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DEPARTMENT OF ELECTRICAL ENGINEERING 

Master of Philosophy 

FIELD VARIATIONAL METHOD IN CALCULATING 

ELECTROMAGNETIC SYSTEM PARAMETERS 

by Yeoh Keat Hian Muhamad Fuad bin Abdullah 

Variational methods have been used in determining system parameters in a 

wide range of engineering and physics problems, such as the determination 

of the resonant frequency, the binding energy, scattering phase shift and 

the reflection coefficient. The principles involved which are based on 

the Calculus of Variations are well-established. Examples of the applica-

tion of the field variational method to some electromagnetic problems are 

given in this thesis. 

The field quantity of an electromagnetic system is varied in such a way 

that the system energy, whether kinetic, potential or a combination of both, 

is slightly displaced from its equilibrium. In the case of a purely kinetic 

energy system, variation of field reduces the system energy. The opposite 

occurs for the system with purely potential energy. By varying the 

potential <|) and the flux density D separately in an electrostatic system, 

the upper and lower bounds of its capacitance can be calculated. Similarly 

by varying the magnetic potential and the flux density B, the upper and 

lower bounds of the system inductance can be calculated. Finally by varying 

the current density J and the potential ^ of a resistive electric system, 

the upper and lower bounds of its resistance can be obtained. Examples of 

the above three cases of field variation are given. 

The results obtained are compared with those already determined elsewhere 

either analytically or by numerical methods. 

The application of the Field Variational Method in the calculation of 

slot leakage reactance in machine design is shown. 
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CHAPTER ONE 

1.1 Introduction 

The electrical power is no doubt a most important form of power 

in our present world. Until the 1970's the growth in the electricity 

demand in the United Kingdom, for example, has been steadily increasing 

at the rate of 7% per annum doubling every lO y e a r s C o r r e s p o n d i n g 

to this growth there has been a parallel increase in the sizes of 

electrical plants such as transformers, motors, generators and especially 

(2) 

so in the case of turbogenerators . The 500 MW range turbogenerators 

are nowadays very common at modern power stations and super turbogenerators 

up to the size of 1200 MW have been built as early as 1 9 7 3 A s a 

consequence of such tremendous changes in the sizes of electrical devices, 

the electrical machinery industry has been becoming more competitive than 

ever. An accurate prediction of device performance is necessary to meet 

stringent users' specifications in order that an economical design can 

be achieved. Tolerances in design are being progressively reduced and 

optimisation seems to be the rule of the day. 

With the advent of large digital computers machine designers have 

found an indispensable aid in them in achieving optimum designs of 

their machines. The use of standard software packages has increased 

in popularity with their sizes becoming larger than ever to meet the 

users' demands. Silvester has said that finite element packages of the 
4 5 

equivalent of lO - lO executable Fortran lines would probably be needed 

to meet the demands of machine designers in the e i g h t i e s . 

There could arise two main disadvantages from the designer's point 

of view in using such large standard packages. Firstly, is the possibility 
of the loss of 'feel' that the designer would possess on his design of a 



machine or device. Armed with some bssic criteria, a machine designer 

always be able to see how the changes in a certain parameter 

would affect the performance of the machine. Also he should bear in 

mind the basic assumptions made in the design formulae employed. There 

is therefore always a possibility that such an insight and 'feel' may 

be lost when large computer software packages are used in design. More 

often than not the designer would be given such a massive amount of 

in the computer output that he may likely be lost in trying to 

extract the relevant and useful information from them. This problem 

has been largely overcome by the use of post-processors, providing the 

necessary and required information in the form of graphics and diagrams -

even 3-dimensional. Standard packages could be easily adapted to the 

use of such post-processing methods. 

The second possible disadvantage is that the information given by 

the output of such standard packages would often be more than is required 

for a particular application; and as such expensive computer time might 

be wasted in calculating the unwanted information. This is particularly 

so in the application of finite elements method to electromagnetic field 

problems. In solving a particular field problem, the finite elements 

method through discretisation and use of higher order elements, calculates 

the point values of the field over the whole of the region under consideration. 

Such information regarding the field at so many points is usually 

unnecessary if all that is required is the total electromagnetic energy 

of the region or the associated energy parameter that can express it, 

for example the resistance, inductance or the capacitance. 

The search vJjUU certainly go on to find a compromise between the 

extremes of a totally analytical approach which is very restricted in its 



application and a totally numerical approach to electrical design problems. 

Such a combination of analytical and numerical techniques could overcome 

to an extent the two disadvantages mentioned above. The field variational 

method treated in this thesis is one that has this in mind; attempting to 

utilise fully the analytical advantages offered and keeping to a minimum 

the amount of computation necessary. 

1.2 A Method which gives an Upper and a Lower Bound 

An important question one would ask when presented with a numerical 

solution to a design problem, especially when obtained from the output of 

a digital computer, would be 'How accurate is it?' or 'How much confidence 

can we have in it?' In the design of aA electrical machine, the designer 

usually wishes to obtain the equivalent-circuit parameters in the form 

of resistances and reactances which can help him to specify the performance 

characteristics of the machine. One would be quite uncertain as to the 

accuracy of such numerical figures; whether it is on tl^ higher or lower 

side of the true value. A method of calculation which can give the 

upper and lower bounds to the true solution would certainly be advantageous. 

The average of the two bounds would always give a value which is closer 

to the correct one. We would also be able to know within what limits our 

estimate of the true value is. The designer would then have the confidence 

that his design would give the performance characteristics required within 

some known limits. The uncertainty that might arise from a design parameter 

without the benefits of an upper and a lower bound can thus be avoided. 

(5) 

The duality between electric and magnetic fields in terms of 

moving or stationary sources and expressable in terms of either kinetic 

or potential energy enables the field variational method to be formulated 



so as to give an upper and a lower bound to machine design parameters. 

This will be shown in the subsequent chapters. Examples of the 

calculations of upper and lower bounds of capacitance, inductance and 

resistance are given in Chapter 4. In chapter 5 is given an example 

of the application of the field variational method in the calculation of 

the slot leakage reactance of induction motors. 

The background to the variational method employed in this thesis 

can be found in a recently published book entitled 'Energy Methods 

in Electromagnetism' by P. Hammond. Examples of the calculation of 

capacitance, inductance and resistance are also found in the said 

book and in two papers, namely, 'Calculation of inductance and capa-

citance by means of dual energy principles' and 'Calculation of eddy 

currents by dual energy methods', both by P. Hammond and J. Penman. 

The approach to the calculations in this thesis is, however, slightly 

different in that different energy functionals have been used, other 

examples of variational methods applied to electromagnetic systems can 

be fou^d elsewhere, for example, in the book 'Methods of Theoretical 

Physics' by Morse and Feshbach, 'Electricity and Magnetism' by 

E. M. Purcell and 'Computer Techniques for Electromagnetics' edited by 

R. Mittra. The use of effective slot shapes in slot reactance calculations 

is a new proposition. A paper based on the material found in Chapter 5 

IS to be presented at the International Conference on Electrical Machines 

in Hungary in September 1982 and is given in Appendix VIll. 
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CHAPTER TWO 

2.1 Solution of System Differential Equations 

A physical system can be mathematically described by a set of 

differential equations or a set of integral equations or a combination 

of both. Maxwell's equations are used to describe the behaviour and 

characteristics of electromagnetic systems. Maxwell's equations 

are given by: 

SB 
V X E = -
-- — 3t 

9D 
V X H = J + 
— — — dt 

2 . D = p 

— • ̂  ~ o 

D = 

B = WH (2.1) 

In the case of electrostatic systems, the differential equations are 

given by, 

E = -V* 

2 
V ^ = -p/e where sources are present 

- o where sources are absent (2.2) 



For static electromagnetic systems, the equations concerned are 

B = V X A 

V . A = o 

= -pj (2.3) 

In the case of resistive electric systems, the equations involved are 

E = -V* 

^ . J = o 

J = qE (2.4) 

One way of solving a set of differential equations is to simul-

taneously integrate them either analytically or more often numerically. 

The analytical approach is applicable to only very limited and simple 

cases. Numerical methods have to be employed in most cases. Another 

way of solving the differential equations is by means of the variational 

method based on the calculus of variations. 

2.2 Formulation of the Variational Method 

Any physical system can be described by a set of differential 

( 2 ) 

equations given by 

2(4) = o (2.5) 

in the volume v of the system and a set of boundary conditions 

= O (2.6) 



at the boundary s, *Aiere * is an unknown function associated with the 

system. Alternatively it can be described in the form of a variational 

principle such that a scalar function I given by 

r) dv + () Z(*,*',r) ds (2.7) 

V 

should be stationary in its first variation, that is, 

61 f^4,*',r) dv + 6 () r) ds (2 .8 ) 

V 

where &(#,#',r) and &(^,#',r) are some functionals of 4,#',r in the 

region and at the boundary respectively; where * is a function of the 

space variable r and is the first derivative of # with respect to r. 

In the rectangular x-y-z coordinate system r is in terms of x, y and z. 

(3) 

When the boundary conditions are satisfied such that the second 

term in equation (2.8) vanishes, corresponding to natural boundary 

conditionsand permitting variations to occur within the volume only, 

equation (2.8) can be written simply as 

&(0,0',r) dv = o (2.9) 

V 

This statement is similar to the Hamilton's Principle of Stationary 

Action, 

6A = 6 i dt = o (2.10) 

where the integration is performed with respect to time. 



Since equation (2,9) is a variational statement of the system in 

terms of a scalar functional L over a specified region, it can also be 

(5) 
regarded as a virtual displacement of the system . The functional L 

can be the system potential energy density or its kinetic energy density. 

(6) 

From the theory of the calculus of variations it can be shown 

that if equation (2.9) is satisfied at # = # then the following equation 
(7) 

is obtained , 

9 3 
B(p 3r (2.11) 

for the region within v, with the satisfaction of the boundary conditions, 

8(*) = o (2.12) 

Equation (2.11) is called the Euler-Lagrange Differential Equation. 

The variational principle is called the Euler-Lagrange Variational 

Principle. See Appendix I for details of the derivation of the Euler-

Lagrange Equation. 

Conversely if we have equation (2.11) as the differential equation 

of our physical system, and a variational statement in the form of 

equation (2.9) can be found, the solution to our system differential 

equation is given by ^ = $ such that the first variation of the functional 

(8 ) 

I vanishes; that is a stationary (maximum, minimum or saddle point) 

value of I is reached. In practice we should be able to identify at 

which stationary point I is. For example in problems involving I as 

a functional in terms of potential energy, it is clear that the stationary 

point of I a,t equilibrium would be a minimum. Alternatively the second 
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variation of I can be evaluated to determine the nature of its stationarity. 

Many numerical methods associated with variational formulation have 

been developed. Examples are Moments Methods, the special cases of 

which are Galerkin's Method and Rayleigh-Ritz Method . 

2.3 Variational Statement in Electrostatic Systems 

The governing physical equations in electrostatic systems are 

given by, 

2 . D = p where sources are present 

= o where sources are absent (2.13) 

= E (2.14) 

and D = clE (2.15) 

The scalar functional I corresponding to equation (2.7) would be 

(11) 
the system energy given either by , 

I = j ^ dv - () Pg Og ds (2.16) 

V s 

where the variation is performed on the potential # and the volume 

charge ^ and the total boundary charge ^ are fixed; or 

I = p<f) - Ip_| ̂  dv - () ds (2.17) 

v 

where the variation is on the flux density and the volume potential 

as well as the boundary potential (|) fixed. 
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Alternatively the scalar functional I can be of the form 

I = 
1 £ 2 

Isl - dv + ^ Pg ^ ds (2 .18) 

as in equation (2.16) but with the potential at the point of sources 

in the volume fixed as well as the boundary surface potential fixed; and 

I = 
2e 

D p# dv + y p ^ ds (2.19) 

V 

as in equation (2.17) but with the volume charge p and the total boundary 

surface charge p^ kept constant instead. 

If there are no charges present in the volume, equations (2.18) 

and (2.19) can be rewritten simply as, 

I = ^ |E|^ dv (2 .20) 

V 

and I = 1 ln|2 . 
2F l2j dv (2.21) 

V 

as the surface terms vanish. In equation (2.18) where the variation is 

performed on the potential fixing of surface potential fixes the surface 

potential energy. Similarly in equation (2.19) where variation is 

performed on the flux density, fixing of surface charge p^ fixes the 

surface energy too. The closed-loop integral of each becomes zero. 

