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UNIVERSITY OF SOUTHAMPTON 

ABSTRACT 
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CIVIL ENGINEERING 

Doctor of Philosophy 
A TIME-STEPPING TECHNIQUE TO SOLVE 

WAVE PROPAGATION PROBLEMS USING 
THE 

BOUNDARY ELEMENT METHOD 

by webe Joao Mansur 

In this work the direct boundary element method is applied 
to solve transient wave propagation problems. 

At first, the scalar wave equation is considered 
and the discussion initially carried out illustrates the 
mathematical operations that are required in order to obtain 
two- and three-dimensional boundary integral equations which 
are amenable to numerical solutions. 

Linear discretization is adopted to represent 
the boundary geometry with linear and constant time and 
space interpolation functions being employed to 
approximate the boundary unknowns. Consequently the 
two-dimensional boundary integral equation is transformed 
into a system of algebraic equations, which is solved by 
implementing a time-stepping scheme in which time 
integrations are carried out analytically. One-dimensional 
Gauss quadrature is used to perform all boundary integrals 
except those in the Cauchy principal value sense which are 
calculated analytically. Linear triangular cells are used 
to compute contributions due to initial conditions. 

An investigation concerning elastodynamics, 
where two- and three-dimensional formulations are 
considered is also included. The numerical procedure which 
is employed in solving two-dimensional elastodynamic 
problems is very similar to that concerning the scalar 
wave equation, for this reason the discussion concerning 
this subject is only cursory. Initial conditions are not 
included, but cells are also used in the elastodynamic 
analysis, to compute internal stresses. 

A number of examples which relate to the two 
wave propagation problems previously mentioned are analysed 
and numerical results together with discussions regarding 
their accuracy are included. Certain other topics are 
also considered like the number of integration points 
that should be used, the relation between the element 
length and time interval size that should be chosen, etc. 



V 

ACKNOWLEDGEMENTS 

The author is indebted to his supervisor 

Dr. C. A. Brebbia for his keen guidance and helpful 

advice. Warm appreciation is also extended to 

J. C. F. Teiles, L. C. Wrobel, W. S. Venturini, J. Waters and 

M. Kavanagh for many invaluable discussions. 

Mr. A. G. Day kindly reviewed this thesis and 

made many useful suggestions, whilst Mrs. G. J. Cooper 

successfully completed the typing of this rather difficult 

manuscript. 

Finally, the author wishes to acknowledge the 

financial support provided by the National Council for 

Scientifical and Technological Development (C. N. Pq. ), 

and also from the Federal University of Rio de Janeiro, 

without whose help this research work could not have 

been undertaken. 



vi 

NOTATION 

x1 , x2, x3 Cartesian coordinates 

x position vector of a point with the 

Cartesian coordinates x1 , x2 and x3 

i, j, k unit vectors in the direction of the 

x, , x2 and x3 coordinate axes 

Kronecker delta symbol 

eijk permutation symbol 

(r ,6, f) spherical coordinates 

(r, 8, z) cylindrical polar coordinates 

(r, 6) polar coordinates 

Q domain of the body 

F boundary of the body 

7r propagating singular wave surface 

I= f+-f 
If 

q, Q field points 

S, S source points 

q, Q position vectors of the points q and Q 

s, S position vectors of the points s and S 

r(q, s) = q-s is the distance between q and s 

t time 

T time in which an impulse is applied 

to, 0 initial time 

t retarded time 
r 

At time interval 

intrinsic one-dimensional coordinate 

uk homogeneous coordinates regarding the 

two-dimensional triangular cells 
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n unit outward vector normal to F 

n coord inate in the di rection parallel 

to n 

n Carte sian components of n j 

t unit vector tangent to F 

V unit vector parallel to r (s, Q) = Q-s 

5(q-s) Dirac delta function 

6(k) (r -ct) =akký (r -ct) 
ar 

1 

(t'-r/c) time derivative of the Dirac delta 

function 

H (x-a) Heaviside function 

u scalar potential 

v scalar velocity equal to the time 

derivative of u 

p derivative of u with respect to n 

uo initial potential equal to u at t=to 

v0 initial velocity equal to v at t=to 

Y source density 

u* fundamental solution to the scalar 

wave equation 

v* derivative of u* with respect to T 

p* derivative of u* with respect to n 

u* u* at T=0 0 
v* v* at T=0 0 
u displacement components i 

V. velocity components 

pi traction components 

s strain components ib 
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wi. rotation components 

G. stress components i 

uoi initial displacement components 

v01 initial velocity components 

bk body force components 

e dilatation 

uik fundamental displacement components 

vik fundamental velocity components 

pik fundamental traction components 

Eijk fundamental strain components 

Cy ijk 
fundamental stress components 

u* oik uik at T=0 

v" oik vik at T=0 

P density 

X, G Lame constants 

v Poisson's ratio 

E Young's modulus 

c wave propagation speed for problems 

concerning the scalar wave equation 

cs speed of propagation of equivoluminal 

wave s 

cd speed of propagation of dilatational 

wave s 

gym, e m time interpolation functions 

'ni IV i space interpolation functions 

V2 Laplacian 

J Jacobian 
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CHAPTER 1 

INTRODUCTION 

1.1 Preliminary Remarks 

The discovery by Fresnel (1816) and Young (1817) 

concerning the properties of light stimulated scientists to 

study the rather complicated phenomena of the propagation of 

waves in elastic bodies. The conceptual problem of 

interpreting the physical features of waves in elastic bodies 

was as difficult as the mathematical formulation. Apparently 

Poisson {1} was the first to recognize that an elastic 

disturbance is in general composed of the dilational 

(irrotational, longitudinal, primary) and equivoluminal 

(shear, transverse, distortional, secondary) waves. Nearly 

sixty years elapsed before Lord Rayleigh {2} discovered the 

now well known surface waves (Rayleigh waves). Such waves 

are confined to the region close to the surface of the half - 

space and propagate with a speed which is less than that of 

the equivoluminal body wave. Surface waves were also studied 

by Lamb {3} and Love f4,51 who contributed considerably to 

the understanding of the subject. A complete historical 

review of the early investigations carried out by Poisson, 

Cauchy, Ostrogradsky, Green, Lame, Stokes, Clebsh and 

Christoffel, together with works published later on 

surface waves can be found in the book by Love {5 }. 

Due to its inumerable applications the theory of 

wave propagation has been studied by an increasing number 

of researchers, but despite the progress achieved in recent 

years quite a lot more investigations are required. There 
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are now many books on wave propagation and a modern approach 

to the subject can be found in references {6,7,8,9,1O}. 

The need to find solutions to engineering problems 

involving non-homogeneous, non-isotropic solids with complex 

geometries and sometimes having non-linear behaviour stimulate( 

the development of numerical techniques; finite differences 

being the first one to be commonly adopted by engineers. A 

review of its applications to wave propagation can be found 

in reference {1 1 }. 

Presently the finite element method [12-16} is by 

far the most popular numerical technique. It is undoubtedly 

more efficient than the finite difference technique in most 

engineering applications. Since the sixties the finite 

element method has been used to solve elastodynamic problems 

{12} and due to the large number of researchers working in 

the field, as soon as the year of 1974 general computer 

programs of the type described in references 07-191 became 

available. One of the drawbacks of finite elements and 

finite differences when used to solve wave propagation problems 

is the need to terminate the mesh when the domain being 

analysed is not bounded. In this situation artificial 

boundaries reflect unwanted waves that can interfere and 

sometimes completely invalidate the results. In order to 

avoid this problem researchers developed transmitting 

(non-reflecting) boundaries; their application can increase 

the cost of the analysis. Besides, the number of finite 

elements required can still be large, as such boundaries 

are usually capable of transmitting plane or cylindrical waves 

only {11}, and therefore they must be placed far from the 
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initially disturbed region. Consequently a method such as 

the boundary element method {20-221 that performs well for 

both bounded and unbounded domains and does not necessarily 

require domain discretization can be an advantage in many 

practical applications. 

A great deal of the work carried out using integral 

representations is concerned with the use of this useful 

mathematical tool to prove uniqueness and existence of 

solutions of differential equations {6,8,9,23,24 }. Its 

use to obtain solutions of problems was restricted to some 

simple applications, sometimes numerical f7,25}; but no 

general algorithm of solution was derived until researchers 

started developing boundary element methods. Boundary 

integral equation method J26,27} is also a common equivalent 

name found in the literature. These methods are called 

direct when physical parameters such as displacements and 

tractions in elasticity, are directly obtained from the 

solution of an integral equation {20-22,28-37} and indirect 

if this is not the case {27,38,39}. References to most of 

the investigations carried out so far on boundary elements 

can be found in many textbooks that have now been published 

on the subject {20-22,27,40-49}. 

Different procedures have been adopted to formulate 

the boundary element method, all of them dependent on the 

previous knowledge of a singular solution (fundamental 

solution). In considering the elasticity case, Rizzo {28} 

and later on Cruse J29,30} employed Betti's reciprocal 

theorem {51} and the fundamental solution developed by 

Lord Kelvin {52} to obtain Somigliana's identity {53}. 
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Through a limiting process an integral equation relating 

boundary displacements and tractions was subsequently 

obtained and transformed into an algebraic system of 

equations by using interpolation functions. An alternative 

approach which leads to the same equations obtained by Rizzo 

is the one used by Brebbia {20} who formulates the problem 

through we igfhted residual considerations. One of the main 

advantages of this approach is to make it easier to relate 

and combine the boundary element method with other numerical 

techniques. Alternative fundamental solutions that 

satisfy certain boundary conditions have also been used 

{34 , 36 , 54 } and can be of great advantage in many applications. 

The purpose of this work is to solve transient 

two-dimensional elastodynamic and scalar wave equation 

problems using the boundary element method. The fundamental 

solutions adopted here are time-dependent. The integral 

equations obtained are solved numerically using a time- 

stepping scheme. 

Two- and three-dimensional integral representations 

for the two previously stated problems can be found in many 

works {6,8,9,55}; but need to undergo further transformations 

in order to be used as a basis for numerical analysis. This 

fact becomes evident in that the integral representation for 

the scalar wave equation in three dimensions involves Dirac 

delta functions which must be eliminated before a numerical 

scheme of solution can be implemented. This transformation 

was primarily completed by Kirchhoff f57} who obtained an 

expression from which the potential at internal points can 

be computed. Later on, integral equations relating only 
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boundary unknowns were derived and successfully used to 

obtain boundary element solutions {58-60}. 

Most of the research carried out so far on boundary 

elements are concerned with solutions of elliptic and 

parabolic type differential equations. Quite a lot of 

investigations have already been carried out showing that 

the boundary element method is an efficient technique for 

these types of problem. However the same amount of effort 

has not been directed towards solving hyperbolic differential 

equations. Therefore, this a developing research area with 

a great deal to be accomplished in both the analytical 

formulation and implementation of general numerical procedures. 

1.2 Literature Survey - Transient Applications 

Cruse {61 }and Cruse and Rizzo {62 and 63} were the 

first researchers in the field of boundary elements to 

implement a general numerical procedure to solve two- 

dimensional elastodynamic transient problems. In their 

approach, boundary elements are used to solve elliptic 

differential equations in the Laplace transform domain and 

a numerical algorithm due to Papoulis f64} is used to 

obtain time domain solutions. The two numerical applications 

carried out by Cruse and Rizzo were concerned with half-plane 

problems and showed that their approach gives very accurate 

results for early times. 

As an extension of Cruse's work, Manolis {651 

and later Manolis and Beskos {66} compared Papoulis' and Durbin 

{67} algorithms to obtain time domain solutions. These 

researchers studied stress concentration in underground 
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structures and found that Durbin' s algorithm, 

although more time consuming than Papoulis', had a high 

accuracy even for late times. They carried out a finite 

element analysis as well and concluded that due to the low 

accuracy of some of the results finite elements were not 

efficient for this type of problem. 

Manolis {651 also formulated the steady state 

elastodynamic problem and pointed out that the integral 

equations for this case can be obtained from those employed 

by Cruse, by replacing the Laplace parameter 's' by 'iw' 

where 'w' is the exciting frequency. Alarcon et al. {68} 

used the same idea subsequently to find the dynamic stiffness 

of foundations . 

Direct solution of hyperbolic differential equations 

using time-stepping techniques was first carried out by 

Friedman and Shaw {58} and later on by Shaw et al. J69-76}. 

The initial investigations carried out by these 

authors appear to have marked the shift to computer solutions 

of wave propagation problems using integral equations. Their 

boundary equations are basically modifications of Kirchhoff's 

integral representation, which is taken to the boundary of 

the domain using standard results of potential theory {77}, 

and then adapted to the problems they wanted to solve. However, 

their applications were mainly concerned with particular 

geometries and boundary conditions and no general numerical 

formulation was attempted. They solved two-dimensional problem: 

by considering them as three-dimensional cylindrical ones 

with arbitrary axes length. In this way the three-dimensional 

formulation can be used, with the artificially introduced 



7 

third spatial coordinate playing the role of a time like 

variable. With this procedure the time integration which is 

required in two-dimensional formulations is avoided at the 

expense of introducing an additional spatial dimension. 

Further investigations related to Kirchhoff Is 

integral equation were carried out by Mitzener f591. He 

presented a general numerical procedure to analyse transient 

scattering from a hard surface but only considered in his 

formulation particular boundary conditions related to the 

problem he studied. 

Recently Groenenboon {60} using an approach similar 

to Mitzener's presented a general boundary element retarded 

potential technique to solve unsteady potential fluid flow 

problems in three dimensions. He applied the boundary 

element method to study the flow of liquid sodium in cooling 

components of liquid metal fast breeder reactors. Radiation 

condition was introduced to simulate openings that give an 

entrance to other parts of the steam generators and 

interconnecting piping system. A concentrated source term 

was included in the formulation to simulate the expanding 

reaction bubble originating from the sodium-water reaction. 

The numerical applications which he carried out produced 

encouraging results. 

Further contributions to the subject were given by 

Neilson et al. {78} and Herman { 79 }. The former extended Shaw's 

formulation to a wider range of problems and the latter 

presented an iteractive method which eliminated spurious 

oscillations that can appear at late stages in a time- 

stepping analysis. 
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Three-dimensional fundamental solutions were also 

used by Niwa et al. J80} and Manolis {81 }. These authors 

analysed two-dimensional transient elastodynamic problems 

using a scheme identical to Shaw's, i. e., they considered 

two-dimensional bodies as cylinders with axes of arbitrary 

length . 

So far, very few numerical schemes have been 

implemented to solve wave propagation problems using two- 

dimensional time dependent fundamental solutions. Das {82} 

and Das and Aki J83} studied the propagation of a two-dimensionE 

shear crack in an infinite homogeneous elastic medium using 

a time-stepping approach. However, their formulation was not 

a general one. 

Cole et al. f84} applied the well known two- 

dimensional time domain integral equation for the scalar wave 

equation {61 to solve transient elastodynamic antiplane 

motions. In that work a time-stepping scheme was used to 

obtain numerical solutions for the problem of two welded half- 

planes excited by a concentrated source. Very accurate 

displacements at the common surface were obtained. Their 

formulation was however restricted to problems in which the 

boundary integral involving the potential (displacement) 

disappears, which implies that internal displacements could 

not be computed with their procedure. In spite of this their 

paper represents the first contribution towards finding a 

general formulation using a two-dimensional time-dependent 

fundamental solution. 
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Mansur and Brebbia {85,86 } have also applied the 

boundary element method to analyse transient problems 

governed by the two-dimensional scalar wave equation. 

Commencing with weighted residual considerations they 

initially derived the same integral equation obtained by 

Morse and Feshbach 16} using Green's theorem. Further 

transformations were then carried out to eliminate 

derivatives of Heaviside functions that appeared in the 

integral equation and a general approach amenable to 

numerical solutions was derived. Contributions due to 

initial conditions and source terms were also included. A 

time-stepping scheme similar to that proposed by Cole 

et al. was used to obtain time domain solutions. The numerical 

features of this approach were illustrated by three examples 

for all of which highly accurate results were obtained. 

1.3 Contents of the Present Work 

In Chapter 2a short review of the basic theory 

of elastodynamics is presented, but those not familiar with 

this topic may find it necessary to read further on the subject 

before continuing with subsequent chapters. If this is the 

case suitable explanation can be obtained from consulting 

any of the selected references on elastodynamics previously 

mentioned in this section. The objective of chapter two is 

to introduce some simple but useful concepts as well as to 

describe simultaneously some of the notation and terminology 

used in this thesis. 

Initially a review of the small strain theory of 

elastostatics is carried out. The main topics presented in 

this preliminary discussion are concerned with stress 
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equilibrium equations of motion, strain displacement 

relationships, definition of rotation and Hookes' law for 

homogeneous isotropic elastic bodies. Following this some 

basic concepts of elastodynamics are introduced. This is 

carried out by describing the boundary initial value problem of 

elastodynamics, conditions at wave fronts and equivoluminal 

and dilatational body waves. Lame potentials, regularity 

and radiation conditions for infinite bodies are then analysed. 

In order to clarify further concepts a discussion on one 

dimensional, plane, spherical and cylindrical waves follows. 

The last part of chapter 2 concentrates on plane motions, 

i. e., antiplane, plane strain and plane stress motions. 

Chapter 3 is concerned with time domain integral 

representations related to the scalar wave equation. The 

discussion carried out within that chapter uses many 

properties of the Dirac delta and Heaviside functions. For 

this reason after an initial description of the boundary 

initial value problem, definition and some properties of these 

special functions are presented. Next the Green's function 

for three dimensions, together with an weighted residual 

statement are used to obtain an integral representation for 

the problem. Further operations to eliminate derivatives 

of the Dirac delta function are then performed leading to 

the Kirchhoff integral representation. 

The two-dimensional integral representation due to 

Volterra is next obtained using the method of descent. 

Volterr a' s formula is then modified following the procedure 

described in references f85 and 36}. An integral equation 

is obtained suitable for applying in a general numerical 

analysis. 
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Chapter 4 presents a discussion on the numerical 

implementation of the two-dimensional integral equation 

obtained in the previous chapter. The interpolation functions 

used to approximate boundary displacements and their normal 

derivatives, together with the procedure used to perform the 

boundary integrations are the topics initially discussed. 

Next, domain integrations are considered, and the chapter 

concludes with an investigation of three illustrative 

numerical examples. 

In Chapter 5 the discussion presented in Chapter 3 

concerning the scalar wave equation is extended to 

e lastodynamic s. The chapter opens with a summarized 

description of the boundary initial value problem of 

elastodynamics. This is followed by two- and three-dimensional 

fundamental solutions being employed together with the 

reciprocal theorem of el astodynamic s to work out the integral 

representations for the problem. 

The last part of Chapter five is concerned with 

additional transformations which must be carried out in 

order to obtain a two-dimensional boundary integral equation 

for elastodynamics, suitable to be used in a general numerical 

time-stepping analysis. 

Chapter 6 is concerned with the numerical 

implementation of a time-stepping scheme to solve the two- 

dimensional boundary integral equation obtained in Chapter 5. 

The numerical procedure used to solve elastodynamic problems 

with boundary elements is similar to the one described in 

Chapter 4. For this reason the initial discussion presented 

in Chapter 6 referring to interpolation functions and to the 
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implementation of the time-stepping technique is only cursory. 

Next the numerical scheme used to compute stresses at 

internal points is presented, the chapter ending with a 

study of five illustrative examples. 

Chapter 7 presents a general discussion of the 

matters investigated in the previous chapters with 

conclusions developed from the present work and recommendations 

for future research. 
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CHAPTER 2 

LINEAR ELASTODYNAMICS 

2.1 Introduction 

This chapter is concerned with a short description 

of the linear elastodynamic problem. The intention here is 

to provide an account of the basic theory and concepts 

employed in subsequent chapters. A more comprehensive 

investigation can be found in any of the many standard 

textbooks cited on the subject {5,7-10,, 87}. 

Because of the complex nature of the Navier's 

equilibrium equations, alternative differential operators 

have been used to represent motions of isotropic elastic 

bodies. A very convenient approach is that which adopts Lamb 

potentials, in which the displacement components are 

expressed in terms of derivatives of potentials that satisfy 

wave equations. The comprehensive information available on 

the wave equation, in conjunction with its simplicity can be 

of great advantage in quite a number of applications. 

However, particularly in numerical analysis, the adoption 

of Navier's equations of motion is preferred. One of the 

arguments for this is that it is possible to work directly 

with variables of physical interest rather than with 

elastic potentials. 

In section 2.2 the aforementioned approaches and 

also other basic topics are considered. 

The following section is concerned with one- 

dimensional motions and plane, cylindrical and spherical 

waves. The objective of this investigation is to introduce 



14 

more of the descriptive terminology used as well as to 

clarify some concepts. 

The chapter concludes with a section concerned 

with plane motions. 

2.2 Basic Theory 

Throughout this work the Cartesian tensor notation 

is used. This notation permits expressions to be written in 

a compact form and it is very useful when considering 

equations related to mathematical physics. Such notation 

makes use of subscript indices (1 ,2,3) to represent (x , y, z) . 

In this work the summation convention will be employed, i. e., 

a repeated index (subscript or superscript) in a term 

implies summation with respect to that index over its range. 

Hence in three dimensions, 

a.. xý = ii 1 i22i33 11 
(2.2.1) 

In addition, the Kronecker delta symbol S ij and 

the permutation symbol eijk, as defined by expression 

(2.2.2) , will be used. 

1 when i=j 
8ij = 

0 when ij 

eij k= 

(2.2.2) 

10 when any two indices are equal, 

1 when i, j, k are an even permutation 

of 1,2,3, 

1-1 when i, j ,k are an odd permutation 

of 1,2,3 

Another useful convention refers to partial 

differentiationof functions. The following representation 

is used, 

dok 
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af.. 
X] =f (2.2.3) 

a1 i3,1 

Within this work unless otherwise stated indices 

are assumed to have respectively a range of three or two 

for three- or two-dimensional analysis. 

Consider an infinitesimal parallelepiped surrounding 

a point within a body. If one isolates such a parallelepiped 

the remainder of the body can be replaced by the components 

of the stress tensor aid (force per unit area) as depicted 

in figure 2.2.1. The sign convention for stresses is such 

that if aiß is positive the vector representing aij (stress 

vector) points in the positive or negative xj-direction 

if the outer normal to the surface element under consideration 

points respectively in the positive or negative xi - 

direction. Therefore, the components of the stress tensor 

illustrated in figure 2.2.1 are positive. 

Q33 

J)32 
X31 

X23 

-I 

X22 -- 
C211 OY21 T22 

(T23 
/ 31 

32 - "i 

1_ 

Figure 2.2.1 Sense of positive stresses. 
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Once the components of the stress tensor are 

known, surface forces pi (force per unit area) acting 

across any surface in the body, including its boundary, can 

be computed from 

pi -ß. i nJ (2.2.4) 

where nj stands for the components of the unit vector n 

normal to the surface at the point under consideration. pi 

must be interpreted according to the sense of the vector 

n. It is apparent that the surface over which pi is being 

computed can be considered to divide the body into two 

others. pi stands for the forces exerted by the body for 

which n is inwards over the body for which n is outwards. 

Dynamic equilibrium of forces acting on the 

parallelepiped shown in figure 2.2.1 requires that 

ß+b= pü 1J, 1 jj (2.2.5) 

where b. stands for the components of the body forces 

(force per unit volume) and p is the density of the body 

(mass per unit volume) . Time derivatives are indicated 

by dots, i. e., 92U 
i 

/2u/t2 = ü1 
. Equations (2.2.5) will be 

referred to hereafter as the stress equations of motion. 

