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Abstract

Harponic oscillator well eigenfunctions, classified
according to the group SUS’ are used as a set of zero order
approximations to nuclear states, A selection rule is used
to put the representatiomrs of SU3 in their order of importance.

A method is developed for calculating energy levels,
with theestates, by a variational procedure using a central
force only.

The appearance of rotational f eatures for even nuclei
in the ds-shell is discussed, using only the states of the
lending representation, and the low lying energy levels of
018, Ngo and Mél* are calculated., The agreement with the
K =0 bands ds good but the K =0 and K =2 band spacing
in Mé’* is too small for any exchange mixture.

The mixing of bands in Mgl*, for Rosenfeld exchange,
is of the right kind to give almost the correct branching ratio
for E2 transitions from the second 2° state.

Mixing of representations i1s small and the changes in
the spectrum from the leading representation only slight.

Initial calculations are given on the use of the
deformed, harmonic oscillater well eigenfunctions as a wet of
zero order states. It is found that there is very little
difference between the deformation pargmeters which minimise

the deformed harmonic oscillator potential and the Gaussian

two body potential,
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Introduction

The states in which the nucleus may exist are given,
in the quantum mechanical approach o the nuclear problem, as

the eigenfunctions in the Schrodinger equation
Hy = By (1)

where H is the nuclear Hamiltonian operator. The energy
in the state ¥ is given by the eigenvalue E, The solution
of the Schrodinger equation is doubly difficult. In the
first place, even if our knowledge of nuclear forces was so
complete that we could construct the true Hamiltonian, the
resulting many-body problem could not be solved by present
mathematical techniques. The task, therefore, is to reduce
the insoluble problem to a soluble one while introducing as
litble error as possible,

In the ususl a.ppr%c‘)ch to such physical problenms,

models are constructed which approximate to the actual
system in some way and are mathematically tractable,
Unlike the atomic problem, no single nuclear model has yet
been proposed which will predict all the known nuclear
properties although the many models already put forward do
partially solve the problem.(Moszkowski 1957)

The aim today then, is to try to consiruct a

'unified' model which retains the good points of the old



models but rejects their bad ones.

In this thesis, certain ideas connected with an
attempt to build up swh a wnified model are tested. This
model was proposed by J.P. Elliott (1958 I & II) and is based
on the Independant Particle Model. The significant part about
it is-that the many-particle wave functions aere classificd
according to the irreducible representations of the unimoduler
wmitary group SU3° This classification allows states to be
associated in a way resembling rotational bands and the
construction of the states involves an intrinsic state which.
may be related to that in the rotational model.

The physical importance of this scheme has already
been shown by Elliott. States classified according to the
SUj-group have been favourably compared with those arising
from a variational calculation in the nuclear ds-~shell using
a redlistic Hamiltonian,

We shall hawe develop a method to set wp direcctly
the energy matrix spread out by the states of this new model.
The method will be applied to nuclei in the nuclear ds—shell
and, in particular, to the M%? nucleus which is treated in
greater detail. For these laitter reasons, the theory is

developed with respect to the ds=shell but it can easily

be extended to other shells.



In Chapter 1 a Hamiltonian is defined which is
realistic as far as our rather qualitative arguments lafer
on are concerned. The assumptions associated with the model,
in the ds=shell, are set out and a brief account of the
well=known classification according to the permutation group
is recorded,

Chapters 2 and 3 deal with the SUj-gfoup in some
detail. The theory is developed using a simpler set of
operators of the group than those suggested by Elliott.

The raising and lowsring operators in Chapter 3 will be seen
to be very important in our method for calculating matrix
elements,

The classified, many particle, angular momentum
states are given in Chapter 4 as projections out of states
classified according to two subgroups of SU3 = the SU2 and

Ul.

The method for calculating the energy matrix,
spread out by these states, is given in Chapter 5.

In Chapter 6 we illustrate the appearance of
collective features, as particles are added into the shell,
using only the states of the 'leading' representation of SU3.

Approximstions to the O, N2 wnd M3® spectra are shown.



The results of calculations on the mixing of other

SUB-representations , with the 'leading'! representation for
2L

Mg are given in Chapter 7.

Some conclusions are drawn after Chapter 7.

At the end of the thesis an addendum has been
added., In this we present initial calculations on the use
of the eigenfunctions of the axially symmetric, deformed
harmonic oscillator as a set of zero order approximations to
the true nulégear states., Although these calculations are
fer from complete, it is felt that at least one of the results

so far obtained, is worth recording.



Chapter 1

Assumptions of the Model and the Nuelear Hamiltonian

Assumptions
In the shell model (Elliott and Lane, 1957) the nucleus

is assumed to consist of A particles which, in the first
approximation (for A < 40), move in the central potential of the
harmonic oscillator, The nuclear particles all have intrinsic

spin % and mey either be protons ar neutrons, The protons and
neutrons are assumed to be different states in isotopic spin (charge)
space of a hypothetical particle, the nucleon (Rose 1957, p.217).
Operators t+ and to’ deseribing the isotopic spin space, are

Lo

#
: s e = e
defined analagously to the operators si 5% and S, =3 §

of the intrinsic spin space, where o, and o, are the Pauli

-

spin matrices (Schiff 1949). The convention will be used that,
- for a nucleon state ¢,

= +1
ty = ~2¢

depending on whether ¢ 1is a neutron or proton respectively.

-
L ]
-

The actual states of the nucleus, in the zero order
approximation, are formed by totally antisymmetrising products
of A single-particle oscillator states. This ensures that the
Pauli Exclusion Principle is obeyed. The low lying energy states

are constructed by completely filling the lowest oscillator shells

-5=



with A-k nucleons and then putting the remaining k-particles in
the next (in general unfilled) shell. Thus far O < A € 4,

L < A<€16 and 16 < A € 40, the unfilled shells are the 1s,
1p and (2s, 1d) respectively. In general there are many such
low lying states which can be constructed, all being degenerate
in energy for the oscillator potential. With such an approximation,
the "magic" numbers at L and 16 (Elliott and Lane 1957, p. 261)
can be associated with the completely filled oscillator orbits

1s and 1p, Indeed, if a sing;e particle spin orbit force is
added (see 1.2a below) the magic numbers throughout the whole
periodic table can be associated with the closure of shells
(Mayer 1949).

As the next approximation to the actual nuclear states,
the lowest degenerate oscillator states, which are finite in number,
are used to spread out a matrix representation of the realistic
Hamiltonian, On diagonalising this energy matrix, the eigen-
functions and eigenvalues correspond to a first order approximation
to the states and energy levels respectively. For more than a few
particles in the shell, such a program is prohibitive because of the
large number of possible degenerate oscillator well states. The
problem in the shell model is to reduce this number of states to
reasonable proportions. This implies the discovery of possible

classifiication schemes.



We shall here describe a possible classification scheme
for the oscillator states with 16 < A < 40 (the ds-shell) and
develop a method for calculating the energy in the states for a
realistic Hamiltonian,

The first excited state of O16 is about 6Mev above
the ground state. It seems reasonable to suppose that the mnergy
differences, less than 6 Mev, between the low-lying excited states
of the A-particle nucleus (16 < A < 40) and the ground state,
come solely from the interaction between the k-particles in the
ds-shell, The first order approximation to the low-lying energies
will thus be found by considering the energy matrix spread out by
the k-particle degenerate oscillator states.

The nuclear Hamiltonian

Nuclear models do not rely on the detailed form of the
Hamiltonian for their construction, but they do stem from some of
the general features which this operator is supposed to possess.
In the rotational model, for example, the part of the Hamiltonian
coupling the intrinsic motion to the collective one is assumed
small - the adiabatic assumption. Of course, on testing the
validity of a model some realistic Hamiltonian must be used.

We qnote then the effective Hamiltonian (Flliott and
Lane, 1957, p.336) which is believed to be realistic for a shell

model, at least for qualitative arguments, in the region 16 < A < 40,



The Hamiltonian consists of two parts - the kinetic (T)
and potential (V) energies. The explicit form for T is known

exactly in the A-particle problem:

A
Tedm > [p(1)]? L1
i1

th particle and m the mass

where p(i) is the momentum of the i
of the nucleon (assumed constant).
The potential V is not known exactly because of the
uncertainty in the form of the nuclear forces, It isknown that
the repulsive Coulomb force, e xisting between protons, is small,
in this region, compared with the attractive nuclear forces which
must exist to form stable nuclei. Calculations in the p=-shell

(Inglis 1953, Kurath 1956) have shown shat a mass of agreementcan

be found by using a potential of the form

N .. N
v= 2, Vc(la) + & >~J(SiLi) 1.22
i<j i
where
s\ (v r_ T -

VO(lJ) —(W + Mpij HPij + BPij)Vo(rij) 1.2b
T., P.Y. and Pfr. are the exchange operators in the ordinary
1J 1J 1d )

isotopic spin and intrinsic spin spaces. W,M,H and B are
exchange constants, usually normalised such that W+ M + B + H =1,

Vo(rij) is the radial shape de}ipending on the internucleon distance

I, .o
1J



Experience has shown that the properties of low lying
states are reasonably insensitiv#p the radial shape. Essentially
the same results can be obtained by using a Yukawa or Gaussian

radial dependence. For mathematical simplicity we shall take
—r2 2
vo(rij) =-Ve ij/a
where Vo is the (positive) strength and a the range of the force.
N -
The spin orbit force Z (sti) is introduced %o
t
account for the doublet splitting for one particle outside a closed
shell e.g. Hz and 017. Such a term, on its own, ¢ annot arise from
a nucleon ~ nucleon interaction however, it is thought that perhaps
a two body vector or tensar farce will account for the effects
produced.
(See Elliott and Lane 1957, p.336 on this point and for references.

Also Feingold 1956.)

In this thesis we concentrate on finding the spectrum
produced from a Hamiltonian with central force alone. For those
nuclear states which have spin S = 0, the matrix elements of the
spin-orbit potential are zero and the total angular momemtum J is
equal to the orbital angular momentum L. In such cases we shall
thus be able to c ompare our predictions for the energy levels

directly with those found experimentally.



Classification of states according to the permutation group

An irreducible representation of the group of
permutations of degree k, Sk’ is labelled by a set of numbers
[£] = [f1f2 cee fn]. [£f] is a pertiton of k into n integral

parts such that

z f- =
fl fz 3 fn and fl + f2 + ...+fn k.

(Jahn and van Wieringen (1951))
The set may be represented, diagrammatically, by a Young Tableau

with n rows of lengths flfz"°fn respectively.

-

A function ¢ is said to have symmetry [f] if it belongs to the
basis of the representation [£] of Sk' It is usual to describe
such a function by ¢[r].

