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Doctor of Philosophy

THE COMPUTER SIMULATION OF ANISOTROPIC SYSTEMS
by Paul Simpson

This thesis 1is concerned with the study of the
properties of anisotropic systems wusing the Monte-Carlo
computer simulation technique.

Following a brief introduction to 1liquid crystals,
Chapter 1 discusses the effect of external forces on liquid
crystals, intermolecular pair potentials, distribution
functions and molecular field theory, leading to a chapter
describing techniques and problems associated with the
computer simulation of anisotropic systems. In Chapter 3,
properties of the nematic-isotropic phase transition using
the Lebwohl-Lasher model, together with various
modifications are investigated. Chapter 4 then discusses the
simulation with anisotropic particles interacting via
nearest neighbour dispersion forces together with full
ranged dipolar forces. The next two chapters give details of
simulations of the effect of external forces on anisotropic
systems. In particular, in Chapter 5 where an external
magnetic field interaction 1is applied to investigate the
pinning of the director and to study the transition
properties in a high magnetic field and in Chapter 6 where
surface forces are applied, which together with orthogonal
external fields are wused to simulate the Freedericksz
transition. Finally in Chapter 7, the orientational
properties associated with the smectic-E to smectic-B phase
transition are studied.

Throughout this thesis, wherever possible, results are
compared with the predictions of molecular field theory.
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Chapter 1

Introduction

1.1 Liquid Crystals

The phrase ’Liquid Crystal’ was first used by Lehmann
(1900) to describe a state of matter which had been observed
between the crystalline and 1liquid phases of various
cholesteryl esters and 4-4’-dimethoxyazoxybenzene. Much
uncertainty existed up until this date as to the nature of
this phase, first reported by Planar (1861) and later by
Lobisch (1872), where on cooling melts of some cholesteryl
esters a striking colour phenomenon was observed. In 1888
however, Reinitzer made a detailed study of this behaviour
and observed that the state was actually ligquid-like, yet it
possessed optical properties usually associated with
crystalline solids. From this early period until about 20
years ago a relatively consistant effort was devoted to the
classification, and understanding of 1liquid crystals with
three notable symposia taking place in 1931, 1933 and 1952.
However, in the last 20 years with the realisation of the
importance of liquid crystals in electronic display devices,
(see for example Goodman, 1973; Shanks, 1982), an enormous
effort has been made to fully comprehend their chemical,
optical, physical and mechanical properties. A comprehensive
and interesting account of the history of liquid crystals
has been written by Kelker (1973).

The liquid crystalline phase 1is a very loose
description of what in reality 1is normally a complex series
of phases or mesophases (from middle phases) which occur
between the crystalline state at low temperatures and the
liquid state at high temperatures. The crystalline phase is
characterised by the molecules having perfect 1long range
translational and orientatiognal order, and therefore

exhibiting anisotropic properties whereas in the 1liquid




state at high temperatures no long range correlations exist.

Generally the mesophases can be classified into two
types, those forming plastic crystals and those forming
liquid crystals. (Gray and Winsor, 1974). In the case of
plastic crystals the constituent molecules exhibit 1long
range translational order although they are rotationally
disorder=sd. Whereas 1liquid crystals have a high degree of
orientational order and often some spatial order. However,
since this thesis 1is only concerned with the anisotropic
properties of liquid crystals, nothing more will be said of
plastic crystals.

In order for a molecular system to form a 1liquid
crystalline mesophase the molecules must interact via some
anisotropic intermolecular potential. The principle
requisite for this 1is that the molecules themselves are
anisotropic. Thus the molecules forming such systems are
generally quite complex and are either disc-like in shape,
or more usually rod-like with a relatively high length to
breadth ratio. Actually about 2% of all known organic
compounds have the necessary anisotropy to form 1liguid
crystalline phases.

It is the 1long range order, always present in 1liquid
crystal mesophases, that gives rise to their characteristic
orientational physical properties. (de Gennes 1974, de Jdeu,
1980). This long range order extends over several thousand
Angstroms, where the molecules tend to align on average
parallel with some preferred direction in space, called the
director. Thermal fluctuations dictate that the molecules
actually reorient about this director axis. However, within
different regions of the bulk sample, the director Iis
aligned in different directions, and on a macroscopic scale
these regions of high order vary continuously throughout
the sample and appear isotropically distributed.

The 1liquid crystal phases can be broadly subdivided
into two types, those which are formed as a function of
temperature from crystalline phases called thermotropics and




those that are induced by the ©presence of various
concentrations of solvents, called lyotropics. The latter
are very important in biological membrane systems and in
lipid solutions but will not be discussed further.

1.2 Description and classification of the liquid crystal

mesophases

The mesophases forming the liquid crystalline state can
be classified into three broad classes: nematics (from the
Greek word wvnua meaning thread-like)y cholesterics, and
smectics (from the Greek word ogpnupa, meaning soap-like). The
smectic mesophase has further subdivisions according to the
various degrees of order and symmetry present, (smectic A,
smectic B etc) and together with the nematic and cholesteric
mesophase will now be described in detail.

The Nematic mesophase

This is by far the most commonly occuring 1liquid
crystalline mesophase and has the lowest degree of order of
all the presently known mesophases. It has a low viscosity
and its appearance is generally cloudy, becoming clear when
heated to the isotropic phase. The nematic phase is strongly
affected by external fields because each molecule normally
has a large anisotropic magnetic susceptibility, and fields
in excess of about 0.1T (Luckhurst, 1972) will align the
director to give monodomain samples which are optically
uniaxial about the director axis. The nematic phase has a
high degree of orientational order and short range
translational order. A schematic representation of this
phase is shown in Figure 1.1 where the elipses represent the

elongated molecules.




The Cholesteric mesophase

The name cholesteric stems from the fact that all the
early cholesteric materials were derivatives of cholesterol.
Like the nematic mesophase, the cholesteric mesophase has
little translational order. The constituent molecules are
chiral giving rise to a non-uniform director being present.
Going through the sample the director actually twists in a
helical fashion, forming a type of twisted nematic. This can
be seen in Figure 1.2. The periodicity of the twist, called
the pitch, is comparible with the wavelength of 1lightj and
in thin films of cholesteric mesophases the pitch satisfies
the basic scattering requirement for Bragg reflection to
occur, resulting in the phase appearing highly coloured. The
pitch is often strongly affected by external influences, for
example, temperature, pressure and external magnetic or
electric fields, thus thin films of <cholesterics are
extremely wuseful 1in detecting changes in these external
stimuli.

Nematics can be made to form cholesterics by the
addition of a suitable optically active material. In actual
fact, the nematic phases ~can be thought as being a
cholesteric, but with an infinitely large piltch. This
observation is confirmed experimentally as no known compound
has a cholesteric and a nematic mesophase, it is always a

case of either or none.

The Smectic-A mesophase

As well as having orientational order, all the smectic
mesophases (with the exception of the smectic D mesophase )
have an additional degree of order because the molecules are
spatially ordered into layers. (Gray, 1979).

In the smectic-A (SA) mesophase, the molecules tend to
align parallel with respect to a director, but in addition
they form into 1layers with the director parallel to the




layer normal; a diagramatic representation 1is shown in
Figure 1.3a. Within each layer the molecules are almost
totally translationally disordemd. Thus they possess
orientational and one degree of spatial order only.
Experimentally it has been observed that the molecules can
rotate about their long axis and can move from one layer to
another. Furthermore the layers are free to slide over one
another, and like the nematic phase, a monodomain SA phase
is optically uniaxial.
The Smectic-B mesophase

In addition to the features described for the S

A
mesophase this phase displays 1long range spatial order

within each layer. The centres of mass of the molecules are
ordered to form a hexagonal close packed network. Again the
director is orthogonal to the layer planes and the molecules
are free to rotate about their long axes. A representation
of this phase 1is depicted in Figure 1.3b. The extra order in
this phase makes it almost crystalline and there has been
much discussion about and its difference with crystalline
and plastic crystalline phases (de vries et al, 1979).

The Smectic-C mesophase

This mesophase is very similar to the SA phase except
that the molecules are tilted with respect to the layer
normal. (See Figure 1.3c). The additional degree of order
means that the SC phase 1is optically biaxial.

Two types of SC mesophases have been observed, one in
which the tilt angle varies with temperature (Taylor et al
1970) (for example TBBA (see Table 1.1)) and the other in
which it remains constant (for example HOAB) (Diele et al,
1972).

The Smectic - D, E, F, G, H, mesophases

Relatively few compounds form the remaining smectic
mesophases and consequently much wuncertainty exists as to
their exact structures. Firstly the SE phase: X-ray and
neutron scattering work (Le%petter et al, 1976; Leadbetter
et al, 1979; Leadbetter et al, 1980; Richardson et al, 1978,
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Pindak et al 198l; Doucet et al 1975) has shown that the
molecules forming the SE mesophase lie parallel with the
layer normal and are hexagonally close packed. This phase is
also optically birefringent and biaxial, although, the
biaxiality does not arise from tilting within layers.
Instead the additional degree of 1long range order occurs
with respect to the short molecular axis, in this case the
short axis in the plane of the aromatic rings. Looking down
on the layer the short molecular axis forms a long range
'herring bone’ structure. A representation of one layer is
shown in Figure 1l.4.

The SG phase 1is very similar to the SE phase, except
that the molecules are tilted with respect to the 1layers,
and the SH has been reported to be the tilted analogue of

the S, mesophase. (Hervet et al, 1975).

B
Finally the SD and SF mesophases. To date the exact
nature of the structure of these phases has not been
determined although the SF

SC phase and the SD phase has cubic symmetry, and should

is probably very similar to the

probably not be classified in the smectic scheme.

A list of typical molecules forming these various
mesophases, together with their transition temperatures is
given in Table 1l.1.

1.3 The Effect of External forces

When a 1liquid crwtalline material 1is cooled from an
isotropic 1liquid, regions form in the sample in which the
molecules tend to align, on average parallel with a
director. Throughout the entire sample the orientation of
the director changes continuously, and on average appears
isotropically distributed. Thus the overall order of the
entire system is zero, although at a molecular level, a high
degree of ogrientational order exists. It 1is therefore
advantageous in order to study the macroscopic properties of
liquid crystals, to produce a monodomain sample with a




unique director axis. Fortunately there are a number of ways
in which this can be achieved, although always by exposing
the mesophase to an external force, either by means of an
external field or by some physical constraint.

The simplest method for producing moncdomain samples is
to apply a magnetic field to the mesophase. When a static
field interacts with a molecule, assuming it to be
cylindrically symmetric, then the free energy density of the
system increases by an amount defined by (Emsley and Lindon,
1975): -

Anag = -1/38X8%P,(cosp) 1.1
Here AX is the total anisotropy in the bulk diamagnetic
susceptibility (Xll-xl), B is the magnetic field strength
and Pz(cosp) is the second Legendre polymonial with B being
the angle between the director and the field. For nematics a
magnetic flux density of about 0.1 Tesla is all that is
required to align the director, either parallel or
perpendicular to the field, depending on the sign of AX.

In cholesterics however, for the case where AX 1is
positive, the molecules experience two competing forces,
firstly that caused by the external field, and secondly that
from the intermolecular potential causing the director to
twist (Pincus, 1970). At low fields the helical twist
remains until at some critical field this is destroyed and a
nematic is formed (Planar and Phillips, 1968). This critical
field is normally of the order of 10 Tesla although it can
be significantly less for cholesterics with large pitchs.

In principle, magnetic fields should also align the
director 1in smectic phases. However, the magnetic free
energy is not large enough to overcome the barrier caused by
reorientating the layers within a sample. None-the-less,
uniform smectics can be produced by allowing them to form
whilst cooling from their isotropic (or nematic) phases in
an external field, or in the presence of suitably treated




surfaces. In the case of tilted smectics where the
monodomain mesophase is biaxial, an external field is only
sufficient to align one of the symmetry axes, and a second
orthogonal force has to be applied, normally by means of
treatment of the container walls. This surface effect will
be discussed later.

In addition to magnetic fields, electric fields will
also produce alignment. In this case it is produced by the
anisotropy in the dielectric constant. However,
complications arise, since the anisotropy in the dietectric
constant is a function of the frequency of the field.

The most common method for producing uniformity of the
director axis is with the aid of surface forces, and, the
director in a nematic can be aligned by sandwiching the
material between two suitably prepared glass plates.
Depending on the surface preparation different effects can
occur, For example, rubbing a glass surface repeatedly in
one direction with a material like paper or cotton wool will
induce microscopic scratchs which cause the nematic
molecules in contact with it to align parallel with the
direction of rubbing. Thus, a monodomain nematic will be
formed when it 1is sandwiched between two glass plates,
providing the surface ‘’scratching’ is in the same direction.
This phenomena can lead to some very interesting effects,
e.g. if one plate is rotated through 90Y a twisted nematic
results with a pitch equal to four times the separation of
the glass plates. It is this principle that 1is responsible
for the rotation of planes of polarised light in electronic
display devices.

Alignment perpendicular to the glass surfaces can also
be achieved, in this case by coating the surfaces with, for
example, the compound DMOAP (Priestly, Wojtowicz and Sheng,
1974).

It should be noted that although these external fields
or forces produce monodomain mesophases, they are normally
not large enocugh to quench thermal fluctuations of the

10




director. Thus in a macroscopic sample the mean director can
be aligned with magnetic flux densities of about 0.1T,
microscopically it will fluctuate about this mean direction.
In order to quench these fluctuations extremely large
external forces would have to be applied (Poggi and
Fillippini, 1977).

1.4 The Freedericksz Transition and Elastic Constants

Interesting effects occur when the mesophases are
subjected to more than one external force. For example, if
we take a nematic sandwiched between two glass plates with
the surface treated such that the director 1is uniform
throughout the sample, what happens when a field is applied
orthogonal to the director? (assuming the diamagnetic
susceptibility to be positive). Ffor low fields the director
remains fixed by the surface alignment, but on increasing
the field a point is reached when the director begins to
orientate parallel with the field. This effect was first
observed by Ffreedericksz and Tsvetkov (1933, 1934) and from
the value of the field at which the deformation starts to
occur, and from the way the director orientates as a
function of the field, information about the elasticity in
the sample can be evaluated.

An orientated nematic liquid crystal can undergo an
infinite number of different deformations. However, these
can be resolved into three fundamental deformations each
characterised by three elastic constants, usually denoted
Kll’ K22 and K33 (Frank, 1958) to describe the splay, twist
and bend modes respectively. These deformations, are
depicted in Figure 1.5a and their existence is a consequence
of the long range orientational order that exists in such a
phase. As in solids, the ease with which these deformations
occur will be functions of the intermolecular interactions
present. Applying continuum theory (Oseen 1933, Zocher
1933, Frank 1956, Ericksen 1960, 1961, Leslie 1966,

11




1968) to such a system, where it is assumed that in a
deformed sample the director varies continuously from one
point to another, the free energy density, f, can be written
in terms of the elastic constants as (Zocher, 1933, Frank,
1958):-

. 2 2 2
f = K,, (divp)® + Kzz(g.curlg) *  Kyy(nxeurln) 1.2

11
Here ﬁ is the orientation of the director in an x, y, z
coordinate system. This equation can be used to describe the
Freedericksz transition, and Figure 1.5b depicts the three
experimental arrangements required to evaluate directly the
three Frank elastic constants by this technigque. Figure
1.5b(1) shows the geometry of surface alignment and field
direction required to obtain the splay elastic constant
directly. In this case, we define the surfaces to be in the
yz plane with the surface alignment parallel with the =z
direction, and the orthogonal field to be in the x
direction. Thus the deformation at a point, induced by the
field in the sample can be defined by the vector (sing, O,
cos8), where 8 is as defined in Figure 1.5b(1) and the
field by the vector (BX,O,O). The free energy density
contribution from the external field «can therefore be
written as (de Gennes, 1974):-

f  =—1 AXsZsin“e 1.3
m 2

The equilibrium state can be found by minimising the total
free energy, F, with respect to variations in the director
pattern, hence, the total free energy is:-

dy
= 2 4 2...2
Ftot = j [%llcos 0 + K3381n 6)(%%) -AXB“sin é] dz 1.4
0O

Here d 1is the distance between the plates and B is the
magnetic flux density. In this situation there 1is no
deformation in the y direction and so the twist elastic

12




constant does not contribute to the free eneryy. This
equation can be minimised using the Euler-Lagrange
relationship with the knowledge that F is a minimum for ¢ =
0 with z = 0 or d, and has a maximum, Qm, in the centre
of the cell at z=d/2. In this case we assume there is strong
anchoring at the surfaces. Thus we find (Zocher, 1933,
Saupe 1960, Pincus, 1970, Deuling, 1972, Gruler et al,
1972; Priest 1972, Gruler 1974, Ben-Abraham, 1976):-
%
(ax)Y%8dz= Kip + (Kyg - Kll)sinzg de 1.5

sin29m - sin29

Integrating and making the substitution sini=sin@/sing

gives:-
% /2 + Ysin2 a2, 1%
(ax) B% =f Kll (K33 - Kll sin“g _sin) di 1.6
0 l - sinzgmsinzk
Clearly at the critical field BC, Qm =o' and we find:-
Ky, = AX[dB,]? 1.7
11 - [?C ¢

The same procedure can now be wused for the two other
starting geometries, shown in Figure 1.5b(2) and 1.5b(3).
For perpendicular surface alignment with an orthogonal field
(Figure 1.5b(3)) exactly the same equations occur except
that Kll
critical field we now have:-

must be replaced by K and vice-versa, thus at the

33

2
K33 = 4X [d 8] 1.8

However for the geometry in Figure 1.5b(2), the free energy
density depends only on the twist elastic constant, K22 and
the field as a function of the deformation in the centre of

the sample is given in this case by (Gruler et al, 1972):-
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(1;3
(AXJ Bdx = [ K22
ag
ifinzgm - siny 1.9

or as before: -

w2 lll

Y2
(AX) Bd = Koo dx 1.10
2

° 1 - sinzgmsinzx

so again at the critical field

2
- axT . 111
K, AX[% Bc]

From this discussion the three elastic constants of a
particular nematic can be obtained directly by measuring the
critical fields for the three appropriate geometries or
indirectly by measuring the director deformation as a
function of external field. In principle any anisotropic
property such as the dielectric permittivitity or the
electric or thermal conductivity can be used to probe the
average state of alignment although the most common and most
accurate method 1is to utilise the anisotropy 1in the
refractive index, and to measure the difference in optical
path length (de Jeu, 1980). Also the Freedericksz transition
can be induced by electric filelds (Gruler et al, 1972;
Deuling, 1972, Roa et al, 1976; Ben-Abraham, 1976,
Deuling, 1974a,b; Deuling et al 1975, Deuling et al
1976, Aneva et al, 1980) and measured in the same way as
previously described or by measuring the capacitance. (Maze,
1978, Schad et al, 1978, 1979, Tough and Raynes, 1979).

In addition the theory for the transition has been
generalised for fields in any direction (Dafermos, 1968,
Deuling et al, 1975, Motooka and Fukuhara, 1979, Motooka

et al, 1979) and for geometries in which the surfaces are
not parallel (Fraser, 1978).
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To date numerous papers have been published giving
experimental values of the three elastic constants (See for
example Saupe, 1960, Durand et al, 1969, Priest, 1972,
Haller, 1972, Gruler, 1973, Gruler and Meier, 1973,
Leger, 1973 de Gennes, 1974, Gruler, 1975; de Jeu et
al, 1976; Maze and Johnson, 1975, 1976, Karat and
Madhusudana, 1976, 1977a, 1977b, 1979, de Jeu and
Claassen, 1977, Bunning et al, 1981, Flapper gt al,
1981, Uchida and Takahashi, 1981) and depending on the
precise method, results for the same constant and compound
often differ by up to 100%. Typical values for Kll’ K22 and
Kyy for PAA at 120°C are 5.0x10”7, 3.8x10”7 and 10.0x10"7
dynes respectively (de Gennes 1974). Normally the bend
constantA(K33) is found to be larger than the other two, and
K22<K11<K33 although substituent hydrocarbon
chains or other groups can reverse the order of K and K

22 117
Furthermore, to a good approximatiaon the ratio of

K11:Kp2K33
a mesophase temperature range (de Jeu, 1980).

in general

for a specific compound is almost constant over

To date various attempts have been made to predict the

ratio of K The crudest approach gives all three

11:Kp0t Ksse
elastic constants equal, although other theories have been
postulated and, depending on what approximations are made, a
wide range of ratios are found. For example, Saupe (1960)
predicted it to be -7:11:17, whereas Nehring and Saupe
(1971) found it to be 5:11:5. Further worx in this area has
been published by Gruler (1973;1975), Priest (1972),

Poniewierski, and Stecki (1979), Faber (1977,1980), and

Dunmur and Miller (1982).

1.5 Order Parameters

One of the most significant characteristics of liquid
crystals is the presence of long range orientational order.
To define the degree of order in a system it 1is wusual to
introduce an order ©parameter that changes value when

transforming from one phase to another.
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Starting from first principles we define a quantity
which gives the probability of finding a single molecule at
a specific position and orientation in a phase. This
probability is (zannoni, 1979):-

P(l)(Ll,Ql) =N_J d£g ong exp (i%U(EN’QN)) 1.12
N
Here as in the rest of this section, integration variables
with sub and super-scripts will imply integration over the
range of variables, so in this case, over r
9} 9}

2, BOODIOIOOQNQ
The integrations over dQ, actually refer to the three

I .., and

2, 3... N

Euler angles in this case dfi= dasinBdRdy over the limits
O<a¢2m, 0<B<m and O<y<2w. U(EN,QN) is the potential energy
of the whole system. k is the Boltzmann constant and T is

temperature. Zy is the partition function:-

N N
ZN = Jdgl dQl exp (

(e a")) 1.13
KT

For a homogengous system, the physical properties are
unchanged with translation and the interaction energy will
depend only on the relative separation, thus for an

isotropic fluid or a nematic we can write:-

Pt ()00 = of(a)) 114

Where the singlet orientational distribution function, f(Ql)

is
f(Q,) =V jdrNdQN exp(-1 U(r,NQN)) 1.15
1 = =272 ==
Z kT
N
and p is the number density.
For an isotropic fluid we have simply:-
p(1) (z,,9,) - 0/81°% 1.16
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The average of any single particle orientational

function, A(R), can be written in terms of f(Q) as:-
A = | daf(Q)A(R). 1.17

where the upper bar denotes a purely orientational average.
Since f(Q) 1is a function of the Euler angles it can be
expanded in a Wigner series (Rose, 1957) which form a
complete set of orthogonal functions spanning all
orientational space, therefore:-

L
FR) = ) flon 0 i (2) 1.18
Lmn
. . . ) L .
Here fLmn is an expansion coefficient and Dmn(n) is a

Wigner rotation matrix (see Appendix 1). Multiplying both
*
sides of this equation by D;n(ﬂ) and integrating over
all Q@ gives:-
L L L
sdaf(a) o (@) = JS) f D ()0 (R)da 1.19
Lm n
Lmn

The first term is simply the definition of the average of

*
D;n(ﬁ), while the second term simplifies because of the
orthogonality relationship of Wigner rotation matrices,
giving: -

* 2
L 81
D = f 1.20
mn Lmn [2L+l]

Thus the singlet orientational distribution function is:-

*

(2L+1) D;n pk () 1.2t

f() = _1 o

8n2 Lmn

N

m————

The averages D;: are the infinite number of
orientational order parameters which completely define f(Q).

Assuming we know the exact form of the singlet distribution
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function, then we are able to calculate all the order
parameters, and conversely, knowing more and more order
parameters gives extra information about f(Q).

For a particular rank L, since the subscripts m and n
can have values, L,L-l........ -L, there can be up to (2L+l)2
order parameters, although this number can be reduced if the
symmetries of the mesophase and its molecules are taken into
account. For example, in an uniaxial nematic mesophase, the
distribution function must be invariant to any rotation
about the axis of symmetry or director. If we define this to
be along the z axis direction then the subscript m has to be
zero, since the singlet distribution function must ©be
independent of the Euler angle a. Furthermore, if we assume
that the molecules are cylindrically symmetric and the
system has a mirror plane perpendicular to the director then
n=o and L adopts even values only. Thus, making these
approximations reduces the singlet orientational
distribution function to:-

f(g) = § f_DOC
L

00 (8) 1.22

even

As F(B):f(Q)/AnZ, it follows that the expansion coefficients

fL ares: -

FL = (ZLZI)PL
and now the order parameters are Jjust the averages of the
Legendre polynomials, of which the first six even ranked are
given in Appendix 7. The singlet orientational distribution
function for cylind-rically symmetric particles is
therefore: -

F(B) = E (2L;l)5L P, (cosB) 1.24
L

At this point it 1is worth considering whether the
expansion 1s convergent. Clearly for a totally ordered
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system all the EL’S will be wunity and therefore the

expansion will diverge. However, for lower orientational
order, f(B) could converge since 50 > 3é >
5;......,although the factor ((2L+1)/2) would have to be
taken into account.

For systems of lower symmetry, further order parameters
are required to define the singlet orientational
distribution function, a full account of which has been

given by ZzZannoni (1979).

1.6 Pair distribution functions

In the previous section we have seen how the single
particle distribution function could be used to calculate
the orientational order parameters. However, the pair
distribution function can yield more information, although
it is more difficult to calculate. The probability of
simultaneously finding a particle at r, with orientation Ql

1

and a second molecule at £2 and 92 can be written as (Hansen

and McDonald, 1976; Zannoni, 1979, Tildesley, 1982):-

P(Z)(gl,ﬂl;gz,ﬂz) =Ev(g—l)lfd£§dﬂg exp(:lU(rN’QN))

KT 1.25
Where the integration is now over variables drs, d£4 ..... dEN
and dQB’ dﬂa......dQN. As the separation of the two

molecules becomes infinitely large, then assuming there are
no infintely 1long range translational or orientational
correlations (c.f crystalline solids), the pair distribution
probability will Jjust become the product of two single
particle probabilities. So:-

(P (r,,0 LM Pz 0P P (r,,0,) 1.26

This property can be used to define a reduced two particle
distribution or correlation function such that it tends to

n r.,-I, >0 ie: -
one as ry-T, ,
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(2) _ p(2)
9 " T(a,8,,5,,) = (2),8);25,8,) L.27

In very dilute systems where simultaneous interactions

involving three or more particles can be neglected we find:-

Q,,r,,) = exp(-1_U(Q,,r,,0,T,,)) 1.28
40 27=12 KT 17=177"2=72
From equation 1.14 we have seen for an homogeneous fluid or

nematic that:-
Pl () = of(a) 1.29
thus substitution into equation 1.27 gives:-

) 1.30

P2 (r,0,31,,9,) = o%ra)f(2)0 P 0,r,,

For spherical molecules this becomes totally independent of
relative orientation and reduces to the radial distribution
function, g(r), measured in atomic liquids.

For convenience we shall introduce a scaled pair
correlation function defined as:-

Q,) = f(ﬁ Jf(Q )9(2)(9 ) 1.31

Ql’ 2

G(r

=12’ 2’ -12

This also has limiting properties as rl-r2 + 00

Lim G(r
-+ o0

L2

and as #~-»0
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Lim G(glz,ﬂl,ﬂz) = f(ﬂl)f(ﬂz)eXp('%T(£12’Ql’92))
P+0
1.33

when G(zlz,ﬂl,ﬂz) is defined 1in a laboratory axis
system, it will not only depend on the separation of
molecules 1 and 2, but also on the orientation of the
intermolecular vector, Qr, so it can be expanded as (Rose
1957):-

S
G(ryp,9y,8,) = )G

L2
X sznz(QZ)DmO(Qr) 1.34

If we now exploit the symmetry of an idealised system,
in this case if we assume that the distribution of the
intermglecular vector 1is spherically symmetric, the system
is rotationally invariant and the molecules are
cylindrically symmetric it can be shaown that this expression

reduces to (Zannoni, 1979):-

= Y (20+1) 00 L
L Go(ry ;)0 6 ,)

s4m"

So the reduced pair distribution function depends only on
the relative orientations of the two molecules. Multiplying
both sides of equation 1.35 by DL*(le) and integrating

. 00
gives:-
00 B L
G°P(x),) = Jdr da,6(z),,9),)0,,(2),) 1.36
L 00
= Doo(ﬂlQJGo (rlz)
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Here GOS(rlz) is the probability of finding two molecules
separated by a distance Tioe We can now define a normalised

reduced pair correlation function as:-

00 L
G (ry,) = G " (r,) = D (a2y,)(r;,) 1.37
Qo0
0 (rlZ)
= PL(cosBlz)(rlz) 1.38

This pair correlation function is extremely important in
systems composed of cylindrically symmetric molecules and
has some interesting properties. For example , if Ty, is
taken to equal the average nearest neighbour separation then
GL(rnearest neighbour)’ (LZ0) will define a short range
order parameter. It also provides a rigorous test to
molecular field theory (see later) as this predicts GL(r) to
be independent of r. Furthermore, with certain interaction
potentials, it also provides a route to the total internal
energy (see Chapter 3). Also, using the closure relationship
for Wigner rotation matrices (see Appendix 1) equation 1.37
can be re-written as:-

L

L
GL( no(ﬂl)i Don(QZ)

n

Y
1‘12) = Z D
n

or, in terms of modified spherical harmonics as:-

IR
G (ryp) = )G (B0 )C ((Bra) 1.39
n
Therefore assuming local unaxial symmetry, in the limit

that T,7%® the average of the above expression can be

written as:-

Lim G, (r 2

. L 12) = P 1.40
12+00
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Thus these pair correlations functions also provide a
route to the set of orientational order parameters for our
idealised nematic composed of cylindrically symmetric

molecules.

1.7 Intermolecular pair potentials

To 1investigate the molecular properties of 1liquid
crystalline systems a precise knowledge of the form of the
intermolecular pair potential should be known. Generally
molecules which form 1liquid crystal phases are extremely
complex, often being composed of two or more aromatic rings
and often having long flexible alkyl chains. Clearly it
would be 1impossible to take into account the myriad of
interactions involved, and, therefore to study such systems
theoretically severe approximations have to be imposed.

However, before considering these approximations it is
instructive to consider the evaluation of the interactions
which exist in these molecular systems. ©One way would be to
simply calculate the number of atom-atom interactions that
exist in large molecules, or another to identify and
evaluate the major contributions arising from electronic
effects. For example, any fluctuation in the <charge
distribution will produce an instantaneocus electropole
moment, which in turn will induce an effect in neighbouring
species. These forces are known as London dispersion forces
(London, 1930 Margenau and Kestner, 1969 Hirschfelder et
al, 1964) and can be extremely important. Also some
molecules possess dipole moments, for example, in the
cyanobiphenyls where the CN group 1s largely responsible for
the dipole moment  (Dunmur and Miller, 1980), where
dipole-dipole, dipole-induced dipole and higher ranked
interactions will occur. Of course these interactions will
have different magnitudes depending on the intermolecular
separation and orientation of the molecular axes, and they
will be either attractive or repulsive. Dipole-dipole
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interactions, for example, are attractive and diminish as
r'3 (here r is the intermolecular separation), while
dispersion forces vary as r°,

An alternative approach to obtaining the form of the
intermolecular potential is by introducing a mathematical
formalism based on some assumed molecular interaction. At
the most crudest level, the molecules can be regarded as
hard spheres, so that the potential energy is infinite when
the spheres overlap but otherwise zero. A softer interaction
can be used, for example the Lennard-Jones potential. In
this case the spherical molecules experience a strong
repulsive force when the molecular separation is less some
pre-defined equilibrium distance, and relatively strong long
range attractive forces. However, in general molecules are
not spherical, and even assuming them rigid the
intermolecular potential will depend on as many as 5
independent coordinates. In this case a true representation
of the pair potential, provided the molecules do not
overlap, can be written as the infinite series (Stone 1978,
1979): -

k. k k. k
Y 172 12
U = u (r )S (2 ) 1.41
12 VA Lkt 12770 1,37 12
Here the summation is over all sub and super scripts, the
coefficient u depends only on the intermolecular separation,
and:- k. Kk -l -
RICIPO I ey (;l;l;)Dle (2))
172 fomom MMM K
172
L2

x D
m2k2(92)03m(9ﬂ). 1.42

The term in parenthesis 1s the Wigner 3-j symbol (Rose,
1957), the D;k(ﬂ) are the Wigner rotation matrices (Rose,
1957), a few properties of which are listed in Appendix 1,
and CJM(G @) is a modified spherical harmonic with
arguments 0 and @, the spherical polar angles of the
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intermolecular vector in some spacé fixed coordinate system
as defined in Figure 1.6. Throughout this thesis the symbol,
Q, will refer to the three Euler angles, a,B,Y as defined by
Rose (1957).

This expression has the distinct advantage that it
factors out the distance dependence of the potential, the
orientations of molecules 1 and 2, and the orientation of
the intermolecular vector into individual terms, which
allows relatively easy mathematical manipulation. A few of
the S-functions with ka2=0 are listed in Appendix 2 in
terms of the unit vectors describing the orientations of
each molecule , z,, and z, and the intermolecular vector Lo
(Stone, 1978). Furthermore, various terms from equation 1l.41
can be identified with more classical interactions. For
example, dipole-dipole interactions occur as the 5112
term. Thus:-

where

%0 (1) = (30)0™

L3

and similarly anisotropic 0&ondo%0 dispgssion forces are

cggtained in the terms, 5022, 5202, 5222, and

5224. This results in the dispersion potential between a
pair of linear molecules:-
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_ 2 2l.. 2 [ 2 2
Udisp = yeo[;- %(gl.g) - %(52.5) J+%y €, [Fgl.g) +(z,.1)

- 9(51-?.)2(52-5)2 *6(z).1)(z).0)(z;,.2,) - (51-.2.2)2]

1.45
where U,i, = Ug,, = —Yeo/S 1.46
U = - 2e /V5 1.47
220 = Y & .
_ 2
Upoy = =Y 80/10/7 1.48
2
Upoy = Y e054/2/35 1.49

This is in accord with the expression quoted by Kohin (1960)
and the earlier derivation given by de Boer (1942).

In general any type of interaction can be identified
with terms from equation 1.41 to represent any type of
molecular interaction, for example dipole-induced dipole,
quadrupole-quadrupole etc, and so it has extreme importance
in the investigation of the molecular properties of liquids.

1.8 The molecular field approximation and Maier-Saupe theory

The aim of this section is to give a derivation of the
highly successful Maier-Saupe theory with the aid of the
statistical mechanics developed in section 1.5. Simply it
involves using the molecular field approximation to obtain a
suitable potential of mean torque from which wvarious
thermodynamic relations can be obtained.

The total potential energy of a 1liquid or gaseous

system to a good approximation can be written as the sum of
all the effective pair interactions (Hansen and McDonald,

27




1976)i.e.: -
N
uOx™) = U0 X ) 1.50
1<y
Here X 1s an abbreviation for the spatial and
orientational coordinates r and Q. If we differentiate
equation 1.12 with respect to all the coordinates of

molecule 1 we find:-

(1)
VPl - -___fdx2vlu(xl,x2JP(2)(xl,x2) 1.51

1
kT
This equation is the first is a series of the
Yvon-Born -Green hierarchy (Hansen and McDonald, 1976,
Luckhurst, 1979) and expresses the gradient of one
distribution function as the integral of the next.
Substituting equations 1.14 and 1.30 and dividing by f(ﬂl)
gives:-

V:l.lnf(gl) =-£ d£

y: de, Vu(z,,,9%,,2,)f(2,)g(z,,,2,,2,) 1.52

2 =12'"1772

At this stage we invoke the molecular field approximation
and assume that the reduced pair correlation function 1is
independent of the orientation of the two molecules, and so
g(ElZ’Ql’QZJ can be replaced by g(ElZJ'

This allows equation 1.52 to be integrated, giving:-

f(Q,) = lexp(- 1 u(a ) 1.53

1
Z KT

Here Z can be obtained from the normalising condition

Jaaf(a) =1 1.54
U(Ql) is the potential of mean torque or the pseudo

potential for molecule 1 placed in a field created by the
interaction with all other molecules in the system. It is
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related to the pair potential by
) = of dr e, U(r, ,,8,,2,)f@ Jgl(r ) 1.55

In otherwords, the potential of mean torque can be obtained
by averaging a pair potential over all orientations of the
second molecule and intermolecular vector, and over all
intermolecular separations.

Certain thermodynamic results can now be written down.
For example the total configurational internal energy is:-

2
U = v[drlzdnldnzu(rlz,n

£y

128, )fa )f(adglr, ) 1.56
2 .
The entropy in terms of the N-body distribution
function is (Luckhurst, 1979):-

s :65_>{dXNP(N)(XN)ln(P(N)(XN)/N!) 1.57
Nt

thus in the limit of the molecular field approximation, this

can be written as:-

S = -Nkjdglf(nl)ln(f(alp - Nklnp + k1nn!

= koM TarV N e 1a M Ny, 1.58

and the Helmholtz free energy can be evaluated since

AR = AU - TAS 1.59

In order to obtain a pseudo potential, we must start
from a suitable pair potential, a suitable starting point
being the equation given earlier. (Equation 1.41)

Averaging this equation over all intermolecular
separations, all orientations of molecule 2 and all
orientations of the intermolecular ;ector, assuming
cylindrically symmetric molecules forming a uniaxial
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mesophase with the director along the z-laboratory axis
gives the potential of mean torque as (Humphries et al, 1972
Luckhurst, 1979):-

U(B) = ) G P P (coss) 1.60
L
where GL is the average of the Lth ranked interaction
parameter, P are the averages of the L &gendre

L
polynomials which, as we have seen are the the orientational

order parameters, and B is the angle between the molecular
symmetry axis and the director.

