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INTRODUCTION

0.1 Early Experimental Situation

Photons are ideally suited as tools with which to probe hadronic
structure, Their interaction with matter, Quantum Electrodynamics,
is one of the most successful physical theories in existence. With
the inclusion of the order o* radiative corrections the theoretical
prediction for the anomalous magnetic moment of the electron [0.13
agrees with the experimental value to one part in PCV. By using
virtual spacelike photons exchanged in electron-hadron scattering
we can vary both the 4-momentum transfer, Q?(A(f), and the energy
exchanged ¥ . Large magnetic spectrometers identify and track the
scattered electron allowing an accurate determination of these

variables.

Early indications of nucleon structure came with the measurement
of their magnetic moments. The Dirac theory of point-like spin 3

massive nucleons carrying one unit of electric charge gives

uasGTaetehy

/"'D:&Ac = eh = 1 nm, (nuclear magneton) (0.1)
2M¢

Thus for the proton and neutron
proton i  Mygac = +10 nm /A&cx@t‘ = + 279 nm.
neutron : Mprae * O nm, /k&wFt = =191 nom.

to be compared with the experimental values as indicated. The anomalous
moments indicate that the nucleon has spatial structure. This

conclusion was confirmed by experiments at SLAC and DESY measuring



elastic electron-proton scattering BLZ]. The experimental cross—section
exhibited a deviation from that predicted by the Dirac theory of an

electron scattering off a point proton of spin } and magnetic

moment R .

IMC

In the one photon exchange approximation,

(ﬁ)‘)'m = { 1+ 29’ h""z(%)} (0.2)

z do . .
where & 3"‘1,2 , and (OTII)MOTTIS the formula for the scattering of

relativistic electrons off spinless point-like protons. The second
term in the curly brackets of Eq. (0.2) is the "essential complication'
of proton spin, and is called magnetic scattering. It dominates the

cross section for large angle and high momentum transfer scattering.

In order to fit the data and take into account the spatial structure
of the proton, electric and magentic form factors were introduced

by Rosenbluth [0.3].

d,g') - (ql__q* G2 + Ty 2 28 (0.3)
(d.ﬂ. dﬂ)mm Qmm‘ — + T.2Gy kan (2.)

where

_ Q@
T = A (0.4)

with form factors : electric (&E(C§2)

{1

Gl (0) =+1

: 0.5)
c(0) = O



+2-19

1l

magnetic G‘M(Qz) : Gr:‘(O) = Mep
G (0) = oy = ~1-91 (0.6)

The form factors are found experimentally to obey the simple approximate

relation
G, (@%) =0 ©.7)
G (@) = Gale?) = Gul6) = G(&?) ©.8)
‘/‘M" \/’LN\
where
z -2
w@) = (LrR), A 0T 6’ ©.9)

2
over the range Q% Q* ¢ 25 Gev,

2 , .
G (& ) effectively measures the probability that the proton will
recolil elastically, ie. that it will hold together under the momentum
2 2 2
transfer X . At Q =25 Gw" this probability has fallen from 1 to
~6 X ) . ; .
about 10 °. The ratio of actual to point-like elastic cross sections
2 -6
has a very strong dependence on & ; it falls roughly as @

This is in complete contrast to what is observed in inelastic

electron-proton scattering D3.4, 0.5].

2 , .
For low ", there are several peaks in the cross—section
corresponding to the production of pion-nucleon resonances. The

exclusive quasi~elastic cross section






Fig 0.1 Kinematics

z,
[ od ‘5. EI) EI
Wh}._—_‘......
1
ﬁxg ?,
p
LAB frame, target proton at rest pli = {(m, 0)
bg = ME-E) =¥ b9 = M{g-E') = V
gt = (E-E k-K') bt = M
a* = -2kk'(I- w5 6) -q = Q= erk’émz(%)
(neglecting lepton masses) Plx = \Nl‘Z unknown variable
2 izl 8
-q? = @* = 4kK'sin*(§) ) 2
= (p+9)
2
pz = P‘z = Mz = (\P*%’) 2.\7 = wz - M2 + Qz
““1,2' two independent variables
> w{¥. G*) structure functions
P4 ’
2
. g2 .
ZP"L = qr X 5o
2y = Q@ p* = W' = (prq) 2 O
Elastic condition, omne ZP.@K\"X) 7 O
indgpendent: variable. O¢X <1 Range of X
G(Q") form factors T
(a) (b)
ELASTIC INELASTIC
SCATTERING SCATTERING



0.2 Deep Inelastic Electro-production

The inelastic QF? scattering amplitude, A, (Fig. 0.1(b)) may

be written as
A= T,k ) Bk, (K,9) %u\jﬁw)\p S(bra~b) (011

where <§<Y§MKO)\P)' is the matrix element of the hadronic current about
which nothing specific can be said until we formulate a theory of

hadron dynamics.

2

AAT = (’a;.’xf& M’\)T UI?_“&Z; M“) (%;) :

Z <pITlO)IX Y x| Tyl0) Iy 8 (p+q-P')

(0.12)

for the unpolarised cross-section, summing over electron and proton

spins

(e ) LHT LM /W (0.13)

m
where L. is the lepton tensor

15

N o i
LM "\2': g’—‘ (\6‘}& U‘z\'kz. ‘6\) ’u‘lMl) (0.14)

(neglecting lepton masses)

5w Tel% k'Y, k] (0.15)

M

i

9 ;
I:Tv;@' 2 [K”"kq + KK - kk 3’“’] (0.16)

and Vﬂwo is the hadronic tensor

10



]

Wuw = & éﬁ‘ CPlIL X ><x I Ty b7 BHbagq-p') 017

H

""‘ﬁ-gd% 1% <p| ‘,Sv \45) A) (o)l p sbins ov. (0.18)

On the general grounds of Lorentz invariance and Current Conservation

(94*Wuo = 4"Wny = O)

Wuo = |7 Qo + ‘L@\’) w, (¥, &?)

)

%2.

« . . . W (V 1)
for electroproduction, with independent structure functions 1,2 , Q7).

9
U’ %_Q/ )(b - bg %)WZ’U,Q") (0.19)

2 - _p2
In the deep inelastic region Q" =-9q° —> °°
- — oo
v P% (0.20)
Q®
But X = 2 kept fixed

then, neglecting lepton masses, and choosing the LAB frame

;bMa (\M,Q) to evaluate the kinematics

AAT = %5* LZ:EM’L ZE El LMZ 6052&%)\'{2 ""25”’\1(%)\(\/1] (0.21)

Thus, the cross—section:-

do - L 2m2M [AAT] k' m
(k- K2 P2 (2m)? E'

(0.22)

11



where
2k = A dE.E”

JpK-KF ~ ME (0.23)

do . o_xE o [m? cos*(2) W, + 2s0*(%) Wl} 2
AOAE hERsIn'(3) (026
with
o = e
4T (0.25)
i . . _ , Ao
or, writing the differential cross-sectlon as -
d@ dv
2
where O = f4-momentum transfer
J
Vv = energy transfer = E-E' = M’
2
dg . T L [M"'cos (3)W +Zsm‘(%)\f~/1] (0.26)

dQ*D  4E’sin*(8) EE

Relatively large errors are produced when extracting W.L(\?) &1)
from the angular distribution of the data due to the scarcity of
events at appreciable values of sz(%) .  However, both Wl. and
Wz_ can be determined and exhibit a remarkable phenomenon in the deep
inelastic region. The structure functions, implicitly functions of

. Z . ;
two variables Q7 and V , are said to apprximately scale. They become

2
a function of one variable X = ZQ;? in the limit @s;fo"? e, but
2
X = % fixed.
i.e. MW, (v, @) —> F(X) (0.27)
MYW,V, e ——> [X) (0.28)

GV > 0
X=X Fixed

12






CHAPTER ONE

HADRONS AT SHORT DISTANCES

1.1 Pre-theory : the Parton Model in Deep Inelastic Scattering

Tn the naive Parton Model introduced by Feynman [1.1], the nucleon
is seen as a collection of free point-like constituents called partons.
In the Bjorken limit, the lepton-nucleon centre of momentum frame is
essentially the frame in which the nucleon has infinite momentum.

In this frame the nucleon charge distribution is Lorentz contracted

to a disc, and parton motion time dilated. The large momentum transfer
"freezes' any parton interaction and so the virtual photon sees the
collection as free. This is the essence of the Impulse Approximation
[1.2]. The assumptions involved in this approximation can be justified
to some extent by a crude computation in the infinite momentum frame

(see Fig. 1.1).

A

Fig. 1.1 Interpretation of lepton-nucleon scattering via the
naive parton model.

14



Choose the frame

2

P"(P*'gb’ D,O,P) (1.1)
2

i ‘(%&Q, Yo o - g‘i;@z (1.2)

and take P> oo

Thus

!
b = M® 4 Ou;'z) (1.3)
qu = - GLi + Ok'é’"z.) (spacelike) (1.4)

)
- + — 1.
and so satisfy all the criteria of Fig. 0.1(b) to leading order in P .

We can now compare the typical time [ resolved by the virtual
photon with the lifetime T of the intermediate parton states as

calculated crudely in old~fashioned perturbation theory.

N S
T~ A S E, -E, -©

where E. is the energy of the ith parton and EP the proton

1%

energy.

If the ith parton has a fraction Tli of the longitudinal

momentum P of the proton, mass M and transverse momentum F&L,

15



A

E. = J@P) b +

where
O<ni<t
L -1
2 b= O

and the 4-momentum 1s written

P‘: = (QLP + /“2?,; %L ) E‘LL ) ”Z‘: P )

Summing over parton energies

TE - P +z@_§:._.'°.3§) =
t v 271;P

substituting into Eq. (1.6)

2P

T = Z(/L: ,‘,hji) _ Mz
Te

9

The resolving time of the virtual photon, T

Y @

Thus for

T » T

16

(1.

(1.

(1.

(1.

(1.

(1.

J11)

.12)

.13)

14)

15)



then

2 2
Wz = Mz +29 - Q@ » m;}_ - M (1.16)
with
2 2
M, = 27 il ¥ (1.17)

U

so providing the partons are light and have small finite transverse
momenta, the Impulse approximation holds through Eq. (L16) at current qu
as measured by SLAC. The virtual photon resolves the proton on a time
scale small enough for the partons to appear to be non-interacting, i.e.

free.

It is then assumed that the lepton scatters elastically and
incoherently from one of the point-like partons. This last assumption
can be justified by similar arguments [i.3],and also leads to an
identification of the scaling variable X with the fraction of nucleon

longitudinal momentum carried by the struck parton, VQ as follows

X = z"v = *’( (1.18)

Considering elastic lepton-parton scattering as in Fig. 1.2

k'=(E" k')

k:(E’ t‘.)

Fig. 1.2 Elastic lepton-parton scattering.

17



In the phase space integral for this process there is a delta-

function which puts the final state parton on shell

5( p’z - mz) (1.19)
by momentum conservation, Pl s ’7'“9+ 9 (1.20)

—>  s((@p+ay - ) .21
= 6{ *sz‘ +%"‘ +2~LP.$ - mz) (1.22)

= 8(2\7(’1--‘;() +PME - mz) (1.23)

in the Bjorken limit V-» 00 the proton and parton mass may be ignored

inside the delta-function argument with the result
i -
7 9% 8(1-x) (1.24)

We can now quote the result of calculating Fig. 1.2 for the

case of electroproduction. This is the Dirac theory prediction for

electrons scattering off point-like spin 4 particles of mass M; and
charge €;€ (assuming partons carry spin j)
' 2 | 2 Q" 9 s &
dot . __TTA 1 eﬁcos*(g) +¢; %lZSm’(%) 8(\7 -2%‘)
— = : : .
Aady  4E*sin*(%) EE 125
1.25

e

where vV = likf? energy transfer as measured in the LAB frame.
m.

&~

It is not a free variable but is constrained through the elastic

scattering condition in the delta-function of Eq. (1.25). The partons

18



are assumed to have no intrinsic transverse momentum bl- , and a

¥ coupling to the photon (no structure).
M

This is to be compared with the result for inelastic scattering

of electrons off a nucleon (Eq. 0.26).

do . _mwo® L E.M Cos (%}W + zsm*(g)wl} (1.26)
AQPdS  kEsin*(3) EE' ‘

To obtain the total electron-nucleon cross—section from Egq. (1.25)

it is necessary to sum over parton types, % , found in the nucleon
and integrate the fraction of the nucleon longitudinal momentum carried
by the parton, "z_ , throughout the allowed range (0%¢7% 1 ), weighting
the cross-section with the probability for finding a parton of type

A and momentum "LP, :F("D .

Recalling that sz , the structure functions can be identified
from Eq. (1.25) the Bjorken limit as
& )
X = == .
5( IMF (1.27)

w,(7,6%) = Z 2 deg(x)

SiX

5
w, (¥, Q") = §¢AX 5— (x) 5(x - 2%5) (1.28)

or writing in terms of v=Mv = qu , and using the delta function

to do the X integration

VW, (v, &) = LZ % X £°(X) (1.29)
NACRHIED % L) (1.30)

19



where

X = == (1.31)

Thus in the Bjorken limit, the structure functions scale exactly

MYW,¥,68%) — E(X) (1.32)
MWlb’,@?)m"’ @(x) (1.33)
&V >
= @ fixed
X 2\75‘
where
RX) = 2xF(X) (1.34)

This last statement is particular to our choice of scattering off

- * 2’ - I3
spin 4 partons, [1.4] and at presently accessible & is approximately
experimentally verified. If the charged partons are exclusively
spin i then Eq. (1.34) should be exactly satisfied as the scaling

C z .
limit is reached, G'=®» ®_, 1In the simple parton model,then, exact
Bjorken scaling is seen as the result of elastic incoherent scattering

off a point-like spin } consituent.

Having already determined that charged partons carry spin 3, it is

interesting to ask what other quantum numbers the partons may carry;
in particular to explore the consequences of identifying partons as
quarks. This step leads to a number of ewperimentally testable sum

rules.

20



The &LCK) of the previous analysis now become quark distribution
functions. The label 4 now runs over the number of different
quark flavours. In what follows we will comsider only up, down and
strange distributions. However, it is straightforward to extend the
subsequent Parton Model formulae to include contributions from

charmed, top, bottom etc quarks. Specifically, for the proton there are

six distributions

4&(X) = pumber of up quarks in the preton with momentum
fraction between X and X+ dX

with similar distributions for the down quarks dQX) , Strange quarks

S$(X) and the corresponding antiparticles Ele)J(K))S(X).

Thus for the proton

ﬁep(x) = 2 eij'i'(x) = %(’f{X[%kX) + QLLX)} (1.35)

_;z Fj’"(x) - %(u(x)’rﬂ(x)) +-%—(Mx)+§t(x)) +;§I&(S(x) +5(x)) (1.36)
with the standard charge assignments

(u,d,9) = (%’”‘5’“'3{') (1.37)

and the constraints (coming from the total charge, isospin and strangeness

quantum numbers of the proton)

2 (1.38)

i

j:ax () - &)

21



]
§_>

(1.39)

§ ax (@) - dix))

i
@

(1.40)

i
fax (500 - 360)
o
These are just the number of valence quarks to be found in the proton

from the simple quark model.

Also, by isospin symmetry the number of up quarks in a proton is

equivalent to the number of down quarks in a neutron

]

wWPx) = d"(x)

1

UAX) (1.41)

§
FH

dP(x) = w'(X) d(x) (1.42)

and so
LEM) = £(de)+d)) » £ + 00) + (5604 500) .43

Assuming %;QK)ZC) then the ratio of neutron to proton structure

functions "QVVZ in the scaling limit is [1.5, 1.6]

L ¢ R \x) " (1.44)
RP(X)

This inequality is not in conflict with the experimental result [1.7],
although for large X~ O-8 the data are very close to the lower bound

of 1.

Various other sum rules expressing charge or baryon number conservation

in neutrino processes may also be derived,for example

22



Fﬂ){x) - E‘?Pb()) =2 (Adler [1.8]) (1.45)

Saﬁf;( J)»{(\l

i o
55@( (F:P(x) - F;_vp(x)) =1 (Bjorken [1.9]) (1.46)

o

Finally, the fraction of the total momentum carried by each quark

flavour 1is

i
U = SoLX X[ ux) +ILO<)] (1.47)
1 | _ .
D= XOLX X[d&x) + dlX) | (1.48)
5 = [ax x[s) + 500 (1.49)

The conservation of momentum requires
1-& = W+D=+95 (1.50)

where £ 1is the fraction of total momentum carried by objects other
than charged quarks. The right hand side of Eq. (1.50) can be written

in terms of experimentally measured combinations of structure functions

as

1
1-¢ :jodx %(Fj"(x) +F2“'“(x)) ‘%(ﬁ_ﬂ’(x) + ;;"“(x)) (1.51)

Inserting the known [1.10, 1.11] experimental values of the

integrals

1-¢ = 3(028+0.004) - %(» 1082 027) (.5
to give

£ » 052 * 0-38 (1.53)

23.



Thus on the basis of momentum conservation all partons cannot
be quarks. The electrically neutral partons are conventionally

identified as the vector gluons of Q.C.D.

In conclusion, the naive parton model predicts exact Bjorken
scaling as the result of elastic incoherent lepton-parton scattering.
The data supports the idea of charged spin } partons and severely
restricts the amount of charged spin- 0 admixture. The charged
partons = quarks hypothesis yvields maﬁy experimentally testable sum
rules which are not in conflict with data but none of which provide
compelling evidence for these partons to carry quark quantum numbers.
Momentum conservation forces the existence of electrically neutral
partons which account for roughly half of the protons' longitudinal
momentum. Parton model ideas have since been successfully extended
to other physical processes including e'e” amnihilation into hadrons,
massive lepton—pair production (Drell-Yan processes) and the inclusive

production of particles with large transverse momenta.

Despite these successes the simple parton model does not give
a satisfactory explanation of the data. Although scaling woérks well
in the region O-15¢X < 025 (for @* in the range of 2 —> 100 Gev?) ,
for X>0:2D5 a definite pattern of scaling violations emerges,
[1.12, 1.13] and EX) = Fx)-2X F;(X) is reported to have a value
different from zero [1.14]. Thus we have to go beyond the simple
parton model, and extensions of parton model ideas have been investigated.
In particular,endowing the partons with form factors. (and so implying
the existence of yet another sub-structure) does avoid the problem

of exact Bjorken scaling despite being an unimaginative solution [1.15].

24



A more interesting line of approach is to explore the possibility
that the parton model is a first approximation to some underlying
Quantum Field Theory that describes the strong interactions, especially
as this appears to be the only way to reliably calculate dynamical
quantities. There is now a wealth of qualitative evidence [1.16]
that this theory is Quantum Chromodynamics (Q.C.D.). A brief review
of the theory and its salient features will be given in the next
section, but for the sake of clarity it is perhaps better to state
the main results that emerge now. Q.C.D. has the unique property
of asymptotic freedom. Its momentum dependent effective quark-gluon
coupling constant decreases for increasing Gf} allowing the application
of perturbation theory to hard scattering processes. This provides
an explanation of Bjorken scaling and its violation in agreement with
the observed experimental results. Because the effective coupling
constant goes to zero as [ﬂﬂ(sﬁ)]ﬂ then, likewise, many of the previous
parton model results (sum rules, scaling etc) are violated only
logarithmically in Cil . Extrapolated to low Ciz , the effective
coupling increases without limit,therefore allowing possibility of

quark and gluon confinement.

1.2 The theory :— Quantum Chromodynamics and its asymptotic behaviour

Quantum Chromodynamics (Q.C.D.) [1.16, 1.17] is a non-abelian
gauge field theory in which coloured spin } quarks are coupled to
gluons; the coloured spin 1 gauge bosons. The Lagrangian which

describes this quark-gluon interaction is

o Lt oot . | - 1.54
"t - t&/&w&/kv ""’I\(‘«‘-QX}t D"")'M-*bms‘:i)wi ( )

25



where there are f (for f flavours) quark colour triplets coupled

to one colour octet of gluons. A sum over repeated indices and flavours

is understood, and the indices run from

The

and

The

are

and

i

2,3
L,2,---- 8

L]
A

#

- A - .
field strength G}& is given by

A ABc B C

'—'-'b,kG'A "G T35 GGy (1.55)

A
G)w v v oM

the covariant derivative E»‘Ei

) A A
Ducj = by — L9 Ty G (1.56)

A
matrices Tl' are the generators of the colour group 3thi)c and
A
related to the Gell-Mann matrices ?\Lj as

A
T, =

A
ey 1.57)
¢ 2 ty ( )

satisfy the commutation relations

[TA, TB] = LfA& TC (1.58)

ABC
where :S; are the structure constants of Su(’i’))c .

