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Extensive experimental investigations have been made into friction
welding but very few relevant mathematical models have been produced.
In this thesis several possible models are developed which describe

the various phases of the frictioning stage.

Attention has been focussed, in particular, on the modelling of
the softened layer of material which develops close to the weld interface.
Solutions have been derived for the Hickness ofthis layer, the reacted
torque and the temperature distributions for the cases where the layer
is modelled by either a viscous fluid or a Bingham substance. The
solutions have largely been obtained using the heat balance integral
method and their accuracy has been assessed with the aid of various

asymptotic solutions.

Although this work has mainly been concerned with phase II of the
frictioning stage, the equilibrium and deceleration phases have been

examined.

The more specialised friction welding processes of orbital and

inertial welding have also been considered.

An interesting feature of a friction weld is the upset collar which
is formed by material expelled from the softened zone and a model to
describe the shape of this extriuded material has tentatively been put

forward.
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CHAPTER 1

INTRODUCTION

1.1 The Origins of Friction Welding

The idea of welding using frictional heat as the heat source was
first patented here in Britain during the early 1940's. After that
time it received little attention in this country but it was reported
that thermoplastics were being friction welded in Germany during
World War II. 1In 1956 fresh interest was aroused by A.I. Chudikov
who again suggested the use of friction as a heat source for welding
metals and this led to an extensive‘sﬁudy of friction welding in the
U.S.S.R. under V.I. Vill [ﬁ]. It is believed that work also commenced
at about the same time in the U.S.A. leading to the inertia technique
of friction welding which was developed by the Caterpillar Tractor
Company [2] in 1962. Friction welding was reintroduced in Britain in
1960 when the Welding Institute, formerly the B.W.R.A., construcfed

its first friction-welding machine based on Russian published data Eﬂ .

Friction welding is now exploited thrbughout the world as a reliable

and efficient automated welding process.

1.2 Friction Welding Techniques

Although there are now several different friction welding techniques,
the basic process remains the same. In the friction welding process
the two components to be joined are forced to rub against each other
thereby generating heat at the rubbing interface. Subsequently, the

material on either side of the weld interface softens and a shortening




of the components takes place in the direction of the applied load.
The rubbing is then terminated and the two components are forged
together to form a weld.Eﬂ. Under normal conditions no melting
at the interface occurs and the joint is produced by solid phase

bonding [4 ,5,6] .

There are four main methods of friction welding, namely;
conventional or continuous drive friction welding [3,4,i], inertia-
welding [?,6], orbital welding [P,ld] and radial weiding [il]. Certain
aspects of the continuous drive process are examined extensively in
this thesis but the other techniques are only briefly considered.

A short description of the four main techniques is given below.

1.2.1 Continuous Drive Friction Welding

The continuous drive friction welding method is used for joining
two components, at least one of which must be circular. 1In this case,
the necessarily circular component is held in the headstock (or rotating)
chuck of the friction welding machine whilst the other is held in the
tailstock (or stationary chuck), both chugks being in axial alignment
Cﬂ. The basic principles of the technique are illustrated schematically
in Figure 1.1. The headstock chuck is rotated at a given anguiar
speed while the tailstocK one is held stationary Figure 1.1(a) .

The tailstecK chuck is then driven towards the head:focK chuck by a
hydraulic ram until the two specimens make contact. The load is
maintained so the two components rub against each other at the interface
[Figure 1.1(b)]. The heat generated by this rubbing causes the material
on either side of the interface to soften and this softened material
then begins to flow radially outwards forming an‘'upset collar’

[Figure 1.1(ci1. The rubbing of the interface is continued until a
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prescribed amount of axial shortening (also called burnoff or upset)
of the specimens has taken place or a certain time (weld time) has
elapsed; the rotating component is then brought rapidly to rest.

The axial force is maintained at the same value, or even increased,
(forging pressure) for a short period of time afterthe rotation has
stopped [Eigure 1.1(di]. In this forging stage the metal cools and

the weld is consolidated.

When welding solid bars, the upset collar shown in section in
Figure 1.1(d), produces no problem since it can be easily machined
away. However, for the case of hollow tubes, a second collar is
formed internally. This is a considerable nuisance if the tubes are
long since it cannot bevmachined away and thus obstructs the tube.

Thus this method of friction welding is not desirable for welding tubes

which must carry oil, gas etc.

The main control variables in the continuous drive process are
the rubbing speed, the applied load (which in turn controls the rate of
upset) and the weld time or amount of axial shortening. These parameters
control both the amount of heat that is put into the weld andithe

rate at which heat is generated, the latter being also depedent on time.

Figure 1.2 shows ideal ised traces of the variations with time of
the speed of rotation, torque, applied load and axial shortening
during a typical weld cycle using the continuous drive technique.

It is convenient to divide the weld cycle into two stages: the
frictioning stage (rotation continuing) and the forging state (rotation
stopped) as shown in Figure 1.2. The frictioning stage can be divided

further into the following four phases [3,4,i]:




=
.

ging Stage

For
=,‘r

Frictioning Stage

fe—

!

¥

=]
o
B

e s s o — —— — o - ]

Time

L )

T

20104 po1lddy

~
(&)
~

Time

8utusjaoys TBIXV

~~

o
~

IV

Phase III Phase

Phase 1II

Phase 1

(a) Speed,

Idealised Traces of
Applied Force and

(c)

Figure 1.2

(b) Torque,
(d) Axial Shortening for the

Continuous Process.



Phase I.

This phase (sometimes called the conditioning phase) starts when
the two components come into contact and rub against each other. As
seen in Figure 1.2 the torque rises rapidly to a peak called the
initial peak torque. During this initial transient phase the interface
temperature rises to about 700°¢C , when welding mild steel, but no
axial shortening takes place. The reaching of the initial peak torque

marks the end of phase I.

Phase II.

This phase begins when the torque starts to fall from its initial
peak and ends when equilibrium conditions have been reached. Again
this is a transient phase in which the interface rises to a value close
to the melting temperature, but does not actually attain it. The
increase in temperature causes the material close to the interface
to soften and axial shortening takes place. Subsequently there is a

radial flow of material and the upset collar begins to form.

Phase III.

This is the equilibrium phase, during which the torque, temperature
distribution and rate of axial shortening remain virtually constant.
Under normal conditions most of the axial shortening takes place during

this phase.

Phase IV.

This is called the deceleration phase; it starts when the hydraulic

brake is applied to slow down the rotating specimen, and ends when the




rotation actually stops. As soon as the speed of rotation starts to
decrease, the torque begins to increase, until it reaches a peak,
called the terminal peak torque. The value of the torque then falls
and reaches zero when the rotation ceases. However, axial shortening
still continues until the end of the forging stage, which follows the

deceleration phase (see Figure 1.2).

1.2.2 Inertia-Welding

The inertia (or flywheel) welding techniqﬁe is a method for

joining two specimens; again, at least one of which must be circular.

In this technique the specimens are again mounted in the machine
in the same configuration as for the continuous drive case (see
Figure 1.3) but this time instead of having a continuous drive to the
headstack chuck, the latter is mounted 6n a flywheel [?,g]. The
flywheels assembly is spun under power to a predetermined speed, thus
storing a known amount of energy [?igure 1.3(aj]. The drive to the
flywheel: is then declutched and the tailstock chuck is driven towards
the rotating headstock cﬁuck by a hydraulic ram until the specimens
make contact. [?igure 1.3(bi]. The energy stored in the flywheel is
then used to generate heat at the rubbing interface. The consequent
increase in temperature causes the material close to the interface to
soften, axial shortening takes place and an upset collar begins to
form Figure 1.3(c) . As rubbing proceeds, the resisting torque
causes the speed of rotation to decrease until eventually the rotating
component comes to rest. The axial force is maintained until the
joint cools and consolidates. The process is in a transient state over

the entire weld cycle and no equilibrium phase exists.
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The differences mentioned above between the inertia and continuous .
drive techniques can be seen in the idealised traces of Figures 1.4
and 1.2 respectively. We notice for the case of inertia welding
[?igure 1.4] that the initial and terminal peak torqués are present
but the equilibrium phase is non-existent. We also note that the time
taken for the torque to fall to zero, after the terminal peak torque
has been reached, is much shorter for inertia welding than for the

continuous drive method.

1.2.3 Orbital Welding

Although the two friction welding techniques mentioned above
produce sound welds and are by far the most commonly used methods,
they are limited to welding components which possess axial symmetry
and where angular alignment is not required. This limitation was
removed by Searle [9,1@] who developed the orbital-welding technique.
As suggested by its name, the orbital welding technique is a method of
friction welding in which the frictional heat is generated by an
orbiting motion between the two ruﬁbing specimens. The difficulty
with such a technique is in developing a system to produce the orbital
motion. If the moving specimen were simply mounted in an orbiting
work holder, which must be heavy in order to have sufficient strength
to withstand the applied load, then enormous centrifugal forces would
develop and one would need an elaborate and expensive machine. Seeking
an alternative method, Searle [}Q] proposed that both specimens rotate
with the same angular‘speed, about a common axis, in the same sense.
Then on displacing the parallel axes of rotation by a small amount e ,
a simple mathematical analysis (given in Chapter 2) shows that one

specimen describes a circular orbit of radius e relative to the other.

- 10 -
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This form of motion ensures that at every point of contact, the
relative speed between the two specimens is uniform, thus leading to

a uniform source of heat generation. The great advantage of using this
method is that two similar specimens of arbitrary cross section can

be joined and angular alignment is retdined. The method is illustrated
schematically for the case of square cross-sectional specimens in

Figure 1.5,

The specimens are axially aligned in the machine and their
angular orientation is set to the position that is desired at the
completion of the weld. They are then spun with the same speed, in
the same sense about their corresponding axes. [?igure 1.5(ai]. Their
axes of rotation are then offset by an amount e , to produce a relative
motion between the two specimens with an orbit radius e . [iigure 1.5(bi].
When sufficient heat has been generated, the axes are realigned and
a forging force is applied to the still rotating components to forge
a weld, as in the continuous drive process [?igure 1.5(ci]. Since the
specimens had the correct angular alignment before the process started
and were both rotated with the same angular speed throughout, on
realignment of the axes the specimens retain the correct angular

orientation.

1.2.4 Radial Welding

The one major limitation of the three techniques described so
far in this thesis is that at least one of the specimens must be
small enough to mount in a machine and rotate with sufficient speed
to attain a weld. The welding of very long pipes would therefore be
out of the question. However, by holding the two components to be

joined stationary and by rotating a third component between them,

- 12 -




thus forming two friction welds, the size of the component to be welded
becomes irrelevant. The process is known as radial friction welding
[ii]. The method is illustrated schematically in Figure 1.6. The
parts to be joined are held stationary. Their abbutting ends are
chamfered to receive the wedge sectioned ring, which is rotated

between them and at the same time compressed radially.

In the bore of the tubes is placed a mandrel which prevents the
radial pressure from collapsing the tubes. The mandrel must be made
from a material which has a high strength at elevated temperatures
and has a low enough thermal conductivity to prevent rapid cooling

in the weld area.

The three important features of this method are: (i) it can be
used for very large components, (ii) angular alignment can be achieved,
(iii) internal upset collars, in tubes, can be avoided. The one

limitation of the method is it only applies to circular components.

Although all four methods methods mentioned above have received
extensive experimental investigation [?-1i] the mathematical models
that have been derived are very limited. The aim of this thesis is
to improve and extend existing models and to develop new ones, which
could be used to assist the engineer to make better welds. We deal
mainly in this thesis with phases II and III of the frictioning stage
in the continuous drive process although phases I and IV are briefly
examined. A simple model of the forging stage has been presented by
Rich and Roberts[12], who used plasticity to predict the dispersion
of material from the interface and to determine an upper bound for
the forging pressure but this stage is not considered in this thesis.
In later chapters we briefly examine inertial and orbital welding but

radial welding is not investigated.
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1.3 The Frictioning Stage

1.3.1 The Continuous Drive Process

The main objective of this thesis as stated above, is to produce
mathematical models to describe the frictioning stage of the continuous
drive process. As we have already stated, the frictioning stage can
be divided into four phases, each of which must be modelled separately.
In order to obtain models relevant to each of these phases we must have

a basic knowledge of the underlying physics and this is given below.

Phase I.

When the rotating specimen is brought into contact with the
stationary one sli&ing takes place between the two unlubricated surfaces.
On initial contact the highest surface asperities will form adhesion
junctions and siezure develops [é,i]. At the junctions where the
adhesion between the surfaces is stronger than the parent metal,shearing
takes place within a short distance either side of the interface,
so fragments of metal are transferred from one specimen to the other
and vice versa. As this wearing down process continues, the area of
real contact gets larger, thus increasing the number of adhesions and
siezures. This leads to an increase in the frictional force and hence
resisted torque [Eee Figure 1.2]. As rubbing proceeds, the interfacial
temperature goes higher, the rubbing surfaces soften and the area of
real contact increase further leading to a greater increase in the
frictional force. The temperature continues to rise until it
eventually reaches a value (sometimgs called the conditioning temperature)
at which the transferred metal fragments at the interface become soft
and 'plastic'. The time taken to reach the conditioning temperature
we call the conditioning time and it marks the end of Phase I.

- 14 -




This initial frictioning process is extremely complicated and it
would be very difficult to develop a mathematical model to describe
it fully. However, during Phase I, the amount of heat generated
represents only about 107 of the total heat generated throughout the
entire weld cycle so it is thought adequate to use a simple model to
describe this phase. We follow Rykalin [13], Vill [14] and Rich and
Roberts [15], whose models are briefly discussed in Chapter 2, and
assume that during Phase I heat is generated entirely at the rubbing
interface by sliding friction [}]. Models based on this assumption
are presented in Chapter 2. The conditioning time and conditioning
temperature are calculated from these models and the solutions are used

as initial conditions for some of the work presented in Chapter 4.

Phase II.

This is a transition phase during which the layer of transferred
fragments at the rubbing interface changes into a layer of plasticised
material [ﬁI . The plasticised layer offers less resistance to rubbing
and the resisting torque is seen to fall [}ee Figure I.Z]. As more heat
is generated in this plastic layer its thickness and the interfacial
temperature both increase. The applied axial load causes the softened
material to be squeezed out and the formation of the upset collar begins.
As the material softens with increasing temperature the rate of which
heat is generated decreases and hence the rate of growth of the plasti-
cised layer is reduced. Eventually, at some later time, the rate of
growth of the plésticised layer becomes zero. In this situation the
rate at which heat is produced by frictional dissipation is exactly
equal to the rate at which heat is lost by forced convection, due to

upsetting, plus the second order losses over the lateral surfaces of

the specimens, This is the end of Phase 1I.

- 15 ~




Rich and Roberts [1i] incorporated Phase II in their model by
using a constructed heat input function which decayed with time in a
manner characteristic of the phase. However, their model does not
describe the mechanical process that produces the heating within the
softened layer. In this thesis Phase II is modelled by examining

the mechanical deformations that take place in the softened layer.

The chief problem in modelling Phase II, therefore, is in choosing
the right constitutive equations to describe the behaviour of the
softened material, These equations must represent the relationshiﬁ
between stress and strain rate for the material as accurately as
possible but at the same time they must remain tractable. Investigations
into high gtrain rate data using hot torsion and tensile tests have
been made [l6,1i] and, based on this data, relationships between stress
and strain rate have been postulated. These relationships are given
in Chapter 3. However, they remain difficult to solve even in their
simples: forms and since, in this thesis, we are looking for simple
models to describe the mechanisms in the softened layer we follow
Bahrani et al [}81 and use the well known Bingham model [iQ,ZéI.
~The basic equations describing the Bingham substance are presented

in Chapter 3.

In Chapter 5 a simple description of Phase II is given where the
softened layer is modelled as a Bingham substance. The model is based
on that of Bahraﬁi [1@] although certain modifications are made since
Bharani's model is only validin Phase III. 1In Chapter 4 more elaborate
models of Phase II are given for the special case in which the Bingham
number is taken to be zero. The substance then reduces to a viscous
fluid [?i} (of high viscosity) as considered by Atthey [?2], whose
model, which is summarised near the beginning of Chapter 4, forms the

basis for much of the later work in that Chapter.
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Phase II1I.

During this equilibrium phase, the heat generated by viscous
dissipation in the plastic region is equal to the heat lost by forced
convection in the upsetting process plus the superficial losses due
to radiation and convection over the outside surfaces of the specimens.
The temperature, thickness of the plasticised layer, and torque
consequently remain constant in this phase and the whole system is in a
state of equilibrium. It is reasonable to model this phase using the
same constitutive equations as introduced for Phase II, although the
governing equationsvof Phase III are usually easier to solve since they
are independent of time. Solutions for Phase III for the viscous fluid

and the Bingham material are presented in Chapters 4 and 5 respectively.

Phase 1V.

This phase begins when the final brake is applied to the rotating
specimen. As the rubbing speed decreases the rate of heat gemeration
falls and the thickness of the plastic region decreases. As a result
the torque rises until it reaches its terminal peak torque, after which
it falls to zero with the speed of rotation. Again we can use the same
constitutive equations as for Phase II and III and a simple solution

is derived in Chapter 4.

1.3.2 Inertial Welding

The history of the torque, applied load, angular velocity and rate
of axial shortening for a typical ingrtia weld are shown in Figure 1.4.
Wang et al., [8,23] examined this process by assuming that heat is
generated entirely at the interface by sliding friction, and making the

further assumption that the product of:.the coefficient of friction and

-17 -




the applied pressure remains constant throughout the process, thus
resulting in a constant torque. The variation of the rubbing speed

with time was approximated by a quadratic and they obtained an expression
for the interfacial heat input. Using this heat input, the two-dimensional
equation of heat conduction was solved, taking into account temperature
dependent thermal properties, using finite difference methods, and the
temperature distribution in the radial and axial directions obtained.

Again this model does not take into account the existence of a

softened layer and the volumetric heat generation therein. In order to
gain insight into the actual mechanics in the softeﬁed layer a simple

solution, based on the viscous fluid mddel, is given in Chapter 4.

1.3.3 Interfacial Melting.

There is some doubt as to whether melting temperatures are ever
reached at the interface. Several experimental investigations [;,S,Q]
suggest melting does not occur but the case where the interface does

melt has been considered by several authors [15,23,2§].

Rich and Roberts [}i} assumed that once the interface had reached
melting temperature it would remain at that temperature. On applying
this condition of constant melting temperature at the interface and
making the assumptions of no axial shortening and constant thermal
properties, Rich and Roberts were able to solve the linear one~dimensional
equation of heat conduction. They obtained an analytic solution using

integral transforms.

Cheng - [?4] assumed that once a molten layer was formed at the
interface, it was squeezed into the 'flash' and that new material was

brought to the interface. Thus treating the interface as a moving
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molten front, at the melting temperature, he solved the non-linear
one-dimensional equation of heat conduction, taking account of variable
thermal properties, and obtained a numerical solution using finite

differences.

Wang and Nagappan [?i] followed Chang's approach in their solution
for the inertial welding process but assumed the existence of ‘a molten
front moving in both the axial and radial directions and solved the
two-dimensional equation of heat conducﬁion using finite difference

methods.

In this thesis, melting temperatures are predicted by the solutions
for high values of the Brinkman number were they are thought to be due
to the inadequate representation of the temperature dependent viscosity.

Models involving a molten interface are discussed no further.

1.4 The Upset Collar

During Phases II, III and IV the upset collar is continuously
being developed. ‘The formation of this collar is undesirable when
welding tubes,since it clearly causes obstructions inside the tubes
and for the case of very long tubes cannot be machined away. It is
therefore thought useful to model the development of this collar and
one such approach,consistentwith the viscous fluid model discussed

in Chapter 4, is presented in Chapter 6.
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CHAPTER 2

THE CONDITIONING PHASE

2.1 The Interfacial Power Inputs

During Phase I of the frictioning stage, heat is generated
entirely at the rubbing interface by sliding friction [iA,i]. In this
situation the general expression for the rate of heat generation per

unit area (or the specific power) at a general point may be written

[13].
q = fpV , (2.1.1)

where f, p and V represent the local coefficient of friction,
applied pressure and.rubbing velocity respectively. The coefficient
of friction at a givenvpoint will in general depend on the composition
of the components being joined, the state and temperature of the
rubbing surfaces, the applied pressure and the rubbing speed.[i,13,
25, 26]. The pressure and rubbing speed will depend on position.

For the conventional friction welding process the rubbing speed is
proportional to the radial distance from the axis of rotation r and

(2.1.1) then takes the form [25].
q = fpwr , (2.1.2)

where  1is the angular velocity of the rotating component, The total
rate of interfacial heat generation can be obtained by integrating
(2.1.2) over the entire cross-section, yielding [}3,15].

o)

Q =27 J fpwrzdr (2.1.3)

T
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where and T

are the external and internal radii respectively

2 1

of the tubes being joined (for solid bars r, = 0) . Before the

1

integral in equation (2.1.3) can be evaluated the dependence of f and

p on r must be specified. The exact nature of this dependence is

unknown, however, but several forms which have been introduced in the

literature are given below.

(i)

(ii)

The simplest assumption is that the quantity fpwr remains uniform
uniform over the cross section [§3,14,Zi}. Gelman and Sander

[25] suggested this would be so if f were constant and p
inversely proportional to r . Unfortunately, the latter is

not suitable for solid cross-sections since the pressure

would have a singularity at the centre r =0 . Vill [}4]
suggested, after experimental examination of the heated specimens,
that this assumption of uniform heat generation over the cross-
section is invalid for the first 1.5 - 2 seconds of the weld

cycle but may be used thereafter,

The second, and more commonly used approach [13,25], is to assume
that both f and p are uniform leading to a power input that

varies linearly along the radius.

(1ii) By observing experimentally the relationship between the heat

output and speed of rotation Vill [i{] suggested that f should

take the form
2
f = k/(wr) - (2.1.4)

where k 1is a constant of proportionality. This, again, is
not suited to solid cross-sections due to the singularity at

the centre.
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All three above assumptions allow (2.1.3) to be integrated and

the total input power obtained.

Voznesenskii [?é]'postulated that for small times, when there is
no appreciable wear of the surfaces, the pressure may be regarded as
uniform throughout the cross—section. For later times when the surfaces
had 'lapped in' and uniform wear of the surfaces could be assumed,
he suggested that p ‘could be taken as inversely proportional to r.
Using experimentally obtained values for the power input Voznesenskii
then obtained numerical values of £ with the aid of the above

assumptions and equation (2.1.3).

2.1.1 Power Input for Orbital Welding

Censidering the continuous drive process, we derived (2.1.2)
from (2.1.1) by noting that V = wr . However for the orbital
process this is not so and the velocity profile for this process is

derived here.

During the orbital process both specimens are rotated with the
same speed in the same sense, the axes of rotation being displaced

a small amount ‘e [?ee Figure Z.i].

Figure 2.1 Vector Diagram for the Oroital Process
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Llet a and b be two points on the surfaces A and B
respectively that were in contact at time t =0 . [Figure 2.1]. The
position vectors RA and _RB of the point a and b respectively,

at time t , with respect to the origin O are given by

(r+e)coswti * (r+e)sinwtj , (2.1.4)

5

and

(rcoswt+e)i + rsinwtj . (2.1.5)

B

In the above, « 1is the angular velocity and 1 and j are unit vectors

in the x and y directions.

The position vector of a relative to b , defined by

B =A%
can be expressed using (2.1.,4) and (2.1.5) as

R

Ryp= (ecoswt-e)i + esinwt j (2.1.6)

Differentiating both sides of this equation with respect to t yields

an expression for the relative velocity between a and b , namely

Vag = -wesinwtl + we;oswqi . (2.1.7)

By inspection of (2,1.6) it is easily deduced that the point
a moves in a circle of radius e relative to b with constant
angular velocity w and passes through b once every revolution of the
specimens. It is also obvious from (2.1.7) that the relative velocity
of a relative to b has constant magnitude we . This analysis only
apeites o bwo eoints thal were mikially on the X axts put «

[ithle wmore &\ﬂiekfa@ reveals that theabove can be said  about any

two points on opposite surfaces. We therefore conclude that the relative
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velocity®between any two points on opposing surfaces is constant and
equal to we . Finally if we make the assumption that f and »p
are uniform over the cross—section then the specific power input at

any points of contact would be uniform and given by

q = fpuwe . (2.1.8)

2.2 Temperature Profiles

In order to obtéin temperature profiles in the specimens being
welded, Rykalin et al. [}i] and vill [}4] assumed that the rate:. of
heat generation was uniform over the interface. On making the further
assumptions that the thermal conductivity k and the specific heat
capacity Ev are constant, ‘the heat emission from the lateral surfaces
is negligible, there is no heat exchange in the chucks and considering
the tubes to have infinite length, the authors were able to solve
analytically the one-dimensional equation of heat conduction subject to
the appropriate boundary conditions. As stated earlier, the assumption
of uniform heat generation across the interface is invoked for the first
1.5 - 2 seconds but vill ]:lla assumed that althoﬁgh this solution 1is
inaccurate at small times, it is appropriate for most of the weld cycle.
One of the most striking features of the solution is that the interface
temperature is proportional to vt and grows indefinitely. Rykalin
et al. [13] suggested that for the special case of short specimens
with a small diameter, heated by a small power source this rate of
growth would be retarded by heat emission from the lateral surfaces

and heat exchange in the chucks. Both the latter effects were

excluded in Rykalins simple model.

- 24 -




Although the assumption of uniform heat generation across the
interface is reasonable when t > 1.5 seconds, the assumption that ¢
is independent of t 1is very inaccurate. If the angular velocity
remains constant then the rate of heat generation is proporticnal to
the torque and as can be seen from the idealised trace in Figure 1.2,
the torque varies greatly with t . Observing this fact Rich and
Roberts [ﬁﬁ] retained the assumption of uniform power across the interface

but approximated the actual power~time form by
q=a+B 't (2.2.1)

where A,B and A are constants depending on the particular welding
conditions. Taking the sbecimens to have finite length and making all
the other assumptions of Rykalin et al., and Vill, Rich and Roberts
were able to solve the equation of linear heat conduction using

integral transforms.

It has already been stated that the above models are only valid
for t > 1.5 seconds. However, the time period 1.5 - 2 seconds
usually takes us well into Phase II of the frictioning stage, in which
case heat is no longer generated by sliding friction at the interface
but by viscous shearing in a softened layer of material close to the
interface, During Phase II upsetting takes place and although Rykalin
suggests that the rate of growth of the interface temperature could
be retarded by inclusion of heat emission from the lateral surfaces
and heat exchange in the chucks the dominant cooling agent is forced

convection due to the upsetting.

We thus conclude that although these models were presented to
represent the majority of the weld cycle, the idea of sliding friction

is only really valid during Phase I. Unfortunately, as mentioned in
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Vill [14], the interfacial heat generation cannot be assumed to be
uniform over the cross—section during this phase. So we present
below a slightly amended form of the above models to describe this
conditioning phase. Phase II is considered extensively in Chapters

3,4 and 5.

2.3 The Conditioning Time

In this section, we consider the friction welding of thin walled
tubes. If we assume that the tube wall thickness is much smaller than
the mean radius (i.e. h << ﬁ, where h is the wall thicknes§ and R
is the mean radius) then the variations in £ , p and V over the
cross—section will be smail, hence the power input ¢ may be assumed
to be uniformly distributed. From inspection of the idealised torque
trace in Figure 1.2 we see that to a good approximation during Phase I,

the torque and hence the power increases linearly with time. We thus

postulate, for the interfacial heat generation, the relation

q=

N =

qumt/h : (2.3.1)

where  1is the angular velocity and qu is the slope of the torque
curve during Phase I which must be obtained experimentally.
The-% is introduced since we consider one tube only. Making all the

assumptions of Rykalin and Vill, it is therefore necessary to solve

the equation of linear heat conduction

<3}
3

2T _1
D

3z2

|

(2.3.2)

[o3]
M

subject to the boundary conditions
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oT -—%—T YLoon 2 =0 (2.3.3)

T+ T as Z > (2.3.4)
T =T at E = Q (2.3-5)

is

where Z is taken in the axial direction of the tubes and TAM

the ambient temperature.

It is convenient here to introduce the dimensionless variables

GI, Z and t defined by

o, = TAM, z=2-z—-—,t=E/tI (2.3.6)
AM po

where ty is a typical value of the conditioning time. The quantity

ZPo is a typical value for the thickness of the plastic region which
develops during Phase II but is introduced here to give compatibility
of these solutions with those obtained in a later section. Using

(2.3.6), equations (2.3.2) to (2.3.5) become

2

H e Je
322 FO ot
BBI
a7~ = ~ Xt on Z =20 (2.3.8)
eI >0 as Z » o (2.3.9)
and
GI =0 at t =0, (2.3.10)
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where yx and the Fourier number FO are defined by

T wz of1 DtI
X = ....q_;.T-_R.ﬁ-._ and Fo = T (2.3- 11)
AM Z
po

Equation (2.3.7) is readily solved subject to the boundary conditions

(2.2.8) to (2.3.10) yielding the solution

GI = 8xVFO t3/2 13 erfc(Z/2 VFOt) , (2.3.12)

in which i3 erfc(ZfFot) is defined by [27]

2

(1+x5)e™® - 12 4 ¥®|x erfe(x) (2.3.15)

613erfc(x) = 5

3 e

and erfc(x) 1is the compleémentary error function given by [27]

T2
erfe(x) = [ eV dy (2.3.14)

2
Ty

. . . . 2
We notice that the interface temperature is now proportional to t3/ R

as against the variation t% predicted by Rykalin and Vill. The
above solution is only valid during the conditioning phase and we
must now introduce some criterion to determine the end of this phase.
Later in this thesis Phase II is modelled in two ways. 1In Chapter 4
the softened layer is modelled as a viscous fluid and in Chapter 5

as a Bingham substance. We therefore introduce here two criteria for
determining the end of Phase I corresponding to the above two models.
In each case the existence of a softened layer during Phase II is
assumed and as we only consider thin walled tubes we also assume that
the interface between the softened material and the solid material is

parallel to the weld interface. This assumption is discussed in more
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detail later in the thesis.

For the viscous fluid model, the plane dividing the softened and
solid regions is assumed to be at the conditioning temperature TC ,
the temperature at which the material begins to soften. Clearly there
will be no precise value for Tc but t is known to be 0(700°C).

For convenience we shall take
T, = 700°C , (2.3.15)

when using the viscous fluid model. We assume that the end of the
‘conditioning phase is attained when the interface has temperature T,
and the time taken for this we call the conditioning time t, -

Hence with the aid of (2.3.6) and (2.3.12) we see that tC is the

solution of

T -T
L Y N STk L (2.3.16)
TAM 0 ¢

For a Bingham substance a different definition of t. is
introduced. A detailed description of the Bingham substance is given
in Chapter 3, from which it can be deduced that for our simple one- .

dimensional model the conditioning phase is over when the inequality

T ¥ 3 2/R%ho (2.3.17)
qo o

is satisfied. The yield stress is assumed to be dependent on temperature

and following Baharani et al. [}é] we shall postulate the linear relation

o, = oAM[l-eIeI] , | (2.3.18)

where GAM is the value of oo at ambient temperature and ¢

is the slope which is suitably chosen so that o approximates the data

I

given by Hawkyard et al. [28] .
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From (2.3.17) and (2.3.18) we deduce
- _ _2 _
T ot = 2R hoAME EIGI(O)] . (2.3.19)
Substituting (2.3.12) into this equation and regrouping, we obtain
_ 3/2
ve, = |1 = bxeg /FO e /37T (2.3.20)

where the non-dimensional quantity ¢ 1is defined by

T t_
p=—a2 (2.3.21)

....2 M
27R hoAM

It is trivial to show that (2.3.20) has one real positive

solution which is therefore the conditioning time.

2.3.1 Results and Discussion

Typical values of the physical quantities are h = 2 X 10_3m,

-2 _ _ -3 _ _ _ 8 -2
10 "m, tI = 0.55, Zpo =10 "m, TAM = 293K, TC = 973K , OAM = 10 Nm —,

0.3 and ‘FO = 2.5, Using the valuesthese conditioning times for

R

€
both models were calculated using equations (2.3.16) and (2.3.20) and
these ére plotted against qu for various values of w in Figure 2.2.
The solid and broken lines denote the viscous and Bingham models
respectively. We note in both cases that t. decreases with increasing
values of w and qu. This result is intuitively obvious since
increasing either of these parameters increases the rate of heat

generation.

In Figure 2.3 the interface temperature for the Bingham model,

obtained from equation (2.3.12) with 2z = 0, is plotted against qu

for various values of w . Here we see that the interface temperature
increases with increasing o . This again is due to the increase in

heat input. However, we note that increasing the torque leads to a

decrease in GI(O). This we expect since increasing Tqé leads to the

yield condition being satisfied at earlier times.
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CHAPTER 3

DERIVATION OF THE GOVERNING EQUATIONS AND THE BOUNDARY CONDITIONS

FOR THIN WALLED TUBES. (PHASES II, III.and IV).

3.1 Introduction

During phases II, III and IV a softened . layer of material
always exists on each side of the interface between the two specimens
being welded. The governing equations describing the motion in this
layer, we shall assume to be the same for each phase, but the boundary
and initial' conditions will be different. In this chapter the particular
forms of the momentum and energy balance equations appropriate for thin
walled tubes are derived, and the forms of the boundary conditions are
discussed.

Consider the friction welding of two identical thin walled tubes
and in order to simplify the analysis let us assume that the tubes rotate
about a common axis with the same angular speed (} w rad _1) but in

opposite senses., (See Figure 3.1).

Figure 3.1 Geometry for the Case of Welddng Thin Walled Tubes.
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Under these assumptions the weld interface becomes a plane of
symmetry, and only one tube need be considered. The restriction to
thin walled tubes implies that the wall thickness is much smaller than
the mean radius of the tube, R. All the problems considered here are
also axisymmétric, that is independent of ¢, the angular component
of the polar coordinate system (r,¢, x3).

In these situations it is customary to introduce a Cartesian
coordinate system (§i, Eé,'ié) where the Ei and ;5 axes are taken to
be in the radial and the axial directions respectively, choosing
the plane x - 0 to be the plane of symmetry between the two specimens

3
(see Fig. 3.2).

548

wi
2

s :

Figure 3.2 Cartesian Coordinate System.

v
X

For this two-dimensional version of the axisymmetric problem it is

appropriate to assume that all derivatives with respect to X, vanish,

i-e. 8/8;2 E 0.
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3.2 Equations of Motion

With respect to the Cartesian coordinate system introduced
above the general form of the equation expressing balance of linear

momentum, in the absence of body forces, is given by [zi].

Dv. 1 aci.
—L= ===l G=1,2,3 | (3.2.1)
Dt P 9%

Dt at 3x

The corresponding form for the continuity equation is

ot axi

In equations (3.2.1) and (3.2.3) p denotes the density, ;i is the
velocity component in the §i direction and Uij is the component, in the §i
direction, of the stress exerted on the fluid across an element of

surface (internal or external) whose outward drawn normal is in the X.
direction, In most simple situations the balance of angular momentum
implies that oij is symmetric. In the absence of heat sources the energy

balance equation takes the form

9q.
pgg =g - ‘} (3.2.4)
Dt Bxi
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where E represents the internal energy per unit mass, ¢ is the rate
of dissipation of mechanical energy per unit volume and q; is the heat

flux per unit area in the x, direction.

3.3 The Comstitutive Equations

At this stage it is necessary to introduce some model to
describe the softened material near the interface z = 0., High strain
rate data from hot torsion tests and also from tensile and compression

tests, on metals have been found to follow the relationship [16, 17]

g =0 el (3.3.1)

where o is the flow stress, € is the local strain rate and o and n
are constant which depend on temperature. However, it has been
‘shown [17] that the data is much better correlated by a relationship

containing constants which are independent of the temperature T, viz.

¢ = A(sinhac)exp (-Q/RT) (3.3.2)

in which A, ¢, m and Q are constant for the particular metal and R is
the gas constant. Unfortunately it would be difficult to proceed and
obtain solutions using the highly nonlinear relationship between

stress and strain rate expressed in (3.3.2) and for this reason simpler
models are sought. The introduction of a simple model might enable us
to obtain some comparatively straightforward solutions to the complex
problems under discussion, and hence allow us to gain insight into

the mechanisms occurring during friction welding; For the present

therefore, following Bahrani et al [ié] , the tube is assumed to
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comprise a Bingham material. The latter behaves elastically at low
stress values when a certain inequality is satisfied but once the
inequality is violated the material begins to flow like a viscous
fluid, the viscosity of which we shall assume to be dependent on
tenperature and local strain rate. Chapter 4, the main chapter of
this thesis, is concerned with the case where the softened layer is
modelled as a viscous fluid which will becseen later to be a special
case of the Bingham substance. It will also be shown later that
- a simplified form of the relationship (3.3.2) can be incorporated into
the viscous fluid model provided that the viscosity u is assumed to
take a particular dependence on the temperature and the local
strain rate,

Before stating the constitutive equations for the Bingham
substance, let us introduce some notation. Let the displacement of
a particle from its initial position be denoted bybzi. Then fhe

strain tensor , 2ij’ is defined by

1‘ an, g, -
Zi. B -:-"‘—_:L ’ (3.3.3)
J 9x%. X,
3 i

whereas the rate of strain tensor, iij’ is represented in terms of

the velocity gradients by

A I (3.3.4)

Denoting deviatoric tensors by a prime, ', the relationships between

o!. , &', and &!. and G.rs 2., and 2., respectively can be written
ij 1j ij ij* "1 ij
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ol. =o0.. +p 4., (3.3.5)

ij ij ij
1
' m - aam
.' = 0 - l H
“ij %5573 *mn 6ij ’ (3.3.7

where p is the hydrostaticpressure and A is the dilatation which are

defined by

-1

P =30 - . ‘ (3.3.8)
and

(3.3.9)

The general constitutive equation for a Bingham material can now

be written [19, 20]

ii 1 -
Ap = ot t

_ if 5 GiJ oij g0 (3.3.10)
6!. =2n 4.
1] 1]

and

' - — — o' R l ' ' ——2
o%s 2y + oo/ Y 1) zij if 5 Ofs Oi; > o (3.3.11)

Equation (3.3.10) therefore holdsin the elastic region with equation
(3.3.11) being valid in the flow region. The constants k, n and T
denote  the bulk modulus, modulus of rigidity and viscosity respectively,
—Eo is called the yield stress, which will in general depend on the
temperature, and 1 is the second invariaﬁt of the rate of strain tensor

defined by
2. . (3.3.12)
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In this work it is assumed that the elastic region may be treated
as a rigid body and, from now on, this will be referred to as the solid
region. Thus in the solid region the displacements are all taken to

be identically zero and equation (3.3.3) then implies that

2 =0U

i3 . (3.3.13)

1,j

It follows from equations (3.3.6), (3.3.9) and (3.3.13) that equations
(3.3.10) can be disregarded.

Incompressibility of the flowing material is also assumed, and
using equations (3.2.3) and (3.3.4) this incompressibility condition

can be written

=0 . | (3.3.14)

With the aid of equations (3.3.5), (3.3.7) and (3.3.14) the constitutive

equation (3.3.11) can now be expressed in the form

o
-— -— o Ld
e T = .o + ¢ ——— - « 3.
01_] P 613 2u + ~ 21J s (3.3.15)
/I
- 1 1 1 ""'2
provided that - o., 0., 2 0,
2 "1 ij o]
- 1 .
= - P . . 3.3.16
where T =5 zijzlj ( )

In all subsequent work in this thesis the regime in which flow takes
place will be known as the plastic region. Denoting the position of
the yield surface (or thickness of the plastic region)by E; we can

write
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Lovgny 22 = oz
5 Gij ij % co for 0 & 3 g zp
| (3.3.17)
_!-_ ] ] —2- -~ oy
and 3 oij 013 & o for X, E zP ©

The function ;; thus gives the position of the plastic/solid
interface.

It now remains necessary to define forms for the heat flux per
unit area, > and the internal energy, E. We shall assume that the
heat flux q; is related to the temperature gradient 3T/ 32; by

Fourier's law of heat conduction [?i]} viz.

q, = —E-?_— (3.3.18)

1
ox.
i

where k is the thermal conductivity. The internal energy may be

expressed in terms of differentials as

dE = cvdT - pd(

O

), (3.3.19)

where c, represents the specific heat capacity.

3.4 Derivation of the Governing Differential Equations in Non-Dimensional

Variables for Thin Walled Tubes

In this section the forms of equations (3.2.1) to (3.2.4) which are

appropriate for the friction welding of thin walled tubes, are derived.

3.4,1 Balance of Linear Momentum

It is usually useful when solving a problem to introduce

non—dimensional variables. Hence we define x, z, zp, u, v and w by
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X = x1/h, z = x3/zp°, zp = zp/zpo
(3.4.1)

u = ;1/‘1:»’ v =2_\72/w§', w o= '6'3/w,.

where 250 Y and w_ are typical values of the thickness of the plastic
region, the velocity in the -1 (radial) direction and the burnoff
velocity respectively. Using the assumption that all derivatives with

respect to X, vanish, the component of the strain rate tensor, given

by equation (3.3.4), may be written in terms of these new variables as

e _ Yo3u . H Vo 3w 1
jz'xx“F--a-:;’’Lyy=0’ 2z z_ 9z
pPo
} (3.4.2)
i =8B g L)% du, Yeow) o R v
Xy 4h3x?’ "xx 2 |z__ 3z h 3x| ?* Tyz 4zp° azJ

In order to obtain approximate forms of the complicated governing
differential equations, realistic values of the constants appearing in
our theory need to be inserted. The solutions to our simplified equations
will then be relevant to actual welding situations. In practice when
welding tubes of a mean radius R of O(lcm) and a wall thickness h of O
(lmm) the values for ®w usually lie within the range (100-200) rads./sec.
In these situations, with an applied force, Fyo lying in the range
(3-8)KN, the values for the thickness of the plastic region zpo and
rate of burnoff y_ are typically found to be O(lmm) and O(lmms_l)
respectively. The quantity u  cannot be found directly from experimental
data , but substituting the relevant strain rate component into the

equation of incompressibility (3.3.1%) yields

Ys 3u Ve v (3.4.3)
Tz 5z 0O
pO
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In order that both terms of this equation are of the same order of

magnitude we require

u, = Wﬁ 8, (.30404)
where the dimensionless parameter B is defined by
B = h/zpo . (3.4.5)

From equations (3.3.12) and (3.4.2) the expression for I can be

written in full as

2 . )
R A T S £ g O G M i i
z2 3x 3z | %=zf |toz g2 {9x
Po { po
2 [ 2
. ié‘iﬁ,@?—“- ) (3.4.6)
222 |Box 3z
po {

Using the data presented in this paragraph, a careful investigation
of the magnitude of all terms in equations (3.4.6) reveals that,

to a first approximation, I is given by

— 272 2 2
tb 22 3z 82 (9x
po

At this stage we introduce the further dimensionless variables 1y, o,
I, p and t defined by

_ - = T 2T o2
u u/uo, , OO/GA, I = I/(w’R ﬂézpo)
(3.4.8)

t=t/t,p= p/p,

where uois a typical value for the viscosity, S is the average value
of the yield strength taken over the typical temperature range

experienced, t, is typically the time duration of the particular
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welding cycle under consideration and P, is the pressure applied to the

A

tube through the axial force FA. It is now possible, using equations
(3.3.15), (3.4.2), (3.4.7) and (3.4.8) to write down the component of
the stress tensor in: terms of the dimensionless variables as follows:

2u W

3u
o ==P p+—22 |y 4 2522 (3.4.9)
xx A z 2/ 1 ax
po
2u w Bo
O,z =~ PP ¥ °°°[u + °}3."l (3.4.11)
2 z [ y2'% IJaz
po
u dﬁ[ Bo ) '
o =2y e—0 3 (3.4.12)
X 2n | 2/ 1) ax
( \
U W Bo
Oy = ° n o+ 2 23'+ 3222- . (3.4.13)
x 2/ Ij ok 3z
-t )
H_uR Bo
%, =2° po+—2] 2 (3.4.14)
z
poL 2y I; 03z
Where the Bingham number B is defined by
4o,z
B = 4P (3.4.15)
H, WR

Under normal conditions the temperature in the plastic region
dutring friction welding of mild steel lies between 700°C and 1200°C and
over this temperature range the average value of the yield stress Ty is
found from tdbles[}B, 2§1 to be of 0(107 Nm-z). The pressure PA based

on the applied force FA and cross—sectional area of a tube of mean
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radius lem and wall thickness lmm is 0(108 vaZ). A typical time
scale for phase II is 0(1ls) while for phase IV the time scale is
0(0.1s8), (see trace in Fig.4.3l ). A value for the viscosity My is
not readily available, however, but one will be chliosen which leads
to a realistic value for the torque. The total force exerted by the
fluid, in the azimuthal direction, on an elemental annulus

of the surface x, = ?p(-r-,?) is given by

3

6F = {oez(?,’z’p(?,?))nz * 0. (}‘,'z‘p(}',?))nr]as (3.4.16)

where n, and n  are the components of the normal vector to the elemental
surface, 65, in the radial and axial idirections respectively. In terms

of our cylindrical polar system equation (3.4.16) may be expressed.

