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UNIVERSITY OF SOUTHAMPTON 

ABSTRACT 

FACULTY OF MATHEMATICAL STUDIES 
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MATHEMATICAL MODELS FOR FRICTION WELDING 

by Andrew Francis 

Extensive experimental investigations have been made into friction 

welding but very few relevant mathematical models have been produced. 

In this thesis several possible models are developed which describe 

the various phases of the frictioning stage. 

Attention has been focussed, in particular, on the modelling of 

the softened layer of material which develops close to the weld interface, 

Solutions have been derived for kkc lf.icfert«55 oPthis layer, the reacted 

torque and the temperature distributions for the cases where the layer 

is modelled by either a viscous fluid or a Bingham substance. The 

solutions have largely been obtained using the heat balance integral 

method and their accuracy has been assessed with the aid of various 

asymptotic solutions. 

Although this work has mainly been concerned with phase II of the 

frictioning stage, the equilibrium and deceleration phases have been 

examined. 

The more specialised friction welding processes of orbital and 

inertial welding have also been considered. 

An interesting feature of a friction weld is the upset collar which 

is formed by material expelled from the softened zone and a model to 

describe the shape of this extruded material has tentatively been put 

forward. 
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CHAPTER 1 

INTRODUCTION 

1.1 The Origins of Friction Welding 

The idea of welding using fractional heat as the heat source was 

first patented here in Britain during the early 1940's. After that 

time it received little attention in this country but it was reported 

that thermoplastics were being friction welded in Germany during 

World War II. In 1956 fresh interest was aroused by A.I. Chudikov 

who again suggested the use of friction as a heat source for welding 

metals and this led to an extensive study of friction welding in the 

U.S.S.R. under V.I. Vill [l] . It is believed that work also commenced 

at about the same time in the U.S.A. leading to the inertia technique 

of friction welding which was developed by the Caterpillar Tractor 

Company [z] in 1962. Friction welding was reintroduced in Britain in 

1960 when the Welding Institute, formerly the B.W.R.A., constructed 

its first friction-welding machine based on Russian published data [s] . 

Friction welding is now exploited throughout the world as a reliable 

and efficient automated welding process. 

1.2 Friction Welding Techniques 

Although there are now several different friction welding techniques, 

the basic process remains the same. In the friction welding process 

the two components to be joined are forced to rub against each other 

thereby generating heat at the rubbing interface. Subsequently, the 

material on either side of the weld interface softens and a shortening 
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of the components takes place in the direction of the applied load. 

The rubbing is then terminated and the two components are forged 

together to form a weld [IQ . Under normal conditions no melting 

at the interface occurs and the joint is produced by solid phase 

bonding [4,5,6]. 

There are four main methods of friction welding, namely, 

conventional or continuous drive friction welding [3,4,?], inertia-

welding [2,83, orbital welding [9,1(^ and radial welding [llj . Certain 

aspects of the continuous drive process are examined extensively in 

this thesis but the other techniques are only briefly considered. 

A short description of the four main techniques is given below. 

1.2.1 Continuous Drive Friction Welding 

The continuous drive friction welding method is used for joining 

two components, at least one of which must be circular. In this case, 

the necessarily circular component is held in the headstock (or rotating) 

chuck of the friction welding machine whilst the other is held in the 

tailstock (or stationary chuck), both chucks being in axial alignment 

(̂ 7] . The basic principles of the technique are illustrated schematically 

in Figure 1.1. The headstsck chuck is rotated at a given angular 

speed while the tailstocK one is held stationary Figure 1.1(a) . 

The tailStdcK chuck is then driven towards the headsCocK chuck by a 

hydraulic ram until the two specimens make contact. The load is 

maintained so the two components rub against each other at the interface 

[Figure 1.1(b)] . The heat generated by this rubbing causes the material 

on either side of the interface to soften and this softened material 

then begins to flow radially outwards forming an'upset collar' 

[Figure 1.l(cQ. The rubbing of the interface is continued until a 
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prescribed amount of axial shortening (also called bumoff or upset) 

of the specimens has taken place or a certain time (weld tine) has 

elapsed; the rotating component is then brought rapidly to rest. 

The axial force is maintained at the same value, or even increased, 

(forging pressure) for a short period of time afterthe rotation has 

stopped [Figure 1.1(d)] . In this forging stage the metal cools and 

the weld is consolidated. 

When welding solid bars, the upset collar shown in section in 

Figure 1.1(d), produces no problem since it can be easily machined 

away. However, for the case of hollow tubes, a second collar is 

formed internally. This is a considerable nuisance if the tubes are 

long since it cannot be machined away and thus obstructs the tube. 

Thus this method of friction welding is not desirable for welding tubes 

which must carry oil, gas etc. 

The main control variables in the continuous drive process are 

the rubbing speed, the applied load (which in turn controls the rate of 

upset) and the weld time or amount of axial shortening. These parameters 

control both the amount of heat that is put into the weld and the 

rate at which heat is generated, the latter being also depedent on time. 

Figure 1.2 shows ideal ised traces of the variations with time of 

the speed of rotation, torque, applied load and axial shortening 

during a typical weld cycle using the continuous drive technique. 

It is convenient to divide the weld cycle into two stages: the 

frictioning stage (rotation continuing) and the forging state (rotation 

stopped) as shown in Figure 1.2. The frictioning stage can be divided 

further into the following four phases [3,4,^ : 

- 4 
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Phase I. 

This phase (sometimes called the conditioning phase) starts when 

the two components come into contact and rub against each other. As 

seen in Figure 1.2 the torque rises rapidly to a peak called the 

initial peak torque. During this initial transient phase the interface 

temperature rises to about 700°C , when welding mild steel, but no 

axial shortening takes place. The reaching of the initial peak torque 

marks the end of phase I. 

Phase II. 

This phase begins when the torque starts to fall from its initial 

peak and ends when equilibrium conditions have been reached. Again 

this is a transient phase in which the interface rises to a value close 

to the melting temperature, but does not actually attain it. The 

increase in temperature causes the material close to the interface 

to soften and axial shortening takes place. Subsequently there is a 

radial flow of material and the upset collar begins to form. 

Phase III. 

This is the equilibrium phase, during which the torque, temperature 

distribution and rate of axial shortening remain virtually constant. 

Under normal conditions most of the axial shortening takes place during 

this phase. 

Phase IV. 

This is called the deceleration phase; it starts when the hydraulic 

brake is applied to slow down the rotating specimen, and ends when the 
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rotation actually stops. As soon as the speed of rotation starts to 

decrease, the torque begins to increase, until it reaches a peak, 

called the terminal peak torque. The value of the torque then falls 

and reaches zero when the rotation ceases. However, axial shortening 

still continues until the end of the forging stage, which follows the 

deceleration phase (see Figure 1.2). 

1.2.2 Inertia-Welding 

The inertia (or flywheel) welding technique is a method for 

joining two specimens; again, at least one of which must be circular. 

In this technique the specimens are again mounted in the machine 

in the same configuration as for the continuous drive case (see 

Figure 1.3) but this time instead of having a continuous drive to the 

headstack chuck, the latter is mounted on a flywheel [2,^. The 

flywheels assembly is spun under power to a predetermined speed, thus 

storing a known amount of energy [Figure 1.3(a^. The drive to the 

flywheel is then declutched and the tailstock chuck is driven towards 

the rotating headstock chuck by a hydraulic ram until the specimens 

make contact. [Figure 1.3(b)^. The enepgy stored in the flywheel is 

then used to generate heat at the rubbing interface. The consequent 

increase in temperature causes the material close to the interface to 

soften, axial shortening takes place and an upset collar begins to 

form Figure 1.3(c) . As rubbing proceeds, the resisting torque 

causes the speed of rotation to decrease until eventually the rotating 

component comes to rest. The axial force is maintained until the 

joint cools and consolidates. The process is in a transient state over 

the entire weld cycle and no equilibrium phase exists. 
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The differences mentioned above between the inertia and continuous 

drive techniques can be seen in the idealised traces of Figures 1.4 

and 1.2 respectively. We notice for the case of inertia welding 

[Figure 1.^ that the initial and terminal peak torques are present 

but the equilibrium phase is non-existent. We also note that the time 

taken for the torque to fall to zero, after the terminal peak torque 

has been reached, is much shorter for inertia welding than for the 

continuous drive method. 

1.2.3 Orbital Welding 

Although the two friction welding techniques mentioned above 

produce sound welds and are by far the most commonly used methods, 

they are limited to welding components which possess axial symmetry 

and where angular alignment is not required. This limitation was 

removed by Searle [9,lo][ who developed the orbital-welding technique. 

As suggested by its name, the orbital welding technique is a method of 

friction welding in which the frictional heat is generated by an 

orbiting motion between the two rubbing specimens. The difficulty 

with such a technique is in developing a system to produce the orbital 

motion. If the moving specimen were simply mounted in an orbiting 

work holder, which must be heavy in order to have sufficient strength 

to withstand the applied load, then enormous centrifugal forces would 

develop and one would need an elaborate and expensive machine. Seeking 

an alternative method, Searle [ l o j proposed that both specimens rotate 

with the same angular speed, about a common axis, in the same sense. 

Then on displacing the parallel axes of rotation by a small amount e , 

a simple mathematical analysis (given in Chapter 2) shows that one 

specimen describes a circular orbit of radius e relative to the other. 
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This form of motion ensures that at every point of contact, the 

relative speed between the two specimens is uniform, thus leading to 

a uniform source of heat generation. The great advantage of using this 

method is that two similar specimens of arbitrary cross section can 

be joined and angular alignment is retained. The method is illustrated 

schematically for the case of square cross-sectional specimens in 

Figure 1.5. 

The specimens are axially aligned in the machine and their 

angular orientation is set to the position that is desired at the 

completion of the weld. They are then spun with the same speed, in 

the same sense about their corresponding axes. [Figure 1.5(a)]]. Their 

axes of rotation are then offset by an amount e , to produce a relative 

motion between the two specimens with an orbit radius e . [Figure 1.5(b)J. 

When sufficient heat has been generated, the axes are realigned and 

a forging force is applied to the still rotating components to forge 

a weld, as in the continuous drive process [Figure 1.5(c)] . Since the 

specimens had the correct angular alignment before the process started 

and were both rotated with the same angular speed throughout, on 

realignment of the axes the specimens retain the correct angular 

orientation. 

1.2.4 Radial Welding 

The one major limitation of the three techniques described so 

far in this thesis is that at least one of the specimens must be 

small enough to mount in a machine and rotate with sufficient speed 

to attain a weld. The welding of very long pipes would therefore be 

out of the question. However, by holding the two components to be 

joined stationary and by rotating a third component between them, 
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thus forming two friction welds, the size of the component to be welded 

becomes irrelevant. The process is known as radial friction welding 

[jLl] . The method is illustrated schematically in Figure 1.6. The 

parts to be joined are held stationary. Their abbutting ends are 

chamfered to receive the wedge sectioned ring, which is rotated 

between them and at the same time compressed radially. 

In the bore of the tubes is placed a mandrel which prevents the 

radial pressure from collapsing the tubes. The mandrel must be made 

from a material which has a high strength at elevated temperatures 

and has a low enough thermal conductivity to prevent rapid cooling 

in the weld area. 

The three in^ortant features of this method are: (i) it can be 

used for very large components, (ii) angular alignment can be achieved, 

(iii) internal upset collars, in tubes, can be avoided. The one 

limitation of the method is it only applies to circular components. 

Although all four methods methods mentioned above have received 

extensive experimental investigation [z-ll] the mathematical models 

that have been derived are very limited. The aim of this thesis is 

to improve and extend existing models and to develop new ones, which 

could be used to assist the engineer to make better welds. We deal 

mainly in this thesis with phases II and III of the frictioning stage 

in the continuous drive process although phases I and IV are briefly 

examined. A simple model of the forging stage has been presented by 

Rich and Roberts[l2], who used plasticity to predict the dispersion 

of material from the interface and to determine an upper bound for 

the forging pressure but this stage is not considered in this thesis. 

In later chapters we briefly examine inertial and orbital welding but 

radial welding is not investigated. 
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1.3 The Ffictioning Stage 

1,3.1 The Continuous Drive Process 

The main objective of this thesis as stated above, is to produce 

mathematical models to describe the frictioning stage of the continuous 

drive process. As we have already stated, the frictioning stage can 

be divided into four phases, each of which must be modelled separately. 

In order to obtain models relevant to each of these phases we must have 

a basic knowledge of the underlying physics and this is given below. 

Phase I. 

When the rotating specimen is brought into contact with the 

stationary one sliding takes place between the two unlubricated surfaces. 

On initial contact the highest surface asperities will form adhesion 

junctions and siezure develops [4,lQ . At the junctions where the 

adhesion between the surfaces is stronger than the parent metal,shearing 

takes place within a short distance either side of the interface, 

so fragments of metal are transferred from one specimen to the other 

and vice versa. As this wearing down process continues, the area of 

real contact gets larger, thus increasing the number of adhesions and 

siezures. This leads to an increase in the frictional force and hence 

resisted torque [See Figure 1.^. As rubbing proceeds, the interfacial 

temperature goes higher, the rubbing surfaces soften and the area of 

real contact increase further leading to a greater increase in the 

frictional force. The temperature continues to rise until it 

eventually reaches a value (sometimes called the conditioning temperature) 

at which the transferred metal fragments at the interface become soft 

and 'plastic'. The time taken to reach the conditioning temperature 

we call the conditioning time and it marks the end of Phase I. 
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This initial frictioning process is extremely complicated and it 

would be very difficult to develop a mathematical model to describe 

it fully. However, during Phase I, the amount of heat generated 

represents only about 10% of the total heat generated throughout the 

entire weld cycle so it is thought adequate to use a simple model to 

describe this phase. We follow Rykalin [l3] , Vill and Rich and 

Roberts [isj , whose models are briefly discussed in Chapter 2, and 

assume that during Phase I heat is generated entirely at the rubbing 

interface by sliding friction [l] . Models based on this assumption 

are presented in Chapter 2. The conditioning time and conditioning 

temperature are calculated from these models and the solutions are used 

as initial conditions for some of the work presented in Chapter 4. 

Phase II. 

This is a transition phase during which the layer of transferred 

fragments at the rubbing interface changes into a layer of plasticised 

material [j4j . The plasticised layer offers less resistance to rubbing 

and the resisting torque is seen to fall [See Figure 1.^ . As more heat 

is generated in this plastic layer its thickness and the interfacial 

temperature both increase. The applied axial load causes the softened 

material to be squeezed out and the formation of the upset collar begins, 

As the material softens with increasing temperature the rate of which 

heat is generated decreases and hence the rate of growth of the plasti-

cised layer is reduced. Eventually, at some later time, the rate of 

growth of the plasticised layer becomes zero. In this situation the 

rate at which heat is produced by frictional dissipation is exactly 

equal to the rate at which heat is lost by forced convection, due to 

upsetting, plus the second order losses over the lateral surfaces of 

the specimens. This is the end of Phase II. 

- 15 ^ 



Rich and Roberts incorporated Phase II in their model by 

using a constructed heat input function which decayed with time in a 

manner characteristic of the phase. However, their model does not 

describe the mechanical process that produces the heating within the 

softened layer. In this thesis Phase II is modelled by examining 

the mechanical deformations that take place in the softened layer. 

The chief problem in modelling Phase II, therefore, is in choosing 

the right constitutive equations to describe the behaviour of the 

softened material. These equations must represent the relationship 

between stress and strain rate for the material as accurately as 

possible but at the same time they must remain tractable. Investigations 

into high strain rate data using hot torsion and tensile tests have 

been made ^ 6 , 1 ^ and, based on this data, relationships between stress 

and strain rate have been postulated. These relationships are given 

in Chapter 3. However, they remain difficult to solve even in their 

simplest forms and since, in this thesis, we are looking for simple 

models to describe the mechanisms in the softened layer we follow 

Bahrani et al and use the well known Bingham model |j.9,2(^ . 

The basic equations describing the Bingham substance are presented 

in Chapter 3. 

In Chapter 5 a simple description of Phase II is given where the 

softened layer is modelled as a Bingham substance. The model is based 

on that of Bahrani [is] although certain modifications are made since 

Bharani's model is only validin Phase III. In Chapter 4 more elaborate 

models of Phase II are given for the special case in which the Bingham 

number is taken to be zero. The substance then reduces to a viscous 

fluid [21] (of high viscosity) as considered by Atthey {22], whose 

model, which is summarised near the beginning of Chapter 4, forms the 

basis for much of the later work in that Chapter. 
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Phase III. 

During this equilibrium phase, the heat generated by viscous 

dissipation in the plastic region is equal to the heat lost by forced 

convection in the upsetting process plus the superficial losses due 

to radiation and convection over the outside surfaces of the specimens. 

The temperature, thickness of the plasticised layer, and torque 

consequently remain constant in this phase and the whole system is in a 

state of equilibrium. It is reasonable to model this phase using the 

same constitutive equations as introduced for Phase II, although the 

governing equations of Phase III are usually easier to solve since they 

are independent of time. Solutions for Phase III for the viscous fluid 

and the Bingham material are presented in Chapters 4 and 5 respectively. 

Phase IV. 

This phase begins when the final brake is applied to the rotating 

specimen. As the rubbing speed decreases the rate of heat generation 

falls and the thickness of the plastic region decreases. As a result 

the torque rises until it reaches its terminal peak torque, after which 

it falls to zero with the speed of rotation. Again we can use the same 

constitutive equations as for Phase II and III and a simple solution 

is derived in Chapter 4. 

1.3.2 Inertial Welding 

The history of the torque, applied load, angular velocity and rate 

of axial shortening for a typical inertia weld are shown in Figure 1.4. 

Wang et al., ^8,23j examined this process by assuming that heat is 

generated entirely at the interface by sliding friction, and making the 

further assumption that the product of^the coefficient of friction and 
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the applied pressure remains constant throughout the process, thus 

resulting in a constant torque. The variation of the rubbing speed 

with time was approximated by a quadratic and they obtained an expression 

for the interfacial heat input. Using this heat input, the two-dimensional 

equation of heat conduction was solved, taking into account temperature 

dependent thermal properties, using finite difference methods, and the 

temperature distribution in the radial and axial directions obtained. 

Again this model does not take into account the existence of a 

softened layer and the volumetric heat generation therein. In order to 

gain insight into the actual mechanics in the softened layer a simple 

solution, based on the viscous fluid model, is given in Chapter 4. 

1.3.3 Interfacial Melting. 

There is some doubt as to whether melting temperatures are ever 

reached at the interface. Several experimental investigations [4,5,^ 

suggest melting does not occur but the case where the interface does 

melt has been considered by several authors [l5,23,2^. 

Rich and Roberts [l5^ assumed that once the interface had reached 

melting temperature it would remain at that temperature. On applying 

this condition of constant melting temperature at the interface and 

making the assumptions of no axial shortening and constant thermal 

properties, Rich and Roberts were able to solve the linear one-dimensional 

equation of heat conduction. They obtained an analytic solution using 

integral transforms. 

Cheng [2^ assumed that once a molten layer was formed at the 

interface, it was squeezed into the 'flash' and that new material was 

brought to the interface. Thus treating the interface as a moving 
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molten front, at the melting temperature, he solved the non-linear 

one-dimensional equation of heat conduction, taking account of variable 

thermal properties, and obtained a numerical solution using finite 

differences. 

Wang and Nagappan [2^ followed Chang's approach in their solution 

for the inertial welding process but assumed the existence of a molten 

front moving in both the axial and radial directions and solved the 

two-dimensional equation of heat conduction using finite difference 

methods. 

In this thesis, melting temperatures are predicted by the solutions 

for high values of the Brinkman number were they are thought to be due 

to the inadequate representation of the temperature dependent viscosity. 

Models involving a molten interface are discussed no further. 

1.4 The Upset Collar 

During Phases II, III and IV the upset collar is continuously 

being developed. The formation of this collar is undesirable when 

welding tubes,since it clearly causes obstructions inside the tubes 

and for the case of very long tubes cannot be machined away. It is 

therefore thought useful to model the development of this collar and 

one such approach, consistent with the viscous fluid model discussed 

in Chapter 4, is presented in Chapter 6. 
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CHAPTER 2 

THE CONDITIONING PHASE 

2.1 The Interfacial Power Inputs 

During Phase I of the frictioning stage, heat is generated 

entirely at the rubbing interface by sliding friction this 

situation the general expression for the rate of heat generation per 

unit area (or the specific power) at a general point may be written 

M . 

q = fpV , (2.1.1) 

where f, p and V represent the local coefficient of friction, 

applied pressure and rubbing velocity respectively. The coefficient 

of friction at a given point will in general depend on the composition 

of the components being joined, the state and temperature of the 

rubbing surfaces, the applied pressure and the rubbing speed [l,13, 

25, 2 ^ . The pressure and rubbing speed will depend on position. 

For the conventional friction welding process the rubbing speed is 

proportional to the radial distance from the axis of rotation r and 

(2.1.1) then takes the form [2^ . 

q = fpwr , (2.1.2) 

where w is the angular velocity of the rotating component. The total 

rate of interfacial heat generation can be obtained by integrating 

(2.1.2) over the entire cross-section, yielding [l3,l^. 

^.2 

Q = 2tt fpur^dr (2.1.3) 
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where r^ and r^ are the external and internal radii respectively 

of the tubes being joined (for solid bars r^ = 0) . Before the 

integral in equation (2.1.3) can be evaluated the dependence of f and 

p on r must be specified. The exact nature of this dependence is 

unknown, however, but several forms which have been introduced in the 

literature are given below. 

(i) The simplest assumption is that the quantity fpwr remains uniform 

uniform over the cross section [l3,14,2^. Gel man and Sander 

[2^ suggested this would be so if f were constant and p 

inversely proportional to r . Unfortunately, the latter is 

not suitable for solid cross-sections since the pressure 

would have a singularity at the centre r = 0 . Vill [iaJ 

suggested, after experimental examination of the heated specimens, 

that this assumption of uniform heat generation over the cross-

section is invalid for the first 1 . 5 - 2 seconds of the weld 

cycle but may be used thereafter, 

(ii) The second, and more commonly used approach [13,25], is to assume 

that both f and p are uniform leading to a power input that 

varies linearly along the radius. 

(iii) By observing experimentally the relationship between the heat 

output and speed of rotation Vill [14] suggested that f should 

take the form 

f = k/(wr)2 (2.1.4) 

where k is a constant of proportionality. This, again, is 

not suited to solid cross-sections due to the singularity at 

the centre. 
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All three above assumptions allow (2.1.3) to be integrated and 

the total input power obtained. 

Voznesenskii postulated that for small times, when there is 

no appreciable wear of the surfaces, the pressure may be regarded as 

uniform throughout the cross-section. For later times when the surfaces 

had 'lapped in' and uniform wear of the surfaces could be assumed, 

he suggested that p could be taken as inversely proportional to r. 

Using experimentally obtained values for the power input Voznesenskii 

then obtained numerical values of f with the aid of the above 

assumptions and equation (2.1.3). 

2.1.1 Power Input for Orbital Welding 

Considering the continuous drive process, we derived (2.1.2) 

from (2.1.1) by noting that V = wr . However for the orbital 

process this is not so and the velocity profile for this process is 

derived here. 

During the orbital process both specimens are rotated with the 

same speed in the same sense, the axes of rotation being displaced 

a small amount e [See Figure 2 . ^ . 

Figure 2.1 Vector Diagram for the Oroital Process 
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Let a and b be two points on the surfaces A and B 

respectively that were in contact at time t = 0 . [Figure 2.lJ. The 

position vectors and of the point a and b respectively, 

at time t , with respect to the origin 0 are given by 

= (r+e)coswt_i + (r+e)sina)tj^ , (2.1.4) 

and 

^ = (rcoswt+e)i_ + rsinwtj_ . (2.1.5) 

In the above, w is the angular velocity and ^ and j are unit vectors 

in the x and y directions. 

The position vector of a relative to b , defined by 

can be expressed using (2.1,4) and (2.1.5) as 
R ^ = (ecoswt-e)2 + esinwt (2.1.6) 

Differentiating both sides of this equation with respect to t yields 

an expression for the relative velocity between a and b , namely 

V._ = -wesinwti + wecoswtj . (2.1,7) 
—AiJ — — 

By inspection of (2,1.6) it is easily deduced that the point 

a moves in a circle of radius e relative to b with constant 

angular velocity w and passes through b once every revolution of the 

specimens. It is also obvious from (2.1.7) that the relative velocity 

of a relative to b has constant magnitude we , Tkis a,nal<^nS onl"4 
qpPlic l-o two foi«Vs fhoil- wefc oi\ vv\t x cnxis bwV ĉ. 

Mort rcvtals can be said about any 

two points on opposite surfaces. We therefore conclude that the relative 
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velocity*between any two points on opposing surfaces is constant and 

equal to we . Finally if we make the assumption that f and p 

are uniform over the cross-section then the specific power input at 

any points of contact would be uniform and given by 

q = fpwe . (2.1.8) 

2.2 Temperature Profiles 

In order to obtain temperature profiles in the specimens being 

welded, Rykalin et al, and Vill £l^ assumed that the rate; of 

heat generation was uniform over the interface. On making the further 

assumptions that the thermal conductivity k and the specific heat 

capacity are constant, the heat emission from the lateral surfaces 

is negligible, there is no heat exchange in the chucks and considering 

the tubes to have infinite length, the authors were able to solve 

analytically the one-dimensional equation of heat conduction subject to 

the appropriate boundary conditions. As stated earlier, the assumption 

of uniform heat generation across the interface is invoked for the first 

1 . 5 - 2 seconds but Vill [l£] assumed that although this solution is 

inaccurate at small times, it is appropriate for most of the weld cycle. 

One of the most striking features of the solution is that the interface 

temperature is proportional to /t" and grows indefinitely. Rykcilin 

et al. [l^ suggested that for the special case of short specimens 

with a small diameter, heated by a small power source this rate of 

growth would be retarded by heat emission from the lateral surfaces 

and heat exchange in the chucks. Both the latter effects were 

excluded in Rykalins simple model. 
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Although the assumption of uniform heat generation across the 

interface is reasonable when t > 1.5 seconds, the assumption that q 

is independent of t is very inaccurate. If the angular velocity 

remains constant then the rate of heat generation is proportional to 

the torque and as can be seen from the idealised trace in Figure 1.2, 

the torque varies greatly with t . Observing this fact Rich and 

Roberts [isj retained the assumption of uniform power across the interface 

but approximated the actual power-time form by 

q = A + Be , (2.2.1) 

where A,B and X are constants depending on the particular welding 

conditions. Taking the specimens to have finite length and making all 

the other assumptions of Rykalin et al., and Vill, Rich and Roberts 

were able to solve the equation of linear heat conduction using 

integral transforms. 

It has already been stated that the above models are only valid 

for t > 1.5 seconds. However, the time period 1 . 5 - 2 seconds 

usually takes us well into Phase II of the frictioning stage, in which 

case heat is no longer generated by sliding friction at the interface 

but by viscous shearing in a softened layer of material close to the 

interface. During Phase II upsetting takes place and although Rykalin 

suggests that the rate of growth of the interface temperature could 

be retarded by inclusion of heat emission from the lateral surfaces 

and heat exchange in the chucks the dominant cooling agent is forced 

convection due to the upsetting. 

We thus conclude that although these models were presented to 

represent the majority of the weld cycle, the idea of sliding friction 

is only really valid during Phase I. Unfortunately, as mentioned in 
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Vill [l4^ , the interfacial heat generation cannot be assumed to be 

uniform over the cross-section during this phase. So we present 

below a slightly amended form of the above models to describe this 

conditioning phase. Phase II is considered extensively in Chapters 

3,4 and 5. 

2.3 The Conditioning Time 

In this section, we consider the friction welding of thin walled 

tubes. If we assume that the tube wall thickness is much smaller than 

the mean radius (i.e. h « R, where h is the wall thickness and R 

is the mean radius) then the variations in f , p and V over the 

cross-section will be small, hence the power input q may be assumed 

to be uniformly distributed. From inspection of the idealised torque 

trace in Figure 1.2 we see that to a good approximation during Phase I, 

the torque and hence the power increases linearly with time. We thus 

postulate, for the interfacial heat generation, the relation 

q = 1 Tq^wt/h (2.3.1) 

where co is the angular velocity and T^^ is the slope of the torque 

curve during Phase I which must be obtained experimentally. 

The Y is introduced since we consider one tube only. Making all the 

assumptions of Rykalin and Vill, it is therefore necessary to solve 

the equation of linear heat conduction 

f - j » 

subject to the boundary conditions 
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— = - i T ' ^ o n Z = 0 (2.3.3) 
3Z 2 4° h 

T -v as Z " (2.3.4) 
AM 

f = T.„ at t = 0 (2.3.5) 
AM 

where Z is taken in the axial direction of the tubes and T,,, is 
AM 

the ambient temperature. 

It is convenient here to introduce the dimensionless variables 

Qjy Z and t defined by 

ly = -=-2- , Z - =2- , t . t/t (2.3.6) 
AM po 

where t^ is a typical value of the conditioning time. The quantity 

Zp^ is a typical value for the thickness of the plastic region which 

develops during Phase II but is introduced here to give compatibility 

of these solutions with those obtained in a later section. Using 

(2.3.6), equations (i2.3.2) to (2.3.5) become 

36 

= - xt on Z = 0 (2.3.8) 
9Z 

-> 0 as Z oo (2.3.9) 

and 

= 0 at t = 0 , (2.3.10) 
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where x and the Fourier number are defined by 

x • 'o = J 
po 

(2.3.11) 

Equation (2.3.7) is readily solved subject to the boundary conditions 

(2.2.8) to (2.3.10) yielding the solution 

8^ = erfc(Z/2 y ^ ^ ) , (2.3.12) 

in which i^ erfc(z/F^) is defined by [2?] 

6i^erfc(x) = — (l+x^)e ^ 
/tt 

X erfc(x) (2.3.15) 

and erfc(x) is the complementary error function given by [2?] 

erfc(x) = e-y dy (2.3.14) 

3/2 

We notice that the interface temperature is now proportional to t , 

as against the variation t^ predicted by Rykalin and Vill. The 

above solution is only valid during the conditioning phase and we 

must now introduce some criterion to determine the end of this phase. 

Later in this thesis Phase II is modelled in two ways. In Chapter 4 

the softened layer is modelled as a viscous fluid and in Chapter 5 

as a Bingham substance. We therefore introduce here two criteria for 

determining the end of Phase I corresponding to the above two models. 

In each case the existence of a softened layer during Phase II is 

assumed and as we only consider thin walled tubes we also assume that 

the interface between the softened material and the solid material is 

parallel to the weld interface. This assumption is discussed in more 
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detail later in the thesis. 

For the viscous fluid model, the plane dividing the softened and 

solid regions is assumed to be at the conditioning temperature , 

the temperature at which the material begins to soften. Clearly there 

will be no precise value for but t is known to be 0(700°C). 

For convenience we shall take 

= 700°C , (2.3.15) 

when using the viscous fluid model. We assume that the end of the 

conditioning phase is attained when the interface has temperature 

and the time taken for this we call the conditioning time t^ . 

Hence with the aid of (2.3.6) and (2.3.12) we see that t^ is the 

solution of 

% ^ = 4x/F7 (2.3.16) 

For a Bingham substance a different definition of t^ is 

introduced. A detailed description of the Bingham substance is given 

in Chapter 3, from which it can be deduced that for our simple one- . 

dimensional model the conditioning phase is over when the inequality 

T t $ Zm^ho (2.3.17) 
qo o 

is satisfied. The yield stress is assumed to be dependent on temperature 

and following Baharani et al. we shall postulate the linear relation 

°o - ' (2.3.18) 

where is the value of at ambient temperature and 

is the slope which is suitably chosen so that approximates the data 

given by Hawkyard et al. £2^ . 

- 29 -



From (2.3.17) and (2.3.18) we deduce 

T t = 2nR2hG ri-E 8_(0)1 . (2.3.19) 
qo AM[_ I I J 

Substituting (2.3.12) into this equation and regrouping, we obtain 

1 - 4xEi ] (2.3.20) 

where the non-dimensional quantity $ is defined by 

T t_ 
ij, = . (2.3.21) 

27rR ha 
AM 

It is trivial to show that (2.3.20) has one real positive 

solution which is therefore the conditioning time. 

2,3.1 Results and Discussion 

= 

-3 
Typical values of the physical quantities are h = 2 X 10 m, 

R = lo'^m, t^ = 0.55, Z = lo"\, T,_ = 293K, T = 973K , = lO^Nm ̂ , 
I po AM c AM 

e = 0.3 and F^ = 2.5. Using the values these conditioning times for 

both models were calculated using equations (2.3.16) and (2.3.20) and 

these are plotted against for various values of to in Figure 2.2. 

The solid and broken lines denote the viscous and Bingham models 

respectively. We note in both cases that t^ decreases with increasing 

values of w and T , This result is intuitively obvious since 
qo 

increasing either of these parameters increases the rate of heat 

generation. 

In Figure 2.3 the interface temperature for the Bingham model, 

obtained from equation (2.3.12) with z = 0 , is plotted against T^^ 

for various values of w . Here we see that the interface temperature 

increases with increasing o) . This again is due to the increase in 

heat input. However, we note that increasing the torque leads to a 

decrease in 6^(0). This we expect since increasing T^^ leads to the 

yield condition being satisfied at earlier times. 
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CHAPTER 3 

DERIVATION OF THE GOVERNING EQUATIONS AND THE BOUNDARY CONDITIONS 

FOR THIN WALLED TUBES. (PHASES II. III.and IV). 

3.1 Introduction 

During phases II, III and IV a softened layer of material 

always exists on each side of the interface between the two specimens 

being welded. The governing equations describing the motion in this 

layer, we shall assume to be the same for each phase, but the boundary 

and initial conditions will be different. In this chapter the particular 

forms of the momentum and energy balance equations appropriate for thin 

walled tubes are derived, and the forms of the boundary conditions are 

discussed. 

Consider the friction welding of two identical thin walled tubes 

and in order to simplify the analysis let us assume that the tubes rotate 

about a comnon axis with the same angular speed (| u) rad but in 

opposite senses. (See Figure 3.1). 

Figure 3.1 Geometry for the Case of Welding Thin Walled Tubes. 
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Under these assumptions the weld interface becomes a plane of 

symmetry, and only one tube need be considered. The restriction to 

thin walled tubes implies that the wall thickness is much smaller than 

the mean radius of the tube, R. All the problems considered here are 

also axisymmetric, that is independent of (f>, the angular component 

of the polar coordinate system (r,$, x^). 

In these situations it is customary to introduce a Cartesian 

coordinate system (x^, x^, x^) where the x^ and x^ axes are taken to 

be in the radial and the axial directions respectively, choosing 

the plane x^ = 0 to be the plane of symmetry between the two specimens 

(see Fig. 3.2). 

Figure 3.2 Cartesian Coordinate System. 

For this two-dimensional version of the axisymmetric problem it is 

appropriate to assume that all derivatives with respect to vanish, 

i.e. 3/3x2 = 0. 
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3.2 Equations of Motion 

With respect to the Cartesian coordinate system introduced 

above the general form of the equation expressing balance of linear 

momentum, in the absence of body forces, is given by Q l ] . 

D v . , 3 o r . . 
= - T - ^ G ° 2, 3) (3.2.1) 

Dt p 3 jf. 

where the differential operator D/DCt is defined by 

^ = - % + V. (3.2.2) 

Dt 9t ^ 9x. 

The corresponding form for the continuity equation is 

^ (pv.) = 0 (3.2.3) 

3t 3x. ^ 

In equations (3.2.1) and (3.2.3) p denotes the density, v^ is the 

velocity component in the x^ direction and is the component, in the x^ 

direction, of the stress exerted on the fluid across an element of 

surface (internal or external) whose outward drawn normal is in the Xj 

direction. In most simple situations the balance of angular momentum 

implies that a.. is symmetric. In the absence of heat sources the energy 

balance equation takes the form 

p M . * . 2 ^ ».2.4) 

Dt 3x£ 
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where E represents the internal energy per unit mass, $ is the rate 

of dissipation of mechanical energy per unit volunfi and is the heat 

flux per unit area in the x. direction. 

3.3 The Constitutive Equations 

At this stage it is necessary to introduce some model to 

describe the softened material near the interface 2 = 0 . High strain 

rate data from hot torsion tests and also from tensile and compression 

tests, on metals have been found to follow the relationship |j.6, 17j 

a = e" (3.3.1) 

where a is the flow stress, e is the local strain rate and and n 

are constant which depend on temperature. However, it has been 

shown [17] that the data is much better correlated by a relationship 

containing constants which are independent of the temperature T, viz. 

e = A(sinho(r) ™exp (-Q/RT) (3.3.2) 

in which A, a, m and Q are constant for the particular metal and R is 

the gas constant. Unfortunately it would be difficult to proceed and 

obtain solutions using the highly nonlinear relationship between 

stress and strain rate expressed in (3.3.2) and for this reason sinpler 

models are sought. The introduction of a simple model might enable us 

to obtain some comparatively straightforward solutions to the conplex 

problems under discussion, and hence allow us to gain insight into 

the mechanisms occurring during friction welding. For the present 

therefore, following Bahrani et al [jLS]] , the tube is assumed to 
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conq)rise a Bingham material. The latter behaves elastically at low 

stress values when a certain inequality is satisfied but once the 

inequality is violated the material begins to flow like a viscous 

fluid, the viscosity of which we shall assume to be dependent on 

temparature and local strain rate. Chapter 4, the main chapter of 

this thesis, is concerned with the case where the softened layer is 

modelled as a viscous fluid which will beeseen later to be a special 

case of the Bingham substance. It will also be shown later that 

a simplified form of the relationship (3.3.2) can be incorporated into 

the viscous fluid model provided that the viscosity v is assumed to 

take a particular dependence on the ten^erature and the local 

strain rate. 

Before stating the constitutive equations for the Bingham 

substance, let us introduce some notation. Let the displacement of 

a particle from its initial position be denoted by Then the 

strain tensor , , is defined by 

*ij " 2 

di. 

3Xj 3x. 

(3.3.3) 

whereas the rate of strain tensor, i.j, is represented in terms of 

the velocity gradients by 

3v. 3v. 
—i. + — 1 

3x. 3x. 
J 1 

(3.3.4) 

Denoting deviatoric tensors by a prime, ', the relationships between 

al. , Zl. and 5 . ! . and a.., A., and i . . respectively can be written 
1] 1] ij 1] ij 
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^£j ~ P » C3.3.5) 

^ i j " ~ T ^ ^ i j ' ( 3 . 3 . 6 ) 

4 j * * i j " 3 &hh ^ i j ' ( 3 . 3 . 7 ) 

where p is the hydros t at icp res sure and A is the dilatation which are 

defined by 

P - i "hh (3-3-*) 

and 

A - • ( 3 . 3 . 9 ) 

The general constitutive equation for a Bingham material can now 

be written [l9, 2(^ 

CT.. = 3 K A 
11 

c : J - 2 n 4 . 

t £ i o : . o ' . . s ( 3 . 3 . 1 0 ) 
2 ij ij •" o 

and 

0* . . = ( 2 y + cr / / T ) i \ . i f 4 c r | . ff l . St ( 3 . 3 . 1 1 ) 
Ij O ij / 1.J Ij o 

Equation (3.3.10) therefore holds in the elastic region with equation 

(3.3.11) being valid in the flow region. The constants k, n and y 

denote the bulk modulus, modulus of rigidity and viscosity respectively, 

is called the yield stress, which will in general depend on the 

temperature, and I is the second invariant of the rate of strain tensor 

defined by 

Y = Y . (3.3.12) 
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In this work it is assumed that the elastic region may be treated 

as a rigid body and, from now on, this will be referred to as the solid 

region. Thus in the solid region the displacements are all taken to 

be identically zero and equation (3.3.3) then in^lies that 

° ^1, j • (3.3.13) 

It follows from equations (3.3.6), (3.3.9) and (3.3.13) that equations 

(3.3.10) can be disregarded. 

Incompressibility of the flowing material is also assumed, and 

using equations (3.2.3) and (3.3.4) this incompressibility condition 

can be written 

t.. - 0 . (3.3.14) 

With the aid of equations (3.3.5), (3.3.7) and (3.3.14) the constitutive 

equation (3.3.11) can now be expressed in the form 

O y • - P J. . + Zy + 

/ I 

, (3.3.15) 

provided that ctI . cr*.. % a^, 
2 11 11 o' 

where T - 1 5. .J.J . (3.3.16) 

In all subsequent work in this thesis the regime in which flow takes 

place will be known as the plastic region. Denoting the position of 

the yield surface (or thickness of the plastic region)by we can 

write 

38 -



1 ""ij ^ 0 * *3 * Zp 

(3.3.17) 

and -r cr.! a .\ ( for x_ % z 
2 ij ij o 3 p 

The function thus gives the position of the plastic/solid 

interface. 

It now remains necessary to define forms for the heat flux per 

unit area, q^, and the internal energy, E. We shall assume that the 

heat flux q^ is related to the temperature gradient 3T/ 3x^ by 

Fourier's law of heat conduction ; viz. 

q. = - k — (3.3.18) 

^ 9X£ 

where k is the thermal conductivity. The internal energy may be 

expressed in terms of differentials as 

dE = c^dT - pd^i],, (3.3.19) 

where c^ represents the specific heat capacity. 

3.4 Derivation of the Governing Differential Equations in Non-Dimensional 

Variables for Thin Walled Tubes 

In this section the forms of equations (3.2.1) to (3.2.4) which are 

appropriate for the friction welding of thin walled tubes, are derived. 

3.4.1 Balance of Linear Momentum 

It is usually useful when solving a problem to introduce 

non-dimensional variables. Hence we define x, z, z^, u, v and w by 
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" ' % • :p/=po 

u = v^/u^, V w = Vg/w. 

(3.4.1) 

where and w^ are typical values of the thickness of the plastic 

region, the velocity in the (radial) direction and the burnoff 

velocity respectively. Using the assung)tion that all derivatives with 

respect to x^ vanish, the component of the strain rate tensor, given 

by equation (3.3.4), may be written in terms of these new variables as 

^xx ' *yy " 3 % 
po 

• = i£R av : = 1 
xy vh 3x ' xz 2 

"««> 3u ^ 3w 
z dz h 3x 
po 

, & 
_ WR 3v 

yz Vz 3z 
po 

(3.4.2) 

In order to obtain approximate forms of the complicated governing 

differential equations, realistic values of the constants appearing in 

our theory need to be inserted. The solutions to our simplified equations 

will then be relevant to actual welding situations. In practice when 

welding tubes of a mean radius R of OClcm) and a wall thickness h of 0 

(1mm) the values for w usually lie within the range (100-200) rads./sec. 

In these situations, with an applied force, F^, lying in the range 

(3-8)KN, the values for the thickness of the plastic region z^^ and 

rate of burnoff are typically found to be O(lmm) and OClmms ^) 

respectively. The quantity cannot be found directly from experimental 

data , but substituting the relevant strain rate component into the 

equation of incompressibility (3.3.1^) yields 

3u 3w _ 
+ — = 0-

po 

(3.4.3) 
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In order that both terms of this equation are of the same order of 

magnitude we require 

"co = 9' C3.4.4) 

where the dimensionless parameter g is defined by 

8 = h/z 
po 

(3.4.5) 

From equations (3.3.12) and (3.4.2) the expression for I can be 

written in full as 

w-
w 2 

+ 
f _ 
3w 

3x 

3v 2 3v 

3z 3x 

(3.4.6) 

Using the data presented in this paragraph, a careful investigation 

of the magnitude of all terms in equations (3.4.6) reveals that, 

to a first approximation, I is given by 

I % 

po 

W 2 
+ - 1 3v 

.az. .9* 

(3.4.7) 

At this stage we introduce the further dimensionless variables y, o^, 

I, p and t defined by 

p = y/y , a =• a /ex., I = 1/(w^R^//6z^ ) 
0 0 o A po 

t = t/t^, p = p/p^ 

(3.4.8) 

where y is a typical value for the viscosity, o". is the average value 

of the yield strength taken over the typical temperature range 

experienced, t^ is typically the time duration of the particular 
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welding cycle under consideration and is the pressure applied to the 

tube through the axial force F^. It is now possible, using equations 

(3.3.15), (3.4.2), (3.4.7) and (3,4.8) to write down the component of 

the stress tensor in terms of the dinensionless variables as follows: 

Bcr 

XX - *A P + 

po 

VI + 
2/ I 

3u 

3x 
(3.4.9) 

yy * A P ' 
(3.4.10) 

zz 

2y w 
O «o 

po 

Ba 
V + 

2/ I 

3w 

3z 
(3.4.11) 

xy 
2h 

Ba 
y + 

2/ I 

9v 

3x 

(3.4.12) 

xz 

Bcr 

V + 
2/ I 

3w 

3x 

+ 

3z 
(3.4.13) 

yz Zz. 