A
Finally, the 7 and G?b are the quark and gluon fields

respectively, with the strong coupling constant 3 (dimensionless).

The

Q.C.D. Lagrangian Eq. (1.54) is invariant under the (simultaneous)

local gauge transformation

26



iﬁ@AbQ'th
v, = € ﬁ"‘g (1.59)

Grj; ~> Cr; * o) - 9 fmc 8%(\%) (}; (1.60)

In order to compute the Feynman rules for this theory two additional

terms must be included in the Lagrangian. These are

2
i)y - ;‘;’ Tf[(?)'“@'/l\,) ] ~ a gauge fixing term with a gauge
parameter O , necessary in order

to uniquely determine the gluon

propagator

(ii) *;7(" BM[%I“_SA('+3§A6CG}B~] Wc a Fadeev-Popov ghost lagrangian
essential in order to preserve
unitarity and prevent unphysical
degrees of freedom in the gauge

bosons from propagating.

The Feynman rules for this complete Lagrangian are shown in Fig. 1.3.
An immediate problem is encountered though when computing Feynman
diagrams beyond tree level. In many one loop diagrams the integral
over the loop momentum which has to be performed formally diverges
and yields infinity. This problem is not specific to Q.C.D. but is a
general feature of any renormalizable Quantum Field Theory (or indeed,
in one form or another, of any interacting theory). Its solution and
the process by which finite physically meaningful answers are extracted
from perturbation theory is called the Renormalization Program [1.18].
For an 1llustration of its application take as an example a massive

954 scalar field theory described by the lagrangian density.
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Diagrams related by the exchange of external fermion lines have a relative

minus sign.

Fig. 1.3 Feynman rules for Q.C.D. Lagrangian of Eq. (1.54)
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L, = 50usQen) -dmigl - Da’ (1.61)

The label © refers to 'bare' quantities. The physically
measurable quantities are shifted from these bare parameters by the
self-interactions generated in perturbation theory. To see this let us
compute the physical mass, m* , defined as the pole in the full two

point Greens function, Gy“(ﬂ?)

The bare two-point Greens function is

.

G?(q.‘) " ¢¢tm:~ s ; O (1.62)

The proper self energy, =ai Z(@) » is defined as the sum of all one
particle irreducible graphs (graphs that cannot be separated by cutting

through one propagator)

'Y

>
Y

= -i2(q) (1.63)

So the full two point Greens function is generated by successive

iterations of the proper self energy
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¢©¢ 9 “f@‘t
= ‘s +

62(q2) Q@)+ P@(-i29) 6q)
4+ mmmea- (1.64)

The resulting geometrical series can be summed to give

G (92)

7(q?) = . (1.65)
Y e
using Eq. (1.62) for Gﬁ?(q} to arrive at
) L B _.,.._.‘:._..m
G9?) = S S (1.66)

with the physical mass occurring as the pole in the full propagator

2 Z :
my = mZ o+ Zg) (1.67)
Thus, if we wish to identify nnz as the physical mass in the

lagrangian then

2

2
ms = mg - om

2

o
dm* ' i

where the counterterm M must be chosen order by order in perturbation

theory to precisely cancel the shifts produced in the parameters of

the lagrangian by self interactions. As well as this mass renormalization,

there is also a coupling constant and wavefunction renormalization.

The bare lagrangian
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£, = ’5.(%»%)(%%) *Jp:mozﬂ‘cz - g—%%‘* (1.68)
may be written

I TN CEACTARL AT BUOL ae

where the counterterms A)B,C are to be determined to each order of

perturbation theory by three arbitrary constraints

M%)

pge T I (.70

@v {2} ‘= -
- am

2

2’_‘.#

[""“’Q’.\’z\’a‘%) et " -19 (1.72)

5=«b¢l&-‘=’-"§,ﬂ.2'

with Y1UO being the n-particle proper vertex functions, and MVM? some
arbitrary space-like momentum. Of course, physical results cannot
depend upon the point at which the theory is renormalised, ”/Az
The expression of this fact results in the Renormalization group equation
to be discussed shortly. So far no mention of infinities has been made.
However, the proper self energy 2&0@) can be expanded perturbatively

in successive powers of the coupling constant 30 as in Eq. (1.63).

The leading contribution is

. K
S OF

0

. - S d
T ) Gy (K -m2) (1.73)

o
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which, for large k

A
[N
™~ S dki ~ N (1.74)

The integral diverges quadratically as A= 00, This is precisely
where the infinities of Quantum Field theory arise. 1In order to
determine the (infinite) counterterms that must be added to the lagrangian
to cancel these shifts from perturbation theory, the formally divergent
loop integrals must be regulated in some manner. Clearly one way to
achieve this is to enforce an ultraviolet cut-off,A, in the loop
integral. After adding the appropriate counterterms to the lagrangian,
we could then successfully take the limit A=» ©0, This procedure is not
applicable to the renormalization of gauge theories, as the counterterms
do not respect the gauge invariance of the lagrangian. A simple method
that survives this test is the dimensional regularization scheme [ﬁ.19]
in which Feynman diagrams are calculated in an arbitrary integer number
of space-time dimensions, D » and the results analytically continued
to any real or complex value of D . Specifically if D=4 -2¢ then
the ultra-violet (large k) divergences manifest themselves as poles

4

in £ %} etc. This is the scheme that will be adopted later to

regulate Feynman diagrams.

Note that the bare Lagrangian

2

L= 3 (HANZ )2 70) mgam&);of w%(wc) g s

which comprises the renormalised parameters plus the counterterms

is equivalent to
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achemes though, some of which are particularly simple to implement such
as the minimal subtraction scheme (MS) proposed by 't Hooft. Here one
chooses the Z's to remove only the ultra-violet divergences and no
finite terms, so they take the simple form of a power series in %—.
However, in the MS scheme, the renormalized Greens functions now no
longer have any simple properties at p2 = ~u2, The arbitrary mass
scale UZ is encountered in order to keep the coupling constant
dimensionless in D = 4 - 2¢ dimensions, the space in which the theory

is now formulated. Specifically, g2 is scaled to gzuze.

If the perturbation expansion is summed to all orders then the
dependence of the physical quantity on uz vanishes as it must do. It
is then irrelevant what subtraction scheme each term in the renormalised
expansion is calculated in, as long as the same scheme is used
consistently throughout. However, the coefficients of successive
terms become increasingly difficult to calculate with increasing order,
so in practice only the first few (i.e. at most four) terms in the
perturbation expansion are determined. Having truncated the series
thus, we are now left with renormalization scheme dependent
predictions, a fact which plagues practical application of perturbative
QCD. The same problem occurs in principle in QED, but here there
exists a physically 'obvious' choice of subtraction procedure known as
mass shell subtraction. In this method the renormalization constants
are determined by requiring the two primitively divergent Greens
functions of the theory to take a simple form on mass shell. For
example, the constant'zithat renormalizes the photon—electron bare

coupling e, is chosen order by order in perturbation theory such that atq =0

andpz==M this couplingisjusteR. gerturbativepredictionsforQEDprocesses

e
. . R . . e
then take the formof an expansion ing— = o, a quantity which must ult~.

@ b



imately be taken fromexperiment (i.e. the lowenergy limit of Thomson sca~
ttering). Indeed, o appears to be a "good’ expansion parameter in the sense that
it is accompanied by small coefficients,as is the case for the anomalous

magnetic moment of the electron a&

a, = (‘5&;)

(%) - 0-3284?8%6...(%)2
+1-1835 (%)3 P (1.83)

o

For Q.C.D. no such 'matural' definition of the remormalised quark—gluon
coupling occurs since there are no physical on-shell quarks and gluons
available. Once again all renormalization schemes are equally valid,
although there clearly exist 'best' choices (in the sense above) of
scheme and /u? . MS, although theosretically easy to work with, appears
not to be a good choice of subtraction scheme as it leads almost
universally to large corrections. However,having calculated a process

as an expansion in ®g defined in one scheme there exists a well

defined method for tramslating the expansion to that in EZS defined

in any other scheme [1.21].

Up to now we have merely stated that these comnstants are calculable
perturbatively, but to render a theory sensible, in the sense of being
predictive, more than this is needed. Clearly if more counterterms
are needed to cancel an increasing proliferation of divergences for
higher orders of perturbation theory then ultimately after renormalization
the lagrangian will depehd on an infinite set of arbitrary parameters
leaving it devoid of predictive content. This leads to the question of
renormalizability [1.22]. A theory is said to be renormalizable if
there are only a finite number of primitively divergent Greens functions

requiring only a finite set of counterterms. This translates into
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a statement concerning the momentum dimensions of the coupling constant.

In general if

q ~ [P]a (1.84a)

then the theory is renormalizable if o> QO

and is non-renormalizable if a L Q

An intuitive reason for this power counting statement can be
seen by expanding any Greens function in perturbation theory. For

example the two point Greens function discussed previously

G_(a)(qf) _ G\'?(‘lf)[l + Szggg + 3‘&*%;{% b oeees ] (1.841)

where %Sé represents some integral over loop momenta.

If A>0O , then the momentum dimensions of the loop integral(s)
must decrease with more powers of 3 in order to keep the total
. . ; (”( z.) . .
dimension fixed (and equal to G Q, . The integrals are becoming
more convergent for large loop momenta with higher order.
Conversely if Q4 QO , the situation reverses and the loop integrals

grow increasingly divergent,requiring the introduction of more counterterms.

4
For the ¢q- theory under consideration L~ [,P] in 3+ 1
dimensions, hence from the kinetic term in the lagrangian density

i
g~ LP] and so the coupling

g ~ [P]D (1.85)

The theory is renormalizable as Q=0 .
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So to recap, the Renormalization Program consists of two distinct
steps. The first is concerned with regularizing the formally divergent
integrals encountered, while the second consists of the systematic
calculation of the renormalization constants, and is known as the

subtraction scheme.

We now turn to the question of the arbitrary scale M introduced
in the implementation of this program. Because the choice of renorm-
alization point AL is completely free, changes in M cannot affect
any physical predictions. Therefore, the other parameters of the
theory must change in order to compensate for the variations in Mo
In order to study the asymptotic behaviour of Greens functions for large
space—~like momenta, mass terms in the Lagrangian are ignored in the
belief that massless and massive theories have the same asymptotic
limit. ©Now a change in M is equivalent to a change in the scale of
momenta since M is the only dimensionful parameter in the theory
(the coupling constant is dimeﬁsionless). The renormalization group
relates Greens functions for one set of momenta and coupling constant
to Greens functions with a scaled set of momenta and different value
of the coupling constant. Specifically one can relate the asymptotic
form of Greens functions to those for fixed momenta and an effective
coupling constant. The asymptotic value of this effective coupling
constant is given by the positions of the zeros of a perturbatively
calculable function. These zeros are known as the fixed points of the

renormalization group.

For convenience, we work with the renormalised one particle

irreducible (4PL) Eruncated vertex functions defined as
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NF, Nq-)

{
e G (4PT)
& -n- G\Sz,c:) (0,2)
NF R -L-E; GR

(1.86)

where the renormalised Greens functions are given by

(Ne, NG

G = <OIT( by Gy Gy ) OY e
with PJF and !V& corresponding to the number of external fermion and
gluon legs respectively. The unrenormalized and renormalized vertex
functions are related to each other via the multiplicative renormalization

constants. If by analogy with the ¢"' example we define

"I’: = Zf vt | (1.88)
-} i R
) = 2 @) L.59)
9o = 249z (1.90)
then
Q(NF,N«)( P‘;,q,}b) = Z: Z.: r'“ (bi,ge, I\) (1.91)

The 7Z'S depend on the ultra-violet cut-off /\ but are dimensionless

Lo

M

and so functions only of the ratio

N
ie. Z:F(ﬁa,/%) (1.92)

The arbitrariness of the scale /A, implies

3
o

(1.93)

P PW'NG)(PQ%O, A
OL/"L * ) Fxed go,A
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2 (e, Ngo)
[/%“ + @(ﬁ}:é-— - Ne¥elq) ~Ne¥%l9) | T =0 (1.102)
LIS 99 R
The Bg and ¥ are known as the anomalous dimensions of the fermion
and gluon fields respectively. It is the function @Qg) that governs
the momentum dependence of the effective coupling constant. All these

quantitites can be systematically calculated in perturbation theory.

Due to the lack of any dimensionful parameters to set the momentum
scale in the lagrangian, one might expect vertex functions to scale
according to naive dimensional analysis when all the momenta are -

transformed Pi”"”‘?é so that

Tonap) = DYk g 5) (1,103)

where [ is the physical dimension of {:“ . However, the existence of
a hidden dimension-full parameter /M' in the theory spoils this
behaviour. We can use the R.G.E, to relate vertex functions evaluated
at momenta PC to those evaluated at rescaled momenta ?\PL

if

= et (1.104)

then

F;(Ns,ua)( Q‘th,ﬂ»/‘*) .
k)

1 Ne¥elq! ! NeNee
Qj)(t) DE n\go\g F F(g()gSN({X(x@)Q (P@,ﬂ(‘t)}/&)(loloﬂ

where the effective coupling constant g(k) satisfies the equation

ag* —_
a-g = 45) (1.106)
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with the boundary condition

guw.o) = 9 (1.107)

From Eq. (1.105) we can see that once the vertex function is
known at some specific value of t , then we can use this equation to

calculate it for any subsequent t.

We are now in a position to explore the interesting asymptotic
region of t>+o0, Suppose that in this limit the effective coupling
. #

constant converges to some fixed value, 8

o g(E) = 8* (1.108)

e ]

These fixed points (there may be more than one) are determined by the
zeros of the ﬁ function. If the convergence to this fixed value
3* is sufficiently rapid (determined by the properties of the ﬁi function})

then

St
é(f/:\; L(M; [Nﬂs (?j(t)) + N(,'b’(,(@(k))] (1.109)

| | 3
~ é{f:fw [Nﬂpﬁﬁ*) + Ng ¥, Qg*)l X at (1.110)
]

and so in the asymptotic limit the canonical scaling of the vertex

function given by dimensional analysis is spoiled by extra powers

of A

(NeNG) D~ Ne¥e(q®) =Ne¥e(9%)_ (ueng)

R (%h‘)%x#) z[)\] R (PQ%,/UL) (1.111)

—

and hence the identification of ¥ with anomalous dimensions.
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Thus we can imagine the following possible form for the ﬁ

function with fixed points occurring at @? . gf and 3: (see Fig. 1.4).

Because 1t can be expanded perturbatively in § , there is always a

zero of @(g) at the origin.

A

p(3)

/,[ >
&

0 *>#' P A
% * «
9,=0 % s §(b)

Possible form for a B function:~ arrows indicate

Fig. (1.4)
movement of the coupling constant as t-> +oo

§== ﬂ: , then we can expand

If PB(§) has a simple zero at

around this point

B(3) = B(g;) +(3-9;) éf»}? +0(3-43)"

3% (1.112)

But @)(q:)f-o, and using Eq. (1.106) to obtain

BB g 29| .
(1.113)

emine——

de °3 Ig-g¥
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Consider the point 4=9, . JFrom Fig. 1.4 it is evident that

@, o

”g“é:" §=3f (1.114)
so if

(3-97) > © (1.115)
then

—— (1.116)

and g(t) will decrease as T increases until it approaches gf in
asymptopia (i.e. T=»+o00 ) | 8:: is said to be an ultra-violet
stable fixed point. For the opposite sign of the gradient of the

@ function at the fixed point,as is the case for § = 3:, then
ag(t) is forced away as £ -¥400 | and the fixed point is ultra-violet
unstable. However for £ —>=-00 (or A0 ) g(t) is attracted to
such points and so they are known as infra-red stable. The actual

behaviour of g(t) will depend on which domain contains g(t 30) «"43 .

If g*::() is an ultra-violet stable fixed point then the theory
is known as Asymptotically Free. For large space-~like momenta the
effective coupling goes to zero, and the theory approaches free-—field

like behaviour.

The @ function can be calculated perturbatively for Q.C.D.

6(3) = wﬁ" Q;m)l N ?‘ (ﬁ)q . PZ.(%)&, + oo (1L.117)
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The lowest order coefficient of the fermion anomalous dimension

o 2 i 4
¥ =¥, & + % 4 e (1.118)
F F (lm,)z F (anﬂ,)q.

]
‘ZSF can be evaluated directly from the lowest order fermion self

energy graph of Fig. 1.5

°o . &
T = 34 (1.119)
in an arbitrary covariant gauge @ . Similarly for the gluon field,

the sum of the diagrams of Fig. 1.6 yields,where

0 & Logt
¥ = % Gy t ¥ (l%f)‘*' ¥ (1.120)

_2
X;:-—-[ %~%)3 gf’] (1.121)

with 5" being the number of fermion flavours.

Finally to evaluate @(3) to 0(33) one considers either the
diagrams of Fig. 1.7 or those of Fig. 1.8. The calculation determines

B, as [1.24, 1.25]
(Ba =11 - %:f' (gauge invariant) (1.122)

so for the number of flavours 5-416 the lowest order coefficient of
the {3 function. is negative,having the consequence that Q.C.D. is
asymptotically free providing the ﬁ function does become positive
before §{t=0)3 9 . The two and three loop parameters By [1.26] and
B, [1.27] have now been calculated with the result (for ﬁz. in the

minimal subtraction scheme and Feynman gauge = 1 ).
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Fig 1. 5 Lowest order fermion self energy

Fig 1. 6 Lowest order gluon self energy

)\
A

Fig 1. 7 Lowest order corrections to the three-gluon coupling

A

Fig 1. 8 Lowest order corrections to the quark-gluon coupling

45



Pi = 102 - -:3——5. (1.123)
- 285F _ 5033¢ , 325 (* (1.124)
P 2 18 5 54 5

lending further support for the consequence of asymptotic freedom.
The class of theories in which this phenomenon can occur appears to
be very limited. It has been proved that no theory which is not a

non-Abelian gauge field theory can be asymptotically free [1.2@].

Knowing the first few terms of the FB function allows an
approximate solution for the explicit momentum dependence of the
effective coupling constant to be constructed. The g function is

defined by Eq. (1.95)

é—g—:&

T 96(3) (1.125)

with the boundary condition
4(t=0) = g (1.126)

and 2

t = /(fﬂ(\@- ) (1.127)

Keeping the first term in the expansion Hq. (1.117)
Then

29 49 _ _ B gt (1.128)
.. (] 2
dt @)

which can be integratedincorporating the condition (Eq. 126) as
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3(02) k

2 AQ -
- 3%? Sg ‘é—% - Sodt (1.129)
_ 4 - ( ) t
3He?) q? fem % (1130
thus
- 1 4 62— Qf‘ ‘
= Bo M&ML) (1.131)
or ‘bﬂz’
-3 2 -
Q@ s _
9 (\ ) ﬁom %) (1.132)
with

N = /‘L%(b{ Ibg} (1.133)

- 2
from Eq. (1.132) it is evident that 3(&1)“’?0 as Q1 -» 0 logarithmically.

For higher order calculations}the effective coupling constant can

be solved for using the two loop expansion ( @‘) of the %g function.

The result is

(1.134)

Y a2) = fg:(@}){ 1 - g?j o i QZ)LWQM(A&) “O@o)}

where

& =
9. (a%) B, I %) (1.135)
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4

and /A has been chosen so that no more terms of ()[Ln}(g})] appear
%

in the expansion

- B
Z Po
2 ~1bm Jéi 91 N
A" = mEox [ L—-—-] — (1.136)
o orp 9°Bo I\ len® 1+ %‘ =

which is different from the leading order /\ of Eq. (1.133)

The hope of asymptotic freedom then is that for processes which
involve some large momentum transfer Q* , the effective coupling
constant at these scales is small enocught to allow a reliable
application of perturbation theory. In this spirit we now turn to the
classic application of Q.C.D. perturbation theory to Deep Inelastic

lepton~hadron scattering

1.3 Asymptotic Freedom in Deep Inelastic Scattering

In this section we give a brief review of how, utilising the
techniques of the Operator Product Expansion and Renormalization Group,
asymptotic freedom predictions can be calculated for deep inelastic
processes to an arbitrary order of Q.C.D. perturbation theory [1,29jn
Despite the complexity of the mathematical machinery involved, the results

still have a simple intuitive interpretation to that of the Parton Model.

