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The acoustic field inside a hard-walled acoustic cavity due to the random
vibration of one flexible wall is analysed by a novel hybrid deterministic-probabilistic model.
This approach implies that the flexible wall is not amenable to a deterministic treatment due
to its high modal density and uncertainties concerning its exact geometric and material
properties. Thus an original probabilistic treatment based on the vibration field correlation
characteristics is proposed for the flexible wall. On the other hand, full information is
available for the acoustic cavity making it tractable by deterministic modal techniques. A
coupling coefficient between each acoustic mode and the plate bending wave field is
employed to represent the vibroacoustic interaction and the response obtained from a modal
summation due to contributions from each acoustic mode.

Information concerning the spatial distribution of the plate response is
provided by the probabilistic model and expressed in terms of correlation coefficients or
normalised cross-power spectral densities of normal acceleration. Expressions for these two
coefficients are derived based on an approximate modal representation and on a free wave
model. Particular attention is paid to the plate boundary conditions and results are derived for
plates with clamped, simply-supported, guided or free edges. A general boundary condition
which solely depends on the edge stiffness is employed to model the effect of stiffeners on
the plate vibration field. Information about curvature and type of excitation applied to the
plate are also incorporated in this model. It is found that the derived correlation coefficients
and normalised cross-power spectral densities are valid as frequency average estimates in
bands in which more than eight plate modes are available. However, when the plate modal
overlap factor is higher than unity they can also be employed in narrow bands.

Comparisons are presented with SEA, FEM and experimental response
results on two subsystems which consist of a rigid rectangular box with one flexible wall. It
is shown that the hybrid model results approach those from a SEA model as both systems
modal density increases and they compare well with FEM results in the lower frequency
range in which both systems are modally-sparse. In addition, narrow band and frequency
averaged sound pressure levels approach the experimental results as long as more than eight
plate modes are available in a frequency band or the plate modal overlap factor is higher than
unity. Local and space averaged sound pressure levels are also predicted with this model.

The most significant contribution of the model here proposed is the provision
of a new tool for the prediction of narrow band or frequency averaged, local or space
averaged sound pressure levels inside acoustic cavities excited by the random vibration of
modally-dense plates for whom only the gross properties are available. This type of
interaction model is applicable to interior noise control in transportation vehicles.
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CHAPTER 1

INTRODUCTION

1.1 The aim of the research

The purpose of the research is to develop means of modelling and
analysing the vibroacoustic interaction of modally-dense structures and modally-sparse
acoustic cavities applicable to interior noise control in transportation vehicles. A
probabilistic description of the correlation characteristics of the structural system is
employed to account for effects of boundary conditions, curvature, type of excitation
and presence of stiffeners on the structural dynamic behaviour. The acoustic modes of
the enclosed air space are assumed to be obtainable by a deterministic approach and the
vibroacoustic interaction is expressed in terms of a coupling coefficient. The features of
the proposed model are illustrated by applying it to the response analysis of a

rectangular box which is randomly excited by one non-rigid wall.

1.2 Importance of interior noise control in transportation vehicles

Noise levels inside transportation vehicles constitute an important
element in the subjective assessment of the vehicle quality and are one of the key factors
in enhancing the competitiveness of the vehicle as a commercial product. Together with
quality, noise-related factors such as the ease of spoken communication and/or listening
to sound systems, association with comfort, fatigue of occupants when taking long
journeys, and product cost, form the main concerns of the noise control engineer when
tackling interior noise problems in vehicles. Furthermore, excessive interior noise levels
can cause delay in the launching of a new product, leading to increase in development
costs and contract penalties (e.g. ref. [1]).

The noise control problem in vehicles may be qualitatively described in

terms of a source-path-receiver model [2,3]. The characteristics of noise sources which



operate in different types of vehicle vary, but they usually have a broad-band random
content (e.g. wind and road noise in cars, turbulent flow in aircraft, rail-wheel
interaction in trains) together with substantial tonal and harmonic components (e.g.
engine and transmission noise in cars, propeller, compressor and engine exhaust noise in
aircraft). Noise excitation mechanisms in vehicles have been extensively studied and, in
general, an adequate physical understanding of their causes and effects has been
achieved (see for instance the reviews presented in refs. [3,4]).

The disturbances generated by source mechanisms are transmitted via
structure and airborne paths to the vehicle interior. These transmission paths are
geometrically and materially complex and are influenced by operating conditions and
manufacturing tolerances. The vibroacoustic interaction between structures and the
contained air can involve resonant and/or non-resonant response of the modes of the
individual components. The irregular shape of the vehicle interior, together with
inhomogeneous distribution of absorptive areas (carpets, seats and soft trim) and
reflective surfaces (hard trim and glass), contribute to the complexity of the interior
noise control problem in transportation vehicles.

Numerous strategies have been employed to improve the interior noise
characteristics of transportation vehicles. They can be roughly divided into corrective
and predictive strategies. Active and passive noise and vibration control can be
classified as corrective, while predictive techniques such as the Boundary Element
Method (BEM), Finite Element Method (FEM) and Statistical Energy Analysis (SEA)
are most commonly employed at the design stage. In order to reduce costs, predictive
techniques based on computer simulation are preferred and much effort has been put in
their development. These predictive approaches are complemented by experimental

techniques developed as means of assessing the reliability of such approaches.

1.3 Statement of the Problem

As aresult of geometric characteristics of different vehicles, combined
with the complexity of the propagation paths, a tendency exists to divide the analysis of
interior noise problems into separate frequency ranges [5]. In each frequency range,

normally termed ‘low’, ‘medium’ and ‘high’, different analytical and numerical



procedures are employed according to typical vibration and acoustic wavelengths and
the vibrational behaviour of the structure. Low frequencies are characterised by a
sparsity of low-order natural modes which are rather insensitive to variations in the
model details. As a result, one can use a deterministic model to tackle noise problems in
this frequency range. On the other hand, when the natural modes are of high order, the
response is extremely dependent on the model details and minor variations of the model
can cause significant differences in the predicted response. Therefore, probabilistic
models are more relevant to the analytical treatment of the system response in this
frequency range which is termed ‘high’. The transition region is termed mid-frequency
range. Typical frequency responses in high and low frequencies are illustrated in fig.
1.1. As shown in this figure, in the frequency region below 1000 Hz the natural modes
in the acoustic system are sparsely distributed while the natural modes are more densely
concentrated in the structural system.

Deterministic techniques such as the Finite Element Method (FEM) and
the Boundary Element Method (BEM) are well established for the prediction of low
frequency noise inside vehicles (e.g. refs. [6-9]). Nevertheless, as discussed by Fahy
[10], the application of such techniques to the prediction of high frequency noise is
problematic. This stems from the fact that the sensitivities of modal resonance
frequencies and relative modal phase response to small variations in structural detail
increase with modal order. Therefore, the confidence in the validity of the model
decreases with frequency. Moreover, vibrational/acoustic energy sources and the
propagation of structure-borne noise can be strongly affected by the vehicle operating
conditions, quality of components and manufacturing processes [2,10]. The extent of the
variation of the dynamic response of identical systems can be illustrated by the results
presented by Kompella and Bernhard in ref. [11]. They show that the acoustic pressure
response at the driver’s ear position in individual examples of nominally identical |
production cars (57 in total) can differ by as much as 20 dB at individual frequencies.

The large amount of input data required by deterministic numerical
models in a frequency region in which the vibration wavenumber is large is another
factor that contributes to making the application of such approaches to high frequency
studies laborious. This is because the size of the discrete elements necessary to achieve a

certain precision in a given frequency decreases with increasing frequency. Sung and

8]



Nefske [8] applied FEM to the analysis of interior noise of a van and as a result they
point out that the frequency range of accurate prediction of interior sound pressure levels
is limited by the upper frequency limit of acceptable accuracy of the sfructural model,
which they demonstrated to be about 100 Hz for the van. As observed by Lalor [12],
this is because vehicle structures are highly non-uniform and have rather high modal
density, making modal representation imprecise beyond about the 10th to 20th mode
(around 100 to 120 Hz). However, above this frequency, the acoustic frequencies are
still fairly sparse and a FEM model can give reasonable estimates of the dynamic
behaviour (natural frequencies and associated mode shapes) of the air space inside a
passenger compartment. This suggests that the structure, and not the acoustic cavity,
complicates the numerical modelling of vibroacoustic problems.

As an alternative to deterministic techniques, a probabilistic approach
has been developed in the last 30 years [14]. This approach, Statistical Energy Analysis
(SEA), has been successfully applied to the study of high frequency structure-borne
sound transmission in road vehicles [15] and helicopters [16]. However, as pointed out
by Fahy [10], SEA is at the moment relegated to the ‘high frequency’ rank as no formal
procedure is yet available to evaluate the predictive confidence of SEA when it is
applied to typical structures, particularly when the response is determined by coupling
between a rather small number of modes which have low modal overlap (i.e. their
average resonance frequency separation is much larger than their average half-power
bandwidths). The present weakness of SEA in dealing with low modal density
subsystems, which is associated with the lack of confidence data, precludes the
application of this approach to the analysis of interior noise in motor cars in frequency
ranges below 200 Hz because, as already discussed, few acoustic modes have natural
frequencies in this frequency range. Furthermore, only frequency-averaged, spatially-
averaged response quantities are available in SEA, excluding the estimation of response

values at specific points, such as passenger head positions, and in narrow bands.



1.4 An alternative approach

In summary, some practical systems involve, in certain frequency ranges,
interaction between a large number of structural modes with a few, or even no, resonant
acoustic modes. In these frequency bands neither SEA nor modal-interaction (described
in section 1.5.1) models are optimum. Furthermore, the structural modes may be excited
by broad-band sources, causing both resonant and non-resonant acoustic response. In
particular, this situation is encountered in medium-sized cars in the 100-200 Hz
frequency range [12]. As previously explained, in this frequency range the structural
modal density is high enough to justify an SEA model and FEM can be efficiently
applied to the air volume inside the car interior as the acoustic modes are reasonably
sparse. Similar conditions apply, to a lesser extent, in trains and aircraft. |

A number of approaches [17] have been suggested for analysing cases in
which neither SEA nor modal-interaction models are optimum, a situation sometimes
referred to informally as ‘the mid-frequency crisis’. These approaches are based
variously upon a heat conduction analogy to structural energy flow and smoothing of
frequency response functions. However, they usually assume that both structural and
acoustic systems have a similar modal density and do not take advantage of the situation
described in the previous paragraph.

In order to tackle the problem here presented, a hybrid deterministic-
probabilistic model is proposed as means of modelling the vibroacoustic coupling. The
assessment of the limitations of this hybrid model in representing a general
vibroacoustic coupling is based on the study of its application to the interaction between
an acoustic volume and a thin plate. A rather extensive literature exists concerning the
interaction between a plate and an enclosed volume of fluid, and in what follows the
works which are most relevant to the present research are reviewed. The inclusion of
some equations in the review is an attempt to introduce some of the basic mathematical
concepts together with the development of the physical understanding. This hybrid
model can be considered a first step to a combined SEA-FEM model suggested by Lalor
[12] as an option for studying interior noise inside motor cars in the medium frequency

range.



1.5 Plate/acoustic volume interaction: a literature review

1.5.1 Modal-interaction model

In the modal-interaction model, the differential equations that govern
the behaviour of enclosed fluid and structure are expanded directly in terms of the
uncoupled natural modes. A differential equation is written for each subsystem mode
and the subsystem response is obtained from modal summation truncated to the
desired degree of precision. Normal structural surface acceleration is the agent by
which the structure generates the fluid field and the fluid pressure on the surface of the
structure excites the structural wave field. For an enclosed volume of fluid interacting
with a plane structure the differential equations of motion expanded in terms of the

uncoupled normal modes are [19],
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where z,, is a modal structural displacement, @, is a modal acoustic-field velocity
potential related to the internal pressure by p =-p,0®/ dt, ©, and o, are the modal
natural frequencies, C,, is a coupling coefficient obtained from the integration of fluid
and structure mode shapes over the contact area S, F, is a generalised force acting on -
the structure, n,,m, are modal loss factors, A, and A, are modal-generalised volume
and mass, respectively, and Q, is the strength of acoustic sources located within the
fluid volume.

Analytical approaches based on modal representation have been used as
a means of studying stress and low-frequency sound transmission in plates backed by
rectangular cavities [20-22]. The inhomogeneous wave equation that governs the
acoustic pressure inside the enclosure is solved for specific boundary conditions: five
walls are assumed acoustically hard (perfect acoustic reflectors) and one is assumed

flexible. This solution is normally expressed as a separable function of the three space



variables. The space variable that corresponds to the deflection of the flexible wall is
approximated in terms of an infinite Fourier series. The backing pressure acting on the
flexible wall is then estimated from the velocity potential and its influence on the plate
vibration computed as a generalised force for the mode concerned (first term on the left
of equation (1.1)).

This procedure was employed by Dowell and Voss [20] to study the
effect of an underlying cavity on the plate vibration. They assumed the deflection of
the flexible wall to be expanded in double cosine functions and used a Galerkin
method to solve the equation of motion of the plate (equation (1.1)). They concluded
that only the fundamental plate mode is strongly affected by the presence of the cavity
and presented a semi-empirical expression to estimate the change in the resonance
frequency of this mode.

Pretlove [21,22] used exactly the same procedure but assumed the
flexible wall to vibrate in double-sine modes. The plate modes, modified by the
acoustic cavity effects, are obtained from an eigenproblem (equation (1.1) in matrix
form) in which the term that involves the acoustic velocity potential is included. This
leads to the concept of cavity- and plate-controlled modes of the coupled system, which
depends on the relative energy contribution of each subsystem. The influence of the
cavity on the plate vibration was then discussed in terms of the relative plate and
acoustic cavity stiffness in which the coupled modes were obtained from the
uncoupled in vacuo plate and cavity modes. For the case in which the walls are much
stiffer than the room cavity the acoustic field inside the cavity can be calculated
directly from the uncoupled plate vibrations. However, for light plates that enclose
shallow cavities, the relative stiffness of both systems is similar and therefore they
must be analysed as a single coupled system.

A general treatment of the panel-cavity coupling problem has been
presented by Dowell, Gorman and Smith [23]. They derived equations similar to
equations (1.1) and (1.2), the only difference being the use of an impedance to model the
absorption characteristics of the cavity. The direct effect of this impedance is to couple
the (rigid wall) acoustic modes. The coupled differential equations are used to form a
matrix equation with stiffness, mass, damping and coupling terms and, as the coupling

between the panel and the room is of gyrostatic type, a numerical procedure due to



Meirovitch [24] is suggested for the solution of the associated eigenproblem (without
the damping). Simplifications are carried out in the general solution in order to form the
eigenproblem of two cavities joined by an opening. This simplified eigenproblem is
solved and a good agreement was reported between experimental and analytical results.
Another interesting discussion was presented in ref. [23] for the case in
which the plate is the only source of excitation in the system. Simplifications were given
for the cases in which the forcing frequency is equal to the in vacuo plate resonance
frequency, or equal to the cavity resonance frequency, or yet, when the three frequencies
are very similar. Generally, observations similar to ones already presented in earlier
works [20-22] are reported. Most importantly, they have suggested that when the
excitation frequency is well separated from all panel and room natural frequencies the
interaction between the panel and the room can be neglected. This means ignoring the
first term on the right side of equation (1.1). In this situation one only needs to obtain the
panel response from equation (1.1) and then use this result to estimate the pressure

response using equation (1.2).
1.5.2 Green’s function approach

Alternatively, the radiation of sound from a vibrating structure into a
surrounding fluid can be formulated in terms of an integral equation, the Kirchhoft-
Helmholtz integral equation. This equation comprises Green’s functions, which
represent solutions to the inhomogeneous wave equation, with an imposed radiation
condition that ensures outward travelling waves. It relates the harmonic surface
vibrational motion on the structure to the radiated pressure field and it is normally

expressed as [25]

p(r) = [[p(xr,)8G(x,1,) / 80 +iop, vy (r,)G(r,r,)]AS +iop, [q(r,)G(r,x,)dV, (13)

where G(r,r,) is the Green’s function, r is the vector at the receiver point, ry is the
position vector on the vibrating surface, p(r,) is the surface pressure on the structure,
vn(r) is the structure normal vibration velocity, 0G/on is the derivative of the Green’s
function with respect to the outward-going normal to the local surface, and q(r,) is the

distribution of volume velocity source strength per unit volume. The derivation of the



above equation is presented in ref. [26] and its application for sound radiation on
unbounded fluid is extensively discussed in the acoustics literature (e.g. refs.
[19,25,26]). Explicit expressions for the Green’s function are available only for very
simplified and regular geometries and in the case of more complicated structures
numerical techniques are necessary to solve this integral equation [25,27].

The integral equation is applicable to either a vibrating body radiating
in an unbounded medium or a bounded volume of fluid in which part of its boundaries
vibrate. In the latter, the presence of physical boundaries causes natural modes of
vibration and associated natural frequencies to appear in the fluid. The normal motion of
the vibrating flexible boundaries excites the acoustic modes causing the enclosed fluid
to exhibit resonant acoustic behaviour. The volume integral in the above equation
represents the pressure generated by sources within the fluid volume and, as it is
assumed that the vibrating surface is the only source of disturbance in the fluid, this
term can be ignored. For the case of an enclosure with rigid walls (8p/dn = 0 on the
boundaries) a Green’s function that satisfies the wave equation with this boundary

condition is given by [19,25]

G(ryr,.0) =3 ;ﬁ'A(r(LW_(;% (1.4)

where s, is the acoustic-pressure mode shape corresponding to the natural frequency
o, of the enclosed space, k, is the complex wavenumber of mode n, and k=w/c is the
analysis wavenumber. The harmonic surface vibration velocity can be obtained from
the solution of the equation of motion of the vibrating body. For instance, Fahy [19]
suggests the use of equation (1.1) to solve for the normal surface vibration velocity in |
terms of the in vacuo plate modes. As already presented (eg. [20-23]), for enclosed
volumes of air at static pressure close to atmospheric the fluid loading in the structure
can be neglected (neglect the first term on the right-hand side of equation (1.1)) and
the structure is said to be weakly coupled to the fluid.

This integro-differential representation was applied by Pan and Bies
[28-30] to study the effect of a flexible panel in the modal properties of a room and
associated forced response to acoustic and structural sources. The plate and acoustic
cavity Green’s function were obtained from uncoupled plate and cavity natural modes

(expression (1.3)) and used as base functions to obtain the room (coupled rectangular



acoustic cavity and simply-supported flat plate) modal reverberation times and
resonance frequencies. Two different methods, orthogonal expansion [23] and
successive substitutions, were employed in the solution of the integral equations.
Modal coupling and exterior radiation were incorporated in the solution and their
influence in the properties of the coupled system discussed.

A transfer factor was defined as a means of deciding the relative
importance of the energy transfer between two coupled modes. This factor depends on
the difference between the natural frequencies and on the spatial matching given by
the integral of the mode shapes over the contacting area (coupling coefficient, C,, ).
They observed that if the transfer factor is close to unity for a structural/acoustic mode
pair, the transfer of energy in this frequency region is almost entirely governed by this
pair. However, if a cavity mode is not strongly coupled to any plate mode, then the
energy transfer from this cavity mode is distributed over many plate modes. When the
modal density of the plate is low, the energy transfer between plate and cavity tend to
be dominated by one pair; but as the plate modal density increases this dominance
tends to decrease. Pan and Bies also observed that, on average, the decay time
(damping) decreases as the plate modal density increases. Another observation,
associated with the forced sound transmission, is that as the panel gets thinner and its
damping is low, radiation into the external space is an important component of the
acoustic energy loss from the cavity.

An advantage of the procedures reported in refs. [23,28-30] is that they
can be applied to any geometry of plate and acoustic cavity for which uncoupled natural
modes are available. Natural modes of dynamic systems can be obtained using
numerical methods such as the Finite Element Method or the Boundary Element
Method. Since a discussion of these numerical methods in a literature review would be
quite involved, it is omitted in the present work. Suffice to say that reliable procedures
are available to obtain the natural frequencies and mode shapes of odd-shaped acoustic
enclosures, using either FEM [31] or BEM [32].

The importance of the plate boundary conditions on the internal
pressure response has been studied by Cheng and Nicolas [33] for the case of a
cylindrical hard-walled cavity with a point-driven circular plate. The Green’s function

approach was used to describe the pressure inside the enclosure (equations (1.3) and
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(1.4)) and a variational formulation associated with a Rayleigh-Ritz approach was
employed in the plate analysis. The plate was elastically supported by rotational and
translational springs enabling classical and intermediate boundary conditions to be
simulated. A ‘radiation efficiency into cavity’ was defined as the ratio of the acoustic
energy in the cavity to the kinetic energy of the plate. They observed that free and
guided plates radiate much less sound into the cavity than simply-supported and
clamped ones, which shows the significance of the deflection of the plate boundaries
in the plate radiation. This study suggests that the sound pressure inside the enclosure

can be reduced if the rigidity of the edges fixation is decreased.

1.5.3 Power flow approach

Statistical Energy Analysis (SEA)

The works reviewed in the two previous sections model the plate and
acoustic cavity interaction by expressing the dynamic behaviour of both systems in
terms of their natural modes. However, as the frequency increases, the number of
natural modes to be included in the analysis increases and a modal representation is no
longer practicable. As already indicated, approximate treatments based on energy
balance equations are a popular alternative in the high frequency regime.

In the so-called ‘predictive mode’ [10] of Statistical Energy Analysis, the
studied system is divided in subsystems, separated from each other by significant
dynamic discontinuities (barriers to the transmission of vibrational energy from the
source(s) of excitation), the parameters of which are probabilistically defined in terms of
gross properties. The total time-averaged energy of vibration of each subsystem and the
time-averaged vibratory input are used to write steady-state power balance equations.
Hence, parameters that control the rate of net energy exchange between the subsystems,
the rate of vibrational energy decay (damping) and the capacity for storing vibrational
energy (modal density) need to be estimated, either analytically or, as in present
common practice, empirically. From the solution of the system of power balance
equations, an estimate of the subsystems response is obtained in terms of frequency- and

spatial-average quantities.

11



This approach is based on the exact power flow proportionality
relationship that exists between two coupled resonators (modes) randomly excited by
statistically independent forces [34],

P,=G,(E -E,), (1.5)
where P, is the time-averaged power flow between modes n and p, E, and E, are the
time-averaged modal energies, and G,, is a power flow coefficient. In the case of
gyrostatic coupling, this coefficient can be derived from equations (1.1) and (1.2) and
it depends only on the modal parameters [35]. By assuming there is equipartition of
energy between the modes of individual subsystems, that the modal responses of
individual subsystems are uncorrelated, and that the exciting forces are uncorrelated in
space and time, this relation can be extended to express the time-averaged power flow
between two sets of subsystem modes. This extension proves to be a good practical
approximation for the band-limited power flow between weakly coupled subsystems
with high modal density.

Noise transmission from a reverberant field through a flexible panel
into a small enclosure has been investigated by Lyon [36]. In the frequency regime
above the first acoustic resonance, he employed SEA to model the resonant
transmission. Forced (non-resonant) and free (resonant) sound transmission were
compared, and he suggested that noise reduction due to resonant transmission are
generally less important than forced waves noise reduction for panels in which the
damping loss factor is smaller than 0.3. The power flow coefficient (G,,) between
panel and cavity subsystems in one-third octave bands was estimated from the band-
averaged radiation resistance of a single panel into a free field [37]. However, no
criterion was given for the limits of applicability of this approximation to the power
flow coefficient.

Two important terms in the power flow coefficient are the coupling
coefficient (C,,) and a term given by square of the difference between the squares of
the natural frequencies of the interacting modes ((con2 - mpz)z). This coefficient has
been extensively studied by Fahy [35] who concluded that the power flow between a
mode pair is only appreciable if it satisfies a proximity requirement (proximate mode
coupling). This proximity requirement is based on the relative value of the modal loss

factors and natural frequencies. Uncoupled in vacuo plate and acoustic volume modal
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parameters were used by Fahy to estimate the coupling coefficient (C,,) and
associated power flow coefficient between a flexible panel and a rectangular acoustic
cavity. The radiation resistance of the panel into the enclosed space ﬂvas estimated
from the individual mode pairs power flow coefficients; a comparison made with the
band-averaged baffled panel radiation efficiency into a diffuse field [37] suggested
that both results are coincident above a certain frequency. This frequency corresponds
to a low frequency limit below which proximate coupling no longer dominates; he
named this frequency the ‘lower limiting frequency’ for maximum proximate mode
coupling. In the frequency range below this frequency all mode pairs must be taken
into account in the computation of the coupling. He also pointed out that below this
frequency the coupling can be strongly affected by the introduction of a perturbation
in the geometry of the enclosure which is not the case when proximate mode coupling
is present. Therefore, if the modal density of each component is sufficiently high, the
power exchanged between a structure and a enclosed volume of fluid can be evaluated
from the modal-average free-space radiation properties of the structure. This fact has
been extensively employed in applications of SEA to the study of response of
enclosed volumes of fluid to random structural vibration [14,19,38,39].

As already explained, a thin plate and an enclosed volume of air can
generally be considered to be weakly coupled. In other words, neither in vacuo plate nor
uncoupled acoustic cavity natural frequencies differ greatly from the natural frequencies
of the coupled plate-cavity system, with the exception of the fundamental plate mode.
This situation appears to be an important condition for the successful application of SEA
and it is normally known as the weak coupling assumption in SEA. A formal analysis of
the degree of coupling between plate and acoustic cavity subsystems in terms of power
flow has been presented by Gulizia and Price [40]. They modified the approach
originally employed by Lyon [36] and Fahy [35] to account explicitly for arbitrary
coupling strength in the power flow coefficient and concluded that the equation for the
radiation resistance (which is a measure of the rate at which the plate does work on the
fluid) is independent of the coupling strength provided the structural modes are
considered independent and there are many modes coupling the acoustic and the
structural field. They compared their theoretical findings with experiments in which a

plate is point excited and radiates into water, a classical strong coupling situation. A



reasonably good agreement was obtained in the frequency range in which both
components have high modal density but differences of nearly 10 dB between
theoretical and experimental coupling coefficient were observed in the frequency region
in which the modal density is not sufficiently high.

Howlett [41] also tackled the case of the strong coupling between an
enclosed water-filled box and a thin plate. He employed a statistical modal analysis
based on the in vacuo plate modes and uncoupled hard-walled acoustic modes to
account for the strong interaction between both systems. Substantial difference between
theoretical and experimental results was observed, generally at low frequencies, when
the steel panel was excited by an acoustic field generated within the water-filled box. He
concluded that such differences are related to the neglect of panel radiation coupling
effects in his model while Gulizia and Price [40] pointed out that such discrepancy was
probably related to the low modal density in the low frequency range. However, Howlett
[41] observed that his theoretical results represented a useful improvement over weak-

coupling theory.

Uncertainty in SEA

The usual application of SEA to the study of the dynamic behaviour of
coupled systems only provides an ensemble average of subsystem response with no (or
relatively little) information provided about the uncertainty of the response estimate in
relation to any single realisation. Some scattered works have addressed this important
issue in the case of plate/acoustic cavity coupling [42,43] but they tend to concentrate on
results that are specific to the case analysed. Generic expressions of lower and upper
limits of power flow have been suggested by Scharton and Lyon [34] and Hodges and
Woodhouse [44] in application to high modal density systems.

The sensitivity of the coupling between a flat plate and an enclosed
volume of fluid has been numerically investigated by Mohammed [45] using a Monte
Carlo method. The coupled oscillator theory was used to model the dynamic behaviour
of the coupled system with the proximate coupling treatment [35] used in the estimation
of the plate radiation efficiency (or radiation resistance). The thickness of the plate was

randomly perturbed around 10 % of its average value with thickness values drawn from

14



a normal distribution and the radiation efficiency obtained for a range of modal
bandwidth values. It was found that the fluctuation of the radiation resistance about the
mean diminishes as the number of interacting mode pairs increases (characterised by an
increase in modal density) and as the sum of the half-power bandwidths of the plate and
cavity modes gets larger. Moreover, the distribution of the computed radiation
efficiency approaches that of the normal distribution as the plate/cavity average modal

overlap factor increases (modal overlap factor = nn(f)f, where n(f) is the modal density).

Works related to SEA

Pope [46] and Pope and Wilby [18,47] presented a low frequency
treatment of the noise transmission into an enclosed space based on an energy balance
between the power radiated into the cavity and the power dissipated by the enclosed
volume of fluid. As in previous approaches they assumed the coupling to be weak and
used in vacuo structural modes and rigid wall acoustic modes. They considered the
interaction of the structure with the inside and outside fluid, and used a joint
acceptance function to model the structural excitation due to an arbitrary form of
acoustic field. Simplifications were presented for summations of plate modes
resonating below, within, and above the frequency band which interact with acoustic
modes resonating in the band, or outside the band. The expressions were also
simplified for the special case in which the acoustic modal density is high and the
sound field inside the enclosure approaches the diffuse state. The interior space-
averaged mean-square pressure was obtained by equating the expressions for the
power dissipated on the inner cavity walls to the power radiated by the vibrating
structure into the cavity in limited frequency bands. This treatment of the energy
balance is considered to be a complement to SEA in frequencies in which there is a
sparsity of acoustic and structural modes and was successfully employed to model
noise transmission in cylinder-like structures [48,49].

By studying the asymptotic behaviour of the modal equations that
govern the dynamics of plate and acoustic cavity coupling, Kubota, Dionne and Dowell
[50] formally demonstrated the relation between modal analysis and SEA. Their

expressions are based in results derived from deterministic equations (equations (1.1)
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and (1.2)) in which the number of interacting modes are made very large in order to
allow the modal summations to be substituted by integrations and wildly fluctuating
functions to be smoothed out. This artifice permits modal parameters to be replaced by
their spatially and frequency averaged values. Moreover, it manages to retain the
capability of predicting spatial variations of the responses involved. This capability of
predicting spatial variations in the pressure response was used to show the existence of
intensification zones near the corner, edges and walls of a reverberant room [51,52].
Their results are interesting per se but they fail to address important points related to
intermediate cases, i.e. the ones in which the number of natural modes are not
sufficiently high to allow a reasonable approximation to be achieved by the asymptotic
limits of the system parameters. For instance, they assume the structural response to be
delta-correlated in space. This is certainly true in the very high frequency limit or for
very wide frequency bands but experimental results collected in real structures

[53,54,78] and presented in this thesis suggests a different situation.

1.6 Summary of the present study

The novel hybrid deterministic-probabilistic model here presented
presupposes a knowledge of the acoustic enclosure modal characteristics, and that the
structure is defined by its gross properties and has high modal density. The former
implies that the representation adopted for the acoustic cavity is deterministic while the
structural system may be only probabilistically represented. Its gross properties will
suffice for the estimation of its average response values. We assume that the high modal
density subsystem is directly excited and the response in the receiving system needs to
be estimated in specific points in three-dimensional space. Moreover, the excitation is of
the broad-band random type and all the plate modes are assumed to be excited.

As a result of the exact modal characteristics of the structural system
being unpredictable, a bending wave field representation is adopted for this system. This
analysis is similar to the one employed in rooms in which the reverberant field

predominates over the direct field. In such rooms, interference patterns are created near
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the edges and their importance in the acoustic response increases as the wavelength
increases. The influence of the boundaries in the structural wave field are taken into
account using a free travelling wave model [55] to estimate band-limited spatial
correlation of the vibrational response. The correlation characteristics of flat plates are
represented by a correlation coefficient which approaches that of a diffuse bending wave
field [53] as the structural wavelength decreases and for situations in which the field
points are far from the boundaries.

Similar results are presented for cases in which an approximate modal
representation based on Bolotin's dynamic edge effect method [56] is employed to
represent the vibration field. By taking advantage of the high modal density of the
structural subsystem, the modal summation is substituted by an integration in
wavenumber space in a manner similar to Bolotin's integral method [56]. New results
are presented for cases in which the structural systems have a range of ideal boundary
conditions, are plane, singly- or doubly-curved, and may be reinforced by ribs.

These analytical estimates of band-limited spatial correlation of
structural response are compared with experimental results obtained on various flat
plates and on a road vehicle body shell. These experiments were carried out using a
procedure suggested by Stearn [53] based upon the measurement of structural
acceleration on a number of points placed along a line due to random excitation. Both
acoustic and structural sources were used to excite the measured system.

The coupling coefficients between the structural field and each acoustic
mode are computed using numerical integration techniques. These coupling coefficients
are used to obtain the theoretical value of acoustic pressure inside a hard-walled acoustic
cavity excited by vibration of one flexible wall. The theoretical response results are
compared with measurements of acoustic pressure made in an acoustic enclosure with
rectangular boundaries of which one flexible wall is mechanically driven by random
noise. The advantage of such a geometric configuration is that it permits the use of
closed form expressions for acoustic mode shapes and associated natural frequencies.

The novel procedure and basic concepts presented in this work can in
principle be extended to irregular cavity geometries and various forms of structural
systems. FEM can be used to obtain the acoustic space modal characteristics and SEA

can be employed to obtain the vibration levels of the structural components. The
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contribution of each structural component to the internal sound pressure is obtained
from the coupling coefficients between each structural component and a particular

acoustic mode. The overall sound pressure level is obtained by modal summation.

1.7  Thesis arrangement

The chapters of the present work are arranged as follows.

Chapter 2 presents equations of a deterministic-probabilistic description
of vibroacoustic coupling.

The spatial correlation characteristics of multimodal bending wave fields
are analysed in Chapter 3. This original analysis is directed towards the case in which a
perfectly diffuse wave field is not set up in the structure. Particular attention is paid to
the effect of boundary conditions on the edge nearfield of such systems.

Chapter 4 presents a comparison between the expressions derived in
Chapter 3 and correlation measurements carried out on a number of simple structures
and on the bodyshell of a passenger car.

Experimental studies of vibroacoustic interaction are presented in
Chapter 5. The pressure inside an acoustic enclosure due to point excitation of the
flexible plate is measured and the results compared with estimates obtained from the
hybrid deterministic-probabilistic model.

The last chapter is dedicated to a general discussion of the present work
and in making recommendations for future work.

A number of appendices is also included in this work in order to
complement the main text. In particular, a novel representation of plate radiation
efficiency in terms of the present model is compared to classical results of radiation

efficiency as given by Maidanik [37] and Leppington et al. [93].
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Fig. 1.1.a - Pressure response inside an acoustic cavity due to a point acoustic source
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Fig. 1.1.b - Typical transfer mobility of a flat plate.
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CHAPTER 2

HYBRID MODEL: BASIC EQUATIONS

2.1 Derivation of hybrid model for a plate coupled to an acoustic

cavity based upon modal-interaction

Various procedures for modelling the vibroacoustic interaction .
between enclosed fluids and flexible plates have been discussed in the previous
chapter. One of these, the modal-interaction model, is used when both uncoupled
acoustic and structural modes are known. These uncoupled modes are employed in a
modal expansion of the response variables and the coefficients of this expansion are
used to write a set of differential equations (equations (1.1) and (1.2)) that can be
solved to obtain the coupled response. However, if the plate modes are not
individually predictable the modal expansion (equation (1.1)) can not be applied to
represent the plate wave equation. Therefore, a different procedure needs to be
employed to represent the dynamic behaviour of the plate.

Assuming that the only source of excitation for the acoustic cavity is
the plate vibration, this excitation can be represented by a generalised modal source

(F,(t)) and the acoustic modal equation can be written as [23]

0’p, (1) op, (D E (D
loftn o, —2t+© t) =—"-2, 2.1
G2 T e T 2P (D) A @.1)
where the normalisation constant is expressed as
I
A, == [vixy,2)dV, 2.2)
V v
the generalised source due to wall vibration is given by
1
F (0 =~ [y, 0w, (x.¥.2,)dxdy, 23)
S
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Pa(t) are the coefficients in an acoustic normal mode expansion for the pressure
(equation (2.4)), ®, is the n-th acoustic natural frequency with an associated mode
shape y,, n, represents an equivalent damping ratio which can be expressed in terms
of the specific normal impedance of the cavity walls (section 5.2.4, ref.[23]), V is the
cavity volume, S is the interface area (normally the plate area) and a(x,y,t) represents
the normal acceleration of the plate vibration field. A sketch of the plate/acoustic

cavity configuration is presented in figure 2.1.

Plate

Set of

uncorrelated

random forces
Acoustic
Cavity

ZO
Z X y. .
y ] Y

Fig. 2.1 - Acoustic Cavity excited by a random vibrating plate

Using this description the pressure inside the cavity can be obtained

using a normal mode expansion
p(x,y,z,1) =p,c > p, (D, (X,y,2) 2.4)

where the coefficients p,(t) are available from solutions of equation (2.1).
In the present analysis, the plate is assumed to be randomly excited by
a spatially-uncorrelated time-stationary source. As a result, a vibration field is set up

in the plate with an assumed smoothly-varying spectrum in finite bands and known
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spatial correlation characteristics; the plate is an excitation field to the acoustic modes.
Consequently, the normal-mode approach suggested by Powell [57,58] to study the
response of continuous structures under random loading can be employed to estimate
the mean-square pressure inside the cavity. In this treatment, the set of acoustic
equations (equation (2.1)) is Fourier transformed as a means of obtaining the
description of the air enclosure dynamics in the frequency domain. The frequency

domain representation of equation (2.1) is
A J@r-0%)+in00, [P, @) = F, (). 2.5)
where

1
(@)=~ [AG, 5,009, (00 y1,2,)dxdy,
S

and A(x,,y;,0) is the Fourier transform of a(x;,y;).