Maier and Saupe (1958, 1959, 1960) obtained just the
second rank term in this summation since they used as a
starting point an expression for second rank intermolecular
dispersion forces. Prior to this, Kreiger and James (1954)
used a similar pseudo potential to describe molecular
orientational order in crystalline systems.

The orientational contribution to the internal energy
can now be evaluated since:-

f(B) = 1

1 exp(
Z

1_ )G P P (cosg) 1.6l
kT
L

where the orientational partition function is:-

Z = desinBexp(%_ E u 2P2(c058)) 1.62

Using equation 1.56 the total internal energy can be written
as:-

) @ p2 : 1.63

- 2
) 5P ki
L
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Combining these two expressions gives the Helmholtz free
energy, A,

- =2
A ==N ) G P} - NkTInZ
2
L
or A= _1 ) GLPf - 1nz 1.65
NkT 2kT L
The orientational order parameters can now be calculated
since
ﬁL = 1 J dBsinBP, (cosB)f(B)
7 L
- i \'uP
= % S stmBPL(cosB)exp(_&_T ) uLPLPL(cosB))

1.66

which is consistant with the constraint that for equilibrium
the free energy is a minimum with respect to variations in
the order parameters. Restricting the pseudo potential to
second rank terms as in Maier and Saupe’s derivation gives
the self consistant equations for the order parameters:-

P. = 1 fdBsinBP_(cosBlexp(e P_.P_(cosB) 1.67
2 = 2 -— 2 2
Z kT
and
P, =1 fdBsinBP,(cosBlexp(e P .P_(cosB) 1.68
4 = 4 - 2 2
Z kT
where € = 52. Figure 1.7 shows the temperature dependance
of 52 calculated using equation 1.67. A solution exists

for all wvalues of kT/e with §2 equal to zero,
corresponding to the isotropic phase. In addition 1in the
range of kT/e between 0 and 0.2228 two other solutions for
52 exist. To determine which of these various solutions
constitute a stable phase, the orientational free energy

must be calculated. It turns out that between kT/e = 0 and
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kT/e = 0.2202 the phase of highest order is stable, while at
higher temperatures the isotropic state is more stable. At
kT/e = 0.2202 the gradient of the free energy (BA/aT)V is
discontinuous with an entropy change of AS/Nk = 0.417.
Therefore, at this temperature, a first order transition
occurs between the nematic and isotropic phases. 52 at the

4 is predicted to be 0.120.
Although this theory is unable to predict the

transition is 0.429 while P

transition temperatures of real nematic phases, because the
interaction parameter, e, will depend on various parameters
arising from various interactions present, (eg dipolar,
dispersion, etc) it does give relatively good agreement with
the order parameter when plotted on a reduced temperature
scale (eg T/TNI, NI
transition temperature) (See for example Humphries et al,
1972, Humphries and Luckhurst, 1972).

Further modifications have been made to the simple

where T is the nematic-isotropic phase

theory, for example, by retaining fourth rank terms in the
pseudo potential (Humphries et al, 1972), it is
possible to fit almost exactly any experimental data (with
the exception of the change in entropy at the transition,
pair correlations and related quantities) simply by varying
the ratio of €, to €, However, nothing more will be said of
this theory. Other modification have been made by Horn and
Faber, (1979) who investigated the inclusion of other higher
ranked terms in the pseudo potential, for example terms
dependant on (52P4), Pg, and terms which depend on
these order parameters which themselves are functions of the
reduced temperature. These modifications are, however,
difficult to justify since they do not occur in the rigorous
derivation of the potential of the mean torque. However,
like the Humphries-James-Luckhurst theory they do provide
better agreement with experimental trends than the simple
theory. A similar although more complete discussion has been
given by Kventzel and Katriel (1982).

The simple Maier-Saupe derivation assumes nothing of
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the volume dependence on the pseudo potential, and various
people have investigated ways of including this, for example
Humphries and Luckhurst, (1972); Humphries et al (1972).
However, the overall effect of including volume changes only
produces slight improvements to the predicted results,
(Cotter, 1977).

Furthermore, the molecular field theory has been
applied to non-cylindrically symmetric molecules
(Luckhurst et al, 1975, Straley, 1974) to yieldareasonable
account of the temperature dependance of the order paramter
at constant volume for the molecule PAA.

However, the largest and perhaps most severe
approximation in all the theoretical works 1if the use of
the molecular field approximation and one of the aims,
therefore, of this thesis is to test its validity.

A theory of the next highest order has been developed
by Sheng and Wojtowicz (1976), which instead of looking at
one molecule in a field of others, 1investigates the
properties of two in the molecular field created by their
neighbours. This 1is known as the constant coupling or two
site cluster theory and has also been used with wvarying
degrees of success to describe some of the properties in
ferro and antiferromagnetism, in particular the
determination of critical points, the temperature dependance
of magnetism and susceptibility, and the short range order.
In the mean field approximation, orientation is independent
of separation, so with short range effects taken into
account an improvement oven mean field theory would be
envisaged. Indeed when compared with experimental data this
is the case.

The theory is very similar to that in the Maler-Saupe
derivation, except the pseudo potential is now:-

VCC = (z-l)[vMF (cosBl) + VMF(cossz)] + vlz(cosBlz)

1.69

34




In otherwords the average constant coupling potential,
Vcc’ is composed of two types of term, VMF which 1is the
molecular field pseudo potential experienced by molecules 1
and 2, and a term arising from the direct interaction of
molecules 1 and 2, V12' The coefficientz is simply the
coordination number. The V12 term will clearly depend on the

difference in orientation between molecules 1 and 2, as
cosB,, = cosBlcosB2 + 51n8151n82cos(ﬂl-ﬂ2) 1.70

where 8, 82
Thus VCC can be expanded generally as:-

and ﬂl and ﬂ2 are defined in Figure 1.6.

Voo = E u [(z—l)PL[PL(cosBl) + PL(cosBa)]+ PL(COSBlQ)]
L
even 1.71

Here 5L are the long range order parameters defined as:-

T
PL(cosBl Jexp(-1/kT VCC)51n8131n82d810820ﬂ

O -3
O =
O N

1.72

and short range order parameters g can also be evaluated

as:-
T . _ (
o = 1L IJPL(cosBl2)exp(l/kTVCC)slnBlblnBZdBldBQGQ
Z 00
1.73

We know that the potential of mean torque felt by molecule 1
can be expanded as:-
- N v, P, (cosB.) 1.74
. L' L 1 .
L,even

where Y. is a function of temperature and the ordert
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parameters. This reduces to VMF in'the case Y, F Dl?L.
We now have two routes to the calculation of a §L and two

unknown variables, ' and the parameter scaling the

potential, GL, thus assuming both routes give the same
PL then: -
/ 5
1 JP (cosB, Jexp(l_V _) 1.7
7ot L kr M
T (1 vV )i
= ex sin i 3
= % fffPL(cosBl) p =ee BlSln8251n812d51d82

- Y -—
where vCC ==) (z-l)yL PL(cosBl) PL(cosBZ) + ULPL(cosBl)

1.76

In solving these equations, Sheng and Wojtowicz have allowed
terms in GL for L>2 to be zero, and terms In y  with L>4
also to be zero, thus allowing the equations to be solved
iteratively for Y - Substitution of these values into
equations 1.72 and 1.73 will then yield the long and short
range order parameters.

In a similar manner, as described earlier, various
thermodynamic properties can be evaluated, for example, the
free energy, from which the transition temperature can be
found, and the average internal energy per particle.

The results from this theory will be compared with the
predictions of the Maler-Saupe theory in Chapter 3.

As an extension to this theory, a three site expansion
(Lekkerkerker et al, 1978) and the four site expansion (Van
der Haegen, 1980) have recently been proposed which will
also be discussed briefly in Chapter 3.
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Chapter 2

Computer Simulations

2.1 Introduction

Over the last two decades, modern silicon technology
has resulted in the production of faster, larger and more
powerful computers. Every year, newer and faster machines
appear, with the present trend going from conventional
serial Von Neumann processors to much faster parallel
computers. Computations which may have taken several hours
in the early sixties now take only a few seconds. This
recent dramatic wupsurge in computer power has therefore
allowed physical scientists to apply the technique of
computer simulation to the study of physical systems.

Before discussing computer sumulations in detail
however, we must first of all ask, why 1is the technique of
computer simulation so important? From a theoreticion’s
point of view, this technique has extreme value in that it
provides a tool to perform ’exact experiments’ on well
defined model systems thus enabling these computer
experiments to be compared directly with both real
experimental data and predictions from theories. With the
aid of mathematical techniques and analytic relationships
the properties of dilute atomic gas es can be calculated
directly since the system can be regarded as consisting of
totally independent entities, for example, particles or
oscillators. However, for more condensed systems this
analytic mathematical approach 1is not possiole, since for
compressed gas-es or liquids the atoms or molecules interact
with each other giving a many bodied, multi-interaction
problem. To a certain extent this problem can be overcome by
resorting to computer simulation techniques, at 1least for
relatively simple systems, where the interaction potential
can be regarded as adopting a simple form, and consisting of
pairwise interactions only. In the case of the simulation of
atomic liquids, for example liquid argon, a high degree of
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agreement can be obtained between data measured
experimentally and that calculated from computer
simulations, thus providing a fairly rigorous test to the
derived pair potentials. The same 1is true, although to a
lesser extent, in the simulation of the properties of
molecular liquids, for example, 1liquid nitrogen, hydrogen
chloride and even for simple triatomic molecules, for
example carbon disulphide and water. However, for more
condensed systems, or dilute systems or large complex
molecules, approximations have to be made to formulate the
pair potential before the simulation can be attempted. For
systems consisting of large molecules, it would be a
computational impossibility to account for all interactions
and so assumptions related to the symmetry of the molecules
and to the form of the interaction potential have to be
enforced. Even so, the simulation of such systems does
provide a very important probe into the understanding of the
properties of such molecular systems.

Computer simulations provide a rigorous test, not only
pair potentials but also provides a test of properties
calculated via other routes. In aagdition, and often more
important, computer simulations allow the assumptions used
in various approximate theories, for example, the molecular
field approximation, to be fully tested.

Clearly computer simulations allow not only laboratory
obtainable data to be calculated, but also other very
important properties, for example, an infinite number of
distribution and correlation functions together with
properties at extreme temperatures or pressures can be
extracted from simulations which would otherwise be totally

inaccessable.

2.2 Techniques involved

There are two principle techniques wused in computer
simulation studies, the Monte-Carlo technigue, and the

method of molecular dynamics. However, before discussing
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both methoas in any detail, we shall look at scme problems
which are always encountered ana are common to both
technigues.

Firstly and perhaps the biggest problem is associated
with the size of systems studied. 1In a real experiment one

deals normally with the order of 1023

atoms or molecules,
but unfortunately computers are limited in size, and so only
a small fraction of this number can be studied. Indeed early
computer simulation stugies wused as few as 32 molecules
(Rosenbluth and Rosenbluth, 1954), and even today, few
simulations are performed on systems with more than 1000
interacting atoms or molecules (particles). This therefore
means that in order to predict the properties of essentially
infinite systems from o¢gr small finite system, a careful
extrapolation has to be performed. However, broadly speaking
bulk properties are only weakly dependent on N, where N is
the number of particles, for N greater than 100 (Hansen and
McDonald, 1976) except for properties calculated close to a
phase transition, where, statistically a true phase
transition cannot occur except in infinite systems.

The fact that small systems have to be used, gives rise
a further problem, that of surface effects. Clearly for a
system of say 1000 particles a relatively high proportion
will exist at or close to a surface, which, will produce
adverse properties. To remove these surface abnormalities,
periodic boundary conditions are imposed. This device
involves surrounding the isolated system of N particles by
an infinite number of exact replicas of itself. Thus a
particle at a position (x, y, z) in the cell will see exact
replicas of itself at positions (xinaa,yinbb,zincc), where

n n. each adopt all integer values between 0 and

y Ny
igfingiy, and in this case the cell 1is defined to be
rectangular with dimensions (a,b,c). Also, when a particle
is moved out through one face of the cell it automatically
reenters at the opposite face in order to preserve N. This

effect is depicted in Figure 2.1 for a two dimensional
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sqQuare system. In general any 'shaped cell can be used
provided that on replication it fills all space. Thus in two
dimensions the cell could either be triangular, square,
rectangular or hexagonal. In three dimensions it is usual to
use a cubic cell giving cubic periodic boundary conditions,
although other more complex <cells have been wused, for
example, truncated octahedra (D.J. Adams 1982). Actually any
space filling polyhedra can be used although it is usual to
chose a cell representative of the chemical structure of the
system. The major disadvantage with ©periodic boundary
conditions is that it introduces spurious periodic
correlations with a regularity equal to the cell dimensions,
and so, in calculating distance dependent correlation and
distribution functions one must always be aware of this
effect.

Angther problem encountered in computer simulations,
although not as severe as the difficulty encountered using a
finite number of particles, 1is the choice of a starting
configuration. By this we refer to the positions and
orientations of the N particles in our cell at the start of
the calculation. Generally at a specific set of external
conditions (for example, temperature, pressure) the system
will exist in equilibrium, therefore unless the starting
configuration for a specific simulation is an equilibrated
one, then a stage during which time the particles
equilibrate will have to be undertaken. This equilibrium
process can be minimised with a juaicious choice of starting
configuration, since it is unlikely that a fully
equilibrated state will always exist. For example, at low
temperatures it is sensible to take a configuration
representative of the degree of order which would exist at
low temperatures, in otherwords an ordered state, and
similarly at high temperatures where a totally random state
would represent the high degree of disorder present.
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2.2.1 The Monte-Carlo technique

The Monte-Carlo method is a technique which involves
Tandom or probabilistic events. Basically it involves the
generation of a sequence of configurations in phase space by
random displacements. Not all of the configurations are
counted, and the decision as to accept or reject the random
move 1is made in a way as to ensure that configurational
space 1is sampled with a probability proportional to the
Boltzmann distribution, during which stage, various
thermodynamic ensemble averages and other properties of
interest are evaluated.

At this point it is worth defining what is meant by
*ensemble?’. Statistically there are many types of ensemble,
the most commonly used of which is the canonical ensemble.
In this case the number of particles, the volume and the
temperature are held constant allowing the internal energy
to fluctuate. Examples of other less common ensembles are
the grand canonical ensemble in which energy, volume and
temperature are constant (N fluctuates) and the
isothermal-isobaric ensemble where, as its name partially
suggests, the pressure, temperature and N are held constant.
However, throughout this thesis, although the word ensemble
will be used loosely, it will actually always refer to the
canonical ensemble, as in all the simulations, temperature,
volume and temperature are held constant.

Any ensemble average can be defined by the relation:-

<> = sMxp(ax/ sp(xyaxt 2.1

Here the angular brackets denote an ensemble average of some
function, M, which 1is dependent on the phase space variables
XT where, as 1in Chapter 1 wvariables with sub and
superscripts denote the set between 1 and N, and p(XT) is
the probability density function. For example, the average

configurational internal energy of an ensemble of N
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particles can be written as:-
<U> = fu(qT)p(thﬁﬂ?p(qT)qu 2.2

where again qlN denotes the N configurational variables Qs
QoeeeeeenseQys where the q; represent the variables spanning
space and orientation (x.,yi,zi,ai,Bi,yi). For a molecular
or atomic system p(ql) is simply the Boltzmann

distribution:-

p(qT) = eXp(—U(qT)/kT)/Q 2.3

where Q is the partition function:-

Q=[S exp(—U(qT)/kT)GQT 2.4

Here U(qT) will usually be the sum of all pair
interactions although strictly speaking many bodied
interactions should be included.

A very crude approach to a Monte Carlo simulation would
be to simply generate random configurations. For each
configuration the internal energy, U(qN) ano the Boltzmann
factor would be calculated and using equation 2.2, replacing
the 1integrals by summations, <U> could, in principle be
calculated. However, this method would be impractical for
two reasons. Firstly, the probability density function is
proportional to the Boltzmann factor, which varies very
rapidly with changes in U(qN). Therefore only configurations
with relatively 1low internal energy will contribute
significantly to the probability density, and S0
prohibitively large numbers of configurations woula have to
be sampled in order to obtain any form of average. The
solution to this problem is to sample the region of phase
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space of low internal energy “and therefore of high
probability density. This technique is known as importance
sampling and involves the selection of configurations
according to a defined probability density function, and in
this case according to the Boltzmann distribution.

The second failure, of this simple Monte Carlo scheme
and perhaps more serigus is that the partition function, Q,
in equation 2.3 is very difficult to evaluate. However, this
problem can be solved by not choosing a series of
unconnected random configurations, but to choose it such
that the sequence forms a Markov chain, in which the memory
of a particular step (configuration) extends back to the
previous step only, and not beyond. This 1leads to the
important consequence in that it is now only the ratios of
the probability density functions that are important, and
the partition functions cancel. A detaliled account and proof
of this has been written by Hansen and McDonald (1976) and
Valleau and Whittington (1980).

The method normally wused to circumscribe these two
fundamental problems in the Monte Carlo simulation of atomic
and molecular systems 1is that originally proposed by
Metropolis et al (1953). A flow chart of the scheme is given
in Figure 2.2. As a starting point, some initial
configuration 1is taken, which in general will contain N
particles, each with some position and orientation. The
total energy 1is then evaluated as a typical guide to the
rate of convergence to equilibrium. The system then advances
through one move by initially selecting a particle. This
selection can either be random (see Appendix 3), or can be

performed sequentially by taking the ith

particle for this
move and the (i+l)th for the next, and so on. The selected
particle is then given a random displacement after which the
change in internal energy, AU 1is evaluated from which a
decision is made whether to accept the move or reject it. If

the new configuration has a lower potential energy, in
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otherwords if the move takes the.system to a more stable
state, then the move is accepted, otherwise it 1is rejected
with a probability proportional to the Boltzmann
distribution. This probability is obtained by comparing the
quantity exp(~AU/kT), (it is at this stage that temperature
enters the calculation) with a number chosen at random in
the range 0 to +1 (See Appendix 3). If the Boltzmann factor
is greater than the random number then the move is accepted,
else the move 1is rejected and the old configuration
recounted in the averaging process. Usually the way in which
the new move 1s generated 1is controlled such that
approximately half of the total number of configurations
generated are rejected. This is achieved by restricting the
way in which the move is evaluated, usually by constraining
it some way, such that it has to occur within certain
limits. The factor of a half is rather arbitmry, and chosen
as a compromise between on one hand, a total rejection of
all configurations, and on the other, a situation in which
all configurations are accepted because the change in
internal energy is very small. This procedure 1is then
repeated until the internal energy of the system reaches an
equilibrium value at which point a stage known as the
production phase is entered where all the requisite averages
and properties are calculated. Typically, the eguilibrium
and production stages can consist of anything up to, and
often in excess of 1000 cycles, where a cycle 1s defined as
N attempted moves.

Generally throughout both equilibration and production
stages the average internal energy of a particular
configuration, 1is —calculated directly. Another, equally
important quantity, the heat capacity can be evaluated, from
which the exact location and order of phase transitions can
be obtained. In the canonical ensemble, this is the heat
capacity at constant volume defined as:-

CV = (a<u>/aT)v. 2.5
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However, we have seen that the ensemble average of the
internal energy can be written in the form given by equation
2.2 which on differentiation with respect to 1/kT and
rearrangement gives:-

I<uU> = -<U2> + <U>2 2.6

al/kT

Thus the heat capacity is simply

C = 1 <U2> - <U>2
v ;;5'( ) 2.7
2 2
or Cv/k =(<U%> - <U> )/sz2 2.8

Therefore given the mean square fluctuations and the square
of the average internal energy, CV can be computed. However,
since CV calculated in this manner is actually obtained as a
fluctuation quantity it is often prone to large errors and
uncertainty.

However, Cv can be calculated, although now
indirectly, but to a much higher accuracy, simply by the
numerical differentiation of the curve obtained for the
internal energy as a function of temperature. The wusual
procedure in this case is to fit the simulated data to a
known algebraic function and to differentiate it. Usually
the function 1is a continuous set of cubic polynomials,
called a cubic spline. Therefore this process can only be
applied at the end of a series of simulations when
several values of the average internal energy have been
evaluated at many temperatures (usually at least 10).

Other thermodynamic properties of extreme value in
atomic and molecular systems are the free energy and
entropy. In the canonical ensemble the free energy is
actually the Helmholtz free energy. However, their
calculation using Monte-Carlo techniques presents a severe
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problem, since neither can be written as ensemble averages
in the form of -equation 2.1. Instead they have to be
calculated using integration and extrapolation technigues
from the state of interest, to a state in which the free
energy is known. This process however is very laborious and
prone to large errors, and together with other methods based
on interpolation procedures and virial expansions are
discussed further by Zannoni (1979).

2.2.2 The method of molecular dynamics

As the content of this thesis is based on simulations
using the Monte-Carlo technique, relatively little will be
said of the method of molecular dynamics. Like the
Monto-Carlo method, molecular dynamics also suffers from the
problems associated with finite size and boundary effects.
In fact, with molecular dynamics one is often restricted to
employ even smaller ensembles than wused in Monte-Carlo
methods since larger, more complex computational
calculations are required.

The method of molecular dynamics is based on a very
simple concept and involves setting wup and solving the
equations of motion of a collection of interacting
particles. It has the distinct advantage over the
Monte-Carlo technique in the ability to calculate not only
equilibrium averages but also important time dependent
properties.

Very good reviews and detailed descriptions of this
technique have been written by Alder and Wainwrite (1959,
1960), Rahman (1964), Berne and Harp (1970) and Zannoni
(1979).

2.3 Computer Simulations and Anisotropic systems
To date very 1little work has been published on the

computer simulations of anisotropic systems, as compared
with the enormous amount of effort that has been applied to
the study of atomic and simple molecular systems. The
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principle reason for this is probably due tc the fact that
computer simulators know little or nothing of the physics
associated with liquid crystals, and conversely many liquid
crystal researchers are unfamiliar with concepts in computer
simulation. Furthermore, some of the approximations which
have to be made in the study of anisotropic systems, would
at first conceal the extreme importance of this field of
work.,

In the study of anisotropic systems, one 1is usually
interested in the physical properties close to a phase
transition (e.g. nematic-isotropic). This necessitates the
use of large systems and therefore usually the Monte-Carlo
method. In addition real nematogenic molecules are extremely
complex and so approximations have to be imposed to make the
calculations computationally possible. The earliest
simulation on such an anisaotrapic system calculated
properties of two dimensional =elipses (vieillard-Baron,
1972). At first sight, two dimensional simulations would
appear pointless, but even simulations of linear systems
provides valuable information, since one dimensional systems
can be solved exactly wusing analytic techniques, thus
providing an accurate test to computer simulations. For two
and three dimensional systems however, analytic methods
normally employ the molecular field approximation, thus
simulation of these systems provides a good test to this
approximation. (Denham et al, 1977; 1980)

The earliest three dimensional simulation of an
anisotropic system, imposed the approximation that the
molecules consisted of cylindrically symmetric rods and
could only orientate in twelve discrete orientations.
(Lasher, 1972). Furthermore, the molecules were restricted
to lie at the sites of a cubic lattice, thus removing all
translational degrees of freedom. This later approximation
seems severe, although it has since been shown that the
effect of translation has very 1little effect on the
important anisotropic properties calculated (Luckhurst and
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Romano, 1980). Futher work by Lebwohl and Lasher (1972)
removed the quantisation of the orientation of the molecules
and this model system, in which the anisotropic particles
were fixed to the points of a cubic lattice and interacting
via the potential:-

Uij = - eij(r)Pz(cosBij) 2.9

has provided the foundations for virtually all subseqguent
calculations on anisotropic systems. This pair potential has
the important feature that it can be compared directly with
that used in the Maier-Saupe theory (see Chapter 1), thus
allowing a test of the molecular field approximation. In the
Lebwohl-Lasher model Eij is a constant controlling the
interaction strength, and equals ¢ for nearest neighbour
interactions but zero otherwise, thus reducing the amount of
computation required. Later work on this model has
investigated the effect of N (the number of particles) on
the various transition properties (Jansen et al, 1977) and
various modifications to the model have also been studied,
for example, the effect of different pair potentials. In
particular, potentials representative of dispersion forces
and therefore dependent on the orientation of the
intermolecular vector, and those present between biaxial
particles. (Luckhurst and Romano, 1980; Humph-ries et al,
1981). Other work in this area can be summed in a few
references : Vvieillard-Baron (19747, Meirovitch (1977},
Miller (1979), Zannoni (1979), Luckhurst et al (1981,1982),
Luckhurst and Simpson (1982a, 1983), Tsylalo and Bagmet
(1976, 1978), Zannoni and Guerra (1981), Bagmet (1982), the
later three being molecular dynamics simulations.

The work in Chapters 3 to 6 of this thesis 1s based on
the Lebwohl-Lasher model with the approximations that the
molecules are cylindrically symmetric and that they are
fixed at the lattice points of some predefined lattice
(either simple cubic or face centredcubic - see Appendix 4).
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As mentioned earlier, this later épproximation removes the
translational degrees of freedom without affecting the
orientational properties significantly, whilst the first
allows a great deal of simplification to made in the
approximation for the pair potential, and as we have seen in
Chapter 1 means that the averages of the even valued
L ¢ gendre polynomials alone are sufficient to fully describe
the long range orientational order present.

One of the most important steps in the Monte Carlo
process 1is the generation of a new configuration in the
chain of events. This new configuration must initially be
chosen such that it occurs with equal probability throughout
all phase space. Firstly a particle is selected either at
randaom or taken sequentially and given a randam
displacement. For cylind-rically symmetric molecules this
can be achieved in two ways: To define the orientation of a
cylind~rically symmetric particle, two variables are
required, the azimuthal angle, a, and the polar angle, B8.
However, it is more convenient to store cosB since a new
configuration with the required probability density can now
easily be generated using:-

Oew = %g1g T A& 2.10
and
(coSB)new = A 2.11

Here & and )\ are random numbers (See Appendix 3) uniformly
distributed in the range +1 to -1 and A is the maximum
displacement providing control of the acceptance-rejection
ratio.

A variation to this method is to increment cosB in a
similar way to o, with appropriate action being taken to
ensure it does not exceed its permitted bounds of +1 and -1.
This technigue 1is discussed in further detail in Chapter 5.
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An alternative method was originally proposed by Barker and
Watts (1969) in their simulation of water. It involves
selecting a molecule, again either taken sequentially or at
random, and rotating it by a controlled random amount about
a laboratory axis selected at random. In this case it 1is

more convenient to represent the molecules by unit vectors,

so the orientation of the ith molecule can be represented
by: -
s (n, 0, ) 2.12
X = x? y’z .
where n, = cosasing 2.13
ny = sinasing 2. 14
nZ = COSB 2.15

A new configuration 1is then generatea wusing the following

relationships:-

(nx)new = (nx)old 2.16
(ny)new = cosg(ny)old + sing(n_ ) 14 2.17
(nz)new = cosQ(nZ)old - SLnQ(ny)Old 2.18

Where the eguations correspond to a rotation of @ about
the laboratory x axis. Equations of a similar form occur for
rotations selected about the y and =z axes. The rotation

angle, 8 is generated using:-

8 = AE 2.19

Where again A is the maximum displacement, chosen to achieve
an optimum acceptance-rejection ratio and & 1is a random
number generated in the range +1 to -1. Clearly this method
invokes a slight computational overhead, since extra
multiplications are 1involved, however asweshall see in
Chapter 5 it does have certain advantages.

One of the most wuseful properties availilable from
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simulations of anisotropic systems are the orientational
order parameters. For uniaxial systems these are just the
averages of the even ranked Legendre polynomials (see
Appendix 7), and furthermore are normally measured in real
experiments. In computer simulations these can be calculated
directly provided the director orientation is known. Indeed
in certain cases, as we shall see later in this thesis, the
director can be pinned either by some external force, by
using a suitable pair potential or by using a large enough

system, thus allowing the direct calculation of P2, P,
etc. Given that the order parameter of the jth configuration
is ﬁL(J), the average order parameter over M

configurations is simply:-
M
F3|_ = l‘.} PL(J) 2.20
i=1

K4

However, in the situation where the director does fluctuate,
complications arise and only P2 can be calculated with
relative ease. Now the director orientation is unknown and
will in general vary from configuration to configuration.
Working in a cartesian coordinate system, a tensor can be
defined (Buckingham, 1967 , de Gennes, 1969
Vieillard-Baron, 1974) known as ’the Q-tensor?’ as:-

N
1.1
W = L E (31,1, - 8.,)/2 2,21
i=1

where a and b denote the x, y and z laboratory axes, N 1is
the number of particles in the system, and Sab is the
kronéeker delta which is zero unless a and b are equal, when
it equals one. Thus the Q-tensor of a particular

configuration is:-

. .2 . .
31n280052a—i singcosasina sinBcosBcosa
N 3
- N , . . . . .
= 5% / 31n28005a51na 31n2831n2a—i sinBcosBsing 2.22
1=1 3
sinBcosBcosa sinBcosBsina coszg—i
3 -
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In the special case that the director axis is parallel with
a laboratory axis, the off diagonal elements vanish.
However, generally this will not be the case, although it
can be achieved by diagonalising the matrix, which for a
real, symmetric matrix of this order is relatively simple.
This process corresponds to rotating the laboratory frame of
reference to coincide with the director frame. With this
definition of Q, the largest resulting eigenvalue is simply
the second rank order parameter of the jth configuration,
ﬁz(j) and its corresponding eigenvector is the orientation

of the director in the laboratory frame of reference. The
other two eigenvalues provide a check for the uniaxiality of
the system, as in this case they should both equal - 1/2 the
value of ﬁz. In principle the @-tensor should be set up

and diagonalised for each new configuration generated.
However, this 1is rather wasteful of computer time as the
director will not change orientation significantly from one
configuration to the next, and so two strategies can be
adopted. Firstly the Q-tensor can be set up at longer
intervals, now after a number of —configurations, a
reasonable number being after each cycle, where a c¢yle 1is
defined as being N attempted moves in the Monte Carlo chain.
The tensor 1s then diagonalised and the overall average
order parameter is just the average of the order parameters
evaluated at the end of each cycle. A second, alternative
method 1is to average the Q-tensor over a number of
configurations during which time the director is assumed not
fluctuate. This later technique, although giving
statistically better results has to be used with caution, as
even a slight director fluctuation during the averaging
process will give a misleading small order parameter. The
final order parameter is then the average of the order
parameters obtained from the averaged Q-tensor. Throughout
parts of this thesis both techniques are used, and in most
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cases give identical results (see Chapter 4.

In principle higher ranked order parameters can be
evaluated using a similar process and tensors of higher
order. However, the diagonalisation of these large tensors
is computationally expensive, and higher ranked order
parameters are easily calculated by other methods. One
obvious method is after diqgonalisation of the Q-tensor to
transform all the the orientations of the molecules to the
director frame, however, for large systems this becomes time
consuming. An easier route is via the pair distribution
functions.

As we saw in Chapter 1, the pair distribution function
is perhaps the most important orientational property
available, being defined as:-

GL(rlz) = PL(cosslz)rl2 2.23

since they provide a route not only to the short range order

parameters g but in their long range limit, they tend to

L’
the square of the corresponding long range order parameter.

For example:-

. 2
Lim G, (r,,) = P, 2.24

I, +>

12

The short range order parameter, o] allows an

2
alternative means of the calculation of the internal energy

for the Lebwold-Lasher model (Zannoni, 1979) since:-
U/e = -zo 2.25

where z is the lattice coordination number. Furthermore, the
pair correlation functions provide a direct test of the
molecular field approximation as will be discussed in detail
in Chapter 3.

On a lattice the calculation of GL(r) is relatively
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simple, since all the intermolecular separations are known.
Therefore in order to calculate a particular pair
correlation function, the cosines of angles between all
pairs of molecules only have to evaluated, normally at the
end of each cycle. In doing so however, only pairs of
molecules with intermolecular separations less than half the
cell dimension must be considered, as periodic boundary
conditions will cause correlations to be counted twice at
distances greater than this cut off. The extrapolation to
long range must therefore be taken with caution, since only
correlations up to the cut off are calculated. However,
throughout this thesis it will be seen that the 1limiting
value 1is reached long before the cut off, thus permitting
the valid calculation of long range parameters from the long
range limits.

In computer simulations the estimation of errors is of
extreme importance. Clearly, properties can be recalculated
at each new configuration generated by the Monte-Carlo chain
thus providing very accurate averages. However, in general,
the individual values forming the averages will  ©be
correlated with each other, thus any attempt to estimate the
standard deviation will prove inaccurate. To overcome this
problem, the simulationg are normally broken up into steps
(sometimes called ’macrosteps’) over which time averages are
calculated. The total average of the property is then the
average of all the steps, and now assuming the sub averages
to be uncorrelated, standard deviations can be evaluated.
The length of each step odetermines whether they are
uncorrelated or not. Clearly they should be as 1long as
possible, yet throughout the entire simulation there should
be sufficient to provide a reasonable estimate of the
standard deviation. Generally, the number —calculated
represents a compromise between these two factors.
Throughout this work, the averages presented (when they
given error estimates) represent a break down of the total
run into anything between 20 and 100 subaverages, each of

anything up to 500 cycles.
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Chapter 3

The Lebwohl-Lasher model and the molecular field

approximation

3.1 Introduction

One of the earliest and most significant simulations of
anisotropic systems was that performed by Lebwohl and Lasher
(1972). This important set of calculations involved the
isolation of a first order transition between an
orientationally ordered and disordered phase, as observed in
the nematic-isotropic phase transition, using a relatively
simple model. The model consisted of cylind-rically
symmetric particles, representing molecules restricted to
the sites of a simple cubic lattice and interacting via the

simple anisotropic potential: -

uij = - eijPz(COSBij). 3.1

Here eij is a positive constant which equals € if molecules
i and j are nearest neighbours but is zero otherwise, and
Bij is the angle between the symmetry axes of molecules i
and j. The transition was later studied in slightly more
detail by Jansen, Vertogen and Ypma (1977) and Zannoni
(1979) again by the Monte-Carlec technique (see Chapter 2)
and also by the method of molecular dynamics (Zannoni and
Guerra, 1981). However, all of these simulations were
restrictive, either by wusing a relatively small number of
molecules (eg 103) which has tended to show continuous
properties throughout the transition, or by studying a range
of temperatures very uncharacteristic of nematogens. For
example, Zannoni (1979) studied the model using lO3
particles at temperatures as low as T/TNI = 0.46. Therefore
one of the aims of this Chapter 1is to investigate the
nematic-isotropic phase transition in the temperature

region, close to the transition, characteristic of real
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nematogens, i.e. from T/TNI = 0.9 to T/TNI = 1.1 and to
study a larger system of 203 particles with the aim of
improving the sharpness of the transition.

The Lebwohl-Lasher model has also been studied for a

3 particles using the stochastic models

system of 50
technique (Meirovitch, 1977), a method of unproven
reliability, at least in the simulation of anisotropic
systems. A comparison of this model with other work will be
made later.

In addition, a detailed knowledge of the temperature
dependence of the second rank order parameter and other
properties in the Lebwohl-Lasher model «close to the
nematic-isotropic phase transition provides a comprehensive
test of analytic theories.

One of the most successful analytic theories describing
the properties of the nematic-isotropic phase transition was
proposed by Maier and Saupe (1958, 1959, 1960), the details
of which are discussed in Chapter 1. The major
approximations used in this theory are the molecular field
approximation which is employed to simplify greatly the
orientational distribution function, and the description of
the anisotropic pair potential, which for true nematogens
would be extremely complex. The latter approximation
invalidates any unambiguous comparison with real
experimental data, so to test the approximations in the
theory we have to resort to computer simulation studies. The
Lebwohl-Lasher model has the immediate advantage in that the
simple potential used (equation 3.1) is consiste¢nt with that
employed in the Maier-Saupe theory, although it has been
shown that other pair potentials, for example a pair
potential which depends on the orientation of the
intermolecular vector, also yields the same single particle
pseudo potential as that wused in the Maier-Saupe theory.
(Humphries et al., 1981). Indeed, it is for this type of
potential that Malier and Saupe based their original
derivation.
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There are however, two important features of the
Lebwohl-Lasher model that have not been studied to test the
validity of the molecular field approximation, that of
lattice coordination number, and the effect of increasing
the range of the interaction potential, each of which is
very important in their own right, since in the limit that
all particles interact equally with all others the molecular
field approximation becomes exact. The second aim therefore
of this Chapter is to investigate the effect of increasing
the lattice coordination number, the effect of increasing
the range of the pair potential and finally to combine these
two features and compare all the results for these systems
with the predictions of the Maier-Saupe theory.

3.2 The models
The four models, labelled I to IV, wused 1in the
simulations are now described in detail.

Model I

This model is exactly identical to the
Lebwohl-Lasher model but using a larger system of 203
particles on the sites of a simple cubic lattice and
interacting via the nearest neighbour pair potential
defined in equation 3.1.