It is interesting to see the kinematic region explored by the

deep inelastic Bjorken limit
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Q* = -9* — (1.137)

<
P

pg —» 0 (1.138)

with

X

HH

& .
5y Fixed (0¢xe1)

The relevant region of integration of the electromagnetic current
. Lq. . .
commutator of Eq. (0.18) occurs when the exponential éitl% is stationary.
All other regions become wiped out by rapid oscillation of the exponential.

writing

4.9 = (“rij‘;&s){ 3&%3) +(%@3X9&}§3) - %ﬁ‘"’éf (1.139)

Then, in the target rest frame of

P‘(W‘w,o,o, 0) (1.140)
9 = 1 (v, 0,0, J\72"+~mnszt) (1.141)
My

The Bjorken limit implies

2V
" v Sl o oD (1.142)
Yo %3 My
Go =~ 95 * myX (1.143)

The relevant regions of z-space integration are, therefore,

expected to be

My

250” :33 o ?:7 (1.144)
i

%a + %3 o m (1.145)
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Now as

3= (3.-3 X 20 +3,) %’1 (1.146)

and causality forces the current commutator to vanish outside the light

) 2
cone, i.e. >» O then
3 3

2 Vnﬁ ..3:... o, .Q:..
)< (zvxmux) O( Q‘) (1.147)

Thus the Bjorken limit probes the product of currents near the light

cone.

In field theory, many Greens functions are singular in this

region, the simplest example being the free scalar field propagator

helg,m?) = -i<o|Tlsg]|o> (1.148)

) ﬁ ef,k.a

-

@m*  K*-m*+it (1.149)

& o »i’—- ...______...1_:_..._.,._..._..,., PR .

AF(%)m) %RN (q’“‘.)?; "32“";2, (1.150)
=% O

For deep inelastic processes, the dominant contribution will
come from the highest divergence near the light cone in products of
operators of the underlying field theory [1.30]. The operator product
expansion (0.P.E.) provides a method of categorizing these divergences

allowing the leading singularity to be identified.
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For convenience we choose to work with the forward elastic Compton

scattering amplitude T}VQ, where
Taol9,0%) = 4| kg €3¢ T[T p> oo
pAY, 5 P JACTN P spin averaged  (1.151)

This is related by the Optical Theorem to the deep inelastic hadron

tensor V%WQ Eq. (0.18) as (see Fig. 1.9)

Wy = %;‘, Im(TM) (1.152)

it

+ crossed

Wy T

Fig. 1.9 Schematic illustration of the Optical Theorem,

As an illustration of the main features of the O.P.E. we will
consider products of spinless currents. The generalization to vector
currents carrying spin is reasonably straightforward. The physical
idea behind the 0.P.E. is that for small distances (compared to some
characteristic length scale of the problem) a product of local
operators should itself behave as a local operator [1.31], ' These

ideas may be extended to light cone expansions, [1.32] so we can write
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LT[tS(va)‘J(o)] X Z Z Cm(%) ﬁ”"""’“" o (1.153)

-»O (=0 Nz0 "f“a“'"#'\
%”*0

n
where the ()h“' ..... pMn are an infinite set of regular (finite) local

operators the label & referring to the quantum numbers admissible
by the symmetries of the theory. The coefficients are in general
c-number singular functions. 1In free field theory their degree of

divergence is given by naive power counting of Eq. (1.153).

Thus if
A *Ehn
-1 2
Cinly) ~ (32) (1.154)
then
2dy = dcm -n + do'.: (1.155)
with C*o? the dimension of the local operator of spin n . So;,

&

the degree of divergence (in a free field theory)
dC’L;n = 2dy "(d"'i -n) (1.156)

Hence the most singular coefficients multiply those operators having

the lowest value of
(0\0'2 -ﬂ) = T = Twist (1.157)

In field theory one constructs local operators from scalar fields
.4 , fermion fields ¥ and gauge fields ng which all have twist

T=1 ; together with derivatives BP . The addition of these derivative
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terms can only increase or leave unchanged the operator twist. Since
we are interested in operators that are bi-linear in the fundamental
fields it follows that the operators having lowest twist will be those

of T=2 . These operators take the form

for scalar field theory

n - &
Oy = BT By g @ (1.158)
for Q.C.D
nK _ — K G G
Ous g, = S [l‘f; s B, D, D Y ] (1.159)

..... D’M“ :\FP ] (1.160)

Q
A
*
<
3
H
%
| I
*
=
¥
»

G < N
O o I Mn S{_ 6’/"%9 D/'Lz_ o D/“n-l G./M“V] (1.161)

where £3 denotes symmetrization over all Lorentz indices, and
K

7\“P is a flavour group generator. The ()Ns are the fermion flavour
non-singlet operators, whereas ()F and C?‘are the flavour singlet
fermion and gluon operators respectively. Their asymptotic freedom
analysis is complicated by the fact that they carry the same quantum

numbers and so mix under renormalization. All the above operators

have dimension N+2 , spin N and so are twist T=2

Taking matrix elements of (1.153) between hadronic target states

of wmomentum P , then Fourier transforming to obtain
2) =\ dk 43 t
Tv,a%) = ¢|d*ye <pIT[5 ("5)3(0)] l P 7spin av. (1.162)

ZZ <P\O»/‘* /“"L )HD bav R Cw,n Q%L) <1‘lé3)

L=p N=0O
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(1.164)

ey
b
o
[4Y
<&
a»
W".:;
=
o
=4
-
g
>
4
“%
=
3
O
=)
=

If naive dimensional counting were correct, then
dﬁi,n
AT
Cailg) ~ 32 (1.165)

with

d. 2dy =T (1.166)

"

This implies that
~ 4\ o
Cinlg?) ~ (%2) 2 (1.167)

where

dy = 2n+h + T -2dg (1.168)

Ci)v\

In the scalar case 3-\75») =% Q‘l(’)(,): where the colons denote

normal ordering.

Hence
dy =2 (1.169)
If we define a reduced singular coefficient function Z‘L,n through
n+T

Cinlg?) = ﬁ;z) * a,ﬂ(q}) (1.170)
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then the singularity structure of C;m {Of) will express the deviation

from free-field behaviour.
Writing the spin—averaged matrix elements as

(PI O?/“*u”",“ﬂko)\‘)zpm. = Ar:(/%z) bM' e k)'““ - traces (1.171)

The trace terms involve contractions of M. ; and so are corrections
2
of O( P’%z). For the moment they are neglected, although we shall

mention them later.

Thus

,:;_

Tv,6%) = .EM; s

L20 N0

)m’t A (/,@.) C»,n (%2) (1.172)

Fasg)

g

from which it is easy to see that the higher twist components of an
operator of given spin N are suppressed by powers of %z. . Keeping

only lower twist T=2 , we can write

Tv,6") = g;:‘ie a}'(%)“ i"n A1) a},‘@\,’"} 1+ O&é},) el @.73)

where the O(%z) corrections represent contributions from both higher
twist operators and neglected trace terms in Eq. (1.1%#1). These
corrections are assumed negligible in the scaling limit. The analyticity
properties of the full elastic Compton amplitude will be dealt with
specifically in the next chapter; however,here it is sufficient to

note that there are cuts in T(V, &2) for

1]

...cf'
Vv 5 TR koo (1.174)
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and

‘\>:+

NI,
|
8

(1.174)

corresponding to the (massless) intermediate states propagating on shell.
This is equivalent in the complex X plane (keeping qf fixed)

to a cut between X =% 1 . This analytic structure enables us to
construct a dispersion relation in X relating the amplitude at

some unphysical value of X'(h<\> l) to the imaginary part along
physical )(I& 1 . This where the moments of the deep inelastic

structure functions arise naturally. Specifically,

+4
o n
o) -4y 3 (& ] e
el

we can now use this dispersion relation together with the optical
theorem (1.152) to identify the coefficient of Xn in Eq. (1.173)

arrive at

1 ]
n -
n-t SO T Z 2 2.)
jaxx W(X,6%) = = 52 5 ym2 AL(}L)C,;“W (1.176)
’ A /
) i=0
Thus, the moments of the deep inelastic structure functions have

2
a " dependence in the asymptotic region given by that of the
coefficient functions appearing in the Operator product expansion.
The sum in Eq. (1.176) is over twist T=2 , spin N  operators.
For the scalar case considered there is only one such operator, that

of Eq. (1.158).

A few remarks are necessary in order to extend this analysis
to the product of vector currents as is required for the singular

behaviour of light—cone Q.C.D. Firstly, the operator product expansion
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is richer due to the independent Lorentz covariant tensor structures

that can be constructed. There are five independent tensors

8,#.\) 3/“/‘13\’ é,u.ﬂ\w‘ 3/‘*#;3\*/*1 5/“%\, (1.177)

But for electroproduction there exist only two linearly independent
Lorentz covariant structures. This is equivalent to the statement
there are only two independent tensorial decompositions of _ELu (or V%Mw),

Thus for vector currents

T 30] ~ 35 | (4D~ 33) 303 Coaly)

51_'»0 (=0 Az

3440 267*1' L‘é’bu
(G, O - Gpp v, = BuGyu, O,
On /&": Poeow o /A’“

+g,uv'b/\k;’b/&7_)cz’n{}) }/“33/’% i (1.178)

With this added complication we can now proceed as for the scalar

case and arrive at the generic result
Si n-ZF 2) = M z.) - < Ny, v o}y a2
Od\,x 4 k()(l& = k(“)Q = ("Z,:o AL t)u‘ ) Ck‘n (/;:2. \3 ) (1.179)
where in the deep inelastic limit the structure functions approach
VW v,ef) —>  F(x,&?) k=123  (1.180)
Z
W, (v, &) — F(xa?) (1.181)

W, o= vWZ - 2w, (1.182)
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and

—4,
H

.L /l Ll m“ (1.185)

for &z") o these Nachtmann moments reduce to the simple moments

1
M,(n, Q%) = So()( X"2 £ (x,6%) | (1.186)
[+]

The correction factors KL are designed to account for target
i peri ions  F; (X,G3)
mass effects present in the experimental structure functions fp\A,
So with their inclusion one can relate directly the experimental
distributions to the asymptotic freedom predictions for moments

calculated in the massless case MLU\)Q:L).

An alternative (but theoretically equivalent) approach is to
work directly with the structure functions relating the experimentally
measured quantities \)Wk(\),G”‘) to those obtained by inverting the

asymptotic freedom moment predictions, ﬁ‘b() Q)

in the massless case for K=2

W, ,6t) = E(x,a) (1.187)

With the inclusion of target mass corrections [1.34]

59






of those of twist T=2 .

To summarize, the operator product expansion gives the general

form for the moments of structure functions as
M n L‘ &1
2 2 & 7.)
Mk(*\&) = .éo A;(#)Ckm(/“z’ 9 (1.191)

The utility of this technique lies in the fact that the coefficient
functions C:k“ are independent of the target states. They are
defined through the expansion Eq. (1.178) and can be calculated
perturbatively. The reduced matrix elements of local operators
/“2 are beyond perturbation theory and must be ultimately eliminaled

by experiment. The O.P.E. has allowed us to identify and separate

out the (presently) incalculable contributions to the moments.

The asymptotic behaviour of the coefficient functions (and so
of the moments themselves) can be calculated by a straightforward
application of the Renormalization Group Equation (R.G.E.). The
moments are physical observables and consequently cannot depend on

any (arbitrary) renormalisation point /4? .

i.e. /k%& MK(H)QZ) =0 for each n (1.192)

Choosing non-singlet (NS) combinations of structure functions this is

equivalent to

NS m
/"L‘%ﬁ Con O s =0 (1.193)
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the label K refers to which structure function K=1,2,3 L
is under consideration. As the R.G.E holds for each K separately,
it will be dropped.

Assuming the multiplicative renormalization of the bare operator

on
CJNS is given by

on - n n
()Ns h Esus C)NS (1.194)
and so
o,n
pd [ONS] =0 (1.195)

oy

Eg. (1.193) can be written

n
EENS

0,1 NS NS .00 A T4 .
L on /L%L[Cn] + C, ONS/*@I[EE:J =0 (1.196)

or

M%L[C?] = CF ¥ l9) (1.197)
where

% l9) = /“'g};[mzzs] (1.198)

In the Landau gauge (& =0) in which there is no renormalization of

the gauge parameter & , this leads immediately to

[M%& P, -x;;(g)] Con%8) =0 aum

As mentioned previously the flavour singlet operators C),C)& carry
the same quantum numbers and so mix under renormalization. They

satisfy a matrix R.G.E.
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>\ (45 +cmg-3) S - x:b(g)]cﬁ(%;gl) e (1200

where the 2 x 2 anomalous dimension matrix

" 2
Yl3) = (/‘* 5};"“ %Lb (1.201)

and
o,n

o, = %(Z")ab O: (1.202)

Since this thesis is not concerned with singlet combinations of structure
functions we will not consider flavour singlet operators further but

refer the reader to a review by Buras [1.29] for a thorough treatment.

Eq. (1.199) can be solved to give (analagous to Eq. (1.108%))

§(e?)
Ct“(%i'gz) - C:,sﬂ(i:gz) MP["S"W Tus (9) (1.203)
30) p(3")

A 3
where the 1 means evaluated at ”/& .

Thus for non-singlet moments
3(e)
2 NS "
Miclna?) = A7 (,%"31) Ck,nu,ﬁz)w"['jdﬁ' 7‘»5(‘3')1 (1.204)
e B4

Since we cannot calculate the moments up to an overall normalization
(this reflects ignorance of the size of matrix elements of local

NS NS
operators) then the normalizatiom of (:kn and ;\n are chosen such that
»
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#

NS O,MS
o= A, 1 (1.205)

we then have perturbative expansions as follows:-

AN:(;;’QZ) = ;\:S[]-+ (I%f\-)lk'jirssmtg,,) “‘/’\2:5)*'” ] (1.206)
(1.207)
(Lo (T8 + o) ke
— k=L
6:5 (Lm) 6\ NS (L%W)Z B'z,'f::” +) (1.208)
n

%ula) = (EY 1@+ (& D) v e

Cenl1,3) =

The perturbative expansion for ﬁ(g) was given in Eq. (1.11%).

K
6N5 are constants that depend on the weak and electromagnetic charges.

L

For electron-proton or electron-neutron scattering 6N$ = SNS A

In order to calculate matrix elements of local operators,
effective Feynman rules for the insertion of lowest twist operators
are needed. These are found by introducing into the Lagrangian a
source term

A Of‘_‘..a -f(n
A»u, ..... Mo i (1.210)
. . . . 2
with [»m an arbitrary light-like four wvector A= 0 . For the
calculation of non-singlet matrix elements, this leads to the Feynman

rules shown in figure 1.10,where the crosses represent an operator

insertion [1.24].
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The quantity f:; is determined by calculating the coefficient
of the pole term of the diagrams in Fig. 1.11 (this is true only at
one loop level), but now there exists a choice of procedure to follow.
One can either:

(a) calculate all diagrams of Fig. 1.11,in which case one must
include diagrams involving external fermion leg renormalizations

when computing the coefficient functions. In this case
o= Y
r = Bus (1.211)

(b) Ignore diagrams (d) and (e) of Fig. 1.1l and the corresponding
diagrams with external fermion leg renormalisations contributing
to the coefficient functions. Now one must add in by hand
the previously calculated anomalous dimension of the fermion field.

then

N *Z?‘F (1.212)

NS NS

As option (b) reduces the number of diagrams to be evaluated by four,

this is the procedure we shall adopt.

The lowest order non-singlet anomalous dimensions are found to

be

on -2 ; ;1..]
¥ues ZC,_(K)[l D) *Lrj?_;zj (1.213)

with CR)= % ror SUW®).

We now have all the necessary ingredients in order to extract
the leading order Q.C.D. result for the moments of non-singlet structure

functions.
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Fig 1.10 Feynman rules necessary for the caleculation of non-singlet

matrix elements
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Fig 1.11 Diagrams entering in the calculation of Yns
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A ~ 03 Gev (1.218)

To leading order in Q.C.D. all parton model sum rules remain
unchanged. The only difference introduced is that now the parton
distributions depend on both X and G* in a calculable manner.
At higher orders, we expect a violation of these sum rules. Using
the fitted value of A , we can determine the size of the effective

coupling constant from

as(@?) = @_7.) (1.219)
for 4 flavours f,= %? , thus

dg(@=10Gew?) ~ O3 (1.220)

This is still a reasonably large expansion parameter at accessible
2 e s s P e
values of @  and so it is important to check the significance of

higher order corrections.

To go beyond leading order involves the computation of the next
, . n NS 2

terms in the expansion for Uns(ﬁ). @(6) and C%J\(l,g ) .

The two loop contribution to the anomalous dimensions of twist 2

L0
non-singlet operators 3‘; , has been calculated [1.36]. Recall that

75:5(‘]) = #gﬁ(miﬁs) | (1.221)

then, in the minimal subtraction scheme (MS)

L - gr 3R
3

o
Z
73

{

(1.222)

where

o0 ne oo
Zre o= 1 +Z‘ 2“2?) o D=i-2¢  (1.229)
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Thus to determine ‘Uk: it is necessary to evaluate the coefficient
of % (the sub~leading ultra-violet divergence) in all of the two
loop diagrams that renormalize 0:,5 . A summary of the techniques
needed to calculate these diagrams together with the results of the
calcualtion can be found in ref. [1.36] . As mentioned previously,

the coefficient of the two loop ﬁ function, ﬁ‘ , has been calculated

by a similar method to that above. Again recall

B(g) = ,Ubg;u? L (1.224)

in the MS scheme with D=4&-2¢, then

i

Bkg) =z &3 4 33 ?___%5 (1.225)
33’
where
90 = Z49r (1.226)
and
Z. =1+ 2 zts (1.227)
3 LS E"b

So @1 can be determined by calculating the coefficient of %; in all

of the two loop diagrams that renormalise the coupling constant g.

The raéult [1.26] is

B, = 102 - %@5. (1.228)

with f being the number of fermion flavours.

Finally, the next term in the expansion of the coefficient

. ! . L, .
function 5 can be determined by the following procedure. Using

s
kn

the fact that the coefficient functions are independent of the states
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between which we sandwich the currents we may choose the most convenient
states and calculate deep inelastic scattering on a quark of space-like
momentum F . In this case the lowest order contribution is due to
elastic quark scattering,leading to a structure function of 6(1“X) .
Thus all lowest order moments are normalised to 1. Beyond leading order
we calculate all the one loop corrections to the elastic Compton
Amplitude (see Fig. 1.12) for unphysical Bjorken ><(,> l) and express
the answer as a power series in X . A dispersion relation states that
the coefficient of (%)ﬂ is proportional to the nth moment of the deep

inelastic structure function. Next we expand the right hand side

of Eq. (1.204) in terms of g(”}): 3 to obtain
_g_' 21 -60;“ q:‘" i,N3
L+ (W) 2—" s (“Ez + M k,n

PRI LG ART - PAERTCN SN

»

' h - () % ()

(1.229)

L,NS
The only unknown in the above equation is Bian
4
The Q.C.D. result including next to leading order contributions
can be found by re-expanding Eq. (1.204) in terms of the effective

. ~ g . 2 o2
coupling constant g(&) The general form is (for M = Q, )

!
=Gy

NS N @
M, &2) = Ay 5 SK el

e LEN (e +F, +Gy(a2) .
e || LB (20

4m
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Fig. 1.12 Dia%rams of the elastic Compton amplitude to
O 39 necessary to determine the coefficient
functions
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where

_ lott?
%) = B, (&) (1.231)
~N
NS
X - B::)“ (1.232)
'Zf"n ,Uo,n
= -z-'fg - ”;.:?5—7__‘ (1.233)

) + P (%) 230
28,

A few technical comments are in order. If all renormalization
is carried out in the MS scheme, then the gauge dependence of the
virtual compton amplitude and the matrix elements of local operators

NS . _g ) i
are the same and cancel , leaving <:kn(175 ) a gauge invariant

2
quantity [1.37]. It remains renormalization prescription dependent;
however, this dependence is cancelled by that of the two loop anomalous
dimensions [1.36]. All other perturbative quantities are both guage
and renormalization prescriptionindependent, resulting in a physical
answer for the moments. Of caurse, there still exists an overall
prescription dependence due to the definition of the coupling g. The

actual numerical value of the higher order corrections looks

significant. If, as for the leading order

%s (Q2=106w%)  ~ 2%

T (1.235)

Then

Jo& i(E" +F, + &n(&z)) 2 507 forn=4 (1.236)
W) &*=10Gev?
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and increasing for increasing N .

