.949 0.949
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Table 4.3: Comparisons between the evact, approzimate

and simulation results of Py (d)

for m = 3 and given values of k, 1 — « and a

1—a=20.99
k=5 k=1 k=10
a | Exact | Appro. | Simul. | Exact | Appro. | Simul. | Exact | Appro. | Simul.
5 10993 | 0.995 0.991 | 0.993 | 0.995 0.985 | 0.993 | 0.995 0.983
10 ] 0.992 | 0.995 0.991 | 0.993 | 0.995 0.988 | 0.994 | 0.995 0.993
151 0.994 | 0.995 0.994 | 0.994 | 0.995 0.993 | 0.995 | 0.995 0.996
20 | 0.994 | 0.995 0.994 | 0.995 | 0.995 0.995 | 0.995 | 0.995 0.994
25 1 0.995 | 0.995 0.994 | 0.995 | 0.995 0.994 | 0.995 | 0.995 0.995
301 0.995 1 0.995 | 0.995 | 0.995 | 0.995 0.993 | 0.995 | 0.995 0.994
351 0.995 | 0.995 0.995 | 0.995 | 0.995 0.996 ; 0.995 | 0.995 0.995
40 | 0.995 | 0.995 0.996 | 0.995 | 0.995 0.995 | 0.995 | 0.995 0.994
45 1 0.995 | 0.995 0.994 | 0.995 | 0.995 0.996 | 0.995 | 0.995 0.994
50  0.995 | 0.995 0.996 | 0.995 | 0.995 0.994 | 0.995 | 0.995 0.995
551 0.995 | 0.995 0.996 | 0.995 | 0.995 0.996 | 0.995 | 0.995 0.995
60 { 0.995 | 0.995 0.996 | 0.995 | 0.995 | 0.995 | 0.995 | 0.995 0.995
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Table 4.3:  Comparisons between the exact, approximate

and simulation results of By(d)
Sfor m =10 and given values of k, 1 — a and a

1—a=0.99

k= k=7 =10

a | Exact | Appro. | Simul. | Exact | Appro. | Simul. | Exact | Appro. | Simul.

151 0.995 | 0.995 | 0.996 | 0.994 | 0.995 | 0.996 | 0.995 | 0.995 | 0.995

20 1 0.995 | 0.995 | 0.996 | 0.995 | 0995 | 0.995 | 0.995 | 0.995 | 0.995

251 0.995 | 0.995 | 0.996 | 0.996 | 0.995 | 0.993 | 0.995 | 0.995 | 0.995

30 1 0.995 | 0.995 | 0.995 | 0.995 | 0.995 | 0.993 | 0.995 | 0.995 | 0.995

351 0.995 | 0.995 | 0.996 | 0.996 | 0.995 | 0.995 [ 0.995 | 0.995 | 0.995

40 | 0.995 | 0.995 | 0.996 | 0.995 | 0.995 | 0.995 | 0.995 | 0.995 | 0.995

451 0.995 | 0.995 | 0.995 | 0.996 | 0.995 | 0.995 | 0.995 | 0.995 | 0.995

! 50 | 0.995 | 0.995 | 0.995 | 0.996 | 0.995 | 0.995 | 0.995 | 0.995 | 0.995

551 0.995 | 0.995 | 0.995 | 0.995 | 0.995 | 0.995 | 0.995 | 0.995 | 0.995

60 | 0.995 | 0.995 | 0.995 | 0.995 | 0.995 | 0.995 | 0.995 | 0.995 | 0.995
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Figure 7. The exact (-) and approximate (- --) values of Sy(d)

and 1 — « (- -) as a function of a = a(c) for m =3, k=5

and a = 0.10, 0.01.
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Figure 8. The exact (-) and approximate (- - ) values of 5y(d)
and 1 — o (- -) as a function of @ = a(0) for m =10, k =5

and a = 0.10, 0.01
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Figure 9. The exact (-) and approximate (- --) values of Sy (d)
and 1 — « (- -) as a function of ¢ = a(o) for m =3, k=7

and o = 0.10, 0.01.
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Figure 10. The exact (-) and approximate (- - -) values of 8y/(d)
and 1 — « (- -) as a function of @ = a(o) for m =10, k=7

and o = 0.10, 0.01.
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Figure 11. The exact (-) and approximate (- --) values of Sy (d)
and 1 — « (- -) as a function of a = a(c) for m =3, k =10

and o = 0.10, 0.01.
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Figure 12. The exact (-) and approximate (---) values of Sy (d)
and 1 — e (- -) as a function of @ = a(o) for m = 10, k = 10

and a = 0.10, 0.01
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4.2 The exact probability of making correct
inference for comparing several treatments

with a control

4.2.1 Introduction

Suppose the first population, N(p;,0?), is the control, the other k — 1(k > 2)
populations are treatments, and the set of 2d-width and (1 — a)-level simulta-

neous confidence intervals for the p; — 1 1s given by
P{H;“‘HlE(Y;—Y/&—(Z,K—E—Fd), Z:277k}:1-—Q

Based on this set of confidence intervals, simultaneous inference about each
ft; — p1 can be made. For example, if ¥; — Y] —d > 0(Y; — Y] + d < 0) we can
infer that p; — g1 > 0(p; — g1 < 0). Furthermore, the probability of making
correct inferences, either y; — puy > 0 or p; — py < 0, for every p; satistying
lp; — pa| > 2d, is at least 1 — «, the confidence level. The purpose of this
section is to study the exact value of this probability.

Let 8*(u, d) be the probability of making correct inferences, either p; —py >
0 or w; — pq < 0, for each p; satisfying |u; — p1| > 2d, and

Qu(d)={v: i —pr >2d} and Q(d) ={y:p; — 1 < —2d}.
Then 5*(u, d) is equal to

P{making correct inferences y; — y; > 0 for each ¢ € Qf(d) and
making correct inferences p; — 1 < 0 for each j € Q3(d)}.
In particular, we impose 5*(p,d) = 1 if for a given value of y both the sets
Q3(d) and Q3 (d) are empty. Let the minimum value of 3*(y,d) over u € R*

be

F(d) = min 5(s.d).
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As one should expect, 3*(d) must be no less than 1 — «, but we want to assess
the exact value of §*(d).

Two different cases, known and unknown variance, will be considered sep-
arately. In Subsection 4.2.2 we consider the known variance case in which the
set of confidence intervals for u; — pq is given in (4.4). In Subsection 4.2.3 we
consider the unknown variance case in which the set of confidence intervals for

p; — pp 1s constructed by using the pure sequential procedure of Section 3.2.
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4.2.2 When the variance is known

2
Let 02 be known, we draw a random sample of fixed size b = 2 (lt[g_1 ) oid™?
from each of the k& populations and construct the following set of simultaneous

confidence intervals
W-ME(Eb"Yw—d, Yz’b_i/lb‘*'d)y 2 <1<k (4.4)

It is known from Subsection 3.2.1 that this set of confidence intervals has
simultaneous level 1 — «. In order to compute the exact value of 8*(d), we

need the following theorem.

Theorem 4.3 Let k>3, p= ((k+1)/2) and p*(d) = (0,2d,---,2d, —2d,
-+, —2d) € R* where the first component is zero, the last k — p components

are —2d and the rest p — 1 components are 2d. Then

B(d) = B(p(d),d)
= [ 8@@ (a4 VRl ) 05 (a4 VI, ) da.

—00

Proof: From the definition of 3*(y,d), we have

B (p,d)
= P{Y; = Vi > d Vi € Q(d), Y, — Y1, < —d Vj € Q35(d)}

_ P{\/E(Y;'Z_:Ui) _ \/5(3712— i) _ Vb(d - (UM — 1) i an (),
\/E(Yj:;—uj) _ \/5(5712— i) _ Vh(—d *U(ﬂj —m)) e QZ(d)}
:f{z—z>fﬁu‘g“””)w69a@
7 — 7y < Vh(~d _;“j —r)) ;e Q*L(d)}

\/E(d B (,ui - ﬂl)) Vi € QE(d)

- /: qﬁ(:z:)P{Zz- >+

Z; < x4+ Vb(—d ~U('uj —m)) vy € QZ(d)} da
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- [Cew T q,(_l,_ \/E(d—(m—m))) y

— i €Q%(d) g
o (D(Hﬁ(—d—(m—m)) .
i €0(d) g

It is clear that

0 q)(_w_\/g(d—(m—m))) il (D(H\/E(—d—g(pj—ul)))

i €Q%,(d) g J Q% (d)

attains its minimum value over u € R* when u; — p; = 2d for all ¢ € Q5(d),
pj —p1 = —2d for all j € Q5 (d) and C[Qf(d)] + C[Q;,(d)] = k — 1. Without
loss of generality, let pg; — py = 2d for 2 < ¢ < [ and p; — py = —2d for
[ <3 <k. Now, let

M) = [ 6@)@ (—a+ VI ) 05 (o 4+ VRN, ) do.

—00

It is easy to show that M({) > M(l+ 1) for 2 <! < p by using the inequality
ab (aS“Q(TH) 4 pe20rH) ) < a7 46 fora,b€ R and s > 2r + 1.

Also, it is clear that M () = M(k+1—1). So M(I)is minimized over 2 <[ < k
at { =p=((k+1)/2). Consequently

Br(d) = B (u(d).d)
RO (~x + @-) F (r + @) da.

= [T o0 (a4 VRl ) @87 (24 V2L ) de.

This finishes the proof.

It is interesting to note that the value of 8*(d) depends only on « and k,
but not on d and o2 This is because of the way in which we set the sample
size b =2 (|t|2’_1 )2 o?d™.

Table 4.4 shows the values of 5*(d) for k—1 = 2(1)20 and = 0.1,0.05,0.01.
As we can see, the values of the 3*(d) are always larger than 1 — a. For exam-

ple, if @ = 0.10 and k& = 4, we can claim that, with probability 0.945, rather
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than 1 — «a = 0.90, correct inference, based on the set of confidence intervals

in (4.4), will be made for each p; — py satisfying |p; — p1| > 2d.
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Table 4.4: 5*(d) = min,epr B*(p, d)

k—1\1—a | 090 { 095 | 0.99
2 0.945 | 0.973 | 0.995
0.945 | 0.973 | 0.995

4 0.943 | 0.972 | 0.995
5 0.943 | 0.972 | 0.995
6 0.942 | 0.972 | 0.995
7 0.942 | 0.972 { 0.995
8 0.942 | 0.972 | 0.995
9 0.941 | 0.972 | 0.995
10 0.941 | 0.972 | 0.995
11 0.941 | 0.971 | 0.995
12 0.941 | 0.971 | 0.995
13 0.940 | 0.971 | 0.995
14 0.940 | 0.971 | 0.995
15 0.9406 | 0.971 | 0.995
16 0.940 | 0.971 | 0.995
17 0.940 | 0.971 | 0.995
18 0.940 | 0.971 | 0.995
19 0.940 | 0.971 | 0.995
20 0.939 | 0.971 | 0.995
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4.2.3 When the variance is unknown

Suppose that o2 is unknown, we consider inferences based on the set of confi-

dence intervals
pi —p € (Yip = Yir —d, Y = Yir +d), 2<i<k,
where the stopping time T is given in Subsection 3.2.1 by
T =inf{n>m: n>2d72(t|7, )?.(dn)*}.

We know that, for each treatment satisfying p; — p1 > 2d(< —2d), the correct
inference p; — 1 > 0(< 0) will be made from this set of simultaneous confidence
intervals with a probability of at least 1 — o+ o(d?), since the confidence level

of this set of confidence intervals is equal to 1 — o + o(dz). We wish to assess
Bir(d) = min G5 (p, d),
uERF
where
ﬁzv(,u,d) = P{Y;T _171T >dVi e Q*U(d), Y/jT _Y/lT < —d \V/j < Qz(d)} (45)

In particular, we define 35, d) = 1 if all the treatments satisfy [p; — 1| < 2d.
For this we need the following lemma, which can be proved in a way similarly

to Lemma 4.1.

Lemma 4.3 Fork >3

oy = 2 [ () )]

where

7 -7 . Z.— 7 ‘
H(fc):P{ \/51>—\/5,2§z§p, ‘7\/§1<\/:E,p<]§k}, (4.6)

b=2 (alt]i‘_l /d)2 and p = ((k+1)/2).
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Lemma 4.4 Let k>3, p= ((k+1)/2) and

7 , Zi— 7 .
H(x):p{zﬁl>—ﬂ,2§zsp, Jﬁ1<ﬁ,p+1éyék}-

Then for 0 < z < z, we have |H"(z)] < Ca*=9/2  where C is a constant.
Proof: Let g(x) = H(2?), then

H(z) = g(a*),
H'(z) = 5P g (a1,

_1_ :U_lg"(xl/2) _ p32 g/(xlﬂ)} 7 (4_7)

H'(x) = [

=P{Zi—Zy>~aV2,2<i<p, Z;—Zi<aV2,p+1<j<k}
= [ swP{zi—y> V2
2<i<p, Zi—y<aV2,p+1<j<k|Z=y}dy
_/ WVP{Zi—y> —av2,2<i<p, Z—y<av2,p+1<j<k}dy

—/ y)®" (22 — y)OF P (22 + y) dy,

VE [ ) ((p = 1)6(evE - )82 (ovF — )04 (2vE + )
k= p)gly + VD) (2V2 — )8 (V2 +y) ) dy

First, observe that

g'(z) < /_Z Bi6(y)® 7 (2v2 — )07 (aV2+y) dy
< _Z Byd(y)(@(aV2 — y) + ®(av2 + y)) 2 dy
< [ Busly? dy
< -3 (4.8)
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where B, By, By, and Bj are constants. Next, we have

) =
2 [7 6) (= Dly — +v2)9(avE — )82 (+VE ~ )8 (2vT 1 1)
+Hp—1)(p — 2)* (V2 - )07 (eV/2 — ) 0¥ (22 + )

(P — Dk = p)d(av2 —y)@? (2v2 — y)p(zV2 + )BT (2v2 +y)
—(k = p)(aV2 + 1) $(aV2 + )" (xv2 — 1)@ (2v2+y)

(k= p)(p — D$(xV2 + 1)@V = y)8 (aVZ — y)8* (22 +y)
(k= p)(k —p — 1)8*(xV2Z + y) 7" (2v/2 — )&+~ (a:\/§+y)> dy

+

+  +

and so

9"(@)]
<a [ ow)|(l-evDlo(avE - y)
Hy + 2VD)I8ly + v2) |02 (2vE - )04 (2vZ +y)
+A; ((¢2(x 2-y) + oy +2v2)) @7 (2vV2 — )@ (av2 + y)>
43 (#(eVE = 9)o(@VE +y) + 6y +2vD) x
P2 (272 — ) @F 2 (x\/é+y))] dy
5 [ 9) (1016(evE — ) + VEo(evE ~ y) + Iyl + )
+V2zh(2V2 + y)> dy + Dpa*~*
< D12 % (A + Bz) + Dya™™*
< Dg** (4.9)

where Dy, Dy, A, B, and D are constants. By substituting (4.8) and (4.9) in
to (4.7), we get

(7 (k=6)/2

| H" ()]

IA

IA
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and the proof is thus completed.
2
Now, by using Theorem 2.2 with § = <|t|g_1> , g =0b Cy =0, =
(6 — k)/2 and Lemma 4.4 we have following second order approximation to

the A5 (d).

Theorem 4.4 For H(z) defined in (4.6), and suppose m > 1 if k > 6 and
m>1+(8—k)/kifk=3,4,5 Then

sod) = @+ 3 (o) w (0 )") (o4 - 7)
e (i) e (i)"Y ]+ (3)
where b = 2d72 (|t|%_1 )2 ol

The exact value of 3};(d) can be calculated by using the recursive method

discussed in Subsection 3.2.4 since the stopping time is the same as before and

sod) = B[ ()" 3)]

= > Pe=n (i) )

n=mo

— i [P(t>n—1)— P(t >n)|H <(|tl§—1 )2 %) )

n=mo
where H(x) is defined in (4.6) and mg = m — 1. Simulation to estimate 3;(d),
based on 6,000 experiments, was also carried out.

For k =5,7,10 and 1 — o = 0.90,0.99, Tables 4.5 and 4.6 give the exact,
simulated and second order approximate values of 8y (d) at b = 5(5)60 and
b = 15(5)60. For m = 2,10,k = 5,7,10, and 1 — a = 90%,99%, the exact
calculation results and approximations of 8(d) at b = 5(5) 60 and b = 15(5)60

are linearly plotted in Figures 13-18.
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Table 4.5: Comparisons between the exact, approzimate

and simulation results of B (d)

for m =2 and given values of k, 1 — « and b

1—a=0.90
k= k= k=10
b | Exact | Appro. | Simul. | Exact | Appro. | Simul. | Exact | Appro. | Simul.
‘) 5 10915 | 0.949 0.908 | 0.915 | 0.952 0.920 | 0.916 | 0.956 0.907
10| 0.923 | 0.946 0.924 | 0.930 | 0.947 0.931 | 0.935 | 0.948 0.929
151 0.933 | 0.945 0.939 | 0.938 | 0.945 0.940 | 0.939 | 0.946 0.929
20 | 0.938 | 0.944 0.938 | 0.940 | 0.945 0.942 | 0.940 | 0.945 0.935
251 0.940 | 0944 0.938 | 0.941 | 0.944 0.945 | 0.941 0.944 0.935
30 | 0.941 0.944 0.945 | 0.941 | 0.944 0.943 | 0.941 0.943 0.938
357 0.941 | 0.944 0.938 | 0.942 | 0.943 0.946 | 0.941 0.943 0.935
40 | 0.942 | 0.944 0.945 | 0.942 | 0.943 0.942 | 0.941 0.943 0.935
45 | 0.942 | 0.944 0.941 | 0.942 | 0.943 0.943 | 0.941 0.943 0.936
# 50  0.942 | 0.944 0.950 | 0.942 | 0.943 0.941 | 0.941 0.942 0.936
551 0.942 | 0.944 0.942 | 0.942 | 0.943 0.942 | 0.941 | 0.942 0.934
60 | 0.942 | 0.943 0.941 | 0.942 | 0.943 0.942 | 0.941 0.942 0.935
|
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Table 4.5:

Comparisons between the exact, approrimate

and simulation results of 55(d)

for m = 10 and given values of k, 1 — « and b

I —a=10.90
=5 =7 =10
b | Exact | Appro. | Simul. | Exact | Appro. | Simul. | Exact | Appro. | Simul.
15| 0.942 | 0.945 | 0.944 | 0.941 | 0.945 | 0.941 | 0.940 | 0.946 | 0.939
20 1 0.942 | 0.944 0.939 | 0.941 0.945 0.944 | 0.941 0.945 0.933
25 | 0.942 | 0.944 0.949 | 0.942 | 0.944 0.945 | 0.941 0.944 0.936
30} 0.943 | 0.944 0.942 | 0.942 | 0.944 0.944 | 0.941 | 0.943 0.938
351 0.943 | 0.944 0.938 | 0.942 | 0.943 0.938 | 0.941 0.943 0.935
40 | 0.943 | 0.944 0.944 | 0.942 | 0.943 0.939 | 0.941 0.943 0.941
451 0.943 | 0.944 0.945 | 0.942 | 0.943 0.945 | 0.941 | 0.943 0.934
50 1 0.943 | 0.944 0.943 | 0.942 | 0.943 0.941 | 0.941 0.942 0.934
551 0.943 | 0.944 0.942 | 0.942 | 0.943 0.940 | 0.941 0.942 0.933
60 | 0.943 | 0.943 0.943 | 0.942 | 0.943 0.942 | 0.941 | 0.942 0.940
135




Table 4.6: Comparisons between the exact, approzimate

and simulation results of G5(d)