Furthermore, if there are no body moments present, 

dynamic equilibrium of moments requires that 

CS 
ij =Q ji (2.2.6) 

Let x represent the position vector of a point 

within a body in its undeformed conf iguration. Under the 

action of loads this point moves into a new position 

described by the coordinates X. The displacement components 

. Ok 
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ui are given by 

ui(x, t) = xi(x, t)-x. (2.2.7) 

If the ui displacement components are such that 

their first derivatives are so small that the squares and 

products of the partial derivatives of ui are negligible, 

then strains can be computed using Cauchy's infinitesimal 

strain tensor, 

ý1j 2 
(ul 

rj+ 
uj 

, 
i) (2.2.8) 

Consider a point P' in the neighbourhood of a 

point P within a body. Let the coordinates of P and P' be 

represented by xi and xi+dx1 respectively. The relative 

displacement of P' with respect to P is given by 

du. = u. dx 
1 1, J J 

(2.2.9) 

In the above expression the time variation of the displacement 

field has not been included, therefore it is valid for the 

static case. However the discussion now under consideration 

also applies to elastodynamics if one considers the 

displacement field corresponding to a fixed instant. 

Equation (2.2.9) can also be written as {871 

dui =2 (u. . +uj 
ti)dx. 

+2 (u. -uff 
, i)dx. 

or 

dui =2e1, dx .- 
-w 

.. dx . 

where 

GJij 
(uj 

, 
i-u 1, j) 

(2.2.10) 

(2.2.11) 

(2.2.12) 



18 

The tensor w.. is called the infinitesimal rotation tensor . 1J 
From expressions (2.2.8) and (2.2.1 2) it is easy to see 

that the tensors ci. and wi. are respectively symmetric 

and antisymmetric, i. e. 

E=E 13 J1 

wij = -wji (2.2.13) 

The components of the strain tensor are not 

independent from each other. If arbitrary values are assigned 

to Eij , from expression (2.2.8) it is possible to obtain a 

system of six equations from which only three unknown 

functions, ui are to be computed. Therefore one must not 

expect this system to have a solution, unless some additional 

constraints are satisfied . This problem was solved by 

St. Venant in 1860 who demonstrated that the strain tensor 

must obey the following compatibility equation 

Eij 
, k1+Ekl, ij cik, j1 cj 1, ik 0 (2.2.14) 

Equation (2.2.14) is a necessary and sufficient condition 

that strain components give single-valued displacements for 

simply connected regions. For multiply connected regions, 

however, this condition is necessary but usually not sufficient. 

It should be recognized that a displacement field 

obtained from equation (2.2.8) does not include rigid body 

motions. Therefore, the complete displacement field can only 

be obtained if together with the components of strain one 

also has knowledge of the rigid body motion (i. e. displacement 

and rotation) at some point within the body. 
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In addition to the stress equations of motion, 

Hooke's Law relating strain and stress must also be considered 

when formulating the elastodynamic problem. For isotropic 

elastic materials in which there is no change in temperature, 

Hooke' s law can be stated in the form 

6. = XE s 
. +2GE 

ij mm ij ij 

or inversely 

ýij 2G 
ý6ii 

1 +v 6kkýij 

(2.2.15) 

(2.2.16) 

where A and G are the Lame's constants and v is the Poisson 

ratio. X and G can be computed from v and the elasticity 

(Young's) modulus E as follows 

= 
Ev 

(1-2\)) (1+v) 

G2 (1+v) (2.2.17) 

Equations (2.2.5), (2.2.8) and (2.2.1 5) represent 

a set of 15 equations for the 15 unknowns oil, eij and u 

ßi3 can be eliminated by substituting equation (2.2.15) 

into (2.2.5). Then, using equation (2.2.8) one obtains 

Navier's equations which are outlined below 

Guß, kk + (X+G)uk, k. +b. = püi (2.2.18) 

Equations (2.2.18) are also referred to as the displacement 

equations of motion and constitute a linear system of hyperbolic 

differential equations for the dependent variable ui. 

When solving an isotropic elastodynamic problem, 

it is necessary to determine components ui (x, t) that 

satisfy: 

o> 
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(a) equation (2.2.18) for t> to at all points inside a 

domain Q, 

(b) initial conditions 

ui(x, t0) = uoi(x) 

ui (X'to) =I at ui (x, t) 
I 

voi (X 

t=t 0 

prescribed all over Q including its boundary F, 

(c) boundary conditions 

ui (X, t) = üi (X, t), XE r1 

cs ihn. = pi (x, t) ,x I'2 

(2.2.19) 

(2.2.20) 

specified over the boundary F (F=F 1 +r 2) .F may be the 

union of several closed surfaces with a piecewise continuous 

exterior unit normal. 

From equations (2.2.8) and (2.2.15) stresses can 

also be written as, 

G.. = auk, k6ij +G (ui +u . .). 13 
(2.2.21) 

Hence, using equation (2.2.4) , the second of the conditions 

given by equation (2.2.20) can be described in terms of 

displacement components as 

Auk, kn. + G(ui, J+u. . )n. pi (2.2.22) 

Consider that a body initially at rest has part 

of its domain (or boundary) disturbed. As time elapses this 

disturbance propagates setting in motion points of the body 

that initially were at rest. The moving surface which 

separates the disturbed from the undisturbed part of the 
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body is called the wavefr ont . Wavefronts are also referred 

to as surfaces of discontinuity because stresses, strains 
au. 

and velocities at can be discontinuous there. It should 

however be realized that discontinuities do not in reality 

exist in the physical problem, but are mathematical 

idealizations of physical quantities that vary rapidly in a 

small interval of space and time. Wavefronts do not need 

necessarily to be considered as moving into an undisturbed 

region of a body. It is quite common to find situations 

in which a region is already disturbed before the wavefront 

of an additional disturbance arrives. 

Consider a surface of discontinuity 7 moving 

through Q; 7 moves normal to itself with a speed c. from the 

region Q1 to the region 22 as shown in figure 2.2.2. Let 

1i be the components of the unit vector normal to 7 pointing 

out from the region 1 to the region 2. The jump conditions 

for displacements in Q are given by 

=0 [uji _ (ui)2 (u. )I (2.2.23) 

Displacements are continuous functions of space and time, 

however stresses and velocities can be discontinuous. In 

the neighbourhood of n the kinematical condition 

CU 
il _ -c 17 ui 

.7 

as well as the dynamical condition 

-PC 
Lu 

i1 ij j] 

must be satisfied. 

(2.2.24) 

(2.2.25) 

L% 
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Figure 2.2.2 Surf ace of discontinuity. 

A very important topic in elastodynamic theory 

(and other branches of mathematical physics) relates to the 

existence and uniqueness of solutions. Discussions that 

can be found in modern texts {7-10} reveal that further studies 

on this subject are still needed. The first proof of 

uniqueness, provided by Neumann {88}, is based on strain 

energy considerations and applies only for bounded domains. 

It also requires displacements and its first and second 

order time and space derivatives (hence stresses and strains) 

to be continuous functions of xi and t. There exists however 

a great variety of elastodynamic problems which do not obey 

the restrictions imposed by Neumann' s uniqueness theorem. 

Solutions to these problems have been assumed to be unique 

except in some situations for which uniqueness have recently 

been proved {89-91}. 
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Studies concerning existence of elastodynamics 

solutions have shown that this is a more complex subject. 

In this regard reference {91 recommends the article by 

Fishera {92} where a relevant historical bibliography on 

the subject is also presented. 

The increase in volume per unit volume that occurs 

when a body is deformed is called dilatation and is given by 

e= uk, k (2.2.26) 

Consider a displacement field for which e=0. In this 

situation, no change in volume occurs and deformation 

consists of shear and rotation only. Assuming that the body 

forces are zero (bi=0) equation (2.2.18) reduces to 1101 

V2ui = ui/c 
S2 

(2.2.27) 

where cs is given by 

cs =G (2.2.28) 

and 02 is the Laplacian operator, i. e., 

p2ui = ujkk (2.2.29) 

Equation (2.2.27) is a wave equation for the displacement 

u1 , governing equivoluminal waves; cs is the speed of 

propagation of these waves. 

Assign now the value of zero to the rotation w. ,. 

Considering again that bi=0 , Navier 's equations reduces 

to {10} 

02uß = uj/cd2 (2.2.30) 
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where cd is given by 

cd = (ý+2G)/p (2.2.31) 

Equation (2.2.30) is a wave equation for the displacements 

u, governing dilatational waves; Cd is the speed of 

propagation of these waves. 

Each of the displacement body waves governed 

by equations (2.2.27) and (2.2.30) can be identified 

by numerous distinct physical characteristics. For this 

reason , dilatational waves are also known as primary, 

irrotational, compressional or longitudinal waves. The 

corresponding names for equivoluminal waves are secondary, 

shear,, rotational, transverse and distortional waves. 

The displacement equations of motion can be 

replaced by two scalar wave equations by employing Lame 

potentials. This procedure, first introduced by Lame, can 

be described by the following completeness theorem {9} : 

Let ui (x, t) represent the components of a twice-differentiable 

particular solution of Navier's equations in a region of space 

Q, for t1 <t<t2. There then exists a scalar function ' (x, t) 

and a vector function `Y(x, t) , such that ui(x, t) is represented 

by 

ui = i+eljkT k,, j (2.2.32) 

and and '1k satisfy wave equations 

cä (02ý -c12+a=0, c2( V2yk - cý 2`Yk) + ßk =0 (2.2.33) 
ds 
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where a and ßk are such that 

bi = p(a, . +el3k6k, J) (2.2.34) 

It is important to point out that Stokes-Helmholtz 

resolution theorem {8-10} ensures that any sufficiently 

smooth vector may be decomposed into irr of at Tonal and 

solenoidal parts as shown by equations (2.2.32) and (2.2.34) . 

In equation (2.2.32) the three components of the 

displacement vector ui are given in terms of four scalar 

functions, as a result 4 and T1 can not be completely 

independent from each other. An additional constraint 

very commonly found implies that the vector T1 is divergent 

free, i. e., 

'P.. =0 1,1 (2.2.35) 

Although equation (2.2.35) is very useful, other types of 

conditions are also found in the literature, information 

on this subject can be found in references {7-10} 
. 

In an unbounded body there exists some restrictions 

concerning the behaviour of fields at infinity which are 

important to recognize. If an unbounded body is subjected to 

a disturbance which is confined in a finite region within 

it, physical considerations require that there exist no 

waves propagating back from infinity towards the interior 

of the body. 

In order to exemplify this fact the wave equation 

(equations (2.2.2%) , (2.2.30) or (2.2.33)) in three 

dimensions will be initially considered. The behaviour of 

fields at infinity {9} can be studied by considering a 
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large sphere Er of radius r, centered at a point ý, which 

contains the boundary I' of the region under consideration 

(see figure 2.2.3) . Let r approach infinity and impose 

the condition that the field at ý will not receive any 

contribution from Er ,i. e., waves do not propagate back 

from infinity. Then from Kirchhoff's integral representation 

(equation 3.5.16) one obtains the Summer f ie ld radiation 

condition, 

au . lim r är + üý =0 (2.2.36) 
r-*ý 

and the regularity condition 

lim uý =0 (2.2.37) 
r-* co 

c in expression (2.2.36) is the wave propagation speed. 

In two dimensions radiation and regularity 

conditions read 

1/2 
u 1/2 

lim r ýr +ü. 
l=0, 

lim r-U. =0. (2.2.38) 

Er in this case,, is a circle of radius r, rather than a 

sphere 

Apý 
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Figure 2.2.3 Simulation of an infinite domain by 
an infinite sphere. 

Radiation and regularity conditions for 

elastodynamics can be worked out following procedures 

similar to those just described for the scalar wave equation {9}. 

2.3 Some Simple Waves 

If the displacement is a function of one space 

variable only, 

ui = ui (x, ft) (2.3.1) 

and body forces are null (bi=0) equation (2.2.1 8) reduces 

to the three uncoupled one-dimensional wave equations {9 }, 

z u1 1 
3x12 Cd2 u1 

z u 
a_ 

a2X1 CS2 ua (a=2,3) . (2.3.2) 

ul , u2 and u3 represent displacement waves travelling in the 

O> 
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infinite strip shown in figure 2.3.1. Solutions of equations 

(2.3.2) can also be regarded as representing waves in one- 

dimensional bodies like strings, rods, etc. The 

dilatational component of the displacement, ul , is directed 

along the direction of propagation x j, whereas the 

equivoluminal components of the displacements, u2 and u3, 

are directed along directions perpendicular to x1. As cd>cs 

the dilatational disturbance travels faster than the 

equivoluminal one. If the plane that contains x1 and x2 

in figure 2.3.1 is the horizontal one u1, u2 and u3 can be 

identified respectively with P, SH and SV waves of 

seismology. 

Figure 2.3.1 Infinite strip of width 1. 

Boundary conditions must be specified on two 

planes parallel to each other. If the planes x 1=0 and x1 =l 

are chosen the boundary conditions can be of type (a) , (b) 

or (c) described below. 

. 991. 

-ýI .- 
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(a) displacement boundary conditions 

Ulm 

ui(1ºt) = u2 (t) 

(b) traction boundary conditions 

Pi (oft) = Pi (t) 

Pi (t) 

(c) mixed boundary conditions 

ui(Oft) = u1 (t) 

(2.3.3) 

(2.3.4) 

(2.3.5) 

Pi (t) 

In addition, initial conditions 

ui(x1,0) = uo. (x1) üi(x1,0) = v0 (x1) (2.3.6) 

must also be prescribed. 

Analytical solutions for the one-dimensional wave 

equation are not difficult to find. The general solution 

of an equation such as the first of those given by expression 

(2.3 . 2) was first derived by D' Alember t, and reads 

uý =f (x1 -cdt) +g (x1 +cdt) (2.3.7) 

Equation (2.3.7) has a very simple physical interpretation; 

it can be regarded as being composed of two one-dimensional 

waves f (x 1 -cdt) and g (x 1 +cdt) propagating in the positive 

and negative x1-direction respectively. A consideration 

for instance of contributions due to f (x 1-C d t) only, result 

in a conclusion that at t=0 u1=f (x1) . At a time instant 

t=t1 the shape of the wave given by ul=f (x1 -cdt) is that which 

is obtained by displacing the initial shape by a distance 

19W 
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cdtl in the positive x, direction as illustrated in figure 

2.3.2. 

f(X) 
.1 

f(Xý 
dtv) 

xT 
Cdt I 

Figure 2.3.2 Propagation of one-dimensional waves. 

A plane displacement wave propagating in the 

direction of an unit vector 1 can be represented by 

ui(x, t) = ui(xi1i-ct) (2.3.8) 

where x111=d+ct defines planes normal to 1 over which ui 

is constant. The argument of ui, xili-ct=d is called the 

phase of the wave. Figure 2.3.3 shows two planes of constant 

phase, L0 and Ll, that correspond respectively to t=0 

and t=t1. It should be noticed that ui over L0 is equal to 

u1 over L1, therefore, plane waves have the same characteristics 

of propagation exhibited by D'Alembert solution for the one- 

dimensional case. 

ol 
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I 

Figure 2.3.3 Propagation of plane waves. 

Waves like those represented by equation (2.3.8) 

only obey Navier's equations if 

(1) l iu i=±u and c =cd 1 
(2.3.9) 

(2) 1. u. =0 and c=cs 

It can be demonstrated {7,8,9,10} that waves 

defined by equation (2.3.8) and which consequently obey 

(1) and (2) in expression (2.3.9) are in fact equivoluminal 

and dilatational displacement waves respectively. Hence, 

a complete analogy with the one-dimensional case previously 

studied can be forthcoming if one considers that the 

coordinate axis x1 is parallel to the direction of propagation 

defined by the unit vector 1. 

When a displacement field has radial symmetry 

with regard to a point ý, a system of spherical coordinates 

dob, 



32 

(r ,6, f) , centered at ý, is the most convenient to be 

employed. Due to the radial symmetry of this problem, the 

components of the displacement in the direction 0 and ý are 

null. Hence the displacement vector reads, 

u(x, t) = ur (r, t)er (2.3.10) 

where e is the unit vector in the direction of the 
r 

coordinate r. Navier's equations (bi=0) then reduce to 

i u2 2 our 
_2uü (2.3.11) ar r Dr r2r cd2 r 

Introducing a variable ý such that ur =ýý equation (2.3.11) 

gives 

a2( 
=1 

a2 ) (2.3.12) Dr2 cd2at2 

which is the well known one-dimensional wave equation whose 

solution (D'Alembert solution) results in 

r 

_f 
(r_cdt) +g (r+cdt)l (2.3.13) 

The waves just described are known as spherical waves with 

radial symmetry shortened in common use to spherical waves. 

When the displacement field has symmetry with 

regard to a line one has disturbances which are usually 

termed cylindrical waves. This problem can be best 

studied by using a system of cylindrical coordinates (r, 6, z) 

where z coincides with the line of radial symmetry. In 

this case the only variable not equal to null is ur and the 

Navier's equations (bi=0) reduce to 

z a ur 
+1 

our 
_ 

u2 

2ü (2.3.14) -T FT r ar r cd r 

. d1h 
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As for the case of spherical waves, when a variable ý such 

that ur =äý is introduced, equation (2.3.14) can be written 

as 

är +r ä-- 
c2 

ät 
2 (2.3.15) 

a 

The general solution of equation (2.3.15) was 

first derived by Lamb, and is discussed in reference {93}. 

Equations (2.3.1 1) and (2.3.14) are particular 

versions of Navier's equations, and the complete differential 

operators in cylindrical and spherical coordinates can be 

found in textbooks concerned with the subject. 

The body waves discussed in this section are very 

often the subject of discussion because as a result of their 

simplicity they make clear many concepts involved with the 

phenomena of wave propagation. 

2.4 Plane Motions 

If the displacement is a function of two rectangular 

coordinates only, i. e. 

ui (xi , x2, t) (2.4.1) 

the problem is termed elastodynamic in the plane J9} or 

complete plane strain J371. In view of equation (2.4.1). 

U3,3=0 and all other derivatives of the displacement 

components are functions of xI and x2 only. Therefore the 

Navier's equations take the following form, 

Guj 
, kk + (\+(-, ) uk 

, kj + bI = pu (2.4.2) 

Gu3, kk + b3 = pu3 (2.4.3) 

where j and k can be 1 or 2. 

, O> 
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The domains in which complete plane strain problems 

are studied are infinite cylinders whose axes are parallel 

to the x3-direction. The mathematical problem of solving 

the differential equations (2.4.2) and (2.4.3) can then be 

considered as two-dimensional. The domain Q and the boundary 

I' in this case are defined by the intersection of the infinite 

cylinder with the (x , 'x2 ) plane. Of course the physical 

problem is three-dimensional because displacements and 

stresses in the x3-direction do not equal null. Equation 

(2.2.21) in this case is written as 

aij = Xuk, kSij +G (ui, j+uj , i) 

033 Xuk, k (2.4.4) 

i3 = Gu3, i 

Equations (2.4.2), (2 ,4.3) and (2.4.4) show that equations 

(2.4.2) and (2.4.3) can be solved independently. For this 

reason, complete plane strain can also be seen as resulting 

from the superposition of the plane strain and antiplane 

motions governed re spec itve ly by equations (2.4.2) and 

(2.4.3) . These motions are described in (a) and (b) below. 

(a) Antiplane motion: 

This motion is governed by the scalar wave 

equation (equation (2.4.3)) which is of the same type as 

equations (2.2.27) and (2.2.30) previously described in 

section 2.2. The boundary conditions in this case are 

given by, 

Oh 
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u3 = u3 (x1, x2, t) on Fi 

(2.4.5) 

p3 =a i3 ni = Gu3, ini= 
p3 (x1 , x2, t) on I'2 

where I'l+I'2 = r. The initial conditions for the antiplane 

motion are written as 

u3 (x1 , x2,0) = U03 (x1 , x2) 

ü3 (x1, x2,0)= vo3 (x1 , x2) 

in Q. (2.4.6) 

In this problem the normal stress a33 is null, 

therefore only the shear stresses 013 031 and 023 cr32 

are present in the analysis. In addition the vector 

representing the displacement u3 is perpendicular to the 

direction of propagation of the displacement waves. For 

these reasons this motion is also called shear antiplane or 

horizontally polarized shear motion {8}. 

(b) Plane strain motion: 

Plane strain motions are governed by equation 

(2.4.2) , which is of the same form as Navier's equations for 

three dimensions. The only difference is that in the present 

situation the indices range from 1 to 2, rather than from 

1 to 3. The boundary conditions for this problem are 

given by 

ui = ui (x1 , x2, t) on F1 

(2.4.7) 
pi = a. n. = pi(xI, x2, t) on F2 

where F= r1 +P2" The initial conditions for plane strain 

read 

990. 
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ui (x, , x2,0) = uoi (x1 , x2) 
in Q. (2.4.8) 

vi (x1 , x2,0) = voi (x1 , x2) 

In a plane strain problem 

u3 E13 X31 c23 E32 0 (2.4.9) 

However,. the stress 63 3 is not null and can be computed from 

the second of equations (2.4.4) . 

When the domain of the problem being analysed 

does not extend to infinity in the x3-direction a plane 

strain condition can not be assumed to exist. In this 

case a three-dimensional analysis must be carried out, 

however when the dimensions of the body in the x3-direction 

are small, a condition known as plane stress can be assumed. 

This situation occurs when analysing thin plates acted on by 

forces parallel to its midplane. The plane stress hypothesis 

assumes that 

633 =a31_ cy 13 = 632 = 623 =0 (2.4.10) 

In this case the same equations of plane strain can be used 

provided that the constants v and E are replaced by 

fictitious ones, v and E, given by 

v= v/ (1 +v ) 

E= E(1+2v)/(1+v2) 

which implies that 

G=G 

(2.4.11) 

_ 
(2.4.12) 

X= 2XG/ (A+2G) 
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It is important to state that since £33 is not necessarily 

null, U. depends on x3 and the problem is not really two- 

dimensional. However, plane stress can be considered a 

good assumption when the plate being studied is sufficiently 

thin {87}. 
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CHAPTER 3 

BOUNDARY INTEGRAL EQUATIONS FOR TRANSIENT PROBLEMS GOVERNED 

BY THE SCALAR WAVE EQUATION 

3.1 Introduction 

The scalar wave equation governs many physical 

i 

phenomena such as transverse motions of strings and membranes, 

longitudinal motions of rods, elastodynamic antiplane motions 

etc. Its application however is not only restricted to the 

simple problems just mentioned. The discussion on Lame 

potential outlined in section 2.2 illustrated that even 

rather complicated differential equations can sometimes be 

reduced to a set of wave equations. In addition, there is 

another very important reason for studying'the scalar wave 

equation; namely its great simplicity. Through the study 

of this equation it is easier to understand basic concepts 

and to derive techniques of analysis that can be extended 

to more complicated problems. This can be clearly seen in 

this work by a comparison of chapters 3 and 4, which deals 

with the scalar wave equation, with chapters 5 and 6, 

concerned with e lastodynamic s. 

This chapter is concerned with the reduction of 

the scalar wave equation (differential equation) to an 

integral equation. For this purpose Green's functions 

(fundamental solutions) for infinite domains together with 

a weighted residual statement are employed. Kirchhoff's 

integral representation is obtained and then 

the two-dimensional problem is formulated using the method 

of descent. Volterra's integral equation {94} is then 

do-, 
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modified following the procedure described by Mansur 

and Brebbia {85}. 

3.2 The Boundary-Initial Value Problem - Transient Scalar. 

Wave Equation 

The boundary-initial value problem for the scalar 

wave equation has already been discussed in section 2.4. 

However the notation used there referred to elastodynamics. 

For this reason a description of the problem will be 

presented again together with a more convenient notation 

and terminology. 

The wave equation can be written in terms of 

a potential u as 

02u- ü/c 2= -Y (3.2.1 ) 

where c is the speed of wave propagation, Y describes 

space and time dependence of source density and u=a2 u/ at2. 
The region Q in which two-dimensional solutions of equation 

(3.2.1) are sought will be considered to be regular in the 

sense defined by Kellog {77}, i. e. the F boundary of Q can 

be composed of several closed regular surfaces which may 

have corners or edges provided they are not too sharp {27}. 

In order to find the particular solution to 

equation (3.2.1) corresponding to the specific problem which 

needs to be solved it is necessary to specify the initial 

conditions 

u (x, o) = u0 (x) 

in Q at t=0, 
(3.2.2) 

(x) v(x, o) = v0 

Opp 
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and the boundary conditions 

u=u on r1 

au (3.2.3) 
p __ u, 1n1 an p on I'2. 

where r= r1+r2 and n is the coordinate in the direction 

parallel to the unit outward vector n, normal to F. 