In these two cases, the volume sources are absent and hence are only 

implicitly expressed through the field quantities. 
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Following the nomenclature used in reference (12) where Y denotes 

a convex energy functional having a minimum and Z a concave functional 

With a maximum, equations (2.16), (2.17), (2.20) and (2.21) can be 

written as 

Z = j j 2 
E dv - 6 p 6 ds 

2 ' s s 
( 2 . 2 2 ) 

V 

— 1 I 12 
D dv - o p 6 ds 

•ie — s s (2.23) 

V 

|E|2 dv (2.24) 

2e 
lol^ dv (2.25) 

V 

There are therefore four possible variations which can be 

performed on an electrostatic system governed by equations (2.13) and 

(2.14). The variations in the system potential # with the energy 

functionals concerned being given by equations (2.22) and (2.24), give 

an upper bound and a lower bound of parameter value. Similarly the 

variations in the flux density 2 with the energy functionals given by 

equations (2.23) and (2.25), give another pair of upper and lower bounds; 

so do the two Y-functionals. Altogether there are four possible pairs 

of upper and lower bounds. The determination of the upper and lower bounds 

considered in this thesis is by using the 2 Y-functionals given by 

equations (2.24) and (2.25). 
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At equilibrium we have the variational statements 

GY = o (2.26) 

for the case of the system whose energy is expressed in the form of 

potential energy and 

6Z = o (2.27) 

when the system energy is expressed as kinetic energy. 

In the Y-functionals the system sources are implicit whereas in 

the Z-functionals the system sources are explicitly expressed. By 

implicit it is meant that the sources of the field are being incorporated 

in the expression of the field itself as in equation (2.24) and (2.25). 

On the other hand, equations (.2.22) and (2.23) have the sources of the 

fields expressed in them to account for the energy contributed towards 

the overall system energy. The Y and Z functionals for other electro-

magnetic systems can be similarly obtained. 

As a check, equation (2.11) can be applied to equations (2.22), 

(2.23), (2.24) and (2.25) to show that the Euler-Lagrange Equations 

associated with them are given by the same system equations of (2.13) 

and (2.14). See Appendix II for details. 

The approach to the variational formulation in electrostatic systems 

given in reference (11) is slightly different in that the author's 

argument starts with the statement of the principle of virtual work. 

The possibility of integrating this statement would give rise to the 

required variational statement. 
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2.4 Energy Functionals in Magnetostatic Systems (In the absence of 

current within the region of interest) 

The differential equations of magnetostatic systems are given by, 

V X H (2 .28 ) 

-V* = H 
— m — (2.29) 

2 ' B = p if sources are present 

if sources are absent (2.30) 

The energy functionals corresponding to equations (2.22), (2.23) 

(2.24) and (2.25) caa be obtained for magnetostatic systems as well. 

These are 

Pm 4% - dv * p # ds T ms ms 
V 

Pm *m - if dv - 1 ds 

V 

3^ |H|' dv 

V 

if av 

V 

(2.31) 

(2.32) 

(2.33) 

(2.34) 

What has been said for the electrostatic systems as to the 

behaviour of the Y and Z-functionals still applies to the magnetostatic 

systems. 
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2.5 Energy Functionals in Static Electromagnetic Systems 

The system equations of static electromagnetic systems are given by 

9 X a = J (2.35) 

9 . B = o C2.36) 

V X A = B (2.37) 

The Y and Z functionals can be found and are given by 

J . A - ^ |H|^ dv - 6 J . H ds 
Z — —s —s 

(2.38) 

— 1 I 12 
J . A - — B dv - 6 J . H ds 
— — 2p ' —s —s 

V 

lU l-|2 
H| dv 

V 

& dv 

V 

(2.39) 

(2.40) 

(2.41) 

2.6 Energy Functionals in Resistive Electric Systems 

For the case of resistive systems the governing system equations 

are given by. 

V X E = o (2.42) 

-V* = E 

J = OE 

(2.43) 

(2.44) 
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The energy functionals for resistive systems are 
(13,14) 

Z = - ^ IJI ̂  dv - 4) b (.(j) J ) ds 
2a — s s 

V 

Z = ^ |E I ̂  dv - <b b (<|) J ) ds 
2 ' s s 

V 

Y = 2F iJl dv 

V 

Y = dv 

V 

(2.45) 

(2.46) 

(2.47) 

(2.48) 

2.7 Energy Functional for Eddy-current Type Electromagnetic Systems 

The above time dependent electromagnetic systems have functionals 

which are expressed in terms of complex quantities and their conjugates. 

The complex conjugate quantities are necessary in order that such time-

varying systems may be made independent of time in as far as defining 

the system energy is concerned. The system differential equations are 

given by. 

V X H 

V X E = 
3B 

3t 

(2.49) 

(2.50) 

crE (2.51) 

B = pH (2.52) 
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and the energy functionals are given by 
(13) 

Z = - I ^ (E . E*) + ^ (B . B*) dv - 4 (E x H*) . n ds (2.53) 
z — — z\i — — 

V 

Z = § (E . E*) + ^ IB B*) dv (2.54) 

V 

(J . J*) + (H . H*) dv + 4 (E X H*) 
— — Z — — 

n ds (2.55) 

V 

Y = ^ (J . J*) + ^ (H . a*) dv (2.56) 

V 

The use of the conjugate functions can be illustrated as follows. 

Let us use equation (2.56) above as the example. The current density 

can be expressed as 

J = J e 
jut (2.57) 

where w is the frequency and t time in seconds. 

The complex conjugate is therefore given by, 

J* = J e 
-jwt (2.58) 

The product of equation (2.57) and (2.58) is, 

J . J* = J . J e-iwt 

(2.59) 
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The use of the complex conjugate functions is seen to have made 

the time-varying current density J become independent of time as shown 

above. Equation (2.59) can be compared with the energy functional in 

terms of |J|^ expressed in equation (2.47). 
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CHAPTER THREE 

3.1 Usefulness of an Improvement Formula 

When calculating a bound for a parameter of interest it is helpful 

to have a way of improving this bound so as to get closer to the true 

value. This means the increasing of the lower bound and decreasing the 

upper bound. See Figure 1. 

j I 

System 
Energy 

Upper Bound Functional 

Decrease 

True System Energy at Equilibrium 

Increase 

Lower Bound Functional 
» 

Field Quantity 

Figure 1 System Energy Functionals 

Two obvious advantages are immediately seen in that while enabling 

a better answer to be obtained, we are at the same time able to check 

that the improved value does not overshoot and cross-over the other bound. 

For example the improved value of the lower bound should not be higher 

than the value of the upper bound. 
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3.2 Improvement Formula for Y-Functional 

Consider the electrostatic system having the energy given by 

equation (2.25), 

Y = ^ |DI^ dv (3.1) 

v 

As explained in section 2.3 the variation that could be performed on this 

system is the variation in the flux density D with the quantity of surface 

charge remaining unaltered in the process. The Y-functional is a convex 

functional having a minimum. 

Let be the flux density such that it is the solution of the Euler-

Lagrange equation minimising equation (3.1), then it would be a good 

approximation of the flux density of the electrostatic system. D is a 

function of the space variables. The energy due to D would be. 

|D^|2 dv (3.2) 

v 

If D_ is varied to D* by a small amount aD , we have 

Rz = + oD^ (3.3) 

where a is an arbitrary constant and a suitably chosen expression of 

the flux density. 

The electrostatic energy of the system due to would be. 

^2 dv 13.4) 

v 
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ICL + oD dv 
2e 1 -c ' 

v 

i— {Icul^ + 2a D . D + |D I dv 
2e ' —1' —1 —c c ' 

v 

Minimising Yg with respect to a; we obtain, 

(3.4) 

BY 

3a 
- O = 

1 2 
- {Di . D + alD I } dv 
e —1 —c c 

— D_ . D dv 
e —1 —c 

v 

In I dv 
1 — 1 

(3.5) 

Putting equation (3.5) into equation (3.4) gives, 

1 
2 

IF iRil' 

e - 1 
D dv 
—c 

v - |D dv 
G '-c' 

v 

(3.6) 

Comparing with equation (3.2), equation (3.6) can be written as. 

- D, 
G 

D dv 

Y^ = Ŷ  
hr (3.7) 

— I d Î  dv 
E '-C' 

v 

Equation (3.7) shows that there is a reduction in the value of 

functional Y and remembering that a reduction means a closer value to 
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the correct system energy, we thus have an improvement scheme for the 

initial approximation of flux density D . Figure 2 will make this clearer. 

System 
Energy 

' ^ 

Flux Density D 

Figure 2 Improvement of Functional Value 

The choice of the flux density D depends on two conditions. 

Firstly consider the boundary conditions of the flux densities D-, and D„. 

From equation (3.3) , remembering that we are keeping the total surface 

charge constant, we have at the boundary, 

(I D„ . ds = () D, . ds (3.8) 

For this to be true we have at the boundary the condition that 

c> a D . ds = o (3.9) 
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Since a is arbitrary and can assume any value, we have as one 

of the conditions of D , 

o D . ds = o (3.10) 
—c — 

s 

The other condition which has to satisfy is in the volume of 

the system. The addition of oD^ to should not alter the system under 

consideration. No new sources can be introduced. Therefore we have 

over the whole region, 

V . D_ = 9 . D, (3.11) 

and comparing with equation (3.3), this implies that the condition for 

D is —c 

V . oD = o (3.12) 

Since a is an arbitrary constant, the condition D needs to satisfy 

is simply. 

9 . D = o (3.13) 
— —c 

The choice of for this improvement scheme therefore must be 

such that it satisfies both equations (3.10) and (3.13). 

Similar arguments can be made for the Y-functional given by 

equation (2.24), that is, 

Y = ^ e|Ej2 dv (3.14) 
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As stated in section 2.3 the field quantity to be varied in this 

case is the volume potential ^ with the surface potential being kept 

constant. Corresponding to equations (3.2), (3.3), (3.4) and (3.5) 

above we have for this case. 

^1 = iE |E^|2 dv ^ E dv (3.15) 

*2 = *1 + "*c (3.16) 

'̂ 2 = ^ EjlE|2 + 2a E. . E + |E 
2 I — —1 —c 

V 

* dv (3.17) 

and 

a = -

e EL . E dv 
—1 —c 

E E dv 

(3.18) 

The functional is now given by. 

E E, . E dv 
—i —c 

?2 = ?1 

e E dv 
c' 

v 

(3.19) 

In this case the boundary potential is fixed and from equation (3.16), 

we have, at the boundary, 

*2 = *1 (3.20) 

which implies that. 

= o at the boundary. (3.21) 
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Since a is an arbitrary constant, we have the condition that $ 

should vanish at the boundary. The volume condition for ^ corresponding 

to equation (3,13) requiring no new sources to be introduced is given by, 

— • - o 

or V <(i = o (3.22) 

The conditions for the choice of given by equations (3.10) 

and (3.13) can be proven as follows. If the true system energy is Y 

given by flux density D, then any variation of the flux density from 

D to would cause an increase in the energy from Y to Y^. See Figure 3. 

System 
Energy 

True System Energy at Minimum 

Field Quantity 

Figure 3 Approximated System Energy Y 
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The change in energy is given by 

- ? 
1 I _ I 2 
2F I Si I d' 

v v 

%— (D_ - D) ̂  dv + 
ze —i — 

D . (D̂  - D) dv 
e — —1 — (3.23) 

v v 

Substituting ^ = &E = we can write the second term on the right 

hand side as 

— D . (D - D) dv = V* . (DL - D) dv 

v 

The Divergence Theorem can be written as, 

V . (#D) dv = o # D . ds 

v 

or 4^2 " D) + ^ dv ~ ^ 0 iD . d^ 

v 

System 
Energy 

\ 

(3.24) 

(3.25) 

Approaching True System Energy 

Field Quantity 

Figure 4 Improvement on Energy 
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By using the Divergence Theorem, equation (3.24) becomes, 

. (D - D) dV = - y (D̂  - D) . ds + . CD̂  - ID) 
s —1 

V 

(3.26) 

Equation (3.23) can now be written in terms of equations (3.24) and 

(3.26), 

- * 
iRi - D|2 dv + " (D^ - W dv - (p (D̂  - D) . ds 

s —1 

V 

(3.27) 

For Y to be always higher than the true system energy Y for all 

possible variations in the flux density, we should have the conditions. 