Jor m =2 and given values of k, 1 — « and b

1—a=0.99
k=5 k=17 k=10
b | Exact | Appro. | Simul. | Exact | Appro. | Simul. | Exact | Appro. | Simul.
5 10.985 | 0.996 | 0.987 | 0.986 | 0.997 | 0.986 | 0.987 | 0.997 | 0.986
10 | 0.987 | 0.995 0.985 | 0.990 | 0.996 0.990 | 0.993 | 0.996 0.990
15| 0.990 | 0.995 0.990 | 0.993 | 0.995 0.992 | 0.994 | 0.996 0.992
20 1 0.992 | 0.995 0.994 | 0.994 | 0.995 0.994 | 0.994 | 0.996 0.994
251 0.993 | 0.995 0.994 | 0.994 | 0.995 0.994 | 0.994 [ 0.995 0.994
30 | 0.993 | 0.995 0.993 | 0.994 | 0.995 0.994 | 0.994 | 0.995 0.994
3510994 | 0.995 0.993 | 0.994 | 0.995 0.995 | 0.994 | 0.995 0.995
40 | 0.994 | 0.995 0.993 | 0.994 | 0.995 0.995 | 0.994 | 0.995 0.995
45 1 0.994 | 0.995 0.993 | 0.994 | 0.995 0.994 | 0.994 | 0.995 0.994
50 | 0.994 | 0.995 0.994 | 0.994 | 0.995 0.995 | 0.994 | 0.995 0.995
551 0.994 | 0.995 0.995 | 0.994 | 0.995 0.995 | 0.994 | 0.995 0.995
60 | 0.994 | 0.995 0.996 | 0.994 | 0.995 0.995 | 0.994 [ 0.995 0.995
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Table 4.6:

Comparisons between the exact, approximate

and simulation results of B55(d)

for m = 10 and given values of k, 1 — « and a

l—a=0.99
k=5 k=17 k=10
b | Exact | Appro. | Simul. | Exact | Appro. | Simul. | Exact | Appro. | Simul.
151 0.994 1 0.995 0.995 | 0.994 | 0.995 0.996 | 0.994 | 0.996 0.994
20 | 0.994 | 0.995 0.997 | 0.994 | 0.995 0.995 | 0.994 | 0.996 0.993
251 0.994 | 0.995 0.996 | 0.995 | 0.995 0.994 | 0.995 | 0.995 0.995
30| 0.994 | 0.995 | 0.994 | 0.995 | 0.995 | 0.995 | 0.995 | 0.995 | 0.993
351 0.994 | 0.995 0.993 | 0.995 | 0.995 0.996 | 0.995 | 0.995 0.993
40 | 0.994 | 0.995 0.993 | 0.995 | 0.995 0.995 | 0.995 | 0.995 0.995
45 1 0.995 | 0.995 0.993 | 0.995 | 0.995 0.996 | 0.995 [ 0.995 0.995
50 | 0.995 | 0.995 0.994 | 0.995 | 0.995 0.994 | 0.995 | 0.995 0.995
55 | 0.995 | 0.995 0.995 | 0.995 | 0.995 0.995 | 0.995 | 0.995 0.995
60 | 0.995 | 0.995 0.994 | 0.995 | 0.995 0.995 | 0.995 | 0.995 0.993
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Figure 13. The exact (-) and approximate (---) values of 8f(d)
as a function of b=b(c) and l —a (--) for m=2, k=35

and o = 0.10, 0.01.
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Figure 14. The exact (-) and approximate (- --) values of 85(d)
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as a function of b = b(c) and 1 —a (- -) for m =10, k =5

and o = 0.10, 0.01.
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Figure 15. The exact (-) and approximate (---) values of 3j(d)
as a functionof b=b(c)and 1 —a (- -)form =2,k =7

and o = 0.10, 0.01.
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Figure 16. The exact (-) and approximate (- --) values of 8§ (d)
as a function of b="0(c) and 1 —« (- -) for m =10, k = 7
and o = 0.10, 0.01.
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Figure 17. The exact (-) and approximate (- --) values of B5(d)
as a function of b=b(¢) and 1 —«a (- -) for m =2, £ =10
and « = 0.10, 0.01.
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Figure 18. The exact (-) and approximate (---) values of }(d)

as a function of b =b(c) and 1 — a (- -) for m =10, k = 10
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4.3 The exact probability of making correct
inference for all-pairwise comparisons of
the means of several independent normal

populations

4.3.1 Introduction

From a set of 2d-width and (1 — a)-level simultaneous confidence interval for

the p; — p;
P{ui—w(i@—ﬁ—d,ﬁ—ifjw), lgi#jgk}:l—a

simultaneous inferences about each p; — p; can be made. For example, we
can infer that p; — p; > 0if Y; ~ Y; — d > 0. Furthermore, the probability of
making correct inferences p; — p; > 0, for each pair satisfying p; — p; > 2d,
is at least 1 — «, the confidence level. The question we want to answer in this

13

section is “ what i1s the exact value of this probability?” More precisely, we

want to investigate the following probability
P{making correct inferences p; — u; > 0, for each pair satisfying p;, — p; > 2d}.

Let
Q7 (d) ={(2,7) : s — p; > 2d}.

The above probability is then equal to
P{making correct inferences p; — p; > 0 for each (¢,7) € Qi (d)}.

This probability is of course dependent on the true value of u = (p1, pro, - -+, pix) €
RF, and let it be denoted by 3**(, d). For obvious reason, we impose 3** (u, d) =

1 if for given values of p and d the set Qjf(d) is empty. In this section, we
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wish to assess

B7(d) = min 5™ (u,d).

It is clear that = (d) must be no less than 1 — «, the confidence level. We shall
compute the exact value of 8 (d) when k£ = 3 and a lower bound on 5 (d)
when k = 4. Although 8™ (i, d) and 8= (d) are well defined for general k& > 2,
to find an explicit formula for §*(d) when k£ > 4 encounters great difficulty
and might be impossible.

Two different situations are considered. In Subsection 4.3.2 we consider
the known variance case in which the set of confidence intervals for p; — p; s
given in (4.10). In Subsection 4.3.3 we consider the unknown variance case in
which the set of confidence intervals for p; — g; is constructed by using the
pure sequential procedure of Section 3.3.

The following notation is used. Let ppj < ppg < pg < ppg denote the
ordered values of 1, p2, 3 and pyg, and let Y(Z-) denote the sample mean from

the population with mean u,: =1,2,3,4.
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4.3.2 When the variance is known

Suppose that o? is known and a random sample of fixed size ¢ = (¢¢)* o2d™?
is taken from each of the k£ populations, we construct the following set of

simultaneous confidence intervals for p; — p;

It 1s known from Subsection 3.3.1 that this set of confidence intervals has

simultaneous level 1 — a.

First, when k = 3, in order to compute the exact value of 3= (d), we have

the following theorem.

Theorem 4.5 For given d > 0,¢ = d™2 (¢3)* 0% and p*(d) = (0,—2d,2d) €
R®. We have

fu(d) = 7 (ur(d),d
= [T oo et a) e

= [ éla)olgs — 2)0(g5 +2) da.

Proof: Dividing the whole space of u = (1, 2, 3), B>, into five regions as

! follows:

1. Ry = {,u[g] —ppy < 2d}

o

Ry = {ua — ppy 2 24, piay — ppgy < 2d, pgy — ppy < 243
3. Rs = {pe) — ) = 2d, ppa) — pray < 2, ppy — oy 2> 2d}
4 Ry = {p) = py 2 2d, prg) — pra) 2 2d, ppgy = ppyg < 2d}
5. s = {puge) — wiz = 2d, ppgy — ppyy 2 24}

Now consider the function §=(u,d) for ¢ = (w1, g2, u3) in each of the five
regions. When u € Ry, 3™(u,d) =1 by definition since |p; — pj] < 2d,V1 <
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¢ < j < 3. So, the minimum value of 8*(y,d) will not be attained at p € R;.
When @€ R,

5 (p,d) = P{Y(5) — Yy > d}. (4.11)

When p € Rs,
B (p,d) = P{Y3y — Yy > d, Yoy — Y5y > d}. (4.12)

When p € Ry,
B (u,d) = P{Yay — Y1) > d, Y(5) — Yoy > d}. (4.13)

When p € Rs,
57 (i, d) = P{¥(5) — Yig) > d, Vo) — Yay > d}. (4.14)

Now, we compare min,ep, 3 (u,d) for ¢ = 2,3,4,5. When u € R5, we have

ﬁ** (f,[,’ d> i
(Yo — Yo — (ma —pm) _ dve  (up — pm)Ve
o/\/c o o ’
Yoy = Yo — (o — ) _ dve  (pp — p)v/e
>
o/+/c o o
d _ _
_ P<23 Z > ;/5 _ (1 Uﬂm)\@ Je— 71> d;ﬁ _ (g aﬂm)\/z)

which clearly attains its minimum at
puy = —2d, ppp =0, pg = 2d.
So

As = min 07 (pu,d)

UER,
= P(Zg-Z2>—q§, ZQ—Z1>—qg)
qs a3
- P<X N )
5 \/E 5 \/5
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where (X5, Ys) has a bivariate normal distribution with mean (0,0) and a

covariance matrix

1, —1/2
—~1/2 , 1

Similarly, when ¢ € Ry, we have

Ay = min §7(p,d)

= P(Z3—Z1>—qg, Zg_Z2>—qg)

. 93 93
- P(X > -8y, >——)
TR TR

where (X4, Ys) has a bivariate normal distribution with mean (0,0) and a

covariance matrix
1, 1/2

/2 , 1
When p € Rs, we have

Az = min 7 (i, d)

ueRs

) d !
| - P(Zg—Zl>—\/E,Z2—Z1>—(\/E>
a a
- qs q3
BT )
| 2> = B> s

where (X3,Y3) has a bivariate normal distribution with mean (0,0) and a

covariance matrix
1, 12
/2, 1
Now, by Slepians’s inequality (Theorem A.4), we have A5 < A; = Ay Also,
minep, B#(u,d) > As is obvious. So, 3™ (u, d) attains its minimum in Rs at
1 = (0,—-2d,2d), and the minimum is given by
B(d) = P(Zy—Zy>—q35, Zo— 71> —q53)
- /OO S(2)P(Zs > —qS + 2, 71 < ¢5 + ) de

= [ o(@)0(5 ~ 2)0(e5 + ) d (4.15)
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as required. This completes the proof.

Table 4.7 shows the values of = (d) for £ =3, = 0.1,0.05,0.01.

Table 4.7: 3*(d) for k=3

l-a | 3~(d)
0.90 | 0.960
0.95 | 0.981
0.99 | 0.996

Now we consider & = 4. The following theorem gives a lower bound, 5 (d),

on min,eps F(u, d).

| Theorem 4.6 For given d > 0 and ¢ = d™2 (¢)* 02, we have
| 5=(d) > B (d),
)
' where
ok = v / o o @12
\ i) = [ [ s@)e)@(s - )05 + ) — Oy — ¢ dyda.
\

Proof: Divide the whole space of ¢ = (p1, g2, p3, fta), B*, into fourteen regions

as follows:

3. Ry = {pa) — py > 2d, pupay — ppay < 2, ) — gy = 2d, ppoy — ppy < 2d}
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6. R = {ug — upy 2 2d, ppay — iz 2 2, gy — agg) < 24,
ppa) — pp2) < 24, ppy) — ppy > 2d, gy — ppg > 2d}

=1

- Br =g = oy 2 2d, gy — py 2 24, ppy = pig) < 24,
p) — gy < 2d, ppg — ppy < 2d, ppgy — ppy < 2d}

8. By = g — pp) 2 2d, ) — ) 2 24, sy — gy < 2,
K3 — fp2) = 2d, prsp — ppg 2 2d, gy — ppy < 2d}

9. Ry = {ppg — ppy 2 2d, ppay — pray 2 24, ppay = pga) < 24,
fp) — K2y 2 2d, s — ppy = 2d, ) — ppy > 2d}

10. Rio = {pa) — pp) = 2d, ppa) — ppg) 2 2d, ppa) — pps) = 24,
fig3) — pp2) < 2d, gz — pipy 2> 2d, ppg) — gy < 2d}

U Ry = {pugg = pm 2 2d; ) = piay 2 24, ppay = prgy 2 2d,
pa) — fi2) < 2d, pysyp — ppg 2 24, ppy — gy 2 2d}

12 B = {ppa) — ppy 2 2d, ppay — pupa) 2 2d, pay — popa) = 24,
pa) — pg) < 2d, gz — ppy < 2d, ppgy — ppy < 2d}

13. Bas = {pp) — ppyy 2 2d, pa) = ppgy 2 2d, ppay — pig) = 24,

ps) — pp) 2= 2d pig — ppy 2 2d, g — ppy < 2d3

14, Rug = {ppy — py 2 2d, ppa — ppy = 2d, ppy — pps) = 24,

pis) = Az 2> 2d; gy — pupyy 2 2, oy — ppy 2 24}
Now consider the function 5 (u, d) for x in each of the fourteen regions. When
€ Ry, B=(u,d) =1, since |u; — ;| < 2d,V1 <1 < j < 4. So the minimum
value of ™ (u,d) will not be attained in R;. Let B; = minger, 5™ (g, d).
When u € Rs,

B (u,d) = P{¥ay = Yoy > d}

and

B2 = P{Z4 — Zl > —qg}
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When p € Rs,

and

Bs=P{Zy— 71> —qf, Zs— 71> —q5}

When p € Ry,
ﬂ**(ﬂ,d):P{Y( —Y >d Y) Y(l)>d, Y/(Q)_S_/’(l)>d}

and

By =P{Z4s— 7> —q5, Zs— 72y > —qf, Za~ 71> —q5}.

When p € Rs,
B (u,d) = P{Yigy = Yo) > d, Yiuy = Yoy > d, Yoy = Yoy > d}

and

Bs=P{Zy— 71> —qS, Zy—Zo>—q5, Zs— 71> —q}}.

When 1 € R,

B (p,d) = P{Y(4y = Yoy > d, Y5 = Yu) > d, Yoy — Yy > d}

and
B6:P{Z4—Z2>—q§7 Zs— 721> —qf, Zy— 21> Q4}
‘, When p € R7,
B (p,d) = P{Y4) -y y > d, Y —Y > d}
and
Br =P{Zi— 71> —qf, Zs— 22> —q5}.
When u € Rg,
ﬁ**(/% d) = P{Y(4 y > d, 5(4 }7(2) > d, 57(3) - Y(2) > d, Y(3) - Y(l) > d}
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and
Bs = P{Zi— 7y > —q%, Za—Zy>—q5, Zs—Zy>—qS, Zs—7y > —q3}.
When p € Ry,

87 (1 d) = P{Ya) = Yoy > d, Vi) = Yoy > &, Yig) = Yooy > d}

and

Bo=P{Zs—Zy > —q5, Zs— 7y >—q5, Zo~ 721> —q3}.

When p € Ry,

B (p,d) = P{Y(ay = Yig) > d. Yiay = Y3 > d, Yz — Yoy > d}
and

Bio=P{Zy—Zy > —~qf, Z4s— 73> —q5, Z3s—Z1>—¢}.
When u € Ry,

B (u,d) = P{Y(ay = V(o) > d, Yigy = Y(g) > d, Y(z) ~ Y(3) > d, Yig) = Y{z) > d}

and
By = P{Zs—Zy> —q, Zs—T3> —q5, Zs—T1> —q, Zo—71 > —q5}.
When u € Ry,,
B (pyd) = P{Yu) — Yoy > d, Yia) — V(o) > d. Yigy = Yi5) > d}
and
Biy = P{Zy— 71> —q5, Zy— Ty > —¢%, Zy—Zs> ¢}
When p € Rys,
B (1, d) = P{Y(ay = Y(g) > d, Y5y = Yoy > d, Yiz) — Ypuy > d}
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and

Biz=P{Z;— 73> —qy, Z3s—7Zs>—q5, Zs— 21> —q5}.
When p € Ry,

87 (. d) = P{Yia) = Yi3) > d, Yia3) = Yz > &, Yig) = Yo > d}
and

Biu=P{Zy~Zy> —qf, Zs—2Zy>—q5, Zy— 71 > —q5}.

Now, it is clear that By < Bz < B, and B; < B, and so the minimum is
among By, Bs, Bg, Bs, By, B1o, B11, B12, B1s and Biy.

Dividing these B;’s in to two groups, one group contains By, Bs, Bs, By, Big,
By, Bis and By, and the other group contains Bs, By;. Now by using Slepi-
ans’s inequality it can be shown that Bi4 is the minimum in the first group

and that B;; < Bg. Consequently
ﬂ**(d) = min(Bu, B14).

It is straightforward to show that

Biy = min §7(p,d) = §7((~2d,0,2d,4d), d)
HErt1 4

= P(Zy—Z3>—q5, 73— Za> —q5, Ly — Zy > —q5)

“ = / / P(Zy> —¢§ +x, Zo < qf +x, Zy > —q5 +y) dy d
| T+24% ,
= [T [ slwela)oles — o) @(a +0) — Oy — 45)) dy do,

and

By = l'el}lzll'l B~ ( d) = /B**((—QdaOaOan)vd)
= f /W% 2)[@(g5 + ) — Oy — ¢5)}* dy da,

from which the theorem follows clearly. The proof is thus completed.
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From this proof, we see that
ﬁ**(d) = min(Bu, B14).

The numerical calculation shows that for some values of ¢§, B14 < Bi; and for
other values of ¢§, B4 > Byy. For example, if ¢f = 1 then By = 0.369 and
By = 0.377, but if ¢f = 3 then Byy = 0.949 and By = 0.938. It is therefore
most unlikely that an explicit expression of 5*(d) can be given.

Table 4.8 presents the values of 5**(d) and 5" (d) for k = 4, = 0.1, 0.05,0.01.
From these, it seems that 85*(d) is a reasonably tight lower bound on 5= (d).
It is interesting to note that both the values of 3*(d) and 85*(d) depend only

on « and k, but not on d and 2.

Table 4.8: 5=(d) and p5(d) for k =4

l-a | 87(d) | 87 (d)
0.90 | 0.959 | 0.949

0.95 | 0.981 | 0.976

0.99 1 0.996 | 0.996
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4.3.3 When the variance is unknown

2

In this subsection, we suppose ¢? is unknown and consider inferences based

on the set of confidence intervals
pi —p; € Yir = Yo —d, Yo —Yir +d), 1 <i#j <k,
where the stopping time T is given in Subsection 3.3.1 by
T =inf{n>m: n>d?(¢).(5.)°}.

We know that, for each pair (¢,J) of treatments satisfying p; — p; > 2d,
the correct inference p; — p; > 0 will be made from this set of simultaneous
confidence intervals with a probability of at least 1 — « + o(d?), since the
confidence level of this set of confidence intervals is equal to 1 — a + o(d?*). We
wish to assess

P = i B (),
where

T (g d) = P{Yir — Yir > dV(i,5) € Q5 (d)}. (4.16)

In particular, we define g5 (u,d) = 1 if all treatments satisty |u; — p;] < 2d.
We again consider only k= 3 and k = 4.
When k£ = 3, an argument similar to the proof of Lemma 4.1 establishes

Lemma 4.5

s@=eln (7)),

where

H(z) = P{Zs— Zy > —\/z, Zy— 71 > —/7} (4.17)

and ¢ = (0¢5/d)>.

The following lemma can be proved similarly as before.
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Lemma 4.6 Let H(z) = P{Zs — Zy > —\/z, Zy— Z1 > —\/z}, and Cy > 0
is a given constant. Then for 0 < z < Co, |H"(z)| < D22, where D is a

constant.

Now Lemma 4.6 and Theorem 2.2 with § = (¢5)?, C; = 0 and ng = c give

the second order approximation to the 8 (d).

Theorem 4.7 For H(z) defined in (4.17) and m > 2 we have
ok ek 1
g = @+ @ (62) (o + - 3)

5 0 () ] G)

where ¢ = d™? (¢5)" o?.

For k =3 and 1 — o« = 0.90,0.99, Tables 4.9 gives the values of the second
order approximations to 85 (d) at ¢ = 5(5)60 and ¢ = 15(5)60
Next, when k& = 4, by using Lemma 4.6, we have the following lemma.

Lemma 4.7

5 2 st () = 8 [ () )]

ey = [ [ oo - De(vE+ 1) - 0 - VI drdt (118)
and ¢ = (oq¢/d)>.

Lemma 4.8 Suppose H(x) is given by (4.18) and Cy > 0 is a given constant.
Then for 0 <z < Cy, |H"(2)| < Mz™3? | where M is a constant.

Proof: Let g(z) = H(2?). Then

= [ sstrete - ofete 40 - ot - e v
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d@ = [T s8-8+ 1) — B — 2) drd

[T L 60t — (e + 1)~ Bl — ) drat

_ oo e g , i ot + 2z)
= /_OO{/_OO 8$I&(t,7,1)dr+[&(t,t+2x,:{:) 5o }dt,

where

K(t,r,) = (0)9(r)0(c — ]2z +1) = B(r o)
and so
g@ = [ [T swsm s - niet 4o - o0 - 2

120(z — 1)@z + 1) — (r — 2)] ($x + 1) + O(r — x))} drdt

_ /: /::2 gb(t)gb(r){d)(:c COW? 4 28(x — 1) ($le + 1) + 6(r — ) W} dr dt,

where

W=W((t,r,z)=0(z+1t)—O(r —z).