It is well known that totally antisymmetric nuclear
states, ¥ , may be formed if orbital functions of symmetry
[£] {y [£]} are combined with charge-spin functions of adjoint
symetry [F] {[" [¥1} (Bunday 1960, Chapter II). The
adjoint representation [EQ has the number of rows (columns) in

its tableau equal to the number of columns (rows) of the tableau

~10-



for (f]. The antisymmetric state ¥ will be lzbelled with the
[£]  of its orbital part.

We notice that since the charge-spin space is of only
four dimensions, functions(fﬁ)in this space cannot be constructed
which are antisymmetric in more thanf our parts., This implies that
the representations [¥] can have at most four rows i.e. [£] can
have at most four columns,

A Hamiltonian whose operators act only in the orbital
space (Wigner (W) and Majorana (M) exchanges only), cannot couple
states ¥Y[f] and v[ft] with different [f] labels. This is
because functions classified according to Sk’ in particular the
rﬂ-states, are orthogonal with respect to the [f]-label. Thus,
for such a Hamiltonian, the classification according to Sk will
certainly reduce the number of zero-order states without loss in
accuracy.

Since nuclear forces are attractive, the states of
maximum orbital symmetry will be lowest in energy. As we are
only interested in the low-lying energy levels, then only those
states which have maximum orbital symmetry need be considered.

We shall, in fact, includelsome Heisenberg (H) and
Bartlett (B) exchange in the Hamiltonian but still consider only
the states with meximum orbital symmetry. The mixing of states

of other symmetries, with the states of maximum orbital symmetry,

~-11-



is expected to be small enough, in a first approximation, to be

ignored.

Throughout this thesis the [f]-label will tend to be
dropped - in these cases states with maximum orbital symmetry
are implied.

Construction of antisymmetric states with maximum orbital symmetry

The k-particle totally antisymmetric states, whose orbital
parts have maximum orbital symmetry, may be formed by antisymmetrising
between antisymmetric states of four (or less) particles with

symmetrical orbital parts.
If a,bye and d are four different single particle

orbital states, a normalised f our particle symmetric state will be

Ti
= 2 = °
¢'1234[l»] NS/ X ?P(albzcjdl*_) = (abcd)lzﬂl_ 1.Lha
where _Z‘P sums over all permutations of the partide numbers
P
1,2,3 and L.
If two particles happen to be in the c-orbital state , we
shall have -
4
ST 2
= % ] =
b103, 18] V21 /81 %_,P(albzcsch_) = (abo )13, 1.4b

'

where Z ignons permutations be tween particles in the same orbital
states. The charge-spin mnctionsr(2T+1)(28+l) with symmetries

] 7] and [¥] are well known (Jahn and Van Wieringer 1951,

Elliott, Hope and Jahn 1953).

-] P



We shall write then
11 22 W13 31
r[h] ’ ﬁB] and |[2] or ﬁz] 1.5

Thus, for example, totally antisymmetric four particle states

may be written,

H
¥y (8] =4,y (] [ T3] L.6a

Where ¢125l;.[)+] = (ade)l?_B).l. etc. We shall adopt the notation

11 PRy 1
\11123#[4] = (abcd)lzz’h ete. 1.6b

Take now the construction of a k-particle antisymmetric state.

If k =4p + q, where q < 4, consider

’ 11 11 11 11 11
W2TL284 0 ST PRl felndel] b Lol
P 1234 5678 . hp=1,Lp
2T+1,2S+1 2T+1,2S+1 1.7
¥[ql
Lp+l,..,4p+q ,

o

where N 1is a normalisation coefficient. Z_J P  means the sum over

all permutations between the p + 1 sets of numbers

(1234)(5678) oov (eokip + 1, 4p)(bp + 1y,0.. 4p + Q)
preserving the natural order in the sets. (-)P. =+l depending
on whether P 1is an even or odd permutation, The charge-spin
functions are vector coupled (trivially) to a (2T + 1)(28 + 1)

state.

-13-



The fact that‘?k is apntisymmetric is clear from the
construction.

Because the p-sets of four particles all have symmetry
[4] and one set has symmetry [ql, Wk cannot have orbital symmetry
less than [44 ... 4ql. The charge-spin space however always
prevents Wk having orbital symmetry greater than [44 ... Aq].
Hence @k has either orbital symmetry [44 oe. 4g), i.e. maximum
symnetry, or is identically zero.

Further Classification

If the single particle wave functions span a vector space
of S-dimensions, the k-particle states classified according to the
representation [f] of S# also spread out an irreducible
representation of the group Us' Here, US is the group of all
simultaneous unitary transformations among the single particle
states. The representations of US may then, also be labelled
with [f]. 1In the nuclear ds-shell, for example, the states ¢[f]
spread out the irreducible representation (] orf U6'

By considering the infinitesimal operators of the group
Us’ it can be shown that a state ¢ may be classified simultaneously
according to the irreducible representations of Ué and its

subgroups. Which subgroups we choose for further classification

will depend on physical considerations

<1l-



It has been shown {Elliott 1958 I) that the classification
according to the Us—subgroup and the further reduction to the
rotation group R,, 1is especially suited for the labelling of
states in a degenerate oscillator level. This classification
seems to have some physical significance and so we shall use the
representation labels of these groups to classifly the states él'[f]
further.

In the next chapter we consider the Uj—group in some

greater detail and determine the classification of its irreducible

representations, The classification of states according to the

R

3—group will be left until Chapter k4.

-15-



Chapter 2

The U} Group

The Group Operators

The oscillator Hamiltonian

H = (r? + 'ol*pz)/zb2 2,1
is invariant with respect to the group U3 described by the
nine spherical tensor operators (Elliott 1958 I sec. 3).
H = (r2 + bhpz)/sz
L = x
RSN
R =viw/5 r2Y2 6 + bl" 23(2 ) 2
g =V1a/5 [rY(0,9.) + bHp°Y( P I 2.2
Here the Ld are the three infinitesimal rotation operators and
the Qq the five compcfents of a second degree tensor operator.
The arguments of the spherical harumonics are the polar angles of
space.and momentum vectors T and "13’. In particular
2 2 -
Q, = {(22" - x" - 72) + BH(2p2 = p2 - p2)}/2b> 22
z b4 ¥y
The invariance of Ho with respect to U3 means that it

commutes with all the operators of the group. (Jauch and Hill 1940).

This implies that the group operators only transfarm between the

16~



degenerate states of Ho' This property can clearly be seen by
rewriting the operators in 2,2 in terms of the three creation

+
operators aiand the three destruction operators a; of the

oscillator guanta in the x,y and 8 directions where

ot =Z (x - 2% )b

and a, =4/1/2 (x + ibsz)/b similarly for y and z 2.4

Thus by defining the operators
+ +
= i i = 2
Ai,j (a.i ay + 8, ai)/z.,l and j=x,y or z 2.5
we may deduce the relation (Table I) between these operators Aij’

formed from a Cartesian basis, and the spherical tensor operators in 2,2

Q+1 Q--1 ‘BL+1. ‘BL—l ‘/BLO( Q+2 Q-~2 szoi Qo

U E R R | |
féAzx -1/2{+1/2 | -1/2 | -1/2 !
if6a_ i-1/2|-1/2 | 1/2 | -1/2 .

i 6A':; 1/21-1/2 | 1/2 | +1/2
i jéAyX JI/2 1 1/2 | -1/2
ifea -f/2 | 1/2| -1/2

Jéa_ Y2, 12| Ji73|-fi/6
ol /2| <1/2 | JiJ3 | -fif6
| V& N75 ! 25

Z2] H i H

Table I. Transformation Coefficients between the Cartesian operators

Aij and the spherical tensor operators.

17~



The many particle operators Aij are defined as the sum of
single particle operators Aij(p)'
Thus

Aij = ZE:Aij(p) summed over all particles 2,6
For this reag%n the commutation properites of the single particle
operators will belong aldso to the many particle operators. Hence-~
forth the symbol Aij will denote the many particle operator
unless otherwise stated.

Because the Aij operators are combinations of one
destruction with one crkation operator, it is clear that they
cannot excite a state out of a given degenerate oscillator level.
The operators Aij merely shift a quantum from the j-direction
into the i-direction.

If s 1is the number of states in the degenerate
oscillator level, then clearly the Aij will be some of the
operators of US - the set of unitary transformations in
s—dimensions.

The Commutation Relations

The commutators of the Aij operators may be deduced
from those belonging to the tensor set. (Elliott 1958 I (8)).
We shall here find them directly from the simpler relations for
the creation and destruction operators.

From the explicit form of the a; and a, given in

2.4 we d educe,

-18-



+ +
[ai, aj] =0
-[ai, a;j] = 0
+ . .
[aj, ad =0 143
but since a; a = (x2 -2 - pt 82/8x2)/2b2
+ 2

and a_ & (x2+b

™
N

we may write,in general =

[a,aJ—-é‘ .

- v 8%/ax")/2p?

for g1l i and j

where §i5=0 for i#j

1 for i=j.

E

The most general commutator for the Aij operators is:

[Aij’ ALl = (al 8y + 8y )(ak a) + &) ak)/L;.

J

-(&ka.l+a a-k)(a a; +a, a)/l,.

-19-



From equations 2,7 we know that

+ + ot +
[o; 850 % 8] =46 g 812 ~ 0 85 ey

]

+ + + +
[a; 850 & ad = Sjk 8y 8; =89 85 %

+  + + +
[aj 8 oy &yl = S 8 25 = 837 85 3
_ + +
[a ar Y ak = 8jk a & Sil ay oy
Thus from‘gég
[4, "Akl 11 Jk Akg il 2:2

This: last relation shows that the set Aij do in fact describe
the group Us.

The commutation relation in 2,9 is very easy to r emember
and apply. For this reasonw prefe? to use the set Aij’ rather
than the tensor set in 2,2, to describe the properties of Uz.

Classification According to the Group U3

Just as the classification of the group US may be
described in terms of Young Tableau, with at most s-~rows, sov
mey the group Ué be described by tableau with at most three rows.
The many particle oscillator wave functions may be
considered as tensors in the oscillator creation operators. In
the p-shell, for example, the single particle wave functions are

tensors of degree one

¢ = 8y ¢o : i=x,y or z. 2,102

~20=-



where ¢° is the "vacuum" state of no quanta viz. the (1s)
state.

In the sd-shell the single particle states are
symmetric tensors of degree two

$=a

T af ¢ i, j=x5y or 3z
i7j %o
that is, six in number,

The classification of the many particle statesw ith
respect to the group U3 merely describes the tensorial symetry
of the wave functions with respect to the creation operators.

