
 

 

 

University of Southampton Research Repository 

Copyright © and Moral Rights for this thesis and, where applicable, any 

accompanying data are retained by the author and/or other copyright owners. A 

copy can be downloaded for personal non-commercial research or study, without 

prior permission or charge. This thesis and the accompanying data cannot be 

reproduced or quoted extensively from without first obtaining permission in 

writing from the copyright holder/s. The content of the thesis and accompanying 

research data (where applicable) must not be changed in any way or sold 

commercially in any format or medium without the formal permission of the 

copyright holder/s.  

When referring to this thesis and any accompanying data, full bibliographic 

details must be given, e.g.  

Thesis: Author (Year of Submission) "Full thesis title", University of Southampton, 

name of the University Faculty or School or Department, PhD Thesis, pagination.  

Data: Author (Year) Title. URI [dataset] 

 



MASTER COPY

UNIVERSITY OF SOUTHAMPTON

QUANTUM CHROMODYNAMICS ANU THE NUCIE(Rf LONGITUDINAl

STRUCTURE FUNCTION

Stephen N Coulson

A Thesis submitted for the degree of 

Doctor of Philosophy

Department of Physics

December 1981



CONTENTS

TABLE OF CONTENTS

ABSTRACT

ACKNOWLEDGEMENTS

1

3

4

INTRODUCTION 5

0.1 Early experimental situation 5

0.2 Deep inelastic electro-production 10

CHAPTER ONE: HADRONS AT SHORT DISTANCES 14

1.1 Pre-theory:- the parton model in deep inelastic 

scattering ^^

1.2 The theory:- Quantum Chromodynamics and its

asymptotic behaviour 25

1.3 Asymptotic freedom in deep inelastic scattering 48

CHAPTER TWO: NUCLEON LONGITUDINAL STRUCTURE 84

2.1 Zeroth order QCD:-- the parton model 85

2.2 a to
J 2

order g in QCD - preliminaries 92

2.3 cf_ to
J 2order g in QCD - calculation 99

2.4
2 

order g in QCD - phenomenology 112

2.5
, 4

order g a prelimipp^y look 115

CHAPTER 'IHREE: INFRA-RED REGULARISAflON 121

3.1 Bloch-Nordsieck mechanism for QED and the KIN

theorem 121

3.2 Off mass-shell regularisation 130

1



Page No

CHAPTER FOU R: FOURTH ORDER CALCULATION OF O^ - DETAILS 143

4.1 Calculational techniques ^43

4.2 Example calculation ^^^

4.3 Diagram by diagram results 170

CHAPTER FIV E: PHENOMENOLOGY OF G TO FOURTH ORDER 18l

5.1 The moment inversion problem 181

5.2 The solution of Yndurain 186

2
5.3 Next to leading order results for R(x, Q ) 188

CHAPTER SIX : SUMMARY AND CONCLUSIONS 203

AFPENDIX: Al DIRAC ALGEBRA IN D DIMENSIONS

DIMENSIONAL REGULARISATION FORMULAE

SU(N) COLOUR FACTORS 208

A2 SAMPLE ANGULAR INTEGRALS OVER PROPAGATORS 210

A3 SAMPLE FINAL INTEGRALS INVOLVED IN THREE

BODY PHASE SPACE 211

A4 RESULTS AND DEFINITIONS OF NUMERICAL INTEGRALS 213

LIST OP REFERENCES

2



UNIVERSITY OF SOUTHAMPTON

ABSTRACT

FACULTY OF SCIENCE

PHYSICS

Doctor of Philosophy

QUANTUM CHROMODYNAMICS AND THE NUCLEON LONGITUDINAL 
STRUCTURE FUNCTION

by Stephen Norman Coulson

The phenomenon of asymptotic freedom together with the theoretical 

tools of the operator product expansion and renormalisation group 

allow a systematic and reliable application of perturbative quantum 

chromodynamics (Q.C.D.) to deep inelastic lepton-hadron scattering. 

In particular one can study the ratio of the longitudinal to transverse 

cross-section, R = Vtl-f . Leading order Q.C.D. predictions for 

R are concluded not to give a satisfactory description of the current 

data at large X > 0-5 .

Here we extend this perturbative analysis to include the next to 

leading order, 0'3*), Q.C.D. contributions. This involves calculating 

the fourth order contribution to the flavour non-singlet longitudinal 

coefficient function that appears in the light cone expansion. A 

technique that regulates the spurious mass-singularities encountered 

in a consistent manner is discussed, and its use justified through 

examples utilising the optical theorem.

The Ot.g't^MS) Q.C.D. expression for the moments of the flavour non-singlet 

longitudinal structure function is then inverted using a simple technique, 

allowing a plot of the next to leading order Q.C.D. corrections to the 

ratio R . Such corrections are found to be small ('^I27o forX>O-5 ) 

and it is concluded that to this order of perturbation theory a discrepancy 

between theory and experiment still exists.

3



ACKNOWLEDGEMENTS

Firstly, I would like to thank Ralph Ecclestone with whom much 

of this Work was done in collaboration. His diligence and care have 

proved a great asset. I extend these thanks to Professor K J Barnes, 

together with all the members of the Theory Group who help make 

Southampton a friendly and stimulating place for research. I am 

particularly grateful to Drs C Cornelius and D Storey for the generous 

advice given concerning the numerical problems in this thesis. I 

also wish to thank Dr R G Roberts for supplying the latest data of the 

CDHS collaboration at CERN, and Dr D W Duke for his kind co-operation 

in sending advance notification of his results. Many thanks go to 

Maria Hayter for speedy and efficient typing.

Finally it is a pleasure to especially thank my supervisor. 

Dr C T C Sachrajda, for originally suggesting this problem and his 

continued advice and encouragement towards the completion of this 

thesis.

Financial support for this work from a Science Research Council 

studentship is gratefully acknowledged.

4



INTRODUCTION

0.1 Early Experimental Situation

Photons are ideally suited as tools with which to probe hadronic 

structure. Their interaction with matter. Quantum Electrodynamics, 

is one of the most successful physical theories in existence. With 

the inclusion of the order «^ radiative corrections the theoretical 

prediction for the anomalous magnetic moment of the electron [o.l] 

agrees with the experimental value to one part in 10 . By using 

virtual spacelike photons exchanged in electron—hadron scattering 

we can vary both the 4—momentum transfer, (|^l^o) , and the energy 

exchanged 9 . Large magnetic spectrometers identify and track the 

scattered electron allowing an accurate determination of these 

variables.

Early indications of nucleon structure came with the measurement 

of their magnetic moments. The Dirac theory of point-like spin ^ 

massive nucleons carrying one unit of electric charge gives

=. 1 n.m. (nuclaAt magneton) (0.1)

Thus for the proton and neutron

proton : /tmRAC =. + 10 h.nh. nm.

neutron : AwRAC = O n.nr\. yA(At))i. - " 111 hJYl.

to be compared with the experimental values as indicated. The anomalous 

moments indicate that the nucleon has spatial structure. This 

conclusion was confirmed by experiments at SLAG and DESY measuring
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elastic electron-proton scattering [o.Z]. The experimental cross-section 

exhibited a deviation from that predicted by the Dirac theory of an 

electron scattering off a point proton of spin ^ and magnetic 

moment ^.

In the one photon exchange approximation,

where , and I is the formula for the scattering of 

relativistic electrons off spinless point—like protons. The second 

term in the curly brackets of Eq. (0.2) is the "essential complication" 

of proton spin, and is called magnetic scattering. It dominates the 

cross section for large angle and high momentum transfer scattering.

In order to fit the data and take into account the spatial structure 

of the proton, electric and magentic form factors were introduced 

by Rosenbluth [o.sj.

(0.3) 

where 

4-M^ (0.4) 

with form factors : electric Gtg^Q^ 

Gr^lO) + 1

Gr:lO) * 0
(0.5) 
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magnetic Gr^^O^) = Gr^lo) -/tp - +2 14 

6"ll0)^/4,w=-l'11 (0.6)

The form factors are found experimentally to obey the simple approximate 

relation

4glQ*) ^O (0.7)

(^tlGl^) = ^^l^ - ^l(^^) (0.8) 

l/^p| (/^-wl 

where

6rtGl^) :: + ^ j /f = 071 Cr&v^ (0.9) 

over the range 0 ^ Gl^ ^ 25 6rLV .

Grla*-) effectively measures the probability that the proton will 

recoil elastically, ie. that it will hold together under the momentum 

transfer Q. . At Q - 2-5 Grav this probability has fallen from 1 to 

about 10 ^. The ratio of actual to point-like elastic cross sections 

has a very strong dependence on Q. ; it falls roughly as Q .

This is in complete contrast to what is observed in inelastic 

electron-proton scattering [o.4, 0.5].

For low (5^* there are several peaks in the cross-section 

corresponding to the production of pion-nucleon resonances. The 

exclusive quasi-elastic cross section

7



____> e" + N ( 1238 Mev 
' 1512 \

(0.10)

behaves much the same as C-p elastic scattering. In fact the ratio 

of the two tends to a constant for Q. 2. 6r&V .

However, for inclusive 6^ scattering (in which no attention is 

paid to the final state hadrons), the cross-section shows no further 

structure beyond the elastic and quasi-elastic peaks.

In this region, for high Gl , the proton is being excited into the 

continuum instead of undergoing transitions to well defined excited 

states. Here the ratio of actual to point-like cross sections is large 

and only weakly Q,^ dependent . Analagous to form factors, inelastic 

structure functions are introduced to parameterize the cross-section. 

They arenow functions of two variables Gl and ■? (the energy transfer) 

due to the lack of constraint on the final state hadronic mass. (For 

a review of elastic and inelastic scattering kinematics, see Fig. 0.1).

Virtual photons, such as those exchanged in electron-proton 

scattering, are not the only tools available to probe the deep structure 
+ o

of hadrons. One can also use the weak gauge bosons W ,2 exchanged 

inneutrino (or anti-neutrino ) - hadron scattering together with the 

'standard' model [p.6, 0.7, O.Sj of electro-weak interactions 

incorporating quarks. We shall, however, be dealing exclusively with 

electromagnetic processes, and so turn to a brief discussion of deep 

inelastic electroproduction.
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h<^- MlE-E') = 9
(^ = lE-E\k-k') 

(^ = -Zkk'U- G%e) 

(neglecting lepton masses) 

- "^ = Gl* :: 4'Kk',6ix\^(,^)

-c^ = Q^ = 4kk'/,iA^(^^^

w unknown variable

2V '\^^ '^^ ^^^

two independent variables

WlV,(3l^) structure functions

Elastic condition, one 

independent variable. 

G(Q ) form factors

|)'^ :: W^ =: Ik^/ ^ 0

Z|):ci.U-X) >^ 0

06 X 6 1 Range of X

(a)

ELASTIC

SCATTERING

(b)

INELASTIC

SCATTERING
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0.2 Deep Inelastic Electro-production

The inelastic 6^ scattering amplitude, A , (Fig. 0.1(b)) may 

be written as

where <X 13^10) 11>> is the matrix element of the hadronic current about 

which nothing specific can be said until we formulate a theory of 

hadron dynamics.

. z <H]Awtx><xngio)it,>.«\p+i,-r)

for the unpolarised cross-section, summing over electron and proton 

spins

^^ 2 (0.13)

where L is the lepton tensor

/_^^ - 2. l^/K. ^1^2. T^) (0.14) 

(neglecting lepton masses)

= . 2 - k.k'g'*'’] (o.i6) 

and V^.g is the hadronic tensor
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Wf'. = ^,iS X <HW^><^'^'-i-°llh^ ^Hi)4^-t>-) (0.17)

On the general grounds of Lorentz invariance and Current Conservation

+ (0.19)

for electropfoduction, with independent
structure functions WiitVjQ

In the deep inelastic region

(0.20)

But kept fixed

then, neglecting lepton masses, and choosing Che LAB frame 

b^- ^^)Q^ to evaluate the kinematics

AA* = '^2EE'[M'co5\2)W,+2s,n'(&)W,

Thus, the cross-section:-

dl<r - ^------- 2m2M[AA*] f^s' m
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where

/WlF^ % ME (0.23)

do" . <»^^ [M^co5^(^^)W2+25in^(^)Wi
da'dE' /fE^5%n\&) (0.24)

with

(0.25)

or, writing the differential cross-section as do" 
da.'^dv

where 4-momentum transfer

\> = energy transfer = E'E

(0.26)

Relatively large errors are produced when extracting ^^JS^()t

from the angular distribution of the data due to the scarcity of

events at appreciable values of However, both W* and

VA can be determined and exhibit a remarkable phenomenon in the deep

inelastic region. The structure functions, implicitly functions of 

two variables Q and S)

a function of one variable 

X = ^ fixed.

are said to apprximately scale. They become

in the limit (&,^—^ ''(), but

(0.27)

X - — &ix(dl 
2V

(0.28)
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Furthermore, empirically

Fj^W « 2XFhx) (0-29)

This behaviour had been predicted by Bjorken [p.9] who considered 

matrix elements of electromagnetic current commutators at infinite 

nucleon momentum.

It was out of desire to understand scaling that the simple 

intuitive framework of the parton model was proposed.

13



CHAPTER ONE

HADRONS AT SHORT DISTANCES

1.1 Pre-theory : the Parton Model in Deep Inelastic Scattering

In the naive Parton Model introduced by Feynman [1.1], the nucleon 

is seen as a collection of free point-like constituents called partons. 

In the Bjorken limit, the lepton-nucleon centre of momentum frame is 

essentially the frame in which the nucleon has infinite momentum. 

In this frame the nucleon charge distribution is Lorentz contracted 

to a disc, and parton motion time dilated. The large momentum transfer 

'freezes' any parton interaction and so the virtual photon sees the 

collection as free. This is the essence of the Impulse Approximation 

[1.2]. The assumptions involved in this approximation can be justified 

to some extent by a crude computation in the infinite momentum frame 

(see Fig. 1,1).

Fig. 1.1 Interpretation of lepton-nucleon scattering via the 
naive parton model.
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Choose the frame

= ( P + h^ . o , O , P )

4-P - 4-P

(1.1)

(1.2)

(1.3)

and take P""^ "^

Thus

M"" + O(. p%)1

(^ - - ^j^ + 0^ pi^ (spacelike) (1.4)

)).(|^ :: <) f O^^-^) (1.5)

and so satisfy all the criteria of Fig. 0.1(b) to leading order in P

We can how compare the typical time T^ resolved by the virtual 

photon with the lifetime T of the intermediate parton states as 

calculated crudely in old-fashioned perturbation theory.

where E;^ is the energy of the ith parton and Ek the proton 

energy.

If the ith parton has a fraction ^h of the longitudinal 

momentum P of the proton, mass A.;^ and transverse momentum K.,

15



where

(1.7)

(1.8)

(1.9)

(1.10)

and the 4-momentum is written

(1.11)

Summing over parton energies

E^ + O["p) (1.12)

substituting into Eq. (1.6)

ZP
(1.13)

The resolving time of the virtual photon %

(1.14)

Thus for

T » T (1.15)
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then

with

so providing the partons are light and have small finite transverse 

momenta, the Impulse approximation holds through Eq. (116) at current W 

as measured by SLAG. The virtual photon resolves the proton on a time 

scale small enough for the partons to appear to be non-interacting, i.e. 

free.

It is then assumed that the lepton scatters elastically and 

incoherently from one of the point-like partons. This last assumption 

can be justified by similar arguments [l.sj^and also leads to an 

identification of the scaling variable X with the fraction of nucleon 

longitudinal momentum carried by the struck parton, *^ ^^ follows

Considering elastic lepton-parton scattering as in Fig. 1.2

Fig. 1.2 Elastic lepton-parton scattering.
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In the phase space integral for this process there is a delta­

function which puts the final state parton on shell

6l|/^ - m^)

by momentum conservation^ H

(1.19)

(1.2b)

(1.21)

(1.22)

(1.23)

in the Bjorken limit \)-^oo the proton and parton mass may be ignored

inside the delta-function argument with the result

— --  ^ Slt^X) (1.24)

We can now quote the result of calculating Fig. 1.2 for the 

case of electroproduction. This is the Dirac theory prediction for 

electrons scattering off point-like spin ^ particles of mass IYl[ and 

charge 6;t (assuming partons carry spin ^)

Tro<.^ 1 
4E^5(n\&) EE'

<^(!)+<&^="'t2) &l^-K)
(1.25)

where "9

It is not

. Th- energy transfer as measured in the LAB .frame, 

a free variable but is constrained through the elastic 

scattering condition in the delta-function of Eq. (1.25). The partons 

18



are assumed to have no intrinsic transverse momentum |^, and a 

^^ coupling to the photon (no structure).

This is to be compared with the result for inelastic scattering

of electrons off a nucleon (Eq. 0.26).

ol<r
i|-E.^5in''(|) EE' L

+ Zgin"(!^)W^
(1.26)

To obtain the total electron-nucleon cross-section from Eq. (1.25) 

it is necessary to sum over parton types, ^ , found in the nucleon 

and integrate the fraction of the nucleon longitudinal momentum carried 

by the parton, ^ , throughout the allowed range (O6^^& 1 X, weighting 

the cross-section with the probability for finding a parton of type 

and momentum 1^, f\l)'

Recalling that 'H-X , the structure functions can be identified 

from Eq. (1.25) the Bjorken limit as

Wil?.a^)'^^Uxf\x)^Slx-&^) (1.27)

Wil^.Q")-Z^jaxflx)^Slx-&,) (1.28)

or writing in terms of 9 = MV "|)%, and using the delta function 

to do the X integration

'9Wj,(,v,a^) = ^ xf (x)

W,i^, or) = ^ ^ ^ f\x) 

(1^29)

(1.30)

19



where

X - ^ (1.31)

Thus in the Bjorken limit, the structure functions scale exactly

M^wA^.a") ------- > ii(x) <1-32)

MWA^.a")------- > FAx)

x= ^ j^'wi 

where

This last statement is particular to our choice of scattering off 

spin ^ partons, [1.4] and at presently accessible GL is approximately 

experimentally verified. If the charged partons are exclusively 

spin ^ then Eq. (1.34) should be exactly satisfied as the scaling 

limit is reached, G"-* (x* %];^ ^-he simple parton model^then, exact 

Bjorken scaling is seen as the result of elastic Incoherent scattering 

off a point-like spin ^ consituent.

Having already determined that charged partons carry spin ^) it is 

interesting to ask what other quantum numbers the partons may carry; 

in particular to explore the consequences of identifying partons as 

quarks. This step leads to a number of experimentally testable sum 

rules.

20



The ^IX) of the previous analysis now become quark distribution 

functions. The label i now runs over the number of different 

quark flavours. In what follows we will consider only up, down and 

strange distributions. However, it is straightforward to extend the 

subsequent Patton Model formulae to include contributions from 

charmed, top, bottom etc quarks. Specifically, for the proton there are 

six distributions

<A,lX) number of up quarks in the proton with momentum 
fraction between X and X+dX

with similar distributions for the down quarks d(x) , strange quarks 

six) and the corresponding antiparticles %),%%), Six).

Thus for the proton

F^‘''(.x) -^etxj-Xx) = ?etx[W^utx)] (1.35)

(1.36)

with the standard charge assignments

(1.37)

and the constraints (coming from the total charge, isospln and strangeness

quantum numbers of the proton)

= 2 (1.38)
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1
(^W" ^W) - 1 (1.39)

jdb< (ply) -slx)^ = o (1.40)

These are just the number of valence quarks to be found in the proton 

from the simple quark model.

Also, by isospin symmetry the number of up quarks in a proton is 

equivalent to the number of down quarks in a neutron

t^\x) - cClx) = <llx) (1.41)

ol\x) " (A."lx) = dlx) (1.42)

and so

it^'W - t(aMtiM) +^M)+W'W)f^(si%)4SM) (1.43)

Assuming ^iW^O then the ratio of neutron to proton structure 

functions "VV/^ in the scaling limit is [1.5, 1.6]

This inequality is not in conflict with the experimental result [1.7], 

although for large X"^ 08 the data are very close to the lower bound 

of 1.

Various other sum rules expressing charge or baryon number conservation 

in neutrino processes may also be derived,for example

22



% (^ *^W " \^)) (Adler [1.8]) (1.45)

(Bjorken [1.9]) (1.46)

2

Finally, the fraction of the total momentum carried by each quark

flavour is

(1.47)

(1.48)

(1.49)

The conservation of momentum requires

1 " & - LI + D + 5 (1.50)

where 6 is the fraction of total momentum carried by objects other 

than charged quarks. The right hand side of Eq. (1.50) can be written 

in terms of experimentally measured combinations of structure functions

as

1
l-e -px ik4(^)+ii"'w) -^k'l'W ^Hx)) (1.51) 

inserting the known [1.10, 1.11] experimental values of the

integrals

1-6 ^ 0 004) ^(_), I 08 10 2?) (1.52)

to give

6 > O 52 ± O 38 (1.53)
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Thus on the basis of momentum conservation all partons cannot 

be quarks. The electrically neutral partons are conventionally 

identified as the vector gluons of Q.C.D.

In conclusion, the naive parton model predicts exact Bjorken 

scaling as the result of elastic incoherent lepton-parton scattering. 

The data supports the idea of charged spin ^ partons and severely 

restricts the amount of charged spin 0 admixture. The charged 

partons 5 quarks hypothesis yields many experimentally testable sum 

rules which are not in conflict with data but none of which provide 

compelling evidence for these partons to carry quark quantum numbers. 