However, these corrections become almost entirely incorporated
[1.35] into a re-fitted /A = 0.346 Gev and lead to no further improvement
on the agreement between theory and experiment. The inclusion of
target mass corrections does provide such an improvement, and gives
the optimum value of A = 0.474 Gev. TFor an illustration of the
comparison between theory and the experimental results for 'V%Q{Xjﬁﬁ?

(non-singlet) see Fig. (1.13).

The general results of the application of perturbative Q.C.D. to
deep inelastic processes may be summarized by saying that the parton
distributions acquire a (perturbatively) calculable (Ql dependence
roughly in agreement with that observed. To leading order, all parton
model sum rules remain unchanged, and are violated logarithmically in

Gf at higher orders. For example the Bjorken sum rule of Eq. (1.46)

becomes [1.37, 1.38]

i
v ____VP i - .3_._....:1'..,....___.
§ax R0 -F0] - 1 - B g
o ﬁolﬂ\kaa
N
. . . 2 ;
Some insight into the @ dependence of the structure functions can
be gained by considering the following intuitive argument [1.3{] . By
2
increasing the @& of the virtual photon (or weak boson) one imagines
that the beam is probing smaller and smaller distances. Thus at higher
Z.
Q", a quark 1is resolved into a quark and soft gluon, and a gluon

into a quark-anti-quark pair or two gluons. In such a picture, parton

2
distributions are then naturally Q dependent.
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2
1f E= lﬂ\(&%;) then the leading order Q.C.D. result for the moments
-]

of non-singlet structure functions Eq. (1.216) can be written

"

M (nk) = My(no0) |t .
kn, ) = k(n,0 [0‘5(0)] (1.238)
with
A - 23
= 1.239
slt) W, oy ( )
P 4T
Thus
A MenE) = - 35 s(k) M (n k) (1.240)
dx 817

The convolution theorem states that the moment of the convolution of
two functions is equal to the product of the separate moments of

the functions.

Thus 1if
L
H,(x) =S %‘é H, (y) Hs@i) (1.241)
Then
My(n) = Mz\"\). Ma(f\) (1.242)
where
1
Mi(n) = So(x X" H (%) (1.243)

. . o,n
So if we can define a function whose moments are 'KNs then

Eq. (1.240) can be inverted
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let

n

i
jod’é obn”l pq,q,b)) - _li_'i_s (1.244)

#

Now inverting (1.240) we arrive at

L
dAyxE) = «O)| dy A X .
o ) IT?X by Ayly,k) %“’(3) (1.245)

4

with A;,j being some non-singlet combination of structure functions

occurring in a process labelled by + and j (for example Aep(x,t)
Au\b(,t) ) Similarly, the evolution equations for the flavour

singlet Zb(,t) and gluon G’(X,b) distributions can be constructed

as

i
d Z(ut) = ale)| d X ) X
i YE) Ei%[zw,‘:) f?w\‘j) *2{-&((5&)%&(5) (1.246)

A

4 Glut) = &k <\ . X |
AL \‘5 ) 2.:%)&% Z(\ﬂ,t) Qﬂ'&‘j) G‘(‘j‘t)%ﬁbj) (1.247)

These equations are coupled due to the fact that gluons can convert

%X

into ‘Wr pairs in a flavour invariant way.

The 'splitting functions' [:1.40] PCW,(O()) etc are interpreted
as probability functions in the following way. %"v(i)() gives the
probability of finding a quark of momentum fraction Y in a quark
of momentum fraction X . They are defined through the vertices of
Fig. (1.14) and have moments proportional to the entries in the anomalous

a4
. . . D)“
dimension matrix &

o,n o,n
¥ ¥
~— FF Fa
—‘0,!\ =
_Ko,n on
&F && (1.248)
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Fig. 1.14 Vertices defining the splitting functions
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with

on n 2
e = Yus = (L - Ans 1) J,ZJ) = *‘deg "Pely) 2o

on N*+N42 - - ap
Ure ~ s alm)(n+2) S}S@% 'g‘ P%“a) (1.250)
on _ _{b  n*4+n+2 s - -
O T e
o,n - Lo H ~ [+ S L
Xe& 6[ 3 n{n-1) (n+)(n+2) ’ LH%,J ] ¥ %‘}
(1.252)

=7 L*S(Ma P&&k’))

The %p‘%) are thus given explicitly in Q.C.D. as

\ 2
Faal3) = %[ G;%')* +%5("’§)} (1.253)
Pae 3) = Ji[ '37'*(“5)2] (1.254)
.P(,q,(ﬂ = %[ 3%};2] (1.255)

- 2) Y
fe3) = é’[@?gbk ¥ Q"af‘ r 3-3) +(T§" %)30'3)] (1.256)

i
where the distribution QY‘%)+ is defined through
1
S dy S Sm} §ly) -54) (1.257)
(-3 b (1-3)

with \&(5) any function regular at its endpoints.

Thus. the probabilistic type framework of the parton model has
been retained in the context of perturbative Q.C.D. It must be remarked
however, that there is no unique definition of parton distributions

beyond leading order.
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Finally, it is important to note that the use of the Operator
Product Expansion is not the only approach to deep inelastic processes.
A completely equivalent analysis [1.41] has been carried out by studying
the Feynman diagrams that describe the process and identifying their
dominant contribution at some large momentum transfer Gf'. The
criterion used to perform this identification is known as the Leading
Logarithmn Approximation (L.L.A.) in which one keeps all terms of the

form
n
@.2
[045 (MK..I)] | (1.258)

but neglects contributions of the type

(1.259)

¥
>

(#s)' [‘*5 M({?’;)]m k

2 . . . .
where /L 1s some typical parton virtualness (i.e. 4-momenta squared)

at which perturbation theory is assumed valid

LslM) 4 (1.260
LT 1 )

It follows that /uf' must be at least comparable to the average

momentum of valence quarks in a nucleon

u* > (300Mev) 7 0L Gost (1.261)

Thus the L.L.A. requires selecting those Feynman diagrams that give
. - xu\( z) .
the maximum power of Q) to a given order of perturbation theory.
An analysis of the lowest order graph of Fig. (1.15) shows that
2

the principal contribution (i.e. ~a<X5£NLC%}) ) comes from the region

where
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/u‘ ~ p’* & lkl2 ~ kf « (1.262)
and

ME < M= (k+g) « Q" (1.263)

This 1is the region where the initial parton struck by the virtual
photon, and the final parton are not very virtual (i.e. far off shell)
2 .

with respect to the large momentum transfer (° . These are the basic
assumptions of Feynman's parton model although in a somewhat weaker

: v o , 2
sense since here the parton KL do grow with increasing Q” .
This result can be extended to the nth order perturbation theory ladder

type diagram of Fig. (1.16) to yield the dominant kinematic region as

2 2 2 2 o 2 2 2 2 2

/“ZMP «k ~Ko«k, « Kk, k“’b. &k, Ko, €« Q
with (1.264)
Ly purfe - - 2Pay ¥Pa ~ X (1.265)

where f; 1is the fraction of longitudinal momentum of the original

parton carried by the ith parton up the ladder.

These ladder diagrams constitute the dominant contribution to
deep inelastic scattering if one deals solely with  the emission of
real physical gluons [1.42]. This émounts to choosing a physical
transverse gauge (such as the axial or planar gauges) in which the
unphysical spurious degrees of freedom of the gluon do not propagate

by virtue of

ke =0 (1.266)

with K# and Qﬁ' being the gluon 4-momentum and polarisation 4-vector

respectively. Although these gauges are ghost-less, they are in general
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Fig 1.15 Lowest order ladder diagram in the leading logarithm
approximation giving the leading contribution to deep inelastic

scattering

Fig 1.16 The dominant diagram for deep inelastic scattering in the
leading logarithm approximation at nth order perturbation theory. The

X's represent self energy and vertex insertions.
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cumbersome to work in. However, in such gauges all crossed diagrams

are suppressed by powers of ,Lniﬁf) relative to the ladder diagrams.

Both the transverse and longitudinal momentum integrals up the
ladder can be performed and the result summed to all orders of
perturbation theory to reproduce the standard leading order expression
for the moments of structure functions from the operator product

. 0.,!\
expansion s

277 280
M(na%) ~ [lﬂ %.) (1.267)

The great advantage of this Feynman diagram analysis is that it
may be extendable to other hard processes (i.e. those in which the
distances probed are small compared to typical hadronic dimensions of
10»15 m), where there exist no light-cone techniques. Such processes

are, for example, massive lepton pair production and the inclusive

production of hadrons with large hk’

In conclusion, we have seen in this chapter how a simple model of
parton dynamics failed to explain adequately the experimental data. We
have also witnessed the emergence of a theory of quark (= parton?) - gluon
dynamics in which the observed logarithmic scaling violations are seen
as a consequence of a logarithmic approach of the dynamics to that of
a free field theory; a phenomenon labelled as Asymptotic Freedom.

All results so far predicted by the theory, Quantum Chromodynamics,are
in qualitative agreement with those events observed. However due to
the inherent largeness of the effective quark-gluon coupling constant,

there is as yet no precise 'g-2' type quantitative test of Q.C.D.
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The experimental lack of evidence for free quarks and gluons is taken

as support for the idea that these states are permanently confined

to the interior of hadrons. The theory at present admits this possibility
with the breakdwn of perturbation theory at low energies; however,

it still remains an outstanding challenge to prove quark confinement
within the context of Q.C.D. Some degree of success along this direction

has been achieved by numerical studies of gauge theories on the lattice.

Having briefly discussed the application of Asymptotic Freedom to
deep inelastic scattering we now continue to look in detail at the

predictions for the longitudinal structure function of the nucleon.
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The |P) are hadronlc target states and we are interested in the limit

_.CL_ZSQZ—-—-}OO

po =0 = o0

2

Q
with the ratio X = 7y kept fixed

2
and P is a fixed mass (which we shall neglect here).

In order to deal exclusively with Vﬂ_ we need to construct a
projection operator for Vﬁ»v that projects out only this parts; such

an operator [2.2] is P’ub" where (for sz O .

PP Waw = (1) W, 6) (2.5)

Thus we may begin a systematic study of the longitudinal structure

function V%L order by order in Q.C.D. perturbation theory.

2.1 Zeroth order Q.C.D. :- The Parton Model.

In the naive Parton Model the nucleon is seen as an assemblage
of free on-mass—shell, point-like constituents called partons. These are
tentatively identified as the quarks of Q.C.D. and it is in this sense
that zeroth order Q.C.D. is equivalent Fe the Parton model. Clearly
this is not a realistic picture; how for instance are the non—interacting
partons constrained to stay within the interior of hadrons? However,
the impulse approximation does provide some justification for neglecting

. . . ra
parton~-parton interactions at high enough Q.
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We may study either the inelastic cross section directly, or
the imaginary (absorbetive) part of the corresponding forward elastic
compton amplitude,as the two are related via the optical theorem

(see Fig. 2.1(a)).

The amplitude to this order of perturbation theory may be

written

A= -ie, Hé(p')y)@»)w My (p,s) (2.6)
where A 1is related to the S-Matrix element as

S =1+T 2.7

it

STy = 9(ps -po) |AL (2.8)

So

i

AV AN (2.9)

= o2 RP(P')S')Q&MP“ U (p,s) RS(P,SXYSQ%%W, 5) (2:10)

Now perform the quark spin sum éf?i and use
3

Z i, (ps)Eslps) = (B 211

for massless fermions
Thus
\2

|A

#

Lo T Bulpty WWO] (2.12)
where we have set p': b*%} through the momentum conserving delta

function of (2.8).

Performing the Trace using Appendix AL , we obtain

[A

\2

= 5ol il (produbs +(1a)he - bipeg) dav] e
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and using the elastic condition

2pg, = 2V = @° (2.14)

\A\z ____Ze’:‘\)[ P,M.q,v\:' bvq'}b _ /*P\,q(z» - 3,4_\}]"‘\&/,,\) (2.15)
92.

Thus we can see that for massless, on-shell quarks the tensor
structure that accompanies the longitudinal structure function Vﬁ_is

not present. The squared amplitude admits a non-zero VVz only.
Thus the parton-model result is

W, =0 (2.16)

and comsequently the ratio

OL
R = o (2.17)

W
O

One can also build Parton models with less stringent assumptions
such as that of Landshoff and Polkinghorne [?.é] where the partons are
taken not to be free, but nonetheless not far from mass shell. The use
of free parton spinors to describe the incoming state is now forbidden
and one has to work with a general matrix (ﬁf)is in Dirac spinor indices
(see Fig. 2.1(b)). This matrix cén be expanded in a [* matrix basis
(as they form a complete set) and it is possible to show that the only

tensor structure is (152*8 , thus yielding results identical to those above.

Some physical insight into the meaning of these results can be
gained if we go into the Breit frame (the frame in which the parton

just reverses its direction of 3 momentum) .

KK



We know that for massless fermions the 'QM coupling conserves
helicity because the amplitude for a massless fermion to flip its
helicity through a Uﬂ. coupling is zero. The helicity projection

operators for massless fermions are

5(Lti%¥s) (2.18)

So the helicity flip amplitude

~ (I-¥s)M Y (L+4¥s) M (2.19)
= K (1+i%5) I (L L¥s) M (2.20)
But since
$9,¥53 =0 (2.21)
the above
= X -3s)(1+i¥s) e = O (2.22)
as

L¥s) = L

This same argument can be extended to weak processes such as
those involved in \JP scattering, where the only complication is the
additional axial vector coupling ?9bxs. It is obvious through the

above analysis that
(L-i¥s)h Bu¥s (1+i¥s)k = O (2.23)

Thus, in the Breit frame, consider massless fermions scattering off

both transverse and longitudinally polarised photons.
for transverse helicity ¥ ;A= +1

hence

H
+

ST S ] |

initial state )\"T
oT

. ¥
final state A Tot
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i 4
s0 we can see that total angular momentum A1§T =‘X““ is conserved

and GT;30 .

D'L_ longitudinal helicity A=0

‘ o
ANMANANAN : initial state Mo =
Q—.—.——.

% 0 N

P

1
e 11181 state kf‘ = + 2
A g o

. 4

P

The only way that total angular momentum can be conserved is
for the final state fermion to flip its helicity through the 3}&
coupling, but we know the amplitude for this process to be zero.

Hence O_=0 for massless fermions.

oL
and R== =
O7
These simple helicity arguments may be repeated for the case
of polarised photons scattering off scalar partons,with the result that
O—‘Tzo » G.L*O

and

R = = for scalar partons  (2.24)
O

so the measurement of R provides a direct test as to what spin

quantum numbers the partons carry.

Both these predictions are in disagreement with the small but
non-zero value of R seen in &p scattering E’Zl;] . In order to explain
the data, we clearly need to go beyond the simple parton model, and the
preceeding arguments suggest now this could be done. We can either
give the partons a small mass explicity, in which case the helicity

projection operators are

L + ¢
Z(l = “X”fﬁ."é) (2.25)

30



Qn,is some arbitrary 4-vector
where S-P =0
and s* =-1

which in general will not commute with 'K}L and so leads to O_ %0 .
Or, we can switch on the Q.C.D. interaction through lowest order
perturbation theory. Now a massless parton (= quark) can brehmstrahlung
a coloured gluon and go off shell thus allowing its helicity to flip

through a 75/* coupling.

Feynman [2.5] has calculated R where the partons have a mass
M and transverse momentum ‘kL . Assuming the partons stay close to

mass-shell in the initial and final state, he finds for large a*

b(k2+m*+A)

R =
Giz

(2.26)

where A 1is a binding energy factor (unknown) to correct for using

free parton masses in the formula.

From observations of the average rﬁ' of pions seen in hadronic
.. . . LI .
collisions (which seems to be energy independent), kJ‘ is estimated as
2 . .
% 250 (MeV) and assumed to be X independent. Naive arguments based

on the Uncertainty Principle and the localisation of partons within

g

hadronic radii of ® 1 fm support this number
2
Thus for k:' ~m? = 250 (Mev)

2
and &2 ~ 8 Gev
» » » z
which is a typical value of Q" for which data exists, we find

R ~ 0:25 £t 05N (2.27)
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This is to be compared with the quoted value of R (in ep scattering)

2
averaged over a Q° range of 2—*1b Gev? as

R =014

The errors are too large in the data to determine variation of R
. 2 : . . .
with Q , but an important test of future experiments is to verify

Qz"')"" . . . .
that R does approach zero as . Only this will justify

: . .4
the assumption that charged partons are spin 5 .

However, to see what sort of test R can afford a theory of
hadronic interactions rather than a constructed model, we can continue
to study R in the context of Q.C.D. perturbation theory. To do
this we use the standard techniques of the Operator Product expansion

and Renormalization Group as outlined in the previous chapter.

2.2 OL to order q‘ in Q.C.D. ~- Preliminaries

To calculate the longitudinal coeffcient function
that appears in the Operator Product expansion to (>(81) , we need
to calculate the imaginary part of the waq projected Feynman diagrams
appearing in Fig. 2.2. Alternatively, one could expand the inelastic
amplitude A to ()(31) and obtain the matrix elements /\AJ by
coherently summing over identical final states (see Fig. 2.3). The
resulting matrix elements are then integrated over the corresponding
one or two-body massless phase space. These two approaches are
equivalent by the Optical Theorem. As an illustration, we shall use
NS
tn

=2
both approaches to calculate C (1.3 ) to one loop in the next section.

A few preliminary remarks are necessary about the first method.
The contributions of diagrams 2.2(§) and (3) (the type where the

fermions receive an external leg renormalization) may be neglected
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Fig. (22) piagrams of the elastic Compton amplitude to
O% 2) necessary to determine the coefficient
functions
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Fig 2.3 Inelastic amplitudes to O(gz) contributing to GL

94



providing the corresponding diagrams that occur in calculating the
matrix elements of local operators are also ignored. This is a
process independent statement. Also, the contribution of diagrams
2.2(b), (c) and (d) to Op 1is zero because these involvé a massless
fermion flipping helicity through a 7&; coupling. (It is easy to
see that this property will reduce greatly the number of diagrams
contributing to Op at two loops). Thus we are left with just the
diagram 2.2(e) to calculate. At this point, it is convenient to
consider the analytic structure of the forward elastic compton

amplitude. The spin averaged amplitude.

Tl a) = ifav P T[HG 3] b7 spiaan
(2.28)

which may be decomposed as

Teolv,62) = (39 = %) 7, (v, 02
r (’ q} ) L( )
S hote b - ge) TG
v v

- L%’L\"p P:Ef T5 (\’) &2)

3 (2.29)
The Optical Theorem states
Wuv = 21';‘- Im[T’w] (2.30)
hence
5‘_’1‘\-1'“‘.11.\": @) - %( W (v,82) (2.31)
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The full elastic Compton Amplitude

Fig. 2.4

has a branch point in the centre of mass energy variable, S ,

whenever threshold energy for the production of intermediate states

i1s achieved (and at subsequent multiples of this value). These
singularities in Perturbation Theory arise from virtual particles being
allowed to go on their mass—shell and thus propagating over arbitrarily
large distances. For massless intermediate states, there is a cut in

for 92»0 , In terms of X = T this analytic structure

translates into a cut strung between X =3%1 (see Fig. 2.5).