3.3 Dirac Delta and Heaviside Functions 

When studying Green's functions it is convenient 

to employ the Dirac delta function f561. 

the Dirac delta is defined by 

6 (x-a) =0 when xa and 

+co 

S (x-a) f (x) dx =f (a) 

In one dimension 

(3.3.1 ) 

The derivatives of the Dirac delta are functions such that, 

6 (k) (x-a) =0 when xa and j: A- 

+Co (3.3.2) 

6(k) (x-a) f (x) dx = (-1 )kf (k) (a) 

-Co 

kk 
where S (k) (x-a) and f (k) (a) stand for a 

k6 (x-a) and kf (x) / 
aX öX x=a 

respectively. 

The definition of the Dirac delta function can be 

easily extended to domains which are not one-dimensional. 

When a two- or three-dimensional domain Q is considered the 

Dirac delta can be defined as follows, 
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S (q- s) =0 when s 74 q and 

S(q- s)f (q)d2(q) =f (s) 

Q 

where s and q represent two points within Q. 

(3.3.3) 

Two-dimensional Green's functions corresponding 

to equations (2.2.1 8) and (3.2.1) can be conveniently 

represented using the Heaviside function (see figure 3.3-1) 

given by, 

1 

H (x-a) _ 

0 

O 

k 

I 

if x>a , 

if x<a . 

Figure 3.3.1 The Heaviside function. 

(3.3.4) 

The Dirac delta and Heaviside functions can be 

related to each other as follows 

H (x-a) = 6(x-a) (3.3-5) d 
Tx- 

In the discussion just carried out, definitions 

and also certain basic properties of the Dirac delta and the 

Heaviside functions were presented. Additional properties 

ax 
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to the ones previously described will be introduced where 

required. For a rigorous and detailed discussion on this 

subject attention should be directed to references {95 and 

96}. 

3.4 Fundamental Solution in Three Dimensions - Transient 

Scalar Wave Equation 

The Green's function (fundamental solution) for 

the scalar wave equation is the solution of equation (3.2-1) 

for an unbounded domain f6,9} and a particular concentrated 

source, i. e. 

47T6 (q-s) 6 (t-T) (3.4.1 ) 

Equation (3.2.1) , in this case, can then be written as 

V2u* - u*/c2 = -4ff6 (q-s) S (t-T) (3.4.2) 

Thus u* is the effect of a source represented by an impulse 

at t=T located at q=s, whilst q and s are referred to in 

the literature as observation (field) and source points 

respectively. 

The fundamental solution represented by equation 

(3.4.2) has the following properties {6,9}: 

(i) causality 

u* (q, t; s, T) =0 whenever c (t-T) <I q-s l 

(ii) reciprocity 

u*(q, t; s, T) = u*(s, -T; q, -t) 

(iii) time translation 

u*(q, t+t1 ; s, T+t1) = u*(q, t; s, T) 

In three dimensions the solution of equation 

(3.4 -3) 

(3.4.4) 

(3.4.5) 

(3.4.2) is given by {6,9} 
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SS r-c (t-T (3.4.6) u (q, t; s, T) )1 
rr 

where r=r (q, s) = q-s l, as shown in figure 3.4.1. In 

reference {9} substitution of u* given by equation (3.4.6) 

into equation (3.2.1) is carried out in order to illustrate 

that the first is a solution of the second. A rigorous 

derivation of expression (3.4.6) can be found in reference 

{6}. 

"a 

Figure 3.4.1 Definition of the vector q-s. 

3.5 Kirchhoff Integral Representation 

When t is replaced by T, equation (3.2.1) is 

written as 

1 a2u(q, T) - -y(q, T) (3.5.1) p2u(q, T) - 
C2 aT2 - 

From the reciprocity property equation (3.4.2) 

can be written as {6} 
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V2u* (q, t; s, T) - X12 
a2u* (q, t; s, T) 

- -47r6(q-s) S (t-T) 

(3.5.2) 

It is now convenient to introduce a notation which 

will be employed later. In future source and field points 

when over the F! boundary will be denoted respectively by 

S and Q. 

In order to deduce a singular boundary integral 

equation for the problem it is necessary to consider two 

distribution of potentials u* and u that satisfy respectively 

equations (3.4.2) and (3.5.1). In addition, u* and u are 

assumed to be distributed respectively over the regions Q+F 

and Q*+F* (see figures 3.5.1 and 3.5.2) which have the same 

physical properties and are such that Q* contains Q+I'. 

Only fundamental solutions concerning the infinite space 

are used in this work, therefore F* must be placed at 

infinity and u* must obey the radiation and regularity 

conditions given respectively by equations (2.2.36) and 

(2.2.37). It is important to recognize that a procedure 

similar to the one described in this chapter can also be 

used when the fundamental solutions employed do not relate 

to the infinite space {34 
, 36 , 54 }. 

A weighted residual statement for the problem 

under consideration can be written as {20-22} 

t+ J(v2u 

- 
a2u + y)u*dQdT c2 DT2 

0Q 

_ (p-p)u*dFdT - 
0 r2 

t 

(u-u) p*d I'd T (3.5.3) 
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^3 

Figure 3.5.1 Three-dimensional region Q+P. 

Figure 3.5.2 Region Q*"f. F* containing Q+F. 
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where p* = än 
. t+ in equation (3.5.3) represents t+E, 

c being arbitrarily small. Applying this procedure avoids 

terminating the integration exactly at the peak of a Dirac 

delta function. In equation (3.5.3) space integration and 

derivatives refer to the coordinates of the field points 

q or Q. Applying the divergence theorem twice to the term 

of equation (3.5.3) that contains the Laplacian operator 

(V 2u) and integrating by parts twice with respect to T the 

z 
term that contains the time derivative äT2, the following 

expression is obtained (see appendix A) 

t+ t+ 
(u*p-up*) drdT + (V 2u* _ C1z 

az 2U* )udQdT 

or02 

II t+ t+ 
+ u*ydSidT + 

C2 
a* 
Dru- 

äT 
u* d2 =0 J0 

2 S2 -0 

Bearing in mind equation (3.5.2) and that due to the 

(3.5.4) 

causality property 

T-t+ 

au* 
U aT 

T-t+ 

I3 
T u*I 0 (3.5.5) 

equation (3.5.4) can be written as 

+ t+ t 
(u*p-up*)drdr - 4Tr6(q-S)6(t-T)ud2dT 

0r0Q 

t 

+ u*ydQdT -- (v*u -v u*) dQ =0 
C2 0000 J0 S2 Q 

(3.5.6) 
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where 
11 * 

v* _I __ 0 aT 

T=0 

u* = lu* 
0 

T=0 

(3.5.7) 

When the Dirac delta properties are applied to the second 

term on the left-hand side of equation (3.5.6) the following 

integral equation is obtained, 

t+ 
u (S , t) 417T u* (Qrt; s, -r) P (Q. -r)dr (Q)dT 

+0r t 
P*(Q, t; s, 'r)u(Q, T)dr(Q)dT 

0r 

- X12 ýö (q, t; s)uo(q)dQ(q) 

SZ 

+2 u* (q, t; s) vo (q) d2 (q) 

2 

t+ 

+ u*(q, t; s, T)1(q, T)dQ(q)dT (3.5.8) 
0Q 

In the operations carried out to obtain equation 

(3.5.8), u was assumed to be twice differentiable with 

respect to time and space coordinates. However, this may 

not be the case in many wave propagation problems. Therefore 

further studies concerning this situation are still required. 

The properties of the Dirac delta function can be 

used to eliminate the time integrations in equation (3.5-8) 

{5,6,9,60}. Taking into consideration u* given by equation 
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(3.4.6) the following operations can be carried out for the 

first term on the right-hand side of equation (3-5-8), 

t+ t+ 
u*pdrdT =rS (r/c) - (t-T)]p (Q, T)dTdr 

0r 

Jr 

0 
I 

t+ 

r r)P(QºT)dTdr = Jrp(Q, tr)dr (3.5.9) _ JS(T-t ror 

where tr stands for 'retarded time' , equal to rt_r/c1" 

The fundamental traction can be computed from 

P* (Q, t; s, T) =a [u*(Q, t; s, T) = rý 
an Dur (3.5.10) 

The derivatives indicated in equation (3.5.10) refers to 

boundary points Q. Using formula (3.4.6), p* can be written 

as 

an r2F(r/c)-(t-T) 
+1a [(r/c)_(t_T)] 

(3.5.11) 

000, 

Equation (3.5.11) can also be written as 

an r12s(T-tr) 
+ 

cr aT 
FS(T-tr) 

In view of expression (3.5.1 2) the second term on the 

right-hand side of equation (3.5.8) can be written in 

the following way 

(3.5.12) 

t+ t+ 

T= ar _1S (T-t +1as T-t ua p*uara an r2 r cr aT ( 
r)] Tar. 

oFro (3.5.13) 

I 
I 
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Taking expression (3.3.2) into consideration the following 

equation is then obtained 

II t+ 
p*udI'dT u (Q, t )+1 au (Q, T) ldF 

. (3.5.14) an r cr aT JOJF 
r_-Tr 

The integral involving source density in equation (3.5-8) 

can be operated as follows, 

t+ 
u*ydQdT =r1 (q, T) S (T-tr) dTdQ JJ 

t+ 

JJ 0Q SZ 0 

= 
rY(q, tr)dE2 (3.5.15) 

Dirac delta properties can also be applied to the terms 

that involve initial conditions {9} in equation (3.5.8). 

The final integral equation then obtained has the following 

form 

u(S, t) 41Ir r (s1, Q) I(Q, tr)dF(Q) 

r 

1 ar (s, Q) 
+ 4Tr an (Q) r2 (S IQ) 

r 

1 
u(Q, t + au (Qº T) dr (Q) r) cr (s, Q) 

_ 
aT 

T =t 
r 

+ tN0 + at 
(tM0 + 41Tr r (s1, q) Y(q'tr)dQ(q) (3.5.16) 

SZ 

where Mo and N0 are respectively the mean value of u0 and 

v0 over a spherical surface with centre at s and with a 

variable radius ct. It should be noticed that as a result 

of the causality property, when tr <0 the terms on the 

right-hand side of expression (3.5.16) give no contribution 

to u(s, t) . 
00p, 
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Equation (3.5.16) is known as the Kirchhoff's 

integral representation and can be considered as the 

mathematical representation of Huygens' principle {6,97} . 

The singular integrands of the integrals referring 

to initial conditions in equation (3.5.8) have been 

eliminated. However computation of source density 

contributions requires integrations of a singular function 

(-1y) to be performed . This is not much of a problem and r 

can easily be done numerically using 

the ordinary concept of integration. 

Kirchhoff 's integral representation can be used to 

compute u at internal points in terms of u, 
än 

and 
au 

on the 

F boundary and in terms of source density and initial 

conditions. However, in a well-posed problem u and p are not 

known over the entire I' boundary. As a result equation 

(3.5.16) alone does not represent the complete solution 

of the boundary-initial value problem described in section 

3.2. A boundary integral equation from which boundary 

unknowns can be computed, can be derived by taking equation 

(3.5.16) to the F boundary. The integral equation obtained, 

unlike Kirchhoff 's representation, has boundary integrals of 

singular functions which must be computed in the Cauchy 

principal value sense. The analytical manipulations required 

will be described next. 

When the F boundary is assumed to satisfy the 

Liapunov smoothness condition { 27 }, the domain Q can be 

augmented by a small hemisphere of radius c, whose centre 

is at a boundary point S as depicted in figure 3.5.3; 

OOM 
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F displayed in this figure is the boundary of the hemisphere 
.. 

In this situation, when initial conditions and source density 

are not considered, equation (3-5-16) can be written as 

u(S, t) 411T r (S, Q) p(Q, tr)dr (Q) 

r-r 

+1 
ar (S. Q) 1 

u(Q t)+1 
au(Q, T) ]dF(Q) 

4ir 

c 

an(Q) r2 (S, Q) r cr (S, Q) aT 

r-r - T=t 

1 
+ 47(Sp+Su+SV) (3.5.17) 

wher e 

SP 
1p 

(Q, t)drý (Q) 
r (S, Q) r 

S= 
U 

F E 

S= V 
F E 

ar (S, Q) 1 
an (Q) r2(S, Q) u(Qýtr)dFE(Q) 

(3.5.18) 

(3.5.19) 

ar (S, Q) 1 au (Q, dF (Q) . (3.5.20) 3n (Q) cr (S, Q) LaT E 

T=tr 

Figure 3.5.3 Domain augmented by a hemisphere of radius 

e whose centre is at a boundary point S. 

oel 
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When £--O; I'-r 
e -*I', and as shown in appendix B 

S=0 
P 

41-Tr Su = 
2u(S, t) (3.5.21 ) 

S =0 V 

Therefore for boundary points located on smooth parts of 

the r boundary the following boundary integral equation 

can be written, 

u (S "t) 4-ff r (S, Q) jr 
P(Q, tr)dI'(Q) 

+1 ar (S, Q) 1+ ar (Q) n(Q) 

[r2(S, 

Q)U1tr) cr (S, Q) aT 
I' T =t r 

+ tNo+ at 
(tMo)+ 

41f r (S q-) -y(qtr)d2(q) (3.5.22) 

S2 

It should be noticed that the integrals outlined 

in equation (3.5.22) are to be computed in the Cauchy 

principal value sense. 

It is important to point out that at points s 

located outside Q+F the potential is equal to zero. The 

integral equation corresponding to this situation can be 

obtained by making the left-hand side of equation (3.5.16) 

equal to zero, i. e. ,u (s, t) = 0. 

Occasionally a physical phenomenon can be best 

represented by a concentrated source given as 

Y (q, t) =f (t) 6 (q-qc) (3.5.23) 

where qc gives the position of the source. The last 

integral on the right-hand side of equation (3.5.22) then 

001, 
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becomes 

f (tc ) 

where rc =S- qc I and tc =t- rc /c 

The numerical implementation of equation (3.5-22) 

is discussed in reference {60}. A special feature of the 

three-dimensional analysis is that no time integration is 

required. The same does not apply for the two-dimensional 

case as will be shown in the next section. 

3.6 Two-Dimensional Boundary Integral Equation - Transient 

Scalar Wave Equation 

As previously described in section 2.4 a two- 

dimensional problem can be seen as a three-dimensional one 

in which u is a function of two rectangular coordinates 

only, i. e. 

u (x, t) =u (x1 , x2, t) 

(3.5.24) 

(3.6.1) 

Expression (3.6.1) implies that tractions, source density 

and initial conditions are also independent of x3. In this 

case the domain in which the problem is studied can be 

considered to be a cylinder whose axis has infinite length 

and is parallel to the x3-direction. Then, the two-dimensional 

domain Q and the F boundary are defined by the intersection 

of the cylinder with the (xl, x2) plane as depicted in figure 

3.6.1. Therefore, for this particular three-dimensional 

situation the first term on the right-hand side of equation 

(3.5.8) can be operated as outlined below 

Oº 
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Figure 3.6.1 Two-dimensional domain with a Kellog type 

F boundary. 

t+ Jt+ 
u3DpdrdT = JO Jr 

30 

JF2D 

t 

= pu2Ddr dT Jo Jr (3.6.2) 

where u2D is the two-dimensional fundamental solution given 

by 

f+Co 

u* = u3Ddx3 

. -Co 

+Co 

p u3Ddx3dF2DdT 

-Co 

(3.6.3) 

00 
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The subscripts symbols 2D and 3D used in equations (3.6.2) 

and (3.6.3) indicate respectively two- and three -d imens ions 

and will be used hereafter only when confusion is a 

possibility. 

Transformations similar to the ones shown in 

expression (3.6.2) can be carried out on the other integrals 

in equation (3.5.8) . When the resulting expression is taken 

to the r boundary the following integral equation is obtained 

t+ 
c (S)u(SIt) = 41 ,r 

Ju*(Qit; 
ST)P(QiT)dF(Q)dT 

o 

- P* (Q, t; S, T) u (Q, T) dr (Q) dT JJt or 

-1 v*(q, t; S) u(q) dQ(q) 
o Cz 

2 6 

+I u*(q, t; S) v(q) dQ(q) 
Cz00 

SZ 

t+ 

+ 
Iu*(q, 

t; S, T)(q, T)dQ(q)dTl (3 .6 .4) JOJQ 

where u* = u2D is given by expression (3.6.3) and 

+ CO 

p* p2D p3DdX3 an 
(u2D (3 .6.5) 

v* = v* = 
au2D 

aT (3.6.6) 
o o2D 

T=0 

uo = uö2D u2D (3.6.7) 

T=0 

00M 
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It should be understood that as it is clear that equation 

(3.6.4) refers to two-dimensions, the subscript symbol 2D 

was not used in that case. 

In the three-dimensional analysis, only Liapunov 

boundaries were considered, hence c (S) in that situation 

was equal to 1/2. However, in the two-dimensional 

formulation a generalization was introduced, namely that 

the F boundary can be of Ke l log type. The parameter c(S) 

in this case, as shown in appendix B, is represented by 

c (S) =a 2 7r 
(3.6.8) 

where a is the internal angle depicted in figure 3 .6.1. 

In a similar manner to the three-dimensional case, two- 

dimensional integral equations that apply to points located 

inside and outside Q+F can be obtained by considering c(S) 

in equation (3.6.4) to be respectively equal to one and 

zero . 

The methodology used here to obtain a two-dimensional 

boundary integral equation for the scalar wave equation is 

called the method of descent {6 and 9}. Descending from the 

three space dimensions is not the only choice in formulating 

the two-dimensional problem. If the same procedure described 

in section 3.5 had been applied for the two-dimensional 

case, the result would be that equation (3.6.4) would have 

been obtained again. 

The two-dimensional fundamental solution evolved 

from carrying out the integration indicated in expression 

(3.6.3) (for further details see appendix C) is 

0 
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u*(q, t; s, T) = 
2c Hrc(t-T) -rr . (3.6.9) 

c2 (t-T)2 -r2 

The integral equation for the two-dimensional 

scalar wave equation was first obtained by Volterra {94}. 

A comparison between Volterra's and Kirchhoff Is formulas 

displays a significant difference between two- and three- 

dimensional waves. Kirchhoff 's formula demonstrates that 

at a time t, only the signal emitted at a point s at a time 

(t - Jq-s l/c) affects a point q. Volterra's formula, 

however, implies that in two dimensions a point q is affected 

at an instant t, by signals emitted at a point s, at all 

times previous to (t - q-s I/c) 
.A more comprehensive 

discussion of this interesting discrepancy of behaviour of 

two- and three-dimensional waves can be found in references 

{6 and 9}. 

In addition to being of great benefit to the 

more complete understanding of wave propagation phenomena, 

Volterra's formula can also be used to obtain analytical 

solutions. However it has to undergo further transformations 

before it can be used in a numerical analysis. 

3.7 Additional Transformations to Volterra's Integral 

Representation 

The objective of the operations carried out in 

(i) and (ii) that follow is to remove the time and space 

derivatives of the Heaviside function that appear in 

Volterra's integral equation. 

(i). The second term on the right-hand side of equation 

(3.6.4) can be operated as follows, 

00 
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t+ t+ t+ 
u 

au* drdT = 
ar 

u 
au* dFd-r. p*udFdT = an an ar 

or Jo FoF (3.7.1) 

Substituting formula (3.6.9) into expression (3.7-1), the 

following expression is obtained 

t+ 
an u 

aar dTdF 

ro 

t+ 
an u 

2cr 
H ýc (t -, r) -r dTdF 

I 2 (t-T) 2-r 3 P0 
ýFC 

F 
t+ 

+ 
ar 

u 
2c 

Dr Hr (t-T) -r dTdr (3.7.2) 
c2 tT 2-r 2 -- 

i 

o() 

Further operations must now be performed on the second 

term on the right-hand side of equation (3.7.2) . The 

following relationship will be used 

ar HL (t--r) -r = (CT) 
[H(t-T)-r] i 

(3.7.3) =a ar 1-H rr-c (t-T)] _ -S rr-c (t-T) 

Therefore, using the notation f 
-1/z 

L= L(r, t, T) = 2rc2(t-T)2-r1 (3.7.4) 

-1/2 
L0 = L0(r, t, 0) =2 (c2t2-r2) (3.7.5) 

and bearing in mind expressions (3.3.1) and (3.7.3) the 

following transformations can be carried out 

000 
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t+ 

r 
an 

0u 

2c 
ar Hc (t-T) -r dTdI' 

C2 (t_T )2_r2 

t+ 
an ucL Dr 

[HFc(t-T)-r 

dTdr 

0 

Ict+ 
ar 

uL6 EcT-(ct-r) d(cT)dr an 
ro 

ar [uL dr 

r 
an 

- cT=mot-r 

c t-r 
ar 

(uL) d (cT)dr - 
Dr 

uoLo H rct_rldr 
(CT) 

r0 r 
+ 

t 
3 

an c2 (t-T) u4+ (au/DT)L Hc (t-r) -rýj drdT 

or 

an uoLoH c t-r dr (3.7.6) 

r 

Taking expressions (3.7.1). (3.7.2), (3.7.4), (3.7.5) and 

(3.7.6) into consideration the following expression can be 

derived 

t+ 
p*u drdT 

0F 
t+ 

Dr 2crc(t-T)-r1 

an u 
0r Fc 2 (t-T) 2-r J3 

+ 2(au/aT) lH(t-T)-rdFdT 
Fc 

2tT 2-r 2- 

- 
ar 

2u 
0H ct-r dI' än IC2t2-r2 

(3.7.7) 

OOP 
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(ii) The following property of the Heaviside function 

as HFc(t-T) -r= c ar H[c(t-T)-r (3.7.8) 

is required in the transformations regarding the third 

term of the right-hand side of equation (3.6.4) , given by 

v* u dQ 
o0 

Q 

(3.7.9) 

Taking account of expression (3.6.9) it is possible to write 

1v*u 

OO 
d2= 

as 

TI 
uOd2 

S2 2- ^T=o 

uo 
2c 3tH 

rct-r dQ 
S2 R2t2_r23 

+u 
2c 2a 

Hrct-r dQ 
0Q 

,/C2t 
2_ r2ar 

I_ (3.7.10) 

A further investigation concerning the second term on the 

right-hand side of expression (3.7.1 0) is now required. If 

this term is called I2, and a system of polar coordinates 

is adopted (see figure 3.7.1) whose origin is at the source 

point s, 12 can be written as 

18 r =r (6 ) 22 
H ct-rý drd6 (3.7.1 1) I2= ruo 

2c 
Dr 

c2t2-r2 
61 r=0 

where 01 = 0,02 =2n and 

rr (6) =r (s, Q) = IQ-S l (3.7.12) 

defines the F boundary in polar coordinates (see figure 3.7.1). 

olp 
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J 

Figure 3.7.1 System of polar coordinates. 