Model II

This differs from Model I in that the particles
now lie at the sites of a face centred cubic lattice
(see Appendix 4), thus doubling the coordination
number, z, from 6 to 12.

Model III

This model investigates the second effect, that of
increasing the range of the potential. The coordination
number in the first shell was kept at 6 (i.e. a simple
cubic lattice), but each molecular interaction extended
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to the next two shells of molecules. Thus there were 6
pair interactions arising from shell 1, 12 from shell 2
and 8 from shell 3. (See Appendix 4). As with
anisotropic dispersion forces, it 1is assumed that the

strength of interaction diminishes as r{?, the
anisotropic pair potential is then:-
* (-6
uij = - e(rij ) P2(cossij) 3.2

* .
where rij is the scaled separation, rij/a, where a 1is
the nearest neighbour separation.

Model IV

Model IV combines the two important features of
Models II and III. The particles are confined to the
sites of a face centred cubic lattice and the range of
the potential extended to the next 12 interaction
shells (see Appendix 4). This corresponds to all pair
interactions at separations less than half the cell
edge length. The anisotropic potential wused was as
defined in equation 3.2 although in this case, the
nearest neighbour separation, a, is actually the

lattice spacing divided by 2%/2,

The outline of the remainder of this Chapter 1is as
follows. In the next section explicit computational details
are given for all four models followed by section 3.4 which
discusses the results. Next the results from Model 1 are
compared with other simulations wusing the Lebwohl-Lasher
model (section 3.5) and the results of all four models are
used to test the predictions of the Maler-Saupe theory in
section 3.6. Section 3.7 compares the results with a theory
based on a two site cluster expansion and in 3.8 the results
from Model 1 are compared tentatively with experimental
results. Finally in section 3.9 an important feature
observed in Model I is discussed, that of director pinning.
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2.3 Computational details
For each of the fgur models the Monte-Carlo method

proposed by Metropolis et al. (1953) was used (see Chapter
2). Model I consisted of a system of 20° particles although
for Models I1I, III and IV, fewer were employed because of
restricted computational resources. For Models II and IV
involving face centred cubic lattices, 864 (:4x63J and 500
(=4x5°
cubic lattice in Model 1II, the system consisted of 10

) particles respectively were used and for the simple
3
particles.

The orientations of particles in Models I, II and III
were stored wusing the azimuthal angle, o, and the polar
angle B, via cosB. A new configuration was created by
generating a random number uniformly in the range of 0 to +1
for Model I and -1 to +1 for Model 1II and III, and
identifying this with cosB, thus:-

(cosB)new = £ 3.3

and for the azimuthal angle: -

>

Here ¢ 1s a random number generated in the range G to +1
and A is the allowed maximum displacement. In general cosB
should always be chosen in the full range of -1 to +1, but
in this case, the potential is independent of the sign of
cosB and so in this instance is unimportant. In Model I, it
was observed that the acceptance-rejection ratio was almost
totally insensitive to the magnitude of A, because of the
effect of pinning of the director (see section 3.9 and
Chapter 5). However, within the temperature range studied,
the ratio was still acceptable, varying from about 0.5 at
T*:1.0 to approximately 2.3 at Fo1.3. (Here T s the
reduced temperature defined as:-
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% 2 KT/ 3.5

where k 1is the Boltzmann constant, and e the strength
parameter used in equation 3.1). In Model IV the molecular
orientations were stored as unit vectors whose components in
the laboratory frame were changed using the method outlined
by Barker and Watts (1969) (see Chapter 2).

The initial configuration in the simulation with Model
I was created by selecting the azimuthal angle, B, randomly
in the range 0 to 2w, and the polar angle, B, in the range O
to n/2. As a consequence this gives a partially ordered
system with 52 approximately 0.25 and the director
parallel with the laboratory z axis. The model was studied
over a total of 14 temperatures ranging from T*zl.OOO to
T =1.282. For the first temperature, at T =1.000,
equilibration and production stages of 12 and 8 million
moves respectively were performed, with subsequent
calculations at higher temperatures using the final
configuration of the preceeding lower temperature simulation
as a starting point,. For these calculations typical
equilibration and production stages of 5 and 10 million
moves respectively were used.

For models II, III and IV, the starting configuration
was taken to be a perfectly ordered system with the
molecular axes parallel with the laboratory z direction with
calculations at higher temperatures started from the 1last
configuration of the production run at the proceeding
temperature. The equilibration and production runs for Model
11 were typically 3 and 6 million configurations
respectively, although slightly less for Models III and 1V,
with between 1 and 2 million moves for equilibration and
about 3 million for production in Model III and about 1
million for production in Model 1IV.

For all models the average potential energy per
particle, g* (= U/Ne) was evaluated as a function of the

62




reduced temperature taking into account all the interactions
as described in the model definitions in section 3.2. The
heat capacity at constant volume with respect to T* was also
calculated, by numerical differentiation of the temperature
dependence of U*, since

* * *
CV = (30 /3T )v 3.6

Furthermore, Cv* was also calculated from the fluctuations
in the internal energy for Model 1IV,:-

2 2
VA2 3.7

* %2

CV = (U
Since in Model 1, it was observed that the director
orientation remained fixed parallel to the laboratory z axis

throughout the duration of the simulation, the second rank

orientational order parameter, ﬁzj of the jth
configuration was calculated directly as:-
N
P - L 5 3/2 cos?8; - 1/2 3.8
i=1

Here Bi is the angle describing the orienatation of the ith

molecule in the laboratory frame. In practice P2j was
evaluated at the end of each cycle and then averaged over M
cycles to give Pz, i.e.

P =

1
Mo

However for Models II to IV, the director orientation was
observed to fluctuate, and so a different procedure had to
be adopted. The Q-tensor was set up and diagonalised at the
end of each cycle, and the largest eigenvalue, P2
averaged over all cycles, where the tensor is defined as:-
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)
ij
) were also calculated, although not at every

In Model 1V, the pair correlation functions Gz(r
*

ij

temperature, over stages during the production runs. They

and Ga(r

were evaluated again at the end of each cycle and averaged
over a total of 500 cycles, Pz was also calculated at the
same stage to enable a more meaningful comparison with
molecular field theory.

The errors in the quantities Pz, 0% and C: (for
Model IV) were estimated by dividing the production stage
into typically 10 macrosteps from which the total average

and standard deviations were calculated.

3.4 Results
The results for the internal energy, U*, heat

capacity at constant volume, Cv* and the second rank order
parameter, 52* are shown as functions of the reduced
temperature, T in Figures 3.1, 3.2 and 3.3 respectively for
all four models, as the solid squaress.

The internal energy, in Figure 3.1, is essentially a
continuous function of temperature suggesting that either
the entropy of transition 1is small, or more probably,
especially for Models I1I, III, IV finite size effects are
occuring which tend to smooth out the transition. However,
before the entropy <change <can be measured, the exact
location of the transition temperatures must be determined.
This 1is readily obtained from the heat capacity in Figure
3.2 where in all cases a divergence in CV* is observed. This
can be associated with a transition from an orientatiaonly
ordered phase to one of disorder (see Figure 3.3), i.e. the
nematic-isotropic phase transition. The exact location of
the transition can be regarded as being midway between
temperature on either side of the divergence. This gives
transition temperatures, TNI as listed in Table 3.1 for the
four models. The assignment of the order of the transitions
is not easy to evaluate, since the plots of the heat

capacity are all consistgnt with first or higher order
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at constant volume per particle for Models I,
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respectively). The solid squares are results
obtained from the gradient of the internal
energy while the open squares are results
derived from energy fluctuations (d). The
molecular field theory predictions are shown by
the solid curves scaled to the same transition
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the solid curve 1is the prediction of the two
site cluster expansion. In a) the dashed curve
is C measured for PAA and the open circles are
results obtained by Jansen et al (1977).
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transitions. However, extrapolation of g at TN; from
both the nematic and isotropic phases indicates a small but
nonetheless non-zero change in U*, suggesting the
occurance of first order phase transitions. From this finite
change in U* at the transition, the entropy of transition
AS/R can be calculated and is also listed in Table 3.1 for
all four Models. The relatively large errors in AS/R arise
from the difficult extrapolation of the internal energy from
the ordered and disordered phases and indeed could be
larger, since the uncertainties in the transition
temperatures have not been taken into account. In Model 1V
the heat capacity was also calculated from the fluctuations
in the internal energy, as defined by equation 3.7, and
these results are shown as the open squares on the fourth
diagram in Figure 3.2. To within experimental error, both
sets of results agree and diverge at the same transition
temperature. This observation is comforting since it does
provide a check to the two methods of calculation of CV*
although C! calculated by spline fitting the internal
energy is probably more reliable than that evaluated from
the energy fluctuations, since the latter method requires
efficient sampling of states of both high and low energy.
The order parameter, 52 plotted in Figure 3.3 as a
function of T* is again essentially continuous throughout
the temperature ranges studied, although it changes most
rapidly in the temperature region where the heat capacity
diverges. However, in the isotropic phase it does not equal
zero especially in Mgdels II, III and IV, presumably because
of the relatively small numbers of particles employed. A

knowledgeqTN; allows P, to be found at the transition by

a careful extrapolatiof and again is listed in Table 3.1.
Finally, we look briefly at the orientational
correlation functions, Gz(ri;) and Ga(ri;) plotted in
Figure 3.4 for Model IV. The relevance of the form of the
plots will be discussed in more detail later when a

comparison with molecular field theory will be made.
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However, the consistgncy of Gz(ri;) with the internal
energy can be demonstrated at this stage since (Zannoni,
1979): -

0=-1/2 ) z (r]) ° G, (r), 3,11
n

where z is the number of molecules in the nth cooa?ination
shell (see Appendix 4) at a scaled distance of r. from a
central particle. The values of U* evaluated from the
observed Gz(r) with the summation truncated at the same
point as the pair potential in the simulation are compared
with 0% calculated directly during the simulation in Table
3.2, and there is excellent agreement. A further check on
the calculation of Gz(ri;) and Ga(ri;) can be made by
comparing the long range limiting values with the
corresponding ranked order parameter, since in the 1limit of
large separations the orientational correlations between
molecules are lost and GL(r) tends to ﬁLz. Thus the 1limit
of Gz(rij*) can be checked against P2 evaluated during the
simulation, in particular against P2 calculated over the
same 500 cycles in the production run. This value of Pg
is plotted as the solid line in Figure 3.4a and indeed does
show excellent agreement with the long range limiting values
of Gz(riﬁ. Therefore we can expect to be able to adopt

4
which are listed in Table 3.2.

this method to calculate P, from Ga(rIj), the values of

3.5 Comparison with other simulations

The comparison of the results is only made with Model
I, since virtually all similar work has employed this model.
Firstly the comparison of the transitional properties of
TNI’ PQNI and AS/R. These are given in Table 3.1 wheie
it can be seen that the transition for Model I of TNI=
1.127+0.003 is comparible with that of 1.124+0.006 found by
Lebwohl and Lasher (1972, 1973) although greater than T

NI
= 1.119+0.001 obtained by Jansen, Vertogen and Ypma (1977)
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and Ty = 1.111%0.004 found by Meirovitch (1977). The
reason for this discrepency is not clear, although in the
latter case it could stem from the use of the stochastic
models technique of simulation. However, for the order
parameter at the transition the agreement 1is reversed with
poor accordance between the results of Lebwohl and Lasher
and the results of Model 1I. To within the experimental
error, the values of AS/R agree, all being very small.

The temperature dependence of the heat capcity observed
by Jansen et al. is shown in Figure 3.2 as the open circles
and clearly their results show a small discontinuity at the
transition typical of a second order transition rather than
a divergence as shown by the solid squares. The difference
is again unaccountable, especially in view of the apparent
consistency with the methods of calculation of Cv* both by
numerical differentiation and from the fluctuations,
observed in Model 1V.

Finally the comparison with P2 is made. Unfortunately
the temperature dependence of P2 is not accurately
available from the work by Lebwohl and Lasher although it is
known from the work of Zannoni (1979) for a system of lO3
particles. These results, together with the findings by
Meirovitch are shown in Figure 3.3a as the open squares and
open triangles respectively. In the nematic phase very good
agreement with the results obtained by Zannoni is observed
although in the isotropic phase better agreement is found
with the results of Meirovitch. This difference can be
attributed to the relatively small system studied by Zannoni
of 10° 3

Furthermore, the discrepency with Meirovitch?’s results in

particles compared with 20 used in Model 1I.
the nematic phase can be accounted for by the difference in
the observed transition temperature, since if the
temperatures were reduced to give the same transition, then

virtually perfect agreement would be obtained.
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3.6 Comparison with molecular field theory

Oone of the most successful theories describing the
orientational properties of nematogens was developed Dy
Maier and Saupe (1958, 1959, 1960). The anisotropic pair
potential used in their theory is consistent with those used
in this Chapter, thus allowing various elements of the
theory to be tested by computer simulation, in particular
the molecular field or single site cluster approximation.
The predictions of this theory have been discussed in
relative detail in Chapter 1, although the transitional
properties are given again in Table 3.1. To compare the
theory with Models I to IV, the interaction strength

parameter U in the pseudo potential must be modified

2
slightly to account for the variations in the range and
number of interactions used in the simulation. Thus, as we
have seen in Chapter 1, the pseudo-potential 1in the

Maier-Saupe theory can be written as:-
u(g) = - G, P, P,(cosB), 3.12

where B is the angle between the molecular symmetry axis and
the director. The molecular field strength parameter, Gz
is defined by: -

- o 2
u, :‘{L”Z(rij)g(rij)aﬁrijdrij‘ 3.13

Here p 1is the number density, g[rij) is the radial
distribution function and uz(rij) gives the distance
dependence of the anisotropic pair potential. For a lattice

system, this equation reduces to:-

*. -6 3.14
u, = EE zn(rn)
n *
So for the models used in this Chapter Uz is 6, 12, 7.796

and 14.31 for Models I, II, III and IV respectively, where
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* .
a is Uz/e. This results in predicted transition

telﬁperatures of T*=1.321, T'=2.642, T'=1.717 and T%=3.151
for Models I, II, III and IV thus overestimations of 17%,
5%, 10% and 3% occur. This means that theory progressively
improves when either the number of interactions or the
potential range increases, and combining both effects gives
almost perfect agreement as seen for Model IV. This is in
complete accord with our expectations, since in the limit
that the range of the potential and the coordination number
become infinite the molecular field approximation becomes
exact. This trend towards the theoretical predictions of the
transition temperature for a particular model can be seen in
the ratio T }/G>, which for Models I, II, III and IV is

0.1878+0.0005, 0.203+0.003, 0.198+0.003, 0.214+0.003 and for

molecular field theory is predicted to be 0.2202. Thus an
almost 1linear improvement in T;I/G2 with G; is
observed, these figures are also listed in Table 3.1.

Although a gradual improvement 1in the predictions of
the transition temperature 1is observed on increasing the
paotential range and coordination, the value of the second
rank order parameter at the transition and the entropy of
transition are virtually constant for all four Models (see
Table 3.1). Clearly the molecular field approximation
grossly overestimates the entropy by almost an order of
magnitude, and although the errors in the simulated values
of AS/R are relatively large, they cannot absorb the
theoretical overestimation. For all four models the order
parameter at the transition is less than the predicted value
of P2=0.417. Surprisingly worse agreement with the
molecular field value is seen in Model IV, although thils is
probably related to the relatively small system size of only
500 particles used in this case.

It would appear therefore that the Maier-Saupe
predictions of the nematic-isotropic transition temperature
improve with both increased coordination number and
potential range although the improvement in the predictions
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NI
of both'?"2 and AS/R is poor. To understand why these

properties are poorly estimated by theory we must turn our
attention to the angular correlation functions.

The molecular field approximation predicts the angular
pair correlation functions to be independent of separation
and equal to the order parameters of corresponding rank
squared. The results observed for Model 1V for Gz(rzj)
(c.f. figure 3.4) do indeed show that these two predictions
are true, but only for separations greater than scaled
distances of about r;j=3. For shorter separatioqf the
a@gular correlations increase with decreasing rij Thus
P2 taken from the simulation as shown by the solid lines
in Figure 3.4 does coincide with the limiting values as we
have already discussed. We know that the Maler-Saupe theory
overestimates P2 both at the transition temperature and at
lower reduced temperatures, thus it must also overpredict
Gz(r?jl this is shown by the dashed lines in Figure 3.4a
which are calculated at the same reduced temperature. Indeed
much better agreement between the theory and the simulation
is found at short separations, especially at low
temperatures where the values of Gz(l) and the theoretical
value agree almost exactly. This is caused by a fortuitious
cancellation of errors, that of the molecular field theory
underestimating the short range correlations, being
compensated for by the overestimation of the 1long range
order parameter. This cancellation of error, has some
important consequences, as we shall see later when we
compare the predictions of the internal energy with the
simulation., Furthermore, in the isotropic phase, molecular
field theory says that all short range correlations should
vanish, which as we can see for the plot of T*=3.75 in
Figure 3.4a 1is untrue. Thus, the failure of the theory to
predict the short range order present in the isotropic phase
means that the entropy of transition will be overestimated,

which is indeed the case.
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The second rank angular pailr correlations have also
been evaluated by zannoni (1979) for a system of 10°
particles on a cubic lattice. In this case a much greater
difference between the long and short range correlations was
observed. To quantify this difference we define a excess

second rank correlation: -

A02:=02 - P2 3,15
where o 2 is the short range angular correlation Gz(l), or
the short range order parameter, and P2 is that calculated

from the square of the 1limiting value. In the molecular
field 1imit A02 will equal zero since here, correlations are
independent of separation. Figure 3.5 shows how A°2 varies
with the reduced temperature for Model IV as indicated by
the solid squares, and for the system studied by Zannoni
(solid diamonds). It is also possible to calculate Ao, for
Models I and 1II, since in these systems only neérest
neighbour interactions are involved and therefore the short
range order parameter 1is proportional to the internal
energy, since: -

*
U = —207/2, 3.16

where z is the coordination number. The results for Models 1
and II are shown as the open squares and open circles
respectively on Figure 3.5. Clearly the excess correlations
are largest at the transition in both isotropic and nematic
phases and decrease rapidly on going away from the
transition. For Model I, A0'2 is discontinucus at the
transition, although essentially continuous for the system
of 103 particles and Models II and 1Iv. Also the excess
correlations are greatest for Model I and decrease with
systems of increasing interactions and therefore approach

the molecular field limit of zero for all temperatures.
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Finally we compare the theory’s predictions of the
temperature dependence of the internal energy, heat capacity
and second rank order parameter as shown by the solid curves
in Figures 3.1, 3.2 and 3.3. (The curves on the diagram
representing Model I correspond to predictions of the 2-site
cluster approximation, and will be discussed in the next
section). To enable a meaningful comparison, 02 has been
modified such that in all cases the predictions of the
molecular field theory transition temperature equals the
simulated transition temperature. More will be said of this
scaling later. This compensates therefore, for the
overestimation of the transition temperature by the theory.
Firstly comparing the internal energy in Figure 3.1. The
best agreement is observed with Model Iv, a direct
consequence of the fortuitious —cancellation of errors
discussed earlier, i.e. that of an wunderestimation aof the
short range correlations and an overestimation of the 1long
range order. However, the agreement is not as impressive for
Models II and 1III, where the internal energy by the
Maier-Saupe theory 1is lower than that found in the
simulation. Turning to the heat capacity in Figure 3.2
indicates good agreement for Models II, III and IV in the
nematic phase, although in the 1isotropic phase it fails
completely where the short range order and its temperature
dependence 1is much larger than the theoretical value of
zero. Finally we look at the dependence of the long range
order parameters with temperature, firstly with 52 as
plotted in Figure 3.3. In all three Models (II, III and IV)

the theoretical agreement with 52 in the nematic phase is
*

NI
accounted for. However, the observed values in the isotropic

very good now that the overestimation of T_,. has been

phase are greater than the zero predictions of theory,
although this difference can be attributed to the finite
sizes of the systems used. The fourth rank long range order
parameter can also be calculated from theory (see Chapter 1)

and therefore can be compared with P, obtained from the

4
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limiting values of Ga(ri;). According to the Maier-Saupe

theory, the angular dependence of the pseudo potential is
contained in just Pz(cosB). This can therefore be tested
since two order parameters are known, for example, given a

value of P the coefficient of Pz(cosB) can be evaluated

’
in the psézdo—potential and then used to calculate 54.
This comparison is shown in Table 3.2 where the predicted
values of 54 are in excellent accord with the values
obtained from the simulation, thus indicating that the
angular dependence of the potential of mean torque or pseudo
potential 1is indeed given correctly by the Maier-Saupe
theory.

To complete the comparison with the molecular field
theory we shall now return to Model I, which was studied
over a temperature range much closer to the transition.
Thus, in Figure 3.6 is plotted the variation of 5& in the
nematic phase with the reduced temperature, T*/T NI ® The
solid curve represents the Maier-Saupe prediction scaled to
the same transition temperature, and over this much reduced
temperature range, the agreement is not as good as we have
seen previously in the comparison with Models II, III and
Iv. Here 52 is constantly overestimated especially as the
transition is approached. The source of this discrepency has
already been discussed, i.e. the theory’s overestimation of
long range correlations. However, another source of error
can now be investigated, that concerning the singlet
orientational distribution function. In the Maier-Saupe

theory this is given by:-
f(B) = exp(aPz(cosB))/desiﬂﬁexD(aPz(coss)) 3.17

where a is the coefficient of mean torque, which for Model I

is: -

a =6 P2/T*. 3.18
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parameter for Model 1 (solid squares) in the
nematic phase. The experimental results for PAA
obtained at constant volume are given by the
open triangles. The dependence predicted by the
Maier-Saupe theory is given as the solid curve,
by the two side cluster expansion as the dashed
curve and by the Maier-Saupe theory after
admitting the free energy to be in error by the
dotted curve.
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The orientational form of f(B) ~calculated by both
Monte-Carlo (see Chapter 5) and molecular dynamics (Zannoni
and Guerra, 1981) methods has been shown to be of an
identical form to that given by this equation, thus we can
proceed to check the 1linear dependence of a on Pz.

Therefore, knowing P calculated from the simulation

allows us to use thiszto find the theoretical value of a,
and hence the ratio T*/ﬁz, which a%Fording to theory will

be constant. Table 3.3 gives aT /P, at the different

temperatures studied and indeed to within experimental error
it is constant. Therefore the linear dependence of a on 52
provides no. justification for the employment of quadratic as
well as linear terms in P2 as was suggested by Horn and

Faber (1979), and Kvenzel and Katriel (1982). However, the
constant value of aT*/F’2 of 5.05+0.02 is not in accord

with the Maier-Saupe value of 6, being just the coordination
number. Strictly speaking this difference should be
associated with the product, ze, but since € 1is wused to
scale the temperature we shall assume the error to be
entirely in z an refer to it as an effective coordination
number. Therefore this effective coordination can be used to
rescale the theoretically predicted transition temperature

since: -

Ti = 0.22032 3.19
to give a value of T*=1.113, a value much closer to the
simulated value of T =1.127.

Although using the effective coordination forces
agreement to the nematic-isotropic transition temperature,
it does nothing to the value of the order parameter at the
transition. To obtain better agreement, we would have to
admit that the Maler-Saupe free energy from which the
location of the transition is evaluated is incorrect. To
test this we shall regard the numerical factor in the above
equation to be in error, thus treating T;I/& as an
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adjustable parameter. However there 1is an upper limit of
T;I /z=0.2228, above which an ordered phase ceases to

exist, at which point P, is equal to 0.324. Therefore we

will not be fit our resu%ts exactly since we have found that
P2N1=0.27. However, we can still attempt to make a
comparison as shown by the dotted line in Figure 3.6, where
the maximum value of T*NI/Z=O.2228 has been used. The
agreement is now very good, especially at low temperatures,
although at the transition there is still a slight deviation
from the simulated values.

To summarise this comparison with the molecular field
theory, we have seen that on increasing the coordination
number and the range of the 1interaction potential the
molecular field limit is approached, as we would expect. 1In
addition the theory underestimates the short range angular
correlations, which combined with the overestimation of the
long range correlations gives fortuitious agreement with the
internal energy. Secondly the overestimation of the
nematic-isotropic transition temperature can be expressed in
terms of an effective coordination number since it is
observed that the coefficient a (=2P2/T*) is directly
proportional to ﬁz, thus confirming part of the form of
the singlet distribution function, and finally we have seen
that part of the error 1in the order parameter at the
transition can be accounted for by assuming the Maler-Saupe

free energy to be in error.

3.7 Comparison with cluster expansion theory

In Chapter 1 a description of the two site cluster
expansion theory was given. Here we shall briefly outline
the theory’s predictions and make comparisons with both
molecular field theory and the simulations. Firstly looking
at the transitional properties given in Table 3.1. These
have been calculated by Sheng and Wojtowicz (1976) for
various coordination numbers, and although they did not
evaluate the properties of a 12 coordinate system, values
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have been obtained by extrapolation and are presented here.
Thus on going from z=6 to z=12, P2NI and TNI/G2 both
increase by about 7% towards the molecular field 1limit
corresponding to infinite coordination. This 1is in accord
with our simulated values, although this theory still
greatly overestimates the entropy of transition but not to
the same extent as the molecular field theory.

Finally, predictions of the two site cluster expansion
can be compared with the temperature dependence of the
simulated values of U*, CV* and 52. This dependence is
shown by the solid curves in the plots for Model I in Figure
3.1 and 3.2 for 0° and C: respectively, and clearly
improves greatly on the molecular field predictions in the
isotropic phase by permitting a certain degree of short
range order. Indeed, if allowance for the overestimation of
the transition temperature is made, then excellent agreement
would be observed also in the nematic phase. The two site
cluster prediction of the temperature dependence of ﬁz is
shown in Figure 3.6 by the dashed curve scaled to the same
reduced transition temperature and actually falls midway
between the molecular field prediction and the dependence
when allowance for the error in the free energy is made.

3.8 Comparison with real nematics

Since the Lebwohl-Lasher model does not correspond to
any real molecular system, since no nematic has perfect long
range spatial order, any comparison with real systems must
be made with caution. Furthermore, no real nematic molecule
is cylindrically symmetric and it 1is improbably that its
anisotropic pair potential can be written as the simple form
given by Equation 3.1. However, computer simulations of
spatially disordered systems have failed to discern a
dramatic difference with orientational properties calculated
in lattice models (Luckhurst and Romano, 1980). It has also
been suggested that nematogens can be regarded as being
formed of systems of groups of molecules, each group being
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approximately cylind-rically symmetric, therefore justifying
the use of such a simple potential (Luckhurst and Zannoni,
1977). Therefore, with these factors in mind we shall
attempt to compare the simulated properties of Model I with
those of a real nematagen, in this case with 4,
4-dimethoxyazoxybenzene (PAA). This molecule is relatively
rigid and furthermore has been very comprehensively studied
at various temperatures and pressures, thus providing us
with data at constant volumne (McColl and Shih, 1972).

The experimental observations for 52 as a function of
the reduced temperature, T/TNI are shown as the open
triangles 1in Figure 3.6 and reasonable agreement with
simulation 1s observed at the transition, although it
becomes progressively worse with decreasing temperature.

Secondly, the heat capacity at constant pressure has
been measured as a function of temperature (Chandrasekhar et
al, 1970), from which Cv can be calculated, since:-

B 2
Cv = Cp + a TV/kT 3.20

Here kT is the isothermal compressibility and a is the cubic
expansitivity which are both known for PAA. However, Cp
measured experimentally contains a relatively large scalar
contribution which has to be removed before a comparison
with the simulated results —containing only anisotropic
contributions can be made. The removed contribution was
taken to be an amount derived from the extrapolation of Cp
in the 1isotropic phase back to the nematic thus, leaving
just the anisotropic contribution to Cp. CV calculated using
this technique and equation 3.20 is shown in Figure 3.1 for
Model I as the dashed curve as a function of temperature.
The agreement is very poor, with the divergence being much
less than that observed in the simulation. It could however,
be improved slightly if a smaller scalar contribution was
removed, although the overall improvement would be
insignificant. The total failure of this data is surprising
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since Sheng and Wojtowicz claim good agreement for CV with
their two site <cluster theory, although their Tresults
suggest that they have compared Cp and not CV with their
constant volume theory.

Finally, the entropy of transition can be compared
since there have been numerous experiments to measure the
enthalpy change at the nematic-isotropic transition for PAA,
(Martire, 1979) an average value for ASp/R being 0.19+0.01.
To convert this to a value at constant volume we use:-

ASV = ASp - aAv/kT 3,21

For PAA the requisite values of a and k; are lzi%ilo"azK'i
(Chandrasekhar et al, 1970) and  75+5x10 " mN"
(Chandrasekher and Madhusudana, 1971) respectively, and the
change in molar volume at the transition is 0.81i0.08x10"6m3
mo1~t (Martire, 1979). This gives ASV/R = 0.05+0.03, which
is essentially identical to the simulated value of

0.06+0.01.

3.9 Director Pinning

Throughout the entire simulation for Model I consisting
of 20° particles, it was observed that the director remained
exactly fixed along the direction in which it was initially
defined that 1is, along the laboratory =z axis. Each
simulation at a new temperature used the configuration from
the preceeding lower temperature simulation as a starting
point, thus in all, the director remained fixed for a total
of about 14 x10°
consisted of approximately 2x103 cycles.

cycles, since each run in the nematic phase

The reason for this pinning is not obvious, at first it
was thought that it could be due to the way in which new
configurations were generated, since cosB was generated in
the restricted range of 0 to +1, thus removing the full
rotational symmetry. However, a subsequent simulation on a
system of lO3 molecules at T*zl.O proved this not to be the
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Fig 3.7 The direction cosines n_ and n_ of the director
in the laboratory framé as a’ fynction of the
number of cycles in Model I at T = 1.000, for

8000 particles (solid curves) and 1000 particles
(dotted curves).
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case. In this calculation, the Q-tensor was evaluated and
diagonalised at the end of each cycle, from which the
director orientation was found. The direction cosines made
by the director with the x and z laboratory axes for this
system are plotted in Figure 3.7 as the dotted curves as a
function of cycle number and clearly shows the director
reorientating considerably over this run of 20x103 cycles. A

similar calculation with 203

particles shows the director
remaining pinned very accurately over this length of run as
shown by the solid curve in Figure 3.7, thus proving it is
not the method of generating cosB that is responsible for
the director pinning. Instead, the reluctance for the
director to reorientate must be due to the fact that this
system is much larger, a conclusion which is Very
reasonable, since if one considers that in order for the
director to reorientate over a given period, the majority of
molecules must reorientate in that direction, an event which
becomes more and more statistically improbable with
increasing numbers of particles.

This therefore provides an easy method of performing
simulations in which it 1is important that the director
remains fixed during the course of a calculation. As we
shall see later in this thesis, this can also be achieved in
other ways, either by a judicious choice of pair potential
(see Chapter 4) or by subjecting the nematic to external
forces (Chapters 5 and 6), therefore allowing the relative
ease of vcalculation of various important functions and
properties.
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Chapter 4

The Effect of dipolar interactions

4,1 Introduction

The nature of liquid crystalline molecules is such that
severe approximations have to be used in simulating their
physical properties. The first simulations of these
anisotropic systems employed a pair potential of a simple P2
interaction (Lebwohl and Lasher, 1972, 1973;Lasher, 1972
a,b; Jansen et al., 1977) between neighbouring molecules,
thus assuming the molecules to be rigid and cylindrically
symmetric. Later modifications to the pair potentials have
included the assumption that the molecules are symmetric
tops (Zannoni and Guerra, 1981) biaxial (Luckhurst and
Romano, 1980) and to extend the simple P2 potential to be
representative of the anisotropic dispersion forces
potential (Humphries et al., 1981). However, one feature of
real 1liquid crystal molecules is that they often possess
dipole moments. The object of this chapter therefore, is to
investigate the effect of dipolar forces on the
orientational properties of a system which has been
previously well studied. In this case, the system with
particles interacting via the full dispersion forces
potential (Humphries et al, 1981).

The outline of the chapter is as follows: in the next
section the exact nature of the pair potential will be
discussed, together with appoximations made, computational
difficulties and problems initially encountered. The
following two sections describe the computational details
and results. Finally, these results are compared with those
obtained from similar systems but by different techniques,
for example with molecular field and other higher order
analytic methods.
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4.2 The pair potential

As we have seen in Chapter 1, the dipolar potential
between two similar 1linear molecules can be written as
(Hansen and McDonald, 1976):-

u,0dip) = u? (z).2)-3(z).R)(z,-R)) 4.1

3
Aneor

where z, and z, are unit vectors describing the orientations

of thel dipolg moments, u, parallel with the molecular
symmetry axes separated by a distance r and €, is the
permittivity of free space. The form of this potential is
more easy to visualise and more recognisable in terms of
spherical polar coordinates in a molecular axis system
(Hirschfelder et al. 1964):-

2

UlZ(dlp) = -y (Zcosglcosgz—51n9151nchosﬂ)
3

4Te T
o

Here 8., 92 define the orientations of dipoles 1
and 2 in the molecular frame with Trespect to the
intermolecular vector and @ is as defined in Figure 4.1.
Computationally the vector notation is more attractive since
fewer time consuming trigonometric function evaluations are
required.

The nature of the dipolar interactions are such, that
even at large r, the potential still has a significant
effect on the total potential energy, therefore long range
interactions have to be included. This leads to various
computation problems. One obvious method of calculation
would be to simply sum over all pairs of molecules in the
system, imposing a spherical cut-off when some convergence
criteria is satisfied. However, the cut-off would have to be
very large resulting in a prohibitive number of interactions
being calculated. A much more rapidly convergent method, and
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Definition of the angular variables, 8

92 and @ in Equation 4.2 for
molecules.
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indeed what was used in this simulation, is an extension of
the method originally proposed by Ewald (1921) for
electrically neutral systems. He encountered similar
problems calculating Madelung constants in ionic crystals
where regular arrays of long range interacting point charges
exist. Later the method was adapted by Kornfeld (1924) to
include 1lattices of dipoles and quadrupoles. Simply, it
involves converting what would be a slowly convergent series
in real space to a more complicated but rapidly convergent
summation in real and reciprocal space. Thus starting with
the expression given by Ewald, we shall express it in a form
suitable for the computer simulation of dipoles on a
lattice.

The potential at r due to N-point charges on an
infinite repeating regular cubic lattice of side L is given
by the Ewald expression as (Adams and McDonald, 1976):-

Vq(r) = E E qu(n;n)eXp(-QniQ.gj/L)+ E aj erfc(nRJ.)/Rj
n#0 j J
4'3

where n 1s a reciprocal lattice vector of a cubic array of

particles, n is some adjustable parameter having dimensions

L-l, carefully chosen for optimum convergence. Bj is the

vector between the jth

thus: -

point charge and the charge at r,

R. = r, -T 4.4

and A(n;n) is defined by

A(nyn) = 1 exp (—nn/nL)2 4.5

nLn2

The final term 1is the complementary error function,
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related to the error function, erf, by

erfc(z) = 1 - erf(z)
b4 -t2
:l-g__ J‘e dt 4.6
n% 0

The potential due to a single charge is qj/R and for a
single dipole is My v .(l/gj). So we can obtain an
expression for an infinite lattice of regular repeating
dipoles by replacing qj by M and differentiating. To
differentiate the error function, we make wuse of the
relationship (Abramowitz and Stegun, 1965):-

2

3 erfc (z) =-2¢e7? 4.7
9z i
So now:-
Vu[r) = 27mi E E (uj.ﬁ) A(n;n)exp(-2nig.ﬁj/L)
L nfo j

2n 1
L+ R2
3 n Rj

+ E (u;.R:) 1 Jerfc(nR.,) + 21 exp(-n2 R.z)] 4.8
3 J ~J 23 J J

The total interaction energy of a dipole placed at r is
thus: -

So differentiation again yields:-

_ 42 %% . .
u(r) = ggz ) ) (Hj-ﬂ) (g.n)A(N3;n) exp (-2n1g5j/L)

L nfo J
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AN f .
+) (usu) B(R) = ) (WeRy) (ij-R;IC(Ry) 4.10
J J
where
B(r) = erfc(nr) (nr)/r3 + 27n. exp(-nzrz)/r2 4.11

om—

=

and
C(r) = 3erfc(nr)/r5+ (ZH/H%)(2n2+3/r2)exp(-n2r2)/r
4,12

Equation 4.10 1is the general expression for the
interaction energy of a single dipole inserted 1in the
lattice. In our case the test molecule is itself part of the
repeating lattice. If a dipole, u is placed at r and the
reference dipole, Bj at I then their energy of
interaction, if they are both parallel is:-

(pep - 3u.R)Z/R?)R] 4.13

which must equal zero, even when r + r.. However C(r) and

B(r) both tend to infinity as r - r;. To avoid this
difficulty we can remove the term for i=j in equation 4.10.

thus:-

2

u(r) = nZo g (gi.Q)(gj.Q)A(n;u)exp(-2nig.£ij/L)

9_11
L2

+ E (Ei'Ej)B(rij) - E (Ei.gij)(kj.zij)c(rij)
J(#1) JO£L)

+ lim [(_gigi)B(I‘i) - (uiRi)(uiRi)C(ri)] 4. 14
r+0
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So if we take this limit along the path defined by
Hep = 3(E-BiJ2/Rf 4.15
The final limiting term in equation 4.14 becomes

lim (pp;)B(r;) - L(pgu; )RSC(r;)
r+0 3

4.16
Summing over all i molecules and dividing by N to obtain the
total lattice energy per dipole gives:-

T =2

2~
=

U .
-N-dlp

I N

) ) (uy-0)(u;-n)ACn;n)exp(-2min.r; /L)
£«

#0 J

1< ]

- 2n2ul/3/m 4.17

This expression can be more conveniently expressed
using standard trigonometric relationships and employing the
fact that the summation over i and j in the first term
reduces to a single summation squared over one of the
subscripts, we finally obtain:-

u A(n3n) FE(HJ.Q)COS(QWQ-Ei-/L)2)
4 J

_ A
dip ~ 312 /
n£o J

NL

+ (E(uj,E}sin(2ng.gij/L)2)]
J
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+ 1 E (Ei.kj)B(rij)—(P‘i'Eij)(Hj’ri_j)C(rj)
N j>i

- 2n3u2/3ﬂ 4.18

In the calculations the summations must be truncated.
The first by summing over a finite number of vectors only,
and the second double summation only summed for rij < L. For
a given number of vectors the parameter » was adjusted using
the following trial and error procedure to reduce the error
in the total dipolar potential energy. A very large lattice
was set up and the dipolar potential energy was calculated
by simply summing up all pair dipolar interactions for an
antiferroelectric system (see Figure 4.5) and comparing it
with that obtained using the above equation for the similar
configuration. The results for the Ewald summution on an
8x8x8 cubic lattice and those from direct summations for 5 =

4.0 and 5.0 on 20x20x20 and 30x30x30 cubic lattices with a

reduced dipole moment of 1.0 in all cases yielded a result
of:-

2
Udip/N = -4.17824 y"e 4.19

Where yze are scaling wunits which will be discussed
later.