Ba 

y + 
2/ I 

3v 

3z 
(3.4.14) 

Where the Bingham number B is defined by 

B = 1 2 ^ (3.4.15) 

Under normal conditions the temperature in the plastic region 

during friction welding of mild steel lies between 700°C and 1200°C and 

over this temperature range the average value of the yield stress a^ is 

found from tables [28, 2 ^ to be of OClO^ Nm ^) . The pressure based 

on the applied force and cross-sectional area of a tube of mean 
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8 ^2 

radius 1cm and wall thickness 1mm is OClO Nm ). A typical time 

scale for phase II is 0(ls) while for phase IV the time scale is 

0(0.Is), (see trace in Fig.4.31 ). A value for the viscosity is 

not readily available, however, but one will be chosen which leads 

to a realistic value for the torque. The total force exerted by the 

fluid, in the azimuthal direction, on an elemental annulus 

of the surface x^ = is given by 

6F = crQjj(r,2pCr,t))n2 + crj.gCr,ZpCr,t))nj6S (3.4.16) 

where n^ and n^ are the components of the normal vector to the elemental 

surface, 5S, in the radial and axial .^directions respectively. In terms 

of our cylindrical polar system equation (3.4.16) may be expressed. 

<Sf = 2irr 
9z 

3r 
fir (3.4.17) 

The total reacted torque T^ is thus given by 

T = 2T 
q 

R+Jh 

[R-ih 

P d r (3.4.18) 

From the above it is readily seen that, in terms of our two-dimensional 

Cartesian coordinate system, the torque can be approximated by 

' J 

Tq % 2TrFhj j 

3z 

yz 
(x,z (x,t)) - a (x,z (x,t)) — ^ 

xy 
9x 

dx (3.4.19) 

However, for the two-dimensional model it is convenient to work with 

the torque/unit area, T* , which may be expressed as 
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T* = R 
q J yz 

-i 

x,Zp(x,t) dx - R 
xy 

x , Z p ( x , t ) j 

9z 

dx 

dx (3.4.20) 

With the aid of equations (3.4.12) and (3.4.14) it can be seen, by 

comparing the orders of magnitude of both sides of equation (3.4.20) 

that 

T* = 0(R2V ). 
q o po 

(3.4.21) 

It is found by experiment that typical values for T* are 0(10^Nm ^), 

thus we deduce from equation (3.4.21) with the aid of the data given 

previously in this chapter, that is 0(10^kgm ^s ^). 

On susbstituting equations (3.4.9) to (3.4.14) for the stress 

components in the plastic region into equation (3.2.1), there results, 

after the use of the definitions (3.4.1),(3.4.4) and (3.4.5) and some 

rearrangement, the equations of motion 

9u . 3u . 9u 
r — + u — + . _ P i £ + 

3t 3x 9z 2g2 3x 

B^Re 

_ 2 

9z 

Ba 

P + 
2/ I 3x 6^ 3z 

r Ba 
+ 2 — y + 

• 

9x 

k 

. 2/ I 

3u 

3x 

(3.4.22) 

9v , dv , 3v 1 
Y " "" "r tl'"'— T V '• ' « 
3t 3x 3z Re 

_3 

9z 

Ba 
y + 

2/ I 

3v 

3z 

_1 _3_ 

02 9x 
V + 

Ba ^ 
0 

2/l 

9v 

9x 

(3.4.23) 

and 
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9w . 3w ^ 9w p 3p , 

at 3x 9z 2 3z 

_1 

Re 
2 ^ 

dz 

Bor 

y + 

2/1 

3w 

3z 

_ L 1 _ 

6^ 9x 

Bo 
y + 

2/l 

;2lu 
e 

3x 3z 
(3.4.24) 

Where the Reynolds number, Re, based on motion in the axial direction, 

the pressure coefficient and the dimensionless parameter y are defined 

by 

z 
E£ 

w.to 

(3.4.25) 

Using the data given earlier in this chapter and taking the value for 

the density p to be 7800 Kg m the appropriate value for mild 

steel, the orders of magnitude of the above parameters are found to be 

Re = 0(10"^), Cp = 0(10^°), Y = 0(1) . (3.4.26) 

From these results it is immediately obvious that the non linear 

inertial terms on the left hand sides of equations (3.4.22) to 

(3.4.24) may be neglected. The nature of the remaining equations 

suggests that the pressure p may be expressed in the form 

P - Po * Pl/Cp *= (3.4.27) 

Substituting equation (3.4.27) into equations (3.4.22) to (3.4.24) 

(and neglecting the inertial terms) then leads to the set of non-

dimensional equations 
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2 3x 3x dz 

BCT 
y + 

2/1 

3w 9u 
- — + — 

dx dz 

+ 2 -

3x 
P + 

8 ^ 

2/1 

3u 

3x 
0, (3.4.28) 

9 

9z 
V + 

Bct 9V 
0 

2/1 9z 

_ 1 _ 9 

9x 

Bcr 
V + 

r 
2/1 

9v 

9x 
= 0, 

and -
C Re 9p^ ^ 9p^ 

+ 2 
9z 9z 9z 

Bcr 
y + 

2/1 

9w 

3z 

_ 2 _ 9 

6^ 3x 

Bcr 

V + 
2/1 

9w 9u 
— + g 2 — 

9x 9z 
0. 

(3.4.29) 

(3.4.30) 

Finally, with the aid of the definitions (3.4.4) and (3.4.5) the 

equation of incompressibility (3.4.3) takes the dimensionless form 

(3.4.31) 

For our Bingham model equations (3.4.28)to (3.4.30) and (3.4.31) 

are the forms of the linear momentum and continuity equations 

respectively which hold in the plastic region in a thin tube, under 

the conditions typically arising during friction welding. Let us 

now derive the analogous form of the energy balance equations. 
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3.4.2 Balance of Energy 

In the plastic region the form for $, the rate of heat 

generation by viscous dissipation, is 

$ = CI.. Z.. 
1] 

(3.4.32) 

and with the aid of equations (3.3.14), (3.3.15) and (3.3.16), (3.4.32) 

can be written 

2y + (3.4.33) 

Let us now introduce the dimensionless variables 9, and k defined 

by 

(3.4.34) 

In the above is the ambient temperature, is the conditioning 

temperature and c^^ and k^ are the average values of the specific 

heat capacity and thermal conductivity taken over the temperature 

range 700°C - 1200°C, the range typically experienced in the plastic 

region during the friction welding of mild steel. 

With the aid of equations (3.4.7), (3.4.8) and (3.4.15) equation 

(3.4.33), to a first approximation, takes the form 

2 3v 2 1 Bv 

* % Wo y + - — * % Wo 
P p c 2/I 9z .3* 

(3.4.35) 

for 0 z {f Zp(x,t). 

With the assumption of incompressibility it can be shown with 

the aid of equation (3.3.19) that equation (3.2.4) may be expressed 

in the form 
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PC — = $ i 

^ ax. 
1 

(3.4.36) 

Substituting equations (3.3,18) and (3.4.35) into equation (3.4.36) 

and using the definitions (3.4.1), (3.4.4), (3.4.5), (3.4.8) and 

(3.4.33) and rearranging, the energy equation for the plastic region 

becomes 

_a 

3z 

f, 3 el _ 1 9 f, 36 + Br 
r 3v P ^ 1 Iv k — k — + Br y + 

3v 

ax . 2/lJ 6^ 

= + 4 0 + pFTE ' Oi z i ZpCx,t) (3.4.37) 

where the dimensionless quantities Br, the Brinkman number Pe, 

the Peclet number, and Fo, the Fourier number are defined by 

Br = 
w z 
to £0 

K ^po 

(3.4.38) 

Typical values for and c^^ are 20(w/mK) and 420(J/kgK) respectively, 

and it is assumed that T = 700°C and T,., = 15°C. With these values 
c AM 

and those introduced earlier it can be shown that under normal friction 

welding conditions 

Br = 0(1), Pe = 0(1), Fo = 0(1) (3.4.39) 

Equation (3,4.37) is, therefore, the approximate form of the energy 

equation in the plastic region for the friction welding of thin walled 

tubes. 
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In an entirely analagous way one deduces that the corresponding 

form of the energy equation in the solid region is given by 

_2 
98 ' r 981 98 

c 
V 98 

_2 k - 2 + - 1 - 2 k = - Pe % W ^ + _ 2 s 

dz . ® 
3x 

. ® ' ° 3: Fo 9t 

z ^ ZpCx.t) , (3.4.40) 

where the subscript 's' is used to denote quantities appropriate to 

the solid region and the dimensionless variables 6 , k and ^v are 
s s s 

defined in a similar manner to 8, k and c^. The function w^Ct) is the 

dimensionless bumoff velocity which is assumed to depend only on time 

t . 

3.5 Boundary and Initial Conditions 

The boundary and initial conditions which must be applied to the 

partial differential equations obtained in the previous section are now 

discussed. 

In practice the bumoff velocity see trace Fig. 4.3* is found 

to be approximately constant over almost the entire welding cycle. 

Thus the applied force must be balanced by the hydrostatic pressure 

and the viscous forces acting on the plastic/solid interface (F,t) 

In terms of cylindrical polars this may be expressed 

R + i h 

2ir 

R-

C \ 3z f 

R-ih 

2TrRhP^, 

(3.5.1) 
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Again for our two dimensional model it is more convenient to work in 

terms of forces/unit area and the above equation may be approximated 

by 

4 

— (x, z (x,t) a (x,z (x,t)Mx = P. 
B P h x zz P I A 

(3.5,2) 

On substituting equations (3.4.11) and (3.4.13) into equation C3.5.2) 

there, results, after a little rearrangement and with the aid of 

definition (3.4.1), the equation. 

i 

-i 3h 

Bo 
y + 

2/1'' 

rSw 9u\ 

I— + —I 
l3x dzJ 

Z=Zp(x,t) 

az. 
— 2 . + p P 

3x 
Z=Zp(x,t) 

po 

o \ 9 w 

y + — - ] 
2/l-'3z 

Z=Zp(x,t) 

dx = P. (3.5.3) 

The conditions on the velocity component are straight forward. 

Symmetry requirements on the weld interface ¥ = 0 in^ly that the 

velocity components v and w and the velocity gradient 9u/9z must 

vanish. Thus we may write 

v(x,o,Y) = 0, w(x,o,^ = 0, ^2 (x,o,^ = 0; -^h 3 x 3 &h (3.5.4) 

8x 

At the plastic/solid interface z = z^ continuity of velocity leads 

u(x,Zp,t) = 0 

v(x,Zp,t) = iwR 

w(x,Zp,t) = -W^(t) . 

(3.5.5) 
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The position of the plastic/solid boundary is defined by the 

Bingham yield criterion, 

iai. al. " 72 on z » z (3.5.6) 
ij ij o p 

Using equations (3.3.5), (3.3.14) and (3.3.15) this condition can be 

written 

I = on z = z (3.5.7) 
o p 

Since only thin walled tubes have been considered in this chapter 

the amount of material extruded from the inner and outer surfaces of 

the tube will be approximately the same. It seems reasonable therefore 

to assume that these extruded values will be identical and consequently 

in our two-dimensional model it is assumed that 3C = 0 is a plane of 

symmetry. The velocity con^onent u must therefore satisfy 

u(o,z,t) = 0, o ? z Zp . (3.5.8) 

It should be noted that the velocity component and the pressure 

terms are time dependent but the derivatives with respect to t have 

been disregarded in the governing equations of motion. The system 

is thus assumed to be quasi-steady and no initial conditions for it 

are required. 

Let us now consider the thermal boundary conditions. From 

symmetry there will be no heat flux across the planes z - o 

and X = o and hence the conditions 

~ (x,o,t) « 0, ~ (o,z,t)= 0, (3.5.9) 

9z 3x 

must be satisfied. At the plastic/solid interface it is natural to 
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impose continuity of both the temperature and the component of heat 

flux normal to the surface, giving the conditions 

and 

T(x,z ,t) = T (x,z ,t) 
P 8 p 

(3.5.10) 

(3.5.11) 

where — denotes differentiation along the normal to the surface 

z = Zp(x,t). Equation (3.5.11) may be expressed in the alternative 

form 

k 
3T 8z 9T 

E 

3z 9x 3x 

3T 3z 3T 
s 2 2. 

9z dx dx 

on z = z C3.5.12) 

Over the time scales considered here heat transfer will only be 

significant in the solid close to the plastic/solid interface. It 

is reasonable to assume, therefore, that the tube has infinite length 

and that far away from z = z^ the temperature maintains its ambient 

value. Expressed mathematically this condition is 

Tg(x,z,t) as z «« (3.5.13) 

At the outer surfaces of the solid region, x = ±h/2, we shall 

assume that heat is lost by radiation and forced convection. This 

condition may be expressed mathematically as 

- k ~ = -h 

» 3x ^ 
T, - - l y . on X - h/2, C3.5.14) 

where he is the surface heat transfer coefficient, a is the Stefan-

lioltzman constant and e is the surface emissivity. The same condition 
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can be applied to the surface x = -hjl but this need not be considered 

in view of the symmetry condition (3.5.9)^ , For the plastic region 

the outer surfaces are continuously moving with tine, and so it is very 

difficult to specify precise conditions on these surfaces. In order 

to make the problem tractable we assume that these outer surfaces 

remain fixed and that heat is lost at the surfaces by forced convection 

and radiation, as for the solid region, in which case we may write 

k ^ - h 
3x 

T - T ^ l - ae(T'* - T ^ ) on x = h/2 (3.5.15) 

Finally it is necessary to specify the initial temperature profiles 

at the start of phase II. The appropriate values are those occurring 

at the end of the conditioning phase, so we have in the solid region 

Ig(x,z,o) = T^;(7) . (3.5.16) 

An initial condition for the plastic region is unnecessary since the 

region is assumed not to exist at t = 0. 

All the relevant boundary and initial conditions have 

been given above, but it is helpful to express these in dimensionless 

form. 

On dividing both sides of equation (3.5.3) by the quantity 

^pw^^h and making use of the definitions (3.4.5) and (3.4.25) we have, 

after a little rearrangement, the dimensionless equation 

i 

-I 

c Re P 
P 

Z=Zp(x,t) 

Ba 

P + 
2/l 

3w 3 XT 
— + 

dx 9z 

dz 

3x 
Z=Zp(x,t) 

G°ol 
\ I ̂  1 •— 

9w 

2/l 
dz 

Z=Zp(x,t) 

dx = c Re 
P 

(3.5.17) 
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On substituting equation (3.4.27) into the above the pressures 

p^ and p^ must satisfy 

h 

- P 

[c Re p 
' P o 

Z=Zp (x,t) 

Bo 

p, + fu + + g 2 W f j 

32 I 2/1/l&x dzhx 

- 41 y + — — | — 
2/1 9z 

2=Zp(x,t)y 

\dx = Re (3.5.18) 

With the use of definitions ( 3 . 4 . 5 ) , ( 3 . 4 . 1 5 ) and ( 3 . 4 . 2 5 ) the 

boundary conditions on the velocity components C 3 . 5 . 4 ) , ( 3 . 5 . 5 ) and 

( 3 . 5 . 8 ) take the forms 

v(x,o,t) = 0, w(x,o,t) = 0» 1 ^ (x,o,t) = 0; 3 x * (3.5.19) 

u(x,Zp,t) 

v(x,Zp,t) 

w(*,Zp,t) 

0, 

1, 

-Tf^(t), 

-I g X a 4 (3.5.20) 

where w (t) is defined by w (t) = W (tVw 
o o o ' 

and the Bingham yield criterion (3.5.7) becomes 

(3.5.21) 

Bo 
V + 

2/1 

B2c2 

I = — on z 
4 

(3.5.22) 

The corresponding thermal boundary conditions (3.5.9), (3.5.10), 

(3.5.12), (3.5.13), (3.5.14) and (3.5.15), with the aid of definitions 

(3.4.1) and (3.4.33), can be written 

ll (x,o,t) " 0» H (o.z»t) = 0, 

e ( x , z ,t) = e (x,z ,t) , 
P ® P 

(3.5.23) 

(3.5.24) 
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36 9z 99 
E _ 

3z 9x 3x 
= k 

36 3z 98 
s p s 

3z 3x dx 
on z 

'p' 
(3.5.25) 

e^(x,z,t) + 0 as z + (3.5.26) 

- I I - -Bi6 - H^{(e(T^/T^-l)+l)'*-l} on X - i. 

and 
38 

3x 
BiGg - H^{(6^(yT^-l)+l)'»-l} on X = i, 

(3.5.27) 

(3.5.28) 

where Bi is the Biot number [3(^ defined by 

B i - V . (3.5.29) 

and the dimensionless parameter is given by 

«E (3.5.30) 

The dimensionless form of the initial condition (3.3.16) is 

8g(x,z,o) = 8^(z) . (3.5.31) 

Having derived the governing equations and boundary conditions a 

number of solutions are obtained in the following two chapters after 

introducing various simplifying assumptions. 
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CHAPTER 4 

VISCOUS FLUID MODELS 

4.1 Introduction 

In Chapter 3 the softened layer of material, the so-called 

plastic region, was modelled as a Bingham substance, and it was 

remarked that with this assumption the equations become tractable. 

They remain difficult to solve, however, and initially it is found 

helpful to introduce the further postulate that B, the Bingham number, 

is zero. Recalling equations (3.4.28) to (3.4.31) it is clear that 

with the latter assumption the softened material is represented by 

a viscous fluid, and it is then appropriate to assume that this 

fluid has a large viscosity which will in general be a non-linear 

function of the temperature 0 and the strain rates 3v/3z and 3y/3x. 

i.e. 

y = y(0, 3v/3z, 3v/3x) (4,1.1) 

Some solutions for the viscous fluid model are given in this 

chapter, whereas investigation of the more complicated equations for 

the Bingham substance is delayed until Chapter 5. 

4.2 Governing Equations and Boundary and Initial Conditions 

The general equations for a thin tube when the plastic region 

is modelled by a viscous fluid, found from the equations of motion 

(3.4.28), (3.4.29) and (3.4,30) and the energy equations (3,4.37) and 
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and (3.4.(-0) by putting B = 0 are 

CpRe 3p^ ^ api 

2 " a ^ " " I " 3 ^ 

_3 
9z 

(4.2.1) 

_ 2 + _ 1 _ 2 

3z 9z $2 9x 9x 

= 0 . (4.2.2) 

2 9z 2 8z 3z 
9w _1 _9 

,0 3x 
(4.2.3) 

__9 

3z 
98 
^9z 

1 3 

2 9x 

90 
+ Brp 

3v 
3z 

6^ 

and 

_v 26 
Fo 9t 

0 jfi z jf ẑ  

_9 
9z 

96 r 98' 
k — 2 + - 1 - 1 k — 1 
s 9z g2 3x s 3x 

(4.2.4) 

' 'P-
S O 

This system of equations remains complicated, however, and further 

simplification are necessary if analytiaolsolutions are to be obtained. 

When friction welding thin walled tubes the rubbing velocity v 

varies only slightly in the radial direction across the interface and 

metallurgical examination of a diametric cross-section, of a welded 

specimen reveals that the isotherms are then almost perpendicular to the 
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z-axis. The above observation suggests that the temperature profiles 

0 and 6 and hence z , since we later define z to be an isotherm, 
s p P 

may, to a first approximation, be assumed to be independent of x. 

This assumption on implies, with reference to conditions 

(3.5.19)2 (3.5.20)2, that the velocity component w is independent 

of x on both z = 0 and z - z . It thus seems reasonable to assume 
P 

that w is independent of x throughout the range 3 x 2 Hence for 

the whole of this chapter we postulate 

z_ = z (t), V = v(z,t), w = w(z,t), 0 = e(z,t), 8 = e Cz,t) (4.2.6) 
P P s s 

and it is this key assumption which allows us to proceed.further and 

obtain analytic solutions appropriate to the friction welding of 

thin tubes. On splitting equations (4.2.1) to (4.2.3) into two 

subsystems, one 0(Re Cp) and the other Ofl), and making use of the 

postulate (4.2.6), one obtains 

9p 
0(Gp Re) = 0 (4.2.7) 

9z 
0 , (4.2.8) 

1 aPi _ 7 9 ( 9u ^ 0 3 
• 

_9u' 
2 9x W 9x ' 

(4.2.9) 

9z 
9v 
3z 

= 0 , (4.2.10) 

l A I i . 2 r L m 
2 9z 9 z r 9& 

(4.2.11) 
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It is easily seen through (4.1.1) and (4.2.6)2 ^ that p may 

now be taken to be independent of x and expressed in the form 

M = av/az) . (4.2.12) 

The equation of incompressibility (3.4.30) remains in the form 

I ; + " 0. 

but is repeated here for convenience. 

On splitting the condition C3.5.18) into two subsystems, one 

OCCp Re) and the other 0(1), and putting B = 0, the conditions on the 

pressure component, in view of assumption (4.2.6) reduce to 

0(Cp Re) PgCx.Zp.t) dx = 1, (4.2.14) 

and ^ 

0(1) I p^(x,Zp,t) -

-i 

dx = 0 (4.2.15) 
z=z 

The boundary conditions on the velocity components u, v and w are 

unaltered by assumption (4.2.6), consequently we can write 

"ll (x,o,t) = 0, ( X ( v(o,t) = 0, w(o,t) = 0, (4.2.16) 

u(x,z ,t) = 0, -1 3 X $ 1; v(z ,t) = 1, w(z ,t) = -w (t>, (4.2.17) 
P P p o 

u(o,z,t) = 0, 0 ( z ( Zp(t) . (4.2.18) 

For the viscous fluid model the Bingham yield criterion (3.5.22) is 

no longer appropriate and z^, the position of the 'yield surface' , must 
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be determined by an alternative condition. The obvious choice is to 

assume that the temperature on the plastic/solid interface remains 

fixed at the conditioning temperature and therefore recalling 

definition (3.4.34), we assume that is the isotherm 6 = 1 . 

Using condition (3.5.24) and the postulate (4.2.6), the quantity 

is therefore defined by 

6(z ,t) = 9 Cz ,t) « 1 
P ® P 

(4.2.19) 

In view of assumption (4.2.6)^ ^ the heat flow has been restricted 

to the one-dimensional flow in the direction of the z-axis and so the 

conditions governing the loss of heat by convection and radiation over the 

'curved' surfaces of the tubes, (3.5.27) and (3.5.28) can no longer be 

employed. However, for this case of uni-directional heat flow the heat 

loss through the outer surface may be modelled by a volumetric heat loss 

which can be incorporated into the problem by introducing a heat sink 

H into the energy equations (4.2.4) and (4.2.5). The latter can then be 

shown, with the aid of (4.2.6)^ to take the forms 

_9 
9z 

36 
+ Bry 

3v 

3z 

and 

• 0 $ z < z , 

_9_ 
dz 

!!£ 
ŝ 9z 

38 ev 96 

+ -FT -at ' ' * 

(4.2.20) 

(4.2.21) 

where is given by (see chapter 3) 

H. ̂(u) = B.u + V ( u ( T ^ / T ^ - 1) +l}4- 1} (4.2.22) 
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Conditions (3-5.23), ( 3.5.24) and (3.5.26) remain unchanged, 

but are now rewritten for convenience 

l l Co.t) = 0 (4.2.23) 

e ( z ,t) = 0 (z ,t) = 1 , (4.2.24) 
P ® P 

e^(z,t) ->• 0 as z -V «o (4.2.25) 

condition (3.5.23)2 being satisfied identically for all x for this 

one dimensional model. However, under the postulate (4.2.6)^ ^ condition 

(3.5.25) reduces to 

k 37 (Zp't) = kg ' (4.2.26) 

and rewriting the initial condition (3.5.31 ) we have 

8g(z,o) = 8^/^) . (4.2.27). 

In the following sections the partial differential equations (4.2.7) to 

(4.2.13), (4.2,20) and (4.2.21) are solved subject to the boundairy 

conditions (4,2.14) to C4,2,18) and (4,2.23) to (4.2.25) and the 

initial condition (4.2.27), under a number of simplifying assumptions. 

4.3 Velocity and Pressure Profiles - No Burnoff 

A key assumption made by Atthey [22^ whose model is discussed 

in some detail in the following section, was that no axial shortening 

(or bumoff) takes place. In all friction welds some material is 
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extruded from the plastic region and in practice, therefore, axial 

shortening of the specimens must occur. However, the assumption of 

no burnoff considerably simplifies the equations and in order to obtain 

a simple analytiaf solution which has some of the qualitative features 

of a more general solution Atthey's approach seems reasonable. For 

the present, therefore, we follow Atthey and assume 

w = 0, (4.3.1) 

in which case the Peclet number, Pe is also zero. 

Remembering,in view of (4.1.1), (4.2.6)2 and (4.2.6)^, that y 

may be assumed to be independent of x the equations of motion for the 

plastic region (4.2,7) to (4.2.11) reduce, with the aid of (4.3,1) to 

9Po 
O(CpRe) - 0, (4.3.2) 

9p 

- j f - o . W.3.3) 

' (4-3-4) 

_ 2 
9z 

3v 
= 0 , (4.3.5) 

and 
3p, 3*u 

= 2P5C5T , (4.3.6) 
3z dxdz 

whilst the condition of incompressibility C4.2.13) becomes 

1 1 = 0 . (4.3.7) 

The boundary conditions (4.2.14) to (4,2.18) are unchanged 

under assumption (4.3.1) but clearly conditions (4.2.16)^ and (4.2.17)^ 
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are no longer necessary. 

The partial differential equations (4.3.2) to (4.3.7) are 

integrated below to give the pressure and velocity profiles in the 

plastic region. 

It is obvious from equations (4.3.2) and (4.3.3) that the 

dimensionless pressure p^ is a function of t only, that is 

Pq = PQ(t) (4.3.8) 

and substitution of the above into the boundary condition (4.2.14) 

then yields the solution 

p^ = 1. (4.3.9) 

The hydrostatic pressure, therefore, is approximately constant 

throughout the plastic region. 

Integrating the equation of incompressibility (4.3.7) with 

respect to x we deduce that the velocity component u takes the form 

u = u(z,t), (4.3.10) 

and making use of the boundary condition (4.2.18) it follows that 

u = 0. (4.3.11) 

On substituting this zero value for u into the equations (4.3.4) and 

(4.3.6) it is clear that the quantity p^ is also a function of time 

only, and to satisfy the condition (4.2.15) it is necessary that 

p^ = 0. (4.3.12) 

- 63 -



Now turning our attention to the velocity component v(z,t) 

we obtain, after integrating equation (4.3.5) with respect to z, 

the equation 

p 1 ^ = T(t), (4.3.13) 

Where t(t) is the dimensionless shear stress. A further integration 

of this equation with respect to z and the use of the boundary condition 

(4.2.16)2 yields 

rz 
v = t — (4.3.14) 

y 

In order that condition (4.2.17)2 is satisfied it then 

follows that the shear stress t and the thickness of the plastic region 

z^ are related through 

1 = t 

z 

(4.3.15) 

0 ^ 

The integrals in equations (4.3.14) and (4.3.15) cannot 

be evaluated until the viscosity y is known in terms of z and t. In 

general u will be specified as a function of 0 and 3v/3z which in turn 

depend on z and t. It will in these situations, therefore, be necessary 

to solve equations (4.3.14) and (4.3.15) simultaneously with the 

energy equations (4.2.20) and (4.2.21). 

In the following two sections the velocity profiles derived 

above are used to obtain some simple solutions appropriate to phase II 

of the weld cycle. 

— 64 -



4.4 Summary of Atthey's Solution - No Burnoff 

The only published work adopting the viscous fluid model 

is due to Atthey [2^ . His equations can be derived from those stated 

in section 4.2 under a number of simplifying assumptions, and since 

the solution is important for later developments in this thesis a 

summary of his paper is now given. 

In Atthey's model the heat loss terms in equations 

(4.2.20) and (4.2.21) are neglected. This is a reasonable assumption 

since it can be shown, with the aid of data given in Kirieth and Black [soj 

that the Biot number Bi and the radiation coefficient are 0(0.01). 

In general the specific heat capacities c^ a n d . a n d the 

thermal conductivities k and k are found to be non-linear functions of 
s 

the temperature 0. Temperatures in the plastic region range from 

700°C to 1200°C v^ien welding mild steel and over such a large range it 

seems that the temperature dependence of the above mentioned quantities 

could be important. However, in order to simplify the equations Atthey 

assumed that c , c , k and k are all constant and recalling definition 
v v s s 

(3.4.34) , one can without loss of generality, take 

c = c = k = k = l. 
v v s 

s 

Atthey also assumed, as has been discussed in section 4.3 that 

no axial shortening takes place. The cooling effect due to forced 

convection is therefore absent and consequently the temperatures 

derived from his simplified model will be over estimates. 

Finally Atthey neglected the conditioning phase assuming 

that all points in the tube, z > 0, are initally at ambient temperature, 

apart from the interface, z = 0, which was assumed to be initially at 

conditioning temperature. 
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4.4.1. The equations of energy balance and boundary conditions. 

Introducing the above assumptions into the equations of energy 

balance (4.2.20) and (4.2.21) the latter reduce to 

+ Bry 
9Z2 

9v 

3z 

2 

= H 0 3 z 3 Zp (4.4.1) 

and 

. (4.4.2) 

Equation (4.4.2) is the usual one-dimensional unsteady heat conduction 

equation, \vhereas (4.4.1) contains an extra internal heat generation 

term arising from viscous shearing within the plastic region. 

The assumptions introduced at the beginning of section 4.4 slightly 

modify the thermal initial condition and some of the thermal boundary 

conditions stated in section 4.2. Since the thermal conductivities 

k and are both taken to be unity, equation (4.2.26) is replaced by 

i ; (=p' ' "a; ('p- t)' (4-4-3) 

Whereas neglecting the conditioning phase implies that the initial 

condition (4.2.27) reduces to 

8g(z,0) = 0. (4.4.4) 

The remaining conditions (4.2.23), (4.2.24) and (4.2.25) are unchanged. 
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4.4.2 Similarity Transformation 

As we remarked earlier in this chapter the viscosity is in 

general a non-linear function of temperature 6 and strain rate 3v/9z, 

and over the ranges of temperature and strain rate that are present 

during a normal friction welding cycle, one would expect the variation 

in viscosity to be important as is seen in Section 4.12. 

However, in order to obtain a simple analytical solution Atthey made the 

further assumption that the viscosity y is constant and recalling 

definition (3.4.8), we can therefore take, without loss of generality. 

y = 1. (4.4.5) 

On substituting (4.4.5) into equations (4.3.14) and (4.3.15), 

the integrations are readily performed leading to 

V = T(t)z, (4.4.6) 

and T = 1/Zp, (4.4.7) 

and with the aid of these equations the energy equation for the plastic 

region (4.4.1) can be expressed 

i-i + ®L_ , 0 $ z g z . (4.4.8) 
3z2 z 2 Fo P 

The forms of the energy equations (4.4.2) and (4.4.8) suggest 

the existence of a similarity solution where the similarity variable 

n is defined by 
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n = ^ , (4.4.9) 

P 

provided that grows with time according to 

z = 2 a t , (4.4.10) 
P o 

a being a constant of proportionality. 

Substituting equations (4.4.9) and (4.4.10) into equation 

(4.4.8) leads to the ordinary differential equation 

d^0 , 
+ 2â ri "T— + B r = 0, 0 $ n ^ 1 (4.4.11) 

dn2 

and applying a similar procedure to equation (4,4.2) for the solid 

region yields 

d^e 
— + = 0, n % 1 (4.4.12) 

dn2 

In terms of n the boundary and initial conditions (4.2.23), (4.2.24), 

(4.2.25), (4.4.3) and (4,4,4) can be written 

^ (o) = 0, (4.4.13) 

6(1) = 8g(l) = 1, (4.4.14) 

jQ d8 
1 ^ ( 1 ) (4.4.15) 

8g(n) -> 0 as n ~ . (4.4.16) 
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It should be noted that the two conditions (4.2.26) and (4.4.4) 

are replaced by the single condition (4.4.16) as is customary in this type 

of solution. 

4.4.3 Temperature profiles. 

a2_2 

On multiplying equation (4.4.11) by e it may be readily 

integrated twice with respect to n yielding upon application of 

the boundary condition (4.4.13) and (4.4.14^^ the solution 

t.2 ' 
D(u) du, 0 g n ^ 1 . (4.4.17) 

an 

In the above D(u) is Dawsons integral,£31^ , which is defined by 

D(u) = e " 
2 ru 2 —11̂  

e^ dv (4.4.18) 

'' 0 

It should be noted that equation (22) in Attheys paper [22^ 

is incorrect due to a sign mistake in the second exponential term and the 

corrected expression is given by (4.4.17). 

Integrating equation (4.4.12) in a similar manner to (4.4.11) and 

applying the boundary conditions (4.4.14)2 and (4.4.16) gives the 

solution 

8g = erfc(an)/erfc(a), n 5 1 (4.4.19) 

in which erfc(x) is the complementary error function [2?] defined by 

2 
erfc(u) = 

y tr 

_t2, 
e "-(It. (4.4.20) 

u 

Finally substituting equations (4.4.17) and (4.4.19) into condition 

(4.4.15) leads to the following algebraic equation in a. 
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2a2e'* 
2 

- erfc(a) D(a) = 0 (4.4.21) 
Br/ n 

There is no analytioa^solution to the above equation and a 

numerical solution must be sought. The Newton-Raphson iterative 

procedure is found to be a suitable method for solving (4.4.21) since 

the derivative with respect to a can easily be obtained. As with 

all iterative procedures it is necessary to find an approximate 

starting value. On expanding (4.4.21) for small Br we obtain the 

approximation 

01 ^ ^JL Bv(l - Br + 0(Br^)) , (4.4.22) 

2 

which may be used to obtain starting values for % when Br is small. 

It is also felt useful to give the expansion of (4.4.21) for large 

values of Br, not only to obtain starting values for a when Br is large, 

but as a check on the accuracy of the approximate solution which is 

developed in a later section. 

Referring to the definition of Dawsons integral (4.4.18) it is 

seen that D(a) may be expressed in the form 

e-o' 
DCa) = — o — 

r « „ 2 
e dv (4.4.23) 

Expressing the above in the form 

D(a) = -
ra ,,2 

2ve' , (4.4.24) 
v 

-a 

and integrating by parts results in the expression 
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_ 2 

; ,,2 
- a 

dv (4.4.25) 

This procedure may be repeated indefinitely, however, for our 

purposes the first two terms are sufficient and we have 

D(a) = ^ 
2» 4„3 8 j 

-a 

dv. (4.4.26) 

The expansion for enfc(a) for large a is found in CarSlaw and 

in Jaeger[27] and given by 

-a 2 

erfc(a) = J - + J L + o 

2a^ 4a^ 
(4.4.27) 

Now on substituting equation (4.4.26) and (4.4.27) into (4.4.21) 

and truncating the expression after the first two terms, the 

approximate solution for a is found to be 

/ 7 

8 

; I 
Br'* + 0 

' -1 

Br 4 (4.4.28) 

Using expansions (4.4.22) and (4.4.28) to obtain starting values, 

the values of a are computed for various values of Br and the results 

are presented in table 4.1. 
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Br a 

0.1 0.081 

0.2 0.149 

0.3 0.207 

0.4 0.259 

0.5 0.305 

0.6 0.346 

0.7 0.383 

0.8 0.418 

0.9 0.449 

1.0 0.478 

2.0 0.690 

4.0 0.927 

6.0 1.073 

8.0 1.179 

10.0 1.263 

Table 4.1. 

Having obtained values of a, the temperature profiles 0 and 6^, 

the position of the plastic/solid interface z^Ct) and the 

dimensionless shear stress tCt) are obtained for various values of the 

Brinkman number, Br , using equations (4.4.17), (4.4.19), (4.4.10) and 

(4.4.7) respectively. These results are presented and discussed in 

section 4.6. 
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4.5 Variable Viscosity - No Burnoff 

Although in the last section it was assumed that the viscosity 

remained constant it has already been stated that for the one-

dimensional models under consideration the viscosity y will, in general, 

be a non-linear function of the temperature T and the strain rate 3v/3z. 

A form for the dependence of y on T and Dv/3z is now postulated. 

Referring to equation (3.3.2) the relationship appropriate 

to our one-dimensional model is 

= ACsinhaa^^)™ exp(-Q/RT), (4.5.1) 

which may be rearranged to yield 

sinh(aGyg) 
r i r '3vl® f Q ' 

AJ [mRTJ 
(4.5.2) 

The form of equation (4.5.2) is much too complicated to use in 

obtaining simple analytic solution. We therefore postulate here that 

the left hand side of this equation be replaced by a linear term, that 

is 

yz 
(4.5.3) 

where H is a constant. Equation (4.5.3) is a good approximation to 

(4.5.2) for small values of a but it becomes less reliable as a 
yz yz 

increases. However even for large it retains the qualitative effects 

of varying T and W 3 z . 

We shall now compare equation (4.5.3) with the appropriate 

relationship between a and 3v/3z for the viscous fluid model. 
yz 
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Putting B = 0 in equation (3.4.14) we obtain 

9 V 
*yz " T. P aY , (4.5.4) 

where t is defined by 

t = 

p wR 
0 

^ ^po 
(4.5.5) 

It is easily seen that if we put 

h = t (4.5.6) 

and assume that y takes the form 

expH 

m R ( 6 C T ^ - T ^ f T ^ ) 

(4.5.7) 

where T has been replaced by 6 using (3.4.34), then equation (4.5.3) 

may be replaced by (4.5.4). 

Although we now have an expression for the viscosity, which results 

in a relationship between the stress and strain rate tensors bearing 

the qualitative features of expression (3.3.2), it still remains difficult 

to handle. Therefore in this section a simple extension to Atthey's 

solution is sought to demonstrate the effect of the viscosity decaying 

with increasing temperature. To this end it is proposed to take y to 

be independent of 8v/3z but to be inversely proportion to 6, and recalling 

definition (3.4.8) we can write 
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W =1/6 (4.5.8) 

Although (4.5.7) predicts a much faster decay of y with 

increasing 0 than (4.5.8), the latter allows us to obtain a simple 

similarity solution which illustrates qualitatively the effect of 

viscosity decreasing as the temperature increases. A solution 

incorporating the full effect of equation (4.5.7) is delayed until 

Section 4.12. 

4.5.1 Governins Equations 

Substituting equation (4.5.8) into equation (4.3.14), the velocity 

component v becomes 

v = x C t ) edz, (4.5.9) 

0 

and the corresponding relationship between x and (4.3.15) is 

z (t> 

1 = x C t ) edz. (4.5.10) 

0 

On substituting equations (4.5.8) and (4.5.9) into (4.4.1), the energy 

equation for the plastic region may be written 

3^ 9 
+ Br T^e = , 0 $ z ^ z . (4.5.11) 

BzZ FoSt P 

The energy equation for the solid region remains as equation 

(4.4.2) and the latter and equation (4.5.11) must now be solved subject 

/ 
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to the boundary conditions (4.2.23) (4.2.24), (4.2.25) and (4.4.3), 

and the initial conditions (4.4.4). 

4.5.2 Similarity Transformation. 

Again the forms of equations (4.4.2), (4.5.10) and (4.5.11) suggest 

the existence of a similarity solution, where the similarity variable 

is defined by equation (4.4.9). It is also necessary that and t 

depend on t through 

z = 2a /i t , (4.5.12) 
p v o 

and 

T = 3^/2 /Po t , (4.5.13) 

where and are constants of proportionality. Substituting 

equations (4.4.9), (4.5.12) and (4.5.13) into equations (4.5.11) yields 

the ordinary differential equation 

d^9 
+ 2a27^.^ + Br 3^ 8 = 0, 0 ^ n $ 1(4.5.14) 

dn^ v dri v v 

and the corresponding equation for the solid region is given by 

(4.4.12) with a replaced by a^. 

On substituting equations (4.4.9), (4.5.12) and (4.5.13) into 

equation (4.5.10) we obtain 

1 = f 8(n) dn , (4.5.15) 

^ 0 

a relationship between a and 6 . 
v v 

The two ordinary differential equations (4.4.12) and (4.5.14) must 

now be solved subject to conditions (4.4.13) to (4.4.16). 

- 76 -



4.5.3 Temperature Profiles. 

Clearly the temperature profile for the solid region 8 ̂  will take 

the same form as (4.4.19) and, rewritten for convenience, it is 

8g = er.fc(a^n)/erfcCs^), n % 1. (4.5.16) 

There does not seem to be an analyticmlclosed form solution to equation 

(4.5.14), however, so a series solution is sought in the form 

00 

0 = Co ^ ri", 0 $ n g 1 (4.5.17) 
n=o 

The presence of the coefficient Co allows us to take 

A = 1. (4.5.18) 
o 

On substituting equation (4.5.17) for 6 into equation (4.5.14) 

there results 

Co 1 [n(n-l)n^ ^ + 2o^nn"^ + Brg^a^n^) = 0, (4.5.19) 
n=o 

and by equating to zero the coefficients of (n = 0, 1, 2, ..,) we 

deduce that the s are related by the difference equation 

(2n + Brg2)A% 

A „ = — , n % 0. (4.5.20) 
(n+l) (n+2) 

Applying the boundary condition (4.4.13) to equation (4.5.17) gives 

the additional result 

A^ = 0. (4.5.21) 
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It is evident from equations (4.5.20) and (4.5.21) that 

= 0 , n % 0, (4.5.22) 

and 
(4n + BrgZ) 

In view of equations (4.5.22) and (4.5,23) it is clear that 

equation (4.5.17) may now be expressed as 

e " Co ^ A„ , 0 g n $ 1 , (4.5.24) 

n=0 

where the A^^/s are determined completely in terns of 3^, for all n ^ 0, 

by equations (4.5.18) and (4.5.23). Substituting the series (4.5.24) into 

conditions (4.4.14), and (4.5.15) yields the pair of equations 

Co ^ A„ = 1 , (4.5.25) 
n=0 

and 

" A-Jr, 

I (4.5.26) 
n=0 

The constant Co is readily eliminated from the above two equations to give 

the following equation in and ^ 

I [1 - a^$^/(2n+l)) » 0. (4.5.27) 
n=0 

Finally substituting equations (4.5.16) and (4.5.24) into condition 

(4.4.15) leads to 

-a 
V 

«> -a e 
Co ^ n = . (4.5.28) 

n=0 /i7 effc(a ) 
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Using equation (4.5.25) to eliminate Co from the above, gives, after a 

little rearrangement. 

0 

/ TT ef fc (a^) 

= 0, (4.5.29) 

a second equation in and 3^. Equations (4.5.27) and (4.5.29) must now 

be solved simultaneously. 

There appears to be no analytic solution, however, and a numerical 

procedure must be adopted. 

Equations (4.5.27) and (4.5.29) are readily solved using Powell's method 

of least squares [3^ . This method is, again, an iterative procedure and 

approximate starting values are required. On expanding (4.5.27) and (4.5.29) 

for small values of Br, the approximate forms 

and 

Br [l - (/tt + i-) Br + 0(Br2)) , (4.5.30) 

3 = — + 2 + 0(Br) (4.5.31) 

^ / irBr 

are obtained. Using these approximations, as starting values, the values 

of and were computed, using Powell's method, for small values of 

Br. For larger values of Br the values a and 3 were computed, using 
^n ^n 

as starting values the values of a and 3 from the previous 
^n-1 T'n-l 

computation. The summations were truncated after the first 15 terms and 

accuracy to 4 decimal places was obtained for all values of Br that were 

used. The results obtained are presented in table 4.2. 
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Br a 6 
V V 

0.1 0.078 12.352 

0.2 0.141 6.660 

0.3 0.193 4.739 

0.4 0.238 3.760 

0.5 0.276 3.164 

0.6 0.310 2.759 

0.7 0.340 2.465 

0.8 0.367 2.240 

0.9 0.392 2.062 

1.0 0.415 1.918 

2.0 0.572 1.220 

4.0 0.734 0.804 

6.0 0.828 0.638 

8.0 0.893 0.544 

10.0 0.942 0.481 

Table 4.2 

Having obtained values of and 8^ it is easy to compute Co using 

equation (4.5.25) and again, for all the values of Br used it proves 

sufficient to truncate the series after the first 15 terms,. 