The associated Fourier transform of p(t) is

P(x,y,z,®) =pochPn(co)w“(x,y,z). (2.6)

From equations (2.5) and (2.6) we have

F,(@)y,(x,y,2) [X, -iY, ]
P(X.y,2,0)=p,c; ) " . : 2.7
. A, [Xf;+Yj] @7)
and its complex conjugate is
. X, +1iY
P*(X,y,Z,CD)ZPon,ZFm(w)wm(x’y’Z)[ m 1 m] (2‘8)

A [an +Y2 |

m m

with
* 1 *
B (0) = - JA (60, ¥2,0)00 (%5522, )dx,dy
S

X, =(0}-0%) and Y, =100,
The (double-sided) auto-power spectral density of the total pressure is

obtained from
S, (X,y,2,0) = %im—?—[P(x,y,z,co)P* (x,y,z,co)} (2.9)

Substituting equations (2.7) and (2.8) in (2.9) we obtain
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(POCO) v, (x,y,2)y, (X,Y,2) [Xn -iYn] [Xm +iYm]
S , =
PGoyme) Z%: AA,, i+ ][ +Y;]x 2.10)

X J‘J-Sa(xl V15X, YOV (X, Y1, Z)V i (X5, Y552, )dx,dx,dy,dy,,

SS
where S,(X1,Y1,X2,Y,,0) 1s the cross-power spectral density of the normal plate
acceleration at points X; = (x;,y;) and X, = (X,,y,). As the vibration field is not
necessarily homogeneous in space, the cross-power spectral density is normalised by
the power spectral density of the space-averaged acceleration (S (w)) of the vibration

field,

S, (X1,¥1,%,,Y,,0)
S, ()

Ya(X15Y15Xy,Y,,0) = \ (2.11)

where v,(x1,Y1,X2,¥2,0) is here named the normalised cross-power spectral deilsi:cy
between the acceleration at two points in the vibration field. The cross-power spectral
density can also be normalised by the power spectral density of the acceleration at any
single point in the vibration field or by the product of the square root of the power
spectral density at points 1 and 2. The former will give the zero-time-delay correlation
coefficient of the vibration acceleration between points 1 and 2. All these functions
can be derived from the cross-power spectral density simply by manipulating the
points coordinates. The formalism related to the study of this quantity is presented in
the next chapter together with some simplified expressions for the case of simple
modally-dense structural components subjected to spatially-uncorrelated time-
stationary random excitation. An experimental investigation of the correlation
coefficient on different plates is presented in Chapter 4, together with some results for-
the cross-power spectral density normalised by the power spectral density of the
space-averaged plate acceleration (equation (2.11)).

Introducing equation (2.11) in equation (2.10) we obtain,

(P ) N4 (‘:Y:Z)W n(X, y,Z) [Xn —iYn] [Xm +1Y ]
S . P O 0 n 1 S"
p (%:3,2:0) = ZZ AN () [+ vl +v2]
x| fmxl,yl,xz,yz,cown(xl,yl,zo)wm(xz,yz,zo>dxldx2dy‘dyz, (212)
SS

The double integral over the plate area in equation (2.12) is a

measure of the effectiveness of the random vibration field in exciting a particular
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acoustic mode. It represents a coupling coefficient between the vibration field and the

acoustic mode.
Equation (2.12) can be separated in direct (m=n) and cross (m=n)

terms. Following this representation the direct coupling coefficient is defined as

1
Con(@) = o [ [1a0010y10%0, Y2, 00w, (510y10 200, (50,3, 2, )dx iy dy dy, . (213)
S S

and the cross coupling coefficient is given by

1 ¢
Crn (@) = gz J j')’a (XY 15X, Y, OV (X1, Y 1 Z)W 0w (X2, Y552, )dx dx,dy dy,.  (2.14)
SS
Using these definitions of cross and direct coupling coefficients we

have

2

Sp(X,Y, Z,(D) =—(-p°i§—zzsz_sa((0)|:z \V:\(X: Y, Z) 1 2 ((D)

K DGV

n

(2.15)

_‘ X .Y 3
+ZZ Wn(x>y:Z)Wm(X>y:Z) [Xn2 IYI;][ 1;+1 2m](:;m(co) -
— - AA, (X +Y 1[X, +Y,. ]

m
m#n

The second series in the above equation is normally neglected in cases
in which the resonant acoustic modes that participate in the response are lightly
damped and well separated. This assumption is not formally correct, though it is
widely employed in the literature concerning the dynamic response of lightly damped
systems [39,59,60]. For the case in which the summation involves acoustic modes,
Chu [60] performed a numerical computation of the values of an equation similar to
equation (2.15) to assess the importance of the terms involving n=m. He observed that
when this equation is integrated over frequency (or over wavenumber, as in his case)
the main contribution comes for terms in which n=m, because the values of the
integral are large for these terms. Moreover, he verified that the numerical value of the
modal displacements (y's) are always positive for n=m and those for n=m can be
positive or negative and tend to average out to very small contributions. Therefore, for
the case of an approximate computation of the response, it is reasonable to neglect the
second series in equation (2.15). In this case, the spectral density of the mean-square

pressure can be approximated as

(p 02)282 Wz (X: Ys Z) 1 2
S 22— . C (o). 2.16
p(Xs y: Z,(D) V2 a(('o)‘z1 Az [><;21 + Y;] nn ((")) ( )

n
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This is the basic equation used to express the ratio between the mean-
square acoustic pressure inside an acoustic cavity and the space-averaged mean square
acceleration of the random excited flexible wall. It is expected that this expression
will be a good approximation to the true response ratio for frequencies in which the
plate modal density is high and the acoustic modal density is low. The scope of
validity of this result is discussed in Chapter 5. Similar results can be obtained using
Green's function (section 2.2) or power balance models (section 2.3). These
alternative derivations are presented in the next two sections.

The above results can be extended to represent the acoustic pressure
response in terms of the spatially-uncorrelated random forces by considering the
response of the plate to these forces. The plate response is described by the spatial
average of the mean-square value of its normal acceleration (< a’ >) which can be
estimated using power balance considerations. The steady-state input power to a plate

in a finite frequency band is given by [14]

IT, = M(v* )n,0, = EA%EL (2.17)

C

where o, is the band centre frequency, M is the plate mass, 1, is the frequency-
averaged plate loss factor, v? is the mean-square plate normal velocity and < >
denotes spatial average.

The steady-state input power of a point force is equal to the zero-time-
delay cross-correlation between the force and the velocity at the input point. This

quantity is normally expressed as a function of the mean-square force [39]

I, = (F*)Re[Y}] (2.18)
where Re [Y] is the real part of the point mobility. The point mobility, when space-
averaged and integrated over the frequency band, 1s a function of the modal density
(n(f)) of the structure [38]

n(f) =4MRe[Y], (2.19)

where the above equation has been obtained from energy balance considerations of a

point excited structure [38].
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Expressing the space-averaged mean square plate acceleration and
force in terms of power spectral densities we obtain from equations (2.17), (2.18) and
(2.19)

o n0)Sp(w,)
4M2n .

S.(0.) (2.20)

p

The above equation is valid in finite frequency bands in which a large
number of plate modes are resonating. It is a standard result for structural response
that is normally used in SEA. Dowell and Kubota [61] have presented a derivation of
this equation based on the plate modal equation (equation (1.1)) using asymptotic
reasoning. This asymptotic analysis also implies that a large number of plate modes
are resonating in each frequency interval, the plate modal parameters (modal mass,
modal loss factor, natural frequency and mode shape) vary slowly with mode number
and the mean-square force is slowly varying with respect to frequency.

When equation (2.20) is substituted in equations (2.15) or (2.16), the
parameters, M, n(f) and n,, represents the probabilistic part of the hybrid model. The
deterministic part is represented by the modal characteristics (F,,, ®,, N, A,) of the
acoustic space. The coupling coefficient represents the interaction between these two
parts and it is extensively discussed in Chapter 5. From equations (2.16) and (2.20) we
can obtain an estimate for the auto-power spectral density of the internal pressure due
to smoothly varying random forces which is valid in a frequency interval which centre

frequency is o,

(lﬁ)()Ci)282 Q)Cn(f)sp(o‘)c)zur]i(xayaz) 1 J- szm(mc) d(D (221)

S (X,¥,2,0,) = -
(¥ : \& 4M’n, : Y Ao JIXG + Y]]

Aov

The application of equation (2.21) to the analysis of practical systems
presupposes that the acoustic modes are estimated by numerical or analytical
procedures and that the plate and acoustic loss factors are, either ‘guessed’ or
estimated using experimental procedures.

We should point out that the present analysis resembles the one
presented by Kubota, Dionne and Dowell in ref. [50]. However, their main concern
was to derive an expression for the coupling between two modally-dense subsystems
based on the modal-interaction model. Other main differences from their work are the

use of a more realistic model for the vibration field correlation characteristics and the
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introduction of the coupling coefficient between acoustic modes and a vibration field

to represent the interaction between modally-sparse and modally-dense subsystems.

2.2 Derivation of hybrid model for a plate coupled to an acoustic

cavity based upon the Green's function approach

As presented in Chapter 1, the Kirchhoff-Helmholtz integral equation
(equation (1.3)) represents the radiation of sound from a vibrating structure into a
surrounding medium. When no acoustic source is present the volume integral in
equation (1.3) can be neglected. Moreover, if the Green's function is chosen in order
to have zero normal derivative at the boundaries, then the first term on the right=hand
side of equation (1.3) can also be neglected. Therefore, for the case of a vibrating
structure that encloses a volume of air, the pressure inside the acoustic cavity is

related to the normal velocity acceleration of the vibrating structure by

p(r) = j iop, vy, (r,)G(r,r,)dS. (2.22)

S

When random excitation is applied to the plate/acoustic cavity system
the above harmonic formulation can be transformed into a frequency representation by
means of a Fourier transformation. This can be done by following the procedure
presented in section 2.1. Hence, using the same notation as in section 2.1 we obtain

[46]

S, (r,0) =p? [ [G(r,1,,0)G(r,1,,0)8, (r,,7,,0)dS"dS, (2.23)

SS
where r = (X,y,z) is a point inside the acoustic cavity, r; = (X;,¥1,2,) and r; = (X5,¥2,Z,)
are two points placed on the interface area (plate). For the case of an acoustic cavity
the Green’s function can be expanded in terms of the acoustic normal modes in the
form presented in equation (1.4). Following the notation presented in section 2.1 the

Green’s function for the acoustic cavity can be written as

co v, (X)y, () (2.24)

G(X,Y’O)):ZVAX\ (X!\ _iY!\)

n
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The cross-power spectral density of the plate acceleration can be
normalised as proposed in equation (2.11). Substituting equations (2.24) and (2.11) in

equation (2.23) we obtain

2 4 .

PoC v, (%Y, 29y, (xy.2) (X, +1Y,)
S Xj ’Z,(,O — OSa 0) n m n n
B SRS ORI
X(Xm —iYm) ( ' )

(X2 +Y2) JJWII(X]Jylazo)\lum(xzayzJzo)ya(XUY[:Xzzyzaw)dsrds'

SS

If the above equation is written in terms of direct and cross terms and the
expression for the coupling coefficient (equations (2.13) and (2.14)) is substituted in

this equation, equation (2.15) is obtained.

2.3 Derivation of hybrid model for a plate coupled to an acoustic

cavity based upon the power balance approach

The total real power radiated by a random vibrating flexible plate into a

closed cavity in band Ao is given by [18§]

I, = [Re[ [S,, (r,,0)dS}do, (2.26)

Aw S
where r; is a point situated on the radiating surface.
The (double-sided) cross-power spectral density of the acoustic

pressure and plate velocity over the radiating area (S) is expressed as [18]
_ . 7-[: *
S, (r,,1,,0) _p_gﬁ[})(rs,m)v (r.0)]. (2.27)

where r; is a point situated on the radiating surface.

The Fourier Tranform of equation (2.22) can be expressed as

P(r,,0) =p, fG(rS,rz,co)A(rz,co)ds', (2.28)
S

where r, is a point situated on the radiating surface and equation (2.29) was used in

the derivation of equation (2.28),
V(ry,0) = —A(r,,0). (2.29)
®

Substituting (2.28) in (2.27) and using the relation (2.29) we can write that,
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S,y (r,r,0) = limﬁlipo J-G(rs,rz,co)A(rz,co)dS'—I—A*(r,,co)},
Too T 3 Q)

and rearranging the terms of the above equation we obtain,

i

Po
Spv (rs’rlﬁo‘)) = o

[jG(rs,rz,m);im:’;-A(rz,m)A*(r, ,@)ds}.
S

From equation (2.9) we can substitute the cross-spectral density of the

plate acceleration on the above equation to write,

i
S, (r,1,0) = ZO {jG(rs,rz,w)Sa(rz,rl,o))dS':I,
s

where the above integral is evaluated on r,. The integral over the radiating area of the
autospectral density of the acoustic pressure and plate velocity can be obtained from

the above expression by setting r, = ry,

[8, (ry.0)dS = 120 [[G(ry,r, )8, (1,1, 0)dS dS. (2.30)
S S S

As in the previous section, the Green’s function for the acoustic cavity
can be expressed in terms of the acoustic modes (equation (2.24)). Moreover, the
normalisation for the cross-power spectral density of the plate acceleration (equation
(2.11)) can be applied to equation (2.30). With these modifications we have

. 5 < -
JSPv(rsaw)dS=-1.P—°—Z C ( g‘l‘l :)
; @ " VA“ (Xn + Yn—)

S, (@) [ [w,(r)w, (1,)7,(r;,1,,0)dS'dS.

SS

The real part of the above expression is given by

p,C.S Y 5 '
Rel |S,, (r,,0)dS] = ——>—8 (0) ) ————-C;, (o). 2.31
[Sj o (1, 0)dS] = = =28, )EA“(X;JrY;) (@). (231

where sz(co) is defined in equation (2.13) and Y ,=o,0omn,. Finally, substituting
equation (2.31) into equation (2.26) we obtain the total real power radiated by a plate

into a closed cavity in a band Ao,

2¢2 C2
:poCOS Z 1 J.Sa(m)nncon nn(o‘)) do

A, (X2+Y2)

, 2.32
mn V " A ( )

2

0 Aw

where the power spectrum of the plate acceleration is assumed to be smoothly varying

over the frequency interval Ao.
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The total time-average power absorbed on the walls of the cavity in

band Aw has been derived by Pope and Wilby [47] and it is equal to
M, = = Sn.0.(p}). (233)
where < pn2> is space-average of the nth term modal pressure.

The total power radiated into the enclosure must equal the total power
absorbed on the inner walls of the enclosure. So, in order to obtain the power radiated
to acoustic modes resonant in the band Aw, the nth term of equation (2.32) must equal
the nth term of equation (2.33). This equality gives the individual modal pressures and
their summation gives the frequency- and space-averaged mean square pressure inside
the cavity. Then,

n (p.c2)’S? C;, ()
2\ _ Wo'o S — m 7’ do. 2.34
(pr) =" ISy (239

Aw

From ref. [47] we have that
(p2)= S, (®)do,
Aw

where S, (®)is the amplitude of the spectral component associated with the nth

acoustic mode. Finally, we can write that

S, (@) = (pocézzsz ) /S\((CO><)C+$O; 2.35)
Equation (2.35) is the result for the auto-spectrum of the space-
averaged pressure inside the cavity obtained from equation (2.16) by averaging the
square of the acoustic mode shape over the enclosure volume. This result is also

presented in equation (5.2).



CHAPTER 3

CHARACTERISATION OF MODALLY-DENSE
VIBRATION WAVE FIELDS

This chapter introduces an approximate model of the bending wave
field generated by the random vibration of thin plate-like components. Only bending
waves are considered because these are the types of structural waves in thin plates or
shells which couple most effectively with a sound field. This approximate model is
employed as a means of obtaining theoretical expressions for the normalised cross-
power spectral density of normal plate vibration acceleration averaged in frequency
bands, which was introduced in the previous chapter. The expressions here derived are
valid for uniform, homogeneous thin plates with ideal boundary conditions excited by
spatially-uncorrelated random forces. Corrections are presented to account for effects

of curvature, stiffeners and various types of random excitation.
3.1 Rationale of the suggested procedure

The use of this approximate description is an artifice employed in an
attempt to avoid the necessity of the precise determination of the structural modes by
making use of the very condition that militates against deterministic computation . In |
other words, it is assumed that many high-order plate modes resonate in each
frequency band of analysis, so that computational analysis by the currently available
deterministic methods will produce unreliable results. This stems from the fact that it
is impossible to compute the precise spatial distribution of amplitude and phase of a
vibrational field involving high order modes because these modes are very sensitive to
damping distributions, joints and other boundary conditions, about which there is
always significant uncertainty. Moreover, deterministic computation must be carried
out frequency by frequency, and the response results are then normally compiled in

frequency bands, which implies that a large amount of data is unnecessarily
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processed. Therefore, it seems natural to seek a representation that avoids this
unrealistic approach.

The representation here proposed is based on the computation of the
spatial correlation characteristics of the vibration field, which are described by a
frequency-averaged parameter, the zero-time-delay correlation coefficient of the plate
response (defined in equation (3.6)). Expressions are also presented for the normalised
cross-power spectral density (defined in equation (2.11)). The main reason for
concentrating the present study on zero-time-delay correlation coefficient is to enable
the comparison of some of the results derived herein to others available in the
literature. For the moment, it suffices to say that because both quantities are derived
from the cross-power spectral density of the plate response it is expected that when
one is shown to be applicable to a certain situation, the other will also apply.

Both free-wave and approximate modal models are employed in the
derivation of theoretical values for the correlation coefficient. In the modal model, due
to the assumed high modal density of the structural components, the summation over
the structural modes is substituted by an integration in wavenumber space. Only
approximate mode shapes as a function of the boundary conditions are required.
Bolotin's dynamic edge effect method [56] is employed to provide an expression for
the mode shapes represented as a continuous function of the wavenumber amplitude
and phase. As only those modes whose resonance frequencies lie in the band of
interest are considered in the summation, the corresponding limits of integration over
wavenumber space are for an interval Ak around k., the wavenumber of the band
centre frequency. The main advantage of this substitution is that the precise
determination of the individual mode shapes as a function of individual wavenumbers
and resonance frequencies is not necessary. This procedure is only strictly valid for
uniform, flat, simply-supported plates. However, for other boundary conditions the
mode shapes are represented by sine functions, with a correction to account for the
influence of the boundaries (phase shift), and an exponentially decaying term which is
only appreciable in a region one wavelength from the edges.

A similar approximate procedure is employed in the derivation based
upon a free travelling wave model [55]. In this case, the correlation coefficient is

written for only one wave direction and the average result computed from an



integration in wave direction assuming that all directions of propagation are equally
probable. The two models give similar results, since the average in terms of waves
coming from all directions is equivalent to the average in wavenumber space [60].
The resultant correlation coefficients averaged in frequency bands approach that of a
two-dimensional diffuse field in regions remote from the edges, irrespective of the
assumed boundary conditions. However, near the edges these correlation coefficients
depart considerably from diffuse field form. A brief discussion of the diffuse wave

concept is presented in the next section.
3.2 Diffuse wave fields and correlation: a literature review

The concept of diffuseness is widely used in geometrical acoustics to
model enclosed spaces when many acoustic modes are simultaneously excited, and
also to facilitate the mathematical description of the acoustic field in order to specify
standardised acoustic performance tests, such as transmission loss determination and
absorption measurements in reverberation chambers. There is no commonly agreed
definition of a diffuse sound field; however, two equivalent definitions that appear to
be reasonable were presented by Jacobsen [63]. They read :

e In a diffuse sound field there is equal probability of energy flow in all directions.
e A diffuse sound field comprises an infinite number of plane propagating waves
with random phase relations, arriving from uniformly distributed directions.

A diffuse sound field may be approximated in practice in the central
region of a reverberant enclosure, at least half a wavelength away from any boundary, |
at frequencies above the Schroeder cut-off frequency, in cases of pure-tone excitation
[26]. When the excitation is of a random nature, the diffuse sound field approximation
may be achieved in finite frequency bands below the Schroeder cut-off frequency.
Close to the boundaries or any reflecting surface large compared to the wavelength, a
sound field departs considerably from the diffuse state. The incident and reflected (or
scattered) wave components can interact constructively or destructively, giving rise to
interference patterns that are created by the reduction of the number of waves with
uncorrelated random phase which contribute to the total pressure at a field point near

the edges. In other words, waves within the incident and reflected sets may be
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uncorrelated with each other, but individual waves of the incident set are correlated
with the corresponding waves of the reflected (or scattered) set. As a result of this
interference, the sound energy is not uniformly distributed over the entire volume of a
reverberant sound field.

Interference patterns in reverberant sound fields have been studied by
Waterhouse [64], Waterhouse and Cook [65], Chu [60,66] and a number of other
researchers. Expressions were derived for interference patterns created by plane
reflectors intersecting at right angles, whose surfaces are either hard (rigid reflecting;
normal velocity component equal to zero) or soft (pressure release; pressure equal to
zero) [64,65]. Chu [60,66] demonstrated that these expressions apply to a reverberant
space excited either by a band-limited random noise source located at a single position
or by a pure-tone excitation averaged over many source positions. The same author
[66] also presented expressions for the cross-correlation function of the pressure near
and remote from the boundaries of a reverberant acoustic space.

The concept of a diffuse field was extended by Stearn [53] to the case
of two-dimensional structural wave fields. He observed that a close approximation to
a diffuse bending wave field can be set up in a plate when more than ten modes are
simultaneously excited. He also showed that the band-limited, zero-time-delay,
correlation coefficient of acceleration of diffuse bending wave fields is equal to a
zero-order Bessel function, with the argument given by the product of the
measurement points separation distance and the band centre-frequency wavenumber.
In real, bounded flat plates, an approximation to this form of correlation coefficient
was experimentally observed in regions far from the edges and far from the excitation
points [53]. Lyon [14] presented an expression for the ratio between the mean-square
acceleration near and remote from the boundaries of a randomly vibrating, simply-
supported rectangular plate. However, no information is available in the literature on
the influence of the boundary conditions on the correlation function near the

boundaries of structural systems.



3.3 Correlation coefficients of random processes

Consider a continuous, time-invariant, linear system subjected to
stationary random excitation. The displacements, (z;(x,t) and z,(x,,t)), at two
different positions in this system can be considered to be stationary random processes.
Thus, the cross-correlation function between the system displacements at points 1 and

2 is defined as [67]
Rlz(xl,xz,'c):E[zl(xl,t)zz(xz,tJr'c)] 3.1)

where E[ ] represents the expected value, or the ensemble-averaged value, of the

quantity in square brackets, 1 is the time delay between the two-signals.
Assuming that the random processes z; and z, have zero mean value, the

cross-correlation coefficient (or normalized covariance), 7,,(X{,X,,T), for these random

processes can be written as [67]

Ry, (x45X,,7)

= (E[zf(xl,t :DUZ(E[z;(xz,t ])1/2 ’

where E[zlz] and E[zzz] are the mean square values of the random processes z; and z,,

(.2)

Y12 (Xp5 X5,

respectively.
Using the Wiener-Khinchin relationships we can relate the cross-

correlation function with the cross-power spectral density
R, (X;,X,,T) = Re[ [G., (xl,xz,f)'exp(iznfr)df} , (3.3)
0

where G5(X,, X, ,f) is the one-sided cross-power spectral density of random variable z at
positions 1 and 2.
This cross-power spectral density is a complex function because

R,5(x,,X,,T) is an odd function of 1. So, for T = 0, equation (3.3) yields
Rpy (XX, 7 =0) = [Re[Gy, (x,5%,, F)Idf. (3.4)
[

The contribution of frequency components of G ,(x;,X,f) in a finite
frequency band Af is obtained by the integration of this function between £, and f},
where f, and f; are the upper and lower frequency limits of the band Af. Hence, in a

frequency band the corresponding zero-time-delay correlation coefficient can be termed
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the band-limited correlation coefficient (y;,(x,, X, ,f,)), where £, is the band centre
frequency and the explicit indication of zero time delay is dropped for convenience. The
mean-square value of the random processes z; and z, in a frequency band (f}-f,) can be

obtained from

E[zf(xl,t)]zfj[Gl(f)df, and E[zg(xz,t)]z ?Gz(f)df, (3.5)
f, f,

where G,(f) and G,(f) are the auto-spectral densities of the random processes z; and z, at
positions 1 and 2, respectively.

Thus, from equations (3.5), (3.4) and (3.2), in a given frequency band,
we have

f,
[Re[G, (x,,x,.H)]df

fy

[f]‘Gl(f)df} ~[fj‘Gz(f)df}

The above equation is convenient for experimental computation of

Y (Xy,X,,1) = (3.6)

correlation coefficient values and it was extensively utilised in the experimental work
reported in Chapter 4. Moreover, this equation is equivalent to the correlation density
coefficient as defined by Morrow [68] and employed in the analysis of correlation of
sound pressures in reverberant sound fields. In the same paper, Morrow also defined
another coefficient in which the real part of the cross-power spectral density is
substituted by the imaginary part of the cross-power spectral density. This coefficient
was termed the quadrature density coefficient and experimental values of this coefficient
measured on a flat plate are presented in fig. 4.38.

Equation (3.6) can also be employed in the theoretical derivation of
frequency-averaged correlation coefficients based on a modal model as described in
section 3.6. Alternatively, a different procedure can be employed in the computation of
the correlation coefficient using a modal model. The modal correlation coefficient when

one single undamped mode is present is given by [68]
<ZlM (D25 (t)>,

EAON N RO

Yiom (Xp5X,) =



where z;y(t) and z,\,(t) are the instantaneous modal displacements at positions 1 and 2,
and <>, represents time average of the quantity inside brackets. In the above coefficient,
the specific mode numbers k, and k, are represented by an intersection of the lines of the
grid shown in fig. 3.1 As the time dependence of an undamped vibration mode is
expressed by a sinusoidal factor the modal correlation coefficient equals + 1 [68].

In a frequency band in which more than one mode is present, the
frequency-averaged correlation coefficient can be obtained by summing the contribution
from all modes that have resonance frequencies in this band. In addition, assuming that
these modes are uncorrelated we can write the frequency-averaged correlation
coefficient as

2 <ZIM (Dzyy (t>>t
Y, (X5 X,,1,) = N = 3.7

[,g(zmt))tr [Z<Z§M <t>>t]ﬁ

N

Alternatively, if the density of modal frequencies is high, the number of
modes summed in equation (3.7) is large and the summation can be converted into
integration over wavenumber space [25,56]. The limits of integration are for an interval
Ak around ky, the bending wavenumber of the centre frequency of the band (fig. 3.1).

Equation (3.7) is then changed to

J<<21M ('[)22M (t)>: >dk8

Ak

] [join]

where <> denotes an average over a quarter circle of radius kg in the wavenumber

Yo (X5 X5, 1) =

space. Changing from rectangular to cylindrical coordinates it follows that k,=kpcos6
and k, = kpsin0 (fig. 3.1). As a result, the frequency-averaged correlation

coefficient can be obtained from

/2

,[ J'[<Zm (Dzym (t)>¢ ]iedkg

Y (X,X,,1) = ax .0 - - (3.8)

{jnﬂz&(t»(dedkg} { jﬂRng(t))tdedkB}

Ak 0 Ak O

For the case in which a wave model 1s used, it is assumed that the

amplitude and direction of each propagating wave are indepedent random functions. The



contribution from waves coming from all directions is obtained by choosing, for each
wave, one direction and one wavespeed (frequency). This wavespeed is chosen to be
inside the interval Ak corresponding to the band of analysis and the wave direction
varies from 0 to n/2. Therefore, when the amplitude of the propagating waves are real,
the frequency-averaged correlation coefficient, based on a wave model, is given by
equation (3.8). A wave model was employed by Waterhouse [64] and Waterhouse and
Cook [65] in the study of interference patterns, and by Cook et al [69] and Stearn [53] in
the derivation of correlation coefficients on acoustic and vibration fields. Assuming the
amplitude of each propagating wave to be complex, a slightly different equation can be

written for the frequency-averaged correlation coefficient

/2

[ jReKzl 075 (1), ]i@dkB

Y (XsX,,1) = 0 . (3.9)

{ijnﬁzf(t)%dedk% [ J‘nf<zg(t)>td9dk4

Ak 0 Ak 0

where z;_*(t) represents the complex conjugate of a wave fluctuation given by a complex
amplitude component and a component that represents time variation.

The normalised cross-power spectral density (eq. (2.11)) can be obtained
by means of a derivation similar to the one presented for the correlation coefficient. The

frequency-averaged expression for the real part of this function is then given by

]Re[Glz(xl’xz:f)}if J‘n]‘zkzlm(t)zzm(t»t]j@dks
Re[ya(xl,xz,fc)]= - f, = » (3.10)
é Sj le'G(x,f)dde é [ ] J{zi (x,0,1)), dodk,ds

S Ak O
where the first coefficient is employed in the experimental investigation and the second

coefficient is used in theoretical study of normalised cross-power spectral density.



3.4 Derivation of correlation coefficients based on a modal

description

3.4.1 Correlation coefficients on modally-dense simply-supported

flat plates

The contribution of N vibration modes to transverse displacement

response of a simply-supported flat plate is given by

2(x,y,t) = i sin(k, x)sin(k,y)Z,, (1), (3.11)

where k, and k, are the modal bending wavenumbers in the x and y directions and Z,(t)
represents the modal time dependence. The displacements at points 1 and 2 for one
particular mode are

Zu (1) = Zyy (Dsin(k x, ) sin(k, y,),

Zyu (1) = Zy (D) sin(k x,) sin(k,y,),

where (X;,y;) and (X,,y,) are coordinates of points 1 and 2.

(3.12)

Multiplying and time averaging the displacements at points 1 and 2 we

have
(2 (D73 (D), = Z3, sin(k x,)sin(k,x, ) sin(k, y,)sin(k,y,),  (3.13)

where Z2, is the mean square value of Zy,(t). Using standard trigonometric

transformations it follows from equation (3.13) that
() (DZyy (1)), = Zﬁ;ﬁ/?. (cos(kx (x, -x, ))— cos(kx (x, +x, )))]x
X E/Z (cos(ky (y1 -y, ))— cos(ky (y, +Y, )))] .

Following the procedure suggested in section (3.3) we can express k,

(3.14)

and k, in terms of the bending wavenumber (kp) and angle 6. The sum over the
individual modes is then substituted by an integration carried out in a strip of width Ak
much smaller than the band-centre-frequency wavenumber (k) (illustration in fig.
3.1). This substitution is the basis of the method of integral estimates as proposed by

Bolotin [56]. The result of this operation is



Z ZIM(t)ZZM(t) J.KJZ ZIM(t)ZzM(t) dedk NZ%"
& 0

MeAk

2
Jeos(ky (x, -x,) cosB) cos(ky (y, -y,)sin®)dd -
Akl O
/2 w2
Joos(les (x, -x;)cos0) cos(ky (v, +y,)sin6)d0~ [cos(ky(x, +x,)c0s0) cos(ky(y, -¥,)sin@)dd
0

0

/2

+ J.cos(kB(X,v +X,)cosB)cos(ky(y, + yz)sine)de}dkg , (3.15)
0

where N modes are assumed to be excited in the band Ak and ZTM is assumed equal
for all modes. The four integrals inside the brackets in the above equation can be

solved using equation (D.6) presented in Appendix D. The solution is
T 2
E[JOQ(B\/(XI -%,)" + (¥, —yz)z)JOQ(B\/(Xl -X,)" + (Y, +Yz)2)
o koS0 137+ 0707 YT T30+ (5 3207 )

(3.15"

/2 /2

The expressions for .[ <sz(t)>th and J-<Z§M(t)>td9 can be obtained
0

0
from equations (3.15) and (3.15') by making x, = x, and y, =y, . The resulting
integrals can then be solved using expressions (D.1), (D.2) and (D.6) from Appendix

D. For point 1 the result is

nff(zm(t» de_.N“Z [1 1o 2kpx,)-To Rkpy, )+ T, (21< Jx +y1)} (3.16)

When divided by Nn _Z—i /8, the above expression gives the interference
patterns near the boundaries of the plate as originally derived by Lyon [14]. It
expresses the relation between the mean-square acceleration near the boundaries and
its equivalent in a position far from the boundaries. A sketch of such interference
patterns near the corner of a plate are presented in fig. 3.3 and 3.4. They are sketched
as a function of a typical wavelength (A) and it can be noted from the contour plot of
fig. 3.4 that when x,,y, 2 A and x,,y, 2 A the mean-square values of the response
variable do not depart considerably from the spaftial average (<v2>).

The integral of the type

required when the terms of equation (3.15), (3.15") and (3.16) are summed in the strip

Ak =Kk, - k; has been shown by Cook et al [69] to be given by

40



2
To(kyr)Ak + terms of the order (%‘—ﬁ) Ak (3.16)

b
where ky=(k,+k)/2. Assuming that the width of the strip is small enough in order that
the second terms in equation (3.16") are neglected we obtain from equations (3.15),
(3.15", (3.16) and (3.8) an approximate expression for the frequency-averaged
correlation coefficient of acceleration between two points on a simply-supported

homogenous flat plate. This expression is,

oo+ 0y P 0 0 v )

—JO@M/(X1 +x,)2 +(y,-y,)’ )«LJOQ(M/(XI +x,)° +(y, +y2)2j
[1-J0(2kbx1)-J0(2kby1)+J0(2kbm)] "
x[l—JO(Zkbxz)—Jo(Zkbyz)JrJoékbm)] "

Y (XX, 1) = .(317)

The above result is valid in frequency bands whose centre frequency is
f, (with corresponding bending wavenumber k;) in which a random source excites a
large number of plate modes. As the bandwidth of the frequency band increases
beyond a certain limit the frequency-averaged coefficient presented in equation (3.17)
is no longer valid.

All the results presented in this section presuppose that points 1 and 2
are situated in the quarter space bounded by 0 £ x <a/2 and 0 <y <b/2, where aand b
are the plate dimensions (fig. 3.2). However, they are unaffected by the substitution
X—>a-X, y—>b-y (pag.121, ref. [14]) and, therefore, they can be used to represent the
interference patterns and correlation coefficients in other sections of the plate.

A number of simplifications can be carried out in equation (3.17) but
the most important one is for the case in which points 1 and 2 are far from the edges.
In this situation, the three lést terms on the left of equation (3.15") and on the left of
equation (3.16) approach zero and are much smaller than the first term. For this
reason, these terms can be neglected. As a result, we obtain equation (3.18) that gives
the frequency-averaged correlation coefficient in points remote from the edges on a
simply-supported flat plate. However, this approximation is not valid for some

specific lines in which there is superposition of nodal lines.
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Y (X:x,,1) =T, (ky1r), (3.18)
where r is the distance between points 1 and 2. This is the result derived by Cook et al
[69] and by Morrow [68] for a two-dimensional reverberant sound field. Similarly, as
already mentioned in section 3.2, Stearn [53] has shown that this result also applies to
a diffuse bending wave field as long as the frequency band is restricted to a one-third
octave and kyr is less than ten. Even though the present analysis has been restricted to
simply-supported edges, equation (3.18) is valid for any type of boundary condition
because, as shown by Bolotin [56], flat structures behave like simply-supported plates
at points remote from their boundaries at frequencies high compared with the
fundamental resonance frequency. Experimental results presented in the following
chapter confirm this statement.

For the case of diffuse bending wave fields it can be shown that the
frequency-averaged normalised cross-power spectral density is equal to the correlation
coefficient (equation (3.18)). However, for simply-supported plates the normalised

cross-power spectral density is given by

SRS ERAR SN S S Ay

oo fo 07+ 01 30? Ieix )T+ 0 v )
é J-[l-JO(2kbx)-Jo(2kby)+J0 Dk X +7 jds

Refy, (x1,x,.1)]= .(319)

3.4.2 Correlation coefficients on modally-dense flat plates with

generic boundary conditions.

In order to derive an expression for the correlation coefficients of
random excited flat plates with arbitrary boundary conditions, the dynamic response
of a rectangular plate is represented using Bolotin's dynamic edge effect method [56].
This method involves using a generating (inner) solution in the form of a sinusoidal
function and an exponential term (outer solution) that accounts for the dynamic
boundary effect in the boundary zone. For the case of a rectangular plate in which the

edges generate an evanescent near field, an approximate representation for the normal
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displacements at points 1 and 2 for one particular resonant mode can be written as
[56]
iy () = Zy X (x)Y(y)), ,
22 (0= L (OXG)Y) o)
where,
X(x) = sink, (x=&,) + C exp(-p,X),
Y(y) =sink (y-&,)+C, exp(-p,y),

pe=JkE+2k3, =kl +2k].

Multiplying and time averaging the displacements at points 1 and 2 we
obtain expressions for (z,(t)z,, (t)>t , <212M (t)>t and <Z§M (t)>t . These expressions are

valid for a single mode with modal wavenumbers k, and k, The dynamic edge
parameters, sink, &, cosk,&y, Cy, cosk,&,, sink,&,, C,, are obtained from the plate
boundary conditions. The dynamic edge parameters for simply-supported, clamped,
free, guided or spring-supported edges are presented in Appendix B. As already
presented, a frequency-averaged value for these expressions can be obtained by
summing the contribution from each mode that is excited in the band. Alternatively,
when the structure has a high modal density the discrete wavenumbers (k,.k,) can be
substituted by the continuous functions kzcos6 and kgsin® and the modal summation
substituted by an integration over wavenumber space (fig. 3.1). In addition, the
dynamic edge parameters will also be function of ky and 6, though this dependence is
omitted in equations (3.20) and (3.21).

Performing this substitution we have that

/2 n/2

P {207 (0), = [ (20 (D700 (1), 0k =NZ3, [ [X()X(x,)Y(y,) Yy, )dbdk 5, (320)

Meak
where,

X(x)X(x,) = % [cos(kB (x1 -X, )cos 9)— cos(k B (x X, )cos@)cos(Zéka cos@)

— sin(kB (xl +X, )cos@bsin@&xkB cos@)]+ c: exp(~ux (xl +X, )) (3.20a)
+C, exp(—1t, X, Xcos(& kg cos®)sin(kyx, cos®)+sin(E ky cosO)cos(k x, cos 9)]
+C, exp(—;vtx X, Xcos(&, kg cos G)Sin(ka2 cos0)+ sin(€, k cos 0)cos(kx, cos 9)],

and,
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Y(y)Y(y,)= % [cos(kB (yl -y, )sin@)— cos(kB (yI +Y, )sin 6)(:05(2§ykB sine)

- sin(k 5 (y, +y, )sin G)Sin(2§yk 5 Sin 6)]+ Ci exp(—uy (y, +y, )) (3.200)
+C, exp(—u Y2 Icos(&_, Ky sin G)Sin(k pY; Sin 6)+ sin(ﬁ, K sin e)cos(k Y, Sin 6)]
+C, exp(——u WY I:os(@y kg sin G)Sin(k Y, sin 6)+ sin(@ K sin 9)cos(k Y, sSin 9)]

and N modes are assumed to be excited in the band Ak. In order to estimate the

correlation coefficient we also need analytical expressions for <zle (t)> and
t
MeAk

Z <Z§M (t)>t . These expressions are obtained from (3.20) by setting x;, =x, and y, =
MeAk

y,. For point 1 we have that

/2 /2

Y (zhu () = [ [(Zh(0) dodk, =NZ%, [ [W(x,)W(x, Hedk,, (3.21)

MeAk Ak O

where,
W(x1 ) = %[1 - cos(Zka1 cos@)cos@ixkB cos@)— sin(2kal cos e)sin(Zika cose)]

+2C, exp(—uxxl )[cos(ﬁka cos@)sin(ka1 cose)+ sin(&ka cosE))c:os,(ka1 cos@)]
+C? exp(—2uxxl), (3.21a)

and,
W(y1 ) =3 ll - cos(2kBy1 51r19)cos(2§ykB sme)— sm(QkBy] sme)sm(ZE_,ka sme)]
+2C, exp(—pyyl Icos@ykB sin@)sin(kBy, sin6)+ sin(§, kg sine)cos(kBy1 sine)]
+C2 exp(-2u,y, ). (321b)

The expression for ) <Z§M (t)>t is analogous to (3.21) with the index 1 substituted
MeAk

by 2 in expressions (3.21a) and (3.21b). In the above expressions we have that,

p,=kyvl+sin’0, and p, =k,v1+cos’ 6. (3.22)

Finally, from (3.8), (3.20) and (3.21) we obtain an expression for the

frequency-averaged correlation coefficient at points x;=(x,,y;) and x,=(X,,¥>),
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_[ ,[ X(Xl )X(Xz )Y(yl )Y(YZ )d@dk B

Vi (XX, ) = — 5 =, (3.23)

[ ] /fz W(x, JW(y, )dedkg}”[ | Mfw(xz W(y, Jiodk,

Ak 0 Ak 0

where X(x)X(x2), Y(y1)Y(y2), W(xy), W(y;), W(x,) and W(y,) are given by equations
(3.20a), (3.20b), (3.21a), (3.21D).