We now turn to the dispersion part of the potential. As
we have seen in Chapter 1, if assuming cylind-rically
symmetric molecules, the anisotropic dispersion pair
potential can be written as (Kohin, 1960):-
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2 2 2 2 2
t2xte |(zperpp)t v (zp.1)5)" 902501507 (2501)5)
2 r,,b
12
+ 6(z,.r,)(z,.r,.,)(z,.2,)) - (z,.2 2| 4.20
=1"=2""=2"=12""=1"=2 =1"=2 '
Where Ty, is the separation of molecules 1 and 2, gl, 52’
and I, are unit vectors describing the orientation of
molecules 1 and 2 and the intermolecular separation
respectively. vy is the relative anisotropy in the
polarisability

Y = Eall - Gl)/(a”"‘ZGl)] 4.21

and € is the scalar component of the dispersion interaction,
which together with 72 will be used to scale the potential
with temperature and the dipolar interaction. Thus we shall
define a reduced temperature, T as:-

T* = KT 4.22

_kT
Y2€

In general the temperature could have been scaled with vye,
but molecular field theory suggests yze to be a more
suitable factor (Humphries et al, 1981) . In order to make
a meaningful comparision with previous work, we shall set
y?e = 0.8 (Humphries et al, 1981).

As mentioned earlier, the dipolar pair potential was
also scaled with Yze, thus defining a dimensionless reduced

squared dipole moment, M2 as:—
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Here a is the nearest neighbour intermolecular separation.
Assuming, that for a pure dispersion potential only, kT/yze
= 2.22 (Humphries et al, 1981), and for a typical molecule,
u~4.8 Debyes (Se% for example Dunmur and M;ller, 1980), TNI
= 400K, a = 10A, we get a value of M~ = 1.0. This

therefore gives a total pair potential of

0= E%sz (%)6 g + MZ(%)Bﬁ” 4.24
>

Where @ and ﬂ” are the anisotropic angular parts
of the dispersion and dipolar pair potentials respectively,
as defined earlier.

At this point we shall examine the form of the two
potentials. Firstly, the dipolar interaction given by
equation 4.2. In Figure 4.2 the dipolar potential energy
surface together with a contour plot of the same surface is
1 and 92
respectively, the angles each molecule make with the

plotted. The x and y coordinates correspond to 8

intermolecular vector. @ 1is constant at 0Y (see figure
4,1). Minima of -2u2 are observed when the molecules are
parallel to each other and to the intermolecular vector (at
the four corners of the surface and the centre (ie 8, =
0% 8, = 0° 0, = 360° etc, and 8, = 180°, 0, =180°)).
When the molecules are antiparallel to each other and
perpéndicular to the intermolecular vector the minima are
—u2 and actually occur as saddle points on the surface.

The surface obtained for the dispersion potential is
plotted in Figure 4.3. Here again the surface represents
o = 0). The

minima are again with the molecules parallel to each other

molecules in the same plane (ie with ﬂl - g

and to the intermolecular vector and as before, the minimum
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Dipolar potential energy surface as a function
of 8 and Qj for two linear molecules, as
defined by Equation 4.2. The angle @ equals
0°. The lower diagram is a contour plot of the
surface.
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representing the configuration with parallel molecules
perpendicular to the intermolecular vector is at a saddle
point on the surface.

Initially the simulation was run with a full range
dispersion potential and zero dipolar interaction. However,
the nature of the potential was such, that with the
inclusion of the interactions from the second and subsequent
shells of molecules, a configuration with a potential energy
lower than the ordered antiferroelectric state was observed
at very 1low temperatures. This staggered configuration is
shown in Figure 4.4, where the molecules tend to lie along
the (1,1,1) (1,1,-1),(1,-1,1) etc. lattice vectors. This
system is spherically symmetric and has an order parameter
of zero, and 1is therefore totally wunsuitable for the
simulation of nematics. The dispersion interaction was
therefore truncated to include nearest neighbour
interactions only while retaining a full range dipolar
interaction. This has a totally ordered ground state
configuration and is antiferroelectric as shown in Figure
4.5, where the dots at the end of each line represent a pole
of the dipole moment.

4.3 Computational Details

The study was performed using the standard Monte-Carlo
technique developed for the simulation of simple 1liquids
(Metropolis et al, 1953). The centres of mass of the
molecules were restricted to lie on the lattice points of an
8x8x8 simple cubic lattice (N=512), with usual cubic
periodic boundary conditions, as defined in Chapter 2.
Ideally we would have liked to study a 10x10x1l0 system, in
order to make a more meaningful comparison with previous
work (Humphries gt al, 1981). Unfortunately, the lack of
computational resources prevented this.
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Fig 4.4

Fig 4.5
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The molecules interacted via the nearest neighbour
dispersion potential (Equation 4.20) and the full ranged
dipole-dipole interaction, calculated wusing the Ewald
sum mation (Equation 4.18), with a spherical cut-off at half
the box 1length for the real space term and the summation
over the reciprocal space term (the first term) performed
over 297 lattice vectors (ie up to a maximum distance of
5a). n was chosen to be 4.0. The orientations of molecules
were stored in unit vector notation (ie as direction
cosines) with the laboratory z axis parallel with one of the
nearest neighbour intermolecular vectors. To generate a new
configuration in the Monte-Carle chain, molecules were
sampled sequentially, and re-orientated wusing the method
developed by Barker and Watts (1969). The

acceptance-rejection ratio was controlled to be
approximately one by adjusting the permitted maximum
rotation.

The simulations consisted of two stages, an

equilibration stage, where the averages calculated in the
program were monitored but discarded and a longer production
phase where various thermodynamic and orientational
properties were calculated.

The first run was at a reduced temperature of T* = 2.5
where the starting configuration was ~chosen to an all
aligned, antiferroelectric state with the molecular axes
parallel with the laboratory z-axis. This configuration is
depected in Figure 4.5. An antiferroelectric state was
chosen to speed up the convergence of the orientations of
the dipoles. If for example a ferroelectric state was chosen
then at low temperatures, where, to achieve good acceptance
rejection ratios small maximum displacements are required,
it would be very unlikely and probably impossible for a
dipole to completely rotate through an angle close to 180°.
Thus a more stable antiferroelectric state would never
actually be reached. The starting configuration at a new
temperature was chosen to be one from either a run in the
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ordered phase, or in the case of high temperature isotropic
calculations from either the nematic or the isotropic phase.
In either case, the starting configuration for a nematic
phase calculation was never chosen to be isotropic. This is
due entirely to the nature of the potential, since the
dispersion part has three degenerate ground states, each
with the molecular symmetry axes parallel with the three
crystal axes. Furthermore each of these degeneracies has a
double degeneracy from the dipolar contribution, since
antiferroelectric states can be formed with dipoles pointing
in two directions. This means our system has six degenerate
ground states. If therefore an isotropic state was cooled to
the nematic phase, invariably within the sample, domains of
local order would form. From statistical arguments there
would be an equal probability for any of the six degenerate
states forming into a domain. This multi-domain structure
would take a very 1long time to equilibrate fully to a
monodomain system which 1s required to calculate bulk
properites. This effect has been discussed for p-fold
degenerate systems in d-dimensional space where it 1is
suggested that the domain sizes would equilibrate as a power
function of time, therefore a monodomain system would never
occur (Safran, 1981). A typical configuration showing a
monodomain sample is shown in Figure 4.6 taken at a reduced
temperature of T* = 2.5. Again the dots at the ends of each
molecule represent one end of the dipole moment.

During the production stage the average dispersion
(D*disp) and dipolar (U*dip) contributions to the total
average internal energy (U*tot) were calculated, from
which the heat capacity at constant volume was evaluated

using
2 —l—
* * *2
Cv = (U tot - Y tOt)/T 4.25

The orientational second rank order parameter, defined as

the average of the second Legendre polynomial was also
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calculated as:-

P, =3 cos?g - 1 4.26
2

N

where the bar indicates an ensemble average, and B is the
angle between the molecular symmetry axis and the director
axis for the orientationally ordered phase. In this instance
it was calculated by evaluating the Q-tensor.

Qab = (3 Zazb"sab)/z 4.27

Here a and b dencte laboratory axes, z, and N the direction
cosines and 6ab the Kroneker delta. Averages of the Q-tensor
were taken over a number of cycles (defined as 1 macrostep)
during which time the director does not move. Each macrostep
was actually 50 cycles after which time the Q-tensor was
diagonalised and the largest eigenvalue identified with the
order parameter, 52, defined above in equation 4.26
(Buckingham 1967). Each typical production stage consisted
of 50 macro-steps, although 125 were used close to the
transition because of large fluctuations in the internal
energy and order parameter in this region. Explicit details
of starting configurations, lengths of equilibration and
production runs are given in Table 4.1. Futhermore during
some of the production stages (see Table 4.1), the
orientations of all the molecules at the end of each cycle
were written onto magnetic tape for the following further
analysis.

Since, as we shall show, the director is pinned along
some arbitmry laboratory axis, (in our case the z-axis), the
singlet distribution function can be readily calculated;
this is defined as the probability of finding a molecule
within a volume element between cosf and cosB+dcosB where B
is the angle the particle makes with the director. This was
calculated by dividing the cosB space (to give equal volume
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elements) into 100 equal divisions and incrementing a
counter array (of 100 buckets) for the orientations of all
molecules for all cycles.

Various pair correlation functions were also
calculated. In particular:-

Gl(rij) = < Pl(cosg)>rij 4,28
Gz(rij) = < Pz(cosg)>rij 4.29
Ga(rij) = < P4(cosg)>rij 4.30

Here Pl’ P2 and P4 are Legendre polynomials and 8 is the
angle between molecules at a distance rij‘ Computationally
these were calculated by firstly 1labelling the x, vy, z
coordinates of all the molecules with integer labels. The
square of the distance between particles i and j is:-

2 2
= (xi—xj) +(yi -y

2
1j )

)2 + (z, - z.

. 4.31
J 1 J

Taking into account the periodicity of the system using the

2

minimum image convention, r was wused as an array

1]
pointer, to store the necessary values of cos@, cos?g
and cosag. The correlation between molecules at distances

greater than half the sample size were not counted.

A subset of pair correlation functions were also
calculated. We will show that the director is pinned along
the z-axis, thus pair correlations for pairs of molecules
parallel and perpendicular to the director were evaluated,
defined by:-

GL‘I!J_(riJ) - < P2(COS g) >|!!.Lrij 4,32

Where L = 1,2 and 4. These were calculated in exactly the
same way as for the total palir correlation functions, except
that molecules with intermolecular vectors parallel and
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perpendicular to the director were considered.

As a check to the pinning of the director along the
laboratory z-axis, various order parameters were calculated
directly with respect to this axis, defined by:-

P, = <cos B> 4.33
2
P, =3 <cos™B >-1 4.34
2 2
P, = 35< cos 4 > - 15< cos 28 > + 3 4.35
8 4 8

Here B 1s the angle between the dipolar axis and the
laboratory z-axis. The second rank order parameter was then
compared with that evaluated by setting up and diagonalising
the Q-tensor (Equation 4.27) at the end of each cycle, and
with that calculated by averaging the Q-tensor over the
previously defined macrosteps.

4.4 Discussion of Results

Thermodynamic Properties

The thermodynamic properties obtainable directly from
*

. . . . =%
the simulation were the internal energies, U disp’ 0 dip

and U*tot and the heat capacity at constant volume

calculated from the energy fluctuations by equation 4.25.
Figure 4.7 shows these internal energies plotted as a
function of the reduced temperature T*, the actual values
are listed in Table 4.2 with their associated error. The
behaviour of U tot clearly 1ndlcates a phase transition

occuring in the region of T*=2.7 to T =2.8. The transition
between an ordered and disordered phase is also emphasized
in the plot of the dispersion contribution to the internal
energy U*disp’ although very much less so by the dipolar

energy, which 1is essentially a continuous function of
temperature. The exact location of the transition is most

accurately determined from the divergence of the heat
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Fig 4.7 The reduced temperature dependence of the

total internal energy (@) and the contribution
from the dispersion (¢) and dipolar (0) terms.
The crosses are the unscaled values quoted by
Humphries et al (1981) and the curve is the
Maier-Saupe prediction based on a pseudo
potential derived from dispersion forces.
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capacity. In this simulation it was calculated both from
energy fluctuations and by fitting the internal energy,
U*t0t vVersus T* with a cubic spline interpolation
procedure (CERN routine E209) and obtaining the first
derivative numerically since:-

* X
C = (BU ) 4,36 <
v Tk
aT fv

The results given by both methods are plotted in Figure 4.8
with the fluctuation and spline results given by the open
circles and solid squares respectively. The results are also
tabulated in Table 4.2. As we would expect the values
obtained from the energy fluctuations are not in exact
agreement with those evaluated from the spline interpolating
routine. This is due largely to the fact that in calculating
the derivative at a particular point the spline fitting
routine uses data points before and after that point, and in
doing so calculates a more accurate value, whereas, the
value from the fluctuations relies on sampling
configurations of both high and low energy states from the
Boltzmann distribution, which would only be achieved after
prohibitively long production runs. However, both sets of
results do indeed show a divergence at the transition. This
can be accurately located at T = 2.75+0.03. From the
divergence of the heat capacity the transition can be
predicted to be of first, or weakly first order.

Since we know the exact location of the transition we
can now turn back to the plot of the internal energy and
attempt to evaluate the entropy of transition. The
determination of this quantity requires very —careful
extrapolation of the internal energy especially in the
nematic phase. However, if in this phase, we ignore the
points close to the transition where the internal energy
changes most rapidly a reasonable estimate can be made. The
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resulting value for AS/Nk which 1is independent of any
scaling factors in the temperature or internal energy is
0.70+0.10, (where the error stems entirely from the
uncertainty in measuring the change in the internal energy,
not from the wuncertainty in the transition temperature).
This value 1is larger than that obtained in the simulation
using the nearest neighbour dispersion potential of AS/Nk =
0.29+0.01 (Humphries et al, 1981) and very much higher than
that evaluated from simulations using the simple P2
potential (Luckhurst and Simpson, 1982).

For the sake of completeness the nearest neighbour
dispersion potential results for the internal energy scaled
to the same transition temperature are plotted on Figure 4.7
as the crosses and are virtually superimposable. Thus the
difference in entropy at the transition stems from the
inclusion of our dipolar interactions.

Analytic theories, for example Maler-Saupe molecular
field theory predicts a value for the entropy of transition
of AS/Nk = 0.417. This value will be compared and discussed
further later.

Orientational Properties

The only orientational property calculated directly in
the simulation was the second rank order parameter Pz,
which was evaluated from the Q-tensor averaged over
macrosteps of 50 cycles. Its temperature dependence is
shown in Figure 4.9 as the solid squares, and clearly
reinforces our previous observation of a transition at T* =
2.75. The order parameter through the transition is
essentially continuous, and has a non-zero value in the
isotropic phase. This continuity and 1low order in the
isotropic phase stems from the relatively small size of the
system. The order parameter at the transition 1is 0.36+0.15,
where again the uncertainty arises from the error in the
order parameter only. The relatively large error at the
transition can be attributed to the system existing in two
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states for the duration of the production run, i.e. in
states with order of approximately P2 = 0.15 and P2 =
0.45, as can be seen in the histogram plotted in Figure 4.10
where the frequency of P2 calculated over each macrostep
is plotted. The distribution is essentially bi-model and
similar to that observed by Jansen et al (1977). The order
parameter evaluated during macrosteps was calculated
assuming the director did not fluctuate within each
macrostep. Indeed, analysis of the data stored on magnetic
tape does show this to be true. Furthermore, the director is
accurately pinned along the z-laboratory axis for the
duration of the entire simulation in the nematic phase. This
can be seen from the virtually indentical values of P2
calculated from the evaluation of the Q-tensor at the end of
each cycle, and from P2 calculated with respect to the
z-axis directly using equation 4.34. These are listed in
Table 4.3. The greatest deviations occur close to the
transition temperature, although within experimental error
they are equal. If director fluctuations about the z-axis
occur, it would be expected that the average order parameter
calculated with respect to the z-axis would be 1less than
that calculated by averaging the Q-tensor over macrosteps,
which would be less than the average value calculated from
the Q-tensor at each cycle. Unfortunately, close to the
transition where this trend should be more evident, it was
not possible to write the entire production history onto
magnetic tape (see Table 4.1), so two of the three averages
are over different stages in the production phase. However,
at T = 2.7 B,
z-axis is very slightly less than that evaluated from the

calculated directly with respect to the

un-averaged Q-tensor. In the 1isotropic phase the order
parameter calculated with respect to the laboratory z-axis
has no physical significance since a preferred director axis
no longer exists.

Since the director is pinned accurately along the z
laboratory axis the calculation of the fourth rank order
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parameter, 54 defined by equation 4.35 becomes valid. The

results for P, are plotted on figure 4.9 and listed in Table

4.4 and againareinforce the observation of a transition from
an orientationally ordered to disordered phase.

The first rank order parameter, Pl’ was also
calculated from the data stored on magnetic tape wusing
equation 4.33, the values of which are listed in Table 4.4.
Within experimental error, all the values are equal to zero,
indicating the orientations of the dipoles are totally
random. This 1is exactly what we would hope for, since in
real dipolar nematics, the systems as a bulk have no net
polarity.

We now turn to the results calculated for the singlet
orientational distribution functions. Figures 4.11 to 4.17
show these functions as crosses for temperatures in the
nematic phase, normalised such that the area under each
graph is unity. Experimentally it has been shown that the
form of the distribution function is in accord with the

Maier-Saupe prediction, so it can be written as:-
f(b) = a exp (b P,(cosB)) 4.37
where a is related to the orientational partition function,

5t As

a test of the Maler-Saupe prediction for the singlet

and according to this theory, b is proportional to P

distribution function, the experimental data was fitted to
Equation 4.37 wusing a non-linear optimisation procedure
(CERN library routine D506-MINUITS). The optimum values for
a and b are given in Table 4.5. The solid curves on Figures
4.11 to 4.17 are the best fits to the simulated data. In
each case an excellent fit 1s obtained indicating the
success of the Maier Saupe theory in predicting the form of
the singlet distribution function. This agreement 1is in
contrast with that found for molecules interacting via a
simple P2 potential (Luckhurst et al. 1981) where fourth
rank terms had to be included in egquation 4.37 to fit the

singlet distribution function. We «now from tne thecry that
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the coefficient b is predicted to be linearly proportional

to the order parameter, 52 and inversely proportional to
*

temperature, T ,s0:=-

Here m 1is a constant related to the strength of the
potential of mean torque, or in this case equal to zyze,
where z is the coordination number, 6 (Humphries et al 1981)
Figure 4.18 shows a plot of b versus PZ/T*’ with PZ/T*’
with P2 and T* taken from the Q-tensor diagonalised at the
end of each cycle. The points form a very good straight
line, again reinforcing the success of the Maier-Saupe form
of the singlet distribution function. Linear least squares
analysis of the data points gives a slope of 12.08+0.12 and
an intercept of 0.09+0.04, with the inclusion of a point at
the origin corresponding to the isotropic phase. The value
of the slope will be discussed further in the final section.
We can now turn our attention to the pair correlation
function of rank 1, 2 and 4 defined by equations 4.28, 4.29
and 4.30 the results of which are plotted in Figures 4.19,
4.20 and 4.21 and 1listed in Tables 4.6, 4.7 and 4.8
respectively. The first rank correlation function has been
normalised by dividing the correlations by these for the
ground state, antiferroelectric configuration. This 1is
because, for G]_(r) for a completely ordered
antiferroelectric system, two types of correlations occur
depending on the coordination shell. One in which 2n dipoles
are parallel, and 4n antiparallel, giving an average pair
correlation of -1/3, and the other in which all dipoles are

parallel resulting in an average correlation of 1. Thus .-

normalisation gives the same correlations for all
coordination shells. At first sight the correlations appear
to tend to positive limiting values, which is unexpected,
since their long range 1limits should simply be the square
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root of Pl which we know 1is zero.* However, close
observation near the transition (eg at T = 2.7) does show a
slight tendency for the correlations to vanish. The reason
for the non-convergance of the dipolar correlations at lower
temperatures is not immediately clear, although one
explaination is related to the relatively small size of the
system in comparison with the 1long range nature of the
dipolar potential. Thus for our system with infinite
repeating images of itself there will always be a periodic
long range correlation present with a periodicity equal to
the cell dimension. Furthermore, the dispersion forces
contribution to the potential is mainly responsible for the
tendency to align molecules parallel with each other,
regardless of the orientation of the dipole. All the dipolar
term has to do therefore, 1is to remove the degeneracy of
orientation, with the dipole wup or down to give an
antiferroelectric state. Thus for increasing temperature,
the second rank correlations will decrease because of the
decrease in long range order, thus decreasing the first rank
angular correlations while the antiferroelectricity in the
system remains. So although, overall, the order 1in the
system 1is decreasing for increases in temperature, the
dipolar antiferroelectric correlations remain.
The second and fourth rank order parameter, P, and

2
P, can be calculated from the sguare of the long range

lgmiting values of Gz(r) and Ga(r) plotted in Figures 4.20

and 4.21. These are also given in Table 4.3 and Table 4.4
and show excellent agreement with values obtained wusing
direct calculation. One interesting feature of the plots is
the increased correlations present at r=2a where a is the
nearest neighbour separation, being especially obvious for
the fourth rank correlation function. Furthermore, the short
range correlation at r=a is less than the value at r=2a and
even less than the long range limit. This feature 1is of
particular interest in the comparison with the predictions
of the Maier-Saupe theory and will be discussed in the next
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section.

The results for the six Fair correlations functions,
Gll’i(rij), GL"L(rij) and Gal,l(rij) are plotted in
Figures 4.22 and 4.23 and 4.24 and listed in Table 4.6, 4.7
and 4.8, The solid and open symbols represent pair
correlations parallel and perpendicular to the director axis
respectively. In the second and fourth rank cases, both sets
of correlations are virtually identical, with the exception
of the nearest neighbour contributions, which for all
temperatures are smaller for correlations perpendicular
rather than parallel to the director axis. Also, as we saw
earlier, the correlations are a maximum at r=2a.

The first rank functions clearly indicate how the
dipoles within the system are correlated. The molecules
parallel to the director exhibit positive correlations for
all values of r, thus confirming the molecular tendency to
align head to tail, while molecules perpendicular to the
director show both positive and negative correlations with
nearest and next nearest neighbours antiparallel. However,
in the third shell, at r=2a, all the dipoles are parallel,
again a result consistant with the antiferroelectric nature
of our system,

We now turn to the observation of increased
orientational correlations at r=2a and a reduction for
nearest neighbours correlations at r=a. Looking at the plots
of Gél’L(r) and Gll’l(r) in Figures 4.24 and 4.25, the
short ranged nearest neighbour parallel correlations are
always less than the perpendicular values, indicating that
molecules with intermolecular vectors perpendicular to the
director tend to be more correlated than pairs of molecules
with intermolecular vectors parallel to the director. Pair
potential arguments would suggest the reverse of this is to
be expected, since both the nearest neighbour dispersion and
the dipolar terms in the pair potential favour nearest
neighbour molecules parallel to each other and to the
intermolecular vector, vrather than parallel molecules
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perpendicular to the intermolecular vector. This would
therefore reverse the order of the short range parallel and
perpendicular correlations.

However, the effect of additional correlations of r=2a
at the expense of a reduction in nearest neighbour
correlations has also been observed in the simulation of
particles on a cubic lattice interacting via dipolar forces
only (Romano, 1982), and it has recently been suggested that
for such a system, a ground state exists in which the
potential energy is exactly the same as that in the totally
ordered antiferroelectric state, although the order
parameter is less than one. (Adams, 1982). Thus it is almost
certainly the presence of the full ranged dipolar forces
that give this unexpected behaviour in the pair correlation
functions. The dominating contribution to the dipolar
potential comes from nearest neighbour interactions which
favour parallel or antiparallel orientations depending on
whether they are parallel or perpendicular to the
intermolecular vector. However, a considerable interaction
also arises from the twelve molecules in the second
coordination shell at r= v2a, and from the eight molecules
in the third shell at r= v3a. The twelve molecules in the
second shell consists of four with intermolecular vectors
perpendicular to the director axis, while the other eight
molecules (assuming them all parallel) make an angle of 45°
with the intermolecular vector. A similar situation is
observed in the third shell where all eight molecular
dipoles make an angle of 55° or 35Y with the intermolecular
vector. Turning back to the dipolar interaction equation
(Equation 4.2) the most stable state with the molecules
parallel occurs when the dipoles are parallel to each other
and to the intermolecular vector, or antiparallel when
perpendicular to the intermolecular vector. However,
assuming a reference dipole parallel with the laboratory
z-axis, then for an intermolecular vector of 45°%, 55° or 35°
the most stable configuration for the second molecule is at
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360°- 45°, 55° or 35° to the intermolecular vector. Indeed,
this is a general result for pairs of dipoles in the same
plane. Thus for a dipole making an angle @ with some

arbittary intermolecular vector, the most stable orientation
of the second dipole is at 360°-g to the intermolecular

vector. So considering a system with the director pinned
along the z-axis say, by dominant nearest neighbour
dispersion forces, then dipolar forces will assist the
stability of pairs of molecules that are parallel or
antiparallel and parallel or perpendicular to the director.
However, pairs of molecules whose intermolecular vector is
not parailel or perpendicular to the director will tend to
rotate with respect to 1it, thus destabilising the whole
system slightly. Which will reduce correlations in the
second and third coordination shells. This is indeed the
case as when Gz(r) and G4(r) are calculated for the
Lebwohl-Lasher (1972) model short range correlations are
seen to be much 1larger than their 1long range 1limiting
values. (Zannoni, 1979) Therefore, it is the inclusion of
long range dipolar forces that tend to reduce correlations
up to a seperation of about r=2a. Based on these arguments
alone however, nearest neighbour correlations should not be
reduced, because here the intermolecular vectors are
parallel or perpendicular to the director axis. Thus, the
destabilisation between a reference molecule and one in its
second shell must also destabilise nearest neighbours via
indirect correlations. The same situation arises at r=2a,
but as the molecules are more distant from the reference
molecule, the net destabilisation is 1less, therefore the
correlations appear greater. Thus a maximum is observed in
the pair correlations at r=2a, while shorter ranged
correlations are reduced. Furthermore as was previously
mentioned in section 4.2, the minimum for antiparallel
dipoles, perpendicular to the intermoclecular vector, is
actually a saddle point. Thus it 1is energetically more
favourable for nearest neighbouring molecules with this
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configuration to try and rotate to a configuration of 1lower
potential energy, so again reducing short range
correlations. This situation can be reasonably seen in
Figure 4.2.

4.5 Comparison of results with theory and other work

In the previous Chapter, we saw how the Maier-Saupe
theory fails to predict various properties at the
nematic-isotropic transition when compared with those
obtained from simulations with particles interacting via a
Uij=-eP2(cosQij) type potential. 1In particular for a six
coordinate system, the transition temperature is
overestimated by 17%, the order parameter at the transition
by 46% and the entropy of transition by over 500%. These
failures can partially be attributed to the assumptions in
the theory that both long and short range correlations are
equal, which the plot of Gz(r) in Chapter 3, has clearly
shown to be false. We know that in Maier-Saupe theory the
internal energy 1is related to the short range order
parameter o, by:-

0 = - gof 4.39
2

where z is the coordination number. However, it was observed
that U* was in relatively good agreement with simulation,
although probably due only to the cancellation of errors
caused by the overestimation of the temperature and entropy
of transition. The long range order parameter at the
transition is therefore poor due to the short range order
failure. Furthermore, Maier Saupe theory predicts the
singlet orientational distributions to depend on second rank
terms only, but as we shall see in the next chapter where
the singlet distribution 1is —calculated for particles
interacting via a second rank potential, fourth rank terms
have to be included to fit the exact functional form of the
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singlet distribution function.

At this point it is worthwhile comparing the results
with those obtained from previous work. The only similar
simulation (Humphries et al, 1981) was for molecules
interacting via a nearest neighbour dispersion potential

only. Here the nematic-isotropic phase transition was
* .
reported to be equal to TNI = 2.22, thus the dipole

interaction has shifted the transition by 21%. As we have
already seen, the results for the internal energy for this
dispersion simulation scaled to the same transition
temperature are plotted in figure 4.7 as the crosses and
show excellent agreement with the dispersion energy
contributions obtained in this simulation.

The predicted molecular field transition temperature
occurs at T*=2.642 (Humphries et al, 1981), thus, without
any dipolar terms 1in the potential the transition 1is
overestimated by 18%. However, with these interactions we
have seen that the transition is shifted to T*=2.75, now an
overestimation of only 4%. This remarkable good agreement
can be explained as follows. The transition temperature in
the molecular field theory is obtained using the
relationship for the change in free energy, AA, between the
stable and isotropic phases. ie

AR = AU - TAS 4.40

where AU is the change in internal energy, and AS the change
in entropy at the transition. We know from equation 4.39
that the short range order parameter 1is related to the
internal energy. Molecular field theory predicts that pair
correlations are independent of separation, thus Gz(r) is
the same for all r. Hence, the short range order parameter
is just the square of the 1long range order parameter
(Zannoni, 1979). As we have seen in the previous section,
the effect of dipolar interactions is to reduce short range
correlations, and indeed, this simulation does show that the
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second (and fourth) rank —correlations are virtually
independent of separation. As we have seen in Chapter 3, in
the simple Lebwohl-Lasher model, short range correlations
are evaluated to be greater than long range correlations,
thus the transition temperature in the molecular field
theory 1is overestimated as it takes no account of these
excess short range correlations. Therefore in a simulation
in which correlations are in accord with those predicted by
theory, we would expect much better agreement with the
transition temperature. Furthermore, the transition
temperature depends on the entropy (see equation 4.40).
However, the entropy is related to the n-body distribution
function (Luckhurst, 1979) which, in the molecular field
limit is a function of the singlet orientational
distribution function. We have seen that the singlet
distribution functions fit very accurately the Maier-Saupe
functional form, thus the entropy at the transition will be
in much better agreement. With good agreement for the two
terms in equation 4.40 we would expect reasonable agreement
with the transition temperature, which is indeed the case.

The Maier-Saupe predic-~tions of P, and Pa are shown

on figure 4.9 as the solid curves angzalso show excellent
agreement with the simulated values. Table 4.4 1lists the
simulated values of 54 together with the theoretical
prediction calculated wusing a value of € 1in the theory
scaled such that the second rank order parameters are
indentical. Within experimental error, the fourth rank order
parameter obtained in this way is equal to that calculated
in the simulation, thus 1indicating the success of the
Maier-Saupe theory in predicting the ratio of Pz to Pa.
However, the above arguments assume that the dipolar
terms in the pair potential in the simulations have no
direct effect on the internal energy and entropy 1in
equations 4.40. In otherwords, the dipolar terms simply
reduce short range correlations. Therefore, taking no

account of the dipolar contribution to the internal energy
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and comparing only the dispersion energy we see that
Maier-Saupe theory predicts reasonably well the dispersion
energy at the transition as shown by the solid curve in
Figure 4.23. In addition, the entropy of transition
calculated from the change in the dispersion contribution to
the total energy only is AS/Nk=0.45+0.05 which again is in
excellent accord with the molecular field prediction of
AS/Nk=0.417.

We now return to the comparison of the singlet
orientational distribution functions with molecular field
theory. Figure 4.18 shows the 1linear dependence of the
coefficient b versus Pz/T*, the slope of which is
12.08+40.12 and has an intercept of 0.09+0.04. The
Maier-Saupe prediction 1is 12, being the product of the
coordination number and a factor of 2, arising because of
the pseudo potential derived for anisotropic dispersion
forces. (Humphries et al, 1981). Therefore again the dipolar
term in the pair potential has fortuitiously given very good
agreement with molecular field prediction.

We can now make a brief comparison with other theories
proposed to attempt to explain the effect of dipolar
interactions on nematic order. The earliest work, although
not designed specifically for the explaination of nematic
order was developed by Krieger and James (1954). This work
contains all the important elements of the Maler-Saupe
theory, together with the effect of P
assume an interaction potential of the form:-

1 interactions. They

U(Bij) = APl(cosBij) + BPz(cosBij) 4.41
for various ratios of the coefficients A and B. Obviously
for A=0 the Maier-Saupe form 1is reached. Although this
pseudo-potential is not strictly representative of a true

dipolar interaction, since the P, interaction, like the P

1 2
term 1is totally independent of the orientation of the

intermolecular vector, it does indicate that for certain
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ratios of A/B various transitional effects do occur. For
example for small values of A, at temperatures below the
nematic-isotropic phase transition, a second order
transition occurs in which the dipoles in the system become
disordered. For larger values of A, however, this second
order transition collapses and now the temperature of the
nematic-isotropic transition increases and approaches
infinity as A tends to infinity. This 1is obviously the
region in which this simulation was carried out, and is
clearly in accord with our observations of the increase in
transition temperature with the 1inclusion of dipolar
interactions. However, because of the extreme simplicity of
this theoretical model it is not very informative to make a
more quantitative comparison. This theoretical work also
includes a refinement, in that Chang’s constant coupling
method (Chang, 1937) 1is applied, 1ie the effect of an
infinite field of molecules on the orientations of two
molecules rather than one, as in the simple molecular field
treatment. The predictions however are still in agreement
with a shift in the transition temperature. This later
treatment has also, been applied (Madusudana and
Chandrasekhar, 1975) to the relatively successful prediction
of the temperature dependence of dielectric constants. To
date, however, a more realistic analytic theory describing
the effects of true dipolar interactioas has yet to be
developed.

Finally in this chapter we make a tentative prediction
of values for the kirkwood correlation factor, 9y for our
system, and in particular gll and glf This can be defined as
(Kirkwood, 1939, Ben-Reuven and Gershon, 1969):-

o3
Earlier we have seen how the convergence to zero of the

first rank pair correlation was hampered by the long range
antiferroelectricity in our system caused by the regular
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repeating periodicity of the boundary conditions. Therefore
the integral in thetabove equation, at least for our system,
will never converge, thus making it impossible to estimate
g;- However, we can make guesses at thﬁlvalues of gll and gl
from the —correlation functions Gy (r) and GT(r)
respectively. The wunnormalised plot in figure 4.22 shows
that perpendicular to the director the molecules tend to
align antiparallel, thus, the integral in equation 4.42 will
vanish, giving an average g, correlation of about 1, whilst
molecules parallel to the director are all parallel, giving
in our case gll less than or equal to 8. For larger systems
this value will very slowly converge to some very large
value.