The representations of Uj are, therefore, d escribed
by partitions of n, the numbers of oscillator quanta, into not
more than three parts, [nlnznj] where

ny 2 n2 > n3 and n1 + n2 + n3 =n
We can define the leading state of the representation [n]as the
- one having n, quanta in the gedireotion and 1, and n3
quanta in the x and y directions respectively. This is
analagous to saying that, in the rotation group R3’ with
angular momentum quantised in the z~direction, the leading state
is the one with M = L. The leading state in U3 has the
méximum number of quanta (nl) in the z direction and the

maximum number of quanta in the x direction.where n = n1 for

the representation [nlnznjl. The leading state is then the one

with maximum weight (Racah 1951).

D]



The other states of the representation [n] may be
generated by some operation with the group operators on the
leading s tate.

The single particle states in the p-shell then spread
out the representation [100] of Uj. : The two particle
states can spread cut the representations [200] and [110].

In the latter example the leading state of [200] will have
n,=2 and n_ = n = 0 and the leading state of [110] will
have n, = n = 1 and ny = 0 since the single particle in the
ds-shell is a symmetric tensor of degree two, it must spread out
the representation [200] of U3.

In physical problems we want to ignore transformations
which are simply an overall change of phase, This means dealing
with the unimodular unitary group SU3 obtained by removing the
unit infinitesimal operator HO = (Axx + Ayy + Azz)' Under this
restriction the representations do not reduce further, but those
corresponding to tableaux differing only in a number of complete
columns become equivalent, Thus the irreducible representations

of SU, may be labelled by only two numbers (Au ). These

3
numbers are defined by convention as A = n, - n, and u4 = n, - n3.
(Elliott 1958 I par. 4.)
The leading state of the ( Au ) representation then

has an excess of A quanta in the z-direction over that in the x.



The problem of classifying the nuclear states with
respect to SUS and SU3 involves determining which representions
(M p) occur in a given representation [f]. This reduction may be
performed, by a chain calculation, in a very simple way using the
rules for combining tableau, (Jahn 1950), and the dimension
formula,

dimension of [f] (D[f])

IT (8 ~grs-1)/(5-1)
l<i<jss
for the irreducible representation [f] of U3 or SUB
(Weyl 1920 p. 283).

In the ds-shell, for example, e ach single particle

function transforms according to the representation (20) of SUB.

Thus
[1] » (20) 2,12a

For two particles in the shell, the possible classifications
according to SUs (the permutation symmetry) are given by
[1] x [1] = [2] + [11]
Simply by adding one square to the representation [1].

The possible representation of SU, are found by adding two squares

3
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to (20) in a symmetric way.

Thuswe get

ala io-’fi

+ +

ire. (20)x (20) = (40)+ (21) + (02)

!. ] T

From the dimension formula

15
15 D(02) = 6

p[2] =21 D[11]

and D(40) =15 D(21)

The representation (40) of SUj means that the f our
creation operators, describing the two particle state, form
totally symmetric tensors of rank four. The se tensors can only
arise if the two particle states themselves are symmetric,

Hence we must have

[2] » (40) + (02)
[11] » (21)

In this way we may build up the complete reduction of
any [flinto representations of SU, (Elliott 1958 I Table 1).

The Subgroups SU2 and 1 of the Group SUj

c =

The subgroups SU2 and Ul do not seem to have any
direct physical significance but they will be used later in

defining a set of states classified according to the R3 sub~

group. For this reason the classification of states according
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to SU | and U, 1is considered important.

2 1
Subgroups of SU_3 may, in general, be found by looking

for sets of operators, within the set of SU3 group operators,
which describe a group, i.e. whose commutators are contained

within the set (Racah 1951).

The SU3-group operators can be formed from the U3

group operators by removing the unit infinitesimal operator.
That is by removing H_ or (4 + A+ A )

o XX NAS z2
We introduce the operators

B..=4,, =-A,, .
ij ii JJ

where clearly Bij = -Bji’ Bii = (0 and Bij + Bjk = Bik
The eight independant operators d escribing the SU3 group may

thus be written

Aij’ ik J

Bij’ i,j=Xxor y or z. 2.1
since at most two Bij operators may be written down as being

linearly independant.
From the commutation relation in 2.9 we deduce
- - - . 6 8. e
[a;5oByqle gy 8ip = Ay Oy = Ay Sy Al By 2,158
[Bij’Bk1]= 0 2+15b
From the commutators in 2,15 with 2.9 we can see that
the operators AXy’ Ayx and BXy form a group, the group SU2,

and all these operators commute with the operator (Bzx + Bzy)

..25...



which describes the group Ul. Thus the SU3 group reduces
simultaneously to the SU2 group and the U1 group i.e.

SUB——+SUZXIH.

Irreducible Representations of the Subgroups SU2 and U1

=

The U, group, being of only one dimension, needs but

1
one "number" to label its representations. We shall choose a
set of states which diagonalize the opefator (Bzx + Bzy) and

introduce the quantum number €

Thus

N
s

[
N

(B, *B,5)  ¢(e)= e¢(e)
where we assume now that ¢ implies a normalised state, with
permuation symmetry [f], and belonging to the ( A u)
representation of SU, (E11iott 1958 II (2)).

The SU2 group is isomorphic with the R3 group.

This isomorphism may be seen directly from the operators

in 2.14 by defining operators

= 3 - JE . /I

Yo = EBxy’w+l - Vquy and @y 4/2%¥K 2okl
The w=-operators have the commutation relations

[w 45 wql==w  end {gi;,wo] =ho, 4,18

which are Jjust those of the R3 group.
The classification by the SU2 group follows in a

similar way to the classification by the R5 group, with a
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number /\ corresponding to the orbital angular momentum

quantum number L,

The Casimir operator of the SU2 group, corresponding

to the operator L2 of R3’ is

2"‘ 2-&) @ - @
w = 0, +s1 Y1 7% %

=12 1
=5 B, 2 (AxyAyx + AyxAxy)

We introduce the labelling A\ such that.
w28 e n) =n(n+ 1) Flen) (Elliott 1958, II,(7))
The quanbum number € 1is preserved in the operation
with ®> since (Bzx + Bzy ) commutes with all operators

2
of 8U in particular with o,

2,

We are free to dlagonalize ons more operator of SUZ
corresponding to the diagonalization of LZ in R3' We define
a number . v - such that

B, #eav) =2 v, Heav) = vg(ea)

Clesrly 3  takes on the values A, A= 1, ... =A by
analogy with the R_3 group, that is

v takes on the values 2/, 2A= 2, ... =2A.
With the excepiion of the last guantum number ‘'v!', this
classification of states has been given by Elliott (1958, II).
In the last stage, Elliott chooses to diagonalize the operator

L, = :L(Ayx - A ). Thus a set of states X (E~AK) is defined
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which have the component of angular momeriﬁnn in the z=-direction
a good quantum number. The use of the v~labelling has certain
advantages which will be seen in Chapter L,

So that many of the results obtained by Elliott may
be carried over into this paper, the relationship between the
sets of states g and x must be determined., To do this we
must first deduce the exact connection between the operatsors W

w .y which we have used to describe SU,, and the set v , Vv,
+1 2 07 4

oy o)

which Elliott (1958, II) uses to describe the group.
Defining Wos wy’ and w, in analogy with the
operators Lx ’Ly and Lz of R3 we have;
T - . 4 ok -
w = VE( w ., w_l) = z(Axy + Ayx) =5T7% (Q2 Q)

_ -3 . Lif -1
o, = u/;(w+l+ w_l) zi( Axy+Ayx)" 5L,

i

1

” . 2lag =4 ) = ‘2%7; (Q, + Q)

e
1}

e
it

from 2,17 and Table 1,
Elliott descriles the SUz-group by the set of operators

1
v = =1
(o] 2 Q

and v;*:.l =+ (5-71-3—) Q:S'.2.

Defining Cartesian componembs of V  in the

conventional way as above, we deduce.
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1
v == A2l g v y) =378 (& + Ap) =u
T, s - =
vy| = ﬁl(v#-l "’-'v_l) = 25/6 (Qz Q_z) = wx
vZ' =Vo = %LO = wy.

The primes have been introduced when discussing ¥ since, with
these formal operators, the compoents vq; and a)q were defined
quite independently.

Thus, in our language, the set of states x(Ak)
spread out the representation A of SU2 for which Wy is
diagonal., Because of the isomorphism between the SU2 and

R,~groups, the relationship between the sets x (AK) and

3
#(Av) 1is the same as that between the sets gl!y(IM) and

g, (Li') in this order. Here wy(lm){w Z(LM')} belongs to
the basis of the representation L of R5 in which Ly
{LZ} 'is diagonal.
We determine now the relationship in the Rj-gr'oup.
Consider a set of axes 8', which occupy the seme
positions in space as aset S bubt where the z'=axis lies
along Oy and the x' axis lies along 08.

Iz,x'

.

y,z'

~29-



An Euler sngle rotation of (w/2, w/2, w) ' carries S
into 8'. Olearly, the set of states élf’z,(IM), defined
in S', which diagonalize Lz" are identical with the
set {lry(IM), defined in S, which diagonalize Ly.

i.e (i) = ¢y(IM).

Using the well known transformation properties of angular

momentum functions under finite rotations (e.g. Elliott 1958

IITI, p.29) we have

g () = 2, ot (% Talur, ()
W
L (m 1w '
= Mf DMM'( E,ﬂ)¢y(LM )
te ¢ (1H) = (- )M dM' (n/2) g (Tr) 2,23a

M'

We use the fact that:

Dl (aBy) = o™ & (8) oM
end ab (8) = ()", (8)
(Elliott 1958 III, p.30)

We may consider the SUz-group to be a pseudo Rs-group where

Vx"vy’ and Vz, are the angular momentum operators in
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the S'~frame and W wy and @, the operators in the

S=frome. Thus we can write immediately, from 2,23a,

dav) = (072 ag, /2 X (0K)
K

en
where it must be renzbered that, whereas in the R3 group we

have
i - o ] = 4 t
L, ;1;5(11\1) =M ¢5(1M) and Ly ¢y(IM) M ¢y(IM )s
in the SU,~group, because of the definition of the ¢(av)

and x(nK) , we have:

s ¢(av) =(v/2|¢(av) and  w_x(aK) =(K/2)x(aK).
2 Al

We wwrite 2,23%b as

¢(av)

2 b(A,viK) x(AK)
K

v/2

where b(A,v:K) = (~1)

dK/Z v/2 (7/2)

We shell see later that we are most interesied in the
N
coefficients b(/A,2A:K). In this case the dK/z/\ (n/2)

simplifies so that we may write -

(2n)¢
5ica- 5

b(A, 2A; K) = (-1/2)A j :
(Aa+

-3]-

N
{J

N
(03
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It is useful to know the relation between the mumbers € and
vy and the oscillator gquanta.
From the explicit form of the single particle operator
(Bzx + Bzy)’ we cen see that the single particle state gfs.p(.e )
in the oscillator n-shell has the number of gquanta in the

z=direction (rs) as a quentun mumber since s-

S =2nz-nx—ny sjnz-n 2,27 a

Similarly, it can be seen that the state ¢s.p.( Ev ) has
also the difference (n}c - ny) of the oscillabor quanta in the
x and y direction a quantum number since
v =n < ny
Since the many psarticle operators Aij are linear
comhinations of the single particle operators, it follows that,

for the many particle state ¢ (epv ),

— o
€=3N, -N-= %(3%(1) -n) = {_ e,

_ _ A - - ) = 7
and v =N -N :_>_.nx(‘1) n (1) 2.7y 2.28
1 1

summing over all particle numbers.

