

AN INVESTIGATION INTO THE IMMUNE RESPONSE PRODUCED
BY DIETARY PROTEINS

By

JOCELYN ROSEMARY NOTLEY, B.Sc.

A thesis presented for the degree of

DOCTOR OF PHILOSOPHY

of the

UNIVERSITY OF SOUTHAMPTON

in the

FACULTY OF SCIENCE

DEPARTMENT OF NUTRITION

NOVEMBER 1984

UNIVERSITY OF SOUTHAMPTON

ABSTRACT

FACULTY OF SCIENCE
DEPARTMENT OF NUTRITION

Doctor of Philosophy

AN INVESTIGATION INTO THE IMMUNE RESPONSE PRODUCED BY
DIETARY PROTEINS

In order to understand the mechanisms involved in adverse reactions to food proteins which are mediated by the immune system it is necessary to understand the normal immune response following the ingestion of dietary proteins. Thus, the effect of age, source and quantity of protein species of animal and maternal influences on this response have been examined.

Introduction of a novel dietary protein to the diet of mature rabbits resulted in a greater immune response compared to the weanling, indicating absorption of antigenic protein in sufficient quantities to stimulate the production of circulating antibodies is not only a function of the immature intestine.

Production of serum specific antibodies is influenced by the duration of antigenic exposure, source and quantity of ingested protein. The magnitude of the immune response appeared to be due to the quantity of antigenic protein reaching the circulation.

Specific systemic hyporesponsiveness was observed in rabbits following maternal exposure to the dietary protein. This was also influenced by the quantity of ingested protein and duration of antigenic exposure. In contrast, this treatment did not produce systemic tolerance in the mouse, instead the offspring demonstrated high levels of specific serum antibodies.

The mouse differs from the rabbit and human by receiving the majority of passive immunity post-natally. Thus, the systemic immune response observed in the weanling mouse is influenced by maternal antibodies.

Acute ingestion of cows milk and goats milk by human volunteers did not result in increased levels of specific circulating antigen or Clq binding immune complexes in the majority of volunteers. This suggests that the intestine provides an efficient barrier against the absorption of large quantities of antigenic protein in most adults.

A certain amount of evidence suggests that immune mechanisms play a role in the pathogenesis of atherosclerosis; however, the immune responses in rabbits following the ingestion of a milk based diet did not influence the development of atherosclerosis.

TO MY PARENTS

WITH LOVE

ACKNOWLEDGEMENTS

I would like to express my thanks to a number of people who have helped in the research and in the production of this thesis.

Dr. T. G. Taylor for the excellent research facilities of the Nutrition Department and to the Agricultural Research Council for providing the finances for the project.

Dr. Mike Gibney, my Supervisor, for his guidance and encouragement, and to him and Jo for their hospitality and friendship.

Dr. Patrick Gallagher for his help and advice with the pathological aspects of the project, and to him and Jane Morgan for their assistance with the human project. Thanks also to Dr. D. B. Jones for his help and advice on the Clq binding assay.

Colin Bunce and all the Staff of the Animal House for providing excellent facilities for the breeding and maintenance of laboratory animals.

I would like to take this opportunity to thank Dr. David York for his assistance, and all my colleagues in the Nutrition Department, especially Jan and everyone in Laboratory 501, for their friendship and support at all times.

Very special thanks to Jas for his help in the compiling of this thesis and for his support and encouragement during the last three years.

Finally, many thanks to Mary Campbell for her excellent typing of this thesis.

ABBREVIATIONS

B-Cell	Bone marrow derived lymphocyte
T-Cell	Thymus derived lymphocyte
IgG	Immunoglobulin G
IgA	Immunoglobulin A
IgM	Immunoglobulin M
DTH	Delayed-type hypersensitivity
PFC	Plaque forming cell
GALT	Gut associated lymphoid tissue
EDTA	Ethylene diamine tetra acetic acid
ELISA	Enzyme-linked-immunosorbant assay
AHG	Aggregated human gamma globulins
ARG	Aggregated rabbit gamma globulins
BSA	Bovine serum albumin
Tween 20	Polyoxyethylene-sorbitan monolaurate
iv	Intravenous injection
im	Intra muscular injections
PEG	Polyethylene glycol
OD	Optical Density
NZW	New Zealand White (Rabbit)
PBS	Phosphate buffered saline
VBS	Veronal buffered saline
CHD	Coronary heart disease
MCi	Millicurie
MJ	Megajoule
Mmol	Millimole
ng	Nanogram $1 \times 10^{-9}g$
μg	Microgram $1 \times 10^{-6}g$
mg	Milligram $1 \times 10^{-3}g$
g	gram
kg	Kilogram 1×10^3g
μl	Microlitre $1 \times 10^{-6}l$
ml	Millilitre $1 \times 10^{-3}l$
l	Litre
DSM	Dried skimmed milk

CONTENTS

	<u>Page No</u>
ABSTRACT	
ACKNOWLEDGEMENTS	
LIST OF FIGURES	
LIST OF TABLES	
CHAPTER 1 GENERAL INTRODUCTION	1
1.1 Antigen handling by the gut	1
1.1.1 Physical factors preventing macro-molecular absorbtion	2
1.1.2 Immunological factors preventing macromolecular absorbtion	2
1.1.2.i Peyers Patches	3
1.1.2.ii Immunoglobulin A	4
1.2 Antigen absorbtion by the gut	5
1.2.1 Mechanisms of antigen absorbtion	5
1.2.2 Pathological absorbtion of antigen	6
1.3 Transmission of maternal antibodies	7
1.3.1 The mechanism of selective transmission of maternal antibodies	11
1.3.2 Gut closure	15
1.4 Infant feeding	16
1.5 Immune tolerance to ingested antigens	18
1.6 The immunological theory of atherosclerosis	21
1.7 Aim of the research	25
CHAPTER 2 MATERIALS AND METHODS	27
2.1 An enzyme-linked immunosorbant assay (ELISA) for the detection of antigen specific serum antibodies	27
2.1.1 Method (i)	27
2.1.2 Method (ii)	28
2.2 Quantification of serum antibodies	29
2.2.1 Purification of specific antibodies	29
2.2.1.i Raising serum antibodies in rabbits	29
2.2.1.ii Isolation and purification of specific IgG by immunoaffinity chromatography	31

2.2.2	Introduction of a reference scale	32
2.3	An enzyme linked immunosorbant assay (ELISA) for the detection of serum antigen	33
2.3.1	Purification of serum IgG for the antigen assay	35
2.3.2	Conjugation of anti-antigen IgG and horse radish peroxidase	35
2.3.2.i	A periodate method of conjugation	35
2.4	Clq binding test for the detection of immune complexes in serum	36
2.4.1	Isolation and purification of Clq	36
2.4.2	Radioiodination of Clq	37
2.4.3	Clq binding assay	38
2.4.4	Preparation of human or rabbit IgG aggregates	40
2.5	Automated procedure for cholesterol and triglyceride determination	40
2.6	Animals	40
2.6.1	Collection of blood samples	41
2.7	Experimental diets	41
2.8	Statistical methods	42

CHAPTER 3 THE IMMUNOLOGICAL RESPONSE TO DIETARY ANTIGEN - THE EFFECT OF AGE AT ANTIGEN INTRODUCTION

Introduction	56
Experiment 3a	57
Experimental design	57
Results	59
Discussion	64
Experiment 3b	67
Introduction	67
Experimental design	68
Results	69
Discussion	78

CHAPTER 4	THE EFFECT OF PROTEIN LEVEL AND PROTEIN SOURCE ON THE IMMUNOLOGICAL RESPONSE TO DIETARY ANTIGEN	
	Introduction	80
	Experiment 4a	81
	Experimental design	81
	Results	85
	Discussion	93
	Experiment 4b	96
	Introduction	96
	Experimental design	96
	Results	100
	Discussion	105
CHAPTER 5	THE IMMUNOLOGICAL RESPONSE TO DIETARY ANTIGEN IN THE MOUSE AND THE EFFECT OF AGE AT ANTIGEN INTRODUCTION	
	Introduction	107
	Experiment 5a	109
	Experimental design	109
	Results	109
	Experiment 5b	113
	Experimental design	113
	Results	113
	Discussion of Experiments 5a and 5b	115
	Experiment 5c	117
	Experimental design	117
	Results	119
	Discussion	121
CHAPTER 6	THE IMMUNOLOGICAL RESPONSE PRODUCED BY THE ACUTE INGESTION OF COWS MILK (A COMMON DIETARY PROTEIN) AND GOATS MILK (A NOVEL DIETARY PROTEIN) IN MAN	
	Introduction	123
	Materials and methods	127
	Results	133
	Discussion	142

CHAPTER 7	THE IMMUNE RESPONSE TO COWS MILK PROTEIN AND THE DEVELOPMENT OF ATHEROSCLEROSIS IN RABBITS	
	Introduction	145
	Experimental design	147
	Analytic methods	147
	Results	156
	Discussion	180
CHAPTER 8	FINAL DISCUSSION	
	Final discussion	184
APPENDIX I		188
APPENDIX II		190
REFERENCES		192

LIST OF FIGURES

Figure 1.1 Mechanism of γ globulin transmission by the cell

Figure 2.1 An enzyme-linked immunosorbant assay (ELISA)

Figure 2.2 Double antibody sandwich ELISA for measuring antigen

Figure 2.3 Summary of reactions involved in the Clq binding radioimmune assay

Figure 3.1 Standard curve - Anti-DSM IgG

Figure 3.2 Serum antimilk protein IgG

Figure 3.3 Mean body weights of rabbits (Group 1)

Figure 3.4 Mean body weights of rabbits (Group 2)

Figure 3.5 Mean body weights of rabbits (Group 3)

Figure 4.1 Experimental design

Figure 4.2 Standard curve - Anti casein IgG

Figure 4.3 Standard curve - Anti ovalbumin IgG

Figure 4.4 Effect of increasing the quantity of casein on serum anti casein IgG

Figure 4.5 Effect of increasing the quantity of ovalbumin on serum anti ovalbumin IgG

Figure 4.6 Comparison of the effect of dietary protein source and level on serum specific antibodies

Figure 4.7 Standard curve relating absorbance to the concentration of casein

Figure 4.8 Standard curve relating absorbance to the concentration of ovalbumin

Figure 5.1 Experimental design for experiment 5a

Figure 5.2 Experimental Design for experiment 5c

Figure 6.1 Standard curve relating absorbance to the concentration of cows milk antigen

Figure 6.2 Standard curve relating absorbance to the concentration of goats milk antigen

Figure 6.3 Standard curve relating absorbance to the concentration of goats milk IgG

Figure 6.4 Serum immune complexes after drinking cows milk

Figure 6.5 Serum immune complexes after drinking goats milk

Figure 7.1 The divisions of the aorta used for scoring atherosclerosis

Figure 7.2 Standard curve - Anti milk protein IgG

Figure 7.3 Standard curve - Anti casein IgG

Figure 7.4 Standard curve - Anti β lactoglobulin IgG

Figure 7.5 Standard curve - Anti α lactalbumin IgG

Figure 7.6 Standard curve - Anti BSA IgG

Figure 7.7 Standard curve relating absorbance to concentration of bovine milk protein

Figure 7.8 Mean body weights

Figure 7.9 Serum anti cows milk protein IgG

Figure 7.10 Serum anti casein IgG

Figure 7.11 Serum anti β lactoglobulin IgG

Figure 7.12 Serum anti α lactalbumin IgG

Figure 7.13 Mean serum anti BSA IgG

Figure 7.14 Individual serum immune complex results

Figure 7.15 Serum concentrations of antigenic milk protein

LIST OF TABLES

1.1 Time of transmission of IgG from mother to young
1.2 Route of transmission of IgG from mother to young
1.3 Site of selectivity of transmission of maternal antibodies from mother to young

2.1 Rabbit Stock Diet (RAG)
2.1.1 RAG vitamins
2.1.2 RAG minerals
2.2 Rabbit stock diet + 10% dried skimmed milk
2.3 Rabbit stock diet + casein
2.4 Rabbit stock diet + ovalbumin
2.5 Semi-purified cows milk rabbit diet
2.5.1 Minerals
2.5.2 Vitamins
2.6 Laboratory mouse stock diet
2.7 Mouse diet 1
2.7.1 Minerals
2.7.2 Vitamins
2.8 Mouse diet 2

3.1 Mean body weights of rabbits
3.2 Circulating antimilk protein antibodies
3.3 Circulating antibodies 3 and 6 weeks post introduction of DSM
3.4 Quantity of milk protein ingested by the rabbits
3.5 Effect of maternal exposure on circulating anti DSM IgG (Group 1)
3.6 Effect of maternal exposure on circulating anti DSM IgG (Group 2)
3.7 Effect of maternal exposure on circulating anti DSM IgG (Group 3)
3.8 Effect of maternal exposure on circulating antibodies 3 and 6 weeks post introduction of cows milk.

- 4.1 Effect of time and dose on serum specific antibodies to casein and ovalbumin
- 4.2 Mean body weights of rabbits
- 4.3 Serum anti casein IgG antibodies: effect of time and dose
- 4.4 Serum anti ovalbumin IgG antibodies: effect of time and dose
- 4.5 Composition of egg white
- 4.6 Anti ovalbumin IgG antibodies
- 4.7 Anti casein IgG antibodies
- 4.8 Mean concentration of serum antigenic protein following the ingestion of ovalbumin or casein
- 4.9 Individual values for serum circulating antigen
- 5.1 Mean serum anti ovalbumin IgG in mice
- 5.2 Mean serum anti ovalbumin IgG in weanling mice from mothers exposed to ovalbumin
- 5.3 Mean serum anti ovalbumin IgG in mice introduced to ovalbumin at different ages
- 6.1 Average composition of protein in human colostrum and mature milk
- 6.2 Mean concentrations of serum IgG antibodies to goats milk and cows milk protein
- 6.3 Mean circulating immune complexes
- 6.4 Measurement of specific serum antigen after drinking cows milk
- 6.5 Measurement of specific serum antigen after drinking goats milk
- 6.6 Levels of goat IgG in the serum after drinking goats milk
- 7.1 Mean body weights of rabbits
- 7.2 Mean food intakes of the rabbits
- 7.3 Mean serum anticows milk protein IgG
- 7.4 Mean serum anti casein IgG
- 7.5 Mean serum anti β lactoglobulin IgG
- 7.6 Mean serum anti α lactalbumin IgG
- 7.7 Mean serum anti BSA IgG
- 7.8 Mean serum immune complex results
- 7.9 Serum antigenic cows milk protein

- 7.10 Individual atherosclerotic scores
- 7.11 Mean serum cholesterol levels
- 7.12 Mean triglyceride levels
- 7.13 Approximate quantity of specific milk protein
ingested by each rabbit daily

CHAPTER 1

GENERAL INTRODUCTION

1. General Introduction

The immune system is a complex network of interacting cells and antibodies functioning to maintain homeostasis by protecting the body from invading foreign material.

When the immune system is stimulated to produce a response which is harmful to the tissues or disrupts the physiology of the host the term 'allergy' or 'hypersensitivity' may be used.

Adverse reactions to food are numerous and can only be described as food allergy when an immunological reaction occurs after the ingestion of specific foods (Bleumink, 1979).

Allergy to food proteins can occur at any age but it is more common in the infant. The major food causing adverse reactions in infants is cows milk and this is often the first sign of an allergic disposition which later in life may lead to eczema, asthma or other atopic diseases.

The type of immune response an individual produces to a particular dietary protein will depend on the quantity of antigenic protein entering the circulation, previous encounters with the protein, the age of first exposure to the protein and the presence or absence of maternal antibodies.

The following sections expand on these factors by examining the handling of dietary antigen by the intestine, acquisition of passive immunity and infant feeding and finally the immune mechanisms involved in tolerance to ingested antigens.

1.1 Antigen Handling by the Gut

The major function of the intestine is to digest food and absorb nutrients, the digestive activity in the lumen is largely provided by the enzymes secreted by the pancreas. This results in the mucosal cells of the intestine being continually bathed in luminal fluid which contains a mixture of undigested and partially digested food, microbial antigens and possible infective organisms.

A second function of the gut is to protect the body from the invasion of antigenic macromolecules and pathogenic organisms. The largest potentially antigenic load to which the body is continually subjected involves the food ingested in everyday life. The gastrointestinal tract exhibits several defense mechanisms to prevent the

entry of possible antigens into the circulation.

The mucus covered epithelial surface, together with the lamina propria, provide not only a physical barrier but also an immunological barrier against antigenic material.

1.1.1 Physical Factors Preventing Macromolecular Absorption

The evidence that the indigenous intestinal flora is able to protect the gut mucosa from antigen invasion has largely come from using germ-free animals. In the germ-free state the intestinal wall is considerably thinner, less cellular (Gordan, 1960; Gordan & Pesti, 1971) and the normal development of the intestinal epithelia is prevented (Abrams, 1977; Abrams et al., 1963; Khoury et al., 1969). The cellularity and volume of the lamina propria is also diminished (Hereghen, 1965).

As well as encouraging the normal development of the gut morphology, the resident intestinal flora has been shown to limit the growth of pathological bacteria within the intestinal lumen. This may be due to competition between the indigenous and pathological bacteria, either for substrates or by alteration in the microenvironment for optimal growth (Freter, 1962). This limitation on the growth of pathogenic bacteria leads to a reduction in the release of antigenic substances within the intestinal lumen. This subject has been reviewed by Simon & Gorbach (1981).

The epithelial cells of the gut wall are also protected from the luminal contents by a mucus coat lining which has been proposed as an antiviral and antibacterial substrate. The glycoproteins and glycolipids known as mucins present in the mucus may bind directly with the organisms or its toxin and thereby inactivate it (Forstner, 1978; Stomeck & Harrold, 1974). Several studies suggest that the digestive effect of gastric acid and pepsin may prevent the migration of micro-organisms, toxins and other ingested antigenic material into the digestive tract, which is possibly assisted by peristalsis (Draser et al., 1969; McClelland, 1979).

1.1.2 Immunological Factors Preventing Macromolecular Absorption

The lymphoid tissue of the intestine is termed the gut associated lymphoid tissue (G.A.L.T.). The GALT is comprised of several lymphoid populations which can be identified on the basis of anatomical and

morphological considerations. These populations include collections of organized lymphoid nodules called Peyer's Patches (P.P.), scattered lymphoid follicles and small aggregates of follicles which line the intestine, also the loose connective tissue of the lamina propria is populated with lymphocytes and plasma cells. This lymphoid tissue enables the intestine to mount an immunological response to antigenic challenge (Kagnoff, 1981).

1.1.2.i Peyer's Patches

Peyer's Patches are the major lymphoid population of the GALT involved in the initiation and expression of mucosal immunity. They are groups of subepithelial lymphoid follicles located throughout the small intestine. Light microscopic studies have revealed that regardless of the number of follicles present in a patch, each patch is only one cell thick, thus preserving the intimate relationship between the follicle and overlying epithelium (Faulk et al., 1970). Each patch contains three distinct areas - the dome, the follicle and the 'thymus dependent area', in addition to the villi of the conventional bowel mucosa (Wakesman, 1973). T. and B lymphocytes appear to be compartmentalised in the patch; B lymphocytes tend to be located in the dome region of the patch, whereas thymic cells are located in the thymus dependent area (Wakesman, 1973). Values of between eleven and forty percent of the lymphocyte population of the adult Peyer's Patch have been found to be T-lymphocytes, whereas B lymphocytes make up forty to seventy percent of the population (McWilliams et al., 1974; Raff et al., 1971).

Craig and Cebra (1971) identified an enriched source of intestinal antibody producing cell precursors as a subset of B lymphocytes which migrate and proliferate in the lamina propria (Craig & Cebra, 1975). The migration of the lymphocytes to the lamina propria probably involves the cooperation of T cells and macrophages (Elson et al., 1970; Kawanishi et al., 1982; Kawanishi et al., 1983).

Gut antigens appear to be sampled by the Peyer's Patch, which leads to an increase in the appearance of specific antibody producing cells in the lamina propria (Cebra et al., 1977; Husbands & Gowan, 1978; Keren et al., 1978). The sampling of the gut antigens may be a function of the specialized cells covering the follicles, described by Owen and Jones (1974) and termed 'M cells'.

1.1.2.ii Immunoglobulin A

Immunoglobulin A is the principal immunoglobulin in secretions of the gastrointestinal tract, as well as other external secretions such as tears, saliva, and secretions of the respiratory tract (Tomasi & Grey, 1972).

The antibody response of the intestinal mucosa is therefore mediated largely by IgA which is produced locally in the lamina propria by plasma cells derived from the B lymphocytes located in the Peyers Patch (Lamm, 1976; Pierce & Gowans, 1975).

The majority of IgA in external secretions differs from IgA in the serum and it is referred to as secretory IgA (sIgA) (Tomasi et al., 1965).

The molecule is a dimer consisting of two monomer subunits (Cebra & Robbins, 1966), plus two extra polypeptide chains, one is a glycoprotein synthesised and secreted by glandular epithelial cells and is called the secretory component, the second polypeptide chain is termed the J-chain which joins together the two IgA monomer subunits (Bienstock, 1981; Tomasi & Grey, 1972). Polymeric IgA accounts for over 90% of jejunal IgA which is mostly bound to a secretory component, although the secretory component is also present in the free form (Jonard et al., 1984).

The presence of the secretory component increases the resistance of dimeric sIgA against proteolysis and also possibly is important in the transport of sIgA across the epithelial cell (Steward, 1971; Lindh, 1975; Valnes et al., 1984).

Although the exact function of sIgA is not known, evidence suggests that it is the major class of immunoglobulin involved in protecting the gut from the invasion of antigenic substances. sIgA has been shown to prevent antigen absorption in the gut and respiratory tract by the antigen binding properties of the immunoglobulin (Andre et al., 1974; Walker et al., 1974; Stokes et al., 1975). Williams and Gibbons (1972) found that sIgA can prevent bacteria from adhering to the epithelial cell surface, thus preventing bacterial colonization, and Walker et al., (1972A and 1975C) have shown that sIgA can inhibit the adherence of other antigenic substances onto intestinal cellular surfaces.

Because of these mechanical and immunological defence mechanisms of the gastrointestinal tract, it has been assumed that the intestine is

impermeable to antigenic material. However, there is now substantial evidence to show that antigenically active molecules can penetrate the epithelium, not in sufficient quantities to be nutritionally important, but in quantities of immunological importance.

1.2 Antigen Absorption by the Gut

In 1911, Wells observed that sufficient quantities of egg protein could be absorbed by the guinea pig to cause anaphylaxis, which was confirmed in subsequent studies (Alexander et al., 1936; Bernstein & Ovary, 1968). Danforth and Moore (1959) also noted that insulin injected into isolated loops of adult small intestine produced a hypoglycaemic response.

In man, the detection of circulating antibodies and immune complexes to food proteins has provided evidence that macromolecular protein crosses the intestine and enters the circulation (Peterson & Good, 1965; Paganelli et al., 1979).

To substantiate these physiological observations above, the electron dense protein, horse radish peroxidase (HRP) has been used in electron-micrographic studies to monitor the passage of intact HRP across the small intestine into the portal venous and mesenteric lymph flows (Cornell et al., 1971; Warshaw et al., 1971).

1.2.1 Mechanisms of Antigen Absorption

Isolated gut sac preparations were used to investigate the process by which antigen is absorbed across the intestine. Studies using HRP revealed that the molecule is transported across the epithelial cell by a mechanism resembling the endocytosis reported in neonatal animals and similarly to other endocytotic processes, energy is required (Walker et al., 1972B).

Williams and Hemmings (1978) showed the transport of ¹²⁵I labelled bovine IgG and ferritin across the intestine of 100 day old rats. They suggest that the macromolecules enter the cell by a non-selective diffusion process, possibly with the assistance of the glycocalyx. Another possibility is the involvement of the M cell which overlies the GALT, this route of antigen absorption would result in the access of antigens to the lymphocytes in the GALT (Owen, 1977).

The quantity of macromolecular protein that is absorbed from the gastrointestinal tract has not been confirmed. Hemmings & Williams (1978)

have reported that up to 40% of a dose of bovine IgG and α gliadin given to rats is absorbed in the form of large molecular breakdown products. However, one, explanation for this high value is that radiolabelled fragments of macromolecules have been observed to bind to host proteins such as albumin. The labelled amino acids and small peptides therefore increase in apparent molecular size and become TCA precipitable (Udall, Bloch et al., 1981).

A more realistic value is perhaps that up to 2% of food protein is absorbed in this way (Warshaw et al., 1974). Absorbtion into the portal blood and lymphatics appears to be independent. In the rat, 0.76% has been found to enter the lymphatics while 1.11% of the total absorbed enters the portal blood stream (Warshaw & Walker, 1974).

Despite this continuous antigenic challenge, most adults have only low levels of circulating antibodies to common dietary proteins and show no ill effects from a limited absorbtion of macromolecules. Therefore, it seems likely in cases of allergy or hypersensitivity that a defect occurs allowing excessive quantities of antigenic material to enter the circulation and result in clinical disease.

1.2.2 Pathological Absorbtion of Antigen

Factors that may cause excessive absorbtion of macromolecules include:

- i) Decreased intraluminal digestion - possibly due to a decrease in gastric acid production or pancreatic insufficiency (Walker et al., 1975A).
- ii) Disruption of the mucosal barrier - this may occur in certain situations of 'stress' and disease. Crohns enterocolitis, ulcerative colitis, coeliac disease and diarrhoea in infants have all been associated with an increase in circulating serum antibodies (Taylor & Truelove, 1961; Gruskay & Cooke, 1955).

Rhodes and Karnovsky (1971) have demonstrated a loss of barrier function after surgery and Worthington and Boatman (1974) and Worthington, Boatman and Kenny (1974) have shown a deterioration of the apical cell junction in protein-calorie malnutrition allowing an increase in macromolecules crossing the epithelial cell lining of

the gut. Malnutrition has also been found to cause immaturity of the epithelial cell (*Chandra, 1975*). Other conditions which may damage the mucosal epithelial barrier include infection, drug therapy and radiation treatment.

- iii) Lysosomal dysfunction - This would result in a decrease in intracellular proteolysis. *Worthington and Styrtuck (1976)* have suggested a lysosomal deficiency in protein calorie malnutrition and the immature cells of the neonate may also be deficient in lysosomal activity (*Walker & Isselbacher, 1974*).
- iv) Local Antibody Deficiency (Refer to Section 1.1.2.ii)
Local immunoglobulin is important in the handling of antigen in the gut and selective IgA deficiency has been found to result in a high incidence of circulating anti-food antibodies (*Buckley & Dees, 1969; Cunningham-Rundles et al., 1978*).
- v) The neonatal gut - The immature gut of the neonate is more permeable to macromolecules than the adult or older child (*Rothberg, 1969; Eastman et al., 1978*). This may be due to deficiency of sIgA (*Taylor et al., 1973*), immature epithelial cells, or lack of lysosomal activity. A recent study has demonstrated that there is decreased intestinal proteolytic activity in newborn rabbits compared to weaned animals (*Udall et al., 1984*). Thus, during this vulnerable period the neonate receives protection from the invasion of foreign protein by the presence of maternal antibodies.

1.3 Transmission of Maternal Antibodies

From the moment of birth the young mammal must be equipped with a highly effective immunological defence system to protect itself against a wide range of pathogenic agents in the environment. However, in mammals the placenta and foetal membranes in conjunction with maternal immune responses present an effective barrier in protecting the foetus from infective organisms, therefore few of the antigenic stimuli experienced by the mother are likely to be experienced by the foetus. Thus, prior to birth the necessary education of the lymphoid system

needed to combat infection has not occurred and only commences after birth when the newborn mammal is exposed to the majority of antigens for the first time. During the neonatal period, the presence of protective maternal antibodies are vital while the immune system of the newborn is maturing.

The time at which the animal receives maternal antibodies has been well reviewed by *Brambell* (1970) and is summarized in Table 1.1. Transmission of passive immunity may take place either before birth, via the yolk sac or placenta, and/or after birth from the maternal milk or colostrum (Table 1.2). The calf, sheep, goat, horse and pig do not receive any maternal antibodies in utero and therefore rely entirely on the antibody rich colostrum received immediately after birth. The maternal antibodies in the colostrum are rapidly transmitted to the circulation by a non-selective uptake process (*Leary & Lecce*, 1979).

In contrast, the human infant and the young of monkeys, rabbits and guinea pigs are born well equipped with passive immunity. At birth, the maternal antibodies in the young of these species are at a concentration equal to or even greater than the concentration in the maternal circulation. The major colostrum immunoglobulin of these species is secretory IgA (*Beer et al.*, 1974), which cannot readily be transported across the intestinal barrier. It appears to be capable of binding to enterocytes but does not become internalised or transported (*Nagura et al.*, 1978).

The rat and mouse form an intermediate group, passive immunity being received both before and after birth in the young of these species. However, although a significant amount of maternal antibodies are transmitted across the foetal membranes in utero, the majority of maternal antibodies are thought to be received after birth from the colostrum and milk. Unlike the ruminant, horse and pig, postnatal transmission of maternal antibodies is not limited to a few hours after birth, but continues for the greater part of the lactational period (*Brambell & Halliday*, 1956).

Selective transmission of immunoglobulins occurs in the placenta of the primate (*Halliday & Kekwick* (1960) & *Wild*, 1981) and at the intestinal wall in the rat and mouse (*Bangham et al.*, 1956; *Quinliven*, 1967).

TABLE 1.1
Time of Transmission of IgG from Mother
to Foetal and Newborn Mammals

<u>Species</u>	<u>Prenatal</u>	<u>Postnatal</u>	<u>Duration of Postnatal Transfer</u>
Ox, goat sheep	0	+++	24 hours
Pig	0	+++	24 - 36 hours
Horse	0	+++	24 - 36 hours
Wallaby	0	+++	180 days
Dog, Cat	+	++	1 - 2 days
Hedgehog	+	++	40 days
Mouse	+	++	17 days
Rat	+	++	21 days
Guinea Pig	+++	0	
Rabbit	+++	0	
Grey Squirrel	+++	Unknown	
Man, Rhesus Monkey	+++	0	

(Adapted from Billington & Wild, 1979)

0 - No transmission of maternal antibodies

+- Represents approximately 1/3 of total amount
of passive immunity acquired

TABLE 1.2

Route of Transmission of IgG from Mother
to Foetal or Newborn Mammals

<u>Species</u>	<u>Prenatal</u>	<u>Postnatal</u>	<u>Route</u>
Ox, goat sheep	None		Gut
Pig	None		Gut
Horse	None		Gut
Dog, Cat	None		Gut
Hedgehog	None		Gut
Mouse	Yolk sac		Gut
Rat	Yolk sac		Gut
Guinea Pig	Yolk sac		None
Rabbit	Yolk sac		None
Man, Rhesus Monkey	Chorio-allantoic Placenta		None

(Adapted from Brambell (1970)

Billington & Wild (1979))

1.3.1 The Mechanism of Selective Transmission of Maternal Antibodies

Transmission of maternal antibodies is selective before birth in the rabbit, guinea pig, monkey and man and after birth in the rat and mouse (Table 1.3).

Selective transmission in the ungulate is restricted to the secretory follicles of the mammary gland. Antibodies pass from the maternal plasma to the lacteal secretions causing a decline in the maternal serum gamma globulins at the time of colostrum formation (Dixon *et al.*, 1969). The mammary gland selectively concentrates IgG1 in the cow (Morgan *et al.*, 1981) and IgG2 in the sow. Thus 80% of total colostrum immunoglobulin is IgG in these species (Porter, 1979). Therefore, although immunoglobulins of the IgG, IgM and IgA class are absorbed non-selectively (with the exception of 11s IgA in the pig - see Porter, 1976) by the piglet and calf, the majority of antibody received from the colostrum will be immunoglobulin G (Billington & Wild, 1979).

Primates are the only class of mammal which receives maternal antibodies exclusively by placental transmission, which is selective for immunoglobulin G. It is believed that the majority of immunoglobulin is transmitted during the second half of the third trimester (Valquist *et al.*, 1950; Gitlin *et al.*, 1964; Balfour & Jones 1976). The placenta of the rabbit and human are of a similar type, therefore it was believed that immunity was transmitted by the same route in both species. However it is now well established that in rabbits maternal antibodies pass by way of the uterine lumen and foetal yolk sac (Brambell *et al.*, 1949). Only antibodies of the IgG class are transported intact across the lumen chorio-allantoic placenta and suckling rat and mouse gut to any appreciable extent and largely to the exclusion of other serum proteins (Brambell, 1970). The situation in the rabbit is more complex, since there is evidence that IgM may also be transported but probably not normally by the same route as IgG (Shek & Dubiski, 1975).

Both the yolk sac and neonatal intestine have been used to study the process of selective uptake of maternal antibodies. Electron-microscopy has shown striking similarities between the enterocyte morphology of the human placenta, neonatal rat intestine and rabbit yolk sac which all manifest the structure of an active pinocytotic cell (Clark, 1959; Wissig & Graney, 1968).

In 1966 Brambell proposed the receptor hypothesis to account for

TABLE 1.3

Site of Selectivity of Transmission of Maternal
Antibodies from Mother to Young (Brambell, 1970)

<u>Species</u>	<u>Route</u>	<u>Site of Selectivity</u>
Horse, Cow Sheep, Pig	Colostral-Intestinal	Mammary Gland
Rat, Mouse	Yolk sac (minor route) & colostral-intestinal	Intestine
Rabbit	Yolk sac	Yolk sac
Man, Monkey	Placental	Placenta

the selective transmission of antibodies, which is represented in a digaramatic form in Figure 1.1. The hypothesis suggests that antibodies enter the enterocyte by non-selective pinocytosis. Inside the pinocytotic vacuole, the immunoglobulin molecule is able to bind to specific receptors which protect them from lysosomal degradation. The receptors favour homologous IgG which binds to the receptor via the Fc portion of the molecule.

Subsequent studies suggested that antibodies were selected from other proteins by Fc receptors at the base of the apical cell surface indicating that selection is extra-cellular rather than intracellular (Rodewald, 1973).

The selection of antibody of the IgG class is believed to occur in the proximal part of the intestine. Rat γ globulin was found to bind to the isolated microvillus membrane from rat neonatal jejunum but not to neonatal ileum (Jones & Waldman, 1972). A number of other studies have since confirmed that IgG selectively binds to the proximal region of the small intestine (Borthistle et al., 1977; Morris, 1975; Morris & Morris, 1976).

The receptor hypothesis originally proposed by Brambell has since been modified to allow the observation made by Rodewald on the neonatal rat intestine and the similar observations made by Wild (1976) on the selective transmission of antibodies across the rabbit yolk sac. Both authors conclude that IgG destined for transport across the absorptive cell is first selectively taken up into a distinct class of endocytic vesicles termed 'coated vesicles' (Wild, 1980) via specific Fc receptors on the enterocytes of the suckling rodent gut, possibly located in the glycocalyx and on the rabbit yolk sac endoderm. Thus allowing segregation of IgG from other protein molecules to occur before entry into the cell. These coated vesicles were suggested to be protected from lysosomal degradation allowing their contents to be released intact by reverse pinocytosis. However, in the case of the rat intestine, there is now evidence to show that IgG is transported across the cell as an IgG-receptor complex. The continued binding of IgG to the vesicle membrane appears to be required for successful transfer as a certain amount of apparently non-selective protein uptake also occurs by endocytosis, but these proteins were not released at the lateral surface of the cell (Abrahamson & Rodewald, 1981).

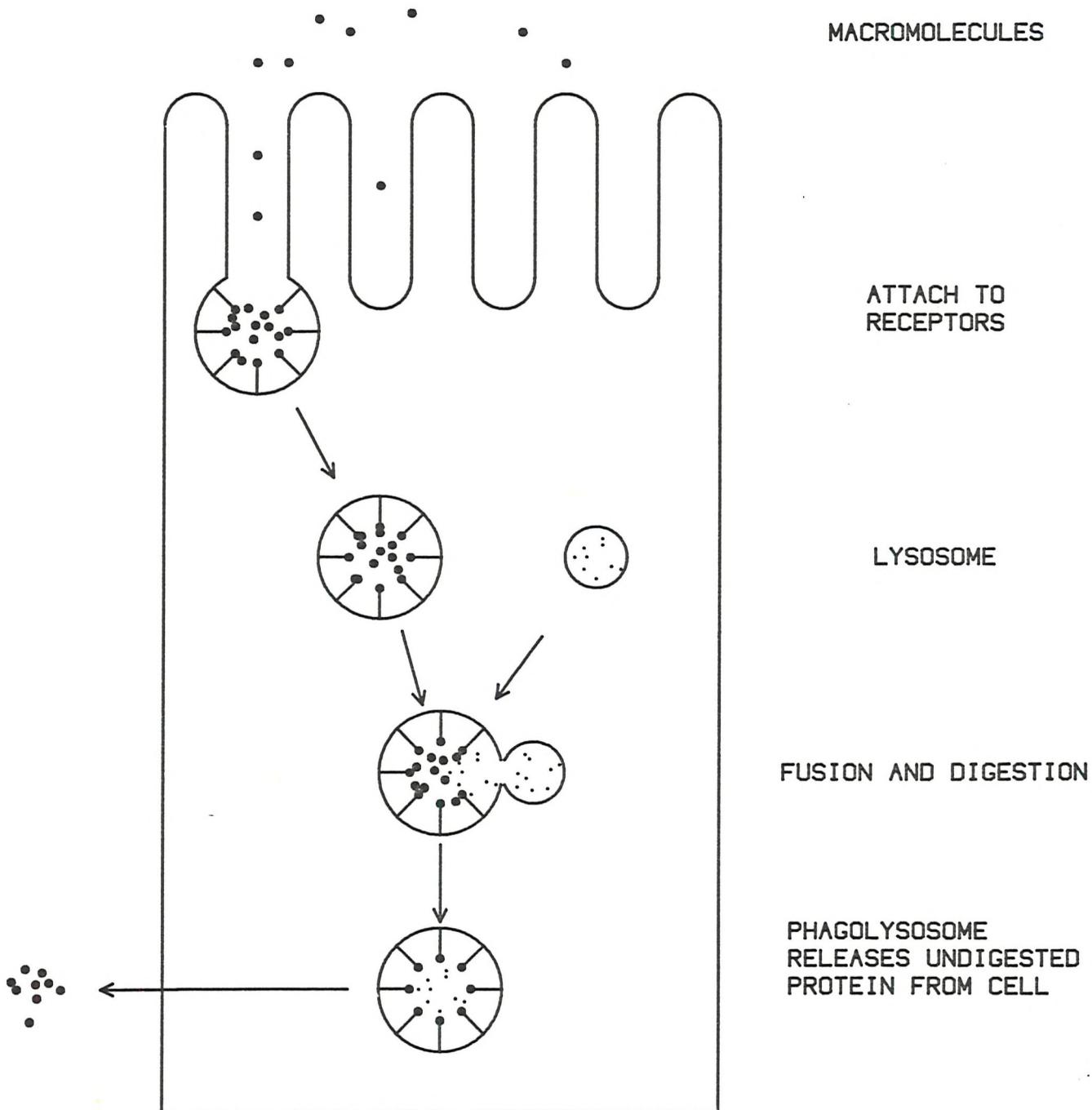


Figure 1.1 MECHANISM OF GLOBULIN TRANSMISSION BY THE CELL
(Brambell, 1966)

1.3.2 Gut Closure

The termination of postnatal absorbtion of maternal antibodies is referred to as 'gut closure'. This process occurs at approximately 24 to 36 hours after birth in the pig, calf, horse and sheep and may depend on some factor in the colostrum (Payne & Marsh 1962; Lecce & Morgan 1962; Lecce et al., 1964). Most of the passive immunity is acquired in the first few hours after birth. In the pig, maximum absorbtion occurs 4 - 12 hours after birth which appears to be independent of intestinal proteolytic activity (Weström et al., 1984). The mechanism of gut closure may depend on a number of factors occurring in the neonatal ungulate soon after birth such as exhaustion of pinocytotic capability, cell replacement and maturation of proteolytic mechanisms (Porter 1979).

The process of gut closure appears to be via a different mechanism in the rat and mouse. The gut of the neonatal rat and mouse absorb antibodies for 21 days and 17 days respectively (Halliday, 1956). Before there is complete termination of selective antibody transmission there is a period of decreased absorbtion which occurs at 18 - 21 days in the rat and 14 - 17 days in the mouse. During this period of morphological maturation of the intestinal epithelial cells Fc receptors fail to become expressed on the intestinal enterocyte surface. This failure of Fc receptor expression can be precociously induced by the administration of large doses of deoxycorticosterone and cortisone acetate (Halliday, 1959; Wild, 1981) resulting in premature gut closure.

The intestine of the human infant is more permeable to macromolecules than the adult even though this is not the major route for the acquisition of maternal antibodies. The process of gut closure in man and rabbit appears to be more subtle involving structural and functional maturation of the intestine which decreases but does not completely abolish macromolecular absorbtion.

Studies on near-term foetal monkeys by Lev & Orlic (1973) and human foetuses by Moxey & Trier (1975) have shown excessive uptake of large molecules by intestinal epithelial cells and describe morphological features of the cells suggesting structural immaturity. Gut closure in the infant has been suggested to occur before birth; Roberton et al. (1982) found that macromolecular absorbtion in the premature neonate decreased with increased gestational age, particularly after 33 weeks

gestation. Other studies on rabbits have found a progressive decrease in antigen absorption from birth, particularly during the first week post-partum (Udall, Pang *et al.*, 1981). This evidence, together with the observation that young infants have higher circulating antibody titres than adults or older children (Gunther *et al.*, 1962; Rothberg & Farr, 1965; Korenblat *et al.*, 1968) indicates that the gut of the neonate is more permeable than that of the adult. This may be the result of a number of factors such as a deficiency in secretory antibodies (Soothill, 1976); an increase in affinity of antigen to the mucosal surface; enhanced pinocytosis or a decrease in inter-cellular or intracellular proteolysis of the immature gut (Walker 1975).

During this period of enhanced macromolecular absorption the immunological as well as the nutritional consequences of the infant's diet is important.

1.4 Infant Feeding

Human colostrum and milk contains a variety of factors to protect the newborn infant from infection - these include T and B lymphocytes, macrophages and other mononuclear cells (Hanson & Winberg, 1972). Breast milk also contains antibodies against micro-organisms and other foreign proteins. In contrast to the serum in which IgG is the type of immunoglobulin which predominates the major antibody in the milk is secretory IgA (McClelland, 1982).

A close correlation exists between intestinal antigenic stimulation and antibodies in the mammary secretion, this may be due to the selective transfer of lymphocytes from the gastrointestinal tract to the mammary gland via the lymphatics (Goldblum *et al.*, 1975). This close relationship observed between the lymphoid tissue of the human mammary gland is supported by the constant demonstration of sIgA in human milk against cows milk proteins (McClelland & McDonald, 1976).

The importance of sIgA in protecting the intestine from the invasion of antigenic macromolecules has been outlined in Section 1.1.2.ii. Thus the sIgA present in breast milk produced against a wide variety of micro-organisms and dietary proteins is likely to help protect the gut of the newborn infant from excessive absorption and therefore sensitization to environmental antigens. The importance of sIgA in breast milk may be demonstrated by the increased incidence of cows milk allergy (Busseret, 1978), asthma (Kaufman & Frick, 1981) and eczema (Mathew *et al.*, 1977) which has been observed in bottle compared to breast fed

infants.

IgA in breast milk may bind to the mucosa of the infants intestine which may involve the leukocytes present in the milk.

Leukocytes are composed primarily of lipid-laden neutrophils and macrophages which are phagocytotic (Johnson et al., 1980); they also contain large amounts of slgA which may be transported to the newborn infant (Pittard et al., 1977). A proposed hypothesis for breast milk leukocytes is that they attach themselves to the mucosa of the infant's digestive tract during the phagocytosis of colonizing micro-organisms. The release of slgA from the leukocyte seems to depend on certain membrane stimuli indicating that slgA would only be released after binding to mucosal epithelial cells (Weaver et al., 1984). Maternal leukocytes have been found to be capable of penetrating the epithelial lining of the gastrointestinal tract of the newborn (Schnorr & Pearson, 1984).

Breast milk slgA has also been shown to bind to the epithelial cells of the neonatal rat jejunum, but unlike IgG it is not internalized and translocated across the cell (Nagura et al., 1978).

It is likely that when an alternative food to breast milk is fed to the neonate the absence of slgA provided by the breast milk, together with the ingestion of a foreign protein increases the risk of specific systemic sensitization, even though in some cases sensitization of the infant may occur from antigen present in the maternal milk (Gerrard, 1979).

The best combination appears to be the presence of circulating maternal antibodies, together with the protective effect of breast feeding for inducing a state of systemic tolerance to dietary proteins. This is probably why the immune responses of infants fed cows milk have been found to be lower in those infants who had initially been fed breast milk (Kletter et al., 1971).

The significance of antibodies to food proteins in the serum is debatable. Increased levels of specific IgG antibodies may indicate food intolerance or merely represent the normal response for removing foreign antigenic protein from the body. The following sections discuss the mechanisms of systemic unresponsiveness which is observed in the majority of the population after the ingestion of dietary proteins and the possible relationship between circulating antibodies to food proteins and atherosclerosis.

1.5 Immune Tolerance to Ingested Antigens

In various animal models with different antigens and assays, deposition of antigen in the gut may, under certain circumstances, produce a local immune response simultaneously with systemic tolerance. This form of split tolerance probably represents the appropriate response to common, but otherwise harmless, ingested antigens.

The suppression of antibody formation and delayed type hypersensitivity responses by prior oral administration of antigen has been known for many years (Wells, 1911; Chase, 1946). Subsequent reports in which either cellular or soluble antigens have been fed confirm that antigen administration by the intestinal route can alter the immune response in extra intestinal sites. Thomas and Parrott (1974) found a reduced antibody response to parenterally administered BSA when preceded by a period of antigen feeding, and Kagnoff (1978) observed a depression of delayed type hypersensitivity response in mice to sheep red blood cells after prior feeding of the antigen. However, the precise mechanism by which this form of tolerance is induced has not yet been fully explained.

A number of papers have implicated the importance of suppressor T cells after feeding both soluble and cellular antigens (Ngan & Kind, 1978; Mattingly & Waksman, 1978). It appears that hyporesponsiveness can be produced in B cells after the oral administration of antigen but that the unresponsiveness observed in these cells is of shorter duration than is manifested by the T cell (Vives et al., 1980). Asherson et al. (1977) have demonstrated the presence of T and B cells in mice after feeding the mice contact sensitizing agents, and both types of suppressor cell appear to be important in the resulting unresponsiveness, which can be enhanced by feeding B cell mitogens (Newby et al., 1980).

Two distinct non-immunoglobulin suppressor factors have been identified which are likely to be T cell derived. The first factor enhanced the suppressive activity of T cells and the second both helped and induced feedback suppression (Mattingly et al., 1980).

Presentation of the antigen to the Peyer's Patch appears to be an important stage in the induction of oral tolerance, and this may account for differences in which tolerance is induced against a particular antigen for example soluble or cellular antigens. Suppressor T cells are apparent in the Peyer's Patch after feeding lower doses of antigen than is required to induce suppressor cells in the spleen (Ngan & Kind, 1978).

The observation that systemic hyporesponsiveness was accompanied by an increase in sIgA copro-antibody indicated that perhaps reduced enteric absorption of antigen could account for the systemic unresponsiveness (Andre et al., 1974).

Swarbrick et al (1979) found that prior feeding of antigen reduced its subsequent absorption into the circulation and Challacombe and Tomasi (1980) observed that intragastric administration of a soluble or particulate antigen resulted in the concurrent induction of salivary antibodies and systemic suppression. Andre et al (1975) have found that the hyporesponsiveness produced in this way can be transferred in the serum to untolerized recipients indicating the presence of a soluble tolerogen. They suggest immune complexes containing IgA as the antibody component are the tolerogen and may function by paralysing B cells.

The central role of the apparent paradox of mucosal immunity and systemic tolerance may be played by the Peyer's Patch. A specific class of helper T cells have been identified in the Peyer's Patch (Elson et al., 1979). They appeared 24 hours after enteric administration of ovalbumin and simultaneously or immediately afterwards, IgG specific suppressor T cells made their appearance (Richman et al., 1981). These specific T cells have been found to migrate from the GALT to the spleen shortly after contact with antigen and have been referred to as T cell suppressor inducer cells. The cell interacts with splenic lymphocytes to induce the formation of an effector T suppressor cell (Mattingly 1984). Suppressor T cells have been found after exposing foetal mice to deaggregated human gamma globulin (dHGG) transplacentally, and after exposing neonatal mice to dHGG via the colostrum. However, tolerance was only generated by the administration of higher doses of dHGG in utero and tolerance was not observed in those mice receiving dHGG via the colostrum, which was possibly due to the smaller quantity of antigen received by the neonate (Fazekas de St Groth et al., 1984). Tolerance was suggested to occur by the suppressor T cells inactivating B cells and possibly T helper cells. These specific suppressor T cells in the GALT may regulate the immune response engendered by the encounter with a dietary antigen and explain the paradox of mucosal immunity and systemic tolerance. The ability of an antigen to produce systemic tolerance may depend on the ability of an antigen to stimulate suppressor

or helper T cells. An antigen usually has both helper and suppressor T cell determinants and stimulation of specific T cells may depend on the concentration of the antigen and the possible competition of suppressor and helper T cells for antigenic determinants (*Kolsh, 1984*).

However, the precise mechanism responsible for inducing tolerance in the humoral and cell mediated immune system remains controversial.

Cell mediated but not humoral tolerance can be transferred by the serum (*Strobel et al., 1983*), and a lower dose of ovalbumin is needed to suppress cell mediated immune responses than antibody responses (*Mowat et al., 1982*), indicating that more than one regulatory factor is involved in controlling the two limbs of the immune system.

The liver, through which gastrically administered antigens pass, may play a critical role in systemic unresponsiveness by removing antigens from the portal blood stream (*Thomas et al., 1976*). This function has been ascribed to the Kupffer cell, which can be regarded as the liver macrophage. Its role in the hyporesponsive state may lie in its ability to sequester antigen from the circulation and also perhaps through the induction of specific tolerance via the depression of T cell responses, either directly or by secretion of inhibitory factors (*Richman et al., 1979*).

In a feeding study in rabbits it was fortuitously found that the offspring of dams fed the same protein as that in the weanling diet developed lower circulating antibodies to that protein when compared to similar weanling rabbits bred from dams fed a control diet (*Pathirana et al., 1979*). Concurrently with the observation that these weanling rabbits showed specific systemic tolerance to soy protein, they were also found to have less arterial disease than the control group, which manifested higher antibody titres.

This finding was substantiated by a further experiment in which circulating anti-soya antibodies could be correlated with the development of aortic atheroma (*Gallagher et al., 1982*).

1.6 The Immunological Theory of Atherosclerosis

There is a certain amount of evidence to suggest that immunological mechanisms play a part in the development of atherosclerosis.

One of the main areas of evidence for an immunological basis for human atherosclerosis comes from the observation that very rapid and severe arterial disease often develops in the recipients of organ transplants (*Thompson, 1969*).

Post mortem examinations of heart transplant patients reveal extensive coronary artery disease with both proliferative and intimal lesions (*Griepp et al., 1977*). Similar complications are observed in kidney transplant patients. Renal artery stenosis is a well recognised problem of renal transplantation caused by occlusive arterial disease. This frequently leads to progressive hypertension and loss of graft function (*Mollenkopf et al., 1977*.)

The severe atherosclerosis following organ transplants has also been observed in animal models (*Minick et al., 1974*). *Alonso et al. (1977)* have induced arterial intimal thickening in rabbits by cardiac allografts and with the addition of cholesterol supplemented diets many of the lesions transformed to cholesterol filled atheromatous plaques. These plaques were similar to the lesions seen in human atherosclerosis. *Lurie et al. (1981)* has suggested that the vascular lesions may be caused by cytotoxic antibodies against the allografts.

Further evidence for the involvement of immune mechanisms in the development of atherosclerosis has come from producing serum sickness in experimental animals. Several groups have reported that aortic atherosclerosis can be hastened by the injection of horse serum albumin or bovine serum albumin (*Minick et al., 1966; Lamberson & Fritze, 1974*). Similarly in primates the injection of an antigen has produced accelerated atheroma development in animals fed a mildly atherogenic diet compared to animals fed the atherogenic diet alone (*Howard et al., 1971; Stills et al., 1983*). *Stills et al. (1983)* found that this form of atherosclerosis was more pronounced in the proximal coronary vessels and coronary artery compared with cholesterol induced atherosclerosis. The lesions consisted primarily of foamy intimal cells with granulocytes attached to and penetrating into the lamina of the artery.

These observations suggest that immunological response produced by either serum sickness or graft rejection may act in synergy with hypercholesterolaemia to cause the rapid development of atherosclerosis.

Hardin *et al.* (1973) has reported that acquired arteriosclerotic lesions produced by serum sickness can predispose to later lipid accumulations and evolve as atherosclerosis. Immune complex deposition has been implicated as the cause of the intimal endothelial damage resulting in arteriosclerotic lesions (Sharma & Geer, 1977).

The fate of immune complexes depends on the physical size of the complex. This is determined by the relative proportions of antibody, antigen and the affinity of the two components (Devey *et al.*, 1982; Mannick, 1982). Large immune complexes are normally formed in antibody excess and these are rapidly removed from the circulation primarily by the Kupffer cells of the liver (Haakenstadt & Mannik, 1974). Complexes formed in antigen excess are usually small and remain in the circulation for a longer period of time before becoming trapped in capillaries of the lung, renal glomeruli or choroid plexus. It is the complexes of intermediate size which are formed in antigen and antibody equivalence or slight antigen excess that have been found to become localized in vessel walls (Cochrane & Hawkins, 1968).

