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by Yeoh Keat Hian Muhamad Fuad bin Abdullah

Variational methods have been used in determining system parameters in a
wide range of engineering and physics problems, such as the determination
of the resonant frequency, the binding energy, scattering phase shift and
the reflection coefficient. The principles involved which are based on
the Calculus of Variations are well-established. Examples of the applica-
tion of the field variational method to some electromagnetic problems are

given in this thesis.

The field quantity of an electromagnetic system is varied in such a way
that the system energy, whether kinetic, potential or a combination of both,
is slighﬁly displaced from its equilibrium. In the case of a purely kinetic
energy system, variation of field reduces the system energy. The opposite
occurs for the system with purely potential energy. . By varying the
potential ¢ and the flux density D separately in an electrostatic system,
the upper and lower bounds of its capacitance can be calculated. Similarly
by wvarying the magnetic potential ¢m and the flux density B, the upper and
lower bounds of the system inductance can be calculated. Finally by varying
the current density J and the potential ¢ of a resistive electric system,
the upper and lower bounds of its resistance can be obtained. Examples of

the above three cases of field variation are given.

The results obtained are compared with those already determined elsewhere

either analytically oxr by numerical methods.

The application of the Field Variational Method in the calculation of

slot leakage reactance in machine design is shown.
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CHAPTER ONE

1.1 Introduction

The electrical power is no doubt a most important form of power
in our present world. Until the 1970's the growth in the electricity
demand in the United Kingdom, for example, has been steadily increasing
at the rate of 7% per annum doubling every 10 years(l). Corresponding
to this growth there has been a parallel increase in the sizes of
electrical plants such as transformers, motors, generators and especially
so in the case of turbogenerators(z). The 500 MW range turbogenerators
are nowadays very common at modern power stations and super turbogenerators
up to the size of 1200 MW have been built as early as 1973(3). As a
consequence of such tremendous changes in the sizes of electrical devices,
the electrical machinery industry has been becoming more competitive than
ever. An accurate prediction of device performance is necessary to meet
stringent users' specifications in order that an economical design can
be achieved. Tolerances in design are being progressively reduced and
optimisation seems to be the rule of the day.

With the advent of large digital computers machine designers have
found an indispensable aid in them in achieving optimum designs of
their machines. The use of standard software packages has increased
in popularity with their sizes becoming larger than ever to meet the
users' demands. Silvester has said that finite element packages of the
equivalent of 104 - 105 executable Fortran lines would probably be needed
to meet the demands of machine designers in the eighties(4).
There could arise two main disadvantages from the designer's point

of view in using such large standard packages. Firstly, is the possibility

of the loss of 'feel' that the designer would possess on his design of a



machine or device. Armed with some basic criteria, a machine designer
should always be able to see how the changes in a certain parameter
would affect the perfermance of the machine. Also he should bear in
mind the basic assumptions made in the design formulae employed. There
is therefore always a possibility that such an insight and ‘'feel' may
be lost when large computer software packages are used in design. More
often than not the designer would be given such a massive amount of
figure in the computer output that he may likely be lost in trying to
extract the relevant and useful information from them. This problem
has been largely overcome by the use of post-processors, providing the
necessary and required information in the form of graphics and diagrams -
even 3~dimensional. Standard packages could be easily adapted to the
use of such post-processing methods.

The second possible disadvantage is that the information given by
the output of such standard packages would often be more than is required
for a particular application; and as such expensive computer time might
be wasted in calculating the unwanted information. This is particularly
so :in the application of finite elements method to electromagnetic field
problems. 1In solving a particular field problem, the finite elements
method through discretisation and use of higher order elements, calculates
the point values of the field over the whole of the region under consideration.
Such information regarding the field at so many points is usually
unnecessary if all that is required is the total electromagnetic energy
of the region or the associated energy parameter that can express it,
for example the resistance, inductance or the capacitance.

The search wi1l certainly go on to find a compromise between the

extremes of a totally analytical approach which is very restricted in its



application and a totally numerical approach to electrical design problems.
Such a combination of analytical and numerical techniques could overcome
to an extent the‘two disadvantages mentioned above. The field variational
method treated in this thesis is one that has this in mind; attempting to
utilise fully the analytical advantages offered and keeping to a minimum

the amount of computation necessary.

1.2 A Method which gives an Upper and a Lower Bound

An important question one would ask when presented with a numerical
solution to a design problem, especially when obtained from the output of
a digital computer, would be 'How accurate is it?' or 'How much confidence
can we have in it?' 1In the design of an electrical machine, the designer
usually wishes to obtain the equivalent-circuit parameters in the form
of resistances and reactances which can help him to specify the performance
characteristics of the machine. One would be quite uncertain as to the
accuracy of such numerical figures; whether it is on the higher or lower
side of the true value. A method of calculation which can give the
upper and lower bounds to the true solution would certainly be advantageous.
The average of the two bounds would always give a value which is closer
to the correct one. We would also be able to know within what limits our
estimate of the true value is. The designer would then have the confidence
that his design would give the performance characteristics required within
some known limits. The uncertainty that might arise from a design parameter
without the benefits of an upper and a lower bound can thus be avoided.

The duality(S)

between electric and magnetic fields in terms of
moving or stationary sources and expressable in terms of either kinetic

or potential energy enables the field variational method to be formulated



SO as to give an upper and a lower bound to machine design parameters.
This will be shown in the subsequent chapters. Examples of the
calculations of upper and lower bounds of capacitance, inductance and
resistance are given in Chapter 4. 1In chapter 5 is given an example
of the application of the field variational method in the calculation of
the slot leakage reactance of induction motors.

The background to the variational method employed in this thesis
can be found in a recently published book entitled 'Energy Methods
in Electromagnetism' by P. Hammond. Examples of the calculation of
capacitance, inductance and resistance are also found in the said
book and in two papers, namely, 'Calculation of inductance and capa-
citance by means of dual energy principles' and 'Calculation of eddy
currents by dual energy methods', both by P. Hammond and J. Penman.
The approach to the calculations in this thesis is, however, slightly
different in that different energy functionals have been used. Other
examples of variational methods applied to electromagnetic systems can
be found elsewhere, for example, in the book 'Methods of Theoretical
Physics' by Morse and Feshbach, 'Electricity and Magnetism' by
E. M. Purcell and 'Computer Technigues for Electromagnetics' edited by
R. Mittra. The use of effective slot shapes in slot reactance calculations
is a new proposition. A paper based on the material found in Chapter 5
is to be presented at the International Conference on Electrical Machines

in Hungary in September 1982 and is given in Appendix VITT.
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CHAPTER TWO

2.1 Solution of System Differential Equations

A physical system can be mathematically described by a set of
differential equations or a set of integral equations or a combination
of both. Maxwell's equations are used to describe the behaviour and

(L

characteristics of electromagnetic systems. Maxwell's equations

are given by:

B

IxE = g

3D
v = +
Yx B J* 5t
v.D = o
v.B = o
D = ex
B = pH (2.1)

In the case of electrostatic systems, the differential equations are

given by,

E o= -0

It

V'e

-p/e where sources are present

= 0 where gources are absent (2.2)



For static electromagnetic systems, the equations concerned are

B = vxa
v.a - o
VA = -u3 (2.3)

In the case of resistive electric systems, the equations involved are

L

|t

i<

fe4
Il
o]

(2.4)

[
i

Q
=1

One way of solving a set of differential equations is to simul-
taneously integrate them either analytically or more often numerically.
The analytical approach is applicable to only very limited and simple
cases. Numerical methods have to be employed in most cases. Another
way of solving the differential equations is by means of the variational

method based on the calculus of variations.

2.2 Formulation of the Variational Method

Any physical system can be described by a set of differential
2)

equations( given by
D($) = o (2.5)
in the volume v of the system and a set of boundary conditions

B(¢) = o (2.6)



at the boundary s, where ¢ is an unknown function associated with the
system. Alternatively it can be described in the form of a variational

principle such that a scalar function I given by

I = f L{¢,¢",xr) dv + % 2(¢,0%,r) ds (2.7)

v S

should be stationary in its first variation, that is,

§T = § f L{¢,¢",r) dv + § % 2(¢,¢',r) ds = o (2.8)
v s

where L($,¢',r) and £(¢,¢',r) are some functionals of ¢,¢',r in the
region and at the boundary respectively; where ¢ is a function of the
space variable r and ¢' is the first derivative of ¢ with respect to r.
In the rectangular x-y-z coordinate system r is in terms of x, y and z.

When the boundary conditions are satisfied(3) such that the second
term in equation (2.8) vanishes, corresponding to natural boundary

(4)

conditions ™ and permitting variations to occur within the volume only,

equation (2.8) can be written simply as

8 f L(¢,¢",x) dv = o (2.9)

v

This statement is similar to the Hamilton's Principle of Stationary

Action,

t2
a = & J Ld = o (2.10)

where the integration is performed with respect to time.



Since equation (2.9) is a variational statement of the system in

terms of a scalar functional L over a specified region, it can also be

(5)

regarded as a virtual displacement of the system . The functional 1

can be the system potential energy density or its kinetic energy density.

(6)

From the theory of the calculus of variations it can be shown

that if equation (2.9) is satisfied at ¢ = E‘then the following equation
(7)

is obtained ’

d ) d

¢

for the region within v, with the satisfaction of the boundary conditions,

B(p) = o (2.12)

Equation (2.11) is called the Euler-Lagrange Differential Equation.
The variational principle is called the Euler-Lagrange Variational
Principle. See Appendix I for details of the derivation of the Euler-
Lagrange Equation,

Conversely if we have equation (2.11) as the differential equation
of our physical system, and a variational statement in the form of
equation (2.9) can be found, the solution to our system differential
equation is given by ¢ = ahsuch that the first variation of the functional
I vanishes; that is a stationary(g) (maximum, minimum or saddle point)
value of I is reached. 1In practice we should be able to identify at
which stationary point I is. For example in problems involving I as
a functional in terms of potential energy, it is clear that the stationary

point of I at equilibrium would be a minimum. Alternatively the second
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variation of I can be evaluated to determine the nature of its stationarity.
Many numerical methods associated with variational formulation have
been developed. Examples are Moments Methods, the special cases of

which are Galerkin's Method and Rayleigh-Ritz Method(g'lO).

2.3 Variational Statement in Electrostatic Systems

The governing physical equations in electrostatic systems are

given by,
vV.D = »p where sources are present
= o0 where sources are absent (2.13)
~V¢ = E (2.14)
and D = €E (2.15)

The scalar functional I corresponding to equation (2.7) would be

the system energy given either by(ll),

T = J 0¢ - %g-lEJz av - § E; ¢, ds (2.16)
v S

where the variation is performed on the potential ¢ and the volume

charge p and the total boundary charge Eé are fixed; or
I = J pd - EE-!EJ dv - % g ¢S ds (2.17)
v s

where the variation is on the flux density D and the volume potential 5

as well as the boundary potential 5; fixed.
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Alternatively the scalar functional I can be of the form

le

J 5 E. - p¢ dv + § o ¢S ds (2.18)
v

s

as in equation (2.16) but with the potential at the point of sources

in the volume fixed as well as the boundary surface potential fixed; and

= | X pl? -3 =
I o= J 5= D17 -0 av + jg b, b ds (2.19)

v s

as in equation (2.17) but with the volume charge Eﬁand the total boundary
surface charge B; kept constant instead.
If there are no charges present in the volume, equations (2.18)

and (2.19) can be rewritten simply as,

I = J»zll‘i. E]? av (2.20)
v
1
and I = j — D dv (2.21)
2 '
v

as the surface terms vanish. In equation (2.18) where the variation iz
performed on the potential ¢, fixing of surface potential fixes the surface
potential energy. Similarly in equation (2.19) where variation is
performed on the flux density, fixing of surface charge 5; fixes the
surface energy too. The closed-loop integral of each becomes zero.