3z,
r,'z'p(?,?)) —£| 6T (3.4.17)

SF = 277 + 2z (7. £)) -
F = 27r cez(r,zp(r,t)) I =

The total reacted torque Tq is thus given by

R+ih 37
Tq = 27 j [Gez r,zp(;,t)) - cre(;,zp(E;t))EE?J?zdr (3.4.18)
R-}h

From the above it is readily seen that, in terms of our two-dimensional

Cartesian coordinate system, the torque can be approximated by

4 3z
T2 , : - R
Tq & 27R%h J [oyz(x,zp(x,t)) oxy(x,zp(x,t)) - dx}(3.4.19)

However, for the two-dimensional model it is convenient to work with

the torque/unit area, Tz , which may be expressed as
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4 i 9z
T* = f[ o [x,z (x,t)}dx - 'I?I o [x,z (x,t)]—-P- dx (3.4.20)
), yz{’7p = L A 3%

With the aid of equations (3.4.12) and (3.4.14) it can be seen, by
comparing the orders of magnitude of both sides of equation (3.4.20)

that

* =
Tq o(i'luow/zzpo). (3.4.21)

It is found by experiment that typical values for Tg are 0(105Nm-1),

thus we deduce from equation (3.4.21) with the aid of the data given

1s-l) .

On susbstituting equat\ions (3.4.9) to (3.4.14) for the stress

previously in this chapter, that H, is 0(104kgm_.

components in the plastic region into equation (3.2.,1), there results,
after the use of the definitions (3.4.1),(3.4.4) and (3.4.5) and some

rearrangement, the equations of motion

+

c
du , du 811\ = - P3P,
ot 3x 9z 282 3x

Bo : Bo '
SR I PR § K-\ AU N 151 § RPRPIRE R VPR - I -1 , (3.4.22)
g2Re |3z 2/ Ijtax B2 3z 9x 2/ Ijsx

Y+ U + p— = = {4+ —

ov . av . ov _ 1 § a|f B91av
3t  3x 3z Re [3z|{ 2/ Ij3z

Bo :
s L2 [u + -—°]§l , (3.4.23)

and
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c
A AU AT 2K I

ot ox 9z 2 3z
Bo Bo
Lo 3l » —2f2uf , L2}, , oW , godulfl (3.4.24)
Re| 3z 2V/1}9z 82 ax | 2VI{tax 8z

Where the Reynolds number, Re, based on motion in the axial direction,

the pressure coefficient (% and the dimensionless parameter y are defined

by
pv_z o pA z
Re = —P2 ¢ =2 =_—_P2 (3.4.25)
M P Jow? Wt

Using the data given earlier in this chapter and taking the value for

the density p to be 7800 Kg mr3 the appropriate value for mild

7

steel, the orders of magnitude of the above parameters are found to be
-6 10
Re = 0(10 ), c, = 0(10™7), ¥ = 0(1) . : (3.4.26)
From these results it is immediately obvious that the non linear
inertial terms on the left hand sides of equations (3.4.22) to

(3.4.24) may be neglected. The nature of the remaining equations

suggests that the pressure p may be expressed = in. the form
= I4.2
Pp=p pI/Cp Re (3 7)
Substituting equation (3.4.27) into equations (3.4.22) to (3.4.24)

(and neglecting the inertial terms) then leads to the set of non-

dimensional equations
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_C ap ap 9 Bo_}{ow du
_P.Re o-.]'.__l+._.p+-——°— ;....+82._..
2 9x 3x 9z 2/1§ |ox 3z
3 go 3u)
0
ox 2V1 axJ
3 Bo_ydv 1 a( Bo y9v]
— |y =] ¢ =y + =] =0, (3.4.29)
3z 2/1) 3z g2 axL 2/1}ax
A
C Re 3p 1 Bpl 9 Boo ow
and - —_—— e 2 —||p + —|—
2 9z 9z 3z 2/1j3z2
-1 5 Bdb ow Ju l
+ ==y + =2} — + g2—|| = 0. (3.4.30)
82 3x 2V/I}{ax 9z J

Finally, with the aid of the definitions (3.4.4) and (3.4.5) the

equation of incompressibility (3.4.3) takes the dimensionless form

du . ow _

For our Bingham model equétions (3.4.28)to (3.4,30) and (3.4.31)

are the forms of the linear momentum and continuity equations
respectively which hold in the plastic region in a thin tube, under
the conditions typically arising during friction welding., Let us

now derive the analogous form of the energy balance equations.
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3.4.2 Balance of Energy

In the plastic region the form for ¢, the rate of heat

generation by viscous dissipation, is

o =0.. R.. (3.4.32)

and with the aid of equations (3.3.14), (3.3.15) and (3.3.16), (3.4.32)

can be written

I3
o = 2(2W + 2T . (3.4.33)
YT

Let us now introduce the dimensionless variables 0, cv and k defined

by
T~T
- AM - -
0 = ==, c_=¢c/c_, k=k/k . (3.4.34)
Tc TAM v v vo ]

In the above TAM

temperature and o and k° are the average values of the specific

is the ambient temperature, Tc is the conditioning

heat capacity and thermal conductivity taken over the temperature
range 700°%C - 1200°C, the range typically experienced in the plastic
region during the friction welding of mild steel.

With the aid of equations (3.4.7), (3.4.8) and (3.4.15) equation

(3.4.33), to a first approximation, takes the form

C (wRY2f  Bo Y{fov}2  1fev)?
oy l—| |u+—2||— +—|— (3.4.35)
°Rz,, 2/1§ {0z B2{dx

for 0 g z & zp(x,t).

With the assumption of incompressibility it can be showm with

the aid of equation (3.3.19) that equation (3.2.4) may be expressed

in the form
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oe DX, 1L (3.4.36)

Substituting equations (3.3.18) and (3.4.35) into equation (3.4.36)
and using the definitions (3.4.1), (3.4.4), (3.4.5), (3.4.8) and
(3.4,33) and rearranging, the energy equation for the plastic region

becomes
af a8} 1 of a6} . BOy[(0v}2  1(3v)2
—|k —f + o~ —]k —| + Brjy + ——f{ = + ——|—
3z\ 9z 82 3x{ 3x 2/1)| 40z g2iax

c .
28 96 1)
B Pecv[md_x * az] * ¥o 3¢ °

|<

0§z & zp(x,t)v (3.4.37)

o

where the dimensionless quantities Br, the Brinkman number Pe,

the Peclet number, and Fo, the Fourier number are defined by

u_$R? Wz (k_/pc_ )
. _o© - ="po - _ 0" "vo 2
Be 4kOZTc-T ) Pe zko7pCN6; » Fo t zpo '

(3.4.38)

Typical values for ko and ¢,, are 20(w/mK) and 420(J/kgK) respectively,
and it is assumed that T_= 700°C and Ty = 15°C. With these values
and those introduced earlier it can be shown that under normal friction

welding conditions
Br = 0(1), Pe= 0(1), Fo = 0(1) (3.4.39)
Equation (3.4.37) is, therefore, the approximate form of the energy

equation in the plastic region for the friction welding of thin walled

tubes.
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In an entirely analagous way one deduces that the corresponding

form of the energy equation in the solid region is given by

Cc

36 36 96 v_ 96
2, =2 22 k, —=2 =-P Y oW —E+ LS5,
9z [} B2 ax ox ° 9z Fo 9t
z 2 zp(x,t), (3.4.40)

's' is used to denote quantities appropriate to

where the subscript
the solid region and the dimensionless variables es, ks and c‘vs are
defined in a similar manner to 6, k and c,e The function.wo(t) is the

dimensionless burnoff velocity which is assumed to depend only on time

t L

3.5 Boundary and Initial Conditions

The boundary and initial conditions which must be applied to the
partial differential equations obtained in the previous section are now
discussed.

In practice the burnoff velocity W see trace Fig. 4.31 is found
to be approximately constant over almost tﬁe entire welding cycle.

Thus the applied force must be balanced by the hydrostatic pressure
and the viscous forces acting on the plastic/solid interface §5 = E;(E;E).

In terms of cylindrical polars this may be expressed

R+ih ~ R+ih
7 | T, {‘E,‘EPG,E)) 2o |7 czz(‘;,;p G,a)d; .
R-1h r R-1h

2ﬂ§hPA,

(3.5.1)
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Again for our two dimensional model it is more convenient to work in

terms of forces/unit area and the above equation may be approximated

by
i o‘xz ,az
I [T (.x. zp(x,t)k—:- - ozz(x,zp(x,t) dx = P, (3.5.2)

-}

On substituting equations (3.4.11) and (3.4.13) into equation (3.5.2)
there results, after a little rearrangement and with the aid of

definition (3.4.1), the equation.

4 oV, Bo_y (3w du 9z
[“—2}[_*@?— —E+r, |
-4 | 8n /U ex el (x,t) % z=z_(x,t)
P P
u W o _yow
-2 = (" P dx =By (3:5:3
2 2|/IJ32

o z=z (x,t)
P p e

The conditions on the velocity component are straight forward.
Symmetry requirements on the weld interface z = O imply that the
velocity components v and w and the velocity gradient du/3z must

vanish., Thus we may write

V(;,O,-t—) = 0, ;1.(;.0',3 =0, "a_'% (;,O,B = 0; -ih £ x § th (3.5.4)
ox

At the plastic/solid interface z = ;p continuity of velocity leads

e

"

S

o
|

o

(3.5.5)

N
”n
%
”n

N

VEI,0 =k }-

<
~
il
N
I
~
]

;;(x,-z_p’t) = —Wo(t) o)
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The position of the plastic/solid boundary is defined by the

Bingham yield criterion,

fo!. o!. -Eg onz =z (3.5.6)

Using equations (3.3.5), (3.3.14) and (3.3.15) this condition can be

written
_ e )?_ - -
Y 1 ° P

Since only thin walled tubes have been considered in this chapter
the amount of material extruded from the inner and outer surfaces of
the tube will be approximately the same. It seems reasonable therefore
to assume that these extruded values will be identical and consequently
in our two-dimensional model it is assumed that X = O is a plane of

symmetry. The velocity component u must therefore satisfy

u(o,z,t) =0, 0 £ z -z-p . (3.5.8)

It should be noted that the velocity component and the pressure
terms are time dependent but the derivatives with respect to t have
been disregarded in the governing equations of motion. The system
is thus assumed to be quasi-steady and no initial conditions for it

are required.

Let us now consider the thermal boundary conditions. From

symmetry there will be no heat flux across the planes zZ=o0
and X = o and hence the conditions
2L 0,0 =0, 2L (0,7,D= 0, (3.5.9)

dz ox

must be satisfied. At the plastic/solid interface it is natural to
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impose continuity of both the temperature and the component of heat

flux normal to the surface, giving the conditions

T(E,Ep,?) = TB(E,'z'p,'E) (3.5.10)
and
0T = — — 8Ts -
k -é-l; (X,Zp,t) = ks -'?t{ (;,ZP,B ’ (3'5.11)
where =2 denotes differentiation. along the normal to the surface

an

z = Ep(;,?). Equation (3.5.11) may be expressed in the alternative

form
3T  9z_ 3T 9T dz_ 9T _
k‘:““P‘_—'_“"k f,- _11 f_ onz =2 . (3.5.12)
9z ax 3x 51 oz 9x 9x P

Over the time scales considered here heat transfer will only be
significant in the solid close to the plastic/solid interface. It

is reasonable to assume, therefore, that the tube has infinite length
and that far away from z = .;p the tempéfature maintains its ambient

value. Expressed mathematically this condition is

TSG,?,?) + T,y 88 Z>w (3.5.13)

At the outer surfaces of the solid region, x = +h/2, we shall
assume that heat is lost by radiation and forced convection. This

condition may be expressed mathematically as
- S = - - 1 - 4 ol % =
k hc (Ts TAM] O'E(TS TAM)’ on x = h/2, (3.5.14)

where hc is the surface heat transfer coefficient, o is the Stefan-

Boltzman constant and e is the surface emissivity. The same condition
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can be applied to the surface x = -h/2 but this need not be considered
in view of the symmetry condition (3.5.9)2. For the plastic region

the outer surfaces are continuously moving witﬁ time, and so it is very
difficult to specify precise conditions on these surfaces. In order

to make the problem tractable we assume tﬁat these outer surfaces

remain fixed and that heat is lost at the surfaces by forced convection

and radiation, as for the solid region, in which case we may write

k hc [T TAM] oe(T TAM) on x = h/2 (3.5.15)

Finally it is necessary to specify the initial temperature profiles
at the start of phase II. The appropriate values are those occurring

at the end of the conditioning phase, so we have in the solid region

Ts(i',?,o) = TC;G) . (3.5.16)

An initial condition for the plastic region is unnecessary since the
region is assumed not to existat t = O.

All the felevant boundary and initial .conditions have
been given above, but it is helpful to express these in dimensionless
form,

On dividing both sides of eqﬁation (3;5.3) by the quantity
%pw;zh and making use of the definitions (3.4.5) and (3.4.25) we have,

after a little rearrangement, the dimensionless equation

3 9 Bo y (ow 3 9z
o 2 L LR
2y 2=z (x,t) 8 2/1j{9x zj|,_, (x,t)
P P
Bo
A {u + —-2-]?\72— dx = cPRe (3-5.17)
2/1 z=z_ (x,t)
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On substituting equation (3.4.27) into the above the pressures

P, and p, must satisfy

4 Bo v oz
IGP Rep | 4 p1+_£(u+__o_][.8£+sz 3_u]_n
2
’ 2=z (x,t) B 2/17 Lax 92/ 3x

BO, o
-— 4!” + .__9.|_E
2/1 5z

With the use of definitions (3.4.5), (3.4.15) and (3.4.25) the

(3.5.18)

boundary conditions on the velocity components (3.5.4), (3.5.5) and

(3.5.8) take the forms

V(X,O,t) = 0, W(X’O’t) 0’ %‘3 (X,O,t) = 0; -i § X8 £’

)

1, . °i§x§£

u(x,zp,t) o,

v(x, zp »t)

‘ w(x,zp,t) = "1‘70(1:) ’

. . - W
where wo(t) is defined by wo(t) o(tYw;

and the Bingham yield criterion (3.5.7) becomes

Bo_ 2 Bzcg
W+ — I-= on z = zp

2/1 4

The corresponding thermal boundary conditions (3.5.9), (3.5.10),

(3.5.19)

(3.5.20)

(3.5.21)

(3.5.22)

(3.5.12), (3.5.13), (3.5.14) and (3.5.15), with the aid of definitions

(3.4.1) and (3.4.33), can be written
96
3% (x,0,t) =0, -g—: (o,z,t) = 0,

8(x,zp,t) = es(x,zp,t) .
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(3.5.24)




es(x,z,t) +0ag z +

26 .
~ 55 = -Bi6 - H{(e(T /T, ~1)+1}*-1} on x = }.

and
36

- ...a_: = -Bio_ - Hy{(o (T /T, ~1)+1}*-1} on x = 4,

where Bi is the Biot number Dd_-] defined by

and the dimensionless parameter HR is given by

oeh TzM

Hy = ———— .

k(Tc/TAM-l)

The dimensionless form of the initial condition (3.3.16) is

es(x,z,o) = ec(z) .

(3.5.25)

(3.5.26)

(3.5.27)

(3.5.28)

(3.5.29)

(3.5.30)

(3.5.31)

Having derived the governing equations and boundary conditions a

number of solutions are obtained in the following two chapters after

introducing various simplifying assumptions.
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CHAPTER 4

VISCOUS FLUID MODELS

4.1 Introduction

In Chapter 3 the softened layer of materiai, the so-called
plastic region, was modelled as a Bingham substance, and it was
remarked that with this assumption the equations become tractable.
They remain difficult to solve, however, and initially it is found
helpful to introduce the further postulate that B, the Bingham number,
is zero. Recalling equafions (3.4.28) to (3.4.31) it is clear that
with the latter assumption the softened material is represented by
a viscous fluid, and it is then appropriate to assume that this
fluid has a large viscosity which will in general be a non-linear
function of the temperature 0 and the strain rates 3v/3z and 3v/9x.
i.e.

u = u(e, av/3z, av/ox) 4.1.1)

Some solutions for the viscous fluid model are given in this
chapter, whereas investigation of the more complicated equations for

the Bingham substance is delayed until Chapter 5.

4.2 Governing Equations and Boundary and Initial Conditioms

The general equations for a thin tube when the plastic region
is modelled by a viscous fluid, found from the equations of motion

(3.4.28), (3.4.29) and (3.4.30) and the energy equations (3,4.37) and
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and (3.4..-0) by putting B = O are

C Re 3p ap .
P o, 11 -9 w 29u %) 3u
2w, L e 2
dz{ 9z) B? ax| 9x :
C Re 3p p _ ‘ ‘
o, 1P1_,8fow) 1 3f fow go0u
7 T8z ' 27 232[’3z] * 82 3x "(ax * s'az] ’ (4.2.3)

c
96 L1 v 36
FelE vy cr i, oczen (4.2.6

and

c
) aes 1 3 aes P aes+vs aes, z 2z, (4.2.5)
|k ——] + e |k =~ T W ¢ J—— P
3z\ s 3z 82 x| 8 9x o v_ o

This system of equations remains complicated, however, and further
simplification are necessary if analytimlsolutions are to be obtained.

When friction welding thin walled tubes the rubbing velocity v
varies only slightly in the radial direction across the interface and
metallurgical examination of a diametric cross—section, of a welded

specimen reveals that the isotherms are then almost perpendicular to the
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z-axis. The above observation suggests that the temperature profiles
6 and es and hence zp, since we later define zp to be an isotherm,
may, to a first approximation, be assumed to be independent of x.

This assumption on zp implies, with reference to conditions

(3.5.19)2 and (3.5.20)3, that the velocity component w is independent
of x on both z = 0 and z = zp. It thus seems reasonable to assume
that w is independent of x throughout the range -} g x § }. Hence for

the whole of this chapter we postulate

zp = zp(t), v = v(z,t), w = w(z,t), & = 8(z,t), es = Ss(z,t) (4.2.6)

and it is this key assumption which allows us to proceed.further and
obtain analytic solutions appropriate to the friction welding of
thin tubes. On splitting equations (4.2.1) to (4.2.3) into two
subsystems, one O(Re Cp) and the other O(l), and making use of the

postulate (4.2.6), one obtains

Bpo
0(Cp Re) 35— =0, 4.2.7)
Bpo
—2 = 4.2.8
= o, (. )
ap
1 °P1 23 du 3 du
0l) 7 =% = az[“ az} *2 ax(“ Bx] ’ (4.2.9)
3 oV .
10P1 5 f a) 5[ ou
2 z 2 Bz(u 8&} * Bx(u Bz] ' (4.2.11)
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It is easily seen through (4.1.1) and (4.2.6)2 4 that u may

now be taken to be independent of x and expressed in the form

H = /U(Q, av/az) . (4.2.12)

The equation of incompressibility (3.4.30) remains in the form

-g% + g—} = 0, (4.2.13)

but is repeated here for convenience.
On splitting the condition (3.5.18) into two subsystems, one
0(Cp Re) and the other 0(1), and putting B = 0, the conditions on the

pressure component, in view of assumption (4.2.6) reduce to

% .
0(Cp Re) J po(x,zp,t) dx =1, (4.2.14)
and o
o(1) & ¢ t)'-z&éz dx = 0 (4.2.15)
Py x,zp, M . X = .2,
-4 p

The boundary conditions on the velocity components u, v and w are

unaltered by assumption (4.2.6), consequently we can write

%% (x,0,t) = 0, -3 s x § }; v(o,t) = 0, w(o,t) =0, . (4.2.16)
u(x,zp,t) =0, -} s x5 v(zp,t) = i, w(zp,t) = -wo(t), (4.2.17)
u(o,z,t) =0, 05 z & zp(t) . (4.2.18)

For the viscous fluid model the Bingham yield criterion (3.5.22) is

no longer appropriate and zp, the position of the 'yield surface' , must
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be determined by an alternative condition. The obvious choice is to
assume that the temperature on the plastic/solid interface remains
fixed at the conditioning temperature and therefore recalling
definition (3.4.34), we assume that zp is the isotherm 6 = 1,

Using condition (3.5.24) and the postulate (4.2.6), the quantity

zp’is therefore defined by
6(zp,t) = Qs(zp,t) =1 (402019)

In view of assumption (4.2.6)4’5 the heat flow has been restricted
to the one-dimensional flow in the direction of the z—axis and so the
conditions governing the loss of heat by convection and radiation over the
"curved' surfaces of the tubes, (3.5.27) and (3.5.28) can no longer be
employed. However, for this case of uni-directional heat flow the heat
loss through the outer surface may be modelled by a volumetric heat loss
which can be incorporated into the problem by introducing a heat sink
H into the energy equations (4.2.4) and (4.2.5). The latter can then be

shown, with the aid of (4.2.6)4 5 to take the forms
1
2128} 4 3 [2) 2m oy =
dz| 9z P L

C.pew-a—-!-——- sy O0gzgz, (4.2,20)

and

96
3 s _ s
gzlks-sg} M (B) = -Pew e — ==, 22 z,  (4.2.21)

where H  is given by (see chapter 3)

L

Hy(w) = Byu + H{(u(T /T, - 1) +1}*- 1} (4.2.22)
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Conditions (3.5.23), ( 3.5.24) and (3.5.26) remain unchanged,

but are now rewritten for convenience:~

%% (0,t) = O (4.2.23)
0z ,t) = 0 (z ,t) = 1, (4.2.24)
es(z,t) >0as z >+ (4.2.25)

condition (3.5.23)2 being satisfied identically for all x for this

one dimensional model. However, under the postulate (4.2.6)1 4 condition
H]

(3.5.25) reduces to

296 aes
k'é'z" (,Zp,t) = ks -—a—z- (zp,t) ’ (4.2.26)

and rewriting the initial condition (3.5.31 ) we have

es(zgq) = ec(z) . (4.2.27).
In the following sections the partial differential equations (4.2.7) to
(4.2.13), (4.2,20) and (4.2.21) are solved subject to the boundary
conditions (4,2.14) to (4,2,18) and (4.2.23) to (4.2.25) and the

initial condition (4.2.27), under a number of simplifying assumptions.

4.3 Velocity and Pressure Profiles -~ No Burnoff

A key assumption made by Atthey [22] whose model is discussed
in some detail in the folldwing section, was that no axial shortening

(or burnoff) takes place. In all friction welds some material is
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extruded from the plastic region and in practice, therefore, axial
sho;tening of the specimens must occur, However, the assumption of

no burnoff considerably simplifies the equations and in order to obtain
a simple analytialsolution which has some of the qualitative features

of a more general solution Atthey's approach seems reasonable. For

the present, therefore, we follow Atthey and assume
w =0, ' (4.3.1)

in which case the Peclet number, Pe is also zero.
Remembering,in view of (4.1.1), (4.2.6)2 and (4.2.6)4, that u
may be assumed to be independent of x the equations of motion for the

plastic region (4.2.,7) to (4.2.11) reduce, with the aid of (4.3.1) to

apo
0(CpRe) 5% = 0, (4.3.2)
ap
o
35z 0, _ 4.3.3)
3p, , 3 2 *u
0(1) —-5= = 28 az[n%-;} + iwa—x-; , (4.3.4)
31 dvl _ ‘
3_2.[%.;) -0, (4.3.5)
and
3p, 32u
5z " *Mwez (4.3.6)
whilst the condition of incompressibility (4.2.13) becomes
3 .. (4.3.7)

3%

The boundary conditions (4.2.14) to (4.2.18) are unchanged

under assumption (4.3.1) but clearly conditions (4.2.16)3 and (4.2.17%

- 62 -




are no longer necessary.

The partial differential equations (4.3.2) to (4.3.7) are
integrated below to give the pressure and velocity profiles in the
plastic region.

It is obvious from equations (4.3.2) and (4.3.3) that the

dimensionless pressure P, is a function of t only, that is
P, = p (t) (4.3.8)

and substitution of the above into the boundary condition (4.2.14)

then yields the solution

p = 1. v (4.3.9)

The hydrostatic Ppressure, therefore, is approximately constant
throughout the plastic region.
‘Integrating the equation of incompressibility (4.3.7) with

respect to X we deduce that the velocity component u takes the form
u = u(z,t), (4.3.10)
and making use of the boundary condition (4.2.18) it follows that

u = 0. (4.3.11)

On substituting this zero value for u into the equations (4.3.4) and
(4.3.6) it is clear that the quantity Py is also a function of time

only, and to satisfy the condition (4.2.15) it is necessary that

Py = 0. . (4.3.12)
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Now turning our attention to the velocity component v(z,t)
we obtain, after integrating equation (4.3.5) with respect to z,

az

Where t(t) is the dimensionless shear stress. A further integration
of this equation with respect to z and the use of the boundary condition

(4.2.16)2 yields

|
v = f 2 (4.3.14)
o H

In order that condition (4.2.17)2 is satisfied it then
follows that the shear stress 1 and the thickness of the plastic region

zp are related through

Z
P

1=r J dz (4.3.15)
o H

The integralé in equations (4.3.14) and (4.3.15) cannot
be evaluated until the viscosity u is known in terms of z and t. 1In
general u will be specified as a function of 6 and 3v/3z which in turn
depend on z and t. It will in these situations, therefore, be necessary
to solve equations (4.3.14) and (4.3.15) simultaneously with the
energy equations (4.2.20) and (4.2.21).

In the following two sections the velocity profiles derived
above are used to obtain some simple solutions appropriate to phase II

of the weld cycle,
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4.4 Summary of Atthey's Solution - No Burnoff

The only published work adopting the viscous fluid model
is due to Atthey [?2] . His equations can be derived from those stated
in section 4,2 under a number of simplifying assumptions, and since
the solution is important for later developments in this thesis a
summary of his paper is now given,

In Atthey's model the heat loss terms HL in equations
(4.2.20) and (4.2.21) are neglected. This is a reasonable assumption
since it can be shown, with the aid of data given in Krieth and Black [?QI
that the Biot number Bi and the radiation coefficient HR are 0(0.01).

In general the specific heat capacities c, and‘cVS and the
thermal conductivities k and ks are found to be non-linear functions of
the temperature 6. Temperatures in the plastic region range from
700°C to 1200°C when welding mild steel and over such a large range it
seems that the temperature dependence of the above mentioned quantities
could be important. However, in order to simplify the equations Atthey

assumed that C,s Cy s k and kS are all constant and recalling definition
s

(3.4.34) , one can without loss of gemerality, take
cv-cv =k=ks=l.

Atthey also assumed, as has been discussed in section 4.3 that
no axial shortening takes place. The cooling effect due to forced
convection is therefore absent and consequently the temperatures
derived from his simplified model will be over estimates.

Finally Atthey neglected the conditioning phase assuming
that all points in the tube, z » O, are initally at ambient temperature,

apart from the interface, z = 0, which was assumed to be initially at

conditioning temperature.

- 65 -




4.4,1, The equations of energy balance and boundary conditions.

Introducing the above assumptions into the equations of energy

balance (4.2.20) and (4.2.21) the latter reduce to

o av |2 .
66+Bru—- =§.]_'..g_% , 0 gzgz (4.4.1)
az2 9z o P
and
2 a8
9 fsg 1 s
=== z 32z . (4.4.2)
3z2 Fo £ P

Equation (4.4.2) is the usual one-dimensional unsteady heat conduction
equation, whereas (4.4.1) contains an extra internal heat generation
term arising from viscous shearing within the plastic region.

The assumptions introduced at the beginning of section 4.4 slightly
modify the thermal initial condition and sore of the thermal boundary
conditions stated in section 4.2, Since the thermal conductivities

k and ks are both taken to be unity, equation (4.2.26) is replaced by

26 aes
-é~z- (Zp, t) = —5'; (Zp, t), (4.4.3)

Whereas neglecting the conditioning phase implies that the initial

condition (4.2.27) reduces to

6,(2,0) = 0. (4.4.4)

The remaining conditions (4.2.23), (4.2.24) and (4.2.25) are unchanged.

- 66 —




4.4,2 Similarity Transformation

As we remarked earlier in this chapter the viscosity is in
general a non-linear function of temperature & and strain rate 9v/dz,
and over the ranges of temperature and strain rate that are present
during a normal friction welding cycle, one would expect the variation
in viscosity to be important as is seen = in Section 4.12,
However, in order to obtain a simple analytica/solution Atthey made the
further assumption that the viscosity u is constant and recalling

definition (3.4.8), we can therefore take, without loss of generality.

=1, (4.4.5)

On substituting (4.4.5) into equations (4.3.14) and (4.3.15),

the integrations are readily performed leading to

<
U

t(t) z, (4.4.6)

and T llzp, (4.4.7)

and with the aid of these equations the energy equation for the plastic

region (4.4,1) can be expressed

x

3¢

39 4 B =§l§% Oczsz. (4.4.8)
3z2 z 2 o P

The forms of the energy equations (4.4.2) and (4.4.8) suggest

the existence of a similarity solution where the similarity variable

n .is defined by
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n =;5 , (4.4.9)
p

provided that zp grows with time according to
z =2 &.Vﬁ'ﬁo t, (4.4,10)

o being a constant of proportionality.
Substituting equations (4.4.9) and (4.4.10) into equation

(4.4.8) leads to the ordinary differential equation

2

d"e d6

—— 4+ 202 — +Br =0, Ogngl (4.4.11)
dn dn

and applying a similar procedure to equation (4.4.2) for the solid

region yields

5 2&%; =0, Nzl (4.4.12)

W

In terms of n the boundary and initial conditions (4.2.23), (4.2.24),

(4.2.25), (4.4.3) and (4.4.4) can be written

':'11'?? (0) =0, (4.4.13)
8(l) = o (1) =1, (b.4.14)
de
de _ s
w W === W, (4.4.15)
8, (n) >0 asn >, _ | (4.4.16)
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It should be noted that the two conditions (4.2.26) and (4.4.4)
are replaced by the single condition (4.4,16) as is customary in this type

of solution.

4.,4.3 Temperature profiles,

2n2

On multiplying equation (4.4.11) by e® it may be readily

integrated twice with respect to n yielding upon application of

the boundary condition (4.4.13) and (4.4.14&, the solution

o
- =1+ Ei- j D(u) du, Ogn 1. (4.4.17)
" an '

In the above D(u) is Dawsons integral,[3l], which is defined by
-2 (Y 2
D(u) =e * J e’ dv (4.4.18)
0

It should be noted that equation (22) in Attheys paper [?2]

is incorrect due to a sign mistake in the second exponential term and the

corrected expression is given by (4.4,17).

Integrating equation (4.4.12) in a similar manner to (4.4.21) and
applying the boundary conditions (4.4.14)2 and (4.4.16) gives the

solution

0, = erfc(an) /erfe(a), nz1 (4.4.19)

in which erfe(x) is the complementary error function[?7] defined by

2
erfo(u) = —2— re tt. (4.4.20)
“r tA

Finally substituting equations (4.4.17) and (4.4.19) into condition

(4.4.15) leads to the following algebraic equation in a.
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-0 2

zﬁiéﬁm_ ~ erfe(a) D(a) =0 (4.4.21)
Br/ w
There is no analytialsolution to the above equation and a
numerical solution must be sought. The Newton—Raphson iterative
procedure is found to be a suitable method for solving (4.4.21) since
the derivative with respect to o can easily be obtained. As with
all iterative procedures it is necessary to find an approximate

starting value. On expanding (4.4.21) for small Br we obtain the

approximation

o ﬁﬂ-Br(l - Br + O(Brz)) , (4.4.22)

2

which may be used to obtain starting values for o« when Br is small.
It is also felt useful to give the expansion of (4.4.21) for large
values of Br, not only to obtain starting values for o when Br is large,
but as a check on the accuracy of the approximate solution which is
developed in a later section.

Referring to the definition of Dawsons integral (4.4.18) it is

seen that D(a) may be expressed in the form

e ™o a 2
D(a) = J eV dv (4.4.23)

! —1
D(q) = ea J 2vef’, -‘-i% , (4.4.24)

and integrating by parts results in the expression
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1 QT v
20 4 V2

This procedure may be repeated indefinitely, however, for our

purposes the first two terms are sufficient and we have

~0 [¢ A"
D () =%-(;+ 1, 3e JQ dv. (4.4, 26)

The expansion for enfc(a) for large o is found in Carslaw and

in Jaeger[?i] and given by

2

- ,
erfe(a) = — 2o s 3 4ol (4.4.27)
o 203 4a° o,

Now on substituting equation (4.4,26) and (4.4.27) into (4.4.21)
and truncating the expression after the first two terms, the

approximate solution for a is found to be

—

AT -1
a= |-~ Br* + ofBr " (4.4.28)

8

Using expansions (4.4.22) and (4.4.28) to obtain starting values,
the values of o are computed for various values of Br and the results

are presented in table 4.1.
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Br o

0.1 0.081
0.2 0.149
0.3 0.207
0.4 0.259
0.5 0.305
0.6 0.346
0.7 0.383
0.8 0.418
0.9 0.449
1.0 0.478
2.0 0.690
4,0 0.927
6.0 1.073
8.0 1.179
10.0 1.263

Table 4.1.

Having obtained values of a, the temperature profiles 6 and es,
the position of the plastic/solid interface zp(t) and the
dimensionless shear stress t(t) are obtained for various values of the
Brinkman number, Br , using equations (4.4.17), (4;4.19), (4.4,10) and
(4.4.7) respectively. Thege results are presented and discussed in

section 4.6,
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4,5 Variable Viscosity - No Burnoff

Although in the last section it was assumed that the viscosity
remained constant it has already been stated that for the one-
dimensional models under consideration the viscosity u will, in general,
be a non-linear function of the temperature T and the strain rate 3v/3z.
A form for the dependence of p on T and 3v/3z is now postulated.

Referring to equation (3.3.2) the relationship appropriate

to our one-dimensional model is

v . m _
== A(31nhaoyz) exp (-Q/RT), (4.5.1)

which may be rearranged to yield

11

m m
sinh(ao_yz) = (%—] [—g‘zi} exp[;%—] . (4.5.2)

The form of equation (4.5.2) is much too complicated to use in
obtaining simple analytic solution., We therefore postulate here that
the left hand side of this equation be replaced by a linear term, that

is
expcilq R (4.5.3)

where H is a constant, Equation (4.5.3) is a good approximation to
(4.5.2) for small values ofboyz but it becomes less reliable as,oyz
increases., However even for large Uyz it retains the qualitative effects
of vary_ing T and ¥/3z.

We shall now compare equation (4.5.3) with the appropriate

relationship between Oz and 3v/d3z for the viscous fluid model.
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Putting B = 0 in equation (3.4.14) we obtain

o =1 uX (4.5.4)

T =2 (4.5.5)

H=r1 (4.5.6)

and assume that u takes the form

1.1
m o
) = [%%] exp Q , 4.5.7)
S mR(6(T T, M+T,.}

where T has been replaced by ¢ using (3.4.34), then equation (4.5.3)
may be replaced by (4,5.4).

Although we now have an expression for the viscosity, which results
in a relationship between the stress and strain rate tensors bearing
the qualitative features of expression (3.3.2), it still remains difficult
to handle. Therefore in this section a simple extension to Atthey's
solution is sought to demonstrate the effect of the viscosity decaying
with increasing temperature, To this end it is proposed to take u to

be independent of 3v/3z but to be inversely proportion to 6, and recalling

definition (3.4.8) we can write

- 74 -




u=-1/e (4.5.8)

Although (4.5.7) predicts a much faster decay of u with
increasing 6 than (4.5.8), the latter allows us to obtain a simple
similarity solution which illustrates qualitatively the effect of
viscosity decreasing as the temperature increases. A solution
incorporating the full effect of equation (4.5.7) is delayed until

Section 4.12.

4.5.1 Governing Equations

Substituting equation (4.5.8) into equation (4.3.14), the velocity

component v becomes
z
v = t(t) J pdz, (4.5.9)
0

and the corresponding relationship between T and zp (4.3.15) is
z (t
P()

1= 1(t) j adz. (4.5.10)
o .

On substituting equations (4.5.8) and (4.5.9) into (4.4.1), the energy

equation for the plastic region may be written

2% 126
—— + Br 129 = == %2, Ogzgz. (4.5.11)
922 Fo ot P

The energy equation for the solid region remains as equation

(4.4.2) and the latter and equation (4.5.11) must now be solved subject
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to the boundary conditions (4.2.23) (4.2.24), (4.2.25) and (4.4.3),

and the initial conditions (4.4.4).

4,5.2 Similarity Transformation.

Again the forms of equations (4.4.2), (4.5.10) and (4.5.11) suggest
the existence of a similarity solution, where the similarity variable
is defined by equation (4,.4.9). It is-also necessary that zp and T

depend on t through

z =2u YF_ t, (4.5.12)
P v o
and
T = BV/Z YFo t , (4.5.13)

where @ and Bv are constants of proportionality. Substituting
equations (4.4.9), (4.5.12) and (4.5.13) into equations (4.5.11) yields

the ordinary differential equation

do 2,48 2 2
—d_n7-+ ZaV'Y(-a-ﬁ- + Br BV dv 6 = O, (0] <£n < 1(4.5-14)

and the corresponding equation for the solid region is given by

(4.4.12) with o replaced by a .

On substituting equations (4.4.9), (4.5.12) and (4.5.13) into

equation (4.5.10) we obtain

1
1= Bv o Joe(n) dn , (4.5.15)

a relationship between a, and Bv.
The two ordinary differential equations (4.4.12) and (4.5.14) must

now be solved subject to conditions (4.4.13) to (4.4.16).
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4,5.3 Temperature Profiles,

Clearly the temperature profile for the solid region es will take

the same form as (4.4.19) and, rewritten for convenience, it is

o, = er.fc(avn)/er,fc(av), n

A\"2

1. (4.5.16)

There does not seem to be an analyticdclosed form solution to equation

(4.5.14), however, so a series solution is sought in the form

6= Co) A n, 0O¢ngl (4.5.17)

A = 1. (4.5.18)

On substituting equation (4.5.17) for 6 into equation (4.5.14)

there results

Conéolkn (n(n—l)nn.-2 + 2a$nnn + BrB%a%ﬁn) = 0, (4.5.19)

and by equating to zero the coefficients of n® (n = 0, 1, 2, ...) we
deduce that the An's are related by the difference equation
2y A
(2n + Ber)A“

= -2 , n
(n+1) (n+2)

(4.5.20)

WV
Qo

An+2

Applying the boundary condition (4.4.13) to equation (4.5.17) gives

the additional result

A, = 0. (4.5.21)
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It is evident from equations (4.5.20) and (4.5.21) that

A2n+1 =0, nz: 0, (4.5.22)
and
(4n + Brpg?)
-q2 A4 A

. n3O. (4.5.23)
V 2(2n+1) (n+1) 2P

A2n+2 =

In view of equations (4.5.22) and (4.5.23) it is clear that

equation (4.5.17) may now be expressed as

6 = Co Z A, n2®, 0snsl, (4.5.24)

n=0 2n
where the A2n's are determined completely in terns of Bv’ for all n 3 O,
by equations (4.5.18) and (4.5.23). Substituting the series (4.5.24) into

conditions (4.4.14), and (4.5.15) yields the pair of equations

Co) A, =1, (4.5.25)
n=0 2n
and
f\z ‘ o
CoB ., 2 2n:-11 . (4.5.26)

The constant Co is readily eliminated from the above two equations to give

the following equation in @ and Bv

nzo A, (1 - a8 /(20+])) = o. (4.5.27)

Finally substituting equations (4.5.16) and (4.5.24) into condition

(4.4.15) leads to

-0
- v
Co 2 n A vt . (4.5.28)
n /w effc(a )
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Using equation (4.5.25) to eliminate Co from the above, gives, after a

little rearrangement,

-2
4y
of i A (4.5.29)
. n+ = 0’ .5,
n=0+\2n 'z erfc(av)

a second equation in o, and Bv. Equations (4.5.27) and (4.5.29) must now

be solved simultaneously.
There appears to be no analytic solution, however, and a numerical

procedure must be adopted.

Equations (4.5.27) and (4.5.29) are readily solved usingi%o :
of least squares[?i] . This method is, again, an iterative procedure and
approximate starting values are required. On. -expanding (4.5.27) and (4.5.29)

for small values of Br, the approximate forms

av = /_121'_ Br (1 - (/'n' + %—) Br + O(Brz)} R . (4.5.30)
and
B, = y + 2 + 0(Br) (4.5.31)
wBr

are obtained., Using these approximations, as starting values, the values
of a, and Bv were computed, using Powell's method, for small values of
Br. TFor larger values of Br the values a, and Bv were computed, using

n n
as starting values the values of e, ~and B from the previous

n-1 Vn-1
computation, The summations were truncated after the first 15 terms and
accuracy to 4 decimal.places was obtained for all values of Br that were

used. The results obtained are presented in table 4.2.
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Br o Bv
0.1 0.078 12,352
0.2 0.141 6.660
0.3 0.193 4,739
0.4 0.238 3.760
0.5 0.276 3.164
0.6 0.310 1 2.759
0.7 0.340 2.465
0.8 0.367 2,240
0.9 0.392 2.062
1.0 0.415 1.918
2.0 0.572 1.220
4.0 0.734 0.804
6.0 0.828 0.638
8.0 0.893 0.544

16.0 ' 0.942 0.481

Table 4.2

Having obtained values of a, and Bv it is easy to compute Co using
equation (4.5.25) and again, for all the values of Br used it proves
sufficient to truncate the series after the first 15 terms..

The temperature profilés 8 and es, the thickness of the plastic
region zp and the dimensionless shear stress t are then obtained using
equations (4.5.24), (4.5.16), (4.5.12) and (4.5.13) respectively. These
results are presented, and compared with those from the previous section,

in section 4,6.
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4.6 Results and Discussion of Sections 4.4 and 4.5

In this section various results are presented and the essential
features and limitations of both models of sections 4.4 and 4.5 are
discussed and compared,

Values of the constant g for various values of the Brinkman
number Br, the only control parameter in these models which have been
presented in table 4.1 are substituted into equation (4.4.10) and the plots
of zp against time are subsequently computed. Values of the dimensionless
shear stress T are then found using (4.4.7). Likewise using the values of
a, and By given in table 4,2 the plots of zp and t against time for the
variable viscosity model are obtained using equations (4.5.12) and (4.5.13)
respectively, These results are shown in Figures 4.1 and 4.2. The
curves in Figure 4.1 illustrate the growth of the thickness of the plastic
region with time for both models, the solid line represents the constant
viscosity model whereas the dotted line represents the variable viscosity
case. It is readily seen from these curves that increasing the wvalue of
Br, that is increasing the rate of heat generation, gives an increase in
the rate of growth of the plastic region. It is also borne out that
allowing the viscosity fo fall with increasing temperature gives a
reduction in the raﬁe of growtﬂ of zp for a given value of Br. As Br
decreases the difference bgtween the two_models decreases and in the
limit as Br-» 0 ﬁhe values of.zp from the two models become assymptotically
identical as could have been envisaged by inspection of equations
(4.4.22) and (4.5.30).