Immune complexes have been implicated as the cause of vasculitis in many disease states. These include rheumatoid vasculitis, systemic lupus erythematosus and various forms of glomerulonephritis, thus affecting medium sized arteries, arterioles and capillaries (WHO Scientific Group, 1977; Theofilopoulos & Dixon, 1980).

Histological and biochemical studies have provided a certain amount of evidence for the localization of immunoglobulin around atherosclerotic plaques. Dense deposits of IgG have been located in such plaques by immunoperoxidase techniques (Parums & Hutchinson, 1981) and IgG, IgA, IgM and the complement component C₃ have been identified biochemically (Hollander *et al.*, 1979). The later study suggests that IgG may be synthesised by the artery and may represent an immune response to a continued presence of antigen in the artery. The maintenance of prolonged antibody synthesis by antigen may provide a source of complement fixing antibody-antigen complexes for the mediation of proliferative changes within the artery. However, the mechanism of immune complex deposition and their role in vascular damage can only be speculated upon.

Complexes are not inherently harmful but they may influence the course of atherosclerosis by activating certain immunological and chemical mechanisms. Complexes are able to cause the release of histamine and other vasoactive amines from mast cells and platelets and complexes of intermediate size are known to be able to fix complement (Reviewed by Haeney, 1982). The activation of the complement components C_{3a} and C_{5b} is one of the principal mechanisms by which chemotactic activity for phagocytosis is generated (Stossel, 1974). Immune complex mechanisms are not all mediated through complement. Many cells respond directly to the complexes via surface Fc receptors. Fc receptors have been recognized on monocytes, neutrophils, eosinophils and platelets (Nydegger, 1979). Platelets have been found to react directly with immune complexes resulting in the rapid release of serotonin combined with platelet aggregation (Pfueller & Leuscher, 1974).

Clinical evidence to support the significance of immune mechanisms in the aetiology of atherosclerosis is conflicting. Reports have suggested that the level of soluble circulating immune complexes are higher after myocardial infarction than controls (Farrel et al., 1977; Fust et al., 1978), whereas others were unable to detect any such change (Gallagher et al., 1982B). The observation of high levels of immune complexes in many diseases but no evidence of tissue deposition indicates that the mere presence of immune complexes does not necessarily mean that they are responsible for the disease (Levinsky, 1981). The type of antibody within the complex may be important in determining whether the complex becomes involved in damaging reactions or is merely a mechanism for safely removing circulating antigen. Immune complexes have been observed in healthy adults following the ingestion of food proteins (Paganelli et al., 1977). However, the complexes formed by healthy adults have been found to consist of IgA antibody, whereas those found in atopic food allergic subjects were found to be Clq binding (Levinsky et al., 1981). Levinsky (1981) has also observed that the more damaging reactions of some other disease states appear when IgG complexes are produced in preference to IgA complexes.

Thus the normal response to antigen may be the production of systemic and mucosal IgA complexes which rapidly and safely remove the foreign material from the body and it is only when Clq binding complexes are formed that damaging reactions may occur. These complexes appear to be important

in diseases of small vessels and may also be involved in diseases of large vessels, possibly predisposing to atherosclerosis (Poston, 1979).

1.7 Aim of the Research

The aim of the research presented in this thesis is to investigate the immunological response to dietary protein.

The first experiment examines the effect of age on the ability of rabbits to develop specific serum antibodies to dietary proteins, and on the capacity of maternal exposure to suppress this response. Previous studies using rabbits have investigated the immune response to dietary protein in weanling animals (*Pathirana et al., 1981*). However, this response may be influenced by increased uptake of macro-molecular protein in young rabbits (*Udall, Pang et al., 1981*).

The second experiment investigates the effect of protein source and level on the production of circulating antibodies in rabbits. The capacity of a dietary protein to stimulate the production of circulating antibodies may depend on the amount of protein which crosses the gastrointestinal mucosa and enters the circulation in a potentially antigenic form.

To extend the study of the immune response produced by dietary proteins, the mouse was used in the third experiment, since this species differs from the rabbit in the mechanism by which it acquires maternal antibodies. The mouse receives maternal antibodies both pre- and post-natally, whereas the rabbit acquires all its passive immunity in utero (*Billington & Wild, 1979*). Therefore, maternal antibodies are likely to be present in the circulation of the young mouse for a longer period of time after birth, compared with the young rabbit. The experiments in this chapter examine the systemic immune response produced in mice, following the ingestion of a specific protein and the possible effects of maternal antibodies on this response.

The first three chapters of this thesis have examined the effect of introducing a novel dietary protein to either rabbits or mice on the production of specific serum antibodies. In the fourth chapter the immune response is examined in humans following the ingestion of a novel dietary protein. The immune response produced by the ingestion of a novel protein is particularly relevant to infant feeding practices involving substitute milks (*May et al., 1982*).

The hypothesis relating antibodies and circulating immune complexes with increased levels of atherosclerosis (*Gallagher, 1980*) was examined in the final experiment. Systemic tolerance to cows milk protein was

achieved in a group of rabbits by feeding the dams a diet containing milk protein. A high fat cows milk diet was then fed to these animals at weaning, the amount of atherosclerosis in these animals was compared to a group of rabbits bred from dams not exposed to milk protein.

A more detailed introduction accompanied each experimental chapter and the results are also discussed within the chapter. A final discussion is given at the end of the thesis.

CHAPTER 2

MATERIALS AND METHODS

2. Materials and Methods

2.1 An Enzyme-linked Immunosorbant Assay (ELISA) for the Detection of Antigen Specific Serum Antibodies

An enzyme-linked immunosorbant assay based on the method of *Engvall and Perlman (1972)* was chosen for the antibody and antigen assay. The reliability of this technique for diet-induced circulating antibodies has been verified (*Pitts et al., 1983*).

2.1.1 Method (i)

Polystyrene cuvettes (Gilford Diagnostics, Cleveland, Ohio, U.S.A.) were coated with antigen at a concentration of 10 µg protein per ml dissolved in a carbonate-bicarbonate buffer (50 mM pH 9.6) containing 0.02% (w/v) sodium azide. A 200 µl aliquot of this solution was added to each well, which was incubated overnight at 4°C in a humidity chamber. The cuvettes were then washed 5 times, soaking for 30 seconds with each wash (this procedure was used for each wash in the assay). The washing solution was phosphate-buffered saline (PBS) containing 0.05% (w/v) Tween-20 (PBST).

Serum samples were diluted appropriately in PBST and a 200 µl of the diluted serum was added to each well. The cuvettes were then incubated at room temperature for two hours. After a second washing stage, 5 times with PBST, the wells were incubated with a 200 µl of a peroxidase conjugated antimmunoglobulin purchased from Nordic Immuno-chemical Laboratories, Tilberg, The Netherlands, which had been diluted in PBST 1:1000. After a final incubation for 2 hours at room temperature followed by washing with PBST 5 times, 200 µl of the assay solution was added.

The assay mixture was prepared immediately before use and consisted of a phosphate-citrate buffer (pH 5.0). The buffer contained 24.3 mls citric acid (0.1 M) and 25.7 mls disodium hydrogen phosphate (0.2 M) and 50 mls of distilled water, in this was dissolved 40 mg of O-phenylene diamine (purchased from BDH Chemicals) and 40 µl of 30% (v/v) H_2O_2 solution was added. The colour was left to develop for exactly 15 minutes and then stopped by the addition of 200 µl of a citrate-phosphate buffer (0.3 M pH 2.85).

The optical density of the contents was read at 405 nm by an

enzyme immunoassay manual reader.

A pooled serum sample was run with each assay to check that consistent replication was being achieved.

2.1.2 Method (ii)

Polystyrene microtitre plates comprising of 96 400 μ l flat bottomed wells (Dynatech Lt., Billinghamhurst, Sussex) were coated with 200 μ l of a carbonate-bicarbonate buffer (50 mM pH 9.6) containing the dissolved antigen at a concentration of 20 μ g protein per ml of buffer and 0.02% (w/v) sodium azide. The plates were incubated overnight in a humidity chamber at 4°C. The microtitre plates were washed 5 times, soaking for 30 seconds with each wash (this procedure was used for each wash in the assay). The washing solution was saline containing 0.05% (w/v) of the detergent Tween 20 (Saline +T).

The serum was diluted with PBST appropriately and 200 μ l added to each well. The plates were incubated for 3 hours at room temperature then washed 5 times with saline + T.

A 200 μ l aliquot of an antiimmunoglobulin peroxidase conjugate (Nordic Immunochemicals) diluted in PBST 1:1000 was added to each well. After a final incubation step at room temperature for 2 hours, followed by washing 5 times with saline + T 200 μ l of the freshly made up assay solution was added. The assay solution contained O-dianisidine HCl (Sigma Chemicals Ltd., Poole, Dorset) (83.3 μ g per ml) as the chromogen dissolved in 100 mls of sodium phosphate buffer (0.01M pH 6.0), to this was added 1 ml of 1% hydrogen peroxide solution.

The reaction mixture was left in the wells for exactly 1 hour and the final absorbance was read at 450 nm on an automated dual-wave beam spectrophotometer (MR 580 Dynatech Ltd).

Standardization of the Assay

Daily variations in the activity of the peroxidase enzyme were accounted for by measuring the enzymic activity of the conjugated antibody after each assay.

A 50 μ l sample of diluted HRP conjugate was added to 950 μ l of assay mixture in a plastic cuvette. The rate of reaction was measured at 450 nM (Beckman SP 180) and all the results were corrected for a standard enzyme activity of 2000 units per ml per hour.

A pooled serum sample was also run with each assay to check the replication of the assay.

Coefficient of Variation

The variation between triplicates of samples were assessed by the following formula:

$$\text{Coefficient of Variation} = \frac{\text{Standard deviation}}{\text{mean}} \times 100$$

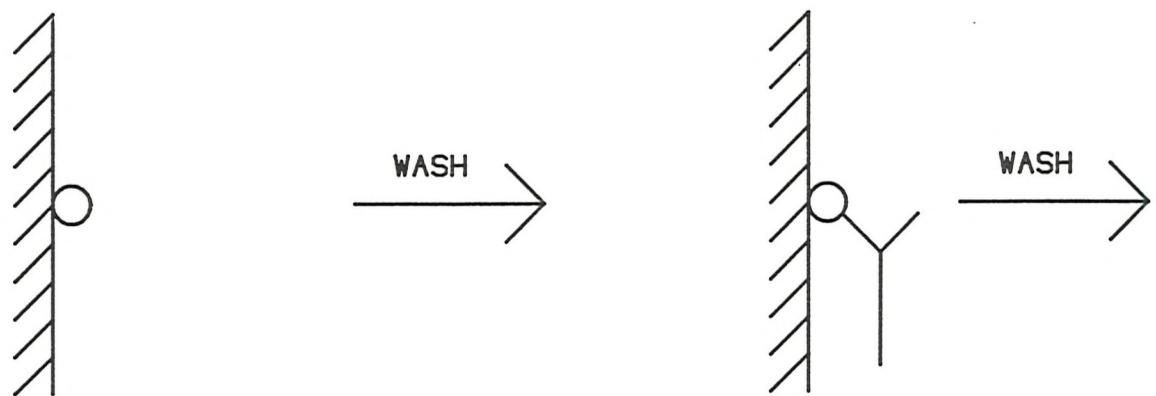
The variation between triplicate samples was less than 10%

A diagrammatic representation of the ELISA for measuring serum antibody is presented in Fig. 2.1.

2.2 Quantification of Serum Antibodies

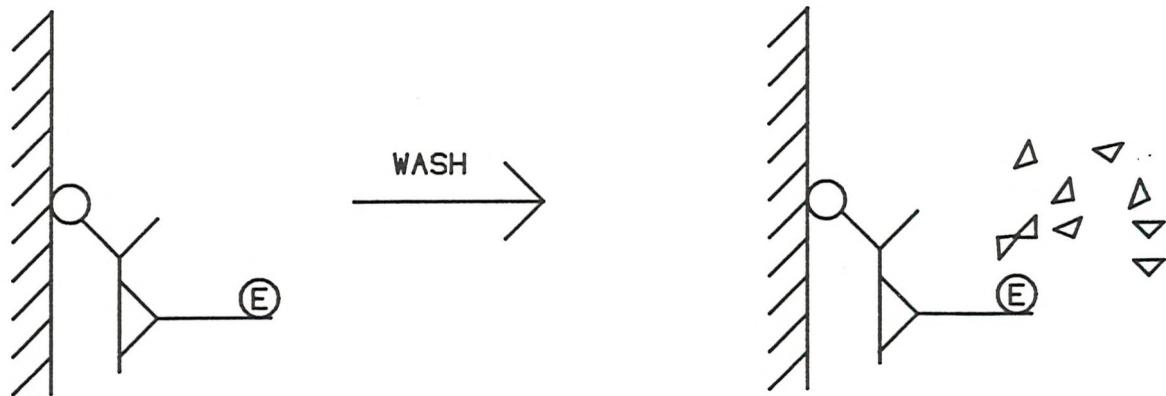
Simple absorbtion readings from the ELISA have some validity as indicators of trends, but they are prone to systematic and random variability so it is difficult to make comparisons between parallel results. No consideration is made for the sigmoidal shape of the optical density curve.

Methods to Attempt to Quantify Serum Antibodies


2.2.1 Purification of Specific Antibodies

Specific antibodies may be purified from rabbit antisera. A dilution curve of the purified antibodies can then be run and the optical density readings from the experimental sera can then be quantified with reference to the dilution curve.

2.2.1(i) Raising Serum Antibodies in Rabbits (Hudson & Hay, 1980)


One milligram of the protein to be injected was dissolved in 1 ml of saline. An equal amount of Freunds complete adjuvant was added and an emulsion was made by forcing the mixture through a syringe needle until it was thick and white.

Female New Zealand White Rabbits (approximately weighing 2.5 kg) were used for immunization. The upper part of the hind limb was shaved and approximately 1 ml of the emulsion was injected into each side. The animals were boosted with a similar injection 4 weeks later and after a further 2 weeks a 5 ml blood sample was taken from the ear vein. The blood was allowed to clot in a glass centrifuge tube at 37°C for 1 hour and then centrifuged at 3,000g for 15 minutes to collect the serum. The serum was removed by a pasteur pipette and tested for

1. ANTIGEN ADSORBED TO POLYSTYRENE SURFACE

2. INCUBATE WITH SERUM: ANY SPECIFIC ANTIBODY ATTACHES TO ANTIGEN

3. INCUBATE WITH ENZYME-LABELLED ANTI-IgG WHICH ATTACHES TO ANTIBODY

4. ENZYME ASSAY:
AMOUNT OF SUBSTRATE OXIDISED
= AMOUNT OF IgG PRESENT

Figure 2.1 ENZYME-LINKED IMMUNOSORBENT ASSAY (ELISA).
AN INDIRECT METHOD FOR ASSAY OF SPECIFIC IgG.

the presence of serum antibodies by the ELISA method given in Section 2.1.1. If antibodies were still detected when the serum was diluted 1:100,000 with PBST, the animal was anaesthetized with sagital (0.5 ml/kg) and the blood collected by cardiac puncture.

If the serum did not give a positive result at the above dilution the animal was boosted as previously, except that Freunds complete adjuvant was substituted for Freunds incomplete adjuvant. The serum was again checked for antibodies after 2 weeks.

2.2.1(ii) Isolation and Purification of Specific IgG by Immunoaffinity Chromatography

Preparation of the Immunosorbant

3g of cyanobromide activated sepheroose 4B (Pharmacia Fine Chemicals, Uppsala, Sweden) was swollen and washed on a scintered glass funnel with 600 mls of HCl solution (10^{-3} M). The gel was washed in 500 mls sodium carbonate buffer (0.1 M pH 8.5 containing 0.4 M NaCl), resuspended to 50 ml and 100 mg of the specific protein was added. The protein was that which the antibodies to be purified were raised against. The solution was incubated for 16 hours at 4°C with gentle shaking, then washed on a scintered glass funnel with Na HCO₃ buffer (0.1 M pH 8.5 containing 0.4 M NaCl). The immunosorbant was incubated with ethanolamine solution (1M pH 9.0) at 4°C for 1-2 hours to absorb any remaining active groups. The beads were then washed in acetate buffer (0.1M pH 4.0 containing 1 M NaCl) then Na₂CO₃ buffer (0.1 M pH 8.5 containing 1M NaCl), this washing procedure was repeated three times. The immunosorbant was resuspended and stored in running buffer (PBS containing 0.02% (w/v) sodium azide) at 4°C.

Purification of Specific Antibody

5 mls of the immunosorbant prepared by the method previously described was washed extensively on a scintered glass filter with PBS at room temperature. The gel was then suspended in 4 mls of PBS and 1 ml of antisera was added and gently stirred at room temperature for 1 hour. The beads were then made into a column and transferred to a cold room and kept at 4°C. The column was washed with PBS until the absorbtion of the elutant at 280 nm was less than 0.02 nm.

The antibodies were then eluted with glycine-HCl buffer (0.2 M pH 2.8) and immediately neutralised in carbonate buffer (1 M pH 8.5). The eluted antibodies were dialysed against three changes of PBS containing 0.01% (w/v) sodium azide. The purified antibody was quantified by reading the optical density at 280 nm and calculated as mg protein per ml buffer.

The purification of antiovalbumin IgG antibodies was successful. However, in the case of cows milk protein, continual leakage of protein from the column occurred after the addition of the serum containing antimilk protein antibodies. This method may have been unsuccessful because of the different binding affinities of antibodies to the individual milk proteins. Also, the presence of lactose and a certain amount of fat in the milk protein which was used to bind to the beads may have prevented efficient binding. If elution of the antibodies had been obtained, it would not necessarily represent the profile of milk antibodies in the serum, again due to the different affinities of a particular milk protein antibody with antigen. Also the binding of the milk protein to the activated sepharose may not represent the antigen profile in the milk.

A different method therefore had to be used to express the optical density readings obtained from ELISA which would improve on direct absorbance readings by accounting for the sinusoidal shape of the optical density curve. The most satisfactory method was to express the results as a percentage of a standard reference serum, thus introducing a reference scale.

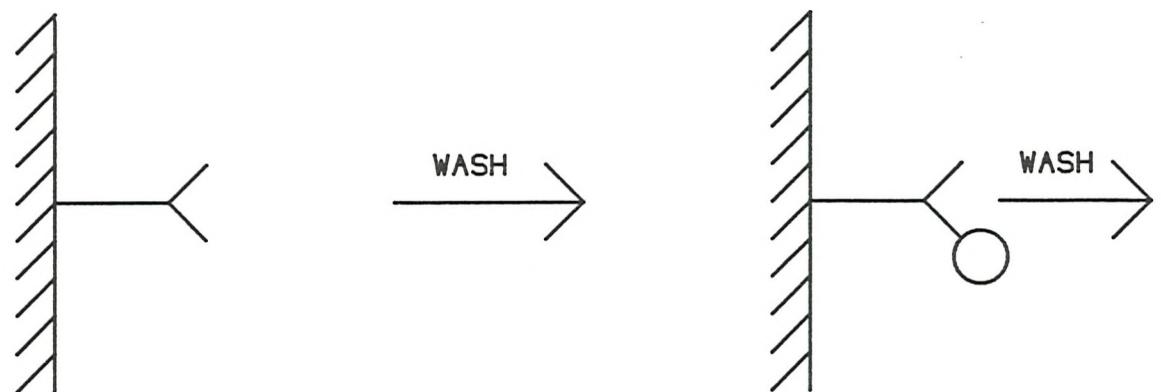
2.2.2 Introduction of a Reference Scale

The use of a specific antisera raised against the protein in question has been found to be the most successful method for expressing ELISA results (Malvano, Davis & Zannino, 1982). The use of a reference scale was found to eliminate systematic components of error and give analytical consistency of the measurements as well as giving a more accurate comparison between results due to the consideration of the particular shape of the optical density curve.

However, the use of either of the above methods was found to be unsuitable for experiments involving mice, due to the difficulty in obtaining sufficient antiserum in mice; furthermore, antiserum could

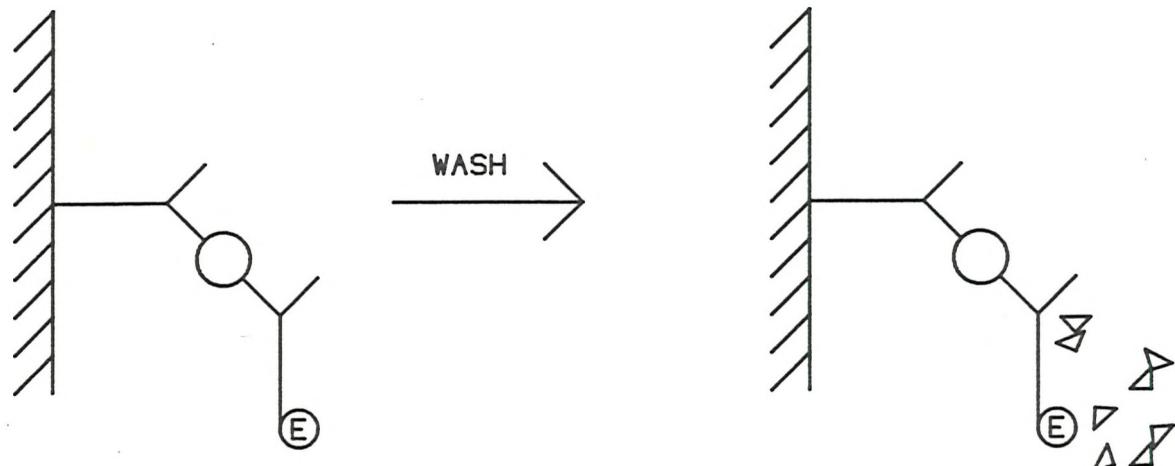
not be obtained in humans. Therefore, the results from the experiments involving mice and humans were left as optical density readings.

2.3 An Enzyme Linked Immunosorbant Assay (ELISA) for the Detection of Serum Antigen (Fig. 2.2)


Polystyrene cuvettes were coated with a carbonate-bicarbonate buffer (50 mM pH 9.6) containing 0.02% (w/v) sodium azide and anti-specific antigen purified from antisera from immunized rabbits (2.2.1(i)).

Standard antigen samples were assayed using different coating concentrations of antispecific IgG to determine the concentration which provided the best standard curve. The cuvettes were incubated overnight in a humidity chamber at 4°C. The wells were then washed 5 times with PBST and soaked for 30 seconds between each wash (this procedure was used at each washing stage). A 200 µl aliquot of serum was added to each well, having been diluted appropriately in PBST. The serum was incubated in the wells for 2-6 hours and an antigen peroxidase conjugate was then added and incubated at room temperature for 2 hours or overnight at 4°C.

After a final washing step with PBST, the assay solution was added. The assay mixture was prepared immediately before use and consisted of a phosphate-citrate buffer (pH 5.0). The buffer contained 24.3 mls citric acid (0.1 M) and 25.7 mls disodium hydrogen phosphate (0.2M) and 50 mls of distilled water, in which was dissolved 40 mg of O-phenylene diamine and 40 µl of a 30% (v/v) H₂O₂ solution was added. The colour was left to develop for exactly 15 minutes, then stopped by the addition of 200 µl of citrate-phosphate buffer (0.3 M pH 2.85).


The optical density of the contents was read at 405 nm by the EIA Manual Reader. The concentration of antigen in the serum was calculated from a standard curve consisting of the same antigen.

The standard curve consisted of a range of antigen concentrations (100 µg to 1.0ng per ml) diluted in PBST and normal rabbit serum which did not contain any of the specific antigen.

1. ANTIBODY ADSORBED TO POLYSTYRENE SURFACE.

2. INCUBATE WITH SERUM CONTAINING ANTIGEN: ANTIGEN ATTACHES TO SPECIFIC ANTIBODY

3. INCUBATE WITH ENZYME LABELLED SPECIFIC ANTIBODY

4. ENZYME ASSAY: AMOUNT OF SUBSTRATE OXIDISED = AMOUNT OF ANTIGEN PRESENT.

Figure 2.2 DOUBLE ANTIBODY SANDWICH ELISA FOR MEASURING ANTIGEN.

2.3.1 Purification of Serum IgG for the Antigen Assay

A solution of 3% Rivanol (6,9 Diamino-2-ethoxy acridine lactate, Sigma Chemical Company, St. Louis, MO, USA) (w/v) in distilled water was prepared and added to the serum at a volume of 65% of the volume of serum. The serum was obtained from rabbits that had been immunized with the specific antigen which was then diluted in distilled water (69% volume of distilled water added to 1 volume of serum).

The solution was left for 15 minutes at room temperature and then spun at 3000g for 15 minutes. The resulting precipitate was discarded and 5% (w/v) NaCl was added to the supernatant, which was then stirred and left at room temperature for 15 minutes. The precipitate was removed by filtration on fluted filter paper and to the filtrate an equal volume of saturated ammonium sulphate solution was added. After 30 minutes the solution was spun at 3000g for 20 minutes and the supernatant discarded. The resulting precipitate was washed in 5 mls of a 50% saturated ammonium sulphate solution and spun again at 3000g for 20 minutes. A further 5 mls of 50% saturated ammonium sulphate solution was added and this was dialysed extensively in carbonate buffer (0.01 M pH 8.0) at 4°C.

The purified IgG in carbonate buffer was stored in 0.5 ml aliquots at -22°C.

2.3.2 Conjugation of Anti-Antigen IgG and Horse Radish Peroxidase

Conjugates were prepared by the following method for the antigen assay. Rabbits were immunized as described in Section 2.2.1(i) and the serum IgG was purified by the method described in Section 2.3.1.

2.3.2(i) A Periodate Method of Conjugation was used which was based on the procedure developed by Nakane and Kawoi (1974).

Sigma HRP Type VI (5 mg) was dissolved in 1 ml of sodium bicarbonate buffer (0.3 M pH 8.1). A solution of 1 fluoro 2,4 dinitrobenzene (Koch Light Laboratories, Cribbs Causeway, Bristol) in ethanol was added and the mixture allowed to stand at room temperature with mixing. After 1 hour 1 ml of freshly made NaIO₄ solution (0.08 M in distilled water) was added and the mixture allowed to stand at room temperature for 30 minutes during which time a yellow-

green colour developed. 1 ml of 1% (v/v) ethylene glycol in distilled water was added and the mixture allowed to stand at room temperature for 1 hour. The solution was dialysed 3 times against 1 litre of sodium carbonate buffer (0.01 M, pH 9.5) at 4°C. To the peroxidase aldehyde formed 5 mg IgG in 1 ml carbonate buffer (0.01 M, pH 8.0) was added and the mixture was allowed to stand at room temperature for 3 hours. To stabilize the Schiff bases 2 mg per ml NaBH₄ (Sigma Chemicals) was added and the mixture allowed to stand again for 3 hours at 4°C. To this an equal amount of saturated ammonium sulphate was added and the mixture stirred for 15 minutes at room temperature, then left overnight at 4°C to allow the precipitate to develop. The precipitate was washed twice with 50% saturated ammonium sulphate solution and re-dissolved in 1 ml water and extensively dialysed against PBS at 4°C.

An equal volume of glycerol was added to the conjugate and stored at -22°C.

2.4 Clq Binding Test for the Detection of Immune Complexes in Serum

This method was used to measure circulating immune complexes as it has been demonstrated to be efficient at measuring complexes of the intermediate size (Jones *et al.*, 1982).

The procedure used was based on the method of Zubler *et al.* (1976). The assay relies on the ability of soluble immune complexes to fix a subunit of the first component of the complement cascade. Immune complexes bind to the first component of the complement cascade Clq via the Fc portion of the antibody in the immune complex.

The bound complex containing Clq can be precipitated in a solution of 3% polyethylene glycol. To quantify the presence of immune complex the Clq was radiolabelled.

2.4.1 Isolation and Purification of Clq (Volankis & Stroud, 1972)

The isolation and purification of Clq involved a series of precipitation steps in ethylene diamine tetracetic acid (EDTA) (EDTA -disodium salt, BDH Ltd., Poole, Dorset). 180 mls of freshly drawn blood was allowed to stand for 1 hour at room temperature then 1 hour at 4°C. The blood was spun at 1500 g for 15 minutes to separate the serum. The serum was spun at 30,000g for 30 minutes to

remove the lipid. 40 mls of serum was incubated with 10 mls EDTA (0.1 M, pH 7.5) for 10 minutes at 37°C. The solution was kept cool in an ice bucket and 200 mls of EDTA (0.005 M, pH 7.5) was added slowly and incubated at 4°C for 1 hour and stirred every 20 minutes for 1 minute. The free Clq was collected by centrifuging at 12,000g for 30 minutes in 8 x 35 ml centrifuge tubes. The supernatant was discarded and a white precipitate was visible on the side walls of the centrifuge tubes. To the tubes, 5 mls EDTA (0.022 M, pH 7.5) was added and the precipitate was scraped thoroughly off the side walls with a small spatula. The fluid containing the precipitate was pooled into 2 x 35 ml centrifuge tubes and again spun at 12,000g for 30 minutes. The resulting supernatant was again discarded, and the precipitate was again scraped into 5 mls of EDTA (0.022 M, pH 7.5) and combined into one 3 5 ml centrifuge tube. The precipitate was spun at 12,000g for 30 minutes, the supernatant discarded and the precipitate was dissolved in 10 mls EDTA (0.01 M, pH 5.0 containing 0.75 M NaCl) and left overnight at 4°C.

The solution was spun at 30,000g for 30 minutes and the supernatant was dialysed for 4 hours in 1 litre of EDTA (0.1 M, pH 5.0), the buffer was changed and fresh buffer added after 2 hours.

The contents of the dialysis bag were centrifuged at 12,000g and the precipitate was resuspended in 15 mls EDTA (0.1 M, pH 5.0). This cycle was repeated twice combining the precipitate into 1 x 15 ml centrifuge tube. The precipitate was finally dissolved in 1 ml EDTA (0.1 M, pH 7.5 containing 0.3 M NaCl) and dialysed extensively against veronal buffered saline (VBS) (pH 7.5) and concentrated by ultra filtration to 0.5 mg protein per ml in VBS and stored at -90°C.

2.4.2 Radioiodination of Clq

The method employed was a modification of the procedure developed by Salacinski *et al* (1979).

A glass scintillation vial was coated with 50 µl of iodogen (1,3,4,6-tetrachloro-3,6,-diphenylglycouril, Pierce Chemical Company, Rockford, USA) dissolved in chloroform (1 mg 1 ml). To the vial a 200 µl aliquot of Clq (100 µg) in VBS was added with 10 µl (1mCi) of sodium-¹²⁵Iodine (The Radiochemical Centre, Amersham, Buckinghamshire). The vial was incubated at room temperature for 10 minutes. The solution

was then passed down a column packed with sephedex G25 washing with VBS. The first radioactive peak was collected in 0.5 ml aliquots and 0.5% ovalbumin was added as a protein carrier. The radiolabelled Clq was stored in lead at -70°C.

2.4.3 Clq Binding Assay (Illustrated in Fig. 2.3)

A 50 µl aliquot of ^{125}I Clq solution was added to 4.95 ml VBS containing 0.5% ovalbumin. The solution was centrifuged at 12,000g for 20 minutes to remove complexed Clq. The top 4 mls of supernatant was removed for the assay.

Triuplicate 50 µl samples of the experimental serum was aliquoted into plastic tubes (LP₃ - Luckham Ltd., Burgess Hill, Sussex) together with 100 µl of EDTA (0.2 M, pH 7.3). The tubes were incubated at 37°C for 30 minutes to decomplement the serum and then placed on ice.

A 50 µl aliquot of ^{125}I Clq in VBS was added to each tube followed immediately by the addition of 1 ml 3% polyethylene glycol (PEG 6000, Sigma Chemicals Ltd., Poole, Dorset) in borate buffer (0.1 M, pH 8.3). Each tube was capped and vortexed for 5 seconds then incubated on ice with gentle shaking for 1 hour.

Separation of unbound Clq was achieved by centrifuging at 25,000g for 20 minutes at 4°C. The supernatant was removed and the pellet was washed in a further 1 ml of 3% PEG in borate buffer. After recentrifuging at 25,000g for 20 minutes the supernatant was again removed by a suction pipette and the radioactivity present in the precipitate was determined by gamma counting for 1 minute and the results were expressed as a percentage of the counts resulting from precipitation of 50 µl of ^{125}I labelled Clq by 20% Trichloroacetic acid.

Standardization

The assay was standardized by running a series of concentrations of alkali-aggregated human and globulin with each test.

Triuplicate 50 µl samples of pooled normal human serum containing 50 µl of aggregated human gamma globulin diluted to various concentrations in PBS were incubated with 50 µl EDTA (0.2 M, pH 7.3) at 37°C for 30 minutes along with experimental serum. The control aggregated human gamma globulin containing tubes continued to be treated along with the experimental sera.

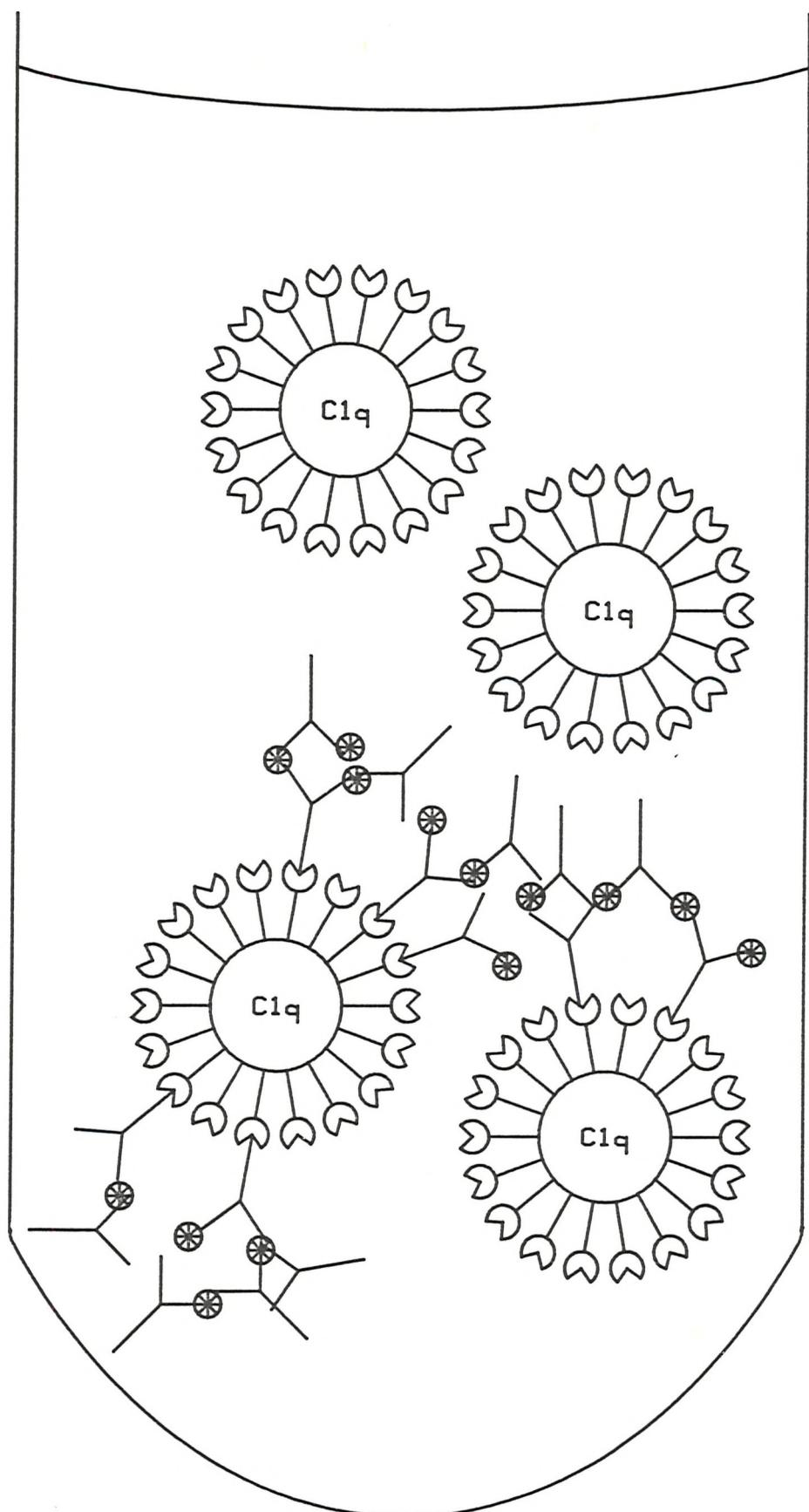


Figure 2.3 SUMMARY OF THE REACTIONS INVOLVED IN THE C1q BINDING RADIOIMMUNE ASSAY.

- PURIFIED C1q COMBINES WITH IMMUNE COMPLEXES PRESENT IN THE SERUM SAMPLE TO FORM A COMPLEX WHICH IS INSOLUBLE IN 3% PEG.

2.4.4 Preparation of Human or Rabbit IgG Aggregates

Rabbit or human IgG Cohn Fraction II (Sigma Chemicals, Poole, Dorset) at a concentration of 20 mg/ml was mixed with an equal volume of sodium hydroxide (0.2 M) in an ice bath and constantly stirred for 1 hour.

The solution was then dialysed against several changes of PBS to give a final pH of 7.4.

The protein concentration was determined by the Lowry method (Lowry, 1951) and aliquots of aggregates were stored at -70°C.

2.5 Automated Procedure for Cholesterol and Triglyceride

Determination

Samples for the autoanalyser (Technicon Instruments Corp. Ltd., Tarrytown, N.Y., 1972) were prepared by pipetting 100 µl of serum into 1.9 ml of 99% isopropranolol and 2.0g of zeolite (Sigma Chemicals, St. Louis, Miss.) in disposable 2.5 ml plastic tubes. The tubes were stoppered vortexed and spun at 1000g for 10 minutes. The supernatant was decanted into stoppered polyethylene vials for cholesterol and triglyceride analysis by the automated procedure.

(Technician Clinical Methods, No. 16A, September 1972, Nos. 24, March 1972).

2.6 Animals

Rabbits

New Zealand White Rabbits both male and female were weaned from the colony at Southampton University which were reared on a commercial stock diet (Labsure Animal Foods, Christopher Hill Group Ltd., P.O. Box 6, Castle Street, Poole, Dorset).

The animals were weaned at 6 - 8 weeks post partum and randomly allocated to different experimental groups. All the rabbits were housed individually in stainless steel cages and allowed free access to food and water, all of the experimental diets were fed ad libertum.

Mice

Male and female mice were from the University of Southampton colony which had been reared on a commercial chow diet (PRD - Christopher Hill Group, Dorset, U.K.)

The mice were weaned at 21 days and housed in groups of up to 10 mice per cage. The mice were allowed free access to food and water at all times.

All animals were maintained in rooms in which the temperature was kept at 21°C and the lighting followed a 12 hour light and dark cycle.

2.6.1 Collection of Blood Samples

Blood samples were taken from the marginal ear vein in the rabbit. The ear was shaved with a scalpel blade to expose a portion of the vein in which a small cut was made by the scalpel blade. The vein was pinched below the cut and the blood was allowed to drip freely into a glass centrifuge tube. Approximately 4 mls of blood was collected at each bleed and at the end of the bleed a piece of gauze was placed over the nicked vein and pressure was applied until the bleeding stopped.

Blood samples from the mice were obtained by decapitation. After decapitation the mouse was quickly placed in a funnel and the blood was allowed to drip into an LP₃ tube (Luckham Ltd., Burgess Hill, Sussex). The blood from three mice was pooled to make one sample.

2.7 Experimental Diets

Preparation of Diets

Rabbit Diets The experimental diets for rabbits were prepared by mixing the dry ingredients in a Hobart mixer and pelleted after the addition of water (10% (v/w)). The resulting mixture was then pelleted to a size of 3 x 20 mm and dried overnight at 60°C in a forced draught oven.

When the diet involved the addition of a particular ingredient to the normal rabbit stock diet (RAG stock diet, Labsure Animal Foods) the stock pellets were ground up to a fine powder, the additional ingredient such as dried skimmed milk or powdered ovalbumin was added with 10% water, repelleted and dried as previously described.

Mice Diets The experimental diets for mice were prepared by mixing the dry ingredients in a Hobart mixer and after thorough mixing, water was added until the ingredients formed a soft but not sticky dough.

The dough was then passed through a mixer attached to the Hobart mixer forming pellets of 10 x 30 mm which were dried on trays overnight at 40°C in a forced draught oven.

2.8 Statistical Methods

The data were analysed by either one-way or two-way analysis of variance (ANOVA). Mean values are presented in the tables accompanied by their appropriate standard error. However, comparison of means was carried out using pooled standard error of the means, following ANOVA by either Duncans Multiple Range Test or the Least Significant Difference Test as outlined by *Snedecor (Statistical Methods, 7th Edition, Iowa State Univ. Press)*.

The data for rabbit antigen specific antibodies is expressed as a percentage of the appropriate antiserum (See Section 2.2.2). This required angular transformation prior to ANOVA, since the statistical analysis for data based on percentages is inadvisable.

TABLE 2.1

Rabbit Stock Diet RAG*

	<u>Content g/kg Diet</u>
Oats	125
Wheat Feed	134
Bran	375
Linseed	50
Fish Meal (English White Fish)	100
Dried Grass	200
Embazin Premix	1.12
RAG Vitamins (See Table 2.1.1)	5.0
RAG Minerals (See Table 2.1.2)	10
Metabolizable Energy	= 7.85 MJ/kg
Crude Protein	= 208.2 g/kg Diet

*Labsure Animal Foods, Christopher Hill Group Ltd.,
P.O. Box 6, Castle Street, Poole, Dorset

TABLE 2.1.1Contents of RAG Vitamin Mix (1 Kg)

Vitamin A	-	1600000 iu
Vitamin D ₃	-	200000 iu
Vitamin B ₂	-	1.6 g
Nicotinic Acid	-	4 g
Pantothenic Acid	-	0.8 g
Vitamin B ₁₂	-	2.4 mg
Vitamin E	-	5000 iu
Vitamin K	-	2 g
Folic Acid	-	1.2 g
Choline Chloride	-	40 g
Vitamin B ₁	-	0.4 g

Made up to 1 Kg by the addition of Fine Maize
Meal

TABLE 2.1.2RAG Mineral Mixg/Kg Mineral Mix

Sodium Chloride	201
Limestone Flour	558
Dicalcium Phosphate	156.4
Magnesium Oxide	16.7
Iron Sulphate	14.7
Copper Sulphate	2.7
Manganese Sulphate	35.5
Cobalt Sulphate	0.19
Calcium Iodate	0.23
Fine Maize Meal	14.5

TABLE 2.2Stock Diet + 10% Dried Skimmed Milk

100g Dried Skimmed Milk (St. Ivel Ltd., Trowbridge, Wilts) per kilogram of RAG Stock Diet (Labsure Animal Foods, Christopher Hill Group Ltd., P.O. Box 6, Castle Street, Poole, Dorset).

Milk Protein per Kg Diet

Total Milk Protein	36.4 grams
Casein	31.01 grams
β Lactoglobulin	3.69 grams
α Lactalbumin	1.31 grams
Bovine Serum Albumin	0.109 grams

TABLE 2.3Stock Diet + Casein

RAG Stock Diet (Labsure Animal Foods, Christopher Hill Group Ltd., P.O. Box 6, Poole, Dorset)

Casein (Express Dairy Foods Ltd., 430 Victoria Road, South Ruislip, Middlesex, HA4 OHF)

- RAG Stock Diet + 1% Casein (10 g Casein per kg stock diet)
- RAG Stock Diet + 5% Casein (50 g Casein per kg stock diet)
- RAG Stock Diet +10% Casein (100g Casein per kg stock diet)

TABLE 2.4Stock Diet + Hen Ovalbumin

RAG Stock Diet (Labsure Animal Foods, Christopher Hill
Group Ltd., P.O. Box 6, Poole, Dorset)

HEN Ovalbumin (John F. Renshaw & Co., Ltd., Mitcham,
Surrey, England)

- a) RAG Stock Diet + 1% Ovalbumin (10 g Ovalbumin per kg stock diet)
- b) RAG Stock Diet + 5% Ovalbumin (50 g Ovalbumin per kg stock diet)
- c) RAG Stock Diet + 10% Ovalbumin (100 g Ovalbumin per kg stock diet)

TABLE 2.5

Semi Purified Cows Milk Rabbit Diet

<u>g/Kg Diet</u>		
Casein		140 (Express Dairy Foods Ltd)
Dried Skimmed Milk		506 (St. Ivel Ltd., Trowbridge)
Bran		150
Coconut Oil		158
Maize Oil		21
Methionine		1
Minerals (See Table 2.5.1)		23
Vitamins (See Table 2.5.2)		9
Metabolisable Energy	=	18 MJ/Kg
Energy From Protein	=	31%
Energy From Fat	=	40%
Energy From Carbohydrate	=	29%
Total Cholesterol Content	=	0.005%

TABLE 2.5.1Minerals

		<u>g/Kg Diet</u>
CaHPO ₄	DCP	= 16.4
CaCO ₃		= 4.6
Mg (OH) ₂		= 1.22
CuSO ₄		= 0.015
FeSO ₄		= 0.678
MnSO ₄		= 0.38
ZnSO ₄		= 0.25
KLO ₃		= 0.00813
NaMoO ₄		= 0.0043
CrKO ₄	12H ₂ O	= 0.0092
Na ₂ Sa	1OH ₂ O	= 0.0045

TABLE 2.5.2Vitaminsmg/Kg Diet

Biotin	0.097
Folic Acid	2.36
Inositol	1.74
Nicotinic Acid	47.44
Ca Pantothenic Acid	9.26
Vitamin A	10.17
Vitamin D	4.08
Rovermix E ₂₅	315.14
Menaphthone K	3.58
Thiamine	1.75
Maize Starch	7.77 g
Choline	1.13 g

TABLE 2.6Laboratory Mouse Stock Diet

(PRD - From Christopher Hill Group, Dorset, U.K.)

Diet Composition (g/Kg)

Ground Barley	51.25
Ground Wheat	200.00
Ground Maize	100.00
Ground Oats	181.25
Wheat Feed	200.00
Soya Extracts	100.00
Dried Skimmed Milk	75.00
Dried Yeast	25.00
White Fish Meal	50.00
Sodium Chloride	7.50
Vitamin Supplement	5.00
Mineral Mixture	500
Energy From Protein	19.7%

TABLE 2.7

Mouse Diet 1 (AIN 1976)

	<u>g/Kg</u>
Ovalbumin	203
Corn Starch	150
Sucrose	500
Bran	50
Corn Oil	50
AIN Minerals (Table 2.7.1)	35
AIN Vitamins (Table 2.7.2)	12
Energy from Protein	= 21%
Energy from Carbohydrate	= 67%
Energy from Fat	= 11%

TABLE 2.7.1

Mineral Mix (AINS, 1976)

	<u>g/Kg</u>
CaHPO ₄	500
NaCl	74
KCl	42
K ₂ SO ₄	52
Mg(OH) ₂	35
Manganous Carbonate	3.5
Ferric Citrate	6.0
Zinc Carbonate	1.6
Cupric Carbonate	0.3
Kl	0.01
NaSe	0.01
Cr(K) (SO ₄) ₂	0.55
NaMO ₄	0.01
Sugar	285

TABLE 2.7.2Vitamin Mix (AINS, 1976)

	<u>Mg/Kg</u>
Thiamine	600
Riboflavin	600
Vitamin B ₆	700
Nicotinic Acid	3000
Ca Pentothenate	1600
Biotin	20
Folic Acid	200
Vitamin B ₁₂	1
Vitamin A (400,000 iu)	800
Vitamin D (10,000 iu)	20
Vitamin E (5,000 iu)	20,000
Vitamin K (Menaphthone)	5
Inositol	10,000
Choline	10,000
Starch Supplement	952.454 g

TABLE 2.8

Mouse Diet 2

	2.8b <u>Experimental</u> g/Kg	2.8a <u>Control</u> g/Kg
Ovalbumin	100	-
Promine D	96.6	196.6
Corn Oil	20.2	20.2
Sugar	100	100
Starch	588.4	588.4
Bran	50	50
AIN Vitamins (Table 2.7.1)	12	12
AIN Minerals (Table 2.7.2)	35	35
Energy from Ovalbumin	10.7%	0%
Energy from Total Protein	21%	21%
Energy from Carbohydrate	74%	74%
Energy from Fat	5%	5%

(The Hen Ovalbumin for the Mouse Diet 1 and 2 was purchased from John F. Renshaw & Co. Ltd., Mitcham, Surrey).

CHAPTER 3

THE IMMUNOLOGICAL RESPONSE TO DIETARY ANTIGEN -
THE EFFECT OF AGE AT ANTIGEN INTRODUCTION

Introduction

Intestinal absorption of macromolecules is believed to be greater in the newborn than in the adult, which is probably due to the immaturity of the neonatal mucosal barrier (Walker, 1978).

Most macromolecular transport studies have investigated the mechanism by which immunoglobulins are transported to the neonate using animals such as the rat, which receives the majority of its passive immunity post-natally, or the ungulate which receives all its maternal antibodies after birth.

In contrast to the transport of maternal antibodies in these species, few studies have investigated macromolecular transport in animals which receive complete interuterine passive immunity such as the rabbit and primate.

The observation in humans that infants have higher serum antibody titres particularly to cows milk suggests a period of increased macromolecular absorption. Peak serum antibody titres to milk proteins have been found between 3 and 12 months after birth (Kletter et al., 1971), which may coincide in some infants with a transient secretory IgA deficiency (Taylor et al., 1973; Soothill et al., 1976). The factors responsible for the maturation of the IgA system are not known although IgA and IgG synthesis appears to be dependent upon antigenic stimulation (Vitella et al., 1974). IgA is usually the last immunoglobulin to appear after birth (Martin & Leslie, 1973) and the IgA system in the intestinal tract is not fully developed before 2 years of age (Savilahti, 1972). Therefore, the immune response produced to a dietary protein at weaning may reflect the immaturity of the intestinal mucosa or the lack of a fully developed secretory antibody system which prior to weaning would have been supplied via the maternal colostrum and milk.

A recent study in rabbits shows a decline in macromolecular absorption of the protein BSA with increasing age (Udall & Pang et al., 1981), indicating that the immune response to a dietary protein introduced to the more mature animal may differ from that exhibited by the weanling.

Experiment 3a investigates the production of circulating antibodies in rabbits introduced to cows milk at different stages of maturity. This is extended in experiment 3b which examines the effect of age of antigen introduction on maternally induced hyporesponsiveness.

Experiment 3a

Experimental Design

Fifteen New Zealand White Rabbits were at weaning divided into three groups, consisting of five animals; weaning was at 6 weeks post-partum. Each group of five rabbits was introduced to a diet containing milk protein at different ages.

The rabbits were fed a stock diet (Table 2.1) until they reached the designated age for the introduction of milk protein to the diet. The diet containing milk protein was made by adding 10% (w/w) of dried skimmed milk (DSM) to the stock diet (Table 2.2).

Group 1 - Introduced to DSM at weaning
(6 weeks post partum)

Group 2 - Introduced to DSM at 6 weeks post weaning

Group 3 - Introduced to DSM at 12 weeks post weaning

The rabbits were housed as outlined in Section 2.6 and had ad libitum access to fresh food and water. A blood sample was taken from the marginal ear vein at weaning and every three weeks thereafter. The blood was allowed to stand for one hour at 37°C and centrifuged at 1500g for 20 minutes. The serum was removed by a pasteur pipette and stored in 0.5 ml aliquots at -22°C, ready for analysis. Body weights were also recorded at regular intervals. Circulating serum antimilk protein IgG was measured by the ELISA Method (i), as explained in Section 2.1.1, for which the serum was diluted in PBST 1:200. The antigen used to coat the cuvettes was DSM (St. Ivel Ltd., Trowbridge) at a concentration of 30 µg per ml of coating buffer, and swine anti rabbit IgG (Nordic Immunochemical Laboratories, Tilberg, The Netherlands) was used as the enzyme label with O-phenylene diamine as the chromogen.

The optical density results obtained for the presence of circulating anti milk protein antibodies in the serum samples were expressed as a percentage of a reference serum containing antibodies raised against DSM (Section 2.2.1(i)) and measured by the same ELISA system. The standard curve for the reference serum is given in Fig. 3.1.

