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Many populations in the social sciences have a hierarchical structure. For example,
individuals are often nested within communities which themselves lie within larger units.
In such cases, the characteristics of the context in which a person lives are likely to
influence their behaviour and thus responses for individuals in the same community
will tend to be correlated. Hierarchical data structures can also arise in longitudinal
studies where observations over time are nested within an individual, and responses
for the same individual may be correlated. One example of longitudinal data is an
event history, where an individual is observed until the event of interest occurs or the
observation period ends. Multilevel modelling techniques, which take into account these
intra-unit correlations, have been developed to analyse hierarchical data. A multilevel

approach can also be used as a convenient way of allowing for the effects of omitted
covariates, or unobserved heterogeneity, in discrete-time event history models.

In this thesis, multilevel modelling techniques are used to analyse a variety of hierar-
chical population structures in the areas of health and family planning. Four empirical
studies are presented. In the first study, a multilevel multinomial model is used to
analyse variations in contraceptive choice in Bangladesh between districts, and within
districts between clusters. The analysis shows that a large proportion of the district-level
variation in modern method use can be explained by differences in réligious practice and
literacy. Another study uses a two-level event history model to allow for unobserved
heterogeneity in women’s risks of contraceptive discontinuation in China. This is ex-
tended to a four-level model to analyse the extent of extravariation at the district,
cluster and woman level in contraceptive method switching in Bangladesh. The results

from these studies provide strong evidence of unobserved heterogeneity between women
in contraceptive behaviour.

Multilevel models are also applied in the area of child health to study immunisation
uptake in rural Bangladesh. The results show that even after controlling for a range of
child-, parental- and household-level characteristics, there remains substantial variation
in immunisation rates due to unobserved factors at the household and village level.
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Chapter 1

Introduction: Hierarchical

Structures and Contextual Effects

1.1 Hierarchical Structures

Many populations in the social sciences have an inherent hierarchical or nested struc-
ture. People are nested within local communities which are themselves nested within
countries; children are nested within families; pupils are nested within classes which are
in turn nested within schools. Where hierarchies exist, characteristics of the context
in which a person lives are likely to influence their behaviour. For example, one would
expect individuals selected from the same community to share similar attitudes and
therefore show behavioural patterns that are more alike than those of individuals se-
lected randomly from the population at large. Children in the same family share certain
genetic characteristics and environmental conditions which may lead them to experience

similar risks of illness or mortality. Similarly, since pupils in the same class are taught
by the same teacher, one would expect the performance of children with similar back-
ground characteristics and academic ability to be more alike if they are from the same
class than if they were from different classes. Researchers have suspected the impor-
tance of contextual effects, or factors operating at one or more levels of aggregation,

on individual behaviour for many years. Of particular interest is the extent to which



people’s behaviour is affected by the social groups to which they belong and how the
characteristics of these groups interact with individual-level characteristics. It was not
until the early 1980s, however, that appropriate statistical techniques were developed to
enable these and other important questions to be addressed. Standard regression tech-

niques ignore hierarchical structures and the clustering of outcomes which can occur

at each level. Multilevel approaches model the complex correlation structure between

outcomes at each level and as such provide a more faithful reflection of the true nature

of the social systems to which individuals belong.

Hierarchical structures can also arise from the study design. In longitudinal studies,
observations are made over time on the same individual. This gives rise to a two-level
hierarchical structure with repeated observations (level 1) nested within individuals
(level 2). Longitudinal data are now collected routinely in developing countries in the
form of retrospective data on birth and contraceptive use histories. In Britain, a number
of panel studies, such as the National Child Development Study or the British House-
hold Panel Study, follow a sample of individuals through time and collect information
in successive waves of the survey. Other examples of prospective longitudinal data are
those collected in surveillance systems operated by the International Centre for Diar-
rhoeal Disease Research and Save the Children USA in rural Bangladesh to monitor

the progress of development programmes. Such studies are a rich source of data which

can now be analysed using multilevel techniques to take into account the correlations

between successive outcomes over time for a given individual.

Another way in which hierarchical structures can arise is as a result of the survey design
which in many cases reflects the structure of the population: typically households are
selected from clusters or primary sampling units which have themselves been selected
from larger administrative areas. Thus the hierarchical structure is an artefact of the

multistage sampling techniques which have been used as a convenient means of select-
ing the sample. In such cases, the use of standard regression techniques, which assume

that individual observations are independent and identically distributed, is equivalent
to treating individuals as if they were selected using simple random sampling. This
problem  has been well known in the sample survey literature for many years and ap-

propriate methodology has been developed to take into account clustering or ‘design



effects’ (Skinner et al. 1989). However, while these procedures take proper account of
the complex nature of the survey, they usually treat the actual structure of survey data
as a nuisance. If the hierarchical structure is of substantive interest, multilevel analysis

techniques which model the population structure more explicitly can be used.

1.2 Early Approaches Used to Analyse Contextual Effects
in Demography

Analysts used to adopt one of two approaches to analyse hierarchical data: an individual-
level analysis using individual data only or an aggregate-level analysis using individual
data which have been aggregated to the group level. The individual-level approach re-
mains the most popular way of analysing the determinants of demographic behaviour.
However, an individual-level analysis ignores contextual effects altogether and assumes
that a person’s behaviour can be determined by his or her individual characteristics
alone. Such a model implicitly assumes that individuals act independently of each
other which is clearly unrealistic in most contexts. Alker (1969) refers to this as the
atomistic fallacy. At the other extreme, aggregate-level approaches such as multivari-
ate areal analysis (Hermalin 1979) ignore variability within groups. The ecological
fallacy (Robinson 1950) arises when one attempts to make inferences about individual
behaviour from an analysis of aggregate data which suppresses within-group variabil-

ity. Typically, relationships between aggregate responses and aggregate covariates tend
to be stronger than relationships between the corresponding individual responses and

individual covariates which can make cross-level inferences highly misleading.

It was later recognised that a more complete analysis of individual behaviour should

model] the effects of characteristics of the individual and of their context simultaneously.
During the late 1970s and early 1980s, contextual models came into use which attempted

to explain variation in individual-level behaviour in terms of individual and contextual
effects. These early models (also called multilevel models in the literature) simply
related individual responses to covariates defined at both the individual and aggre-
gate level, using standard regression techniques for single-level data. Interaction terms

between individual and contextual variables were often included to examine whether



factors operating at higher levels modify or are modified by individual relationships.

In an effort to evaluate the extent to which demographic decisions are influenced by the
community or social setting in which people live, the World Fertility Survey (WFS) pro-

gramme designed and implemented a community module to complement the individual-
level data collected in household surveys. Data including measures of accessibility of
the community, development indicators and the presence of family planning and health
services were collected in rural areas of 17 developing countries. In a WFS seminar
in 1983, the results of a number of contextual analyses which utilised these and other
community-level data were disseminated (Casterline 1985). Most of these studies sought
to examine the joint impact of individual factors and characteristics of the community,
such as the availability of family planning services, on fertility and contraceptive use.

In general, however, the results were inconsistent and showed little conclusive evidence

of contextual effects on individual behaviour.

There are a number of possible explanations for the rather disappointing findings of
these early studies of contextual eflects. The quality of the WFS community data may
have been a contributing factor as it has been suggested that, in general, the community
surveys were not well designed or carried out with the same care as the individual surveys
(Casterline 1987; Freedman 1985). There were also criticisms of the type of information
collected (Bilsborrow 1985; Holt 1985). For example, no data on quality and usage of

family planning facilities were gathered; only information on the presence of clinics and

other outlets and in some cases their distance from the community was collected. This
placed limitations on the contextual analyses which could be performed as only very
crude measures of service availability could be incorporated in the models. Further,
many of the other factors which might be expected to influence fertility and related
behaviour, such as the attitudes of others in the community and local social norms,
are not readily measured and therefore only much simplified proxies of these sometimes

complex phenomena could be considered in the analyses.

Since the WFS analyses, there have been several studies which have had more success
in establishing links between community characteristics and individual behaviour. For

example, Entwisle et al. (1984) utilised data from a community survey which was



carried out in rural Thailand following a Contraceptive Prevalence Survey (CPS). They
found a community-level variable measuring the availability of family planning outlets
to have an important influence on the likelihood of contracepting. In a later study
using data from another CPS community survey in rural Egypt, Entwisle et al. (1989)
found that a number of village-level characteristics had a strong impact on contraceptive
behaviour. These included the level of nonagricultural activity in the village economy,
the modernisation of agriculture, the level of school participation and, to a lesser extent,
the family planning service environment. However, although these studies have been

successful in identifying some of the contextual factors which affect individual behaviour,

the models used do not have an error term for the community level. Therefore, there is
an implicit assumption that all variation between contexts can be explained by a rather
limited set of observed community-level variables. As Entwisle et al. (1989) acknowledge
in the Egyptian context, it is likely that there remain a number of potential contributing
factors which have not been measured, such as the views of the local #mam concerning
contraception and quality (as distinct from quantity) of family planning services. A more
realistic approach would be to allow for error at both the individual and community

level. In addition, an important advantage of splitting the variation into individual

and contextual components is that an estimate of the inter-community variation can

be obtained. Using this approach, it is possible to determine the amount of variation

that can be explained with observed community-level variables and the proportion that

remains unexplained.

1.3 Applications of Multilevel Models in Demography

As described in the previous section, the drawback of the contextual model used in the

WE'S and other early studies is the assumption that all between-community variation is
explained by the community-level variables included in the model. This assumption is
likely to be invalid, especially since many contextual factors which influence individual
behaviour, such as the attitudes of others in the community, are difficult to measure and
are thus likely to remain unobserved. This unexplained component can induce clustering

of outcomes among individuals living in the same context. Therefore the assumption of



independence between individuals in the contextual model is likely to be invalid. Mason
et al. (1983) introduced a hierarchical linear model (also called a multilevel or random
effects model) with separate error components for the individual and contextual levels,
which takes into account extravariation at both levels of the hierarchy. This method was
illustrated in a multilevel analysis of fertility in 15 WFS countries. The multilevel model
of the determinants of the number of children ever born included characteristics of the
woman (level 1), characteristics of the country (level 2), including the gross national

product and a measure of family planning programme effort, and cross-level interactions

between the two sets of variables. The linear model was later extended to a hierarchical
logistic regression model to allow multilevel analysis of binary response data (Wong and
Mason 1985). This methodology was employed to analyse the influence of individual
and country effects on ever-use of contraception in the 15 WFS countries used in the

earlier fertility analysis (Entwisle et al. 1986; Wong and Mason 1985).