Momentum conservation forces the existence of electrically neutral 

partons which account for roughly half of the protons' longitudinal 

momentum. Parton model ideas have since been successfully extended 

to other physical processes including (/(f annihilation into hadrons, 

massive lepton-pair production (Drell-Yan processes) and the inclusive 

production of particles with large transverse momenta.

Despite these successes the simple parton model does not give 

a satisfactory explanation of the data. Although scaling wdrks well 

in the region 0|5<X < 025 (for Q^ in the range of %—» lOOCrev^), 

for X^025 a definite pattern of scaling violations emerges, 

[1.12, 1.13] and f[lx) & Fj>Q-2Xf:(x) is reported to have a value 

different from zero [1.14]. Thus we have to go beyond the simple 

parton model, and extensions of parton model ideas have been investigated. 

In particular^endowlng the partons with form factors (and so implying 

the existence of yet another sub-structure) does avoid the problem 

of exhct Bjorken scaling despite being an unimaginative solution {LlBk

24



A more interesting line of approach is to explore the possibility 

that the parton model is a first approximation to some underlying 

Quantum Field Theory that describes the strong interactions, especially 

as this appears to be the only way to reliably calculate dynamical 

quantities. There is now a wealth of qualitative evidence [l.lb] 

that this theory is Quantum Chromodynamics (Q.C.D.). A brief review 

of the theory and its salient features will be given in the next 

section, but for the sake of clarity it is perhaps better to state 

the main results that emerge now. Q.C.D. has the unique property 

of asymptotic freedom. Its momentum dependent effective quark-gluon 

coupling constant decreases for increasing Q, allowing the application 

of perturbation theory to hard scattering processes. This provides 

an explanation of Bjorken scaling and its violation in agreement with 

the observed experimental results. Because the effective coupling 

constant goes to zero as L^nia^)]"' then, likewise, many of the previous 

parton model results (sum rules, scaling etc) are violated only 

logarithmically in Q^ . Extrapolated to low G^ , the effective 

coupling increases without limit.therefore allowing possibility of 

quark and gluon confinement.

1.2 The theory :- Quantum Chromodynamics and its asymptotic behaviour

Quantum Chromodynamics (Q.C.D.) [1.16, 1.17] is a non-abelian 

gauge field theory in which coloured spin ^ quarks are coupled to 

gluons; the coloured spin 1 gauge bosons. The Lagrangian which 

describes this quark-gluon interaction is 

(1.54)
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where there are f (for ^ flavours) quark colour triplets coupled 

to one colour octet of gluons. A sum over repeated indices and flavours 

is understood, and the indices run from

A = 1,2, -- 8

The field strength ULg is given by 

and the covariant derivative ^(ty

[(ittj = ^ytSc; - ^gT^ 6r^ (1.56)

The matrices l^j are the generators of the colour group 5Uti)e and 

are related to the G&llHMann matrices ^(,j as

Lj " 2 '^ (1'57)

and satisfy the commutation relations 

[T^T=] = Li'^f (1.58)

where ^ are the structure constants of 5Lll3)c .

Finally, the Y^ and are the quark and gluon fields 

respectively, with the strong coupling constant g (dimensionless). 

The Q.C.D. Lagrangian Eq. (1.54) is invariant under the (simultaneous) 

local gauge transformation

26



- gf^'e'w &;

(1.59)

(1.60)

In order to compute the Feynman rules for this theory two additional 

terms must be included in the Lagrangian. These are

(i, -^-rr[(y^6^y]

(ii) ^^''3*[vs“*9f*X]‘*i‘

- a gauge fixing term with a gauge 

parameter OC , necessary in order 

to uniquely determine the gluon 

propagator

a Fadeev-Popov ghost lagrangian 

essential in order to preserve 

unitarity and prevent unphysical 

degrees of freedom in the gauge 

bosons from propagating.

TheFeynmanrules for this complete Lagrangian are shown in Fig. 1.3. 

An immediate problem is encountered though when computing Feynman 

diagrams beyond tree level. In many one loop diagrams the integral 

over the loop momentum which has to be performed formally diverges 

and yields infinity. This problem is not specific to Q.C.D. but is a 

general feature of any renormalizable Quantum Field Theory (or indeed, 

in one form or another, of any interacting theory). Its solution and 

the process by which finite physically meaningful answers are extracted 

from perturbation theory is called the Renormalization Program [1.1^. 

For an illustration of its application take as an example a massive 

(^^ scalar field theory described by the lagrangian density.
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Fermion
Propagator

Gluon
Propagator

Ghost
Propagator

Fermion 
vertex

Triple 
vertex

Quartic 
vertex

^66 ^S (g/to-gvp - 9/Y3vy) 

^^ACE^BDE (^Avg^rp - S/LP39 er)

Ghost vertex

-1 for closed loop of fermions or ghosts 

Diagrams related by the exchange of external fermion lines have a relative 

minus sign.

Fig. 1.3 Feynman rules for Q.C.D. Lagrangian of Eq. (1.54)
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^. * 2^/wiPC]^rA) ' i^^f^* " & A^ (161)

The label 0 refers to 'bare* quamtltiea. The physically 

measurable quantities are shifted from these bare parameters by the 

self-interactions generated in perturbation theory. To see this let us 

compute the physical mass, Wl^ , defined as the pole in the full two 

point Greens function, Q^l<f)

The bare two-point Greens function is

t&Tif) * (1.62)

The proper self energy^ —jL 3[l^) * 1* defined as the sum of all one 

particle irreducible graphs (graphs that cannot be separated by cutting 

through one propagator)

So the full two point Greens function is generated by successive

iterations of the proper self energy
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(1.64)

The resulting geometrical series can be summed to give

using Eq. (1.62) for ^^((^ to arrive at

with the physical mass occurring as the pole in the full propagator

fwt = m^ + Z:l(\.) (1.67)

Thus if we wish to identify HI as the physical mass in the

lagrangian then

where the counterterm bm must be chosen order by order in perturbation 

theory to precisely cancel the shifts produced in the parameters of 

the lagrangian by self interactions. As well as this mass renormalization 

there is also a coupling constant and wavefunction renormalization.

The bare lagrangian
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may be written

,^, - ^U+AXWeX^/^^e) - %(h6)^ - ^U+C)^^ (1.69)

where the cbunterterms A)6,C are to be determined to each order of

perturbation theory by three arbitrary constraints

(1.70)

(1.71)

(1.72)

= -AT" Ml

with r being the n-particle proper vertex functions, and -M^ some 

arbitrary space-like momentum. Of course, physical results cannot 

depend upon the point at which the theory is renormalised, -^U^ .

The expression of this fact results in the Renormalization group equation 

to be discussed shortly. So far no mention of infinities has been made. 

However, the proper self energy Zl^^) can be expanded perturbatively 

in successive powers of the coupling constant 4# as in Eq. (1.63).

The leading contribution is

(1.73)
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which, for large k 

(1.74)

The integral diverges quadratically as A""^ *'*. This is precisely 

where the infinities of Quantum Field theory arise. In order to 

determine the (infinite) counterterms that must be added to the lagrangian 

to cancel these shifts from perturbation theory, the formally divergent 

loop integrals must be regulated in some manner. Clearly one way to 

achieve this is to enforce an ultraviolet cut-off, A* in the loop 

integral. After adding the appropriate counterterms to the lagrangian, 

we could then successfully take the limit A"^ oo. This procedure is not 

applicable to the renormalization of gauge theories, as the counterterms 

do not respect the gauge invariance of the lagrangian. A simple method 

that survives this test is the dimensional regularization scheme [1.19] 

in which Feynman diagrams are calculated in an arbitrary integer number 

of space-time dimensions, D, and the results analytically continued 

to any real or complex value of P . Specifically if P-f-lg. then 

the ultra-violet (large k) divergences manifest themselves as poles 

in ^ , etc. This is the scheme that will be adopted later to 

regulate Feynman diagrams.

Note that the bare Lagrangian

4'ili+AX^i^,X^i»,0-'^lH6)^^-^0+c)^^ (1.75)

which comprises the renormalised parameters plus the counterterms

is equivalent to
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== tCV^-XV’^O - ^, ^'' (1.76)

together with the following re-definition of the quantities

^o * Z.^ ^R (1.77)

hlo - Zm, ^R (1.78)

9. = Zj g^ (1.79)

and the Z's, the multiplicative renormalization constants, are 

related to the counter-terms as

Z^ = Vl+A '
(1.80)

(1.81)

(1.82)

Thus the Z^6 can be calculated to any order of perturbation 

theory and will be functions of the cut off A (or 6. ) diverging as 

A~* ®o (or L-> O ). The bare quantities are infinite and unobservable; 

however, the divergence can be factored into multiplicative renormalization 

constants leaving finite observable parameters [j.ZOj.

The precise method by which this is achieved is called the subtraction 

scheme. Illustrated above is subtraction at p^ =• "/^ in which the 

Z'O are determined by specifying simple properties of Greens functions 

at some arbitrary space-like momentum yU^. In this procedure the

Z'd are generally complicated expressions involving finite terms as 

well as functions of the regulator ( A or £, ). There exist many other 
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schemes though, some of which are particularly simple to implement such 

as the minimal subtraction scheme (MS) proposed by 't Hooft. Here one 

chooses the Z's to remove only the ultra-violet divergences and no 

finite terms, so they take the simple form of a power series in . 

However, in the MS scheme, the renormalized Greens functions now no 

2 2 
longer have any simple properties at p = -u . The arbitrary mass 

2 
scale V is encountered in order to keep the coupling constant 

dimensionless in D = 4 - 2e dimensions, the space in which the theory 

2 . 2 2e
is now formulated. Specifically, g is scaled to g p

If the perturbation expansion is summed to all orders then the 

dependence of the physical quantity on p vanishes as it must do. It 

is then irrelevant what subtraction scheme each term in the renormalised 

expansion is calculated in, as long as the same scheme is used 

consistently throughout. However, the coefficients of successive 

terms become increasingly difficult to calculate with increasing order, 

so in practice only the first few (i.e. at most four) terms in the 

perturbation expansion are determined. Having truncated the series 

thus, we are now left with renormalization scheme dependent 

predictions, a fact which plagues practical application of perturbative 

QCD. The same problem occurs in principle in QEb, but here there 

exists a physically 'obvious* choice of subtraction procedure known as 

mass shell subtraction. In this method the renormalization constants 

are determined by requiring the two primitively divergent Greens 

functions of the theory to take a simple form on mass shell. For 

example, the constantZ.that renormalizes the photon-electron bare 

2 
coupling e is chosen order by order in perturbation theory such that ct q = 0 

andp^ =M^ this coupling is juste^. Perturbative predictions for QEDprocesses 

then take the form of an expansion in-^ = (%, a quantity which must ult- 
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imatelybe taken from experiment (i.e. the low energy limit of Thomson sea-" 

ttering). Indeed, a appears to be a 'good' expansion parameter in the sense that 

it is accompanied by small coefficients,as is the case for the anomalous

magnetic moment of the electron Ag^

- 0 3%84^?816G. .

+ 1 1*35 (^)^ + " (1.83)

For Q.C.D. no such 'natural' definition of the renormalised quark-gluon 

coupling occurs since there are no physical on-shell quarks and gluons 

available. Once again all renormalization schemes are equally valid, 

although there clearly exist 'best' choices (in the sense above) of 

scheme and yU?" . MS, although theoretically easy to work with, appears 

not to be a good choice of subtraction scheme as it leads almost 

universally to large corrections. However,having calculated a process 

as an expansion in oC^ defined in one scheme there exists a well 

defined method for translating the expansion to that in o^^ defined 

in any other scheme [1.21].

Up to now we have merely stated that these constants are calculable 

perturbatively, but to render a theory sensible, in the sense of being 

predictive, more than this is needed. Clearly if more counterterms 

are needed to cancel an increasing proliferation of divergences for 

higher orders of perturbation theory then ultimately after renormalization 

the lagrangian will depend on an infinite set of arbitrary parameters 

leaving it devoid of predictive content. This leads to the question of 

renormalizability [1.22], A theory is said to be renormalizable if 

there are only a finite number of primitively divergent Greens functions 

requiring only a finite set of counterterms. This translates into 
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a statement concerning the momentum dimensions of the coupling constant.

In general if

(1.84a)

then the theory is renormalizable if A.)?O 

and is non-renormalizable if ^4 O

An intuitive reason for this power counting statement can be 

seen by expanding any Greens function in perturbation theory. For 

example the two point Greens function discussed previously

Gf*(<f) - G^/i^^)[ 1 + 3^[^^ (1.84b)

where represents some integral over loop momenta.

If (X>0 , then the momentum dimensions of the loop integral(s)

must decrease with more powers 

dimension fixed (and equal to

of Q in order to keep the total

The integrals are becoming

more convergent for large loop momenta With higher order.

Conversely if A^O , the situation reverses and the loop integrals

grow increasingly divergent,requiring the introduction of more counterterms.

For the pf^ theory under consideration ((/^L^] in 3 + 1 

dimensions, hence from the kinetic term in the lagrangian density 

0 [-|)] and so the coupling

(1.85) 

The theory is renormalizable as 61*0 .
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So to recap, the Renormalization Program consists of two distinct 

steps. The first is concerned with regularizing the formally divergent 

integrals encountered, while the second consists of the systematic 

calculation of the renormalization constants, and is known as the 

subtraction scheme.

We now turn to the question of the arbitrary scale A. introduced 

in the implementation of this program. Because the choice of renorm­

alization point yUL is completely free, changes in /L cannot effect 

any physical predictions. Therefore, the other parameters of the 

theory must change in order to compensate for the variations in At . 

In order to study the asymptotic behaviour of Greens functions for large 

space-like momenta, mass terms in the Lagrangian are ignored in the 

belief that massless and massive theories have the same asymptotic 

limit. Now a change in yt is equivalent to a change in the scale of 

momenta since yc is the only dimensionful parameter in the theory 

(the coupling constant is dimensionless). The renormalization group 

relates Greens functions for one set of momenta and coupling constant 

to Greens functions with a scaled set of momenta and different value 

of the coupling constant. Specifically one can relate the asymptotic 

form of Greens functions to those for fixed momenta and an effective 

coupling constant. The asymptotic value of this effective coupling 

constant is given by the positions of the zeros of a perturbatively 

calculable function. These zeros are known as the fixed points of the 

renormalization group.

For convenience, we work with the renormalised one particle 

irreducible ^fl) bruncdked. vcrbex^LmckLons dejlnacl a.s
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R.
(1.86)

where the renormalised Greens functions are given by

^/"^^^ " ^^1^(4; ' '%^&^ (1.87)

with Np and N(. corresponding to the number of external fermion and 

gluon legs respectively. The unrenormalized and renormalized vertex 

functions are related to each other via the multiplicative renormalization 

constants. If by analogy with the 0*^ example we define

t = Zp t'^ " »^)

(1.89)

3. ' Z^gR (1.90)

then _

The Z'6 depend on the ultra-violet cut-off A but are dimensionless 

A 
and so functions only of the ratio ^

Zz ( \
F \ S*' ^ / (^^^^)

The arbitrariness of the scale IL Implies

(1.93)
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or equivalently that

- Np'9p(^,o<.)

^ 5^3.*) ^ ] [;^'^'~^ = 0
(1.94)

where oq is the gauge parameter

aa
a/c (1.95)

(1.96)

(1.97)

(1.98)

Eq. (1.94) is known as the Renormalization Group equation [1.23] 

and it is the functions ^T(,S that give the precise compensating 

changes in the parameters of the lagrangian for variations in 24. . They 

depend on the theory and not the vertex functions. Due to the fact 

that the longitudinal part of the vector propagator is not renormalised

2(^ o^R. (1.99)

so

(1.100)

= "20(r'^^(9,0() (1.101)

Hence the R.G.E. takes on a particularly simple form in the Landau

gauge (X.-0 , explicitly
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(1.102)

The T^p and "^^ are known as the anomalous dimensions of the fermion 

and gluon fields respectively. It Is the function ^(g) that governs 

the momentum dependence of the effective coupling constant. All these 

quantitites can be systematically calculated in perturbation theory.

Due to the lack of any dimensionful parameters to set the momentum 

scale in the lagrangian, one might expect vertex functions to scale 

according to naive dimensional analysis when all the momenta are 

transformed h-^^|)^ so that

^A^k.6.^) " [Vr^^^k,3. ^)
where D is the physical dimension of L . However, the existence of 

a hidden dimension-full parameter A in the theory spoils this 

behaviour. We can use the R.G.E. to relate vertex functions evaluated 

at momenta b^ to those evaluated at rescaled momenta ^j^L 

if
^ = e*: (1'104)

then

9lk)
kl.105)

where the effective coupling constant 41A) satisfies the equation

3'' 3 ^^^^
(At (1.106)
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with the boundary condition

^^t - o) (1.107)

From Eq. (1.105) we can see that once the vertex function is 

known at some specific value of t , then we can use this equation to 

calculate it for any subsequent t.

We are now in a position to explore the interesting asymptotic 

region of t -^+oO Suppose that in this limit the effective coupling 

constant converges to some fixed value, Q

(1.108)

These fixed points (there may be more than one) are determined by the 

zeros of the ^ function. If the convergence to this fixed value 

^* is sufficiently rapid (determined by the properties of the ^ function) 

then

(1.109)

(1.110)

and so in the asymptotic limit the canonical scaling of the vertex 

function given by dimensional analysis is spoiled by extra powers 

of %

f''%k,,f) -M (1.111)

and hence the identification of ^ with anomalous dimensions.
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Thus we can imagine the following possible form for the A 

function with fixed points occurring at ^^, ^^ and (see Fig. 1.4). 

Because it can be expanded perturbatively in q , there is always a 

zero of ^Ig) at the origin.

Fig. (1.4) Possible form for a ^ function'.- arrows indicate 
movement of the coupling constant as t-^+^A

if pl$) has a simple zero at g =. 4^, then we can expand

around this point

But ^(g*^=O, and using Eq. (1.106) to obtain

(1.113)
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Consider the point 9'3% . From Fig. 1.4 it is evident that

(1.114)

SO if

(1.115)

then

(Ab
(1.116)

and 3^b) will decrease as t increases until it approaches g^ ^^ 

asymptopia (i.e. t"^+00 ) . Q* is said to be an ultra-violet 

stable fixed point. For the opposite sign of the gradient of the

^ function at the fixed point^as is the case for 3 - a; , then 

4(k)is forced away as L^^+oo ^ and the fixed point is ultra-violet 

unstable. However for t-^— ^ (or ?^"^o) git) is attracted to 

such points and so they are known as infra-red stable. The actual 

behaviour of Slk) will depend on which domain contains 3(k=o) z j

If g*.O is an ultra-violet stable fixed point then the theory 

is known as Asymptotically Free. For large space-like momenta the 

effective coupling goes to zero, and the theory approaches free-field 

like behaviour.

The A function can be calculated perturbatively for Q.C.D.

^(3) ' "P'^y " P' ^)* ' P^M* "
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The lowest order coefficient of the fermion anomalous dimension

(1.118)

T^p can be evaluated directly from the lowest order fermion self

energy graph of Fig. 1.5

3°^ (1.119)

in an arbitrary covariant gauge (^ . Similarly for the gluon fields

the sum of the diagrams of Fig. 1.6 yields^where

' ^^' AV (1.120)

(1.121)

with j" being the number of fermion flavours.

Finally to evaluate ^^4^ bo O^^^J one considers either the 

diagrams of Fig. 1.7 or those of Fig. 1.8. The calculation determines 

^^ as [1.24, 1.25] 

^0 " 11 " ^{^ (gauge invariant) (1.122)

so for the number of flavours ^^16 the lowest order coefficient of 

the ^ function is negative^having the consequence that Q.C.D. is 

asymptotically free providing the 8 function does become positive 

before 9l(:::0)= j . The two and three loop parameters ^^ [1.26] and 

pg^ [1.27] have now been calculated with the result (for ^ in the 

minimal subtraction scheme and Feynman gauge 0(=l ).
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Fig 1. 5 Loweet order fermion self energy

Fig 1. 6 Lowest order gluon self energy

Fig 1. 7 Lowest order corrections to the three-gluon coupling

Fig 1. 8 Lowest order corrections to the quark-gluon coupling
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'1 = 102 - Yf (1.123)

(1.124)

lending further support for the consequence of asymptotic freedom.

The class of theories in which this phenomenon can occur appears to 

be very limited. It has been proved that no theory which is not a 

non-Abelian gauge field theory can be asymptotically free [1.2EQ.

Knowing the first few terms of the 8 function allows an

approximate solution for the explicit momentum dependence of the

effective coupling constant to be constructed. The A function is

defined by Eq. (1.95)

(1.125)

with the boundary condition

(1.126)

and

(1.127)

Keeping the first term in the expansion Eq. (1.117)

Then

(1.128)

which can be integrated incorporating the condition (Eq. 126) as
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thus

(1.129)

(1.130)

(1.131)

(1.132)

(1.133)

from Eq. (1.132) it is evident that g(Q?^)'4O as (S)^ *0 logarithmically.