¢ /
N I X [ X
- Q’ o
- ™.
S N
mw/r\ AVAVAMI\‘:AVI\ AMAVA Avf\wf\wiw\s x S I
& 1 { )('=)< f&a‘)(
-}» Le * 1 \\ ,z/
. e
Fig. 2.5
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So by Cauchy's Theorem

Tuw(X,62) = fﬁS T (&)
c X' =X

Assuming

(2.32)

i) TLN(JK;Gf) is everywhere analytic except on the cut

for |X'1¢1
ii) T/‘L\.(X',@»z) — 0 as IX|—00

Then the contour { can be expanded as shown and all contributions

to the integral vanish apart from

+1

Jbm L 3 TwlX+L€,@%) = Ty (X'-it, Q) dx’

X=X

By Schwarz's Reflection Principle _f(%*) “\&f(a)

Then
Tuw(X'-ig) = T,J (X'+ig)
+}
Y
T (%,82) = = IMTNVKX)Q) dx’
M w ]
: =) X=X
Expanding
S
<) - 20
+
Tuv(x,6%) = "le—f X\ 1 [T (x‘&z)]dx
MV AR, m an m PR,

where X>» 1 unphysical

‘
and X<l physical Bjorken X
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If we take the PMFV projection of Eq. (2.37) and use Eq. (2.29)

#l
Hb” Tuw X, 6%) = "%j‘}(z}&‘)ﬂ ?%(, Im[_’n_(x‘) Qz)] dx’  (2.38)

~}
and now use the Optical theorem Eq. (2.30), then

+|

P T x,e?) = <2 (&) 2 | X e 239

from the crossing properties of

W, (X' @2) = -W_(-X| &) (2.40)
Then
v 2
PPTe) ST R M) e
where
1
¢ ah-2 )
M.(n,a?) =jo\x XYW, (X @?) (2.42)
(¢}

. . 2 . .
Now as an expansion in 9 ,» the effective Q.C.D. coupling at the
. . . 2 . . .
renormalization point M, the moments of the non-singlet longitudinal
structure function

M:s(n}@}‘) - 815(%‘_)1 B::’N: + O(S‘t) (2.43)

NS 2
where 8L ='€g the quark charge

i, WS

and Bin is the first term in the expansion of the coefficient
(4

function
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.. . . 2 . \
finite contribution as P -» O . One can show this effect is not

present in this diagram though)

P’ Tr = 16(2-D)(pK) pp+q-k) (2.48)

We use the standard Feynman parameterization of the propagators

(Appendix A.L )

1 . YW idﬂdg o(1-p-¥) ¥
kz(P"k)q'(PWt'K)z ) [’k" - Mz]‘r (2.49)
ey (p) (¥)

where

M* = 2%ppip+q) - BU-BXPrq) -FU-WIF (250

and

k = ko Blp+q) + ¥P (2.51)

This shift of origin in the Trace yields

Te = lo(2-D) (M,)3 g(1-p) (2.52)

So far

T = -—eg *C.(R)$ - 16(2-D)(pg ) Ml

ﬂ dpd¥ B(1-8-¥) p*(1- @)‘&j &k mlf (2.53)

Performing the loop integral (Appendix A1 ) and choosing D= 4-2¢

L S L1
= KM 6T ey (e

U.V. finite (2.54)
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scale 32"’% 32/%12 to keep the coupling constant dimensionless in Dzl'?"?;i"

T- @m)ze 2q . (R) 16(pq) M(2+2)M(1-¢) ()" 1™

T [zwb(m) pli- 5)(b+w) “5(‘""”’] (2.55)

Now we can see that in the numerator there are enough powers
( 1)1‘*& ]
of B to kill all the powers of f that result from M if

we drop Pz' , leaving only ﬁa integrable singularities.

This is a reflection of the fact that there are mo mass

singularities in the P"'P\’ projection of this diagram. As k(’o R

i i
....., - - . »
the propagator (P__K)z bg___o which is a potential divergence

regulated by Pz . For the contribution of this diagram to \)Wz
this effect would produce a .UL("P") - However, for the contribution
to VW, there is a compensating effect. As kP”’O the longitudinal
photon 'sees' the fermion as massless in the limit PZ*-? O and hence
de~couples from it. This is enough to kill the M("Pz) singularity,
leaving a finite answer. Thus the structure of the numerator in

the OZ process helps to simplify some of the integralsyencountered.

2
Consider 50(‘6(1@ only. Dropping P" in M” gives
3

[P
56°01-8)
jim’dp o(-¥-8) WM (2. 56)

2

L

where M

2pa ¥ - (\—ﬁ»)(p«ﬂl (2.57)

~9-(1-B) [1 - Q;’f;) l}(] (2.58)

]
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Change variables

5 - |- B (2.59)
_@_g_‘o: Y (2.60)
Then
, -£
T - @ gGR 16 (bq) M2+e)(1-£) (rm)® s (-47)’
-9)*
1 1
jdp 'LE XM’ML (2.61)
_ 4 _ el \2¢E
> (pl-8) (1 1)2.()
Consider

Slol’zf' U~’6')(1 - %) (2.62)

and expand binomially.

{
Note, as ¥ takes values in the range ©Q—2>1 | this expansion requires
X>1 to be valid. This corresponds to the condition of calculating
this diagram for unphysical Bjorken X thus avoiding the threshold

f
singularity at & =X,

m o ni 3
The general term for N = ~{2+ £) s
R . . ..’
%o 1Y (2+€)(34€) -~ - - (2+€*J"‘)(,,:6i') (2.64)

3!
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expanding this term to O(&)

Sy @) )l A |
G e e
= ;;(%ykh0[1_+ e(sgyu)—l)] (2.66)
S
where 53_(“) = Z;-‘ ? (2.67)

Substitute back and expand Eq (2.61) to O(ﬁ) using the recursion

relation in Appendix A.1  for P(Z*i) to arrive at

T = +(EW)2'C ﬂ CIKR) ‘(b(Pcﬂ Jdp ngX Z (Ix") J'H)(‘ 3)
{1 e aem) -3, - n() - dnlpu-p)

+ 5,(j+1) ”l] g
| (2.68)

Both the Feynman parameter integrals are now straight-~forward to do,

yielding

T IR ERIE [ etre a0 ) |

20
Cap?
%Z
where 'f‘"" M(LHT) - T - M( /I;z.) (2.70)
relabelling j¥l =n (2.71)
3
and using M = Y 41 (2.72)

10



T =16 (4) 4G R)ni( %l £(5,(n) +i\.+"lf)3 (2.73)

(“ y

Thus we see we have the answer for | in the desired form; a power
series expansion in unphysical Bjorken X>1 . The effect of the

crossed diagram is to change

gl - - g* (2.74)
and so X = =X (2.75)

This introduces a factor 2 for N even and knocks out the n odd

. . ig\"
terms in the expansion (g) .

So knowing PMP‘) '{;W =0T

and using the dispersion relation Eq (2.41) together with Eq (2.43)

and Eq (2.73), we deduce that [2.6, 2.7]

I, NS

Ln = b GR) (2.76)
N+l

(e y]
'

For comparison, we now present the alternative method of calculating
the coefficient function. This involves the evaluation of the inelastic
cross-section from the squared amplitude of Fig. 2.3(e). Again, all
ultra violet divergences are regulated by calculating the amplitude
in a space-time of dimension D=4-2¢ . To order gl the amplitude
is U.V. finite; however,we will still evaluate it through to Ole) in
D dimensions as this will be useful in determining counterterms for
some one loop amplitudes later om. All phase space integration is

carried out in D=4 dimensions.

Using the Feynman Rules of Fig. 1.3, Fig. 2.3(e) may be written as

io5



i
i
i
> i 2
: f ol i /
] -
WD G A 12
i tesees) e
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k e:a K
i [} VP
i
p,s
Fig. (2.7)

with all real massless particles being on-shell

11

b* < (P“\,"k)l 0 | (2.77)

p* = K* = 0O (2.78)

(This particular amplitude is infra-red finite, as we shall see
shortly, so there are no divergences introduced by the above statements.
A discussion of infra-red regularization techniques for more complicated

amplitudes will be given in the next chapter).

Thus

A = BS)CLet) S (), Fpulps) €21 (2.79)

-t
So Amv = AV&(AV)

i g’ efﬂl&)@@i)mj wp,s) Y ﬁ”‘g’ Yo Uips) Ulps).

-T
¥, ;"K ¥, ulp)s') g.(z._A (8:',8) (2.80)
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Performing the gluon colour and polarisation sums

CR)Sm  GR)= 5 for SUL3)

]

A A
é’ (2‘7". )mj@: ),ji

1.
oA - M8 - AB
% E0“ 6«- - - 3”\ 6

and the quark spin sum

Z ulps)ulps) = ¢

We obtain

Aw = ~0247C,R) L Te[ %10 T Yalo-K) %o '
| B-K)F |

(2.81)

(2.82)

(2.83)

(2.84)

We now project out the contribution of this graph to the longitudinal

FR
cross-section O using the projector P""t)v) PMP\)AI‘“’ 2 A (2.85)

YT = Tr[ V(V*K)'X}PX% (p-K) bh']

We evaluate the trace in

(2.86)

D=4-~2¢ dimensions and set P’”=O .

(In general, care must be taken with this last step as it is possible

2.
to miss finite contributions of the form '%a

for this diagram though).

b Te = 16(2-D) (k) bp’

This is not the case

(2.87)

z
The factor of sz) kills both the propagators in the denominator as

bk = -%(p-K)* + O(pK?)
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hence

A* = -l q*CiR) 2(2-D) p.p (2.89)

This squared amplitude must now be integrated over massless two body

phase space.

AT = JIaILa] 8 pra-kep) A 30

where the Lorentz invariant volume element

[ak] = d*k %(Kk*-m?) B(K") (2.91)

dei = Atk
) (2.92)

) 8
Blk*-m?) = 277 S(k*-m?) (2.93)

/
The P integrals can be done immediately with the 4 dimensional

delta function with the result

b'=p+g-k (2.94)

So

;&?‘ = - 6,2; 32’ Cz(K) 2(1"0)

[k (k) 0(k) B[ (p4q-k )] B(p+q' k") p.(g=K)

(2.95)

In order to do the remaining phase~space integrals we choose a
particular kinematic frame,say the quark-photon centre of momentum

frame, and align it alomng the % direction.
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Thus

WM = (aYo,O,O, 'E‘)

K¢ = (W, k)

in this frame the centre of momentum energy

5= (p+q,)2 = (E +q;)"

and
(bra)k = (E+q?)w = VS'w
Thus
R = -9 (R) 2(2-D)
(2%)13 M dok §(w 1k1*) §(5-2/5w) 6(w) p.(q-k)
Now

Ak = k*dk dgd(cme)

(2.

(2.

(2.

(2

(2.

(2

(2.

So in d*K we can do the energy (dua) and modulus of 3-vector

96)

97)

38)

.99)

100)

.101)

102)

(dk) integrals using the two delta functions, leaving the two angle

integrals yet to do

A = -029*C(R) 2(2-D)

ya g +

I TS
Gpam s 3]s § A(cs0) bg-K)
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where

w=lk| = ‘]g (2.104)
and
bk = Ew —~)Em§\afg@ (2.105)
= EYS'(1 - o30) (2.106)
2
With no azimuthal dependence in the integrand, the Qf integral
may be done trivially.
Choosing D = 4-2¢
A* = +e?qClR)(1-€)
+1
ES b 1-5 B,
= (2m) 8 ﬂld"b ( 3)) (2.107)
using
bip+q) = EVS' = pg, (2.108)
then finally
~ g \>
A = et(m) R) b (1-€) (2.109
Now
v BT AV .
%’“E} wa - L;.WR (z,x) WLW;Q) (2.110)
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During the closing stages of this work however, it was brought to
our attention that a similar calculation had been recently performed
utilizing the first of the two techniques and a Monte-Carlo numerical
integration routine to evaluate some of the more difficult integrals.
The status of the agreement between the two calculations will be

discussed subsequently.

2.4 O_ to order ﬂ} in Q.C.D. - phenomenology.

In this section we give a brief discussion of the phenomenology
of the order gl contribution to Op from Q.C.D. perturbation theory.
Although much of the material found here is discussed in greater detail
in Chapter 5, it is appropriate to consider the one loop corrections now
because the result will serve as further motivation to go to higher

orders of perturbative Q.C.D.

We can now use the techniques of the Operator Product expansion
and Renormalization Group to re-write the Q.C.D. predictions for the
moments of structure functions as an expansion in the effective (running)

strong coupling constant.

For non-singlet combinations of structure functions

2

2 i
MEee) = AT(E, ) Gl d?) =Jox™R%(xe2) o)

N3 %, . .
where /\ﬂ is the ( @ independent) reduced matrix element of the fermion

non~-singlet operator

..... NS¢ 1 2
<pl Ok p> *An(%uﬁz)b' M —braces 2o
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and C:;§ are the Ciz dependent coefficient functions calculable in
perturbation theory. The Renormalization Group expresses the invariance
of physically measurable quantities, such as the moments of structure
functions, under changes of the arbitrary mass scale /L? ;

the Renormalization point. In particular we can relate the coefficient

. . 2 2.
functions at some arbitrary scale /M.?' , to those at & = M and an

effective coupling §(@»z).

N a(a*)
Cﬂfn (%l’ ‘i‘az) N Cfn ilgz) exp ""jd@' X"NS(‘S') (2.118)

apw BLg)

Inserting Eqs (2.117) and (2.118) into Eq. (2.116) and expanding
. . oS . .
everything in powers of {, (Qz') the one loop running coupling constant,

2
then for /4,4.2" = Qo

KOIMS

fn
& EHCOREY

WS, Y _ ANS ok I, NS (&2 % 9, ) @o
ML (\ﬂ)&) = A, SNS B'-.“ 3,(a%) +0(g¥) :}f"(ai) (2.119)
(4m)? Jol&,
TS L
the unknown n may be eliminated through the moments of the non-singlet

13 * 1. *
combination of @V{a at Gﬁa (since the data are more accurate for

ﬁwz ) giving

‘6?{“5
MY {n @) = Mf“(n}&i) B”: 3:(02) w 280 (2.120
o0 e | aiel) 0
g (aR) 1
er ) s (2.121)
(4> UCY
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where

2 _ 2 -—‘bﬁz]
= mp[ 9*B.

(2.122)
is the one free parameter of the theory to be determined by the

magnitude of the scaling violations of \)Wl .

. 2 2
So after measuring the moments of VYW, at some @y <Q° (but
still large enough to justify the use of perturbation theory, i.e.

2 2 2
Q, >5'EUO Gen ) Q.C.D. predicts exactly the Q dependence of the

moments of \)WL .

Expressions similar to Eq. (2.120) can also be derived for the
moments of \’Wz_ to O(ﬁl) . Here the equations are more complex

due to the fact that the Parton Model result for \)W2 does not vanish.

In order to obtain the structure function Fl':()(,@f')) Eq. (2.120)
must be inverted. As the N dependence is fairly complicated this
cannot be done easily (if at all) analytically. It is usual to employ

one of the standard inversion techniques described in Chapter 5.

Having determined

F(x,6%) = E(x,&* -2XF(x,&%) (2.123)

and

F.(x,6%) (2.124)

one can find F';(X,Qz') and so plot a graph of

o _  REX&)

CRX,®2) =
R{ ) o X oa) (2.125)
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The resulting plot of R and its comparison to the data can be seen
in Fig. (2.7).

2
Mprokon
In Eq. (2.125) we have neglected contributions of order Q2

the target mass corrections. These reflect the fact that we are not
. N . Qz—-)OO . »
measuring the moments at the scaling limit , but in the region

2 2
of Q=2 >20Gen, 1n this region

WL,@) # ExQ) 129
= F(x,6%) +O(.'.“_;E¥.E?“) (2.127)

These corrections are known and have  been discussed
in Chapter 1. They are included in Fig. 2.7 and tend to improve

agreement with the data.

Although the error bars on the data are large in Fig. 2.7, one
can conclude [?.?, 2.8] that, even with target mass corrections, the
()(ﬂz) Q.C.D. prediction lies consistently below the best experimental
fit, especially at large X . Clearly this cannot be seen as a

satisfactory description of the data.

2.5 O_ to order q* : A preliminary look
b

We have seen in the previous section that the leading
order Q.C.D. corrections for O, do not provide a satisfactory

explanation of the data for X>O'5 .| There may be many reasons

for this discrepancy. It could be due to some (presently) incalculable

non~perturbative contribution of the neglected higher twist operators.
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This statement is counter-productive in the senmse that it exchanges
one problem for anmother. However Schmidt et al [?.9] have considered

. . . 2 . .
non-scaling contributions to fi(X,Gl ) from scattering off di-quark
systems within a proton and conclude that they could become significant

as X2 1 .

The-discrepancy could also be the result of truncating the Q.C.D.
perturbation expansion after only the second term. It is important,
therefore, to look at the next highest order correction, the (3(3“)
term to try and understand how reliable the leading order calculation

is.

There are interesting theoretical questions as to the nature of
this order 34 term though. It may make no sense at all to construct
a perturbation theory where asymptotic states are taken to be objects
which do not seem to appear in the physical spectrum of the theory,
namely quarks and gluons. This is a problem that requires mathematical
proof or dis-proof. The relative size of the order 34 to order

g

self consistant as a perturbative expansion - does the series appear

% term however, may at least provide a check as to whether Q.C.D. is

to converge? The answer to this question is by no means clear in view
of some of the recent perturbative corrections computed [?.1Q].
Finally, if the Q.C.D. prediction for O, is fitted to the data in
order to obtain a value for the one free parameter of the theory A,
then this value is meaningless unless the Q.C.D. expansion contains
the order 34 term [?.11]. This is easily seen if we consider the
two loop B function solution of the running coupling constant.

32(a?) 4r

G @Ln(@f) 128

*s(Q*) =
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Then

ok, = %s(G?) oki(&‘)lmbn(%;) + 0(«2) (2.129)

- g. 1
Bo 4T
. f R . 4

now let o5 be a running coupling constant with a different AN

then

&
i
&l
o+
N
8
i
+

(2.130)

where

K = %‘_1’“(%:) (2.131)

T T . .
Thus to leading order ®g = &g and A s left as an entirely free
parameter. In the same spirit, when making comparisons of theory to
— R
data the coefficient of the s term must be known in order to attach

any significance to the value of /\ obtained.

In order to calculate the order ﬂ“ Q.C.D. correction for the
moments of the 1ongitudinal structure function (non-singlet), we
must calculate the order 3“ term in the expansion of the longitudinal

NS —l

coefficient function (:h"(l’ ). All other perturbatively calculable
quantities, namely the two loop beta function and anomalous dimensions
of fermion non-singlet operators, have been calculated previously.
Thus we are faced with calculating the cross-sections given by the
squared amplitudes of Fig. 2.8 integrated over the corresponding two
or three body massless phase space, or equivalently the imaginary parts
of the elastic amplitudes in Fig. 2.9, (Again we ignore graphs

corresponding to external leg renormalizations).

The remainder of this thesis will be devoted to a discussion of the

techniques used and results obtained in calculating these graphs.
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Fig., 2.8

)

* these are flavour singlet amplitudes, but they can interfere with
flavour non singlet amplitudes to give a contribution to O .
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(Crossed diagrams are understood)

Two loop elastic amplitudes contributing to oL
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CHAPTER THREE

INFRA-RED REGULARISATION

3.1 Bloch-Nordsieck Mechanism for QED and the KLN Theorem

We have already encountered ultra-violet divergences in Quantum
Field theory and briefly discussed how the Renormalization Program was

set up in order to extract finite, physically sensible predictions.

