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The acoustic field inside a hard-walled acoustic cavity due to the random 
vibration of one flexible wall is analysed by a novel hybrid deterministic-probabilistic model. 
This approach implies that the flexible wall is not amenable to a deterministic treatment due 
to its high modal density and uncertainties concerning its exact geometric and material 
properties. Thus an original probabilistic treatment based on the vibration field correlation 
characteristics is proposed for the flexible wall. On the other hand, full information is 
available for the acoustic cavity making it tractable by deterministic modal techniques. A 
coupling coefficient between each acoustic mode and the plate bending wave field is 
employed to represent the vibroacoustic interaction and the response obtained from a modal 
summation due to contributions from each acoustic mode. 

Information concerning the spatial distribution of the plate response is 
provided by the probabilistic model and expressed in terms of correlation coefficients or 
normalised cross-power spectral densities of normal acceleration. Expressions for these two 
coefficients are derived based on an approximate modal representation and on a free wave 
model. Particular attention is paid to the plate boundary conditions and results are derived for 
plates with clamped, simply-supported, guided or free edges. A general boundary condition 
which solely depends on the edge stiffness is employed to model the effect of stiffeners on 
the plate vibration field. Information about curvature and type of excitation applied to the 
plate are also incorporated in this model. It is found that the derived correlation coefficients 
and normalised cross-power spectral densities are valid as frequency average estimates in 
bands in which more than eight plate modes are available. However, when the plate modal 
overlap factor is higher than unity they can also be employed in narrow bands. 

Comparisons are presented with SEA, FEM and experimental response 
results on two subsystems which consist of a rigid rectangular box with one flexible wall. It 
is shown that the hybrid model results approach those from a SEA model as both systems 
modal density increases and they compare well with FEM results in the lower frequency 
range in which both systems are modally-sparse. In addition, narrow band and frequency 
averaged sound pressure levels approach the experimental results as long as more than eight 
plate modes are available in a frequency band or the plate modal overlap factor is higher than 
unity. Local and space averaged sound pressure levels are also predicted with this model. 

The most significant contribution of the model here proposed is the provision 
of a new tool for the prediction of narrow band or frequency averaged, local or space 
averaged sound pressure levels inside acoustic cavities excited by the random vibration of 
modally-dense plates for whom only the gross properties are available. This type of 
interaction model is applicable to interior noise control in transportation vehicles. 
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CHAPTER 1 

INTRODUCTION 

1.1 The aim of the research 

The purpose of the research is to develop means of modelling and 

analysing the vibroacoustic interaction of modally-dense structures and modally-sparse 

acoustic cavities applicable to interior noise control in transportation vehicles. A 

probabilistic description of the correlation characteristics of the structural system is 

employed to account for effects of boundary conditions, curvature, type of excitation 

and presence of stiffeners on the structural dynamic behaviour. The acoustic modes of 

the enclosed air space are assumed to be obtainable by a deterministic approach and the 

vibroacoustic interaction is expressed in terms of a coupling coefGcient. The features of 

the proposed model are illustrated by applying it to the response analysis of a 

rectangular box which is randomly excited by one non-rigid wall. 

1.2 Importance of interior noise control in transportation vehicles 

Noise levels inside transportation vehicles constitute an important 

element in the subjective assessment of the vehicle quality and are one of the key factors 

in enhancing the competitiveness of the vehicle as a commercial product. Together with 

quality, noise-related factors such as the ease of spoken communication and/or listening 

to sound systems, association with comfort, fatigue of occupants when taking long 

journeys, and product cost, form the main concerns of the noise control engineer when 

tackling interior noise problems in vehicles. Furthermore, excessive interior noise levels 

can cause delay in the launching of a new product, leading to increase in development 

costs and contract penalties (e.g. ref [1]). 

The noise control problem in vehicles may be qualitatively described in 

terms of a source-path-receiver model [2,3]. The characteristics of noise sources which 



operate in different types of vehicle vary, but they usually have a broad-band random 

content (e.g. wind and road noise in cars, turbulent flow in aircraft, rail-wheel 

interaction in trains) together with substantial tonal and harmonic components (e.g. 

engine and transmission noise in cars, propeller, compressor and engine exhaust noise in 

aircraft). Noise excitation mechanisms in vehicles have been extensively studied and, in 

general, an adequate physical understanding of their causes and effects has been 

achieved (see for instance the reviews presented in refs. [3,4]). 

The disturbances generated by source mechanisms are transmitted via 

structure and airborne paths to the vehicle interior. These transmission paths are 

geometrically and materially complex and are influenced by operating conditions and 

manufacturing tolerances. The vibroacoustic interaction between structures and the 

contained air can involve resonant and/or non-resonant response of the modes of the 

individual components. The irregular shape of the vehicle interior, together with 

inhomogeneous distribution of absorptive areas (carpets, seats and soft trim) and 

reflective surfaces (hard trim and glass), contribute to the complexity of the interior 

noise control problem in transportation vehicles. 

Numerous strategies have been employed to improve the interior noise 

characteristics of transportation vehicles. They can be roughly divided into corrective 

and predictive strategies. Active and passive noise and vibration control can be 

classified as corrective, while predictive techniques such as the Boundary Element 

Method (BEM), Finite Element Method (FEM) and Statistical Energy Analysis (SEA) 

are most commonly employed at the design stage. In order to reduce costs, predictive 

techniques based on computer simulation are preferred and much effort has been put in 

their development. These predictive approaches are complemented by experimental 

techniques developed as means of assessing the reliability of such approaches. 

1.3 Statement of the Problem 

As a result of geometric characteristics of different vehicles, combined 

with the complexity of the propagation paths, a tendency exists to divide the analysis of 

interior noise problems into separate frequency ranges [5]. In each frequency range, 

normally termed 'Iow% 'medium' and 'high', different analytical and numerical 



procedures are employed according to typical vibration and acoustic wavelengths and 

the vibrational behaviour of the structure. Low frequencies are characterised by a 

sparsity of low-order natural modes which are rather insensitive to variations in the 

model details. As a result, one can use a deterministic model to tackle noise problems in 

this frequency range. On the other hand, when the natural modes are of high order, the 

response is extremely dependent on the model details and minor variations of the model 

can cause significant differences in the predicted response. Therefore, probabilistic 

models are more relevant to the analytical treatment of the system response in this 

frequency range which is termed 'high'. The transition region is termed mid-frequency 

range. Typical frequency responses in high and low frequencies are illustrated in 6g. 

1.1. As shown in this figure, in the frequency region below 1000 Hz the natural modes 

in the acoustic system are sparsely distributed while the natural modes are more densely 

concentrated in the structural system. 

Deterministic techniques such as the Finite Element Method (FEM) and 

the Boundary Element Method (BEM) are well established for the prediction of low 

frequency noise inside vehicles (e.g. refs. [6-9]). Nevertheless, as discussed by Fahy 

[10], the application of such techniques to the prediction of high frequency noise is 

problematic. This stems from the fact that the sensitivities of modal resonance 

frequencies and relative modal phase response to small variations in structural detail 

increase with modal order. Therefore, the confidence in the validity of the model 

decreases with 6equency. Moreover, vibrational/acoustic energy sources and the 

propagation of structure-home noise can be strongly affected by the vehicle operating 

conditions, quality of components and manufacturing processes [2,10]. The extent of the 

variation of the dynamic response of identical systems can be illustrated by the results 

presented by Kompella and Bernhard in ref [11]. They show that the acoustic pressure 

response at the driver's ear position in individual examples of nominally identical 

production cars (57 in total) can differ by as much as 20 dB at individual frequencies. 

The large amount of input data required by deterministic numerical 

models in a frequency region in which the vibration wavenumber is large is another 

factor that contributes to making the application of such approaches to high frequency 

studies laborious. This is because the size of the discrete elements necessary to achieve a 

certain precision in a given frequency decreases with increasing frequency. Sung and 



Nefske [8] applied FEM to the analysis of interior noise of a van and as a result they 

point out that the frequency range of accurate prediction of interior sound pressure levels 

is limited by the upper frequency limit of acceptable accuracy of the structural model, 

which they demonstrated to be about 100 Hz for the van. As observed by Lalor [12], 

this is because vehicle structures are highly non-uniform and have rather high modal 

density, making modal representation imprecise beyond about the 10th to 20th mode 

(around 100 to 120 Hz). However, above this frequency, the acoustic frequencies are 

still fairly sparse and a FEM model can give reasonable estimates of the dynamic 

behaviour (natural frequencies and associated mode shapes) of the air space inside a 

passenger compartment. This suggests that the structure, and not the acoustic cavity, 

complicates the numerical modelling of vibroacoustic problems. 

As an alternative to deterministic techniques, a probabilistic approach 

has been developed in the last 30 years [14]. This approach, Statistical Energy Analysis 

(SEA), has been successfully applied to the study of high frequency structure-bome 

sound transmission in road vehicles [15] and helicopters [16]. However, as pointed out 

by Fahy [10], SEA is at the moment relegated to the 'high frequency' rank as no formal 

procedure is yet available to evaluate the predictive confidence of SEA when it is 

applied to typical structures, particularly when the response is determined by coupling 

between a rather small number of modes which have low modal overlap (i.e. their 

average resonance frequency separation is much larger than their average half-power 

band widths). The present weakness of SEA in dealing with low modal density 

subsystems, which is associated with the lack of confidence data, precludes the 

application of this approach to the analysis of interior noise in motor cars in frequency 

ranges below 200 Hz because, as already discussed, few acoustic modes have natural 

frequencies in this frequency range. Furthermore, only frequency-averaged, spatially-

averaged response quantities are available in SEA, excluding the estimation of response 

values at specific points, such as passenger head positions, and in narrow bands. 



1.4 An alternative approach 

In summary, some practical systems involve, in certain frequency ranges, 

interaction between a large number of structural modes with a few, or even no, resonant 

acoustic modes. In these frequency bands neither SEA nor modal-interaction (described 

in section 1.5.1) models are optimum. Furthermore, the structural modes may be excited 

by broad-band sources, causing both resonant and non-resonant acoustic response. In 

particular, this situation is encountered in medium-sized cars in the 100-200 Hz 

frequency range [12]. As previously explained, in this frequency range the structural 

modal density is high enough to justify an SEA model and FEM can be efficiently 

applied to the air volume inside the car interior as the acoustic modes are reasonably 

sparse. Similar conditions apply, to a lesser extent, in trains and aircraft. 

A number of approaches [17] have been suggested for analysing cases in 

which neither SEA nor modal-interaction models are optimum, a situation sometimes 

referred to informally as 'the mid-frequency crisis'. These approaches are based 

variously upon a heat conduction analogy to structural energy flow and smoothing of 

6equency response functions. However, they usually assume that both structural and 

acoustic systems have a similar modal density and do not take advantage of the situation 

described in the previous paragraph. 

In order to tackle the problem here presented, a hybrid deterministic-

probabilistic model is proposed as means of modelling the vibroacoustic coupling. The 

assessment of the limitations of this hybrid model in representing a general 

vibroacoustic coupling is based on the study of its application to the interaction between 

an acoustic volume and a thin plate. A rather extensive literature exists concerning the 

interaction between a plate and an enclosed volume of fluid, and in what follows the 

works which are most relevant to the present research are reviewed. The inclusion of 

some equations in the review is an attempt to introduce some of the basic mathematical 

concepts together with the development of the physical understanding. This hybrid 

model can be considered a first step to a combined SEA-FEM model suggested by Lalor 

[12] as an option for studying interior noise inside motor cars in the medium frequency 

range. 



1.5 Plate/acoustic volume interaction: a literature review 

1.5.1 Modal-interaction model 

In the modal-interaction model, the differential equations that govern 

the behaviour of enclosed fluid and structure are expanded directly in terms of the 

uncoupled natural modes. A differential equation is written for each subsystem mode 

and the subsystem response is obtained from modal summation truncated to the 

desired degree of precision. Normal structural surface acceleration is the agent by 

which the structure generates the fluid field and the fluid pressure on the surface of the 

structure excites the structural wave field. For an enclosed volume of fluid interacting 

with a plane structure the differential equations of motion expanded in terms of the 

uncoupled normal modes are [19], 

Zp+(^pnpZp+G)pZp=-^^( i ) ,c ,p+^^, (1.1) 

(1.2) 

where Zp is a modal structural displacement, 0^ is a modal acoustic-field velocity 

potential related to the internal pressure byp = -Pg60/^,(L)n (Op are the modal 

natural frequencies, Ĉ p is a coupling coefficient obtained from the integration of fluid 

and structure mode shapes over the contact area S, Fp is a generalised force acting on 

the structure, T|n,Tlp modal loss factors, and Ap are modal-generalised volume 

and mass, respectively, and Q„ is the strength of acoustic sources located within the 

fluid volume. 

Analytical approaches based on modal representation have been used as 

a means of studying stress and low-6equency sound transmission in plates backed by 

rectangular cavities [20-22]. The inhomogeneous wave equation that governs the 

acoustic pressure inside the enclosure is solved for specific boundary conditions: five 

walls are assumed acoustically hard (perfect acoustic reflectors) and one is assumed 

flexible. This solution is normally expressed as a separable function of the three space 



variables. The space variable that corresponds to the deflection of the flexible wall is 

approximated in terms of an infinite Fourier series. The backing pressure acting on the 

flexible wall is then estimated from the velocity potential and its influence on the plate 

vibration computed as a generalised force for the mode concerned (first term on the left 

of equation (1.1)). 

This procedure was employed by Do well and Voss [20] to study the 

effect of an underlying cavity on the plate vibration. Tliey assumed the deflection of 

the flexible wall to be expanded in double cosine functions and used a Galerkin 

method to solve the equation of motion of the plate (equation (1.1)). They concluded 

that only the fundamental plate mode is strongly affected by the presence of the cavity 

and presented a semi-empirical expression to estimate the change in the resonance 

frequency of this mode. 

Pretlove [21,22] used exactly the same procedure but assumed the 

flexible wall to vibrate in double-sine modes. The plate modes, modified by the 

acoustic cavity effects, are obtained from an eigenproblem (equation (1.1) in matrix 

form) in which the term that involves the acoustic velocity potential is included. This 

leads to the concept of cavity- and plate-controlled modes of the coupled system, which 

depends on the relative energy contribution of each subsystem. The influence of the 

cavity on the plate vibration was then discussed in terms of the relative plate and 

acoustic cavity stiffness in which the coupled modes were obtained from the 

uncoupled in vacuo plate and cavity modes. For the case in which the walls are much 

stiffer than the room cavity the acoustic field inside the cavity can be calculated 

directly firom the uncoupled plate vibrations. However, for light plates that enclose 

shallow cavities, the relative stiffness of both systems is similar and therefore they 

must be analysed as a single coupled system. 

A general treatment of the panel-cavity coupling problem has been 

presented by Dowell, Gorman and Smith [23]. They derived equations similar to 

equations (1.1) and (1.2), the only difference being the use of an impedance to model the 

absorption characteristics of the cavity. The direct effect of this impedance is to couple 

the (rigid wall) acoustic modes. The coupled differential equations are used to form a 

matrix equation with stiffness, mass, damping and coupling terms and, as the coupling 

between the panel and the room is of gyrostatic type, a numerical procedure due to 



Meirovitch [24] is suggested for the solution of the associated eigenproblem (without 

the damping). Simplifications are carried out in the general solution in order to form the 

eigenproblem of two cavities joined by an opening. This simplified eigenproblem is 

solved and a good agreement was reported between experimental and analytical results. 

Another interesting discussion was presented in ref. [23] for the case in 

which the plate is the only source of excitation in the system. Simplifications were given 

for the cases in which the forcing frequency is equal to the in vacuo plate resonance 

frequency, or equal to the cavity resonance frequency, or yet, when the three frequencies 

are very similar. Generally, observations similar to ones already presented in earlier 

works [20-22] are reported. Most importantly, they have suggested that when the 

excitation frequency is well separated from all panel and room natural frequencies the 

interaction between the panel and the room can be neglected. This means ignoring the 

first term on the right side of equation (1.1). In this situation one only needs to obtain the 

panel response from equation (1.1) and then use this result to estimate the pressure 

response using equation (1.2). 

1.5.2 Green's function approach 

Alternatively, the radiation of sound from a vibrating structure into a 

surrounding fluid can be formulated in terms of an integral equation, the Kirchhoff-

Helmholtz integral equation. This equation comprises Green's functions, which 

represent solutions to the inhomogeneous wave equation, with an imposed radiation 

condition that ensures outward travelling waves. It relates the harmonic surface 

vibrational motion on the structure to the radiated pressure field and it is normally 

expressed as [25] 

P(r) = j[p(r,)8G(r,r,)/gn + i(op,v^(r,)G(r,rJ]dS + ia)p, j'q(rJG(r,rJdV, (1.3) 
S V 

where G(r,rg) is the Green's function, r is the vector at the receiver point, r, is the 

position vector on the vibrating surface, p(rg) is the surface pressure on the structure, 

VN(rs) is the structure normal vibration velocity, 5G/5n is the derivative of the Green's 

function with respect to the outward-going normal to the local surface, and q(ro) is the 

distribution of volume velocity source strength per unit volume. The derivation of the 



above equation is presented in ref. [26] and its application for sound radiation on 

unbounded fluid is extensively discussed in the acoustics literature (e.g. refs. 

[19,25,26]). Explicit expressions for the Green's function are available only for very 

simplified and regular geometries and in the case of more complicated structures 

numerical techniques are necessary to solve this integral equation [25,27]. 

The integral equation is applicable to either a vibrating body radiating 

in an unbounded medium or a bounded volume of fluid in which part of its boundaries 

vibrate. In the latter, the presence of physical boundaries causes natural modes of 

vibration and associated natural frequencies to appear in the fluid. The normal motion of 

the vibrating flexible boundaries excites the acoustic modes causing the enclosed fluid 

to exhibit resonant acoustic behaviour. The volume integral in the above equation 

represents the pressure generated by sources within the fluid volume and, as it is 

assumed that the vibrating surface is the only source of disturbance in the fluid, this 

term can be ignored. For the case of an enclosure with rigid walls (9p/8n = 0 on the 

boundaries) a Green's function that satisfies the wave equation with this boundary 

condition is given by [19,25] 

where \|/n is the acoustic-pressure mode shape corresponding to the natural frequency 

of the enclosed space, is the complex wavenumber of mode n, and k=m/c is the 

analysis wavenumber. The harmonic surface vibration velocity can be obtained from 

the solution of the equation of motion of the vibrating body. For instance, Fahy [19] 

suggests the use of equation (1.1) to solve for the normal surface vibration velocity in 

terms of the vacwo plate modes. As already presented (eg. [20-23]), for enclosed 

volumes of air at static pressure close to atmospheric the fluid loading in the structure 

can be neglected (neglect the first term on the right-hand side of equation (1.1)) and 

the structure is said to be weakly coupled to the fluid. 

This integro-differential representation was applied by Pan and Bies 

[28-30] to study the effect of a flexible panel in the modal properties of a room and 

associated forced response to acoustic and structural sources. The plate and acoustic 

cavity Green's function were obtained from uncoupled plate and cavity natural modes 

(expression (1.3)) and used as base functions to obtain the room (coupled rectangular 



acoustic cavity and simply-supported flat plate) modal reverberation times and 

resonance frequencies. Two different methods, orthogonal expansion [23] and 

successive substitutions, were employed in the solution of the integral equations. 

Modal coupling and exterior radiation were incorporated in the solution and their 

influence in the properties of the coupled system discussed. 

A transfer factor was defined as a means of deciding the relative 

importance of the energy transfer between two coupled modes. This factor depends on 

the difference between the natural frequencies and on the spatial matching given by 

the integral of the mode shapes over the contacting area (coupling coefficient, C^p). 

They observed that if the transfer factor is close to unity for a structural/acoustic mode 

pair, the transfer of energy in this frequency region is almost entirely governed by this 

pair. However, if a cavity mode is not strongly coupled to any plate mode, then the 

energy transfer from this cavity mode is distributed over many plate modes. When the 

modal density of the plate is low, the energy transfer between plate and cavity tend to 

be dominated by one pair; but as the plate modal density increases this dominance 

tends to decrease. Pan and Bies also observed that, on average, the decay time 

(damping) decreases as the plate modal density increases. Another observation, 

associated with the forced sound transmission, is that as the panel gets thinner and its 

damping is low, radiation into the external space is an important component of the 

acoustic energy loss from the cavity. 

An advantage of the procedures reported in refs. [23,28-30] is that they 

can be applied to any geometry of plate and acoustic cavity for which uncoupled natural 

modes are available. Natural modes of dynamic systems can be obtained using 

numerical methods such as the Finite Element Method or the Boundary Element 

Method. Since a discussion of these numerical methods in a literature review would be 

quite involved, it is omitted in the present work. Suffice to say that reliable procedures 

are available to obtain the natural frequencies and mode shapes of odd-shaped acoustic 

enclosures, using either FEM [31] or BEM [32]. 

The importance of the plate boundary conditions on the internal 

pressure response has been studied by Cheng and Nicolas [33] for the case of a 

cylindrical hard-walled cavity with a point-driven circular plate. The Green's function 

approach was used to describe the pressure inside the enclosure (equations (1.3) and 
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(1.4)) and a variational formulation associated with a Rayleigh-Ritz approach was 

employed in the plate analysis. The plate was elastically supported by rotational and 

translational springs enabling classical and intermediate boundary conditions to be 

simulated. A 'radiation efficiency into cavity' was defined as the ratio of the acoustic 

energy in the cavity to the kinetic energy of the plate. They observed that free and 

guided plates radiate much less sound into the cavity than simply-supported and 

clamped ones, which shows the significance of the deflection of the plate boundaries 

in the plate radiation. This study suggests that the sound pressure inside the enclosure 

can be reduced if the rigidity of the edges fixation is decreased. 

1.5.3 Power flow approach 

Statistical Energy Analysis (SEA) 

The works reviewed in the two previous sections model the plate and 

acoustic cavity interaction by expressing the dynamic behaviour of both systems in 

terms of their natural modes. However, as the frequency increases, the number of 

natural modes to be included in the analysis increases and a modal representation is no 

longer practicable. As already indicated, approximate treatments based on energy 

balance equations are a popular alternative in the high frequency regime. 

In the so-called 'predictive mode' [10] of Statistical Energy Analysis, the 

studied system is divided in subsystems, separated 6om each other by significant 

dynamic discontinuities (barriers to the transmission of vibrational energy from the 

source(s) of excitation), the parameters of which are probabilistically defined in terms of 

gross properties. The total time-averaged energy of vibration of each subsystem and the 

time-averaged vibratory input are used to write steady-state power balance equations. 

Hence, parameters that control the rate of net energy exchange between the subsystems, 

the rate of vibrational energy decay (damping) and the capacity for storing vibrational 

energy (modal density) need to be estimated, either analytically or, as in present 

common practice, empirically. From the solution of the system of power balance 

equations, an estimate of the subsystems response is obtained in terms of frequency- and 

spatial-average quantities. 
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This approach is based on the exact power flow proportionality 

relationship that exists between two coupled resonators (modes) randomly excited by 

statistically independent forces [34], 

Pnp=G,p(Ep-EJ, (1.5) 

where P̂ p is the time-averaged power flow between modes n and p, Ep and Ê  are the 

time-averaged modal energies, and Ĝ p is a power flow coefficient. In the case of 

gyrostatic coupling, this coefficient can be derived firom equations (1.1) and (1.2) and 

it depends only on the modal parameters [35]. By assuming there is equipartition of 

energy between the modes of individual subsystems, that the modal responses of 

individual subsystems are uncorrelated, and that the exciting forces are uncorrelated in 

space and time, this relation can be extended to express the time-averaged power flow 

between two sets of subsystem modes. This extension proves to be a good practical 

approximation for the band-limited power flow between weakly coupled subsystems 

with high modal density. 

Noise transmission from a reverberant field through a flexible panel 

into a small enclosure has been investigated by Lyon [36]. In the frequency regime 

above the first acoustic resonance, he employed SEA to model the resonant 

transmission. Forced (non-resonant) and free (resonant) sound transmission were 

compared, and he suggested that noise reduction due to resonant transmission are 

generally less important than forced waves noise reduction for panels in which the 

damping loss factor is smaller than 0.3. The power flow coefficient (G^p) between 

panel and cavity subsystems in one-third octave bands was estimated from the band-

averaged radiation resistance of a single panel into a free field [37]. However, no 

criterion was given for the limits of applicability of this approximation to the power 

flow coefficient. 

Two important terms in the power flow coefficient are the coupling 

coefficient (C p̂) and a term given by square of the difference between the squares of 

the natural frequencies of the interacting modes ((co,.," - cOp̂ )"). This coefficient has 

been extensively studied by Fahy [35] who concluded that the power flow between a 

mode pair is only appreciable if it satisfies a proximity requirement (proximate mode 

coupling). This proximity requirement is based on the relative value of the modal loss 

factors and natural frequencies. Uncoupled in vacuo plate and acoustic volume modal 
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parameters were used by Fahy to estimate the coupling coefficient (Cnp) and 

associated power flow coefficient between a flexible panel and a rectangular acoustic 

cavity. The radiation resistance of the panel into the enclosed space was estimated 

6om the individual mode pairs power flow coefficients; a comparison made with the 

band-averaged baffled panel radiation efficiency into a diffuse field [37] suggested 

that both results are coincident above a certain frequency. This frequency corresponds 

to a low firequency limit below which proximate coupling no longer dominates; he 

named this frequency the 'lower limiting frequency' for maximum proximate mode 

coupling. In the firequency range below this frequency all mode pairs must be taken 

into account in the computation of the coupling. He also pointed out that below this 

frequency the coupling can be strongly affected by the introduction of a perturbation 

in the geometry of the enclosure which is not the case when proximate mode coupling 

is present. Therefore, if the modal density of each component is sufficiently high, the 

power exchanged between a structure and a enclosed volume of fluid can be evaluated 

from the modal-average &ee-space radiation properties of the structure. This fact has 

been extensively employed in applications of SEA to the study of response of 

enclosed volumes of fluid to random structural vibration [14,19,38,39]. 

As already explained, a thin plate and an enclosed volume of air can 

generally be considered to be weakly coupled. In other words, neither m vacuo plate nor 

uncoupled acoustic cavity natural h-equencies differ greatly from the natural frequencies 

of the coupled plate-cavity system, with the exception of the fundamental plate mode. 

This situation appears to be an important condition for the successful application of SEA 

and it is normally known as the weak coupling assumption in SEA. A formal analysis of 

the degree of coupling between plate and acoustic cavity subsystems in terms of power 

flow has been presented by Gulizia and Price [40]. They modified the approach 

originally employed by Lyon [36] and Fahy [35] to account explicitly for arbitrary 

coupling strength in the power flow coefficient and concluded that the equation for the 

radiation resistance (which is a measure of the rate at which the plate does work on the 

fluid) is independent of the coupling strength provided the structural modes are 

considered independent and there are many modes coupling the acoustic and the 

structural field. They compared their theoretical findings with experiments in which a 

plate is point excited and radiates into water, a classical strong coupling situation. A 



reasonably good agreement was obtained in the Crequency range in which both 

components have high modal density but differences of nearly 10 dB between 

theoretical and experimental coupling coefficient were observed in the frequency region 

in which the modal density is not sufficiently high. 

Howlett [41] also tackled the case of the strong coupling between an 

enclosed water-filled box and a thin plate. He employed a statistical modal analysis 

based on the in vacuo plate modes and uncoupled hard-walled acoustic modes to 

account for the strong interaction between both systems. Substantial difference between 

theoretical and experimental results was observed, generally at low frequencies, when 

the steel panel was excited by an acoustic field generated within the water-filled box. He 

concluded that such differences are related to the neglect of panel radiation coupling 

effects in his model while Gulizia and Price [40] pointed out that such discrepancy was 

probably related to the low modal density in the low fiequency range. However, Howlett 

[41] observed that his theoretical results represented a use&l improvement over weak-

coupling theory. 

Uncertainty in SEA 

The usual application of SEA to the study of the dynamic behaviour of 

coupled systems only provides an ensemble average of subsystem response with no (or 

relatively little) information provided about the uncertainty of the response estimate in 

relation to any single realisation. Some scattered works have addressed this important 

issue in the case of plate/acoustic cavity coupling [42,43] but they tend to concentrate on 

results that are specific to the case analysed. Generic expressions of lower and upper 

limits of power fiow have been suggested by Scharton and Lyon [34] and Hodges and 

Woodhouse [44] in application to high modal density systems. 

The sensitivity of the coupling between a flat plate and an enclosed 

volume of fluid has been numerically investigated by Mohammed [45] using a Monte 

Carlo method. The coupled oscillator theory was used to model the dynamic behaviour 

of the coupled system with the proximate coupling treatment [35] used in the estimation 

of the plate radiation efficiency (or radiation resistance). The thickness of the plate was 

randomly perturbed around 10 % of its average value with thickness values drawn fi-om 
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a normal distribution and the radiation efficiency obtained for a range of modal 

bandwidth values. It was found that the fluctuation of the radiation resistance about the 

mean diminishes as the number of interacting mode pairs increases (characterised by an 

increase in modal density) and as the sum of the half-power bandwidths of the plate and 

cavity modes gets larger. Moreover, the distribution of the computed radiation 

efficiency approaches that of the normal distribution as the plate/cavity average modal 

overlap factor increases (modal overlap factor = T|n(f)f̂  where n(f) is the modal density). 

Works related to SEA 

Pope [46] and Pope and Wilby [18,47] presented a low frequency 

treatment of the noise transmission into an enclosed space based on an energy balance 

between the power radiated into the cavity and the power dissipated by the enclosed 

volume of fluid. As in previous approaches they assumed the coupling to be weak and 

used m vac wo structural modes and rigid wall acoustic modes. They considered the 

interaction of the structure with the inside and outside fluid, and used a joint 

acceptance function to model the structural excitation due to an arbitrary form of 

acoustic field. Simplifications were presented for summations of plate modes 

resonating below, within, and above the frequency band which interact with acoustic 

modes resonating in the band, or outside the band. The expressions were also 

simplified for the special case in which the acoustic modal density is high and the 

sound field inside the enclosure approaches the diffuse state. The interior space-

averaged mean-square pressure was obtained by equating the expressions for the 

power dissipated on the inner cavity walls to the power radiated by the vibrating 

structure into the cavity in limited frequency bands. This treatment of the energy 

balance is considered to be a complement to SEA in frequencies in which there is a 

sparsity of acoustic and structural modes and was successfully employed to model 

noise transmission in cylinder-like structures [48,49]. 

By studying the asymptotic behaviour of the modal equations that 

govern the dynamics of plate and acoustic cavity coupling, Kubota, Dionne and Dowell 

[50] formally demonstrated the relation between modal analysis and SEA. Their 

expressions are based in results derived from deterministic equations (equations (1.1) 
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and (1.2)) in which the number of interacting modes are made very large in order to 

allow the modal summations to be substituted by integrations and wildly fluctuating 

functions to be smoothed out. This artifice permits modal parameters to be replaced by 

their spatially and &equency averaged values. Moreover, it manages to retain the 

capability of predicting spatial variations of the responses involved. This capability of 

predicting spatial variations in the pressure response vyas used to show the existence of 

intensification zones near the comer, edges and walls of a reverberant room [51,52]. 

Their results are interesting per se but they fail to address important points related to 

intermediate cases, i.e. the ones in which the number of natural modes are not 

sufficiently high to allow a reasonable approximation to be achieved by the asymptotic 

limits of the system parameters. For instance, they assume the structural response to be 

delta-correlated in space. This is certainly tme in the very high frequency limit or for 

very wide frequency bands but experimental results collected in real structures 

[53,54,78] and presented in this thesis suggests a different situation. 

1.6 Summary of the present study 

The novel hybrid deterministic-probabilistic model here presented 

presupposes a knowledge of the acoustic enclosure modal characteristics, and that the 

structure is defined by its gross properties and has high modal density. The former 

implies that the representation adopted for the acoustic cavity is deterministic while the 

structural system may be only probabilistically represented. Its gross properties will 

sufGce for the estimation of its average response values. We assume that the high modal 

density subsystem is directly excited and the response in the receiving system needs to 

be estimated in specific points in three-dimensional space. Moreover, the excitation is of 

the broad-band random type and all the plate modes are assumed to be excited. 

As a result of the exact modal characteristics of the structural system 

being unpredictable, a bending wave field representation is adopted for this system. This 

analysis is similar to the one employed in rooms in which the reverberant field 

predominates over the direct field. In such rooms, interference patterns are created near 
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the edges and their importance in the acoustic response increases as the wavelength 

increases. The influence of the boundaries in the structural wave field are taken into 

account using a free travelling wave model [55] to estimate band-limited spatial 

correlation of the vibrational response. The correlation characteristics of flat plates are 

represented by a correlation coefScient which approaches that of a difkse bending wave 

field [53] as the structural wavelength decreases and for situations in which the field 

points are far from the boundaries. 

Similar results are presented for cases in which an approximate modal 

representation based on Bolotin's dynamic edge effect method [56] is employed to 

represent the vibration field. By taking advantage of the high modal density of the 

structural subsystem, the modal summation is substituted by an integration in 

wavenumber space in a manner similar to Bolotin's integral method [56]. New results 

are presented for cases in which the structural systems have a range of ideal boundary 

conditions, are plane, singly- or doubly-curved, and may be reinforced by ribs. 

These analytical estimates of band-limited spatial coirelation of 

structural response are compared with experimental results obtained on various flat 

plates and on a road vehicle body shell. These experiments were carried out using a 

procedure suggested by Steam [53] based upon the measurement of structural 

acceleration on a number of points placed along a line due to random excitation. Both 

acoustic and structural sources were used to excite the measured system. 

The coupling coefGcients between the structural field and each acoustic 

mode are computed using numerical integration techniques. These coupling coefficients 

are used to obtain the theoretical value of acoustic pressure inside a hard-walled acoustic 

cavity excited by vibration of one flexible wall. The theoretical response results are 

compared with measurements of acoustic pressure made in an acoustic enclosure with 

rectangular boundaries of which one flexible wall is mechanically driven by random 

noise. The advantage of such a geometric configuration is that it permits the use of 

closed form expressions for acoustic mode shapes and associated natural frequencies. 

The novel procedure and basic concepts presented in this work can in 

principle be extended to irregular cavity geometries and various forms of structural 

systems. FEM can be used to obtain the acoustic space modal characteristics and SEA 

can be employed to obtain the vibration levels of the structural components. The 
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contribution of each structural component to the internal sound pressure is obtained 

from the coupling coefficients between each structural component and a particular 

acoustic mode. The overall sound pressure level is obtained by modal summation. 

1.7 Thesis arrangement 

The chapters of the present work are arranged as follows. 

Chapter 2 presents equations of a deterministic-probabilistic description 

of vibroacoustic coupling. 

The spatial correlation characteristics of multimodal bending wave fields 

are analysed in Chapter 3. This original analysis is directed towards the case in which a 

perfectly diffuse wave field is not set up in the structure. Particular attention is paid to 

the effect of boundary conditions on the edge nearfield of such systems. 

Chapter 4 presents a comparison between the expressions derived in 

Chapter 3 and correlation measurements carried out on a number of simple structures 

and on the bodyshell of a passenger car. 

Experimental studies of vibroacoustic interaction are presented in 

Chapter 5. The pressure inside an acoustic enclosure due to point excitation of the 

flexible plate is measured and the results compared with estimates obtained from the 

hybrid deterministic-probabilistic model. 

The last chapter is dedicated to a general discussion of the present work 

and in making recommendations for future work. 

A number of appendices is also included in this work in order to 

complement the main text. In particular, a novel representation of plate radiation 

efficiency in terms of the present model is compared to classical results of radiation 

efficiency as given by Maidanik [37] and Leppington et al. [93]. 

18 



A c o u s t i c Sys tem - M e a n - s q u a r e P r e s s u r e 

m 
n 

500 1 0 0 0 1 5 0 0 
Freq uency (Hz) 

2 0 0 0 

Fig. 1.1.a - Pressure response inside an acoustic cavity due to a point acoustic source 
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Fig. l.l.b - Typical transfer mobility of a flat plate. 
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CHAPTER 2 

HYBRID MODEL: BASIC EQUATIONS 

2.1 Derivation of hybrid model for a plate coupled to an acoustic 

cavity based upon modal-interaction 

Various procedures for modelling the vibroacoustic interaction 

between enclosed fluids and flexible plates have been discussed in the previous 

chapter. One of these, the modal-interaction model, is used when both uncoupled 

acoustic and structural modes are known. These uncoupled modes are employed in a 

modal expansion of the response variables and the coefficients of this expansion are 

used to write a set of differential equations (equations (1.1) and (1.2)) that can be 

solved to obtain the coupled response. However, if the plate modes are not 

individually predictable the modal expansion (equation (1.1)) can not be applied to 

represent the plate wave equation. Therefore, a different procedure needs to be 

employed to represent the dynamic behaviour of the plate. 

Assuming that the only source of excitation for the acoustic cavity is 

the plate vibration, this excitation can be represented by a generalised modal source 

(Fn(t)) and the acoustic modal equation can be written as [23] 

(2.1) 
I7t dt 

where the normalisation constant is expressed as 

An":^jYn(x,y,z)dV, (2.2) 
V 

the generalised source due to wall vibration is given by 

F / t ) = j"a(x,y,t)Yn(x,y,zJdxdy, (2.3) 
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Pn(t) are the coefficients in an acoustic normal mode expansion for the pressure 

(equation (2.4)), cOp is the n-th acoustic natural frequency with an associated mode 

shape Yn, În represents an equivalent damping ratio which can be expressed in terms 

of the specific normal impedance of the cavity walls (section 5.2.4, ref [23]), V is the 

cavity volume, S is the interface area (normally the plate area) and a(x,y,t) represents 

the normal acceleration of the plate vibration field. A sketch of the plate/acoustic 

cavity configuration is presented in figure 2.1. 

Set of 
uncorrelated 
random forces 

z . X 
y 

Plate 

Acoustic 
Cavity 

Fig. 2.1- Acoustic Cavity excited by a random vibrating plate 

Using this description the pressure inside the cavity can be obtained 

using a normal mode expansion 

p(x,y,z,t) = p ĉ̂  %]p, (t)Yn (x,y,z) (2.4) 

where the coefficients Pn(t) are available from solutions of equation (2.1). 

In the present analysis, the plate is assumed to be randomly excited by 

a spatially-uncorrelated time-stationary source. As a result, a vibration field is set up 

in the plate with an assumed smoothly-varying spectrum in finite bands and known 
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spatial correlation characteristics; the plate is an excitation field to the acoustic modes. 

Consequently, the normal-mode approach suggested by Powell [57,58] to study the 

response of continuous structures under random loading can be employed to estimate 

the mean-square pressure inside the cavity. In this treatment, the set of acoustic 

equations (equation (2.1)) is Fourier transformed as a means of obtaining the 

description of the air enclosure dynamics in the frequency domain. The frequency 

domain representation of equation (2.1) is 

- 0 ) ^ , ] p , ( m ) = F,(m), (2.5) 

where 

F»(o)) = -:^j'A(x,,y,,o))vt/.(x,,y,,zJdx,dy, 

^ s 

and A(xi,y;,(i)) is the Fourier transform of a(xi,yi). 

The associated Fourier transform of p(t) is 

P(x,y,z,a)) = p ,c^^PXa))Yn(x ,y ,z ) . (2.6) 
n 

From equations (2.5) and (2.6) we have 

and its complex corrugate is 

0̂̂ 0 A rv2 , 1' ^ / 

with 

C ((O) = - f A* (Xz, y^ ,(0) Y m (^2, Yz, )dx2dy ̂ , 
^ s 

Xn =(0)^-0)^) and Y^=Ti,o)m^ 

The (double-sided) auto-power spectral density of the total pressure is 

obtained from 

Sp(x,y,z,a)) = l imY[P(x,y,z,o))P*(x,y,z,a))] (2.9) 

Substituting equations (2.7) and (2.8) in (2.9) we obtain 
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S , ( x . y , z , c o ) = < P ^ X I Vn(x,y,Z)Ym(X,y,Z) 

[x ; ,+Y,r 

X jjs,(x,,y,,X2,y2,m)Yn(x,,y,,zjYm(x2,y2,zJdx,dx2dy,dy^, 
(2.10) 

s s 

where Sa(x,,yi,x2,y2,0)) is the cross-power spectral density of the normal plate 

acceleration at points X, = (x,,y,) and X2 = (X2,y2). As the vibration field is not 

necessarily homogeneous in space, the cross-power spectral density is normalised by 

the power spectral density of the space-averaged acceleration (8^(0)) of the vibration 

field, 

sxx,,y,,x2,y2,G)) 
Ya(x,,ynX,,y2,m) 

Sa(G)) 
(2.11) 

where Ya(xi,yi,X2,y2,(o) is here named the normalised cross-power spectral density 

between the acceleration at two points in the vibration field. The cross-power spectral 

density can also be normalised by the power spectral density of the acceleration at any 

single point in the vibration field or by the product of the square root of the power 

spectral density at points 1 and 2. The former will give the zero-time-delay correlation 

coefficient of the vibration acceleration between points 1 and 2. All these functions 

can be derived 60m the cross-power spectral density simply by manipulating the 

points coordinates. The formalism related to the study of this quantity is presented in 

the next chapter together with some simplified expressions for the case of simple 

modally-dense structural components subjected to spatially-uncorrelated time-

stationary random excitation. An experimental investigation of the correlation 

coefficient on different plates is presented in Chapter 4, together with some results for 

the cross-power spectral density normalised by the power spectral density of the 

space-averaged plate acceleration (equation (2.11)). 