For higher order calculations^ the effective coupling constant can

be solved for using the two loop expansion (pj of the A function

The result is

Po Ibii \ ' / J

where

(1.135)
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and A has been chosen so that no more terms of 

in the expansion

appear

which is different from the leading order A of Eq. (1.133)

The hope of asymptotic freedom then is that for processes which 

involve some large momentum transfer Q^ , the effective coupling 

constant at these scales is small enought to allow a reliable 

application of perturbation theory. In this spirit we now turn to the 

classic application of Q.C.b. perturbation theory to Deep Inelastic 

lepton-hadron scattering

1.3 Asymptotic Freedom in Deep Inelastic Scattering

In this section we give a brief review of how, utilising the 

techniques of the Operator Product Expansion and Renormalization Group, 

asymptotic freedom predictions can be calculated for deep inelastic 

processes to an arbitrary order of Q.C.D. perturbation theory [1.29]. 

Despite the complexity of the mathematical machinery Involved, the results 

still have a simple intuitive interpretation to that of the Parton Model.

It is interesting to see the kinematic region explored by the 

deep inelastic Bjorken limit
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(^^= - -4 oO (1.137)

^ — ^'% ^ (1.138)

X = fixed [O^X^ 1)

The relevant region of integration of the electromagnetic current 

commutator of Eq. (0.18) occurs when the exponential C ^ is stationary. 

All other regions become wiped out by rapid oscillation of the exponential, 

writing

\ '^ /I /r / \ V? Ai?^/ - ^

Then, in the target rest frame of

^ (m^^ 0, 0, O) (1.140)

a = 1 ( 0)0, sT^FTmy^) (1.141)

The Bjorken limit implies

(^0 f(^S
(Ylw
—oo (1.142)

% (1.143)

The relevant regions of z-space integration are. therefore.

expected to be

1 
m^x

(1.144)

(1.145)
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Now as

and causality forces the current commutator to vanish outside the light

cone, i.e. %^ ^ 0 , then

(1.147)

Thus the Bjorken limit probes the product of currents near the light 

cone.

In field theory, many Greens functions are singular in this 

region, the simplest example being the free scalar field propagator

Api^^.m^) :: - t <o|T[0l^)p(lo)] |o> (1'148)

J l3i]T)'^ (1'149)

For deep inelastic processes, the dominant contribution will 

come from the highest divergence near the light cone in products of 

operators of the underlying field theory [1.30]. The operator product 

expansion (O.P.E.) provides a method of categorizing these divergences 

allowing the leading singularity to be identified.
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For convenience we choose to work with the forward elastic Compton 

scattering amplitude T/W, where

"T)kvl^,GlS J (^"^^ e'^^^ll^l^igl^^lk) spin averaged
(1.151)

This is related by the Optical Theorem to the deep inelastic hadron

tensor V^^9 Eq. (0.18) as (see Fig. 1.9) 

(1.152)

Fig. 1.9 Schematic illustration of the Optical Theorem.

As an illustration of the main features of the O.P.E. we will 

consider products of spinless currents. The generalization to vector 

currents carrying spin is reasonably straightforward. The physical 

idea behind the O.P.E. is that for small distances (compared to some 

characteristic length scale of the problem) a product of local 

operators should itself behave as a local operator [1.31]• These 

ideas may be extended to light cone expansions, [1.32] so we can write 
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w^^re the ^^^ ^ infinite set of regular (finite) local 

operators the label L referring to the quantum numbers admissible 

by the symmetries of the theory. The coefficients are in general 

c-number singular functions. In free field theory their degree of 

divergence is given by naive power counting of Eq. (1.153).

Thus if

Gyvil^) (1.154)

then

^^J - ^k,*. " A + C(om (1.155) 

with ^Q? the dimension of the local operator of spin n . So, 

the degree of divergence (in a free field theory) 

^Cyn " " ((^0? -f^) (1.156)

Hence the most singular coefficients multiply those operators having 

the lowest value of

(^0; A) =. % = Twist (1.157)

In field theory one constructs local operators from scalar fields 

(^ , fermion fields "^ and gauge fields Gn^ which all have twist 

t=l ; together with derivatives ^a . The addition of these derivative 
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terms can only increase or leave unchanged the operator twist. Since 

we are interested in operators that are bi-linear in the fundamental 

fields it follows that the operators having lowest twist will be those 

of T-Z . These operators take the form

for scalar field theory

0"^... = !^* a^,...........Vn d (1.158)

for Q.C.D. 

where O denotes symmetrization over all Lorentz indices, and 

/\^is a flavour group generator. The O^s ^^6 the fermion flavour 

non-singlet operators, whereas 0 and O are the flavour singlet 

fermion and gluon operators respectively. Their asymptotic freedom 

analysis is complicated by the fact that they carry the same quantum 

numbers and so mix under renormalization. All the above operators 

have dimension n+1 y spin A nnd. so nno twist %«% .

Taking matrix elements of (1.153) between hadronic target states 

of momentum b , th&nFourier transforming to obtain 

TU,a=) = t5A*^e'^^<t>|T[iy*(^)3to)]lt>>«|,incAv. 

\lt<l’'°"^-V..<°)lt’>s,a..f (1.153) 
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where

If naive dimensional counting were correct, then

(1.165)

with

(1.166)

This implies that

CL,n 1<V")

where

(Ag:^ = 2n +4- + T. - Zdj

(1.167)

(1.168)

In the scalar case JW =: izi\%) ' where the colons denote 

normal ordering.

Hence

dj = Z (1.169)

If we define a reduced singular coefficient function ^L,n through 
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then the singularity structure of CL^nl*^) will express the deviation 

fromfree-field behaviour.

Writing the spin-averaged matrix elements as 

'^M(f/ir''/t«^°)lh^kxw. =^l^^ -traces (1.171)

The trace terms involve contractions of /4^Wj and so are corrections 

of 0^ ^[^\ ^'^^ tka moment they are neglected^ although we shall 

mention them later.

Thus

T(^,a*) -- 2 i ^T <1/.^) CL,n If) (1.172,

1*0 n»o 1

from which it is easy to see that the higher twist components of an 

operator o^ given spin A are suppressed by powers of . Keeping 

only lower twist T-2 , we can write

(1.173)

where the 0^(^j corrections represent contributions from both higher 

twist operators and neglected trace terms in Eq. (1.191). These 

corrections are assumed negligible in the scaling limit. The analyticity 

properties of the full elastic Comptonamplitudewill be dealt with 

specifically in the next chapter; however^ here it is sufficient to 

note that there are cuts in T(^(^^) for 

-3^
2

^ + 06 (1.174) 
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and

\) - + _ ------ _ oo (1.174)

corresponding to the (massless) intermediate states propagating on shell. 

This is equivalent in the complex X plane (keeping 0^ fixed) 

to a cut between X = ^1 . This analytic structure enables us to 

construct a dispersion relation in X relating the amplitude at 

some unphysical value of XQlX| >1) to the imaginary part along 

physical X 61 . This where the moments of the deep inelastic 

structure functions arise naturally. Specifically,

-rlx,a^) .-tUx'i 2^ Im -r«a')t d.u^)

we can now use this dispersion relation together with the optical 

theorem (1.152) to identify the coefficient of X^ in Eq. (1.173) 

arrive at

fax x''"'w(X)Q^) A'l/A^) C^^l<(^) (1.176)

Thus, the moments of the deep inelastic structure functions have 

a & dependence in the asymptotic region given by that of the 

coefficient functions appearing in the Operator product expansion. 

The Sum in Eq. (1.176) is over twist T-2 ., spin H operators. 

For the scalar case considered there is only one such operator, that 

of Eq. (1.158).

A few remarks are necessary in order to extend this analysis 

to the product of vector currents as is required for the singular 

behaviour of light-cone Q.C.D. Firstly, the operator product expansion 
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is richer due to the independent Lorentz covariant tensor structures 

that can be constructed. There are five independent tensors

8/1^ 9/^/^i^v %/t8\?ii 9/v4.,3v/ti )/4.)v (1.177)

But for electroproduction there exist only two linearly independent 

Lorentz covariant structures. This is equivalent to the statement 

there are only two independent tensorial decompositions of ^^g (or h^^). 

Thus for vector currents

(1.178)

With this added complication we can now proceed as for the scalar 

case and arrive at the generic result

5<^xx""'‘f^(x,o?) = Mn(n,Q.’-) = I a"3^‘)C", (^1.3^) (1.179)

where in the deep inelastic limit the structure functions approach

i)W,^(.ii,a^) —> (j^tx.a^) k' /.,2,3 (1.180)

WiU.a^) -» Ft(x,a^) (1.181)

"^Vb " ^^z " ^^^1 (1.182)
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The sum in Eq. (1.179) is over the twist T=2 spin H operators 

of Eq’s (1.159) to (1.161). The effects of the operator Oj^g can be 

isolated by looking at flavour non-singlet combinations of structure 
. , e.-t)roton ,e-A€utron 

functions such as VVV2 ~ "0 VV,

A second comment concerns the terms neglected in the Bjorken 

limit in this analysis. There were two sources of these terms, one 

being the (infinitely many) higher twist operators for a given spin n, 

and the other the trace terms encountered when taking matrix elements 

of local operators. There are at present no techniques available for 

the calculation of higher twist effects; however,we saw that these 

were suppressed by powers of ■

/mix
The trace terms of Eq. (1.171) are of order \cy^/ where is 

the mass of the hadronic target. At infinite Q^ they are not present 

and so the simple moments of Eq. (1.179) arise from operators of fixed 

spin n and leading twist "L^Z . At finite Gt all operators 

of spin 4n contribute to these simple moments. It is possible 

however, to re-define the moments such that for the 0-2 moment, 

operators of spin fl only contribute,as is the case for a massless 

target (or infinite Q5 ). These moments take the following form [1.33J 

r^ . n+i
Mi.l,n,&^) - Jdx 1-^ Kdn,X,Q^) P'.X,®*) (i.i83)

® X

where for say i-~2, then k=3 <xnd.

(n+2XA43) (1.184)
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and

(1.185)

for C)f-^(* these Nachtmann moments reduce to the simple moments

MAn.a')
1 

o

(1.186)

The correction factors K- are designed to account for target 

mass effects present in the experimental structure functions ^lx,a') 

So with their inclusion one can relate directly the experimental 

distributions to the asymptotic freedom predictions for moments 

calculated in the massless case MA",a9.

An alternative (but theoretically equivalent) approach is to 

work directly with the structure functions relating the experimentally 

measured quantities '^VJ^^v^G^J to those obtained by inverting the 

asymptotic freedom moment predictions, F.(X(Sl^) ,

in the massless case for k=2

(1.187)

With the inclusion of target mass corrections [1.34]
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1

(1.188)

where

(1.189)
o

and

^rvuiix drvvix 1 "^ t^-'yiH (1.190)

V QI

the kinematic limit. Similar expressions exist for ^i. 3 i_ 

The inclusion of target mass effects, then, represents only one source 

of 0( c^i^ corrections, and so alone; they are of limited quantitative 

value. However, if they are large then it seems unlikely that the 

twist 7L = 4" contributions would be any less significant. All these 

comments are to be considered in the context of perturbation theory. 

There is, or course, no guarantee that when summed to all orders of 

perturbation theory the higher twist operato’rs destroy the dominance 
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of those of twist X-S- .

To summarize, the operator product expansion gives the general 

form for the moments of structure functions as

The utility of this technique lies in the fact that the coefficient 

functions (^k^ are independent of the target states. They are 

defined through the expansion Eq. (1.178) and can be calculated 

perturbatively. The reduced matrix elements of local operators

are beyond perturbation theory and must be ultimately elimLnnhe4 

by experiment. The O.P.E. has allowed us to identify and separate 

out the (presently) Incalculable contributions to the moments.

The asymptotic behaviour of the coefficient functions (and so 

of the moments themselves) can be calculated by a straightforward 

application of the Renormalization Group Equation (R.G.E.). The 

moments are physical observables and consequently cannot depend on 

any (arbitrary) renormalisation point AL^ .

" O for each KI (1.192)

Choosing non-singlet (NS) combinations of structure functions this is

equivalent to 

N6 

'k,Y% (1.193)= 0
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the label k refers to which structure function k-l,2,3,L

is under consideration. As the R.G.E holds for each k separately, 

it will be dropped.

Assuming the

'-'MS ^^ given by

multiplicative renormalization of the bare operator

and so

(^m 
NS (1.194)

(1.195)

Eq. (1.193) can be written

= 0 (1.196)

or

d/i (1.197)

where

A
NS (1.198)

In the Landau gauge (oU&O) in which there is no renormalization of

0

+

0:,

the gauge parameter o( , this leads immediately to

(1.199)

As mentioned previously the flavour singlet operators OpO^ carry 

the same quantum numbers and so mix under renormalization. They 

satisfy a matrix R.G.E.
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(1.200)

where the 2 x 2 anomalous dimension matrix

(1.201)

and

since this thesis is not concerned with singlet combinations of structure 

functions we will not consider flavour singlet operators further but 

refer the reader to a review by Buras [^1.29j for a thorough treatment.

Eq. (1.199) can be solved to give (analagous to Eq. (1.10^^)

3(cf)

(1.203)

where the 1 means evaluated at C^=/1^.

Thus for non-singlet moments

M:(n.a') - a: (1.204)it:5(9')

S(.3')

Since we cannot calculate the moments Up to an overall normalization 

(this reflects ignorance of the size of matrix elements of local 

operators) then the normalization of L|^^ and are chosen such that

63



O,NS O,M5

(1.205)

we then have perturbative expansions as follows:-

(1.207)

K«l9)" (^yClg) ^(&rf^fW ""O.209)

The perturbative expansion for p(^) was given in Eq. (1.11?) .

O^a are constants that depend on the weak and electromagnetic charges. 

For electron-proton or electron-neutron scattering ONS" ^NS ^ 6 "

In order to calculate matrix elements of local operators, 

effective Feynman rules for the insertion of lowest twist operators 

are needed. These are found by introducing into the Lagrangian a 

source term

A A
(i.210) 

with A^ an arbitrary light-like four vector /f.o . For the 

calculation of non-singlet matrix elements, this leads to the Feynman 

rules shown in figure 1.10,where the crosses represent an operator 

insertion [1.24].
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The quantity r;, is determined by calculating the coefficient 

of the pole term of the diagrams in Fig. 1.11 (this is true only at 

one loop level)5 but now there exists a choice of procedure to follow.

One can either:

(a) calculate all diagrams of Fig. 1.11,in which case one must 

include diagrams involving external fermion leg renormalizations 

when computing the coefficient functions. In this case

(wS " ^NS (1.211)

(b) Ignore diagrams (d) and (e) of Fig. 1.11 and the corresponding 

diagrams with external fermion leg renormalisations contributing 

to the coefficient functions. Now one must add in by hand 

the previously calculated anomalous dimension of the fermion field, 

then

As option (b) reduces the number of diagrams to be evaluated by four, 

this is the procedure we shall adopt.

The lowest order non-singlet anomalous dimensions are found to 

be

r _ n "

with G%_(R)- g for SHlS) .

We now have all the necessary ingredients in order to extract 

the leading order Q.C.D. result for the moments of non-singlet structure 

functions.
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Fig 1.10 Feynman rules necessary for the calculation of non-singlet

matrix elements
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Keeping only lowest order terms in the expansion of "8^^ and 

(Sly) , the exponential in Eq. (1.203) can be integrated explicitly 

to give

a(/^")

3ta^)

^13')
aW

(1.214)

where

n

N5
2^0

(1.215)

Using the form of the effective coupling constant obtained from the 

one loop p function, and setting /^ = (Sl^ some reference momentum 

(still large enough for the application of perturbation theory) then 

we arrive at

k=1^2,3 (1.216)

(1.217)

.NS .
A^ IS an overall (unknown) normalisation constant that can be found 

from the moments at (5^ taken from experiment. Hence, leading order 

Q.C.D. necessarily involves a logarithmic (in Q.^ ) violation of 

Bjorken scaling, the strength of the effect, A, being an unknown free 

parameter of the theory to be fitted to experiment. The comparison of 

this leading order result with the scaling violations seen at SLAG for 

3)W^ can be seen in Fig. 1.13. The best value of the fitted value of 

A is found to be £1.35] 
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A ~ o 3 6tv (1.218)

To leading order in Q.C.D. all parton model sum rules remain 

unchanged. The only difference introduced is that now the parton 

distributions depend on both X and Q^ in a calculable manner. 

At higher orders, we expect a violation of these sum rules. Using 

the fitted value of A , we can determine the size of the effective 

coupling constant from

* 6

for 4 flavours Ao " ? » thus

o(sl<a.^='O^^) ^ 0 3 (1.220)

This is still a reasonably large expansion parameter at accessible 

values of Q^ and so it is important to check the significance of 

higher order corrections.

To go beyond leading order involves the computation of the next 

teirms in the expansion for T^w&l^X ^^ ^h^^'B^) '

The two loop contribution to the anomalous dimensions of twist 2 

non-singlet operators ^^‘^ , has been calculated [1.36^ . Recall that

^Nslg) - /^^(!^^Ns) (1.221)

then, in the minimal subtraction scheme (MS)

where

9^ 1^ (1.222)

Z^5 = 1 + Z 51^1? , D* (1.223)



Thus to determine Ogg it is necessary to evaluate the coefficient 

of ^ (the sub-leading ultra-violet divergence) in all of the two 

loop diagrams that renormalize 0^^^ . a summary of the techniques 
needed to calculate these diagrams together with the results of the 

calcualtion can be found in ref. (1.36]. As mentioned previously, 

the coefficient of the two loop ^ function, 8| , has been calculated 

by a similar method to that above. Again recall 

(1.224) 

in the MS scheme with D- A-^ZS,, then

PW ' tg +3^ IS) (12")

where

3o = &j9R (1.226)

and

Z. " 1 + Z (1.227)

So 8j^ can be determined by calculating the coefficient of in all 

of the two loop diagrams that renormalise the coupling constant g.

The result [1.26] is

Pl - 1.0Z - ^ i (1.228)

with f being the number of fermion flavours.

Finally, the next term in the expansion of the coefficient 

function ^k# ^^^ ^^ determined by the following procedure. Using 

the fact that the coefficient functions are independent of the states 
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between which we sandwich the currents we may choose the most convenient 

states and calculate deep inelastic scattering on a quark of space-like 

momentum jo . In this case the lowest order contribution is due to 

elastic quark scattering,leading to a structure function of 6(i-X) . 

Thus all lowest order moments are normalised to 1. Beyond leading order 

we calculate all the one loop corrections to the elastic Compton 

Amplitude (see Fig. 1.12) for unphysical Bjorken X(^> 1) and express 

the answer as a power series in x » A dispersion relation states that 

the coefficient of \X/ is proportional to the nth moment of the deep 

inelastic structure function. Next we expand the right hand side 

of Eq. (1.204) in terms of ^kp^') " to obtain

1.N31
2 k.n

(1.229)

The only unknown in the above equation is
l,N5

The Q.C.D. result including next to leading order contributions

can be found by re-expanding Eq. (1.204) in terms of the effective

coupling constant S(G^^. The general form is (for yt^^Q^ )

r
k 

n1 (1,230)
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Fig. 1.12 Diagrams of the elastic Compton amplitude to
Oxg®-) necessary to determine the coefficient 

functions
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where

2P. Z#^

(1.231)

(1.232)

(1.233)

(1.234)

A few technical comments are in order. If all renormalization 

is carried out in the MS scheme, then the gauge dependence of the 

virtual compton amplitude and the matrix elements of local operators 

are the same and cancel leaving C.j^^(l.,3^) a gauge invariant 

quantity [^1.37^. It remains renormalization prescription dependent; 

however, this dependence is cancelled by that of the two loop anomalous 

dimensions [^1.36]. All other perturbative quantities are both guage 

and renormalization prescription independent, resulting in a physical 

answer for the moments. Of course, there still exists an overall 

prescription dependence due to the definition of the coupling g. The 

actual numerical value of the higher order corrections looks 

significant. If, as for the leading order

Then 

^)(e„^F„+6„(q^))
:^ 50%

G^=IO6tv^

(1.236)for n^4-
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and increasing for increasing 0 .

However, these corrections become almost entirely incorporated 

[1.35] into a re-fitted A= 0.346 Gev and lead to no further improvement 

on the agreement between theory and experiment. The inclusion of 

target mass corrections does provide such an improvement, and gives 

the optimum value of A = 0.474 Gev. For an illustration of the 

comparison between theory and the experimental results for VX^iC^v^^) 

(non-singlet) see Fig. (1.13).

The general results of the application of perturbative Q.C.D. to 

deep inelastic processes may be summarized by saying that the parton 

distributions acquire a (perturbatively) calculable ()^ dependence 

roughly in agreement with that observed. To leading order, all parton 

model sum rules remain unchanged, and are violated logarithmically in 

U at higher orders. For example the Bjorken sum rule of Eq. (1.46) 

becomes [1.37, 1.38]

Some insight into the Q dependence of the structure functions can 

be gained by considering the following intuitive argument [1.39] . By 

increasing the Q of the virtual photon (or weak boson) one imagines 

that the beam is probing smaller and smaller distances. Thus at higher 

Q , a quark is resolved into a quark and soft gluon, and a gluon 

into a quark-anti-quark pair or two gluons. In such a picture, parton 

distributions are then naturally Q dependent.
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If fc. - then the leading order Q.C.D. result for the moments

of non-singlet structure functions Eq. (1.216) can be written

Mn(.n,t) =^ Mk(n,o) (1.238)

4
o(&lO)

with

' 1
/*6lt) - Zgr + go f (1'239)

Thus

^Mkln,L)*-2^oi5(t)Mkln,b) (1.240)

(^ STT

The convolution theorem states that the moment of the convolution of 

two functions is equal to the product of the separate moments of 

the functions.