The curves in Figure 4.2 illustrate the decay of the shear stress

with time, It is seen that an increase in the Brinkman number results
in a decrease in 1 and that for a given value of Br the shear stress T is

lower for the variable viscosity model than for the constant viscosity one,
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Comparison of these curves with the phase II section of the torque trace
(see Figure 4 3t) reveals that for smaller times there is some qualitative
agreement, However, for larger times Figures 4.1 and 4.2 show that zp
grows indefinitely, T approaches zero and no steady state is reached. This
is a consequence of neglecting the effect of upset. Without upset there
is no cooling of the plastic region by forced convection, hence as time in
increases the heat generated within the plastic region is only lost by
conduction down the tube and the plastic/solid boundary is driven along
indefinitely,

The temperature profiles for Atthej's model are computed for various
values of Br, with the aid of tﬁe values of a in table 4.1, using equations
(4.4.17) and (4.4.19) for the plastic and solid regions respectively. Using
the values of o and Bv in table 4.2 the temperature profiles in the plastic
region, for the variable viscosity model, are computed using equations
(4.5.24) and (4.5.25); again truncating the series after 15 terms is found
to be adequate. For the solid region equation (4.4.19) is used with a
replaced by a. The temperéture profiles for both models plotted against
the.variable n, which is defined by (4.4.,9), for various values of Br
are plotted in Figure 4.3. It is seen that increasing Br increases the
interface temperature and that the variable viscosity model predicts the
lower temperatures. These temperatures are over estimates since the
forced convection cooling terms are absent, It is important to note that
the interface temperatures predicted by both models are independent of time,
This results from neglecting axial shortening; the correction made by
including this is presented in sections 4.8 and 4.9. Although these
temperature profiles are initially inaccurate it is seen in Sections 4.12

and 4.13 that for slightly later times the accuracy is much improved.
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Figure 4.1 Graphs of Zp  against t.
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Figure 4.2 Graphs of 1t against ¢t




-
.00 | 1.00 2.00 3.00 4.00 5.00

Figure 4.3 Graphs of 8 against n
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Figure 4.4 indicates the variation of the interface temperature
with Br for both models. It has already been stated that allowing the
viscosity to fall with increasing temperature results in lower temperatures
for a given Br. However, it is seen from Figure 4.4, that for both modzls
a critical value of Br exists where melting would occur at the interface.
The melting temperature em being obtained from definition (3.4,34)
based on the numerical values for mild steel.

Te = 700°¢, T, = 15°C, T, = 1510°C (4.6.1)

A

With the values of L and ko given in chapter 3 it is seen from definition
(3.4.38) and Figure 4.4 that with our model melting can occur well within

the working range ofc:. However experimental exsmination of the friction

8 (o) 8._

&
P . - - u =

D=

0.00

T it 1+r T -1t T -—1fr 1. -1 1 T T 1T 1
0.00 {.00 2.00 3.00 4.00 §.00 6.00 7.00

B
rc Brc , Br

Figure 4.4 Graphs of interface temperature against Br,

- 85 -




welding of mild steel (3,4) indicate that melting does not occur. These
statements are consistent with the view that the temperatures predicted
from our model are over estimates, the main two reasons being the neglect
of burnoff and the over simplified viscosity medel. There is thus a n<ed

for more elaborate models and these are presented later in this chapter.

4,7 Velocity and Pressure Prafiles - Including Burnoff

When burnoff is included the velocity components and the pressure in
the plastic region are the solutions of equations (4.2.7) to (4.2.11) and
(4.2.13) which satisfy the boundary conditions (4.2.14) to (4.2.18), 1In
this section assumption (4.2.12), that the viscosity is a function of
temperature 6 and the strain rate 3v/dz but is independent of x, is again
introduced.

From equations (4.2.7), (4.2.8) and (4.2.10) it is evident that the
pressure component Po and the velocity ‘component v are independent of the
axial velocity component w. Thus the solutions for these quantities when
burnoff is present are identical to those in the absence of burnoff and,
consequently recalling equations (4.3.9), (4.3.14) and (4.3.15), we deduce

that for the problems considered in this section

PO =1, (4.7.1)
) jz,_dz .

v = 1(t) —_, (4.7.2)

o H
and

“p

1= T(t)J dz (4.7.3)
o H

In view of assumption (4.2.6), the equation of incompressibility

(4.2.13) is readily integrated with respect to x to yield

u = -g,,g;z’ + £(z,t), (4.7.4)
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in which f is an arbitrary function of z and t. The boundary condition

(4.2.18) then implies that the function f must be identically zero, so we

have

i dw
u X0 - (4.7.5)

This equation for u is now substituted into the two equations of
motion (4.2.9) and (4.2.11) and, remembering that p is independent of x,

the equations become

2

) oW
1
-2-—-1-=—82x—§- p— (4.7.6)

39X 9z 9z2

and
2

op 9w
1 1 ) w
- v 2—-—- u—-—- -u——' » (4-7.7)
z 9z 9z { Bz} 3z2

These equations can easily be solved. Integration of equation (4.7.6)

with respect to x leads to the expression

2

o 3w
P =~ p2x2 rrel s g(z,t), (4.7.8)
9z2

where g is an arbitrary function of z and t. On differentiating both
sides of equation (4.7.8) with respect to z and using equation (4.7.7)

to eliminate Jp,/ 3z we obtain the identity
1

w dw 2 dw 3
4'3- - Zu—TE - 89523 u 2] + =8 . (4.7.9)
8z | 03z 3z 22 | 3z J 3z
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Since the above holds for all x in (}, -}) the functions 1y, w and g,

which are all independent of x, must necessarily satisfy

32 #'
— Y] = O (4.7.10)
3z2 322
and » 32 i
W
4 [ - = B8 (4.7.11)
9z | 9z 322 0z
Repeated integration of equation (4.7.10) with respect to z then
gives
z 1 (c (B + C (1)
w = f ( y dk di + Cz(t)z + CS(t)’ (4.7.12)
oo
where CO’ Cps C2 and Cj are arbitrary functions of t only,

The velocity component u may now be obtained by substituting the

above into equation (4.7.5) giving

z(Ck+C) )
u=-x j ——jL——-—l;-dk + C (4.7.13)

U 2
o

The functions Cl’ C2 and C3 are easily determined by using expressions
(4.7.12) and (4.7.13) in the boundary conditions (4.2.16)1 3 and
b4

(4.2.17)1, and the resulting expressions for w and u are

zrl K
w=C. f I — dk d1, (4.7.14)
- 9 Jolz H
P
and
2k
u=-xC J - dk. (4.7.15)
: ozu
2
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The unknown function go(t) is found, using (4.2.17)3 and (4.7.14), to be

) z 1l Kk
c =-w (t) / f i[ - dk dl (4.7.16)
o o u ‘

o zp

From experimental evidence (see Figure 4“§@ it is observed that the
upset rate is victually constant over the entire welding cycle prowvided
that the applied force is kept constant. As a result we shall assume
that A is constant and, recalling definition (3.5.21), we take, without

loss of generality,

o =1, (4.7.17)

Then from equations (4.7.16) and (4.7.17) we deduce that the final form

for C 1is
o

: 1 K
C =-1/ FPI 2 ak d1. (4.7.18)
o H
z
° %
Having determined the velocity components u, v and w we turn our

attention to the pressure Py. Qn integrating equation (4.7.11) with
respect to z we have

PN
9w

= % )

where e is an arbitrary function of time introduced through the integration.

Substituting equation (4.7.14) for w into the above then yields
ok )
g = Co 4y, ; dk - 2z +e(t). (4.7.20)

Finally using equations (4.7.14) and (4.7.20) in equation (4.7.8) leads to
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¥4
p.=hcu | Xdk-c @2x2 + 2z2) + e. (4.7.21)
1 20 z].l o)
p

The unknown function e is determined by substituting equations
(4.7.14) and (4.7.21) into condition (4.2.15) and the resulting

expression for P, may be written

/

Z
= k 2_,2 21l _ 2
Py = 46 u j n dk + C_ \(zp z4) + 8 {12 X , (4.7.22)

z
p

where we recall that c, is given by (4.7.18).

Thus including burnoff but retaining the other assumptiohs of Atthey,
we have deduced that within the plastic region the pressure component P
and p; are given by (4.7.1) and (4.7.22) respectively, and the velocity
components u, v-and w by (4.7.15), (4.7.2) and (4.7.14) respectively.
However, the integrals which appear in most of these expressions cannot be
evaluated until yp is known as a function of z and t. Since p will in general
Vbe specified as a function of 6 and dv/ok it will be necessary, as for the
case of no burnoff, to solve the above equations simultaneously with the

energy equations (4.2.20) and (4.2.21).

4.8 Inclusion of Burnoff - Heat Balance  Integral Solution -

In this section Atthey's simple model, described in section 4.4
is extended to incorporéte theveffect of burnoff. The structure of the
governing equations for this more complicated model does not allow a
similarity or other analytimlsolution to be found, thus an approximate
or numerical solution must be sought. An approximate solution is obtained

in this section using the well known heat balance integral method (33 },
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which in fact forms the basis of much of the work in this chapter and is
discussed in detail here.

All the assumptions introduced by Atthey and discussed in Section
4.4 are retained in this section, except that the velocity component w
and hence the Peclet number Re are no longer taken to be zero. The
present section therefore generalises section 4.4 in the same way that
section (4.7) extended section 4.3, With the inclusion of burnoff the energy
equations (4.4.1) and(4.4.2) are amended to incorporate the forced
convection terms and these are presented in Section 4.8.2, However, the
thermal boundary and initial conditions remain unchanged and are given'

by (4.2,23), (4.2.24), (4.2.25), (4.4.3) and (4.4.4).

4.8.1 Discussion of the Method.

The major complication present in the above mentioned system of
partial differential equations and boundary conditions is due to the
non-linearity in conditions (4.2.24) and (4.4,3). The nonlinearity of
these conditions arises because the latter are to be applied on a moving
boundary whose position is a priori unknown. Goodman [3i]encountered
similar difficulties when seeking solutions to heat condaction problems
involving a change of phase. (Sometimes called Stefan problems).

Heat transfer problems involving a phase change, and hence a
moving boundary, érebnon—linear and, except in special cases, must be
solved either by integrating the energy equation numerically or by using
approximate techniques. Seeking analytical solutions to. these mathematically
complicated problems Goodman resorted to approximate integral techniques
similar to the Polhausen type solutions used in boundary layer theory.

In his paper Goodman EBi] intréduced the heat balance integral method

by considering a simple heat conduction problem with linear boundary
conditions to which an exact solution has been given [271- The problem
considered was one of heat transfer in a semi-infinite slab, z>0, initially

at uniform temperature *60, with a prescribed heat flux H(t) on the face
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z = 0, This problem may be stated mathematically as
ol L 39
—,—=F—3—E’ z>0,t>0 (4.8.1)
3zl o
with boundary conditions
6=-60att=0,z>0 ‘ (4.8.2)
and
36 _
— = =H(t) onz =0, t > 0, (4.8.3)

z

This problem has been solved exactly in Carslaw  and Jaeger [?i].

In order to proceed with his approximate technique Goodman
introduced the thickness of the thermal layer 6(t), analagous to the
boundary layer thickness in boundary layer theory. The position of &§(t),
for the problem considered, is defined by assuming that, for all practical
purposes, the material in the domain z > 6(t) is at equilibrium temperature
=0, and hence there is no heat fluxyacross z = §. These conditions can

be expressed in the form

8(5,t) = 4eo : (4.8.4)
and
22 (8,8) = 0 | (4.8.5)

The so-called heat balance integral is obtained by integrating both sides

of equations (4.8.1) with respect to z between the limits z = O and

z = §(t), yielding

s
1 4 - |28 - 28
o dt Jo e 906] ) [az 6,8) =37 (0}, £ > 0.

(4.8.6)
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Equation (4.8.1) is therefore satisfied only 'on average' and
this averaged equation, the heat balance integral, is analagous to the
momentum integral equation in boundary layer theory. We now proceed in
a manner similar to Polhausen [?4] in boundary layer theory, and assume
a polynomial approximation to the temperature profile 6. For the problem

considered by Goodman a profile in % of the form
8 = a(t) + b(t) z+ c(t)z2, (4.8.7)

was assumed when the coefficient a, b and ¢ are functions of t only.
The values of a, b and'c are found by substituting equation (4.8.7)

into conditions (4.8.3), (4.8.4) and (4.8.5) and the resulting expression

Substituting equations (4.8.3), (4.8.5) and (4.8.8) into (4.8.6) finally

yields the ordinary differential equation

A=

E% [5 ZHJ = FoH, ' (4.8.9)

whose solution satisfying § (o) = 0 is

: ;
JOH(tl)dtl ‘ _ (4.8.10)

§ = Vé6Fo

1
H
In theparticular case when H is constant § is given by

Y6Fot . ' (4.8.11)

$

and the surface temperature obtained by putting z = O in (4.8.8) and making

use of (4.8.11) is
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6= -0 +‘/=23 H/Fot , (4.8.12)

The exact solution to the problem, given in Carslaw

and Jaeger [27] is
6 = -0 + /-14? H /Fot . (4.8.13)

Comparing equations (4.8.12) and (4.8.13) reveals that the
approximate solution differs from the exact solutions only by a numerical
factor and the error is about 97. This error can in fact, be reduced to
about 27 using a cubic representation for e‘f[gi]"

The above gives a brief outline of the simple, yet effective,
heat balance integral method which is used extensively in the present

and the following chapters,

4.8.2 The Energy Equations and Boundary Conditions.

With all the assumptions made by Atthey in section 4.4, except
that W and hence Pe are now taken to be non-zero, the energy equations
(4.4.1) and (4.4.2) are amended to incorporate the forced convection terms,
and it is easily deduced from equations (4.2.20) and (4.2.21) that the

appropriate forms are

52 ]
9 90 1 36 . .
. dvi? _ 36 , 1 26 _ 4.8.14
= Brp[a J Pewso+g-sg s 0.52¢ z, ( )
and _
2
a6 BABS ‘ 1..3.98
9 z4 = ~Pe Woé—z—“ + 'FB—'—B—E s 2 2 Zp. (4.8.15)

The thermal boundary and initial conditions are, as we have already stated,
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identical to those used in section (4.4) and are given by (4.2.23), (4.2.24),

(4.2.25), (4.4.3) and (4.4.4).

4.8.3 The Assumption of Congtant Viscosity and its Implications

In this:subsection we again make the simplest assumptions about the
viscosity u, that it is constant, and as previously we can then without loss
of gemerality choose it to be unity (See (4.4.5)). It follows that the
velocity component v is given by (4.4.6) and that relationship (4.4.7) holds.

Substituting (4.4.5) into equations (4.7.14), (4.7.15) and (4.7.22)
we deduce that the velocity components w and u and the pressure component

p, are given by

COZ ) '
= c—— - 2
w z (z 3zp? s (4.8.16)
C x
u=- (22 -2z2) , (4.8.17)
2 P
and
: .1 .
- 2 _ 2 o2l _ 2
Py Co [(z. Zp) +8 [12 X J}. (4.8.18)

Using assumption (4.4.5) in equation (4.7.18) the reduced form for c,

is found to be

cC = 3/z3 . (4.8.19)
0 P .

It follows immediately from equations (4.8.16) to (4.8.19) that the final

forms of the velbcity component w and u and the pressure component Py are

given by
1l {z z ]2 ‘
v =5 [—z—] (‘E—] -3 , (4.8.20)
P P
_ 3x z |2
u = 5= 1 - [—z—] s (4.8.21)
P P
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and P, = —3[(z2 -2+ 62[%2- - xz}] , (4.8.22)

On substituting equations (4.4.6) and (4.8.20) for the velocity
component v and w respectively, into equation (4.8.14) and expressing the
shear stress T in terms of z, using (4.4.7) the energy equations for the

plastic region becomes

2 .
_._+.I.5£=_Pf.(.§...} [L} -3 8_0;_,__1._2_9_9_ O»S"ZS..ZP (4.8.23)

With the aid of assumption (4.7.17), the energy equation for the solid

region, equation (4.8.15) can be written

2

] es aes 1 aes
= —Pe ——— + m— — z 32 z . (4.8.24)
3 22 dz Fodt °’ P

I

The partici . differential equations (4.8.23) and (4.8.24) must now be solved
subject to the conditions (4.2.23), (4.2.24), (4.2.25), (4.4.3) and (4.4.4).
Ther eis no obvious analytialsolution to this system but an approximate
solution can be attained:.using the heat balance integral method and this

solution is presented in the following subsection.

4.8.4 Heat Balance Integral Solution.

In order to obtain a heat balance integral solution it is convenient
to introduce into equations (4.8.23) and (4.8.24) the new variable n which
has been defined by equation (4.4.9) but the latter is restated here for

convenience

Z . (4.8.25)
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Then the transformed forms of the energy equations are

‘82‘6 Pez ) 30 _zi).‘ae ,_z_P-dz 38
—a_r:z-’- Br = ——22 n(n - 3) -a—n— + Fo ﬁ- - Fo ——Edt na-—-ﬁ s (4.8. 26)
for the plastic region, o £ n g 1, and
a')“es 30, 32) 36 fldzp L
32 " he % an *Fodt " Fo dt" 3n ° (4.8.27)

for the solid region, n 2 1.
In terms of n the conditions (4.2.23), (4.2.24), (4.2.25), (4.4.3)

and (4.4.4) transform: to

a6

'3—;1- (O.,t) =0, (4.8.28)
~o(l,t) = es(l,t) =1, (4.8.29)
, - ..36
90 S
a—ﬁ(l,t) —a-ﬁ' (I, t) (4.8.30)

and

es(n,t) +>0asn—+o |, (4.8.31)

The initial condition (4.4.4) is included in the transformed condition
(4.8.31) since it is assumed that initially the plastic region has zero

thickness, that is

zp(o) = O‘ (4.8.32)

We shall now seek an heat balance integral solution to the above
problem, by associating wih the plastic region, the position of the
thermal layer z =68 (t), of Section 4.8, to the position of the plastic/
solid interface z = zp(t) . With this definition and in view of equation
(4.8.25), the heat balance integral for the plastic region is obtained
by integrating both sides of equation (4.8.26) with respect to n between the

limits n = 0 and n = 1, yielding
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58 58 Pe z ¢l ) 36
an (1,t) - Fry (o,t) + Br = -—TTJ%fon(n -3) Ty dn
%2 aft % 9% '
* Fo Ezvjoedn " Fo “dt fon §E'd“' (4.8.33)

In this plastic region a simple quadratic temperature profile of the

form

8 = ao(t) + al(t)n + az(t)n2 , (4.8.34)

is assumed, where a s ap, and a, are functions of time only. 1In order to
satisfy the boundary condi tions (4.8.28) and (4.8.29), it is necessary that

a; = 0 and ay = 1-32. The temperature profile is then given by
8 =1+ (n?- 1a,(t), (4.8.35)
where a, remains undetermined. Substituting equation (4.8.35) for 6 into

the heat balance integral (4.8.33) and performing the necessary

integrations yields, after some algebra, the ordinary differential

- equation connecting a, and zp.
2
. z< da ¥ dz
«-2Pp_2_2p p_4
2a, + Br 3Fo dt 3 Fo 22 dt 5t %,
(4.8.36)

In the solid region we assume the existemce of a thermal layer
z = §(t) > zp(t), such that all the material in the domain z > 6(t) will
be at ambient temperature thus implying that the heat flux across z = &(t)

may be taken to be zero. These conditions may be expressed

es(é,t) =0, (4.8.37)
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36,
=5, (8,t) =0 (4.8.38)

and in terms of the variable n become

6 (s,t) =0, (4.8.39)
06
-55} (s,t) =0, (4.8.40)

where s(t) is defined by
s = S(t)/zp(t). ' (4.8.41)

The heat balance integral for the solid region is then obtained
by integrating both sides of equation (4.8.27) with respect to n between

the limits n = 1 and n = s(t). The resulting equation is

898 395
3 (s,t) - T (1,t) = -Pe 2 (es(s,t) - es(l,t)) +

zg d s ds fE.dz s aes
o lac jl es(n,t)dn T GS(S,t) ~ Fo —-Bdt Il ”_a'rT dn (4.8.42)

We now assume a temperature profile for the solid region of the

form

8, = b (£) + b (t)n + b2(t)n2 , lsgngs(t) (4.8.43)

and 8 = 0, n 2 s(t) (4.8.44)

which automatically satisfies condition (4.8.31). On substituting
(4.8.43) for o_ into the conditions (4.8.29),, (4.8.39) and (4.8.40) the
functions bo’ b1 and b2 are obtained in terms of s and the resulting
expression for es-is

6, = (s -m?%/(s - 1%, 1snss | (4.8.45)

_99_




Finally, making use of condition (4.8.30) the quantity s may be expressed

in terms of az(t) in the form

s =1- 1/a2 (4.8.46)

and (4.8.45) reduces to

S. (4.8.47)

A
=
A

2
= - - 2 :
es a2(1 1/a2 ne , 1.

Substitution of this expression for eS into the heat balance
integral (4.8.42) and the subsequent calculation of the integrals again

leads to an ordhﬁafg differential equation for zp and 2ys namely

z2 z dz
- - -.p 41, Pl L | P (4.8.48)
2a) =Pe z - F T R * Fo 3a, | dt o
2

The two ordinary differéntial equations (4.8.36) and (4.8.49)
form a coupled system for thé two unknown functions zp and ag. In order to
solve these equations it is necessary to know the initial conditions on zp
and a,. The initial condition for zp is given by (4.8.32). To obtain the

2

initial condition for a, we consider the total thermal energy of the

plastic region, Ep, which is defined by

z -
E (z) = I Py C T 4z . (4.8.49)
P P o

Recalling definitions (3.4.1) and (3.4.31)1;2 the above equation may be

written in the dimensionless form

z .
= P FTan -
Ep(zp) L Cv(%§+ o (1 TAM/TC)}dz (4.8.50)

where the dimensionless thermal energy EP is defined by
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E =E /pC T =z (4.8.51)

With the assumption that c, is constant, and taken to be unity, and
introducing the variable n, through the definition (4.8.25)

equation (4.8.50) becomes
l‘an
E Z = Z e e 1 - T T d . 408-52
p( p) p J;Tc ( AM/ c) n ( )

When equation (4.8.35) is substituted into the above and the integral
calculated, there results

T

B (2) =zF;?1 2 (1= Ty /1) - 2/3 3y . (4.8.53)
[

Since E(o) must be zero we deduce, with the aid of condition (4.8.32),
that

lim a, z_ = 0 (4.8.54)
t>0 P

We now have the necessary conditions, namely (4.8.32) and (4.8.54), to
solve the equations.(4.8.36) and (4.8.48). 1In general there appears to be
no analytical solution to these equations so a numerical solution must be
sought, However, for the special case when no upset takes place, that is
when Pe = 0, an analytical solution can be obtained and it is thought
useful to give this solution here so that, by comparison with the solution
given in section 4.4, an assessment of the accuracy of the heat balance

integral method can be made.

4,8.5 Solﬁtion with Zero Pe - no burnoff -

When burnoff is ignored and the Peclet number Pe is taken to be

zero in equations (4.8.36) and (4.8.48) the latter reduce to

S 2 fé da2 9 EE dz
= — ——— — >
2ay * Br = - 350 d " 3 TFo %2 "t (4.8.55)
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and

zg d {1 fB 1 dz
2, W E |5 *Felr, ~ e (4.8.56)

respectively, Multiplying equation (4.8.55) by the integrating

factor a, and integrating it with respect to t yields, on the application

of the initial condition (4.8.32), the expression for zp in terms of a,

3Fo t . }
z == ———-J a,(2a, + Br)dt . (4.8.57)
P 2 2 2

ag ‘o

Similarly multiplying (4.8.56) by (1= 3a)/al and integrating it with
respect to t, yields some algebra

1

2

(4.8.58)

( 12 Fo s Jt (\=3d,)
z = "y - dt
p 1 (\’3“;) (6}

The right hand sides of equations (4.8,.57) and (4.8.58) can be

equated to yield the single integral equation.

t & (t
-] 2,20, + Borat - “L":‘; )J G-3a)edb  (4.8.59)
o] h 2 o]

It is easily verified that the solutions

a, = 350 (4.8.60)
and zP = 221’VFot , (4.8.61)
3(2a20 + Br) 4
where S (4.8.62)
4 320
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and A0 is a constant, satisfy equations (4.8.57), (4.8.59) and the
initial conditions (4.8.32) and (4.8.54), identically, provided
that 350 is a solution of the cubic equation

3 3 2 (1 3 1.
3y T 5 85y t {— - Z-Br) a5, * Z-Br = 0. (4.8.63)
It is easily deduced fromequation (4.8.62) that in order for zp to

be real for all positive values of the Brinkman num.berJa20 must satisfy

the inequalities

1 Q
E-Br < 2,54 < 0. (4.8.64)

We shall now show that the above cubic equation (4.8.63) has only
one negative real root for all positive values of Br. Suppose

that all roots are real. From the general theory of cubics it is thus

known that the product of the three roots for this particular case,
is negative and equal to - %—Br. We then deduce that the equation has

eithe? three negative roots or one negative root and two positive ones.
But also from equation (4.8.63) we note that the sum of the roots is
positive and equal to-% from which it.follows that, provided all three
roots are real, equation (4.8.63) has one negative root and two positive
ones. The only remaining possibility is that (4.8.63) has two complex

roots, a + ib and a‘—'ib,and‘one real root, ¢, say. Then the product

of the roots satisfies

c(a2 + b2) = - %-Br (4.8.65)

from which we conclude that ¢ < 0. Thus equation (4.8.63) has exactly
one negative real root. However, we still need to show that this negative

root satisfies the inequality

> - = Br, (4.8.66)
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for all + ve values of the Brinkman number, A close inspection of
the behaviour of (4.8.63) for small values of Br reveals that the

negative roots takes the asymptotic form

1 1 .2 3
3y = E-Br + Z-Br + O[Br ] , (4.8.67)

which clearly satisfies (4,8.66). For large values of Br the

corresponding asymptotic form is

V3 7 1¥3 (1 1
a20 = - —Z-/Br + 12 - 16 L/BrJ+ 0{-3-;} ’ (4.8.68)

which again for large values of Br, that is Br > V3, satisfies (4.8.66).
Using (4.8.67) and (4.8.68) to obtain starting values, the values of

aéo are computed, using the Newton-Raphson iterative procedure, over a
wide range of Brinkman numbers and the results are presented in table
(4.3). The plot of these results in Figure 4.5 shows that (4.8.66)

is satisfied for all positive values of Br. Also presented in table

4.3 are the values of,thequantitiesz1 and s obtained using equations
(4.8.62) and (4.8.46)vand the relevant values of 350 and Br. The values
of z, can bé compared with the values of a in table 4.1 and some
assessment of the accuracy of this approximate method made. In particular
substituting equation (4.8.67) into (4.8.62) and expanding for small Br

yields

z = "'-/:;i Br (1 —%Br + 0(Br)) (4.8.69)

1

Comparison of the leading term of the above equation with the leading
term in equation (4.4.22) reveals that, for small values of Br, the error
is about 3%7. Similarly substituting, (4.8.68) into (4.8.62) and

expanding for large Br yields
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&315 _}&- 11 1 1
Zl = {'—2 Br (1 - ;—2/—3 (;—B-;] + O[ﬁ}} (4.8.70)

Comparison of the leading term in this equation with the leading
term of (4.4.28) shows that the error here is about 30%Z for very
large Br. However for values of Br less than 10, which is well within

the physical ranges, the error is less than 107Z.

Br 220 %1 s
0.1 | -0.050| o0.080| 21.086
0.2 | -0.098| 0.150| 11.149

A20 0.3 | -0.146] o0.211 7.863
0.4 | -0.191| 0.264| 6.232
0.5 | -0.235| 0.312 5.259
0.6 | -0.277| 0.354 4.612
0.7 | -0.317| 0.393 4.152
0.8 | -0.356| 0.429 3.807
0.8 | -0.393| 0.462 3.538
1.0 | -0.430| 0.482 3.323
2.0 | -0.744| 0.727 2.343
4.0 | -1.220| 0.979 1.819
6.0 | -1,596| 1.148 1.627
8.0 | -1.916| 1.277 1.522

10.00 | -2.200| 1.382 1.455

Table 4.3
. The temperature profiles 6 and es, the thickness of the plastic

region zp and the dimensionless shear stress T are now readily computed

using equations (4.8.35), (4.8.45) (4.8.61) and (4.4.7) respectivelyv.
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The results are presented and discussed in section 4.10 and comparison
is made with Attheys solution to give an overall assessment of the

accuracy of the method.

294

10. |

-a,, =

Nof
-}
Lo

10. 20. Br

Figure 4.5 Plot of ~3,0 against Br.

4.8,.6. Solution with non-zero Pe,

As we have already stated when the convection terms are retained
in equations (4.8.36) and (4.8.48) no analytia|solution can be obhtained
and a numerical solution must be sought. For this pair of simple

ordinary differential equations the Runge-Kutta [§5] forward step
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method is felt to be suitable and this is the method used here. However,
there is a singularity in the rate of growth of the plastic region,

d zp/dt, at time t = 0, thus the numerical procedure must be started
after a small time has elapsed when the system has become more stable
and the rate of growth of zp is finite. Let us therefore obtain a
series solution to the equations (4.8.36) and (4.8.48) which is

valid for small times. This solution will then provide the starting
values for the full numerical solution.

The form of the equations (4.8.36) and (4.8.48) suggest that the
leading terms in our series will be those given by equations (4.8.60)
and (4.8.61) derived for the case with Pe = 0. We could start the
numerical procedure from these terms alone however, it is felt useful
to also derive the second terms to compare them with the corresponding
terms of a series solution to the exact equationsywhich is derived in
section (4.9))again for an assessment of the accuracy of the method.

For smazll time let us assume that zp and a, may be expanded in

the forms
z, = 2 2 /Fo t} 4+ 2 z, /Fo Pet™ + ..., (4.8.71)
and
n
a, = a,y * 2,y Pet’ + .., (4.8.72)

where n and m are arbitrary real numbers which satisfy the conditions

n>0, m>» 4§ . (4.8.73)

Equations (4.8.71) and (4.8.72) then necessarily satisfy the conditions

(4.8.32) and (4.8.54).
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Substituting equations (4.8.71) and (4.8.72) into the differential

equations (4.8.36) and (4.8.48) results in the pair of identities

2a20 + 2a21 Pet + ... + Br = -'% (zlzt + 2zlz2 Pet:£+m + ...)(na21Petn-1+...)
-3 et e zpet™ v LGt vz Red™ v L (e, + 3y Pt 4 L)
_.g Pe (2, Fo et 4 2, {Fo Pet™ + ...)(a,, + ay Pet” + ..), (4.8.74)
and

- 2(a,, + a Pet™ + ...) = 2Pe Jfo(zlt* + z.Pet™ + ...) +

21 2

: (z 2t + 2z.% Pet"‘+m + (1 - 2a Petn/a + ) (na }?etn‘-1 + ) +
3 2 1 172 tt 21 20 tet 21 ce

a

20

4 i m -4 m1 n
” (zlt + z,Pet” + ...)(izlt + mzzPet + ...)(3:,120 -1+ 3a21Pet +...)

20

n
(r - a21Pet /a20 + ...)

(4.8,75)

On multiplying out the first few terms of the above identities and

grouping terms together we obtain

4 2
2320 + Br + 3-z1 A0

4 2 n
- (5 2y (2n+l) + ZJ a21Pet

Fo a, t% + ... (4.8.76)

_ 4 : m4 8
—-zlzzPea20 (1 +2m) t §-Pez o

3 1

and
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2z2 z2

1 n
—2&20 ol (3a20 -1) = 2a21 Pe |1 + 5 (2n+1)| t
20 3a
20
2z1z2 ) ‘ 1
+ ——=Pe(3a,. - 1)(2m + 1)t * + 2Pe z_vFo t? + ,... (4.8.77)
3320 20 1

Equating to zero the coefficients of unity yields the pair of equations

2 2 a
ZaZOll + §-zlJ = ~Br (4.8.78)
and
2 __2 - 0\
3a20 = 21(3320 1)y .(4.8.7/;

the solutions of which are given, of course, by (4.8.62) and the
negative root of (4.8.63).
After a close inspection of (4.8.76) and (4.8.77) one deduces that

a solution to a,; and z, can only be obtained if

n=m-~-1}%=1}. (4.8.80)
Then equating to zero the coefficients of té yields the equations
4 2 4
- - = .8.81
[3 z] + 1Ja21 + 22122320 t g z)2,0 V/Fo = 0 (4 )
and
2z12 z,2%, .
1|72 + 1]+ —=(3a, - 1) + z)/Fo = C (4.8.82)
350 20

The pair of linear simultaneous equations is readily solved to yield

the solutions
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6
—V/Fo z; a,.(2 = a,.)
1 <2 2
a, = > 2 & (4.8.83)

21 2
421 (3a20 -2) + 3a20(3 - 2a20) -3
[}2150 2, 2y, *+ 53, (3 + 4z12)J
z2 = - (4.8.84)
30 z, a
1 720

The values of 351 and z, obtained using the above pair of
equations, with the aid of the results given in table 4.3 are presented
in table 4.4 for various values of Br. The accuracy of these quantities

is assessed in a later section.

Br a21 z2

0.1 | 0.006 | -0.106
0.2 | 0.020] -0.196
0.3 | 0.03| -0.268
0.4 | 0.052| -0.326
0.5 | 0.067| -0.373
0.6 | 0.081] =-0.411
0.7 | 0.094 | -0.442
0.8 | 0.105( -0.468
0.9 | 0.115| -0.489
1.0 | 0.124| -0.508
2,0 | 0.181| -0.609
4,0 | 0.231] -0.674
6.0 | 0.258| ~-0.700
8.0 | 0.277| -0.715
10.0 | 0.292| -0.724

Table 4.4

The values of zy and 2,50 presented in table 4.3 and the values

of z, and ayy presented in table 4.4 are now substituted into equations
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(4.8.71) and (4.8.72), with m =1 and n = 1., With a value for t

chosen initially close to zero starting wvalues of a, and zp are then
obtained. Using these starting values and a suitable step length At
values of zp and a, against time are computed using the Runge-Kutta
simple forward step method. Having obtained these results the values

of s are computed using equation (4.8.46) and subsequently the
temperature profiles and the shear stress t are evaluated using equations
(4.8.35)(4.8.47) and (4.4.7) respectively. These results are presented

in section 4.10,

4.9 Inclusion of Burnoff-series Solution for Small Time -.

In this section we again consider the situation in which burnoff
is allowed (Pe # 0) and develop series solutions for the temperature
profile and thickness of the plastic region which are valid for small
times. These series solutions are used to assess the accuracy of the
solution of section 4.8 and to illustrate the effect that inclusion of
burnoff has on the solution of section 4.4. The governing equations,
ir the variable n, defined by (4.8.25), are (4.8.26) and (4.8.27)
and the appropriate boundary conditions are (4.8.28) to (4.8.31).

As we have already stated there is no obvious analytialsolution to this
system of non-linear partial differential equations. However the
complication of the non-linearity is removed by expressing 6, OS and zp

i
as series in powers of t?, so we write

8(n,t) = g(n) +/t Pe 8, (n) + o(x), (t9.1)

8n,t) = Bg,(n) + Yt Pegg, (n) + 0(t), (4.9.2)
and '.2

zp(t) = 2z, YFo vVt + 2z, Pe VFo t + o(tz) (4.9.3)
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On substituting the series (4.9.1) to (4.9.3) into the energy equations

(4.8,26) and(4.8.2

7) we obtain the identities

o dzel

Z+/tPe'2+...+Br:
dn dn

¢ 2 deo del

Pe V/Fo (zl/t + z2Pe + ...)n(n"=3) Tn_+ Yt Pe—aa—+

( 3

5 .Peb

+ 4 zlzt + 2z1z2 Pe t2 e 1 + ...

» 2t

(9 | deo _ 4o
"2\21 +32122 PE/t+...J T]“&a‘"’/li Pe—da"'-..

and

2 2
d e, de
‘ b(';_+/t?e 521+...5

dn dn

d8y0 déygy

- 2 Pe VFo (zl Yt + z, Pe t + ...}[ TN + Y/t Pe I

( 3

2 5 Peeb-l

+ 4 z; t + 22122 Pe t” + ... + ...

~ 2/t

r do o do .

2 50 51
—2\21 + 32,2, Pe/t+...}n T + 7/t Pe T +}
respectively,

The appropriate boundary conditions, obtained by substituting

the series (4.9.1) and(4.9.2) into conditions (4.8.28) to (4.8.31) are

found to be

de

de
Loy = ... =0

o, -
dn \O)

dn"
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(4.9.6)




00(1) = Bso(l) =1

(4.9.7)
61(1) = Osl(l) = ... =0
do doe do do
0 - s0 1 _ sl
‘a—n——(l) dn (1) bl dn (1) dn (1) g o ey (4.9.8)
00 >0, 8_,(n) > 0,..., as n >« (4.9.9)

On multiplying out the brackets of the identitites (4.9.4) and
(4.9.5) and, in the resulting expressions, equating the coefficient of
like terms in t (in ascending powers), the above system is reduced
to a set of subsystems of linear ordinary different equations. The

solutions of the first two of the subsystems are given below.

4.9.1 First Order Subsystem

The terms independent of t in the identities (4.9.4) and (4.9.5)

lead to the pair of equations

deo de
d2 +221”€F{‘+Br=0’05”51 (4.9.10)
n
and 2 d
d 9 2 9s0
s0 22 0 > 1 .
=+ 41" T4 > N (4.9.11)
dn

These equatiouns subject to the appropriate boundary conditions,

namely

do,,
any © =0 (4.9.12)
0p(1) =6 (1) =1 (4.9.13)
de de
0 _ sO
oD =5 (4.9.14)
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and

eso(n) -+ 0 as n -+ o (4.9.15)

form the first order subsystem. It is immediately obvious that the
above system is independent of the Peclet number pe and, in fact,
if z, is replaced by a they are identical to the system used in
Atthiey's solution in Section 4.4. Hence recalling equations (4.4.17),

(4.4.19) and (4.4.21) the solution of equations (4.9.10) and (4.9.11)

which satisfies the conditions (4.9.12) to (4.9.15) is

Z

B 1
6y = 1 + ——E—J D(u)du , (4.9.16)
217
1ﬂ
= (4.9.17)
OsO erfc(Zln)/erfc(Zl) i
where zy is the solution of the transcendental equation
22% _22
e 1= erfe(z)D(z)) . (4.9.18)
B_/W

Dawsons integral D(u) and the complementary error function erfc(u)

have been defined by equations (4.4.18) and (4.4.20) respectively.

4.9.2 Second Order Subsystems.

Equating the coefficient of Yt in the above identities (4.9.4)

and (4.9.5) yields

2 b
d’o do { d8
1 2 2 _— 2 — 0
;-—2— + Zzln -a-;]*—- 221{31 = Zl FO n 3(222+ FO)JH dn ’ 0 $n £ 1

(4.9.19)
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and

2
d e dé de

sl 2 sl 2 _ s0
+ 2200 = - 2200 = 221[/58.* 322n} S0 0 31 (4.9.20)

dn2

The appropriate boundary counditions from the set (4.9.6) to (4.9.9)

are
de
1 - (4.9.21)
a (0) =0,
= = 4.9.22
61(1) 651(1) 0, ( )
de, de_,
S = 4.9.23
T ¢D) In V) ( )
and
05(M) >0 as n >, (4.9.24)

On substituting the expressions for OO and eso given by equatious
(4.9.16) and (4.9.17) respectively into equations (4.9.11) and

(4.9.20) the latter reduces to

d2e , 48 5 N
o + 221n Fre - 22161 = Br[3(222+ FO)— F@ n_]nD(Zln) , Ogngl,
(4.9.25)
and
d2051 , 40, ) azi : —zin2
*+ 2200 —— - 2z{0 =-—-[/Fg + 322n]e ferfe(Zy), n 3 1
an n s /TT :
(4.9.26)
respectively.
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As for all iinear second order, ordinary differential equations
the solutions to (4.9.25) and (4.9.26) may be split into the sum of
two terms, the complementary function and the particular integral,
Thus we may write

91 = % * 9p (4.9.27)

and

esl B eslc * eslp (4.9.28)

where, in a natural way the subscripts c and 'p' denote the

complementary function and the particular integral respectively.

The complementary functions are easily found to be

2 2
_ T2
91c = Alr] + Az[zln erfc(Zln)- 1//11‘ e j! ,0 £n g 1
4.9.29
and _ZZnZ ¢ )
_ 1
010 = Agqn + Asz[zln erfc(Z n)- 1/V7 e }, nxl1
(4.9.30)

where the constant A, Asl’ A2 and AS2 are unknown at this stage.

Having obtained the complementary functions, the particular
integrals of equations (4.9.25) and (4.9.26) could now be obtained
in a systematic manner using the method of variation of parameters
36] . The right hand sides of the equations are not simple, however,

and it is found easier to obtain the particular integrals directly.