The temperature profiles 6 and 0^, the thickness of the plastic 

region and the dimensionless shear stress t are then obtained using 

equations (4.5.24), (4.5.16), (4.5.12) and (4.5.13) respectively. These 

results are presented, and compared with those from the previous section, 

in section 4.6. 
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4.6 Results and Discussion of Sections 4.4 and 4.5 

In this section various results are presented and the essential 

features and limitations of both models of sections 4.4 and 4.5 are 

discussed and compared. 

Values of the constant a for various values of the Brinkman 

number Br, the only control parameter in these models which have been 

presented in table 4.1 are substituted into equation (4.4.10) and the plots 

of Zp against time are subsequently computed. Values of the dimensionless 

shear stress T are then found using (4.4.7). Likewise using the values of 

and given in table 4.2 the plots of and t against time for the 

variable viscosity model are obtained using equations (4.5.12) and (4.5.13) 

respectively. These results are shown in Figures 4.1 and 4.2. The 

curves in Figure 4.1 illustrate the growth of the thickness of the plastic 

region with time for both models, the solid line represents the constant 

viscosity model whereas the dotted line represents the variable viscosity 

case. It is readily seen from these curves that increasing the value of 

Br, that is increasing the rate of heat generation, gives an increase in 

the rate of growth of the plastic region. It is also borne out that 

allowing the viscosity to fall with increasing temperature gives a 

reduction in the rate of growth of for a given value of Br. As Br 

decreases the difference between the two models decreases and in the 

limit as Br—> 0 the values of from the two models become assymptotically 

identical as could have been envisaged by inspection of equations 

(4.4.22) and (4.5.30). 

The curves in Figure 4.2 illustrate the decay of the shear stress 

with time. It is seen that an increase in the Brinkman number results 

in a decrease in t and that for a given value of Br the shear stress t is 

lower for the variable viscosity model than for the constant viscosity one. 
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Comparison of these curves with the phase II section of the torque trace 

(see Figure 4.3%) reveals that for smaller times there is some qualitative 

agreement. However, for larger times Figures 4.1 and 4.2 show that 

grows indefinitely, t approaches zero and no steady state is reached. This 

is a consequence of neglecting the effect of upset. Without upset there 

is no cooling of the plastic region by forced convection, hence as time in 

increases the heat generated within the plastic region is only lost by 

conduction down the tube and the plastic/solid boundary is driven along 

indefinitely. 

The temperature profiles for Atthey's model are computed for various 

values of Br, with the aid of the values of a in table 4.1, using equations 

(4.4.17) and (4.4.19) for the plastic and solid regions respectively. Using 

the values of and 3^ in table 4.2 the temperature profiles in the plastic 

region, for the variable viscosity model, are computed using equations 

(4.5.24) and (4.5.25); again truncating the series after 15 terms is found 

to be adequate. For the solid region equation (4.4.19) is used with a 

replaced by a^. The temperature profiles for both models plotted against 

the variable n, which is defined by (4.4.9), for various values of Br 

are plotted in Figure 4.3. It is seen that increasing Br increases the 

interface temperature and that the variable viscosity model predicts the 

lower temperatures. These temperatures are over estimates since the 

forced convection cooling terms are absent. It is important to note that 

the interface temperatures predicted by both models are independent of time. 

This results from neglecting axial shortening; the correction made by 

including this is presented in sections 4.8 and 4.9. Although these 

temperature profiles are initially inaccurate it is seen in Sections 4.12 

and 4.13 that for slightly later times the accuracy is much improved. 
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y-= 1/0 

0.80 1.60 

Figure 4.1 Graphs of Zp against t. 

- - P = 1/8 

4.00 0.00 2.40 

Figure 4.2 Graphs of t against t 
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Figure 4.3 Graphs of 6 against n 

4.00 5.00 6.00 
'n 
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Figure 4.4 indicates the variation of the interface temperature 

with Br for both models. It has already been stated that allowing the 

viscosity to fall with increasing temperature results in lower temperatures 

for a given Br. However, it is seen from Figure 4.4. that for both models 

a critical value of Br exists where melting would occur at the interface. 

The melting temperature 9^ being obtained from definition (3.4.34) 

based on the numerical values for mild steel. 

Tc - 700"c, = 15°C, = 1510°C (4.6.1) 

With the values of and given in chapter 3 it is seen from definition 

(3.4.38) and Figure 4.4 that with our model melting can occur well within 

the working range ofo. However experimental examination of the friction 

e.oo 

C C 

Figure 4.4 Graphs of interface temperature against Br, 
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welding of mild steel (3,4) indicate that melting does not occur. These 

statements are consistent with the view that the temperatures predicted 

from our model are over estimates, the main two reasons being the neglect 

of burnoff and the over simplified viscosity medel. There is thus a need 

for more elaborate models and these are presented later in this chapter. 

4.7 Velocity and Pressure Profiles - Including Burnoff 

When burnoff is included the velocity components and the pressure in 

the plastic region are the solutions of equations (4.2.7) to (4.2.11) and 

(4.2.13) which satisfy the boundary conditions (4.2.14) to (4.2.18). In 

this section assumption (4.2.12), that the viscosity is a function of 

temperature 9 and the strain rate 3 v ^ z but is independent of x, is again 

introduced. 

From equations (4.2.7), (4.2.8) and (4.2.10) it is evident that the 

pressure component Po and the velocity component v are independent of the 

axial velocity component w. ThAs the solutions for these quantities when 

bumoff is present are identical to those in the absence of burnoff and, 

consequently recalling equations (4.3.9), (4.3.14) and (4.3.15), we deduce 

that for the problems considered in this section 

P^ = 1, (4.7.1) 

V = T(t) 

and 

1 = T(t) 

z dz 
— , (4.7.2) 

o ^ 

z 
r Pdz 

— . (4.7.3) 
^ o ^ 

In view of assumption (4.2.6), the equation of incompressibility 

(4.2.13) is readily integrated with respect to x to yield 

u = + f(z,t), (4.7.4) 
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in which f is an arbitrary function of z and t. The boundary condition 

(4.2.18) then implies that the function f must be identically zero, so we 

have 

: ?w 
(4.7.5) 

This equation for u is now substituted into the two equations of 

motion (4.2.9) and (4.2.11) and, remembering that y is independent of x, 

the equations become 

1 3Pl 
_ fi2 

3z 3z2 
(4.7.6) 

and 

1 ^Pl 

2 W 
3z 

3w 
V — 
3z 

.Z 
9 w 

3z2 
(4.7.7) 

These equations can easily be solved. Integration of equation (4.7.6) 

with respect to x leads to the expression 

- 3^x2 
dz 

3^w 

9Z2 
+ g(z,t) , (4.7.8) 

where g is an arbitrary function of z and t. On differentiating both 

sides of equation (4.7.8) with respect to z and using equation (4.7.7) 

to eliminate 9p^/3z we obtain the identity 

3z 

d% 

- 2 y — — 5 -
3z 

i L 
3Z2 

' 3^w 

3z 

+ ^ . 
3z 

(4.7.9) 

— 87 — 



Since the above holds for all x in (&, -|) the functions p, w and g, 

which are all independent of x, must necessarily satisfy 

and 

3z 

3w 

3z 

2 
3 w 

- 2y-
3z' 

is 

3z 

(4.7,10) 

(4.7.11) 

Repeated integration of equation (4.7.10) with respect to z then 

gives 

w 

z 1 

o o 

(c^(t)k * Cj(t)) 
dk dl * e^(t)z -f Cj(t), (4.7.12) 

where C^, Cĵ , and are arbitrary functions of t only. 

The velocity component u may now be obtained by substituting the 

above into equation (4.7.5) giving 

u = - X 

. ' o ' ' 

(4.7.13) 

The functions , Cg and C^ are easily determined by using expressions 

(4.7.12) and (4.7.13) in the boundary conditions (4.2.16)^ ^ and 

(4.2.17)^, and the resulting expressions for w and u are 

w = C f [ — dk dl, 
o io>z ^ 

P 

(4.7.14) 

and 

u = - X C D dk. (4.7.15) 
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The unknown function G^(t) is found, using (A.Z.iy)^ and (4.7.14), to be 

C = -w (t) / 
o o 

o-'z 
- dk dl 
V 

(4.7.16) 

From experimental evidence (see Figure 4.31) it is observed that the 

upset rate is constant over the entire welding cycle provided 

that the applied force is kept constant. As a result we shall assume 

that w^ is constant and, recalling definition (3.5,21), we take, without 

loss of generality. 

w b = 1 . (4.7.17) 

Then from equations (4.7.16) and (4.7,17) we deduce that the final form 

for C is 
o 

- 1 / P 

o z 

- dk dl. 
V 

(4.7.18) 

Having determined the velocity components u, v and w we turn our 

attention to the pressure p^. Q n integrating equation (4.7.11) with 

respect to z we have 

4y|| - 2 I 

X 

9 w 

8 

dz + e(t) (4.7.19) 

where e is an arbitrary function of time introduced through the integration. 

Substituting equation (4.7.14) for w into the above then yields 

C |4„ — dk z^ 
V 

+e(t) (4.7.20) 

Finally using equations (4.7.14) and (4.7.20) in equation (4.7.8) leads to 
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Pi = 4 C w 
1 O 

— dk - C + 2^) + e. 
y o 

(4.7.21) 

The unknown function e is determined by substituting equations 

(4.7.14) and (4.7.21) into condition (4.2.15) and the resulting 

expression for p^ may be written 

Pi = — dk + C 
y o 

(z^-z^) + - x2 (4.7.22) 

where we recall that is given by (4.7.18). 

Thus including burnoff but retaining the other assumptions of Atthey, 

we have deduced that within the plastic region the pressure component p^ 

and p^ are given by (4.7.1) and (4.7.22) respectively, and the velocity 

components u, vand w by (4.7.15), (4.7.2) and (4.7.14) respectively. 

However, the integrals which appear in most of these expressions cannot be 

evaluated until y is known as a function of z and t. Since p will in general 

be specified as a function of 6 and 9v/9 iz it will be necessary, as for the 

case of no burnoff, to solve the above equations simultaneously with the 

energy equations (4.2.20) and (4.2,21). 

4.8 Inclusion of Burnoff - Heat Balance Integral Solution -

In this section Atthey's simple model, described in section 4.4 

is extended to incorporate the effect of burnoff. The structure of the 

governing equations for this more complicated model does not allow a 

similarity or other analytiojsolution to be found, thus an approximate 

or numerical solution must be sought. An approximate solution is obtained 

in this section using the well known heat balance integral method [33 ], 
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which in fact forms the basis of much of the work in this chapter and is 

discussed in detail here. 

All the assumptions introduced by Atthey and discussed in Section 

4.4 are retained in this section, except that the velocity component w 

and hence the Peclet number Be are no longer taken to be zero. The 

present section therefore generalises section 4.4 in the same way that 

section (4.7) extended section 4.3. With the inclusion of burnoff the energy 

equations (4.4.1) and(4.4.2) are amended to incorporate the forced 

convection terms and these are presented in Section 4.8.2. However, the 

thermal boundary and initial conditions remain unchanged and are given 

by (4.2.23), (4.2.24), (4.2.25) , (4.4.3) and (4.4.4). 

4.8.1 Discussion of the Method. 

The major complication present in the above mentioned system of 

partial differential equations and boundary conditions is due to the 

non-linearity in conditions (4.2.24) and (4.4.3). The nonlinearity of 

these conditions arises because the latter are to be applied on a moving 

boundary whose position is a priori unknown. Goodman £33] encountered 

similar difficulties when seeking solutions to heat conduction problems 

involving a change of phase. (Sometimes called Stefan problems). 

Heat transfer problems involving a phase change, and hence a 

moving boundary, are non-linear and, except in special cases, must be 

solved either by integrating the energy equation numerically or by using 

approximate techniques. Seeking analytical solutions to. these mathematically 

complicated problems Goodman resorted to approximate integral techniques 

similar to the Polhausan type solutions used in boundary layer theory. 

In his paper Goodman [33^ introduced the heat balance integral method 

by considering a simple heat conduction problem with linear boundary 

conditions to which an exact solution has been given [27%. The problem 

considered was one of heat transfer in a semi-infinite slab, %>0, initially 

at uniform temperature -6^, with a prescribed heat flux H(t) on the face 
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z = 0. This problem may be stated mathematically as 

. 39 9^ e 

" Fo a t ' 
z > 0, t > 0 (4.8.1) 

with boundary conditions 

8 = -e at t = 0, z > 0 
o ' 

and 

L i 
3 z 

= -H(t) on z = 0, t > 0. 

( 4 . 8 . 2 ) 

(4.8.3) 

This problem has been solved exactly in Cars law and Jaeger [2?]] . 

In order to proceed with his approximate technique Goodman 

introduced the thickness of the thermal layer 5(t), analagous to the 

boundary layer thickness in boundary layer theory. The position of 6(t), 

for the problem considered, is defined by assuming that, for all practical 

purposes, the material in the domain z > 6(t) is at equilibrium temperature 

-8 and hence there is no heat fluxsacross z = 6. These conditions can 
o 

be expressed in the form 

and 

8(6,t) = -8 

5 7 (a,c) - 0 

(4.8.4) 

(4.8.5) 

The so-called heat balance integral is obtained by integrating both sides 

of equations (4.8.1) with respect to z between the limits z = 0 and 

z = 6(t), yielding 

1_ 
Fo dt 

edz + 6 6 
o 

96_ 

3z 
(6,t) - (o,t) t > 0. 

(4.8.6) 
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Equation (4.8.1) is therefore satisfied only 'on average' and 

this averaged equation, the heat balance integral, is analagous to the 

momentum integral equation in boundary layer theory. We now proceed in 

a manner similar to Polhausen [34^ in boundary layer theory, and assume 

a polynomial approximation to the temperature profile 6. For the problem 

considered by Goodman a profile in x of the form 

e = a(t) + b(t) Z-+ c(t)2^. (4.8.7) 

was assumed when the coefficient a, b and c are functions of t only. 

The values of a, b and c are found by substituting equation (4.8.7) 

into conditions (4.8.3), (4.8.4) and (4,8.5) and the resulting expression 

for 6 is 

6 = -0 + -7^ (6-z)^ 
0 zo 

(4.8.8) 

Substituting equations (4.8.3), (4.8,5) and (4.8.8) into (4.8.6) finally 

yields the ordinary differential equation 

1 _d 
6 dt 

FoH, (4.8.9) 

whose solution satisfying S (o) = 0 is 

6 = /6Fo 
1. 

H 
H(t^)dt^ 

In the particular case when H is constant 6 is given by 

5 = /6Fot 

(4.8.10) 

(4.8.11) 

and the surface temperature obtained by putting z = 0 in (4.8.8) and making 

use of (4.8.11) is 
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e 1= -e^ + / | H/F^t , (4.8.12) 

The exact solution to the problem, given in Carslaw 

and Jaeger jlZvQ is 

8 = -8 + / - H / F o t . (4.8.13) 
O IT 

Comparing equations (4.8.12) and (4.8.13) reveals that the 

approximate solution differs from the exact solutions only by a numerical 

factor and the error is about 9%. This error can in fact, be reduced to 

about 2% using a cubic representation for 8 ' [3^ 

The above gives a brief outline of the simple, yet effective, 

heat balance integral method which is used extensively in the present 

and the following chapters. 

4.8.2 The Energy Equations and Boundary Conditions. 

With all the assunq>tions made by Atthey in section 4.4, except 

that W and hence Pe are now taken to be non-zero, the energy equations 

(4.4.1) and (4.4.2) are amended to incorporate the forced convection terms, 

and it is easily deduced from equations (4.2.20) and (4.2.21) that the 

appropriate forms are 

3^ e 
+ Bry 

3z^ 

9 V 
3 z 

= fG wjr; + ^ < = * =p (4.8.14) 

and 

3*8 9 8 1 9 8 

---I - "P* Wo rZ- + Fb -Ft ' = * 'p' 
o Z 

The thermal boundary and initial conditions are, as we have already stated, 
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identical to those used in section (4.4) and are given by (4.2.23), (4.2.24), 

(4.2.25), (4.4.3) and (4.4.4). 

4.8.3 The Assumption of Constant Viscosity and its Implications 

In this subsection we again make the simplest assumptions about the 

viscosity p, that it is constant, and as previously we can then without loss 

of generality choose it to be unity (See (4.4.5)). It follows that the 

velocity component v is given by (4.4.6) and that relationship (4.4.7) holds. 

Substituting (4.4.5) into equations (4.7.14), (4.7.15) and (4.7.22) 

we deduce that the velocity components w and u and the pressure component 

Pĵ  are given by 

C z 
W = —T— (z^ - 32%) 

b p 

C X 
u = — ^ (z^ - z^) 

2 P 

and 

Pl -
(z^ - z^) + g 2 

12 
— 

(4.8.16) 

(4.8.17) 

(4.8.18) 

Using assumption (4.4.5) in equation (4.7.18) the reduced form for 

is found to be 

C = 3/z3 . 
o p 

(4.8.19) 

It follows immediately from equations (4.8.16) to (4.8.19) that the final 

forms of the velocity component w and u and the pressure component p^ are 

given by 

1 
w = 

r 
Z 

f — 
2 

_ 3 
Z z 9 
Pj I p. 

3x 
r 

2z 
1 -

z 
z 
p. 

(4.8.20) 

(4.8.21) 
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and 
Pi " "I 

(z^ - Zp) + 3^ 12 - (4.8.22) 

On substituting equations (4.4.6) and (4.8.20) for the velocity 

component v and w respectively, into equation (4.8.14) and expressing the 

shear stress t in terms of z^ using (4.4.7) the energy equations for the 

plastic region becomes 

3 e 

az' 

Br Pe 

2 
- 3 

36 
dz 

_L ^ 
Fo 3 t 

z $ z (4.8.23) 

With the aid of assumption (4.7.17), the energy equation for the solid 

region, equation (4.8.15) can be written 

3^ 8 

3 z' 

„ " s • l " s 
- 3t- • 

a Z 

Z ) Z (4.8.24) 

The partidl . differential equations (4.8.23) and (4.8.24) must now be solved 

subject to the conditions (4.2.23), (4.2.24), (4.2.25), (4.4.3) and (4.4.4). 

Ther eis no obvious analytical solution to this system but an approximate 

solution can be attained using the heat balance integral method and this 

solution is presented in the following subsection. 

4.8.4 Heat Balance Integral Solution. 

In order to obtain a heat balance integral solution it is convenient 

to introduce into equations (4.8.23) and (4.8.24) the new variable n which 

has been defined by equation (4.4.9) but the latter is restated here for 

convenience 

(4.8.25) 
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Then the transformed forms of the energy equations are 

Br - 3) + , C4.8.26) 

for the plastic region, o g n g 1, and 

3^8 9 0 9 6 z dz .9 9 
® - F e z — - + ^ (4.8.27) 

3*2 P a n at ' 

for the solid region, n ) 1. 

In terms of n the conditions (4.2.23), (4.2.24), (4.2.25), (4.4.3) 

and (4.4.4) transform: to 

^ (o,t) = 0, (4.8.28) 

6(1,t) = 6 (l,t) = 1, (4.8.29) 

° (I'C) (4-8-30) 

and 

0g(n>t) 0 as n « . (4.8.31) 

The initial condition (4.4.4) is included in the transformed condition 

(4.8.31) since it is assumed that initially the plastic region has zero 

thickness, that is 

z (o) = 0 (4.8.32) 
P 

We shall now seek c*n heat balance integral solution to the above 

problem, by associating the plastic region, the position of the 

thermal layer z = 5(t), of Section 4.8, to the position of the plastic/ 

solid interface z = Zp(t) . With this definition and in view of equation 

(4.8.25), the heat balance integral for the plastic region is obtained 

by integrating both sides of equation (4.8.26) with respect to n between the 

limits n = 0 and ri = 1, yielding 
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(I't) - If (°'t) + Br 

Pe z 3 e 

n(n^-3) ^ dn 

z 2 fl z dz /I 

+ F ^ d P Gdn - ^2. 
^ 0 0 

n ~ dn. (4.8.33) 
d T\ 

In this plastic region a simple quadratic temperature profile of the 

form 

9 = a^(t) + a^(t)n + a2(t)n^ , (4.8.34) 

is assumed, where a^, a^, and a^ are functions of time only. In order to 

satisfy the boundary conditions (4.8.28) and (4.8.29), it is necessary that 

= 0 and a^ = l-ag. The temperature profile is then given by 

8 = 1 + (n^- l)a2(t), (4.8.35) 

where a^ remains undetermined. Substituting equation (4.8.35) for 0 into 

the heat balance integral (4.8.33) and performing the necessary 

integrations yields, after some algebra, the ordinary differential 

equation connecting and z^. 

, . , 2 jjp 2 !p_ % 4 , 
" " 3 "dF " 3 F T =2 " 5 'p ®2-

(4.8.36) 

In the solid region we assume the existence of a thermal layer 

z = 5(t) > Zp(t), such that all the material in the domain z > 6(t) will 

be at ambient temperature thus implying that the heat flux across z = 6(t) 

may be taken to be zero. These conditions may be expressed 

6g(5,t) = 0, (4.8.37) 
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90 
s_ 

3 z 
(6,t) = 0 (4.8.38) 

and in terms of the variable n become 

8g(s,t) = 0, 

3 e 
s 

9n 
( s , t ) = 0 , 

(4.8.39) 

(4.8.40) 

where s(t) is defined by 

s = 5(t)/Zp(t). (4.8.41) 

The heat balance integral for the solid region is then obtained 

by integrating both sides of equation (4.8.27) with respect to n between 

the limits n = 1 and n = s(t). The resulting equation is 

9 8 9 8 

^ (s,t) ^ (l,t) = -Pe Zp [8g(s,t) - 0^(1,t)} + 
9n 

_P 
Fo 

d 

dt 

rs 
ds 

0g(n,t)dn - ^ 0g(s,t) 

z dz rS 9 0 

" F^-dt I , n f (<•8.42) 

form 

We now assume a temperature profile for the solid region of the 

0g = b^(t) + b^(t)n + b2(t)n^ , 1 g n g s(t) (4.8.43) 

and 0g = 0, n § s(t) (4.8.44) 

which automatically satisfies condition (4.8.31). On substituting 

(4.8.43) for 0^ into the conditions (4.8.29)2* (4.8.39) and (4.8.40) the 

functions b^, b^ and b^ are obtained in terms of s and the resulting 

expression for 0^ is 

0g = (s - n)^/(s - 1)^ , 1 3 n 3 s (4.8.45) 
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Finally, making use of condition (4.8.30) the quantity s may be expressed 

in terms of 32(t) in the form 

s = 1 - 1/ar 

and (4.8.45) reduces to 

(4.8.46) 

Gg = agCl - l/ag - n)^ , 1.3 n 3 s. (4.8.47) 

Substitution of this expression for 0^ into the heat balance 

integral (4.8.42) and the subsequent calculation of the integrals again 

leads to an ordinary differential equation for z and a^, namely 

. z dz 
— 2 a ~ Fe z — P —— 

2 ® p 3Fo dt Fo 3a. dt 

V 
z 

+ -E. 
Fo " 3a. 

2 J 

(4.8.48) 

The two ordinary differential equations (4.8.36) and (4.8.49) 

form a coupled system for the two unknown functions z^ and ag. In order to 

solve these equations it is necessary to know the initial conditions on z^ 

and 32* The initial condition for z^ is given by (4.8.32). To obtain the 

initial condition for a2 we consider the total thermal energy of the 

plastic region, E^, which is defined by 

E p G - ) - l \ V dF 
o 

(4.8.49) 

Recalling definitions ( 3 . 4 . 1 ) and (3.4.3^)^ g the above equation may be 

written in the dimensionless form 

E (z ) = f P c & + 9(1 - T . „ / T ) ) d z (4.8.50) 
p p vST; AM c / 

where the dimensionless thermal energy E^ is defined by 
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E = E /p C T z (4.8.51) 
p p vo c po 

with the assumption that is constant, and taken to be unity, and 

introducing the variable n, through the definition (4.8.25) 

equation (4.8.50) becomes 

rlrr 
6(1 - T . J T )dn . (4.8.52) 

AM c 
0 *• 

E (z ) «= z 
P P P ) 

When equation (4.8.35) is substituted into the above and the integral 

calculated, there results 

E„(z„) =ip7-+ z: (1 - T. /T )(1 - 2/3 a J . (4.8.53) 
p p I ! g p AM C / 

Since E(o) must be zero we deduce, with the aid of condition (4.8.32), 

that 

lim a. z = 0 (4.8.54) 
t ^ 2 P 

We now have the necessary conditions, namely (4.8.32) and (4.8.54), to 

solve the equations (4.8.36) and (4.8.48). In general there appears to be 

no analytical solution to these equations so a numerical solution must be 

sought. However, for the special case when no upset takes place, that is 

when Pe = 0, an analytical solution can be obtained and it is thought 

useful to give this solution here so that, by comparison with the solution 

given in section 4.4, an assessment of the accuracy of the heat balance 

integral method can be made. 

4.8.5 Solution with Zero Pe - no burnoff ^ 

When burnoff is ignored and the Peclet number Pe is taken to be 

zero in equations (4.8.36) and (4.8.48) the latter reduce to 

„ z^ da o z dz 

2^2 • 3 3 F^®2~df"' (4.8.55) 
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and 

2a„ = 
d r 1 z ' 1 

+ -2. 
dt a_ Fo 3a7 

2J 
Fo 

. 2 
dt 

(4.8.56) 

respectively. Multiplying equation (4.8.55) by the integrating 

factor and integrating it with respect to t yields, on the application 

of the initial condition (4.8.32), the expression for z in terms of a„ 
p ^ 

3F ft 
o 

a| 0 
+ Br)dt (4.8.57) 

Similarly multiplying (4.8.56) by C!~ and integrating it with 

respect to t, yields some algebra 

2 Fo di 

(I - JO 

- dt (4.8.58) 

The right hand sides of equations (4.8.57) and (4.8.58) can be 

equated to yield the single integral equation. 

( I — i Ax)*-
( I - I A:) Ml- (4.8.59) 

It is easily verified that the solutions 

and 

where "l = 

^2 " ^20 

z = Iz '/Fot 
P 1 

3(2a2o + Br) 

4 a 
20 

(4.8.60) 

(4.8.61) 

(4.8.62) 
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and is a constant, satisfy equations (4.8,57), (4.8.59) and the 

initial conditions (4.8.32) and (4.8.54), identically, provided 

that a2^ is a solution of the cubic equation 

3 3 2 _ 
®20 ~ 2 *20 

| - | B r ^20 + ^ B r = 0. (4.8.63) 

It is easily deduced fronrequation (4.8.6%) that in order for to 

be real for all positive values of the Brinkman number^ a^g must satisfy 

the inequalities 

- ^ Br < a^Q < 0. (4.8.64) 

We shall now show that the above cubic equation (4.8.63) has only 

one negative real root for all positive values of Br. Suppose 

that all roots are real. From the general theory of cubics it is thus 

known that the product of the three roots for this particular case, 

X 

is negative and equal to - ^ Br. We then deduce that the equation has 

either three negative roots or one negative root and two positive ones. 

But also from equation (4.8.63) we note that the sum of the roots is 

3 

positive and equal to ^ from" Which it follows that, provided all three 

roots are real, equation (4.8.63) has one negative root and two positive 

ones. The only remaining possibility is that (4.8.63) has two complex 

roots, a + ib and a — ib,and one real root, c, say. Then the product 

of the roots satisfies 

c(a^ + b^) = - i Br (4.8.65) 

from which we conclude that c < 0. Thus equation (4.8.63) has exactly 

one negative real root. However, we still need to show that this negative 

root satisfies the inequality 

^20 ^ ~ (4.8.66) 
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for all + ve values of the Brinkman number. A close inspection of 

the behaviour of (4.9.63) for small values of Br reveals that the 

negative roots takes the asymptotic form 

1 

^20 = - i Br + % + 0 Br" (4.8.67) 

which clearly satisfies (4.8.66). For large values of Br the 

corresponding asymptotic form is 

20 - 4 r 
/Br 

+ 0 
Br 

(4.8.68) 

which again for large values of Br, that is Br > /3, satisfies (4.8.66). 

Using (4.8.67) and (4.8.68) to obtain starting values, the values of 

agg are computed, using the Newton-Raphson iterative procedure, over a 

wide range of Brinkman numbers and the results are presented in table 

(4.3). The plot of these results in Figure 4.5 shows that (4.8.66) 

is satisfied for all positive values of Br. Also presented in table 

4.3 are the values of the quantities and s obtained using equations 

(4.8.62) and (4.8.46) and the relevant values of a^^ and Br. The values 

of can be compared with the values of a in table 4.1 and some 

assessment of the accuracy of this approximate method made. In particular 

substituting equation (4.8.67) into (4.8.62) and expanding for small Br 

yields 

^1 " ^ Br (1 - I Br + 0(Br^)) (4.8.69) 

Comparison of the leading term of the above equation with the leading 

term in equation (4.4.22) reveals that, for small values of Br, the error 

is about 3%. Similarly substituting, (4.8.68) into (4.8.62) and 

expanding for large Br yields 
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2 

i i f 

Br 1 -
11 

12/3 /Br 

(4.8.70) 

Comparison of the leading term in this equation with the leading 

term of (4.4.28) shows that the error here is about 30% for very 

large Br. However for values of Br less than 10, which is well within 

the physical ranges, the error is less than 10%. 

A20 

Br *20 =1 s 

0.1 -0.050 0.080 21.086 

0.2 -0.098 0.150 11.149 

0.3 —0.146 0.211 7.863 

0.4 -0.191 0.264 6.232 

0.5 -0.235 0.312 5.259 

0.6 -0.277 0.354 4.612 

0.7 -0.317 0.393 4.152 

0.8 -0.356 0.429 3.807 

0.8 -0.393 0.462 3.538 

1.0 -0.430 0.482 3.323 

2.0 -0.744 0.727 2.343 

4.0 -1.220 0.979 1.819 

6.0 -1.596 1.148 1.627 

8.0 -1.916 1.277 1.522 

10.00 -2.200 1.382 1.455 

Table 4.3 

The temperature profiles 6 and 0^, the thickness of the plastic 

region and the dimensionless shear stress t are now readily computed 

using equations (4.8.35), (4.8.45% (4.8.61) and (4.4.7) respectively. 
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The results are presented and discussed in section 4.10 and comparison 

is made with Attheys solution to give an overall assessment of the 

accuracy of the method. 

Figure 4.5 Plot of against Br. 

4.8.6. Solution with non-zero fe. 

As we have already stated when the convection terms are retained 

in equations (4.8.36) and (4,8.48) no analytical solution can be obtained 

and a numerical solution must be sought. For this pair of simple 

ordinary differential equations the Runge-Kutta [ssj forward step 
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method is felt to be suitable and this is the method used here. However, 

there is a singularity in the rate of growth of the plastic region, 

d z^/dt, at time t - 0, thus the numerical procedure must be started 

after a small time has elapsed when the system has become more stable 

and the rate of growth of is finite. Let us therefore obtain a 

series solution to the equations (4.8.36) and (4.8.48) which is 

valid for small times. This solution will then provide the starting 

values for the full numerical solution. 

The form of the equations (4.8.36) and (4.8.48) suggest that the 

leading terms in our series will be those given by equations (4.8.60) 

and (4.8.61) derived for the case with Pe " 0. We could start the 

numerical procedure from these terms alone however, it is felt useful 

to also derive the second terms to compare them with the corresponding 

terms of a series solution to the exact equations^which is derived in 

section (4.9)^again for an assessment of the accuracy of the method. 

For small time let us assume that and a^ may be expanded in 

the forms 

zp = 2 z^ /Fo t^ + 2 Zg /Fo Pet™ + ..., (4.8.71) 

and 

a^ = a^^ + a^^ Pet^ + ..., (4.8.72) 

where n and m are arbitrary real numbers which satisfy the conditions 

n > 0, m > J . (4,8.73) 

Equations (4.8.71) and (4.8.72) then necessarily satisfy the conditions 

(4.8.32) and (4.8.54). 
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Substituting equations (4.8.71) and (4.8.72) into the differential 

equations (4.8.36) and (4.8.48) results in the pair of identities 

^^20 * ^^21 « + Br - "I (z^^t + 2z^z2 Pet^*™ + ...)(nag^Pet^ ^+.. .) 

- 4 (Zit^ + z„Pet™ + ...)(z-t ^ + 3 ^"1" • "2""" • ^ + 2m ZgPet"'"^ + ...)(a2Q + ag^Pet" + ...) 

- "I Pe (z^ Tfo t^ + Zg /fo Pet"* + ...) (ag^ + a^^Pet" +...), (4.8.74) 

and 

- ^^^20 ^ a^^Pet^ + ...) H 2Pe jFo(z^t^ + ZgPet™ + ...) + 

3a 
^ (Z^^t + 2z^Z2Pet&*M + ...)(1 - 2a2iPet^/a2o + ...) (na2j^Pet'^"^ + . . . ) + 

20 

3a 
(z^t^ + Z2Pet"' + ...)(iz^t ^ + mZgPet™ ^ + ...)(3a2p - 1 + Sag^Pet +...) 

20 

(1 - a2j^Pet"/ ag^ + . ..) 

(4.8.75) 

On multiplying out the first few terms of the above identities and 

grouping terms together we obtain 

2*20 + ^20 i z^2(2n+l) + 2 a^^Pet 

- -J z^ZgPeagQ (1 + 2m) t™"^ - y Pez^ Fo agg t^ + (4.8.76) 

and 
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-2*20 - 31^; (3=20 - 1) 2^21 PG 1 + (2n+l) 

3a 
20 

, n 

2z_ z_ _1 j 
+ —T Pe(3a_ - l)(2m + l)t - + 2Pe z /Fo + 

•'̂ 20 
(4.8.77) 

Equating to zero the coefficients of unity yields the pair of equations 

2a 
20 -14 -Br (4.8.78) 

and 

^^20 °° ~^1^^^20 ~ ' (4.8.79) 

the solutions of which are given, of course, by (4.8.62) and the 

negative root of (4.8.63). 

After a close inspection of (4.8.76) and (4.8.77) one deduces that 

a solution to a2^ and z^ can only be obtained if 

n = m - I = ^. (4.8.80) 

Then equating to zero the coefficients of t yields the equations 

? =1 + 1 "21 * 2:1=2*20 * 5 V l O " 
(4.8.81) 

and 

21 

2z 

3a 

1 
T 
20 

+ 1 

; 

+ ^ ( 3 a 
a 

20 
20 

- l) + z^/Po = 0 (4.8.82) 

The pair of linear simultaneous equations is readily solved to yield 

the solutions 
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y / F o 320(2 ~ ^20) 

4=1^(3*20 - 2) + 3*20(3 " 2*20) • 3 

(4.8.83) 

I2JF0 a^Q + 5a2^(3 + 4z^^)j 

30 =1 ago 

(4.8.84) 

The values of and obtained using the above pair of 

equations, with the aid of the results given in table 4.3 are presented 

in table 4.4 for various values of Br. The accuracy of these quantities 

is assessed in a later section. 

Br 
*21 =2 

0.1 0.006 -0.106 

0.2 0.020 -0.196 

0.3 0.036 -0.268 

0.4 0.052 -0.326 

0.5 0.067 -0.373 

0.6 0.081 -0.411 

0.7 0.094 -0.442 

0.8 0.105 -0.468 

0.9 0.115 -0.489 

1.0 0.124 -0.508 

2.0 0.181 -0.609 

4.0 0.231 -0.674 

6.0 0.258 -0.700 

8.0 0.277 -0.715 

10.0 0.292 -0.724 

Table 4.4 

The values of and a2Q presented in table 4.3 and the values 

of Z2 and ag^ presented in table 4.4 are now substituted into equations 
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(4.8.71) and (4.8.72), with m = i and n = 1. With a value for t 

chosen initially close to zero starting values of a„ and z are then 
z p 

obtained. Using these starting values and a suitable step length At 

values of z^ and ag against time are computed using the Runge-K^tta 

simple forward step method. Having obtained these results the values 

of s are computed using equation (4.8.46) and subsequently the 

temperature profiles and the shear stress T are evaluated using equations 

(4.8.35)(4.8.47) and (4.4.7) respectively. These results are presented 

in section 4.10. 

4.9 Inclusion of Bumoff-series Solution for Small Tic^ -. 

In this section we again consider the situation in which burnoff 

is allowed (Pe f 0) and develop series solutions for the temperature 

profile and thickness of the plastic region which are valid for small 

times. These series solutions are used to assess the accuracy of the 

solution of section 4.8 and to illustrate the effect that inclusion of 

burnoff has on the solution of section 4.4. The governing equations, 

in the variable n , defined by (4.8.25), are (4.8.26) and (4.8.27) 

and the appropriate boundary conditions are (4.8.28) to (4.8.31). 

As we have already stated there is no obvious analyticb\solution to this 

system of non-linear partial differential equations. However the 

complication of the non-linearity is removed by expressing 8, 6 and z 
s p 

as series in powers of t^, so we write 

6(n,t) = g ( n ) + /t Pe 8^(n) + o(t), (4.4.1) 

9 j ( n , t ) = 8 g Q ( n ) + / t P e 8 g ^ ( n ) + 0 ( t ) , ( 4 . 9 . 2 ) 

and 2 

Zp(t) = 2 z ^ / F o / t + 2z^ P e / P o t + O(t^) ( 4 . 9 . 3 ) 
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On substituting the series (4.9.1) to (4.9.3) into the energy equations 

(4.8.26) and(4.8.27) we obtain the identities 

d'e d e 
+ /t P e — i + ... + Br H 

dn dn 

Pe /FO (Z^/t + Z^ET + ...)n(n - 3 ) 
do d9. 

- d ; + - a ; + 

+ 4 

- 2 

2 2 
t + 2z^Z2 Pe t 

Pee, 

2/t 
+ ... 

2 I 
ẑ  + 3z^z^ Pe /t + ...J h 

de de, 
+ V t Pe + ... 

dn dn 
( 4 . 9 . 4 ) 

and 

+ ... = 

dn 

- 2 Pe /FO 

dn 

/t + Z2 Pe t + ... + /t Pe — + 
do. 

dn dn 

+ 4 

- 2 

2 2 
z^ t + 2z^z2 Pe t + ... 

+ 3Z^Z2 Pe /t + ... 

'bl 

2/t 

de^Q 
+ /t Pe 

dn dn 
( 4 . 9 . 5 ) 

respectively. 

The appropriate boundary conditions, obtained by substituting 

the series (4.9.1) and(4.9.2) into conditions (4.8.28) to (4.8.31) are 

found to be 

de de 
" • • • " 0 (4.9.6) 
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Oo(l) =8so(l) - 1 

0^(1) = Ogjd) = ... = 0 

(4.9.7) 

d 8 g Q d o d e 

" d n ~ d7! " " ' 
(4.9.8) 

Ogo(n) 0 , o^^(n) -> o,..., as n ^ 
s i 

( 4 . 9 . 9 ) 

On multiplying out the brackets of the identitites (4.9.4) and 

(4.9.5) and, in the resulting expressions, equating the coefficient of 

like terms in t (in ascending powers), the above system is reduced 

to a set of subsystems of linear ordinary different equations. The 

solutions of the first two of the subsystems are given below. 

4.9.1 First Order Subsystem 

The terms independent of t in the identities (4.9.4) and (4.9.5) 

lead to the pair of equations 

and 

®0 2 ^^0 
-^2- + dW" + Br = 0 ' 0 < ^ < 1 

"'"so . 2 z h 
+ 1 " d n 

= 0 , n > 1 • 

d n 

( 4 . 9 . 1 0 ) 

( 4 . 9 . 1 1 ) 

These equations subject to the appropriate boundary conditions, 

namely 

f p 
dn 

(0) = 0 , ( 4 . 9 . 1 2 ) 

"o(i) = Oso(i) = 1 ( 4 . 9 . 1 3 ) 

d 8 _ d e ^ 

( 4 . 9 . 1 4 ) 
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and 

->-0 as T\ (4.9.15) 

form the first order subsystem. It is immediately obvious that the 

above system is independent of the Peclet number pe and, in fact, 

if is replaced by a they are identical to the system used in 

Atthey's solution in Section 4.4. Hence recalling equations (4.4.17), 

(4.4.19) and (4.4.21) the solution of equations (4.9.10) and (4.9.11) 

which satisfies the conditions (4.9.12) to (4.9.15) is 

= 1 + 

B ^1 
r 

'1 Z^n 

D(u)du , (4.9.16) 

OgQ = erfc(Zĵ ri)/erfc(Ẑ ) (4.9.17) 

where is the solution of the transcendental equation 

2%! _z? 
— — e 1 = erfc(ZjD(Z, ) . 
B /% 
r 

1' ' 1' (4.9.18) 

Dawsons integral D(u) and the complementary error function erfc(u) 

have been defined by equations (4.4.18) and (4.4.20) respectively. 

4.9.2 Second Order Subsystems. 

Equating the coefficient of /t in the above identities (4.9.4) 

and (4.9.5) yields 

d n 
1 ' d n 

= Zi / F " n - 3 ( 2 z + / r ' ) 

d8. 

d n 
, 0 6 n $ 1 

(4.9.19) 

- 114 -



and 

dn 
— * ̂ 4" ^ 

= - 2Z, 
d e 
sO 
dn 

, n 3 1 (4.9.20) 

The appropriate boundary conditions from the set (4.9.6) to (4.9.9) 

are 

de. 

dn 
-(0) = 0 , 

(4.9.21) 

G^Cl) = 8g^(l) = 0 , (4.9.22) 

and 

d6. de , 
(4.9.23) 

Gg^(n) 0 as n (4.9.24) 

On substituting the expressions for 0^ and e^^ given by equations 

(4.9.16) and (4.9.17) respectively into equations (4.9.11) and 

(4.9.20) the latter reduces to 

d^e 

dn' 
- * ^ 

22̂ ej_ . 3(2Z2+/Fq)-v^ n' nD(Z^n) , 0 n g 1 , 

(4.9.25) 

and 

d^O 
si 2 ^^sl 2 
— + 2Z;n - 2z:o 

dn" 
'1' dn 1 si 

4z; 

A 
e /erfc(Z^), n ) 1 

(4.9.26) 

respectively. 
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As for all linear second order, ordinary differential equations 

the solutions to (4.9.25) and (4.9.26) may be split into the sura of 

two tenns, the complementary function and the particular integral. 

Thus we may write 

"l - "ic * "ip (4.9.27) 

and 

"si • ®slc * "sip (4.9.28) 

where, in a natural way the subscripts 'c' and 'p' denote the 

complementary function and the particular integral respectively. 

The complementary functions are easily found to be 

®ic " 4^1 h 

y2 2 

erfc(Ẑ ri)- 1/A e ,0 3 n g 1 

and _ , (4.9.29) 

-zfn 
"sic - Asi* + Z n erfc(Z n)- l/Zir 2 ^ , n ) 1 

(4.9.30) 

where the constant A, A^^, A^ and A^^ are unknown at this stage. 

Having obtained the complementary functions, the particular 

integrals of equations (4.9.25) and (4.9.26) could now be obtained 

in a systematic manner using the method of variation of parameters 

P6] . The right hand sides of the equations are not simple, however, 

and it is found easier to obtain the particular integrals directly. 