In these two cases, the volume sources are absent and hence are only

implicitly expressed through the field quantities.
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Following the nomenclature used in reference (12) where Y denotes
a convex energy functional having a minimum and Z a concave functional
with a maximum, equations (2.16), (2.17), (2.20) and (2.21) can be

written as

— 2 .
7 = jp¢~%€1§i dv—jgps ¢, ds (2.22)
v S
7 = j pa_‘ %E-]EJ2 dv -~ % ps 5; ds (2.23)
v S
y = j%i 22 av (2.24)
v

1 2
5c Ip|© av (2.25)

!
i
.

There are therefore four possible variations which can be
performed on an electrostatic system governed by equations (2.13) and
(2.14). The variations in the system potential ¢ with the energy
functionals concerned being given by equations (2.22) and (2.24), give
an upper bound and a lower bound of parameter value. Similarly the
variations in the flux density D with the energy functionals given by
equations (2.23) and (2.25), give another pair of upper and lower bounds;
so do the two Y-functionals. Altogether there are four possible pairs
of upper and lower bounds. The determination of the upper and lower bounds
considered in this thesis is by using the 2 Y-functionals given by

equations (2.24) and (2.25).
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At equilibrium we have the variational statements

§Yy = o (2.26)

for the case of the system whose energy is expressed in the form of

potential energy and

8z = o (2.27)

when the system energy is expressed as kinetic energy.

In the Y-functionals the system sources are implicit whereas in
the Z~-functionals the system sources are explicitly expressed. By
implicit it is meant that the sources of the field are being incorporated
in the expression of the field itself as in equation (2.24) and (2.25).
On the other hand, equations (2.22) and (2.23) have the sources of the
fields expressed in them to account for the energy contributed towards
the overall system energy. The Y and Z functionals for other electro-
magnetic systems can be similarly obtained.

As a check, equation (2.11) can be applied to equations (2.22),
(2.23), (2.24) and (2.25) to show that the Euler-Lagrange Equations
associated with them are given by the same system equations of (2.13)
and (2.14). See Appendix II for details.

The approach to the variational formulation in electrostatic systems
given in reference (11) is slightly different in that the author's
argument starts with the statement of the principle of virtual work.

The possibility of integrating this statement would give rise to the

required variational statement.
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2.4 Energy Functionals in Magnetostatic Systems (In the absence of

current within the region of interest)

The differential equations of magnetostatic systems are given by,

VxH = o (2.28)
V¢ = H (2.29)
vV.B = P if sources are present

= 0 if sources are absent (2.30)

The energy functionals corresponding to equations (2.22), (2.23),
(2.24) and (2.25) can be obtained for magnetostatic systems as well.

These are

N RS S S 2.3
v S
- - _ 1 2 _ -
z2 = I Py bn 2u |87 av % Prs Pms 98 (2.32)
v s
v = f%li_[ayz dv (2.33)
v
(1 2
Yy = J-i-ﬂ-lg_l av (2.34)
v

What has been said for the electrostatic systems as to the
behaviour of the Y and Z-functionals still applies to the magnetostatic

systems,
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2.5 Energy Functionals in Static Electromagnetic Systems

The system equations of static electromagnetic systems are given by

VxH = J (2.35)
vV.B = o (2.36)
VxA = B (2.37)
The Y and Z functionals can be found and are given by
Z=JJ.K~}-“—JH[2dv—§J.§ ds (2.38)
_— 2 - -5 -8
v s
Z=J3.A~L]B]2dv—3€3.ﬂ ds (2.39)
- = 2y '= -s T =s
v s
Y = (B—‘- l5|? av (2.40)
)2 -
v
Y = [L 182 av (2.41)
2u =
v

2.6 Energy Functionals in Resistive Electric Systems

For the case of resistive systems the governing system equations

are given by,
VXE = o (2.42)
429 = E (2.43)

J = oE (2.44)
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The energy functionals for resistive systems are(13’14)
b 2 -
z = “[ 26 ‘:TJ av - % b(¢, I ) ds (2.45)
v s
_ ob 2 —
v s
_ b 2
Y= Jzo |37 av (2.47)
v
o= J.@;}P_ £|? av | (2.48)
v

2.7 Energy Functional for Eddy-current Type Electromagnetic Systems

The above time dependent electromagnetic systems have functionals
which are expressed in terms of complex quantities and their conjugates.
The complex conjugate quantities are necessary in order that such time-
varying systems may be made independent of time in as far as defining

the system energy is concerned. The system differential equations are

given by,
VYVxH = J (2.49)
B
Y_XE = - Ty (2.50)
J = oE (2.51)
B = pH (2.52)
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(13)

and the energy functionals are given by ’

Z=~jg—(§.g*)+%‘£~(g.g*) dv~3((§_x§*).g_ds (2.53)
\'2 S

z J > (E . EX) + 55 (B . BY) av (2.54)
v

Y=J%«g(g.gj)+i—‘§—3(g.g*)dv+§(§x§_*).§_ds (2.55)
v s
1 jou
= e * [EAast.o)
¥ J%(g_.g_)+2 (B . B%) dv (2.56)
\"4

The use of the conjugate functions can be illustrated as follows.
Let us use eqguation (2.56) above as the example. The current density

can be expressed as

3 = g (2.57)

where w is the frequency and t time in seconds.

The complex conjugate is therefore given by,

g = g e 0t (2.58)

The product of equation (2.57) and (2.58) is,

~Swt
ejw

{2.59)

it
Bl
Ny
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The use of the complex conjugate functions is seen to have made
the time-varying current density J become independent of time as shown
above. Equation (2.59) can be compared with the enexgy functional in

terms of Igjz expressed in equation (2.47).
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CHAPTER THREE

3.1 Usefulness of an Improvement Formula

When calculating a bound for a parameter of interest it is helpful
to have a way of improving this bound so as to get closer to the true
value. This means the increasing of the lower bound and decreasing the

upper bound. See Figure 1.

Upper Bound Functional

System
Enerqgy

Decrease

True System Energy at Equilibrium
Increase

Lower Bound Functional

L'

Field Ouantity

Figure 1 System Energy Functionals

Two obvious advantages are immediately seen in that while enabling
a better answer to be obtained, we are at the same time able to check
that the improved value does not overshoot and cross-over the other bound.
For example the improved value of the lower bound should not be higher

than the value of the upper bound.
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3.2 Improvement Formula for Y-Functional

Consider the electrostatic system having the energy given by

equation (2.25),

Y = J%? lgiz av (3.1)
v

As explained in section 2.3 the variation that could be performed on this
system is the variation in the flux density D with the quantity of surface
charge remaining unaltered in the process. The Y~functional is a convex
functional having a minimum.

Let Ei be the flux density such that it is the solution of the Euler-
Lagrange equation minimising equation (3.1), then it would be a good
approximation of the flux density of the electrostatic systen. 91 is a

function of the space variables. The energy due to 91 would be,

1 2
1= [‘2’5 D, |7 av 3.2
v
If 91 is varied to 92 by a small amount agc, we have
D, = D +aD, (3.3)

where o 1is an arbitrary constant and Ec a suitably chosen expression of
the flux density.
The electrostatic energy of the system due to 92 would be,

1 2
Y, = J-é-é—lp_zl av (3.4)

v
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I
= IZE Dy + o |7 av
v
1 2 2
= {5’5”21! + 20D, . D +algc| } dav
v

Minimising Y2 with respect to o; we obtain,

Y
2 1 2
Fral JE{Rl'Echa‘P—c{}dv
{ i-D . D dv
e —1 —C
. v
. a 9= -
J E—ID ]2 dv
€ —C
v

Putting equation (3.5) into equation (3.4) gives,

Comparing with equation (3.2), equation (3.6) can be written as,

o

2
J Ei . Ec dv

N

[ Elogl? e

v

(3.4)

(3.5)

(3.6)

(3.7)

Equation (3.7) shows that there is a reduction in the value of

functional Y. and remembering that a reduction means a closer value to

1
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the correct system energy, we thus have an improvement scheme for the

initial approximation of flux density 21' Figure 2 will make this clearer.

System
Enerqy

pomn. s s @ v o

>
Flux Density D

lw]
o

Figure 2 Improvement of Functiocnal Value

The choice of the flux density QC depends on two conditions.
Firstly consider the boundary conditions of the flux densities Ei and D,.
From equation (3.3), remembering that we are keeping the total surface

charge constant, we have at the boundary,

§ 22 . ds = § 21 . ds (3.8)
s s

(3.9)
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Since o is arbitrary and can assume any value, we have as one

of the conditions of D ,
-
% D .ds = o (3.10)
-
s

The other condition which Ec has to satisfy is in the volume of

the system. The addition of agc to D, should not alter the system under

ot §
consideration. No new sources can be introduced. Therefore we have

over the whole region,

V.D, = YV .D (3.11)

=2 —1

and comparing with equation (3.3), this implies that the condition for

D is
—c

V . oD = 0 (3.12)
- —

Since o is an arbitrary constant, the condition Ec needs to satisfy

is simply,

v . = o (3.13)

D
_C

The choice of Ec for this improvement scheme therefore must be
such that it satisfies both equations (3.10} and (3.13).

Similar arguments can be made for the Y-functional given by

equation (2.24), that is,

Yy = [ % e}g_lz av (3.14)

v
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As stated in section 2.3 the field quantity to be varied in this

case is the volume potential ¢ with the surface potential being kept

constant. Corresponding to equations (3.2), (3.3),

above we have for this case,

_ [z 2 _ [ 2
Y, = [QEl_E_lI v = J'Zsly_q;ll av
¢2 = ¢l + a¢c
_ 1 2 2 2
Y2 = { 5 € ‘§J + 2a §1 . E +a I§C| av
v
and
J € E, . E_ dv
-1 —C
v
o = —

The functional Y2 is now given by,

1 2
5 [E?—l‘-E—cdv

2 1 9
[elz,l? o
v

(3.4) and (3.5)

(3.15)

{3.16)

(3.17)

(3.18)

{3.19)

In this case the boundary potential is fixed and from equation (3.16),

we have, at the boundary,

ad = O at the boundary.

(3.20)

(3.21)
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Since o is an arbitrary constant, we have the condition that ¢C
should vanish at the boundary. The volume condition for ¢c corresponding

to equation (3.13) requiring no new sources to be introduced is given by,

or V2¢ = 0 (3.22)

The conditions for-the choice of Ec given by equations (3,10)
and (3.13) can be proven as follows. If the true system energy is ¥
given by flux density D, then any variation of the flux density from

D to 21 would cause an increase in the energy from Y to Y,. See Figure 3.

System
Enexgy

Y = e e e e e D True System Energy at Minimum

—P
Field Quantity

Figure 3 Approximated System Energy Yl
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The change in energy is given by

1 2 1 2
Yle—f—z—Et_D_l[ dv"f'é‘e—lDf dv
v v
1 2 1
== e, — -—~D. D“Dd e
{25:(9—1 D) dv+J€- (D - D) dv (3.23)
v v
Substituting D = €E = -eVd we can write the second term on the right
hand side as
1
J E'B- (El - D) dv = - J Vo . (21 - D) av (3.24)
v
The Divergence Theorem can be written as,
J V. (¢D) av = % ¢S D . ds
v s
(3.25)

System
Energy

<

1k .-

>

Field Quantity

1

Figure 4 Improvement on Energy Y

Approaching True System Energy



28

By using the Divergence Theorem, equation (3.24) becomes,

- J Ve . (21 - 23 dv = - § ¢s (21 - D) .ds + f ¢V . (E_l - D) dv
v s v
(3.26)
Equation (3.23) can now be written in terms of equations (3.24) and
(3.26),
Y, - Y = ~1———]13»1){251\“» ¢V . (D, - D) dv - ¢ ¢_ (D, - D) . ds
1 2¢ '=1 = R R s -1 = 7 7=
v v s
(3.27)

For Yl to be always higher than the true system energy Y for all

possible variations in the flux density, we should have the conditions,
j ¢ . (D, - D) dv = o in the volume (3.28)
v

and

§ ¢S (_Q_l -D) .ds = o at the boundary (3.29)
s

This means that for arbitrary values of ¢ in the volume the diverge
of the variation (2__.L - D) should always be zero; implying that no new
sources should be introduced in the variation of the flux density. This
condition can be compared with equation (3.13).