If expression (3.7.1 1) is integrated by parts with respect 

to r, the following expression is obtained, 

22 rr (8) 

I2 = ruo 
2c 

H rct-r d6 
c2 tt2-r2 '- 

61 -0 

e2 r=rF (e) 

- ar (ruoc 2L0) H rct-r drd6 (3.7.13) 

01 r =O 

Further manipulations give 
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1e 
12=2 uorrl, (e)ý 

2c2 
Hrct-rF(6)ýrF(6)d6 

eý 1ýý2t2-rP (e) 

-r uoc 2 L0H [c t-r]dQ 
au 

-a0c2 LoH Lc t-r dQ 

L3 
t-r]dQ . - u0c2r 0 HFc (3.7.14) 

The first integral on the right-hand side of expression 

(3.7.1 4) can be transformed by applying the following 

formula (see appendix D) 

1e2 
f rr(0 r(0) de =f r(S Q) 

aän(Q)Q) 
dr(Q) (3.7.15) 

___ 61 F 

and so it is possible to write 

1e2 
z uorr, (0) 2c Hrct-rF(e)rF(6)d6 

e1 c2t2-r2 (e) 

ar (s, Q) 
2c2u0(Q) 

an (Q) H[t-r (s, Q)] dF(Q) (3.7.16) 

r c2t2-r2 (s, Q) 

Taking expressions (3.7.5), (3.7.10), (3.7.14) and (3.7.16) 

into consideration, the following relationship can be stated 

vöuod Q 

Q 

u 
2C2 (r-ct) + 

2C 2 
0 

Q 

CFC 
2t2 _ý 3 rýc 2t2 

_r 
2 
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+ 
au0 2c 2 lHflct_rldQ 
Dr 

c 2t 
-r 

+är u0 
2c 2Hrt 

-r dF 
ct -r 

(3.7.17) 

The last terms on the right-hand side of expressions (3.7.7) 

and (3.7.17) will cancel out within equation (3.6.4) to 

produce the final integral statement which for points located 

on the F boundary is written as 

1 t+ t+ 
4Trc (S) u (S, t) = u*p drdT + 

an 
(B*u + u* v) drdT 

0F0r 

+1 
au u 

u*v dQ + (-B*u + u* o+ u* -°) dQ 
cooco00 ar or 

SZ Q 

t+ 
+ Iu*dQdT (3.7.18) 

02 

where u* and u* are given respectively by expressions 

(3.6.9) and (3.5.7), 

2c Fc (t-T) -r] 
B* = B*(Q, t; S, T) = Hrc(t-T)-r] (3.7.19) 

ý-Fc 2 (t_T) 2 
_r 

13 

B* = B* (Q, t; S) = B* (Q, t; S, O) (3.7.20) 

and v indicates velocity as given by 

"=D (3.7.21) 
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It should be recognized that equation (3.7.1 8) can 

also be used for points inside the domain Q. As stated 

previously, c (s) must be regarded as equal to 1 in this 

situation. 

Two distinct types of singularities can occur 

in the integrands of equation (3.7.18). The first type of 

singularity occurs in the integral of the initial conditions 

when r=0 and in the boundary integrals when r and c (t-T) 

are simultaneously null. The second type of singularity 

occurs at points located at the front of the wave represented 

by the Green's function, that is, in the boundary and source 

density integrals when r=c (t-T) , and in the integrals of 

the initial conditions when r=ct. Nevertheless numerical 

integration of equation (3.7.1 8) does not present any 

notable difficulty as it will be discussed in the next 

chapter. 
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CHAPTER 4 

BOUNDARY ELEMENT METHOD FOR TWO-DIMENSIONAL TRANSIENT PROBLEMS 

GOVERNED BY THE SCALAR WAVE EQUATION 

4.1 Introduction 

Time and space interpolation functions, similar to 

the ones used in finite elements, can be employed to transform 

the integral equation (3.7.18) into a system of algebraic 

equations whose solution supplies the boundary unknowns u 

and p. The potential u (s , t) at internal points can then be 

calculated by using equation (3.7.18) with c (S) = 1. This 

procedure is standard in boundary element formulations 

{20 and 21 }; but a discussion about this subject is necessary 

in order to clarify certain factors which only appear in the 

problem under consideration. 

The usual time marching schemes consider each 

time step as a new problem and consequently at the end of 

each time interval, values of displacements and velocities 

are calculated for a sufficient number of internal points; 

this is in order to use them as pseudo-initial conditions 

for the next step, i. e. the integral equation (3.7.18) 

is applied from 0 to At, At to 2At etc. In this thesis 

however the time integration process is always considered 

to start at the time '0' and so values of displacements 

and velocities do not need to be calculated at intermediate 

steps. With this procedure the domain discretization is 

restricted to regions where source density and initial 

conditions do not disappear. Domain integrations at a 

time step 'j' are then avoided at the cost of having to 
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compute time integrations for all time steps previous to 'j'. 

This technique is especially suitable for infinite and 

semi-infinite domains. A comparison of the performance of 

both techniques for transient heat transfer problems can be 

found in reference f35}. 

The examples presented in this chapter illustrate 

the numerical procedure of solution implemented in this 

thesis and also show the degree of accuracy that can be 

expected from this scheme. The examples also elucidate other 

important factors such as the number of integration points, 

and also the relation between boundary elements length and 

time step size that are suitable in the numerical analysis. 

4.2 Numerical Implementation 

In this section the numerical implementation of 

equation (3.7.18) is discussed. Occasionally the summation 

symbol is used instead of the summation convention defined 

by equation (2.2.1). This is done to simplify the 

comprehension of certain equations, and in this case summation 

symbols invalidate summation convention over repeated indices. 

4.2.1 Boundary Integrals - In order to implement a numerical 

scheme to solve equation (3.7.18) , it is necessary to 

consider a set of discrete points (nodes) Qj , j=1 , ... J on 

the F boundary, and also a set of values of time tn, 

n=1 , ... IN. u (Q, t) ,v (Q, t) and p (Q, t) can be approximated 

using a set of interpolation functions as indicated below 
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JN 
u(Q, t) _ pm(t) rlj (Q)uj 

j =l m=1 

v (Q, t) =1L 
dot) 

n" (Q) um (4.2.1 ) 
j=1 m=1 

dt i1 

JN 
P(Q, t)_ em(t) (Q) Pm 

j=1 m=1 

where m and j refer to time and space respectively. pm (t) , 

raj (Q) ,0 
m(t) and vj (Q) are chosen such that 

nj (Qi) =6 i7 

Vi (Qi) = Sid 
(4.2.2) 

m (t 
n) = Smn 

em(n) 
mn 

where 6ij is the Kronecker delta defined by expression 

(2.2.2). Therefore 

u' = u(Q., tm) 

(4.2.3) 

Pý =P (Qj , tm) 

If equation (3.7.18) is written for every node i 

and for every value of time tn, and u, v and p are replaced 

by their approximations given by expression (4.2.1), the 

following system of algebraic equations is then 

obtained 
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n1NJ nm m1 
NC J 

nm mnn 
c (Sid ui +4nI Hijuj 4 Tr Gý GijPj + Fi + Si 

m=1 i=l m=1 J-1 

where 

nm 
_ 

ar (Si, Q) 
to 

rm(T)B*(Q, tn; si, T) HiJ 
n(Q) 

(Q) 

0 

+1 
dým(T) 

u* (Qºt; Sir_[) dTdF (Q) 
c dT n 

t In 
Gim : -- 03 . (Q) ein (T)u*(Q, t; Si, -r)dTdr(Q) Jr0 
Fi = uo(qºtn; si)vo(q)dQ(q) 

+ u*(q, t ; S. ) 
oni 

S2 

au0 (q) 

Dr (Si, q) 
dQ(q) 

(4.2.4) 

(4.2.5) 

(4.2.6) 

(4.2.7) 

)u (q) dQ(q) +t Bö (q, t 
n ;Si0 nr (Sl, q) 

SZ 

t JflJu*(q, 
tfl; sj, T)y(q, T)dQ(q)dT s=02 (4.2.8) 

It should be recognized that the third term on 

the right-hand side of equation (4.2.7) is the sum of the 

first and third terms of the integrand of the fourth 

integral on the right-hand side of equation (3.7.18). 

Let Atm be such that ckm (T) =0 whenever 

T <tm-At m 
(see figure 4.2.1 . a) and allow c 

nm to be a domain 
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bounded by a circle of radius c (tn-tm+Atm) with centre at 

the node i (see figure 4 . 2.1 , b) . 

Om(G) 

ri 
Atm 

I tn - tm+Atm 

(a 1 (b) 

Figure 4.2.1 Interpolation function m (T) , domain Slim and 

boundary segments Fm and F.. 

A coefficient Him given by equation (4.2.5) is 

null whenever Ti nrnm =0o is the null space, Fm is me nm 

and F is such that (Q) =0 whenever Q I'ý . It should be 

noted that a similar discussion leads to similar conclusions 

for the coefficients G1, given by expression (4.2.6). 

If Slim is cimnQ, then due to the causality 

property, Fi and Si given respectively by expressions (4.2.7) 

and (4.2.8) , can be obtained by carrying out domain 

-. .n. M -- "UM # 
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integrations over no only, where Qno is equivalent to 

Q. for t= At =0. imm 

If the discussion just carried out is taken into 

consideration computer time can be saved. 

Due to the difficulty to visualize how boundary 

unknowns vary with time it is usual to adopt 

tm+l -tm = At = constant . (4.2.9) 

In this case pm(t) can be assigned the time translation 

property, i. e. 

(t+10t) 

Hence 

Hnm = 
(n+l) (m+l ) 

Gnm =G 
(n+l) (m+l ) 

If expression (4.2.1 1) is taken into consideration, a 

(4.2.10) 

(4.2.11) 

large number of redundant operations can be avoided in the 

numerical analysis. 

A time-stepping scheme in which equation (4.2.4) 

is successively solved for n=1 , ... N can be used to calculate 

unknowns u1 and qý at the time tN . The actual numerical 

implementation of such a scheme requires, of course, the 

specification of the type of interpolation function to be 

used; this will be considered next. 

Initially linear time interpolation functions 

m (T) and Am (T) (see figure 4.2.2) will be considered, i. e. 
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ým(T) = OM(T) = 

At ( T-tm-1) if t 
m_ 1 <T <tm 

At (tm+1 T) if tm<-r <tm+1 ' (4.2.12) 

0 otherwise 

M rr. 

at LAtL 
'j ý 

Figure 4.2.2 Linear time interpolation functions for u and 

p on the F boundary. 

The substitution of expression (4.2.12) into 

formulas (4.2.5) and (4.2.6) gives 

Hinm =j (Hij ) 
I+ 

(Hi. j) F 

(4.2.13) 

Gij (Gij) 
I+ 

(Gij) 
F 

where t 
m 

(H nm) _-1 
ar 

n" (Q) r(T-t )B *n +1 u*n dTdI' 
lj I 7t an ic1r 

F tm-1 

nm 1 ar 
1tm+1 

- *n *n ýj (Q) 
Htm+l_T)B" 

c ui j dTdF (Hij F 0t 
r 

an J 
tm 

tm- I tm tm+I T 
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t m nm )I= At V3 . (Q) (T-tm_1 *n dTdr 

I' tm-1 

nm 1 
tm+1 

*n (Gij) F= At ý (Q) (tm+1'T) ui dTdI' (4.2.14 ) 
iF 

tm 

In expression (4.2.14) 

uin = u*(Q, tn; Si, T) 

Bin = B*(Q, tn; Si, T) (4.2.15) 

When ým(T) and 8m(T) are linear, Him and Gib are 

null whenever m>n because in this situation 

H[ (tn--r) -r-j ý(T) =0 
(4.2.16) 

HLc(tn-T)-r10m(T) =0 

as illustrated in figure 4.2-3. 

Figure 4.2.3 Illustration of a situation in which 
nm nm H=G=0. ij 13 

to -L) to tm- I tm tm+ 
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The time integration indicated in equation (4.2.14) 

can be carried out analytically giving 

ýHij) 
I cAt an nj (Q) (Dim) 

I 
dF 

r 

(Hij) F cAt an n1 (Q) (Dim) F dr 

r 

2 (Gij) 
Ic At vj (Q) (Eim) 

I 
dr 

r 

(Gij) F cOt Jvj (Q) (Eim) 
F 

dF (4.2.1 7) 

F 

where (Dim) I, (Dim) 
F' 

(Enm) 
I and (Enm) 

F are given in 

appendix E. 

When Om (T) is constant (see figure 4.2.4), 8m (T) 

can be represented in the following way 

1 if tm_ 1 <T <tm 

0 (T) _ 

0 otherwise 

m ,_, 

(4.2.18) 

Figure 4.2.4 Constant time interpolation for p. 

tm-1 tm -c 
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The substitution of formula (4.2.18) into 

express ion (4.2.6) give s 

t m 
Glý = v. (Q) J11*n dTdF (4.2.19) 

r tm-1 

Analytical time integration can now be carried 

out giving 

Ginm 2j 
cAt 

(Q) Fim dF (4.2.20) Jr 
where Fnm can be computed as shown in appendix E. 

In order to perform numerically the integrations 

indicated in expressions (4.2.1 7) and (4.2.2 0) the F boundary 

must be replaced by an approximated one. Linear discretization 

is used in this work, that is, F is represented by a series 

of straight line segments, ek (elements), each one joining 

two consecutives nodes of F. lk and nk are the length of ek 

and the unit outward vector normal to ek respectively (see 

figure 4.2.5). 

When two elements ep and eq with a common node j 

are considered, and the interpolation functions qJ. (Q) and 

vj (Q) are linear, the use of natural coordinates gives 

(see figure 4.2 .6) 

2( gyp+1) QE ep 

nj (ý) = vi (ý) = 

Ee -2 (q-l) Qq 

(4.2.21 ) 

0 otherwise . 
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k 1 

P 

Figure 4.2.5 Linear discretization of the r boundary. 

p1=Yj 1p1 
I 

ýp= ýp=0 fpI 

Ip /2 ip /2 
1 

q)Jj( 
jq) 

+ý 
f 

qjq=0 
fq 

Iq /2 Iq /2 

Figure 4.2.6 Linear space interpolation functions for u 

and p on the F boundary. 
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When formula (4.2.21) is considered, expression 

(4.2.17) is given as follows 

nm (Hij) 
I _2 cAt 

ar 
an 

nm nj (Di ) 
IdI'p + 

Dr 
an 

nm nj (Di ) 
IdI'q 

ep q 

nm (H _2r 
ar 
an 

nm nj (Di )F dF 
p 

+ 
ar 
an 

nm nj (Di )F dF 
q 

e 
_P 

e q 

(Gij) I cat 
nm 

Idrp + Vj nim 
Idrq 

e P e q 

(Gij) 
F cAt vi nim 

Fdr + v (Eim (4.2.22) ) 
Fdr p i q 

e P e 
q 

Since the interpolation functions are expressed 

in terms of the homogeneous coordinates E, a change of 

coordinates has to be carried out before performing the 

integrations indicated in expression (4.2.22) ; this problem 

is considered in appendix F. 

When 0m (T) is constant and formula (4.2.21) is 

taken into consideration, expression (4.2.20) can be written 

as 

(Gij) I= 
Ginm _2 

mm 
jc At vj F1 dFp + vj Fi dFq 

ee Pq 

(Giý)F =0 (4.2.23) 

When n=m, the coefficient (Hii) 
I 

in expression 

(4.2.22) contains integrals which must be evaluated in the 
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Cauchy principal value sense. The function being integrated 

has a singularity of the type 1/r, as shown in expression 

(E. 4) . However when linear discretization is used these 

integrals disappear due to the orthogonality of I'k and nk 

= 0. This problem (see figure 4.2.5) which makes an 

deserves special attention when interpolation functions of 

order higher than linear are used to approximate the 

geometry of the F boundary. 

When n=m the coefficient (Gnm )I in expressions 

(4.2.22) and (4.2.23) contains integrals which have a 

singularity of the type In r. These integrals can be 

computed in the ordinary sense using Gaussian quadrature. 

However, a greater precision can be obtained if these 

integrals are carried out analytically rather than numerically 

as shown in appendix F. 

The rest of the coefficients in expressions 

(4.2.22) and (4.2.23) can be calculated using standard Gauss 

quadrature formulae. 

Another situation to be examined is that in which 

TI i (Q) and v. (Q) are constant, i. e. 

1 when QEe 

n (Q) = vi (Q) = (4.2.24) 

0 otherwise 

In this case a node j can be considered as belonging to a 

set of discrete points Qj on the F boundary, j=1 , ... ,J 

where each Qj is placed at the middle of an element e. 

as shown in figure 4.2.7. 
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e. 1 

Figure 4.2.7 Position of nodes when constant interpolation 

functions n. and v. are used. 

When ým (T) and 8m (T) are linear the following 

expression can be written 

nm 
_2 

ar nm (Hijý 
Ic At an (D nm) 

Id 

Je. 

1 

J 

nm 2 Dr ýH)F 
cAt 

Jej(mFj 

nm 
__ 

2 nm ýGij) I cAt 
ýEi ) 

IdI'j 
e. J 

(Gij) 
F cAt 

nim 
Fdrj 

(4.2.25) 

e. 
j 

It should be recognized that in this case c (Si) is always 

1/2. When Om(T) is constant, (Gib) 
I and (Gn )F can be 

calculated from 
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(G nm 
=2 Fnm dF. 

i7) I cAt I17 
Je. 

(Gib )F =0 (4.2.26) 

Because of the causality property a situation exists, 

in which it is necessary to carry out numerical integrations 

of functions which are null over part of an element. In 

this case it became obvious that greater precision could be 

obtained if such integrations were performed from j to k' 

instead of from j to k as depicted in figure 4.2.8. 

j ký k 

--ý Integration sense 

Figure 4.2.8 Integration over part of an element. 

The fundamental solution of the problem under 

consideration see equation (3.6.9)) suggests that the 

number of Gauss points can be gradually reduced as (t-T) 

gets bigger. This procedure was used in the numerical 

analysis carried out in this research, in order to save 

computer time. 

4.2.2 Domain Inteqrals - The domain contributions due to 

initial conditions can be calculated from expression (4.2.7) 

which can be written as 
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au 
n_ 1 *n +1 Fu*n o dQ (q) + Fi 

c2 uoi ýo dý qý c of Dr 
SZ 2 

+ to 
r 

B01 uo dQ (q) 

S2 

where u*n = uo(q, tn; S. ) and Böi = Bo(q, tn; S. ). 

(4.2.27) 

In order to carry out the integrations indicated 

in expression (4.2.27) the domain Q is divided into L 

triangular subdomains, 01 (cells), as shown in figure 4.2-9. 

Then the expression (4.2.27) can be written as 

au 
n *n 1 *n Fi 

c2 uoi "o d2 (q) +c uoi aro dQ (q) 
1=1 O1 O1 

+ to 
r 

B01 u0 dQ(q) 

Ol 

/1 
/1 

/\i 
/'i 

/-7.1 

1 
/ 

f1 --- 

ýi 1 

1 

(4.2.28) 

Figure 4.2.9 Discretization of the domain Q into triangular 

cells. 
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When uo and vo are linearly interpolated inside 

each cell the following expression can be written 

uo uoiui 

(i=1,2,3) 

vo = voiui 

(4.2.30) 

where uoi and voi are respectively initial displacement 
au 

and initial velocity at a node i of the cell 0 is 1" ar 

also required and can be calculated from expression 

(4.2.30) , giving 

0 
aui 

Dr uoi ar (4.2.31) 

Triangular coordinates can be related to 

rectangular coordinates in the following way 

A° 
a+ 

ua A 2A(bot x 1+aax2) (4.2.32) 

where 

ß 
ax- xý y 

RY 
a 

b= x2 - x2 
(4.2.33) 

2A°ß = xRx2_x1xR 

A= 2(býa2-b2a1) 

In expression (4.2.33) a=1,2,3 for ß=2,3,1 and y=3,1,2. 

Considering a system of polar coordinates (r ,6) 

with origin at the source point Si as depicted in figure 

4.2.11, expression (4.2.32) becomes J36} 

Pot = Ca + Da(6)r (4.2.34) 
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0 

wher e 

Ca = Aä /A 

Da =1 (bacosO+aasin6) 

x2 

(4.2.35) 

Figure 4.2.1 1 Polar coordinates based at the source point S. 
1. 

Taking formulas (4.2.30), (4.2.31) and (4.2.34) into 

consideration, u0, v0 and au0/ar can be expressed as 

uo = uoa L 
of a 

(8 rl 

(a=1,2,3) 

vO = voa Ca+Da (e) rJ 
(4.2.36) 

au 

ar u0 ana 
e 

Integration over a cell can now be performed 

using polar coordinates. In this work such integrals are 

obtained as a sum of three integrals over the domains E, , 

E2 and E3 depicted in figure 4.2.12. Ther of ore, when 

formula (4.2.36) is substituted into expression (4.2.28) 

Si 91 
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the latter becomes 

n an Fl 
1[=1 

Rli voa + Tli uoa (a=1,2,3) (4.2.37) 

where voa and uoa represent respectively the values of vo 

and u at a node a of the cell 01, and 
0 

3 ev g1(e) 
an 1 1- 

C tL1 
o u (4.2.38) 

3 eV gt(e) 
an =1 u*n D (6) r+t B*n rC +D (0)r drd0 . li t=l c of an of 

FC( 
ya] 

0u 01 

In expression (4.2.38) ,t=1,2,3 for u=2,3,1 and 

v=1,3,2, 

rt (6) when rt (6) <ctn 

gt(e) _1 

ctn when rt (6) >ctn , 

and rt (6) , et, Au and 6v are shown in figure 4.2.13. 

Expression (4.2.38) can now be integrated 

analytically with respect to r, giving 

an 13 
6ý 

Rli =c 
I2c(ctn-V1 

V2 ) 
t=1 e 

u 

+ Da (0) _ 3] 
1 

d6 

1 

uö i IC 
a+Da 

(6) r] 
1r 

drd 6 

(4.2.39) 



1ý 

35 

SI Si Si 

Figure 4.2.12 Domains used to integrate over a cell. 

Si 

2AO 

cos e+ of sin() 

Figure 4.2.13 Definitions with cell integration purpose. 

op, 
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an 
3c ev 

_ 
y1 

2t=1 ca1 U2 

e u 

v 
- v1 V2 d6 + Da (6) ctn 

rýV3 
+ V2 2 

-- 1 

wher e 

Vý = ctn - gt (A) 

V2 = ctn + gt (6 ) 

gt(0) 
V3 = arcsin ct n 

Integration with respect to 6 can be carried out 

using one dimensional Gaussian quadrature. This can be done 

by simply interchanging the variable 0 as follows 

0=2( ems- eu )+2( ems+0 ) (4.2.42) u 

where ý is defined on the interval p_11. 

If the spatial distribution of source density can 

be represented by a Dirac delta function, i. e. 

(q, T) =f (T) 6(q-gc) 

(4.2.40) 

(4.2.41 ) 

(4.2.43) 

the integration over 2 shown in expression (4.2.8) can be 

carried out analytically giving 

t n 
Si =f (T) u*(gc, tn; S., T)dT (4.2.44) 

0 

When f (T) is linearly interpolated over the time 

OOM 

the following expression can be written 
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N 
f (T) =ý em(T)fm (4.2.45) 

m=1 

where 6m (T) is given by expression (4.2.12) and fm =f (tm) . 

Then, expression (4.2.44) can be written as 

m Si _cW. f 
1 

M=l 

wher e 

(4.2.46) 

nm 1 
tm 

*n 
tm+1 

- 
*n 

wi = At (T-tm) (ui )cdT + (tm+1 T) (ui )c d-1 (4.2.47) 

tm-1 tm 

and 

(uin) 
c=u 

(qc i tn; S i, T) 

Analytical integration of expression (4.2.47) gives 

nm 
cAt 

(E. I+ 
(E. nm ) c] 

F 

(4 . 2.48) 

(4.2.49) 

where (Enm) I and (Enm) F can be computed from the expressions 

given in appendix E to calculate (Enm) I and (Enm) F 
by 

making r=rc; rc is given by 

rc =I q-qc I. (4.2.50) 

When the source density is distributed over Q, 

volume and time integrations can easily be carried out 

using time and domain interpolation functions respectively 

which appear in expressions (4.2.12) and (4.2.30) . This 

case will not be discussed here. 

00*01 
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4.2.3 Double Nodes -A very common situation in wave 

propagation problems concerns p being discontinuous on the 

boundary. A convenient way of analysing these sorts of 

problems is that in which two distinct values of 

tractions, pr and p', and two values of displacements 

ur and u1 are considered on the neighbourhood of each point 

where a discontinuity can occur (see figure 4.2.1 4) . So, 

for each of these points two extra boundary unknowns are 

introduced in the analysis. When, pr and pl, or ur(ul) 

and pl (pr) are prescribed the continuity condition for 

displacements, namely 

ur = ul (4.2.51) 

gives the extra equation required. When constant elements 

are used, this problem is naturally considered by the 

discontinuous nature of these elements. However, when 

linear or higher order elements are used special 

considerations are required. The system of equations given 

by expression (4.2.4) can still be used and the condition 

(4.2.51) can be introduced using "double nodes", i. e. two 

different nodes being placed at points where p can be 

discontinuous. An extensive study on this subject can be 

found in the references {99-1 01 }. 
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r 

Figure 4.2.14 Discontinuous p on the F boundary. 