Thus if
1

HxW = j ^ (1-241)

Then

MiW" M^W.Maln) (1.242)

where

MLlny*f^xx''"'H;_lX) (1.243)

o

So if we can define a function whose moments are o^^ then

Eq. (1.240) can be inverted

75



let

(1.244)

Now Inverting (1.240) we arrive at

1
gLAylx,L) :: ^f a,^ Acjly.b) Rafz) (1'245) 

with Au being some non-singlet combination of structure functions 

occurring in a process labelled by L and j (for example A(,btX,b) 

AtmQX^k) ). Similarly, the evolution equations for the flavour

singlet 2.tx,b) and gluon 6'(X,b) distributions can be constructed 

as

(1.247)

These equations are coupled due to the fact that gluons can convert 

into (L^ pairs in a flavour invariant way.

The 'splitting functions' [1.4o] r^\^) etc are interpreted 

as probability functions in the following way. gives the 

probability of finding a quark of momentum fraction y in a quark 

of momentum fraction % . They are defined through the vertices of

Fig. (1.14) and have moments proportional to the entries in the anomalous

dimension matrix
0,A

o.n

o,m 
PF

,o,m 
mCr

, o,n 
6f

0/)

6r4r (1.248)
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Fig. 1.14 Vertices defining the splitting functions
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with

‘ -"^^rSi^ '-4brw (1.250, 

,1 (1.252)

The («l&ll&) a^G thus given explicitly in Q.C.D. as

R^l^l = i[ ■I'(!"5T] <1-254) 

P«vl.^') ’ at "^^*~ . <1.255) 

^^^1 ^[(! f^)+ ^^"^^ ^(12" ^) ^^'")) _ (1.256)

where the distribution ^^ defined through 

^!^1:!^ (1.257)
i ) (,.-%—

with y(,S) ^y function tegular at its endpoints.

Thus the probabilistic type framework, of the parton model has 

been retained in the context of perturbative Q.C.D. It must be remarked 

however, that there is no unique definition of parton distributions 

beyond leading order.
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Finally, it is important to note that the use of the Operator 

Product Expansion is not the only approach to deep inelastic processes. 

A completely equivalent analysis [1.41] has been carried out by studying 

the Feynman diagrams that describe the process and identifying their 

dominant contribution at some large momentum transfer Q^ . The 

criterion used to perform this identification is known as the Leading 

Logarithm Approximation (L.L.A.) in which one keeps all terms of the 

form

Tl

(1.258)

but neglects contributions of the type

k:> 1 (1.259)

where A^ is some typical parton virtualness (i.e. 4-momenta squared) 

at which perturbation theory is assumed valid

^^^^ 1 (1.260)

It follows that AA^ must be at least comparable to the average 

momentum of valence quarks in a nucleon

/4^ > faooMtv)'^ > 01 (rew^ (1.261)

Thus the L.L.A. requires selecting those Feynman diagrams that give 

the maximum power of Ala') to a given order of perturbation theory. 

An analysis of the lowest order graph of Fig. (1.15) shows that 

the principal contribution (i.e. ^5 ) comes from the region 

where
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Ikp ~ k^

and

(1.262)

(1.263)

This is the region where the initial parton struck by the virtual 

photon, and the final parton are not very virtual (i.e. far off shell) 

with respect to the large momentum transfer (^^ . These are the basic 

assumptions of Feynman's parton model although in a somewhat weaker 

sense since here the parton kj_ do grow with increasing Q .

This result can be extended to the nth order perturbation theory ladder 

type diagram of Fig. (1.16) to yield the dominant kinematic region as

^-~^"<.kX «k'

with (1.264)

^ pn-i ^ Pn ^ XL^pi^fz (1.265)

where p^ is the fraction of longitudinal momentum of the original

parton carried by the ith parton up the ladder.

These ladder diagrams constitute the dominant contribution to 

deep inelastic scattering if one deals solely with the emission of 

real physical gluons [1.42]. This amounts to choosing a physical 

transverse gauge (such as the axial or planar gauges) in which the 

unphysical spurious degrees of freedom of the gluon do not propagate 

by virtue of

k^e^ --O (1.266)

with ky^ and 6^ being the gluon 4-momentum and polarisation 4-vector 

respectively. Although these gauges are ghost-less, they are in general
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Fig 1.15 Lowest order ladder diagram in the leading logarithm 

approximation giving the leading contribution to deep inelastic 

scattering

Fig 1.16 The dominant diagram for deep inelastic scattering in the 

leading logarithm approximation at nth order perturbation theory. The 

X's represent self energy and vertex insertions. 
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cumbersome to work in. However, in such gauges all crossed diagrams 

are suppressed by powers of /#l(G^) relative to the ladder diagrams.

Both the transverse and longitudinal momentum integrals up the 

ladder can be performed and the result summed to all orders of 

perturbation theory to reproduce the standard leading order expression 

for the moments of structure functions from the operator product

expansion

M In^GL^) (1.267)

The great advantage of this Feynman diagram analysis is that it 

may be extendable to other hard processes (i.e. those in which the 

distances probed are small compared to typical hadronic dimensions of 

-15
10 m)^ where there exist no light-cone techniques. Such processes 

are, for example, massive lepton pair production and the inclusive 

production of hadrons with large b^ .

In conclusion, we have seen in this chapter how a simple model of 

parton dynamics failed to explain adequately the experimental data. We 

have also witnessed the emergence of a theory of quark (= parton?) - gluon 

dynamics in which the observed logarithmic scaling violations are seen 

as a consequence of a logarithmic approach of the dynamics to that of 

a free field theory; a phenomenon labelled as Asymptotic Freedom. 

All results so far predicted by the theory, Quantum Chromodynamics,are 

in qualitative agreement with those events observed. However due to 

the Inherent largeness of the effective quark-gluon coupling constant, 

there is as yet no precise 'g-2' type quantitative test of Q.C.D. 
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The experimental lack of evidence for free quarks and gluons is taken 

as support for the idea that these states are permanently confined 

to the interior of hadrons. The theory at present admits this possibility 

with the breakdbwn of perturbation theory at low energies; however, 

it still remains an outstanding challenge to prove quark confinement 

within the context of Q.C.D. Some degree of success along this direction 

has been achieved by numerical studies of gauge theories on the lattice.

Having briefly discussed the application of Asymptotic Freedom to 

deep Inelastic scattering we now continue to look in detail at the 

predictions for the longitudinal structure function of the nucleon.
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CHAPTER TWO

NUCLEON LONGITUDINAL STRUCTURE

In this chapter we shall begin a study of the subject of this 

thesis, the longitudinal structure function of a nucleon. Recall 

that in deep inelastic lepton-hadron scattering the amplitude squared 

for the process may be written as where LT^ is the leptonic

tensor calculable within the framework of Q.E.D. (for electroproduction) 

or the standard model (for V , 7 scattering) , and W^v is the hadronic 

tensor. As previously discussed, VJ^j can be decomposed on Che general 

grounds of Lorentz invariance and current conservation as Iz.ll

spin averaged (2.1)

(2.2)

0

+

- t6;uv«ip |:^^P ^)W^LV,Gi'')
(2.3)

where

^W^ = ^^2^ - 2XW1 (2.4)

and Wj — 0 for electromagnetic processes 
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The ||)> are hadronic target states and we are interested in the limit

with the ratio X= ^^P^ fixed 

and b is a fixed mass (which we shall neglect here).

In order to deal exclusively with W, we need to construct a 

projection operator for that projects out only this part; such 

an operator [2.2] is ^^^ where (for |^- O ).

K'|)''W/uv (&Y^LU,6i^) (2.5)

Thus we may begin a systematic study of the longitudinal structure 

function W^ order by order in Q.C.D. perturbation theory.

2.1 Zeroth order Q.C.D. :- The Parton Model.

In the naive Parton Model the nucleon is seen as an assemblage 

of free on*mass-shell, point-like constituents called partons. These ate 

tentatively identified as the quarks of Q.C.D. and it is in this sense 

that zeroth order Q.C.D, is equivalent Fo the Parton model. Clearly 

this is not a realistic picture; kow for instance are the non-interacting 

partons constrained to stay within the interior of hadrons? However, 

the impulse approximation does provide some justification for neglecting 

parton-parton interactions at high enough (3^ .
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We may study either the inelastic cross section directly, or 

the imaginary (absorbative) part of the corresponding forward elastic 

compton amplitude,as the two are related via the optical theorem 

(see Fig. 2.1(a)).

The amplitude to this order of perturbation theory may be 

written

A= -LCtAA^lKs^Wl^^AJL^lh^) (2'6)

where A is related to the S-Matrix element as

5 - 1 + IT (2-7)

6 2.
<ilT|t> - |)c) |At (2'8)

So

lAf = AA^ <2-9)

Now perform the quark spin sum 2^,

for massless fermions

Thus
I^\^ * z ^L 'n'[T(/A]|^')fvl^+^)j (2.12) 

where we have set |)'= |?^ through the momentum conserving delta 

function of (2.8).

Performing the Trace using Appendix Al , we obtain

l^r = Z&^4'[(|?+(^)^|>^ +0)+<^)v|% - klp^C^lS/^v] (2.13)
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Fig 2.1(a)

Fig 2.1(b)
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and using the elastic condition

Z|).(^ = 2V = Q^ (2.14)

-V^^V (2.15)

Thus we can see that for massless, on-shell quarks the tensor 

structure that accompanies the longitudinal structure function W£_is 

not present. The squared amplitude admits a non-zero W^, only.

Thus the parton-model result is

0L (2.16) 

and consequently the ratio

0
Or (2.17)

One can also build Parton models with less stringent assumptions 

such as that of Landshoff and Polkinghorne [2.^ where the partons are 

taken not to be free, but nonetheless not far from mass shell. The use 

of free parton spinors to describe the incoming state is now forbidden 

and one has to work with a general matrix CT%^ in Dirac spinor indices 

(see Fig. 2.1(b)). This matrix can be expanded in a R matrix basis 

(as they form a complete set) and it is possible to show that the only 

tensor structure is , thus yielding results identical to those above.

Some physical Insight into the meaning of these results can be 

gained if we go into the Breit frame (the frame in which the parton 

just reverses its direction of 3 momentum).



We know that for massless fermions the 7?y* coupling conserves 

helicity because the amplitude for a massless fermion to flip its 

helicity through a ^^ coupling is zero. The helicity projection 

operators for massless fermions are

tlitLlfs) (2.18)

So the helicity flip amplitude

li + tY5)AA (2.19)

" {&(^|+tT(s)^/*-l^'''^^^)^ (2.20) 

Butaince.

i^/^)^5^ -^ (2.21) 

bh6Ab(7ve

= JU K/tU -tTfsjU -^ tlfa) AA - 0 (2.22) 

as

This same argument can be extended to weak processes such as 

those involved in "V^ scattering, where the only complication is the 

additional axial vector coupling l^tXg. It is obvious through the 

above analysis that

(17L^^ V^5 (l + nj)u = O (2.23)

Thus, in the Breit frame, consider massless fermions scattering off 

both transverse and longitudinally polarised photons. 

for transverse helicity ?fy S\— ^^

hence

initial state V - +—

final state ^T*T * Z
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so we can see that total angular momentum ^toT ~ ^Tot i® conserved 

and 0^+0.

1^ longitudinal helicity ^*0

AA/xnA/vw - initial state

)r 0
--- :---^_---

—r^ - final state " Z

The only way that total angular momentum can be conserved is 

for the final state fermion to flip its helicity through the T(^ 

coupling, but we know the amplitude for this process to be zero. 

Hence OL^o for massless fermions, 

and K - — - 0

These sinq)le helicity arguments may be repeated for the case 

of polarised photons scattering off scalar partons^with the result that 

0^.0 , o;, + o 

and

GO for scalar partons (2.24)

so the measurement of R provides a direct test as to what spin 

quantum numbers the partons carry.

Both these predictions are in disagreement with the small but 

non-zero value of R seen in C^r scattering [2.4]. In order to explain 

the data, we clearly need to go beyond the simple parton model, and the 

preceeding arguments suggest now this could be done. We can either 

give the partons a small mass explicity, in which case the helicity 

projection operators are

(2.25)
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SyH, is some arbitrary 4-vector 

where S.^ ”-O 

and 5^ ” " 1

which in general will not commute with "^^ and so leads to 0^. ^ O . 

Or, we can switch on the Q.C.D. interaction through lowest order 

perturbation theory. Now a massless parton (= quark) can brehmstrahlung 

a coloured gluon and go off shell thus allowing its helicity to flip 

through a 1?^ coupling.

Feynman (2.5^ has calculated K where the partons have a mass 

W and transverse momentum k^ . Assuming the partons stay close to 

mass-shell in the initial and final state, he finds for large Q.^ 

where A is a binding energy factor (unknown) to correct for using 

free parton masses in the formula.

From observations of the average |>^ of pions seen in hadronic 

collisions (which seems to be energy independent), kj, is estimated as 

%; 250 (MeV) and assumed to be X independent. Naive arguments based 

on the Uncertainty Principle and the localisation of partons within 

hadronic radii of 1 fm support this number

Thus for k^ % *Y\^ % 250lMev/

and Gl^ 8 Grev'^

which is a typical value of Q for which data exists, we find

R O 25 ± 05A (2.27) 
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This is to be compared with the quoted value of K (in ep scattering) 

averaged over a Q range of Z™^lb Gev as

R * O 14-

The errors are too large in the data to determine variation of R 

with Q^ , but an important test of future experiments is to verify 

that R does approach zero as Q^-^ ^ . Only this will justify 

the assumption that charged partons are spin •

However, to see what sort of test R can afford a theory of 

hadronic interactions rather than a constructed model, we can continue 

to study R in the context of Q.C.D. perturbation theory. To do 

this we use the standard techniques of the Operator Product expansion 

and Renormalization Group as outlined in the previous chapter.

2.2 Oj, to order Q^ in Q.C.D. - Preliminaries

To calculate the longitudinal coeffcient function 

that appears in the Operator Product expansion bo 0(^^) , we need 

to calculate the imaginary part of the P p projected Feynman diagrams 

appearing in Fig. 2.2. Alternatively, one could expand the inelastic 

amplitude A to otsO and obtain the matrix elements AA^ by 

coherently summing over identical final states (see Fig. 2.3). The 

resulting matrix elements are then integrated over the corresponding 

one or two-body massless phase space. These two approaches are 

equivalent by the Optical Theorem. As an illustration, we shall use 

both approaches to calculate ^tnl^S^ ^° °’^® loop in the next section.

A few preliminary remarks are necessary about the first method.

The contributions of diagrams 2.2(^) and (q) (the type where the 

fermions receive an external leg renormalization) may be neglected
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Fig. (2.2) Diagrams of the elastic Compton amplitude to
Olg'^ necessary to determine the coefficient 

functions
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Fig 2.3 Inelastic amplitudes to 0(g ) contributing to a
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providing the corresponding diagrams that occur in calculating the 

matrix elements of local operators are also ignored. This is a 

process independent stateiment. Also» the contribution of diagrams 

2.2(b), (c) and (d) to O^. is zero because these involve a massless 

fermion flipping helicity through a T^ coupling. (It is easy to 

see that this property will reduce greatly the number of diagrams 

contributing to 0^ at two loops). Thus we are left with just the 

diagram 2.2(e) to calculate. At this point, it is convenient to 

consider the analytic structure of the forward elastic compton 

amplitude. The spin averaged amplitude.

(2.28)

which may be decomposed as

(2.29)

The Optical Theorem states

^/*^^ * ZPT ^**'1^'*^^]

hence

(2.30)

(2.31)
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The full elastic Compton Amplitude

Fig. 2.4 

has a branch point in the centre of mass energy variable, S , 

whenever threshold energy for the production of intermediate states 

is achieved (and at subsequent multiples of this value). These 

singularities in Perturbation Theory arise from virtual particles being 

allowed to go on their mass-shell and thus propagating over arbitrarily 

large distances. For massless intermediate states, there is a cut in 

l^gfo^ . In terms of X = this analytic structure 

translates into a cut strung between X- -1 (see Fig. 2.5).

4< ImX' lx'

Fig. 2.5
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So by Cauchy's Theorem

Assuming

T/.Ax',a") ^v 
x'-x

(2.32)

c

i) -^v%a') is everywhere analytic expept on the cut

for IX'l^l

ii) l^itvlX'd^) -» O as |X'|-» oo

Then the contour C can be expanded as shown and all contributions 

to the integral vanish apart from

.:( x-x
By Schwarz's Reflection Principle W) 'i'l^)

Then

T/tvlX'-L&) % 'T/ivlx'+ Lt) (2.34)

Expanding

\ ^ / Ao ^X / (2.36) 

+1

rAol%,Q4=:-if vZI?) Imhvvlx^n') (^x' (2.37) 
' J A nab\A/ J

where X> 1 unphysical

and X^ 1 physical Bjorken X
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If we take the {^^^^ projection of Eq. (2.37) and use Eq. (2.29)

ti^Ki;.vix,a')'-rjyZl^)"A'^'"LT'-lx',Q')jax' (2.38)

-I

and now use the Optical theorem Eq. (2.30), then

+1

h^|)%lx,a'')"-Z(T)''i^[(tx'x''''\w^lx;Q^) (2.39)

from the crossing properties of

wAx'.a^) = -W^l-x', G):-; (2.40)

Then

where

1

0

Now as an expansion in A , the effective Q.C.D. coupling at the 

renormalization point /I , the moments of the non-singlet longitudinal 

structure function

where the quark charge

^tn ^g ^^^ first term in the expansion of the coefficient 

function
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c"lv.?) -s"Lo

So to O(g^)

+ (9^6''"" 
k^n/ '-^'^ (2.44)

(2.45)

_N5
Thus we can see that in order to calculate the first term in 

we must calculate diagram 2.2(e) for unphysical X >1. (hence there 

are no singularities in the amplitude) and express the answer as 

a power series in ^n . h ^^an be read off from the coefficient 

of ' This calculation is outlined in the next section.

The second of the approaches mentioned previously does not 

involve the use of any disperion theory, but is concerned with the 

direct evaluation of the inelastic cross-section from the squared 

amplitudes of Fig. 2.3 integrated over massless two body phase space. 

The moments can then be taken explicitly for all integer n in contrast 

to the above technique which yields information on the moments for 

even n only. The only graph of Fig. 2.3 that contributes to p2, 

(including all the interference diagrams) is the squared amplitude of 

Fig. 2.3(e). By the Optical Theorem, this is just proportional to the 

Imaginary part of the oneloop graph (Fig. 2.2(e)). The calculation of 

this inelastic cross-section is presented in the next section.

2.3 OL to order 3^ Tn Q.C.D. - Calculation

We wish to calculate the |>^|3'^ projection of diagram 2.2(e). 

We work in a space-time dimension P-^-Zf, where the ultra-violet 

divergences of the theory appear as poles in t. ’ L^ etc. We will 

also evaluate 2.2(e) through to 0(l) as this will be useful in 
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determining counter-terms for some two loop graphs later on.

Using the Feynman Rules of Fig. (1.3 ), 2.2(e) may be written

(in the Feynman gauge) as

4- co

L

(2.46)

perform the Quark spin sum

Quark colour sum

- -C2(R)9=etU'’k Tr[(^4^-lii')y(j9-K)lS'p|i#Xi’(t,-(<)-ifj

J -------------------- —---------------- (2.47)

(all propagators with +ct understood)

Evaluating the Trace in D dimensions and setting |)^=O 

for massless fermions (note : in general, great care must be taken 

in setting jb - 0 in the numerator as sometimes the coefficient of 

|)^ , which itself is an integral, yields a factor ux. thus giving a 
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finite contribution as ^^"^ O . One can show this effect is not 

present in this diagram though) •

f>''|3'’7r -» lfaU-D)Q,.k)^ Kl’*^--*^) (2.48)

We use the standard Feynman parameterization of the propagators

(Appendix A.i )

(piy (^) (?)

where

M^ =- 2?p|).(|)f<^)'- pU-^)(^+(^)^ -?(l-'?)|/' (2.50) 

and

k = k + ^lh+<^) +" T^^}) (2.51)

This shift of origin in the Trace yields

Tr -^ I6l%-D) (h'^)^ ^^U-^) (2.52)

So far

and choosing p=^ 4"Zt.

60

Performing the loop integral (Appendix Al

U.V. finite (2.54)
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scale g% _» gyt to keep the coupling constant dimensionless in D-4-2&

T= *^^)^^^3*C2.Wlfc^^V P(2*$.)P(i-i.)MV''‘'

2Y^|>.(|)+(^)-^U-^)(^+(^) -TfO-Tf)!)]
(2.55)

Now we can see that in the numerator there are enough powers 

of ^ to kill all the powers of p that result from (M ) if 

we drop b^ ., leaving only |3^ integrable singularities.

This is a reflection of the fact that there are no mass 

singularities in the ^^^^ projection of this diagram. As kp-^O , 

the propagator ^^-Q which is a potential divergence 

regelated by ^^ . For the contribution of this diagram to ^flV) 

this effect would produce a ZnCh") . However^for the contribution 

to "VW^ there is a compensating effect. As kp-^O the longitudinal 

photon 'sees' the fermion as massless in the limit b^—^ O and hence 

de-couples from it. This is enough to kill the /^IpJ/J singularity 

leaving a finite answer. Thus the structure of the numerator in 

the 02 process helps to simplify some of the integrals encountered.