For a constant potential at the boundary surface, it being a

conductor, equation (3.29) becomes,

3€¢S (D, - D) . ds = ¢S§ (D, - D) . ds (3.30)
s



29

For this to be zero, the necessary condition at the boundary is
that the total charge at the boundary surface remains constant in the
variation. This condition is similar to equation (3.10).

Therefore, if we have a system energy Yl approximated by using
the flux density 21, and an improved system energy Y2 due to 22 (see

Figure 4), we can write equation (3.27) as

1 2
Y. -y, = f-é—-é« D, - D, dv+J¢y_. (D, ~ Dy) dv

- j£ ¢ (B, - D,) . ds (3.31)

For improvement to be possible equation (3.31) must always be
positive and the necessary conditions are those given by egaution (3.18)

and (3.13) if we write,

(D, - D

D)) = - ab, (3.32)

where o is an arbitrary constant and Ec the variation of the flux density.
The conditions for the choice of ¢c can similarly be proven in the
manner shown for QC. If the true system energy Y due to ¢ be varied to Yl

due to the variation in the potential to ¢1, {see Figure 3) we have the

change in the system energy given by,

1 2 1 2
Y, - Y = f’i elve, |© av - I 5 lvs]|© av
v A4
1 2
= J 5 s[y_¢l - V$|“ av + f e Ve . (Vo, - V¢) dv (3.33)
v
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By using the divergence theorem of equation (3.25), we can write

the second term on the right hand side of equation (3.33) as

j €Y . (V§, - Vo) av = { eV . V(¢ - ¢) av

= § e(¢, - 9)_ V6 . ds - [ (o, - 9) . Vo av (3.34)
s v

Equation (3.33) can now be written as,

Y1~Y = J%E!Z¢l“y_¢lzdv+§€(¢lh(p)sy—q)‘d-—s—
v S
2
J 8(¢l - ¢) V¢ dv (3.35)
\%

For Yl to be always higher for all possible variations of the

potential, we need the right hand side equation (3.35) to be always

positive. Thus the conditions necessary for this to be achieved are,

J a(¢l - ¢) V2¢ dv = o in the volume (3.36)
v

o at the boundary (3.37)

It

% ed, -9 Vo
s

For any arbitrary wvariation in the potential (¢l ~ ¢), we require
that V2¢ = o implying that there should be no volume sources in the system.
At the boundary we require that the potential be fixed such that there is

no variation and thus requiring that (¢l - ¢)S = 0.
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Therefore if we have a system energy Yl and need to improve it

to Y2 {see Figure 4), we can write equation (3.35) as,

1 2
5e198; - ¥o,|" av + § e(by — #y) Vo, - ds

S

<
o
i
S
N
Il
& ey

§

f ¢y = ¢,) v2¢2 av (3.38)
v

For improvement to take place for any variation in potential
equation (3.38) must always be positive and the necessary condition

are those given by equations (3.21) and (3.22) if we write
(¢, - ¢5) = - a¢ (3.39)

where o is an arbitrary constant and ¢c the variation in potential.

The volume condition of V2¢c = o0 is however not strictly required
as will be demonstrated by examples in Chapter 4, so long as the boundary
condition ¢c = o0 is satisfied. The potential being scalar means that it
can be easily handled mathematically in contrast with variations involving
vector quantities as in the case of flux density D. This is an advantage
of using the scalar potential variation. The sources which might be
introduced do not seem to invalidate the improvement scheme when it is

applied to all the examples in Chapter 4.

3.3 Improvement Formula for Z-Functional

The improvement formula for the Z-functional is not as easy to
obtain as that for the Y-functional. In this case we need a scheme
which would increase the system energy for improvement to take place.

The simple procedure shown in the last section does not apply easily
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to the Z-functional due to the explicit presence of the system sources
as well as the presence of the surface energy term.

This is however not a serious disadvantage in the application of
the field variational method to determining system parameters as will

be shown in Chapters 4 and 5,

3.4 Physical Interpretation of Field Variations in Electrostatics

As mentioned in section 2.3, there are four possible field
variations for an electrostatic system described by the system differential
equations (2.13) and (2.14). The types of variations are:

1. Variation in volume potential ¢ with total boundary charge I
kept constant and the volume charge p fixed.
2. Variation in volume potential ¢ with boundary potential g

fixed in the absence of the volume charge p.

3. Variation in volume flux density D with total boundary charge e

remaining constant in the absence of the volume charge p .

4, Variation in volume flux density D with boundary potential ¢S

and the volume potential ¢ fixed.

The variation in the volume potential ¢ can be achieved physically
by inserting a conducting sheet of negligible thickness. The conducting
sheet forms into an equipotential surface in the volume. In the case
where the quantity of surface charge is kept constant and the volume charge
sources fixed with only the volume potential wvaried by the insertion of
such conducting sheets, there is a decrease in the system energy caused
by the work done by the fixed charges in drawing the conducting sheets
into the system. This variation corresponds to the Z-functional of

equation (2.22),
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z = JE¢»%€[EI2 dv»%‘é‘s 4_ ds (3.40)
v s
If the volume potential is varied by keeping the boundary potential
¢S constant and in the absence of volume sources we have an increase in
the system energy caused by the work done in inserting the thin conducting
sheets into the volume. This variation corresponds to the Y-functional

of equation (2.24),
Y = f%glglz av (3.41)

We remember that in this case the sources of the system are implicit
as against the explicit nature of sources in the previous case.
The variation of flux density D can be physically achieved by the

insertion of very thin flux barriers.

They are placed along the flux lines varying the shapes of flux tubes.
If flux barriers are inserted into an electrostatic system with the total
surface charge Py kept constant, we have an increase in the system energy
caused by the work done in inserting the flux barriers into the system.

The Y-functional corresponding to this variation is given by equation (2.25),

1 2
= = |D .42
Y fze Ip|© av (3.42)
v
If, however, the variation in D is performed by fixing the boundary
potential ¢s' as well as the volume potential, there would be an exchange
in energy between the fixed potential and the flux barriers causing a

decrease in the system energy proportional to the second order variation of D.
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Figure 5 Conducting Sheets or Double Layers of Charge

Figure 6 Flux Barriers or Insulating Sheets
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The Z-functional corresponding to this type of wvariation is given by

equation (2.23),
Zz = I po - EE-lQJ dv - § ps¢ ds (3.43)
v IS

The above four types of field variations cause increase or decrease
in the system energy which is proportional to the second order variations
of the field.

Other types of field variation which involve the insertion of
conducting sheets and flux barriers that are not negligible in thickness
and volume are possible and are given in reference (1). They are however
not purely of the second order type mentioned above.

The concepts of conducting sheets and flux barriers can be extended
to include other electromagnetic systems. We have magnetic flux barriers
and infinitely permeable sheets in magnetostatic systems and current

barriers and conducting sheets in resistive electric systems.
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1. HAMMOND, P. : ‘Energy Methods in Electromagnetism®, Clarendon
Press, Oxford (1981), pp 100-101.
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CHAPTER FOUR

CALCULATION OF PARAMETERS

The calculations of the upper and lower bounds of parameters
namely capacitance, inductance and resistance by the approach using

the 2-Y functionals are shown in this chapter using simple configurations.

4.1 Calculation of Capacitance

The example used is the configuration shown in Figure 7 where a
square tubing has its inner surface fixed at a potential of V volts
We shall calculate the capacitance

and the outer surface at O volts.

per unit length of the tubing.

o o v e

Figure 7 S8Square Tubing ~ Cross Section
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4.1.1 The upper bound

For finding the upper bound of capacitance, the variation is
performed on the volume potential ¢ with the boundary surface potential

¢S fixed. The functional to be used is given by equation (3.14),

Y = {.23:3@_[2 dv (4.1)

v

At the minimum of Y, Euler-Lagrange Equation corresponding to
that given by equation (2.11) is satisfied by the solution ¢ = ¢l.
For the square tubing in Figure 1, by symmetry we need only to calculate
one eighth of the section denoted by ABCD. See Figure 8. The system

equations are given by,

V% = -E (4.2)
v.D = o (4.3)

while the boundary conditions are,

1
<

¢, (1)

(4.4)

|
e}

and ¢l(2)

A suitable function of ¢l which satisfies equations (4.3) and

{(4.4) above is given by,
¢1 = V(2-x) (4.5)

The electric field strength corresponding to this solution of

potential is

E, = -Y;, = vi (4.6)
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Figure 8 Capacitance of Tubing Fixed Potential

where 1 is a unit vector in the x~direction.

The system potential energy, from equation (4.1) is given by

1 2
v, = f—ig!_]::‘._ll av (4.7)
v

Assuming that € is constant, we have

2rx
Y, = J [ —-EIE dy dx
(0]
2
= 0.75¢ V (4.8)

This energy can be expressed in terms of capacitance of the

region ABCD and the field potential V as,

1.2 _ 2
e,V = ¥ = 0.75¢V (4.9)
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The upper bound of the capacitance is therefore given by,
2Yl
c, = == = ].,5¢ F {4.10)
+ 2
\Y
Since this is only one eighth of the whole tubing section, we

have the upper bound capacitance of the square tubing,

C, = 8x1.5e = 12.0e F per unit length (4,11)

4.1.2 Improvement of upper bound

For the improvement of this bound we can use the improvement

formula described in section (3.2). From equation (3.16) we have,

9, = ¢, + ad, (4.12)

The initial approximation ¢l is given by equation (4.5) above and
a suitable choice of ¢c satisfying the necessary boundary conditions

mentioned in section (3.2) is

¢c =  (1-x) (2~x) (4.13)

Hence the electric field strength,

E, = -9, = (2x3) i (4.14)

This is an example which shows that the volume conditions of
equation (3.22)
2
V7 = 0 {(4.15)

as mentioned in section (3.2) need not be a necessary condition in the

case of variation of potential and the choice of ¢C.



41

From equation (3.19) the functional Y, is given by,

2
2
1
‘iueg_l.l‘: dv}
Yo = ¥ - ;
J £ [E { av
v
= 0,75 ~ 0.028¢
= 0.722¢ (4.16)

The upper bound capacitance for the whole tubing as before is now

improved to the value,

C, = 11.552¢ F per unit length (4.17)

Other suitable choices of ¢c can be made and the upper bound of

capacitance similarly calculated. Some of the results are given below.

Upper Bound Capacitance C+

¢c Chosen Y2
s — (F per unit length)
1. (l—x)2(2—x) 0.735 11.762¢
2. (l-~x)(2~x)2 0.729 11.667¢
3. (1-x) (2=-x) (1-y) 0.733 11.722¢
4, (1-x) (2~x) (16~y) 0.6865 10.984¢
5. {1-x) (2-x) ({y) 0.6875 11.000¢
6. (1—x)(2~x)(y2) 0.6776 10.841¢

From No. 6 above it can be seen that the upper bound can be

improved from 12.0¢ to as low as 10.84le F per unit length.
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4.1.3 The lower bound of capacitance

For the calculation of the lower bound we use the Y-functional

given by equation (3.1),

Y = f%‘-e— Ip|? av (4.18)
v

In this case we are varying the flux density D and keeping the
total surface charge constant. As before a solution of the flux density
D= 2& for the system, which minimises the Y-functional above, satisfying
the Euler-Lagrange Equation is firstly determined. El would have to
satisfy the system differential equation given by equation (4.3) and
provide a fixed surface charge.

For a suitable D, such that a known fixed surface charge can be

1
determined, we have to resort to a geometrical approach. Because flux
density is a vector quantity, its variation is inherently more difficult
to manipulate mathematically when compared to the case of the scalar
potential shown in the previous sections. The fixed charge on the
boundary has to be determined indirectly through a fixed potential
specification.

Let the potential between AB and CD in Figure 9 be V volts.

The electric field is given by,

E = - £ = Vocosd r (4.19)

=i

where ihis a unit vector and £ the length as shown in Figure 9.