Following the papers by Mason et al. (1983) and Wong and Mason (1985), surprisingly
few applications of multilevel modelling appear in the demographic literature. This
may have been due in part to the lack of any strong evidence of contextual effects from
early studies. It is also possible that in the absence of appropriate software for fitting
multilevel models, many researchers may have been discouraged from attempting a full
multilevel analysis. Indeed, most studies in demography and sociology which exam-
ined contextual effects continued to use standard regression techniques which ignore
extravariation at the contextual level. Meanwhile, multilevel models were becoming
increasingly popular in the field of educational research. Since the mid-1980s, there

have been numerous applications of multilevel techniques to examine school effects on

examination results (Aitkin and Longford 1986; Goldstein 1987; Raudenbush and Bryk
1986).

In the early 1990s, multilevel models began to resurface in the demographic litera-
ture with applications to familial clustering of child deaths in developing countries. A
tendency for child deaths to cluster within families even after controlling for many so-
cioeconomic and biological factors had been noted earlier by several authors (Das Gupta

1990; Pebley and Stupp 1987). These studies used the survival status of siblings as a

proxy measure for death clustering due to unobserved family-level characteristics. Guo



and Rodriguez (1992) used a multilevel approach and developed a proportional haz-
ards survival model incorporating a family-specific random effect to capture unobserved
familial effects on child mortality. Curtis et al. (1991, 1993) and Zenger (1993) used
random effects logistic models to explore the extent of familial clustering in neonatal

and postneonatal mortality, an approach also adopted by Madise and Diamond (1995)
and Curtis and Steele (1996). The results provide strong evidence of death clustering

in a number of developing countries. A recent paper by Sastry (1996) uses a three-level
proportional hazards model to test for the presence of clustering in Brazil at both the
family and community level. He finds that after controlling for characteristics defined

at the child, family and community level, there is no evidence of extravariation between
communities or between families. In the less developed Northeast region, however, a
number of contextual variables are found to have an impact on child mortality risks.

These are the type of water supply, the presence of a refuse collection service and public

cleaning, sanitation and electricity. Another recent study by Pebley et al. (1996) uses a
three-level multilevel logistic model to investigate clustering in other health outcomes,

namely prenatal and delivery care and childhood immunisation, also at both the family
level and community level. They find a substantial amount of intra-family correlation

for all the outcomes considered. In particular, there is strong evidence that families

who use or do not seek prenatal care for one pregnancy are very likely to do the same

for the next. There is also considerable correlation within communities.

1.4 Applications of Multilevel Models in Event History
Analysis

An event history is a longitudinal record of the occurrence of events to an individual
over time. In demography, commonly studied events of interest include births, deaths,
marriages and discontinuations of contraceptive use. In event history analysis, the
time to some event is usually modelled as a function of individual characteristics. The
implications of unobserved heterogeneity in such models, that is variation in the risk
of event occurrence due to omitted covariates, have long been recognised (Vaupel et al.

1979). As a result, a number of continuous-time survival models which control for this



extravariation have been developed (e.g. Blossfeld and Hammerle 1989; Manton et al.
1986). A convenient way of incorporating unobserved heterogeneity into a discrete-time
event history model is to use multilevel techniques. To fit a discrete-time model, the data
must first be restructured to obtain a binary (if there is only one type of event of interest)

response for each time point, indicating whether the event has occurred. Therefore the

data have a two-level structure, time units (level 1) nested within individuals (level 2),

and the model can be estimated as a multilevel logistic model with a random effect at

the individual level.

This discrete-time approach has been used by Egger (1992) to model the length of birth
intervals and Davies et al. (1992) to study the time from marriage to a woman’s entry
into the labour force. An advantage of using multilevel techniques is that the basic

model can be extended straightforwardly to account for extravariation at additional

hierarchical levels. One obvious such extension is to the analysis of recurrent events.
For example, in the above studies, it is likely that a woman will have more than one
birth over her reproductive career and individuals may repeatedly move in and out of
the labour force. Repeated events can be analysed in a multilevel framework where time
units (level 1) are nested within events (level 2) within individuals (level 3). The model

can be extended to further levels in order to study, for example, areal variation in the

rate of event occurrence.

1.5 An Outline of the Thesis

In this thesis, multilevel techniques for discrete responses are used to analyse hierarchical

demographic data. The four studies presented are a series of analyses of family planning

and health data which illustrate just some of the considerable potential of multilevel
models in these areas of research. The second chapter outlines the fundamentals of
the theory of multilevel models for continuous, binary and multinomial response data.
Some of the most commonly used estimation procedures are described. Diagnostics,

prediction, the estimation of higher-level residuals and their interpretation in multilevel

models, and model fitting strategies are also discussed.



The first study, presented in Chapter 3, is an analysis of contraceptive choice in Bangladesh
using data from a national fertility survey. A three-level multinomial model is employed
to analyse the determinants of current use and the type of method used. Random efects
are incorporated in the model to examine inter-district variation, and variation within
districts between sampling clusters. After controlling for a range of demographic and
socioeconomic characteristics of the woman, district-level variables are added to the
model in an attempt to explain some of the between-district variation. A useful feature
of multilevel modelling is that the partitioning of the unexplained variation into com-
ponents for each level in the hierarchy enables the proportion of inter-district variation

that can be attributed to these district-level characteristics to be determined.

The other studies all use multilevel discrete-time event history methodology. These
techniques and related life table methods are described in Chapter 4. The simplest
single-level model for situations where there is only one type of event of interest is
presented first. Extensions to multiple kinds of events and repeated events are then
discussed. Finally, event history models which incorporate unobserved heterogeneity

are described. The estimation of such models can be achieved via the use of multilevel

models for discrete response data.

Multilevel discrete-time event history models are first applied in Chapter 5 to analyse the
factors affecting child immunisation uptake in several rural regions of rural Bangladesh,
using a longitudinal data set collected by Save the Children USA. In this case, there is
only one type of event of interest—the completion of a child’s immunisation schedule.

The main focus of interest is the extent of extravariation at the child, mother, household

and village level.

The two remaining analysis chapters use multilevel event history techniques to study

two related aspects of contraceptive use dynamics—contraceptive discontinuation and
switching. In Chapter 6, a competing risks model is developed to analyse the deter-
minants of contraceptive discontinuation in China by the type of reason for stopping

use. Since women may experience more than one discontinuation over the observation
period, random effects are incorporated to allow for unobserved heterogeneity between

women and for the correlation between the durations of repeated use intervals which



may result from this extravariation. A separate random effect is included for each type
of discontinuation as the effects of these unobserved woman-level factors may vary by the

reason for stopping use. Such a model may be estimated using the multilevel techniques

which have been developed for multinomial response data.

The study in Chapter 7 utilises calendar data from the Bangladesh Demographic and
Health Survey to analyse changes in contraceptive behaviour among users. After a
woman has adopted a method of contraception, she may continue using the same
method, switch to another method or abandon use of contraception altogether. Of
most interest to family planning policy makers are the factors which prompt a woman
to switch from an effective method to an inefficient method or to non-use when she is
at risk of experiencing an unintended pregnancy. A competing risks framework is used
to examine switching behaviour over the six-year observation period. As in the analysis
of discontinuation, there are likely to be unobserved factors that influence use patterns
and consequently durations of successive use intervals for the same woman are possibly
correlated. Therefore woman-specific random effects for each type of switch are incorpo-
rated in the model. In addition, there is the potential for clustering at two higher levels
of aggregation: the sampling cluster and district. One might expect women living in
the same cluster to exhibit similar patterns of switching behaviour as they have access

to the same family planning services and a similar range of method options. There may

also be some 1mportant district-level characteristics that induce nesting of sampling

clusters within districts.

Finally, the main results and substantive conclusions of all four studies are discussed in

Chapter 8. In particular, some of the questions which these analyses have raised and
ways in which they might be addressed through further work are discussed. Some ideas
for future research using multilevel models in demography are also suggested.

10



Chapter 2

A Review of Multilevel Theory

2.1 Introduction

This chapter provides an overview of the multilevel theory of most relevance to this

thesis. More detailed expositions of the theory of multilevel models can be found else-
where, e.g. Bryk and Raudenbush (1992) or Goldstein (1987,1995). We begin by looking
at the problems associated with the single-level approaches commonly used to analyse
hierarchical data before the development of multilevel modelling techniques. These are
contrasted with a simple two-level model for continuous response data. This is followed
by an outline of some possible extensions to the basic random intercepts model, for
example to allow for random coefficients or further hierarchical levels. We then review
three of the most popular estimation procedures used to fit linear multilevel models:
iterative generalised least squares, the EM algorithm and Fisher scoring. Prediction,
residual estimation and a method for calculating confidence intervals for higher-level

residuals are also discussed. In a multilevel model, residuals can be estimated for each

level in the hierarchy. These are useful not only for checking model assumptions, but
also for substantive reasons; for instance, they allow comparisons to be made between

higher-level units after controlling for important background characteristics.

Finally, nonlinear models for discrete response data are presented. In particular, the

multilevel logit model for binary responses and the multilevel multinomial logit model

11



for polychotomous responses are described. Some of the many estimation procedures
used to fit multilevel logit models for binary data and an algorithm for estimating the

multinomial model are reviewed.

2.2 Single-Level Approaches: Individual versus Aggregate

Before the development of multilevel modelling, researchers were presented with two

approaches to analyse their data based on the level of aggregation. For data with a

two-level hierarchical structure, there were two alternatives: the individual level or the

aggregate level.

To consider the individual level approach first, suppose that there are two hierarchical
levels with J clusters at level 2. Let y;; be the response for individual ¢ in cluster j (of

size nj) and let x;; be a covariate. Then the individual model would be

Yij = Po + Pizij +eij, t=1,...,n55 7=1,...,J (2.1)

where
eij ~ N(0,0%),

COV(B,'j,ﬁ!jl) = 0, ij 75 i'j’.

The problem with analysing data at the individual level is that it is assumed that all
individuals are independent, even within the same cluster, which is often an invalid

assumption. If the context in which individual behaviour occurs is ignored, one may be

open to the atomistic fallacy (Alker 1969).

The alternative i1s to analyse data at the second level by modelling the aggregate re-
sponses for each level 2 unit. This approach gives rise to the following model

Uj = Po + Pr1Z; + &;

where



The problem with this approach is that relationships at the cluster level may not be
the same as relationships at the individual level. The ecological fallacy (Robinson 1950)
arises when one attempts to make inferences about individual behaviour from an analysis

of aggregate data which fails to take into account within-cluster variability. Typically

one finds that relationships are stronger at the aggregate level than at the individual

level.