Finally, a few concluding remarks related to the
inclusion of dipolar interactions into the total pair
potential. We have seen that with dipolar interactions
present all the essential properties previously simulated in
anisotropic systems remain. Furthermore, we have seen that
they tend to destabilise short range interactions giving,
fortuitiously maybe, excellent agreement with the
predictions of Maier-Saupe theory. Therefore this simulation
has allowed wus to understand more fully the effect of
various assumptions made in such a simple theory, and
hopefully this understanding can be applied to future
theories.
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Chapter 5

The Effect of External fields

5.1 Introduction

As we have seen in Chapter 3 tne calculation of
important distribution functions in computer simulations of
nematic liquid —crystals can be difficult because of
fluctuations in the orientation of the oirector. In a real
nematic, in the absence of any external force the director
orientation appears isotropically distributea, so
experiments are usually conducted 1in the presence of
external fields, where a combination of two effects occur.
In magnetic fields greater than about 0.1T the director
becomes aligned, either parallel or perpendicular to the
field. At this stage the director still fluctuates, although
on average it is fixed. However, on increasing the field the
director fluctuations eventually become quenched and finally
at fields much higher than present technology will permit,
the molecular fluctuations are predicted to become quenched.
The quenching of the director modes has been observed
experimentally by Poggi and Filippini (1977) in 7CB
(Malraison et al 1980). They used magnetic fields up to
120K0e and observea that the optical birefringence (which is
approximately proportional to the order parameter) increased
linearly with the field. Indeed, this increase in orger as a
result of the quenching of the director fluctuations has
been preaicted theoretically by de Gennes (1974). More
recent work by Keyes and Shane (1979) has lead to the belief
that at very large fields a critical point would occur,
since they observed that the latent heat of the
nematic-isotropic phase transition reduces with increasing
field. However work by Rosenblatt (1982) on 8CB in fields up
to 187K0e suggests that the critical point is not as close

as it was originally believed.
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Molecular field theory, for example (Wojtowicz and
Sheng, 1974) predicts that on increasing the external field
in a nematic system, the latent heat of transition should
indeed decrease until a critical point 1is reached when the
nematic and ’isotropic’ phases become identical. This point,
however will be discussed in detall later in this chapter.
To date only one simulation has been reported for an
anisotropic system in an external field (vieillard-Baron,
1974), although in this case the field was excessively large
resulting in the director pinning at the expense of an
almost total quenching of the molecular fluctuations.

The objectives of this chapter are therefore as
follows: to investigate the magnitude of the external field
required to quench the director fluctuations, without,
hopefully, affecting the molecular modes and to look at the
behaviour of the system in a large magnetic field. The first
point would therefore allow the calculation of various
distribution functions, for example, the singlet
orientational distribution function and in addition, the
pinning of the director would in principle provide a route
to the calculation of the Frank elastic constants, either
directly using a Freedericksz transition techngiue
(Freedericksz and Tsvetkov, 1933) or indirectly from the
singlet distribution function and adirect correlation
functions (Poniewierski and Stecki, 1979).

5.2 The Model
As in Chapter 3, the relatively sucessful

Lebwohl-Lasher (1972) has been usea with the system subject
to an external field. The molecules, therefore, are taken to
be cylind-rically symmetric with their centres located on
the sites of a simple cubic lattice and interacting via the

pair potential:-

U.. = .. 3
ij = €ijFalcosB; ;) 5.1
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where P2(c058ij) is the second Legenare polynomial, Bij is
the angle between the symmetry axes of molecules 1 and j,
and eij is the positive constant, e, if molecules 1 and j
are nearest neighbours, but is zero otherwise. In order to
incorporate a magnetic like external field a term is adoed

to the pair potential such that each molecule experiences a

second rank interaction of the form:-

field ’ 5.9
Ui/e = -XPz(cosBi) .

where 3; is the angle between the symmetry axis of the ith

molecule and the direction of the applied field. X is a
constant governing the strength of the external field, which
for a magnetic field will be a function of the flux density,
B, and dependent on the anisotropy of the diamagnetic
susceptibility AX. In ‘these calculations we take X to be
positive so that the molecules will tend to lie parallel
with the fiela. The total potential energy of a system of N
molecules is:-

1 q o 4
Utor/® = 7 2L L Pylcoshy ) - )Ppleoshy 27
i ] i
where the factor of 1/2 arises because all 1 and j
interactions are counted twice in the double summation. We
can also define the average internal energy per particle

U* as:-

_ % -
u = U/Ne 5.4

Throughout the simulations a reduced temperature is

used, defined as:-

*
T = kT/¢ 5.5
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In order to investigate the pinning of the director by
the external field two methods can be adopted. The Q-tensor
could either be averaged over the entire production stage,
from which the average director could be extracted from the
eigenvectors, or two order parameters could be calculated,
one with respect to the field defined as:-

sfield —~T————*7
P = P COSBi 5-6

2 - 2

where Bi’ is as defined previously and the other order
parameter with respect to the director.

In this simulation the second method was used, since
averaging the Q-tensor over the entire production run
presents some computational problems. The order parameter
with respect to the director axis was calculated by setting
up the Q-tensor (Buckingham, 1967) at the end of each cycle

(1 cycle = N attempted moves), where:-

. 3 (3121)1éi)-aab
i-1

2 5.7
Q )/

L (1)

the direction cosines describing the orientation of the 1

are
th

and a and b denote the laboratory x,y and z axes.

molecule with that laboratory axis. The largest eigenvalue
of the diagonalised tensor, the order parameter, defined

as:-

p - - .
P Pzicoseli 5.8

was averaged at the ena of each cycle over all cylces during
the production stage of the simulation. Here B; is the angle
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between the ith molecule and the director axis. Clearly for
a system in which the external pinning field 1is zero, there
will be no prefered director orientation, thus 52 (field)
will be zero if sufficient configurations are generated, and
conversely in a system in which the director is totally
pinned both order parameters will be identical.

5.3 Computational details

Using the Lebwohl-Lasher model described earlier three
different systems were studied.

System A
Here the properties of 1000 particles were
evaluated as a function of the applied external
field at an angle of 10° to the 1laboratory
z-axis and with an azimuthal angle of 0°. The
temperature was kept constant at " - 1.0.

System B
This was identical with system A except that in
order to achieve a smaller perturbation to the
order with the pinning of the director, a larger
system of 8000 particles was studied. The field
was applied along the laboratory x-axis.

System C
In this case, the properties of 1000 molecules
were investigated as a function of the reauced
temperature T*, but with the external field
constant at a value of X =0.2 parallel to the
laboratory z-axis.

For systems A and C, the angular variables were stored
as co0s@ and @, where @ and @ are the spherical
polar angles defining the orientations of the molecular

symmetry axes in the laboratory frame. A new configuration
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was generated initially in the following way. The new value
of cos@ was chosen from a distribution of random numbers
in the range of +1 to -1, while the azimuthal angle @ was

incremented according to:-

4 = IZold A% 5.9

where again & 1is a random number uniformly distributed in
the range of +1 to -1 and A 1is the maximum permitted
displacement. However for these two systems (A and C), in
which the external field is at 10° and parallel with the
z-axis, it was found 1impossible to achieve a good
acceptance-rejection ratio. This failure stems from the
alignment of the director close to the z-axis, since the
energy of such a large system is almost totally independent
of the azimuthal angle of the molecules, the angle which we
use to control the acceptance-rejection ratio. This
difficulty was overcome by incrementing cos8 in a similar
way to @, but ensuring that its value was maintained
within the permitted limits of +1 and -1, such that if it
exceeded +1 by an amount X then a value of -1+X was taken,
and less than -1 a value of 1-A was used. This can be
expressed mathematically as:-

cosQnew = cosQOld + AQE 5.10

where A8 1is the maximum allowed displacement for cos@.

If cosQnew was greater than +1 or 1less than -1, the

following action was taken.

cos8 ., = cosenew—ngn(cosanw) 5.11

<

where sgn ( ) is a function returning the value of +1 and
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-1 if Cosgnew is positive or negative respectively. An
alternate solution would have been to apply a field at a
much larger angle to the z-axis. Indeed, this was the case
in System B where the field was applied parallel with the
x-axis, although in this simulation the molecular
orientations were stored as their respective direction
cosines. Thus new orientations were generated using the
algorithm of Barker and Watts (1969), in which a laboratory
axis is selected at random, and a random rotation of a
controlled maximum amount performed about this axis. (see
Chapter 2)

In all three systems the starting configuration was
taken to be a completely ordered state with the particles
parallel with the laboratory z-axis. In systems A and B the
first simulations were with an external field strength of
X=0.1 with T*=l.0. In both cases the first run consisted of
an initial equilibration stage of approximately 10 million
configurations, during which time the eigenvectors from the
Q-tensor did indeed show that the director had reorientated
parallel with the external field, and a production run of 10
and 48 million configurations for systems A and B
respectively. Subsequent runs at new fleld strengths were
generally started from the configuration taken at the end of
the production stage from the simulation with the closest
value of X, with equilibration stages of typically 2 and 16
million configurations, and production stages of 10 and 48
million configurations respectively for systems A and B. In
addition, for system B, some of the runs at lower external
field strengths were started from totally random states to
ensure that the director pinning was caused by the field and
not as a consequence of the size of the system causing the
director to remain fixed. For system C, the first run was at
T*=l.0 with typical equilibration and production stages of 2
and 8 million moves respectively. The starting configuration
for additional higher temperatures was taken as the final
production stage configuration at the <closest, lowest

temperature.
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Furthermore, in systems A and B, a run was performed in
which the singlet distribution function was calculated. This
as achieved by dividing the range forIcosB} into 100
equal intervals. At the end of each cycle, the number of
particles with orientations within these intervals was
evaluated and averaged over 1000 cycles for both systems.
For model A the singlet distribution function was calculated

at a reduced temperature of T*=1.1146 (T*/T*NI = 0.997,
where kTNI/e = 1.118 (Zannoni, 1979) and the director pinned
in an external field of X =0.1. This temperature

corresponds to a reduced temperature similar to that used in
the Xx-Tay scattering determinations of f(B) for
4-4’-di-n-octyl-oxyazoxybenzene (Leadbetter and Norris,
1979). In system B however, a temperature of T*=1.0 and an
external field of X=0.05 was used.

5.4 Discussion of Results

For systems A and B, the observed dependence of the two
order parameters are plotted in Figures 5.1 and 5.2, with

field and P

the solid and open squares representing ﬁ2 2
respectively. (Both sets of results are also listed in
Tables 5.1 and 5.2). The internal energy, 0¥ is plotted in
Figures 5.3 and 5.4 respectively for the two systems. In
Figure 5.1 for system A which contains 1000 particles, it
can be seen that the director is not pinned until X ~0.2,
with the order parameters equal to about 0.69 in contrast
with the zero field value of about 0.63. Hence the director
becomes pinned, although at the expense of a 7% increase in

the orientational order parameter P However for system

B, where the two order parameters afe plotted in Figure 5.2
as a function of X, a much lower external field is required
to pin the director, with X=0.01 and a perturbation to the
order parameter from 0.6l at zero field to that of 0.62 at
X=0.01, an increase of only 2%. This result is in accord
with our expectations in that as the number of particles in

the system increases, the pinning field will decrease by a
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proportional amount, since the pinning force arises directly
from the field interactions which are dependent on the
number of particles in the system. Furthermore, as the size
of the system increases we would expect the perturbation to
the order parameter to be less at the point at which the
director becomes pinned. Experimentally this effect has been
observed, where, for fields of wup to 187k0e 1in 8CB
(Rosenblatt, 1982) the order parameter does increase
slightly although as a consequence of the quenching of
director and not 1in our case as a result of moleculer
fluctuations.

In these simulations, if we assume the anisotropy in
the diamagnetic susceptibility to be 1.25x10"7 erg &% cn™?
(Stinson and Lister, 1970) and kT/e = 1.32116 for the
molecular field transition temperature, then a simulation
field of X=0.1 actually corresponds to a real magnetic field
of about 100 Megaoersted, thus the fields 1in these
simulations actually correspond to very high unrealistic
values. (Wojtowicz and Sheng, 1974).

The results for the singlet distribution functions
calculated for systems A and B are shown in Figures 5.5 and
5.6 as the crosses. These agree qualitatively with the
functions measured experimentally (Leadbetter and Norris,
1979) and a quantitative comparison will be made later.

Finally, we turn to the properties calculated for
system C. Figure 5.7 shows the temperature dependence of the
order parameter 52 as the solid squares at a constant
field strength of X=0.2, and Figure 5.8 shows the total
internal energy as a function of T* as the solid sguares. In
addition these results are listed in Table 5.3. The open
symbols marked on both plots indicate the results observed
for the same system in the absence of an external field
(Zannoni, 1979). Two features immediately obvious are that
at a specific temperature the internal energy and order
parameter are increased by about 15%, and the order
parameter and 1internal energy are much more continuous
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B/deg

The singlet orientational distrjbution function
calculated from system A with T = 1.1146 and
®=0.1. The lines in 5.5%5a and 5.5b show the fits
obtained using equations 5.25 and 5.27
respectively.
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The singlet orientational distribution function
calculated from system B8 with T = 1.0 and X =

0.05.

The lines in 5.6a and 5.6b show the fits

obtained using equations 5.25 and 5.27
respectively.
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Fig
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The temperature depencence of the order
parameter calculatea for system C, shown as the
solid sqguares, at an external field of X= 0.2.
The open sguares are results obtained by Zannoni
(1979) with X =0.0. The dashed and solid curves
are the Maier-Saupe preoictions at the same
reduced temperature and scaled to the same zero
field transition temperature, respectively.
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18 20

The temperature dependence of the total internal
energy, calculated for system C, shown as the
solid squares. The ,’X’ and ’+’ represent the
contributions to U arising from nearest
neighbour and field interactions respectively,
and the open sguares are results obtained by
Zannoni (1979) on a similar, system with™X = O.
The dashed and solid cyrves are the Maler-Saupe
predictions at the same reduced temperalure and
scaled to the same zero field transition
temperature respectively.




through the transition as compared with the zero field
simulation data.

At this point we can determine the heat capacity at
constant volume using a numerical spline fitting procedure
and obtaining the derivative of the internal energy with

respect to temperature, since:-

* (aD* , T* 5.17
c, = /3T ), .
*
The solid squares on Figure 5.9 indicate CV calculated in
this manner, and show a maximum at ™ - 1.30+0.05. These

values are also listed in Table 5.3. At the maximum value of
CV there is no divergence and this feature will also be
discussed in the next section, where a comparison with
molecular field theory will be made. The open sguares
correspond to CV in the absence of an external field.
(Humphries, 1982).

5.5 Comparison with Maier-Saupe molecular field theory

As we have seen in earlier chapters, the anisotropic
single particle potential of mean torque, in the absence of

any fields or higher rank terms is predicted to be:-

U(g) = —ez}BZPZ(CQSB) 5.13

However, in the presence of an external field of the form

used in these simulations this becomes:-

U(B) = —e(z§2+x)@gcosﬁ) 5.14

where z is the coordination number, which is 6 for a simple
cubic lattice. The Maier-Saupe form of the singlet
distribution function is therefore:-
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F(g)

It

exp(-U(p)/kT)

exp[e/kT(z§2+X)P2(cosﬂj/z_ 5.15

where, Z, the orientational partition function is:-

7 = fg exp e/kT(zpzﬁnPZ(coss) dcosB 5.16

Hence the second rank order parameter in an external field
is:-

P, =‘Zflfg Pz(cosB) exp(e/kT(z§2+§§%ﬂcoss))dcosB 5.17

and the internal energy per particle is:-

0T = (2P, + 2XP,)/2 5.18

The predictions using this theory for the 1long range
orientational order parameter as a function of external
field at a reduced temperature of kT/e = 1.0 is shown as the
solid curves in Figures 5.1 and 5.2. As we have seen in
Chapter 3, the molecular field theory overestimates the
nematic-isotropic phase transition when compared directly
with  computer simulations, thus, at similar reduced
temperatures the theoretically predicted order parameter is
expected to be overestimated. This prediction is confirmed
by the disagreement between the solid curves and data points
in Figures 5.1 and 5.2. However, if the error arising from
the transition temperature overestimation is removed, by
scaling to the same zero field transition temperature
reasonably good agreement 1is found, as indicated by the
dashed lines in these two plots. In this case, the nematic
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3 . . . *
isotropic transition temperatures were taken to be T =

1.118 and 1.125 for systems A and B respectively. NI
A similar comparison can be made for the internal
energy with the aid of equations 5.17 and 5.18. The results
of the theoretical predictions at the same reduced
temperature are shown as the solid curves in Figures 5.3 and
5.4. Surprisingly at the same reduced temperatures of Th =
1.0, much better agreement 1is obtainea than when the
temperature in the theory is scaled to the same zero field
transition temperature, as shown by the dashed curve in
Figures 5.3 and 5.4. This unusual reversal arises from the
fact that for our model system the internal energy 1is
related to the short range order parameter 0, and the long

range order parameter by:-

- - P .19
g = (zc2 + 2XP2)/2 5,19

where

o, = szcoseijj 5,20

and 1 and j are nearest neighbours. We know from Chapter 3
that moleculer field theory underestimates 0, and
overestimates the nematic-isotropic transition temperature
and the order parameter at the transition. This results in a
fortuitious —cancellation of errors, since at the same
reduced temperature the order parameter will be
overestimated while the short range order parameter 1is
underestimated, therefore giving good agreement in the
simulated and predicted value of U*. Consequently, when we

remove the overestimation in P, by scaling to the same

2
zero field transition temperature, the failure in the short
ranged order parmeter becomes apparent by significantly
underestimating the internal energy.

Before comparing system C with the molecular field
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theory it is worth examining the theoretical predictions
further., Figure 5.10 -shows the temperature dependence of the

order parameter P calculated using equation 5.17, at

’
different externalzfield strengths. At zero field, the curve
describing ﬁz bends back on itself and as we have seen in

Chapter 1 actually goes through a metastable state, while
with large fields the curve 1is continuous and only
approaches zero at infinite temperatures. Furthermore, at

X=0 a solution exists at all temperatures with 52:0,

although this solution vanishes 1in the presence of an
external field. In order to locate and investigate the
stability of the ordered phases, the Helmholtz free energy
must be evaluated. We start with the entropy, S, which,

according to molecular field theory is:-

S = -Nk<In(f(B))> 5.21
YA
where, as before
f(B) = exp(e/kT(zP2 +x)P2(0058))/Z 5.22
Hence
S = -Nk e(zP, +X)P, + NklnZ 5.23
— 2 2
kT
Thus
A =1z ¢ P
NkT 2 kT 2 -InZ >+ 24

which is identical to the expression for the free energy in
the absence of an external field.
The difference 1in free energy, AA/NkT, between the

phase of order, and a phase of zero order 1is plotted in
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The temperature dependance of the heat capactity
at constant volume for system C, shown as the
solid squares. The opern squares are results
obtained in the absence of an external field
(Humphries, 1982). The dashed and solid curves
are the Maler-Saupe predictions calculated at
the same reduced temperature, and scaled to the
zero field transition temperature, respectively.
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1.2 14 KT/e 16 18

The orientational order parameter, ﬁ? as a
function for kT/e for field strengthg ranging
from 0.0 to 0.5 as predicted by the modified
Maier-Saupe theory via eguation 5,17, with a
coordination number of €.
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Figure 5.11 as a function of reduced temperature, kT/e, for
various external field strengths. As we have seen in Chapter
1 for the normal Maier-Saupe theory, the self consistancy
relationship given by equation 5.17 for P2 has a solution

of P2 = 0 for all temperatures provided X=0, and in the

range of kT/e = 1.2 to kT/e = 1.337 a third non-negative
solution of P2 exists. This can be seen in Figure 5.10 for

the curve with X=0. To determine which of these ordered
phases are stable we have to examine the free energy. Thus,

looking at the free energy, starting at the extreme left
hand side of the X=0 curve 1in Figure 5.11 the curve
gradually increases to a maximum at kT7/e=1.337 and then
suddenly drops back and remains positive until kT/e=1.32116.
This 1is the region in which a third non-negative lower

solution of P, exists, and because the free energy of this

portion of thg curve is the larger value of the two possible
solutions it 1is actually metastable. The free energy then
becomes negative and the stable nematic phase is reached. In
addition, a solution in which AA/NkT=0 exists corresponding
to a stable isotropic phase at temperatures greater than
kT/e=1.32116. Thus a first order transition between an
ordered and an isotropic phase occurs at kT/e=1.32116.

When external fields of up to X =0.063 are applied a
similar situation arises. Here, as with the zero field case,
a first order transition occurs, although now from the
nematic phase, to, a phase of lower order, a paranematic
phase. In addition, a metastable state also exists as
indicated by the ’loops’ in the free energy. On increasing
the field strength the change in the order parameter at the
transition gradually decreases since the order in the
paranematic phase increases and P2 in the nematic phase
decreases. Thus the 1latent heat of transition decreases
until at a value of X=0.063 a critical point occurs in which

the transition no longer occurs as first order. Thus at this
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critical point the transition becomes second order
(Wojtowicz and Sheng, 1974) although for higher fields no
transition occurs at all since both phases now become
identical. This critical point can be more readily seen in
Figure 5.12, where the first order phase transition
temperature, between the nematic and paranematic (or
isotropic at X=0) is plotted as a function of the applied
external field. On the lower right hand side of the curve
the stable nematic phase exists while on the other side the
field induced paranematic phase 1is stable. Therefore at
fields greater than A= 0.063, no transition occurs between
these two phases.

Returning to the simulation of system C, it is clear
that for a field of X=0.2 we are well beyond the critical
point. On the basis of molecular field theory alone we would
not expect a transition to occur. Indeed the plots of the
order parameter and internal energy as a function of
temperature in Figure 5.7 and 5.8 support this conclusion,
since they are more continuous through the transition region
than we would expect for similar sized systems interacting

via a simple P, potential.

The dashéz curve 1in Figure 5.7 shows the molecular
field prediction and as expected overestimates the order
parameter at the same scaled temperature. As before, to
remove the failure of the overestimation of the transition
temperature the solid curve shows the dependence of the
order parameter with the temperature scaled such that the
transition temperatures at zero field are identical. In the
region of high order, very good agreement is now found,
although in the high temperature region the molecular field
prediction underestimates the order. This failure probably
arises from the known failure of the simulation using the

normal Lebwohl-Lasher model to obtain a zero order parameter
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Fig 5.11 The Helmholtz free energy, A/NkT as a function
of kT/e for field strengths ranging from 0.0 to
0.1 as predicted by Maier-Saupe theory uslng
equation 5.24 with a coordination number of 6.
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Fig 5.12 The transition temperature of the Maler-Saupe
theory in an external field as a function of the
external field for a coordination number of 6.
Between fields of X = 0 and X = 0.063 a first
order phase transition occurs, although this
ceases to exist for higher field strengtns.
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in the isotropic phase due to finite size effects.

The internal energy calculated using equation 5.18 1is
compared with the simulated values in Figure 5.8. As before,
the dashed curve represents the molecular field prediction
evaluated at the same scaled temperature. In the low
temperature region, of high order, the agreement 1s very
good, again due to the fortunate cancellation of errors
explained previously in the discussion of system A and B.
However, the agreement with the theoretical values at high
temperatures is very poor. This 1is a consequence of the
theory predicting the short range order parameter, Py to be
zero in the isotropic phase in the zero field case, where in
fact it is not. From equation 5.19, which is

*

g = -(zo, + 2X§2)/2 5.19

2

the internal energy depends predominantly on the value of
Oys since in this case X=0.2 and P2 is less than 1, while
z=6. Using this equation the energy contributions from the
short range order and the external field on the long range
order have been evaluated and are plotted as the X’ and '+’
respectively on Figure 5.8. As expected the contribution
from the external field is very small. An interesting
observation is that 1in the high temperature region, where
the short range order 1is poorly estimated, the long Trange
order is reasonable well predicted by the theory so it is
not surprising that the agreement between the field
contribution (which depends on 52) is good in this
temperature region.

In comparing the thermodynamic properties of the theory
and simulation we now turn to the heat capacity calculated
at constant volume. Figure 5.9 shows the Maier-Saupe
prediction calculated using a finite difference procedure to
evaluate (au/aT)v. The curve is continuous throughout the
entire temperature range and 1is 1in accord with the
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observation that at ¥X=0.2 the system is above the critical
point beyond which a transition occurs between a phase of
high and lower order. Furthermore, the shape of the curve is
almost identical to that calculated by spline fitting the
internal energy from the simulation, given by the solid
squares, thus confirming the non-existance of a transition
in the simulation.

Finally, we turn out attention to the singlet
distribution functions obtained from the simulations of A
and B. These results are plotted as the crosses in Figures
5.5 and 5.6 for systems A and B respectively. In
4’4-di-n-octyloxyazoxybenzene, the form of the singlet
orientational distribution function is found to be similar
to that predicted by molecular field theory. (Leadbetter and
Norris, 1979). Hence

f(B) = exp(apz(cosﬁ))/Z 5.25

In order to fit the simulated singlet distribution function,
several methods could be adopted, for example, taking logs
of both sides would allow a linear least squares analysis.
However, this method proved unsatisfactory as it resulted in
a much better fit to the 'tail’ of the distribution
function, which has less physical importance. Alternatively
a non linear least squares fit could have been used,
although in this case, problems arose because the fitting
procedure entered different minima on the error surface for
the 1000 and 8000 particle systems, causing inconsistancies
to arise in the direct comparison of the parameters a and Z.
In addition, two points could have been extracted from the
simulated function and used simultaneously in equation 5.25.
This is the method which was finally adopted, and since the
long tail is both statistically and relatively physically
unimportant, the two points chosen were the first point at
B=0, and the point at half height, i.e. the point at f(B) =
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f(B)max/2. This method has the advantage of giving a
consistent fit to both sets of simulated data. The fits
obtained in this manner are plotted in Figures 5.5a) and
5.6a) as the solid curves for systems A and B respectively
and are seen to be good, although not perfect. The values
for a and Z for systems A and B are given in Table 5.4. The
value of a=2.21 for system A agrees reasonably well with
that obtained experimentally of a=z2.0 at the same reduced
temperature (Leadbetter and Norris, 1979). However, in view
of the complexity of the pair potential for a real nematagen
as compared with our idealised model system this comparison
will not be taken further.

We can however, compare the results with the
predictions obtained from the molecular field theory, since,

in this case:-

a = s/kT(sz +%) 5.26

Firstly for system A, if we set kT/e = 1.1146 (as used in
the simulation) the molecular field theory yields an order
parameter, 52 of 0.698 at X=0.1, which gives a=3.87.

Again, this overestimation of ©55% 1s exactly what is
expected since the theory overestimates the transition
temperature, and hence at the same scaled temperature will
over predict 52. A similar behaviour is seen in system B,

where the simulated value of a is 2.69 whereas, molecular
field theory gives it as 4.56 an overestimation of 52%. This
overestimation can be in part accounted for by scaling the
systems to the same transition temperature, in particular,
the transition temperature at zero field. Thus for system A,
the transition temperature in the zero field model occurs at
kTNI/e=l.118 (Zannoni, 1979). Using the molecular field
prediction of kTNI/s = 1.32116 allows us to scale with these
temperatures giving a value of a=2.45, which differs from
the simulated value by only 10%. However, doing the same
scaling for the larger system B, wusing, the value of
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kTNI/e=1.127 (see Chapter 3) for the simulated transition
temperature, gives an unexpected proportionally higher value
of a=3.41, a difference of 24%. The origin of the worse
prediction for a in system B is not immediately obvious. One
possible reason is as follows: without any scaling we would
expect the coefficient, a, to be overestimated by molecular
field theory, since at the same reduced temperature theory

gives a higher value of P, which is related directly to a

(c.f. Equation 5.26). Fuithermore, the order parameter at
the theoretically predicted transition temperature is
overestimated, and also at the two temperatures used in the
simulation, in systems A and B, where molecular field theory
” to be 0.698 and 0.752, a difference of 30% and

19% respectively from the simulated values of 52 = 0.52

predicts P

and 0.611. Thus when scaling to the same zero field
transition temperatures two effects have to be considered.
Although the error caused by the overestimation of the
transition is removed, an error caused by the overestimation
of the order parameter has to be appreciated. The values of
Pz when scaled to the same transition temperature at zero
field, however, are 0.524 and 0.656 for systems A and B
respectively, so actually scaling to the same transition
temperature, fortuitiously removes the error in the order
parameter more in system A than in system B which is at a
lower temperature. Hence the agreement simply by scaling to
the same transition temperature is better in system A than
in system B.

This effect can also be seen if a third comparison is
made, this time by removing the error associated with Pz.

So comparing at the same P, values gives the coefficient a

in the theory as 2.45 and23.05 respectively for systems A
and B. In this case a similar proportioned overestimation of
10% and 12% respectively is observed for both systems.

The fact that good agreement cannot be made whatever
scaling is performed to remove various sources of error,'is

probably as a consequence of the singlet orientational

155




distribution function not obeying the Maier-Saupe molecular
field form exactly, which consists of second rank terms
only. However, in general we may expand the potential of
mean torque, U(R) as the infinite series:-

U(B)/KT = } a P (cosB)
L(even)Z0 5.27

If we truncate this series to include second and fourth rank
terms only, an approximation which has been proved
successful by Humphries et al (1972), then we are able to
obtain perfect agreement for both singlet distribution
functions as shown by the solid curves in Figures 5.5b) and
5.6b). The fits were obtained wusing a non 1linear least
squares procedure. In this case the values of Z, a, and a,
are 220+5, 2.70+0.06 and -0.16+0.02 for system A, and
205+50, 3.43+0.06 and -0.27+0.02 for system B respectively.
For both situations, although the simulation consists of
second rank interactions only, higher rank terms 1in the
potential of mean torque have to be included 1in order to
predict the exact form of the singlet distribution function.
Furthermore, it has been shown that fourth rank terms are
required to fully account for the temperature dependance of
52 measured experimentally, (Humphries et al, 1972) thus
justifying the addition of fourth rank interactions in the
pseudo potential of mean torque. However, this could be as a
consequence of effects from the alkyl chain present in the
molecules wused for comparison, since 1in
4-4’dimethoxyazoxybenzene, the ratio of 84/82 was -0.187,
although for the diethyl analogue the best ratioc was found
to be +0.116.

Finally a few concluding remarks. In this Chapter we
have seen that we are able to pin the director in our model
liquid crystal and for the 20x20x20 particle system, the
perturbation to the order parameter is minimal. This allows

Very easy calculation of the singlet orientational
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distribution function and the director pinning will be
exploited further in the next chapter. Furthermore, the
properties of the system beyond the magnetic critical point
have been investigated and they agree within our
expectations of the predictions of the molecular field
theory.
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Chapter 6

Computer simulation studies of surface alignment in nematics

and their elastic constants

6.1 Introduction

One of the most common methods used to measure the
Frank (1958) elastic constants of a nematic liquid cystal is
to observe the Freedericksz effect. This technique invalves
subjecting the nematic to two opposing torques (fields), one
of which 1is inhomogengous. Normally this 1is achieved by
sandwiching the nematic between two glass plates, treated in
such a way that the director aligns either parallel or
perpendicular to the surfaces, and applying a magnetic or
electric field orthogonal to the director axis. At low
external fields no change 1is observed and the director
remains pinned by the surfaces. However, at a critical field
the director at the centre of the cell starts to realign and
continues to do so here and throughout the rest of the
nematic as the field is increased, this effect is shown in
Figure 1.5. From a knowledge of the geometry of the surface
pinning forces, the direction of the external field and the
value of the critical field one of the three elastic
constants can be calculated. Further information about one
of the other two elastic constants can also be obtained from
the way in which the director changes beyond the critical
point with varying external field.

The aim of this chapter is therefore twofold: Firstly
to simulate the effect of surface aligning forces on the
director, order parameter and thermodynamic properties for a
nematic and secondly to attempt to observe the Freedericksz
transition and hence evaluate the elastic constants.

The model nematogen used for the Monte Carlo simulation
is the relatively successful Lebwohl-Lasher (1972) model.
This model has the advantage of being relatively simple
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while retaining all the wessential ©physics required to
describe the major physical properties (with the exception
of spatial disorder) of a nematic 1liquid crystal.
Furthermore, it can be compared easily with the predictions
of the Maier-Saupe molecular field theory. The model
consists of cylind-rically symmetric molecules with their
centres of mass restricted to lie on the sites of a simple
cubic 1lattice. The molecules 1interact via the pair

potential:-

Uij = ‘€ijP2(C°SBij)’ 6.1

where Bij is the angle between the symmetry axes of
molecules i and j, PZ(COSB) is the second iLegendre

polynomial and e,. is a positive constant, e, if molecules i

and j are nearestjneighbours, but is otherwise zero. Inorder
to incorporate surface forces, the model was modified
slightly. The system was divided up into layers defined to
lie parallel to the x-y plane. Surfaces were introduced
simply by removing the periodicity in the =z direction,
although retaining normal periodic boundary conditions in
the remaining two dimensions. Surface pinning was achieved
by fixing the molecules in the top and bottom layers in some
predefined direction. In reality this situation can be
envisaged in two ways, either as the surface molecules
exerting an infintte field prooucing total order in the
first layer of molecules or alternatively, the perfectly
ordered layers can be regarded as being the surface which
applied a weaker constraint to the system bulk.

In order to simulate the Freedericksz transition an
external magnetic field interaction was applied identical to

that used in the previous chapter, ie

field ’
Ui /e = -XPz(cossi), 6.2
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where X is a positive constant controlling the field strength
and B; is the angle between the molecular symmetry axis and
the external field. Thus for molecules with a positive
anisotropic diamagnetic susceptibility the molcular symmetry
axis aligns parallel with the field.

6.2 Molecular field theory

One of the assumptions used in the derivation of the
Maier-Saupe molecular field theory, is that the system has
uniaxial symmetry about the defined z-axis. Clearly, the
Freedericksz transition removes the uniaxial symmetry and as
a consequence this theory cannot be wused in this case.
However, it can be employed to describe the effect of surface
forces on a nematic where uniaxial symmetry does prevail. We
begin with the generalised expression for the potential of
mean torque (Humphries et al, 1972):-

_ N
U(B) = ) uLPLPL(cosB). 6.3
L(even)
To reduce the infinite number of terms in this expression we
shall restrict our attention to second rank interactions

only and so u, can be replaced by ze where z is the lattice

2
coordination number giving:-

u(B) = - zeP2P2(c058) 6.4

In a wuniaxial system, sandwiched between two plates, the
order parameter will clearly vary throughout the cell
(although the variation could be very small), will have a
minimum value at the centre and will be symmetric about
this point. Therefore, a molecule in the sample will
experience a molecular field generated by molecules at the
same vertical distance from the surface, and an
inhomogeneous field created by a region of molecules of

higher and lower order.
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In making a comparison with our simple cubic lattice
system, the coordination number z, will be 6. If we define
the system to consist of layers, parallel to the surfaces,
then a molecule will experience the field created by four
molecules in the same layer with an order parameter 52i,
say, and one above and below with order parameters §Zi+l
and le'l respectively. Thus the potential of mean torque

becomes: -
U(g) = -e(apzi+ P2i+l + Pzi'l)Pz(coss), 6.5

where B is the orientation of the molecule in the ith layer.
The singlet orientational distribution function is
therefore: -

F(8) = 1 exp(- e (4P, % + P21 4 p I-1y p_(cosp) 6.6
: ( £ (4P 2 2 2 )

th

and the second rank order parameter is the i layer is:-

(4P t+ BATL 4

=i
P 2 " P

m .
5 = %6 d31anBP2(cosB)exp(-

£
kT
ﬁéi'l)Pz(cosB)) 6.7

The order parameter of the top and bottom layers will be 1.0
since these represent the surface-nematic interaction for
our model system, so assuming the system to be symmetric
about the centre, then for a system of N layers, the order
parameter in the i th 2N"i+l.

Therefore for N layers we have a set of N/2 self consistant

layer, 521 will equal P

simul~taneous equations, ((N+1)/2 if N is odd) which can be
solved either iteratively for ﬁ; or by minimising the sum
of the squares of residuals between the order parameter(s)
on the left and right hand sides of equation 6.7.

The results for a 10 layer system (excluding the
surfaces) are shown in Figure 6.1. For a system of 10 or

less layers there exists only one possible solution for 521
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The molecular field predictions for the temperature
dependence of the orientational order parameter, 52
calculated wusing equation 6.7 for a system of ‘10
layers. The coordination number, z, is 6.
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at all temperatures. This 1is rather like the molecular field
calculations in Chapter 5, where ©beyond the magnetic
critical point a similar situation arose. Thus in this case
we have a surface as opposed to a field induced critical
point. The Helmholtz free energy is continuous over all
temperatures indicating the non-existance of a transition
between a phase of high orientational order and a para-
nematic or isotropic phase. However, for systems of 11
layers or more, there are complications in the temperature
range where the order parameter changes most rapidly. 1In
this region the order parameter curve in the middle layer(s)
actually bends back on itself, thus over a particular
temperature range there exists three possible solutions for
the order parameter. Since the order parameter in a given
layer is a function of the order in neighbouring layers then
it follows that three possible solutions will now exist in
these neighbouring layers and subsequent layers back to the
surfaces. This effect adds a degree of numerical instability
to the calculations, and the method of minimising the
squares of residuals failed to provide satisfactory
solutions to this example.

However, this study is for a system of 10 layers and so
the problem does not arise. One thermodynamic property which
can be obtained without any difficulty 1s the average
internal energy for the internal layers. In the absence of
surfaces the internal energy per particle is simply:-

U/Ne = —252/2. 6.8

For a system of L layers each of n particles, the internal
energy per molecule is given by:-

T 1*1y 6.9

nLe 2

Y iz i-1 i=
‘% ) (B Py + PP
1

i I NI Y o
pos
o
H

where 52 for 1i=0 and 1i=L+1 corresponds to the order
parameter of the surfaces and in this case equals 1.0. This
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result 1is obtained from the expression for the singlet
orientational energy given by equation 6.5, where the energy
of a molecule in the ith layer depends not only on the order
parameter of the four molecules in the same layer, but also
on the order of the neighbouring molecule in the (i+l) and
(i-1) layers.

A very similar although slightly more complex theory
has also been developed by Schroder (1977) where an
expansion based on anisotropic dispersion forces is used. In
this case the properties depend also on the direction of
surface alignment since the potential energy is a function
of the orientation of the intermolecular vector. However,
since the simulation in this Chapter wused only a simple
Pz(cosB) type interaction, this theory will not be discussed
further.