The nature of the right hand side of equation (4.9.25) suggests 

that we look for a particular integral in the form 

3̂  = #(n) + x(n)D(Z^n) , 0 ( n $ 1 (4.9.31) 
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where (j) and x are abitrary functions of n • Substituting 

equation (4.9.31) into equation (4.9.25) yields 

^ + 2z?n 4^ - 2zh + 2Z, 4^ + 
dn' 

1 ' dx] 

AjL -2Z^n ^ -47^ 2 2=1" ch -4=1% 
dn 

3(222 + 

1 d n 

D(z^n) = 

riD(Z^n) , 

(4.9.32) 

and this equation is satisfied provided that (j) and % are solutions 

of the pair of equations 

,2. _ 

dn 
2 + 2=1' dn 2zJ<i, 2Z Ax 

1 d n 

and 

i i - 2 2 ? n ^ 

d n 
1 d n 

4z2x = B 3(222+ v ^ ) 

(4.9.33) 

(4.9.34) 

To solve the above, we first find a function x(n) which 

satisfies equation (4.9.34) and then proceed to solve (4.9.33) for , 

The nature of the right hand side of equation (4.9.34) suggests that 

we seek a solution for v in the form 

X = a^n + â n- (4.9.35) 

and after substituting into equation (4.9.34) it follows immediately 

that 

' loz? 
5(2Z2 + /Fg, 

lOZ? 

(4.9.36) 
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With the use of equations (4.9.35) and (4.9.36), equation (4.9.33) 

becomes 

d n 

+ - 22%* = -
2 1 d n ' 5Z^ 5Z^ 

^4 

5(2Z2 + /F^) 

(4.9.37) 

and it is now easy to show that a solution of this equation has the 

form 

= + b^n^ (4.9.38) 

provided that b̂  and 
^2 

are given by 

h = 
B 
r 

5(222 ' ^2 
h = 3 

lOZjJ . 4 

5(222 ' ^2 3 
lOZ, 

(4.9.39) 

It follows from equations (4.9.31), (4.9.35), (4.9.36), (4.9.38) and 

(4.9.39) that the particular integral of equation (4.9.25) is 
f 

B 
e 

lozj 

2 / F : 

- 2 - + 5 ( 2 ^ 2 + 

^ ^1 

+ 3 ^ n' 

loz: 
r - ' 

- 2 - 5(2^2 + 
• 

nD(Z_ ), 0 2 n g 1 

(4.9.40) 

Inspection of equation (4.9.26) suggests that we look for a 

particular integral in the form 

,1 • ' 

Z?n2 
(4.9.41) 
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where and a^^ ^re both constants. Substitution of this expression 

into equation (4.9.20) leads to the solution 

sip 
I 

/iT 
+ ZZgn 

- z y 
e /erfc(Z^) n ^ 1 (4.9.42) 

Having now obtained the complementary functions and particular 

integrals to equations (4.9.25) and (4.9.26) we can write down, with 

the aid of equations (4.9.27) and (4.9.28), the complete solutions 

in the forms 

= A^ntAg Z^n erfc(Z^n) - 1/vV e 

B 

loz: 

2 / ^ 0 r -
+ 5(2Z^ + / C ) 0' 

+ 3/F^ n' 

loz: 
^ - 5(2Z^ + v^) + n |nD(z^n), o ^ n ̂  l 

(4.9.43) 

and 

'si = AsiH + A;2 

- z ? n ^ 
Z^n erfc(Z^n) - l/Zir e ^ 

- l/Zir + ZZgn 

- z y 
e /erfc(Z^) , n 3 1 . (4.9.44) 

The unknown constants A,, A , A„ and A are obtained through 
1 si Z s2 

application of the boundary conditions (4.9.21) to (4.9.24). Firstly 

we differentiate equations (4.9.43) and (4.9.44) with respect to 

n to obtain the dimensionless heat fluxes. 
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dO^ 

= ^2h erfcCZ^n) - — p + 

lOZ, 
- 5(2Z_ + n + n - 2Z nD(z^n ) > + 

loz: 
3 - ^ ( 2 ^ 2 + 

^ h 

+ 3 / F ^ n ^ t D C Z ^ n ) , 0 < n $ 1 ( 4 . 9 . 4 5 ) 

and 

do 
si 

dn • *sl " ^2^1 erfcfZl") * 

2Z e 
- z y 

Jf erfc(Z^) 
- 1 , n ) 1 , 

(4.9.46) 

and applying the boundary condition (4.9.21) then gives 

-Z^A^ (4.9.47) 

Using this relation in equation (4.9.43) and applying the boundary 

condition (4.9.22)^ we deduce, after some algebra that 

. MjZ^ ' «2 (4.9.48) 

where and are given by 

"l 

\ [ l + Z^D(Z^)] 

zicz^-k,) 

and 

(4.9.49) 

= 

[2-Z^D(Z^)]+4zJ [2+Z^D(Z^)] 

loz^czi-kg) 

(4.9.50) 

The quantity is defined by 

k^ = erfc(z^) - 1 / e ^1^ (4.9.51) 
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It follows from (4.9.44) and condition (4.9.24) that A , is 
si 

identically zero, and then condition(4.9.22)2»is satisfied only if 

^s2 ^ ^ 2 ^̂ 4 ' 
( 4 . 9 . 5 2 ) 

« 4 - ' ^ V ' ' 2 • 

( 4 . 9 . 5 3 ) 

whe re kg is defined by 

kg = e e r f c ( z p ( 4 . 9 . 5 4 ) 

With the aid of equations (4.9.45), (4.9.46) and (4.9.47), 

the boundary condition (4.9.23) leads to the equation 

B 

^ - — 3 * — J 
5z; loz: 

- lOZr D(Z^) 

lOZ, 
2 

~ ( l - 4 z ; ) - l O Z 1 - 2Z^D(Z^) 

^s2^1 crfc(Z^) + 2Z^kg Z, . ^ (2ZJ-1) 
( 4 . 9 . 5 5 ) 

Finally, substituting equations (4.9.48) and (4.9.52) for A 

and A^2 respectively into the above relationship, results in a 

1 
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linear algebraic equation with solution 

P B F 
Zg = j V l erfc(Z^) - erf(Z^) + 2 » ^ + - ~ 

lOZ, 
(2ZJ-1)D(Z^) + 6Z^ 

+ Z^(4Z^-l)(l-2Z^D(Zp) 

/ 
erf(Z^) - MgZ^ erfc(Z^) - 2(2Z^-l)k 

_r 
,2 

D(Z^) + Z^(l - 2Z^D(Z^)) 

(4.9.56) 

In principle, it is now possible to go on and obtain higher order 

terms. However, this would be an extremely tedious and algebraically 

complicated task and for this reason it was decided to terminate the 

series after the first two terms. The truncated series solution will 

be accurate at small times but will become a poorer approximation to 

the exact solution as time is increased. However it is thought to 

be a useful solution since it illustrates the effect that the inclusion 

of Bumoff has on Atthey's solution and also serves to assess the 

accuracy of the approximate solution developed in section (4.8). 

Values of Z^ are presented in Table 4.1. Since Z^ is 

numerically equal to a . With these values of Z^ , Z^ is easily 

calculated using equation (4.9.56) for various values of Br and Pe 

and these values are presented in Table 4.5. A comparison of these 

values of Z^ with the values for Z^ obtained by the heat balance 

method and presented in Table 4.4, indicates that for small values 

of Br the error is about 25% but as Br increases , the difference 

decreases and it is seen that for Br = 10 , the error is less than 

2%. 
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Br =2 

0.1 -0.144 

0.2 -0.243 

0.3 -0.316 

0.4 -0.370 

0.5 -0.477 

0.6 -0.448 

0.7 -0.477 

0.8 -0.500 

0.9 -0.520 

1 0 -0.537 

2.0 -0.631 

4.0 -0.692 

6.0 -0.716 

10.0 -0.738 

Table 4.5 

Using the values of Zĵ  and Z2 calculated from the exact equations, 

the temperature profiles 9 ̂  and 8^^ are computed from equations 

(4.9.43) and (4.9.44) with the aid of (4.9.48) to (4.9.53). Using 

these temperature profiles and the ones given by (4.9.16) and (4.9.17) 

the temperature profiles 9 and 9^ valid for small times are 

calculated with the aid of (4.9.1) and (4.9.2) and presented in 

Section 4.10. 
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4.10 Results and Discussion of Sections 4.8 and 4.9 

In this section, the results of Sections 4.8 and 4.9 are presented 

and discussed. 

In Figure 4.6 the results for , obtained using the values of 

and a^Q presented in Table 4.3 and equation (4.8.61), for the 

case of zero Pe , and the Runge-Rutta process for the case of non-zero 

Pe , are plotted against t for various values of Pe and Br . 

Comparison of the curves in Figure 4.6(a) with those for the 

corresponding exact solutions presented in Figure 4.1 reveals that the 

difference is very small for low values of Br but becomes greater 

as Br increases. However the greatest error is less than 5% for 

Br in the range 0 - 5 . 0 

The effect of axial shortening is incorporated in Figures 4.6(b), 

(c) and (d). It is seen from these Figures that on increasing Pe 

the thickness of the plastic region decreases. The reason for this is 

that for larger Pe more heat is lost by forced convections resulting 

in less heat being available to drive along the plastic/solid 

interface. It is important to note that as Pe increases, equilibrium 

is approached more rapidly for a given value of Br . Also increasing 

Br delays the approach of equilibrium. A qualitative illustration of 

the effect of both Pe and Br on the time taken to reach equilibrium 

is given in Section 4.11, in which the steady state values of Z 
P 

and the steady state temperature profiles are also determined. 

The curves in Figure 4.7 indicates the decay of the shear stress 

T with time. Comparison of the curves in Figure 4.7(a) with the 

corresponding curves obtained from the exact solution presented in 

Figure 4.2, again reveals that for small Br the difference between 

the two solutions is very small but Increases with Increasing Br , 
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It is seen from Figures 4.7(b), (c) and (d) that the qualitative 

agreement between these curves and the torque trace shown in Figure 4.3\ 

is much improved by the inclusion of upset. All quantitative 

comparisons with experimental data are delayed until Section 4.17. 

The temperature profiles computed from equations (4.8.35) and 

(4.8.47) with the aid of the values of ag obtained from the 

Runge-Kutta process are presented in Figures 4.8(a) to(d)for the times 

t = 0.1 and t = 1 . Also presented in Figure 4.8 are 

the temperature profiles obtained in Section 4.9 which are valid for 

small t only. In Figure 4.8(a) and (b) the solid line represents 

the heat balance integral solution and the dotted line represents the 

series solution value for small times. Comparison of these two sets 

of curves again reveals that the difference between the two solutions 

is very small. By comparing Figure 4.8(a) with Figure 4.8(b) and 

Figure 4.8(c) with Figure 4.8(d) the effect of upset is borne out. 

It is seen that the inclusion of upset gives an overall reduction 

in temperature. This is a result of cooling due to forced 

convection. In Figure 4.9 a plot of the interface temperature, 

8(0) , against t is given. It is seen that in all cases the 

interface temperature initially assumes the value predicted by the 

case Pe = 0 and decays to the equilibrium value. The equilibrium 

value of 6 (0) is found to be independent of Pe but the rate of 

decay of this quantity increases with increasing Pe . It should 

also be noted that 8(0) increases with increasing Br. 

In practice, one would expect the interface temperature to rise 

continually until the equilibrium temperature is attained. The 
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error in the models presented in Section 4.8 and 4.9 is due to the 

inadequate representation of the viscosity and the neglect of the 

conditioning phase. More elaborate models of the viscosity are given 

in Section 4.12. It is shown in this section that although the 

temperature profiles presented here are initially inaccurate, the 

accuracy increases rapidly with time. 

4.11 Inclusion of Burnoff - Asymptotic Behaviour of Solution 

Obtained Using Heat Balance Integral Method. 

The heat balance integral method of Section 4.8, which describes 

phase II of the welding cycle, approaches the equilibrium phase 

asymptotically. Thus the model predicts that the duration of phase II 

is infinite. It is clear, however, that for all practical purposes, 

we can take the end of phase II as being when the thickness of the 

plastic layer reaches some prescribed percentage of its limiting value 

(e.g. 95% or 99%). In this section, therefore an asymptotic solution 

valid for large values of time is developed, and using this solution 

and the above criterion, we can estimate the duration of phase II. 

Let us assume here that the solutions to the ordinary 

differential equations (4.8.36) and (4.8.48) for and a^ may 

be expressed 

2p Zpm + ZfCt) (4.11.1) 

and 

^2 = 2̂00"*" ̂ T^*) ' (4.11.2) 
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where Z and a, are the constant equilibrium values and Z 
P<X) ^ 

and a ̂  are the remaining time dependent terms which are assumed 

to be small compared with their steady state counterparts. Thus it is 

assumed that for large t 

On substituting equations (4.11.1) and (4.11.2) into equations 

(4.8.36) and (4.8.48) we obtain 

zzf 2 2 
2*2. + *r + 2*1 - - (l+2:T/:p.o+ "df 

2a2^Z dZ 4P 

3F„ ~dt ~ 5 ZpefZeJl+^T/Zp*) (1+3^/32^) 

and 

0 
(4.11.4) 

-ZQg OQ " 201.̂  = "Pe (Zp eo + Z y ) + 

^ (1 . 2Z,/Zp_ . 4 / 2 ^ ( 1 - Zaf/az./...) ̂  -

0 2 » 

(Zp. + 4 ) dz^ 
(3*2- - 1 + 3a^)(l - a^/a^J 

(4.11.5) 

4.11.1 Steady State Solutions 

Clearly in the above equations we can equate the steady state 
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terms giving us the two relationships 

2a + Br = 
200 

4Pe 
Z a. 

5 p" 2 
(4.11.6) 

and - 2 * 2 * . Pe Zp, (4.11.7) 

Eliminating between equations (4.11.6) and (4.11.7) results in 

the <|«jotirotic 

2Pe^Z^ + 5PeZ - 5Br = 0 
p o o p o o 

(4.11.8) 

which is readily solved, yielding 

4Pe 
1 + 

8Br 
(4.11.9) 

In the above equation, the positive square root is taken since 

must always be positive. The constant a„ is obtained from equation 

(4.11.7) and expiiressed in the form 

PeZ 
(4.11.10) 

Equations (4.11.9) and (4.11.10) give the steady state solutions 

for Zp^ and a^^ respectively and the corresponding steady state 

temperature profiles can now be obtained using these results and 

equations (4.8.35), (4.8.47) and (4.8.46). Numerical results for 

various values of Br and Pe are presented in Section 4.14. It is 

also useful to give the asymptotic solutions of for small and 

large Br for comparison with the exact solution. Expanding 
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(4.11.9) for small Br we have 

z 
p o o p e 

1 _ ill + o(Br^) (4.11.11) 

whereas for large Br we have 

z 
p -

v®F + — - — + 

2/2̂  16VSF 

0(8^3/^1 ( 4 . 1 1 . 1 2 ) 

Also with the aid of equations (4.8.35), (4.8.47), (4.11.10) and 

(4.11.11) the asymptotic expressions for 6^ and 8^^, valid for 

small Br can be shown to be 

- 1 + Y Br(l-q^)- jBr^(i-n^) + .. . (4.11.13) 

and 

Ggm = 1 + Br(l-n) + ..., li-nj«l ( 4 . 1 1 . 1 4 ) 

Expressions (4.11.11) to (4.11.14) are later compared with their 

counterparts from the exact solution which is derived in Section 4.14. 

4.II.2 Solutions of a^ and . 

The remaining time dependent parts of equations (4.11.4) and 

(4.11.5) may be expressed, after a little rearrangement, in the forms 

d a a d Z 

~ d t Z d t ® 1 ® T ® 2 ^ T O ( Z ^ a ^ ) = 0 

p o o 

( 4 . 1 1 . 1 5 ) 

dZ 

-df + Z-- (3*2,;^) "df * 83*? * 34=1 + 0(2^*1) - 0 
poo ^ 

(4.11.16) 
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where terms O(Z^a^) have been neglected. The constants , g^, 

and g^ are defined by 

8l = -2-
1 +2feZ p° 

g2 = 
5Z^ 

g'̂  = 
Sfo'2. 

g/. = 

(4.11.17) 

The nature of the above pair of linear ordinary differential 

equations suggests that we seek solutions of the form 

(4.11.18) 

where and are constant. On substituting (4.11.18) into 

(4.11.15) and (4.11.16), we deduce that the latter are satisfied 

identically, provided that and X ̂  are solutions of the linear 

simultaneous equations 

(n+g^)Aj^ + 
2» 

p» 
n + g. 

(n+gg)^^ + 
2» 

(3a_-l) n + g. 

^2 = 0 

^2 = 0 

(4.11.19) 

(4.11.20) 

This pair of equations has a non-trivial solution only if n satisfies 

the determinental condition 

(n+g^) 

n+g. 

2oo 

V p o o 
z * + 82 

(3*2.-1)* + 84 

= 0 (4.11.21) 
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Multiplying out this determinant results in a quadratic the 

solutions of which are 

^1 ° , ( 4 . 1 1 . 2 2 ) 

"2 " -(^2+ N^)/N3 , 
( 4 . 1 1 . 2 3 ) 

where and are defined by 

^1 ~ 

Ng = 

"Sj] + Z (g^-g2) 

^1 " (8184-8283) 

and 

( 4 . 1 1 . 2 4 ) 

The solutions for A^ and then take the form 

= L(nj)A2 , j = 1 and 2 ( 4 . 1 1 . 2 5 ) 

where the function L(n) is defined by 

L(n) n + 82 (n+g^) ( 4 . 1 1 . 2 6 ) 

The general solutions for and a^ may now be expressed in 
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the forms 

n^t n ^ t 

L(n^)A2e + L(n2)w2e (4.11.27) 

and 

^2® ' (4.11.28) 

where is a second constant. 

Using the computed values of a^^ and , the values of ii ̂  

and ng are calculated from equations (4.11.22) and (4.11.23) with 

the aid of (4.11.24) and (4.11.17). The values of n̂^ and n^ 

are found to be negative for all values of Br and Pe considered 

and, as can be seen from Table 4.6, satisfy |n^| < | n^ | . In view 

of this, we shall assume that for large time, the expression for , 

(4.11.27) can be approximated by 

^T = • (4.11.29) 

4.11.3 Estimation of Time Taken to Reach Equilibrium 

Using equations (4.11.1) and (4.11.29), the expression for Zp 

valid for large times becomes 

n^t 

Zp " Zp. + (4.11.30) 

It is proposed in this section to assume that equilibrium is 

reached when has attained 95% of its asymptotic steady state 

value Z . The time taken to reach equilibrium, t is thus 
poo ^ e 

the solution of 

0-95 Zp. - Zp. + Ag* ^ * (4.11.31) 
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Pe = 0.1 Pe : = 0.3 

Br nl *2 *1 ' "2 

0.1 -0.066 -9.261 —0.592 -83.349 

0.2 -0.059 -2.759 -0.534 -24.827 

0.3 -0.054 -1.426 -0.490 -12.833 

0.4 -0.051 -0.816 -0.455 - 8.247 

0.5 -0.047 -0.661 -0.427 - 5.948 

0.6 -0.045 -0.512 -0.403 - 4.604 

0.7 -0.045 -0 415 -0.383 - 3.737 

0.8 -0.041 -0.349 -0.365 - 3.137 

0.9 -0.039 -0.300 -0.350 - 2.700 

1.0 -0.037 -0.263 -0.336 - 2.370 

2.0 -0.028 -0.121 -0.252 - 1.087 

4.0 -0.020 -0.063 -0.182 - 0.563 

6.0 -0.017 -0.045 -0.149 - 0.402 

8,0 -0.014 -0.036 -0.129 - 0.321 

10.0 -0.013 -0.030 -0.115 - 0.271 

Pe = 0.5 Pe = 1.0 

Br nl "2 "l "2 

0.1 -0.645 -231.524 -6.580- -926.095 

0.2 -1.483 -68.965 -5.933 -275.859 

0.3 -1.361 -35.646 -5.445 -142.585 

0.4 -1.265 -22.908 -5.058 -91.632 

0.5 -1.186 -16.522 -4.742 -66.089 

0.6 -1.120 -12.790 -4.478 -51.158 

0.7 -1.063 -10.380 -4.252 -41.522 

0.8 -1.014 -8.714 -4.057 -34.856 

0.9 -0.933 -6.583 -3.733 -30.005 

1.0 -0.933 -6.583 -3.733 -26 333 

2.0 -0.699 -3.020 -2.796 -12.079 

4.0 -0.506 -1.565 -2.023 -6.261 

6.0 -0.414 -1.116 -1.657 -4.462 

Table 4.6 
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The unknown should be determined by employing some suitable 

boundary condition. However, we have no such condition and in order 

Equation (4.11.31) 
f— 

can then be reduced to 

to proceed we shall assume that A = _z 
2 poo 

0,05 = e "l^e (4.11.32) 

the solution of which is 

t ln20 . 
*1 

(4.11.33) 

Although the accuracy of this solution is unknown, equation 

(4.11.33) gives a qualitative illustration of the effect of Pe 

and Br on t^ and the results computed from this equation with 

the aid of the values in Table 4.6 are presented in Figure 4.10. 
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4.12 Inclusion of Burnoff - Heat Balance Integral Solution, 

- Variable Viscosity. 

In this section we extend the solution obtained in section 4.fa to 

include the effect of a temperature dependent viscosity. Under the 

present assumptions, the velocity component v and w are given by 

(4.7.2) and (4.7.14) respectively, and the appropriate forms of the 

energy equations are (4.8.14) and (4.8.15) which must be solved 

subject to the conditions (4.2.23), (4.2.24), (4.2.25), (4.4.3) and 

(4.4.4). 

On substituting equations (4.7.2) and (4.7.14) into equation 

(4.8.14), and using (4.7.3) to express the shear stress x in terms 

of the thickness of the plastic region , the energy equation for the 

plastic region becomes 

9^8 

8Z^ 

+ Br 

r z 2 Z £ 
/" P dz k. /" P dz 

= Pe C - dkdX, 
J ; o y 

•-a -J 0 Z 

28 
9Z 

+ #0 in: ' 0 ( z S Zp (4.12.1) 

where C is defined by (4.7.16). Again introducing assumption 
o 

(4.7.17) the energy equation for the solid region (4.8.24) remains 

unchanged. Transforming to the variable n defined by (4.8.25) 

the energy equations for the plastic and solid regions (4.12.1) 

and (4.8.24)respectively, become 

9n 
+ Br./P 

rl 2 r 9 
= Pec Z^ 

f k ' , , 
- dkd£ y o p j y 

1-0 0 

fp "̂ p̂n ^ 
FQ dt an ' 0 ( n ( 1 (4.12.2) 
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and 

a^e 
2 

98 Z 98 Z dZ 

9n2 ^0 dc Fo dt 

98 
£ 

9n 
, n % 1 . (4.12.3) 

where k' and £' are defined by 

k' = k/Z and £' = £/Z (4.12.4) 

From (4.7.18) the expression for transforms, with the aid of 

assumption(4.7.17), to 

Co - -1/Zp 

£ ' 

dk'd&' 
y 

(4.12.5) 

0 1 

The transformed boundary conditions are given by (4.8.28) to 

(4.8.31) respectively. In this section the above system of partial 

differential equations is solved for the two cases where y is given 

by equations (4.5.8) and (4.5.7). 

4.12.1 Solution with u = 1/8 . 

In this subsection we assume as in Section 4.5 that the viscosity 

y is inversely proportional to the temperature 6, in which case it 

is conveniently expressed in the form 

y = 1/8 (4.12.6) 

On substituting equation (4.12.6) into (4.12.2), (4.12.5^ and (4.7.3) 

we have 

^2® 
+ Bre/ 

r 1 -I 

0 -J 

e(k',t)k'dk'd&' 

0 1 

Z dZ 

9n 

+ F * i f - p f d t * 'I i ! ' 0 * * S 1 
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with CQ and the shear stress x given by 

1 

"̂ 0 • J 
9k'dk'd£' (4.12.8) 

0 1 

and 

T = 1/Z e d k ' (4.12.9) 

After integrating both sides of equation (4.12.7) with respect 

to n between the limits n = 0 and n = 1 the appropriate heat 

balance integral can be expressed in the form 

3n 

>n=l rl 

+ Br/ 
n=o 

Gdn 

1 n & 

• • • ' V p 
e(k' , t)k'dk'd£' dn 

dTl 
0 0 1 

1 
88 

2 1 
Z , ? Z dZ 

" F ^ d E ^ J " dn . 

b 0 
FQ dt 

(4.12.10) 

As for the case of constant viscosity, a quadratic temperature 

profile is assumed and the appropriate expression which satisfies the 

boundary conditions (4.8.28) and (4.8.29) is given by (4.8.35). 

Substituting this expression into equations (4.12.8), (4.12.9) and 

the heat balance integral equation (4.12.10) and performing the 

necessary integrations yields 

and 

and 

=0 ' -3/Z„(2/5 a^-J) , 

T = 1/Zp[l- 2/3 

(4.12.11) 

(4.12.12) 
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da, Z dZ 4Pe z a 

232 * - ^ + (Za^-S) 

(4.12.13) 

respectively. For the solid region the appropriate heat balance 

integral equation is given by (4.8.48) since the energy equation for 

the solid region is independent of viscosity. 

The initial conditions to be used with the pair of ordinary 

differential equations (4.12.13) and (4.8.48) are given by (4.8.32) 

and (4.8.54). Since there is no analytic solution to this initial 

value problem, a numerical solution must be sought, as in Section 4.8. 

Again we use the Runge-Kuttd' forwardstep method and a series solution 

for small times provides the starting values for the numerical 

solutions. Equation (4.12.13) is similar to (4.8.36) thus it is 

logical to seek a small time series solution in the form 

Z = 2Z^/^^ + Z Z ^ y ^ t +... (4.12.14) 

^2 ~ ^20 ^21 +.. (4.12.15) 

These series automatically satisfy the intial conditions (4.8.32) 

and (4.8.54) and on substituting them into equations (4.8.48) and 

(4.12.13) there results the identities 

-2(a2o+a2iPet* + ...) e 2pe/F^(Z^t'+Z2?etr...) + 

(l-2a2^Pet^/a2Q+. + 

3*20 

— — (Z^t2+Z2Pet+...)(jZ^t ^+Z2Pe+.•.)(3a2Q-l+3a2^Pet^ + ...)(l-a2^Pet^/a2Q+.. .) 

3*20 

(4.12.16) 

and 
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2*20 2a2j^Pet^ + . ..+ t l a ^ ^ e ^ / O 2 a ^ ^ ) + . . ^ -

(Z^t^+Z2pet+.. .)(Z^t ^+2Z2Pe + ...)(a2Q+a2iPeC* + ...) 

~ "I (Z^t+2Z^Z2Pe t^+. ..) (•ja2^Pet * + ...) + 

S f W f Z , 

— r 5 ) (Z^t^+Z2Pet+. ..) (320+321^® /t+.. .) (l-3a2Q/7+... ) (1-. . . ) 

(4.12.17) 

Equating the constant terms in each of the above identities yields 

the two algebraic equations 

-^20 - 3 i ^ " a ^ o - D (4.12.18) 

and 

2a2Q + Br/(l-2a2Q/3) = - y Z^a^Q . (4.12.19) 

This pair of equations is identical to the pair (4.8.78) and 

(4.8.79) apart from the change Br Br/(l~2a2Q/3). Using equation 

(4.12.18) to eliminate Z^ from (4.12.19) results in the qaurtic 

8a2Q - 24a2Q + 223^^ + (9Br-6)a2Q-3Br = 0 (4.12.20) 

For small values of Br the roots of this equation take the fo rms 

"201 - - i + ."202 - i - i 

"203 "204 . 1 - I Br + ... . 
2 4 

• (4.12.21) 

We could now equate the terms in t^ in the identities (4.12.16) and 

(4.12.17) as in Section 4.8 and obtain a pair of equations connecting 

Z2 and 32^ . However, the terms are not really necessary and it is 

decided to use the lower terms only, Z^ and a2Q , in our small time 

series to obtain starting values. 
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Figure 4.11 Roots of Equation (4.12.20) 

Using the expressions in (4.12.21) as starting values, the roots 

of (4.12.20) have been computed for a wide range of Br , using Newtons 

method, and the results are plotted in Figure 4.11. 

Rearranging equation (4.12.18) we see that 

( 1 ' 
(4.12.22) 

from which we deduce that if is to be real, then a^^ < — . 

In view of this, it is evident from Figure 4.11 that the negative 

root of (4.12.20), ^201' the only physically realistic solution for 

^20 " Results for this negative root and the corresponding values 

of given by equation (4.12.22) are displayed in Table 4.7. 
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Br *20 =1 

0.1 -0.048 0,078 

0.2 -0.093 0.142 

0.3 -0.134 0.196 

0.4 -0.173 0.243 

0.5 -0.203 0.283 

0.6 -0.242 0.319 

0.7 -0.274 0.351 

0.8 -0.303 0.380 

0.9 -0.332 0.407 

1.0 -0.359 0.431 

2.0 -0.579 0.606 

4.0 -0.882 0.800 

6.0 -'1.104 0.121 

8.0 -1.283 1.010 

10.0 -1.437 1.080 

Table 4.7 

Considering the particular case of zero axial shortening, that 

is Pe = 0 , it is easy to show that equations (4.8.48) and (4.12.13) 

are satisfied exactly by the expressions 

(4.12.23) 

and 

*2 - *20 
(4.12.24) 

provided that a^^ is given by the negative solution of (4.12.20) 

and by (4.12.22). It is possible therefore to make a further 

assessment of the accuracy of the approximate method by comparing the 

values of Z in Table 4.7 with the values of a in Table 2. In 
1 v 

particular expanding the expression for ^201' (4.12.21)^, to higher 

orders in Br and substituting the resulting expression into (4.12.22), 

the expression for for small Br becomes 

Zj . -fBr 1- I^Br + 0 ^ ) (4.12.25) 
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Comparing the lowest order term in this equation with the corresponding 

term in equation (4.5.30), again reveals that the error is about 3% 

for small Br . Also comparison of (4.12.21)^ and (4.12.25) with 

(4.8.67) and (4.8.69) respectively reveals that for small values of 

Br the effect of the variable viscosity model, (4.12. 6), is negligible. 

The corresponding large Br asymptotic solutions for a^Q and 

Z are 
P 

*2o = - i 

I / O Q 

Br + ^ (4.12.26) 

and 

1/6 

^1 " 
Brl/* - 1 

54 8 

- 1 / 6 . , 
Br"i/o (4.12.27) 

Comparison of these expressions with their counterparts for constant 

viscosity (4.8.68) and (4.8.70) shows that, for large Bx , the effect 

of allowing viscosity to vary according to (4.12.6) becomes more 

significant and it is apparent that the constant viscosity model predicts 

the larger values of . 

Using the values of and a^g given in Table 4.7 and the 

series (4.12.14) and (4.12.15) to obtain starting values, the equations 

(4.8.48) and (4.12.13) were solved using the Runge-Kutta method and 

these results are presented at the end of this section. 

It is also useful to derive the steady state values, Z and 
p o o 

. The steady state representations of equations (4.12.13) and 

(4.8.48) are 

p. (l-3a„ /7) 

2*2= + Br/[l-2a2*/3] = (ga, -5) (4.12.28) 

and 
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-2*2. = PeZp, (4.12.29) 

respectively. Eliminating between these two equations results 

in the quartic 

3(PeZ )^+30(PeZ, )^+98(PeZ )^+21(5-Br)PeZ - 105Br = 0 (4.12.29) 
p c » p o o p o o * p o o 

It can be shown that there is only one positive real root to the above. 

This positive root can be obtained numerically using Newton's method 

and results are presented in Section 4.14. However the asymptotic 

solutions to (4.12.29), for small and large Br are readily obtained 

and these are given here for comparison with their counterparts from 

the constant viscosity model (4.11.11) and (4.11.12). For small 

we have 

Br 
Z 'x, Pe [l-llBr/15+0 (Br )] , (4.12.30) 

whereas for large Br the corresponding expression is 

l3 r -

Z ~ 
p o o 

7^/3 l/3/3+0(Br-2/3) (4.12.31) 

Comparison of equation (4.12.30) with (4.11.11) reveals that the 

difference between both models for small Br is negligible. However 

comparison of (4.12.31) with (4.11.12) again shows that for large Br 

the value of Z^^ predicted by the variable viscosity model is 

considerably smaller than that predicted by the constant viscosity one. 

4.12.2 Solution with y = (9V/9Z)^^" ^expfO/nR[8 (T^-T^^)+7^^ } . 

In this section we use the viscosity model discussed in Section 

4.5 and given by equation (4.5.7), which is rewritten here for 

convenience 
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p = 
av 
9Z 

l/n-l 
exp 

nRfeCT -T )tT 1 
c MM mn-' 

(4.12.32) 

Substituting this expression into equation (4.3.13) and rearranging 

yields 

9V n 
3Z 

T exp- _ _ — 
R[0(T -T )+T ] C AM AM 

(4.12.33) 

Integrating this expression with respect to Z we have 

V = T 
n 

exp" 
RrQ(T -T )+T 1 

c am am' 

dz , (4.12.34) 

which satisfies boundary conditions (4. 2.16)2 • In order that condition 

(4.2.17)2 is satisfied, the thickness of the plastic region and 

the shear stress x must be related by 

1 = T n exp-

0 

-Q 
Rfed -T )+T 1 
L c AM rtrtj 

• dz (4.12.35) 

On substituting equation (4.12.33) into (4.12.32) we see that the 

viscosity u may be expressed in the form 

f 

1-n 
M = T exp R r e ( T -T )+T T 

L G AM' ArtJ 

(4.12.36) 

Using the latter expression, the energy equation for the plastic region 

(4.12.2) can be written as 

1 

exp -A,(6)dr) A Brx^ "/exp[A(G)] 

'-O 

Pec^z* r n 
0 P 
l-̂ n 

k 'exp [-X ( e ) J d k ' d J i ' 

"-O 1 
9 n 

98 ^ ^^p 90 
(4.12.37) 
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and the function C^ft) given by (4.12.5) becomes 

1 I' 

% = - " " ' i , 

( ( 

0 1 

k'exp£-X(e)]dk'd£' , (4.12.38) 

where the function X(6) is defined by 

A = (4.12.39) 

Integrating both sides of equation (4.12.37) with respect to n 

between the limits n = 0 and n = 1 yields the heat balance 

integral for the plastic region, namely 

1 

"1̂  (l,t)- 1 ^ (0,t) + Brx^ exp[jx(8)]dn = 

PeCnZ* 1 n f 

1-n 
0 0 1 

k' exp[jA(8^dk'd&' dn + 

^0 

Z dZ 
^ 38 

^ 3^ dn . (4.12.40) 

Substituting equation (4.12.38) into this equation and using 

(4.12.35) to eliminate T leads to the equations 

r 1 

1^(1.t) (o.t) + B, 

1 n 

exp[jx(8X]dn 

L- 0 

1 £' 

-PeZ k' exp[jA(8y]dk'd&' dn/ k' exp[^A(8\]dk'd&' + 

0 0 1 0 1 

[p ^ 
FQ dt 6 d n -

Z dZ 
_E __P 
^ dt 

38 , 
^ 3^ dn (4.12.41) 

- 152 -



Finally substituting the quadratic profile for 9 given by 

(4.8.35) into this equation leads to the ordinary differential equation 

connecting a^ and 

Brzl'l/" , da Z dZ 
2a + E = - ^ _ - _ _ ^ - PeZ H2&2(t)] • (4.12.42) 

H;/"[a2(t)] 0 0 

where the functions and are defined by 

= I expj-x[l+a2(n^-iy]^dn (4.12.43) 

and 

1 n & ' 

2a k'exp|-A [l+ag (k.'^-l)3|dk'd«,'ridn 

L 
r 

k' exp|-A [jL+â  (k' ̂ -1 ̂  j-dk' d&' 

2 

0 1 

The heat balance integral for the solid region is again unchanged 

and we are thus required to solve the pair of ordinary differential 

equations (4.12.42) and (4.8.48) subject to the initial conditions 

(4.8.32) and (4.8.54). The most interesting features of this model is 

thought to be the dependence of p on the strain rate, 9V/3Z, and 

since we have already examined the effect of decreasing viscosity 

with increasing temperature we decided to illustrate the solution for 

the special case where Q = 0 for which the equations are simplified 

considerably. PuttingQ = 0 in equation (4.12.42) the latter reduces to 
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2a + BrZ^ 
2 P 5 3 dt 

5 
3 ^2 dt 

(4.12.45) 

This equation must now be solved together with (4.8.48) subject to the 

conditions (4.8.32) and (4.8.54). Again a small time series solution 

is necessary to obtain starting values to the numerical procedure. 

Only the lowest order terms in the series are required so we seek 

solutions in the form 

and 

Z = Z,t +... 
P 1 

*2 ' *20t 

(4.12.46) 

(4.12.47) 

Substituting (4,12.46) and (4.12.47) into (4.12.45) and (4.8.48) yields 

2^20'^ BrzJ 

2Z 

" 0 

(4.12.48) 

and 

1 -
3 a, 

20 

+ feZ^t°'+... 

(4.12.49) 

After a careful inspection of (4.12.49) one deduces that a and 

must satisfy the equation 

2a - 3 ~ 1 = (4.12.50) 

and then from (4.12.48) that 

= a (1 - (4.12.51) 

- 154 



On solving (4.12.50) and (4.12.51) we have 

a = n/2 and 3 = (n-l)/2 , (4.12.52) 

and equating to zero, the coefficients of t^ in the identities 

(4.12.48) and (4.12.49) yields the pair of equations 

ZagQ + = 0 (4.12.53) 

and 

2*20 ' (4.12.54) 

Using (4.12.54) to express a^^ in terms of Zĵ  we have 

a^Q = ± Z^//12FQ^ (4.12.55) 

It is now seen from (4.12.53) that a real solution to 

exists only if the negative sign is taken in (4.12.55), we then obtain 

h " and a^o = - y (3FQ) (4.12.56) 

We could now proceed and obtain higher order terms using the series 

Zp = Z^t"(l+Pj^t^+P2t+. . .) + Z2t^"(l+rj^t^+r2t+. . . ) + .. . (4.12.57) 

and 

;^+P„t+...) + Z„t^°'(l+r, t^ 

"2 "2Q- (l+q2t^+q2t+''") + a2^t^^(l+S^t2+S2t+...)+..., (4.12.58) a« = a„_t 

however this would be extremely tedious and it is again decided to 

obtain starting values to the numerical procedure using the lowest order 

terms only. 

Using (4.12.46) and (4.12.47) with a suitably small value of t , 

to obtain starting values, (4.12.45) and (4.8.48) were solved using the 

Runge-KUt-fco method. In order to do these calculations it was necessary 
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to choose a value for n . It is suggested in Q.?] that n = 5.0 . 

However this choice of n leads to lengthy computing times and, 

since we are mainly interested in the qualitative features of the 

model, n was taken to be 1.5. This choice considerably shortens 

the computing time, but preserves the main qualitative features of the 

model. The results are presented in Section 4.12.3. Again it is of 

interest to examine the steady state solutions, the steady state forms 

of (4.12.45) and (4.8.48) being 

2a + 
2oo poo 

Y PeZ a„ 
5 p<» 2°° 

(4.12.59) 

and 

-2*2. = (4.12.60) 

respectively. Eliminating a^^ from this pair of equations leads, 

after some rearrangement, to the relation 

Br 
2PeZ 

PeZ 
1/n 

-El = 1 (4.12.61) 

This equation, again, must be solved numerically and results determined 

by the Newton-Raphson method are presented in Section 4.14. The 

asymptotic solutions for small and large Br are given for comparison 

With (4.11.11) and (4.11.12) 

For small Br we have 

Pe 

2nPe 
1 -

Br 
Pe 

n 
(4.12.62) 

and the corresponding expression for large Br is 
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z % p o o 

n/n+1 

5 

2 
2P 

e 

- W W * (4-12-53) 

Since n > 1 comparison of (4.12.62) with (4.11.11) reveals that 

smaller values of are predicted by this model than by the constant 

viscosity one, for small Br . However for large comparison of 

(4.12.63) with (4.11.12) reveals that the converse is true. 

4.12.3 Results and Discussion 

The results obtained in the previous two subsections are presented 

and discussed here. The plots of and T against t for various 

values of Br , for the case Pe,= 0 , are shown in Figures 4.12 and 

4.13 respectively. The solid lines represent the case p = l/Q and 

the dotted ones represent ti = (3V/9Z)^^^ ^ . Comparison of the solid 

lines in Figures 4.12 and 4.13 with the corresponding dotted lines 

in Figures 4.1 and 4.2 respectively reveals, again, that the error 

in the heat balance integral method is less than 5% over the range of 

B^ given. It is also to be noted from Figures 4.12 and 4.13 that the 

differences on the values for predicted by the models y = 1/8 

and y = (3V/9Z)^^^ ^ is quite significant whereas the difference in 

the shear stress x is very small. 

Figures 4.14(a) and (b) and Figures 4.15(a) and (b) illustrate 

the effect of upset on the models. It is again seen that higher 

burnoff rates (higher values for Pe) result in smaller values for Zp 

and higher values of T , and equilibrium is reached earlier. 

In Figure 4.16(a) and (b) and 4.17(a) and (b) the interface 

temperatures, 8(0,t) for the cases y = 1/9 and y = (9V/9Z) ^ "* 

respectively are plotted against time. The curves in Figures 4.16(a) and (b) 
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Figure 4.12 Graphs of Zp against t for the cases y = 1/6 and 

y = (8v/9z)^^" ^ 

0.00 
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4.80 
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Figure 4.13 Graphs of x against t for the cases y = 1/0 and 

y = (9v/3z) 1/n-l 
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Figure 4.14 Graphs of Zp against t for the cases u = l/Q 
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Figure 4.15 Graphs ibf'V against t for the cases p = 1/e 
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I'igure 4.16 Graphs of interface temperature against t for the case 

M = 1/0 
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Figure 4.17 Hraphs of interface temperature against t for the case 

11 = (nv/Dz)^/" ^ 
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are similar to those in Figures 4.9(a), (b) and (c). For the case 

non-zero the interface temperature initially assumes the value 

predicted by zero Pe and then decays to its equilibrium value; 

the rate of decay increasing with Pe . As we have mentioned before 

we would expect a continuous rise towards equilibrium and no overshoot, 

thus the models with y = 1 and y = 1/8 are initially in error. 

However inspection of Figure^rl7(a) and (b) reveals that in the case 

where W = (9V/3Z)^^^ ^ the interface temperatures intially assumes 

the conditioning temperature, regardless of the value of Pe , and 

rapidly rises towards steady state and never exceeds it. This is a 

direct result of the form chosen for the viscosity. The initial 

singularity in the strain rate, 9V/3Z , produces a zero initial value 

for the viscosity, which in turn leads to zero heat generation. The 

strain rate then falls rapidly leading to a rapid increase in heat 

generation and the interface temperature attains about 80% of its 

equilibrium value in the first 0.001 seconds. However, for times greater 

than this value it is noted, using Figures 4.9, 4.16 and 4.17, that 

the temperatures in 8(0,t) predicted by all these models, y = 1, 

M = 1/6 and y = (3V/9Z)*/^ ^ , vary only slightly with t . 

4.13 Effect of conditioning phase 

In all the solutions obtained up to now in this chapter, the 

conditioning phase has been ignored. It has been assumed, in all 

cases, that the interface, Z = 0 , is initially at the conditioning 

temperature but that elsewhere, Z > 0 , the material is at ambient 

temperature. In this section, the conditioning phase is included 

and the solution obtained by the heat balance integral method in 

Section 4.8 is extended to take account of the changed initial 

condition. 
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Retaining all the assumptions of Section (4.8) except the initial 

condition (4.4.4),the energy equations for the plastic and solid regions 

are given by (4.8.23) and (4.8.24) respectively. The boundary and 

initial conditions to be used here are given by (4.2.23), (4.2.24), 

(4.2.25), (4.4.3) and (4.2.27). 