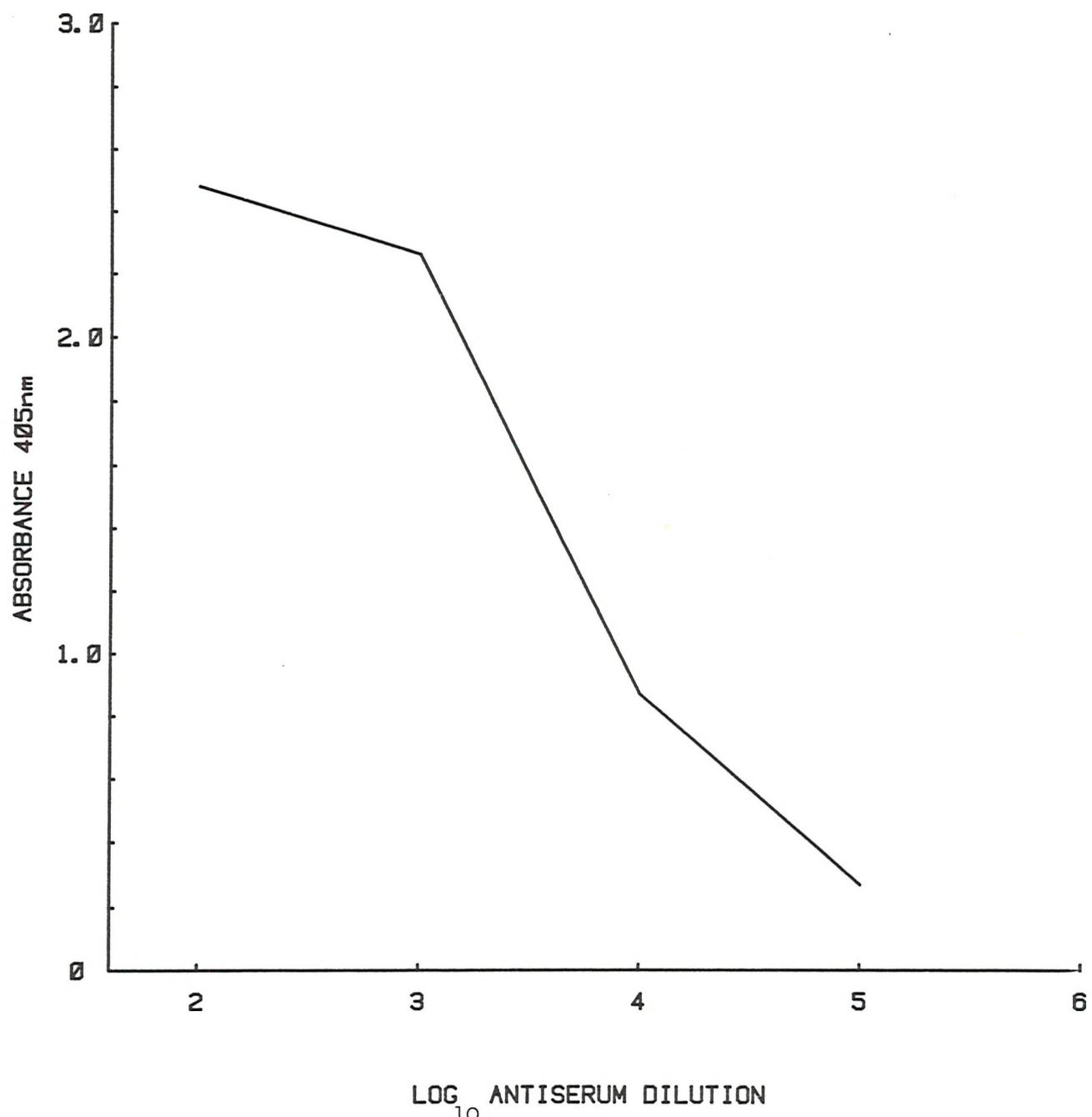


Figure 3.1 STANDARD CURVE. ANTI-DSM IgG MEASURED BY ELISA IN SERUM FROM AN ANIMAL IMMUNIZED AGAINST DSM.

Results

There was no significant difference in the body weights of the animals in each group at weaning (1.18 kg \pm 0.047; 1.18 kg \pm 0.024; 1.09 kg \pm 0.052). The mean body weights for each group over the experimental period are given in Table 3.1.

Circulating serum anti milk IgG antibodies were analysed by two-way analysis of variance which showed that, while there was no overall difference between the groups, there was however a significant increase in antibodies during the experiment ($P < 0.001$) and that a significant group-time interaction occurred ($P < 0.01$). When the age of introduction to the milk was taken as the baseline result and the increase in specific serum antibodies over the subsequent 6 weeks examined by a two-way analysis of variance, no significant difference was found between groups, nor was the group-time interaction significant. The increase in antibodies over the experimental period remained statistically significant ($P < 0.001$).

The results within each group were further examined by the Duncan Multiple Range Test which is summarized in Table 3.2. Only the rabbits introduced to milk at 6 or 12 weeks past weaning produced a significant increase in circulating antimilk antibodies during the experimental period. Group 1, in which the milk protein was introduced to the rabbits at weaning, did not produce a significant rise in serum antibodies over the complete experimental period (Fig. 3.2).

The Duncan Multiple Range Test was also used to compare the means when the results obtained at the age of introduction of milk protein were taken as the baseline measurement of circulating antibodies. This is given in Table 3.3. Group 3, in which the rabbits were introduced to DSM 12 weeks post weaning was the only group that showed a significant increase in antibodies over the following 6 weeks. However, the result for Group 2 after a 6 week period of consuming the milk diet was not available. The mean concentration of circulating serum antibodies to milk protein of Group 3 after 6 weeks on the diet was significantly greater than for Group 1.

TABLE 3.1

Mean Body Weights (given in kgs \pm S.E.) of the Rabbits in Each Group over the Experimental Period

Group	Age (Post Weaning)						
	0	3	6	9	12	15	18
1	1.18 \pm 0.047	1.80 \pm 0.048	2.41 \pm 0.063	2.81 \pm 0.076	2.90 \pm 0.187	3.27 \pm 0.098	3.41 \pm 0.091
2	1.18 \pm 0.024	1.81 \pm 0.052	2.36 \pm 0.044	2.86 \pm 0.067	3.18 \pm 0.038	3.40 \pm 0.048	3.51 \pm 0.027
3	1.09 \pm 0.052	1.74 \pm 0.061	2.30 \pm 0.075	2.70 \pm 0.11	3.02 \pm 0.114	3.30 \pm 0.136	3.38 \pm 0.140

No significant difference was found in the mean weight gain of each group of animals

TABLE 3.2

Mean Values (\pm S.E.) for Circulating IgG Antibodies to
 Dietary Cows Milk Protein in Rabbits Introduced to Cows
 Milk Protein at Weaning (Group 1) or at 6 weeks (Group 2)
 or 12 weeks (Group 3) Post Weaning

Age (Weeks Post Weaning)	Group		
	1	2	3
0	0.428 \pm 0.208 ^a	0 \pm 0 ^a	0.360 \pm 0.134 ^a
3	2.99 \pm 1.84 ^a	0.072 \pm 0.072 ^a	0.504 \pm 0.211 ^a
6	1.622 \pm 0.605 ^a	0.396 \pm 0.170 ^{ab}	0.660 \pm 0.180 ^a
9	1.616 \pm 0.636 ^a	5.106 \pm 3.73 ^{ab}	0.319 \pm 0.095 ^a
12	0.824 \pm 0.186 ^a	N.A.	0.728 \pm 0.066 ^a
15	1.068 \pm 0.263 ^a	3.83 \pm 2.69 ^{ab}	2.622 \pm 0.812 ^a
18	0.918 \pm 0.314 ^a	11.90 \pm 9.57 ^b	29.96 \pm 17.55 ^b

The results are expressed as a percentage of a standard reference serum (Fig. 3.1)

a,b - Mean values in any group without a common superscript differ significantly ($P < 0.05$)

NA - Not available

TABLE 3.3

Mean Values (\pm S.E.) for Circulating IgG Antibodies to
Dietary Cows Milk Protein in Rabbits Introduced to Cows
Milk Protein at Weaning (Group 1) or at 6 Weeks (Group 2)
or 12 Weeks (Group 3) Post Weaning

<u>Time (Weeks)</u>	<u>Group</u>		
<u>After Introduction</u> <u>of Cows Milk Protein</u>	1	2	3
0	0.428 \pm 0.208 ^a	0.396 \pm 0.170 ^a	0.728 \pm 0.066 ^a
3	2.99 \pm 1.84 ^a	5.106 \pm 3.73 ^a	2.622 \pm 0.872 ^a
6	1.616 \pm 0.636 ^a	N.A.	29.96 \pm 17.55 ^{b*}

The results are expressed as a percentage of a standard reference serum (Fig. 3.1), and compare values at introduction of cows milk protein and 3 and 6 weeks post-introduction.

a,b - Mean values in any given group without a common superscript differ significantly ($P < 0.05$)

* - Differs significantly from any other group mean value for a given time after antigen introduction ($P < 0.05$)

NA - Not available

RABBITS INTRODUCED TO DSM AT:
WEANING (○), GROUP 1.
6 WEEKS POST-WEANING (X), GROUP 2.
12 WEEKS POST-WEANING (△), GROUP 3.

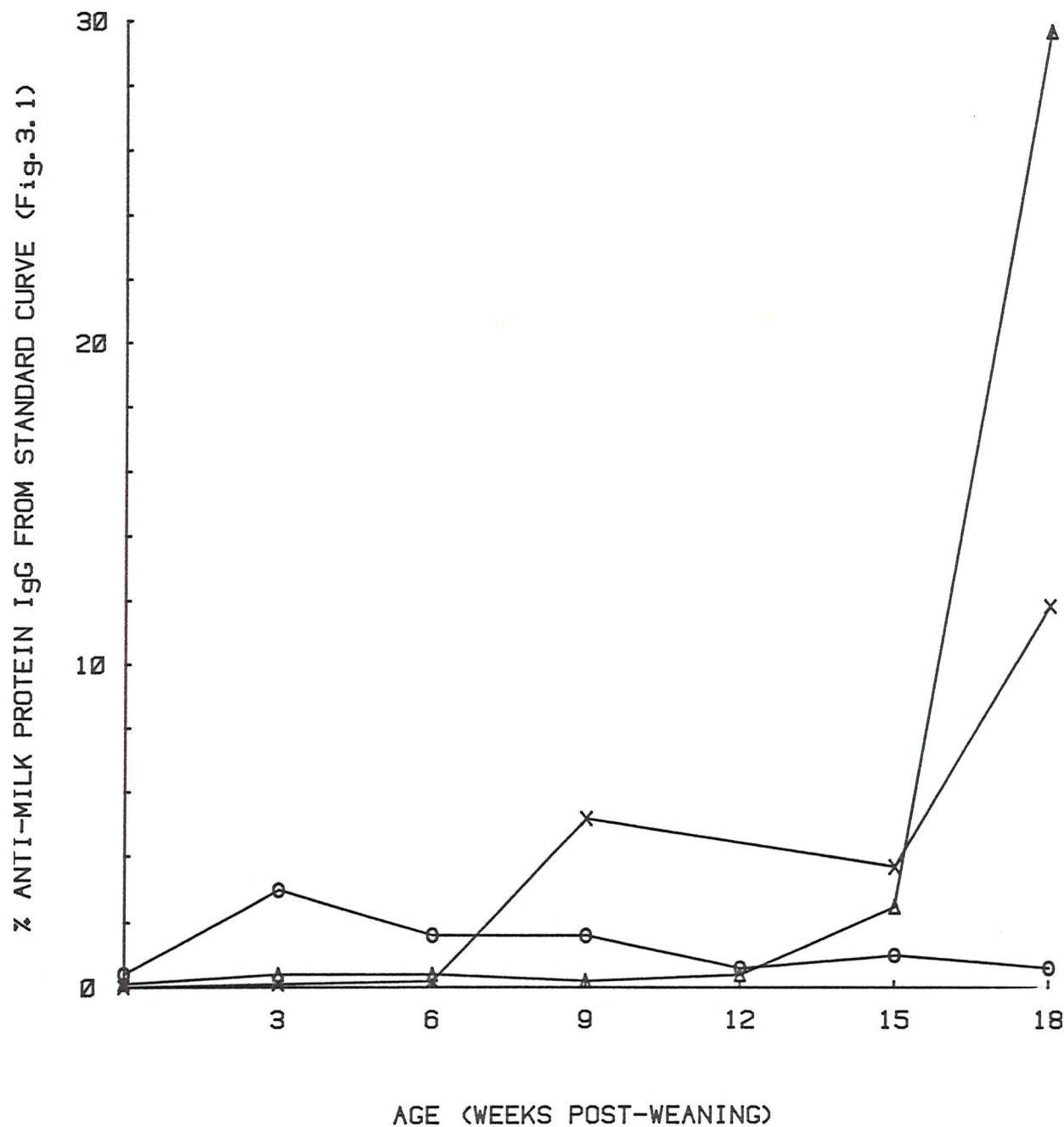


Figure 3.2 ANTI-MILK PROTEIN IgG PRESENT IN THE SERUM OF ANIMALS INTRODUCED TO A DIET CONTAINING 10% DSM AT DIFFERENT AGES. RESULTS EXPRESSED AS A PERCENTAGE OF A STANDARD REFERENCE SERUM (Fig. 3.1).

Discussion

The presence of circulating antimilk protein IgG in the serum increased significantly in the rabbits that were introduced to milk at 6 weeks or 12 weeks post weaning (Group 2 and 3). However, there was no increase in specific serum antibodies over the experimental period in the rabbits fed the diet containing the milk protein from weaning. This indicates that macromolecular absorption in the rabbit is not restricted to the gut of the newborn or weanling animal. Protein in an antigenic form continues to cross the mucosal barrier, giving rise to specific circulating antibodies in the mature animal. The lack of specific antibodies in the sera of rabbits in Group 1 may be due either to specific systemic tolerance to the dietary protein or to immune unresponsiveness. Other studies have shown that introducing a dietary protein at weaning to rabbits previously unexposed to the protein results in a dramatic increase in the presence of serum antibodies to that protein (Gallagher et al., 1982A). However, in these experiments the dietary protein investigated made up between 10 and 30% of the diet, whereas in the present study the final concentration of milk protein in the diet was only 3.63% (i.e. 100g per kg diet at 36% crude protein). Therefore, the lack of serum antibodies in Group 1 may reflect the importance of the amount of ingested dietary antigen on the production of circulating antibodies.

The more mature rabbits in Groups 2 and 3 were consuming 7-8g dried skimmed milk a day, whereas the weanling animals may only be consuming 3-5g dried skimmed milk daily and during the first few days after weaning the consumption may have been even lower.

The Daily ingestion of 7-8g soya protein a day has been found to be sufficient to produce a good specific IgG response. However, the consumption of 40 mg of soya per kg diet three times per week was insufficient to stimulate an immune response in adult rabbits (Pitts, 1983).

Farr and Dixon (1959) have also suggested that the antigen concentration is important in initiating antibody synthesis. They also report that antigens differ in their ability to stimulate an antibody response. Dried skimmed milk contains a variety of proteins, including casein, β lactoglobulin, α lactalbumin and BSA. Consequently, a given intake of milk protein per day is an over estimate of the

actual intake of the individual antigen. The table below estimates the quantity of the individual milk proteins ingested by each rabbit daily.

Table 3.4

Individual Milk Protein	Approximate Quantity of Ingested Antigen Per Day (In Grams)
(Assuming Rabbits Consume 70g Diet/Day)	

Casein	2.17
β Lactoglobulin	0.259
α Lactalbumin	0.092
BSA	0.025

The ability of DSM to produce a systemic immune response will depend on the overall response produced independently by each of the constituent milk proteins.

A second possibility is that the weanling rabbits were unresponsive to the milk protein because it was not recognized as being foreign. Ingestion of maternal milk by the infant and suckling rabbit does not appear to give rise to antibodies against maternal milk protein. This lack of an immune response to maternal milk is not understood, but is possibly due to the close immune relationship between mother and foetus and the early exposure to maternal milk proteins. Another phenomenon which may be important in explaining the unresponsiveness to maternal milk is the precocious secretion of milk from the mammary tissue of the foetus or newborn which has been observed in a number of species (Cowie *et al.*, 1980).

A recent experiment has shown that weanling rabbits have high levels of circulating milk protein, which is probably of maternal origin. However, no circulating antimilk protein antibodies were detected (Harris & Gibney, *unpublished communication*).

The ability of the mature rabbit to mount an immune response against ingested antigenic dietary protein supports studies by Korenblat *et al.*, (1968). In this study the ingestion of childhood doses of BSA was effective in producing increased amounts of circulating anti-BSA

antibodies in adults who had previously exhibited only low levels of circulating antibody. However, individuals who previously showed no detectable levels of serum anti-BSA antibodies did not produce a rise in serum antibodies when challenged with the supplementary dietary BSA. Thus the observation that antibodies to common dietary proteins are lower in adults than infants may not be due to changes in the gastrointestinal tract that would reduce the amount of antigen entering the circulation, but that acquired immunological tolerance may occur following continuous minimal antigenic challenge (Goldberg *et al.*, 1971).

The permeability of the rabbit gastrointestinal tract is thought to decrease significantly during the first week of life (Udall, Pang *et al.*, 1981), which is possibly facilitated by a factor in the colostrum (Udall & Colony *et al.*, 1981). However, any difference in macromolecular absorption after this period may not be an important factor in determining the immune response to ingested antigens.

Experiment 3b

Introduction

To extend the study of the effect of age on the immune response mounted against an ingested dietary antigen, the following experiment examines the effect of the maternal diet and subsequent tolerance on this response.

The rabbit is a useful non-primate model for this study as both the human and rabbit receive passive immunity exclusively before parturition, although at birth the human infant may be more immunocompetent than the newborn rabbit. Plasma cells containing IgG and IgM and circulating IgM have been identified as early as the fifth month of gestation in the human foetus, which implies the presence of an immunocompetent immune system well before the end of the gestational period (Van Firth *et al.*, 1965). Rothberg (1969), studying the immune system of the premature infant, provides evidence that the onset of antibody synthesis is related to birth and antigenic stimulation rather than gestational age and the initial antibodies detected in the sera of premature infants were to soluble antigenic proteins. The earliest detection of antibodies in the rabbit has been a few hours after birth, but levels are still low one month after birth (Solomon, 1971).

The pattern of antibody production in the rabbit after the ingestion of a soluble protein appears to be similar to the human response. An initial rise in antibodies of the IgM and IgG class occurs followed by a continued increase in IgG and decline in IgM activity (Rothberg *et al.*, 1967). IgG appears in the serum 14-21 days after the ingestion of milk feeding in humans and rabbits (Rothberg & Farr, 1965A).

Previous studies have shown that maternal exposure to a protein will decrease the ability of the offspring to develop serum antibodies to that protein if it is introduced at weaning (Pathirana *et al.*, 1981). The tolerance observed may have either been due to the passive acquisition of maternal antibodies, either from IgG received in utero, via selective transmission across the yolk sac to the foetal circulation (Brambell, 1958) (See also Section 1.3.1), or from the IgA that is obtained by the suckling neonate from the colostrum (Beer *et al.*, 1974) (See Section 1.1.2(ii)). The presence of circulating maternal antibody has been found to interfere with the induction of active immunity in young animals (Leiper & Solomon, 1976). The interference is believed to be

due to competition for antigen between specific receptors on lymphocytes and antigen combining sites on molecules of circulating antibody from maternal origin. At birth or early in postnatal life, the amount of antibody of maternal origin in the circulation is maximal, reducing the chances of antigen binding with lymphocyte receptors. However, in adult rabbits passive administration of antibodies was found to have no effect on the development of circulating antibodies following the ingestion of a soluble protein (Rieger et al., 1980).

Alternatively, the tolerance may be acquired by small amounts of antigen reaching the young animal either from the maternal breast milk, as a variety of food proteins have been detected in human breast milk (Gerrard, 1979; Kulangara, 1980), or from the preweanling rabbit nibbling the food in the mothers cage. Young rabbits appear to nibble the pelleted maternal diet at 16-18 days of age, which is the period when the young animal is still showing increased absorption of intestinal antigens (Udall, Pang et al., 1981). It has been demonstrated that the earlier in life a young animal encounters an antigen the more profound the degree of tolerance that is produced (Smith, 1961).

The effect of the maternal diet on the ability of the offspring to mount an immune response is examined from weaning to maturity.

Experimental Design

8 Female New Zealand White Rabbits were fed a stock diet in which fish was the major protein source (Table 2.1). At 3 months of age 10% DSM (w/w) was added to the diet of four of the female rabbits (Table 2.2). The offspring remained with their mother until weaning (6 weeks post partum) and were then divided into three groups. Each group consisted of 12 animals, half the weanling rabbits were from dams which had been fed milk protein and half were from dams which had not been exposed to milk. Each group of rabbits was introduced to the diet containing 10% DSM (Table 2.2) at different ages.

- Group 1 - Introduced to DSM at weaning (6 weeks post partum)
- Group 2 - Introduced to DSM at 6 weeks post weaning
- Group 3 - Introduced to DSM at 12 weeks post weaning.

The rabbits had free access to fresh food and water and were housed as outlined in Section 2.6. The experimental procedure was the same as

for Experiment 3a. Blood samples were taken from the marginal ear vein from all rabbits at weaning and then every 3 weeks; body weights were also recorded at 3-weekly intervals.

The serum was collected and used diluted 1:200 with PBST to measure for circulating antimilk protein antibodies as in Experiment 3a. The results were expressed as a percentage of a standard reference serum containing antibodies raised by intramuscular injection against DSM (Fig. 3.1).

Results

The body weight gain of the rabbits is presented in Fig. 3.3 for Group 1, Fig. 3.4 for Group 2 and Fig. 3.5 for Group 3. No significant treatment effects on body weight were found.

The development of antimilk protein IgG was examined by 2 way analysis of variance. A significant increase in specific serum antibodies was observed in each group over the experimental period ($P < 0.001$). There was no overall difference within each group in the development of antibodies by the offspring of dams not fed milk compared to the offspring of dams exposed to milk. Only in Group 3, in which the rabbits were introduced to milk protein at 12 weeks post weaning, was there a significant interaction between specific circulating serum antibodies produced over the experimental period and the maternal dietary history of the rabbits ($P < 0.01$).

Further analysis by the Duncan Multiple Range Test, which is presented in Table 3.5 (Group 1), Table 3.6 (Group 2) and Table 3.7 (Group 3), shows that the offspring of both maternal groups produced an increase in circulating serum antibodies, which appears to be more pronounced in animals from dams which had not been fed milk protein. This difference between the different maternal groups reached significance in the rabbits introduced to the milk diet 12 weeks post weaning (Group 3) ($P < 0.05$).

When the age of introduction to milk was taken as baseline and the production of specific serum antibodies over the next 6 weeks examined a significant increase in serum antibodies to DSM was observed, ($P < 0.001$). The mean results were analysed by the Duncan Multiple Range Test, which demonstrated that in Group 2 and Group 3, a significantly higher level of serum antibodies developed in those rabbits from dams not fed the diet containing milk protein, compared to the

offspring of dams fed milk ($P < 0.05$), which is illustrated in Table 3.8. The difference reaches significance 6 weeks after the introduction to the milk diet in Group 2 and 3 weeks after the introduction to the milk diet in Group 3. However, the presence of significantly greater levels of serum milk antibodies occurred in Group 1 at 3 and 6 weeks in the offspring of dams exposed to milk, compared to the weanlings of dams not exposed to milk ($P < 0.05$).

TABLE 3.5

Mean Values (\pm S.E.) for Circulating IgG Antibodies to
Dietary Cows Milk Protein in Rabbits Introduced to Cows
Milk Protein at Weaning (Group 1)

<u>Age of Rabbits</u> <u>(Weeks Post Weaning)</u>	<u>Dams Fed Milk</u>	<u>Dams Not Fed Milk</u>
0	0.156 \pm 0.081 ^a	NS
3	3.155 \pm 0.02 ^b	NS
6	3.42 \pm 1.22 ^b	NS
9	8.47 \pm 3.13 ^b	NS
		10.9 \pm 2.80 ^c

The results are expressed as a percentage of a standard reference serum (Fig. 3.1)

a,b,c - Mean values for anti milk protein IgG in a given group without a common superscript differ significantly

NS - Mean values for anti milk protein IgG between groups at a given time do not differ significantly

TABLE 3.6

Mean Values (\pm S.E.) for Circulating IgG Antibodies to
Dietary Cows Milk Protein in Rabbits Introduced to Cows
Milk Protein at 6 Weeks Post Weaning (Group 2)

<u>Age of Rabbits</u> <u>(Weeks Post Weaning)</u>	<u>Dams Fed Milk</u>	<u>Dams Not Fed Milk</u>	
0	0.083 \pm 0.054 ^a	NS	0.075 \pm 0.047 ^a
3	0.474 \pm 0.311 ^{ab}	NS	0.389 \pm 0.061 ^{ab}
6	0.659 \pm 0.368 ^{abc}	NS	0.255 \pm 0.089 ^{ab}
9	3.23 \pm 1.362 ^c	NS	2.41 \pm 0.0843 ^{bc}
12	2.67 \pm 1.066 ^{bc}	NS	5.10 \pm 2.158 ^{cd}
15	3.59 \pm 1.446 ^c	NS	7.97 \pm 3.23 ^d

The results are expressed as a percentage of a standard reference serum (Fig. 3.1)

a,b,c - Mean values for anti milk protein IgG in a given group without a common superscript differ significantly ($P < 0.05$)

NS - Mean values for anti milk protein IgG between groups at a given time do not differ significantly

TABLE 3.7

Mean Values (+ S.E.) for Circulating IgG Antibodies to
Dietary Cows Milk Protein in Rabbits Introduced to Cows
Milk Protein at 12 Weeks Post Weaning (Group 3)

<u>Age of Rabbits</u> <u>(Weeks Post Weaning)</u>	<u>Dams Fed Milk</u>	<u>Dams Not Fed Milk</u>
0	0.033 ± 0.033 ^a	0 ± 0
3	0.375 ± 0.061 ^{bc}	0.393 ± 0.104 ^b
6	0.587 ± 0.196 ^{bc}	0.29 ± 0.023 ^b
9	0.461 ± 0.063 ^{bc}	0.251 ± 0.017 ^b
12	0.246 ± 0.058 ^b	0.11 ± 0.067 ^b
15	0.834 ± 0.275 ^c	1.84 ± 0.328 ^c
18	2.136 ± 0.369 ^d	4.64 ± 0.702 ^d

The results are expressed as a percentage of a standard reference serum (Fig. 3.1)

a,b,c,d - Mean values for anti milk protein IgG in a given group without a common superscript differ significantly ($P < 0.05$)

* - Mean values for anti milk protein IgG between groups at a given time differ significantly ($P < 0.05$)

NS - Mean values for anti milk protein IgG between groups at a given time do not differ significantly

TABLE 3.8

Mean Values (\pm S.E.) For Circulating IgG Antibodies to Dietary Cows Milk Protein
in Rabbits Introduced to Cows Milk Protein at Weaning (Group 1) or at 6 Weeks
(Group 2) or 12 Weeks (Group 3) Postweaning

Dams Diet	Group 1		Group 2		Group 3	
	Milk	Non-Milk	Milk	Non-Milk	Milk	Non-Milk
Time after Milk Introduction						
0	0.156 \pm 0.081 ^a NS	0.0 \pm 0 ^a	0.659 \pm 0.368 ^a NS	0.255 \pm 0.089 ^a NS	0.246 \pm 0.058 ^a NS	0.11 \pm 0.067 ^a
3	3.155 \pm 1.02 ^b *	1.552 \pm 0.57 ^b *	3.23 \pm 1.362 ^b NS	2.41 \pm 0.843 ^b NS	0.834 \pm 0.275 ^b *	1.84 \pm 0.328 ^b
6	3.42 \pm 1.22 ^b *	1.72 \pm 0.44 ^b *	2.67 \pm 1.446 ^b *	5.10 \pm 2.158 ^c *	2.136 \pm 0.369 ^c *	4.64 \pm 0.702 ^c

The results are expressed as a percentage of a standard reference serum (Fig. 3.1) and compare the effect of maternal exposure to DSM on the values at introduction to cows milk protein and three and six weeks post introduction

a, b = Mean values in any line without a common superscript differ significantly ($P < 0.05$)

NS = Mean values within a given group at a particular time do not differ significantly

* = Mean values within a given group at a particular time differ significantly ($P < 0.05$)

Figure 3.3 MEAN BODY WEIGHT (Kg) + S.E. OF ANIMALS EXPOSED TO MILK PROTEIN FROM WEANING (GROUP 1). OVER THE EXPERIMENTAL PERIOD THERE WAS NO SIGNIFICANT DIFFERENCE IN THE WEIGHT GAIN OF THE TWO GROUPS BY 2 WAY ANALYSIS OF VARIANCE.

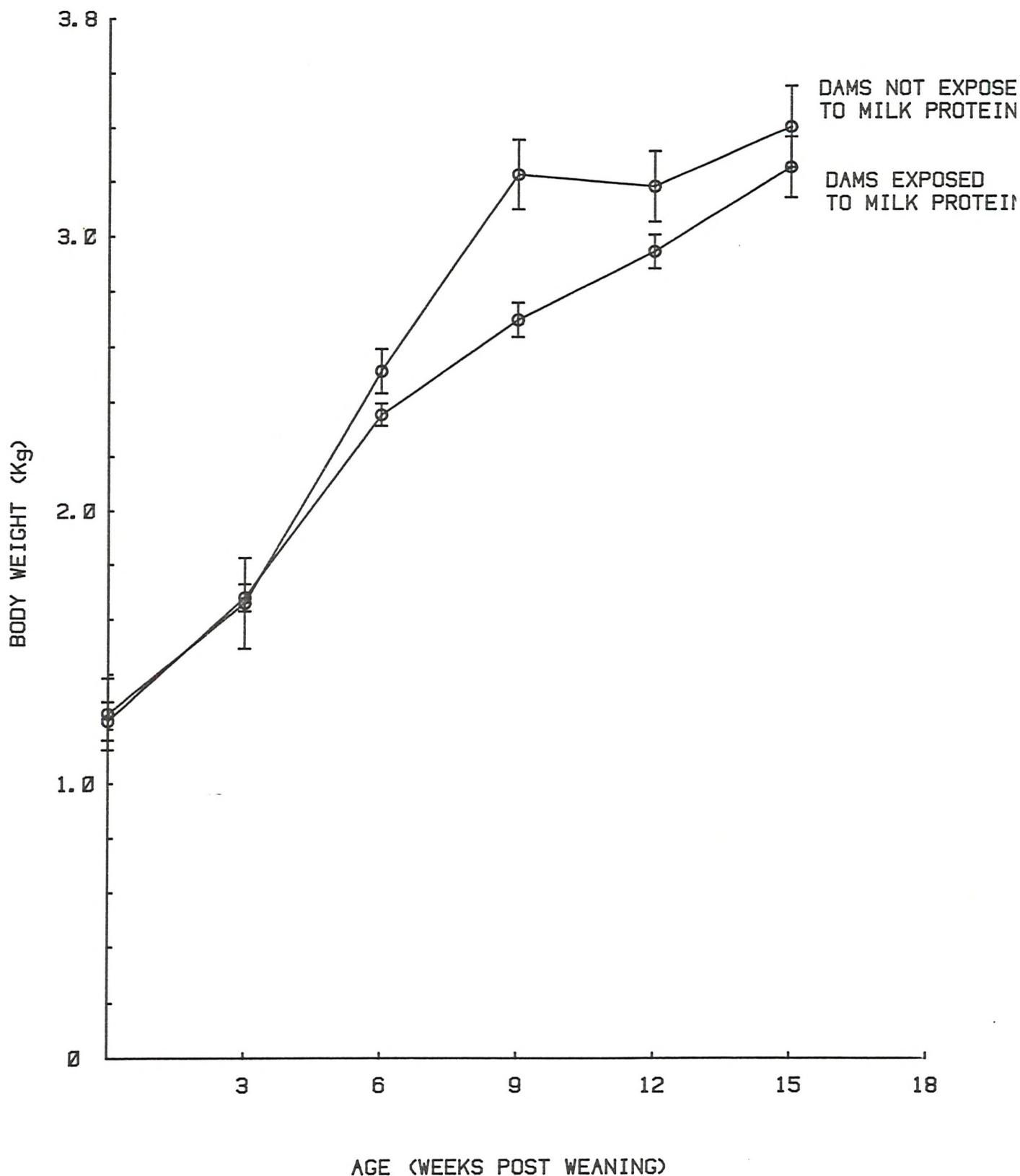


Figure 3.4 MEAN BODY WEIGHT (Kg) + S.E. OF ANIMALS EXPOSED TO MILK PROTEIN 6 WEEKS POST-WEANING (GROUP 2). OVER THE EXPERIMENTAL PERIOD THERE WAS NO SIGNIFICANT DIFFERENCE IN THE WEIGHT GAIN OF THE TWO GROUPS BY 2 WAY ANALYSIS OF VARIANCE.

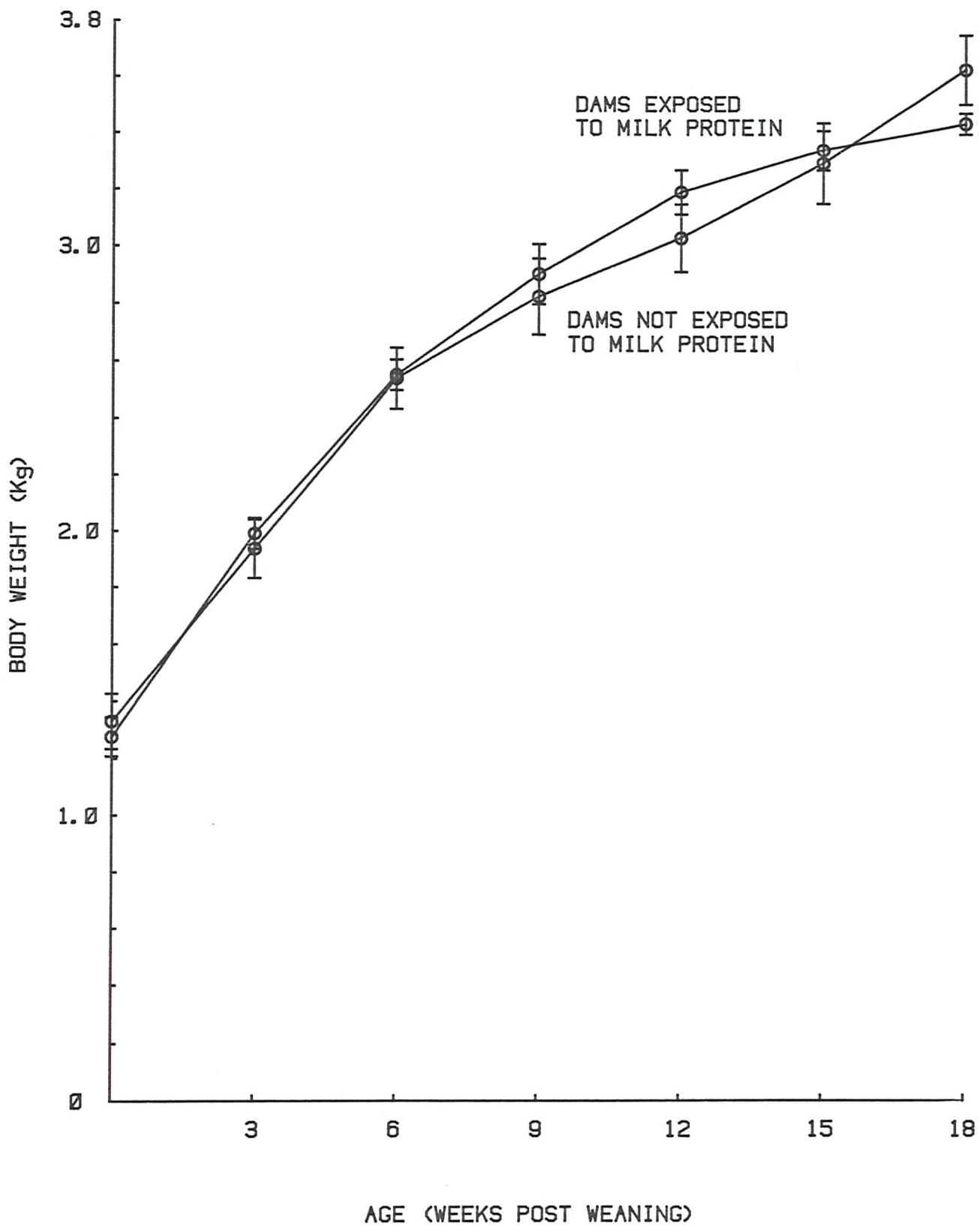


Figure 3.5 MEAN BODY WEIGHT (Kg) + S.E. OF ANIMALS EXPOSED TO MILK PROTEIN 12 WEEKS POST-WEANING (GROUP 3). OVER THE EXPERIMENTAL PERIOD THERE WAS NO SIGNIFICANT DIFFERENCE IN THE WEIGHT GAIN OF THE TWO GROUPS BY 2 WAY ANALYSIS OF VARIANCE.

Discussion

A significant increase in serum antimilk protein antibodies occurred after the introduction of milk protein to the diet at weaning, 6 weeks post weaning and 12 weeks post weaning (Groups 1, 2 and 3).

Maternal exposure to milk protein did not suppress the development of circulating serum antibodies in Group 1, although suppression was observed in Group 3. The rabbits in Group 2 only demonstrated suppressed serum specific antibodies in the offspring from dams exposed to milk protein when the result observed at the age of introduction to the diet containing DSM was taken at the baseline reading. The lack of suppression of antibodies in the serum of the offspring of dams exposed to milk compared with the offspring of dams not exposed to milk when introduced to this protein at weaning does not agree with previous reports (*Pathirana et al., 1981; Gallagher et al., 1982*). This may be due to the lower level of milk protein in the diet compared to the greater amount of dietary protein present in the diets of the previous studies. These papers also report a lower level of specific circulating antibodies after exposure to a milk based diet, compared with a soya based diet. This anomalous finding is discussed further in Chapter 7.

Examination of the production of serum antibodies by each rabbit individually (Appendix I, Table i & ii) indicates that some animals respond to the ingestion of milk protein by producing serum antibodies, whereas other animals do not. The ability to produce either an immune response or tolerance to a particular dietary antigen may be subject to a certain amount of genetic control. *Chiu and Chien (1972)* found that when the quantity of ingested protein is small, rabbits differed in their ability to produce immune responses when injected with different antigenic components of soyabean and *Kraft and Rothberg (1969)* only stimulated serum antibodies in half the rabbits injected with a low antigen dose. *Rothberg and Farr (1965A)* also found that the ingestion of cows milk protein in rabbits only produced antibodies in the sera of four out of six animals.

In conclusion, the results from Experiments 3a and 3b suggest that the ability to produce circulating serum antibodies is likely to depend on the antigenic properties of an individual protein. The immune response

stimulated by cows milk protein may differ from the response produced by other proteins in weanling rabbits due to the inability of the young animal to recognize the milk protein as foreign. Secondly, the quantity of antigen necessary to result either in tolerance or immunity may be important. Any result obtained using low concentrations of antigen may be dominated by the innate division of animals into responders and non-responders.

The results of both experiments do however indicate that the induction of an immune response to a dietary antigen is not confined to weanling animals, since a significant elevation in mean serum antimilk IgG occurred with antigen introduction at weaning and at 6 or 12 weeks thereafter. Furthermore, the rabbits introduced to milk at 6 and 12 weeks tended to show greater differences, which were statistically significant, between those born of milk fed dams and those born of dams fed on stock diet alone.

CHAPTER 4

THE EFFECT OF PROTEIN LEVEL AND PROTEIN SOURCE
ON THE IMMUNOLOGICAL RESPONSE TO DIETARY ANTIGEN

Introduction

The immune response produced by the ingestion of a dietary protein depends not only on the immunological competence of the animal and the presence of maternal antibodies, but also on the physical and chemical properties of the protein.

In the previous chapter, it was suggested that the immunological response to dietary antigen may depend on the amount of protein ingested. *Farr and Dixon (1960)* have confirmed that protein concentration is critical in inducing antibody synthesis following intravenous injection of BSA. However, antigen concentration is not the only criteria for antibody synthesis. *Rothberg and Farr (1965A)* demonstrated that BSA was more effective at stimulating antibodies than α lactalbumin, following the ingestion of skimmed milk, even though the concentration of BSA in milk averaged 0.29 mg/ml whereas the average concentration of α lactalbumin was 1.3 mg/ml. One suggestion for this difference in antigenicity is that the molecular weight of BSA is 60,000, whereas the molecular weight of α lactalbumin is only 16,000.

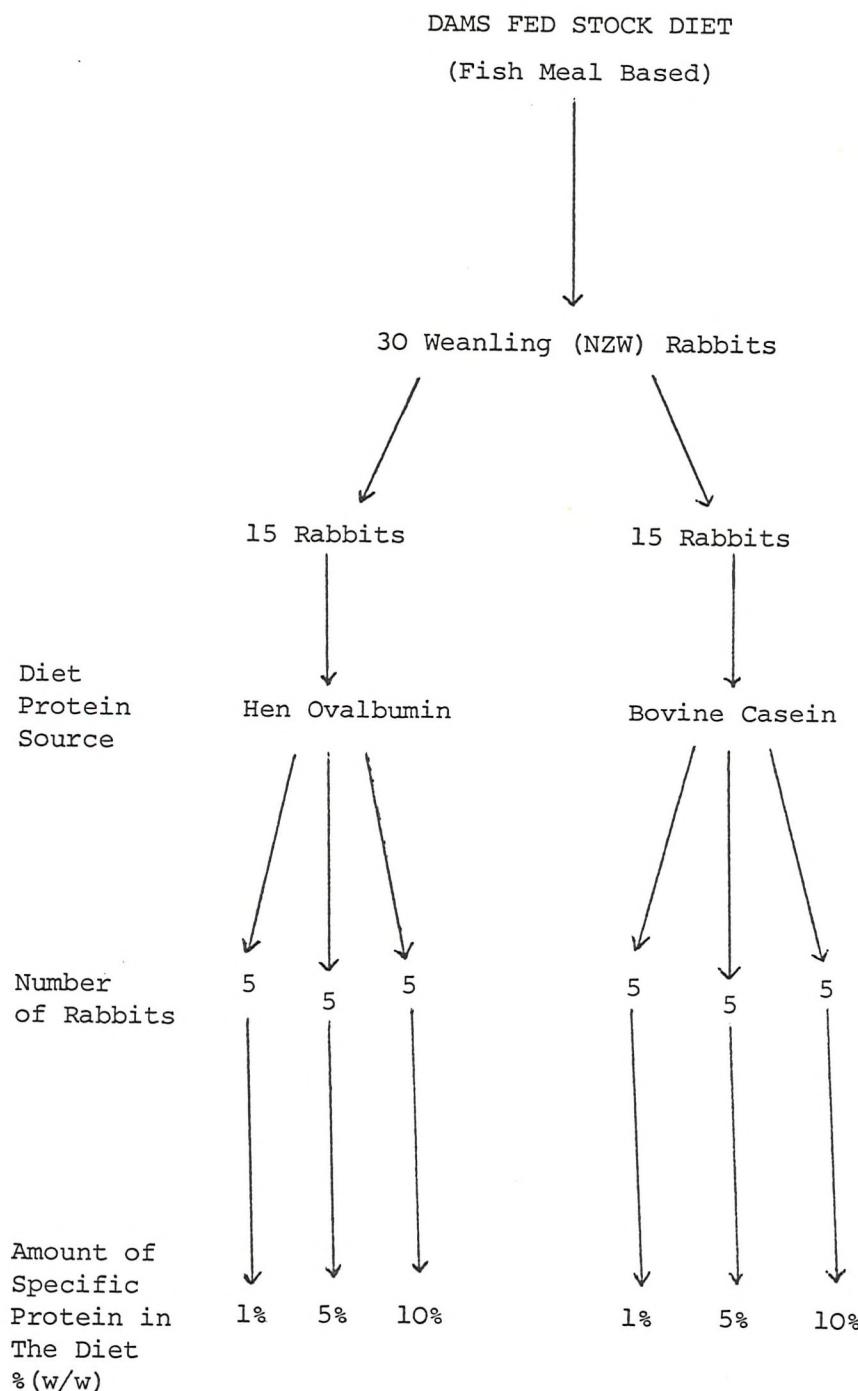
The frequency with which low levels of antibodies to common food proteins are observed in the serum of healthy individuals suggests that macromolecular absorption is a normal physiological process, although raised serum antibodies, especially to egg, milk and wheat may be associated with gastrointestinal diseases (*Bleumink, 1983*).

The proficiency by which a macromolecule stimulates the production of serum antibodies depends on the presence of specific antigenic determinants within its structure. Antigenic determinants may be either conformational and are therefore easily destroyed by heating the protein, or they may be a particular sequence of aminoacids within the protein, forming an antigenic determinant which is more stable (*Aas, 1984*). Antigens can possess determinants which interact with T helper and T suppressor cells and it appears that both determinants exist on the same molecule (*Kölsh, 1984*).

The following experiment was designed to investigate the formation of specific antibodies in the serum of rabbits after the ingestion of different quantities of dietary protein (Experiment 4a) and the effect of protein source on levels of circulating dietary antigen (Experiment 4b).

Experiment 4aExperimental Design

Thirty New Zealand White Rabbits were weaned from breeding stock that had only been fed the animal house stock diet in which the protein source was based on fish meal (Table 2.1). The litter from each dam were allocated to two groups of 15 animals each. These 15 rabbits were then randomly allocated into three groups of five. One group of 15 rabbits were fed the ovalbumin enriched diet (Table 2.4). Each subgroup was fed a specific amount of ovalbumin, either 1% (Table 2.4a), 5% (Table 2.4b) or 10% (Table 2.4c) of the total diet (w/w). The second group of 15 rabbits were fed the casein enriched diet (Table 2.3). Each subgroup of 5 rabbits was fed a specific amount of casein either 1% (Table 2.3a), 5% (Table 2.3b) or 10% (Table 2.3c) of the total diet (w/w).


The experimental design is summarized in Fig. 4.1.

All the experimental rabbits were housed as outlined in Section 2.6 and fed the appropriate diet ad libitum.

Blood samples were taken from the marginal ear vein at weaning and 3 and 6 weeks post weaning. The serum was collected as described in Section 2.6.1 and stored at -22°C.

The analysis of circulating specific antibodies was performed by the ELISA Method (1) (Section 2.1.1). The concentration of ovalbumin and casein used to coat the cuvettes was 10µg protein per ml of coating buffer. The ovalbumin was purchased from Renshaw & Co. Ltd. and the casein was purchased from Sigma Chemicals.

The antibody label employed was goat anti rabbit IgG conjugated to HRP (purchased from Nordic Immunochemicals Laboratories, Tilberg, The Netherlands). The optical density results obtained after the addition of the assay mixture containing O-phenylene diamine were expressed as a percentage of a standard serum sample containing serum antibodies raised against either ovalbumin or casein. The dilution curves of the reference serum from which the percentages were calculated are given in Fig. 4.2 and 4.3 for the casein and ovalbumin reference serum respectively. Details of the immunization regime by which the reference serum was obtained is outlined in Section 2.2.1(i).

FIG. 4.1 EXPERIMENTAL DESIGN

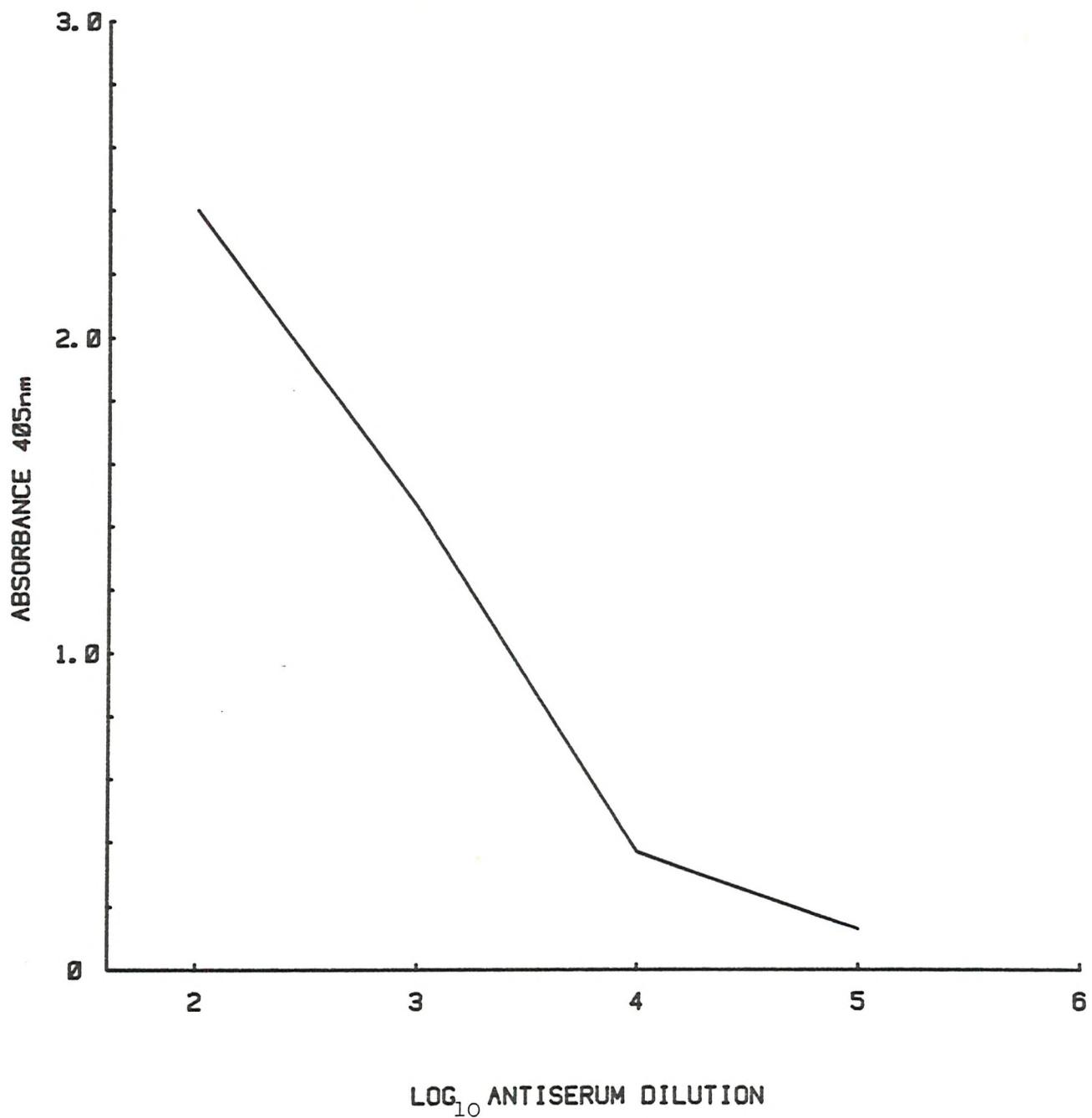


Figure 4.2 STANDARD CURVE. ANTI-CASEIN IgG MEASURED BY ELISA IN SERUM FROM AN ANIMAL IMMUNIZED AGAINST CASEIN.

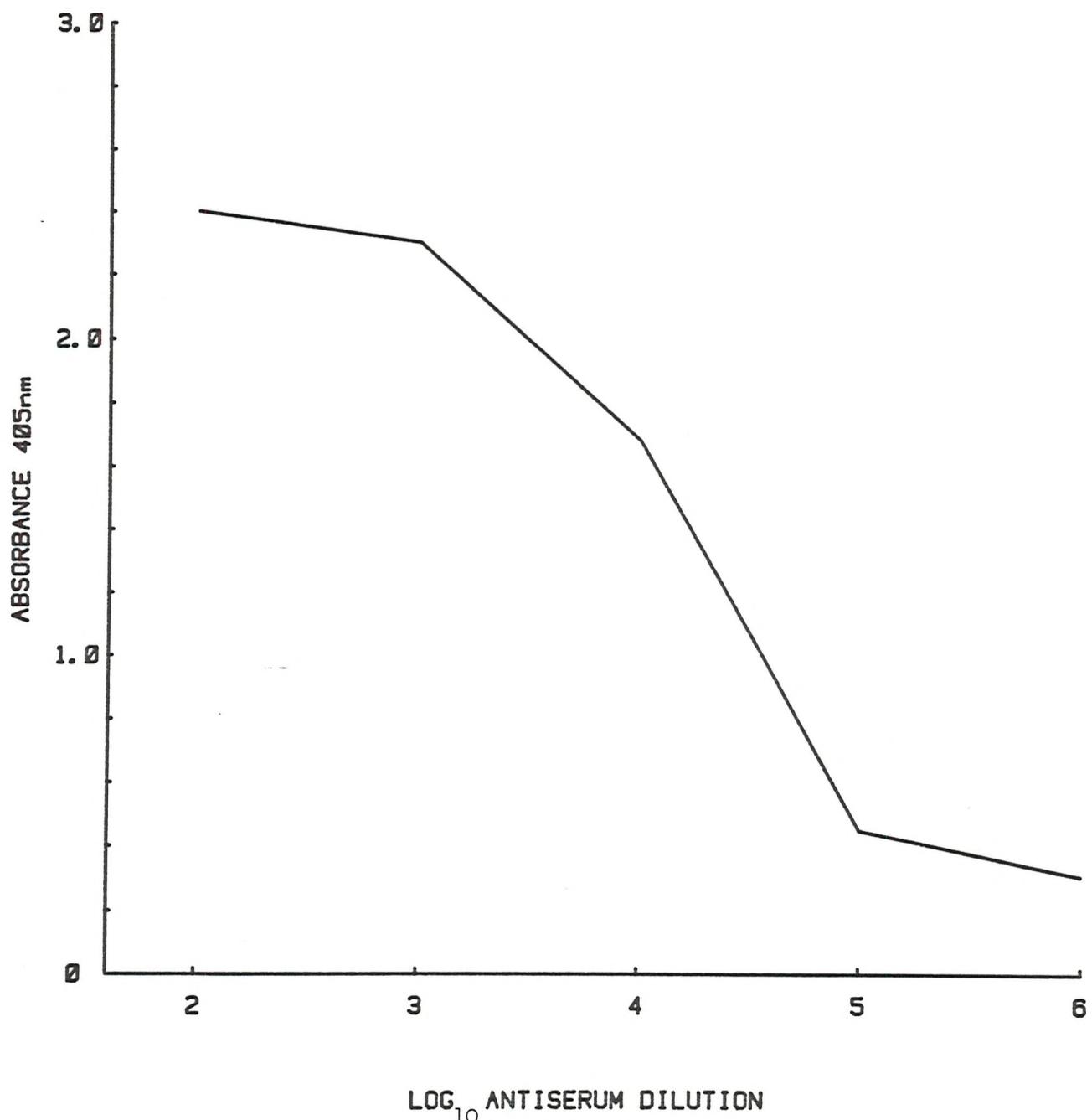


Figure 4.3 STANDARD CURVE. ANTI-OVALBUMIN IgG MEASURED BY ELISA IN SERUM FROM AN ANIMAL IMMUNIZED AGAINST OVALBUMIN.