. (D - p) dv = o in the volume (3.28) 

and 

<) ̂  (DL - D) . ds = o 
S —1 — 

at the boundary (3.29) 

This means that for arbitrary values of # in the volume the diverge 

of the variation (D^ - D) should always be zero; implying that no new 

sources should be introduced in the variation of the flux density. This 

condition can be compared with equation (3.13). 

For a constant potential at the boundary surface, it being a 

conductor, equation (3.29) becomes, 

's '=1 (D. - D) . ds = $ <) (D_ - D) . ds =̂ 1 (3.30) 
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For this to be zero, the necessary condition at the boundary is 

that the total charge at the boundary surface remains constant in the 

variation. This condition is similar to equation (3.10). 

Therefore, if we have a system energy Y approximated by using 

the flux density D^, and an improved system energy due to (see 

Figure 4), we can write equation (3.27) as 

?1 - ^2 ie -1 - 2.2 ̂  dv + . (D - D_) dv 

v v 

4 (Di - Dg) . ds (3.31) 

For improvement to be possible equation (3.31) must always be 

positive and the necessary conditions are those given by eqaution (3.18) 

and (3.13) if we write. 

(Ri - Dj) = *»c (3.32) 

where a is an arbitrary constant and D the variation of the flux density. 

The conditions for the choice of ^ can similarly be proven in the 

manner shown for D . If the true system energy Y due to # be varied to Y 
—c 1 

due to the variation in the potential to (see Figure 3) we have the 

change in the system energy given by. 

Y^ - Y = ^ dv - j Y dv 

"I sj 9^^ - Viji I ̂  dv + e - V#) dv (3.33) 

V 
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By using the divergence theorem of equation (3.25), we can write 

the second term on the right hand side of equation (3.33) as 

E V* . (V* - 7f) dv - #) dv 

o E(#i - *) . ds -
± s — 

e(4^ - #) . V ^ dv (3.34) 

Equation (3.33) can now be written as. 

- T = 

v 

G(4^ - #) 9 0 dv 

v 

(3.35) 

For Y to be always higher for all possible variations of the 

potential, we need the right hand side equation (3.35) to be always 

positive. Thus the conditions necessary for this to be achieved are. 

G(#^ - #) 7 # dv = o in the volume (3.36) 

V 

aad () e(4^ - ^) . ds = o at the boundary (3.37) 

For any arbitrary variation in the potential ($^ - $), we require 

2 

that V # = o implying that there should be no volume sources in the system. 

At the boundary we require that the potential be fixed such that there is 

no variation and thus requiring that (#^ - #) = o. 
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Therefore if we have a system energy and need to improve it 

to Yg (see Figure 4), we can write equation (3,35) as, 

* 1 - ?2 = 

e(*i - Og) 9^*2 dv (3.38) 

v 

For improvement to take place for any variation in potential 

equation (3.38) must always be positive and the necessary condition 

are those given by equations (3,21) and (3.22) if we write 

(#2 - Og) - - (3.39) 

where a is an arbitrary constant and ()) the variation in potential. 

2 

The volume condition of 9 $ = o is however not strictly required 

as will be demonstrated by examples in Chapter 4, so long as the boundary 

condition # = o is satisfied. The potential being scalar means that it 

can be easily handled mathematically in contrast with variations involving 

vector quantities as in the case of flux density D. This is an advantage 

of using the scalar potential variation. The sources which might be 

introduced do not seem to invalidate the improvement scheme when it is 

applied to all the examples in Chapter 4. 

3.3 Improvement Formula for Z-Functlonal 

The improvement formula for the Z-functional is not as easy to 

obtain as that for the Y-functional. In this case we need a scheme 

which would increase the system energy for improvement to take place. 

The simple procedure shown in the last section does not apply easily 
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to the Z-functional due to the explicit presence of the system sources 

as well as the presence of the surface energy term. 

This is however not a serious disadvantage in the application of 

the field variational method to determining system parameters as will 

be shown in Chapters 4 and 5. 

3.4 Physical Interpretation of Field Variations in Electrostatics 

As mentioned in section 2.3, there are four possible field 

variations for an electrostatic system described by the system differential 

equations (2.13) and (2.14). The types of variations are: 

1. Variation in volume potential ^ with total boundary charge 

kept constant and the volume charge p fixed. 

2. Variation in volume potential ^ with boundary potential 

fixed in the absence of the volume charge p. 

3. Variation in volume flux density D with total boundary charge p 

remaining constant in the absence of the volume charge p , 

4. Variation in volume flux density D with boundary potential i)i 

and the volume potential ^ fixed. 

The variation in the volume potential ^ can be achieved physically 

by inserting a conducting sheet of negligible thickness. The conducting 

sheet forms into an equipotential surface in the volume. In the case 

where the quantity of surface charge is kept constant and the volume charge 

sources fixed with only the volume potential varied by the insertion of 

such conducting sheets, there is a decrease in the system energy caused 

by the work done by the fixed charges in drawing the conducting sheets 

into the system. This variation corresponds to the Z-functional of 

equation (2.22), 
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p* - dv - ^ pg * ds (3.40) 

v 

If the volume potential is varied by keeping the boundary potential 

<j>̂  constant and in the absence of volume sources we have an increase in 

the system energy caused by the work done in inserting the thin conducting 

sheets into the volume. This variation corresponds to the Y-functional 

of equation (2,24), 

Y = 1 ln|2 a 
2 e |E| dv (3.41) 

v 

We remember that in this case the sources of the system are implicit 

as against the explicit nature of sources in the previous case. 

The variation of flux density D can be physically achieved by the 

insertion of very thin flux barriers. 

They are placed along the flux lines varying the shapes of flux tubes. 

If flux barriers are inserted into an electrostatic system with the total 

surface charge kept constant, we have an increase in the system energy 

caused by the work done in inserting the flux barriers into the system. 

The Y-functional corresponding to this variation is given by equation (2.25), 

Y = 
2E |D|^ dv (3.42) 

v 

If, however, the variation in D is performed by fixing the boundary 

potential as well as the volume potential, there would be an exchange 

in energy between the fixed potential and the flux barriers causing a 

decrease in the system energy proportional to the second order variation of D. 
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Figure 5 Conducting Sheets or Double Layers of Charge 

+ / 

Figure 6 Flux Barriers or Insulating Sheets 
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The Z-functional corresponding to this type of variation is given by 

equation (2,23) , 

Z = p* - ir dv - 6 p 4 ds (3.43) 

v 

The above four types of field variations cause increase or decrease 

in the system energy which is proportional to the second order variations 

of the field. 

Other types of field variation which involve the insertion of 

conducting sheets and flux barriers that are not negligible in thickness 

and volume are possible and are given in reference (1). They are however 

not purely of the second order type mentioned above. 

The concepts of conducting sheets and flux barriers can be extended 

to include other electromagnetic systems. We have magnetic flux barriers 

and infinitely permeable sheets in magnetostatic systems and current 

barriers and conducting sheets in resistive electric systems. 



36 

Reference 

1. HAMMOND, P. : 'Energy Methods in Electromagnetism', Clarendon 
Press, Oxford (1981), pp lOO-lOl. 
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CHAPTER FOUR 

CALCULATION OF PARAMETERS 

The calculations of the upper and lower bounds of parameters 

namely capacitance, inductance and resistance by the approach using 

the 2-Y functionals are shown in this chapter using simple configurations. 

4.1 Calculation of Capacitance 

The example used is the configuration shown in Figure 7 where a 

square tubing has its inner surface fixed at a potential of V volts 

and the outer surface at O volts. We shall calculate the capacitance 

per unit length of the tubing. 

Figure 7 Square Tubing - Cross Section 
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4.1.1 The upper bound 

For finding the upper bound of capacitance, the variation is 

performed on the volume potential * with the boundary surface potential 

* fixed. The functional to be used is given by equation (3.14), 

Y = |E|2 dv (4.1) 

v 

At the minimum of Y, Euler-Lagrange Equation corresponding to 

that given by equation (2.11) is satisfied by the solution * = 

For the square tubing in Figure 1, by symmetry we need only to calculate 

one eighth of the section denoted by ABCD. See Figure 8. The system 

equations are given by, 

= -̂ 2 (4.2) 

2 ' D = o (4.3) 

while the boundary conditions are, 

#^(1) = V 

and *^(2) = o (4.4) 

A suitable function of * which satisfies equations (4.3) and 

(4.4) above is given by, 

= V(2-x) (4.5) 

The electric field strength corresponding to this solution of 

potential is 

El = - = Vi (4.6) 
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X 
A D 

#^^1) = V ^2^2) = o 

Figure 8 Capacitance of Tubing Fixed Potential 

where £ is a unit vector in the x-direction. 

The system potential energy, from equation (4.1) is given by 

1 1= |2 ^ 
gc I El I dv (4.7) 

Assuming that E is constant, we have 

X 
G |Ê J dy dx 

1 0 

0.75E V (4.8) 

This energy can be expressed in terms of capacitance of the 

region ABCD and the field potential V as. 

= 0.75e V (4.9) 
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The upper bound of the capacitance is therefore given by, 

°+ " ^ - I'SE F (4.10) 

Since this is only one eighth of the whole tubing section, we 

have the upper bound capacitance of the square tubing, 

= 8 X l.Se = 12.OE F per unit length (4.11) 

4.1.2 Improvement of upper bound 

For the improvement of this bound we can use the improvement 

formula described in section (3.2) . From equation (3.16) we have, 

*2 = *1 + **c (4.12) 

The initial approximation is given by equation (4.5) above and 

a suitable choice of satisfying the necessary boundary conditions 

mentioned in section (3.2) is 

*c = (l-x)(2-x) (4.13) 

Hence the electric field strength, 

= (2x-3) ̂  (4.14) 

This is an example which shows that the volume conditions of 

equation (3.22) 

2 
^ *c = ° (4.15) 

as mentioned in section (3.2) need not be a necessary condition in the 

case of variation of potential and the choice of 6 . 
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Prom equation (3.19) the functional Y is given by. 

1 
2 

e EL . E dv 
—i —c 

*2 = ?1 -

E IE Î  dv 
c' 

v 

= 0.75G - 0.028E 

= 0.722E (4.16) 

The upper bound capacitance for the whole tubing as before is now 

improved to the value, 

C_̂  = 11.552G F per unit length (4.17) 

Other suitable choices of ^ can be made and the upper bound of 

capacitance similarly calculated. Some of the results are given below. 

Chosen Yg 
Upper Bound Capacitance 

(F per unit length) 

1. (l-x)^(2-x) 0.735 11.762e 

2. (1-x)(2-x)^ 0.729 11.667e 

3. (1-x)(2-x)(1-y) 0.733 11.722G 

4. (1-x)(2-x)(16-y) 0.6865 10.984E 

5. (1-x)(2-x)(y) 0.6875 ll.OOOe 

6. (1-x)(2-x)(y^) 0.6776 10.841e 

From No. 6 above it can be seen that the upper bound can be 

improved from 12.Oe to as low as 10.841e F per unit length. 
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4.1.3 The lower bound of capacitance 

For the calculation of the lower bound we use the Y-functional 

given by equation (3.1), 

1 ln|2 ^ 
2%: l-l (4.18) 

v 

In this case we are varying the flux density D and keeping the 

total surface charge constant. As before a solution of the flux density 

D = for the system, which minimises the Y-functional above, satisfying 

the Euler-Lagrange Equation is firstly determined. D. would have to 
—1 

satisfy the system differential equation given by equation (4.3) and 

provide a fixed surface charge. 

For a suitable such that a known fixed surface charge can be 

determined, we have to resort to a geometrical approach. Because flux 

density is a vector quantity, its variation is inherently more difficult 

to manipulate mathematically when compared to the case of the scalar 

potential shown in the previous sections. The fixed charge on the 

boundary has to be determined indirectly through a fixed potential 

specification. 

Let the potential between AB and CD in Figure 9 be V volts. 