In the single particle states the A label is

unnecessary since it is related to €,

ie, A= Ja'(nx + ny) = %(?N - €) 2,2
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Por {the many particle states however, the A\ labelling
is not so trivial. It describes the symmetry of the quanta in
the xy-plane and thus serves to distinguish states of a
representation with the same € and V labels, The numbers €,/
and v form a unique set of labels for a state of the ( Au )
representation,

For the leading state of a representation ( Au )

E = (N ~N -N) = =g
(W, =) (=N ) =2 u(=E)
and v = Nx-Ny:-—- ul(= D)
This then is part of the reduction &U 3 SU2 X Ul found in
a simple manner, € is the maximum € in the representation
and V is the maximm v in € .,

The complete reduction has been studied by Elliott

(1958, II), using Young Tableau which illustrate the representation

of a unitery group (as in 2,12 for example). He finds the simple

results that, within a representation ( Ay ),

E=2A+u,2A-+u-3, .--,"‘A-"ZH

(This can be deduced irmediately from 2.28)

Por sach value of €.-

1
A= %le-zu-el,%le-zu-el+1, ,min{%-(zmuu-e),=6-(2u+m+e)}

_33_
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We notice that for € = € = 2\ + Uy A has the

single value o,

It is useful to preseni the values of 24 sppearing

for each value of €, ina (Au ) representation, in an

array.
= 20,
E=2A+u 2h=
E-3 ‘ 2A-1 24+l
B-6 2h-2 2R 2A+2
&-9 oA-3 241 2641 20%3

ctoe. 2.32.

This is the most general form for the array., In a special
case, parts of the array in 2¢\ may be missing e.g. the
values of 2/\ must always remain positive or zero.

In the next chapter we shall discuss the raising and
lowering operators in a ( Au ) representation, These operators
will be useful in generating other states of a representation

when the leading state is known.
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Chapter 3

Raising and Lowering Operators and the

Classification of Many Particle States

Raising and Lowering (R and L) Operators in the SU,=group

The R and L operators in the SUz-group will be
formed from the operators of the group and therefore will not
be able to alter the € or A labels of a state. From the

commutation relation in 2,15 we see

% ,Bxy ] = - 2AX_'.Y .
'-A-}’x ,BXY ] = ZAyx .

Thus, since Bxy dlav)= vd(nv)

We have Bxy’Axy dlav) = (AxyBxy " ZAxy) A av)

= (v+ Z)Axyﬁ'(AV)

i.e. Axysl(/_\v)=yf'(/\v+ 2) 3.la
Similarly Ay dAv) =8 Av=2) 3.1b

where throughout the chapter, primed states will be, in general,

unnormalised.,
Thus the Axy and Ayx operators of SU2 are the

R and L operators respectively of the V=-label by two units,.
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Because of the isomorphism between the R3 and SU2 groups,
this fact could have been deduced immediately from the well
known properties of L ; (Bamonds 1957).

The normalis-a-tion coefficient of the ¢' states
may be calculated in the same way as those normalisation

coefficients associated with L+l'

—

Thus
w,g $(w) = = /H(ATE(A2 5+ 1) ¢ly £ 2) 3.28
tie. A o) =/(a-B(ar 5+ 1) ol + 2) 3.2b
and B () =/(A+ B -5+ 1) sy - 2) 3.2

The phases have been chosen in accordance with those of Condon

and Shortley(1935)

R and L operators in the full SU3 - group

We wish to find the operators now which raise and
lower the € and /\ labels as well as the v,

Consider the operators Aixz ’Azx’Ayz and Azy‘ The
effect of these operators on the € and v labels may be deduced



immediately from the commutation relations:-

[a,Bp) ==ay, B @, + Byl ] =34,
[a, Byl = 4, B, +3 )] =-3
[AYZ,B xyJ = A, [Ayz,(Bzx + Bzy)] = 3h,
[a, 0B 1 ==a_ [ B, + Bzy)] == 3h

Thus we find

a Kev)=g(e=-3, v+ 1)
A HKev) =g (e+ 3, v=1)
Ayzpf(ev)=ﬂf'(e-3 s v=1)

Azyﬁf(ssv)=9('(e+3 sy v+ 1)

These operators do not, in general, prescrve the , labelling.

We should expect some combination of these operators with the
A and 4 to give states which belong to a definite

Xy yx

representation of SUZ'

We shall now derive the explicit form for the

operators 0+ where

o, #eav ) =4 (e = 3,A% 1/2, v= 1)

and then gquote the results far the remaining six raising and
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lowering operators in the &, Aand v.

Two operators which decrease € and v are

A and A A
yz yx "Xz

From the explicit form for coz (2.19) and the commutation

relation for the Aij (2.9) we may deduce

2 AyxAXZ = Ao A {2 +(1/2}3xy + 3/h} + Ayz{ W’ ..(1/2)3xy -(1/1;3}@2
2 1

= Ay b + Ayz fo® - (1/213xy - 1/k; 3.6

Consider
[ag A+ @ A ] genv) 3.7
where @ is some number,
Then
mz[AyxAJc * a b , 1 BEAY)
Ayx +(1/2)3 +3/h + al

o lo® -0 - cL/zasxy2 ralw® =0/ =111 d€a)

3.8a
since o #epw ) =p(n+ 1) flean (2.20) end Byy denv)

= vf(epv ) (2.21), we may rewrite the right hand side of 3,8a as
{Ayxsz [ACA+ 1) + $v + 3/h +a]

+ Ayz [AlA+ 1) - Zv( v +1)+ al(a+ 1) - Hv =141 =z

¢(epv) 3.8b
=-38=



A\
If 3.7 is to be a state with definite g~value, then the ratio
of the coefficients of A _ A and A in 3,8b must be
yX Xz yz =
equal to the ratio of the coefficients in 3.7. Two values

of a @ satisfy the equivalence, they are.

a, = (A= %v) and @, = ~-(A+ ZFv+1)
substituting the values into 3.8b we deduce the corresponding
A=values, for the function in 3.7, to be

ANy = N+ 1/2 and hy = A= 1/2.

Hence we see

[aja, + (n= 2va Jd(eav) = g1( = 3,7+ 12, v = 1)
Lo, = (Ax 2+ 1)Ayz] FEenv) = '€ = 3,4~ 12, v = 1)
Similarly we may show.

(A Ay, + (A WA, Ideav) = 4' (e - 3, A+ 1/2, v + 1)

L b, = (A- v+ L T4env) = 4 - 3,4= 1/2, v + 1)
Lo by + (o= 2I, 1 Bey) = #'€ + 3,4 1/2, v + 1)

[ by = (A W+ )8 T #lenv) =g + 3,n+ 1/2, v + 1)
[Ahy + (A Wb, Wenv) =46 + 3,A- 1/2, v = 1)

[AzyAyx - (A= b +'1)Azx W(leav) = g'(e+ 3, A+ /2, v = 1)

~39-
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The expressions in 3,9 and 3.10 are the most general forms
for the raising and lowering operators. Any stabe
#'(E'A'v') can be obtained from a given state gEav) by
a suitable combination of the operators in 3.9 and 3.10.

A glance at 3.9 and 3.10 will show that +the

operators are very cumbersome to use as they stand., Powers
of operators must be understood since the function of A
and y within the operators will change its value after
each operation, We are most interested, in this thesis,
in generating states gEAv) from the leading state of
a reprosentation { #( 2 p)b

By observing certain rules on how the state is
t0 be generated the set of R and L. operators may be
simplified.

States ¢'(EAv) generated from the leading state  g()

We notice that if a state &'Eav = 2/) can be
generated from the leading state, any state g'E€av), with
the same € and A labels, may be generated from it by powers
of the operator Ayx’ Thus we meed only use the general
R and Ii operators in 3,9 to generate a state of maximum v,
With these restrictiocns the operators simplify.

From 3,9d we see that if v = 2A then

g(e=3,A=1/2,244+1)= 0

since the maximum v in this case is only (24 = 1),
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Thus we deduce

.Ayz gf(EA, Vv = ZA) = A:x:z F{(EAV = 21\) 3.1

Substituting this identity into 2.,9c we sce that

A dEenv = 24) = £ (e~ 3,A+ /2, v = (2a+ 1)) 3.12a
Defining now
E-l.- = AXZ .12b

any state with maximum v for a given € can be generated
from the leading state by suitable powers of E+. That is
Y #(0n) = #'(@n+ p <p, 1/2(p +2), p + D) 3.13
since #(m)=Fdn, €=2N+ p, A=p/2, v =p)
By referring to the array in 2,32,which shows explicitly
the states of maximum v for each A value vithin ane,
we see that the operators E+p‘ generate the states on the
extreme right hand side of the array, from the leading

state at the head,
With v = 2A, the expression in 3,9b simplifies %o

g = = ! - bt = bod
[ A, = (CAx 1)Ayz 1€y = 24) = #'(e= 3,7~ 1/2, v = (2A~ 1)
3.4
The operator in 3,14 is not in a very canvenient form as
repeated application requires a change in the coefiicient of

A,
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For example, we must write .-

[Ayxsz - (2/\.)A ][Ayxsz - (2A+ l)Ayz 14(En,2n)

B(e=6,4=1,27 =2)

The operator in 3.1k however is equivalent to the complete

operator form

E_= [AYXAXZ - AyZ(Bxy +1) 1= [4 s = A (2a+ 1)] 3.15

when acting on a state with maximun vy in /.,
Since E_  will aelways generate a state with meximum v din
/\ » the complete operator form may elways be used, Hence,
repeated application of the operator in 3.1k may be written as

powers of E_, e.g.
%(E[\‘Zl\) £(e=-6, A= 1, 2/~ 2)

Clearly now, any state with maximum v in A can be generated,
from the leading state, by a combination of operators E.__qE_l‘P .