Consider j Ad.p only. Dropping |)^ in M^ gives

(2.58)
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Change variables

(2.59)

(2.60)

Then

and expand binomially.

Note, as ^ takes values in the range 0-^1 , this expansion requires 

X>1 to be valid. This corresponds to the condition of calculating 

this diagram for unphysical Bjorken X thus avoiding the threshold 

singularity at ^ ^X ,

(2.63)

The general term for A - —(%+&) I*

(2.64)
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expanding this term to 0(6)

1 (2'65)

(2.66)

where

n

(2.67)

Substitute back and expand Eq (2.61) to 0(&) using the recursion

relation in
Appendix A.l for n(2+&) to arrive at

(2.68)

Both the Feynman parameter integrals are now straight-forward to do,

yielding

where

l + L^-^faiH+O + l (2.69)

(2.70)

relabelling

and using 9 
2X 2X

(2.71)

(2.72)

j+l * n
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0© »

Thus we see we have the answer

series expansion in unphysical

1 +&lSAn) +1 +t)

for T in the desired form;

Bjorken X>1 . The effect

(2.73)

a power

of the

crossed diagram is to change

(2.74)

and so (2.75)

This introduces a factor 2 for A even and knocks out the rt odd 

terms in the expansion (■^) .

So knowing |?^|^^T^v " '^^

and using the dispersion relation Eq (2.41) together with Eq (2.43) 

and Eq (2.73), we deduce that [2.6, 2.7]

B^" ‘JlVR) (2.76) 
nn

For comparison, we now present the alternative method of calculating 

the coefficient function. This involves the evaluation of the inelastic 

cross-section from the squared amplitude of Fig. 2.3(e). Again, all 

ultra violet divergences are regulated by calculating the amplitude 

in a space-time of dimension D = 4-Zt . To order Q^ the amplitude 

is U.V. finite; however^we will still evaluate it through to o(t) in 

D dimensions as this will be useful in determining counterterms for 

some one loop amplitudes later on. All phase space integration is 

carried out in D=:4- dimensions.

Using the Feynman Rules of Fig. 1.3-, Fig. 2.3(e) may be written as
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with all real massless particles being on-shell

b''' * lp+%-k)^ = 0 (2.77)

|)^ . k^ = o (2.78)

(This particular amplitude is infra-red finite, as we shall see 

shortly, so there are no divergences introduced by the above statements. 

A discussion of infra-red regularization techniques for more complicated 

amplitudes will be given in the next chapter).

Thus

(2.79)

So A^V - Ay*(Ay)

(2.80)
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Performing the gluon colour and polarisation sums 

^(^ )mj(^)ji ' ^zW^mL yR)-3 1°*^ SUU) (2.81) 

It^"e.y^ - -3^"S*® (2.82) 

o- U y u

and the quark spin sum 

Z U.l|),6)Llll>,5) = j^ (2.83)

We obtain

A^^ = -(^S'CAR) 1 Jr[-:).l$,-t()f *, A(tl-K)Tfv.N'] (2.84) 

(|)-k)4

We now project out the contribution of this graph to the longitudinal 

cross-section 0^ using the projector ^^^^ ^ ^b'^A/kV = A (2.85) 

t,A|>VTr :^ Tr[yi^-K)'!(^K'!^>(^-K)kK] ('-°*)

We evaluate the trace in D-4"-2t dimensions and set ^^»O . 

(In general, care must be taken with this last step as it is possible 

to miss finite contributions of the form "^ . This is not the case 

for this diagram though).

|)^{}^Tr - l6(i-D)(|).Ki |).|)^ (2.87)

The factor of Q%K) kills botht^^propagators in the denominator as 

kk - - 'ilb-kj^ + O(^|)^ k^) (2.88) 
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(2.90)

(2.91)

(2.92)

hence

A^ :: -etg^CilR) Z11-D)KK (2.89)

This squared amplitude must now be integrated over massless two body 

phase space.

where the Lorentz invariant volume element

[dtk] = m %lk''-mf)eik")

d^'^k = ^^l!i.

and

The ^ integrals can be done immediately with the 4 dimensional 

delta function with the result

h'=t)+(^'k (2.94)

So

A^ = -c^g^QlR)%li-p)

(2.95)

In order to do the remaining phase-space integrals we choose a 

particular kinematic frame say the quark-photon centre of momentum 

frame, and align it along the 2 direction.
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Thus

|)* ^(E, O, O, ^'j toi-bh E=^ (2.96)

6^.* 0,0,-^) (2.97)

k'^ = W, K) (2.98) 

in this frame the centre of momentum energy

- (1?+^) = lE+<y) (2.99) 

and

U)+c^).k :' (E + <^)4A5 = V?W" (2.100)

Thus

Slw^'|kf)$(5-2V5^(A)) 8tu)) b.(Q-k) 
' o "" (2.101) 

Now

ol^k =. k^dk d/((lc<R6) (2.102)

So in d^k we can do the energy (dw) and modulus of 3-vector 

(dk) integrals using the two delta functions, leaving the two angle 

integrals yet to do 

A^ '^u^'^QW ^l2.^D)

zzr +1

(2.103)
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where

^0 - |k| = (2.104)

and

|).K :: Bl*) - |Mlk|C(%6 (2.105)

- (2.106)

With no azimuthal dependence in the integrand, the (Z( integral 

may be done trivially.

Choosing D—4-''2C

^T(&) (2.107)

using

I^A^+'V) - ^^^ hi< (2.108)

then finally

A' = C^wT'^W A-TTh/irU-g.) 0'109)

Now
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in the scaling limit

^)W^(^),Gl^) Fl(\<^^) (2.111)

The Operator product expansion now gives the moments of non-singlet

structure functions as

M^nX) =jdXx"*l;Xx,8^) , 9^) (2.112)

expanding the right hand side as a power series in ^ we have

Mr^n,a^) = %: 6^'"(i)" + 0(91) (2.113)

with O^ - ^(. for deep inelastic scattering on a quark.

Combining Eqs. (2.109 - 2.112) we obtain

®^^(wT‘^2tR) px X^'^^X^ = ^‘(wre^" (2.114)

from which

in agreement with the result from the previous method.

Thus in this section we have presented two equivalent methods of 

calculating the coefficient functions appearing in the Operator Product 

Expansion to one loop. Even at this order of perturbation theory it 

appears that the second of the two techniques outlined above is the 

simpler. For this reason, we shall adopt this as our approach to the 

two loop calculation to be discussed in detail in Chapters 3 and 4. 
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During the closing stages of this work^however, it was brought to 

our attention that a similar calculation had been recently performed 

utilizing the first of the two techniques and a Monte-Carlo numerical 

integration routine to evaluate some of the more difficult integrals. 

The status of the agreement between the two calculations will be 

discussed subsequently.

2.4 - C^ to order ^^ in Q.C.D. - phenomenology.

In this section we give a brief discussion of the phenomenology 

of the order g^ contribution to 02 from Q.C.D. perturbation theory. 

Although much of the material found here is discussed in greater detail 

in Chapter 5, it is appropriate to consider the one loop corrections now 

because the result will serve as further motivation to go to higher 

orders of perturbative Q.C.D.

We can now use the techniques of the Operator Product expansion 

and Renormalization Group to re-write the Q.C.D. predictions for the 

moments of structure functions as an expansion in the effective (running) 

strong coupling constant.

For non-singlet combinations of structure functions

Mrtn.a^) A%%^,g^) C^(^%'f) =jdx x'^^Fi^lx^a^) (2.116)

where is the ( W independent) reduced matrix element of the fermion 

non-singlet operator

"^MC^Cs ''V^n(&'3^)h^' ^"^ "knicts (2.117)
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and '^^^ are the Q dependent coefficient functions calculable in 

perturbation theory. The Renormalization Group expresses the invariance 

of physically measurable quantities, such as the moments of structure 

functions, under changes of the arbitrary mass scale ;

the Renormalization point. In particular we can relate the coefficient 

functions at some arbitrary scale A.^ , to those at Q^-/t and an 

effective coupling SlQ^).

(2.118)

I
Inserting Eqs (2.117) and (2\118) into Eq. (2.116) and expanding 

everything in powers of gf-lQ") the one loop running coupling constant, 

then for yUL -Q*

Mrin.a') .ATSLB f ^^ +0l4t) 
(4TT)"

(2.119)

the unknown n^ may be eliminated through the moments of the non-singlet

combination of ^W^^ at Q* (since the data are more accurate for

^W)) giving

Mrin,a") - NS

(2.120)
(/pTTf I a^lG^)]

(2.121)

113



where

(2.122)

is the one free parameter of the theory to be determined by the 

magnitude of the scaling violations of '^Wjj^ .

So after measuring the moments of '^^^ at some Q^ Gl^ (but 

still large enough to justify the use of perturbation theory, i.e. 

Q, > few Gr^v ) q.c.D. predicts exactly the ^ dependence of the 

moments of 'VW^ .

Expressions similar to Eq. (2.120) can also be derived for the 

moments of VWj, to 0(3') . Here the equations are more complex 

due to the fact that the Parton Model result for ^)W2 does not vanish.

In order to obtain the structure function ^(^)(^^)^ Eq. (2.120) 

must be inverted. As the H dependence is fairly complicated this 

cannot be done easily (L^ at all) analytically. It is usual to employ 

one of the standard inversion techniques described in Chapter 5.

Having determined

fLlX)^^) ^IX.Gl^) -ZXF'lX.a'^) (2.123) 

and

(2.124) 

one can find Fi(X,Gl^) and so plot a graph of

R(x,&q " ^^ '^ FAX, q'-) 
2XF,(x,Q.») (2.125)
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The resulting plot of R and its comparison to the data can be seen 

inFig. (2.7).

^ proton
In Eq. (2.125) we have neglected contributions of order Qi 

the target mass corrections. These reflect the fact that we are not 

measuring the moments at the scaling limit Q^*^®®, but in the region 

of (^ — 2 —^%0&(f^. In this region

^)W^lx,a^) 9^ AlX)Gi^) (2.126)

" Iil\h (2.127)

These corrections are known and have been discussed 

in Chapter 1. They are included in Fig. 2.7 and tend to improve 

agreement with the data.

Although the error bars on the data are large in Fig. 2.7, one 

can conclude [2.7, 2.8] that, even with target mass corrections, the 

*^l3^) Q.C.D. prediction lies consistently below the best experimental 

fit, especially at large X . Clearly this cannot be seen as a 

satisfactory description of the data.

2.5 Ot to order 4^ : A preliminary look

We have seen in the previous section that the leading 

order Q.C.D. corrections for 43^ do not provide a satisfactory 

explanation of the data for X>05 . There may be many reasons 

for this discrepancy. It could be due to some (presently) incalculable 

non-perturbative contribution of the neglected higher twist operators.
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This statement is counter-productive in the sense that it exchanges 

one problem for another. However Schmidt et al [2.9J have considered 

non-scaling contributions to F(%,Gl^) from scattering off di-quark 

systems within a proton and conclude that they could become significant 

as X-^ 1 .

The discrepancy could also be the result of truncating the Q.C.D. 

perturbation expansion after only the second term. It is important, 

therefore, to look at the next highest order correction, the O(4^J 

term to try and understand how reliable the leading order calculation 

is.

There are Interesting theoretical questions as to the nature of 

this order ^^ term though. It may make no sense at all to construct 

a perturbation theory where asymptotic states are taken to be objects 

which do not seem to appear in the physical spectrum of the theory, 

namely quarks and gluons. This is a problem that requires mathematical 

proof or dis-proof. The relative size of the order g^ to order

term however, may at least provide a check as to whether Q.C.D. Is 

self consistant as a perturbative expansion - does the series appear 

to converge? The answer to this question is by no means clear in view 

of some of the recent perturbative corrections computed [2.I0J.

Finally, if the Q.C.D. prediction for 0^ is fitted to the data in 

order to obtain a value for the one free parameter of the theory A, 

then this value is meaningless unless the Q.C.D. expansion contains 

the order ^^ term £2.11^. This is easily seen if we consider the 

two loop p function solution of the running coupling constant.

(2.128)W
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Then

ola "^ "^alGl^) - & + O(o(y) (2.129)

now let oL. be a running coupling constant with a different A , 

then

where

^^"g C° leading order ol/ "<^6 and A is left as an entirely free 

parameter. In the same spirit, when making comparisons of theory to 

data the coefficient of the 0(5 term must be known in order to attach 

any significance to the value of A obtained.

In order to calculate the order g^- g.c.D. correction for the 

moments of the longitudinal structure function (non-slnglet), we 

must calculate the order g4- term in the expansion of the longitudinal 

coefficient function C^,^ti,^ ). All other perturbatively calculable 

quantities, namely the two loop beta function and anomalous dimensions 

of fermion non-singlet operators, have been calculated previously. 

Ihus we are faced with calculating the cross-sections given by the 

squared amplitudes of Pig. 2.8 integrated over the corresponding two 

or three body massless phase space, or equivalently the imaginary parts 

of the elastic amplitudes In Fig. 2.9. (Again we Ignore graphs 

corresponding to external leg renormalizations).

^'^'^ remainder of this thesis will be devoted to a discussion of the 

techniques used and results obtained In calculating these graphs.
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2.

Fig. 2.8

these are flavour singlet amplitudes, but they can interfere with 
flavour non singlet amplitudes to give a contribution to O^, .
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1413

Fig. 2.9

(Crossed diagrams are understood)

Two loop elastic amplitudes contributing to (3
L

120



CHAPTER THREE

INFRA-RED REGULARISATION

3.1 Bloch-Nordsieck Mechanism for QED and the KLN Theorem

We have already encountered ultra-violet divergences in Quantum 

Field theory and briefly discussed how the Renormalization Program was 

set up in order to extract finite, physically sensible predictions.

In theories containing massless particles however, there exists 

a new class of divergences originating from the low momentum region of 

loop integrations, and so knowi as infra-red divergences [^3.1J. Thus 

they are sensitive to the values of the external momenta of a Greens 

function and cannot be simply renormalised away. As an illustration, 

consider the purely electromagnetic process of e% ->■ p% calculated 

in successive orders of QED perturbation theory. The lowest order 

diagram of Fig 3.1 is straight-forward to evaluate and yields 

(3.1) 

with

(3.2)

Fig 3.1 Lowest order Feynman diagram for e e -f p p
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If we continue the perturbation expansion in a for this process, 

the diagrams to be calculated at one loop level are illustrated in 

Fig 3.2. Consider separately the p^u Y vertex correction depicted in 

Fig 3.3. Using the Feynman Rules for QED, it can be written in the 

Feynman gauge ot = 1 as

+ electron line contributions

Fig 3.2 One-loop virtual corrections to 6*^6 U U
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with

Fig 3.3 Vertex correction

\^L - -ictll^) A/4.ii(-|)J <3.3)

= (rie^ (t'^k Tf^ i(^fk'^m) T(/i i'(r/K.^K+f^) ^}k (r^) (3.4)

Ijk+kf-m^+Lt] [(rk+k)^-nff tlj (k\. Lt)

For massive on-shell final state fermions

then the loop integral above as k + 0

a^'k cxmseant: ^g^)

which is logarithmically divergent for small (IR) k in D = 4 dimensions. 

Notice that for off shell fermions, the infra-red divergence vanishes as 

now the behaviour for small k is

k'-
(3.7)
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In order to calculate the coefficient of this IR divergence, the

numerator of V can be re-arranged using the equations of motion

^^4^)(^\-'^) (3.9)

to take the form in the limit of k -*- 0

^^^^h'k (^ih^^/tCLi-i?!) (3.10) 

which is proportional to the Dirac structure associated with the 

lowest order vertex, V°

\(.Z - -ieLil|>,') T(u. uA^p^) (3.11)

Thus \^ "Ytl for small k (3.12) 

where

The divergent integral, I, can now be regulated by one of the 

following two procedures.

Either a) Introduce a photon "mass" X so that the photon 

propagator

k^ +Lt (3'14)

This substitution will now modify a previously divergent Feynman 

Parameter integral
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the formal sense of

(3.15)

.A IS not a mass in A now being a Proca field

but rather a small dimensionful parameter introduced by hand in

order to render some Greens functions finite. All Greens functions 

are then considered as the limit as X + 0.

Or b) Use the previously discussed technique of dimensional 

regularization[^k2] to evaluate the diagram away from 4 dimensions. 

In particular if D = 4 - e then what was a divergent Feynman parameter 

integral will now yield a pole.

(3.16)

Choosing the second of these regularization methods, the divergent 

integral, I, can be evaluated in a straight-forward manner to give 

lior G^n^44n^)

To calculate the cross-section for e e p p to 0(a ), the diagrams 

of Fig 3.2 have to be interfered with the lowest order graph of 

Fig 3.1 and Integrated over the corresponding two particle phase 

space. From the above we can see that the contribution of Fig 3.2(a) 

will contain an infra-red divergent term with a coefficient
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(3.18)

This contribution is not cancelled by any of the other infra-red 

divergent terms arising from the remaining diagrams of Fig 3.2.

Thus we are faced once again with the dilemma of perturbation 

theory supplying infinite corrections to cross-sections beyond 

leading order.

The resolution of this problem was realised long ago by Bloch 

and Nordsieck [^3.3j. They argued that in any physical measurement of 

the cross-section e e p the final state detection apparatus is 

not perfect and so will have an energy resolution A. Therefore it is 

impossible to specify the final state completely as the detection 

equipment will miss any number of soft photons with combined energy < A 

produced with the muon pair. Thus physical experiments do not 

measure strictly exclusive processes, but rather suitably defined 

inclusive reactions.

To the order of perturbation theory considered above, the 

amplitudes for the production of p^ y are shoxm in Fig 3.A. In 

order to calculate the cross-section, the resulting squared amplitudes 

are integrated over the corresponding three-body phase space. The 

photon energy, co, is integrated over all values missed by the 

detection equipment, i.e. from zero to A. This integral is found to 

diverge as co -> 0 for D = 4 dimensions. Considering Fig 3.4a only, the 

coefficient of this infra-red divergence can be calculated by 

evaluating the phase space integrals in D = 4 - e dimensions.
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2

+ electron line

contributions

Fig 3.4 Lowest order diagrams for the process e e -^ p p y
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Specifically

This term precisely cancels the infra-red divergence of Fig 3.2a 

above. Further cancellations take place between diagrams of Fig 3.2b, c 

and those of Fig 3.4c, d,rendering the total physically measurable 

cross-section for e e -*■ p u + soft photon infra-red finite to 0(a ).

The proof that a cancellation of this type takes place to all 

orders of QED perturbation theory was subsequently given by Yennie, 

Frautschi and Suura ^3.43.

For theories that contain coupled massless particles such as 

QCD and massless QED^ there exist further divergences knoxm as mass 

singularities. These arise from the simple fact that two collinear 

massless particles have a total invariant mass of zero. An 

indication of this extra divergence can be gained by trying to take 

the m^ 0 limit of the coefficient of the infra-red divergence 

previously calculated in e^e 11% . For the deep inelastic 

scattering amplitude of Fig 3.5
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Consider the propagator ------- - where the (massless) quark and gluon
(p - k)

are both on mass shell

[>^ -k^ = O (3.20)

Then if |d^-(E, |>) and k^~('<*^, k) the mass-shell condition 

implies E ',^1 and (*J - liSl . Thus

1 ________

((d-K)^ -2EL0(l-Co5e) 

where co ->- 0 represents the infra-red divergence, and cos 6 -* 1, the 

endpoint of the angular phase space integral, is the new mass (collinear) 

singularity. Notice that it occurs independent of the value of co.

If we regulate this mass singularity by taking the initial 

quark slightly off shell and space-like

(3.22)

But, with

(3.23)

then

But

____ 1

If-k)" (3.24)

(3.25)

therefore

(3.26)
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and so

It is now clear that there is no infra-red divergence as w -* 0, and 

2 
the cos 0 ->■ 1 limit produces terms in the propagator of 0(p ). The 

angular integration thus gives a £n

The KLN theorem [3.5, 3.6jis concerned with the cancellation of 

these mass-singularities for suitably defined inclusive cross sections. 

They prove that if quark and gluon masses are introduced in order to 

calculate a cross-section from some initial to final state, a. 

then the quantity

Z Z (3.28) 

P(E J P(eP

is mass finite as m^, g "^ *^' '^^^ suras are over states degenerate with 

the initial and final states as m^, 0 (for example a quark + any 

number of soft massless gluons). This theorem assures that the cross­

section for e e p p X is finite even in the limit of both the muon 

and photon masses approaching zero.

3.2 Off mass-shell regularization

For deep inelastic scattering on a quark the KLN theorem 

asserts that all mass-singularities associated with the final states 

must cancel. This is because we are calculating the inclusive cross­

section

(3.29) 
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The mass singularities due to the initial quark remain but it can be 

shovni that they factorise to all orders of perturbation theory 

leaving a calculable Q dependence. This structure supports the use 

of the Operator Product expansion in deep inelastic scattering, and 

the assumption that hard scattering cross sections can be written as 

a convolution of some process-independent soft hadronic wavefunction 

(sensitive to large distances) and hard sub-process involving only 

quarks and gluons amenable to nerturbation theory.