To obtain a heat balance integral solution to the system described 

above it is convenient to introduce the dimensionless temperature 

variable (jt , in the solid region, defined by 
s 

*g(Z,t) = 8g(Z,t) - 0^(Z) , Z > Z (4.13.1) 

where 0^ is the temperature profile present at the end of the 

conditioning phase. With this definition (4.8.24) becomes 

^2 

9Z2 dz2 

3 (j) d'̂ 0 = 
1 + 2 _ pe 

3(f) de 
s ^ c 
3Z dZ 

1 3* = 

and the boundary conditions (4.2.24), (4.2.25) and (4.4.3) become 

(Zp,t) = *g(Zp,t) + e^(Zp) = 1 , (4.13.3) 

|)^(Z,t) -^0 as Z ^ (4.13.4) 

and 

where the (') denotes differentiation with respect to Z , with 

condition (4.2.23) remaining unchanged. Finally the amended form of 

the initial condition (4.2.27) is 

) (Z,0) = 0 . (4.13.5) 
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Introducing the variable n , defined by (4.8.25), into equation 

(4.13.2) yields 

d^O d<j) do 

i f ' sr 'S") 

,2 a* Z dz 3((> 
(4.13.7) 

and the boundary conditions (4.13.3) to (4.13.5) transform to 

0(1,t) = +g(l,t) + 0^(Zp) = 1 , 

(n ,t) ̂  0 as n -» 

(4.13.8) 

(4.13.9) 

and 

8(j> 

1^(1,t) a,t) . z^e'(z^) (4.13.10) 

Again the initial condition (4.13.6) is incorporated into 

(4.13.9) since it is assumed that ^^(0) = 0 . 

The energy equation for the plastic region, in terms of n , 

is given by (4.8.26) and the boundary condition on n = 0 by (4.8.28) 

The above system is now solved by the heat balance integral-

method. For the plastic region the temperature profile may again be 

expressed by (4.8.35) and after applying the integral method the 

averaged energy equation for the plastic region is given by (4.8.36). 

For the solid region we again assume the existence of a thermal layer 

1 ^ n $ S(t) and use the conditions (4.8.39) and (4.8.40) on n = S . 

Thus assuming a quadratic temperature profile in the form 

4). bg + b^n + b^n , 1 $ n 2 s , (4.13.11) 
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where b^, b^ and b^ are functions of t only, and using the 

conditions (4.13.8)2, (4.13.10), (4.8.39) and (4.8.40) we deduce that 

l-8c(Zp) 
(s-n) 
(s-i) (4.13.12) 

where S is given by 

S = 1 -
2&-V(Zp)] 

^ v v l ^ p ' 
(4.13.13) 

and use has been made of the assumption that 

5^(S) = 0 and 8^(S) = 0 (4.13.14) 

The temperature is assuwejd to be zero for n > S , thus 

condition (4.13.9) is satisfied automatically. 

The heat balance integral is obtained by integrating equation 

(4.13.7) with respect to n between the limits n = 1 and n = S 

yielding 

3(j) 9(j) 

P e Z p [ * g ( S , t ) - 4 g ( l , t ) + e ^ i s ) - G^CZp) ] + 

0 
dt 

Z dz 
_ _2 __2 

FQ dt 

9(j) 
(4.13.15) 

Finally substituting equation (4.13.12) into (4.13.15) and making 

use of (4.13.13) and (4.13.14) leads to, after some algebra; 
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-2a. = PeZ -
2Z 

I 

3F, 

2[l-8c(Zp)]Gi(Zp) "Iz ''S5''c»p>] "'2 

s - f c M ^ p 
1 -

2 & - 9 e < V ] 

3[2a2-Zp8;(Zpi] 

5 
dt 

(4.13.16) 

The intial condition on is given by (4.8.32) and it is 

easily shown by considering the total thermal energy of the plastic 

region that the initial condition (4.8.54) remains valid. Again there 

is no analytic solution to the pair of equations (4.8.36) and (4.13.16) 

which are to be solved subject to conditions (4.8.32) and (4.8.54) 

and a numerical solution must be sought. Using the Runge-Kuttc* 

method we again require a small time series solution to avoid the 

complications due to the singularity at t = 0 and to provide 

starting values for the numerical procedure. 

Using the simple model for the conditioning phase given in 

Chapter 2 the initial temperature distribution, 8^^Z) , 

(Z) =6/ir i ̂  erfc(Az) (4.13.17 ) 

where the constant A is equal to 1/2/Fotx . Expanding the right 

hand side of (4.13.17) for small z we obtain 

3^(Z) = 1 - ^ AZ + 3A2Z2 + O(A^Z^) (4.13.18) 
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Successive differentiation oE this expression with respect to 

Z yields 

0 ' 
c 

3/if ̂  
+ oA^Z + OCA^Z^) 

and 

= oA^ + 0(AZ) 

(4.13.19) 

(4.13.20) 

Since for small times the thickness of the plastic region, Z^ , 

may be assumed small, equations (4.13.18), (4.13.19) and (4.13.20) 

can be substituted into (4.13.16), yielding 

2Z^f[-3A" A/2+0(A2Z )] [3/17 AZ /2+0(A2Z2)J 
-2a_ = P Z -

2 e p 3F 
ol [2a +3A' AZ /2+0(a2z2)] 

f ^ 

[3/ir AZp/%+0(A^Z^)] [3/r A+0(a2z2)] 

[2a +3v^ AZ /2+0(a2z2)] 

[3/ir Az2+0(A2z3)] 

dZ [9nA2z4+0(A3z*)] da,, 

3F jla +3»^ AZ /2+0(A^z'^f}^ 

2F. 
1 -

A AZ +0(A2Z2) 
P P__ 

[2a +3/7 AZ /2+0(a2z^^ 

dZ 
r 

dt 

2 P P 

(4.13.21) 

A close inspection of equations (4.8.36) and (4.13.21), analagous 

to the discussion of equations (4.8.36) and (4.8.48) in Section 4.8, 

reveals that the series expressions for Z and a„ at small time 
P 

take the forms 

and 

z = z t^/^ + z t^/s + _ 
p i 2 

O2 = +" 

(4.13.22) 

(4.13.23) 
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which satisfy the initial conditions (4.8.32) and (4.8.54). 

On substituting these series into (4.8.36) and (4.13.21) there 

results the pair of identities 

ZZ^a 

+...+ Bp = - ispZl (i+2z2cl/$/7^+,..)(l+2a22t^/^/a2i+' 

zzfa 

^ (l+Z2tl/5/z^+...)(2+3Z2tl/5/z^+,..)(i+a^gt^/^/aon+...) 

. ) 

0 21 

*21 
(4.13.24) 

and 

... = Pe(Z ) 

'1 .1/5 
5F. 

t +... 

^.3/2A3zit4/5 

Sagi t2/5+.. 

3mA2z^c2/5 

3TrA^Z^t®''^+. 

3/7 r" j*&z.t2/5 

1 — 
5F 

0 
L 

J 

(4.13.25) 

Equating the coefficient of the time independent terms in (4.13.24) 

and the coefficient of t^^^ in (4.13.25) results in the pair of 

equations 

- 169 -



2=1*21 
B (4.13.26) 

0 

and 
3/7 Az:: 

-2*21 = --SFq-^ (4.13.27) 

This pair of equations is now readily solved to yield the 

solutions 

(4.13.28) 

3/ir A 

and 
3/ir AZ? 

' ' 2 1 - - - T 0 F ^ (4-13-29) 

It is now possible to truncate the series (4.13.22) and (4.13.23) 

after the first term, and by using (4.13.28) and (4.13.29) and a 

suitably small value for t , the numerical solution can be started. 

Numerical values of and a^^ were computed for various 

values of and using these values the full solutions were calculated 

using the Runge-Kutta method. At the same time the dimensionless 

shear stress x and the thickness of the thermal layer in the solid 

region S were computed using equations (4.7.3) and (4.13.13). These 

results are presented in the following subsection. 

4.13.1 Results and Discussion 

Using results obtained by the Runge-Kutta process, the plots 

of Zp and x against t for various values of Br , for the case 

Pe = 0 , are shown in Figures 4.18 and 4.19 respectively. By comparing 

these curves with the corresponding ones, for the case 0^(Z,O) = 0, 
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Zp 

Figure 4.18 Graphs of Zp against t for the case Q^(z,Q) = 8 (z) 
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'igure 4.19 Graphs of t against t for the case 8 (z, 0) = 0^.(z) 
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Figure 4.20 Craphs of zp against t for the case 0 (z,0) = 0 (z) 
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'igure 4.21 Craphs of t against t for the case 0^(z, 0) = 0 (z). 
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Figure 4.22 Plots of Interface Temperature against t for the case 

Og(z, 0) = 0^(z) 
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in Figures 4.6 and 4.7 reveals again that differences are small. 

In fact for the case 0 (Z,0) = 0 . Z behaves like t^ , for small 
s p 

2/5 

t , whereas when 0^(Z,0) = 0^(Z) Ẑ ^ is asymptotic to t 

For large t the same steady state solution is approached by both 

models and thus it is deduced that neglecting the conditioning phase 

does not affect the solution for large times and that the quantities 

Zp and T are not greatly affected for small time. However comparing 

the curves in Figure 4.22 with those in Figure 4.9 reveals that the 

behaviour of the interface temperatures differ vastly between the two 

models although the same steady state values are approached. It is 

seen that when the conditioning phase is included, the interface 

temperature initially assumes the conditioning temperature , 6 =1 , 

and rises rapidly towards the steady state whereas when the phase is 

neglected, the interface temperature initially assumes the value 

corresponding to Pe = 0 and decays towards the steady state value 

(see Figure 4.9). We thus deduce that neglecting the conditioning 

phase leads to large errors initially in the temperature profiles but 

that the errors reduce rapidly with increasing time. 

4.14 The Equilibrium Phase 

Up to now all the models considered in this Chapter have been 

relevant to the phase II stage of the welding cycle. It has been 

noted that providing upset is included in these models then a steady 

state solution is approached. A steady state exists in practice and 

the period of time over which the steady state conditions endure is 

called the equilibrium phase or phase III. (See Figure 1.2).In this 

section an exact solution is developed for the equilibrium phase of 

the model described in Section 4.8, that is upset is included but 

constant viscosity is assumed. 
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w i t h 

all the assumptions of Sections 4.8 the energy equations (4.8.23) 

and (4.8.24), for steady state, reduce to 

d^0 

dZ 

Br Pe 
2 Z 

I P° 

- 3 
d0^ 

d T 
(4.14.1) 

and 

d^G 
S<x> 

do 
= -Pe SCO 

dZ 
dZ 

(4.14.2) 

where the subscript (™) denotes steady state. The boundary 

conditions (4.2.23), (4.2.24), (4.2.25) and (4.4.3) become 

de^ 

dZ" 
(0) = 0 , (4.14.3) 

6 (Z ) = 0 (Z ) = 1 , (4.14.4) 

0 (Z) as Z ^ 
goo 

(4.14.5) 

and 

^ de 

" < V ' • d z ^ V (4.14.6) 

It is convenient at this stage to introduce the new variable 

defined by 

; = z/z^ (4.14.7) 

In terms of C the above equations become 
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d^O 

dC 

PeZ 
+ Br = - 3 ) 

de^ 
(4.14.8) 

and 

d^e de 

i f • - V ^ 
(4.14.9) 

which must be solved subject to 

d6^ 

I T 
(0) = 0 (4.14.10) 

0.(1) = 8s.(l) = 1 (4.14.11) 

,(C) + 0 as ; ^ (4.14.12) 

and 

de d6 

d T " ' - 3 f = ( " 
(4.14.13) 

An analytic solution to this system is derived here. On 

multiplying equation (4.14.8) by the integrating factor exp|-R(c)| , 

where 

R(;) = PeZ^c2(c2_a)yg (4.14.14) 

the equation can be expressed 

dC 
exp -R(C) 

de 

d; 
= - Br exp[-R(c)] (4.14.15) 

On integrating this equation with respect to r, we have 

de 

exp [-R(C)] = A - Br exp[-R(5)]dc , (4.14.16) 

- 177 -



and applying the boundary condition (4.14.10) it follows that the 

constant of integration, A , is identically zero. A further 

integration of equation (4.14.16) and the application of the boundary 

condition (4.14.11)^ yields 

C u 
f f -1 

(3̂  = 1 - Br j exp[R(u)]] exp|j-R(v)Jdvdu (4.14.17) 

1 0 

The solution to equation (4.14.9) which satisfies the boundary 

conditions (4.14.12) and (4.14.11)2 is easily seen to be 

0 = expP-PeZ (C"l)l • (4.14.18) 
goo 1- poo ~ ̂  J 

Finally on the application of the remaining boundary condition 

(4.14.13) there results a transcendental equation in Z , namely 
Poo 

1 

Br exp[R(l)J exp[^^(c)]dc = PeZ^^ . (4.14.19) 

0 

This equation was solved numerically using the Newton-Raphson iterative 

procedure and in Figure 4.23 numerical values of Z^^ for various 

values of Pe are plotted against Br . Values of Z^^ obtained by 

the heat balance method and given by equation (4.11.9) are also given 

for comparison. 

We also present here the asymptotic solutions to equation (4.14.19) 

for both small and large Br for comparison with their counterparts 

for the heat balance integral given by equations (4.11.11) and (4.11.12). 

For the case Br << 1 it is appropriate to seek a series solution 

in the form 

Z ^ = Brg^ + Brg^ +... (4.14.20) 
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— H.B.I, 
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P= 10 

1 2 3 4 5 6 7 9 10 

!• Lgure 4.23 Plots of against I5r for the case n = 1 from tlio 

l>ont balance integral solution and the exact solution. 

Substituting this series into equation (4.14.19) and expanding for 

small Br leads to the identity 

1 
f 

Br[i- 5/8 BrPeg^ + 0(Br^ [l-arPeg^u^(u^-6)/8 +0(Br^^du 

2 1 
BrPeg^ +Br Pegg + O(Br^) , (4.14.21) 

which, after performing the integrations and rearranging,becomes 

Br - jBr^Peg^ + O0r^)==Br Peg^ +Br'^Peg^ + 6 ( sV) ' (4.14.22) 

Equating the coefficient of like terms in this identity gives 

and g^ and hence, with the aid of equation (4.14.20), we can write 

,2 

* OCBr^) . 
Pe 5Pe 

(4.14.23) 
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Furthermore, on substituting this expression into equations (4.14.17) 

and (4.14.18) we have the asymptotic solution for small of 

the temperature profiles 0 and 0 respectively. 
oo gW * ^ 

% 

= 1 + 1 B^(l-;^) + ^ ]l5(;^-l) - 2(;^-l)]+ OfBi?) 

(4.14.24) 

and 

- 1 + Br(i-q) + — [5(l-r,)^ - 4(1-;)]+ )> [l-^] << 1 . 

(4.14.25) 

It is seen by comparison of equations (4.14.23), (4.14.24) and 

(4.14.25) with (4.11.11), (4.11.13) and (4.11.14) respectively that 

the first two terms in each series are identical which indicates that 

the approximate solution is in very good agreement with the exact 

solution for small Br . 

In order to obtain an asymptotic solution for large Br we note 

that 

exp[j-R(;)] d; = Y 

PeZ 
P2 (3-C ); exp[jR(c)2 

- 1 
PeZp=(3-C ); 

d? 

(4.14.26) 

The right hand side of this identity is now readily integrated by 

part yielding, with the aid of definition (4.4.14), 

exp[-R(c)ldC = ^ ^ 4:) 
(4.14.27) 

and, in fact, a further integration reveals that 
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5PeZp./8 

7 

•"p® Pe~'Z 

^ e P° 1 
expirR(;)jdc = 0 . (4.14.28) 

p o o 

Substituting this expression into equation (4.14.19) then gives 

us 

B 
^ + 0 

PeZ 
P 

B 
r 

= PeZ (4.14.29) 
pOD 

From this equation we deduce that 

Z = + 0(Br ") (4.14.30) 
p Pe 

Comparison of this expression with equation (4.11.12) reveals 

that the approximate solution is far less accurate for larger values 

of Br , however, as can be seen from Figure 4.23, the discrepancy 

is still very small for values in the range 0 $ $ 10 . 

4.14.1 Results and Discussion 

In this section various results for the steady state are compared 

and discussed. 

Using the numerical solutions of equations (4.12.29) and (4.12.61), 

e , ai 

1/n-l 

plots of Zp^ against Br , for various values of Pe , are given in 

Figure 4.24, for the cases y = l/o and p = (3V/9Z) 

We notice by comparing these curves with those in Figure 4.23 that values 

of Zp^ predicted by the models n = 1 and p = 1/6 are quite close 

whereas those predicted by the model u = (3V/3Z)^^^ ^ differ vastly 

from the other two. However it seemslikely that if the exponential 
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, expjQ/R[T^+ ' were included in the latter model term, 

then the values of z predicted would be reduced. 
p o o r 

A 

13 _ 

12 

11 -

1 0 -

9 -
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71 

6 

M = l/( 
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Figure 4.24 Plots of Z against Br for the models p = 1 / 6 

and p = (9v/3z) ^ 

In Figure 4.25 the interface temperature o (0) is plotted 
OO 

against Br for the models m = 1 , y = 1/e and p = (9v/gz) 

We note in all cases that a value of Br exists, Br , at which 

- 1 8 2 -
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p = 1 Exact 

- r -

3 
—r 
6 

Figure 4.25 Plots of ^(0) against Br for the models m 

M = 1/8 and p = (Dv/3z)^^" ^ 

Br 

1, 

me Iting is attained. It is seen that in the case p = 1/6 the 

value of Br^ is greater than for p = 1 whereas taking 

m = (Dv/sz)^''" ̂  leads to smaller values of Br^ . It thus seems 

likely that it is the decay of viscosity with increasing temperature 

that prevents melting from being achieved. In fact a suitable 

model for the viscosity would be one which obeys law (4.12.32) 

for temperatures less than the melting temperature tnd falls very rapidly 

to zero in tne close proximity of the melting temperature. In this case 
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the heat generation term would fall to zero as melting temperature 

was approached and consequently melting would never be reached. 

4.15 The Deceleration Phase 

So far in this thesis the final phase in the frictioning 

stage, the deceleration phase, has not been discussed. 

At the start of the deceleration phase a friction brake is 

applied to the head stock chuck and the rotating component is rapidly 

brought to rest. The manner in which the rotation is halted can 

significantly effect the weld quality as has been extensively studied, 

experimentally by Duffin and Bahrani {38] . In this section a 

model is developed to describe the deceleration phase and a solution 

valid for the early stages of this phase is obtained. 

Let the angular velocity of the rotating component, during the 

deceleration phase be ^^(t) . In this section the time t is 

measured from the end of the equilibrium phase so w must satisfy 

the initial condition 

0)^(0) = 01, (4.15.1) 

where w is the angular velocity during phases II and III . 

During the deceleration phase the equations governing the 

pressures and velocities are given by (4.2.7) to (4.2.13) and the 

corresponding boundary conditions are (4.2.14) to (4.2.18), with Che 

exception that condition (4.2.17)2 is replaced by 

V(Z ,t) = WQ(t)/w = V^Ct) . (4.15.2) 
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In view of (4.15.1) it follows that ^^(0) = 1 . Retaining 

the assumptions of Section 4.8 (including the postulate w = 1) , 

the velocity components u,v and w are given by (4.7.15), (4.7.2) 

and (4.7.14) respectively and the pressures p^ and p^ by (4.7.1) 

and (4.7.22) respectively. However, the amended form of equation 

(4.4.7) obtained by applying boundary condition (4.15.2) to (4.4.6) 

is 

Vp(t) = T(t) Z (t) . ( 4 . 1 5 . 3 ) 

On substituting equations (4.7.2) and (4.7.14) for the velocity 

component v and w respectively into equation (4.8.14) and expressing 

the shear stress T in terms of using equation (4.15.3), the 

energy equation for the plastic region becomes 

= • 0 . Z . . <..>3., 

P P 

The corresponding equation for the solid region is unchanged 

from (4.8.24) and the relevant boundary conditions are given by 

(4.2.23),(4.2.24), (4.2.25) and (4.4.3). However the new initial 

conditions are 

0(Z,O) = e^(Z) (4.15.5) 

and 

Gg(Z,0) = 8g«/Z) , (4.15.6) 

where 0 and are the steady state temperature profiles. 

We develop here a solution to the above system of partial 

differential equations which is valid for small times. Since at the 

beginning of the deceleration phase the system is in equilibrium it 
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seems logical to assume solutions of the form 

G(Z,t) = 0^(Z) + e^(z,t) , 

^ ( Z , t ) = + 8 g i ( Z , t ) , 

(4.15.7) 

(4.15.8) 

and 

Z p ( t ) . + Z i ( t ) 

T ( t ) = + T ^ ( t ) , 

(4.15.9) 

(4.15.10) 

where the suffix («>) denotes steady state variables. For early 

times it may be assumed that the transient terms are much smaller 

than the steady state counterpart, thus we can write 

» I O i l ' » i G g i l , |Zpml » |Zil a n d |T_J » | | 

(4.15.11) 

Let us also write 

Vjj(t) = 1 + 6(t) (4.15.12) 

in which case 

3(0) = 0 (4.15.13) 

and consistent with (4.15.11) it can be assumed that 3 << 1 . 

On substituting equations (4.15.7) to (4.15.10) and (4.15.12) into 

equations (4.15.4) and (4.8.24) and expanding in small quantities, 

the energy equations can be written 

2 7 
d 3 8i Br 

o" + - — ( l + 2 3 ( t ) + . ..) (1-2Z /Z +...) 
dZ^ 3 

PP7 2 1 
(1-3Z,/Z )(Z -3Z -6Z Z+...) 

2^3 P°° P= P°° ' 

d8 38. 

dZ 3Z 
1 
FQ 3t 

(4.15.14) 
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and 

d^O 329, 
- f + 

dZ 3Z 

dG 90 1 ^ 36 , 
s°° si 1_ si 

dZ 3Z FQ 3t _ 
(4.15.15) 

Similarly using equations (4.15.7), (4.15.8) and (4.15.9) 

in the boundary conditions (4.2.23), (4.2.24), (4,2.25) and (4.4.3) 

and expanding in small quantities using Taylor's theorem, one obtains 

de 30, 

IT • « • 
(4.15.16) 

de. 2 
* " I ' V . " * h (Zp.) + 0(Zl) - 1 ' (4-15.17) 

dO 30 

CUT (Zp.) + -3z- (Zpm'C) + z 

d^e 

de 39 , d 6 
(Z_.) + (Z,_,t) + Z s 

dZ po° 3Z p° 1 ,,2 < V " °''l' 

(4.15.19) 

and 

0 (Z) + 0 (Z,t) -> 0 as Z « 
s°° si 

(4.15.20) 

Finally the initial conditions (4.15.5) and (4.15.6) reduce to 

0^(Z,0) = 0 and 8 ^(Z,0) = 0 (4.15.21) 
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4.15.1 The Steady State System 

The steady state terms in the above identities yield the pair 

of ordinary differential equations (4.14.1) and (4,14.2) with the 

boundary conditions (4.14.3), (4.14.4), (4.14.5) and (4.14.6). 

The solution to this system has been given in Section 4.11 and requires 

no further discussion here. 

4.15.2 The Transient System 

Equating the time dependent terms in the identities (4.15.14) 

2 

and (4.15.15) and neglecting terms O(Z^) yields, after some 

rearrangement, the following pair of partial differential equations 

(Z^-3ZL) ^ ^ ^ ^ (2,-2 6) (ZL-Zh 
az? 2z3 P" az Fo ^ ?= zz* P" 

po 

(4.15.22) 

and 

1 36 

Similarly the boundary conditions (4.15.16) to (4.15.20) reduce to 

39. 
^ (0,t) = 0 , (4.15.24) 

• - h S T - < V ' ' (4.15.25) 

d6 

" s l V - " ' - - ^1 - d ? • (4.15.26) 
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ae, d^G 98 T d^e 
I oo e l c o o 

^ ^ < S » > 

(4.15.27) 

and 

8g,(Z,t) ^ 0 as Z , (4.15.28) 

and the initial conditions are given by (4.15.21). 

Introducing the variable defined by (4.14.7), into the above 

system, the latter can be written 

as" ^ *o 1 P" 2 dc ' 

(4.15.29) 

ae 38 , 

-;-2- + PeZp. -af- - -a#- = 0 ' (4.15.30) 

ae^ 

(O.C) = 0 , (4.15.31) a; 

do 
e^d.t) = - — — (1) , (4.15.32) 

Z, d0 
i 

Gsl(l't) = - z- dY"" (1) , (4.15.33) 
P 

38, Z. d^0 90 , Z, d^£ 
ap- (I,t) + 2 : (1) = -^§1 (i,t) + 1 

Zp. dc^ a; Zp« d;2 

(4.15.34) 

8gi(;,t) ^ 0 as ; m (4.15.35) 

0^(C,O) = 0, 8g^(c,0) = 0 . (4.15.36) 

and 
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There does not appear to be an exact solution to this system 

of equations. However, by assuming that the Brinkman number is small 

a series solution can be developed. 

Let us assume, therefore, that Br is small and write: 

8^(C,t,B^) = 4)Q(c,t) + Br4^(G,t) +Br4^(;,t) +... (4.15.37) 

and 

Z^(t,Br) = Brh^(t) -ffir "h2 (t)+ . .. (4.15.38) 

Substituting the series (4.14.23), (4.14.24), (4.15.37) and (4.15.38) 

into equation (4.15.29) and the boundary conditions (4.15.31) and 

(4.15.32) results in; 

sf* 32* 32* 
^ + Br -- 1 ^ ^ 

3? 
-6r 

3; 

1 
Br 

o+. . . 
F^Pe 

3; 

3(fj 

+ - -^Br (1- jBr+• • •)C(C^~3) 
3i|; 3ii;, 

-IkT* 31-

3t r 3t 
2Br(l+ j B r + ...) (P eh^-6)+ 

~h + (h^-tBrh2 + . . .)^^(C^-1) 1-Br?2(5-c^)/10+. (4.15.39) 

dip 

3^ 
o ^*1 ?3*2 

(0,t) + Br — ^ (0,t) + Br T — (0,t) + ... = 0 3; 3; 
(4.15.40) 

and 

4^(1,t) +%r*^(l,t) +Br^^(l,t) + . .. = BrPe(h^+Brh2 + . ..)(!+ |-Br+...) 

(1- yBr •-...) (4.15.41) 
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The terms independent of Br in the above expressions lead to 

the equation 

9^*0 
= 0 , (4.15.42) 

which must be solved subject to 

(0,t) = 0 and 4^(l,t) = 0 (4.15.43) 

It is immediately obvious from the above that 

= 0 . (4.15.44) 

The terms in (4.15.39) to (4.15.41) which are linear in Br 

give the equation 

2 
a 

= 2(PehT-g) (4.15.45) 

with the boundary conditions 

3i|; 
(0,t) = 0 and 4^(1,t) = Peh^ . (4,15.46) 

Integrating both sides of (4.15.45) twice with respect to ^ and applying 

the boundary conditions (4.15.46)^ „ yields 
i j/ 

= 6(1-;*) +Pe h^c2 , (4.15.47) 

9 
From the coefficient of Br^ in the system (4.15.39) to (4.15.41) 

there results, with the aid of (4.15.44) and (4.15.47), and after some 

rearrangement, the equation 
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a; 

5(4 - 9(2 + I - C^(C^-3)6 + 2Peh, (4.15.48) 

and the boundary conditions 

3*2 

"3? 
(0,t) = 0 and ^^(l,t) = Pehg (4.15.49) 

Integrating equation (4.15.48) with respect to C and applying the 

boundary condition (4.15.49)^ gives us 

91̂ 2 Peh^ __ ^ 
- f - (;2-5)g + ZPehgS (4.15.50) 

and integrating again and making use of condition (4.15.49)2 yields 

Peh, 

^2 " 120 
10(c^-1)-45(C4-I) + 48(52-1) 

60 
2(;*-l)-15(c4-l) + PehgS 

(4.15.51) 

Thus from equations (4.15.37), (4.15.44), (4.15.47) and (4.15.51) 

the solution for 8^ may be expressed as 

= Br Peh^;2+B(l-;2) +Br2/poT. rZ-
(PghzC - 60 2(56-1) - I5(;4_i) 

Pgh [-
+ ^ 2 ^ |lO(s6-i) - 45(;4-i) + 48(;2-l) + 0(Bi:̂ ) 

(4.15.52) 

Higher order terms could be obtained in a similar manner but since 

the task is lengthy, the series is now terminated. 

Let us now turn our attention to the solid region. Since equation 

(4.15.30) is linear in t and has constant coefficients W m a y be. 

solved analytically using Laplace transforms. 
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Taking the transform of equation (4.15.30) we obtain, on making 

use of the initial condition (4.15.36)2 , the equation 

d^e de , 2^ 

^ - d T - F f ° 

whilst the appropriate boundary conditions (4.15.33) and (4.15.35) 

transform to 

Z de ^ 

Qgj^d.S) = - 2 df" (1) (4.15.54) 
poo 

and 

8gi(G,S) + 0 as ( + " (4.15.55) 

Following standard notation the superposed bar denotes a transformed 

quantity and S is the transformation variable. Equation (4.15.53) 

is now a sing)le second order ordinary differential equation with constant 

coefficients for which the general solution is readily found to be 

Ggl = exP(-PeZ _ C/2) |A(S)exp(|- Z C \ ^ f e ^ 4 ^ ) + 

;\/pe^+ 4S/Fq) 3 , (4.15.1 + B(S)exp(- J Z 4S/FJ J , (4.15.56) 

where A and B are arbitrary functions of S introduced through 

the integration. This expression satisfies the boundary condition 

(4.15.55) only if A(s) is identically zero. Thus putting A(S') = 0 

in equation (4.15.56) and using the boundary condition (4.15.54) we 

deduce that: 
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®sl = I Zp„(l-C)(Be + 4 S / FQ ) (4.15.57) 

Before we can apply the final boundary condition (4.15.34) we must 

expand the above in small Br . Thus making use of (4.14.23) and 

(4.15.38) and expanding we obtain, after some rearrangement 

0 = Br?e h, + Br 
si 1 

1 r 
Pehg + J h^(l-5)(Pe + '?i + 4S/FQ) 

(4.15.58) 

Taking the Laplace transform of expression (4.15.52) and substituting 

the resulting expression and equations (4.14.24), (4.14.25) and (4.15.58) 

for 8^, 9^, 0^^ and 9^^ respectively, into the Laplace transform 

of boundary condition (4.15.34), leads to the identity 

2 
2Jr(Peh^-8) + (lOPeh^ + 46 - Peh^) +.. .-?eBr(h^+Brh2+...) 

(1+ I Br+...)(1-Br+...) = - Y Br2h^(Pe + ^Pe^+ 45/?^ ) 

+PeBr^(h^+Brh2+...)(1 + y Rr+«••)(1+*••) • (4.15.59) 

Equating the coefficient of Br in this identity yields 

2(Peh^-g) - Peh^ = 0 , (4.15.60) 

from which we deduce 

h^ = 26/Pe (4.15.61) 

It immediately follows from inverting this result that 

h^ = 2g/Pe . (4.15.62) 
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From equating the coefficient of Br in (4.15.59) we obtain 

J (SPehg + 43 - 3Peh^) = - h^IPe + 4 ^ + 4 S^F^) , 

and with the use of (4.15.61) it follows that 

(4.15.63) 

33 3 rr 
2 - - -pSf *r + 4S/Fo (4.15.64) 

which becomes after inverting 

3 7 ? + 4S/F, (4.15.65) 

Inverting the term in square brackets is not possible until 

3 is specified. The form of 3 depends upon the manner in which the 

rotation is brought to a halt and must thus be determined experimentally. 

However, we shall suppose here, for illustration, that 3 is a linear 

function in t and write 

3 =-6t (4.15.66) 

where 6 is a constant. The expression for h^ then becomes 

\ - 26t/ Pe (k 'S 67) 

and for h^ we have 

"2 
1 /~2 

Pe + 4S/F, (4.15.65) 
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since equation (4.15.18) is only valid for small time it may be 

expanded for large S leading to 

1 / i s . . , , : 

8S^/2 
(4.15.69) 

This expression can be easily inverted to yield 

h„ = 
46 

3/2 

7 
+...( (4.15.70) 

Thus using equations (4.15.38), (4.15.67) and (4.15.70) the expression 

for can be written 

z = - M l B r + 6 
1 G V TT 5P( 

•n/p^ 3/2 

5Pe* 3 

+ o(BJ) 

+ • • • Br 

(4.15.71) 

The solution for 8^ is given by (4.15.52) with the aid of (4.15.66) 

(4.15.67) and (4.15.70) and the solution for is obtained by 

inverting (4.15.58). On doing this we obtain 

0 , = PeBrh, +Br 
si 1 

Pehg + (l-c)h^ + •j(l-c)L 
- / 9 
hi + 4S/FQ (4.15.72) 

With the aid of (4.15.61) and (4.15,65) the term in the square brackets 

can be expressed in terms of h^ and g and we have finally 

= BrPeh^ + Br jpeh^ +Fe,(l-c)h^/2 - (1-?)[36/5+Peh2 j + 

+0(Br^) , [l-c] « 1 . (4.15.73) 

Substituting equations (4.15.9), (4.15.10) and (4.15.12) into (4.15.3) 

leads to the expression 
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T Z + t Z . + Z T , + Z,T, = 1 + 3 (4.15.74) 
00 poo oo 1 poo X 1 1 

from which the shear stresses and can be obtained. Equating 

the terms independent of time in the above, we deduce that 

T = 1/Z , (4.15.75) 
00 poo 

where Z^^ is the solution of (4.14.19). Then neglecting term 

O(Z^T^) and equating the remaining transient terms results in 

T , = — ( W - \ S - 7 6 ) 

poo 

The temperature profiles for the deceleration phase can now be 

determined in full, with the aid of (4,15.66), (4.15.67) and (4.15.70), 

for the plastic region by equations (4.15.7), (4.14.24) and (4.15.52) 

and for the solid region by (4,15.8), (4,14,25) and (4,15.73). Also 

the thickness of the plastic region Z^ and the shear stress x are 

determined by (4,15,9), (4.14.23) and (4.15.71) and (4.15.10), 

(4.15.75) and (4,15.76) respectively. 

4.15.3 Results and Discussion 

The above series solution is of limited value since it is only 

valid for small values of both Br and t . However, the model 

does demonstrate the effect of slowing down the rotating component and 

in particular the increase in torque which is observed in practice, 

plots of X, Zp . ̂  and against time for the 

conditions Br=0 (0.1), Pe= 1.0 and ? = 1.0 are given in Figures 

4.26(a), (b), (c) and (d) respectively. 
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= 0 . 1 0 

Figure 4.26 Graphs of (a) t , (b) and (c) for the 
deceleration phase. 
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4.16 Inertia-Welding 

So far in this chapter we have considered phases II, III and IV 

of the conventional friction welding process. In this section we 

consider the inertial friction welding process in which phases II, III 

and IV are consolidated into one phase [See Figure 1.4]] . 

In the inertia welding process one of the components is held in 

the stationary )-i s 5 v o c k chuck while the other is held in the VieAcisVotk 

chuck which is attached to a flywheel. The flywheel is given a known 

rotational speed thus storing a predetermined amount of energy. The 

drive to the flywheel is then disengaged and the two components brought 

together under an applied axial load, as in the conventional process. 

Rubbing at the weld interface then begins to take place. The energy 

stored in the flywheel is subsequently used to generate heat and a 

softened layer of material develops close to the weld interface as in 

the continuous drive process. As rubbing proceeds the speed of 

rotation decreases until eventually the rotating component comes to 

rest. The applied force is maintained until the weld is consolidated. 

In this section a simple model is developed to describe this process 

and appropriate solutions are given. 

4.16.1 Governing Equations and Boundary Conditions 

Making all the assumptions of section 4.8 the governing equations 

of motion in the plastic region are giv,sn by (4.2.7) to (4.2.13), and 

the energy equations for the plastic and solid regions by (4.8.14) 

and (4.8.15), respectively. The boundary conditions on the pressures 

and velocities are given by (4.2.14) to (4.2.18) apart from (4.2.17)2 

- 199 -



which must be amended since the velocity V on the interface Z = Z^(t) 

is now dependent on time. The manner in which this velocity varies 

is discussed in the following paragraph. The thermal boundary 

conditions are given by (4.2.23), (4,2,24), (4,2.25), (4.4.3) and (4.4.4), 

Let the moment of inertia of the flywheel about the Z axis be 

then the equation of motion governing this flywheel is 

dw_ 

where is the angular velocity of the flywheel and T^ is the 

resisted torque. Initially Wg must have some prescribed value 

so we write 

Wg(0) = 0) (4.16.2) 

For our 2-dimensional model the torque can be expressed in the 

form (see Chapter 3) : 

T q = ART(t) (4.16.3) 

where A is the cross'-sectional area of the tubes, R is the mean 

radius and T is the shear stress acting on the face x^ = ^^(t) 

in the x^ direction, i.e. T = |- (see Chapter 3). 

Multiplying equation (4.16.3) by R and substituting (4.16.1) for 

Tq yields 

dVg _2 _ _ 
I f ^ = - A R ^ T ( t ) (4.16.4) 

where is the velocity component of the solid region in the 

y-direction given by 

— 2 0 0 — 



. (4.16.5) 

Expressing (4.16.4) in terms of dimensionless variables we have 

dV. 
—]— = - AT(t) (4.16.6) 
dt 

where and x are defined by 

—2 
- AR y t -

t = F- . V. = V./oiR , A 2_2. , T : (4.16.7) 

where t is a typical weld time and u and Z are defined as 
o o po 

in Chpater 3. The dimensionless form of the initial condition 

(4.16.2) is 

Vj(0) = 1 (4.16.8) 

Integrating equation (4.16.6) with respect to t and making use of 

condition (4.16.8) leads to the expression 

Vg = 1 - A j T dt (4.16.9) 

0 

Hence, the boundary condition (4.2.17)2 must, for the case of inertial 

welding, be replaced by 

t 

Vg= 1 - A T dt on Z = Z (4.16.10) 

We shall now determine a simple solution for inertia weldipg 

through the heat balance integral method, which was used extensively 

in Section 4.8. 
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4.16.2 Pressure, Velocity and Temperature Profiles 

The equations and boundary conditions governing the pressures 

are identical to those in Section 4.7 the solutions are thus given 

by (4.7.1) and (4.7.22) and need no further discussion. Similarly 

the velocity components U,V and W are given by (4.7.15) ,(4.7.2) 

and (4.7.14) respectively. However, the amended form of equation 

(4.7.3) obtained by using boundary condition (4.16.10) in (4.7.2) is 

t 

xZ = 1 - A 
P 

T dt (4.16.11) 

Differentiating this equation with respect to t results in the ordinary 

differential equation 

dZ , 
t - ^ + Zp ^ = - At ; (4.16.12) 

an equation connecting Z^ and t . 

Using the heat balance integral method to solve equations (4.8.14) 

and (4.8.15), as in Section 4,8, we obtain a further two ordinary 

differential equations connecting a^, Z^ and t , namely 

9 9 9 9 ^^9 ^^9 L 
23, + BrfZzZ . - Z2 a;! - 3%- Z, a;* - A (4.16.13) 

and 

7 } 

»2 
, (4.16.14) 
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where VV has again been assumed that the temperature profiles 

for 6 and 6^ are given by (4.8.35) and (4.8.47 ) respectively. 

Equation (4.16,14) is, of course, identical to (4.8.48) and (4.16.13) 

2 2 

is obtained from (4.8.36) by replacing B.r by BrZ^T . Again a 

numerical sol&tion to equations (4.16.12), (4.16.13) and (4.16.14) 

for Zp a^ and t is sought, and a small time series is required 

to obtain starting values. For the starting values it proves sufficient 

to use the Representations 

^2 ~ ^20 * (4.16.15) 

Z = 2 Zĵ /F̂ t , (4.16.16) 

t = 1/Z . (4.16.17) 
P 

and a sufficiently small value of t , where a^^ is the -ve 

solution of (4.8.63) and Z^ is given by (4.8.62) . 

The solutions must be terminated after a time t^ when has 

reached zero - no steady state solution to the set (4.16.12), (4.16.13) 

and (4.16.14) exists. With the aid of (4.16. 9) and (4.16.11) we see 

that t^ is given by 

Zp(t^) T(t^) = 0 . (4.16.18) 

4.16.3 Results and Discussion 

Equations (4.16.12), (4.16.13) and (4.16.14) were solved using 

the Runge-Kutta process. Using these results the interface temperature 

6(0,t) and the rubbing velocity were obtained using the relationships 

- 203 -



6(0,t) = 1 - 3 2 (4.16.19) 

and 

= xZp (4.16.20) 

respectively. These results are illustrated for the case A = 0.2 

in Figures 4.27 to 4.30. 

Comparing the plots of shear stress T given in Figures 4.27(a) 

and 4.29(a) with the idealised torque trace in Figure 1.4. we note that 

the main qualitative feature of this trace, the two torque peaks, is 

predicted by our model. However comparison of the plots in Figures 

4.28(b) and 4.30(b) for the rubbing speed with the corresponding 

idealised trace in Figure 1.4 indicates that for small times a much 

faster decay of is predicted by our model than is found in practice, 

This is felt to be a consequence of the initial singularity in the 

shear stress x which leads to a much higher resistive force to the 

rubbing motion during the early moments of the'weld time. 

For later times it is noted that the qualitative agreement between the 

two decay rates of is much improved. Examination of the plots 

of interface temperature against t shown in Figures 4.27(b) and 

4.29(b) reveals that this temperature has its maximum at t = 0 and 

then decays until it reaches the conditioning temperature at time t^ . 

In practice, however, the interface temperature rises rapidly during 

the initial stages of the process until it attains its maximum, after 

which it decreases as the speed of rotation reduces to zero. 

Moreover in reality the temperature does not fall to the conditioning 

temperature; if this were so there would be no plastic region at the 

end of the frittioning stage and the specimens could not be forged 

together. 
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The error in the interface temperature for the early stages of the 

process predicted by our model is due to the omission of the conditioning 

phase as was pointed out in Section 4.13 for the continuous drive 

process. The reason our model predicts a lower than expected 

temperature at the end of the frictioning stage is felt to be due to 

our definition of the plastic region. The position of the plastic 

region is governed by the condition 9 = 1 on Z = Zp(t) . As the 

rotation slows down the rate of heat generation falls and consequently 

the thickness of the plastic region decreases. This process continues 

until eventually at t = t^ reaches 0 and then,by definition, 

the interface assumes the temperature 0 = 1 . 

4.17 Comparison with Experimental Results 

The main purpose of this thesis has been to produce siiig)le 

mathematical models which describe the friction welding process 

qualitatively. However, in this section we present, for completeness, 

a quantitative comparison between experimental data and the theory. 

At Marchwood Engineering Laboratories a series of friction welds 

were made using tubes of 12 mm outer radius and 3 mm wall thickness. 

In Figure 4.31 a typical trace of the output, from one of these welds, 

of torque, applied load, speed and axial shortening is given. 

In order to make a comparison between the models and experimental 

data the mean line from the torque trace is taken and compared with 

torques from the constant viscosity model of Section 4.8. Results for 

the case Pe = 0.6 and several values of Br are presented in 

Figure 4.32. 
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This brief comparison demonstrates that the agreement between 

the theoretical solutions and experimental results is quite good. 

However, before any comparison is made in depth it is felt that a much 

sounder knowledge of material properties, particularly viscosity, 

in the range 700°C < T < 1300°C is required. 
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0 ( 0 ) t _ , 
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Br = 0.5 

CM 

2.40 3.20 4.00 4.80 5.60 

(b) 

Figure 4.27 Graphs of t and 8(0) against t for the inertial 
welding process. 
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Figure 4.28 Graphs of and against t for the inertial 

welding process. 
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Figure 4.29 Graphs of t and 6(0) against t for the inertial 

welding process. 
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Figure 4.30 Graphs of and against t for the inertial 

welding process. 
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Figure 4.31 Experimental traces of torque, applied load and 
axial shortening. 
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Figure 4.32 Comparison between experiment and theory. 
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CHAPTER 5 

BINGHAM SUBSTANCE MODELS 

In this chapter some of the simpler models of Chapter 4 are 

reconsidered when the plastic region is modelled by a Bingham substance. 

Here it is again assumed that the temperature profiles 0 and 6^ 

and the velocity components V and W are independent of x . 

It is also assumed throughout this chapter that the viscosity y 

is constant and taken to be unity for convenience. Both phase II 

and the equilibrium phase are considered here and we again neglect 

the effect of the conditioning phase. 