The average flux density,

D = €E = eV cosb ¢ (4.20)
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X

Figure 9 Capacitance of Tubing

: Fixed Charge

An incremental charge flowing in a tube of flux is given by

8Q = IEJ x 1.5 cosb 8y

(4.21)

On the surface AB we have the total charge,

L e
il

1 2
J 1.5 V Cos™® dy
y=o

n/4 2 2
f 1.5 V Cos™0 sec”d d6
o]

= 1,178 Vv ¢C

(4.22)
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The capacitance of the region ABCD is given by,

1.178¢ F (4.23)

Q

i}
<o

]

Therefore the capacitance of the whole square tubing is

C = 8c = 9,424¢ (4.24)

This value, when compared with the upper bound determined in
the last section, is a lower bound and the expression of the flux
density given by equation (4.20) is a good approximate solution and
can be our initial approximation 21. The fixed quantity of charge at

the surface, §'is thus given by equation (4.22).

4.1.4 The improvement of lower bound

For the improvement of the lower bound of inductance we use

the expression given by equation (3.3),

D, = D +aD_ (4.25)

A suitable choice of Ec which satisfies the condition stated
in equations (3.10) and (3.13) for the boundary and in the volume, is

given by

it

(1-2y) i for o<y<1

AU

= o0 for y > 1 (4.26)

Using equation (3.7), namely,

v = Y. - (4.27)
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Figure 10 Domain of D
....c

we can obtain the value of the improved Y-functional,

2

LTtz : ]
5 j J — . eV Cos“8 (1-2y) dx dyj
2%
1
Y2 = J f % £V2 Cosze dy dx - 0
1¢2
0
1 J f = (1-29)% ax ay
o1
= 0.5890¢ V> - 0.005¢ V2
- 0.584e V? (4.28)

In terms of fixed charges, the capacitive energy is given by

(4.29)

0 !tO[\lJ
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Since Y is a functional with a minimum any variation in its
energy gives it a higher energy and hence a lower value than the true

capacitance. The lower bound capacitance is thus,

-2
—2"&7 (4.30)
The improved lower bound of capacitance for the region ABCD is
given by,
2
Q _ (1.178e V)

- 2Y, 2 x 0.584¢ V°

1.188¢ F (4.31)

it

The total lower bound capacitance of the square tubing is,
C_ = 8c_ = 9.505¢ F per unit length (4.32)
Other choices of QC are possible and results are obtained for

the lower bound as below:

Ec chosen Y2 Lower Bound Capacitance C_

(F per unit length)

1. (1 - 3y2) i 0.584¢ 9.505¢
2. (L -y - §~§0 i 0.584¢ 9.506¢
2y
3 (L - 3. —§~0 i 0.584 9.505¢
. 5y 5) i . € .



47

It is seen that the calculated lower bound changes very little
for the above chosen expressions of Ec' The improvement in the upper
bound of capacitance is more substantial compared with the above
results. This is as explained before, due to the fact that varying
the scalar potential is easier to do than varying the vector flux
density as far as the mathematical manipulation is concerned. Further-
more the amount of fixed charges éﬁcan only be obtained in an indirect
manner because it is the voltage which is specified and thus is itself
an estimated value. The use of the Z-functional on the other hand
involves terms consisting of the system sources and its improvement as has
been mentioned in section 3.3 is difficult compared to that of the
Y-functional.

If we take the upper bound capacitance to be C+ = 10.84le from
the previous sections and the lower bound from this section C_ = 9.506¢,
we have an average value of capacitance C = 10.17¢ as our estimate for
the capacitance of the square tubing. The analytical value of the

(1)

capacitance is 10.25& per unit length. Thus our estimate is less

than 1% below the analytical value.

4,2 Calculation of Inductance

To illustrate the calculation of inductance the inverted T-bar
conductor, as shown in Figure 11, is used. The dimensions of the bar

are shown and J is the current density flowing in the bar.
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Figure 11 Inverted T-bar Conductor

4.2.1 The upper bound

A geometrical approach is adopted here to calculate the upper
bound because a simple algebraic expression to represent the magnetic
potentials is difficult to obtain. Thig should be compared with the
calculation of the lower bound of inductance in which simple algebraic
expressions can be easily found for the flux density.

The system equations governing this inductive system is given by,

YxH = J
v.B = o
§=p0§_ (4.33)
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For the region 7, the Ampere Circuital Law is written for an

incremental strip,
-(H + 8H) 6x + HSx = J &x by
. §H = -Jby (4.34)

The average inductance of a small region 8x 8y within the

incremental strip is giwven by the relationship,

,_h_]_.'gg__-cSBéy
6L = 2 (I ] T 27 6x Oy (4.35)

8L = J SL*

o]
58 (4.36)

[

For the whole of region I and integrating with respect to x, the

inductance is given by,

1 2 .
i"'-:-ﬁ—-— dx
o]

~1

T~

(4.37)

"::t.b
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U
. o
. . LI = T (4.38)
For the region II, similarly, using the Ampere Circuital Law,
we obtain,
8H = - J8s (4.39)

The average inductance of a small region given by 1.5 8x Cosf s

within an incremental strip is,

1 {89
¥ p—4 — Wi
o = 3
_ - S§Bds
= 35 (1.5 6x Cos6)8s (4.40)
The inductance of each incremental strip in region IT is
— ¢
GLII = j L
2/Cosb
L J ds
3 J Cosb 8x
2y
= _...__.2.9_.“ (4.41)
3 Cos™8 6x
The inductance for the whole of region II is
1 ‘ 3‘Cosze‘dx
II Ho
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Substituting dx = 2 sec26 dB, we have

-1
1 ra“ %) 340
LII -1 “o
tan ~ (~%)
- 2.782 (4.43)
L
. LII = 0.3595 uo (4.44)

The total upper bound inductance of the conductor bar is the sum

of equations (4.38) and (4.44), thus

-
I

(0.25 + 0.3595)11O (4.45)

Il

0.6095 Mg

The simple improvement formula similar to that given in section 3.2
could not easily be applied to the geometrical approach and hence an
improved value for the upper bound could not be obtained. This is,
however, not a serious problem and the upper bound obtained can still
be used to estimate the bar inductance together with the lower bound

value to be obtained in the next section.

4,2.2 The lower bound of inductance

The magnetic flux density B is the field quantity to be varied in
the calculation of the lower bound of inductance. Again the inverted

T-bar may be divided into two regions as shown in Figure 12.
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Figure 12 Flux Density in Bar Conductor

Assuming that the flux traverses across the bar in straight

horizontal lines, the suitable expressions of B

1 satisfying the boundary
conditions for both regions are given by,
Region I §1 =

- po (2+y)J i 2<y<3
Region IT :

- uOyJ_£ o<y <2

{(4.46)
The electromagnetic energy is given by,

1 2
v, = [ Eﬁ”'l§1| av
o
v

; 2¢2
(2+y)2 dx dy + ~£-f f H 2,2 52
2u o
1 o]

vy~ J7 dx dy
o -2
2
25,667 u_ J
o]

(4.47)
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This energy in terms of inductance and source current I is

given by,

Y, = %-L I (4.48)

Using the relationship,
P
L = T (4.49)

the electromagnetic energy in terms of the flux linkage ¢ and the

current is given by,

1
Y]_ = 5@1 (4.50)

The flux linkage which is the fixed quantity in the variation of

the flux density is thus given by,

!
i

2 x 25.667 M J2
103

5.133 My I (4.51)

We can now write Yl in terms of the flux linkage and the lower

bound inductance,

2

19

* L = §.2__
T - 2Y

i
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2
(5.133 uy J)

2 x 25.667 Mo Jz

il

0.5133 Mg H per unit length (4.53)

4,2.3 The improvement of lower bound of inductance

The improvement formula obtained in section 3.2 may be used to
improve the lower bound inductance. The formula similar to equation

(3.7) for this case is,

2
5— i-B . B dv
2 -1 " =
O
Y, = ¥ - ; ; (4.54)
f-m |B,|" av
M
A"

Suitable expressions of Ec satisfying the boundary and volume

conditions of

and V. = o (4.55)

are given by,

Ec = (2 -2y) i for o<y <2
= (3y2 - 10y +6) i for 2 <y <3 (4.56)
Taking 51 as given by equation (4.46) and applying equation (4.54),

we obtain,
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2 2
25,667 By J - 0.415 uo J

<
It

24,252 My J2 (4.57)

with the fixed flux linkage Ehgiven by equation (4.51), we obtain

the improved value of lower bound using equation (4.52)

=2
L o= 2

- 2Y2

0.5432 M, H per unit length {4.58)

Compared with equation (4.53), we see that there is an improvement
in the lower bound inductance, not overshooting the value of the upper
bound given by equation (4.45).

The average inductance for the conductor bar is calculated from
equations (4.45) and (4.58) and we obtain %(0.6095 + 0.5432)pO =

(2)

0.5764 Mg H per unit length. Compared with a numerically calculated

value of 0.57 uo, our estimate is within about 1.1% of it.

4.2.4 Difficulties in calculating the upper bound of inductance

While the assumption that magnetic flux traverses horizontally
across the bar conductor which is surrounded by highly permeable iron
is guite accurate, the situation is different in the case of magnetic
potential along the vertical sides of the bar. To assume that the
magnetic potential is zero along the sides of the conductor that is
surrounded by iron of finite permeability would be inaccurate, as there

would always be a small tangential field.
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In modelling the bar conductor for the calculation of the upper
bound we have in effect 'cut off' the two shaded corners of the bar
as shown in Figure 13. This is quite justified as the field at these
corners are weak and the energy density would be low. The ‘cutting off’
also pushes up the value of the bar inductance and we are guite certain
to be on the upper bound of the true value. There is still a slight
inaccuracy in the modelling of magnetic equipotential lines along the
bottom of the conductor as it could not be zero all along it. Again
because of the weak fields at the bottom region, this slight inaccuracy

does not contribute much to the overall energy of the bar.

8x

28x%

Figure 13 Effective Shape of Bar Conductor
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Another possible approximation would be to assume the bar
conductor to have an effective shape as shown in Figure 14 in which
we have neglected the shaded sections. To maintain the same magnetic
field strength in the unshaded region we assume a current density of 2J

to be flowing in region II instead of just J.

10 g

O -

IT @ 2J

AN
AN

Figure 14 Possible Approximation of Bar Conductor
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For this effective shape we can use the magnetic field H and
express it in an algebraic form, to calculate the magnetic energy.

Suitable expressions for H would be given by,

o
i

~(4+y)J i in region I

]

-2yJ i in region II (4.59)

The electromagnetic energy is given by,

Y = J%—uo ‘Elz dv

v

1,1 2¢2
1 2 .2 1 2 .2
= T W j j (4+y)~ J° dx dy + 5 g j { 4y~ J° dx dy
-1 0 -2 0
2
= 31.0 My J (4.60)

The upper bound of inductance by using equation (4.48) is,

0.620 uo H per unit length (4.61)

remembering that I = 10J.

The upper bound we obtain in section 4.2.1 is 0.6095 u, H. If
the upper bound of equation (4.61) is used, we have an average inductance
of % Uy (0.5432 + 0.620) = 0.5816 M H per unit length which is only
about 2% above the value 0.57 B, H. It is thus quite possible that a
suitable approximation can be used in the calculation of the upper bound
to overcome the difficulty in obtaining simple algebraic expressions for

the original problem.
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4,3 Calculation of Resistance

The calculation of the resistance of a square plate of dimension
as shown in Figure 15 is considered. The plate has a thickness b and

conductivity o. The equations governing this resistive system is given by,

i
!
o]

L)

vV.ga = o

jes
il
Q
=

= (4.62)

y 4
i
! 2
B’ o
b1
A
2

I'igure 15 Resistive Plate
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4.3.1 The upper bound

In the calculation of the upper bound the current I is the fixed
quantity and the variation is performed on the current demnsity J. A
suitable current density 91 such that it is the solution of the Euler-
Lagrange Equation has to be determined first.

Consider a quarter of the plate given by the sides ABCD as shown
in Figure 13. Let the potential difference between the sides AB and CD
be V volts.