In order to regulate the collinear divergences, we shall 

follow the previous example and take the initial quark slightly off 

shell and space-like. Generally we would expect a diagram such as 
(2 \ 
^ 1 and, as both gluons go 

1, 2 / p"'" \ 
collinear with the initial quark in Pig 3.6, a ?,n" I —^ I .

Fig 3.6
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This is not found when calculating the contributions of these 

diagrams to CJ^ however due to the extra "helicity suppression" 

previously discussed in the context of the parton model. Effectively, 

when calculating o^ the numerator factors using the p^p^ 

projector always arrange to cancel one power of naive logarithmic 

collinear divergence. Thus for OL Fig 3.5 is mass finite, and Fig 3.6 
f 2 

yields only one power of 5-n | I . Although this type of off mass 

shell regularization has the advantage that one can clearly see which 

2 
are the singular regions of phase space integration and how p < 0 

regulates these would-be divergences, in general great care must be 

2 
taken when implementing the second of the conditions on p , that of

2
It is not sufficient to simply set p = 0 in the numerator of some

Feynman diagram. This action carries the possibility of missing

2 . 
finite contributions as in some cases the coefficient of p (itself an 

integral) is so divergent that it gives a -^ . Out of all the two 

loop amplitudes of Fig 2.9 this effect was found to be present only in 

diagram, 2.9(10). This fact is again probably due to the special 

structure of the a process, for out of all the inteferences of the 

inelastic amplitudes of Fig 2.8, the s-channel cut of Fig 2.9(10) is 

the only one in which one gluon can go collinear with the initial 

quark and put two propagators simultaneously on shell without decoupling 

from the a_ process. This produces a -^ pole in the integrand which 

is converted into a —y after the phase space integral. This, of course, 

: P . 2 
must be cancelled by an overall factor of p appearing in the 

numerator, and indeed is. All other potential ^^ poles are 

P 
suppressed by the numerator killing one power of divergence of the 
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1 2
propator--------r . Thus all other $.n (p ) terms arise from regions 

(p-k^)^ 

of phase space where only one propagator is put on shell producing 

just a -y pole in the integrand. For this degree of divergence, it is

P 2 . 
safe to drop p in the numerator.

We now extend this technique in order to regulate the collinear 

divergences associated with the final state particles of Fig 2.8, The 

KLN theorem states that the sum of these divergences is zero, but the 

optical theorem can provide a stronger constraint than that. If we 

consider an arbitrary two loop amplitude as shown in Fig 3.7, and 

calculate it

K k^

Fig 3.7 Two loop amplitude contributing to a^

2 
for massless off-shell quarks p < 0 then it has no infra-red

divergences due to the virtual gluons being soft. All mass

2 
singularities are regulated by p . The optical theorem relates the 

imaginary part of this amplitude to the corresponding inelastic 
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cross-section, the imaginary part being the sum of all the physical 

s-channel cuts illustrated in Fig 3.8

Fig 3.8 S"channel cuts of a two loop amplitude contributing to cr^.

Cut lines are on mass-shell

These three cuts separately have mass singularities associated with the 

emission of real and virtual gluons almost parallel to the final state 

quark. By virtue of the optical theorem, the sum of these 

divergences must be zero due to the absence of any such divergence in 

the imaginary part of the two loop amplitude. Thus we have a diagram 

by diagram implementation of the KLN theorem at two loop amplitude 

level.
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All final state mass singularities of the three cuts of Fig 3.7 

can be regularized in each case by taking the final state quark

slightly off shell and time-like. Thus for the cut of Fig 3.8(a) 

if, in the massless three body phase space integral, 

replaced by 6(p'' - X ) then this diagram will yield

2
6(p/ ) is

a &n / —* 

\Q

However, we could have also regulated the divergence giving the gluon 

a "mass" by taking

S(k^) (3.31)

or by introducing a mass into the propagator

4_______ ------ -—------ (3.32)

Each of these three prescriptions will provide (as they must) the 

same leading divergence of &n/ i , but will give in general 

different finite parts. Thus it is iiqiortant to realise that the 

2 . 
assignment of regulators X is not arbitrary. In order to calculate 

the correct finite part for the sum of the three cuts a), b) and c) 

2 
the regulator X must be assigned in a consistent manner to each 

cut [,3.7]. A clue to how this is achieved is again provided by the 

optical theorem. At the two loop amplitude level we choose one 

internal propagator, which by the Introduction of a small regulator 

2 .
X , will render all physical cuts finite and calculable. Using the 

same labelling system this guarantees that the correct regulator 

assignment is followed for each separate physical cut. The procedure 

obviously generalises to any number of regulators required at the 

elastic amplitude level such that all physical cuts are finite.
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To illustrate the method consider again the two loop 

amplitude of Fig 3.7. It is clear that the introduction of a small 

regulator to any of the propagators of the top fermion rung will 

regularise all the s-channel cuts of Fig 3,8. We will therefore 

choose the central propagator and take

+iL ^^'^^^

For the physical cuts, this implies that:-

for Fig 3.8(a) the final state quark p^, is taken off-shell

2 
and time-like by an amount X .

S(t>'‘->^) (3.34)

All other propagators in the diagram are massless. 
2 

for Figs 3.8 b), c) the final state quark p^ is on shell, p^ = 0, 

but a small regulator X is introduced into the propagator

(3.35)

All other propagators in the diagram are massless.

In order to check this procedure, we performed the following 

calculation working, as usual, in D = 4 - 2e dimensions and using the 

minimal subtraction procedure.

Firstly we calculated directly the imaginary part of the 

renormalised two loop amplitude shown in Fig 3,9, This involved the 

use of the dispersion relation techniques discussed in the previous 

chapter to evaluate the contribution of this renormalised two loop 

amplitude to the longitudinal coefficient function.
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Fig 3.9 A renormalised two loop amplitude contributing to (T. The

inclusion of crossed photon diagrams is understood.

In the previous notation

|)^|/T/uivl\Gl?') = -^ &(%) 2.MLln,Q^) n even only (3.36)

The calculation proceeds much as that of the one loop diagram outlined

in chapter two. We find for the contribution of the above diagrams to

2
M.(n, Q ) (all contributions are to be multiplied by a common factor of

where

(3.37)

(3.38)

(3,39)
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Sit*') ’ ,^, y (3.40)

This leads to a total renormalised contribution of

M'[^\n^Gl^) - [-"Y- - ^ - 5, In)] n even only (3.41)

Alternatively we can calculate the inelastic cross-section and

2 
determine F (X, Q ) by using

K'^»''w^vlx,a^) = yx'^ ^(-><.a^) »-''2)

and then evaluate the contribution to the moments by explicitly 

performing the integral over x

Mtl^Gl^) = j(*X x'''''l:(x,Q:) (3.43)

This necessitates calculating the squared amplitudes of Fig 3.10 

integrated over phase space using the regularisation technique

described above. The methods employed to do the three body phase

discussed in the nextspace integrals of Fig 3.10a are to be
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The contributions are found to be (all diagrams are to be multiplied

by a common factor of

(3.44)

MLln,Gf) =: ^ "^ -nr + <n^^) - 5,(4) + ^ ^ (3.45)

Ml(n,Ge) " ^^ (3.46)

with S = (p + q) the centre of momentum energy. These lead to a 

total renormalised contribution of

ri2^^*^(^j^^^ " ["'T "& " ^iW] jof All n%^ 1 (3.47)

which is identical to that found before in Eq (3.41), and so verifies 

the use of the proposed scheme to regulate mass singularities.

As a final check to illustrate that it is irrelevant which

propagator at two loop amplitude level is chosen for the introduction

of the small regulator X, consider the diagram of Fig 3.11

Fig 3.11 Two loop amplitude contributing to a.
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Mass divergences are encountered in the physical s-channel cuts of 

this diagram when the massless fermions that propagate round the loop 

become parallel and so put the gluon propagator on shell. This 

happens for both real or virtual fermions (see Fig 3.12)

Fig 3.12 Interfered amplitudes contributing to Cf
to O(g^)

These collinear divergences can be controlled using either of the

following regulator assignments.

(i) evaluate the graphs of Fig 3.12 with a gluon propagator

-^ ... y (3.48)

k^+it k^+^^+L& 
2 

The use of a space-like regulator, X > 0, avoids the 

possibility of further divergences due to the production 

of real massless fermions in the loop of Fig 3.12(b), 
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2
(ii) give the loop fermions a small mass, X , such that for 

9 9 9 
Fig 3.12(a) 1^2 = k. = X , whereas in Fig 3.12(b) the

fermion propagators become

2 
with the final state gluon on shell k. = 0.

We present here the results of these calculations. Quoted are 

the O(g^) contributions to the structure function, F(X, Q^) as ah 

expansion in g. We work directly in X space with all diagrams to be 

multiplied by a common factor of ^2l^)^(^)4'

For method (i)

pLlx.a^) g[x "2 -Zkix +(nli-x) -^^"^)] o.so)

(3.52)

Together these three quantities give a total renormalised contribution

of

h^^^^lx,Gt"^) = -Ztnx+tnU-xlj (^^^s)

for method (ii) the diagrams are found to give

^L l\Gl^)
\ 0^ (3.54)
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(3.55)

resulting in a renormalised contribution

F^^^^(XjGi^) - ^ j^-'Y'+^ -^ -2/^x 4.[n(i-x)^

(3.56)

(3.57)

in agreement with the previous value of Eq (3.53).

Having demonstrated and justified the scheme by which 

collinear divergences are regularized, we now proceed to present an 

example calculation of a two loop amplitude contributing to Oy.
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CHAPTER FOUR

FOURTH ORDER CALCULATION OF a:- DETAILS

At the end of chapter two, we gave a preliminary survey of the 

fourth order calculation of O, and Identified the relevant Feynman 

diagrams to be evaluated. In this chapter we outline how the 

calculation was performed and present an example calculation 

utilising the salient techniques for evaluating the phase space 

integrals. The final results are given diagram by diagram.

4.1 Calculational techniques

We calculate the squared amplitudes of Fig 2.8 integrated over 

the corresponding two or three body phase space. By the optical 

theorem this is equivalent to determining the s-channel discontinuities 

of the two loop amplitudes of Fig 2.9, including the crossed photon 

diagrams. In most cases, it is obvious how this identification 

works. Take for example the amplitude of Fig 2.9 (140, then the 

physical s-channel cuts are illustrated in Fig 4.1.

Fig 4.1 S-channel cuts of a two loop amplitude contributing to 0.
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The crossed photon diagram has no s-channel cut. This is true for all 

planar two loop amplitudes contributing to o .

The situation for non-planar amplitudes Is more conqilicated.

2 .
The uncrossed amplitudes have a u = (p - q) channel cut, and so the 

crossed photon amplitudes do Indeed have s-channel discontinuities. 

These 'extra' cuts correspond to interferences of the flavour singlet 

amplitudes drawn when calculating the flavour non-singlet inelastic

cross section, and are shown in Fig 4.2.

Fig 4.2
2

(p + q) channel discontinuities of crossed photon nonS

planar two loop amplitudes contributing to o_

We found that we could not do some of the phase space Integrals 

encountered in calculating these cuts totally analytically. It was 

144



thus necessary to determine them by numerical methods, more about 

which will be mentioned later. In any case, the contribution of 

these integrals to the longitudinal coefficient function was small. 

The largest effect occured for n = 2 and was less then 7% of the 

total value in the MS Scheme.

The cut amplitudes fall into one of two main categories, 

although all have spurious mass singularities arising from regions 

of phase space where massless final states are becoming parallel.

Some cuts consist of squared inelastic amplitudes 

containing a one loop integral and integrated over two body phase 

space. In these cases all the mass divergence is contained in the 

loop integral, leaving simple massless two body phase space to do. 

The loop is integrated using the standard techniques of Feynman 

parameterisation.

The rest of the cuts require the integration of three body 

phase-space in which are buried the mass divergences. The final 

state consists always of a quark of momentum p', together with a 

pair of either quarks, gluons or ghosts of momenta k^ and k^. All 

three final states are nominally massless. The general technique 

employed was to pair up the two momenta k^ and k^ using the identity

1 = J (TK %^lK-krki) (4.1)

This reduces the three body phase space integral
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into two coupled quasi - two body phase space integrals

The regulator assignment was chosen such that in the three body phase 

space integrals, all final state divergences were then regularised by 

giving the final state quark of momentum p' a small mass

2 
P = m

and by introducing a small regulator into the propagator

1 1

Only one amplitude (that of Pig 2.9(140) required the simultaneous 

introduction of both these regulators and even here it would have 

been possible to abandon this assignment totally, choosing another 

gluon to make massive and so uniquely regularise all the divergences. 

We elected to continue using this choice though, as by this stage many 

of the familiar integrals appearing were tabulated.

All phase space and loop integrals were evaluated in the 

limit of

(4.5)

and nowhere were we forced to make decisions about the relative sizes 

2 2 
of the regulators, i.e. logs of the form in (m + X ) do not occur.

The phase space integrals done numerically were evaluated using 

two different techniques. The first consisted of a straightforward 

application of the Gaussian integration formula
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\ ax j-M " Z Wc^lxJ + E^ (4'6)

where x^, ti)^ are the abscissas and weight factors tabulated [ 4.13 ^o’^ 

some chosen value of n. The use of this formula technically requires 

the existence of the first 2n derivatives of the integrand f(x) 

throughout the integration region for finite error E^

A) (-1<?<L) (4.7, 

(2wi)[(2rx)!]^

As we were integrating functions with logarithmic end-point 

singularities this may appear an unreasonable approach to take. However 

we found that for n = 32 the method could satisfactorily cope with 

integrable logarithmic singularities to an accuracy of ± 0.1%.

The second, and more reliable method, was to use an assisted 

Monte-Carlo integrating package known as VEGAS. Basically, this 

technique consists of evaluating the integrand at randomly generated 

points in the integration range. The program then looks for regions of 

maximum variation of the integrand, and saturates them with points in 

subsequent iterations. The program is iterated until it settles down 

to a consistent answer. This, of course, never occurs for singular 

integrals.

Both techniques could handle up to ten dimensional integrals 

although we used them to integrate functions of only three variables. 

The two methods were also of comparable efficiency, taking on the order 

of 30 seconds of processor time to evaluate one of the many three 

dimensional integrals.
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4.2 Example calculation

We now present an example calculation of the s-channel 

discontinuities of a two loop amplitude contributing to a^, that of 

Fig 2.9(6). The two physical s channel cuts are shown in Fig 4.3

Fig 4.3 s-channel cuts of a two loop amplitude contributing to a^.

Again there are no s-channel cuts of the crossed photon amplitude.

As previously discussed, both of these cuts (a) and (b) have spurious 

mass singularities associated (in this case) with real and virtual 

emission of gluons parallel to the final state quark. We shall choose 

to regulate these divergences by giving the final state quark of the 

2 2
inelastic amplitudes in (b) a small mass p’ = m .
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Thus we commence by calculating the two body cut (a). In 

order to regularise the ultra-violet divergences of this cut we work 

in D = 4 - 2e dimensions and perform the D dimensional Dirac Algebra 

using the identities of Appendix A.l. From the Feynman rules of 

chapter 1, the cut (a) can be written as (see Fig 4.4(i))

Fig 4.4d)Two body s-channel cut (a)

(4,8)

6' ' *Ltr3(^L,aiks)f^Tfv,^lK5') &1''
(4.9)

Take the product AB , and perform

ii) the gluon colour sum

i) the quark spin sum

A,C
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iii) the gluon polarisation sum

X

Then

To calculate the contribution of this diagram to cr_ we apply the 

projection operator p^p^, then setting p = p' " ^i = 0, 

t/'|,''7r =(2-D)2|'k,h''0i'-K2)l»(|P-KrK2n,rkpk'] W-iz)

-(2-D)2)>.k,[d)t(.ii)«im) +UV)] (4.13) 

where

0) = -4|=.(t,'-k^)7r[(H/,-ti l^.j^rl (4.14)

= -lb|).l|>'-ki)[krlh-k2)k1>' + |)fl|)-krk^')|?.k, +Khklk,+kz)] (4.15)

lit) = +4-|).kJr[(j)-krKi)l|^'-Ki)W] (4'16)

" +it,|?.k,[(k'-k2).l^-krk2)kW+t,fl|p.krk^)),.l|,LkJ"

- h lk,+ki)|)'.k2 (4.17)
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Both (iii) and (iv) are multiplied by an overall factor of 2e, so the

only contributions come from the UV divergent terms of these Traces,

2
i.e. the OCk.) terms.

dii) =. l'+'D)8|)3(2[h|)'hk2 +Hk2jp.k, "hkzk'kj (4.18)

Ov) = -l4-D) 8kk,|?./ k^ (4.19)

Now combine denominators using the standard Feynman parameterisation of 

2
Appendix A.l, and introduce a small 'mass' m into the propagator

(p' - k.) to regulate any mass singularities.

1
[xk^ +(4(]p'-ka) + Al^'krk^) ]

(4.20)

Doing the y integral

2^doidl^ 6(l-d(-p)
(4.21)

where (4.22)

and M^ =2olp|)'.(|3'k,) +<4m^-^U-^)(|)-k,f (4.23)

inserting this shift of origin into the Traces

rb'Tr EN - I'k.N.'lC.^Ci^) (4.24)
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with

C, - -S2U-^)(i-oi)|)lk, (4.25)

(4.26)

Thus, so far

K"|)''[66^] " LtLg'*CilR)j<A««lpeO-«i-^)2(t>.ky|,y(2.-D).

^-rf?

perfoinning the loop integrals using Appendix A.l , choosing D = 4

2 2 2E
scaling g -»- g p and expanding the whole result in powers of E 

arrive at

(4.27)

2E, 

we

KhiAB'] 1 
w

^8l& f^xM-TfE -3 -4%^%i) ^
(4.28)

M^ = 2oi^|p{ljp-k,) +(xm^-^U.^)(|)-k,)^ 'LL
(4.29)

There are now two sets of Feynman parameter Integrals to be done.

Consider first

I I” o(

a^^+b^ + c
(4.30)

where
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b = 2A|,!(|,.k,)-(|)-kf>0

C - ocm^ -Lt> O (4.31)

The denominator is a quadratic in 6 with roots r^ and tg given by 

r; = -b+\fbT-^fac7 (4.3%)

Expanding the square root around the small quantity c, then 

G - -y +Olm') <0 (4.33) 

2
As can easily be seen, if m = 0 then the 6 integral is infinite. 

Similarly

1 ' > 0 (4.34)

Now

k = h6^,-k, (4.35)

So

^= ^'^lhlr-l|)4(^).kj +2hk,U-o() (4.36)

But

k '^(), - ^kl,-^+i.)k, = ^ (4.37)

G. = ^ 4.0-0^) > (hot) (4.38)

Thus we see that the two roots of the quadratic in 6 lie outside the 

range of the 6 integral. So the ie in the denominator can be dropped 

and the 8 integral performed straightforwardly to yield
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T, = j\\ 0- oi)[ ^^ h\(^^^ - (#\o()

(4.39)

with & =. 2pll|)-k,) Cp'k,)^ independent of a.

Notice at this stage that the mass singularity is manifest in 

2
jln(m ). The a integrals present no problem aside from tedium. Since b 

is linear in a it is plausible that the result will contain dilogarithmns

due to the presence of 2n a and £n(l - a) terms in the numerator. The 

result is

(4.40)

where (A.-lh-k,)^

a= 2K(t)-k,) 
e = (t-A

(4.41)

and

(4.42)
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One novel feature is that in the later phase space integrals to be 

done, d can vanish. This may seem catastrophic as I^ has an overall 

factor of -^, but as will be shown later, in this region the numerator 

O(d^) yielding a finite result. The appearance of these fake 'poles' 

in the phase space integrals turned out to be a common occurrence in 

the calculation of many diagrams.

The other set of Feynman parameter integrals are much simpler 

due to the fact that they contain only integrable logarithmic

2 2 
singularities in the limit of m + o. Thus m does not act as a 

regulator here. Consider

+ (n(W) Ke -3'<x\p - A\f ^"(^(hJ^j^Q^BK^^N f (4.43)

in the previous notation, the 6 integral gives

& +6^(40") -^E - 2 -.CnU-ot)^ 

oi(k-oi) - b<;n f b \ 
\/4"/

with

(4.44)

The a integrals are straightforwardly done as the denominator is a 

independent with the result
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Assembling the answer before the final phase space integrals we arrive 

at

hA(},iAg^]'+e.t3''clw^^ g)..p'[2KK,l, fij (4.46)

The final state phase space integral is given by

W ^iW]M%»tt>t,^.-K-|)')[t>*l>’'AB') (4.47) 

with W] 'a4i*((4_^2)0^t") the Lorentz invariant volume 

element for a final state of four momentum 1 and mass m.

The most convenient fran® in which to determine the phase space 

integrals is the p, q centre of momentum frame. Thus

^=(5,0,0,^) (4.48) 

and if

^1^ l^' (^) (4.50)

Then

(|)+^)'k, - W?^ (4.51)

(h+<^).|) - EJZ? (4.52)

2 
where S = (p + q) the centre of momentum energy.

For no aaimuthal ((()) dependence of the matrix element, as is

the case above, the two body phase space reduces in this frame to
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Ll»*t>''A6t] (4.53)

with 

w = Iki = ^ <^-5^)

and
h-k, • i^‘^[t -U -^’.) ^] (4.55) 

the only angle (^ dependent quantity.