The above result allows the computation of correlation coefficients for
different types of boundary conditions by using the relevant dynamic edge parameters
presented in Appendix B. For the majority of these boundary conditions the
integration in wavenumber space has to be performed numerically as no closed form
solutions have been found for these integrals. Attempts were made to obtain closed
form expressions using a different number of integration procedures, results from
tables of integrals [70,71,72] and symbolic languages like Maple V. However, no
computationally convenient expressions were found for the correlation coefficient of
plates with clamped, free or spring supported edges. Therefore, we had to resort to
numerical integration as a means of computing the correlation coefficient of plates
with these boundary conditions. Nevertheless, as the integration in angle 0 is
performed in only one variable the computing time involved is not critical. The
numerical efficiency and precision aspects of the integration routines employed are
discussed in Chapter 5.

A general expression for’ the frequency average of the normalised
cross-power spectral density can be obtained in a derivation similar to the one
presented for the correlation coefficient. The final result, which is employed in the
response computation (Chapter 5) and on the verification of the experimental results

(Chapter 4), is

/2

j I X(x, )X(x, )Y(y, )Y (v, }bdk

Rely, (x,,x,,f,)|= #2—0s : (3.23")
é [ | [WE)W(y)dodk ,dxdy

S Ak O

where X(x)X(x,), Y(¥)Y(y,), W(x), W(y) are given by equations (3.20a), (3.20b),
(3.21a), (3.21b).
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The theoretical results for clamped and free edges were validated
against experimental observations on flat plates. As reported in Chapter 4, the
agreement between theory and experiments is reasonable and so, the expressions here
presented can be employed on analytical models based on the theory presented in
Chapter 2. Moreover, corrections are presented to account for the influence of the
curvature on doubly- and singly-curved flat shells (Appendix F).

Correlation coefficients near the corner of a plate with guided edges are
plotted as a function of the wavelength (A) in fig. 3.5. This illustration assumes that
one of the points is fixed at x; = y; = 1.05/A and the other one varies over the area
sketched. It is verified that far from the edges the correlation coefficient approaches
zero very quickly. From figs. 3.3 and 3.5 we can say that the edges are important in
the mean-square response estimation in a region one wavelength from them and for
points that depart from the boundaries the response is uncorrelated for points two
wavelengths apart.

By comparing expression (3.16) with the interference patterns
presented in ref. [65] it is verified that this expression is equivalent to that for the
interference patterns of the pressure near a two-plane edge in a room whose walls are
acoustically soft (pressure release boundary condition). The only difference is that for
3-dimensional wave fields the zero-order Bessel function is replaced by the sinc
function, (sin X)/x. It can be also shown that a guided edge in a modally-dense 2-
dimensional vibration field generates interference patterns similar to those generated
by an acoustically hard wall (rigid reflecting, normal velocity component equal to
zero) in a 2-dimensional reverberant acoustic field. Furthermore, when the zero-order
Bessel functions are replaced by sinc functions, expression (3.17) gives the correlation
coefficient of the pressure near a two-plane edge in reverberation chambers whose
walls are soft. The interference patterns near a three-plane corner can be obtained
following a similar procedure as the one presented in this chapter. Such results have
been employed in the study of zones of quiet in diffuse acoustic fields. They have also

been checked against numerical simulation of diffuse sound fields [88].
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Fig. 3.2 - Sketch of plate used in the derivation of the correlation coefficient
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fig. 3.3 - Interference patterns near the corner of a simply-supported plate
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fig. 3.5 - Correlation coefficient near the corner of a guided plate - fixed point=1.05/wav.,1.05/wa
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3.5 Derivation of correlation coefficients based on a free-wave

description

A free travelling wave model [55] is here employed to derive
theoretical correlation coefficient expressions for 2-dimensional structural wave
fields. This approach is based on the analysis of the free bending wave propagation
through the structure with the application of the relevant reflection coefficients at the
structure boundaries. The expressions derived in section 3.5.1 are valid in any region
of structures with boundaries that do not generate evanescent field components or far
from the edges in plates with any type of boundary conditions. In section 3.5.2,
bending evanescent field components are included in the analysis enabling the
derivation of results for structures with any type of boundary conditions. This is
achieved by including the evanescent field components' reflection coefﬁciehts in the

solution of the structure's equation of motion.

3.5.1 Rectangular flat plate with generic boundary conditions

excluding evanescent field components

The differential equation of motion which governs the out of plane

displacement, z(x,y,t), of a thin plate takes the form [38§]

& o7
DI:—;'*‘——‘E{t z+mz=0, (324)
ox~ 0y

where D is the flexural rigidity and m is the mass per unit area. One possible
harmonic plane wave solution to this equation is composed of four free bending wave

components which are reflected and transmitted at the boundaries so that [55]
2(x,y,1) = Ble—ikxx—ik).y +Azeikxx-ikyy +A3eikxx+ik).y +A4e—ik‘x+ik".y }m’ (3.25)

where A, A,, A;, A, are complex amplitudes.
The above equation presupposes that no free in-plane waves are
generated at the boundaries and that evanescent bending and in-plane field

components decay rapidly with distance from the boundaries. According to the
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illustration in fig. 3.6, the reflection conditions at the lower left corner of the plate
require that

A, A,
__=__=R, and —t =——=R B 3.26
A2 A3 L A3 A4 B ( )

where R; and Ry, are the complex reflection coefficients at the left and bottom edges
of the plate. Using expression (3.26) to express A,, A;, A4 in terms of A;, R; and Ry

and substituting these results in (3.25) we obtain

*

* * *
Cikgeikyy | Ry ikeeikyy | RURE ikericy | RE cikxriky | i
Z(X,y, t) = Al[e ik x-ik,y +_Lel «x—ikyy + __L__E_elkv\x-%lk))’_’_ﬁ}ie ik x+ikyy enmt’ (327)
PL PLPs Ps

where * denotes the complex conjugate and, as defined in ref. [38], p,=IR, |* and
pp=|Rz|? are the reflection efficiencies of the left and bottom edges, respectively. For
cases in which no wave is transmitted through the boundaries the reflection
efficiencies are equal to unity and the expressions here presented can be greatly
simplified.

Multiplying and time averaging the displacement at point 1 and the
complex conjugate of the displacement at point 2 we can express the spatial
correlation of the displacement as

(z(0)Z®), =|A, [2{:e""‘-‘(““‘”’iky(y‘”y“ # Re ot i

P

#*

N R, R, oGk (i) Ry s i) Ry o)k (7o)
PLPs Py PL

1 it | Ry it | RiRp i) v

+
PL PLPB PLPB (3.28)

+ %eikx(xﬁxz)ﬂky(yﬁyz) N _E;_eikx(xl—xz)ﬂky(yﬁyz) + _lﬂeikx(x,—xz)+iky(y,-y2)

PLPr PLPs PLPs
+_13_;__eikx(x‘+x2 ik, (1172 Bie—ikx(xl—xz)+iky(yl+yz) N B_E_&_e—ikx(xl+x2)+iky(yl+yz)

PLPs Ps PLPs

+_R_L__ oGk, (i) +Le~ikx(x|—x2)+iky(yl—y2)jl.
PLPs Ps

As discussed in section 3.3 only the real part of <zl(t)z; (t)>tis necessary in the

computation of the correlation coefficient. In addition, expression (3.28) can be
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simplified by writing the exponential terms in terms of sines and cosines. Thus, after

some mathematical manipulation we obtain that

RelZz1 1)z, (t)>t ]= —léA:;—]B— [(l +p X1+ pg Joos(k, (x, - ><2))cos(1<y v, - Y:z))

—-(1 - p,_Xl - pB)sin(kx (xl - xz))sin(ky (y1 - yz))+ 2(1 + pB)Re[RL]x

xcos(k, (x, +x; ))oos(k, (v, — v, )+ 2(1+ pg )Im[R, Jsin(k, (x, + x,))x

X cos(ky (yl -, ))+ 2(1 + pL)Re[RB ]cos(kx (x1 - X, ))cos(ky (yl +y, )) (3.29)
+2(1+py JIm[Ry Jeos(k, (x; - x, ))sin(k, (v, +,))+ 4 Re[R, [Re[R, ]
X cos(kx (Xl + X, ))cos(ky (yl + yz))+ 4 Re[RL]Im[RB ]cos(kx (xl + XZ))x

X sin(ky (yl +Y, ))+ 4Im[RL ]Re[RB ]sin(kx (x, +x, ))cos(ky v, +v, ))

+4Im[R, Jim[R,, Fin(k, (x, +x, ))sin(k, (v, + v, ))]
Equation (3.29) gives the real part of the spatial correlation of the

displacement between points 1 and 2 for a wave whose frequency o is related to the

wavenumbers k, and k, by the bending wave dispersion relation [38]

(k§+k§)’=°°;m.

Expressions for <zf (t)>t and <z§ (t)>t are also necessary in the
computation of equation (3.9). As shown in the previous section they can be derived
from the expression for <zl(t)z§(t)>‘ by setting x; =X, and y; =y, . When this

substitution is carried out the imaginary part of <zl(t)z'2‘(t)>t disappears.

Assuming the boundary conditions are known, appropriate reflection
coefficients can be obtained from the expressions presented in Appendix C. Since the
resultant expression for the correlation coefficient needs to be integrated over wave
direction, the individual wavenumbers k, and k, have to be replaced by the continuous
functions kgcos6 and kgsin®, respectively. As discussed in section 3.1, this
substitution implies that the flat plate has a reasonably high modal density in the band
of analysis, or that a large number of wave directions are available. Thus, the
frequency-averaged correlation coefficient of a flat plate based on an elastic wave

representation is given by
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/2

f JReKzl(t)ZZ(t)>t]iGdkB

Y (XX, 1) = b0 (3.30)

[]nﬁzf(t))tdedkl%} D‘nﬂzg(t))td@dkg} ~

Ak 0 Ak 0

where

ReKz1 1z (t)>t } 1—)%)’—5 [(1 + pLXI + pB)cos(kB (xl - X, )cos@)cos(kB (yl -y, )sin G)
~(1-p, X1 -pg )sin(k, (x, —x, )cos0)sin(k, (v, v, )sin 0)
+2(1+ py JRe[R  Jeos(ky (x, +x, )eos®)eos(k (v, — v, )sin 0)
+2(1+ p, )[R Jsink 5 (x, +x, )eosO)eos(k s (v, ~y, )sin 0)
+2(1+p, )Re[R, ]cos(kB(x1 - X, )cosE))cosQ(B(y1 +y, )sin 6) (3:31)
+2(1+p, )Im|[R, ]cos(kB (x, —x, )cos G)Sin(kB (v, +y,)sin 9)
+4Re[R, |Re[Ry ]cos(kB (x, +x, )cos@)cos(kB (v, +y, )sin 6)
+4Re[R, Jim[R Jeos(k, (x, +x, )eosO)sin(k (y, +y, )sin 0)
+4Im[R | |Re[R, ]sin(kB (x, +x, )cos O)COS(kB (v, +y,)sin6)
+4Im[R  Jim[R Jsin(k, (x, +x, )cosG)sin(kB (v, +y,)sin 6)],

and

<zf(t)>t = —’51’—[(1 + pLXI + pB)
PLPs
+2(1+ pg YRe[R, Jeos(2k px, cos®)+Im[R, Jsin(2k ;x, cosb))
+2(1+ p, XRe[R; Jeos(2k 5y, sin®)+Im[R , sin(2k 5y, sin0))
+4Re[R | [Re[R; Jeos(2k ,x, cosB)cos(2k 5y, sin6) (3:32)
+4 Re[R | |Im[R, Jeos(2k %, cos6)sin(2k,y, sin®)
+4Im[R | JRe[R ]sin(2k ;x, cos8)cos(2k zy, sin®)
+4Im[R | JIm[R; [sin(2k ;x, cosB)sin(2k ;y, sin 9)],

and the expression for <z§ (t)>t is equal to the one for <z]2(t)>t with the index 1

~changed to 2.
Expressions (3.30), (3.31) and (3.32) and the reflection coefficients
presented in Appendix C enable the correlation coefficient of plates to be evaluated
with various boundary conditions. The limitation is that no evanescent field

components are included in this analysis and considerable errors between experiments
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and theory are expected in a region one wavelength near the boundary of plates with
edges which generate evanescent field components. The same procedure here
presented can be employed to derive results for the normalised cross-power spectral
density.

In agreement with the modal representation results (section 3.4), closed
form solutions for the integration in wave direction were only obtained for simply-
supported and guided edges. For instance, consider that the plate illustrated in fig. 3.2
has a left edge with guided boundary conditions and a bottom edge with simply-
supported boundary conditions. Then, the reflection coefficients in this case are real
and equal to Ry =1 and Ry = -1. Substituting these parameters in equation (3.30) we
have, after some mathematical manipulation, that the frequency-averaged correlation

coefficient for this plate under random excitation is

o o0 =307+ (=37 ) TG )T B 7))

+JO€<“/(Xl +%,) +(y,-¥,)’ )—JOQ%\/(X1 +x,)7 +(y, +y2)2]
[1+J0(2kbxl)—J0(2kby1) —Jo(zkbq/xf Ly )] "
x[1+J0(2kbx2)—J0(2kby2)—J0(2kbmj "

V(XX 1) = .(333)

The interference patterns for a plate corner with these boundary conditions are
illustrated in fig. 3.8 and 3.9 as a function of the system wavelength. It is observed
that such interference patterns are coincident with the ones illustrated in fig. 5 of ref.
[65]. Finally, it is important to point out that for cases in which the edges generate
evanescent field components the results obtained with the expressions presented in
this section are not valid in a region within one wavelength from the edges. The
evanescent field components have to be explicitly included in the correlation model.

This type of analysis is presented in the next section.
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3.5.2 Rectangular flat plate with generic boundary conditions
including evanescent field components due to reflection at the

edges.

The general harmonic solution to equation (3.24) near the bottom and

left edges of a flat plate, as illustrated in fig. 3.7, is given by [38,55]

2(x,7,1) = (AB e Y+ AB™Y L AR XAL e 4 AL el +AeLe"‘~“)3i“”, (3.34)

ref in ref in

where the index B refers to the bottom edge, L to the left edge, ref means reflected, in

means incident, e means evanescent field component, By, =, /ki + 2ki and

n, = k2 + 2k§ . Following the same procedure as the one used in section 3.5.1, we

have to derive an expression for (zl(‘c)zg(t)>t as function of the points coordinates,
bending wavenumber, propagation angle and reflection conditions at the edges. In
order to facilitate this derivation we can treat this expression in terms of two separate

functions of x and y, namely
(2,(0)7(0) =11, = W(x,)W(x,)Qy )Q(y,). (3.35)
Using this representation, an initial expression for I, can be derived as

2 —ik, (x;-x -k (x;+x * ik X =X * ik (x,+x
I = [AILH‘ [RL[ze fCim) LR e time) LR BT ek | RY g Gu)
_ ' _ A (3.36)
+e“kx(xx“x2) + Ezelkxxl_”xxz + RLELe“HxXx*‘kxxz + ELe‘P‘xXI“kxxz + ELEie'”x(“i*xz)]
where R is the reflection coefficient of the edge, E is the coefficient of the evanescent
field component defined as E=A./A,, and the symbol * represents the complex

conjugate of the complex variable. Equation (3.36) can be simplified and expressed in

real and imaginary parts. They are
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Re[l, ]= ]Am| [(l-t—pL)cos(kx(xl - x,))+2Re[R, Joos(k, (x, +x,))
+2Im[R Jsin(k, (x, +x,))
((Re[R . JRe[E, J+ Im[R Jim[E, Teos(k,x, ) J .
(-Im[R, JRe[E, ]+ Re[R, Jim[E, Psin(k,x, )
+(Re[E, Jeos(k,x, )+ Im[E, Jsin(k,x, )}
((Re[R L JRe[E, T+ Im[R, Jim[E, Jeos(k,x, } .
(Re[R, Jim[E, ]- Im[R, JRe[E, Psin(k,x,)
+(Re[E, Jeos(k,x, )+ Im[E, Jsin(k,x, )™ +[E, | e"”"(‘“”l)],

(3.37)

and

Im[IX =|AL 2[(1—pL)sin(kx(x1 —xz))
+(Re[E ]sin(k X])-Im[E ]cos(k xl))e‘“xxz
[(Im[RL]Re[E . ]~ Re[R, Jim[E, Jeos(k, xl)] .

(Re[R Re[E, ]+ Im[R, Jim[E, )sin(k,x, )
((Re[R ¢ JRe[E, ]+ Im[R Jim[E, ])sm(k X,) J e
+(Re[R, Jim[E, ]-Im[R, JRe[E, Jeos(k,x, )

+([m[E, Jeos(k,x,)- Re[E, Jsink,x, )} ]

Similar results As that for I, were obtained for the real and imaginary parts of I, the

(3.38)

only difference being that the index L has to be replaced by B and where we have x in

I, we have to replace it by y in I;. From equation (3.35) we can then write
Re[(z,()7; (), | Re[L, [Re[L, - 1m]1, Jum]i, ],
im(z, )z ), |= Re[l, Jmft, ]+ ReL, Jimft, ].

where equations (3.37) and (3.38), plus the equivalent expressions for the real and

(3.39)

imaginary parts of I, have to be substituted in the above equations. The equations for

<zf (t)>t and <z§ (’[)>t can be derived from (3.39). Performing this derivation we obtain

a general expression for <zi2 (t)>t
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(z1(v), = } [(+p.)+2Re[R, Jeos(2k,x, )+ 2Im[R, Jsin(2k,x,)
((Re[R L JRe[E, ]+ Im[R, Jim[E, Peos(k, xl)] -
(Re[R, Jm[E, ]-Im[R, JRe[E, Psin(k,x, )
+2(Re[E, Jeos(kx, )+ Im[E, Jsink,x, e +[E | e ]x
x[(1+ pa)+ 2 Re[R Joos(2k, ¥, )+2Im[R , Jsin(2k, v, )
+2[(Re[RB]Re[EB]+Im[RB]Im[EB])cos(kyyl)JeM

—(Re[RB ]Im[E B ]— Irn[RB ]Re[E B ])sin(k Y

+2(Re[EB ]cos(kyy1 )+ Im[EB ]sin(kyy] )):““;h +E, }2 o2 ]

(3.40)

Following the procedure presented in the previous section we can then derive
the frequency-averaged correlation coefficient by substituting equations (3.37), (3.38),

(3.39) and (3.40) in equation (3.9). The result is

] mf(Re[Ix JRe[t, |- Im[t, Jim]t, Jyodk,

Y, (X.X,,1) = Ak 0 (3.41)

% % %’
I:J‘J-Q(XI)R(%)dedkB} l:J-J‘Q(Xz )R(yz)dedkgjl

where
Re[Ix ]= [(1 +p, )cos(kB (x1 - X, )cos@)+ 2 Re[RL ]cos(:kB (xl +X, )cos@)
+2Im[R, Jsin(k, (x, +x, Jcos®)
+[(R6[RL ]Re[EL ]+ Im[RL ]Im[EL Dcos(ka, cos 6) ]e"“-“‘z
~(~Im[R, JRe[E, ]+ Re[R, Jim[E, Psin(k,x, cos0)
+(Re[E, Jeos(k,x, cos0)+Im[E, Jsin(k x, cos®)

{(Re[R L JRe[E, |+ Im[R, JIm[E, ])cos(k X, cos@)) e
)

(Re[R ]Im[E ] Im[RL]Re[E ])sm(k X, cos®

(3.42)

+(Re[EL]cos(ka2 cos@)+ Im[EL]sm(ka2 cos@)): o +‘EL} e‘“"(“‘“’)],
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Im[l, |= [(l - p, )sin(k, (x, —xz)cos(})
+(Re[E, Jsin(k 5x, cos®)~Im[E, Jeos(k,x, cos0) ™
[(Im[R L JRe[EL ] ReR, JtmfE, Jeos(kyx, cos@)] .
(Re[R, JRe[E, ]+ Im[R, Jim[E, )sin(k,x, cos6)
+[(Re[R L [Re[E |+ Im[R | JIm[E, 1sm(k X, cos0) )e_“m
+(Re[R, im[E, |- Im[R, JRe[E, Jeos(k X, cos6)
+(Im[E, Jeos(kgx, cos®)~ Re[E, Jsin(k ,x, cos) ],

(3.43)

Refl, |= [0+ Py )eos(ky (v, =y, )sin® )+ 2 Re[R , Jeos(k (5, +y, )sin6)
+21m[R , Jsin(ky (y, +y, )sin0)
+[(Re[R s JRe[E; ]+ Im[R, Jim[E , Peos(k v, sind) )
(-Im[R,, |Re[E, ]+ Re[R, im[E,, Psin(kzy, sin®),
+(Re[E Jeos(kyy, sin6)+Im[E, ]sm(kBy,sme))e e
+((Re[R s JRe[E ]+ Im[R, Iim[E,, Dcos(kgyzsmG)J
)

(Re[R Jim[E, |-Im[R;, |Re[E ])sm(kBy sin®

(3.44)

+(Re[E Joos(k,y, sinB)+Im[E, Jsin(k v, sin®)p ™ +[E | e ™™ (Y|+Yz)],

Im[Iy]z [(1 —pg)sin(k,;_‘(y1 ~—y2)sin6)
+(Re[E Jsin(ky, sin®)—Im[E, Jeos(k v, s1n€)))3'“y
((Im[R ]Re[E ] Re[R ]Im[E ])cos(kBy] sm@)]

(Re[R ]Re[E ]+Im[R ]Im[E ])sm(kBy] sme)
+[(R€[R ]Re[E ]+ Im[R ]Im[E ])sm(kBy2 sm@) ] '
+(Re[R ]Im[E ] Im[R ]Re[E Dcos(kBy smG)
+(Im[E ]cos(kBy2 s1n9) Re[E ]sm(k8y~smé)))e ],

(3.45)
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Q(x,)= [(1+pL)+2Re[R Jeos@2k %, cos0)+2Im|R | Jsin(2k 4%, cos)
((Re[R L JRe[E, |+ Im[R, Jim[E, Dcos(l\BX, cosB) ] . (.46)
(Re[R ]Im[E ] Im[R ]Re[E ])sm(k X, COS 6) .
+2(Re[EL]cos(ka1 cos0)+Im[E, Jsin(k,x, cos@))s_“-*x' +|E, [ e ],
and
R(y,)= [(1 +py )+ 2Re[R Jeos(2k 5y, sinB)+2Im[R ]Jsin(2k,y, sin6)

+2[(RC[RB ]Re[E B ]+ Irn[RB ]Im[E B ])cos(k gy, Sin 6) } o
)

4
~(Re[R, Jim[E,; |- Im[R ;, JRe[E, Psin(k,y, sin® 47

+2(Re[EB ]cos(kBy1 sin9)+ Im[EB]sin(kBy1 sine))e‘*‘>yl + lEslz 2 ]

Expressions for p, and p, are given by (3.22), and Q(x,) and R(y,) can
be obtained from (3.46) and (3.47) by replacing the index 1 with 2. As already
mentioned, the correlation coefficient can then be obtained from (3.41) by substituting
suitable reflection and evanescent field coefficients (Appendix C) in this equation and
performing the integration in wave direction. Assuming that the width of the strip Ak
=k, - k; is small enough in order that the second order terms in (3.16°) are neglected,
the result of the integration in wave direction is a good approximation of the
frequency-averaged correlation coefficient with the bending wavenumber, kg,
substituted by the band centre frequency bending wavenumber, k..

The computed correlation coefficient results are valid near and far from
the edges. However, they give exactly the same results as those derived in the
previous section when the points are situated in a region more than one wavelength far
from the edges. This happens because the evanescent term contribution will have died
out and it will be no longer relevant. However, if both points are in a region less than
one wavelength far from the edges then results with and without evanescent terms will
differ considerably. This difference was verified experimentally on clamped
rectangular plates as described in the next chapter.

If the analysis presented in this chapter were restricted to real wave
components, then the final correlation coefficient expressions would have been

exactly the same as the ones derived using the approximate modal model based upon
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Bolotin's dynamic edge effect method (section 3.4.2). Nevertheless, the inclusion of
imaginary terms does not affect the results greatly, and when overlaid one can barely
note the difference between them. Moreover, if only the inner solution of Bolotin's
dynamic edge effect method were considered in the derivation of section 3.4.2, then
the correlation coefficients would have been very similar to the derivation presented
in the previous section (wave approach without evanescent terms). Therefore, it can
be concluded that the correlation coefficients derived using wave or modal models are
coincident. This conclusion supports the analysis presented by Waterhouse and Cook
[73] on the equivalence of modal and wave methods for description of reverberant
fields. In addition, Langley [55] has shown that the free travelling wave model is
simply a reformulation of Bolotin's dynamic edge effect method.

The correlation coefficient expressions derived in this chapter are
strictly valid in the lower left quarter of the plate. However, if appropriate reflection
coefficients and coordinate systems are used these results can be extended for the
other plate quarters. This means that the origin of the coordinates that defines points 1
and 2 (x; and x, ) are always situated at the corner which point 1 is closer. Moreover,
it is verified that in the middle of the plate (far from the edges) the expression for the
correlation coefficient approaches that of a diffuse bending wave field.

The usefulness and validity of the theoretical results derived in this
chapter are analysed in Chapter 4. The analysis is based on information obtained from
an experimental investigation carried out on flat plates and in a passenger car

bodyshell.
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Fig. 3.6 - Boundary reflections on the lower left corner
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Fig. 3.7 - Sketch of incident, reflected and evanescent waves for the bottom edge
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fig. 3.8 - Interference patterns near the junction of a simply-supported and a guided edge
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3.6 INFLUENCE OF ACOUSTIC AND MECHANICAL
EXCITATION ON CORRELATION COEFFICIENT

As presented in Chapter 2, the cross-spectrum of pressure inside an

acoustic cavity excited by a random vibrating plate is given by

242 p .
S, (%,¥,2.0) = (P;;;) 3 v, (%Y, 2V, (xy,2) [X, -1Y, ] [X, +iY, )

L AL, [X:+vi[xe + 12 (2.10)

X IISa(XI’YI’XZDY2 SO (X1, Y1,2,)W (X5, Y, ,Z,)dx dx,dy,dy,.

SS

Assuming the plate natural modes of vibration are available, a similar

expression can be written for the plate response to a random field of cross-spectrum
Sf(SIJE,.l:SZ:E,»Za(D)a
0, (%050, (%,,3,) [H, -iW, ][H, +iW, ]

Sa(X1>Y1>X25y2>m)=w4ZZ 5 2 5 o3 %
P q M, M, [Hp + W, ] [H;z +Wq—] (3.48)
XjJ-Sf(gl’gl’827a2>m)¢p(819é1)¢q(gzﬂaz)dgldgzdéldizf

S S

where ¢,(x,y) represents the mode shape of the pth plate mode with natural

frequency o, at point 1, n, is the modal loss factor, M, is the modal mass,

—m? —m? _ :
H =o,-0" and W, =n 0o .When the modal overlap factor is very much

smaller than unity the cross-terms do not contribute significantly to the response and

can be neglected. Expression (3.48) is then written as

¢p(XI5YI)¢p(X25Y2) 1 g
A [H; + w7 ]

X J‘J.Sf(gl7€l’82’é2’(D)(bp(gl’il)q)p(SZ5§Z)d81d82d§ld§2'

SS

Sa(XHYI:XZJYZ’m) =(D4Z

p

(3.49)

The implications of neglecting the cross terms in the evaluation of
equations that have the form of equation (3.49) have been discussed by a number of

authors as described by Elishakoff et al (pag. 153, ref. [74]).



3.6.1 Mechanical excitation applied at a single point

The cross-spectrum of a stationary random force applied at the point
(X45Yo) 1s given by (eq. (190), ref. [75]),
Sf(gpélagz :ézam): 6(81 - Xoﬁ(&l - YQ)S(EZ - Xo)s(éz - yoﬁf(o‘))7 (350)
where S{) 1s the force spectral density and 6 is the Dirac delta function. Substituting

(3.50) in (3.49) and evaluating the double integral we obtain that,

0, (%1, 519, (%5, )
S, (X, ¥1:%,,Y,,0) =0ty T ‘Az*’ 272 o> (x O,yo)S (). (3.51)
. [H +w ]
From (3.51) we can show that the correlation coefficient is given by

, | .
X x,)02 (x - i}
Ep:q)p( l)¢p( 2)¢p( o) Azp H-_; +\V§
Y12 (X5 X,,0) = S X A

2 2 1
Z¢ (x, )4) (x )Wﬂ [Zp:q)p(xz)d)p(xo)mﬂ

where X;=(X1,¥1), X2=(X2,¥2)> Xo=(Xo5Yo0)-

The above expression enables the correlation coefficient to be
computed for any pair of points and for any frequency. The disadvantage is that we
need to estimate the plate natural frequencies and associated mode shapes. In order to

compute a frequency-averaged value for the correlation coefficient it is necessary to
integrate the term A’, [Hf) + sz] over frequency. A closed form solution for this

integral for integration limits f; and £, is given by equation (A.7). As explained in ref.
[75], when the natural frequencies @, do not overlap the limits of integration can be
extended to infinity. Assuming the modal masses and loss factors are relatively

uniform the following standard result is obtained

oW

J- do _ T
o A Kcof) ——coz)2 +(npcopco)2] M’n’

where M is the total mass of the plate and 1 is the plate frequency-averaged loss

(3.53)

factor. Substituting (3.53) in (3.52) we obtain the frequency-averaged correlation

coefficient of acceleration due to a random point force applied at x, = (X,,y,)
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D0, (x)0, (x,)02(x,)
P (3.54)

Y (XX, 1) =

172 2

{Zﬁ(xlmﬁ(xo)} {Z«bi(xz)@i(xoﬁ

where the summation indicated involves all the modes whose natural frequencies are
situated inside the frequency band whose centre frequency is f.. This expression was
employed in section 3.7 to obtain theoretical results for the correlation coefficient
using modal summation. In the spirit of the approximations employed in this chapter
the modal summation can be substituted by an integration in wavenumber space. As a
result the asymptotic form of equation (3.54) in terms of circular coordinates (kg,0) in

wavenumber space is given by

/2

[ Johkss0,%,)0(k;,0,x,)” (ky.,0.x, )6k

Yi2 (vazafc) = - ,(355)

[ J.Kf¢2(kB,G,X,)¢2(kB,G,xn)dedkB} { jﬂf(pz(kg,e,xz)qf(kB,e,xo)dedkBJ

Ak 0

where for a simply-supported plate: (b(kB ,6,x1)= sin(kBX, coS E))':“.in(kByl sine)
Results from equations (3.55) and (3.54) were compared for the case of a simply-
supported plate. Some of the results obtained are presented in section 3.7. As shown
in figs. 3.14 and 3.15 good agreement was obtained when the discrete modal
summation of expression (3.54) was computed and compared to the asymptotic results
from equation (3.55). This indicates that expression (3.55) is a good approximation of
the correlation coefficient of point excited structures. This agrees with the analysis of
ref. [75] (pag. 60) in which it is suggested that an asymptotic expression in the form of
expression (3.55) provides an excellent approximation to the exact discrete sum of an
equation similar to equation (3.54). In addition, it is observed that considerations
similar to the ones employed in this sections will lead to the expression (196) of ref.
[75].

From equations (3.10) and (3.54) we can show that the frequency-

averaged normalised cross-power spectral density for a point excited plate is given by
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[ Jotk,»0,%,)0(k,,0,%,)07 (k,,0,x,)d6dk ,

Re[ya(xlaxzafc)]zAko { 2 }d
S

(3.56)
< I T o7 00007 (0%, deak,

3.6.2 Acoustic excitation in the form of a diffuse sound field

excitation

The cross-spectrum of the random force due to a excitation field in the

form of a diffuse acoustic field is given by [76]

sinkr 8, ()

si -
Sf(gxaéwszaiza@)z o ) (3.57)

where 1 is the distance between points (g,£;) and (g,,&,), k is the acoustic
wavenumber and Sp(m) is the power spectral density of the pressure field. Substituting
(3.57) in (3.49) we obtain an expression for the cross-spectral density of the

generalised force due to diffuse field excitation,

I(0)= ”

From (3.58) and (3.49) we obtain an exact expression for the cross-spectral density of

si

LS )0, (21,808, (22,8 )d de e 2, (359

the acceleration response,

b, (X, 1), (%,,Y,) 1
Sa(X17y19X23y29(D):(D4Z : 2p - 2 2 X
> A [H;+Wp']

(3.59)

X.”-Siij(rSp(®)¢p(81ail)‘bp(sz>§2)d81d82d§1d§2'

Assuming the power spectral density of the pressure field varies slowly with

frequency and is equal to S; we can write that

S, (0) =5, [ [0 (61,800, (62, 8)de doad s (360)

For cases in which the modal mass A, is almost the same for all the modes we can
express the correlation coefficient due to acoustic excitation in the form of a diffuse

acoustic field as
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The evaluation of the discrete modal summations presented in the above expression

involves computing the plate natural frequencies and associated mode shapes. A
frequency-averaged result for expression (3.61) can be derived by following a similar

procedure to the one employed for the case of a point excited plate. This expression is

Y0, (x)0, ()] ()

o] [t

where the modes that are include in the summation have resonance frequencies inside

Yo(XppXy, 1) = (3.62)

12

the band of interest. The acoustic wavenumber k corresponds to the frequency f..
Substituting the modal summation by an integration in wavenumber

space we have, in cylindrical coordinates,

| jq)(kB,e,x,)q)(kg,e,xz)l(k, kg, 0)i6dk,,

V(X Xp,1) = ) = nr — (3.63)
| j¢2(kB,e,on(k,kB,e)dedkB} { [ 67 (550,x,)1(k. K, 6)d0dk
Ak B, Ak B,

where k is calculated for the band centre frequency f, and
sinkr
Ik, k5,00 = [ [=—0(y,20.81.000(0y.85.8,0)de doyd2 2, (3.64)
SS

Similar to the procedure presented in section 3.4.1, for cases in which the bandwidth
is not too large, the integral in ky can be approximated by the expression in the
integrand with kg substituted by the bending wavenumber k; calculated at the band
centre frequency f.

The limits of integration 8, and 6, for the case of acoustic excitation
are defined by the relative values of the acoustic wavenumber k and the bending

wavenumber k; . As explained in ref. [19], plate modes which satisfy the condition

K2 +k? <k (3.65)
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produce a component that radiates well. By reciprocity, we can suggest that only the
plate modes that satisfy the above condition will be efficiently excited by an acoustic
field. Therefore, it seems reasonable to evaluate the integral in wavenumber space
presented in equation (3.63) for a region that satisfies the condition (3.65). From fig.
3.10 we observe that such region is situated at the top and bottom ends of the
wavenumber quarter-circle. Then if we divide the region of integration in two we

obtain the following pair of integration limits,

) 0/=0 e;:éi
b

(3.66)
2y er=l_K or="
2k, 27

where the first pair correspond to the bottom region and the second pair correspo'nd-to
the top region. These integration limits were obtained from an approximate analysis of
the geometry representation of acoustic and bending wavenumbers on a wavenumber
space.

In order to obtain a first approximation for the correlation coefficient
due to acoustic excitation, the integration limits presented in (3.66) were used as
limits of integration for the standard correlation coefficient expression (equation
(3.23)). It was found that this approximation gave results very similar to ones
computed with equation (3.63). It was also observed that the integration limits
employed in the integration of equation (3.63) do not affect the correlation coefficient
results as the multiplication by the factor I(k,k;,,0) will have a similar effect to using
the integration limits presented in (3.66).

Unfortunately, as described in section 4.4 (fig. 4.5), when results from
this approximation were compared to experimental results using acoustic excitation by
a sound field in a cavity the agreement obtained was poor. The main reason for such
poor agreement is that the acoustic field inside the small acoustic cavity is not diffuse
as assumed in the present section. A better model for the type of acoustic excitation
employed in the experimental work reported in section 4.4 could be one which
explicitly included each individual acoustic mode in the computation of I(w). Such
procedure is equivalent to the hybrid model suggested in this work and will allow the

computation of the response of the modally-dense plate due to an acoustic source
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generating a modally-sparse acoustic field. This is left as a suggestion for future work.
Another explanation for such disagreement is that all the points in the acoustic field
are coherent due to the use of a single source. As a result, the assumed cross-spectrum

in the form of equation (3.57) is no longer valid.
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Fig. 3.10 - Illustration of wavenumber region with plate modes excited by an acoustic

field of wavenumber k.
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3.7 Simply-supported flat plates: a modal summation approach

A modal summation model that employs the mode shapes of a simply-
supported flat plate was used to simulate the dynamic behaviour of two simply-
supported flat plates. The modal summation results are compared with analytical
results (equations (3.17) and (3.18)) presented in section 3.4.