Introducing equation (2.11) in equation (2.10) we obtain. 

Y»(x,y,z)Yn,(x,y,z) 
V' 

X „ - i Y „ ] [ X „ . + i Y „ 

X; + y ; ] [ x l + Y' 

JjT.(*i.yi.-'«2.y2,m)V.{X|,yi.z.)V™(X2.y2.z. )dx,dx,dy,dy,, (2.12) 
s s 

The double integral over the plate area in equation (2.12) is a 

measure of the effectiveness of the random vibration field in exciting a particular 
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acoustic mode. It represents a coupling coefficient between the vibration field and the 

acoustic mode. 

Equation (2.12) can be separated in direct (m=n) and cross (m^^n) 

terms. Following this representation the direct coupling coefficient is defined as 

S' 
= ^ j'j'Y.(x,,y,,X2,y2,a))\|/Xx,,y,,zjYn(x2,y2,Zo)dx,dx2dy,dy,. (2.13) 

S S 

and the cross coupling coefficient is given by 

CL(«)) = ^ j'j'Ya(x,,y,,X2,y2,(D)Yn(x,,y,,zJ\|/^(x2,y2,zJdx,dx2dy,dy2. (2.14) 
S 

have 

s s 
Using these definitions of cross and direct coupling coefficients we 

V" 
Sp(x,y,z,m) = '''°%^ ^ S,((o) \ 1 y : .Q2 

_,\r^ Yn(x,y,z)Vm(x,y,z) [X, - i Y J [ X ^ +iY^](^2 
rv2 , \/2irv2 , v2l 

n m 
m#n 

K + Y j ] [ X i + Y : ] 

(2.15) 

The second series in the above equation is normally neglected in cases 

in which the resonant acoustic modes that participate in the response are lightly 

damped and well separated. This assumption is not formally correct, though it is 

widely employed in the literature concerning the dynamic response of lightly damped 

systems [39,59,60]. For the case in which the summation involves acoustic modes, 

Chu [60] performed a numerical computation of the values of an equation similar to 

equation (2.15) to assess the importance of the terms involving n^^m. He observed that 

when this equation is integrated over frequency (or over wavenumber, as in his case) 

the main contribution comes for terms in which n=m, because the values of the 

integral are large for these terms. Moreover, he verified that the numerical value of the 

modal displacements (i|/'s) are always positive for n=m and those for n?^m can be 

positive or negative and tend to average out to very small contributions. Therefore, for 

the case of an approximate computation of the response, it is reasonable to neglect the 

second series in equation (2.15). In this case, the spectral density of the mean-square 

pressure can be approximated as 

2 ' : C l W . (2.16) 
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This is the basic equation used to express the ratio between the mean-

square acoustic pressure inside an acoustic cavity and the space-averaged mean square 

acceleration of the random excited flexible wall. It is expected that this expression 

will be a good approximation to the true response ratio for firequencies in which the 

plate modal density is high and the acoustic modal density is low. The scope of 

validity of this result is discussed in Chapter 5. Similar results can be obtained using 

Green's function (section 2.2) or power balance models (section 2.3). These 

alternative derivations are presented in the next two sections. 

The above results can be extended to represent the acoustic pressure 

response in terms of the spatially-uncorrelated random forces by considering the 

response of the plate to these forces. The plate response is described by the spatial 

average of the mean-square value of its normal acceleration (< â  >) which can be 

estimated using power balance considerations. The steady-state input power to a plate 

in a finite frequency band is given by [14] 

n„ = M v' r|,co. = ^ (2.17) 

where cô  is the band centre frequency, M is the plate mass, r|p is the frequency-

averaged plate loss factor, v̂  is the mean-square plate normal velocity and < > 

denotes spatial average. 

The steady-state input power of a point force is equal to the zero-time-

delay cross-correlation between the force and the velocity at the input point. This 

quantity is normally expressed as a function of the mean-square force [39] 

n . . =(F^)Re[Y], (2.18) 

where Re [Y] is the real part of the point mobility. The point mobility, when space-

averaged and integrated over the frequency band, is a function of the modal density 

(n(f)) of the structure [38] 

n(f) = 4MRe[Y], (2.19) 

where the above equation has been obtained from energy balance considerations of a 

point excited structure [38]. 
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Expressing the space-averaged mean square plate acceleration and 

force in terms of power spectral densities we obtain from equations (2.17), (2.18) and 

(2.19) 

The above equation is valid in finite frequency bands in which a large 

number of plate modes are resonating. It is a standard result for structural response 

that is normally used in SEA. Do well and Kubota [61 ] have presented a derivation of 

this equation based on the plate modal equation (equation (1.1)) using asymptotic 

reasoning. This asymptotic analysis also implies that a large number of plate modes 

are resonating in each firequency interval, the plate modal parameters (modal m^s , 

modal loss factor, natural frequency and mode shape) vary slowly with mode number 

and the mean-square force is slowly varying with respect to firequency. 

When equation (2.20) is substituted in equations (2.15) or (2.16), the 

parameters, M, n(f) and r|p, represents the probabilistic part of the hybrid model. The 

deterministic part is represented by the modal characteristics (F ,̂ 0)̂ , Tin, ^n) of the 

acoustic space. The coupling coefficient represents the interaction between these two 

parts and it is extensively discussed in Chapter 5. From equations (2.16) and (2.20) we 

can obtain an estimate for the auto-power spectral density of the internal pressure due 

to smoothly varying random forces which is valid in a frequency interval which centre 

frequency is 0)^, 

The application of equation (2.21) to the analysis of practical systems 

presupposes that the acoustic modes are estimated by numerical or analytical 

procedures and that the plate and acoustic loss factors are, either 'guessed' or 

estimated using experimental procedures. 

We should point out that the present analysis resembles the one 

presented by Kubota, Dionne and Dowell in ref. [50]. However, their main concern 

was to derive an expression for the coupling between two modally-dense subsystems 

based on the modal-interaction model. Other main differences from their work are the 

use of a more realistic model for the vibration field correlation characteristics and the 
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introduction of the coupling coefficient between acoustic modes and a vibration field 

to represent the interaction between modally-sparse and modally-dense subsystems. 

2.2 Derivation of hybrid model for a plate coupled to an acoustic 

cavity based upon the Green's function approach 

As presented in Chapter 1, the Kirchhoff-Helmholtz integral equation 

(equation (1.3)) represents the radiation of sound from a vibrating structure into a 

surrounding medium. When no acoustic source is present the volume integral in 

equation (1.3) can be neglected. Moreover, if the Green's function is chosen in order 

to have zero normal derivative at the boundaries, then the first term on the right-hand 

side of equation (1.3) can also be neglected. Therefore, for the case of a vibrating 

structure that encloses a volume of air, the pressure inside the acoustic cavity is 

related to the normal velocity acceleration of the vibrating structure by 

p(r)= j'imp,VM(rJG(r,rJdS. (2.22) 
s 

When random excitation is applied to the plate/acoustic cavity system 

the above harmonic formulation can be transformed into a frequency representation by 

means of a Fourier transformation. This can be done by following the procedure 

presented in section 2.1. Hence, using the same notation as in section 2.1 we obtain 

[46] 

Sp(r,o)) = j'j'G'(r,r,,a))G(r,r^,co)SXr2,r,,m)dS'dS, (2.23) 
s s 

where r = (x,y,z) is a point inside the acoustic cavity, r, = (x,,yi,ZQ) and r2 = (x2,y2,Zo) 

are two points placed on the interface area (plate). For the case of an acoustic cavity 

the Green's function can be expanded in terms of the acoustic normal modes in the 

form presented in equation (1.4). Following the notation presented in section 2.1 the 

Green's function for the acoustic cavity can be written as 

G(X,Y,n)) = ^ (2.24) 
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The cross-power spectral density of the plate acceleration can be 

normalised as proposed in equation (2.11). Substituting equations (2.24) and (2.11) in 

equation (2.23) we obtain 

rX — iY ) 
nYn(X|,y,,Zo)Ym(X2,y2,Zo)Ya(x,,y,,X,,y2,m)dS'dS. 

l -^m ^ m / S S 

If the above equation is written in terms of direct and cross terms and the 

expression for the coupling coefficient (equations (2.13) and (2.14)) is substituted in 

this equation, equation (2.15) is obtained. 

2.3 Derivation of hybrid model for a plate coupled to an acoustic 

cavity based upon the power balance approach 

The total real power radiated by a random vibrating flexible plate into a 

closed cavity in band Aco is given by [18] 

Hi, = jRet j'SpXr„m)dS]d(o, (2.26) 
Aca S 

where r, is a point situated on the radiating surface. 

The (double-sided) cross-power spectral density of the acoustic 

pressure and plate velocity over the radiating area (S) is expressed as [18] 

where rj is a point situated on the radiating surface. 

The Fourier Tranfbrm of equation (2.22) can be expressed as 

P(r,,m) = p, j'G(rs,r2,m)A(r2,m)dS', (2.28) 

s 

where r; is a point situated on the radiating surface and equation (2.29) was used in 

the derivation of equation (2.28), 

V(r,,(o) = - A ( r , , m ) . (2.29) 
CO 

Substituting (2.28) in (2.27) and using the relation (2.29) we can write that. 
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Spv(r,,r,,(o) = lim 71 
T̂ ® X 

Po fG(r,, T;,m)A(rz, m)dS' — A' (r,, m) 
C CO 

and rearranging the terms of the above equation we obtain. 

Spv(r,,n,m) = 
CO 

jG(r, ,r2,0)) lim YA(r2 ,m) A ' (r, ,co)dS' 

From equation (2.9) we can substitute the cross-spectral density of the 

plate acceleration on the above equation to write, 

Spv(r,,r,,a)) 
CO 

j"G(r,,r2,(D)SXr2,r,,m)dS' 

where the above integral is evaluated on r2. The integral over the radiating area of the 

autospectral density of the acoustic pressure and plate velocity can be obtained from 

the above expression by setting 

jSpv(r, ,Q))dS = — j [G(r^,r, (r^,r, ,m)dS'dS. (2.30) 
s s s 

As in the previous section, the Green's function for the acoustic cavity 

can be expressed in terms of the acoustic modes (equation (2.24)). Moreover, the 

normalisation for the cross-power spectral density of the plate acceleration (equation 

(2.11)) can be applied to equation (2.30). With these modifications we have 

Js„.(r..03)dS = i ; ^ X 
m - V A X X ^ + Y ^ ) 

The real part of the above expression is given by 

s , (m) { j v n (n ) V n (n )Y a (^2, n , a))dS'dS. 

Re[JS„.(r.,m)dS] = - £ = 1 ^ 3 . ( 0 ) 
Y„ 

- A „ ( X : + Y ; ) 
Cl((D). (2.31) 

where Ĉ n (m) is defined in equation (2.13) and Yn=cOnCOTin. Finally, substituting 

equation (2.31) into equation (2.26) we obtain the total real power radiated by a plate 

into a closed cavity in a band Am, 

n,.„ = PoCpS 1 j'Sa(CO)'n„CO„C,,,̂  (CO) 

V 4 A 
dm. (2.32) 

where the power spectrum of the plate acceleration is assumed to be smoothly varying 

over the frequency interval Am. 
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The total time-average power absorbed on the walls of the cavity in 

band Aco has been derived by Pope and Wilby [47] and it is equal to 

Hdi,, (2.33) 

PoC, ^ 

where < Pn̂ > is space-average of the nth term modal pressure. 

The total power radiated into the enclosure must equal the total power 

absorbed on the inner walls of the enclosure. So, in order to obtain the power radiated 

to acoustic modes resonant in the band Aco, the nth term of equation (2.32) must equal 

the nth term of equation (2.33). This equality gives the individual modal pressures and 

their summation gives the frequency- and space-averaged mean square pressure inside 

the cavity. Then, 

(2.34) 

From ref. [47] we have that 

. 2 
Pn, 

Ad) 

jSp (m)dm, 

where Spn(co)is the amplitude of the spectral component associated with the nth 

acoustic mode. Finally, we can write that 

S _ (Pô ô) Y S,(m)C;,(o)) 

Equation (2.35) is the result fbr the auto-spectrum of the space-

averaged pressure inside the cavity obtained from equation (2.16) by averaging the 

square of the acoustic mode shape over the enclosure volume. This result is also 

presented in equation (5.2). 



(ZELAJPTnCIlS 

CHARACTERISATION OF MOD ALLY-DENSE 

v]]E*i3L/iTri()]Pf 

This chapter introduces an approximate model of the bending wave 

field generated by the random vibration of thin plate-like components. Only bending 

waves are considered because these are the types of structural waves in thin plates or 

shells which couple most effectively with a sound field. This approximate model is 

employed as a means of obtaining theoretical expressions for the normalised cross-

power spectral density of normal plate vibration acceleration averaged in frequency 

bands, which was introduced in the previous chapter. The expressions here derived are 

valid for uniform, homogeneous thin plates with ideal boundary conditions excited by 

spatially-uncorrelated random forces. Corrections are presented to account for effects 

of curvature, stiffeners and various types of random excitation. 

3.1 Rationale of the suggested procedure 

The use of this approximate description is an artifice employed in an 

attempt to avoid the necessity of the precise determination of the structural modes by 

making use of the very condition that militates against deterministic computation . In 

other words, it is assumed that many high-order plate modes resonate in each 

frequency band of analysis, so that computational analysis by the currently available 

deterministic methods will produce unreliable results. This stems from the fact that it 

is impossible to compute the precise spatial distribution of amplitude and phase of a 

vibrational field involving high order modes because these modes are very sensitive to 

damping distributions, joints and other boundary conditions, about which there is 

always significant uncertainty. Moreover, deterministic computation must be carried 

out frequency by frequency, and the response results are then normally compiled in 

frequency bands, which implies that a large amount of data is uimecessarily 

31 



processed. Therefore, it seems natural to seek a representation that avoids this 

unrealistic approach. 

The representation here proposed is based on the computation of the 

spatial correlation characteristics of the vibration field, which are described by a 

frequency-averaged parameter, the zero-time-delay correlation coefficient of the plate 

response (defined in equation (3.6)). Expressions are also presented for the normalised 

cross-power spectral density (defined in equation (2.11)). The main reason for 

concentrating the present study on zero-time-delay correlation coefficient is to enable 

the comparison of some of the results derived herein to others available in the 

literature. For the moment, it sufEces to say that because both quantities are derived 

from the cross-power spectral density of the plate response it is expected that when 

one is shown to be applicable to a certain situation, the other will also apply. 

Both &ee-wave and approximate modal models are employed in the 

derivation of theoretical values for the correlation coefficient. In the modal model, due 

to the assumed high modal density of the structural components, the summation over 

the structural modes is substituted by an integration in wavenumber space. Only 

approximate mode shapes as a function of the boundary conditions are required. 

Bolotin's dynamic edge effect method [56] is employed to provide an expression for 

the mode shapes represented as a continuous function of the wavenumber amplitude 

and phase. As only those modes whose resonance frequencies lie in the band of 

interest are considered in the summation, the corresponding limits of integration over 

wavenumber space are for an interval Ak around k ,̂ the wavenumber of the band 

centre frequency. The main advantage of this substitution is that the precise 

determination of the individual mode shapes as a function of individual wavenumbers 

and resonance frequencies is not necessary. This procedure is only strictly valid for 

uniform, flat, simply-supported plates. However, for other boundary conditions the 

mode shapes are represented by sine functions, with a correction to account for the 

influence of the boundaries (phase shift), and an exponentially decaying term which is 

only appreciable in a region one wavelength from the edges. 

A similar approximate procedure is employed in the derivation based 

upon a free travelling wave model [55]. In this case, the correlation coefficient is 

written for only one wave direction and the average result computed from an 



integration in wave direction assuming that all directions of propagation are equally 

probable. The two models give similar results, since the average in terms of waves 

coming from all directions is equivalent to the average in wavenumber space [60]. 

The resultant correlation coefficients averaged in frequency bands approach that of a 

two-dimensional diffuse field in regions remote from the edges, irrespective of the 

assumed boundary conditions. However, near the edges these correlation coefficients 

depart considerably 6om diGiise field form. A brief discussion of the d i^se wave 

concept is presented in the next section. 

3.2 Diffuse wave fields and correlation: a literature review 

The concept of dif^useness is widely used in geometrical acoustics to 

model enclosed spaces when many acoustic modes are simultaneously excited, and 

also to facilitate the mathematical description of the acoustic field in order to specify 

standardised acoustic performance tests, such as transmission loss determination and 

absorption measurements in reverberation chambers. There is no commonly agreed 

definition of a diffuse sound field; however, two equivalent definitions that appear to 

be reasonable were presented by Jacobsen [63]. They read : 

* co/Mprzfg.y an o/p/ang 

rgW/ow, 

A diffuse sound field may be approximated in practice in the central 

region of a reverberant enclosure, at least half a wavelength away from any boundary, 

at frequencies above the Schroeder cut-off frequency, in cases of pure-tone excitation 

[26]. When the excitation is of a random nature, the diffuse sound field approximation 

may be achieved in finite frequency bands below the Schroeder cut-off frequency. 

Close to the boundaries or any reflecting surface large compared to the wavelength, a 

sound field departs considerably from the diffuse state. The incident and reflected (or 

scattered) wave components can interact constructively or destructively, giving rise to 

interference patterns that are created by the reduction of the number of waves with 

uncorrected random phase which contribute to the total pressure at a field point near 

the edges. In other words, waves within the incident and reflected sets may be 



imcorrelated with each other, but individual waves of the incident set are correlated 

with the corresponding waves of the reflected (or scattered) set. As a result of this 

interference, the sound energy is not uniformly distributed over the entire volume of a 

reverberant sound field. 

Interference patterns in reverberant sound fields have been studied by 

Waterhouse [64], Waterhouse and Cook [65], Chu [60,66] and a number of other 

researchers. Expressions were derived for interference patterns created by plane 

reflectors intersecting at right angles, whose surfaces are either hard (rigid reflecting; 

normal velocity component equal to zero) or soft (pressure release; pressure equal to 

zero) [64,65]. Chu [60,66] demonstrated that these expressions apply to a reverberant 

space excited either by a band-limited random noise source located at a single position 

or by a pure-tone excitation averaged over many source positions. The same author 

[66] also presented expressions for the cross-correlation function of the pressure near 

and remote from the boundaries of a reverberant acoustic space. 

The concept of a diffuse field was extended by Steam [53] to the case 

of two-dimensional structural wave fields. He observed that a close approximation to 

a diffuse bending wave field can be set up in a plate when more than ten modes are 

simultaneously excited. He also showed that the band-limited, zero-time-delay, 

correlation coefficient of acceleration of diffuse bending wave fields is equal to a 

zero-order Bessel function, with the argument given by the product of the 

measurement points separation distance and the band centre-frequency wavenumber. 

In real, bounded flat plates, an approximation to this form of correlation coefficient 

was experimentally observed in regions far from the edges and far from the excitation 

points [53]. Lyon [14] presented an expression for the ratio between the mean-square 

acceleration near and remote from the boundaries of a randomly vibrating, simply-

supported rectangular plate. However, no information is available in the literature on 

the influence of the boundary conditions on the correlation function near the 

boundaries of structural systems. 



3.3 Correlation coefficients of random processes 

Consider a continuous, time-invariant, linear system subjected to 

stationary random excitation. The displacements, (zi(xi,t) and Z2(x2,t)), at two 

different positions in this system can be considered to be stationary random processes. 

Thus, the cross-correlation function between the system displacements at points 1 and 

2 is defined as [67] 

R,2(Xl,Xz,T)=E|z,^l ,t)z2^2,t + T)] (3.1) 

where E[ ] represents the expected value, or the ensemble-averaged value, of the 

quantity in square brackets, x is the time delay between the two-signals. 

Assuming that the random processes Zj and Z2 have zero mean value, the 

cross-correlation coefficient (or normalized covariance), yi2(xi,X2,T), for these random 

processes can be written as [67] 

where E[z, ] and E[z2 ] are the mean square values of the random processes Z; and 

respectively. 

Using the Wiener-Khinchin relationships we can relate the cross-

correlation function with the cross-power spectral density 

R,2(x,,X2,'[) = Re (3.3) (%!, X2, f ) exp(i27:fr)df 

.0 

where 012(3̂ 1* ̂ 2 the one-sided cross-power spectral density of random variable z at 

positions 1 and 2. 

This cross-power spectral density is a complex function because 

R I 2 ( X J , X 2 , X ) is an odd function of T. SO, for T = 0 , equation ( 3 . 3 ) yields 

R^2(Xi,X2,T = 0) = j'Re[G^(x,,Xz,f)]df. (3.4) 

0 

The contribution of frequency components of G,2(x„X2,f) in a finite 

frequency band Af is obtained by the integration of this function between f^ and f j , 

where and f̂  are the upper and lower frequency limits of the band Af Hence, in a 

frequency band the corresponding zero-time-delay correlation coefficient can be termed 
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the band-limited correlation coefficient (yj2(Xj, where f^ is the band centre 

frequency and the explicit indication of zero time delay is dropped for convenience. The 

mean-square value of the random processes z, and in a frequency band (f,-f^ can be 

obtained from 

2̂ 2̂ 
E[z^(K;,t)]=j'G,(f)df, and E|zX3^2,t)]=}G2(0df, (3.5) 

fi f, 

where Gt(f) and G2(f) are the auto-spectral densities of the random processes z, and Z2 at 

positions 1 and 2, respectively. 

Thus, from equations (3.5), (3.4) and (3.2), in a given frequency band, 

we have 

j'Re[G,2(3^i,%2,f)]df 

Y i2 ( i , , x , , f J = ;— zrnr- (3-6) 

j'G,(f)df jGXndf 
J. 

The above equation is convenient for experimental computation of 

correlation coefficient values and it was extensively utilised in the experimental work 

reported in Chapter 4. Moreover, this equation is equivalent to the correlation density 

coefficient as defined by Morrow [68] and employed in the analysis of correlation of 

sound pressures in reverberant sound fields. In the same paper. Morrow also defined 

another coefGcient in which the real part of the cross-power spectral density is 

substituted by the imaginary part of the cross-power spectral density. This coefficient 

was termed the quadrature density coefficient and experimental values of this coefficient 

measured on a flat plate are presented in fig. 4.38. 

Equation (3.6) can also be employed in the theoretical derivation of 

frequency-averaged correlation coefficients based on a modal model as described in 

section 3.6, Alternatively, a different procedure can be employed in the computation of 

the correlation coefficient using a modal model. The modal correlation coefficient when 

one single undamped mode is present is given by [68] 

V (X ( Z | M ( t ) Z , „ ( t ) ) , 
I 12M 1 ^ 1 

[{zL(t)) , ]"[(z' ;„(t) ) , ]" 



where Z;M(t) 22^(0 are the instantaneous modal displacements at positions 1 and 2, 

and < >t represents time average of the quantity inside brackets. In the above coefficient, 

the specific mode numbers k^ and ky are represented by an intersection of the lines of the 

grid shown in fig. 3.1 As the time dependence of an undamped vibration mode is 

expressed by a sinusoidal factor the modal correlation coefficient equals ± 1 [68]. 

In a frequency band in which more than one mode is present, the 

B-equency-averaged correlation coefGcient can be obtained by summing the contribution 

from all modes that have resonance frequencies in this band. In addition, assuming that 

these modes are uncorrelated we can write the frequency-averaged correlation 

coefficient as 

Y,2(Xi,X,,fJ 

1 ( 4 , ( 0 

1/2 1/2 
(3.7) 

Alternatively, if the density of modal frequencies is high, the number of 

modes summed in equation (3.7) is large and the summation can be converted into 

integration over wavenumber space [25,56]. The limits of integration are for an interval 

Ak around Iq,, the bending wavenumber of the centre frequency of the band (fig. 3.1). 

Equation (3.7) is then changed to 

j((z,M(t)z2M(t)>,)dkB 
Ak 

1/2 

j((ziM(0),)dkg j'((z^^(t)))dk 
Ak J L̂ k 

1/2 

where < > denotes an average over a quarter circle of radius kg in the wavenumber 

space. Changing from rectangular to cylindrical coordinates it follows that k̂  = kgCOsG 

and 

coefficient can be obtained from 

ky = kgsin8 (fig. 3.1). As a result, the frequency-averaged correlation 

n/2 

Ak 0 
%/2 

1/2 

j j(z;„(t))_dBdk„ j j(z;„(t))_d0di 
7C/2 1/2 

(3.8) 

_Ak 0 J LAk 0 

For the case in which a wave model is used, it is assumed that the 

amplitude and direction of each propagating wave are indepedent random functions. The 



contribution from waves coming from all directions is obtained by choosing, for each 

wave, one direction and one wavespeed (frequency). This wavespeed is chosen to be 

inside the interval Ak corresponding to the band of analysis and the wave direction 

varies from 0 to nil. Therefore, when the amplitude of the propagating waves are real, 

the frequency-averaged correlation coefficient, based on a wave model, is given by 

equation (3.8). A wave model was employed by Waterhouse [64] and Waterhouse and 

Cook [65] in the study of interference patterns, and by Cook et al [69] and Steam [53] in 

the derivation of correlation coeSicients on acoustic and vibration fields. Assuming the 

amplitude of each propagating wave to be complex, a slightly different equation can be 

written for the frequency-averaged correlation coefficient 

j i / 2 

} | R e | ( z , ( t ) z ; ( t ) ) J , 8dk, 
Ak 0 

n/2 t/2 n/2 1/2 
(3.9) 

f B j {(z] (O), d8dk; 

_Ak 0 J LAk 0 

where Z2 (t) represents the complex conjugate of a wave fluctuation given by a complex 

amplitude component and a component that represents time variation. 

The normalised cross-power spectral density (eq. (2.11)) can be obtained 

by means of a derivation similar to the one presented for the correlation coefficient. The 

frequency-averaged expression for the real part of this fimction is then given by 
n/2 

jRe[G,2 ( X . , f ) ] j f j jgz,M (t)z,M(t)), ]i8dk; 
Ak 0 

7C/2 
(3.10) 

^ 1 j'G(x,f)dfdS ^ I j j'(z^^(x,8,t))^d8dk,dS ^ j ' j ' G ( x , f ) d f d S ^ 

S f, ^ S Ak 0 

where the first coefficient is employed in the experimental investigation and the second 

coefficient is used in theoretical study of normalised cross-power spectral density. 



3.4 Derivation of correlation coefficients based on a modal 

description 

3.4.1 Correlation coefficients on modally-dense simply-supported 

flat plates 

The contribution of N vibration modes to transverse displacement 

response of a simply-supported flat plate is given by 

z(x,y,t)= ^sin(k,x)sin^yy)ZM(t), (3.11) 
M=1 

where and ky are the modal bending wavenumbers in the x and y directions and 

represents the modal time dependence. The displacements at points 1 and 2 for one 

particular mode are 

Z|M(t) = ZM(t)sin(k^x,)sin(kyy,), 

Z2M(t) = ZM(t)sin(k^X2)sin(kyy2), 

where (xi,yi) and (X2,y2) are coordinates of points 1 and 2. 

Multiplying and time averaging the displacements at points 1 and 2 we 

have 

=z^sin(k^x,)sin(k,x2)sin(kyy,)sin(kyy2), (3.13) 

where Z^ is the mean square value of Z^(t). Using standard trigonometric 

transformations it follows from equation (3.13) that 

(z,M(0z2M(0), = Z ^ | i / 2 ^ o s ^ , ( x , - x J ) - c o s ( k , ( x , f x j ^ 

X |i/2 ^os(ky(y, - y^))- cos(ky (y, + 72 -

Following the procedure suggested in section (3.3) we can express 

and ky in terms of the bending wavenumber (kg) and angle 9. The sum over the 

individual modes is then substituted by an integration carried out in a strip of width Ak 

much smaller than the band-centre-frequency wavenumber (k^) (illustration in fig. 

3.1). This substitution is the basis of the method of integral estimates as proposed by 

Bolotin [56]. The result of this operation is 



NẐ  
E (Z|M(t)z2M(t)), = J = - ^ j {cos(kB(x, -X2)cos8)cos(kg(y,.yjsin8)d8. 
MEAk ^0 AkL 0 

j^cos(kg(x, -X2)cos8)cos(kg(y, +y;)sm8)d8- Jcos(kg(x, +xjcos8)cos(kg(y, -y2)sm8)d8 

+ jcos(kg(x, +X2)cos8)cos(kg(y, +y^)sm8)d8 dkg, (3.15) 

where N modes are assumed to be excited in the band Ak and is assumed equal 

for all modes. The four integrals inside the brackets in the above equation can be 

solved using equation (D.6) presented in Appendix D, The solution is 

o(kBV(x. -Xz)' +(y, -y2)'\jo(kBV(X| -Xz)' +(y, ^ y z ) ' ) 
^ ^ ^ ^ (3.15') 

-J(,^B^(x, +X2)" +(y, -y2) 'yJo^BV(^i +(y, + y 2 ) ' ^ . 

%/2 %/2 
The expressions for d8 and J(z2,^(t)^ d6 can be obtained 

0 0 

from equations (3.15) and (3.15') by making x, = X2 and yi = y2 . The resulting 

integrals can then be solved using expressions (D.l), (D.2) and (D.6) from Appendix 

D. For point 1 the result is 

j(ziM(t)),d8= l-Jo(2kBX,)-Jo(2kBy,)+Jo^kB^x^ + y Q (3.16) 

When divided by N-jx /8, the above expression gives the interference 

patterns near the boundaries of the plate as originally derived by Lyon [14]. It 

expresses the relation between the mean-square acceleration near the boundaries and 

its equivalent in a position far from the boundaries. A sketch of such interference 

patterns near the comer of a plate are presented in fig. 3.3 and 3.4. They are sketched 

as a function of a typical wavelength (1) and it can be noted from the contour plot of 

fig. 3.4 that when Xi,y^ > X and X2,y2 > A, the mean-square values of the response 

variable do not depart considerably from the spatial average (<v^>). 

The integral of the type 

j J o ( k B r ) d k B , 

k, 

required when the terms of equation (3.15), (3.15') and (3.16) are summed in the strip 

Ak = ki - k2 has been shown by Cook et al [69] to be given by 
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/ . _ k 
+ terms of the order —̂  !- Ak (3-16') 

V ky J 

where kb=(k2+ki)/2. Assuming that the width of the strip is small enough in order that 

the second terms in equation (3.16') are neglected we obtain from equations (3.15), 

(3.15'), (3.16) and (3.8) an approximate expression for the frequency-averaged 

correlation coeflicient of acceleration between two points on a simply-supported 

homogenous flat plate. This expression is, 

-X])' +(yi -y2)^)-Jo^bV(x, +(y, +y2)^) 

^bV(Xi +X2)^ +(y, - y 2 ) ' ^ J o ^ b V ( x , +(y, +7%)^] -Jo 

1 ' ^ ^ ^ Jo(2kbX,)-Jo(2kyy,)+Jo^kb^x^ +y^^ 

l-Jo(2kbxJ-Jo(2kyyJ+Jo^kb^x^ + y 2 ^ 

.(3.17) 

The above result is valid in frequency bands whose centre frequency is 

fg (with corresponding bending wavenumber ky) in which a random source excites a 

large number of plate modes. As the bandwidth of the frequency band increases 

beyond a certain limit the &equency-averaged coefficient presented in equation (3.17) 

is no longer valid. 

All the results presented in this section presuppose that points 1 and 2 

are situated in the quarter space bounded by 0 < x < a/2 and 0 < y < b/2, where a and b 

are the plate dimensions (fig. 3.2). However, they are unaffected by the substitution 

x->a-x, y-^b-y (pag.121, ref. [14]) and, therefore, they can be used to represent the 

interference patterns and correlation coefficients in other sections of the plate. 

A number of simplifications can be carried out in equation (3.17) but 

the most important one is for the case in which points 1 and 2 are far from the edges. 

In this situation, the three last terms on the left of equation (3.15') and on the left of 

equation (3.16) approach zero and are much smaller than the first term. For this 

reason, these terms can be neglected. As a result, we obtain equation (3.18) that gives 

the frequency-averaged correlation coefficient in points remote from the edges on a 

simply-supported flat plate. However, this approximation is not valid for some 

specific lines in which there is superposition of nodal lines. 
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Y,2(x,,ii,f;) = Jo(kbr), (3.18) 

where r is the distance between points 1 and 2. This is the result derived by Cook et al 

[69] and by Morrow [68] for a two-dimensional reverberant sound field. Similarly, as 

already mentioned in section 3.2, Steam [53] has shown that this result also applies to 

a diffuse bending wave field as long as the frequency band is restricted to a one-third 

octave and k^r is less than ten. Even though the present analysis has been restricted to 

simply-supported edges, equation (3.18) is valid for any type of boundary condition 

because, as shown by Bolotin [56], flat structures behave like simply-supported plates 

at points remote from their boundaries at frequencies high compared with the 

fundamental resonance frequency. Experimental results presented in the following 

chapter confirm this statement. 

For the case of diffuse bending wave fields it can be shown that the 

frequency-averaged normalised cross-power spectral density is equal to the correlation 

coefficient (equation (3.18)). However, for simply-supported plates the normalised 

cross-power spectral density is given by 

Jo^bV(X| -X])' +(yi -y2)^)-Jo^bV(x, -x^)' +(y, +y2)'^ 

RG|y,(x,,X;,fj]= 
-J0V(x ,+X2)^+(y , -y j^^Jo^bV(x ,+X2)"+(y , ^ y j ^ ^ 

S 
j[l-J,(2k,x)-Jo (2k,y)+ J, ^k, ^ x ' + y ' ] d S 

.(3.19) 

3.4.2 Correlation coefRcients on modally-dense flat plates with 

generic boundary conditions. 

In order to derive an expression for the correlation coefficients of 

random excited flat plates with arbitrary boundary conditions, the dynamic response 

of a rectangular plate is represented using Bolotin's dynamic edge effect method [56]. 

This method involves using a generating (inner) solution in the form of a sinusoidal 

function and an exponential term (outer solution) that accounts for the dynamic 

boundary effect in the boundary zone. For the case of a rectangular plate in which the 

edges generate an evanescent near field, an approximate representation for the normal 
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displacements at points 1 and 2 for one particular resonant mode can be written as 

[56] 

ZiM(t) = ZM(t)X(x,)Y(y,), 

Z2M(t) = ZM(t)X(x2)Y(yJ, 

where, 

X(x) = s ink^(x-^ J + C, exp(-^i^x), 

Y(y) = sinkyCy - exp(-|iyy), 

= My = ^ k ; + 2 k ^ . 

Multiplying and time averaging the displacements at points 1 and 2 we 

obtain expressions for (z]M(t)z2M0)), , (zL(0) , - These expressions are 

valid for a single mode with modal wavenumbers and ky The dynamic edge 

parameters, sink^^x, coskx^x, C ,̂ cosky^y, sinky^y, Cy, are obtained from the plate 

boundary conditions. The dynamic edge parameters for simply-supported, clamped, 

free, guided or spring-supported edges are presented in Appendix B. As already 

presented, a frequency-averaged value for these expressions can be obtained by 

summing the contribution from each mode that is excited in the band. Alternatively, 

when the structure has a high modal density the discrete wavenumbers (kx,ky) can be 

substituted by the continuous functions kgCosG and kgsinG and the modal summation 

substituted by an integration over wavenumber space (fig. 3.1). In addition, the 

dynamic edge parameters will also be function of kg and 8, though this dependence is 

omitted in equations (3.20) and (3.21). 

Performing this substitution we have that 

7C/2 %ll 
= j j(z|M(t)z2M(t)),d8dkB =NZM j jX(x,)X(xJY(y,)Y(y2)d8dkB,(320) 

MeAk ^ 0 6k 0 
where, 

X(X;)X(x2) = ^|^s(kg(X| -X2)cos6^-cos(kg^, +X2)cos6^os(2^^kBCOs8) 

- s in^B^, +X2)cos8)sin^^,kg cos8)]+C" exp(^p,^, H-xJ) (3.20a) 

+C^ exp^-p^x^^jcos^^kg cos8)sin(kgX, cos8}fsin^^kg cos8)cos(kgX| cos8)] 

-hĈ  exp(-|j,^x,)|cos0^kg cos8)sin^gX2 cos8)+sin^^kg cos8)cos^gX2 cos8)], 

and. 
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Y(y,)Y(y2) = ̂ |ws(kg(>^, -y2)sm8)-cos^B(y, + y2)sm8)cos^^ykg sine) 

-sm(kB(y, + yJsin8)sm^^ykB sin8]^ exp^n^ + y j ) 

4-Cy exp^pyy^^^s^ykg sm8)sin^gy, sm8)4-sm^ykg sin8)cos((gy, sm8)j 

+Cy e)g^Pyy,]|cos0ykg sinB^sin^gy^ sm8)+sm^ykg sine^cos^gy^ sm8)j 

and N modes are assumed to be excited in the band Ak. In order to estimate the 

correlation coefficient we also need analytical expressions for ^ (t)j> and 
MeAk 

(zzM 0)) - These expressions are obtained from (3.20) by setting x, = X2 and y, = 

M e A k 

y2- For point 1 we have that 

nil 71/2 

= j J(zL(t)) ,dedk, =NZ'„ J jw(x, )w(x, ) iedk3, (3.21) 
MeAk 6k 0 Ak 0 

where, 

W ^ i ) = ^ | l -cos^kgX, cos8)cos(2^^kg cos8)-sin(2kgX| cos8)sin(2^^kg cos8)] 

+2C^ exp(-n^x,){cos^^kg cos8)sin(kgX, cos8)+sin(^^kg cos8)cos(kgX, cos8)] 

+C^exp(-2|j,^x,), (3.21a) 

and, 

W(y , )=^ | i -cos (2kgy , sin8)cos^^ykg sin8^- sin(2kgy, sin8)sin^^ykg sin8^ 

+2Cy exp^p,yy,^os^ykg sin8^in(kgy, sin8)+sin^ykg sin8^os(kgy; sin8)j 

+Cyexp^2pyy,). (3.21b) 

The expression for 0:)̂  is analogous to (3.21) with the index 1 substituted 
MeAk 

by 2 in expressions (3.21a) and (3.21b). In the above expressions we have that. 

= kgVl + sin^8, and p,y ==kgVl + cos^8. (3.22) 

Finally, &om (3.8), (3.20) and (3.21) we obtain an expression for the 

frequency-averaged correlation coefficient at points Xi=(X|,y,) and x2=(x2,y2). 
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%/2 

J |x(x,)X(xOY(y,)Y(y,)dedk, 
Ak 0 

nil 1/2 m/2 1/2 
(3.23) 

| j w ( x , ) w ( y , ) d e d k , I Jw(x,)w(y,)d6dk, 

_Ak 0 J LAk 0 

where X(xi)X(x2), Y(y])Y(y2), W(xi), W(y,), W(x2) and W(y2) are given by equations 

(3.20a), (3.20b), (3.21a), (3.21b). 

The above result allows the computation of correlation coefficients for 

different types of boundary conditions by using the relevant dynamic edge parameters 

presented in Appendix B. For the majority of these boundary conditions the 

integration in wavenumber space has to be performed numerically as no closed form 

solutions have been found for these integrals. Attempts were made to obtain closed 

form expressions using a different number of integration procedures, results from 

tables of integrals [70,71,72] and symbolic languages like Maple V. However, no 

computationally convenient expressions were found for the correlation coefRcient of 

plates with clamped, free or spring supported edges. Therefore, we had to resort to 

numerical integration as a means of computing the correlation coefficient of plates 

with these boundary conditions. Nevertheless, as the integration in angle 9 is 

performed in only one variable the computing time involved is not critical. The 

numerical efficiency and precision aspects of the integration routines employed are 

discussed in Chapter 5. 