The electric field strength is then given by,

(4.63)

j
It
ol
LE

where r is the unit vector and & the length as shown in Figure 16.

v

v

Figure 16 Modelling the Current Flow
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Substituting for £ = 2/cosf into the above equation we obtain,

E = Ycosh - (4.64)

The average current density is thus given by,

3= oE
¥ cos? ¢ (4.65)

This expression of current density can be taken as our initial

approximate solution Ei'

The average incremental current is,

81 = b lgll x 1.5 8y cos8 (4.66)

Thus the total current flowing from AB to CD is given by,

I = f 81

1
b J |3,] . 1.5 cos8 ay (4.67)
y=0

Substituting for El and dy = 2 sec26 de,

1.5v c0326 . 2 secze de

-1
. EE.[tan ()
2

o]

Hi

0.6955 V ¢b (4.68)



62

The upper bound resistance of the plate is given by,

= 1.4378/0cb Q

+
i<

(4.69)

It is noted that the above modelling cuts off the shaded corner

of the plate shown in Figure 17. This pushes the resistance slightly

higher than the value that would have been obtained when there is no

such 'cutting off’'.

Figure 17 Effective Shape of Resistive Plate
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4.3.2 The improvement of the upper bound resistance

The value of the upper bound of resistance given in equation (4.69)
above can be improved by using the improvement scheme shown in section 3.2.

The corresponding formula similar to equation (3.7} for this case is,

2
b 1
7 j?g-l'ﬂcd"
Y2 = Yl - : ; (4.70)
J —-lJ [ av
g '—C

where Ei is given by equation (4.65) and Yl is

b 2
v, = -2-j lg,1° av (4.71)

v

The conditions which gé must satisfy for the above improvement
formula to be applicable are similar to those given in equations (3,10)

and (3.13), namely the boundary conditions,

J Ec . ds = o at sides AB and CD (4.72)

S

and the volume conditions,

V. = o (4.73)

J
—C

A possible choice is given by,

[
I

(1-2y) i for o<y <1

= o for y > 1 (4.74)
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For this choice of gc, equation (4.70) yields,

0.3477 V2 ob -~ 0.00026 V2 ob

=
I

0.3474 Vv ob (4.75)

it

In terms of the upper bound resistance and the fixed current I,

L .2
Y2 = E-I R+ (4.76)

Using equations (4.68) and (4.75), we can determine the upper

bound resistance, improved,

2Y2
R = -4 = 1.4364/0b Q (4.77)
+ 12

It is seen that there is only a very slight improvement by bringing

the upper bound resistance from R+ = 1.4378/0b down to R+ = 1.4364/0b.

Other suitable expressions of gc may be chosen and some examples

are given below:

gc chosen E% Upper Bound Resistance R+/cb Q
(ly- 3y & 0.3475 1.4366
(1-3y%) 1 0.3475 1.4366
(2y-3y%) i 0.3475 1.4368

(3y°-4y°) i 0.3476 1.4371
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4.3.3 The lower bound of resistance

The calculation of the lower bound involves the variations of the
potential ¢ in the volume with the boundary potentials at AB and CD

fixed, as shown in Figure 18.

v

i
o}

9, (1) = v NE)

FPigure 18 Fixed Potential on Resistive Plate

An approximation solution ¢l of the potential which satisfies the
Euler-Lagrange Equation and the boundary conditions of fixed potential is
first determined. The potential ¢l also satisfies the system equations

which are given by,

v2¢l = o (4.78)

Z?l = -E;
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A suitable expression of ¢l which satisfies the above equation is

¢1 = %-V (3-x) (4.79)

The resistive system energy is then given by,

_ ab 2
o= f 7 Bl e
v
2 rx 302
_ ob 2 ob 2
= f > By 1% ax ay + J f 5 |E 17 ax ay
10 2 0
= 0.4375 ob V2 (4.80)

In terms of the lower bound resistance and the fixed potential Vv,

the energy Yl can be written as,

<

(4.81)

<

il
N
7

R = 35— = 1.143/0b 0 (4.82)

4.3.4 The improvement of lower bound of resistance

For the improvement of the lower bound value the improvement
formula given by (3.7) in section 3.2 may be used. For this case
corresponding to equation (3.7), we have the improved system energy Y2

given by,
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. = v - (4.83)

where Ec is given by,

E, = -V _ (4.84)

and ¢c is such that it satisfies the boundary conditions mentioned in

section 3.2, namely,

¢c(l) = ¢C(3) = 0 (4.85)

- 2 , . . .
The volume condition of V ¢c = O as mentioned in section 3.2 is
not a necessary condition in the choice of ¢c.

A possible choice of ¢c satisfying the boundary conditions is,

¢c = V(l-x) (3-x) (4.86)

The electric field is then,

E, = -V, = V(2x-4) i (4.87)

The improved system energy from equation (4.83) is given by,

0.4375 ob V> - 0.0128 gb V2

4
It

0.4247 ob v2 (4.88)

i

The improved lower bound resistance by equation (4.82) is,

it

1.177/cb Q (4.89)
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Other possible choices of ¢c can be made. Similar calculation is

made and the results are given below.

¢c chosen Y2 ob V2 Lower Bound Resistance R_/ob Q
1. (1-x)2(3-x) 0.4348 1.1499
2. (1-x)°(3-x)2 0.4291 1.1654
3. (1-x) (3-x) (1-y) 0.4310 1.1601
4. (1-x) (3-x) () 0.4148 1.2055
5. (1-x) (3-x) (¥°) 0.4160 1.2019

If the best of the lower bounds, that is R_ = 1.2055/0b © and the
best of the upper bounds from section 4.3.2, that is R+ = 1.4366/0b { are
taken to estimate the plate resistance, we obtain an average value of
1.321/0cb Q. Compared with the solution obtained by a finite difference

(3)

method which gives R = 1.34/0b Q, our estimate is within 1.5% of it.

4,4 The Calculation of Resistance and Reactance of Time-Varying

Electromagnetic Systems

A full calculation of the resistance and reactance of time varying
electromagnetic systems has not been undertaken. Calculations were made
to check the results obtained in reference (4) in which a full account is
given.

The problem considered is that of a thick conducting slab of

conductivity o and skin depth 6§ as shown in Figure 19.
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va

28 -~ - - ——

Q1

o)
v
)—J

Hx

Figure 19 Thick Conducting Slab

By using the Y-functional mentioned in section 2.7,

|

and the variational statement,

@ . a0+ @ av (4.90)

8

Y = 1w J (2" . 8H') - (H' . &H"™) - %-(J" . 8TY) + %-(J' . 6J%) = o
v
(4.91)
where
Q - Jl + le'
J* = J' - jJ"
H = H' + jH"
H* = H' - jH" (4.92)
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the lower bound resistance and the upper bound reactance can be calculated,

where
ix ) = | L5 ogwy o R 0 g
(R_ + jX+) = I o J . J*) + 5 (H . H*) dv (4.93)
A2

The trial function,

I 2 2
H = S+oy+ay” + 3By + B,y) - (4.94)

is used and the results obtained were, R = 0.4532/08 Q and X = 0.5040/68 Q.

When the trial function,

I 2 3 . 2 3
H = §-+ aly + a2y + a3y + j(Bly + B2Y + 83y ) (4.95}

was used, we obtain R_ = 0.4763/08 Q and X = 0.5000/08 RQ.

Further when the trial function,

I 2 3 Y 2 3 4
H = 7+ oy + ey + a.y” + ay” o+ J(Bly + 82y + B3y + 84y )

(4.96)

was used, the results were R_ = 0.4632/08 Q and X = 0.5029/08 Q.

The analytical results are R = 0.5Q and X = 0.5Q. It can be seen
that there is an improvement in the values of R_ and X+ when equation (4.95)
is used as the trial function, instead of equation (4.94). The same
improvement would have been expected in using equation (4.96) instead of
equation (4.95) as the trial function. This is, however, not the case.
The matter was not pursued further due to lack of time.

The computer program used to calculate the last two cases of trial

functions is given in Appendix III.
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CHAPTER FIVE

THE APPLICATION OF THE FIELD VARIATIONAL METHOD TO MACHINE DESIGN

The field variational method is shown in this chapter to be
applied to the calculation of stator slot leakage reactance of an induction
motor. It also shows a means of achieving a better estimate of the slot

leakage reactance of a winding at the bottom of a very deep slot.

5.1 The Slot Description

The unusually deep slot which belongs to a 2-speed, 3.8 kV, 3 phase,
50 Hz, 2.2 kW induction motor is shown in Figure 20. The slot has a
magnetic wedge. The high speed winding (10~pole) with 6 conductors and
pitched at 0.75 p.u. is at the bottom of the slot with the low-speed
(14-pole) at the top; both being insulated from the iron. Based on the

standard calculation methods of Alger(l), Liwschitz<2) (3)

and Richter
the calculated total leakage reactance of this motor for the high-speed
(10-pole) winding is 4.44Q of which 2.68Q is the stator slot leakage
reactance. Thus the stator slot leakage represents about 60% of the
total leakage reactance. Surprisingly however, the test results obtained
by the machine manufacturer was 5.25{). The calculated value is therefore
about 15.2% below the test value. On the other hand the total motor

leakage reactance of the low-speed (l4-pole) winding calculated by the

standard methods was 9.720, about 6.6% below the test value of 10.41Q.
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Calculation of the Lower Bound of Slot Reactance due to the

lower bound inductance calculation shown in section 4.2,

Lower Winding

The calculation of the lower bound of reactance is similar to the

The actual

slot shape of the machine is as shown in Figure 20 but for the purpose

of our calculation a simplified shape as shown in Figure 21 is taken.

The tooth-neck of h3 = 0.105" is an approximation obtained by adding

0.04" to %(0.170" - 0.04%).

The effect of possible tooth-tip saturation

is neglected and the values of reactance mentioned are all unsaturated

values.

Magnetic
Wedge

I/ NNNNANNNN ANNNARIN

(@]
o)

N

2.442"

2.581"

0.077"

Figure 20 Actual Stator Slot Shape

Figure 21

c = 0.153" % F—

.

dENNNNNNN\N

o
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o Al
— h3 = 0.105
- 11
hz = 2.507
A
= L5¢ 1'!
hl 2.58
.

Simplified Slot Shape
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Normal design office methods use an approximate flux plot for the
calculation of reactance. It is shown in reference (4) that all such
methods give a lower bound to the inductance. In physical terms the
flux seeks the easiest route and any approximation introduces constraints
which reduce the permeance and hence the inductance and the reactance.

As mentioned in section 2.3 in the approach using the 2-Y functionals
the field quantity used in the calculation of the lower bound of inductance
is the magnetic flux density B and the imposed source being the total flux

linkages N®¢. The Y-functional in terms of B is given by equation (2.34),

_ 1 2
Y = J*z-'ﬂ" l?_{ av {(5.1)

o]
v

where the integration is done over the defined region. For the stator
slot per unit length, the defined region is given by the slot opening
and the surrounding highly permeable iron. We can use I for the
permeability because the iron is excluded from the defined region.

The Y-functional as stated in section 2.3 is a convex energy
functional having a minimunm of energy. Any variation in the field B
would give an increase in the energy Y which is higher than its minimum.
In terms of the fixed sources N® and the inductance L, the Y-functional

may be written as,

2
1 (N®)
5 = (5.2)

Thus the inductance is given by,

2
(N2) (5.3)

2y
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Physically as has been mentioned in section 3.4 the variation in the
magnetic flux density B can be achieved by the conceptual insertion of
magnetic flux barriers of negligible thickness. These flux barriers
shape the magnetic flux flow tubes. This shaping causes an increase in
the potential energy Y of the system. With the flux linkages remaining
constant, we can see from equation (5.3) that an increase in Y means a
decrease in the inductance L and hence we have a lower bound inductance.
Alternatively as mentioned earlier it can also be seen as putting constraints
upon the flux flow due to the introduction of flux barriers, causing a
reduction in the permeance and hence a decrease in the inductance from
its true value. The calculation of inductance using a flux plot therefore
always provides a lower bound of inductance.