Thus
EBP Jn) =g (@n+ p=30+a), $pep=a)p+p=~a) 316

The leading state generated from a state dlesy = 24)

We now consider the inverse operation to taks a
state FleAv = 24) beck to et least an unnormalised form

of the leading state,

0=



PFirst consider the operator which will take a
state on the extreme right hand side of the array in 2,32
back to the leading state g'(n)

From equation 3,104

(4, A0 = byy) #E€A2D) = #'(e+ 3, A 1/2, 2/ 1) 3217

where /A dis the meximm A ine€ , Since A is the
maximum A ine , a glance at the array 2.32 will show that
the state g'(e+ 3, A+ 1/2, 2/i= 1) does not exist i.e, is

identically zero. Hence -

by 4L 2R) = A #(Er 27) 3,18

Substituting this identity into 2.10c we see that

A, #enr2p) =g (e+ 3,A=1/2, 2/, 1) - 3.192
Thus by defining
F,o= &4 3,190

the operator F_p will have exactly the opposite effect to

g’ Not only this, PVt = 4" =4
+ ° : P e 2X X%

latter reason that we prefer to operate on ;J(M) with E+

= E+. It is for this

before E_.

The inverse operator (F+) to that in 3,15 arises

from that in 3,10b, Thus

R =AmAxy-A

+ zy(B _ 1) .20a

Xy
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where F+ ;{(E/;,v = ZA) =g (e+ 3ot 12, v =2/ 1) 22200
Notice that in this case F. #E_.

P
The complete inverse operator to E_.qE_._ acting on the

p_q
leading state ¢g() is F_ F, , which will take the state
E-qu S0) back to an unnormalised form of g(H).

Normalisation coefficients for E_ and E+

Since the inverse operator of E+ is also the
adjoimnt of E+, i.e, E++ =F_ = (E+)~l, we are able to
determine the normalisation coefficients NP where
EP #(m) = Np,z{{(27\ +p=3p)y, (Lp+ i Js b+ p] 3.21
We adapt a method used by Racah (1951).

I 4 = #(M), we define states g, such that,
E%pfo = F(I‘L = ng{l
B A=

Choesccocsoees ete. where the mprimed

H]

N,

#'s are normalised,
% i |- f =0.
Introduce the numbers Py where F_ p’j = ”;j"j,j—-l’”o 0. 3.23
By knowing the p.a’s s it is possible to determine the
normalisation coefficient Np for -
p - : = d’ 2
E+ dO - E+ ¢P“1 ﬂp i—-—lﬁ
! =N = 1,
But ﬁp A dp where (pfpf ,dp) 1



Thus by taking the adjoint of 3,24 with itself, where

() = B ) = (g ) B = () E

we have
NN =] )= (F IR | )
= pp p-’-ll ‘”'p:- ) = NN
Thus N:; N, = pphg oo }LIN; N

If g is normalised, N'N =1

—_—

e

j.e. N*N =
o p !iH;
J=1

To determine the p 3° we first derive a recurrence reélation,

From 3.23, we have

Fj5+15”3+1¢5

but F -/‘”’5.*1 F_E+¢5

it

Azxszp’& from 3.12b and 3.19b
[Azx’sz] g 5 + A‘x.zAzx% ;;

B ng{:_j +EF _;55

Bafi * kP

Now B, =(1/2) (13ZJC + Bzy) - Bxy}

it

and (B, + Bzy)p'j' = (22 + & = 354,
By %y = (b 34,
from the relations in 3.22, and 3.13.
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We find, then, from 3,28, and 3.29,
By B = (g + A= 25)dy for any oy

Hence P'j-z-l = F’;j +A=25
From this recurrence relation and knowing By = 0

we can deduce ;-

H.ja.—.:](-,j+1+7\)

Substituting this value in 3,27 we see that the normalisation

coefficient in 3,21 is given by

R
N*N = ! - 3 1
b [ 3=d+21+ A)
J=1
Notice that in 3.23,F is used as the inversc of E+ whilst
. +
in 3.25 we use the fact that E+ =F_ .
4s we have already obscrved , F, £ E._+ , and so this
approach cannot be used to calculate the normalisation

coefficients qu where
E g( oA+ p = 3p)y n/2 + /2, b+ B)
=M g+ p=3p =3q)y /2 +p/2~a/2y = +D~q)

We therefore have to resort to the straightforward method of

caloulating explicitly
@\ + gy w2y b |@F) @2 EIED | 28+ py p/2, 1)

= Nl; Np M&p qu for each value of p and q .
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This may be done using the commubation relation of the Aij
and making use of the fact that any creation operator in
g€y A or v on the leading state #(u) gives zero.
For all the normelisation coefficients qu required
in this paper, and calculated in the way indicated in 3,34,we

£ind that they are given by the expression.-

g9
Mé‘qup: H k(p =k + L)(p+p+2=-k)(A+p+2=k) 3.35
k=1
This is verified for all p and q with P+ g=2 or 4, Thus

we have the result, at least for p + =2 or 4 and all p

D
{HJ(-3+1+7\)ﬁ K(p =k + L)(p +p+2=Xk)x

598? 400) = ei“/
Al =1 k=1

A+p+2- k}j?»x
ge=2n+ p =300 + A)yA=p/2 +pR = a2, v=p+Dp=q)
3,36
The phase will be chosen to be +1 for convenience i.e. 5§ = O.
With this convention end that in 3.2, 21l states of a representation
will have real and positive nommalisation ococefficients if the phase
of the leading state is real and positive,

In Chapter 5 we shall use the notation :-

E(NJ' 1= AV)
to denote the operator which generates a normalised state p’((}\p)ehv)*



from the leading state ¢(Mu), in the wey indicated in this

Chapter, That is, if € =2x+p = 3(p + a), A=3/2(k + p = a),

v = 2A= 2r,

then: -

E(wenv)dOn) = 45 EEP 40p) = gowenv)

JX

P M_N
rgp dp P

where Pr is the normalisation coefficient derived from
«2C

Bqguivalent Opersators

We shall find it useful to represent such operators
os Ay;.‘; E_2 &P, acting on the leading state, as combinations
of the operators Lo ’ Lil.

We notice that, from 3.la,

Axy ¢(A’V = 2_/)) = 0

Hence
Ay #(a,v = 2n) =4, = Axy)p’(zs,v = 20) = = iL #(a,v = 21)

(Table 1,Chapter 2)

Since [Ayx,-iLo] = [Ayx,(Ayx-Axy)] =BXy

we deduce '~

i

bz By v = 28) = b (= 3L )A(ny = 21)

]
—~—~
L
!

:L'Lo)Ayx + Bxy) dlagy = 2p)
(- L02 + 27) dh, v = 25).

48~
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Similarly for any power Aryx
Since E_% E+P A() is o state with meximum v in
A=(1/2(p + P = q), we may replace the Aryx part of the
operator (Aryx E_4 E+P) immediately in terms of I

operators and constants,

The operator E_.cl E+P is merely a sum of products

of the form Am AB 4Y ., As well as the eguivalences in

yx  yz xz
3,38 and 3,39 we have from 3.4b and 3.4a :
4, #n)

Hece A, #(w)= (b, = 4. ) #0w) =J(L20L ) + I y) #(w)
A P0u) = (= 4, 0) FOn) = = 1 [Q/2T, 5 = L) FOv)

- g(m) =0

Thus from 3,39 and 3,41 we may deduce the equivalences of any
a B,y S o s
product Ayx A % A <z and hence E_ E”, knowing the
commubators of the A,, with L and L .,
i o] +1

In Tables 3 to 6, given at the end of this Chapter,
we quote the expansions and equivalences of certain operators

A ﬂr EEEf These operators will be of most use to us in the
later Chapters.,
In Table 3, the expansion of the operators AyI;CEgEE
is given in terms of operators of the form

4 B y ] . ] s
A yx A yz A 2z Table 3a contains only operators which do

not change the e-value i.e. p + q = 0, Table 3b contains

-} 9~
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operators which lower € by 6,(p + g = 2), and Table 3c has
operators with p + g =4 i.e. they lower ¢ by 12.
As an example of how Table 3 may be read we quote

(from entry 311)

3 1 B2y 3
Ayx E, B, Ao Ao = (pw 2) Ayx Ayz A,

In Table 4 we list the equivalences of the operators
appearing in Tables 3a and 3b using the results of Table 3.

These equivalences are written in the general form:-

e

where the ai's are functions of Lo only.

1]

2 2 2 2 2
al(L+l + L—l) + 8’2(1'-*-1 - L-l) + 8 L+ 1,

Thus, under the entry (002), we have

2 2 2 2 2

E&_E(l/gxl#l + L.l) “(1/35 + Qg/sz + 7\)
The equivalences of the operators appearing in Table 3c are
too cumbersome to be written in one table., We have thus
split up the equivalence—reduction into two parts. In

Table 5 we list the equivalences

r nd _ I 3 2 2
Ay B Ef = by A+ by A A Do A A
3 4
+ bh Ayz AXZ + b5 Ayz

where the bi are functions of Lo only,

~50-
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Thus ,under the entry (113) s

1,13 _ .2 4 . 3
Ayx E_ Ez = LO A+ i(p + b')LoAyz Ko+ 0
In Pable 6 the equivalences of all operators A;IZ A;lz with

m+n=14 are listed. These equivalences are of the form.

4

m n 2 2 2 2 A
A =d + 4, (L+l + L_1)+ a (L+l - L_l)+ a, (L+l + L_l)

yz Xz

L 4
+ & @, - L',) 3:45a

4 2
where di =049 L7+ Cio L™+ ©i3°
and the oij's are functions of LO only.

Thus, for the operator AL'L 2
Xz
¢ 2 2
= {-1211°+ {02L°+3 (A=-1)1
o

Explicit form for the single particle states

The single particle states in the oscillator n-shell
are symmetric tensors of degree n of the creation operators
e.i+, that is, they spread out the representation (no) of
SU3. When p = o, the A-number is given directly by the
g-number (see 2.31), hence the single particle states are
only distinquished by the € and v labels, In view of the
relations in 2.27, we see¢ that the single particle oscillator
well functions, which are labelled by € and v are just those
which may also be labelled with nx,my and nZ: that is, the

solution of the harmonic oscillator equation in Cartesian

coordinates,
~51=
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The six single particle states in the oscillator

n = 2 shell are given in Table 2, together with the shorthand

notation we shall adopt for them,

Bxplicit form

Table 2
Total number | Shorthand
of quanta £ 2/ v Notation
2 4 0 0 ,a’o
1 1 1 ;f+1
-1 p/-l
-2 2 2 ,z!+2
0 %
2 g,

B GG, G /2
2

7GR, ()R, (R)o™P /2
ol

7 (R )F( )™ /2

RO (OR( o /2
.2

B (R (R ()P /2

. 2
A ()E,( B ()™ /2

In this table J-c', ; and z mean

*t, Y /o and Z/b respectively

with b the oscillator well parameter and p2 =(1/b2)(x2 * yz + zz)‘

i ()= L 3
Hn( ‘ r\/ b2 n! ,ﬁf Hn( )

with Hn(;c‘) the Hermite Polynomial of degree mn.