Consider the contributions to W from I^ and I2 separately and 

re-write the phase space integral in terms of the variable

H . - 1 s. (I’-ki) (4.56)

Thus from 1^^

Wi. =‘ -e?9*c*(n)^^)i^| .

*(”^b-t3) *1 *^(^i))^ij

(4.57) 

where

(4.58) 
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As previously remarked, the 'pole' at y » 1 is a fake. This can be 

seen easily by expanding the numerator around y = 1 - 6 using 

and

k
j"ll""6) - 2 h. , I^Hl (4.60) 

KA| |(^z

Also, there are only integrable logarithmic divergences as y + 0 

reflecting the fact that this cut is insensitive to p , the 'off- 

shellness' of the incoming quark.

The y integrals can now be evaluated separately taking care 

with the region near y = 1 to give

Wj^ ^-e-^^"^ C1(K) 4-TT)).Sr A-U-X).

5 f SlnX + \x/ \X/

(4.61)

where

Y- ^ (4.62)

k] -2^(3) +2(^(^^)f^^)+j(4\Xtff('i^) "^^l^) (*'^^)
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gw - 5 ^ dt (4.64)

Similarly from I.

4*
(4.65)

Again, there are only logarithmic integrable singularities as y -+ 0 

which means p can be neglected to give as a result of doing the y

integrals

+0-%x)/AX

4 zxg-x)l Kt;) - j(o))
(4.66)

Thus, the total contribution from this cut of the amplitude (including 

the corresponding cut of the complex conjugate elastic amplitude i.e. 

[ ]) is

VJ^^ - 2lVf,+ Wz) (4.67)
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9xU-x) 5+ 56^% 4. +/,nxAi(^
L \ \X

fi^x-D^t^x) +li--5x)j'(o)

^^'^^^)^f lx) "-^1°^

^^?1^ "^ ^X ^X(j'lx)-4lo))^

+ 3-4X +(2-4X)^X 
+4-X(l-%) ^^(^) - ^o))

(4.68)

As can
be seen W^^^ is UV divergent and requires renormalization. Due

to its theoretical simplicity, we choose the minimal subtraction scheme 

(MS). At one loop, this scheme consists of removing only the —' 

divergence. At two loops however, one must subtract with this 

divergence a finite part that can be determined by evaluating the 

lowest order (one loop) diagram through to 0(e). This was done in 

chapter two. Thus for the counterterm, W^^\ we have (see Fig 4.4'00)

Fig 4,4Ui)Counterterm for the cut (a) of Fig 2.9(6)

W'^'^ -C(%)^c2tR)4Tr|).'^ZU-c) (4.69)

160



Having thus determined the renormalised two body cut (a), we 

now turn to the calculation of the three body cut (b) illustrated in 

Fig 4.5. This cut is UV finite and so all Pirac algebra is evaluated 

in D = 4 dimensions. Again there are spurious mass singularities 

(which must cancel with those of cut (a)) associated with the real 

emission of a gluon parallel to the final state quark. A regulator 

assignment consistent with that of cut (a) is to give the final state 
2 2 

quark of Fig 4.5 a small 'mass' p^ = m .

Fig 4.5 Three body s-channel cut (b)

Take the product AB and perform
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i) Thequarkspin sum zA, 2^^

ii) The gluon polarisation sum

Then

AB^ :: +efg^c2lR)i -

'irr[T^p(Jpn*;^r2!^:)T(.Jl*^:1<i)]f^J^lTf^ (4.73)

The three body phase space integral is written as

w - W]kK]&4l|)w^-K)j^k,]L*kzl^»lK-k,-kj[K't'''AG'] (4.74)

So, doing the k_ integral with the delta-function setting

K^k,+k^ (4.75) 

then

t,«t,''Tr =Tr['%pl^t^-K,)fip-Ki)Tf7,^TVKjT(V'()W] (4-'«) 

setting p^ " k^ = 0 in the Trace. (One can show strictly that terms of 

the form do not occur in the phase space integrals thus justifying 

P . . . .
such an approximation).

H'|)''Tr ‘6‘t(|7.k)[l,yk,K-17'<i,|,.K*|>'.k,t>.K-|>.k,i,'.K-H7-|7.K t-KI^'k]

- fc'kli.k, t>.|)'[-k,.K |j.K +k,.Kl>.<v * t’-kit’k] (4.77)

The first part of the phase space integral

jrk,%iy)8(.k,')%((krKf)elk;-K')[r|:''^8'^] (4.78)
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is evaluated in the k^, k^ centre of momentum frame, i.e. the K rest

system. Then

w
(1>-K)=-

C, +C;tt,,K,+ Cjh'k,

Cy. + Cah'^i

(4.79)

with

€2= -|)'K

(^5 = "bl)' kK (4.80)

All the coefficients have no dependence on the angles 6 and ^. These 

angular integrals over one and two propagators are tabulated in 

Appendix A.Z, but a few points are worth mentioning here concerning 

the choice of Lorentz frames in which they are done. For those 

2 
integrals over one propagator (p + q - k.) , it is obvious that they 
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will be easier if ({) dependence can be avoided in the denominator.

This requires choosing 2 + 1 ^o point in the z direction making 

(p + q)*k^ a function of cos 6 only, and putting all <j) dependence into 

the product p.k. The (|) integral is now a trivial polynomial in 

cos 4). From these arguments, it is clear that (j) dependence in the 

denominator cannot be avoided if it contains two independent 

propagators. For these integrals, we chose 2 to point up the z axis 

making p.k^ a function of cos 8 only and (p + q).k^ (|) dependent.

2 with such a choice, the role of p as a regulator of potential mass 

singularities associated with the incoming quark was easy to 

identify.

Collecting all the separate factors together after the angle

integrals

8
^6

C3(t>'K. ^- K°t'A+

(4.81)

where
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A- ()>+^^ (4.82)

=Vo<y74(^7^ (4.83)

(4.84)

(4.85)

(4.86)

(4.87)

Now outside the arguments of the logs, we can make the approximation 

of p^ = 0 since the mass divergence is manifest in the logs themselves 
2

at this stage (in the limit of / 4. o, then A = B so a mass singularity 

is buried in &n somewhere). This is a sketchy argument though, and 

the full implications of setting p^ = 0 will be discussed at a later 

stage.

2
In the limit of p -> o, then the coefficient of S,n^ ->- 0 and all

mass divergence associated with the incoming quark drops out of this
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cut as expected. Thus

(4.88)

The second part of the phase space integral is now most conveniently 

done in the p, q centre of momentum system. Then

, *0-v)
8-^2^{c*vj (A^ (4.89)

with

5

t>-^ " ^1 , (X 1

(>' = 1^+<V' 1^

(4.90)

Thus both (p - K)2 and &n2 are ^ dependent, whereas p''.K and S-n^ are not.

The results of the more difficult z integrals are

V-v)
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fU-v)

(4.92)

where again

(4.93)IT^ 
5

Assembling the final integral to be done, we obtain

1
(dv

0

-4-v +Svj&nV +2(iiv)/6nQ -2(i-v)/4n'2

-4 v((^-v) + 2LlA-v)f_!±yj\/^fvl^) A)
0'^) \(x-v / (^ \i-v/ \ (x-v / "

4"

(4.94)

(4.95)

As can be seen, any potential divergence as v + 1 (the region 

in phase space where the gluons go back-to-back) is suppressed by a 

logarithm and rendered integrable.
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These final integrals can be done without too much difficulty 

to give the total contribution of this three body cut of the amplitude 

(including the corresponding cut of the complex conjugate amplitude) to

be

(4.96)

(^) (^(R) 4iT^6y

+ l-6+l4X)flo)

+ 4-(ni^j-l.W-XUl^)-Ko))] '

(4.97)

Finally, a further comment about the approximations made in setting
2

p^ = 0 outside of the logarithms. With care and effort this final part
2 2

of the phase space integral can be done for finite p^ = m . For 

2
<n c — , the approximations are equivalent to the statements

iA<a X- //nf !i:i^EIi^) . o

which can be proved exactly, and

"^^oj (^lA 21 ___  ) Fl(A,nf^) CL 0 (4.99)
2^ lA:"-4-1g \ lA+JlAF:^;^ /
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\2(0d)(l-U.)tlA-25 tViV^
(4.100)

which is true, because in the dangerous region of U. -^ l\f^

FW,^) is finite. In fact F(u, n) is finite throughout the
lA::!/^

range of integration apart from an integrable divergence due to the

argument of the logarithm approaching zero as u + 1 + h. This 

divergence is not controlled in any way by n. Indeed 

is finite.

Approximations in dropping final state 'masses' in the three body 

phase space integrals of other diagrams reduced to the same or 

simpler statements than those of above.

We can now add up all the s-channel discontinuities of the 

renormalised two loop amplitude of Fig 2.9(6) (+ its complex 

conjugate) and see that the spurious mass singularities, An r, do 

Indeed cancel. Furthermore this amplitude has no collinear divergence 

associated with incoming quark of momentum p as expected from more 

general discussions on the structure of the a_ process.

VJ^ = W^^^W^''^ +W^^' (4.101)

-^1 +gX6nX +8U-X)(^\(HX)-f(o)-2i(^))

+ gU-x)tnx ^(^':^)

continued overleaf
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*l2X(i-X)[2((.i)+2M(,i^x)Kx) *<A^k$5i)<**

X
(4.102)

The s-channel discontinuities of the other amplitudes (including 

the crossed photon amplitudes) are calculated by techniques similar to 

those outlined above. A compendium of some of the final three body 

phase space integrals used is given in Appendix A3 .

4.3 Diagram by Diagram results

Given below are the O(g^) contributions to the non-singlet 

quark longitudinal structure function F^^ (X, Q^) when expanded in 

terms of g, the effective QCD coupling constant at the renormalisation 

2 
point p . The contributions are given diagram by diagram as the sum 

of the s-channel cuts of the two loop elastic amplitudes of Fig 2.9.

Contributions from the crossed photon diagrams are included, and all 

ultra-violet divergent diagrams are renormalised in the MS scheme.

If the sum of all contributions is written as

2W: (4.103)

then

'0
(4.104)

All expressions are to be multiplied by a factor of

Factors common to many of the contributions are:-
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SU(N) Colour factors

T(R) - zf" , for f flavours

C C^r) - N

.2

(4.105)

(4.106)

where

(4.108)

(4.109)

and finally,

h(x) = (41 (4.110)

If the contribution resulting from Fig 2.9(i) is labelled W., then

w, = C11K)[-2'Y'- 5-2/^x]
(4.111)

(4.112)

f!6 _ n 
X

(4 113)

2
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L 3 ' 9 3X 3 3 (4.114)

' |g 3% 3

3 (4.115)

V4^ "Qi^R^ Zf +1 +8X6f\X +g(l-X)(Yi(|-x)

+ SO-x) tnx

+" (4.116)

c O in dimensional repularisation (4.117)

:: CzlR)|zXx,(^i^)' (4.118)

w,Q = CilR) ^ "? -l^^^i^x -SjCn^x

+ 2: 
X (4.119)
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11 - f^ilR) - (^"j -| + 3t^3) + 14X A-iq-X;^^X

+ (i2-8j-(o))^n(l-X) +(t^X^-l^^-X^) (5(x)"j^^o^)

+ 9/x\xy(i() + 8htt) '^ZFi.W (4.120)

2 +(3-3X)W + (0X-l4-)jGnll-X)

+ (^-8X)il0) +02.-lbX)j.(:^) +Q0-gx)&\^X

+ @x-i2)ZnxCn(i-x) - 3x(i-x)^^(^>^^^^(^-^)-5to))

-i2xu-x)[0] -4-tn|^'j^);vi(^) +4.f;^(^x) (4.121)

W(„ = |Cz(R) ~ c^'\ 10 -10 
X

t ^)(/nX - ^Zyi^X

(4.122)

2
10 -9X +t-G+9X)2nlHX) 4-(io-|6)JLnX

t(-Z4X f3x:')j.(o) +(lb -3X -8X^Kx)

- lbXU-X)[lB] (4.123)
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v4,^ = c(^)

(4.124)

These lead to a total contribution

continued overleaf
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-6Xtl-X)[2((3) toxZ^(,^) +2ta(^^)5(i) *3(.'-^)]

-^h(^) -|ti2^x) -^^,(X)

(4.125)

F. and F^g ^^^ ^^^ functions of x originating from the numerical 

integrals done in diagrams 11 and 12. Their value is known at 32 

equally spaced points in the x range of 0 to 1, together with their 

first 10 moments which are given in Appendix A4\ Their total con­

tribution to the longitudinal coefficient function is small, being a 

maximum of 7% for n = 2.

In order to determine the longitudinal coefficient function 

C^^ ^ (1, g^) to O(g^), we must expand the moments of the 

longitudinal structure function given by the operator product 

expansion, as a power series in g. Thus, from chapter 1,

(4.126)

The q dependence of the coefficient functions is given by the

renormalization group equation

(4.127)

CCnllJ') + ,4.n/
(4.128)
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Then, for deep inelastic scattering on a quark

rN6 1
where o, -6^ and

(4.129)

2, NS

+ '(4.130)

With A being the finite parts obtained by calculating the

diagrams of Fig 1.11 in a particular subtraction scheme. In the

Feynman gauge a = 1, and the MS scheme, the result is

- QW 8 - ^

2 
nln+i)

1

n

2 
n^

(4.131)

Their numerical values in the MS scheme are given in Table 4.1 ^^htntbhg. 

La$t:LLme.of-E(^4.iSi Lsne^Le.cLe4).
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Table 4.1 A in the MS scheme
n

n A^' *^g (MS) 
n

2 - 6.37037

3 - 9.92593

4 -12.86518

5 -15.40593

6 -17.65830

7 -19.68950

8 -21.54465

9 -23.25501

10 -24.84480

So combining Eqs (4.126), (4.128), (4.130) thenwearrive at the result

(4.132)
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where

Wnl k" Ol9h (4.133)

and

L.n —TT: (4.134)

6/^ ^zl"^)-^^ (4.135)

The above equations allow for the extraction of R^’ ^^ from our 

diagram by diagram results. Since ^^d A^ are separately 

both renormalisation prescription and gauge dependent, it is 

important that they both be calculated in the same schemes to extract 

R^’ ^^ consistently. Hoxvever, in the scheme in which the only 

existing calculations of the two loop anomalous dimensions have 

been performed (the MS scheme), then y^^ (g^) is gauge independent. 

This means t'at the gauge dependence of M^^ and A^’ ^^ must cancel 

2 S . 
leaving. R^’ a ,!:auge independent quantity. It is still renormalisation 

prescription dependent though. So

M*(n,Qh - -^jdX X"W(X,Q") (4.136)

leading to

Numerical values of R^' ^^ determined in both MS and MS schemes are 

given in Tables 4.2, 4.3. The relation between them is
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^^ in the MS scheme (f = number of flavours) 
n

Table 4.2

n f = 3 4 5 6

2 16.0 -18.6 -21.1 -23.7

3 — 9.67 -12.6 -15.6 -18.5

4 4.57 - 7.77 —11.0 -14.2

5 0.303 - 3.69 - 7.08 -10.5

6 + 3.37 - 0.159 - 3.71 - 7.23

7 -I- 6.60 + 2.94 - 0.719 - 3.21

8 + 9.50 + 5.73 + 1.97 - 1.78

9 -4- 12.1 + 8.26 + 4.41 + 0.549

10 +14.5 +10.6 + 6.65 + 2.71

Table 4.3 

n

9
R.' in the MS scheme
L, n

(f = number of flavours)

f = 3 4 5 6

2 8.50 4.65 0.787 - 3.07

3 18.8 14.5 10.3 + 6.02

4 26.6 22.1 17.6 12.9

5 33.1 28.4 23.7 19.0

6 38.5 33.7 28.9 24.0

7 43.3 38.3 33.3 29.6

8 47.5 42.4 37.4 32.3

9 51.3 46.1 41.0 35.8

10 54.8 49.5 44.3 39.0
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Kl”(m5) = R^^ntMs) +(UM-Ve')(p„+ ^ ) (4.138)

The numbers quoted are correct to three significant figures. The 

possible relevance of this result to the current experimental situation 

will be discussed in the next chapter.

Finally we mention the status of the agreement of this 

calculation with that of Duke et al [4.2] who utilise the dispersion 

relation technique and so obtain results for n even only. There is a 

substantial difference between our results for R?' ^^ and his (about 

+ 40 for each n in the MS scheme) although the n dependence is roughly 

the same. A diagram by diagram comparison is complicated by the fact 

that the two calculations are performed using different infra-red 

regular!sation schemes. We take initial quarks slightly off shell and 

space-like, whereas Duke et al use dimensional regular!sation. Thus the 

infra-red divergent diagrams cannot be compared individually, but only 

as a whole. The result of a very careful diagram by diagram comparison 

reveals that the disagreement lies in only two infra-red finite 

diagrams (those of Fig 2.9(6) and 2.9(14-)) together with the set of 

five which are infra-red divergent. We have thoroughly re-checked the 

calculational content of these diagrams and find no change in our 

previous results. We can therefore offer no explanation concerning 

the origin of this discrepancy. Clearly further work is needed in 

order to resolve this disagreement.

* These are diagr^ims lAlhCch we have catcaLated hotcdL^ anaL^ticaLLg 
biAtj^of which Ocike etciL ^jpesent nuLwcriccLC redaCbd onCg. We ck^ree. 
wtbh all andLgttc redacts c^uobfcc( bg Daks etaC.
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CHAPTER FIVE

PHENOMENOLOGY OF OL TO FOURTH ORDER

In the last chapter we presented the results of a calculation of 

the fourth order longitudinal coefficient function. We can now use 

this result in an expansion of the moments of non-singlet structure 

functions in powers of the effective Q.C.D. coupling constant, ^((^^) . 

The problem then remains to invert these moment expressions and arrive 

at results for the experimentally measured structure functions themselves.

5.1 The moment inversion problem

Again, we start with the basic operator product expansion 

result for moments of non-singlet structure functions.

and re-expand the coefficient functions, which govern the Q. depenedence 

of the moments, in terms of the effective coupling 3^®*^) . We use 

the expression for Q that satisfies the two loop beta function

9(0.^) = 9o^®^) (5.2)

with

(5.3)
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and A is chosen so that there are no more terms of OVQo ) in Eq. (5.2).

For the longitudinal structure function, straightforward 

expansion of Eq. (5.1) yields

Where we have set, in Eq. (5.1), A^ = Q-q some reference value of

4-momentum transfer at which perturbation theory is still applicable.

Clearly this results in no loss of generality since is arbitrary.

Now,

(5.6)

Fn
2p;

(5.7)

(5.8)

E
L 
n

2^

Ay^ is an overall Q independent normalisation constant whose 

evaluation lies outside the scope of perturbative Q.C.D. It can, 

however, be eliminated by measuring the moments of 1^ (^j^o) at 

some (^o in the same process (i.e. cjb scattering). 1^ is chosen as 

the data are the most accurate for this structure function. Thus we 

arrive at the result
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2^2. 7
(5.10)

and Eq =^ D^^ y^

function for the

the previously calculated one loop coefficient

moments of the non-singlet structure function FiW)
specifically (in the MS scheme) [1.37].

——z-^ 
l^lHf l) j%i J

n J
^iv^^ It

J=.| d k^il ^

n " i^ + ^ -l] + zCW'^tT) -Tie) (5.11)

The n dependence of the salient quantities appearing in

Eq. (5.9) is given in Table 5.1.

Table 5.1 The values of various quantities entering into Eq. (5.9). 
Renormalisation prescription dependent quantities are 
quoted in the MS scheme.

On %nMs) F„ ^M3) E^(MS)

n=2 0.4267 71.37 1.6539 7.3914 4.65

3 0.6667 100.78 1.9401 14.0768 14.5

4 0.8373 120.14 2.0504 19.7000 22.1

5 0.9707 134.98 2.1195 24.5302 28.4

6 1.0805 147.00 2.1649 28.7673 33.7

7 1.1737 157.33 2.2097 32.5470 38.3

8 1.2550 166.39 2.2527 35.9633 42.4

9 1.3264 157.33 2.2940 39.0839 46.1

10 1.3911 181.78 2.3344 41.9589 49.5

183



Rewriting Eq. (5.9) as

Nl^(^G(^) (const).[3otGi"-)]^P°^l + (^9^?)^h1;(0"} +] (5.12)

wl)ere

H^(e^) ‘ E^ -t F, &„tGi^) (5.13)

Then below in Table 5.2 are the values of H’^((3^) for (2. -10 Gev^ 

and A= 170 MeV with the coupling constant ^ defined both in the 

MS and MS scheme. Thus

iMf = f^n 1 - 1628 +

< A-TT / \ 4-Tr / [ \ A-TT /
(5.14)

Table 5.2 : Values of /^ next to leading order corrections for
longitudinal moments for coupling constants in different 
renormalisation schemes.

n=2 - 9.Z2 - 16.2

3 - 1.67 - 12.5

4 + 4.21 - 9.42

5 9.08 - 6.72

6 13.3 - 4.34

7 16.9 - 2.21

8 20.2 - 0.61

9 23.1 + 1.54

10 25.8 + 3.19

Note, to leading order in 3(0.^) the moments of the longitudinal 

structure function are given by
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(5.15)

A similar procedure may be followed to arrive at a next to leading

order expression for the moments of non-singlet combinations of the

structure function

n

With the corresponding leading order expression being simply

A
0,N)

(5.17)

We now have leadfngand next to leading order expressions from Q.C.D. 

that give the (^ evolution of the moments of non-singlet structure 

functions and '% from some fixed . The overall normalisation 

of the structure functions is taken from experiment at this chosen 

value of .