The electric field is given by, 

E = Y r = V cos8 r (4.19) 

where r is a unit vector and A the length as shown in Figure 9. 

The average flux density. 

D = EE = eV cosQ r (4.20) 
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1.5 Cos8 oy 

Figure 9 Capacitance of Tubing : Fixed Charge 

An incremental charge flowing in a tube of flux is given by 

6Q = |d| x 1.5 cose 6y (4.21) 

On the surface AB we have the total charge, 

1.5e V Cos 8 dy 

y=o 

ir/4 
1.5e V Cos^e sec^e d6 

= 1.178e V C (4.22) 
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The capacitance of the region ABCD is given by, 

c = & = 1.178e F (4.23) 

Therefore the capacitance of the whole square tubing is 

C_ = 8c = 9.424G (4.24) 

This value, when compared with the upper bound determined in 

the last section, is a lower bound and the expression of the flux 

density given by equation (4.20) is a good approximate solution and 

can be our initial approximation D . The fixed quantity of charge at 

the surface, Q is thus given by equation (4.22). 

4.1.4 The improvement of lower bound 

For the improvement of the lower bound of inductance we use 

the expression given by equation ( 3 . 3 ) , 

Eg = 2.1 + (4.25) 

A suitable choice of which satisfies the condition stated 

in equations (3.10) and (3.13) for the boundary and in the volume, is 

given by 

= (l-2y) ̂  for o ^ y ^ 1 

= o for y > 1 (4.26) 

Using equation (3.7), namely. 

1 
2 — D . D dv 

e — 1 — c 

-|2 

Wv 
Yg - ?! (4.27) 

1̂  dv 
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y=2 

D 
—c 

y=l 

Di = f(x,y) 

y=o 

Figure 10 Domain of D 
—c 

we can obtain the value of the improved Y-functional, 

= 

rX 

i 
2 

i EV^ Cos^9 dy dx 

1 2 
— . EV Cos 8 (l-2y) dx dy 

O 1 

0 f 2 

p (l-2y)^ dx dy 

O 1 

0.5890E - 0.005E 

= 0.584e V (4.28) 

In terms of fixed charges, the capacitive energy is given by 

2 C (4.29) 
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Since Y is a functional with a minimum any variation in its 

energy gives it a higher energy and hence a lower value than the true 

capacitance. The lower bound capacitance is thus, 

C-
Q_ 
2Y 

(4.30) 

The improved lower bound of capacitance for the region ABCD is 

given by, 

(1.178e V)2 

^^2 2 X 0.584e 

= 1.188E F (4.31) 

The total lower bound capacitance of the square tubing is, 

C = 8c = 9,505e F per unit length (4.32) 

Other choices of are possible and results are obtained for 

the lower bound as below: 

1. 

2. 

D chosen 
—c 

(1 - 3y ) i 

(1 - y =0 i 

-

0.584e 

0.584E 

Lower Bound Capacitance C 

(F per unit length) 

9.505E 

9.506E 

3. (1 -
4y2 

) i 0.584E 9.505E 
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It is seen that the calculated lower bound changes very little 

for the above chosen expressions of . The improvement in the upper 

bound of capacitance is more substantial compared with the above 

results. This is as explained before, due to the fact that varying 

the scalar potential is easier to do than varying the vector flux 

density as far as the mathematical manipulation is concerned. Further-

more the amount of fixed charges Q can only be obtained in an indirect 

manner because it is the voltage which is specified and thus is itself 

an estimated value. The use of the Z-functional on the other hand 

involves terms consisting of the system sources and its improvement as has 

been mentioned in section 3.3 is difficult compared to that of the 

Y-functional. 

If we take the upper bound capacitance to be C = 10.841E from 

the previous sections and the lower bound from this section C = 9.506e, 

we have an average value of capacitance C = lO.lVe as our estimate for 

the capacitance of the square tubing. The analytical value of the 

capacitance^^* is 10.25e per unit length. Thus our estimate is less 

than 1% below the analytical value. 

4.2 Calculation of Inductance 

T6 illustrate the calculation of inductance the inverted T-bar 

conductor, as shown in Figure 11, is used. The dimensions of the bar 

are shown and J is the current density flowing in the bar. 



48 

1 1 0 J 

26x 

Figure 11 Inverted T-bar Conductor 

4.2.1 The upper bound 

A geometrical approach is adopted here to calculate the upper 

bound because a simple algebraic expression to represent the magnetic 

potentials is difficult to obtain. This should be compared with the 

calculation of the lower bound of inductance in which simple algebraic 

expressions can be easily found for the flux density. 

The system equations governing this inductive system is given by, 

^ * B = J 

9 . B = o 

B = % H (4.33) 
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For the region T, the Ampere Circuital Law is written for an 

incremental strip, 

(h + 6H) 6x + h6x = j 6x 6y 

6H = -J6y (4.34) 

The average inductance of a small region 6x 6y within the 

incremental strip is given by the relationship. 

5L' 
1 
2 I 

"»6B 6y 
2J 6x 6y 

(4.35) 

For the incremental strip in region I, 

6L' 

WgJ dy 

2J 6x 

o 
26x 

(4.36) 

For the whole of region J and integrating with respect to x, the 

inductance is given by. 

L. 
dx 

o 

(4.37) 
o 
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(4.38) 

For the region II, similarly, using the Ampere Circuital Law, 

we obtain, 

5H J6s (4.39) 

The average inductance of a small region given by 1.5 6x Cos6 6s 

within an incremental strip is, 

6L' 
I 

6B6s 
2J (1.5 6x Cos8)6s 

(4.40) 

The inductance of each incremental strip in region II is 

6L 
II 

6L' 

2/Cos8 
W J ds 

3 J Cos9 6x 

3 Cos 6 6x 
(4.41) 

The inductance for the whole of region II is 

II 

^ 3 Cos^e dx 

2%. 
(4.42) 
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Substituting dx = 2 sec^e dB, we have 

^11 

tan ^(4) 

tan ^ (-Jj) 

2.782 

% 

3d8 

(4.43) 

^11 ' 0.3595 (4.44) 

The total upper bound inductance of the conductor bar is the sum 

of equations (4.38) and (4.44), thus 

L+ = (0.25 + 0.3595)%^ (4.45) 

= 0.6095 w 

The simple improvement formula similar to that given in section 3.2 

could not easily be applied to the geometrical approach and hence an 

improved value for the upper bound could not be obtained. This is, 

however, not a serious problem and the upper bound obtained can still 

be used to estimate the bar inductance together with the lower bound 

value to be obtained in the next section. 

4.2.2 The lower bound of inductance 

The magnetic flux density B is the field quantity to be varied in 

the calculation of the lower bound of inductance. Again the inverted 

T-bar may be divided into two regions as shown in Figure 12. 
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y f 

I 
1 

1 

B 
<r — 

II 0 J 
2 

Figure 12 Flux Density in Bar Conductor 

Assuming that the flux traverses across the bar in straight 

horizontal lines, the suitable expressions of satisfying the boundary 

conditions for both regions are given by, 

Region I : # (2+y) J 2 < y 3 

Region II : = - u yj o ^ y < 2 (4.46) 

The electromagnetic energy is given by. 

^1 = ^ 'B.|2 dv 

v 

2p '=1 
o 

2%, 
1 2 2 2 1 

J (2+y)^ dx dy + ^ 2 2 , 
H y J dx dy 

2 -1 o -2 

= 25.667 u J 
o (4.47) 
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This energy in terms of inductance and source current I is 

given by, 

= Y L (4.48) 

Using the relationship, 

L = 7̂ (4.49) 

the electromagnetic energy in terms of the flux linkage 4> and the 

current is given by, 

= Y (4.50) 

The flux linkage which is the fixed quantity in the variation of 

the flux density is thus given by. 

2Y^ 

2 X 25.667 u 

lOJ 

= 5.133 J (4.51) 

We can now write in terms of the flux linkage and the lower 

bound inductance, 

1 
?1 = 2 L- (4-52) 
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(5.133 % J) 

2 X 25.667 p j" 

= O.5133 p H per unit length (4.53) 

4.2.3 The improvement of lower bound of inductance 

The improvement formula obtained in section 3.2 may be used to 

improve the lower bound inductance. The formula similar to equation 

(3.7) for this case is. 

1 
2 

L B dv 
—c 

= Y. (4.54) 

B dv 

v 

Suitable expressions of satisfying the boundary and volume 

conditions of 

B . ds = o 

and V . B = o (4.55) 

are given by. 

B 
—c 

= (2 - 2y) i for o < y < 2 

= (3y^ - lOy + 6) i for 2 < y ^ 3 (4.56) 

Taking as given by equation (4.46) and applying equation (4.54) , 

we obtain. 
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Y_ = 25.667 p _ 0.415 w 
^ o o 

= 24.252 (4.57) 

With the fixed flux linkage $ given by equation (4.51), we obtain 

the improved value of lower bound using equation (4.52) 

L 
2^2 

= 0.5432 H per unit length (4.58) 

Compared with equation (4.53), we see that there is an improvement 

in the lower bound inductance, not overshooting the value of the upper 

bound given by equation (4.45). 

The average inductance for the conductor bar is calculated from 

equations (4.45) and (4.58) and we obtain 4(0.6095 + 0.5432)p = 

0.5764 B per unit length. Compared with a numericallycalculated 

value of 0.57 our estimate is within about 1.1% of it. 

4.2.4 Difficulties in calculating the upper bound of inductance 

While the assumption that magnetic flux traverses horizontally 

across the bar conductor which is surrounded by highly permeable iron 

is quite accurate, the situation is different in the case of magnetic 

potential along the vertical sides of the bar. To assume that the 

magnetic potential is zero along the sides of the conductor that is 

surrounded by iron of finite permeability would be inaccurate, as there 

would always be a small tangential field. 
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In modelling the bar conductor for the calculation of the upper 

bound we have in effect 'cut off' the two shaded comers of the bar 

as shown in Figure 13. This is quite justified as the field at these 

corners are weak and the energy density would be low. The 'cutting off' 

also pushes up the value of the bar inductance and we are quite certain 

to be on the upper bound of the true value. There is still a slight 

inaccuracy in the modelling of magnetic equipotential lines along the 

bottom of the conductor as it could not be zero all along it. Again 

because of the weak fields at the bottom region, this slight inaccuracy 

does not contribute much to the overall energy of the bar. 

y 4 

6x 

'x 
26x 

Figure 13 Effective Shape of Bar Conductor 
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Another possible approximation would be to assume the bar 

conductor to have an effective shape as shown in Figure 14 in which 

we have neglected the shaded sections. To maintain the same magnetic 

field strength in the unshaded region we assume a current density of 2j 

to be flowing in region II instead of just j. 

I 0 J 

II 0 2J 

Figure 14 Possible Approximation of Bar Conductor 
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For this effective shape we can use the magnetic field and 

express it in an algebraic form, to calculate the magnetic energy. 

Suitable expressions for IJ would be given by, 

H = - (4+y) J _i in region I 

= -2yJ ̂  in region II (4.59) 

The electromagnetic energy is given by. 

Y = dv 

v 

1 
2 ^̂ o 

2 2 1 f2f2 
(4+y) J dx dy + — 4y J dx dy 

-1 O -2 O 

2 , 2 

= 31.0 (4.60) 

The upper bound of inductance by using equation (4.48) is. 

2y 

= 0.620 p H per unit length (4.61) 

remembering that I = lOJ. 

The upper bound we obtain in section 4.2.1 is 0.6095 p H. If 

the upper bound of equation (4.61) is used, we have an average inductance 

of h (0.5432 + 0.620) — O.5816 H per unit length which is only 

about 2% above the value O.57 H. It is thus quite possible that a 

suitable approximation can be used in the calculation of the upper bound 

to overcame the difficulty in obtaining simple algebraic expressions for 

the original problem. 
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4.3 Calculation of Resistance 

The calculation of the resistance of a square plate of dimension 

as shown in Figure 15 is considered. The plate has a thickness b and 

conductivity a. The equations governing this resistive system is given by, 

— ™ —E 

V . J = o 

J = oE (4.62) 

x 

Figure 15 Resistive Plate 
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4.3.1 The upper bound 

In the calculation of the upper bound the current I is the fixed 

quantity and the variation is performed on the current density J. A 

suitable current density such that it is the solution of the Euler-

Lagrange Equation has to be determined first. 