Multilevel models (also known as random effects models, random coefficients models,
mixed models and hierarchical models) avoid these problems by working at both lev-

els simultaneously. One of the most important advantages of the multilevel approach

is that it is more faithful to the true nature of the social system in which individu-
als live. Whereas in the individual-level model all unexplained variation is assigned to
the individual level, in a multilevel model variation is split into separate components
corresponding to the levels in the hierarchy. Therefofe it is possible to determine not
only the individual-level background characteristics which lead to differences in individ-
uals’ behaviour, but also the extent to which these differences may be attributed to the

context in which they live. This feature of multilevel modelling has proved important
in educational research as it enables comparisons in schools’ performances to be made
after taking into account compositional effects such as the socioeconomic characteristics

of pupils within each school (Aitkin and Longford 1986; Goldstein 1987).

In addition to the substantive advantages of a multilevel approach, there are technical
reasons for favouring multilevel analysis above standard techniques, even if the substan-
tive aspects are not of direct interest themselves. In a multilevel model, units within
a cluster are allowed to be correlated. This is clearly a more realistic assumption than
the independence assumption of a single-level analysis, since there are many situations
where one would expect individuals in the same cluster to be more similar than individ-
uals in different clusters. A consequence of this is that in a single-level analysis standard
errors tend to be underestimated. Goldstein (1995) states that to obtain an estimate of
the correct standard error for the estimate of 8; in (2.1) in the presence of clustering,
the ordinary least squares (OLS) estimate needs to be multiplied by a function of the
within-cluster correlation and cluster size. This function is equal to 1 if there is no

within-cluster correlation or if there is only one individual per cluster, in which case the

13



OLS estimate of the standard error will be adequate. However, if the within-cluster cor-
relation is non-zero, there will be fewer independent observations per cluster, and as the
cluster size increases the OLS estimate increasingly underestimates the true standard
error. Therefore, if there is correlation between responses within a cluster, confidence
intervals based on OLS estimates will tend to be too short and significance tests will

too often reject the null hypothesis. This may lead to incorrect inferences and spurious

relationships being detected.

Although the importance of using a multilevel approach to analyse hierarchical data
has been recognised for many years, estimation of multilevel models was restricted by

computational difficulties and it is only in the last 10 years, with the introduction of

appropriate computer software, that these techniques have been viable.

2.3 The Linear Multilevel Model for Continuous Response
Data

2.3.1 The Random Intercepts Model

The simplest form of a multilevel model is a random intercepts or variance components
model. In this model, regression lines for the relationship between the response y and
covariate z can have different intercepts for each cluster, though each line shares the

same slope. In other words the average response (represented by the intercept) can

differ among clusters, but the effect of the covariate z is constrained to be the same for

each cluster. A plot of the regression of ¥ on £ would show a set of parallel lines, one

for each cluster.

One approach to fitting such a model might be to fit a separate parameter for each clus-

ter. The problem with this fixed effects model, however, is that the number of clusters J

is often very large and so there would be a large number of parameters to estimate. The
multilevel or random effects approach views the J clusters as a random sample selected
from a larger population of clusters. Rather than estimating an intercept parameter for

each cluster, the multilevel model assumes that the cluster-specific parameters are from
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a distribution for which we estimate the mean and variance.

Suppose y;; is the response for individual ¢ in cluster j and z;; is a covariate. The

random intercepts model can be written

yij = Poj + P1Zij + eij, (2.2)

where

Bo;j = Bo + uoj.

We assume that
€ij v N(O,Ug),

Up; ~~ N(Os 03),

COV(eij, ‘uo_,') = (.

Observations in the same cluster are not independent since

cov(¥ij, Yirjr) = o2 + 02 j=4i=1
=0 j=g i#d
=0 J#7T

The random intercepts model is often referred to as a ‘variance components’ model since

the variance of the response y;; can be decomposed into the sum of the level 1 and level

2 variances.

The single-equation formulation is

Vij = Bo + B1zij + uoj + €.

bo + 1z can be thought of as the fixed part of the model, and uy; + €;; the random
part. By (representing the intercept for the ‘average’ cluster) and B, are known as the

fixed part parameters and o and o2 are the random part parameters.

A criterion for measuring the homogeneity of units within clusters compared to between

clusters 1s the intra-class correlation which is defined as

cov(ij, yir;) of
p = COIT(Yij, Yirj) = e = —3

var(yij)var(yy;) 90
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This measures the proportion of the total variation (o3 + 02) which can be attributed

to between-cluster variation. Hence if of = 0, that is, if there is no variation between

the second level clusters, responses within a cluster are uncorrelated and (2.2) reduces

to a single-level model.

2.3.2 The Random Coefficients Model

A direct extension of the random intercepts model in (2.2) is to allow the slope parameter
B, to vary across clusters too. One could fit a fixed effects model which would involve
fitting a separate regression line for each cluster, but again this is infeasible if there is
a large number of clusters. Also some clusters are likely to contain too few individuals
to estimate a regression model. It is more efficient to use the multilevel approach

which assumes that the cluster-specific intercept and slope parameters come from some

distributions for which we estimate the variances. The random coeflicients or random

slopes model can be written

Yij = Boj + P1Tij + €ij, (2.3)
where
ABOJ = ﬂO + Uo5,
B1; = b1 + uy;.

We assume

eij ~ N(0,07),
ugj ~ N(0,09),
uy; ~ N(0,0%),
cov(uoj, u15) = o1,

cov(esj, uoj) = cov(eij,u1;) = 0.

The single-equation formulation 1s

Vij = Bo + Bizij + ugj + Ziju15 + €ij.

The fixed part of the model is By + 51 z;; as before, and the random part is ug; +ziju;; +

eij. The random coefficients model is analogous to a single-level model which allows for
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interactions between covariates. In the random coefficients model, the term z;;u;; can

be regarded as an interaction between z;; and the unobserved random eftect u;;.

2.3.3 Higher-Level Covariates

So far, we have only considered covariates which are specific to the level 1 units, but

level 2 specific covariates which are constant within each level 2 cluster j can also be

introduced.

The two-level random slopes model with one covariate z;; at level 1 and one covariate

w; at level 2 can be written

vij = Po;j + P15Zij + €ij,
where

Boi = Bo + Tow; + uo;
b1 = B1 + mw; + uyj,

or using the single-equation formulation

Yij = Po + P1Zij + Yow; + MNTijw; + voj + Tijth; + €ij.

This model is sometimes called a ‘slopes-as-outcomes’ model (Bryk and Raudenbush
1992) as we have a regression model for both the random intercept and slope parame-
ter. According to this model, part of the variation in the intercepts and slopes across
level 2 units is predicted by w;, but a random component represented by ug; and uy;

remains unexplained. One strategy in multilevel modelling is to first include only level

1 covariates in the model and then to add level 2 covariates, in an attempt to explain

the variation between level 2 units. It may be that differences between clusters can be

partly or completely explained by certain level 2 covariates.

2.3.4 The General Form of the Two-Level Multilevel Model

Suppose we wish to extend the random slopes model in (2.3) to include p covariates in

the fixed part and g covariates varying randomly at level 2 (including intercept terms).
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The general two-level model for individual ¢ in cluster 7 may be written

Yij = x;jﬂ + Z:-jllj + €, (2.4)

where x;; is a p—vector of covariates, defined either at level 1 or level 2; (3 is the

associated vector of fixed parameters; z;; is a g—vector of covariates (usually a subset

of x;;) the effects of which vary randomly at level 2; u; is a vector of level 2 random

effects.

For example, in the case of the two-level random slopes model in (2.3) with one level 1
covariate we have

xij = (1,2ij),

B = (Bo,B),

zij = (1,%i),

u; = (uoj, u15)-

The model for individuals in cluster j can be written

Y = Xjﬂ + Zjuj- + €, (2.5)

where y; = (y15,.- - yYn;ji)s € = (e1jy.. ., €n,j); X; is the n; X p design matrix for cluster
j for the fixed parameters 3; and Z; is the n; x g désign matrix for the random effects

u; varying across level 2 units. Let var(u;) = ;.
The matrix form of the general model can be written
y = X0+ Zu+e, (2.6)

where y = (y1,...,¥s), u = (uj,...,uy) and e = (ej,...,ey). The design matrices

J

X and Z are of dimension n X p and n x Jq respectively (n = Y} n;). The variance-
j=1

covariance matrix for the random level 2 parameters has a block diagonal structure,

with a block for each cluster, i.e., var(u) = Q = diag(9y,...,0y).

2.3.5 A Three-Level Model

Any of the two-level models described above can be extended to three levels or more.

For example, extending the two-level random intercepts model in (2.2) to a three-level
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model where intercepts vary across both level 2 and level 3 units gives

viik = Bojk + P1Zij + €ijk,
where
Boix = Bo + uojx + vok.

g and vox are random effects corresponding to level 2 and level 3 respectively. The

single-equation formulation is

Yijk = Bo + P1Tijk + uojk + Vok + €;jk-
We assume
eijk ~ N(0,0¢),
ugjx ~ N(0,02),

vor ~ N (0, 012,0)

For a three-level model, we can calculate the intra-class correlation for level 3 units
as well as for level 2 units. For the three-level random intercepts model above, the
total variation is o2 + 02y + 02;,. Therefore, the proportion of the total variance due to

variation among level 2 units is (02, + 02,)/(0? + 02y + 02,) and the proportion due to

level 3 units is 02y/(02 + 02, + 02,).

2.4 Estimation Procedures for the Linear Multilevel Model

In this section, the algorithms most commonly used to estimate linear multilevel models
of the type described in Section 2.3 are described. The three main algorithms are
iterative generalised least squares (Goldstein 1986), the EM algorithm (Dempster et al.
1981; Mason et al. 1983), and a Fisher scoring algorithm (Longford 1987), all of which

have been implemented in available software.

2.4.1 Iterative Generalised Least Squares

Consider the general two-level model in (2.6)
y = X0+ Zu+e,
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where
E(u) = E(e) = 0,

var(u) = (Q,

var(e) = o2I,,.

Let € equal y — X8 = Zu + e, the random part of the model. Also let ¥ equal

var(y) = var(e) = ZQZ' + 021, where I, is the n X n identity matrix.

If 3 were known, B could be estimated using generalised least squares (GLS) to give

the estimator

8= (X's1X)"'X's"1y.

Usually, however, neither ¥ or 8 are known. Goldstein (1986) uses a variation on
GLS, the iterative generalised least squares (IGLS) procedure, to estimate the linear
multilevel model. Essentially, this involves alternating between the estimation of 3 and

B, updating the estimate of one with the current estimate of the other at each iteration

until convergence is reached.