The problem that remains is to invert these moments and arrive 

at leading and next-to-leading order expressions for the structure 

functions themselves. Only then can we isolate the quantities relevant 

to a plot of R(X,Q ) - . An outline of one solution to this inversion 

problem is given in the next section.
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5.2 The solution of Yndurain

There now exist, a number of different solutions to the moment 

inversion problem, [5.1, 5.2] of various degrees of sophistication, 

designed specifically for the particle theorist. The formal solution, 

reconstructing the function exactly, requires knowledge of all its 

moments. This approach is usually abandoned by particle theorists 

who assume a defin^^e form for the function depending on a finite 

number of parameters, and then determine these parameters by fitting 

moments of the function to the Q.C.D. expressions. This functional 

form is motivated by the phenomenological form of the structure 

functions.

FlK) - X'*lHX)^ CK^^ >(3 (5.18)

Because of its overall numerical simplicity, we chose the Yndurain 

[5.3] inversion technique. It has the disadvantage,though,that the 

/\ parameter is left undetermined and must be fed in as an input 

(more sophisticated numerical inversion techniques can determine A 

by fitting the overall normalisation of Q.C.D. scaling violations to 

those observed experimentally).

As with other practical methods of moment inversion, this 

technique avoids the problem of exact point-Tike reconstruction of the 

function, instead, it solves the more tractable problem of supplying 

the weighted average of the function F around some point X . The 

optimal set of weight functions for the inversion of structure functions 

are the normalised Bernstein polynomials

(5.19)

Idx xW
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(5.20)

where K takes on values

k. 0,1,2,N (5.21)

if the first N moments ^o^^l M;j are known.

These polynomials act as a suitable weight over the point ^Nk ^^^^^

N+2
(5.22)b'^^lx) X

and give the average of the function F(x) around the point )(w,k ^^

F lX._ J jdx b^*'''‘\x) F(X)
(5.23)

or, equivalently

Fix„a =
(N+l)'. y" 

k! z=o
(5.24)

t

with

M: = ffAX X^F(X) (5.25) 

o

Thus we can see that F is immediately obtained from th^ moments oFF.

As the number of moments known Increases, the width of the bins in 

X in which the average value of the function is given decreases.

* this av&rage Is due to b ' bel(\^ peciktcl Cn the region o(: x,,,|^ j 
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A note on the practical use of the Yndurain formula Eq. (5.24) 

is in order. It may be thought that the width of the bins in X space 

can be made arbitrarily small by knowing an arbitrarily large number 

of the moments. This is true, but because of the oscillating sign 

in Eq. (5.24) the moments must be known to an increasing degree of 

accuracy for increasing N to allow for the differences of large 

factorials appearing in the sum. In fact we found a strong correlation 

between the number of bins chosen in X space and the number of 

significant figures needed in the moments for the reconstruction to 

work. Going from an N-3 to N=6 to N=8 reconstruction 

required the addition of a significant figure in the first N moments 

from 2 sig. fig. to 3 to 4 sig. figs, for the method to work. As we 

believe the longitudinal moments to be accurate to three significant 

figures, we chose N=6 to give the average of the structure function 

in X bins of width 0.125. Such a choice of KI provided reconstructed 

test functions to an accuracy of typically better than 6% apart from 

the highest point in X space, X = 0.875, where the error was about 

twice this value.

Bearing such qualifying remarks in mind, it is then a relatively 

straightforward task to invert the Q.C.D. moment expressions.

5.3 Next to leading order results for R()(,Gl^)

In the abscence of target mass corrections, the experimentally 

measured structure functions ^^^^(x.Gt^are equivalent to those 

considered in Q.C.D., llx.a") , whose Gl evolution^ predicted in the 

limit of (3^-^ °^ .
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9V/KlX,Q'-) - lkl^)Gl^) k = V,3 (5.26)

Thus,

where

WlKO^) = fi(x,6e) (5.27)

(5.28)

IlKQ^ = Al\Q.*) -ZXfil^Q^) (5.29)

So, in order to plot the ratio R(XjGl^) we need to invert both 

the structure functions ^[ and ^ consistently to leading and next 

to leading order. The relation Eq. (5.29) then allows both F^ and 

hence R to be determined. Note that the ratio R is independent of 

the (X independent) normalisation of the structure function f^ at

This procedure was carried out using the Yndurain inversion 

technique at the fixed values of Gl^= 3.0, 6.0, 9.0, 12.0 and 

15.0 (Gev)^ for which data on R currently exists This allows a 

plot of both the Q evolution at fixed values of X , and the X 

distribution for fixed a of the ratio.R. Pot future experimental 

reference we repeated the program in the region of a^=50 ^250 (Gev)^. 

In all cases, the input value of /\ was chosen to be 170 MeV, which 

is an average of the current values of A quoted by experimental groups 

as providing the best fit to the experimentally observed scaling 

violations.
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The overall normalisation of ^ was found by fitting a 

parameterised form of the structure function to the latest neutrino­

nucleon scattering data of the C.D.H.S. group at CERN [S.^. The 

fixed value of G^ was chosen as Q^ = 1.79 (Gev) , and the 

parameterisation as

fitx, Gl^ = 1 14 &cv^) = A,X^^U-X)^^

Using a simple least-squares fitting routine, we found

A, = l'3&Z 

Al = 0 066 

Ag = 1 321

As a test of this choice we compared the Q.C.D. evolved leading and 

next to leading order structure function l%lX^(^) with data at 

0^= 9.0 Gev^ and concluded that the agreement was satisfactory 

(see Fig. 5.1(a)).

The results for the leading and next to leading order Q.C.D. 

predictions for the ratio l^lX,&^) are summarised in Figures 5.3, 

5.2. The Q^ evolution is shown only for values of X>0'4', where 

it is expected to be dominated by operators whose anomalous dimensions 

are equal to those of the non-singlet operators. At these values 

of X , the flavour singlet contribution to the structure function 

is negligible [2.^.

(5.30)

(5.31)
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Although the errors are relatively large, we conclude in 

agreement with previous authors that the leading order 0[.^^] 

Q.C.D. expression fails to give a satisfactory description of the 

ratio R(x,a^) - ^ at large X>0-5 . This theoretical prediction 

falls consistently below the data. This discrepancy is not explained 

by the inclusion of the next term in the perturbation expansion in 

9^(M5) of R(x,an Indeed, the agreement with data is made 

slightly worse. The inclusion of target mass corrections would have 

the effect of bringing both theoretical curves closer to the data, 

but only slightly so for large X .

From a theoretical viewpoint, the perturbation expansion in

9^ of R-(X,GI^) appears to be stable. The next to leading order

OLShMS)] correction is less than 12^ for X^O'5 and 61^ = ‘i o Cr&v^

and falls steadily as Q^ increases. The small size of this correction 

must be partly due to the simultaneous increase in both the numerator 

and denominator with the inclusion of the next to leading order corrections 

to F^ and 2XF^ respectively. However, the moments of f^(X^Q.^) 

themselves appear to have a reliable perturbation expansion. The 

0ti*(M5)] correction here is typically of the order of 10 - 40^ 
for values of Q^ - 10 Gev^ and A of 170 Mev. This result is 

itself due to a cancellation between the two dominant terms of 

Ef^ and &n(e.h which occur at fourth order.

All these facts point towards the reliability of the leading 

order Q.C.D. calculation and indicate that Q.C.D. perturbation theory 

is making sense. It is now therefore the responsibility of the 

experimentalists to attempt to reduce the error bars on the data in order 

to see whether the discrepancy persists.
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Figure Captions

In all the following figures, leading order Q.C.D. results for 

the structure functions are shown in circles, whereas next to leading 

order predictions are given in triangles. The value of A is chosen 

throughout as A = 170 Mev.

Figure 52j^ (^) Comparison of Q.C.D. evolved (K^XjGl^) to the data 

of ref. [5.4] at Gl - .

(b) Q.C.D. evolved structure function FtC^j^^^ &b 

Q^ =40Gr€\/^ ,

(c) The ratio R(X,Q.^) for & = 9 0 CfCV

Figure 5.2 Comparison of the theoretical predictions for Rix^a^)
to the data of ref. [1.13], for fixed values of (^ .

Figure 5.3 Comparison of the theoretical predictions for (^(X^a^ 

to the data of ref. [1.13] for fixed values of X .

Figure 5.4 Theoretical Gl evolution of RlX,Q.^) at high values

of G^ .
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Fig 5.1(a)
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Fig 5.1(b)
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Fig 5.1(c)
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Fig 5.2(a)
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Fig 5.2(b)
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Fig 5.3(a)
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Fig 5.3(b)
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Fig 5.3(c)
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Fig 5.3(d)
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CHAPTER SIX

SUMMARY AND CONCLUSIONS

Nucleons exhibit a deviation from point-like behaviour. In 

contrast to electrons, they have large anomalous magnetic moments 

indicating considerable spatial structure. Inelastic lepton-nucleon 

scattering cross sections are parameterised by structure functions 

analagous to the electric and magnetic form factors introduced in the 

case of elastic scattering. These structure functions, nominally 

functions of the two independent kinematic invariants <^^ and '\) = |d.c^ 
show a remarkable behaviour in the deep inelastic limit of both ^

61^ 
and "^ going to infinity, but their ratio X = 29 remaining finite.

In this limit, they are observed experimentally to approximate to 

functions of the scaling variable X only. This phenomenon, known 

as scaling, was predicted by Bjorken and served as the catalyst for 

the production of a simple model of nucleon structure.

In Feynman's naive parton model, the nucleon is seen as an 

assemblage of free, spin ^, light on-shell partons. The consequences

of such assumptions comprise exact Bjorken scaling and a value of the 

quantity equal to zero. Experimentally, a small but definite 

pattern of scaling violations is seen and the value of R is reported 

to be small but not equal to zero. Thus in order to satisfactorily 

explain the experimental data, it is necessary to go behond the simple 

parton model. Modifications can be introduced that fit the model to 

the data, but this seems to go against the spirit of simplicity in 

which the model was initially created. A far more interesting 
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approach is Co take the view that the parton model is a first 

approximation to some underlying quantum field theory of the constituents 

of the nucleon.

The most promising choice for such a field theory is Quantum 

Chromodynamics (Q.C.D.); a non-abelian gauge theory describing the 

interactions of coloured spin I quarks with the coloured massless 

vector gauge bosons called gluons. This leads to the natural identification 

of charged partons with the fundamental fields of Q.C.D., the quarks.

An outstanding feature of this theory is the phenomenon known as 

Asymptotic Freedom. As in all renormalisable field theories, the 

quark-gluon coupling constant ^ , is not a constant at all but depends 

on some (arbitrary) momentum scale ^ at which the theory is 

renormalised. However, in Q.C.D. this momentum dependence can be 

approximately solved to reveal that as yM.^ approaches infinity, the

effective coupling constant 9^/^^) goes to zero as 1 
tjafA?' It has

been shown that this type of behaviour is admissible only to non-abelian 

gauge theories. Thus for processes that involve some large momentum 

transfer Q^ , the quarks and gluons will interact as though effectively 

'free' hence justifying the application of perturbation theory to the 

strong interaction; a task long thought to be impossible.

Deep inelastic lepton hadron scattering has since become a 

classic testing ground of pertubative Q.C.D. In the deep inelastic 

limit this process probes the light cone structure of products of 

hadronic electromagnetic currents. Thus one can reliably use the 

theoretical tools of the operator product expansion and renormalisation 

group to isolate and study those operators which dominate this process 

on the light cone. Q.C.D. predictions come most conveniently in the form 
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of moments of the inelastic structure functions. These moments are 

inverted usually using a parameterisation of the structure function 

motivated by parton model ideas, and compared directly to those 

experimentally measured. The leading order Q.C.D. contribution is 

found to be in agreement with the observed scaling violations; the 

only effect of the inclusion of the next to leading order correction 

being a change in A , the one free parameter of the theory that 

characterises the overall strength of these scaling violations. As 

a result of such agreement, approximate Bjorken scaling is thus 

interpreted as a consequence of asymptotic freedom.

The status for the current Q.C.D. prediction for the ratio of 

the cross sections ^“"^ observed in deep inelastic scattering is not 

as satisfactory though. Although the error bars on the data are large, 

several authors have already concluded that the leading order Q.C.D. 

contribution fails to give an adequate description of the data at 

large X . In this thesis we investigated the possibility that this 

discrepancy was due to the next term in the perturbation expansion. 

Knowledge of the magnitude of this term relative to that of the leading 

order contribution is desirable separately as a check on whether Q.C.D. 

is making any sense as a perturbative expansion. This is by no means 

clear in view of some of the recent perturbative calculations.

The novel quantity involved in the complete calculation the 

next to leading order correction to the moments of the flavour non-singlet 

longitudinal structure function, is the contribution coming from the 

corresponding two loop coefficient function appearing in the operator 

product expansion. This quantity we calculated directly by evaluating 

all possible S-channel cuts of the two loop forward elastic compton 

scattering amplitude. Following this procedure one is immediately 
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faced with the problem of spurious mass divergences encountered due 

to the production of collinear massless particles in the final state. 

A consistent regularisation scheme was introduced in chapter three and 

its use justified by exploiting the optical theorem. Many of the 

techniques involved in Che general calculation including some aspects 

of renormalisation and three body phase space integration were 

discussed through the example calculation presented in chapter four. 

This chapter closed with a list of the diagrams by diagram results, 

together with the total contribution to the two loop flavour non-singlet 

longitudinal coefficient function. This total result is in disagreement 

with that of a recent calculation performed by Duke et al, who utilised 

different techniques to evaluate the imaginary parts of the same 

elastic amplitudes. After a very careful diagram by diagram comparison 

with this work, the disagreement lies in a small number of infra-red 

finite diagrams together with the set of five which are infra-red 

divergent. We have substantially checked the content of these 

diagrams ^nd find that the discrepancy still remains. Clearly 

further work is needed in this direction.

In the final chapter, we employed a simple inversion technique 

to arrive at the next to leading order Q.C.D. corrections to the flavour 

non-singlet structure function, and thus the ratio R* gr . A plot 

of the results show thAt this higher order Q.C.D. correction does not 

resolve the discrepancy between the theoretical prediction and the 

data at large X . At the moment, this is no disaster due to the large 

error bars on the data but, if the errors were to decrease and the data 

remain where it is, this may prove awkward for the theory of Q.C.D. 

We conclude then that the subsequent reduction of these errors should 
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be part of a main objective of experimentalists in the next few years.

This is particularly so as from a theoretical standpoint 

perturbation expansion appears to be stable with the next 

order correction being less than 12% for X^O-5 and 6 

falling steadily with increasing Gl .

the Q.C.D. 

to leading 

,^ = *1o Crev^
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APPENDIX

A.l DIRAC ALGEBRA IN D DIMENSIONS 
DIMENSIONAL REGULARISATION FORMULAE 
SU(N) COLOUR FACTORS

v^^^ - DI

Irl^^Tf^) = 4'8^'''

irladdnumbtr op Tf'j) *0

Tr(0l)^f:gl) = A-^x bXc d) +(A<^Xpb) -((k.c,Xb.(()]

Tf^^jzcx/^ :: ^.A.b f iD-4^) A)f

To combine propagators, use the Feynman parameter identity

which reduces for the case of two propagators to

Pl^ilPW °

(A.l)

(A.2)

(A.3)

(A.4)

(A.5)

(A.6)

(A.7)

(A.8)

(A.9)

(A.10)

(A.11)
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D dimensional loop integrals

J^-k " , ;„ -- tl-i) n(N-9rM^-te]

f<t"k —y^—- Leo riN-i-z) Q^ [M^-it] (A.13) 

integrals containing an odd number of kp in the numerator are zero 

by symmetry

Zcwi. ru) = z -^^£ +O(e) (A. 14)

Euler's constant

= 0 Sl-^Z (A.15)

r(Ml) =AP(A) (A.16)

Generators of 5lA(n) symmetry are ^, where the Gell-Mann

matrices satisfy

[7f,x'] -2lf^''X (A. 17)

TriTi'V) > 2 8*® (A. 19)

with ^^^ the totally antisymmetric (real) group structure constants 

.A6C
and G totally symmetric

(A.20)
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Q^R) = n-l 
2n

(A.21)

C(Cr) - n (A.22)

^ flavours (A.23)

A2 SAMPLE ANGULAR INTEGRALS OVER PROPAGATORS

All integrals are performed in the rest frame of K with

K°
2 (A.24)

2ir +i
jdn - jd)!, jiX(cose) 

0 (A.25)

2n- 1 /n[(Mf-iup+2b^XM^Y^ kA.26)

1 , ^J qr^-K-Ck-*j(K.1r)"-K261^‘
(A.27)

2^ (A.28)

KK
2|,'.K
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jtiin —„ - 2n [ -Ik.K \

(A.29)

1
l^-K+kfl^+t-k,)" "[i^K^YL2q>K0^+k^^^.

(A.30)

A3. SAMPLE FINAL INTEGRALS

(k<v)^ b''^

INVOLVED IN THREE BODY PHASE SPACE

+

The variable V is the ratio of the invariant mass squared 

of the gluon, quark or ghost pair produced^to the centre of mass 

energy 5=‘{|>-«’<|,)

A =- >1 (A.31)

1^ is an infinitesimal regulator, ''^- ^ , where fV^^ is a small 

mass given to the final state quark struck by the virtual photon of 

momentum (^ .

1

"■^3(5^)
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Jaw. -J=— - fWl) (A.34)

J aw. [*) " -t^4fCn _ 6^ % - Z (A.35)

1—/xig/^iH4^}2!l (A.37)

''(^^3)(&-Qf^;^)-'^(6+A)4i^Uj-^ -3;^(o) - (@]

where the dilogarithmn function :f(x) is defined by

X 
j^(x) = f J!!^ iZk

;M1) '^ ^

and the function 3(^) ^^^

X

3(0)* o
9h) = if la)

(A.40)

(A.41)
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Finally sample dilogarithmn integrals are

A4 RESULTS AND DEFINITIONS OF THE NUMERICAL INTEGRALS.

The integrals performed numerically in diagrams 11 and

defined by

f;,,xM4«*F«’k Wt>tv'<-t’')stf'')et|>™j[f;,,,J

0 0

where

K^ - SV

(h+c|<)K = zl^"^^)

(A.42)

(A.43)

(A.44)

12 are

(A.46)

(A.47)

(A.48)

(A.49)

(A.50)

(A.51)
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1>.K “ ^ "^(.' -li-'')y)

(t.-K)'= 5(v -^ixU-c-^Jy))

(A.52)

(A.53)

(A.54)

(A.55)

(K-MK ^it'-^ " kX T^O ^)y) (A.56)

C = K^'-|,yK42),,KM).K 'ZK^k^ +2K^|).K (A.57)

A = 0)'h).K|>.K K^hK (A.58)

k (A.59)

WK-llP-WK -R/ (A.60)

\ (|LKf%h))\l|t/-K^-24*'-))).K) /
(A.61)

' |)|p\2|,'.K fK4/
(A.62)
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12 - 2TT(|?-Kf R

2Tr(|)-K)^ R^ 2A(2|,.K+^K^-KK) -2lAhKf-^iK(K-'^).K(^K^-^.K

kjcQpLWW.K f^Kl^^hK+iK^-MK))

(A.63)

6K^(^.Ky' +^hKK^W)'K +(kKfQ»'-M.K.

+ A^2|>.K4.K^) - 3^^KC

^ L / A
^]p(*^4KKllp'-b)K "^-pKh-K -2K^h1)/

^kf'CllK^hK +K:()>L),).K)

2TTq)-Ky h*>' \ "^
(A.64)
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i, :" "zni^-KfR^ k/()''-|))K((h<^f-4|).K) + hK(-:^kK(k+€^f +W|).K

+
"^ L

tGl^Kf - 6|)X^^' -ZKKCWqrf +2kK(M1'f

""^1 ^A^^Ydt'-MK +64'.rfdt).K

4j^(M»'f^iC()»'-HK(-ZM>'+2|,.K) -2^.|,'K

" zrr ^ (^^ +^^Z^JS[,^^^ "ll'^f ])

(A. 65)

zF K^|)-Kf J

hl - 'll 'll (A.66)

These three contributions correspond to the following S-channel cuts

_ pM 
II

: (b)
U
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It should be said that it is possible for R to vanish in the 

phase space integral, but one can show that in this region the numerator 

also vanishes to cancel this fake ’pole’.

The values of the first ten moments of the functions f|i lal-X) 

are tabulated below. They are accurate to three significant figures

(A.67)

Then

n
2 -0.0390 -0.248

3 - 0.0193 -0.182

4 - 0.0113 - 0.143

5 - 0.00768 -0.119

6 - 0.00530 -0.102

7 - 0.00415 - 0.0893

8 - 0.00323 - 0.0792

9 - 0.00260 - 0.0703

10 - 0.00213 - 0.0648

These numbers represent a small contribution to R^'^^ 

(the largest effect is v 7% in the M5 scheme for n = 2) 
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