The advantages of using a modal summation model are that the number
of modal responses summed in each frequency band can be controlled, and the effects
of point excitation can be assessed in relation to an assumed model of spatially-
uncorrelated excitation (rain-on-the-roof). An asymptotic approximation for

correlation coefficients on point excited plates is also used in the comparison.
3.7.1 Description of modal summation approach

For a flat plate with simply-supported boundary conditions a modal
summation expression for the frequency-averaged correlation coefficient of
acceleration (y;,(X1,X,,f.)) can be derived from equations (3.8), (3.12), (3.14) and
(3.16). The result is

Zsin(kxxl)sin(kxxz)sin(kyyl)sin(kyyz)
N (3.67)

Y (XX, 1) = 72

[Z sin’(k  x,)sin’ (k,y, )} ~ [Z sin®(k x,)sin’ (k,y, )}

where k, = mn/a, k, = nn/b, m and n are the modal numbers, a and b are the
dimensions of the plate in x and y directions, respectively, and N represents the
number of modes summed in each frequency band.

Based on the above equation the frequency-averaged correlation
coefficient in each frequency band was estimated in the following way :
e The plate natural frequencies were calculated and the modes grouped according to

frequency band,

e The summations presented in equation (3.67) were then computed for modes

whose resonance frequencies are in the respective band,
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e The summations were repeated for each consecutive pair of points on the line
analysed,

e The results at each line were then plotted as a function of non-dimensional
separation distance kyr, where k,, is the bending wavenumber calculated at the band

centre frequency and r is the distance between each pair of points.

3.7.2 Discussion of results

The above procedure was employed to estimate the vibration field
correlation of two simply-supported plates which are illustrated in fig. 3.11. They both
had the same thickness, h = 0.001 m, and were assumed to be made of aluminium.
One of the plates had dimensions a = b = 0.48 m (small plate) and the othera=b ="
1.5 m (large plate). Consequently, both plates had the same bending wavenumber in
each frequency band but the large plate had a much higher modal density. In addition,
because of the square geometry of both plates, a large number of vibration modes
having different shapes but the same natural frequencies were used in the summation.

The correlation coefficient evaluation was carried out for points
equally spaced along lines whose positions are indicated in fig. 3.11. One of the points
was assumed fixed and the other displaced from it along the line in nine equally
spaced points. Correlation coefficient results were computed for lines B, C and D in
one third octave bands from 63 Hz to 3150 Hz and also for 20 frequency bands of
constant width of 100 Hz from 50 Hz to 1950 Hz. A large amount of data was
obtained in this investigation but only a small selection of significant results are
presented here.

The comparison between modal summation and analytical results (eq.
(3.17)) for points along line C is shown in fig. 3.12 for some frequency bands. Equal
spacing of 2 cm between the points was used on this line. Good agreement was
observed between analytical and modal summation results for both plates for
frequency bands above (and including) 200 Hz. Results for the small plate did not
agree with the theoretical results below 200 Hz because of the small number of modes
summed in each 1/3 octave band. For instance, in the 200 Hz one third octave band

the number of modes used in the small plate modal summation was five.
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As a means of further assessing the number of modes necessary for the
analytical frequency-averaged results agree with modal summation ones, the modal
summation simulation was performed in constant bandwidths of 100 Hz for the small
plate. For all the lines the number of modes summed in each band varied from 4 to 8.
Results for line C in four frequency bands are presented in fig. 3.13. For centre
frequencies 250 Hz and 450 Hz, six modes were included in the summation, seven
modes were summed for 550 Hz band, and only four modes for the 850 Hz frequency
band. As shown in fig. 3.13, when only four modes were included in the summation a
poor agreement was observed. A mix of good and reasonable agreement results was
verified for cases when six or seven modes were present in a band. Good agreement
was only obtained for cases in which eight modes were included in the summation. .
Similar behaviour was observed for results along the other lines. Stearn [76]
employed a similar modal summation procedure to observe that at least ten modes
need to be excited at resonance in a frequency band for the correlation coefficient to
approximate the diffuse bending wave field function far from the edges of a randomly
excited structure. Thus, neglecting the effect of damping, it can be inferred that for
bands in which more than eight modes are excited by spatially uncorrelated forces, the
modal summation results agree with those of the theoretical model proposed in this
chapter (equation (3.17)).

The theoretical analysis presented in this chapter presupposes that the
excitation applied to the plate is random and spatially uncorrelated (rain-on-the-roof).
Unfortunately, this type of excitation is rarely encountered in real situations as the
force is normally applied over a small surface area. The influence of the excitation
spatial distribution on the vibration field correlation was analysed using the modal
summation model. In the previous section, it was shown that the frequency-averaged

correlation coefficient due to point excitation at x, = (x,,¥,) 15 given by

2.0, (x1)0,(x,)9,(x,)

Y (X5X,, 1) = (3.54)

22

{Zd)f,(xl)d)i(xo)} {Zd)i(xz)é)ﬁ(xo)}

where ¢,(x) represents the mode shape of the structure: sin(kx)sin(k,y) for a simply-

supported flat plate. The same procedure as that described in section 3.7.1 was used to



obtain the correlation coefficients using equation (3.54) along the lines sketched in
fig. 3.11. For each line, different positions of the excitation point were used.

A typical result of this simulation is presented in fig. 3.14. Line D was
chosen for this representation as it is reasonably far (in terms of wavelength) from all
the boundaries in almost all frequency bands analysed. As expected, it was observed
that, along this line, equation (3.17) (simply-supported flat plate) and equation (3.18)
(two-dimensional diffuse wave field) gave the same results. Thus, only the theoretical
results for a simply-supported flat plate (equation (3.17)) are plotted in fig. 3.14. The
asymptotic expression for the correlation coefficient due to point excitation shown in
eq. (3.55) is also employed in this comparison and is named ‘point” in figs. 3.14 and
3.15.

As shown in figs. 3.14 and 3.15, results for the large plate and for the
asymptotic expression of the point excited correlation coefficient (equation (3.55))
agreed quite well in the frequency range analysed. Furthermore, both results
approached the expression for the spatially-uncorrelated correlation coefficient as the
frequency increased. Based on modal summation numerical procedure results, Stearn
[76] also observed that point-excited correlation functions approach that of diffuse
bending wave fields for points far (in terms of wavelength) from the edges and
excitation point. However, when comparing experimental observations on point-
excited plates to the diffuse field result, this agreement was not observed. He
explained this discrepancy by pointing out that the plates were relatively highly
damped.

The relative strengths of the field directly radiated from the point of
excitation and the plate reverberant field is strongly dependent on the system
damping. An analysis of such relative strength was presented by Skudrzyk [77]. He
demonstrated that the distance in which the strength of the field radiated by the point
force equals that of the reverberant field is given by (pag. 259, ref. [77])

rzgﬂ%linzllonkb, (3.68)

B

where | is the average distance the wave front travels between successive reflections,
1, is the averaged distance to the boundary of the plate, n represents the plate loss

factor and k, is the bending wavenumber. An estimate of this distance for the small

74



plate is presented in fig. 3.16 as a function of typical loss factors. As shown, for the
case of relatively highly damped systems (1) > 0.04) the direct field will dominate the
vibration field. However, for moderate to low values of loss factor (1 < 0.01) the
reverberant field will predominate over most of the vibration field, apart from a region
very close to the excitation point.

For points close to the system boundaries, such as line B, for which the
results are presented in fig. 3.15, the effect of the point excitation on the vibration
field was less pronounced than for points situated far from the edges. This is because
the interference field generated by the edges dominates the vibration field in this
region. These are only preliminary observations on the influence of the excitation on
the correlation coefficients of a vibration field and, as discussed in the section 3.6, .
further work is necessary to clarify this situation. At present, it can be stated that the
theoretical approximations for the correlation coefficient derived in this chapter can be
approximately applied for point-excited structures having moderate damping.

Unlike the situation observed for line D, the theoretical results from
equations (3.17) and (3.18) differ considerably for points placed along line B. As
presented in fig. 3.15, the zero-crossing points and peak values for results from
equation (3.18) (diffuse bending wave field) are consistently different from that from
equation (3.17) (simply-supported flat plate). It was found that, above 400 Hz, both
small and large plate results agree with the theoretical results for a simply-supported
flat plate, whereas results from equation (3.18) are very different from the other three
results in all frequency bands analysed. This disagreement happened irrespective of
the type of excitation (spatially-uncorrelated or point excitation) and it clearly
illustrates the effect of the boundaries in correlating the wave field near the edges.

Furthermore, it was also observed that the relative position of both
measurement points in relation to the edges is relevant. In the results presented in fig.
3.15, one of the points was assumed fixed and placed at the bottom of the line (closer
to the edge) and the other moved along the line towards the plate centre. However,
were the fixed point placed closer to the centre of the plate, the theoretical
formulations (equations (3.17) and (3.18)) and modal summation results would be

more similar. This indicates that both points need to be placed inside the "one-
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wavelength-from-the-edges" region for the diffuse wave field and simply-supported

results disagree. This observation supports the theoretical analysis of section 3.4.1.
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Fig. 3.11- Sketch of lines used in the verification of correlation coefficient results.
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CHAPTER 4

EXPERIMENTAL INVESTIGATION OF VIBRATION
FIELD CORRELATION ON FLAT PLATE
STRUCTURES

4.1 Introduction

This chapter presents the results of an experimental investigation of
vibration field correlation carried out on four different flat plate structures and on a
car bodyshell. Measurements of vibration acceleration were used as a means of
estimating the frequency-averaged correlation coefficient and the normalised cross-
spectral density of these structures under random excitation. The main purpose of this
investigation was to assess the validity of the theoretical correlation coefficient and
normalised cross-spectral density approximations derived in the previous chapter.

The flat plate structures used in the experimental investigation were as
follows: a 1 mm thick clamped square aluminium plate that bounds a rectangular box;
a 3.5 mm thick rectangular steel plate with a steel bar attached and clamped along the
four edges; a rectangular aluminium plate with free edges hung by two thin wires
from a frame; two irregularly-shaped flat steel plates with free edges, connected by
metal straps and hung from a frame.

The results are compared with estimates of vibration field correlation
based on the theory presented in the previous chapter. In addition, results from a
similar experimental investigation carried on a car body shell [54,78] are also
compared with the theoretical estimates. Modal density and structural loss factors
estimates were also obtained on some of the investigated structures as means of
assessing their modal overlap factors and the number of modes resonating in each

frequency band.
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4.2 Experiméntal procedure

The experimental procedure applied was similar to all flat plates. Each
plate was mechanically or acoustically excited. The input signals were broad-band
random. These sources produced sufficient vibrational response to guarantee a good
signal to noise ratio as the response levels were, in average, 30 dB higher than the
background noise level. Two accelerometers (Bruel & Kjaer Type 4374) were placed
along different lines on the plate surface. In each set of measurements one
accelerometer was held at one extreme of the line (marked 1 in figs. 3.11, 4.2, 4.11)
and the other displaced from it along the line at equally spaced points.

The acceleration signals were acquired using a ZONIC+AND 3524
Dual Channel FFT Analyzer and transferred to a PC-compatible microcomputer. The
frequency-averaged correlation coefficient between the two acceleration signals was
then estimated using equation (3.6) and the normalised cross-power spectral density
estimated from equation (3.10). For this purpose cross- and auto-power spectrum of
acceleration in each pair of points were acquired in the frequency range 0-5000 Hz.
These estimates were integrated in 1/3 octave bands and in bands of constant width.
The frequency separation of these spectra was 2.5 Hz (400 lines) for lines A, B and C
(section 4.3) and 3.125 Hz (1600 lines) for all the other lines. Finally, the frequency-
averaged estimates were plotted as a function of the non-dimensional distance kr,
where k is the bending wavenumber calculated at the band centre frequency and r is
the distance in metres between each pair of points.

A large accelerometer can considerably load thin plates as the ones
here investigated. As a result lightweight accelerometers (B&K 4374, mass=0.6
grams) were chosen for this investigation and it was estimated that they only affect the
present results for frequencies above 3000 Hz for the car roof (thickness = 0.8 mm).
For the other plates the mass load of the accelerometer is negligible. In addition, it is
important to mention that as the correlation coefficient is a normalised quantity this
mass load effect will be cancelled when the experimental results are combined using
equations (3.6) or (3.10).

One-third octave bands were chosen for the analysis because, in such

bands, the bending wavenumber of each resonant mode does not vary more than 6 %
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from the assumed mean value of the bending wavenumber (k,) corresponding to the
band centre frequency. This can be explained by the fact that the bending
wavenumber is proportional to the square root of the associated frequency. So, if the
square root of upper or lower frequency limits of 1/3 octave bands are divided by the
square root of the band centre frequency the result is close to 6%.

The repeatability of the measurements were verified by estimating the
correlation coefficient in the same pair of points ten times. In such exercise, before the
acceleration signals were acquired, both accelerometers were removed and fixed again
to the plate as a way of simulating a real laboratory situation. The largest normalised
standard deviation (o/m) of the estimated correlation coefficient was 0.1.

The real part of the normalised cross-spectral density of acceleration
was estimated using the same data employed in the correlation coefficient
experimental estimation. The space average of the acceleration was obtained from the
average of the auto-spectrum at four different positions along the structure surface.
This space average was then employed to normalise the real part of the cross-spectrum

along each measurement line following equation (3.10).
4.3 Errors associated with the correlation coefficient estimation

The variance and the confidence limits of the present measurements are
estimated following the procedure suggested by Bendat and Piersol [85] and Newland
[67]. Random errors associated with statistical sampling considerations and bias errors
associated with data acquisition errors are here considered. From Bendat and Piersol
[85] we have that the normalised random error associated with the auto-spectrum
estimation is

c 1
g = =G

1
" mg BT o,

where ¢ is the standard deviation of the measurement of average m, n, is the number

(4.1)

of non-overlapping averages and T, is the total duration of the record data. The
normalised bias error is a function of the resolution bandwidth, B., and of the system

half-power bandwidth, B ~2f,, where £ is the damping ratio and f; is the damped
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natural frequency. The normalised bias error for auto-spectrum measurements is given

by [39]

2
1{B
gy =—-:( j : (4.2)
and the normalised r.m.s. error is expressed as

g=,e’ +g. (4.3)

As in the present measurements the bias errors associated with the
auto-spectrum estimation were normally much smaller than the random errors we can
say that the normalised r.m.s. error is approximately equal to the normalised random
error.

Assuming the probability density function for the estimates G to be
approximated by a chi-square distribution we can obtain confidence intervals for these
measurements [67]. The number of degrees of freedom (k) of the chi-square

distribution is related to the standard deviation and measurement average by

J2=9 (4.4)
K m

By knowing the number of degrees of freedom we can obtain confidence limits from
statistical tables of percentage points of a chi-square distribution [67,85].

The normalised random error associated with the real part of the cross-
spectrum can be obtained from expression (9.25) of ref. [85]. After some

mathematical manipulation we have that

\/G G, +(R6[ny])2‘(1m[6w])2_ 4.5)

2n, RelG, |

Assuming the imaginary part of the cross-spectrum, Gy, to be

negligible compared to the real part we can show that equation (4.5) is equal to

1+“/w
g, =
V Y\V

2. . . . .
where v,,” is the ordinary coherence function. For cases in which the coherence

(4.6)

function is close or equal to one the normalised random error associated with the



cross-spectrum approaches the normalised random error associated with the auto-
spectrum (equation (4.1)).

The random error associated with the correlation coefficient and with
the normalised cross-spectral density can be derived following the procedure outlined
in section 9.2.3 of ref. [85]. Assuming the imaginary part of the cross-spectral density

is negligible in comparison to the real part we obtain that

4.7

The above expression is valid for the correlation coefficient and for the normalised
cross-spectral density. It shows that when the coherence function equals unity the
random error associated with these two parameters is zero. Results for other values of
the coherence function are shown in table 4.1. The number of non-overlapping

averages used in the correlation coefficient estimation was 50.

Ty 0.9 0.7 0.5 0.3
~ 0.065 0.1207 0.1732 0.2463
. 473 137 66.7 33.0

Table 4.1 - Random error (eq. (4.7)) associated with correlation coefficient estimation

as a function of the ordinary coherence function.

As shown, the number of degrees of freedom of the chi-square
distribution were reasonably high for practical values of the coherence function. In
most of the experiments performed the average value for the coherence function was
in the band 1.0-0.9. In particular, when the coherence function equals 0.7 we have that
the 95 % confidence limits for the correlation coefficient are given by

0.742y , <m <1296y ,. (4.8)
Similarly we have that the random errors associated with the estimation of the auto-
spectrum of acceleration are defined by equation (4.1). In this case, we obtain that
ninety per cent of all values of the autospectrum G, will lie in the band

0.779G,, <m<1243G . (4.9)
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The confidence limits presented in (4.8) and (4.9) show that the
experimental results of correlation coefficient and normalised cross-spectral density

presented in this chapter have low values of random error.

4.4 Square flat plate with four clamped edges

4.4.1 Description of apparatus

An aluminium plate of 0.001 m thickness, with equal sides of 0.48 m
and clamped along the four edges was one of the flat structures used in the
experimental verification of frequency-averaged correlation coefficient theoretical
results. This plate bounded an acoustical enclosure in which the other five walls were
of double plywood construction with the cavity between them filled with sand. This
plate/box system was employed in the experimental analysis of vibroacoustic
response reported in Chapter 5. Typical wavelengths for this plate were: 0.222 m at
200 Hz, 0.111 m at 800 Hz, 0.078 m at 1600 Hz and 0.057 m at 3000 Hz. The edges
of the plate were sandwiched by two square metal frames used to simulate a clamped
type of support (fig. 4.1). Point excitation from a non-contact shaker or acoustic
excitation generated by a loudspeaker placed inside the enclosure were used to vibrate
the plate.

The correlation coefficients were estimated using the procedure
described in section 4.2 along three lines sketched in fig. 3.11 (lines B, C and D) and
three lines that are sketched in fig. 4.2 (lines A, E and F). The spacing between the
points varied: 2 cm was used for lines A, B and C and 1 cm for lines D, E and F.
These estimates were integrated in 1/3 octave bands from 63 Hz to 8§00 Hz for lines A,
B and C and from 80 Hz to 4000 Hz for lines D, E and F. In addition, some of the
experimental results were also analysed in frequency bands of 100 Hz constant

bandwidth.
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4.4.2 Discussion of results

It is impractical to present all results obtained in this experimental
investigation. As in section 3.7, a selection of some results is presented in order to
highlight the most important findings of this investigation. The theoretical correlation
coefficient results presented in this section were computed using results for a clamped
plate based on Bolotin’s dynamic edge effect method (equation (3.23)), with the
coefficients for a clamped boundary as derived in Appendix B (expressions (B.4)).

It was confirmed by modal summation results (section 3.7) that at
points removed from the edges (at least one wavelength from the edges), simply-
supported plate correlation coefficient results converge to those of a diffuse bending
wave field. The same verification was carried out for points situated along line D of
the clamped plate as, for most frequency bands, these points were outside the one-
wavelength-from-the-edges region. Fig. 4.3 shows the average of correlation
coefficient results obtained from experiments in which the shaker was placed at four
different points along the plate surface. The shaker coordinates are listed in table 5.7.
For each shaker position, a separate estimate of the correlation coefficient in 1/3
octave bands was made, following the procedure outlined in section 4.2. The resultant
correlation coefficients were then arithmetically averaged and plotted as a function of
kr. The first clear conclusion from this set of results was that, above 200 Hz, the
diffuse wave field (equation (3.18)) and clamped plate results (section 3.4.2) are
coincident. This was expected because the estimated wavelength at 200 Hz was 0.22
m and thus, only the inner solution of Bolotin's edge effect method contributes to the
analytical clamped plate result. Then, following an analysis presented by Bolotin [56],
it was confirmed that, when a large number of modes is summed, or the asymptotic
limit is taken in a limited band, the clamped plate result approaches the simply-
supported one and they both approach the diffuse field result. Similar results were
obtained for plates with free edges (sections 4.6 and 4.7).

It was also verified that clamped plate and diffuse field correlation
coefficients agree reasonably well with the experimental results for one-third octave

bands whose centre frequencies are equal or higher than 315 Hz. This situation is
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illustrated in fig. 4.3 by showing results at 160 Hz and 315 Hz 1/3 octave bands.
Theoretical estimates of natural frequencies on flat plates [79] suggests that at the 315
Hz 1/3 octave band at least 5 resonant modes have been excited. Similar trends were
observed in the other lines. Nevertheless, it is important to note that for practical
structures this agreement is also governed by the damping of the structure. A specific
investigation of such dependence is presented in section 4.5.2.

One of the exceptions of the good agreement between theoretical and
experimental results was in the 1/3 octave band centred on 500 Hz. In this 1/3 octave
band, experimental results for the four mechanical excitation positions were
consistently different from the theoretical results. On the contrary, correlation
coefficient results obtained with broad-band random acoustic excitation from a
loudspeaker agree with the theoretical estimates at this frequency band.

In addition, a slight disagreement between theoretical and experimental
results was observed at the 1/3 octave band centred on 4000 Hz. In this high
frequency range, the theoretical results begin to depart from the experimental ones.
This happens because, as explained in section 3.4.2, the importance of the second
order terms in the solution of integral (3.16’) increase with the width of the integration
strip. Therefore, the analytical approximation used for this integral is no longer
strictly valid. Moreover, low values of the coherence function were observed in this
frequency band indicating that random errors can be quite important in this band.

The influence of the edges on correlating the wave field inside the one-
wavelength-from-the-edges region is illustrated by showing results obtained on line B
(fig. 4.4). In this case, only experiments using a loudspeaker placed inside the acoustic
box were performed. Two theoretical results are shown in this figure: one is the
standard edge effect method result that includes the inner (sin k, (x-&)) and outer (C,
exp(-p,X)) solutions; the other one only includes the inner solution. As one can
observe, the results without the outer solution are completely wrong. The agreement
between experimental and theoretical results is not remarkable but at least a similar
trend in both graphs is shown with similar zero-crossing values. This example
illustrate the importance of the outer solution in representing the interference in the

wave field due to the edges.
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A comparison between mechanical excitation from a non-contact
shaker and acoustic excitation from a loudspeaker placed inside the box is shown at
fig. 4.5. As illustrated in this figure, it was observed that the vibration field due to
mechanical excitation appears to follow the theoretical results more closely. Above a
certain frequency, both results tend to converge and approach the theoretical results.
The better agreement between point excited experimental results in comparison to
acoustically excited ones is contrary to the results reported by Stearn [76]. In that
work he concluded exactly the opposite suggesting that a diffuse bending wave field
could not be set up on a point excited plate. As mentioned in section 3.7.2, he justified
the difference based on an analysis of the field radiated by the point force. No strong
indication of disagreement between the present theory and point excited correlation
coefficient results were observed on the different random excited structures analysed
in this work. The loss factors of these structures ranged from 0.0005 to 0.08.

The difference between mechanically and acoustically excited
structures in terms of correlation coefficients can be explained by the selective way
that vibration modes are excited by an acoustic field. This filtering phenomenon
would probably be of less concern in the case of an acoustic field like a very large
room. As a matter of fact, a comparison between internal and external acoustic
excitation was presented in refs. [54] and [78], and the general trend observed was
that results from external acoustic excitation (from a loudspeaker in a laboratory
room) approach the theoretical results above a frequency lower than that for internal
acoustic excitation (source inside a passenger car compartment). This suggests that the
filtering phenomenon is less important for diffuse acoustic fields.

The comparison between theoretical results of correlation coefficient
due to acoustic excitation modelled by modifying the integration limits (as described
in section 3.6.2) and experimental results due to acoustic excitation were inconclusive.
This stems from the fact that theoretical results that simulate acoustic excitation
(equation (3.23) with integration limits (3.66)) were very similar to spatially-
uncorrelated ones (equation (3.23) with integration limits 0 and n/2) and were
different from the experimental results due to acoustic excitation. As discussed in
section 3.6.2, the main reason for this disagreement was the fact that the acoustic field

used to excite the plate was not diffuse. Moreover, results from equation (3.63) and
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(3.23) with integration limits (3.66) were very similar indicating that the acoustic
excitation does not strongly affect the resonant response of the structure in a given
frequency band. As presented in section 4.8, this explain the agreement between the
experimental results obtained on a car bodyshell and the theory of Chapter 3.

As presented in fig. 4.5, in some cases, the theoretical results for
acoustic excitation followed quite closely the experimental ones and, at the same time,
they were both different from the experimental results due to mechanical excitation.
An example of such agreement is presented in fig. 4.5 for line F at the one-third
octave band centred on 2000 Hz. Unfortunately, we can not take such isolated cases as
evidence that equation (3.23) with the integration limits given by expression (3.66)
can be employed to represent the correlation coefficient due to acoustic excitation.
This implies that further work is necessary to assess the application of section 3.6
results to acoustically excited structures.

In order to illustrate the equivalence between wave and modal models
in terms of the correlation coefficient, theoretical results that employ these two
approaches are shown in fig. 4.6. These results are also compared with numerical
results from a modal summation procedure similar to the one described in section 3.7,
but assuming that the edges were clamped, and carried out for a plate similar to the
large plate described in section 3.7.2. As presented in fig. 4.6, the agreement between
these three approaches is quite good, showing that the wave and modal
representations are totally equivalent. This equivalence has been previously indicated
by Langley [55]; however, this agreement contributes to increase the confidence that
one can have in the theoretical analysis developed in this work. Further analyses of

wave and modal representation is presented in Appendix E.

4.4.3 Results with a small stiffener attached to the plate

A small stiffener was attached to the clamped plate during the
experimental response work (Chapter 5). The type of attachment used, position and
dynamic characteristics of this stiffener are described in section 5.4. A thorough
discussion of the effects of a stiffener on a plate vibration field are reported in section

4.5 and in this section we only present experimental results of correlation coefficient
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and normalised cross-power spectral density of acceleration on a line close to this
stiffener. The position of this line, named line G, is sketched in fig. 4.7. This line was
placed in a region reasonably close to the position of the force excitation. The
correlation coefficient on this line was computed following the procedure described in
section 4.5.1, while the normalised cross-power spectral density was computed from
equation (3.23) with the coefficients for a spring-supported edge given in appendices
B and C.

A selection of correlation coefficient results along line G are presented
in fig. 4.8. As shown, reasonably good agreement between experiments and theory is
observed above the 250 Hz 1/3 octave band. This 1s slightly different from previous
results without the stiffener in which experimental and theoretical results only agreed
above the 315 Hz 1/3 octave band. The normalised cross-power spectral density
results have also shown a similar agreement. As presented in fig. 4.9, for cases in
which the correlation coefficient was similar to theoretical results the same happened
with the normalised cross-power spectral density. In general, for the great part of the
experimentally obtained normalised cross-power spectral density results, the
agreement between experiments and theory followed the same pattern as the
correlation coefficient. The main difference is that when theory and experiments
disagree such disagreement was more pronounced in normalised cross-power spectral

density results.
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4.5 Rectangular stiffened plate with four clamped edges

A second clamped plate of regular geometry was employed in this

experimental work. A removable steel bar was attached to this plate permitting the

analysis of the influence of the perturbation (stiffener) on the plate vibration field.

4.5.1 Description of the apparatus

The flat plate was of 3.53 mm thick aluminium. It was (weakly)

clamped along the edges by a wooden frame which was placed on a rigid wooden

table. The exposed dimensions of the plate were 0.876 m x 0.576 m and it was

divided, along its larger dimension, in two identical sections by a hollow steel bar

having a cross sectional area of (25 x 25) mm” and thickness of 3.16 mm (illustration

in fig. 4.12). The steel bar was fixed to the plate by five light screws. This permitted

the easily removal of the steel bar enabling a comparison of the vibration

characteristics of the plate with and without the stiffener. The first three natural

frequencies of transverse, longitudinal and torsional vibration of this bar are listed in

table 4.2. Such natural frequencies were computed following the expressions

presented by Blevins [79]. As shown in this table, the steel bar does not have many

resonance frequencies in the frequency band of analysis.

order of natural transverse vibration longitudinal torsional vibration
frequency (Hz) vibration (Hz) (Hz)
1 500.6 4489.8 2387.2
2 1379.0 8979.6 4774.4
3 2705.6 13469.0 7161.6

Table 4.2 - Natural frequencies of vibration of the steel bar.

An illustration of the test rig used is presented in fig. 4.10. Typical

wavelengths for the plate were: 0.415 m at 200 Hz, 0.24 m at 600 Hz, 0.186 m at 1000
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Hz and 0.131 Hz at 2000 Hz. Point excitation by a electrodynamic shaker (Ling
Dynamic V101) was used to vibrate the plate. The excitation signal employed was
broadband random from 0 to 5000 Hz. The point marked ‘Force’ in fig. 4.11 indicates
the position on which the force was applied. The vibrational response obtained was
sufficiently high to guarantee a good signal-to-noise ratio.

The experimental procedure employed was that described in section
4.2 and the lines used are illustrated in fig. 4.11. Lines 3 and 5, and lines 1 and 7 were
coincident, however results for lines 5 and 7 were carried out for the plate without the
stiffener. The spacing between the ten equally spaced points used on each line was 1
cm.

The theoretical results used in the comparison with the experimental
ones were based on Bolotin’s dynamic edge effect method as derived in section 3.4.2,
with the coefficients given by expressions (B.4) for a clamped edge and by
expressions (B.10), (B.11) and (B.12) for a spring-supported edge (the steel bar
dynamic characteristics defined the spring rotational, translational and coupling
stiffnesses, as shown in Appendix B). As shown in Appendix E and section 4.4.2,
exactly the same results can be obtained with the free wave model (section 3.5.2). For
the free wave model, the reflection, transmission and evanescent coefficients are
defined by expressions (C.4) for a clamped edge and by expressions (C.11) to (C.14)
for a spring supported edge.

The loss factor and modal density of this plate were estimated via
measurement of point mobility and power injection following the procedure suggested
by Clarkson as described in refs. [39,80]. As only an approximate estimate of these
parameters was required, the point mobility was obtained in just one point. Ideally, at
least three measurements points should be used in order to obtain a spatially-averaged
estimate. The shaker was fed with broad-band random signal from the FFT analyser
and the accelerometer was placed on the opposite face of the plate in line with the
shaker contact point. Modal density estimates obtained following this procedure were
similar to theoretical predictions (fig. 4.14).

Typical estimated point mobilities for both stiffened and non-stiffened
cases are presented in figs. 4.13a,b. In the loss factor estimation only one excitation

point and ten vibration velocity measurement points were employed. Nevertheless, the
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loss factor results obtained were reasonably similar to the ones reported by
Mohammed [45] for the same plate and test apparatus. The loss factor, modal density
and modal overlap factor results obtained for the plate with and without stiffeners are
shown in figs. 4.14 and 4.15. The results presented in these figures are for constant
bands of 200 Hz and the modal overlap factor was estimated from the relation M =
n(f)n(f)f, [45], where £ is the band centre frequency, n(f,) is the modal density and
n(f,) is the loss factor.

The results presented in fig. 4.15 are for the plate with the stiffener
excited at only one point. As expected, the loss factor for the plate with the stiffener
(fig. 4.15) is slightly higher than that for the plate without the stiffener (fig. 4.14). The
stiffened plate theoretical modal density employed in the comparison was calculated
as the sum of the modal density of a flat plate in flexural vibration and of a uniform

beam in flexural vibration (equation (6.24), ref. [39]).

4.5.2 Results for the plate without a stiffener

The results for the correlation coefficient for the plate without a
stiffener are presented in this section. Results from lines 5, 6 and 7 were used in this
part of the work.

A common characteristic of the results from lines 5, 6 and 7 was that,
above the 1000 Hz one-third octave band, all experimental results approached the
theoretical results (given by equation (3.23) combined with parameters (B.4)). Figures
4.16 and 4.17 were included in order to illustrate this observation. As a matter of fact,
it is clearly shown in fig. 4.17 that in each one-third octave band above 1250 Hz, the
theoretical results on line B approach the experimental results. Reasons for this are
two-fold. First, the number of modes that have resonance frequencies inside the 1250
Hz 1/3 octave band was estimated to be 14, which is higher (even if one assumes that
25 % of the modes are not excited due to shaker position) than the figure of eight
modes suggested in the section 3.7.2 and ten as suggested by Stearn [53]. Second,
from fig. 4.14 it is observed that above 1000 Hz the modal overlap factor is greater

than unity.

98



As a means of checking the combined role of number of modes in the
band and modal overlap factor in the applicability of the present approach on a
practical situation, the results obtained on lines 6 and 7 were averaged in bands of 10
Hz, 40 Hz, 100 Hz and 400 Hz in regions of low and high modal overlap. Some of
such results obtained at line 6 are shown in fig. 4.18. On one hand, it is observed that
for regions in which the modal overlap factor is higher than unity, the frequency-
averaged correlation coefficients are similar to the theoretical ones, even in a narrow
band of only 10 Hz: the correlation characteristics are rather insensitive to frequency
bandwidth. On the other hand, for frequencies regions in which the modal overlap
factor is lower than unity, the frequency-averaged correlation coefficients are
extremely dependent on the width of the frequency band. Results from other
frequency bands show similar behaviour.

For the case of acoustically excited structures, Stearn [76] reported that
the degree of modal overlap does not influence correlation coefficient results. This is
another result that is not corroborated by the present work. With the purpose of
double-checking the present observations, the frequency average was performed in
bands of 10 Hz and 600 Hz for eight frequency bands whose centre frequencies were
equally spaced. One group of frequencies was situated in a region of modal overlap
factor lower than unity and the other group of frequencies was placed in a region of
modal overlap factor higher than unity. A separation of 20 Hz was chosen for the
centre frequencies to assure that the points from the line spectra used in the averaging
process for the 10 Hz band were different in each consecutive band.

Results for the frequency region with low modal overlap are presented
in fig. 4.19 for points placed along line 7. The modal overlap factor in this frequency
region was estimated to be around 0.6 as shown in fig. 4.14. It is verified in fig. 4.19
that the 600 Hz result is always close to the theoretical estimate but the 10 Hz result
varies considerably between each adjacent band. The 10 Hz-frequency-averaged
results clearly exhibit modal behaviour, indicating that the modes in this frequency
region are not overlapping (see figs. 4.13a and 4.21). If one examines a typical
frequency response function of this plate (fig. 4.21), three clear resonance frequencies
are observed in this frequency region: the first at around 330 Hz, the second at 400 Hz

and the third at 440 Hz. This explains why the 10 Hz-frequency-averaged results at
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centre frequencies 320 Hz and 340 Hz are so similar and at the same time why they
are so different from results at centre frequencies 400 Hz or 460 Hz.

The modal overlap factor is a measure of the ratio between average
modal bandwidth (n®) and average separation between resonance frequencies (8o =
1/n(w) , where n(w) is the modal density). Modal half-power bandwidth is defined as
the difference between the frequencies at which the mean-square modal response is
half its maximum value (3 dB down). A modal overlap factor equal or higher than
unity indicates that at least three natural modes contribute significantly to the system
response in a single frequency. A high modal overlap also implies a smooth frequency
response function in which individual resonance frequency peaks can not be
distinguished. Such smooth behaviour are exemplified by the point mobility results
above 3000 Hz presented in figs. 4.13a and 4.21.

Results for a frequency region in which the modal overlap factor is
higher than unity is presented in fig. 4.20 for points placed along line 6. The modal
overlap factor in this frequency region was estimated to be around 2.5. It is observed
that, for frequency averages carried out in 10 Hz bandwidths, the results did not vary
strongly between each adjacent band. Moreover, these results generally lie close to
those averaged over 600 Hz bands (with the clear exception of centre frequency 3020
Hz) and as consequence are not far from the theoretical estimates. The small
difference between the theoretical and the experimental results observed in fig. 4.20
are assumed to be related to the boundary conditions which are not perfectly clamped.
It is not expected that such agreement would be improved if more points were used in
the digital discretization of the response signals for the 10 Hz frequency-averaged
results.

Frequency-averaged results of the normalised cross-power spectral
density of acceleration obtained along line 7 are presented in fig. 4.22. As shown, a
strong disagreement between experimental and theoretical results is observed at 200
Hz 1/3 octave band. Similar to what was observed for the correlation coefficient,
experimental results for the normalised cross-power spectral density only approached
theoretical results for frequencies above 1000 Hz. The main difference is that a
disagreement between experiments and theory is much clearer in a presentation of

normalised cross-power spectral density graph than in that of correlation coefficients.
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From the results presented in this section we can state that:

e for cases of low modal overlap (M < 1) the theoretical model of correlation
coefficient presented in Chapter 3 is only valid as a frequency-average estimate for
bands in which at least 8 to 10 modes are excited,

e when the modal overlap factor is high (M > 1) the theoretical representation of
correlation coefficients suggested in Chapter 3 can be used as a narrow band
estimate for mechanically excited structures. The validity of such approach as a
broadband estimate is only limited to the increase of importance of second order
terms as the bandwidth increases (as discussed in section 3.4.2).

e The normalised cross-power spectral density of acceleration has a similar
behaviour to that of the correlation coefficient and same conclusions reached for
the correlation coefficient also apply to this parameter.

Further investigation is necessary to assess the reasons why the results
presented by Stearn [76] did not change with the increase in the modal overlap. This
investigation could form part of a more thorough study of the influence of different

types of excitation on correlation coefficients as suggested in section 4.4.2.

4.5.3 Results for the plate with a steel bar (stiffener) attached

This section presents the experimental results of correlation coefficient
on the clamped plate with the steel bar attached. In this investigation, only one side of
the panel was directly excited (as illustrated in fig. 4.11). The influence of the steel
bar on the plate vibrational field is illustrated by comparing figs. 4.13a and 4.13b. The
frequency response function has changed and is now much more complex than the one
for the unstiffened plate. As a matter of convenience the stiffened plate was
represented by two separate plate subsystems. In this model the steel bar acts as a
coupling element between the two sides of the plate, reflecting and transmitting the
incident energy.