It is a well-known design fact that a good approximation for B in
a slot surrounded by iron of high permeability is given by parallel
lines across the slot perpendicular to the slot sides. This approximation
does not require infinite permeability as is sometimes thought. All that
is required is that the flux should enter the iron nearly at right angles
which is likely even where the permeability is of the order of 100. Such
an approximation for B therefore represents a sound basis in design
calculations. For our calculation of the lower bound the same assumption
has been adopted. The approximate expression of flux density obtained
would correspond to Ei' the approximate solution which satisfies the
Euler-Lagrange Equation mentioned in section 2.2 such that the Y-functional
of equation (5.1) above is a minimum.

The slot shown in Figure 21 may be divided into three regions, namely
that denoted by hl for the current-carrying part, and h2, h3 for those above
the conducting region. The number of turns or conductors in the slot is

denoted by N and the current flowing in each conductor I.
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By using the Ampere Circuital Law,

% Hdl = mmf (5.4)
we can write down for each of the region the following,

d - o= - -y;-- = — —a—-—NI
Region hl : Hxb {h } NI - B “o bhl Yy

h : Hxc = -~NI +>B = -y (5.5)

where y is the space variable of the stator slot height. For details
of the calculation see Appendix IV.
By substituting equation (5.5) into equation (5.1) and summing

over the three regions we obtain,

h h h
2.2 1 2 3
Y = Mg N'I o + o7 + e (5.6)

In terms of the current I and the inductance, the Y-functional can

be written as,

Y o= %—le (5.7)

From equations (5.6) and (5.7) we have the expression of the

inductance,

h h h
_ 2y 2 1 2 3
L = 5 = po N 35 + . + T (5.8)
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Because of the assumptions made, the inductance given by equation

(5.8) above is the lower bound value. This is also the standard result-

cbtained in textbooks; see reference (5) for example, except that it does

not seem widely known that it provides a lower bound for the correct

solution.

Using the relationship,

Ng (5.9)

we can write down the flux linkage as,

N¢ = LI (5.10)

Therefore the fixed flux linkages from equation (5.8) is given by,

h h h
NG = ‘uo NZI -3}:- + 5‘% + Eé- (5.11)

Evaluation of equation (5.8) using the dimensions shown in Figure 21

with N=6, gives the lower bound inductance,

L = 226.703 n, H per unit length (5.12)

The length of the slot is 34.5" and there are 40 slots per phase.

The total slot reactance per phase is thus,

X = 3.137Q per unit length (5.13)

s
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5.3 The Improvement of the Lower Bound of Inductance

As indicated in equation (5.1), the Y-functional is a quadratic
functional in the flux density B and has a minimum of energy as shown

in Figure 22.

Energy

e J'rue System Enerqgy at Minimum

!
Flux Density

B B

Figure 22 Approximate System Energy Functional
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A good approximation of Ei of the flux density as shown in section
5.2 would place us at a point P of the functional. This approximate El
would necessarily need to satisfy the boundary conditions of the slot

as well as the volume condition in terms of the imposed sources so that
point P is on the energy functional describing the system. In practice
the choice of §1 in the calculation of the lower bound of inductance as
explained earlier is not difficult. The boundary conditions can be
easily and quite accurately met and the volume conditions merely require

that B, is solenoidal in the slot. 1In cases where the volume and

1

boundary conditions for B. is not exactly satisfied, the energy due to

1
El may be at point P' shown in Figure 22. We are in this case on an
energy functional which is slightly displaced from the true one.
This would not pose a problem to the bound we cbtain as any approximation
in E& using approximate boundary and volume conditions will always
give a calculated energy which is higher than the true system energy.
The true system energy is always the minimum value of the system
energy. This will be the case in the calculation of the upper bound
in section 5.4 when we modify the boundary conditions to obtain an
effective slot shape.

Improvement on the lower bound inductance given by equation

(5.8) can be achieved by using the improvement formula given in

section 3.2. Corresponding to equation (3.3) we have,

E'.Q = El + OLEC (5.14)
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where_gc needs to satisfy the boundary conditions that the total flux

due to it is zero. Thus,
J gc .ds = o (5.15)

The flux density Ec has to be solenoidal in the wvolume, thus

V. = 0 (5.16)

B
-—-c
For the slot per unit length as in Figure 21 equations (5.15)

and (5.16) become simply,
J Bcdy = o : (5.17)

and

for each of the three regions of the slot.
The expressions of Ei for each of the three regions of the slot

is given by equation (5.5). The electromagnetic energy Y2 due to B

corresponding to equation (3.7) is given by,

1 1
5Jr&-%“
(o]
Y, = Y -~ (5.18)

2 1
J i_.]ECIZ dv
uo

Equation (5.18) is applied to each of the three regions of the slot.
We notice that for the two regions above the current-conducting region

where B, is independent of the space variable y, the second term on the

1



81

right hand side of equation (5.18) becomes identically zero due to the
requirement that Ec has to satisfy equation (5.17). There is no change
in the value of Yl’ This is because in the non-conducting regions we
have assumed a constant flux density which is known everywhere and thus
is not affected by any field variation introduced.

For the current-carrying region a possible choice of Ec satisfying

the conditions of equation (5.17) is,

Ec = (y - 1.291) i (5.19)

where i denotes the unit vector in the x-direction. For details of
calculation see Appendix V.

By substituting El from equation (5.5) and Ec from equation (5.19)
into equation (5.18) we obtain the value of Y2 for each of the slot regions.
From equation (5.3) for fixed flux linkages N¢ and a reduction in

the system energy from Yl to Y2, we obtain an improvement of the lower
bound inductance. By putting the value of Y, obtained into equation (5.3)

we obtain the improved lower bound value of inductance,
L = 231.435 My H per unit length (5.20)
As in equation (5.13) we obtain the reactance per phase as

XS = 3.2030 per unit length (5.21)

which is an increase of about 2% over the value given by equation (5.13).
This is not a very substantial improvement. It was found as in section
4.1.4 for the lower bound improvement of capacitance using Ec’ that other
choices of EC, for example using higher order expressions in y, gave no

appreciable improvement as well.
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The difficulty in improving besides the fact that we are dealing
with a vector quantity, can be further attributed to the fact that the
fixed flux linkages N¢ is an approximation itself because it is the
current which is specified. It is difficult to specify the total flux
linkages whereas to specify the current would be comparatively easy.

An accurate N® is required for the improvement of the lower bound to be
substantial. This is similarly the case in the calculation of capacitance,
inductance and resistance in Chapter 4. 1In cases of fixed potential

we have a substantial improvement whereas in cases of fixed charges or
fixed flux linkages we only have a small improvement.

We can consider the upper bound to the inductance as a means of

achieving a better estimate of the true inductance.

5.4 Determination of the Upper Bound of Inductance due to the Lower

Winding

In calculating the upper bound of inductance as mentioned in
section 4.2, the magnetic potential along which the magnetic field H
is zero is the quantity to be varied. The fixed sources being the current
I, flowing in each conductor. Figure 23 shows the slot with the equipotential
lines. The effective slot shape is as shown for the following reasons.
Whereas in the case of the lower bound calculation, the assumption of
normal flux density at the slot side is an acceptable one without resorting
to the use of an effective slot shape this is not the case here. We have
a more stringent requirement for the variation in magnetic potential in
that the tangential field should be zero along the slot side; it being an
equipotential surface. This would imply an extremely high value of
permeability for the surrounding iron. Clearly there is a circulation of

flux at the bottom of the slot due chiefly to the position of the lower
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winding being surrounded on three sides by iron of finite permeability.
The current-carrying region has therefore to be modified to an effective
shape to take such effects into account, such that we have a condition
which is closer to that of the actual machine slot. The effective slot
shape has only one point at which the potential is zero instead of the
whole slot bottom as when we assume infinite permeability of iron. Such

a point is known as a kernel and is at the centre of the slot bottom.

That there is one such kernel for such a slot has previously been shown

by Stevenson and Park(6).
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Figure 24 Alternative Effective Slot Shape

Figure 23 Effective Slot Shape
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Alternatively, the effective slot shape shown in Figure 24 may be
used. In this case we are allowing for the effects of flux circulation
due to the lower winding to extend higher into the upper part of the
current-carrying region.

In calculating the upper bound of inductance, the Y-functional

is expressed in terms of the fixed current source I, thus,

Y = %‘—LIZ (5.22)

The variation is performed on the magnetic potential or the lines
of no work if within the current-carrying region. As mentioned in
section 3.4 for the case of electric potential, the variation in the
magnetic potential can be performed by the conceptual insertion of
infinitely permeable sheets of negligible thickness. The equipotential
lines are shaped by these sheets and such shaping increases the system
potential energy. From equation (5.22) we can see that any increase in
Y from its minimum with I fixed means an increase in the inductance from
its true value; hence the upper bound of inductance.

Simple algebraic expressions for such equipotential lines are
difficult to find. A geometrical approach can usefully be adopted for
the calculation of the upper bound and is shown below.

The slot is divided into five regions as shown in Figure 23. The
inductance of each region is calculated by summing up the inductance due
to each incremental strip between two equipotential lines. The expression

of H for each region is given by,

Region t : 8H = - Eg-s cosf s
h
1
NJ
(hl—t) : dH = - oY 8y

1
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h, : B o= - 2%

h3 :H=—§—:E-

h, : H = - 75§§¥§3§§ (5.23)
where N = no. of conductors in the lower winding of the slot,

J = the average current density, I = the current flowing in each
conductor. For details of calculation see Appendix VI.

From the above expressions it is seen that the magnetic field for
the current carrying regions is expressed as an increment 6H whereas
for the non-conducting region where the magnetic field is constant,

simply H. The relationship of equation (5.9),

L o= i (5.24)

is used to calculate the inductance of each incremental strip and the

inductance of each region is obtained separately by integration.

We obtain the following expressions of inductance for the upper

bound,
By N2 t2
Region t : L = 5 )
3hl tan (b/2t)
T
(hy-t) : L = -2 5
3, b
2
h s L = o N Mo
2 : N b
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g N h
o) 3
h3 : L = p
i N2 h 2 tan»l (b-¢)/h
h : L = o4 sec26 + 2 tan8 3
4 - 3b (b+c) o

(5.25)

If the expressions of inductance for the regions h2 and h3 above are
compared with the equation (5.8) it is seen that the expressions are
the same. This means that if h2 and h3 in equation (5.25) are the same
as those in equation (5.8) both the upper and the lower bounds have the
same value. This is not unexpected as for the non~-conducting regions
where the fields have been assumed constant and known everywhere both
the variations in the flux density and in the magnetic potential simply
give the same results, |

The upper bound of the slot inductance L+ due to the lower winding
is given by the sum of the inductances in equation (5.25). Substituting
the various values of the slot dimensions into equation (5.25) we can
obtain the upper bound of the slot leakage inductance for the effective
slot shape shown in Figure 23, with t = & hl and ¢ conveniently chosen

to be 450,

L, = 249.04 ¥, H per unit length {(5.26)

The slot length is 34.5" and there are 40 slots per phase. There~

fore the leakage reactance per phase is

Xs = 3.446Q per unit length (5.27)
If, however, the effective slot shape of Figure 24 is taken, the

upper bound of the slot leakage inductance with t = hl and ¢ = 450,
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would be
L, = 294.45 ¥, H per unit length (5.28)

giving a reactance value of

Xs = 4.,074Q per unit length (5.29)

5.5 The Improvement of the Upper Bound

Because of difficulties in writing down the equipotential lines
in simple algebraic expressions, an improvement of the upper bound in
the similar manner as for the lower bound is not possible. Nevertheless
we have an upper bound which would be useful in estimating the true value

of the slot leakage reactance.

5.6 Comparison between Calculated and Test Results

As stated in section 5.1 the calculated stator slot leakage
reactance obtained by the standard design formula is 2.680. The leakage
reactance due to other factors (e.g. tooth leakage, overhang, gap, skew
and rotor leakage) is 1.76Q, giving a total calculated value of 4.44Q
as against the test value of 5,25(.