By noting that

W = :t—\/%_;e—szﬁ ds <2z +t—r,
we have
gl < A [ [ swee) (W w) drde
< A Z /: S(1)d(r)W drdt
< As /_: /:; $(1)(r) (22 + { — 1) drdt,
< Ag, (4.19)

where A;, Ay, Az, and A are constants.

Now we find ¢”(z).

g/l(x)
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_ %/_Z /t“x e r){¢(x—t)[w2+2<p(x_t)(¢(x+t)+¢(r-x))W]} dr dt,

e g o(t + 2z)
—/_OO{/_OO athrx)dr+N(tt+2 z) 52 }dt,

where

N(t7,2) = $(0)6() {6z ~ W2 + 200z — 1) (65 + 1) + 6 ~ ) W},
and so, we have

/ /H-QI { (z —t)o(z — t)W?

\ 48 — 1) ($(z + 1) + 6(r — ) W +20(z — 1) ((z + ) + $lr — 2))
| 120(2 — 1) (=( + D)l + 1) + (r — 2)(r — 2)) w} drdt.
|

Therefore
9" (@)]
<Bl/ / 1:—|-|t|)W2+W+D+(2:1:+|t|+||) )drdt
< BQ/ / (32 +1)(22 +t — ) + 2Jt] + [F]) (22 + t — ) + Do) drdt
S BgZI,' -+ B4£L' + B5, for 0 <z < C‘()7 (420)

where Bi, By, B3, By, Bs and Dy are constants. It now follows from (4.19),
(4.20) that

|H" ()]

IN

1/ _ -
7 (@ g @)+ 2 g (7))

M$_3/2 :

VAN

where M 1s a constant.
Now Lemma 4.8 and Theorem 2.2 with 6 = (g5 ) Cy = 0 and ng = ¢ give

the second order approximation to the 373 (d).

Theorem 4.8 For H(z) defined in (4.18) and m > 2, we have

S (@) = sp@) + [ 1 (@) (41— 3)

4
b @) 1 (@) | +o(3).
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where ¢ = d~* (¢5)° 0.

Table 4.10 presents the values of the second order approximation to the

7 (d)
The exact values of 8 (d) when k£ = 3 and 375 (d) when k = 4 can be
calculated by using the recursive method discussed in Subsection 3.3.4, since

the stopping time is the same as before,

F@= 3 (Pl > 1)~ P>l (6 )

where H(z) is defined by (4.17), and

o0

Sy (@) = Y [P >n—1) = P( > () )

n=my

where H(z) is defined by (4.18), where mg = m — 1. Simulations to estimate
7 (d) and 875, (d), based on 6,000 experiments, were also carried out.
For £ = 3,4 and 1 — o = 0.90,0.99, Tables 4.9 and 4.10 give the exact,
simulated and approximate values of 7 (d) and 87y (d) at ¢ = 5(5)60 and

¢ = 15(5)60.
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Table 4.9: Comparisons between the exact, approximate
and simulation results of B (d)
for m =2 and given values of k =3, 1 —«a and ¢

1 —a=20.90

k=3

¢ | Exact | Appro. | Simul.

510936 | 0943 | 0.939

10 | 0.931 | 0.951 | 0.941

15 ] 0.938 | 0.954 | 0.952

20 | 0.944 | 0.956 | 0.953

251 0.948 | 0.956 | 0.954

30 | 0.951 | 0.957 | 0.955

351 0.952 | 0.957 | 0.956

40 | 0.954 | 0.958 | 0.958

45 1 0.955 | 0.958 | 0.952

50 | 0.955 | 0.958 | 0.958

551 0.956 | 0.958 | 0.963

60 | 0.956 | 0.958 | 0.963
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Table 4.9:  Comparisons between the exact, approximate

and simulation results of B (d)
for m =10 and given values of k =3, 1 — « and ¢

1 —-a=0.90

k=3

¢ | Exact | Appro. | Simul.

15| 0.959 | 0.954 | 0.967

20 | 0.958 | 0.956 | 0.963

251 0958 | 0.956 | 0.961

30 | 0.959 | 0.957 | 0.962

351 0.959 | 0.957 | 0.962

40 | 0.959 | 0.958 | 0.962

45 1 0.959 | 0.958 | 0.960

50 | 0.959 | 0.958 | 0.963

55 | 0.959 | 0.958 | 0.965

60 | 0.959 | 0.958 | 0.967
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Table 4.9:  Comparisons between the exact, approzimate
and simulation results of B (d)
for m =2 and given values of k =3, 1 — a and ¢

1 ~a=0.99

k=3

¢ | Exact | Appro. | Simul.

5 10989 | 0.995 | 0.990

10} 0.985 | 0.995 | 0.987

151 0.987 | 0.996 | 0.991

20| 0.989 | 0.996 | 0.991

2510990 | 0.996 | 0.993

30 | 0.991 | 0.996 | 0.994

1 3510992 | 0.996 | 0.995
40 | 0.993 | 0.996 | 0.993

451 0.993 | 0.996 | 0.995

50 | 0.994 | 0.996 | 0.994

551 0.994 | 0.996 | 0.995

60 | 0.994 | 0.996 | 0.996
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Table 4.9:  Comparisons between the exact, approximate

and simulation results of B (d)
for m = 10 and given values of k=3, 1 — « and ¢

1 —a=0.99

=3

¢ | Exact | Appro. | Simul.

151 0.996 | 0.996 | 0.998

20 | 0.996 | 0.996 | 0.995

251 0.996 | 0.996 | 0.995

30 | 0.996 | 0.996 | 0.997

351 0.996 | 0.996 | 0.997

40 | 0.996 | 0.996 | 0.997

451 0.996 | 0.996 | 0.997

50 | 0.996 | 0.996 | 0.997

551 0.996 | 0.996 | 0.996

60 | 0.996 | 0.996 | 0.997
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Table 4.10: Comparisons between the exact, approximate
and simulation results of 85y (d)
for m =2 and given values of k =4, 1 — a and ¢

1—a=20.90

k=4

¢ | Exact | Appro. | Simul.

5 10942 | 0.940 | 0.928

10 | 0.946 | 0.944 | 0.932

15} 0.949 | 0.946 | 0.947

20 0.949 | 0.946 | 0.944

251 0.949 | 0.947 | 0.947

30 | 0.949 | 0.947 | 0.951

351 0.949 | 0.947 | 0.944

40 | 0.949 | 0.947 | 0.950
451 0.949 | 0.948 | 0.950

50 { 0.949 | 0.948 | 0.950

5510949 | 0.948 | 0.945

60 | 0.949 [ 0.948 | 0.949
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Table 4.10:  Comparisons between the exact, approzimate

and simulation resulls of 85y (d)
for m = 10 and given values of k =4, 1 — « and ¢

1 —a=20.90

k=4

¢ | Exact | Appro. | Simul.

15 0.949 | 0.946 | 0.952

20 ] 0.949 | 0.946 | 0.948

251 0.949 | 0.947 | 0.951

30 1 0949 | 0.947 | 0.954

35| 0.949 | 0.947 | 0.944

40 | 0.949 | 0.947 | 0.953

451 0.949 | 0.948 | 0.949

50 | 0.949 | 0.948 | 0.951

55 1 0.949 | 0.948 | 0.945

60 | 0.949 | 0.948 | 0.949
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Table 4.10:  Comparisons between the exact, approximate
and simulation results of G5y (d)
for m = 2 and given values of k =4, 1 — «a and ¢

1—a=0.99

k=4

¢ | Exact | Appro. | Simul.

510995 | 0.995 | 0.989

10 | 0.995 | 0.995 | 0.988

151 0995 | 0.995 | 0.993

20 ] 0.995 | 0.995 | 0.994

2510995 | 0.995 | 0.995

30 { 0.995 | 0.995 | 0.994

351 0.995 | 0.995 [ 0.993

40 | 0.995 | 0.995 | 0.994

451 0.995 | 0.995 | 0.994

50 | 0.995 | 0.995 | 0.996

551 0.995 | 0.995 | 0.995

60 | 0.995 | 0.995 | 0.995
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Table 4.10:  Comparisons between the exact, approzimate

and simulation results of By (d)
for m =10 and given values of k =4, 1 — a and ¢

1—a=20.99

k=4

¢ | Exact | Appro. | Simul.

151 0.995 | 0.995 | 0.995

20 1 0.995 | 0.995 | 0.996

251 0.995 | 0.995 | 0.996

30 | 0.995 | 0.995 | 0.994

351 0.995 [ 0.995 | 0.994

40 | 0.995 | 0.995 | 0.994

451 0.995 | 0.995 | 0.994

50 1 0.995 | 0.995 | 0.996

551 0.995 | 0.995 | 0.995

601 0.995 | 0.995 | 0.995
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Chapter 5

Some power functions of

multiple tests
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5.1 A power function for testing the means of

several independent normal populations

5.1.1 Introduction

Suppose we have k independently and normally distributed populations N(y;, o?),
1 <i <k, with unknown means p; and a common positive variance o?. We
are again interested in making inferences about the p; and in particular, we

want to test the family of two-sided hypotheses
Hio:pi=0 vs Hiyp:p #0, 1<:< k. (5.1)

Assume that Y;, denotes the sample mean of a sample of fixed size n from
the ¢ population, 1 < ¢ < k, and that S? is an estimate of o which is
independent of the Y;, and distributed as a x2/v random variable. If o2 is
known then v = oo, otherwise 0 < v < co. It is well known that the family of

hypotheses (5.1) can be tested in the following way

. . . S;;n .
reject H;o in favour of H;; iff ‘\/ES | > mlg,, 1<i<k, (5.2)

and accompany the rejection of any H;q by the directional decision that p; > 0
if ¥;, > 0 and p; < 0 if Vi, < 0, where |m|{, is the upper o point of the

distribution of the random variable

maXy <<k IZZ|
VXLV

This multiple test procedure controls strongly the type I error rate at a (see
appendix for definition), since it is actually derived from the following set of

simultaneous confidence intervals of level 1 — &

_ . S _
wi € (Y;n— |m‘k’yﬁ’ Y;n_i'wnlk,ujﬁ-)v i=1,2,--. k.
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To assess the sensitivity of this test procedure, we want to calculate the prob-
ability that this test will detect, with a correct directional decision, each treat-
ment whose mean g; is significantly different from zero in terms of |y;| > do,
where d > 0 is a given constant. For this we define a power function v(u, d)

to be

P{all false H;o with |g;| > do are rejected with correct directional decisions}
(5.3)
and, in particular, y(p,d) = 1 if all the treatments satisfy |u;| < do. The
sensitivity of this multiple test procedure can then be measured by v(d) =
min cpr y(p,d). The problem that we want to investigate is how large the
sample size n should be if we require test (5.2) has the sensitivity y(d) = v
for preassigned values of d > 0 and 0 < v < 1. This is treated in Subsection
5.1.2.
Note that, in the definition of power function v(x, d) in (5.3), the departure

of the y; from the origin, |g;|, is measured in unit of o. It certainly makes

sense to define a power function, (g, d), to be
P{all false H;o with |y;| > d are rejected with correct directional decisions}

and, in particular, 4(u,d) = 1 if all the treatments satisfy |u;| < d. The sensi-
tivity of a test of (5.1) can be measured by the quantity 4(d) = min, g Y(p, d).
Now assume ¢ is an unknown parameter and we wish to design a test of (5.1)
such that this test has type I error rate a and sensitivity 4(d) = ~, for given
values of «, d and ~. For this it is necessary to use a sequential sampling

scheme. In Subsection 5.1.3 we discuss a pure sequential procedure.
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5.1.2 A fixed sample size procedure

In order to determine the sample size n so that test (5.2) has v(d) = ~ for
given values of k, v, d > 0 and 0 < v < 1, we first find a configuration of the
population means g at which the power function y(y, d) attains its minimum.
We have the following result. The proof is similar to that of Theorem 4.1 and

omitted.

Theorem 5.1 Let k > 2, p = (k/2) and p*(d) = (do,---,do,—do,- -, —do)
which has the first p components equal to do and the last k — p components

equal to —do. Then
1(d) = 3w (d).d) = [ (= slmlz, ) fis) ds
where f,(z) denotes a pdf of the \/x2/v.

Notice that, if the variance o? is known then

(d) = min y(u,d) = @ (dy/n = Im7).

HERK

For given values of k, v, a and v, Tables 5.1 and 5.2 give the values of d\/n
such that v(d) = ~.
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Table 5.1:

Values of the parameter dy/n satisfying y(d) = v

for a = 0.05 and v = 0.90

=21k=3 k=4 k=5k=6|k= k=8 k=9 k=10
v=10 | 4.411 | 4.869 | 5.189 | 5.434 | 5.632 | 5.798 | 5.941 | 6.066 | 6.177
v=12 | 4.309 | 4.744 | 5.047 | 5.278 | 5.466 | 5.622 | 5.757 | 5.875 | 5.980
v=14 | 4.239 | 4.659 | 4.950 | 5.172 | 5.351 | 5.501 | 5.630 | 5.743 | 5.843
v=16 | 4.188 | 4.596 | 4.879 | 5.094 | 5.268 | 5.413 | 5.538 | 5.647 | 5.743
v=18 | 4.149 | 4.549 | 4.825 | 5.035 | 5.204 | 5.346 | 5.467 | 5.573 | 5.667
r=20 | 4.119 | 4.512 | 4.783 | 4.989 | 5.154 | 5.293 | 5.412 | 5.515 | 5.608
v=30 | 4.031 | 4.405 | 4.660 | 4.854 | 5.010 | 5.139 | 5.250 | 5.347 | 5.433
r=40 | 3.989 | 4.353 | 4.602 | 4.789 | 4.940 | 5.105 | 5.172 | 5.266 | 5.349
r=60 | 3.948 | 4.303 | 4.544 | 4.726 | 4.872 | 4.993 | 5.097 | 5.187 | 5.267
v=120 | 3.908 | 4.254 | 4.488 | 4.665 | 4.806 | 4.923 | 5.023 | 5.110 | 5.186
rv=o00 | 3.869 | 4.206 | 4.434 | 4.605 | 4.742 | 4.855 | 4.951 | 5.034 | 5.108
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Table 5.1:

for a =0.05 and v = 0.90

Values of the parameter d\/n satisfying v(d) = v

k=11 k=12 |k=13|k=14 k=15 k=16 | k=17 | k=18 | k=19 | k=20
v=10 6.278 6.368 6.452 6.528 6.560 6.666 6.728 6.786 6.841 6.893
v=12 6.074 6.160 6.238 6.310 6.377 6.440 6.498 6.553 6.605 6.654
v=14 5.933 6.015 6.090 6.159 6.223 6.283 6.339 6.391 6.441 6.488
r=16 5.831 5.910 5.982 6.049 6.111 6.168 6.222 6.273 6.321 6.366
r=18 5.752 5.829 5.899 5.964 6.024 6.080 6.133 6.182 6.229 6.272
v=20 5.720 5.795 5.865 5.929 5.989 6.044 6.096 6.144 6.190 6.233
v=30 5.510 5.580 5.644 5.703 5.758 5.809 5.856 5.901 5.943 5.983
v=40 5.423 5.491 5.552 5.609 5.661 5.710 5.756 5.799 5.839 5.877
=60 5.338 5.403 5.462 5.517 5.567 5.614 5.658 5.699 5.738 5.774
v=120 | 5.255 5.318 5.374 5.427 5.475 5.520 5.562 5.601 5.638 5.673
=00 5.174 5.234 5.289 5.339 5.385 5.428 5.468 5.506 5.541 5.575
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Table 5.1:

Values of the parameter dy/n satisfying y(d) =~

for a = 0.05 and v = 0.95

E=2k=3k=4k=5|k=6|k=T|k=8|k=9]|k=10
r=10 | 4.799 | 5.251 | 5.569 | 5.814 | 6.013 | 6.180 | 6.324 | 6.450 | 6.563
v=12 | 4.683 | 5.109 | 5408 | 5.637 | 5.823 | 5.980 | 6.114 | 6.232 | 6.338
v=14 | 4.603 | 5.012 { 5.230 | 5.517 | 5.694 | 5.842 | 5.971 | 6.083 | 6.183
v=16 | 4.546 | 4.942 | 5.218 | 5.429 | 5.600 | 5.743 | 5.866 | 5.974 | 6.070
v=18 | 4.503 | 4.889 | 5.158 | 5.363 | 5.529 | 5.668 | 5.787 | 5.892 | 5.985
v=20 | 4.469 | 4.848 | 5.110 | 5.311 | 5.473 | 5.608 | 5.725 | 5.827 | 5.918
v=30 | 4.371 | 4.728 | 4.974 | 5.161 | 5.312 | 5.437 | 5.545 | 5.640 | 5.723
v=40 | 4.324 | 4.671 | 4.909 | 5.089 | 5.234 | 5.355 | 5.439 | 5.550 | 5.630
v=60 | 4.278 | 4.615 | 4.846 | 5.020 | 5.160 | 5.276 | 5.376 | 5.463 | 5.540
v=120 | 4.234 | 4.561 | 4.784 | 4.953 | 5.087 | 5.199 | 5.295 | 5.378 | 5.452
v=oco | 4.191 | 4.509 | 4.725 | 4.887 | 5.017 | 5.125 | 5.217 | 5.297 | 5.368
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Table 5.1:

for o = 0.05 and v = 0.95

Values of the parameter dy/n satisfying y(d) =~

—
k=11

k=12 k=13 | k=14 | k=15 | k=16 | k=17 k=18 | k=19 | £ =20
v=10 L6.664 6.757 6.841 6.919 6.992 7.059 7.122 7.182 7.238 7.291
v=12 6.432 6.518 6.597 6.670 6.738 6.801 6.860 6.916 6.968 7.018
v=14 6.273 6.355 6.430 6.499 6.563 6.623 6.679 6.732 6.782 6.829
v=16 6.157 6.236 6.308 6.374 6.436 6.493 6.547 6.598 6.646 6.691
v=18 6.069 6.145 6.215 6.279 6.339 6.394 6.447 6.496 6.542 6.586
r=20 5.999 6.074 6.142 6.204 6.262 6.317 6.367 6.415 6.460 6.503
r=30 5.799 5.867 5.930 5.987 6.041 6.090 6.137 6.181 6.222 6.261
v=40 5.702 5.768 5.828 5.883 5.934 5.982 6.026 6.068 6.107 6.145
v=60 5.609 5.672 5.729 5.782 5.831 5.876 5.918 5.958 5.996 6.031
r=120 | 5.518 5.578 5.633 5.683 5.730 5.773 5.814 5.852 5.888 5.922
v=o00 | 5.431 5.488 5.540 5.589 5.633 5.674 5.713 5.749 5.783 5.815
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Table 5.1:

Values of the parameter dvy/n satisfying y(d) =~

for a = 0.05 and v = 0.99

k=2k=3|k=4|k=5|k=6|k=T|k=8|k=9 kzl(L
v=10 | 5.541 | 5.986 | 6.303 | 6.548 | 6.749 | 6.918 | 7.065 | 7.194 | 7.309
v=12 | 5.340 { 5.813 | 6.105 | 6.332 | 6.517 | 6.673 | 6.807 | 6.926 | 7.032
v=14 | 5.302 | 5.695 | 5.972 | 6.186 | 6.359 | 6.506 | 6.633 | 6.744 | 6.844
v=16 | 5.233 | 5.611 | 5.876 | 6.080 | 6.246 | 6.386 | 6.507 | 6.613 | 6.708
v=18 | 5.181 | 5.547 | 5.803 | 6.001 | 6.161 | 6.296 | 6.412 | 6.514 | 6.605
v=20 | 5.140 | 5.497 | 5.747 | 5.939 | 6.094 | 6.225 | 6.338 | 6.437 | 6.525
v=30 | 5.023 | 5.355 | 5.586 | 5.762 | 5.904 | 6.024 | 6.126 | 6.216 | 6.297
v=40 | 4.967 | 5.288 | 5.509 | 5.678 | 5.814 | 5.928 | 6.026 | 6.112 | 6.188
v=60 | 4.914 | 5.223 | 5.436 | 5.598 | 5.728 | 5.837 | 5.930 | 6.011 | 6.084
v=120 | 4.862 | 5.160 | 5.365 | 5.520 | 5.645 | 5.749 | 5.837 | 5.915 | 5.984
v=co | 4.811 | 5.100 | 5.297 | 5.446 | 5.565 | 5.664 | 5.749 | 5.823 | 5.889
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Table 5.1:

for @ =0.05 and v = 0.99

Values of the parameter d/n satisfying y(d) = v

k=111k=12 k=13 k=14 | k=15 k=16 | k=17 | k=18 1 k=19 | k=20

r=10 7.413 7.508 7.595 7.675 7.750 7.820 7.885 7.947 8.005 8.061
v=12 7.128 7.215 7.295 7.369 7.438 7.502 7.562 7.619 7.672 7.723
v=14 6.934 7.015 7.091 7.160 7.224 7.285 7.341 7.394 7.445 7.492
v=16 6.793 6.871 6.943 7.009 7.070 7.127 7.181 7.232 7.280 7.325
v=18 6.687 6.762 6.831 6.894 6.953 7.008 7.060 7.109 7.154 7.198
v=20 6.605 6.677 6.744 6.805 6.862 6.915 6.965 7.012 7.057 7.099
r=30 6.368 6.434 6.494 6.549 6.601 6.649 6.693 6.736 6.776 6.813
v=40 6.256 6.319 6.376 6.428 6.477 6.522 6.565 6.605 6.643 6.678
v=60 6.149 6.208 6.262 6.312 6.358 6.401 6.441 6.478 6.515 6.548
r=120 | 6.046 6.102 6.153 6.201 6.244 6.285 6.323 6.358 6.392 6.424
o0 5.947 6.000 6.049 6.094 6.135 6.174 6.210 6.243 6.276 6.305
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Table 5.2:

Values of the parameter d\/n satisfying v(d) =~

for & =0.01 and v =0.95

k=2|k=3|k= k= k=6 |k=17|k= k=9|k=10
v=10 | 5.961 | 6.453 | 6.801 | 7.069 | 7.288 | 7.472 | 7.631 | 7.770 | 7.895
v=12 | 5718 | 6.170 | 6.487 | 6.732 | 6.931 | 7.099 | 7.243 | 7.370 | 7.484
v=14 | 5.556 | 5.980 | 6.278 | 6.507 | 6.693 | 6.849 | 6.984 | 7.103 | 7.209
r=16 | 5.440 | 5.845 | 6.129 | 6.347 | 6.523 | 6.672 | 6.800 | 6.912 | 7.012
v=18 | 5.354 | 5.745 | 6.017 | 6.227 | 6.396 | 6.539 | 6.661 | 6.769 | 6.865
r=20 | 5.287 | 5.680 | 5.931 | 6.133 | 6.297 | 6.435 | 6.554 | 6.658 | 6.750
r=30 | 5.096 | 5.445 | 5.686 | 5.879 | 6.018 | 6.142 | 6.249 | 6.342 | 6.425
v=40 | 5.007 | 5.341 | 5.571 | 5.746 | 5.887 | 6.005 | 6.106 | 6.194 | 6.273
r=60 | 4.921 | 5.241 | 5.461 | 5.628 | 5.762 | 5.874 | 5.969 | 6.053 | 6.128
v=120 | 4.839 | 5.146 | 5.356 | 5.515 | 5.643 | 5.749 | 5.839 | 5.919 | 5.989
v=oco | 4.761 | 5.055 | 5.256 | 5.408 | 5.522 | 5.630 | 5.716 | 5.791 | 5.857
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Table 5.2:

for o =0.01 and v =0.95

Values of the parameter dy/n satisfying y(d) = ~

k=11 k=12 k=13 | k=14 | k=15 | k=16 | k=17 | k=18 | k=19 | k=20
v=10 8.007 8.109 8.203 8.289 8.370 8.445 8.515 8.581 8.643 8.703
v=12 7.586 7.679 7.764 7.843 7.916 7.984 8.048 8.108 8.165 8.219
v=14 7.304 7.391 7.470 7.543 7.612 7.675 7.735 7.791 7.844 7.894
v=16 7.102 7.184 7.259 7.329 7.394 7.454 7.510 7.563 7.613 7.661
r=18 6.951 7.030 7.102 7.168 7.230 7.288 7.342 7.392 7.440 7.486
r=20 6.834 6.979 7.101 7.043 7.103 7.158 7.210 7.259 7.306 7.349
v=30 6.500 6.568 6.630 6.688 6.741 6.791 6.837 6.881 6.922 6.961
v=40 6.344 6.408 6.467 6.521 6.571 6.618 6.662 6.703 6.742 6.778
=60 6.194 6.255 6.310 6.361 6.409 6.453 6.494 6.532 6.569 6.603
v=120 | 6.052 6.109 6.161 6.210 6.254 6.295 6.334 6.370 6.404 6.437
v=00 5.917 5.970 6.020 6.065 6.107 6.146 6.182 6.216 6.248 6.279
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Table 5.2:  Values of the parameter d\/n satisfying v(d) = v

for a = 0.01 and v = 0.99

k=2k=3k= k=5|k=6|k=T7T|k=8|k=9}k=10

v=10 | 6.804 | 7.298 | 7.651 | 7.925 | 8.150 | 8.340 | 8.504 | 8.649 | 8.779

v=12 | 6.509 | 6.955 | 7.271 | 7.517 | 7.718 | 7.888 | 8.035 | 8.165 | 8.281

v=14 | 6.314 | 6.727 | 7.020 | 7.247 | 7.432 | 7.588 | 7.724 | 7.843 | 7.950

v=16 | 6.176 | 6.566 | 6.842 | 7.055 | 7.229 | 7.376 | 7.503 | 7.615 | 7.714

v=18 | 6.073 | 6.446 | 6.709 | 6.913 | 7.078 | 7.218 | 7.338 | 7.444 | 7.539

r=20 | 5.994 | 6.368 | 6.607 | 6.803 | 6.961 | 7.095 | 7.211 | 7.313 | 7.404

v=30 | 5.769 | 6.093 | 6.320 | 6.493 | 6.634 | 6.752 | 6.854 | 6.943 | 7.023

v=40 | 5.665 | 5.973 | 6.187 | 6.351 | 6.483 | 6.594 | 6.700 | 6.773 | 6.848

r=60 | 5.566 | 5.858 | 6.061 | 6.215 | 6.340 | 6.444 | 6.533 | 6.612 | 6.682

v=120 | 5.471 | 5.749 | 5.941 | 6.087 | 6.204 | 6.302 | 6.386 | 6.460 | 6.525

v=o0o | 5.381 | 5.646 | 5.828 | 5.966 | 6.077 | 6.169 | 6.248 | 6.317 | 6.378
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Table 5.2 Values of the parameter d\/n satisfying v(d) = v
for o =0.01 and v =0.99

J/{3:11 k=12 k=13 k=14 k=15 k=16 | k=17 | k=18 | k=19 | k=20
v=10 8.896 9.003 9.101 9.192 9.277 9.355 9.429 9.499 9.565 9.627
v=12 8.386 8.481 8.569 8.650 8.726 8.796 8.863 8.925 8.984 9.040
v=14 8.046 8.134 8.215 8.289 8.359 8.424 8.485 8.542 8.596 8.647
v=16 7.805 7.887 7.962 8.032 8.097 8.158 8.215 8.269 8.420 8.368
v=18 7.625 7.703 7.775 7.841 7.902 7.960 8.014 8.065 8.113 8.159
v=20 7.486 7.764 7.629 7.693 7.752 7.807 7.859 7.907 7.953 7.997
v=30 7.095 7.161 7.221 7.276 7.327 7.376 7.421 7.463 7.503 7.541
v=40 6.915 6.976 7.032 7.084 7.131 7.176 7.218 7.258 7.295 7.330
=60 6.744 6.801 6.853 6.902 6.946 6.988 7.027 7.064 7.098 7.131
v=120 | 6.584 6.637 6.686 6.731 6.772 6.811 6.847 6.881 6.913 6.944
V=00 6.433 6.483 6.528 6.570 6.609 6.646 6.678 6.710 6.741 6.769
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5.1.3 A pure sequential procedure

In this subsection, o2

1s assumed to be an unknown parameter. We want to
design a test of the family of hypotheses (5.1) which has, at least approxi-
mately, type I error rate @ and power 4(d) = v, where 0 < a <1, 0 <y < 1
and d > 0 are prefixed constants. To motivate the definition of a pure sequen-

2 case which is covered in the last

tial procedure, we first look at the known o
subsection.
had ¢? been known, we would take a sample of size ny from each of the k&
populations and test the family of hypotheses (5.1) by:
24
obmli -y <<k

Vo T T

and accompany the rejection of any H;o by the directional decision that p; > 0

reject H;o in favour of H;; iff |Yj,, | >

if Ymo >0 and p; < 0if Ymo < 0, where ng satisfies
d\/n N
o (D22 ) =
o
This last equation gives
2
no = o?d™? (|ml} + &7 (') (5.4)

and so the test can be rewritten as

dm|}
g + @ (/%)

reject H;o in favour of H;y iff |Y,, | > 1 <2<k,

and accompany the rejection of any H;q by the directional decision that pu; > 0
iff/mo >0and,ui<0ifl7m0 < 0.

Based on these observations, we can now define a sequential procedure for
the situation of unknown o? that is assumed in this subsection. Take a sample
of size m from each of the & populations, then take one observation from each

populations at a time until
T=inf{n>m: n>(1+ él/n)d_zCQdHQ ,
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where 0 < C' = |m|¢ + &~ (4'/%) and & is a given constant whose value will

be determined later. On stopping sampling,

) ) ) - dlm|¢ .
reject H;o in favour of H;y iff |Yir| > _[72_|k (1 + 7;—1) , 1 <e<k,

and accompany the rejection of any H,;o by the directional decision that p; > 0
if Y;p > 0 and p; < 0 if Yir < 0, where 7, is a given constant whose value is
given below.

Note that the stopping time T uses formula (5.4) adaptively by replacing
o? with &2 to check whether enough observations have already been drawn,
and the test mimics the test for the known o? situation. Next we show that
this procedure has the required properties, at least for large ng.

First, we show that this procedure controls strongly the type I error rate

at «, at least for large ng. For this, it is sufficient to show that

_ d|m|2< 771) , }
7. . i 1.2 22 <<k
CL—P{DZT /L,1< o 1+T , 1 ?

is equal to 1 — a + o(1) as ng — co. By noting that
2
CL:E[H (Z <1+"—1) )]
ng T

H(z) = (28(mlz V)~ 1),

it therefore follows from Theorem 2.2 with # = 1 and C; = n; that

where

CL = 1—a+ niOH’u) (p+é- 2y 2771> + L H() 4o (i> (5.5)

k kno Mo
= l—a+o(l) asng — oo.

Next, we find the second order approximation to the value of §(d) of this

procedure. Let

Qu(d)={t: i >d} and Qp(d)={j:p; <-—d}.
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From the definition, we have

4(d) = min P{all false H;q with || > d
HERF

are rejected with correct directional decisions}
~ min P{KT > dl’g“f (1 + ﬁTl) Vi € Qu(d),

HER¥

- (1 + %) Vi € QL(d)}P{T _n)

= min Z { ; ——————d|m|k\/77 (1—}—771

reERk

)
Z < d|m|\/_< )_u;\/ﬁv
_ Zq)k (df g v/ 3)
- E((e-mp ﬁ)P{T—n}
|

\/n_o
= (o= ok (1+ )) ol

It therefore follows from Theorem 2.3 with H(z) = ®*(2),Co = C, Cy = |m|{

_ ——‘”ﬁ Vi € Qu(d),

€ u(d )}p{T —n}

P{T = n}

and CQ =M that
fy(k_l)/k

(@) =7 =0 (27 (1)) x

gl
Ld-1(~1/k 9 o1 1/k
{klmlim - —2(7“‘—) (P+§1 - Z) - —%——2 X

o1 1/k )
((k — 1) (vl/k)——————¢( 71(/2 ) —1— (27 (y'/)) )} +o (%)(.5.6)

From (5.5) and (5.6), we set the values of ¢; and 7y satisfying simultane-

ously

§1+42m = +3—Hﬂ(1>
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1)k
Iﬂﬂinl—-gl—%;——z(p-+€1—-%)

—1 (A 1/k ¢ (B (41/k ,
:?_ﬁ%l(%_1m4ﬁyq_g7géll_1_Qwamn)7

so that the procedure has type I error rate o + o(1/ng) and power 4(d) =
v+ o(1/ng) as ng — oo.
Table 5.3 presents the values of ¢; and n; for given values of «,~ and k.
The expected sample size from each population of this sequential procedure
is given by
EM)y=no+p+& —%—}—0(1) as ng — 00,

which follows directly from Theorem 2.1. A simulation exercise has been
carried out to assess the performance of this procedure for small and moderate
values of ng. Table 5.4 shows the values of ®* (y'/*¥) and Table 5.5 presents the
simulated and approximate values of E(T'). Table 5.6 shows the simulation
results of (1— type I error rate) and 4(d) = v for m = 10,k = 3,10 and
a = 0.1,0.05.
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Table 5.3:

Values of &1 and m

for o = 0.05 and given values of v and k

v =0.6 ~=0.7 v =0.8 v=0.9

k| & M & M 3l M & M

2 7 1.269 | 0.225 | 1.144 [ 0.287 | 0.986 | 0.366 | 0.733 | 0.492
3 1 0.633 {0.196 | 0.571 [ 0.237 | 0.463 | 0.291 | 0.289 | 0.378
4 1 0.354 | 0.171 | 0.291 | 0.202 | 0.208 | 0.244 | 0.073 | 0.311
5 1 0.178 | 0.151 | 0.126 | 0.177 | 0.058 | 0.211 [ -0.052 | 0.266
6 | 0.062 ] 0.135 | 0.018 } 0.158 | -0.040 | 0.187 | -0.133 | 0.233
7 1-0.019 | 0.123 | -0.058 | 0.143 | -0.109 | 0.168 | -0.190 | 0.209
8 |-0.080 | 0.113 | -0.115 } 0.130 { -0.160 | 0.153 | -0.232 | 0.189
9 |-0.127 1 0.105 | -0.158 | 0.120 | -0.199 | 0.141 | -0.264 | 0.173
10 [ -0.164 | 0.098 | -0.193 | 0.112 | -0.230 | 0.131 | -0.289 { 0.160
11 [ -0.194 | 0.092 | -0.221 | 0.105 | -0.255 | 0.122 | -0.309 | 0.149
12 | -0.219 | 0.086 | -0.244 | 0.099 | -0.276 | 0.115 | -0.326 | 0.140
13 | -0.240 | 0.082 | -0.264 | 0.093 | -0.294 | 0.108 | -0.340 | 0.131
14 | -0.259 | 0.077 | -0.280 | 0.088 | -0.309 | 0.102 { -0.352 | 0.124
15 | -0.274 [ 0.074 | -0.295 | 0.084 | -0.321 | 0.097 | -0.362 | 0.118
16 | -0.288 { 0.070 | -0.308 | 0.080 | -0.333 | 0.093 | -0.371 | 0.112
17 { -0.300 | 0.067 | -0.319 | 0.077 | -0.342 | 0.089 | -0.379 | 0.107
18 | -0.311 | 0.065 | -0.328 | 0.074 | -0.351 | 0.085 | -0.386 | 0.102
19 {-0.320 | 0.062 | -0.337 | 0.071 | -0.359 | 0.082 | -0.392 | 0.098
20 | -0.329 | 0.060 | -0.345 | 0.068 | -0.366 | 0.078 | -0.397 | 0.094

186




Table 5.3:

Values of & and m

for o = 0.1 and given values of v and k

v=0.6 v =0.7 v =0.8 v=0.9

k| & m &1 m & M & M

2 | 0987 | 0.203 | 0.872 { 0.261 | 0.723 | 0.335 | 0.477 | 0.458
3 10462 10.176 | 0.385 { 0.214 | 0.282 | 0.266 | 0.112 | 0.351
4 ] 0.210 10.153 | 0.150 | 0.183 | 0.070 | 0.223 | -0.062 | 0.289
5 1 0.062 | 0.135 | 0.012 | 0.160 | -0.054 | 0.193 | -0.162 | 0.247
6 {-0.03510.121 | -0.078 [ 0.143 | -0.134 | 0.171 | -0.226 | 0.217
7 1-0.103 [ 0.110 ] -0.141 | 0.129 | -0.191 | 0.154 | -0.271 | 0.194
8 |-0.154 | 0.101 | -0.187 | 0.118 | -0.232 | 0.141 [ -0.303 | 0.176
9 1-0.193 | 0.094 | -0.223 | 0.109 { -0.264 | 0.130 | -0.328 | 0.161
10 | -0.223 | 0.088 | -0.252 | 0.102 | -0.288 | 0.120 | -0.347 | 0.149
11 | -0.248 | 0.082 | -0.275 | 0.095 | -0.309 | 0.112 | -0.362 | 0.139
12 1 -0.269 | 0.078 | -0.294 | 0.090 | -0.325 | 0.106 | -0.375 | 0.130
13 | -0.287 | 0.073 | -0.310 | 0.085 | -0.339 { 0.100 | -0.385 | 0.123
14 |1 -0.302 | 0.070 | -0.323 | 0.080 | -0.351 | 0.094 | -0.394 | 0.116
15 | -0.314 | 0.066 | -0.335 | 0.077 | -0.361 | 0.090 | -0.401 { 0.110
16 1 -0.326 | 0.063 | -0.345 | 0.073 | -0.370 | 0.086 | -0.408 | 0.105
17 | -0.336 | 0.061 | -0.354 | 0.070 | -0.378 | 0.082 | -0.414 { 0.100
18 | -0.344 | 0.058 | -0.362 | 0.067 | -0.384 | 0.078 | -0.419 | 0.096
19 | -0.352 | 0.056 | -0.369 | 0.065 | -0.391 | 0.075 | -0.423 | 0.092
20 | -0.359 | 0.054 | -0.375 | 0.062 | -0.396 | 0.072 | -0.427 | 0.088
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Table 5.4: Values of @72 (’71/k)

for given values of v and k

y=06|~y=07|7vy=08]|~=0.9

k =2 0.754 0.981 1.250 1.632

k= 1.009 1.215 1.463 1.818
k= 1.176 1.370 1.605 1.943
k= 1.298 1.484 1.710 2.036

E=6 1.394 1.574 1.793 2.111

k=17 1.473 1.648 1.861 2.172

=38 1.539 1.710 1.919 2.224

k= 1.597 1.764 1.969 2.269

k=10 1.647 1.811 2.013 2.309

k=11 1.691 1.854 2.052 2.344

k=12 1.732 1.891 2.087 2.376

k=13 1.768 1.926 2.120 2.406

k=14 1.801 1.957 2.149 2.433

k=15 1.832 1.986 2.176 2.457

k=16 | 1.860 2.013 2.202 2.480

k=17 1.887 2.038 2.225 2.502

k=18 1.911 2.062 2.247 2.522

E=19 | 1.934 2.084 2.268 2.541

k=20 1.956 2.104 2.287 2.559
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Table 5.5:

Comparisons between the simulated and approzimate values

of E(T) form =10, k =3, @ = 0.1 and given values of ng and v

v = 0.6 v =0.7 v =0.8 v=20.9
ng | Simul. | Appro. | Simul. | Appro. | Simul. | Appro. | Simul. | Appro.
15| 15.6 15.5 15.5 15.4 15.4 15.3 15.3 15.1
20 | 204 20.5 20.3 20.4 20.2 20.3 20.0 20.1
25 | 25.3 25.5 25.2 25.4 25.1 25.3 25.0 25.1
30 | 30.3 30.5 30.2 30.4 30.1 30.3 30.0 30.1
35| 354 35.5 35.3 35.4 35.2 35.3 35.0 35.1
40 | 404 40.5 40.3 40.4 40.2 40.3 40.0 40.1
45 | 45.4 45.5 45.3 45.4 45.2 45.3 45.0 45.1
50 | 50.4 50.5 50.3 50.4 50.2 50.3 50.1 50.1
55 | 55.6 55.5 55.5 55.4 55.4 55.3 55.2 55.1
60 | 60.6 60.5 60.5 60.4 60.4 60.3 60.2 60.1
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Table 5.5:

Comparisons between the simulated and approximate values

of E(T) for m =10, k =10, a = 0.1 and given values of ng and v

v =0.6 v =0.7 v =0.8 v=20.9
ng | Simul. | Appro. | Simul. | Appro. | Simul. | Appro. | Simul. | Appro.
15 15.2 15.2 15.1 15.1 15.1 15.1 15.0 15.0
20 | 20.2 20.2 20.1 20.1 20.1 20.1 20.0 20.0
25 1 25.1 25.2 25.1 25.1 25.1 25.1 25.0 25.0
30 1 30.1 30.2 30.1 30.1 30.1 30.1 30.0 30.0
351 35.1 35.2 35.0 35.1 35.0 35.1 35.0 35.0
40 | 40.1 40.2 40.1 40.1 40.1 40.1 40.0 40.0
45 | 45.1 45.2 45.1 45.1 45.1 45.1 45.0 45.0
50 { 50.2 50.2 50.1 50.1 50.1 50.1 50.0 50.0
55 | 55.2 55.2 535.1 55.1 55.1 55.1 55.0 55.0
60 | 60.2 60.2 60.1 60.1 60.1 60.1 60.0 60.0
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Table 5.5:

Comparisons between the simulated and approzimate values

of E(T) form =10, k =3, a = 0.05 and given values of ng and ~

~ = 0.6 v = 0.7 v=0.8 v =0.9
ng | Simul. | Appro. | Simul. | Appro. | Simul. | Appro. | Simul. | Appro.
15| 158 15.7 15.5 15.6 15.5 15.5 15.3 15.3
20 | 20.6 20.7 20.5 20.6 20.4 20.5 20.2 20.3
251 25.5 25.7 25.4 25.6 25.3 25.5 25.1 25.3
301 30.5 30.7 30.4 30.6 30.3 30.5 30.2 30.3
351 35.6 35.7 35.5 35.6 35.4 35.5 35.2 35.3
40 | 40.5 40.7 40.5 40.6 40.4 40.5 40.2 40.3
45 | 45.6 45.7 45.5 45.6 45.4 45.5 45.2 45.3
50 | 50.6 50.7 50.5 50.6 50.4 50.5 50.2 50.3
55 | 55.8 55.7 55.7 55.6 55.6 55.5 55.4 55.3
60 | 60.8 60.7 60.7 60.6 60.6 60.5 60.4 60.3
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Table 5.5:

Comparisons between the simulated and approzimate values

of E(T) for m =10, k = 10, a = 0.05 and given values of ng and v

v =10.6 ~=0.7 ~v=0.8 v =490.9
ng | Simul. | Appro. | Simul. | Appro. | Simul. | Appro. | Simul. | Appro.
151 15.2 15.2 15.2 15.2 15.1 15.2 15.1 15.1
20 1 20.2 20.2 20.2 20.2 20.2 20.2 20.1 20.1
251 25.2 25.2 25.2 25.2 25.1 25.2 25.1 25.1
30 | 30.2 30.2 30.2 30.2 30.1 30.2 30.1 30.1
35| 35.2 35.2 35.1 35.2 35.1 35.2 35.0 35.1
40 | 40.2 40.2 40.2 40.2 40.1 40.2 40.1 40.1
45 | 45.2 45.2 45.2 45.2 45.1 45.2 45.1 45.1
50 | 50.2 50.2 50.2 50.2 50.2 50.2 50.1 50.1
55 | 55.3 55.2 55.2 55.2 55.2 55.2 55.1 55.1
60 | 60.3 60.2 60.2 60.2 60.2 60.2 60.1 60.1
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Table 5.6:

Simulation values of o¢ = (1— type I error rate) and 4(d)

form =10, k =3, o = 0.1 and given values of ng and ~

no

v=0.6

v =0.7

v=0.8

v=0.9

(d)

aC

i(d)

aC

3(d)

ac

7(d)

aC

15

0.598

0.904

0.696

0.906

0.783

0.907

0.879

0.904

20

0.591

0.897

0.695

0.897

0.784

0.894

0.884

0.895

25

0.584

0.894

0.692

0.893

0.787

0.895

0.892

0.901

30

0.592

0.899

0.686

0.896

0.787

0.894

0.888

0.888

35

0.596

0.898

0.690

0.900

0.789

0.897

0.898

0.896

40

0.587

0.898

0.687

0.900

0.786

0.902

0.894

0.902

45

0.591

0.897

0.699

0.902

0.793

0.903

0.902

0.904

50

0.606

0.903

0.698

0.896

0.795

0.900

0.888

0.899

55

0.590

0.891

0.701

0.901

0.798

0.901

0.897

0.900

60

0.600

0.907

0.689

0.900

0.802

0.903

0.899

0.900
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Table 5.6:  Simulation values of a® = (1— type [ error rate) and 4(d)

form =10, k£ =10, o = 0.1 and given values of ny and v

v=20.6 v =0.7 v=0.8 v=0.9
no | Y(d) | o [ A(d) | o [ Ad) | o [4(d) ] o
151 0.592 | 0.897 | 0.688 | 0.904 | 0.783 | 0.904 | 0.888 | 0.921

20 | 0.593 | 0.899 | 0.693 | 0.896 | 0.789 | 0.901 | 0.882 | 0.917

25 10.574 | 0.899 | 0.689 | 0.899 | 0.797 | 0.902 | 0.891 | 0.905

30 | 0.595 | 0.903 | 0.686 | 0.896 | 0.793 | 0.900 | 0.894 | 0.904

351 0.598 { 0.905 | 0.702 | 0.904 { 0.793 | 0.904 | 0.897 | 0.908

40 | 0.599 | 0.902 | 0.700 | 0.902 | 0.794 | 0.895 | 0.900 | 0.913

45 | 0.603 | 0.898 | 0.697 | 0.901 | 0.805 | 0.901 | 0.899 | 0.903

50 | 0.601 | 0.899 [ 0.705 | 0.907 | 0.796 | 0.904 | 0.896 | 0.903

551 0.594 | 0.901 | 0.703 | 0.900 | 0.796 | 0.895 | 0.897 | 0.907

60 | 0.598 | 0.898 | 0.707 | 0.899 | 0.801 | 0.897 | 0.905 | 0.904
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Table 5.6:  Simulation values of a° = (1— type [ error rate) and ¥(d)

form =10, k =3, a = 0.05 and given values of ng and ~

v =0.6 ~v=0.7 v =0.8 v=10.9
no | 4(d) | o [ 4(d) | o | Ad) | o [4(d) | o
15 | 0.588 [ 0.952 | 0.696 | 0.951 | 0.787 | 0.953 | 0.880 | 0.952

20 | 0.591 | 0.947 | 0.698 | 0.947 | 0.789 | 0.945 | 0.882 | 0.947

251 0.592 | 0.949 | 0.684 | 0.944 | 0.788 | 0.947 | 0.886 | 0.950

30 | 0.594 | 0.946 | 0.694 | 0.948 | 0.793 | 0.949 | 0.891 | 0.947

35| 0.593 | 0.952 | 0.693 | 0.953 | 0.794 | 0.947 | 0.894 | 0.947

40 | 0.595 | 0.953 | 0.692 | 0.949 | 0.785 | 0.949 | 0.889 | 0.953

45 1 0.585 | 0.946 | 0.692 | 0.951 | 0.793 | 0.945 | 0.896 | 0.950

50 | 0.593 | 0.948 | 0.703 | 0.954 | 0.809 | 0.953 | 0.892 | 0.949

551 0.599 | 0.953 | 0.693 | 0.952 [ 0.796 | 0.946 | 0.892 | 0.950

60 | 0.604 | 0.949 | 0.695 | 0.952 | 0.806 | 0.952 | 0.900 | 0.947
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Table 5.6:  Simulation values of ¢ = (1— type I error rate) and (d)

form =10, k£ =10, a = 0.05 and given values of ng and

v =0.6 v=0.7 v =038 v=10.9
no | A(d) | o8 [A(d) | o | 4(d) | o [4(d) | o
15 1 0.597 [ 0.953 | 0.685 | 0.947 | 0.787 | 0.950 | 0.886 | 0.950

20 | 0.595 | 0.951 | 0.690 | 0.951 | 0.787 | 0.947 | 0.888 | 0.948

25 1 0.589 | 0.952 | 0.689 | 0.952 | 0.785 | 0.951 | 0.894 | 0.954

30 | 0.595 | 0.947 | 0.699 | 0.952 | 0.789 | 0.951 | 0.890 | 0.948

351 0.600 | 0.945 | 0.701 | 0.947 | 0.796 | 0.952 | 0.895 | 0.951

40 | 0.590 | 0.953 | 0.694 | 0.954 | 0.794 | 0.950 | 0.891 | 0.948

45 1 0.587 | 0.945 | 0.711 | 0.949 | 0.801 | 0.947 | 0.900 | 0.951

50 | 0.598 | 0.948 | 0.695 | 0.949 | 0.789 | 0.950 | 0.891 | 0.951

551 0.602 | 0.950 [ 0.699 | 0.953 | 0.798 | 0.951 | 0.892 | 0.946

60 | 0.591 | 0.947 | 0.697 | 0.944 | 0.803 | 0.950 | 0.902 | 0.947
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5.2 A power function for comparing several

treatments with a control

5.2.1 Introduction

Suppose we have k independently and normally distributed populations N (p;, %),
1 < i <k, with unknown means y; and a common positive variance o2. As-
sume that the first population, N(uy,0?%), is the control, and that the other

k — 1(k > 2) populations are treatments. We are interested in making infer-
ences about p; — uy and, in particular, testing the family of two-sided hypothe-
ses

Hiog:ipy—p1 =0  vs Hyy:ipuy—pu #0, 2<i<k. (5.7)

Assume that Y, denotes the sample mean of a sample of fixed size n from

the % population, 1 < ¢ < k, and that S? is an estimate of o? which is

independent of the Y;, and distributed as a y?/v random variable. If o? is

known then v = oo, otherwise 0 < v < co. Then it is well known that the

family of hypotheses (5.7) can be tested in the following way

Vil¥in ~ Vi
SV2

and accompany the rejection of any H; by the directional decision that u; —

reject H;o in favour of H;; iff > |te 2<i <k, (5.8)

L—1,v 3

py > 0if Y, =Yy, >0and p; — puy <0if Y, —Y;, <0, where t|5., is the

upper « point of the distribution of the random variable

Zi— 7
|T\j—1, = max | 1

2<i<k \/_\/—_/_1/

This multiple test procedure controls strongly the type I error rate at «, since
it is actually derived from the following set of simultaneous confidence intervals

of level 1| — «

=2,k

%li

Wi — i € (Y;—n — Y1 — i,

S O SV2 .
}/;n - Yln + !t‘i}—l,u W) ) ¢
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To assess the sensitivity of this test procedure, we calculate the probability
that this test will detect, with a correct directional decision, each treatment
whose mean y; is significantly different from gy in terms of |p; — pa| > do,
where d > 0 is a given constant. For this we define a power function ~v*(u, d)

to be

P{all false H;o with |p;—pu1| > do are rejected with correct directional decisions}
(5.9)
and, in particular, v*(¢, d) = 1 if all the treatments satisfy |y; — p1] < do. The
sensitivity of this multiple comparisons procedure can then be measured by
v*(d) = min,ege v*(p,d). We shall investigate that how large the sample size
n should be if we require test (5.8) has the sensitivity v*(d) = 7 for preassigned
values of d > 0 and 0 < v < 1. We consider this in Subsection 5.2.2.
In the definition of the power function v*(u,d) in (5.9), the departure of
the p; from gy is measured in unit of o. It certainly makes sense to define a

power function, 4*(u, d), to be
P{all false H; with |u;—p1] > d are rejected with correct directional decisions}

and, in particular, 3*(pu,d) = 1 if all the treatments satisfy |u; — p1] < d.
The sensitivity of a test of (5.7) can be measured by the quantity *(d) =

min,cgr (. d). Now assume o2

is unknown and we wish to design a test of
(5.7) such that this test has type I error rate a and sensitivity 4*(d) = ~, for
given values of a, d and +. For this it is necessary to use a sequential sampling

scheme. In Subsection 5.2.3 we discuss a pure sequential procedure.
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5.2.2 A fixed sample size procedure

In this subsection, we determine the sample size n so that test (5.8) has v*(d) =
~ for given values of k, v, d > 0 and 0 < v < 1. For this, we have the following

theorem, whose proof is similar to that of Theorem 4.3.

Theorem 5.2 Letk >3, p={((k+1)/2) and p*(d) = (0,do,---,do, —do,
.-+, —do) € RF which has the first component equal to zero, the last k — p

components equal to —do and the rest p — 1 components equal to do. Then

v(d) = v (p(d),d)
B /ooo /_o; &7 (dy/n — sftlg,, V2 — 2) X
OF (dy/m — sltliy, V2 + 2)g(2) [, (s) dzds,  (5.10)

where f,(z) denotes a pdf of the \/x2/v.

Notice that, if o2 is known then

7@ = [T ety = V2w

4 (dy/m — |t)3, V2 + z)é(x) de.

For given values of k, v, and «, Tables 5.7 and 5.8 give the value of d\/n
such that v*(d) = 7.
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Table 5.7:

Values of the parameter d\/n satisfying v*(d) = v

for & = 0.05 and v = 0.90

k= k= k= k= k= k= k= k=10 | k=11
v=10 | 6.216 | 6.761 | 7.158 | 7.442 | 7.680 | 7.870 | 8.037 | 8.179 | 8.307
v=12 | 6.072 | 6.592 | 6.970 | 7.241 | 7.466 | 7.646 | 7.805 | 7.940 | 8.062
v=14 | 5.973 | 6.476 | 6.841 | 7.102 | 7.320 | 7.493 | 7.646 | 7.776 | 7.893
v=16 | 5.902 | 6.392 | 6.748 | 7.002 | 7.213 | 7.382 | 7.531 | T7.657 | 7.771
v=18 | 5.848 | 6.329 | 6.677 | 6.925 | 7.132 | 7.298 | 7.443 | T.566 7.677
v=20 | 5.805 | 6.279 | 6.621 | 6.866 | 7.069 | 7.231 | 7.374 | 7.495 7.604
r=30 | 5.682 | 6.134 | 6.460 | 6.692 | 6.885 | 7.039 | 7.174 | 7.288 | 7.391
v=40 | 5.622 | 6.065 | 6.382 | 6.609 | 6.796 | 6.946 | 7.078 | 7.189 7.289
r=60 | 5.565 } 5.997 | 6.307 | 6.528 | 6.711 | 6.856 | 6.984 | 7.092 | T.190
r=120 | 5.509 | 5.932 | 6.234 | 6.450 | 6.627 | 6.770 | 6.894 | 6.999 7.094
v=oo | 5.454 | 5.868 | 6.163 | 6.373 | 6.546 | 6.685 | 6.806 | 6.908 7.000
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Table 5.7:  Values of the parameter d\/n satisfying v*(d) = v
for a = 0.05 and v = 0.90

k=12 | k=13 | k=14 1 k=15 | k=16 | k=17 | k=18 | k=19 | k=20
=10 8.419 8.523 8.616 8.703 8.781 8.856 8.924 8.989 9.050
v=12 8.168 8.267 8.355 8.437 8.512 8.583 8.647 8.709 8.766
v=14 7.996 8.091 8.175 8.254 8.327 8.394 8.457 8.516 8.571
v=16 7.870 7.962 8.044 8.121 8.191 8.257 8.318 8.376 8.429
v=18 7.775 7.865 7.945 8.020 8.088 8.153 8.212 8.268 8.321
=20 7.700 7.788 7.867 7.940 8.007 8.071 8.129 8.184 8.235
vr=30 7.482 7.565 7.640 7.709 7.773 7.832 7.887 7.939 | 7.7987
v=40 7.377 7.458 7.531 7.598 7.660 7.717 7971 7.821 7.868
v=60 7.275 7.354 7.424 7.490 7.550 7.606 7.658 7.707 7.752
v=120 | 7.177 7.253 7.321 7.385 7.443 7.498 7.548 7.595 7.640
V=00 7.081 7.155 7.222 7.284 7.340 7.393 7.442 7.488 7.531
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Table 5.7:  Values of the parameter d\/n satisfying v*(d) = ~

for a =0.05 and v =0.95

k= k= k= k=6|k= k= E=9 k=10 k=11

v=10 | 6.745 | 7.290 | 7.686 | 7.973 | 8.211 | 8.404 | 8.573 | 8.716 | 8.847

v=12 | 6.583 | 7.100 | 7.473 | 7.744 | 7.969 | 8.151 | 8.310 | 8.446 | 8.568

v=14 | 6.472 | 6.971 | 7.329 | 7.589 | 7.805 | 7.979 | 8.131 | 8.261 8.378

v=16 | 6.393 | 6.877 | 7.224 | 7.477 | 7.685 | 7.854 | 8.001 | 8.127 | 8.241

v=18 | 6.332 | 6.806 | 7.145 | 7.392 | 7.595 | 7.759 | 7.903 | 8.026 | 8.136

;‘ v=20 | 6.285 | 6.750 | 7.083 | 7.325 | 7.524 | 7.686 | 7.826 | 7.946 | 8.055
| v=30 | 6.149 | 6.591 | 6.905 | 7.133 | 7.321 | 7.473 | 7.605 | 7.718 | 7.820
r=40 | 6.084 | 6.515 | 6.820 | 7.042 | 7.224 | 7.371 | 7.499 | 7.609 7.708

v=60 | 6.021 | 6.441 | 6.738 | 6.953 | 7.130 | 7.273 | 7.398 | 7.504 | 7.599

r=120 | 5.960 | 6.369 | 6.659 | 6.868 | 7.040 | 7.178 | 7.299 | 7.402 | 7.494

v=oo | 5.900 | 6.300 | 6.582 | 6.785 | 6.952 | 7.087 | 7.204 | 7.304 | 7.393
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Table 5.7:

for @ =0.05 and v = 0.95

Values of the parameter d/n satisfying v*(d) = v

k=12 | k=13 | k=14 [ k=15 k=16 | k=17 | k=18 [ k=19 | k=20
r=10 8.961 9.066 9.161 9.249 9.330 9.405 9.475 9.542 9.604
v=12 8.676 8.775 8.864 8.948 9.023 9.095 9.161 9.223 9.282
v=14 8.482 8.577 8.662 8.741 8.814 8.882 8.945 9.005 9.061
v=186 8.340 8.432 8.515 8.592 8.662 8.728 8.789 8.847 8.901
v=18 8.234 8.323 8.404 8.478 8.547 8.611 8.670 8.727 8.779
v=20 8.150 8.238 8.316 8.389 8.456 8.520 8.578 8.633 8.684
=30 7.909 7.991 8.065 8.134 8.196 8.255 8.310 8.361 8.409
=40 7.794 7.873 7.945 8.011 8.072 8.129 8.182 8.232 8.278
=60 7.683 7.760 7.829 7.893 7.952 8.007 8.058 8.106 8.151
v=120 | 7.575 7.650 T.717 7.779 7.836 7.889 7.939 7.985 8.029
V=00 7.472 7.544 7.609 7.670 7.724 7.776 7.823 7.869 7.910
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Table 5.8:

Values of the parameter dv/n satisfying v*(d) = ~

for a =0.01 and v =0.90

k=31k=4 =5k=6 =7|k= k=9 k=101k=11
r=10 | 7.808 | 8.397 | 8.830 | 9.140 | 9.400 | 9.608 | 9.792 | 9.947 | 10.089
v=12 | 7.503 | 8.052 | 8.455 | 8.744 | 8.985 | 9.178 | 9.349 | 9.493 | 9.624
v=14 | 7.299 | 7.821 | 8.204 | 8.477 | 8.706 | 8.889 | 9.051 | 9.188 | 9.312
v=16 | 7.152 | 7.656 | 8.023 | 8.287 | 8.506 | 8.682 | 8.838 | 8.969 9.088
v=18 | 7.042 | 7.531 | 7.888 | 8.143 | 8.356 | 8.527 | 8.677 | 8.804 | 8.920
v=20 | 6.957 | 7.434 | 7.783 | 8.032 | 8.240 | 8.406 | 8.552 | 8.676 | 8.789
v=30 | 6.712 | 7.159 | 7.483 | 7.714 | 7.906 | 8.060 | 8.196 | 8.311 8.415
v=40 | 6.597 | 7.029 | 7.341 | 7.564 | 7.749 | 7.898 | 8.028 | 8.138 | 8.238
v=60 | 6.486 | 6.904 | 7.205 | 7.420 | 7.598 | 7.741 | 7.866 | T7.972 | 8.068
v=120 | 6.380 | 6.784 | 7.074 | 7.282 | 7.453 | 7.591 | 7.712 | 7.814 | 7.905
v=o0 | 6.277 | 6.669 | 6.949 | 7.149 | 7.315 | 7.447 | 7.563 | 7.662 7.750
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Table 5.8:

for a« =0.01 and v = 0.90

Values of the parameter d\/n satisfying v*(d) = v

k=12 k=13 k=14 =15 k=18 k=17 k=18 | k=19 k=20
v=10 | 10.212 | 10.327 | 10.429 | 10.525 | 10.612 | 10.694 | 10.770 | 10.842 | 10.909
v=12 9.739 9.845 9.940 | 10.029 | 10.110 | 10.186 | 10.256 | 10.323 | 10.385
v=14 9.421 9.5621 9.611 9.695 9.772 9.844 9.911 9.974 | 10.032
v=16 9.192 9.289 9.375 9.456 9.529 9.599 9.662 9.723 9.974
vr=18 9.021 9.114 9.198 9.276 9.347 9.414 9.476 9.534 9.589
v=20 8.887 8.978 9.060 9.136 9.205 9.270 9.330 9.388 9.441
r=30 8.506 8.590 8.665 8.735 8.799 8.859 8.915 8.967 9.016
v=40 8.326 8.406 8.478 8.546 8.607 8.665 8.718 8.769 8.816
v=60 8.152 8.230 8.299 8.364 8.423 8.478 8.529 8.578 8.623
v=120 | 7.987 8.061 8.128 8.189 8.246 8.299 8.348 8.395 8.438
V=00 7.828 7.899 7.963 8.023 8.077 8.128 8.175 8.220 8.261
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Table 5.8:

Values of the parameter dy/n satisfying v*(d) = ~

for a =0.01 and v = 0.95

k= k=4|k= k=6 k= k= k=9 | k=10 | k=11
v=10 | 8.410 | 9.007 | 9.442 | 9.759 | 10.022 | 10.235 | 10.423 | 10.583 | 10.727
v=12 | 8.069 | 8.620 | 9.022 | 9.313 | 9.556 | 9.752 | 9.925 | 10.072 | 10.205
v=14 | 7.841 | 8.362 | 8.741 | 9.016 | 9.245 | 9.429 | 9.592 | 9.730 | 9.855
v=16 | 7.679 | 8.178 | 8.541 | 8.804 | 9.022 | 9.199 | 9.354 | 9.486 | 9.606
v=18 | 7.557 | 8.040 | 8.391 | 8.645 | 8.856 | 9.026 | 9.176 | 9.303 | 9.419
v=20 | 7.463 | 7.934 | 8.274 | 8.521 | 8.727 | 8.892 | 9.038 | 9.161 9.274
v=30 | 7.195 | 7.631 | 7.945 | 8.172 | 8.361 | 8.513 | 8.646 | R8.759 | 8.862
v=40 | 7.069 | 7.489 | 7.791 | 8.009 | 8.189 | 8.335 | 8.463 | 8.571 8.669
v=60 | 6.949 | 7.354 | 7.643 | 7.853 | 8.026 | 8.165 | 8.287 | 8.391 | 8.485
v=120 | 6.834 | 7.224 | 7.502 | 7.704 | 7.869 | 8.003 | 8.121 | 8.221 | 8.310
v=oo | 6.723 | 7.101 | 7.368 | 7.562 | 7.721 | 7.849 | 7.961 | 8.057 | 8.143
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Table 5.8:

Values of the parameter d\/n satisfying v*(d) =~

for o = 0.01 and v = 0.95

k=12 | k=13 | k=14 | k=15 k=16 | k=17 | k=18 | k=19 | k=20
r=10 | 10.854 | 10.972 | 11.077 | 11.175 [ 11.265 | 11.350 | 11.428 | 11.502 | 11.571
v=12 | 10.322 | 10.430 | 10.526 | 10.617 | 10.699 | 10.777 | 10.849 | 10.917 |} 10.981
v=14 9.965 | 10.067 | 10.158 | 10.243 | 10.321 | 10.394 | 10.462 | 10.526 | 10.585
r=16 9.711 9.808 9.895 9.976 | 10.050 | 10.120 | 10.184 | 10.246 | 10.303
r=18 9.520 9.613 9.697 9.776 9.847 9.915 9.977 | 10.036 | 10.091
v=20 9.372 9.463 9.544 9.620 9.690 9.755 9.816 9.873 9.926
r=30 8.952 9.035 9.109 9.179 9.243 9.302 9.358 9.410 9.459
r=40 8.755 8.835 8.906 8.972 9.033 9.090 9.142 9.193 9.239
v=60 8.568 8.644 8.712 8.775 8.833 8.888 8.938 8.986 9.030
v=120 | 8.389 8.461 8.527 8.587 8.643 8.695 8.743 8.789 8.831
V=00 8.219 8.288 8.350 8.408 8.461 8.511 8.557 3.601 8.641J

207




Table 5.8:

Values of the parameter d/n satisfying v*(d) =~

for a =0.01 and v = 0.99

E=3| k= k=5 | k= k= k= k= k=10 | k=11
v=10 | 9.574 | 10.184 | 10.627 | 10.955 | 11.226 | 11.448 | 11.643 | 11.810 | 11.961
r=12 | 9.164 | 9.719 | 10.120 } 10.417 | 10.663 | 10.865 | 11.041 | 11.192 | 11.329
v=14 | 8892 | 9411 | 9.784 | 10.061 | 10.290 | 10.478 | 10.641 | 10.782 | 10.910
v=16 | 8700 | 9.193 | 9.547 | 9.809 | 10.026 | 10.203 | 10.359 | 10.492 | 10.612
y=18 | 8556 | 9.031 | 9.370 | 9.622 | 9.829 | 9.999 | 10.148 | 10.276 | 10.391
v=20 | 8446 | 8.905 | 9.233 | 9.477 | 9.678 | 9.842 | 9.985 | 10.109 | 10.220
v=30 | 8.134 | 8.553 | 8.850 | 9.070 | 9.252 | 9.399 | 9.529 | 9.640 | 9.740
v=40 | 7.989 | 8.389 | 8.672 | 8.882 | 9.054 { 9.195 | 9.318 | 9.423 | 9.517
v=60 | 7.851 | 8.234 | 8.503 | 8.704 | 8.867 | 9.000 | 9.117 | 9.218 | 9.307
v=120 | 7.720 | 8.086 | 8.343 | 8.534 | 8.689 | 8.817 | 8927 | 9.023 | 9.108
v=o0 | 7.594 | 7.946 | 8.191 | 8373 | 8.522 | 8.643 | 8.748 | 8.838 | 8.919
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Table 5.8:

for o =0.01 and v = 0.99

Values of the parameter dv/n satisfying v*(d) = ~

k=121k=13 k=14 | k=15 k=16 | k=17 | k=18 | k=19 | k=20
r=10 | 12.094 | 12.217 | 12.328 | 12.431 | 12.526 | 12.615 | 12.697 | 12.775 | 12.848
=12 | 11.450 | 11.561 | 11.662 | 11.755 | 11.841 | 11.922 | 11.996 | 12.067 | 12.133
v=14 | 11.022 | 11.125 | 11.219 | 11.306 | 11.386 | 11.461 | 11.530 | 11.596 | 11.658
r=16 | 10.719 | 10.816 | 10.905 | 10.987 | 11.063 | 11.133 | 11.199 | 11.262 | 11.320
r=18 | 10.493 | 10.586 | 10.671 | 10.750 | 10.822 | 10.890 | 10.953 | 11.012 | 11.068
v=20 | 10.318 | 10.409 | 10.490 | 10.566 | 10.636 | 10.701 | 10.762 | 10.820 | 10.873
v=30 9.828 9.910 9.983 | 10.051 | 10.114 | 10.172 | 10.227 | 10.278 | 10.326
v=40 9.601 9.678 9.747 9.812 9.872 9.927 9.979 | 10.027 | 10.073
v=60 9.387 9.459 9.525 9.586 9.642 9.695 9.744 9.790 9.833
v=120 [ 9.183 9.252 9.315 9.373 9.426 9.476 9.522 9.566 9.607
=00 8.991 9.057 9.116 9.171 9.221 9.269 9.313 9.354 9.393
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5.2.3 A pure sequential procedure

Let 0% be an unknown parameter. We want to design a test of the family of
hypotheses (5.7) which has, at least approximately, the type I error rate o
and power 4*(d) = v, where 0 < a < 1, 0 < vy < 1 and d > 0 are prefixed
constants. To motivate the definition of a pure sequential procedure, we first
look at the known o? case which is covered in the last subsection.

had o? been known, we would take a sample of size ny from each of the &
populations and test the family of hypotheses (5.7) by:

vz oy

\/n—o Y —_ — ?

and accompany the rejection of any H;q by the directional decision that p; —

reject H;o in favour of H;y iff |Yi,, — Yin,| >

p1 > 0if Y, —Yi,, > 0and w; —py < 0if Vi, — Yin, < 0, where ng satisfies

[ (B va o) o (D2, VB o) da) e =
(5.11)
where p = ((k +1)/2). Denote

d/
b= =20 i, V2, (5.12)
which can be solved from equation (5.11). Then sample size ng is given by
2
ng = o2d? (t, + [t[7, V2) (5.13)

and so the test can be rewritten as

dtliavz o)
tF i v2T T T

and accompany the rejection of any H; by the directional decision that p; —

reject H;o in favour of H;y iff |Yi,, — Y, | >

p1 > 0if Y, — Vi, > 0and g — <0if Yy, — Vi, <O.
Based on these observations, we can now define a sequential procedure for

the situation of unknown o? that is assumed in this subsection. Take a sample
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of size m from each of the k populations, then take one observation from each

population at a time until
T=inf{n>m: n>(1+&/n)d2C%,"),

where 0 < C = t, + |t|2, V2 and & is a given constant whose value will be

determined later. On stopping sampling

reject H;o in favour of H;y iff |Yip —Yip| >

d[ﬂg—lﬂ( 771> .
e V2 ) 9 <i <k
C top) ESEsh

and accompany the rejection of any H;o by the directional decision that p; —
g > 0if Vip — Yip > 0 and p; — gy < 0 if Yir — Yir < 0, where 7, is a given
constant whose value is given below.

Note that the stopping time T" uses formula (5.13) adaptively by replacing
o? with 62 to check whether enough observations have already been drawn,
and the test mimics the test for the known o2 situation. Next we show that
this procedure has the required properties, at least for large no.

First, we show that this procedure controls strongly the type I error rate
at «, at least for large ng. For this, it is sufficient to show that

_ _ d|t|§
CL:P{\KT—KT—W—/“)I<—H’“g—ﬁ(1+%), 2§z’§k}

is equal to 1 — a4+ o(1) as ng — oco. By noting that
2
cL=pH (I— (1+2) )]
o T

Hiw) = P (max 1% - 2] 1 V2VE)

where

it therefore follows from Theorem 2.2 with # = 1 and C; = n, that

CL = 1——a+§;%<p+£1-z+2771)+H”<1)+0<—1—> (5.14)

k ]C?”Lo o

= l—a+o(l) as ng — oco.
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Next, we find the second order approximation to the value of 4*(d) of this

procedure. Let

Qp(d) = {i:ps—pr > d} and Qp(d) = {j: p; — 1 < —d}.
From the definition and Theorem 4.3, we have

4*(d) = min P{all false H;o with |, — 1] > d
ueRk

are rejected with correct directional decisions}

_ minP{ v M(

Yir = Yir >
JERK ¥ 17 C

- _ dlt|g, v2 .
Yir —Yir < —ME}—\/: (1+77T_1> vJ EQZ(d)}

efo{(c-ne.va(u+3) X))

M\ o
1+ 7_}) Vi € Q5 (d),

where

and p = ((k 4+ 1)/2). It therefore follows from Theorem 2.3 with H(z) =
G(l‘), C() = C, Cl = ‘t!%—l \/E and CQ =M that

2 _ oL a _151< _2> Lv)
¥ (d) = v nﬁ(%)(mltlk_l\@ sl ta—7)+ 5

1, (L)
SvemeslC (t,) +o : (5.15)

o

Note that

Gt = [ o= 1ot 9)o7 (1, — )@ (1, + )
(k= Pl + 1O (1 = )07 (1)} dy
and
G(1) =
7 (= D = )60ty = )97 (1, = )07 (1, +)

—0
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+p =~ 1)(p — 2)8(t, — y) O (t, —y) @7 (t, +y)

(p = (k= p)b(t, = )@ (1, — y)o(t, +y)@** (1, +y)
—(k = p)(ty + y)(ly + y) 97 (8, — ) (1, +y)
(k= p)(p = 1)ty + 1)ty — )2 (t, — y)@" 7 (L, +y)
(k—p)(

b= p)(k=p = D@+ 1) (1= )02 (6, +) ) dy.

+

p—1

_l_

From (5.14) and (5.15), we set the values of & and 7y satisfying simulta-

neously

SN Y 11
LA S P T k(L)

2 ' ’
2kt (46— =) G'(t) = (Wb V2+6)G (1) — £67(1,),

so that the procedure has type I error rate « + o(1/ng) and power *(d) =
v+ o(1/ng) as ng — oo.
Table 5.9 presents the values of ¢; and n; for given values of o, and k.
By Theorem 2.1, the expected sample size from each population is given
by
2
E(TYy=no+p+& —E+0(1) as ng — oo .

A simulation exercise has been carried out to assess the performance of this
procedure for small and moderate values of ng. Table 5.10 shows the values
of t., for k = 2(1)20 and Table 5.11 presents the simulated and approximate
values of E(T"). For m =10,k = 3,10 and o = 0.1,0.05, Table 5.12 shows the

simulation results of (1— type I error rate ) and 4*(d).
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Table 5.9:

Values of & and mq

for a = 0.05 and given values of v and k

v =0.6 v =0.7 v=10.8 v =10.9

k & m & m & m & n

3 ] 0.949 | 0.138 ] 0.927 | 0.150 | 0.920 | 0.153 | 0.950 | 0.138
4 | 0.606 | 0.124 | 0.596 | 0.129 | 0.598 | 0.128 | 0.628 | 0.113
5 | 0.394 | 0.110 | 0.391 | 0.111 | 0.398 | 0.108 | 0.427 | 0.094
6 | 0.252 1 0.098 | 0.252 | 0.098 { 0.260 | 0.094 | 0.286 | 0.081
7 1 0.150 | 0.088 | 0.152 | 0.087 | 0.160 | 0.083 | 0.184 | 0.071
8 | 0.073 | 0.080 | 0.075 | 0.079 | 0.083 | 0.075 | 0.106 | 0.063
9 | 0.012 | 0.073 | 0.015 | 0.072 | 0.023 | 0.068 | 0.044 | 0.057
10 | -0.036 | 0.068 | -0.033 | 0.066 | -0.025 | 0.062 | -0.005 | 0.052
11 | -0.076 | 0.063 | -0.072 | 0.061 | -0.065 | 0.057 | -0.047 | 0.048
12 | -0.109 | 0.059 | -0.106 | 0.057 | -0.099 | 0.053 | -0.081 | 0.045
13 [ -0.137 | 0.055 | -0.134 | 0.053 | -0.127 | 0.050 | -0.111 | 0.042
14 | -0.162 | 0.052 | -0.158 | 0.050 | -0.152 | 0.047 | -0.136 | 0.039
15| -0.183 | 0.049 | -0.179 | 0.047 | -0.173 | 0.044 | -0.158 | 0.037
16 | -0.201 | 0.047 | -0.198 | 0.045 | -0.192 | 0.042 | -0.178 | 0.035
17 1-0.218 | 0.044 | -0.214 | 0.043 | -0.208 | 0.040 | -0.195 | 0.033
18 | -0.232 | 0.042 | -0.229 | 0.041 | -0.223 | 0.038 | -0.210 | 0.031
19 | -0.246 | 0.040 | -0.242 | 0.039 | -0.237 | 0.036 | -0.224 | 0.030
20 | -0.257 1 0.039 | -0.254 | 0.037 | -0.249 | 0.034 | -0.237 | 0.028
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Table 5.9:

Values of & and m

for a = 0.1 and given values of v and k

v =10.6 v =0.7 v =0.8 v =0.9

k & m €1 m &1 m &1 m

3 | 0713 | 0.109 | 0.704 | 0.113 | 0.715 | 0.108 | 0.768 | 0.081
4 | 0.427 | 0.097 | 0.427 | 0.097 | 0.441 | 0.090 | 0.487 | 0.067
5 1 0.250 | 0.086 | 0.255 | 0.083 | 0.271 | 0.076 | 0.312 | 0.055
6 | 0.131 | 0.076 | 0.137 | 0.073 | 0.152 | 0.066 | 0.189 | 0.047
7 | 0.046 | 0.069 | 0.052 | 0.065 | 0.067 | 0.058 | 0.100 | 0.041
8 |-0.019 { 0.062 [-0.012 { 0.059 | 0.001 | 0.052 | 0.031 | 0.037
9 |-0.070 | 0.057 | -0.063 | 0.053 | -0.050 | 0.047 | -0.023 | 0.033
10 | -0.110 | 0.052 | -0.104 | 0.049 | -0.092 | 0.043 | -0.066 | 0.031
11| -0.144 | 0.049 | -0.137 | 0.045 | -0.126 | 0.040 | -0.102 | 0.028
12 | -0.171 | 0.045 | -0.165 | 0.042 | -0.155 | 0.037 | -0.133 | 0.026
13 | -0.195 | 0.043 [ -0.189 | 0.040 | -0.179 | 0.035 | -0.158 | 0.024
14 | -0.215 | 0.040 | -0.210 | 0.037 | -0.200 | 0.032 | -0.181 | 0.023
15| -0.233 | 0.038 | -0.227 | 0.035 | -0.219 | 0.031 | -0.200 | 0.021
16 | -0.249 | 0.036 | -0.243 | 0.033 | -0.235 | 0.029 | -0.217 | 0.020
17 | -0.262 | 0.034 | -0.257 | 0.032 | -0.249 | 0.027 | -0.232 | 0.019
18 | -0.275 ] 0.033 | -0.270 } 0.030 | -0.262 | 0.026 | -0.246 | 0.018
19 | -0.286 | 0.031 | -0.281 | 0.029 | -0.273 | 0.025 | -0.258 | 0.017
20 | -0.296 | 0.030 | -0.291 { 0.027 | -0.284 | 0.024 [ -0.269 | 0.016
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Table 5.10:

Values of t,

for given values of v and k

E|v=06|~7y=07]7=08|~v=0.9
3 1.167 1.456 1.809 2.326
4 1.430 1.707 2.047 2.546
5 1.639 1.903 2.229 2.710
6 | 1.769 2.027 2.348 2.821
7 1.883 2.136 2.451 2.916
8 1.967 2.217 2.528 2.989
9 2.045 2.292 2.599 3.055
10| 2.106 2.351 2.656 3.109
11 2.164 2.407 2.709 3.159
121 2.212 2.453 2.754 3.202
131 2.258 2.497 2.797 3.242
14 | 2.297 2.536 2.834 3.277
15| 2.335 2.572 2.869 3.310
16 | 2.368 2.604 2.900 3.339
17| 2.400 2.635 2.930 3.368
18 | 2.429 2.663 2.957 3.394 |
19 | 2.456 2.690 2.983 3.418 |
20 | 2.481 2.714 3.006 3.441
21 | 2.506 2.738 3.029 3.463
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Table 5.11:  Comparisons between the simulated and approximate values of

E(T) form =10, k =3, a = 0.05 and given values of ng and ~

v =06 v =10.7 v=0.8 v=20.9

ng | Stimul. | Appro. | Simul. | Appro. | Simul. | Appro. | Simul. | Appro.

15 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0

20 | 20.9 21.0 20.9 21.0 20.9 21.0 20.9 21.0

250 259 26.0 25.9 26.0 25.8 26.0 25.9 26.0

30 | 30.8 31.0 30.8 31.0 30.8 31.0 30.8 31.0

35| 36.0 36.0 35.8 36.0 35.8 36.0 35.8 36.0

40 | 41.0 41.0 40.9 41.0 40.9 41.0 40.9 41.0

45 | 45.9 46.0 45.9 46.0 45.9 46.0 45.9 46.0

50 | 50.9 51.0 50.9 51.0 50.9 51.0 50.9 51.0

55 | 535.9 56.0 56.0 56.0 56.0 56.0 56.0 56.0

60 | 60.9 61.0 61.0 61.0 61.0 61.0 61.0 61.0
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Table 5.11:  Comparisons between the simulated and approximate values of

E(T) form =10, k =10, a = 0.05 and given values of ng and v

v =0.6 v =0.7 v =0.8 v=0.9

no | Simul. | Appro. | Simul. | Appro. | Simul. | Appro. | Simul. | Appro.