A general expression for the frequency average of the normalised 

cross-power spectral density can be obtained in a derivation similar to the one 

presented for the correlation coefficient. The final result, which is employed in the 

response computation (Chapter 5) and on the verification of the experimental results 

(Chapter 4), is 
K/2 

I |x(x,)X(x,)Y(y,)y(y,>iedk, 

. (3.23') 

— j I |w(x)w(y)d9dkijdxdy 

^ s ak 0 

where X(X|)X(X2), Y(yi)Y(y2), W(x), W(y) are given by equations (3.20a), (3.20b), 

(3.21a), (3.21b). 
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The theoretical results for clamped and free edges were validated 

against experimental observations on flat plates. As reported in Chapter 4, the 

agreement between theory and experiments is reasonable and so, the expressions here 

presented can be employed on analytical models based on the theory presented in 

Chapter 2. Moreover, corrections are presented to account for the influence of the 

curvature on doubly- and singly-curved flat shells (Appendix F). 

Correlation coefGcients near the comer of a plate with guided edges are 

plotted as a function of the wavelength (X) in fig. 3.5. This illustration assumes that 

one of the points is fixed at x, = yj = 1.05/1 and the other one varies over the area 

sketched. It is verified that far from the edges the correlation coefficient approaches 

zero very quickly. From figs. 3.3 and 3.5 we can say that the edges are important in 

the mean-square response estimation in a region one wavelength from them and for 

points that depart from the boundaries the response is uncorrelated for points two 

wavelengths apart. 

By comparing expression (3.16) with the interference patterns 

presented in ref. [65] it is verified that this expression is equivalent to that for the 

interference patterns of the pressure near a two-plane edge in a room whose walls are 

acoustically soft (pressure release boundary condition). The only difference is that for 

3-dimensional wave fields the zero-order Bessel function is replaced by the sine 

function, (sin x)/x. It can be also shown that a guided edge in a modally-dense 2-

dimensional vibration field generates interference patterns similar to those generated 

by an acoustically hard wall (rigid reflecting, normal velocity component equal to 

zero) in a 2-dimensional reverberant acoustic field. Furthermore, when the zero-order 

Bessel functions are replaced by sine functions, expression (3.17) gives the correlation 

coefficient of the pressure near a two-plane edge in reverberation chambers whose 

walls are soft. The interference patterns near a three-plane comer can be obtained 

following a similar procedure as the one presented in this chapter. Such results have 

been employed in the study of zones of quiet in diffuse acoustic fields. They have also 

been checked against numerical simulation of diffuse sound fields [88]. 
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Fig. 3.1 - Grid of discrete modes compared to continuous function representation in 

terms ofky and 9. 
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Fig. 3.2 - Sketch of plate used in the derivation of the correlation coefficient 
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fig. 3.3 - Interference patterns near the corner of a simply-supported plate 
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fig. 3.4 - Contour plot for the interference patterns of fig. 3.3 
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fig. 3.5 - Correlation coefficient near the corner of a guided plate - fixed point=1.05/wav.,1.05/wa 
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3.5 Derivation of correlation coefficients based on a free-wave 

description 

A free travelling wave model [55] is here employed to derive 

theoretical correlation coefficient expressions for 2-dimensional structural wave 

fields. This approach is based on the analysis of the free bending wave propagation 

through the structure with the application of the relevant reflection coefficients at the 

structure boundaries. The expressions derived in section 3.5.1 are valid in any region 

of structures with boundaries that do not generate evanescent field components or far 

from the edges in plates with any type of boundary conditions. In section 3.5.2, 

bending evanescent field components are included in the analysis enabling the 

derivation of results for structures with any type of boundary conditions. This is 

achieved by including the evanescent field components' reflection coefficients in the 

solution of the structure's equation of motion. 

3.5.1 Rectangular flat plate with generic boundary conditions 

excluding evanescent Keld components 

The differential equation of motion which governs the out of plane 

displacement, z(x,y,t), of a thin plate takes the form [38] 

D 
6" 8̂  

• + 

9y^ 
z + mz = 0, (3.24) 

where D is the flexural rigidity and m is the mass per unit area. One possible 

harmonic plane wave solution to this equation is composed of four free bending wave 

components which are reflected and transmitted at the boundaries so that [55] 

z(x,y,t) = + A.e'''"'"'' + (3.25) 

where A;, A;, A ,̂ A^ are complex amplitudes. 

The above equation presupposes that no free in-plane waves are 

generated at the boundaries and that evanescent bending and in-plane field 

components decay rapidly with distance from the boundaries. According to the 
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illustration in fig. 3.6, the reflection conditions at the lower left comer of the plate 

require that 

A; _ A 

A; A^ 
' =RL, and (3.26) 

where and Rg are the complex reflection coefficients at the left and bottom edges 

of the plate. Using expression (3.26) to express A2, A3, A4 in terms of A,, R^ and Rg 

and substituting these results in (3.25) we obtain 

z(x,y,t) = A, -̂ik,x-ikj,y I R l îk,x-ik,y ^ R-L̂ B îk,x+ik,,y ^ Rg -ik,x+ik,y 
(3.27) 

P L P L P B P B 

where * denotes the complex conjugate and, as defined in ref. [38], Pl= I Rl I ^ and 

Pb~ I R-b I ^ are the reflection efficiencies of the left and bottom edges, respectively. For 

cases in which no wave is transmitted through the boundaries the reflection 

efficiencies are equal to unity and the expressions here presented can be greatly 

simplified. 

Multiplying and time averaging the displacement at point 1 and the 

complex conjugate of the displacement at point 2 we can express the spatial 

correlation of the displacement as 

(z,(t)z;(t))^ =|A, -ik.(X|-X2)-iky(y,-y2) | -̂L -̂'kJXi+XzHkXyi-yz) 

P L 

(xi+XzHk,(yi+ŷ ) g-'k,(X|-X2Hky(yi+Xz) ^ gik.(xi+X;)-iky(yi-y;) 
P L P B P B P L 

_l__J_gik,(xi-X2)-ik,{y,-y2) ^ ^B ik.(xi-x2)-iky(yi+y2) ^ ^L^B g'k,(xi+x2)-ik,(yi+y2) 

P L 

+ '—-——e 

PcPE P L P E 

^L^B „'kx(X|+X2)+ik,(yi+y;) , Rfl '̂kx(Xi-X;)+ik,,(yi+y2) 1 
(3.28) 

P L P B 

H i^e 
P L P B 

+ - ik,(x|-x2)+'ky(y|-y2) 
P L P B 

+ Rj^^ik,(x,+x2)+iky(y,-y2) Rj_^-ik,(x,-Xj)+iky(y,+y2) j ^ - B ^ L ^-ik,(Xi+X;)+ik^,(yi+y^) 

PbPE 
-j— • .I ^ 

P B PbPE 

+• 
^L -̂'k,(X|+X2)+ik,(y,-y2) , 1 -̂ik,(x,-x2)+iky(y,-y2) 

P L P B 

H e 
P B 

As discussed in section 3.3 only the real part of (z;(t)z^(t))^is necessary in the 

computation of the correlation coefficient. In addition, expression (3.28) can be 
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Re|(zXt)z;( t)) j = - ^ | ( l + p^^Xl + Pg)cos(kXx, -X2))cos(ky(y, - y j ) 

simplified by writing the exponential terms in terms of sines and cosines. Thus, after 

some mathematical manipulation we obtain that 

PLPB 

- ( l -PLX ^ - P B ) s m ^x ( x , -X2))sin(KY(y, - y 2 ) ) + 2 ( l + PB )Re[Rjx 

xcos^X^i +X2))cos(ky(y, - y 2 ) ) + 2 ( l + pB)lm[RL]siii^^(x, +x2))x 

xcos(ky(y, - y j ) + 2 ( l + pjRe[RB]cos^X^i -^2) )cos^y(y , + y j ) 29) 

+2(l + pL)lm[Rg]cos(k,(x, -X2))sin^y(y, + y 2 ) ) + 4 R e [ R j R e [ R B ] x 

xcos(k,0(, + X; ))cos^y (y 1 + Yz))+ 4 RegR^ ]lm[RB ]cos(k, (x, + x j ) x 

xsin^y(y, + Yz))+ 4Im[RL ]Re[RB ]s in^ , (^i + ^2 ))cos^y (y, +y2) ) 

+4 Im[RL ]lm[RB (x, + x^ ))sin(ky (y, + y ̂  

Equation (3.29) gives the real part of the spatial correlation of the 

displacement between points 1 and 2 for a wave whose frequency co is related to the 

wavenumbers and ky by the bending wave dispersion relation [38] 

cô m 

Expressions for (t)^ and (zzCt))^ are also necessary in the 

computation of equation (3.9). As shown in the previous section they can be derived 

&om the expression for (z;(t)z^(t)) by setting X; - X; and yi - y2. When this 

substitution is carried out the imaginary part of (z;(t)z^(t))^ disappears. 

Assuming the boundary conditions are known, appropriate reflection 

coefficients can be obtained from the expressions presented in Appendix C. Since the 

resultant expression for the correlation coefficient needs to be integrated over wave 

direction, the individual wavenumbers k^ and ky have to be replaced by the continuous 

functions kgCosG and kgsinG, respectively. As discussed in section 3.1, this 

substitution implies that the flat plate has a reasonably high modal density in the band 

of analysis, or that a large number of wave directions are available. Thus, the 

frequency-averaged correlation coefficient of a flat plate based on an elastic wave 

representation is given by 
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71/2 

j jRe^z,(t)z;(t)) JiGdk; 

K/2 

.Ak 0 
{j(z^(t))/8dkB jj'(zj(t))d8dk 

.Ak 0 

1/2 
(3.30) 

where 

Rel(zi(t)z;(t))^ 1= |(l + PLX̂  + pB)cos(kB(x, - X2)cos8)cos^B(y, - y j s i n 8 ) 
P L P B 

-0-pLX^-pB)sm(kB(x, -xJcos8)sin^B(y, - y j s i n e ) 

+2(l + pQ)Re[RL]cos^B0^i +X2)cos6)cos^g(y, -y2)sin8) 

+2(l + pB)lm|RL]sin(kB(xi +X2)cos6)cos(kg(y, -y2)sin8) 

+2(l + P[^)Re|RB]cos^B(xi-X2)cos8)cos^g(y, +y2)sin8) (3-31) 

+2(l + PL)lm|Rg]cos^g(x, -X2)cos8)sm^g(y, +y2)sin8) 

+4 Re[RL ]Re[Rg ]cos(kg (xj + x, )cos8)cos^g(y, + y^ )sin 9) 

44Re[Rj^]lm[RB]cos(kQ(x, + x̂  )cos8^in(kg (y, +y2)sin6) 

+4 Im[R[̂  ]Re[Rg ]sin(kg (x, + x̂  )cos 8^os(i{ g (y, +y,)sin9) 

+4 Im|R[̂  ]lm[Rg ]sin^g (x, + x^ )cos8^sin^g +y2)sin9)J, 

and 

P L P B 

+]: 

H2(l 4- pg)(Re[R[^]cos(2kgX, cos8)+Im[R^^]sin(2kgX, cos9) ) 

H2(l + p ^ ^ ^ e [ R g ] c o s ( 2 k g y , s i n 9 ) + I m [ R g ] s i n ( 2 k g y , sin8^ 

+4Re[RL]Re[Rg]cos(2kgx, cos8)cos(2kgy, s in9 ) ( 3 . 3 2 ) 

+4 Re[R]lm[Rg]cos(2kgX, cos9)s in(2kgy, s in9) 

+4Im[R[^]Re[Rg]sin(2kgX, cos9)cos(2kgy, sin8) 

+4 Im[R^^] lm|Rg]s in ( 2 k g X , cos8)sin(2kgy, s in9) ] , 

and the expression for ẑ̂  (t)^ is equal to the one for (zf (t))^ with the index 1 

changed to 2. 

Expressions ( 3 . 3 0 ) , ( 3 . 3 1 ) and ( 3 . 3 2 ) and the reflection coefficients 

presented in Appendix C enable the correlation coefficient of plates to be evaluated 

with various boundary conditions. The limitation is that no evanescent field 

components are included in this analysis and considerable errors between experiments 
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and theory are expected in a region one wavelength near the boundary of plates with 

edges which generate evanescent field components. The same procedure here 

presented can be employed to derive results for the normalised cross-power spectral 

density. 

In agreement with the modal representation results (section 3.4), closed 

form solutions for the integration in wave direction were only obtained for simply-

supported and guided edges. For instance, consider that the plate illustrated in fig. 3.2 

has a left edge with guided boundary conditions and a bottom edge with simply-

supported boundary conditions. Then, the reflection coefficients in this case are real 

and equal to R l= 1 and Rg= -1. Substituting these parameters in equation (3.30) we 

have, after some mathematical manipulation, that the frequency -averaged correlation 

coefficient for this plate under random excitation is 

0^bV(Xi - X ] ) ' +(y, - y 2 ) ' ) - J o ^ b V ( x , 4-(y, H-yz)") 

+^2)^ +(y, - ^Jo^bV(Xi +x^)^ +(y^ +72)^^ 

l4-Jo(2kyX,)-Jo(2kyy,) - +y^ ̂  

l + Jo(2kyxJ-Jo (2kby2) - J,, ̂ k̂  +y^^ 

. (3.33) 

1/2 

The interference patterns for a plate corner with these boundary conditions are 

illustrated in fig. 3.8 and 3.9 as a function of the system wavelength. It is observed 

that such interference patterns are coincident with the ones illustrated in fig. 5 of ref 

[65]. Finally, it is important to point out that for cases in which the edges generate 

evanescent field components the results obtained with the expressions presented in 

this section are not valid in a region within one wavelength from the edges. The 

evanescent field components have to be explicitly included in the correlation model. 

This type of analysis is presented in the next section. 
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3.5.2 Rectangular flat plate with generic boundary conditions 

including evanescent field components due to reflection at the 

edges. 

The general harmonic solution to equation (3.24) near the bottom and 

left edges of a flat plate, as illustrated in fig. 3.7, is given by [38,55] 

z(x,y,t) = (3.34) 

where the index B refers to the bottom edge, L to the left edge, ref means reflected, in 

means incident, e means evanescent field component, p,y = + 2k;; and 

Mx = + 2ky . Following the same procedure as the one used in section 3.5.1, we 

have to derive an expression for (z,(t)z^(t)) as function of the points coordinates, 

bending wavenumber, propagation angle and reflection conditions at the edges. In 

order to facilitate this derivation we can treat this expression in terms of two separate 

functions of x and y, namely 

(z,(t)z;(t))^ = I J , = W(x,)W(x,)Q(y,)Q(yj) . (3.35) 

Using this representation, an initial expression for can be derived as 

' ' L (3.36) 

where R is the reflection coefficient of the edge, E is the coefficient of the evanescent 

field component defined as E=Ae/Ajn and the symbol * represents the complex 

coiyugate of the complex variable. Equation (3.36) can be simplified and expressed in 

real and imaginary parts. They are 
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^Gpx]=|AL|^|(l + pL)cos(k,(xi - X ; ) ) + 2Re[RL]cos^,(x, + x j ) 

+2 Im[RL ]s in^ , (x, + x^)) 

(Re[RL jRepL ]+ Im[RL ]lm[EL ])cos(k,x,) 

- ( -Im[R j R e [ E , ]+ Re[R ])sm(k,x, )j 

+ ^ e [ E j c o s ( k , x , ) + I m [ E j s m ( k , x , ) ^ -

XRe[R, ]Re[E, ]+ Im[R, ]lm[E, ])cos(k^x,) 

-(Re[R J lm[E J - Im[R, ]Re[E, ])sin(k,x, ) j 

+(Re[Ejcos(k,xJ+Im[Ejsm(k,xJ)-^^' ' '+ |Ej'e-^'( ' ' ' - : ) ] , 

)J 

\ 

(3.37) 

and 

+ 

+ 

+ 

-MxXl (3.38) 

I m | l J = | A ; ; | ' | ( l - p J s m ( k , 0 i , - x j ) 

^e[EL ] sm(k ,x , ) - Im[E ̂  ]cos(k^x, ) y 

(kn[RL ]Re[EL ]-RegR^ ]lm[EL ] ) cos^ ,x , ) 

- (Re[R, ]Re[E, ]+ Im[R, ]lm[E, ])sin(k,x, ) j 

(Re[Ri^ ]Re[E J + Im[RL jlmgE^ ])sm(k,X2) 

+(Re[RL JlrnpL ] - Im[RL ]Re[EL ])cos(k, x^ )j 

+ ^ m [ E j c o s ( k , x J - Re[Ejsin(k^X2)]^-^'"' ]. 

Similar results As that for were obtained for the real and imaginary parts of ly, the 

only difference being that the index L has to be replaced by B and where we have % in 

1% we have to replace it byy in ly. From equation (3.35) we can then write 

Re[(z, (t)z; (t))_ ]= Re[l, ]Re[l, ] - Im[l ̂  ]lm[l, ] , 

lm[(z, (t)z; (t)) Re[l,Jm[l J + Re[I, ]Im[l ,] , 

where equations (3.37) and (3.38), plus the equivalent expressions for the real and 

imaginary parts of ly have to be substituted in the above equations. The equations for 

z, (t)^ and can be derived from (3.39). Performing this derivation we obtain 

(3.39) 

a general expression for {z\ (t)^ 
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+2 

zfW), =|A,^|"|A,!;|^|(l + pJ+2Re[RL]cos(2k,xJ+2Im[Rjsin(2k,Xi) 

^e[RL]Re[EL]+Im[RL]lm[EL])cos(k^x,) 1 

- ( R e [ R j l m [ E j - I m [ R j R e [ E , ] ) s m ( k , x , y 

+2(Re[EL]cos(k^x,)+Im[EL]sm(k^X])^'^'''' jx 

x|(l + PB)+ 2 Re[Rg jcos^kyY, )+2 Im[RB jsin^ky y , ) 

^e[RB]Re[EB]+Im[RB]lm[EB])cos^yy,) 1 

-^e[RB jimpB ] - Im[RB ]Re[EB ])sm(kyy, )j 

+2(Re[Eg jcos^yY,)+ Im[EB ]sm(kyy, + |E g j 

+2 

(3.40) 

Following ± e procedure presented in the previous section we can then derive 

the frequency-averaged correlation coefficient by substituting equations (3.37), (3.38), 

(3.39) and (3.40) in equation (3,9). The result is 

7t/2 

j j (Re[ l jRe[ i , ] -Im[l , ] lm[l , ] ) iedk„ 

Yi2(x i ,x , , f j 6k 0 

JjQ(x,)R(y,>iedk, 
Ak 0 

j" jQ(x2)R(y2)d8dk[ 
Ak 0 

(3.41) 

where 

Re| l^]=|0 + Pi^)cos(kB^, -X2)cos8)+2Re[R^^]cos(kg(x, +X2)cos8^ 

+2Im[RL]sin^g(x, 4-X2)cos8) 

(Re[RL]Re[EL]+Im[RL]lni[EL|)cos(kgX, COSG) ^ 

-(-Im[R jRe[E J + Re[R Jlm[E,])sin(kBX, cos8}^ 

+(Re[E[^]cos(k,,X] cos8) + Im[E^]sin(kgx, cosG)̂ " '̂'"-

^(Re[RL]Re[EL]+Im[RL]lm[EL])cos(k0X2 cos0) ^ 

^-^e[RL ]lm[EL ] - ImgR^]Re[EL])sin(kgX^ cos8)y 

^e[EL]cos(kgX2 cos8)4-Im[EL]sin(kgX2 cosS)^"^"''' j , 

(3.42) 

- H , x , 
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+ 

+ 

^ # x ] = | 0 - p L ) s m ^ B ( x , - X 2 ) c o s 8 ) 

(Re|E^^]sin(kgX; cos8 ) - ImjE^]cos(kgx, cos8)^ 

(lm[RL]Re[EL]-Re[RL]lm[EL])cos(kgX, cos6) ^ 

(Re[RL]Re[El]+ Im[R^ ]lm(E^|)sin(kgX, cos8), 

(Re[Rl ]Re[E ̂  ] + Im[R^ ]lm[E ̂  |)sin(k g x2 cos9) 

+(Re[RL ]lm[E^ ] - Im|R^̂  ]Re[E^ |)cos(kgx, cos9} 

(Im[EL]cos(kgX2 cos8)-Re[E^^]sm^gX2 j, 

H,,x, 

(3.43) 

-MYXZ 

Re|iy]= [(l + pg)cos(kB(y, -y2)s in8)+2Re[Rg]cos^B(y^ +y2)sm8) 

+2Im[RB]sin(kB(y, +y2 ) sm8) 

'^(Re[Rg]Re[Eg]+Im[Rg]lm[Eg])cos(kgy, s in9) 

-(^Im[RB]Re[EB]+Re[RB]lm[EB])sm(kBy,sm8) 

+(Re[Eg]cos(kgyi sin8) + Im[Eg]sm(kgy, s in8^"^' 

(Re|Rg ]Re[Eg ]+ ImjRg ]lm[Eg ])cos(kgy2 sin 9 ) 

^-(Re^Rg]lm[Eg]- Im[RB]Re[Eg ])sin(kgy2 s in8) 

(RejEgjcos^gy; sin8)+Im[EB]sin(ikgy2 

>•̂2 
(3.44) 

+ 

+ 

+ 

I m | i J = | ( l - p g ) s i n ^ g ( y , - y 2 ) s i n 8 ) 

+(Re[Eg]sin(kgy, s in8) - Im[Eg]cos(kgy, sin9)^"^' 

^(lm[Rg]Re[Eg]-Re[Rg]lm[Eg])cos(kgy, sin8) ' 

-(Re[RB ]Re[EB]+ Im[Rg]lm[Eg])sin(kgy, s in8) 

^e[Rg]Re[Eg]+Im[Rg]lm[Eg])sin(kgy, sin8) ' 

+(Re[RB jimpB ] - Im[RB j R e p g lDcos(kgy2 s i n 8 } 

(lm[Eg]cos(kgy2 s in8) - Re[Eg]sin(kgy2 sin9)^"^'-^' j , 

y2 

-HyXl 

(3.45) 
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+2 (3.46) 

Q(^i)= [(l + pL)+2Re[RL]cos(2kgX, cos8) + 2Im|R.]sin(2kgx, cos8) 

(Re[RL]Re[E^]+ ImjR^^ ]lm[E^])cos(kgx, cos9) 

,-(Re[R Jlm[E ^ ] - Im[RL jRe^E^ ])sin(kgX, cos6) 

+2(Re|EL ]cos(kGx, cos8) + Im[E^]sin(kgx, cosB)^"^"''' + IELI" J, 

and 

[(̂  + PB)+2Re[RB]cos^kgy, sin8)+2Im|Rg]sin(2kgy, sin8) 

r(Re[Rg]Re[Eg]+Im[Rg]lm[Eg])cos(kgy, sin8) 1 

l^-(Re[Rg]lm[Eg]-Im[Rg]Re[Eg])sin(kgy, sin6)j 

+2(Re[EB]cos0[By, sin8)+Im[EB]sin(kgy, sin8)^"^'^' +|Eg|"e"^^'^'j. 

+2 (3.47) 

Expressions for |Lix and Hy are given by (3.22), and Q(x2) and R(y2) can 

be obtained 6om (3.46) and (3.47) by replacing the index 1 with 2. As akeady 

mentioned, the correlation coefficient can then be obtained from (3.41) by substituting 

suitable reflection and evanescent field coefficients (Appendix C) in this equation and 

performing the integration in wave direction. Assuming that the width of the strip Ak 

= k2 - k] is small enough in order that the second order terms in (3.16') are neglected, 

the result of the integration in wave direction is a good approximation of the 

frequency-averaged correlation coefficient with the bending wavenumber, kg, 

substituted by the band centre frequency bending wavenumber, k,,. 

The computed correlation coefficient results are valid near and far from 

the edges. However, they give exactly the same results as those derived in the 

previous section when the points are situated in a region more than one wavelength far 

from the edges. This happens because the evanescent term contribution will have died 

out and it will be no longer relevant. However, if both points are in a region less than 

one wavelength far from the edges then results with and without evanescent terms will 

differ considerably. This difference was verified experimentally on clamped 

rectangular plates as described in the next chapter. 

If the analysis presented in this chapter were restricted to real wave 

components, then the final correlation coefficient expressions would have been 

exactly the same as the ones derived using the approximate modal model based upon 
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Bolotin's dynamic edge effect method (section 3.4.2). Nevertheless, the inclusion of 

imaginary terms does not afkct the results greatly, and when overlaid one can barely 

note the difference between them. Moreover, if only the inner solution of Bolotin's 

dynamic edge efkct method were considered in the derivation of section 3.4.2, then 

the correlation coefficients would have been very similar to the derivation presented 

in the previous section (wave approach without evanescent terms). Therefore, it can 

be concluded that the correlation coefficients derived using vyave or modal models are 

coincident. This conclusion supports the analysis presented by Waterhouse and Cook 

[73] on the equivalence of modal and wave methods for description of reverberant 

fields. In addition, Langley [55] has shown that the free travelling wave model is 

simply a reformulation of Bolotin's dynamic edge effect method. 

The correlation coefficient expressions derived in this chapter are 

strictly valid in the lower left quarter of the plate. However, if appropriate reflection 

coefficients and coordinate systems are used these results can be extended for the 

other plate quarters. This means that the origin of the coordinates that defines points 1 

and 2 (x; and X2) are always situated at the comer which point 1 is closer. Moreover, 

it is verified that in the middle of the plate (far from the edges) the expression for the 

correlation coefficient approaches that of a diffuse bending wave field. 

The usefulness and validity of the theoretical results derived in this 

chapter are analysed in Chapter 4. The analysis is based on information obtained from 

an experimental investigation carried out on flat plates and in a passenger car 

bodyshell. 
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Fig. 3.6 - Boundary reflections on the lower left corner 

Bottom edge 

Fig. 3.7 - Sketch of incident, reflected and evanescent waves for the bottom edge 

61 



fig. 3.8 - Interference patterns near the junction of a simply-supported and a guided edge 

0 0 
y/wavelength x/wavelength 

fig. 3.9 - Contour plot for the interference patterns of fig. 3.8 

& 

1.5 2 2 5 
x/wavelength 
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3.6 INFLUENCE OF ACOUSTIC AND MECHANICAL 

EXCITATION ON CORRELATION COEFFICIENT 

As presented in Chapter 2, the cross-spectrum of pressure inside an 

acoustic cavity excited by a random vibrating plate is given by 

V-
Yn(x,y,z)\;/^(x,y,z) K - i Y j [X,.+iY,.l 

[x;,+Y,:; 

X jjs,(x,,y,,X2,y2,m)Yn(Xi,y,,zjYm(x2,y2,zJdx,dx2dy,dy2. 
(2.10) 

s s 

Assuming the plate natural modes of vibration are available, a similar 

expression can be written for the plate response to a random field of cross-spectrum 

(|)p(X,,y,)(|)q(X2,y2) 
S,(x,,yi,x2,y2,m) = 0) '%;^-

p q 

Hp-iWp Hq+iW, 

X 62,^2,G))(|)p(E,,^,)(|)q(62,^2)dE,dE2d^,d^2, 

(3.48) 

s s 

where (t)p(xi,yi) represents the mode shape of the pth plate mode with natural 

frequency (Op at point 1, r|p is the modal loss factor, Mp is the modal mass, 

Hp=(0p-C0^ and Wp = T|pO)m ̂ . When the modal overlap factor is very much 

smaller than unity the cross-terms do not contribute significantly to the response and 

can be neglected. Expression (3.48) is then written as 

4)p(x,,yi)4)p(x2,y2) 1 

(3.49) 

Sa(x,,y,,X2,y2,m) = m^%]-
A: 

x f jSf(E,,^,,E2,^2,C0)(|)p(E,,^,)(|)p(G2,^2)dE,dG2d^,d^,. 
s s 

The implications of neglecting the cross terms in the evaluation of 

equations that have the form of equation (3.49) have been discussed by a number of 

authors as described by Elishakoff et al (pag. 153, ref. [74]). 
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3.6.1 Mechanical excitation applied at a single point 

The cross-spectrum of a stationary random force applied at the point 

(XcYo) is given by (eq. (190), ref. [75]), 

^1,63,^2,(0)= 6^ , -x , )5(^, -y,)6(E2 -x,)6(^2 -y.)Sf(a)) , (3.50) 

where S{{co) is the force spectral density and 6 is the Dirac delta function. Substituting 

(3.50) in (3.49) and evaluating the double integral we obtain that, 

P l^p + Wpj 

From (3.51) we can show that the correlation coefficient is given by 

712(^1,^2,m) = ; ziiTYp L U :n^,(3^2) 
At 

P [h;+W,^U 
Z 4 ) p ( ^ 2 4 p K ) 

-11/2 

1 

where xi=(xi,yi), x2=(x2,y2), Xo=(X(„yJ. 

The above expression enables the correlation coefficient to be 

computed for any pair of points and for any frequency. The disadvantage is that we 

need to estimate the plate natural frequencies and associated mode shapes. In order to 

compute a frequency-averaged value for the correlation coefficient it is necessary to 

integrate the term jHp + W j j over frequency. A closed form solution for this 

integral for integration limits f; and is given by equation (A.7). As explained in ref 

[75], when the natural frequencies Op do not overlap the limits of integration can be 

extended to infinity. Assuming the modal masses and loss factors are relatively 

uniform the following standard result is obtained 

f ^ /g 

where M is the total mass of the plate and r\ is the plate frequency-averaged loss 

factor. Substituting (3.53) in (3.52) we obtain the frequency-averaged correlation 

coefficient of acceleration due to a random point force applied at = (Xo,yo) 
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1/2 1/2 ' 

(3.54) 

where the summation indicated involves all the modes whose natural frequencies are 

situated inside the frequency band whose centre frequency is f^. This expression was 

employed in section 3.7 to obtain theoretical results for the correlation coefficient 

using modal summation. In the spirit of the approximations employed in this chapter 

the modal summation can be substituted by an integration in wavenumber space. As a 

result the asymptotic form of equation (3.54) in terms of circular coordinates (kg,8) in 

wavenumber space is given by 

m/2 
j j(KkB,8,X|)(|)(kg,8,xJ(|)^(kB,G,xJd8dkg 
Ak 0 

j j'(|)^(kB,8,xJ(|)^(kB,8,xJd8dkg j" j'(t)^(kg,8,x,)(|)^(kg,8,xjd8dk 
ak 0 

1/2 

Ak 0 

,(355) 

where for a shnply-supported plate: (|)(kB ,6 ,x , )= sin(kBX, cos8)sin(kgy, sinS} 

Results 6om equations (3.55) and (3.54) were compared for the case of a simply-

supported plate. Some of the results obtained are presented in section 3.7. As shown 

in figs. 3.14 and 3.15 good agreement was obtained when the discrete modal 

summation of expression (3.54) was computed and compared to the asymptotic results 

from equation (3.55). This indicates that expression (3.55) is a good approximation of 

the correlation coefficient of point excited structures. This agrees with the analysis of 

ref. [75] (pag. 60) in which it is suggested that an asymptotic expression in the form of 

expression (3.55) provides an excellent approximation to the exact discrete sum of an 

equation similar to equation (3.54). In addition, it is observed that considerations 

similar to the ones employed in this sections will lead to the expression (196) of ref. 

[75]. 

From equations (3.10) and (3.54) we can show that the frequency-

averaged normalised cross-power spectral density for a point excited plate is given by 
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Re|YX^i,*2,fc)]= 

%/2 

j j(|)(ky,8,x,)(|)(kb,8,xj(|)^(ky,8,xjd8dk[ 
Ak 0 

2 
s 

:t/2 

j { j4)^(ky,8,x)(|)^(ky,8,xjd8dl. 
Ak 0 

(3.56) 

dS 

3.6.2 Acoustic excitation in the form of a diffuse sound field 

excitation 

The cross-spectrum of the random force due to a excitation Eeld in the 

form of a diffuse acoustic field is given by [76] 

S , ( s „ 5 . , s „ 5 „ c o ) = ^ ® ^ . (3.57) 

where r is the distance between points (Ei,^i) and (82,̂ 2), k is the acoustic 

wavenumber and Sp(m) is the power spectral density of the pressure field. Substituting 

(3.57) in (3.49) we obtain an expression fbr the cross-spectral density of the 

generalised force due to diffuse field excitation, 

jj^^^p((^)4)p(Gn^i)4)p(E2,^2)dG,dE2d^,d^2. (3.58) 

s s ^ 

From (3.58) and (3.49) we obtain an exact expression fbr the cross-spectral density of 

the acceleration response, 

c / X 4^4)p(x,,y,)(|)p(x2,y2) 1 
Sa(x,,y,,X2,y2,m) = (0 2^ ; r̂ X 

Ap 
(3, 

— S„fcol(b._ fs, )(b._ fs. .£,)ds,ds, 
kr s s 

(3.59) 

Assuming the power spectral density of the pressure field varies slowly with 

frequency and is equal to SQ we can write that 

SoIp(m) = So j'j'^^^^p(E,,^,)(|)p(E2,^2)dE,dG,d^,d^2. (3.68) 

For cases in which the modal mass Ap is almost the same for all the modes we can 

express the correlation coefficient due to acoustic excitation in the form of a diffuse 

acoustic field as 

66 



Y 12 (^1 '^2 '®) 
i , ( » ) 

1/2 

K + w ; } 

1 / 2 • 
(3.61) 

M + w ^ l 

The evaluation of the discrete modal summations presented in the above expression 

involves computing the plate natural frequencies and associated mode shapes. A 

frequency-averaged result for expression (3.61) can be derived by following a similar 

procedure to the one employed for the case of a point excited plate. This expression is 

Z'|)p(^l)4'p(^2)IpW 
= ^ ( 3 - 6 2 ) 

Z4)p(^2)IpW 

where the modes that are include in the summation have resonance frequencies inside 

the band of interest. The acoustic wavenumber k corresponds to the frequency f^. 

Substituting the modal summation by an integration in wavenumber 

space we have, in cylindrical coordinates. 

j" , 8, X, )(()(kg, 8, )I(k, kg, 8)i8dk 

Y,2(Xi,X^,fJ: 6k8| 

j j ' ( | ) ' ( k B , 8 , x , ) l ( k , k B , 8 ) i 8 d k 

Ake, 

1/2 

j j ' ( | ) ^ (kQ,6 , xJ l (k ,kB,8)d8dkg 

AkB, 

1/2 
(3.63) 

where k is calculated for the band centre frequency f|. and 

I(k ,kB,8)= j j^^ (kg ,E , , ^ , , 8 ) ( | ) (kB ,E , , ^„8 )d8 ,dE,d^ ,d^2 . (3.64) 
s s 

Similar to the procedure presented in section 3.4.1, for cases in which the bandwidth 

is not too large, the integral in kg can be approximated by the expression in the 

integrand with kg substituted by the bending wavenumber k̂  calculated at the band 

centre frequency f̂ . 

The limits of integration 8, and 82 for the case of acoustic excitation 

are defined by the relative values of the acoustic wavenumber k and the bending 

wavenumber ky. As explained in ref. [19], plate modes wliich satisfy the condition 

k ! + k ! < k ' (3.65) 
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produce a component that radiates well. By reciprocity, we can suggest that only the 

plate modes that satisfy the above condition will be efficiently excited by an acoustic 

field. Therefore, it seems reasonable to evaluate the integral in wavenumber space 

presented in equation (3.63) for a region that satisfies the condition (3.65). From fig. 

3.10 we observe that such region is situated at the top and bottom ends of the 

wavenumber quarter-circle. Then if we divide the region of integration in two we 

obtain the following pair of integration limits, 

1) 8; = o 
k 

(3.66) 
kb 

2) 9" = f 

where the first pair correspond to the bottom region and the second pair correspond to 

the top region. These integration limits were obtained from an approximate analysis of 

the geometry representation of acoustic and bending wavenumbers on a wavenumber 

space. 

In order to obtain a first approximation for the correlation coefGcient 

due to acoustic excitation, the integration limits presented in (3.66) were used as 

limits of integration for the standard correlation coefficient expression (equation 

(3.23)). It was found that this approximation gave results very similar to ones 

computed vyith equation (3.63). It was also observed that the integration limits 

employed in the integration of equation (3.63) do not affect the correlation coefficient 

results as the multiplication by the factor I(k,ky,8) will have a similar effect to using 

the integration limits presented in (3.66). 

Unfortunately, as described in section 4.4 (fig. 4.5), when results 6om 

this approximation were compared to experimental results using acoustic excitation by 

a sound field in a cavity the agreement obtained was poor. The main reason for such 

poor agreement is that the acoustic field inside the small acoustic cavity is not diffuse 

as assumed in the present section. A better model for the type of acoustic excitation 

employed in the experimental work reported in section 4.4 could be one which 

explicitly included each individual acoustic mode in the computation of Ip(m). Such 

procedure is equivalent to the hybrid model suggested in this work and will allow the 

computation of the response of the modally-dense plate due to an acoustic source 
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generating a modally-sparse acoustic Reld. This is leA as a suggestion for future work. 

Another explanation for such disagreement is that all the points in the acoustic field 

are coherent due to the use of a single source. As a result, the assumed cross-spectrum 

in the form of equation (3.57) is no longer valid. 

6 9 



Fig. 3.10 - Illustration of wavenumber region with plate modes excited by an acoustic 

field of wavenumber kg. 
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3.7 Simply-supported flat plates: a modal summation approach 

A modal summation model that employs the mode shapes of a simply-

supported flat plate was used to simulate the dynamic behaviour of two simply-

supported flat plates. The modal summation results are compared with analytical 

results (equations (3.17) and (3.18)) presented in section 3.4. 

The advantages of using a modal summation model are that the number 

of modal responses summed in each frequency band can be controlled, and the effects 

of point excitation can be assessed in relation to an assumed model of spatially-

uncorrelated excitation (rain-on-the-roof). An asymptotic approximation for 

correlation coefficients on point excited plates is also used in the comparison. - -

3.7.1 Description of modal summation approach 

For a flat plate with simply-supported boundary conditions a modal 

summation expression for the frequency-averaged correlation coefficient of 

acceleration (Yi2(xi,X2,f^)) can be derived from equations (3.8), (3.12), (3.14) and 

(3.16). The result is 

^ sin(k ̂  x,) sin(k, X 2) sin(k ̂  y,) sin(k ̂  y ̂ ) 

712(3^1,3^2,4) = 

]^sin^(k^x,)sin^(kyy,) 
1/2 

%]sin^(k,X2)sin-(kyyJ 
1/2 

. (3.67) 

N 

where = mu/a, ky = n7i/b, m and n are the modal numbers, a and b are the 

dimensions of the plate in x and y directions, respectively, and N represents the 

number of modes summed in each frequency band. 

Based on the above equation the frequency-averaged correlation 

coefficient in each frequency band was estimated in the following way : 

* The plate natural frequencies were calculated and the modes grouped according to 

frequency band, 

® The summations presented in equation (3.67) were then computed for modes 

whose resonance frequencies are in the respective band. 
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• The summations were repeated for each consecutive pair of points on the line 

analysed, 

# The results at each line were then plotted as a function of non-dimensional 

separation distance k̂ r, where k,, is the bending wavenumber calculated at the band 

centre frequency and r is the distance between each pair of points. 

3.7.2 Discussion of results 

The above procedure was employed to estimate the vibration field 

correlation of two simply-supported plates which are illustrated in fig. 3.11. They both 

had the same thickness, h = 0.001 m, and were assumed to be made of aluminium. 

One of the plates had dimensions a = b = 0.48 m (small plate) and the other a = b' =" 

1.5 m (large plate). Consequently, both plates had the same bending wavenumber in 

each frequency band but the large plate had a much higher modal density. In addition, 

because of the square geometry of both plates, a large number of vibration modes 

having different shapes but the same natural frequencies were used in the summation. 

The correlation coefficient evaluation was carried out for points 

equally spaced along lines whose positions are indicated in fig. 3.11. One of the points 

was assumed fixed and the other displaced from it along the line in nine equally 

spaced points. Correlation coefficient results were computed for lines B, C and D in 

one third octave bands from 63 Hz to 3150 Hz and also for 20 frequency bands of 

constant width of 100 Hz from 50 Hz to 1950 Hz. A large amount of data was 

obtained in this investigation but only a small selection of significant results are 

presented here. 

The comparison between modal summation and analytical results (eq. 

(3.17)) for points along line C is shown in fig. 3.12 for some frequency bands. Equal 

spacing of 2 cm between the points was used on this line. Good agreement was 

observed between analytical and modal summation results for both plates for 

frequency bands above (and including) 200 Hz. Results for the small plate did not 

agree with the theoretical results below 200 Hz because of the small number of modes 

summed in each 1/3 octave band. For instance, in the 200 Hz one third octave band 

the number of modes used in the small plate modal summation was five. 
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As a means of further assessing the number of modes necessary for the 

analytical frequency-averaged results agree with modal summation ones, the modal 

summation simulation was performed in constant bandwidths of 100 Hz for the small 

plate. For all the lines the number of modes summed in each band varied from 4 to 8. 