Let a be the %n(n + 1) x 1 vector formed by stacking the squares and crossproducts of

distinct elements of ¢, e.g., the component of a corresponding to cluster j is

— 2 e r . £l €1 ifa: Enifac ol 2
a; = (513 9€15€25,€25 3€15€35,€2;5€35,€35 y---9€n;j )

Then E(a) = W+ where - is a vector containing the variances and covariances of the
random parameters at levels 1 and 2, i.e., the elements of {) and ag; W is a design

matrix which depends on Z. We can then write the model

a=Wry+¢,

where E(§) = 0.

Let I' = var(a) = var(£). I" turns out to be a function of the variances and covariances

of uand e, ie.,, I' =I'(y). If T is known, the GLS estimator of « is

¥ = (WT W) 'Wrla.

20



The IGLS algorithm consists of three main steps:

Step 0 The initial estimate of .

The initial estimate of X is (9 = I,,, where the starting values for the variances

and covariances of the level 2 random parameters are all zero and the initial

estimate for the level 1 variance is o2 = 1.

Step 1 Estimating the fixed part parameters .

At iteration m, the estimate of 3 is
ﬂ(m) — (xlz(m—l)_lx)_lxlz(m—l)-ly, m = 1, 2’ o

The first estimate of 3 is obtained by substituting (% to give (1) = (X'X) ™" X'y,

which is the ordinary least squares estimator for the single-level model.

Step 2 Estimating the random part parameters +.

We first derive a(™ from e(™), where (™) =y — Xg(™),

Since I is a function of the elements of 3, an estimate of I'™~1) can be calculated

from £(™~1), Then the estimate of v at iteration m can be computed as
™) = (WD) Wy T W pim=1" g (m),

A new estimate of £, 3(™)_ is then computed from (™). This is used in a repeat

of Step 1 to calculate an updated estimate of £, Bm+1) at the next iteration.

Steps 1 and 2 are repeated alternately for iterations m = 1,2,... until convergence 1s
achieved.

The IGLS algorithm for the estimation of the multilevel linear model is implemented in
the software MLn (Rasbash and Woodhouse 1995). However, Goldstein (1995) remarks

that for small samples IGLS may produce biased estimates of the random parameters
because it does not take into account the sampling variation of the fixed parameters. In

such cases, a modification of IGLS, restricted IGLS (RIGLS), is recommended to obtain
unbiased estimates (Goldstein 1989).
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2.4.2 The EM Algorithm

Dempster et al. (1981) were among the first to apply the EM algorithm (Dempster et
al. 1977), originally developed for incomplete data problems, to the estimation of linear
multilevel models. To illustrate the basic idea of this approach, consider the two-level

model in (2.6)
y = X0+ Zu+e,

where

e ~ N(0,0°I,),

and

(l = diag(ﬂl, ¢v oy QJ):

where 2; = 2, say, j=1,...,J.

The random effects u are regarded as missing data. Therefore the actual observed data
y are viewed as the ‘incomplete’ data and (y, u) is the ‘complete’ data. The likelihood

function for the complete data can be derived from the joint distribution of (y,u) and

is of the form
L(y,u) = f(y[u).f(u).

Bryk and Raudenbush (1992) show that the complete data log-likelihood, I{y,u) =
log L(y, u), is proportional to

(y,u|B,0%,9,) < -nlog(c?)— Jlog(det N,)

- ee—u'Qu

The log-likelihood can be maximised with respect to 8, o2 and Q,, to give the following
estimates
= (X'X)"'X'(y — Zu),

62 =n"le'e,

Q, = J luu'.
These estimates are in terms of their sufficient statistics, i.e., the sufficient statistics for

B, o2 and Q,, are respectively X'(y — Zu), e’e and uu’.
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Each iteration of the EM algorithm consists of two main steps called the expectation

(E) step and the maximisation (M) step.

In the E-step, the expectations of the sufficient statistics for 8, o2 and 2y, conditional
on y and the current parameter estimates are calculated. Formulae for these conditional
expectations can be found in Bryk and Raudenbush (1992). In the first iteration, initial

values of B and o? are obtained from OLS regression and 2, is set to 0.

In the M-step, the sufficient statistics in the expressions for B, 62 and Q, are replaced by

their conditional expectations computed in the previous E-step. This produces updated

estimates of B, o2 and Q.

The E- and M-steps are repeated alternately until convergence is achieved.

The EM algorithm has been widely used for the estimation of multilevel models, for
example see Mason et al. (1983) and Raudenbush and Bryk (1986). It has been im-
plemented in the HLM program (Bryk et al. 1988) which can handle hierarchical data
with up to three levels. The most attractive feature of the EM algorithm is that it

always converges for any set of reasonable initial values. However, convergence can be

very slow, especially for more complex models or when the random effect variances are

small (Longford 1987).

2.4.3 The Fisher Scoring Algorithm

Longford (1987) describes how a fast Fisher scoring algorithm may be used for maximum

likelihood estimation of linear multilevel models. To illustrate this procedure, consider

again the two-level model in (2.6)

y = X6+ Zu+ e,
where
E(u) = E(e) =0,
var(u) = {2,
var(e) = o21,,.
Let X eciual var(y) = var(ZQZ' + 021,), and let  be a vector containing the random

parameters in 3.
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Then the log-likelihood can be written

(y3.6,6) = — 5 {n1og(2) + log(det ) + (y - XB)' =7 (y — X)),

The first and second derivatives with respect to 3 are

and .
o°l — I -1
5505 =~ X=X

Longford (1987) uses the Newton-Raphson procedure (Thisted 1988) to solve the score

equations 3‘% = 0 to obtain the following estimate of 3 at iteration j:

-1
o) = g0 4 |(-FL ) &
Y = pYv"Y + [( 6[5’3,8’) 35] .

ﬁ:ﬁ(j"l)

In the Fisher scoring algorithm, 35%7 is replaced by its expected value.

Expressions for the derivatives of the log-likelihood with respect to 6 can be calculated
to obtain estimates of the random parameters 6. There are two main stages in each

iteration of the algorithm. In the first stage, an estimate of 8 is calculated using the
current estimate of 6; in the second stage, € is updated using the current estimate of

B. The OLS estimates of B and o2 are used as starting values for 8 and o2 and the

components of {2 are initialised at zero.

The Fisher scoring algorithm has been implemented in the program VARCL (Longford

1988) which is available in two versions: VARL3, which can estimate random coefficient

models to data with up to three levels, and VARL9, which can analyse data with up to

nine levels but allows only a simple random intercepts structure.
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2.5 Residuals and Predicted Values in Multilevel Analysis

2.5.1 Residual Estimation

Consider first the two-level random intercepts model in (2.2) with one covariate z;;
Yij = Po + P1Tij + uoj + €45,

where ug; is the error term for level 2 cluster j, and e;; is the level 1 error term for

individual ¢ in cluster 3.
The predicted value of y;;, given z;; is
Ji; = Bo + B1ij,
and the total residual for individual ¢ in cluster 7 is
Tij = Yij — Yij = voj + €ij-

However, in a multilevel model we require separate estimates of ug; and e;;. We let the

predicted value of ug; be proportional to the mean of r;; in group j such that

n;

where x is a constant chosen to minimise E(tg; — ug_,-)2. to; is called a ‘shrunken’

residual, and & is the ‘shrinkage’ factor which is always less than or equal to 1 {Goldstein
1995).

The optimum value of k for the two-level random intercepts model can be shown to be

. = 03 _ cov(ugj, Tj)
¥ o2 + %E- var(7;)

Since Kot — 1 as nj — 00, up; is predicted by ; for large cluster sizes. If n; is small,
however, 1g; will shrink towards zero (hence the term ‘shrunken’ residual). Thus, for a
small cluster, the residual estimate reflects the relative lack of information in that unit
and places the cluster mean close to the overall population value as predicted by the
fixed part of the model. Note that for n; = 1, kopt = p, the intra-class correlation. If all
clusters are of size 1, there will be no intra-cluster correlation, and g; will equal zero

which gives rise to a single-level model with error only at level 1.
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Now consider the general two-level model in (2.4) with p covariates in the fixed part of

the model and g covariates varying randomly at level 2,
Yij = x:'jﬂ + zij“j + eij,

where var(u;) = Q; and var(e;;) = o2.

The predicted value of y;; is ;5 = x;;’ B, and ri; = yi; —§ij = zij'u;~+e;; is the composite

residual.

Let F; = (1j,...,7n,j), then it can be shown that the estimates of the level 2 residuals

are

1; = cév(u;, fj)vﬁr(fj)‘lrj,

where c6v(u;,T;) and var(F;) are matrices whose elements are functions of 2, 52 and

Zije
The level 1 residuals e;; are estimated by

A ] ~
€iy =T43 — z,-juj.

As for a single-level model, the residuals from a multilevel model can be used for diag-
nostic purposes. The level 2 residuals can be standardised to take account of differences

in cluster size n; by dividing the elements of Gi; by their estimated standard errors. Nor-
mal plots of both sets of residuals can be used to check the normality assumptions. To
test the assumptions of constant variance, residuals at each level can be plotted against
further omitted covariates to see whether any more can be usefully added to the model.

Another use of residuals is to check for the existence of any outlying observations. In

the case of level 2 residuals, outliers are of also of substantive interest and may identify

clusters for further, perhaps qualitative, research.

Level 2 residuals can also be used to predict ‘cluster effects’. In their multilevel analysis

of educational performance of pupils nested within schools, Aitkin and Longford (1986)
used school-level residuals to predict ‘school effects’, that is the effect of a child being in
a particular school on their O-level results, after controlling for their intellectual ability

at the time of starting secondary school. The school residuals were then used to obtain

adjusted rankings of schools according to their average exam performance. Raw rankings
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of school performance are not sensitive to important compositional factors such as the
socioeconomic background of pupils. This often results in schools in deprived areas
having low rankings in conventional school league tables. A multilevel analysis controls
for such factors to allow fairer comparisons to be made between schools. However, some

caution should be exercised when interpreting such rankings of level 2 units as they are
sensitive to model misspecification and typically have large standard errors (Goldstein
and Spiegelhalter 1996). It is possible that the addition of an important covariate to
the model can completely change the rankings (Goldstein 1987). For example Aitkin
and Longford (1986) note that if information on the social class composition of each

school were available and included in the model, some of the observed between-school

differences may have disappeared which would affect the overall rankings.

2.5.2 Confidence Intervals for Higher-Level Residuals

In order to test for significant differences between higher-level units, confidence intervals

can be constructed for each higher-level residual to allow for the uncertainty in the
estimates. Consider a simple two-level random intercepts model with random effect
uj. Let 4; be the estimated residual for cluster j and o; its standard error. Then the

conventional 95% confidence interval for normally distributed u; is given by
u; £+ 1.96 o;.