The nature of the right hand side of equation (4.9.25) suggests

that we look for a particular integral in the form

0, = é(n) + x(n)D(Zln) » 0gnsgl (4.9.31)
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where ¢ and are abitrary functions of n . Substituting

equation (4.9.31) into equation (4.9.25) yields

2 :
47X 972, X _452 -
[ 2z7n an 4Z1x D(Zyn)

(4.9.32)

and this equation is satisfied provided that ¢ and ¥ are solutions

of the pair of equations

2
) 2 49 _ 5,2, _ dax .
w2 22N gy T 20 221 o (4.9.33)
n N
and
2
d7x _ 2 iil _ 2 _ - 2
:i? ZZln an 421)( Br[3(222+ VFO) VFO n i . (4.9.34)

To solve the above, we first find a function y(n) which
satisfies equation (4.9.34) and then proceed to solve (4.9.33) for ¢ .
The naturelbf the right hand side of equation (4.9.34) suggests that
we seek a solution for y in the form

X = apn + apn’ (4.9.35)

and after substituting into equation (4.9.34) it follows immediately

that

B JEF B _JF
a = _L 0 - 5(2z. + VF) a = Y O (4.9.36)
L ToZ2 Y 2 o * % 5
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With the use of equations (4.9.35) and (4.9.36), equation (4.9.33)

becomes
2
3B_V/F. n..B_ [/F
d2¢ 2 d¢ 2 r' o r{ 0 _ —
, TN gy T 220 s 52,5z, ~ 02, VR
dn 1 1 Z1

(4.9.37)

and it is now easy to show that a solution of this equation has the

form

= 2 (4.9.38)
¢ b1 + b2n
provided that b1 and b2 are given by
B 2/17*; -3B /F_O'
by = = —I3l—5— * 52z, + F)| , b, = — (4.9.39)
IOZl Z1 IOZ1

It follows from equations (4.9.31), (4.9.35), (4.9.36), (4.9.38) and

(4.9.39) that the particular integral of equation (4.9.25) is

Br 2 FO 2
8 = = e { e 4+ 5(2Z. + /F)| + 3VF. 1
1p 3 2 2 0’| 0
102 Z
1 1
Br FO 2
+ —~ =522, + VF )| + VF,. n"mD(Z, ), 0 snzxl
2 2 2 0. 0 1
IOZ1 Z1

(4.9.40)

Inspection of equation (4.9.26) suggests that we look for a

particular integral in the form

;e | (4.9.41)
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where a and a_, are both constants. Substitution of this expression

sl
into equation (4.9.20) leads to the solution

e

__ 1 1 )
eslp = j% /Fg + 2Z,nfe [erfe(Z;) n 2 1 . (4.9.42)

Having now obtained the complementary functions and particular
integrals to equations (4.9.25) and (4.9.26) we can write down, with

the aid of equations (4.9.27) and (4.9.28), the complete solutions

in the forms
~ 2 2

= A ntA |Z. n erfc(Zln) - 1/V1 e ] -

01 = Anray 12y

B [2/F )
= ——+ 5(2Z, + VF )| + 3/F_ n"} +
3 2 2 0 0
10z L 2]

Bl‘.‘ ﬁ‘(; /——' 2
—— = 5(2Z, + VF + JF_ D(Z.n), 0 s nsl
1 1
and
722
esl = Asln + ASZ[Zln erfc(Zln) - 1/V7 e J
22?2
- I/JF{VFE + Zzzn]e /erfc(Zl) s N 2 1. (4.9.44)
The unknown constants A,, A ,, A and A are obtained through
1 sl 2 s2

application of the boundary conditions (4.9.21) to (4.9.24). Firstly
we differentiate equations (4.9.43) and (4.9.44) with respect to

n to obtain the dimensionless hLeat fluxes.
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dol r O
o T ALt A2y erfe(Zyn) -
52
1
Br /FS 3
Toz;) |52 522, + Fg)|n + VFg n"H1 = 2z,nD(Zyn)p +
l J
Br /Fg 2
— = 5(2Z, + YF )| + 3/F  n“}D(Z;n) , 0 snsl
2 2 2 0 0 1 ’ B
102 Z
1k “1 J
and
dOSl
' an = ASl + ASZZ1 erfc(Zln) +
_Zi-n?-
2Z.e YA
__l;~_——— /Fg Zln + EE(ZZinZ - 1] ,nz 1,
fﬁ erfc(Zl) 1

and applying the boundary condition (4.9.21) then gives

(4.9.45)

(4.9.46)

(4.9.47)

Using this relation in equation (4.9.43) and applying the boundary

condition (4.9.22)1 we deduce, after some algebra that

Al = Mlz2 + M2

where M1 and M2 are given by

i Br[l + le(zl)]

M_l._

2
21(217ky)

and

i BrJﬁa{FZ_Zln(zl)]+42i[2+le(Z1)]}

4
1021(Zl-k2)

M,

The quantity k2 is defined by

- ~ Y 2
k2 z, erfc(zl) 1/vm e “1
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It follows from (4.9.44) and condition (4.9.24) that ASl is

identically zero, and then condition(4.9.22)2,is satisfied only if

>
I

s2 M322 + Mﬁ s (4.9.52)

M, = 2‘k3/k2 s

3
(4.9.53)
= /F
M4 Fok3/k2 ,
where k3 is defined by
~72
k, = e "/ erfe(z)) . _ (4.9.54)

With the aid of equations (4.9.45), (4.9.46) and (4.9.47),

the boundary condition (4.9.23) leads to the equation

BBr/F; Br JFS 2
A, erf(z.) - + (1-2z7) - 10Z,|D(Z.)
1 1 573 1022| 72 1 2 1
1 1L “1
B |/F.
+—L |0 (1—422) - 10Z.||1 - 22.D(Z,) =
10z, | 2 1 2 1741

1

: Z
2 2
z, erfe(z)) + zz1k3[/ﬁo‘ z, + 5= (22] 1)}

A
s2 1 (4.9.55)

Finally, substituting equations (4.9.48) and (4.9.52) for A1

and ASz respectively into the above relationship, results in a
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linear algebraic equation with solution

B F
_ _ 2 r 0 2_
Z2 = M421 erfc(Zl) M2 erf(zl) + ZVFO Zlk3 + 5 (ZZ1 1)D(Zl) + 6Zl
10z
2 = _ 2.
+ 2, (42] n1 2211)(21)) M, erf(z;) - Mz, erfe(z)) 2(227-1)k,
/
BI‘
- — (D(z)) + 2 (1 - 22.D(Z,))
2
z] 1 1 11 (4.9.56)

In principle, it is now possible to go on and obtain higher order
terms. However, this would be an extremely tedious and algebraically
complicated task and for this reason it was decided to terminate the
series after the first two terms. The truncated series solution will
be accurate at small times but will become a poorer approximation to
the exact solution as time is increased. However it is thought to
be a useful solution since it illustrates the effect that the inclusion
of Burnoff has on Atthey's solution and also serves to assess the
accuracy of the approximate solution developed in section (4.8).

Values of Z1 are presented in Table 4.1. Since Z1 is
numerically equal to o . With these values of Z1 , 22 is easily
calculated using equation (4.9.56) for various values of Br and Pe
and these values are presepted in Table 4.5. A comparison of these
values of Z2 with the values for 22 obtained by the heat balance
method and presented in Table 4.4, indicates that for small values
of Br the error is about 25% but as Br increases , the difference

decreases and it is seen that for Br = 10 , the error is less than

2%.
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Br Z2
0.1 ~0.144
0.2 -0.243
0.3 -0.316
0.4 -0.370
0.5 ~0.477
0.6  =0.448
0.7 -0.477
0.8 -0.500
0.9 ~0.520
10 -0.537
2.0 -0.631
4.0 -0.692
6.0 -0.716
10.0 -0.738

Table 4.5

Using the values of Z1 and Z2 calculated from the exact equations,
the temperature profiles 6 1 and esl are computed from equations
(4.9.43) and (4.9.44) with the aid of (4.9.48) to (4.9.53). Using
these temperature profiles and the ones given by (4.9.16) and (4.9.17)
the temperature profiles 6 and es valid for small times are

calculated with the aid of (4.9.1) and (4.9.2) and presented in

Section 4.10.
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4.10 Results and Discussion of Sections 4.8 and 4.9

In this section, the results of Sections 4.8 and 4.9 are presented
and discussed.

In Figure 4.6 the results for Zp , obtained using the values of
Zl and a0 presented in Table 4.3 and equation (4.8.61), for the
case of zero Pe , and the Runge—Kutta process for the case of non-zero
Pe , are plotted against t for various values of Pe and Br
Comparison of the curves in Figure 4.6(a) with those for the
corresponding exact solutions presented in Figure 4.1 reveals that the
difference is very small for low values of Br but becomes greater

as Br increases. However the greatest error is less than 5% for

Br in the range 0 - 5.0 .

The effect of axial shortening is incorporated in Figures 4.6(b),
(c) and (d). It is seen from these Figures that ¢n increasing Pe
the thickness of the plastic region decreases. The reason for this is
that for larger Pe more heat is lost by forced convections resulting
in less heat being available to drive along the plastic/solid
interface. It is important to note that as Pe increases, equilibrium
is approached more rapidly for a given value of Br . Also increasing
- Br delays the approach of equilibrium. A qualitative illustration of
the effect of both Pe and Br on the time taken to reach equilibrium
is given in Section 4.11, in which the steady state values of Zp

and the steady state temperature profiles are also determined.

The curves in Figure 4.7 indicates the decay of the shear stress
T with time. Comparison of the curves in Figure 4.7(a) with the
corresponding curves obtainéd from the exact solution presented in
Figure 4.2, again reveals that for small Br the difference between

the two solutions is very small but increases with increasing Br .
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It is seen from Figures 4.7(b), (c) and (d) that the qualitative
agreement between these curves and the torque trace shown in Figure 4.3\
is much improved by the inclusion of upset. All quantitative

comparisons with experimental data are delayed until Section 4.17.

The temperature profiles computed from equations (4.8.35) and
(4.8.47)with the aid of the values of a, obtained from the
Runge-Kutta process are presented in Figures 4.8(a) to(d)for the times
t=0.1 and t =1, Also presented in Figure 4.8 are
the temperature profiles obtained in Section 4.9 which are valid for
small t only. 1In Figure 4.8(a) and (b) the solid line represents
the heat balance integral solution and the dotted line represents the
series solution value for small times. Comparison of these two sets
of curves again reveals that the difference between the two solutions
is very small. By comparing Figure 4.8(a) with Figure 4.8(b) and
Figure 4.8(c¢c) with Figure 4.8(d) the effect of upset is borne out.
It 1is seen that the inclusion of upset gives an overall reduction
in temperature. This is a result of cooling due to forced
convection. In Figure 4.9 a plot of the interface temperature,

0(0) , against t 1is given. It 1is seen that in all cases the

interface temperature initially assumes the value predicted by the
case Pe = 0 and decays to the equilibrium value, The equilibrium
value of 6 (0) 1is found to be independent of Pe  but the rate of
decay of this quantity increases with increasing Pe . It should

also be noted that 6(0) increases with increasing Br.

In practice, one would expect the interface temperature to rise

continually until the equilibrium temperature is attained. The
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Figure 4.6

Graphs of Zp

against t
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error in the models presented in Section 4.8 and 4.9 is due to the
inadequate representation of the viscosity and the neglect of the
conditioning phase. More elaborate models of the viscosity are given
in Section 4.12. It is shown in this section that although the
temperature profiles ﬁresented here are initially inaccurate, the

accuracy increases rapidly with time.

4,11 1Inclusion of Burnoff - Asymptotic Behaviour of Solution

Obtained Using Heat Balance Integral Method.

The heat balance integral method of Section 4.8, which describes
phase II of the welding cycle, approaches the equilibrium phase
asymptotically. Thus the model predicts that the duration of phase II
is infinite. It is clear, however, that for all practical purposes,
we can take the end of phase II as being when the thickness of the
plastic layer reaches some prescribed percentage of its limiting value
(e.g. 95% or 99%). 1In this section, therefore an asymptotic solution
valid for large values of time is developed, and using this solution

and the above criterion, we can estimate the duration of phase II.
Let us assume here that the solutions to the ordinary
differential equations (4.8.36) and (4.8.48) for ZP and a, may

be expressed

25 = 2o * 2 (0) (4.11.1)

and

5 = a2°°+ aT(t) . (4.11.2)
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where Z and are the constant equilibrium values and 2

a
Peo 209
are the remaining time dependent terms which are assumed

T

and a‘T

to be small compared with their steady state counterparts. Thus it is

assumed that for large t

ZT << pr » A << a, (4.11.3)

On substituting equations (4.11.1) and (4.11.2) into equations

(4.8.36) and (4.8.48) we obtain

2
2Z o 2 o daT
28y, + By + 2ap = - 37, (422,12 ) o+ 20120 ~3¢
2a, Z dz 4P
- _2=p I _
3%, (42,72, Q%ar/ay ) 5 = 5 Zpadpp1t2p/2,0 (Ltap/ay )
. (4.11.4)
an
=201, 20, = Pe (vaoo +-25f) +
Z22°° 2,2 dar
i 22 (1 + ZZT/Zpco + ZT/me)(l = 2ap/a, *...) 4ot
0%2%
(z + 7)) dz
B A - - I
TFoa,,  Ofe T 1+ 381 - ap/ay)
(4.11.5)

4.11.1 Steady State Solutions

Clearly in the above equations we can equate the steady state
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terms giving us the two relationships

= - & .11.6

2a2a: Br = prazm (4.11.6)

and -2a, = Pe 2 (4.11.7)
200 p™

Eliminating a between equations (4.11.6) and (4.11.7) results in

200
thequadmmic

2Pe2212)m + SPeZ , = 5Br =0 (4.11.8)

which is readily solved, yielding

_ 5 8Br _ ,
me = -Z-I-;; 1 + -—5—- 1 (4.11.9)

In the above equation, the positive square root is taken since Zp
must always be positive. The constant a, is obtained from equation
1o oo

(4.11.7) and expwessed in the form

PeZ

ay, === . (4.11.10)

Equations (4.11.9) and (4.11.10) give the steady state solutions

for 2 and a respectively and the corresponding steady state

pe 2
temperature profiles can now be obtained using these results and
equations (4.8.35), (4.8.47) and (4.8.46). Numerical results for
various values of Br and Pe are presented in Section 4,14, It is

also useful to give the asymptotic solutions of Zp for small and

large Br for comparison with the exact solution. Expanding
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(4.11.9) for small Br we have

M
Br 2Br 2
me A 1 T * O(Br) (4.11.11)
whereas for large Br we have
2~ BmE - B 5 ow (4.11.12)
P®  Peyy 2/7  16vBr

Also with the aid of equations (4.8.35), (4.8.47), (4.11.10) and
(4.11.11) the asymptotic expressions for 6_ and Bsm, valid for

small Br can be shown to be

1 2,_ 1,2 2
o, =1+ E.Br(l_n )- gBr (1-n)+... (4.11.13)
and
O, =1 +Br(l-m+..., |i-nj<<1 . (4.11.14)

Expressions (4.11.11) to (4.11.14) are later compared with their

counterparts from the exact solution which is derived in Section 4.14.

4.11.2 Solutions of ar and ZT'J-

The remaining time dependent parts of equations (4.11.4) and

(4.11.5) may be expressed, after a little rearrangement, in the forms

daT a2 dz
& "z Tae BT 8,%p *+ 0(Zpag) =0 (4.11.15)
daT a, dZT
v -1 % = 4.11.1
dt me (3.&2<o 1) qt + g3aT + g4ZT + O(ZTaT) 0 ( 6)
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where terms O(ZTaT) have been neglected. The constants 81> 8y 83

and g, are defined by

. 3FO 2PeZ pe . 6F0Pea200

8 = 7 |1 ¥ » By =T

22 | 57

p> px

r (4.11.17)
2 2
- 6F a5, ) 3F Pea,,,
-]
3 ZZ 4 ZZ
poo pco /

The nature of the above pair of linear ordinary differential

equations suggests that we seek solutions of the form

a, = Ae s Z., = A, e , (4.11.18)

where Xl and AZ are constant. On substituting (4.11.18) into

(4.11.15) and (4.11.16), we deduce that the latter are satisfied

identically, provided that A and A are solutions of the linear

1 2
simultaneous equations
ay 1 ,
=2 = 4,11.1
(ntg)ry + |77 0 + gyla, =0 ( 9)
Ppr
a
(n+g3)ay + 'z;: (Bay,-1) n + g, A, =0 (4.11.20)

This pair of equations has a non-trivial solution only if n satisfies

the determinental condition

r (azm ]

)
poo
-0 (4.11.21)
3, )
" (7. Ot g‘*}
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Multiplying out this detemminant results in a quadratic the

solutions of which are

=]
|

= (N -Nl)/N3 > (4.11.22)

2

= - (4.11.23)
(N2+ Nl) /N3 s

=]
N
[

where N1 and N2 are defined by

=4
|

2 2
N, = Ell - 4a2mzpw(3azm‘2)(8184 g2g3ﬂ , b (4.11.24)

and

N3 = 2a2w(3a200 -2)
The solutions for Al and A2 then take the form
= I = .11,
Al L(nj))\2 s ] 1 and 2 (4.11.25)

where the function L(n) 1is defined by

a
D
L(n) = - 10+ g (n+g1) (4.11.26)

poo

The general solutions for ZT and a; may now be expressed in
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the forms

nlt n2t
= L(nl)Aze + L(nz)uze (4.11.27)

Y]
|

and

e , (4.11.28)

where By is a second constant.

Using the computed values of e and pr , the values ofn1
and n, are calculated from equations (4.11.22) and (4.11.23) with
the aid of (4.11.24) and (4.11.17). The values of n, and n,

are found to be negative for all values of Br and Pe considered

and, as can be seen from Table 4.6, satisfy in; | < (nzl . In view
of this, we shall assume that for large time, the expression for ZT ,

(4.11,27) can be approximated by

Zy = xzeﬂwt . (4.11.29)

4.11.3 Estimation of Time Taken to Reach Equilibrium

Using equations (4.11.1) and (4.11.29), the expression for Zp

valid for large times becomes

Z =27 + Ae (4.11.30)

It is proposed in this section to assume that equilibrium is
reached when Zp has attained 95% of its asymptotic steady state
value me . The time taken to reach equilibrium, te is thus

the solution of

0.95 me =7 + Ape (4.11.31)
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Pe = 0,1 Pe = 0.3
Br nl "2 n M
0.1 -0.066 -9.261 —-0.592 | -83.349
0.2 ~0.059 -2.759 -0.534 -24.827
0.3 ~0.054 -1.426 -0.490 -12.833
0.4 -0.051 -0.816 ~0.455 ~ 8.247
0.5 -0.047 -0.661 -0.427 - 5.948
0.6 -0.045 -0.512 -0.403 - 4.604
0.7 -0.045 -0 415 -0.383 - 3.737
0.8 -0.041 -0.349 -0.365 - 3.137
0.9 -0.039 -0.300 -0.350 - 2.700
1.0 ~0.037 -0.263 -0.336 - 2.370
2.0 -0.028 -0.121 -0.252 - 1.087
4.0 -0.020 -0.063 -0.182 - 0.563
6.0 -0.017 -0.045 ~0.149 - 0.402
8.0 ~0.014 -0.036 -0.129 - 0.321
‘10,0 | -0.013 | -0.030 | -0.115 | -o0.271
Pe = 0.5 Pe = 1.0
Br nl ) ™ )
0.1 ~0.645 |-231.524 -6.580- |[-926.095
0.2 -1.483 | -68.965 -5.933  |-275.859
0.3 -1.361 | -35.646 -5.445 |-142.585
0.4 ~1.265 | -22.908 -5.058 |-91.632
0.5 -1.186 | -16.522 -4.742 | -66.089
0.6 -1.120 | -12.790 ~4.478 |-51.158
0.7 ~1.063 { -10.380 -4.252  |-41.522
0.8 ~1.014 -8.714 ~4.057 |-34.856
0.9 ~0.933 ~6.583 -3.733  |-30.005
1.0 -0.933 -6.583 -3.733  |-26 333
2.0 ~0.699 ~3.020 -2.796 {-12.079
4.0 ~0.506 ~1.565 -2.023 -6.261
6.0 ~0.414 ~1.116 -1.657 ~4 462
Table 4.6
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The unknown ) should be determined by employing some suitable
boundary condition. However, we have no such condition and in order
to proceed we shall assume that AZ = —Zp . . Equation (4.11.31)

o

can then be reduced to

0.05=e L © | (4.11.32)
the solution of which is

t =-1_ 1020 . (4.11.33)

e nl

Although the accuracy of this solution is unknown, equation
(4.11.33) gives a qualitative illustration of the effect of Pe
and Br on te and the results computed from this equation with

the aid of the values in Table 4.6 are presented in Figure 4.10.

g
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Figure 4.10

Plots of ¥, against Br
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4.12 Inclusion of Burnoff - Heat Balance Integral Solution,
- Variable Viscosity.

In this section we extend the solution obtained in section 4.8 to
include the effect of a temperature dependent viscosity. Under the
present assumptions, the velocity component V and W are given by
(4.7.2) and (4.7.14) respectively, and the appropriate forms of the
energy equations are (4.8.14) and (4.8.15) which must be solved
subject to the conditioms (4.2.23), (4.2.24), (4.2.25), (4.4.3) and

(4.4.4).

On substituting equations (4.7.2) and (4.7.14) into equation
(4.8.14), and using (4.7.3) to express the shear stress 1 in terms
of the thickness of the plastic region ZP , the energy equation for the

plastic region becomes

2 y/ 2 Z e
30 P d K 59
—— + BT [y —1 =Pe(C — dkdyg 37
922 u ° H 3
a Z
p
+%-—§-f__,05252p, (4.12.1)

where CO is defined by (4.7.16). Agaiﬁ introducing assumption
(4.7.17) the energy equation for the solid region (4.8.24) remains
unchanged. Transforming to the variable n defined by (4.8.25)
the energy equations for the plastic and solid regioms (4.12.1)

and (4.8.24) respectively, become

«2 1 2 n 2’
o9
dr .,
+Br.11[ a) . PeC 2% f [k‘dkdﬁ, 98
an? s oPp u n
0 0
22 z_ dz
_p 3% _ _p__pn 30
* Fy 3t F, dt  on » 0snsgl (4.12.2)
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and

azes 36, EB 36 ER dz 36
=.—PeZF____+ — —-—-Rn—~—-,nzl. (4.12.3)
an2 an FO at FO dt n
where k' and &' are defined by
k' = k/Zp and ' = IL/Zp (4.12.4)

From (4.7.18) the expression for C0 transforms, with the aid of

assumption(4.7.17), to

= |~

dk'dse’ (4.12.5)

The transformed boundary conditions are given by (4.8.28) to
(4.8.31) respectively. In this section the above system of partial
differential equations is solved for the two cases where u is given

by equations (4.5.8) and (4.5.7).

4.12.1 Solution with u = 1/6 .

In this subsection we assume as in Section 4.5 that the viscosity
@ 1s inversely proportional to the temperature 6, in which case it

is conveniently expressed in the form
u=1/6. (4.12.6)

On substituting equation (4.,12.6) into (4.12.2), (4.12.5) and (4.7.3)

we have
—— = 4 t ' ' 1]98
L naf| | vt [ [ s ommcan|2
0 01
Z§ 30 Zp 92, 4
+%—5—5—t——%—5-dt T\T,OS“SI (64.12.7)

- 143 -




with C and the shear stress T given by

0
18
Cy = -1/23 f [ ok 'dk 'dg " (4.12.8)
01
and
1
v = 1/z J pdk' (4.12.9)
0

After integrating both sides of equation (4.12.7) with respect
to n between the limits n =0 and n =1 the appropriate heat
balance integral can be expressed in the form

n=1 1 1n2t
__3_0_ = 4 ' ' ' ' ?ﬁ
o | + Br/ I odn| = Pecozp f f J 6(k',t)k"dk'de" o= dn
i 0 001
E;d 1 e 1 Cle |
+ FO E[ 6dn - T ( n —a-;- dn . (4.12.10)
0 © 0

As for the case of constant viscosity, a quadratic temperature
profile is assumed and the appropriate expression which satisfies the
~ boundary conditions (4.8.28) and (4.8.29) is given by (4.8.35).
Substituting this expression into equations (4.12.8), (4.12.9) and
the heat balance integral equation (4.12.10) and performing the

necessary integrations yields

o

1]

3 .
—3/Zp(2/5>a2-1) ’ (4.12.11)

and

=
i}

1/zp[1— 2/3 a,] : (4.12.12)

and

- 144 -




2

9 ERda2 2 EB. dZP loPeZpa2
2a, + ?V/[i*ZaZ/i] TT3F, @ 3F, 23 ' @a,5) (1=3a,/7)

(4.12.13)

respectively. For the solid region the appropriate heat balance
integral equation is given by (4.8.48) since the energy equation for

the solid region is independent of viscosity.

The initial conditions to be used with the pair of ordinary
differential equations (4.12.13) and (4.8.48) are given by (4.8.32)
and (4.8.54). Since there is no analytic solution to this initial
value problem, a numerical solution must be sought, as in Section 4.8.
Again we use the Runge-Kutta s forward step method and a series solution
for small times provides the starting values for the numerical
solutions. Equation (4.12.13) ié similar to (4.8.36) thus it is

logical to seek asmall time . series solution in the form

Z = zzl/Fot + zzz/i‘—o" LA (4.12.14)
a, = a,, + a,; Pe/t +... (4.12.15)

These series automatically satisfy the intial conditions (4.8.32)
and (4.8.54) and on substituting them into equations (4.8.48) and

(4.12.13) there results the identities

- } _ 57 ti4

2(azo+a21Pet +...) = 2Pe FO(th +22Péh=..)+

b h 1-2a, P t%/ + )(l- Pet 24 ) +

5 i+ 22,2, %t 7Y (1-2a, Pet?/a, +...) (53,
3a ‘

20 .

b @ thaz pets..) Gzt Thez pet...) (3a, ~143a, Pettr...) (1ma, Pett/a, +...)
3 1 2e ---,21 2Pe con azo 218 c o zle 320 co e
a

20

(4.12.16)

and
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3 Br [ Je/ (3- =
2a, + 2a,Peti+...+ 28,73 1 + 2a,Pevt/(3 2320)+..J =
-4 (z t%+Z Pet+ )(Z t—%+ZZ Pe+ ) (a,~+a Pet%+...)

3 V1 gretTee Iy €T /%90 %21

-3 (Zzt+22 Z,Pe t%+ )(la Pet-£+...) +
3 1 172 TrraN272n

8A/FT ,
Ty (z t§+ZZPet+...)(a20+a2 Pe /E4...)(1—3a20/7+...)(1—...)

(2a,,.-5) 1 1
20 : (4.12.17)

Equating the constant terms in each of the above identities yields

the two algebraic equations

2
Z
—azo = Ta - (3320"1) (4.12.18).
20
and
2a, + Br/(1-2a,./3) = - % z%a (4.12.19)
20 r 20 3 “1%20 nhe.

This pair of equations is identical to the pair (4.8.78) and
(4.8.79) apart from the change Br - Br/(1-2a20/3). Using equation

(4.12.18) to eliminate Z1 from (4.12.19) results in the qaurtic

8a% - 24a30 + 2242

20 2 20 * (9Br—6)a20—3Br =0 (4.12.20)

For small values of Br the roots of this equation take the forms

1 1 _3
.1 ==-2B
8201 = T 7 PTHeeadygy T3 TG PP
(4.12.21)
3503 = 1 + 3Br+,.. and 04 = _3_ - %.Br+ .

We could now equate the terms in t% in the identities (4.12.16) and
(4.12.17) as in Section 4.8 and obtain a pair of equations connecting

Z and a However, the terms are not really necessary and it is

2 21

decided to use the lower terms only, Z and a

1 0 ° in our small time

2

series to obtain starting values.
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Figure 4.11 Roots of Equation (4.12.20)

Using the expressions in (4.12.21) as starting values, the roots
of (4.12.20) have been computed for a wide range of Br , using Newtons
method, and the results are plotted in Figure 4.11.

Rearranging equation (4.12.18) we see that

3a§0
Z = TTTATTTY (4.12.22)
1 (1 3320)

is to be real, then a <

from which we deduce that if Z 20

Wik

1

In view of this, it i1s evident from Figure 4.11 that the negative

root of (4.12.,20), 1° is the only physically realistic solution for

420
3,4 + Results for this negative root and the corresponding values

of Z1 given by equation (4.12.22) are displayed in Table 4.7.
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Br %20 Zy

0.1 -0.048 0.078
0.2 -0.093 0.142
0.3 -0.134 0.196
0.4 -0.173 0.243
0.5 -0.203 0.283
0.6 -0.242 0.319
0.7 -0.274 0.351
0.8 -0.303 0.380
0.9 -0.332 0.407
1.0 -0.359 0.431
2.0 -0.579 0.606
4.0 ~0.882 0.800
6.0 -1.104 0.121
8.0 -1.283 1.010
10.0 -1.437 1.080

Table 4.7

Considering the particular case of zero axial shortening, that
is Pe =0, it is easy to show that equations (4.8.48) and (4.12.13)

are satisfied exactly by the expressions

Z =2/F. z, /t (4.12.23)

and
4 % 2

provided that is given by the negative solution of (4.12.20)

%0

and Z, by (4.12.22). It is possible therefore to make a further

1
assessment of the accuracy of the approximate method by comparing the

values of Z in Table 4.7 with the values of a, in Table 2. 1In

1
particular expanding the expression for (4.12.21)1, to higher

201°

- (64.12.24)

orders in Br and substituting the resulting expression into (4.12.22),

the expression for 2 for small Br becomes

1
_ /3. [ 13 2
Zl = EBr 1- T-Z—Br + 0@r) (4.12.25)
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Comparing the lowest order term in this equation with the corresponding
term in equation (4.5.30), again reveals that the error isbabout 37
for small Br . Also comparison of (4.12.21)1 and (4.12.25) with
(4.8.67) and (4.8.69) respectively reveals that for small values of

Br the effect of the variable viscosity model, (4.12. 6), is negligible.

The corresponding large Br asymptotic solutions for a0 and

Z are
p

1/3
) 1/3 8
a0 ( } Br + 5 +... (4.12.26)

and
1/6 -1/6
7. = {%} Bel/6 - L (2} Br /6 4. (4.12.27)

Comparison of these expressions with their counterparts for constant
viscosity (4.8.68) and (4.8.70) shows that, for large Br , the effect
of allowing viscosity to vary according to (4.12.6) becomes more
significant and it is apparent that the constant viscosity model predicts

the larger values of Z1

Using the values of Z1 and 350 given in Table 4.7 and the
series (4.12.14) and (4.12.15) to obtain starting values, the equations
(4.8.48) and (4.12.13) were solved using the Runge~Kutta method and

these results are presented at the end of this section.

It is also useful to derive the steady state values, pr and

a The steady state representations of equations (4.12.13) and

20 °
(4.8.48) are

(1—3a2m/7)

Z .
5220 755 (4.12.28)

232oo + Br/[§'232w/3] = 4pe

and
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-2a, = PeZ _ , (4.12.29)

respectively. Eliminating e between these two equations results

in the quartic
4 3 : 2 =
3(Pezpw) +30(Pezbm) +98(Pezpm) +21(5-Br_)9q2poo - 1058r = O (4.12.29)

It can be shown that there is only one positive real root to the above.
This positive root can be obtained numerically using Newton's method
and results are presented in Section 4.l4. However the asymptotic
solutions to (4.12.29), for small and large Br are readily obtained
and these are given here for comparison with their counterparts from
the constant viscosity model (4.11.11) and (4.11.12). For small Br

we have

Br 3
Z oo FE [i-11Br/15+0 (Br7)] , (4.12.30)

whereas for large Br the corresponding expression is

1
BK
z_ L [_71/3-—5Br Y3 340(8r 2/3)] (4.12.31)
P p -
e
Comparison of equation (4.12.30) with (4.11.11) reveals that the
difference between both models for small By 1is negligible. However
comparison of (4.12.31) with (4.11.12) again shows that for large Br
the value of me predicted by the variable viscosity model is
considerably smaller than that predicted by the constant viscosity one.

1/n-1

4,12.2 Solution with p = (3V/3Z2) exp{Q/nR[b(TC—TAM)ITAQLLL

In this section we use the viscosity model discussed in Section
4.5 and given by equation (4.5.7), which is rewritten here for
convenience
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b= [av}l/n_l exp Q (4.12.32)
Y2 .12,
B nR[é(Tc_Tnn)*TaA]

Substituting this expression into equation (4.3.13) and rearranging

yields

W e exp =9 (4.12.33)
YA RIO(T -T +T ° *
<t ¢ ¢ HM) anj

Integrating this expression with respect to Z we have

z

—

- B Q
\' T I exp R[G(T STy —T— dz , (4.12.34)
o C AN AN

which satisfies boundary conditions (4..2.16)2 . In order that condition
(4.2.17)2 is satisfied, the thickness of the plastic region Zp and
the shear stress T must be related by

Z

P
(4.12.35)

= 0 —Q
1= f exp R[B(T T O+T 7 dz
0 C AamM AM.

On substituting equation (4.12.33) into (4.12.32) we see that the

viscosity u may be expressed in the form

= 1T _ Q (4.12.36)
W=t exp R[?(T T )+T ]
c amM’ M

Using the latter expression, the energy equation for the plastic region

(4.12.2) can be written as

820 1-n 2
7t Brr /;XP[?(OX] [ exp ~x(6)dn| =
on 0
4 na'
PeC Z
0P ! - 1gor| 98
Tl"n [ [ k exp[l(e)]dk dl] P +
0 1
72 2 %5 92, 4
f§"'52'~ e s 0snsl, (4.12.37)
0
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and the function Co(t) given by (4.12.5) becomes

”

%
[ k'exp[-A(8)]dk'dr" , (4.12.38)
1

1
1-n,_3
C0 = -1 /Zp j

0

where the function A(6) 1is defined by

Q
= - (4.12.39)
R[B (T, T *Taod

Integrating both sides of equation (4.12.37) with respect to n
between the limits n =0 and n =1 vyields thf;peat balance

integral for the plastic region, namely

1
%%’(l,t)— g%‘(o,t) + BrTlun/I exp[-A(8)]dn =
0

4 1n g
PeCOZ
———T:E-J [ [ k' exp[}k(eljdk de' — dn +
T 001
2123 d [ Zp 4z, i 36
i"'—— EI 8dn - F_ dt I n '5; dn . (4.12.40)
0 0} 0 0

Substituting equation (4.12,38) into this equation and using

(4.12.35) to eliminate 1 leads to the equations

1 L
n
9 1,0) - 2 (0,t) + Bry! Vol | exp[Eaoylan| =
0
1n &' 18!
“PeZ f JJ k' exp[-A(6)]dk'ds’ ——dn/ fj k' exp[-A(8)]dk'de' +
001 01
2 1 1
z Z_ dz
_p dt ) 38
Fodt f 6dn -+ 3% [ n g dn (4.12.41)
0 0 0
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Finally substituting the quadratic profile for 6 given by

(4.8.35) into this equation leads to the ordinary differential equation

connecting a, and Zp

1-1/n 72
BrzZ da z dz
2a. + —B = %_P_ 2 _ %‘FP’ a, aﬂ - pezpﬁz[az(t)] . (4.12.42)
. 0
Hi/n[az(t)] O

where the functions H1 and H2 are defined by

1
H1 = f exp{-k[}+a2(n2—li]}dn (4.12.43)
0

and

L
k'exp{-A[}+a2(k'2—1i]}dk'd2'ndn
(4.12.44)

. 2 '
k’exp{~k[i+a2(k' —li}}dk'dl

ON—— O
o —— o

The heat balance integral for the solid region is again unchanged
and we are thus required to solve the pair of ordinary differential
equations (4.12.42) and (4.8.48) subject to the initial conditions
(4.8.32) and (4.8.54). The most interesting features of this model is
thought to be the dependence of y on the strain rate, 3V/3Z, and
since we have already examined the effect of decreasing viscosity
with increasing temperature we decided to illustrate the solution for
the special case where Q = O for which the equations are simplified

considerably. PuttingQ = O in equation (4.12.42) the latter reduces to
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2
Z” da Z dz
-2 p_2_2p, _P
3 Fo dt 3 Fo 2 dt

(4.12.45)

This equation must now be solved together with (4.8.48) subject to the

conditions (4.8.32) and (4.8.54).

Again a small time series solution

is necessary to obtain starting values to the numerical procedure.

Only the lowest order terms in the series are required so we seek

solutions in the form

and

Substituting (4,12.46) and (4.12.

(4

(4

2
. 27
B 1-1/n_a(1-1/n) __ 1 2a+8-1
2a20t +...4 Ber t +... = —Fg-azost
_ 2 2 20+8-1 _ 4Pe o+f
§F5~21 zoat —3-Zla20t +. (4
and
2 2 -B
Z.8 o Zlo _ t
‘2320t8+' = ?1%’?— T F’l'" 71 - 3a +fez, t%+
0 20 0 20
(4
After a careful inspection of (4.12.49) one deduces that a
8 must satisfy the equation
20 - B ~-1=8, (4
and then from (4.12.48) that
- -1
B =a (1-3] (4
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.12.46)

.12.47)

47) into (4.12.45) and (4.8.48) yields

.12.48)

.12.49)

and

.12.50)

.12.51)




On solving (4.12.50) and (4.12.51) we have
o =n/2 and B = (n-1)/2 , (4.12.52)

. . . B . . ..
and equating to zero, the coefficients of t in the 1identities

(4.12.48) and (4.12.49) yields the pair of equations

2a20 + BrZiﬁl/n =0 (4.12.53)
and
2a, = z2/6F a (4.12.54)
20 1 020
Using (4.12.54) to express a5 in terms of Z, we have
a,q = * Z;/Y12F, (4.12.55)
It is now seen from (4.12.53) that a real solution to z,

exists only if the negative sign is taken in (4.12.55), we then obtain
)*/ 25" and ay = - 3 (35) O 2 (4.12.56)

We could now proceed and obtain higher order terms using the series

3 2a 3
+p2t+...) + Zzt (1+r1t +r2t+...)+...(4.12.57)

N
]

(¢
th (1+p1t

and

}

1
+q2t+...) + a21t28(1+s t2+S t+...)+..., (4.12.58)

1 2

B
a, aZOt (1+q1t

however this would be extremely tedious and it is again decided to
obtain starting values to the numerical procedure using the lowest order

terms only.

Using (4.12.46) and (4.12.47) with a suitably small value of ¢t ,
to obtain starting values, (4.12.45) and (4.8.48) were solved using the

Runge-Kutta method. 1In order to do these calculations it was necessary

- 155 -




to choose a value for n . It is suggested in [ii] that n = 5.0 .
However this choice of n leads to lengthy computing times and,

since we are mainly interested in the qualitative features of the
model, n was taken to be 1.5. This choice considerably shortens

the computing time, but preserves the main qualitative features of the
model. The results are presented in Section 4.12.3. Again it is of
interest to examine the steady state solutions, the steady state forms

of (4.12.45) and (4.8.48) being

1-1/n _ _ 4
2a200 + Ber°° = B Pepra200 (4.12.59)
and
—2a2°° = PeZp°° s (4.12.60)

respectively. Eliminating a from this pair of equations leads,
) 200 q

after some rearrangement, to the relation

Br 2PeZPco
v - =1 (4.12.61)
Pezll)i“ >

This equation, again, must be solved numerically and results determined
by the Newton-Raphson method are presented in Section 4.14. The
asymptotic solutions for small and large Br are given for comparison

with (4.11.11) and (4.11.12)

For small Br we have

Br n 2aPe Br n
zpoo N (§EJ 1 - B [Fg] +... (4.12.62)

and the corresponding expression for large Br 1is
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n/n+l

5 n/n+l _ __ 5n “n/n+ly 49 63y
me v 2 Br 2Pe (n+1) * O(Br >«
2Pe

Since n > 1 comparison of (4.12.62) with (4.11.11) reveals that
smaller values of pr are predicted by this model than by the constant
viscosity one, for small Br . However for large BY comparison of

(4.12.63) with (4.11.12) reveals that the converse is true.

4.12.3 Results and Discussion

The results obtained in the previous two subsections are presented
and discussed here. The plots of Zp and T against t for various
values of Br , for the case Pe.= 0 , are shown in Figures 4.12 and
4.13 respectively. The solid lines represent the case p =1/g and

1/0-1 Comparison of the solid

the dotted ones represent 1y = (dV/3Z)
lines in Figures 4.12 and 4.13 with the corresponding dotted lines

in Figures‘A.l and 4.2 respectively reveals, again, that the error

in the heat balance integral method is less than 5% over the range of
Br given. It is also to be noted from Figures 4.12 and 4.13 that the
 differences on the values for Zp predicted by the models u = 1/6

1/n-1

ahd u = (3V/3Z2) is quite significant whereas the difference in

the shear stress T 1is very small.

Figures 4.14(a) and (b) and Figures 4.15(a) and (b) illustrate
the effect of upset on the models. It is again seen that higher

burnoff rates (higher values for Pe) result in smaller values for Zp
and higher values of 71 , and equilibrium is reached earlier.
In Figure 4.16(a) and (b) and 4.17(a) and (b) the interface

LY -
temperatures, 6(0,t) for the cases u =1/6 and u = (3V/52) Joy 1

respectively are plotted against time. The curves in Figures 4.16(a) and (b)
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—u =1/8 Pe
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Figure 4.14 CGraphs of Zp against t for the cases u = 1/8

b= av/ez /!
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Figure 4.16 CGraphs of interface temperature against t for the case

o= 1/0
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Figure 4.17 Craphs of interface temperature against
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for the case




are similar to those in Figures 4.9(a), (b) and (c). For the case
non=zZero pe the interface temperature initially assumes the value
predicted by zero Pc¢ and then decays to its equilibrium value;

the rate of decay increasing with Pe . As we have mentioned before
we would expect a comtinuous rise towards equilibrium and no overshoot,
thus the models with u =1 and u = 1/8 are initially in error.
However inspection of Figurestl7(a) and (b) reveals that in the case

1/0-1 the interface temperatures intially assumes

where U = (9V/3Z)
the conditioning temperature,;regardless of the value of Pe , and
rapidly rises towards steady state and never exceeds it. This is a
direct result of the form chosen for the viscosity. The initial
singularity in the strain rate, 9dV/3Z , produces a zero initial value
for the viscosity, which in turn leads to zero heat generation. The
strain rate then falls rapidly leading to a rapid increase in heat
generation and the interface temperature attains about 807 of its
equiiibrium value in the first 0.001 seconds. However, for times greater
than this value it is noted, using Figures 4.9, 4.16 and 4.17, that
the temperatures in ©6(0,t) predicted by all these models, u =1,

1/n-1

p =1/ and u = (3V/3Z) , vary only slightly with ¢t .

4.13 Effect of conditioning phase

In all the solutions obtained up to now in this chapter, the
conditioning phase has been ignored. It has been assumed, in all
cases, that the interface, Z = 0 , is initially at the conditioning
temperature but that elsewhere, Z > O , the material is at ambient
temperature. In this section, the conditioning phase is included
and the solution obtained by the heat balance integral method in
Section 4.8 is extended to take account of the changed initial

condition.

- 163 -




Retaining all the assumptions of Section (4.8) except the initial
condition (4.4.4),the energy equations for the plastic and solid regions
are given by (4.8.23) and (4.8.24) respectively. The boundary and
initial conditions to be used here are given by (4.2.23), (4.2.24),

(4.2.25), (4.4.3) and (4.2.27).

To obtain a heat balance integral solution to the system described
above it is convenient to introduce the dimensionless temperature

variable oy > in the solid region, defined by

¢S(Z,t) = GS(Z,t) - GC(Z) ’ Z>2Z (4.13.1)

where OC is the temperature profile present at the end of the

conditioning phase, With this definition (4.8.24) becomes

924 d20 = 3¢ de 3
S+ C—Pe _é_S__‘_ E_Z_C- +%‘—a—z~s— K Z P VA (4.13-2)
072 az? Z 0

and the boundary conditions (4.2.24), (4.2.25) and (4.4.3) become

8 (Zp,t) = ¢S(Zp,t) + ec(zp) =1 , (4.13.3)
¢S(Z,t) +0 as Z » @ (4.13.4)
and
o¢
a0 _ 8 Y
57 (Zp,t) = 57 (Zp,t) + ec(zp) s (4.13.5)

where the (') denotes differentiation with respect to Z , with
condition (4.2.23) remaining unchanged. Finally the amended form of

the initial condition (4.2.27) 1is

$,(2,0) =0 . (4.13.5)
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Introducing the variable n , defined by (4.8.25), into equation

(4.13.2) yields

224 _ a2e 2, do_
+ (Z_ n) = - Pez — (Z_n) |+
3!’]2 dnz P P d dn
2 9¢ Z dz 1)
Zp_'s__p_pP___S
+ FO T FO dc n n s n=x21 (4.13.7)

and the boundary conditions (4.13.3) to (4.13.5) tramnsform to

6(1,t) = ¢s(1,t) + ec(zp) =1, (4.13.8)

¢,(n,t) >0 as n > - (4.13.9)
and

2 a,n - —2-25 (1,£) + 2 0!(Z ) (4.13.10)

Again the initial condition (4.13.6) is incorporated into

(4.13.9) since it is assumed that Zp(O) =0 .

The energy equation for the plastic region, in terms of n ,

is given by (4.8.26) and the boundary condition on n =0 by (4.8.28).

The above system is now solved by the heat balance integral
method. For the plastic region the temperature profile may again be
expressed by (4.8.35) and after applying the integral method the
averaged energy equation for the plastic region is given by (4.8.36).
For the solid region we again assume the existence of a thermal layer
1 £ n g S(t) and use the conditions (4.8.39) and (4.8.40) on n =S .