Results for line C in four frequency bands are presented in fig. 3.13. For centre 

frequencies 250 Hz and 450 Hz, six modes were included in the summation, seven 

modes were summed for 550 Hz band, and only four modes for the 850 Hz 6equency 

band. As shown in fig. 3.13, when only four modes were included in the summation a 

poor agreement was observed. A mix of good and reasonable agreement results was 

verified for cases when six or seven modes were present in a band. Good agreement 

was only obtained for cases in which eight modes were included in the summation.. 

Similar behaviour was observed for results along the other lines. Steam [76] 

employed a similar modal summation procedure to observe that at least ten modes 

need to be excited at resonance in a frequency band for the correlation coefficient to 

approximate the diffuse bending wave field function far from the edges of a randomly 

excited structure. Thus, neglecting the effect of damping, it can be inferred that for 

bands in which more than eight modes are excited by spatially uncorrelated forces, the 

modal summation results agree with those of the theoretical model proposed in this 

chapter (equation (3.17)). 

The theoretical analysis presented in this chapter presupposes that the 

excitation applied to the plate is random and spatially uncorrelated (rain-on-the-roof). 

Unfortunately, this type of excitation is rarely encountered in real situations as the 

force is normally applied over a small surface area. The influence of the excitation 

spatial distribution on the vibration field correlation was analysed using the modal 

summation model. In the previous section, it was shown that the frequency-averaged 

correlation coefficient due to point excitation at = (Xo,yo) is given by 

712(^1,^2,fj 1/2 

^(i);(xj( | ) ;(x.) 

1/2 
(3.54) 

P 

where (|)p(x) represents the mode shape of the structure: sin(kxX)sin(kyy) for a simply-

supported flat plate. The same procedure as that described in section 3.7.1 was used to 
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obtain the correlation coefficients using equation (3.54) along the lines sketched in 

fig. 3.11. For each line, different positions of the excitation point were used. 

A typical result of this simulation is presented in fig. 3.14. Line D was 

chosen for this representation as it is reasonably far (in terms of wavelength) from all 

the boundaries in almost all frequency bands analysed. As expected, it was observed 

that, along this line, equation (3.17) (simply-supported flat plate) and equation (3.18) 

(two-dimensional diffuse wave field) gave the same results. Thus, only the theoretical 

results for a simply-supported flat plate (equation (3.17)) are plotted in fig. 3.14. The 

asymptotic expression for the correlation coefficient due to point excitation shown in 

eq. (3.55) is also employed in this comparison and is named 'point' in figs. 3.14 and 

3.15. . . 

As shown in figs. 3.14 and 3.15, results for the large plate and for the 

asymptotic expression of the point excited correlation coefficient (equation (3.55)) 

agreed quite well in the frequency range analysed. Furthermore, both results 

approached the expression for the spatially-uncorrelated correlation coefficient as the 

frequency increased. Based on modal summation numerical procedure results, Steam 

[76] also observed that point-excited correlation functions approach that of diffuse 

bending wave fields for points far (in terms of wavelength) from the edges and 

excitation point. However, when comparing experimental observations on point-

excited plates to the diffuse field result, this agreement was not observed. He 

explained this discrepancy by pointing out that the plates were relatively highly 

damped. 

The relative strengths of the field directly radiated from the point of 

excitation and the plate reverberant field is strongly dependent on the system 

damping. An analysis of such relative strength was presented by Skudrzyk [77]. He 

demonstrated that the distance in which the strength of the field radiated by the point 

force equals that of the reverberant field is given by (pag. 259, ref. [77]) 

r = = (3.68) 

where 1 is the average distance the wave front travels between successive reflections, 

IQ is the averaged distance to the boundary of the plate, r\ represents the plate loss 

factor and is the bending wavenumber. An estimate of tliis distance for the small 
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plate is presented in fig. 3.16 as a function of typical loss factors. As shown, for the 

case of relatively highly damped systems (r] > 0.04) the direct field will dominate the 

vibration field. However, for moderate to low values of loss factor (r; < 0.01) the 

reverberant field will predominate over most of the vibration field, apart from a region 

very close to the excitation point. 

For points close to the system boundaries, such as line B, for which the 

results are presented in fig. 3.15, the effect of the point excitation on the vibration 

field was less pronounced than for points situated far from the edges. This is because 

the interference field generated by the edges dominates the vibration field in this 

region. These are only preliminary observations on the influence of the excitation on 

the correlation coefficients of a vibration field and, as discussed in the section 3.6, 

further work is necessary to clarify this situation. At present, it can be stated that the 

theoretical approximations for the correlation coefficient derived in this chapter can be 

approximately applied for point-excited structures having moderate damping. 

Unlike the situation observed for line D, the theoretical results from 

equations (3.17) and (3.18) differ considerably for points placed along line B. As 

presented in fig. 3.15, the zero-crossing points and peak values for results from 

equation (3.18) (diffuse bending wave field) are consistently different from that from 

equation (3.17) (simply-supported flat plate). It was found that, above 400 Hz, both 

small and large plate results agree with the theoretical results for a simply-supported 

flat plate, whereas results from equation (3.18) are very different from the other three 

results in all frequency bands analysed. This disagreement happened irrespective of 

the type of excitation (spatially-uncorrelated or point excitation) and it clearly 

illustrates the effect of the boundaries in correlating the wave field near the edges. 

Furthermore, it was also observed that the relative position of both 

measurement points in relation to the edges is relevant. In the results presented in fig. 

3.15, one of the points was assumed fixed and placed at the bottom of the line (closer 

to the edge) and the other moved along the line towards the plate centre. However, 

were the fixed point placed closer to the centre of the plate, the theoretical 

formulations (equations (3.17) and (3.18)) and modal summation results would be 

more similar. This indicates that both points need to be placed inside the "one-
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wavelength-from-the-edges" region for the diffuse wave field and simply-supported 

results disagree. This observation supports the theoretical analysis of section 3.4.1. 
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Fig. 3.11- Sketch of lines used in the verification of correlation coefficient results. 
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Fig. 3.12 - Comparison of results from equation (3.17) with modal summation results (eq. (3.67)) along 

line C. 1/3 octave bands, key: theory (eq. (3.17)); large plate; 

+ + small plate. 
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Fig. 3.13 - Comparison of results from equation (3.17) with modal summation results (eq. (3.67)) for 
the small plate along line C . 100 Hz constant bands. theory (eq. (3.17)); 

modal sum. 
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Fig. 3.14 - Comparison of results from equation (3.18) with modal summation results due to point 
excitation (eq. (3.54)). Line D, force at x = 0.165 m, y= 0.335 m. 1/3 octave bands. theory 

(eq. (3.18)); large plate; + small plate; * point excitation (eq. (3.55)). 
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CHAPTER 4 

]i::;[]piEGi3L[iyiE:isr]rv4L[. iĵ TT/TECE) :ri ( : ; j \ ]r ic)] \r (ZH? TkfiB]RL/i;n(]»Pf 

fTIlEilLI) (:4[)]R[j3LBC]L./\;]r][(:)IS[ (JIIV ]P [̂ dLT[-[c 

s» ritiLjic: 

4.1 Introduction 

This chapter presents the results of an experimental investigation of 

vibration field correlation carried out on four different flat plate structures and on a 

car body shell. Measurements of vibration acceleration were used as a means of 

estimating the frequency-averaged correlation coefficient and the normalised cross-

spectral density of these structures under random excitation. The main purpose of this 

investigation was to assess the validity of the theoretical correlation coefficient and 

normalised cross-spectral density approximations derived in the previous chapter. 

The flat plate structures used in the experimental investigation were as 

follows: a 1 mm thick clamped square aluminium plate that bounds a rectangular box; 

a 3.5 mm thick rectangular steel plate with a steel bar attached and clamped along the 

four edges; a rectangular aluminium plate with free edges hung by two thin wires 

from a &ame; two irregularly-shaped flat steel plates with free edges, cormected by 

metal straps and hung from a frame. 

The results are compared with estimates of vibration field correlation 

based on the theory presented in the previous chapter. In addition, results from a 

similar experimental investigation carried on a car body shell [54,78] are also 

compared with the theoretical estimates. Modal density and structural loss factors 

estimates were also obtained on some of the investigated structures as means of 

assessing their modal overlap factors and the number of modes resonating in each 

frequency band. 
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4.2 Experimental procedure 

The experimental procedure applied was similar to all flat plates. Each 

plate was mechanically or acoustically excited. The input signals were broad-band 

random. These sources produced sufficient vibrational response to guarantee a good 

signal to noise ratio as the response levels were, in average, 30 dB higher than the 

background noise level. Two accelerometers (Bruel & Kjaer Type 4374) were placed 

along different lines on the plate surface. In each set of measurements one 

accelerometer was held at one extreme of the line (marked 1 in figs. 3.11, 4.2, 4.11) 

and the other displaced from it along the line at equally spaced points. 

The acceleration signals were acquired using a ZONIC+AND 3524 

Dual Channel FFT Analyzer and transferred to a PC-compatible microcomputer. The 

frequency-averaged correlation coefficient between the two acceleration signals was 

then estimated using equation (3.6) and the normalised cross-power spectral density 

estimated from equation (3.10). For this purpose cross- and auto-power spectrum of 

acceleration in each pair of points were acquired in the frequency range 0-5000 Hz. 

These estimates were integrated in 1/3 octave bands and in bands of constant width. 

The frequency separation of these spectra was 2.5 Hz (400 lines) for lines A, B and C 

(section 4.3) and 3.125 Hz (1600 lines) for all the other lines. Finally, the frequency-

averaged estimates were plotted as a function of the non-dimensional distance kr, 

where k is the bending wavenumber calculated at the band centre frequency and r is 

the distance in metres between each pair of points. 

A large accelerometer can considerably load thin plates as the ones 

here investigated. As a result lightweight accelerometers (B&K 4374, mass=0.6 

grams) were chosen for this investigation and it was estimated that they only affect the 

present results for frequencies above 3000 Hz for the car roof (thickness = 0.8 mm). 

For the other plates the mass load of the accelerometer is negligible. In addition, it is 

important to mention that as the correlation coefficient is a normalised quantity this 

mass load effect will be cancelled when the experimental results are combined using 

equations (3.6) or (3.10). 

One-third octave bands were chosen for the analysis because, in such 

bands, the bending wavenumber of each resonant mode does not vary more than 6 % 
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from the assumed mean value of the bending wavenumber (k^) corresponding to the 

band centre frequency. This can be explained by the fact that the bending 

wavenumber is proportional to the square root of the associated frequency. So, if the 

square root of upper or lower frequency limits of 1/3 octave bands are divided by the 

square root of the band centre frequency the result is close to 6%. 

The repeatability of the measurements were verified by estimating the 

correlation coefficient in the same pair of points ten times. In such exercise, before the 

acceleration signals were acquired, both accelerometers were removed and fixed again 

to the plate as a way of simulating a real laboratory situation. The largest normalised 

standard deviation (c/m) of the estimated correlation coefficient was 0.1. 

The real part of the normalised cross-spectral density of acceleration 

was estimated using the same data employed in the correlation coefficient 

experimental estimation. The space average of the acceleration was obtained from the 

average of the auto-spectrum at four different positions along the structure surface. 

This space average was then employed to normalise the real part of the cross-spectrum 

along each measurement line following equation (3.10). 

4.3 Errors associated with the correlation coefficient estimation 

The variance and the confidence limits of the present measurements are 

estimated following the procedure suggested by Bendat and Piersol [85] and Newland 

[67]. Random errors associated with statistical sampling considerations and bias errors 

associated with data acquisition errors are here considered. From Bendat and Piersol 

[85] we have that the normalised random error associated with the auto-spectrum 

estimation is 

, ( 4 . 1 ) 

mo ^ 
where a is the standard deviation of the measurement of average m, n̂ i is the number 

of non-overlapping averages and Tj is the total duration of the record data. The 

normalised bias error is a function of the resolution bandwidth, Bg, and of the system 

half-power bandwidth, B/%2i%, where is the damping ratio and is the damped 
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natural frequency. The normalised bias error for auto-spectrum measurements is given 

by [39] 

Eb (4.2) 

and the normalised r.m.s. error is expressed as 

G — sl̂ T + • (4 3) 

As in the present measurements the bias errors associated with the 

auto-spectrum estimation were normally much smaller than the random errors we can 

say that the normalised r.m.s. error is approximately equal to the normalised random 

error. 

Assuming the probability density function for the estimates G to be 

approximated by a chi-square distribution we can obtain confidence intervals for these 

measurements [67]. The number of degrees of freedom (K) of the chi-square 

distribution is related to the standard deviation and measurement average by 

= (4/0 
K m 

By knowing the number of degrees of freedom we can obtain confidence limits &om 

statistical tables of percentage points of a chi-square distribution [67,85]. 

The normalised random error associated with the real part of the cross-

spectrum can be obtained from expression (9.25) of ref. [85]. After some 

mathematical manipulation we have that 

G „ 0 „ + ( R e [ G „ ] ) - - ( l m [ G „ ] ) -

Assuming the imaginary part of the cross-spectrum, G ŷ, to be 

negligible compared to the real part we can show that equation (4.5) is equal to 

where is the ordinary coherence function. For cases in which the coherence 

function is close or equal to one the normalised random error associated with the 
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cross-spectrum approaches the normalised random error associated with the auto-

spectrum (equation (4.1)). 

The random error associated with the correlation coefficient and with 

the normalised cross-spectral density can be derived following the procedure outlined 

in section 9.2.3 of ref. [85]. Assuming the imaginary part of the cross-spectral density 

is negligible in comparison to the real part we obtain that 

m„ 
(4.7) 

The above expression is valid for the correlation coefficient and for the normalised 

cross-spectral density. It shows that when the coherence function equals unity the 

random error associated with these two parameters is zero. Results for other values of 

the coherence function are shown in table 4.1. The number of non-overlapping 

averages used in the correlation coefficient estimation was 50. 

Yxy' 0.9 0.7 0.5 0.3 

S/ 0.065 0.1207 0.1732 0.2463 

K 473 137 66.7 33.0 

Table 4.1 - Random error (eq. (4.7)) associated with correlation coefficient estimation 

as a function of the ordinary coherence fimction. 

As shown, the number of degrees of freedom of the chi-square 

distribution were reeisonably high for practical values of the coherence fiinction. In 

most of the experiments performed the average value for the coherence function was 

in the band 1.0-0.9. In particular, when the coherence function equals 0.7 we have that 

the 95 % confidence limits for the correlation coefficient are given by 

0.742Y ,2 < m < 1 .296y. (4.8) 

Similarly we have that the random errors associated with the estimation of the auto-

spectrum of acceleration are defined by equation (4.1). In this case, we obtain that 

ninety per cent of all values of the autospectrum will lie in the band 

0.779G,, < m < 1.243G,,. (4.9) 
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The confidence limits presented in (4.8) and (4.9) show that the 

experimental results of correlation coefficient and normalised cross-spectral density 

presented in this chapter have low values of random error. 

4.4 Square flat plate with four clamped edges 

4.4.1 Description of apparatus 

An aluminium plate of 0.001 m thickness, with equal sides of 0.48 m 

and clamped along the four edges was one of the flat structures used in the 

experimental verification of frequency-averaged correlation coefficient theoretical 

results. This plate bounded an acoustical enclosure in which the other five walls were 

of double plywood construction with the cavity between them filled with sand. This 

plate/box system was employed in the experimental analysis of vibroacoustic 

response reported in Chapter 5. Typical wavelengths for this plate were: 0.222 m at 

200 Hz, 0.111 m at 800 Hz, 0.078 m at 1600 Hz and 0.057 m at 3000 Hz. The edges 

of the plate were sandwiched by two square metal frames used to simulate a clamped 

type of support (fig. 4.1). Point excitation from a non-contact shaker or acoustic 

excitation generated by a loudspeaker placed inside the enclosure were used to vibrate 

the plate. 

The correlation coefficients were estimated using the procedure 

described in section 4.2 along three lines sketched in fig. 3.11 (lines B, C and D) and 

three lines that are sketched in fig. 4.2 (lines A, E and F). The spacing between the 

points varied: 2 cm was used for lines A, B and C and 1 cm for lines D, B and F. 

These estimates were integrated in 1/3 octave bands from 63 Hz to 800 Hz for lines A, 

B and C and from 80 Hz to 4000 Hz for lines D, E and F. In addition, some of the 

experimental results were also analysed in frequency bands of 100 Hz constant 

bandwidth. 
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4.4.2 Discussion of results 

It is impractical to present all results obtained in this experimental 

investigation. As in section 3.7, a selection of some results is presented in order to 

highlight the most important findings of this investigation. The theoretical correlation 

coefficient results presented in this section were computed using results for a clamped 

plate based on Bolotin's dynamic edge effect method (equation (3.23)), with the 

coefficients for a clamped boundary as derived in Appendix B (expressions (B.4)). 

It was confirmed by modal summation results (section 3.7) that at 

points removed from the edges (at least one wavelength from the edges), simply-

supported plate correlation coefficient results converge to those of a diffuse bending 

wave field. The same verification was carried out for points situated along line D of 

the clamped plate as, for most frequency bands, these points were outside the one-

wavelength-from-the-edges region. Fig. 4.3 shows the average of correlation 

coefficient results obtained from experiments in which the shaker was placed at four 

different points along the plate surface. The shaker coordinates are listed in table 5.7. 

For each shaker position, a separate estimate of the correlation coefficient in 1/3 

octave bands was made, following the procedure outlined in section 4.2. The resultant 

correlation coefficients were then arithmetically averaged and plotted as a function of 

kr. The first clear conclusion from this set of results was that, above 200 Hz, the 

diffuse wave field (equation (3.18)) and clamped plate results (section 3.4.2) are 

coincident. This was expected because the estimated wavelength at 200 Hz was 0.22 

m and thus, only the inner solution of Bolotin's edge effect method contributes to the 

analytical clamped plate result. Then, following an analysis presented by Bolotin [56], 

it was confirmed that, when a large number of modes is summed, or the asymptotic 

limit is taken in a limited band, the clamped plate result approaches the simply-

supported one and they both approach the diffuse field result. Similar results were 

obtained for plates with free edges (sections 4.6 and 4.7). 

It was also verified that clamped plate and diffuse field correlation 

coefficients agree reasonably well with the experimental results for one-third octave 

bands whose centre frequencies are equal or higher than 315 Hz. This situation is 
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illustrated in fig. 4.3 by showing results at 160 Hz and 315 Hz 1/3 octave bands. 

Theoretical estimates of natural frequencies on flat plates [79] suggests that at the 315 

Hz 1/3 octave band at least 5 resonant modes have been excited. Similar trends were 

observed in the other lines. Nevertheless, it is important to note that for practical 

structures this agreement is also governed by the damping of the structure. A specific 

investigation of such dependence is presented in section 4.5.2. 

One of the exceptions of the good agreement between theoretical and 

experimental results was in the 1/3 octave band centred on 500 Hz. In this 1/3 octave 

band, experimental results for the four mechanical excitation positions were 

consistently different from the theoretical results. On the contrary, correlation 

coefficient results obtained with broad-band random acoustic excitation from a 

loudspeaker agree with the theoretical estimates at this frequency band. 

In addition, a slight disagreement between theoretical and experimental 

results was observed at the 1/3 octave band centred on 4000 Hz. In this high 

frequency range, the theoretical results begin to depart from the experimental ones. 

This happens because, as explained in section 3.4.2, the importance of the second 

order terms in the solution of integral (3.16') increase with the width of the integration 

strip. Therefore, the analytical approximation used for this integral is no longer 

strictly valid. Moreover, low values of the coherence function were observed in this 

frequency band indicating that random errors can be quite important in this band. 

The influence of the edges on correlating the wave field inside the one-

wavelength-from-the-edges region is illustrated by showing results obtained on line B 

(fig. 4.4). In this case, only experiments using a loudspeaker placed inside the acoustic 

box were performed. Two theoretical results are shown in this figure: one is the 

standard edge effect method result that includes the inner (sin (x-^^)) and outer (C* 

exp(-pxX)) solutions; the other one only includes the inner solution. As one can 

observe, the results without the outer solution are completely wrong. The agreement 

between experimental and theoretical results is not remarkable but at least a similar 

trend in both graphs is shown with similar zero-crossing values. This example 

illustrate the importance of the outer solution in representing the interference in the 

wave field due to the edges. 
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A comparison between mechanical excitation from a non-contact 

shaker and acoustic excitation from a loudspeaker placed inside the box is shown at 

fig. 4.5. As illustrated in this figure, it was observed that the vibration field due to 

mechanical excitation appears to follow the theoretical results more closely. Above a 

certain frequency, both results tend to converge and approach the theoretical results. 

The better agreement between point excited experimental results in comparison to 

acoustically excited ones is contrary to the results reported by Steam [76]. In that 

work he concluded exactly the opposite suggesting that a diffuse bending wave field 

could not be set up on a point excited plate. As mentioned in section 3.7.2, he justified 

the difference based on an analysis of the field radiated by the point force. No strong 

indication of disagreement between the present theory and point excited correlation 

coefficient results were observed on the different random excited structures analysed 

in this work. The loss factors of these structures ranged from 0.0005 to 0.08. 

The difference between mechanically and acoustically excited 

structures in terms of correlation coefficients can be explained by the selective way 

that vibration modes are excited by an acoustic field. This filtering phenomenon 

would probably be of less concern in the case of an acoustic field like a very large 

room. As a matter of fact, a comparison between internal and external acoustic 

excitation was presented in refs. [54] and [78], and the general trend observed was 

that results from external acoustic excitation (from a loudspeaker in a laboratory 

room) approach the theoretical results above a frequency lower than that for internal 

acoustic excitation (source inside a passenger car compartment). This suggests that the 

filtering phenomenon is less important for diffuse acoustic fields. 

The comparison between theoretical results of correlation coefficient 

due to acoustic excitation modelled by modifying the integration limits (as described 

in section 3.6.2) and experimental results due to acoustic excitation were inconclusive. 

This stems from the fact that theoretical results that simulate acoustic excitation 

(equation (3.23) with integration limits (3.66)) were very similar to spatially-

uncorrelated ones (equation (3.23) with integration limits 0 and TIH) and were 

different from the experimental results due to acoustic excitation. As discussed in 

section 3.6.2, the main reason for this disagreement was the fact that the acoustic field 

used to excite the plate was not diffuse. Moreover, results from equation (3.63) and 
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(3.23) with integration limits (3.66) were very similar indicating that the acoustic 

excitation does not strongly affect the resonant response of the structure in a given 

frequency band. As presented in section 4.8, this explain the agreement between the 

experimental results obtained on a car bodyshell and the theory of Chapter 3. 

As presented in fig. 4.5, in some cases, the theoretical results for 

acoustic excitation followed quite closely the experimental ones and, at the same time, 

they were both different from the experimental results due to mechanical excitation. 

An example of such agreement is presented in fig. 4.5 for line F at the one-third 

octave band centred on 2000 Hz. Unfortunately, we can not take such isolated cases as 

evidence that equation (3.23) with the integration limits given by expression (3.66) 

can be employed to represent the correlation coefficient due to acoustic excitation. 

This implies that further work is necessary to assess the application of section 3.6 

results to acoustically excited structures. 

In order to illustrate the equivalence between wave and modal models 

in terms of the correlation coefficient, theoretical results that employ these two 

approaches are shown in fig. 4.6. These results are also compared with numerical 

results from a modal summation procedure similar to the one described in section 3.7, 

but assuming that the edges were clamped, and carried out for a plate similar to the 

large plate described in section 3.7.2. As presented in fig. 4.6, the agreement between 

these three approaches is quite good, showing that the wave and modal 

representations are totally equivalent. This equivalence has been previously indicated 

by Langley [55]; however, this agreement contributes to increase the confidence that 

one can have in the theoretical analysis developed in this work. Further analyses of 

wave and modal representation is presented in Appendix E. 

4.4.3 Results with a small stiffener attached to the plate 

A small stiffener was attached to the clamped plate during the 

experimental response work (Chapter 5). The type of attachment used, position and 

dynamic characteristics of this stiffener are described in section 5.4. A thorough 

discussion of the effects of a stiffener on a plate vibration field are reported in section 

4.5 and in this section we only present experimental results of correlation coefficient 
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and normalised cross-power spectral density of acceleration on a line close to this 

stiffener. The position of this line, named line G, is sketched in fig. 4.7. This line was 

placed in a region reasonably close to the position of the force excitation. The 

correlation coefficient on this line was computed following the procedure described in 

section 4.5.1, while the normalised cross-power spectral density was computed from 

equation (3.23') with the coefficients for a spring-supported edge given in appendices 

B and C. 

A selection of correlation coefficient results along line G are presented 

in fig. 4.8. As shown, reasonably good agreement between experiments and theory is 

observed above the 250 Hz 1/3 octave band. This is slightly different from previous 

results without the stiffener in which experimental and theoretical results only agreed 

above the 315 Hz 1/3 octave band. The normalised cross-power spectral density 

results have also shown a similar agreement. As presented in fig. 4.9, for cases in 

which the correlation coefficient was similar to theoretical results the same happened 

with the normalised cross-power spectral density. In general, for the great part of the 

experimentally obtained normalised cross-power spectral density results, the 

agreement between experiments and theory followed the same pattern as the 

correlation coefficient. The main difference is that when theory and experiments 

disagree such disagreement was more pronounced in normalised cross-power spectral 

density results. 
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Fig. 4.1 - Top view of plate on top of wooden box and sketch of its fixation to the steel frame. 
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the lines indicate the points location, 1 is the first point (fixed accelerometer) and 10 is the last point 
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4.5 Rectangular stiffened plate with four clamped edges 

A second clamped plate of regular geometry was employed in this 

experimental work. A removable steel bar was attached to this plate permitting the 

analysis of the influence of the perturbation (stiffener) on the plate vibration field. 

4.5.1 Description of the apparatus 

The flat plate was of 3.53 mm thick aluminium. It was (weakly) 

clamped along the edges by a wooden frame which was placed on a rigid wooden 

table. The exposed dimensions of the plate were 0.876 m x 0.576 m and it was 

divided, along its larger dimension, in two identical sections by a hollow steel bar 

having a cross sectional area of (25 x 25) mm^ and thickness of 3.16 mm (illustration 

in fig. 4.12). The steel bar was fixed to the plate by five light screws. This permitted 

the easily removal of the steel bar enabling a comparison of the vibration 

characteristics of the plate with and without the stiffener. The first three natural 

frequencies of transverse, longitudinal and torsional vibration of this bar are listed in 

table 4.2. Such natural frequencies were computed following the expressions 

presented by Blevins [79]. As shown in this table, the steel bar does not have many 

resonance frequencies in the frequency band of analysis. 

order of natural 

frequency 

transverse vibration 

(Hz) 

longitudinal 

vibration (Hz) 

torsional vibration 

(Hz) 

1 500.6 4489.8 2387.2 

2 1379.0 8979.6 4774.4 

3 2705.6 13469.0 7161.6 

Table 4.2 - Natural frequencies of vibration of the steel bar. 

An illustration of the test rig used is presented in fig. 4.10. Typical 

wavelengths for the plate were: 0.415 m at 200 Hz, 0.24 m at 600 Hz, 0.186 m at 1000 
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Hz and 0.131 Hz at 2000 Hz. Point excitation by a electrodynamic shaker (Ling 

Dynamic VI01) was used to vibrate the plate. The excitation signal employed was 

broadband random from 0 to 5000 Hz. The point marked 'Force' in fig. 4.11 indicates 

the position on which the force was applied. The vibrational response obtained was 

sufficiently high to guarantee a good signal-to-noise ratio. 

The experimental procedure employed was that described in section 

4.2 and the lines used are illustrated in fig. 4.11. Lines 3 and 5, and lines 1 and 7 were 

coincident, however results for lines 5 and 7 were carried out for the plate without the 

stiffener. The spacing between the ten equally spaced points used on each line was 1 

cm. 

The theoretical results used in the comparison with the experimental 

ones were based on Bolotin's dynamic edge effect method as derived in section 3.4.2, 

with the coefficients given by expressions (B.4) for a clamped edge and by 

expressions (B.IO), (B.l l) and (B.12) for a spring-supported edge (the steel bar 

dynamic characteristics defined the spring rotational, translational and coupling 

stiffnesses, as shown in Appendix B). As shown in Appendix E and section 4.4.2, 

exactly the same results can be obtained with the free wave model (section 3.5.2). For 

the free wave model, the reflection, transmission and evanescent coefficients are 

defined by expressions (C.4) for a clamped edge and by expressions (C.l l ) to (C.14) 

for a spring supported edge. 

The loss factor and modal density of this plate were estimated via 

measurement of point mobility and power injection following the procedure suggested 

by Clarkson as described in refs. [39,80]. As only an approximate estimate of these 

parameters was required, the point mobility was obtained in just one point. Ideally, at 

least three measurements points should be used in order to obtain a spatially-averaged 

estimate. The shaker was fed with broad-band random signal from the FFT analyser 

and the accelerometer was placed on the opposite face of the plate in line with the 

shaker contact point. Modal density estimates obtained following this procedure were 

similar to theoretical predictions (fig. 4.14). 

Typical estimated point mobilities for both stiffened and non-stiffened 

cases are presented in figs. 4.13a,b. In the loss factor estimation only one excitation 

point and ten vibration velocity measurement points were employed. Nevertheless, the 
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loss factor results obtained were reasonably similar to the ones reported by 

Mohammed [45] for the same plate and test apparatus. The loss factor, modal density 

and modal overlap factor results obtained for the plate with and without stiffeners are 

shown in figs. 4.14 and 4.15. The results presented in these figures are for constant 

bands of 200 Hz and the modal overlap factor was estimated from the relation M = 

'r|(f|.)n(f̂ )f̂  [45], where is the band centre frequency, n(f̂ ) is the modal density and 

ri(fg) is the loss factor. 

The results presented in fig. 4.15 are for the plate with the stiffener 

excited at only one point. As expected, the loss factor for the plate with the stiffener 

(fig. 4.15) is slightly higher than that for the plate without the stiffener (fig. 4.14). The 

stiffened plate theoretical modal density employed in the comparison was calculated 

as the sum of the modal density of a flat plate in flexural vibration and of a uniform 

beam in flexural vibration (equation (6.24), ref. [39]). 

4.5.2 Results for the plate without a stiffener 

The results for the correlation coefficient for the plate without a 

stifkner are presented in this section. Results G-om lines 5, 6 and 7 were used in this 

part of the work. 

A common characteristic of the results from lines 5, 6 and 7 was that, 

above the 1000 Hz one-third octave band, all experimental results approached the 

theoretical results (given by equation (3.23) combined with parameters (B.4)). Figures 

4.16 and 4.17 were included in order to illustrate this observation. As a matter of fact, 

it is clearly shown in fig. 4.17 that in each one-third octave band above 1250 Hz, the 

theoretical results on line B approach the experimental results. Reasons for this are 

two-fold. First, the number of modes that have resonance frequencies inside the 1250 

Hz 1/3 octave band was estimated to be 14, which is higher (even if one assumes that 

25 % of the modes are not excited due to shaker position) than the figure of eight 

modes suggested in the section 3.7.2 and ten as suggested by Steam [53]. Second, 

6om fig. 4.14 it is observed that above 1000 Hz the modal overlap factor is greater 

than unity. 
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As a means of checking the combined role of number of modes in the 

band and modal overlap factor in the applicability of the present approach on a 

practical situation, the results obtained on lines 6 and 7 were averaged in bands of 10 

Hz, 40 Hz, 100 Hz and 400 Hz in regions of low and high modal overlap. Some of 

such results obtained at line 6 are shown in fig. 4.18. On one hand, it is observed that 

for regions in which the modal overlap factor is higher than unity, the Aequency-

averaged correlation coefficients are similar to the theoretical ones, even in a narrow 

band of only 10 Hz; the correlation characteristics are rather insensitive to frequency 

bandwidth. On the other hand, for frequencies regions in which the modal overlap 

factor is lower than unity, the frequency-averaged correlation coefficients are 

extremely dependent on the width of the frequency band. Results from other 

frequency bands show similar behaviour. 

For the case of acoustically excited structures, Steam [76] reported that 

the degree of modal overlap does not influence correlation coefficient results. This is 

another result that is not corroborated by the present work. With the purpose of 

double-checking the present observations, the Aequency average was performed in 

bands of 10 Hz and 600 Hz for eight frequency bands whose centre frequencies were 

equally spaced. One group of frequencies was situated in a region of modal overlap 

factor lower than unity and the other group of fi-equencies was placed in a region of 

modal overlap factor higher than unity. A separation of 20 Hz was chosen for the 

centre frequencies to assure that the points from the line spectra used in the averaging 

process for the 10 Hz band were different in each consecutive band. 

Results for the &equency region with low modal overlap are presented 

in fig. 4.19 for points placed along line 7. The modal overlap factor in this frequency 

region was estimated to be around 0.6 as shown in fig. 4.14. It is verified in fig. 4.19 

that the 600 Hz result is always close to the theoretical estimate but the 10 Hz result 

varies considerably between each adjacent band. The 10 Hz-frequency-averaged 

results clearly exhibit modal behaviour, indicating that the modes in this frequency 

region are not overlapping (see figs. 4.13a and 4.21). If one examines a typical 

frequency response function of this plate (fig. 4.21), three clear resonance frequencies 

are observed in this frequency region; the first at around 330 Hz, the second at 400 Hz 

and the third at 440 Hz. This explains why the 10 Hz-firequency-averaged results at 
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centre frequencies 320 Hz and 340 Hz are so similar and at the same time why they 

are so different from results at centre frequencies 400 Hz or 460 Hz. 

The modal overlap factor is a measure of the ratio between average 

modal bandwidth (r|a) and average separation between resonance frequencies (5co = 

l/n(co), where n(co) is the modal density). Modal half-power bandwidth is defined as 

the difference between the frequencies at which the mean-square modal response is 

half its maximum value (3 dB down). A modal overlap factor equal or higher than 

unity indicates that at least three natural modes contribute significantly to the system 

response in a single frequency. A high modal overlap also implies a smooth frequency 

response function in which individual resonance frequency peaks can not be 

distinguished. Such smooth behaviour are exemplified by the point mobility results 

above 3000 Hz presented in figs. 4.13a and 4.21. 

Results for a frequency region in which the modal overlap factor is 

higher than unity is presented in fig. 4.20 for points placed along line 6. The modal 

overlap factor in this frequency region was estimated to be around 2.5. It is observed 

that, for frequency averages carried out in 10 Hz bandwidths, the results did not vary 

strongly between each adjacent band. Moreover, these results generally lie close to 

those averaged over 600 Hz bands (with the clear exception of centre frequency 3020 

Hz) and as consequence are not far from the theoretical estimates. The small 

difference between the theoretical and the experimental results observed in fig. 4.20 

are assumed to be related to the boundary conditions which are not perfectly clamped. 

It is not expected that such agreement would be improved if more points were used in 

the digital discretization of the response signals for the 10 Hz frequency-averaged 

results. 

Frequency-averaged results of the normalised cross-power spectral 

density of acceleration obtained along line 7 are presented in fig. 4.22. As shown, a 

strong disagreement between experimental and theoretical results is observed at 200 

Hz 1/3 octave band. Similar to what was observed for the correlation coefficient, 

experimental results for the normalised cross-power spectral density only approached 

theoretical results for frequencies above 1000 Hz. The main difference is that a 

disagreement between experiments and theory is much clearer in a presentation of 

normalised cross-power spectral density graph than in that of correlation coefficients. 

100 



From the results presented in this section we can state that: 

• for cases of low modal overlap (M < 1) the theoretical model of correlation 

coefficient presented in Chapter 3 is only valid as a frequency-average estimate for 

bands in which at least 8 to 10 modes are excited, 

• when the modal overlap factor is high (M > 1) the theoretical representation of 

correlation coefficients suggested in Chapter 3 can be used as a narrow band 

estimate for mechanically excited structures. The validity of such approach as a 

broadband estimate is only limited to the increase of importance of second order 

terms as the bandwidth increases (as discussed in section 3.4.2). 

• The normalised cross-power spectral density of acceleration has a similar 

behaviour to that of the correlation coefficient and same conclusions reached for 

the correlation coefficient also apply to this parameter. 

Further investigation is necessary to assess the reasons why the results 

presented by Steam [76] did not change with the increase in the modal overlap. This 

investigation could form part of a more thorough study of the influence of different 

types of excitation on correlation coefficients as suggested in section 4.4.2. 

4.5.3 Results for the plate with a steel bar (stiffener) attached 

This section presents the experimental results of correlation coefficient 

on the clamped plate with the steel bar attached. In this investigation, only one side of 

the panel was directly excited (as illustrated in fig. 4.11). The influence of the steel 

bar on the plate vibrational field is illustrated by comparing figs. 4.13a and 4.13b. The 

frequency response function has changed and is now much more complex than the one 

for the unstiffened plate. As a matter of convenience the stiffened plate was 

represented by two separate plate subsystems. In this model the steel bar acts as a 

coupling element between the two sides of the plate, reflecting and transmitting the 

incident energy. 

Some of the results obtained for points placed along lines 3, 4 and 5 are 

presented in fig. 4.23. The points used on these lines had similar distances to the 

nearest two edges and thus the theoretical model gave the same result for the three 

lines. As already explained, lines 3 and 5 were coincident, though line 5 indicates 
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measurements made on the plate without the stiffener and line 3 on the plate with the 

stiffener. Results for line 4 were for the panel with the steel bar attached. Above 1000 

Hz, results for all three lines were similar (e.g. 1250 Hz results presented in Gg. 4.23) 

while below 1000 Hz those results were quite different (e.g. 630 Hz results presented 

in fig. 4.23). As observed on the plate without the stiHener (section 4.5.2), the 

frequency-averaged experimental results approached the theoretical ones in one-third 

octave bands above 1250 Hz. This is a clear indication that, as predicted by our 

theoretical model, the influence of both clamped edges is dominant on the region in 

which lines 3 and 4 are situated. Moreover, this also shows that a perturbation placed 

outside a region one wavelength far from the measurement points will not affect the 

frequency-averaged correlation coefficient associated with these points. However, for 

points situated in a region less than one wavelength far &om the perturbation (steel 

bar) the situation is quite different. 

As presented in fig. 4.24, experimental results of correlation coefficient 

obtained on the right (line 1) and left (line 2) hand sides of the steel bar were 

dissimilar. In order to represent this situation the theoretical correlation coefficients 

were estimated on the basis of the two subsystems model. On the side in which the 

panel was directly excited, the correlation coefficients were calculated using the 

reflection and evanescent (reflection side) field component coefficients (Appendix C). 

On the indirectly excited side the transmission and evanescent (transmission side) 

field component coefficients (Appendix C) were used for points approaching the steel 

bar. These wave coefficients were transformed into Bolotin's edge effect method 

parameters using the equivalence equations presented in Appendix E. Near the other 

boundaries, parameters for a clamped edge were used. 

In the region in which line 1 was situated the reflected and evanescent 

reflected field components were dominant and the theoretical model employed was 

able to predict the correlation coefficient with reasonable success on 1/3 octave bands 

above 1000 Hz. On the other hand, transmitted and transmitted evanescent field 

components were more important in the region in which line 2 was placed. Again, the 

theoretical model was able to predict such results with reasonable success. Below 

1000 Hz, no agreement between the theoretical and experimental results was 

achieved. Some of the results obtained on lines 1 and 2 are presented in fig. 4.24. 
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For cases in which the experimental results were averaged in bands of 

varying width, the observations of the previous section were confirmed. For instance, 

in fig. 4.25 results for line 1 averaged in bands of 10 Hz, 40 Hz, 100 Hz and 400 Hz 

are presented. As shown for frequency regions in which the modal overlap is low, 

experimental results only approached the theoretical ones for the 400 Hz bandwidth. 

However, when the overlap factor is higher than unity, as for the 3300 Hz centre 

frequency, results for the four bandwidths analysed are coincident and they are also 

reasonably close to the theoretical results. Similar results were obtained for 

experimental results obtained on points along lines 3, 4 and 5 for averages carried out 

in the same bandwidths. 
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Fig. 4.11 - Position of measurement lines and excitation point on clamped plate with stiffener. 
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Fig. 4.13a - Real and imaginary parts of point mobility for clamped plate without stiffener. 
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Fig. 4.23 - Frequency-averaged correlation coefficients on lines 3, 4 and 5. 1/3 Octave bands. 
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10 Hz band; + + 40 Hz band; 100 Hz band; * * 400 Hz band. 
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4.6 Rectangular flat plate with four free edges 

4.6.1 Description of the apparatus 

A flat aluminium plate of 2 mm thickness suspended by two thin wires 

from a steel frame was another structure used in the experimental investigation of 

frequency-averaged correlation coefficients. The plate was of rectangular geometry 

with sides of 0.50 m and 0.70 m length and it had free boundary conditions all along 

the edges. No damping material was placed on the plate. An sketch of the plate and rig 

used are shown in fig. 4.26. Typical bending wavelengths for this plate were: 0.442 m 

at 100 Hz, 0.167 m at 700 Hz, 0.14 m at 1000 Hz and 0.081 m at 3000 Hz. The plate 

was excited with broadband random excitation from 0 to 5000 Hz by a 

electrodynamic shaker (Ling Dynamic VI01) at only one position (marked F on fig. 