In theories containing massless particles however, there exists
a new class of divergences originating from the low momentum region of
loop integrations, and so known as infra-red divergences [3.1]. Thus
they are sensitive to the values of the external momenta of a Greens
function and cannot be simply renormalised away. As an illustration,
consider the purely electromagnetic process of e+e” - u+u* calculated
in successive orders of QED perturbation theory. The lowest order

diagram of Fig 3.1 is straight~forward to evaluate and vields

o hra*

O} = 3R (3.1)
with
22.
oK = E&” (3.2)
e+ /‘:i-
—tp
O
“

Fig 3.1 Lowest order Feynman diagram for ete > u+un
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If we continue thebperturbation expansion in o for this process,
the diagrams to be calculated at one loop level are illustrated in
Fig 3.2. Consider separately the u+uhy vertex correction depicted in
Fig 3.3. Using the Feynman Rules for QED, it can be written in the

Feynman gauge o = 1 as
;Mﬁf
e @) - ®)

©

+ electron line contributions

i:(}\/(

. . . + - +
Fig 3.2 One~loop virtual corrections to e e = U U
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Fig 3.3 Vertex correction

Vw = =1 {p) Ap U(-p,) (3.3)

with /\N=Q~Le)zjd°k 't U p+i+m) S LB +Kem) T, ORNERY
- [(pakf=mivie]  [Cpak)-mtsie) (Kvie)

For massive on-shell final state fermions
2 2 2.
!J‘ = PZ. = M (3.5)

then the loop integral above as k -~ O

A,S dk w“fif“t (3.6)

which is logarithmically divergent for small (IR) k in D = 4 dimensions.
Notice that for off shell fermions, the infra-red divergence vanishes as

now the behaviour for small k 1is

~ VaPk cons‘;ant (3.7
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In order to calculate the coefficient of this IR divergence, the

numerator of V. can be re-arranged using the equations of motion

(Form)up) =0 (3.8)

mm(?ﬂ "M) =0 (3.9)
to take the form in the limit of k = O
ie” bbb, Cre) Ulp)Bu w-p,) (3.10)

which is proportional to the Dirac structure associated with the

0
lowest order vertex, VU

Vi = —ie Wlp) Y Ukp,) G

IR o
Thus V. =V,¢I for small k (3.12)

where

T = te Lkh,hj (kz‘rlﬁ)(lp.-K+K2+L?,)(“2}92.K*kz*u-) (3.13)

The divergent integral, I, can now be regulated by one of the

following two procedures.
Either a) Introduce a photon '"'mass” kz so that the photon
propagator

L . L
K* 4 ie RN (3.14)

This substitution will now modify a previously divergent Feynman

Parameter integral
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9~il'*

2.
§ oqu*) ~ IM(%Q.) (3.15)

2 . . . .

A" is not a mass in the formal sense of Au now being a Proca field,
but rather a small dimensionful parameter introduced by hand in
order to render some Greens functions finite. All Greens functions

. . . 2
are then considered as the limit as A~ = 0.

Or b) Use the previously discussed technique of dimensional
regularization [3,2J to evaluate the diagram away from 4 dimensions.,
In particular if D = 4 - ¢ then what was a divergent Feynman parameter

integral will now yield a é-pole.

(3.16)

o

i
do L o gdok LTEs -
° oA (o

Choosing the second of these regularization methods, the divergent

integral, I, can be evaluated in a straight-forward manner to give

(f-o(‘ @.2‘>lf~mz)

@"’” '"“> 1L (3.17)
/1_~Lr%z 1-1- A%ZL

. + - + - ,
To calculate the cross—section for e e > U U to O(a3), the diagrams

Ibﬂ‘ { et

of Fig 3.2 have to be interfered with the lowest order graph of
Fig 3.1 and integrated over the corresponding two particle phase
space. From the above we can see that the contribution of Fig 3.2(a)

will contain an infra-red divergent term with a coefficient
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+ electron line

contributions

+ electron line contributions

)

)

©)

(d)

. . + = + -
Fig 3.4 Lowest order diagrams for the process e e > u uy
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This is not found when calculating the contributions of these

diagrams to 0, however due to the extra "helicity suppression"

L
previously discussed in the context of the parton model. Effectively,
when calculating GL the numerator factors using the pupv

projector always arrange to cancel one power of naive logarithmic

collinear divergence. Thus for oL Fig 3.5 is mass finite, and Fig 3.6
2

yields only one power of in (iB§ ) . Although this type of off mass

q
shell regularization has the advantage that one can clearly see which

. ; . . 2
are the singular regions of phase space integration and how p~ < O
regulates these would~be divergences, in general great care must be

taken when implementing the second of the conditions on pz, that of

2pg, > -9 > - p* (3.30)

It is not sufficient to simply set pz = 0 in the numerator of some
Feynman diagram. This action carries the possibility of missing
finite contributions as in some cases the coefficient of p2 (itself an
integral) is so divergent that it gives a j? . Out of all the two
loop amplitudes of Fig 2.9 this effect waspfound to be present only in
diagram, 2.9(10). This fact is again probably due to the special
structure of the OL process, for out of all the inteferences of the
inelastic amplitudes of Fig 2.8, the s-chanmnel cut of Fig 2.9(10) is
the only one in which one gluon can go collinear with the initial

quark and put two propagators simultaneously on shell without decoupling

from the 0 process. This produces a Jz pole in the integrand which
p

. . 1 . .
i1s converted into a -5 after the phase space integral. This, of course,

P
must be cancelled by an overall factor of p2 appearing in the

numerator, and indeed is. All other potential 4%-poles are

p
suppressed by the numerator killing one power of divergence of the
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. Thus all other {n (pz) terms arise from regions

propator A

(® - k)
of phase space where only one propagator is put on shell producing
just a ;%-pole in the integrand. For this degree of divergence, it is

P
safe to drop p2 in the numerator.

We now extend this technique in order to regulate the collinear
divergences associated with the final state particles of Fig 2.8. The
KLN theorem states that the sum of these divergences is zero, but the
optical theorem can provide a stronger constraint than that., If we
consider an arbitrary two loop amplitude as shown in Fig 3.7, and

calculate it

N Y 7
p/
| k"?f*f(éf v Pl= P+q;_ K
- K=k+k,
LLARIR R ARLLAARRLRG A
b A T(T YP

Fig 3.7 Two loop amplitude contributing to o
for massless off—shell quarks p2 < O then it has no infra-red
divergences due to the virtual gluons being soft. All mass
singularities are regulated by pz. The -optical theorem relates the

imaginary part of this amplitude to the corresponding inelastic
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cross-section, the imaginary part being the sum of all the physical

s-channel cuts illustrated in Fig 3.8

(@) (b)

i
I

w7 o

|

N S

xxbuuxxnzlLLuuxAxxJ L2 AL RRRAIARRR. 14008
}
«©)
|
|
| Y
i
|
}
M:MMLLM&LWAJ
|
i

Fig 3.8 S~channel cuts of a two loop amplitude contributing to 0y«

Cut lines are on mass—shell

These three cuts separately have mass singularities associated with the
emission of real and virtual gluons almost parallel to the final state
quark. By virtue of the optical theorem, the sum of these

divergences must be zero due to the absence of any such divergence in
the imaginary part of the two loop amplitude. Thus we have a diagram
by diagram implementation of the KLN theorem at two loop amplitude

level.
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All final state mass singularities of the three cuts of Fig 3.7
can be regularized in each case by taking the final state quark

slightly off shell and time-like. Thus for the cut of Fig 3.8(a)
2
if, in the massless three body phase space integral, §(p’ ) is
2 2
replaced by §(p - )\2) then this diagram will yield a &n (2-\7-) .
Q

However, we could have also regulated the divergence giving the gluon

a "mass" by taking
5(k;) = 8lk; - ) (3.31)

or by introducing a mass into the propagator

1 1
p+a,-K, +ie - I 2Y Pl RN T 3

Each of these three prescriptions will provide (as they must) the
2
same leading divergence of fn ('57») , but will give in general
Q

different finite parts. Thus it is important to realise that the

(3.32)

assignment of regulators Az is not arbitrary. In order to calculate
the correct finite part for the sum of the three cuts a), b) and ¢)
the regulator Xz must be assigned in a consistent manner to each

cut [3.7]. A clue to how this is achieved is again provided by the
optical theorem. At the two loop amplitude level we choose one
internal propagator, which by the introduction of a small regulator
kz, will render all physical cuts finite and calculable. Using the
same labelling system this guarantees that the correct regulator
assignment is followed for each separate physical cut. The procedure

obviously generalises to any number of regulators required at the

elastic amplitude level such that all physical cuts are finite.
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To illustrate the method consider again the two loop
amplitude of Fig 3.7. 1t is clear that the introduction of a small
regulator to any of the propagators of the top fermion rung will
regularise all the s—channel cuts of Fig 3.8. We will therefore

choose the central propagator and take

1 1
p' it P-r+ie

(3.33)
For the physical cuts, this implies that:-

for Fig 3.8(a) the final state quark p,, is taken off-sghell

and time-like by an amount Az.
5(p*)  — olp*-a") (3.34)

All other propagators in the diagram are massless.
2

for Figs 3.8 b), c¢) the final state quark 5' is on shell, 51 = 0,

but a small regulator A is introduced into the propagator

i 1
— e 3.35
prie p-a+Le ©3-3%)

All other propagators in the diagram are massless.

In order to check this procedure, we performed the following
calculation working, as usual, in D = 4 - 2¢ dimensions and using the

minimal subtraction procedure.

Firstly we calculated directly the imaginary part of the
renormalised two loop amplitude shown in Fig 3.9. This involved the
use of the dispersion relation techniques discussed in the previous
chapter to evaluate the contribution of this renormalised two loop

amplitude to the longitudinal coefficient functionm.
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s
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Fig 3.9 A renormalised two loop amplitude contributing to

inclusion of crossed photon diagrams is understood.

In the previous notation

(b)

g. .

~ T,

The

o0
PP T b, 62) = 2 2 N 2M (0, &) even omty 330

The calculation proceeds much as that of the one loop diagram outlined

in chapter two. We find for the contribution of the above diagrams to

,M.\?

Mi(n, Qz) (all contributions are to be multiplied by a common factor of

eGR(E) &)

i

M, (n,6?)

-+ -5 -2(s o)

M (6 = § & (S st o))

where

¥= ) <7 - ()

137

(3.37)

(3.38)

(3.39)
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n
5(n) = Z L (3.40)

{

This leads to a total renormalised contribution of
arb
ML. (n)al) = gv_..r)b —-% - 5,(!’\)} n even only (3.41)

Alternatively we can calculate the inelastic cross-section and

determine FL(X’ Qz) by using

PAb W (4,67 = 35 22 %, 62) (3.42)

and then evaluate the contribution to the moments by explicitly

performing the integral over x
1
N2
M (n,@%) = So\x X FE(x a2) (3.43)
()

This necessitates calculating the squared amplitudes of Fig 3.10
integrated over phase space using the regularisation technique
described above., The methods employed to do the three body phase

space integrals of Fig 3.10a are to be discussed in the next

L

chapter.

(b) o) «)

% : l%
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e |
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—
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[
f
i
H

Fig 3.10 Interfered amplitudes contributing to O. to O(ga)

L
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The contributions are found to be (all diagrams are to be multiplied

2 q b
by a common factor of efca(R)(@ﬁJ %%3'

M? (n,@2) = 2“1 - bn(?g);g (3.44)

s+ v end) 50 4] 0w
Mi(n,a?) = § g LY | (40

with § = (p + q)2 the centre of momentum energy. These lead to a

total renormalised contribution of

[

M) = {orf s Seratinny e

which is identical to that found before in Eq (3.41), and so verifies

the use of the proposed scheme to regulate mass singularities.

As a final check to illustrate that it is irrelevant which
propagator at two loop amplitude level is chosen for the introduction

of the small regulator A, consider the diagram of Fig 3.11

W

p/\ | k3

Fig 3.11 Two loop amplitude contributing to oL
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Mass divergences are encountered in the physical s-channel cuts of
this diagram when the massless fermions that propagate round the loop
become parallel and so put the gluon propagator on shell. This

happens for both real or virtual fermions (see Fig 3.12)

(@)

Fig 3.12 Interfered amplitudes contributing to oL to O(g4)

These collinear divergences can be controlled using either of the

following regulator assignments.

(i) evaluate the graphs of Fig 3.12 with a gluon propagator

-4 ~ i (3.48)
U ——— __+ . 3
k* +ig kZ+3 +LE

The use of a space—like regulator, kz > 0, avoids the
possibility of further divergences due to the production

of real massless fermions in the loop of Fig 3.12(b).

140



(ii) give the loop fermions a small mass, kz, such that for

Fig 3.12(a) kg = kg = Rz, whereas in Fig 3.12(b) the

fermion propagators become
L L
kz’a + Lt Kz’s -’7\ + LE«

~

(3.49)
with the final state gluon on shell ki = 0.

We present here the results of these calculations. Quoted are
. . . 2
the O(ga) contributions to the structure function, FL(X, Q7)) as an
expansion in g. We work directly in X space with all diagrams to be

b
multiplied by a common factor of 3?(5%9 CzﬂR)wr(R)l%

For method (i)

2
o (x,62) = %%’%&’ =2 = 20ax +n(-X) ~bﬂ&‘§;z)} (3.50)
?\2
Frloe) = 5L -g vy -5 o n(g) Rt
Pl = 5 E 1

Together these three quantities give a total renormalised contribution

of

e BADAC
%..

L e = %{"“{’ % "% =2lnx @M!*X)} (3.53)

)3 (3.54)

for method (ii) the diagrams are found to give

FAar) = %) % - - 200 +ta(1-%) ~An(*

K>,
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n D%
) - ${E -7 L )}
FE(x,6%) = %{%‘;~l} (3.56)
resulting in a renormalised contribution
ArbiC I 125
o) = 5tk R -2k vl § e
in agreement with the previous value of Eq (3.53).

Having demonstrated and justified the scheme by which
collinear divergences are regularized, we now proceed to present an

example calculation of a two loop amplitude contributing to 0p -
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CHAPTER FOUR

FOURTH ORDER CALCULATION OF OL:~ DETAILS

At the end of chapter two, we gave a preliminary survey of the
fourth order calculation of 0y s and identified the relevant Feynman
diagrams to be evaluated. In this chapter we outline how the
calculation was performed and present an example calculation
utilising the salient techniques for evaluating the phase space

integrals. The final results are given diagram by diagram.

4.1 Calculational techniques

We calculate the squared amplitudes of Fig 2.8 integrated over
the corresponding two or three body phase space. By the optical
theorem this is equivalent to determining the s-channel discontinuities
of the two loop amplitudes of Fig 2.9, including the crossed photon
diagrams. In most cases, it is obvious how this identificaﬁion
works. Take for example the amplitude of Fig 2.9 (14), then the

physical s-channel cuts are illustrated in Fig 4.1.

=

(cross terms only)

%, 2 l%
l i“: +i 5:,,-:: = : + .
- 1
i }
i 1

Fig 4.1 S~channel cuts of a two loop amplitude contributing to o

W,
L
an,

s
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The crossed photon diagram has no s—channel cut. This is true for all

planar two loop amplitudes contributing to oy -

The situation for non-planar amplitudes is more complicated.
The uncrossed amplitudes have a u = (p - q)2 channel cut, and so the
crossed photon amplitudes do indeed have s-channel discontinuities.
These 'extra' cuts correspond to interferences of the flavour singlet
amplitudes drawn when calculating the flavour non-singlet inelastic

cross section, and are shown in Fig 4.2.

H
=
>
7 FTEY
K
L1k
o

2
3 _ 6 3
5 N 5 E,
s 3‘%‘ ::MZ 2 :
- he =3
5 b 5 6

Fig 4.2 § = (p + q)2 channel discontinuities of crossed photon non-

planar two loop amplitudes contributing to o

We found that we could not do some of the phase space integrals

encountered in calculating these cuts totally analytically. It was
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thus necessary to determine them by numerical methods, more about
which will be mentioned later. In any case, the contribution of
these integrals to the longitudinal coefficient function was small.
The largest effect occured for n = 2 and was less then 77 of the

total value in the MS scheme.

The cut amplitudes fall into one of two main categories,
although all have spurious mass singularities arising from regions

of phase space where massless final states are becoming parallel.

Some cuts consist of squared inelastic amplitudes
containing a one loop integral and integrated over two body phase
space. In these cases all the mass divergence is contained in the
loop integral, leaving simple massless two body phase space to do.
The loop is integrated using the standard techniques of Feynman

parameterisation.

The rest of the cuts require the integration of three body
phase~space in which are buried the mass divergences. The final
state consists always of a quark of momentum p', together with a
pair of either quarks, gluons or ghosts of momenta kl and kz. All
three final states are nominally massless. The general technique

employed was to pair up the two momenta k1 and k2 using the identity

1= [ v s (Kokoky) “.1)

This reduces the three body phase space integral

S Lak1Lak, JLlap] 5‘*(P+0‘; ki~-k, - P’) (4.2)
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into two coupled quasi -~ two body phase space integrals
JLabI0aK] #*Cpra-k-p) § Lk IAKD BH(K -k ok,) (4.3)

The regulator assignment was chosen such that in the three body phase
space integrals, all final state divergences were then regularised by

giving the final state quark of momentum p’' a small mass

and by introducing a small regulator into the propagator

1 1
— ey
KZ+ig KZ+a+Lg (4.4)

Only one amplitude (that of Fig 2.9(14)) required the simultaneous
introduction of both these regulators and even here it would have

been possible to abandon this assignment totally, choosing another
gluon to make massive and so uniquely regularise all the divergences.
We elected to continue using this choice though, as by this stage many

of the familiar integrals appearing were tabulated.

All phase space and loop integrals were evaluated in the

limit of

bim. T (g, mk o) (4.5)
=9, pg > regulaters
PN mr>0
and nowhere were we forced to make decisions about the relative sizes

of the regulators, i.e. logs of the form In (m2 + Kz) do not occur.

The phase space integrals done numerically were evaluated using
two different techniques. The first consisted of a straightforward

application of the Gaussian integration formula
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(b = 2 wste) + E, 4.6

where 2., w, are the abscissas and weight factors tabulated [ 447 for
some chosen value of n. The use of this formula technically requires
the existence of the first 2n derivatives of the integrand f(x)

throughout the integration region for finite error En

- 22n+\(n[)4 S’(ln)() (~1<f41) %.7)
" @oen f

As we were integrating functions with logarithmic end-point

singularities this may appear an unreasonable approach to take. However,
we found that for n = 32 the method could satisfactorily cope with

integrable logarithmic singularities to an accuracy of * 0.17%.

The second, and more reliable method, was to use an assisted
Monte~Carlo integrating package known as VEGAS. Basically, this
technique consists of evaluating the integrand at randomly generated
points in the integration range. The program then looks for regions of
maximum variation of the integrand, and saturates them with points in
subsequent iterations. The program is iterated until it settles down
to a consistent answer. This, of course, never occurs for singular

integrals.

Both techniques could handle up to ten dimensional integrals
although we used them to integrate functions of only three variables.
The two methods were also of comparable efficiency, taking on the order
of 30 seconds of processor time to evaluate one of the many three

dimensional integrals.
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4,2 Example calculation

We now present an example calculation of the s—channel
discontinuities of a two loop amplitude contributing to O s that of

Fig 2.9(6). The two physical s channel cuts are shown in Fig 4.3

b

+ (0)
L AILRR I A

]
i
|
{
(cross terms only)

Fig 4.3 s-channel cuts of a two loop amplitude contributing to G

|

Ln

Again there are no s-channel cuts of the crossed photon amplitude.