6.3 Continuum theory and the Freedericksz transition

In Chapter 1, the basic theoretical predictions of
continuum theory were given for the Freederickz transition.
In general, the deformation of the director in the centre of
the cell, 8m, from the direction of surface alignment as a
function of the magnetic flux density, B, assuming the
geametry in Figure 1.5 a) is:-

BQG%%1/2 ~ ?/21 + Ksinzgmsinzx f“dA 6.10
2 N . 2 A
11 0 1 - sin Qm51n A

here d 1is the distance between the surfaces, AX 1is the
anisotropic diamagnetic susceptibility, Kll is the splay
elastic constant (Frank, 1958) and K is defined as:-

K = K -1, 6.11

where K3 is the bend elastic constant. The quantity

sinx is the value of sing/singm. As o, * 0, the
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critical field, Bc’ is reached and equation 6.10 reduces

ki, :(Bcdf AX 6.12
T

However, from the nature of the pair potential used in the

to:-

Lebwohl Lasher model, the properties in our model system are
independent of the orientation of the intermolecular vector
with respect to surface alignment and so the critical field
is also 1independent of the direction of the surface
molecules. This means that all three elastic constants are

equal, i.e. K = K = K Equation 6.10 now simplifies to

11 22 33°
the complete elliptic integral of the first kind:-

Bd /axL72 ;/2 da 6.13
§(V_) ) 0@ - sinzgm sin2xf/2 .

Thus substitution of equation 6.12 gives:-
/2

(l -1sin

m 1
é > /o 9 6.14

B =2 2
BC m Qm sin A)
Knowing several values of @8m for various experimental
fields will therefore yield the critical field from which

can be calculated the elastic constant.

6.4 Computational Details

For ease of reference, the simulation to observe the
effect of surface forces shall be called system A, while the
Freedericksz transition simulation shall be called system B.
The two systems were identical in every respect except that
in system B a magnetic field interaction was applied
orthogonal to the direction of surface alignment. (equation
6.2). In each case the systems consisted of a 10x10xL
particle lattice, with L equal to 10 in system A, but only
equal to 8 in the slightly more complex system B. Here, L is
the number of layers parallel to the xy plane, not including
the fixed surface layers. In the majority of the
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calculations the molecules in the surface were fixed to lie
parallel with the z-direction, although as we shall verify,
the direction of surface alignment is unimportant for the
simple P (cosB) potential.

The particles between the fixed surfaces (1n the bulk)
were selected randomly wusing a random number generated
uniformly in the range 1 to N, where N 1s the number of
movable particles. The molecular orientations were stored
using their respective direction cosines and so a new
orientation was generated using the algorithm proposed by
Barker and Watts (1969). This involves performing a rotation
of a controlled maximum random amount about a laboratory
axis selected at random. Thus the rotation,y, was generated
using:-

y = EA 6.15

Here & is a uniform number generated in the range of +1 to
-1 and A is an input parameter used to control the maximum
rotation in order to obtain an acceptance-rejection ratio of
approximately 1.0. This algorithm has the advantage that
excellent control of the acceptance-rejection ratio can be
obtained regardless of the director orientation (c.f Chapter
5).

As the inhomogenecus properties of the system were
required the orientational properties were not only
calculated with respect to the bulk of the system, but also
within each layer. The average order parameter for each
layer was evaluated by setting up and diagonalising a
Q-tensor (see Chapter 2) at the end of every cycle in the
production stage of the simulation, although the director
orientation was calculated by a slightly different route.
The Q-tensor itself was averaged over the entire production
stage and then diagonalsed, from which the -eigenvector
corresponding to the 1largest eigenvalue gives the average
director orientation. This slightly different method of
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averaging was employed to remove the difficulty of averaging
the polar angle, 8, the angle the director makes with the
laboratory z-axis, which is positive for all orientations of
the director. 1In principle it would be correct to average
8, provided it was close or equal to w/2, but when the
director fluctuates about the z direction, 8 is always
positive resulting in its overestimation. Averaging the
Q-tensor over the entire production run, simply gives the
average director over all configurations and therefore in
this constained system correctly gives the average director
orientation. In an unconstrained system however, this
technique would fail since the director would be able to
fluctuate freely, and the tensor would therefore vanish.
This averaged Q-tensor also provides a measure of the
director fluctuations since in a system in which the
director does not fluctuate, the order parameter calculated
from the averaged Q-tensor (Pz(ﬁ)) will be identical to that
calculated from the Q-tensor diagonalised at the end of each
cycle and averaged. Conversly, ﬁz(Q) will be less than
52 in systems in which the director does fluctuate. 1In
addition, for some of the simulations of system B, a further
method of averaging was employed. In this case to evaluate
the director orientation in the ith layer, the Q-tensor was
averaged over the i-1, i and i+l layers. This therefore
gives statistically better results, and as we shall see, it
gives almost identical results to those obtained from

th layer Q-tensor only.

averaging the 1

The starting configuration for the initial
equilibration stage for both systems was taken to be a
completely ordered state with the molecules parallel to the
z-axis and the starting configuration for subsequent runs
was taken from the configuration at the end of a production
run at a similar temperature in system A and a similar
temperature or external field in system B. Typical
equilibration and production stages each consisted of 10

thousand cycles although in some cases (e.g. for weak
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external fields) this figure was substantially higher.
Explicit details of all the starting configurations, lengths
of equilibration and production stages are given in Tables
6.1 and 6.2 for systems A and B respectively.

The only thermodynamic quantity calculated throughout
the simulations was the average of the total internal
energy, and includes the contribution from all pairs of
particles within the bulk of the system (not the surface
layers). Since transition properties were not required, the
heat capacity was not evaluated.

6.5 Results and Discussion

The two systems will be discussed individually.

6.6 System A

The most important orientational gquantities evaluated
were the second rank order parameter, 52 calculated within
each layer and the director orientation. The variation of
52 as a function of layer number, at different
temperatures is plotted as the points in Figure 6.2. To
within statistical wuncertainty the values of 52 are
symmetrical about the central two layers, so 1in each case
the average values of the pair of results have been plotted.
The fixed surface layers are labelled with numbers 0 and 11.
The profile of the order parameter is exactly as we would
expect, with the order parameter decaying from unity at the
surfaces to a limiting value towards the centre of the
sample. One 1interesting feature 1is the shape of the
profiles, since at relatively low temperatures (eg T* = 1.0)
and at high temperatures (7" = 1.6) the order parameter is
approximately constant throughout the central 8 layers,
whereas for moderate temperatures (eg T* = 1.4) the order
parameter varies through the whole sample.

The same results are plotted as the solid squares and
circles in Figure 6.3 but now as a function of the reducea

* .
temperature, T . For clarity only P2 for the central and
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Fig 6.3 The temperature dependence of the oarientational order
parameter, P,, calculated In tUtnhe layers adjuacent to
the surfaces” (solid squares) anug In the central two
layers (solid circles). The open sQquares ang  open
circles are P,(Q), i.e. the order parameter
calculated from %he averaged Q-tensor. The dashed and
solid curves are the molecular field predictions
calculated at the same reduced temperature, and scaled
to the same transition temperature in the absence of
surfaces, respectively. The open triangles are results
for the Lebwohl-Lasher model in the abs-ence of surface
forces (Zannoni, 1979).




layers adjacent to the surfaces have been plotted. At high
temperatures the order parameter in the central layers
appears to be tending to a limiting value of about 0.1, as
opposed to an isotropic value of zero. This effect 1is
expected when we realise that the order parameter measured
in each layer is an average order of only 100 molecules, and
as we have seen in Chapter 3, in order to achieve a
completely disordered isotropic phase extremely large
systems have to be used. The results for these calculations
are listed in Table 6.3.

The orager parameters P,(Q) calculated from the
Q-tensor averaged over the production stage of the
calculation are also plotted in Figure 6.3, in this case as
the open squares and circles for layers 1 and 10, and 5 and
6 respectively. Here we see that 52(5) is always slightly
less than the corresponding value calculated from the
unaveraged Q-tensor, although significantly 1less 1in the
central layers at high temperatures, where instead of
tending to a limiting value of about 0.1, PQ(GJ tends to
zero. This 1is 1in accord with our expectations, since
director fluctuations will always make Pz(ﬁj less than

B
2!
these fluctuations will be at a maximum. An increase in

and at high temperatures, away from the surfaces,

director fluctuations, infers a weakening of the ability of
the surfaces to pin the director. Indeed, as observed in
Table 6.4 this is what we find, where the cosines of the
average director orientation with respect to the surface
alignment are listed. At low temperatures and close to the
surfaces, the director pinning is at a maximum, while the
effect decreases with increasing temperature and away from
the surfaces. In order to observe the guantitative effect of
surfaces on the order parameter throughout the system,
results obtained for the Lebwohl-Lasher model without
surfaces have been plotted on Ffigure 6.3 as the open
triangles (Zannoni, 1979). These results are for a system of
1000 particles and are again in accord with our
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expectations. At low temperatures in the unconstrained
system the order parameter is slightly less than the central
value in this simulation, thus indicating the apparently
very small effect caused by the surfaces in those central
layers. At higher temperatures the wunconstrained system
undergoes a phase transition as can be seen by the fairly
rapid change 1in the orientational order, whereas in the
layered system the rate of change in P2 is very much
smaller and a higher degree of long range order exists at
higher temperatures.

To investigate the effect of the direction of surface
pinning, calculations at L 1.2 and Tt - l.4 were also
carried out with the molecules 1in the surface aligned
parallel with the x direction. Clearly from Table 6.3 at T*
= 1.2 where a similar calculation was performed with normal
molecular alignment, both sets of results agree perfectly
and the values of 52 at TT = 1.4 are cleaily consistent
with values calculated at T = l.6 at T = 1.35, thus
confirming that the direction of surface alignment has no
effect on this system in which the molecules interact via
this simple P, potential.

Finally, in Figure 6.4 we plot the internal energy as a
function of temperature, as the solid squares. The energy is
the average energy per particle within the bulk of the
system. Therefore contributions arising from pair
interactions between fixed particles within the surface
layers have been ignored, although average interactions
between the surface molecules and the molecules in the first
layer are included. To within experimental error the curve
is continuous throughout the temperature range studied, thus
indicating that the system remains in an ordered state.

With a knowlege of our findings in the previous
chapter, this 1is exactly as we would expect, since the
surfaces could in principle be replaced by an inhomogeneous
magnetic field varying thoughout the sample. With perfect
order in the surface layers, the effective field in the
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The temperature dependence of the average internal
energy, (The errors are given in Table 6.3) together
with the molecular field predictions calculated at the
same reduced temperature (agashed curve) and scaled to
the same transition temperatures (solid curve) in the
absence of surfaces.
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first layer will be of unit strength, a value well 1in excess
of the predicted critical field.

The identical system has also been studied by Bagmet
(1982) using the method of molecular dynamics, and in all
cases to within experimental error identical results are
obtained for the properties calculated. For simplicity these

results have not been plotted.

6.7 Comparison with molecular field theory

The predictions of the molecular field theory are shown
in Figures 6.2 and 6.3 as solid lines. In Figure 6.2 the
lines serve only as a guide to the eye, since solutions are
only obtained at integer layer numbers. Firstly comparing
the order parameter profiles in Figure 6.2, in making the
comparison, to allow for the known failure in molecular
field theory to overestimate the nematic-isotropic phase
transition temperature, the theoretical predictions have
been evaluated scaled to the same transition temperature in
the absence of surface forces. So a molecular field theory
transition temperature of kT/e=1.321 and a simulation
transition temperature of T*=1.145 (Humphries, 1979) have
been wused. As we woula expect the agreement at low
temperatures 1is excellent (e.g. at T*:l.D) although much
worse at temperatures higher than T* = 1.1, where a
combination of two effects contribute to give such poor
agreement. Firstly and probably the major contribution to
the deviation 1is the finite size effect arising in the
simulation and mentioned earlier, since each layer has only
100 molecules. Secondly, and only a small effect, is the
failure of the molecular field theory to predict accurately
the order parameter at the transition in the absence of any
surface forces. This error would undoubtably arise in a
system with surfaces, although its effect will be very small
since 1t will actually enhance the order parameter profiles,

cancelling with the finite size effect.
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The same effect 1is observed in Figure 6.3 where the
order parameters for the central and layers adjacent to the
surfaces are plotted. The dashed curve 1s the molecular
field prediction without any scaling and 1is clearly in
complete disagreement with the simulated data. However, the
solid curves are the molecular field predictions scaled to
the transition temperature in the absence of surface forces
and again the agreement at low temperatures is good although
finite size effects are probably responsible for the very
poor agreement in the high temperature region.

Another of the fallings in molecular field theory is
the underestimation of the short range order parameter. In
the previous chapter we observed that without any scaling,
the internal energy, which is related to the short range
order parameter, was in quite good agreement with
simulation. This was attributed to the cancellation of two
errors, the over estimation of the transition temperature
and the wunderestimation of the short range order. This
effect is also seen in Figure 6.4 where the dashed curve is
the molecular field prediction of the internal energy,
calculated using equation 6.9. The agreement is reasonably
good, although much better than the curve scaled to the same
transition temperature in the absence of surfaces, as shown
by the solid curve. In this case the curve is more positive
(n.b. negative orainate scale) by ‘almost a constant amount,

Wémphasising the theory’s underestimation of the short range
order parameter by an almost constant amount.

To conclude this section, we have seen the effect of
surfaces on the Lebwohl-Lasher model and observe very
similar properties to those seen in Chapter 5 for system C.
When compared with the predictions of the molecular field
theory, very similar failures to those seen previously (c.f
Chapters 3,5) occur, in particular the theory’s
underestimation of the short range order resulting in
incorrect predictions to the internal energy, and an

overestimation of the long range order.
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6.8 System B
The most 1important orientational property calculated

for this system was the director orientation, 8, with
respect to the direction of surface alignment as a function
of the external field, X . From the dependence of 8 onX
information related to the elastic constants —can be
evaluated. This dependence 1is shown 1in Figure 6.5 as the
symbols at the four reduced temperatures studied, o= .9,
1.0, 1.08 and 2. For clarity the errors associated with
each point have not been plotted since they are difficult to
quantify when calculated from the Q-tensor. However, a
reasonable estimate would be +5° at the layers adjacent to
the surface, rising to +10° in the central region. The
behaviour 1is characteristic of what we would expect, with
very weak distortions occuring at low fields of less than
about X =0.10, which increase to a saturation 1limit of
8=90° at large fields of aboutX=0.30. One feature is the
observation that extremely high fields (i.e. beyond the
range wused in this study) are required to rotate the
director in layers adjacent to the surfaces to give a
completely saturated sample. For certain simulations of this
system (i.e. T =0.9,X=0.17, T =1.0,X=0.12, T =1.08,X=0.16,
T*zl.ZO,X::O.DB) the deformation throughout the sample was
obtained from the averaged Q-tensor combined with the
tensors from adjacent layers to give the director
orientation averaged over three layers. This therefore
should give statistically better results since now 300
particles are involved in the director evaluation. The
results for this calculation are shown as the open triangles
on the plots in Figure 6.5 and to within the experimental
error they are identical to those obtained from the Q-tensor
of each layer alone.

Figure 6.6 shows a cross section of the graphs in
Figure 6.5 with the deformation in the centre of the sample,
Qm, plotted as a function of the applied external field
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Fig 6.5
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The variation of the orientation of the director with
respect to the surface alignment for system B for the
four temperatures studied at selected external field
strengths. The open triangles correspond to results
obtained from averaging the Q-tensor with the tensors
of neighbouring layers. The curves are the predictions
of continuum theory based on the critical fields
evaluated and listed in Figure 6.6.
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Fig 6.6 The variation of the maximum director orientation with
respect to the direction of surface alignment, 8_, as
a function of the applied external field, X . The curves
are the best fits obtained using equation 6.14 with the
optimum values of the critical field XC listed.
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for the four temperatures studied. Again, for clarity the
errors have not been shown although the errors associated
with e
decaying to *5Y for Qm greater than about 75°. These

for 8 less than 30° are probably +10°,
m ———

results are also listed in Table 6.5. The behaviour observed
is very encouraging, being almost identical to the form
predicted from measurements of bulk anisotropic properties
in classical experiments of the Freedericzs transition. 1In
other words below a critical field, no deformation
throughout the sample occurs, although above it the
defofmatioﬂ approaches 1its 1limiting value with 1increasing
external field.

Finally the order parameters calculated throughout the
sample at the four temperatures studied and at selected
external field strengths are plotted 1in Figure 6.7. The
lines joining the points serve only as a guide to the eye.
Errors in this case are estimated to be about +0.01 for P,
greater than about 0.50 and less than 0.23 and about *0.02
for intermediate values. At low external field strengths the
behaviour 1s exactly as we would predict, with the order
parameter dropping fraom 1.0 at the surfaces to a temperature
controlled limiting value in the centre. However at higher
field strengths in the region where the director
reorientates through a large angle, the external field
begins to enhance the order as shown by the maxima in the
curves in the central layers. Thus on increasing the field
orthogonal to the director, the overall order in the system
gradually declines, until at a critical point, the director
reorientates and the long range orientational order
increases. This effect 1is only observed 1in the central
layers, as close to the surface, the molecules experience a
large field created by the surfaces, and a cancelling
orthogonal force caused by the applied external field, thus
close to the surfaces (i.e. in the second and seventh

layers) the particles experience weak destabalising forces
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as reflected in the minima in the order parameters in this
region.

This effect is in contrast with that observed
experimentally, where 1t 1is impossible to detect any
significant variation of the order parameter throughout the
sample. However this is only due to technical reasans, since
there will probably be a few layers of molecules adjacent &
the surfaces experiencing this effect. Also the fact that
52 does vary throughout the sample means that
strictly speaking the elastic constant will alsoc vary
throughout the sample, so any attempt to obtain the constant

from a bulk property will yield an average value.

6.9 Comparison with theory

We have seen from section 6.3 how the elasticity of
this simple system relates to the deformation wunder the
influence of an applied external field. In principle the
value of the elastic constant, K, can be determined directly
from the values of the estimated critical fields in Figure
6.6. However a more accurate method is to use more of the
available information, in this case the shape of the
deformation above the critical field. This defaormation is
given by equation 6.14. Using a minimisation procedure {(NAG
routine E04JBF), the best fit to this equation was obtalned
by minimising the sum of the squarss of residuals of Qm -
Q;?lc where anlc
prediction based on the known value of the applied field, as

a function of the ratio of B/BC which 1in this case 1is
identical with (X/)(C)l/z.
)E obtained in this way are given in Figure 6.6 together with

is the theoretical

The values of the critical field

curves representing the best fits to the experimental data.
At the three 1lower temperatures, the best fits obtained
agree reasonably well with the simulated data, although at
the high temperature of T =1.2 it is poor. This failing at
higher temperatures can easlily be explained in view of the

approximations used in the derivation of equation 6.14. One
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of the most severe of which is the assumption that the long
range orientational order is constant throughout the sample.
Clearly, as we have seen in 1in Figure 6.7 this 1is untrue,
with the biggest variations occuring at T"-1.2. Furthermore,
in an unconstrained system, this temperature actually
corresponds to the isotropic phase.

In principle the values for the critical field can be
evaluated from the way in which the director varies
throughout the whole sample, since:-

X = ;(z_gc)l/2 fdJ 1 dy 6.16

d T \X O(sinzgm-sin2¢ )1/2
where xf/d 1s the relative distance through the cell and Pis

the orientation of the director at a distance X
(Chandrasekhar, 1977). However, attempts to obtain an
optimised fit to this equation failed, although 1its
predictions based on the critical fields evaluated from the
maximum deformation, Qm, were evaluated. The curves 1in
Figure 6.5 show the theoretical predictions based on the
previously determined critical fields, calculated at the
same experimental field and in most cases very good
agreement 1s obtained, thus again confirming the application
of continuum theory to our simple system. As we saw
previously the poorest agreement 1is found at the higher
-temperatures where the order parameter varies most
throughout the sample and where in the absence of
constraints the system would be isotropic.

Theory can also predict the variation of the elastic
constants with the order parameter or temperature. However,
before attempting any comparison the elastic constants must
be evaluated from the values obtained for the critical
fields.

In a real experiment, an elastic constant is evaluated

using the relationship:-

- 2 A
K = (B d/m)" AX/u, 6.17

182




Where My is the magnetic constant or permeability of free
space and AX is the anisotropy in the diamagnetic
susceptibility, which can also be written as:-
px = AX'P, 6.18

where now A is the anistropy 1in the diamagnetic
susceptibility for a perfectly ordered system or a single
crystal. The parameter Ax" can be linked to X used in the
simulation, since experimentally the total magnetic energy
of a single crystal is:-

mag -1 /o
U /N = -1/2 poTaX B89, 6.19

!

and in the simulation for a perfectly ordered system:-

mag

u - -NXe. 6.20
Therefore

NXe = l/?,u;lAX/BQV, 6.21

so defining a number density, N/V=a and a scaled distance

unit, d*=d/a allows us to write equation 6.17 as:-

k¥ = op72 a‘lxced*Pz, 6.22

thus providing us with a reduced elastic constant Kf (=
K/ea'l) equal to:-
*

* 2
- .
K = 2(d /=) c¢2' £.23

Using a reduced distance between surface layers equal
to 8, the values for K* were calculated, and are:- 1.20,
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0.94, 0.71 and 0.19 at the four temperature studied of
T*=O.90, 1.00, 1.08 and 1.20 respectively. The values for
P2 in equation 6.23 were estimated from Figure 6.7 to be
the limiting values in the central layers at the critical
field and are 0.71, 0.62, 0.52 and 0.20 respectively.
Alternatively, 52 can also be taken fraom an unconstrained
system, however, to within experimental error, the values
for P2 are identical to those given above (Zannoni, 1979),
(with the exception of T*=l.20, where a value of P2=O.08
is reported), and were therefore not be used to evaluate K*

The values of K* can now be compared with theory.
Firstly with the predictions of continuum theory. This
states (de Jeu, 1980) that K* is proportional to the sguare
of the second rank order parameter, which for the three
lower temperatures 1is approximately observed, since the
ratio of K*/ﬁg is 2.37, 2.45, 2.64 and 4.86 for T*ip.90,
1.00, 1.08 and 1.20 respectively. The failure at T =1.20 is
expected in view of the previous observation that at this
high temperature the order parameter varies most throughout
the sample, in contrast with the assumption in continuum
theory that is constant.

A theory has also been proposed by Priest (1972) based
on a molecular field treatment of a lattice model. According
to this, the elastic constants are predicted to be:-

2

_ =2 X

Kip = Koo = (3/74vOPs ) Alr 1 )xg; 6.24
i

_ 52 2 .

K33 = (3/2vO)P2 5 A(roi)zDi 6.25

i
Here A(roi) is an interaction strength parameter, with s
being the intermolecular vector between the reference and
the ith molecule. z.4 is the projection of the vector Lot
onto the director axis, Xoi is the projection onto an axis
orthogonal to the director and Vo is the molecular volume.

The fact that Kll;:’K33 is a consequence of the anisotropy
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in the spatial pair distribution function. However, for a

simple cubic lattice this anisotropy does not occur, since:-

2 2
E Alr, )zl; = 2¢a 6.26
i
and
2 2
E Alr,)xE; = 4ea”, 6.27
i

where a 1is the lattice spacing. This results in equal
elastic constants with

_ -2 2
K = (3/v0)P2 €a

For a simple cublic lattice, the total volume is Na3, giving

a molecular volume, Yo equal to 83. Hence: -
K = Bﬁg a_ls, 6£.28
or
k* = 3p 2, 6.29

Thus 1like continuum theory, K 1is also predicted to be
proportional to Pg but now we can test the constant of
proportionality. The ratio of K*/Bﬁg is found to be
0.79, 0.82, 0.88 and 1.62 for T equal to 0.90, 1.00, 1.08
and 1.20 respectively in contrast with the theoretical
prediction of unity. So again, reasonable agreement is found
at low temperatures although it progressively gets worse
with increasing temperatures.

Finally these elastic constants can be compared with a
continuum theory based on disorder rather than order
proposed by Faber (1977). In this case it is assumed that
the nematic is a continuum with a fully disordered ground

state, and it is shown that:-
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2..1/3 -

In(1/P,) = (3k TXFN N 6.30
2 o kKN v )
27

where K is ’the mean stiffness constant?’, which in the limit
section. In terms of a reduced elastic constant equation

reduces to the K defined earlier 1in this

6.30 becomes:-
* *
ln(l/PZ)K /T = 0.592 6.31

Thus we now have a relationship between the reduced elastic
constant, order parameter, and temperature. Using the values
for these as given previously, the 1left hand side of
equation 6.31 is 0.46, 0.45, 0.43 and 0.25 for the
temperatures studied of T = 0.90, 1.00, 1.08 and 1.20
respectively. Although these values do not agree exactly
with the theoretical prediction of 0.592, they are none the
less fairly constant (with the exception of - 1.20).

A summary of the previous three theoretical comparisons
are given in Table 6.6.

To conclude the comparison of the elastic constants
with the 1long range order and temperature, in all three
cases, reasonable agreement with the predictions of theory
has been observed, especially at tihe 'well Dehaved?
temperatures studied at T - 0.90, 1.00 and 1.08. However at
the high temperature study of - 1.20, which 1in the
absence of surfaces 1is actually isntropic, the long range
order parameter 1s seen to vary widely throughout the
sample, thus invalidating a serious comparison with theory.
It should also be noted that any form of accurate comparison
with the predictions of a theory is very difficult with only
four experimental points. Therefore, in order to test more
fully these predictions, a much more comprehensive set of
simulations should be undertaken over a much wider
temperature range. Indeed it 1is for this reason that the
numerical values quoted in this final section have not been
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specified with error 1limits, since there are numerous
factors which could seriously effect their values, for
example, the errors in the values of 52 and)(c which could
be quite large, have been ignored, and therefore it should
be appreciated that the comparison should be ‘treated
qualitatively rather than gquantitatively. However, these
preliminary calculations have ~clearly demonstrated the
ability of the simple modified Lebwohl-Lasher model to
simulate the Freederickzs transition, and furthermore, has
shown that to a certain extent the predictions of continuum
theory can also be applied to this lattice system.
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Chapter 7

Simulation of the S. to S, phase transition

fm

7.1 Introduction
Many organic compounds exhibit 1liquid crystalline

phases in addition to the normal liquid and crystal phases.
We have seen 1in Chapter 1 how these 1liquid crystalline
phases could be further classified into various states, in
particular the nematic phase, the cholesteric phase and a
host of smectic phases. A few compounds on going from the
crystalline phase exhibit a smectic E followed by a smectic
B phase with increasing temperature. For example the ester,

0
i
C

CgH) 70—~ )~ 0)—C-0C,Hg

and various compounds of the form:-
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To date only a few of these latter cinnanate esters have
been found to produce Smectic E and Smectic B phases, for
example those given 1n Table 7.1, whose transitional
properties are tabulated in Table 7.2.

Detaliled structual analysis of ordered systems 1is
normally carried out by X-ray or neutron diffraction and
indeed recent work has given us much agetailed information
concerning the molecular structures of the smectic E and B
phases. The earliest work was performed by Doucet et al,
(1975) on PPBAC wusing X-ray diffraction on single and
polydomain samples. Their conclusions were that the
molecules in both phases tendea to lie with their long axes
perpendicular to the layers and within each layer the
molecules were sited on a triangular network. In the lower
temperature smectic E phase they observed that within layers
the short molecular axis of molecules formed herring bone
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packing extending over long distances, while in the smectic
B phase they found rotational discrder about the long
molecular axes. (See Figures 1.3b and 1l.4). This result for
the smectic B phases has been verified by Richards,
Leadbetter and Frost (1978) using incoherent, quasi-elastic
neutron scattering, where they find rotation about the long

—los. 1n addition their

molecular axis on a time scale of 10 .
X-ray work suggested that the molecules were tilted with

respect to the layer normal by about 6Y. Incoherent neutron
scattering from the Sg phase has provided information

(Leadbetter, Richards and Carlile, 1976) related to the

rotational motion of the molecules, which are found to

rotate (reorient) though an angle w about the long molecular

axis. The precise nature of this rotation is uncertain, it

could be due to parts of the molecule reorientating, e.g.

some of the phenyl rtings, or the whole molecule. Further

detailed X-ray diffraction work (Leadbetter et al, 1979) on

the SE phase of IBPBAC has revealed that the molecules lie

on a distorted triangular lattice and that the structure is

probably a bi-layer with the alkyl chains of the molecules

present in the inter layer region. In the SB phase the layer

structure is truly hexagonal (i.e. the molecules occur on a

regular triangular lattice), although the molecules are

tilted by about Y. This work has also disclosed that
correlations of the hexagonal network between layers greater

than two layer separations are negligible.

A few chemical compounds exhibit smectic B phases as
their lowest temperature mesophase. In particular TBBA
(terephthalylidene-bis-4-n-bulylaniline) has a smectic B
phase between 113°C and 144°C, and its structure has been
examined 1n some detall using X-ray diffraction. (Doucet el
al, 1974) The analysis shows that the molecules do lie on a
triangular lattice within each layer, although they are
tiltea by up to 30° with respect to the layer normal, and
within each layer molecules tend to form moderately ordered
domains of ‘’herring bone’ structure. The relatively large
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tilt angle is rather disturbing so pérhaps this phase 1is not
actually a SB phase anyway, and it has recently been
suggested that this tilted SB phase should be classified as
a smectic H phase. This work does none the less re-emphasise
the fact that within each layer, the molecular centres form
a Tregular triangular network and there 1s 1long range
rotational disorder about the long molecular axes.

The precise stucture of the smectic E and B phases 1is
still to be established although we can draw some
conclusions. In the smectic B phase, the molecules within
each layer 1lie on a triangular network with the 1long
molecular axes almost parallel to the layer normal. There is
a high degree of 1long range rotational disorder about the
molecular axes although there 1is some evidence to suggest
this disorder can be attributed to short range ’herring
bone’ order within disordered domains. In  the SE phase
however, the molecular centres lie on a slightly distorted
triangular network where they are parallel to the layer
normal. The molecules also exhibit a high degree of long
range orientational order, reflected in the additional
’herring bone’ structure which extends over large distances.
We shall therefore, justifiably assume that 1in both the
smectic B and E phases, the molecules 1lie on a triangular
network, with their long molecular axis perpendicular to the
layer.

In the next section we develop a pair potential based
on this type of molecular structure using a
multipole-multipole expansion. The computational details for
the simulation of the model system and results are then
discussed in the following two sections. A comparison of
experimental scattering patterns of the smectic E and B
phases 1s then made with patterns produced by the optical
masking technigue, and finally various results are compared
with predictiens based on a mean field theory.
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/.2 The pair Potential
In section 7.1 a few examples of molecules exhibiting

SE+SB phase transitions were given. Generally these
molecules consist of a large rigid core comprised of two or
three bulky aromatic rings, with a smaller flexible alkyl
region. As a first approximation in describing the pair
potential, we assume the molecules to be rigid. This allows
us to use the equation given in Chapter 1 for the exact pair
interaction between non flexible molecules of arbitary
shape. We shall use the laboratory coordinate system for a
pair of molecules as shown in Figure 7.1 Our starting point

is then (Stone, 1978):-

U z KK Kk
ij = u 2 (r)S ’.(Q) 7.1
2 Lo LLJ

where the scalar function is :-

s
kk L-l-3c LLd L C
S . = (i)-7-7 (, D, (8,)D22(R,) x C,u(80) 7.2
LLd éém AV L S S | IM

The term in parenthesis is the Wwigner 3-j symbol, D;k(ﬂ)
is the usual Wigner rotation matrix, and Ql, 92 describe the
orientations of molecules respectively, (see Fig 7.1) in a
laboratory frame. CJM(Q,ﬁ) is a modified spherical
harmonic where 8 and @ define the orientation of the
intermolecular vector again in some laboratory frame. This
equation is invariant to any change in the laboratory frame
of reference.

From X-ray evidence of the SE phase we shall assume
that the centres of mass for the molecules lie on a 2
dimensional hexagonal network, and the principle molecular
axes lie perpendicular to the layers, parallel to our
laboratory z-axis. Since X-ray scattering has shown that

interlayer correlations are small, we shall also assume that
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interactions between layers are negligible. Hence we need
only consider interactions between molecules within each
layer. We know that the Wigner rotation matrices in equation
7.2 can be written as:-

L _ -ima L -iky
Dmk(ﬂ) = e dmk(B)e 7.3

In the laboratory coordinate system (Figure 7.1) a=B=0, and
so equation 7.3 simplifies to (Zannoni, 1979):-

L —'
Dmk(O’O’Y) = Gmke Tky 7.4

Here Gmk is the kroneker delta and equals zero unless m=k.

Equation 7.2 now becomes:-

’ ’
K J LLJ .
cL-L=J -kyli kv
S . - i 2 C, )6, 822e Ve ™Yo (g 7.5
LLJ &M m&M mk “mk Jm

At this point we shall assume that the molecules have a
mirror plane perpendicular to their principle molecular
axis, hence k,k' ,m,m , L and L' must all be even since the
ends of the molecules are now 1inaistinguishable. L can
therefore take any even value between zero ancg infinity. The
zero term however, gives rise to an orientational
independent term only. In order to reduce the infinite
number of parameters which would occur, a restriction of L=2
is imposed. Indeed if we assume that the molecular
separation is relatively large, then higher rank terms can
be ignored, since they are extremely short ranged. So we
shall only deal with second rank contributions. J can
therefore adopt any even value between +4 and -4.

Looking firstly at the angular terms, @ 1in the
spherical harmonic 1is "/2 from our choice of axis system,
hence only three types of angular terms remain, the first
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being dependent only on Yo and Y, and the other two,
functions of Yy0Yo and ﬂr the angle of the intermolecular
vector. Qur potential is now of the form:-

Uiy = acosZ(Gl—Gj) + blcos2(6,-4 ) + coszﬁgj—ﬁr))

+ CCcOos?2 . -
(Ql + gj zgr) 7.6

Where ﬁr can be identified with @ in equation 7.5. The
constants a, b and ¢ are related to the expansion
coefficients and will be discussed later.

In our model we are going to restrict the molecules to
lie on a triangular network. The consequence of this is that
the middle term vanishes when the total interation energy is
evaluated (see Appendix 5) leaving only the first ana third
terms in the pair potential to be considered further.

Qur only unknowns now are the expansion coefficients a
and c. We know that the smectic E phase has a very long
range herring bone structure and it is also well known that
quadrupolar interactions give this kind of structure (for
example 0’Shea and Klein, 1979) so we shall justifiably use
a multipolar expansion to evaluate the values of the
coefficients a and c. For multipolar forces J becomes
restricted to equal L+L only, and the relevant expansion
coefficients can be written as (Gubbins et al, 1981):-

?
kk ’ , ’ A A
T, sLtLf(2L + 2L + 1) -L-L-1
u, (r) = 1 Z(-) [(21.)! (20! r X QLNQ[’_}z
LLJ Aﬂeo
7.7

ﬁhere €, is the permittivity of free space and the tensors
QLk describe the components of the multipolar moments in our
laboratory frame.

The first term in the pair potential (Equation 7.6)
arises from the expansion with J=4, 2 or 0 (although since
we are dealing with multipole interactions J=L+U, so J=4)
and with M=0. Hence m+m=0 giving k=2 and K=-2 and vice

versa. Thus the components of the multipole moments take the
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~ a ~

form Q2_2 Q22 and Q22Q2_2. Adoatlng a 51mléar raute foF the
29 Q22 and 22 Q2_2. Since
our molecules have a mirror plane orthogonal to the
molecular symmetry axis 622 has to equal the component 52_2,

and so the multipolar components for the first and third

third term, the components are Q

terms in our expansion are identical and can be factored
out. Therefore the only terms that contribute to the ratio
of a and ¢ in equation 7.6 are these from the 3-j symbol and
the coefficient of the modified spherical harmonic. The 3-j
symbols are related to the Clebsh-Gordan coefficients (which
are tabulated in Appendix 6) by:-
LLd
’
) = (-1bb-M c(Llayme) 7.8

( 1
(Z3+1)a

’
mmM
We are now in a position to calculate the ratic of a to c.
The first term arises with J=4, M=0 and with m= +2 m=%2, and
the third with J=4, M=+4 and with m=+2, m’=+2. The ratio of

a to c is therefore:-

C(224;+2 +2) X4+4 35 7.9

C(2245+2 32) X410 3
where X4+4 and X40 are the coefficients of their respective
modified spherical harmonics. Substituting this ratio in

equation 7.6 gives an effective pair potential of:-

U,. = .- 0. - 9.-
] QB (cos2(8; QJ) + 35c0s2(8; gj 20.)) 7.10
r

3

¢ contains the components of the gquadrupole moments for the
molecules. The distance dependence of this potential (r'SJ
is sufficiently short ranged allowing us to restrict our
interest to nearest neighbour interactions only. Thus we can
replace t:/r5 with some arbitmry interaction parameter, e.
Qur effective pair potential for nearest neighbour molecules
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interacting on a triangular lattice via multipolar (in this

case quadrupolar) forces now becomes:-

U, . = - S
1] E(COSZ(Qi Qj) + %2C052(Qi +Qj ~2ﬂr)) 7.11

At this point 1is worth looking at the functional form of

this potential. On a triangular lattice there are six
e We shall

r2 m 51

give these explicit values of 0, /3, 3eeene. /3.,

respectively. The quantity Uij/e can now be calculated as a

intermolecular vectors, grl’ ] re:
27
/

function of 9. and Qj for specific values of grij'
Before doing this, however, the symmetry of the second rank
potential is such that we need only consider three values of
grij’ 0, /3 and 21'/3. In Figure 7.3a Uij/s is plotted as
a function of 9 and Qj for grij = 0. For simplicity
Figure 7.3b shows the contour plot for the same energy
surface and clearly indicates where the minima occur in the
potential. The equal minima are at Qi = 0°, Qj = 90"'
ana at 8, = 90°, @. = 0. For the intermolecular vector
at. n/3 and 2n/3 exactly the same surface is observed, but
with the coordinates of the x and y axes rotated through an
angle ﬂr. So 1in all three —cases the most stable
configuration between a pair of molecules is with aone of the
molecules perpendicular and the other exactly parallel with
the intermolecular vector. However, for a collection of
molecules interacting with their centres of mass restricted
to lie on a triangular lattice, it is impossible to arrange
the system with all pairs of molecules adopting this
configuration, since a molecule cannot be parallel or
perpendicular to all intermolecular vectors at any one time.
As a consequence the minimum enerqgy, zero temperature
configuration is a compromise between competing
configurations. Using a computational minimisation procedure
(NAG routine EG2CCF), this ground state configuration can be

evaluated.
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>

The coordinate system used to  define the

orientations of two moleculew. ol arbitory shape.