Consider a quarter of the plate given by the sides ABCD as shown 

in Figure 13. Let the potential difference between the sides AB and CD 

be V volts. 

The electric field strength is then given by, 

V -
r (4.63) 

where r is the unit vector and i the length as shown in Figure 16. 

y 

B 

A D 

Figure 16 Modelling the Current Flow 
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Substituting for i - 2/cos8 into the above equation we obtain. 

„ V cose -
E ^ r 

(4.64) 

The average current density is thus given by. 

aE 

cV cos6 
r 

(4.65) 

This expression of current density can be taken as our initial 

approximate solution J, . 

The average incremental current is. 

= b |jĵ | X 1.5 Sy cos8 (4.66) 

Thus the total current flowing from AB to CD is given by. 

I = 6l 

i J-j I . 1.5 cos6 dy 

y=o 

Substituting for and dy = 2 sec^B d8. 

(4.67) 

ob 
2 

tan ^ (hi) 

1.5V cos 8 . 2 sec 6 d8 

0.6955 V Ob 
(4.68) 
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The upper bound resistance of the plate is given by. 

R = V 
Y = 1.4378/ob n 

(4.69) 

It IS noted that the above modelling cuts off the shaded corner 

of the plate shown in Figure 17. This pushes the resistance slightly 

higher than the value that would have been obtained when there is no 

such 'cutting off'. 

D 

Figure 17 Effective Shape of Resistive Plate 
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4.3.2 The inqprovement of the upper bound resistance 

The value of the upper bound of resistance given in equation (4.69) 

above can be improved by using the improvement scheme shown in section 3.2. 

% e corresponding formula similar to equation (3.7) for this case is. 

b 
2 a ^1 

J dv 
—c 

"-v 

1 l-r |2 ̂  
(4.70) 

where is given by equation (4.65) and Y is 

b 
2 l2il dv (4.71) 

v 

The conditions which must satisfy for the above improvement 

formula to be applicable are similar to those given in equations (3,10) 

and (3.13), namely the boundary conditions. 

J . ds = o at sides AB and CD (4.72) 

and the volume conditions, 

I . J, = o (4.73) 

A possible choice is given by. 

J 
—c = (l-2y) for o < y < 1 

for y > 1 (4.74) 
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For this choice of J , equation (4.70) yields. 

Yg = 0.3477 Ob - 0.00026 ob 

= 0.3474 V Ob (4.75) 

In terms of the upper bound resistance and the fixed current I, 

^2 = i *+ (4.76) 

Using equations (4.68) and (4.75), we can determine the upper 

bound resistance, improved. 

2Y, 
= 1.4364/ob n (4.77) 

It is seen that there is only a very slight improvement by bringing 

the upper bound resistance from = 1.4378/ob down to R = 1.4364/ob. 

Other suitable expressions of may be chosen and some examples 

are given below: 

J chosen Upper Bound Resistance R /ob 0 

1. (1-y- Y y^) 1 0.3475 1.4366 

(l-3y*) i 0.3475 1.4366 

3. (2y-3y^) i 0.3475 1.4368 

4. (3y2-4y3) i 0.3476 1.4371 
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4.3.3 The lower bound of resistance 

the calculation of the lower bound involves the variations of the 

potential * in the volume with the boundziry potentials at AB and CD 

fixed, as shown in Figure 18. 

A 

B / 
/ 

/ 
/ 

/ 

/ 
/ 

/ 

o 1 
A 

*l(l) = V 

3 X 
D 

0^(3) = o 

Figure 18 Fixed Potential on Resistive Plate 

An approximation solution of the potential which satisfies the 

Euler-Lagrange Equation and the boundary conditions of fixed potential is 

first determined. The potential also satisfies the system equations 

which are given by. 

V = o (4.78) 

-El 
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A suitable expression of which satisfies the above equation is 

" 2 V (3-x) (4.79) 

The resistive system energy is then given by. 

f 1^1 I' 
v 

^ 1^21 ̂  dx dy + 

1 o 

ah 
dx dy 

2 O 

= 0.4375 Ob V' (4.80) 

In terms of the lower bound resistance and the fixed potential V, 

the energy can be written as, 

1 
2 R (4.81) 

And from equation (4.80) above, the lower bound resistance is. 

R 
V 
2Y, = 1.143/ab n (4.82) 

4.3.4 The improvement of lower bound of resistance 

For the improvement of the lower bound value the improvement 

formula given by (3-7) in section 3.2 may be used. For this case 

corresponding to equation (3.7), we have the improved system energy 

given by. 
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oE . E dv 
—x — c 

*2 = - (4.83) 

O E dv 
c ' 

v 

where E is given by. 

-2+c (4.84) 

and is such that it satisfies the boundary conditions mentioned in 

section 3,2, namely. 

*g(l) = *g,(3) = o (4.85) 

The volume condition of V (fî  = o as mentioned in section 3.2 i: 

not a necessary condition in the choice of * . 

A possible choice of satisfying the boundary conditions is. 

= V(l-x) (3-x) (4.86) 

The electric field is then. 

Eg = = V(2x-4) i (4.87) 

The improved system energy from equation (4.83) is given by. 

Yg = 0.4375 Ob - 0.0128 ob 

= 0.4247 Ob v' (4.88) 

The improved lower bound resistance by equation (4.82) is, 

.2 
R V 

2Y. 

= 1.177/ob n (4.89) 
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Other possible choices of * can be made. Similar calculation is 

made and the results are given below. 

chosen Yg Ob V Lower Bound Resistance R /ob 0 

1. (1-x) (3-x) 0.4348 1.1499 

2. (l-x)2(3-x)2 0.4291 1.1654 

3. (1-x)(3-x)(1-y) 0.4310 1.1601 

4. (1-x) (3-x) (y) 0.4148 1.2055 

5. (1-x)(3-x)(y ) 0.4160 1.2019 

If the best of the lower bounds, that is R_ = 1.2055/ob n and the 

best of the upper bounds from section 4.3.2, that is R = 1.4366/ob n are 

taken to estimate the plate resistance, we obtain an average value of 

1.321/ab n. Compared with the solution obtained by a finite difference 

(3) 
method which gives R = 1.34/ob 0, our estimate is within 1.5% of it. 

4.4 The Calculation of Resistance and Reactance of Time-Varying 

Electromagnetic Systems 

A full calculation of the resistance and reactance of time varying 

electromagnetic systems has not been undertaken. Calculations were made 

to check the results obtained in reference (4) in which a full account is 

given. 

The problem considered is that of a thick conducting slab of 

conductivity a and skin depth S as shown in Figure 19. 



y* 
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U I 

Hx 

Figure 19 Thick Conducting Slab 

By using the Y-functlonal mentioned in section 2.7, 

(J . J«) + Jfi (H . H.) dv (4.90) 

and the variational statement, 

6Y = WW j (H" . 6H') - (H' . 5H") - 1 (J" . 6J') + 1 (J' . 5j") = 

where 

j. = J' + jJ" 

= J' - jj" 

H = H' + jH" 

(4.91) 

= H' - jH" (4.92) 
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the lower bound resistance and the upper bound reactance can be calculated, 

where 

(R_ + jX+) = 

The trial function, 

^ (J . J*) + ^ (H . H*) dy (4.93) 

V 

- = § + + j(B^y + ggy^) (4.94) 

is used and the results obtained were, R_ = 0.4532/o6 0 and X = 0.5040/o5 0. 

When the trial function, 

- " i + + jte^y + + G^y^) (4.95) 

was used, we obtain R_ = 0.4763/c6 0 and X = 0.5000/og 0. 

Further when the trial function, 

- = i + + jte^y + $2?^ + + G^y*) 

(4.96) 

was used, the results were R_ = 0.4632/o6 0 and X = 0.5029/o6 0. 

The analytical results are R = 0.50 and X = 0.50. It can be seen 

that there is an improvement in the values of R and X when equation (4.95) 

is used as the trial function, instead of equation (4.94). The same 

improvement would have been expected in using equation (4.96) instead of 

equation (4.95) as the trial function. This is, however, not the case. 

The matter was not pursued further due to lack of time. 

The computer program used to calculate the last two cases of trial 

functions is given in Appendix III. 
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CHAPTER FIVE 

THE APPLICATION OF THE FIELD VARIATIONAL METHOD TO MACHINE DESIGN 

The field variational method is shown in this chapter to be 

applied to the calculation of stator slot leakage reactance of an induction 

motor. It also shows a means of achieving a better estimate of the slot 

leakage reactance of a winding at the bottom of a very deep slot. 

5.1 The Slot Description 

The unusually deep slot which belongs to a 2-speed, 3.8 kV, 3 phase, 

50 Hz, 2.2 kW induction motor is shown in Figure 20. The slot has a 

magnetic wedge. The high speed winding (10-pole) with 6 conductors and 

pitched at 0.75 p.u. is at the bottom of the slot with the low-speed 

(14-pole) at the top; both being insulated from the iron. Based on the 

standard calculation methods of A l g e r , Liwschitz and Richter^^^ 

the calculated total leakage reactance of this motor for the high-speed 

(10-pole) winding is 4.440 of which 2.680 is the stator slot leakage 

reactance. Thus the stator slot leakage represents about 60% of the 

total leakage reactance. Surprisingly however, the test results obtained 

by the machine manufacturer was 5.250. The calculated value is therefore 

about 15.2% below the test value. On the other hand the total motor 

leakage reactance of the low-speed (14-pole) winding calculated by the 

standard methods was 9.720, about 6.6% below the test value of 10.410. 
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5.2 Calculation of the Lower Bound of Slot Reactance due to the 

Lower Winding 

The calculation of the lower bound of reactance is similar to the 

lower bound inductance calculation shown in section 4.2. The actual 

slot shape of the machine is as shown in Figure 20 but for the purpose 

of our calculation a simplified shape as shown in Figure 21 is taken. 

The tooth-neck of h^ = 0.105" is an approximation obtained by adding 

O.04" to h(O.170" - 0.04"). The effect of possible tooth-tip saturation 

is neglected and the values of reactance mentioned are all unsaturated 

values. 

0.153" 

0.04" 4^: ^ 

Magnetic 
Wedge 

1 . 0.170" 

2.442" 

2.581' 

H — 4 
0.6" 

_L 0.077" 

T 

Figure 20 Actual Stator Slot Shape 

c = 0.153' 
hg = 0.105" 

hg ? 2.507" 

h = 2.581" 

k . 4 
b 
0.6" 

Figure 21 Simplified Slot Shape 
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Normal design office methods use an approximate flux plot for the 

calculation of reactance. It is shown in reference (4) that all such 

methods give a lower bound to the inductance. In physical terms the 

flux seeks the easiest route and any approximation introduces constraints 

which reduce the permeance and hence the inductance and the reactance. 

As mentioned in section 2.3 in the approach using the 2-Y functionals 

the field quantity used in the calculation of the lower bound of inductance 

is the magnetic flux density B and the imposed source being the total flux 

linkages N$. The Y-functional in terms of B is given by equation (2.34), 

Y = 
2^0 

|B|2 dv (5.1) 

where the integration is done over the defined region. For the stator 

slot per unit length, the defined region is given by the slot opening 

and the surrounding highly permeable iron. We can use for the 

permeability because the iron is excluded from the defined region. 

The Y-functional as stated in section 2.3 is a convex energy 

functional having a minimum of energy. Any variation in the field IB 

would give an increase in the energy Y which is higher than its minimum. 

In terms of the fixed sources N$ and the inductance L, the Y-functional 

may be written as. 

Y . ,5.2, 

Thus the inductance is given by. 
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Physically as has been mentioned in section 3.4 the variation in the 

magnetic flux density ^ can be achieved by the conceptual insertion of 

magnetic flux barriers of negligible thickness. These flux barriers 

shape the magnetic flux flow tubes. This shaping causes an increase in 

the potential energy Y of the system. With the flux linkages remaining 

constant, we can see from equation (5.3) that an increase in Y means a 

decrease in the inductance L and hence we have a lower bound inductance. 

Alternatively as mentioned earlier it can also be seen as putting constraints 

upon the flux flow due to the introduction of flux barriers, causing a 

reduction in the permeance and hence a decrease in the inductance from 

its true value. The calculation of inductance using a flux plot therefore 

always provides a lower bound of inductance. 