Typically, however, comparisons across all level 2 units are of interest and, therefore,
a slight adjustment to the conventional interval is needed. This is because when mul-
tiple comparisons are made the significance level a = 0.05 is reduced which makes the
confidence intervals wider than the required 95% intervals. Goldstein and Healy (1995)
have proposed a procedure for the construction of simultaneous confidence intervals to

test for differences between any pair of clusters, while ensuring that the average type

I error over all possible pairwise comparisons remains at the specified value o. The
criterion used to determine whether any two clusters are significantly different is to

examine whether their respective confidence intervals overlap. If they do not overlap,

the differences are statistically significant at the chosen level a.

To describe this approach in brief, suppose there are J independently normally dis-
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tributed estimates of cluster-level residuals 4;, 7 = 1,...,J, with known standard errors
o;. Suppose we wish to compare a pair of clusters j and k, with estimated residuals u;

and 4, and standard errors o; and o respectively. The simultaneous 95% confidence

interval for the 5t cluster residual u; is given by
u; + 2 0y,

where z is selected so that the average significance level over all pairs of contrasts (j,k)

is 5%. An approximation to z is the average of 1.96 o;x/(0; + ox) over all pairs of

clusters (7,k), where azk = var(d; — i) = a + of.

If there are J clusters, there are %J (J — 1) possible pairwise contrasts. Therefore

Ok

~ 1.9 .
N T ) J(J 1) Z o, + O

The process can be extended to enable simultaneous comparisons between more than

two clusters.

Goldstein and Spiegelhalter (1996) illustrate the importance of displaying not only resid-
ual estimates, but also their confidence intervals to allow for the uncertainty in the
estimates. They give several examples to show how confidence intervals can be used
to make comparisons between institutions in the areas of education and health. For
example, in a multilevel regression of exam performance on intake scores, there initially
appears to be large variations in the school-level residuals. However, if a simultaneous

95% confidence interval is constructed for each school residual estimate, they find that
of all possible comparisons between pairs of schools, 2/3 are not statistically significant.
Only a few schools at the extremes can be isolated as having significantly higher or
lower exam scores than the others. In a health example, Goldstein and Spiegelhalter
(1996) present estimates of rankings of health boards in terms of teenage conception
rates. Using a Markov chain Monte Carlo method, Gibbs sampling, variances of these
rank estimates are computed which allow confidence intervals to be constructed for each
health board. These show that once the uncertainty in the rankings is considered, it

1s not possible to reach any firm conclusions about the position of any health board

compared to another.
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2.6 The Multilevel Logit Model for Binary Response Data

So far, we have considered only linear multilevel models for continuous response data.

In the remaining sections of this chapter, nonlinear multilevel models for binary and
polychotomous response data are described. In this section, the multilevel logit model

for clustered binary response data is presented, and in the next section some alternative

estimation approaches are discussed.

Let y;; be the binary response for individual ¢ in cluster j. We assume that y;; are

independent Bernoulli random variables with ‘success’ probability m;; = Pr(y;; = 1).

Then the multilevel logit model can be written
Yij = mij + €ij,
where log (T’:r%;) = nij = x};3 + 2};u;.
Alternatively, the model can be written in matrix notation as

Y =T+e€,

where

log( - )=Xﬂ+Zu.

1l =
As for the linear model, u is assumed to have a multivariate normal distribution with

var(u) = § = diag(£y,...,Q), where Q; = var(u;).

The conditional likelihood function for this model has the form

J 7Ny s Yij
L(Bu) = H H (1 _Uﬂ“) (1 - m;). (2.7)
j=1li=1 J

In order to estimate 8 and §2, one needs to multiply (2.7) by the likelihood for the

random effects u and then ‘integrate out’ the random effects u to obtain the following

unconditional (marginal) likelihood

L(B,0) = / .. f L(Blu)®(u) du, (2.8)

where ®(.) is the probability density function of the multivariate normal.

However, this expression is intractable and some approximation must be used.
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2.7 Estimation Procedures for the Multilevel Logit Model

There is a vast literature on the estimation of random effects models for clustered

binary data. Many approaches have used some form of numerical integration to obtain
the unconditional likelihood in (2.8), see for example Anderson and Aitkin (1985) or
Im and Gianola (1988). The EM algorithm has also been used (Stiratelli et al. 1984),
while other researchers, including Goldstein (1991) and Longford (1994), have opted for
a maximum likelihood approach. Another approach is to use a Bayesian method, Gibbs
sampling (Zeger and Karim 1991). Alternatively, it is possible to avoid the calculation of
the integral in (2.8) by choosing a different link function from the usual logit. Conaway
(1990) uses a log-log link and assumes the conjugate log-gamma distribution for the

random effects which leads to a tractable integral. However, since these methods cannot

be directly extended to other generalised linear models, only those approaches which

assume normally distributed random effects are considered here.

In this section, we begin by looking at ways in which the IGLS algorithm (Section
2.4.1) can be adapted to handle binary response data. This is the estimation approach

adopted in the later analysis chapters of this thesis. There are a number of other possible

approaches, however, and some of the more popular of these are also discussed.

2.7.1 Marginal Quasi-Likelihood Estimation via Iterative Generalised

Least Squares

Goldstein (1991) estimates the multilevel logit model by first linearising the model, using

a first-order Taylor series expansion, and then applying IGLS or iterative reweighted

least squares (IRLS: see McCullagh and Nelder 1989) as for the linear case.

Goldstein uses a first-order Taylor series expansion, expanding about trial values 8 =

ﬂ(o) and u = 0 to give the following approximation (the subscripts ¢ are omitted for

convenience)

p
w2 w(n'®) + ) zk(Br - ﬁﬁo))m(’?(o)) + ) Zkux

7?),  (2.9)
k=1 k

where (0 = x'8(®), and 5oz (n'?) and 522-(n(%) are the first derivatives of 7 with
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respect to zx0x and zuy respectively, evaluated at n(?).

For the logit link,

on
Oz O

where 7(0) = 7(n{0)),

or
szuk

1) = 5 ——(1¥) = 7O(1 - 1) = v say,

Therefore the approximate model is

y=m+ecx 70 4 w(o)x'(ﬁ — ﬁ(o)) + wl%92'u + €,

which can be written in matrix notation as
y ~ 79 4+ WOX(8 -9+ WOZu +e.

where W® = diag(z(9(1 = #(9)), and X and Z are the design matrices for 8 and u

respectively.

Rearranging this expression yields the approximate model
y*'=X*8+Zu + e,

where y* = y—n(0+ WO X0 the working dependent variable, and X* = W{%X and
Z* = W(OZ are the working design matrices for the fixed and random part parameters

respectively.
Approximating var(e) by W9 gives var(y) ~ Z*QZ* + W0,

The structure of this model is that of a linear multilevel model and provides an ap-
proximation to the nonlinear multilevel logit model. Therefore, the IGLS procedure can

be applied, as described in Section 2.4.1 for the continuous response model, to obtain

estimates of 8 and .

Alternatively, rather than applying the linearisation using initial values and then iter-

ating to convergence, Goldstein (1991) proposes the use of an iterative reweighted least
squares (IRLS) algorithm. This involves updating W(® and therefore y*, X* and Z*

at each iteration. In this case the approximation at iteration m is

on

D q
. (m=1)  a(m-1) (m-1) on
TT + k;lxk(ﬁk ﬂk )amkﬁk (n ) + k;l ZkUk

szuk

(n™1).  (2.10)
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A series of macros which recalculate the working dependent variable, working covariates

and iterative weights at each iteration fit this model in MLn.

When fitting the multilevel logit model in MLn an extra covariate z{; is declared at level

1 to ensure that y;; has the required Bernoulli variance, 7;;(1 — 7;;). The model can be

written

!
Yij = Tij + €ij2;;

where z; = /mij(1 — m;;) and var(e;;) = o2.

When fitting the model, the level 1 variance is usually constrained to be purely binomial,

in which case 02 = 1. Alternatively, the constraint on o2 can be relaxed to allow for

extra-binomial variation (Goldstein 1991; Williams 1982).

2.7.2 Penalised Quasi-Likelihood Estimation via Iterative Generalised

Least Squares

Rodriguez and Goldman (1995) found that estimation of the multilevel logit model
using Goldstein’s IGLS approach or Longford’s approximate likelihood approach (see

Section 2.7.4) can lead to a substantial downward bias in the estimation of the random
effects. Their simulation study fitting random intercepts models to data with a range of
different structures, including rectangular and non-rectangular structures and two- and
three-level hierarchical structures, showed that the random effect variance was severely
underestimated whenever 1t was ‘large enough to be interesting’. Furthermore, they
discovered that the fixed efects were also underestimated and differed very little from

those obtained from a standard logit model which ignores the hierarchical structure.

A possible reason for the downward bias of the random effects towards zero could be
due to the fact that the approaches used by Goldstein (1991) and Longford (1994) both
use approximations based on a Taylor series expansion around u = 0. Another factor

could be cluster size since, in the simulation studies, the situation was found to be worse

when the average cluster size was small.

Rodriguez and Goldman (1995) also consider the quadratic approximation proposed by

Goldstein (1991) in which a second-order Taylor series expansion is used. The approx-

32



imation in (2.10) is extended to incorporate second-order terms corresponding to the
random effects, while omitting second-order terms involving the fixed effects, to give

the following approximate model at iteration m

p _ 371' . g 371' -
y = 7™V (B -5 2. (™) + D zeu o~ (n™Y)
=1 k=1
1 g q 6271. (m—1)
= - 2.11
+ 5 kgl Ezkzmku; Sz urdziu, (n ) + e, ( )

where, for the logit link,

O _ (1 — exp(x'f + 2'u))
OzyurOziu; m(1—m) (1 +exp(x’'B + z'u))

However, although the results using the quadratic approximation showed considerable

improvement in the estimation of the fixed effects, the random effects still showed a

strong downward bias.

Based on the penalised quasi-likelihood (PQL) approach of Breslow and Clayton (1993),
Goldstein (1995) adapted the second-order approximation by expanding around u =

ul™=1) rather than u = 0, where u{™=1) contains the current estimates of the level 2

residuals. In this case the approximation in (2.11) becomes

9
S () 3 2k — ") 5 ()
k=1 k k=1

0z kUK

1. o o s -
. gzzzmnua = o)l E ) e
where n(m=1) = x/g(m=1) 4 z/y(m-1)

At each iteration in the IGLS or IRLS procedure, the current estimate of z’ u(m-1)

is added to the fixed predictor x'8(™~1) and is used to compute the first and second

derivatives of .