Thus assuming a quadratic temperature profile in the form

_ 2
¢S = be + bln + b2n , LsngsS, (4.13.11)
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where bO’ b1 and b2 are functions of t only, and using the

conditions (4.13.8)2, (4.13.10), (4.8.39) and (4.8.40) we deduce that

2
= |1- (S-n)
¢y = [} oc(zp{] 50 , (4.13.12)
where S 1is given by

) 2[1—ec(zp{]
S=1- Wp) (4.13.13)

and use has been made of the assumption that

GC(S) = 0 and eé(S) =0 (4.13.14)

The temperature ¢S is assuwmad to be zero for n > S , thus

condition (4.13.9) is satisfied automatically.

The heat balance integral is obtained by integrating equation

(4.13,7) with respect to n between the limits n =1 and n = §

yielding

99 o9

—2 (5,t) - —= (1,t) + 2 6'(8) -2 0'(Z) =
an ’ on ’ pc pPcp

- pez [0,(5,0)=0,(1,8) + 8_(8) - 0 (z)] +

zi 4 S ds z dz ° 30
LIS g dn - 32 ¢ (S,e)| - —L2 | 5 —=dn (4.13.15)
F_|dt s dt %s F_dt an

oL 1 0 1

Finally substituting equation (4.13,12) into (4.13.15) and making

use of (4.13.13) and (4.13.14) leads to, after some algebra:
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(
2 ' " - 2
22 ’];ec(zp)+zpoc(zp)][1 ec(zp)] )

' 12
0 [zaz—zpoc(zp).]

\ 2 - y 2
z[i~oc(zp)]ec(zp) az, 6z -0 (2 )] da,

+
2a,-Z 6'(Z ) dt oAt 2 dt
2 “pep 3FO|2a2 ZPGC(ZP)I
[1-6 (z_)]z 2[1-68 (z)] dz
+ _C_F_P____R 1 - cC P dtP (4.13.16)
— 1
0 3[2a, zpec(zp)]

The intial condition on Zp is given by (4.8.32) and it is
easily shown by considering the total thermal energy of the plastic
region that the initial condition (4.8.54) remains valid. Again there
is no analytic solution to the pair of equations (4.8.36) and (4.13.16)
which are to be solved subject to conditions (4.8.32) and (4.8.54)
and a numerical solution must be sought. Using the Runge—Kuttcx
method we again require a small time series solution to avoid the
complications due to the singularity at t = O and to provide

starting values for the numerical procedure.

Using the simple model for the conditioning phase given in

Chapter 2 the initial temperature distribution, GC(Z) ,

8.(2) =6Vr i3 erfc(Az) (4.13.17)

where the constant A 1is equal to 1/2¢Fot2 . Expanding the right

hand side of (4.13.17) for small 2z we obtain

6_(2) =1 - 32£ Az + 38272 + 0(a3z%) (4.13.18)
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Successive differentiation of this expression with respect to

7 yields
I3
oé = - 3/5‘ + oA2Z + 0(a2z2) (4.13.19)
and
eg = gA2 + 0(AZ) (4.13.20)

Since for small times the thickness of the plastic region, Z

may be assumed small, equations (4.13.18), (4.13.19) and (4.13.20)

can be substituted into (4.13.16), yielding

222{1}3/?.A/2+0(A22 )] [3v/7 az /2+0(8222)]
-2a = P Z - P E P p
2 Tep 3F(

- 2
2a.+3V1 AZ_/2+0(A222
[2a, ,/2+0(8%22)]

L;/F'Azp/2+0(Azz§{][;/?'A+0(Azz§)] az [9nAzz;+O(A3Z;)] da,
+ +
252 dt . 2,22 dt
[éa2+3/?'Azp/2+0(A zp)], ‘ 3F0[2a2+3/%'Azp/2+o(A zpi]
[3v/7 az2+0(a223)] /i AZ_+0(A222) dz,
+ gF P 1 - P P dt
2\
0 [22,+3/7 AZ_/2+0(4 zpﬂ

(4.13.21)

A close inspection of equations (4.8.36) and (4.13.21), analagous

to the discussion of equations (4.8.36) and (4.8.48) in Sectiorn 4.8,

reveals that the series expressions for Zp and a, at small time

take the forms

Z =12.t + Z. .t +... (4.13.22)
and

QZ = 3-21t + azzt ' +eee (4-13.23)
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which satisfy the initial conditions (4.8.32) and (4.8.54).

On substituting these series into (4.8.36) and (4.13.21) there

results the pair of identities

2

277 a
1/5 o 1721 . 1/5, 1/5,
2a21t +...+ BI’ = —1——5——%——-(*1*222!: ,Zl+...)(1+2322t /321'9'...)
2223
1% 1/5 1/5 1/5
~1—5-1% (1+22t /Zl+...)(2+3zzt /zl+...)(1+a22t /a21+...)
_ 4 3/5 1/5 1/5
B Pea21zlt (1+22t /Zl+...)(1+a22t /a21+...) (4.13.24)
and
N 1/5_ 2/5 _ _ 2/5 _
2321t 2a22t ee. = Pe(th +...)
zf s _9n3/2 321t4/5 3wA221;2/5
—= t + +
5F 2 .2/5 1/5
0 8a21 t + a21t +...
2.4 8/5 -
. 3nATZ e Tl EZI“_4/5+ J
2 2/5 5 ©
4F0a21t +...
3/EAzi’t1/5 " J’itletZ/S )
et e e, 1 -—
1/5 /
SFO 2321t +... E
- J
(4.13.25)
Equating the coefficient of the time independent terms in (4.13.24)
and the coefficient of tl/5 in (4.13.25) results in the pair of
equations
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B = - 121 (4.13.26)

and

-2a = ———————— (4.13.27)

This pair of equations is now readily solved to yield the

solutions

2
z. = 5/ 23B.F, (4.13.28)

and 3
a. = - 1 (4.13.29)

21 10F
It is now possible to truncate the series (4.13.22) and (4.13.23)
after the first term, and by using (4.13.28) and (4.13.29) and a

suitably small value for t , the numerical solution can be started.

Numerical values of 2Z and were computed for various

1 %21
values of Br and using these values the full solutions were calculated
using the Runge-Kutta method. At the same time the dimensionless
shear stress 1 and the thickness of the thermal layer in the solid

region S were computed using equations (4.7.3) and (4.13.13). These

results are presented in the following subsection.

4.13.1 Results and Discussion

Using results obtained by the Runge-Kutta process, the plots
of Zp and <t against t for various values of Br , for the case
Pe = 0 , are shown in Figures 4.18 and 4.19 respectively. By comparing

these curves with the corresponding ones, for the case GS(Z,O) = 0,
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Figure 4.18 Graphs of Zp against t for the case eg(z,o) = ﬁc(z)
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I"igure 4.19 Graphs of 71 against t for the case 0 _(z, 0) = O(‘(z)
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Figure 4.20 CGraphs of 2zp against t for the case GS(Z,O) =0 (z)
c
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Figure 4.21 CGraphs of 1 against t for the case Og(z, 0) = OC(z).
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Figure 4.22 Plots of Interface Temperature against t for the case
{ =
(2, 0) =0 (2)
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in Figures 4.6 and 4.7 reveals again that differences are small.
1
In fact for the case Oq(Z,O) =0 . Zp behaves like t? , for small

275

t , whereas when OS(Z,O) = OC(Z) Zp is asymptotic to .
For large t the same stcady state solution is approached by both
models and thus it is deduced that neglecting the conditioning phase
does not affect the solution for large times and that the quantities

Zp and T are not greatly affected for small time. However comparing
the curves in Figure 4.22 with those in Figure 4.9 reveals that the
behaviour of the interface temperatures differ vastly between the two
models although the same steady state values are approached. It is
seen that when the conditioning phase is included, the interface
temperature initially assumes the conditioning temperature , 6 =1 ,
and rises rapidly»towards the steady state whereas when the phase is
neglected, the interface temperature initially assumes the value
corresponding to Pe = 0 and decays towards the steady state value
(see Figure 4.9). We thus deduce that neglecting the conditioning

phase leads to large errors initially in the temperature profiles but

that the errors reduce rapidly with increasing time.

4.14 The Equilibrium Phase

Up to now all the models considered in this Chapter have been
relevant to the phase II stage of the welding cycle. It has been
noted that providing upset is included in these models then a steady
state solution is approached. A steady state exists in practice and
the period of time over which the steady state conditions endure is
called the equilibrium phase or phase IIL. (See Figure 1.2).In this
section an exact solution is developed for the equilibrium phase of
the model described in Section 4.8, that is upset is included but

constant viscosity is assumed.
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With
all the assumptions of Sections 4.8 the energy equations (4.8.23)

and (4.8.24), for steady state, reduce to

2
d“o > de_
i L?QJ &534 "3 a (4.14.1)
dz z “pe) [P
p
and
a%o_, do_,
=~-Po (4-14-2)
172 dz

where the subscript («) denotes steady state. The boundary

conditions (4.2.23), (4.2.24), (4.2.25) and (4.4.3) become

do_
HE—-(O) =0 , (4.14.3)
8 (z = 0 =1, 4.14.4
o) = 0,2 ) ( )
esw(z) > o  3s Z > o (4.14.5)
and
SGm desm
a7 (pr) =17 (me) (4.14.6)
It is convenient at this stage to introduce the new variable
defined by

c=zlz, . (4.14.7)

In terms of £ the above equations become
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d“e_ PeZ 9 do_

+ Br = P t(z"=3) — (4.14.8)
2 2 dg
dzg
and
dzeSco descc
= Pez —2 (4.14.9)

dz pe dg

which must be solved subject to

de_
EE—-(O) =0 (4.14.10)
0,(1) =6 (1) =1 (4.14.11)
esm(;) +0 as 7> » (4.14.12)
and
de_ desw
Fr (1) = aT (1) (4.14.13)

An analytic solution to this system is derived here. On
multiplying equation (4.14.8) by the integrating factor exp|-R(z)| ,

where
2,2
R(Z) = Pez z°(z -6)/8 (4.14.14)

the equation can be expressed

o

de
%E exp[—R(c)] EE—- = - Br exp[}R(g)] . (4.14.15)

On integrating this equation with respect to ¢ we have

z
do
exp[}R(cX] HES-= A - Br J exp[}R(gi}dc . (4.14.16)
0
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and applying the boundary condition (4.14.10) it follows that the
constant of integration, A , 1s identically zero. A further
integration of equation (4.14.16) and the application of the boundary
condition (4.14.11)l yields

exp[k(ui] exp[}R(VX]dvdu (4.14,17)

]
p—
|
5
=Y
O—f

The solution to equation (4.14.9) which satisfies the boundary

conditions (4.14.12) and (4.14.11)2 is easily seen to be

T exp[—Pepr(z;—l):l . (4.14.18)

Finally on the application of the remaining boundary condition

(4.14.13) there results a transcendental equation in Zp , namely

1
Br exp[R(1)] J exp[-R(z)]dc = Pez . - (4.14.19)
0

This equation was solved numerically using the Newton—Raphson iterative
procedure and in Figure 4.23 numerical values of pr for various
values of Pe are plotted against Br . Values of me obtained by
the heat balance method and given by equation (4.11.9) are also given

for comparison.

We also present here the asymptotic solutions to equation (4.14.19)
for both small and large Br for comparison with their counterparts

for the heat balance integral given by equations (4.11.11) and (4.11.12).

For the case Br << 1 it is appropriate to seek a series solution

in the form

_ 2
pr = Brgl + Brg2 +... (4.14.20)
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Br

Figure 4.23 Plots of me against Br for the case u =1 from the

heat balance integral solution and the exact solution.

‘Substituting this series into equation (4.14.19) and expanding for
small Br leads to the identity

1

| 2
Br[}— 5/8 BrPeg, + O(Brgﬂ J [1fh:Peg1u2(u -6)/8 +0(Br2i]du
. ,

1l

BrPegl +Br2Peg2 + o(BrB) (4.14.21)

b

which, after performing the integrations and rearranging,becomes

2,2 2 2 L3
- — PR — ! (\'/v: §
Bl‘ 5Br Pegl + OB?A)__Br Peg1 +Br Peg2 + Cfamr)’ (4.14.22)

Equating the coefficient of like terms in this identity gives 81

and gy and hence, with the aid of equation (4.14.20), we can write

2
2B
_Br "'r 3
zpm = o "~ ot O(Br™) . (4.14.23)
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Furthermore, on substituting this expression into equations (4.14.17)
and (4.14.18) we have the asymptotic solution for small Br of

the temperature profiles Oo° and esm respectively.

@
[

2
1+ %r(l-;z) + BE 5@ - 25-1)]+ 0@

(4.14.24)

and

<
il

1 + Br (1-g) +-—— [5(1-0)° = 4(u-gy]+ 0Gr 7 [1-c]<< 1

(4.14.25)

It is seen by comparison of equations (4.14.23), (4.14.24) and
(4.14.25) with (4.11.11), (4.11.13) and (4.11.14) respectively that
the first two terms in each series are identical which indicates that
the approximate solution is in very good agreement with the exact

solution for small Br .

In order to obtain an asymptotic solution for large Br Wwe note

that

dg

L PeZ E ( ):1 2
(3 z )C exp|-R(g
I eme(3—Cz)C

1"
N =

1
I exp[“R(z )] dz
0 -1

(4.14.26)

The right hand side of this identity is now readily integrated by

part yielding, with the aid of definition (4.4.14),

1
{
1 Pez /8 (1- c ) _
exp [FR(2V]de = oo T Ppel® 1 22 wJ 1Y exp[-R()]dz

pOO

O

(4.14.27)

and, in fact, a further integration reveals that
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1 5PeZ_ /8
P

j exp[-R(g)]dg = = a7 +0 ; . (4.14.28)
0 p= Pe~Z

3
poo

Substituting this expression into equation (4.14.19) then gives

us

Br Br
+ 0 |—————_| = Pez (4.14.29)
PeZ 3 p=
@ PeZ
P ¢ p«»>J

From this equation we deduce that

7 = »/EE + O(Br—%) (4.14.30)

Comparison of this expression with equation (4.11.12) reveals
that the approximate solution is far less accurate for larger values
of Br , however, as can be secen from Figure 4.23, the discrepancy

is still very small for values in the range O < Br £ 10

4.14.1 Results and Discussion

1

In this section various results for the steady state are compared

and discussed.

Using the numerical solutions of equations (4.12.29) and (4.12.61),
plots of pr against Br | for various values of Pe , are given in
. 1/n-1
Figure 4.24, for the cases p =1/ and yu = (QV/32) .
We notice by comparing these curves with those in Figure 4.23 that values
of Z predicted by the models u =1 and p = 1/6 are quite close

p(x)
1/n-1

whereas those predicted by the model 1 = (3V/3Z) differ vastly

from the other two. However it seemslikely that if the exponential
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term, exp{Q/RETAM+ (TC—TAMX]} , were included in the latter model

then the values of 2 predicted would be reduced.

= 1/0
A u / 1
P13 | — — — u = (3v/3z) /n-1
n=1.5
12
/
= 1.0
0 T T T T T T T T T T > Br
1.0 2.0 3.04.0 5.0 6.0 7.0 8.0 9.0 1¢.0
Figure 4.24 Plots of pr against Br for the models u = 1/86
and wp = (9v/3z) 1-1/n
In Figure 4.25 the interface temperature ¢ (0) is plotted
against Br for the models = 1 , w=1/6 and y = (av/az)l/n—l .

We note in all cases that a value of Br exists, Br , at which
c
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6_(0)
] —_——— oy = (av/az)l/“'l
& 1 { n=1.5
4

1 Exact

) T k) i 13 1Y 7

0 1 2 3 4 5 6 Br

Figure 4.25 Plots of Gw(O) against Br for the models u =1,
p=1/6 and pu = (Z)V/Z)z)lln—1

melting is attained. It is seen that in the case y = 1/g the
value of Br is greater than for y =1 whereas taking

u = (ov/az) M/l

leads to smaller values of Brc . It thus seems
likely that it is the decay of viscosity with increasing temperature
that prevents melting from being achieved. 1In fact a suitable

mode 1 for the viscosity would be one which obeys law (4.12.32)

for temperatures less than the melting temperature end falls very rapicdly

to zero in the close proximity of the melting temperature. In this case
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the heat generation term would fall to zero as melting temperature

was approached and consequently melting would never be reached.

4.15 The Deceleration Phase

So far in this theslis the final phase in the frictioning

stage, the deceleration phase, has not been.discussed.

At the start of the deceleration phase a friction brake is
applied to the head stock chuck and the rotating component is rapidly
brought to rest. The manner in which the rotation is halted can
significantly effect the weld quality as has been extensively studied,
experimentally by Duffin and Bahrani @3] . In this section a
modél is developed to describe the deceleration phase and a solution

valid for the early stages of this phase 1s obtained.

Let the angular velocity of the rotating component, during the
deceleration phase be mD(t) . In this section the time t 1is
measured from the end of the equilibrium phase so w must satisfy

the initial condition

wD(O) = W, (4.15.1)

where w 1is the angular velocity during phases II and III

During the deceleration phase the equations governing the
pressures and velocities are given by (4.2.7) to (4.2.13) and the
corresponding boundary conditions are (4.2.14) to (4.2.18), with the

exception that condition (4.2.17)2 is replaced by

V(zp,t) = mD(t)/w = VD(c) . (4.15.2)
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In view of (4.15.1) it follows that VD(O) = 1 . Retaining
the assumptions of Section 4.8 (including the postulate u = 1) ,
the velocity components u,v and w are given by (4.7.15), (4.7.2)
and (4.7.14) respectively and the pressures Py and Py by (4.7.1)
and (4.7.22) respectively. However, the amended form of equation
(4.4.7) obtained by applying boundary condition (4.15.2) to (4.4.6)

is
VD(t) = t(t) Zp(t) . (4.15.3)

On substituting equations (4.7.2) and (4.7.14) for the velocity
component v and w respectively into equation (4.8.14) and expressing
the shear stress 1 in terms of Zp using equation (4.15.3), the

energy equation for the plastic region becomes

= (2°-32) — + +— — , oszszp. (4.15.4)

The corresponding equation for the solid region is unchanged
from (4.8.24) and the relevant boundary conditions are given by
(4.2.23),(4.2.24), (4.2.25) and (4.4.3). However the new initial

conditions are

6(2,0) = 8_(2) (4.15.5)

and

OS(Z,O) 6 (z) , (4.15.6)

Sm
where 0  and 93 are the steady state temperature profiles.

We develop here a solution to the above system of partial
differential equations which is valid for small times. Since at the

beginning of the deceleration phase the system is in equilibrium it
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secems logical to assume solutions of the form

and

where the suffix («) denotes steady state variables.

G(Z,t) = Ooo(z) + el(zat) ’

6 (2,6) = 6, (2) +6_,(Z,¢) ,
Zp(t) = me + Zl(t)
(t) = T, * Tl(t) ,

(4.15.7)

(4.15.8)

(4.15.9)

(4.15.10)

For early

times it may be assumed that the transient terms are much smaller

than the steady state counterpart, thus we can write

Let us also write

in which case

and consistent with (4.15.11) it can be assumed that

leoo[ > I() 1l b4 |esool >> lesll’ lzpml ae !le
V() = 1+ B(E)
B(0) =0

(4.15.11)

(4.15.12)

(4.15.13)

B << 1

On substituting equations (4.15.7) to (4.15.10) and (4.15.12) into

equations (4.15.4) and (4.8.24)

the energy equations can be written

dzaw

+

828

1

Br

dZ

2

¢ z°

+ Zz (1+28(t)+...)(l—Zzl/me+...) =

poo

PeZ

ZZ3

P

Z

o0
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2 .2 do,,
S5 (372 ) (@032 67 i) |

and expanding in small quantities,

P, 1%
97 F_ 2t

0

(4.15.14)




and

a%e 020, do__ 80, 30,
5T 4 = -p il L S|, (4.15.15)

—_ e
de az2 dZ o0Z 0 at

"r.ilp—*

Similarly using equations (4.15.7), (4.15.8) and (4.15.9)
in the boundary conditions (4.2.23), (4.2.24), (4.2.25) and (4.4.3)

and expanding in small quantities using Taylor's theorem, one obtains

de a0

® 1 _
a7 (0) + -8-Z—-(O,t) =0, (4.15.16)

de
0 2
em(zpm) + el(zpw,t) + Z1 iz (pr) + O(Zl) =1, (4.15.17)

doe
S 2, _
esw(zpm) + esl(zpm,t) + Z1 1z (pr) + O(Zl) =1, (4.15.18)
do_ 2 %o _ )
T o) + =57 (2,00) + 2] —5= (2 ) + 0@2)) =
dz
ae_, 2, a*o_, ,
=37 (me) + 57 (me,t) + Z1 5 (pr) + O(Zl)
dzZ
(4.15.19)
and
esm(z) + esl(Z,t) -0 as Z > ® (4.15.20)
Finally the initial conditions (4.15.5) and (4.15.6) reduce to
0,(2,0) =0 and 6_;(z,0) =0 (4.15.21)
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4.15.1 The Steady State System

The steady state terms in the above identities yield the pair
of ordinary differential equations (4.14.1) and (4.14.2) with the
boundary conditions (4.14.3), (4.14.4), (4.14.5) and (4.14.6).
The solution to this system has been given in Section 4.11 and requires

no further discussion here.

4.15.2 The Transient System

Equating the time dependent terms in the identities (4.15.14)
and (4.15.45) and neglecting terms O(Z{) yields, after some

rearrangement, the following pair of partial differential equations

52 : ‘

Op ez o 21 199 op pe 212 2 o2 %
—5 T T3 (Z—3Zm)-é—-z-——§——az—=—‘§—(zl-zm8)+ (Zm“z)‘a’z‘,’_
0z 22 P 0 z 27 P

poo p> p®
(4.15.22)
and
2
320 56 50

sl sl 1 sl
- - e L1 (4.15.23)

aZZ 9z FO ot

Similarly the boundary conditions (4.15.16) to (4.15.20) reduce to

a6
1
SE—*(O,t) =0 , (4.15.24)
de_
01 (2 nt) = = 2) g7 (2 (4.15.25)
desm
Osl(me,t) = - Zl a7 (pr) R (4.15.26)
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26 d“e_ 36 d

1 sl s®
—-—-—+Z—-——-——(Zm)= + Z (Zw)
3z 1 d22 P dZ 1 de P
(4.15.27)
and
esl(z,t) >0 as Z > o | (4.15.28)

and the initial conditions are given by (4.15.21).

Introducing the variable r, defined by (4.14.7), into the above

system, the latter can be written

2 2
%6 PeZ 20 VAL 3 Pez do
— L1 P® 2 1 _ pe__1 2Br - 12y =

5 57— t(57-3) 57 F 3T 7 (2] mes) oy o (1) o
L 0 p®
(4.15.29)
226 0 T, 00,
+ PeZ - =0, (4.15.30)
3(,2 p azg FO ot
20,
52—-(0,t) =0, (4.15.31)
z, do
91(1,(:) - E‘——E-C—— (1) R (4.15.32)
poo
z, de_,
051 (1,8) = - 7= & ), (4.15.33)
pOD
20, z, d%e_ 20, z, d%o_,
3z (L) + o= ——7 (1) = Sz (Lt +o— —— (1)
pe dg pe dg
(4.15.34)
Gsl(c,t) >0 as r > o (4.15.35)
and
el(;,O) = 0, esl(;,o) =0 . (4.15.36)
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There does not appear to be an exact solution to this system
of equations. However, by assuming that the Brinkman number is small

a series solution can be developed.

Let us assume, therefore, that Br 1is small and write:

0,(E,t,B) = 4o (L,0) + Bryg (5,0) +BEY,(5,8) +...  (4.15.37)

and

Z, (t Br) Brh, (t) +Br2h2(t)+... (4.15.38)

Substituting the series (4.14.23), (4.14.24), (4.15.37) and (4.15.38)
into equatioﬁ (4.15.29) and the boundary conditions (4.15.31) and

(4.15.32) results in:

2 [—
LI 32y 32y Y 3y
0 1 .2 2 2 0 1
5 + Br ———2-—-lBr > +,.. -%Br (1—%—-Br‘+..,)c(c -3) 5 + By 5 +...
9L o T | ¢ 4
1 —
Br . 31110 B awl - o ) . ; . s
‘F—_P‘e'z PN —a-E-—- + r —B‘E—-'l'... = r(l+ —S—-Br'f-.,.) (Pehl—8)+ Sr(‘;%nl_‘_gﬁ)
0 L
3sz
) + —r?j&— (h1+Brh2+---)c2(c2—1) 1-Br ¢2(5-22) /10+...| , (4.15.39)
M oy 5 3y,
Y (0,t) + 8r 5z (0,t) + Br T (0,t)+... = 0O (4.15.40)
and
. 2 ) 2
B = , 2z
wo(l,t) + r11)1(1,1:) +Bl’_1b2(1,t)+... BrPe(h14 Bﬁ12+...)(1+ = Br +...)
(1- £Br +..) (4.15.41)

- 190 -




The terms independent of Br in the above expressions lead to

the equation

BQwO
— = o, (4.15.42)
14
which must be solved subject to
Bwo
— (0,t) =0 and ¢, (1,t) =0 (4.15.43)
14 0]
It is immediately obvious from the above that
Yo = O . (4.15.44)

The terms in {(4.15.39) to (4.15.41) which are linear in Br

- give the equation

P wl
— = 2(Peh1—6) (4.15.45)
14

with the boundary conditions

Bwl _ B
—= (0,t) = 0 and wl(l,t) = Peh

3% (4.15.46)

1

Integrating both sides of (4.15.45) twice with respect to ¢ and applying

the boundary conditions (4.15.46)1 2 yields
b

v, = 8(1-t%) +Pe h g2 . (4.15.47)

5
- From the coefficient of Br”~ in the system (4.15.39) to (4.15.41)
there results, with the aid of (4.15.44) and (4.15.47), and after some

rearrangement, the equation
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2

2"y, Peh
— =

1A 2

1|:5;4 - 972 +§] - 2?38 + 2Pen, (4.15.48)

and the boundary conditions

awz

-é_i (0,t) = 0 and Q)Z(l,t) = Peh2 . (4.15.49)

Integrating equation (4.15.48) with respect to ¢ and applying the

boundary condition (4.15.49)1 gives us

Y Peh ) 3
-——2— = 1 5— 3 -8—;_ - _(.;__ 2_
5z 5 [C 3¢ + 5] = (£7-5)8 + 2Peh,z  (4.15.50)

and integrating again and making use of condition (4.15.49)2 yields

Peh

- -1 6 - 4 2_ _ B_ 6_ _ 4_ ‘ 2
¥y = 120{}0(5 “1)-45(z7-1) + 48(z 1)1 ) E(C 1)-15(z 1)] + Peh,r

(4.15.51)

Thus from equations (4.15.37), (4.15.44), (4.15.47) and (4.15.51)

the solution for 61 may be expressed as

= 2 _r2 2 2. B 6-1) — 4
8 Br{}ehlc +B(1-g )} +Br {thzc 60[2@ 1) - 15(z 1):} +

Peh
+ Tz?)’l' "0(z6-1) - 45(gh-1) + 48(C2'1)]} + 0

(4.15.52)

Higher order terms could be obtained in a similar manner but since

the task is lengthy, the series 1s now terminated.

Let us now turn our attention to the solid region. Since equation
(4.15.30) is linear in t and has constant coefficients 1% wmay be

solved analytically using Laplace transforms.
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Taking the transform of equation (4.15.30) we obtain, on making

use of the initial condition (4.15.36) the equation

2 3
d?e_, de_, 22
+ PeZ S ..Psg_ =0, (4.15.53)
d§2 d F0 sl

whilst the appropriate boundary conditions (4.15.33) and (4.15.35)

transform to

_ 21 de_
81 (1,8) = = 37— —— (1) (4.15.54)
poo
and
8.,(2,5) >0 as [+ - (4.15.55)

Following standard notation the superposed bar denotes a transformed
quantity and $ is the transformation variable. Equation (4.15.53)
is now a simple second order ordinary differential equation with constant

coefficients for which the general solution is readily found to be

r = - Pi ) l ’ ¢ 2
681 exP( PeZpco z/2) A(S)exp(2 pr ;Vée‘+4$/Fo) +
1 2
+ B(S)exp(~ 5 zpw z\/Pe+ 4S/FO) , (4.15.56)

where A and B are arbitrary functions of ¢ introduced through
the integration. This expression satisfies the boundary condition
(4.15.55) only if A(S) 1is identically zero. Thus putting A@) =0
in equation (4.15.56) and using the boundary condition (4.15.54) we

deduce that:
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- S 1 v, .2
=P = - )
esl eZlexp[; me(l ryPe + Pe"+ AS/Foi] (4.15.57)

Before we can apply the final boundary condition (4.15.34) we must
expand the above in small Br . Thus making use of (4.14.23) and

(4.15.38) and expanding we obtain, after some rearrangement

9 . =BrPep BrlPep e - pé
681 h1 + 1j;h2 + 5 h1(1 z)(Pe + Pé + AS/FO)

(4.15.58)

Taking the Laplace transform of expression (4.15.52) and substituting

the resulting expression and equations (4.14.24), (4.14.25) and (4.15.58)

for 61, 0 6 and ©

w? Ogm sl respectively, into the Laplace transform

of boundary condition (4.15.34), leads to the identity

2
R - - BT - - - - -
} - —— - P -
2»r(Peh1 B) + 5 (IOBeh2 + 4R ehl) +....PeB?(hi+B;h2+,..)

2 . 1 o= o
(1+ 3 Br+...) (1-Br+...) = - E-Brzhl(pe + "pe’+ 48/F )

2 - - 2 '
+PeBr (h1+Brh2+...)(1 + 5 Br+...)(1+...) . (4.15.59)

Equating the coefficient of Br in this identity yields

2(peh -B) - peh; = 0 , (4.15.60)

from which we deduce

ﬁl = 2§/P¢ ) (4.15.61)

It immediately follows from inverting this result that

hl = 28/Pe . (4.15.62)
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From equating the coefficient of Br2 in (4.15.59) we obtain

v, 2

2 = - - -
5 (SPeh2 + 4B 3Peh1) = hl(Pe + P& + A.QFO) .
(4.15.63)
and with the use of (4.15.61) it follows that
- 38 __BY2
h, = - 35 “par Pe * 4S/F, (4.15.64)

which becomes after inverting

__38_1 -1z 42 ,
hy = - e 7 L l} &+ AS,FO] : (4.15.65)

Y

Inverting the term in square brackets is not possible until
B 1is specified. The form of B8 depends upon the manner in which the
rotation is brought to a halt and must thus be determined experimentally.
However, we shall suppose here, for illustration, that B8 1is a linear

function in t and write

B =—8t (4.15.66)

where 6 1is a constant. The expression for h1 then becomes

and for h2 we have
35t § .-1¢1 Yy 2
h. = 4+ — =5 Ppe + 4LS/F . (4.15.6%)
2 5Pe Pe? [;2 0
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‘Since equation (4.15.18) is only valid for small time it may be
expanded for large S 1leading to
P F

26 -1 3}2 + '532 ... (4.15.69)
Pe/FO' S 8S

3/2
sVF. [E] +...( (4.15.70)
O imn

w
O
(a3

N
g
o)
(X
g
o
et
+
N
o
1)
+
w|=

Thus using ‘equations (4.15.38), (4.15.67) and (4.15.70) the expression

for Z1 can be written

= 26t Br + 6

3/2 :
‘O t 2
e e
+ O(Br) (4.15.71)

The solution for 61 is given by (4.15.52) with the aid of (4.15.66),

(4.15.67) and (4.15.70) and the solution for esl is obtained by

inverting (4.15.58). On doing this we obtain

2 Pe 1 -1|- v 2
es = PeBrh1 +Br Peh2 + - (l-l;)hl + 7(1 )L l}l Pei + 4S/FJ (4.15.72)

With the aid of (4.15.61) and (4.15.65) the term in the square brackets

can be expressed in terms of h2 and B and we have finally

2
esl = BrPeh1 + Br {Pghz +Pe4(1—c)h1/2 - (1-0) 36/5+Pehé]} +

+0(Br) , [1-¢] << 1. (4.15.73)

Substituting equations (4.15.9), (4.15.10) and (4.15.12) into (4.15.3)

leads to the expression
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T 2 + 1772, +27Z 1, +2 1, =1+28 (4.15.74)

1 1 11

from which the shear stresses T_ and T, can be obtained. Equating

the terms independent of time in the above, we deduce that
Too = 1/ZP°° ’ (4.15.75)
where Z_  is the solution of (4.14.19). Then neglecting term

O(er1 and equating the remaining transient terms results in

B-1,2;
1= "7 (4-15.76)
poo

T

The temperature profiles for the deceleration phase can now be
determined in full, with the aid of (4.15.66), (4.15.67) and (4.15.70),
for the plastic region by equations (4.15.7), (4.14.24) and (4.15.52)
and for the solid region by (4,15.8), (4.14,25) and (4.15.73). Also
the thickness of the plastic region Zp and the shear stress T are
determined by (4,15.9), (4.14.23) and (4.15.71) and (4.15.10),

(4.15.75) and (4.15.76) respectively.

4.15,3 Results and Discussion

The above series solution is of limited value since it is only
valid for small values of both Br and t . However, the model
does demonstrate the effect of slowing down the rotating component and
in particular the increase in torque which is observed in practice.

plots of 1, Z .. and V_ against time for the

P : D
conditions Br=0 (0.1),Pe= 1.0 and z = 1.0 are given in Figures

4.26(a), (b), (c) and (d) respectively.
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Figure 4.26 Graphs of (a) 1 , (b) =z and (c) VD for the
deceleration phase. P
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4.16 Inertia-Welding

So far in this chapter we have considered phases II, III and IV
of the conventional friction welding process. In this section we
consider the inertial friction welding process in which phases II, III

and IV are consolidated into one phase [See Figure 1.4].

In the inertia welding process one of the components is held in
the stationary .kﬂgﬁsymﬁ‘chﬁck while the other is held in the heads¥o§k
chuck which is attached to a flywheel, The flywheel is given a known
rotational speed thus storing a pfedetérmined amount of energy. The
drive to the flywheel is then disengaged and the two components brought
together under an applied axial load, as in the conventional process.
Rubbing at the weld interface then begins to take place. The energy
stored in the flywheel is subsequently used to generate heat and a
softened layer of materiai develops close to the weld interface as in
the.continuous drive process. As rubbing proceeds the speed of
rotation decreases until eventually the rotating component comes to

rest. The applied force is maintained until the weld is consolidated.

In this section a simple model is developed to describe this process

and appropriate solutions are given.

4.16.1 Governing Equations and Boundary Conditions

Making all the assumptions of section 4.8 the governing equations
of motion in the plastic region are giveﬁ’by (4.2.7) to (4.2.13), and
the energy equations for the plastic and solid regions by (4.8.14)
and (4.8.15), respectively. Theboundary conditions on the pressures

and velocities are given by (4.2.14) to (4.2.18) apart from (4.2.17)2

- 199 -




which must be amended since the velocity V on the interface Z = Zp(t)
is now dependent on time. The manner in which this velocity varies
is discussed in the following paragraph. The thermal boundary

conditions are given by (4.2.23), (4.2.24), (4.2.25), (4.4.3) and (4.4.4).

Let the moment of inertia of the flywheel about the Z axis be

I, then the equation of motion governing this flywheel is

dmf
-~ = = T (4.16.1)

where e is the angular velocity of the flywheel and Tq is the

resisted torque. 1Initially w, must have some prescribed value

f

SO we write
wf(O) =y (4.16.2)

For our 2-dimensional model the torque can be expressed in the

form (see Chapter 3):

T, " ART(t) (4.16.3)

where A 1is the cross-sectional area of the tubes, R is the mean

radius and T 1is the shear stress acting on the face §3 = zp(t)

(see Chapter 3).

in the x, direction., 1i.e. T =

o |= =~ =
2 i x3—zp(t)

Multiplying equation (4.16.3%) by R and substituting (4.16.1) for
Tq yields

I, et = - AR? 1(E) (4.16.4)

where Ve is the velocity component of the solid region in the

y-direction given by
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V. = wfﬁ . (4.16.5)

Expressing (4.16.4) in terms of dimensionless variables we have

B S (4.16.6)

where t,V_,A and 1t are defined by

f’
t - = Aﬁzuoto T
t =—t— , Vf = Vf/(DR R A = c—— , T =————-_——-——"— (4.16.7)
o IFZpO (uowR/Zpo)

where t, is a typical weld time and My and Zpo are defined as
in Chpater 3. The dimensionless form of the initial condition

(4.16.2) is

Vf(O) =1 (4.16.8)

Integrating equation (4.16.6) with respect to t and making use of

condition (4.16.8) leads to the expression

} t
Vo=1-4A J T dt (4.16.9)
0

Hence, the boundary condition (4.2.17)2 must, for the case of inertial

welding, be replaced by

t
Ve= 1 -4 J Tdt on Z =12 (4.16.10)
0

We shall now determine a simple solution for inertia welding
through the heat balance integral method, which was used extensively

in Section 4.8.
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4.16.2 Pressure, Velocity and Temperature Profiles

The equations and boundary cbnditions governing the pressures
are identical to those_in Section 4.7 the solutions are thus given
by (4.7.1) and (4.7.22) and need no further discussion. Similarly
the velocity components U,V and W are given by (4.7.15),(4.7.2)
and (4.7.14) respectively. However, the amended form of equation

(4.7.3) obtained by using boundary condition (4.16.10) in (4.7.2) is
t
.TZp =1-A J T dt (4.16.11)
0

Differentiating this equation with respect to t results in the ordinary

differential equation

dZ at
T 3t + ZP H-E = <~ A1 (4.16.12)

an equation connecting Zp and T .

Using the heat balance integral method to solve equations (4.8.14)
and (4.8.15), as in Section 4.8, we obtain a further two ordinary

differential equations connecting a,, Zp and T , namely

da 2a dZ

202 _ _ 2 2% %3 p_4
2a2 + Brt Zp 3Fo Zp It 3Fo Zp & % RqZpa2 (4.16.13)
and
.ija.d 1 EP_ 1 f_zy_
_Za2 = PeZp - 3F0 EE.(;;1 + Fo (1 - 3321 e R (4.16.14)
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where |} has again been assumed that the temperature profiles

for 6 and GS are given by (4.8.35) and (4.8.47) respectively.
Equation (4.16,14) is, of course, identical to (4.8.48) and (4.16.13)
is obtained from (4.8.36) by replacing Br by Br2§12 . Again a
numerical solution to equations (4.16.12), (4.16.13) and (4.16.14)

for Zp a, and T 1is sought, and a small time series is required

2

to obtain starting values. For the starting values it proves sufficient

to use the representations

3, = 355 » (4.16.15)
Zp =2 ZlfFot R (4.16.16)
T = 1/Zp . (4.16.17)

and a sufficiently small value of t , where 350 is the -ve

solution of (4,8.63) and Z1 is given by (4.8.62).

The solutions must be terminated after a time tF when VF has
reached zero - no steady state solution to the set (4.16.12), (4.16.13)
and (4.16.14) exists. With the aid of (4.16. 9) and (4.16.11) we see

that t. is given by

Zp(tF) T(tp) =0 . (4.16.18)

4.16.3 Results and Discussion

Equatiens (4.16.12), (4.16.13) and (4.16.14) were solved using
the Runge-Kutta procesé. Using these results the interface temperature

6(0,t) and the rubbing velocity VF were obtained using the relationships
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8(0,t) =1 - a (4.16.19)

and

V. = 1Z (4.16.20)

respectively. These results are illustrated for the case A = 0.2

in Figures 4.27 to. 4.30.

Comparing the plots of shear stress Tt ‘given in Figures 4.27(a)
and 4.29(a) with the idealised torque trace in Figurel.4. we note that
the main qualitative feature of this trace, the two torque peaks, is
predicted by our model. However comparison of the plots in Figures
4.28(b) and 4.30(b) for the fubbing speed VF with the corresponding
idealised trace in Figure 1.4 indicates that for small times a much
faster decay of VF is predicted by our model than is found in practice.
This is felt to be a consequence of the initial singularity in the
shear stress T which leads to a much higher resistive force to the
rubbing motion during the early moments of the weld time.

For later times it is noted that'the.qualitative agreement between the
two décay rétes of V; is much improved. Examination of the plots

of interface temperature against t shown in Figures 4.27(b) and
4.29(b) reveals that this temperature has its maximum at t = 0 and
then decays until it reaches the conditioning temperature at time tF .
In practice, however, the interface temperature.rises rapidly during
the initial stages of the process until it attains-its maximum, after
which it decreases as the speed of rotation reduces to zero,

Moreover in reality ﬁhe temperature does not fall to the conditioning
temperature} if this were so there would be no plastic region at the
end of the frit¢tioning stage and the specimens could not be forged

together.
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The error in the interface temperature for the early stages of the
process predicted by our model is due to the omission of the conditioning
phase as was pointed out in Section 4.13 for the continuous drive
process. The reason our model predicts a lower than expected
temperature at the end of the frictioning stage is felt to be due to
our definition of the plastic region. The position of the plastic
region is governed by the condition 6 =1 on 2 = Zp(t) . As the
rotation slows down the rate of heat generation falls and consequently
the thickness of the plaétic region decreases, This process continues
until eventually at t =t Zp reaches O and then,by definition,

€

the interface assumes the temperature 6 =1 ,

4.17 Comparison with Experimental Results

The main purpose of this thesis has been to produce simple
mathematical models which describe the friction welding process
qualitatively. However, in this section we present, for completeness,

a quantitative comparison between experimental data andithe theory.

At Marchwood Engineering Laboratories a series of friction welds
were made using tubes of 12 mm outer radius and 3 mm wall thickness.

In Figure 4.31 a typical trace of the output, from one of these welds,

of torque, applied load, speed and axial shortening is given.

In order to make a comparison between the models and experimental
data the mean line from the torque trace is taken and compared with
torques from the coﬁstant viscosity model of Section 4.8. Results for
the case Pe = 0.6 and several values of Br are presented in

Figure 4.32.
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This brief comparison demonstrates that the agreement between
the theoretical solutions and experimental results is quite good.
However, before any comparison is made in depth it is felt that a much
sounder knowledge of material properties, particularly viscosity,

in the range 700°%c < T < 1300°C is required.
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Figure 4.27 Graphs of 1 and 6(0) against t for the inertial
welding process.
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Figure 4.28 Graphs of Zp and Vf against t for the inertial

welding process.
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Figure 4.29 Graphs of 1t and 6(0) against t for the inertial

welding process.
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Figure 4.30 Graphs of Zp and Vf against t for the inertial

welding process.
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Figure 4.31 Experimental traces of torque, applied load and
axial shortening.
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Figure 4.32 Comparison between experiment and theory.
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CHAPTER 5

BINGHAM SUBSTANCE MODELS

In this chapter some of the simpler models of Chapter &4 are
reconsidered when the piastic region is modelled by a Bingham substance.
Here it is again assumed that the temperature profiles 6 and es
and the velocity components V and W are independent of x .

It is also assumed throughout this chapter that the viscosity
is constant and taken to be unity for convenience. Both phase II
and the equilibrium phase are considered here and we again neglect

the effect of the conditioning phase,

5.1 Governing equations and boundary conditions

Making use of the above assumptions and splitting the governing
equations of motion (3.4.28) to (3.4.%0) into two subsystems, one of

O(CpRe) and the other of 0(1) , the latter become

5P
O(CpRe) 3;2 =0, (5.1.1)
Zo_ (5.1.2)
9z ? e
3P Bo ‘ Bo
0(1)%3_v1=62—§; 1*"7—‘3% +2%}—{ 1+-‘-/-‘1§—: (5.1.3)
* 27T 2V
Bo
%Z—L1+2_7.?_.g_‘zl -0, (5.1.4)
I .
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aP Bo Bo

z z 2/:—[- Z X ZE z

where the second invariant of the rate of strain tensor I is given

by

2 N
_{av
I = {5;} _ (5.1.6)

The equation of incompressibility (3.4.3!), rewritten here for

convenience is

du |, dw _

Again making the further assumption that the thermal properties

k, ks, Cv and CVS are constant and conveniently taken to be unity

and that superiicial heat loss may be neglected, the energy equations
for the plastic and solid regions, (3.4.37) and (3.4.40) respectively,
reduce to

2
) 20 1 90

=z —_—F —— —
Pew 9z Fo ot ?