3.48

The phase of the #'s has bcen chosen to tie up with the

phases of the raising snd lowering operators in 3.2 and 3.36.

-52-~




The matrix represenetation of the basic operators

Ayx’ Ayz and sz s Spread out by the single particle states,
have been given in Tables 7. These matrices will be seen

to have great use when trying to construct a many particle
state of meximum orbitel symmetry, #(» weAv), from the
leading state #(), using the operators Ayx’ E_ondE .

Tables 7 have toleiread downwerds., Thus, from

Table 7a,

AScz@/o= ﬁ-‘ pl+l

Construction of antisymmetric states, with maximum orbital
symnetry, classified according to SUj, SU2 and Ul

From the work on raising and lowering opersbors,
states of a (7\;1.) representation may be generated from the
leading state of the representation. The leading state of
the (unigue) representation containing the maximum  €walue
in a given configuration is easy to construct. This 'leading'
representation will be the one which meximises 2A + p (2.30)
and it has a leading state which is determined solely from
the € and v values i.e. for this state, the (Pu) and A\
labels are trivial., The leading state of other representations
can be found by orthogonality relations with the states of the

leading representation.

~-53~



The k=particle state of maximum orbital symmetry,
which has maximum € and v valueg, is formed by putting:
k particles into the single particle orbits,in the way
shown in 1.7 ,£illing those orbits with the greatest value
for € and v first. Thus, in the ds=shell, four particles
must be put into the ¢; state before the filling of the
¢;l etc. Because of the relation in 2,28, the € value of
the k=particle state is bound to be a maximum and the ¢
value will be a maximum for this €.

For k = 4, only the ¢; single-particle orbit
is filled. Thus e=4x 4 =16, v = L x 0 = O, The only
representation (M), which has a state with € = 16 and
vy = 0, within [£] = [4], is (80) (Elliott 1958, I,Table 1).

Hence :-

' ([4] (80),16,0,0) = (£
using the notation in 1,6b.
When k = 8, both the ¢; and ¢;1 orbits are

filled. In this case'-

€ =(4xi)+ (bx1l)=20andv=(L4x0)+ (bx1l)=14

i.e. () =(84\(Elliott 1958,1,Table 1).

Hence

P[] (84),20,2,) = %‘E%' < 2 {55, Ve

~5lym
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the eoupling of the charge=spin states being trivial.

Other states Q(()\{L)EAV) of the leading representacion
are found by applying the appropriate operator A;x EE EE
to é(?\y-). In practice we expand the operator into a sum
over operators A;cx Agz A;z (see Table 3) and thenproceed
to £ind F((W)EAV) by using the known relations of the
operators Ayx’ Ayz and sz on the single parvicle states
(see Table 7).

It is couvenient to represent the states in terms
of Slater determinants for these operations to be carried out.

For the nuclei which we shall consider later {i.e. k = 2,3,4

and 8} , these determinants may be written down immediately e.g.

(418016 00) = I/ | £,(1) 4,(1) 4,(2) £,(1)

4.(2) i

i I
i i

!
—a

A - A

+‘
where y{o(l) means that number ‘one' particle is in the

orbital state ;JO and has isotopic spin projection +1/2
(neutron) and intrinsic spin-1/2.
We shall write the normalised deberminant
(1)
NS
the order of the charge spin functions being understood.

1]
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The bracketed number will give the number of such
determinants which sum 4o give a maximun symmetric orbital

state.

Thus, the totally antisymetric state |® « « B | (h),

with orbikal symmetry [£ 1= QL] , is given explicitly as

lccococﬁl(h):'cxococﬁh [mocBocl+iocBococ|+ I8 @ « x|

Hence, for example,
2

B
@ll((BO) 10, 1, 2) = =& $1%80) where the normalisation
LI7 is deduced from 3,3b

2
A
=22 s%g0) (rable 3)

LJ7

But -

TN R AP A R
R VR AL AT R
= 48 G2 AN v 2 UL 4,0

Thus we deduce !-

11 - 1 NRY

£ (80) 10, 1,2)A/W &L £ T + B 4,0
the obvious normalisation of which provides a check on the
calculations above. In the k = 8 particle problem we
shall have -~

QJ.](81“*)=|'®/op/o¢, ¢0ﬁ+1¢+1¢+1¢+1l(1)

e}

~56~
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Thus, for example

2
B
#(84) 14, 3, 6) = —=FK84) 3,36
4|7
Az 11
= =225 (84) (Table 3). 3.53
47 ‘

But
AT RN A A TR VIV RN ke
* "élﬁo ¢o ﬂo 'do ’5+1¢+1p’+1¢4’2 I(M}

The determinants in the first term all have two columns with

the same orbital and charge—-spin states and so are identically

28X 0, Thus Aiz %(811-} =&/2 {$/ 2' }JO ‘!O ¢O %_Fl ¢+l %_}.1 ﬂ{-i-l ¢+2, (1+>

s 2 V2lh 4 4 By by Al YR

there being only four non-zero determinants of
'%ﬁo do 8:!} p’+1 ¢’+1 p,-rl p’+2| (4)5 - Mo p,o ’Z{o ¢+2 F{+l ’z{+l ¢+1 P/+1|(4) 3:02
Hence we deduce :-

L) 14, 3, 6) = LT - (B4 ) E W+ 6L ST 5,56

Such states as (;z(i P,2+1)11 in @1'%(80), 10, 12), and
(B 400 (P an g't(8) 1, 3, 6), ve shall



call configurational states. These states have [f],e and

y as quantum numbers but not (7\;1.) or . The configurational
states will be written @i( € v) where i is some arbitrary
label,

In general we have

WOw) ) = ) ps((w)eav) a(ev)

]
Casimir Operators of the U3-gr-oup

We shall define a Casimir Operator to be any

operator of the group which commutes with all operators of

the group.

It can be seen thai the operators

0, = 1/2 > 4 byy by
i,J
and
Cp = > big Py Bes
i,k
ape linearly independent and commute with all operators
qu Of U30

The explicit form for the operator '51, of the
group-SU%, obtadned from Cl by removing the unit operator
(Axx + Ayy + Azz) ist-~

2 2 2
C. = )
1_1/6[B_+B +B ]+1/2[A A +A .ﬂ.]

* 1/2 [Ayz 2y Azy Ayz]

+ 1/2 [Aﬂ A+ A Asr.l

~58=-



This operator corresponds to the Casimir Operator formed

from the tensor prescription (Racah 1951 p. 30 )

~

¢, =(1/12) [(Q.Q) + 3(L.1)]

where ( . ) denotes a scalar product.
States of a particular representation (NL) of SU3’
diagonalize the Casimir Operators., Ve could equally well
have defined the numbers A and p as being associated
with the eigenvalues of El and E? Just as L 1is
associated with the eigenvalue of L2 for the RB-gr'oup.

The eigenvalues of the E 's are the same no matter
on which state of a representation they sre operating. Ve
thus choose the most convenient state - the leading state =

to determine the values of (Cl> in a representation.

Writing 3.58 in the more convenient form
~ 2 2
6, =0/ (B, +B,)" + 38, 1+0AB, +3,)+3, ]

+ Aﬁrx Axy + Ayz Azy + sz Az.x

we deduce, since Axy ) = Azy d(n) = A g(np)=0

(see 3.38 and 3.40)

¢, #u) =@/ DZ + 1% 4w+ 30 3] 40)
(2,16 and 2,21)

=(6)) 5, #0¥)

3.6



The eigenvalue of (32 in a (M) representation may be

found in a similaxr way but, as yet, no physical
interpretation has been given to this number,

(See Chapter 6, for the use of the vperator Gy )
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: . r g . 2 1
Table 3. Expansion of some operators Ayx E: Eﬁ acting on g(\u) (for example see 3.47)

Table 3 p+ q=0 Table 3b p+g=2
lrqp | 1 ;X A;x rap| A, A;xAiz Ag:x A o | By A Ay Ajy; oy ;-z A;Z;z
000 1 002 1
200 1 202 1
L0OO 1 L0 2 1
111 1 -(u + 2)
311 1 -(p+ 2)
020 1 ~2(p + 1) 1)
220 1 -2(p + 1) p(u+l)




P

G (il

(o) (v )=

(T )(")9

(T# )=

ofo

(z+ Y+ )ri-

(e+t)(THd)g

(e+n)e-

T¢T

(g+1)(2+1)

(¢+)e-

i

222

Am+nVAN+:W~

(g+)e~

2c¢o

(o)

¢ T¢

() -

¢TT

oW

24,

gx zZ£ x£
Yy Vv ¥

zx 2L x£
2 2 2

2x 2k zx
2 4 ¢

zL x££
¢
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I AN+:+<Nv.mﬁl ml
T z
2 3
- I+
(T;T+ N_d (z+1)2
-, T+
("1+ 1) Z- ITT
T (2 )iy (¢g=rizT-rig+ c)e (z-11g-y) | 2
2
N.H ANEV:N. (2+1¢) 2
T T, 4
(T+55T) (g )iz (g+ig)- z 2o
L (z+1)X (Yg-z+1)2 B
7 (24)% - ¢
T T+ .
(71 ,1) (2+)% 2- 202
T ¥ z
2t %=
=, T+ M
(7 T+ 1) % 200
T (2-n)rg (w-rig)z- I 100
T Y = 002
o) 0 o 0 Q
T T N.H m_H +~_H mﬂ dba
(¢he¢ oos aTduexs uw J0J) i aTamy
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Table 5 (For an example see 3.4k)
rapl| B¥ | 1) 12 I, 1
004 1 A
204 -1 (p+) Az;cz
Loy |l 1 ~2(3u+8) 3(peh ) (pe2) A’,'cz
(113 -1 2,
1(p+) Ay Aiz
313 1 =(3p+4) Aféz
-1 (p+ly) 1(ul ) (3p+h) Avs A;zz
022 -1 ~(p2) Aiz
i2(p+3) Ay A:%z
(u+2)(p+3) Af,z A,fz




(2=r)(T-r)A(T+)

Amlnvaﬁ+uv1m|

(z-n)n¢

(o) (= Yo

(=r1g)(T+ ) e

(T+r)rig-

(r=19)

(T+1 )=

AN+1VAH+:v1ﬁ

(g+)rcr-

(z+) (T4 )¢-

(2+1¢)

(2+1)¢cT-

T T¢I

X 24

(g+r) (2 )

()=

(¢+)rzt

Am+:VAN+:v|

(¢+)z3-

T ¢ ¢

T

T dba

(*p3uod) G STqEg
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Table 6 (For an example see 3.45)

Ll;- L2 .