Our calculated values of inductance for the case of the upper bound

using Figure 23 are:

Upper bound = 3.446Q
Improved lower bound = 3.203Q
Average slot reactance = 3.3245Q (5.30)

Due to pitching this value is reduced by a factor of 0.862.

(See Appendix VII for details on the calculation of reduction factors
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due to pitching). The average slot reactance is thus 0.862 x 3.32450Q
= 2,866Q. To this is added 1.76Q giving a total leakage reactance of
4.6268, 11.9% below the test value.

If, however, the effective slot shape of Figure 24 is used to

calculate the upper bound, we have,

Upper bound = 4.074Q
Improved lower bound = 3.203Q
Average slot reactance = 3.6385Q (5.31)

Due to pitching this value is reduced to 3.136Q and adding 1.76Q
to it we obtain a total motor leakage reactance of 4.896Q which is 6.7%

below the test value of 5,250,

5.7 Discussion of Results

In choosing the boundary shape of the slot to be as shown in
Figure 23 in which only half the current-carrying region is brought
down into a kernel at the centre of the slot bottom, we obtain an
average total motor reactance of within 11.9% of the test result. In
this case we have assumed that there is a considerable circulation of
flux only at the slot bottaom. The effects of flux circulation due to
finite iron permeability are more extensive in the case of the effective
slot shape shown in Figure 24 where the whole of the conducting region
is affected. The average calculated reactance is now about 6.7% below
the test wvalue.

Our calculated result shows that a considerable amount of magnetic

flux circulation is likely to be present in a deep slot surrcounded by

iron of finite permeability especially when a windingis situated at the
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bottom of it. This is the case of the lower high-speed (10 pole) winding.
If such effects due to flux circulation is ignored in calculation, a
much lower value of the leakage reactance is obtained.
It is thus likely that the assumption that the flux crosses
the slot in straight parallel lines is not accurate and acceptable in
such cases. However, such effects do not occur or at least do not
affect the inductance, as far as the upper low-speed (l4-pole) winding
is concerned; due to its position in the slot as such. The winding has
iron bordering it only on two sides instead of on three as in the case
of the lower winding. This means that there is no kernel in the field
of the upper winding and the effects of flux circulation are not considerable.
Calculations using the field variational method can be made for
the upper l4-pole winding and we find the average motor leakage reactance
to be 10.39Q, less than 1% below the test value of 10.41. The normal
design formula gives a calculated value of 9.72Q. Together with the lower
bound of reactance obtained either by the standard methods or -the varia-
tional method, the upper bound of reactance obtained by taking the effective
slot shapes can provide us with a means of making a better estimate of the

true slot leakage reactance.
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CHAPTER SIX

CONCLUSION

To a designer, a method of calculation which provides an upper
and a lower bound to a certain parameter of design is useful and helpful.
In the design of electrical machines and apparatus, as in any other
engineering design, the ability of the designer to predict within
known limits the behaviour and performance of his design is important
and necessary especially at the present moment of stiff business
competitiveness.

The variational method treated in this thesis shows examples
of the calculation of electromagnetic system parameters namely the
capacitance, inductance and resistance; obtaining the upper and lower
bounds of each. The results obtained for the simple configurations
used in the examples are in good agreement with those obtained by other
methods, be it analytical or numerical. 1In the calculation of the
capacitance of a square tubing, the result obtained are within 1% of
the analytically obtained value. The inductance calculated in our
example is about 1.1% above the numerically determined value, while the
value of resistance we obtain is 1.5% of the value obtained by a finite
difference method.

Variational calculations involving system energy in terms of
scalar quantities for example the scalar electric potential, are easier
to do. Furthermore in such cases the improvement formula obtained in
Chapter 3 can be applied to obtain a reasonably substantial improvement
of the initial parameter value calculated. Variational calculations

involving vector quantities, for example the electric flux density, are



92

however not as easy to perform and improvement whenever possible is
always very slight. In cases where the variational formulation which
requires the calculation of system energy, cannot be directly applied,
for example in the calculation of the upper bound of inductance in
terms of magnetic potential, geometrical approach is adopted. 'The
improvement formula cannot be applied in such cases and for the
estimation of the true parameter value we have to use the value obtained
without the benefit of such improvement.

In calculating the system energy and in the choice of arbitrary
function for the application of the improvement formula, the boundary
conditions of the syétem have to be carefully taken into consideration.
Knowledge and insight into the problem to be solved is always helpful
especially in determining the correct boundary conditions of the problem.
This is especially true if the variational method of calculation is to
be applied to 3-dimensional problems. It is perhaps the greatest challenge
that the variational method can take up in view of the difficulties
involved in 3-dimensional problem solving. Numerical methods developed
for tackling 3-dimensional electromagnetic problems are at present still
in the early stages. The variational method possesses the inherent
capability to be developed for the solution of 3-dimension problems.,

The example of the calculation of bounded values for slot leakage
reactance shows the possibility of the field variational method to be
gainfully applied in machine design problems in conjunction with the
well-established standard methods of slot leakage calculation. An
alternative method to the standard methods is thus available to the

machine designer.



93

All the examples given have shown that the variational method
gives good results and can be suitably and successfully applied to
electromagnetic problems.

An important area which needs to be looked into further is the
determination of the initial trial function for the various types of
problems such as to minimise or maximise the system energy as the case
may be. A guide through mathematical analysis, as to the necessary
conditions that need to be satisfied for the correct determination of
the trial function is necessary particularly in relation to the system

equations and the system boundary conditions.
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"APPENDIX I

The Buler-Lagrange Variational Principle

Let a scalar functional I be expressed in the form

b
I = f L(¢,9',x) dx (1)

a

with the boundary points at

¢ (a)

it
Q

¢ (b) (2)

il
w

where L is a functional of variables ¢, ¢' and x and ¢' is the first
derivative of ¢ with respect to x.
Let L be differentiable up to the second derivative and the

derivatives are continuous within the region a to b. See Figure 1.

|

Figure 1 Variations of ¢ between a and b
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If I is stationary (maximum, minimum or saddle point) at 5} let

us consider a small variation ay about 5; such that

¢ = ¢+ o (3)

where o is a constant, Yy an arbitrary function of x.
In order that equation (2) be satisfied, we have at the boundary,

such that,
y(a) = Pd) = o (4)
The functional I for wvariations about $-is given by,
TG +ap) = I(3) + 6I(F,a) + §2I(F,0p) + ... (5)

and the first variation of I is,

b
3L L
S Y I %
3%J3 '3

a

Integrating equation (6) by parts and using equation (4) for the

boundary conditions we obtain,

b
aL d L
GI=QJ'¢ W‘?&{Wl”d}{ (7)
2 ¢

The stationarity of I requires that its first variation should
vanish. Equation (7) therefore should become zero. Since § is an
arbitrary function in the region, it follows that the necessary condition

for a stationary I is

oL d 3L
w-a{w—-) = o (8)
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This is the Euler-Lagrange Differential Equation.
For multivariables Xy Koo Xgpeen, xn,(l) the Euler-Lagrange

Equation is given by,

oLy 3 n (9)
9 g1 % a¢'xk

The first variation of I therefore vanishes at E.where 6’15 the
solution of the Euler-Lagrange Equation. This is the Euler-Lagrange

Variational Principle.
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'APPENDIX II

The scalar Y and Z functionals of equations (2.22), (2.23), (2.24)

and (2.25) in chapter two are:

Z=JE¢-%E]§I2®-§;S¢Sds (1)
v S

z = J od - %EﬁlEJZ dv - § Py 6; ds (2)
v S

v = J%—e[g!z dv (3)
v

- 1 2

Y = [26 Ip]© av (4)

v

Consider equation (1) first, where the variation is on the

potential ¢ with the charges 5' and 5; fixed.

Let
1 2 -
L = -2-5121 - p¢
2 —
= %-e[i'[ - pd {5)
where
i‘ = _v»(b = -E (6)
and & = p_ ¢ (7)
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For stationary Z it is required that its first variation should

vanish, thus,

82 = § J L dv + § § £ ds = o (8)
v s
Variation in the volume potential ¢ makes the second term zero

since ¢s is the value of ¢ evaluated at the surface and £ is a constant

with respect to ¢. Applying the Euler-Lagrange Equation,

3L 3 |3L _
"5&?‘5‘5(@} - e ©)

to equation (5) gives,

- a 1] s

-0 -3z (eg") = o (10)
or rewriting for the space operator(l) and using equation (6),

-p+V.€E = o (11)

Using the relationship p = €E, equation (11) becomes
v.D = p (12)

which together with equation (6) are the system differential equations.
Eguations (2), (3) and (4) can be similarly treated and we find
that the Euler-Lagrange equations in each case are the system differential

equations,
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Appendix IV Calculation of Unsaturated Leakage Reactance

Using the Ampere Circuital Law for the region in the conductor:

(Refer to Figure 21).

Hx b = {%-— N] I (1)
]_ J
. - JNI
.. H -——-—hlb (2)

The electromagnetic energy,

h, .22
E = }ub Jl 5L gy (3)
h’b
(o]
u N212h
R (4)
6b

Similarly for the regions h2 and h3, the energy for each region
is given by:

uONzIzh2
Region h2 : E = R (5)

uONZIZh3
h3 H E = '—-——'2—6—'-—— (6)

The total energy for the slot is the sum of (4), (5) and (6),

u N°12 [h 3h 3h
E - L. .._}‘. + ...__..g. + ........3... (7)
Total 6 b b c

We need to determine the total flux linkages N® as the imposed

source of the flux density B in the slot.



110

N¢ = LI (8)

Using the relationship for the energy in terms of I,

2
1 =
2 LI Erotal
2E u NZI h 3h 3h
LI = _Total _ _o Lo 220 23 2w (9)
I 3 b b ¢

In the case of variation of B with the source N® kept constant,

the relationship involving the Y~functional is

2
LR

Total
2 N [n 3h 3h
S (o) — L + . + -3 er unit length
y 7Y 3 b b c | P &
(10)
For the lower 10-pole winding, h1 = 2,581", h, = 2.507", hy = 0.105",
b = 0.6", ¢ = 0.15.3", and N = 6,

. L = 226,703 u, Henry per unit length (1)

Taking the slot length as 34.5", we obtain the reactance per phase of

40 slots,

X, = 3.137¢ per phase : (12)

For the upper l4-pole winding, hl = 2.,137", h2 = 0.173", h3 = 0.,105",

b= 0.6", ¢ = 0,153", and N = 12,
.. L = 311.270 My H pexr unit length (13)
and X = 4.307Q per phase (14)
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Appendix V  Improvement of the Lower Bound Value of Inductance

The chosen Ec has to satisfy the following conditions:

= 0 (D
f Ec .ds = o 2

Let the correct choice of §C be:

B, = (y-p)i within the conducting region (3)
B, = (-9)i

above the conducting region (4)
B, = (-9i

where i is the unit vector in the x~direction.
The expression of 21 for the three regions are (see equation (2)

in Appendix IV,

Region h1 : Ela uoH = 1, %%% i : (5)
hZ : §1 L %E' i (6)
By ¢ By = oo i 2
The variation on §1 gives,
By, = By + B, (8)
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At optimum (minimum) o = - | B .Ec dv

v—1 (9)
J [§CIZ dv
v
and ¥, =Y, - 1 115 5 v’
Zuo —L =
(10)
[2 dv

(I’UJ

l |

For each of the regions, the second term on the right hand side

of equation (10) is given by:

o ‘ (11)

(12)

2 (13)

To satisfy equation (2) above, equations (12) and (13) are identically

zero. Equation (10) therefore becomes:
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h
Y = Y - 1 1 [NT 2
2 1 r NI -
7 [guo J [h 5 y}(y p)dj]
o 1
[e]
h
1
b I (y*p)2 dy
(o]
hi hlp 12
= Y - LR S
1 by |PNT (3= - —

(14)

3 5
h
1 2 2

For the lower 10-pole winding, a suitable choice for p = 1.291.
With Yl = ETotal and all the other values as in Appendix IV equation (14)

becomes,

2
Y, = 111.034 u, I (15)

From equation (9), Appendix IV,
N¢ = 226.703 I (16)

Using the relationship,

L

= = 0

: BN it 1 17
« o L_ = 'ZY;" = 231.435 u, Henry per unit length (17)

The length of slot is 34.5" and there are 40 slots per phase. The

reactance per phase is

XS = 3.203Q (18)
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For the upper l4-pole winding, p = 1.07. Similar treatment as above

gives,

=
i

327.304 u, H per unit length (19)

and X

4.529Q per phase (20)
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Appendix VI Calculation of the Upper Bound of Slot Leakage Reactance

Consider the region of tooth-neck hy: (Refer to Figure 23).