As previously discussed, both of these cuts (a) and (b) have spurious
mass singularities associated (in this case) with real and virtual
emission of gluons parallel to the final state quark. We shall choose
to regulate these divergences by giving the final state quark of the

inelastic amplitudes in (b) a small mass p'2 = mz.
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Thus we commence by calculating the two body cut (a). In
order to regularise the ultra-violet divergences of this cut we work
in D = 4 - 2¢ dimensions and perform the D dimensional Dirac Algebra
using the identities of Appendix A.l. From the Feynman rules of

chapter 1, the cut (a) can be written as (see Fig 4.4()

M \9q, g A v
|
,
b+}-k,~k,_ P',i | \p = p+q-k,
' 4 k- ‘L ¢ 4 : 7
b-krk, ad |
k }kz. : Y P"k,
iTCo K,
p- k| . Ky : > it
JPRALRALAL LR AR ARRRQRAARAALL]
- Ap | B2 ™
|
b5 !
A B'

Fig 4.4 Two body s—channel cut (a)

= e 200 88, [ s Y e e

(4.8)
Xy ——,
o W) € =
57{"
B" = +ie? 3( ) ®ip,s) 3 Wipss') €, (4.9)

(b ks’)

Take the product ABNI., and perform
i) the quark spin sum ‘JZ?Z' > :%”.Tr‘

ii) the gluon colour sum Z
AL
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iii) the gluon polarisation sum

et
2756:‘?&,':‘ = -8A5g” (4.10)

Then

AB" = +ielg* GIR) 4

§aok, Tl Upm6) Tl o) Yelp k) 7 Y -,

(4.11)
(ko) (p-kir ko) (p-k ) kg
To calculate the contribution of this diagram to o, we apply the
2
projection operator pupv, then setting p2 =p = k12 = 0,
P T = 2-0)2pk, LXK pUp-Kok,) T W ] (“-12)
= @-D)2pk, | () + i) + i) +av) ] (4.13)

where

0y = ~lh(pky) Te[ (oK) Kpp'] (4.14)

= = lop Pk )| ke lpke) b + Cpokoko)bk, +bk pkrio)]  .15)
@ = *upkTel -k (i) pp] (4.16)

= *"6\>-k‘{(b’—k;_).(wk.-kz)b.?’ + plp-k-K,) p.Lp=-k,) }

= Pk Kbk, (4.17)
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Both (iii) and (iv) are multiplied by an overall factor of 2¢, so the
only contributions come from the UV divergent terms of these Traces,

i.e. the O(k;) terms.

0!

it

(4‘0)8hk2[ bp'kik, +pk,pk, - bk, pfk‘] (4.18)

i

(v) = -{4-D) 8pk, pp’ ki (4.19)

Now combine denominators using the standard Feynman parameterisation of
. . 2 .
Appendix A.1, and introduce a small 'mass' m" into the propagator

(' - k2)2 to regulate any mass singularities.

L
KL koy-m ] (p-kk,)

i

i
2!54«@0{1 81 - o(-8-Y) | (4.20)
0 273
(14 skl -t » plo-k T ]

Doing the 7y integral

i

2§d<xd(5 6l-«-8) (4.21)

E

=k, *(0‘\0'+©(b~k‘)) (4.22)

2
»

where

2 2
and M™ = 2appilp-k,) +am? - 8U-8)p-k,) (4.23)
inserting this shift of origin into the Traces

BT =N = bk (G 6K (4.24)
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with

C = ~320-8)- ) bk, (4.25)

8 _ 2
C, = ’5(0 2) (4.26)

Thus, so far

i
PYIABT] = (e2q*CE(R) § dadp ©0-u-8) 2(pk) bp'(2-D).
| o PR (4.27)
[k, CrCak,
n@,Mﬂs

performing the loop integrals using Appendix A.l, choosing D = 4 ~ 2¢,
scaling g2 -+ g2 u2€ and expanding the whole result in powers of ¢ we

arrive at
v A = Z,4r% 1 i
ppP[AB] = relg*Ci(R) e

oy v stk
MZ,

N 3@: +n(m) -Ye -3 JM(%) ) § (4.28)

M* = 2app!(p-k,) +am? - BU-g)(p-k)* - Lt (4.29)

There are now two sets of Feynman parameter integrals to be done.

Consider first

i i-of
T = fj"‘(“d)gdﬁ - (4.30)

° ap*+bp+C
where

a=(p-K) <0
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<
H

= 2apip-k,) -(p-k)* >0

o
¥

The denominator is a quadratic in B with roots r, and r, given by

1

= am®*-1e > O (4.31)

ro= ~b+yJb*-Lac | (4.32)

20

Expanding the square root around the small quantity c, then

i

. . 2 . s e e s
As can easily be seen, if m" = O then the B integral is infinite.

Similarly
G = ~-g-— +0m*) > O

Now

b' = P+q;k, . (4.35)
So

b= 2«l pg-(pig)k,) +2pk, (1-«) (4.36)
But

})’2=O, S 2pg -pag)k, = 9 (4.37)

n = "02%; +(-«) ¥ (-a) (4.38)

Thus we see that the two roots of the quadratic in B lie outside the
range of the B integral. So the ie in the denominator can be dropped

and the B integral performed straightforwardly to yield
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1, - s -] & (4n(B) - en)

" bl2n(2) 200+ £01-) - “‘(%1))] (439

with e = ZP'.(P-k‘) —(P»kl)l independent of a.

Notice at this stage that the mass singularity is manifest in
n (mz). The o integrals present no problem aside from tedium. Since b
is linear in o it is plausible that the result will contain dilogarithmns
due to the presence of n o and n(l - a) terms in the nuﬁxerator. The

result is

:r.;;[ . o\wzg)

¥ &0\-— %OL +€,bn(%2) +Q,ln(%)}mk~%)
“2ef{5) v ef(E) - eflo)

)]

(4.40)

where a = (P»k')z
d = ZPI(P"K&)
€= d-a

(4.41)

and

$) = jl ST,

(4.42)

154



One novel feature is that in the later phase space integrals to be
done, d can vanish. This may seem catastrophic as Il has an overall
factor of Ji, but as will be shown later, in this region the numerator
" O(dz) yiilding a finite result. The appearance of these fake 'poles’
in the phase space integrals turned out to be a common occurrence in

the calculation of many diagrams.

The other set of Feynman parameter integrals are much simpler
due to the fact that they contain only integrable logarithmic
. . . . 2
singularities in the limit of m” - 0. Thus m2 does not act as a

regulator here. Consider

1 e
1,- jodaja@ %g +0nT) ~Ye -3-Inp —»Ln(?.o(b'.(p-k‘) -—Q~6)(pok.)2‘)§ 4.43)
[+] /LZ

in the previous notation, the B integral gives
}
- L - - ~
I = joolox (\-«><)K£ + bn(am) - % -2 b/\(\vo())

- g {netn(4) - o) - otn(2,) )

with

b = «2pip-k)t - (b-K)

(4.44)
The o integrals are straightforwardly done as the denominator is o
independent with the result
oL e fnl-%\ _ In mﬁg)
I, - 2[5 rtnwm)-ve + En(-§) - (- % (4.45)
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Assembling the answer before the final phase space integrals we arrive

at
prv[AB’r] = +eig¥ cj_(g)q__:_ﬁ)zﬁ)o,p[ 2p'K, T, + 12] (4.46)
The final state phase space integral is given by
W = ap10aK] 2 (prg-k-p') [y A .7

with [(M.] = &+ 5((2*1“2')9( L") the Lorentz invariant volume

element for a final state of four momentum £ and mass m.

The most convenient frame in which to determine the phase space

integrals is the p, q centre of momentum frame, Thus

P= (E>O) 0, t) (4.48)

q.=(9%,0,0,-p) (4. 49)

and if

k,=(w, k) (4.50)

Then

(p+q).k, = wJs" .51)

]

(p+4).p EVS (4.52)

where § = (p + q)2 the centre of momentum energy.

For no aaimuthal (¢) dependence of the matrix element, as is

the case above, the two body phase space reduces in this frame to
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As previously remarked, the 'pole' at y = 1 is a fake. This can be

seen easily by expanding the numerator around y = 1 ~ § using

£5) = ~buty -5 -
and
N ;
FU-8) = é‘ %2' , lal«t (4.60)

Also, there are only integrable logarithmic divergences as y - 0
. . . o 2
reflecting the fact that this cut is insensitive to p~, the 'off-

shellness' of the incoming quark.

The y integrals can now be evaluated separately taking care

with the region near y = 1 to give
W, = +e’-;@;.w)‘* C2(R) 4T p.g, L(I-X).
[ 3 w3t () + ln (1)
@ -2)5(x) +(5-3%) 5t0)
XS %) -$(0) 5ol
+ bnw %Ub«\x +x{ $K) ”&(O))}

(4.61)

where
2.
- m
‘2,, 5 (L.62)

[(D] = 25(3) +2(I(\k€'(:;<)5-(#) +m>(ml(_i.7§,).() + 3(%) (4.63)
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x
- In*t
) = |\ 2= dk (4.64)
509 So I+

Similarly from 12

W, = velqraR L, Xq

o G g
S;,_%B(ﬂ x)[ +n b)Y - (i) lny +__{1} (4.65)
q}

Again, there are only logarithmic integrable singularities as y -+ O
which means p2 can be neglected to give as a result of doing the y

integrals

W, = +e2 (2} CG(R) tiThg .
1 _ _ _ 2
| & v mlm % - n(-8)
-2 -2xX +(1-2X) 4nX

+ 2x0-){ $(%) -§(0))

(4.66)

Thus, the total contribution from this cut of the amplitude (including
the corresponding cut of the complex conjugate elastic amplitude i.e.

[ BaT ]) is

WS = 2(W, +W,) (4.67)
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WO = we () R 4rpg.
SXU-—X)[ 3+ 3nX 4~lm(’:~%) +u\xm(‘;§£}
-3)5(%) +& -2x)$(0)
+X""Q‘§<§)Zﬂ#)—5@§ - 3[o]
w oy $ 1+ tnx o+ X (SR 5(0))3 }

+{7_(~‘i+u\(4n)_xﬁ nm('/?g,)) ¥ 3-4X +(2-4%) InX
+HXOX)(5{%)-$40))

is UV divergent and requires renormalization. Due

(4.68)

(a)

As can be seen W
to its theoretical simplicity, we choose the minimal subtraction scheme
(MS). At one loop, this scheme consists of removing only the %
divergence. At two loops however, one must subtract with this
divergence a finite part that can be determined by evaluating the
lowest order (one loop) diagram through to 0(e). This was done in

(c)

chapter two. Thus for the counterterm, W' ', we have (see Fig 4.4aD)

) /

Fig 4.44hCounterterm for the cut (a) of Fig 2.9(6)
W= - € (G7) GIR) 4Trpg 2 Ui-¢€) (4.69)
= v LHT 2 PCL -é* ﬁ'
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Having thus determined the renormalised two body cut (a), we

now turn to the calculation of the three body cut (b) illustrated in

Fig 4.5. This cut is UV finite and so all Pirac algebra is evaluated

in D = 4 dimensions. Again there are spurious mass singularities

(which must cancel with those of cut (a)) associated with the real

emission of a gluon parallel to the final state quark. A regulator

assignment consistent with that of cut (a) is to give the final state

2
quark of Fig 4.5 a small 'mass' p’ = m".
AN, Ya
b
P*?«'k: , P'si : plf':P'*Q-"k\"kz
ek :
| Y P"kl"kz
‘)K A k}l ] W'Z
K B ! a&C -
Pb { ) kz_ ¥ b__K‘
. |
IR TYY IS EUY TNV ST NN I SYYS VIS I T TYD &
a — I — 1™
A k‘ A’P : bé k| v

Fig 4.5 Three body s-channel cut (b)

8 A
= $ip2 A

- | ) )
RS Vo G T o P Ubs) €57
P AR
B' = -tel(Z)udZ)me.

- i Y !
Olbs) % B-%) % p-k-¥,

Take the product AB+ and perform
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i) The quark spin sum '};:52.5‘ -7 ‘liT('

ii) The gluon polarisation sum

X A D
Z a(’ﬁ CO\ Z. A, ﬁ Ssl\vgpe( B . 72)

Then

AB' = +e?q* cAR)S -

Te [l pra-4) 3 -Ke) D0 k) 7 W) o b ] )
(P"kl)q'( P*%‘k.)’" (P" K- kz)z

The three body phase space integral is written as

W = JIxpI K] 3“(b+q~K)j@ki][0‘kz] %‘*(K~k.~k,,)h>“p"A6*} (4.74)

So, doing the k., integral with the delta-function setting

2

K=Kk, | (4.75)
then

b Te = T[Tl BLE-K) B ¥ K 22 0 ] we76)

setting p2 = ki = 0 in the Trace. (One can show strictly that terms of
2

the form E—i- do not occur in the phase space integrals thus justifying

such an approximation).

P TE = (k3] bpkK - g bR +P(pK Pk FK - PHPK +habiK ]

- 6"”"& H’I [""er P'K "’kl-KPC\, - b,'kl PK] (4.77)
The first part of the phase space integral

(40K, ) 8(k%) (koK) Blke-k) | pp” ABT] .78)
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is evaluated in the k., k,. centre of momentum frame, i.e.

17 72

system., Then

W = +erq*c2R) S | (b [aK) 5% prq-K-p) (biK)l

+1 a1
8
| dlase) [dg L] eraprs i
-1 [+]
(bra-k,)*
+ ,‘2. Cl‘i‘ + Cf, blk;

(p-k P pra-k,)*
with
C, =5 K*bp' -PlgpK -bp'bK +pg p'K
Cy= -PiK
Cy= +bK
Cy = K*pp'( bg,~PK)

Cs = ~pp'pK

the K rest

(4.79)

(4.80)

All the coefficients have no dependence on the angles 6 and ¢. These

angular integrals over one and two propagators are tabulated in

Appendix A.2, but a few points are worth mentioning here concerning

the choice of Lorentz frames in which they are done. For those

integrals over one propagator (p + q — kl)z, it is obvious that they
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will be easier if ¢ dependence can be avoided in the denominator.

This requires choosing p + q to point in the z direction making

(p + q).k1 a function of cos 6 only, and putting all ¢ dependence into
the product p.kl. The ¢ integral is now a trivial polynomial in

cos ¢. From these arguments, it is clear that ¢ dependence in the
denominator cannot be avoided if it contains two independent
propagators. For these integrals, we chose p to point up the z axis

making p.k, a function of cos 6 only and (p + q).k1‘¢ dependent.

1

. . 2 .
With such a choice, the rdle of p~ as a regulator of potential mass
singularities associated with the incoming quark was easy to

identify.

Collecting all the separate factors together after the angle

integrals
W= relqrciR) 5[ TabILaK] 5*(pra-k-p) Gror
@y L%bng - 2C4K°p')
+ l{;"—é’ma(zc, + 0y (pK +b%) + Cy(p'K + K°ke’%) )

T Ls
"2 pr;Lﬁi

- HZ [C.j(Q}&q(Y‘_ K2) + ZC.,L] (fml . U\,_)
(7P - Kbg ]

(4.81)

where
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A= (ra) - K(p+q) (4.82)

B = (Kt - kP = K
= VP )R-k L (4.83)

bK p'K - K2pp'
3 (4.84)

A-B (4.85)
2pK ‘
n, = bn( - )
1 "P (i- gK (4.86)
K> 12
I, = In [b+a® - picba ]
(4.87)

(brop™

Now outside the arguments of the logs, we can make the approximation

2

/

of p/ = 0 since the mass divergence is manifest in the logs themselves

2
at this stage. (in the limit of p/ = O, then A = B so a mass singularity
is buried in Qno somewhere). This is a sketchy argument though, and
2
the full implications of setting p’ = O will be discussed at a later

stage.

In the limit of pz + 0, then the coefficient of in »> 0 and all

mass divergence associated with the incoming quark drops out of this
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+{1-V)

l -k
5 G e+ g a4 500 - (9

A=V ) (4.92)
- - ali-v
ey st (22) }
where again
- m (4.93)
1 S

Assembling the final integral to be done, we obtain

W = +erq*(3(R) s(z‘ﬁ)q %Z.

1

jdv [“LW +3viny  + 2(11v) An, ~2(x—v)xm2

0

-V

»g, via-v) I’“Q/ ow)) + ;_ka~v)(l—ty__>MKv(a~\))1,ﬂ

via-y)
~1 Imyzmkvkow))
a-v
et |
(4.94)
I, = 2n(1-V) - am (4.95)

As can be seen, any potential divergence as v - 1 (the region
in phase space where the gluons go back-to-back) is suppressed by a

logarithm and rendered integrable.
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These final integrals can be done without too much difficulty
to give the total contribution of this three body cut of the amplitude
(including the corresponding cut of the complex conjugate amplitude) to

be

wW® - ow (4.96)

L‘-
W = er (%) GR) krhe,

2(x——x)[ (S -t (o) 5lo)

- (24 X) £(x)  + wx[o)

“‘“M‘[l-mx -X(£(%) ~§<o))j ]
(4.97)

Finally, a further comment about the approximations made in setting
2
p’ = 0 outside of the logarithms. With care and effort this final part
2 2
of the phase space integral can be done for finite p/ =m". For
2
n = %— , the approximations are equivalent to the statements

i HY(
f{:nogom 1 m( Ma\]lx\z**’-{'ﬂt> -0 (4.98)

Zm “2"1""72 U\+ “Ll*‘-W(L
which can be proved exactly, and
_ H+y
L, e
“2—>O§ dU\ ,_1(_.._.... MQLW&.&{Q ) F\M;n) =0 (4.99)
2w Wb\ kR
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1 2[a=y (- -2 ”{ gt
Flumq) = ﬁ;;ﬂagfxxhw U5 )U-w)+u -7 - W4
Z%E)U-uhw?% ) U\RW

which is true, because in the dangerous region of W~ ZJ??

FUR), o

range of integration apart from an integrable divergence due to the

(4.100)

is finite. In fact F(u, n) is finite throughout the

argument of the logarithm approaching zero as u +~ 1 + n. This
divergence is not controlled in any way by n. Indeed

S:&u F(WM=0) is finite.
Approximations in dropping final state 'masses' in the three body
phase space integrals of other diagrams reduced to the same or

simpler statements than those of above.

We can now add up all the s—channel discontinuities of the
renormalised two loop amplitude of Fig 2.9(6) (+ its complex
conjugate) and see that the spurious mass singularities, fn n, do
indeed cancel. Furthermore this amplitude has no collinear divergence
associated with incoming quark of momentum p as expected from more

general discussions on the structure of the 0, process.

L

(¢}

W, = WY W LW (4.101)

W, = +e§*(§éﬁ)‘*c§m krpa, .

[%MWW‘R“WV%U
+1+8X0w(+80ﬂ0(%040“§®)*2ﬂ§))
+ 3(-x) nx In (52)
continued overlea
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SU(N) Colour factors

T(R) = JZ_.IS; , for f flavours

c@ = N
= Nz”i
CZ(R) jigr

V= ) ~Ye - Anl”

Bl

)

[0] = 2518) +2tn (ED$ (%) + () tnx + (LX)

where

X
§00 = L%{%ﬂ dt,  $lo)= %’"

[ ety
3x) jo I+&

and finally,

JORN| ‘“é’i‘f)”’“’c de

If the contribution resulting from Fig 2.9(i) is labelled wi,

W, =GR [-2¥ - 5-24nx]

Wy =Q<:zm-€§@)[w #o - 19 r(E-6)tnx

+(£-8)(E)
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(4.105)

(4.106)

(4.107)

(4.108)

(4.109)

(4.110)

then

(4.111)

(4.112)

(4.113)



- %‘U\X +%Lﬂ(\*)§)j§ (4.114)

Worwy = C@[ 5y + 133 -5 19 fnx

= %M“"X)} (4.115)

W, = C).(R‘)YL 2% 1+ 8XAnX + BU-X)M(1-X)
-80-x)$(0) - 16(1-X)§(k) * 2X{1-x)[e]

+ 8(1-%X) tnx bn(t;_(&)

¥ 3X(1-X) bf\(liﬁ) (5@2) "5(@) ] (4.116)

w} = (O 1in dimensional repularisation (4,117
f "’X .
Wq = CZQR)F,U\KT)} (4.118)

>3
i

o= GWRI[T-1 -(rimx - 3ux

+(2-% .—zw)m(ﬁ;) K (4.119)

Y
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Wig = C%ﬂ)[ by +2‘>Z + 13 +104n%x - 8n(1=X)
Fi X - HAnX fnl=X) - 8§(0) - 45(X)

+ (=4 X - LM,(\Q*X))MK%Z) ]

(4.124)

These lead to a total contribution W

i

W= w2 GlR) wrpg

continued overleaf
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e Taex - 2 nlX) - % Inx$(x)

-oxats)  ax 0 20X 5(%) + () |

P

(4.125)

Fll and F12 are the functions of x originating from the numerical
integrals done in diagrams 11 and 12. Their value is known at 32
equally spaced points in the x range of O to 1, together with their
first 10 moments which are given in Appendix A4 Their total con-

tribution to the longitudinal coefficient function is small, being a

maximum of 77 for mn = 2.