A more involved situation is that in which pl and 

pr are different from each other in the neighbourhood of 

a point where the potential is prescribed. The approach to 

be followed in this case can be found in references {37 and 

100}. 

In quite a number of situations it is not possible 

to determine a priori when and where tractions are 

discontinuous. In this case the mean value of the unknowns 

is to be expected from the numerical analysis. 

Another method of dealing with discontinuities is 

by using discontinuous elements {102 and 103}. The 

discontinuity is then avoided because as shown in figure 

4.2.15 the nodes of the discontinuous elements are placed 

inside them, rather than on their extremities. It should 

be recognized that this procedure can also be used when 

time discontinuities occur in a problem. 
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Figure 4.2.15 Discontinuous linear elements. 

4.3 Examples - Scalar Wave Equation 

If it is desired to find boundary unknowns at a 

time tn, it is convenient to write equation (4.2.4) in the 

following way (summation convention does not apply) 

n1 
JC 

nn n1 
Jc 

nn n n-1 J 
nm m 

c(Sui + 4n L Hij ui 4iT L1 Gij pi 
mý1 

ý1 H1j uj 

n-1 J 
+ýI Gi. pm + Fi + Si 

m=1 j =i 

Equation (4.3.1) can also be written as 

H u= G E+ B 

where H and G are square matrices of order (JxJ) 

and u, p and B are vectors. 

(4.3.1) 

(4.3.2) 

If the boundary conditions at the time to are 

considered and the system of equations that arises is reordered 

expression (4.3.2) can be written as 

y=C (4.3.3) 
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where the vector y is formed by unknowns uý and pi at 

boundary nodes. 

Within the examples analysed in this chapter the 

boundary conditions at boundary nodes are always of the 

same type, i. e. a node at which u (or p) is initially 

prescribed will only have prescribed u (or p) until the end 

of the transient analysis. Consequently, due to the time 

translation property (see expression (4.2.11)), A requires 

to be inverted only once. Gauss elimination is used in this 

work to obtain the inverse of A. 

In the examples discussed here the numerical 

integrations mentioned previously in section 4.2 were carried 

out using a maximum of ten Gauss points. 

The choice of cell discretization to be used 

when solving a problem is fairly simple because u0, V0 

and j are known functions. However boundary discretization 

and time division depend on what the problem under consideration 

is like. For this reason, in many problems, more than one 

numerical analysis has to be carried out in which the 

boundary discretization and the time division are successively 

refined. The quantity of work required is considerably 

reduced as experience is gained in the method adopted. The 

observation of certain physical characteristics of the 

problem can also be of great help. For instance when 

studying wave propagation care should be taken on the choice 

of time intervals and boundary discretization in order to 

avoid contradicting the causality property too far, that is, 

in a time interval, waves should not be allowed to travel 
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between nodes far from each other. There are also certain 

precautions which must be taken when choosing the parameter 

ß given by 

ß= cAt (4.3.4) 

It is quite commonly regarded that there exist strict rules 

concerning the choice of a similar parameter in finite 

differences and finite elements; which if not followed can 

result in a completely invalid analysis. In boundary elements 

conclusive analytical studies regarding the choice of ß have 

not yet been completed, consequently the discussion based 

on numerical experiments presented in the examples can be 

very helpful. 

The numerical procedure discussed previously in 

this chapter was converted into FORTRAN and implemented on 

an ICL2970 computer. The computer code was used to analyse 

a number of examples which will be presented next. 

4.3.1 One-Dimensional Rod Under a Heaviside Type Forcing 

Function - The results obtained from using the two-dimensional 

boundary element computer code were compared with the 

analytical results for a one-dimensional rod under a 

Heaviside type forcing function. The boundary element solution 

considered a rectangular domain with sides of length a and 

b (b = a/2) as depicted in figure 4.3.1. The u displacements 

were assumed to be zero at x1 =a and their normal derivative 

p were also taken as null at x2=0 and x2=b for any time 't'. 

At x1 =0 and t=0 a load Ep was suddenly applied and kept 

constant until the end of the analysis (E is the Young's 

modulus). Due to the topology and boundary conditions the 



93 

0 

ix'.... 

0 
a 

0 0 

t111 

N 

i 
-Q ---d 

a 
W 

2 
0 

(0 

Q) 

r 
O 

rd 

O 

U) 

v 

i 
aý 
0 

0 
U) 
r- 
O 

(D 
rd 

+3 0 
Q) -r-I E +-) 
OU 
N 

rd 

U) U 

OO 
"ý 4-4 

.H Q) 
r Q4 
rl >4 
O -N U 

a) >1 rd 
"'--I 
U) 

r 

ov 
mx 

r- 

M 

d" 

N 

w 

CL AW 

w 



94 

problem is actually one-dimensional and its analytical 

solution can be found elsewhere {104}. 

Three different combinations of interpolation 

functions were used in the analysis as given in table 4.3.1. 

The boundary was discretized into twenty f our 

constant and linear elements as shown in figure 4.3.2, 

double nodes were used at the corners for the latter model. 

Combination 1 was tried with ß= .6 and gave 

good results for the displacements u (the degree of accuracy 

was the same as combination 2). The numerical values of 

p, however , oscillated around the analytical solution, 

displaying the onset of instability. This unstable 

behaviour of p can be avoided in this particular analysis 

by replacing the jump of the forcing function PH(t-O) by 

a steep slope. Because of the oscillations that can occur 

on the numerical values of p,, it was decided not to use 

combination 1 until further studies have been accomplished. 

Combinations 2 and 3 were then compared and it 

was found that for the same number of boundary elements and 

the same time division, better results were obtained for 

linear n. (Q) and vi (Q) (combination 2) than for constant 

ni (Q) and vi (Q) (combination 3). As the computing time 

is much the same for both cases it was concluded that 

combination two is more efficient than combination three. 

Therefore, unless otherwise stated, all the boundary 

element method (B. E. M. ) results presented from now on are 

based on combination 2. 
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Table 4.3.1 

Combination Interpolation function 

ri (0)and I) (0) : ', m (t) 

1 Linear Linear 
2 Linear Linear 
3 Constant Linear 

of (t) 

Linear 
Constant 
Constant 

Combination of interpolation functions. 

--" -- -. " 

Linear -TI 1 (0) and vl (0) 

Figure 4.3.2 Boundary discretization for one-dimensional rod. 

Constant ýý (Q) and vj (0) 
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Figures 4.3.3 - 4.3.5 show B. E. M. and analytical 

displacement results at internal and boundary points. The 

degree of accuracy of B. E. M. results is quite good. In 

figure 4.3.6 the normal derivative of the u displacement 

at point (alb/2) versus ct is presented. Except for the 

presence of a comparatively small amount of noise, boundary 

elements and analytical solutions are in good agreement. 

Considerable care must be taken with the choice 

of ß in order to avoid noise, which although usually not 

critical for displacements, can often be excessive for 

tractions. In order to study the effect of varying the 

parameter ß on the level of noise four other values of ß were 

investigated; 0.4,0 .5,0.8 and 1.0 in addition to ß=0.6. 

The results for p at point (a, b/ 2) are plotted in figure s 

4.3.7 - 4.3.10. It is apparent that excessive noise 

occurred for ß <0.6 . The value ß=0.6 was considered the 

optimum for this problem. 

4.3.2 One-Dimensional Rod Under Prescribed Initial Velocity 

and Displacement - For this problem the geometry and boundary 

conditions were identical to the previous case and, in 

addition, over the domain 20 depicted in figure 4.3.1 1, 

the following initial conditions were prescribed 

uo (x , x2) =E (4 - xý ) 

(4.3.5) 

v0 (x1 , x2) = 
Pc 
E 

The analytical solution for this problem is the 

same as for the previous one but with the time t dephased 

by a/4c, i. e. 
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X1 
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Q 

PH (t-0) 
Point E 
Point F. 
Point G 

Analytical 
BEM for (3-0.6 

ýý 
a 2a 3a 4a 5a 6a 7a 8a 

Ct 
Figure4.3.3Displacements at internal points E (a/8, b/2 ), F(a/2, b/2) 
and G(3a/4, b/2) for one-dimensional rod under a Heaviside type 
forcing function, r? (o), vj(o), D' (t) are linear and Om (t) is constant 

X2 

ý1 b Q- 2.0 
1.8 

1.0 
.a 0.9, -O 9 

0.3 ct=O. 3a 

Analytical 

--------BEM for 5=0.6 

b 

axI 

PH (t-p) 

ct=1.8a 

aa 3a a 
424 

Figure4.3.4Displacements along boundary y=0 at times t=0.3a/c, 
t=0.9a/c, t=1.8a/c for one-dimensional rod under a Heaviside 
type forcing function. rqj(Q), vi(o), qm(t) are linear, and Om(t) is 
constant . 

X 
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...... " "BEM for 0=0.6 
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Figure4.3.5Displacements at boundary points A(0, b/2), 6(a/2,0) and 
C(3a/4,0) for one-dimensional rod under a Heaviside type forcing 
function. rl1(o), v1(o), Om(t) are linear and Om(t) is constant . 

'ýQ2.0 

Analytical 
x1 

"""""""" BEM for 0=0.6 

b1 l1D 
-ý 

aý 

PH(t-0) 

a 2a 3a 4a 5a 6a 7a 80 
ct 

Figure 4.3.6N ormal derivative of displacement at point D(a, b/2) for 
one-dimensional rod under a Heaviside type forcing function. rjj(Q), 
vj(o), pm(t) are linear and Om(t) is constant . 

t 



99 

wlý 
2.0 

Ct 

Figure4.3.7 Normal derivative of displacement at point D(a, b/2) for 
one-dimensional rod under a Heaviside type forcing function. 17 (O), 
vi (Q), e(t) are linear and Om (t) is constant . 

WI 

2.0 

ct 
Figure4.3.8Normal derivative of displacement at point D(a, b/2), for 
one-dimensional rod under a Heaviside type forcing function. nj(Q), 
v1(o), Om(t) are linear and 6m(t) is constant 

a 2a 3a 4a ba 6a 7a 8a 9a 
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""""""" BEM for 0 =0.8 

a 2a 3a 4a 5a 6a 7a Ba 9a lOa 
ct 

Figure4.3.9 Normal derivative of displacement at point D(a, b/2), for 
one-dimensional rod under a Heaviside type forcing function. rjj(o), 
vj(o), Om(t) are linear and 9m(t) is constant . 

III 
2. C 

X Analytical 
21 BEM for P=1.0 

b1 D 
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PH (t-0) 

a 2a 3a 4a 5a 6a 7a 8a 9a 100 
Ct 

Figure4.3.10 Normal derivative of displacement at point D(a, b/2) for 

one-dimensional rod under a Heaviside type forcing function. r? (Q), 

vj(o), Om (t) are linear and Om (t) is constant 
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(q, t) = u(q, t- 4ca ) 

(4.3.6) 

P' (q, t) = P(q, t- 4ac 

where u' and p' refer to the problem studied in section 4.3-1. 

Twenty four linear elements were used to 

discretize the boundary and Sao was subdivided into four 

triangular cells as depicted in figure 4.3.12. The time 

steps were such that ß=0.6. 

X2 

p= 0 

b S2o u=0 

P=O x 

/4 

0 
Ep=PH(t -0) 

Figure 4.3.11 Geometry definitions, boundary and initial 

conditions for one-dimensional rod. 

\ I' 
\/ 
\/ 

\/ 

/\ 
/\ 

\I 
L 

Figure 4.3.12 Domain and boundary discretization for one- 
dimensional rod under prescribed initial 

conditions. 
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Displacements at points (0, b/2) , (3a/16, b/2) 

(3a/4, b/2) and traction at point (a, b/2) are presented in 

figures 4.3.13 and 4.3.14 respectively. The accuracy of 

the results is similar to that obtained in the previous 

problem. 

wiQ 2.0 

1.0 

Analytical 

........ BEM for 0=0.6 

TyA ;i. H 

ý4ý x1 

a 
PH (t-p) Point A 

Point 1 .... 
Point H,, -ýý 

a 2a 3a 4a 5a 6a 7a Ba 
ct 

Figure4.3.13 Displacements at boundary point A(0, b/2) and internal 
points I (3a/16, b/2), H(3a/4, b/2) for one-dimensional rod under 
prescribed initial conditions. ry(o), vi(o), Om(t) are linear and 0m(t) 
is constant . 

alQ 
W 

2.0 

x 
Analytical 

Z """""""BEM for ß=0.6 

D b 
/h_ a-1 X, 

a 
PH (t-O) 

a 1a . 30 is Da oa /a tSa 
Ct 

Figure4.3.14 Normal derivative of displacement at point D(a, b/2) 
for one-dimensional rod under prescribed initial conditions. 77i (Q), 

�, (a), (t) are linear and Om(t) is constant . 
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4.3.3 Square Membrane Under Prescribed Initial Velocity - 

The subject of this investigation is the transverse motion 

of a square membrane with initial velocity v0 =c prescribed 

over the domain Sao depicted in figure 4.3.15 and zero 

displacements prescribed over all the boundary. 

The boundary was discretized into thirty two 

elements and Sao was divided into four cells as shown in 

figure 4.3.16. Analytical (see appendix G) and boundary 

element method results for displacements at point (a/ 2, a/ 2) 

and the normal derivative of displacements at point (a, a/2) 

were compared. 

The values of u and p for ß=0.6 are plotted in 

figures 4.3.1 7 and 4.3.1 8 respectively. Although the 

agreement for displacements is reasonable, it was found 

that a more refined time division was needed to represent 

p more accurately. Another boundary element analysis was 

then carried out, with ß=0.2 and the results obtained 

for p, plotted in figure 4.3.19, show a better agreement. 

A final analysis was performed, in which the boundary was 

discretized into sixty four rather than thirty two elements, 

and the value of ß was taken as 0.6. The results (see 

figure 4.3.20) were only slightly better than those for the 

previous case, apparently because unlike the rod analysis,, 

ß<0.6 did not introduce any great amount of noise into the 

numerical results. 
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X 
2 

u=O 

of u=O 

u=0 

Q 

u=O 

Xl 

Figure 4.3.1 5 Geometry definition, boundary and initial 

conditions for membrane analysis. 

17- --71 

Iýý 

Fiqure 4.3.16 Membrane discretized into 32 elements and 

four cells. 
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Figure4.3.17Displacement at point A(a/2, a12). 32 boundary elements . 
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Figure 4.3.18 Normal derivative of displacement at point B(a, a/2). 
32 boundary elements . 
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Figure4.3.19 Normal derivative of displacement at point 6(a, a/2). 
32 boundary elements . 
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CHAPTER 5 

BOUNDARY INTEGRAL EQUATIONS FOR TRANSIENT 

ELASTODYNAMICS 

5.1 Introduction 

In this chapter the discussion presented in 

chapter three concerning the scalar wave equation will be 

extended to e lastodynamic s. 

Linear homogeneous isotropic elastodynamics is 

governed by Navier 's equations (see expression (2.2.18)) 

which are frequently presented in the literature in the 

following alternative form 

2_C + cs2 uj, kk + fj = U. (5.1.1) 

where cd and cs are respectively the speed of propagation 

of dilatational and equivoluminal body waves and 

b. 
f. _ -J JP 

(5.1 . 2) 

As discussed in section 2.2 initial conditions uok and vok 

(k=1 ,2,3) are specified at all points inside the domain 

of the problem. In addition uk and Pk must satisfy prescribed 

boundary conditions uk = uk on F1, and Pk = Pk on F2 

(F=F1 +F2) 

Equivoluminal and dilatational wave propagation 

speeds can also be used to express stresses in terms of 

displacements. In this case equation (2.2.21) reads 

Qlý = p(cä-2c2)umým6lý + pct (ul +uj i) (5.1 . 3) 
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An integral representation for e lastodynamic s 

can be obtained following a procedure similar to that 

described in section 3.5 for the scalar wave equation, 

however, Graf f i' s elastodynamic reciprocal theorem will be 

employed rather than weighted residues. From this, a very 

useful theorem which has commonly been used in elastodynamics 

will also be illustrated. 

5.2 Elastodynamic Fundamental Solutions 

The fundamental singular solution of elastodynamics 

which is used in this work is the function uik which satisfies 

the following equations 

cjijk, j polk -Siks (q'S) S (t-T) (5.2.1 ) 

in an unbounded domain Q*, which is free from any imposed 

initial condition. The body forces in equations (5.2.1) 

correspond to a concentrated force in the xi-direction which 

is an impulse at t=T located at q=s. 

In three dimensions, the solution of equations 

(5.2.1) can be written as follows {9} 

u* (qýt; s,, r) = 
ti 3r irk 

_ 
pik 

H t1 _r _H t, _r ik 47Tpr2 r3 r cdý c s1 

+rirk1S (t, - r2 cd 

+ 
Sikh 

(t, _r cc ss 

ds 
_r c s 

(5.2.2) 

where 

t' = t-T 
1/2 

r=I qs I= (riri) (5.2.3) 

ri = xi(q)-xi(S) 
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It should be recognized that equivalent forms for uik other 

than that described by expression (5.2.2) are frequently to 

be found in the literature {9,80,81,84}. 

Equations (2.2.4) , (5.1.3) and (5.2.2) can be used 

to obtain the fundamental traction given by {9} 

pik = ßljknj = Qlkjnj =0 (cd-2cs)uim, 
msjk+cs 

(uik, j +ut i7 ýk) 
nJ 

(5.2.4) 

where 

.16 

cst 
5 

rirjrk 
_ 

Sijrk+sikrj+Sjkr1 
Q*ijk(qºt"s T) - IT _ r2 

_ 
rs r3 

H(t_ _ H(t' _ 
ds 

r1r rk 6ijrk+6ikr . +6jkri 
+2 6 

rr 

c2 

s d7' cd 

3 

+2 
r14r rk 

S (tý - 
r) 

- 
c3 

(tý - 
r-ý 

r cS cS cd cd 

2 

- 
r1 Jk (1 -2 2) S (t 

c 

r3 cd cd cd cd 

Sikri +Si . rk 
S (tt _r+rS (t _r r cs cs cs 

(5.2.5) 

The two-dimensional fundamental solution of 

elastodynamics can be obtained by following a procedure 

similar to that given in section 3.6 for the scalar wave 

equation. In this case, descending from three dimensions 

gives (for details see reference {9} ) 
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. s1 
21T pc 

lk +s 
i2 k �c 2 

s(t 
2 -r 2 

ulk(qºt; S, T) = 
s 

c2 (t, ) 2_x, 2 

r irk 2c2(t2-r2-' 
- r2 

H(cst -r) 
,)2 Jc2 ) 2_r2 

_ 

Cs Sik 

C2 (tý 2_r2 

cd r2 d 

where 

(5.2.6) 

r it k 2cä (t') 2-r2 

- 'r2'- H(cdt'-r) 
ýc2(t')2-r2 

. 
= 

Dr Dr r1 
r, i axi(q) _- ax. (s) =r (5.2.7) 

Equations (5.2.4) and (5.2.6) can be applied to 

derive an expression for the two-dimensional fundamental 

traction, which is given by (see appendix F) 

Pik(q, t; s, T) =2 irpc s 
p' r 

ik 
Fcs (t, ) 2_r2] 3 

+1a (ca T) 
H(cst'-r) 

cs 2 (t') 2-r s 

2c2 (t') 2-r2 
Bik 

cS (t 2-r 2 

H (c t'-r) 

r3 +D 

I_c2(týý2_rý 
3 

2c2(t')2-r2 

"H (cst' -r) + Dik a (c T) 
H (c 

st'-r) cs (t') 2-r 2s 
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cs 2ca (t') 2-r 2s 

-c IrBý + Dik 
d 

(t2_r2 3 
Lik/t12_r2 ýFC d 

2cd(t')2 r2 a 
"H (cdt' -r) + Dik a (c T) 

H (cdt' -r) (5.2.8) 
�c 

d (t -r d 

where 

Aik = G(26nkr, i+sik an + nir, k 

B. (S ar + n. r +nr-4 ar 
rr) (5.2.9) 

ik r ik an 1, kki an li, k 

2G ar Dik =- r2 
(6nkrIi + an r, ir, k) 

0= A/2c = (c2-2c2)/2c2 

The fundamental solutions studied in this section 

have the following properties {91 

(i) causality 

uik(q, t; s, T) =0 whenever cs (t-T) < I. -s (5.2.10) 

(ii) reciprocity 

uik(q, t; S, T) = u' (s, -T; q, -t) 

(iii) time translation 

(5.2.11) 

uik(qt+t1; s, T+t1) = uik(qt; s, T) (5.2.12) 

It should be noted that the properties described 

in (i) , (ii) and (iii) above are similar to the ones studied 

previously in section 3.4 for the scalar wave equation. 

The symmetry of the tensors given by equations (5.2.2) 

and (5.2.6) implies that {9} the k-component of the displacement 

'ej 
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at q due to the i-component of the concentrated force at s 

is equal to the i component of the displacement at q due to 

the k-component of the concentrated force at s, i. e. 

uik(q, t; s, -r) = uki(q, t; s, T) (5.2.13) 

5.3 Time Domain Elastodynamic Boundary Integral 

Representation 

The reciprocal theorem for e lastodynamic s, to be 

derived in this section, effectively relates two 

elastodynamic states whose displacement fields will be 

denoted by uk and u1 . These are defined over regions 

Q+r and Q*+I'* respectively so that S2* contains Q+F as 

depicted in figure 3.5.2. The bodies enclosed by F and F* 

have the same physical properties, and uk and uk satisfy 

the elastodynamic equilibrium equations, i. e. 

akj 
,+ 

ßk =0 in c 

(5.3.1) 

Qkj 
Ij+ 

ßk =0 

where 

ßk = 
2uk 

bk -p aT2 

a2u* k 
ßk = bk -p aT2 

in Q* 

(5.3.2) 

Using Hooke's law the following integral statement 

can easily be inferred 

I csii eii = Fcsii elidS2 (5-3.3) 

52 2 
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If the divergence theorem (see equation (A. 2)) 

applied to both sides of equation (5.3.3) and equations 

(2.2.8) and (5.3.1) are used, the following statement is 

inferred 

is 

ß kukdS2 + pkukdr =ß kukd2 + pkukdr (5.3.4) 

sz r2r 

Equation (5.3.4) corresponds to Betti's second reciprocal 

work theorem for two distinct elastostatic states with 

body forces ß and ß*. 

When equation (5.3.4) is integrated from 0 to t, 

and expression (5.3.2) is taken into consideration, the 

following equation is obtained 

It 
t 2u* 

I It bkukdS2 d-[ -paTk uk dQdT + pkuk dFdT 

. 0-2 o20 

ttat 

= bkuk d2dT -p 
2u 

aT 
k 

uk dSidr + pkuk drdT . (5.3.5) 

.0 .2o .2of 

When expression (A. 1) is considered it is then possible to 

write 

ta2u It 

aT 
k 

ukdT = vk (q, t) uk (q, t) -vokuok vk (q, T)vk (qº T)dT 2 
00 

(5.3.6) 

ta2u* t 

T 
ukdT = vk (q, t) uk (q, t) -vokuok vk (q, T)vk (q, T)dT 

00 
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where 
auk 

vk (qºt) =I aT 
T =t 

and 

vok (q) _ vk (q, 0) 

When expression (5.3.6) is substituted into 

(5.3.7) 

(5.3.8) 

equation (5.3.5) , the reciprocal theorem of elastodynamics 

is obtained, i. e. 

bkukd2dT vkukdS2 +p vokuokd2 

.0 .2 SZ SZ 

tt 
+ pkukd Fd -r = bkukd 2d T-p vkukd 2 

of 0.2 2 

t 
+p vokuokdQ + pkukdrdT 

2. 
joir 

(5.3.9) 

If one of the elastodynamic states is taken at 

a time t'=t-T the reciprocal theorem given by equation 

(5.3.9) can be cast into Gr of f i' s theorem, in the form in 

which it is presented in references {9 and 1 0} . 