4.26). 

The experimental procedure employed in this investigation is described 

in section 4.2. Acceleration signals were acquired in pair of points situated along lines 

1, 2 and 3 as illustrated in fig. 4.26. The measurement points were placed along these 

lines in 1 cm steps. The first point of line 1 was placed just 5 mm from the edge while 

the first point of line 2 was situated 10 mm from the plate corner. 

Bolotin's dynamic edge effect method results were used as theoretical 

estimates of the correlation coefficients. As usual the procedure suggested in section 

3.4.2 was combined with parameters presented in Appendix B (equations (B.5) to 

(B.7)) and the coefficients calculated from the numerical integration of equation 

(3.23). Needless to say, similar results were obtained when free wave theoretical 

results were used instead (equation (3.41) combined with reflection and evanescent 

wave coefficients from Appendix C). In Appendix E, a small difference in the results 

from direct (Appendix B) and indirect (Appendix C combined with expressions 

presented in Appendix E) derivations of the parameters Cj. and Cy was reported. Both 

expressions, B.7 and E.25, were then used in the theoretical values calculated for line 

1. As shown in fig. 4.28, both values of correlation coefficients are very similar 

indicating that the small difference in the and Cy expressions is negligible. 
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In view of the low damping of this plate the modal overlap was low 

within the frequency range analysed. The estimated modal density for this plate was 

0.056 modes/Hz and the average dissipation loss factor was assumed to be around 

0.001 [80]. Thus, typical values of modal overlap factor were: 0.005 at 100 Hz, 0.03 

at 600 Hz, 0.05 at 1000 Hz and 0.22 at 4000 Hz. An illustration of a typical frequency 

response function (point inertance at the excitation point) is presented in fig. 4.27 and 

it is observed that most of the resonance peaks do not overlap within the 0 to 4000 Hz 

range. Therefore, the experimental results were only expected to agree with theoretical 

ones for frequency bands with width greater than 200 Hz, as more than ten modes are 

estimated to be excited in this bandwidth. 

4.6.2 Discussion of results 

The aim of this part of the investigation was to check the theoretical 

results for boundary conditions other than simply-supported, clamped or spring 

supported. With the addition of the free boundary condition we could cover all 

boundary conditions encountered in practice. A free edge boundary condition is not 

directly relevant to practical studies of internal radiation; however it can give a lower 

limit of sound pressure levels inside the enclosure that can be achieved by modifying 

the structure boundary conditions. This type of control has been discussed by Cheng 

and Nicolas [33] and it is further analysed in Chapter 5. 

Experimental results obtained on lines 1, 2 and 3 and that were 

averaged in 1/3 octave bands agreed with theoretical results above the 800 Hz 1/3 

octave band. This is in accordance with the observation made at the end of section 

4.5.2 as the bandwidth of the 800 Hz 1/3 octave band is 183 Hz and ten modes were 

predicted to be excited at this frequency band. In addition, good agreement was also 

observed for lines 1 and 2 on some frequency bands below 800 Hz. 

In particular, results for line 2 agreed with the theory on all frequency 

bands analysed and the agreement was exceptionally good above, and including, 250 

Hz. Such good agreement near the comer was rather surprising as the Bolotin's 

dynamic edge effect method parameters presented in Appendix B and the reflection 

and transmission coefficients presented in Appendix C were derived assuming that 
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only one edge is important to the edge solution and the other three edges do not affect 

this solution. This is a standard assumption of Bolotin's dynamic edge effect method 

[56] and it is the type of consideration normally associated with the derivation of 

reflection coefBcients on flexural wave motion [82]. Nevertheless, the agreement 

observed on line 2 together with the results obtained for line C on the simply-

supported plate (section 3.7) demonstrates that the frequency-averaged correlation 

model here presented is a valid approximation even near the corner of a structure. 

A selection of one-third octave band results obtained on lines 1, 2 and 

3 is presented in figs. 4.28,4.29 and 4.30. As mentioned, reasonable agreement with 

the theory has been observed on some frequency bands below 800 Hz. This agreement 

was more pronounced for points approaching the edges (line 1) and the corners (line 

2) even when less than 4 modes are estimated to be excited in one firequency band 

(e.g. 250 Hz, 1/3 octave band). This is probably due to the interference of the waves 

near the edges. Hence, as the vibration field near the edges dominates the acoustic 

radiation (as discussed in Chapter 5) reasonable results are expected to be obtained 

with the hybrid model even when a small number of structural modes are excited in a 

frequency band. On the other hand, for points far from the edges (in terms of 

wavelength) the suggestion (sections 3.7,4.5 and ref. [53]) that eight to ten modes 

need to be excited in a frequency band for the validity of the present model is also 

applicable to the case of free edges. 

Correlation coefficients frequency averaged in narrow bands were not 

expected to agree with theoretical results due to the vibration field low modal overlap. 

This was confirmed by the computation of frequency-averaged results in bands of 

varying width. The only exception were results on line 2 as most of the narrow band 

results (10 Hz and 40 Hz) were also similar to results in wider bands (100 Hz and 400 

Hz). An example of this agreement on line 1 is presented in fig. 4.31 for bands with 

centre fi-equency 300 Hz. The strong interference near the corner appears to be the 

explanation for this agreement. On the other lines, only results that were frequency 

averaged in 400 Hz bandwidths approached the theoretical results. 

Experimental results of the real part of the normalised cross-power 

spectral density obtained along line 2 also agreed with the theoretical results for most 

of the 1/3 octave bands above 160 Hz. As shown in fig. 4.32, the agreement was good 
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till the last frequency band analysed, 4000 Hz, and it confirms our previous 

conclusion that all observations that are valid for the correlation coefficient are also 

valid for the normalised cross-power spectral density. A slightly disagreement was 

only observed when kr is equal to zero indicating that the present theory will 

overpredict the results when either the wavenumber or the separation distance 

between the two points is very small. However, this disagreement could also have 

been caused by experimental circumstances. This is related to the fact that the distance 

between the accelerometers in the first measurement position is not zero but equals 

the diameter of the accelerometer as both were placed one beside the other in this 

measurement position. 

All the 18 one-third octave bands analysed (80 Hz - 4000 Hz) are 

included in fig. 4.32 in order to illustrate how experimental and theoretical results 

compare. As shown, there is a spread between good and bad agreement in different 

frequency bands. In general, in this chapter, when we suggest there is a good 

agreement between experimental and theoretical results it is because more than fifty 

percent of all bands in a frequency region present good matching between 

experimental and theoretical results. Due to space limitations, it was difficult to 

include all frequency bands analysed for each of the lines studied in the different 

plates used in the experimental investigation. As a result, only four bands are chosen 

for each line in order to illustrate the main points discussed. 
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Fig. 4.27 - Frequency response function of aluminium plate with free edges. Point Inertance. 

118 



Line 1 -free plate - 250 Hz Line 1 - free plate -

theory(1) 

theory(2) 

exper 

Line 1 - free plate -1000 Hz Line 1 - free plate - 2000 Hz 

P -0.5 Q -0.5 

Fig. 4.28 - Frequency-averaged correlation coefficient results along line 1 on free rectangular plate. 1/3 
octave bands. Experimental results due to point mechanical excitation. theoretical results using 
free edge parameters from direct derivation (Appendix B,(B.7)); + + theoretical results using free edge 

parameters from indirect derivation (Appendix E (E.25)); experimental results. 
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Fig. 4.29 - Frequency-averaged correlation coefficient results along line 2 on free rectangular plate. 1/3 
octave bands. Experimental results due to point mechanical excitation. theoretical results 
(eq. (3.23)); — diffuse bending wave field (eq. (3.18)); experimental results. 
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Fig. 4.30 - Frequency-averaged correlation coefficient results along line 3 on free rectangular plate. 1/3 
octave bands. Experimental results due to point mechanical excitation. theoretical results (eq. 

(3.23)); experimental results; + + + diffuse bending wave field result (eq. (3.18)). 
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Fig. 4.31 - Frequency-averaged correlation coefficient results along lines 1,2, 3 on free rectangular 
plate. Experimental results due to point mechanical excitation on bands of varying width, key; 

theory (eq. (3.23));; 10 Hz; + + + 40 Hz; 100 Hz; * * 400 Hz. 
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Fig. 4.32 - Frequency-averaged real part of the normalised cross-power spectral density along line 2 on 
free rectangular plate. 1/3 octave bands. Experimental results due to point mechanical excitation. 

theoretical results (eq. (3.23)); - - - - - - - experimental results. 
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4.7 Two irregularly shaped coupled plates 

4.7.1 Description of the apparatus 

This part of the experimental investigation was carried out on two 

coupled steel plates of same thickness (3 mm), irregular shapes, identical material 

properties and with &ee edges. These plates were coupled by means of ten thick steel 

straps that were attached to the plates by heavy bolts. Some damping material was 

added to the plates. The plate system was suspended 6om a steel frame by a hook. 

The dimensions and particulars of this rig are described in ref. [83] and only a sketch 

of this rig is here presented (fig. 4.33). Typical wavelengths for both plates were: 

0.544 m at 100 Hz, 0.181 m at 900 Hz, 0.14 m at 1500 Hz and 0.086 m at 4000 Hz. 

Experimentally obtained estimates of loss factor and modal overlap 

factor for both plates are presented in 6g. 4.34. These loss factors were estimated 

using a power iryection technique in which coupling loss factors were also obtained 

(ref [84]). Hence these individual loss factors do not include energy transferred to the 

other plate. The theoretical modal density for the upper plate was estimated to be 

0.0656 modes/Hz and for the bottom plate was 0.0926 modes/Piz (results obtained 

from ref [84]). 

The experimental procedure employed in this investigation is described 

in section 4.2. Broad-band random was the forcing function used to excite the upper 

plate through a non-contact magnet and coil shaker. Only one excitation point was 

used, marked 'Force' on fig. 4.33. Acceleration signals were acquired at points 

situated along line 1 on the upper plate and along lines 2, 3 and 4 on the lower plate. 

The experimental results were compared to theoretical estimates 

obtained with the Bolotin's dynamic edge effect method. The procedure suggested in 

section 3.4.2 was combined with parameters presented in Appendix B (equations 

(B.5) to (B.7)) and the coefficients calculated using numerical integration. These 

theoretical expressions are only applicable to rectangular regions. They are here 

compared to experimental results from odd-shaped plates in order to assess how much 

odd-shaped results depart from the ideal rectangular plate results. 
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4.7.2 Discussion of results 

From the experimental results obtained on the upper and lower plates 

and averaged in 1/3 octave bands it was observed that they only approached the 

theoretical results in 1/3 octave bands above 500 Hz. The exception for this were 

results for line 4 that were close to theoretical ones for all 1/3 octave bands above 250 

Hz. Though, as shown in figs. 4.35 and 4.36, the agreement between theoretical and 

experimental results is only reasonable for lines 1, 2 but relatively good for line 4. In 

particular, the disagreement was more pronounced for points situated along line 3 (fig. 

4.36) as this line was placed very close to a non-rectangular corner. The main reason 

for this difference is the irregular geometry of both plates as the derivation of 

frequency-averaged correlation coefficients presented in Chapter 3 presupposes that 

the plates have perpendicular edges. Hence, the theoretical results here employed are 

only an approximation of the real correlation coefficients of plates of irregular 

geometry. The inclusion of non-perpendicular comers on the theoretical derivation 

presented in Chapter 3 can be achieved by including the angle between the comers in 

the geometrical analysis. This is left as a suggestion for future work. 

The good agreement with the theory observed for experimental results 

obtained at line 4 when only six modes were predicted to be excited ( 315 Hz 1/3 

octave band) is probably due to the type of excitation applied to the lower plate (fig. 

4.36). In this plate the excitation was applied almost uniformly through the straps 

along one of its edges. Such type of excitation can excite all the modes of the plate in 

comparison with the point excitation that will not excite modes that have nodal lines 

that pass through the excitation point. 

Some of the experimental results obtained on lines 1 and 2 are shown 

in fig. 4.35. The measurement points used on these lines were situated at same 

distances from the nearest edge. In both lines the fixed accelerometer was placed 5 

mm from one of the edges (that had free boundary conditions) and 30 cm from the 

other edge. For line 1 the correct boundary condition of the non-free edge would be 

given by the reflection properties of the straps coupling. These properties would be 

based on equivalent translational and rotational stiffness as employed in the 

theoretical results for lines 1 and 2 presented in section 4.5.3. 
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Based on the observations made in section 4.5.3, we can suggest that in 

view of the relative value between a typical bending wavelength above 800 Hz (less 

than 0.2 m) and the distance to the straps coupling (0.305 m) only the inner solution 

of Bolotin's edge eHect method obtained for this edge will contribute to line 1 

theoretical results. As for different boundary conditions this inner solution gets similar 

the farther the points depart from the edges (in terms of wavelength), the use of &ee 

boundary condition for this other edge is a reasonable approximation. In addition, if 

fewer straps were used to couple both plates, the boundary conditions would approach 

fi-ee edges due to a decrease in the edge translational and rotational stiffness. 

Consequently, free edges were assumed in the estimation of theoretical 

values of correlation coefficients for lines 1 and 2 and these values were coincident. 

Even considering that both plates had different geometries and the type of excitation 

applied was not the same it was observed that the experimental results on lines 1 and 

2 were reasonably similar and not much different from the theoretical ones (fig. 4.35). 

Results obtained on bands of varying v îdth confirmed the conclusions 

presented at the end of section 4.5.2. Because of the low modal overlap of both plates 

along the frequency analysed (as presented in fig. 4.34) only results for the wider 

bands approached the theoretical results. The small difference observed between 

results for bands of 400 Hz widths and the theoretical ones were due to the plate 

irregular geometry. Nevertheless, as shown in fig. 4.37, results on line 4 agreed with 

the theoretical ones as this line was situated reasonably far 6om all edges. 

It was also verified that theoretical results for points situated far from 

the edges approached the diffuse bendmg wave field ones as the firequency increased. 

Another observation was that the agreement between the 400 Hz bandwidth and the 

theoretical results on line 2 improved with frequency. Similar observation applies to 

results in narrower bands that approached the 400 Hz bandwidth results as the 

frequency increased. The reason for the former is the decrease in the bending 

wavelength that makes the non-perpendicular comer influence less important along 

line 2 while the reason for the latter is the increase in the plates' modal overlap factor. 

The relative values between the real and imaginary parts of the 

normalised cross-power spectral density and between the correlation coefficient and 

the quadrature density coefficient (as defined in section 3.3) were also investigated in 
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this work. In figure 4.38, experimental results for the correlation coefficient and for 

the quadrature density coefficient (estimated from the imaginary part of the cross-

spectrum) at lines 1 and 2 that were averaged in 1/3 octave bands are presented. It was 

observed that for these two lines the quadrature coefficient was close to zero for all 

1/3 octave bands below 2500 Hz. Similar situation was verified for results obtained at 

lines 3 and 4. If one carefully examines the equations that define the cross-spectrum 

of acceleration of randomly excited structures expanded into its normal modes one 

verifies that the imaginary part of this function is controlled by the cross-coupling 

between the normal modes. For undamped systems this imaginary part is zero, 

however when damping is taken into account this imaginary part will be controlled by 

the modes average bandwidth (Tjm) and by the average separation between them (8f). 

As already discussed in this chapter, these two parameters define the modal overlap 

factor of a structure. Therefore, one can conclude that as the modes start to overlap the 

value of the quadrature density coefficient will approach the value of the correlation 

coefficient (estimated from the real part of the cross-spectrum). This is exactly what 

was observed in this investigation. When the modal overlap factor was close to one, 

the values of the quadrature density coefficient were of same order as the correlation 

coefficient values (3150 Hz 1/3 octave band, fig. 4.38). Similar observations apply to 

the normalised cross-power spectral density. 

The imaginary part of the normalised cross-power spectral density was 

neglected in the equations presented in Chapter 2 as it only affects the cross-coupling 

coefficient (equation (2.14)), which for cases of lightly damped and well separated 

acoustic modes was assumed to be negligible. However, for cases of external acoustic 

radiation and for plates that radiate into modally-dense damped acoustic spaces, the 

cross coupling coefficient may play an important part in the estimation of the 

nearfield radiated pressure. As a result, the extension of this work to the analysis of 

external radiation as proposed by Fahy [81], who assumed that the imaginary part can 

be neglected, will lead to reliable results for cases of structural systems vyith low 

modal overlap. For systems with high modal overlap further studies must be carried 

out in other to assess the extent of the error caused by the neglection of the cross-

coupling coefficient. 
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Notes: 

1) Dimensions in m m : 

2) Plate thickness = 3 mm: 

3) Drawing not to scale. 

Upper Plate 

ower P a t e 

Fig. 4.33 - Sketch of measurement lines used and dimensions of coupled plates. 
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Fig. 4.34 - Loss and modal overlap factors for coupled irregular shaped plates. Constant bands of 200 
Hz. -I—I- upper plate (plate 1), *—* lower plate (plate 2). [84] 
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Fig. 4.35 - Experimental results of correlation coefficient averaged in 1/3 octave bands. Point 
excitation applied in plate in which line 1 is placed. theoretical results (eq. (3.23)); 

experimental results along line 1; experimental results along line 2. 
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Fig. 4.36 - Experimental results of correlation coefficient averaged in 1/3 octave bands. Lines placed 
on lower plate and mechanical excitation applied to upper plate. Line 3: experimental 

results, + + theory (eq. (3.23)). Line 4: experimental results, * * theory (eq. (3.23)). 
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Fig. 4.37 - Experimental results of correlation coefficient averaged on bands of varying width. Point 
excitation applied on upper plate and lines 2 and 4 situated on lower plate. theoretical results 

(eq. (3.23)), bandwidths: + + 1 0 Hz, - - 40 Hz, 100 Hz, * * 400 Hz. 
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Fig. 4.38 - Correlation coefficient and quadrature density coefficient of acceleration averaged in 1/3 
octave bands. Point excitation applied to plate in which line 1 is placed. Line l: - . - • - • - correlation, 

quadrature. Line 2; correlation, + + quadrature. 
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4.8 Roof and windscreen of a passenger car 

In refs. [54,78] results of measurements of vibration field correlation 

carried out at different parts of a car body shell are reported. Such results indicate that 

even when a large number of modes are excited in a frequency band a diffuse field is 

not necessarily set up in a two-dimensional plane structure. In part, the results of that 

investigation motivated the development of the approach presented in Chapter 3, as a 

means of representing vibration field correlation for different boundary conditions. 

Thus, in what follows, a comparison between some of those experimental results and 

the model suggested in Chapter 3 is presented. 

4.8.1 Experimental procedure and description of the apparatus 

Vibration field correlation measurements, identical to the ones reported 

in the previous sections, were made on the body of a Nissan Bluebird passenger car 

which was parked inside a laboratory room measuring 8 m x 5 m x 3 m. Three sources 

of random excitation were used: (i) that of a reverberant sound field set up by 

acoustically exciting the laboratory room with white noise; (ii) that of a sound field 

set up by acoustically exciting the car interior with white noise; and (iii) that set up by 

mechanically exciting the car offside lateral pillar. 

Two lightweight accelerometers (Bruel & Kjaer 4374) were placed 

along different lines on certain parts of the car body. Results for four lines on the roof 

(shown in fig. 4.39) and two on the windscreen (shown in fig. 4.39) are here included. 

Results at other lines along the car body were also obtained and presented in ref [54]. 

In each set of measurements one accelerometer was held at the beginning of the line 

(marked 1 in fig. 4.39) and the other displaced from it along the line at eight equally 

spaced points. The spacing varied with the frequency range of the measurements and 

for the 0-400 Hz range the spacing was 3 cm. The acceleration signals were acquired 

using an HP 5420A Signal Analyzer and transferred to a PC-compatible 

microcomputer, via an IEEE interface. The 1/3-octave-band-averaged correlation 

coefficients were then estimated using equation (3.6). 
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4.8.2 Discussion of results - roof vibration field 

In the analysis presented in refs. [54] and [78] it was suggested that the 

roof vibrational field approached that of a doubly-curved shell. This suggestion was 

based on the geometrical characteristics of the roof and on experimental results of 

correlation coefficients, that were clearly different for two perpendicular directions in 

a certain frequency region. The estimation of the ring firequencies of the equivalent 

doubly curved shell model employed was not straightforward because the roof 

curvature varied along the two principal directions. Inspection of the roof dynamic 

characteristics was employed in this estimation. The lower ring frequency was 

estimated to be around 100 Hz as no resonant modes were present in the measured -

roof frequency response functions [54,78] below this frequency. The upper ring 

frequency was assumed to be around 300 Hz. 

From frequency response functions measured near line D (presented in 

ref. [54]) it was observed that no mode was excited below 150 Hz and hence, the 

lower ring frequency in the region where line D was placed was assumed to be 150 

Hz. This was the result of a different roof curvature near line D. The experimentally 

estimated roof modal density was almost flat above 500 Hz and approached that of an 

equivalent flat plate of 0.8 mm thickness. The estimated modal density for the 

equivalent plate is 0.56 modes/Hz [78]. 

In the frequency range between the lower ring frequency, and Vz 

times the upper ring frequency, the bending wavenumber in a doubly curved shell 

depends upon the wave direction. This was the reason used in ref. [78] to explain the 

change of the correlation coefficient zero crossing and shape with the lines 

orientation. An expression for the dispersion relation of a doubly curved shell is 

presented in Appendix F. This dispersion relation is here employed in the estimation 

of the centre frequency wavenumber for different wave directions. These 

wavenumbers were combined with expression (3.23) and the parameters for clamped 

edges (equations (B.4)) and the correlation coefficients computed from numerical 

integration of equation (3.8). These correlation coefficients were evaluated for 

different lines and plotted against the experimental results at these lines. 

130 



In figs. 4.40 and 4.41 results at lines A, B, C and D for 250 Hz and 315 

Hz 1/3 octave bands are presented. As shown, the variation of the experimental 

correlation coefficients with the lines orientation is quite clear and the theoretical 

results were able to represent this variation. Bearing in mind that the roof curvature 

varied along the two principal directions and that the edges were not clearly defined, 

the agreement between the experimental and theoretical results was considered 

reasonable. Above the 315 Hz 1/3 octave band both theoretical and experimental 

results tended to approach the results for a diffuse bending wave field. As discussed in 

ref. [78], only at 1000 Hz 1/3 octave band was the roof vibrational field considered 

nearly diffuse. 

4.8.3 Discussion of results - windscreen vibration field 

The other part of the car that could be idealised as a simple 

homogeneous structure was the windscreen. Such model is a clamped flat plate of 

equal windscreen area and thickness. The experimentally estimated modal density 

confirmed this model as a reasonable approximation for the windscreen [78]. 

Theoretical values of correlation coefficient were computed for points along lines E 

and H (illustrated at fig. 4.39) following this clamped plate model. Typical 

wavelengths for the windscreen were; 0.649 m at 100 Hz, 0.458 m at 200 Hz, 0.41 m 

at 250 Hz and 0.365 m at 315 Hz. 

Experimental results obtained at these lines are presented in fig. 4.42. 

Excitation was that set up by acoustically exciting the car interior with white noise. 

The fixed accelerometer for line E measurements was placed at the top of this line, 

close to the connection with the roof, while the fixed accelerometer for line F was 

placed at the junction of both lines. As shown in fig. 4.42, the results at both lines are 

quite different and in view of the relative value of the wavelength and the distance 

from the edges it appears that the evanescent waves generated at the top edge 

dominates the vibration field in the region where lines E and H were placed. The 

theoretical results were able to represent this influence as illustrated in fig. 4.42. The 

agreement between theoretical and experimental results were only reasonable due to 
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non-regular geometry and low modal density (n(f) = 0.074 modes/Hz) of the 

windscreen. 

The theoretical representation suggested in Chapter 3 appears to be a 

valid approximation even for practical structures like a car body shell. Some of the 

points raised in refs. [54] and [78] as reasons for the departure of the roof vibrational 

field from a diffuse field state, even when a large number of natural modes are 

assumed to be excited, have been proved to be valid. Wavenumber variation with 

wave propagation direction and edge boundary conditions were the points 

incorporated in the present theoretical model. The influence of the excitation on the 

present approach remains to be better addressed, however for point-excited and 

indirectly-excited system good results have been obtained. - . 
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Fig. 4.39 - Position of measurement lines on roof and windscreen with dimensions in metres. 
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Fig. 4.40 - Roof correlation coefficients, 250 Hz (1/3 octave band). theoretical results (eq. 
(3.23)); - • internal acoustic excitation; external acoustic excitation; 

mechanical excitation. 

133 



U n e A - 3 1 5 H k 

ac. exL 

0 0 1 5 &2 0 2 5 

0.5 

8^^ 

Line B - 315 Hz 

theory^ ^ 

- ac. exl 

ac. inL 

0 0 ^ &1 &15 0 2 0 2 5 
n[m) 

Line C -315 Hz Line D - 3 1 5 Hz 

mech 

0 0.05 0.1 0.15 0.2 0.25 

0.5 

0 0 

-0.5 

\\ 
\ \ 

theory^ \ 

-.ac.int. 

0 0.05 0.1 0.15 0.2 0.25 
r(m) 
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4.9 Conclusions 

From the results presented in this chapter the following conclusions 

can be drawn about the theoretical model of randomly excited two-dimensional 

vibration fields represented in terms of correlation coefficients, as presented in 

Chapter 3 : 

(i) For cases of low modal overlap (M < 1) this model is valid as a Aequency-

average estimate in bands in which at least eight to ten modes are excited at 

resonance. This conclusion agrees with similar one reached by Steam [53,76] 

in the analysis of diffuse bending wave fields. 

(ii) When the modal overlap is high (M > 1) this model can be used as a narrow 

band estimate. 

(iii) The validity of the present model as a broadband estimate is only limited to 

the increase of importance of second order terms as the bandwidth increases 

(as discussed in section 3.4.1). 

(iv) For points in a region one wavelength from the edges it was found that the 

experimental and modal summation results depart considerably from 

correlation coefficients as given by the diffuse bending wave field assumption. 

The model presented herein was able to reproduce with reasonable precision 

the distortion field created by the edges and corners. 

(v) Away &om the edges (distance greater than at least one wavelength) the 

theoretical and experimental correlation coefficient results approached that 

given by the diffuse bending wave field assumption irrespective of the 

boundary condition. 

(vi) When the Bolotin's dynamic edge effect parameters (Appendix B) and/or 

reflection and transmission wave coefficients (Appendix C) are employed, the 

experimental results obtained on simply-supported, clamped and free plates 

are predicted with reasonable precision using the present model. 

(vii) For the case of spring supported boundaries (like stiffeners), the correlation 

characteristics of the vibration fields on the reflection and transmission sides 

are satisfactorily predicted. 
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(viii) Despite the fact that the theoretical results were derived using the assumption 

of spatially-uncorrelated random excitation, it was experimentally verified that 

they can be used as an approximation for cases of mechanically excited plates 

and plates excited by diffuse acoustic fields. It was also verified that they 

apply to directly and indirectly-excited plates. 

(ix) Free wave and modal representation of correlation coefficients were shown to 

be equivalent, irrespective of the plate boundary conditions. This conclusion 

supports previous analysis of equivalence between wave and modal 

representation of two- and three-dimensional wave fields as presented by 

Waterhouse and Cook [73], Chu [60] and Langley [55]. 

(x) The conclusions here presented for correlation coefficients are also valid for. 

the frequency-average normalised cross-power spectral density of 

acceleration. 

(xi) When the theoretical results are modified in order to account for changes in 

the wavenumber due to curvature effects (Appendix F), the experimental 

results obtained on a car roof are reasonably well predicted with the model 

proposed. 
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CHAPTER 5 
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This chapter presents the application of the equations introduced in 

Chapter 2 to the prediction of the sound pressure response inside an acoustic cavity 

due to one vibrating wall. The bending wave field generated by the random vibration 

of the thin wall is modelled using the approximate modal and free wave 

representations of Chapter 3. Comparison are presented for the results of two different 

rigs in one-third octave and in narrow frequency bands. 

5.1 Description of the computation routine 

The computational routine used to estimate the pressure response 

inside an acoustic cavity due to a bounding random vibrating plate is described in this 

section. This routine computes the terms of equation (2.16) 

. CL("). (2.16) 
V n /In L/ln In J 

using closed form expressions for the acoustic cavity natural frequencies and mode 

shapes (eqs. (5.3),(5.4)), experimental estimates of acoustic loss factors, and 

numerical integration to compute the coupling coefficient. The numerical integration 

routine employed in the computation of the coupling coefficient is described in 

sections 5.1.1, 5.1.2 and 5.1.3. 

The final result is expressed as a ratio between the autospectrum of the 

space-averaged sound pressure inside the cavity (Sp(co)) normalised by the 

autospectrum of the space-averaged plate vibration acceleration (Sa((o)). The space 

average of the pressure inside the cavity can be obtained either from the response in a 
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large number of cavity points or by obtaining the space average of each acoustic mode 

shape. In this second case we have that 

V n (x, y, z)) = A {V n (x, y, z)dV, 
V 

(5 1) 

where < > denotes spatial average. Substituting equation (5.1) in equation (2.16) we 

.ency averaged ratio <p^>/< 

(Sp(x,y,z,(o)) (p^c^):s 

have that the frequency averaged ratio <p^/<a^ is given by 

Z 
1 

(5.2) 
(SXm)) V' 

Alternatively, the autospectrum of the sound pressure in a point inside the cavity 

(Sp(x,y,z,co)) can also be directly computed from equation (2.16). The results can be 

estimated for any frequency and so, they can be compared to narrow band or 

frequency-averaged experimental results. The program was written in Fortran and 

runs in a SunSparc workstation or in a PC-compatible computer. The output was 

downloaded to a MATLAB routine in order to obtain a graphical output of the results. 

The natural frequencies and mode shapes of the acoustic modes of a 

rectangular hard-walled acoustic cavity are expressed as [26] 

f 
f \ 2 f \ 2 f \ 

& \ 
fx + + 

2 \ U y J 

Yn(x,y,z)=C0S r.Tix 
L. 

cos 
f \ 
V L , y 

c \ r,7iz 
cos 

L, 

(5.3) 

(5.4) 

where L^, Ly, are the internal dimensions of the acoustic cavity and r^, x̂ , r̂  are 

positive integers. In the low Aequency range (from 0 to the frequency of the 10th 

acoustic mode) all modes are included in the summation. However, above the 

frequency of the 10th acoustic mode or when more than 5 acoustic modes are excited 

in a frequency band, only the acoustic modes that have natural frequencies within the 

frequency band of interest are included in the summation. This procedure enables the 

computation of the response in bands in which no acoustic mode is excited and saves 

computer time by avoiding including modes that contribute little to the response in a 

specific frequency band. The modal loss factors are estimated from experimental 

measurements of the acoustic cavity frequency-averaged loss factors. 
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The numerical integration procedure used to compute the coupling 

coefficient between each acoustic mode and the vibration field at specific frequencies 

is discussed in the next three sections. The numerical integration results were checked 

against the closed form result for the integral of the product of two functions similar 

to the ones computed for the case of hard-walled acoustic cavities. The coupling 

coefficient was assumed constant in each frequency band and computed for each 

acoustic mode that was included in the modal summation. This is based on the fact 

that the coupling coefficient is a smooth function of frequency and therefore, the error 

associated with assuming it does not depart considerably from the value computed at 

the centre frequency of the band is small. This procedures enables the saving of 

considerable amount of computer time. 

5.1.1 Coupling coefficient between an acoustic mode and a vibration 

field 

It was shown in Chapter 2 that for coupling between acoustic modes of 

an enclosed fluid space and a bounding vibration field a direct coupling coefficient 

(C n̂n(G))) can be defined as 

= ^ j{R.e[y/x.,,y,,X2,y2,m)]Yn(x,,y,,zjYn(x:2,y2,Zo)dx,dx2dy,dy2, (5.5) 

s s 

where Yn(Xi,yi,Zo) represents the acoustic mode shape at a point Xi=(x,,y,), Re 

[Ya( î)yi)X2,y2,o))] is the real part of the normalised cross-power spectral density of the 

vibration field acceleration between points (x;,y,) and (X2,y2) and S is the interface 

area (usually the plate area). 

The acoustic modes of enclosures of any type or shape can be obtained 

either numerically via a FEM code or analytically in some specific cases (e.g., 

equations (5.3) and (5.4)). The normalised cross-power spectral density of the 

vibration field acceleration can be obtained from the approximate representation of a 

vibration field as presented in Chapters 3 and 4. For instance, for the case of a simply-

supported flat plate the real part of the normalised cross-power spectral density of 

acceleration (Re[Y!i() ,̂,yi,X2,y2,m)]) is given by equation (3.17'). For other boundary 

conditions results for the above parameter are computed using equation (3.23') and 
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the edge parameters presented in Appendices B, C and E. Results for excitations other 

than the spatially-uncorrelated type are obtained from the equations presented in 

section 3.6. 

The numerical integration in wavenumber space used in equations 

(3.23) and (3.23') is computed from 0 to Tr/2 using the mid-point rule [72] with 15 

integration points. This number of integration points was found to be sufficient in 

order to compute reliable values for equations (3.23) and (3.23'). Such verification 

was performed by comparing results from equation (3.23) (or (3.23')) for the case of 

simply-supported edges to the closed form solution for a plate with simply-supported 

edges (equations (3.17) or (3.17')). This numerical integration routine was the same 

employed to obtain theoretical results for correlation coefficient and normalised cross-

power spectral density of plates with clamped, fi-ee and stiffened edges and validated 

against experimental results in Chapter 4. 

The numerical integration of equation (5.4) was further optimised by 

truncating the computation in order to avoid the inclusion of terms which have a large 

kyr value because it was found that such terms do not contribute much to tlie 

summation. 

5.1.2 One-dimensional numerical integration exercise 

The numerical integration of a given function on a limited interval 

follows a similar procedure irrespective of the rule being used. In such procedure, the 

integration interval is divided into a number of segments (not necessarily of the same 

size) and the value of the function is calculated at the dividing points. The function's 

value at each point is weighted and all weighted values summed together. The final 

sum is then multiplied by the spacing between the integration points and the integral 

obtained. In view of the fact that the value of the function is obtained in a finite 

number of points the precision of the obtained value is related to the number of points 

used to discretize the function. As there is no recommendation for the definition of the 

optimum number of integration points to be applied in a specific situation, this 

number should be determined empirically (or known by past experience). 
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In the case of a slowly varying function a small number of points is 

sufficient to correctly represent it, but if the function varies abruptly the number of 

necessary points is much higher. Many numerical integration rules are available from 

the literature and some of them were chosen to be employed in a prediction exercise 

to decide which one is best suited to the evaluation of equation (5.5). The following 

numerical integration rules were chosen from ref. [72]: an extended trapezoidal rule, 

an extended Simpson's rule, an 8-point closed Newton-Cotes formula and a mid-point 

rule. 

The first step in this exercise was to employ the above numerical 

integration rules in the numerical integration of the zero-order Bessel function (JgCz)) 

because it represents the correlation coefficient and the normalised cross-power 

spectral density of a diffuse bending wave field. This function was integrated from 0 

to 50 for various numbers of integration points and some of the results are presented 

in table 5.1. It was observed that the result obtained with the 8-point Newton-Cotes 

formula is very different from results given by the other three methods. Therefore, a 

larger number of points is necessary to improve precision. Unfortunately, in the case 

of the Newton-Cotes rule, every time we change the number of integration points a 

different set of weighting factors needs to be used and so, this rule is not convenient 

when the magnitude of the integration limits vary. 

The result obtained with Simpson, mid-point and trapezoidal rules 

using 1000 integration points was the same and so this value could be used as the 

exact integral of JQCZ) in the interval 0 to 50. In order to facilitate the interpretation of 

the results presented in table 5.1 a chart was prepared in which the results of table 5.1 

are compared with the exact value and the difference between them presented as 

percentage of the exact result. This percentage difference is presented in fig. 5.1 in 

relation to the number of integration points and integration rule used. It is observed in 

this chart that when the number of integration points is 25, trapezoidal and mid-point 

rules give results less than 5 % different from the exact one. In contrast, for a similar 

number of points, the Simpson rule give results more than 20 % different firom the 

exact value. However, the percentage difference between the results obtained with 10 

integration points and the exact one is generally much higher than that obtained with 
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25 integration points. On the other hand, as the number of integration points increase 

above 25 points the difference between numerical and exact value does not drop 

considerably. 

Routine 10 

points 

2 0 

points 

25 

points 

35 

points 

5 0 

points 

1 0 0 

points 

1 0 0 0 

points 

Trapezoidal L 3 1 7 0 . 9 5 9 9 0 . 9 3 6 3 ( X 9 2 1 8 ( X 9 1 3 4 ( 1 9 0 5 6 0 . 9 0 2 3 

Simpson & 5 2 2 7 0 . 8 4 0 8 1 . 1 0 2 4 1 . 0 0 0 4 0 . 9 0 5 8 ( X 9 0 2 9 0 . 9 0 2 3 

Mid-point 0 . 6 0 2 7 0 . 8 7 0 3 ( X 8 9 0 6 0 . 8 9 2 6 0 . 8 9 7 7 C X 9 0 1 1 0 . 9 0 2 3 

Newton 7 2 4 8 

Table 5.1 - Results for the integral of Jo(z) from 0 to 50 

From these results it is confirmed that a relation exists between the 

number of integration points and the precision obtained and that this relation depends 

on the integration limits. As the number of integration points is also related to the 

CPU time used in the numerical integration, there is a relation between the number of 

integration points and the value of the integration limits that gives the most 

'economical' relation between CPU time employed and precision obtained. In the 

present case, a number of integration points (intpoint) equals to half the value of the 

higher integration limit (maxlim) gives a good estimate of the ratio 'maxlim/intpoint' 

for a reasonably fast and accurate numerical integration routine. Numerical integration 

results obtained for other integration limits also confirmed these observations. Finally, 

it is also observed in fig. 5.1 that the mid-point rule generally gives more precise 

results than the other methods for a similar number of integration points. 

The second step in this exercise was to numerically obtain the integral 

of the product of two functions similar to those used in the coupling coefficient. The 

following standard integral can be obtained from ref [72], 

1 

and for v=0 we have from the above equation that 

v> ( 5 . 6 ) 

1 4 2 



jjo(t)costdt = z[Jo(z)cosz +J , (z)s inz] (5/0 

where J,(z) is the first-order Bessel function. The trapezoidal, Simpson and mid-point 

rules were employed to numerically estimate the integral on the left-hand side of 

equation (5.7). The results obtained were then compared to the exact values given by 

the expression on the right-hand side of equation (5.7). Some of the results obtained 

with this procedure are presented in table 5.2. 

Routine Oto 10 0 to 50 Oto 100 

Exact 1.8271 3.9721 5.6298 

Mid-point 1.826 (0.06%) 3.9321 (1.0%) 4.5322 (19.5 %) 

Simpson 1.7411 (4.7 %) 3.4442 (13.3 %) 6.4887 (15.2 %) 

Trapezoidal 1.8251 (0.1 %) 4.0242 (1.3 %) 6.801 (20.8 %) 

Table 5.2 - Numerical integration of Jo(z)cosz using 25 integration points and varying 
the integration limits. Exact result given by equation (5.7). Figures in parentheses 

show the percentage difference from corresponding exact values. 

As shown in the above table for an upper integration limit of 50,25 

integration points give good results when either mid-point or trapezoidal rules are 

used. This number of integration points correspond to the previously suggested ratio 

maxlim/intpoint s 2.0. As the mid-point rule is the simplest of those two, it was 

adopted in the coupling coefficient numerical integration routine. Furthermore, it is 

observed that the suggested relation maxlim/intpoint = 2.0 is equivalent to adopt 3 

integration points per wavelength. However, in the numerical integration of cosine or 

sine functions it is advisable to use 8 integration points per wavelength. Therefore, the 

following criterion was adopted for the definition of the number of integration points 

to be employed in the mid-point rule: 

• for cases in which computer cost is at a premium and the precision can be slightly 

sacrificed the 'economic' ratio maxlim/intpoint = 2.0 or 3 integration points per 

wavelength was used; 
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# on the other hand, when we can afford to spend more computer time 8 integration 

points or the 'ideal' ratio maxhm/intpoint s Mn was employed in the numerical 

integration routines. This is the alternative employed in the response results 

presented in this chapter. 