5.1 Governing equations and boundary conditions 

Making use of the above assumptions and splitting the governing 

equations of motion (3.4.28) to (3.4.30) into two subsystems, one of 

O(CpRe) and the other of 0(1) , the latter become 

O(CpRe) 
BP 
c 

9x 
= 0 , (5.1.1) 

9P 
c 

3z 
= 0 , (5.1.2) 

1 ^^1 
0 ( 1 ) i 

Bo 
1 + 

27I 

3u 
3z 

rr 
+ 2 

3x 

BCT 
1 + o 

2/1 

9u 
9x 

(5.1.3) 

L 
3z 

Bo 
1 + 

2/r 

9V 
3z 

= 0 (5.1.4) 
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2 3z ^ & 

Bo 
1 + ° 

9w + i-
f Ba 
1 + ° 

9u 

. 9z 9x 
I 2/i, 

9z 
(5.1.5) 

where the second invariant of the rate of strain tensor I is given 

by 

I = 2v 
9z 

(5.1.6) 

The equation of incompressibility (3.4.31), rewritten here for 

convenience is 

9u ^ 3w 
9x dz 

= 0 (5.1.7) 

Again making the further assumption that the thermal properties 

k, k , C and C are constant and conveniently taken to be unity 
s v vs 

and that superficial heat loss may be neglected, the energy equations 

for the plastic and solid regions, (3.4.37) and (3.4.1^0) respectively, 

reduce to 

a z ' 

-K Br)I p * * + F & i r ' ° * = < = p ( t ) ' 

and 

9z 
= - PeWo(t) 

30 , 
— 1 + 1 
9z Fo 9t 

98s 
, z 5 Zp(t) (5.1.9) 

On splitting the condition (3.5.18) into two subsystems one 

O(CpRe) and the other 0(1) , the pressures and must 

satisfy the pair of conditions 
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O(CpRe) PgCx, Zp, t)dx = 1 , (5.1.10) 

and 

0(1) t) - 4 
Ba 

1 + 

2/r 

9w 
9z 

dx = 0 . (5.1.11) 

z=z (t) 
P 

The conditions on the velocity conqjonent are given by (4.2.16) 

to (4.2.18) and are rewritten here 

and 

9u 
9z 

(x,0,t) = 0, - Y ^ X $ Y ' v(o,t) = 0 , w(0,t) = 0 , 

(5.1.12) 

u(x,z^,t) = 0 , v(z ,t) = 1, w(z ,t) = -w (t). 

(5.1.13) 

u(0,z,t) = 0 , 0 $ z ^ Zp(t) (5.1.14) 

are 

Under the present assumptions the thermal boundary conditions 

98 
9z 

(0,t) = 0 , (5.1.15) 

8(2p,t) . 8g(Zp,C) , (5.1.16) 

and 

0g(z,t) ̂ 0 as z , 

(5.1.17) 

(5.1.18) 
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and remembering that the conditioning phase is again neglected, 

the initial condition is 

0g(z,O) = 0 . (5.1.19) 

These conditions are identical to those for the viscous fluid 

model (4.2.23), (4.2.24), (4.2.25), (4.4.3) and (4.4.4) apart from 

the temperatures on the plastic/solid interface is no longer specified 

as unity. The position of must now be defined by the Bingham 

yield criterion (3,5.7), which is rewritten here for convenience 

Ba 

1 + (6 j t ) 
2/1 

I = on z = Zp(t) . (5.1.20) 

With the aid of (5,1.6) the above can be expressed in the 

form 

-^1%^ + Ba 1 = 0 on z = z (t) (5.1.21) 
d z [_0 z p 

Noting that the velocity gradient cannot be negative, this 

condition reduces to 

"1̂  = 0 on z = z (t) (5.1.22) 
dZ p 

Having now obtained this simplified form of the basic equations 

a few of the models considered in Chapter 4 are now examined for the 

case with the plastic region modelled by a Bingham Substance. 
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5.2 Velocity and pressure profiles 

The solution to (5,1.1) and (5.1.2) subject to (5.1.10) was 

as given in Section 4.3 and requires no further discussion. 

Substituting (5.1,6) into (5,1.4) gives us 

dz 
3v 
3z 2 

= 0 (5.2.1) 

Integrating this equation with respect to z yields 

% - - - r 
(5.2.2) 

where x is the dimensionless shear stress, and a further integration 

with respect to z results in 

V = T(t)z -
Bo 

(0,t)dz , (5.2.3) 

which satisfies the condition (5.1.12)2 . In order that the condition 

( 5 . 1 . 1 3 ) 2 is satisife^, must be related to T through 

1 = z T - o" 
P 2 

a^(9,t)dz . (5.2.4) 

With the aid of equations (5.1.6) and (5.2.2), the pair of partial 

differential equations (5,1,3) and (5.1,5) can be expressed in the 

forms 

'1 ri 9u 
T* 3z IT* 9x 

(5.2.5) 
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and 

1 !!l . 4 , 
2 dz 8ZIt* 3Z 

+ 2T 
9x 

1 3u 
T * 3 z 

(5.2.6) 

where the quantity T* is defined by 

T*(0,t) = 2T(t) - BOg(8,t) (5.2.7) 

Integrating the equation of incompressibility (5.1.7) with 

respect to x yields 

u = -X — + f(z, t) (5.2.8) 

where f is an arbitrary function of z and t and on using the 

boundary condition (5.1.14) it is obvious that this function must be 

identically zero and we write 

u = -X 
3w 
3z • 

(5.2.9) 

Substituting this expression into (5.2.5) and (5.2.6) leads 

to, after some rearrangement 

i ! ! i 
4 9x 

o2 3 
- * XT 

T* 

3 w^ 

1 7 
(5.2.10) 

and 

n 9P 

4 3z 

3^w 
1 T " " - 3w 3 

Integrating (5.2.10) with respect to x yields 

P, 
- - 2 3 

2 * * T a; 

2 3 vj 

^ 1 7 
+ g(z,t) 

(5.2.11) 

(5.2.12) 
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where g is an arbitrary function of z and t . 

On differentiating both sides of this expression with respett 

to z and using (5.2.12) to eliminate 3P^/9z from the resulting 

equation leads to, after some rearrangement, the identity 

2t 3 " 8w 8 fl " 

9z 9z 
T* 

1 
9 w 

(5.2.13) 

Since the above holds for all x in 
1 1 

I • 2' 2 
the functions w. 

and g , which are all independent of x must necessarily satisfy 

the equations 

3z 

1 = 0 (5.2.14) 

and 

2% ^ * . . 3w 3 

dZ N = 
3z 

(5.2.15) 

Repeated integration of equation (5.2.14) with respect to z yields 

W = 

z £ 

T*(e(k,t) ,t) [c^(t)k + C^(t)|dkd& + C2(t)z + C^Ct) , (5.2. 16) 

o o 

where C^, c^> C2 are arbitrary functions of t only. 

The velocity component u is now obtained by substituting the above 

expression for w into (5.2.9) yielding 

u = -x T*(e(k,t) ,t) C^(t)k+C i(t)] dk + C2(t)z (5.2.17) 
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Using the boundary conditions (5.1.12)^ ^ and (5.1.13)^ the functions 

C^, and 

the expressions 

C^, and are readily expressed in terms of leading to 

W = C 

2 £ 

o z 

T*(9(k,t),t)kdkd& (5..218) 

and 

u = - C X 
o 

T* (9(k,t) ,t)kdk (5.2.19) 

Again the assumption is made that the upset velocity 

is constant and taken to be unity for convenience, thus we write 

w = 1 . 
o (5.2.20) 

On using condition (5.1.13)^ in expression (5.2.13) is 

found to be, in view of (5.2.20) 

T*(9(k,t),t]kdkd£ (5.2.21) 

Having determined the velocity component u,v and w we 

turn our attention to the pressure component p^ . Substituting 

(5.2.18) into (5.2.15) gives us 

I f - 2,C^z + 4tC^ I j 
1 ' 
T* 

T*(9(k,t) ,t)kdk . (5.2.22) 

Integrating the above with respect to z yields 
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g = TC Z + 4TC 
o o 

a f 

T * k d k 
35- T* 

d& + e(t) (5.2.23) 

o z 

where e is an arbitrary function of t introduced through the 

integration. On substituting equation (5.2.23) into (5.2.12) the 

function e(t) is obtained by using the boundary condition (5.1.12), 

the resulting expression for is then given by 

Pi - 2TC, (zf-zp) + - X*) + 8 c T o 

z £ 

o z 
T* 

dZ . 

(5.2.24) 

Thus for our Bingham substance model the velocity component 

u, V and w are given by equations (5.2.19), (5.2.3) and (5.2.18) 

respectively and the pressure by (5.2.24). However, the 

integrals which appear in these equations cannot be evaluated until 

a and hence T* are known as functions of z and t . As we have 
o 

stated is in general a function of the temperature 6 and t , 

thus it will be again necessary to solve the above mentioned equations 

simultaneously with the energy equations. 

5.3 The energy equations and thermal boundary conditions 

On substituting equations (5.2.3), and (5.2.18), for the 

velocity components v and w respectively, into equation (5.1.8), the 

energy equation for the plastic region becomes, with the aid of 

(5.1.6) and (5.2.7) 
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2 
^ XT* = PeC 

rv ^ O 
dZ 

T*(8(k,t),t)kdkd£ H + l ^ l f ' O ^ z ^ Z p 

o z 
p 

(5.3.1) 

Making use of assumption (5.2.20) the energy equation for 

the solid region (5.1.9) is again expressed in the form 

9^9 98 90 
+ z ; CpCt) (5.3.2) 

The thermal boundary and initial conditions are given by 

(5.1.15) to (5.1.1^) and on substituting the equation (5.2.2) into 

(5.1.21), the Bingham yield criterion which specifies the position 

of Zp may be expressed, recalling definition (5.2.7), as 

t* = 0 on z = z (t) (5.3.3) 
P 

Before we can proceed any further, the yield stress must 

be expressed as a function of temperature 6 and time t . During 

the equilibrium phase we shall follow Bahrani et al [l^ and assume 

a linear relationship between and 9 of the form 

a^(6) = (l-e0)/(l-e) , (5.3.4) 

where e is a constant obtained from experimental data. However the 

above expression cannot be used during phase II since, as is seen 

from equation (5.3.3), with the aid of definition (5.2.7), the 

asymptotic behaviour of for both large and small values of time 

must be proportional to that of the shear stress t . It thus seems 

logical to assume a relationship between , 8 and t of the form 

% = { l ^ G ( t ) , (5.3.5) 
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where the asymptotic behaviour of the function G is proportional to 

that of T for both small and large values of time. In the following 

section a solution to the above system of equations is obtained using 

the heat balance method. Asymptotic solutions for small and large 

values of t are derived first from which a form for G is deduced. 

This form for G is then used throughout the chapter. 

5.4 Heat balance integral solution 

In this section a heat balance integral solution is given, 

similar to that of Section (4.8), which describes the phase II 

portion of the welding cycle, the plastic region being modelled by a 

Bingham substance. 

Introducing the variable n defined by equation (4.6.25) 

into equations (5.3.1) and (5.3.2) leads to 

n a' 

^ ® ^ rx*z^ = PeC z* 
3^2 2 p o p 

T * ( 6 ( k ' , t ) , t ) k ' d k ' d i ! - ' | ^ 

^ 1 ^ • ° ^ ^ ^ ^ (5.4.1) 

and 

2 2 
9 0 39 z 89 , z dz 99 

- = - Pez_ - P j, P n , n ^ 1 (5.4.2) 
9ri* p 9n Fo 9t Fo dt 9r) 

and the function C^(t) given by (5.2.21) may be expressed in terms 

of n 

T * ( e ( k ' , t ) , t ) k ' d k ' d ^ ' . ( 5 . 4 . 3 ) 
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The equation connecting and x (5.2.4) becomes with the 

aid of (5.2.7) 

2 = z 
P 

T*(0(n,t) ,t)dn (5.4.4) 

and the boundary conditions transform to 

(O.t) - 0 (5.4.5) 

0(1,t) = 8g(l,t) (5.4.6) 

38 
(5.4.7) 

0g(n,t) ̂  0 as n (5.4.8) 

and 

X* = 0 on n = 1 (5.4.9) 

Making use of definition (5.2.7) and substituting equation 

(5.3.5) into equation (5.4.1) and integrating the latter with respect 

to n between the limits n = 0 and n = 1 , the heat balance integral 

for the plastic region is 

2 r ' 
as Brxz 

an ("•'> 

39 
2 t -

BG 
( 1 - e ) 

(l-e6)dri 

1 n r 

= PeC z , 
O p ; J 

o o 1 

2 T - ~ i y [l-c8(k',t)) 

1 

k'dk'd£' dn 

z_ , f z dz 

+ ft dt f dE* 
38 ^ 

n-g^ dn . (5.4.10) 
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Again a quadratic temperature profile in the plastic region in the form 

6 = a^(t) + a^(t)n + f 0 < n < 1 (5.4.11) 

is assumed, where a^, a^ and a^ are functions of t only. Using 

condition (5.4.5) we deduce that a^ must be identically zero. The 

remaining two functions are determined in terms of x and G , 

with the aid of (5.2.7) by substituting (5.4.11) into (5.4.4) and 

(5.4.9) giving us the equations 

BGz 
2 = 2TZ -

P (1 

'<z r 

+ 3 ^2^ (5.4.12) 

and 

2T = 
BG 

(1-e) 
l-e(a +a ) 

o Z 
(5.4.13) 

respectively. This pair of linear simultaneous equations is readily 

solved yielding 

2 (3-2TZ^)(1-e) 
a = — + 
o E eBGZ 

(5.4.14) 

and 

^2 = 
3(l-e) 
eBGz 

(5.4.15) 

On substituting equation (5.4.11) into (5.4.10), there results the 

ordinary differential equation 

BrTz 

2a2 + 2 ^ 

4BG 

(1-e) 3 

4PeC z a„ 
o p 2 

105 

* a=F) " 2 f * Fo dl U'o* 3 °2_ 

2z a„ dz 
P 2 __2 
3Fo dt ' 

27 - (i-cso) 

(5.4.16) 
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and using (5.2.7) and substituting (5.4.11) into (5.4.3) the expression 

for C is 
o 

C = 15(1-E) ^ (5.4.17) 

Zp|5[2T(l-e)-BG(l-ea^)3+3BGeaV 

Finally substituting this equation into (5.4.16) and making use 

of (5.4.14) and (5.4.15) leads, after some algebra, to the ordinary 

differential equation connecting t and z 

P z»p p 

Our attention is now turned to the solid region. Again in 

order to use the heat balance integral method we could define a thermal 

layer ^^(t) < z < C(t) such that all the material beyond z = ^(t) 

is at ambient temperature, 0 = 0 , and hence having zero heat flux 

across this surface. The procedure would then follow the lines of 

Section 4.8. However, the algebra becomes tedious using this method 

and as we are looking for a simple approximate solution an alternative 

method is sought. 

It is well known that in most thermal problems the temperature 

decays exponentially over a semi-infinite domain and bearing this 

in mind we assume a temperatuieprofile 6̂  in the form 

b^(t) + b^(t)n ^-n /4Fo ^ ̂  I (5.4.19) 

where b^ and b^ are functions of t only. This equation 

automatically satisfies boundary condition (5.4.8) and in order that 

conditions (5.4.6) and (5.4.7) are satisfied the functions b and 

b^ must necessarily be given by 
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t>o = |[BGZp-2TZp(l-e)J (2Fo-l)+12Fo(l-e)|e /2BeFoGz^ 

and 

= [BGZ -2(6FO+TZ ) ( 1-E)]e /2BeFoGz 

(5.4.20) 

(5.4.21) 

The heat balance integral for the solid region is obtained by 

integrating equation (5.4.2) with respect to n between the limits 

n = 1 and n ^ » giving us 

38 
£ 

9n 
(l.t) = PeZp0^(l,t) 8 dn 

s 

z dz r 98 
n . (5.4.22) 

where use of the fact that 0 -> 0 and 30 /3n 0 as n has 
s s 

been made in the derivation of this result. On substituting equation 

(5.4.19) into equation (5.4 .ZZ) there results the ordinary differential 

equation 

[b -b, (2FO-1)"] Fez (b +b,) , 
^ o 1 ± v o l _ 2 d 

• ' Fo dt 1/(14-F.) 

Fob, 

A f o b erfc — — + 2 •• \ 
2 v ^ 

t/d+F.) 

z dz 
_2 __2. 
Fo dt 

•77^.+ A f o bo erfc 

l2/^j 

bj^(l+2Fo) 

V(kF.) 
(5.4.23) 

Substituting equations (5.4.20) and (5.4.21) into the above, 

leads, after some algebra to a second ordinary differential equation 

connecting z and x, namely 
P 

6F0 
2 + 42 Zp 

dx 
dt 

— dG 
G dt 

dz 

dt 
+ PeFo 2x -

JBG 

(1 

3q 
_3 ^ 
G dt 

= 0 , 

(5.4.24) 

- 2 2 6 -



where the constants , q^ and q^ are defined by 

= 2 + J (2FO-1) erfc^ ^ 

2/Fo 

and 

/IT f 1 ' 
q, - 2 . ( 2 F o - l ) y - e erfc ~ 

q = 4Fo - ^ F o e erfc 
2 i ^ 

(5.4,25) 

Since we are assuming that the thickness of the plastic region 

is initially zero it is evident with the aid of (5.2.4) that the initial 

conditions on (5.4.18) and (5.4.24) are 

z (0) = 0 and lim t -> <» 
P t40 

(5.4.26) 

There is no analyticajsolution to this initial value problem 

and a numerical procedure must be adopted. Again to avoid the 

complication due to the singularity at t = 0 a series expansion, 

valid for small times, to equations (5.4.18) and (5.4.24) must be 

obtained. Before this can be done, however, a small time representation 

for the function G(t) must be known. In view of the fact that G 

must be asymptotically proportional to t for small time, if we assume 

a series for z in the form 
P 

Zp = z^tm + Z2t^™+..., (5.4.27) 

where m is a positive real number, then from (5.4.'f) and (5.49 ) 

it seems likely that t and G should be expressed in the forms 
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, m, 
T = T , t + T + T , t + . . . 

-1 o 1 
(5.4.28) 

and 

-m 
G - S-i' +So+Si (5.4.29) 

respectively. On substituting these series into equations (5.4.18) 

and (5.4.24) there results the pair of identities 

mT 
- 1 

m+1 
3Fo 
3 3m 

"l': 
=1 

BreFoB ""-l8-l 

2(l-e) z,t3- 2m 

("-l8o+To8_l-T_l8_l=2/=l)+' 
PPeFo 

z^t 

1 - 2 — t * + . 

= 1 

m(l-z^T ^) 

m+1 
m 

= 1* 
(T-l=2+ToZl)+(l-T-lZl) 1 2 + ^ 2 

h 8-1 

+ • , 

(5.4.30) 

and 

2^2m (l~2Z2/z^t™+...) + q2Zj^t°'(l+Z2/Zj^t®+...) 

'l' 

, t-lSo 
-m T 

. m 
mq z t 

(l+2z2/z^t +...) + PeFp 
2T 

Zl (1+T,/T_it*+...) 

Bg 
- 1 

(l-e)t 
m 

(l+8o/8_lC™+.'-) 
m 

+ 3q^ - +... (l-g^/g_^t™+...) = 0 , (5.4.31) 

respectively. A close examination of (5.4.30) reveals that for a 

solution to exist, m must satisfy one of the equations 

m + 1 = 3m, m + 1 = 2m or 3m = 1 . (5.4.32) 

If from (5.4.32)2, m = then equating the coefficient of 

t in (5.4.30) yields 
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for which there is no finite solution. If, from (5.4.32)2* m = 1 

we have on equating the coefficients of t ^ in (5.4.31) 

then 

^ = 0 , (5.4.34) 

=1 

which again has no finite solution. We thus deduce that m = , 

from (5.4.32)^ . Using this result in (5.4.30) and (5.4.31) and 

-3/2 -1 

equating the coefficients of t and t respectively, results 

in a pair of equations connecting and , namely 

and 

= 1 

Although the first terms and x ^ are sufficient to determine 

starting values for the numerical method we also determine the next 

pair and . These are then compared with their counterparts 

obtained from the series solution obtained in Section 5.7 and some 

assessment of the accuracy of the approximate method is made. 

- 1 ~2 

On equating the coefficient of t and t in equations 

(5.4.30) and (5.4.31) respectively, recalling that m = , we obtain 

the pair of linear algebraic equations 

and 

h^Zg + hgT^ = h^ (5.4.37) 

^4=2 * " ">6 
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where the constants h^, h^, h^, h^, h^, and h^ are defined by 

h, = 

h^ = 

h^ = 

9Fo BrB£FoT_^g_^ ^ 

3 2 ( 1 - E ) Z , 

BrBeFog_^ 

2(l-e) •" r~ 

2^1 ' 

9PeFo 
(1-T_j^z_^)g^ BrBfFoT_^g 

l^o 
3 7z, 2g.i 2(l-e) 

(5.4.39) 

and 

h, = q. 2r . ! ! i i 
-1 (l-e) 

12Fo 

Ml 
h^ = + Qi 

^6 = 
^ 3 q^z^B qgZiT.i 

8_1 (l-e) 
- PeFo 2 T 

<5.4.40) 

Bg-n 

-1 (l-e) 

Using (5.4.35) to eliminate T_^ from (5.4.36) leads to, after some 

algebra, 

4l*g-l 

2 ( 1 - E ) 
1 -

2(1-E)' 

BrB^SFog^T 

3^3 2 6q^(l-e) 

A - - f ^i" BrBEg_^ 1 
^Fo = 0 (5.4.41) 

Taking Fo = 5 we see from (5.4.25) that q^, q^ and q^ are all 

2 

positive, it then follows that the coefficients of z^, z^ and unity, 

in the above, are all negative. It is then evident by examination of 
3 

the coefficient of z^ that there is no positive solution for z^ 

when Br does not satisfy the inequality 

Br > 
2(1-£)" 
2 2 

B gl^eFo 

(5.4.42) 
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Let us now examine the nature of the roots of (5.4.41) when (5.4.42) 

3 . 

is satisfied by Br . (That is, the coefficient of is positive). 

Let us firstly assume that all three roots are real and denote them 

by and . It then follows from the general theory of 

cubics that 

r,r„r 
_ 12FO(1-£) 

1 2'3 q^Bg_^ 
1 -

2(1 - E ) ' 
2 2 

BrB g_^eFo 

> 0 

and 

(5.4.43) 

- -
12q^(l-e) 

2 2 
Brqj^EB g_^ 

2(1 - E ) ' 
2 2 

BrB eFog_^ 

< 0 . (5.4.44) 

From (5.4.43) we deduce that there are one or three positive roots. 

However (5.4.44) reveals that there is at least one negative root. We 

thus conclude that if there are three real roots then only one is 

positive. 

Let us now consider the event of there being two complex 

conjugate roots and one real root and denote them by and 

respectively. We can then write. 

1 -
2(l-e) 

2 -1 

2 2 
BrB eFog_^ 

> 0 (5.4.45) 

from which it is immediately obvious that F^ is positive. 

We finally conclude that there is no solution when the 

inequality (5.4.42) is violated by Br but when it is satisfied a unique 

solution for exists. 

The coefficient is readily obtained in terms of 

from equation (5.4.35) yielding 
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"-1 
1 g Z S J — (5.4.46) 

BrB6Fog_^ 

The solution to (5.4.37) and (5.4.38) is readily obtained 

by Cramer's rule [^35 giving 

Zg = 013^5-^2^^] /A (5.4.47) 

and 

= [h^h^-h^h^/A (5.4.48) 

when the determinant A is defined by 

A = h^h^ - hgh^ . (5.4.49) 

The full numerical solution to (5.4.18) and (5.4.24) is delayed 

until Section 5.6 since before this can be obtained it is necessary 

to specify explicitly the function G(t) for all time. As we have 

already stated we must choose a form for G that is asymptotically 

proportional to x for both small and large values of t . We 

have already obtained an asymptotic solution for t valid for small 

t thus we now require a solution for large t and this is developed 

in the following section. 

5.5 Asymptotic solution for large t . 

In this section, the asymptotic solution for large t , to 

equations (5.4.19) and (5.4.24), is developed. This is used to 

determine the asymptotic behaviour of G and to give a qualitative 

estimate of the time taken for the system to reach steady state. 
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Let us assume the following forms for z^, t and G 

'p - 'p. + ' (5.5.1) 

T = + T^(t) , 

and 

(5.5.2) 

G = 1 + g(t) , (5.5.3) 

where z and x are the steady state values of z and t 
poo 00 •' P 

respectively and z^, and g are the remaining transient terms 

for which at large time it is appropriate to assume 

Izfl « l^pool' I??! « 17*1 and |gl « 1 . (5.5.4) 

Substituting (5.5.1), (5.5.2) and (5.5.3) into (5.4.18) and 

(5.4.24) and expanding the resulting equations in small quantities, 

results in the identities 

dt 
^ (l-3z^/z +...) + 
z 

BrBEFoT^ 

2(l-e)Zp (1+TT/T.)(l+S)(l-ZT/Zp_+. . ) = 

^ p* 
(l-=T/=p.+''') 

(l-g+...) 
dg 
dt 

(5.5.5) 

and 

^ 393(1-8^...) + qgZpm (1+ZT/Zp.) 

dt -T«(l+TT/T=)(l-g-...) If 

dz^ 

^1 d T + 
B(l+%) 
(1-e) 

= 0 

( S - S . fc) 
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5.5.1 Steady State Solution 

Equating the steady state terms in the identities (5.5.5) and 

(5.5.6) leads to the pair of algebraic equations 

3 BrBeroo ^ 9Pe 
2(l-e)z - ^^2 

p o o ^ p C-O 

and 

(5.5.7) 

+ 2Pe 
J " ~ 2(l-e)_ 

= 0 (5.5.8) 

respectively. Using (5.5.8) to eliminate from (5.5.7) results, 

after a little algebra, in the quadratic 

V 
B ' .2 . 9Pe _ Bre B 

2(l-e) p o o 7 poo Pe a(l-e) 
+ 1 (5.5.9) 

This quadratic is readily solved yielding the solution 

l8Pe(l-E)' 

7BrB^e 

+ 2 81Pe^(l-e)^ 3(1-£) 

49Br^B\^ 

1_ + 2(l-c) 
Pe BrBe 

(5.5.10) 

where the positive square root is taken since must, of course, 

be positive. The expression for is then obtained in terms of 

from (5.5.8) giving 

~ 2(l-e) 
(5.5.11) 

PeZ 

In Section (5.8) an exact solution to the steady state problem 

is derived which is valid for small values of Pe only. It is 

thus thought useful to give here an expansion of (5.5.10) for small Pe, 
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for later comparison with its exact steady state counterpart. 

On expanding (5.5.10) for small Pe one obtains 

Z ~ 2/ 
p o o 7 

3(1-£) 
2B 

i _ + (1-E) + 

/Pi 
BrBe 

(5.5.12) 

and substituting this expansion into equation (5.5.11) we obtain 

T Pe/Bre +... (5.5.13) 

We also present here for comparison with equations (4.11.11) and 

(4.11.12) for the viscous fluid model, the asymptotic expansions 

of (5.5.10) for small and large values of Br. For small values of 

Br we have 

(5.5.14) 

and the result for large Br is 

^ 2 + 2(1-e) 
^ 2BPe BrBe 

3Pe(l-£) 9Pe(l-e) 
2B 7B 

+... (5.5.15) 

5.5.2 First Order Transient Solution 

From the remaining time dependent terms in (5.5.5) and (5.5.6) 

2 2 

we have, on neglecting terms 0{z^/z^J) , a pair of linear, first 

order, ordinary differential equations, namely 

dx 

dt ̂ + =0^7 + *1=T = + ^1 if (5.5.16) 
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and 

dt 

dz^ 

is 
3 dt 

(5.5.17) 

where the constants e^, e^, e^, e^ and e^ are defined by 

and 

BrBeFo 

2(1-:):,. ' "1 
e, = 

2PeFo 

2 ^2^* 
e„ = ' ^3 = 

9Fo ISPeFo 

4 * T 3 
p̂oo 

12Fo 

Go?. 

42=^ 

2q, 
e, = 
'' 1 2 V 

T -
B 

™ 2(l-^e) 

^ (5.5.18) 

and the constants f^, f^, f^ and f^ are defined by 

fo " - V c o ' 4 = (Zp-t. - D/Zp. 

^ (5.5.19) 

*2 p° 12 p° 

We recall here that we are seeking a form for G that is 

asymptotically proportional to T for large t , hence we require 

a form for g that behaves like for large t . It thus 

seems logical with reference to equations (5.5.16) and (5.5.19) 

to choose g to have the same functional form as the complementary 

function of . 

Following standard procedure we assume complementary functions 

to T and z of the forms 

= ye and =t>e (5.5.20) 
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Substituting these two expressions into equations (5.5.16) and 

(5.5.17) leads, after a little algebra to the pair of homogeneous 

linear simultaneous equations 

and 

(e^-n)? + e^Y = 0 

(e^-n)? + (e2-e^n)y = 0 

(5.5.21) 

(5.5.22) 

Clearly the above equations have a non-trivial solution only 

if the determinant of the system is zero. Thus n must satisfy 

the quadratic 

e^n + (e^-e^-eQe^)n + e^e^-e^eg = 0 . (5.5.23) 

This quadratic is readily solved yielding the pair of solutions 

and 

*1 = %1 - ^2 

^2 ^1 * ^̂ 2 ' 

(5.5.24) 

(5.5.25) 

where and are defined by 

"l ° ['4=0+=3-ei]/2e4 

and 

"2 - / 

(5.5.26) 

Using computed values of and numerical values of 

n^ and n^ were calculated, for various values of Pe and Br, 

using equations (5.5.24) and (5.5.25) with the aid of (5.5.18) and 

(5.5.26). The Bingham number was taken as B = 5.0 and following 

Bahrani [jL^ we chose e to give zero yield stress at melting temperature 
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resulting in e = 0.4. 

It is found that n̂ ^ and n^ are both real and positive 

for all values of Br and Pe and n^ is obviously always smaller 

than n^ . A plot of these quantities against Br for various 

values of Pe is given in Figure 5.1. 

Since n^ is in most cases much smaller than n^ we deduce 

that and are asymptotically proportional to expQ-n^t] for 

large time. Hence assuming g to have the same functional form as 

"Cj, we now write 

-n t 
g e . (5.5.27) 

Furthermore , recalling equation (5.4.29) we see that for 

small t 

G = l//t (5.5.28) 

Thus on recalling definition (5.5.3) one deduces that a 

suitable form for G satisfying both (5.5.27) and (5.5.28) is 

-n. t ^ 
G = (1-e ) (5.5.29) 

Although there may be other representations for G equation 

(5.5.29) is simple and possesses the right asymptotic properties 

for small and large time. Expanding (5.5.29) for small t the 

comparison of the resulting expression with the series (5.4.29) 

reveals that 

= " - 1 = l//ii^ and g^ = 0 . (5.5.30) 
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Also on expanding (5.5.%?) for large t and using the 

definition (5.5.3) it is seen that 

g - Y e ^ . (5.5.31) 

Having now established a suitable form for G we could go 

on and calculate the particular integrals to equations (5.5.16) 

and (5.5.17). However, since these particular integrals are not 

really required, and even if we obtained them we could not give 

a complete solution, since we have no conditions from which to 

determine the unknown constant in the complementary functions, it 

is thus pointless taking this solution any further. 

Although the main objective of this section (that is to obtain 

a form for G) has been achieved, it is thought useful to give 

with the aid of the above results, a simple model from which the 

duration of phase II can be obtained and this is done in the following 

subsection. 

5.5.3 Estimate of time taken to reach steady state 

In this section we present a simple model to illustrate the 

qualitative effect of the only two control parameters, Br and Pe , 

on the time taken to reach equilibrium. Although the exact form 

for is not known, its functional form is known and as in 

Section 4.11 we assume 

" - V ® " (5.5.32) 

Following Section (4.11) we shall assume here that equilibrium 

has been reached 
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when the thickness of the plastic region has reached 95% of its 

asymptotic steady value. The time taken to reach equilibrium te , 

is thus given by 

te = — ln20 , (5.5.33) 

"l 

and a plot of this quantity against Br for various values of Pe 

is presented on Figure 5.2. 

Comparison of the results in Figure 5.2 with those in Figure 4.10 

reveals that the models are very different for small values of Br. 

In the case of the viscous fluid model the time taken to reach 

equilibrium approaches zero as Br ^ 0 whereas for the Bingham 

substance te -> «> as Br ->• 0 . However for larger values of Br 

we notice that the difference is much smaller. 

5.6 Results and Discussion 

In this section the plots of and T against time are 

given for various values of Pe and Br. 

Using the computed values of n^ and n^ and equation (5.5.30) 

in (5.4.42) it is found that this inequality is satisifed for all 

Pe and Br used. We thus deduce that there is a unique solution 

to (5.4.37). This is readily calculated using the Newton-Raphson 

method and presented together with the corresponding values of , 

given by (5.4.43), in table 5.1. Using these values and a suitably 

small starting value for t the pair of ordinary differential 

equations (5.4.18) and (5.4.24) were readily solved using the 
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Br 
Pe = 0 . 1 Pe = 0 . 5 

Br 
=1 f - 1 =1 T - 1 

0 . 1 0 .915 5 .908 1.572 4.479 

0 .2 0.902 3.415 1.553 2.796 

0 . 3 0 .897 2 .421 1.554 2 .071 

0 . 4 0 .895 1.880 1 .558 1.657 

0 . 5 0 .893 1.538 1.562 1.386 

0 .6 0 .892 1.302 1.567 1.193 

0 .7 0 .891 1.129 1.570 1.049 

0 . 8 0 .890 0.996 1.574 0 .936 

0 .9 0.889 0.892 1.577 0.846 

1 .0 0.889 0.807 1.57$ 0.772 

2 . 0 0 .887 0.415 1.593 0.415 

5 . 0 0 .885 0.169 1 .603 0 .175 

Pe = 1 ,0 Pe = 2 . 0 

jjr 

^1 T-1 =1 " - 1 

0 . 1 1.936 3.886 2.236 3 .511 

0 . 2 1 .943 2 .443 2.326 2.177 

0 . 3 1.959 1.824 2.389 1.619 

0 . 4 1.977 1.467 2.437 1.302 

0 . 5 1 .993 1.232 2 .480 1.094 

0 . 6 2 .008 1.065 2.519 0 .945 

0 .7 2.022 0.939 2 .550 0 .834 

0 . 8 2.034 0 .840 2 .580 0.747 

0 .9 2 .045 0 .761 2 .608 0.676 

1 .0 2 .055 0.696 2.634 0.619 

2 . 0 2 .120 0 .378 2.812 0.337 

5 . 0 2.132 0 .161 3.032 0 .144 

Table 5.1 
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Runge-Kutta method and these results are presented in Figures 5.3 

and 5.4. 

Comparison of the traces of T given in Figures 5.4 (a) and (b) 

with the corresponding traces from the viscous fluid model, Figures 

4.7(a) to (d), shows that, apart from the peculiar dip for small 

times, the results are qualitatively similar, ie. % decreases 

with increasing values of Br and increases with increasing values 

of Pe. However, comparing Figures 4.6(a) to (d) we see that the 

plots of Zp do not agree qualitatively. Although in both cases 

Zp decreases with increasing Pe the effect of increasing Br 

leads to an increase of z for the viscous fluid model but has 
P 

the opposite effect with the Bingham model. This difference is 

further illustrated by comparing the asymptotic expansions of 

for small and large Br, (5.5.14) and (5.5.15) respectively, with 

their counterparts from the viscous model (4.11.11) and (4.11.12). 

We see that for small Br z ~ Br in the case of the viscous 
poo 

model whereas z^^ ~ 1/Br for the Bingham model. Also for large 

Br z /Bx in the viscous case but z 'v constant in the 
poo poo 

Bingham case. 

5.7 Series Solution Valid for Small Time 

In this section an analyticulsolution, valid for small time only, 

to the problem of section (5.4) is developed. The governing equations 

and boundary conditions are given, in terms of the variable y, by 

equations (5.4.1) to (5.4.9). The appropriate form for G should 

be obtained by developing an exact analytic solution for large time 
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and following the lines of Section 5.5. However, this would be very 

tedious and it is thought more desirable to use the form for G , 

derived from the approximate solution, given by (5.5.30). The 

complication of the nonlinearity of the above mentioned system is 

reduced, as in Section 4.9, by assuming series expansion in integral 

powers of /t . for 6, 9s, and x in the forms 

^^(n) + /t 6^(n) + 0(t) , (5.7.1) 

and 

~ ^ + 0(t) , 

z = z^/t + Zgt + 0(t^^^) 

T = ^^//t + Tq + 0(t^/^) 

(5.7.2) 

(5.7.3) 

(5.7.4) 

On substituting equations(5.5.30) and (5.2.7) into (5.4.1) and 

(5.4.2) and substituting the above series into the resulting expressions, 

and expanding in small quantities, one obtains the pair of identities 

" 2 0 

dn^ dn 
& r + (2=1=2^-1 =1^0)^+-

2T 
- 1 

/t 
+ 2tq +...-

(l-e)n| /t 

(I-eGq-eB^ /t ...)(l+n^t/4+...) 

n 

= Pe(z^t^+...)C^ 

0 1 I -

2t B(l-ee -£6 Vt...) 

— + 2t^+... — r 
/F (l-e)n| / t 

X (l+n^t/4) k'dk'd£' + - ^ (z^t+2z z t^/^+...) 
Fq 1 1 2 

01 

275 
+... F, 

r 2 
z^ 3z,z 

2 
+ /F 

de-

dn 
+ • • • 0 3 n 31 , 

(5.7.5) 
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and 

2 2 
d 0 d e 

i s + / t + . . . = - P e ( z ^ / t + z ^ t + . . . ) 

dn dn 

de 
so . /f-

de 
si 

dn dn 
+ ... 

- i - (z2t+2%i22t3/2+...) 
si 

2/t 

+ • • • 
l _ 

F, 

de ^ ^ s i 

. dn 

, n ) 1 . (5.7.6) 

Similarly, the expression for C^, equation (5.4.3), and equation 

(5.4.4) are expanded, resulting in 

C = -
o : p 7 2 

+.., 

1 &' 
r f 

0 1 
/F 

B(l-e8q-E6i /t -...) ^ %/*) 

r ~ 2.(l-e)n| /t 

k'dk'd&' (5.7.7) 

and Z ̂  + C Z I -f T-\ Z z) + 

B(z^/t + z^t +...) ) 

2(1-E)n* /t 
(l-eeQ-eS^/t -...)(l+n^t/4+.. .)dn = 1 (5.7.8) 

and the boundary conditions (5.4.5) to (5.4.9) expand to 

de de 
_ (0) + / F _ (0) +... = 0 , (5.7.9) 

0 
(1) + /t 6^(1)+. )go(l) + v/t 8g^(l) + ..., (5.7.10) 
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de. d8. d8^_ de 

(5.7.11) 

)gQ(n) + / t 8g^ (n ) + . . . -^ 0 as n -» (5.7.12) 

and 

2T 
- 1 

/t 
+ 2T^+... 2-t (1-E8 (1)-E8 (1) /t -. 

(l-E)n* /E ° ^ 
.)(1+n^ t/4 +...) 

(5.7.13) 

Equating the coefficient of like powers of t in the above 

identities leads to a set of subsystems of ordinary differential 

equations, the first two of which are given and solved here. 

5.7.1 First Order Subsystems 

On equating the coefficients of the lowest order non-zero terms 

in t , in the above system of identities, one obtains after some 

rearrangement 

and 

dfe de % 2 

dn 0 

- T 
- 1 

, 0 ^ n $ 1 

d^e de 
sO 

dn 

sO ^ "1 
2 2F_ " dn 

= 0 , n % 1 

(5.7.14) 

(5.7.15) 

where and T_^ are related through 
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Z, T 
^2=1 

1-1 E 

and the boundary conditions are 

(l-e6Q)dn = 1 

0 

(5.7.16) 

de 
0 

dn 
(0) = 0 , (5.7.17) 

- "so'" • 
(5.7.18) 

GggCn) -^0 as n 

and 

-1 E 
i-ee^d) 

(5.7.19) 

(5.7.20) 

(5.7.21) 

In the above the constant is defined by 

^2 = 
Be 

2(l-e)n 

(5.7.22) 

Following standard procedure we split the solution for 0^ into two 

parts; the complementary function 8^ and the particular integral 

9q and write 

P 

3o - Go + Go . 
c p 

(5.7.23) 

By inspection of equation (5.7.14) the particular integral is readily 

seen to be 

3q 1/e - ' 

P 

(5.7.24) 
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As there appears to be no closed form analytic solution to the complementary 

function of (5.7.14) a series solution in integral powers of n of 

the form 

^0 = Xo % ' with . 1 , 
c n=0 

(5.7.25) 

is sought, where the a^'s and Xq are constants. On substituting 

(5.7.25) into (5.7.14) and equating the left hand side of the latter to 

zero, there results the identity 

n(n-l)n" ^ + 2 ^ nn" + 
0 

0 (5.7.26) 

On equating the coefficient of in the above identity we deduce 

that the a 's are connected by the difference equation 
n r 2 

nz^ 2 

2 + B r r 2 ^ - l ^ l 
1- 0 

n+2 (n+2)(n+1) 
a^, n % 0 (5.7.27) 

with 

^0 = 1 

Using boundary condition (5.7.17) we deduce that 

a^ = 0 , (5.7.28) 

which reveals by way of equation (5.7.27), that the a^'s are zero 

for all odd values of n . Thus the general solution for 9^ may be 

written with the aid of (5.7.23), (5.7.24) and (5.7.25) as 

'o • Xo I , 0 « n s 1 
n=o z 

(5.7.29) 
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where the a„ 's are generated by 
2 

nz^ 2 
+ Brr2T_iZi 

2n+2 2(n+l)(2n+l) °2n 
, n 5 0 (5.7.30) 

with a^ = 1 . Using conditions (5.7.16) and (5.7.21) we obtain the 

two equations connecting Xq» and 

h V o 2 n n • ^ 
(5.7.31) 

and 

"O L " z n ' 0 
(5.7.32) 

n=0 

respectively. 

From (5.7.31) it is clear that Xq ^ 0 thus we deduce from 

(5.7.32) that 

I S" - 0 
n=0 

2n 
(5.7.33) 

It is seen from equation (4,6,19) in Section 4.4 that the general 

solution of (5.7.15) satisfying condition (5.6.20) is 

8 _ = D erfc 
sO 

(5.7.34) 

The constant D is obtained by substituting (5.7.29) and (5.7.34) 

into condition (5.7.18) and making use of (5.7.30) which results in the 

expression for 0^^ 
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sO 
I 

E 

- 1 
erf c 

V 

2 ^ 

erfc 

2 - ^ 
, n ) 1 (5.7.35) 

On using the boundary condition (5.7.19) we have a further condition 

connecting 6^, and , namely 

<0 ^ na 
n-0 2" 2/;?: 

0 L-

T_^ l -ZT/4F^ 

G r. 
' 1 0 / ^ 

e / erfc 

2 / ^ 

(5.7.36) 

Using equation (5.7.31) to eliminate Xq from (5.7.36) we have 

na 
2n 

n=0 
2n. 

n-O 

I 

E 

-zJ/4F 
e /erfc(z^/2/F^) 

(5.7.37) 

The two transcendental equations (5.7.33) and (5.7.37) can now be 

solved numerically for t ^ and using a similar method to that of 

Section 4.5. It was found that about the first fifteen terms were required 

in the sumations to obtain accuracy to four decimal places. The results 

for and are presented for various values of Pe and Br in 

Table 5.2. By comparing these figures with the corresponding figures 

obtained by the heat balance method which are presented in Table 5.1, 

the accuracy of the approximate method can be assessed. It is noticed 

that the error increases as both Br and Pe become larger. The smallest 

error in the figures presented is about 5%, ocurring when Pe = 0.1 and 

Br = 0.1 but for Pe = 2.0 and Br = 5.0 the error is as large as 

55%. 
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Br 

Pe=0.1 Pe=0.5 

Br 

= 1 ^-1 = 1 T-1 

0.1 0.800 6.258 1.334 4.900 

0.2 0.785 3.653 1.306 3.114 

0.3 0.779 2.602 1.299 2.333 

0.4 0.776 2.026 1.297 1.882 

0.5 0.774 1.660 1.292 1.584 

0.7 0.771 1.221 1.297 1.210 

1.0 0.769 0.875 1.298 0.899 

2.0 0.766 0.451 1.299 0.489 

5.0 0.764 0.184 1.300 0.208 

Br 

Pe=1.0 Pe=2.0 

= 1 T-1 = 1 ?-l 

0.1 1.594 4.407 1.798 4.084 

0.2 1.573 2.861 1.816 2.659 

0.3 1.568 2.181 1.827 2.044 

0.4 1.568 1.783 1.836 1.686 

0.5 1.569 1.517 1.844 1.445 

0.7 1.574 l.=79 1.858 1.138 

1.0 1.581 0.892 1.874 0.875 

2.0 1.595 0.502 1.911 0.510 

5.0 1.608 0.222 1.952 0.236 

Table 5.2 
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Having now obtained values for and the constant Xq 

can be obtained using equation (5.7.31). The temperature profiles can 

then be obtained using (5.7.29) and (5.7.33) for the plastic and solid 

regions respectively. 