It is a well-known design fact that a good approximation for B in 

a slot surrounded by iron of high permeability is given by parallel 

lines across the slot perpendicular to the slot sides. This approximation 

does not require infinite permeability as is sometimes thought. All that 

is required is that the flux should enter the iron nearly at right angles 

which is likely even where the permeability is of the order of 100. Such 

an approximation for ^ therefore represents a sound basis in design 

calculations. For our calculation of the lower bound the same assumption 

has been adopted. The approximate expression of flux density obtained 

would correspond to B^, the approximate solution which satisfies the 

Euler-Lagrange Equation mentioned in section 2.2 such that the Y-functional 

of equation (5.1) above is a minimum. 

The slot shown in Figure 21 may be divided into three regions, namely 

that denoted by h^ for the current-carrying part, and h^, h for those above 

the conducting region. The number of turns or conductors in the slot is 

denoted by N and the current flowing in each conductor I. 
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By using the Ampere Circuital Law, 

o H d£ = mmf (5.4) 

we can write down for each of the region the following. 

Region h^ : H x b NI B = -y 
NI 

o bh., 

H X b = -NI + B = NI 
""o b 

hg : H X c = -NI B = ~p 
NI 

o c 
(5.5) 

where y is the space variable of the stator slot height. For details 

of the calculation see Appendix IV. 

By substituting equation (5.5) into equation (5.1) and summing 

over the three regions we obtain. 

2 2 
Y = N I 

^1 ^2 hg 

6b 2b 2c 
(5.6) 

In terms of the current I and the inductance, the Y-functional can 

be written as, 

Y = i Ll2 (5.7) 

From equations (5.6) and (5.7) we have the expression of the 

inductance, 

2Y 
_2 

N 
h^ hg h] 

3b + b- + r- (5.8) 
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Because of the assumptions made, the inductance given by equation 

(5.8) above is the lower bound value. This is also the standard result 

obtained in textbooks; see reference (5) for example, except that it does 

not seem widely known that it provides a lower bound for the correct 

solution. 

Using the relationship, 

L = — (5.9) 

we can write down the flux linkage as, 

N$ = LI (5.10) 

Therefore the fixed flux linkages from equation (5.8) is given by. 

^1 ^2 
3b + b- + — (5.11) 

Evaluation of equation (5.8) using the dimensions shown in Figure 21 

with N = 6, gives the lower bound inductance, 

L_ = 226.703 p H per unit length (5.12) 

The length of the slot is 34.5" and there are 40 slots per phase. 

The total slot reactance per phase is thus, 

X = 3.1370 per unit length (5.13) 
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5.3 The Improvement of the Lower Bound of Inductance 

As indicated in equation (5.1), the Y-functional is a quadratic 

functional in the flux density and has a minimum of energy as shown 

in Figure 22. 

Energy 

True System Energy at Minimum 

Flux Density 

Figure 22 Approximate System Energy Functional 
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A good approximation of of the flux density as shown in section 

5.2 would place us at a point P of the functional. This approximate B, 

would necessarily need to satisfy the boundary conditions of the slot 

as well as the volume condition in terms of the imposed sources so that 

point P is on the energy functional describing the system. In practice 

the choice of in the calculation of the lower bound of inductance as 

explained earlier is not difficult. The boundary conditions can be 

easily and quite accurately met and the volume conditions merely require 

that is solenoidal in the slot. In cases where the volume and 

boundary conditions for is not exactly satisfied, the energy due to 

may be at point P' shown in Figure 22. We are in this case on an 

energy functional which is slightly displaced from the true one. 

This would not pose a problem to the bound we obtain as any approximation 

in using approximate boundary and volume conditions will always 

give a calculated energy which is higher than the true system energy. 

The true system energy is always the minimum value of the system 

energy. This will be the case in the calculation of the upper bound 

in section 5.4 when we modify the boundary conditions to obtain an 

effective slot shape. 

Improvement on the lower bound inductance given by equation 

(5.8) can be achieved by using the improvement formula given in 

section 3.2. Corresponding to equation (3.3) we have, 

= 2.1 + (5.14) 
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vAere needs to satisfy the boundary conditions that the total flux 

due to it is zero. Thus, 

B . ds = o (5.15) 

The flux density B has to be solenoidal in the volume, thus 

V . B = o (5.16) 

For the slot per unit length as in Figure 21 equations (5.15) 

and (5.16) become simply. 

Be dy = o (5.17) 

for each of the three regions of the slot. 

The expressions of B^ for each of the three regions of the slot 

is given by equation (5.5). The electromagnetic energy due to 

corresponding to equation (3.7) is given by. 

1 
2 

L 
K 

B dv 
—c 

Y« = Y, - (5.18) 
1_ 

H. lEcl 
dv 

v 

Equation (5.18) is applied to each of the three regions of the slot. 

We notice that for the two regions above the current-conducting region 

where is independent of the space variable y, the second term on the 
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right hand side of equation (5.18) becomes identically zero due to the 

requirement that has to satisfy equation (5.17). There is no change 

in the value of Y^. This is because in the non-conducting regions we 

have assumed a constant flux density which is known everywhere and thus 

is not affected by any field variation introduced. 

For the current-carrying region a possible choice of satisfying 

the conditions of equation (5.17) is, 

= (y - 1.291) i (5.19) 

where ± denotes the unit vector in the x-direction. For details of 

calculation see Appendix V. 

By substituting B^ from equation (5.5) and B^ from equation (5.19) 

into equation (5.18) we obtain the value of for each of the slot regions. 

From equation (5.3) for fixed flux linkages N# and a reduction in 

the system energy from to Yg, we obtain an improvement of the lower 

bound inductance. By putting the value of Y^ obtained into equation (5.3) 

we obtain the improved lower bound value of inductance, 

L_ = 231.435 H per unit length (5.20) 

As in equation (5.13) we obtain the reactance per phase as 

Xg = 3.2030 per unit length (5.21) 

which is an increase of about 2% over the value given by equation (5.13) . 

This is not a very substantial improvement. It was found as in section 

4.1.4 for the lower bound improvement of capacitance using D^, that other 

choices of B^, for example using higher order expressions in y, gave no 

appreciable improvement as well. 



82 

The difficulty in improving besides the fact that we are dealing 

with a vector quamtity, cam be further attributed to the fact that the 

fixed flux linkages is an approximation itself because it is the 

current which is specified. It is difficult to specify the total flux 

linkages whereas to specify the current would be comparatively easy. 

An accurate N<J> is required for the improvement of the lower bound to be 

substantial. This is similarly the case in the calculation of capacitance, 

inductance and resistance in Chapter 4. In cases of fixed potential 

we have a substantial improvement whereas in cases of fixed charges or 

fixed flux linkages we only have a small improvement. 

We can consider the upper bound to the inductance as a means of 

achieving a better estimate of the true inductance. 

5.4 Determination of the Upper Bound of Inductance due to the Lower 

Winding 

In calculating the upper bound of inductance as mentioned in 

section 4.2, the magnetic potential along which the magnetic field H 

is zero is the quantity to be varied. The fixed sources being the current 

I, flowing in each conductor. Figure 23 shows the slot with the equipotential 

lines. The effective slot shape is as shown for the following reasons. 

Whereas in the case of the lower bound calculation, the assumption of 

normal flux density at the slot side is an acceptable one without resorting 

to the use of an effective slot shape this is not the case here. We have 

a more stringent requirement for the variation in magnetic potential in 

that the tangential field should be zero along the slot side; it being an 

equipotential surface. This would imply an extremely high value of 

permeability for the surrounding iron. Clearly there is a circulation of 

flux at the bottom of the slot due chiefly to the position of the lower 



83 

wuiding being surrounded on three sides by iron of finite permeability. 

The current-carrying region has therefore to be modified to an effective 

shape to take such effects into account, such that we have a condition 

which is closer to that of the actual machine slot. The effective slot 

shape has only one point at which the potential is zero instead of the 

whole slot bottom as when we assume infinite permeability of iron. Such 

a point is known as a kernel and is at the centre of the slot bottom. 

That there is one such kernel for such a slot has previously been shown 

by Stevenson and Park . 

(h--t) 

Figure 23 Effective Slot Shape Figure 24 Alternative Effective Slot Shape 
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Alternatively^ the effective slot shape shown in Figure 24 may be 

used. In this case we are allowing for the effects of flux circulation 

due to the lower winding to extend higher into the upper part of the 

current-carrying region. 

In calculating the upper bound of inductance, the Y-functional 

is expressed in terms of the fixed current source I, thus, 

Y = Y (5.22) 

The variation is performed on the magnetic potential or the lines 

of no work if within the current-carrying region. As mentioned in 

section 3.4 for the case of electric potential, the variation in the 

magnetic potential can be performed by the conceptual insertion of 

infinitely permeable sheets of negligible thickness. The equipotential 

lines are shaped by these sheets and such shaping increases the system 

potential energy. From equation (5.22) we can see that any increase in 

Y from its minimum with I fixed means an increase in the inductance from 

its true value; hence the upper bound of inductance. 

Simple algebraic expressions for such equipotential lines are 

difficult to find. A geometrical approach can usefully be adopted for 

the calculation of the upper bound and is shown below, 

The slot is divided into five regions as shown in Figure 23. The 

inductance of each region is calculated by summing up the inductance due 

to each incremental strip between two equipotential lines. The expression 

of for each region is given by. 

Region t : 6H = - s cos6 6s 
^1 

(h^-t) : 6e — - y 6y 
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-a ^ 

^ n HI 
hg : H — — — 
3 c 

'̂ 4 ' - (wc>Lse '^•"> 

where N = no. of conductors in the lower winding of the slot, 

J = the average current density, I = the current flowing in each 

conductor. For details of calculation see Appendix VI. 

From the above expressions it is seen that the magnetic field for 

the current carrying regions is expressed as an increment 6H whereas 

for the non-conducting region where the magnetic field is constant, 

simply H. The relationship of equation (5.9), 

Nf 
L = — (5.24) 

is used to calculate the inductance of each incremental strip and the 

inductance of each region is obtained separately by integration. 

We obtain the following expressions of inductance for the upper 

bound. 

Region t ; L = 
% 

(h, -t) : L = 

3h^^ tan ^ (b/2t) 

2 1 
U NT (h_j - t^) 
O i 

^ b 

h 
, _ o / 
^2 : L = g; 
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.3 : . -
J c 

h r "o " h* 
4 : L - 3b(b+c) 

2 ^ 2 -1 
2 

sec 6 + 2 tan8 
tan (b-c)/h^ 

(5.25) 

If the expressions of inductance for the regions h^ and h^ above are 

compared with the equation (5.8) it is seen that the expressions are 

the same. This means that if hg and h^ in equation (5.25) are the same 

as those in equation (5.8) both the upper and the lower bounds have the 

same value. This is not unexpected as for the non-conducting regions 

where the fields have been assumed constant and known everywhere both 

the variations in the flux density and in the magnetic potential simply 

give the same results. 

The upper bound of the slot inductance L due to the lower winding 

is given by the sum of the inductances in equation (5.25). Substituting 

the various values of the slot dimensions into equation (5.25) we can 

obtain the upper bound of the slot leakage inductance for the effective 

slot shape shown in Figure 23, with t = % h^ and * conveniently chosen 

to be 45°, 

L_j_ = 249.04 H per unit length (5.26) 

The slot length is 34.5" and there are 40 slots per phase. There-

fore the leakage reactance per phase is 

Xg = 3.4460 per unit length (5.27) 

If, however, the effective slot shape of Figure 24 is taken, the 

upper bound of the slot leakage inductance with t = h and * = 45°, 



87 

would be 

L_j_ = 294.45 n H per unit length (5.28) 

giving a reactance value of 

Xg = 4.0740 per unit length (5.29) 

5.5 The Improvement of the Upper Bound 

Because of difficulties in writing down the equipotential lines 

in simple algebraic expressions, an improvement of the upper bound in 

the similar manner as for the lower bound is not possible. Nevertheless 

we have an upper bound which would be useful in estimating the true value 

of the slot leakage reactance. 