5.1.3 Four-dimensional numerical integration routine 

The acoustic mode shapes of a rectangular hard-walled enclosure are 

given by equation (5.4). Substituting these acoustic mode shapes and the normalised 

cross-power spectral density for a diffuse bending wave field (equation (3.18)) in 

equation (5.5) we obtain the following expression for the coupling coefficient, 

cL(io) = ^ C03 
r nx 

s s L. 
cos 

f \ 

L 
COS 

f \ CTIX 

y / 
cos 

f \ 

L, 
dx|dx2dy,dy2.(5.8) 

As no closed form solution is available to the above integral a similar 

integral which can be solved exactly is employed in the verification of the numerical 

integration routine. One of the possible integrals is, 

L_ L, L« 

Cl(m) = 
1 

T 2 T 2 

0 0 0 0 

I I I jjo(kbX,)lo(kby,yo(kbX2)Jo(kby2)) 
(5.9) 

(5.10) 

xcos(kbX,)cos(kbyi)cos(kbX2)cos(kyy2)dx,dx2dy,dy2, 

which can be solved with the help of equation (5.5), 

C L ( » ) = M k , L . ) l . ( k , L . ) + s i n ( k , L , ) l , ( n L , ) | x 

x [ cos (k tL , ) . (k jL , )+s in (k^L, ) , (k^Lj ] . 

where and Ly are the plate dimensions (assumed equal to the internal acoustic 

cavity dimensions in the directions x and y). 

A Fortran routine was written to numerically integrate equation (5.9) 

using the mid-point rule. A polynomial approximation (ref [72], pgs. 269,270) was 

employed in the estimation of the zero and first order Bessel functions. The error 

incurred in using this approximate representation of the Bessel functions is smaller 

than 10'̂  [72]. 

144 



As an example, this Fortran routine is employed to compute the 

coupling coefficient between the wood-walled enclosure (main dimensions: 0.7 m x 

0.48 m X 0.48 m) and a square aluminium plate (0.48 m x 0.48 m, thickness= 1.0 

mm). The geometric and material properties for these two subsystems are described in 

section 5.3. The coupling coefficient was estimated in the frequency interval 0 to 1000 

Hz and the largest integration limit was given by kyL .̂ The results obtained are 

presented in fig. 5.2. From the suggested 'economic' ratio maxlim/intpoint s 2.0 the 

number of integration points necessary to obtain a reasonable precision is 15. The 40 

points result correspond to the 'ideal' ratio maxlim/intpoint s Mn. As shown in fig. 

5.2, the results for 10 integration points depart considerably from the exact ones 

(given by equation (5.10)) above 600 Hz. On the other hand, both the 40 points and 

the 15 points results compare well with the exact ones. As a matter of fact the 

deviation, in the frequency range 0-1000 Hz, between the numerical (15 points) and 

the exact results is not higher than 1 dB, and the 40 points result does not show any 

apparent difference from the exact ones. 

As observed in fig. 5.2, when the number of integration points is 

smaller than twice the higher integration limit the precision is poor but improves 

quickly as this number approaches the suggested value. If the number of integration 

points is higher than half the maximum integration limit the precision is good and so 

it does not improve considerably when the number of integration points increases. 

Similar results were obtained when this Fortran numerical integration routine was 

employed for the case of the concrete-walled enclosure (described in section 5.2). 

These results indicate that the criterion adopted for the one-dimensional integration 

(section 5.1.2) can also be employed for the case of a n-dimensional integration. 

The speed of the numerical computation of the coupling coefficient 

(eq. (5.5)) was further improved by taking advantage of the plate symmetry. During 

the numerical integration one of the points is varied along only one quarter of the 

plate while the other point is varied along the entire plate area. The final result is 

multiplied by 4. The results of this computation were checked against results from a 

numerical integration in which both points varied along the entire plate area. The 

results from both computations were coincident. 
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In order to illustrate the characteristics of the coupling coefficient 

curves, the Fortran routine described in the preceding paragraphs was extended to 

compute equation (5.8) for various acoustic modes. For instance, the coupling 

coefficient between some of the acoustic modes of the wood-walled enclosure and the 

bounding square plate is presented in fig. 5.3. It is observed that for a value of 

frequency equals to 30 Hz, the response inside the cavity will be mainly due to the 

(0,0,rj and (0,1,rj acoustic modes, while for a frequency equals to 750 Hz all the 

acoustic modes represented in fig. 5.3 are similarly excited. Another noticeable 

characteristic is the shape of the curve. There is a initial peak which is controlled by 

the modal numbers (ry and r̂  in the present case) and the curve decays with a similar 

slope for all modes with the difference that when ry equals to r̂  the curve has a higher 

dynamic range than for cases in which ry is not equal to r̂ . In the case of an axial 

acoustic mode the coupling coefficient is maximum and equal to unity when the 

frequency (or k^r) equals zero. On the other hand, the coupling coefficient has a 

minimum when the frequency (or k̂ r) equals to zero for oblique modes. 

The explanation for such behaviour is rather simple and can be found 

in ref [68]. A diffuse bending wave field will only be completely correlated when k^r 

equals zero and in this situation only acoustic modes that involve a variation of 

volume in the interface area will be efficiently excited. That it is the reason for the 

unity value of the coupling coefficient when r̂  and ry are equal to zero and the very 

low value for most of the other modes. As the frequency increases the relative 

correlation of the velocity (or acceleration) at ac^acent acoustic modes antinodes 

decreases and so, the excitation of the mode (0,0,rj. Though, all the modes are 

excited. On the other hand, when r̂  and r̂  are non-zero the separation between each 

antinode gets smaller and the occurrence of extremes in coupling coefficient values 

decreases, explaining the smoother aspect of the coupling coefficient for the (l,2,rz) 

acoustic mode. With the increase in frequency the possibility of occurrence of small 

values of correlation for point-to-point separations smaller than an antinodal region 

also increases and there will be a partial cancellation of the excitation within each 

antinode. All the modes are excited, but at a reduced level. This reduction in the level 

of excitation is offset by the increase in the number of acoustic modes summed in 

each firequency band when the overall sound pressure level is computed. 
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• Trapezoidal 

S S i m p s o n 

id-point 

1000 

Fig. 5.1 - Comparison of Trapezoidal, Simpson and mid-point numerical integration rules. Results 
from table 5.1 plotted as percentage difference of exact value (%) and as a function of the number of 

integration points (N). 

Verification of coupling coefficient results - wood-walled enclosure 

numerical (40) 
— numerical (15) 

numerical (10) 
exact 

400 600 
frequency (Hz) 

800 1000 

Fig. 5.2 - Computation of equation (5.9) for the wood-walled enclosure using various number of 
integration points. exact solution (eq. (5.10)); 15 points; 40 points; 

10 points. 
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Wood-walled enclosure - dif. acoustic modes coupled to diffuse field 
,0 

(3,0,rz) 

(0,1,rz) 

(1,2,rz) 

200 800 1000 400 600 
frequency(Hz) 

Fig. 5.3 - Coupling coefficient between different acoustic modes and a diffuse bending wave field (eq. 
(5.8)). 20 integration points, key for acoustic modes: (0,0,rj; 

(3,0,rJ; - • ( l ,2,r j ; ( 0 , l , r j . 
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5.2 Concrete box bounded by a flat plate 

5.2.1 Description of system 

The system on which the experimental work reported in this section is 

based is sketched in fig. 5.4. The enclosure was built with three concrete walls and the 

top closed by a thick concrete panel. A layer of concrete was placed over the 

pavement surface to form the floor of the enclosure. The open side was closed by a 

1.2 mm thick mild-steel plate which was sandwiched along its edges by two steel 

frames joined by bolts. The plate itself was kept separated from the two steel frames 

by a layer of draught excluder. This configuration was an attempt to simulate simply-

supported boundary conditions but the resulting natural frequencies were higher than 

the ones for a simply-supported plate. The internal cavity dimensions are 0.6 x 0.75 x 

1.05 m in the x, y, z directions, respectively. The flexible wall is situated in the plane 

x-y and its dimensions, for the purpose of SEA, FEM and hybrid model estimation, 

are 0.6 x 0.75 m (x and y directions, respectively). 

The acoustic cavity and plate frequency-averaged loss factors were 

estimated using a decay technique. The burst of a balloon was used to excite the 

acoustic cavity while the plate was excited by a hammer blow. The signal decay after 

the impact excitation was acquired using a Bruel&Kjaer 2133 Dual Channel Real-

Time Frequency Analyser and from the time the signal took to decay 60 dB the loss 

factor was estimated. The results were obtained in 1/3 octave bands. The results of 

such estimation are presented in table 5.3. 

The response results for this acoustic cavity/plate were estimated using 

the hybrid model computation routine described in section 5.1. The acoustic cavity 

loss factors presented in table 5.3 were used in this calculation and the results were 

presented as the ratio between the space-averaged mean square pressure inside the 

acoustic cavity divided by the space average of the plate vibration velocity. One third 

octave band and narrow band results were computed assuming the coupling 

coefficient is constant in each 1/3 octave frequency band. 
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frequency (Hz) Acoustic cavity frequency-

averaged loss factor (r|J 

Plate frequency-averaged loss 

factor (Tip) 

50 0.1 -

63 0.1 -

80 0.09 -

100 0.1 0.04 

125 0.08 0.04 

160 0.07 0.06 

200 0.04 0.1 

250 0.03 0.05 

315 0.02 0.08 

400 0.02 0.07 

500 0.02 0.05 

630 0.01 0.05 

800 0.01 0.04 

1000 0.006 0.03 

1250 0.006 0.04 

Table 5.3 - Frequency-averaged plate and acoustic cavity loss factors. 

5.2.2 Comparison with FEM results 

Several general purpose finite element (FEM) programs have been 

developed and are available in a wide range of mainframe, RISC workstations and 

personal computers. ANSYS [86] is one of such programs and its educational version 

was used in this work. Unfortunately, this version has a maximum wave-front limit of 

400 (on SunSparc workstations) which restricts the model size and consequently the 

analysis frequency range. The version used in this computation is the 4.4a one. 

The plate is modelled using a elastic quadrilateral shell element which 

has both bending and membrane capabilities. This element is represented by four 
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nodes, with six degrees of freedom at each node and both in-plane and normal loads 

permitted. The acoustic space inside the cavity is modelled using a 3-D isoparametric 

acoustic fluid which is also used to model the fluid/structure interface. In ANSYS this 

element is represented by eight nodes with four degrees of freedom per node. As the 

FEM matrices generated in a fluid/structure coupled analysis are unsymmetric, the 

Lanczos method is used to solve the associated eigenproblem. The main weakness of 

such analysis is that the damping is assumed constant in all frequency range and equal 

for all the elements. A damping ratio of 0.05 is assumed in this analysis. 

Due to aforementioned limitations with the wave-front size the studied 

system is represented by only 120 acoustic elements and 20 plate elements. These 

number of elements restrict the maximum useful frequency of FEM analysis to 300 

Hz. The procedure used to obtain space averaged mean square values of pressure and 

velocity is based on the determination of frequency response functions (FRF). In order 

to obtain these FRF's a full harmonic response analysis is applied. This type of 

analysis determines the steady-state response of a linear structure to a set of harmonic 

loads of known amplitude and frequency. The load used is a unit force applied over 

one of the plate nodes. A firequency step of 2.0 Hz is used to estimate the response. 

The mean square space averaged values are calculated during the post-

processing phase with the commands available in POST26 ANSYS module. The 

results of twelve plate nodes and forty cavity nodes are used to obtain the average 

values. The ratio <p^>/<v^> is obtained at each frequency step as it is a measure of the 

relative energy of the two subsystems. 

The FEM results for clamped and simply-supported plate boundary 

conditions are presented in figs. 5.5 and 5.6, respectively. These results are compared 

to hybrid model results for the same boundary conditions. The hybrid model results 

were computed using equation (5.2) with the acoustic loss factors listed in table 5.3. 

The computational procedure is described in section 5.1. The edge parameters for 

simply-supported and clamped boundary conditions are presented in Appendix B. 

The first noticeable difference between both approaches is near the 

acoustic cavity resonance fi-equencies. This discrepancy originates from the use of an 

analytical formulation (eq. (5.3)) in the calculation of the acoustic modal frequencies 

in the hybrid model. Frequency response measurements carried out in the actual 
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concrete walled box indicate that the analytical acoustic natural frequencies as 

computed by equation (5.1) are much closer to actual ones than the FEM estimates. 

Another reason for this discrepancy is the apparent difference in the damping used in 

both approaches and the jumps observed in the hybrid model results. Such jumps are 

related to the assumption of a constant value of the normalised cross-power spectral 

density in each 1/3 octave frequency band. In addition, the large discrepancy obtained 

in the FEM model results are also related to the use of only one excitation point 

whereas the hybrid model assumes an spatially uncorrelated type of excitation. It is 

here suggested that the FEM model results can be improved by using a finer mesh, 

frequency dependant damping values and by averaging the response results due a 

larger number of excitation positions. 

Regarding the overprediction of the response near the resonance 

frequencies by the FEM model, it is important to point out that a similar 

overprediction was observed by Franchek and Bernhard [13]. In their work, FEM 

response results on a slightly bigger acoustic cavity due to a thicker plate were 

compared to experimental response results. A difference of more than 30 dB in the 

acoustic pressure near the first acoustic resonance between experimental and FEM 

results was obtained and they observed that slight changes in the model could change 

the FEM results. This indicates that even with a very fine mesh care must be taken 

when employing a FEM model to predict the vibroacoustic response in frequency 

regions in which there is a sparsity of plate and acoustic modes. 

5.2.3 Comparison with SEA results 

The basic concepts and shortcomings of Statistical Energy Analysis 

(SEA) were discussed in Chapter 1. Following such concepts the concrete walled box 

system can be represented by two subsystems, the air space confined inside the box is 

one subsystem and the flat plate is the other. Based on this representation the SEA 

expression for the power flow between these two subsystems, when the plate is 

excited, leads to 
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p') p.c^MN 

(v̂ > 
V.N, 

' ' , (5^1) 

V âp V 
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where N^, Np are the number of acoustic and plate modes resonating in the band, Mp is 

the total plate mass, r|a is the acoustic loss factor (table 5.3) and rî p is the coupling 

loss factor between plate and acoustic cavity. 

The coupling loss factor, rĵ p and the parameters and Np can be 

obtained from experimental [39] or theoretical [14] estimation of the coupling loss 

factor and modal density. Modal density formulations for plates and acoustic cavities 

are widely available in the SEA literature (for instance [14,38,39]). A theoretical 

expression for the coupling loss factor, rî p, can be obtained from ref. [38], 

a p 

where is the plate radiation efficiency and Sp is the plate surface area. This 

relation implies a weak coupling between plate and air space and that the sound 

wavelength is less than 1/3 of a typical cavity dimensions. In ref. [37] Maidanik 

presents a formulation for the radiation efficiency of simply supported flat plates and 

a correction for clamped boundary conditions has been proposed by Timmel [87]. 

When the plate is radiating inside a closed space it is suggested by Craik [96] that 

such radiation efficiency results need to be multiplied by a factor of 2. 

SEA equations (5.11) and (5.12) were used to compute the ratio 

<p^>/<v^> in 1/3 octave bands assuming two different boundary conditions for the 

plate; clamped and simply-supported. These results are presented in figs. 5.7 and 5.8. 

Timmel [87] and Maidanik [37] radiation efficiency formulations with a correction for 

radiation into a closed space were employed in the computation of the coupling loss 

factor (eq. (5.12)) and the acoustic loss factors used were those presented in table 5.3. 

The number of acoustic modes resonating in 1/3 octave bands only exceeds five above 

500 Hz and the modal overlap factor for the acoustic cavity is only greater than one 

above 630 Hz. The number of plate modes excited in 1/3 octave bands exceed five 

above 200 Hz and the plate modal overlap factor is close to unity in this frequency. 

These figures indicate that the assumptions in which SEA is based are only strictly 

valid above the 630 Hz 1/3 octave band. 
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The SEA results presented in fig. 5.7 are compared to hybrid model 

results. These hybrid model results are exactly the same ones presented in figs. 5.5 

and 5.6 with the difference that in this case they are averaged in 1/3 octave bands. It is 

observed that both simply-supported plate results converge for frequencies above 500 

Hz. This convergence between hybrid model and SEA results can be demonstrated by 

the use of asymptotic approximations of acoustic modal quantities in a way similar as 

in Kubota et al. [50]. This good agreement between SEA and hybrid model indicates 

that above 630 Hz there is no clear advantage in using the hybrid model if only 

frequency-averaged and space-averaged results are sought. Though, the main 

shortcoming of SEA is that it is not able to provide narrow band results or any 

estimate of the local response. 

5.2.4 Experimental results 

In order to obtain actual values of acoustic pressure due to the plate 

vibration, the pressure response inside the cavity formed by the concrete box was 

measured. A set of frequency response functions (FRF's) were measured in order to 

obtain both plate and acoustic cavity natural-frequencies and space-averaged vibration 

velocity and acoustic pressure. Steady-state and transient point excitation were used to 

obtain the FRF's. In the case of hammer excitation the accelerances (A/F) were 

measured at ten different points due to three different excitation positions over the 

plate. Ten measurement points and one excitation point were used when the plate was 

excited with band-limited white noise by a non-contact electrodynamic shaker. A 

lightweight Bruel&Kjaer 4393 accelerometer was used to measure the acceleration 

and a Bruel&Kjaer 8200 force transducer coupled to the hammer tip (or shaker) used 

to measure the associated force. After being amplified by charge amplifiers 

Bruel&Kjaer 2635 both signals were acquired with a HP 5420A Digital Signal 

Analyser. The imaginary and real parts of these FRF's were then squared and summed 

in a HP9816 computer and the 1/3 octave band results computed. The results obtained 

with impact and random excitation are similar, and so, only the impact excitation 

results were used in the estimation of <p^>/<v^>. 
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The same procedure was applied to obtain the pressure inside the 

cavity using a Bruel&Kjaer 4133 condenser microphone in the acoustic pressure 

measurement. The microphone signal was amplified by a Bruel&Kjaer 2209 sound 

level meter and was acquired with a HP 5420A Signal Analyser. In this case, three 

excitation points and six microphone positions were used. The microphone positions 

are listed in table 5.4. The FRF's were measured in the range 0-1600 Hz and the 1/3 

octave band values were automatically calculated from 50 to 1250 Hz. Unfortunately, 

the narrow band results for this enclosure were not stored in PC-compatible files at the 

time of the measurements and the analyser tapes have deteriorated making difficult to 

recover the narrow band results. Therefore, as presented in figs. 5.8 and 5.9, only the 

1/3 octave band results were compared with hybrid model results. 

measurement point x(m) y(m) z(m) 

1 0.13 0.20 0.25 

2 0.44 0.52 0.07 

3 0.55 0.39 0.90 

4 0.33 0.49 0.50 

5 0.20 0.05 0.79 

6 0.34 0.65 1.0 

Table 5.4 - Positions of microphone used in acoustic pressure measurements 

The normalised random error associated with frequency response 

function estimation is given by [85] 

H ~ ^ xy 
(5.13) 

where n̂  is the number of nonoverlapping averages and Yxy" is the ordinary coherence 

function. In the FRF's estimation the number of averages used was 10 and the 

ordinary coherence function was reasonably close to one. Assuming the average value 

of the coherence function in the entire frequency range was 0.8 we have that the 95 % 

confidence limits for the response estimation are 
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(p^) (p^) 
0 . 6 9 7 1 ^ < m < 1 . 3 5 7 1 f ^ . (5.14) 

V ) (v^ 

If instead of using (5.13) to estimate the variance of the response we employ 

expression (4.1), the 95 % confidence limits for the present measurements are given 

by 

0 . 4 7 9 ) - ( < m < 1 . 7 1 0 ^ . (5.15) 
V ) (v 

The confidence limits given by (5.15) are much wider than those given 

by expression (5.14). As only the FRF's were measured we decided to use the 

confidence limits given by (5.14) in the comparison with hybrid model results. 

Though it is important to note that real limits can be much wider than the ones we are 

predicting. 

The hybrid model results presented in fig. 5.8 were computed using the 

computer program described in section 5.1. However, in this case, local pressure 

response values (eq. (2.16)) were calculated at the six different positions listed in table 

5.4 and the results mathematically averaged in order to obtain the space average in 

positions similar to the ones employed in the experimental work. Considering the 

uncertainties related to the modelling of the plate boundary conditions good 

agreement between experiments and hybrid model results is observed above the 315 

Hz 1/3 octave band. However, a difference of near 3 dB between the upper limit of the 

experiments 95 % confidence limits and the hybrid model results are observed at the 

160 Hz and 250 Hz 1/3 octave bands. The discrepancy observed at the 160 Hz 1/3 

octave band could be explained by the reasonably low number of plate modes excited 

in this band and by the fact that the modal overlap factor of the plate in this band is 

lower than unity. As shown in Chapter 4, for cases in which the modal overlap factor 

was lower than unity good agreement between experimentally and theoretically 

estimated correlation coefficients was only achieved when more than 7 modes were 

excited in a frequency band. This could explain the discrepancy at 160 Hz but the 

situation in the 250 Hz 1/3 octave band is quite different. In this band the plate modal 

overlap factor equals 2 and seven plate modes are estimated to be excited. Such 

situation is considered good for the application of the hybrid model and one could 
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expect these results to approach the experimental ones. Unfortunately, the narrow 

band results for this system are not available and thus, a deeper analysis of this 

situation can not be carried out. Similar discrepancies obtained in the wooden box 

analysis indicate that this difference is relate to a shift in some of the acoustic modes 

in relation to analytical estimates employed in the computation. 

5.2.5 General discussion 

A general comparison of all results of this section is presented in fig. 

5.9. In this case, 1/3 octave band results of the FEM, SEA and hybrid models with 

clamped boundary conditions are plotted together with experimental results of the 

space-averaged acoustic pressure divided by the space-averaged vibration velocity. As 

shown FEM, hybrid model and experimental results have a similar shape below the 

first acoustic resonance frequency. At the first resonance frequency, both hybrid and 

FEM overpredict the experimental result by more than 4 dB. The same situation is 

repeated at 250 Hz when FEM and hybrid model overpredict the response by 6 and 4 

dB, respectively. 

As the frequency increases, the number of acoustic and plate modes 

excited in 1/3 octave bands also increase and the hybrid model results approach that 

obtained with a SEA model. They are both reasonably close to the 95 % confidence 

limits for the experimental results above the 500 Hz 1/3 octave band. 

In summary it appears that the hybrid model is able to reproduce the 

results that would have been obtained with either a FEM or a SEA model in their ideal 

frequency range of applicability. Unfortunately, for the situation in which the hybrid 

model should give ideal results, differences of 3 dB with experimental results are 

observed. In order to assess the reasons for such difference a more careful 

experimental investigation was carried out in a different box. This investigation is 

described in the next section. 
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Fig. 5.4 - Sketch of the concrete walled acoustic enclosure and enclosing plate 
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Fig. 5.5 - Space averaged acoustic pressure divided by space averaged vibration velocity on a concrete 
walled box. Narrow frequency bands. Clamped boundary conditions assumed for plate, 

key: hybrid model; FEM. 
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Concrete walled box - FEM and hybrid model - simply-supported b.c. 
10' 

100 150 200 250 300 350 
frequency(Hz) 

Fig. 5.6 - Space averaged acoustic pressure divided by space averaged vibration velocity for concrete 
walled box. Narrow frequency bands. Simply-supported boundary conditions assumed for plate, 

key: hybrid model; • - FEM. 

Concrete walled box - SEA and hybrid model -1/3 octave bands 

600 800 1000 
frequency(Hz) 

1400 

Fig. 5.7 - Space averaged acoustic pressure divided by space averaged vibration velocity for concrete 
walled box. 1/3 octave bands, key: hybrid model, simply-supported b.c.; — -—- — SEA, 

clamped b.c.; - - hybrid model, clamped b. c.; SEA simply-supported b.c. 
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Concrete walled box - exper. and hybrid model -1/3 octave bands 

600 800 
frequency(Hz) 

1400 

Fig. 5.8 - Space averaged acoustic pressure divided by space averaged vibration velocity for concrete 
walled box. 1/3 octave bands, key: experimental results, 95 % confidence limits; 

hybrid model, simply-supported b. c.; hybrid model, clamped b. c.. 

Concrete walled box - FEM, SEA, hybrid model results -1/3 octave bands 
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200 400 1200 1400 600 800 1000 
frequency(Hz) 

Fig. 5.9 - Space averaged acoustic pressure divided by space averaged vibration velocity for concrete 
walled box. 1/3 octave bands, key: —— experimental results; SEA, clamped b.c.; 

_ hybrid model, clamped b.c.; FEM results, clamped b.c. 
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5.3 Wooden box bounded by a flat plate 

5.3.1 Description of system 

The second box used in this experimental investigation is an enclosure 

built with five double-sided wood walls filled with sand and one 1.0 mm thick 

aluminium plate (flexible wall). The internal cavity dimensions are 0.48 x 0.48 x 0.70 

m in the x, y, z directions as sketched in fig. 5.10. The plate has dimensions 0.48 x 

0.48 m and it is placed in the x-y plane. The edges of the plate are sandwiched by two 

square metal frames used to simulate a clamped type of support as shown in fig. 4.1. 

This plate was employed in the experimental investigation of correlation coefficients 

as reported in section 4.4. Typical frequency response functions for the plate and 

acoustic cavity are presented in fig. 1.1. As shown in this figure, the acoustic modes 

are overlapping in the frequency range above 1500 Hz while the plate modes have a 

high modal overlap factor above 700-800 Hz. 

The acoustic loss factors of this acoustic cavity were measured using 

the half-bandwidth method. For this purpose the flexible wall was removed and 

another sand-filled wood wall was placed in its position. The acoustic field was 

excited by a loudspeaker located inside the cavity and the acoustic pressure measured 

with electret microphones located at four different positions. Each one of the acoustic 

modal loss factors was estimated using the half-bandwidth function of the 

ZONIC+AND 3524 Dual Channel FFT Analyser. A frequency separation of 0.625 Hz 

was employed in the analysis of the pressure signals. These individual loss factors 

were then averaged in 1/3 octave bands and the results are shown in table 5.5. 

5.3.2 Experimental procedure 

The experimental results presented in this section are due to 

mechanical excitation of the flexible wall using a non-contact shaker. Random noise 

from 0-2000 Hz was used and the results acquired using 4096 FFT points. The 

resultant spectra have 1600 points with a frequency separation of 1.25 Hz, enough to 
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guarantee small bias error. Acceleration results were space averaged in 10 points 

randomly placed over the plate area and the pressure results were averaged in 4 points 

inside the enclosure. The position of the shaker was varied four times and in each time 

the acceleration and the acoustic pressure measurements were repeated. As shown in 

table 5.6, one of the pressure measurement positions was placed near one of the 

enclosure corners (microphone 2). The positions of the non-contact shaker are listed 

in table 5.7. These are the same positions employed in the correlation coefficient 

measurements carried out on this plate for the case of mechanical excitation (section 

4.4). Unfortunately, the positions of the excitation were all situated along the same 

line in the x coordinate because the device that holds the magnet only allows 

movement in the y direction. 

1/3 octave band acoustic loss factor - Tia 

250 0.01 

315 0.009 

400 0.01 

500 0.009 

630 0.008 

800 0.004 

1000 0.004 

Table 5.5 - Acoustic loss factor results for the wood walled box 

A Bruel&Kjaer 4374 lightweight accelerometer was used to measure 

the acceleration and electret microphones used to measure the acoustic pressure. Due 

to the low weight of the accelerometer (0.6 grams) it was estimated that they caused 

an error of less than 1 % in the true plate vibration acceleration for frequencies below 

2000 Hz. The electret microphones have flat spectrum from around 80 Hz to 5000 Hz 

and so, the measured acoustic pressure is only strictly correct above 100 Hz. As no 

suitable device to calibrate the electret microphones was available a portable 
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Bruel&Kjaer 4230 calibrator was employed. The calibration factor obtained for the 

four microphones was very similar indicating that the calibration procedure is reliable. 

microphone x(m) y(m) z(m) 

1 0.09 0.16 0.25 

2 0.005 0.475 0.685 

3 0.365 0.26 0.28 

4 0.19 0.08 0.48 

Table 5.6 - Position of acoustic pressure measurement inside the acoustic cavity 

excitation position n. x(m) y (m) 

1 0.165 0.335 

2 0.165 0.10 

3 0.165 0.19 

4 0.165 0.257 

Table 5.7 - Coordinates of the shaker position on flat plate 

The acoustic pressure and acceleration signals were acquired using a 

ZONIC+AND 3524 Dual Channel FFT Analyser and the spectra transferred to a PC-

compatible computer where MATLAB was used to analyse the data. Acceleration 

results were converted to velocity and the spectra calibrated. Data from three and four 

microphones were used to obtain the space average of the acoustic pressure. The 

comer microphone (microphone 2) was not included in the first average. The mean-

square space averaged acoustic pressure (<p^>) was then divided by the mean-square 

space averaged vibration velocity (<v^) and the results plotted in narrow, 1/3 octave 

bands and bands with constant width of 100 Hz. Alternatively, results from each 

microphone were divided by the space averaged vibration velocity and the results 

averaged in terms of excitation position. 
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The sound pressure level measured by each microphone due to 4 

excitation points is presented in fig. 5.11, in order to illustrate the variation of the 

response with the position of the microphone. As can be seen in this figure, results 

obtained with the corner microphone (microphone 2) are 6-9 dB higher than the 

results from the other three microphones for frequencies above 1000 Hz. This agrees 

with Waterhouse [64] observation that the mean-square sound pressure level in the 

comers are 9 dB higher than the real space averaged acoustic pressure in a reverberant 

sound field. The force signal introduced in excitation point 1 was obtained by placing 

a Bruel&Kjaer 8200 transducer between the coil and the point of connection to the 

plate. The force auto-spectrum was then used to normalise the space averaged sound 

pressure level and the space average vibration velocity. These results are presented in 

fig. 5.19. 

The normalised random errors associated with these measurements can 

be estimated from the expression for the auto-spectrum random error (equation (4.1)). 

As 100 non-overlapping averages were used to estimate the auto-spectrum of the 

acoustic pressure we have that the 95 % confidence limits for these measurements are 

given by 

2 2 

0 . 7 6 3 ^ < m < 1 . 2 6 8 ^ . (5.16) 
(v ) (v-) 

These confidence limits for the experimental results are presented in figs. 5.13 and 

5.3.3 Discussion of results 

The computational routine described in section 5.1 was used in the 

estimation of hybrid model results. Overall sound pressure levels were computed 

using equation (5.2) while sound pressure levels at individual positions were 

computed using equation (2.16). 

The effect of the plate boimdary conditions on the acoustic field inside 

the acoustic cavity is illustrated by the results presented in fig. 5.12. The plate was 

assumed to be excited with a spatially-uncorrelated random force and to have all 

around clamped, simply-supported or free edges or to be represented by a diffuse 

164 



bending vibration field. The equations of Chapter 3 and edge parameters of 

Appendices B and C were employed to simulate these boundary conditions. The 

overall sound pressure level divided by the space-averaged vibration velocity was 

computed in 1/3 octave bands from 50 to 800 Hz. The 'ideal' number of integration 

points and an upper limit of 40 for k^r were assumed in the computation. As shown, 

results for clamped edges are slightly higher than those for simply-supported edges 

and they are both 5-6 dB higher than those of a diffuse field above 315 Hz. As 

expected, the less efficient in terms of sound generation is the plate with free edges. 

Results for a plate with this type of boundary condition are 10-20 dB lower than those 

for a clamped plate. Considering that, as shown in Chapter 4, the vibration field in the 

centre of these plates approach that of a diffuse bending wave field, the differences in 

terms of overall sound pressure levels clearly show that the radiation of the plate into 

the cavity interior is controlled by the vibration field near the edges. 

Cheng and Nicolas [33] reported similar results for the case of a 

circular plate radiating into a cylinder when a variational approach was used to model 

the vibroacoustic interaction. In this work, it is shown that the plate with free edges 

can induce sound pressure levels 10-20 dB lower than the clamped one, which is in 

agreement with the results presented in fig. 5.12. They also observed that the overall 

level of the plate vibration is not strongly aSected by the boundary conditions. This 

observation supports the results of this work as we are assuming that the boundary 

conditions only affect the vibroacoustic interaction between the plate and the acoustic 

cavity without much change to the plate vibration levels. 

Some difficulty was encountered with the computation of results for a 

plate with free edges. Negative values of <p^>/<v^> were obtained for the first two 1/3 

octave bands (50 and 63 Hz) irrespective of the number of integration points 

employed in the numerical computation. Therefore, results for the free plate are only 

reliable above 80 Hz. 

The comparison between the sound pressure level averaged from four 

microphone positions and the hybrid model results for the same positions are 

presented in figs. 5.13 and 5.14. The microphone positions used in the computation 

are those listed in table 5.6. The experimental results are due to the four excitation 

positions listed in table 5.7. The 95 % confidence limits (equation (5.16)) estimated 
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for the experimental results are presented in fig. 5.13. The theoretical results are 

averaged in 1/3 octave bands and the coupling coefficient used in the narrow band 

theoretical results are assumed constant in each 1/3 octave band. As already observed 

in section 5.2, the use of such assumption leads to the appearance of jumps in the 

narrow band results (fig. 5.14). 

Good agreement between experimental and theoretical results are 

observed above the 315 Hz 1/3 octave band (fig. 5.13). This agreement was expected 

because, as reported in section 4.4, the experimental results of correlation coefficient 

on this plate due to mechanical excitation only approach the theoretical correlation 

model at frequencies above the 315 Hz 1/3 octave band. Such agreement in terms of 

correlation coefficients is illustrated in fig. 4.3. However, as shown in the same figure, 

for frequencies below 315 Hz (like the 160 Hz 1/3 octave band results), both models 

are quite different. This disagreement reflects in the response results as exemplified 

by the result at 250 Hz 1/3 octave band, the frequency in which the first acoustic 

resonance frequency is situated. In this frequency band, differences of over 8 dB in 

1/3 octave band results and 4 dB in the narrow band results are observed. 

The plate modal overlap factor is estimated to be lower than unity and 

only 4 plate modes are assumed to be excited in the 250 Hz 1/3 octave band. As 

discussed in Chapter 4, when the modal overlap factor is lower than unity at least 8 to 

10 plate modes need to be excited in a frequency band for the correlation model 

described in Chapter 3 be valid. This explains the difference observed in figs. 5.13 

and 5.14. In addition, we also observe that, in contrast to the concrete walled box, the 

first acoustic resonance frequency was underpredicted in this case. 

As presented in Chapter 1, based on a modal coupling study between a 

plate and an acoustic cavity Pan and Bies [28] concluded that the overall nature of the 

coupling in the region of a cavity mode resonance fi-equency is governed by the 

average number of plate resonance frequencies available in this region. As a result, 

when the acoustic cavity and plate modal densities are low the energy transfer 

between acoustic and plate systems will usually be dominated by one single plate 

mode. Therefore, small changes in the plate resonance frequencies will lead to 

substantial changes in the coupling between both systems. This observation agrees 

with that from Franchek and Bemhard [13] and with the experimental results here 

166 



reported for the frequency band in which the first acoustic resonance frequency 

appears. The increase in the plate modal density leads to a decrease in the importance 

of individual coupling between each pair of modes and to a decrease in the variation 

of the &equency averaged modal coupling coefRcient. Tliis situation is exemplified by 

the results of the Monte Carlo study performed by Mohammed [45] in coupled plate 

and acoustic cavity systems. As mentioned in Chapter 1, he observed that the 

fluctuation of the radiation resistance (vibroacoustic coupling) with the mean 

diminishes as the modal density and modal overlap factors of both systems increase. 

Therefore, a reliable prediction of the response of the first acoustic mode to plate 

vibration is only possible if the plate modal density is high and/or its modal overlap 

factor is close or higher than unity. This applies irrespective of the procedure used to 

model the vibroacoustic coupling between an acoustic mode and a few plate modes. 

The narrow band results, fig. 5.14, show that most of the acoustic 

cavity modes observed in the experiments are predicted by the hybrid model. There 

are some differences, mainly near 800 Hz, when some of the real acoustic modes shift 

from the theoretically predicted values and the theoretical model is not able to predict 

this shifting. Experimental modal analysis could be an alternative to overcome such 

difficulty in predicting the exact value of the first acoustic modes. However, if one is 

only concerned with frequency averages, the results above 315 Hz show that the 

present method provides a efficient way of predicting the response. Moreover, the 

results in narrow bands are reasonably good for most of the practical situations. 

One of the advantages of the approach proposed in this research in 

relation to SEA is the capability of predicting local sound pressure levels. This 

capability is exemplified by the results presented in figs. 5.15, 5.16 and 5.17. 

Experimental results averaged in three and four microphone positions are presented in 

fig. 5.15. As mentioned, the three microphone result is lower than the four 

microphone result as the microphone n. 2 (comer microphone) sound pressure levels 

are included in the latter. Both theoretical results computed with the hybrid model 

assuming clamped boundary conditions for the plate are reasonably similar to the 

experimental results for frequencies above 315 Hz 1/3 octave band. The narrow band 

results presented in this figure are for the 3 microphones average and they show a 

similar behaviour to the one presented for 4 microphones. 
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Results for the sound pressure level near one of the acoustic cavity 

comers are presented in fig. 5.16. The 1/3 octave band averages show a similar 

behaviour to the results presented in figs. 5.15 and 5.13, but in this case only 6 dB 

separates experimental and theoretical results at 250 Hz. The theoretical model uses 

clamped and simply-supported boundary conditions for the plate, but the agreement is 

better between clamped and experimental results. The results presented in this section 

indicate that clamping is the most suitable boundary condition for the plate used in the 

wood walled box. This conclusion is also corroborated by the correlation coefficient 

results (section 4.4). 

A slightly better agreement between experimental and theoretical 

results near the first acoustic resonance frequency can be achieved if the experimental 

results are averaged in constant bands. Figure 5.17 shows hybrid model results 

computed at the coordinates (0.365,0.26,0.28) in constant bands of 100 Hz centred at 

50 to 1350 Hz. In this model the acoustic damping was estimated based on the 1/3 

octave band loss factors listed in table 5.5 and the 'ideal' number of integration points 

was employed in the numerical integration. The numerical integration results were 

truncated for k^r equals to 50. This truncation only affects higher frequencies and 

enough care was taken to avoid underestimating the response in the higher end of the 

spectrum. The theoretical results are not more than 3 dB different from experimental 

results for all frequency bands down to 150 Hz. The only unexpected variation was at 

750 and 850 Hz where the shape of the experimental and theoretical results are 

different. As shown by the narrow band results this difference is due to an acoustic 

resonance frequency near 800 Hz which is not predicted by the hybrid model. In this 

case, it is the variation of the acoustic resonance frequencies in relation to the 

analytical model employed in the hybrid model that is responsible for the difference. 

The good agreement in terms of level and shape between most of the acoustic 

resonances indicates that the vibroacoustic coupling is well represented by the hybrid 

model. This is expected as nearly 8 plate modes are excited in frequency bands of 100 

Hz width and the modal overlap factor of this plate exceeds unity above 800 Hz. 

In section 3.3, the effect of the type of excitation in the correlation 

model adopted for the plate was discussed. It was shown that when the structure is 

modally-dense the resonant response of the structure in terms of correlation 
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coefficients (or normalised cross-power spectral density) is not greatly affected by the 

excitation. This conclusion was further checked by computing hybrid model response 

results assuming spatially uncorrelated excitation ('rain-on-the-roof) or point 

excitation. The results obtained in both cases were very similar and it appears that the 

assumption of point excitation does not affect the response results. One of these 

results is presented in fig. 5.18. 

The hybrid model results shown in fig. 5.18 were calculated for only 

one excitation point, point n. 4 (table 5.7), and the sound pressure level at coordinates 

(0.005,0.475,0.685) computed in 1/3 octave bands. The parameters of this 

computation were the same as the one employed for the results presented in fig. 5.16. 

The hybrid model results fall close or inside the experimental results 95 % confidence 

limits for all 1/3 octave bands above 200 Hz. The agreement between experimental 

and theoretical results in frequency bands in which few plate modes are excited is not 

expected, although, as shown by this result, it is not unlikely to happen. 

The use of equation (2.21) in the computation of the ratios <p^/<F^ 

and <v^>/<F^> is exemplified by the results presented in fig. 5.19. In this case, the 

plate loss factor was assumed to be 0.005 and a spatially uncorrelated random force to 

be applied on the plate. The theoretical results were computed for four microphone 

positions (table 5.6) using equation (2.21) while the space average vibration velocity 

was computed using equation (2.20). Both were assumed to be normalised by the 

space averaged random force. The use of these equations imply that the power input is 

computed on a number of points over the plate area. This involves experimentally 

estimating the force power spectrum and the real part of the point mobility in various 

points over the plate area to obtain the space average of the power input. 