05 zcg zp(t) , (5.1.8)

and
326 26
.S _ _ s 1 096g
322 = - PeWo(t) 52 + 7o 3¢ Z 2 zp(t) . (5.1.9)

On splitting the condition (3.5.18) into two subsystems one
O(CpRe) and the other O0(l) , the pressures Po and P1 must

satisfy the pair of conditions
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1
2
0(CpRe) J Po(x, zp, t)dx =1 , (5.1.10)
-1
and
%
Bo 3w
0(1) { P.(x, z , t) - 4|1 + 2| dx =0 . (5.1.11)
1 D JI oz
1 : 2/1 -
-1 z—zp(t)

The conditions on the velocity component are given by (4.2.16)

to (4.2.18) and are rewritten here

3
5—‘2—‘ (x,0,t) = 0, —%s xsil-;v(o,t) =0, w(0,t) =0 ,
(5.1.42)
u(x,z_,t) =0, - l-s X g l-; v(z_,t) =1, w(z_,t) = -w_(t),
P 2 2 P P o
(5.1.13)
and
u(0,z,t) =0, 05 2z g zp(t) (5.1.14)
Under the present assumptions the thermal boundary conditions
are
30
5 (o,t) =0, (5.1.15)
e(zp,t) = es(zp,t) s (5.1.16)
00
26 S
) (Zp,t) = 5 (Zp, t) (5.1.17)
and
Bs(z,t) +0 as z > o» , (5.1.18)
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and remembering that the conditioning phase is again neglected,

the initial condition is
0(2,0) =0 . (5.1.19)

These conditions are identical to those for the viscous fluid
model (4.2.23), (4.2.24), (4.2.25), (4.4.3) and (4.4.4) apart from
the temperatures on the plastic/solid interface is no longer specified
as unity. The position of zp must now be defined by the Bingham

yield criterion (3.5.7), which is rewritten here for convenience

Boo 2 GZBZ
1+—2(8,t) 1= °4
2/

on z = zp(t) . (5.1.20)

With the aid of (5.1.6) the above can be expressed in the

form

av{ ov
32135 + Bao] =0 on 2z = zp(t) (5.1.21)

Noting that the velocity gradient A4 cannot be negative, this

0z
condition reduces to
N o0 on z=12 (v) (5.1.22)
az p ] L]

Having now obtained this simplified form of the basic equations
a few of the models considered in Chapter 4 are now examined for the

case with the plastic region modelled by a Bingham Substance.
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5,2 Velocity and pressure profiles

The solution to (5.1.1) and (5.1.2) subject to (5.1.10) was

as given in Section 4.3 and requires no further discussion.

Substituting (5.1.6) into (5.1.4) gives us

3 {ov Bc’o
-a—z——a-z--i'-—z——- =0 (5.2.1)

Integrating this equation with respect to z yields

Bo

ov 0
2L = - — 2.2
5 = 1) - — (5.2.2)

where 1 1is the dimensionless shear stress, and a further integration
with respect to 2z results in

4

Bo
v = 1(t)z - f ~§2-(6,t)dz . (5.2.3)
o

which satisfies the condition (5.1.12)2 . In order that the condition
(5.1.13)2 is satisifed, 'zp must be related to T through
p

B
l=2z71- E—f co(e,t)dz . (5.2.4)

(o]

With the aid of equations (5.1.6) and (5.2.2), the pair of partial

differential equations (5.1.3) and (5.1.5) can be expressed in the

forms
oP
1 1 _ 2311 Bdu 9 |1 du
2 3% 218 BZ(T* Bz] * bt 8x[r* Bx] (5.2.5)

- 216 -




and

oP
1%, 3 (1 aw 3 {1 au
G- R = (5.2.6)
where the quantity t* is defined by
t™(6,t) = 27(t) - Boo(e,t) . (5.2.7)

Integrating the equation of incompressibility (5.1.7) with

respect to x yields

. oy W
u = x5 + f(z, t) (5.2.8)

where f 1is an arbitrary function of z and t and on using the
boundary condition (5.1.14) it 1is obvious that this function must be

identically zero and we write

ow
u=-x 3z.° A (5.2.9)

Substituting this expression into (5.2.5) and (5.2.6) leads

to, after some rearrangement

oP o w
11 2. 8 (1 %)
T T B *az['r* ""‘“2] (5.2.10)
and
3P oatw
H 1 _ T 3 ow 9 1 »
el ?;-;25 + 27 52 3% L;% . (5.2.11)

Integrating (5.2.10) with respect to x yields

>
22 o1 W

P
l—_ enp—— | —— o ——
7 = B x T 52| o= 322 + g(z,t) (5.2.12)
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where g 1is an arbitrary function of z and ¢t .

On differentiating both sides of this expression with respetct
to z and using (5.2.12) to eliminate SPI/BZ from the resulting

equation leads to, after some rearrangement, the identity

. a"w 2 3w

2 wd (1) . _ 229 (17" o

= 2*‘”&'32(?;] S N e 2 IR PRSI
9z 9z dz

Since the above holds for all x 1in [— %3 %-} the functions w,

9, and g , which are all independent of x must necessarily satisfy

the equations

32 1 3?W
—a—z-z-?; ;z‘f = 0 3 (5'2c14)
and
21 azw ow 3 1 9
F_;z_f + 4T o [?’71 =.a_§. . (5.2.15)

Repeated integration of equation (5.2.14) with respect to z yields

z 8 .
W= [ [ T*(e(k,t),t)EJo(t)k + Cl(t)]dkdz + C2(t)z + C3(t) , (5.2.16)
[e o] .

where Co’ Cqs Co and C3 are arbitrary functions of t only.
The velocity component u is now obtained by substituting the above
expression for w into (5.2.9) yielding

4

u=-x J ™ (8(k,t),t) [_co(t)k+c1(t)]dk + C,(t)z (5.2.17)

o
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Using the boundary conditions (5.1.12)1 3 and (5.1.13)1 the functions

Cl’ c and C are readily expressed in terms of C0 leading to

2 3

the expressions

z %
W=C, f{ t* {0 (k,t) , t)kdkdL (5..218)
0o 2z
p
and
Z
u=- Cox[ t (8(k,t),t)kdk . (5.2.19)
z

F

Again the assumption is made that the upset velocity vy

is constant and taken to be unity for convenience, thus we write

w =1. (5.2.20)

On using condition (5.1.13)3 in expression (5.2.13) Co is

found to be, in view of (5.2.20)

)
cC =-1 I J (8 (k,t),t)kdkde . (5.2.21)
o Z

Having determined the velocity component u,vn and w we
turn our attention to the pressure component P - Substituting

(5.2.18) into (5.2.15) gives us

4

28 - 21cz + trc 2= [%*—} J (8 (k,t) ,t)kdk . (5.2.22)
VA

P

Integrating the above with respect to z yields
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Z 9
C 2% + 41C trkdk = [Llde + e(t) (5.2.23)
o o 32 |1*
0o z

0]
"

P

where e 1is an arbitrary function of t introduced through the
integration. On substituting equation (5.2.23) into (5.2.12) the
function e(t) 1is obtained by using the boundary condition (5.1.12),

the resulting expression for P1 is then given by

x d 1
t*kdk —32 [—i]dl .

N~ =

z
.Pl = ZTCO[}zz—zﬁ) + qu% - xzi} + SCOT J
o

P (5.2.24)

Thus for our Bingham substance model the velocity component
u, v and w are given by equations (5.2.19), (5.2.3) and (5.2.18)

respectively and the pressure P. by (5.2.24). However, the

1
integrals which appear in these equations cannot be evaluated until
9, and hence 1% are known as functions of z and t . As we have
stated g, is in general a function of the temperature 6 and t ,

thus it will be again necessary to solve the above mentioned equations

simultaneously with the energy equations.

5.3 The energy equations and thermal boundary -conditions

On substituting equatiéns (5.2.3), and (5.2.18), for the
velocity components v and w respectively, into equation (5.1.8), the
energy equation for the plastic region becomes, with the aid of

(5.1.6) and (5.2.7)
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a6 1 26
— et — = , 0% 25 2
o 3z Fo ot P

z
2
326 Br
—5 + — TT* = PeC f f T*(e(k,t),t)kdkdl
oz
(5.3.1)

Making usé of assumption (5.2.20) the energy equation for

the solid region (5.1.9) is again expressed in the form

3295 20, 20
2 TR twoa v 2 H® (5.3.2)

The thermal boundary and initial conditions are given by
(5.1.15) to (5.1.19) and on substituting the equation (5.2.2) into
(5.1.21), the Bingham yield criterion which specifies the pesition

of zp may be expressed, recalling definition (5.2.7), as

™ =0 on 2z = zp(t) (5.3.3)

Before we can proceed any further, the yield stress o, must
be expressed as a function of temperature 6 and time t . During
the equilibrium phase we shall follow Bahrani et al [}é] and assume

a linear relationship between o, and 9 of the form
oow(e) = (1-€0)/(1-¢) , (5.3.4)

where € 1is a constant obtained from experimental data. However the
above expression cannot be used during phase II since, as is seen
from equation (5.3.3), with the aid of definition (5.2.7), the
asymptotic behaviour of S, for both large and small values of time
must be proportional to that of the shear stress T . It thus seems

logical to assume a relationship between Gy 0 and t of the form

o, = %%;ggl a(e) , (5.3.5)
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where the asymptotic behaviour of the function G 1is proportional to
that of T for both small and large values of time. In the following
section a solution to the above system of equations is obtained using
the heat balance method. Asymptotic solutions for small and large
values of t are derived first from which a form for G 1is deduced.

This form for G 1is then used throughout the chapter.

5.4 Heat balance integral solution

In this section a heat balance integral solution is given,
similar to that of Section (4.8), which describes the phase II
portion of the welding cycle, the plastic region being modelled by a

Bingham substance.

Introducing the variable n defined by equation (4.8.25)

into equations (5.3.1) and (5.3.2) leads to
n 2
329 Br L 2 4 a6
+ 7—'TT*ZP = PeC zp J J T*(G(k',t),t)k'dk'dQ'EK
ol

Y 36
*Fost T Fodm My Osnel (5.4.1)

and
azes 20, _z; 00, 7,z 90
an? =T Pezp an + Fo ot  Fo dt i an ° nzl (5.4.2)

and the function Co(t) given by (5.2.21) may be expressed in terms

of n

t* (8(k",t),t)k'dk"ds" . (5.4.3)

0 Y
- ———
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The equation connecting zp and Tt (5.2.4) becomes with the
aid of (5.2.7)
1
2 = zP J T*(e(n,t),t)dn (5.4.4)

(o]

and the boundary conditions tramsform to

= 0,0 =0 (5.4.5)
8(l,t) = Gs(l,t) (5.4.6)
2@, - ;;’_s_ (1,t) (5.4.7)
es(n,t) >0 as n-> o (5.4.8)
and
=0 on n=1 (5.4.9)

Making use of definition (5.2.7) and substituting equation
(5.3.5%5) into equation (5.4.1) and integrating the latter with respect
to n between the limits n =0 and n =1 , the heat balance integral

for the plastic region is

1
Br‘rz2 BG
38 - 98 P - -
an (1,t) n (0,t) + 5 271 =) { (1-€6)dn
o]
1ng 1
= 06
= Pecoz [ J f {%Tﬁ == e) (1 Ee(k',t)-Jk dk'de! I dn
ool
2 1
Zp d _P_dzE 36
* Fo ?l—t-f 8dn - w5 It n o5y dn . (5.4.10)
o o]
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Again a quadratic temperature profile in the plastic region in the form
6 = ao(t) + al(t)n + az(t)nz, 0<n<l1 (5.4.11)

is assumed, where a s 3 and a, are functions of t only. Using
condition (5.4.%) we deduce that a, must be identically zero. The
remdining two functions are determined in terms of zp T and G ,
with the aid of (5.2.7) by substituting (5.4.11) into (5.4.4) and

(5.4.9) giving us the equations

BGz 1
2= Zsz - ?TTET [}*s(ao + 3 azi] s (5.4.12)
and
BG
2T = ?T:Ej_ l-e(ao+a2)] ,. (5.4.13)

respectively. This pair of linear simultaneous equations is readily

solved yielding

(3-21;2)(1-6)

_ 1
ao = E+ <BCz (5.4.14)
P
and
_ _ 3(1-e)
a, = EEEZ; (5.4.15)

On substituting equation (5.4.11) into (5.4.10), there results the

ordinary differential equation

Br'rz2 4PeC z4a
_ BG - _ l_ - - op 2 _ BG _
2a, + ——§~2- 21 =0 (1-ea - 3 €a,) o5 17|2T e (1-ea )
22 r 2z _a, dz
4BG pd 1 I
* (1-¢) gayr + Fo dt L?o+ 3 aé] 3Fo  dt ° (5.4.16)
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and using (5.2.7) and substituting (5.4.11) into (5.4.3) the expression

for C is
1)

c = 15(1¢) (5.4.17)
° 23{5[?1(1—5)—BG(1—ea X]+3BGea }
pl (o} 2

Finally substituting this equation into (5.4.16) and making use
of (5.4.14) and (5.4.15) leads, after some algebra, to the ordinary

differential equation connecting 1 and =z

4t _ 3Fo . BreFoBGT _ 9peFo _ (1—zpr)_(_i£i (5.4.18)
dt 3 2(1l~e)z - 2 Gz dt ° ©
25 P Iz P

Our attention is now turned to the solid region.> Again in
order to use the heat balance integral methéd we could define a thermal
layer zp(t) < z < z(t) such that all the material beyond z = z(t)
is at ambient temperature, 6 = 0 , and hence having zero heat flux
across this surface. The procedure would then follow the lines of
Section 4.8. However, the algebra becomes tedious using this method
and as we are looking for a simple approximate solution an alternative

method is sought.

It is well known that in most thermal problems the temperature
decays exponentially over a semi-infinite domain and bearing this

in mind we assume a temperatureprofile es in the form
—n2/4Fo
es_= bo(t) + bl(t)n e » N 21 (5.4.19)

where bo and b1 are functions of t only. This equation

automatically satisfies boundary condition (5.4.8) and in order that
conditions (5.4.6) and (5.4.7) are satisfied the functioms bo and
b1 must necessarily be given by
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bo = {[_BGZP-ZTZP(I-S:)] (2Fo-1)+12F’o(1-8)}e}/wﬁ,}ZBeFoGzp (5.4.20)

and

,( FO
b1 = [:BGzp-Z(6Fo+sz)(1-e)] e/gl )/ZBeFoGzp (5.4.21)

The heat balance integral for the solid region is obtained by
integrating equation (5.4.2) with respect to n between the limits

n=1 and n >« giving us

20 f;_d T z, d2 Tooee
iy (1,t) = Pezpes(l,t) + Fo dt J esdn " Fo —-P-dt f e dn , (5.4.22)
1 -1

where use of the fact that es -+ 0 and aes/an +0 as n - « has
been made in the derivation of this result. On substituting equation

(5.4.19) into equation (5.4.22) there results the ordinary differential

equation
2
D) -b (2Fo—1)] Pez (b +b,) z Fob
e VAN = p\/(ir.)l * i‘% g_t_ mFo bo erfe \/Ml)
2Foe e - 2V/Fo e
f_E dz bo 1 b1(1+2Fo)
—2 -2+ /iFo bo erfc + T (5.4.23)
Fo dt e‘/(l&Fo) (2/-?-0—] e/(ﬂ n)

Substituting equations (5.4.20) and (5.4.21) into the above,
leads, after some algebra to a second ordinary differential equation

connecting zp ~and 71, namely

dz 3q
6Fo dt _ 1 dG p __BG _1_"73dG _
2 % zpl:clt G t:l Plhw T PeF°:H:2T (1—&:] ¢ a9
P
(5.4.24)
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where the constants 97> 9, and q are defined by

e
2 + %-(ZFo—l) \//gg e/?g erfe 1
2VFo

ql =
' i) 1) .
q, = 2 + (2Fo-1) %— e erfc|—= (5.4.25)
© 2/Fo
and
!,!‘/{‘f'F”)
q, = 4Fo - ngo e erfe .
3 (2/1%‘}

Since we ‘are assuming that the thickness of the plastic region
is initially zero it is evident with the aid of (5.2.4) that the initial
conditions on (5.4.18) and (5.4.24) are

z (0) =0 and lim T »> = (5.4.26)
P 0

There is no analyticdlsolution to this initial value problem
and a numerical procedure must be adopted. Again to avoid the
compiication due to the singularity at t = 0 a series expansion,
valid for small times, to equations (5.4.18) and (5.4.24) must be
obtained. Before this can be done, however, a small time representation
for the function G(t) must be known, In view of the fact that G
must be asymptotically proportional to 1 for small time, if we assume

a series for zp in the form

zp = Z th + z .t +...,. (5.4.27)

where m is a positive real number, then from (5.4.%) and (5.49)

it seems likely that T and G should be expressed in the forms
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T =1 ,t T + T tm+,.. (5.4.28)

and

G = g_jt g gt t... (5.4.29)

respectively. On substituting these series into equations (5.4.18)

and (5.4.24) there results the pair of identities

mT—l 3Fo 3z2 m BreFoB T—1g 1 1
m e tees s S [l - — L+ +
m+1 3. 3m z 2(1l-¢) 2m
t z t 1 z t z, t
1 1 1
z
- . _PPeFo e n_2  m
(T_1g0+rog_1 T_lg_1z2/z1)+... = |l - 2 5t
7zlt 1
m(l-z t_.) z, g
+ mill -zm (1'12+'rz)+(11‘ )-;— + =2 +...
zlt 1 1 -1
(5.4.30)
and
bFo _ m m m - *-15 - 1
Zztzm (1 Zzzlzlt +...) + q,z;t (1+z2/z1t +...) m[ = o T +o..] *
1t
m
mq.z., t , 27
171 m , -1 m _
. (1+222/zlt +...) + PeFo - (1+T0/T_1t +...)
Bg—1 m m m
(l-e)tm (l+go/g_1t +...)| + 3q3{{ +...} (l—gO/g_lt +...) = ,  (5.4.31)

respectively. A close examination of (5.4.30) reveals that for a

solution to exist, m must satisfy one of the equations

m+1=3m m+1=2m or 3m=1. (5.4.32)

If from (5.4.32)3, m = %~ then equating the coefficient of

t—z'/3 in (5.4.30) yields
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it S S (5.4.33)

for which there is no finite solution. If, from (5.4.32)2, m =1 then

we have on equating the coefficients of t—2 in (5.4.31)

[+)3

-g—°= 0, (5.4.34)
2

which again has no finite solution. We thus deduce that m = % ,

from (5.4.32)1 . Using this result in (5.4.30) and (5.4.31) and

equating the coefficients of t_3/2 and t:_1 respectively, results

in a pair of equations connecting zq and Ty s namely

BrBet .g
1 6 _ -1°-1
s + ~ = ED) (5.4.35)
z
1
and
. q,z.B 3q
6Fo _ 11 g1 3 -
;7~ * a2y, i=e)  * 2 0. (5.4.36)
1

Although the first terms zy and T_, are sufficient to determine
starting values for the numerical method we also determine the next
pair z, and L These are then compared with their counterparts

obtained from the series solution obtained in Section 5.7 and some

assessment of the accuracy of the approximate method is made.

On equating the coefficient of t_1 and t 2 in equations
(5.4.30) and (5.4.31) respectively, recalling that m = %-, we obtain

the pair of linear algebraic equations

h.z, + h,T =nh (5.4.37)

and
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where the

constants hl’ h2’ h3, h4, h5’ and h6 are defined by

oL 9Fo _ BrBeFoT_lg_1 . 1
- - ’
1 z3 2(1 e)z1 221
1
BrB€Fog z
- ! __l-_ 1
hy = 3t T o b (5.4.39)
h. = 9PeFo _ (l_T—lz—l)go _ BrBfFoT—lgd
3 7z; 2g_; 2(1-¢) J
Bg ‘ )
_ _281 | 12m0
By = q1[;'~1 (1-eg] 3
z
1
rq
- |-2
h5 = 2 + qJ zy }(5.4.40)
and .
h, = 3@3 + qlle 27171 -2 - PeFo|2 1_, - Bg_l
6 &, (1-¢) 81 2 -1 (1-e)
Using (5.4.35) to eliminate T, from (5.4.36) leads to, after some
algebra,
q.B__ -2 3q, o 64q,(1-€)
;(%—i) L- 251 E)z Zi - 3'21' BiBe 2y~ 6Fo = 0 (5.4.41)
BrB°gFog_, -1
Taking Fo = 5 we see from (5.4.25) that 45 9, and qy are all

positive,
in the abo
the coeffi

when Br

2 .
Zys 29 and unity

It is then evident by examination of

it then follows that the coefficients of

ve, are all negative.

b

cient of zi that there is no positive solution for zq
does not satisfy the inequality
2
Br » =48 (5.4.42)
22
B g_leFo
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Let us now examine the nature of the roots of (5.4.41) when (5.4.42)
is satisfied by Br . (That is, the coefficient of zi is positive).
Let us firstly assume that all three roots are real and denote them

by Fl, T and T It then follows from the general theory of

2 3°

cubics that

: 2
P r,T, = B—g-‘-’-(—lif-)- 1 - -——%—%—f-)- > 0 (5.4.43)
94,%8 BrB g_leFo
and
12q, (1-¢)” 2 (1-ey?
I.T, +T.T, + T, = = 1-—=2"80 1 c0 . (5.4.44)
12 13 2°3 B 2 2 2 2
rqleB 81 BrB eFog_1

From (5.4.43) we deduce that there are one or three positive roots.
However (5.4.44) reveals that there is at least one negative root. We
thus conclude that if there are three real roots then only one is

positive.

Let us now consider the event of there being two complex
conjugate roots and one real root and denote them by Cl’ El and

I, respectively. We can then write.

1
) ) wroi-e) [T, _ _2a-027 5.4.45)
T [?e(cl)+1m(cl)] = qlBg-l BrBzeFoggl

from which it is immediately obvious that Iy is positive.

We finally conclude that there is no solution when the
inequality (5.4.42) is violated by Br but when it is satisfied a unique

solution for =z exists.

1
The coefficient T_1 is readily obtained in terms of zy

from equation (5.4.35) yielding
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_ (Fo (1-¢)
w1 7 |1 5 seeren (5.4.46)

1

The solution to (5.4.37) and (5.4.38) is readily obtained

by Cramer's rule [35 ] giving

= [hjh ~hyh ] /A (5.4.47)
~and

t, = [hjhe=h,h]/a (5.4.48)

when the determinant A 1is defined by

A = hth - h2h4 . ' (5.4.49)

The full numerical solution to (5.4.18) and (5.4.24) is delayed

until Section 5.6 since befpre this can be obtained it is necessary
to specify explicitly the function G(t) for all time. As we have
already stated we must choose a form for G that is asymptotically
proportional to 1t for both small and large values of t . We

have already obtained an asymptotic solution for =t wvalid for small
t thus we now require a solution for large t and this is developed

in the following section.

5.5 Asymptotic solution for large t .

In this section, the asymptotic solution for large t , to
equations (5.4.1%) and (5.4.24), is developed. This is used to
determine the asymptotic behaviour of G and to give a qualitative

estimate of the time taken for the system to reach steady state.
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Let us assume the following forms for zp, T and G

= + t 5.5.1
zP sz ZT ® ( )
T =T 0+ TT(t) , (5.5.2)
and
G=1+ g(t) , (5.5.3)
where zpco and 1 are the steady state values of zp and T

respectively and and g are the remaining transient terms

Zps Tp

for which at large time it is appropriate to assume

<< lz_.|y |tgl << |t,] and [g] << 1. (5.5.4

gl << Iz,

Substituting (5.5.1), (5.5.2) and (5.5.3) into (5.4.18) and
(5.4.24) and expanding the resulting equations in small quantities,

results in the identities

dTT 3Fo BrB&:FOT°°
T -3 (1~ 3z /z peo +o..) + i)z (1+TT/Tm)(1+8)(1‘ZT/me+---) =
zpoo P
9PeFo 1
722 (1 ZZT/zpoo +i.0.) = ;--(1—Twzpw) - Tszm-zTrm—..£}(l—zT/zpw+...)
poo pe
- dg
(1 g+...)dt
(5.5.5)
and
@.‘".9 - o dg
Z (1- 22 /z w+...) 3q3(1 E=ees) I * qzzpoo (1+zT/zpw)
poo
drp dg B(l+g)
E,.E_..._Tm(]_+TT/T°°)(1-—g—,,,) rra 9, ———-+ PeFo| |27 (1+r /T )- “(I=e) =0.
(s.5.6)
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5.5.1 Steady State Solution

Equating the steady state terms in the identities (5.5.5) and

(5.5.6) leads to the pair of algebraic equations

3 BrBeTwo _ 9Pe
- =3 + 5 (1=0) 2 = > (5.5.7)
z pee 7z
pee p e@
and
6 B
;-z-— + ZPeEm 2—(-1—:'6—)-:] =0 (5.5.8)
poo

respectively. Using (5.5.8) to eliminate 1, from (5.5.7) results,

after a little algebra, in the quadratic

2
B 2 9Pe Bre B
B E(Z(l-s)] zp°° - zpm 3 EE;—&ETI:ES] +.1 (5.5.9)

This quadratic is readily solved yielding the solution

18Pe(1-e) 1Pe2(1—e)4 L 3a-e) (1, 20-0))|
P> 7BrB . 49BT 2B4 2 2B |Pe BrBe J
(5.5.10)

where the positive square root is taken since zp must, of course,
00
be positive. The expression for T, is then obtained in terms of

zpoo from (5.5.8) giving

B 3

T = Y T T (5.5.11)

In Section (5.8) an exact solution to the steady state problem
is derived which is valid for small values of Pe only. It is

thus thought useful to give here an expansion of (5.5.10) for small Pe,

- 234 -




for later comparison with its exact steady state counterpart.

On expanding (5.5.10) for small Pe one obtains

2w/ 3e) |1 SR Ume) | 1 (55,19
peo 2B JPe BrBe

and substituting this expansion into equation (5.5.11) we obtain

T, v Pe/Bre +... (5.5.13)

We also present here for comparison with equations (4.11.11) and
(4.11.12) for the viscous fluid model, the asymptotic expansions
of (5.5.10) for small and large values of Br. For small values of

Br we have

2
P 7BrB e €

and the result for large Br 1is

3(1-¢) 2(1l-¢) 3Pe(l-€) 9Pe (1-¢)
%o ¥ 2/ "28Pe * “Brbe 2B T T 7B teee (5.3.15)

5.5.2 First Order Transient Solution

From the remaining time dependent terms in (5.5.5) and (5.5.6)
we have, on neglecting terms O(z%/zgw), a pair of linear, first

order, ordinary differential equations, namely

T ] dg
*eyTp *egzp = fog + fl ac (5.5.16)
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and

dt dzT dg
Tttt e aw ety o G5l
where the constants egs €15 €95 €4 and e, are defined by
e.tT
_ _BrBeFo o = 9Fo + I8PeFo _ "0 =
€o 2(1-e)zp°° | 24' 7z3 zpo°
e = 2PeFo , e _ 12Fo } (5.5.18)
2 SPE 3 24
p 4, peo
and
e, = qu
4 qzzpoo had 2(1*3) J
and the constants fo, fl’ f2 and f3 are defined by
fo =" egT, » 1= (z_ 1 - 1)/pr
(5.5.19)
_  PeFoB _ (qZprTw+3q3)
5 " T oqz. ™ £33+ >
2%pe 922 pe
We recall here that we are seeking a form for G that is

‘asymptotically proportional to T

a form for

for large

g that behaves like Ty

for 1large t .

t , hence we require

It thus

seems logical with reference to equations (5.5.16) and (5.5.19)

to choose

function : of Tp

g to have the same functional form as the complementary

Following standard procedure we assume complementary functions

to T and zp of the forms

- 236 -

(5.5.20)




Substituting these two expressions into equations (5.5.16) and
(5.5.17) leads, after a little algebra to the pair of homogeneous

linear simultaneous equations

(eo—n)§ + ey = 0 (5.5.21)
and

(ez—n); + (e3—e4n)y =0 (5.5.22)

Clearly the above equations have a non-trivial solution only
if the determinant of the system is zero. Thus n must satisfy

the quadratic

2 -
e,n + (el-e3 e0e4)n + €838,y = 0. (5.5.23)

This quadratic is readily solved yielding the pair of solutions

(5.5.24)
and

n, =N, +N, , (5.5.25)

where N1 and N2 are defined by

\

N = [e400%e5mey] /2¢,

and L (5.5.26)
N ://// 2 (egegmeey)
= NS - 22 L4

2 1 e4

Using computed values of T, and zpoo numerical values of

n, and n, were calculated, for various values of Pe and Br,
using equations (5.5.24) and (5.5.25) with the aid of (5.5.18) and
(5.5.26). The Bingham number was taken as B = 5,0 and following

Bahrani [}é] we chose € to give zero yield stress at melting temperature
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resulting in e % 0.4.

It is found that n, and n, are both real and positive
for all values of Br and Pe and n, is obviously always smaller
than n, . A plot of these quantities against Br for various

values of Pe 1is given in Figure 5.1.

Since n, is in most cases much smaller than n, we deduce

that Zp and T are asymptotically proportional to exp —nlﬁ] for

large time. Hence assuming g to have the same functional form as

T We now write

gae T . (5.5.27)

Furthermore , recalling equation (5.4.29) we see that for

small ¢

G« 1//t (5.5.28)

Thus on recalling definition (5.5.3) one deduces that a

suitable form for G satisfying both (5.5.27) and (5.5.28) is

G = (1l-e ) (5.5.29)

Although there may be other representations for G equation
(5.5.29) is simple and possesses the right asymptotic properties
for small and large time. Expanding (5.5.29) for small t the
comparison of the resulting expression with the series (5.4.29)

reveals that

g, =1//n] and g =0. (5.5.30)
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Also on expanding (5.5.24) for large t and using the

definition (5.5.3) it is seen that
g=%e 1 (5.5.31)

Having now established a suitable form for G we could go
on and calculate the particular integrals to equations (5.5.16)
and (5.5.17). However, since these particular integrals are not
really required, and even if we obtained them we could not give
a complete solution, since we have no conditions from which to
determine the unknown constant in the complementary functions, it

is thus pointless taking this solution any further.

Although the main objective of this section (that is to obtain
a form for G) has been achieved, it is thought useful to give
with the aid of the above results, a simple model from which the
duration of phase II can be obtained and this is done in the following

subsection.

5.5.3 Estimate of time taken to reach steady state

In this section we present a simple model to illustrate the
qualitative effect of the only two control parameters, Br and Pe ,
on the £ime taken to reach equilibrium. Although the exact form
for =z, 1is not known, its functional form is known and as in

T

Section 4.11 we assume

z, =~ 172 e (5.5.32)

Following Section (4.11) we shall assume here that equilibrium

has been reached
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when the thickness of the plastic region has reached 957 of its
asymptotic steady value. The time taken to reach equilibrium te |,

is thus given by

te = — 1n20 , (5.5.33)

and a plot of this quantity against Br for various values of Pe

is presented on Figure 5.2,

Comparison of the results in Figure 5.2 with those in Figure 4.10
reveals that the models are very different for small values of Br,
In the case of the viscous fluid model the time taken to reach
equilibrium approaches zero as Br - O whereas for the Bingham
substance te - » as Br -+~ O . However for larger values of Br

we notice that the difference is much smaller.

5.6 Results and Discussion

In this section the plots of zp and T against time are

given for various values of Pe and Br.

Using the computed values of n, and n, and equation (5.5.30)
in (5.4.,42) it is found that this inequality is satisifed for all

Pe and Br wused. We thus deduce that there is a unique solution

to (5.4.37). This is readily calculated using the Newton—-Raphson
method and presented together with the corresponding values of T e
given by (5.4.43), in table 5.1. Using these values and a suitably

small starting value for t the pair of ordinary differential

equations (5.4.18) and (5.4.24) were readily solved using the
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Pe = 0.1 Pe = 0.5
Br
21 Tl % To1
0.1 0.915 5.908 1.572 4,479
0.2 0.902 3.415 1.553 2.796
0.3 0.897 2.421 1.554 2.071
0.4 0.895 1.880 1.558 1.657
0.5 0.893 1.538 1.562 | 1.386
0.6 0.892 1.302 1.567 | 1.193
0.7 0.891 1.129 1.570 1.049
0.8 0.890 0.996 1.574 0.936
0.9 0.889 0. 892 1.577 0. 846
1.0 0.889 0. 807 1.579 0.772
2.0 0.887 0.415 1.593 0.415
5.0 0.885 0.169 1.603 0.175
Pe = 1.0 Pe = 2.0
Br
1 -1 21 -1
0.1 1.936 3.886 2.236 3.511
0.2 1.943 2.443 2.326 2.177
0.3 1.959 1.824 2.389 1.619
0.4 1.977 1.467 2.437 1.302
0.5 1.993 1.232 2.480 1.094
0.6 2.008 1.065 2.519 0.945
0.7 2,022 0.939 2.550 0.834
0.8 2.034 0. 840 2.580 0.747
0.9 2.045 0.761 2.608 0.676
1.0 2.055 0.696 2.634 0.619
2.0 2.120 0.378 2.812 0.337
5.0 2.132 0.161 3.032 0. 144

Table 5.1
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Runge-Kutta method and these results are presented in Figures 5.3

and 5.4.

Comparison of the traces of 1t given in Figures 5.4 (a) and (b)
with the corresponding traces from the viscous fluid model, Figures
4,7(a) to (d), shows that, apart from the peculiar dip for small
times, the results are qualitatively similar. ie. t decreases
with increasing values of Br and increases with increasing values
of Pe. However, comparing Figures 4.6(a) to (d) we see that the
plots of zp do not agree qualitatively, Although in both cases
zp decreases with increasing Pe the effect of increasing Br
leads to an increase of zp for the viscous fluid model but has
the opposite effect with the Bingham model. This difference is
further illustrated by comparing the asymptotic expansions of Z oo

for small and large Br, (5.5.14) and (5.5.15) respectively, with
- their counterparts from the viscous model (4.,11.11) and (4.11.12).
We see that for small Br zpw n~ Br 1n the case of the viscous
model whereas zpoo v 1/Br for the Bingham model. Also for large
Br z_~ ¥Br in the viscous case but zpco ~v constant in the

poo

Bingham case.

5.7 Series Solution Valid for Small Time

In this section an analytialsolution, valid for small time only,
to the problem of section (5.4) is developed. The governing equations
and boundary conditions are given, in terms of the variable n by
equations (5.4.1) to (5.4.9). The appropriate form for G should

be obtained by developing an exact analytic solution for large time

- 245 -




and following the lines of Sectiom 5.5. However, this would be very
tedious and it is thought more desirable to use the form for G ,
derived from the approximate solution, given by (5.5.30). The
complication of the nonlinearity of the above mentioned system is
reduced, as in  Section 4.9, by assuming series expansion in integral

powers of VYt , for 6, 06s, zp and T in the forms

9 = eo(n) + v/t el(n) + 0(t) , (5.7.1)
o, = eso(n) + v/t esl(n) + 0(t) , (5.7.2)
2, = 2)/E + 2,0 + o(e3/2) (5.7.3)
and
v o= VE+ g +ooetP (5.7.4)

On substituting equations(5.5.30) and (5.2.7) into (5.4.1) and
(5.4.2) and substituting the above series into the resulting expressions,

and expanding in small quantities, one obtains the pair of identities

2°0 1 Br 2 2
5 + vt 5 teoot 7 1112 Jt + (Zlezt_l + leO)t+"£]

-1 + 2T, +eeom -—-———%?—-— (1-e6 -cb

vt 0 (1—e)ni Jt 0 1

/t ...)(1+nlt/4+...)

+ 2T +eeo—

T T 21 B(l—eeo-eel/E...)
1 vVt 0 (1-e)ni Jt

x (1+n1t/4) k'dk'dse! no + /t 1 +oue| + l—~(z§t+22122t3/2+...)

Fy

2

0 z 3z.z dg ds

x A +ooa] - %r- El-+ 12 VT o+, n U /t 3 1 +.ve 4|0 € g1,
27t 0 dn n

(5.7.5)
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and

SO 1 _
2 + ‘/E- 2 +-uo - Pe(zl/E. + Zzt+...) dn dn

2o %6 ao_, ds_,
S SO+ Vb —2= +...
dn dn

3] ) 22 3z.z
L
+ %&-(zit+221z2t3/2+...) —El-+... - %r- El + ; 2 VE +uus
0 2/t 0

 Jae, ey - (5.7.6)
xn dn +)"Edn LI I ) ’ n » . - . L

Similarly, the expression for Co’ equation (5.4.3), and equation
(5.4.4) are expanded, resulting in

]

1y
cC = 1 ——-T 2 toae—
0_ 33 uc. 1*.: s e
“1° 01

B(l-c0,-0) /T -...) (1+ o, t/&)|k'dk'de" © (5.7.7)
2(1—s)ni /t
and fl’-\ Z\ + (ToZ. -+ T-\Zz)\]—y—- = ...

B(zl/g + z,t +...)
- f (1—86 —EG VE = (l+n1t/4+...)dn =1 (5.7.8)

2(l-e)n% Ve

0
and the boundary conditions (5.4.5) to (5.4.9) expand to

.dé do

0 1
-(-17]—- 0) + /E‘a‘;]“' (0) +... = (5.7.9)

i
o

90(1) + ./t 61(1)+... = eso(l) + ./t esl(l)+..., (5.7.10)
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de de de de

0 1 = s0
'cl—n-—-(l)*-/{a?'(l) teao d dn couwy
(5.7.11)
eso(n) + /t 6,,(n) +... >0 as n > (5.7.12)

and

+ 2T ke -—-—-—;—-— (1-e8,(1)-e6, (1) /t —ee ) (Liny /4 +o00).
vt -e)n

(5.7.13)

Equating the coefficient of like powers of t 1in the above
identities leads to a set of subsystems of ordinary differential

equations, the first two of which are given and solved here.

5.7.1 First Order Subsystems

On equating the coefficients of the lowest order non—zero terms

in t , in the above system of identities, one obtains after some

rearrangement
2 2
d o 2. n deé T
0 1 0 2. 2172
5t yEs g T BTt 20y = Brr_jzpi— - T 40, Osnsl
dn 0]
(5.7.14)
and
dzeso zi deso
7 5N an - O, nz1 (5.7.15)
dn 0

where z, and T_p are related through
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[\
]
1
—
N
N
=
N—

(l—seo)dn =1 (5.7.16)

do
a-r-]—- (O) = 0 ’ (5.7-17)
60(1) = eso(l) , (5.7.18)
dé deso
o (1) = o v , (5.7.19)
eso(n) >0 as 0> (5.7.20)
and
I
T T 1-660(1) . (5.7.21)
In the above the constant Fz is defined by
r, = B . (5.7.22)
2(1-e)ni

Following standard procedure we split the solution for 60 into two
parts; the complementary function 60 and the particular integral

eo and write
p

6, =286 + 6 . (5.7.23)

By inspection of equation (5.7.14) the particular integral is readily

seen to be

6 = 1/e - T_l/I‘2 . (5.7.24)
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As there appears to be no closed form analytic solution to the complementary
function of (5.7.14) a series solution in integral powers of n of

the form

v n .

z an, with a_ =1, (5.7.25)
is sought, where the an's and Xo are constants. On substituting

(5.7.25) into (5.7.14) and equating the left hand side of the latter to

zero, there results the identity

< n-2 z% n 2n
Xo nZQ an[%(n—l)n + Efg-nn + BrFZT_lzln } =0 (5.7.26)

On equating the coefficient of n" in the above identity we deduce

that the an's are connected by the difference equation

2
nz 2
2F + Brlyt g2
a o =" D D) a,n3z 0 (5.7.27)
with
ao =1

a, =0, (5.7.28)

which reveals by way of equation (5.7.27), that the an's are zero

for all odd values of n . Thus the general solution for 60 may be

written with the aid of (5.7.23), (5.7.24) and (5.7.25) as

_ T 2n . 1 -1
8o =Xo L ayn +tITF—,0s<n
n=0 2

(5.7.29)

N
it
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where the a, '

op S are generated by

nz2
1 2
{?8— + BrPZT—lzé}

on+2 - T 5 (n+l) (2n+1) “2n °

n>0 (5.7.30)

with ay = 1 . Using conditions (5.7.16) and (5.7.21) we obtain the

two equations connecting Xgs 21 and Ty

o« a
2n _
Fzzlxo Z -z—r—l-:f— (5.7.31)
n=0
and
Xo L 8y, =0 (5.7.32)
n=0
respectively.

From (5.7.31) it is clear that Xo # 0 thus we deduce from

(5.7.32) that

L a,, =0 (5.7.33)
n=0

It ie ceen from eaquation (4.4.19) 1in Section 4.4 that the general

solution of (5.7.15) satisfying condition (5.6.20) is

Z.n

5] = D erfc
s

o (5.7.34)
z/Fg

The constant D is obtained by substituting (5.7.29) and (5.7.34)
into condition (5.7.18) and making use of (5.7.30) which results in the

expression for 6
P sO
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T z.n z,
erfc , n31l (5.7.35)
sO

2 2/F 2%?3

On using the boundary condition (5.7.19) we have a further condition

connecting 90, zq and Ty namely
2
e z T -2z /Z}F
Xo z na, = -1 4% -7 1 e 1o erfc|— (5.7.36)
n=0 2/7F | 2 2/F

Using equation (5.7.31) to eliminate Xo from (5.7.36) we have
1 E § 390 1 L Ty ] E/eE,
na = - - - — |e Jerfc(z, /2/F.)
23T, 1=0 22///;=o Y T I o
(5.7.37)

The two transcendental equations (5.7.33) and (5.7.37) can now be
solved numerically for T and zq using a similar method to that of
Section 4.5. It was found that about the first fifteen terms were required
in the sumations to obtain accuracy to four decimal places. The results
for z, and T_q are presented for various values of Pe and Br 1in
Table 5.2. By comparing these figures with the corresponding figures
obtained by the heat balance method which are presenteg in Table 5.1,
the accuracy of the approximate method can be assessed. It is noticed
that the error increases as both Br and Pe become larger. The smallest
error in the figures presented is about 5%, ocurring when Pe = 0.1 and

Br = 0.1 but for Pe = 2,0 and Br = 5.0 the error 1is as large as

55%.

- 252 -~




Pe=0.1 Pe=0,5
Br
z, 1 z, T
0.1 0.800 6.258 1.334 4,900
0.2 0.785 3.653 1.306 3.114
0.3 0.779 2.602 1.299 2.333
0.4 0.776 2,026 1,297 1,882
0.5 0.774 1,660 1.292 1.584
0.7 0.771 1.221 1,297 1.210
1.0 0.769 0.875 1.298 0.899
2.0 0.766 0.451 1.299 0.489
5.0 0.764 0.184 1.300 0.208
Pe=1.0 Pe=2.0
Br
zq T z; T4
0.1 1.594 4,407 1,798 4,084
0.2 1.573 2,861 1.816 2,659
0.3 1.568 2,181 1.827 2,044
0.4 1.568 1.783 1.836 1.686
0.5 1.569 1.517 1.844 1.445
0.7 1.574 1.=79 1.858 1,138
1.0 1.581 0.892 1.874 0.875
2,0 1.595 0.502 1,911 0.510
5.0 1.608 0.222 1,952 0.236
Iable 5.2
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Having now obtained values for 2y and Ty the constant Xo
can be obtained using equation (5.7.31). The temperature profiles can
then be obtained using (5.7.29) and (5.7.33) for the plastic and solid

regions respectively.