5.6 Comparison between Calculated and Test Results 

As stated in section 5.1 the calculated stator slot leakage 

reactance obtained by the standard design formula is 2.680. The leakage 

reactance due to other factors (e.g. tooth leakage, overhang, gap, skew 

and rotor leakage) is 1.760, giving a total calculated value of 4.440 

as against the test value of 5.250. 

Our calculated values of inductance for the case of the upper bound 

using Figure 23 are: 

Upper bound = 3.4460 

Improved lower bound = 3.2030 

Average slot reactance = 3.32450 (5.30) 

Due to pitching this value is reduced by a factor of 0.862. 

(See Appendix VII for details on the calculation of reduction factors 
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due to pitching). The average slot reactance is thus 0.862 x 3.32450 

= 2.8660. To this is added 1.760 giving a total leakage reactance of 

4.6260, 11.9% below the test value. 

If, however, the effective slot shape of Figure 24 is used to 

calculate the upper bound, we have. 

Upper bound = 4.0740 

Improved lower bound = 3.2030 

Average slot reactance = 3.63850 (5.31) 

Due to pitching this value is reduced to 3.1360 and adding 1.760 

to it we obtain a total motor leakage reactance of 4.8960 which is 6.7% 

below the test value of 5.250. 

5.7 Discussion of Results 

In choosing the boundary shape of the slot to be as shown in 

Figure 23 in which only half the current-carrying region is brought 

down into a kernel at the centre of the slot bottom, we obtain an 

average total motor reactance of within 11,9% of the test result. In 

this case we have assumed that there is a considerable circulation of 

flux only at the slot bottom. The effects of flux circulation due to 

finite iron permeability are more extensive in the case of the effective 

slot shape shown in Figure 24 where the whole of the conducting region 

is affected. The average calculated reactance is now about 6,7% below 

the test value, 

Our calculated result shows that a considerable amount of magnetic 

flux circulation is likely to be present in a deep slot surrounded by 

iron of finite permeability especially when a winding is situated at the 
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bottom of it. This is the case of the lower high-speed (10 pole) winding. 

If such effects due to flux circulation is ignored in calculation, a 

much lower value of the leakage reactance is obtained. 

It is thus likely that the assumption that the flux crosses 

the slot in straight parallel lines is not accurate and acceptable in 

such cases. However, such effects do not occur or at least do not 

affect the inductance, as far as the upper low-speed (14-pole) winding 

is concerned; due to its position in the slot as such. Ihe winding has 

iron bordering it only on two sides instead of on three as in the case 

of the lower winding. This means that there is no kernel in the field 

of the upper winding and the effects of flux circulation are not considerable. 

Calculations using the field variational method can be made for 

the upper 14-pole winding and we find the average motor leakage reactance 

to be 10.390, less than 1% below the test value of 10.410. The normal 

design formula gives a calculated value of 9.720. Together with the lower 

bound of reactance obtained either by the standard methods or the varia-

tional method, the upper bound of reactance obtained by taking the effective 

slot shapes can provide us with a means of making a better estimate of the 

true slot leakage reactance. 
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CHAPTER SIX 

C!C»KLUSICM 

To a designer, a method of calculation which provides an upper 

and a lower bound to a certain parameter of design is useful and helpful. 

In the design of electrical machines and apparatus, as in any other 

engineering design, the ability of the designer to predict within 

known limits the behaviour and performance of his design is important 

and necessary especially at the present moment of stiff business 

competitiveness. 

The variational method treated in this thesis shows examples 

of the calculation of electromagnetic system parameters namely the 

capacitance, inductance and resistance; obtaining the upper and lower 

bounds of each. The results obtained for the simple configurations 

used in the examples are in good agreement with those obtained by other 

methods, be it analytical or numerical. In the calculation of the 

capacitance of a square tubing, the result obtained are within 1% of 

the analytically obtained value. The inductance calculated in our 

example is about 1.1% above the numerically determined value, while the 

value of resistance we obtain is 1.5% of the value obtained by a finite 

difference method. 

Variational calculations involving system energy in terms of 

scalar quantities for example the scalar electric potential, ate easier 

to do. Furthermore in such cases the improvement formula obtained in 

Chapter 3 can be applied to obtain a reasonably substantial improvement 

of the initial parameter value calculated. Variational calculations 

involving vector quantities, for example the electric flux density, aro. 
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however not as easy to perform and improvement whenever possible is 

always very slight. In cases where the variational formulation which 

requires the calculation of system energy, cannot be directly applied, 

for example in the calculation of the upper bound of inductance in 

terms of magnetic potential, geometrical approach is adopted. The 

improvement formula cannot be applied in such cases and for the 

estimation of the true parameter value we have to use the value obtained 

without the benefit of such improvement. 

In calculating the system energy and in the choice of arbitrary 

function for the application of the improvement formula, the boundary 

conditions of the system have to be carefully taken into consideration. 

Knowledge and insight into the problem to be solved is always helpful 

especially in determining the correct boundary conditions of the problem. 

This is especially true if the variational method of calculation is to 

be applied to 3-dimensional problems. It is perhaps the greatest challenge 

that the variational method can take up in view of the difficulties 

involved in 3-dimensional problem solving. Numerical methods developed 

for tackling 3-dimensional electromagnetic problems are at present still 

in the early stages. The variational method possesses the inherent 

capability to be developed for the solution of 3-dimension problems. 

The example of the calculation of bounded values for slot leakage 

reactance shows the possibility of the field variational method to be 

gainfully applied in machine design problems in conjunction with the 

well-established standard methods of slot leakage calculation. An 

alternative method to the standard methods is thus avciilable to the 

machine designer. 
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All the examples given have shown that the variational method 

gives good results and can be suitably and successfully applied to 

electromagnetic problems. 

An important area which needs to be looked into further is the 

determination of the initial trial function for the various types of 

problems such as to minimise or maximise the system energy as the case 

may be. A guide through mathematical analysis, as to the necessary 

conditions that need to be satisfied for the correct determination of 

the trial function is necessary particularly in relation to the system 

equations and the system boundary conditions -
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APPENDIX I 

The Euler-Lagrange Variational Principle 

Let a scalar functional I be expressed in the form 

&(*,*',x) dx (1) 

with the boundary points at 

(a) = a 

<j) (b) (2) 

where L is a functional of variables <j), ̂ ' and x and ^' is the first 

derivative of ^ with respect to x. 

Let L be differentiable up to the second derivative and the 

derivatives are continuous within the region a to b. See Figure 1. 

Figure 1 Variations of * between a and b 
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If I is stationary (maximum, minimum or saddle point) at ^, let 

us consider a small variation aip about <fi, such that 

(fi = (J) + atjj (3) 

where a is a constant, f an arbitrary function of x. 

In order that equation (2) be satisfied, we have at the boundary, 

such that. 

4i(a) = \p (b) (4) 

The functional I for variations about ^ is given by. 

I((j) + arp) = I((j>) + 6l ((j),ai|/) + 6 I(^,a^) + (5) 

and the first variation of I is, 

5l = a ' R 
31, 
3*' 

dx (6) 

Integrating equation (6) by parts and using equation (4) for the 

boundary conditions we obtain. 

61 = o dL 

3* dx 
31, 
3*' 

dx (7) 

The stationarity of I requires that its first variation should 

vanish. Equation (7) therefore should become zero. Since f is an 

arbitrary function in the region, it follows that the necessary condition 

for a stationary I is 

dL 

3* dx 
31; 

(8) 
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This is the Euler-Lagrange Differential Equation. 

For multivariables x^, Xg, ay,..., x , t h e Euler-Lagrange 

Equation is given by. 

&L r 3 at I 

The first variation of I therefore vanishes at (p where (p is the 

solution of the Euler-Lagrange Equation. This is the Euler-Lagrange 

Variational Principle. 
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APPENDIX II 

Ttie scalar Y and Z fiinctionals of equations (2.22) , (2.23) , (2,24) 

and (2.25) in chapter two are: 

1 2 
~ ^ e |Ej dv - <> ds (1) 

v 

— 1 I 12 
P* - 2p |D| dv - (, pg ds (2) 

1 E IEI ̂  dv 
2 

v 

h l2l' 
v 

(3) 

(4) 

Consider equation (1) first, where the variation is on the 

potential ^ with the charges p and p fixed. 

Let 

L - ^|e| ̂  - p<}» 

1 I 12 — 
- p* (5) 

where 

= ?<{i = -]E 

and 5, = p 
s ^s 

(6) 

(7) 



99 

For stationary Z it is required that its first variation should 

vanish, thus, 

5Z L dv + 6 <) £, ds o (8) 

v 

Variation in the volume potential (j> makes the second term zero 

since is the value of (p evaluated at the surface and £ is a constant 

with respect to (p. Applying the Euler-Lagrange Equation, 

3* 3r 
9iL 

31' 
(9) 

to equation (5) gives. 

P - gp (e4/) = o 

or rewriting for the space o p e r a t o r a n d using equation (6), 

(10) 

-p + V , eE (11) 

Using the relationship p = eE, equation (11) becomes 

V . D (12) 

which together with equation (6) are the system differential equations. 

Equations (2), (3) and (4) can be similarly treated and we find 

that the Euler-Lagrange equations in each case are the system differential 

equations. 
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APPENDIX III 
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Appendix IV Calculation of Unsaturated Leakage Reactance 

Using the Ampere Circuital Law for the region in the conductor: 

(Refer to Figure 21). 

H X b N (1) 

H 
yNI 
h^b 

(2) 

The electromagnetic energy. 

E - 1 Wgb 
hTb^ 

(3) 

2 2 
_o 

6b 
(4) 

Similarly for the regions hg and h^, the energy for each region 

is given by: 

Region h^ : E 

2 2 
Vg* I ^2 

2b 
(5) 

hg : E = 

2 2 
Vp* I hg 

2c (6) 

The total energy for the slot is the sum of (4), (5) and (6), 

o 
"Total 

3hu 3h. 
(7) 

We need to determine the total flux linkages N4> as the imposed 

source of the flux density B in the slot. 
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N$ - LI (8) 

Using the relationship for the energy in terms of I, 

i LI - E 
Total 

2E, 
LI 

Total 
3h. 3hu 

(9) 

In the case of variation of ^ with the source N$ kept constant, 

the relationship involving the Y-functional is 

(N$)' 

\ L 

= Y = E 

(N$) 
2Y 

Total 

3^2 3^2 
per unit length 

(10) 

For the lower lO-pole winding, h^ = 2.581", h« = 2.507", h_ = 0.105", 
0.6", c = 0.15-3", and N - 6. 

L = 226.703 jj Henry per unit length (11) 

Taking the slot length as 34.5", we obtain the reactance per phase of 

40 slots, 

X - 3.1370 per phase (12) 

For the upper 14-pole winding, h^ - 2.137", h^ = 0.173", hg = 0.105", 

b - 0.6", c - 0.153", and N - 12, 

and 

L = 311.270 H per unit length 

Xg = 4.3070 per phase 

(13) 

(14) 
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Appendix V Improvement of the Lower Bound Value of Inductance 

The chosen ^ has to satisfy the following conditions: 

V . B (1) 

B . ds (2) 

Let the correct choice of B be: 

(y-p)i within the conducting region (3) 

(y-q)i 

(y-q)i 

above the conducting region ( 4 ) 

where _i is the unit vector in the x-direction. 

The expression of B^ for the three regions are (see equation (2) 

in Appendix IV, 

Region h^ : s p H Nly . 
h^b 1 (5) 

NI . 
^0 % - i (6) 

NI . 
(7) 

The variation on gives. 

B„ = B. + aB 
—/ —1 —c 

(8) 



At optimum (minimum) a = -
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B..B dv 
v—1 — c 

(9) 

B_ dv 

and Yy. 1 
B-.B dv 
— 1 — c 

|B_|2 dv 

(10) 

For each of the regions, the second term on the right hand side 

of equation (10) is given by: 

Region h, : bp NI 
h,b 

(y-p)dy 

|B_|2 dv 

v 

bp. 
NI 
P-

(y-q)dy 

|Bcl dv 

v 

(11) 

(12) 

NI 
(y-r)dy 

IB_1^ dv 

v 

(13) 

To satisfy equation (2) above, equations (12) and (13) are identically 

zero. Equation (10) therefore becomes: 
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Y, - 1 
2^, 

NI 
h_b 
i 

(y-p)dy 

* (y-p)^ dy 

- 4 11 bNI 
h^p 

3 2 

1 2 2 
Y " + - ph; 

(14) 

For the lower 10-pole winding, a suitable choice for p = 1.291. 