AL;CZ ‘% ' -‘E'Li - f(h}%-ﬁ) %Lﬁ-%(BA -9)L§+3)_(;g-2) 1
-t 12+ 36-1) 2 12
o Lf-l I'-2-1
3 Lﬁl LL_Fl

yz A‘:’cz "iz, ik, 211:3 + f(zz-l)u:,
?*.iLo Lil I‘.z.l
3 -%iLi% Al (Lil I'El
N I'l-:l Lﬁl
bo || B | 42 il 220 (pu-2)

3(p=b) 12, + 12
Lo Lfel I'?.l
= Ll-::l I‘ffl
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Table 6 (Cont.)

L}+ L2 1
5 5. 3,5 .3 s
Ayz A —ZlLO 41L0 + 4(2)\+ 2u 3)1LO
-‘ziLo
4 -1 - 3+ w - 201
25
b 5035, 5 1, > ,\
£, 2 2122 (4pitn-5) - 21128819 )L+ 3 (Aar) (-2
1 -%L§-3(A+u-1)
LO
%




Table 7. Matrix representation of A ,A and
——— Xz ¥z

(For example see 3.47)

>

A

J2
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Chapter L
An Integral Form for the Wave Functions

The nuclear Hamiltonian, with central force alone,
is invariant with respect to rotations of the orbital co=
ordinates in three dimensions, The true eigenfunctions
therefore, spread out irreducible representations of the
group of rotations in three dimensions (R3)i~e. they have
the orbital angular momentum (L) a good quantum number.

From the operators of the Uj-'-g'oup (2.2) it can be
seen that R3 is a subgroup of SUB' Orbital states may
therefore be classified according to SU3 and R3 in the
same way that we have states ¢ classified according to
SU3, SU2 and Ul' The sets of states classified in the ‘two
different ways span the same space and hence a relation
exists of the form j=-

AE] (wdeav) = D al m Ay, @' )y ([£] (p)diE?) 4.1

a L'K!
where both £ and ¢ are normalised.,

The a's are numerical coefficients and the ¢ 's
are the states classifed according to R3 with the
operatoxr Lo disgonal. States with the seme L'K' labels,
in a representation (M), are distinguished by an

arbitrary labelling .
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We define the «~label in the expansion of the
leading state i.s.

ALl u))= D al w K'Tt) p(le] Op)Kriie)
L'K!
Other states ¥ may be found by suitable operations with

the Rs-gr'oup operators. Thus -

P
I
In 4,2 the ¢~states are defined to within a phase

HKEK'L'K') = g(K'L'K'p)

depending on the phase of @ and the definition of the
aswcoefficients, The ¢g=states will be defined to be
exactly those defined by Elliott (1958, I,(24)) in the

equation 3=~

K Ie1 OwiEr) = > olwrw) ¢(flpwx v &)
where L
x ([£] Ou)') =x([F1(p) =22+ p, A= p/2, K') and

the o(>u K'L') are positive for non-negative K, Since

the relation between the ¢'s and the x's is known

(2.24) we have: -
AT (w)) = waz By K1) x(£] (o )xt)
= Z b(/2 my K')o( n K'It) p([£] (p) k' It K')
Ll

da(n K L) p(le] () K 1t &)
XK'

from 4,2



We deduce
al & K L') = b(p/2 py K')e( 2 K' LY)

In order that ¢(K L M) = ¢(=K L M), the coefficients

o( 3 =KI)= (=)™ o( 3K L) (Blliott 1958 II sec. 6)

Since b(p/2,n,K) = b(p/2 p ~ X) (2.24), we find

alw & L) = (=)™ a0y K 1)
The relation in 4,2 is true in any frame of reference, in
particular in a frame rotated through Euler angles

s B, y (=0) (Edmunds 1957, p.7) Thus

e10uN = > alw k' 11) p (] () K* L' K1)
L'k
where the states are now defined relative to the rotated

frame Q.

With the relationships
/ £ ]
Ll
2 R ial = K! trn
¢Q(KLK) E {g (Q) p(RELK" )

<
X" | xR

(Blliott 1958, III p.28)

and
s(IL') sQK" ) s(XK')
(2L + 1)

oL ( L" -
[gre (B =

KllKl
(Bdmunds 1957, p.62)

we find, by multiplying L.6 by @ﬂg(a) and integrating

over the angles 1 , after substituting 4.7a for ¢fQ:
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[ #.(I£1w) ;Bmi(m an=‘? = L) HL £l (K L)

2L+ 1

where
Idﬂmeans 'é—l-é- jzc;a fﬂsinﬁ ¢ B J.zg 14
T o 0 0

Equation 4,8 is very similar to the integral form of the
'}f-sta:bes given in terms of the X=states (Elliott 1958 IT (21).
Elliott has shown that by using all the states xp([£1(nK)
with meximu € in a representation all states ¢ ([£]( M)KIM)
may be generated. Since the state géﬂ[ﬁﬂ Qp)) may be
expanded in terms of all the states §S[fK7P)K>: becattse none of
the b=coefficients can ever be zero, it follows immediately
that the integral in 4.8 must generate all states of a
representation,

By using the y=functions as 'intrinsic' states in
the integral, it was found that a different state is needed
for each 'bend' K.  With the g~function however, only one
intrinsic state need be defined for each representation and
that is the leading state.

We may express the representations (L) of R3
appearing in the (M) representation of SU3 in the simple
way (Elliott 1958, I, (24)):-

K=min (2¢), min (Au) = 2, .4s , Oor 1l

-7 3-
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while, for each value of K,

L=K,K+ 1y, eue 5 K4 max () 4, 9b

except when K = 0 when
L = max (7\}1'): max (7‘}1‘) =25 see 3001 L.Oe

These relations may be deduced from the explicit
caloulations of the o¢( KL), defined in 4.3,or the
a{M KL), defined in 4.2.
The appearance of a bandmiike structure for the ¢ ~states
is clear from the relations in 4,9. Each band is labelled
with a Kenumber, Within each band, states with definite
orbital angular momentum appear in the way that angular
Momentun states appear in a rotational band. In this
classification scheme however, the bands are cut off at some
upper limit while the rotational bands extend to infinity.
In this analysis, the K-label in the ¢=states is
not a proper quantum number in the sense that it describes
a classification with respect to some group, States with
different K=labels are not necessarily orthogonal,in fact,
it is possible for one state to have two different K-labels,
The K=label will help to disvinguish different

states with the same angular momentum,

/.



The expension coefficients a( M KL)

The a( A¢ KL) may be derived explicitly from
the relation in 4.5a. The calculation of the b(p/2, p K)
is straightforwerd using the closed expression in 2,26,
Recurrence relations derived by Elliott (1958, II, sec. 5),
enable the o(2w KL) %o be calculated without too much
diffioulty.

A more direct method for calculating  the
a=coefficients has recently been found (J.P. Elliott private
communication ).

Since the af‘coeff‘icients depend only on the group
properties of the representation (M) of SU_3 s the [f]
label for the states V& # will not enter into the problem.
This has already been indicated by the labelling of the
coefficients. TWe shall therefore, omit the f f] labels
in the following proof.

On forming the product: -

(#e) | ¢ (), KLE')) a( 3 K 1) 4,10
and expending the #([f] ()) using 4.2 we find:-
(#Ow) | #(OwE LE")) a( %X 1)

- /;_f & K I ) (p(Opd kTt ) | $((p)KIK' )) al 2y KL)

K)o k) (POWRTE) | ¥ (WER)) h1
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The last relation coming from the orthogonality of the

¢ matates with respect to the proper=gquantum numbers

representing the angular momentum (L) and its projection,
The a=coefficients are given directly by putting

K=K in 4,11, Thus

(kL) =(don) | ¢ (OuK'IE)) af 3 K L) 412
Knowing the a=coefficients from 4,12, the overlaps of the
¢ =states may be deduced directly from 4.11.
The problem reduces to the calculation of such
functions shown in 4,10,
Defining the rotation operator R(Q) by R (O = 4,
we have, from 4,10 and 4.8 ;-
@) | p(Op)ax")) a(w KLY = (2L + 1) ] ;@I@@w; Rl gOu)er n.1s
We appeal to a particulearly simplel\-eaféplicit form
for the #(Nu) in terms of a product of one quantum,
normalised states with symmetry (’u). There will, of course,
be a number of such functions corrcsponding to the ways of
ordering the numbers 1,2, ... (2p + A) in the tableau of
(a). Since one such arrangement can be obtained from
another by a permutation, the overlap <y!(7\p.) {4}(?\#)) in
4.13 will be independant of which one we use. We therefore

choose the most convenient.
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A state ¢(AO) made up from single particle states
¢(i) may be written:~
$(20) =¢,(1),(2) ... ¢,(2) ko152
where ¢>Z(i) is a single particle state with one
quanta in the z-direction and zero quanta in the xy-plane

i.e. ¢ZN Z
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The state @#(Au) has less than full symmetry and

s0 a representative state may be written :-

v = B, 004, 2) - 4.8, )R (50 () = £ G, ()} ...

..J}{;fz(zu. 1) 4.0 - 4 (2u- 14 (@, (2 1) oo (421 ku15b

Now %(a(?\p) will be the pxiduct of all rotated single
particle functions and hence QJ(M),{R(’”‘;»’(M)} radjuces to

a product of such matrix elements asg
(;#z I(pfz)n> = cos B 4,162
s (3,004, - 4, (1), @)] fa, 04 (2) - 4,()4,2)))

= (cos wcos y = cos @8 sin « sin ¥) L,16b
which follows from the explicit form for the ¢'s.
Hence we may write:-
(yf(m)f p’Q(?\p)) = ( cos « cos y = cos B sin « sin y)"(cos B)?‘ 4,17

Substituting 4.17 in 4.13 we find:-

@Ooully (WKL E)) 2Oy 1) = (2L + 1) [ Fl(@) x
(cos « cos ¥ = cos B sin « sin v)¥ x (cos 6)7\ an 4,18
L e s ===
Since @ Q) = e iK' Y dKL,K(B) (Bdmunds 1957, L4.1)
K'K
and
H n
_ . . B $(~
(cos « cos § = cos B sin « sin y) = Z #:Ln-ﬁ'x
n=o
(sin « sin y cos B)*(cos « cos y )™ 4,19

-78-



by a binomial expansion,

we may rewrite 4.18 such that:-

oy um)) ain 1) = L2 1 O

neo (g = n)!