Writing the circuital law for each incremental strip, we obtain

- |Nb -
Héx = 'E— §x I = g_ 6x I (1)
b
. NI
. . H = - (2)

The incremental inductance of the strip is

N
SL T
I
M, N2 8y 8%
= P (3)
C

The inductance of one strip is thus,

w No6x  (h, uoN2h36x
8L = -—-:2—-'-" J dy = 5 (4)
5 c
For the whole region of h3:
c uoNth
L = ( L = m——é—-—" (5)
)
By similar comsiderations for the other regions,
2 -1 (b~}
. 2“0N2h4 2 tan I{P’t’{g‘}
Region h4 : L o= YOS [sec o tang + 2 tane]o 4 (6)
uoNZhZ
h, : L = —=% (7N
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uoNz(hi—tS)
(hy-t) : L = 5 (8)
3h1b
uoNztz
t : L = 5 = (9
3h1 tan ~(b/2t) ~
The total inductance of the slot is the sum of the five terms of
equations (5), (6), (7), (8) and (9).
For the lower 10-pole winding with h1 = 2.581", h2 = 2.060",
h3 = 0,105", h4 = 0.447, t = h1/2, b =0.6", ¢ = 0,153" and N = 6,
the evaluation of the five equations gives a slot inductance,
Le = 249.04 n, Henry per unit length (10)
giving a slot reactance
X, = 3.446Q per phase (11)

Alternatively if t = hl’ equation (8) becomes zero and the slot inductance

is
L, = 294.45 u, Henry per unit length (12)
and X = 4.074Q per phase (13)
For the top l4-pole winding hy = 2.137", h, = 0, hy = 0.105",
h4 = 0,173", t = 0o and N = 12,
LS = 428.760 My H per unit length (14)
and X_ = 5.933Q per phase (15)
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Appendix VII Calculation of the Reduction Factor due to Pitching
of Winding

The slot inductance can be written as

Ls = LT + LB + 2M (L)
where LT = self inductance of top coil

LB = gelf inductance of bottom coil

M = mutual inductance of the two coils

From equation (10) of Appendix 1V

-
L PP [h, 3y o3m o)
B 3 42 b b c
u 2 [h, 3h, 3n
_ "o N 1 2 3

where N = total number of turns for the two coils.

Let I icos O

it

and If

i cos ¢

Writing the Ampere Circuital Law in the region above the lower bottom

coil, (Refer to Figure 21)

Hb = Bl] i cos ¢
L H = [§31 i cos ¢ (4)

The flux linkages due to this field acting on the top coil and the

regions above it is given by
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h h h
. _ 1 [Ny} 2 N 3 IN
Flux linkages = [ {Zh] Hy H dy + I [2} My H dy + [ {2} H, H dy
o) o o

The mutual inductance is therefore

2
M Flux linkage _ N cosg Ei . 2h, N 2h3 ' )
i 8 b b c
The total slot inductance from equations (1), (2), (3) and (6) is
8% [Sh.  2h. 2n h, 2h. 2h
L = Yo L, 2 b3 «l-+ 2,3 cos¢ (7
s 4 3b b c b b
Evaluating equation (7) with h1 = 1.2905", h2 = 2.507", h3 = 0.105",
b = 0.6", ¢ = 0.153", and N = 6, gives
LS = (119.825 + 106.92 cos¢) Hy Henry per unit length (8)
For different values of pitching and hence ¢ we obtain:
"dlggu““h 1.0 0.83 | 0.75 | o0.67 | 0.50 | 0.3 | 0.17 | 0.0
$ 0° 30° 45° 60° 90° 120° | 150° | 180°
M, 226.74 212.42 195.43 173.28 119.825 66.36 27.23 12.91
~~=Re‘fi”‘3““’n 1.0 0.937| o0.862| o0.764| o0.528| 0.293| 0.120] o0.057
N actor
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APPENDIX VIIT

AN IMPROVED FORMULA FOR SIOT LEAKAGE INDUCTANCE,

SUMMARY

The behaviour of induction motors depends to a considerable extent
on the leakage inductance. One important constituent of this reactance
is the slot leakage. An accurate value of this inductance can be obtained
by means of a detailed flux map, but the normal practice in design offices.
is to use a simple formula containing the slot dimensions. In the paper
it is shown that the assumptions of the formulae are consistent with
providing a lower bound to the slot inductance. It there is appreciable

value. It is then desirable to calculate an approximate upper bound and to
take the average of the two bounded values. The paper describes how this
can be done and suggests a modified design formula. A numerical example

is given and compared with test results on a two-winding machine in which
the effect can be isolated. v



AN IMPROVED FORMULA FOR SLOT LEAKAGE INDUCTANCE

P. Hammond and Y.K.H. Fuad
Department of Electrical Engineering,
Southampton University, England

1. INTRODUCTION

Slot leakage is an important compo~
nent of the leakage reactance of
induction motors and has therefore
an appreciable effect on the motor
behaviour at starting. Although
accurate values can in principle be
obtained by means of a complete
flw¢ map, it is not easy to compute
the flux at the iron-air interface.
The normal practice in design
offices is to use a formula based
on the assumption that the flux
traverses the slot at right angles
to its sidesl’z In general this
assumption is borne out in practice,
but if there is appreciable flux
circulation in the slot there is
some doubt. Recently the authors!'
attention was drawn to test results
on a motor which suggested that the
design calculation had given too low
a value for the slot leakage and it
was decided to investigate the
basis of the design formula.

2. BOUNDED SOLUTIONS FOR THE SLOT
TEAKAGE INDUCTANCE

In a recent book3 one of the authors

has shown that any approximate flux

plot gives a lower bound to the

assoclated inductance. In physical

terms the flux sceks the casiest

route and any approximation intro-

Dy, N ) Al - LS -, : - . . . N
Professor P. Hmnmmd,1Jechnaalbmg1mxmunglkqnutmmﬂg University of Southampton,

ENGLAND, S09 5NH

duces constraints which reduce the
permeance. The value of the calcu-
lated inductance rises to the correct
value as the accuracy of the flux
plot is increased. Consider first
unsaturated teeth and assume for
simplicity an open slot with
parallel sides in which there is a
single conductor. Fig. 1 illustrates
the simple flux distribution of the
design formula and Fig. 2 illustrates
a slightly more accurate flux plot4.
The field in the bottom of the slot
is somewhat different, but since it ~
is weak in this region the effect

on the inductance is small.

B oo Y ey SV, e
| {
L
2
I
. B e
1 e 74
g i AL — ]
/\ 2
¥ 7 /\
! /
t;::‘:‘l-—-r L

Fig. 1 Fig. 2
Fig, 3 illustrates the effect of
flux circulation due to finite

permeability of slot sides, which

is more prominent in the lower

parts of the slot. It is clear
that because of the curvature of
the flux the design formula is
less accurate when there is appre-

ciable {lux circulation. Since a
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. e
[
L

Fig, 3

flux plot provides a lower bound,
the motor inductance on test is
higher than the calculated value.
However, the effect may still be
small, because even with finite

permeability the flux will still
enter the teeth more or less at

right angles.

One way of improving the calculation
is to improve the flux map, but this
is not easy. Another way is to find
an upper bound to the solution. 1In
the book3 already mentioned it is
shown that such upper bounds can be
obtained by modelling the lines of
zero field strength. In a region
which has no current such lines are
equipotentials. Where there is
current we can describe them as lines

of equal magnetomotive force.

For an unsaturated slot surrounded

by infinitely permeable iron we can
assume that the slot sides are
equipotentials., Fig. 4 shows a poten-—
tial plot. At the bottom of the

slot there is an undetermined region

of very weak field. It is interes—

ting to note that the assunption of
zero magnetic field strength along
the sides of the slot is more
demanding than the assumption of
The flux

will always tend to enter an iron

horizontal flux lines.

surface more or less at right angles,
because the ratio of the tangents

of the angles shown in Fig. 5 is
equal to the relative permeability

Hr-

A
Ve
— ’<<Ifijgz

tan 02

Tano, 'r

AL WY

Fig. 5 Fig. 6
But this does nol mean that there
This

would be true only if . were

is no field along the iron.
infinite. It is, therefore, likely
that a plot of equipotentials will
be more sensitive to the effect of

finite permeability.
Fig. 6 shows such a plot and should
It will be

seen that the lines of constant

be compared with Fig. 3.

m.m.f. curve towards each other in
the bottom of the slot.

verge in a kernel of the field.

They con—

The effect is to taper the field
region and a simple model is given
in Fig. 7. The concontration Of
the field increases the encrgy and

hence the inductance.
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Fig. 8

Table 1 shows some typical calcula-
tions of this effect.

Upper Bound
t Inductance
per unit
h, = 2.581" length
h2 = 2.612"
b = 0.6" O 5.787 o
h1/4 5.812
hl/z 5.973
hl 7.234 g
Table 1

Table 2 shows the averages of the
upper and lower bounds and compares
these with the lower bounds obtained

by means of the usual design formula.

3. COMPARISON BETWEEN CALCULATED
AND TEST RESULTS
Fig. 8 shows a stator slot containing
two conductors. These conductors
belong to two separate windings and
the inductance of the two windings
was obtained both by calculation
and on test. Fig. 9 shows a simpli-
fied slot shape used in calculation.
The usual design formula for the
lower winding gives a slot leakage
reactance of X = 2.710. 'The upper
bound on the assumption of Fig. 9
is given by X, = 3.510. The
average of X and X?L is Xév = 3.11Q.
The total machine leakage reactance
was calculated as 4.449 but the
The calcula~
ted value is 15.4% below the test
value.

test value was 5.250.

IEf the error is due to the
calculation of the slot leakage
alone, we obtain a calculated
value of (4.44Q - 2.710 + 3.119)

= 4.840.
the test value.

This is only 7.8% below

¢ Upper Bound Inductance TLower Bound Average Inductance
l—lo UO UO
O 5.787 5.787
h. /4 5.812 h. b 5.800
' L= [é% " B%}
h /2 5.973 5.880
h 7.234 D787 6.511

Table 2




If we use Fig. 10 to estimate the
upper bound we obtain X+ = 2.97Q
giving an average reactance

Xav = 2.84Q. This makes the total
calculated reactance to be 4.57q,

about 13% below the test value.

Fig. 9

Fig. 10

The total machine leakage reactance
due to the winding in the top of
the slot was calculated by the
usual formula as X = 9.84Q and the

test value corresponds to X = 10.419.

The calculated value is only 5.5%
below the test value.

machine, the design calculated

For another

total leakage reactance due to the
lower winding was 1.189, about 10%
below the test value of 1.31Q. The
slot leakage by the usual formula
is given by X_ = 0.65Q and the
upper bound using Fig. 9 is given
by X+ = 0.772, giving an average of
X o =0.710.

av
is taken as the slot leakage reac—

If this average value

tance, we have a calculated value
of (1.18 - 0.65 + 0.71)a = 1.24Q,
only 5.3% below the test value.

For the upper winding the calculated
value of total leakage rcactance is
1.410, 7.2% below the test value of

123

1.529.

a reasonably close estimate of the

test value.

Thus the usual formula gives

This is as expected
because the upper winding does not

experience the effect at the bottom
of the slot.

4. CONCLUSION

If there is considerable flux
circulation due to finite permea-
bility the slot leakage calculated
by the usual design formula is
likely to be low.
an improved value can be obtained
by calculating an upper bound of
the reactance and taking the

In such cases

average. A flux plot always gives
a lower bound and a potential plot

gives an upper bound.
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