Results

The mean body weights of the rabbits are presented in Table 4.2, which shows that the body weights of the animals fed either casein or ovalbumin are similar.

The production of serum specific antibodies was examined by two way analysis of variance for each protein, i.e. time and dose effects. Both protein level and time of exposure had significant effects on circulating IgG antibodies to respective antigens ($P < 0.01$ ovalbumin; $P < 0.05$ casein). A significant interaction was observed with ovalbumin fed rabbits ($P < 0.05$) between duration of exposure and level of protein. These results are summarized in Table 4.1.

Table 4.1

Protein Source

<u>Source of Variation</u>	<u>Ovalbumin</u>	<u>Casein</u>
Protein Level	* *	*
Duration of Exposure	* *	*
Interaction	*	NS

S ** $P < 0.01$; * $P < 0.05$; NS - Not Significant

The time and dose effects for each protein were compared by the least significant difference test. The serum specific antibody results following the ingestion of a diet containing casein and ovalbumin are presented in Table 4.3 and 4.4 respectively.

Neither proteins produced a significant increase in serum specific antibodies when the level of protein ingested was 1% or 5% (w/w) of the total diet. However, a significant increase in serum specific antibodies was produced over the experimental period when the quantity of specific protein was increased to 10% (w/w) of the total diet. The increase in serum specific antibodies was more dramatic following the ingestion of a diet containing 10% ovalbumin, compared with a diet containing 10% casein.

Figures 4.4 and 4.5 illustrate the effect of increasing the quantity

of casein or ovalbumin in the diet on the production of serum specific antibodies over the 6 week experimental period. Figure 4.6 compares the protein source and protein level on the production of serum specific antibodies. This illustrates the dramatic effect of increasing the quantity of ovalbumin in the diet compared with casein on the production of serum specific antibodies. However, the large standard error indicates that the production of serum specific antibodies to a particular dietary protein is a very individual response.

TABLE 4.2

Mean Body Weights of the Rabbits (\pm S.E.)

<u>Age</u> (Weeks post weaning)	<u>Percentage Specific Protein</u> <u>in Diet</u>	
	<u>1% Ovalbumin</u>	<u>1% Casein</u>
0	1.19 \pm 0.07	1.32 \pm 0.096
3	1.789 \pm 0.103	1.85 \pm 0.101
6	2.48 \pm 0.095	2.50 \pm 0.058
	<u>5% Ovalbumin</u>	<u>5% Casein</u>
0	1.29 \pm 0.105	1.38 \pm 0.062
3	1.88 \pm 0.061	1.947 \pm 0.056
6	2.337 \pm 0.077	2.506 \pm 0.003
	<u>10% Ovalbumin</u>	<u>10% Casein</u>
0	1.32 \pm 0.09	1.21 \pm 0.073
3	2.03 \pm 0.151	2.18 \pm 0.271
6	2.60 \pm 0.051	2.43 \pm 0.087

Body weight gain within the groups fed casein and ovalbumin and between the groups fed casein and ovalbumin did not differ significantly.

TABLE 4.3

Mean Serum Anti-Casein IgG At Different Times After Weaning
(% Standard Reference Serum, Fig. 4.2) in Rabbits Fed Different
Levels of Dietary Casein

<u>% Casein in The Diet</u>	<u>Age (Weeks Post Weaning)</u>		
	<u>0</u>	<u>3</u>	<u>6</u>
1%	0.495 ± 0.136 ^{aA}	0.747 ± 0.107 ^{aAB}	0.767 ± 0.169 ^{aA}
5%	0.416 ± 0.13 ^{aA}	0.547 ± 0.209 ^{aA}	0.496 ± 0.222 ^{aA}
10%	0.548 ± 0.054 ^{aA}	0.914 ± 0.269 ^{abB}	1.33 ± 0.292 ^{bB}

Pooled S.E.M. = 0.55

a,b - Mean values for any given protein concentration without a common superscript differ significantly ($P < 0.05$).

A,B - Mean values at any given age without a common superscript differ significantly ($P < 0.05$)

TABLE 4.4

Mean Serum Antiovalbumin IgG At Different Times After Weaning
(% Standard Reference Serum, Fig. 4.3) in Rabbits Fed Different
Levels of Dietary Ovalbumin

<u>% Ovalbumin In The Diet</u>	<u>Age (Weeks Post Weaning)</u>		
	<u>0</u>	<u>3</u>	<u>6</u>
1%	0.236 ± 0.019 ^{aA}	1.34 ± 0.66 ^{aA}	4.19 ± 3.17 ^{aA}
5%	0.205 ± 0.006 ^{aA}	6.16 ± 2.27 ^{aA}	5.78 ± 2.66 ^{aA}
10%	0.165 ± 0.036 ^{aA}	10.5 ± 1.34 ^{bA}	47.4 ± 21.7 ^{cB}

Pooled S.E.M. = 6.34

a,b - Mean values for any given protein concentration without a common superscript differ significantly ($P < 0.05$).

A,B - Mean values at any given age without a common superscript differ significantly ($P < 0.05$).

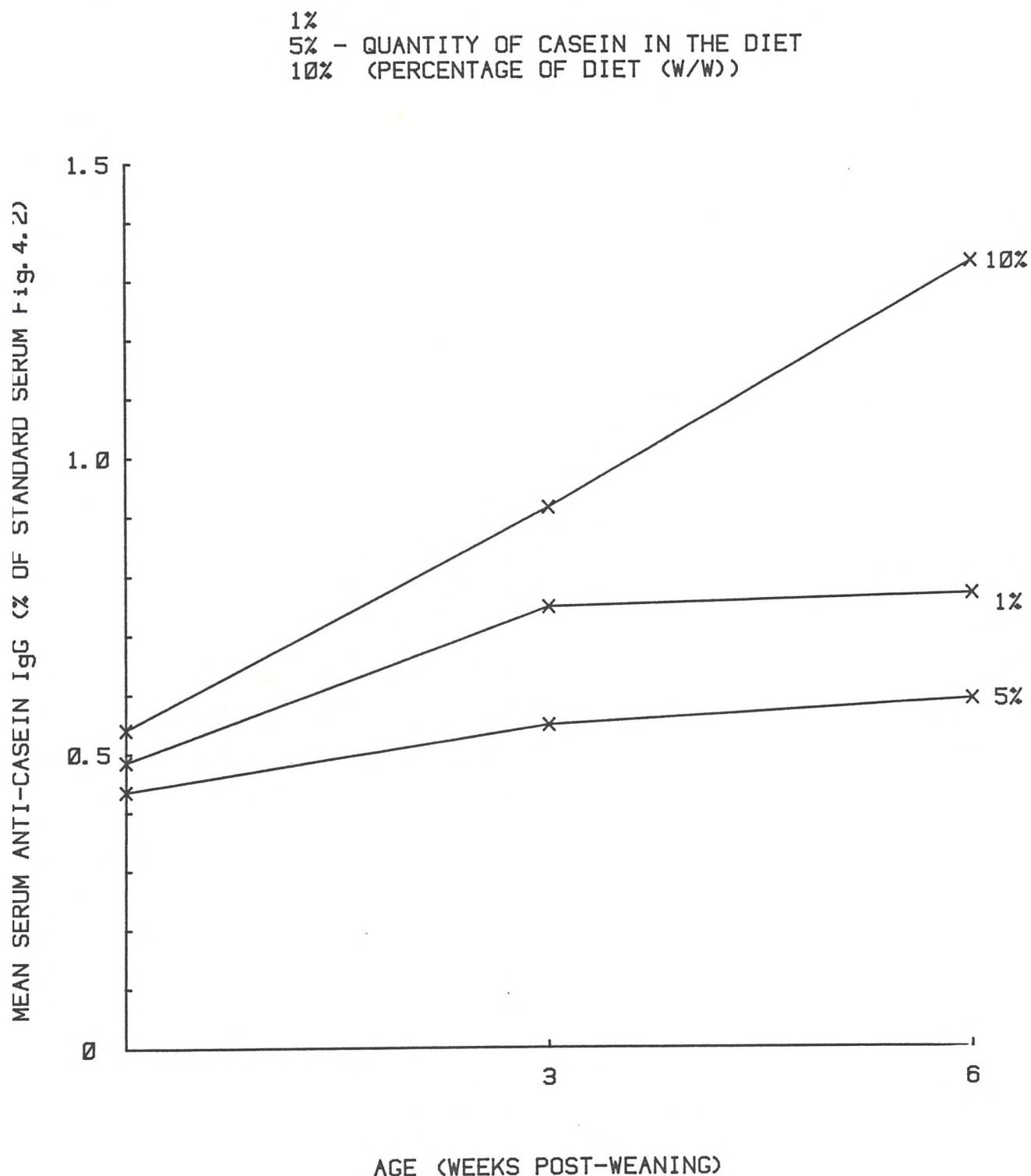


Figure 4.4 EFFECT OF INCREASING THE QUANTITY OF CASEIN ON THE PRODUCTION OF SERUM ANTI-CASEIN IgG.

MEAN SERUM ANTI-OVALBUMIN IgG (% OF STANDARD SERUM Fig. 4. 3)

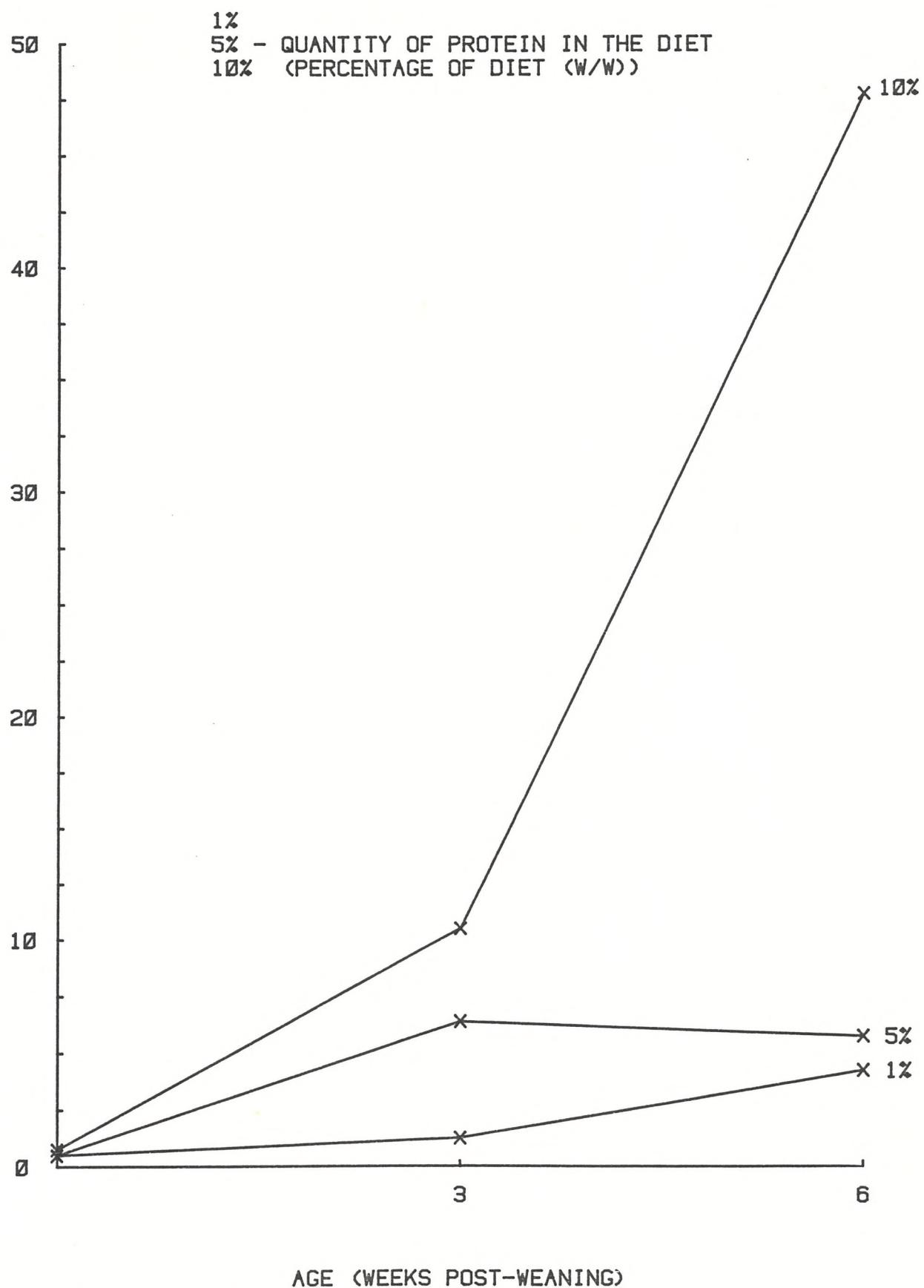


Figure 4.5 EFFECT OF INCREASING THE QUANTITY OF OVALBUMIN ON THE PRODUCTION OF SERUM ANTI-OVALBUMIN IgG.

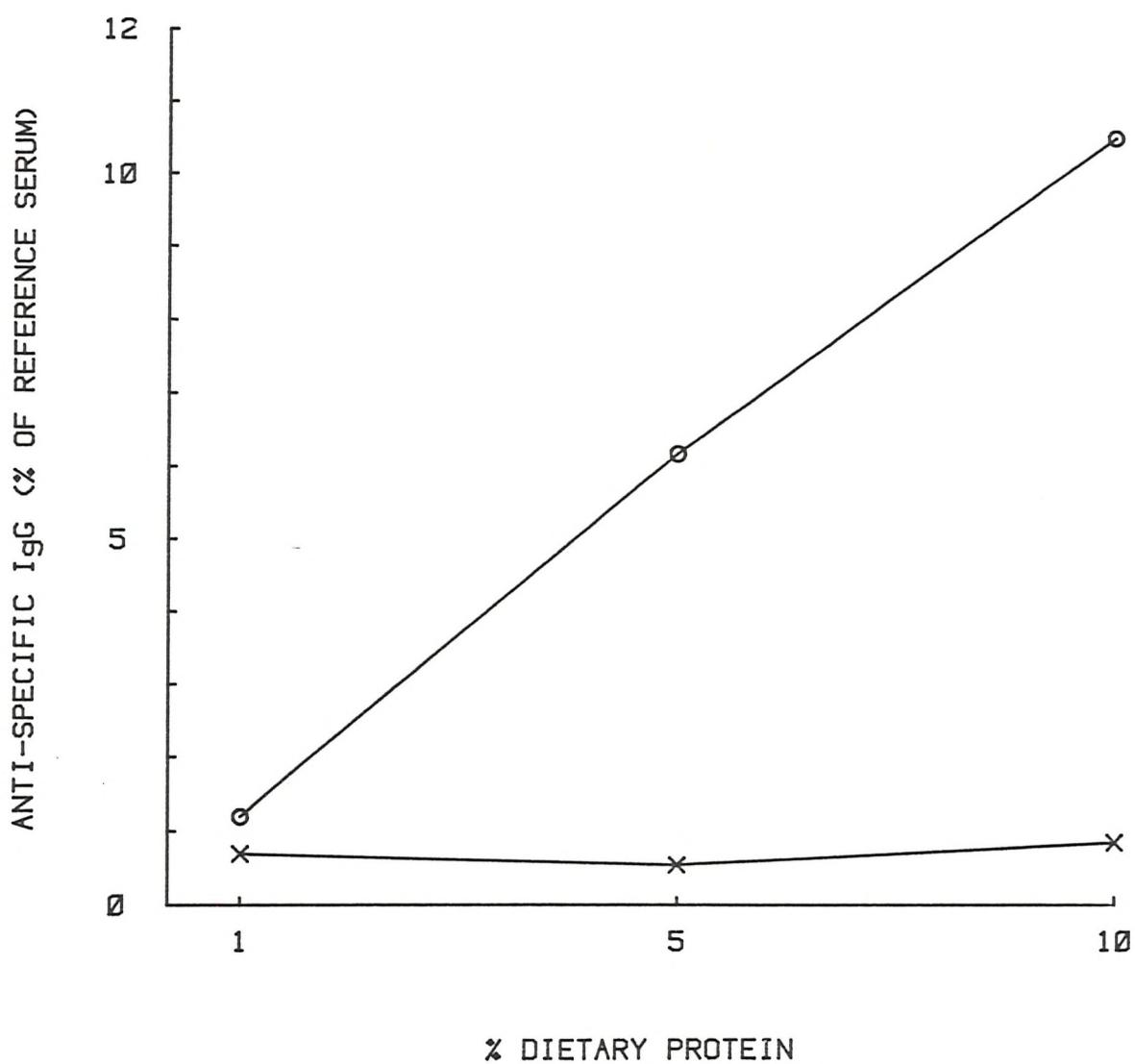


Figure 4.6 A COMPARISON OF THE EFFECT OF DIETARY PROTEIN SOURCE AND DIETARY PROTEIN LEVEL ON CIRCULATING ANTI-OVALBUMIN (O) AND ANTI-CASEIN (X) IgG IN NZW RABBITS THREE WEEKS AFTER ANTIGEN INTRODUCTION.

Discussion

The results demonstrate that the ingestion of ovalbumin is more effective at stimulating circulating antibodies than is the ingestion of a similar amount of casein and that with either protein an increased amount of protein in the diet increases the production of specific serum antibodies. This shows that both the type of protein and the quantity of ingested protein influences the production of specific circulating antibodies.

The ability of an antigen to stimulate an immune response depends on several factors which include the physical and chemical properties of the antigen such as the size and shape of the antigenic molecule, the type of amino acids within the molecule (Sela, 1969), the number of antigenic determinants and their affinity or accessability to the Fc receptor or the B lymphocyte (Aas, 1984) and also the presentation of the antigen by the macrophage (Mosier, 1967; Rosenstriech et al., 1976).

The difference in the ability of ovalbumin and casein to stimulate the production of antibodies may be directly related to the quantity of antigenic protein or polypeptide fragments crossing the mucosa of the gastrointestinal tract and entering the circulation. Egg white is a complex mixture of at least 20 separate glycoproteins (See Table 4.5). The major protein which represents about 54% (by weight) of the total egg white protein is ovalbumin (Bleumink, 1970). It has been suggested that ovalbumin is the major allergen in egg white (Rapport, 1960; Cambell et al., 1954), while others suggest that the positive skin reactions observed after the injection of ovalbumin are to be attributed to ovomucoid protein contaminants in the protein ovalbumin (Bleumink & Young, 1969). It is possible that the ovalbumin used in the diets does contain traces of other egg white protein and some of these, such as ovomucoid, are known to inhibit the activity of trypsin and chymotrypsin (Table 4.5). This would result in a decreased digestion of ovalbumin and therefore possibly an increase in the absorption of undigested or partially digested, and so potentially antigenic, protein.

A recent study in rats on the transmission of proteins from the mother to the foetus has found that ovalbumin is taken up by the maternal gut mucosa and enters the circulation in greater quantities than the other proteins examined. The difference in the uptake of the various proteins did not appear to be related to molecular weight (Dahl et al 1984).

TABLE 4.5
Composition of Egg White

<u>Component</u>	<u>Weight %</u>	<u>Molecular Weight</u>	<u>Remarks</u>
Non Protein Material	8	-	4% Glucose Salt
Ovalbumin	54	45,000	-
Conalbumin	13	77,000	Binds Iron Ions
Ovomucoid	11	31,500	Trypsin Inhibitor
Lysozyme	3.5	15,000	Carbohydrate
Ovomucin	1.5	\geq 100,000	
Flavoprotein	0.8	35,000	Binds Riboflavin
Ovoinhibitor	0.1	78,000	Inhibits trypsin and Chromotrypsin
Avidin	0.05	?	Bind Biotin
Ovoglobulins	8	\geq 100,000	Predominantly serum components

(Bleumink 1970)

In contrast to ovalbumin, casein appears to precipitate when it enters the stomach and this precipitate is then digested by pepsin. Thus much of the digestion takes place before reaching the intestine. There is little pepsin in the stomach of the newborn so the digestion of casein by the neonate is mainly by trypsin secreted from the pancreas (McDonald, 1978).

Another possible explanation of the increased serum antibodies to ovalbumin compared to casein is that equivalent quantities of potentially antigenic casein and ovalbumin may have reached the circulation, but the weanling rabbit may not have been able to distinguish bovine casein from maternal casein and therefore did not recognize the protein as foreign.

These possibilities are investigated in the following experiment by identifying the amount of ovalbumin and casein present in the serum following the ingestion of a diet containing either 10% casein or 10% ovalbumin.

Experiment 4b

Introduction

The results from the previous experiment (4a) indicate that ovalbumin has a greater capacity to stimulate specific serum antibodies compared with casein, when ingested by the weanling rabbit. This difference in the ability of the two proteins to stimulate the production of specific circulating antibodies may be due to a greater quantity of ovalbumin crossing the gastrointestinal mucosa in a potentially antigenic form when compared with casein. This is supported by the observation that the presence of specific serum antibodies is related to the quantity of protein ingested (Fig. 4.6). This possibility was investigated in this experiment.

Experimental Design

Ten weanling New Zealand White Rabbits were obtained from breeding stock which had been fed a diet containing fish meal as the major protein source (Table 2.1). Five of the weanling rabbits were fed the stock diet with the addition of 10% casein (Table 2.3c) and five animals were fed the stock diet with the addition of 10% ovalbumin (Table 2.4c).

Blood samples were taken from the marginal ear vein at weaning and on days 1, 3, 5 and 14 after weaning.

The serum was collected and stored at -22°C and analysed for specific circulating antigen and antibody by an ELISA Method. The ELISA used to measure the concentration of anti-casein IgG and anti-ovalbumin IgG is described in Section 2.1.1 (Method 1). The concentration of specific protein used to coat the cuvettes was 10 μg protein per ml of coating buffer and the antibody conjugate employed to label the serum antibody was goat anti rabbit IgG (Nordic Immunochemical Laboratories, Tilburg, The Netherlands). The optical density results obtained after the addition of the assay mixture containing O-phenylene diamine as the chromogen were expressed as a percentage of a standard reference serum containing antibodies raised against casein (Fig. 4.2) or ovalbumin (Fig. 4.3) by an intramuscular injection of the protein (Section 2.2.1(i)).

The ELISA employed for measuring specific serum antigen is described in Section 2.3. The serum was diluted 1:10 in coating buffer and added to cuvettes which were coated with purified IgG derived from anti-serum against either casein or ovalbumin (Section 2.3.1). The concentration of IgG which was used to coat the cuvettes was 10 μg per ml.

The antigen was detected by the addition of either ant casein IgG conjugated to HRP or anti ovalbumin IgG conjugated to HRP, both of which were prepared by the method described in Section 2.3.2. The optical density readings obtained at 405 nm after the addition of the chromogen O-phenylene diamine was related to the quantity of specific antigen in the serum sample. To quantify the amount of antigenic casein or ovalbumin in the serum, standard samples were prepared containing different amounts of the specific antigen and a blank serum (diluted 1:10), which had been obtained from rabbits not exposed to the specific protein. These samples were run in parallel to the test samples and contained concentrations of specific antigen ranging from 100 µg to 10 ng.

The standard curve for casein is given in Fig. 4.7 and for ovalbumin in Fig. 4.8.

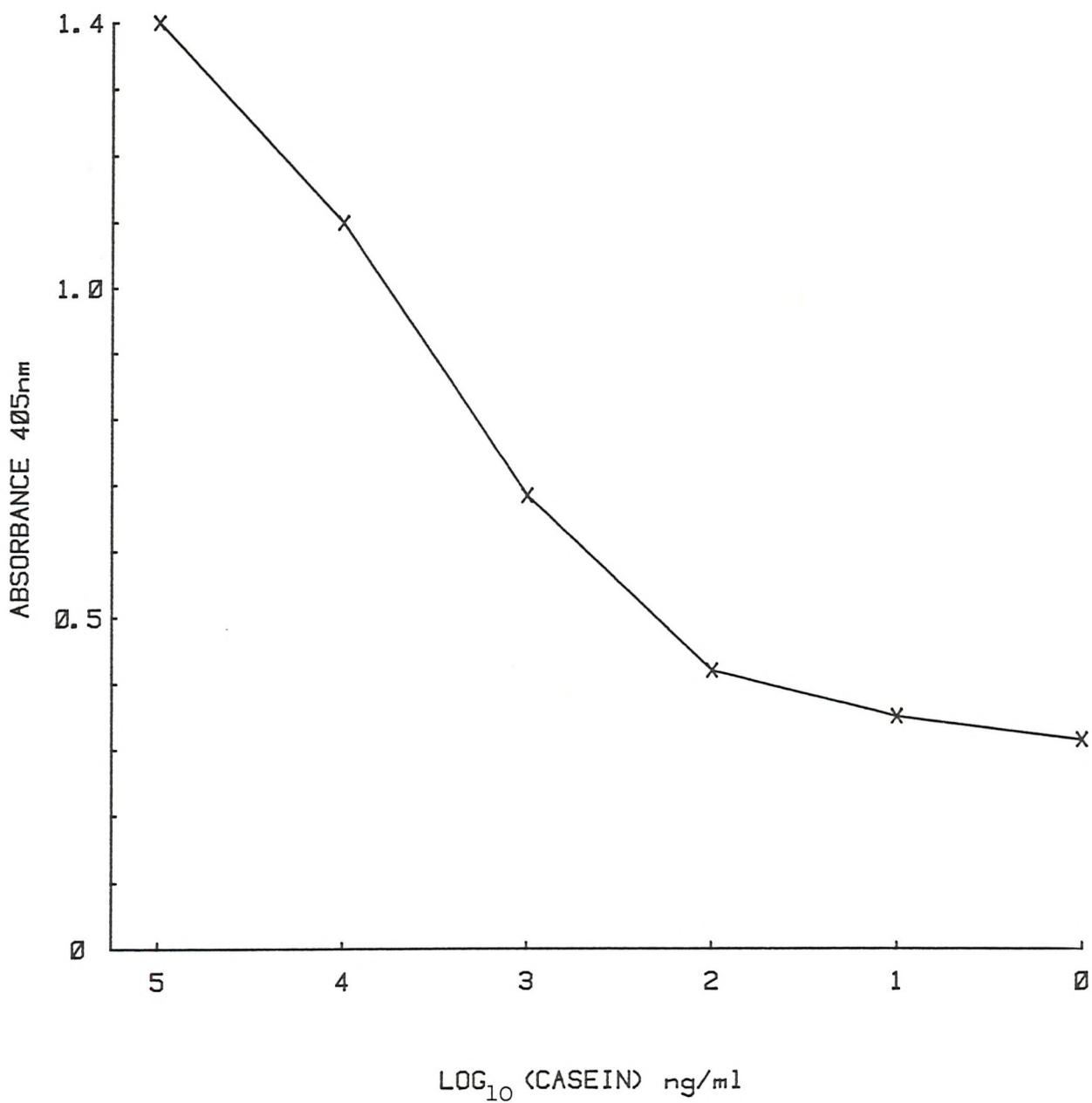


Figure 4.7 STANDARD CURVE RELATING ABSORBANCE AT 405nm TO THE CONCENTRATION OF CASEIN (ng/ml).

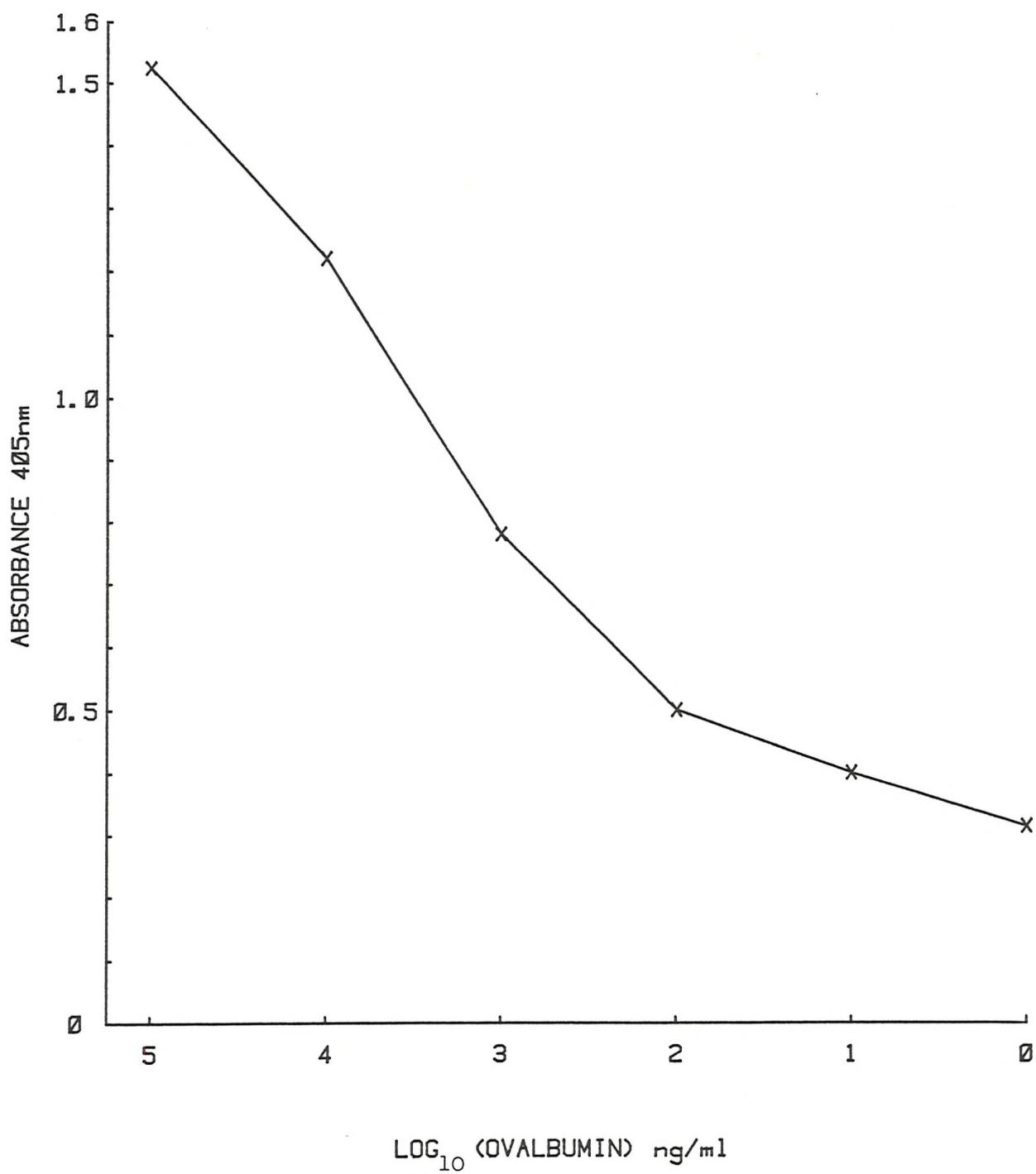


Figure 4.8 STANDARD CURVE RELATING ABSORBANCE AT 405nm TO THE CONCENTRATION OF OVALBUMIN (ng/ml).

Results

Specific Serum Antibodies

The weanling rabbits were fed a diet containing either 10% (w/w) casein or 10% (w/w) ovalbumin over a period of 14 days. During this period, both groups of rabbits produced an increase in specific serum antibodies. Analysis of variance showed that the increase in specific serum antibodies was significant at the 1% level in rabbits fed ovalbumin and at the 5% level in rabbits fed casein.

Comparison of mean values by the Duncans Multiple Range Test (Table 4.6 and 4.7) illustrates that the increase in anti-ovalbumin IgG and anti-casein IgG only reached significance after 14 days.

Circulating Specific Antigen

The concentration of specific antigenic material in the serum was measured over the same time period. The results were analysed by two way analysis of variance, which confirmed that the serum of the rabbits consuming the diet containing ovalbumin contained significantly more antigenic material than the equivalent group containing casein ($P < 0.01$). The concentrations of test antigens in serum for rabbits fed casein or ovalbumin are given in Table 4.8. Comparison of means were made using the Duncans Multiple Range Test. The results show that the quantity of antigenic material reaching the circulation after consuming the diet containing ovalbumin from weaning reached a peak three days after the introduction of the diet (17135 ng/ml) and then decreased to 46 ng/ml of antigenic material 14 days later. The mean values of the concentration of circulating antigenic casein did not differ significantly at any time from the baseline value measured at weaning.

The individual results are presented in Fig. 4.9. The day in which the maximum concentration of specific antigenic material is present in the serum differs with each animal. The individual results produce a mean maximum at day 3, followed by day 5, in the rabbits fed the ovalbumin diet, whereas the maximum mean concentration of antigenic protein in the rabbits fed casein was on day 5 followed by day 14.

TABLE 4.6

Mean Serum Antiovalbumin IgG Antibodies in
Rabbits Fed a Diet Containing Ovalbumin

	<u>Days Post Weaning</u>				
	<u>0</u>	<u>1</u>	<u>3</u>	<u>5</u>	<u>14</u>
Mean	0.154 ^a	0.02 ^a	0.219 ^a	0.025 ^a	0.859 ^b
S.E. ±	0.004	0.003	0.003	0.002	0.075

Results expressed as a percentage of a standard reference
serum sample, Fig. 4.3 (± S.E.)

a, b - Mean concentrations of serum antiovalbumin IgG antibodies without a common superscript differ significantly ($P < 0.05$).

TABLE 4.7

Mean Serum Anticasein IgG Antibodies in
Rabbits Fed a Diet Containing Casein

	<u>Days Post Weaning</u>				
	<u>0</u>	<u>1</u>	<u>3</u>	<u>5</u>	<u>14</u>
Mean	0.078 ^a	0.122 ^a	0.099 ^a	0.069 ^a	0.262 ^b
S.E. ±	0.03	0.022	0.0136	0.008	0.0216

Results expressed as a percentage of a standard reference
serum sample, Fig. 4.2 (± S.E)

a, b - Mean concentrations of serum anticasein IgG antibodies without a common superscript differ significantly ($P < 0.05$).

TABLE 4.8

Mean Concentration of Antigenic Protein Present in the Serum of
Rabbits Fed Diets Containing Either Ovalbumin or Casein

Days Fed The Diet (Age post weaning)	Antigenic Ovalbumin (ng/ml)		Antigenic Casein (ng/ml)
0	22 ± 19.59 ^a	NS	5.0 ± 0 ^a
1	8300 ± 5564 ^{ab}	NS	59 ± 34.1 ^a
3	17135 ± 10623 ^b	*	102 ± 34.3 ^a
5	13324 ± 5756 ^{ab}	NS	1192 ± 961 ^a
14	46 ± 22.0 ^a	NS	597 ± 195 ^a

*, NS - Statistical comparison of the mean antigenic concentrations in animals fed ovalbumin or casein.
 (* : < 0.05; NS: Not Significant)

a, b - Mean values within each dietary group without a common superscript differ significantly (P < 0.05).

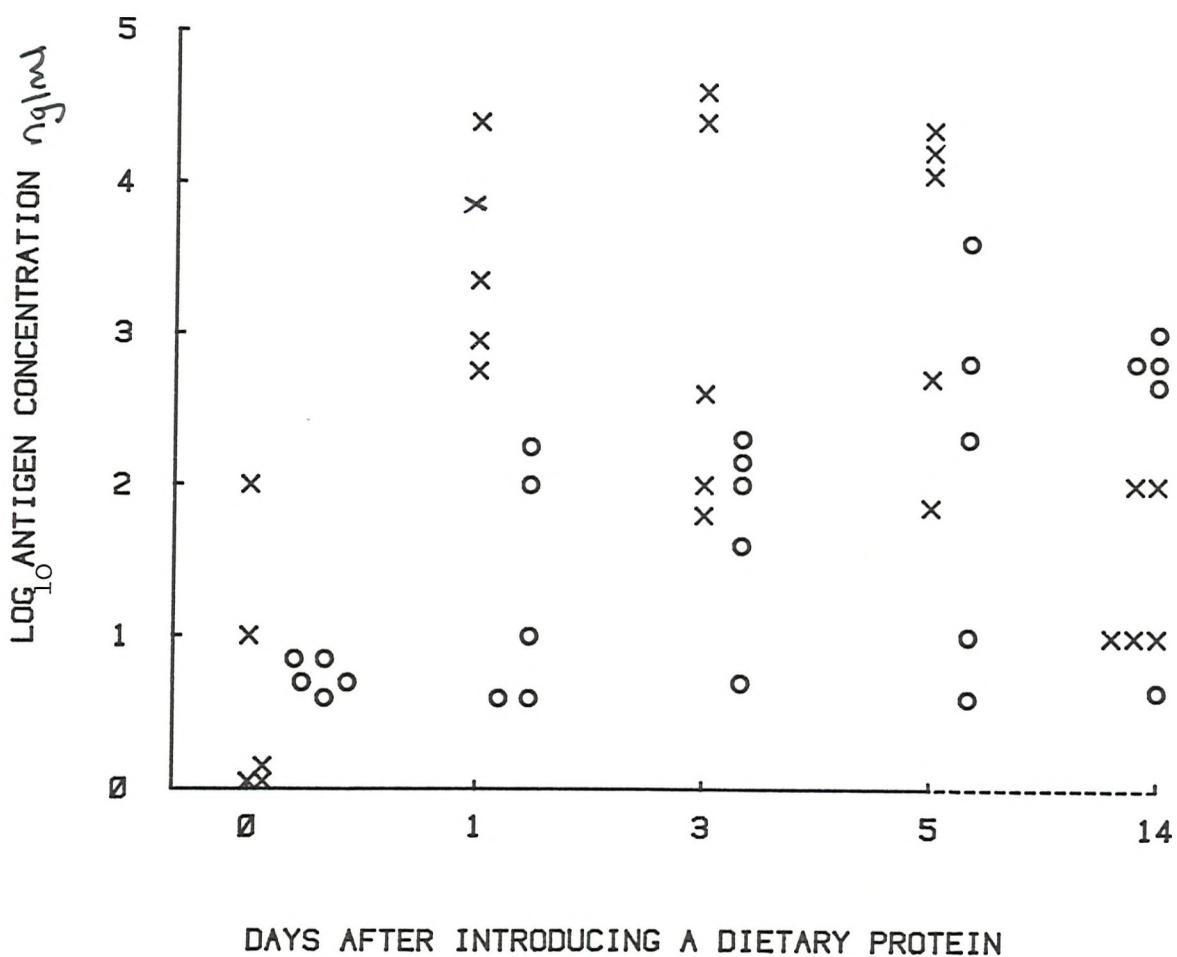


Figure 4.9 VALUES FOR CIRCULATING ANTIGEN LEVELS IN INDIVIDUAL RABBITS FED OVALBUMIN (X) OR CASEIN (O) AT DIFFERENT TIMES AFTER WEANING.

Discussion

The concentration of specific serum antibodies did not increase significantly until 14 days after the introduction of the experimental diet. This coincides with the length of time required for the production of serum specific antibodies observed in other studies (Rothberg & Farr, 1965A). As was observed in Experiment 4a, ovalbumin induced a greater immune response than casein.

The difference in serum antibodies produced by the ingestion of casein and ovalbumin may be explained by the finding that significantly greater quantities of ovalbumin crossed the gastrointestinal barrier and entered the circulation in a form which was able to bind to specific anti IgG antibodies, thus indicating that the quantity of antigenic protein that crosses the gastrointestinal mucosa and reaches the circulation is critical for the production of increased concentrations of serum antibodies.

The concentration of ovalbumin that was detected in an antigenic form was maximal in the serum of rabbits 3 days after the introduction of the diet containing ovalbumin. This declined such that by day 14 only minimal concentrations of the specific antigen were detected. This decline parallels the rise in specific serum antibodies. Hence, the decline in antigen concentration may be due to the formation of immune complexes which would result in the rapid removal of the antigen from the circulation. Complexes containing two or more IgG molecules are quickly removed from the circulation largely by the reticuloendothelial system (Mannik & Arend, 1971). However, when the quantity of antigen is in excess the formation of small soluble complexes occurs (Nydegger, 1979). The decline in the concentration of antigen in the circulation may be due to its binding with the developing immunoglobulin response, thus reducing its detection in ELISA. Alternatively, the systemic immune response detected at day 14 may have coincided with a local gut secretory IgA response, thus reducing further antigen crossing the gastrointestinal barrier.

The small antibody response to ingested casein appeared to be low due to levels of antigenic casein crossing the gastrointestinal mucosa and reaching the circulation. The low levels of antigenic casein found at weaning, contrast with comparable values found for antigenic whole milk protein at weaning (Table 7.9).

The antigenic protein present in the serum was not identified in this study, thus leaving open the possibility of circulating anti-idiotypic antibodies. The presence of idotypic antibodies against the antibodies raised against casein or ovalbumin would affect the result for serum antigen.

CHAPTER 5

THE IMMUNOLOGICAL RESPONSE TO DIETARY ANTIGEN
IN THE MOUSE AND THE EFFECT OF AGE AT ANTIGEN

INTRODUCTION

Introduction

In contrast to the rabbit and human, which acquire passive immunity in utero, the mouse receives passive immunity both pre and post nataally, although the majority of maternal antibodies are received by selective uptake of IgG from the maternal milk. The transmission of passive immunity has been well reviewed by Brambell, (1970) and Billington & Wild (1979), and has also been discussed in Section 1.3.

Maternal antibodies in the rabbit are exclusively transmitted via the yolk sac during the second half of pregnancy, i.e. from about the 15th day of gestation. At this time, the circulation becomes channelled through vitelline arteries via the yolk sac to the umbilical cord and thence to the foetus (Schlamowitz, 1976). The antibodies in the foetal circulation rise from about the 22nd day of gestation to full term reaching a maximum on the 27th day, when the foetal antibody titre equals or exceeds the titre in the maternal serum. The transmission appears to be receptor mediated and selective for rabbit IgG (Wild, 1981B).

The importance of the maternal antibodies transmitted before parturition in the mouse is not fully understood. Carretti and Ovary (1969) reported that a certain amount of maternal IgG is transmitted before birth in the mouse, and Morphis and Gitlin (1970) described a maternofoetal IgG transport mechanism which becomes fully active between the eleventh and fifteenth day of gestation. A more recent study on the presence of maternal immunoglobulins in the mouse suggests that transmission of antibodies from mother to young begins relatively early in the second half of gestation, involving IgG of the isotypes γ_1 , γ_2a and γ_2b . However, in contrast to the high concentration of maternal antibodies in the newborn rabbit, the antibody titre in the newborn mouse is only 10% of that in the maternal serum. This titre was found to fall one day after birth, causing the neonatal mouse to have substantially lower levels of immunoglobulin than was observed in the last few days of foetal life (Appelby & Catty, 1983). This initial fall observed in the neonatal mouse following birth may be the result of a number of factors, such as the immature IgG transport mechanism in the neonatal gut or low levels of immunoglobulin in the first colostral secretions. Serum loss or other trauma associated with parturition

may induce transient hypogammaglobulinaemia, which was observed to persist for 1-2 days until the neonate was able to actively concentrate maternal IgG from the maternal milk.

The mechanism of postnatal absorption of IgG has been extensively studied in the rat, the process being mediated by Fc receptors located on the surface of cells lining the small intestine of the neonate (Rodewald, 1976). The concentration of maternal IgG in the serum of the neonate reaches a peak at day 10, which is maintained until day 16. At this time the serum antibody titre of the neonate may reach twice that of the maternal serum, but declines after day 16 due to the cessation of the selective uptake of IgG from the maternal milk (Halliday, 1959).

In the mouse, IgG₁ and IgG_{2a} are preferentially taken up into the neonatal circulation (Appelby & Catty, 1983) - this may be because they are the isotypes which have an increased rate of synthesis in the adult or a higher affinity for the Fc receptors compared to IgG_{2b} and IgG₃.

Because of the efficient transport of IgG across the gut wall there is no demand for a high level of IgG in the milk, therefore the predominant immunoglobulin in the milk is IgA. IgA has the primary role of protecting the neonate from the invasion of antigenic material across the gut wall (Tomasi & Bienenstock, 1968). Weisz-Carrington et al., (1984) have shown that the epithelial cells of the mouse mammary gland selectively bind and transport IgA and this capacity is hormone dependent.

Given these differences in the acquisition of immune status by rabbits and mice, it was decided to investigate the immunological response to dietary protein in mice. Three experiments were carried out. The immunological response to ovalbumin produced in the weanling mouse and the effect of maternal exposure was examined in Experiment 5a. The decline in maternally derived antibodies to dietary protein was investigated in 5b and the effect of age on these phenomenon were examined in Experiment 5c.

Experiment 5a

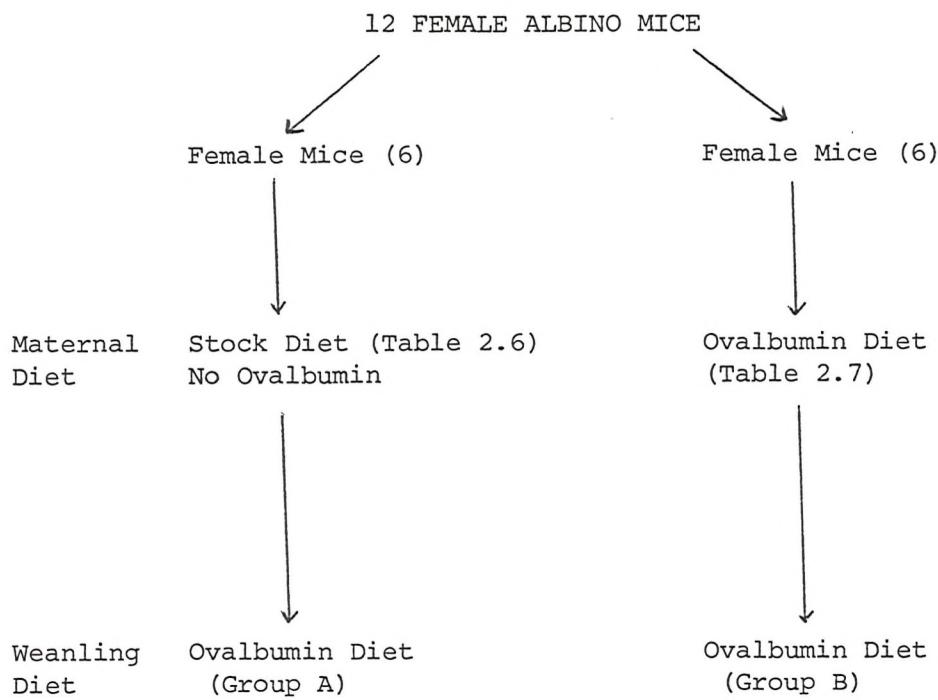
Experimental Design

12 female weanling albino mice were divided into two groups, 6 of the female mice were fed a control diet which did not contain ovalbumin (Table 2.6) and 6 were fed a diet which contained ovalbumin as the major protein source (Table 2.7). At six weeks the mice were mated and throughout pregnancy and lactation they were maintained on the above allocated diet.

The experimental design is illustrated in Fig. 5.1.

The mice from each group were killed by decapitation. Blood was collected and allowed to clot for 1-2 hours at 37°C. The serum was separated by centrifugation and removed using a pasteur pipette. It was stored in 200 µl aliquots at -22°C for subsequent determination of anti-ovalbumin IgG by the ELISA method as outlined in Section 2.1.1, method 1.

The serum was diluted 1:20 with PBST and added to cuvettes which had been coated with 10 µg per ml ovalbumin (Renshaw & Co., Ltd.). The antibody conjugate used to label the anti-ovalbumin IgG in the serum was Rabbit anti Mouse IgG conjugated to Horse Radish Peroxidase (Nordic Immunochemical Laboratories). The results were expressed as the optical density recorded at 405 nm after the addition of the assay mixture containing O-phenylene diamine as the colour reagent.


Due to the problems in immunizing and obtaining sufficient antisera from mice, the results were not converted to a percentage of a standard reference serum.

Results

The results were analysed by 2-way analysis of variance. There was a significant interaction between the maternal diet of the offspring and the pattern of antibody production over the experimental period ($P < 0.01$). However, there was no general increase in the development of antibodies with increasing time or a significant difference between the overall presence of circulating specific antibodies between the two groups.

Mean values for anti-ovalbumin production was compared both between and within the two groups by the Duncan Multiple Range Test at the 5%

FIG. 5.1 EXPERIMENTAL DESIGN

15 mice from each group were killed by decapitation at 0,1,2,3,4 and 6 weeks post weaning and the serum was measured for antiovalbumin IgG

significant level; the results are presented in Table 5.1. The offspring from maternal stock which had not been exposed to ovalbumin (Group A) produced a significant increase in circulation anti-ovalbumin IgG during the first week after being weaned onto the diet containing ovalbumin, and this level of serum specific antibodies observed at 1 week post weaning was maintained throughout the experimental period (6 weeks post-weaning).

In contrast, the offspring from maternal breeding stock which had been exposed to ovalbumin (Group B) had a significantly greater concentration of circulating anti-ovalbumin IgG at weaning than was observed during the following 6 weeks. During this latter period, the concentration of circulating anti-ovalbumin IgG remained relatively constant. Thus at weaning the level of specific serum antibodies in Groups A and B differed significantly, subsequently this difference disappeared.

The serum was diluted by a factor of 20 with PBST to enable the majority of the optical density readings to fall on the linear part of the sigmoidal curve that is produced when antibody concentration is plotted against absorbance. The dilution factor is therefore 1/100 of that used to measure specific circulating antibodies in the serum of rabbits after the ingestion of a dietary protein.

TABLE 5.1

Mean Serum Anti Ovalbumin IgG in Mice
Exposed to Ovalbumin at Weaning

(Serum Diluted 1:20)

<u>Age (Weeks Post Weaning)</u>	<u>Group A</u>	<u>Group B</u>	
	<u>Maternal Breeding Stock not Exposed to Ovalbumin</u>	<u>Maternal Breeding Stock Exposed to Ovalbumin</u>	
0	0.18 ± 0.005 ^a	*	1.29 ± 0.27 ^a
1	0.72 ± 0.106 ^b	NS	0.66 ± 0.06 ^b
2	1.02 ± 0.219 ^b	NS	0.90 ± 0.171 ^b
3	0.84 ± 0.215 ^b	NS	0.57 ± 0.005 ^b
4	1.03 ± 0.043 ^b	NS	0.92 ± 0.25 ^b
6	0.94 ± 0.398 ^b	NS	0.84 ± 0.08 ^b

* - Serum antiovalbumin IgG differ significantly between the two groups at a given age ($P < 0.05$)

NS - No significant difference in serum anti ovalbumin IgG at a given age between the two groups

a,b - Mean values within a given dietary group without a common superscript differ significantly ($P < 0.05$)

Experiment 5b

Experimental Design

12 female albino mice were fed a diet containing ovalbumin (Table 2.7). The mice were maintained on this diet throughout pregnancy and lactation.

At 21 days post-partum the offspring were weaned onto laboratory mouse stock diet (Table 2.6). Fifteen of the offspring were killed prior to weaning, on day 17 post partum and 15 were killed at weaning (21 days post partum). The remaining mice were killed in groups of 15 at 5, 12 and 20 days post weaning.

The mice were killed by decapitation and the blood collected. The blood from three mice was pooled to make one sample. The serum was removed and measured for anti-ovalbumin IgG by the ELISA method, described in Section 2.1.1, method 1. The cuvettes were coated with ovalbumin at a concentration of 10 µg/ml and the antibody used to label the serum anti-ovalbumin IgG was Rabbit anti Mouse IgG conjugated to HRP (Nordic Immunochemical Laboratories). The results were expressed as the optical density reading at 405 nm recorded after the addition of O-phenylene diamine as the chromogen.

A control group of 15 mice in which the breeding stock had not been exposed to ovalbumin but fed a laboratory stock diet was sacrificed at weaning and the serum measured for anti-ovalbumin IgG.

The serum of all the mice was diluted in PBST 1:20.

Results

A significant decrease in serum anti-ovalbumin IgG was observed in the mice with increasing age ($P < 0.001$), illustrated in Table 5.2. The mean values were compared by the Duncans Multiple Range Test, which confirmed that serum antibodies declined from 17 to 21 days of age to lower levels post weaning. The continued decline in the optical density values from 5 days post weaning to 20 days post weaning was not significant, and by 20 days post weaning, the antibody result had not declined to the value of the control group, indicating the presence of anti-ovalbumin IgG.

The value of 0.446 ± 0.013 observed in the control group suggests the presence of a certain amount of non specific binding.