Goldstein (1995) and Goldstein and Rasbash (1995) have compared simulation results
for the first-order MQL and second-order PQL approximations and found that the
PQL estimates are much closer to the true values than those obtained using MQL. In
particular, PQL also performs well for very unbalanced designs with small cluster sizes,
the situations in which Rodriguez and Goldman (1995) found MQL to produce the
most severely biased estimates. Both MQL and PQL with either first- or second-order
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approximations have since been implemented in MLn. However, Goldstein and Rasbash
(1995) also note that while the first-order PQL approximation nearly always converges,

second-order PQL does not always do so.

2.7.3 The Iterative Bootstrap

Goldstein (1996) proposes using an iterated bootstrap procedure in situations where the
MQL approximation (Section 2.7.1) is inadequate and when the improved second-order
PQL approximation (Section 2.7.2) fails to converge. This is based on a procedure
developed by Kuk (1995) to obtain unbiased parameter estimates in generalised linear
models with random effects and can be applied to any type of nonlinear multilevel
model. The bootstrap (Efron and Tibshirani 1993) is a method used to obtain point
estimates and standard errors via simulation. It is commonly used to provide robust
standard errors and confidence intervals in situations where there is a departure from
the distributional assumptions or when standard errors cannot be directly obtained from
the estimation procedure, for example when the EM algorithm is used. The bootstrap
involves generating a random sample of responses, known as a ‘bootstrap sample’, from
a fitted model and then refitting the same model to the simulated data set to obtain a
new set of parameter estimates. This procedure is repeated a large number of times,
M say, to give M sets of parameter estimates. The ‘bootstrap estimates’ can then be

calculated by taking the mean of each parameter estimate over the M samples. Their

variances are estimated as the variances of the parameter estimates over all bootstrap

samples.

In the iterative bootstrap procedure proposed by Goldstein (1996), the bootstrap is

used to estimate the biases in the parameter estimates at each iteration. The aim is
to then use these bias estimates to correct the original parameter estimates in order to

obtain estimates which are asymptotically unbiased. To illustrate the method, consider

the following two-level logistic model

log( L )= '8 + z'u, (2.12)

1-7!','3'
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where
u~ N(0,)

yi; ~ Bernoulli(7;;).

Iteration O In the first stage of the procedure, initial estimates of the parameters (
and ) are obtained. Goldstein (1996) recommends using the estimates from the
first-order MQL approximation as starting values as MQL nearly always converges

and is considerably faster then PQL. Denote the initial estimates by

FOR L) (2.13)

Iteration 1 In the first iteration, a set of M; bootstrap samples are generated by sam-
pling repeatedly from a distribution with the parameters in (2.13). Binomial and
normal distributions are assumed for the level 1 and 2 residual terms respectively.
The model in (2.12) is refitted to each of the bootstrap samples. We then calcu-
late the average of each of the M; estimates of 8 and §2 to get a set of bootstrap
estimates

FORY V) (2.14)

To determine the number of bootstrap samples required at each iteration, Gold-

stein (1996) keeps a running mean for the estimates of § and 2. In other words,

the bootstrap estimates are updated after every resample and convergence 1s ac-

cepted when two consecutive running means differ by less than a prespecified

tolerance level.

The bootstrap estimates of the bias in 8(®) and (9 are obtained by subtracting
(2.13) from (2.14). These bias estimates are then subtracted from the initial

parameter estimates as a first adjustment to give the following bias-corrected

estimates
3(1) — 5(0) - ([3(0) — 5(0))

. . . ) (2.15)
Q) = QO — (90 — Q)

Iteration 2 In the second iteration, a new set of M; bootstrap samples are generated
from the model based on the current estimates in (2.15). Averaging over the

estimates obtained from each of the Ms resamples gives a new set of bootstrap

estimates

g, W), (2.16)
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The estimates in (2.15) are subtracted from (2.16), and this is subtracted from

the initial estimates to obtain a new set of bias-corrected estimates

5(2) — 5(0) — (5(1) - 5(1))
O2) = O0) _ (ﬁ(l) — ﬁ(l))

This procedure is repeated until convergence is reached. For example, at the kth itera-

tion, the bias-corrected estimates are given by

Bk = BO) — (gk=1) _ 3(k-1))
Q%) = Q0 — (Qk-1) — Qk-1)),

When the procedure has converged, the final step is to estimate the standard errors of
the bias-corrected estimates. These can also be estimated using the bootstrap. When

convergence is achieved, a new set of bootstrap samples is generated from the final pa-

rameter estimates. The standard errors are estimated as the variances of the parameter

estimates over all samples.

At convergence, Kuk (1995) demonstrates that the bias-corrected estimates are asymp-
totically consistent, i.e. they tend to the true parameter values in large samples, and

unbiased. However, although the procedure is relatively straightforward to implement,

it is highly computationally intensive. For example, Goldstein (1996) found that in a
simulation study with a data set of 100 observations, an average of 81 bootstrap samples

per iteration and 14 iterations were required to achieve convergence.

2.7.4 Fisher Scoring

Longford (1994) uses an approximation to the likelihood function in (2.8) based on a

second-order Taylor series expansion of the logarithm of the conditional likelihood in

(2.7) about u =0,

log L(B|u) = log L(B|0) + (y — #'9) Zu — %u’Z'W(O)Zu,

where W0 = diag(#(® (1 — #(0))).

Using this approximation, the unconditional likelihood in (2.8) can be integrated ana-

Iytically. As for the continuous response case (Section 2.4.3), expressions for the first
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and second derivatives of the log-likelihood with respect to 8 and 6 (the parameters in
Q) can be obtained. The Fisher scoring algorithm is then applied, alternating between
the estimation of B8 and 2. This approximation has been implemented in VARCL. How-
ever, Rodriguez and Goldman (1995) show that this procedure is in fact equivalent to

Goldstein’s MQL approach and can produce severe downward biases in the parameter

estimates.

2.7.5 Numerical Integration and the EM Algorithm

A number of researchers have used Gaussian quadrature for the evaluation of the likeli-
hood function in (2.8). This is feasible for relatively simple models such as a two-level
model (Anderson and Aitkin 1985) or for a three-level model where there are no covari-
ates defined at the first level (Im and Gianola 1988). The package SABRE (Barry et al.
1989) uses numerical integration via Gaussian quadrature to estimate simple random
intercepts models. Alternatively, it is possible to approximate the logistic-normal model
by a logistic-binomial model, where the random effect is assumed to follow a symmetric
standardised binomial distribution (Mauritsen 1984). This approach has been imple-
mented in the program EGRET (Statistics and Epidemiology Research Corporation
1991) which can fit more general random coefficient models but only for two-level struc-

tures. The problem with numerical integration approaches is that they can be highly

computationally intensive for more complex models.

The EM algorithm can also be used to estimate binary logistic models (Stiratelli et
al. 1984; Wong and Mason 1985). Again, however, this procedure rapidly becomes
extremely computer-intensive for complex models, since numerical integrations are re-
quired at every iteration in order to calculate the conditional expectations in the E-step.

Also, since usually many iterations are required, convergence can be very slow.

2.7.6 Generalised Estimating Equations

Another estimation approach is that of generalised estimating equations (GEE), intro-

duced by Liang and Zeger (1986). GEE was originally developed for longitudinal data
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analysis to take into account correlation between observations over time on an individ-
ual. However, the procedure can be used to estimate any generalised linear model with
a complex error structure. Zeger et al. (1988) make a distinction between two classes
of model for hierarchically structured data with discrete or continuous outcomes, both
of which can be estimated via GEE: the population-averaged model and the subject- or
unit-specific model. For illustrative purposes, let us consider a two-level logit model for

binary response data y;;. The population-averaged (PA) model can be written

T4 ! n=
log (1 —‘ﬂ'ij) = x;;0,

where
Tij = E(%J’)&
var(yij) = amij(1 — m;j),

va.r(yj) — Ej.

In the PA model, the correlation between responses y;; is represented by a parame-

ter a which is chosen to yield a structure for £; specific to each application. In the
above model, an exchangeable or equicorrelation structure is assumed where observa-
tions within a level 2 unit are equally correlated over time. More complex correlation
structures can be specified, for example, an autocorrelation structure where an individ-
ual’s response at one point in time depends on their responses at one or more previous
time points. An advantage of the PA approach is that no parametric assumptions about
the level 2 heterogeneity distribution are needed. However, in the PA model, primary
interest is focused on obtaining reliable estimates of 8* and the level 2 variance struc-
ture is regarded as a nuisance. Therefore the PA approach does not provide estimates of
the variance components, only of the correlation parameter . In this sense, PA mod-
els are not multilevel models at all. Further, since the PA model provides no specific

information about higher level variation, one can only make inferences about average

population effects.

An alternative specification is the unit-specific (US) model, which is equivalent to the

multilevel logit model described in Section 2.6

-
8 ( r ) = x;;8 + z};u;,

l—ﬂij
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where
mij = E(Yij),
var(y;j) = mi;(1 — mij),
var(y;) = ;.

u; is usually assumed to follow a normal distribution, u; ~ N(0, £2;).

In the US model, the dependency between individuals within a level 2 unit arises solely
from the shared level 2 random effects u;. Since the hierarchical structure is specified
explicitly in the model, the US model allows us to estimate the change in response
probability corresponding to a change in x for any given level 2 unit. The PA model

only allows us to estimate the change in response probability for the population as a

whole.

Both the PA and US model can be estimated using GEE. For example, the generalised

estimating equations for the US model are

(%)! Yy -7)=0, (2.17)

which are solved for £.

For continuous response data with multivariate normal random effects, these are equiv-

alent to the least squares estimating equations.

An iterative estimation procedure is used. At each iteration, an estimate of ¥ is obtained
which is used to update the estimate of 8 via (2.17). However, for the logit link, no
closed-form expression for ¥ is available. Zeger et al. (1988) propose an approximation
to 2 based on a first-order Taylor series expansion about u; = 0. They find that in
general the algorithm converges except when the linear approximation used to calculate
33 becomes inaccurate. This occurs when the response probabilities are extreme, either
too large or too small, when there are few individuals per level 2 unit, or when the level

2 variances become large. Therefore, Zeger et al. (1988) note that the GEE estimates

of £ obtained for nonlinear models are only ‘rough’ approximations and as such should

be interpreted with caution.
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2.7.7 Gibbs Sampling

Gelfand and Smith (1990) give an overview of the potential of Gibbs sampling, a Markov
chain Monte Carlo method, in a number of applications. In particular, this approach
1s recommended for problems where there is no exact solution and where standard ap-
proximate solutions have difficulties. Zeger and Karim (1993) describe how the Gibbs
sampler can be used to estimate a two-level logit model with random coefficients. To il-

lustrate this technique in brief, consider the following two-level logit model with random

intercepts (omitting subscripts i5)

l—7

log( il ) =x'f +u,
where 8 = (6i,...,0:) and var(u) = o2.