With = ^Total the other values as in Appendix IV equation (14) 

becomes, 

^ = 111.034 w l' (15) 

From equation (9), Appendix IV, 

N* - 226.703 I (16) 

Using the relationship, 

(N$)' 

— 2 Y — = 231.435 Henry per unit length (17) 

The length of slot is 34.5" and there are 40 slots per phase. The 

reactance per phase is 

Xg = 3.2030 (18) 
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For the upper 14-pole winding, p = 1.07. Similar treatment as above 

gives, 

L_ = 327.304 H per unit length (19) 

and X = 4 . 5 2 9 0 per phase (20) 
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Appendix VI Calculatioa of the Upper Bound of Slot Leakage Reactance 

Consider the region of tooth-neck h^: (Refer to Figure 23). 

Writing the circuital law for each incremental strip, we obtain 

H 

A 6x I 
c 

b 

NI 
c 

N 
I (1) 

(2) 

The incremental inductance of the strip is 

6L 
5(N$) 

B6y — dx 
c 

W N 6y 6x 
(3) 

The inductance of one strip is thus. 

W NTdx 
SL dy 

W N hggX 
(4) 

For the whole region of hg: 

I L = j 6L 

o 

By similar considerations for the other regions. 

R • h L r 2 Region : L - 3 ^ ^ 

(5) 

sec 8 tan8 + 2 tanG 
tan 

- 1 b-c 

L = 

(6) 

(7) 
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(h^-t) : L = ^ (8) 

Shjb 

W afcZ 
C : L = 2 ^ , (9) 

3h^ tan (b/2t) 

The total inductance of the slot is the sum of the five terms of 

equations (5), (6), (7), (8) and (9). 

For the lower 10-pole winding with h^ = 2.581", h^ = 2.060", 

hg = 0.105", hy, - 0.447, t - hi/2, b = 0.6", c = 0.153" and N - 6, 

the evaluation of the five equations gives a slot inductance. 

249.04 ^ Henry per unit length (10) 

giving a slot reactance 

X = 3.4460 per phase (11) 

Alternatively if t = h^, equation (8) becomes zero and the slot inductance 

is 

L -= 294.45 Henry per unit length (12) 

and X = 4.0740 per phase (13) 

For the top 14-pole winding h^ = 2.137", hg = o, hg = 0.105", 

h^ = 0.173", t = o and N = 12, 

Lg = 428.760 H per unit length (14) 

and X = 5.9330 per phase (15) 
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Appendix VII Calculatioa of the Reduction Factor due to Pitching 

of Winding 

The slot inductance can be written as 

Ly + Lg + 2M (1) 

where = self inductance of top coil 

Lg = self inductance of bottom coil 

M - mutual inductance of the two coils 

From equation (10) of Appendix IV 

_o 
3 

h. 3(h,+h_) 3h. 

- - T (2) 

and 4 
_o 
3 

3hu 3h. 

(3) 

where N = total number of turns for the two coils. 

Let I = i cos 0 

and I' = i cos (p 

Writing the Ampere Circuital Law in the region above the lower bottom 

coil, (Refer to Figure 21) 

Hb - i cos <p 

H 
N 
2b 

i cos <|) (4) 

The flux linkages due to this field acting on the top coil and the 

regions above it is given by 



Flux linkages 
•̂ 1 

.2h. 
H dy + 

fh-
2 N 

1 
Wo H dy + 

fh„ . . 
3 N 

2 
U ^ H d y 

(5) 

The mutual inductance is therefore 

m - Flux linkage cosj) 
M J E_ . g 

h 2h_ 2h 

b" ^ "5" 
(6) 

The total slot inductance from equations (1), (2), (3) and (6) is 

.2 
y^N 5h 2h 2h_ 

+ ^ + 
3b 

hi 2*2 2^3 

b" + T + — 
cos# (7) 

Evaluating equation (7) with h^ = 1.2905", h^ = 2.507", h^ = 0.105", 

b = 0.6", c = 0.153", and N = 6, gives 

Lg - (119.825 + 106.92 cos^) Henry per unit length (8) 

For different values of pitching and hence * we obtain: 

ding Pitch 
p.u. 

1.0 0.83 0.75 0.67 0.50 0.34 0.17 0.0 

<P 0° 30° 45° 60° 90° 120° 150° 180° 

% 226.74 212.42 195.43 173.28 119.825 66.36 27.23 12.91 

_ Reduction 
factor 

X 

1.0 0.937 0.862 0.764 0.528 0.293 0.120 0.057 
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APPENDIX VIII 

rgLiggVEDjOaiUIA K K StOT IMKUGE IMDIiTTflUPK 

8QHMARY 

on t h e T to a considerable extent 

Z r I t T constituent of this reactance 

IS shown that the assunptions of the fomilae are consistent mth 

= r p : r : - — : — 
vaa l It i r approximation to the correct 
t Z the =" W n ^ i m a t e upper bound a^d to 
t ^ e the average of the two bounded value, ^ e paper describes h„v this 

can be done and suggests a modified design fonmla. A numerical example 

tw.-,rinding machine in which 
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AN IMPROVED FORMULA FOR SLOT LEAKAGE INDUCTANCE 

P. Hammond and Y.K.H. Puad 
Department of Electrical Engineering, 
Southampton University, England 

1. INTRODUCTION 

Slot leakage is an important oompo-

nent of the leakage reactance of 

induction motors and has therefore 

an appreciable effect on the motor 

behaviour at starting. Although 

accurate values can in principle be 

obtained by means of a complete 

flux map, it is not easy to compute 

the flux at the iron-air interface. 

The normal practice in design 

offices is to use a formula based 

on the assumption that the flux 

traverses the slot at right angles 
1 2 

to its sides ' . In general this 

assumption is borne out in practice, 

but if there is appreciable flux 

circulation in the slot there is 

some doubt. Recently the authors' 

attention was drawn to test results 

on a motor which suggested that the 

design calculation had given too low 

a value for the slot leakage and it 

was decided to investigate the 

basis of the design formula. 

2. BOUNDED 80LUTTCNS FOR THE SLOT 
LEAKAGE INDUCTANCE 

o 

In a recent book one of the authors 

has shown that any approximate flux 

plot gives a lower bound to the 

associated inductance. In physical 

terms the flux socks the easiest 

route and any approximation intro-

duces constraints which reduce the 

permeance. The value of the calcu-

lated inductance rises to the correct 

value as the accuracy of the flux 

plot is increased. Consider first 

unsaturated teeth and assume for 

simplicity an open slot with 

parallel sides in which there is a 

single conductor. Fig. 1 illustrates 

the simple flux distribution of the 

design formula and Fig. 2 illustrates 

a slightly more accurate flux plot^. 

The field in the bottom of the slot 

is somewhat different, but since it 

is weak in this region the effect 

on the inductance is small. 

Fig. 2 Pig. 1 

Fig. 3 illustrates the effect 

flux circulation due to finite 

permeability of slot sides, which 

is more prominent in the lower 

parts of the slot. It is clear 

that because of the curvature of 

the flux the design formula is 

less accuratc when there is 

ciable flux circulation. Sincc a 

^ENGLMD ^ Electrical Engineering IX̂ piu tment, Univoi-sity of Southan()t()n, 
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Fig, 3 4 

ting to note that the assumption of 

zero magnetic field sbraigth alcmg 

the sides of the slot is more 

demanding than the assumption of 

horizontal flux lines. The flux 

will always tend to enter an iron 

surface more or less at right angles, 

because the ratio of the tangents 

of the angles shown in Fig. 5 is 

equal to the relative permeability 

flux plot provides a lower bound, 

the motor inductance on test is 

higher than the calculated value. 

However, the effect may still be 

small, because even with finite 

permeability the flux will still 

enter the teeth more or less at 

right angles. 

One way of improving the calculation 

is to improve the flux map, but this 

is not easy. Another way is to find 

an upper bound to the solution. In 

the book already mentioned it is 

shown that such upper bounds can be 

obtained by modelling the lines of 

zero field strength. In a region 

which has no current such lines are 

equipotentials. Where there is 

current we can describe them as lines 

of equal magnetomotive force. 

For an unsaturated slot surrounded 

by infinitely permeable iron we can 

assume that the slot sides are 

equipotentials. Fig. 4 shows a poten-

tial plot. At the bottom of the 

slot there is an undetermined region 

of very weak field. It is intores-

tan 0 

tan 0, 

Fig. Fi;r. 6 

But this does not mean that there 

is no field along the iron. This 

would be true only if p were 

infinite. It is, therefore, likely 

that a plot of equipotentials will 

be more sensitive to the effect of 

finite permeability. 

Fig. 6 shows such a plot and should 

be compared with Fig. 3. It will be 

seen that the lines of constant 

m.m.f. curve towards each other in 

the bottom of the slot. They con-

verge in a kernel of the field. 

The effect is to taper the field 

region and a simple model is given 

in Fig. 7. The concentration of 

the field increases the energy and 

hence the inductance. 
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FiG. 7 8 

Table 1 shows some typical calcula-

tions of this effect. 

h. 2.581' 

2.612' 

0.6" 

Upper Bound 

t Inductance 
per unit 
length 

0 5.787 WQ 

\/4 5.812 p 

h,/2 5.973 Wg 

7.234 

Table 1 

Table 2 shows the averages of the 

upper and lower bounds and compares 

these with the lower bounds obtained 

by means of the usual design formula. 

3. OCMPARIHCN BETWEEN CALCULATED 
AND TEST 

Pig. 8 shows a stator slot containing 

two conductors. Hiese conductors 

belong to two separate windings and 

the inductance of the two windings 

"was obtained both by calculation 

and on test. Fig. 9 stKMsa simpli-

fied slot shape used in calculation. 

Ihe usual design formula for the 

lower winding gives a slot leakage 

reactance of X = 2.71fi. The upper 

bound on the assumption of Fig. 9 

is given by = 3.5ln. The 

average of X_ and X+ is X^^ = S.lln. 

"The total machine leakage reactance 

was calculated as 4.44n but the 

test value was 5.250. The calcula-

ted value is 15.4% below the test 

value. If the error is due to the 

calculation of the slot leakage 

alone, we obtain a calculated 

value of (4.440 - 2.71n + 3.11n) 

= 4.840. This is only 7.8% below 

the test value. 

0 

h^/4 

h / 2 

Upper Bound Inductance 
V. o 

5.787 
5.812 

5.973 

7.234 

Lower Bound 

^o 

"o 3b b 

5.787 

Average Inductance 

5.787 
5.800 

5.880 

6.511 

Table 2 
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If we use Fig. 10 to estimate the 

upper bound we obtain = 2.970 

giving an average reactance 

X = 2.84Q. This malces the total 

calculated reactance to be 4.57n, 

about 13% below the test value. 

h. 

h. 

&h. 

Fig. 9 Fig. 10 

The total machine leakage reactance 

due to the winding in the top of 

the slot was calculated by the 

usual formula as X = 9.84a and the 

test value corresponds to X = 10.4in. 

The calculated value is only 5.5% 

below the test value. For another 

machine, the design calculated 

total leakage reactance due to the 

lower winding was 1.18n, about 10% 

below the test value of 1.3ln. The 

slot leakage by the usual formula 

is given by = 0.65n and the 

upper bound using Fig. 9 is given 

by = 0.770, giving an average of 

Xĝ , = 0.710. If this average value 

is taken as the slot leakage reac-

tance, we have a calculated value 

of (1.18 - 0.65 + 0.71)0 = 1.240, 

only 5.3% below the test value. 

For the upper winding the calculated 

value of total leakage reactance is 

1.410, 7.2% below the test value of 

1.520. Thus the usual formula gives 

a reasonably close estimate of the 

test value. This is as expected 

because the upper winding does not 

experience the effect at the bottom 

of the slot. 

4. CONCLUSION 

If there is considerable flux 

circulation due to finite permea-

bility the slot leakage calculated 

by the usual design formula is 

likely to be low. In such cases 

an improved value can be obtained 

by calculating an upper bound of 

the reactance and taking the 

average. A flux plot always gives 

a lower bound and a potential plot 

gives an upper bound. 
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