TABLE 5.2

Mean Anti Ovalbumin IgG (\pm S.E.) in Weanling Mice (Bred from Mothers Exposed to Ovalbumin) Fed a Stock Mouse Diet

(Serum Diluted 1:20)

<u>Age of Mice</u> <u>(Days Post Partum)</u>	<u>Mean Serum</u> <u>Antiovalbumin IgG + S.E.</u>
17	1.513 ^a ± 0.06
21	1.390 ^a ± 0.079
26 (5 days post weaning)	1.04 ^b ± 0.083
33 (12 days post weaning)	0.924 ^b ± 0.204
41 (20 days post weaning)	0.80 ^b ± 0.046

a,b - Mean values without a common superscript differ significantly ($P < 0.05$)

Control Stock Fed Mice (No Maternal Exposure to Ovalbumin)

21 Days of Age 0.446 ± 0.013

Discussion of Experiments 5a and 5b

The results from experiment 5a show that the immune response produced in the weanling mouse following the ingestion of a novel dietary protein (Group A) is similar to the serum antibody response observed in weanling rabbits, both animals produce an increase in specific serum antibodies. The serum antibodies had risen by 1 week post weaning in the mice and the level was maintained for the following 5 weeks. In contrast, mice from maternal breeding stock which had been exposed to ovalbumin (Group B) had elevated levels of serum anti-ovalbumin IgG at weaning. This contrasts with studies using rabbits in that the offspring of these species weaned from dams given a test protein do not show high levels of antibody to the test antigen at weaning.

Two possibilities exist to account for the presence of serum antibodies in Group B at weaning. Firstly, antibody synthesis may have been stimulated in the offspring by small amounts of ingested antigen reaching the circulation either in utero (Dahl *et al.*, 1984) or via the maternal milk (Kalangara, 1980), or from the suckling mouse nibbling the mothers food. However, this is unlikely to account for all the detected serum antibody since IgG is not actively synthesised by the young mouse until a few weeks after birth (Appelby & Catty, 1983). The second possibility is that the antibodies detected in the serum of the mice at weaning is of maternal origin.

Leiper and Solomon (1974) found that the presence of maternal antibody interfered with the plaque forming cell (PFC) response in 10-day old rabbits. A more recent study also reports that infant mice from mothers which had been immunized with sheep red blood cells were unable to mount a IgM or IgG PFC response to this antigen, which the authors attributed to the presence of maternal antibodies (Yamaguchi *et al.*, 1983).

The mechanism of a suppressed immune response in the neonate by the presence of maternal antibodies may be due to feedback suppression by the excess maternal antibody preventing proliferation of antibody producing cells by the neonate, or alternatively, the circulating maternal antibody may bind with antigen before antigen can stimulate the appropriate neonatal lymphocyte (Leiper & Solomon, 1976).

The decline in the serum anti-ovalbumin IgG with age in the mice of experiment 5b possibly represents the decline in maternal antibodies.

Serum antibodies were maximal in the mice killed prior to weaning at 17 days of age, which is about the time when the gut of the neonatal mouse ceases to take up maternal IgG from the colostrum. The concentration of serum antibodies at 20 days was still significantly higher than at 26 days (5 days post weaning). However, the decline in serum antibodies from 5 days post weaning to that observed at 12 and 20 days after weaning was not significant and when these values were compared to a control group of mice where the maternal diet had not contained ovalbumin there still appeared to be antibodies to ovalbumin in the serum of these mice.

The studies by *Appelby and Catty (1983)* confirm that maternal antibody is still present in the serum of the neonate in large amounts at 20-21 days after birth, the age at which the mice in experiment 5a and experiment 5b were weaned. The presence of maternal antibody was found to persist at a titre of less than 10% of the maternal titre 27 days after birth, and in some cases traces of maternal antibody were detected as late as 30 to 40 days after birth. The length of time maternal antibody persists in the serum of the offspring is likely to depend on the route and dose of maternal immunization (*Yamaguchi et al., 1983*), the type of antigen and the route by which the offspring acquires passive immunity.

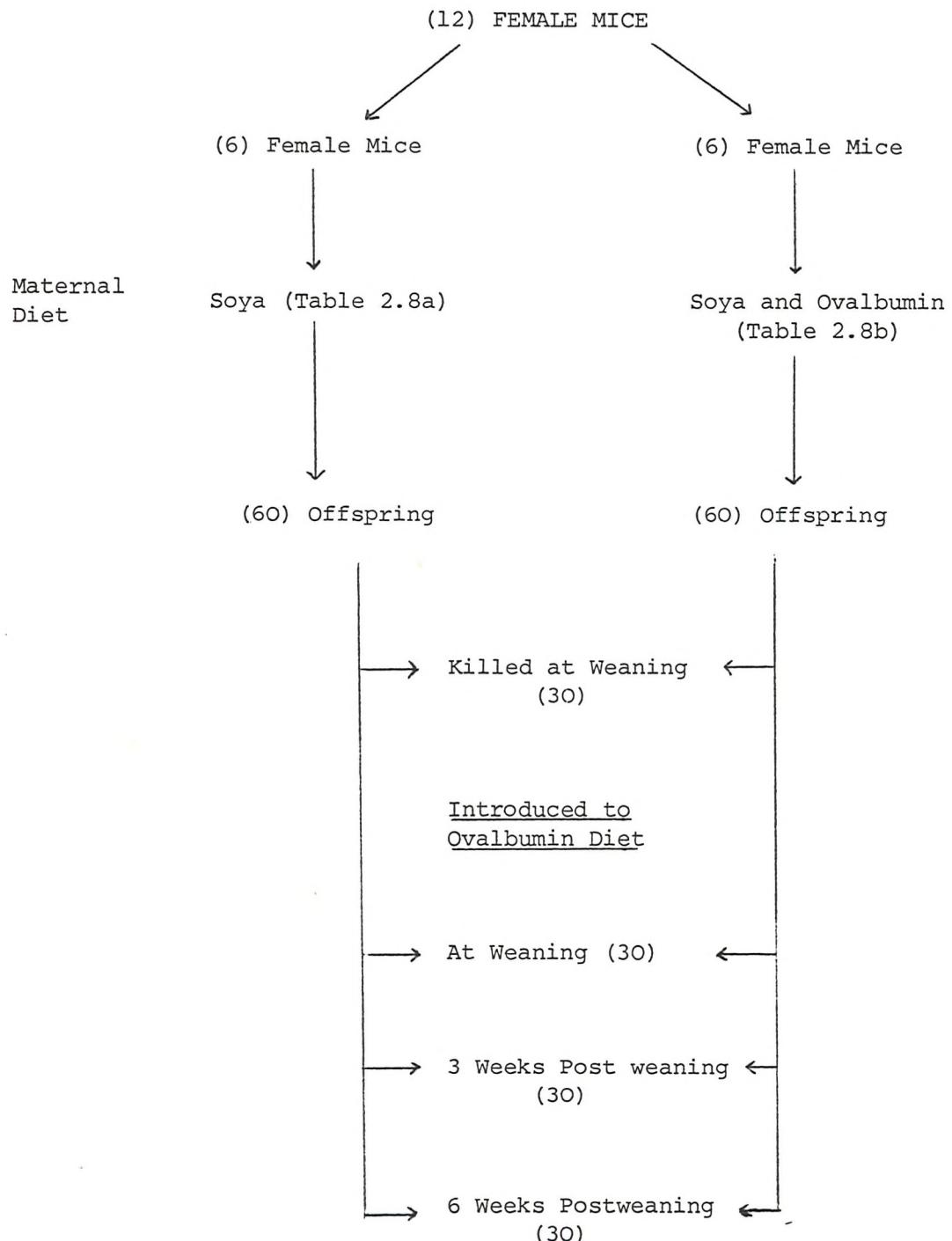
Passive immunity in the rabbit is received in utero and not after birth. This is perhaps why the immune response by the neonate is influenced only by maternal antibodies up to 10 days post partum (*Leiper & Solomon, 1974*), whereas in the mouse, maternal antibodies are received up to 16 days after parturition so they are able to influence the immune response of the neonate for a longer period of time after birth. Therefore, the antibodies in Group B at weaning are probably due to maternal antibodies which, from experiment 3b, seem to slowly decline. This may coincide with the production of specific serum antibodies by the young animal. Any unresponsiveness exhibited by the neonate may be masked by the presence of maternal antibodies.

The result obtained from the control group in experiment 5b indicates the presence of a certain amount of non-specific binding.

Experiment 5c

Experimental Design

12 female weanling albino mice were divided into two groups, 6 of the female mice were fed a diet based on soya protein (Table 2.8a) and 6 were fed a diet containing soya and ovalbumin (Table 2.8b). At 6 weeks of age, the mice were mated and 60 offspring were weaned from the maternal stock which had not been fed ovalbumin (Group X) and 60 offspring were weaned from maternal stock which had been fed ovalbumin (Group Y). Each group of 60 weanling mice (Group X and Group Y) were divided into 4 subgroups, each consisting of 15 mice.


15 mice from Group X and Group Y were killed at weaning while all the remaining mice were introduced to the diet containing ovalbumin (Table 2.8b) at the following ages.

- 1) At weaning (3 weeks post partum)
- 2) 3 weeks post weaning
- 3) 6 weeks post weaning

At each of the above ages, 30 mice were introduced to the diet containing ovalbumin, 15 from Group X and 15 from Group Y. The weanling mice were fed the control soya based diet which did not contain ovalbumin (Table 2.8a) until they reached the correct age for introducing the ovalbumin diet.

A diagrammatic representation of the experimental design is presented in Fig. 5.2.

Each group of 30 mice were killed by decapitation 3 weeks after they had been introduced to a diet containing ovalbumin. The serum from each group, including a group which had been killed at weaning, was collected and stored at -22°C. The serum was diluted 1:20 with PBST for the measurement of serum anti-ovalbumin IgG by the ELISA method (Section 2.1.1, Method 1). The concentration of ovalbumin used to coat the was 10 µg/ml and the antibody label employed was Rabbit anti Mouse IgG conjugated to Horse Radish Peroxidase (Nordic Immunochemicals Laboratories). The results were expressed as the optical density observed at 405 nm after the addition of the assay mixture, containing O-phenylene diamine as the chromogen.

FIG. 5.2 EXPERIMENTAL DESIGN

The 30 mice introduced to ovalbumin at different ages were killed after 3 weeks on the ovalbumin diet. The serum from each group and those killed at weaning were measured for antiovalbumin IgG.

Results

The data were analysed by 2-way analysis of variance and the mean values compared, using Duncan Multiple Range Test (Table 5.3). Mean values for serum anti-ovalbumin IgG at weaning were significantly higher in those offspring weaned from mice fed ovalbumin. This is in agreement with the results of experiment 5a (Table 5.1). In mice born of non-ovalbumin fed breeding stock, the age at introduction of ovalbumin into the diet of the offspring had no effect on the capacity to develop circulating IgG to ovalbumin. The capacity to develop circulating antibodies to ovalbumin in mice bred from ovalbumin fed breeding stock varied with age of ovalbumin introduction. Those introduced to ovalbumin at three weeks post weaning show significantly lower circulating anti-ovalbumin IgG, measured three weeks later, than comparable mice introduced at weaning. Similarly, the hyporesponsiveness of the group introduced at 3 weeks appeared to have waned such that those introduced to ovalbumin at 6 weeks post weaning showed a significantly higher response.

TABLE 5.3

Mean Serum Anti Ovalbumin IgG in Mice Introduced to
Ovalbumin at Different Ages and Killed Three Weeks
after Antigen Introduction

<u>Age at which Weanling Mice were fed Ovalbumin (Weeks Post Weaning)</u>	<u>Group X</u> <u>Maternal Breeding Stock not Exposed to Ovalbumin</u>	<u>Group Y</u> <u>Maternal Breeding Stock Exposed to Ovalbumin</u>
0	0.53 ± 0.017 ^a	*
0-3	1.66 ± 0.084 ^b	*
3-6	1.223 ± 0.134 ^c	*
6-9	1.4 ± 0.146 ^c	NS
		1.236 ± 0.116 ^c

* - Significant difference in serum antiovalbumin IgG between the two groups at a given time ($P < 0.05$)

a-c - Mean values within a given dietary group without a common superscript differ significantly ($P < 0.05$)

NS - No significant difference in serum anti ovalbumin IgG between the two groups at a given time

Discussion

Mice bred from mothers which had not been exposed to ovalbumin (Group X) were able to produce specific serum antibodies when challenged with ovalbumin at any age from weaning to 6 weeks post weaning. The antibody response was greater in those animals introduced to ovalbumin at weaning, compared with those introduced at 3 and 6 weeks post weaning. This ability to develop serum antibodies at any age from weaning to maturity is similarly observed in the rabbit (Experiment 3b).

The mice born from maternal stock which had been exposed to ovalbumin (Group Y) confirmed the observation made in experiments 5a and 5b, that the weanling mice had significant levels of specific serum antibodies. Serum antibodies were also observed in the mice challenged with ovalbumin at 0, 3 and 6 weeks post weaning.

The presence of maternal antibody in the serum of the offspring may mask any unresponsiveness exhibited by the neonatal immune system. This possibility has been discussed in experiments 5a and 5b. However, it is unlikely that the antibodies in mice that have ingested ovalbumin from 6-9 weeks post weaning is maternally derived. This can be inferred from experiment 5b (Table 5.2), which shows a significant decline in the circulating anti-ovalbumin IgG in mice bred from ovalbumin fed dams in which the progeny were maintained on an ovalbumin free diet. It is reasonable to assume that the lower levels of anti-ovalbumin IgG in this group observed at 3 weeks post weaning would have declined further by 6 weeks post weaning. This group, with the minimal retention of maternal antibodies were able to mount an immune response to dietary protein comparable to animals from non-ovalbumin fed breeding stock.

Other studies in mice have demonstrated a specific suppressed immune response in the offspring from mothers who have been injected with antigen during pregnancy (Halsey & Benjamin, 1976). Experiments in which the litters have been cross-fostered do not agree as to the route by which the tolerance is transferred (Auerbach & Clark, 1975; Yamaguchi *et al.*, 1983). Whereas Hanson *et al.* (1979) showed that oral tolerance to ovalbumin was abolished by a prior parenteral injection

which instead resulted in a secondary antibody response. A similar observation was made by Strobel *et al.* (1981), who found that ingestion of a specific dietary protein soon after birth did not lead to immunological tolerance when later challenged with the antigen, but primed the animal for a greater immune response.

In this study, preweanling exposure to ovalbumin either in utero, via the maternal milk, or by nibbling the food in the maternal cage, may have primed the animal to produce serum antibodies when re-exposed to ovalbumin at some stage post weaning.

CHAPTER 6

THE IMMUNOLOGICAL RESPONSE PRODUCED BY THE ACUTE
INGESTION OF COWS MILK (A COMMON DIETARY PROTEIN
AND GOATS MILK (A NOVEL DIETARY PROTEIN) IN MAN

Introduction

Although the human infant receives passive immunity in the form of maternal IgG in utero and therefore has some protection against possible pathogens at birth, the newborn infant is still particularly vulnerable to antigen challenge.

Grusky & Cooke (1955) and Robertson *et al.* (1982) have shown that the gut of the premature and newborn infant absorbs greater quantities of protein in a macromolecular form than the adult or older child. This may be due to structural immaturity of the neonatal gut (Moxey & Trier, 1975), or the lack of secretory IgA.

During the neonatal period there appears to be a lack of secretory IgA within the intestine of the neonate which has also been found to be devoid of antibody producing cells in the lamina propria (Selner *et al.*, 1968). Secretory IgA is the predominant immunoglobulin present in intestinal secretions and in the mucus coating the intestinal absorptive cells of the gut (Tomasi *et al.*, 1965) and it appears that this class of immunoglobulin protects the intestinal epithelium from antigenic penetration (Walker, 1975c). In sIgA deficiency, macromolecules including partially digested proteins and bacterial breakdown products, are absorbed across the gut in quantities which are capable of evoking a systemic immune response resulting in an increased incidence of gastrointestinal disease (Hong & Ammann, 1972).

The natural diet during the neonatal period is human colostrum and breast milk, which have been shown to possess a wide variety of host resistant factors which include cellular components such as T and B lymphocytes, macrophages and other mononuclear cells (Diaz-Jouanen & Williams, 1974). Breast milk also contains immunoglobulins of which IgA is probably the most important (McClelland, 1982). Cells which actively synthesize and secrete IgA are present in the milk and their development has been found to be closely related to antigenic stimulation of the gastrointestinal tract (Goldblum *et al.*, 1975). This close relationship between antigenic stimulation of the gastrointestinal tract and the IgA produced in the mammary gland is thought to be due to the selective transfer of sensitized lymphocytes from the gut to the mammary gland (McClelland, 1982). Since the mother is exposed to the microorganisms and other antigenic macromolecules which the infant is likely to encounter, the passive immunity provided by

this mechanism is believed to be important in protecting the secretory IgA deficient gut of the newborn infant from absorption of pathogenic quantities of antigenic material.

The quantity of IgA in the colostrum and mature milk in relation to the total protein content is illustrated in Table 6.1, which shows that 54% of the total protein in colostrum is IgA and 14% of the total protein in mature milk is IgA.

Ogra *et al.* (1977) have studied the absorption of IgA from the colostrum by the neonate and they found that only 10 - 15% of ingested IgA appeared in the serum of the infant. The majority of IgA ingested (60%) was excreted by the faeces. The remaining 25 - 30% was believed to reflect loss due to either proteolytic degradation or retention and the intestinal mucosal surfaces. The ability of sIgA to resist digestion appears to be due to the secretory component (Steward, 1971). The majority of the ingested sIgA by the infant from the colostrum remains in the intestine and has been described as a 'proteolytic-resistant antiseptic paint', which functions to protect against pathogenic invasion of the newborn gut mucosa (Heremans *et al.*, 1966). However, when an infant's nutritional requirements must be met by foods other than the mothers milk, a foreign protein will ordinarily be fed and the immunological as well as nutritional consequences of a particular food and feeding regime should be considered. Estimates of the incidence of cows milk allergy vary from 0.1 - 8.0% of the population (Freier & Kletter, 1970) and it is more prevalent among infants that have been bottle rather than breast fed from birth (Buisseret, 1978). A study of the immunological consequences of feeding infants with cows milk and soy products concluded that when the mothers milk is not obtained, the preferred substitute would be a heat treated, lower protein, cows milk based product, rather than a soya product (May *et al.*, 1982). Feeding a soya product from birth did not have any advantage over feeding cows milk as the antibody response to pasteurized cows milk introduced after initial soya feeding was significantly greater than after cows milk products had been fed initially. Other ^{studies} have confirmed that soy protein is at least as antigenic as milk protein and does not appear to have any prophylactic effect against atopic diseases (Kjellman & Johansson 1979, Eastham *et al.*, 1978).

The immunological consequences of infant feeding practices may not

only be important in the prevention of atopic diseases such as bronchial asthma, allergic rhinitis, atopic dermatitis, allergic urticaria and certain gastrointestinal disorders, but also the raised serum antibodies produced after the ingestion of an antigenic foreign protein may result in the formation and eventual deposition of circulating immune complexes. Circulating immune complexes have been reported in a wide variety of diseases, including systemic lupus erythematosus, various forms of glomerulo-nephritis, rheumatoid arthritis and chronic inflammatory bowel disease (*W.H.O. Scientific Group, 1977*). Immune complexes, especially those composed of antibodies against cows milk have been implicated in the aetiology of atherosclerosis (*Poston, 1979*).

The following experiment was designed to study the effect of acute ingestion of a novel protein on the immune system of the adult. Goats milk was chosen as the protein to be used in the study as it is not consumed regularly or in large quantities by the majority of the population. Furthermore, it was also readily available and considered fairly palatable by most people.

Novel proteins are increasingly being introduced into the modern diet. Soya protein is a good example; although soya is frequently consumed the immunological consequences of consuming large quantities of this protein are still being investigated. Goats milk is often used as a cows milk substitute, either in infant feeds or by individuals who cannot consume cows milk (*Taitz & Armatage, 1984*).

Specific serum antibodies, antigen and total immune complexes were measured after consuming goats milk and cows milk.

TABLE 6.1

Average Composition of Protein in Human
Colostrum and Mature Human Milk

	<u>Colostrum</u>		<u>Milk</u>	
	<u>Amount g/l</u>	<u>% of Total Protein</u>	<u>Amount g/l</u>	<u>% of Total Protein</u>
Total Protein	100	100	11	100
Casein	(16)	(16)	4.5	41
Lactalbumin	(11)	(11)	3.1	28
Lactoferrin	14	14	1.5	14
Serum Albumin	1.6	1.6	0.3	2
Lysozyme	0.4	0.4	0.1	1
Immunoglobulin A	54	54	1.5	14

Figures in brackets are estimated amounts

(Department of Health & Social Security, 1980)

Materials and Methods

Subjects

Thirteen volunteers, 8 male and 5 females, were recruited from the postgraduate population and teaching staff at the Southampton University Medical School.

None of the subjects had a previous history of allergy or gastro-intestinal disease, although one subject reported a certain amount of intolerance to lactose. None of the subjects had previously consumed goats milk although some had consumed goats milk products (feta cheese, yoghurt) but only rarely and not in the 6 months prior to the experiment.

Milk Products

Pasteurized cows milk: Unigate Dairies, Aldershot, Hants.

Goats milk: Whitcher's Dairy, Starrs Green Lane, Battle, East Sussex.

Experimental Design

The 13 subjects were divided into two groups of seven and six. Each group was exposed to an acute ingestion of cows milk and goats milk on separate occasions.

The experimental sessions commenced at 9.0 - 9.30 a.m. and prior to this each subject was expected to have fasted for the preceding 12 hours. At the beginning of each experiment a butterfly cannula was introduced to a superficial vein of the lower forearm of every subject and a 10 ml blood sample was taken. The cannula was then flushed with a solution of heparin (200 units in 1 ml) to prevent the blood from clotting in and around the needle. When subsequent blood samples were required the first 1 ml taken was discarded to prevent heparin contamination.

The first experiment consisted of the subjects consuming as much goats milk as possible over a 20 minute period, either with or without the addition of milk flavourings. The volume the subjects consumed ranged between 2 - 3 pints which is 37.8 - 56.7g protein. After the subjects had finished drinking the time was recorded and a 10 ml blood sample was taken after 30 minutes, subsequent 10 ml blood samples were taken after 60, 90, 120 and 180 minutes. After each blood sample was taken, the needle was flushed with the heparin solution. The blood was allowed to clot for 1 hour at room temperature, then the clot was

was contracted by incubating for 1 hour at 4°C. The serum was collected by centrifugation and aliquoted into 0.5 ml samples and stored in epindorph vials at -70°C. The subjects were asked to return after two weeks when the second experimental session was performed, in which the equivalent quantity of cows milk was consumed.

Analytic Methods

Circulating Specific IgG Antibodies

Antigoats milk protein IgG antibodies and anti-cows milk protein IgG antibodies were monitored by ELISA (2.1.1). A concentration of 30 µg/ml in carbonate buffer of dried skimmed milk (St. Ivel Ltd., Trowbridge, Wiltshire) or a volume containing 30 µg protein per ml of skimmed goats milk (Whitchers Dairy, Starrs Green Lane, Battle, East Sussex) was used to coat the cuvettes. The skimmed goats milk was prepared by centrifuging whole goats milk at 30,000g for 30 minutes and removing the fat on the surface with a spatula.

The conjugate used to label the circulating antibody was swine antihuman IgG attached to the enzyme label Horse Radish Peroxidase (purchased from Nordic Immunochemical Laboratories). O-Phenylenediamine was used as the chromogen and the results expressed as the optical density recorded at 405 nm.

Circulating Specific Antigen

Circulating antigenic whole cows milk protein, whole goats milk protein and goat immunoglobulin G were measured in the serum by the ELISA system adapted for detecting the presence of specific antigenic protein in the circulation, which has been described in Section 2.3. The cuvettes were coated with 10 µg/ml of antibodies of the IgG class raised against cows milk protein, goats milk protein or Goat IgG. The serum was diluted 1:10 in PBST and added to the cuvettes and the antigen label employed was the enzyme Horse Radish Peroxidase conjugated to either rabbit anti whole cows milk protein IgG, Rabbit anti whole Goats milk protein IgG or Rabbit anti Goat IgG. The conjugates were all prepared by the method given in Section 2.3.2. Standard samples containing different concentrations of specific antigen (100 µg/ml to 1 ng/ml) were run simultaneously to the experimental serum to produce a standard curve so that the concentration of specific antigenic protein or polypeptide fragments present in the serum could be calculated. The

antigens used were Dried Skimmed Cows Milk (St. Ivel Ltd.), Skimmed Goat Milk (Whitchers Dairy) and Goat IgG (Sigma Chemicals). The standard curves for antigenic cows milk protein, goats milk protein and Goat IgG are given in Figs. 6.1, 6.2 and 6.3, respectively.

Total Circulation Immune Complexes

Total serum immune complexes were estimated by the Clq binding technique described in Section 2.4, with alkali aggregated human γ globulins used as standards (2.4.4). The results were expressed as % radiolabelled protein precipitated by TCA which represents the total amount of labelled Clq.

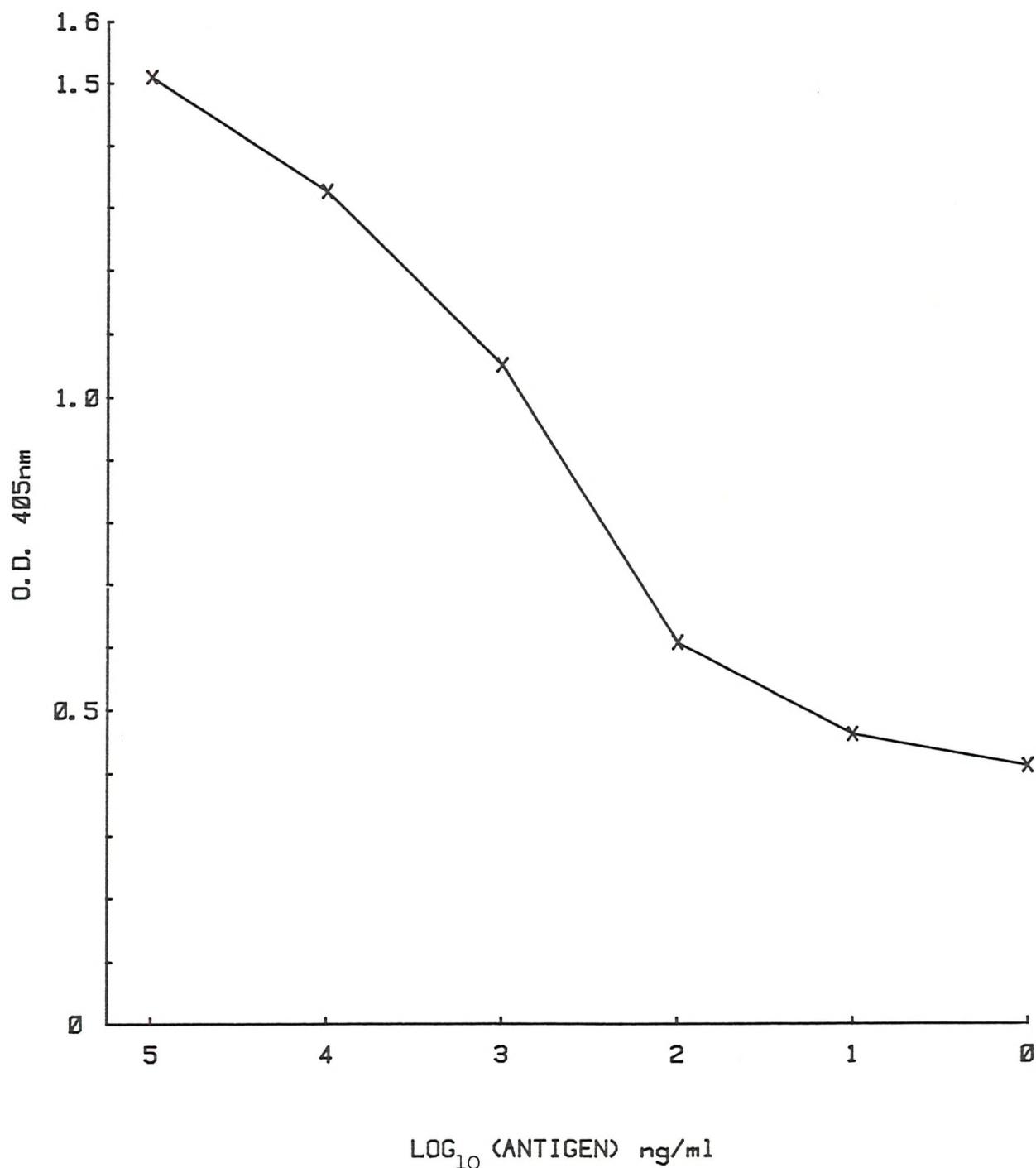


Figure 6.1 STANDARD CURVE RELATING ABSORBANCE AT 405nm TO THE CONCENTRATION OF COWS MILK ANTIGEN (ng/ml).

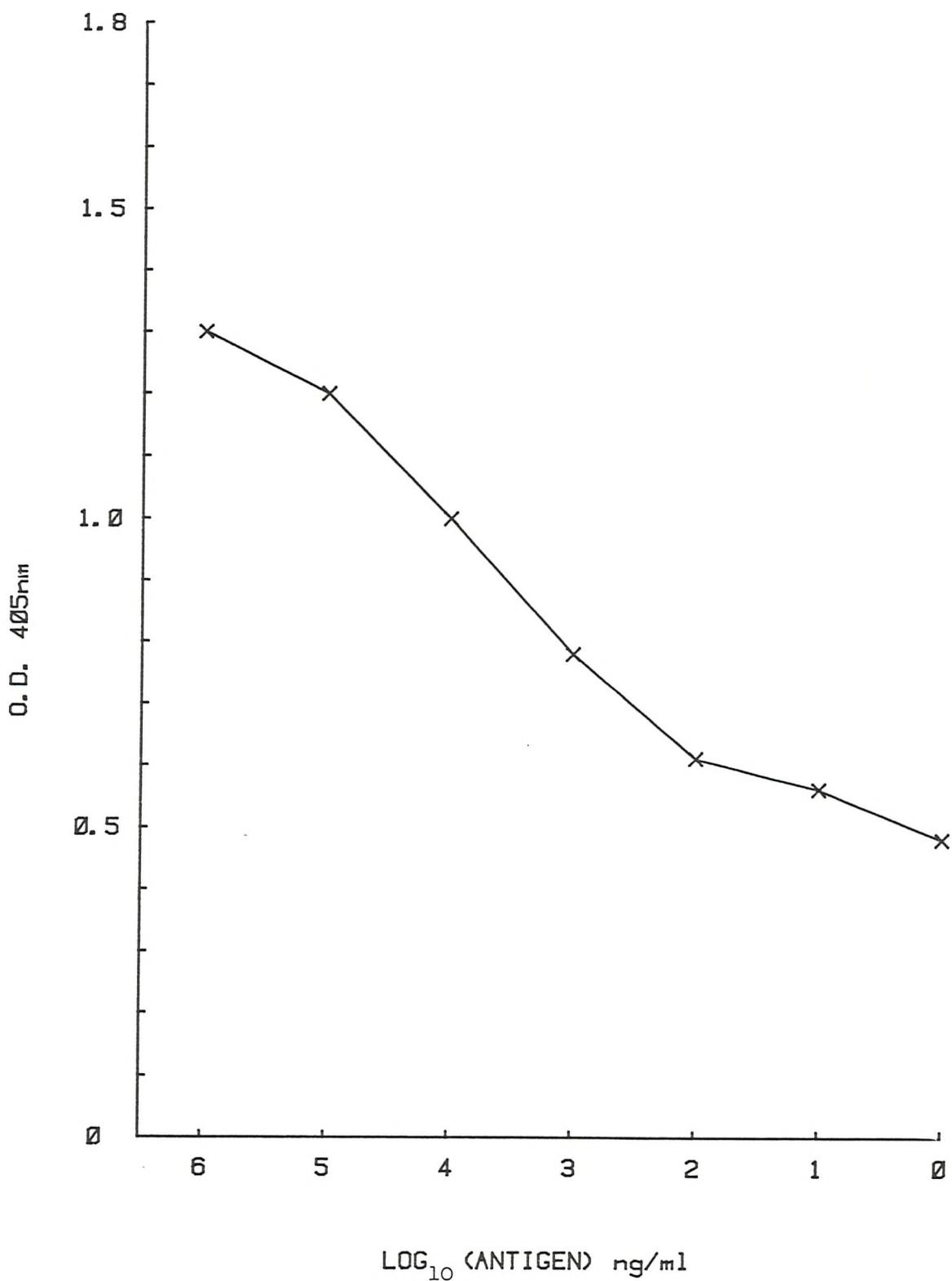


Figure 6.2 STANDARD CURVE RELATING ABSORBANCE AT 405nm TO THE CONCENTRATION OF GOATS MILK ANTIGEN (ng/ml).

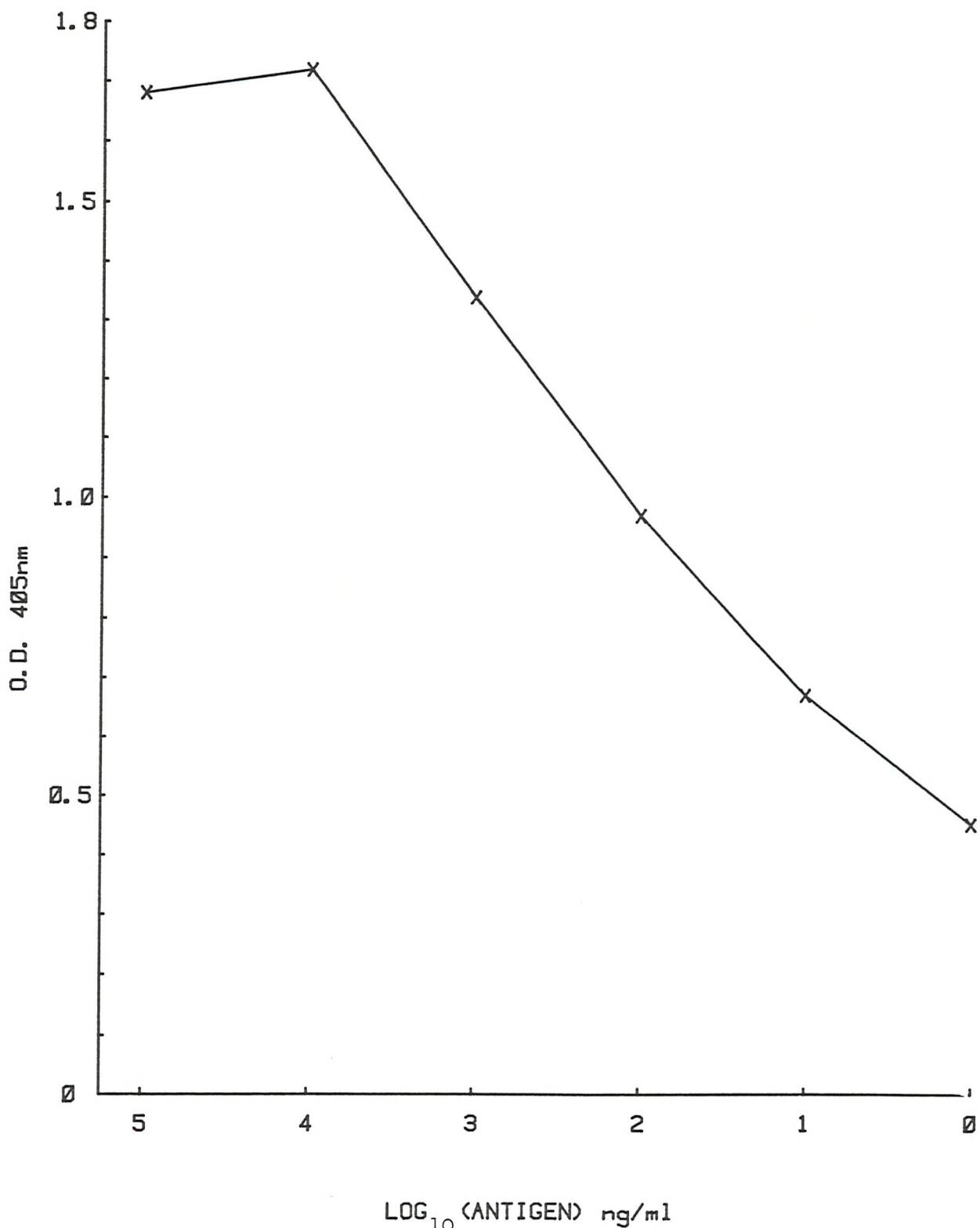


Figure 6.3 STANDARD CURVE RELATING ABSORBANCE AT 405nm TO THE CONCENTRATION OF GOATS MILK IgG (ng/ml).

Results

Specific Serum Antibodies

The level of serum antibodies against whole goats milk and whole cows milk protein was monitored during the experiment and analysis of variance showed that there was no change in antibodies against either of these proteins, following the consumption of the milk. The mean serum concentration of antibodies to cows milk was significantly greater than the mean serum concentration of antibodies to goats milk ($P < 0.001$). The mean concentration of anticows milk protein IgG was found to be significantly greater than the mean concentration of antigoat milk IgG at all times during the experiment. The mean antibody values are given in Table 6.2.

Total Circulating Immune Complexes

The mean total serum immune complex level recorded prior to consuming the milk was $4.56 \pm S.D. 1.56$. (The high value of subject G was excluded). A positive response was defined as one which exceeded basal levels by 2 standard deviations. Therefore, values greater than 7.7% Clq binding were recorded as positive. The mean serum immune complex results did not increase significantly from baseline levels in the three hours after drinking cows milk or goats milk. There was also no difference in the levels of serum immune complexes after either test meal. The mean total serum immune complex results are presented in Table 6.3, the values are expressed as a percentage of total Clq binding.

Figures 6.4 and 6.5 show the individual immune complex results after drinking cows milk or goats milk. Only subject G produced a significant increase in circulating immune complexes after drinking goats milk.

Serum Specific Antigen

Only two subjects (Subject B and G) had detectable levels of circulating antigenic cows milk protein and goats milk protein after consuming cows milk and goats milk. Both these subjects also had detectable amounts of specific antigenic protein before drinking the milk. The individual serum concentrations of antigenic cows milk protein and antigenic goats milk protein are presented in Table 6.4 and Table 6.5.

Specific serum antigen in Subject B increased from 83 ng/ml to 251 ng/ml 1 hour after drinking cows milk and from 275 ng/ml to 9.549 μ g/ml

30 minutes after drinking goats milk. Specific serum antigen in Subject G increased from 10 $\mu\text{g}/\text{ml}$ to 39.8 $\mu\text{g}/\text{ml}$ 30 minutes after consuming cows milk and 100 ng/ml to 2398 ng/ml after consuming goats milk.

Small amounts of antigen were detected in a few other subjects at certain times. The possible presence of antigen in the serum of other subjects must not be excluded as the serum was diluted in PBST 1:10 for the assay, therefore concentrations below 10 ng/ml could not be detected accurately.

The concentration of specific goat immunoglobulin G was also measured (Table 6.6). Circulating antigenic goat IgG was detected in the serum of subjects B and G but in much lower quantities than for whole goats milk or cows milk. Antigenic Goat IgG was also detected in the serum of Subject F 120 minutes after consuming the goats milk.

TABLE 6.2

Mean Concentrations of Specific Serum IgG Antibodies

After Consuming Cows Milk and Goats Milk

(Serum Diluted 1:20)

<u>Time</u> (Minutes after milk consumption)	<u>Diet Consumed</u>	
	<u>Cows Milk</u>	<u>Goats Milk</u>
	<u>Concentration of Antibodies against Cows Milk</u>	<u>Concentration of Antibodies against Goats Milk</u>
	O.D. 405 nm	O.D. 405 nm
0	1.930 ± 0.065 ^a	1.36 ± 0.098 ^x
30	1.928 ± 0.064 ^a	1.126 ± 0.100 ^x
60	1.89 ± 0.057 ^a	1.150 ± 0.097 ^x
90	1.906 ± 0.070 ^a	1.140 ± 0.123 ^x
120	1.866 ± 0.067 ^a	1.125 ± 0.101 ^x
180	1.89 ± 0.066 ^a	1.145 ± 0.105 ^x

a,x - Values within a group with a common superscript do not differ significantly

TABLE 6.3

Mean Circulating Immune Complexes (Expressed as % Clq Binding) after
Drinking Cows Milk and Goats Milk

Diet	Time (Minutes after drinking the milk)				
	0 (Before Drinking)	30	60	90	
				120	
Cows Milk	5.04 ± 0.56	5.38 ± 0.457	4.6 ± 0.403	4.84 ± 0.54	4.94 ± 0.60
Goats Milk	4.61 ± 0.60	4.43 ± 0.54	4.25 ± 0.32	5.05 ± 1.06	5.27 ± 1.47
					4.51 ± 0.62

No significant difference in mean circulating immune complexes was observed after drinking goats milk compared to cows milk and there was no change in immune complex levels during the experimental period

TABLE 6.4

Detectable Levels of Specific Serum Antigen
(ng/ml) after Drinking Cows Milk

ng of Antigenic Cows Milk Protein

Subject	Quantity Protein Consumed (grams)	0 Before Drinking The Milk	Time (Minutes after consuming the milk)				
			30	60	90	120	180
A	47.2	0	0	0	0	0	0
B	47.2	83	79	251	140	151	39
C	56.7	0	0	0	0	0	0
D	37.8	0	0	0	0	0	0
E	37.8	0	0	0	0	0	0
F	56.7	0	0	0	0	0	0
G	37.2	10000	39810	19054	19950	3019	3981
H	37.2	0	0	0	0	0	0
I	47.2	0	0	0	0	0	0
J	47.2	0	0	0	0	0	0
K	37.8	0	0	0	0	0	0
L	37.8	0	0	0	0	0	0
M	37.8	0	0	0	0	0	0

(Values calculated from the standard curve where O.D. at 405 nm is plotted against concentration of cows milk protein - Fig. 6.1)

TABLE 6.5

Detectable Levels of Specific Serum Antigen
(ng/ml) after Drinking Goats Milk

ng of Antigenic Goats Milk Protein

Subject	Quantity Protein Consumed (grams)	0 Before Drinking The Milk	Time (Minutes after consuming the milk)				
			30	60	90	120	180
A	47.2	0	0	0	0	0	0
B	47.2	275	9549	1584	158	457	151
C	56.7	0	0	0	0	0	0
D	37.8	15.8	10.2	0	0	0	0
E	37.8	0	0	0	0	0	0
F	56.7	0	0	0	0	0	0
G	37.8	100	758	150	10	2398	15.1
H	37.8	0	0	0	0	0	0
I	47.2	0	0	0	0	0	0
J	47.2	0	0	0	0	0	0
K	37.8	0	0	0	0	0	0
L	37.8	0	0	0	0	0	0
M	37.8	0	0	0	0	0	0

Values calculated from the standard curve of O.D. at 405 nm
produced by different concentrations of goats milk IgG (Fig. 6.2)

TABLE 6.6

Detectable Levels of Goat IgG in the Serum
(ng/ml) after Drinking Goats Milk

ng of Antigenic Goat Immunoglobulin
 G after consuming Goats Milk

Subject	Quantity Protein Consumed (grams)	0 Before Drinking The Milk	Time (Minutes after consuming the milk)				
			30	60	90	120	180
A	47.2	0	0	0	0	0	0
B	47.2	15.8	16.8	15	15	10	0
C	56.7	0	0	0	0	0	0
D	37.8	0	0	0	0	0	0
E	37.8	0	0	0	0	0	0
F	56.7	0	0	0	0	10	0
G	37.8	19	26.3	63	15.4	20	27
H	37.8	0	0	0	0	0	0
I	47.2	0	0	0	0	0	0
J	47.2	0	0	0	0	0	0
K	37.8	0	0	0	0	0	0
L	37.8	0	0	0	0	0	0
M	37.8	0	0	0	0	0	0

Values calculated from the standard curve of O.D. at 405 nm
 produced by different concentrations of Goat IgG (Fig. 6.3)

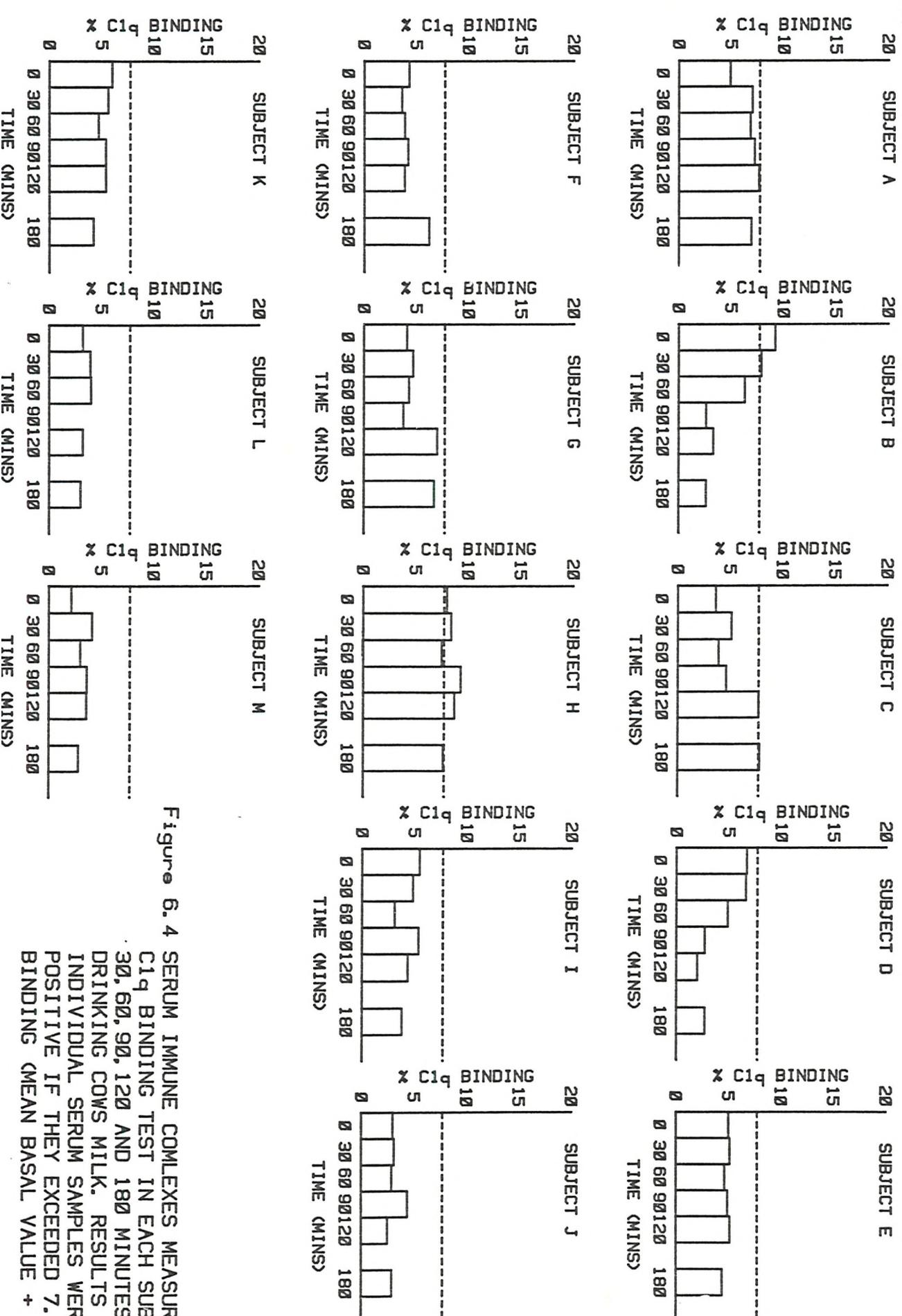


Figure 6.4 SERUM IMMUNE COMPLEXES MEASURED BY THE C1q BINDING TEST IN EACH SUBJECT AT 0, 30, 60, 90, 120 AND 180 MINUTES AFTER DRINKING COWS MILK. RESULTS FOR INDIVIDUAL SERUM SAMPLES WERE CONSIDERED POSITIVE IF THEY EXCEEDED 7.7% C1q BINDING (MEAN BASAL VALUE + 2 x SD).

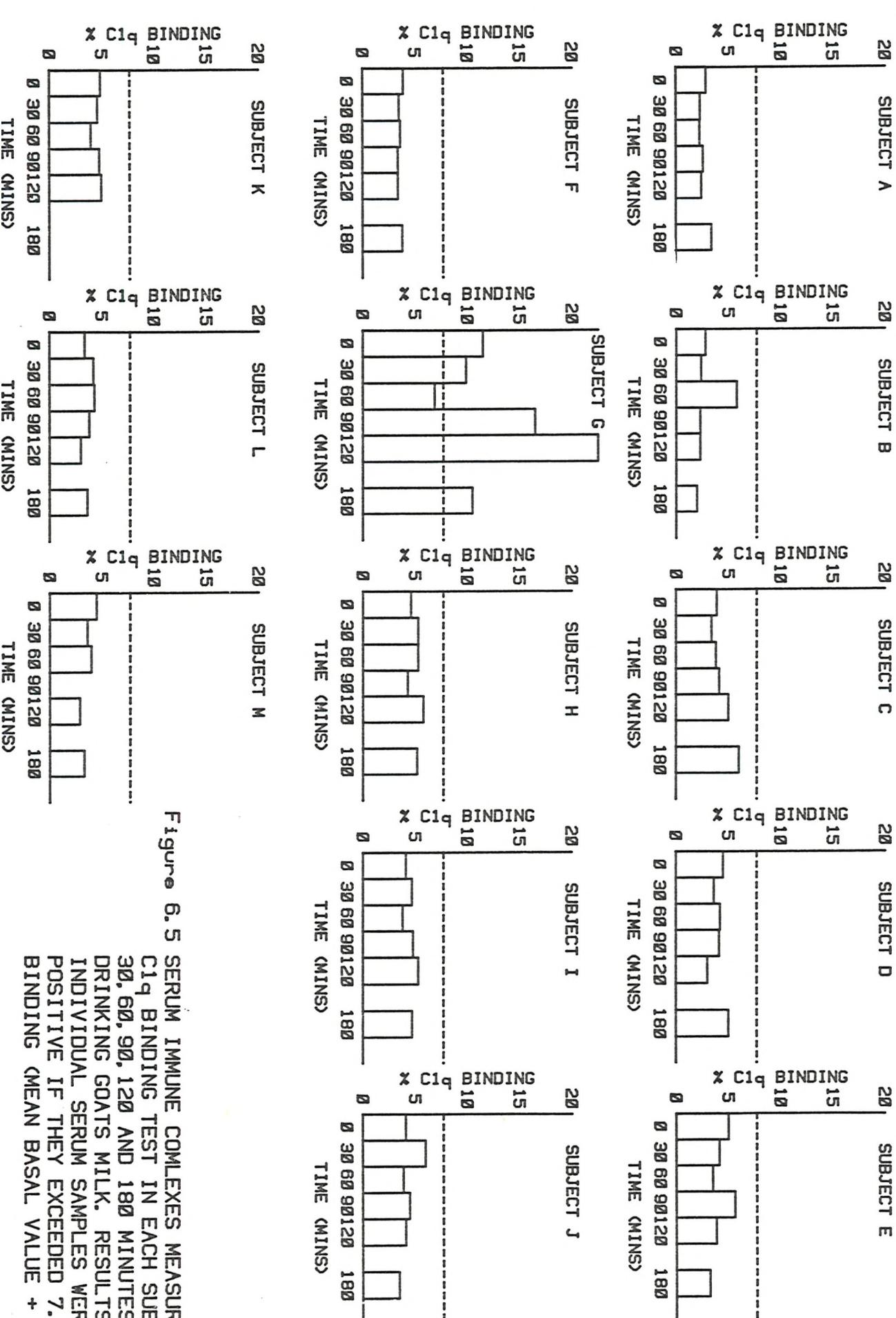


Figure 6.5 SERUM IMMUNE COMPLEXES MEASURED BY THE C1q BINDING TEST IN EACH SUBJECT AT 0, 30, 60, 90, 120 AND 180 MINUTES AFTER DRINKING GOATS MILK. RESULTS FOR INDIVIDUAL SERUM SAMPLES WERE CONSIDERED POSITIVE IF THEY EXCEEDED 7.7% C1q BINDING (MEAN BASAL VALUE + 2 X SD).

Discussion

The ingestion of 2 - 3 pints of goats milk or cows milk (37.8 - 56.7 g protein) did not produce any measurable immune response in the majority of volunteers in the following 3 hour period. The lack of serum immune complexes may have been due to an insufficient quantity of specific circulating antibody, although serum antibodies to cows milk protein were detected in all the volunteers. Prior to the experiment, some of the volunteers reported to have consumed goats milk products but then only in small quantities and on rare occasions, while others claimed never to have consumed goats milk products. None of the subjects could recall consuming goats milk products at any time during the preceding 6 months. Therefore the presence of circulating IgG antibodies to goats milk protein may reflect the ability of antibodies to cows milk protein to bind goat milk proteins. Cross reactivity between goat and bovine β lactoglobulin has been reported (Freier & Kletter, 1970).