Some of the results obtained for points placed along lines 3, 4 and 5 are
presented in fig. 4.23. The points used on these lines had similar distances to the
nearest two edges and thus the theoretical model gave the same result for the three

lines. As already explained, lines 3 and 5 were coincident, though line 5 indicates
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measurements made on the plate without the stiffener and line 3 on the plate with the
stiffener. Results for line 4 were for the panel with the steel bar attached. Above 1000
Hz, results for all three lines were similar (e.g. 1250 Hz results presented in fig. 4.23)
while below 1000 Hz those results were quite different (e.g. 630 Hz results presented
in fig. 4.23). As observed on the plate without the stiffener (section 4.5.2), the
frequency-averaged experimental results approached the theoretical ones in one-third
octave bands above 1250 Hz. This is a clear indication that, as predicted by our
theoretical model, the influence of both clamped edges is dominant on the region in
which lines 3 and 4 are situated. Moreover, this also shows that a perturbation placed
outside a region one wavelength far from the measurement points will not affect the
frequency-averaged correlation coefficient associated with these points. However, for
points situated in a region less than one wavelength far from the perturbation (steel
bar) the situation is quite different.

As presented in fig. 4.24, experimental results of correlation coefficient
obtained on the right (line 1) and left (line 2) hand sides of the steel bar were
dissimilar. In order to represent this situation the theoretical correlation coefficients
were estimated on the basis of the two subsystems model. On the side in which the
panel was directly excited, the correlation coefficients were calculated using the
reflection and evanescent (reflection side) field component coefficients (Appendix C).
On the indirectly excited side the transmission and evanescent (transmission side)
field component coefficients (Appendix C) were used for points approaching the steel
bar. These wave coefficients were transformed into Bolotin’s edge effect method
parameters using the equivalence equations presented in Appendix E. Near the other
boundaries, parameters for a clamped edge were used.

In the region in which line 1 was situated the reflected and evanescent
reflected field components were dominant and the theoretical model employed was
able to predict the correlation coefficient with reasonable success on 1/3 octave bands
above 1000 Hz. On the other hand, transmitted and transmitted evanescent field
components were more important in the region in which line 2 was placed. Again, the
theoretical model was able to predict such results with reasonable success. Below
1000 Hz, no agreement between the theoretical and experimental results was

achieved. Some of the results obtained on lines 1 and 2 are presented in fig. 4.24.
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For cases in which the experimental results were averaged in bands of
varying width, the observations of the previous section were confirmed. For instance,
in fig. 4.25 results for line 1 averaged in bands of 10 Hz, 40 Hz, 100 Hz and 400 Hz
are presented. As shown for frequency regions in which the modal overlap is low,
experimental results only approached the theoretical ones for the 400 Hz bandwidth.
However, when the overlap factor is higher than unity, as for the 3300 Hz centre
frequency, results for the four bandwidths analysed are coincident and they are also
reasonably close to the theoretical results. Similar results were obtained for
experimental results obtained on points along lines 3, 4 and 5 for averages carried out

in the same bandwidths.
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4.6 Rectangular flat plate with four free edges

4.6.1 Description of the apparatus

A flat aluminium plate of 2 mm thickness suspended by two thin wires
from a steel frame was another structure used in the experimental investigation of
frequency-averaged correlation coefficients. The plate was of rectangular geometry
with sides of 0.50 m and 0.70 m length and it had free boundary conditions all along
the edges. No damping material was placed on the plate. An sketch of the plate and rig
used are shown in fig. 4.26. Typical bending wavelengths for this plate were: 0.442 m
at 100 Hz, 0.167 m at 700 Hz, 0.14 m at 1000 Hz and 0.081 m at 3000 Hz. The plate
was excited with broadband random excitation from 0 to 5000 Hz by a
electrodynamic shaker (Ling Dynamic V101) at only one position (marked F on fig.
4.26).

The experimental procedure employed in this investigation is described
in section 4.2. Acceleration signals were acquired in pair of points situated along lines
1,2 and 3 as illustrated in fig. 4.26. The measurement points were placed along these
lines in 1 cm steps. The first point of line 1 was placed just 5 mm from the edge while
the first point of line 2 was situated 10 mm from the plate corner.

Bolotin’s dynamic edge effect method results were used as theoretical
estimates of the correlation coefficients. As usual the procedure suggested in section
3.4.2 was combined with parameters presented in Appendix B (equations (B.5) to
(B.7)) and the coefficients calculated from the numerical integration of equation
(3.23). Needless to say, similar results were obtained when free wave theoretical
results were used instead (equation (3.41) combined with reflection and evanescent
wave coefficients from Appendix C). In Appendix E, a small difference in the results
from direct (Appendix B) and indirect (Appendix C combined with expressions
presented in Appendix E) derivations of the parameters C, and C, was reported. Both
expressions, B.7 and E.25, were then used in the theoretical values calculated for line
1. As shown in fig. 4.28, both values of correlation coefficients are very similar

indicating that the small difference in the C, and C, expressions is negligible.
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In view of the low damping of this plate the modal overlap was low
within the frequency range analysed. The estimated modal density for this plate was
0.056 modes/Hz and the average dissipation loss factor was assumed to be around
0.001 [80]. Thus, typical values of modal overlap factor were: 0.005 at 100 Hz, 0.03
at 600 Hz, 0.05 at 1000 Hz and 0.22 at 4000 Hz. An illustration of a typical frequency
response function (point inertance at the excitation point) is presented in fig. 4.27 and
it is observed that most of the resonance peaks do not overlap within the 0 to 4000 Hz
range. Therefore, the experimental results were only expected to agree with theoretical
ones for frequency bands with width greater than 200 Hz, as more than ten modes are

estimated to be excited in this bandwidth.

4.6.2 Discussion of results

The aim of this part of the investigation was to check the theoretical
results for boundary conditions other than simply-supported, clamped or spring
supported. With the addition of the free boundary condition we could cover all
boundary conditions encountered in practice. A free edge boundary condition is not
directly relevant to practical studies of internal radiation; however it can give a lower
limit of sound pressure levels inside the enclosure that can be achieved by modifying
the structure boundary conditions. This type of control has been discussed by Cheng
and Nicolas [33] and it is further analysed in Chapter 5.

Experimental results obtained on lines 1, 2 and 3 and that were
averaged in 1/3 octave bands agreed with theoretical results above the 800 Hz 1/3
octave band. This is in accordance with the observation made at the end of section
4.5.2 as the bandwidth of the 800 Hz 1/3 octave band is 183 Hz and ten modes were
predicted to be excited at this frequency band. In addition, good agreement was also
observed for lines 1 and 2 on some frequency bands below 800 Hz.

In particular, results for line 2 agreed with the theory on all frequency
bands analysed and the agreement was exceptionally good above, and including, 250
Hz. Such good agreement near the corner was rather surprising as the Bolotin’s
dynamic edge effect method parameters presented in Appendix B and the reflection

and transmission coefficients presented in Appendix C were derived assuming that
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only one edge is important to the edge solution and the other three edges do not affect
this solution. This is a standard assumption of Bolotin’s dynamic edge effect method
[56] and it is the type of consideration normally associated with the derivation of
reflection coefficients on flexural wave motion [82]. Nevertheless, the agreement
observed on line 2 together with the results obtained for line C on the simply-
supported plate (section 3.7) demonstrates that the frequency-averaged correlation
model here presented is a valid approximation even near the corner of a structure.

A selection of one-third octave band results obtained on lines 1, 2 and
3 is presented in figs. 4.28, 4.29 and 4.30. As mentioned, reasonable agreement with
the theory has been observed on some frequency bands below 800 Hz. This agreement
was more pronounced for points approaching the edges (line 1) and the corners (line
2) even when less than 4 modes are estimated to be excited in one frequency band
(e.g. 250 Hz, 1/3 octave band). This is probably due to the interference of the waves
near the edges. Hence, as the vibration field near the edges dominates the acoustic
radiation (as discussed in Chapter 5) reasonable results are expected to be obtained
with the hybrid model even when a small number of structural modes are excited in a
frequency band. On the other hand, for points far from the edges (in terms of
wavelength) the suggestion (sections 3.7, 4.5 and ref. [53]) that eight to ten modes
need to be excited in a frequency band for the validity of the present model is also
applicable to the case of free edges.

Correlation coefficients frequency averaged in narrow bands were not
expected to agree with theoretical results due to the vibration field low modal overlap.
This was confirmed by the computation of frequency-averaged results in bands of
varying width. The only exception were results on line 2 as most of the narrow band
results (10 Hz and 40 Hz) were also similar to results in wider bands (100 Hz and 400
Hz). An example of this agreement on line 1 is presented in fig. 4.31 for bands with
centre frequency 300 Hz. The strong interference near the corner appears to be the
explanation for this agreement. On the other lines, only results that were frequency
averaged in 400 Hz bandwidths approached the theoretical results.

Experimental results of the real part of the normalised cross-power
spectral density obtained along line 2 also agreed with the theoretical results for most

of the 1/3 octave bands above 160 Hz. As shown in fig. 4.32, the agreement was good
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till the last frequency band analysed, 4000 Hz, and it confirms our previous
conclusion that all observations that are valid for the correlation coefficient are also
valid for the normalised cross-power spectral density. A slightly disagreement was
only observed when kr is equal to zero indicating that the present theory will
overpredict the results when either the wavenumber or the separation distance
between the two points is very small. However, this disagreement could also have
been caused by experimental circumstances. This is related to the fact that the distance
between the accelerometers in the first measurement position is not zero but equals
the diameter of the accelerometer as both were placed one beside the other in this
measurement position.

All the 18 one-third octave bands analysed (80 Hz - 4000 Hz) are
included in fig. 4.32 in order to illustrate how experimental and theoretical results
compare. As shown, there is a spread between good and bad agreement in different
frequency bands. In general, in this chapter, when we suggest there is a good
agreement between experimental and theoretical results it is because more than fifty
percent of all bands in a frequency region present good matching between
experimental and theoretical results. Dué to space limitations, it was difficult to
include all frequency bands analysed for each of the lines studied in the different
plates used in the experimental investigation. As a result, only four bands are chosen

for each line in order to illustrate the main points discussed.
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47 Two irregularly shaped coupled plates

4.7.1 Description of the apparatus

This part of the experimental investigation was carried out on two
coupled steel plates of same thickness (3 mm), irregular shapes, identical material
properties and with free edges. These plates were coupled by means of ten thick steel
straps that were attached to the plates by heavy bolts. Some damping material was
added to the plates. The plate system was suspended from a steel frame by a hook.
The dimensions and particulars of this rig are described in ref. [83] and only a sketch
of this rig is here presented (fig. 4.33). Typical wavelengths for both plates were:
0.544 m at 100 Hz, 0.181 m at 900 Hz, 0.14 m at 1500 Hz and 0.086 m at 4000 Hz.

Experimentally obtained estimates of loss factor and modal overlap
factor for both plates are presented in fig. 4.34. These loss factors were estimated
using a power injection technique in which coupling loss factors were also obtained
(ref. [84]). Hence these individual loss factors do not include energy transferred to the
other plate. The theoretical modal density for the upper plate was estimated to be
0.0656 modes/Hz and for the bottom plate was 0.0926 modes/Hz (results obtained
from ref. [84]).

The experimental procedure employed in this investigation is described
in section 4.2. Broad-band random was the forcing function used to excite the upper
plate through a non-contact magnet and coil shaker. Only one excitation point was
used, marked ‘Force’ on fig. 4.33. Acceleration signals were acquired at points
situated along line 1 on the upper plate and along lines 2, 3 and 4 on the lower plate.

The experimental results were compared to theoretical estimates
obtained with the Bolotin’s dynamic edge effect method. The procedure suggested in
section 3.4.2 was combined with parameters presented in Appendix B (equations
(B.5) to (B.7)) and the coefficients calculated using numerical integration. These
theoretical expressions are only applicable to rectangular regions. They are here
compared to experimental results from odd-shaped plates in order to assess how much

odd-shaped results depart from the ideal rectangular plate results.
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4.7.2 Discussion of results

From the experimental results obtained on the upper and lower plates
and averaged in 1/3 octave bands it was observed that they only approached the
theoretical results in 1/3 octave bands above 500 Hz. The exception for this were
results for line 4 that were close to theoretical ones for all 1/3 octave bands above 250
Hz. Though, as shown in figs. 4.35 and 4.36, the agreement between theoretical and
experimental results is only reasonable for lines 1, 2 but relatively good for line 4. In
particular, the disagreement was more pronounced for points situated along line 3 (fig.
4.36) as this line was placed very close to a non-rectangular corner. The main reason
for this difference is the irregular geometry of both plates as the derivation of
frequency-averaged correlation coefficients presented in Chapter 3 presupposes that
the plates have perpendicular edges. Hence, the theoretical results here employed are
only an approximation of the real correlation coefficients of plates of irregular
geometry. The inclusion of non-perpendicular corners on the theoretical derivation
presented in Chapter 3 can be achieved by including the angle between the corners in
the geometrical analysis. This is left as a suggestion for future work.

The good agreement with the theory observed for experimental results
obtained at line 4 when only six modes were predicted to be excited (315 Hz 1/3
octave band) is probably due to the type of excitation applied to the lower plate (fig.
4.36). In this plate the excitation was applied almost uniformly through the straps
along one of its edges. Such type of excitation can excite all the modes of the plate in
comparison with the point excitation that will not excite modes that have nodal lines
that pass through the excitation point.

Some of the experimental results obtained on lines 1 and 2 are shown
in fig. 4.35. The measurement points used on these lines were situated at same
distances from the nearest edge. In both lines the fixed accelerometer was placed 5
mm from one of the edges (that had free boundary conditions) and 30 cm from the
other edge. For line 1 the correct boundary condition of the non-free edge would be
given by the reflection properties of the straps coupling. These properties would be
based on equivalent translational and rotational stiffness as employed in the

theoretical results for lines 1 and 2 presented in section 4.5.3.
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Based on the observations made in section 4.5.3, we can suggest that in
view of the relative value between a typical bending wavelength above 800 Hz (less
than 0.2 m) and the distance to the straps coupling (0.305 m) only the inner solution
of Bolotin’s edge effect method obtained for this edge will contribute to line 1
theoretical results. As for different boundary conditions this inner solution gets similar
the farther the points depart from the edges (in terms of wavelength), the use of free
boundary condition for this other edge is a reasonable approximation. In addition, if
fewer straps were used to couple both plates, the boundary conditions would approach
free edges due to a decrease in the edge translational and rotational stiffness.

Consequently, free edges were assumed in the estimation of theoretical
values of correlation coefficients for lines 1 and 2 and these values were coincident.
Even considering that both plates had different geometries and the type of excitation
applied was not the same it was observed that the experimental results on lines 1 and
2 were reasonably similar and not much different from the theoretical ones (fig. 4.35).

Results obtained on bands of varying width confirmed the conclusions
presented at the end of section 4.5.2. Because of the low modal overlap of both plates
along the frequency analysed (as presented in fig. 4.34) only results for the wider
bands approached the theoretical results. The small difference observed between
results for bands of 400 Hz widths and the theoretical ones were due to the plate
irregular geometry. Nevertheless, as shown in fig. 4.37, results on line 4 agreed with
the theoretical ones as this line was situated reasonably far from all edges.

It was also verified that theoretical results for points situated far from
the edges approached the diffuse bending wave field ones as the frequency increased.
Another observation was that the agreement between the 400 Hz bandwidth and the
theoretical results on line 2 improved with frequency. Similar observation applies to
results in narrower bands that approached the 400 Hz bandwidth results as the
frequency increased. The reason for the former is the decrease in the bending
wavelength that makes the non-perpendicular corner influence less important along
line 2 while the reason for the latter is the increase in the plates’ modal overlap factor.

The relative values between the real and imaginary parts of the
normalised cross-power spectral density and between the correlation coefficient and

the quadrature density coefficient (as defined in section 3.3) were also investigated in
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this work. In figure 4.38, experimental results for the correlation coefficient and for
the quadrature density coefficient (estimated from the imaginary part of the cross-
spectrum) at lines 1 and 2 that were averaged in 1/3 octave bands are presented. It was
observed that for these two lines the quadrature coefficient was close to zero for all
1/3 octave bands below 2500 Hz. Similar situation was verified for results obtained at
lines 3 and 4. If one carefully examines the equations that define the cross-spectrum
of acceleration of randomly excited structures expanded into its normal modes one
verifies that the imaginary part of this function is controlled by the cross-coupling
between the normal modes. For undamped systems this imaginary part is zero,
however when damping is taken into account this imaginary part will be controlled by
the modes average bandwidth (nw) and by the average separation between them (f).
As already discussed in this chapter, these two parameters define the modal overlap
factor of a structure. Therefore, one can conclude that as the modes start to overlap the
value of the quadrature density coefficient will approach the value of the correlation
coefficient (estimated from the real part of the cross-spectrum). This is exactly what
was observed in this investigation. When the modal overlap factor was close to one,
the values of the quadrature density coefficient were of same order as the correlation
coefficient values (3150 Hz 1/3 octave band, fig. 4.38). Similar observations apply to
the normalised cross-power spectral density.

The imaginary part of the normalised cross-power spectral density was
neglected in the equations presented in Chapter 2 as it only affects the cross-coupling
coefficient (equation (2.14)), which for cases of lightly damped and well separated
acoustic modes was assumed to be negligible. However, for cases of external acoustic
radiation and for plates that radiate into modally-dense damped acoustic spaces, the
cross coupling coefficient may play an important part in the estimation of the
nearfield radiated pressure. As a result, the extension of this work to the analysis of
external radiation as proposed by Fahy [81], who assumed that the imaginary part can
be neglected, will lead to reliable results for cases of structural systems with low
modal overlap. For systems with high modal overlap further studies must be carried
out in other to assess the extent of the error caused by the neglection of the cross-

coupling coefficient.
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4.8 Roof and windscreen of a passenger car

In refs. [54,78] results of measurements of vibration field correlation
carried out at different parts of a car body shell are reported. Such results indicate that
even when a large number of modes are excited in a frequency band a diffuse field is
not necessarily set up in a two-dimensional plane structure. In part, the results of that
investigation motivated the development of the approach presented in Chapter 3, as a
means of representing vibration field correlation for different boundary conditions.
Thus, in what follows, a comparison between some of those experimental results and

the model suggested in Chapter 3 is presented.
4.8.1 Experimental procedure and description of the apparatus

Vibration field correlation measurements, identical to the ones reported
in the previous sections, were made on the body of a Nissan Bluebird passenger car
which was parked inside a laboratory room measuring 8 m x 5 m x 3 m. Three sources
of random excitation were used: (i) that of a reverberant sound field set up by
acoustically exciting the laboratory room with white noise; (ii) that of a sound field
set up by acoustically exciting the car interior with white noise; and (iii) that set up by
mechanically exciting the car offside lateral pillar.

Two lightweight accelerometers (Bruel & Kjaer 4374) were placed
along different lines on certain parts of the car body. Results for four lines on the roof
(shown in fig. 4.39) and two on the windscreen (shown in fig. 4.39) are here included.
Results at other lines along the car body were also obtained and presented in ref. [54].
In each set of measurements one accelerometer was held at the beginning of the line
(marked 1 in fig. 4.39) and the other displaced from it along the line at eight equally
spaced points. The spacing varied with the frequency range of the measurements and
for the 0-400 Hz range the spacing was 3 cm. The acceleration signals were acquired
using an HP 5420A Signal Analyzer and transferred to a PC-compatible
microcomputer, via an IEEE interface. The 1/3-octave-band-averaged correlation

coefficients were then estimated using equation (3.6).
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4.8.2 Discussion of results - roof vibration field

In the analysis presented in refs. [54] and [78] it was suggested that the
roof vibrational field approached that of a doubly-curved shell. This suggestion was
based on the geometrical characteristics of the roof and on experimental results of
correlation coefficients, that were clearly different for two perpendicular directions in
a certain frequency region. The estimation of the ring frequencies of the equivalent
doubly curved shell model employed was not straightforward because the roof
curvature varied along the two principal directions. Inspection of the roof dynamic
characteristics was employed in this estimation. The lower ring frequency was
estimated to be around 100 Hz as no resonant modes were present in the measured -
roof frequency response functions [54,78] below this frequency. The upper ring
frequency was assumed to be around 300 Hz.

From frequency response functions measured near line D (presented in
ref. [54]) it was observed that no mode was excited below 150 Hz and hence, the
lower ring frequency in the region where line D was placed was assumed to be 150
Hz. This was the result of a different roof curvature near line D. The experimentally
estimated roof modal density was almost flat above 500 Hz and approached that of an
equivalent flat plate of 0.8 mm thickness. The estimated modal density for the

equivalent plate is 0.56 modes/Hz [78].

In the frequency range between the lower ring frequency, and V2
times the upper ring frequency, the bending wavenumber in a doubly curved shell
depends upon the wave direction. This was the reason used in ref. [78] to explain the
change of the correlation coefficient zero crossing and shape with the lines
orientation. An expression for the dispersion relation of a doubly curved shell is
presented in Appendix F. This dispersion relation is here employed in the estimation
of the centre frequency wavenumber for different wave directions. These
wavenumbers were combined with expression (3.23) and the parameters for clamped
edges (equations (B.4)) and the correlation coefficients computed from numerical
integration of equation (3.8). These correlation coefficients were evaluated for

different lines and plotted against the experimental results at these lines.



In figs. 4.40 and 4.41 results at lines A, B, C and D for 250 Hz and 315
Hz 1/3 octave bands are presented. As shown, the variation of the experimental
correlation coefficients with the lines orientation is quite clear and the theoretical
results were able to represent this variation. Bearing in mind that the roof curvature
varied along the two principal directions and that the edges were not clearly defined,
the agreement between the experimental and theoretical results was considered
reasonable. Above the 315 Hz 1/3 octave band both theoretical and experimental
results tended to approach the results for a diffuse bending wave field. As discussed in
ref. [78], only at 1000 Hz 1/3 octave band was the roof vibrational field considered

nearly diffuse.

4.8.3 Discussion of results - windscreen vibration field

The other part of the car that could be idealised as a simple
homogeneous structure was the windscreen. Such model is a clamped flat plate of
equal windscreen area and thickness. The experimentally estimated modal density
confirmed this model as a reasonable approximation for the windscreen [78].
Theoretical values of correlation coefficient were computed for points along lines E
and H (illustrated at fig. 4.39) following this clamped plate model. Typical
wavelengths for the windscreen were: 0.649 m at 100 Hz, 0.458 m at 200 Hz, 0.41 m
at 250 Hz and 0.365 m at 315 Hz.

Experimental results obtained at these lines are presented in fig. 4.42.
Excitation was that set up by acoustically exciting the car interior with white noise.
The fixed accelerometer for line E measurements was placed at the top of this line,
close to the connection with the roof, while the fixed accelerometer for line F was
placed at the junction of both lines. As shown in fig. 4.42, the results at both lines are
quite different and in view of the relative value of the wavelength and the distance
from the edges it appears that the evanescent waves generated at the top edge
dominates the vibration field in the region where lines E and H were placed. The
theoretical results were able to represent this influence as illustrated in fig. 4.42. The

agreement between theoretical and experimental results were only reasonable due to



non-regular geometry and low modal density (n(f) = 0.074 modes/Hz) of the
windscreen.

The theoretical representation suggested in Chapter 3 appears to be a
valid approximation even for practical structures like a car body shell. Some of the
points raised in refs. [54] and [78] as reasons for the departure of the roof vibrational
field from a diffuse field state, even when a large number of natural modes are
assumed to be excited, have been proved to be valid. Wavenumber variation with
wave propagation direction and edge boundary conditions were the points
incorporated in the present theoretical model. The influence of the excitation on the
present approach remains to be better addressed, however for point-excited and

indirectly-excited system good results have been obtained.
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4.9

Conclusions

From the results presented in this chapter the following conclusions

can be drawn about the theoretical model of randomly excited two-dimensional

vibration fields represented in terms of correlation coefficients, as presented in

Chapter 3 :

@

(i)

(iii)

@iv)

)

(vi)

(vii)

For cases of low modal overlap (M < 1) this model is valid as a frequency-
average estimate in bands in which at least eight to ten modes are excited at
resonance. This conclusion agrees with similar one reached by Stearn [53,76]
in the analysis of diffuse bending wave fields.

When the modal overlap is high (M > 1) this model can be used as a narrow
band estimate.

The validity of the present model as a broadband estimate is only limited to
the increase of importance of second order terms as the bandwidth increases
(as discussed in section 3.4.1).

For points in a region one wavelength from the edges it was found that the
experimental and modal summation results depart considerably from
correlation coefficients as given by the diffuse bending wave field assumption.
The model presented herein was able to reproduce with reasonable precision
the distortion field created by the edges and corners.

Away from the edges (distance greater than at least one wavelength) the
theoretical and experimental correlation coefficient results approached that
given by the diffuse bending wave field assumption irrespective of the
boundary condition.

When the Bolotin’s dynamic edge effect parameters (Appendix B) and/or
reflection and transmission wave coefficients (Appendix C) are employed, the
experimental results obtained on simply-supported, clamped and free plates
are predicted with reasonable precision using the present model.

For the case of spring supported boundaries (like stiffeners), the correlation
characteristics of the vibration fields on the reflection and transmission sides

are satisfactorily predicted.



(viii) Despite the fact that the theoretical results were derived using the assumption

(ix)

()

(xi)

of spatially-uncorrelated random excitation, it was experimentally verified that
they can be used as an approximation for cases of mechanically excited plates
and plates excited by diffuse acoustic fields. It was also verified that they
apply to directly and indirectly-excited plates.

Free wave and modal representation of correlation coefficients were shown to
be equivalent, irrespecti.ve of the plate boundary conditions. This conclusion
supports previous analysis of equivalence between wave and modal
representation of two- and three-dimensional wave fields as presented by
Waterhouse and Cook [73], Chu [60] and Langley [55].

The conclusions here presented for correlation coefficients are also valid for.
the frequency-average normalised cross-power spectral density of
acceleration.

When the theoretical results are modified in order to account for changes in
the wavenumber due to curvature effects (Appendix F), the experimental
results obtained on a car roof are reasonably well predicted with the model

proposed.
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CHAPTER S

ANALYTICAL AND EXPERIMENTAL VERIFICATION
OF HYBRID MODEL APPLICATION TO RESPONSE
PREDICTION

This chapter presents the application of the equations introduced in
Chapter 2 to the prediction of the sound pressure response inside an acoustic cavity
due to one vibrating wall. The bending wave field generated by the random vibration
of the thin wall is modelled using the approximate modal and free wave
representations of Chapter 3. Comparison are presented for the results of two different

rigs in one-third octave and in narrow frequency bands.
5.1 Description of the computation routine
The computational routine used to estimate the pressure response

inside an acoustic cavity due to a bounding random vibrating plate is described in this

section. This routine computes the terms of equation (2.16)

(Pycy)’S® va(xy,2) 1 )
S (X,y,z2,0) * —2—S (® = ——C, (), 2.16
p (%:Y,2,0) Vv ) A XAV (w) (2.16)

using closed form expressions for the acoustic cavity natural frequencies and mode
shapes (egs. (5.3),(5.4)), experimental estimates of acoustic loss factors, and
numerical integration to compute the coupling coefficient. The numerical integration
routine employed in the computation of the coupling coefficient is described in
sections 5.1.1, 5.1.2 and 5.1.3.

The final result is expressed as a ratio between the autospectrum of the
space-averaged sound pressure inside the cavity (S (w)) normalised by the

autospectrum of the space-averaged plate vibration acceleration (S (®)). The space

average of the pressure inside the cavity can be obtained either from the response in a



large number of cavity points or by obtaining the space average of each acoustic mode

shape. In this second case we have that
1
(wiCoy.2)) =< [wiCey.z)av. (5.1)
v

where < > denotes spatial average. Substituting equation (5.1) in equation (2.16) we

have that the frequency averaged ratio <p2>/<a2> is given by

<P2> B <Sp(x,y,z,oo)> N (poc(z))zSz . 2
W) Ee) v ERm

Alternatively, the autospectrum of the sound pressure in a point inside the cavity

(©). (5.2)

(S,(%,y,Z,0)) can also be directly computed from equation (2.16). The results can be
estimated for any frequency and so, they can be compared to narrow band or
frequency-averaged experimental results. The program was written in Fortran and
runs in a SunSparc workstation or in a PC-compatible computer. The output was
downloaded to a MATLAB routine in order to obtain a graphical output of the results.
The natural frequencies and mode shapes of the acoustic modes of a

rectangular hard-walled acoustic cavity are expressed as [26]

2 r 2 2
f,="2 (—r—) + = +(—rf~—) (5.3)
2 \\L,) "\L,) "L,

r,7
v, (x.y,2)= cos( rinxJ COS( i y] cos( rinz) (5.4)

X y z

where L,, Ly, L, are the internal dimensions of the acoustic cavity and ry, r,, r, are
positive integers. In the low frequency range (from 0 to the frequency of the 10th
acoustic mode) all modes are included in the summation. However, above the
frequency of the 10th acoustic mode or when more than 5 acoustic modes are excited
in a frequency band, only the acoustic modes that have natural frequencies within the
frequency band of interest are included in the summation. This procedure enables the
computation of the response in bands in which no acoustic mode is excited and saves
computer time by avoiding including modes that contribute little to the response in a
specific frequency band. The modal loss factors are estimated from experimental

measurements of the acoustic cavity frequency-averaged loss factors.



The numerical integration procedure used to compute the coupling
coefficient between each acoustic mode and the vibration field at specific frequencies
is discussed in the next three sections. The numerical integration results were checked
against the closed form result for the integral of the product of two functions similar
to the ones computed for the case of hard-walled acoustic cavities. The coupling
coefficient was assumed constant in each frequency band and computed for each
acoustic mode that was included in the modal summation. This is based on the fact
that the coupling coefficient is a smooth function of frequency and therefore, the error
associated with assuming it does not depart considerably from the value computed at
the centre frequency of the band is small. This procedures enables the saving of

considerable amount of computer time.

5.1.1 Coupling coefficient between an acoustic mode and a vibration

field

It was shown in Chapter 2 that for coupling between acoustic modes of
an enclosed fluid space and a bounding vibration field a direct coupling coefficient

(C?,.(®)) can be defined as
1
Cro(@) = ) ffRe[vﬂ(xl>y1,Xpyz@)]\vn(xpyl,zo)w.,(xz,yz,zﬂ)dxldxzdyldyz, (5.5)
S S

where v,(x,,¥;,Z,) represents the acoustic mode shape at a point X,;=(x;,y,), Re
[Va(X1,¥1,X2,Y2,®)] 1s the real part of the normalised cross-power spectral density of the
vibration field acceleration between points (x;,y;) and (X,,¥,) and S is the interface
area (usually the plate area).

The acoustic modes of enclosures of any type or shape can be obtained
either numerically via a FEM code or analytically in some specific cases (e.g.,
equations (5.3) and (5.4)). The normalised cross-power spectral density of the
vibration field acceleration can be obtained from the approximate representation of a
vibration field as presented in Chapters 3 and 4. For instance, for the case of a simply-
supported flat plate the real part of the normalised cross-power spectral density of
acceleration (Re[y,(X,.,¥1,X2,¥2,®)]) is given by equation (3.17"). For other boundary

conditions results for the above parameter are computed using equation (3.23°) and



the edge parameters presented in Appendices B, C and E. Results for excitations other
than the spatially-uncorrelated type are obtained from the equations presented in
section 3.6.

The numerical integration in wavenumber space used in equations
(3.23) and (3.23”) is computed from 0 to 7t/2 using the mid-point rule [72] with 15
integration points. This number of integration points was found to be sufficient in
order to compute reliable values for equations (3.23) and (3.23”). Such verification
was performed by comparing results from equation (3.23) (or (3.23”)) for the case of
simply-supported edges to the closed form solution for a plate with simply-supported
edges (equations (3.17) or (3.17’)). This numerical integration routine was the same
employed to obtain theoretical results for correlation coefficient and normalised cross-
power spectral density of plates with clamped, free and stiffened edges and validated
against experimental results in Chapter 4.

The numerical integration of equation (5.4) was further optimised by
truncating the computation in order to avoid the inclusion of terms which have a large
kyr value because it was found that such terms do not contribute much to the

summation.

5.1.2 One-dimensional numerical integration exercise

The numerical integration of a given function on a limited interval
follows a similar procedure irrespective of the rule being used. In such procedure, the
integration interval is divided into a number of segments (not necessarily of the same
size) and the value of the function is calculated at the dividing points. The function's
value at each point is weighted and all weighted values summed together. The final
sum is then multiplied by the spacing between the integration points and the integral
obtained. In view of the fact that the value of the function is obtained in a finite
number of points the precision of the obtained value is related to the number of points
used to discretize the function. As there is no recommendation for the definition of the
optimum number of integration points to be applied in a specific situation, this

number should be determined empirically (or known by past experience).
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In the case of a slowly varying function a small number of points is
sufficient to correctly represent it, but if the function varies abruptly the number of
necessary points is much higher. Many numerical integration rules are available from
the literature and some of them were chosen to be employed in a prediction exercise
to decide which one is best suited to the evaluation of equation (5.5). The following
numerical integration rules were chosen from ref. [72]: an extended trapezoidal rule,
an extended Simpson's rule, an 8-point closed Newton-Cotes formula and a mid-point
rule.

The first step in this exercise was to employ the above numerical

integration rules in the numerical integration of the zero-order Bessel function (J(2))

because it represents the correlation coefficient and the normalised cross-power
spectral density of a diffuse bending wave field. This function was integrated from 0
to 50 for various numbers of integration points and some of the results are presented
in table 5.1. It was observed that the result obtained with the 8-point Newton-Cotes
formula is very different from results given by the other three methods. Therefore, a
larger number of points is necessary to improve precision. Unfortunately, in the case
of the Newton-Cotes rule, every time we change the number of integration points a
different set of weighting factors needs to be used and so, this rule is not convenient
when the magnitude of the integration limits vary.

The result obtained with Simpson, mid-point and trapezoidal rules
using 1000 integration points was the same and so this value could be used as the

exact integral of J(z) in the interval 0 to 50. In order to facilitate the interpretation of

the results presented in table 5.1 a chart was prepared in which the results of table 5.1
are compared with the exact value and the difference between them presented as
percentage of the exact result. This percentage difference is presented in fig. 5.1 in
relation to the number of integration points and integration rule used. It is observed in
this chart that when the number of integration points is 25, trapezoidal and mid-point
rules give results less than 5 % different from the exact one. In contrast, for a similar
number of points, the Simpson rule give results more than 20 % different from the
exact value. However, the percentage difference between the results obtained with 10

integration points and the exact one is generally much higher than that obtained with
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25 integration points. On the other hand, as the number of integration points increase
above 25 points the difference between numerical and exact value does not drop

considerably.

Routine 10 20 25 35 50 100 1000

points | points | points | points | points points | points

Trapezoidal | 1.317 | 0.9599 | 0.9363 | 0.9218 | 0.9134 | 0.9056 | 0.9023

Simpson 0.5227 | 0.8408 | 1.1024 | 1.0004 | 0.9058 | 0.9029 | 0.9023

Mid-point | 0.6027 | 0.8703 | 0.8906 | 0.8926 | 0.8977 | 0.9011 | 0.9023

Newton 7.248

Table 5.1 - Results for the integral of Jy(z) from 0 to 50

From these results it is confirmed that a relation exists between the
number of integration points and the precision obtained and that this relation depends
on the integration limits. As the number of integration points is also related to the
CPU time used in the numerical integration, there is a relation between the number of
integration points and the value of the integration limits that gives the most
'economical’ relation between CPU time employed and precision obtained. In the
present case, a number of integration points (intpoint) equals to half the value of the
higher integration limit (maxlim) gives a good estimate of the ratio 'maxlim/intpoint'
for a reasonably fast and accurate numerical integration routine. Numerical integration
results obtained for other integration limits also confirmed these observations. Finally,
it is also observed in fig. 5.1 that the mid-point rule generally gives more precise
results than the other methods for a similar number of integration points.

The second step in this exercise was to numerically obtain the integral
of the product of two functions similar to those used in the coupling coefficient. The
following standard integral can be obtained from ref. [72],

’ itev :_ei
[e't'7,@©) >

0

zZv+I

[.&-17,.@)] v> —%, (5.6)

v+1

and for v=0 we have from the above equation that
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]Jo(t)costdt = Z[JO(Z)COS z+1J,(z)sin z] 5.7

where J;(z) is the first-order Bessel function. The trapezoidal, Simpson and mid-point
rules were employed to numerically estimate the integral on the left-hand side of
equation (5.7). The results obtained were then compared to the exact values given by
the expression on the right-hand side of equation (5.7). Some of the results obtained

with this procedure are presented in table 5.2.

Routine 0to 10 0to 50 0to 100

Exact 1.8271 3.9721 5.6298
Mid-point | 1.826 (0.06 %) | 3.9321 (1.0 %) | 4.5322 (19.5 %)
Simpson | 1.7411 (4.7 %) | 3.4442 (133 %) | 6.4887 (15.2 %)
Trapezoidal | 1.8251 (0.1 %) | 4.0242 (1.3 %) | 6.801 (20.8 %)

Table 5.2 - Numerical integration of Jy(z)cosz using 25 integration points and varying
the integration limits. Exact result given by equation (5.7). Figures in parentheses
show the percentage difference from corresponding exact values.

As shown in the above table for an upper integration limit of 50, 25
integration points give good results when either mid-point or trapezoidal rules are
used. This number of integration points correspond to the previously suggested ratio
maxlim/intpoint = 2.0. As the mid-point rule is the simplest of those two, it was
adopted in the coupling coefficient numerical integration routine. Furthermore, it is
observed that the suggested relation maxlim/intpoint = 2.0 is equivalent to adopt 3
integration points per wavelength. However, in the numerical integration of cosine or
sine functions it is advisable to use 8 integration points per wavelength. Therefore, the
following criterion was adopted for the definition of the number of integration points
to be employed in the mid-point rule:

e for cases in which computer cost is at a premium and the precision can be slightly
sacrificed the 'economic' ratio maxlim/intpoint = 2.0 or 3 integration points per

wavelength was used;



e on the other hand, when we can afford to spend more computer time 8 integration
points or the 'ideal' ratio maxlim/intpoint = 4/ was employed in the numerical
integration routines. This is the alternative employed in the response results

presented in this chapter.