In the following subsection, the solution to the second order 

subsystem is developed. 

5.7.2 Second Order Subsystem 

Substituting equation (5.7.7) into equation (5.7.5) and equating 

the terms in ^ results in the ordinary differential equation 

d^ 0 
L + J -

dn 2F, 
^ ^ 4 - 2F 

Brz, ^ (l-e8Q)(2z2T_i+ZiTo)-2t_i(z2T_i+Zito) 

1 a 

- Fez, 

n z 

0 1 

•'-I - r 
kdkdj l 

dn 
0 1 

T_1 - E -

3=1=2 

kdkdi l ^ dn ' 
0 

(5.7.38) 

where the constant is defined by equation (5.7.22). 

Similarly equating the coefficient of /t in equations (5.7.6) 

and (5.7.8) yields 

d^e 
si de 

si 

dn' 2FQ dn 2F_ "si 
= - Z-, 

3z. 

2 F 
0 

de 
sO 

dn 
(5.7.39) 

and 
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(=1^0 * (l-eeQ)dn - 8^dn 

^ 0 

= 0 . (5.7.40) 

The boundary conditions obtained from the coefficient of /t 

in (5.7.9) to (5.7.13) are 

f ] 
dn (0) = 0 , (5.7.41) 

G]/!) = 8gi(l) , (5.7.42) 

d8, de , 

— (1) = ^ (1) , 
dn dn 

(5.7.43) 

8^(n) 0 as n -» 

and 

(5.7.44) 

TQ . (5.7.45) 

On substituting the expressions for 6^ and 6^^ , given by equations 

(5.7.29) and (5.7.35) respectively, into equations (5.7.38) and (5.7.39) 

respectively the latter become; 

d^e 1 =1 t 46 

dn 

___ __1 + ,2 
2Fo dn 1 

1 
2Fo 

Brz, 
^-1 ^2*0 ^ *2n^ 

n=0 

2n 
(2=2^-1 + ZltQ) - 2T_i(z2T_l+:iTo)f+ 

ZPez^Xo 
v *2m'̂  

2m+2 

- I 
2m 

mio (2m+2)(2m+3) (2m+2) % / % 
2n 

n=0 n=0 
2n+3 

3=1=2X0 -
I n 

2n 
(5.7.46) 
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and 

. 1 n 
4*31 =1 

= r. 

dn 
2 2Fo ' dn 2Fo si 1 

^^2 
P* + 2Fb * 

2 2 
-ẑ n /4Fo 

(5.7.47) 

where the constant is defined by 

^ = 
VttFO 

ex 
1 -

- 1 erfc(z^/2/Fo) (5.7.48) 

Similarly substituting (5.7.29) into (5.7.40) yields 

=1^0 + Zz/Zi = =1^2 e^dn . (5.7.49) 

Defining the constant by 

00 a 

I 2n 
0 (2a+3) , 

(5.7.50) 

and noting that 

-

2m+2 

I 
m=0 

V 2n Y J 2n+2 
I aa n = I d__n (2m+2)(2m+3) ""Zn ' -2n 

(5.7.51) 

provided that the coefficients d^^ are given by 

*2n (2j+2)(2j+3) , n ) 0 , (5.7.52) 

equation (5.7.46) may be reduced to 
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2 2 
dTO de 

+ r̂rr- n + m. 

dn 
2 2Fo '' dn 11 0 • "5 I "21," 

n=0 

2n 

z I (m +Iim ) a + I 
n=0 n=0 

2n 
(5.7.53) 

whei a the constants m^, and are defined by 

and 

^ = ^1 Brx -
-12 2Fo ®2 = Brzi?-! ' 

*3 " 29^=1X07-1^2 ' 

= Brz^XoFg , 

m, = 
3=1X0 

4 Fo 

™6 r 

ZPez^Xo 

0 

2p*=iXo ; 

m p I 

0 m=0 

2m 
2m+2 ' 

(5.7.54) 

Denoting the complementary function and particular integral by 9^^ and 

respectively we write 

^ = 8lc + Gip . (5.7.55) 

The form of the left hand side of equation (5.7.53) differs from 

2 
the left hand side of (5.7.14) in that the term Brr_^z^T2 in the latter 

is replaced by m^ , thus the form of the complementary function to 

(5.7.53) can be obtained from (5.7.25) and (5.7.27) by replacing 

2 
®^^-1^1^2 ™1 giving us 

'ic = *0 with *0 = ^ ' 
n=0 

(5.7.56) 

257 -



where the e^^s are generated by the recurrence relation 

-n+2 

z^n/2Fo+m^ 

(n+i)(n+2) 
e^, n 5 0 , (5.7.57) 

and is a constant. It is convenient to divide the solution to the 

particular integral into three parts, thus 

'ip • "o * "2 ^ J "21."" • (5-'-58) 
^ n=l n=l n=l 

2n 2n 

On substituting this expression into equation (5.7.53) we obtain the 

identity 

^0 i . 

-2 *=1 
2n(2n-l)n + 

n=l 

-2 *=1 
2n(2n-l)n + — + m 

r O 1 

n=l 

-2 *=1 
2n(2n-l)ri + 2n 

2n 

nu+m I 
n=0 

*2n^ 
2n 

- Zg X (m2+nm4)a2nn2" + 
n=0 n=0 

*6d2n^ -*7**2n 
2n 

(5.7.59) 

It is now easily deduced from the above that the coefficients 

^2n' ^2n ^2n be generated by the difference equations 
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PZn+Z 

(Zl*/Fo+*l)P2n+*5*2n 

(2n+l)(2n+2) 
, n i 1 

Pg = -(m2+m^)/2 , 

(5.7.60) 

*2n+2 (2n+l)(2n+2) 
, n 5 1 

q? = 0^/2 

(5.7.61) 

and 

2n+2 (2n+2)(2n+l) 
, n % 1 

( 5 7. 6l) 

Substituting equations (5.7.56) and (5.7.58) into equation (5.7.55) 

and applying the boundary condition (5.7.41) to the resulting expression 

it is clear that the coefficient e^ is zero. It then follows from 

the recurrence relation (5.7.57) that 

®2ntl - 0 . n 0 . (5.7.63) 

In view of this result the general solution for 6^ may then be expressed, 

with the aid of (5.7.56), (5.7.58) and (5.7.55), in the form 

'l • *0 "2n"*" * "O \ * "2 ^20"^" , » « 1 « 1 . 
n=0 n=l n=l n=l 

2n 

where the e^^'s are generated by 

j^z^n/Fo+mJ, 
2n 

2n+2 (2n+l)(2n+2) 
, n 0 

^0 = 1 

(5.7.64) 

(5.7.65) 
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Substituting equation (5.7.64) into conditions (5.7.40) and (5.7.45) 

leads, after some algebra, to a pair of linear equations connecting 

TQ, z and , namely 

"i^o * h ' 2 * h * o • \ 

(5.7.66) 

and 

(5.7.67) 

where the constants k^, , k^, k^, k^, k^, ky and kg are defined 

by 

kl = =1 1 + r, I 2n 
2 2n+l 
n=l 

(5.7.68) 

>̂ 2 = 
^ ^ i x ^ 

(5.7.69) 

' z ' l n t 2 - ' ° ' 
r z y — 
2 1 nil ' 

(5.7.70) 

kg - 2 + ZFg % Pz* , - 2 r 2 I qg^ , ( 5 . 7 . 7 1 ) 
n=l n-i 

k? " 2^2 I egn and kg = - Zr, % (5-7.72) 
n=0 n=l 

The solution to equation (5.7.47) satisfying the boundary condition 

(5.6.43) is readily seen to be 
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^sl 
2/F^ 

erf c 
2/Fo 

2 2 , , _ 
^ -z^n /4Fo 

— e PeFo + z^n 

2 2 , . _ 
-z^n /4Fo 

(5.7.73) 

On substituting equations (5.7.64) and (5.7.73) into the condition 

(5.7.42) we deduce after some algebra that the constant is given 

by 

si 
n=0 

- + ^0 ^ P? + Z' '2n 
n=l 

2n "2 

-z^/4Fo 

I + —? PeFoe 
1 2n 

n=l z 

- Z ^ / 4 F O 
(5.7.74) 

where the constant is given by 

I = — — erfc(z /2/i^) 
1 2/EG 1 

^ -z^/4Fo 
— e (5.7.75) 

Finally making use of the condition (5.7.43) we obtain, with the 

aid of equations (5.7.64), (5.7.73) and (5.7.74), after some algebra, 

a further linear equation in z^, and , namely 

+ ^10=2 + ^11*0 - ki2 , (5.7.76) 

where the constants kg, k^^, k^^ and k^g are defined by 

KG = 2 I np ^ ^ R F C ( Z / 2 / F O ) I p , ( 5 . 7 . 7 7 ) 
^ n=l ^ ^ n=l 

klO - 2 I »<l2„ 
n=l 2£^v'Fo 

- — erfc(z. /2/Fo) 
CO r -z /4Fo 
V 1 1 

42n + -2 * 
n=l z^ 

^ ^ -ZT/4FO 

2Fo 2 
^1 

, ( 5 . 7 . 7 8 ) 
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and 1 U 

(5.7.79) 

1 

I „ = -2 I nr„ + erfc(z /2i^) 

n-l ^ 

00 r.PeFo -z,/4Fo 

r^Pe -z^/4Fo 

— e 

(5.7.80) 

Using Cramer's rule we deduce from equations (5.7.66), (5.7.67) 

and (5.7.76) that z^, and ip̂  are given by 

^2 " 1 [ki(kgkii-k^2k7)-k^(k^k^i-kgk^)+k2(k^k^2-kgkg)], (5.7.81) 

^0 * [^4(^6^1l"^10^7)"^2(^8^1l"^12^7)*^3(^8^icr^l2^^)]' (5.7.82) 

and 

A [^1^^6^12 ^10^8)"*^(^5^12"^9^8)*^4(^5^10"^9^6^j (5.7.83) 

where the determinant A is given by 

A = k^(k^k^^-k^Qk^) - k2(k^k^j^-kgk^)+k^(k^k^Q-kgk^) (5.7.84) 

Values of and computed from equations (5.7.81) and (5.7.82) 

respectively are presented and compared with the corresponding values 

from the approximate solution, given by (5.4.36a) and (5.4.36b), in 

Figure (5.5). It is noticed from these plots that the agreement is very 

poor for Br < 1 but for Br in the range 1.0 < Br < 3.0 the approximate 

method is quite good. 

The heat balance method does not seem as accurate here as for the 

case of the viscous fluid. This is probably due to the form shown for 
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Figure 5.5 (a) Plots of against Br, (b) Plots of against Bt. 
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the temperature profile in the solid region and it is thus felt that 

the introduction of the thermal boundary layer is the more accurate 

approach. 

5.8 Steady State Series Solution 

In this section we solve the partial differential equations (5.1.6) 

and (5.1.9) subject to the boundary conditions (5.1.IS) to (5.1.1^), 

(5.2.4) and (5.3.4) for the steady state case. Firstly we derive the 

steady state form, of the above mentioned system, which is obtained 

by taking all quantities to be independent of time; consequently all 

derivatives with respect to t vanish leaving us with a system of 

ordinary differential equations. 

Denoting steady state quantities by a suffix, «> , the steady state 

form of equation (5.1.8) may be expressed, with the aid of equations 

(5.2.7), (5.2.18) and (5.3.5) in the form; 

d e Brt 

dz 

B(l-ee ) 
It 

(1-e) 

z £ 

= PeCo 

6 Z p o o 

de 

2T -
(1-e) 

kdkd& , 0 $ z ( zp^ (5.8.1) 

where the constant Co^ , obtained from equation (5.2.21) with the aid 

of (5.2.7) and (5.3.5), is given by 

£ r B[l-ee (k)] 

C = - 1 
Qoo 

0 zp„ 

2% - ( 1 - E ) 
kdkd& . ( 5 . 8 . 2 ) 

Similarly the steady state form of equation (5.1.9), again assuming 

that equation (5.2.20) holds, is readily seen to be 
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d^6 de 

— r - - Pe -jlP . 2 3 2 . (5.8.3) 
dz ^ 

Likewise, with the aid of (5.2.7) and (5.3.5), the steady state 

forms of the boundary conditions (5.1.15), to (5.1.IS), (5.2.4) and 

(5.3.3) are seen to be 

de 
(0) = 0 , (5.8.4) 

8.(Zp.) - 8s.(Zp.) , (5-8.5) 

de de 

(Zp.) - . (5-8'*) 

e^^(z) -»• 0 as z ->• "» , (5.8.7) 

s 
po 

s° 

z 

B 
T Z - — 

oo p o o 2 

[l-E8*(z)] 

(1 -e ) 
dz = 1 (5.8.8) 

0 

and 

There appears to be no analytical so lution to equation (5.8.1), 

unfortunately, but a series solution may be obtained when the Peclet 

number Pe is assumed to be small and this solution is given in the 

following subsection. However, it is a trivial matter to solve (5.8.3) 

and the solution satisfying condition (5.8.7) is given by 

6 = A e (5.8.10) 

where A is a constant of integration. 
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5.8.1 Series solution for, small Pe . 

Recalling the series approximation, valid for small Pe , to 

obtained from the heat balance integral solution, and given by equation 

(5.5.14) we note that 

z ~ , (5.8.11) 
p o o 

for small Pe . This result and a close inspection of the system of 

equations (5.8.1) to (5.8.9) leads us to seek series solutions in the 

form 

8=/;, Pe) = OgCc) + /Pe 4^(C) + PeOgCc) +•••» (5.8.12) 

? (Pe) = ?Q + ^ + PeSg (5.8.13) 

and 

T^(Pe) = Petg + Pe^^^Tg +... , (5.8.14) 

where the new variable t, is defined by 

; = ^ z (5.8.15) 

.and the quantity , following from this definition is given by 

^ z (5.8.16) 
p o o p o o 

Expressing 8 by equation (5.8.10) and introducing the variable C , 

given by (5.8.15) into equations (5.8.1), (5.8.2), (5.8.4) to (5.8.6), 

(5.8.8) and (5.8.9) yields, with the aid of (5.8.16), 
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Brx 
Pe 

d; 
2 2 2T -

B(1-e 6^) 

(1 -e ) 

0 

Bfl-ee (k')l de 

2̂ 00 k'dk'd£' ^ 0 6 c S G. (5.8.17) 

where the constant C is given by 

C = - Pe 
Qco 

pa> 
V r 

0 

2 t -

B[l-E8.(k')] 

(1-e) 
k'dk'dS,' , (5.8.18) 

and the boundary conditions 

d8, 

d T 
(0) = 0 , 

- V ^ c 
8 (G ) = A e 
00 ̂  poo' 00 

(5.8.19) 

(5.8.20) 

d9 C 

d f (Gp-) = - ^ 0 0 ^ * (5.8.21) 

T 
p c o 2 (1-e) 

d? = (5.8.22) 

and 

2^. - oziy 
( 5 . 8 . 2 3 ) 

respectively. Substituting the series (5.8.12), (5.8.13) and (5.8.14) 

into equations (5.8.17) and (5.8.18) we obtain the identities 
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d; d; d; 

(1^+ . . ) 2PeT2+...- ^̂ 2'ĝ  (l-e<j)Q-ev^ (jĵ -ePetfĵ -...) 

; 
f 

£ ' 

0= 

0 ? Q + v ^ C^+Pe;2 + 

2PeT2 + ...- (Y^E) t^~e<i'Q(k')-EV^ ^^(k') 

-EPe^2(k') k'dk'd£' 
d<|) 

dC 

d(j) d({> 
/Pe — — + Pe -7-— +«.. 

d; d? 
(5.8.24) 

and 

Co* = -P* 

C^+PeC2+. • • 

3/2 B 

;o+/pr%i+Pe;2+... 

l-E^^Ck') - ei/fe" (J)̂ (k') - Pe4^(k')-. k'dk'dt' . (5.8.25) 

Expanding the integral, which appears in equations (5.8.24), by 

Taylors theorem we can write 

;^+PeC2+... 

2PeT2+... (i_e) l-E8Q(k') - e/Pe (|)̂ (k') - EPe*2(k')-

l ' 
f 

k'dk' = 

-/P; SlSg 

2PeT2+...- ( i _ g ) l-E$Q(k')-E/Pe (t)^(k')-ePe(j)2(k')"• k'dk' 

2P*T2+'''- 1%:;)' l-e(t)Q(?Q)-Ei^ ({)^(CQ)-EPe<f>2(CQ)-'. • + ... 

( 5 . 8 . 2 6 ) 

Substituting this expansion back into equation (5.8.24), we obtain, 

after a little regrouping of terms; 
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. pe3« ^'•2 

dc' 
-...+ ^2^^ (T2 + » ^ Tg+...) 

2PeT2+...- (l-E*^-e/Pe ^^-EPe^g "•••) 

; &' 
Gp-B 

( 1 - e ) 
1 0 ; 

l-E*Q(k') k'dk'd&' - /?e 

0 . 

• ; V 

£ 

" - 0 5 

i-E*o(;o) + • • • + ..* 

%^(k')k'dk'd2' + 

(5.8.27) 

Expanding the integral in equation (5.8.25) in a similar manner 

to the above results in the expressions for , 

Pe^^^(l-e) r 
l-G^Q(k') k'dk'dA' -

E 

^ 0 c 

. 0 

<i.̂ (k')k'dk' d£' + l-E4o(So^] * « * # (5.8.28) 

0 

On substituting this expression into equation (5.8.27) and dividing 

both sides of the resulting expression by Pe results in 
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^0 + 

d; 

+ Pe 
d; 

+...+ 

S r • • • 
"2" (T2 + /Pe T2+...) 2 P e T 2 + . . . — ^ ^ (l-E^Q-e/Pe ^^-EPe^2"'') = -/p^ 

II 
I 0 (o 

l-e4)^(k') k'dk'd&'-/Pe 

; &' 
4^(k')k'dk'dA' +G;^;Q i-c*o(;o) 

^ 0 

+.. . H i + 
' 0 & ' 

^^(k')k'dk'd&' + C^Go 

^ 0 C 

'0 

0 

l - e 4 > ^ ( k ' ) k'dk'dA' +... 

0 c 

l-C^gCk') k'dk'd£'+. 

(5.8.29) 

Expressing the constant A by the series 

A = a„ + /Pe a. + Pea„+... 
°° 0 1 2 

(5.8.30) 

and substituting this and the series (5.8.12), (5.8.13) and (5.8.14) into 

the equations (5.8.19) to (5.8.23) and expanding where necessary using 

Taylors theorem the corresponding forms for the b.c's are 

d<j) d* d*. 
(0) + (0) + Pe (0) +... = 0 (5.8,31) 

OgCSQ) + 

d(f) 
L T^(CQ ) + j g ( G g ) + Pe 

d(f> 
[>2(̂ 0̂  + (Gg) 

d; 
+... = + (a^-aQCQ)/?; 

^2 
Pe+..., (5.8.32) 
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dtj). 

dC "^0 
(C*) + /?e 

d(}) df* 

2 (Gg) 
dC 

+ Pe 
d4 d^* 

^ (Cn) + ^ (Sn) 
d; '"rr '-i ^ 2 

+ 4 - ] % <«o> * r - p <((,) 
dc d; 

+... = - ^ - (a^-aQGo)Pe+..., 

(5.8.33) 

PGCQTz %(1- K) (l-£(j) (k'))dk - /Pe E 

0 

4^(k')dk'-

r ^0 

l-c*o(So) 

... r = . 

Pe E 

^ 0 

*2dS + - ^2 i-E+o(Co) (;o) 

(5.8.34) 

and 

•'•••* a=iy 

-ePe 

1-E*Q(CQ) - Ei/Pe 

d4> I 

d(() 
<I']̂ (Cq) + UQ) 

1 
dT" (̂ 0)) ^2 dF~ (̂ 0)) 2 ^ 

+ . • 

(5.8.35) 

Having now derived the expanded forms of the governing equations 

and boundary conditions, valid for small Pe , by equating the coefficients 

of like powers of Pe in the expansions we can obtain a set of subsystems 

of ordinary differential equations the first two of which are given and 

solved here. 

(i) First order subsystem. 

Equating the coefficients of unity in the system of identities 

(5.8.29) to (5.8,35) results in the equation 
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2 
d * 

d; 

0 BrBTzEfp 

2 * 2(1 -E) 2(l-e) 
(5.8.36) 

and the boundary conditions 

d; 
(0) = 0 , (5.8.37) 

*o(So) - *0 ' (5.8.38) 

d* 

d; '^0 
(;.) = 0 , (5.8.39) 

l-E*Q(k') dk' = 0 (5.8.40) 

and 

1 - E*Q(;o) = 0 (5.8.41) 

The general solution of (5.8.36) which satisfies condition (5.8.37) 

is readily seen to be 

'0 0 
cose 

2(1 -E) E 
(5.8.42) 

where B is a constant of integration. This expression satisfies the 

three conditions (5.8.39), (5.8.40) and (5.8.41) only if is equal 

to zero, thus the solution for 
'0 

is 

1 (5.8.43) 

Finally from condition (5.8.38) we deduce that 

^0 e 
(5.8.44) 
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(ii) Second order subsystem. 

Owing to the simple expression for 4'q given by (5.8.43) the 

identities (5.8.29) and (5.8.31) to (5.8.35) are greatly simplified and 

rewritten here for convenience 

d * d (j) 
— 5 — + Pe — 5 — +...+ ~ (t„+y^ t„+...) 
d; d; 

B e v ^ 

BePe^g 

(1-e) 
+ ... = - Pe 

r ; I' 

0 

(|)̂ (k')k'dk'd̂ ' * (k')k'dk'dA' 

0 C 

d(f>] 

IT +. 

0 

(5.8.45) 

"̂̂ 2 '̂('2 
^ • — (0) + Pe ̂  (0) +... = 0 

dg QQ 

+ Pe 
d(}> 

+...=/pe (a^-C^/e) 

a2-a^CQ+(CQ/2-Cj^) /e Pe+..., (5.8.46) 

r— '̂'̂1 
"f* dlT (So) + P* 

d(j> d^O 

dT" (Gq) ^ ^^2 (Gg) 

Pe;_T_ + 
0'2 2(l-e) 

(j)ĵ (k')dk' + Pee 

+ ... = - ^ i/Fe -(a^-?Q/C)Pe+... , 

X5.8.47) 

4^(k')dk' + ?^^^(?g) 

r ^ O 

0 

+... = (5.8.48) 

and 

2PeT2+...= 
(1-e) 

e/Pe <t>2̂ (?Q) + ePe 

d(j)-
(Cq) (5.8.48) 
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Equating the coefficients of in this system results in the 

equations 

BrBex 

+ oTiCZT *i - 0 (5.8.50) 
d;2 2(1-C) 

with the boundary conditions 

d({) 

dC 
^ (0) = 0 (5.8.51) 

*l(Co) = - Cq/E (5.8.52) 

1 
dRT (So) - - 7 (5'8'53) 

^0 
Be 

2(l-e) 
*i(k')dk' = 1 (5.8.54) 

and 

*l(;o) = 0 (5.8.55) 

The general solution to (5.8.50) satisfying (5.8.51) is obviously 

'BrBETg 

cos C J 2(l-e) (5.8.56) 

where B^ is a constant of integration. Substituting this expression 

into (5.8.54) we obtain the equation 
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BeB^ /BrBet- /BrBet-

2(1-e) s i n s o J 2(l-e) ' ' J 2(l-e) ' (5.8.57) 

and making use of equations (5.8.53) and (5.8.55) results in 

/BrBex. 

/ i r r a - " ° (5.8.58) 

and 

fBrBex- /BrBet. , 

/2W4 
It is now easily deduced from these three equations that B^, Cq and 

Tg are given by 

b = ± , (5.8.60) 

and 

^ 2 - B k «.8.62) 

Finally condition (5.8.52) and equation (5.8.61) reveal that 

\ ' k r ^ 

The third order subsystem has been solved but the solution is 

lengthy and since the first two are adequate to make a useful comparison 

with the heat balance integral solution it is decided to terminate the 

series here. Thus with the aid of (5.8.13), (5.8.14), (5.8.16), (5.8.61) 

and (5.8.62) the expression for and may be approximated by 
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and 

r ^ = ^ + . . . (5.8.65) 

respectively. 

5.8.2 Results and Discussion 

Comparison of (5.8.64) with the leading term in the corresponding 

expression for the approximate solution (5.5.12) reveals that they 

differ only by a numerical factor. Since ir/>^ ~ 2,222 and /6 - 2.449 

the error is about 10%. However, comparing (5.8.65) with (5.5.13) 

we see that to a first approximation the shear stresses are identical. 

This gives us further indication that the errors in heat balance method 

for earlier times are probably due to the form of the temperature profile 

assumed in the solid region. 

Finally we make a brief comparison of the solution with Bahrani et al, 

[l^. They solved the steady state problem again assuming that Pe is 

small and consequently reglecting the effect of convection in the plastic 

region altogether. A temperature dependent yield stress of the form 

a ^ O ) = GQ + e(0Q-e) (5.8.66) 

was assumed whe 0^ is the interface temperature. Assuming 6^ 

falls to zero at melting temperature 0^ the above is expressed as 

0q(0) = E(8^-0) . (5.8.67) 
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Non-dimensionalising this expression gives 

= e(6 -6) . (5.8.68) 
u m 

where 

e = eT /a , (5.8.69) 
S s 

T and o being typical values of temperature and yield stress 
B B 

respectively. With (5.8,69) it is easy to see that equations (23) and 

(26) of [l^ can be expressed in dimensionless forms 

' = I f 1 + 

- 1 - 1 

2Pe 
GBBr 

(5.8.70) 

and 

" 2 y / 2ejj^PeB|e+2Pe/BrBj (5.8.71) 

respectively. Comparing these expressions with (5.8.64) and (5.8.65) 

we note that the leading terms differ only by numerical constants. 

This is due to slight differences in definition of and scaling. Thus 

this solution is a first order approximation to the exact solution. The 

following terms in the expansion for small Pe will be error due to 

the neglect of convection. 

Bahrani used equation (27) to determine an upper bound on the 

thickness of the plastic region. It must be remembered that this 

expression is valid for small Pe only. Let us briefly examine the 

implications of small Pe . Using definition (3.4.38) we see that a 

small value of Pe implies either z is small or W is small. 
^o 
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Bahrani et al. assumed z to be small and confined to zone A [s]. 

^o 

Hence expression (27) in [l^ could be assumed to be valid for larger 

values of leading to the small values of z* and consequently 

lower values of p through (26) which is compatible with definition 

(3.4.21). However, it is felt that the region of plastic flow extends 

through zone B and into zone C where temperatures 0 (700°c) have been 

reported [s] . In this case (27) is only valid for small in which 

case the small values of z* will not be observed. 
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CHAPTER 6 

THE UPSET COLLAR 

6.0 Introduction 

So far in this thesis we have examined the mechanisms that are 

present within the confinement of the tube walls.(that is, with respect 

to the 2-dimensional model between the limits - ^ x $ -j). However, 

on all friction welds an upset collar is formed by the material that 

1 
is expelled from the plastic region across the surfaces x = ± y . 

It is of interest to examine the motion in the regions |x| > ^ in 

order to predict the shape of the collar. 

In this chapter a simple fluid model, compatable with the model in 

Chapter 4, is developed in order to gain insight into the mechanisms 

involved. 

Again we consider only thin walled tubes and all the assumptions 

of Section 4.8 are made. With the assumption of symmetry about x = 0 

we need only consider the extruded zone, x ^ , and we are thus confronted 

with the problem of a viscous fluid bounded by the surfaces x = , 

Lj(x,z,t) and LQ(x,z,t). (See Figure 6.1). 

Recalling the equations governing the motion in the domain 

0 3 X 3 h , 0 S z 3 Zp , (4.2.7) to (4.2.13) , we note that the 

dominant terms are the hydrostatic pressure terms. We shall assume 

here that the same equations can be applied in the extruded region. 

Then to a first approximation, neglecting the effect of any motion in 

this region, P^ , is balanced by the surface forces in L^ and L^. 
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3C A 

The extruded region 

Figure 6,1 

Thus the problem can therefore be assumed to be quasi-steady; that is, 

although the problem is overall time dependent we assume that at any 

given time the system is in a state of static equilibrium. 

Before we can proceed further the nature of the surface forces 

on LQ and must be established. It is usually appropriate in this 

sort of problem to assume that the surface forces are due to surface 

tension. However, when a surface is constrained by surface tension, 

the pressure on the concave side must exceed that on the convex side 

of the surface. Clearly this is true in the case of surface but 

unfortunately the converse is true for surface L^. By comparing the 

orders of magnitude of the pressure with the atmospheric pressure 

, clearly the pressure on the convex side of is far greater than 

that on the concave side, and it therefore seems necessary for the surface 
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Lj. to possess a certain amount of stiffness. 

The simplest way to model this stiffness is to assume that 

behaves as an elastic beam. The surface forces are then easily 

calculated and the stiffness is given by the product where 

is Youngs modulus and 1^ is the second moment of area of the surface 

Lj. . We shall assume the beam is inextensible but has temperature 

dependent stiffness. The forces in the surface could be modelled 

by surface tension, however, the analysis is simplified if we model this 

surface as another elastic beam, with a different stiffness . 

The lengths of and are denoted by K^Ct) and £j.(t) 

respectively and are determined with the aid of the model presented in 

Section 4.8. The cusp, that is the point A at which the surfaces 

LQ and Lj are joined (see Figure 6.1) appears to come from the 

original 'corner' z = 0, x = y . Thus the length will be appTOximarel̂  

the amount of axial shortening that has taken place, or mathematically 

Jlj = W^t . (6.0.1) 

The length is obtained indirectly from the condition of 

mass conservation, that is the amount of material which crosses the 

interface z = z between the limits x = 0 and x = -? must equal 
P 2 

the amount of material that is bounded by the surfaces L^, and 

x = i , 0 $ z $ z . This condition leads to an equation which completes 
^ P 

a set and allows SL̂  to be calculated along with other quantities. 
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6. Derivation of the Governing Equations and Boundary Conditions 

In this section the equations governing the bounding surfaces 

and Lj , and the boundary conditions to be applied to each surface 

are derived. Both surfaces are assumed to behave as inextensible 

perfectly elastic beams of variable thicknesses with temperature 

dependent stiffnesses. A point P on a beam is identified by four 

quantities of which only one is independent. These four quantities 

are the two rectangular coordinates x and z , the arc length s 

and the deflection angle 6 which is the angle between the tangent 

to the beam at the given point and the x-axis. We shall denote 

the point iP by the symbol (x, z, 9, s). Before we start the 

analysis let us state the sign conventions that we shall use throughout 

this chapter. Consider an element of beam of length ds , then 

with s measured from left to right we take downward loadings w, 

clockwise acting shear forces and sagging bending moment M as 

being positive. (See Figure 6.2) 

M ( S ) 

M 15-«(5) 

An Elemental Section of a Typical Elastic Beam. 

Figure 6.2 
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Let us now determine the relationships between the quantities 

WjFg and M . Suppose that thecomponents of the total force acting 

parallel to the x and z directions, at the point P(x, z, 9, s) 

are and respectively, the positive sensasof which are taken 

to be consistent with our sign conventions (See Figure 6.2). On 

resolving this pair of force components in the normal direction to the 

beam at the point (x, z, 8, s) the shear force can be expressed as 

F = F Sine + F Cose (6.1.1) 
s x z 

In addition on resolving F^ and F^ in the tangential direction 

at P(x, z, 6, s) one could obtain an expression for the tensile force 

Fy . However, since we are assuming that the beams are inextensible 

this force is not required. 

Considering the equilibrium of forces in the x direction we obtain 

F^(s-ds) - W(s) Sine ds - F^(s) = 0 (6.1.2) 

On expanding this equation for small ds using Taylor's theorem, 

dividing by ds and taking the limit as ds ^ 0 of the resulting 

expression, we obtain 

= - W Sine . (6.1.3) 

ds 

Similarly from the balance of forces in the z direction we have 

dFg 
= - W Cos0 , (6.1.4) 

ds 

and from the equilibrium of moments we obtain 

— = F (6.1.5) 
ds ® 
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Having established these basic results, we can now derive the 

equations governing our system. 

Let us firstly describe the system. The beam , which has 

length , is assumed fixed at the point (0, 0, 0, 0) with the 

gradient dz^/dx^ being zero at this point. The other end of the beam 

, z^Q, S,q) is held by a force of magnitude whose line 

of action makes an angle to the tangent of the curve at the point 

under discussion. Similarly the beam , which has length , is 

assumed fixed at the point (0, z , O ) with its gradient 

dz^/dx^_ becoming infinite on approach to this point. The other end of 

'̂ ZI' is held by a force of magnitude whose 

direction makes an angle to the tangent to the curve at the point 

under discussion. ^ e e Figure 6 . ^ . We shall assume that the internal 

pressure acting on is p^ and that the pressure on is p^ 

where p^ and p^ are of the same order of magnitude but not necessarily 

equal. 

6.1.1 The Governing Equations 

Considering the beam LQ we shall obtain an expression for the 

shear force acting at any point. On resolving the force acting at the 

point (x^Q, z^Q, JIq) into component parallel to x and z axes 

F^Q and F^Q respectively, we obtain [See Figure 6 . ^ . 

and 

*xO - - Fo Cos(ao+8*o) 

^zO ~ ^0 SinCOg+e^Q) . (6.1.7) 

Replacing W by -p^ the appropriate forms of (6.1.3) and 

(6.1.4) are 
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Figure 6.3 Variable Definition. 

_ 
— = PQ Sin 
ds 

(6.1.8) 

and 

dF 

ds 
PO Co* Gg (6.1.9) 

The boundary conditions to these equations are 

'no' 8*0' V " X̂O h o ' " ^zo 
(6 .1 .10) 

respectively where F ^ and F^^ are given by (6.1.6) and (6.1.7) 

respectively. Integrating equation (6.1.8) with respect to s and 

applying the boundary condition (6.1.10^^ results, with the aid of 

(6.1.6), in 

285 -



F* = - I PQ Sin e^ds - €08(0^+8^^) . (6.1.11) 

The corresponding result for force obtained using (6.1.9), (6.1.10)2 

and (6.1.7) is 

s 

( 6 . 1 . 1 2 ) Fz = - t Po Cose^ds + FQ Sin(aq+8^o) 

Substituting equations (6.1.11) and (6.1.12) into (6.1.1) yields 

L 

^s = FoCos(«o*G&o) + I PQ Sine^ds Sin6> 

FQSin(aQ+e^Q) - PQ Cose^ds CosSq , (6.1.13) 

which is an expression for the shear force p at the point (x, z, 6, s) 

At this stage we make use of the Ev^er-G^rnouHi theorem [37]] 

which states that the bending moment at a given point on a beam is 

proportional to the curvature at that point. Mathematically the theorem 

is expressed 

_ _ 46 

V o • 
(6.1.14) 

ds 

where the constant of proportionality is the product of the Youngs 

modulus, EQ , and the second moment of area, 1^ , and is called the 

stiffness. Differentiating both sides of (6.1.14) with respect to s 

and making use of equations (6.1.5) and (6.1J3) gives, after some 

rearrangement, the ordinary differential equation 
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d_ 

ds 

d e 

'o'o H-
ds 

0 
0 

= - FQSin(aQ+8^Q-8y) + p^cose^dsCoseQ 

p^Sine^dsSinOQ, 0 $ 8^ £Q (6 .1 .P) 

Applying a similar analysis to the surface, , one obtains the 

equation 

ds 

d e , 

ds 
= - Fj.Sin(«^+0^j.-e^) - Pj.Cos9j.dsCosej. 

PjSinSjdsSinej , 0 $ s $ Jlj. (6 .1 .16) 

in the derivation of which the positive sign of p^ was taken since 

this quantity respresents a downwards loading. 

The coordinates x and z are easily seen to relate to i and 

6 through the equations 

dx^ 

ds 
= COS0Q and 

dz. 

ds 

= Sin6 
0 

(6.1.17) 

and 

dx. 

ds 
= COS0J. and 

dz. 

ds 

= Sin6, (6 .1 .18) 

At this stage it is convenient to int roduce the new dimensionless 

variables 

= ° s/Zp- "-o ' "l ° "O • ^0 " =c/:p 

"l " h . ' \ ' "to ° ^10 ° :%c/:p 

X 

^0 

= ^ l/Zp' ^ l/Zp' \ = E^IJ/EI 

EI ' I EI ' ^ 0 EI I EI 

^ (6.1.19) 
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where E and I are typical values of Youngs modulus and the second 

moment of area respectively. Using these variables the dimension less 

forms of equations (6.1.15) and (6.1.16) are 

ds 
B 
0 ds 

= - + p^CosGgds CosBQ 

p^Sine^dsSine^ , 0 g s $ &Q (6.1.20) 

and 

ds 
= - fj.Sin(aj+e^j-ej) - Pj.Cos6^dsCos9j 

J. 

- I pjSin6jdsSin9j , 0 ^ s $ 2^ (6.1.21) 

respectively. Similarly equations (6.1.17)^ ^ and (6.1.18)^ g 

become 

and 

dXg da 
"3— = Cos6 and -3—- = Sin0 
ds 0 ds 0 

dz 
"T— = Cos6T and -3— = Sine^ 
ds 1 ds 1 

( 6 . 1 . 2 2 ) 

(6.1.23) 

6.1.2 The Boundary Conditions 

From the condition of attachment at the end s = 0 of the surface 

LQ we can write 

Xq = 0 and 2^=0 on s = 0 (6.1.24) 
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The slope of the curve at s = 0 is zero,thus we have 

—2— = 0 on 8 = 0 . (6.1.25) 

dXQ 

From equation (6.1.17)^ ^ it is easily verified that 

dz 
— — = tan6^ , (6.1.26) 

O 
dXQ 

and hence conditions (6.1.25) can be expressed 

6Q = 0 on s = 0 . (6.1.27) 

At the other end, s = 6^ , of the surface we can write 

^0 = ^0 = 'AO ®0 = \ o * - *0 (6-1.28) 

and since there is no bending moment at this point we have 

- -

= 0 on s = ' (6.1.29) 
dj ° 

For the surface the attachment condition at s = 0 is 

Xt = 0 and z^ = z on s = 0 (6.1.30) 
I I p 

and from consideration of the slope at this point we write 

dXj 

which with the aid of (6.1.26) can be expressed in the form 

9j. =~Tr/2 on s = 0 (6.1.32) 
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At the end s = of the surface the conditions are 

== "l = :*!' ®I = ®£I * " *I (6.1.33) 

and the zero bending moment implies 

de _ _ 
•r=— = 0 on s = &T (6.1.34) 
ds I 

Since the ends s = and s = , of the two surfaces and 

respectively are coincident we can write 

and as the system is in a state of equilibrium the magnitude of the 

forces acting at the points (x^q. z^g, G^Q, ^q) and (x^^, 8ĝ ., I^) 

must be equal and act in opposite senses. Thus we can write 

FQ = Fj. and + 8*; + * (6.1.36) 

Finally we require a condition expressing the conservation of 

mass. Assuming that all the material that flows oyer the surface 

z = Zp between the limits x = 0 and x = ^ ^ is expelled into the 

extruded region we can write 

5̂10 - ^9% -
W bt ( dz„ ( dz 

x_ — - de^ -
2 I 0 d8 0 

X — - de (6.1.37) 
de. 

0 -,/2 : 

with the aid of (6.1.19) these conditions can be expressed in 

the dimensionless form 
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XQ = 0, ZQ » 0, Gg = 0 on s = 0 (6.1.38) 

^0 = =&0' ^0 ' =A0' ®0 ' h o ' ons = «.Q (6.1.39) 

Xj = 0, Zj = 1, Sj = - tt/Z on s = 0 (6.1.40) 

Xj. = x^j, Zj. = ẑ j., = 8g^, dSj/ds = 0 on s = £j. (6.1.41) 

*&0 " * 1 I ' =A0 - = t l ( 6 . 1 . 4 2 ) 

^0 = "o + ^ 0 - *I + 8*1 + * (6.1.43) 

and 

V 
zf (t) 

P 0 " -IT/2 

where the constant is defined by 

*I 48[ d8i (6.1.44) 

V = . (6.1.45) 

2=pO 

OAoi a<c c^cVwito^ clveipher % . ( Stt Wo^. 

6.2 Solution with Zero Hydrostatic Pressure (P^ = P̂ . = 0) 

There appears to be no analytic solution to the above system of 

equations and further simplifications must be made if one is to be 

obtained. In this section we shall neglect the effect of the hydrostatic 

pressure and assume that 

Pq = Pj = 0 . (6.2.1) 

We shall also assume that the stiffnesses and are both 

constant but not necessarily equal. In view of (6.1.19) we may therefore 

take, without loss of generality. 
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Bg = 1 and = 1/6 (6.2.2) 

where the quantity 6 is defined by 

(S = EqIQ/EJIJ (6.2.3) 

These assumptions simplify our equations considerably and allow an 

analytic solution to be obtained. 

Using assumptions (6.2.1) and (6.2.2) in (6.1.20) and (6.1.21) 

and making use of condition (6.1.43)^ leads to 

dfOo 
= - f- Sin(a»+0„„-e_) 0 s s $ (6.2.4) 

and 

2 "0 ^"0 W 0" " " 0 
ds 

t 4*8; 
— ^ = - fg Sin(aj+ 0£];~0j) , 0 $ s $ )lj (6.2.5) 
) ds 

Multiplying equation (6.2.4) by 2d0Q/ds and integrating the resulting 

expression with respect to s yields 

( ^ j = <=0 - " o • (6-2'G) 

where CQ is a constant introduced through the integration. Using 

condition (6.1.39)^ to determine CQ and taking the square root of 

(6.2.6) results in 

dG I - -1 I 

ds~ " ' 0 * * < *0 (G'2'7) 

where it has been assumed that the curvature d9/ds remains positive 

in the region 0 g s g (.g . Integrating equation (6.2.5) in a similar 

manner and using condition (6.1.41)^ to determine the constant of 

integration gives 
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dO r 1 ̂  
j Cosaj.-Cos(aj+0^j-6j) , 0 3 s g (6.2.8) 

where it has again been assumed that the curvature dG^/ds remains 

positive in the region 0 $ s $ . Using the method of separation 

of variables to integrate equations (6.2.7) and (6.2.8) and using 

conditions (6.1.36)2 and (6.1.40)^ to determine the constants of 

integration leads to 

:/2f _ = r (6.2.9) 

and 

° 0 

e 
de. ( 2 1 

s / 2 f Q 6 j |^osQ( -CQg (oj +0 ^ ( 6 - 2- to1 
-Tr/2 L - "J 

On making the change of variable through the equation 

CosCoQ+e^Q-eQ) - Zk* Sin2*Q-l , (6.2.11) 

2 
where k^ is defined by 

2kg = 1 + CosOq (6 2.12) 

it is seen that (See Appendix 1) the integral on the right hand-side 

of equation (6.2.9) can be transformed into the well known elliptic 

integral of the first kind Pj^l] in which case (6.2.) becomes 

s/f^ = F(*Q, k^) - F(*^Q, k^) , 6 *o'3 Tr/2 . (6.2.13) 

In the above the elliptic integral F is defined by 
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F(u, k) = 

u 
dv 

0 A-k^Sin^v 

(6.2.14) 

and is given by the equation 

Cos(aQ+0j^Q) = 2kQSin^*^Q-l . (6.2.15) 

The equation derived from (6.2.10) and similar to (6.2.13) is 

s v ^ = F(*;, kj) - F(+ai, kj.) , ( Tr/2 (6.2.16) 

where k^, <|»j. and are defined by 

2 k j - 1 + Cosoj. , (6.2.17) 

Cos(aj+9j^j-6j.) = 2kj Sin^^^ ~ 1 (6.2.18) 

and 

Cos(aj.+6jĵ j+ir/2) = 2k^ Sin^^^^ - 1 . (6.2.19) 

Using the condition (6.1.39)^ in equation (6.2.13) yields, with 

the aid of definitions (6.2.11) and (6.2.12), 

= F(n/2, k^) - F(*^Q, k^) (6.2.20) 

Similarly, using condition (6.1.41)^ in equation (6.2.16) gives, with 

the aid of definitions (6.2.17) and (6.2.18), 

& ^ / F ^ = F(TI/2, kj.) - F ( 4 ^ ; , K^) (6.2.21) 

Eliminating the unknown force f^ from the latter two equations results 

in 

F(7r/2, k^) - F(*%Q, kg) =-2_rF(77/2, k^) - ?(*%;, k^)] . 