151 154 15.4 15.4 154 15.4 15.4 15.4 15.4

20 | 20.4 20.4 20.4 20.4 20.4 20.4 20.4 20.4

25| 25.3 25.4 25.3 25.4 25.3 25.4 25.3 25.4

30 | 30.3 30.4 30.3 30.4 30.4 30.4 30.4 30.4

35| 35.3 35.4 35.3 35.4 35.3 35.4 35.3 35.4

40 | 40.3 40.4 40.3 40.4 40.3 40.4 40.4 40.4

45 | 45.3 45.4 45.3 45.4 45.4 45.4 45.4 45.4

50 | 50.3 50.4 50.4 50.4 50.4 50.4 50.4 50.4

55 | 55.4 55.4 55.4 55.4 55.4 55.4 55.4 55.4

60 | 60.4 60.4 60.4 60.4 60.4 60.4 60.4 60.4
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Table 5.11:  Comparisons between the simulated and approzimate values of

E(T) form =10, k =3, a = 0.1 and given values of ng and v

v =056 v =0.7 v =0.8 v =0.9

no | Simul. | Appro. | Simul. | Appro. | Simul. | Appro. | Simul. | Appro.

15| 15.8 15.7 15.8 15.7 15.8 15.7 15.9 15.8

20 | 20.7 20.7 20.7 20.7 20.7 20.7 20.7 20.8

251 25.6 25.7 25.6 25.7 25.6 25.7 25.6 25.8

30 | 30.6 30.7 30.6 30.7 30.6 30.7 30.7 30.8

35| 35.6 35.7 35.6 35.7 35.6 35.7 35.7 35.8

40 | 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.8

45 | 45.7 45.7 45.7 45.7 45.7 45.7 45.7 45.8

50 | 50.7 50.7 50.7 50.7 50.7 50.7 50.7 50.8

55 | 58.8 55.7 55.8 55.7 55.8 55.7 55.8 55.8

60 | 60.8 60.7 60.8 60.7 60.8 60.7 60.9 60.8
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Table 5.11:  Comparisons between the simulated and approximate values of

E(T) form =10, k =10, o = 0.1 and given values of ng and v

v =06 vy =07 v =08 7 =09

ng | Simul. | Appro. | Simul. | Appro. | Simul. | Appro. | Simul. | Appro.

15| 153 15.3 15.3 15.3 15.3 15.3 15.3 15.3

20 | 20.3 20.3 20.3 20.3 20.3 20.3 20.4 20.3

25| 25.3 25.3 25.3 25.3 25.3 25.3 25.3 25.3

30 | 30.3 30.3 30.3 30.3 30.3 30.3 30.3 30.3

35| 35.2 35.3 35.2 35.3 35.3 35.3 35.3 35.3

40 | 40.3 40.3 40.3 40.3 40.3 40.3 40.3 40.3

45 | 45.3 45.3 45.3 45.3 45.3 45.3 45.3 45.3

50 | 50.3 50.3 50.3 50.3 50.3 50.3 50.3 50.3

55 | 55.3 55.3 55.3 55.3 55.3 55.3 55.4 55.3

60 | 60.3 60.3 60.3 60.3 60.3 60.3 60.4 60.3
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Table 5.12:  Simulation values of a® = (1— type I error rate) and 5*(d)

form =10, k =3, a = 0.05 and given values of ng and ~

v =0.6 v =0.7 v=0.8 v=0.9
no | ¥(d) | o [7(d)] o |4(d)] o [F(d)]| o

151 0.597 | 0.951 | 0.697 | 0.952 | 0.797 | 0.952 | 0.900 | 0.952

20 | 0.597 | 0.950 | 0.697 | 0.950 | 0.804 | 0.949 | 0.898 | 0.951

251 0.599 | 0.951 | 0.700 | 0.949 | 0.796 | 0.949 | 0.899 | 0.951

30 | 0.591 | 0.951 | 0.691 | 0.952 [ 0.796 | 0.951 | 0.900 | 0.951

351 0.599 | 0.948 | 0.693 | 0.948 | 0.798 | 0.949 | 0.893 | 0.948

40 | 0.583 | 0.948 | 0.698 | 0.951 | 0.799 | 0.950 | 0.897 | 0.948

45 | 0.583 | 0.948 | 0.694 | 0.949 | 0.797 | 0.948 | 0.896 | 0.948

50 | 0.598 | 0.949 | 0.697 | 0.947 | 0.795 | 0.947 | 0.900 | 0.949

55 1 0.599 | 0.951 | 0.695 | 0.952 | 0.797 | 0.953 | 0.900 | 0.951

60 | 0.688 | 0.952 | 0.702 | 0.952 | 0.808 | 0.956 | 0.905 | 0.951
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Table 5.12:  Simulation values of o = (1— type I error rate) and ¥*(d)

form =10, £k =10, o = 0.05 and given values of ny and =

~=10.6 ~=0.7 v =10.8 v=10.9
ng |4(d) | e |F(d)]| o [§(d)| o |4 (d)]| o

15 1 0.607 | 0.955 | 0.708 | 0.956 | 0.806 | 0.953 | 0.900 | 0.953

20 | 0.587 | 0.948 | 0.690 | 0.950 | 0.799 | 0.950 | 0.896 | 0.952

25 10.601 | 0.951 | 0.701 | 0.952 | 0.807 | 0.951 | 0.905 | 0.951

30 1 0.594 | 0.947 | 0.698 | 0.949 | 0.801 | 0.953 | 0.904 | 0.947

35| 0.602 | 0.956 | 0.698 | 0.958 | 0.799 | 0.955 | 0.905 | 0.953

40 | 0.603 | 0.948 | 0.703 | 0.950 | 0.795 | 0.951 | 0.891 | 0.948

451 0.604 | 0.952 | 0.698 | 0.953 | 0.800 | 0.951 | 0.898 | 0.946

50 | 0.603 | 0.953 | 0.703 | 0.953 | 0.799 | 0.951 | 0.900 | 0.950

55 10.592 | 0.951 | 0.697 | 0.951 | 0.798 | 0.953 | 0.898 | 0.949

60 | 0.599 | 0.951 | 0.696 | 0.950 | 0.801 | 0.951 | 0.893 | 0.948
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Table 5.12:  Simulation values of a® = (1— type I error rate) and 4*(d)

form =10, k =3, a = 0.1 and given values of no and

~=0.6 v =0.7 v =0.8 v =0.9
no | ¥7(d) | @ [F(d)]| o |3(d) ] o [F7(d)]| o

15 0.586 | 0.902 | 0.696 | 0.902 | 0.800 | 0.902 | 0.902 | 0.904

20 | 0.588 | 0.899 | 0.692 | 0.901 | 0.793 | 0.899 | 0.900 | 0.900

251 0.581 { 0.893 | 0.694 | 0.893 | 0.798 | 0.893 | 0.900 | 0.897

30 | 0.587 | 0.897 | 0.696 | 0.900 | 0.801 | 0.897 | 0.897 | 0.899

351 0.594 | 0.902 | 0.699 | 0.903 | 0.799 | 0.903 | 0.895 | 0.902

40 | 0.594 | 0.902 | 0.697 | 0.900 | 0.805 | 0.902 | 0.904 | 0.900

45 | 0.595 | 0.904 | 0.701 | 0.903 | 0.801 | 0.907 | 0.901 | 0.900

50 | 0.586 | 0.896 | 0.686 | 0.896 | 0.789 | 0.896 | 0.901 | 0.899

55 10.594 | 0.901 | 0.697 | 0.898 | 0.799 | 0.902 | 0.892 | 0.897

60 | 0.593 | 0.909 | 0.690 | 0.911 | 0.796 | 0.907 | 0.905 | 0.912
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Table 5.12:  Simulation values of a¢ = (1— type I error rate) and *(d)

form =10, k =10, « = 0.1 and given values of ng and ~

~=0.6 v =0T v=08 v =09
no |77(d) | o 147(d)| o [4(d) | o |4 (d)| o

151 0.602 | 0.904 | 0.702 | 0.905 | 0.795 | 0.898 | 0.902 | 0.899

20 | 0.585 | 0.895 | 0.697 | 0.900 | 0.802 | 0.900 | 0.900 | 0.903

251 0.604 | 0.901 | 0.709 | 0.903 | 0.795 | 0.905 | 0.899 | 0.904

30 | 0.599 | 0.899 | 0.693 | 0.898 | 0.800 | 0.900 | 0.900 | 0.899

351 0.601 | 0.901 | 0.697 | 0.904 | 0.803 | 0.901 | 0.900 | 0.902

40 | 0.595 | 0.893 | 0.696 | 0.900 | 0.802 | 0.898 | 0.903 | 0.900

45 | 0.606 | 0.892 | 0.702 | 0.900 | 0.798 | 0.896 | 0.892 | 0.891

50 | 0.601 | 0.895 [ 0.706 | 0.899 | 0.805 | 0.903 | 0.906 | 0.908

551 0.601 | 0.905 | 0.702 | 0.901 | 0.806 | 0.904 | 0.905 | 0.907

60 | 0.608 | 0.902 | 0.701 | 0.900 | 0.798 | 0.896 | 0.897 } 0.902
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5.3 A power function for all pairwise com-

parisons of several treatments

5.3.1 Introduction

Suppose we have k independently and normally distributed populations N(pu;, o%),
1 < ¢ <k, with unknown means y; and a common positive variance o%. We
are interested in making inferences about p; — p; and, in particular, we want

to test the family of two-sided hypotheses

Hiotpi—p; =0 vs Hyjyip—p; #0, 1<i#35<k. (5.16)

Assume that Y, denotes the sample mean of a sample of fixed size n from

the i population, 1 < ¢ < k, and that S% is an estimate of o2 which is

independent of the Y;, and distributed as a x2/v random variable. If o2 is
known then v = oo, otherwise 0 < v < oo. It is well known that the family of

hypotheses (5.16) can be tested in the following way

: : . Vi = Y; o,
reject H;;o in favour of H;;q iff [n|———m—| Zqh,, 1< #+7<k,
(5.17)
and accompany the rejection of any H;;o by the directional decision that p; —

t; > 0if Yy, — Vi, > 0, where qs, 1s the upper « point of the distribution of

the random variable

Z; ~

Qk,u = max .
1<G#£5<k A /Xz/l/

This multiple test procedure controls strongly the type I error rate at «, since

N

it is actually derived from the following set of simultaneous confidence intervals

of level 1 — o

\/ V% o S \/ a S . :
Ni_/‘je()/in"“y}n_%c,u-\/_ﬁwﬁ ~an+qk,u\/—ﬁ), 1<i#j <k
To assess the sensitivity of this test procedure, we calculate the probability

that this test will detect, with a correct directional decision, each pair (z,7)
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of treatments whose means p; and p; are significantly different in terms of
|t; — pjl > do, where d > 0 is a given constant. For this we define a power

function y**(y, d) to be

P{all false H;;o with |p;—p;| > do are rejected with correct directional decisions}
(5.18)
and, in particular, v*(pu,d) = 1 if all pair of the treatments satisfy |u; —
tj| < do. The sensitivity of this multiple comparisons procedure can then
be measured by v*(d) = min,cpe v*(i,d). In this section we investigate
that how large the sample size n should be if we require test (5.17) has the
sensitivity v*(d) = v for preassigned values of d > 0 and 0 < v < 1. This is
treated in Subsection 5.3.2 for £ = 3. When k£ = 4 we find the sample size n
necessary to guarantee v**(d) > ~. Although, the power function defined here
is suitable for general & > 4, to find an explicit formula for the minimum of
the power function when k& > 4 seems impossible.
Note that, in the definition of the power function v (p,d) in (5.18), the
departure of the y; from the g;, is measured in unit of 0. We may define a

power function, ¥*(u, d), to be
P{all false H;;o with |g;—p;| > d are rejected with correct directional decisions}

and, in particular, 4 (u, d) = 1 if all pair of the treatments satisfy |u;—p;| < d.
The sensitivity of a test of (5.16) can be measured by the quantity =(d) =

2

min, cpe 7 (p,d). Now assume o is an unknown parameter and we wish to

design a test of (5.16) such that this test has type I error rate o and sensitivity
A**(d) = ~, for given values of «, d and 7. For this it is necessary to use a

sequential sampling scheme. A pure sequential procedure will be discussed in

Subsection 5.3.3.
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5.3.2 A fixed sample size procedure

This subsection is devoted to determine the sample size n so that test (5.17)

has v (d) > v for given values of v, d >0, 0 <y <1 and k =3, 4.
First, when k& = 3, we have the following theorem, whose proof is similar

to Theorem 4.5.
Theorem 5.3 Let k =3 and u*(d) = (0, —do,do) € R®, then
Yd) = y™(p(d),d)
= / / — 543, — ) X
(d\/}{ — 8¢5, + x)¢(z) fo(s)dzds, (5.19)
where f,(x) denotes a pdf of the \/x2/v.

Notice that, if the variance o2 is known then

() = [ 0(dyn - g5 — 2)0(dvi~ g5 + a)g(e)da.
Table 5.13 presents the values of d/n for given values of & = 3, v, and 7.

Now, when k = 4, we have the following theorem which can be proved in

a way similar to Theorem 4.6.

Theorem 5.4 Let
M = ¢(2)d(y)[®(z — sqf, + dy/n) — Oy + sq¢5, — dv/n)]?,
P(2)p(y)®(—x — sq5, + dv/n)[®(z — sq5, + dy/n) — Oy + ¢5 5 — dv/n)],
o pr+2dy/n -y (243, ) +dv/n/eg,
A= / / / Mf,(s) ds dy dz,

cA20VE (o) (002, 4TS,
B= / / / ’ "N F(s) ds dy de.

—00

Then
7™ (d) = min(A, B).

Table 5.14 presents the values of dy/n for which v (d) = v for given values

of v, a, k =4 and ~.
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Table 5.13:  Values of the parameter d\/n satisfying v*(d) =~

for a =0.05,k =3 and v = 0.95

v |dyn| v | dyn

10 | 7.039 | 30 | 6.367

12 | 6.856 | 40 | 6.293

14 1 6.732 | 60 | 6.223

16 | 6.642 | 120 | 6.153

18 | 6.574 | oo | 6.086

20 | 6.521

Table 5.13:  Values of the parameter d\/n satisfying v*(d) = v

fora=10.01,k =3 and v = 0.95

v | dyn | v | dyn

10 | 8.755 | 30 | 7.413

12 | 8.378 | 40 | 7.274

14 | 8.127 | 60 | 7.139

16 | 7.947 | 120 | 7.014

18 | 7.812 | oo | 6.892
20 | 7.708
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Table 5.13:  Values of the parameter d\/n satisfying v (d) =~

for a« =0.01,k =3 and v = 0.99

v |dyn| v | dyn

10 1 9.950 | 30 | 8.361

12 1 9.497 | 40 | 8.200

14 19.196 | 60 | 8.047

16 | 8.983 | 120 | 7.903

18 1 8.825 | oo | 7.763

20 | 8.703

Table 5.14:  Values of the parameter d\/n satisfying v*(d) = v

for a =0.05,k =4 and v = 0.95

v | dyn | v | dyn

10 | 15.323 } 30 | 13.319

12| 14.827 | 40 | 13.073

14 | 14.443 | 60 | 12.825

16 | 14.181 | 120 | 12.659

18 | 13.974 | oo | 12.437

20 | 13.799

229




Table 5.14:  Values of the parameter d\/n satisfying v*(d) = v

for a =0.01,k =4 and v = 0.95

v | dyn v dy/n
10 | 20.294 | 30 | 17.634

12 | 20.216 | 40 | 17.182

14 | 19.450 | 60 | 16.725

16 | 19.216 | 120 | 16.572

18 | 18.549 | oo | 16.321

20 | 18.423

Table 5.14:  Values of the parameter d\/n satisfying v*(d) =~

for a =0.01,k =4 and v = 0.99

v | dyn | v dy/n

10 | 29.345 | 30 | 22.108

12 | 27.826 | 40 | 21.723

14 | 25.988 | 60 | 20.795

16 | 24.530 | 120 | 19.664

18 124.471 | oo | 19.431

20 | 23.385
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5.3.3 A pure sequential procedure

Let o2 be an unknown parameter and k = 3. In this section we design a test
of the family of hypotheses (5.16) which has, at least approximately, type 1
error rate o and power y*(d) = d, where 0 < a <1, 0 <y <1 and d > 0 are
prefixed constants. To motivate the definition of a pure sequential procedure,
we first look at the known ¢? case which is discussed in the last subsection.
had o2 been known, we would take a sample of size ng from each of the k&

populations and test the family of hypotheses (5.16) by:

. . . — — oqs . .
reject Hyjo in favour of Hyjp iff |Vi, — Yin, | > n30’ 1 <i#£j <3,

and accompany the rejection of any H;;o by the directional decision that p; —

p; > 0if Vi, — Yj,, > 0, where ng satisfies
o dy/ d
/ o (Tno —q5 — :c) o (@ —q5 + x) é(z) dz = 7. (5.20)

Denote

Ty = qs3,

d./
no 4o (5.21)

o
which can be solved from the equation (5.20). Then sample size ng is given by
no = o2d™? (1, + ¢2)%. (5.22)

and so the test can be written as

dqs
~+ G5

reject Hyo in favour of Hijy iff |Yip, — iy | > , 1 <i#35 <3,

and accompany the rejection of any H;;o by the directional decision that p; —
p; > 0if Yo — Yi,, > 0.

Based on these observations, we can now define a sequential procedure for
the situation of unknown o? that is assumed in this subsection. Take a sample

of size m from each of the & = 3 populations, then take one observation from

each population at a time until
T=inf{n>m: n>1+&/0)d2C%,2},
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where 0 < C' = r,+¢§ and & is a given constant whose value will be determined |
|
later. On stopping sampling, ‘

X . P - dqg o,
reject Hijo in favour of H;;y iff |Yir —Yir| > —g?— (1 + TZF—1> , 1<i#£5<3,

and accompany the rejection of any H;;o by the directional decision that p; —
p; > 0if Yir — Y;r > 0, where 7y is a given constant whose value is given
below. Next we show that this procedure has the required properties, at least
for large no.

First, we show that this procedure controls strongly the type I error rate

at a, at least for large ng. For this, it is sufficient to show that

_ _ dags o
CL=P{lVa = Yir = (- u)l < 2 (142, 12i#j<3)

is equal to 1 — @ + o(1) as ng — oo. By noting that
2
cL=Elu (3 (1+2) )]
o T

H(.Z‘):P{ max |Z; — Z;| < q¢5 :p},

1<i#5<3

where

it therefore follows from Theorem 2.2 with § = 1 and C} = n; that

H'(1 2 H'(1 1 ;
CL = 1—a+—(l(p+§1——+2m)+ ()—|-0<—) (5.23)
Mo 3 3710 g
= 1l—a+o(l) as ng — oc.

Next, we find the second order approximation to the value of 4**(d) of this

procedure. Let
) = (i i — s > d.
From the definition and Theorem 4.5 we have
F*(d) = iéllgl P{all false H;jo with|u;, — p | > d
are rejected with correct directional decisions}

= min P{ET —Yir > da; (1+77—1> V(i j) € Q(d)}

pER? C T
- {1 7]
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where

G(.’E) = P{Z3 — Z2 > -, ZQ -7 > —il?}

It therefore follows from Theorem 2.3 with H(z) = G(z),Cy = C,C = ¢§ and
02 =T that

1 T 2 r
) = = G ) (e — 5 (Pt a5 )+
1 1
—}—127107“36? (ry)+o <;L_o) as ng — 0. (5.24)

G = [ s elry =)@+ )+ 6lry + )00 — 1)} dy

Sy = )l — 0 +y)
+2¢(ry + y)(ry —y) — (74 + y)d(ry + y)O(ry — y)} dy.

From (5.23) and (5.24), we set the values of £{; and 7y satisfying simulta-

neously

B 2 H"(1)
&+%h_—p+§—3Hﬂj

2 'l !
61, (,0 + & — 5) G (ry) = (12n195 +14)G (ry) — riG"(rV),

so that the procedure has the type I error rate a+o(1/nq) and power 4 (d) =
v+ 0o(1/ng) as ng — oo.