A second explanation for the absence of serum immune complexes after the ingestion of the milk is that insufficient antigenic protein was absorbed across the gastrointestinal tract. This explanation is supported by the inability to detect circulating specific antigen in the sera of the majority of subjects after consuming either cows milk or goats milk. Bovine dairy products form a substantial portion of the Westernized diet and this continued exposure to bovine milk proteins may have induced an efficient intestinal antigen specific secretory IgA system by stimulation of the GALT, resulting in immune exclusion (Walker et al., 1972A). Secretory IgA is able to complex with specific antigen preventing its absorption into the epithelial cell by pinocytosis. The formation of membrane bound immune complexes have also been found to be more rapidly degraded by local proteases than free antigen (Walker et al., 1975B). The importance of sIgA in preventing antigen absorption in the adult intestine is substantiated by the detection of significant levels of immune complexes after the ingestion of 100 mls of cows milk (3.33 g protein) in the serum of patients with sIgA deficiency. Patients with a more severe IgA deficiency had serum immune complex levels which exceeded the levels in patients with only partial IgA deficiency and circulating immune complexes were not detected in the control subjects after consuming the milk (Cunningham-Rundles et al., 1979). A study by Pagenelli et al. (1979) reports a transient rise in circulating immune

* However only dimeric IgA is removed by the hepato-biliary system and as man has very little dimeric IgA in the circulation an alternative system must be present complexes in normal volunteers following the ingestion of 1.21 litres of cows milk (40.3 g protein) which was exaggerated in the atopic subject. However, Levinsky et al. (1981) have shown that normal non-atopic subjects did not produce a rise in circulating Clq binding immune complexes after the ingestion of 1.21 litres of cows milk, but they did develop IgA complexes within 30 minutes after ingesting the milk. These returned to baseline levels after 90 minutes. They suggest that any antigen that reaches the circulation in the non-atopic individual is rapidly removed by combination with monomeric IgA. The fact that monomeric IgA does not activate complement by the classical pathway or elicit other damaging reactions makes it an ideal immuno-globulin for safely eliminating food proteins. In contrast to the IgA complexes formed in response to food challenge in non-atopic individuals, the atopic subjects were observed to form Clq binding immune complexes which appeared as two peaks.

In this study, one subject (Subject G) did produce a substantial rise in Clq binding complexes which peaked at 120 minutes after consuming goats milk. Only a small increase in circulating immune complexes was detected after consuming cows milk in this subject. The measurement of specific serum antigen after ingestion of milk illustrated that a significant quantity of antigen was reaching the circulation in Subject G. A small rise in serum antigen was observed 30 minutes after consuming goats milk with the maximum concentration being observed after 20 minutes. Following the ingestion of cows milk a greater concentration of antigen was observed in the circulation which was maximal 30 minutes after drinking the milk. It may be relevant that at the start of this experiment, this subject did report symptoms of ~~GOATS MILK ALLERGY~~ after the ingestion of large amounts of cows milk. Only one other subject (Subject B) had detectable quantities of specific antigen present in the serum after consuming goats milk or cows milk, the greatest concentration of antigen was observed in the circulation 30 minutes after consuming goats milk. Both subjects (B and G) had antigen present in the serum before consuming both milks. The antigen detected prior to consuming goats milk is likely to be cows milk antigen, again indicating a certain amount of cross reactivity between cows milk and goats milk protein. The immune complex results were positive in Subject B before consuming cows milk and positive in Subject G before drinking goats milk.

The presence of small quantities of antigen in the serum of other subjects were only detected occasionally, however, quantities of antigen in amounts that could not be detected by the assay may have been present. *Levinsky et al. (1981)* did find that small quantities of antigen are absorbed into the serum of normal individuals, but the concentration obtained was not greater than 3 ng/ml after consuming 1.21 litres cows milk (40.3 g protein). A two peak distribution of serum antigen was observed. The first peak occurred at 30 minutes after consuming the milk and the second after 4 - 5 hours. This may represent two different routes of antigen absorbtion, the first into the portal circulation and the second into the lymphatics. A greater quantity of antigen was observed in the atopic individual after consuming the same quantity of milk (15 ng/ml).

These results suggest that the normal healthy adult is able to cope with the ingestion of quantities of milk which have a total protein content of approximately 37.8 - 56.7 g. This is possibly due to an efficient mucosal immune system. The quantity of protein that was found in the circulation of Subjects B and G suggests an ineffective immune exclusion mechanism. The immune exclusion mechanism in the intestinal mucosa can possibly only cope with a critical quantity of antigenic material and the amount of protein which saturates this process may differ in each individual. A previous study (*Goulding, 1982*) has shown an increase in serum Clq binding complexes in healthy subjects after the ingestion of 66g of milk or egg protein with peak levels of circulating immune complexes occurring between 30 and 120 minutes after consumption of the test meal. This small increase in ingested protein may cause an increase in macromolecular protein absorbtion in the majority of individuals allowing the formation of circulating immune complexes.

The ingestion of a novel protein such as goats milk protein would have been expected to produce a greater immune response due to the absence of prior stimulation by the GALT, allowing an increased quantity of antigen to reach the circulation. However, the results from this study suggest that goats milk is not treated as a novel protein as antibodies against bovine milk appeared to bind to goats milk protein. The secretory immune system present in the gut stimulated by the ingestion of bovine milk may also cross-react with goats milk protein in the gastrointestinal tract.

CHAPTER 7

THE IMMUNE RESPONSE TO COWS MILK PROTEIN AND THE
DEVELOPMENT OF ATHEROSCLEROSIS IN RABBITS

Introduction

Systemic IgG antibodies to heated milk protein have been related to coronary heart disease in a number of investigative (Davies et al. 1969; Davies et al., 1974) and epidemiological reports (Annard, 1967).

Mathews et al. (1974) postulated a role for circulating immune complexes in various vascular disorders. Immune complexes containing IgG can stimulate platelet aggregation with the release of vasoactive amines (Henson & Spiegelberg, 1973), leading to increased vascular permeability and therefore predispose to atherosclerosis thrombosis and embolism. This hypothesis is supported by Füst et al. (1978) who reported a high incidence of circulating immune complexes in the sera of patients with acute myocardial infarction, compared to healthy controls. However, other studies have reported no elevation of anti-milk antibodies in patients suffering from coronary heart disease (Toivanen et al., 1975; Scott et al., 1976) and raised serum immune complexes have been observed in a variety of cardiac disorders (Gallagher et al., 1982B). Thus the importance of immune complexes in the pathogenesis of atherosclerosis remains unclear.

In a rabbit feeding study it was found that a high fat cholesterol free diet based on soya protein resulted in florid arterial disease and elevated levels of circulating antibody to soya protein (Gallagher et al., 1978). This study was developed by exposing half the breeding stock to soya. The offspring of these animals showed systemic tolerance to the diet containing soya bean protein. These hyporesponsive animals showed lower serum antisoya antibodies, fewer positive serum immune complex results and after one year, less aortic atheroma than the equivalent group in which the breeding stock had not been exposed to soya (Gallagher et al., 1982A). As the other variables such as serum lipid levels were similar in the two groups, it appeared that the animals which showed systemic tolerance to soya protein were protected from atherosclerosis. Cross fostering experiments have shown that the tolerance can be acquired by preweanling exposure to the antigen, either in utero or via the maternal milk (Gibney & Gallagher, 1982).

Soya accounts for less than 1% of the protein consumption in Britain, whereas the average consumption of milk protein is more than 20g protein per day (Gallagher et al., 1983). Thus, the following experiment was designed to investigate the immune reactions to dietary milk protein on

the development of atherosclerosis in rabbits. To do this a high energy milk protein diet was fed to rabbits which induces mild hypercholesterolaemia and more aortic disease than a stock laboratory diet (*Goulding, 1982*).

Experimental Design

Three weanling New Zealand White Rabbits were fed a semi purified milk protein diet (Table 2.5). At six months of age, all the animals were mated and the fourteen offspring made up Group 1 (6 males and 8 females).

Group 2 was composed of 6 male and 5 female weanling New Zealand White Rabbits reared from a breeding colony which had been fed a milk free, fish meal protein diet over many years (Table 2.1). The two groups of animals had similar body weights at the start of the experiment (Group 1, 1.66 kg \pm 0.144; Group, 1.53 kg \pm 0.064). All the animals were housed in individual stainless steel cages and from weaning they were fed the cows milk semi purified diet (Table 2.5) for one year.

The rabbits were allowed free access to food and water at all times. Food intakes and body weights were recorded every four weeks and blood samples were taken from the marginal ear vein at monthly intervals. The serum was stored in 0.5 ml aliquots at -70°C and awaited analysis.

Two animals from each group died during the course of the experiment and these animals were not included in the results and statistical analysis. None of the deaths could be ascribed to atherosclerosis.

After one year on the experimental diet, the rabbits were killed by an intravenous dose of pentobarbitone (2 ml/kg body weight) and the aorta was removed and examined for atherosclerosis.

Analytic Methods

Serum Analysis

Serum antibodies to whole milk protein and the individual milk proteins were measured by ELISA (Section 2.1.2 Method (ii) - Microtitre plates (Dynatech Ltd., Billingham, Sussex) were coated with 60 $\mu\text{g}/\text{ml}$ of bovine dried skimmed milk (St. Ivel Ltd., Trowbridge, Wiltshire) or 20 $\mu\text{g}/\text{ml}$ of casein, β lactoglobulin, α lactalbumin, or Bovine Serum Albumin (purchased from Sigma Chemicals, Poole, Dorset). Peroxidase conjugated Goat anti Rabbit IgG (Nordic Immunologicals) was used as the label and O-dianisidine HCl as the chromogen. The optical density results obtained at .450 nm were expressed as a percentage of a standard reference serum obtained from rabbits which had been immunized against the specific antigen (Section 2.2.1(i)). Standard curves of the reference serum containing antibodies against whole milk protein, casein, β lactoglobulin, α lactalbumin and BSA are given in Figures 7.2, 7.3, 7.4, 7.5

and 7.6 respectively.

The concentration of circulating antigenic cows milk protein was also determined by an ELISA which is described in Section 2.3. The cuvettes were coated with 10 µg/ml of anti cows milk protein IgG antibodies. The serum was then diluted 1:10 with PBST and added to the cuvettes. The antigen was labelled by the addition of anti cows milk protein IgG, conjugated to Horse Radish Peroxidase enzyme. The conjugate was prepared by the method described in Section 2.3.2(i). Optical density readings were obtained after the addition of the assay solution containing O-phenylene-diamine as the colour reagent. The results were quantified from a standard curve produced from samples containing known quantities of specific antigen, together with rabbit serum which did not contain the antigen. The standard curve is presented in Fig. 7.7 and the results were expressed as ng of specific antigenic protein per ml of serum.

Serum immune complexes were measured by the Clq method (Section 2.4.3) and cholesterol and triglycerides were determined by the autoanalyser method described in Section 2.5.

Aortic Scoring

The degree of atheroma involvement was measured by placing a transparent grid marked into squares (0.15 x 0.15 cm) over the opened flattened aorta, this method of aortic has been described by *Morgan & Adams, 1974.*

The aorta was divided into three regions.

- 1) The Proximal aorta - the area between the aortic valve and ductus arteriosus scar.
- 2) The thoracic aorta - the area from the scar to the first major abdominal branch.
- 3) The abdominal area - the remaining area down to the bifurcation.

Squares containing any disease were counted as positive and the total number was expressed as a percentage of the total area.

The resulting score was checked by staining the aortas with Suden IV and rescored.

(A diagrammatic representation of the aortic divisions is given in Figure 7.1).

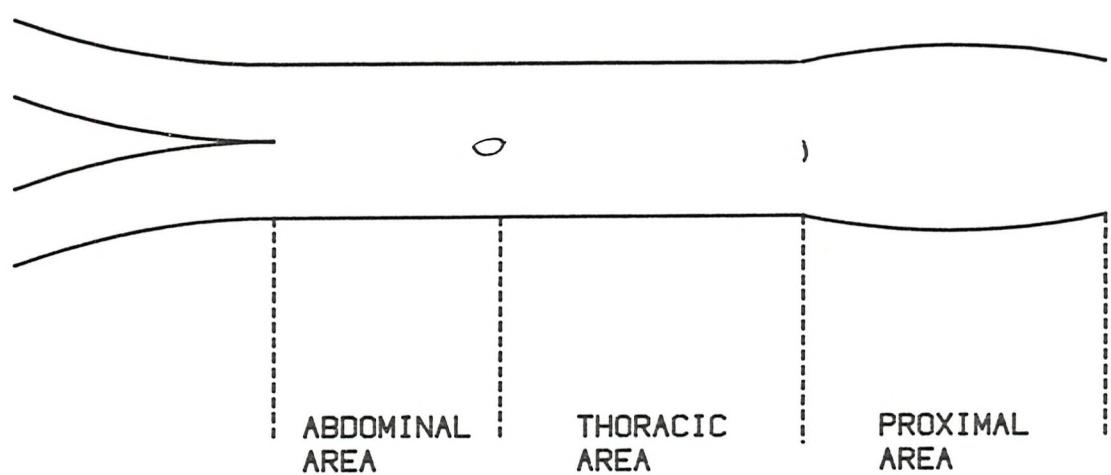


Figure 7.1 THE DIVISIONS OF THE AORTA USED FOR SCORING ATHEROSCLEROSIS.

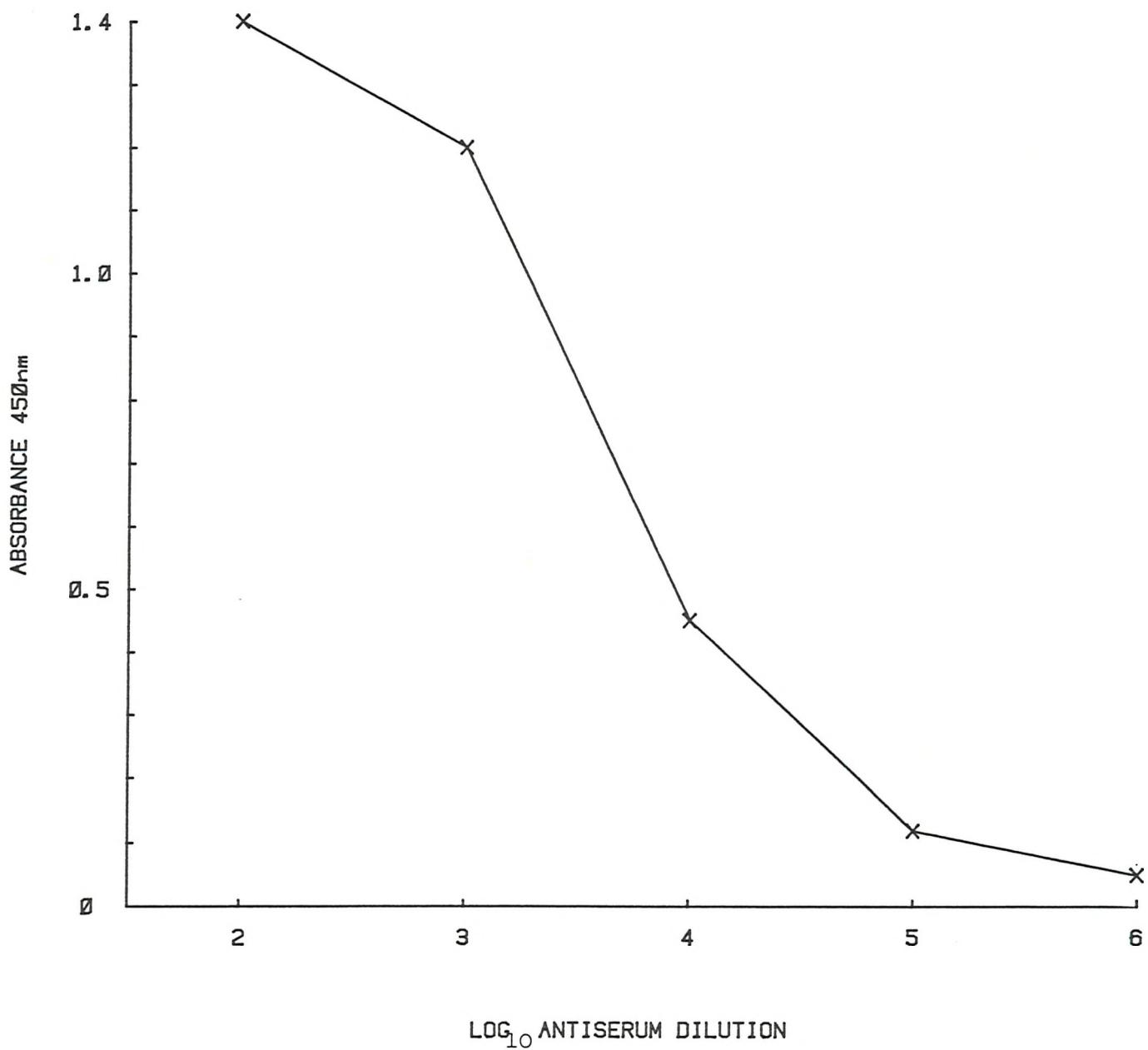


Figure 7.2 STANDARD CURVE. ANTI-MILK PROTEIN
IgG MEASURED BY ELISA IN SERUM FROM AN ANIMAL
IMMUNIZED AGAINST COWS MILK PROTEIN.

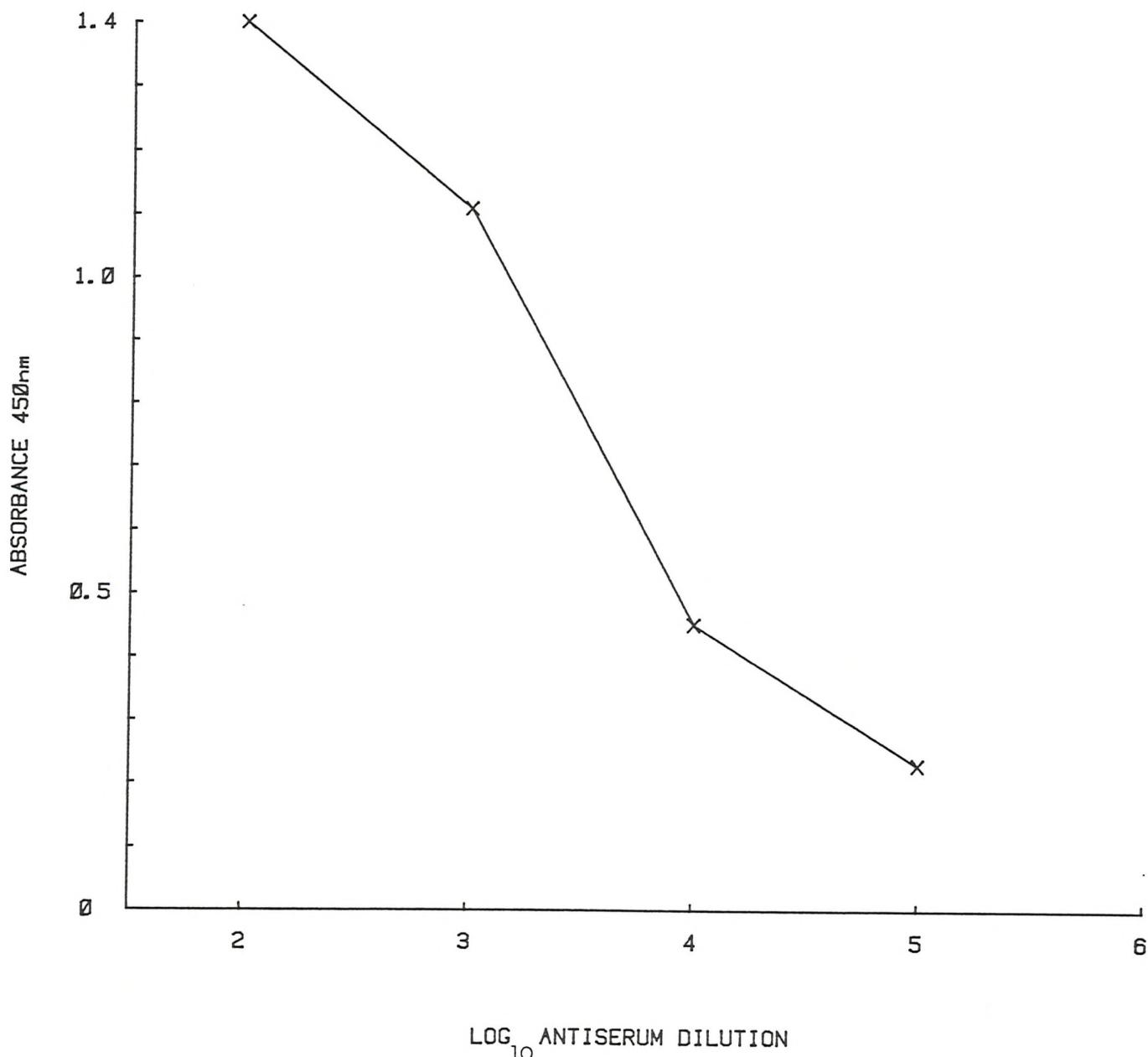


Figure 7.3 STANDARD CURVE. ANTI-CASEIN IgG
MEASURED BY ELISA IN SERUM FROM AN ANIMAL
IMMUNIZED AGAINST CASEIN.

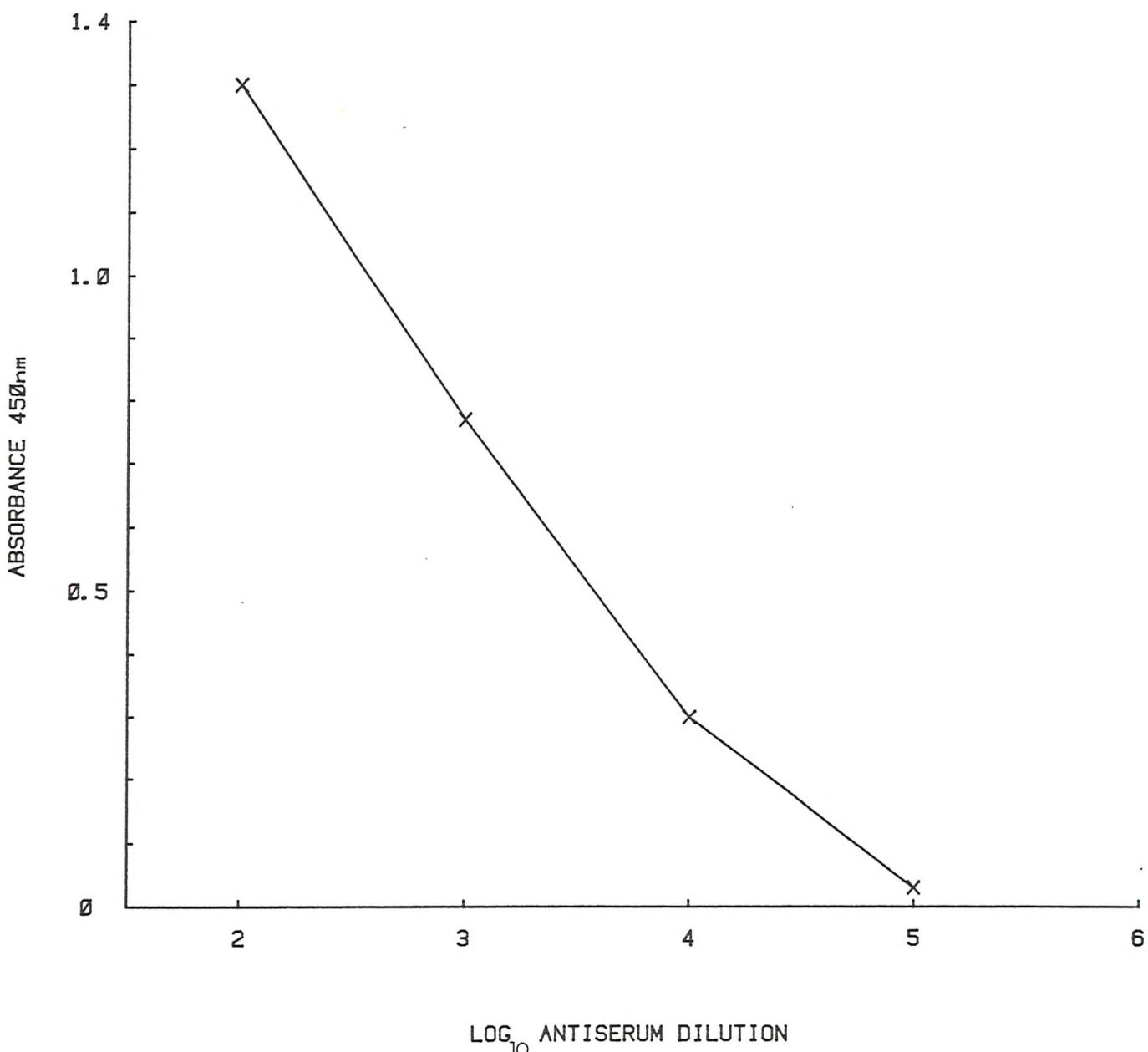


Figure 7.4 STANDARD CURVE. ANTI- β LACTOGLOBULIN IgG
MEASURED BY ELISA IN SERUM FROM AN ANIMAL
IMMUNIZED AGAINST β LACTOGLOBULIN.

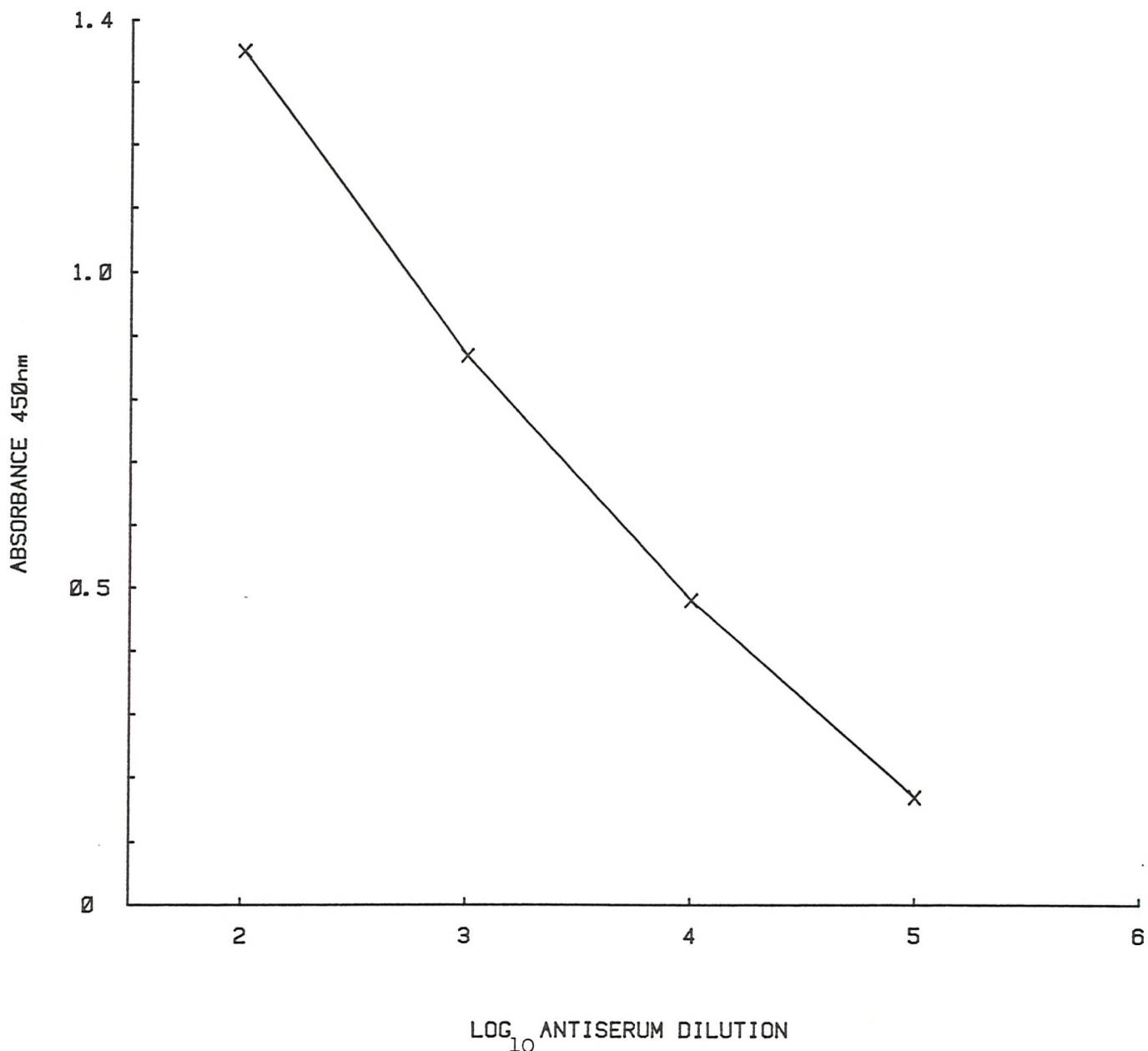


Figure 7.5 STANDARD CURVE. ANTI- α LACTOGLOBULIN IgG
MEASURED BY ELISA IN SERUM FROM AN ANIMAL
IMMUNIZED AGAINST α LACTOGLOBULIN.

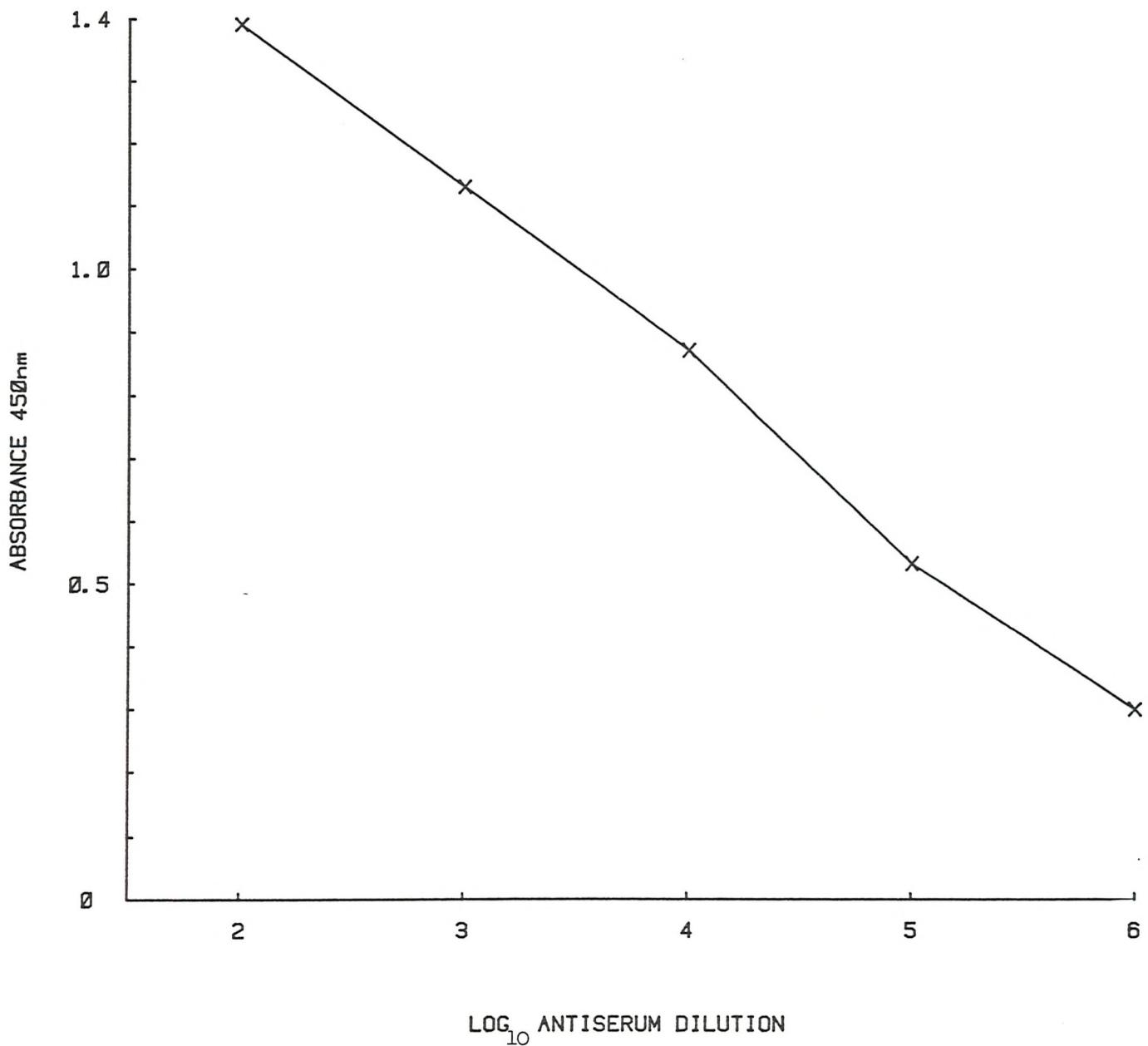


Figure 7.6 STANDARD CURVE. ANTI-BOVINE SERUM ALBUMIN IgG
MEASURED BY ELISA IN SERUM FROM AN ANIMAL
IMMUNIZED AGAINST BSA.

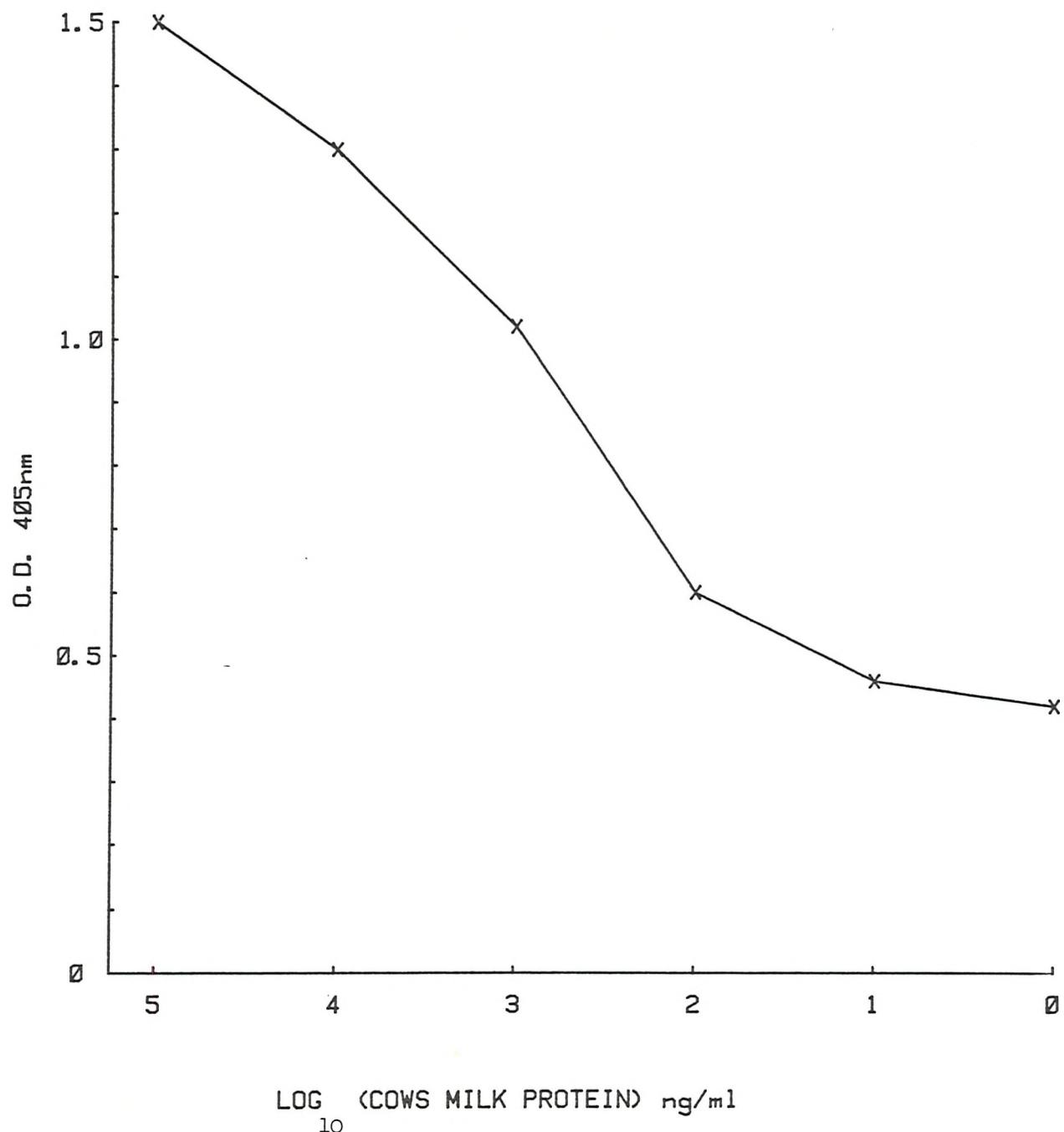


Figure 7.7 STANDARD CURVE RELATING ABSORBANCE AT 405nm TO THE CONCENTRATION OF ANTIGENIC BOVINE MILK PROTEIN (ng/ml).

Results

Live Weight Gains and Food Intakes

The mean body weights of the two groups at weaning were similar and the mean body weights increased steadily over the experimental period. However, one month after weaning and the introduction to the cows milk diet, the group of rabbits from the dams fed cows milk were significantly heavier than the group from dams which had not been exposed to cows milk (Group 1, 2.73 kg \pm 0.12(S.E.); Group 2, 2.4 kg \pm 0.065 (S.E.)($P < 0.05$)). This difference in the body weights of the two groups observed one month after weaning, was maintained throughout the experimental period (Table 7.1). The increase in the body weights of the two groups during the experimental period is illustrated in Fig. 7.8.

The mean food intakes did not change significantly during the experimental period. Table 7.2 illustrates the difference in food intakes observed at month 1, 6 and 7 ($P < 0.05$). When food intake is expressed per kg body weight the energy intake is similar in the two groups.

Serum Specific Antibodies

The antibody results were expressed as a percentage of a reference serum containing antispecific antibodies. The results were analysed by two way analysis of variants and the mean values were compared using the Duncan Multiple Range Test at the 5% level of significance.

Serum Antibodies to Whole Cows Milk Protein

A significant difference in serum anti IgG against whole cows milk protein was observed between the two groups ($P < 0.001$) and there was a significant increase over the experimental period ($P < 0.001$).

The concentration of anti cows milk protein IgG in the serum of the two groups was not significantly different at weaning and the following 2 months. Three months after the introduction of the cows milk diet, the mean concentration of serum specific antibodies was significantly greater in Group 2 compared with Group 1 and this difference is maintained for the remainder of the experimental period (month 3 to month 12). The mean values are presented in Table 7.3, which illustrates that anti cows milk protein IgG did not increase significantly from weaning in Group 1, except at month 2. In contrast, the mean value for serum

anti cows milk protein IgG in Group 2 increases during the experimental period. The rise in specific serum antibodies during the experimental period is illustrated in Fig. 7.9.

Serum Antibodies Against the Individual Milk Proteins

The serum was analysed for the presence of circulating antibodies to the individual milk proteins at months 0, 4, 8 and 12.

Anti Casein IgG

The concentration of serum IgG specific for casein differed significantly between the two groups ($P < 0.001$) and increased significantly over the experimental period ($P < 0.001$). The mean values for serum anti casein IgG for the two groups are presented in Table 7.4. The level of specific serum antibodies in Group 1 did not increase significantly from weaning, whereas Group 2 developed increased levels of specific antibodies which were maximal at month 8 (as illustrated in Fig. 7.10), thus resulting in a significant difference in mean serum antibody levels of Group 1 and 2 at months 4, 8 and 12 post weaning.

Anti β Lactoglobulin

Serum anti β lactoglobulin antibodies increased significantly over the experimental period ($P < 0.01$) and a significant increase in serum antibodies occurred with time ($P < 0.001$). The mean values of the two groups are presented in Table 7.5 and illustrated in Fig. 7.11. Mean values of the two groups did not differ significantly at weaning and there is no significant increase in serum specific antibodies in Group 1. Group 2 shows a rise in serum antibodies at 4 months, which is maintained at 8 and 12 months post weaning, resulting in a significant difference in the serum anti β lactoglobulin IgG concentration of the two groups at months 4, 8 and 12 post weaning.

Anti α Lactalbumin IgG

The overall increase in serum anti α lactalbumin IgG was significant ($P < 0.05$) and a significant difference between the two groups also occurred, but again, only at the 5% level. The mean values are presented in Table 7.6, which shows that the mean concentration of specific serum antibodies only differs significantly in Group 1 and 2 at month 8. Serum specific antibodies were not found to increase from weaning in Group 1, whereas the mean value for anti α lactalbumin IgG increases in

Group 2 from weaning at month 4 and 8. However, at 12 months, the level of specific antibodies was not significantly different from that observed at weaning (Fig. 7.12).

Anti BSA IgG

Specific serum antibodies increased over the experimental period ($P < 0.01$) and a significant difference was observed between the two groups at the 5% level. However, when the mean values were compared at 0, 4, 8 and 12 months by the Duncans Multiple Range Test, there was no difference in the specific serum antibody level in the two groups. The results are presented in Table 7.7. An increase in antibodies occurred in Group 1 at 8 months after the introduction of the milk diet. Group 2 also showed an increase in serum antibodies from weaning at 4 months which was maintained at month 8 and 12 post weaning (Fig. 7.13).

Serum Immune Complex Results

A serum immune complex result was considered positive if it exceeded 7.9% Clq-binding by 7.9% (i.e. mean serum immune complex result from 40 normal rabbits plus two standard deviations).

Fig. 7.14 summarizes the incidence of positive results at months 0, 7 and 10 after the introduction of the cows milk diet. Very few animals had levels of serum immune complexes that were considered positive and there was no difference in serum immune complex formation between the two groups. The mean values for each group are presented in Table 7.8.

Mean Serum Antigen Concentration

A significant difference in circulating antigenic cows milk protein was observed at weaning between the two groups ($P < 0.05$). The mean serum concentration of antigenic cows milk protein at months 0, 4, 8 and 12 after the introduction of the milk diet are presented in Table 7.9. The mean concentration of specific antigen in the serum of Group 1 was not found to change over the experimental period. whereas a decline from the concentration observed at weaning was found in Group 2 after 4 months on the milk diet ($P < 0.05$).

Although the decrease in the concentration of serum specific antigen was not significant from month 4 to month 12 by the Duncan Multiple Range Test (Table 7.9), the linear regression coefficient was similar for both Groups during this period (Fig. 7.15).

Aortic Atheroma

Very little atherosclerosis developed in the rabbits of both groups and the majority of disease that was found was in the proximal region of the aorta. The mean values for the disease in the proximal area were: Group 1, $12.26 \pm 5.26\%$ and Group 2, $13.5 \pm 6.57\%$ of the total proximal area. The difference between the amount of disease in the proximal area was not found to be significant by the Mann-Whitney U Test. The amount of disease found in each animal is presented in Table 7.10 which illustrates the lack of atherosclerosis in both groups.

Serum Cholesterol and Triglycerides

Serum cholesterol and triglycerides were measured at 3 monthly intervals. The mean serum cholesterol concentrations at weaning were: Group 1, $3.68 \pm 0.49 \text{ mmol/l}$ and Group 2, $2.94 \pm 0.29 \text{ mmol/l}$. Both groups became mildly hypercholesterolaemic during the experimental period. The mean values for each group are presented in Table 7.11, no significant differences in mean serum cholesterol of the two groups developed throughout the experiment.

Total serum triglycerides were also measured at 3 monthly intervals and the mean values are given in Table 7.12. Triglyceride levels were similar in both groups, except at month 12, when the levels in both groups were significantly greater than at other times ($P < 0.05$) and the mean concentration in the serum of Group 1 was significantly greater than Group 2 ($P < 0.05$).

TABLE 7.1

Mean Body Weight (Kg) \pm S.E. of Rabbits Fed
A Purified Diet Based on Cows Milk Protein

<u>Maternal Diet</u>	<u>Milk Protein</u>	<u>Fishmeal Protein</u>	
<u>Months Post-Weaning</u>	<u>Group 1 (Kg)</u>	<u>Group 2 (Kg)</u>	
0	1.66 \pm 0.144	NS	1.53 \pm 0.064
1	2.73 \pm 0.12	*	2.4 \pm 0.065
2	3.47 \pm 0.105	*	2.98 \pm 0.078
3	3.97 \pm 0.123	*	3.31 \pm 0.146
4	4.10 \pm 0.102	*	3.47 \pm 0.167
5	4.31 \pm 0.096	*	3.64 \pm 0.153
6	4.52 \pm 0.097	*	3.75 \pm 0.169
7	4.67 \pm 0.099	*	3.83 \pm 0.151
8	4.78 \pm 0.09	*	4.0 \pm 0.166
9	5.0 \pm 0.087	*	4.07 \pm 0.156
10	5.10 \pm 0.07	*	4.152 \pm 0.157
11	5.30 \pm 0.08	*	4.216 \pm 0.167
12	5.5 \pm 0.08	*	4.38 \pm 0.148

NS - No significant difference between the body weights of the two groups at a particular time.

* - Significant difference between the mean body weights of the two groups ($P < 0.05$) at a particular time

The weight gain in both groups is significant over the experimental period ($P < 0.001$)

TABLE 7.2

Mean Food Intake of Rabbits Fed a Purified
Diet Based on Cows Milk Protein (Kg per month)

<u>Maternal Diet</u>	<u>Milk Protein</u>	<u>Fishmeal Protein</u>	
<u>Month</u>	<u>Group 1</u>	<u>Group 2</u>	
1	2.49 ± 0.133 ^a	*	1.84 ± 0.07 ^x
2	2.50 ± 0.11 ^a	NS	2.35 ± 0.089 ^x
3	2.37 ± 0.13 ^a	NS	2.11 ± 0.117 ^x
4	2.22 ± 0.12 ^a	NS	2.09 ± 0.108 ^x
5	2.3 ± 0.11 ^a	NS	2.07 ± 0.09 ^x
6	2.43 ± 0.13 ^a	*	1.902 ± 0.066 ^x
7	2.51 ± 0.10 ^a	*	1.96 ± 0.114 ^x
8	2.41 ± 0.108 ^a	NS	2.04 ± 0.109 ^x
9	2.28 ± 0.103 ^a	NS	1.99 ± 0.084 ^x
10	2.39 ± 0.076 ^a	NS	2.11 ± 0.076 ^x
11	2.37 ± 0.113 ^a	NS	2.2 ± 0.122 ^x
12	2.29 ± 0.092 ^a	NS	2.07 ± 0.096 ^x

a,x - Values within a given group with the same superscript
do not differ significantly

* - Significant difference in the food intake of the two
groups at a particular time

NS - No significant difference in the food intake of the
two groups at a particular time

TABLE 7.3

Mean Serum Anti Cows Milk Protein IgG after
the Introduction of the Milk Based Diet at Weaning (\pm S.E.)

<u>Age (Months Post Weaning)</u>	<u>Group 1</u> (Dams Exposed to Milk)			<u>Group 2</u> (Dams not Exposed to Milk)	
0	0.044	0.04 ^a	NS	0.007	0.005 ^a
1	0.467	0.245 ^a	NS	0.491	0.096 ^{ab}
2	1.083	0.352 ^b	NS	1.56	0.312 ^{bc}
3	0.817	0.293 ^{ab}	*	1.77	0.291 ^c
4	0.623	0.268 ^{ab}	*	2.72	0.724 ^c
5	0.474	0.197 ^{ab}	*	2.93	0.868 ^c
6	0.414	0.180 ^{ab}	*	2.89	0.575 ^c
7	0.796	0.323 ^{ab}	*	5.07	1.51 ^d
8	0.440	0.163 ^{ab}	*	7.13	2.00 ^d
9	0.280	0.297 ^{ab}	*	8.59	1.81 ^d
10	0.880	0.405 ^{ab}	*	8.84	2.19 ^d
11	0.712	0.346 ^{ab}	*	7.94	1.77 ^d
12	0.785	0.339 ^{ab}	*	7.83	1.62 ^d

a,b,c,d - Mean values within a given group without a common superscript differ significantly ($P < 0.05$)

* - Mean values between groups at a given time differ significantly ($P < 0.05$)

NS - No significant difference in the mean values between groups at a given time

Results are expressed as a percentage of reference serum (Fig. 7.2)

TABLE 7.4

Mean Serum Anti Casein IgG after the
Introduction of the Cows Milk Diet at Weaning (\pm S.E.)

<u>Age (Months Post Weaning)</u>	<u>Group 1 (Dams Exposed to Milk)</u>		<u>Group 2 (Dams not Exposed to Milk)</u>
0	0.0 \pm 0 ^a	NS	0.0 \pm 0 ^a
4	1.94 \pm 1.43 ^a	*	4.98 \pm 1.86 ^b
8	0.70 \pm 0.421 ^a	*	9.94 \pm 2.78 ^c
12	0.576 \pm 0.275 ^a	*	6.36 \pm 1.80 ^{cb}

a,b,c - Mean values within a given group without a common superscript differ significantly ($P < 0.05$)

* - Mean values between groups at a given time differ significantly ($P < 0.05$)

NS - Mean values between groups at a given time do not differ significantly

Results are expressed as a percentage of reference serum (Fig. 7.3)

TABLE 7.5

Mean Serum Anti β Lactoglobulin IgG after the
Introduction of the Cows Milk Diet at Weaning (\pm S.E.)

<u>Age (Months</u>	<u>Group 1</u>	<u>Group 2</u>	
<u>Post Weaning)</u>	(<u>Dams Exposed</u> <u>to Milk</u>)	(<u>Dams not Exposed</u> , <u>to Milk</u>)	
0	0.084 \pm 0.019 ^a	NS	0.007 \pm 0.003 ^a
4	0.111 \pm 0.024 ^a	*	5.64 \pm 2.21 ^b
8	0.071 \pm 0.022 ^a	*	6.48 \pm 2.51 ^b
12	0.057 \pm 0.013 ^a	*	5.82 \pm 2.81 ^b

a,b,c - Mean values within a given group without a common superscript differ significantly ($P < 0.05$)

* - Mean values between groups at a given time differ significantly ($P < 0.05$)

NS - Mean values between groups at a given time do not differ significantly

Results are expressed as a percentage of reference serum (Fig. 7.4)

TABLE 7.6

Mean Serum Anti α Lactalbumin IgG after the
Introduction of the Cows Milk Diet at Weaning (\pm S.E.)

<u>Age (Months Post Weaning)</u>	<u>Group 1</u>	<u>Group 2</u>	
	(Dams Exposed to Milk)	(Dams not Exposed to Milk)	
0	0.002 \pm 0.002 ^a	NS	0.0 \pm 0 ^a
4	0.072 \pm 0.021 ^a	NS	0.769 \pm 0.616 ^b
8	0.067 \pm 0.024 ^a	*	2.43 \pm 2.19 ^b
12	0.085 \pm 0.025 ^a	NS	0.750 \pm 0.456 ^{ab}

a,b,c - Mean values within a given group without a common superscript differ significantly ($P < 0.05$)

* - Mean values between groups at a given time differ significantly ($P < 0.05$)

NS - Mean values between groups at a given time do not differ significantly

Results are expressed as a percentage of reference serum (Fig. 7.5)

TABLE 7.7

Mean Serum Anti BSA IgG after the introduction
of the Cows Milk Diet at Weaning (\pm S.E.)

<u>Age (Months Post Weaning)</u>	<u>Group 1</u> (Dams Exposed to Milk)	<u>Group 2</u> (Dams not Exposed to Milk)	
0	0.0 \pm 0 ^a	NS	0.0 \pm 0 ^a
4	1.63 \pm 1.42 ^{ab}	NS	6.38 \pm 2.59 ^b
8	6.054 \pm 2.60 ^b	NS	6.04 \pm 2.46 ^b
12	5.20 \pm 2.60 ^{ab}	NS	10.6 \pm 3.23 ^b

a,b,c - Mean values within a given group without a common superscript differ significantly ($P < 0.05$)

* - Mean values between groups at a given time differ significantly ($P < 0.05$)

NS - Mean values between groups at a given time do not differ significantly

Results are expressed as a percentage of reference serum (Fig. 7.6)

TABLE 7.8

Mean Serum Immune Complex Results expressed
as a Percentage of Total Clq Binding

Rabbits Introduced to Cows Milk Diet at Weaning

Age (Months Post Weaning)	0	7	10
<hr/>			
Group 1			
(Maternal Exposure to Cows Milk)	4.88	0.97	5.35
			0.873
			3.82
			0.46
<hr/>			
Group 2			
(No Maternal Exposure to Cows Milk)	5.73	1.00	6.48
			1.20
			3.36
			0.253
<hr/>			

There was no increase in circulating immune complex levels within each group and there was no significant difference in the levels between each group

TABLE 7.9

The Effect of Maternal Exposure to Cows Milk Protein
on Serum Concentrations of Antigenic Milk Protein (ng/ml) \pm S.E.