In order to obtain a boundary integral equation for 

the problem being studied, one of the elastodynamic states 

in expression (5.3.9) will be considered to be that governed 

by equation (5.2.1) . In this case, due to the reciprocity 

property 
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ate- -aT2 
and as a result of the causality property 

J vt (q, t; s, t+) ukdQ = vkulk (q, t; s, t+)dQ =0 
SZ 2 

(5.3.10) 

(5.3.11) 

Then, if the time integration limits indicated in equation 

(5.3.9) are taken to be zero and t+ (t+ = t+E , E- O) 

the following equation is obtained 

t+ t+ 
ukik6 (q s) S (t-T)d2dT + pikukdI'dT 

020F 

t+ 
pkuikdrdT +p vokuoikdQ -p voikuokdQ (5.3.12) 

0rQQ 

t+ 
+ bkuikdQdT 

0Q 

Taking account of the Dirac delta properties 

t+ 
uk6ik6 (q-S) S (t-T)d2(q)dT = u1 (S., t) (5.3.13) 

0Q 

the following integral statement is then obtained 

t+ 
ui(s, t) = uik(Q, t; s, T)Pk(Q, T)dr(Q)dT 

oF 

t+ 
Pik (Q. t; s, T) uk (Q. T)dr (Q)dT 

oF 
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+p uoik(q, t; S)vok(q)dQ(q) 
Q 

p V* (q, t; s)uok(q)dQ(q) oik 
S2 

F t+ 
+ uik(q, t; s, T)bk(q, T)dQ(q)dT (5.3.14) 

02 

Equation (5.3.14) gives the u1-component of the 

displacement, at an internal point s, as a function of 

boundary tractions and displacements, initial conditions 

and body forces. When s-*S a procedure similar to that 

discussed in chapter 3, for the scalar wave equation, can 

be followed giving 

t+ 
c ik (S) uk (Sit-) =U (Q t; s, r) Pk (Q. -r)dF (Q)dT 

or 

t+ 
Pik (Q. t; S, T) uk (Q, T)dr (Q)dT 

oF 

+p uöik(q, t; S)v0 (q)dQ(q) 

SZ 

p voik(q, t; S)uok(q)d2(q) 

t+ 
+ Iuik(q, t; S, T)bk(q, T)d2(q)dT 

0Q 

(5.3.15) 
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where 

cij (S) 2äi7 (5.3.16) 

whenever the I' boundary is smooth. It should be recognized 

that the integrals indicated in equation (5.3.15) are to be 

calculated in the Cauchy principal value sense. 

Equation (5.3.15) can also be used when the 

source point is outside 2+F. In this case c ij must be 

regarded as being equal to zero. 

Additional information on how equation (5.3.15) 

can be obtained from equation (5.3.14) , for both, three 

and two dimensions, can be found in {9,80,81,84}. In these 

references, discussions concerning expression (5.3.16) are 

also considered. 

In order to implement a numerical time-stepping 

algorithm to solve the three-dimensional boundary integral 

equation analytical integrations must be performed first, 

to eliminate the Dirac-delta functions and its derivatives 

that appear in equations (5.2.2) and (5.2.5) . This matter 

is discussed in references {80 and 811 where two-dimensional 

elastodynamic problems are analysed using three-dimensional 

fundamental solutions. In these papers the two-dimensional 

problem is considered to be a cylinder, whose axis has 

infinite length and is parallel to the x3-direction, as 

explained in section 3.6. As this approach is essentially 

three-dimensional, an extra integration with respect to 

the coordinate x3 is required. 

In the present investigation, two-dimensional 

elastodynamic problems are analysed using a two-dimensional 
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boundary integral equation, i. e. , the fundamental solution 

considred is that given by equation (5.2.6) . In order to 

implement a general two-dimensional numerical time-stepping 

algorithm, some additional transformations must first be 

carried out in order to eliminate the derivatives of 

Heaviside functions that appear in equation (5.2.8) . This 

is discussed in the next section. 

5.4 Additional Transformations to the Two-Dimensional 

Boundary Integral Equation of Elastodynamics 

In the numerical analysis concerning two-dimensional 

elastodynamics, initial conditions and body forces will not 

be considered. Consequently when uik and pik given by 

expressions (5.2.6) and (5.2.8) respectively, are substituted 

into equation (5.3.15) and manipulations similar to those 

described in section 3.7 are carried out the following 

expression is obtained 

t+ 
cik(S)uk(SIt) 2ýpc 

(`ýikL2M2-BikL2N2 

S0r 

+ DikL302)ukHrest'-r1drdT 

t+ c s 
-c (-BikLýNý+DikL30 ) ukH rcdt'-rldFdT 

d0r 

t+ 
+ 

cý 
(AikL2+DikL2N2) vkHrc-r]T 

sI or 
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t+ c 
cS 

D. L1 N1vkHrcdt'-rldFdT 2 
d0r 

t+ 
+(S ikL2+FikL21 +JikL2N2) pkH LcSt' -r drdT 

I 

or 

t 

'-r drdT - 
csik 

L- 
1 

1+J 
ik 

L1N 1)pk H ed t 

o 
ir' (5.4.1 ) 

where Aik' Bik and Dik are given by expression (5.2.9)r 

= 
Elk 

F ik r 

J. ik r2 

and _ 
1/2 

Lý = L1 (Q. t; S, T) = 
Lct12_r2 

M, = Ml(Q. t; SST) = cdt l -r 

N, = N1 (Q, t; S, T) = 2c2 (t') 2 -r2 

0ý = 01 (Q, t; S, T) = 3cdt'r2-2Cd (t') 3-r3 

(5.4.2) 

(5.4.3) 

L2, M2, N2 and 02 can be respectively obtained from L1, M1, 

N1 and 01 replacing cd by cs in expression (5.4.3). 

In items (i) and (ii) described below details 

are given of the modifications required to obtain equation 

(5.4.1) from expression (5.3.15). 

(i) Applying the same procedure used in item (i) of section 

3.7 it is possible to write 
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t+ 
AikukL2 a ýc TH 

rest' -r drdT 
0rs 

c1 
AikuokLo2 H(-c 

St -rldF 
S I- 

(5.4.4) 

t+ 
- c1 

AikvkL 2H c st 
' -rJ d rd T 

s 0r 

F t+ 
- Aikukc 

St' 
L3H rct' -r1 drdT 

or 
where 

Lot = L2(Q, t; S, O) (5.4.5) 

The first term on the right-hand side of expression 

(5.4.4) was regarded as being equal to null because non zero 

initial conditions have not been considered in the elastodynamic 

formulation. 

(ii) The remaining term in equation (5.3.15) that requires 

to be further manipulated is given by 

t+ 
I- DikukL2N2 a (ca T)H 

[cst' -r drdT 

- or 
(5.4.6) 

t+ 
=c Dik ukL2N2 ýH 

(-cst' -r dTdr 
sI r0 

If expression (A. 1) is used, integration by parts with 

respect to time gives 
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t+ 
ukL2N2 as Hrest'-r1d'r 

0 

t 

_ ukL 2N 2H 
[c 

St 
' -r 

0 

t+ 
- vkL2N2H rc 

st'-r] 
dT 

Jo 
I 

(5.4.7) 

t+ 

- uk as (L2N2) H cst' -rl dT 

0 

In view of the causality property and the fact that 

as 
(L2N2) _ C4 (t') 3+3cs2 tIr2) L2 

the following expression results 

I- 
c1 

DikuokNo2Lo2H Fc 
St -rl dF 

sr 

t+ 

cDD. 
vkN 2L 2H 

Ec 
St 

' -rl d Fd T 

S0r 

t+ 
+ Dlkuk [2c 3 (t') 3-3cst'r21 L3H cSt' -r1 drdT 

0r 

where 

Not = N2(Q, t; Sº0)" 

(5.4.8) 

(5.4.9) 

(5.4.10) 

The first term on the right-hand side of expression (5.4.9) 

was not included in equation (5.4.1) because uok was taken 

as being equal to zero. 

The operations carried out in sub-sections (i) and 

(ii) above refer to terms in equation (5.4.1) that account 
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for waves which propagate with speed cs. The term in 

expression (5.3.15) given by 

t+ 
Dik ukL1N1 a Ica -1) 

H[c, 
st'-r] 

d FdT 
d 

or 
(5.4.11) 

which refers to dilatational waves also has to undergo 

additional transformations. The final expression for this 

case can easily be obtained if cs is replaced by cd in 

equation (5.4.9) . 

A close examination of equation (5.4.1) reveals 

that some integrands in that expression are singular at the 

wave fronts of both equivoluminal (r = cst') and dilatational 

(r = cdt') waves, represented by the Green's function. 

These singularities are of the same type previously discussed 

in section 3.7 for the scalar wave equation, i. e. , the 

functions being integrated behave like 

1 (5.4.12) 
VAC 2 (t-T) 2-r2 

An additional difficulty in the two-dimensional 

elastodynamic boundary element formulation is discussed in 

reference {81 }and refers to the singularities that appear 

when r -> 0 and 

cs(t-T) 0 

0 cd(t-T) 74 

(5.4.13) 

These singularities, however, are only apparent ones and 

disappear if contributions from similar terms referring to 

equivoluminal and dilational waves are calculated together 
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in expression (5.4.1) . The type of manipulations required 

will now be discussed by considering the integrals that 

involve Bik in expression (5.4.1). 

When considered alone BikL2N2 and BikL1N1 behave 

like 1/r3 when r-}0. However these singularities can easily 

be eliminated from the integral equation if it is realized 

that 

B ik L 2N 2 

C 
S 

+c L1N1 

(5.4.14) 

P(c-c) 
d(tt) 2_(c2-c2 s 

)r2 L1L2 
-gikr 4- 

cd (cdN2L_ l +cSN1L _21 ) 

Therefore, the only singularities present in the numerical 

analysis are those that occur when r and t' go to zero 

simultaneously. 
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CHAPTER 6 

BOUNDARY ELEMENT METHOD FOR TWO-DIMENSIONAL 

TRANSIENT ELASTODYNAMICS 

6.1 Introduction 

A time-stepping scheme to solve equation (5.4.1 ) 

will be discussed in this chapter. The procedure employed 

for two-dimensional transient elastodynamics is similar to 

that already discussed in chapter 4 concerning the scalar 

wave equation. 

After the boundary unknowns u1 (S, t) and pi (S, t) 

have been obtained, internal displacements u1(s, t) can be 

calculated by applying the integral equation that results 

from equation (5.4.1) when S is replaced by s and c ik (S) 

is made to equal to 6iß 
. In elasticity problems it is 

important to compute stresses as well. The scheme implemented 

in section 6.2 to calculate internal stresses is similar to 

the simplest one used in finite elements. Triangular cells 

are employed and stresses at their centroids are obtained 

by carrying out derivatives of displacements, which are 

linearly interpolated inside each cell as a function of 

the displacements at the cell nodes. Following this 

procedure one avoids performing analytical derivatives of 

the integral equation for internal displacements is avoided. 

This alternative procedure however, should be attempted in 

future research because it almost certainly yields more 

accurate results. 

Interpolation functions of the type given by 

equation (4.2.1) are also used to approximate uk and Pk in 
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equation (5-4.1). Analytical time integration can also be 

carried out, resulting in expressions which are considerably 

longer than those previously derived when investigating the 

scalar wave equation (see chapter 4) .A certain degree of 

care must be taken when integrating analytically with respect 

to time. If conveniently manipulated, the final expressions 

obtained will have no singularity at the fronts of the 

equivoluminal and dilatational waves represented by the 

Green's function. Convenient operations like those 

described by expression (5.4.14) must also be carried out 

in order to remove apparent singularities that occur when 

r- O. Consequently the only singularities which remain occur 

on the first time step, when r-*O, and are of the same type 

as those for two-dimensional elastostatics, i. e., the 

integrands behave like 1/r and In r on the boundary integrals 

involving uk and pk respectively. 

6.2 Numerical Implementation 

As in section 4.2, the implementation of a numerical 

scheme to solve equation (5-4.1 ) requires the consideration 

of a set of discrete points Qj , j=1 , ... J, on the F boundary 

and a set of values of time tn, n=1 , ... ,N. uk (Q, t) , vk (Q, t) 

and pk(Q, t) can be approximated using the same set of 

interpolation functions shown in section 4.2.1, i. e., 

JN 

uk(Q, t) _ pm(t -M raj (Q)ukj 
=1 m=1 

/ 

v (Qlt) =JN 
dým(t) 

(Q)um kj1m1 dt ý7 kj 
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JN 
Pk (Q, t) _ em(t) (Q) _Pkj (6.2.1 ) 

J =l m=1 

where m and j refer to time and space respectively, k=1,2 

relates to the xk-direction and 

ukj = uk(Qj, tm) 

(6.2.2) 

Pkt = Pk (Qj i tm) 

When equation (5.4.1) is written for every node 1 

and also for all values of time tn, and uk, vk and Pk are 

replaced by their approximations as given by expression 

(6.2.1) , the following system of algebraic equations is 

then obtained 

S1 un +1GGL Hnm um 
k=1 ik 1 kl 2npcs k=1 m=1 j=1 ll. ýk kj 

(6.2.3) 

=1CN 
c 

Gnm pm 
2Trpcs k=1 m==1 1[=, 1 s. ljk kj 

where 

t 
Hiljk =- 

[[(Ak; M2 BikL2N2 DikL2ý2 

0r 
C 

s (-B L1N1 + Dik11 )ý m(T) 
Tlj (Q) (6.2.4) 

cd 

1 
(A L +D LN)- 

c2 
DLN 

dým(T) 
TIj (Q) dFdT 

FE'S 

ik 2 ik 22 cd ik 11 dT 



127 

t 
_n_ nm 

_--- Gi ljkS Jj[(. kL 2+ FikL 2+ JikL 2N 2 

0r 

cs 
(FikL- 1+ JikL1N1) 6m(T) v (Q) dI'dT 

and 

Lý = La (Qºtn; Sl, T)Hrcdt, -r1 

Mý = Mot (Qºtn; S1, T)H[cdt'_r1 

Ný = Ný (Q, tn; S1, T) H rcdt' -r1 

Öý = 0ý (Q, tn; Sl, T) H cdt' -r 

(6.2.5) 

(6.2.6) 

L2, M2,2 and 02 can be obtained from Mý , Ný and Oý 

respectively, replacing cd by cs in expression (6.2.6). It 

should be realised that a in expression (6.2.6) is an 

exponent, not an index. 

Only constant time steps, tm, will be considered 

in the two-dimensional transient elastodynamic numerical 

analysis. In this case causality and time translation 

properties can be assigned to Hiljk and Giljk and the discussion 

conducted in section 4.2.1 concerning the scalar wave 

equation can be extended to elastodynamics (see figure 4.2.1 

and expression (4.2.1 1)) . 

In the numerical analysis undertaken in this 

chapter Pm(T) is linear, 6m(T) is constant, nl (Q) and vl (Q) 

are constant, and linear discretization is used to approximate 

the I' boundary. The time interpolation functions ým(T) 

and 8m (T) given by expressions (4.2.1 2) and (4.2.18) 

respectively can then be substituted into equations (6.2.4) 

and (6.2.5) and the resulting expressions can then be 

ýýý , ýý ýaý- -1 «u ýi with respect to time. 
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The integrations over the F boundary are carried 

out numerically, using Gauss quadrature formulae for all 

time steps, but the first. When n=m=1 and when it is 

necessary to integrate over the element in which the source 

point is (j =l) , the integrand of Gilj k has a singularity 

of the type In r when r-*O. In this case it is advisable to 

carry out analytical integrations via the procedure outlined 

in appendix F. When j=1 the integrand of Hiljk behaves 

like 1/r when r- O. This singularity is of the same type as 

the one which occurs when studying elastostatics. As 

constant elements were used the principal value of integrals 

that appear when computing Hiljk (j=1) are equal to zero. 

However this is not the case when higher order elements are 

used to approximate displacements. In this situation, 

principal values that are not zero can be calculated 

analytically. 

It is now convenient to initial each node j, with 

numbers 2j-1 and 2j referring, respectively to directions 1 

and 2 of that node, as shown in figure 6.2.1. 
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'J-1 

X2 

xi 

Figure 6.2.1 Global numeration. 

Consequently, the following relationships can be written 

-m _ 
nm 

ukj _ u2j+k-2 

-m nm pkj 12j+k-2 

nm nm Hiljk H(21+i-2) (2j+k-2) 

nm nm Giljk G (21+i-2) (2j+k-2) 

Therefore, when constant elements are used, 

(6.2.7) 

cik(S1)ukl = '56ikuk1 = "5 ui1 = . 5u21+i-2 " (6.2.8) 

Taking full account of expressions (6.2.7) and (6.2.8), 

equation (6.2.3) can be written as 

2J 2J 

. 5u n+ Hnn un =1 Gnn pn 
i 2npcs j=1 1J J 2Tfpcs j_1 13 J 

(6.2.9) 

n-1 2J n-1 2J 
-ý ý Hlm U. Gim pm 

m=1 j=1 m=1 i=1 > 
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Equation (6.2.9) can also be cast into 

H u= Gp+B (6.2.10) 

where H and G are square matrices of order (2Jx2J) and 

u, p and B are vectors. 

When boundary conditions at a time to are considered 

and equation (6.2.10) is conveniently reordered equation 

(6.2.10) becomes 

Ay=c (6.2.11) 

where, in similarity to equation (4.3.3) , the vector y is 

formed by unknowns ui and pi at boundary nodes. 

After equation (6.2.1 1) has been solved displacements 

at internal points can be computed using the boundary equation 

for such points. 

In order to use expression (2.4.4) to calculate 

internal stresses it is first necessary to calculate the 

derivatives of the displacement components with regard to 

the rectangular coordinates x3. In this thesis this is 

accomplished numerically using triangular cells. Linear 

interpolation functions are used to approximate components 

of displacements uk (k=1 , 2) inside each cell, i. e ., 

uý = 1u1 +U2 U2 +u3 U3 

u2 U1 U4 + 112U5 +u 3U6 

(6.2.12) 

where Ua is given by expression (4.2.32) and U. (j=1,6) 

are the components of the displacements at the cell nodes 

as shown in figure (6.2.2) . 
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X2 

X1 

U5 

U2 

Figure 6.2.2 Triangular cell used to calculate stresses. 

When expressions (2.4.4) and (6.2.1 2) are used the 

following equation is obtained 

a=D i'U (6.2.13) 

where 

611 

G12 

G22 

a+2G 

0 

A 

II 

r 

o 
2G 0 

0 X+2G 

(6.2.14) 

i 

u1,1 112, p3,1 000 

'_1X 2/2 u2,2 /2 P3,2 /2 
1l 1/2 p2,1/2 U3,1/2 

000 111,2 112,2 113,2 
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and 
au . ui, j = ax ' 

6.3 Examples - Two-Dimensional Elastodynamics 

(6.2.15) 

In this section the numerical procedure previously 

discussed in section 6.2 is illustrated by a series of 

examples comparing boundary elements with other numerical 

methods. 

In all of the problems examined, the boundary 

integrations shown in equations (6.2.4) and (6.2.5) were 

performed using a maximum of twenty Gauss points. 

Further on in this section reference will be made 

to the parameter ß given by equation (4 .3 . 4) . It is 

important to realize that in elastodynamics cd is used to 

compute such a parameter, i. e., 

cdAt 
ß=1 (6.3.1) 

6.3.1 Half-Plane Under Discontinuous Prescribed Stress 

Distribution - Cruse 161-63} used the Laplace transform to 

solve transient e lastodynamic problems. In this approach 

the boundary element method is used to find solutions in 

the transformed domain. The problem is solved for various 

distinct values of the Laplace parameter and then a numerical 

algorithm of inversion due to Papoulis {641 is employed to 

find time domain solutions. 

In his investigation, Cruse studied the problem of 

a half-plane (see figure 6.3.1) initially at rest, with 

uniform compressive tractions pi applied as a step function 
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in time, as given by 

Pi (x1 ,O, t)= -Po (x i, 0) 6.2H (t-0) (6.3.2) 

wher e 

PO HEx, -(-b)1 fl_H(xi-b)1 

P= 
0 

whenever x2=0 

0 

X2 

whenever x20 

P2 

PO 

p1 =0 
p2 

-. 
zp=0 = 2=0 

1 

// 

// 

/ // / / 
� K/ :// 

// 

/// 

//////// 

// 

/// 

1/// // //// // // 
/'/ / 

/i// 

(6.3.3) 

Xý 

Figure 6.3.1 Half-plane under discontinuous boundary stress 

distribution. 

The first example was taken to compare with Cruse's 

results, and the following numerical values were adopted 

for the constants of the problem 

TIME (sec) 
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X=G= 106 psi 

cd = 3.27x104 ips, cs=1.86 x 10 `` ips 

b= 3000 inches, p0 = 10`' psi 

Cruse compared his results with the ones presented 

by Craggs {106}, who solved the problem of an uniform 

compressive stress applied over half the surface of the half- 

plane, as a step function in time. Craggs results are also 

presented here, but complete correspondence with none of 

the boundary element analyses is to be expected, because 

Craggs' load is different from the one shown in figure 6.3.1 

and Rayleigh waves are included in his solution. 

Here and in Cruse's work, the surface of the half- 

plane was discretized into twenty equal boundary elements, 

each of them having a length of 6000 inches (see figure 6.3.2). 

When evaluating stresses it must be recognized 

that the bigger the cell the less representative the 

stresses will be. Conversely, very small cells must also 

be avoided because when the differences between cell node 

displacements are too small contribution to stresses due to 

numerical errors can become excessively large. It is also 

important to notice that boundary element results for 

internal points close to the F boundary are not good, and 

therefore cell nodes close to r should be avoided. 

Consequently, in view of the three restrictions just mentioned, 

the best cell that can be used to calculate stresses at point 

D (0 , -b) is the one illustrated by figure 6.3.2. 
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XI 

Figure 6.3.2 Boundary discretization and internal cell for 

the half-plane under discontinuous boundary 

stress distribution. 

Not only the boundary discretization but also the 

parameter ß must be chosen properly. If ß is too large, 

errors due to contradicting the causality property and 

errors as a result of bad time interpolation will 

contribute to reduce the degree of accuracy of the results. 

Four values of ß were tried; .13, . 25, . 50 and 1.; the 

solutions for the two larger values of ý being unacceptable. 

The numerical results, for ß being equal to . 13 and . 25 were 

similar, consequently ß= . 25 was chosen to be the best of 

the four values considered. 

In figure 6.3.3, vertical displacements at boundary 

points A(-4b, 0), B(-2b, 0) and C(0,0) are plotted. It should 

be recognized that P. S and R in figure 6.3.3 stand for the 
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period of time that a dilatational, an equivoluminal and a 

Rayleigh wave respectively take to travel from the edge of 

a disturbance to a point. 

The agreement with Cruse's results is good for 

points B and C, but no comparison could be considered for 

point A because Cruse terminated his analysis at t= . 5s. 

The time-stepping results also agree well with 

Craggs' solution for the point C until t=R, where R is 

the time the Rayleigh wave takes to propagate from the edge 

of the disturbance to the point C. 

In figure 6.3.4 the vertical displacement at 

the internal point D (0 , -b) is plotted. The applicable 

range of Craggs' solution was taken by Cruse to be t<P2, 

where P2 is the time it takes the primary wave to propagate 

from the edge of the disturbance to the point D. 

Figure 6.3.5 displays the stress Q 22 at the 

internal point D. The accuracy is lower than for displacements 

because stresses are obtained from numerically computed 

derivatives of displacements. For this cell in particular, 

there are two other factors that contributes to reduce the 

stress accuracy; firstly the cell is too large and secondly 

it has two nodes which are close to the boundary. 

The jump condition given by equation (2.2.25) 

must be satisfied at the wave front. Therefore at t=0 

it is possible to write that at the boundary point C 

ü1 =0 
(6.3.4) 

ü2 = pcd 
po 
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Figure 6.3.3 demonstrates that the results of the numerical 

analyses obey equation (6.3.4) . 

Craggs' solution also predicts that when the 

wave front reaches the point D the stress a22 jumps from 

zero to -po. This can easily be verified by the inspection 

of figure 6.3.5. 

As the value of the jump in the stress a22 is 

known, it is not difficult to conclude that when the wave 

front reaches the point D. ü2 jumps from zero to the value 

given by expression (6.3.4). Inspection of figure 6.3 .4 
demonstrates that this jump is well represented by the 

numerical solutions under consideration. 