Unfortunately, we only had the spectrum of the force for one excitation point. In view 

of this, we did not expect to obtain a good agreement between experiments and 

theoretical results. To our surprise, the results were not too different above 400 Hz 

and it is clearly shown in fig. 5.19 that some of the difference is related to the 

computation of <v^>/<F^ which is theoretically equal to 

(5.17) 
4G)̂ M-T| 
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This result uses a power flow balance similar to SEA in order to compute the space 

average vibration velocity from the power input in the structure. Therefore, the 

recommendations related to SEA described in Chapter 1 and in the SEA literature 

([10,14,38,39]) applies to the computation of equation (2.21). In this case we need a 

high modal overlap factor and at least 8-10 modes to guarantee the validity of the 

equations used in the derivation of equation (2.21). These are similar 

recommendations as the one described at the end of Chapter 4 and therefore, we 

expect equation (2.21) to be valid in the same frequency range that equations (2.16) or 

(5.2) are valid. 

In general, a reasonably good agreement between experimental and 

theoretical results was observed for the wood walled box analysed in this section. The 

plate vibration field is modelled using the modally-dense representation suggested in 

Chapter 3 and as a result, such agreement was verified in frequency bands in which 

the number of excited plate modes was estimated to exceed 6-10 modes. The 

boundary condition of the clamped type was the one that gave best results for the 

present acoustic cavity/plate system. Poor agreement was observed when a few plate 

modes excite a single acoustic mode. The results for the same acoustic cavity/plate 

system in which an aluminium bar are attached to the plate are reported in the next 

section. Such stiffened plate aims to represent typical panels encountered in aircraft 

and car structures. 
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Fig. 5.10 Sketch of wood walled box and enclosing plate 
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Fig. 5 .11- Experimental results of sound pressure level divided by space averaged vibration velocity 
in wood walled bo-x. 100 Hz bands, key: microphone 2; microphone 1; 

microphone 3; microphone 4. 
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Wood walled box - different b. c. -1/3 octave bands 
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frequency(Hz) 

Fig. 5.12 - Hybrid model results for overall sound pressure level divided by space averaged vibration 
velocity in wood walled box. 1/3 octave bands, key for boundary conditions: clamped; 

simply-supported; free edges; diffuse bending wave field. 
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Fig. 5.13 - Acoustic pressure levels from 4 microphones divided by space averaged vibration velocity 
for wood walled box. 1/3 octave bands, key: experimental results, 95 % confidence limits; 

• hybrid model, clamped b.c.. 
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W o o d wa l l ed b o x - 4 m i c r o p h o n e s - nar row b a n d s 
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Fig. 5.14 - Acoustic pressure levels from 4 microphones divided by space averaged vibration velocity 

for wood walled box. narrow bands, key: experimental results from 4 microphones average; 
- theory, clamped plate. 
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Fig. 5.15 - Sound pressure levels from 3 and 4 microphones divided by space averaged vibration 

velocity for wood walled box. key: experiments, 3 mics; experiments, 4 mics; 
theory, 4 mics; theory, 3 mics. 
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W o o d w a l l e d box - c o r n e r m i c r o p h o n e - 1/3 o c t a v e b a n d s 
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f r e q u e n c y ( H z ) 
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Fig. 5.16 - Acoustic pressure from corner microphone (microphone 2) divided by space averaged 
vibration velocity for wood wailed box. key: experimental results, microphone at 

(0.005,0.485,0.695); theory, clamped plate; - - - - - - - theory simply-supported plate. 

W o o d wa l led box - m i c r o p h o n e 3 - 100 Hz b a n d s 
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Fig. 5.17 - Acoustic pressure from microphone 3 divided by space averaged vibration velocity. 

Average of 4 excitation positions. 100 Hz constant bands, key: experimental results, 
microphone 3, coordinates (0.365,0.26,0.28); theory, clamped plate. 
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W o o d wa l l ed b o x - m i c . 2 - exc i t . 4 - 1 / 3 o c t a v e b a n d s 
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Fig. 5.18 - Acoustic pressure from corner microphone (microphone 2) divided by space averaged 

vibration velocity from excitation at position 4. key: experimental results, microphone at 
(0.005,0.485,0.695), 95% confidence limits; theory, clamped plate. 
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Fig. 5.19 - Four microphone average acoustic pressure and space average vibration velocity divided by 

mean square force at excitation point 1. key: experimental results; 
theory (eq. (2.21)), clamped plate. 
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5.4 Wooden box bounded by a sti^ened plate 

5.4.1 Description of system 

In order to represent a typical stiffened panel, a small aluminium bar 

was attached to the flat plate that bounds the wood walled box described m section 

5.3. As a result the plate was divided in two sections of 0.28 m and 0.20 m length 

along the x axis. The bar was fixed to the plate using a thick double-sided tape. A 

sketch of the position in which the bar was placed is represented in fig. 4.7 while a 

typical section of this bar is shown in fig. 5.20. The natural frequencies of 

longitudinal, torsional and transverse vibration of this bar are listed in table 5.8. Such 

natural frequencies were computed following the expressions presented by B levins 

[79]. 

order of natural transverse vibration longitudinal torsional vibration 

frequency (Hz) vibration (Hz) (Hz) 

1 282.0 5341.7 913.5 

2 776.9 10683.0 1827.0 

3 1522.7 16025.0 2740.5 

Table 5.8 - Natural frequencies of vibration of the stiffener sketched in fig. 5.20. 

The correlation coefficient and normalised cross-power spectral 

density for the flat plate with the stiffener are compared to corresponding theoretical 

results in section 4.4. As shown in figs. 4.8 and 4.9, the results at 250 Hz 1/3 octave 

bands are reasonably similar indicating that some agreement between experimental 

and theoretical response results can be expected in this frequency band. This is 

confirmed by the results presented in this section. 
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5.4.2 Experimental procedure 

The experimental procedure and apparatus used in this experimental 

investigation are identical to those described in section 5.3.2. The only difference 

concerns the mechanical excitation applied to the plate as different coils were used 

with the same magnet employed in the previous experiment. As a result, slightly 

different excitation positions had to be employed and they were reduced to 3 instead 

of 4. The excitation positions are listed in table 5.9. It can be noted from this table that 

the shaker was placed in the 0.28 m length section in which the plate was divided due 

to the restriction imposed by the device that holds the magnet. 

excitation position n. x(m) y (m) 

1 0.165 0.26 

2 0.165 0.10 

3 0.165 0.345 

Table 5.9 - Coordinates of the non-contact shaker position on stiffened plate 

Ten measurement positions were employed to estimate the plate 

vibration levels, 4 positions were situated on the indirectly excited side and 6 on the 

directly excited side. As shown in fig. 5.21, the vibration levels in both sides were 

quite different with levels in the directly excited side 2-4 dB higher than in the 

indirectly excited one. This departs greatly from the spatially uncorrected type of 

excitation assumed in the hybrid model. In this model, the space-averaged vibration 

levels are assumed to be relatively constant along the plate, which is clearly not the 

case here. Because of restrictions with the test rig, the shaker could not be moved to 

the small side of the stiffened plate which could be a way of averaging the results in 

terms of excitation and overcoming this problem. Another way of overcoming this 

problem is by correcting the experimental results in order to simulate that the 

vibration levels are the same in both sides. In this alternative, the space average is 
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multiplied by a correction factor calculated from the ratio of the spectra presented in 

fig. 5.21. Far from ideal, this was the alternative adopted in the present work. 

5.4.3 Discussion of results 

The normalised cross-power spectral density for the stiffened plate was 

computed using the model described in Chapter 3 (equation (3.23')). The plate was 

divided in two sides defined by the position of the stiffener. In one side, the edge 

parameters for a clamped boundary and that fbr the reflecting side of a spring 

coupling are employed in the computation. In the other side, clamped and transmitting 

side of a spring coupling edge parameters are adopted. Expressions employed in the 

computation of the edge parameters are presented in Appendices B, C and E. The 

stifSiess coefficients fbr the spring coupling are computed with the expressions 

presented in section B.6 based on the aluminium bar dynamic characteristics. The 

vibration levels are assumed to be similar in both sides of the plate. 

The computational model here employed uses the 'ideal' number of 

integration points and an upper limit of 60 fbr k r̂. Results are averaged in 1/3 octave 

bands from 50 to 1600 Hz and 100 Hz constant bands from 50 to 1350 Hz. The sound 

pressure levels in the four points listed in table 5.6 are computed and arithmetically 

averaged. These theoretical results are compared to the 95 % confidence limits of the 

experimental results in figs. 5.24 and 5.27. 

The increase in the sound pressure levels induced by the stiffened plate 

are illustrated in fig. 5.22. Experimental results for the plate with and without the 

stiffener are presented in this figure. These sound pressure levels have been obtained 

firom the average of fbur microphones measurements. An increase of nearly 2 dB 

above the first acoustic resonance frequency in the sound pressure level due to the 

stiffener addition is observed. A similar increase is predicted by the theoretical results 

computed at the same microphone positions. This increase in the plate radiation due to 

the addition of a stiffener also agrees with the factor suggested by Maidanik [37]. In 

ref. [37], Maidanik suggests that stiffeners added to a flat plate will increase its 

radiation efficiency below the critical frequency by a factor of 
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(2L„+P) /P , (5.18) 

where Lĝ  is the stiffener length and P is the plate perimeter. This suggestion is based 

on the idea that the stiffener will make the stiffened plate radiate as two plates with 

similar vibration levels and that the radiation resistance below the coincidence 

frequency is proportional to the plate perimeter. When applied to the present case this 

factor estimates that the radiation efficiency of the stiffened plate will be increased by 

1.5 which is equivalent to 1.7 dB in a logarithmic scale. This agrees with the results 

presented in fig. 5.22. Moreover, this increase is another evidence that the acoustic 

radiation of a flat plate is controlled by the edges vibration field. In the present 

situation the perturbation created by the stiffener looks like a boundary for the 

vibration field and the increase in the acoustic radiation is caused by the interference 

created by the stiffener. 

The point mobility for plates with and without a stiffener are illustrated 

in figs. 4.13a and 4.13b. In these figures we observe that the frequency response is 

clearly altered with the addition of the stiffener and it is now more complex with an 

apparent increase in its loss factor. As shown in fig. 5.23, this is reflected in the 

spectrum induced by the stiffened plate which is more erratic and less clean than the 

one induced by the plate without the stiffener. As these results are normalised by the 

space-averaged vibration velocity, such difference appears to be related to the stiffener 

addition. However, similar acoustic natural frequencies appear in both spectra. 

Another difference observed in this figure is the increase in the height of the valley 

between two adjacent natural frequency peaks for the stiffened plate case. Such 

increase is also observed in the narrow band theoretical results and is responsible for 

the higher frequency averaged levels induced by the stiffened plate. 

The agreement between the predicted and measured sound pressure 

levels when the stiffened plate is modelled using the hybrid model is reasonably good 

in the case of 1/3 octave bands. The only major difference is in the 1000 Hz 1/3 

octave band when the hybrid model underpredicts the sound pressure level. This 

underprediction is also observed when the experimental results are averaged in 

constant bands of 100 Hz. This difference is illustrated in fig. 5.24 where theoretical 

results computed for these frequency bands are compared to the 95 % confidence 

limits of the experimental results. Experimental results are underpredicted in the 950 
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Hz band by nearly 3 dB. On the other hand, the same experimental results are 

overpredict by 3 dB in the 750 Hz band. These differences are mostly related to a shift 

in some of the acoustic modes in relation to the ones predicted by the analytical 

expressions (equations 5.3 and 5.4) and by the increase in the level of the valleys 

between two acoustic resonances. The level of this increase appears to not be well 

predicted by the coupling coefficient employed in the hybrid model. Narrow band 

results presented in fig. 5.25 clearly show this difference for the case of acoustic 

modes in the 700-800 Hz interval. Finally, as shown in fig. 5.24, the theoretical results 

are reasonably similar to the experimental ones in the other bands. 

The spatial variation of the sound pressure level is again reasonably 

well predicted as presented in figs. 5.26 and 5.27. The theoretical results shovm in 

figure 5.26 are from a computation in which 1/3 octave bands, an upper limit equals to 

60 for k^r and the ideal number of integration points were adopted. The vibration level 

was assumed to be the same for both sides of the plate. The 3 and 4 microphones 

results are clearly distinct and the theoretical model manages to reproduce this 

distinction. For the four microphones case there is a clear difference in the 1/3 octave 

band centered in 800 Hz. The reasons for the difference in this band are the same 

quoted for the difference in the 950 Hz band shown in fig. 5.24. The situation for the 

three microphones case is slightly different. In this case, there is a clear distinction of 

around 2 dB for the 800, 1000 and 1250 Hz 1/3 octave bands. This is similar to the 

predictions in the non-stiffened plate case in which a better agreement was observed 

in the four microphones average than in the three microphones one. Moreover, as 

shown in figs. 5.15 and 5.26, the theoretical results underpredict the three 

microphones average results. 

It is here suggested that such discrepancy is associated with the error in 

the analytical prediction of some of the acoustic cavity resonance frequencies. For the 

wooden box such error is probably related to the existence of a device to hold the 

magnet for the non-contact shaker inside the cavity. This device is formed by a 

network of beams and because it is quite bulky it can perturbe the mode shape of 

some of the acoustic modes, altering their vibroacoustic coupling characteristics and 

resonance frequencies. This suggestion is based on the fact that the acoustic pressure 

results that apppears to be less affected by the presence of this bulky device are the 
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ones obtained with the comer microphone (microphone 2) which is the microphone 

most distant from this device. 

The sound pressure levels in the band in which the first acoustic mode 

appears are better predicted for this system than for the non-stiffened plate case. As 

discussed in section 4.5, one of the effects of a stiffener on the plate vibration field is 

to increase its apparent loss factor and therefore increasing its modal overlap factor. 

These changes are reflected in the fact that experimental correlation coefficients (and 

normalised cross-power spectral density) results for the stiffened plate approach the 

theoretical predictions in the 250 Hz 1/3 octave band. Such agreement is illustrated by 

the results presented in figs. 4.8 and 4.9 for line G which is placed near the stiffener. 

Furthermore, this is also reflected in the better agreement between experimental and 

theoretical sound pressure levels in the 250 Hz 1/3 octave band. In this frequency 

band, the difference between both results is only 2 dB in comparison with a 8 dB 

difference for the non-stiffened plate. 

The capability of the present approach in predicting local response 

values is further illustrated by the results presented in fig. 5.27. The sound pressure 

level measured by the corner microphone (microphone 2) and divided by the space 

average vibration velocity is compared to hybrid model results at the same acoustic 

cavity position. As shown, most of the frequency averaged results are very close to the 

experimental results 95 % confidence limits. The parameters used in this computation 

are those described for the results presented in fig. 5.26 with 139 acoustic modes 

included in the modal summation. The inclusion of such large number of acoustic 

modes caused the running time on a Sun-Sparc Unix system (University of 

Southampton Solaris system) to average between 30 to 100 minutes depending on the 

boundary conditions adopted. The good agreement observed for the results in the 

higher 1/3 octave bands indicates that the neglect of the cross-terms in the derivation 

of equation (2.16) is valid even for cases in which the acoustic modal overlap factor is 

higher than unity. 
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Fig. 5.20 - Sketch of aluminium bar attached to plate 
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Fig. 5.21 - Vibration velocity level on both sides of stiffened plate. 1/3 octave and 100 Hz constant 
bands. Excitation position 2. Experimental results for stiffened plate; 

indirectly excited side. 

directly excited side; 
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4 microphones average -1/3 octave bands 
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frequency(Hz) 
Fig. 5.22 - Comparison of sound pressure level excited by plate with and without stiffener. 4 

microphones average. 1/3 octave bands, key: experiments, stiffened plate; theory, 

stiffened plate; experiments, non-stiffened plate; theory, non-stiffened plate. 
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Fig. 5.23 - Comparison of sound pressure level excited by plate with and without stiffener. 4 

microphones average. Narrow bands. Experimental results: stiffened plate; non-
stiffened plate. 
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4 m i c r o p h o n e s a v e r a g e - 100 Hz c o n s t a n t b a n d s 
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Fig. 5.24 - Sound pressure level averaged from 4 microphones and divided by space averaged vibration 

velocity. 100 Hz constant bands, key: experiments, 95 % conf. limits; theory. 
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Fig. 5.25 - Sound pressure level averaged from 4 microphones and divided by space averaged vibration 
velocity. Narrow bands, key: experimental results; theory. 
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Fig. 5.26 - Sound pressure levels averaged from four and three microphones divided by space averaged 
vibration velocity. 1/3 octave bands. Wood walled box with stiffened plate, key: experiments, 

4 mics; experiments, 3 mics; . - . - theory, 4 mics; theory, 3 mics. 
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200 400 600 800 1000 1200 1400 1600 
frequency(Hz) 

Fig. 5.27 - Sound pressure level from microphone 2 divided by space averaged vibration velocity. 1/3 
octave bands. Wood walled box with stiffened plate, key; experimental results, microphone 2, 

95 % confidence limits; — — -— theory, coordinates (0.005,0.475,0.685). 
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5.5 Conclusions 

It was shown in this chapter that the hybrid deterministic-probabilistic 

model proposed in this work is adequate for the modelling of the vibroacoustic 

interaction between a flat plate and an acoustic cavity. Good agreement between 

theoretical and experimental results were observed when the results are averaged in 

frequency bands containing at least 6-8 plate modes. This is a restriction common to 

SEA, however, it was shown that, in contrast to SEA, the hybrid model is able to 

predict B-equency-averaged local sound pressure levels with reasonable precision. The 

increase in the sound pressure levels induced by a stiffened plate in relation to a non-

stiffened one has also shown to be reasonably well predicted by the present approach. 

When the acoustic modes are reasonably sparse the hybrid model is 

also capable of predicting narrow band estimates which were shown to agree with 

experimental results. For cases in which the acoustic modes are dense, the same 

agreement was not observed for narrow band results due to the shifting of these modes 

in relation to the analytical predictions (equation (5.3)). On the other hand, the 

G-equency averaged results are greatly improved due to the increase in the number of 

acoustic modes and they were shown to converge to SEA results for an enclosed 

acoustic field induced by clamped plates. Simply-supported plate results were not 

coincident but were very similar. 

Strong disagreement was observed when the firequency band in which 

the first acoustic mode appears does not contain more than 4 plate modes and the plate 

modal overlap is low (M<1). This disagreement is related to the physical nature of the 

coupling between an isolated acoustic mode and sparse plate modes. As shown by 

Kompella and Bernhard [13], small shifts in the plate natural frequencies can cause 

large variations in the sound pressure level. The increase in the modal overlap 

improves this situation and, as presented in section 5.4, good agreement between 

experimental and theoretical estimates of the first acoustic resonance was observed for 

the stiffened plate case in narrow bands. When one is only concerned with frequency 

averaged results this situation can be tackled by widening the frequency band in 

which the results are averaged. 
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Another disagreement between experimental and theoretical results 

was observed in the frequency region around 800-1000 Hz for the wooden box and 

315-500 Hz in the concrete box. It is here suggested that such discrepancy is 

associated with the perturbation caused by a bulky device used to hold the shaker 

magnet inside the wooden box. This device causes some of the medium-order acoustic 

modes to change their shape and frequencies in relation to the analytical expressions 

adopted for such modes (fig. 5.3 and 5.4). 
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CHAPTER 6 

CONCLUSIONS AND SUGGESTIONS FOR FUTURE 

WORK 

6.1 A review of the main results 

The principal objective of this research was to develop a model for the 

vibroacoustic analysis of a modally-sparse enclosed sound field excited by the random 

vibration of a modally-dense enclosing structure. We sought an approach that would 

provide estimates of local and space-averaged sound pressure levels in the enclosed 

sound field in the form of either frequency-averaged or narrow band spectra. A basic 

assumption was that only the gross properties of the structure would be available, with 

full information available for the enclosed fluid and its boundaries. 

The equations for the proposed approach are derived in Chapter 2. The 

modal equations for the response of the enclosed sound field to a uniform plane 

structure vibrating in flexure are presented and the structural vibration is represented 

by the normalised cross-power spectral density of normal acceleration (or velocity). 

The representation adopted for the acoustic system is therefore deterministic, while 

that for the structure is essentially probabilistic. A coupling coefficient evaluated over 

the vibroacoustic interface provides the connection between the two representations. 

Based on this idealisation the sound pressure levels are then estimated from the space-

averaged vibration velocity. 

Further equations are provided for the relation between the sound 

pressure levels and a space-averaged excitation force. Equations derived from a 

modal-interaction model are also developed using a power f low approach and the 

Green's function model. 

In Appendix A, the equations for the coupling between the enclosed 

sound field and a single structure are extended for the case of n-structural systems 

exciting the enclosed sound field. The power f low approach relations presented in 
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Chapter 2 are employed in this derivation and the final model is a hybrid between a 

Statistical Energy Analysis model of the coupled structural systems and the enclosed 

sound field modal representation. The interaction between each structural system and 

the enclosed sound field is represented by a coupling loss factor obtained firom the 

coupling coefficient. 

The application of the present model to the analysis of acoustic 

radiation due to bending vibration presupposes that a model is available to represent 

the normalised cross-power spectral density of acceleration for typical plate structures. 

In order to permit the results derived in this work to be compared with results 

available in the literature it was decided to concentrate the present study on the 

analysis o f the correlation coefficient of the vibration field. However, this analysis 

also provided results for the normalised cross-power spectral density. 

The probabilistic representation adopted for the structural system based 

on a correlation model is thoroughly discussed in Chapter 3, This probabilistic 

representation presupposes that a large number of plate modes, or bending wave 

directions, are available. Based on such description, expressions for the correlation 

coefficient of acceleration are derived for simply-supported, clamped, free or guided 

boundary conditions. Additional results are provided for a generic spring coupling, 

thereby allowing the modelling of stifkners. The large variations of these correlation 

coefficients near the edges of a structure are illustrated by presenting 3-dimensional 

graphs of the field in the vicinity of the edges. It is clear from these graphs that the 

influence of the boundary on the vibration field is restricted to a distance of about one 

wavelength from the edges. In regions more remote from the edges it was observed 

that the form of the correlation is essentially independent of the boundary conditions 

and approach that of a diffuse bending wave field [53]. It is shown that in the case of a 

diffuse bending wave field the expressions for the normalised cross-power spectral 

density of normal acceleration and the correlation coefficient of acceleration are the 

same. 

The correlation coefficient results were derived on the basis of a 6ee 

travelling wave model [55] and also on an approximate modal representation known 

as Bolotin's dynamic edge effect method [56]. Correlation coefficient expressions 

obtained with both approaches are shown to be coincident. The equivalence between 
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the 6ee wave model and the Bolotin's dynamic edge efkct method was previously 

discussed by Langley [55] and additional results concerning their equivalence are 

discussed in Appendix E. The effects of curvature, shear deformation and rotary 

inertia on vibrational wavenumber are expressed in terms of a dispersion relation that 

is included in the correlation coefficient computation. These dispersion relations are 

presented in Appendix F. 

The effect of the excitation type on the correlation model is addressed 

in Chapter 3. Expressions for structures subject to point-excitation and a diffuse sound 

field reveal that, due to the normalisation adopted, these expressions are not much 

different &om those for spatially uncorrelated type of excitation. These expressions 

are restricted to resonant structural response. 

The last section of Chapter 3 is dedicated to comparing closed form 

correlation coefficient expressions for the case of simply-supported plates to a modal 

summation in which the exact plate modes are calculated and summed in each 

frequency band to give a deterministic result. The results presented in this section lead 

to the conclusion that at least eight resonant modes need to be included in a frequency 

band for the correlation model adopted for the vibration field be valid. In addition, in 

contradiction to the conclusions of Steam [76], it was also concluded that a close 

approximation to a diffuse bending wave field can be set up in a moderately-damped, 

point-excited bounded structure. Experimental results presented in Chapter 4 support 

this conclusion. 

The theoretical expressions derived for the correlation coefficient and 

normalised cross-power spectral density were verified by experiments on plate 

structures: the findings are reported in Chapter 4. It is concluded that the condition 

that eight to ten modes need to be available in a frequency band for the present results 

be valid was a little severe and the theoretical results were valid even for cases in 

which only five to six plate modes were included. In disagreement with Steam [76], it 

was found that the structure's modal overlap plays an important part in the validity of 

the correlation model adopted. Good agreement between experimental and theoretical 

results were observed in frequency bands as narrow as 10 Hz when the plate modal 

overlap factor was higher than unity. Therefore, the following criterion was proposed 
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for the validity of the theoretical correlation coefficient and normalised cross-power 

spectral density expressions: 

# when the modal overlap factor is lower than unity they can be used as frequency-

average estimates as long as eight to ten resonant modes are available in the band; 

# when the modal overlap factor is higher than unity they can also be used as narrow 

band estimates. 

Irrespective of the boundary conditions, the forms of the correlation 

coefficient converged to that for a diffuse bending wave field in regions distant from 

the edges, confirming previous theoretical findings. Near the edges it was shown that 

the evanescent field components are of extreme importance for the correct 

representation of the correlation coefficient and strong disagreement with 

experimental results were observed when they were neglected in the theoretical 

model. Experimental results for free, clamped and stiffened plates were reasonably 

well predicted with the correlation model. Mechanical excitation in the form of point 

applied force proved to give similar results as those predicted by the spatially 

uncorrelated type of excitation. However, they only agreed with acoustically excited 

experimental results when a large number of modes was available in the frequency 

band. It was concluded that this discrepancy is connected to the acoustic field used as 

excitation which is not diffuse in good part of the frequency range analysed. 

The correction adopted to account for curvature effects proved to be 

useful when the present model was compared to experimental results obtained on a 

car roof. This roof had double curvature and the variation of the wavenumber with 

measurement (or wave) direction was reasonably well predicted with the suggested 

correction. Finally, experimental evidence was obtained that this model is also 

approximately valid for the case of plates with irregular geometry. Evidence was 

provided to show that the same results and conclusions that apply to the correlation 

coefficient are also applicable to the normalised cross-power spectral density. 

In Chapter 5, the normalised cross-power spectral density expressions 

were incorporated to the hybrid model and applied to the prediction of acoustic 

response inside two different boxes with one flexible wall. It was found that the 

present results approach those predicted by Statistical Energy Analysis when plate and 

acoustic cavity are modally-dense. When f ew modes are available, hybrid model and 
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Finite Element Analysis results compared well for the prediction of narrow band 

estimates of the overall sound pressure level. However, they both departed 

considerably from frequency-averaged experimental results in the band in which the 

first acoustic mode appears. This difference was attributed to the modal sparsity in 

both systems and, as observed by previous researchers, a small change in one of the 

plate natural frequencies can cause a large change in the level of the first acoustic 

resonance. The widening of the frequency band in which the experimental results are 

averaged improved the agreement between experimental and theoretical frequency-

averaged response results. 

An increase in the number of plate modes due to a higher plate modal 

density improved the agreement with experimental results, as predicted fi-om the 

correlation model adopted for the plate. This agreement was observed in narrow band 

and &equency-averaged estimates. Furthermore, it was also found that good results 

can be obtained when the present approach is applied to the prediction of local sound 

pressure levels inside the acoustic cavity. 

Stiffening of a flat plate is associated with increasing the level of the 

induced enclosed sound field and it was found that the present approach is able to 

represent such increase in sound pressure levels. It was also found that the predicted 

increase when frequency averaged approaches that suggested by Maidanik [37]. 

The existence of a bulky device to hold the magnet for the non-contact 

shaker caused some of the wooden box acoustic resonance frequencies to be shifted. 

This shifting lead to a noticeable departure between predicted and experimental 

results for the wooden box in the frequency region around 800 Hz. 

It was found that fi-equency averaged radiation efficiency expressions 

for modally-dense structural systems can be written using the correlation model 

adopted for the plate. Results obtained with these expressions were compared to 

standard radiation efGciency results and, as shown in Appendix G, good agreement 

with exact results was observed for frequency ranges above 0.06 f|.rit. 

In summary, the present model provides an useful tool for the 

estimation of acoustic response of modally-sparse fluid volumes to vibration of a 

modally-dense bounding structure. 
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6.2 Suggestions for future work 

Two avenues are seen as most important for further development of the 

present model. One is chiefly concerned with practical applications and the other 

concentrates on providing further theoretical results for other types of systems 

following similar procedure as the one introduced by this research. 

The present approach could be used as a basis for a computer code in 

which the acoustic mode shapes and resonance frequencies are computed using a 

FEM code and the coupling coefficient evaluated from a numerical integration of the 

FEM-computed mode shapes and the normalised cross-power spectral density here 

presented. For cases in which the form of the structure turns to be too complex, 

normalised cross-power spectral density estimates in firequency bands could be 

obtained &om a FEM computation in which a coarse mesh is adopted to obtain the 

plate correlation characteristics. 

Theoretical extensions of the present approach to other types of 

coupling and systems is the second avenue suggested to be explored. The first step 

would be to write hybrid model equations for the case in which the modally-sparse 

acoustic system excites the modally-dense structural system. This situation is of lesser 

practical importance than the one here tackled but it will provide complimentary 

results to the ones here presented. The analysis of the coupling between a modally-

sparse one- or two-dimensional system with another modally-dense one- or two-

dimensional system is another situation worth of development. A s a matter of fact, 

general equations need to be written that will be valid for any type or dimension of 

dynamic systems. 

Finally, as extensively discussed during this work, further studies need 

to be carried out to assess the implication of different types of acoustic excitation 

(reverberant or not) on vibration field correlation characteristics. 
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APPENDIX A 

HYBRID MODEL EQUATIONS FOR N-PLATES 

COUPLED TO AN ACOUSTIC CAVITY 

The expression for the pressure response of an acoustic cavity, at 

frequencies where the modal density is low, generated by the vibration of a single 

bounding plate with high modal density, was derived in Chapter 2 using a modal-

interaction model, the Green's function approach and the power balance model. 

Unfortunately, that formulation is inadequate when more than one plate is coupled to 

the enclosure. In this situation, the dynamic interaction between each connected plate 

must be taken into account in the model. In view of the fact that a high modal density 

is assumed for the plates, the power input and the power f low between each plate can 

be analysed using Statistical Energy Analysis (SEA). In what follows, a combined 

SEA/modal approach which takes advantage of the fact that the acoustic cavity can be 

represented by its normal acoustic modes is proposed. As discussed, the suggested 

procedure is approximate and it is expected that it will give good results in 

frequencies in which the acoustic modes do not overlap. 

The system in study is represented in figure A. 1. It is formed of N-1 

plates which are coupled to an acoustic cavity (subsystem N). The plates are assumed 

to have high modal density and to be excited by spatially-uncorrelated time-stationary 

random forces. The steady-state power balance equations for this system are 

= rijijj+n,2+. ..+n,^ (plate i), (a. i ) 

nfn = rijj^j.+n,2+...+n2^ (plate 2), (A.2) 

n r ' (piateN-i), (A.3) 

0 == 4- (acoustic cavity), (A.4) 
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where Hin' is total real power input to plate i from an external source, riding' is the 

power dissipated by subsystem i due to its internal damping and riy is the power 

transferred between subsystems i and j. It is assumed that the acoustic cavity is only 

excited by the vibration of the surrounding plates. 

Following standard SEA procedure the steady-state energy balance 

equations can be written in matrix form. The power f low between each pair of 

subsystems is written as an extension of the exact result for two oscillators (equation 

(1.5)). As a result, the loss factor matrix [L] is symmetric because of the reciprocity 

relationship between the coupling loss factors, riy n, = rjji nj. The SEA matrix equation 

for the system presented in figure A. 1 is, 

E, /n , nL " 

E2 / 

^N-1 ̂  ^N-1 
-t-TN-I iijjj 

_E^/n^ 0 

(A.5) 

where. 

[L] 

N 

(n, 
i # l 

-1121̂ 2 
N 

(n2 + Z ^21)̂ 2 
i*2 

(^N + Z n N i ) i 

E; is the total vibration energy of subsystem i, T|i is the loss factor of subsystem i, n, is 

the modal density of subsystem i and rjy is the coupling loss factor between 

subsystems i and j. All the above quantities are assumed to be frequency averaged and 

the equation solved for frequency bands Aco whose centre frequency is 

Instead of solving the SEA model for a complete set of N subsystems, 

it is proposed that the above problem is reduced to a problem of size N-1. This 

reduction is done by eliminating line and column N of the loss factor matrix. As a 

result the term that gives the acoustic energy for the cavity disappears from the 

problem. This reduced problem complies with the power balance condition in each 

plate (equations (A.l) to (A.3)) because the energy radiated by the plates into the 
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acoustic cavity is taken into account. In SEA terminology this radiated power is equal 

to OcniNEi. 

n. 2 

n, acoustic cavity 

d̂iss 

plate (N - l ) 
n.. 

i i v 

plate 3 

Fig. A . l - Diagram representation of N - l plates coupled to an acoustic cavity. The 

power transferred between the plates is not represented. 

Apart from the coupling loss factor between each plate and the acoustic 

cavity all the other parameters of the reduced problem can be estimated, either 

analytically or empirically, in the usual SEA manner [10,14-16,39]. Therefore, if an 

estimate for the remaining coupling loss factors is obtained, the above SEA problem 

of dimension N - l can be solved for the band-limited plate energies. 

The band-limited power radiated by the plates into the acoustic cavity 

is presented in Chapter 2, equation (2.32). This expression was derived following a 

procedure suggested by Pope and Wilby [18,47]. As presented, in a SEA model this 

radiated power is equal to (OTiĵ Ej. If this term is equated to the one presented in 

equation (2.32), we have that the coupling loss factor between plate i and the acoustic 

cavity (subsystem N ) is given by 
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In the above expression the coupling coefficient between the plate and 

each acoustic mode has been substituted by its frequency-averaged value. This is a 

valid approximation as the coupling coefficient varies slowly with frequency. This 

observation is further discussed in Chapter 5. The integral presented in equation (A.6) 

can be solved exactly as presented by Blevins [62]. The solution is 

1 , pz da 
2 -dco = 

-In 

)-+(TlnG)nm)' (!-«")" +(T|a)^ 

(OC; +2a2%n +1) 

(^2 -2a2%, +1) +2a,%, +1) 

1 
+ • 

2Tln 

r| Ti a , 
arctan——^-arctan-

1 ~ cc ̂  1 — .cc 
(A.7) 

where a = m / " f / 4 , oci - fi / fn = i / ,0(2 = 2̂ / 4 = / G)n, f| is the lower 

frequency limit of the band, is the upper frequency limit of the band and 

% n = ( l - ( n n / 4 ) ) " ' . 

Using equation (A.6), the coupling loss factors can be estimated 

from the modal characteristics of the enclosure. However, a question remains 

concerning the acoustic modes that should be considered in the modal summation. 

Ideally this summation should be infinite, but a truncation is necessary in order to 

make the estimation of these parameters attainable. The modes that are included in the 

truncated summation are dictated by the special characteristics of the term in the 

integral of equation (A.6). For instance, the acoustic modes that have their natural 

frequency in a band Aco will dominate the summation in this band due to the 

behaviour of the ((0̂ ,̂  - co )̂ term near the acoustic resonance. However, for bands in 

which no acoustic modes are resonant, contributions from all the modes whose natural 

frequencies fall below the lower frequency of this band must be considered. This 

allows the estimation of the non-resonant response of the acoustic cavity, an 

estimation that can not be handled by conventional SEA modelling. 

The estimation of the coupling loss factors between each plate and the 

acoustic cavity provides the solution of the proposed SEA problem in which only the 

structural subsystems are considered. Once the plate energies are computed, the 

pressure response can be predicted from equation (2.16) with an additional summation 
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to consider the effects of all the plates in the total acoustic pressure. As shown in 

Chapter 2, equation (2.16) fulfils the power balance condition for the acoustic cavity 

providing a solution to equation (A.4). Therefore, the steady-state power balance 

problem for the analysed system (equations (A . l ) to (A.4)) is solved by a combination 

of a probabilistic treatment (the SEA model of the plate network) and a modal 

analysis of the acoustic cavity. The latter deterministic problem can be solved using 

either an analytical solution or, for more complicated geometries, a Finite Element 

Method (FEM) or a Boundary Element Method (BEM) model. The link between the 

probabilistic and the deterministic models is provided by equation (2.16). 
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APPENDIX B 

DERIVATION OF PARAMETERS OF BOLOTIN'S 

DYNAMIC EDGE EFFECT METHOD OF MODAL 

REPRESENTATION FOR VARIOUS BOUNDARY 

CONDITIONS 

In Chapter 3, expressions for the normalised cross-power spectral 

density and for the correlation coefficient of modally-dense flat plates have been 

derived using an approximate modal representation based on Bolotin's dynamic edge 

effect method [56]. This representation presupposes that the plate mode shapes remote 

from the boundaries approaches a sinusoidal function and close to the edges the 

sinusoidal functions are multiplied by an exponentially decaying function. A typical 

displacement function is then given by [56] 

z(x, y, t) = X(x)Y(y)cosmt, (B. 1) 

where the functions X(x) and Y(y) changes according to the position on the plate and 

are expressed as 

X(x) = sink^(x- exp^p^x), for points close to x=0, 

X(x) = for points remote from x=0, 

Y(y)= sinky(y-^y^+ exp^n^y^ for points close to y=0, 

Y(y) = sinky (y - ŷ ̂  for points remote from y=0. 

As discussed in Chapter 3, the boundary conditions at the edges 

determine the coefficients sink^^x, cosk^^x ,sinky^y, cosky^y and Cy. In this 

appendix only coefficients in x are derived, however, the expressions for the 

coefficients in y are similar, the only modification necessary is to change the indices 

in X for y. Moreover, the wavenumbers k̂  and ky in the expressions shown below are 

substituted by kcosG and ksinG in the numerical computation. 
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B.l Simply-supported edge 

For a left simply-supported edge (x=0) we have the following 

boundary conditions [82] 

X(0)=0, and X"(0)=0, 

applying these boundary conditions in the equation for X(x) we have, 

-sink,^^ + C^ = 0, 

sink,^, + = 0. 

The solution of the above system of equations is given by, 

s i n k , ^ , = C , = 0 , (B.2) 

and as a result, 

cosk^^^ = 1. (B.3) 

B.2 Clamped edge 

The boundary conditions on a left clamped edge (x=0) are given by, 

X(0)=X'(0)=0. 

Applying these boundary conditions in equation (B.l) we obtain the following system 

of equations, 

sink,^, =C, , 

cosk,^, = ^ C , . 
kx 

Solving this system of equations we obtain that, 

C, = sink,^, = 

cosk,^,= 

(B.4) 

211 



B.3 Free edge 

For a left free edge (x=0) we have that [82] 

" ax" ^ " ' 

Applying these boundary conditions in equation (B. l ) , including evanescent terms for 

X(x) but neglecting evanescent terms for Y(y), we obtain tlie following system of 

equations, 

= 0, 

+ (2 - v)k^ky^osk^^^ + - (2 - = 0. 

The solution of this system of equations is given by, 

where. 

( ^ x - Q y , ^ x - ( 2 - v ) : x k ; ) 

^ x + \ k ; y ' ^ ^ + ( 2 - v ) k , k ; ) ' 

B.4 Guided edge 

The following boundary conditions apply for a left guided edge (x=0), 

X'(0)= X"'(0)= 0. 

Similar to the previous cases, we can apply these boundary conditions to equation 

( B . l ) and obtain, 

kx cosk,^^-p^C^ =0, 

kl cosk,^^+^i"C^ =0. 

The solution of the above system of equations is given by, 
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and as a result, 

cosk,^, = c , = 0, 

sink,^^ = 1. 

03 8) 

03 9) 

B.5 General spring attachment 

As a means of deriving the coefficients for a general type of edge 

attachment we assume that the plate is uniformly supported along the edge by a 

translational and a rotational spring. This support provides translational, rotational and 

coupling resistance and the respective stiffness are kgg and k^g. A sketch of this 

support is presented in fig. B.l. For a left edge (x = 0) the equations associated with 

this type of support are given by, 

D + (2 - v) 
8'z 

5y 6x 
= k_z + k 

z8 
8z 

9x 

-D 
9"z 9^z 

+ v — r 8x' cy-
= k 

88 

8z 
+ k^z. 

Applying these boundary conditions in equation (B.l), including evanescent terms for 

X(x) but neglecting evanescent terms for Y(y), we obtain the following system of 

equations, 

^Dk^ - Dk ,kX2- v)-k,gk,)cosk,^, + k^ sink,^, 

+ D ( 2 - v)p,̂ ky - k^ + = 0, 

^ k ^ + dk^v- k^)sink,^, + kegk, cosk,^, 

- dkyv - kggp,̂  + k ^ ^ ^ = 0. 

The solution of the above system of equations yields, 

-w^w; 
sink,^, = 

cosk,^,= 

C. = 

(̂W,W; - WgWj' + (w,w, - W.wj' 

w.w^-w^w. 

(w,w; - wgw.y + (w^w, -

w^w.-w^w, 

(W.W; - WgWj' + (w,w, -

(b.io) 

(b . l l ) 

(b.12) 

213 



where, 

w, = d k : + d k ; v - k ^ , 

^ - dky v - kggp,̂  + k^, 

^ = ^ee^x' 

w , = - d k ^ - d k x ( 2 - v ) - k ^ k , , 

w; = -dp,^ + d(2 - v)n^ky - k^ + k^n^, 

w6=k^. 