5.1.3 Four-dimensional numerical integration routine

The acoustic mode shapes of a rectangular hard-walled enclosure are
given by equation (5.4). Substituting these acoustic mode shapes and the normalised
cross-power spectral density for a diffuse bending wave field (equation (3.18)) in
equation (5.5) we obtain the following expression for the coupling coefficient,

T rmy, |
C (o) = SL" IIJO(kbr)cos[ r“gx‘] cos( YLYJ cos( r‘EXZJ cos( ’Ly“]dx,dxzdy,dyz.(SB)
$S X

y x y

As no closed form solution is available to the above integral a similar

integral which can be solved exactly is employed in the verification of the numerical

integration routine. One of the possible integrals is,

Lx LY L.V LV

i—%}_ jIJIJO(ka])]o(kaI)Io(ka2)I°(kbyz)x (5.9

x cos(k, X, );osy(ko b;lo)zos(kbxz Jeos(k,y, Jx,dx,dy,dy,,
which can be solved with the help of equation (5.5),
CZ, (@)= [eos(,L, W, (k, L, )+ sin(k, L, )T, (k, L, )]
xeos(icuL, Yo (oL, ) sini, L, Y, G, L, )]

where L, and L, are the plate dimensions (assumed equal to the internal acoustic

Cru(0) =

(5.10)

cavity dimensions in the directions x and y).

A Fortran routine was written to numerically integrate equation (5.9)
using the mid-point rule. A polynomial approximation (ref.[72], pgs. 269,270) was
employed in the estimation of the zero and first order Bessel functions. The error
incurred in using this approximate representation of the Bessel functions is smaller

than 10° [72].
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As an example, this Fortran routine is employed to compute the
coupling coefficient between the wood-walled enclosure (main dimensions: 0.7 m x
0.48 m x 0.48 m) and a square aluminium plate (0.48 m x 0.48 m, thickness= 1.0
mm). The geometric and material properties for these two subsystems are described in
section 5.3. The coupling coefficient was estimated in the frequency interval 0 to 1000
Hz and the largest integration limit was given by k,L,. The results obtained are
presented in fig. 5.2. From the suggested 'economic' ratio maxlim/intpoint = 2.0 the
number of integration points necessary to obtain a reasonable precision is 15. The 40
points result correspond to the 'ideal’ ratio maxlim/intpoint = 4/%. As shown in fig.
5.2, the results for 10 integration points depart considerably from the exact ones
(given by equation (5.10)) above 600 Hz. On the other hand, both the 40 points and
the 15 points results compare well with the exact ones. As a matter of fact the
deviation, in the frequency range 0-1000 Hz, between the numerical (15 points) and
the exact results is not higher than 1 dB, and the 40 points result does not show any
apparent difference from the exact ones.

As observed in fig. 5.2, when the number of integration points is
smaller than twice the higher integration limit the precision is poor but improves
quickly as this number approaches the suggested value. If the number of integration
points is higher than half the maximum integration limit the precision is good and so
it does not improve considerably when the number of integration points increases.
Similar results were obtained when this Fortran numerical integration routine was
employed for the case of the concrete-walled enclosure (described in section 5.2).
These results indicate that the criterion adopted for the one-dimensional integration
(section 5.1.2) can also be employed for the case of a n-dimensional integration.

The speed of the numerical computation of the coupling coefficient
(eq. (5.5)) was further improved by taking advantage of the plate symmetry. During
the numerical integration one of the points is varied along only one quarter of the
plate while the other point is varied along the entire plate area. The final result is
multiplied by 4. The results of this computation were checked against results from a
numerical integration in which both points varied along the entire plate area. The

results from both computations were coincident.
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In order to illustrate the characteristics of the coupling coefficient
curves, the Fortran routine described in the preceding paragraphs was extended to
compute equation (5.8) for various acoustic modes. For instance, the coupling
coefficient between some of the acoustic modes of the wood-walled enclosure and the
bounding square plate is presented in fig. 5.3. It is observed that for a value of
frequency equals to 30 Hz, the response inside the cavity will be mainly due to the
(0,0,r,) and (0,1,r,) acoustic modes, while for a frequency equals to 750 Hz all the
acoustic modes represented in fig. 5.3 are similarly excited. Another noticeable
characteristic is the shape of the curve. There is a initial peak which is controlled by
the modal numbers (r, and r, in the present case) and the curve decays with a similar
slope for all modes with the difference that when r, equals to r, the curve has a higher
dynamic range than for cases in which r, is not equal to r,. In the case of an axial
acoustic mode the coupling coefficient is maximum and equal to unity when the
frequency (or kyr) equals zero. On the other hand, the coupling coefficient has a
minimum when the frequency (or kyr) equals to zero for oblique modes.

The explanation for such behaviour is rather simple and can be found
in ref. [68]. A diffuse bending wave field will only be completely correlated when kyr
equals zero and in this situation only acoustic modes that involve a variation of
volume in the interface area will be efficiently excited. That it is the reason for the
unity value of the coupling coefficient when 1, and r, are equal to zero and the very
low value for most of the other modes. As the frequency increases the relative
correlation of the velocity (or acceleration) at adjacent acoustic modes antinodes
decreases and so, the excitation of the mode (0,0,r,). Though, all the modes are
excited. On the other hand, when r, and r, are non-zero the separation between each
antinode gets smaller and the occurrence of extremes in coupling coefficient values
decreases, explaining the smoother aspect of the coupling coefficient for the (1,2,r,)
acoustic mode. With the increase in frequency the possibility of occurrence of small
values of correlation for point-to-point separations smaller than an antinodal region
also increases and there will be a partial cancellation of the excitation within each
antinode. All the modes are excited, but at a reduced level. This reduction in the level
of excitation is offset by the increase in the number of acoustic modes summed in

each frequency band when the overall sound pressure level is computed.
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Fig. 5.1 - Comparison of Trapezoidal, Simpson and mid-point numerical integration rules. Results
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integration points (N).
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5.2 Concrete box bounded by a flat plate

5.2.1 Description of system

The system on which the experimental work reported in this section is
based is sketched in fig. 5.4. The enclosure was built with three concrete walls and the
top closed by a thick concrete panel. A layer of concrete was placed over the
pavement surface to form the floor of the enclosure. The open side was closed by a
1.2 mm thick mild-steel plate which was sandwiched along its edges by two steel
frames joined by bolts. The plate itself was kept separated from the two steel frames
by a layer of draught excluder. This configuration was an attempt to simulate simply-
supported boundary conditions but the resulting natural frequencies were higher than
the ones for a simply-supported plate. The internal cavity dimensions are 0.6 x 0.75 x
1.05 m in the x, y, z directions, respectively. The flexible wall is situated in the plane
x-y and its dimensions, for the purpose of SEA, FEM and hybrid model estimation,
are 0.6 x 0.75 m (x and y directions, respectively).

The acoustic cavity and plate frequency-averaged loss factors were
estimated using a decay technique. The burst of a balloon was used to excite the
acoustic cavity while the plate was excited by a hammer blow. The signal decay after
the impact excitation was acquired using a Bruel&Kjaer 2133 Dual Channel Real-
Time Frequency Analyser and from the time the signal took to decay 60 dB the loss
factor was estimated. The results were obtained in 1/3 octave bands. The results of
such estimation are presented in table 5.3.

The response results for this acoustic cavity/plate were estimated using
the hybrid model computation routine described in section 5.1. The acoustic cavity
loss factors presented in table 5.3 were used in this calculation and the results were
presented as the ratio between the space-averaged mean square pressure inside the
acoustic cavity divided by the space average of the plate vibration velocity. One third
octave band and narrow band results were computed assuming the coupling

coefficient is constant in each 1/3 octave frequency band.
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frequency (Hz) Acoustic cavity frequency- Plate frequency-averaged loss
averaged loss factor (1),) factor (n,)

50 0.1 )

63 0.1 -

80 0.09 -

100 0.1 0.04
125 0.08 0.04
160 0.07 0.06
200 0.04 0.1
250 - 0.03 0.05
315 0.02 0.08
400 0.02 0.07
500 0.02 0.05
630 0.01 0.05
800 0.01 0.04
1000 0.006 0.03
1250 0.006 0.04

Table 5.3 - Frequency-averaged plate and acoustic cavity loss factors.

5.2.2 Comparison with FEM results

Several general purpose finite element (FEM) programs have been
developed and are available in a wide range of mainframe, RISC workstations and
personal computers. ANSYS [86] is one of such programs and its educational version
was used in this work. Unfortunately, this version has a maximum wave-front limit of
400 (on SunSparc workstations) which restricts the model size and consequently the
analysis frequency range. The version used in this computation is the 4.4a one.

The plate is modelled using a elastic quadrilateral shell element which

has both bending and membrane capabilities. This element is represented by four
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nodes, with six degrees of freedom at each node and both in-plane and normal loads
permitted. The acoustic space inside the cavity is modelled using a 3-D isoparametric
acoustic fluid which is also used to model the fluid/structure interface. In ANSYS this
element is represented by eight nodes with four degrees of freedom per node. As the
FEM matrices generated in a fluid/structure coupled analysis are unsymmetric, the
Lanczos method is used to solve the associated eigenproblem. The main weakness of
such analysis is that the damping is assumed constant in all frequency range and equal
for all the elements. A damping ratio of 0.05 is assumed in this analysis.

Due to aforementioned limitations with the wave-front size the studied
system is represented by only 120 acoustic elements and 20 plate elements. These
number of elements restrict the maximum useful frequency of FEM analysis to 300
Hz. The procedure used to obtain space averaged mean square values of pressure and
velocity is based on the determination of frequency response functions (FRF). In order
to obtain these FRF’s a full harmonic response analysis is applied. This type of
analysis determines the steady-state response of a linear structure to a set of harmonic
loads of known amplitude and frequency. The load used is a unit force applied over
one of the plate nodes. A frequency step of 2.0 Hz is used to estimate the response.

The mean square space averaged values are calculated during the post-
processing phase with the commands available in POST26 ANSYS module. The
results of twelve plate nodes and forty cavity nodes are used to obtain the average
values. The ratio <p2>/<v2> is obtained at each frequency step as it is a measure of the
relative energy of the two subsystems.

The FEM results for clamped and simply-supported plate boundary
conditions are presented in figs. 5.5 and 5.6, respectively. These results are compared
to hybrid model results for the same boundary conditions. The hybrid model results
were computed using equation (5.2) with the acoustic loss factors listed in table 5.3.
The computational procedure is described in section 5.1. The edge parameters for
simply-supported and clamped boundary conditions are presented in Appendix B.

The first noticeable difference between both approaches is near the
acoustic cavity resonance frequencies. This discrepancy originates from the use of an
analytical formulation (eq. (5.3)) in the calculation of the acoustic modal frequencies

in the hybrid model. Frequency response measurements carried out in the actual
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concrete walled box indicate that the analytical acoustic natural frequencies as
computed by equation (5.1) are much closer to actual ones than the FEM estimates.
Another reason for this discrepancy is the apparent difference in the damping used in
both approaches and the jumps observed in the hybrid model results. Such jumps are
related to the assumption of a constant value of the normalised cross-power spectral
density in each 1/3 octave frequency band. In addition, the large discrepancy obtained
in the FEM model results are also related to the use of only one excitation point
whereas the hybrid model assumes an spatially uncorrelated type of excitation. It is
here suggested that the FEM model results can be improved by using a finer mesh,
frequency dependant damping values and by averaging the response results due a
larger number of excitation positions.

Regarding the overprediction of the response near the resonance
frequencies by the FEM model, it is important to point out that a similar
overprediction was observed by Franchek and Bernhard [13]. In their work, FEM
response results on a slightly bigger acoustic cavity due to a thicker plate were
compared to experimental response results. A difference of more than 30 dB in the
acoustic pressure near the first acoustic resonance between experimental and FEM
results was obtained and they observed that slight changes in the model could change
the FEM results. This indicates that even with a very fine mesh care must be taken
when employing a FEM model to predict the vibroacoustic response in frequency

regions in which there is a sparsity of plate and acoustic modes.
5.2.3 Comparison with SEA results

The basic concepts and shortcomings of Statistical Energy Analysis
(SEA) were discussed in Chapter 1. Following such concepts the concrete walled box
system can be represented by two subsystems, the air space confined inside the box is
one subsystem and the flat plate is the other. Based on this representation the SEA
expression for the power flow between these two subsystems, when the plate is

excited, leads to
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where N, N, are the number of acoustic and plate modes resonating in the band, M, is
the total plate mass, 1, is the acoustic loss factor (table 5.3) and 1, is the coupling
loss factor between plate and acoustic cavity.

The coupling loss factor, 1,, and the parameters N, and N, can be
obtained from experimental [39] or theoretical [14] estimation of the coupling loss
factor and modal density. Modal density formulations for plates and acoustic cavities
are widely available in the SEA literature (for instance [14,38,39]). A theoretical

expression for the coupling loss factor, 1n,,, can be obtained from ref. [38],

N _p,c,S,0 .4
=222 P 5.12
Map N,M,o (5.12)

where G, is the plate radiation efficiency and S;, is the plate surface area. This
relation implies a weak coupling between plate and air space and that the sound
wavelength is less than 1/3 of a typical cavity dimensions. In ref. [37] Maidanik
presents a formulation for the radiation efficiency of simply supported flat plates and
a correction for clamped boundary conditions has been proposed by Timmel [87].
When the plate is radiating inside a closed space it is suggested by Craik [96] that
such radiation efficiency results need to be multiplied by a factor of 2.

SEA equations (5.11) and (5.12) were used to compute the ratio
<p2>/<v2> in 1/3 octave bands assuming two different boundary conditions for the
plate: clamped and simply-supported. These results are presented in figs. 5.7 and 5.8.
Timmel [87] and Maidanik [37] radiation efficiency formulations with a correction for
radiation into a closed space were employed in the computation of the coupling loss
factor (eq. (5.12)) and the acoustic loss factors used were those presented in table 5.3.
The number of acoustic modes resonating in 1/3 octave bands only exceeds five above
500 Hz and the modal overlap factor for the acoustic cavity is only greater than one
above 630 Hz. The number of plate modes excited in 1/3 octave bands exceed five
above 200 Hz and the plate modal overlap factor is close to unity in this frequency.
These figures indicate that the assumptions in which SEA is based are only strictly

valid above the 630 Hz 1/3 octave band.



The SEA results presented in fig. 5.7 are compared to hybrid model
results. These hybrid model results are exactly the same ones presented in figs. 5.5
and 5.6 with the difference that in this case they are averaged in 1/3 octave bands. It is
observed that both simply-supported plate results converge for frequencies above 500
Hz. This convergence between hybrid model and SEA results can be demonstrated by
the use of asymptotic approximations of acoustic modal quantities in a way similar as
in Kubota et al. [50]. This good agreement between SEA and hybrid model indicates
that above 630 Hz there is no clear advantage in using the hybrid model if only
frequency-averaged and space-averaged results are sought. Though, the main
shortcoming of SEA is that it is not able to provide narrow band results or any

estimate of the local response.

5.2.4 Experimental results

In order to obtain actual values of acoustic pressure due to the plate
vibration, the pressure response inside the cavity formed by the concrete box was
measured. A set of frequency response functions (FRF's) were measured in order to
obtain both plate and acoustic cavity natural-frequencies and space-averaged vibration
velocity and acoustic pressure. Steady-state and transient point excitation were used to
obtain the FRF's. In the case of hammer excitation the accelerances (A/F) were
measured at ten different points due to three different excitation positions over the
plate. Ten measurement points and one excitation point were used when the plate was
excited with band-limited white noise by a non-contact electrodynamic shaker. A
lightweight Bruel&Kjaer 4393 accelerometer was used to measure the acceleration
and a Bruel&Kjaer 8200 force transducer coupled to the hammer tip (or shaker) used
to measure the associated force. After being amplified by charge amplifiers
Bruel&Kjaer 2635 both signals were acquired with a HP 5420A Digital Signal
Analyser. The imaginary and real parts of these FRF's were then squared and summed
in a HP9816 computer and the 1/3 octave band results computed. The results obtained
with impact and random excitation are similar, and so, only the impact excitation

. o 2 2
results were used in the estimation of <p™>/<v™>.
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The same procedure was applied to obtain the pressure inside the
cavity using a Bruel&Kjaer 4133 condenser microphone in the acoustic pressure
measurement. The microphone signal was amplified by a Bruel&Kjaer 2209 sound
level meter and was acquired with a HP 5420A Signal Analyser. In this case, three
excitation points and six microphone positions were used. The microphone positions
are listed in table 5.4. The FRF's were measured in the range 0-1600 Hz and the 1/3
octave band values were automatically calculated from 50 to 1250 Hz. Unfortunately,
the narrow band results for this enclosure were not stored in PC-compatible files at the
time of the measurements and the analyser tapes have deteriorated making difficult to
recover the narrow band results. Therefore, as presented in figs. 5.8 and 5.9, only the

1/3 octave band results were compared with hybrid model results.

measurement point X (m) y (m) z (m)
1 0.13 0.20 0.25
2 0.44 0.52 0.07
3 0.55 0.39 0.90
4 0.33 0.49 0.50
5 0.20 0.05 0.79
6 0.34 0.65 1.0

Table 5.4 - Positions of microphone used in acoustic pressure measurements

The normalised random error associated with frequency response

function estimation is given by [85]

gt A , (5.13)
r ny \j2nd

. . 2. .
where ny is the number of nonoverlapping averages and v,,” is the ordinary coherence

function. In the FRF’s estimation the number of averages used was 10 and the
ordinary coherence function was reasonably close to one. Assuming the average value
of the coherence function in the entire frequency range was 0.8 we have that the 95 %

confidence limits for the response estimation are
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2 2
0.6971<p—2><m<1.3571 <p2>' (5.14)
(v’) (v?)
If instead of using (5.13) to estimate the variance of the response we employ

expression (4.1), the 95 % confidence limits for the present measurements are given

by

0.4'79<pz> <m<1.710<p2>. (5.15)
() )

The confidence limits given by (5.15) are much wider than those given
by expression (5.14). As only the FRF’s were measured we decided to use the
confidence limits given by (5.14) in the comparison with hybrid model results.
Though it is important to note that real limits can be much wider than the ones we are
predicting.

The hybrid model results presented in fig. 5.8 were computed using the
computer program described in section 5.1. However, in this case, local pressure
response values (eq. (2.16)) were calculated at the six different positions listed in table
5.4 and the results mathematically averaged in order to obtain the space average in
positions similar to the ones employed in the experimental work. Considering the
uncertainties related to the modelling of the plate boundary conditions good
agreement between experiments and hybrid model results is observed above the 315
Hz 1/3 octave band. However, a difference of near 3 dB between the upper limit of the
experiments 95 % confidence limits and the hybrid model results are observed at the
160 Hz and 250 Hz 1/3 octave bands. The discrepancy observed at the 160 Hz 1/3
octave band could be explained by the reasonably low number of plate modes excited
in this band and by the fact that the modal overlap factor of the plate in this band is
lower than unity. As shown in Chapter 4, for cases in which the modal overlap factor
was lower than unity good agreement between experimentally and theoretically
estimated correlation coefficients was only achieved when more than 7 modes were
excited in a frequency band. This could explain the discrepancy at 160 Hz but the
situation in the 250 Hz 1/3 octave band is quite different. In this band the plate modal
overlap factor equals 2 and seven plate modes are estimated to be excited. Such

situation is considered good for the application of the hybrid model and one could
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expect these results to approach the experimental ones. Unfortunately, the narrow
band results for this system are not available and thus, a deeper analysis of this
situation can not be carried out. Similar discrepancies obtained in the wooden box
analysis indicate that this difference is relate to a shift in some of the acoustic modes

in relation to analytical estimates employed in the computation.

5.2.5 General discussion

A general comparison of all results of this section is presented in fig.
5.9. In this case, 1/3 octave band results of the FEM, SEA and hybrid models with
clamped boundary conditions are plotted together with experimental results of the
space-averaged acoustic pressure divided by the space-averaged vibration velocity. As
shown FEM, hybrid model and experimental results have a similar shape below the
first acoustic resonance frequency. At the first resonance frequency, both hybrid and
FEM overpredict the experimental result by more than 4 dB. The same situation is
repeated at 250 Hz when FEM and hybrid model overpredict the response by 6 and 4
dB, respectively.

As the frequency increases, the number of acoustic and plate modes
excited in 1/3 octave bands also increase and the hybrid model results approach that
obtained with a SEA model. They are both reasonably close to the 95 % confidence
limits for the experimental results above the 500 Hz 1/3 octave band.

In summary it appears that the hybrid model is able to reproduce the
results that would have been obtained with either a FEM or a SEA model in their ideal
frequency range of applicability. Unfortunately, for the situation in which the hybrid
model should give ideal results, differences of 3 dB with experimental results are
observed. In order to assess the reasons for such difference a more careful
experimental investigation was carried out in a different box. This investigation is

described in the next section.
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Fig. 5.4 - Sketch of the concrete walled acoustic enclosure and enclosing plate
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Fig. 5.5 - Space averaged acoustic pressure divided by space averaged vibration velocity on a concrete
walled box. Narrow frequency bands. Clamped boundary conditions assumed for plate.
key: hybrid model; -+ -+ - - - FEM.
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Concrete walled box - FEM and hybrid model - simply-supported b.c.
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Fig. 5.6 - Space averaged acoustic pressure divided by space averaged vibration velocity for concrete
walled box. Narrow frequency bands. Simply-supported boundary conditions assumed for plate.
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Fig. 5.7 - Space averaged acoustic pressure divided by space averaged vibration velocity for concrete
walled box. 1/3 octave bands. key: hybrid model, simply-supported b.c.; — — — SEA,
clamped b.c; — =+ —-— hybrid model, clamped b. c.; - - - - - SEA simply-supported b.c.
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Fig. 5.8 - Space averaged acoustic pressure divided by space averaged vibration velocity for concrete
walled box. 1/3 octave bands. key: experimental results, 95 % confidence limits; — - ——

hybrid model, simply-supported b.c.; —- -+~ — hybrid model, clamped b. c..
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Fig. 5.9 - Space averaged acoustic pressure divided by space averaged vibration velocity for concrete

walled box. 1/3 octave bands. key: experimental results; — — —— SEA, clamped b.c.;
——————— hybrid model, clamped b.c.; - - - - - FEM results, clamped b.c.
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5.3 Wooden box bounded by a flat plate

5.3.1 Description of system

The second box used in this experimental investigation is an enclosure
built with five double-sided wood walls filled with sand and one 1.0 mm thick
aluminium plate (flexible wall). The internal cavity dimensions are 0.48 x 0.48 x 0.70
m in the x, y, z directions as sketched in fig. 5.10. The plate has dimensions 0.48 x
0.48 m and it is placed in the x-y plane. The edges of the plate are sandwiched by two
square metal frames used to simulate a clamped type of support as shown in fig. 4.1.
This plate was employed in the experimental investigation of correlation coefficients
as reported in section 4.4. Typical frequency response functions for the plate and
acoustic cavity are presented in fig. 1.1. As shown in this figure, the acoustic modes
are overlapping in the frequency range above 1500 Hz while the plate modes have a
high modal overlap factor above 700-800 Hz.

The acoustic loss factors of this acoustic cavity were measured using
the half-bandwidth method. For this purpose the flexible wall was removed and
another sand-filled wood wall was placed in its position. The acoustic field was
excited by a loudspeaker located inside the cavity and the acoustic pressure measured
with electret microphones located at four different positions. Each one of the acoustic
modal loss factors was estimated using the half-bandwidth function of the
ZONIC+AND 3524 Dual Channel FFT Analyser. A frequency separation of 0.625 Hz
was employed in the analysis of the pressure signals. These individual loss factors

were then averaged in 1/3 octave bands and the results are shown in table 5.5.
5.3.2 Experimental procedure

The experimental results presented in this section are due to
mechanical excitation of the flexible wall using a non-contact shaker. Random noise
from 0-2000 Hz was used and the results acquired using 4096 FFT points. The

resultant spectra have 1600 points with a frequency separation of 1.25 Hz, enough to
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guarantee small bias error. Acceleration results were space averaged in 10 points
randomly placed over the plate area and the pressure results were averaged in 4 points
inside the enclosure. The position of the shaker was varied four times and in each time
the acceleration and the acoustic pressure measurements were repeated. As shown in
table 5.6, one of the pressure measurement positions was placed near one of the
enclosure corners (microphone 2). The positions of the non-contact shaker are listed
in table 5.7. These are the same positions employed in the correlation coefficient
measurements carried out on this plate for the case of mechanical excitation (section
4.4). Unfortunately, the positions of the excitation were all situated along the same
line in the x coordinate because the device that holds the magnet only allows

movement in the y direction.

1/3 octave band acoustic loss factor - 1,

250 0.01

315 0.009
400 0.01

500 0.009
630 0.008
800 0.004
1000 0.004

Table 5.5 - Acoustic loss factor results for the wood walled box

A Bruel&Kjaer 4374 lightweight accelerometer was used to measure
the acceleration and electret microphones used to measure the acoustic pressure. Due
to the low weight of the accelerometer (0.6 grams) it was estimated that they caused
an error of less than 1% in the true plate vibration acceleration for frequencies below
2000 Hz. The electret microphones have flat spectrum from around 80 Hz to 5000 Hz
and so, the measured acoustic pressure is only strictly correct above 100 Hz. As no

suitable device to calibrate the electret microphones was available a portable
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Bruel&Kjaer 4230 calibrator was employed. The calibration factor obtained for the

four microphones was very similar indicating that the calibration procedure is reliable.

microphone X (m) y (m) z (m)
1 0.09 0.16 0.25
2 0.005 0.475 0.685
3 0.365 0.26 0.28
4 0.19 0.08 0.48

Table 5.6 - Position of acoustic pressure measurement inside the acoustic cavity

excitation position n. X (m) y (m)
1 0.165 0.335
2 0.165 0.10
3 0.165 0.19
4 0.165 0.257

Table 5.7 - Coordinates of the shaker position on flat plate

The acoustic pressure and acceleration signals were acquired using a
ZONIC+AND 3524 Dual Channel FFT Analyser and the spectra transferred to a PC-
compatible computer where MATLAB was used to analyse the data. Acceleration
results were converted to velocity and the spectra calibrated. Data from three and four
microphones were used to obtain the space average of the acoustic pressure. The
corner microphone (microphone 2) was not included in the first average. The mean-
square space averaged acoustic pressure (<p2>) was then divided by the mean-square
space averaged vibration velocity (<V2>) and the results plotted in narrow, 1/3 octave
bands and bands with constant width of 100 Hz. Alternatively, results from each
microphone were divided by the space averaged vibration velocity and the results

averaged in terms of excitation position.




The sound pressure level measured by each microphone due to 4
excitation points is presented in fig. 5.11, in order to illustrate the variation of the
response with the position of the microphone. As can be seen in this figure, results
obtained with the corner microphone (microphone 2) are 6-9 dB higher than the
results from the other three microphones for frequencies above 1000 Hz. This agrees
with Waterhouse [64] observation that the mean-square sound pressure level in the
corners are 9 dB higher than the real space averaged acoustic pressure in a reverberant
sound field. The force signal introduced in excitation point 1 was obtained by placing
a Bruel&Kjaer 8200 transducer between the coil and the point of connection to the
plate. The force auto-spectrum was then used to normalise the space averaged sound
pressure level and the space average vibration velocity. These results are presented in
fig. 5.19.

The normalised random errors associated with these measurements can
be estimated from the expression for the auto-spectrum random error (equation (4.1)).
As 100 non-overlapping averages were used to estimate the auto-spectrum of the
acoustic pressure we have that the 95 % confidence limits for these measurements are

given by

2
07632 <m<1268-2_ (5.16)

(') ()

These confidence limits for the experimental results are presented in figs. 5.13 and

5.18.

2
2

5.3.3 Discussion of results

The computational routine described in section 5.1 was used in the
estimation of hybrid model results. Overall sound pressure levels were computed
using equation (5.2) while sound pressure levels at individual positions were
computed using equation (2.16).

The effect of the plate boundary conditions on the acoustic field inside
the acoustic cavity is illustrated by the results presented in fig. 5.12. The plate was
assumed to be excited with a spatially-uncorrelated random force and to have all

around clamped, simply-supported or free edges or to be represented by a diffuse
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bending vibration field. The equations of Chapter 3 and edge parameters of
Appendices B and C were employed to simulate these boundary conditions. The
overall sound pressure level divided by the space-averaged vibration velocity was
computed in 1/3 octave bands from 50 to 800 Hz. The ‘ideal’ number of integration
points and an upper limit of 40 for k,r were assumed in the computation. As shown,
results for clamped edges are slightly higher than those for simply-supported edges
and they are both 5-6 dB higher than those of a diffuse field above 315 Hz. As
expected, the less efficient in terms of sound generation is the plate with free edges.
Results for a plate with this type of boundary condition are 10-20 dB lower than those
for a clamped plate. Considering that, as shown in Chapter 4, the vibration field in the
centre of these plates approach that of a diffuse bending wave field, the differences in
terms of overall sound pressure levels clearly show that the radiation of the plate into
the cavity interior is controlled by the vibration field near the edges.

Cheng and Nicolas [33] reported similar results for the case of a
circular plate radiating into a cylinder when a variational approach was used to model
the vibroacoustic interaction. In this work, it is shown that the plate with free edges
can induce sound pressure levels 10-20 dB lower than the clamped one, which is in
agreement with the results presented in fig. 5.12. They also observed that the overall
level of the plate vibration is not strongly affected by the boundary conditions. This
observation supports the results of this work as we are assuming that the boundary
conditions only affect the vibroacoustic interaction between the plate and the acoustic
cavity without much change to the plate vibration levels.

Some difficulty was encountered with the computation of results for a
plate with free edges. Negative values of <p2>/<v2> were obtained for the first two 1/3
octave bands (50 and 63 Hz) irrespective of the number of integration points
employed in the numerical computation. Therefore, results for the free plate are only
reliable above 80 Hz.

The comparison between the sound pressure level averaged from four
microphone positions and the hybrid model results for the same positions are
presented in figs. 5.13 and 5.14. The microphone positions used in the computation
are those listed in table 5.6. The experimental results are due to the four excitation

positions listed in table 5.7. The 95 % confidence limits (equation (5.16)) estimated
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for the experimental results are presented in fig. 5.13. The theoretical results are
averaged in 1/3 octave bands and the coupling coefficient used in the narrow band
theoretical results are assumed constant in each 1/3 octave band. As already observed
in section 5.2, the use of such assumption leads to the appearance of jumps in the
narrow band results (fig. 5.14).

Good agreement between experimental and theoretical results are
observed above the 315 Hz 1/3 octave band (fig. 5.13). This agreement was expected
because, as reported in section 4.4, the experimental results of correlation coefficient
on this plate due to mechanical excitation only approach the theoretical correlation
model at frequencies above the 315 Hz 1/3 octave band. Such agreement in terms of
correlation coefficients is illustrated in fig. 4.3. However, as shown in the same figure,
for frequencies below 315 Hz (like the 160 Hz 1/3 octave band results), both models
are quite different. This disagreement reflects in the response results as exemplified
by the result at 250 Hz 1/3 octave band, the frequency in which the first acoustic
resonance frequency is situated. In this frequency band, differences of over 8 dB in
1/3 octave band results and 4 dB in the narrow band results are observed.

The plate modal overlap factor is estimated to be lower than unity and
only 4 plate modes are assumed to be excited in the 250 Hz 1/3 octave band. As
discussed in Chapter 4, when the modal overlap factor is lower than unity at least 8§ to
10 plate modes need to be excited in a frequency band for the correlation model
described in Chapter 3 be valid. This explains the difference observed in figs. 5.13
and 5.14. In addition, we also observe that, in contrast to the concrete walled box, the
first acoustic resonance frequency was underpredicted in this case.

As presented in Chapter 1, based on a modal coupling study between a
plate and an acoustic cavity Pan and Bies [28] concluded that the overall nature of the
coupling in the region of a cavity mode resonance frequency is governed by the
average number of plate resonance frequencies available in this region. As a result,
when the acoustic cavity and plate modal densities are low the energy transfer
between acoustic and plate systems will usually be dominated by one single plate
mode. Therefore, small changes in the plate resonance frequencies will lead to
substantial changes in the coupling between both systems. This observation agrees

with that from Franchek and Bernhard [13] and with the experimental results here
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reported for the frequency band in which the first acoustic resonance frequency
appears. The increase in the plate modal density leads to a decrease in the importance
of individual coupling between each pair of modes and to a decrease in the variation
of the frequency averaged modal coupling coefficient. This situation is exemplified by
the results of the Monte Carlo study performed by Mohammed [45] in coupled plate
and acoustic cavity systems. As mentioned in Chapter 1, he observed that the
fluctuation of the radiation resistance (vibroacoustic coupling) with the mean
diminishes as the modal density and modal overlap factors of both systems increase.
Therefore, a reliable prediction of the response of the first acoustic mode to plate
vibration is only possible if the plate modal density is high and/or its modal overlap
factor 1s close or higher than unity. This applies irrespective of the procedure used to
model the vibroacoustic coupling between an acoustic mode and a few plate modes.

The narrow band results, fig. 5.14, show that most of the acoustic
cavity modes observed in the experiments are predicted by the hybrid model. There
are some differences, mainly near 800 Hz, when some of the real acoustic modes shift
from the theoretically predicted values and the theoretical model is not able to predict
this shifting. Experimental modal analysis could be an alternative to overcome such
difficulty in predicting the exact value of the first acoustic modes. However, if one is
only concerned with frequency averages, the results above 315 Hz show that the
present method provides a efficient way of predicting the response. Moreover, the
results in narrow bands are reasonably good for most of the practical situations.

One of the advantages of the approach proposed in this research in
relation to SEA 1is the capability of predicting local sound pressure levels. This
capability is exemplified by the results presented in figs. 5.15, 5.16 and 5.17.
Experimental results averaged in three and four microphone positions are presented in
fig. 5.15. As mentioned, the three microphone result is lower than the four
microphone result as the microphone n. 2 (corner microphone) sound pressure levels
are included in the latter. Both theoretical results computed with the hybrid model
assuming clamped boundary conditions for the plate are reasonably similar to the
experimental results for frequencies above 315 Hz 1/3 octave band. The narrow band
results presented in this figure are for the 3 microphones average and they show a

similar behaviour to the one presented for 4 microphones.
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Results for the sound pressure level near one of the acoustic cavity
corners are presented in fig. 5.16. The 1/3 octave band averages show a similar
behaviour to the results presented in figs. 5.15 and 5.13, but in this case only 6 dB
separates experimental and theoretical results at 250 Hz. The theoretical model uses
clamped and simply-supported boundary conditions for the plate, but the agreement is
better between clamped and experimental results. The results presented in this section
indicate that clamping is the most suitable boundary condition for the plate used in the
wood walled box. This conclusion is also corroborated by the correlation coefficient
results (section 4.4).

A slightly better agreement between experimental and theoretical
results near the first acoustic resonance frequency can be achieved if the experimental
results are averaged in constant bands. Figure 5.17 shows hybrid model results
computed at the coordinates (0.365,0.26,0.28) in constant bands of 100 Hz centred at
50 to 1350 Hz. In this model the acoustic damping was estimated based on the 1/3
octave band loss factors listed in table 5.5 and the ‘ideal’ number of integration points
was employed in the numerical integration. The numerical integration results were
truncated for kyr equals to 50. This truncation only affects higher frequencies and
enough care was taken to avoid underestimating the response in the higher end of the
spectrum. The theoretical results are not more than 3 dB different from experimental
results for all frequency bands down to 150 Hz. The only unexpected variation was at
750 and 850 Hz where the shape of the experimental and theoretical results are
different. As shown by the narrow band results this difference is due to an acoustic
resonance frequency near 800 Hz which is not predicted by the hybrid model. In this
case, it is the variation of the acoustic resonance frequencies in relation to the
analytical model employed in the hybrid model that is responsible for the difference.
The good agreement in terms of level and shape between most of the acoustic
resonances indicates that the vibroacoustic coupling is well represented by the hybrid
model. This is expected as nearly 8 plate modes are excited in frequency bands of 100
Hz width and the modal overlap factor of this plate exceeds unity above 800 Hz.

In section 3.3, the effect of the type of excitation in the correlation
model adopted for the plate was discussed. It was shown that when the structure is

modally-dense the resonant response of the structure in terms of correlation
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coefficients (or normalised cross-power spectral density) is not greatly affected by the
excitation. This conclusion was further checked by computing hybrid model response
results assuming spatially uncorrelated excitation (‘rain-on-the-roof”) or point
excitation. The results obtained in both cases were very similar and it appears that the
assumption of point excitation does not affect the response results. One of these
results is presented in fig. 5.18.

The hybrid model results shown in fig. 5.18 were calculated for only
one excitation point, point n. 4 (table 5.7), and the sound pressure level at coordinates
(0.005,0.475,0.685) computed in 1/3 octave bands. The parameters of this
computation were the same as the one employed for the results presented in fig. 5.16.
The hybrid model results fall close or inside the experimental results 95 % confidence
limits for all 1/3 octave bands above 200 Hz. The agreement between experimental
and theoretical results in frequency bands in which few plate modes are excited is not
expected, although, as shown by this result, it is not unlikely to happen.

The use of equation (2.21) in the computation of the ratios <p2>/<F =
and <v*>/<F*> is exemplified by the results presented in fig. 5.19. In this case, the
plate loss factor was assumed to be 0.005 and a spatially uncorrelated random force to
be applied on the plate. The theoretical results were computed for four microphone
positions (table 5.6) using equation (2.21) while the space average vibration velocity
was computed using equation (2.20). Both were assumed to be normalised by the
space averaged random force. The use of these equations imply that the power input is
computed on a number of points over the plate area. This involves experimentally
estimating the force power spectrum and the real part of the point mobility in various
points over the plate area to obtain the space average of the power input.
Unfortunately, we only had the spectrum of the force for one excitation point. In view
of this, we did not expect to obtain a good agreement between experiments and
theoretical results. To our surprise, the results were not too different above 400 Hz
and it is clearly shown in fig. 5.19 that some of the difference is related to the
computation of <v*>/<F*> which is theoretically equal to

n(f)

— 5.17
4cocM2np 17
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This result uses a power flow balance similar to SEA in order to compute the space
average vibration velocity from the power input in the structure. Therefore, the
recommendations related to SEA described in Chapter 1 and in the SEA literature
([10,14,38,39]) applies to the computation of equation (2.21). In this case we need a
high modal overlap factor and at least 8-10 modes to guarantee the validity of the
equations used in the derivation of equation (2.21). These are similar
recommendations as the one described at the end of Chapter 4 and therefore, we
expect equation (2.21) to be valid in the same frequency range that equations (2.16) or
(5.2) are valid.