( 6 . 2 . 2 2 ) 
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Using the chain rule, equations (6.1.22)^ ^ (6.1.23)^ 2 

can be written 

dx /de dz / de 

and 

d x ^ / d e d z / d 8 

dS^ j i r 157 ° " - ' l / 35- (6.2.24) 

respectively. Substituting equations (6.2.7) into (6.2.23)^ g we 

obtain 

d x Cose 
0 2 - r (6.2.25) 

0 |CosaQ-Cos(oiQ+8^Q-8Q)]' 

and 

dzQ Sine^ 

/2f J.Q _Q \1 2 EQ [Co8ciQ-Cos(aQ+8^Q-8Qj] 

Separating variables and integrating this pair of ordinary differential 

equations yields with the aid of conditions (6.1.3g) 

0 C0S8 d8 

x„ — I r (6.2.27) : f r 
° V 2 f ^ i [cosaQ-Cos(aQ+e^Q-eQ)]^ 

and e~ 

1 r Si"8o4Qo 
z- = r (6.2.28) 

[coscxQ-cos(aQ+e^Q-eQ)] 

Similarly from (6.2.8), (6.2.24)^ ^ and (6.1.40)^ we obtain 

01 
f Cose de 

X. = - = — T T - (6.2.29) 

/2fgg ^osUj-Cos (aj+e^j-0j)J ^ 
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and 

. f l Sine^de 
z = — L _ i — i r + 1 (6.2.30) 

^ v / ^ - ; / 2 [Cosaj-Cos(a^+e^j-0j)] 

Making the change of variable, given by (6.2.11), in equations 

(6.2.27) and (6.2.28), the latter can be reduced to 

+ 4kpSin+jju(Cost|jp-Cost(j)''l-kgSln^+Uu|/^,i»£jj ( « "/Z (6.2.31) 

and 

^0 ~ jzh^Sinf^Q l-kgSin 4^o^F^*o,kQ)-F(*^Q,kQ)-2E(*Q,kQ)+2E(*^Q,kQfj 

-2kQ(2kQSin^(|)j^Q-l)(Cos<|)j^Q-Cos<i)^)|//f^,({>^Q^ $ TT/2 (6.2.32) 

where E is in the elliptic integral of the second, kind defined by 

u 

E(u, k) = f ^l-k^Sin^v dv (6.2.33) 

See Appendix for details. Similarly Equations (6.2.29) and (6.3.30) 

reduce to 

Xj = j2k;Sin*&i^l-k2sin2*^2^9^2,ki)-F(*&i,ki)-2E(*2,ki)+2E(*%;,k;)j 

+ 2kj,(l-2kjSin^({)^j.) (Cos(J)^j-Cos())j)|/»''f^, $ 1̂ /2 (6.2.34) 

and 

Zj = |(l-2kjSin%j^j.)|F((t.j,k^)TF((|.^j.,kj) -2E(*yk;)+2E(*^;,k;)] -

- 4kjSin(|)̂ j.(Coŝ ĵ j.-Cos(j)j.)*̂ l-kjSin̂ (J)̂ j.|//fQ6 + 1, S 

(6.2.35) 
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Applying the boundary conditions (6.1.39^^, and (6.1.39)2 to the 

equations (6.2.31) and (6 .2.32) respectively yields with the aid of 

condition (6.1.39)^ and definitions (6.2.10) and (6.2.12) 

= j (2k2sin2*%o-l)[F(n/2,kQ)-F(*ao,kQ)-2E(*/2,kQ)+2E(4^^ .k^) 

+ 4koSin*^oCos*2Q l-kQSin^(|)^Q (6.2.36) 

and 

\ 0 - { [ n . / 2 , V - F ( » , o . V - 2 « < ' « - V 

* 2G(*«0'ko)] 

Similarly applying the conditions (6.1.4f)^ and (6.1.41)2 to the 

equations (6.2.34) and (6.2.35) respectively gives us with the aid of 

condition (6.1.40)^ and definition (6.2.17) and (6.2.18) 

= |2kjSin<j>j^j'^l-kjSin^<|.j^j.[F(Ti/2,kj.)-F(({.^^,kj)-2E(TT/2,kj) 

+ 2E(*^i,k;) + 2k^(l-2kJsin^(|)j^j)Cos(j)^J//f^ (6.2.38) 

and 

= |(l-2kjSin^(j)^^|F(Tr/2,kj.)-F((j.j^^,kj)-2E(TT/2,kj.)+2E((J)j^j,kj.)J 

-4kjSin<{î j.Cos<J)ĵ j'̂ l-kjSinv())ĵ jj-//fQ6 + 1 (6.2,39) 

Now substituting equations (6.2.36) and (6.2.38) into conditions 

(6.1.42)^ and equation (^.2.37) and (6.2.39) into condition (6.1.42), 

results in the pair of equations 
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4k2si„»^^Co3^,/l-kJsln2^,0 - {2kiSin<,j/l-k2sl„2+^j.[F(,/2,kj) 

-F((}.̂ j. ,kj.)-2E(Tr/2 ,kj.)+2E((|.ĵ j. ,kj) + 2kj(l-2kjSin^(|)^j.)Cos(|)^j 

(6.2.40) 

and 

-F(*(0'ko)-2G('/2'ko)+2E(**o.ko) 2k„Sin»,o''^^^pi?^o[F(-/2 .k^)-

- 2kq(2kosin2*^q_i)cos*%g - /(l-2kjsln^4.|, j) |f(ii/2 .kj.)-f(<,jj .k^) -

2E(ii/2,kj)+2E(+jj,kj)l-4kjSln*jj.Cos^jj''l-kjSln^<,|jj|/A (6.2.41) 

The condition (6.1.43)2 may be expressed in the form 

taa(*0+*&o) " Caa(oi+8&i) (6.2.42) 

and with the aid of equations (6.2.15) and (6.2.19) this may be 

rewritten as 

2k2si„%,j-l 

2k].Sin*2i^l-k;Sin2*2i 

(6.2.43) 

ZkoSin +10-1 

The conditions of mass conservation (6.1.44) can be expressed in 

terms of the new variables as 

r 
m 

TT/2 

"̂ £0 

"o di^ ''•o -

. / 2 

''•l 
(6.2.44) 

I'&I 

where x^ and x^ are given by (6.2.31) and (6.2.34) respectively 

and the expressions for dz^/^^ and dz^/d^^, obtained by differentiating 

(6.2.32) and (6.2.35) with respect to ())Q and respectively, are 
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dz 

d(|) r H 
SiD2+o-l)(2koSin**o'l-k:Sin2+,o) -

(2k^Sin%^Q-l) (2kQSin<),Q^-kQSin%Q) /(/f^ V k ^ S i ? ^ ) (6.2.45) 

and 

dz. 
= - (2k̂ Sin(j»̂  l-kySin^* )(2kTSin*_ + 

d({.j. ' "I"-"' 

(2kjSin^(|)j^j-l) (2kjSin^ (|)^-l)j/(/f^ •̂ l-kjSin̂ (|)j) (6.2.46) 

Equations (6.2.22), (6.2.40), (6.2.41), (6.2.43) and (6.2.44) can 

now be solved numerically. With z^ and determined by the model 

of Section 4.8 this set of equations were solved numerically using 

Powell's method and results for the case = 1.0, Pe = 0.5, 6 = 1.0 

and h = 0.75 mm are presented in Table 6.1. 

Pe = 0.5, Br = 1.0, 6 = 1.0, h = 0.75 mm 

... 

t z 
P 4 V.C/Sp *0 

0.2 0.777 0.644 0.311 0.941 -0.952 0.477 0.431 0.902 

0.3 0.901 0.833 0.347 0.961 -0.726 0.566 0.369 0.956 

0.4 0.993 1.007 0.384 1.017 -0.655 0.616 0.306 0.974 

0.5 1.065 1.173 0.413 1.103 -0.673 0.643 0.248 0.983 

0.6 1.124 1.334 0.445 1.210 r0.751 0.656 0.201 0.989 

0.7 1.173 1.492 0.477 1.333 -0.869 0.663 0.168 0.992 

0.8 1.215 1.646 0.508 1.466 -1.014 0.666 0.145 0.994 

0.9 1.250 1.800 0.540 1.605 -1.174 0.667 0.131 0.996 

1.0 1.281 1.952 0.572 1.747 -1.339 0.667 0.123 0.997 

1.1 1.307 2.103 0.603 1.891 -1.502 0.667 0.120 0.998 

Table 6.1 

- 299 -



'10 ' " o 
and , obtained The corresponding values for 0 

using the above values and equations (6.2.12), (6.2.15), (6.2.17) and 

(6.2.19) are presented in Table 6.2. 

Pe = 0.5, Br = 1.0, 6 = 1.0, h =0.75 mm. 

t ®£0 "o 

0.2 92.232 -10.045 128.896 51.174 

0.3 71.639 -5.974 136.717 34.329 

0.4 57.086 -4.515 144.394 25.994 

0.5 46.481 -3.191 151.299 20.971 

0.6 39.028 -1.601 156.762 17.391 

0.7 34.031 0.192 160,687 14.526 

0.8 30.844 2.034 163.369 12.120 

0.9 28.941 3.800 164.941 10.082 

1.0 27.914 5.393 165.853 8.375 

1.1 27.434 6.731 166.267 6.970 

Table 6.2 

The coordinates x^, x^, ZQ and can now be obtained 

using equations (6.2.31), (6.2.34), (6.2.32) and (6.2.35) respectively, 

with the aid of the results presented in Table 6.1. The plots of the 

profiles obtained are presented in Section 6.4. 

Inspection of the results in Table 6.1 reveals that as time t 

increases approaches the critical value of —IT/2. Referring 

to equations (6.2.12) and (6.2.15) it is seen that at = - Tr/2 

we can write 

Cosog . CksCaQ+e^Q) (6.2.47) 

and substituting this result into equation (6.2.7) we deduce that 

de. 
0 

ds 
= 0 at s = 0 . (6.2.48) 
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Hence the curvature is zero at the end s = 0 of the beam L^. 

As t increases further the curvature will become negative at s = 0. 

However, from the symmetry condition of z = 0 the curvature must be 

positive definite and consequently our model must be modified to 

obtain results for larger times, A sing)le way to avoid negative 

curvature at the end s = 0 is to allow a region of the beam L^, 

0 3 s $ Xp , to be along the x axis. The beam LQ can then be 

regarded as a beam of length ^o~*p ' having zero curvature at the end 

(Xp, 0, 0, 0) and this model is considered in the following subsection. 

6.2.1 Solution with Zero Curvature at Point (x^, 0, 0, 0) 

Variable Definition 

Figure 6,4 
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The model is this section differs from the previous one in that 

the length of the beam is now 2^-%^ and the end that was 

attained at the point (x = 0, z = 0) is now attached at the point 

(x = Xp, z = 0 ) where the curvature is taken to be zero. Thus the 

governing equations can be obtained from those in the previous section 

by replacing &Q by &Q - x^ , the point (0, 0, 0, 0) by the point 

(Xp, 0, 0, 0) and by -Tr/2 . On doing this, equations (6.2.22), 

(6.2.40), (6.2.41), (6.2.43) and (6.2,44) became 

2F(m /2,k ) = " P [F(TT/2,kj.)-F((j)̂ j.,kj.)J , (6.2.49) 

(2k^-l) |2F(W/2 ,kQ)-4E(TT/2,kQ)J + J2K^Sin(|,^^'^I%k^sZi^^ 

|F(IT/2 ,kj)-F((|)^j ,kj)-2E(Tr/2 ,kj.)+2E(<J)^j ,k^)j +2k3. (l-2k^Sin2<t,^Cos , 

(6.2.50) 

-2kQ/l-k2 |2F(Tr/2,kQ)-4E(Tr/2,kQ)J = |(l-2kjSin^(t.^j) [F(7r/2 ,k^)-F(<j.^j ,kj) 

-2E(Ti/2,kj) + 2E(<|)^j,kj)j-4kjSin(|)^jCos<|)^j'^l-kjSin^(i)j^J//6 + /f^ , 

(6.2.51) 

2k^^in2* -1 2k l-k^ 
^ ^ = 0 (6.2.52) 

2 
2kiSin+ai/l-k{sin2*^2 2kg-l 

and 

V t dz_ dz 

P -n/2 " 

Xy -T—^ dcj)̂. . (6.2.53) 
1 dipj. 1 

- 302 -



respectively. Also the expressions for /f^ , x^, and dz^ld^g 

(6.2.20), (6.2.31), (6.2.32) and (6.1.45) become 

/f^ = 2F(n/2, ko)/(&o"*p) ' (6.2.54) 

*0 " {(ZkQ-l) F(*Q, kg) + F(*/2, k^) - 2E(*n, V.> " 2E(ii/2, k^) 0 ' 0 ' 0' 

+ 4 k Q C o s * Q j / / f ^ + Xp, -Tr/2 ( *Q ( Tr/2 , 

^0 = {-2kQ/l^k2[F(*Q,kQ)+F(*/2,kQ)-ZE(*Q,ko)-2E(w/2,ko) 

Cos<{)Q|//f^ , -tr/2 ( *o g ir/2 

(6.2.55) 

+2ko(2ko-l) 

(6.2.56) 

and 

dz 
0 

4>o 
= - [ , -I (2kQSin^*o-l) ( 2 k Q % ^ ) + (2k2-l)(2koSin*o/l-k2sin2*o) 

/(/f^ ''l-k^Sin^Q) . (6.2.57) 

In the derivation of the above set of equations use has been 

made of the fact that F and E are odd functions. The expressions 

for Xj, Zj and dz^/d^^ remain unchanged and are given by (6.2.34), 

(6.2.35) and (6.2.46) respectively. Equations (6.2.49), (6.2.50), 

(6.2.51), (6.2.52) and (6.2.53) are now solved numerically and the 

result corresponding to Br = 1.0, Pe = 0.5, <5 = 1.0 and h = 0.75 mm are 

presented in Table 6.3. 

Using the results in Table 6.3 and equation (6.2.12), (6.2.15) 

(6.2.17) and (6.2.19) the values of ®£q» ®£x' '̂o are then 

obtained and these results are presented in Table 6.4. Also, using 

the figures in Table 6.3 and equations (6.2.55), (6.2.56), (6.2.34) 

and (6.2.35) the coordinate values x^, z^, x^ and respectively 

are obtained and the corresponding profiles are presented in Section 6.4. 
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Pe = 0.5, Br = 1.0, 6 = 1.0, h = 0.75 mm 

t z 
P 

. Vol X 
P 

ko 

1.2 1.331 2.254 0.635 2.035 0.055 0.667 0.119 0.999 

1.3 1.351 2.405 0.667 2.180 0.155 0.667 0.119 0.999 

1.4 1.370 2.555 0.699 2.323 0.254 0,666 0.120 0.999 

1.5 1.386 2.706 0.732 2.470 0.354 0.665 0.121 0.999 

1.6 1.400 2.857 0.765 2.615 0.453 0.664 0.122 0.999 

1.7 1.413 3.008 0.798 2.759 0.550 0.663 0.122 0.999 

1.8 1.424 3.160 0.832 2.905 0.649 0.663 0.123 0.999 

1.9 1.435 3.310 0.865 3.048 0.745 0.662 0.123 0.999 

2.0 1.444 3.463 0.900 3.194 0.843 0.661 0.124 0.999 

Table 6.3 

Pe = 0.5 Br = 1.0, 6 = 1.0, h = 0.75 mm 

8 
JIO 

6 
£I 

a. 

1.2 

1.3 

1.4 

1.5 

1.6 

1.7 

1.8 

1.9 

2 .0 

27.26 

27.36 

27.75 

27,91 

28.04 

28.19 

28.29 

28.48 

7.80 

8.75 

9.54 

10.21 

10.72 

11.13 

11.48 

11.75 

12,03 

166.37 

166,32 

166.24 

166.13 

166.04 

165.98 

165.98 

165.85 

165.76 

5.84 

4.93 

4.22 

3.67 

3.23 

2.89 

2.61 

2.39 

2.21 

Table 6.4 

6.3 Solution With Non-Zero Hydrostatic Pressure, (P^ # 0, P^ f 0) 

In Section 6.2 we obtained an ruA,^^r\ C(X.\ . solution to the 

system of ordinary differential equations (6,1,20) to (6,1,23) subject 

- 304 -



to the boundary conditions (6.1.38) to (6.1.44) by making the assumption 

that the hydrostatic pressures Pq and p^ were both zero. In 

reality these pressures are non-zero, so in this section we obtain 

an approximate solution for the case of non-zero p^ and p^ . The 

accuracy of the approximate method, used here, is assessed by putting 

PQ = Pj = 0 in the solution and comparing the results with those 

obtained in Section 6.2. 

The approximate solution is obtained with an integral technique 

similar to the heat balance integral method which was discussed 

in Section 4.8. The governing equations (6.1.20) and (6.1.21) are 

each integrated along their lengths between the limits 0 2 s $ 

and 0 3 s 3 2^ respectively.The solutions to the resulting averaged 

equations for 6^ and 8^ are then approximated by polynomial 

expressions in s . 

It is convenient at this stage to introduce the new variable 

as defined by 

u = s / l 
0 

(6.3.1) 

Again assuming that the dimensionless stiffness, , is equal to 

unity, and introducing the variable u into equations (6.1.20) and 

(6.1.22)^ 2 :̂id the boundary conditions (6.1.38) and (6.1.39), yields 

d^e 

du 
I " - fo*0Sin(«0+GAo-Go)+Po*O Cos8QduCos8Q + pQ&3 

u u 

Sine^duSinS^ , 0 $ u $ 1 , (6.3.2) 
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and 

dz 

j r • i T • V ' " ® o ' 

XQ = 0, ZQ = 0, 9Q = 0 on u = 0 (6.3.4) 

dGg 

"o • "no- ^0 * :%0' ®0 "®tO' d T ' " ^ 

respectively. Averaging equation (6.3.2) by integrating both sides 

with respect to u between the limits u = 0 and u = 1 we obtain 

d8_ de ^ 
0 

du ~ d^r = -^0*0 J 

u=l u=0 0 

1 1 1 1 

+ Po*o I I Cose^dy Cose^du + PgA^ 

0 u 0 u 

SinG^dpSinS^du (6.3.6) 

In this section it is sufficient to take 6^ as a quadratic in u . 

However in the following section we require the curvature to be zero 

at u = 0 and in order to apply this condition the polynomial 

approximation to 6^ must be of degree 3 or more. It proves convenient 

therefore to assume a cubic profile in this section, in which case the 

solution in the following section can be found as a simple deduction. 

Consequently we assume 

2 3 
6q = a^ + a^u + a^u + a^u , (6.3.7) 

where a^, a^, a^ ard functions of t only. Equation (6.3.7) must 

satisfy the three boundary conditions (6.3.4)^, (6.3.5)^ and (6.3.5)^. 

However there are four ukhowns in equation (6.3.7) so one extra 

condition is required. By putting u = 1 in equation (6.3.2) we 

deduce, with the aid of condition (6.3.5)^, that 
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2" - ~ fg&QSinag on u = 1 . (6.3.8) 
du 

Applying conditions (6.3.4)^, (6.3,5)2, (6.3.5)^ and (6.3.8) to 

equation (6.3.7) leads to 

a^ = 0 , (6.3.9) 

h = 38*0 " i • (6.3.10) 

*2 = '38^0 + (6.3.11) 

and 

'^3 ~ "AO 2 ^ 0 " 0 " " " " 0 
a_ = ~ T frt^nSina_ . (6.3.12) 

On substituting equation (6.3.7) into (6.3.6) there results the integral 

equation 

^1 = ^0*0 ( Si"[*0+GA0-*l"-*2"^-*3"^]4" " PQ^O | | Cosjl^p+a^w 

0 1 1 0 u 

dpcos^a^u+agu^+agu^jdu - PqX-Q | | Sin^a^p+agW^+agp^jdp Sin^a^u+agU^+a^u^du 

0 u 
(6.3.13) 

where a^, a^ and a^ are given by (6.3.10), (6.3.11) and (6.3.12) 

respectively. 

Let us now turn our attention to equation (6.1.21). On introducing 

the new variable V , defined by 

V = S/&I , (6.3.14) 

again assuming that = 1/g and making use of condition (6.1.43)^ 
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equation (6.1.21) becomes 

1 2 
6 7 2 

dv 
Pi'i Cos 6 J. dvCos 6 J.-p J. X. J. Sine, 

dv Sine J., 0 $ V $ 1 , 

(6.3.15) 

The corresponding forms of the equations (6.1.23) and the boundary 

conditions (6.1.40) and (6.1.41) are 

dx. dz. 
^ = AjCose^ and ^ = lysine; , (6.3.16) 

x- = 0, z_ = 1 , 0^ = -Tr/2 on V = 0 (6.3.17) 

and 

d0r 
" ^£1' ®I d7^ = 0 on V = 1 (6.3.18) 

respectively. 

Again we obtain the averaged form of equation (6.3.15) by integrating 

the latter with respect to V between the limits V = 0 and V = 1 

giving 

1 
6 dv 

v=l 

i f l 
S dv v=0 

° - fo*i 

1 1 

Sin(oij.+e^j-0j)dv - p^t^ 

0 V 

Cos6jdvCos0jdv - p^K^ j j Sin0jdvSinS^dv 

0 V 

(6.3.19) 

We assume a quadratic profile for 6^ in the form 

6j. = b^ + b^v + bgV (6.3.20) 
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where b^, b^ and b^ are functions of t only. Equation (6.3.20) 

must satisfy the conditions (6.3.17)^, (6.3.18)2 and (6.3.18)^, and 

hence we deduce that 

bg = - Tr/2 , 

^1 " 2(e^J.+Tr/2) 

(6.3.21) 

(6.3.22) 

and 

bg = -(e^j.+Tr/2) , (6.3.23) 

Substituting equation (6.3.20) into (6.3.19) leads to the integral 

equation 

1 1 1 

bĵ /6 = I Sinjaj+ej^j.+Tr/2-bj^v-b2V^Jdv + PjAj | 

0 0 V 

1 1 

CosjjTr/Z+b^^v+bgV^dvCo&jjir/g+b^v+b^v^dy + | | 

0 V 

Sin|jir/2+bj^v+b2V^dvSin|jir/2+bj^v+b2V^dv , (6.3.24) 

where b^ and b^ are given by (6.3.22) and (6.3.23) respectively. 

Integrating equations (6.3.3)^ and (6.3.3)2 with respect to u 

and making use of the conditions (6.3.4)^ and (6.3.4)2 results in the 

expressions 

and 

- *0 

U 

0 

u 

CosG^du 

' 0 " "0 
SinGgdu 

(6.3.25) 

(6.3.26) 
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Substituting equation (6.3.7) into these equations then yields 

*o - *0 

U 

r 2 31 
Cos a,u+a u +a_u du 

L 1 A. 3 J 
(6.3.27) 

and 
u 

SQ = I Sin^a^u+agU^+a^u^jdu (6.3.28) 

Similarly from equations (6.3.16)^, (6.3.16)2, (6.3.17)^, (6.3.17)2 

and (6.3.20) we deduce 

Cos dv (6.3.29) 

and 

- h 
Sin|bQ+b^v+b2v' ̂Idv + 1 (6.3.30) 

Applying the boundary conditions (6.3.5)^ and (6.3.5)2 to the 

equations (6.3.27) and (6.3.28) respectively leads to 

1 

X 
£0 

= &Q j Cos ̂ a^u+agU^+a^u^j du (6.3.31) 

and 

0 

1 

=10 - *0 Sin^a^u+a2u^+a2u^du , (6.3.32) 

whereas applying (6.3.18)^ and (6.3.18)2 to the equations (6.3.29) 

and (6.3.30) yields 

Cos jbg+bg^v+bgv^ dv (6.3.33) = 4 

0 

and 

- 310 -



= j SinjbQ+b^v+b^v^ dv + 1 . (6.3.34) 

On substituting equations (6.3.31) and (6.3.33) into the condition 

(6.1.42)^ and putting equations (6,3.32) and (6.3.34) into (6.1.42)^ 

we obtain the pair of integral equations 
1 1 

I l^^u+a^u^+a^u^ I Cos[a,u+a*u^+a*u^|du = 2, | Cos|bQ+b,v+b„v"idv (6.3.35) 

and 

kg I S^^^a^u+agu^+a^u^jdu = Sin^bg+b^v+bgV^jdv + 1 . (6.3.36) 

0 0 

It is convenient here to express condition (6.1.44) in the form 

V 
"o d T -

dZj 

*I AT- 4= ' (6.3.37) 

> 0 

which in terms of the variables u and v becomes 

V 

"o dT" -

dZj. 

*I d^T dv 

P 0 
(b- -S.SS) 

Differentiating equations (6.3.28) and (6,3.30) with respect to u and 

v respectively gives 

dZg r 

d T " " " o ^ T 

2 3] 
^u+agu +a2U (6.3.39) 

and 

dz 
- = &^Sin|bQ+b^v+bgV^ , (6.3.40) 

and substituting the above equations and (6.3.27) and (6.3.29) into 

condition (6.3.38) yields the integral equations 
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V 
2 
z p 

1 u 

I Cos^a^w+agW^+agP^duSin^a^u+agU 

0 0 

!. v 

- £ . Cos 

0 0 

^bQ+b^v+bgV^jdvSin^bQ+b^v+bgV^jdv . (6.3.41) 

Equations (6.3.13), (6.3.24), (6.3,35), (6.3.36) and (6.3.41) together 

with conditions (6.1.43)2* which is rewritten here for convenience 

'no * "o " ®JII * "i * " • 
(6.3.42) 

gives us six equations from which to determine the unknowns 8^^, 

a^, a^, fg and , This set of six equations are easily 

solved numerically and results for the case Pj.= = 0 , Br = 1.0, 

Pe = 0.5, 6 = 1.0 and h = 0.75 um are presented in Table 6,5. 

Br = 1.0, Pe = 0.5, 6 = 1.0, h = 0,75 mm. 

t G&O ^ 1 "o "l fo ^0 

0.2 90,67 -5.73 127.78 44.19 8.113 0.957 

0.3 72.70 0.53 134.40 26.57 6.150 0.989 

0.4 60.91 4.89 141.04 17.06 4.982 1.064 

0.5 53.62 9.55 146.57 10.64 4.250 1.171 

0.6 50.09 14.91 150.27 5.45 3.781 1.302 

0.7 49.55 20.83 152.16 0.86 3.462 1.447 

0.8 51.10 26.89 152.61 -3.18 3.232 1.601 

0.9 53.82 32.62 152.11 -6.68 3.039 1.757 

1.0 57.01 37.70 151.06 -9.62 2.860 1.911 

Table 6.5 

Comparison of these results with those presented in Table 6.2 

reveals that for smaller times the values for 8^^, cx̂  and 

are in good agreement with the exact solutions but the agreement 
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between corresponding values of 8^^ and ot̂  is poorer. It is 

also apparent that as time increase the overall agreement between the 

two solutions decreases. The approximate solution can be improved by 

increasing the order of the polynomial but the process is lengthy 

and is not considered here. Our approximate solution, therefore, is 

thou^t to be useful for smaller times and consequently all the results 

presented are calculated for t < 1 . It is found that although the 

error in and 0^^ is sometimes very large, the error in the 

coordinates x^ and remains quite small as can be seen from 

the profiles presented in Section 6.4. 

Under certain conditions the curvature of the surface L^, at 

s = 0 , predicted by this model becomes negative. Since this is 

physically unacceptable we again need to modify our model in an 

analogous way to that of Section 6.2.12. This process is carried 

through the following section. 

6.3.1 Solution with Zero Curvature at s = 0 

As discussed above, this problem differs from the previous one in 

thatthe length of the beam is now &Q - x^ , the end that was 

attached at the point (0, 0, 0, 0) is now attached at (x^, 0, 0, 0) 

and at the latter point the curvature is necessarily zero. 

Differentiating equation (6.3.7) with respect to u we obtain 

2 
2 ^ = + 2a2U + Sa^u , (6.3.43) 

and on applying the conditions of zero curvature (6.2.48) to this 

equation recalling that u is defined by (6.3.1), we obtain 
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= 0 , (6.3.44) 

The governing equations can therefore be obtained from those given 

in Section 6.3 by replacing by , the point (0, 0, 0, 0) 

by (Xp, 0, 0, 0) and by putting a^ = 0 . Equations (6.3.13), 

(6.3.35), (6.3.36) and (6.3.41) then become 

1 1 1 

° " P o < V ^ p ^ ^ | | 

Cos^IgW^+agW^dpCos^agU^+agU^jdu ^ p^(Jl^-x^)" 

^ , 0 u 

o- r 2 3 
Sin a^u +a2P 

,3 
'0'~0 ^p^ 

0 u 

dpSinjagU^+agU^jdu , (6.3.45) 

^ 1 

(&Q-Xp) I Cos^ l g u ^ + a g u ^ j d u + xp = j Cos j^g+b^v+b^vJdv , (6.3.46) 

0 0 

1 1 

(&Q-Xp) I Sin^a^u^+a^u^du " | S i n v + b ^ v ^ d v + 1 (6.3.47) 

and 

1 u 
V 

2 
^p 0 0 

= (&Q-Xp)^ I CoslagW^+agW^jdpSin^agU^+agU^jdu 

- 4 

1 V 
2 

I Cos^bQ+b^v+bgV^jdvSin^bQ+b^v+bgV^jdv , (6.3.48) 

0 0 

whereas equations (6.3.24) and (6.3.42) remain unaltered. 

6.4 Results and Discussion 

In Figure 6,5 the profiles of the upset collar are illustrated for 

the case Br = 1.0, Pe = 0.5, 6 = 1.0 and h = 0.75 mm. The solid 

lines represent the exact solution. Figure 6.5(a) reveals 

that for small time the agreement between the two solutions is very good 
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whereas from Figures 6.5(b), (c) and (d) we see that the agreement 

becomes poorer as t increases. As we have already mentioned,the 

accuracy of the approximate method can be improved by increasing the 

order of the polynomials used. However, this process is lengthy 

and although the errors arising from the approximate method can in 

some cases be quite large, the method does illustrate the qualitative 

effects of varying 6 and the pressure p^ and p^ . 

The choice of 6 = 1.0 means that both surfaces and 

have the same stiffnesses. The temperature, and hence the stiffness, 

will vary, in the real situation, along both and , but details 

of how the stiffness varies is unknown. In practice, however, 

is on average at a much higher temperature than and we would 

expect the stiffness of Lq to be smaller than that of . The 

assumption that is formed from material expelled from the interface 

z = 0 suggests that the temperature of is 0 (1200°C). Since 

surface is attached to both and the solid region, the 

temperature will vary along and lie between 700°C and 1200°C. 

Data for Young's moduljus at these elevated temperatures is thought 

to be very unreliable and for this reason it seems unwise to use a 

precise value for 6. The qualitative effects of varying 6 are 

therefore illustrated in Figure 6.6, where results are given for 

6 = 0.5, 0.1 and 0.05. We see that decreasing 6 , that is decreasing 

the stiffness of relative to that of , results in both an 

overall shift of the upset collar towards z = 0 and an increase in 

width of the plane at the interface. 

In all the cases discussed above, the hydrostatic pressure has been 

taken to be zero, which is clearly unrealistic. It is difficult, 

however, to estimate the thicknesses of and , the values 
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0.20" 0.40" 

Exact Solution 

Approximate Solution 

t = 0.2 

0 \ 8 0 * 
1 r 1.00 -T r 

1.20 
—1 1 
1.40 2 

(a) 

Exact Solution 

- - - - Approximate Solution 

t = 0.5 

'tuoo 
T 1 1 r 

0.20 a .40 
r—I"— I 1 1——T 1 1 2 

0.80 1.00 1.20 1.40 
(b) 

Figure 6.5 Profiles of the upset collar for the conditions 

Br 1.0, Pe 0.5, Pg = P^ = Q ^ 8 = l.O and h = 0.75 
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Exact Solution 

Approximate Solution 

k = 1 0 

Exact Solution 

- - - - Approximate Solution 

0.00 0-'.20 ' oUo ' 0'.60 ^ oLaO ' i'OO I '.20 i'40^ 

(d) 

Figure 6.5 Profiles of the upset collar for the conditons Br - 1.0, 

Pe = 0.5, Pg = ?! = 0 ' = 1.0, h = 0.75. 
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0.05 
6 = 0 . 1 

o I T 1 1 1 1 1 r 
0.00 0.20 0.40 0.60 

t = 1.0 

Exact Solution 

0.80 1.00 
T — 1 T — ~ l 
1.20 1.40 z 

Figure 6.6 Profiles of the upset collar for the case Br = 1.0, 

X , 

Pe = 0.5, P„ = P_, h = 0.75 and various values of 6 

0.60 0.00 0.20 0.40 
(a) 

Figure 6.7 Effect of varying pressure case 

Br - 1.0, Pe = 0.5, h = 0.75, 6 = 0.5 
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1 1 1 1 1 1 r 
0.20 0.40 0 .60 0 .80 

(b) 

t = 1.0 

1.00 
—I r 
i . 2 0 

-1 1 
1.40 

O.OO &.2C 0.40 0.60 0.80 

(c) 

t = 1.0 

—1 1 1 1 1 1 z 
1.00 i . 2 0 i . 4 0 

Figure 6.7 Effect of varying pressure (P^ = P^) for case 

Br = 1.0, Pe = 0.5, h = 0.75, 6 = 0.5 
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t = 1,0 

o I I I I I I 
0.00 0.20 0.40 0.60 0.80 i.oa 
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X.20 1.40 

(d) 

0.00 1 r 
0.20 0.40 

1 r 
0.60 0.80 

(e) 
1 1 r 

1.00 1.20 

Figure 6.7 Effect of varying pressure (P^ = P^) for case 

Br = 1.0, Pe = 0.5, h = 0.75, 6 = 0.5 
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X 

0.00 0.30 0.60 0 .90 1.20 1.50 1.80 2.10 

Figure 6.8 Effect of varying pressure (P^ / 

Br = 1.0, Pe = 0.5, h = 0.75, 6 = 0.5. 
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which are necessary to calculate the second moments of area and hence 

Pq and Pj. . Results are presented in Figure 6 . 7 for the case 

Pq = Pj = p (say). It is easily seen from these results that varying 

p has little effect on the profiles, which unfortunately do not curl 

over as much as the collar shown in the photograph (Figure 6.9 . 

However by taking p^ > the results displayed in Figures 6.8 

show that an increased curl can be achieved. 

IW. 

i 
- . -mm •r 

- > 

^ . 

Figure 6.9 Cross-sectional view of a friction weld oi 
a 1" diameter tube. 
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CHAPTER 7 

CONCLUSIONS 

Several modelsL describing the frictioning stage of the friction 

welding process have been presented. Most attention has been focussed 

on phase II for which Atthey's model [22^ was used as a basis. Atthey 

modelled the plasticised layer as a viscous fluid with constant viscosity 

and as a first extension to this model a series solution was developed 

to include the variation of viscosity with temperature. Qualitative 

agreement of torque traces with experimental results was observed with 

both these models for small times but for larger times the agreement 

was poorer and no equilibrium state was reached by either modil. The 

reason for this behaviour was recognised to be the neglect of axial 

shortening and a solution to include the effect of the latter was 

subsequently developed. There was no analytical solution for the case 

of axial shortening and it was decided to employ the approximate heat 

balance integral method. With the inclusion of upset a steady 

state condition was achieved and the qualitative comparison of torque 

with experimental results was much improved. The accuracy of the 

heat balance integral method was assessed using a series solution valid 

for small times and also an exact steady state solution. For the 

special case Pe = 0 a comparison between the heat balance integral 

solution and the small time solution, which in this case is identical 

to Atthey's solution, showed the error to be less than 10% for Br in 

the range 0 - 1 0 , For non-zero Pe a comparison with the large time 

heat balance integral solution with the exact steady state solution 

revealed the error to be less than 10% for Br in the range 0 - 5 . 
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While ZP and T possessed the right qualitative behaviour small 

time, the interface temperature did not. This was felt to be a consequence 

of neglecting the conditioning phase. Without the inclusion of the 

conditioning phase the interface temperature actually assumed the 

value appropriate to Pe = 0 and then decayed with time to its 

equilibrium value, the rate of decay depending on Pe . With the 

conditioning phase included the interface temperature was initially 

the conditioning temperature and rapidly grew towards its steady 

state value as time increased. 

Solutions were also obtained using the heat balance integral method 

for the case of various viscosity models. However, in all cases there 

was a value of the Brinkman number, Br^ , beyond which the interface 

temperature exceeded melting. However it was noticed when y decreased 

with increasing temperature the value of Br^ was increased and it is 

suggested that a suitable viscosity model may be one which obeys the 

law given in ^17^ for temperatures below melting but falls rapidly 

to zero in the close proximity of melting, in which case interface 

melting should not be achieved, 

A few of the simpler models had been repeated with the plasticised 

layer modelled as a Bingham substance. The algebra for the models 

is much more involved and the qualitative behaviour of the solutions 

does not have the agreement with experiment of the viscous fluid models, 

consequently the latter are felt to describe the friction welding process 

more aptly. In fact the most realistic model would be one incorporating 

the viscosity model described above and also including upset and the 

conditioning phase, and this could be examined in the future. 
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A model consistent with the viscous fluid model has been used 

to predict the shape of the material extruded from the plastic region. 

It was found that for certain variations of the hydrostatic pressure, 

within the extruded region, some quite good agreement between 

experimental observations and the theoretical predictions could be 

achieved. 

Although extensive qualitative comparisons have been made there 

has been very little quantitative comparison of results with experiment. 

This matter could be pursued in the future but it is felt that a better 

knowledge of the behaviour of viscosity should be aquired beforehand. 
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APPENDIX 

DERIVATION OF THE ELLIPTIC INTEGRALS IN CHAPTER 6 

Consider the integral in equation (6.2.9) which we shall 

denote by I^ and rewrite here for convenience 

- 1 

de 

O [Cosa^-CosCa^+e^^-e^f] r ' 
(i) 

Changing the variable to (j)̂  through the equation 

Cos (a +e„ -e ) = 2k^Sin^(|) -1 . 
o &o O O O ) 

(ii) 

where k is defined by 
o •' 

2k = 1 + Cosa ) (iii) 

equation (i) can be expressed in the form 

I^ = /2 
d(|) 

(iv) 

where <j)̂^ is given by 

Cos(a +9. ) 
o £o (v) 

Equation (iv) can be rewritten as 

I^ = /2 F(*o' ko) - F(+Ao' ko) (vi) 
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where F is the well known elliptic integral of the first kind 

and is defined by 

u 

F(u,l?) = [ (vii) 

oVl-k^Sin^V 

Let us now turn our attention to the integral in equation 

(6.2.28). We introduce defined by 

9o Sin9 d6 

1 , . ' 

fcosa -Cos(a +9. -9 ^ 
L o o £o o J 

It is convenient to make the change of variable given by 

u = a + 9. - 9 (ix) 
O X.O o 

in which case can be expressed as 

^2 = 

Expanding the numerator of the integral using the double angle 

formula we obtain 

I, . JiSinCo^+e^o) - JgCosCo^+g^^) (xi) 

where and are integrals defined by 

"l = 
Cosu du 

a +9. -9 
o &o o 

^Cosa^-Cosuj 
(xii) 
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and 

*o+*lo 

Sinu du 

. +9, -e (co»v'='"''] 
o £o o 

(xiii) 

Introducing <t>̂  through the relation 

Cosu =• 2k^Sin^# - 1 , o T̂ o 
(xiv) 

where is given by (iii), equations (xii) and (xiii) become 

= /2 

d((i 

- 2 
o o 

Zo 

- k^Sin^O^ d(|>_ } (xv) 

and 

Jg = /2 2k Sin* dj) . 
o o o 

r&o 

(xvi) 

Equation (xv) can be expressed in the form 

'l • [jw„. k.) - k„) - 21(+„, k„) + k^)] 

(xvii) 

where E , the elliptic integral of the second kind [ 31^, 

is defined by 

u 

E(u, k) = Sin V dV . (xviii) 

Equation (xvi) is readily integrated to yield 
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J- = 2/2 k tcoscfi. - Cos* 1 . (xix) 
2 ol_ £0 qj 

Using equation (v) it is easily deduced that 

Thus with the aid of (xi), (xvii), (xix), (v) and (xx) the 

integral can be expressed as 

+ 2/2 k (Zk^Sin^*, -l)(Cos* - Cos*,_) . (xxi) 
O O A»0 O X/O 

We new treat the integral in equation (6.2.27) in a similar 

manner, we have 

e 

( Cose d9 

I g = I -z ° — T T " (xxii) 
•' [cosa -Cos (a +0. -0 )1 
o (_ o o £ 0 o J 

We again make the change of variable given by (ix) leading to 

^3 = 

a +0. 

. +6, -9 f ' 
O &0 O 

and on expanding the numerator of the integrand using the double angle 

formula we obtain 

I3 = JlCo*(*o+GAo) + J2Si*("o+G&o) ' 

where the integral and have been defined by (xvii), (xix) 

respectively. With the aid of (xxiv), (xvii), (xx), (ix), (v) and 

(xx) the expression for becomes 

- 329 



Ij = /2\2koSin2*2a-l)[F(*^,ko)-P(4%o. k^) - 2E(+^, k^) + 2E(t^^. k^) 

+ U1/2 kgSind^^x/ l-kgSin^*^Q (Cos4>^^-Cos^^) 

The integrals in equations (6.2.10), (6.2.29), (6.2.30) may 

be treated in exactly the same manner as the above and only the 

results are presented below 

®I 
r de r -I 

-T-, = F(e , k ) - F(* , k ) , (xxvi) 

- } l l [co.ai-Cos(ve^^-9,]! L 

f Sin6 de 9 9 _ 
— ; % = •^(l-2kjSin^<|, )rF((|., , k ) 

-n/2 [cosa^-Cos(aj+8^^-9j)] L 

- F(*%;, k^) - 2E(4;, kj) + 2E(4%i, k^) 

hTpi k^Sincjj^jx/l-k^Sin^^ (Cos(j)^^-Cos^j.) 

(xxvii) 

and 
0, 

Cose^dS 

^ ^ J = 2V^ k̂ Sin(l.ĵ >̂/l-kjSin̂ (|.ĵ j[F(().̂ ,k̂ ) -

J / 2 | C k s O ; - C o s ( a ; + 8 % i - 8 i f ] 

F(*ai,ki) - 2E(*i,k^) + 2E(4^;,ki)] + 

2/2 k (l-Zk^Sin^*^ )(Cos*^ -Cos*^) . 

(xxviii) 
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In the above is given by the equation 

Cos (aj.+6ĵ j.-e) = 2kjSin^(|)j - 1 (xxix) 

where is defined by 

Cosa J = 2kj. - 1 (xxx) 

and <p is given by 

Sin(aj+e^j.) 1 - 2k;Sin2*ai (xxxi) 
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