In the following subsection, the solution to the second order

subsystem is developed.

5.7.2 Second Order Subsystem

Substituting equation (5.7.7) into equation (5.7.5) and equating

the terms in Yt results in the ordinary differential equation

n £
2 -2 (z,1 _,*+z.1)| — Pez ( [
-9 22,1 42,7 ) =27 _ - 0 1
Brzll_g (1 O)( Zz -17%1%0 1V°2 -1 "1 o1

dn

1L 3z.z dé@
Ty do, . - 3.2_ (1-8 )| kdkdt - —fF*—-z-n T,? ’
- —= (1=e6 )| kdkds -1 " € 0 0
-1 € 0 o1

(5.7.38)

where the constant P2 is defined by equation (5.7.22).

Similarly equating the coefficient of Yt in equations (5.7.6)

and (5.7.8) yields

2 2 3z de
d05q LA . dog, 7 6. = - zlrpe N .2_52_ nJ SO (5,7.39)
dn2 FO dn ZFO s L o n

and
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. 1

2
(zlr0 + 1_122) - T2 P (
0

(l-eeo)dn -z (5.7.40)

1

O
(e o]
-
[aW)

The boundary conditions obtained from the coefficient of vt

in (5.7.9) to (5.7.13) are

de
+— (0)

0,(1) =

____1_ (1)

gl(n) + 0

and

On substituting the expressions for
(5.7.29) and (5.7.3%) respectively,

respectively the latter become;

2 2
470,z q

2 * 2Fo

dBl

dn

2 1
+ zl[%rT_lfz 7To
dn

p 2n
Brz1 [%_1 FZXO nZO aznn (2221_1

- a 2m+2 w
2m 2m
2Pez1Xo[ L ey 2
_ 32123%g na 2n
Fo Znn
n=0

=0, (5.7.41)

= esl(l) ’ (5.7.42)
de

= s (5.7.43)
as n > (5.7.44)

=T, (1) . (5.7.45)
BO and GSO ,» glven by equations

into equations (5.7.38) and (5.7.39)

+ zZ.T.) —

1% T (2T gz 7)ot

10

a
(2m+2) 2 2n+3

(5.7.46)
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and

d28 z2 de 22 3z —zzn2/4Fo
sl 1 n sl 1 6 =T |pe + 2 nle 1
dn 2Fo dn 2Fo sl 1 2Fo ?
(5.7.47)
where the constant Fl is defined by
2
z] ET
r. = 1 - — erfe(z,/2/Fo) . (5.7.48)
ev/mFo 2
Similarly substituting (5.7.29) into (5.7.40) yields
1
217, + z2/z1 = 21F2 [ Gldn . (5.7.49)
0
Defining the constant FO by
§ #n
r_ = ———— (5.7.50)
0 0=0 (2n+3)
and noting that
- a n2m+2 o
2m z 2n 2n+2
) na, """ = ] d,n (5.7.51)
=0 (2m+2) (2m+3) 020 2n N0 2n
provided that the coefficients d2n are given by
o (n-j)a,.a .
- 2] 2(n-j)
b = L @@ 1220 (5:7:52)

equation (5.7;46) may be reduced to
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2 2

d 61 . zl . del +me. =- 1 lm +m 020 a n2n
dn 2Fo dn 171 o 2 5 n=0 2n
o 2n o N 2 2n
~ 2z, nzo (m3+nm4)a2nn + nzo m6d2nn - m,na, |n (5.7.53)

wherz the constants My, My, Mgy Wy, Mg, Wy and m, are defined by

_ 2 1 _ 2
m o=z BrT__lI‘2 EE%J , My = Brzl"c_1 s
m, = 2Brz T ,T m, = BZIXO
3 1%0"-1"2 4~ "Fo
r (5.7.54)
= Brzz T m = _Z_i_&_z.]_'l(.g
s 1%0'2 6 T
0]
and
o 2PezlxO &
+ L]
7 FO =0 2m+2
Denoting the complementary function and particular integral by elc and
elp respectively we write
86, =6, + 86 . (5.7.55)

The form of the left hand side of equation (5.7.53) differs from
the left hand side of (5.7.14) in that the term BrT_lziFZ in the latter

is replaced by m thus the form of the complementary function to

1 ’
(5.7.53) can be obtained from (5.7.25) and (5.7.27) by replacing

2 . .
Brr_lle‘2 by m, glving us

n . _
81c = Yo Z en with ey =1, (5.7.56)
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where the en's are generated by the recurrence relation

zin/ZFoﬂn1
e = o~ e | & . N

n+2 (m+D) (n+2)| n (5.7.57)

N\
(@]
-

and Y is a constant. It is convenient to divide the solution to the

particular integral into three parts, thus

. (5.7.58)

<D

"

-
o
Ho~18
T
N

=

+

N
N
i 0~38
Na
o

=

3

+
he~18

s
N

s}

=

On substituting this expression into equation (5.7.53) we obtain the

identity
w [ nz 7
-2 1 2n
TO nzl 2n(2n-1)n +‘§3— + m1 Pznn +
o [ nz2 i
-2 1 2n
z, nzl 2n(2n~-1)n * o + m |4y 0 +
© nz ]
-2 2n
— P— Y =
nél 2n(2n~1)n + o + my T, N =
T +m § a n2n -z E (m,+nm, )a, n ooy § m d, n -m.na n2n
o |"2™s L %n 2 Lo T Lo M6 TR

(5.7.59)

It is now easily deduced from the above that the coefficients

Py dop and r,, can be generated by the difference equations
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2
) [(zln/Fo+m1)p2n+m5a2n]

Pon+2 ° (Zn+1) (2n+2) »nzl
(5.7.60)
py = ~(my+mg) /2,
2 h!
- [(zln/Fo+m1)q2n+(m3+m4n)azé} 5 1
Yn+2 (2n+1) (2n+2) » 02
(5.7.61)
q = 7 my/2
and 2
r - - [(z]n/Form )ry -med, p+mina, | s
2n+2 (2n+2) (2n+1) ’ -
(5.7.67)
r2 =

Substituting equations (5.7.56) and (5.7.58) into equation (5.7.55)
and applying the boundary condition (5.7.41) to the resulting expression
it is clear that the coefficient ey is zero. It then follows from

the recurrence relation (5.7.57) that

€onel 0O,nz20. (5.7.63)

In view of this result the general solution for 61 may then be expressed,

with the aid of (5.7.56), (5.7.58) and (5.7.55), in the form

- I8 2n T 2n v 2n v 2n
el—wOZeZHn +TOZp2nn +222q2nn +Zr2nn ,0<n g1
n= ‘ n=l1 n=1 n=1
(5.7.64)
where the ezn's are generated by
[zzn/Fo+mJe
e - - R 2n nz0
2n+2 (2n+1) (2n+2)°’ -
(5.7.65)
e = 1 ]
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Substituting equation (5.7.64) into conditions (5.7.40) and (5.7.45)

leads, after some algebra, to a pair of linear equations connecting

Tor %y and wo , namely
k1%
and
ksTo
where the constants kl’ k2,
by
kl =
k2 =
k3 =
k5 =
k7 =

+ kzz2 + kaO = k4 (5.7.66)
+ k6z2 + k7wo = k8 . (5.7.67)
k3, k4, k5, k6’ k7 and k8 are defined

© P
2n
2|1 +T, ¥ 55;%} , (5.7.68)
L n=1
- . q
1 2n
PRIEILY ) 2n+1| ° (5.7.69)
|71 n=1
o e o r
2n 2n
eg L 5mat s % =Toz L o3t
n=0 n=
(5.7.70)
2 + 2T, L Py kg = 2T, Z q, 5 (5.7.71)
n=1 n=1
= - r
2r, Z e, and kg 2T, L%, (5.7.72)
n=0 n=1

The solution to equation (5.7.47) satisfying the boundary condition

(5.6.43) 1s readily seen to be
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—

I

zZ.n zZ.7 —zznzléFo r —zzn2/4Fo
_ 1 1 1 1 1
951 = A 1 —— erfe - — - PeFo + zzn e

Stl2/Fo 2VFo e z

N

(5.7.73)

On substituting equations (5.7.64) and (5.7.73) into the condition

(5.7.42) we deduce after some algebra that the constant ASl is given

by
© o o r —z2/4Fo
A, = L Y Z e, + T 2 P, * Z Z q, + —l-e 1
sl L 0 2n 0 2n 2 2n 2
1 n= n=1 n=1 zy
o Tl —z§/4Fo
+ | ) T _ +-= PeFoe (5.7.74)
2n 2
n=1 z
1
where the constant 21 is given by
z, 1 —z%/éFo
21 = ——— erfc(zl/Z/fg) -—e (5.7.75)
2V/Fo v

Finally making use of the condition (5.7.43) we obtain, with the
aid of equations (5.7.64), (5.7.73) and (5.7.74), after some algebra,

a further linear equation in z,, Tg and wo , namely

k9T0 + kloz2 + k11¢o = k12 s (5.7.76)

where the constants k k k and k1 are defined by

9’ "10” 11 2

[e] Z o
_ A
kg =2 ) mnp, - ———erfc(z,/2/Fo) nél Pop (5.7.77)

n=1 221/1'?'6
E z; - § Fl —zi/&Fo
k = 2 nq - ———— erfc(z,/2VFo)| )} ¢ + —= e -
10 0=l 2n 221/58 1 n=1 2n z%

1 1 —z%/AFo
rl[—-——-~ -—-]e , (5.7.78)
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(o] Z o0
1 (5.7.79)
k.. =2 J ne ~—=erfc(z;/2/F)) ] ¢,
1 n= 2o 28 VF . ! ° n=0 n
and 170
2
; z, = ( § , I PeFo -zl/4Fo
k., =-2 ) nr, + ——— erfc(z,/2/Fo) PO e +
12 oy o L == 1 Ln=1 2n )
1 1
I.Pe -z2/4Fo
1 o 1
2
(5.7.80)

Using Cramer's rule we deduce from equations (5.7.66), (5.7.67)

and (5.7.76) that =z T

2> 0

z) =5 [k (kgkygkppky) -k
T o= = [k, (k k. k. k)-k
0 A[4 6511751057
and

oo =1 [k, (ko o=k, ko)-
0 A[l 612" %108) ™!

where the determinant A

A = k (k_k

6k117k

ko) -

10577~ kp(kgk

Values of =z and

2

respectively are presented
from the approximate solut
Figure (5.5). It is notic
poor for Br < 1 but for

method is quite good.

The heat balance met

case of the viscous fluid.

and wo are given by

U k7)+k3(k5k12-k9k8)] , (5.7.81)
2 (kghy gk k) # Ciegky o=k k] s (5.7.82)
(kgkyy~kgkg)+k, (k ok 10-—k9k6)] (5.7.83)
is given by

sK117kgky) +ky gk gkgke) (5.7.84)
5 computed from equations (5.7.81) and (5.7.82)

and compared with the corresponding values
ion, given by (5.4.36a) and (5.4.36b), in

ed from these plots that the agreement is very
1.0 < Br < 3.0 the approximate

Br in the range

hod does not seem as accurate here as for the

This is probably due to the form shown for
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22 Pe = 0-2 =3 o =03
o-34 o3 4
<-l O.l-
G- - o.‘ -
W L) 1§ ¥
J ) 8
~ ! 2. 3 "
~O-{ -—0.‘-1
~0-1 4 = - -0
—O'S—' —o.3q
) ]
(@)
— ~ =~ small time H.B.I.
,t; 7 Co Y
= A
Fe © l Pe = ©-3
0-7 4 074 \
{
O-6 K 06 o
\
©-5 A \ O5 4
O 4 \ O ¥4
\ \
(o] 3 p \ O-s-. N
\ ~
021 \ o.z-\
N ~
>~
O-f A ~= o1
1 ¥ 1 T 1 T
\ 2. 3 Qe 2- 3'
(b)
Figure 5.5 (a) Plots of z, against Br, (b) Plots of T against Br.

- 263 -




the temperature profile in the solid region and it is thus felt that
the introduction of the thermal boundary layer is the more accurate

approach.

5.8 Steady State Series Solution

In this section we solve the partial differential equations (5.1.8)
and (5.1.9) subject to the boundary conditions (5.1.1%) to (5.1.18),
(5.2.4) and (5.3.4) for the steady state case. Firstly we derive the
steady state form, of the above mentioned system, which is obtained
by taking all quantities to be independent of time; consequently all
derivatives with respect to t vanish leaving us with a system of

ordinary differential equations.

Denoting steady state quantities by a suffix, « , the steady state
form of equation (5.1.8) may be expressed, with the aid of equations

(5.2.7), (5.2.18) and (5.3.5) in the form;

s Brr_ B(1-¢6_) z 4 B[1-c6_(k)]
; 5 2t - i = PeCo_ l J 2t - ey
z z
poo
de_
kdkd® P 05z s zp, (5.8.1)

where the constant Co_ , obtained from equation (5.2.21) with the aid

of (5.2.7) and (5.3.5), is given by

2Pe g B[1-e6_(k)]
o, = -1 J [ 21 - T(imey | kdkdb . (5.8.2)
0 zp,

Similarly the steady state form of equation (5.1.9), again assuming

that equation (5.2.20) holds, is readily seen to be
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S = - Pe i‘” z 2z (5.8.3)

Likewise, with the aid of (5.2.7) and (5.3.5), the steady state
forms of the boundary conditions (5.1.1%), to (5.1.1%), (5.2.4) and

(5.3.3) are seen to be

3z (@ =0, (5.8.4)
em(zpw) = esm(zpm) , (5.8.5)
do_ de__
T o) T T (2 o (5.8.6)
_ Gsw(z) >0 as z > ® (5.8.7)
Zpoo
B [l—eem(z)l
Tmzpo° iy f ) dz =1 (5.8.8)
0]
and
B[l—eew(zﬂw)]
21 = SR (5.8.9)

There appears to be no analytialsolution to equation (5.8.1),
unfortunately, but a series solution may be obtained when the Peclet
number Pe 1is assumed to be small and this solution is given in the
following subsection. However, it is a trivial matter to solve (5.8.3)

and the solution satisfying condition (5.8.7) is given by

6 = Ae [OF (5.8.10)

sw ’

where A 1is a constant of integration.
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5.8.1 Series solution for small Pe .

Recalling the series approximation, valid for small Pe , to z
pm
obtained from the heat balance integral solution, and given by equation

(5.5.14) we note that
Z e 1//Pe , (5.8.11)

for small Pe . This result and a close inspection of the system of

equations (5.8.1) to (5.8.9) leads us to seek series solutions in the

form
6,,(z, Pe) = ¢,(z) + /Pe ¢,(2) + Ped,(z) +..., (5.8.12)
e:pm(Pe) =y * /Pe Ly + Pel, +..., (5.8.13)

and
1 (Pe) = Pet2 + P63/2T3 toue o (5.8.14)

where the new variable ¢ 1s defined by
z = /Pe z (5.8.15)
.and the quantity Cp , following from this definition is given by

= /Pe . 5.8.16
Cpoo ngo ( )

Expressing 65Qo by equation (5.8.10) and introducing the variable ¢ ,
given by (5.8.15) into equations (5.8.1), (5.8.2), (5.8.4) to (5.8.6),

(5.8.8) and (5.8.9) yields, with the aid of (5.8.16),
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dzem Br't°° B(l-eew)
Pe — + 27 o ———m——
dCZ 2 (1-¢)
¢4 B[1-e6_(k")] de_
- t ot 2
C oo [ J 2T =) k'dk'de' g, OsCi s, (5.8.17)
0
Cpm
where the constant Cooo is given by
T w0’
2/ " f B[1-c6_(k")
= - - 1 1 1 .8.
Cooo Pe J J 2t (i=e) k'dk'de' (5.8.18)
0
Cpm
and the boundary conditions
de_
E_C— (0) =0, (5.8.19)
-/Pe ¢__
6,(C,) = Ae P (5.8.20)
de_ -/Pe ¢
= &, ) =-A/fee P (5.8.21)
pe [1-co_(2)]
B
¢+ B = .8.22
Too"’peo 2 J (1 €) de /EZ & )
0
and
21 = —5— [1-¢8 (z_) (5.8.23)
© (]."E) ® * °po 2

respectively. Substituting the series (5.8.12), (5.8.13) and (5.8.14)

into equations (5.8.17) and (5.8.18) we obtain the identities




2 2

d ¢ d7¢
+ Pe3/2 % + Pe2 2

dg dzg dg

+.I.+

Brke (12+ /FE‘T3+...)[?PET Y (- e¢ -c/Pe ¢1 ePe¢2 ...%]

2 2 (1 €)
4 2!
= - ____B_.__ 1. vy \ -
z cwa f [2Per2+... D) [1-eoy(k")-evPe ¢ (k")
0 +/Pe z +Peg2
o do, déo,
-ePeg, (k' ) k'dk'de'|~— + /Pe —— + Pe —= +...| , (5.8.24)
dg dg
i
and ;O+|/§'e— T *Pel *e .. Iy ]
_ _p.3/2 _ B
COoo = =Pe J lfPe’rz+... =y
0 C0+/Pe SRS P

—

[}—E¢O(k') - €¢5€-¢1(k') - Pe¢2(k')—... k'dk'de' . (5.8.25)

Expanding the integral, which appears in equations (5.8.24), by

Taylors theorem we can write

Q’l
[ 2PeT2+...— ?T%ET [}—eeo(k') - e/Pe ¢1(k') - sPe¢2(k')—..1}
co+/1;€ z *Pel, ..
e {‘
' | - - B - Ty ' _ Ty A' ' '
k'dk' = j L2P6T2+... ) [1 ¢ (k") ev/Pe ¢, (k")-ePeg, (k") ...Lk dk

C .
-/Pe ClCO[’ZPeTZh..— -(-%E-)—[l—scpo(co)—s/ﬁ'é ¢1(CO)_€Pe¢2(Co)“"'ﬂ+'°'

S

(5.8.26)

Substituting this expansion back into equation (5.8.24), we obtain,

after a little regrouping of terms;
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+ Pe S + Pe ——73 +.;.+ E%BE (12+/§E T3+...)

[éPer Foaom B (1—e¢0—a/5;-¢1—ePe¢2 —ees)

2 (1-¢)
€ B ¢ &' 4!
=~ ey J [1~e¢0(k )]k dk'de' - V/Pele I [ fiel(k Yk'dk'dey' +
0 %o 0z
d¢ dé
0 1
alcoc[l-e%(co)] Foue [EE‘ + /f’E—&C— Foeol (5.8.27)

Expanding the integral in equation (5.8.25) in a similar manner

to the above results in the expressions for CO°° s

%o !
3/2
_Pe’’ (ze) - NPT
C, = = J f [1 e¢0(k ):lk dk'de
0 %o
- oo M
Py 0 1l ' 2)._
e e [ J $, (KKK di' + ClCo[l ecbo(co)ﬂ+... (5.8.28)
0 CO

On substituting this expression into equation (5.8.27) and dividing

both sides of the resulting expression by Pe results in
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a4, %,
5 + /Pe 5 + Pe — ...+
dg dg dg
Br - = —/Pe
(T +/Pe 1 [éPeTz ( ) (1- e¢0 -e/Pe ¢1 ePe¢2 ] Fe
C QI C/ 9]' _—‘
L ) ) L -
[ J [1 €¢ (k! {Jk dk'de'~ L J [ ¢1(k Yk'dk'de +c;1c0[} €¢0(C0{“
{0 Co 0 CO
L
%0 ¢! Zo
' ' ' 2 -
+eoo M1 + VPe {e J f ¢, (K"K dk'de' + z,c041 ed4(20)
0 QO 0 CO
Ty L'
a9, Fd¢ © ‘
- ' ! 4 ' ____ — — ' ! ! '
[i €¢O(k 2}k dk'd2' +... i + VPe iz Foeao f J [} e¢o(k z]k dk'de'+...
. oz
0 (5.8.29)
Expressing the constant A.o° by the series
A =a_+ /Pe a, + Pea,+... (5.8.30)

L 0 1 2
and substituting this and the series (5.8.12), (5.8.13) and (5.8.14) into
the equations (5.8.19) to (5.8.23) and expanding where necessary using
Taylors theorem the corresponding forms for the b.c's are

d¢ d¢ d¢2

——9'(0) + /~_.~_* (0) + Pe-a—— (0) +e.. =0 (5.8.31)

[ dé, dé,
9o(cy) + VPe bl(co) to3p @ )J + Pe[cbz(co) * o3 (gp)

2
d¢0 gl d2¢0

Thaa YT 2 (¢ )] o= ag * (amagr)Pe

+ [ a, a1c0+ao(; /2= i]Pe+ ey (5.8.32)
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2

d¢0 d¢ d2¢0 '&¢2 %9,
() + /Pe|=—(z)) + El?“‘)) + Pel= (g) + cl-—dz-z-@())
2
d ¢, d
* i, Ty (C )+ ‘l‘—“—g (CO) +e.. = - VPe ay - (al—ao;O)Pe+...,
az’ d>
(5.8.33)
Zo | %0
B
PetyTy T TI= Ty ( (1-e0,"))dk - /Pe |e [ ¢, (k"K' )
0 0

)

a dd,
[}-e¢o(coi} - Pe[% f 9,4z + €2y99(zy) - cz[} €$,(Z {] 7 a5
0

¥ouuf = /Pe . (5.8.34)
and
dg,
2Pet, +... 1-e¢,(gy) - e/Pe [¢,(zy) + 5 EE—,(€0)
*1 449 1 a0,
ePe|0y(0g) * 5y ET" a0t T2 dCz ()| *eee -
(5.8.35)

Having now derived the expanded forms of the governing equations
and boundary conditions, valid for small Pe , by equating the coefficients
of like powers of Pe 1in the expansions we can obtain a set of subsystems
of ordinary differential equations the first two of which are given and

solved here.

(i) First order subsystem,

Equating the coefficients of unity in the system of identities

(5.8.29) to (5.8.35) results in the equation
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d ¢O BrBT25¢O BrBr

- = (5.8.36)
dcz 2(1~¢g) 2(1~¢)
and the boundary conditions
o 8.37
I (0) =0, (5.8.37)
99(2g) = 25 > (5.8.38)
d¢0
aZ_..((;O) =0, (5.8.39)
o |
J [é"€¢o(k')]dk' = 0 (5.8.40)
0]
and
1 - e¢0(c0) =0 . (5.8.41)

The general solution of (5.8.36) which satisfies condition (5.8.37)

TBETZ 1
¢O = BO cosg [/ E?T:ET + . (5.8.42)

where B0 is a constant of inteﬁrqtion, This expression satisfies the

three conditions (5.8.39), (5.8.40) and (5.8.41) only if BO is equal

is readily seen to be

to zero, thus the solution for ¢G is

=L
by = 3 (5.8.43)

Finally from condition (5.8.38) we deduce that

1
ag = 7 (5.8.44)




(i1) Second order subsystem.

Owing to the simple expression for ¢O given by (5.8.43) the
identities (5.8.29) and (5.8.31) to (5.8.35) are greatly simplified and

rewritten here for convenience

do, &%, . Be/Fe
/ﬁ;dz + Pe 5 +...+-—2—(T2+\/l_’;‘t3+-..) 2PeT2+-Z—1—_—E-:-)—¢1+
4 dg
BePed ¢ A Zo %' do,
= - TNV LY 300 Lt a0t
ooy *eer| = Pe [ J ¢, (K")k'dk'dR f J 6 (kK"K AR | = ..
0z, 0z,
(5.8.45)
g a4,
Pe-a—— (0) + Pe 7= (0) +... =0
d¢
VPe 9,(z)) + Pelo,(T) + L) 3 (c )| +...=/Pe (a7 /e)
+ [?z—alco+(;g/2—cl)/{]Pe+..., (5.8.46)
d¢ d2¢

d¢,
e == () + Pe[ (ty) + 2, —5 (CO):lh.. = - L /e ~(a,-z /O)Pe+. .,

dzg
(5.8.47)

%o )
Per T, + 2(?—5) evPe f ¢, (k") dk" + Pee[ J ¢, (k")dk' + ;1¢1(c0%}
0 0

+... = VPe (5.8.48)

and

dé,
2PeT, tiee= = (1§€) e/Pe ¢ (;O) + ePe[% (z )+z;1 T (¢ {} (5.8.48)
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Equating the coefficients of

equations

/Pe

in this system results in the

d2¢1 BrBsT2
— * ey ¢ = O (5.8.50)
4
with the boundary conditions
d¢1
il (0) =0 (5.8.51)
0,1(2y) = a; = gy/e (5.8.52)
d¢
1 =-1
T Cty) = -2 (5.8.53)
)
_Be b, (k")dk' =1 (5.8.54)
2(1-¢) 1
0
and
¢1(CO) =0 (5.8.55)
The general solution to (5.8.50) satisfying (5.8.51) is obviously
BrBs'r2
¢1 = B1 cos ¢ E?T:ET (5.8.56)
where B1 is a constant of integration. Substituting this expression

into (5.8.54) we obtain the equation
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BeB1 BrBer2 BrBer2
ey Sinty /[ amey < /3 ¢ (5.8.57)

and making use of equations (5.8.53) and (5.8.55) results in

BrBeT2
COSCO -Z-ﬁ.:?)— =0 (5.8.58)
BrBert BrBet
/ 2 2 _1
Bl m—)— Slnt_‘,o 7(1-¢) =T . (5.8.59)

It is now easily deduced from these three equations that Bl’ CO and

and

T, are given by

2
_1 fle)
B, =2 3 R (5.8.60)
=1 [2(1-¢)
Ly =3 3 (578.61)
and
= L
Ty T e (5.8.62)

Finally condition (5.8.52) and equation (5.8.61) reveal that

_m 2(1-¢)
a; = 5= | /__i;—__ (5.8.63)

The third order subsystem has been solved but the solution is
lengthy and since the first two are adequate to make a useful comparison
with the heat balance integral solution it is decided to terminate the
series here. Thus with the aid of (5.8.13), (5.8.14), (5.8.16), (5.8.61)

and (5.8.62) the expression for =z and T may be approximated by

pw
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T f2(1-¢)
me - 2 "_"""BP'e' +oo- (5-8-64)
and
Pe
To= —— +... .8.
~= B1e + (5.8.65)
respectively.

5.8.2 Results and Discussion

Comparison of (5.8.64) with the leading term in the corresponding
expression for the approximate solution (5.5.12) reveals that they
differ only by a numerical factor. Since w/v¥2 % 2,222 and V6 ¥ 2.449
the error is about 10%. However, comparing (5.8.65) with (5.5.13)
we see that to a first approximation the shear stresses are identical.
This gives us further indication thatthe errors in heat balance method
for earlier times are probably due to the form of the temperature profile

assumed in the solid regiom.

Finally we make a brief comparison of the solution with Bahrani et al.
[ié]. They solved the steady state problem again assuming that Pe is
small and consequently reglecting the effect of convection in the plastic

region altogether. A temperature dependent yield stress of the form

00(6) = G0 + 8(90-6) (5.8.66)

was assumed whe 50 is the interface temperature. Assuming %o

falls to zero at melting temperature Bm the above is expressed as

(8) = e(8 -0) . (5.8.67)
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Non-dimensionalising this expression gives

Q
]

e(emfe) . (5.8.68)

where

m
]

Et% log (5.8.69)

?é' and 9% being typical values of temperature and yield stress
respectively. With (5.8.69) it is easy to see that equations (23) and
(26) of [}é] can be expressed in dimensionless forms.

-1

Pe 2Pe
T = ZGmEE 1+ ﬁ—g; (5.8.70)

and

ya

™ o1
b . e O,
=3 / 26 PeB|c+2Pe/BIB] (5.8.71)

respectively. Comparing these expressions with (5.8.64) and (5.8.65)

we note that the leading terms differ only by numerical constants.

This is due to slight differences in definition of ¢, and scaling. Thus

0
this solution is a first order approximation to the exact solution. The

following terms in the expansion for small Pe will be error due to

the neglect of convection.

Bahrani used equation (27) to determine an upper bound on the
thickness of the plastic region. It must be remembered that this
expression is valid for small Pe only. Let us briefly examine the
implications of small Pe . Using definition (3.4.38) we see that a

small value of Pe implies either zp is small or W_ 1is small.
o
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Bahrani et al. assumed z to be small and confined to zone A Dﬂ.
Hence expression (27) in [16] could be assumed to be valid for larger
values of W_ leading to the small values of z* and consequently
lower values of u through (26) which is compatible with definition
(3.4.21). However, it is felt that the region of plastic flow extends
through zone B and into zone C where temperatures O (700°c) have been
reported [5]. In this case (27) is only valid for small W_ in which

case the small values of 2z* will not be observed.
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CHAPTER 6

THE UPSET COLLAR

6.0 Introduction,

So far in this thesis we have examined the mechanisms that are
present within the confinement of the tube walls.(that is, with respect
to the 2-dimensional model between the limits - %’S X g %9. However,
on all friction welds an upset collar is formed by the material that
is expelled from the plastic region across the surfaces x = i-% .

It is of interest to examine the motion in the regions |x| > 5 in

order to predict the shape of the collar.

In this chapter a simple fluid model, compatable with the model in
Chapter 4, is developed in order to gain insight into the mechanismg

involved.

Again we consider only thin walled tubes and all the assumptions
of Section 4,8 are made. With the assumption of symmetry about x = 0

. 1
we need only consider the extruded zone, x 2 3 s and we are thus confronted

o =

with the problem of a viscous fluid bounded by the surfaces x =

LI(x,z,t) and Lo(x,z,t). (See Figure 6.1).

Recalling the equations governing the motion in the domain
1l
2

dominant terms are the hydrostatic pressure terms. We shall assume

0 g x < h, 0cx z < ;p , (4.2.7) to (4.2.11) , we note that the
here that the same equations can be applied in the extruded region.
Then to a first approximation, neglecting the effect of any motion in

this region, L is balanced by the surface forces in L0 and LI'
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N,
el

z

The extruded region

Figure 6,1

Thus the problem can therefore be assumed to be quasi-steady; that is,
although the problem is overall time dependent we assume that at any

given time the system is in a state of static equilibrium.

- Before we can proceed further the nature of the surface forces

on Lj and LI must be established. It is usually appropriate in this

sort of ptobdem to assume that the surface forces are due to surface
tension. However, when a surface is constrained by surface tension,
the pressure on the concave side must exceed that on the convex side
of the surface. Clearly this is true in the case of surface LO but
unfortunately the converse is true for surface LI' By comparing the
orders of magnitude of the pressure P with‘the atmospheric pressure

A

P , clearly the pressure on the convex side of L is far greater than

AT

that on the concave side, and it therefore seems necessary for the surface

I
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L, to possess a certain amount of stiffness.

The simplest way to model this stiffness is to assume that L,
behaves as an elastic beam. The surface forces are then easily
calculated and the stiffness is given by the product EIII where E,
is Youngs modulus and II is the second moment of area of the surface

LI . We shall assume the beam is inextensible but has temperature

'dependent stiffness. The forces in the surface L0 could be modelled

by surface tension, however, the analysis is simplified if we model this

surface as another elastic beam, with a different stiffness EOIO .

The lengths of L0 and LI are denoted by ﬁo(t) and EI(t)

respectively and are determined with the aid of the model presented in
Section 4.8. The cusp, that is the point A at which the surfaces

Ly and L, are joined (see Figure 6.1) appears to come from the
1

original 'corner' 2z =0, x =3 . Thus the length %y will be opproximalely

the amount of axial shortening that has taken place, or mathematically
L. =WE . (6.0.1)

The length &  1is obtained indirectly from the condition of

0

mass conservation, -that is the amount of material which crosses the

interface z = z_ between the limits x =0 and x = %- must equal

the amount of material that is bounded by the surfaces LO’ L. and

I
X = %-, 0<gzc¢g zp . This condition leads to an equation which completes
a set and allows 20 to be calculated along with other quantities.
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6. Derivation of the Governing Equations and Boundary Conditions

In this section the equations governing the bounding surfaces LO
and LI , and the boundary conditions to be applied to each surface
are derived. Both surfaces are assumed to behave as inextensible
perfectly elastic beams of variable thicknesses with temperature
dependent stiffnesses. A point P on a beam is identified by four
quantities of which only one is independent. These four quantities
are the two rectangular coordinates x and Az , the arc length s
and the deflection angie 6 which is the angle between the tangent
to the beam at the given point and the x~axis. We shall denote
the point 'P by the symbol (x, z, 6, s). Before we start the
analysis let us state the sign conventions that we shall use throughout
this chapter. Consider an element of beam of length ds , then

with s measured from left to right we take downward loadings. w,

clockwise acting shear forces FS and sagging bending moment M as

being positive. (See Figure 6.2)

Y

An Elemental Section of a Typical Elastic Beam.

Figure 6.2
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Let us now determine the relationships between the quantities
W)Fs and M . Suppose that thecomponents of the total force acting
parallel to the x and z directions, at the point P(x, z, 0, s)
are F_ and F, respectively, the positive sensos of which are taken
to be consistent with our sign conventions (See Figure 6.2). On

resolving this pair of force components in the normal direction to the

beam at the point (;, z, 6, s) the shear force Fs can be expressed as

F =F 8Sin6 + F Cos® : (6.1.1)
s x A

In addition on resolving F_ and F, in the tangential direction
at P(g, ;, e, s) one could obtain an expression for the tensile force
F_ . However, since we are assuming that the beams are inextensible

T

this force is not required.
Considering the equilibrium of forces in the x direction we obtain

(6.1.2)

0
o

Fx(E-dE) - W(s) Sin® ds - Fx('s')

On expanding this equation for small ds using Taylor's theorem,
dividing by ds and taking the limit as ds » 0 of the resulting

expression, we obtain

de
—= =~ W Sin6 . (6.1.3)
ds

Similarly from the balance of forces in the z direction we have

dF,
—— =~ W Cos® , (6.1.4)
ds

and from the equilibrium of moments we obtain

M _ (6.1.5)
- S
ds
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Having established these basic results, we can now derive the

equations governing our system.

Let us firstly describe the system. The beam L0 , which has
length EO , is assumed fixed at the point (0, 0, 0, 0) with the
gradient d20/d§0 being zero at this point. The other end of the beam
(x20 » 2947 620, 20) is held by a force of magnitude Fy whose line

of action makes an angle @y to the tangent of the curve at the point

under discussion. Similarly the beam LI , which has length 21 s is
assumed fixed at the point (O, Ep’ “ﬁﬁ}g} ) with its gradient
d;I/d;£7 becoming infinite on approach to this point. The other end of
LI(EEI’ ;ZI’ 611’ EI), is held by a force of magnitude FI whose
direction makes an angle a; to the tangent to the curve at the point
under discussion. [?ee Figure 6.{]. We shall assume that the internal
pressure acting on Lo is Ed and thaﬁ the pressure on LI is EI

where 50 and EI are of the same order of magnitude but not necessarily

equal.

6.1.1 The Governing Equations

Considering the beam L0 we shall obtain an expression for the

shear force acting at any point. On resolving the force acting at the

point (xzo, 220’ 620, 20) into component parallel to x and 2z axes,

Fxo and on respectively, we obtain [See Figure 6.3:_[.

F = = F. Cos(a_+6 ) (6.1.6)

x0 0 0 %0
and

F =F Sin(ao+6 ) . (6.1.7)

z0 0 20

Replacing W by _SO the appropriate forms of (6.1.3) and

(6.1.4) are
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W

z >3
Figure 6.3 Variable Definition. d
aF _
—2 =35, sin ® (6.1.8)
- (0 0
ds
and
dF,  _
—— =p,. Cos 6_ . (6.1.9)
- 0 0]
ds
The boundary conditions to these equations are
Fe(Xp00 Zgo® 800 L0) = Fyo amd Fo(xp45 2505 8460 &) = F
(6.1.10)

respectively where FxO and Fz are given by (6.1.6) and (6.1.7)

0

respectively. Integrating equation. (6.1.8) with respect to s and
applying the boundary condition (6.1.10}P results, with the aid of

(6.1.6), in
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1

Po Sin eods - Fo Cos(a0+6£0) . (6.1.11)

x"’l

L]

1
0 >

The corresponding result for force Fz obtained using (6.1.9), (6.1.10)2

and (6.1.7) is

0
Py Coseods + FOvSIH(aO+6xO) (6.1.12)

rxj

N

[

|
0| ]

Substituting equations (6.1.11) and (6.1.12) into (6.1.1) yields
20

Fs = - FOCos(aOJ—ezo) + [ Py Slneods Sm@0
: s
0

+ F081n(a0+e£0) - Py Coseods Cose0 , (6.1.13)

W =,

which is an expression for the shear force f?s at the point (x, z, 8, s).

At this stage we make use of the Fuler-Bernoully  theorem Ef]
"which states that the bending moment at a given point on a beam is
proportional to the curvature at that point. Mathematically the theorem

is expressed

(6.1.14)

where the constant of proportionality is the product of the Youngs
modulus, EO , and the second moment of area, EO , and 1s called the
stiffness. Differentiating both sides of (6.1.14) with respect to s
and making use of equations (6.1.5) and (6.1.43) gives, after some

rearrangement, the ordinary differential equation
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L
d (= = deO ° - -
_ EOIO-—:— = - F081n(uo+920-90) + f pOCoseodsCoseO
ds ds 2

s

0

p,Sin6,dsSing,, 0 s 5< & (6.1.55)

+
B Y— =)}
!

Applying a similar analysis to the surface, LI , one obtains the

equation
2
a |- = doy I _ _
— —_—] = - 1n (3 - -
— EI;I — F181n(.I+621 eI) J pICoseIdsCoseI
ds ds 7
-~ s
3
- I EIsmeIdESineI , 0558 g 2 (6.1.16)
s

in the derivation of which the positive sign of p; Wwas taken since

this quantity respresents a downwards loading.

The coordinates X and Zz are easily seen to relate to s and

68 through the equations

dxo dz0

— = COosHO and ——— = Sin® (6.1.17)
- 0 - 0

ds ds

and

d§1 dEI

—— = CoseI and —= = Sin6 (6.1.18)
- = 1

ds ds

At this stage it is convenient to int roduce the new dimensionless

variables
iz vy = Eyfa, ay = R, %, = 2y/7 |
s =s/z, 4, o/%p %1 = /7, Xy = X/2z 5 25 = 2, zp
X xI/z > Zp zI/zp, X0 sz/z > 290 = zlo/zp }
- C . . - (6.1.19)
Xpp = X I/z » 291 = 2 I/zp, Bo EOIO/EI, BI EIII/EI
F oz F z2 Pz Pz
f , f , F = __.2 7 = ..__L
0" EL* 1 ELI 0" EI EL J




)
where E and I are typical values of Youngs modulus and the second
moment of area respectively. Using these variables the dimension: less

forms of equations (6.1.15) and (6.1.16) are

L
d de0 °
Ty Bo rrai il f081n(a0+620—60) + [ pOCoseodsCoseO
s
20
+ [ p031n60d381n60 s, 0 <gs g 20 (6.1.20)
s
and 21
d d@i
r BI rees Bl f181n(aI+62I-6I) - J pICoseIdsCoseI
s
1
- I pISinGIdsSineI » 058 52y (6.1.21)
s

respectively. Similarly equations (6.1.17)1 2 and (6.1.18)1 2
3 b

become

dxo dzo

rrad CoseO and el Slneo (6.1.22)
and

laxI dzI

el CoseI and e SmeI (6.1.23)

6.1.2 The Boundary Conditions

From the condition of attachment at the end s = O of the surface
LO we can write

=0 and 20=00n s =0 (6.1.24)
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The slope of the curve at s

0 1is zero,thus we have

From equation (6.1.17)1 2 it is easily verified that
b

dz

9. tanf . , - (6.

d?co 0

and hence conditions (6.1.25) can be expressed

s = 60 , of the surface L. we can write

At the other end, 0

20 0

o
"
=

(]
N

o
]

20

and since there is no bending moment at this point we have

deo _ -
— =0 on s =4 . (6.
- 0
ds
For the surface LI the attachment condition at s = O is
X; = 0 and 2y < zp on s =0 (6.

and from consideration of the slope at this point we write

lim I 6.

which with the aid of (6.1.26) can be expressed in the form

GI =.m1/2 on
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z.. and 90 =9 on s = 2% (6.

s =0 (6.

.25)

.26) -

.27)

.28)
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. 30)

.31)

.32)




At the end s = QI of the surface LI the conditions are

Xy = Xprs Zp = Zpys eI = 621 on § = 21 (6.1.33)

and the zero bending moment implies

deI -
T - 0O on s = EI (6.1.34)

Since the ends 'E = IO and s = EI , of the two surfaces Lo and LI

respectively are coincident we can write

N

X0 = ¥ and Z)o = 21 0 (6.1.35

and as the system is in a state of equilibrium the magnitude of the

LI°

forces actlng at the points (xzo, Iy 620, 20) anq (sz, Zg1 8
must be equal and act in opposite senses. Thus we can write
Fo = FI and oy + 620 =ap + 621 + 7 (6.1.36)

Finally we require a condition expressing the conservation of
mass. Assuming that all the material that flows over the surface
z = z_ between the limits x =0 and x = % h is expelled into the

extruded region we can write

6 6
W_ht [Ro_ dz, N T
—— x ——-de - f X —-——— d6 (6.1.37)
2 0 deo (0] 1 deI I
(0] -m/2

With the aid of (6.1.19) these conditions can be expressed in

the dimensionless form
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=0, 6. =0 on s =0 (6.1.38)

x. =0, 2 0

0

6. =0

- =0 on's = 1.
xo xzo’ zo = zzo’ 0 20° deo/ds - on s L (6 1 39)

0

=0,2z,.=1,6_=-7/2 on s =0 (6.1.40)

x I

I

6. =0 dSI/ds =0 on s = & (6.1.41)

X1 " %12 %1 T %10 r T Yare I
X0 = ¥o10 %00 T %I (6.1.42)
fo = fI’ ay + 620 =a; + 611 + (6.1.43)
and
0 5]
th 20 dzo oL dzI
2o ) Y@ %] M (6.1.44)
Zp 0 ~m/2
where the constant Vm is defined by
W ht,
vV = . (6.1.45)
m 2
2z

pO
and 79 and Zpo are JcFmeJ A quektr 3. (See ?43t h0>,

6.2 Solution with Zero Hydrostatic Pressure (Po = PI = 0)

There appears to be no analytic solution to the above system of
equations and further simplifications must be made if onme is to be
obtained. In this section we shall neglect the effect of the hydrostatic

pressure and assume that
P.=P_=0. (6.2.1)

We shall also assume that the stiffnesses Bo and BI are both
constant but not necessarily equal. In view of (6.1.19) we may therefore

take, without loss of generality,
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BO =1 and B, = 1/6 (6.2.2)

where the quantity & is defined by

§ = EOIO/EIII (6.2.3)

These assumptions simplify our equations considerably and allow an

analytic solution to be obtained.