In general, a reasonably good agreement between experimental and
theoretical results was observed for the wood walled box analysed in this section. The
plate vibration field is modelled using the modally-dense representation suggested in
Chapter 3 and as a result, such agreement was verified in frequency bands in which
the number of excited plate modes was estimated to exceed 6-10 modes. The
boundary condition of the clamped type was the one that gave best results for the
present acoustic cavity/plate system. Poor agreement was observed when a few plate
modes excite a single acoustic mode. The results for the same acoustic cavity/plate
system in which an aluminium bar are attached to the plate are reported in the next
section. Such stiffened plate aims to represent typical panels encountered in aircraft

and car structures.
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Fig. 5.10 Sketch of wood walled box and enclosing plate
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Fig. 5.11 - Experimental results of sound pressure level divided by space averaged vibration velocity
in wood walled box. 100 Hz bands. key: microphone 2: — — — microphone 1;
~~~~~~~ microphone 3; - - - - - microphone 4.
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Fig. 5.12 - Hybrid model results for overall sound pressure level divided by space averaged vibration
velocity in wood walled box. 1/3 octave bands. key for boundary conditions: clamped,
— — — simply-supported; — -~ —-— free edges; - - - - - diffuse bending wave field.
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Fig. 5.13 - Acoustic pressure levels from 4 microphones divided by space averaged vibration velocity

for wood walled box. 1/3 octave bands. key: experimental results, 95 % confidence limits;
——————— hybrid model, clamped b.c..
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Wood walled box -4 microphones - narrow bands
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Fig. 5.14 - Acoustic pressure levels from 4 microphones divided by space averaged vibration velocity

for wood walled box. narrow bands. key:
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Wood walled box - 3 and 4 microphones - 1/3 octave bands
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Fig. 5.15 - Sound pressure levels from 3 and 4 microphones divided by space averaged vibration

velocity for wood walled box. key:

experiments, 3 mics; — — —
theory, 4 mics; theory, 3 mics.
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Wood walled box - corner microphone - 1/3 octave bands
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Fig. 5.16 - Acoustic pressure from corner microphone (microphone 2) divided by space averaged

vibration velocity for wood walled box. key:

experimental results, microphone at

(0.005,0.485,0.695); — — — theory, clamped plate; — - — -~ ~ theory simply-supported plate.
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Fig. 5.17 - Acoustic pressure from microphone 3 divided by space averaged vibration velocity.

Average of 4 excitation positions. 100 Hz constant bands. key:

experimental results,

microphone 3, coordinates (0.365,0.26,0.28); — — — theory, clamped plate.
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Wood walled box - mic. 2 - excit. 4 - 1/3 octave bands
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Fig. 5.18 - Acoustic pressure from corner microphone (microphone 2) divided by space averaged
vibration velocity from excitation at position 4. key: experimental results, microphone at

(0.005,0.485,0.695), 95% confidence limits; — — — theory, clamped plate.
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Fig. 5.19 - Four microphone average acoustic pressure and space average vibration velocity divided by
mean square force at excitation point 1. key: experimental results;
— — — theory (eq. (2.21)), clamped plate.
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5.4 Wooden box bounded by a stiffened plate

5.4.1 Description of system

In order to represent a typical stiffened panel, a small aluminium bar

was attached to the flat plate that bounds the wood walled box described in section

5.3. As a result the plate was divided in two sections of 0.28 m and 0.20 m length

along the x axis. The bar was fixed to the plate using a thick double-sided tape. A

sketch of the position in which the bar was placed is represented in fig. 4.7 while a

typical section of this bar is shown in fig. 5.20. The natural frequencies of

longitudinal, torsional and transverse vibration of this bar are listed in table 5.8. Such

natural frequencies were computed following the expressions presented by Blevins

[79].
order of natural transverse vibration longitudinal torsional vibration
frequency (Hz) vibration (Hz) (Hz)
1 282.0 5341.7 913.5
2 776.9 10683.0 1827.0
3 1522.7 16025.0 2740.5

Table 5.8 - Natural frequencies of vibration of the stiffener sketched in fig. 5.20.

The correlation coefficient and normalised cross-power spectral
density for the flat plate with the stiffener are compared to corresponding theoretical
results in section 4.4. As shown in figs. 4.8 and 4.9, the results at 250 Hz 1/3 octave
bands are reasonably similar indicating that some agreement between experimental
and theoretical response results can be expected in this frequency band. This is

confirmed by the results presented in this section.
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5.4.2 Experimental procedure

The experimental procedure and apparatus used in this experimental
investigation are identical to those described in section 5.3.2. The only difference
concerns the mechanical excitation applied to the plate as different coils were used
with the same magnet employed in the previous experiment. As a result, slightly
different excitation positions had to be employed and they were reduced to 3 instead
of 4. The excitation positions are listed in table 5.9. It can be noted from this table that
the shaker was placed in the 0.28 m length section in which the plate was divided due

to the restriction imposed by the device that holds the magnet.

excitation position n. X (m) y (m)
1 0.165 0.26
2 0.165 0.10
3 0.165 0.345

Table 5.9 - Coordinates of the non-contact shaker position on stiffened plate

Ten measurement positions were employed to estimate the plate
vibration levels, 4 positions were situated on the indirectly excited side and 6 on the
directly excited side. As shown in fig. 5.21, the vibration levels in both sides were
quite different with levels in the directly excited side 2-4 dB higher than in the
indirectly excited one. This departs greatly from the spatially uncorrelated type of
excitation assumed in the hybrid model. In this model, the space-averaged vibration
levels are assumed to be relatively constant along the plate, which is clearly not the
case here. Because of restrictions with the test rig, the shaker could not be moved to
the small side of the stiffened plate which could be a way of averaging the results in
terms of excitation and overcoming this problem. Another way of overcoming this
problem is by correcting the experimental results in order to simulate that the

vibration levels are the same in both sides. In this alternative, the space average is
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multiplied by a correction factor calculated from the ratio of the spectra presented in

fig. 5.21. Far from ideal, this was the alternative adopted in the present work.
5.4.3 Discussion of results

The normalised cross-power spectral density for the stiffened plate was
computed using the model described in Chapter 3 (equation (3.23)). The plate was
divided in two sides defined by the position of the stiffener. In one side, the edge
parameters for a clamped boundary and that for the reflecting side of a spring
coupling are employed in the computation. In the other side, clamped and transmitting
side of a spring coupling edge parameters are adopted. Expressions employed in the
computation of the edge parameters are presented in Appendices B, C and E. The
stiffness coefficients for the spring coupling are computed with the expressions
presented in section B.6 based on the aluminium bar dynamic characteristics. The
vibration levels are assumed to be similar in both sides of the plate.

The computational model here employed uses the 'ideal' number of
integration points and an upper limit of 60 for kyr. Results are averaged in 1/3 octave
bands from 50 to 1600 Hz and 100 Hz constant bands from 50 to 1350 Hz. The sound
pressure levels in the four points listed in table 5.6 are computed and arithmetically
averaged. These theoretical results are compared to the 95 % confidence limits of the
experimental results in figs. 5.24 and 5.27.

The increase in the sound pressure levels induced by the stiffened plate
are 1llustrated in fig. 5.22. Experimental results for the plate with and without the
stiffener are presented in this figure. These sound pressure levels have been obtained
from the average of four microphones measurements. An increase of nearly 2 dB
above the first acoustic resonance frequency in the sound pressure level due to the
stiffener addition is observed. A similar increase is predicted by the theoretical results
computed at the same microphone positions. This increase in the plate radiation due to
the addition of a stiffener also agrees with the factor suggested by Maidanik [37]. In
ref. [37], Maidanik suggests that stiffeners added to a flat plate will increase its

radiation efficiency below the critical frequency by a factor of
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L, +P)/P, (5.18)
where L, is the stiffener length and P is the plate perimeter. This suggestion is based
on the idea that the stiffener will make the stiffened plate radiate as two plates with
similar vibration levels and that the radiation resistance below the coincidence
frequency is proportional to the plate perimeter. When applied to the present case this
factor estimates that the radiation efficiency of the stiffened plate will be increased by
1.5 which is equivalent to 1.7 dB in a logarithmic scale. This agrees with the results
presented in fig. 5.22. Moreover, this increase is another evidence that the acoustic
radiation of a flat plate is controlled by the edges vibration field. In the present
situation the perturbation created by the stiffener looks like a boundary for the
vibration field and the increase in the acoustic radiation is caused by the interference
created by the stiffener.

The point mobility for plates with and without a stiffener are illustrated
in figs. 4.13a and 4.13b. In these figures we observe that the frequency response is
clearly altered with the addition of the stiffener and it is now more complex with an
apparent increase in its loss factor. As shown in fig. 5.23, this is reflected in the
spectrum induced by the stiffened plate which is more erratic and less clean than the
one induced by the plate without the stiffener. As these results are normalised by the
space-averaged vibration velocity, such difference appears to be related to the stiffener
addition. However, similar acoustic natural frequencies appear in both spectra.
Another difference observed in this figure is the increase in the height of the valley
between two adjacent natural frequency peaks for the stiffened plate case. Such
increase is also observed in the narrow band theoretical results and is responsible for
the higher frequency averaged levels induced by the stiffened plate.

The agreement between the predicted and measured sound pressure
levels when the stiffened plate is modelled using the hybrid model is reasonably good
in the case of 1/3 octave bands. The only major difference is in the 1000 Hz 1/3
octave band when the hybrid model underpredicts the sound pressure level. This
underprediction is also observed when the experimental results are averaged in
constant bands of 100 Hz. This difference is illustrated in fig. 5.24 where theoretical
results computed for these frequency bands are compared to the 95 % confidence

limits of the experimental results. Experimental results are underpredicted in the 950
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Hz band by nearly 3 dB. On the other hand, the same experimental results are
overpredict by 3 dB in the 750 Hz band. These differences are mostly related to a shift
in some of the acoustic modes in relation to the ones predicted by the analytical
expressions (equations 5.3 and 5.4) and by the increase in the level of the valleys
between two acoustic resonances. The level of this increase appears to not be well
predicted by the coupling coefficient employed in the hybrid model. Narrow band
results presented in fig. 5.25 clearly show this difference for the case of acoustic
modes in the 700-800 Hz interval. Finally, as shown in fig. 5.24, the theoretical results
are reasonably similar to the experimental ones in the other bands.

The spatial variation of the sound pressure level is again reasonably
well predicted as presented in figs. 5.26 and 5.27. The theoretical results shown in _
figure 5.26 are from a computation in which 1/3 octave bands, an upper limit equals to
60 for kyr and the ideal number of integration points were adopted. The vibration level
was assumed to be the same for both sides of the plate. The 3 and 4 microphones
results are clearly distinct and the theoretical model manages to reproduce this
distinction. For the four microphones case there is a clear difference in the 1/3 octave
band centered in 800 Hz. The reasons for the difference in this band are the same
quoted for the difference in the 950 Hz band shown in fig. 5.24. The situation for the
three microphones case is slightly different. In this case, there is a clear distinction of
around 2 dB for the 800, 1000 and 1250 Hz 1/3 octave bands. This is similar to the
predictions in the non-stiffened plate case in which a better agreement was observed
in the four microphones average than in the three microphones one. Moreover, as
shown in figs. 5.15 and 5.26, the theoretical results underpredict the three
microphones average results.

It is here suggested that such discrepancy is associated with the error in
the analytical prediction of some of the acoustic cavity resonance frequencies. For the
wooden box such error is probably related to the existence of a device to hold the
magnet for the non-contact shaker inside the cavity. This device is formed by a
network of beams and because it is quite bulky it can perturbe the mode shape of
some of the acoustic modes, altering their vibroacoustic coupling characteristics and
resonance frequencies. This suggestion is based on the fact that the acoustic pressure

results that apppears to be less affected by the presence of this bulky device are the
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ones obtained with the corner microphone (microphone 2) which is the microphone
most distant from this device.

The sound pressure levels in the band in which the first acoustic mode
appears are better predicted for this system than for the non-stiffened plate case. As
discussed in section 4.5, one of the effects of a stiffener on the plate vibration field is
to increase its apparent loss factor and therefore increasing its modal overlap factor.
These changes are reflected in the fact that experimental correlation coefficients (and
normalised cross-power spectral density) results for the stiffened plate approach the
theoretical predictions in the 250 Hz 1/3 octave band. Such agreement is illustrated by
the results presented in figs. 4.8 and 4.9 for line G which is placed near the stiffener.
Furthermore, this is also reflected in the better agreement between experimental and
theoretical sound pressure levels in the 250 Hz 1/3 octave band. In this frequency
band, the difference between both results is only 2 dB in comparison with a 8 dB
difference for the non-stiffened plate.

The capability of the present approach in predicting local response
values is further illustrated by the results presented in fig. 5.27. The sound pressure
level measured by the corner microphone (microphone 2) and divided by the space
average vibration velocity is compared to hybrid model results at the same acoustic
cavity position. As shown, most of the frequency averaged results are very close to the
experimental results 95 % confidence limits. The parameters used in this computation
are those described for the results presented in fig. 5.26 with 139 acoustic modes
included in the modal summation. The inclusion of such large number of acoustic
modes caused the running time on a Sun-Sparc Unix system (University of
Southampton Solaris system) to average between 30 to 100 minutes depending on the
boundary conditions adopted. The good agreement observed for the results in the
higher 1/3 octave bands indicates that the neglect of the cross-terms in the derivation
of equation (2.16) is valid even for cases in which the acoustic modal overlap factor is

higher than unity.
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12=2.54 mm

Fig. 5.20 - Sketch of aluminium bar attached to plate
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Fig. 5.21 - Vibration velocity level on both sides of stiffened plate. 1/3 octave and 100 Hz constant
bands. Excitation position 2. Experimental results for stiffened plate; — — — directly excited side;
indirectly excited side.
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4 microphones average - 1/3 octave bands
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Fig. 5.22 - Comparison of sound pressure level excited by plate with and without stiffener. 4
microphones average. 1/3 octave bands. key: ——— experiments, stiffened plate; — — — theory,
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Fig. 5.23 - Comparison of sound pressure level excited by plate with and without stiffener. 4
microphones average. Narrow bands. Experimental results: ———— stiffened plate; - - - - - non-
stiffened plate.
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4 microphones average - 100 Hz constant bands
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Fig. 5.24 - Sound pressure level averaged from 4 microphones and divided by space averaged vibration
velocity. 100 Hz constant bands. key: experiments, 95 % conf. limits; — — — theory.
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Fig. 5.25 - Sound pressure level averaged from 4 microphones and divided by space averaged vibration
experimental results; — — — theory.

velocity, Narrow bands. key:

184



. 4 and 3 microphones average - 1/3 octave bands
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Fig. 5.26 - Sound pressure levels averaged from four and three microphones divided by space averaged
vibration velocity. 1/3 octave bands. Wood walled box with stiffened plate. key:
4 mics; — -—— — experiments, 3 mics;

experiments,
——————— theory, 4 mics; - - - - - theory, 3 mics.
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Fig. 5.27 - Sound pressure level from microphone 2 divided by space averaged vibration velocity. 1/3
octave bands. Wood walled box with stiffened plate. key:

1400 1600

experimental results, microphone 2,
95 % confidence limits; — — — theory, coordinates (0.005,0.475,0.685).
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5.5 Conclusions

It was shown in this chapter that the hybrid deterministic-probabilistic
model proposed in this work is adequate for the modelling of the vibroacoustic
interaction between a flat plate and an acoustic cavity. Good agreement between
theoretical and experimental results were observed when the results are averaged in
frequency bands containing at least 6-8 plate modes. This is a restriction common to
SEA, however, it was shown that, in contrast to SEA, the hybrid model is able to
predict frequency-averaged local sound pressure levels with reasonable precision. The
increase in the sound pressure levels induced by a stiffened plate in relation to a non-
stiffened one has also shown to be reasonably well predicted by the present approach.

When the acoustic modes are reasonably sparse the hybrid model is
also capable of predicting narrow band estimates which were shown to agree with
experimental results. For cases in which the acoustic modes are dense, the same
agreement was not observed for narrow band results due to the shifting of these modes
in relation to the analytical predictions (equation (5.3)). On the other hand, the
frequency averaged results are greatly improved due to the increase in the number of
acoustic modes and they were shown to converge to SEA results for an enclosed
acoustic field induced by clamped plates. Simply-supported plate results were not
coincident but were very similar.

Strong disagreement was observed when the frequency band in which
the first acoustic mode appears does not contain more than 4 plate modes and the plate
modal overlap is low (M<1). This disagreement is related to the physical nature of the
coupling between an isolated acoustic mode and sparse plate modes. As shown by
Kompella and Bernhard [13], small shifts in the plate natural frequencies can cause
large variations in the sound pressure level. The increase in the modal overlap
improves this situation and, as presented in section 5.4, good agreement between
experimental and theoretical estimates of the first acoustic resonance was observed for
the stiffened plate case in narrow bands. When one is only concerned with frequency
averaged results this situation can be tackled by widening the frequency band in

which the results are averaged.
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Another disagreement between experimental and theoretical results
was observed in the frequency region around 800-1000 Hz for the wooden box and
315-500 Hz in the concrete box. It is here suggested that such discrepancy is
associated with the perturbation caused by a bulky device used to hold the shaker
magnet inside the wooden box. This device causes some of the medium-order acoustic
modes to change their shape and frequencies in relation to the analytical expressions

adopted for such modes (fig. 5.3 and 5.4).
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CHAPTER 6

CONCLUSIONS AND SUGGESTIONS FOR FUTURE
WORK

6.1 A review of the main results

The principal objective of this research was to develop a model for the
vibroacoustic analysis of a modally-sparse enclosed sound field excited by the random
vibration of a modally-dense enclosing structure. We sought an approach that would
provide estimates of local and space-averaged sound pressure levels in the enclosed
sound field in the form of either frequency-averaged or narrow band spectra. A basic
assumption was that only the gross properties of the structure would be available, with
full information available for the enclosed fluid and its boundaries.

The equations for the proposed approach are derived in Chapter 2. The
modal equations for the response of the enclosed sound field to a uniform plane
structure vibrating in flexure are presented and the structural vibration is represented
by the normalised cross-power spectral density of normal acceleration (or velocity).
The representation adopted for the acoustic system is therefore deterministic, while
that for the structure is essentially probabilistic. A coupling coefficient evaluated over
the vibroacoustic interface provides the connection between the two representations.
Based on this idealisation the sound pressure levels are then estimated from the space-
averaged vibration velocity.

Further equations are provided for the relation between the sound
pressure levels and a space-averaged excitation force. Equations derived from a
modal-interaction model are also developed using a power flow approach and the
Green’s function model.

In Appendix A, the equations for the coupling between the enclosed
sound field and a single structure are extended for the case of n-structural systems

exciting the enclosed sound field. The power flow approach relations presented in

188



Chapter 2 are employed in this derivation and the final model is a hybrid between a
Statistical Energy Analysis model of the coupled structural systems and the enclosed
sound field modal representation. The interaction between each structural system and
the enclosed sound field is represented by a coupling loss factor obtained from the
coupling coefficient.

The application of the present model to the analysis of acoustic
radiation due to bending vibration presupposes that a model is available to represent
the normalised cross-power spectral density of acceleration for typical plate structures.
In order to permit the results derived in this work to be compared with results
available in the literature it was decided to concentrate the present study on the
analysis of the correlation coefficient of the vibration field. However, this analysis
also provided results for the normalised cross-power spectral density.

The probabilistic representation adopted for the structural system based
on a correlation model is thoroughly discussed in Chapter 3. This probabilistic
representation presupposes that a large number of plate modes, or bending wave
directions, are available. Based on such description, expressions for the correlation
coefficient of acceleration are derived for simply-supported, clamped, free or guided
boundary conditions. Additional results are provided for a generic spring coupling,
thereby allowing the modelling of stiffeners. The large variations of these correlation
coefficients near the edges of a structure are illustrated by presenting 3-dimensional
graphs of the field in the vicinity of the edges. It is clear from these graphs that the
influence of the boundary on the vibration field is restricted to a distance of about one
wavelength from the edges. In regions more remote from the edges it was observed
that the form of the correlation is essentially independent of the boundary conditions
and approach that of a diffuse bending wave field [53]. It is shown that in the case of a
diffuse bending wave field the expressions for the normalised cross-power spectral
density of normal acceleration and the correlation coefficient of acceleration are the
same.

The correlation coefficient results were derived on the basis of a free
travelling wave model [55] and also on an approximate modal representation known
as Bolotin’s dynamic edge effect method [56]. Correlation coefficient expressions

obtained with both approaches are shown to be coincident. The equivalence between
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the free wave model and the Bolotin’s dynamic edge effect method was previously
discussed by Langley [55] and additional results concerning their equivalence are
discussed in Appendix E. The effects of curvature, shear deformation and rotary
inertia on vibrational wavenumber are expressed in terms of a dispersion relation that
is included in the correlation coefficient computation. These dispersion relations are
presented in Appendix F.

The effect of the excitation type on the correlation model is addressed
in Chapter 3. Expressions for structures subject to point-excitation and a diffuse sound
field reveal that, due to the normalisation adopted, these expressions are not much
different from those for spatially uncorrelated type of excitation. These expressions
are restricted to resonant structural response.

The last section of Chapter 3 is dedicated to comparing closed form
correlation coefficient expressions for the case of simply-supported plates to a modal
summation in which the exact plate modes are calculated and summed in each
frequency band to give a deterministic result. The results presented in this section lead
to the conclusion that at least eight resonant modes need to be included in a frequency
band for the correlation model adopted for the vibration field be valid. In addition, in
contradiction to the conclusions of Stearn [76], it was also concluded that a close
approximation to a diffuse bending wave field can be set up in a moderately-damped,
point-excited bounded structure. Experimental results presented in Chapter 4 support
this conclusion.

The theoretical expressions derived for the correlation coefficient and
normalised cross-power spectral density were verified by experiments on plate
structures: the findings are reported in Chapter 4. It is concluded that the condition
that eight to ten modes need to be available in a frequency band for the present results
be valid was a little severe and the theoretical results were valid even for cases in
which only five to six plate modes were included. In disagreement with Stearn [76], it
was found that the structure’s modal overlap plays an important part in the validity of
the correlation model adopted. Good agreement between experimental and theoretical
results were observed in frequency bands as narrow as 10 Hz when the plate modal

overlap factor was higher than unity. Therefore, the following criterion was proposed
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for the validity of the theoretical correlation coefficient and normalised cross-power

spectral density expressions:

e when the modal overlap factor is lower than unity they can be used as frequency-
average estimates as long as eight to ten resonant modes are available in the band;

e when the modal overlap factor is higher than unity they can also be used as narrow
band estimates.

Irrespective of the boundary conditions, the forms of the correlation
coefficient converged to that for a diffuse bending wave field in regions distant from
the edges, confirming previous theoretical findings. Near the edges it was shown that
the evanescent field components are of extreme importance for the correct
representation of the correlation coefficient and strong disagreement with
experimental results were observed when they were neglected in the theoretical
model. Experimental results for free, clamped and stiffened plates were reasonably
well predicted with the correlation model. Mechanical excitation in the form of point
applied force proved to give similar results as those predicted by the spatially
uncorrelated type of excitation. However, they only agreed with acoustically excited
experimental results when a large number of modes was available in the frequency
band. It was concluded that this discrepancy is connected to the acoustic field used as
excitation which is not diffuse in good part of the frequency range analysed.

The correction adopted to account for curvature effects proved to be
useful when the present model was compared to experimental results obtained on a
car roof. This roof had double curvature and the variation of the wavenumber with
measurement (or wave) direction was reasonably well predicted with the suggested
correction. Finally, experimental evidence was obtained that this model is also
approximately valid for the case of plates with irregular geometry. Evidence was
provided to show that the same results and conclusions that apply to the correlation
coefficient are also applicable to the normalised cross-power spectral density.

In Chapter 5, the normalised cross-power spectral density expressions
were incorporated to the hybrid model and applied to the prediction of acoustic
response inside two different boxes with one flexible wall. It was found that the
present results approach those predicted by Statistical Energy Analysis when plate and

acoustic cavity are modally-dense. When few modes are available, hybrid model and
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Finite Element Analysis results compared well for the prediction of narrow band
estimates of the overall sound pressure level. However, they both departed
considerably from frequency-averaged experimental results in the band in which the
first acoustic mode appears. This difference was attributed to the modal sparsity in
both systems and, as observed by previous researchers, a small change in one of the
plate natural frequencies can cause a large change in the level of the first acoustic
resonance. The widening of the frequency band in which the experimental results are
averaged improved the agreement between experimental and theoretical frequency-
averaged response results.

An increase in the number of plate modes due to a higher plate modal
density improved the agreement with experimental results, as predicted from the
correlation model adopted for the plate. This agreement was observed in narrow band
and frequency-averaged estimates. Furthermore, it was also found that good results
can be obtained when the present approach is applied to the prediction of local sound
pressure levels inside the acoustic cavity.

Stiffening of a flat plate is associated with increasing the level of the
induced enclosed sound field and it was found that the present approach is able to
represent such increase in sound pressure levels. [t was also found that the predicted
increase when frequency averaged approaches that suggested by Maidanik [37].

The existence of a bulky device to hold the magnet for the non-contact
shaker caused some of the wooden box acoustic resonance frequencies to be shifted.
This shifting lead to a noticeable departure between predicted and experimental
results for the wooden box in the frequency region around 800 Hz.

It was found that frequency averaged radiation efficiency expressions
for modally-dense structural systems can be written using the correlation model
adopted for the plate. Results obtained with these expressions were compared to
standard radiation efficiency results and, as shown in Appendix G, good agreement
with exact results was observed for frequency ranges above 0.06 f_;; .

In summary, the present model provides an useful tool for the
estimation of acoustic response of modally-sparse fluid volumes to vibration of a

modally-dense bounding structure.
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6.2 Suggestions for future work

Two avenues are seen as most important for further development of the
present model. One is chiefly concerned with practical applications and the other
concentrates on providing further theoretical results for other types of systems
following similar procedure as the one introduced by this research.

The present approach could be used as a basis for a computer code in
which the acoustic mode shapes and resonance frequencies are computed using a
FEM code and the coupling coefficient evaluated from a numerical integration of the
FEM-computed mode shapes and the normalised cross-power spectral density here
presented. For cases in which the form of the structure turns to be too complex,
normalised cross-power spectral density estimates in frequency bands could be
obtained from a FEM computation in which a coarse mesh is adopted to obtain’the
plate correlation characteristics.

Theoretical extensions of the present approach to other types of
coupling and systems is the second avenue suggested to be explored. The first step
would be to write hybrid model equations for the case in which the modally-sparse
acoustic system excites the modally-dense structural system. This situation is of lesser
practical importance than the one here tackled but it will provide complimentary
results to the ones here presented. The analysis of the coupling between a modally-
sparse one- or two-dimensional system with another modally-dense one- or two-
dimensional system is another situation worth of development. As a matter of fact,
general equations need to be written that will be valid for any type or dimension of
dynamic systems.

Finally, as extensively discussed during this work, further studies need
to be carried out to assess the implication of different types of acoustic excitation

(reverberant or not) on vibration field correlation characteristics.
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APPENDIX A

HYBRID MODEL EQUATIONS FOR N-PLATES
COUPLED TO AN ACOUSTIC CAVITY

The expression for the pressure response of an acoustic cavity, at

frequencies where the modal density is low, generated by the vibration of a single

bounding plate with high modal density, was derived in Chapter 2 using a modal-

interaction model, the Green’s function approach and the power balance model.

Unfortunately, that formulation is inadequate when more than one plate is coupled to

the enclosure. In this situation, the dynamic interaction between each connected plate

must be taken into account in the model. In view of the fact that a high modal density

is assumed for the plates, the power input and the power flow between each plate can

be analysed using Statistical Energy Analysis (SEA). In what follows, a combined

SEA/modal approach which takes advantage of the fact that the acoustic cavity can be

represented by its normal acoustic modes is proposed. As discussed, the suggested

procedure is approximate and it is expected that it will give good results in

frequencies in which the acoustic modes do not overlap.

The system in study is represented in figure A.1. It is formed of N-1

plates which are coupled to an acoustic cavity (subsystem N). The plates are assumed

to have high modal density and to be excited by spatially-uncorrelated time-stationary

random forces. The steady-state power balance equations for this system are

1 =T11!

in diss
2 2
I =TI

in diss

N = ! +IT oy + H Ty (plate N-1),

in diss

0=T1%

diss

205

+11,+..+I1,y  (plate 1),

+I1,+..+11,y  (plate 2),

+1IT, +11, .. .+l’I(N_,)N (acoustic cavity),

(A.1)
(A.2)

(A.3)

(A.4)



where H;ni is total real power input to plate i from an external source, Hdissi is the
power dissipated by subsystem i due to its internal damping and ITj; is the power
transferred between subsystems i and j. It is assumed that the acoustic cavity is only
excited by the vibration of the surrounding plates.

Following standard SEA procedure the steady-state energy balance
equations can be written in matrix form. The power flow between each pair of
subsystems is written as an extension of the exact result for two oscillators (equation
(1.5)). As a result, the loss factor matrix [L] is symmetric because of the reciprocity
relationship between the coupling loss factors, 1;; n; = 1y; n;. The SEA matrix equation

for the system presented in figure A.1 is,

[E,/n, ] [T,
E,/n, I izn
o JL]: = (A.5)
By /g I,
(Ex/ng | |0
where,
_ N _
(m, +ani)nl —Nh N1y
i=l N
[L] = —Ny 1y (1, +Zn2i)n2 ~MaonDs
N-1
My - My +ZnNi)nN

E, is the total vibration energy of subsystem i, n; is the loss factor of subsystem i, n; is
the modal density of subsystem i and n;; is the coupling loss factor between
subsystems i and j. All the above quantities are assumed to be frequency averaged and
the equation solved for frequency bands Aw whose centre frequency is ©..

Instead of solving the SEA model for a complete set of N subsystems,
it is proposed that the above problem is reduced to a problem of size N-1. This
reduction is done by eliminating line and column N of the loss factor matrix. As a
result the term that gives the acoustic energy for the cavity disappears from the
problem. This reduced problem complies with the power balance condition in each

plate (equations (A.1) to (A.3)) because the energy radiated by the plates into the
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acoustic cavity is taken into account. In SEA terminology this radiated power is equal

to o MinE;i-

I1.3

Iy @’ccam‘ I, plate 3
e N ¢ 3
N, 1—Idiss/ 1—‘[diss

H(N- DN

plate (N-1)
i

TH‘ N1

Fig. A.1 - Diagram representation of N-1 plates coupled to an acoustic cavity. The

power transferred between the plates is not represented.

Apart from the coupling loss factor between each plate and the acoustic
cavity all the other parameters of the reduced problem can be estimated, either
analytically or empirically, in the usual SEA manner [10,14-16,39]. Therefore, if an
estimate for the remaining coupling loss factors is obtained, the above SEA problem
of dimension N-1 can be solved for the band-limited plate energies.

The band-limited power radiated by the plates into the acoustic cavity
is presented in Chapter 2, equation (2.32). This expression was derived following a
procedure suggested by Pope and Wilby [18,47]. As presented, in a SEA model this
radiated power is equal to @nE;. If this term is equated to the one presented in
equation (2.32), we have that the coupling loss factor between plate i and the acoustic

cavity (subsystem N) is given by
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202 2

P,CoS; 1 C: (o )n,0 1

— C i n ’) ‘) d . A.
M.V, chm; A J(X;+Y;) @ (A.6)

]

MNin

n Aw
In the above expression the coupling coefficient between the plate and
each acoustic mode has been substituted by its frequency-averaged value. This is a
valid approximation as the coupling coefficient varies slowly with frequency. This
observation is further discussed in Chapter 5. The integral presented in equation (A.6)

can be solved exactly as presented by Blevins [62]. The solution is

1 2 dot
J- 22 ydo = _E 22 7
(Q)l] Q) ) +(n“mnm) ! (1 (x ) +(T1(x)

Aw

_ 1 m[(a; +205%, +1) (o] ~204%, +1)
8

5 2 :'-I— [arctann—”a%—arctan n“alz , (A7)
(o =200,%, +1) (o] +20,x, +D | 27, -3 1-o?

wherea=o0/o0,=f/f,,o0,=f/f,=0,/0,,0,=5(/f,=0,/w,, f is the lower
frequency limit of the band, £, is the upper frequency limit of the band and
Lo = (1= (2 /4))".

Using equation (A.6), the coupling loss factors 1;y can be estimated
from the modal characteristics of the enclosure. However, a question remains
concerning the acoustic modes that should be considered in the modal summation.
Ideally this summation should be infinite, but a truncation is necessary in order to
make the estimation of these parameters attainable. The modes that are included in the
truncated summation are dictated by the special characteristics of the term in the
integral of equation (A.6). For instance, the acoustic modes that have their natural
frequency in a band A® will dominate the summation in this band due to the
behaviour of the (con2 - (02) term near the acoustic resonance. However, for bands in