Table 5.15 presents the values of ¢ and 7 for given values of a, and &
and Table 5.16 shows the values of r,.

The expected sample size from each population of this sequential procedure
is given by

2
E(T):n0+p+§1—§+o(1) as ng — oo,

which follows directly from Theorem 2.1. A simulation exercise has been car-

ried out to assess the performance of this procedure for small and moderate
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values of ng. Table 5.17 presents the simulated and approximate values of
E(T). For m =10,k = 3 and o = 0.1,0.05, Table 5.18 shows the simulation

results of (1— type I error rate) and 4 (d).
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Table

for k =3 and given values of v and «

5.15:

Values of &1 and m

v =0.6 v =0.7 ~v=10.8 v=10.9
« 51 m 51 m f1 m 51 m
0.05 | 0.128 | 0.002 | 0.129 | 0.001 | 0.131 | 0.001 | 0.132 | 0.000
0.1 |0.127 {1 0.002 | 0.129 | 0.001 | 0.130 | 0.001 | 0.131 | 0.000
Table 5.16:  Values of r.,

for k =3 and given values of

v=10.6

~v=0.7

v =028

v =0.9

1.167

1.456

1.809

2.326
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Table 5.17:

Comparisons between the simulated and approximate values of

E(T) form =10, k =3, a = 0.05 and given values of ng and v

v=20.6 v =0.7 v =0.8 ~=0.9
ng | Simul. | Appro. | Simul. | Appro. | Simul. | Appro. | Simul. | Appro.
15| 15.3 15.2 15.3 15.2 15.3 15.2 15.3 15.2
20 1 20.1 20.2 20.2 20.2 20.1 20.2 20.1 20.2
251 25.0 25.2 25.0 25.2 25.0 25.2 25.0 25.2
30 | 30.0 30.2 30.0 30.2 30.0 30.2 30.0 30.2
351 35.0 35.2 35.0 35.2 35.0 35.2 35.0 35.2
40 + 40.0 40.2 40.0 40.2 40.0 40.2 40.0 40.2
45 | 451 45.2 45.0 45.2 45.0 45.2 45.0 45.2
50 | 50.1 50.2 50.1 50.2 50.0 50.2 50.0 50.2
55| 55.2 55.2 55.2 55.2 55.2 55.2 55.2 55.2
60 | 60.2 60.2 60.2 60.2 60.2 60.2 60.2 60.2
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Table 5.17:  Comparisons between the simulated and approximate values of

E(T) form =10, k =3, o = 0.1 and given values of ng and ~

no | Simul. | Appro. | Simul. | Appro. | Simul. | Appro. | Simul. | Appro.

151 153 15.2 15.3 15.2 15.3 15.2 15.3 15.2

20 | 20.1 20.2 20.1 20.2 20.1 20.2 20.1 20.2

25| 25.0 25.2 25.0 25.2 25.0 25.2 25.0 25.2

30 | 30.0 30.2 30.0 30.2 30.0 30.2 30.0 30.2

351 35.0 35.2 35.0 35.2 35.0 35.2 35.0 35.2

40 | 40.0 40.2 40.0 40.2 40.0 40.2 40.0 40.2

45 | 45.1 45.2 45.1 45.2 45.0 45.2 45.0 45.2

50 | 50.1 50.2 50.1 50.2 50.1 50.2 50.0 50.2

55 | 55.2 55.2 55.2 55.2 55.2 55.2 55.2 55.2

60 | 60.2 60.2 60.2 60.2 60.2 60.2 60.2 60.2
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Table 5.18: Simulation values of a° = (1— type I error rate) and v=(d)

form =10, k =3, o = 0.1 and given values of ny and ~

o

v =20.6

v =0.7

v =0.8

~v=10.9

i (d)

aC

7 (d)

aC

7 (d)

ac

7 (d)

ac

15

0.607

0.895

0.704

0.895

0.805

0.895

0.907

0.895

20

0.599

0.890

0.699

0.890

0.791

0.889

0.894

0.890

25

0.600

0.888

0.696

0.888

0.801

0.888

0.905

0.889

30

0.592

0.888

0.692

0.886

0.793

0.887

0.894

0.887

35

0.605

0.893

0.703

0.893

0.797

0.893

0.902

0.892

40

0.602

0.896

0.695

0.895

0.798

0.896

0.896

0.896

45

0.611

0.893

0.707

0.893

0.808

0.893

0.901

0.893

50

0.598

0.896

0.698

0.897

0.794

0.897

0.891

0.896

55

0.594

0.902

0.698

0.901

0.795

0.902

0.901

0.903

60

0.609

0.899

0.707

0.897

0.803

0.897

0.901

0.897
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Table 5.18: Simulation values of ¢ = (1— type I error rate) and v*(d)

form =10, k =3, a = 0.05 and given values of ng and ~

ng

v =10.6

~ = 0.7

v = 0.8

v =109

4 (d)

aC

i (d)

ac

7 (d)

aC

7 (d)

ac

15

0.606

0.945

0.704

0.944

0.805

0.945

0.907

0.945

20

0.599

0.941

0.699

0.941

0.791

0.941

0.894

0.941

25

0.601

0.941

0.696

0.941

0.801

0.941

0.905

0.941

30

0.592

0.945

0.692

0.942

0.793

0.942

0.894

0.942

35

0.605

0.945

0.703

0.944

0.797

0.943

0.902

0.943

40

0.603

0.947

0.695

0.947

0.798

0.947

0.896

0.947

45

0.612

0.946

0.706

0.946

0.808

0.946

0.901

0.946

50

0.599

0.949

0.698

0.950

0.794

0.949

0.891

0.949

55

0.594

0.948

0.698

0.948

0.795

0.949

0.901

0.949

60

0.609

0.948

0.707

0.947

0.803

0.947

0.901

0.948
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Chapter 6

Directions of future research

In this thesis, we have applied Anscombe-Chow-Robbin’s pure sequential sam-
pling scheme to some multiple comparison problems. Two obvious directions
of further research are to use different sequential sampling schemes and to
consider other problems which require prescript accuracy when some nuisance

parameters are involved.
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6.1 Other sequential sampling schemes

Hall (1981) proposed a triple stage procedure to construct a fixed-width con-
fidence interval of length 2d and (nominal) confidence level 1 — « for the mean
of a normal population, where d > 0 and 0 < a < 1 are two given constants.
This triple sampling procedure involves only three sampling operations. By
sampling in bulk, a considerable saving in time and money can be achieved.
It also requires an average sample size which is comparable to the correspond-
ing Anscombe-Chow-Robbin’s (ACR) “ one-by-one” sampling scheme. Hall’s

procedure operates as follows. Let m be the initial sample size. Calculate
M = max{m, (cAé2) + 1},

where A = (z4p /d)? and ¢ € (0,1). If M = m, we do not take any more
sample, otherwise, it M > m, we draw a second sample of size M — m, and

calculate 63;. Now based on M observations we define
T = max{M, (A3 +my) + 1}

where m; = (5 — 22, — ¢)/2¢, and draw a sample of size T — M. Let Yr be
the mean of the pooled sample of size T. Then an approximate (1 — «)-level

confidence interval for p is given by
I = (?T — d, YT + d)

Hall showed that
P{|Y7 —pu| <d} =1 —a+ o(d?*),
E(T) =mno+ (1+ 22/2)/20 +o(1) as ng — oo,

where ng = A2
Liu (1995b) generalized Hall’s three-stage procedure to the general k(> 3)-

stage procedure.
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Hall (1983) proposed another sequential procedure which uses an ACR
procedure only to determine a preliminary sample and then jump ahead to
obtain the final sample. After taking the initial sample of size m, it takes

observations one by one until
Ny =inf{n >m: n > cA\é2},
where A = (z.p /d)? and ¢ € (0,1). Then draw a final sample of size
M; = max{Ny, (cAG}, + m2) + 1},

where m; = (5 + 22/2 )/(2¢) + B for any 3 > 0, and a confidence interval for p

is defined as
Iy, = (Y, —d, Ya, +d).

It has been shown in Hall (1983) that I, has a confidence level greater than

(1 — a) for all sufficiently small d and

EMy)=no+(1+ 22/2 )/2¢+ B+ o(1) as ng — oo,

where ng = \o?.

In contrast to Hall’s (1983) procedure, Liu (1995¢) proposed a new pro-
cedure which starts with two samples followed by pure sequential sampling.
Take a “ pilot” sample of size m. Fix ¢ in the range 0 < ¢ < 1 and take second

sample of size M| — m where
M, = max{m, (c\é2) + 1}.
Continue sampling one observation at a time until
My =inf{n>M;: n>A,62}.
The confidence interval for p 1s given by

Iy, = (Y, — d, Y, +d).
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The motivation behind this new procedure is that when we are far away from
the target we can leap forward by taking clusters of observations, and when
we are getting closer to the target we should approach with care by taking one
observation at a time. The new procedure not only inherits the great efficiency
of the ACR procedure in that it has the same large sample property as the ACR
procedure, but also has the ability to reduce the number of sampling operations
by an arbitrary factor (which is about 1 — ¢). Under the assumptions as in

Hall (1981), it has been shown that

E(My)=no+p+1lo—2+0(l), as ng— oo,

Pl €l ) = L= ot {2604 lo = 2) + 26/} + ol ),

o
where ¢(z) = 2®(y/z) — 1 and ng = Ac?.
All these sequential sampling ideas can be used to replace the pure sequen-
tial sampling idea to solve the problems considered in this thesis. It would be

interesting to compare the performance of these procedures.

243



6.2 Other problems

The basic idea behind sequential sampling is to achieve a prescribed accuracy,
e.g. fixed-width confidence interval, fixed type I and type Il error of a test,
when some nuisance parameters are involved, such as the unknown ¢? when
we want to make inference about u of a normal population N(p,o?). There
are many such problems, and most of these problems have been solved only
by using the pure sequential sampling scheme and the two-stage sampling
method. Applying the new sequential sampling schemes, such as Hall’s three-
stage scheme and Liu’s (1995b) scheme, to solve these problems is certainly

worthwhile and requires a lot of research.
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Appendix
Some definitions and theorems

in probability theory

Definition A.1 : A sequence of random variables {£,,n > 1} is said to be
uniformly continuous in probability , abbreviated u.c.i.p., if and only if

for every e > 0 there is a § > 0 for which
P{O% s — Ea] > a} <e foralln>1. (A1)

Definition A.2 : A sequence of random variables {&,,n > 1} is said to be

stochastically bounded if and only if for every ¢ > 0 there is a number
C' > 0 for which
P{l&| > Cl<e  foraln>1.

Note that, if &, converges in distribution, then {£,,n > 1} is stochastically
bounded.

Lemma A.1 : If{X,,n > 1} and {Y,,n > 1} are u.c.i.p., then so is {X, +
Y.,n > 1}, If in addition {X,,n > 1} and {Y,,n > 1} are stochastically
bounded, and f is any continuous function on R%, then {f(X,,Y,),n > 1} is

u.c.i.p. (see Woodroofe ,1982, page 10).
Lemma A.2 : If X, — C w.p.1, then {X,,n > 1} is w.c.i.p..
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Proof: Suppose that X, — C w.p.1, then X, — C — 0 w.p.l. By Lemma
A.13 sup,,,, | X, — C| — 0 in probability as n — oo. Therefore, for given

g > 0, there exist Ny, such that for all n > Ny

€ €
P{ X,—-C —} < —=.
sup | >31<3
Now
P{sup [ X, — Xl > 5} < P{sup | X — C| > E}
m>n m>n 2
—}—P{sup |C — X,| > E}
m>n 2
< £+£—6
2 2 7
Also note
{w :osup | Xogr — Xl > 5} - {w csup | X, — X, | > 6},
0<kLnd m>n
and so

P{ sup | Xppx — Xyo| > 6} < P{sup X, — X,.| > 6} < €.
0<k<its i

Therefore, if n > Ng, (A.1) is correct for all 6 > 0. If 1 < n < Ny, (A1) is
correct for all § < 1/Ng + 1 since the probability in (A.l) is zero. So, (A.1)
holds for 6 < 1/Ng+1 and n > 1.

Lemma A.3 : If Xi, Xy, -+ are t.i.d. with finite mean p and finite positive

variance o2, then

Sp — np
= > 1
o/n =t

is u.c.i.p. (see Woodroofe ,1982, page 11).

Su

Theorem A.1 : (Von Bahr’s Theorem) Let Xy, Xy, - - - be i.i.d. random vari-
ables with finite mean p, finite positive 0%, and finite a'* absolute moment
E|Xi]* < oo, then

I'(1/2 4+ «/2)
R
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where S; = (S, —nu)/o/n, and S, = Xy + Xo + -+ + X, (see Woodroofe
, 1982, page 12).

The following theorem follows directly from the submartingale inequality

(see Woodroofe ,1982, page 8).

Theorem A.2 : Let Xy, X5, be independent random variables for which
E(X;) =0 and E|X;|* < o0 fori > 1, where o« > 1. Then

1 a
Plmax|8il > v} < / S|P

axp<n [k |>y

forally>1 andn > 1.

Definition A.3 : A sequence of random variables {£,,n > 1} is said to be

slowly changing if and only if

%ma.x{[ﬁ]l’ |&2], -+, 1€} — 0 in probability as n — oo, (A.2)
and {&,,n > 1} is uniform continuous in probability.
Lemma A.4 : (A.2) holds if £,/n — 0 w.p.1 as n — oo.

Proof: Suppose that &,/n — 0 w.p.1 as n — oo, we want to show (A.2)
holds. Note that

j_lmax{;gll, 6l 1€al)
< %max{|§1|7 \Eal, -+, [Eipat |} + %max{lfjol, Ll

< %maxﬂfﬂv &2l (6o [} + rna‘.\’{KjL‘(‘:I7 i]'ff)—ill" . %_I}

for all 1 < jo < n, and (1/n)max{|&|,---,|€-1 |} — 0 in probability for
each fixed 75 as n — oo. By Lemma A.13, £,/n — 0 w.p.1 implies that
max,s; |€n]/n — 0 in probability as j — oo, and so for given e > 0, there
exist jo, such that

g &
P 1€, > -t < =,
{nmzf;(}lé |/n 2} 5
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Consequently
P{max{‘é.il, —l§j°+l| ,@} > E} < ]3{rr1a><|§—nl > E} <

&
jo | jos1 n 2 5 n 2] T2

and

P max{lal el 6} > <}

| : €] Jorr] 1l
<pll ce 6 — P{ {—:E-’.]O ,-.-7——}
< {nmax{lél"|§2’7 |§jo 1|} > 2}+ max JO ]0_+_1 n >
<§+—;—:€ as n — oQ.

This completes the proof.

Definition A.4 : A sequence of random variables {X,, n > 1} is said to be
uniform integrable , abbreviated u.i., if for every ¢ > 0 there is a 6 > 0
such that

sup [ |X,| dP < ¢,
n>l JA

whenever P{A} < é and, in addition,

sup F| X, | < oc.
n>1

The following result is well known ( see Chow and Teicher ,1978, page 93).

Lemma A.5 : A sequence of random variables {X,, n > 1} is u.i. if and

only if
lim sup |X,.| dP = 0.

4T > ([ Xal>a)
The next lemma is often useful in establishing the u.i., and taken from

Woodroofe (1982).
Lemma A.6 : Let {X,,n > 1} be random variables and
G(z) =sup P{|X,| > z}, x> 0.
n>1

If r > 0 and 2" G(z) is integrable with respect to Lebesgue measure over

(Ag, 00) where Ag > 0 is a given constant, then {|X,|",n > 1} is w.i..
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The next result follows easily from the definition of u.i. and the Cauchy-

Schwarz inequality.

Lemma A.7 :
I {X,,n>1} isui if {X2,n>1} is ui.
I {X,.Y,,n>1}isui if {X2,n>1} and {Y,2,n > 1} are uw.i..

Let {£,,n > 1} denote random variables for which (X1,&1),-- -, (Xn, &)
are independent of { Xy, k > n} for every n > 1, where Xy, X5, -+ are i.i.d.
random variables with p = E(X7). Let § is the sample space, Ry = {¢, 2}
and R, = o{(Xk,&);k < n},n > 1. Suppose that there are &, measurable
events A,, n > 1, constants h,, n > 1, and R, measurable random variables

V., n > 1, such that

5P (U, A5) < o, (A3)
=1
En=h,+V, on A, n > 1, (A.4)
il>11p Oglkgarg |hosr — ho| = 0 as 6 — 0, (A.5)
012%1( _\V,H,k |,n > 1, are uniformly integrable, (A.6)
f: P{V, < —ne} < oo for some &, 0 < & < p, (A7)
n=1
V. converges in distribution to a random variable V', (A.8)
P{t<eN,} =o (]\lf_a) , as a — 00, Ve > 0, (A.9)

where N, = (a/p), a > 0 and ¢ is defined in (A.10).

Let F be the common distribution of i.i.d. random variables X; with
EX))=p 0<pu<ooand 5, = Xy + Xo+ -4+ X,,,n > 1, denotes the
partial sums. Next, let

and

t=inf{n>1:27, > a}. (A.10)
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Theorem A.3 : Suppose that F' has a finite positive variance o? and a finite
positive mean u, and also that conditions (A.8- A.9) hold and V,,,n > 1, are

slowly changing. If F' is nonarithmetic, then
1
E(t)=—(a+p—hn, — E(V))+0(1) asa— oo,
v

where

2 2
p-+o 1 _
= - —E(S.),
and S denotes the negative part of Sx. (See Woodroofe ,1982, page 48).

Lemma A.8 : Let £,/n — 0 w.p.l asn — oo, and t =inf{n > 1: 7, > a},
then

— w.p.1 as a — oo.

Q| =~

1
u
(See Woodroofe ,1982, page 42).

Lemma A.9 : Suppose that X{, X5, -+ are i.i.d. with —o0 < p < o0

0<o?<ooandt/a—c, 0<c<oo,in probability as a — oo, then

Sy —t
S# = at\/a_cﬂ 2>N(071) as a — oo.

(See Woodroofe ,1982, page 12).

Lemma A.10 : If {X,, n > 1} is a sequence of 1.i.d. random variables with

finite variance. Then X2 /n — 0 in probability as n — oo.

Proof: Note that

e X2
P{ LS 5}
. T

n=1
o0 ‘X'Q
S IIL
n=1 €
2

X
< E—L < o0,
€
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the last inequality follows from the well known inequality (see Chow and Te-

icher ,1978, page 89)

ST PUX| 20t} < BIXF <30 P{X| >t

n=1 n=0

Therefore P{X2/n >¢c} — 0 asn — oo and so X?/n L0 asn — .

Lemma A.11 : Suppose that F has a finite variance o2, and €,/+/n — 0 in

probability as n — oo. Then

t'—]\fa D
= = N(0,p7%0%) asa — oo,
VIV,

where N, = (a/p). (See Woodroofe ,1982, page 42).

*

Lemma A.12 : [f {X,,n > 1} is u.i. and X, converge in distribution to a
random variable X, then E|X| < oo and E(X,) — E(X). (See Woodroofe
, 1982, page 12).

Lemma A.13 : X, — X w.p.l iff sup;,, |X; — X]| . (See Chow and
Teicher ,1978, page 66).

Definition A.5 : A sequence {X,,n > 1} of {, random variables (i.e. E|X,|P <
o0) is said to converge in mean of order p (to a random variable X ) if

E|X, — X|P -0 as n — oo. This will be denoted by X, ‘,

Lemma A.14 : If X,,,n > 1, are £, random variables and X, 2, X, then

{|X.|P,n > 1} is u.i.. (See Chow and Teicher ,1978, page 98).

Definition A.6 :Type [ error rate is defined as the probability of at least one
Type I error.

Theorem A.4 (Slepian’s inequality). Let X = (X1, Xs, -+, Xy)' be distributed

according to N(0,X), where ¥ is a correlation matriz. Let R = (pi;), T = (7i;)
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be two posilive semidefinite correlation matrices. If p;; > w;; holds for all %, 7,

then
& ] k
Peep|[{Xi < ai}| = PE:T[ﬂ{Xi < ai}:‘,
-i=1 b =1
and
rk 7 k
Ps—p ﬂ{Xz > a;}| > Po=r {H{Xz > ai}:‘-
Lim1 . i=1

(See Tong ,1980, pages 10 and 11).
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