<u>Age (Months</u>	<u>Group 1</u>		<u>Group 2</u>
<u>Post Weaning)</u>	(Dams Exposed to Cows Milk)		(Dams not Exposed, to Cows Milk)
0	99.9 \pm 26.45 ^a	*	234 \pm 50.76 ^a
4	105.5 \pm 19.14 ^a	NS	127 \pm 27.83 ^b
8	80.9 \pm 16.13 ^a	NS	117 \pm 16.08 ^b
12	44.3 \pm 9.54 ^a	NS	84.1 \pm 18.05 ^b

a,b - Mean values within a given group without a common superscript differ significantly ($P < 0.05$)

* - Mean values between the two groups at a given time differ significantly ($P < 0.05$)

NS - Values between the two groups at a given time do not differ significantly

TABLE 7.10

Individual Atherosclerotic Scores. Rabbits
Killed after 12 Months on the Experimental Diet

Group 1 - Dams Exposed to Milk Protein

<u>Rabbit</u> <u>Numbers</u>	<u>Proximal Aorta</u> <u>% Disease</u>	<u>Thoracic Aorta</u> <u>% Disease</u>	<u>Abdominal Aorta</u> <u>% Disease</u>
001	14.7	4.0	0
002	14.6	28.4	0
003	44.1	56.5	63.1
005	0	0	0
006	3.2	0	0
007	0	0	0
008	0	0	0
009	4.49	0	0
011	12.1	0	0
012	54.0	0	0
014	0	0	0
018	0	0	0
Mean	12.26 \pm 5.26	7.4 \pm 5.04	5.25 \pm 5.25

Group 2 - Dams Not Exposed to Milk Protein

<u>Rabbit</u> <u>Numbers</u>	<u>Proximal Aorta</u> <u>% Disease</u>	<u>Thoracic Aorta</u> <u>% Disease</u>	<u>Abdominal Aorta</u> <u>% Disease</u>
030	0	0	0
031	9.9	0	0
033	0	0	0
034	0	0	0
035	32.3	0	0
036	54.9	12.3	12.5
037	0	0	0
038	24.5	0	0
041	0	0	0
Mean	13.5 \pm 6.57	1.36 \pm 1.36	1.38 \pm 1.38

TABLE 7.11

Mean Serum Cholesterol Levels (m mol/l) in the
Rabbits of Group 1 and Group 2 after the Introduction of
the Cows Milk Diet

<u>Age (Months</u>	<u>Group 1</u>	<u>Group 2</u>
<u>Post Weaning)</u>	<u>(Dams Exposed,</u>	<u>(Dams not Exposed,</u>
	<u>to Cows Milk)</u>	<u>to Cows Milk)</u>
0	3.68 ± 0.49 ^a	NS 2.94 ± 0.29 ^a
3	6.04 ± 0.71 ^b	NS 4.72 ± 0.72 ^{ab}
6	4.21 ± 0.35 ^{ab}	NS 4.20 ± 0.68 ^{ab}
9	4.90 ± 0.80 ^{ab}	NS 5.23 ± 0.78 ^b
12	4.32 ± 0.72 ^{ab}	NS 4.03 ± 0.48 ^{ab}

a,b - Mean values within a given group without a common superscript differ significantly ($P < 0.05$)

NS - Mean values between groups at a given time do not differ significantly

TABLE 7.12

Mean Serum Triglycerides (m mol/l) in the Rabbits of Group 1
and Group 2 after the Introduction of the Cows Milk Diet

<u>Age (Months</u>	<u>Group 1</u>		<u>Group 2</u>
<u>Post Weaning)</u>	(^{Dams Exposed} to Milk)		(^{Dams not Exposed} to Milk)
0	0.95 ± 0.06 ^a	NS	0.63 ± 0.09 ^a
3	2.10 ± 1.13 ^a	NS	0.82 ± 0.24 ^a
6	1.60 ± 0.52 ^a	NS	0.70 ± 0.17 ^a
9	1.41 ± 0.36 ^a	NS	0.61 ± 0.13 ^a
12	5.61 ± 0.74 ^b	*	3.87 ± 0.58 ^b

a,b - Mean values within a given group without a common superscript differ significantly ($P < 0.05$)

* - Mean values between groups at a given time differ significantly ($P < 0.05$)

NS - Mean values between groups at a given time do not differ significantly

O : GROUP 1 (MATERNAL EXPOSURE TO MILK PROTEIN)
X : GROUP 2 (NO MATERNAL EXPOSURE TO MILK PROTEIN)

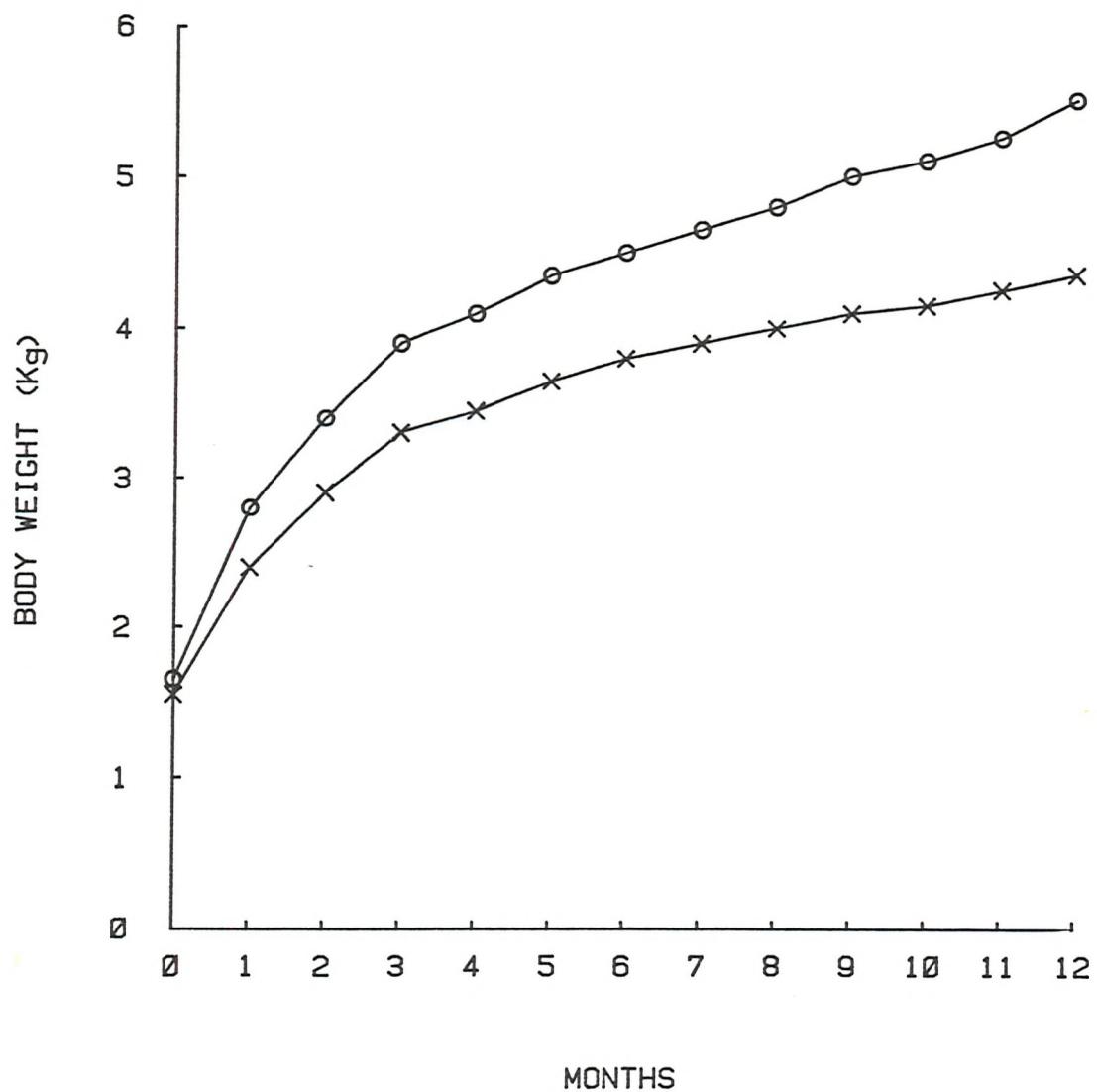


Figure 7.8 INCREASE IN MEAN BODY WEIGHT OF GROUP 1 AND GROUP 2 DURING THE EXPERIMENTAL PERIOD.

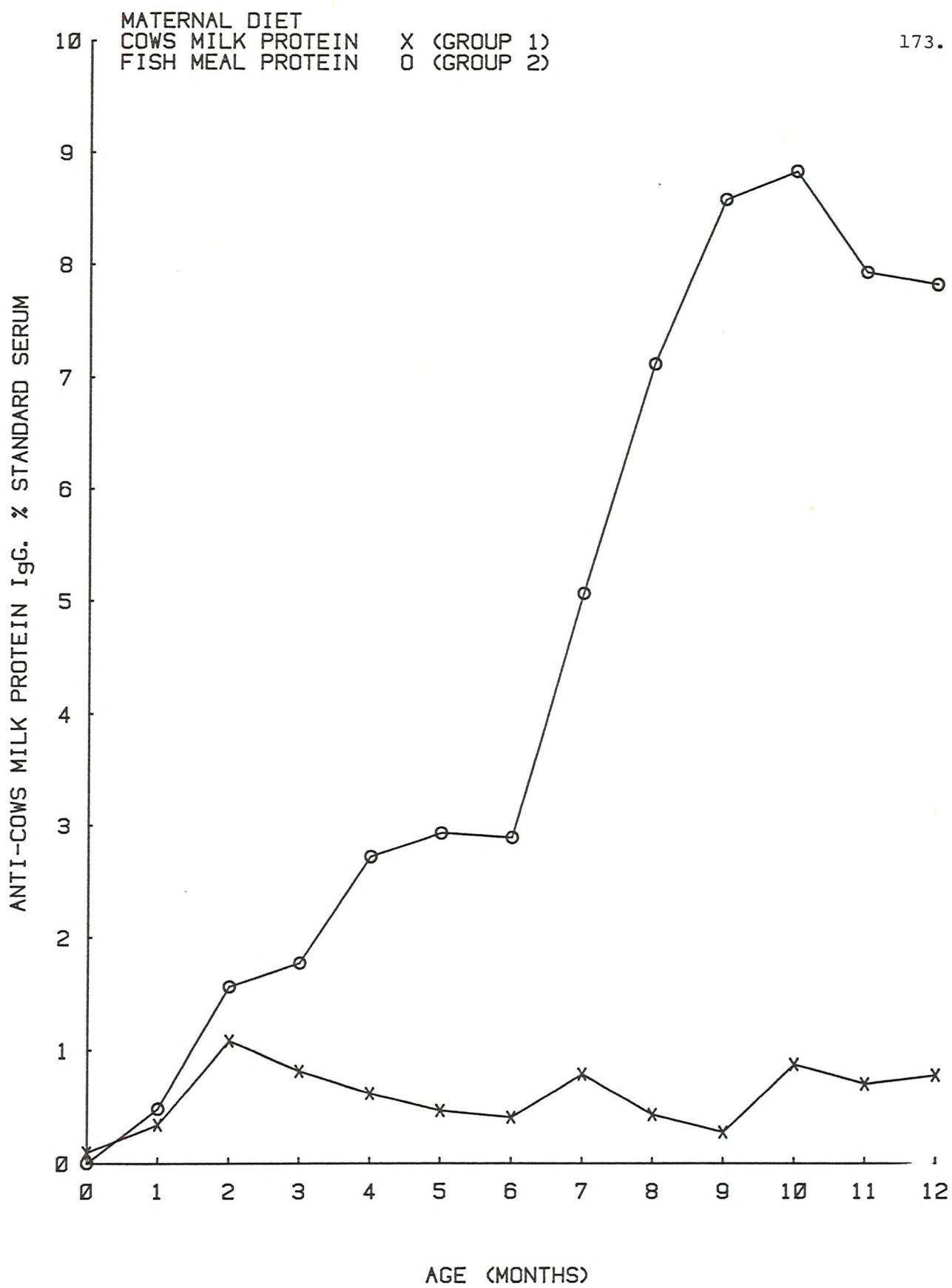


Figure 7.9 THE EFFECT OF MATERNAL EXPOSURE TO MILK PROTEIN ON SERUM ANTI-COWS MILK PROTEIN IgG (% STANDARD SERUM SAMPLE Fig. 7.2) IN RABBITS FED A PURIFIED DIET BASED ON COWS MILK.

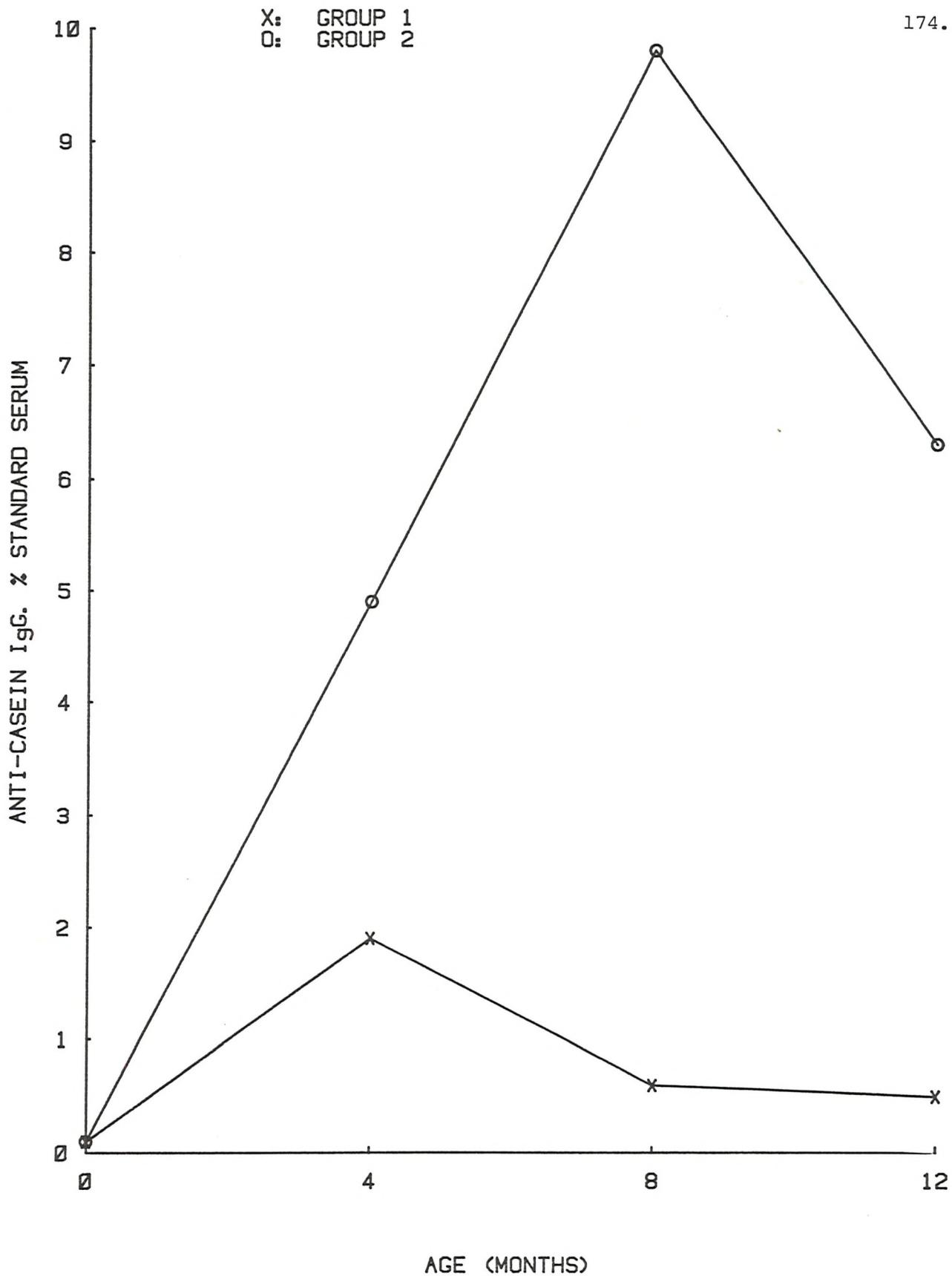


Figure 7.10 THE EFFECT OF MATERNAL EXPOSURE TO MILK PROTEIN ON SERUM ANTI-CASEIN IgG (% STANDARD SERUM SAMPLE Fig. 7.3) IN RABBITS FED A PURIFIED DIET BASED ON COWS MILK.

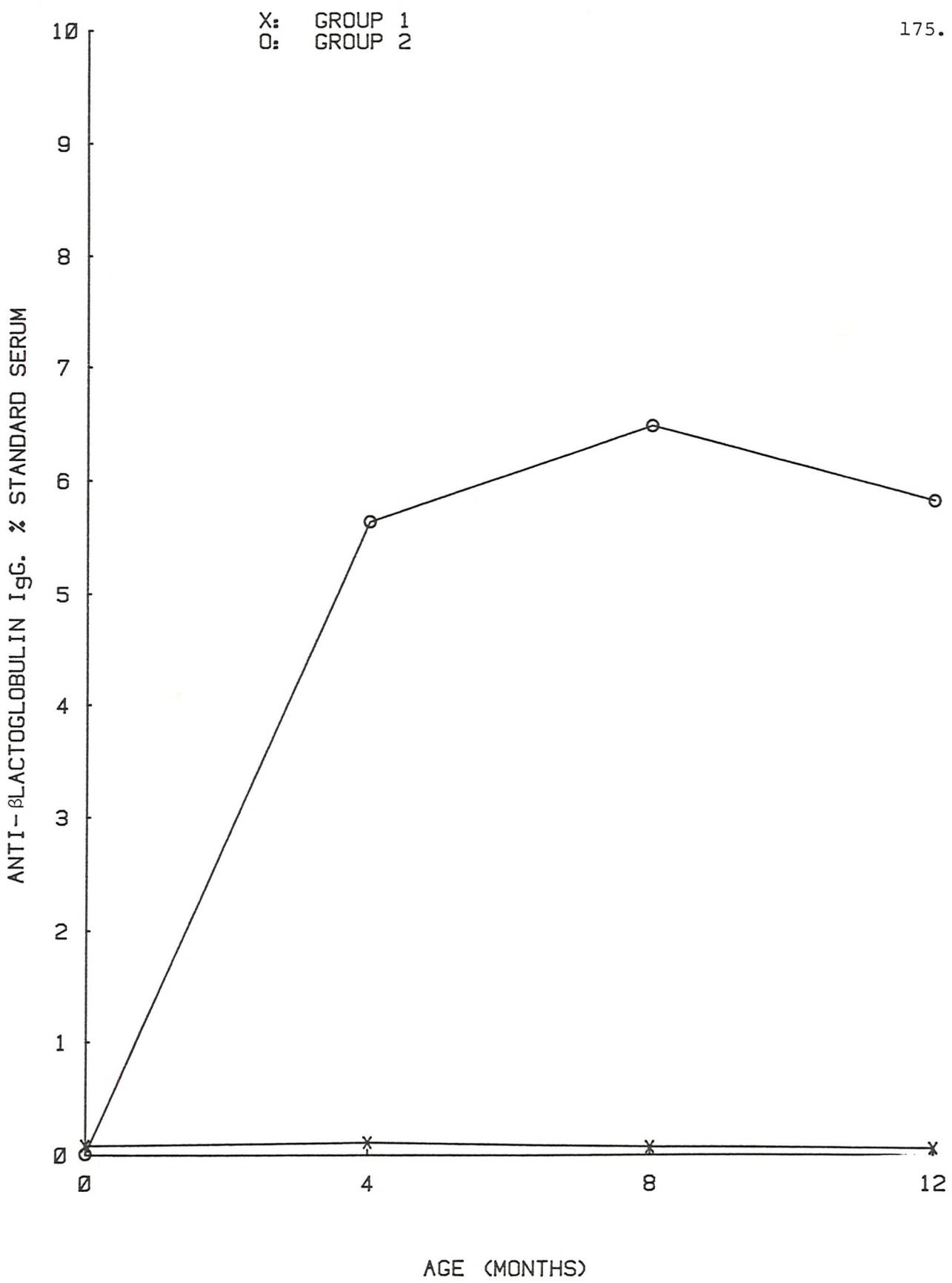


Figure 7.11 THE EFFECT OF MATERNAL EXPOSURE TO MILK PROTEIN ON SERUM ANTI- β LACTOGLOBULIN IgG (% STANDARD SERUM SAMPLE Fig. 7.3) IN RABBITS FED A PURIFIED DIET BASED ON COWS MILK.

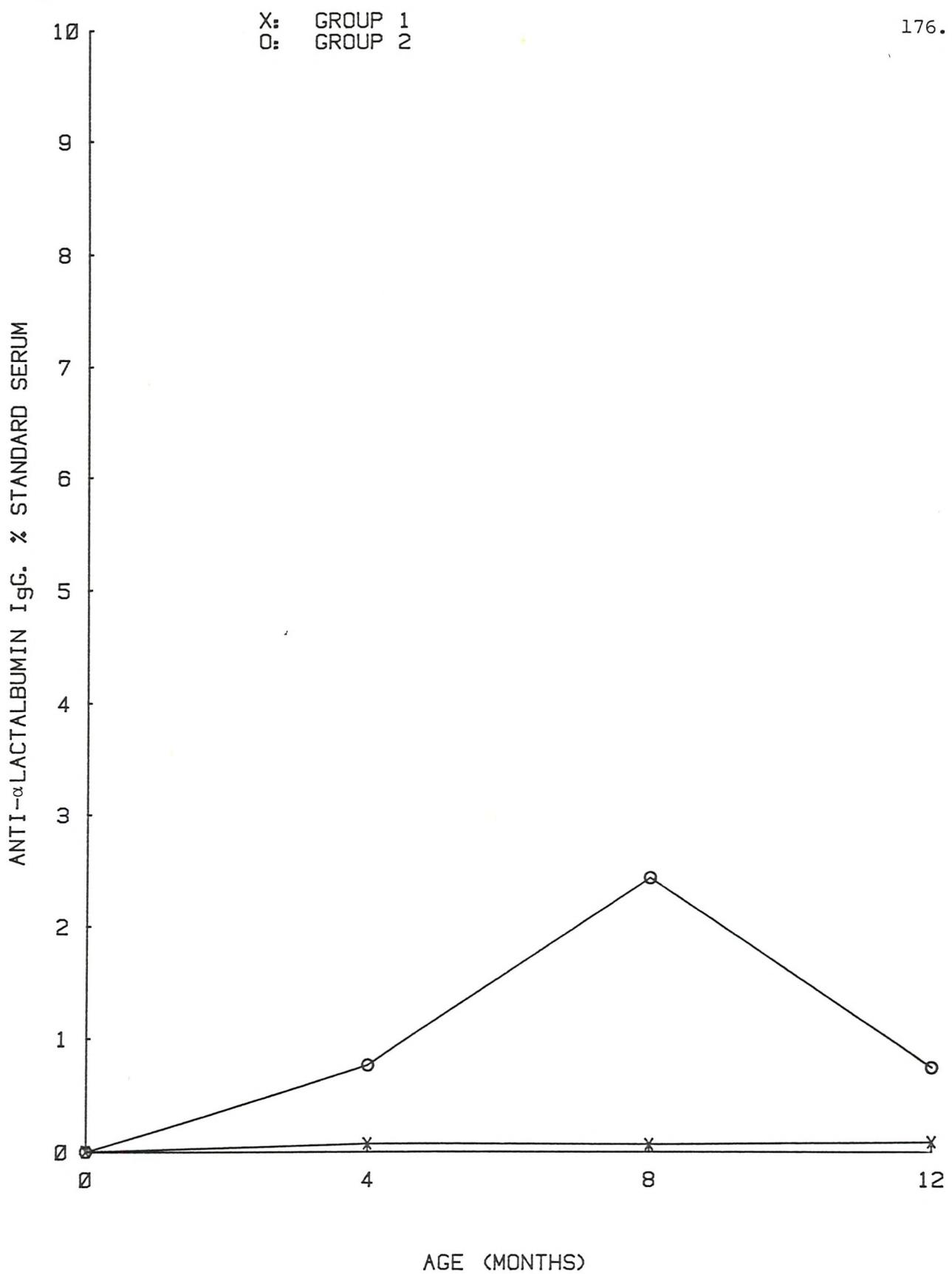


Figure 7.12 THE EFFECT OF MATERNAL EXPOSURE TO MILK PROTEIN ON SERUM ANTI- α LACTALBUMIN IgG (% STANDARD SERUM SAMPLE Fig. 7.5) IN RABBITS FED A PURIFIED DIET BASED ON COWS MILK.

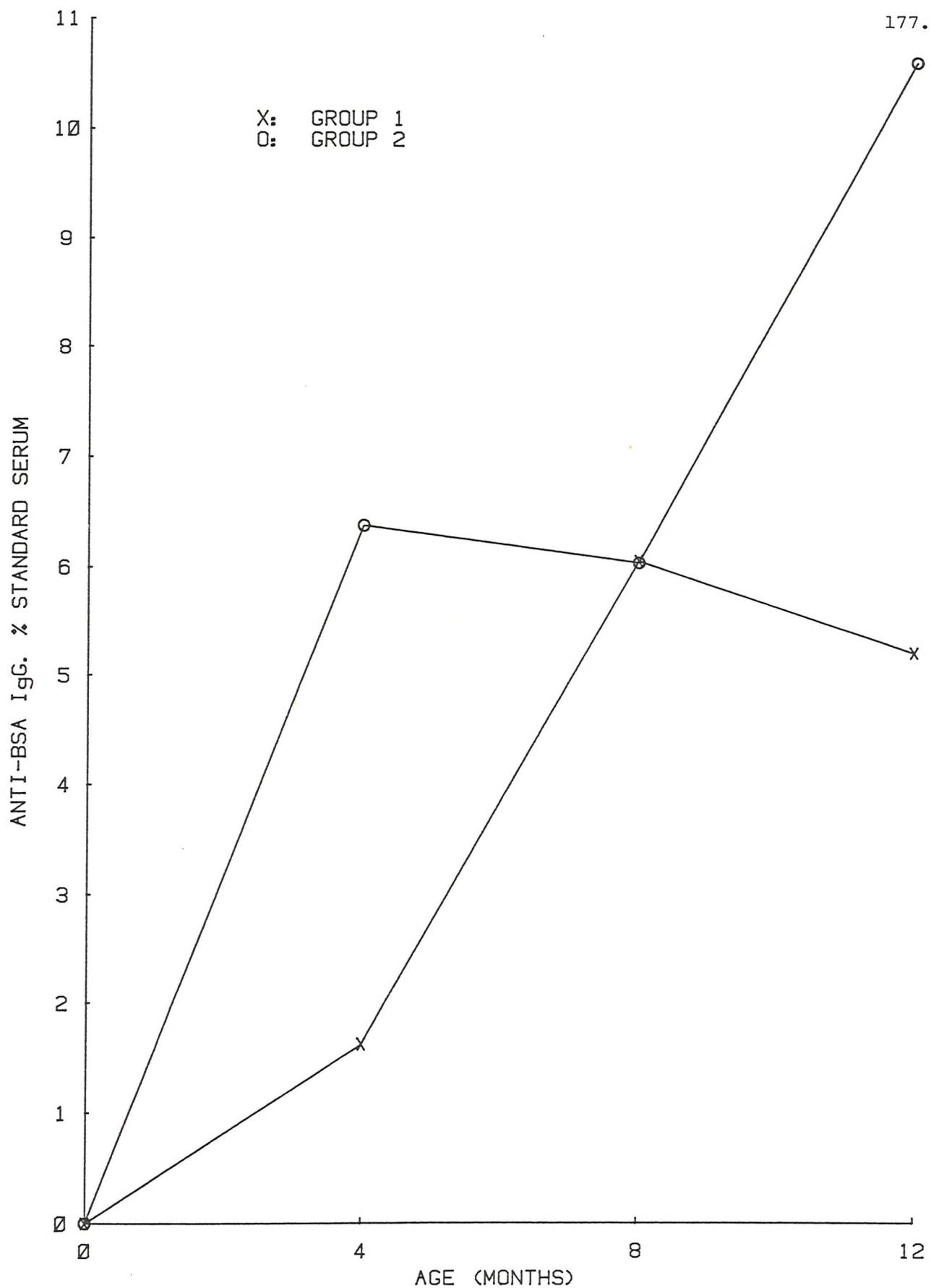


Figure 7.13 THE EFFECT OF MATERNAL EXPOSURE TO MILK PROTEIN
ON SERUM ANTI-BSA IgG (% STANDARD SERUM SAMPLE
Fig. 7.6) IN RABBITS FED A PURIFIED DIET
BASED ON COWS MILK.

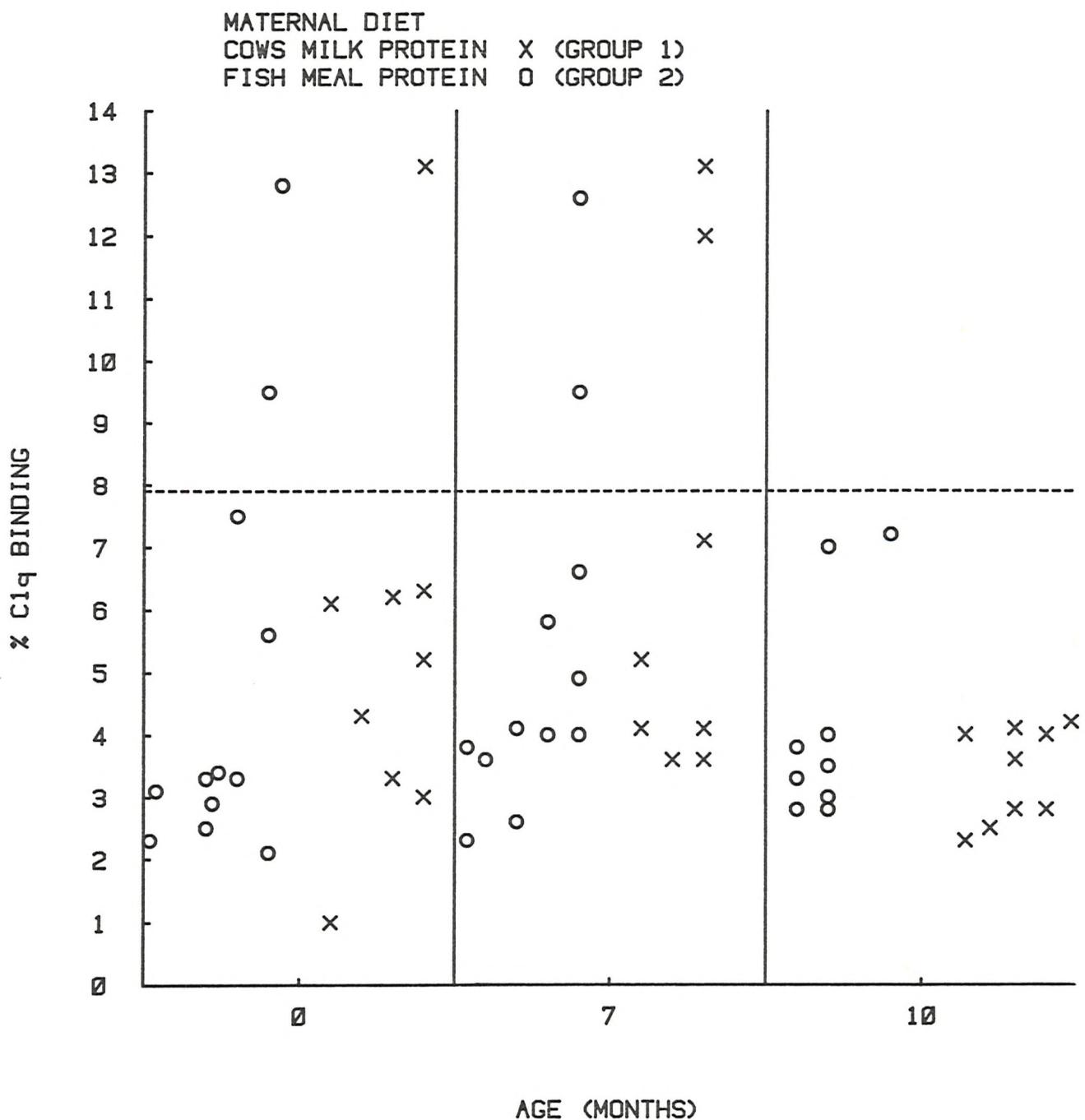


Figure 7.14 INDIVIDUAL SERUM TOTAL IMMUNE COMPLEX RESULTS AT WEANING AND AT 7 AND 10 MONTHS POST-WEANING.

X: GROUP 1, DAMS EXPOSED TO COWS MILK.
REGRESSION COEFFICIENT = -7.65.
O: GROUP 2, DAMS NOT EXPOSED TO COWS MILK.
REGRESSION COEFFICIENT = -5.37.

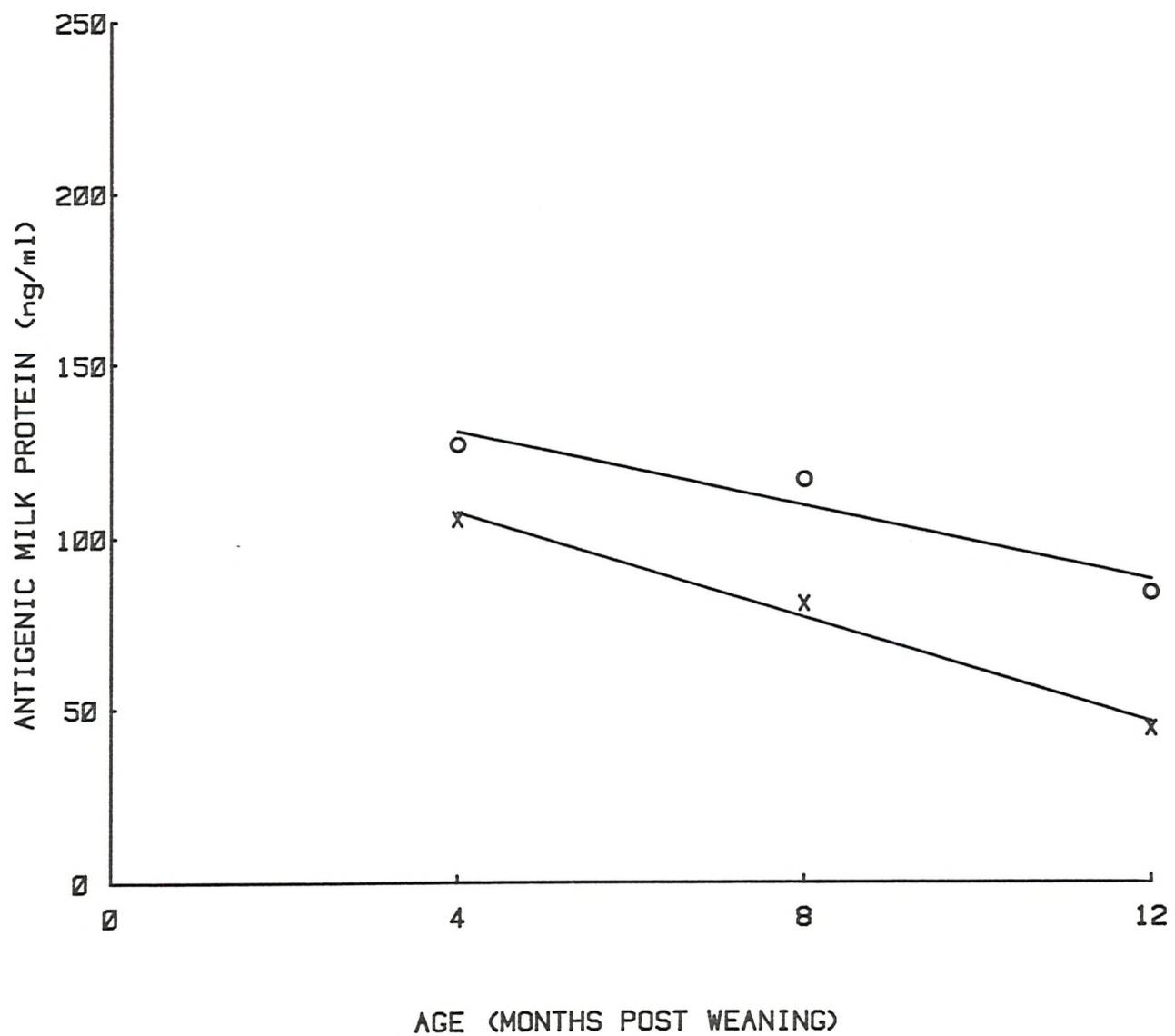


Figure 7.15 THE EFFECT OF MATERNAL EXPOSURE TO COWS MILK PROTEIN ON SERUM CONCENTRATIONS OF ANTIGENIC MILK PROTEIN. (EXCLUDING MEASUREMENTS AT WEANING).

Discussion

The mean concentration of circulating anti cows milk protein IgG in the rabbits of Group 2 (breeding stock had not been exposed to milk) increased during the experimental period, thus confirming that rabbits produce an increase in specific serum antibodies when introduced to a novel dietary protein at weaning. In contrast, systemic tolerance to milk protein was observed in the group of rabbits in which the maternal breeding stock had been exposed to milk protein (Group 1). However, a significant difference between the antibody levels of the two groups was not observed until 3 months after the introduction of the cows milk diet (Table 7.3). This may also explain the lack of a significant difference in serum antibodies in rabbits from dams exposed to milk, compared with those not exposed to milk in Group 1 and Group 2 of Experiment 3b, when introduced to a diet containing 10% DSM. The development of a good humoral response or systemic tolerance to a dietary protein may not only depend on the quantity and source of ingested protein but also on the length of time that the protein is consumed. In this experiment the difference between the systemic immune response of Group 1 and Group 2 increases during the experimental period.

Although the level of specific serum antibodies increased significantly in Group 2 during the experimental period (Fig. 7.9), there was no evidence of abnormal levels of circulating immune complexes (Fig. 7.14) or an increased amount of aortic atheroma compared with Group 1. (Table 7.10). It therefore appears that the magnitude of the immune response to milk protein in Group 2 was insufficient to influence the development of atherosclerosis. The lack of disease in the rabbits of Group 2 differs from the result observed in a similar experiment in which a diet based on soya protein was fed to rabbits. In this experiment the rabbits which were not made tolerant to soya protein developed increased levels of specific serum antibodies and immune complexes and developed more atherosclerosis than a similar group of rabbits made tolerant to the protein (Gallagher *et al.*, 1983). The difference in the final result of the two studies may be because of a less dramatic immune response produced by the ingestion of milk protein compared with soya protein which has been reported in rabbits (Pathirana *et al.*, 1981).

Analysis of the serum for antibodies specific for the individual milk proteins (casein, β lactoglobulin, α lactalbumin and BSA) showed

that Group 1 were tolerant to β lactoglobulin, α lactalbumin and casein. A significant rise in anti BSA IgG was observed in this group at month 8 after the introduction of the cows milk diet (Fig. 7.13). Group 2 developed significant levels of specific serum antibodies against each of the milk proteins by 4 months after the introduction of the milk protein diet (Fig. 7.10, 7.11, 7.12 and 7.13). However, a continued increase in specific serum IgG antibodies was only observed against casein (Fig. 7.10). It is difficult to make any comparison between the magnitude of the immune response produced by the individual milk proteins as the results are expressed as percentages of different reference samples. However, the systemic immune response does not appear to be proportional to the quantity of specific protein ingested. The approximate quantity of specific milk proteins ingested by each rabbit daily is given in Table 7.13.

Studies in guinea pigs have found that antibodies are mainly produced against β lactoglobulin, following the ingestion of unheated whey (Heppell *et al.*, 1984). The ability of β lactoglobulin to stimulate the production of specific serum antibodies may be due to its resistance to proteolysis (Bleumink, 1979).

The systemic tolerance to cows milk proteins that was apparent in Group 1 may have been due to the presence of an efficient mucosal immune system. Dietary proteins fed to pregnant rats have been found to reach the circulation of the foetus (Dahl *et al.*, 1984), and food proteins have been detected in maternal milk (Jacobsson & Lindberg, 1983). Rothberg (1969) has demonstrated that antigenic stimulation rather than gestational age is important for the development of an immune response in the neonatal infant. Alternatively, maternal slgA specific for cows milk protein may have been acquired from colostrum or milk prior to weaning. Maternal IgA may still be present during the first days after weaning, protecting the gut from antigenic absorption.

Cows milk antigen was measured in the serum of both groups. The decline in antigen was similar in both groups during the experimental period (Fig. 7.15). However, at weaning, the concentration of specific antigen was significantly greater in Group 2, compared with Group 1 (Table 7.9). The high level of circulating specific antigen in the serum of Group 2 at weaning is likely to be maternal milk protein as these rabbits have not been exposed to cows milk protein. A similar

TABLE 7.13Approximate Quantity of Specific Milk Protein Ingested
by Each Rabbit (Grams/day)

<u>Specific Milk Protein</u>	<u>Grams Consumed per Day</u>
Casein	39.9
β Lactoglobulin	1.27
α Lactalbumin	3.59
Bovine Serum Albumin	0.348

finding has been observed in an unpublished study (*Harris & Gibney, unpublished communication*). Experiment 4b indicates that the antigen detected at weaning is not the milk protein casein. There was no increase in specific antigen after the introduction of the cows milk diet, but a steady decline in specific antigen concentration was observed. The decline in specific antigen in Group 2 coincides with the development of a systemic humoral response and possibly with an effective mucosal immune system.

CHAPTER 8

FINAL DISCUSSION

Final Discussion

The results presented in this thesis illustrate that the systemic immune response produced by the ingestion of a dietary protein depends on a number of factors.

The first experiment (Chapter 3) shows that the immune response produced by the more mature rabbit is more dramatic than that produced by the weanling, following the ingestion of a novel dietary protein. This suggests that absorption of macromolecular protein across the gastrointestinal barrier in sufficient quantities to stimulate serum specific antibodies is ~~not~~ ^{probably} simply a post weaning phenomenon. Systemic tolerance to the protein was observed in the offspring when the dams were exposed to the protein during pregnancy and lactation. This form of tolerance was more readily produced when the dietary protein was introduced to the older offspring, compared with the weanling. Tolerance to dietary antigen in the weanling animal was found to depend on the quantity of protein in the diet and the duration of exposure to that protein (Chapter 7).

The importance of dose and source of a particular protein on its ability to stimulate the production of specific serum antibodies was confirmed in experiment 4. Both these factors will influence the amount of macromolecular protein that reaches the circulation and therefore the number of antigenic determinants present. Stimulation of a systemic immune response will not only depend on the quantity of protein reaching the circulation in a macromolecular form, but also on the binding dynamics of accessible antigenic determinants. Aas (1984) found that only a few amino acid side chains were necessary for producing the potency of the major allergen in cod fish (allergen M), but the distance between the amino acid side chains was critical and could be maintained by other amino acids which act only as inert frame-works or spacers.

Although the quantity of protein which reaches the circulation in an antigenic form will depend on the amount of protein ingested (experiment 4a) and the physical properties of the protein (experiment 4b) such as resistance to proteolytic enzymes, it will also depend on the mucosal immune response to that protein.

The systemic tolerance produced to a dietary protein in the offspring from dams which had been exposed to the protein during pregnancy and

lactation may be due to the presence of maternal antibodies. The rabbit receives maternal antibodies in the form of IgG in utero which has been found to suppress the immune response in the newborn (Leiper & Solomon, 1974). The suckling animal will also receive maternal secretory IgG via the colostrum and milk. Maternal antibodies may have been involved in the production of hyporesponsiveness in the offspring, but the systemic tolerance was observed in the offspring which were not introduced to the protein until 12 weeks post-weaning, suggesting other mechanisms are involved. The tolerance may have been acquired from the passage of small quantities of antigen from the mother either in utero or via the colostrum and milk. Experiments in mice suggest that absorption of antigen via the colostrum and milk results in tolerance (Auerbach & Clark, 1975; Halsey & Benjamin, 1976). A recent study indicates that exposure to an antigen either in utero (via transplacental passage) or postnatally (via the colostrum) generated the production of primary effector suppressor T cells and the induction of memory in the suppressor T cell population (Fazekas de St. Groth et al., 1984). The presence of memory suppressor T cells may explain the specific systemic tolerance observed when the protein was not introduced to the rabbits until 6 or 12 weeks post weaning (Chapter 3). Thus, the final response to an immunogen challenge may depend on the number of effector T suppressor cells and the timing of their appearance in relation to T helper and B cells. The rapid generation of sufficient numbers of suppressor T cells may be necessary to ensure that most B cells and possibly T helper cells are prevented from becoming activated and this may result in tolerance to a particular antigen. Richman et al. (1981) have reported the appearance of antigen specific IgA helper T cells in the Peyer's Patch after the oral administration of ovalbumin together with IgG specific suppressor T cells. The presence of suppressor T cells for IgG and helper T cells for IgA may influence the specific immune response produced later in life. Local immunity in the form of secretory IgA may reduce the absorption of antigen (Swarbrick et al., 1979), and immune complexes containing IgA have been suggested to produce systemic hyporesponsiveness, possibly by paralysing B cells (Andre et al., 1975).

A small increase in serum specific antibodies was observed to milk protein in the offspring of dams exposed to milk during the first few weeks after weaning (Fig. 7.2). This may have been due to immaturity

of the mucosal immune system.

An efficient mucosal immune system possibly prevented the absorption of measurable quantities of antigenic protein following acute ingestion of cows milk or goats milk in the majority of adult volunteers in experiment 6. The absence of serum specific antigen on Clq binding immune complexes by most of the individuals after consuming goats milk and the presence of serum antibodies directed against goats milk protein in all the subjects suggests that goats milk protein may not have been treated as a novel protein but was recognized by antibodies directed against cows milk protein.

The majority of adults have only low levels of circulating antibodies to common food proteins. This tolerance may have been acquired in utero or during the neonatal period. Small quantities of cows milk protein and other proteins have been shown to cross the maternofoetal barriers in the rat (*Dahl et al., 1984*) and dietary proteins have also been detected in human breast milk by *Kilshaw & Cant (1984)*. They suggest that selective transport of protein across the mammary epithelium may occur, possibly complexed with dimeric IgA. These trace quantities of dietary protein in breast milk may be of immunological significance in the newborn.

The systemic tolerance observed in the rabbit produced by maternal exposure to the specific dietary protein was not observed in the mouse. The presence of circulating maternal antibodies may have masked any unresponsiveness in the offspring (experiment 5a and 5b). However, tolerance was not apparent at an age when the maternal antibodies would have declined (experiment 5c).

Although tolerance has been produced in mice by maternal immunization (*Auerbach & Clark, 1975; Halsey & Benjamin, 1976*), other studies have confirmed that ingestion of a soluble protein by neonatal rabbits tends to produce tolerance (*Rieger et al., 1981*), whereas ingestion of a soluble protein by neonatal mice does not (*Strobel et al., 1984*). This difference may be due to the quantity of protein that the neonate is exposed to. The mouse may be exposed to greater quantities of antigenic protein compared with the rabbit. The rabbit receives passive immunity in utero, whereas the mouse absorbs maternal IgG until 17-19 days post partum when gut closure occurs. Thus the intestine of the mouse during the first few weeks after birth is probably more permeable than the

intestine of the neonatal rabbit. If the quantity of antigenic protein that the neonate is exposed to is important in determining whether tolerance or sensitization to a particular protein occurs, it may explain the observation that food allergic diseases are more common in bottle rather than breast fed infants.

Although the quantity and source of antigen, the age of the animal and the route of antigen exposure and the presence of maternal antibodies may all influence the immune response produced by the specific antigen. It also appears to be an individual response resulting in large individual variations. *Stokes et al.* (1983) have shown that genetic differences exist in the immune response to ingested antigens and they suggest that orally induced tolerance and immune exclusion are inherited independently.

The difference in the individual response may contribute to the different vulnerability to food allergy in unphysiological circumstances such as infant feeding. However, in order to understand the mechanisms involved in adverse reactions to food proteins which are mediated by the immune system, it is necessary to understand the normal response to ingested dietary protein. It appears that the normal healthy adult has an efficient gastrointestinal barrier, preventing excessive absorption of antigenic material resulting in systemic tolerance to common dietary proteins. This tolerance may be influenced by the maternal diet as in the rabbit and by infant feeding practices. Further research into the importance of these factors in man may help to establish the mechanism of tolerance observed in the majority of the population and therefore provide an understanding of diseases mediated by immune mechanisms.

APPENDIX ITABLE 3.9 (i)

Individual Antimilk Protein Antibodies in the Serum of New Zealand
White Rabbits from Dams not Exposed to Milk Protein

A diet containing 10% DSM was introduced at weaning (Group 1), 3 weeks post weaning (Group 2) and 12 weeks post weaning (Group 3). The serum was diluted 1:200 with PBST and the results are expressed as the optical density reading at 405 nm.

<u>Individual Rabbit</u>	<u>Time (weeks after introduction of DSM)</u>		
	<u>0</u>	<u>3</u>	<u>6</u>
<u>Group 1</u>			
1a	0.187	0.984	0.846
1b	0.10	-	0.551
1c	0.24	1.053	1.135
1d	0.09	0.265	0.980
1e	0.10	0.43	0.682
1f	0.214	0.94	1.00
<u>Group 2</u>			
2a	0.536	1.10	1.81
2b	0.413	1.434	2.066
2c	0.256	0.514	0.716
2d	0.424	0.505	0.732
2e	0.342	1.34	1.099
2f	0.258	0.654	0.868
<u>Group 3</u>			
3a	0.258	0.908	1.428
3b	0.332	1.05	0.905
3c	0.380	0.786	1.471
3d	0.206	0.680	1.476
3e	0.235	0.848	1.322

APPENDIX ITABLE 3.9 (ii)

Individual Antimilk Protein Antibodies in the Serum of New Zealand
White Rabbits from Dams Exposed to Milk Protein

A diet containing 10% DSM was introduced at weaning (Group 1), 3 weeks post weaning (Group 2) and 12 weeks post weaning (Group 3). The serum was diluted 1:200 with PBST and the results are expressed as the optical density reading at 405 nm.

<u>Individual Rabbit</u>	<u>Time (weeks after introduction of DSM)</u>		
	<u>0</u>	<u>3</u>	<u>6</u>
<u>Group 1</u>			
1a	0.201	0.370	0.479
1b	0.132	1.66	1.75
1c	0.328	0.922	0.913
1d	0.287	1.436	1.26
1e	0.506	0.88	1.00
1f	0.282	0.979	1.063
<u>Group 2</u>			
2a	0.48	1.27	1.431
2b	0.88	1.824	1.48
2c	0.458	0.963	0.358
2d	0.433	1.00	1.36
2e	-	0.589	0.488
2f	0.250	0.578	0.342
<u>Group 3</u>			
3a	0.44	0.665	0.855
3b	0.262	0.27	0.625
3c	0.263	0.362	1.082
3d	0.457	0.70	0.989
3e	0.40	0.347	0.699
3f	0.27	0.88	1.075

APPENDIX IIBuffered Solutions used in Assay Methods1. Bicarbonate - Carbonate Buffer pH 9.6 (ELISA coating buffer)

To 250 ml of 50 mM sodium bicarbonate add enough 50 mM sodium carbonate until pH = 9.6. Add 0.02% sodium azide.
Lasts 7 days at 4°C.

2. Phosphate - Buffered Saline pH 7.3

To 1 litre of distilled water add:

8.0g sodium chloride
0.2g potassium chloride
1.15g disodium hydrogen phosphate (anhydrous)
0.2g potassium dihydrogen phosphate
(Check pH).

3. Phosphate-citrate Solution (Stop solution in ELISA)

To 88.2g tri-sodium citrate add 850 mls distilled water, pH with phosphoric acid to pH 2.85.
Finally make up to 1 litre with distilled water.

4. Borate Buffer

Add to 1 litre of distilled water:
6.18g Boric acid (0.1M)
9.54g Disodium tetraborate (0.026M)
4.38g Sodium chloride (0.075M)

5. Veronal Buffered Saline pH 7.6

Stock Solutions:

- a) 85g sodium chloride with 3.75g sodium diethyl barbituric acid made up to 1.4 litres in double distilled water.
- b) 5.75g diethyl barbituric acid dissolved in 500 ml hot double distilled water.
- c) 20.3g magnesium chloride in 50 ml double distilled water added to 30 ml of 1M calcium chloride. Make up to 100 ml in double distilled water.

- 1) Solution (a) and (b) mixed and cooled to room temperature.
- 2) 5 ml of solution (c) are added.
- 3) Final volume adjusted to 2 litres with double distilled water and stored at 4°C.

This concentration should be diluted x 5 before use.

REFERENCES

ABRAMS, G. D.: 'Microbial effects on mucosal structure and function', Americal J. Clin. Nutr. 30, pp. 1880-1886, 1977.

ABRAMS, G. D., BAUER, H., SPRINZ, H.: 'The influence of the normal flora on mucosal morphology and cellular renewal in the ileum', Lab. Invest. 12, pp. 355-364, 1963.

ABRAHAMSON, D. R., RODEWALD, R.: 'Evidence for the sorting of endocytic vesicle contents during the receptor-mediated transport of IgG across the newborn rat intestine', J. Cell Biol. 91, pp. 270-280, 1981.

ALEXANDER, H. L., SHIRLEY, K., ALLEN, D.: 'The route of ingested egg white to the systemic circulation', J. Clin. Invest. 15, pp. 163-167, 1936.

ALONSO, D. R., STAREK, P. K., MINICK, C. R.: 'Studies on the pathogenesis of atherosclerosis induced in rabbit cardiac allografts by the synergy of graft rejection and hypercholesterolaemia', Am. J. Pathology, 87, pp. 415-442, 1977.

ANDRE, C., HEREMANS, J. F., VAERMAN, J. P., CAMBISCO, C. L.: 'A mechanism for the induction of immunological tolerance by antigen feeding' - Antigen-Antibody Complexes, J. Exp. Med. 142, pp. 1509-1519, 1975.

ANDRE, C., LAMBERT, R., BAZIN, H., HEREMANS, J. F.: 'Interference of oral immunization with the intestinal absorbtion of heterologous albumin', Eur. J. Imm. 4, pp. 701-704, 1974.

APPLEBY, P., CATTY, D.: 'Transmission of immunoglobulin to foetal and neonatal mice', J. Repro. Immunology 5, pp. 203-213, 1983.

ASHERSON, G. L., ZEMBALA, M., PERERA, M. A. C. C., MAYHEW, B., THOMAS, W.R.: 'Production of immunity and unresponsiveness in the mouse by feeding contact sensitizing agents and the role of suppressor cells in the Payers Patch, mesenteric lymph nodes and other lymphoid tissues', Cell Imm. 33, pp. 145-155, 1977.

AUERBACH, R., CLARK, S.: 'Immunological tolerance: transmission from mother to offspring', Science N.Y. 189, pp. 811-812.

BALFOUR, A., JONES, E. A.: 'The binding of IgG to human placental membranes', The Transmission of Maternal Antibodies to the Human Foetus, pp. 61-75, 1976.