Diagram representing part of the ground state
herringbone configuration, used as the starting
configuration in the simulation. 8 1is the

angle between the short molecular symmelry axis

and the laboratory x direction. The two dashed
lines represent the two ylide planes present in
this structure. Throughout the text of this

chapter, the glide plane refers to that parallel
with the x-axis, The labels A and B represent
the two sub lattices present (see section 7.6).
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Ujj(eff)

180

120

1807 "0
Plot of the effective potential energy surface
as defined by equation 7.11 as a function of the
two angular variables 9; and 8, with ﬂr:O.
Fig 7.3a shows the ' surface, whil'st 7.3b
represents a contour plot of 7.3a.
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Obviously one is restricted to the number of variables in a

computational minimisation, so a small system of 16

molecules was set up and the ground state configuration

calculated. The resulting stable configuration is shown in

Figure 7.2. This organisation 1is exactly what we would

expect, since the derivation of the pair potential was based

on quadrupolar interactions which has a ‘’herring bone’

ground state structure (0’Shea and Klein, 1979, Fuselier et
al, 1978). The short range structure consists of two pairs

of molecules parallel with each other, and at 45° to the
intermolecular vector, and four pairs at right angles to

each other and at the same time at 15 and 135° to the
intermolecular vector. This results in the internal energy

per particle, U/Ne = - 24.33 in the ground state.

7.3 Computational Details

This study consisted of a triangular lattice of 24 x 24
molecules (i.e. N = 576). The simulation was performed using
the standard Monte Carlo procedure (Rosenbluth et al, 1953)
developed for studying liquids. The system was given normal
two dimensional periodic boundary conditions as defined in
Chapter 2.

The particles interacted with each other via the
potential developed in the previous section (Eg 7.11). Where
€ 1s a positive constant far molecules 1 and j when they are
nearest neighbours, but zero otherwise. Thus each molecule
interacted with its six nearest neighbours only. Throughout
the simulation the particles were selected randomly by
generating a random number uniformly between 1 and N2 where
in this case N=24. The particle selected was given a new
orientation as defined by:-

gnew = gold + A(E-(1/2)) 7.12

where § is a random number generated uniformly in the range
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0 to 1.0 and A is the permitted maximum displacement,
controlled to govern the acceptance rejection ratio. The
value of the angle 8 was forced to lie in the range 0<8
<2m, by subtracting or adding 2w to prevent 8 from going
to very excessive values. The orientation of each molecule
was stored as @ as defined in Fig 7.2.

For each temperature studied the total run was divided
into two parts, firstly, an equilibration stage of typically
1000 cycles, where one cycle is N attempted moves, in which
only the internal energy was output. Secondly a much longer
production run of typically 4000 - 8000 cycles during which
time averages of the required properties were calculated.
The starting configuration for the first temperature
studied, ™ - 1.0 where: -

™ = KT/e 7.13

was taken to be a perfect ’herring bone’ with its glide
plane, as defined in Figure 7.2 along the x laboratory axis.
In principle any starting configuration could have been
used, but since the zero temperature configuration has three
degenerate states, each with the ’herring bone’ axis along
each of the three respective intermolecular wvectors,
problems would have arisen in reaching an equilibrium
configuration. In the case of the starting configuration
being totally random, i.e. a state at infinite temperature
then as the system was allowed to cool, local ’herring bone?
domains would form along arbitrery intermolecular vectors. It
woula then take a very long equilibration run to get all the
domains to align along some unique intermolecular vector. An
example of such a 'locked’ state 1is given in Figure 7.4.
This behaviour has been studied (Safran (1981)) for p-fold
degenerate states in d dimensional systems. It  was
postulated that the domain sizes equilibrate as a
logarithmic function of time for our 2 dimensional, 3 fold

degenerate system, implying that the domains in our system
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will never in fact reach the stable state with all the
domains along one degenerate intermolecular vectar. Because
of this effect each run was started from the final
production run of a lower temperature calculation which was
an evolution from the initial starting configuration of a
perfect herringbone ground state. The explicit details of
the lengths of equilibration and production runs and
starting configurations are summarised in Table 7.3. Also
given in Table 7.3 are the optimum values for the maximum
displacement. The final configurations of the production
runs have been drawn for several temperatures and are shown
in Figure 7.5.

Throughout the production run, several properties were
calculated, of these the most significant thermodynamic
property being the average of the internal energy, defined
as:-

D* = D/NS 7.14

Where U/Ne is the average interaction between a pair of

molecules in the system given by eguation 7.11. One other
thermodynamic result obtainable from the fluctuations in the
internal energy 1is the heat capacity at constant volume

given by:-~
—_— 2. 2
et =[ - T 177 7.15

*
The results for U are plotted in Figure 7.6 as a function

of T as solid squares, and in addition are listed in Table
7.4, The heat capacity at constant volume can also be

expressed as:-

T % *
c, = (au /3T )V
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Using a cubic spline interpotating routine (CERN library
routine E209) the heat capacity was evaluated by evaluating
the derivative of the internal energy with respect to
temperature, 7. These results are also plotted on Ffigure
7.6 and tabulated in Table 7.4, together 'with those
calculated using equation 7.15.

During the production stage several orientational
properties were calculated, in particular various pair
correlation functions and order parameters. The total pair
correlation functions of rank 2 and 4 were calculated,
defined by:-

= - .. 7.17
Fz(r) = <0052(Qi Qj)> Ty

F4(r) <cosa(9i - gj)> r.. s

1]

These are analagous to the pair correlation functions Gz(r)
and Gq(r) for three dimensional systems encountered in
Chapters 3 and 4. Here (Qi- Qj) is the difference in
orientation between molecules 1 and j at a separation of
rij‘ For most temperatures these correlation functions were
obtained by averaging at the end of every cycle the final
4000 cycles of the production run, over all pairs of
molecules in the system, up to a maximum separation distance
of 10a, where a is the nearest neighbour separation. This
cut-off was imposed because of the periocdic boundary
conditions, as contributions to the functions would have
been counted twice for r > 3xL/4 where, as before L is the
cell dimension. The results for these correlation functions
are plotted in Figure 7.7 and listed in Table 7.5a and 7.5Db.
They will be discussed in detail in the next section.
Another pair correlation calculated was the function:-
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Fig 7.4 A ’locked’ state which was started originally
from a tq}ally disordered state and allowed to
cool at T =1.0.
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Fig 7.6 The temperature dependence of the internal
energy as shown by the solid symbols and heat
capacity at constant volume, C: as calculated
by spline fitting and differentiating the
internal enerqy data (open squares).
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Fig 7.7 The angular disctribution functions F2(r) and
Fa(r) as a function of intermolecular

separation, r, at various temperatures studied.
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= 5 .~ B8.)> r..
EZ(Gimv)rij - <C052(91 J) ij 7.19

where again rij is the intermolecular separation, but rij
was restricted such that it was parallel to the six unigue
intermolecular vectors defined by gimv' This property was
calculated at the end of every cycle and averaged over the
entire production stage of the calculation. This results in
three separate pair correlation functions, with rij parallel
to the 0, 7/3 and 27/3 intermolecular vectors, i.e. EZ(O)’
Ez(n/B) and E2(2n/3) respectively, since the  pair
correlation functions for the 0, w;, w/3, 4u/3;, and 2n/3,
51/3 intermolecular vectors will be obviously equal. In
addition, with the herring bone glide plane parallel to the
0 intermolecular vector, EQ(n/B) and Ez(ZH/B) will be also
similar. The results for EZ(O) and the average of EZ(H/B)
and E2(2n/3) are plotted in Figure 7.8 and listed in Tables
7.5a and 7.6b respectively.

We can now discuss what order parameters could be
calcualted for this particular system. What we require is an
order parameter which will distinguish between the 1long
range ’herring bone’order in the SE phase and the rotational
disorder in the SB phase. In a perfect SE phase with one
domain, i.e. with a ’herring bone’ structure with the glide
planes along some wunique vector, the structure can be
described as arising from two sub-lattice structures, for
example in Figure 7.2 the two sub-lattices are labelled A
and B. Unfortunately there is no easy way of distinguishing
between these two sub lattices in the simulation, otherwise
order parameters of the form <cos?2 8,> or <cos2( Ql-ﬂr)
could readily be calculated. In the case of the first order
parameter, it will equal +1 or -1 depending on the choice of
sublattice and similarly for more general case <cos2(
Qi-ﬂr)>. The easiest way round this problem 1is to

calculate a higher rank order parameter, for example <cos4
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8;> or more explicitly <0054(9i-dr)> giving order
parameters with respect to the lattice vectors. In this case
for ﬁr parallel to the herring bone glide plane, all order
parameters, regardless of sub lattices will be similar, and
likewise for ﬁr equal to m or 2w/3. This set of order
parameters will be denoted Ca(O), C(n/3) and C4(2n/3).

It can be seen from observation of Figure 7.2 of a perfect
herring bone configuration that 54(0) will equal +1 and
Ca(n/B) and Ca(zn/B) will both equal -1/2. These order
parameters were calculated by averaging over the entire
system at the end of every cycle in the production run. As a
check against the herringbone rotating (remember the initial
simulation was started from a perfect herring bone with the
glide planes parallel to the Gr = 0 direction) or domains
setting in near the transition, which wundoubtably does
happen, a fourth order parameter was evaluated denoted as
Ea(max) and defined as the maximum of CQ(D), Ca(n/B)

and Ea(ZW/3). This maximum value was taken at the end of
each cycle for the value of 54(0), Ca(n/3) or 54(2ﬂ/3)
averaged over that cycle only, and averaged over the total
production phase. These results are plotted in Figures 7.9
and listed in Table 7.7

7.4 Discussion of Results

The most wuseful thermodynamic property calculated in
this simulation was the internal energy as defined in
equation 7.11. The results obtained for 0" are plotted as
a function of the reduced temperature T* in Figure 7.6. The
variation of the internal energy clearly shows a slight
change of slope in the region of T* = 9.0 to T* = 11.0 which
is confirmed by the heat capacity calculated from spline
fitting the internal energy, which shows a divergence in
this region. This behaviour suggests a second order phase
transition occuring at Th o= 9.3+0.4, the location of the
maximum in the heat capacity.

The presence of a transition is further confirmed from
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observation of the low and high temﬁerature configurational
plots in Figure 7.5. Also plotted on Figure 7.6 1is the
specific heat calculated from the energy fluctuations as
given by equation 7.15. However, the agreement between the
heat capacity calculated this way is poor compared with that
obtained from spline fitting the internal energy. This is
probably due to taking sub averages over too smaller
intervals during which time the energy fluctuations are
relatively small. Indeed in Chapter 3 we saw excellent
agreement in the wvalues for Ct calculated by both
methods.

It has recently been suggested (Mouritsen and
Berlinsky, 1982) in a study of nitrogen adsorbed on
graphite, using a very similar pair potential (without the
cos?2( 9, - 8.) term) that a first order transition at T*
= 9.04 does in fact occur. However, in order to observe a
sharp discontinous transition in the internal energy they
had to employ very 1large sample sizes (up to 10000
molecules), although obviously the term omittea in their
pair potential would give the system different transition
properties. In fact their wvalue for the entropy of
transition (AS/R~0.01) is so small that it could be
interpretated as not being of first order, but possibly
second also. This problem of determining the order of
transition, especially in systems which would appear to be
very dependent on size, and in which degenerate states can
occur, has always been worrying (Landau and Swendsen, 1981)
particularly in simulations wusing the Ising model in which
particles can occur in two states only (e.g. up or down) or
more generally in the g-state Potts model (a generalisation
of the Ising model). Indeed, computer simulation of a three
dimensional, three state Potts model with renormalisation
group theory calculations yields a continuous transition,
although it is arguably first order when simulated using the
Monte-Carlo technique (Knak-Jensen and Mouritsen, 1979).
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What can be concluded, however, is that we do observe a
transition between a rotationally ordered and disardered
phase, which is second order or higher.

This order-disorder transition is further emphasised in
the plots of the order parameters Ca(f), CA(ZH/3),
64(2“/3J and Ca(Max) as a function of T as shown in
Figures 7.9 and Table 7.7. At low temperatures, as we would
expect the system 1is highly ordered, with this order

%ecreasing with increasing ‘temperature, until it is
negligible at high temperatures. The existgnce of a
transition is clearly shown, and from the plot we can say
that it occurs within the range of Tt - 9.0 to 10.0,
confirming our result obtained previously from thermodynamic
considerations.

It is worth noting that the ordering is essentially
continuous through the transition, which again could be due
to the finite size of the system, or more probably due to
the high order of the transition. The behavior of the
CA(N/Z, 21/3) order parameter (plotted as the open
circles) is exactly as expected, and within the experimental
error on the points this order parameter is exactly -(1/2)
times the value of 54(0). At low temperatures the value of
Ca(max) is identical with Ca(O), although close to the
transition its value does become slightly greater,
indicating locally ordered domains forming with the herring
bone glide plane aligned along some other inter-molecular
vector. This 1s apparent in the configuration plots, (Fig.
7.5) where for example, at T* = 9.0 the dotted line
indicates two of these relatively highly ordered domains.

We now turn our attention to the total pair correlation
functions FL[r) as defined in equations 7.17 and 7.18.
However, before discussing the results it is worth
considering what we should expect for a perfect herring bone
structure on a triangular lattice. Examination of such a
system gives different values of F2(r) depending on the
value of r. In some of the coordination shells all the
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particles are parallel with the reference, so Fz(r) = 1,
whilst in other shells, two molecules are parallel, and four
orthogonal to the reference molecule, giving Fz(r)z -1/3. In
contrast the value of Fa(r) is always one regardless of the
coordination shell. This behaviour is confirmed by what we
observe. Figure 7.7 shows the results for F2(r) as a
function of r, obtained by averaging over all pairs of
molecules up to a maximum distance of r < 10 lattice vector
units. Each set of data points represent averages over
typically 4000 cycles and even 8000 cycles for T =9.5 (1000
cylces for T¥-1.0). Above the transition at T =9.3 +0.04, we
would expect all long range correlations to vanish, whilst
remain finite in the SE phase. However, even at T*zll.O,
these correlations decrease slowly with increasing r, and
only disappear totally at the extremities of the cut off.
This relatively high long range order is probably related to
the fact that the transition is of high order and will be
discussed further later. The fourth rank correlation again
indicates exactly what we would expect, with correlations
existing over long distances in the SE phase, and decreasing
with temperature, until all long range order is destroyed
completely above the transition temperature. This behaviour
is in contrast with the second rank function, but could be a
consequence of the fact that Fa(r)<F2(r) for any given
temperature. 0One other very interesting feature is a slight
maximum in the correlation function at about r=2, being more
pronounced near the transitign. This again will be discussed
later. As we have seen in other pair correlation functiaons
(in Chapters 3 and 4), the 1long range limiting value 1is
simply the square of the corresponding order parameter
(Zannoni, 1979). Therefore, for example, taking the positive
limits in the pair correlation function F2(rij), will yield
an order parameter for the average of co0s28 which

otherwise would not be calculable, since it would average to
zero with the 1inclusion of the negative correlations.

Similarly taking this negative 1limit, multiplying it by
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-(1/2) and taking the square root will give the same order
parameter. The results for this order parameter, together
with Cos4® where the bar denotes an average, obtained from
tge limiting values of Fa(rij) are plotted as a function of
T in Figure 7.10 and tabulated in Table 7.8. As expected
the plots clearly show a transition from an orientationally
ordered to a disordered phase in the region of " - 9.0 to
™ - 10.0.

However, these two total pair correlations functions
tell us nothing of the ordering in the system with respect
to the lattice axes, so we now turn to the pair correlation
functions defined by equation 7.19 i.e.

E,(0) = <cos2(0;- gj)(rij)> , grij =0 220
E,(n/3) = <cos2(8; - Qj)(rij)> , grij - 1/3 7 21
Ep(2m/3) = <cos2(8; - 0;)(r;4)> ﬂrij = 2n/3 7.22

In this case the correlations are for pairs of molecules
along given lattice vectors, where rij is again the distance
in lattice vector units between molecules i and j, hence rij
can adopt integer values only. Thus for a perfect herring
bone structure, all the molecules along the vector parallel
to the glide plane will be parallel to each other and so the
pair correlations will all equal 1.0 for all rij' However,
for the intermolecular vectors at n/3 and 2m1/3 to the glide
plane the molecules will alternate between being parallel
and orthogonal, so for odd values of r, it will equal -1
while for even values +1. At low temperatures this 1is

exactly what 1is observed. The results for EQ(D) and the
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average of Ez(n/B) and E2(2n/3) obtained from the simulation
are plotted in Figure 7.8 as a function of rij at different
temperatures. (The lines serve only as a guide to the eye).
At low temperatures the functions are well behaved, in that
the angular correlations are long range, and they decrease
with increasing temperature. However, close to the
transition an alternating effect is observed, with even T
values being larger than odd values. This is due entirely to
the fact that close to the transition local domains start to
occur, and so the correlations EZ(O),EZ(H/B) and E2(2n/3) no
longer become unique. What we see therefore, is an average
of these three functions. For even rij the correlations are
always positive and equal, but for odd rij’ Ez(n/B) and
E2(2n/3) adopt negative values, resulting in a reduction in
the value of E2[0). This effect is especially noticable for

r..=1, when the correlation goes negative through the

tignsition. This alternating effect therefore, is a measure
of domain growth in the system. One other interesting
feature 1is the slight maximum again at rij=2 and in
neighbouring shells, similar to the effect seen in F2(rij).
Again in the SB phase quite large correlations at short rij
are present which decrease only slowly on going to higher
temperatures.

In addition order parameters can be obtained from the
limiting wvalues of EZ(O) and Ez(n/B), which should be
similar to those evaluated from the limits of the complete
pair correlation functions. Indeed within limits of
experimental error this is what is observed, and the results
for the average of the positive limiting values for EZ(O)
are also given in Table 7.8.

We can now consider the observation of increased
correlations at a lattice distance of about ri.=2. This
behaviour is seen in the plots of the fourth rank total pair
correlation function Fa(rij) in Figure 7.7 and in the plots
of E2(O) in Figure 7.8. Indeed, if Ez(n/B) (Figure 7.8) were

plotted such that the correlations were all positive, then
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this effect would alsc be observed. Another phenomena linked
to this, 1is that the correlations in the first shell are
slighly smaller than the limiting values. One explanation
for this effect, is due to the nature of the pair potential.
If we turn back to equation 7.11 the potential consists of
two terms, the more dominant being the latter. At extremely
low temperatures we know that the ground state configuration
for the potential 1in equation 7.11 1is a herring bone
structure. However, at the end of section 7.2 we saw where
this ground state configuration occured on the potential
energy surface, with two of the pair configurations on the
sides of a relatively steep ridge (see Figure 7.3). What may
occur at temperatures close to the transition, is that these
pairs of molecules tend to fall further into the potential
well, so going to more perpendicular type nearest neighbours
structures, resulting in a decrease in the nearest neighbour
pair correlations. This 1in turn means that pairs of
molecules at a distance of two inter molecular units will
have increased parallel correlations, showing up in the pair
correlation functions. This effect will be small compared
with, at low temperatures, the dominant herring bone
structure, and at high temperatures the complete rotational
disorder, hence, it 1is only just apparent close to the
transition.

In the Introduction to this Chapter it was mentioned
that X-ray analysis work on TBBA (Doucet, Levelut and
Lambert, 1974) revealed that the Sy Phase could consist of
small domains of ordered herring bone structure. If indeed
this were the case then our calculated correlation functions
verify 1it, since in all the second rank functions, short
range order does extend well into the smectic B phase.

7.5 Optical Masking
The greatest difficulty in X-ray diffraction 1is the

determination of structural information from very complex
scattering patterns. The most common method for this
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analysis is to calculate scattering‘patterns from proposed
crystal structures. The calculated patterns are then
compared with experimental patterns, necessary refinements
made to the proposed structure and the whole process
repeated until satisfactory agreement of patterns is
observed.

An alternative, much simpler technigue, although not as
accurate, 1is that of optical masking. The interatomic
distances in «crystal structures are such that they will
diffract X-ray radiation by fulfilling the Bragg scattering
law. However, 1f the interatomic distances are increased
then eventually optical radiation can be used for
scattering. This 1is the basic principle behind optical
masking. Normally a photographic negative 1s made with
transparent holes suitably produced such that the locations
and diameter of the holes represent the positions and sizes
of the atoms in a proposed structure. Obviously the negative
represents a projection of the three dimensional structure
onto a two dimensional plane, corresponding to diffraction
of X-rays from a particular crystalline face. Using
monochromatic light directed through the mask, a diffraction
pattern 1is produced and normally recorded on photographic
plates. This methoa therefore removes the problem of having
to numerically calculate scattering patterns.

Using three configurations taken from the simulation at
reduced temperatures, of 1.0, 8.0, and 17.0 corresponding to
highly ordered, weakly ordered and highly disordered
systems, scattering patterns were obtained wusing these
configurations as optical masks. The configurations and
respective scattering patterns are shown in Figure 7.11.
This corresponds to scattering produced with the incident
radiation perpendicular to the layers.

Before comparing the patterns with experiment it is
worth while calculating what kind of pattern we would expect
from such a system. First of all, the rotationally

disordered SB phase. The only symmetry element present in
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such a phase is the six fold translational symmetry. The
unit cell for such a system is shown in Figure 7.12a. This
is the smallest repeating unit possible in order to build up
a triangular network. The next problem is to calculate the
reciprocal lattice structure. If our real lattice is defined
as having non-orthogonal axes a and b, then in reciprocal
space these will be a* and b*. Using the notation of Muller,
indices labelling various planes in the real lattice can be
defined. The set of planes in the real lattice whose indices
are h and k, intercept the a and b axes at a/n and b/k
respectively. Various planes are shown in Figure 7.12a. The
perpendicular distances of these planes from the origin are
denoted dhk'
vectors along dhk whose length is inversely proportional to
the length of dhk
array of points labled (h,k) in reciprocal space. Figure

The reciprocal lattice 1is then formed with
in real space. This gives an infinite

7.12b shows part of the reciprocal lattice of the unit cell
structure in Figure 7.12a which can be compared directly
with experiment, since scattering patterns are simply
representations of the reciprocal lattice. Thus for our SB
configuration we would expect a scattering pattern identical
with the reciprocal lattice structure in Figure 7.12b. This
is indeed exactly what we do observe in the bottom
scattering pattern in Figure 7.11. In addition to the
regular array of spots, close to the central six spots, are
diffuse scattering regions, the presence of which will be
discussed later.

Adopting a similar procedure we can calculate the
reciprocal lattice structure for the unit cell defining the
low temperature SE phase. Now the unit cell is twice as
large (Figure 7.13a) giving a closer packed reciprocal
lattice (Figure 7.13b). Thus, at this point we would expect
the reciprocal lattice to consist of an array of points with
half the separation along the a* direction to that in the SB
phase. However, additional symmetry in the SE phase dictates
that certain-spots on the reciprocal lattice are absent. 1In

particular, it has two glide planes (equivalent to a mirror

217




8T¢C

a b VGﬁ /
(01N a \\\ /
I S~o /
[ N4 \
| | e
| |
! Ul !
i 21 'doy o
Ed01 I//,/ “ d“ /// 21)
; A dyy ! o
i 7 VT Jan
! -7 0 Z a
! /" a \ day - \
° d
21
. "51 ;2
Fig 7.12 .
Fig 7.13 53 s,
-11 52
b 7 .
42
. 1
21 b -%0 dor
. . » 21
=30 33 a* . dyy
. -20
~20 -io dz, 31
—5-1 52 41
» b‘ 00 d4‘1 -
-2-1 -3-1 10 a
S . o 20
-2-2 0-1 20 2 %o
L . ] L *
-3-3 -1-2 1-1 30 0-1 40 b
-5-3 6—2 5-1 _5_2 :_1
The unit cell (7.12a) representing the 55 phase, The unit cell (7.13a) representing the Sg phase,
together with a part of 1its reciprocal 1al- together with a part of its reciprocal lattice

tice (7.12b) (7.13b)




plane after translation along that plane) marked as the
dashed 1lines in Figure 7.13a parallel to the (10) and (11)
planes. This results in alternate absences in diffraction
spots along these two directions on the reciprocal lattice.
This pattern, together with these systematic absences are
seen in the optical diffraction pattern at the top of Figure
7.11 for the configuration at T =1.0. The total diffraction
pattern expected for the SE and SB phases is shown in Figure
7.14. The solid squares represent the pattern that the SB
phase only would give and the solid circles the additional
spots arising from the reduced symmetry of the SE phase. The
alternate absences along the (10) and (11) directions are
shown as the open circles. It should be noted that the
labelling of spots is consistent with the unit cell for the

S. phase only. (For the S, unit cell, the a* labels would be

£
divided by two).

We can now comment on the cause of the diffuse regions

B

around the central six spots in the SB phase. This is due to
the high short ranged order which we also saw in the
previous section in the pair correlation functions. This
local herring bone order will exist along all three lattice
vectors. The most significant difference between the
scattering patterns in the SB and SE phases close to the
origin are the presence of the eight spots labelled (32),
(31), (1-1), (-12), (-3 =-2), (-3 -1) (-11) and (12).
Therefore with very local herring bone order present in the
SB phase, along all three lattice vectors, a weak average
scattering will be formed, observable as the blurred regions
in the bottom scattering pattern in Figure 7.11.

So far no mention has been made of the striking cross

pattern in the two scattering patterns of the S_ phase. In

denving our scattering pattern in Figure 7.14 ;al that was
assumed was the shape of the unit cell, being twice the size
of that in the SB phase. This is because in the SE phase the
additional order allows us to distinguish between the two

orientations of the molecules. Thus superimposed on the
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scattering described earlier will be a pattern attributed to
the order with respect to the two orientations in which the
molecules lie. This results in the dominant ’cross’ pattern
being present at both temperatures in the SE phase. For
example, if the optical diffraction pattern had been
obtained from a mask in which all the lines were parallel
and randomly distributed, then the resulting diffraction
pattern would consist of a series of lines orthogonal to the
direction of the lines in the mask, which would decrease in
intensity on going from the centre of the pattern. Hence,
for two sets of lines at right angles to each other on a
mask, the pattern would consist of a series of orthogonal
lines decreasing in intensity from the origin giving a
'cross’ like diffraction pattern. Thus the pattern for the
low temperature SE phases actually consist of two
superimposable patterns, a series of spots resulting from
the structural unit cell, together with a ’cross’ caused by
the actual shape ana orientation of the lines representing
the molecules.

A comparison with real X-ray scattering patterns can
now be made. The resolution of such patterns is normally
only sufficient to resolve the first few spots only. X-ray
scattering from TBBA (terephthalylidene-bis-4-n-
butylaniline) (Doucet et al, 1975: Doucet, 1979) in its S8
phase reveals the six central spots and in addition the
diffuse regions mentioned above. In the SE phase of PBAPC
(Leadbeater et al, 1979, Doucet et al, 1975) the six central
spots are observed, together with the next closest four. So
although X-ray diffraction does not allow the complete
resolution one would wish for, the patterns obtained are
very consistent with our optical masking patterns produced
from configurations taken from the simulation. Actually
slightly better resolution 1is obtained in scattering from
nitrogen molecules physisorbed on graphite (Diehl, Toney and
Fain, 1982) using low energy electron diffraction. 1n this
case the long molecular axes of the nitrogen molecules form
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a herring bone structure at temperatures less than about

30K, similar to the S_. phase.

E

7.6 Comparison with molecular field theory

In many of the preceding Chapters, wherever possible,
the results obtained from the computer simulations have been
compared, often quite successfully, with the predictions of
molecular field theories. Therefore, for completeness a
similar comparison will be made here. To date, the only
theories available for the description of order in the
smectic E and B phases are those developed by Meger and Jay,
1975, 1976. Basically they have performed both a molecular
field treatment and a theory based on the Landau expansion
of the free energy at the transition. In both cases they
assume an intermolecular pair potential exactly identical to
that used in this Chapter.

The molecular field treatment simply derives the
average potential of a molecule in the system, resulting
from the interactions between pairs of molecules in both sub
lattices. Thus for example, a molecule in sub-lattice, a
(see Figure 7.2}, experiences an average interaction from
two other molecules in the same sublattice, together with
four in sublattice b. A full description of this treatment
can be found in the above references. The most significant

prediction is that of the Sg and S, transition temperature.

B
It is evaluated to be:-

kT/e = 24.33

Thus when compared with the result of the simulation it
is actually overestimated by 160%. This overestimation by
theory is common, as we bhave seen in previous chapters.
Furthermore, a 50% over prediction by molecular field theory
was observed in the simulation of a two dimensional nematic.
(Denham et al, 1980).
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To conclude this chapter therefore, the use of a very
simple model with a relatively simple pair potential based
on quadrupolar interactions, has allowed a fairly detailed
investigation of some of the orientational properties
associated with the smectic-B to smectic-E phase transition,
properties which are unavallable by other means.
Furthermore, the application of the technique of optical
masking has to a certain extent, demonstrated the validity
of such of simple tool to give diffraction patterns which
would otherwise only be obtainable by X-ray aor neutron
scattering.
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Table 1.1

A table of a few ligquid crystal molecules and their mesophases.

Cholesteryl benzoate

4,4-dimethoxyazoxybenzene
(PAA)

4, 4-di-n-heptyloxyazoxybenzene
(HOAB)

§terephthalylidene—bis—(4—n—butylaniline)

2-{(4-n-pentylphenybeuzylidene~-p-amino n-pentyl cinnamate)

(PBAPC)

2-{4-n-pentylphenyl)-5-(4-n-pentyloxyphengl) pyrimidines

(PPP)
Abbreviations
C - crystalline
N - nematic
I - Isotropic
S - smectic

The transitions are in degrees centigrade.

c22d cnhd8d
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Table 3.1 Transition properties

— NI - * —%

N1 Py AS/R Uy Ty’ %
I 1.127+0.003 }0.27+0.02 | 0.06+0.01 6 0.1878+0.0005
IT 2.43 +0.03 0.31+0.03 {1 0.04+0.02 12 0.203 +0.003
II1 1.54 +0.02 0.3540.03 | 0.06+0.03 7.796 0.198 +0.003
v 3.06 +0.05 0.24+0.56 | 0.10+0.07 14.31 0.214 +0.003
Lebwohl & 1.124+0.006 }0.38+0.01 | 0.10 6 0.187 +0.001
Lasher (1972)
Jansen et al. 1.119+0.001 |0.3340.04 | 0.09+0.01 6 0.186 +0.001
(1977)
Meirovitch 1.111+40.004 |0.27+0.02 | 0.11+0.04 6 1.852 +0.001
(1977)
Maier Saupe - 0.429 0.417 - 0.2202
Two sSite 1.160 0.382 0.282 - 0.193
cluster z=6
z=12 (Sheng & - 0.408 0.361 - 0.207

Wojtowicz 1976)
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Table 3.2 Properties evaluated from the pair correlation functions G2(r..)
and G4(rij) for Model 1V 1]

T * -g* 54

direct via Gz(rij) G4(rij) predicted1
1.250 5.79+0.01 5.77 0.671 0.673+0.005
1.750 5.09+0.01 5.11 0.527 0.536+0.004
2.250 4.26+0.03 4.22 0.387 0.399+0.006
2.500 3.66+0.02 3.56 0.303 0.320+0.005
2.875 2.36+0.05 2.22 0.145 0.154+0.013
3.000 1.48+0.09 1.40 0.063 0.062+0.006
3.125 0.87+0.05 0.90 0.024 0.018+0.006
3.750 0.572+0.008 0.528 0.000 0.004+0.001

Maier-Saupe prediction of 54. The errors arise from the uncertainty in §2 leading to an

uncertainty in 32.
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Table 3.3

The coefficient a in the singlet orientational distribution

function and its dependence on P

2

for Model 1I.

T* 52 a aT*/is2
1.000 0.625 3.154 5.047
1.020 0.604 3.054 5.056
1.042 0.577 2.917 5.055
1.064 0.544 2.777 5.068
1.087 0.485 2.435 5.021
1.111 0.398 1.996 5.015
1.124 0.311 1.573 5.051




Table 4.1 Computational details

Number of Cycles:-
T* Starting T* | Equilibration Production Written to
magnetic tape
1.5 2.0 1000 2500 1500
1.75 1.5 500 2000 -
2.0 2.5 1000 1500 1250
2,25 2.0 1000 1500 1500
2.4 2.25 1000 1500 -
2.5 0.0l 2000 2500 2500
2.6 2.5 2500 2500 2500
2.65 2.25 1500 2500 1500
2.7 ) 2.5 1000 6250 4000
2.75 2.0 2500 5000 -
2.8 2.7 1750 2000 -
3.0 2.5 1000 2000 ~-
3.25 1.5 500 2000 -
3.5 2.5 1000 2000 -
4.0 2.5 1000 1000 1000

Total averages obtained by averaging sub averages each of 50 cycles.

All aligned antiferroelectric configuration.
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Table 4.3 Second Rank Orientational Order Parameters

T §2f%) 52(b) 52(c) §z(d)2

1.5 0.852+0.004 | 0.851+0.007 0.851 0.851+0.001
1.751 | 0.817+0.007

2.0 0.785+0.009 | 0.785+0.014 0.785 0.784+0.001
2.25 0.740+0.011 | 0.739+0.016 0.739 0.738+0.001
2.41 0.696+0.015

2.5 0.669+0.016 | 0.669+0.022 0.669 0.668+0.001
2.6 0.637+0.019 | 0.638+0.026 0.637 0.636+0.002
2.65 0.595+0.031 | 0.582+0.037 0.582 0.581+0.004
2.7 0.481+0.108 | 0.451+0.121 0.449 0.463+0.004
2.751 | 0.358+0.178

2.8% 0.077+0.053

3.0t 0.056+0.032

3.25% | 0.040+0.023

3.5t 0.034+0.018

4.0 0.023+0.013 | 0.044+0.017 0.000+0.032

a) Calculated by averaging the Q-tensor over 50 cycle macrosteps.

b) Calculated by averaging P

2 from diagonalised Q-tensor at

end of each cycle.
c) Calculated with respect to the laboratory z-axis.
d) Calculated from limiting the value of the pair correlation
function, G2(r..).
1]
1 Configurational history not written to magnetic tape during
these production runs.

2 These errors are only associated with locating the long range
limiting value, not from the uncertainty in the values themselves.
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Table 4.4

Other Order Parameters

a)
b)
c)

d) Errors are associated in the uncertainty in locating the limiting value of G

P Pl(a) P4(a) P4(b,d) P4(c)
1.5 0.000 0.587 0.587+0.001 0.588
2.0 -0.001 0.455 0.455+0.001 0.467
2.25 -0.008 0.383 0.382+0.001 0.397
2.5 0.012 0.296 0.293+40.004 0.311
2.6 0.000 0.264 0.263+0.003 0.278
2.65 0.001 0.222 0.221+40.005 0.234
2.7 -0.008 0.154 0.161+0.003 0.132
4.0 - - 0.000+0.032 -

Calculated with respect to the laboratory z-axis.
Calculated from the limit of the pair correlation function (G

Mean Field prediction at same value of €.

4(r

).
13

4

(ri

. )
J

only.