In order to determine the longitudinal coefficient function

C?S n (1, éz) to O(EA), we must expand the moments of the
5
longitudinal structure function given by the operator product

expansion, as a power series in g. Thus, from chapter 1,

| 2 2
*(n,62) = [ax x"*Ex ) = AP:K/%Z; 7) C:‘;\%ﬁﬁ”) (4.126)

The q2 dependence of the coefficient functions is given by the

renormalization group equation

e
2 s NS \
Cla(%92) = €l 8) exp -\ ag Mll (4.127)

if

i) -l B A ) e
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Then, for deep inelastic scattering on a quark

2
S CE e e
j ¥ & 4 (4.129)
-8 (0 W (20§ o2
where 526165 and

L) < 1A ()

With Ai’ NS being the finite parts obtained by calculating the

diagrams of Fig 1.14 in a particular subtraction scheme.

In the
Feynman gauge o = 1, and the MS scheme, the result is
2,N5 N 2
An C(R) g - & 4+ 2 + 5T 4 -
n (h+1) N (n+1)
2. n \ ) | n 2] |
+ J = - i L -
ﬂ((\+\) jzioJ L}_% JL L*'g.;\ 5%\ J
| 2 _ 4
+ — — o~
tnlte) 165)( n{n+1) ng J)
(4.131)

Their numerical values in the M8 scheme are given in Table 4.1 {wherethe
Last Line of Eq 4.13] (s neqglected).
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2, NS

Table 4.1 An’ in the MS scheme

n Ai’ NS MM
2 ~ 6,37037
3 - 9,92593
4 ~12.86518
5 ~15.40593
6 -17.65830
7 ~19.68950
8 ~21.54465
9 -23.25501
10 -24.84480

So combining Eqs (4.126), (4.128), (4.130) then we arrive at the result
NS 2 _ NS
ML. {n)&z) = ef(ﬂ.) B .

2 2
L)) (™) (L))
Z M

M'(ﬁb * %ﬁ )1%QQ§E;>

2,N5 2,N5
+ Ar" + RL,V\

+ O(-ﬁ-» >q
(4.132)
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Table 4.2 Ri’ SS in the MS scheme (f = number of flavours)
b

n £=3 4 5 6
2 ~16.0 ~18.6 .o ~21.1 ~-23.7
3 - 9.67 ~-12.6 ~15.6 -18.5
4 ~ 4.57 - 7.77 -11.0 ~14.2
5 ~- 0.303 ~ 3.69 - 7.08 -10.5
6 + 3.37 ~ 0.159 - 3.71 - 7.23
7 + 6.60 + 2.9 - 0.719 - 3.21
8 + 9,50 +5.73 + 1.97 - 1.78
9 + 12,1 + 8.26 + 4.41 + 0.549
10 +14.5 +10.6 + 6.65 + 2.71

Table 4.3 Ri’ is in the MS scheme (f = number of flavours)
b

n £f=23 4 5 6
2 8.50 4,65 0.787 -~ 3.07
3 18.8 14.5 10.3 + 6,02
4 26.6 22.1 17.6 12.9

5 33.1 28.4 23.7 19.0
6 38.5 33.7 28.9 24,0
7 43.3 38.3 33.3 29.6
8 47.5 42,4 37.4 32.3
S 51.3 46.1 41.0 35.8

10 54.8 49.5 44,3 39.0
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0,M3

Un
iy A
3. $ af) | 28,
Miﬁ(ﬂ)&;‘) = (gi;:z))l 8::;5 M; (n,&f;) %%i% P (5.15)
6N %

A similar procedure may be followed to arrive at a next to leading
order expression for the moments of non-singlet combinations of the

structure function EELX?Gﬁ).

NS
)« DL v i) o) [ B |H
o) [ 5o il BT

(1B e+, i)

With the corresponding leading order expression being simply

O,MS

LI
g2(6%) | 28,
g+(@2)

NS 1. M3 2
My (0,6 = M, (nQ}) (5.17)
We now have leadingand next to leading order expressions from Q.C.D.
. 2 . .
that give the Q" evolution of the moments of non-singlet structure
) f:NS M3 . 2 . .
functions L and E, from some fixed <30 . The overall normalisation

of the structure functions is taken from experiment at this chosen

2
value of O .

The problem that remainsg is to invert these moments and arrive
at leading and next—to—leading order expressions for the structure
functions themselves. Only then can we isolate the quantities relevant

oL

2y . . . .. )
to a plot of R{X,& }"” Gy - An outline of one solution to this inversion

problem 1s given in the next section.
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5.2 The solution of Yndurain

There now exist . a number of different solutions to the moment
inversion problem, [5.1, 5.2] of various degrees of sophistication,
designed specifically for the particle theorist. The formal solution,
reconstructing the function exactly, requires knowledge of all its
moments. This approach is usually abandoned by particle theorists
who assume a definite form for the function depending on a finite
number of parameters, and then determine these parameters by fitting
moments of the function to the Q.C.D. expressions. This functional
form is motivated by the phenomenological form of the structure

functions.

F) = x*0-x)° %,8 70 (5.18)

Because of its overall numerical simplicity, we chose the Yndurain
[?.3]'inversion technique. It has the disadvantage,though,that the
/\ parameter is left undetermined and must be fed in as an input
(more sophisticated numerical inversion techniques can determine AN
by fitting the overall normalisation of Q.C.D. scaling violations to

those observed experimentally).

As with other practical methods of moment inversion, this
technique avoids the problem of exact point-like reconstruction of the
function. 1Instead, it solves the more tractable problem of supplying
the weighted average of the function F  around some point X . The
optimal set of weight functions for the inversion of structure functions

are the normalised Bernstein polynomials

N—k
b = X=X (5.19
N-k
fax xk(-x)
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(k) (N+1)1 Tk kel
b (X) = "'“T‘Z _,,,_@,_‘,me X (5.20)
ki o gi(N-k-0)!

where k takes on values

k=0,,2,...... N (5.21)
if the first N moments MO,M‘ """ MN are known.
3
These polynomials act as a suitable weight over the point X%JK where
3
* (N,K)
g - k+
Xy = gdx b (x).x = ki (5.22)
! o N+2

and give the average*of the function FC‘) around the point :KN,k as
i
~ (N,K)
F(Xy) = SdX b (%) F(X) (5.23)
7 o

or, equivalently

~ { Nk 2
Flts) = S 2 60 M, (5.2)
! : =0
20 L1 (N-k-0)}
with
L -
M; = jdx X3 F(X) (5.25)

[o]

Thus we can see that I° is immediately obtained from +the moments of F.
As the number of moments known increases, the width of the bins in

X in which the average value of the functionm is given decreases.

: : N : :
(ﬂ: Ehis average s due to b o being peaked in the region of xw,k)
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A note on the practical use of the Yndurain formula Eq. (5.24)
is in order. It may be thought that the width of the bins in X space
can be made arbitrarily small by knowing an arbitrarily large number
of the moments. This is true, but because of the oscillating sign
in Eq. (5.24) the moments must be known to an increasing degree of
accuracy for increasing N to allow for the dilfferences of large
factorials appearing in the sum. In fact we found a strong correlation
between the number of bins chosen in X space and the number of
significant figures needed in the moments for the reconstruction to
work. Going frkom an N=3 to N=6 o N=8 reconstruction
required the addition of a significant figure in the first N moments
from 2 sig. fig. to 3 to 4 sig. figs. for the method to work. As we
believe the longitudinal moments to be accurate to three significant
figures, we chose N =6 to give the average of the structure function
in X bins of width 0.125. Such a choice of N provided reconstructed
test functions to an accuracy of typically better than 67 apart from
the highest point in X space, X = 0.875, where the error was about

twice this value.

Bearing such qualifying remarks in mind, it is then a relatively

straightforward task to invert the Q.C.D. moment expressions.

5.3 Next to leading order results for R(X,&z‘)

In the abscence of target mass corrections, the experimentally
. i % .
measured structure functions 'VVJKC(JQ) are equivalent to those
. . 2 2 . . .
considered in Q.C.D., FL(XQGR ) , whose (X evolutionis predicted in the

z
limit of QU2 =0
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YW (x,6%) = K (x,Q%) k=123 (5.26)
Wy (X, &) = F(x,62) (5.27)
Thus,
0y F (X a*
R(x,6*) = 5% ALY (5.28)
2XF(X,6?)
where
F(x@2) = B{x &) - 2XF (X&) (5.29)

So, in order to plot the ratio R(X,Gﬁ) we need to invert both

the structure functions [, and Ei consistently to leading and next
to leading order. The relation Eq. (5.29) then allows both Fi and
hence R to be determined. Note that the ratio R 1is independent of
the (X independent) normalisation of the structure function Fi at

* = Q

o-°

This procedure was carried out using the Yndurain inversion
technique at the fixedkvalues of Q%= 3.0, 6.0, 9.0, 12.0 and
15.0 (Gev)2 for which data on R currently exist, This allows a
plot of both the Q" evolution at fixed values of X , and the X
distribution for fixed Gf" of the ratio R. For future experimental
reference we repeated the program in the region of 512= 50 =¥ 250 (Gev)z.
In all cases, the input value of AN was chosen to be 170 Me¥, which
is an average of the current values of A quoted by experimental groups
as providing the best fit to the experimentally observed scaling

violations.
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The overall normalisation of Ei was found by fitting a
parameterised form of the structure function to the latest neutrine—
nucleon scattering data of the C.D.H.S. group at CERN [5.4]. The

. Z 2 2
fixed value of Qo was chosen as @0 = 1.79 (Gev)” , and the

parameterisation as

A Ay
F(X, &% =179 Gev?) = AX “(1-X) (5.30)
Using a simple least-squares fitting routine, we found
A = 1382
(5.31)

0-06b

>
P
#

1-329

>
w
i

As a test of this choice we compared the Q.C.D. evolved leading and
. . 2 .
next to leading order structure function F;_QX)&) with data at
7 .
&= 9.0 Gevz and concluded that the agreement was satisfactory

(see Fig. 5.1(a)).

The results for the leading and next to leading order Q.C.D.
. . . 2 . . . o
predictions for the ratio R(X,& ) are summarised in Figures 5.3,
z . .

5.2. The QO evolution is shown only for values of A> O4, where
it is expected to be dominated by operators whose anomalous dimensions
are equal to those of the non-singlet operators. At these values
of X , the flavour singlet contribution to the structure function

is negligible [2.7].
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Figure Captions

In all the following figures, leading order Q.C.D. results for
the structure functions are shown in circles, whereas next to leading
order predictions are given in triangles. The value of /A 1is chosen

throughout as A\ = 170 Mev.

Figure 5.1 (a) Comparison of Q.C.D. evolved fi(X)Gf) to the data
of ref. [5.4] at Q* =90 Gev? |
(b) Q.C.D. evolved structure function fi(X,GXz) at
Q% = 9-0 Gev*

2
(¢) The ratio R(X,8%) for @*= 90 Gev

Figure 5.2 Comparison of the theoretical predictions for R(X;&z)

. 2
to the data of ref. [1.13], for fixed values of O .

Figure 5.3 Comparison of the theoretical predictions for R(Xﬁaz}

to the data of ref. [l.li] for fixed values of X .

z
Figure 5.4 Theoretical Q" evolution of ‘{(X,Glz) at high values

2
of & .
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Fig 5.1(b)
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Fig 5.1(c)
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Fig 5.2(b)

020 T T
R(XQ) Q= 12:0Cev>
015 N
010 -
005 o
o
A ©
. g
0 i i ]
03 05 07 0-9
N N

197




Fig 5.3(a)
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Fig 5.3(c)
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Fig 5.3(d)
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Fig 5.4
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faced with the problem of spurious mass divergences encountered due

to the production of collinear massless particles in the final state.

A consistent regularisation scheme was introduced in chapter three and
its use justified by exploiting the optical theorem. Many of the
techniques involved in the general calculation including some aspects

of renmormalisation and three body phase space integration were

discussed through the example calculation presented in chapter four.
This chapter closed with a list of the diagrams by diagram results,
together with the total contribution to the two loop flavour non-singlet
longitudinal coefficient function. This total result is in disagreement
with that of a recent calculation performed by Duke et al, who utilised
different techniques to evaluate the imaginary parts of the same

elastic amplitudes. After a very careful diagram by diagram comparison
with this work, the disagreement lies in a small number of infra-red
finite diagrams together with the set of five which are infra-red
divergent. We have substantially checked the content of these

diagrams ond find that the discrepancy still remains. Clearly

further work is needed in this direction.

In the final chapter, we employed a simple inversion technique

to arrive at the next to leading order Q.C.D. corrections to the flavour
. . . - O

pon-singlet structure function, and thus the ratio R= 3¥ . A plot
of the results show that this higher order Q.C.D. correction does not
resolve the discrepancy between the theoretical prediction and the
data at large X . At the moment, this is no disaster due to the large
error bars on the data but, if the errors were to decrease and the data

remain where it is, this may prove awkward for the theory of Q.C.D.

We conclude then that the subsequent reduction of these errors should
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APPENDIX

A.1 DIRAC ALGEBRA IN D DIMENSIONS
DIMENSIONAL REGULARISATION FORMULAE
SU(N) COLOUR FACTORS

To combine propagators, use the Feynman parameter identity

Yupe = D

{5,103 = 29m 1

.{ar. CadlEs D'i

Te(¥3%) = &g’

Telodd number of ¥'s) =0

Tr(ﬁbﬂﬁ) = l'.[(a,b)(c,d) +(q.d)(c.b) "(Q.C..)(b.d)]

WA¥* = (2-D)A

AP =

bab +(D-4)ap

Wapg 1 = -2¢P4 - (D-4)APB¢

MZey)

@Y T ()

L=

iﬂ’ Sld\s.‘ 3":@“} 8(1"_:%3;) [% Q;S

which reduces for the case of two propagators to

Qa

&,
i

1
ay*

= P(.dl+ dz)
(&) (ela)

X: d3.43. 3, 3 8(1-3,-3,)

(a\%\ + az%z)d
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jdﬂ.-—- lz — -‘Zﬂz 2 [ "2PK )
(p-k)*(p+q-k,) p.K(p+q) - K*bg P- X )

VA 13
o) ]
(P+$)2P12.
io L . -2 /(fn( _-2pK ) (A.30)
§ (p-kek P (pvav)  [(pray=2(psa)X] +K°‘M[ p(1 - sz)
. fn( [praf-2pr1k + k4] ) ]
(b+q))* p*

A3. SAMPLE FINAL INTEGRALS INVOLVED IN THREE BODY PHASE SPACE

The variable V is the ratio of the invariant mass squared

of the gluon, quark or ghost pair produced, to the centre of mass

energy S=(p+ ‘1/)2

Q= %gf" > 1 (A.31)

2.

. i s s . m .
M 1is an infinitesimal regulator, " = 5 where m" is a small

mass given to the final state quark struck by the virtual photon of

momentum qf“ .

1
i - - 2
LdN (l-*\/) bAU V) ‘MK\%&}) = q(s)"ljb(\ (Q”\)IM(&T) +l/ﬂ(ﬂ‘l)§(a'&_';) (A.32)
*19(55)
2 + 4[]
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of In, IM(“__“..J.E___,‘HL> with w=1-v (A.33)

ey uE -}

i

jdm[ ‘ ) ﬂj“:mzn (A.34)
Hn A

d(k "’bk. - ,....L.m?- - bn __2. .
z?['t ﬁ;‘:"—n 4 ] (A.35)
'”l

——l = "JZFMz”I. - 3inq "% (A.36)

2 W =

HIL

du L Ln M(Q*u)(a-l) Teqay ]
zjﬁz‘ T ey [5 (&)-50)]tny - o] (A.37)
H'L

”"”“—'L U =1 o -
Jﬁo} * ’u} q,n' i, m@a‘?‘(am)) [_Ha‘j:;) -5(0) "“b“(o"a‘)](lﬂ\q +2.) (A.38)
-205(3=7) - 0]

Hy
d 0-w) o
e ) L sy i

(A.39)

,.(ma)(a—\)f(%:,) - %((ﬁa) m(o%t) ..5.% -34(0) - [@:]

where the dilogarithmn function §(x) 1s defined by

X
50- Mg, g0~
1 o (A.40)

and the function §(X) by

X
3 = ‘g%dt ’ oy = © (A.41)
3lt) = 3¢(3)
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Finally sample dilogarithmn integrals are

jdv $I5) = f@) -s0) +af(k) (A.42)
_Yoio(v 5‘(%)) = §(&) - 50 (A.43)

LA S8 (o) = - fla0) - 32 5(%) -st0)
Faa-1) n (3] (#-44)

A4 RESULTS AND DEFINITIONS OF THE NUMERICAL INTEGRALS.

The integrals performed numerically in diagrams 11 and 12 are

defined by
B (X) = jd"p &4k B*(p+q-K-P') 8(p° 9(;)"’)[ F, ,2 (A.46)
252%)(“)5"0\“\ v)johj [ i ,,_] (A.47)

where
(p+a)" =5 (A.48)
KE = sv (A.49)
(p+g)K = %UN) (A.50)
O (3
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Pa= % =
bK = %'%R(\ wU*v)ﬂ)

b7 - sbv - (- 0-vy))

C. = Kp-PIK +2pK p-p)LK - 2K2pp + 2K*pK

A = (p-pLK DK - K2pp’

{

R = \](@'—M.K)’" + 2p'pK2

in, = An (ZPPI - p-pLK +K)
2pp' - (b-pLK - R

2
'(l\q = U\( [—ZP.P/b_K +Z(P"'P)-K}>.K “KZPP'])
(p.KY*2bp" (2pp'~K2- 26-P).K)

Ing = bn& 4(p'K )* pg, X )
pp'(2p'K +K2)
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(A.52)

(A.53)

(A.54)

(A.55)

(A.56)

(A.57)

(A.58)

(A.59)

(A.60)

(A.61)

(A.62)



Fa =

)

F:WJ -

- ﬁ'fr(\o‘-K)z %"[ =2pK(p~p).K +(pK-pp)(2pK + K”‘):}

* 5 oy f‘:}\ 2A(2pK +5 K2 pK) 2K pR)" - pKlp-p)K (2K pK)

i %{C(b.mww)x +Pp(2pK 45K - ) )

(PR ww«)‘fg

+ Jﬁzi - 30-p)X AG

+3 g, (b-pLK w'fﬁ} }
¥R

(A.63)
| An
2R R Q’Z"‘K(P'K*‘i'(z))
3 GoRE fil OKGK)® + SRR ICHPK ()P
+ A(2pK +K?) - 2 pKC

0 f - Gp KoK
R

+4 G 4K G-PK - 4pp'hK -2y ) g

"i8] 3pClahk - KK
e (2 by K (O
(2 wm:)j J

: R
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FO i\—n?—) R{pw DK (pra) - ubK) +PP(2PP<M +6PPPK>
~2(}>K)

*E¥an § (b-pLK(FpK -5K2-2pra))  + 3G
R ,
+o(pK)* - 6pXpp' - 2pK(piq)* +2P~P'(P+@)2§

- ﬁzz WFPAE-PIK  +6bpI 0 hK

R U\e(\ap) (Scw PYK(-2pp'+2pK) ZPP'K?')
- 6GPppK g
& \EE?Z' (2 +(p‘—p2.KL2p.K -(\vwnz])

eyt
2 K(p-K)*

; 2(2pK -p+4)) } (463
[y o -0

F o= s W (4.66)

These three contributions correspond to the following S-channel cuts

!
J//
é k s = fa
|

= F (2)

i

b
F:“( )
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It should be said that it is possible for R to vanish in the
phase space integral, but one can show that in this region the numerator

also vanishes to cancel this fake 'pole’.

The values of the first ten moments of the functions ﬁhnkx)

are tabulated below. They are accurate to three significant figures

]
n n
= A.67
M = J,0% X" 00 (867
Then
fn n
n MI?. MH
2 - 0.0390 ~ 0.248
3 - 0.0193 - 0.182
4 - 0.0113 - 0.143
5 - 0.00768 - 0.119
6 ~ 0.00530 - 0.102
7 - 0.00415 - 0.0893
8 - 0.00323 - 0.0792
9 - 0.00260 - 0.0703
10 - 0.00213 ~ 0.0648
. . 2,N5
These numbers represent a small contribution to R

Ln

(the largest effect is Vv 7% in the M5 scheme for n = 2)
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