Finally for this example it can be concluded 

that 

(a) The displacements obtained using the time-stepping 

technique were close to the displacements obtained 

by Cruse. 

(b) Despite the large cell used, the time-stepping technique 

gave results for stresses which were acceptable. 

(c) Both the Laplace transform and the time-stepping 

technique gave results that followed very closely the 

predicted physical behaviour of the problem analysed. 

6.3.2 Half-Plane Under Imposed Boundary Velocity - In this 

application, the half-plane is initially at rest and part of 

its surface is forced to move with constant velocity in the 

vertical direction. The prescribed boundary conditions 

for this problem are shown in figure 6.3.6 and are given by 
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ui = -Si2Ü0 (x ,, O) t H(t-O) 

where 

üoH rx1 (-5b)1 fl-H (xi -5b)1 whenever x2 =0 

(6.3.5) 

00(x1,0) = (6.3.6) 

0 whenever x2 ý- 0. 

The traction at a boundary point which has not 

yet been reached by the wave generated at the points of the 

surface where the velocity is discontinuous is given by 

pi PCd 6 i2 U0 (x 1 O) H (t- O) (6.3.7) 

Expression (6.3.7) can be obtained from the uniqueness of 

Craggs' solution and from the causality property. 

The boundary discretization and cell, first used 

in this analysis are shown in figure 6.3.2. Four values of 

ß;. 13,. 25 , .50 and 1. were again considered and ß=. 25 was 

chosen to be the best for this analysis. 

The vertical displacement and the stress a22 at 

the internal point D are plotted in figures 6.3.7 and 6.3.8 

respectively. Inspection of these two figures shows that 

the numerical results obey equation (2.2.25) . At t= b/cd 

the stress 022 jumps from zero to -pc düo as predicted by 

Craggs' solution, and as expected, the agreement with 

Cruse's solution is better for displacements than for 

stresses. 

In figures 6.3.9,6.3.1 0 and 6.3.1 1 tractions at 

the boundary points E(-6b, 0) , A(-4b, 0) , B(. -2b, 0) and C(0,0) 

are plotted. Tractions at points E and A obtained with both 

boundary element techniques were not as close to each other 
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as the displacements in the previous analysis. At points 

C and D both numerical techniques gave the results predicted 

by expression (6.3.7) . The time-stepping scheme results 

oscillated slightly around the analytical solution. This 

fact had already been noticed in chapter four when investigating 

problems governed by the scalar wave equation. Apparently 

oscillation can occur whenever boundary displacements are 

prescribed and ß is too small. 

Another analysis in which ß was regarded as being 

equal to . 75 and the size of the elements taken to be equal 

to 2000 inches was also undertaken. 

Displacements and stresses at D were similar to 

the ones obtained with the first discretization, however 

tractions varied. A comparison of figures 6.3.9 and 6.3-12 

demonstrates that the boundary discretization depicted in 

figure 6.3.2 is too coarse, resulting in bad numerical results 

for tractions at the boundary points A and E. 

In figures 6.3.1 3 and 6.3.14 tractions at points 

B and C are plotted respectively. These figures show that 

by using ß= . 75 the oscillation of the numerical results 

was practically eliminated. 

Finally as far as this problem is concerned it 

can be concluded that 

(a) The displacements obtained using the time-stepping 

technique agreed with the results obtained by Cruse. 

(b) Excessively small values of ß should be avoided in 

problems in which displacements are prescribed over 

portions of the boundary. 
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(c) Both, the time-stepping and the Laplace transform 

techniques, yielded results which very closely 

followed the predicted physical behaviour of the problem 

analysed. 

6.3.3 Half-Plane Under Continuous Prescribed Stress 

Distribution - In this application the time-stepping technique 

discussed in this work is compared with the finite-difference 

model implemented by Tseng et al. {11}. In that report a 

transmitting boundary was developed and used together with 

the generalized lumped parameter model presented in references 

{1 07-1091. 

The problem to be analysed is depicted in figure 

6.3.15. The half-plane is initially at rest and its surface 

is disturbed by a vertical traction which is continuous 

in both time and space. 

The following numerical values were adopted for the 

constants of the problem 

E= 200 ksi, v= . 15 

cd = 3.288x104 ips, Cs = 2.112x104 ips . 

The criterion given by Tseng {11} to choose the 

finite difference mesh requires that 

t2 
Ax 

r cd 
(6.3.8) 

where tr is rise or decay time of the applied pressure and 

Ax gives the mesh refinement. When tr = 20 msec, Ax < 27.4 ft 

is obtained. Tseng chose Ax = 10 ft and the discretization 

as depicted in figure 6.3.16, where the position selected for 

the cylindrical wave transmitting boundaries can also be seen. 
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The boundary element discretization and cells 

used in the analysis are shown in figure 6.3.17. 

According to reference {11} the time increment At, 

used in this f inite-difference analysis, must obey equation 

(6.3.9) and At = 1. ursec was adopted. 

At < . 433 AX 
cd 

(6.3.9) 

For the boundary element analysis, ß was taken to 

be equal to .5, which gives 

At = 3.65 msec 

The time history of the vertical displacements plotted 

in figures 6.3.18,6.3.19 and 6.3.20 shows an acceptable 

agreement for the time interval considered. 

In his research Tseng carried out another analysis 

using a pair of transmitting boundaries which enclosed a 

smaller rectangular region whose side lengths were equal 

to 90 ft and 150 ft. The two finite-difference analyses 

showed that the larger the region enclosed by the transmitting 

boundaries, the closer finite difference and boundary elements 

results were. Therefore it is quite justified to suppose 

that the major proportion of the difference between the 

displacements obtained with the two numerical methods under 

consideration is caused by errors generated at the transmitting 

boundaries. 

Tseng also presented the time history of the 

vertical displacements for the point G(1501,101) obtained 

with the 90' x150' rectangular region. As G is located 

exactly on the transmitting boundary it can be expected that 
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finite-difference displacements at this point will have a 

low accuracy. The point G is also a critical one in the 

boundary element analysis because it is too close to the 

boundary of the half-plane. Results obtained with the two 

methods are shown in figure 6.3.21. As it was expected the 

agreement is not as close as recorded previously. 

Figures 6.3.22 to 6.3.24 describe the time history 

of stresses at points A(45' , 75') , B(75' , 75') and C(5' 175') . 

When the load is applied as a step function in 

time, finite-differences can not be used because of the 

restrictions imposed by equation (6.3.8). A possible way of 

overcoming this difficulty is by replacing the jump by a 

slope. In order to check the errors introduced by such a 

procedure the problem displayed in figure 6.3.1 5 was 

re-investigated using boundary elements, but this time the 

load was abruptly applied at t=0 (see figure 6.3.25) . The 

time history of stress plotted in figure 6.2.4 shows that 

a complete agreement occurs with the previous analysis during 

late times, but during early times the results are 

different. 

Finally, for this example it can be concluded 

that 

(a) The solutions using both the finite difference and 

boundary element methods are in good agreement. 

(b) The time increment required by boundary elements was 

bigger than that necessary for finite differences. 

(c) When the time variation of the load includes jumps, 

boundary elements are more suitable than finite differences. 
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6.3.4 Semi-Infinite Beam - This application consists of a 

semi-infinite beam simply supported along its edge (see 

figure 6.3.26) and subjected to a suddenly applied bending 

moment 

Mo =MH (t-0) (6.3.10) 

The Poisson ratio for this plane stress problem 

was taken to be 1/3. 

The boundary element mesh consisted of thirty six 

equal elements as depicted in figure 6.3.27 and ß was 

taken as equal to . 5. 

A finite element analysis of this problem was 

carried out by Fu {110} who used the mesh depicted in 

figure 6.3.28 in his numerical solution. Transverse 

displacements along the axes of the beam obtained with both 

numerical techniques are shown in figure 6.3.29. Within 

this same figure results obtained from the beam theory by 

Boley {1 11} are also plotted. The displacements depicted 

in figure 6.3.29 refer to 

5r 
Co 

(6.3.11) 

where r is the radius of gyration of the beam cross section 

and co is the one-dimensional wave propagation speed {111}. 

As it was expected none of the two-dimensional 

numerical analyses agreed completely with the analytical 

solution obtained from the beam theory. However the boundary 

element results show that the two-dimensional solution 

appears to be closer to the beam theory than initially 

indicated by the finite element method. 
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Figure 6.3.28 Finite element mesh for the semi-infinite 
beam. 
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6.3.5 Hole in an Infinite Plate - In addition to the beam 

analysed in the last section, Fu {110} also studied another 

problem which consisted of a hole in an infinite plate and 

compared results with those obtained by Chow and Koenig 11 1 2} 

using the method of characteristics. 

The load in this example consists of a constant 

internal pressure suddenly applied on the hole surface as 

depicted in figure 6.3.30. The applied pressure is 

independent of 6, therefore the stresses and the displacements 

calculated with respect to the system of polar coordinates 

shown in figure 6.3.30 are also independent of 0. 

The Poisson ratio for this plane stress analysis 

was taken as being equal to 1/3. 

The boundary element discretization and cells used 

in this analysis are depicted in figure 6.3.31. The parameter 

ß was taken to be equal to 0.5. 

The finite element discretization used in this 

analysis is not presented in reference {11 0} , however an 

idea of the number of finite elements and time increments 

required in this sort of problem is provided by reference 

{65}. 

Figure 6.3.32 depicts the time history of radial 

and circumferential stresses at points A, B and C displayed 

in figure 6.3.31. The agreement is acceptable for the 

internal points, but the boundary element results do not 

represent well the hoop stress at the boundary point A. 

Another analysis was then carried out with ß=. 2, and 

the stress at the point A, displayed in figure 6.3.32, 
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improved considerably. Further reduction of the time 

increments would certainly improve the boundary element 

results, however this was not done due to limitations on 

computer time available. 

Finally it should be recognized that the stress 

Cy 00 at the boundary point A was calculated as described in 

appendix I. 
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CHAPTER 7 

GENERAL DISCUSSION AND CONCLUSIONS 

At present there exist a number of papers (see 

Chapter 1) which formulate the boundary element method for 

solving transient wave propagation problems using three- 

dimensional time domain boundary integral equations. 

However the only general approaches that use two-dimensional 

fundamental solutions are those discussed in Chapter 1. 

which employ either Laplace or Fourier transforms to 

eliminate the time dependence of the problem. So far the 

only general numerical procedure that has been developed to 

analyse transient wave propagation problems in two dimensions, 

using time dependent fundamental solutions, considers the 

two-dimensional case as being a particular three-dimensional 

problem. Using this approach it is possible to benefit 

from the existing knowledge regarding the three-dimensional 

case. 

In this research, two-dimensional time dependent 

Green's functions were used to deduce integral equations, 

amenable to numerical solutions of two-dimensional transient 

wave propagation problems. A boundary element scheme 

was applied to solve numerical problems governed by the 

scalar wave and Navier's equations. Therefore the proposed 

method can be used to analyse plane-stress, plane strain and 

antiplane motions. 

In chapter 2, a revision of the linear elastodynamics 

was provided, with the purpose of briefly investigating the 

basic theory and also simultaneously introducing notation 
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and terminology that would be employed later. 

Although this research was primarily concerned 

with two-dimensional applications, the three-dimensional 

problem was also discussed. In this way some important 

discrepancies of the behaviour of two- and three-dimensional 

waves could be shown. The three-dimensional formulation was 

also required to obtain two-dimensional boundary integral 

equations, because in the procedure applied the method of 

descent was employed. 

One of this thesis' objectives was to derive the 

boundary integral equation (3.7.18) which constituted the 

basis for developing a time-stepping scheme to solve 

numerically transient two-dimensional problems governed by 

the scalar wave equation. 

Usual time marching schemes treat each time step 

as a new problem, and consequently at the end of each time 

interval, values of displacements and velocities are 

calculated for a number of internal points, in order to use 

them as pseudo-initial conditions for the next step, i. e. 

the integral equation (3.7.18) is applied from 0 to At; 

At to 2 At etc. In this thesis however, the time integration 

process is always considered to start at the time ' 0' 

and so values of displacements and velocities do not need to 

be calculated at intermediate steps. With this procedure, 

the domain discretization is restricted to regions where source 

density and initial conditions do not disappear. The 

domain integrations at a time step 'j' are consequently 

avoided at the expense of having to calculate time 

integrations for all time steps previous to 'j'. Two square 

opt 
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matrices of order (JxJ) must be stored for each time step; 

J being the number of boundaries nodes. Therefore when 

results for very late times are required a computer with a 

large storage area is needed. The first time marching 

scheme discussed previously is useful for bounded domains 

in which late time solutions are sought, in all other cases 

the second scheme is more suitable. 

Linear discretization was used to approximate the 

- geometry of the I' boundary. However it should be recognized 

that it could be an advantage to use higher order discretizations 

when analysing problems with more complicated geometries 

than those considered in section 4.3. 

Of the three distinct combinations of interpolation 

functions used to approximate u and p on the boundary, 

combination 2 was considered the most suitable one (see 

table 4 . 3.1 reproduced below) . 

Combination Interpolation function 

-q1(0)and vß(0) Om(t) Ot (t) 

1 Linear Ljnear Linear 
2 Linear Linear Constant 
3 Constant Linear Constant 

Table 4.3.1 Combination of interpolation functions. 

In a considerable number of wave propagation 

problems, p can be discontinuous and the use of continuous 

6m (t) , introduces excessive oscillations in the numerical 

results. For this reason a discontinuous time interpolation 

R 
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function, Om(T) = constant, was used to approximate p. 

However higher order discontinuous Om(t) should also be 

considered in future research primarily to improve the 

efficiency of the numerical analysis. 

In the numerical applications carried out in 

section 4.3, p is also discontinuous in space. Despite this 

fact, continuous linear elements yielded good numerical 

results for all of the three problems studied. 

The time integrations indicated in expressions 

(4.2.5) and (4.2.6) were performed analytically. The 

integrands of the boundary integrals obtained with this 

procedure (see expression 4.2.17) have singularities which 

are of the same order as those which appear when considering 

steady state potential problems. Consequently Gauss quadrature 

could be applied to integrate numerically over all of the 

elements except those with singularities. Singular boundary 

integrals were carried out analytically. 

Linear triangular cells were used to calculate 

contributions due to initial conditions. In the semi-analytical 

scheme discussed in section (4.2.2) a system of polar 

coordinates (r. 0) was employed and integrations with respect 

to r were performed analytically. The expressions obtained 

were then integrated numerically with respect to 6 using 

one-dimensional Gauss quadrature. This method of computing 

initial conditions contributions, that appear in expression 

(3.7.18) , was tested in the examples discussed in sections 

4.3.2 and 4.3.3 and proved to be very efficient. 

Pý 
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A maximum of ten Gauss points was used to perform 

both, cell and boundary integrations. The number of 

Gauss points was gradually reduced as the time-stepping 

scheme advanced in time, but no general rule was derived; 

consequently further investigations on this subject are 

required. 

Three examples concerning two-dimensional problems 

governed by the scalar wave equation were considered in 

section 4.3. The first example (see section 4.3.1) tested 

the performance of the proposed time-stepping scheme on a 

problem in which p was discontinuous in both time and space. 

The second example was studied in section 4.3.2 and was 

concerned with checking the numerical performance of the 

time-stepping technique described in this thesis when the 

prescribed initial conditions were not null. A further 

illustration of the numerical technique under consideration 

can be found in section 4.3.3. In the example analysed there, 

the time was divided into intervals that were shorter 

than in the two previous examples. This was because of the 

rather complicated time and space behaviour of p. In all of 

these three applications the accuracy of the numerical 

solutions was considered to be very good. 

From the problems analysed in section 4.3 it can 

also be concluded that very small values of the parameter 

ß, can in certain situations introduce an excessive level of 

noise into the numerical results. Another important 

conclusion that can be inferred from the applications is 

that great care should be taken when choosing the time 

intervals and boundary discretization, in order to avoid 
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contradicting the causality property too far, that is, 

in each time step waves should not be allowed to travel 

between nodes far from each other. 

A discussion concerning two- and three-dimensional 

time-domain integral equations for transient elastodynamics 

was the object of chapter 5. The primary intention was to 

describe the mathematical manipulations required to obtain 

equation (5.4.1) (see section 5.4) , which can be used on the 

two-dimensional numerical analysis. Initial conditions 

were not considered in equation (5.4.1), however they can 

be included by following a procedure similar to that presented 

in section 3.7. 

Linear discretization was used to approximate the 

geometry of the F boundary and combination 3 displayed in 

table 4.3.1 was adopted to interpolate boundary displacements 

and tractions. 

As in the case of the scalar wave equation, both time 

inteqrations and space integrations of singular expressions were 

performed analytically. Non-singular boundary integrals 

were computed numerically employing a maximum of twenty 

Gauss points. 

The scheme implemented to compute internal stresses 

was similar to the simplest procedure used in finite elements. 

Triangular cells were used and stresses at their centroids 

were calculated from displacements which were linearly 

interpolated inside each cell as a function of the 

displacements at the cell nodes. 
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Five numerical applications were considered in 

section 6.3, where discussions concerning the choice of 

boundary element meshes and time intervals were presented. 

Results obtained with the time-domain boundary element 

formulation were compared with those obtained using 

boundary elements in conjunction with Laplace transform, 

finite-differences and finite elements. 

The agreement of the results was acceptable for 

displacements and tractions. The accuracy of the stress 

numerical results was however dependent on a good selection 

of cells. Large cells can lead to incorrect results mainly 

on regions of stress concentration. Conversely excessively 

small cells should also be avoided because the displacements 

of these cell nodes can often be too close to each other 

which may result in a large contribution to stresses due 

to numerical errors. A more appropriate scheme in which 

constant stress cells can still be employed is that in 

which stresses, at any internal point, are obtained as the 

average value of stresses computed at various cells having 

such a point as a common node. Higher order cells should 

also be tested in future, however the most suitable alter nitive 

method to improve stress accuracy is to calculate them using 

a proper integral equation. 

In a brief review it should be recognized that 

the boundary integral technique presented in this report 

showed to be very promising. Despite the poor interpolation 

functions used in the numerical analyses encouraging results 

were obtained. 

Olk 
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In order to improve the numerical technique 

discussed here higher order time and space interpolation 

functions together with a more accurate scheme to compute 

stresses are recommended to be implemented in future 

research. 

With reference to extending the present research 

to a more diverse range of problems, initial conditions 

and body forces can easily be introduced into the two- 

dimensional elastodynamic formulation. Sub-regions must 

also be implemented to introduce the possibility of analysing 

non-homogeneous bodies. A vastly more efficient solution 

of half-plane problems can be obtained using fundamental 

solutions specifically derived for that case. Implementation 

of such solutions must also be the object of future research 

efforts. 

The recommendations for future research mentioned 

above only consider a few topics which can have immediate 

applications to a diverse range of practical engineering 

problems. However, there are many other possible extensions 

which can be derived from this report and the case which 

requires to be analysed first is a matter to be decided 

according to the specific problem which needs to be solved. 

00, 
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APPENDIX A 

DIVERGENCE THEOREM AND INTEGRATION BY PARTS 

In this appendix the operations required to 

obtain equation (3.5.4) from equation (3.5.3) are outlined. 

The two simple mathematical formulas given in (a) and 

(b) below, will be required. 

(a) Integration by parts 

bbb 

f dg dx = fgý - 

Jg 
df dx (A. 1) 

-ýa aa 

(b) Divergence theorem 

f dQ = fj n. dr (A. 2) 

Qr 

Initially it is important to recognize that 

V2u u* dQ = (u u*) dQ - (uu*. ) dQ 

+ uu*ýý dQ (A. 3) 

When the divergence theorem is applied to the first two 

terms on the right-hand side of equation (A. 3), the following 

relationship can be written 
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02uu* dQ = uu*.. dQ + u*u n. dF - uu* . n. dF 
ºJJ 'J J fJ J 

Q sz rr 

= u02u* dQ + pu* dF - up* dF 

s2 rr 
(A. 4) 

The application of expression (A. 1) to integrate 

by parts with respect to time gives 

t+ t+ t+ 
a2u * au * au au* 
äT2 u dT - öT u- öT äT 

dT (A. 5) 

0-00 

When expression (A. 1) is applied again to the second term 

on the right-hand side of expression (A. 5) , the following 

expression results 

t+ t+ t+ 
alu 

aT2 u*dT = 
aT 

u* - 
aä 

u+u 
a)T2 

dT (A. 6) 

0 -- 00 

Substitution of expressions (A. 4) and (A. 6) into 

equation (3.5.3) results in equation (3.5.4). 

A final consideration concerning a change in 

tractions and displacements notation must be discussed. 

This notation is shown in equation (A. 7) for the normal 

derivative of u, and a similar procedure was adopted 

for the potentials. 
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Ju*PdF_J 

r r2 

= pu* dI' 

r 

pu* dr + 

r2 
pu* dF _ pu* dF + pu* dF 

r2 

(A. 7) 

Therefore, in order to simplify the notation, p was replaced 

by p over 12. It is important to realize however, that 

integrations over the F2 part of the boundary refers to 

prescribed normal derivatives of the potential. 
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APPENDIX B 

EVALUATION OF CONTRIBUTIONS DUE TO SINGULAR BOUNDARY INTEGRALS 

This appendix is concerned with the evaluation of 

the following limits (see expressions (3.5.18), (3.5.19) 

and (3-5-20)) 

Sp = lim Ii p(Q, tr)dIE (B. 1) 
c}0 F E 

Su = lim an(Q) r u(Q, tr)dFE (B. 2) 
c--0 r 

__ 
ar 1 pu(QlT) 

(B. 3) d F Sv E; O an(Q) cr aT E 
F- T=t cr 

where FE is the surface of the hemisphere shown in figure 

3.5.3, r= IS-QI and dFC = dFC(Q). 

Expression (B. 2) , considered first, can be written 

as 

uE 
S= lim an (Q) r12 

ru(Q, tr) -u (Sit )ýdI' 

+u (S, t ) lim an (Q) r12 
dF (B. 4) 

e 

It will be assumed that the potential satisfies 

a H6lder condition as a function of space about (S, t), i. e. 

I< Ara , A>0,0<a<1 (B. 5) t)-u cs ,t)I) 
and a Holder condition as a function of time, i. e. 

lu(Q, t-r/c) - u(Q, t)I < Brß , B>0,0<ý<1. (B. 6) 

Conditions (B. 5) and (B. 6) are stronger than continuity, but 
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weaker than differentiability { 27 }. 

In view of expressions (B. 5) and (B. 6) it is 

possible to have an expansion of u about (S , t) which takes 

the form 184} 

u(Q, t-r/c) = u(St) + o(ra) + o(rß), (B. 7) 

Consequently expression (B. 4) can be written as 

Su = lim an (Q) r12 
o(ra) + O(rß) dr. 

E-*0 
e 

+ u(S, t) lim 
a 

Br 
r12 

dF (B. 8) 
E-*0 Jr E 

Then, evaluation of the limits shown in expression (B. 8) 

reduces to considering 

L= lim 
ana(Q) 2dF C>0 (B. 9) 

e-*0 r 
E 

By employing the spherical coordinates (e, 6, ý) depicted in 

figure (B. 1) , and recognizing that Dr/an(Q) 1, expression 

(B. 9) reduces to 

-Tr/2 2 Tr 

L= lim 
E±0 00 

1E2CoSý 
d6 dý 

2-ý 

0 C>0 

= lim (2Tre 
C-* 0 

Therefore 

Su = 2Tru (S, t) 

2n C=0 

(B. 1 0) 

(B. 11) 
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If p and 
äT 

satisfy Holder conditions (or continuity) 

in space and time, a procedure similar to the one just 

described can be employed to demonstrate that 

Sv = Sp =0 

/ 

50 

io 

/ý ý 

ý \ý 
/ý 

/\ 

Figure B. 1 Spherical coordinates. 

The method just outlined to isolate singular 

(B. 12) 

contributions of boundary integrals is used in references 

{20-22,361. However another interesting procedure to study 

the same problem has also been used {26,35,84} and will be 

described next. 