B.6 Stiffness coefficients for a beam/stiffener coupling [55] 

The parameters of the Bolotin's dynamic edge effect method can be 

applied to beam/stiffener coupling. It is only necessary to express the stifGiess 

coefGcients k̂ ,̂ kgg and k̂ g as a function of the stiffener dynamic properties. The 

stiffness coefficients of a general stiffener (illustrated in fig. B.2) have been 

considered in ref [55] and were derived in the form 

k^ = Elik; - p A m \ k̂ g = -Eli^Cok^ -pAc^m^ 

kee = + el2c^)c^ + gjk^ - ^ + pac^ + pac^)o% 

where EI,, EI2 and EI%2 are the flexural rigidities of the stiffener, EF and GJ are the 

torsional rigidities, pA are the mass and polar moment of inertia per unit length. 

The points S, C and P in fig. B.2 represent the shear centre, the centroid and the plate 

attachment point, respectively. The stiffness coefficients presented in (B.13) were 

derived assuming the plate is effectively rigid in-plane (k^ and kg = 0). 
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rotat ional ^ ^ plate 
spring k._ — 

translational 
spring 

/ / / / / / t 
%^=0 3c 

Fig. B.l - General spring attachment along the left edge of a plate. 

X 
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Li 
_ v c •i— -x 

I I 
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I I 
k—>1 

Fig. B.l - Geometry of stiffener [55]. 
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APPENDIX C 

DERIVATION OF REFLECTION AND TRANSMISSION 

COEFFICIENTS FOR VARIOUS BOUNDARY 

( : ( ) i s t ) n r i ( ) i v s 

As a means of deriving the reflection coefficients of edges with 

classical boundary conditions we assume that a travelling bending wave is incident 

upon a plate edge. This wave has a frequency co and a wavenumber k=co'̂ ^(m/D) '̂'̂ , 

where D is the flexural rigidity and m is the plate mass per unit area. As no wave is 

transmitted through the edge, a reflected and an evanescent field component are 

generated by the interaction between the incident wave and the edge (fig. 3.9). The 

motion of this semi-infinite flat plate is represented in wave terms as [38,55] 

z(x.y.t)= A , + A , e - ' ' ' > } e ' ' - ' ' e ~ (C.l) 

where Â gf is the modulus of the reflected wave, A],, represents the incident wave, Ag 

represents the evanescent field component, ky=ksin8, k ^ = k c o s 8 and 

py = • 

C.l Simply-supported edge 

The static boundary conditions on a simply-supported edge situated at 

y = 0 are 

z(x,0,t) = 0, 

where M represents the bending moment, D is the flexural rigidity and v is Poisson's 

ratio. Applying the boundary conditions at y=0 we have the following equations 

+ ^in + a , = 0, 

-kya^jr - kya;^ + hya, - k^v(a ,̂j. + a , + ai^)= 0. 

The solution of the above equations is given by 
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r = ._! -and 1; = = g (( .2) 
am ain 

where R is the reflection coefficient and E is termed the coefficient of the evanescent 

field component. 

C.2 Guided edge 

The static boundary conditions on a guided edge situated at y = 0 are 

given by 

5 
z(x,0,t)=0, 

8y 

d 
F(x,0, t )=D— — + ( 2 - v ) 0, 

where F is the shear force. Applying these boundary conditions on equation (C.l) and 

solving for the amplitudes we obtain, 

11== = 1 aiid 1;= ^̂ 2-== 0. ((3.3) 
ajn 

C.3 Clamped edge 

The static boundary conditions of clamped edges are 

z(x,0,t) = 0 and 0. 
ay 

Following similar procedure as before we can show that 

-mid e = = oc /0 

It is observed that the above reflection and evanescent field component 

coefficients differ from the ones derived by Graff [82] for the same type of boundary 

conditions. The difference is on the signs of both imaginary parts and it is due to the 

use of an opposite orientation for the incident wave by Graff [82]. When the same 

orientation is employed in the derivation of the correlation coefficient (Chapter 3) and 
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the reflection coefficients, the final correlation coefficient results using Graffs 

convention or the convention here employed are coincident. 

C.4 Free edge 

The static boundary conditions of free edges situated at y = 0 are 

given by 

where 

F(x,0,t) = D ^ 
ay 

= 0 and 

M(x,0,t) = - D - + v- = 0. 
^8y- cbrj 

The mathematical manipulation is cumbersome but the final result is 

A , , _ (W,+iWO 

a . ( W , - i W O 
and E = 

a . i2w2w3 

a „ ( w . - i w , ) ' 
(C5) 

w , = k̂  + k x ( 2 - v ) , and 

C.5 General spring attachment 

A travelling wave of frequency © is incident on a bottom boundary 

(y=0) that has a general spring element attached to it. This element provides 

translational, rotational and coupling resistance. The respective stiffness are k^ ,̂ k@Q 

and kz0 (illustration in fig. C.l). A general solution to equation (C.l) on the leA and 

right sides of the edge are 

,-ikyy e " +A: ref 
4y jgik e 

, ( t)= 

(C.6) 

(C.7) 
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where is the amphtude of the transmitted wave, Ag, and Ae2 are the amplitudes of 

the evanescent field components on the left and right sides of the edge, respectively. 

The boundary conditions at y = 0 are 

z|(t) = z2(t) 

6y 6y 

D 
8 z, 

+ (2 - v) 
9'z, 

6y8x^ 

-D 
5"z, 6^z, 

ay' 
• + V -

- D 

+ D 

a'z 

5y 

6-z 

f + ( 2 - v ) 
a'z; 

k_z, +k zG 

' a z / 

< 9y; 
(C.8) 

^8z,^ 

^ 8y y 
+ k ^ z , . 

6y' gx'' 

Assuming that the spring element is placed along the outer edge of the 

plate we have that the displacement of the region that is on the left side of the spring 

element is null. Applying this condition, Z2=0, the system of equations (C.8) is 

reduced to 

D 
a^z, 

+ (2 — v) 
a'z, 

D 
8-z, 

ay' 
+ V-

aysx 

a'z 

kzz î + k ^ 
^az ^ 

V ay V 

'az,^ 

\ ay; 

(C.9) 

+ k^z , . 

Substituting (C.6) in the above equations and rearranging the terms we 

obtain the following system of equations 

l|a^^f ljajj, + lgag, — 0 

+l3aj^ + l g a , , 0, 
(C.IO) 

where 

L, = i D k ; + i D k y k X 2 - v ) + i k ^ k ^ - k , 

l ; = i d k ; + i d k y k ^ ( 2 - v ) + i k ^ k y + k , 

lg +d|j.yk;^-v)+k^gp,y - k ^ 

- dk + dk^v + ikggk - k^ 

k. l , =dk^+dk'v - ikgek^ 

1-6 = -dp," + dk 'v + kgghy - k^. 

The relative amplitudes of the reflected and evanescent waves as a 

function of incident wave's amplitude are obtained from the solution of the system of 
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equations (C.IO). These relative amplitudes (reflection and evanescent field 

components coefficients) are 

E = 
a . 

l g l ; + l 5 l 3 

L 4 L 3 l . l f i 
(C.ll) 

a . l4 l3 l j l g 

After some algebraic manipulation both reflection and evanescent field 

components coefficients can be expressed in real and imaginary parts as 

rd 

where. 

A ref 
A-

= Re[R]= 
mb + m^ 

and Im 
A rcf 

A, 
= Im[R]= 

M; + M 2 ' 
(C.12) 

m . = ( k ; d + k^dv-k^)( : | l i ;d + d | i x ( 2 - v ) + k ^ m y - k ^ ) 

+kzz^pyd + dk^v + kqg|iy - k ^ ^ , 

m , = + dk^ v + kggply - k ^ + k x 2 - v)dk^ + k^k j 

-k86ky(^p.yd + dp.yk^(2-v)+k^|j,y 

Re & 
A, and Im 

A 
e l 

a , 
(C.13) 

m; + m: 

where M, = (k^D + k,(2 - v)Dk^ + k,,k,)(k;D + k^Dv- k , e ) - k.,k„k,. 

C.6 General spring attachment including wave transmission to the 

adjacent system 

For the case in which the plate on the left side of the edge is moving, 

the system of equations (C.8) can be solved to determine the amplitudes of the 

reflected, transmitted and evanescent field components. After some mathematical 

manipulation we can express the system of equations (C.8) as 

- a , - ag2 = 0 

-ik̂ yaref + i^ya^, - piyag, - ik^a, - hya,2 = 0 

l ia, ,f + ljajj, + lja^i + l 4 a , + l ;a ,2 - 0 

lea^f + l^aj^ + lgag, + l g a , + ligag^ = 0 

(C.14) 
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ikyk^, 

where, 

l , = i d k ; - +ik^k^, l , = - idk; - k, 

l3 = —d)j,y - + p.yk̂ g, l 4= idky , l j = —dpy, 

^6 = dky - k^ + ikykgg, = dk^ - k^ - ikykgg, 

Lg=-Dpy-k^g+Pyk0g, Lg=-Dky, and L,o = D|iy. 

By solving this system of equations, we obtain that the amplitude of the transmitted 

wave as a function of the incident wave's amplitude is given by 

a , 

A; 
^ w,w,-w,w, 

wgw^+w^wg 
(C.15) 

The amplitude of the evanescent field component on the left side of the spring element 

is given by, 

W,(W,W. + W,Wj+W,(W,W; - WW,) 
a., - w,(w,w, + wjw. ) 

The amplitude of the evanescent field component on the right side of the spring 

element is. 

a . 
A,, 

( l , l 2 ) ( l 4 + l , ) 

( L , - L , ) ( L , - L , ) 

(L; +L, ) 

(W,W, + W , W j 

w;(w,w2 - w3w,)' 

w 2 ( w ; w , + w , w j 

(C.17) 

_ ( l 3 - l , ) 

And finally the amplitude of the reflected wave as a function of the amplitude of the 

incident wave is expressed as 

A ref 
A,. 

where. 

= R = 

(L̂  -L3), (L. + L̂ ) (W,W, -w,wj' 
(L3 -L,) (L3 -L,) (W,W, + w,wj_ 

( L 3 + L 3 ) " W 3 ( W ; W , + W 2 W j + W ; ( W , W 2 - W ^ W . y 

(L3 - L , ) W 2 ( W ; W , + W , W j 

(C.18) 

W,=(L,-UXik,,-|i,)+(L,-L,)i2k,, 

W, - (Lfi + L|oX|ky +Hv ) ' 

w, = (L, - L,Xiky - m, )~(L„ - L,>2k, , 
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w, - (Lj -Li)(ikj, +Py)+(L; + L|)(ik, -

W; = (L. - L . ) 2 k , - (L. + L.Xik, - n , ) , 

W, = ( l j - L , )2k , + (L, + l , xik, - n , ) . 

The above coefficients are equivalent to the reflection and transmission 

coefScients presented in ref. [55]. Expressions for kgg, k̂ g for the case of a general 

stiffener are presented in Appendix B. 

kgg , kg 

7777777 

plate 
incident wave 

Fig. C.l - Elastic wave incident on a general spring attachment (ref [55]). 
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APPENDIX D 

RjECgsiLiiL/irf) OIF TiEEiE iu!S]E:i) irsr iriHOB: 

CORRELATION COEFFICIENT DERIVATION 

si) 

Jcos(Acos9)d9 = — Jo(A), ref. [70], (D.l) 
0 ^ 

'1 Tz fizn-ll! 
jcos(A.sin8)cos^"8d8 = ——l|-^J^(A),n>-l /2 , ref. [70], 

0 

k/2 
# 

0 2 A 

then for n=0 we can write that 

m/2 
J C O S ( A sin0)dO = ~ Jo (A), (D.2) 
0 ^ 

k / 2 

# 1= jcos(Acos8)cos(Bsin8)d8 = —J^^A^ + B ^ \ (D.3) 
0 2 \ / 

Applying Jacobi's expansions in series of Bessel functions (ref. [71]) we can 

rewrite the integral on the leA side of the above expression as 

tc/2 / co \ ^ co ^ 
1= j Jo(A)+2^(}-iyj2XA)cos2n8 Jo(B)+2%]j2,(B)cos2n8 d8. 

0 ^ n = l II = 1 ^ 

The cross multiplication of the two terms inside the parenthesis in the above 

expression result in four integrals that can be solved separately. The solution for each 

one of them is as follows 

Tt 
I ,= Jj.(A)J,(B>ie = -J , (A)I . (B) 

0 

%/2 a, m %/2 
I; = Jo(A) j 2 ^ J2,(B)cos2n8d8 = Jo(A)2]gJ^^B) j'cos2n8d8 

0 " = 1 n = l 0 

^sin2n8^"^' as Jcos2n0d9 = 
2n 

= 0, then l2=0. 
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Similar to the derivation carried out for I2 we can show that 

00 

i3 = jo(b) j '2^(- l )"j2 , (a)cos2n8d8 = 0. 
0 n= l 

I 4 = J 4 I ; ( - L ) " - ' 2 . ( A ) ' 2 , , ( B ) C O S ' 2ned9 = 4 2 ( - 1 ) " J , . ( A ) I , . ( B ) J C O S ' 2n8d8 
0 

n/2 
as jcos" 2n9d9 

0 

8 &m4n8 
1 

2 8n 
71 
4 

then 

n = l 

From the results for I,, I2,13 and I4 we obtain that 

Jo(A)I . (B)+22(- l )"J ,„ (A) l2„(B) (d.4) 

The above result can be expressed in a more convenient form if the summation 

theorem of Bessel functions is recalled. This theorem states that (pg. 979, ref. [70]) 

Jg (mR) = J 0 (mp)J 0 (mr) + 2 ^ J ̂  (mp)J ̂  (mr)cos kcp, (D.5) 
k = I 

where R = - 2rpcos(p Assuming that r and p are two perpendicular 

functions we have (p=90°, cos(p=0, R = -Jr' + p^ and 

71 
J 0 (mR) = J 0 (mp)lo (mr)- 2 ^ J ̂  (mp)! ̂  (mr)cos k 

k = l 

In the present work the function A represents a distance in the x-

direction multiplied by a constant (k) and the function B represents a distance in the y-

direction multiplied by the same constant (k). Therefore, the functions A and B are 

perpendicular and the above assumptions apply. Moreover, it is easy to show that for 

the summations involved in equation (D.4) (-1)" is equivalent to cosk7i/2, because 

k=2n. Therefore, equation (D.4) is equivalent to equation (D.5) and as a result 

71 
J . (A) J . (B)+2 | ; ( - l ) " J j , (A) I j , . (B ) 

n = l 

Finally, substituting the above result in equation (D.4) and comparing with equation 

(D.3) we find that 
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jt/2 , . 
Jcos(Acos9)cos(Bsin9^9 = — Jq WA" + B~ \ (D.6) 
0 2 \ / 

Equations (D.l), (D.2) and (D.6) are the basic results employed in 

Chapter 3 to derive closed-form expressions for the correlation coefficients. 
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APPENDIX E 

r ihee i c q u i t / v u icpfczic c ) f i ; ( ) i j c ) t r i r 4 ^ 5 ) ] d r y ] \ l 4 j \ i i ( : 

EDGE EFFECT METHOD [56] AND LANGLEY'S 

l e i vais) [ ! [ ( : tptfjit/ie: TrE:(::i3[rsn[(:)uriE [!;<;] 

The analysis of the equivalence between the elastic wave technique 

employed by Langley [55] with the Bolotin's dynamic edge effect method [56] has 

been presented by Langley [55]. In this analysis it was concluded that both approaches 

are equivalent and the elastic wave technique is only a reformulation of Bolotin's 

method. However, the analysis presented in ref. [55] was restricted to the inner 

solution of Bolotin's method. In what follows an extension to that analysis is 

presented for the case of the inner solution (propagating waves) and for the outer 

solution (decaying components restricted to the vicinity of the boundaries). Reflection 

coefEcients and Bolotin's dynamic edge effect parameters (sink^^x, cosk^^x ,Cx, 

sinky^y, cosky^y Bud Cy) are then compared for various boundary conditions. 

E.l Comparison of the inner solution 

The 'inner solution' assumed in Bolotin's dynamic edge effect method 

is given by [56] 

W(x,y)=sink^(x-^ Js inky(y-^y)e"", (E.l) 

and when trigonometric transformations are applied to (E.l) it can be expressed as 

W(x,y)= (sink^xcosk^^^ -cosk^xsink^^^) 

(sinkyycosky^y -cosk^ysinky^y^e""'. 

The deflection shape derived by Langley [55] using an elastic wave 

technique is 

W(x,y) = 4(^2A4y" cos(k^x + (|) Jcos(kyy + (|)y)e"", (E.3) 
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as A; = AJ/RL and A4 = A,/Rg, then 

= 4 
/ .2 a 

(E.4) 

Substituting (E.4) in (E.3) and applying trigonometric relations to this 

equation we have that 

W(x, y) = 4 ^osk^xcosct)^ -sink^xsin(|)^) 

(coskyycos(|)y -sinkyysin(|)y^e"°'. 

From equations (E.2) and (E.5) we can write that 

c0s(|)^ = sink,^^, sinc))̂  = cosk,^,, 

cos(|)y = sinky^y, sin(|)y = cosky^y. 

From equations (30,31) of ref. [55] we have that 

e'*̂  = ( A 3 / A j ' ' ' , e'*' = ( A , / A , y \ 

As A3 = Ai/RlRb , A2 = Aj/Rl and A4 = A,/Rg then 

e ' * ^ = ( l / r l y \ e ' * ' = ( l / r b y \ 

When z is complex the following mathematical relation applies 

(equation (3.7.27), ref. [72]) 

(E.5) 

(E.6) 

(E.7) 

(E.8) 

.1/2 1 
(r + Re[z]) 

1/2 

±i l ( r - R e ( z ) ) 
1/2 

= u ± iv. (E.9) 

where r is the modulus of z, 2uv=y and where the ambiguous sign is taken to be the 

same as the sign of y. 

Substituting (E.9) in equations (E.8) and expressing the exponential 

functions in terms of sine and cosines we obtain 

coscj)̂  = 

cos(j)y = 

i ( l + R e t R J ) 

i(l + R e [ R j ) 

1/2 

1/2 

sin(|). 

sin({) = ± 

( l - r e [ r u ] ) 

( l - R e [ R , ] ) 

1/2 

1/2 
(E.10) 

As a result of (l-Re[R]) being always positive or null, the ambiguous 

sign in (E.IO) can be taken as positive. Finally, from (E.6) and (E.IO) we have that 
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sink,^, = 

s i n k y ^ y = 

i ( l + R e [ R J ) 

1 
(l + R e [ R j ) 

1/2 

1/2 

cosk,^,= 

cosky^y = 

i ( l - R e [ R J ) 

( l - R e [ R . ] ) 

1/2 

1/2 
(E.11) 

The above equations provide a simple relation between the parameters 

of Bolotin's dynamic edge effect method and the reflection coefficients of the plate 

boundaries. 

E.2 Comparison of the outer or corrective solution 

Assuming we are in the vicinity of one of the edges, a evanescent 

component must be added to the elastic wave representation. In this case we can write 

that (equation (A2), ref. [55]) 

w, = Gxp(-ik,x)+ exp(ik,x)+ A„ exp^k^ +2kyx^xp( ikyy + imt). (E.12) 

The equivalent expression based on the dynamic edge effect method 

can be obtained from (B.l) or &om ref. [56], equations (4.28) and (4.30). It is 

w, = '^ink,(x - ^ J + C, exp^^k^ + 2ky x ^ i n k ^ (y - )cosmt, (E.13) 

which after some mathematical manipulation can be expressed as 

w, = -^ink^xcosk^^^ -cosk^xsink^^^ +c^ exp^.jk^ +2KYX^inky(y-^Y^osci)t 

Comparing the above expression with equation (E.12) we obtain that 

c . = Re 
A. 

a _ 

1/2 

2r<=1e|] 
1/2 

(E.14) 

Expression (E.14) has been obtained following a similar procedure as 

the one used in the derivation presented in E. 1. Together with equations (E. 11), 

equation (E.14) allows the determination of the dynamic edge effect method 

parameters directly from the reflected and evanescent field component coefficients. 

Moreover, if the dynamic edge effect method is to be applied in the vicinity of a edge 

in which only the transmitted (AJ and the transmitted evanescent (Ag?) field 
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components exist, it can provide a way of estimating the dynamic edge effect 

parameters for the indirectly driven side of a system. 

E.3 Verification of the results for some boundary conditions 

Expressions (E.l 1) and (E.14) were used to derive results for the 

dynamic edge effect method parameters and for the reflection and evanescent field 

component coefficients for various boundary conditions. These results were compared 

to those derived in Appendices B and C. When the result used for one typical 

parameter has been drawn from Appendices B or C it will be called a direct result. On 

the other hand, if the parameter has been obtained from the application of equations 

(E. l l ) or (E.14), then it will be called an indirect result. Direct and indirect results 

were compared for simply-supported, guided, clamped and free edges and they were 

coincident for all cases. The comparison of indirect and direct results for clamped and 

free edges is presented in the next two sections. 

E.3.1 Clamped edges 

The real part of the reflection coefficient for a left clamped edge is 

given by equation (C.4) 

r e [ r , ] : 

Substituting (E.l 5) in (E.l l) we can show that 

(E.15) 

suikxs,= 

1/2 - -

1 
1 

2 l k ; + k ^ ; 

1/2 

k. 
(E.l 6) 

and 

cosk,5x = 
2 \ 

V k ; + k , / 

1/2 

k:+2ky 2\ 

vk^+k^v 

1/2 
k ; + 2 k ; 

2(k%+k;) 
(E.17) 

From equation (C.4) we have that the real part of the evanescent field 

component coefficient for a left clamped edge is given by 
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Re[E,]=. 
- 2 k 

2(k:+k; ) ' 

Substituting (E.18) in (E.14) we have that 

(E.18) 

c . 
1 2k^ 

2 2(k^ +ky^ 2(k: + k ; ) 
(E.19) 

The indirectly derived results (E.16), (E.17) and (E.19) agree with the 

directly derived results (C.4). 

E.3.2 Free edges 

where 

to equal 

The real part of the reflection coefGcient for a &ee left edge is given by 

Re[Rj= 

w , = k ; + k x ( 2 - v ) 
k"+vk! 

(E.20) 

W: and 

Substituting (E.20) in (E.l 1) we obtain that 

w. 
sink^^ 

v w , ' + w ' 
cosk,^. 

W, 
(E.21) 

w," + 

After some mathematical manipulation the above equations are shown 

( k ^ + k , k ; ( 2 - v ) ) ^ ^ - v k ^ . ) 

-l^xky(2 - v))"(k^ + vk^]) + (k^ + k,k;(2 - v)^(j^; - v k ^ ) ' j 
-,(E.22) 

cosk^^^ = 

^x + vk; + (k^ + k.k; (2 - v))^ ] 
-.(E.23) 
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The real part of the evanescent field component coefficient for a left 

edge can be obtained from equation (C.5), 

Re[E J = 4 ; . k k ; ( 2 - v | ( . ; - v k ; X ^ ; ^ V - 0 (E.24) 

(î x - - v)) (k^ + k,k^(2 - v)) (1̂ ^ - vk^) 

C = 

Substituting (E.24) in (E.14) we have that 

1/2 

.(E25) 
^ - v)) (k^ + + k,kX2 - v))' 

The direct results for the dynamic edge effect method that were derived 

in Appendix B, equations (B.5) and (B.6) are given by 

where, 

" - - I S E I f y < ™ 
Substituting (E.27) in (E.26) and rearranging the terms we obtain exactly the same 

equations as (E.22) and (E.23). 

The parameter for the dynamic edge effect method has been derived 

directly in Appendix B (equation (B.7)). The result is 

Substituting equations (E.27) in (E.28) we obtain that 

= (k; + * : x k ; + k . k x 2 - v ) ) ^ 

- M , k ; ( 2 - v ) ) ( k ; +vk; ) ' +(k ; + k , k ; ( 2 - v ) ) ' ( n ; - v k ; ) ' j 

Comparing equations (E.25) and (E.29) we observe that there is a 

slightly difference between the directly and indirectly derived parameter. This 

difference is probably related to the omission of the term e x p ( - i k y y ) in equation 

(E.12). However, in practice, the difference between the results obtained using the 

present derivation is negligible. This fact is illustrated in fig. (4.28) for the case of a 

rectangular flat plate with all around &ee edges. As shown, both results are coincident 

and very similar to experimental ones. 
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APPENDIX F 

DISPERSION RELATIONS FOR VARIOUS 

STRUCTURES 

Dispersion relations for some flat structures are presented in this 

appendix. They are expressed as a function of 6equency f and propagation angle 8. 

F.l Doubly-curved thin shell 

An asymptotic expression for the natural frequencies of free 

oscillations of a doubly-curved thin shell that is valid under certain conditions has 

being derived by Bolotin [89] using the dynamic edge effect method. This expression 

is [89] 

= 2 
ph 

( k ; x + k ; ) 
( F . l ) 

vyhere X=rx/ry, 8=arctg ky/k ,̂ D=Eh^/12(l-v^), m is the &equency of the free 

oscillation of the shell, D is the cylindrical rigidity, p is the material density, h is the 

shell thickness, E is the Young's modulus, k^ and ky are the wavenumbers in x and y 

directions, and r^ and ry are the principal radii of curvature of the surface. The 

parameter X satisfies the inequalities -1 < X > 1. The "plane stress" ring frequencies 

of the shell are defined as 

f = 
1 

Inr y vP 
f = - i -

" 27ir 
(F.2) 

where we assume that FY > f^. Expressing the wavenumbers and KY as a function of 

the bending wavenumber k and angle 8 we have that [90] 

= 

ph 
k" + 

Eh 

dr^ 
^xcos^ 8 + sin^ 8^ (F.3) 
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where kx=kcos9 and ky=ksin9. The limits of applicability and the general behaviour of 

equation (F.3) have been discussed by Gordenveizer [90]. The natural frequencies of 

free oscillation of the shell are strongly dependent on the ring frequencies. Operating 

expression (F.3) mathematically we obtain an asymptotic expression for the bending 

wavenumber 

ph(2Trfy Eh 
(X cos-8 +sin" e)). (F.4) 

D Dr^ 

The first term on the left hand side of the above equation corresponds to the bending 

wavenumber of an equivalent flat plate while the second term is a correction due to 

the shell curvature. It will only have complex solutions for f < fx , complex and real 

solutions for f^ < f< fy (curve marked 2 in fig. F.l) and real solutions for f > fy (curve 

marked 3 in fig. F.l). In the frequency region 4 < f< fy, the real solutions are situated 

in a curve delimited by the angles 0 and Gq, where Gg is given by 

n 1 -1 
8(1 = — cos 

^ 2 p - ( x + l) 

( x - i ) 

In the frequency V2 times the upper ring frequency the shell bending wavenumber 

approaches that of the equivalent flat plate (curve marked 5 in fig. F.l). 

Equation (F.4) was used to estimate the bending wavenumber of the 

passenger car roof in the theoretical results presented in section 4.8. In this case, for 

frequencies situated between the two ring frequencies, the integration in wavenumber 

space used in the correlation coefficient estimation was performed between 0 and Gq, 

where 9^ is given by equation (F.5). Below the lower ring frequency no integration 

was performed and the correlation coefficient was assumed to approach unity. Above 

the upper ring frequency the usual limits 0 and TIH apply. This procedure can be 

applied in the estimation of correlation coefficients for all curved shells. The results 

presented in section 4.8 shown that a reasonable approximation of the variation of the 

correlation coefficient or normalised cross-power spectral density results due to the 

lines orientation can be obtained when equation (F.4) is employed. 
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Dispersion relations for a doubly curved shell - X>0 

Fig. F.l - Dispersion relations for a doubly-curved shell of positive curvature (X>0) 

and ring frequencies 4 = 100 Hz and fy = 300 Hz. Frequency of oscillation; 2. f=150 

Hz, 3. f^250 Hz, 4. f-350 Hz, 5. f=600 Hz 
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Dispersion relations for a doubly curved shell - X<0 
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Fig. F.2 - Dispersion relations for a doubly-curved shell of negative curvature (X<0) 

and ring frequencies f^ = 100 Hz and fy = 300 Hz. Frequency of oscillation: 

1. f=50 Hz, 2. f^l50 Hz, 3. f^250 Hz, 4. M 5 0 Hz, 5. f^600 Hz. 
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F.2 Singly-curved thin shell 

sin" 8 c f6 ) 

The result for a singly-curved shell can be obtained directly from the 

doubly-curved shell one (F.2 and F.4) by setting r̂  = oo. Thus for a singly-curved shell 

we have that 

where r is the shell radius and is the 'plane stress' ring firequency. In the frequency 

region below the ring 6equency fj. the above expression gives complex and real 

results. The real results are situated in the curve between 0 and 6], where 8; = 

a c o s ( f / f y ) . The implication of the solution of this expression for regions in which f < f y 

have been discussed by Langley [91], who demonstrated the existence of two distinct 

wave types that generate out of plane displacements. 
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Dispersion relations for a singly curved shell 
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Fig. F.3 - Dispersion relations for a singly-curved shell with ring frequency f̂  = 300 

Hz. Frequency of oscillation: 2. f=150 Hz, 3. f=250 Hz, 4. f=350 Hz, 5. f=600 Hz 
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F.3 Mindlin plates: inclusion of shear deformation and rotary 

inertia 

Mindlin plates are generally referred as plates in which shear 

deformation and rotary inertia are taken into account in vibration analysis. Shear 

deformation and rotary inertia are important for cases of thick shells and plates in 

which the thickness of the structure is of comparable dimension to the structure 

characteristic dimension. The free vibrations of Mindlin plates are governed by the 

following simplified equation [92] 

DAAw + ph 
D h 

(F.7) 

where G is the shear modulus, G' = k^G, is the shear coefficient, w(x,y,t) is the 

transverse displacement. The other terms of equation (F.7) are similar to the ones 

defined for equation (F.l). The natural frequency for the case of all around simply-

supported edges is given by [92] 

CO 6 = 
D h-

• + - (F.8) 
iG'h 12; 

where the terms under brackets is the correction factor due to effects of shear 

deformation and rotary inertia. Substituting and ky by kcosG and ksinG in equation 

(F.8) and expressing the wavenumber k as a function of the frequency of oscillation 

we have 

k" = 

so'' ±coj6^ci)^ + 
I phj 

2D 
ph 

(F.9) 

In this case the solution of the above equation will be governed by the value of the 

parameter 8 in relation to the bending wavenumber of a flat plate without shear 

deformation and rotary inertia effects. The negative sign in the above equation can be 

discarded as it will only give complex wavenumbers. 

Results from equation (F.9) for a 0.1 m thick plate are compared to the 

classical bending wavenumber in fig. F.4. As shown, the bending wavenumber curve 
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with the correction term departs from the uncorrected curve for wavenumbers higher 

than eight which correspond to a wavelength of 0.75 m. This observation agrees with 

the analysis presented in section II.3.b of ref [38] in which it is suggested that the 

correction terms due to rotary inertia and shear deformation make a difference of more 

than 10 % if the wavelength is less than the value X = 6h. The correction suggested in 

ref [38] is also plotted in fig. F.4. 

Effect of shear deformation and rotary inertia on wave number - h=0.1 m 
25 r 

2000 4000 6000 8000 10000 
frequency(Hz) 

Fig. F.4 - Dispersion curve for a plate of 0.1 m thickness. rotary inertia and shear 

deformation included (eq. (F.9)); classical bending wavenumber; 

correction suggested in ref [38]. 
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APPENDIX G 

AN APPROXIMATION TO THE FREQUENCY-

4iikic]rj4l(]%ec i;l/\j[)][/i:i^[0]\f i f i f iri(:: i ]b:iv(:tr (:>i? i f ] [ . /nr 

PLATES 

In this appendix the correlation characteristics of modally-dense 

randomly vibrating plates are used to estimate the radiation efficiency of such 

structures. Comparisons are presented with well-known results from Maidanik [37] 

and Leppington et al. [93]. 

G.l Radiation efficiency of flat plates 

The time-averaged acoustic power P radiated into a half-space by a 

harmonically vibrating rectangular plate (area S and dimensions a,b) set in a rigid 

baffle is given by the Rayleigh integral representation of the induced pressure [93] 

P = {v(x,y)v(x%y')^Hl&IdS'dS, (G.l) 

where kg denotes the acoustic wavenumber, is the fluid mean density, v(x,y) is the 

normal vibration velocity of the panel, co is the frequency of excitation and r is given 

by 

r = ^ ( x - x ' y - H ( y - y ' y . (G.2) 

The plate radiation efficiency is defined as [19] 

= = (G.3) 
pocoab(v-

where Cg is the fluid sound speed and the space-average value of the time-average 

normal vibration velocity of the panel which is defined as [19] 

1 r l ' 
") = Q IT K(x,y,t)dtdS. 

238 



Assuming that the plate normal displacement is given by equation 

(3.19'), the radiation efficiency for a single mode of vibration is then given by, 

CO 

J j x , ( x ) Y , ( y ) X , ( x ' ) Y , ( y ' ) ! H ^ S ' d S 
(t = s s ^ ((24) 

| x x x ) y j ( y ) d s 
s 

For the case of a simply supported plate, 

Xp (x) = sink.x, (y) = sink^y, 

where and ky are the wavenumbers in x and y directions. Substituting these mode 

shapes in (G.4) we obtain the following expression for the modal radiation efficiency 

of a simply-supported plate 

a = f [sink xsink ysink x' sink y' ^^"^°^dS'dS. (G.5) 
%s j j " " ' k , r 

which agrees with equation (2.5) of ref. [93]. 

A 6eqiiency average of the radiation efficiency can then be obtained by 

summing the contribution from all modes that are excited in a specific frequency 

band. Using modal summation we can write the normal vibration velocity as 

<:^,y)=zapxp(x)yp(y) , 
N 

where N controls the number of modes to be summed to obtain v(x,y). Expressing k^ 

and ky in circular coordinates (ky,8) and assuming that all the modes are equally 

excited within the frequencies fg-Af/2 and f^+MI2 we can obtain an estimate of v(x,y) 

for a modally-dense plate. This estimate is given by 

ry n/2 
v(x,y) = - jAX^y,8,x)Y(kb,8,y)d8, (G.6) 

^ 0 

where to derive the above expression it is assumed that each individual modal 

wavenumber included in the discrete summation do not depart strongly from the 

wavenumber at the band centre frequency (ky). Substituting (G.6) in (G.4) and 

neglecting the cross-modal contributions we obtain an approximate expression for the 

frequency-average radiation efficiency due to any type of boundary conditions 
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%I2 • , 

j j i x(kb,6 ,x)y(kb,e ,y)x(kb,8 ,x ' )y(kb,8 ,y 'x8-^!^^sds 

c = ^ ,03.7) 
I j'x'(k„e,x)Y'(k„8,y)d8dS 
S 0 

where X(ky,8,x) and Y(k,9,y) can be obtained from the results presented in Chapter 3. 

G.2 Results for a rectangular plate 

For the case of a plate which vibration field approach that of a diffuse 

bending wave field, equation (G.7) can be expressed as 

- A j (G.8) 

where S is the plate area. The above representation of the frequency-average radiation 

efficiency is similar to the one presented in eqs. (5) and (8) of ref. [94]. As observed 

in [94] when the above 4-dimensional integral is reduced to a one-dimensional 

integral and the integration limits are extended to infinity, the well-known results for 

an infinite plate a = (l - k^ / k^^ if ky < k^, and o = 8 if k^ > k^, are 

recovered. Results for the the radiation efficiency of a 1 cm thick rectangular plate 

with sides a=1.0 m and b=0.8 m computed from equation (G.8) is presented in fig. 

G.l. This graph is coincident with that presented in figure 2 of ref [94]. It can also be 

observed in this figure that the radiation efficiency estimates for a simply-supported 

plate are higher than that of a diffuse vibration field, except below 40 Hz. The main 

reason for this is that in this frequency region the plate is behaving like a rigid piston 

as the first resonance frequency for this plate is estimated to be 63 Hz. Therefore, both 

expressions are in error in the low frequency range as a high modal density was 

assumed in their derivation. In the present work, the following expression (obtained 

from eqs. (3.15'), (3.16) and (G.7)) is used to compute the radiation efficiency of 

simply-supported flat plates 
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I J 
Jo^bV()̂ i -Xz)̂  +(y, -x^y +(y, +yj" ^ 

-Jo^J(x, fx^y +(y, -y;)'^Jo^bV(X| +X2)' +(y, ^y^)' ^ 
"^^^ds'ds 

k r 

.(G5) 
j[ i-jo^bx,)-jo(^by,)+jo^bvxf + y ' ] ds 

As shown in fig. G.l results from equation (G.9) approach that of 

Maidanik [37] and Leppington (eqs. (7.6), (7.7) and (7.11) &om ref.[93]) for 

frequencies higher than 0.1 f^it, where f̂ rit is the lowest coincidence frequency or, as is 

common terminology, the critical frequency . The critical frequency is estimated to be 

1200 Hz for the plate used. The result for a diffuse vibration field (equation (G.8)) 

only approaches the other three in the proximity of the critical frequency and can give 

results almost 6 dB lower than that of equation (G.9) for f=0.1f^rit • As for regions 

remote from the edges the vibration field approach that of a diffuse field irrespective 

of the boundary conditions, the difference between simply-supported and diffuse field 

results clearly reflect the importance of the vibration field near the edges in 

controlling the plate acoustic radiation below the critical frequency. 

In fig. G.2 a comparison between the asymptotic expressions derived 

by Leppington et al. [93] and the results presented in this work for the case of simply-

supported plates is presented. When the frequency-average radiation efficiency is 

computed from the numerical integration of equation (2.6) of ref. [93] the curve 

obtained is very similar to that obtained from eq. (G.9). They only disagree for 

frequencies below 0.06f^nt- addition, it is worth explaining that the difference 

between the two results from Leppington et al. [93] as plotted in figs. G.l and G.2 is 

that the dash-dotted curves in both figures represent an asymptotic estimate of 

equation (G.5) for cases in which the acoustic wavenumber tends to infinity 

whereas the dashed line in fig. G.2 is obtained from a numerical integration of a 

2-dimensional integral similar to equation (G.5). 

The effect of the boundary conditions on the radiation of flat plates is 

illustrated by the results presented in fig. G.3. The Bolotin's dynamic edge effect 

method parameters for the case of clamped and free edges (Appendix B) are 

substituted in equation (G.7) and the radiation efficiency calculated. As expected, the 

clamped edges increase the radiation efficiency by a factor of approximately 2 in a 

frequency region between 0.07f̂ rit ̂ nd when compared to simply-supported edges. 
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However, for frequencies below 0.07f^rit simply-supported plate results are higher than 

that of clamped plates. This agrees with the results reported by Timmel [87] and by 

Berry et al. [95] and they are related to the fact that low order modes (up to the (2-2) 

mode) are more efficient in terms of acoustic radiation for the case of simply-

supported boundaries. On the other hand, the radiation efficiency of a plate with free 

edges is much lower than that of plates with simply-supported or clamped edges in the 

same frequency range. This observation is in agreement with previous analysis of 

sound radiation from plates with free edges [95] confirming that these plates are poor 

radiators of sound. Above the critical frequency the boundary conditions are 

unimportant to the sound radiation and the radiation efficiency approaches unity 

irrespective of the boundary condition. 

Frequency-averaged radiation efficiency -1/3 octave bands 

10 10 10 
frequency (Hz) 

Fig. G.I - Frequency-average radiation efficiency. 1/3 octave bands. Flat plate a=1.0 m, b=0.8 m, 
h=0.01 m. simply-supported plate (eq. (G.9)); diffuse vibration field (eq. (G.8)); 

Leppington (eqs. (7.6),(7.7),(7.11) of ref. [93]); Maidanik (eq. (2.39) of ref. [37]). 
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Frequency-averaged radiation efficiency -1/3 octave bands 

10 10 
frequency (Hz) 

Fig. G.2 - Frequency-average radiation efficiency. 1/3 octave bands. Simply-supported flat plate a=1.0 
m, b=0.8 m, h=0.01 m. this work (eq. (G.9)); • - Leppington (eqs. (7.6),(7.7),(7.11) 

from ref. [93]); Leppington (numerical integration of eqs. (7.5),(2.6) from ref. [93]). 

Frequency-averaged radiation efficiency -1/3 octave bands 

10 10 
frequency (Hz) 

Fig. G.3 - Frequency-average radiation efficiency. 1/3 octave bands. Flat plate a=1.0 m, b=0.8 m, 
h=0.01 m. simply-supported edges (eq. (G.9)); free edges (eq. (G.7)); 

- clamped edges (eq. (G.7)). 
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