The Bayesian approach to model estimation views 8 as random rather than as a set
of fixed parameters as in the frequentist approach. Suppose 8, o2 and u have joint
probability density f(8,02,u|y) and let f1(B|o2,u,y), f2(c2|B,u,y) and f3(u|B,03,y)
denote the conditional distributions of 8, 02 and u respectively. Although f(8,02,uly)

is intractable, the conditional distributions have simple forms.

The Gibbs sampler generates a sample from the joint distribution, without the need to
calculate f(8,02,u|y), as follows. At iteration §, 8U) is sampled from f; (ﬁlaﬁuﬂl), -1, Y).
Next aﬁ(j) is sampled from fo(02|3Y), uU-1), y). Finally ul) is sampled from f3(u|BU, ag(j), y)
to obtain the sample (ﬂ(j), aﬁ(j), u.(j)).

It can be shown that for large 7 the distribution of (ﬁ(j),oﬁ(j ),u(j)) tends to the joint
distribution of the unknown quantities, f(8,02,uly). An initial run of B iterations,

known as ‘burn in’, is performed until convergence is thought to have been reached.

Gelfand and Smith (1990) advocate that the initial B iterations are carried out M times,
while only the B** sample in each run is retained, to ensure that the M samples are
independent. However, Zeger and Karim (1993) suggest that this may not be necessary
and that one run is sufficient in which a further M iterations are carried out after
the ‘burn in’ period and only the first B samples are discarded. The estimate of g;,

t =1,...,k, can then be approximated by the mean of the estimates of 8; across all M
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samples

Estimates of o2 and its standard error can be obtained in a similar way.

The Gibbs sampler has been implemented in the BUGS software (Spiegelhalter et al.

1994) which can be used for a wide range of complex problems, including linear and
nonlinear multilevel models, measurement error and missing data. In the formulation
of the model, the user specifies prior distributions for all the parameters of interest.
A common practice is to specify ‘non-informative’ or flat priors which have very large

variances for 8 and 02, while u is assumed to follow a normal distribution with mean 0

and variance o?2.

An advantage of the Gibbs sampler is that it is relatively easy to implement. It 1s a
technique with considerable potential in the estimation of complex multilevel models.

However, it is highly computer-intensive and judging convergence can be problematic.

2.8 A Multilevel Model for Polychotomous Response Data

In this section, a nonlinear model for hierarchical polychotomous response data is de-

scribed. The multilevel multinomial model is presented, followed by a description of

the data structure required to fit the model in MLn and an outline of how the IGLS
algorithm may be modified to estimate the model.

2.8.1 The Multilevel Multinomial Logit Model

Let yi; be the polychotomous response for individual ¢ in cluster j. Suppose the response

has s possible categories and let 7y = Pr(y;; =r), r =1,...,s, such that 3} _; 7y =
1.
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In addition, define s dummy variables y,;;,

1 fy;=r
Yrij =
0 else, r=1,...,s,

so that myi; = Pr(y,.,-j = 1).

Then taking the final category s as the baseline, the two-level multinomial logit model

can be written
Yrij = Trij T €rij,

where

ﬂ' ‘@
log (ﬂm) = Npij = Xrij Or + Zrij Urj, r=1,...,8—1 (2.18)
8t}

As before, x,;; is a vector of covariates in the fixed part of the model with associated
parameters S, and z,;; is a vector of covariates random at level 2 with associated
random effects u,;. Since the effect of covariates may vary across response categories,
separate O’s and u’s are estimated for each contrast with the baseline. Although In

general the covariates x and z will be the same set and of the same functional forms for
each contrast, there is no such restriction in the model. The u,; are assumed to follow a

multivariate normal distribution with zero expectation and variance §2,;. The random

effects for the same cluster but for two separate contrasts, u,; and u,/; r # r’ say, can

be correlated.

The probability of response category r for individual ¢ in cluster 7 can be written

- exp(7ri;)
ry — -
1+ 3527 exp(mkij)

and the probability of response category s (the baseline) is

’r=1,lll,s—1’

1
TMaii = e
14 371 exp (i)

Goldstein (1995) describes how the multilevel multinomial logit model can be formu-
lated as a multilevel multivariate model, where y;; = (y1i5,...,¥sij) is the multivariate

response for individual ¢j. Using this approach, the two-level model in (2.18) is fitted
as a three-level model with the multivariate response at level 1, the individual now at

level 2 and the cluster now at level 3.
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2.8.2 The Multivariate Data Structure

In order to fit the multilevel multinomial logit model, the data set must first be restruc-

tured to obtain multiple records for each individual, corresponding to the elements of

the multivariate binary response vector y;;.

*

To illustrate the way in which a data set must be restructured, let us consider a simple
example. Suppose the multinomial response y;; has three categories and that we wish

to fit a simple two-level random intercepts model with one explanatory variable AGE.

Suppose the third category of y;; is taken as the baseline. Then the model can be

written

log (ﬂ"’) = a, + B, AGE;; + urj, v = 1, 2. (2.19)

Consider the following sample data set

Individual ¢ Cluster j y;; Constant AGE

1 1 1 1 20
2 1 3 1 25
3 2 2 1 30

The data need to be restructured to obtain two records, or s — 1 in the general case,
for each individual (the record corresponding to the baseline category is redundant). In

addition, one needs to define a new set of covariates for each response category in order

to estimate separate intercept and slope parameters for each contrast with the baseline

category.
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In the above example, the restructured data set would be

r Individual ¢ Cluster j  yri; AGE Cl C2 C1*AGE C2*AGE

1 1 1 1 20 1 0 20 0
2 1 1 0 20 0 1 0 20
1 2 1 0 25 1 0 25 0
2 2 1 0 25 0 1 0 23
1 3 2 0 30 1 0 30 0
2 3 2 1 30 0 1 0 30

where C1 and C2 are dummy variables such that

1 ifr=1
Cl=

0 else

1 fr=2
C2 =

0 else

Cl, C2, C1*AGE and C2*AGE are fitted as covariates in the model and their coefficients

are ay, ag, 1 and B2 in (2.19) respectively. The original multinomial response has been

expanded to two binary responses per individual, y;;; and y2;;. The level 1, 2 and 3

identifiers needed to specify the hierarchical structure are respectively r, ‘Individual’

and ‘Cluster’.

2.8.3 Estimation of the Multilevel Multinomial Logit Model

As for the multilevel binary logit model, the expression for the unconditional likelihood
formed by ‘integrating out’ the random effects u,; is intractable and an approximation

must be used. Again a linear approximation for 7, may be obtained using a Taylor series
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expansion (Goldstein 1995) and then IGLS or IRLS is applied to the linear model. At

iteration m, expanding about G, = ,8,.(""1) and u, = 0, the approximation is (omitting

subscripts 15)
p
~ p(m=1) _ pm=1)y_0Tr . (m-1)
Mg = T + z
r ; k;l rk(Brk = Brr ') 0Lk Box (nr )
! oy -
+ ZrkUrk 3 (ﬂr(m 1))1 (2.20)
k=1 “rkUrk
where n,(m-1) = x! g™,
For the logit link,
on, _ Oy —r(1—,).

azrkﬁrk OZpkUrk

Therefore writing w,(-m_l)(l — m(pm-l)) = w,(Mm=1 the approximate model is

Yr = Ty + ép = Wr(m-l) + wr(m-l)x:-(ﬂr - ﬁrm-l)) ~+ wr(m_l)z:.u,- + e,.

Rearranging this expression yields

¥

yr = Xy Br + 2} Uy + €y,
where
yr = yr — (M=) 4 (Mm=1)x 16, (m=1),
x; = w,m"Vx,,
z* = w,(m-lg
y.*, Xy and z,; are the working dependent variable and covariates in the fixed and

random part respectively.

For a multinomial model, var(yyij) = myij(1 — 7ri5) and cov(yrij, Yriij) = E(Yrij¥ri;) —
E(yrij)E(yr;5). Since only one of yri; and y,;; can equal one for any individual,

E (yr:'jyr'ij) = 0. Hence, COV(yrij, yr*ij)equals = TypijMetiz-

To produce this multinomial covariance structure, an extra set of covariates needs to

defined at level 1 and 2. The model can be written

W - u - & ' .’ ' - 8 ’
Yrij = Trij + Tij%1rij + V2ij%2rij + €rij<3rij»

Mrij _ __Trij

where z),;; = Vs Zorij = — 75 23rij = /Trijs E(mij) = E(v2i5) = Elerij) = 0;
var(mi;) = var(y2ij) = 0; var(erij) = 1; cov(mij,v2ij) = 1; and cov(miij, erij) =

COV(’Yzij, erij) = 0.
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To allow for extra-multinomial variation, cov(71ij,72ij) and var(eri;) can be different

from 1, but constrained to be equal.

As for the binary logit model, the MQL approximation in (2.20) can be extended to a
PQL approximation using a second-order Taylor series expansion about 8, = ﬂ,(m'l)
and u, = u,-(m"'l). The second-order terms involve the calculation of the second deriva-

tives of 7, which for the multinomial logit model are

0%, - 0%n,
O(zrkBri)?  O(zrktrk)?

MLn macros are available for fitting the multilevel multinomial logit model using MQL

—_ Tr?-(]. i ﬂ'r)-

or PQL estimation procedures with either first- or second-order approximations. The
macros set up the multinomial covariance structure and, at each iteration, recalculate

first and second derivatives of 7, and carry out the necessary data transformations to ob-

tain the working variables y*, x* and z*. MLn can also perform the data manipulations

necessary to create the multivariate structure described in Section 2.8.2.

2.9 Hypothesis Testing and Model Selection in Nonlinear
Multilevel Models

This section begins with a discussion of hypothesis testing for both fixed and random

parameters in multilevel models. This is followed by some practical guidelines for fit-

ting multilevel models to discrete response data, including suggestions for speeding up

convergence and overcoming convergence problems.