Using assumptions (6.2.1) and (6.2.2) in (6.1.20) and (6.1.21)

and making use of condition (6.1.43)1 leads to

d260
5 = - £ Sln(ao 20 60) 0 <s g ZO (6.2.4)
ds
and
\ dzel |
'§ dsz = - fo Sln(aI+ ezI-eI) . 0 <s g 21 (6.2.5)

Multiplying equation (6.2.4) by 2d60/ds and integrating the resulting

expression with respect to s yields

(deo)z

where C0 is a constant introduced through the integration. Using

condition (6.1.39)4 to determine C0 and taking the square root of

(6.2.6) results in

de

9. 55 3
rae 2f0 [?osa Cos(a +6, -6 %] . 0 <8 g 20 (6.2.7)

0 20 70

where it has been assumed that the curvature d6/ds remains positive
in the region 0 g s g 20 . Integrating equation (6.2.5) in a similar
manner and using condition (6.1.41)4 to determine the constant of

integration gives
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de 4
I
Pt ¢2f06 [%osal Cos(a1+921 eli} , O&gs g RI (6.2.8)

where it has again been assumed that the curvature dGI/ds remains
positive in the region O £ s g RI . Using the method of separation
of variables to integrate equations (6.2.7) and (6.2.8) and using
conditions (6.1.38)3 and (6.1.40)3 to determine the constants of
integration leads to

8

O
deo
sVZfO = T (6.2.9)
0 [Cosao-Cos (a0+620—eo)]
and
0
. I deI
sv2£46 E:osa —Cos(a_?+62T—6T):'£ (6-2-10)
-n/2 E - =

On making the change of variable through the equation

2 .2,
Cos(ao+6 ) = ZkO Sin ¢O 1, (6.2.11)

20 %

where ké is defined by

2 _ 2.
2kS = 1 + Cosa, (6-2.12)

it is seen that (See Appendix 1) the integral on the right hand-side
of equation (6.2.9) can be transformed into the well known elliptic

integral of the first kind F[?i] in which case (6.2.) becomes

S'/E; = F(¢y» ko) = Fldy ko) 5 &,y s ¢5's m/2 . (6.2.13)

In the above the elliptic integral F 1is defined by
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u
F(u, k) = J N\ A (6.2.14)
J ,
0 1-k281n2v
and $20 is given by the equation
P S S
Cos(ao+620) = 2k081n ¢£O 1. (6.2.15)

The equation derived from (6.2.10) and similar to (6.2.13) is

sVES = F(oy, kp) = F(,, k) 4 ¢, € o3 € 1/2 (6.2.16)

7
where kI, ¢I and ¢2I are defined by

2

ZkI =] + CosaI s (6.2.17)
Cos(o.+0,.-6.) = 2k2 Sin2¢ -1 (6.2.18)
I "I 1 1 1. e
and
Cos (0,40, +1/2) = 2k Sin%¢ . - 1 (6.2.19)
I "1 1 21 ¢ te

Using the condition (6.1.39)3 in equation (6.2.13) yields, with

the aid of definitions (6.2.11) and (6.2.12),

zo/f"(; = F(1/2, k) = F(¢,4> k) (6.2.20)

Similarly, using condition (6.1.41), in equation (6.2.16) gives, with
3

the aid of definitions (6.2.17) and (6.2.18),

2 /ES = F(n/2, kp) = Foyp, & (6.2.21)

)
Eliminating the unknown force fo from the latter two equations results
in

20

21 8
(6.2.22)
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Using the chain rule, equations (6.1.22)1 9 and (6.1.23)1 2
] s

can be written

dx de dz . de '
0 _ 0 0 _ o 0

o Coseo/ds and T Slneo T (6.2.23)
(¢) 0

and
1

dx de dz do
I _ s I _ . I

?1-6; = Cosel/a-;— and --——-deI S;nGI Fre (6.2.24)

respectively. Substituting equations (6.2.7) into (6.2.23)1 o, we
s

obtain
dx Cosf®
deo - 0 y (6.2.25)
0 v’2f0 [Cosao—Cos(aoi-elo—eo)]
and
dz0 Slneo

de. ~ SE
0 1/2f0 [Cosao Cos(ao+ew 60):]

Separating variables and integrating this pair of ordinary differential
equations yields with the aid of conditions (6.1.39)

]

0
Cos6 _d6
xy = — 99 I (6.2.27)
v’ZfO 0 [Cosao—Cos(ao+elo—eo)]
and 60
Sind _do
2 = — 00 % (6.2.28)
»/2fO 0 [CosaO—Cos(ao+e£O—80)]

Similarly from (6.2.8), (6.2.24)1 2 and (6.1.40)3 we obtain
’

eI
1 CoseIdeI
X = J T (6.2.29)
- —_ 2
»’ZfOG_“/Z [:CosocI COS((II+65LI eI)]
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and 6
1
z; = T
V2£ 8 -n/2 [?osairCos(aI+6£I—615]

I $in6.dé
I I +1 (6.2.30)

Making the change of variable, given by (6.2.11), in equations

(6.2.27) and (6.2.28), the latter can be reduced to

0
+ 4k2sing, (Cosé, —Cos¢ )’ 1-k2Sine, 1/VE by € 6 < T/2 (6.2.31)
0 20 20 0 0 20 0°"%0 % "0 ° )

and
2y = {2kosin¢w' 1—k(2)sm2¢m[if(¢o,ko)-F(¢w,ko)—2E(¢o-,ko)+zE(¢w,ko>]
—2ko(zk§sin2¢w-1)(Cos¢£0—c°s¢o)}//§)',¢ws bgo € T/2 (6.2.32)

where E is in the elliptic integral of the secord kind defined by

u

E(u, k) =f "1-k%sin?v dv (6.2.33)
0

See Appendix for details. Similarly équations (6.2.29) and (6.3.30)

reduce to

x = {2k131n¢21‘ l—k%Sinzd;zI[F(d;I,kI)—F(¢2’I,kI)-2E(¢I,kI)+2E(¢ZI,kI?]

.2
+ 2kI(1-2ki81n ¢21)(Cos¢£I-Cos¢I)}/¢f06, $gp § 91 € m/2  (6.2.34)
and

2, = {(I-Zk?:Sinz%I)E‘(¢I,k1).—-F(¢u,kI) ~2E(¢ 1,k )+2E(); ,kI)] -

2. Vo 1 24.. 2 e
- 4k181n¢21(Cos¢£I—Cos¢I) 1—k181n ¢QI}/ £, + 1, $g7 S 01 € /2
(6.2.35)
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Applying the boundary conditions (6.1.39&, and (6.1.39)2 to the
equations (6.2.31) and (6.2.32) respectively yic lds with the aid of

condition (6.1.39)3 and definitions (6.2.10) and (6.2.12)

Xyo = { (2k§Sin2¢zo-1) F(n/2,ko)-F(¢zo,ko)—2E(ﬂ/2,ko)+2E0%°,koi]

2. V.o 2., 2
+ 4k081n¢20Cos¢Zo 1-k081n ¢10 /Vf0 (6.2.36)

and
. /. 2., 2
200 = { 2k051n¢20 1-k0$1n %20 [F(n/z,ko)-F(%o,ko)—ZE(n/z ,ko)
+ 2E(¢lo,ko):] -2ko(2k(2)sin2¢m—1)_Cosq>w}//f_6 (6.2.37)

Similarly applying the conditions (6.1.4()1 and (6.1.4E)2 to the
equations (6.2.34) and (6.2.35) respectively gives us with the aid of

condition (6.1.40)3 and definition (6.2.17) and (6.2.18)

Xop = {2kISin¢M’I1-k§Sin2¢“ |.F(1r/2 k) =F (0 ok )=2E(n/2, k)

2,. 2
+ 2E(¢2I’k1i] + 2k1(1—2k181n ¢zI)Cos¢21}//f06 (6.2.38)
and
zg1 = {(1—2k§8in2¢21) F(Tr/2,kI)—F(¢H,kI)-ZE(Tr/Z,kI)+2E(¢M,kI)]
2. Vv ..
_4k181n¢21005¢21 1-k581n%¢21}/Vf06 +1 (6.2.39)

Now substituting equations (6.2.36) and (6.2.38) into conditions
(6.1.42)1 and equation (6 .2.37) and (6.2.39) into condition (6.1.42)2

results in the pair of equations
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2.2, . '
(2kSin“¢, =1) F(n/z,ko)—F(%o,ko)—zE(n/z,ko)+zE(¢w)k0)] +
ulsing, Cose, "1k2sints, = {2k sine,  1KEsine, | F(r/2, )

0 20 20 0 20 I 21 1 2T 1

—F(¢21,kl)-2E(n/z,kI)+2E(¢ZI,kI)] + ZkI(1-2k§Sin2¢2I)Cos¢21}]5
(6.2.40)

and

2kOSin¢20 1-k§Sin2¢2o[%(n/2,ko)-F(¢20,k0)-2E(n/2,ko)+2E(¢zo,ko)]
- 2k (2k%Sin%¢. -1)Cos¢ . = {(1—2k281n2¢ Y F(n/2,k)-F(6,_ k) -
0 0 20 20 1 L1 L LI’
. Y . 2.
za(n/z,kI)+zE(¢u,kI)]-4k§3m¢uc°s¢EI 1-k§81n2¢21}//§ +/Eg (6.2.41)

The condition (6.1.43)2 may be expressed in the form

tan(a.+6,.) = tan(aI+9 (6.2.42)

0 20 QI)

and with the aid of equations (6.2.15) and (6.2.19) this may be

rewritten as

2...2 . v, 2.. 2
ZkISLn ¢21-1 2k081n¢20 1—k081n ¢ZO )

+ 0 (6.2.43)

B AT S Y 2k28in%e, -1
2k181n¢EI 1-k181n ¢EI 0 20
The conditions of mass conservation (6.1.44) can be expressed in

terms of the new variables as

. dz /2 dz;
Vm( ] = f xo -&-¢—o- d¢o - f XI EI— dd)I (6.2.44)

%20 %1

where X and X, are given by (6.2.31) and (6.2.34) respectively

and the expressions for dzo/é$% and dzI/d¢I, obtained by differentiating

(6.2.32) and (6.2.35) with respect to ¢O and 1 respectively, are
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dz
0 2,..2 . 4 2,. 2
E$3 [}2k081n ¢0—1)(2k081n¢£0 1-k,Sin ¢20)

(2k2siny 1o~ D) (2K Sing] 1—k(2)sm2¢0)] J(0Ey "14Csine)  (6.2.45)

and
dz
I s /2. 2 . 2., 2
¢1 = [;2k181n¢21 1 k181n ¢21)(2k181n¢I 1 kIS1n ¢I) +

2,. 2 2,. 2 4 2,. 2
(2k181n ¢21 1)(?k181n ¢I 1{]/(¢f06 1—k181n ¢I) (6.2.46)
Equations (6.2.22), (6.2.40), (6.2.41), (6.2.43) and (6.2.44) can
now be solved numerically. With zp and QI determined by the model
of Section 4.8 this set of equations were solved numerically using

Powell's method and results for the case B_=1.0, Pe = 0.5, § = 1.0

and h = 0.75 mm are presented in Table 6.1.

Pe = 0.5, Br = 1.0, § = 1.0, h = 0.75 mm

2
t z % Vnt/z5 1 % 20 o1 0 I

0.2 | 0.777 | 0.644 | 0.311 | 0.941 | -0.952 | 0.477 | 0.431 | 0.902
0.3 | 0.901 | 0.833 | 0.347 | 0.961 | -0.726 | 0.566 | 0.369 | 0.956
0.4 | 0.993 | 1.007 | 0.384 | 1.017 | -0.655 | 0.616 { 0.306 | 0.974
0.5 1.065 1.173 | 0.413 | 1.103 | -0.673 | 0.643 | 0.248 | 0.983
0.6 | 1.124 | 1.334 | 0.445 1.210 | =0.751 | 0.656 | 0.201 | 0.989
0.7 1.173 | 1.492 | 0.477 1.333 | -0.869 | 0.663 | 0.168 | 0.992
0.8 1.215 1.646 | 0.508 | 1.466 | -1.014 | 0.666 | 0.145 | 0.994
0.9 1.250 | 1.800 | 0.540 | 1.605 | -1.174 | 0.667 | 0.131 | 0.996
1.0} 1.281 | 1.952 | 0.572 1.747 | -1.339 | 0.667 } 0.123 | 0.997
1.1 | 1.307 | 2.103 | 0.603 | 1.891 | -1.502 | 0.667 | 0.120 | 0.998

Table 6.1
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The corresponding values for 6 @y, and a; , obtained

20 ° elI’ 0
using the above values and equations (6.2.12), (6.2,15), (6.2.17) and

(6.2.19) are presented in Table 6.2.

Pe = 0.5, Br = 1.0, § = 1.0, h = 0.75 mm.

t %0 Oe1 0 oy

0.2 | 92.232. |-10.045 | 128.896 | 51.174

0.3 | 71.639 -5.974 | 136.717 | 34.329
0.4 | 57.086 -4.515 | 144.394 |} 25.994
0.5 | 46.481 -3.191 | 151.299 | 20.971
0.6 | 39.028 -1.601 | 156.762 | 17.391
0.7 | 34.031 0.192 | 160.687 | 14.526
0.8 | 30.844 2.034 | 163.369 | 12.120
0.9 | 28.941 3.800 | 164.941 | 10.082
1.0 | 27.914 5.393 | 165.853 8.375
1.1 | 27.434 6.731 | 166.267 6.970
Table 6.2

The coordinates Xy Xps Z, and z; can now be obtained
using equations (6.2.31), (6.2.34), (6.2.32) and (6.2.35) respectively,
with the aid of the results presented in Table 6.1. The plots of the

profiles obtained are presented in Section 6.4.

Inspection of the results in Table 6.1 reveals that as time t

increases ¢10 approaches the critical value of -7n/2. Referring
to equations (6.2.12) and (6.2.15) it is seen that at ¢£O = - 7/2
we can write
Cosoco = Cos(u0+620) (6.2.47)

and substituting this result into equation (6.2.7) we deduce that

deo
-(—1-;—- =0 at s =0 . (6-2-48)
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Hence the curvature is zero at the end s = 0 of the beam LO.
As t increases further the curvature will become negative at s = O.
However, from the symmetry condition of z = 0 the curvature must be
positive definite and consequently our model must be modified to
obtain results for larger times. A simple way to avoid negative
curvature at the end s = 0 is to allow a region of the beam LO’

0gs g xp , to be along the x axis. The beam L can then be

0

regarded as a beam of length zo—xp , having zero curvature at the end

(xp, 0, 0, 0) and this model is considered in the following subsection.

6.2.1 Solution with Zero Curvature at Point (xp, 0, 0, 0)

Z,
Variable Definition

Figure 6,4
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The model is this section differs from the previous one in that
the length of the beam LO is now lo-xo and the end that was
attained at the point (x = 0, z = 0) 1is now attached at the point
z = 0) where the curvature is taken to be zero. Thus the
governing equations can be obtained from those in the previous section

by replacing &, by &, - xp , the point (0, O, O, 0) by the point

0 0
(xp, 0, 0, 0) and ¢£0 by ~m/2 ., On déing this, equations (6.2.22),

(6.2.40), (6.2.41), (6.2.43) and (6.2.44) became

(ﬁ -x_)
2F(n/2 k) = ——-————-[F(ﬂ/Z K ) “F(¢, 1 -k )], (6.2.49)
2 %

2 . v .
(2k0-1)[%F(N/Z,ko)—éE(n/Z,koi] + xp/?3-= {2k131n¢21 1_k§81n2¢21

E‘("/Z’RI)-F(‘T’ILI I) 2E(n/2,k. )+2E(¢21 I)]+2k (1-2k S:Ln2¢22COS ¢2,I}//_ ’
(6.2.50)

~2ky 1-k2 |2 (n/2,k ) -4E(n/2,k {] {(1-2k§$in2¢£1) F(m/2,k)~F (8, ,kp)

_ 24 V. 2. 2.
2E(n/2,k;) + 2E(¢11,k1i] 4k1Sing, Cos¢,  1-k]Sin ¢21}//§ + Jfg ,

(6.2.51)

2kiSin2¢2I-1 2ko’1—kg

7 - - 5 =0 (6.2.52)

2k Sing, l-k%Sln o1 2kg-1
and
vt Tz g, T2 4,
-5 = [ xoajé-—d(bo - J Xq Wd(f)l (6.2.53)
Zz 0 I
p /2 %1
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respectively. Also the expressions for Vfo s X5 Zg and dzold¢0

(6.2.20), (6.2.31), (6.2.32) and (6.2.45) become

/Eg = 2F(n/2, ko)/(zo—xp) , (6.2.54)
X, = {(Zkg—l) F(¢o, ko) + F(n/2, ko) - 2E(¢0, ko) - 2E(n/2, koi}

2 2
+ 4kOCos¢O(1-ko}//fg + X /2§ ¢y 5 T/2 (6.2.55)

N
§

{—Zko l—kg[?(¢o,ko)+F(n/2,ko)—ZE(¢O,kO)—2E(ﬂ/2,koi]+2ko(2kgfl)

0
Cos¢o}//fg , =m/2 g 9 € /2 (6.2.56)
and
dz -
0 _ 2.. 2 ) 2 . 2.2
555-— -[k2k081n ¢0—1)(2k0 l—ko) + (Zko—l)(2k081n¢0 1—k031n ¢O)]
J(Ey T1-k2sin®e ) (6.2.57)

In the derivation of the above set of equations use has been
made of the fact that F and E are edd functions. The expressions
for x;, z; and 'dzI/d¢z remain unchanged and are given by (6.2.34),
(6.2.35) and (6.2.46) respectively. Equations (6.2.49), (6.2.50),
(6.2.51), (6.2.52) and (6.2.53) are now solved numerically and the

result corresponding to Br = 1.0, Pe = 0.5, 6 = 1,0 and h = 0.75 mm are

presented in Table 6.3.

Using the results in Table 6.3 and equation (6.2.12), (6.2.15)

o and o are then

(6.2.17) and (6.2.19) the values of 620, 621, o I

obtained and these results are presented in Table 6.4. Also, using
the figures in Table 6.3 and equations (6.2.55), (6.2.56), (6.2.34)

and (6.2.35) the coordimnate values Xys Zgs Xp and zg respectively

are obtained and the corresponding profiles are presented in Section 6.4.
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Pe = 0.5, Br = 1.0, 6§ = 1.0, h = 0.75 mm

t zp QI . Vol 20 xp ¢I ko kI
1.2 | 1.331 | 2.254 | 0.635 | 2.035 | 0.055 | 0.667 | 0.119 | 0.999
1.3 | 1.351 | 2.405 | 0,667 | 2.180 | 0.155 | 0.667 { 0.119 | 0.999
1.4 | 1.370 | 2.555 | 0.699 | 2.323 | 0.254 { 0.666 | 0.120 | 0.999
1.5 (1.386 | 2.706 | 0.732 | 2.470 | 0.354 | 0.665 | 0.121 | 0.999
1.6 | 1.400 | 2.857 | 0.765 | 2.615 | 0.453 | 0.664 | 0.122 | 0.999
1.7 |} 1.413 | 3.008 | 0.798 | 2.759 | 0.550 | 0.663 | 0.122 | 0.999
1.8 | 1.424 | 3.160 | 0.832 | 2.905 | 0.649 | 0.663 | 0.123 | 0.999
1.9 | 1.435 | 3.310 | 0.865 | 3.048 | 0.745 | 0.662 | 0.123 | 0.999
2.0 | 1.444 | 3,463 | 0.900 | 3.194 | 0.843 10.661 | 0.124 | 0.999

Table 6.3

Pe = 0.5 Br =1.0, § = 1.0, h = 0.75 mm

t %0 01 % o1

1.2 | 27.26 7.80 | 166.37 | 5.84
1.3 | 27.36 8.75 { 166.32 | 4.93
1.4 9.54 | 166.24 | 4.22
1.5 { 27.75 10.21 | 166.13 | 3.67
1.6 ] 27.91 |} 10.72 |} 166.04 | 3.23
1.7 | 28.04 11.13 | 165.98 | 2.89
1.8 | 28.19 11.48 | 165.98 | 2.61
1.9 | 28.29 11.75 | 165.85 | 2.39
2.0 | 28.48 |12.03 |165.76 | 2.21

6.3 Solution With Non-Zero Hydrostatic Pressure, (PO # 0, PI # 0).

In Section 6.2 we obtained an rnumerical . solution to the

system of ordinary differential equations (6.1.20) to (6.1.23) subject

- 304 -




to the boundary conditions (6.1.38) to (6.1.44) by making the assumption
that the hydrostatic pressures Py and p; Wwere both zero. 1In

reality these pressures are non-zero, so in this section we obtain

an approximate solution for the case of non-zero Pg and Py - The
accuracy of the approximate method, used here, is assessed by putting
Py = Pp = O in the solution and comparing the results with those

obtained in Section 6.2.

The approximate solution is obtained with an integral technique
similar to the heat balance integrai method which was discussed
in Section 4.8. The governing equations (6.1.20) and (6.1.21) are
each integrated along their lengths between the limits O 5 s < RO
and O £s €2 respectively.The solutions to the resulting averaged

I

equations for 60 and GI are then approximated by polynomial

expressions in s .

It is convenient at this stage to introduce the new variable

as defined by
u = s/lo, (6.3.1)

Again assuming that the dimensionless stiffness, B0 , 1s equal to
unity, and introducing the variable u into equations (6.1.20) and

(6.1.22)1 2 and the boundary conditions (6.1.38) and (6.1.39), yields
b}

L2 1 1
d 8 2 3 3
du2 = - f02031n(a0+620—60)+p020 J CoseoduCoseO + pOZO f
u u
SineoduSineo ,0gsuxg1l, (6.3.2)
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dx0 dz0
—_— — = i 6.3.3
Ia QOCoseo, T 2031n60 s ( )
Xy = 0, zy = 0, 60 =0 on u=20 (6.3.4)
and
deo
Xy = xzo, Zy = Zggo Qo =620, o = O on u=1 (6.3.5)

respectively. Averaging equation (6.3.2) by integrating both sides

with respect to u between the limits u =0 and u =1 we obtain

1
dé dé
0 0 2 . _
m e = folo [ Sln(a0+e£0 60)du
u=l u=0 0
11 11
+ polg J I Cos6,du Cosbdu + polg J I SineoduSineodq (6.3.6)
Ou Ou

In this section it is sufficient to take eo as a quadratic in u .
However in the following section we require the curvature to be zero
at u =0 and in order to apply this condition the polynomial

approximation to 6, must be of degree 3 or more. It proves convenient

0
therefore to assume a cubic profile in this section, in:which case the

solution in the following section can be found as a simple deduction.

Consequently we assume

2 3
90 = a, + a;u + ayu + azu” , (6.3.7)

where ard functions of t only. Equation (6.3.7) must

ays a1, 3,
satisfy the three boundary conditions (6.3.4)3, (6.3.5)3 and (6.3.5)4.
However there are four uknowns ip equation (6.3.7) so one extra

condition is required. By putting u =1 in equation (6.3.2) we

deduce, with the aid of condition (6.3.5)3, that
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d 6 2

—-(-1—7 = - fOR.OSlna on u=1. (6.3.8)
u

Applying conditions (6.3.4)3, (6.3.5)3, (6.3.5)4 and (6.3.8) to

equation (6.3.7) leads to

a, =0, (6.3.9)

a, = 30 - l-f lzsin (6.3.10)

1 0 2 t0"0°t"% e

a, = -30,  + £ 2%sina - 6.3.11)

2 go t fotoSingg -3
and

a. =0 -+¢ ¢%5ina_ . (6.3.12)

3 20 2 00 0

On substituting equation (6.3.7) into (6.3.5) there results the integral

equation ‘
11
_ 2 . _ _ 2_ 3 - 3 2 3
a = folo [ SlnExo+620 alu a,u a3u]du polo J J Cos [a1u+a2u +a3uJ
11 Ou
2 3 _ 3 . 2 3 . 2 3
duCos [alu+a2u +a3u]du pozo f I Sln[:alu+a2u +a3p }du Sln[a1u+a2u +a3u]du
Ou
(6.3.13)

where a;, a, and aj are given by (6.3.10), (6.3.11) and (6.3.12)

respectively.

Let us now turn our attention to equation (6.1.21). On introducing

the new variable - V , defined by

v=S/2 (6.3.14)

I L

again assuming that BI = 1/§ and making use of condition (6.1.43)1
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equation (6.1.21) becomes

2 1 1
19 9% 2. 3 3 ( s
3 dvz = —f02181n(a1+621-61) - pIQI [ CoseldeoseI-pIILI l SlneI
v dv Sinel, 0Ogvgl.

(6.3.15)

The corresponding forms of the equations (6.1.23) and the boundary

conditions (6.1.40) and (6.1.41) are

de dzI
el P.ICoseI and el 2.181neI s (6.3.16)
X = o, z; = 1, eI ==-r/2 on V=0 (6.3.17)
and
deI
Xp = X1 27 = Zq, BI =611 and E;* =0 on V=1 (6.3.18)
respectively.

Again we obtain the averaged form of equation (6.3.15) by integrating

the latter with respect to V between the limits V=0 and V =1

giving
5 dv 5§ av 0°T T Y1 V1 Pr*1
v=l v=0 0 0 v

I Slneldv81n61dv . (6.3.19)

q

1

3
CoseIdeoseldv le [
0

We assume a quadratic profile for 6; in the form

_ 2
BI = bO + blv + b2v (6.3.20)
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b

where b 1

0’

and b

2

are functions of ¢t

only. Equation (6.3.20)

must satisfy the conditions (6.3.17)3, (6.3.18)3 and (6.3.18)4, and

hence we deduce that

and

b

o= " T/2 ,

by = 2(8,;+7/2)

b2 = —(621+n/2) .

(6.3.21)

(6.3.22)

(6.3.23)

Substituting equation (6.3.20) into (6.3.19) leads to the integral

equation

= X
b1/6 fOLI

0

-1/2+b

=2

Cos 1

-

—n/2+b1v+b

e

Sin

where b1

v+b2v

2\)

and b

1

[ Sln[é1+021
zjdeos
’]

dvSin

2

- v 2“—‘ . .
_—W/Zetblv-&bzv J dv + p

2
-1r/2+b1v+b2v ]dv ,

2
+1r/2-b1v-b2v]dv + pIIL

I

3
I

.3
2

OoONV——r= OY——r
& e G e

(6.3.245

are given by (6.3.22) and (6.3.23) respectively.

Integrating equations (6.3.3)1 and (6.3.3)2 with respect to u

and making use of the conditions (6.3.4)1 and (6.3.4)2 results in the

expressions

and
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Substituting equation (6.3.7) into these equations then yields

Xy = 2'0 f CosE1u+a;gz+a3u3] du (6.3.27)
5 .
and
u
z. =L [ Sin[a u+a u2+a uﬂdu . (6.3.28)
o 0 17 72 3
0

Similarly from equations (6.3.16)q, (6.3.16)2, (6.3.17)1, (6.3.17)2

and (6.3.20) we deduce

v

2

X = Q‘I I CosE>0+b1v+b2v]dv (6.3.29)
0

and

_ . 2
zp = 'Q'I J SlnE)o+b1V+b2v]dv +1 (6.3.30)

Applying the boundary conditions (6.3.5)1 and (6.3.5)2 to the

equations (6.,3.27) and (6.3.28) respectively leads to

_ 2 3
X0 = JLO J CosE1u+a2u +a3u]du (6.3.31)
0
and
1
z = Sin}a,u+a u2+a u3 du (6.3.32)
20 70 1 2 3 ’ o
0

whereas applying (6.3.18)1 and (6.3.18)2 to the equations (6.3.29)

and (6.3.30) yields

1

_ 2
X1 = JZ.I [ CosE)0+b1v+b2v:ldv (6.3.33)
0

and
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1

. 2

zor =% J Sln[%o+b1v+b2v:]dv +1. (6.3.34)
0 AN

On substituting equations (6.3.31) and (6.3.33) into the condition
(6.1.42)1 and putting equations (6.3.32) and (6.3.34) into (6.1.42)2

we obtain the pair of integral equations

1
[ Cos|a,u+a u2+a u3 du = & Cos|b .+b_v+b V2 dv (6.3.35)
0 1 2 3 I 01 2

0 0
and
[ €in la,uta u2+a‘u3 du = & Sin|b_.+b. v+b V2 dv + 1 (6.3.36)
0 ! 2 3 I 01 2 - noe

0 0

It is convenient here to express condition (6.1.44) in the form

L L

vt I dz, I dz,
—2-—= J xoa-s—-ds - J .XI'E'S——dS s (6.3.37)
Z, 0 0

which in terms of the variables u and v becomes

VvVt 1 dz 1 dz
_....._“21 = J X —-—-duo du - [ X o dv (b - 38)
% 0 0 CT

Differentiating equations (6.3.28) and (6,3.30) with respect to u and

v respectively gives

dz
0 . 2 3
e = 2081n[alu+a2u +a3u:, (6.3.39)

and

dzI 5
T = Q,ISln[bO"'blV*'sz] ’ (6.3.40)

and substituting the above equations and (6.3.27) and (6.3.29) into

condition (6.3.38) yields the integral equations
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Cos | a,u+a u2+a u3 duSin{a,u+a ui~ & u3 du
1 2 3 1 2° '3

2 . 2
Cos E)o+b1v+b2v]dv81nE>o+b1v+b2v]dv . (6.3.41)

N

ha~]
O——-r= O+
O%——<d ON——¢

Equations (6.3.13), (6.3.24), (6.3.35), (6.3.36) and (6.3.41) together

with conditions (6.1.43)2, which is rewritten here for convenience

620 tay = 621 tap v, (6.3.42)

gives us six equations from which to determine the unknowns 620,
611’ cr.o, GI’ fo and 20 . This set of s1x'equat19ns are easlly
solved numerically and results for the case PI= P0 =0, Br =1.0,

Pe = 0.5, § = 1.0 and h = 0.75 mm are presented in Table 6.5.

Br

1.0, Pe =0.5, § =1.0, h =0,75 mm.

t 80 81 ) oy £o %0

0.2| 90.67 | -5.73 | 127.78 | 44.19 | 8.113| 0.957
0.3 | 72.70 | 0.53| 134.40 | 26.57 | 6.150| 0.989
0.4 | 60.91 | 4.89 | 141.04 | 17.06 | 4.982 | 1.064
0.5 | 53.62 | 9.55 | 146.57 | 10.64 | 4.250| 1.171
0.6 | 50.09 | 14.91 | 150.27 | 5.45 | 3.781 | 1.302
0.7 | 49.55 | 20.83 | 152.16 | 0.86 | 3.462 | 1.447
0.8 | 51.10 |26.89 | 152.61 | -3.18 | 3.232 | 1.601
0.9 | 53.82 [32.62 | 152.11 | -6.68 | 3.039 { 1.757
1.0 | 57.01 |37.70 | 151.06 | -9.62 |2.860 | 1.911

Table 6.5

Comparison of these results with those presented in Table 6.2
reveals that for smaller times the values for 620, oy and SLO

are in good agreement with the exact solutions but the agreement
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between corresponding values of 601 and oy is poorer. It is

also apparent that as time increase the overall agreement between the
two solutions decreases. The approximate solution can be improved by
increasing the order of the polynomial but the process is lengthy

and is not considered here. Our approximate solution, therefore, is
thought to be useful for smaller times and consequently all the results
presented are calculated for t <1 . It is found that although the
error in a, and 621 is sometimes very large, the error in the

I

coordinates Xy and z; remains quite small as can be seen from

the profiles presented in Section 6.4.

Under certain conditions the curvature of the surface LO’ at
s = 0 , predicted by this model becomes negative. Since this is
physically unacceptable we again need to modify our model in an
analogous way to that of Section 6.2.12. This process is carried

through the following section.

6.3.1 Solution with Zero Curvature at s = 0

As discussed above, this problem differs from the previous one in
thatthe length of the beam L0 is now 10 - xP , the end that was
attached at the point (0, 0, O, O) 1is now attached at (xp, 0, 0, 0)

and at the latter point the curvature is necessarily zero.
Differentiating equation (6.3.7) with respect to u we obtain

48, 2
'a-ﬁ-— = al + 2a2u + 3a3u s (6.3.43)

and on applying the conditions of zero curvature (6.2.48) to this

equation recalling that u 1is defined by (6.3.1), we obtain
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a, =0, (6.3.44)

The governing equations can therefore be obtained from those given
in Section 6.3 by replacing 9,0 by zo—xp , the point (0, 0, 0, 0)
by (xp, 0, 0, 0) and by putting a; = 0 . Equations (6.3.13),

(6.3.35), (6.3.36) and (6.3.41) then become

1 11
- Y . e 23 _ 3
0= fo(zo- xp) f SlnEo*'elo au a3u] (2 p J [ |
0 _ 11 Ou
2 3 2 3 3 R 2 3
Cos[azu +a3u]duCos [azu +a3u:,du - po(JLO xp) J [ SlnEazu +a3u]
Ou '
. 2 3
duSin a,u”+aju du , (6.3.45)
1 | 1
2 2
(lo-xp) J Cos a,u +a u]du + xp = 2’I J CosE:ofblw-va]dv , (6.3.46)
0] 0]
1 1
. 2
(2 xp) J Sln[zu +a ]du = 2,1 J SlnE)o+b1v+b2v]dv +1 (6.3.47)
0 )

and
lu

-‘-,-Eli = (%.-x )2 Cos|{a.u +a du81n a u2+a u3 du

2 0] 2 2 3

Zp 00
lv

- 2% f J Cos[0+b1v+b \)]d\)SlnE: +b v+b v]dv , (6.3.48)

00

whereas equations (6.3.24) and (6.3.42) remain unaltered.

6.4 Results and Discussion

In Figure 6.5 the profiles of the upset collar are illustrated for
the case Br = 1.0, Pe = 0.5, 6§ = 1.0 and h = 0.75 mm. The solid
lines represent the exact solution. Figure 6.5(a) reveals

that for small time the agreement between the two solutions is very good
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whereas from Figures 6.5(b), (c) and (d) we see that the agreement
becomes poorer as t increases. As we have already mentioned,the
accuracy of the approximate method can be improved by increasing the
order of the polynomials used, However, this process is lengthy

and although the errors arising from the approximate method can in
some cases be quite large, Fhe method does illustrate the qualitative

effects of varying & and the pressure Po and P -

The choice of 6 = 1.0 means that both surfaces LO and L
have the same stiffnesses. The temperature, and hence the stiffness,

will vary, in the real situation, along both L_ and LI’ but details

0

of how the stiffness varies is unknown. In practice, however, L0

is on average at a much higher temperature than LI and we would

expect the stiffness of L., to be smaller than that of L The

0 I°

assumption that L. is formed from material expelled from the interface

0

.z = 0 suggests that the temperature of L. 1is O (1200°C). Since

0

surface L. 1is attached to both Lo and the solid region, the

I
temperature will vary along LI and lie between 700°C and 1200°C.
Data for Young's modulus at these elevated temperatures is thought

to be very unreliable and for this reason it seems unwise to use a
precise value for &§. The qualitative effects of varying ¢ are
therefore illustrated in Figure 6.6, where results are given for

§ = 0.5, 0.1 and 0.05. We see that decreasing & , that is decreasing
the stiffness of L0 relative to that of LI’ results in both an

overall shift of the upset collar towards 2z = 0 and an increase in

width of the plane at the interface.

In all the cases discussed above, the hydrostatic pressure has been
taken to be zero, which is clearly unrealistic. It is difficult,

however, to estimate the thicknesses of L. and LI’ the values

0
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Figure 6.7 Effect of varying pressure (PO=P1) for case

Br = 1.0, Pe = 0.5, h = 0.75, § = 0.5
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Br = 1.0, Pe = 0.5, h = 0.75, § = 0.5

- 319 -




1.0

cr
i

T T T
i.20 1.40

T T ]
1.20 1.40

Figure 6.7 Effect of varying pressure (PO = Pl) for case
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which are necessary to calculate the second moments of area and hence
Py and Py - Results are presented in Figure 6.7 for the case
Po = Pp =P (say). 1t is easily seen from these results that varying
p has little effect on the profiles, which unfortunately do not curl
over as much as the collar shown in the photograph (Figure 6.9 .
However by taking Py > PO the results displayed in Figures 6.8

show that an increased curl can be achieved,

Figure 6.9 Cross-sectional view of a friction weld of
a 1" diameter tube.
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CHAPTER 7

CONCLUSIONS

Several modeld describing the frictioning stage of the friction
welding process have been presented. Most attention has been focussed
on phase II for which Atthey's model [?i} was used as a basis. Atthey
modelled the plasticised layer as a viscous fluid with constant viscosity
and as a first extension to this model a series solution was developed
to include the variation of viscosity with temperature. Qualitative
agreement of torque traces with experimental results was observed with
both these modelsvfor small times but for larger times the agreement
was poorer and no equilibrium state was reached by either model. The
reason for this behaviour was recognised to be the neglect of axial
shortening and a solution to include the effect of the latter was
subsequently developed. There was no analytical solution for the case
of axial shortening and it was decided to employ the approximate heat
balance integral method. With the inclusion of upset a steady
state condition was achieved ana the qualitative comparison of torque
with experimental results was much improved. The accuracy of the
heat balance integral method was assessed using a series solution valid
for small times and also an exact steady state solution. For the
special case Pe = 0 a comparison between ;he heat balance integral
solution and the small time solution, which in this case is identical
to Atthey's solution, showed the error to be less than 107 for Br in
the range O - 10, For non-zero Pe a comparison with the large time
heat balance integral solution with the exact steady state solution

revealed the error to be less than 107 for Br in the range O - 5.
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While z and 1 possessed the right qualitative behaviour for small
time, the interface temperature did not. This was felt to be a consequence
of neglecting the conditioning phase. Without the inclusion of the
conditioning phase the interface temperature actually assumed the
value appropriate to Pe = 0 and then decayed with time to its
equilibrium Value, the rate of decay depending on Pe . With the
conditioning phase included the interface temperature was initially
the conditioning temperature and rapidly grew towards its steady

state value as time increased.

Solutions were also obtained using the heat balance integral method
for the case of various viscosity modelé. However, in all cases there
was a value of the Brinkman number, bBrc » beyond which the interface
temperature exceeded melting. However it was noticed when u decreased
with increasing temperature the value of Brc was increased and it is
suggested that a suitable viscosity model may be one which obeys the
law given in [173 for temperatures below melting but falls rapidly
to zero in the close proximify of melting, in which case interface

melting should not be achieved.

A few of the simpler models had been repeated with the plasticised
layer modelled as a Bingham substance. The algebra for the models
is much more involved and the qualitative behaviour of the solutions
does not have the agreement with experiment of the viscous fluid models,
consequently the latter are felt to describe the friction welding process
more aptly. In fact the most realistic model would be one incorporating
the viscosity model described above and also including upset and the

conditioning phase, and this could be examined in the future.
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A model consistent with the viscous fluid model has been used
to predict the shape of the material extruded from the plastic region.
It was found that for certain variations of the hydrostatic pressure,
within the extruded region, some quite good agreement between
experimental observations and the theoretical predictions could be

achieved.

Although extensive qualitative comparisons have been made there
has been very little quantitative comparison of results with experiment.
This matter could be pursued in the future but it is felt that a better

knowledge of the behaviour of viscosity should be aquired beforehand.
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- APPENDIX

DERIVATION OF THE ELLIPTIC INTEGRALS IN CHARTER 6

Consider the integral in equation (6.2.9) which we shall

denote by I1 and rewrite here for convenience

5]

° de_
Il = . T . (i)
° [?osao—Cos(ao+ezo-eo{]
Changing the variable to ¢° through the equation
Cos(a +6, -6 ) = ZkZSin2¢ -1 (ii)
o %0 o o o d
where ko is defihed by
2% = 1 + Cosa_ (iii)
) o
equation (1) can be expressed in the form
¢
o d¢o
I, = /2 [ ’ (iv)
1 /T2
¢2° l—k051n ¢o
where ¢20 1s given by
Cos(a +6_ ) = ZkZSin2¢ -1 (v)
o Ro o Lo *
Equation (iv) can be rewritten as
I = T RGgs k) = Fay k)] (vi)
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where F 1is the well known elliptic integral of the first kind

and is defined by

dv

Vl-kZSinZV

u
CF(u,%) = ! (vii)
o

Let us now turn our attention to the integral in equation

(6.2.28)., We introduce I, defined by

2

I =

eo Sin6 d6
)
2 [

T
- - 2
5 [:Cosao Cos(ao+620 60)]

It is convenient to make the change of variable given by

u=o0 + 86 -9 (ix)

in which case 12 can be expressed as

Sln(a0+9£o—u)du

12 ) I [?osa -Cosél% .
ao+620-6o (o}

(x)

Expanding the numerator of the integral using the double angle

formula we obtain

Cos(ao+6 0) (x1)

2

I, =J Sln(ao+6£o) -J .

2 1

where Jl and J2 are integrals defined by

(xii)

7 = J Cosu du

T
E]osa -Cosu] 2
o +6_ -0 o)
fo o
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and

o Lo

Sinu du

[?osa -Cosu
—60 o] ]

}

Introducing ¢0 through the relation

Cosu =

where ko is given by (iii), equations (xii) and (xiii) become

2,.. 2
2k081n ¢o -1,

¢o d¢o ¢o
= _ 22
J = /2 f > 2 J 1 -k Sin"¢_ do_
1-k081n ¢
¢lo ¢£o
and
%
J, = /2 J 2k _Sing do¢_ .
¢20

Equation (xv) can be expressed in the form

(xiii)

(xiv)

(xvi)

3y = VT |F(o,, k) = F(by s k) = 2E(s , k) + 2E(s, kc,)]

where E , the elliptic integral of the second kind

is defined by

! u
E(u, k) = f /1—k2sin2v av .
(o]

Equation (xvi) is readily integrated to yield
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J

9 = 2/2 ko[Fos¢mo - Cos¢é] . (xix)

Using equation (v) it is easily deduced that

. . 2,. 2
Sln(a0+ezo) = 2k081n¢20\/1—k031n %00 * (xx)

Thus with the aid of (xi), (xvii), (xix), (v) and (xx) the

integral I2 can be expressed as
I, = 2/2 k Siné, J1-k>SinZ¢, |F(¢ , k) - F($, , kK ) = 2E(¢_,k )
2 o Lo o Lo 7o’ "o L0’ "o o’ o
+ 2E(¢. Lk i] + 2/2 k (ZkZSin2¢ -1)(Cos¢ - Cos¢, ) . (xx1)
go’ o oo Lo o L0

We now treat the integral in equation (6.2.27) in a similar

manner, we have

7]
° CosB_do_
13 = I ~ (xxii)
[?osa -Cos(o_+6, =6 i]z
o o o R0 o
We again make the change of variable given by (ix) leading to
ao+e£o
Cos(a _+6, —u)du
o fo c..
I = J - (xxiii)
3 Cosa_—~Cosu]?
a +6, -6 [ o ]
o 20 o

and on expanding the numerator of the integrand using the double angle

formula we obtain

13 = JlCos(a0+6£o) + J281n(a0+620) , (xxiv)

where the integral J1 and Jz have been defined by (xvii), (xix)

respectively. With the aid of (xxiv), (xvii), (xx), (ix), (v) and

(xx) the expression for 13 becomes
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1, - E@lsinl, )[R0k By, 1)) - 2ECh, k) + 2EG,, k)]

2. / 2. 2 _
+ 42 k081n¢20 1 k081n ¢£o (Cos¢20 Cos¢0)

The integrals in equations (6.2.10), (6.2.29), (6.2.30) may
be treated in exactly the same manner as the above and only the

results are presented below

0
I deI
, = V2|F(6,, k) - F(¢,-» k)| » (xxvi)
Cosa.—Cos(a.+6 _—9 : I’ 1 LI I
-5/2 1 17701 1]
0
1 .
SlnGIdGI

z /i‘(1-2k23in2¢ )|F(4,., k)
" Y I 21 T’ I
)2 E}osaI Cos(aI+621 eI{]

2. i 25ia2 _
4Y2 k181n¢11 k181n ¢21 (Cos¢21 Cos¢I)

(xxvii)

and

CosGIdeI V[——?r——??h-.
T = 272 k;Sing, f1-k]Sin q)“[F(qSI,kI) -

~r/2 [?osuI-Cos(aI+elI—GI{]
F(oypakp) - 2E(o,k) + 2EChy k) | +

2,. 2
2V2 kI(l—ZkIS1n ¢2I)(COS¢QI-COS¢I) .

(xxviii)
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In the above ¢I is given by the equation

2.. 2 .
Cos(mI+6!LI 6) 2k181n ¢I 1 (xxix)
where k., is defined by
Cosa, = 2k2 -1 (xxx)
I I XXX
and ¢, is given by
Sin(o.+6_ ) =1 - 2kZSin2¢ (xxx1)
I 21 I L1
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