BANGHAM, D. R., HOBBS, K. R., TERRY, R. J.: 'Selective placental transfer of serum proteins in the rhesus', Lancet ii, pp. 351-354, 1958.

BEER, A. E., BILLINGHAM, R. E., HEAD, S.: 'The immunological significance of the mammary gland', J. Invest. Derm. 63, pp. 65-74, 1974.

BERNSTEIN, I. D., OVARY, Z.: 'Abosrbtion of antigens from the gastro-intestinal tract', Int. Arch. Allergy and Applied Immunol. 33, pp. 521-527, 1968.

BIENSTOCK, J.: 'The secretory immune system', *Immunology of Infant Feeding*, Vol. 8, pp. 1-11, 1981; Ed. A. W. Wilkinson.

BILLINGTON, W. D., WILD, A. E.: 'Maternal immunological factors in embryonic and post-natal development', In 'Maternal Effects in Development' (Ed. D. R. Newth & M. Balls), British Society for Developmental Biology Symposium, 4, 1979.

BLEUMINCK, E.: 'Food Allergy. The chemical nature of the substances eliciting symptoms', *World Review Nutrition* 12, pp. 505-570, 1970.

BLEUMINCK, E.: 'Food Allergy and the gastrointestinal tract', In 'Immunology of the Gastrointestinal Tract', (Ed. P. Asquith), pp. 195-213, 1979.

BLEUMINCK, E.: 'Immunological aspects of food allergy', *Proc. Nutr. Soc.*, Vol. 42, pp. 219-231, 1983.

BLEUMINCK, E., YOUNG, E.: 'Studies in the atopic allergen to hen's egg: I. Identification of the skin reactive fraction in egg white', *Int. Arch. Allergy* 35, pp. 1-19, 1969.

BORTHISTLE, B. K., KUBO, R. T., BROWN, W. R., GREY, H. M.: 'Studies on receptors for IgG on epithelial cells of the rat intestine', *The J. Immunol.* 119, pp. 471-476, 1977.

BRAMBELL, F. W. R.: 'The passive immunity of the young mammal', *Biol. Rev.* 33, pp. 488-531, 1958.

BRAMBELL, F. W.: 'Transmission of immunity from mother to young and catabolism of immunoglobulins', *Lancet* ii, pp. 1087-1093, 1966.

BRAMBELL, F. W. R.: 'Transmission of passive immunity from mother to young', *Frontiers of Biology*, Vol. 18, North Holland Publishing Co., 1970.

BRAMBELL, F. W. R., HALLIDAY, K.: 'The route by which passive immunity is transmitted from mother to foetus in the rat', *Proc. R. Soc., London B.* 145, pp. 170-178, 1956.

BRAMBELL, F. W. R., HEMMINGS, W. A., HENDERSON, M., PARRY, H. J., ROWLANDS, W. T.: 'The route of antibodies passing from maternal to the foetal circulation in rabbits', *Proc. Royal Soc. London B.* 136, pp. 131-144, 1949.

BUCKLEY, R. H., DEES, S. C.: 'Correlation of milk precipitins with IgA deficiency', *New Eng. J. Med.* 281, pp. 465-469, 1969.

BUISSERET, P. D.: 'Common manifestations of cows milk allergy in children', *Lancet* I, pp. 304-305, 1978.

CARRETTI, N., Ovary, Z.: 'Transmission of G globulins from maternal to foetal circulation in the mouse', *Proc. Soc. Exp. Biol. Med.* 130, pp. 509-512, 1969.

CEBRA, J. J., KAMAT, R., GEERHART, P., ROBERTSON, S. M., TSENG, J.: 'The secretory IgA system of the gut', Ciba Found. Symp. 46, pp. 5-28, 1977.

CEBRA, J. J., ROBBINS, J. B.: 'IgA - Immunoglobulin from rabbit colostrum', J. Immunol. 97, pp. 12-24, 1966.

CHALLACOMBE, S. J., TOMASI, T. B.: 'Systemic tolerance and secretory immunity after oral immunization', J. Exp. Med. pp. 1459-1472, 1980.

CHANDRA, R. K., 'Food antibodies in malnutrition', Arch. Dis. Child, 50, pp. 532-534, 1975.

CHASE, M. W.: 'Inhibition of experimental drug allergy by prior feeding of the sensitizing agent', Proc. Soc. Exp. Biol. Med. 61, pp. 257-259, 1946.

CHIU, S. Y., CHIEN, C. C.: 'Antigenic Analysis of raw soybean: variation of host response during prolonged immunization', Chinese J. of Microbiology 5, pp. 10-17, 1972.

CLARK, S. L. Jr.: 'The ingestion of colloidal materials by columnar absorptive cells of the small intestine in suckling rats and mice', J. Biophys. Biochem. Cytol. 5, pp. 41-50, 1959.

COCHRANE, C. G., HAWKINS, D.: 'Studies on circulating immune complexes: III. Factors governing the ability of circulating immune complexes to localize in blood vessels', J. Exp. Med. 127, pp. 137-154.

CORNELL, R. W., WALKER, W. A., ISSELBACHER, C. J.: 'Small Intestinal absorption of HRP: A cytochemical study', Lab. Invest. 25, pp. 42-48, 1971.

COWIE, A. T., FORSYTH, I. A., HART, I. C.: 'Monographs of Endocrinology' Hormonal Control of Lactation Vol. 15, pp. 63-64, Ed. by F. Gross, M. M. Grimbach, A. Labhert, M. B. Lipsett, T. Mann, L. T. Samuels, J. Zander. Springer-Verlag Berlin, Heidelberg, 1980.

CRAIG, S. W., CEBRA, J. J.: 'Peyers Patches - an enriched source of precursors for IgA producing immunocytes in the rabbit', J. Exp. Med. Vol. 134, pp. 188-200, 1971.

CRAIG, S. W., CEBRA, J. J.: 'Rabbit Peyers Patches, appendix and popliteal lymph node B lymphocytes: A comparative analysis of their membrane immunoglobulin components and plasma cell precursor potential', J. Immunol. 114, pp. 492-502, 1975.

CUNNINGHAM-RUNDLES, C., BRANDIES, W. E., GOOD, R. A., DAY, N. K.: 'Milk precipitins, circulating immune complexes and IgA deficiency', Proc. Nat. Acad. Sci., U.S.A., 75, pp. 3387-3389, 1978.

CUNNINGHAM-RUNDLES, C., BRANDIES, W. E., GOOD, R. A., DAY, N. K.: 'Bovine antigens and the formation of circulating immune complexes in selective IgA deficiency', J. Clin. Invest. Vol. 64, pp. 272-279, 1979.

DAHL, G. M. K., TELEMO, E., WESTRÖM, B. R., JAKOBSSON, I., LINDBERG, T., KARLSSON, B. W.: 'The passage of orally fed proteins from mother to foetus in the rat', *Comp. Biochem. Physiol.* 77A, pp. 199-201, 1984.

DANFORTH, E., MOORE, R. D.: 'Intestinal absorption of insulin in the rat', *Endocrinology* 65, pp. 118-123, 1959.

DAVIES, D. F., DAVIES, J. R., RICHARDS, M. A.: 'Antibodies to heated dried cows milk protein in coronary heart disease', *J. Ath. Res.* 9, pp. 103-107, 1969.

DAVIES, D. F., JOHNSON, A. P., REES, B. W. G., ELWOOD, P. C., ABERNATHY, M.: 'Food antibodies and myocardial infarction', *Lancet* I, pp. 1012-1014, 1974.

DEPARTMENT OF HEALTH & SOCIAL SECURITY: 'Artificial feeds for the young infant', *Report on Health & Social Subjects*, 18, 1980.

DEVEY, M. E., BLEASDALE, K., COLLINS, M., STEWARD, M. W.: 'Experimental antigen-antibody complex disease in mice', *Int. Arch. Allergy and Appl. Immunol.* 68, pp. 47-53, 1982.

DIAZ-JOUANSEN, E. P., WILLIAMS, R. C. Jr.: 'T and B lymphocytes in human colostrum', *Clin. Immunol. Immunopath.* 3, pp. 248-255, 1974.

DIXON, F. J., WEIGLE, W. O., VAZQUEZ, J. J.: 'Metabolism and mammary secretions of serum protein in the cow', *Lab. Invest.* 10, pp. 216-237, 1961.

DRASER, B. S., SHINER, M., MCLEOD, G. M.: 'Studies on the intestinal flora: I. The bacterial flora of the G. I. tract in healthy and achlorhydric persons', *Gastroenterology* 56, pp. 71-79, 1969.

EASTHMAN, E. J., LICHAUZO, T., GRADY, M., WALKER, W. A.: 'Antigenicity of infant formulas: Role of immature intestine on protein permeability', *J. Ped.* 93, pp. 561-564, 1978.

ELSON, C. O., HECK, J. A., STROBER, W.: 'T-cell regulation of murine IgA synthesis', *J. Exp. Med.* Vol. 149, pp. 632-643, 1979.

ENGVALL, E., PERLMAN, P.: 'Enzyme-linked immunosorbent assay, ELISA, Part 3' (Quantification of specific antibodies by enzyme labelled anti-immunoglobulin in antigen coated tubes), *J. Imm.* 109, pp. 129-135, 1972.

FARR, R. S., DIXON, F. J.: 'The effect of antigen concentration on the initiation of detectable antibody synthesis in rabbits', *J. Imm.* 85, pp. 250-257, 1960.

FARRELL, C., BLOTH, B., NIELSON, H., DAUGHARTY, H., LUNDMAN, T., SVHAG, S.E.: 'A survey for circulating immune complexes in patients with acute myocardial infarction. Use of a Clq binding assay with soluble protein A as indicator', *Scand. J. Immunol.* 6, pp. 1233-1240, 1977.

FAULK, W. P., McCORMICK, N. J., GOODMAN, J. R., YOFFEY, J. M.,
 FUNDERBERG, H. H.: 'Peyers Patch: Morphological Studies'
Cell Immunol. 1, pp. 500-520, 1970.

FAZEKAS DE ST GROTH, B., BASTEN, A., LOBLAY, R.: 'Induction of memory
 and effector suppressor T cells by perinatal exposure to antigen',
Eur. J. Imm. 14, pp. 228-235, 1984.

FORSTNER, J. F.: 'Intestinal mucins in health and disease', *Digestion*
17, pp. 234-263, 1978.

FREIER, S., KLETTER, B.: 'Milk allergy in infants and young children',
Clin. Ped. 9, pp. 449-454, 1970.

FRETER, R., 'In vivo and in vitro antagonism of intestinal bacteria
 against Shigeller flexner: II. Inhibitor mechanism', *J. Infect.*
Dis. 110, pp. 38-47, 1962.

FÜST, G., SZONDY, E., SZEKELY, J., NANAI, I., GERÖ, S.: 'Studies on the
 occurrence of circulating immune complexes in vascular diseases',
Ath. 29, pp. 181-190, 1978.

GALLAGHER, P. J., GIBNEY, M. J., TAYLOR, T. G.: 'Dietary antigens
 immune tolerance and atherosclerosis', *Artery* 8, pp. 315-322, 1980.

GALLAGHER, P. J., GOULDING, N. J., PATHIRANA, C., GIBNEY, M. J., JONES, D.B.,
 TAYLOR, T. G.: 'Immune tolerance and atherosclerosis in rabbits.
 Effect of high fat cholesterol supplemented diets', *Ath.* 45
 pp. 115-127, 1982A.

GALLAGHER, P. J., MUIR, C. A., TAYLOR, T. G.: 'Immunological aspects
 of arterial disease', *Ath.* 30, pp. 361-363, 1978.

GALLAGHER, P. J., JONES, D. B., CASEY, C., SHARRATT, G. P.: 'Circulating
 immune complexes in cardiac disease', *Ath.* 44, pp. 241-244, 1982B.

GALLAGHER, P. J., GOULDING, N. J., GIBNEY, M. J., JONES, D. B., MORGAN, J.:
 'Acute and chronic immunological response to dietary antigen',
Gut 24, pp. 831-835, 1983.

GERRARD, J.W.: 'Allergy in breast fed babies to ingredients in breast
 milk', *Ann. Allergy* 42, pp. 69-72, 1979.

GIBNEY, M. J., GALLAGHER, P. J.: 'Maternal induction of tolerance to
 dietary antigens in weanling rabbits during pregnancy and lactation',
Proc. Nutr. Soc. 41, p. 95, 1982.

GITLIN, D., KUMATA, J., URRISTI, J., MORATES, C.: 'The selectivity of
 the human placenta in the transfer of plasma proteins from mother
 to the foetus', *J. Clin. Invest.* 43, pp. 1938-1951, 1964.

GOLDBLUM, R. M., AHLSTEDT, S., CARLSSON, B., HANSON, L. A., JODAL, U.,
 LINDEM-JENSON, G., SOHL-OKERLUND, A.: 'Antibody forming cells in
 human colostrum after oral immunization', *Nature* 257, pp. 797-799,
 1975.

GOLDBERG, S. S., KRAFT, S. C., PETERSON, R. D. A., ROTHBERG, R. M.: 'Relative absence of circulating antigen-reactive cells during oral immunization', J. Imm. 107, pp. 757-765, 1971.

GORDON, H. A.: 'The germ free animal. Its use in the study of 'physiological' effects of the normal microbial flora on the animal host', Am. J. Digest Dis. 5, pp. 841-867, 1960.

GORDON, H. A., PESTI, L.: 'The gnotobiotic animal as a tool in the study of host microbial relationships', Bacterial Rev. 35, pp. 390-429, 1971.

GOULDING, N. J.: 'Protein Nutrition, Immune Responsiveness and Experimental Atherosclerosis', Ph. D. Thesis, 1982.

GRIEPP, R. B., STINSON, E. B., BIEBER, C. P., REITZ, B. A., COPELAND, J.G., OYER, P. E., SHUMWAY, N. E.: 'Control of graft arteriosclerosis in human heart transplant recipients', Surgery, 81, pp. 262-269, 1977.

GRUSKY, F. L., COOKE, R. E.: 'The gastrointestinal absorption of unaltered protein in infants recovering from diarrhoea', Ped. 16, pp. 763-768, 1955.

GUNTHER, M., CHEEKE, R., MATHEWS, R. H., COOMBS, R. R. A.: 'Immune response in infants to cows milk protein taken by mouth', Int. Arch. Allergy & Appl. Immunol. 21, pp. 257-278, 1962.

HAAKENSTADT, A. O., MANNIK, M.: 'Saturation of the reticulo-endothelial system with soluble immune complexes', J. Imm. 112, pp. 1939-1948, 1974.

HAENEY, M.: 'Immune complexes and disease (1)', Hospital Update, pp. 655-661, 1982.

HALLIDAY, R.: 'The termination of the capacity of young rats to absorb antibody from the milk', Proc. R. Soc. Lond. B. 145, pp. 179-185, 1956.

HALLIDAY, R.: 'The effect of steroid hormones on the absorption of antibody by the young rat', J. Endocrinology 18, pp. 56-66, 1959.

HALLIDAY, R., KEKWICK, R. A.: 'The selection of antibodies by the gut of the young rat', Proc. of the Royal Soc. London B. 153, pp. 279-286, 1960.

HALSEY, J. F., BENJAMIN, D. C.; 'Induction of immunologic tolerance in nursing neonates by absorption of toleragen from the colostrum', J. Imm. 116, pp. 1204-1207, 1976.

HANSON, D. G., VAZ, N. M., RAWLINGS, L. A., LYNCH, J. M.: 'Inhibition of specific immune responses by feeding protein antigens: II. Effects of prior passive and active immunization', J. Imm. 122, pp. 2261-2266, 1979.

HANSON, L. A., WINBERG, J.: 'Breast milk and defence against infection in the newborn', *Arch. Dis. Child* 47, pp. 845-848, 1972.

HARDIN, N. J., MINICK, C. R., MURPHEY, G. E.: 'Experimental induction of atherosclerosis by the synergy of allergic injury to arteries and lipid rich diet. III. The role of earlier acquired fibro muscular intimal thickening in the pathogenesis of later developing atherosclerosis', *Am. J. Path.* Vol. 73, pp. 301-321, 1973.

HEMMINGS, W. A., WILLIAMS, E. W.: 'Transport of large breakdown products of dietary protein through the gut wall', *Gut* 19, pp. 715-723, 1978.

HENEGHAN, J. B.: 'Imbalance of the normal microbial flora. The germ free alimentary tract', *Am. J. Dis.* 10, pp. 864-869, 1965.

HENSON, P. M., SPIEGELBERG, H. M.: 'Release of serotonin from human platelets induced by aggregated immunoglobulins', *J. Clin. Invest.* 52, pp. 1282-1288, 1973.

HEPPELL, L. M. J., CANT, A. J., KILSHAW, P. J.: 'Reduction in the antigenicity of whey proteins by heat treatment: A possible strategy for producing a hypoallergenic infant milk formula', *British J. Nutr.* 51, pp. 29-36, 1984.

HEREMANS, J. F., CRABBE, P. A., MASSON, P. L.: *Acta. Med. Scand.* 179, pp. 84-88, 1966.

HOLLANDER, W., COLOMBO, M. A., KIRKPATRICK, B., PADDOCK, J.: 'Soluble proteins in the human atherosclerotic plaque with special reference to immunoglobulins C₃ complement component, α_1 -antitrypsin and α_2 -macroglobulin', *Ath.* 34, pp. 391-405, 1979.

HONG, R., AMMANN, A. J.: 'Selective absence of IgA', *Am. J. Pathol.* 69, pp. 491-496, 1972.

HOWARD, A. N., PATELSKI, J., BOWYER, D., GRESHAM, G. A.: 'Atherosclerosis induced in hypercholesterolaemic baboons by immunological injury, and the effects of intravenous polyunsaturated phosphatidyl choline', *Ath.* 14, pp. 17-29, 1971.

HUDSON, L., HAY, F. C.: *In Practical Immunology*, Second Edition, Blackwell Scientific Publications, 1980.

HUSBAND, A. J., GOWANS, J. L.: 'The origin and antigen dependent distribution of IgA containing cells in the intestine', *J. Exp. Med.* 148, pp. 1146-1160, 1978.

JAKOBSSON, I., LINDBERG, T.: 'Cows Milk proteins cause infantile colic in breast-fed infants: A double-blind crossover study', *Pediatrics*, 71, pp. 268-271, 1983.

JOHNSON, D. F., FRANCE, G. L., MAKMER, D. J., STEELE, R. W.: 'Bactericidal mechanisms of human breast milk leukocytes', *Infect. Immun.* 28, pp. 314-318, 1980.

JONARD, P. P., RAMBUND, J. C., DIVE, G., VAERMAN, J.P., GALIAN, A., DELACROIX, D. L.: 'Secretion of immunoglobulins and plasma proteins from jejunal mucosa. Transport rate and origin of polymeric immunoglobulin A', *J. Clin. Invest.* 74, pp. 525-535, 1984.

JONES, D. B., GOULDING, N. J., CASEY, C. R., GALLAGHER, P. J.: 'Clq binding and Raji immune complex assays. A comparison using defined immunoglobulin aggregates', *J. Immunological Methods*, 53, pp. 201-208, 1982.

JONES, E. A., WALDMEN, T. A.: 'The mechanism of intestinal uptake and transcellular transport of IgG in the newborn rat', *J. Clin. Invest.* 51, pp. 2916-2927, 1972.

KAGNOFF, M. F.: 'Effect of antigen feeding on intestinal and systemic immune responses. II. Suppression of delayed type hypersensitivity reactions', *J. Imm.* 120, pp. 1509-1513, 1978.

KAGNOFF, M. F.,: 'Immunology of the digestive system', In: 'Physiology of the gastrointestinal tract', Ed. L. R. Johnson, Chapt. 54, p. 1337, 1981; Raven Press.

KAUFMAN, H. S., FRICK, O. L.: 'Prevention of Asthma', *Clin. Allergy* 11, pp. 549-553, 1981.

KAWANISHI, H., SALTZMAN L. E., STROBER, W.: 'Characterization and regulatory function of murine con-A induced cloned T cells obtained from Peyer's Patches and spleen. Mechanisms regulating isotype specific immunoglobulin production by Peyer's Patch B Cells', *J. Immunol.* 129, pp. 475-483, 1982.

KAWANISHI, H., SALTZMAN, L., STROBER, W.: 'Mechanism regulating IgA class specific immunoglobulin production in murine GALT. II. Terminal differentiation of post-switch slgA-bearing Peyer's Patch B cells.

KEREN, D. F., HOLT, P. S., COLLINS, H. H., GEMSKI, P., FORMAL, S.B.: 'The role of Peyer's Patches in the local immune response of rabbit ileum to live bacteria', *J. Immunol.* 120, pp. 1892-1896, 1978.

KHOURY, K. A., FLOCH, M. H., HERSH, T.: 'Small intestinal mucosal cell proliferation and bacterial flora in the conventionalisation of the germ free mouse', *J. Exp. Med.* 130, pp. 659-662, 1969.

KILSHAW, P. J., CANT, A. J.: 'The passage of maternal dietary proteins into human breast milk', *Int. Arch. Allergy Appl. Immun.* 75, pp. 8-15, 1984.

KJELLMAN, N. I.M., JOHANSSON, S. G. O.: 'Soy versus cows milk in infants with a biparental history of atopic disease: development of atopic disease and immunoglobulins from birth to four years of age', *Clin. Allergy* 9, pp. 347-357.

KLETTER, B., GERY, I., FREIER, S., DAVIES, I. M.: 'Immune responses of normal infants to cows milk. II. Decreased immunoreactions in initially breast fed infants', *Int. Arch. Allergy Appl. Immun.* 40, pp. 667-674, 1971.

KÖLSCH, E.: 'Interaction of suppressor and helper antigenic determinants in the dominance of either tolerance or immunity', *Scand. J. Imm.* 19, pp. 387-393, 1984.

KORENBLAT, P.E., ROTHBERG, R. M., MINDER, P., FARR, R. S.: 'Immune responses of human adults after oral and parenteral exposure to bovine serum albumin', *J. Allergy* 41, pp. 226-235, 1968.

KRAFT, S. C., ROTHBERG, R. M.: 'The effects of a single low antigen dose on immunologic responsiveness in adult rabbits', *J. Imm.* 102, pp. 100-106, 1969.

KULANGER, A. C.: 'The demonstration of undigested wheat antigens in human breast milk', *I.R.C.S. Med. Sci.* 8, p. 19, 1980.

LAMBERSON, H. V., FRITZ, K. E.: 'Immunological enhancement of atherosclerosis in rabbits. Persistene susceptibility to atherogenic diet following experimentally induced serum sickness', *Arch. Pathol.* 98, pp. 9-16, 1974.

LEIPER, J. B., SOLOMON, J. B.: 'Differential blood clearance rates of Xenogeneic erythrocytes in young rabbits', *Immunology* 27, pp. 738-744, 1974.

LEIPER, J. B., SOLOMON, J. B.: 'Role of maternal antibody causing immunosuppressive delay in the onset of plaque-forming cell responses in rats and rabbits', In: *Maternofoetal transmission of immunoglobulins*, Ed. W. A. Hemmings, p. 273, 1976.

LAMM, M. E.: 'Cellular aspects of immunoglobulin A', *Advances in Immunology* 22, pp. 223-290.

LEARY, H. L., LECCE, J. G.: 'The preferential transport of immunoglobulin G by the small intestine of the neonatal piglet', *J. Nutr.* 109, pp. 458-466, 1979.

LECCE, J. G., MORGAN, D. O.: 'Effect of dietary regimen on cessation of intestinal absorbtion of large molecules (closure) in the neonatal pig and lamb', *J. Nutr.* 78, pp. 263-268, 1962.

LECCE, J. G., MORGAN, D. O., MATRONE, G.: 'Effect of feeding colostrum and milk components on the cessation of intestinal absorbtion of large molecules (closure) in the neonatal pig', *J. Nutr.* 84, pp. 43-48, 1964.

LEV, R., ORLIC, D.: 'Uptake of protein in swallowed amniotic fluid by monkey foetal intestine in utero', *Gastroenterology* 65, pp. 60-68, 1973.

LEVINSKY, R. J.: 'Immunology Today', pp. 94-97, 1981.

LEVINSKY, R. J., PAGANELLI, R., ROBERTSON, D. M., AHERTON, D. J.: 'Handling of food antigens and their complexes by normal and allergic individuals', In: *The Immunology of Infant Feeding*, Ed. A. W. Wilkinson, 1981.

LINDH, E.: 'Increased resistance of immunoglobulin A dimers to proteolytic degradation after binding of secretory component', *J. Immunol.* 114, pp. 284-286, 1975.

LOWRY, O. H., ROSEBROUGH, N. J., FARR, A. L., RANDALL, R. J.: 'Protein measurement with the folin phenol reagent', *J. Biol. Chem.* 193, pp. 265-275, 1951.

LURIE, K. G., BILLINGHAM, M. E., JAMIESON, S. W., HARRISON, D. C., REITZ, B. A.: 'Pathogenesis and prevention of graft arterio-sclerosis in experimental heart transplant model', *Transplantation* 31, pp. 41-47, 1981.

MACDONALD, I.: 'Clinical effects of consuming milk and its products', *Proc. Nutr. Soc.* 37, pp. 241-245, 1978.

MALVANO, R., BONILO, A., DAVIS, M., ZANNINO, M.: 'ELISA for antibody measurement: Aspects related to data expression', *J. Imm. Methods*, 48, pp. 51-60, 1982.

MANNIK, M.: 'Pathophysiology of circulating immune complexes', *Artheritis and Rheumatism* 25, pp. 783-787, 1982.

MANNIK, M., AREND, W. P.: 'Fate of preformed immune complexes in rabbits and rhesus monkeys', *J. Exp. Med.* 134, pp. 19s-31s, 1971.

MARTIN, L. N., LESLIE, G. A.: 'Ontogeny of IgA in normal and neonatally bursectomised chickens with corroborative data on IgY and IgM', *Proc. Soc. Exp. Biol. Med.* 143, pp. 241-243, 1973.

MATHEW, D. J., TAYLOR, B., NORMAN, A.P., TURNER, M. W., SOOTHILL, J. F.: 'Prevention of eczema', *Lancet I*, pp. 321-324, 1977.

MATHEWS, J. D., WHITTINGHAM, S., MACKAY, I.R., 'Autoimmune mechanisms in human vascular disease', *Lancet II*, pp. 1423-1427, 1974.

MATTINGLY, J.A.: 'Immunologic suppression after oral administration of antigen. III. Activation of suppressor induced cells in the Payers Patch', *Cellular Immunology* 86, pp. 46-52, 1984.

MATTINGLY, J. A., KAPLAN, J. M., JANEWAY, C. A.: 'Two distinct antigen-specific suppressor factors induced by the oral administration of antigen', *J. Exp. Med.* 152, pp. 545-554, 1980.

MATTINGLY, J. A., WAKSMAN, B. H.: 'Immunologic suppression after oral administration of antigen. I. Specific suppressor cells formed in rat Payers Patches after oral administration of sheep erythrocytes and their systemic migration', *J. Imm.* 121, pp. 1878-1883, 1978.

MAY, C. D., FOMAN, S. J., REMIGIO, L.: 'Immunological consequences of feeding infants with cows milk and soy products', *Acta. Ped. Scand.* 71, pp. 43-51, 1982.

MCCLELLAND, D. B. L.: 'Bacterial and viral infections of the gastrointestinal tract', In: *Immunology of the gastrointestinal tract*, Ed. P. Asquith, Chapter 12, p.214, 1979.

MCCLELLAND, D. B. L.: 'Antibodies in Milk', *J. Repro. Fert.*, Vol. 65, pp. 537-543, 1982.

MCCLELLAND, D. B. L., McDONALD, T. T.: 'Antibodies to cows milk protein in human colostrum', *Lancet II*, pp. 1251-1252, 1976.

MCWILLIAMS, M., LAMM, M. E., PHILLIPS-QUAGLIATA, J. M.: 'Surface and intracellular markers of mouse mesenteric and peripheral lymph node and Peyer's Patch cells', *J. Immunol.* 113, pp. 1326-1333, 1974.

MINICK, C. R., ALONSO, D. R., STAREK, P. C.: 'The role of endothelial injury in coronary atherosclerosis induced by graft rejection', *Circulation* 50 (Suppl. III), p. III-92, 1974.

MINICK, C. R., MURPHY, G. E., CAMPBELL, W. G.: 'Experimental induction of athero-arteriosclerosis by the synergy of allergic injury to arteries and a lipid rich diet. I. Effect of repeated injections of horse serum in rabbits fed a dietary cholesterol supplement', *J. Exp. Med.* 124, pp. 635-652, 1966.

MOLLENKOPF, F., MATAS, A., VEITH, F. J., SPRAYREGEN, S., SOBERMEN, R., KUEMMEL, P., TELLIS, V., SNIDERMAN, K., SOS, T., CHEIGH, J. S., STUBENBORD, W.: 'Percutaneous transluminal angioplasty for transplant renal artery stenosis' *Transplant Proc.* Vol. 15 pp. 1089-1091, 1983.

MORGAN, K. L., BOURNE, F. J., NEWBY, T. J., BRADLEY, R. A.: 'Humoral factors in the secretory immune system of ruminants', *Arch. in Exp. Medical Biology*, 137, pp. 391-411, 1981.

MORPHIS, L. G., GITLIN, D.: 'Maturation of maternofoetal transport system for γ -globulin in the mouse', *Nature* 228, p. 573, 1970.

MORRIS, B.: 'The transmission of ¹²⁵I labelled immunoglobulin G by proximal and distal regions of the small intestine of 16 day old rats', *J. Phys.* 245, pp. 249-259, 1975.

MORRIS, B., MORRIS, R.: 'Quantitative assessment of the transmission of labelled protein by the proximal and distal regions of the small intestine of young rats', *J. Phys.* 255, pp. 619-634, 1976.

MOSIER, D. E.: 'A requirement for two cell types for antibody formation in vitro', *Science* 158, p. 1573-1575, 1967.

MOWAT, A., M., STROBEL, S., DRUMMOND, H. E., FERGUSON, A.: 'Immunological responses to fed protein antigens in mice: I. Reversal of oral tolerance to ovalbumin by cyclophosphamide', *Imm.* 45, pp. 105-113, 1982.

MOXEY, J. S., TRIER, J. S.: 'Structural features of the mucosa of human foetal small intestine', *Gastroenterology*, Vol. 68, A-145, p. 1002, 1975.

NAGURA, H., NAKANE, P. K., BROWN, W. R.: 'Breast milk IgA binds to jejunal epithelium in suckling rats', *J. Imm.* 120, pp. 1333-1339, 1978.

NAKANE, P. K., KAWOI, A.: 'Peroxidase-labelled antibody. A new method of conjugation', *J. Histochem. and Cytochem.* 22 pp. 1084-1091, 1974.

NEWBY, T. J., STOKES, C. R., BOURNE, F. J.: 'Effects of feeding bacterial lipopolysaccharide and dextran sulphate on the development of oral tolerance to contact sensitizing agents', *Immunology*, 41, pp. 617-621, 1980.

NGAN, J., KIND, L. S.: 'Suppressor T cells for IgE and IgG in Peyer's Patches of mice made tolerant by the oral administration of ovalbumin', *J. Imm.* 120, pp. 861-865, 1978.

NYDEGGER, U. E.: 'Biological properties and detection of immune complexes in animal and human pathology', *Rev. Physiol. Biochem. Pharmacol.* Vol. 85, pp. 63-123, 1979.

OGRA, S. S., WEINTRAUB, D., OGRA, P. L.: 'Immunological aspects of human colostrum and milk. III. Fate and absorption of cellular and soluble components in the gastrointestinal tract of the newborn', *J. Imm.* 119, pp. 245-248, 1977.

OWEN, R. L., JONES, A. L.: 'Epithelial cell specialization within human Peyer's Patches: An ultrastructural study of intestinal lymphoid follicles', *Gastroenterology* 66, pp. 189-203, 1974.

PAGANELLI, R., LEVINSKY, R. J., BROSTOFF, J., WRAITH, A. G.: 'Immune complexes containing food proteins in normal and atopic subjects after oral challenge and effect of sodium cromoglycate antigen absorption', *Lancet* I, pp. 1270-1272, 1979.

PARUMS, D., MITCHINSON, M. J.: 'Demonstration of immunoglobulin in the neighbourhood of advanced atherosclerotic plaques', *Ath.* 38, pp. 211-216, 1981.

PATHIRANA, C., GIBNEY, M. J., GALLAGHER, P. J., TAYLOR, T. G.: 'The effects of antibodies to dietary protein on the development of atherosclerosis in cholesterol-fed rabbits', *Proc. Nutr. Soc.* 38, 26A, 1979.

PATHIRANA, C., GOULDING, N. J., GIBNEY, M. J., PITTS, J. M., GALLAGHER, P. J., TAYLOR, T. G.: 'Immune tolerance produced by pre and post natal exposure to dietary antigens', *Inter. Archs. Allergy Appl. Immun.* 66, pp. 114-118, 1981.

PAYNE, L. C., MARSH, C. L.: 'Gammaglobulin absorption in the baby pig. The non-selective absorption of heterogenous globulins and factors influencing absorption time', *J. Nutr.* 76, pp. 121-158, 1962.

PETERSSON, R. D. A., GOOD, R. A.: 'Antibodies to cows milk protein - their presence and significance', *Ped.* 31, pp. 209-221, 1963.

PFUELLER, S., LUSCHER, E. F.: 'Studies on the mechanism of human platelet release reaction induced by immunological stimuli. I. Complement dependent and complement independent reactions', *J. Imm.* 112, p. 1201-1210, 1974.

PIERCE, N. F., GOWANS, J. L.: 'Cellular genetics of intestinal immune response to cholera toxoid in rats', *J. Exp. Med.* 142, p. 1550-1563, 1975.

PITTARD, W. B., POLMER, S. H., FARAREFF, A. A.: 'The breast milk macrophage: A potential vehicle of immunoglobulin transport', *J. Reticuloendothelial Soc.*, 22, p. 597, 1977.

PITTS, J. M.: 'The immunological consequences of the oral ingestion of soyabean proteins', *Ph. D. Thesis*, 1983.

PITTS, J. M., LOWE, C. R., TAYLOR, T. G.: 'The detection of antibodies against soya protein in serum', *Proc. Nutr. Soc.* 42, No. 2 94A, 1983.

PORTER, P.: 'Intestinal absorption of colostral IgA anti E-Coli antibodies by the neonatal piglet and calf', In: *Maternofoetal Transmission of Immunoglobulins - Clinical and Experimental Immunoreproduction* 2, pp. 397-407, 1976; Ed. W. A. Hemmings, Cambridge University Press.

PORTER, P.: 'Immunobiology of the alimentary tract in relation to oral immuno-prophylaxis against enteric infections in the piglet and calf', In: *Immunology of the Gastrointestinal Tract*, 1979; Ed. P. Asquith.

POSTON, R. N.: 'Immunological aspects of atheroma: A review', *J. Royal Soc. Med.* Vol. 72, pp. 674-682, 1979.

QUINLIVEN, W. L.: 'Gamma globulin ¹³¹I transfer between mother and offspring in the rhesus monkey', *The Am. J. Phys.* 212, pp. 324-328, 1967.

RAFF, M. C., NASE, S., MITCHISON, N. A.: 'Mouse specific bone marrow derived lymphocyte antigen as a marker for Thymus independent lymphocytes', *Nature* 230, pp. 50-51, 1971.

RAPPAPORT, B. Z.: 'Antigen-antibody reactions in allergic human tissues', *J. Exp. Med.* 112, pp. 725-734, 1960.

RHODES R.S., KARNOVSKY, M. J.: 'Loss of macromolecular barrier function associated with surgical trauma to the intestine', *Lab. Invest.* 25, pp. 220-229, 1971.

RICHMAN, L. K., GRAEFF, A. S., YARCHOAN, R., STROBER, W.: 'Simultaneous induction of IgA specific IgA helper T cells and IgG suppressor T cells in the murine Peyer's Patch after protein feeding', *J. Imm.* 126, pp. 2079-2083, 1981.

RICHMAN, L. K., KLINGSTEIN, R. J., RICHMAN, R. A., STROBER, W., BERKOF SKY, 'The murine Kupffer cell', *J. Imm.* 123, pp. 2602-2607, 1979.

RIEGER, C. H., GÜLDEN, P., BYRD, D. J.: 'Induction of specific tolerance to ingested soluble protein in neonatal rabbits', *Immunobiol.* 160, pp. 330-339, 1981.

RIEGER, C. H., KRAFT, S. C., ROTHBERG, R. M.: 'Lack of effect of passive immunization on the active immune response to an ingested soluble protein', *J. Imm.* 124, pp. 1789-1797, 1980.

ROBERTON, D., PAGANELLI, R., DINWIDDIE, R., LEVINSKY, R. J.: 'Milk antigen absorption in the premature and term neonate', *Arch. Dis. Child* 57, pp. 369-372, 1982.

RODEWALD, R.: 'Intestinal transport of antibodies in the newborn rat', *J. Cell Biol.* 58, pp. 189-211, 1973.

RODEWALD, R.: 'Intestinal transport of peroxidase-conjugated IgG fragments in the neonatal rat', In: *Maternofoetal transmission of immunoglobulins*; Ed. W. A. Hemmings. 1976.

ROTHBERG, R. M.: 'Immunoglobulin and specific antibody synthesis during the first week of life of premature infants', *The J. Ped.* 75, pp. 391-399, 1969.

ROTHBERG, R. M., FARR, R. S.: 'Antibodies in rabbits fed milk and their similarities to antibodies in some human sera', *J. Allergy* 36, pp. 450-462, 1965A.

ROTHBERG, R. M., FARR, R. S.: 'Antibovine serum albumin and anti α lactalbumin in the serum of children and adults', *Pediatrics* 35, pp. 571-588, 1965B.

ROTHBERG, R. M., KRAFT, S. C., FARR, R. S.: 'Similarities between rabbit antibodies produced following ingestion of bovine serum albumin and following parenteral immunization', *J. Imm.* 98, pp. 386-395, 1967.

ROSENSTREICH, D. L., FARRAR, J. J., DOUGHERTY, S.: 'Absolute macrophage dependency of T lymphocyte activation by mitogens', *J. Imm.* 116, p. 131-139, 1976.

SALACINSKI, P., HOPE, J., McCLEAN, C., CLEMENT-JONES, V., SYKES, J., PRICE, J., LOWRY, P. J.: 'A new simple method which allows theoretical incorporation of radioiodine into proteins and peptides without damage', *Proceedings J. Endocrin.* 81, p.131, 1979.

SAVILAHTI, E.: Immunoglobulin-containing cells in the intestinal mucosa and immunoglobulins in the intestinal juice in children', *Clin. Exp. Imm.* 11, pp. 415-425, 1972.

SCHLAMOWITZ, M.: 'Maternofoetal transmission of protein in the rabbit: transfer in vivo and binding in vitro to the yolk sac membrane', In: *Maternofoetal Transmission of Immunoglobulin*; Ed. W. A. Hemmings. 1976.

SCHNORR, K. L., PEARSON, L.D.: 'Intestinal absorption of maternal leucocytes by newborn lambs', *J. Repro. Imm.* 6, pp. 329-227, 1984.

SCOTT, B. B., MCGUFFIN, P., SWINBURNE, M. L., LOSOWSKY, M. S.: 'Dietary Ab's and myocardial infarction', *Lancet* II, pp. 125-126, 1976.

SELA, M.: 'Antigenicity: Some molecular aspects', *Science* 166, pp. 1365-1374, 1969.

SELNER, J. C., MERILL, D. A., CLAMEN, H. N.: 'Salivary immunoglobulins and albumin development during the newborn period', *J. Pediatr.* 72, pp. 685-689, 1968.

SHARMA, H. M., GEAR, J. C.: 'Experimental aortic lesions of acute serum sickness', *Am. J. Path.* 88, p. 255-266, 1977.

SHEK, P. N., DUBISKI, S.: 'Maternal-foetal transfer of normal IgM in the rabbit', *Immunology* 29, pp. 365-369, 1975.

SIMON, G. L., GORBACH, S. Z.: 'Intestinal flora in health and disease', In: *Physiology of the Gastrointestinal Tract*, Chap. 55, p. 1361.

SMITH, R. T.: 'Immunological tolerance of non-living antigens', *Adv. Imm.* I. pp. 67-129, 1961.

SOLOMON, J. B.: 'In Foetal and Neonatal Immunology. Frontiers of Biology', Ed. A. Neuberger & A. Tatum, 1971.

SOOTHILL, J. F.: 'Allergy and infant feeding', *Proc. Nutr. Soc.* 35, pp. 283-284, 1976.

SOOTHILL, J. F., STOKES, C. R., TURNER, M. W., NORMAN, A. P., TAYLOR, B.: 'Predisposing factors and the development of reagenic allergy in infants', *Clin. All.* 6, pp. 305-319, 1976.

STEWARD, M.W.: 'Resistance of rabbit secretory IgA to proteolysis', *Biochem. Biophys. Acta* 236, pp. 440-449, 1971.

STILLS, Jr. H. F., BULLOCK, B. C., CLARKSON, T.B.: 'Increased atherosclerosis and glomerulo-nephritis in cynomolgus monkeys (Macaca Farcicularis), given injections of BSA over an experimental period of time', *Am. J. Path.* 113, pp. 222-234, 1983.

STOKES, C. R., SOOTHILL, J. F., TURNER, M. W.: 'Immune exclusion as a function of IgA', *Nature* Vol. 255, p. 701, 1975.

STOSSEL, T. P.: 'Phagocytosis - Part I', *New Eng. J. Med.* 290, pp. 717-772,

STROBEL, S., MOWAT, A., DRUMMOND, H. E., FERGUSON, A.: 'Age at first feed influences immune responses to fed antigen', *Ped. Res.* 15 (8), 1981.

STROBEL, S., MOWAT, A. McI., DRUMMOND, H. E., PICKERING, M. G., FERGUSON, A.: 'Immunological responses to fed protein antigens in mice. II. Oral tolerance for CMI is due to activation of cyclophosphamide sensitive cells by gut processed antigen', *Imm.* 49, p. 451-456, 1983.

STROMBECK, D. R., HARROLD, D.: 'Binding of cholero toxin to mucins and inhibition by gastric mucin', *Infect. Immunol.* 10, pp. 1266-1272, 1974.

SWARBRICK, E. T., STOKES, C. R., SOOTHILL, J. F.: 'Absorbtion of antigens after oral immunization & the simultaneous induction of specific systemic tolerance', *Gut* 20, pp. 121-125, 1979.

TAITZ, L. S., ARMITAGE, B. L.: 'Goats milk for infants and children', *British Med. J.* 288, pp. 428-429, 1984.

TAYLOR, K. B., TRUELOVE, S. C.: 'Circulating Ab's to milk proteins in ulcerative colitis', *Brit. Med. J.* 2, pp. 924-929, 1961.

TAYLOR, B., NORMAN, A. P., STOKES, C. R., TURNER, M. W., SOOTHILL, J. F.: 'Transient IgA deficiency and pathogenesis of infantile atopy', *Lancet* II, p. 111, 1973.

THEOFILOPOULOS, A. N., DIXON, F. J.: 'Immune complexes in human diseases', *Am. J. Pathology* 100, pp. 529-591, 1980.

THOMAS, H. C., PARROTT, D. M.: 'The induction of tolerance to a soluble protein antigen by oral administration', *Imm.* 27, p. 631-639, 1974.

THOMAS, H. C., RYAN, C. J., BENJAMIN, I. S., BLUMGART, L. H., MACSWEEN, R.N.M.: 'The immune response in cirrhotic rats. The induction of tolerance to orally administered protein antigens', *Gastroenterology* 71, pp. 114-117, 1976.

THOMPSON, J. G.: 'Production of severe athenoma in a transplanted human heart', *The Lancet*, pp. 1088-1089, 1969.

TOIVANEN, A., VILJANIN, M. K., SAVILAHTI, E.: 'IgM and IgG antimilk antibodies measured by radioimmunoassay in myocardial infarction', *Lancet* II, pp. 205-207, 1975.

TOMASI, T. B., BIENENSTOCK J.: 'Secretory Immunoglobulin', *Adv. in Immunol.* 9, pp. 1-96, 1968.

TOMASI, T. B., GREY, H. M.: 'Structure and function of immunoglobulin A', *Progr. Allergy*, Vol. 16, pp. 81-213, 1972.

TOMASI, T. B., TAN, E. M., SOLOMON, J., PRENDERGAST A. : 'Characteristics of an immune system common to certain external secretions', *J. Exp. Med.* 121, pp. 101-124, 1965.

UDALL, J. N., BLOCH, K. J., VACHINO, G., FELDMAN, P., WALKER, W. A.: 'Development of the gastrointestinal mucosal barrier. IV. The effect of inhibition of proteolysis on the uptake of macromolecules by the intestine of the newborn rabbit before and after weaning', *Biol. Neonate* 45, p.289-295, 1984.

UDALL, J. N., BLOCH, K. J., FRITZE, L., WALKER, W. A.: 'Binding of exogenous protein fragments to native proteins: possible explanation for the overestimation of uptake of extrinsically labelled macromolecules from the gut', *Imm.* 42, p. 251-257, 1981.

UDALL, J. N., COLONY, P., FRITZE, L., PANG, K., TRIER, J. S., WALKER, W. A.: 'Development of gastrointestinal mucosal barrier: II. The effect of natural versus artificial feeding on intestinal permeability to macromolecules', *Ped. Res.* 15, pp. 245-249, 1981.

UDALL, J. N., PANG, K., FRITZE, L., KLEINMAN, R., WALKER, W. A.: 'Development of gastrointestinal mucosal barrier: I. The effect of age on intestinal permeability to macromolecules', *Ped. Res.* 15, pp. 241-244, 1981.

VAHLQUIST, B., LAPERCRANTZ, R., NORBRING, F.: 'Maternal and foetal titres of antistreptolysin and antistaphylococcal at different stages of gestation', *Lancet II*, p. 851, 1950.

VALNES, K., BRANDTZAEG, P., ELGJO, K., STAVE, R.: 'Specific and non-specific humoral defense factors in the epithelium of normal and inflamed gastric mucosa. Immunohistochemical localization of immunoglobulins, secretory component, lysozyme and lactoferrin', *Gastroenterology*, 86, pp. 402-412, 1984.

VAN FURTH, R., SHUIT, H. R. E., HIJMENS, W.: 'The immunological development of the human foetus', *J. Exp. Med.* 122, p. 1173, 1965.

VITELLA, E. S., GRUNKE-IQBAL, I., HOLMES, K. V., UHR, J. W.: 'Cell surface immunoglobulin. Synthesis, shedding and secretion of immunoglobulin by lymphoid cells of germ free mice', *J. Exp. Med.* Vol. 139, pp. 862-876, 1974.

VIVES, J., PARKS, D. E., WEIGLE, W. O.: 'Immunologic unresponsiveness after gastric administration of human α globulin: Antigen requirements and cellular parameters', *J. Imm.* 125, pp. 1811-1816, 1980.

VOLANAKIS, J. E., STROUD, R. M.: 'Rabbits Clq purification, functional and structural studies', *J. Imm. Methods* 2, pp. 25-34, 1972.

WAKSMAN, B. H.: 'The homing pattern of thymus derived lymphocytes in calf and neonatal mouse Peyer's Patches', *J. Immunol.* 111, pp. 878-884, 1973.

WALKER, W. A.: 'Antigen absorption from the small intestine and gastrointestinal disease', *Ped. Clin. N. America*, Vol 22, pp. 731-746, 1975.

WALKER, W. A.: 'Antigen handling by the gut', *Arch. Dis. Child.* 53, p. 527-531, 1978.

WALKER, W. A., CORNELL, R., DAVENPORT, L. M., ISSELBACHER, K. J.: 'Macromolecular absorption: Mechanism of HRP uptake and transport in adult and neonatal rat intestine', *J. Cell Biol.* 54, pp. 195-205, 1972B.

WALKER, W. A., ISSELBACHER, K. J.: 'Uptake and transport of macromolecules by the intestine. Possible role in clinical disorders', *Progress in Gastroenterology*, *Gastroenterology*, Vol. 67, pp. 531-550, 1974.

WALKER, W. A., ISSELBACHER, K. J., BLOCH K. J.: 'The role of immunization in controlling antigen uptake from gastrointestinal tract', *Adv. Exp. Med. Biol.* 45, pp. 295-303, 1974.

WALKER, W. A., ISSELBACHER, K. J., BLOCH, K. J.: 'Intestinal uptake of macromolecules: effect of oral immunization', *Science* 177, pp. 608-611, 1972A.

WALKER, W. A., ISSELBACHER, K. J., BLOCH, K. J.: 'The role of pancreatic enzymes in the breakdown of antigens and Ab/Ag complexes on the surface of the gut', *Gastroenterology* 68, A151, p. 1008, 1975A.

WALKER, W. A., WU, M., ISSELBACHER, K. J., BLOCH, K. J.: 'Intestinal uptake of macromolecules: IV. The effect of pancreatic duct ligation on the breakdown of antigen-antibody complexes on the intestinal surface', *Gastroenterology*, 69, pp. 1223-1229, 1975B.

WALKER, W. A., WU, M., ISSELBACHER, K. J., BLOCH, K. J.: 'Intestinal uptake of macromolecules. III. Studies on the mechanisms by which immunization interferes with antigen uptake', *J. Immunol.* 115, pp. 854-861, 1975C.

WARSHAW, L., WALKER, W. A.: 'Intestinal absorption of intact antigen protein', *Surgery* 76, pp. 495-499, 1974.

WARSHAW, A. L., WALKER, W. A., CORNELL, R., ISSELBACHER, K. J.: 'Small intestinal permeability to macromolecules: transmission of HRP into mesenteric lymph and portal blood', *Lab. Invest.* 25, p. 675-684, 1971.

WARSHAW, A. L., WALKER, W. A., ISSELBACHER, K. J.: 'Protein uptake by the intestine: evidence for absorption of intact macromolecules', *Gastroenterology* 66, p. 987-992, 1974.

WEAVER, E. A., RUDLOFF, H. E., GOLDBLUM, R. M., DAVIS, C. P., GOLDMAN, A. S.: 'Secretion of immunoglobulin A by human milk leukocytes initiated by surface membrane stimuli', *J. Imm.* 132, p. 684, 1984.

WEISZ-CARRINGTON, P., EMANCIPATOR, S., LAMM, M. E.: 'Binding and uptake of immunoglobulins by mouse mammary gland epithelial cells in hormone treated cultures', *J. Repro. Imm.* 6, pp. 63-75, 1984.

WELLS, H. G.: 'Studies of the chemistry of anaphylaxis: III. Experiments with isolated proteins especially those of the hen's egg', *J. Infect. Dis.* 9, pp. 147-171, 1911.

WESTROM, B. R., SVENDSEN, J., OHLSSON, B. G., TAPERSON, C., KARLSSON, B. W.: 'Intestinal transmission of macromolecules (BSA and FITL-labelled Dektrans) in the neonatal pig. Influence of age of piglet and molecular weight of markers', *Biol. Neonate* 40, pp. 21-26, 1984.

WHO SCIENTIFIC GROUP: 'The role of immune complexes in disease', Technical Report Series 606, 1977.

WILD, A. E.: 'Mechanism of protein transport across rabbit yolk sac endoderm', In: Maternofoetal Transmission of Immunoglobulins, Ed. W. A. Hemmings, pp. 155-167, 1976.

WILD, A. E.: 'Coated vesicles: a morphologically distinct subclass of endocytic vesicles', In: Coated Vesicles, Ed. C. J. Ockleford & A. White. Cambridge University Press, pp. 1-22, 1980.

WILD, A. E.: 'Distribution of Fc γ receptors on isolated gut enterocytes of the suckling rat', J. Repro. Imm. 3, pp. 283-296, 1981A.

WILD, A. E.: 'Transfer across the primate and non-primate placenta. Endocytic mechanisms in protein transfer across the placenta', Placenta (Supplement 1), pp. 165-186, 1981B.

WILLIAMS, R. C., GIBBONS, R. J.: 'Inhibition of bacterial adherence by secretory immunoglobulin A: A mechanism of antigen disposal', Science 177, pp. 697-699, 1972.

WILLIAMS, E. W., HEMMINGS, W. A.: 'Intestinal uptake and transport of proteins in the adult rat', Proc. R. Soc. Lond. B. 203, pp. 177-189, 1978.

WISSIG, S. L., GRANEY, D. O.: 'Membrane modifications in the apical endocytic complex of ileal apical epithelial cells', J. Cell Biol. 39, p. 564-579, 1968.

WORTHINGTON, B. S., BOATMAN, E. S.: 'The influence of protein malnutrition on ileal permeability to macromolecules in the rat', Am. J. Dig. Dis. 19, pp. 43-55, 1974.

WORTHINGTON, B. S., BOATMAN, E. S., KENNY, G. E.: 'Intestinal absorption of intact proteins in normal and protein-deficient rats', Am. J. Clin. Nutr. 27, pp. 276-286, 1974.

WORTHINGTON, B. S., STYROTUCK, J.: 'Intestinal permeability to large particles in normal and protein-deficient adult rats', J. Nutr. 106, pp. 20-32, 1976.

YAMAGUCHI, N., SHIMIZU, S., HARA, A., SAITO, T.: 'The effect of maternal antigenic stimulation upon the active immune responsiveness of their offspring', Immunology 50, pp. 229-238, 1983.

ZUBLER, R. H., GHISLAINE, L., LAMBERT, P., MIESCHER, P.: 'Detection of immune complexes in untreated sera by modification of ^{125}I Clq binding', J. Imm. 116, pp. 232-235, 1976.