Suppose we wish to test the null hypothesis Hg : § = 0 against the alternative H; : 8 # 0,
where  is a parameter in the fixed part of a linear or nonlinear model. A common
approach 1s to carry out a likelihood ratio test in which the likelihood ratio or deviance

statistic 1s calculated as

Do1 = —=2log(Ao/A1),

where A is the likelihood under Hy, and A, is the likelihood under H;. Dg; is compared
with a x? distribution on r degrees of freedom, where r is the difference in the number

of parameters fitted under the two models (in the above example, r=1).
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Sometimes, however, we are interested in linear combinations of parameters. For exam-
ple, to test whether two parameters 8, and B, are equal, we would test the hypothesis
Hy : 1 — B2 = 0. Goldstein (1995) describes a more general hypothesis testing proce-
dure that allows such contrasts to be tested. Let C be a r X p ‘contrast’ matrix, so that

the hypothesis test for the linear combinations of the model parameters can be written

in the form

Ho:Cﬂ'-:k.

For example, suppose 8 = (B9, 51,32) and we wish to test Hy : 5 = (2 (i.e. Hp :
B1 — B2 = 0). Then this test can be written in the form

Hy: CA =0,
where C = (0,1,—1)". To carry out the test, we form the test statistic
R = (CA-k)[C(X'S"1X)'C"}(CB - k).

This is compared with a x? distribution on r degrees of freedom, where r is the number
of linear contrasts to be tested. Recall that 3 is the estimated covariance matrix for
the response vector y and (X'3-1X) is the estimated covariance matrix for the fixed

parameters 3. This test can be performed by MLn. The user specifies C and k and

MLn calculates R with the corresponding p-value.

For continuous response models, likelihood ratio tests may be used to test the signifi-
cance of the random effect variances and covariances. However, Goldstein (1995) states

that likelihood ratio tests are unreliable for binary response data and recommends the

use of an approximate chi-squared test for linear contrasts of the form
Hp: CO =k,

where 0 i1s a vector containing the variances and covariances of the random effects.

Again, the appropriate test statistic and p-value can be computed in MLn.

In the remainder of this section, some strategies for model selection and model fitting
using MLn are discussed, with particular reference to discrete response data. For con-
tinuous response data, convergence tends to be very fast and convergence problems are

rarely encountered. Convergence is usually much slower for nonlinear models, especially
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for the multinomial logit model (Section 2.8.3). However, the number of iterations re-
quired may be considerably reduced by specifying alternative starting values to the OLS
estimates used by MLn. A straightforward way of obtaining suitable starting values 1s
to first fit the corresponding single-level model. These estimates can then be used as
initial values for the fixed parameters in the multilevel model. The strategy of fitting
single-level models prior to carrying out a full multilevel analysis can also be a useful

aid to initial model screening, since each iteration of the multilevel multinomial model

estimation procedure is very slow.

In some situations, particularly if the second-order PQL approximation (Section 2.7.2)
is used, convergence may not be achieved unless suitable starting values are used. If
convergence problems occur, one strategy which is often successful is to begin by fitting
a first-order MQL model (Section 2.7.1), using single-level estimates as starting values.
The first-order approximation yields initial values for both the fixed and random pa-
rameters. This model can then be extended to a first-order PQL or second-order MQL

approximation, which can be further extended to the second-order PQL model.
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Chapter 3

Contraceptive Choice 1n

Bangladesh

3.1 Introduction

Since the mid 1970s, there has been a rapid decline in fertility levels in Bangladesh.
The total fertility rate (TFR) dropped from 6.3 in 1971-75 to 5.1 in 1984-88, and has
continued to fall to 3.4 in 1991-93 (Mitra et al. 1994). The major determinant of
the fertility decline is the large increase in contraceptive use over the past 20 years.

Contraceptive prevalence rose fourfold between 1975 and 1989, from 8% to 31%, and
the most recent estimate for 1993-94 is 45% (Mitra et al. 1994).

Early demographic transition theories (e.g. Notestein 1945) asserted that a country’s
fertility can only start to decline after socioeconomic development has led to lower
infant mortality. Only then would couples wish to limit their family size and adopt
contraception. The remarkable decline in fertility observed in Bangladesh, however,
has taken place in an extremely unfavourable setting: Bangladesh remains a very poor,
underdeveloped and predominantly rural country. Most indicators of socioeconomic
development thought to erode the demand for children, including levels of school en-

rolment, women’s employment and women’s status, have been fairly static during the

period of fertility decline (Cleland and Streatfield 1992). Therefore, in the absence of
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any large changes in the other determinants of fertility such as age at marriage, Cle-

land et al. (1994) conclude that the only convincing explanation for the sharp rise in

contraceptive use and commensurate fertility decline is the government’s strong family

planning programme.

The first official government family planning programme in Bangladesh began in 1960
and was mainly clinic-based and implemented through existing health care facilities on
a limited scale. This was followed in 1965 by a field-orientated programme with a strong
information and education component. These early campaigns were interrupted by the
1971 war of liberation and the economic crisis which followed a spate of natural disasters
in the early 1970s. In 1975, the government identified the control of the country’s rapid
population growth as its top priority and initiated the first integrated health and family

planning programme. One of the most important components of the programnme was

the introduction of female family welfare assistants (FWA) at the grassroots level who
visit each household every two months to discuss family planning and deliver pills and
condoms. This feature of the programme has proved particularly successful since the
low level of female autonomy and mobility in Bangladesh prevents many women from

attending clinics to obtain contraception. In addition, family welfare centres (FWC)

were established in each union (a cluster of villages) where injectables and IUD insertions
are available. Sterilisations are performed at thana (sub-district) health complexes.

Since 1981, the family planning programme has been further strengthened with the
involvement of non-governmental organisations. More recently, in 1993, the number of

FWAs was increased to achieve wider coverage, particularly in rural areas.

Despite the large decline in fertility, substantial regional variation in contraceptive use
and fertility within Bangladesh persists. Most studies have focused on the individual-
level factors affecting contraceptive adoption, although many have observed differences
between the four administrative divisions (Kamal and Sloggett 1993; Shahidullah and
Chakraborty 1993). In particular, Chittagong division shows consistently low levels
of contraceptive use and high fertility. Rashid and Ali (1993) attempt to explore this
further with a district-level analysis of contraception in Chittagong. They compare
contraceptive prevalence rates for each district and conclude that there is little district-

level variation within Chittagong. They then carry out an individual-level regression
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analysis to determine whether the low level of contraceptive use in Chittagong can be
explained by individual-level demographic, socioeconomic and cultural characteristics,

but find that none significantly reduce the variation between Chittagong and other

divisions.

Contraceptive behaviour is influenced by a range of factors acting at individual, village
and higher levels. In this chapter, a multilevel approach is used to examine the impact of
variables both at the individual level and at higher levels of aggregation on contraceptive
choice. Two higher levels are considered: community (represented by sampling cluster in
this analysis) and district. Those living in the same community are likely to have similar
access to family planning services because of their geographical closeness. Other factors
operating at this level which are likely to have an impact on contraceptive behaviour
are the attitudes of local leaders and other members of the community towards family
planning. Negative attitudes as well as discouraging the use of family planning can
also have a detrimental effect on the programme, which exacerbates the low levels
of contraceptive use. For instance, the social conservatism in districts in Chittagong
makes it difficult to recruit and retain good family planning staff and, therefore, women
in these areas are less likely to be visited by a family planning worker (Cleland and
Streatfield 1992). Districts have a different level of homogeneity that is more cultural in
nature. A cultural identity is shared by the people of the same district that is manifest
in behavioural patterns. An example of where district cohesion is strongly expressed

is in marriage markets—families prefer to find grooms within the district, presumably

because of an assumption of cultural similarity. In this analysis, a three-level model is

used to examine the extent of clustering in contraceptive behaviour at the community

and district levels.

3.2 The Bangladesh Fertility Survey 1989

The data for the analysis are from the Bangladesh Fertility Survey (BFS) of 1989 (Huq
and Cleland 1990)—a nationally representative sample survey of ever-married women

aged less than 50. Respondents were selected using a two-stage cluster sample design.

In the first stage, 270 clusters—100 urban and 170 rural—were selected with proba-
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bility proportional to size. Clusters are primary sampling units (PSU) defined by the
National Census of 1981, and correspond approximately to villages in rural areas and
mohalla (neighbourhoods) in urban areas. In the next stage, households within each
cluster were listed and a sample was selected with probabilities inversely proportional to
the first-stage selection probabilities to yield a sample which was self-weighting within

urban and rural stratum. Five out of 64 districts were excluded from the sampling

scheme—Meherpur, Natore, Khagrachori, Rangamati and Bandarban—mainly due to

access problems. A total of 11,905 women were successfully interviewed.

The survey, in addition to the standard set of questions on fertility and related be-
haviour and demographic and socioeconomic characteristics, included questions on re-
ligious practice and women’s status. Two questions on religious practice were asked—
whether the respondent prayed every day and how strictly they observed religious prac-
tices compared to other households in the locality. Several other aspects of women’s

lifestyles are captured in a series of questions concerning women’s independence, their

mobility and their role in family decision-making.

The analysis sample consists of 9,777 currently married women. All women who were

pregnant or postpartum amenorrheic at the time of the survey are excluded from the

analysis.

3.3 Methodology

3.3.1 A Multilevel Multinomial Model of Contraceptive Choice

A multilevel multinomial logit model is used to analyse the determinants of current
contraceptive choice. Contraceptive method is categorised as 1) sterilisation (female or
male), 2) modern reversible (pill, condom, IUD or injectables), 3) traditional, and 4)
none. A multinomial formulation is used in order to test for differences in the effects

of covariates and in the extent of cluster- and district-level variation on the use of one

type of method as opposed to another.

Let yijx be the multinomial response for individual ¢ in cluster j in district k. As
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described in Section 2.8.2, this is converted to a series of three binary responses,

{yrij},r = 1,2,3, one for each method type. The fourth category ‘non-use’, is selected

as the baseline. The general three-level multinomial model can be written

Yrijk = Teijk T Crijk

where

Trijk ' ’ ’
log ( __k) = XrijkBr + ZurijkUrjk + ZyrijkVek, T=1,2,3.

7rijk 1S the probability that individual ¢ in cluster j in district k uses method type r and
m4ijk is the probability of non-use. The set of covariates x,;;x is usually the same for
each contrast of a method type with non-use, though there is no such restriction in the
general model. The above model is an example of a random coefficients model: z,,i;x
and z,;;x are sets of covariates, usually subsets of x,;;x, the coefficients of which are
permitted to vary randomly across clusters and districts respectively. The corresponding
random effects vectors are u,jx (~ N(0,Qy)) and v, (~ N(0,9Q,y)), representing
unobserved factors operating at the cluster- and district-level. Cluster-level random
effects for different contrasts of a method with non-use, u,jx and upji, r # r', can be

correlated as can pairs of method-specific district-level random effects. The individual

error term is represented by e;;x which is assumed to follow a mu<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>