Let c (S, c) be a circular cylinder of radius £ 

whose axis contains a boundary point S and with a generator 

parallel to the normal to F at S (see figure B. 2) . When 

the F boundary satisfies the Liapunov {27} smoothness condition 

at S, and e is sufficiently small, the intersection of 

c (S, c) with F, denoted FC, can be considered to be a small 
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disc of radius c, centred at S and tangent to F (see figure 

B. 2) . In addition, a point s inside the domain Q, located 

at a distance 6 from S, such that 6<<c, should be considered. 

Consequently, when neither source density nor initial 

conditions are considered, equation (3.5.16) can be written 

as 

u(S't) p(Q, tr)dF 4Tr r 
F-F E 

+1 
Dr 1 

u(Qt + 
_u(Q_T) dr 4n an(Q) r2 ' r) cr DT 

r-r - 

jTt 

cr 

+ 41 Tr 
(Sp+Su+Sv) (B. 13) 

where r= s-Q I and Sp , Su and Sv can be obtained from 

expressions (3-5.18)f (3.5.1 9) and (3.5.20), changing S by s. 
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Q; p EE 

söt 

5 

Vr 

s 

Figure B. 2 Disc FE around the boundary point S. 

When E- O; F- F -> F, s-*S and 

Su = lim 
an(Q) r12 u(Q, tr)dr (B. 14) 

C-*0 
E 

If expression (B. 7) is taken into account it is possible to 

write, 

E 

Su = lim 4ro(r) + o(rß)ý 2npdp 
E-*O 0- 

E 

+u(S, t) lim 
r6 

2Trpdp (B. 15 ) 
C- *O 



192 

Evaluation of the limits shown in expression (B. 15) then 

reduces to evaluating 

C 
L= lim 3 pd p (B. 16) 

E-0 0r 

Since pdp = rdr for a given S«E; it is possible to write 

E 
E 

L= lim 2S dr lim 
E-0 r c-*0 r 

0 when E>0 

= lim 1S= 

6 -*0 S1ý 
1 when ý=0 

and so, 

Su = 2nu(S, t) 

as before. 

f 

(B. 17) 

(B. 18) 

Although either of the two alternatives described 

can be used, the first one is preferred in this work because 

it can easily be employed for boundaries of the Ke l log type 

as will be illustrated in the following paragraphs. 

The next situation to be considered is that where 

the domain Q is cylindrical as shown in figure B. 3 and the 

boundary point S is located on a edge, that is, the Liapunov 

smoothness condition is not valid locally. The body must then 

be considered as being augmented by a volume about S whose 

boundary is formed by the intersection of a spherical 

surface Fe with two planes as shown in figure B. 3. The 

limit indicated in equation (B. 9) can conveniently be 

written as 
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with 

L= L' +L" 

L' = tim är 
21 

dl1 
E-0 r, r 

L" = lim än 
21 dF" 

where rE and I' are depicted in figure (B. 4) 

It has already been shown that 

10 ý>0 

L' = 

(B. 19) 

(B. 20) 

(B. 21 ) 

12-ff ý=0 (B. 22) 

L" can be obtained as outlined by the following operations 

(see figure B. 4) 

7T 

L" = lim 
2ý 

ße2sinOd6 
s-0 s 

0 

0>0 

= lim (2Eß) _ 
E-*0 

213 

(B. 23) 

where ß is the angle indicated in figure B. 3. Consequently 

and 

Su = 2(Tr+ß)u(S,, t) (B. 24) 

u (S, t) - 41TT Su =2ßu (S, t) = 
2, 

ý u (S, t) =c (S) u (S, t) (B. 25) 

where a is the internal angle depicted in figure B. 3. 

Finally it should be recognized that expression 

(B. 25) can be extended for the situation in which the three 
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Figure B. 3 Domain with a Kellog type boundary augmented 

by a sphere. 

r' 

)Ade 

nil 

Figure B. 4 Surfaces F' and F". 
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dimensional domain is not cylindrical, therefore c (S) can 

be derived for points located on corners following a 

procedure similar to the one described in this appendix. 
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APPENDIX C 

TWO-DIMENSIONAL FUNDAMENTAL SOLUTION TO THE 

SCALAR WAVE EQUATION 

It was shown in section 3.6 that the fundamental 

solution to the two-dimensional scalar wave equation can be 

obtained from 

+Co 

u2D = u3D(qt; s, T) dx3 (q) 
J-Co 

or, in view of expression (3.4.6) 

+ý S 
Fr 

-C (t-T) 
u2D =c r 

dx3 (q) 

(C. 1) 

(c. 2) 

According to figure C. 1 the following relationship can be 

written 

r2 = R2 +x32 (C. 3) 

where 

R2 (Rini) (C. 4) 

and 

R1 = xi(q) - xi(s) ' (i=1,2) (C. 5) 

It should be recognized that s in this case is a point 

belonging to the (x1, x2) plane. 
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X3 

Figure C. 1 Illustration of the relationship given by 

expression (C. 3). 

In view of expression (C. 3) , expression (C. 2) can 

be written as {9} 

+1 0 
/2 ý(R2+x3) 

-C (t-T)] 

*C (C. 6) u2D 
( R2+x 2) 1/2 

x3 

-o 3 

To perform the integration indicated in expression (C. 6) 

the following property of the Dirac delta function {981 

is required 

nS (x-xi) 
S Ef(x)] - 

i=1 1 f' (xi) 
(C. 7) 
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which can be used whenever f' (x) = 
df 

dxx) does not vanish 

at the roots xi (i=1 , 2... n) of f (x) . The two roots of the 

argument of the Dirac delta in expression (C. 6) are 1/2 

±rc2(t-, r)2-R] . Thus 

11 
_=c (t-T) 

IC 
2 (t-T) 2-R2 

(X2)1 

Therefore 

1/2 

6 (R2+x3) -c (t-T) _ 

- 
1/2 

=C (t-T) C2 (t-T) Z-R2 
[[x3_H2(t_T)2_R21l/2] 

+d 
[x3ý(t_T)2_R2 

1/2 

c2 (C. 9) 

In view of expression (C. 9) the integration indicated in 

expression (C. 6) can now be carried out, resulting in 

{6,9} 

u* - 
2c 

H [c(t_T)_ (C .1 0) 
z t_T 2_Rz c() 

It should be noted that when R is replaced by r, expression 

(C. 10) becomes expression (3-6-9). 
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APPENDIX D 

LINE INTEGRATIONS OVER THE CURVE DEFINED BY 

THE F BOUNDARY 

In this appendix the following relationship which 

was used previously in section 3.7 

1a2 
f Fr (0)1r (0)d0 =f (r) Dr (s, Q) dF(Q) (D. 1) 

an (Q) 

will be obtained. From a comparison of expressions (D. 1) 

and (3.7.15) it is apparent that the notation has been 

changed, i. e. rr (A) has been replaced by r (8) . It is 

believed that this should not cause confusion, once it is 

understood that r (A) is the distance between the origin of 

the polar coordinate system shown in figure D. 1 and a point 

Q on the F boundary. 

J_ r 
-r 

r 

Figure D. 1 Unit vectors, polar and line coordinates. 

$ 
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The following expressions can now be written 

I Jf(r) 
fýr(6)1 r( e) ae =r 

ä8 dP 

61 P 

f (r) än dr =f (r) (v. n) dr 

rr 

(D. 2) 

(D. 3) 

r 
where y= is the unit vector parallel to the line that 

joins the poins s and Q in figure D. 1. In view of expressions 

(D. 2) and (D. 3),, expression (D. 1) is valid as long as it can 

be proved that 

vn=r 
äP 

(D. 4) 

With reference to figure D. 1 

r= r(cosOi + sin6j) (D. 5) 

hence 

dr = (de cosü - rsin6) i+ (de sine + rcos6)1 d6 

(D. 6) 

and 
2 

dI' = 3r"dr = (del +r2 d6 (D. 7) 

Let t which is given as 

t= a i+ bj (D. 8) 

be a tangent vector to r at Q, as shown in figure D. 1. 

Then the unit outward normal vector at Q can be written as 

n= (b i-a j) //a 2+b2 (D. 9) 
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t is given by 

Dr 
t ae (äe cosh - rsin0)i + (ä sin0 + rcos6)j , (D. 10) 

then the expression for n reads 

z 
= 

ar 
n sin6 + rcosO)i - (ar cosO - rsin6)j 
- ae 

(De 
ae 

(D. 11) 

Taking expressions (D. 5) and (D. 11) into consideration it 

is fairly simple to demonstrate that 

r vn= 
-- 

rarl 2+r 

laeJ 

(D. 1 2) 

A comparison of expressions (D. 7) and (D. 12) demonstrates 

that formula (D. 4) is valid, consequently expression (D. 1) 

is proved. 
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APPENDIX E 

ANALYTICAL TIME INTEGRATION 

This appendix presents expressions for (Dim) I, 

( Dim) F, 
(Enm) I, 

(Enm) 
F and Fnm that appear in equations 

(4.2.17) and (4.2.20). Initially it is convenient to 

define the following constants 

Aý =c (tn-tm- 1) -r 

A2 =c (tn-tm_ 1) +r 

A3 =c (tn-tm) -r 
(E. 1) 

A4 =c (tn-tm) +r 

A5 =c (tn-tm+l) -r 

A6 =c (tn-tm+1 ) +r 

(Dim) (Dim) F, (Eim) I and (Eim) F which appear in 

equation (4.2.17) can be calculated from (I) , (II) , (III) , 

(IV) and (V) which follow, 

(I) tm+1 < to - r/c 

A 
ý) 

--ý 
nm 

A1 A3 2c 2 At (t 
n-tM- 

D) I--2- A4 +A2A4 (A1 A4 -A2A3 ) 

Dnm - 

A3 
- 

A5 
+ 

2c 2 Ot (tn-tm+l) 

1)F A4 A6 A4 A6 (A3A6 -A4 A8 ) 

(i )I-A F' -A A-c (t -tA3A4 
+c (t 

n- 
t 

m) 
E nm 

3412n m-1) LA 
1 A2+c (tn-tm_ 1) 

nm 
A5A6+c (tn-tm+1 7 )-_ 

_ (Ei )F- A5 A6-A3A4-c (tn-tm+1) 7n 
A3A4+c (tn-tm) 

(E. 2) 
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(II) tm+1 > to - r/c , tm < to - r/c and tm+1 < to (r 0) 

( Dim) I Use expression given in (I ) 

nm 
i )F = 

A3 (A6) 21 

A4 r 

(Enm) I -ý Use expression given in (I) 

nm 
_r (Ei F A3A4 +c (tn-tm+1) 

r 

3A4+c (tn-tm) 

(E. 3) 

(III) tm > to - r/c and tm-1 < to - r/c (r can be equal to zero) 

nm Di I -A1 A2 
r 

(Dim) F=0 

nm 
-A1A2-c(tn-tm-1) In r 

A1A2 +c(t 
n-t m-1) 

(Elm) 
F=0 

(IV) tm+1 to - r/c, and tm+1 to 

(D nm) Use expression given in (I) 
iI 

A 
nm iDi )F A4 

(Enm) Use expression given in (I) 
iI 

nm (Ei '= 
A3A4 

(E. 4) 

(E. 5) 



204 

(V) tm-1 > to - r/c 

(Dim) (Dim) 
F= 

(E nm 
I= 

(Eim) 
F=0 (E. 6) 

Fnm can be computed from (VI), (VII) and (VIII) below. 

(VI) tm<tn- r/c 

A3A4 +c (t 
n-t m) Fi nm 

= -cat In 

[A1A2+Ct_t1 

(Fý)) 

(VII) tm >tn- r/c, tm-ý < to - r/c 

nm r (E. 8) F nm 
= -C At In 

Al A2+c (t 
n- 

t 
M-1 

(VIII) tm-ý to - r/c 

Fnm =0 (E. 9) 

Each expression presented in this appendix must be 

multiplied by a Heaviside function whose argument is equal 

to the first argument of a square root to become negative 

in the expression under consideration. 
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APPENDIX F 

INTRINSIC COORDINATES 

Let xi (S) represent the coordinates of the source 

point S with regard to the system of Cartesian coordinates 

shown in figure F. I. The element ek shown in this figure 

joints two nodes whose coordinates are given by 

xi(-1) = rxýJ 
ýk -1 

x (-1) =x 22 ýk = -1 
(F. 1) 

x1(1) = r1 ýk -ý 

X2(1) = X2ý 

X 

S 

nk N 

() 

[xI (-1) , X2(-I] 

Xi 

Figure F. 1 Intrinsic and rectangular coordinates. J 

[X, (l) 
, X2(I)] 
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Considering that r=r (S, ýk) =' S-Q )I and 

denoting the components of nk by (nk) i, the following 

relationships can be written 

r= (rlrl) 
1/2 

an Q) _ (n kir, 1 
(F. 2) 

1 
dFk =IJId Ck =2d Ck (Summation convention not to be used 

for the indice k). 

In expression (F. 2), J is the Jacobian of the coordinate 

transformation, 1k is the length of ek and 

ri = xi (Q) -xi (S) = xi (ýk)-x i (S) 

ar r 
,i r, i axi (Q) =r (F. 3) 

xi(k) = x(-1) +2 (1+k) rxi(1)-xi(-1)T 

In view of equations (F. 2) and (F. 3) the integrals in 

equations (4.2.22) and (4.2.23) can be easily calculated 

using intrinsic coordinates Ck. When linear interpolation 

functions in time and space are adopted, the following 

expressions can be written 

11 11 
nm ar nm +1 

ar nm 1 (Hij)I 2c At 
lp an(Di 

)I(gyp)dip-lq an 
(Di )I(ßq)d 

q 
_1 _1 

11 
nm 

_11 
ar (Dnm) ( +1 )dC -1 

ar (Dnm) (C -1 )dý (Hij) F 2c\t p an .iFppq 
Dn iFqq 

-1 -1 
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1 

1 (1 

(G )=1 (E )( +1 )dý (E. 
jI 2czt piIppqi i I( q-1)d q 

m) 

i-1 -1 

11 

(Gij)F 2c At lp nm 
- lq (Eim)F( 

q-1)d q 
-1 -1 

(F. 4) 

As previously stated in section 4.2, with the 

exception of (Gini-1) I' (Gini) I and (Gini+1) I, all others 

coefficients in expression (F. 4) can be computed using 

one-dimensional Gauss quadrature. When n=m and i=j, 

(Ein) I 
is required to compute (Gii) I' In this situation, 

(Enm) in expression (F. 4) can be written as (see expression 

E. 4) 

)T _ (Ein) 
I= _A1 A2+c (tn_tn_1 ) In TA 

, A2+c (tn_tn_1 

-c (tn-tn_ ) In rH rc (tn-tn_ 1) -rý (F. 5) 

Analytical integration can now be carried out to calculate 

the contributions to (Gnn) I, 
in expression (F. 4), of 

the term that have a logarithm singularity. The manipulations 

requirod are described below. 

1 
11 In (r) ( +1) H cAt-rýj dý _ 2c At pPIP 

-1 

al 
In (ap)-1 -12 In (aP) - 1/ 2]J 

P- 

11 
O t-rýdCc 

2c0t lq (r) ( 
q1) 

H Fc 

r 

(F. 6) 

al 
In (a 

q1 
Sl Fln (a 

q) -1/ 2] 
q- 
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where 

cAt when cAt<1p 

a= P 
lp otherwise 

(F. 7) 

cAt when cAt<1 q 

a= q 
lq otherwise 

The procedure to be followed for the coefficients (Gini-1 I 

and (Gnni+1) I 
is similar to the one just presented for 

(Gini) I; consequently it will not be described here. 

It is important to recognize that although the 

coefficients Gib for linear and constant 0m are different 

from each other, their singular term is the same. Therefore 

results similar to those defined by expression (F. 6) can be 

obtained in the case of constant time interpolation. 
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APPENDIX G 

TRANSVERSE MOTION OF A RECTANGULAR MEMBRANE 

UNDER PRESCRIBED INITIAL VELOCITY 

This appendix is concerned with obtaining 

expressions to represent the transverse motion of the 

rectangular membrane analysed in section 4.3.3. The 

displacements are null on the r boundary and an initial 

velocity v0 is prescribed over the rectangular area Ao 

shown in figure G. 1. The analytical solution for this 

specific problem was derived using the general expressions 

given in reference f1051. 

X2 

b b' Ao 

02 L b, b2 

LaT 

Figure G. 1 Geometry, boundary and initial conditions for 

the membrane. 

The transverse displacement u (x1 , x2, t) at any 

point inside the domain defined by the membrane and the 

xl 

tractions p (a, x2't) at any point on the line x1 =a can be 



210 

calculated from 

2v0 co co 
G1 

ýrmx 1 -Jrnx 2 G (G. 1) u(x1'x2't) sin sin b mn m=1 n=1 mn mit a 

2vo Co Co 1n iix 2 P(a, x2ýt) = air2 nv cosmusin b Gmn (G. 2) 
m=1 n=1 mit 

where 

nTrb2 nnbl mTra2 m7Tal 
Gmn = cos b- cos b cos 

a- cos a 

" sin(21Tvmnt) (G. 3) 

and the natural frequencies vmn are given by 

C'I (m) 
2+(n 2 

mit 2a 
(G. 4 ) 

In the case of the membrane analysed in chapter 4, 

(a=b, a'=b'= 5) the series of expressions (G. 1) and (G. 2) 

were computed with eighty and one hundred terms respectively. 
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APPENDIX H 

FUNDAMENTAL TRACTION 

The two-dimensional fundamental traction given by 

expression (5.2.4) can also be computed from 

pik = 2G (6nkcimm +ný Elk) (H. 1) 

where ei . is the fundamental strain, i. e. k 

£ijk 2 (ulk, j+uij k) (H. 2) 

and 0 is the constant given by expression (5.2.9) . In order 

to work out an expression for ct ; u' must be computed 

first, from uik outlined by equation (5.2.6). uik j can 

conveniently be written as 

c 
u. 

[T1+T2_T3 
- 

s(T-T) (H. 3) 45 ik, j 2pc 
s xi cd 

where 

T1 SikL2Hcst'-r1 (H. 4) 

T2 =r2st-r]r (H. 5) 

T 
3 

t'-r 
r'1. kLNH 1c 

s r22 
(H. 6) 

T4 = 
r2 L1 Hrcdt'-rl (H. 7) 

rr = 
r'12'k 

LNH cdt' -r 11] 
(H. 8) 

5 r 

Ll, N1, L2 and N2 in expressions (H. 4) to (H. 8) are given 

by expression (5.4.3). 

uik can then easily be obtained once expressions 

for the derivatives of T1, T2, T3, T4 and T5 with respect 

to x. , have been calculated. The procedure to be followed 
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will now be described; the following relationships will be 

used 

r= 
ý(ý 

-r r (H. 9) ij r ij li ,j 

rr=1 
,mm 

(H. 10) 
, 

ar 
an =rini. (H. 11) 

, 

(H. 1 2) nD . Sly = n. 
1 

ax. f(r, t') = r, yrf(r, t') (H. 13) 
J 

rHrctI 
-r = a(ýT)Hc(t-r)-r = -S 

Ec 
T -(ct-r) Il 

(H. 14) 

To begin with the operations required to obtain 
aT1 @T2 aT3 

ax. ' ax . 
and ax will be described in (a),, (b) and (c) 

J3 J 
be low. 

(a) When expression (H. 1 3) is employed the following 

relationship can be written 

DT 3T I[ 
ax .rý ar jj ik r L2H 

+ L2 ar HrcSt'-ri (H. 15) 

Taking account of expression (H. 14) it is possible to write 

aT1 
=r6r L3 He t'-r +LaH jýe t'-r (H. 16) 

ax 
J. ,J ik 2s2 a(cST) I_S 

(b) When expressions (H. 13) and (H. 14) are considered, 

the following formula can be derived 
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T2_ _1 rS2 L2 +r L2 Hrest'-r 
ax ,j ik 3 

- rý2 
L 2' (-c 

St 
ý -r ) 

(H. 17) 

The third term on the right hand side of expression (H. 17) 

is null, and consequently 

aT2 r 
l. 

ax 
. 

'r kL 
(H. 1 8) 3 

J 

(c) Considering expression (H. 1 3) , the following formula 

can be written 

aT3 
_a (r , i2 k) 

LN+ 
r' i2r 'k r (L N) 

]Hst'_n1 
+ ax .22r, Jr22JJ-- 

rr 
t'-rl +Il Fk rLN Hre 

s r2 j22 ar 
(H. 19) 

Using expression (H. 9) the formula below can be derived 

rr a, i k) 
=1 (S r +S r . -4r rr) (H. 20) 

ax r2 r3 ij k kj ,i ,i ,j ,k 3 

The following expression can also be deduced 

Dr 
(L2N2) =r3 L2 (H. 21 ) 

Substituting expressions (H. 20) and (H. 21) into (H. 19) 

and using expression (H. 14) then gives 



214 

_=r +S r- 4r rr )L N+ axe 
H(6 

ij ,k kj ,i ,i, ,k22 

+ r' ir' r'krL2 H EcSt I -r1 + 

+ 
r2 r'1I jr okL2N2 a (cST) HFcst r-j 

(H. 22) 

T4 and T5 can now be obtained replacing cs by cd in 

expressions (H. 18) and (H. 22) . Then, u* can be 
ik, j 

derived from expressions (H. 3), (H. 16) , (H. 18) and (H. 22). 

uij k can easily be obtained by interchanging j and k by 

k and j respectively, in the expression that yields u* ik, j 

Having obtained uik, j and U' " , k, expression (H. 2) can then 

be employed to work out eijk, resulting in 

si . Jk = 4, Tpc 
Ei .Jk rL2H [cst' 

-r + L2 
sTH post' 

-rý + l 

ss 

+ Fi kL2N2 + Gi kr 
3L2 H Tc 

St' -rl + C> > 
+ Gi. kL2N2 a(c T) 

H[cst'-rl - (H. 23) 
s 

c 
- cs 

ýFlýkL1N1 + G, r3LflH[cdt'-rl + 
d 

+ GijkLjN1 a)H rcdt ,_ rl 
d 

where 

Eljk =i kr 'j+ S jr, k 

Fijk 
r23(Sikr, j+613rk+6jkri-4r1. r- r, k) (H. 24) 

_2 Gijk __ r2 r, ir, jr, k 
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The fundamental traction pik, as described by 

equation (5.28) can now be obtained by substituting 

expression (H. 23) into (H. 1) . 
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APPENDIX I 

STRESS AT BOUNDARY POINTS 

No integral expression is derived in this thesis 

to compute stresses. At internal points, cells are used to 

obtain space derivatives of displacements which are 

subsequently used to compute stresses. However the same 

procedure cannot be employed for boundary points. In 

this instance the procedure outlined in this section 

must be applied. 

From Hooke' s law (equation (2.2.15)) the components 

of the stress tensor, which refer the directions s and n 

shown in figure I. 1, are given by 

a= (A+2G) ESS+X cnn 

CT nn 
X Ess+ (a+2G) Enn 

Gsn ans 2GESn 

X2 

n 

/n 
p2 / 

-apl 
I k\ 

S 

S 

ý-ý_ \ 

Al 

(I. 1) 

Figure I. 1 System of coordinates and boundary points used 

to compute the stress ass. 
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If the expression (I. 1) is employed, ass can be computed 

from 

6=4 
A+G A) 

ss 
G A+2G -ss + X+2G inn I. 2 

Equilibrium conditions give 

ann =p1ni (I. 3) 

and therefore when pl and p2 are known only ess remains 

to be determined, in order to compute ass given by expression 

(1.2). The displacement component in a direction parallel 

to s is given by 

us = -u1 n2+u2n, , (I. 4) 

consequently css can be calculated from 

(I. 5) C= -u1 
'sn2+u2,, sn1 

The following expression can now be used to obtain ui, s 

at a node ý of the F boundary (see figure I. 1) 

u. (+1, t)-u. 
11I. 

ui 
,s IQ(ý+1)-Q(C-1) 

( 6) 

Expression (1.6) has already been used in {36,37,65,113} 

and the accuracy for boundary stresses obtained in those 

references was considered satisfactory. 