which no acoustic modes are resonant, contributions from all the modes whose natural
frequencies fall below the lower frequency of this band must be considered. This
allows the estimation of the non-resonant response of the acoustic cavity, an
estimation that can not be handled by conventional SEA modelling.

The estimation of the coupling loss factors between each plate and the
acoustic cavity provides the solution of the proposed SEA problem in which only the
structural subsystems are considered. Once the plate energies are computed, the

pressure response can be predicted from equation (2.16) with an additional summation
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to consider the effects of all the plates in the total acoustic pressure. As shown in
Chapter 2, equation (2.16) fulfils the power balance condition for the acoustic cavity
providing a solution to equation (A.4). Therefore, the steady-state power balance
problem for the analysed system (equations (A.1) to (A.4)) is solved by a combination
of a probabilistic treatment (the SEA model of the plate network) and a modal
analysis of the acoustic cavity. The latter deterministic problem can be solved using
either an analytical solution or, for more complicated geometries, a Finite Element
Method (FEM) or a Boundary Element Method (BEM) model. The link between the

probabilistic and the deterministic models is provided by equation (2.16).
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APPENDIX B

DERIVATION OF PARAMETERS OF BOLOTIN'S

DYNAMIC EDGE EFFECT METHOD OF MODAL

REPRESENTATION FOR VARIOUS BOUNDARY
CONDITIONS

In Chapter 3, expressions for the normalised cross-power spectral
density and for the correlation coefficient of modally-dense flat plates have been
derived using an approximate modal representation based on Bolotin's dynamic edge
effect method [56]. This representation presupposes that the plate mode shapes remote
from the boundaries approaches a sinusoidal function and close to the edges the
sinusoidal functions are multiplied by an exponentially decaying function. A typical
displacement function is then given by [56]

z(x,y,t) = X(x)Y(y)cosot, (B.1)
where the functions X(x) and Y(y) changes according to the position on the plate and

are expressed as

X(x) =sink,(x—&, )+ C, exp(~p,x), for points close to x=0,
X(x) = sink, (x— &), for points remote from x=0,
Y(y)=sink, (y - éy)-i— C, exp(-uyy) for points close to y=0,
Y(y)=sink,(y-£,) for points remote from y=0.

As discussed in Chapter 3, the boundary conditions at the edges
determine the coefficients sink,&,, cosk,&, ,C, ,sink,&,, cosk,&, and C,. In this
appendix only coefficients in x are derived, however, the expressions for the
coefficients in y are similar, the only modification necessary is to change the indices
in x for y. Moreover, the wavenumbers k, and k, in the expressions shown below are

substituted by kcos and ksin® in the numerical computation.
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B.1 Simply-supported edge

For a left simply-supported edge (x=0) we have the following
boundary conditions [82]
X(0)=0, and X"(0)=0,
applying these boundary conditions in the equation for X(x) we have,
—-sink & +C_ =0,
kZsink £ +p’C, = 0.
The solution of the above system of equations is given by,
sink. £ =C_=0, B.2)
and as a result, o

cosk. & =1 (B.3)

B.2 Clamped edge

The boundary conditions on a left clamped edge (x=0) are given by,

X(0)=Xx'(0)=0.
Applying these boundary conditions in equation (B.1) we obtain the following system
of equations,
sink £ =C_,
B
cosk —=C..
= k

X

Solving this system of equations we obtain that,

(B.4)

q/k +2k'
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B.3 Free edge

For a left free edge (x=0) we have that [82]

2 2 3 3
a%+vafza?+(2—v) 0’z
ox” oy~ 0Ox

Applying these boundary conditions in equation (B.1), including evanescent terms for

X(x) but neglecting evanescent terms for Y(y), we obtain the following system of

equations,

(k2 + k2 Jsink &, + (2 = vk} C, =0,
(ki +(2- v)kxki)coskxéx + (p_ti -(2- v)pxkf,ﬁx = 0.

The solution of this system of equations is given by,

W,
sink £ = | : (B.5)
\/le + W,
W
cosk & = —\—2\——, (B.6)
W+ W,
1
C, = —— (B.7)

where,

@) (o)
B GRS R )

B.4 Guided edge

The following boundary conditions apply for a left guided edge (x=0),
X'(0)=X"(0)=0.
Similar to the previous cases, we can apply these boundary conditions to equation
(B.1) and obtain,

kx COSkxéx - chx = O’
k> cosk &, +uiC, =0.

The solution of the above system of equations is given by,
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cosk. & =C, =0, (B.8)
and as a result,

sink & =1 (B.9)
B.5 General spring attachment

As a means of deriving the coefficients for a general type of edge
attachment we assume that the plate is uniformly supported along the edge by a
translational and a rotational spring. This support provides translational, rotational and
coupling resistance and the respective stiffness are k,,, kgg and k4. A sketch of this
support is presented in fig. B.1. For a left edge (x = 0) the equations associated with

this type of support are given by,

&z &z (62)
D +(2- =k, z+k | —/1,

ox’ dy*ox
2 2
p 22,92 k%[éfi) +K,,7.
ox” oy* ox

Applying these boundary conditions in equation (B.1), including evanescent terms for
X(x) but neglecting evanescent terms for Y(y), we obtain the following system of
equations,
(-DK} - Dk k2~ v) -k gk, Jeosk &, +k,, sink &,
+(-Dul + DR - v K] —k,, +kon o, =0,
(Dki + Dkiv —k,, Jsink & +kyk, cosk E
+(Du? - DK}V -k, +k, O, =0.
The solution of the above system of equations yields,

W2W4 - WWD

sink & = = = (B.10)
\/(WIWS - Wswz ). + (W2W4 - szs )ﬁ

cosk & = W Wy — W _ (B.11)
SOV W, =W W, ) + (W, W, — W, W, )

C Wo W, — Wi W, (B.12)

. \/(Wlws - W6W2)2 + (“72W4 - v‘/.zws)z ’



where,
W, =Dk} +DkZv -k,
W, =Du? - Dkiv—— Keght, + k0,
W, =k k,,
W, = -Dk; - Dk k2(2-v)—k,k,,

W, =-Du + D(Z - V)kai -k, +ku,,

3

W, =k,,.

B.6 Stiffness coefficients for a beam/stiffener coupling [55]

The parameters of the Bolotin's dynamic edge effect method can be
applied to beam/stiffener coupling. It is only necessary to express the stiffness
coefficients k,,, kog and k4 as a function of the stiffener dynamic properties. The
stiffness coefficients of a general stiffener (illustrated in fig. B.2) have been
considered in ref. [55] and were derived in the form

k, =ELk) —pAw?®,  k, =-El,c,ki-pAc,0’,

keo = (EL + ELc) i + GIKS — T+ pAc] +pAc] p”, B.15)
where EI,, EI, and EI,, are the flexural rigidities of the stiffener, EI" and GJ are the
torsional rigidities, pA are the mass and polar moment of inertia per unit length.
The points S, C and P in fig. B.2 represent the shear centre, the centroid and the plate

attachment point, respectively. The stiffness coefficients presented in (B.13) were

derived assuming the plate is effectively rigid in-plane (k; and k; = 0).
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Fig. B.1 - General spring attachment along the left edge of a plate.

Fig. B.2 - Geometry of stiffener [55].
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APPENDIX C

DERIVATION OF REFLECTION AND TRANSMISSION
COEFFICIENTS FOR VARIOUS BOUNDARY
CONDITIONS

As a means of deriving the reflection coefficients of edges with
classical boundary conditions we assume that a travelling bending wave is incident
upon a plate edge. This wave has a frequency o and a wavenumber kzml/z(m/D)m,
where D is the flexural rigidity and m is the plate mass per unit area. As no wave is
transmitted through the edge, a reflected and an evanescent field component are
generated by the interaction between the incident wave and the edge (fig. 3.9). The

motion of this semi-infinite flat plate is represented in wave terms as [38,55]
2(X,¥,t) = {cxmfe‘ikﬂ +A e+ A ™ }e“‘x‘eiw‘ (C.1)

where A is the modulus of the reflected wave, A, represents the incident wave, A,

represents the evanescent field component, k, =ksin0, k =kcos6 and

p, =k’ +ki .
C.1 Simply-supported edge

The static boundary conditions on a simply-supported edge situated at

y =0 are
z(x,0,t) =0,
2 2
M(x,0,1) = —D{a Z o8 f} =0,
oy* ox”

where M represents the bending moment, D is the flexural rigidity and v is Poisson’s
ratio. Applying the boundary conditions at y=0 we have the following equations
Aref + Ain + Ae = O’

KA KA, + A, —KIV(A s+ A +A,)=0.

ref

The solution of the above equations is given by
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R=2r -] and E=—-¢=0, (C2)

where R is the reflection coefficient and E is termed the coefficient of the evanescent

field component.
C.2 Guided edge

The static boundary conditions on a guided edge situated at y = 0 are

given by
0
—7(x,0,t)=0,
2 0.

0%z
x>

F(x,0,0)= Dgyl(%+(z_v) } -0,

where F is the shear force. Applying these boundary conditions on equation (C.1) and
solving for the amplitudes we obtain,

R=Bur and E=—¢ =0 (C.3)
N Al

in mn

C.3 Clamped edge

The static boundary conditions of clamped edges are

0z(x,0,t
2(x,0,t) = 0 and o2(x0.9)
Oy
Following similar procedure as before we can show that
A +ik A i2k
R=Der o BTy and E=2eo 25 (ca
A, p, —ik, Ay opy -k

It is observed that the above reflection and evanescent field component
coefficients differ from the ones derived by Graff [82] for the same type of boundary
conditions. The difference is on the signs of both imaginary parts and it is due to the
use of an opposite orientation for the incident wave by Graff [82]. When the same

orientation is employed in the derivation of the correlation coefficient (Chapter 3) and
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the reflection coefficients, the final correlation coefficient results using Graff's

convention or the convention here employed are coincident.

C.4 Freeedge

The static boundary conditions of free edges situated at y = 0 are

oo o
F(X,O,t)=D——( Z+(2—v)5§J:O and

oy\ oy’

&z 'z
M(x,0,t)=-D| —5 +v—s |=0.
oy- ox

The mathematical manipulation is cumbersome but the final result is

given by
A W, +iW. A 2W,W,
AT : ) g ol WV 2l (C3)
Ain (Wl _IWZ) Ain (W] —*le)
where
k2 +vk?
W, =kl +kki(2-v), W,=—5— and
Ty vk
k2 +vk:
W, = (pi —;Lyki(Z—v) ’——~——( : , 7%
py — vk

C.5 General spring attachment

A travelling wave of frequency o is incident on a bottom boundary
(y=0) that has a general spring element attached to it. This element provides
translational, rotational and coupling resistance. The respective stiffness are k,,, kgq
and k,q (illustration in fig. C.1). A general solution to equation (C.1) on the left and

right sides of the edge are

-ik,y ik,y =iy ik (x| iot
2/(1) = e ™ AN+ A bere (C.6)

Zz(t) = %%teikyy + Aeze“yy }eikv‘xeiwt (C7)
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where A, is the amplitude of the transmitted wave, A,; and A, are the amplitudes of
the evanescent field components on the left and right sides of the edge, respectively.

The boundary conditions at y = 0 are

7/ (t)=2,(t)
8y By

3 3 3 3
D 2% 0-wlh | p%h .oy lB |y, +1<ZG(§-ZL) (C.8)
oy Oyox oy’ oyox”® oy

p| 9% Tl p 0% 0% k%(—ai} Ttk .z,
oy~ ox” oy~ ox” oy i

Assuming that the spring element is placed along the outer edge of the

plate we have that the displacement of the region that is on the left side of the spring
element is null. Applying this condition, z,=0, the system of equations (C.8) is

reduced to

(C.9)

Substituting (C.6) in the above equations and rearranging the terms we
obtain the following system of equations

LlAref - L2Ain + L3Ael = O

(C.10)
LA, ;+LA, +LA, =0,

ref

where

L, =iDk] +iDk k(2 - v)+ik gk, —k,,
iDk} +iDk k(@2 - v)+ik,k, +k,,
L,= —Du'; +D}.lyki(2— v)+ ke, —k,,

1)

Dk} +Dkiv+ikgk, —k,
Dk; +Dk}v—ikgk, —k,

L4
LS
L, =-Dup; +Dklv+ Kgghty =14

The relative amplitudes of the reflected and evanescent waves as a

function of incident wave's amplitude are obtained from the solution of the system of
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equations (C.10). These relative amplitudes (reflection and evanescent field

components coefficients) are

3 L,L, +L,L,

R= Aref —
Ain LlLé "L4L3
_ Ae

C.11
_L,L,+LL; ( )

A, L,L,-LL,

n

After some algebraic manipulation both reflection and evanescent field
components coefficients can be expressed in real and imaginary parts as

A M? —M? A 2M.M
Rd —f |= Re[R]= ——-2 d Im —f|=Im[R]=-—2"= C.12
{A } Rl=Spem ™ "{A miRl=- e G2

in in

where,
M, = (D +KkIDv-k, J-p;D+Du k2@ - v)+kqu, - k,,)
K, (~1ID + Dkv + koo, — k),

M, = (~}D + D2V + ko, — ko 3D + k(2 - VD] +k 0k, )
~k99k)’(—“§D+D“'yki(2_v)+kzeuy —kzz)b

Re| Aet :RG[EI]Z_% and | et =Im[E1]=—2-I,\—%, (C.13)
A M, +M; A M; +M;

in in

where M, = (D +k, (2= v)DK? + k ok, k2D + K2Dv—k o -k Kook,

C.6 General spring attachment including wave transmission to the

adjacent system

For the case in which the plate on the left side of the edge is moving,
the system of equations (C.8) can be solved to determine the amplitudes of the
reflected, transmitted and evanescent field components. After some mathematical
manipulation we can express the system of equations (C.8) as

A s+A, +A,-A -A,=0

—ik A +ik Ay —p A, -1k A —p A, =0

LA ’

LA

ref
+LA +LA, +LA +LA, =0
+L,A, +LA,, +LA +L A, =0

(C.14)

ref

ref
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where,

L, =iDk} -k, +ik k,q, L, =-iDk] -k, —ik k

y yz8»

L,=-Du; -k, +p.k L,=iDk], L;=-Dpl,

267
Lo =Dkj —k,, +ik kg, L, =Dk? =k, —ik ke,
Ly =-Dpj ~k,o +p kg, Ly =-Dk;, and L, =Dpl.
By solving this system of equations, we obtain that the amplitude of the transmitted
wave as a function of the incident wave's amplitude is given by
A _WW, -W, W,

t
=T= ,
A, W, W, + W, W,

m

(C.15)

The amplitude of the evanescent field component on the left side of the spring element

is given by,
Ay _ E, - W, (W, W, + W, W)+ W (W, W, — WW4) (C.16)
Ain Wz (W5W4 + Wz W@)
The amplitude of the evanescent field component on the right side of the spring
element is,
[ (Ll _Lz)_(L4 +L1){(\NIW2 “\N.%WJJ
A, @L,-L) (L;-L) (W,W, +W,W,)
—Ll=E = . (C.17)
A, (L +L1){W3(W5W4 + W, W, )+ W, (W, W, — W,W,)
(LB - Ll) W, (W5W4 + szo)

And finally the amplitude of the reflected wave as a function of the amplitude of the

incident wave is expressed as

L, - L3)+ T, + LQ{(WIWZ - W3W4)}
Aref (L3 —-Ll) (L3 - Ll) (W5W4 +W2W6)
——=R=1 . (C.18)
A, . (Ls + L) W, (W W, + W, W, )+ W (W, W, - W,W,)
(LS —LI) Wz(W5W4 +W2Wo)
where,

W, = (L, - L, Xik, —p, }+ (s - L, )i2k,,
W, = (Lo + L Xik, — 1y )= (Lo = Ly ik, +11, ),

W, = (L - Ly Xik, — 1, )~ (s - Ly )2k,
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W, = (L; - L )ik, +p, )+ (L5 + L, Xk, —n,).
W, = (L - Ly Ji2k, — (L + L, Xik, — 1, ),

W, = (L; - L, Jizk, + (L, + L, ik, ~ n, ).

The above coefficients are equivalent to the reflection and transmission

coefficients presented in ref. [S5]. Expressions for k,,, kgg, k.o for the case of a general

stiffener are presented in Appendix B.

incident wave

A

Fig. C.1 - Elastic wave incident on a general spring attachment (ref. [55]).
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APPENDIX D

RESULTS OF THE INTEGRALS USED IN THE
CORRELATION COEFFICIENT DERTVATION
(CHAPTER 3)

/2
o [cos(Acos0)de = 12°-J0(A), ref. [70], (D.1)
0

n/2 _ 1
o _fcos(A sinB)cos™ 6d6 = g_(}_n_l)

0

J,(A),n>-172 ,  ref. [70],

then for n=0 we can write that

n/2

feos(asin@)do = 12‘—JO A), (D.2)

T

/2
o I= Jcos(A cosB)cos(Bsin6)do = 12[—]0 VA’ + B? ) (D.3)
0

Applying Jacobi's expansions in series of Bessel functions (ref. [71]) we can
rewrite the integral on the left side of the above expression as
n/2 o 0
I= | (JO(A)+ 2> (-1)'1,, (A)cos2n6) (JO(B)+ 2> 1, (B)cos2n9) de.
0 n=1 n=1
The cross multiplication of the two terms inside the parenthesis in the above
expression result in four integrals that can be solved separately. The solution for each

one of them is as follows

/2

L= @0 =21, )

/2 /2

L=J,A) ] 23 1, (B)cos206d0 = 1, (A RS 1, (B) [cos2n6de
[¢]

0 n=1 n=1

n/2 ) 7/2
{Sm“nﬂ =0, then L=0.

as Icos2n9d8 =
2n

0 0
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Similar to the derivation carried out for I, we can show that

/2 x

I, =Jo(B) [ 2> (-1)'],, (A)cos2n0d0 = 0.
i} n=l

/2 o /2

L= [43 (1) LA, (B)cos 20840 =43 (-1)'1,, (AX,, (B) [cos’ 2646
0 n=l 0

n=1

=—, then
0 4

L= (1) 1, ()0 (B)

n=1

n/2 . /2
as Icosz 2n6do = [—Q + sm4n9}
5 2 8n

From the results for I}, I,, 15 and I, we obtain that

(= 2 L) 2E 0 1 (), ) 0.4

The above result can be expressed in a more convenient form if the summation

theorem of Bessel functions is recalled. This theorem states that (pg. 979, ref. [70])

Jo(mR) =1, (mp), (mr)+ Zi J (mp) (mr)coske, (D.5)

where R = \/ r> +p’ —2rpcosq Assuming that r and p are two perpendicular

functions we have ¢=90°, cose=0, R = {/r* +p* and

Jo(mR)=1J,(mp),(mr)- 22 J(mp), (mr)cosk %

In the present work the function A represents a distance in the x-
direction multiplied by a constant (k) and the function B represents a distance in the y-
direction multiplied by the same constant (k). Therefore, the functions A and B are
perpendicular and the above assumptions apply. Moreover, it is easy to show that for
the summations involved in equation (D.4) (-1)" is equivalent to coskn/2, because

=2n. Therefore, equation (D.4) is equivalent to equation (D.5) and as a result

S S IO TO RN ER RO

Finally, substituting the above result in equation (D.4) and comparing with equation

(D.3) we find that
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n/2
.[cos(A cosB)cos(Bsin6)do = g—JO VA’ + B? ) (D.6)

0
Equations (D.1), (D.2) and (D.6) are the basic results employed in

Chapter 3 to derive closed-form expressions for the correlation coefficients.
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APPENDIX E

ON THE EQUIVALENCE OF BOLOTIN’S DYNAMIC
EDGE EFFECT METHOD [56] AND LANGLEY’S
ELASTIC WAVE TECHNIQUE [55]

The analysis of the equivalence between the elastic wave technique
employed by Langley [55] with the Bolotin’s dynamic edge effect method [56] has
been presented by Langley [55]. In this analysis it was concluded that both approaches
are equivalent and the elastic wave technique is only a reformulation of Bolotin’s
method. However, the analysis presented in ref. [55] was restricted to the inner
solution of Bolotin’s method. In what follows an extension to that analysis is
presented for the case of the inner solution (propagating waves) and for the outer
solution (decaying components restricted to the vicinity of the boundaries). Reflection
coefficients and Bolotin’s dynamic edge effect parameters (sink £, cosk.&, ,C,,

sink, &, cosk,&, and C,) are then compared for various boundary conditions.
E.1 Comparison of the inner solution

The ‘inner solution’ assumed in Bolotin’s dynamic edge effect method
is given by [56]
W(x,y)zsinkx(x—éx)sinky(y—éy)ei“‘, (E.1)
and when trigonometric transformations are applied to (E.1) it can be expressed as
W(x,y)= (sink, xcosk, &, —cosk xsink &)
(sinkyycoskyiy —coskyysinl<y§y)ei“". E2)
The deflection shape derived by Langley [55] using an elastic wave

technique is

W(x,y)= 4(A2A4 )V2 cos(k x + ¢x)cos(k Y+, )ei”t , (E.3)
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as A,=A /R, and Ay;=A,/Rp, then

A2 172
4(A,A,)" =4( ‘ ] . (E4)
2744 RLRB

Substituting (E.4) in (E.3) and applying trigonometric relations to this
equation we have that

2

172
W(x,y)=4(RA1‘{ j (cosk, xcos¢, —sink xsin¢ )

A (E.5)
(coskyycosd)y —sink ysin¢, )ei‘“.

From equations (E.2) and (E.5) we can write that

cos¢, =sink &, sing_=cosk & ,
0, | 3 | ¢, E6)

cos¢, =sink &, sin¢, =cosk & .

From equations (30,31) of ref. [55] we have that
e =(A,/A,)", e =(A,/A,)". (E.7)
As A3 = AI/RLRB N A2 = AI/RL and A4 == A]/RB then

¢ =(1/R.)", e =(1/R,)". (E.8)

When z is complex the following mathematical relation applies

(equation (3.7.27), ref. [72])

A2 [% (r + Re[z])} + 1[% (r - Re(z))} - utiv, (E.9)

where r is the modulus of z, 2uv=y and where the ambiguous sign is taken to be the
same as the sign of y.
Substituting (E.9) in equations (E.8) and expressing the exponential

functions in terms of sine and cosines we obtain

cosd, = B(l + Re[R,_])} , sing = iB (l—Re[RL])} -,
(E.10)

cosf, = [%(1+R6[RB])} , sing, = iB(l—Re[RB])J B

As aresult of (1-Re[R]) being always positive or null, the ambiguous

sign in (E.10) can be taken as positive. Finally, from (E.6) and (E.10) we have that
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5

sink &, = B(l + Re[RL])J . cosk,E, = B—(l - Re[RLDT',
(E.11)

172

sink &, = B—(l + Re[RB])J : cosk, &, = B—(l— Re[RB])J

The above equations provide a simple relation between the parameters
of Bolotin’s dynamic edge effect method and the reflection coefficients of the plate

boundaries.
E.2 Comparison of the outer or corrective solution

Assuming we are in the vicinity of one of the edges, a evanescent
component must be added to the elastic wave representation. In this case we can write

that (equation (A2), ref. [55])

W, = {x exp(~ik x)+ A exp(ik, x)+ A, exp(q/ki +2k; X)}exp ik,y+ iwt). (E.12)

The equivalent expression based on the dynamic edge effect method

can be obtained from (B.1) or from ref. [56], equations (4.28) and (4.30). It is

W, = {inkx(x £ )+C, exp(—,/ki + 21(3)()}sinky (y —~ iy)cosoat, (E.13)

which after some mathematical manipulation can be expressed as

W, = {inkxxcoskxéx —cosk,xsink & +C_ exp(—,/ki +2k§x)}sinky(§—§y)coswt.

Comparing the above expression with equation (E.12) we obtain that

C, =BR{§“ Hm = [%ReﬂE]]}m. (E.14)

mn

Expression (E.14) has been obtained following a similar procedure as
the one used in the derivation presented in E.1. Together with equations (E.11),
equation (E.14) allows the determination of the dynamic edge effect method
parameters directly from the reflected and evanescent field component coefficients.
Moreover, if the dynamic edge effect method is to be applied in the vicinity of a edge

in which only the transmitted (A,) and the transmitted evanescent (A,,) field
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components exist, it can provide a way of estimating the dynamic edge effect

parameters for the indirectly driven side of a system.

E.3 Verification of the results for some boundary conditions

Expressions (E.11) and (E.14) were used to derive results for the
dynamic edge effect method parameters and for the reflection and evanescent field
component coefficients for various boundary conditions. These results were compared
to those derived in Appendices B and C. When the result used for one typical
parameter has been drawn from Appendices B or C it will be called a direct result. On
the other hand, if the parameter has been obtained from the application of equations
(E.11) or (E.14), then it will be called an indirect result. Direct and indirect results
were compared for simply-supported, guided, clamped and free edges and they were
coincident for all cases. The comparison of indirect and direct results for clamped and

free edges is presented in the next two sections.

E.3.1 Clamped edges

The real part of the reflection coefficient for a left clamped edge is

given by equation (C.4)
kZ
Re[R, |= =~ (E.15)
(kx +ky)

Substituting (E.15) in (E.11) we can show that

k’ 172 172
1 v 1 k? k
sink & = —[1~74yj = —[—,——L—H = (E.16)
{2 ki +k; :l [2 k2 +k3 lz(ki + kz)

and

112 12 Z 5
1 k? 1{ k2 +2K3 k2 +2k;
cosk & = —[1+—~—-’-—-7—j = —(—"7—--—,,—y— = (E.17)
{2 k} +k; 20 ki +k; /2(ki +K
From equation (C.4) we have that the real part of the evanescent field

component coefficient for a left clamped edge is given by
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-2
Re[E, = ————. (E.18)
2(k2 +k})
Substituting (E.18) in (E.14) we have that

- Lz@:k ﬂ e o

The indirectly derived results (E.16), (E.17) and (E.19) agree with the
directly derived results (C.4).

E.3.2 Free edges

The real part of the reflection coefficient for a free left edge is given by

) (E.20)

k2 +vk2
where W, =k} +k kI(2-v) o

> 3 2

and

Substituting (E.20) in (E.11) we obtain that

sink & =——~—~—\—V—2——— cosk & =L (E.21)
After some mathematical manipulation the above equations are shown
to equal
K +k k2Q-v)ful - vk}
sink & = ( ( )X )

(E22)

K“i 2@ -) (2 vk ) (kK@) (- k) ]2 |

s o (2 -k @-v)K2 +vk})
K KE-V)) (2 +vk) + (i +k K@= v)) (2 - vk )]

(E23)



The real part of the evanescent field component coefficient for a left

edge can be obtained from equation (C.5),

2( +k k2@ v)) (@2 - vi Y2 + k2
3 27 _ Y (12 2V 3 27 _ (2 _ 23’(E'24)
(ux nki(2 v)) (kX + vky) + (kx +k k(2 v)) (ux vky)
Substituting (E.24) in (E.14) we have that
‘. (2 + i) + k2@ - V)) (2 - vk2)
U e () + (V)Y (2 - )

The direct results for the dynamic edge effect method that were derived

Re[EL]z

172

(E25)

in Appendix B, equations (B.5) and (B.6) are given by
Wi

cosk & =-——————, sink & = ——=_ter (E.26)
' W2 + W o W2+ W,
where,
B (pf‘( - vk2) _ (;,Li - (2 - v)uxkz)
Ve = _m, Wo=- (ki +(2- v)kxkiy) E-27)

Substituting (E.27) in (E.26) and rearranging the terms we obtain exactly the same
equations as (E.22) and (E.23).

The parameter C, for the dynamic edge effect method has been derived
directly in Appendix B (equation (B.7)). The result is

C -~ _ (E.28)

Substituting equations (E.27) in (E.28) we obtain that

o - (2 + )k + Kk k@2~ V) (629

Kpi —n k- v))2 (2 + vk§)2 N (SESNcE v))2 (12 - vk§)2 ]

Comparing equations (E.25) and (E.29) we observe that there is a

slightly difference between the directly and indirectly derived C, parameter. This
difference is probably related to the omission of the term exp(-ik,y) in equation
(E.12). However, in practice, the difference between the results obtained using the
present derivation is negligible. This fact is illustrated in fig. (4.28) for the case of a
rectangular flat plate with all around free edges. As shown, both results are coincident

and very similar to experimental ones.
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APPENDIX F

DISPERSION RELATIONS FOR VARIOUS
STRUCTURES

Dispersion relations for some flat structures are presented in this

appendix. They are expressed as a function of frequency f and propagation angle 6.

F.1 Doubly-curved thin shell

An asymptotic expression for the natural frequencies of free
oscillations of a doubly-curved thin shell that is valid under certain conditions has
being derived by Bolotin [89] using the dynamic edge effect method. This expression
is [89]

2 2 2
o’ = % (k2 +kf,)2 + [ihz [(Ef(:klzy)?) } (F.1)
x Tk
where X=r,/r,, 0=arctg k,/k,, D=Eh’/ 12(1-v2), o is the frequency of the free
oscillation of the shell, D is the cylindrical rigidity, p is the material density, h is the
shell thickness, E is the Young's modulus, k, and k, are the wavenumbers in x and y
directions, and r, and r, are the principal radii of curvature of the surface. The
parameter X satisfies the inequalities -1 < X > 1. The “plane stress” ring frequencies

of the shell are defined as

1 E 1 |E
= f=—o0 |= (F.2)

2nr, \ p ’ N 2nr \ p ’

fo=

where we assume that f, > f,. Expressing the wavenumbers k, and k, as a function of

the bending wavenumber k and angle 6 we have that [90]

0 = Dyt I (Xcos® 6+sin’ 6) (F.3)
ph Dr,
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where k,=kcos and k,=ksin6. The limits of applicability and the general behaviour of
equation (F.3) have been discussed by Gol’denveizer [90]. The natural frequencies of
free oscillation of the shell are strongly dependent on the ring frequencies. Operating
expression (F.3) mathematically we obtain an asymptotic expression for the bending
wavenumber

o ph(?,ﬁf)2 _Eh
D Dr?

(Xcos*0+sin*6) . (F.4)

The first term on the left hand side of the above equation corresponds to the bending
wavenumber of an equivalent flat plate while the second term is a correction due to
the shell curvature. It will only have complex solutions for f < £, , complex and real
solutions for f, < f<f (curve marked 2 in fig. F.1) and real solutions for f>{, (curve
marked 3 in fig. F.1). In the frequency region f; < f< f,, the real solutions are situated

in a curve delimited by the angles 0 and 6, where 6, is given by
2 %f— -(X+1)

- Y
=5 —(X - 1) : (F.5)
In the frequency V2 times the upper ring frequency the shell bending wavenumber
approaches that of the equivalent flat plate (curve marked 5 in fig. F.1).

Equation (F.4) was used to estimate the bending wavenumber of the
passenger car roof in the theoretical results presented in section 4.8. In this case, for
frequencies situated between the two ring frequencies, the integration in wavenumber
space used in the correlation coefficient estimation was performed between 0 and 6,
where 0, is given by equation (F.5). Below the lower ring frequency no integration
was performed and the correlation coefficient was assumed to approach unity. Above
the upper ring frequency the usual limits 0 and 7/2 apply. This procedure can be
applied in the estimation of correlation coefficients for all curved shells. The results
presented in section 4.8 shown that a reasonable approximation of the variation of the
correlation coefficient or normalised cross-power spectral density results due to the

lines orientation can be obtained when equation (F.4) is employed.



Dispersion relations for a doubly curved shell - X>0
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Fig. F.1 - Dispersion relations for a doubly-curved shell of positive curvature (X>0)
and ring frequencies f, = 100 Hz and f, = 300 Hz. Frequency of oscillation: 2. =150
Hz, 3. =250 Hz, 4. =350 Hz, 5. =600 Hz

Dispersion relations for a doubly curved shell - X<0

60
50+
5. f>1.41%y
40t
za0F Yoo 4 fysi<141ty
|3 fx<f<fy N
20} - - N
P 2.5ty
’ /// \ \
10— / // \ [}
C 1. f<fx \
I// l]
O 1 1 :
0 10 20 30 60
kx

Fig. F.2 - Dispersion relations for a doubly-curved shell of negative curvature (X<0)
and ring frequencies f; = 100 Hz and f, = 300 Hz. Frequency of oscillation:

1. =50 Hz, 2. =150 Hz, 3. =250 Hz, 4. {=350 Hz, 5. {=600 Hz.



F.2  Singly-curved thin shell

The result for a singly-curved shell can be obtained directly from the
doubly-curved shell one (F.2 and F.4) by setting r, = co. Thus for a singly-curved shell
we have that

h®r? f

12(1-v? )/ 2
k*= ——g—-———)(T —sin* 9) : (F.6)
where r is the shell radius and f; is the ‘plane stress’ ring frequency. In the frequency
region below the ring frequency f; the above expression gives complex and real
results. The real results are situated in the curve between 0 and 6, where 0, =
acos(f/f,). The implication of the solution of this expression for regions in which f <f,

have been discussed by Langley [91], who demonstrated the existence of two distinct

wave types that generate out of plane displacements.

Dispersion relations for a singly curved shell
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Fig. F.3 - Dispersion relations for a singly-curved shell with ring frequency f, = 300

Hz. Frequency of oscillation: 2. f=150 Hz, 3. {=250 Hz, 4. =350 Hz, 5. {=600 Hz



F.3 Mindlin plates: inclusion of shear deformation and rotary

inertia

Mindlin plates are generally referred as plates in which shear
deformation and rotary inertia are taken into account in vibration analysis. Shear
deformation and rotary inertia are important for cases of thick shells and plates in
which the thickness of the structure is of comparable dimension to the structure
characteristic dimension. The free vibrations of Mindlin plates are governed by the

following simplified equation [92]

0*w D k') &w
DAAW+ph = —p(G, +—1—2~JA =0 (F.7)

where G is the shear modulus, G’ =«°G, «? is the shear coefficient, w(x,y,t) is the
transverse displacement. The other terms of equation (F.7) are similar to the ones
defined for equation (F.1). The natural frequency for the case of all around simply-

supported edges is given by [92]

D > ! D K
2_ Y 2 g2 2,12 _ o
o = (k2+k?) [1+6(kx +ky)], 5 (—G'h+ 12) (F.8)
where the terms under brackets is the correction factor due to effects of shear
deformation and rotary inertia. Substituting k, and k, by kcosb and ksin® in equation

(F.8) and expressing the wavenumber k as a function of the frequency of oscillation

we have

Sw?+o /82032 +(@j
ph
(F.9)

bi3)
ph

In this case the solution of the above equation will be governed by the value of the
parameter & in relation to the bending wavenumber of a flat plate without shear
deformation and rotary inertia effects. The negative sign in the above equation can be
discarded as it will only give complex wavenumbers.

Results from equation (F.9) for a 0.1 m thick plate are compared to the

classical bending wavenumber in fig. F.4. As shown, the bending wavenumber curve



with the correction term departs from the uncorrected curve for wavenumbers higher
than eight which correspond to a wavelength of 0.75 m. This observation agrees with
the analysis presented in section I1.3.b of ref [38] in which it is suggested that the
correction terms due to rotary inertia and shear deformation make a difference of more
than 10 % if the wavelength is less than the value A = 6h. The correction suggested in

ref. [38] is also plotted in fig. F 4.

Effect of shear deformation and rotary inertia on wavenumber - h=0.1 m
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Fig. F .4 - Dispersion curve for a plate of 0.1 m thickness. rotary inertia and shear
deformation included (eq. (F.9)); — — — classical bending wavenumber;

----- correction suggested in ref. [38].
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APPENDIX G

AN APPROXIMATION TO THE FREQUENCY-
AVERAGE RADIATION EFFICIENCY OF FLAT
PLATES

In this appendix the correlation characteristics of modally-dense
randomly vibrating plates are used to estimate the radiation efficiency of such
structures. Comparisons are presented with well-known results from Maidanik [37]

and Leppington et al. [93].
G.1 Radiation efficiency of flat plates

The time-averaged acoustic power P radiated into a half-space by a
harmonically vibrating rectangular plate (area S and dimensions a,b) set in a rigid

baffle is given by the Rayleigh integral representation of the induced pressure [93]

P,® sink r
p= _Zn_sj [V vy )——————dS ds, (G.1)

where k, denotes the acoustic wavenumber, p, is the fluid mean density, v(x,y) is the
normal vibration velocity of the panel, o is the frequency of excitation and r is given

by

r= \/(x— x')2 + (y - y')2 . (G.2)
The plate radiation efficiency is defined as [19]
G = ‘——“"1)———7— s (G3)
pocoab<‘\7; >

where ¢, is the fluid sound speed and the space-average value of the time-average

normal vibration velocity of the panel which is defined as [19]

T
= H: j ?(x,y,t)dwdS.
0
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Assuming that the plate normal displacement is given by equation

(3.19°), the radiation efficiency for a single mode of vibration is then given by,

, ~sink.r
o _[ J.XP (X)Yp (y)Xp (X )Yp (y )—If“ds ds
o= 23 (G.4)
2mc, [X2()Y? (y)dS
S
For the case of a simply supported plate,
Xp(x)= sink x, Y, )= sink.y,

where k, and k, are the wavenumbers in x and y directions. Substituting these mode
shapes in (G.4) we obtain the following expression for the modal radiation efficiency

of a simply-supported plate

2k} : . : : ink
c=— J- J.smkxxsmkyysmkxx’smkyy’mdS’dS. (G.5)
s k.r

which agrees with equation (2.5) of ref. [93].
A frequency average of the radiation efficiency can then be obtained by
summing the contribution from all modes that are excited in a specific frequency

band. Using modal summation we can write the normal vibration velocity as
v(xy)= 2.4, %, (Y, ()
N

where N controls the number of modes to be summed to obtain v(X,y). Expressing k,
and k, in circular coordinates (k;,,0) and assuming that all the modes are equally
excited within the frequencies f,-Af/2 and f,+Af/2 we can obtain an estimate of v(x,y)

for a modally-dense plate. This estimate is given by

o) /2
v(xy)== [AX(k,.0,%)Y(k,.0, )0, (G.6)
T 0
where to derive the above expression it is assumed that each individual modal
wavenumber included in the discrete summation do not depart strongly from the
wavenumber at the band centre frequency (k). Substituting (G.6) in (G.4) and
neglecting the cross-modal contributions we obtain an approximate expression for the

frequency-average radiation efficiency due to any type of boundary conditions
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n/2
sink r

| JJ'X(kb,G,X)Y(kb,e,y)X(kb,O,X’)Y(kb,e,y’)da--deS
S 0

(&)
o= Y & /2 (G7)
o [ ] X?(k,,0,0Y (k,,6,y)dodS
S 0

where X(k,,0,x) and Y(k,0,y) can be obtained from the results presented in Chapter 3.

G.2 Results for a rectangular plate

For the case of a plate which vibration field approach that of a diffuse

bending wave field, equation (G.7) can be expressed as

(k )ﬂfds ds, (G.8)

2ﬂZS

where S is the plate area. The above representation of the frequency-average radiation
efficiency is similar to the one presented in eqs. (5) and (8) of ref. [94]. As observed
in [94] when the above 4-dimensional integral is reduced to a one-dimensional

integral and the integration limits are extended to infinity, the well-known results for

12

an infinite plate o = (1-k} /k2) ~ ifk, <k,, and o=0 ifk,>k,,are
recovered. Results for the the radiation efficiency of a 1 cm thick rectangular plate
with sides a=1.0 m and b=0.8 m computed from equation (G.8) is presented in fig.
G.1. This graph is coincident with that presented in figure 2 of ref. [94]. It can also be
observed in this figure that the radiation efficiency estimates for a simply-supported
plate are higher than that of a diffuse vibration field, except below 40 Hz. The main
reason for this is that in this frequency region the plate is behaving like a rigid piston
as the first resonance frequency for this plate is estimated to be 63 Hz. Therefore, both
expressions are in error in the low frequency range as a high modal density was
assumed in their derivation. In the present work, the following expression (obtained
from egs. (3.15°), (3.16) and (G.7)) is used to compute the radiation efficiency of

simply-supported flat plates
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Jo @b\/(xl 'Xz)z +(y, ‘Y2)2 )Jo q(b\/(XI ‘Xz)2 +(y, +Y2)2 ) sink r
- °dS'dS
Jo Q(b\/(xl +Xz)2 +(y, 'YZ)Z }Jo @b\/(xl +X2)2 +(y, +Y2)2 kor

2n J'[l-JO(2kbxl)—J0(2kbyl)+Jo ékb,/xf +yfj das
S

As shown in fig. G.1 results from equation (G.9) approach that of

Maidanik [37] and Leppington (eqgs. (7.6), (7.7) and (7.11) from ref.[93]) for

.(GY)

frequencies higher than 0.1 f;,, where f;, is the lowest coincidence frequency or, as is
common terminology, the critical frequency . The critical frequency is estimated to be
1200 Hz for the plate used. The result for a diffuse vibration field (equation (G.8))
only approaches the other three in the proximity of the critical frequency and can give
results almost 6 dB lower than that of equation (G.9) for £=0.1f_;, . As for regions
remote from the edges the vibration field approach that of a diffuse field irrespective
of the boundary conditions, the difference between simply-supported and diffuse field
results clearly reflect the importance of the vibration field near the edges in
controlling the plate acoustic radiation below the critical frequency.

In fig. G.2 a comparison between the asymptotic expressions derived
by Leppington et al. [93] and the results presented in this work for the case of simply-
supported plates is presented. When the frequency-average radiation efficiency is
computed from the numerical integration of equation (2.6) of ref. [93] the curve
obtained is very similar to that obtained from eq. (G.9). They only disagree for
frequencies below 0.06f;,. In addition, it is worth explaining that the difference
between the two results from Leppington et al. [93] as plotted in figs. G.1 and G.2 is
that the dash-dotted curves in both figures represent an asymptotic estimate of
equation (G.5) for cases in which the acoustic wavenumber k, tends to infinity
whereas the dashed line in fig. G.2 is obtained from a numerical integration of a
2-dimensional integral similar to equation (G.5).

The effect of the boundary conditions on the radiation of flat plates is
illustrated by the results presented in fig. G.3. The Bolotin’s dynamic edge effect
method parameters for the case of clamped and free edges (Appendix B) are
substituted in equation (G.7) and the radiation efficiency calculated. As expected, the
clamped edges increase the radiation efficiency by a factor of approximately 2 in a

frequency region between 0.07f_; and f.;, when compared to simply-supported edges.
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However, for frequencies below 0.07f,;; simply-supported plate results are higher than
that of clamped plates. This agrees with the results reported by Timmel [87] and by
Berry et al. [95] and they are related to the fact that low order modes (up to the (2-2)
mode) are more efficient in terms of acoustic radiation for the case of simply-
supported boundaries. On the other hand, the radiation efficiency of a plate with free
edges is much lower than that of plates with simply-supported or clamped edges in the
same frequency range. This observation is in agreement with previous analysis of
sound radiation from plates with free edges [95] confirming that these plates are poor
radiators of sound. Above the critical frequency the boundary conditions are
unimportant to the sound radiation and the radiation efficiency approaches unity

irrespective of the boundary condition.
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Fig. G.1 - Frequency-average radiation efficiency. 1/3 octave bands. Flat plate a=1.0 m, b=0.8 m,
h=0.01 m. simply-supported plate (eq. (G.9)); — — — diffuse vibration field (eq. (G.8));
——————— Leppington (egs. (7.6),(7.7),(7.11) of ref. [93]); - - - - - Maidanik (eq. (2.39) of ref. [37]).



Frequency-averaged radiation efficiency - 1/3 octave bands
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Fig. G.2 - Frequency-average radiation efficiency. 1/3 octave bands. Simply-supported flat plate a=1.0
m, b=0.8 m, h=0.01 m. this work (eq. (G.9)); —-—-—- - Leppington (egs. (7.6),(7.7),(7.11)
from ref. [93]) ; — — — Leppington (numerical integration of eqs. (7.5),(2.6) from ref. [93]).
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Fig. G.3 - Frequency-average radiation efficiency. 1/3 octave bands. Flat plate a=1.0 m, b=0.8 m,
h=0.01 m. simply-supported edges (eq. (G.9)); — — — free edges (eq. (G.7));
——————— clamped edges (eq. (G.7)).