Table 4.5 Singlet Distribution results

T* a b §2/T*
1.5 5.746x10”%  6.898 0.5673
2.0 0.925x10"%  4.812 0.3925
2.25 2.322x107%  4.080 0.3284
2.5 5.608x10°%  3.344 0.2676
2.6 7.398x10°%  3.101 0.2454
2.65 | 10.657x10"%  2.765 0.2196
2.7 19.111x10"%  2.17s 0.1670
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Table 4.6 First rank pair correlation functions

a) Total normalised G, (r)

1
rz/T* 1.5 2.0 2.25 2.5 2.6 2.65 2.7 4.0
‘1 0.906 0.858 0.774 0.645 0.561 0.396 0.021 0.030
2 0.909 0.864 0.801 0.705 0.657 0.546 0.333 0.063
3 0.901 0.850 0.786 0.666 0.606 0.474 0.171 0.000
4 0.903 0.853 0.793 0.690 0.634 0.511 0.236 0.032
5 0.900 0.849 0.786 0.678 0.612 0.480 0.207 0.009
6 0.897 0.846 0.783 0.663 0.597 0.453 0.084 0.000
8 0.898 0.846 0.782 0.667 0.603 0.465 0.126 0.000
9 0.897 0.846 0.780 0.660 0.588 0.464 0.078 0.006

10 0.900 0.846 0.783 0.672 0.612 0.483 0.210 0.003

11 0.898 0.845 0.781 0.667 0.597 0.457 0.117 0.002

12 0.898 0.845 0.781 0.667 0.597 0.459 0.104 0.001

13 0.897 0.846 0.780 0.663 0.588 0.438 0.054 0.001

14 0.897 0.846 0.780 0.666 0.600 0.459 0.117 0.005
b) Unnormalised Gi(r)
r2/T* 1.5 2.0 2.25 2.5 2.6 2.65 2.7 4.0

1 -0.891 -0.836 -0.768 -0.660 -0.600 -0.474 -0.212 -

2 0.891 0.837 0.769 0.654 0.583 0.446 0.143 -

4 0.903 0.853 0.790 0.678 0.615 0.482 0.158 -

5 -0.899 -0.846 -0.781 -0.667 -0.600 -0.458 -0.124 -

8 0.898 0.846 0.782 0.668 0.604 0.461 0.106 -

9 ~-0.896 -0.843 -0.777 -0.660 -0.590 -0.447 -0.089 -
10 0.897 0.846 0.778 0.664 0.593 0.446 0.092 -
13 -0.897 -0.845 -0.779 -0.664 -0.597 -0.449 -0.091 -
¢ Unnormalised Gg(r)

r*/T* 1.5 2.0 2.25 2.6 2.65 2.7 4.0

i 0.876 0.813 0.761 0.673 0.637 0.554 0.403

4 0.903 0.854 0.798 0.713 0.673 0.568 0.392

9 0.897 0.843 0.783 0.688 0.643 0.523 0.334
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a) Total G2(r)

Table 4.7

Second rank pair correlation functions

r/p* 1.5 2.0 2.25 2.5 2.6 2.65 2.7 4.0

1 0.700 0.582 0.510 0.415 0.378 0.320 0.224  0.020

2 0.723 0.616 0.547 0.449 0.409 0.347 0.235 0.012

3 0.732 0.626 0.558 0.464 0.422 0.359 0.239 0.007

4 0.737 0.632 0.566 0.473 0.433 0.369 0.252  0.015

5 0.722 0.613 0.543 0.444 0.403 0.338 0.220 0.002

6 0.722 0.613 0.544 0.444 0.403 0.337 0.217 0.001

8 0.726 0.618 0.550 0.452 0.411 0.346 0.222 0.002

9 0.724 0.616 0.545 0.445 0.404 0.338 0.216 0.001
10 0.724 0.617 0.546 0.447 0.407 0.340 0.218 0.001
11 0.725 0.616 0.549 0.450 0.408 0.343 0.218 0.001
12 0.725 0.614 0.548  0.448 0.407 0.342 0.216 0.000
13 0.723 0.615 0.545 0.445 0.404 0.337 0.215 0.001
14 0.724 0.616 0.545 0.447 0.406 0.338 0.214 0.000

b) GéL(r)
r?/m¢ 1.5 2.0 2.25 2.5 2.6 2.65 2.7 4.0

1 0.709 0.597 0.526 0.431 0.393 0.334  0.235 -

2 0.709 0.597 0.525 - 0.423 0.383 0.319 0.211 -

4 0.737 0.632 0.567 0.473 0.432 0.367  0.245 -

5 0.726 0.618 0.548  0.450 0.409 0.344  0.221 -

8 0.726 0.617 0.550 0.452 0.410 0.345 0.218 -

9 0.721 0.611 0.541  0.440 0.399 0.334 0.213 -
10 0.722 0.616 0.543  0.444 0.403 0.335 0.213 -
13 0.724 0.615 0.545 0.445 0.404 0.337  0.213 -

c) G;‘(r)
ré/ * 1.5 2.0 2.25 2.5 2.6 2.65 2.7 4.0

1 0.674 0.551 0.479 0.381  0.345 0.291 0.214 -

4 0.736 0.634 0.564 0.473 0.434 0.374 0.238 -

9 0.723 0.611 0.543 0.442 0.401 0.337 0.221 -
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Table 4.8 Fourth rank pair correlation functions
a) Total G4(r)
r2/* 1.5 2.0 2.25 2.5 2.6 2.65 2.7 4.0

1 0.310 0.179 0.125 0.077 0.062 0.047 0.028 0.000

2 0.345 0.209 0.149 0.091 0.073 0.054 0.031 0.001

3 0.358 0.219 0.157 0.097 0.078 0.057 0.032 0.000

4 0.365 0.226 0.165 0.104 0.085 0.063 0.036 0.000

5 0.342 0.205 0.144 0.086 0.069 0.049 0.027 0.000

6 0.342 0.204 0.145 0.086 0.068 0.049 0.026 0.000

8 0.348 0.209 0.150 0.091 0.073 0.052 0.028 0.001

9 0.344 0.207 0.145 0.087 0.069 0.049 0.026 0.000
10 0.345 0.208 0.147 0.089 0.071 0.050 0.027 0.001
11 0.347 0.207 0.149 0.089 0.070 0.051 0.027 0.000
12 0.346 0.207 0.148 0.088 0.070 0.051 0.027 0.000
13 0.344 0.206 0.146 0.086 0.069 0.048 0.026 0.000
14 0.345 0.207 0.146 0.087 0.069 0.049 0.026 0.000

r/T* 1.5 2.0 2.25 2.5 2.6 2.65 2.7 4.0

1 0.327 0.194 0.137 0.086 0.070 0.053 0.032 -

2 0.321 0.189 0.130 0.075 0.059 0.043 0.025 -

4 0.365 0.225 0.165 0.103 0.085 0.062 0.034 -

5 0.348 0.209 0.148 0.090 0.072 0.051 0.028 -

8 0.347 0.208 0.149 0.090 0.072 0.051 0.027 -

9 0.339 0.203 0.143 0.084 0.067 0.048  0.025 -
10 0.342 0.207 0.144 0.085 0.068 0.048 0.026 -
13 0.344 0.206 0.147 0.087 0.068 0.047 0.026 -

ré/m* 1.5 2.0 2.25 2.5 2.6 2.65 2.7 4.0

1 0.276 0.151 0.102 0.061 0.048 0.035 0.022 -

4 0.365 0.228 0.164 0.107 0.085 0.066 0.040 -

9 0.343 0.212 0.143 0.086 0.066 0.049 0.027 -
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Table 5.1

System A

N = 1000

™ = 1.0
X B, B field -G
0.03 0.637+0.004 0.616+0.012 1.631+0.009
0.04 0.640+0.006 | 0.618+0.008 | 1.643+0.009
0.05 0.643+0.011 0.633+0.012 1.668+0.013
0.06 0.652+0.007 | 0.635+0.013 | 1.684+0.013
0.07 0.656+0.006 | 0.639+0.011 | 1.698+0.014
0.08 0.658+0.005 0.647+0.008 1.714+0.012
0.09 0.660+0.007 | 0.651+0.006 | 1.723+0.006
0.10 0.666+0.012 0.658+0.009 1.734+0.019
0.20 0.686+0.010 0.686+0.014 1.884+0.010
0.30 0.708+0.003 0.707+0.003 1.991+40.014
0.40 0.727+0.002 | 0.726+0.003 | 2.121+40.012
0.80 0.773+0.005 0.77240.006 2.604+0.008
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Table 5.2

System B

N = 8000

" = 1.0
X P, B, (field) 5"
0 0.606+0.008 - .582+0.012
0.001 | 0.609+0.004 | 0.482+0.080 | 1.589+0.004
0.0025| 0.610+0.003 | 0.453+0.075 | 1.591+0.003
0.005 | 0.611+0.004 | 0.569+0.011 | 1.596+0.005
0.006 | 0.614+0.005 | 0.612+0.010 | 1.598+0.005
0.010 | 0.617+0.008 | 0.613+0.009 | 1.606+0.005
0.025 | 0.622+0.004 | 0.616+0.004 | 1.627+0.002
0.050 | 0.635+0.008 | 0.632+0.008 | 1.663+0.005
0.100 | 0.657+40.005 | 0.657+0.005 | 1.741+0.010
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Table 5.3

System C

T* PZ(Q) -ﬁ* C:;spline)
1.0 0.686+0.010 | 1.884+0.010 2.73
1.05 0.653+0.010 | 1.747+0.014 2.77
1.1 0.607+0.005 | 1.604+0.011 3.00
1.2 0.499+0.011 | 1.283+0.011 3.25
1.25 0.435+0.022 11.111+40.020 3.88
1.3 0.332+0.033 | 0.911+0.024 3.54
1.35 0.256+0.040 [ 0.773+0.016 2.22
1.4 0.210+0.023 { 0.676+0.016 1.66
1.6 0.108+0.009 | 0.493+0.008 0.50
1.8 0.078+0.002 | 0.409+0.005 0.39
2.5 0.044+0.001 | 0.270+0.004 0.05
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Table 5.4

Singlet distribution function results

System A System B
*

T 1.1146 1.0
X 0.1 0.05
N 1000 8000
Py 0.52 0.611
Number of cycles
averaged over: - 1060 1000
Fit to equation
5.25: -
a 2.21+40.05 2.69+0.05
Z 484 +75 794 +100
Fit to equation
5.27:~-
a, 2.70+0.06 3.43+0.06
a, -0.16+0.02 -0.27+40.02
Z 220 +5 205 +50
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Table 6.1

Computational Details

for System A

Number of cycles

T* starting config.| Length of Length of direction

temperature equilibration| production| of surface

molecules

1.0 1.1 10,000 10,000 z
1.1 1.6 10,000 10,000 z
1.15 1.0 5,000 5,000 z
1.2 1.6 10,000 10,000 z
1.2 1.4 5,000 5,000 X
1.25 1.15 5,000 5,000 z
1.3 1.15 5,000 5,000 z
1.35 1.15 5,000 5,000 z
1.4 0.0i 11,000 5,000 X
1.6 0.0F 10,000 10,000 2

¥

240

all aligned configuration parallel to z laboratory axis.




Table 6.2

Computational details for System B.

" 0.90 1.00 1.08 .20

~ A B C A B C A B C A B C
0.05 - - - - - - -~ - 0.0 20 10
0.06 - - - - - - - - 0.05 20 10
0.07 - - - - - - - - 0.05 20 10
0.08 - - - - - - - - 0.05 20 10
0.09 - - - - - - 0.0 10 10| 0.14 20 10
0.10 - - - 0.0 12 10 |0.15 20 20] 0.09 20 10
0.11 - - - 0.25 20 10 {0.10 10 20 - - -

0.12 - - - 0.11 20 10 {0.15 20 20} 0.16 20 10
0.13 0.14 10 10 - - - 0.12 10 20 - - -

0.14 0.15 10 10 {0.11 10 10 |0.12 20 20| 0.18 10 20
0.15 0.0 20 20 [0.14 10 10 {0.12 30 20 - - -

0.16 - - - 0.11 10 10 {0.15 20 20| 0.14 10 20
0.17 * 10 20 | 0.16 10 10 |0.16 20 20| 0.16 10 20
0.18& - - - 0.11 8 10 0.17 20 20| 0.16 10 20
0.19 0.2 10 20 |0.18 14 10 {0.18 10 20| 0.18 10 20
0.20 * 10 20 | 0.10 5 20 - - - - -

0.21 - - - 0.20 14 10 - - - - -

0.22 - - - 0.18 10 10 - - - - -

0.25 - - - 0.20 12 10 - - - - -

0.30 - - - 0.25 8 20 - - - - -

A starting configuration -field value is given

B length of equilibration

C length of production (thousand cycles)

* from T*=l.0, X =0.20 configuration.

(thousand cycles)
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Simulated properties of system A

Table 6.3

P2 calculated from Q-tensor diagonalised at end of each

cycle in production stage.

™ 1.0 1.1 15 1.2 22 1025 1.3 .35 1.4% 1.6
layer
1 0.715 0.657 0.618 0.575 0.570 0.530 0.471 0.446 0.387 0.308
2 0.653 0.563 0.500 0.387 0.384 0.311 0.257 0.219 0.171 0.138
3 0.641 0.526 0.428 0.271 0.284 0.228 0.174 0.146 0.132 0.120
4 0.643 0.518 0.386 0.219 0.232 0.198 0.154 0.140 0.127 0.116
5 0.644 0.514 0.373 0.196 0.198 0.172 0.153 0.140 0.133 0.116
6 0.645 0.506 0.362 0.198 0.201 0.164 0.157 0.143 0.129 0.117
7 0.642 0.508 0.370 0.223 0.219 0.181 0.167 0.148 0.125 0.115
8 0.643 0.522 0.408 0.281 0.276 0.208 0.196 0.155 0.141 0.121
9 0.663 0.564 0.478 0.386 0.372 0.309 0.283 0.226 0.191 0.137
10 0.718 0.656 0.614 0.569 0.568 0.523 0.491 0.441 0.405 0.305




ene

P2(Q) calculated from averaged Q-tensor.

LAYer |T* 1o 11 s 2 .2 pas 3 35 1.4° 16

1 0.706 0.645 0.607 0.564 0.560 0.517 0.459 0.432 0.374 0.290

2 0.634 0.539 0.482 0.365 0.363 0.280 0.225 0.180 0.133 0.076

3 0.612 0.490 0.400 0.236 0.241 0.162 0.113 0.078 0.045 0.019

4 0.612 0.472 0.352 0.166 0.164 0.117 0,056 0.054 0.023 0.006

5 0.613 0.465 0.330 0.129 0.115 0.092 0.044 0.037 0.017 0.009

6 0.615 0.459 0.310 0.123 0.127 0.082 0.054 0.017 0.019 0.009

7 0.613 0.473 0.326 0.160 0.166 0.102 0.076 0.039 0.021 0.012

8 0.617 0.494 0.376 0.234 0.231 0.150 0.142 0.081 0.066 0.027

9 0.643 0.542 0.457 0.357 0.346 0.278 0.251 0.192 0.153 0.080

10 0.708 0.645 0.604 0.555 0.546 0.509 0.480 0.428 0.391 0.289
overall

average | 0.637 0.522 0.424 0.288 0.285 0.227 0.189 0.153 0.101 0.078

= 1.651 1.235 1.136 0.918 0.913 0.814 0.738 0.668 0.491 0.490

error 0.040 0.041 0.057 0.053 0.051 0.052 0.047 0.038 0.037 0.032

b Surface alignment

along x direction.
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Table 6.4

Director orientation for system A

The direction cosines between the director and the surface alignment.
T 1.0 1.1 1.15 1.2 1.2®% 1.25 1.3 1.35 1.4P 1.6
Layer
0? 1.000 1.000 1,000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
2 0.999 1.000 1.000 0.999 1.000 0.999 0.999 1.000 1.000 0.996
3 0.997 0.998 0.999 0.998 0.999 0.993 0.999 0.997 0.983 0.968
4 0.996 0.997 0.999 0.994 0.999 0.987 0.998 0.985 0.956 0.890
5 0.996 0.996 0.999 0.989 0.999 0.980 0.990 0.966 0.880 0.862
6 0.997 0.996 0.999 0.988 0.991 0.979 0.965 0.989 0.760 0.758
7 0.997 0.995 0.999 0.992 0.992 0.985 0.988 0.994 0.922 0.733
8 0.999 0.996 1.000 0.996 0.995 0.999 0.999 0.986 0.999 0.982
9 1.000 0.998 1.000 0.999 0.999 1.000 1.000 0.998 1.000 0.999
10 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
112 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

a

Layers 0 and 11

correspond to the surfaces.

Surface alignment is along x direction.




Table 6.5

A table of the maximum director deformations

(degrees) obtained at the temperatures studied

and at various external fields.

X t* | 0.90 1.00 1.08 1.20
0.05 - - - 1
0.06 - - - 5
0.07 - - - 6
0.08 - - - 20
0.09 - - 1 30
0.10 - 3 18 87
0.11 - 2 29 -
0.12 - 25 37 86
0.13 7 - 45 -
0.14 | 30 44 51 84
0.15 | 43 53 60 -
0.16 - 56 63 89
0.17 | 54 60 67 89
0.18 - 63 74 88
0.19 | 62 67 77 87
0.20 | 64 68 - -
0.21 - 71 - -
0.22 - 74 - -
0.25 - 77 - -
0.30 - 87 - -
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Table 6.

6

Elastic properties system B

7" B K" K*/F.2 K"*/3P 1n(1/F,)k"
2 2 2 2 Te

0.90 0.71 1.20 2.37 0.79 0.46

1.00 0.62 0.94 2.45 0.82 0.45

1.08 0.52 0.71 2.64 0.88 0.43

1.20 0.20 0.19 4.86 1.62 0.25
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Table 7.1

Some cinnimate esters giving rise to Smectic E and

H o
é:N-—@—CH=Cﬁ-'c'—0R

B mesophases.

R name initials
CH7CH2CH2CH n-butyl 4(4' phenyl- BPBAC
benzylidineamino)cinnamate
CHZCH(CH3)2 iso-butyl 4(4' phenyl- IBPBAC
benzylidineamino) cinnamate
CﬁZCHZCH2CH2CH3 n-pentyl 4(4' phenyl- PPBAC
benzylidineamino) cinnamate




8we

Table 7.2

Transition properties of a few 4(4' phenyl benzylidineamino) cinnamates

BPBAC (Richardson et al., 1978)

77°C 108°C 172°C 208°C
Crystal &—=—=—= S — SB = SA == Isotropic

E\

IBPBAC (Richards et al., 1978)

86°C 114°C 162°C 206°C 214°C
Crystal &—— Sp T S5 — S, &= N &= Isotropic

PPBAC (Doucet, 1979)

92°C 101.5°C 168°C 204°C
Crystal & S <= Sg < — S, = Isotropic.
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Computation details
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Table 7.4

Thermodynamic Properties

T -U* (fluctuations) C:‘(spline)
0.0 24.33 - -

1.0 23.82+0.01 0.65+0.03 0.51+0.04
3.0 22.77%0.01 0.71%0.05 0.54%0.04
5.0 21.59%0. 04 0.70%0. 04 0.67%0.05
6.0 20.90%0.04 0.75%0.03 0.68%0.05
7.0 20.21+0.05 0.79+0.04 0.75+0.09
8.0 19.27%0.11 0.73%0.07 1.21%0.12
8.5 18.64%0.12 0.76%0.06 1.19%0.20
9.0 17.98%0.37 0.80%0.04 1.78%0.35
9.5 16.98%0. 25 0.71%0.02 1.63%0.35
10.0| 16.43%0.24 0.76%0.03 1.01%0.35
11.0| 15.12%0.16 0.72%0.09 1.26%0.20
12.0 14.12+0.16 0.76+0.05 0.90+40.13
13.0| 13.22%0.14 0.76%0.04 0.84%0.10
15.0 11.85+0.07 0.76+0.04 0.59+0.08
17.0 10.76+0.04 0.75+40.03 0.51+40.05
20.0 9.41%0.05 0.63%0.08 0.40%0. 04
25.0 7.77+0.04 0.52+0.09 0.26+0.04
30.0 6.64%0.04 0.47%0.087 0.19%0.03




Table 7.5a F_(r)

2
x

N\r Ji.o 3.0 5.0 8.0 9.0 9,5 10.0 11,0 7.0
T-0 [0.885 0.678 0.528 0.252 0.150 0.124 0.090 0.060 0.363
1.732 |0.906 0.741 0.553 0.304 0.186 0.126 0.109 0.068 0.390
2.0 [0.901 0.728 0.560 0.312 0.221 0.151 0.108 0.057 0.404
2.646 [0.901 0.703 0.544 0.269 0.158 0.085 0.050 0.016 0.370
3.0 [0.896 0.707 0.566 0.265 0.157 0.078 0.057 0.0l14 0.364
3.464 {0.902 0.725 0.544 0.281 0.183 0.087 0.051 0.026 0.383
3.606 [0.901 0.719 0.541 0.274 0.159 0.068 0.034 0.013 0.372
4.0  [0.902 0.719 0.556 0.281 0.174 0.077 0.025 0.018 0.392
4.359 10.902 0.723 0.548 0.276 0.151 0.056 0.020 0.003 0.376
4.583 0.900 0.715 0.557 0.266 0.163 0.064 0.030 -0.003 0.374
5.0  [0.901 0.726 0.543 0.272 0.143 0.059 0.004 0.007 0.371
5.196 [0.902 0.730 0.543 0.274 0.168 0.058 0.016 0.001 0.389
5.291 [0.900 0.707 0.550 0.274 0.151 0.061 0.021 0.016 0.389
5.568 [0.897 0.720 0.558 0.276 0.160 0.055 0.011 0.013 0.375
6.0  [0.908 0.714 0.573 0.292 0.152 0.065 0.011 0.006 0.391
6.083 [0.898 0.718 0.545 0.278 0.153 0.048 0.011 -0.006 0.382
6.245 [0.906 0.721 0.558 0.267 0.158 0.049 0.014 0.003 0.376
6.557 [0.900 0.708 0.552 0.269 0.154 0.043 0.009 0.000 0.376
6.929 [0.897 0.713 0.529 0.259 0.179 0.043 0.000 -0.001 0.939
7.0  [0.901 0.718 0.551 0.273 0.150 0.043 -0.001 -0.007 0.384
7.211 [0.902 0.726 0.553 0.282 0.156 0.045 -0.010 0.007 0.382
7.550 [0.900 0,711 0.553 0.270 0.151 0.039 0.005 0.010 0.382
7.810 [0.901 0.713 0.544 0.272 0.153 0.035 0.005 -0.016 O0.389
7.937 [0.901 0.719 0.541 0.267 0.147 0.038 0.006 -0.009 0.375
8.0  [0.901 0.704 0.550 0.286 0.158 0.053 -0.012 0.003 0.387
8.185 [0.902 0.719 0.545 0.273 0.149 0.043 -0.004 -0.012 0.386
8.544 [0.901 0.716 0.538 0.264 0.152 0.037 0.005 0.000 0.371
8.660 0.896 0.710 0.576 0.269 0.142 0.039 0.000 -0.012 0.386
8.718 [0.899 0.721 0.548 0.290 0.152 0.031 -0.002 -0.006 0.382
8.888 [0.899 0.715 0.551 0.272 0.150 0.032 0.005 -0.001 0.385
9.0  0.900 0.719 0.557 0.270 0.164 0.047 0.001 -0.006 0.386
9.165 [0.899 0.724 0.544 0.284 0.156 0.041 0.002 -0.003 0.377
9.539 [0.901 0.717 0.556 0.272 0.150 0.037 -0.002 -0.003 0.381
9.644 [0.900 0.716 0.539 0.262 0.148 0.043 -0.003 -0.013 0.384
9.849 [0.900 0.712 0.561 0.265 0.153 0.032 0.009 0.007 0.369
10.0 0,900 0,709 0.542 0.278 0.138 0.045 -0.014 -0.007 0.381
Ncycles| 1000 1000 _ 1000 _ 4000 _ 4000 8000 _ 4000 _ 4000 _ 4000
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Table 7.5b F (r)

4

NI | 1.0 3.0 5.0 8.0 9.0 9.5 10.0 11.0 7.0 Z(r
1.0 1-0.328 <0.308 -0.292 -0.259 -0.232 -0.222 -0.215 -0.195 -0.277 | 6
1.732 |-0.326 -0.309 -0.285 -0.253 -0.228 -0.192 -0.172 ~0.163 -0.262 | 6
2 0.974 0.923 0.860 0.730 0.634 0.527 0.466 0.395 0.783 | 6
2.646 |-0.325 -0.303 -0.286 -0.228 -0.199 -0.154 -0.123 -0.104 -0.258 |12
3 -0.324 -0.305 -0.292 =0.212 -0.201 -0.140 -0.134 -0.081 -0.267 | 6
3.464 | 0.974 0.923 0.858 0.707 0.581 0.419 0.318 0.237 0.764 | 6
3.606 [-0.323 -0.311 -0.280 -0.239 -0.198 -0.133 -0.096 -0.097 -0.257 | 12
4 0.975 0.921 0.861 0.708 0.569 0.390 0.273 0.230 0.772] 6
4.359 [-0.325 -0.309 -0.284 -0.233 =0.172 -0.129 -0.088 -0.054 -0.258 |12
4.583 |-0.325 -0.304 —0.289 -0.237 -0.190 -0.116 -0.069 -0.067 -0.256 | 12
5 -0.325 -0.304 -0.277 -0.236 -0.182 -0.132 -0.063 -0.047 -0.247 | 6
5.196 |-0.325 -0.315 -0.287 -0.236 -0.202 -0.113 -0.062 -0.064 -0.259 | 6
5.291 | 0.974 0.917 0.860 0.703 0.550 0.352 0.174 0.155 0.774 |12
5.568 |-0.325 -0.304 -0.291 -0.230 -0.193 -0.115 -0.058 -0.066 ~0.254 | 12
6 0.976 0.919 0.866 0.715 0.559 0.355 0.140 0.145 0.771| 6
6.083 |-0.324 -0.310 -0.286 -0.235 -0.182 -0.117 -0.054 -0.040 -0.256 | 12
6.245 |-0.325 -0.309 -0.287 -0.237 -0.172 -0.109 -0.045 -0.019 -0.259 | 12
6.557 |-0.325 -0.305 -0.284 -0.239 -0.181 -0.115 -0.034 -0.046 -0.260 | 12
6.928 | 0.973 0.919 0.850 0.697 0.569 0.313 0.107 0.086 0.776 | 6
7 -0.325 -0.307 -0.281 -0.240 -0.188 -0.107 -0.031 -0.039 -0.257 | 18
7.211 | 0.974 0.923 0.855 0.709 0.553 0.319 0.086 0.116 0.769 |12
7.550 |-0.325 -0.304 -0.285 -0.239 -0.196 -0.103 -0.035 -0.034 -0.252 | 12
7.810 [-0.325 -0.309 -0.279 -0.232 -0.193 -0.101 -0.021 -0.017 -0.257 | 12
7.937 | 0.323 -0.305 -0.285 -0.235 -0.190 -0.107 -0.020 -0.045 -0.257 | 12
8( 0.974 0.916 0.857 0.701 0.558 0.313 0.060 0.091 0.773| 6
8.185 |-0.325 -0.305 ~0.282 -0.232 -0.177 -0.105 ~0.023 -0.034 -0.261 | 12
8.544 |-0.324 -0.307 -0.287 -0.231 -0.190 -0.101 -0.014 -0.030 -0.256 | 12
8.660 |-0.325 -0.306 -0.282 -0.250 -0.182 -0.101 -0.035 -0.023 -0.253 | €
8.718 | 0.974 0.922 0.857 0.710 0.547 0.291 0.060 0.058 0.772 |12
8.888 |-0.325 -0.308 -0.284 ~-0.248 -0.185 -0.096 -0.017 —0.015 -0.259 | 12
9 -0.324 -0.303 -0.285 -0.241 -0.161 -0.096 ~0.008 -0.032 -0.263 | 6
9.165 | 0.974 0.922 0.854 0.707 0.546 0.295 0.027 0.059 0.770 |12
9.539 |-0.325 -0.307 -0.286 ~0.235 -0.186 -0.096 -0.010 ~0.018 -0.257 | 24
9.644 |-0.325 —-0.304 -0.287 -0.224 -0.182 -0.098 -0.008 0.000 -0.257 | 12
9.849 |-0.325 —-0.310 -0.289 -0.225 -0.175 -0.102 -0.003 -0.014 -0.253 | 12
10 0.974 0.918 0.855 0.705 0.545 0.296 -0.008 0.068 0.771 6
Neycles| 1000 1000 1000 4000 4000 8000 4000 4000 4000

2(r) is the coordination number
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Table 7.8

<cos2(9.-9.)> and <cos4(®.-6.)>
1 75 1 ]

*

3

+lim F, (r) |lim F, (r)

2

4

< cos29>

< cosd P >

. . 3

COUVNOCOCOOO

HOWWOWO~IUWH

=

—

0.974
0.920
0.855
0.771
0.706
0.546
0.294
0.005
0.006

0.900
0.715
0.551
0.381
0.274
0.151
0.040
0.000
0.000

0.987
0.959
0.925
0.878
0.840
0.739
0.542
0.071
0.077

0.949
0.846
0.742
0.617
0.523
0.389
0.200
0.000
0.000

lim E2(O)

0.975
0.921
0.858
0.768
0.698
0.504
0.200
0.160
0.013
0.005
0.003
0.003
0.002
0.001
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Appendix 1

Properties of Wigner Rotation matrices and related functions

A complete account of the properties and definition of
Wigner rotation matrices is given by Rose (1957). The
following relations are those that have been wused in this
thesis.

1) Orthogonality.

’

*
JdasingdBdyD- (aBy)D", ,(aBy) = [8n2/(2L+l)16mm,6nn,6Lu
m N
2) Closure.
L < L L
Dmn,(aBY) =) Dmn(alBlYl) Dnm,(azezyz)
n

where (aBy) is the resultant of rotation (alBlYl) and
(a282Y2)

3) Symmetry

L* M=n L
Dpn(aBY) = (=) D_p_n(eBY)

4) Special cases
L 2 *
Dmo(aBO) = [4ﬂ/(2L+lj] YLm(Ba)

where YLm(Ba) is a spherical harmonic

L
DOO(OBO) = PL(COSB)
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where PL(cosB) is a Legendre polynomial

5) Spherical Harmonic addition theorem.

%
P (cose) = 4 g Y p(88)) Y (8,d,)

where cos8 = cos8,cos8

1 o ¥ 51n9151ngzcos(¢l-ﬁ2)

6) Modified spherical harmonics

V2
C, (Ba) =|_4 Y
Lm'PC [T_zz_rﬂ)] Lm(Be)
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Appendix 2

Scalar Functions

00

The scalar functions SLL’J for small values of L L

~
and J in terms of unit vectors El’ 22, R, the vectors

describing the orientation of the long molecular axes

and the inter molecular vector. (Stone, 1979).

S000

3 Sy
Y3 Syg)
Y3 Sgn
V30 S112
V30 151
V30 S,11
2v/5 S50
V70 Sooo
4v'70 S04

1

"21tZ2

—zl.E
+2_.R

223 - 35 RSB
il'iz ) f\zl; 42\.2./\

3( 2,.2.)° - 1

1 2740 w12

+9(zl.R)(22.R)(zl 22)

1 - S(Zl.R) + 2(21.22) -5(22.R)
—20(21.22)(2l R)(ZZ.R)

+ 35(Z,R)%(2,.R)

Also given S.L L3 SL JL May be obtained by replacing

2

% by R and vice dersa.l

A .
by -R and vice

. . A
SJL Ll may be obtained by replacing z;
verga.
_gL LlJ may be obtainedby replacing 21 by -?l and vice
2
versa
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Appendix 3

Random number generation

In any Monte-Carlo simulation, the generation of random
numbers is always required. Although called random, they are
actually pseudo random in that they follow a predefined
periodic sequence. The usual method of generating such a
sequence of numbers uniformly distributed in the range 0>£>1

is via the recursive equation.

Ni = a X Ni_lmod(b) A3.1

where mod is a function returning the remainder of N/b. The

ith pseudo random number, gi, is then defined as

£ = Ni/b R3,2
Here a and b are constants suitably chosen to give
statistically random and uncorrelated numbers. Usually b is
taken to be 2" where n is the computer word length, thus
avoiding the necessity for the mod function as 1ignored
overflow will perform the same task. The constant a 1is
normally chosen to be sufficiently large, and using Fourier
Analysis on such problems, it has been shown (Coveyou and
MacPherson, 1967) that the binary representation of a should
contain a significant number of ones, and at the same time,
not a close multiple of b or vb . For example, the
Numerical Algorithms Group (NAG) routine sets a equal to
1313 (Routine GO5CAF), although other values could safely be
used.
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Appendix 4

Simple and Face centre, cubic lattices
Some properties of simple cubic and face centre cubic

lattices.
Unit cell
simple cubic face centre cubic
sc l fee
number of molecules 1 4

per unit cell

unit cell repeating a a
distance

intermolecular
seperation and
coordination number
for coordination
shell number;:

1 a : 6 a/v2 : 12
2 v2a ¢ 12 va : 6
3 V3a : 8 V3/2a : 24
4 v2a : 6 v2 a : 12
5 v5a : 24 v5/2a : 24
6 véa & 24 V3 a : 8
7 v/8a : 12 v7/2a : 48
8 v3a : 30 v4 a : 6
9 /10a : 24 v5/2a : 36
10 V1la : 24 V5 a : 24
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Appendix 5

Proof that the middle term vanishes in the pair potential

used in Chapter 7

To prove that the J=4, M=+2 term in the
quadrupole-quadrupole pair potential for nearest neighbours
summed over all molecules is zero on a triangular lattice.

We can express the term as:-

E.j = cosZ(Qi-Hrij) + cosZ(Qj-ﬂrij)

The total energy contribution is then

- v X
“tot =3/ 1 iy
i3
_ T N - -
= % ) ) (0052(9i lZIrij)+cosz(Qj ﬂrij))
i=1j=1

The factor of (1/2) arises because the double summation
counts all pairs of molecules twice. This can be broken down
tos: -

\ -
+ % E ) 0052(9j grij)
i=1j=1
Here both terms are zero unless i and j are neighbouring

molecules.
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6

The summation:- z cosZ(Q-ﬂr)

j=1

= cos2B8cos0 - sin28sin0
cos28cost/3 - sin2@sinn/3
cos2B8cos2n/3 - sin28sin2w/3
cos28cosm - sin28sinm
cos28cos2n/3 - sin28sinan/3
cos28cos5m/3 - sin28sin5n/3

+ 4+ + + +

since the six intermolecular vectors are at 0, /3, 2n/3, w,
4t/3, 51/3 respectively. This term also vanishes regardless
of the choice of the laboratory frame of reference.
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Appendix 6 A few non-zero Clebsch Gordan Coefficents

5 C(JlJZJ,mlmz)

—
N
—

+1
+1

+1

+1

+1

+1

-1 +1/V3
0 -1/V/3
1 ~-1/v2
-1 +1/vV2
0 +1/v2
+2/V6
+1/v?2
-1 +1/V6
0 +1/v?2
1 +1
0

1

N O - O O 3

-2/Y10
-v/3/¥/10
-2 +/3/v/5
-1 +/3/¥/10
0 +1/V/10
1 -1/veé
2 -2/V6
-2 +1/V3
-1 +1/V2
0 +1/v?2
1 +1/V3
0 +1/v'5
-1 -1/V5
-2 +1/v5
1 +/3//10

NN NN F ~ F~ FF B B P 2 2 B = = B ~ ~~, O 0 0O 0 O d t.
NN N DN DNBNNNBNNNNRNNODNR BB B2 B35 2 #= 2 2 = N NN ~ ~ o .
O O O NNNDNNRNNEERFERRFEFRFRNNMNNNNNERE+SRFERODONINNINFRF~OO G
ON ~ O F F = - O O Kk Kk kF OO IKF MMM 0O0I%Er O0O0O0OFrF OO0 oo o o 3
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3, 3, 3 mp my|c(d;d,3mm,)
2 2 1 1 -2 +1/V/5
2 2 1 1 -2 -1//10
2 2 1 1 -1 -v/3/¥10
2 2 1 1 0 +2/vY10
2 2 1 2 -2 +2/V10
2 2 1 2 -1 +1/V5
2 2 2 0 0 -2/Y7
2 2 2 0 1 -1/V14
2 2 2 0 2 +2/V7
2 2 2 1 -2 +/3//7
2 2 2 1 -1 +1/V14
2 2 2 1 0 -1/V14
2 2 2 1 1 -V3/V7
2 2 2 2 -2 +/2/V7
2 2 2 2 -1 +/3/V7
2 2 2 2 0 +/2/V7
2 2 4 0 0 +6/v70
2 2 4 0 1 +/3/v7
2 2 4 0 2 +3/V42
2 2 4 1 -2 +1/V14
2 2 4 1 -1 +4/v70
2 2 4 1 0 +v/3/V7
2 2 4 1 1 +2/V7
2 2 4 1 2 +1/v2
2 2 4 2 -2 +1/v'70
2 2 4 2 -1 +1/V/14
2 2 4 2 0 +3/V42
2 2 4 2 1 +1/V2
2 2 4 2 2 +1
Recursive Relations:- j1+j2'3
Cli dpdsmymy) = (-1) C(Jpd I3mom, )
L J1tdmd
ClyJpdmm,) = (-1) C(J dpdsmom, )
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Appendix 7

The first six even Legendre Polynomials

H

P_(x) 1
o 2
Pz(x) = (3X -l)/2
P, (x) = (35x*-30x2+3)/8

P (x) = (231x8-315x%+105x2%-5) /16

Pg(x) = (6435x°-12012x5+6930x"
~1260x2+35) /128

PLo(x) = (66189x'9_109395x8+90090x°
-30030x“+3465x2-63) /256
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