A G&') B (4K) G (NK'K) 420
where :=-

2T K n -1}
An(pK') = J dw e sin"« cos™ ™ («) 4e2la

am iy n p-n
Bn(p.K) = o.{ iy e sin gy cos™ (y) 4.21b
o (NK'®) = _ [ +ld(cos B) &\ (B) cosTh L. 21c
n T -1 drx (B) Y=

Thus, by substituting 4.20 into 4,11,a closed expression for

the a=coefficients and the overlaps may be found,
of

The functions An and Bn are/\the same form and the

integrals may be performed in general. It can be showmthat *=

a(Er) = 2milemn)i 5 )77
(1)* 2F P pi(n - p)!{&-z:j—q- - p)!fﬁ—g—g -1+ p}i

where P is summed from mex | O,-23=(2n -p =K1 to

- K1
min[n, LK g,
2

In the actual evaluation of An it has been found useful %o

use the expression :-
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4 I \
o ()= 2E=mlCl (o, Dy)f S O NN

(1)tmr e
! - 4
where ‘1 = E;i;lg- s M = E;——lg- and D = Jg- » D =-Ji R
2 2 Yy Y x

It can easily be seen that the'expansion of 4.22b yields the
sumnation in 422a,
No general expression has yet been found for the Gn functions
but it is possible to evaluate them in special cases,

When K =K' = 0 (implying u even), d:c[;O(B) = PL(cos B8)
(Bamunds 1957. ©.59).

+1
= Mn 2
Thus G (ALOO) = _uf P (x) =™ ax, L2
Expanding x7‘+n in terms of Legendre functions we find:-
It
' t 1 ?
xp\.,,n - L' + 1)27 (A + n)ii(d+n+ LY) AL L'(x) L2k

T (o A+ L'+ 1) {(A+ n=-1t)218

where L' is such that (A + n + L') is even. (Whittaker &
Watson 1927, p.310).
Thus, from the orthogonality relations for the Legendre

Polynomials, we have :-

2P n)t (G e n s LAY
A+n+L+1)(A+n=-1L)H

éHKRLOO) =

if A+ n+ L is even

= 0 otherwise. ' 4,25
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In tlese particular cases the A and B coefficients simplify

tos~

- te - - re
'%1(}"0) =]%(P'O) = (n=2) (p=n=3) 27  for n and p even

it
= 0 otherwise L. 26
vhere pil=pp = 2)@p = 4) ... 2. etc.
We can, in this case, using 4.12, write down the general
expression: ~
Iep He te 18
2 L+ 1) 2Pyt M (n= 1)1 = n - L)
a”(noL) = X
(w2)t(u/2)t 5 ntf(p = n)t!
(A+n)! {(A+n+ L)RH
4.2

(7\+n+L+1)3{(7\+n-L)/2}3

where I' sums over even n only,
The form of the Cn(?\LK'K) coefficients in two more
important cases are given below for ¥ and K' < 2

1
c_(3220) = —f (1= ()M ) L. 288

(?\+n+l)(7\+n+3)i‘ 2

o (h222) = (A+n +2) (1- g-z’*’m‘l} 4.28b
n

(A+n+21)A+n+3) 2

()
(i) (5

Using 4.22,4,27 and 4,28, all the a=~coefficients

required in this thesis may be caleulated.
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Chapter 5

Energy Matrix Spread Out by the States ¥( [£] (Au)KLM)

The general method for calculating matrix elements.,

We now develop the method for determining the energy in
totally antisymmetric sta.tés Y([£]()KIM) of the realistic
’Hamilto'nian discussed in Chapter 1. The states ¥ have orbital
functions defined in the last chapter and, for the moment the
charge-spin labels have been suppressed, Since the Hamiltonian
is sealar in the charge and spin spades, it follows that the
matrix elements of H between states¥ with different charge-spin
labels must be zero. |

The Hemiltonian with central potential alone is spherically
symunetric, This means that the operator H will have the same form
no matter in which frame of reference it is seen,

Thus

e [¢] G ) < (s 2) jﬁ @ 5([2)6F)) as
a(7\,1, KL)
(from _{,u_:ﬁ_)

L
=+ 1 <) B a([f)(R) an 5.1
a("x'ﬁ,KL)J L) 5, o

where H.Q is the Hamiltonian seen in the intrinsic frame,

With the assumption that [f]is a good quantum rumber, we may



Just consider the states of maximum orbital symmetry when
calculating the energy of low lying energy levels (Chapter 1),

We have then

BOe(W) = 0 (Owkav B, [%) i Ouka) 5.2
Nign v

where ((NLFAUIH ‘7\‘1) is the matrix element coupling the state
’ n
%{(NL)EA\’) to the leading state of the (-?:}1 ) - representation
in the matrix representation of H_n,’ spread out by the states
3 in the intrinsic frame,
S(nEav),

From 3,37 we may write -

BOuew)  3,00) =3, ((w)eow) 5
Thus
B e ()= >, (bw )& (p) 5.0
1 () = > (Owdeay]| B [R)EOR ) 3 On 5.4
NeAY

Expanding %(N“) in terms of ?L((AP)K'L'K') s using L2 we

have .-

4;1(7«») = L

a(nE'L') ¥ ((p)E'Lx") 222
K'Lt

Since in 5e+4 the operator E acts on the leading state of a
representation, it may be greplaoed by the equivalent operator rFJJ.

From 5¢4 and 5.5 we see that the E operators will now act directly
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on the states %’. Because the E -~ operators are functions only
of the angular momentum operators Lo and L"'l , we can deduce the

numbers £ where.-

E(weav) ‘f_l_((M)K‘L'K') = . £(ueay |LKK" ) v (e Ui 5.6

Kll

Notice that the E operators can only change the last label in }I‘L

Thus,from 5.4, 5.5 and 2-6,

He(®) = > (Owkav|nfR) > a(m:'L')Zf(meAvi L'K'R? ) x
NLEAY KL K*

‘51( (A )RLK®) 5.7
Defining the number g by -
(Fp| A L'K'K®) = S ( |1 l"')f(w W |LUK'R" ) 5.8
gl e LK = 7, \NeaviH N ey |LTKTK ,
EAY

equation H«7 reduces to -

B e(h) = Z a(ME'L') g(Fel pitx'x®) ¥ (ORIK'LET) 5.9

’ )\}JK'L'K"

Substituting 5.9 into 5.1 we find

(L + 1) L
H ¢((Fp)ELM) = roreme— ‘
o (A )KL a(W)J' @’ﬂ(g{l)

M
>: a (MLt )g(Ri [ ML'E'K® ) %

R
%((M)K'L'K')dﬁ, 5,10
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Since ¥ ((W)K'T'E™) = (53(0.) ) ¥ ({p )R LK) 2.11
" K‘“K“
e (Eadiott 1958, IIT, p.28)

we may integrate directly over the $-functions, using 4e7b, to find:-

.3 a(__

o (0K = 7-%‘2\1“—‘-—)-1nwmm K) ¥ ((p)Em) 5,12

Trom the definition of the phases of the \}r-state in 4.5b we have

P (W] ) = ¥((op) = |1 0) 513
with a(w = |K'|L) = (=)2"™ a(uxrL).
Defining now
e |w LIRNK) = g(R|w LK) + (<)M g(Ra|w L -IKIE),  5.la

with the exception of K' =0, when 'g(i;;'kp LOK) = &(-7-\;!7\,‘* LK), S.14b
we may rewrite 5.12 asi-—

my(Opa) = SRIEUL) 2zl ole) $(0p) [K1LE 5.5
ApiK't a(f: KL)
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" | to be:~

P

[ e |

We therefore deduce the elements of the energy matrix

H’(Rﬁ)ﬁm} = Z a(a" i‘: Kt L) .
Jx| a(AUEL)

((7\" pr)En| e ain

FO | v LR x) x ((n }L“)!K“lmt(%" p') IR 1) S(LML) 8(i%E), 5.16

the sum over |K! | persisting since the states are not orthogonal
with respect to this mumber.

The eigenvalues of [_H] will be the prediction of the energy
levels, The eigenvfunctions will correspond to the siationary
states of these levels. If the classification is a good one, the
off-diagonal elements in [H] will be small, that is, the diagonal
elements will be a good approximation to the true eigenvalues and
the true eigenfunctions will involve little mixing of A, or K.

It is not necessary to diagonalize the matrix {H}| , With elements
defined in 5.16, to deduce the energy levels, even though it has
the advantage of being symmetric. The non-symmetric matrix with
elements “g(iﬁ’?\p. LiK'|X) has the same eigenvalues as [H]

To prove this lést statement, let us first define unnormalised

states -

o ((w)K 1) = 2(p K L)V ((op) K 1) 5.1

Equation 5.15 may now be written as’-~

H v (()Kam) = Z B LIKYEK) ¥((ow)Ix*| 1) 5,18
AplK
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The eigenfunctions V(1) of the matrix [H] will be linear

combinations of the V¥'thus -
¥, (1) = Z e () Rjm) e () 1K) 2:19
Aulk|
where @, are expansion constants.
If Ei is the eigenvalue of [H} corresponding to gi then, within
the given [f],

Y, () = B ¥, () = 8 ;Z,: T'(@I)lmm) oy (R )1 K 1136) 520
LK

also  HY (W) = Lu“i((mmm B9 (37 K| T0)
ALK

7 y’ «, (N ik |mi) (%

Akl Al

MLIK'K) x 90 ((w) K" IM) 5,21

Replacing the left-hand side of 5.20 by the right-hand side
of 5:21 and equating coefficients of ¥' - since these states are.
independent ~ we find :-
B e (OWiEN D) = > RN K) & (Ow)iKiDn 222
=t
K|
or,in matrix notation,

By | %] ={%] %) 5,22b
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Clearly now the Ei are the eigenvalues of the [’g] matrixe
The eigenfunctions of { ] give the values of ocl((}-\E)IKl Li) to
within a normalisation factor. If the eigenfunctions Wiof [H]

are to be normalised then, from 5.19 and 517,

(¥, ()| ¥, () = 1

=5 (GRIEDY) «OdK| 00 a(RElkln) & GEleln)
KKt |
() e || (3 1 120) 523

Knowing the a~coefficients and the overlaps in 5.23 we can deduce
the unknown normalisation coefficient for '\If'i.

We notice that, in deducing the eigenvalues from 5.22, no
knowledge of the a-coefficients or the overlaps (‘I""P) need be
possessed since :gJ is independent of both,

Since most of the calculation of the matrix elements of [H]
go into the § - functions, (see 5.16), a useful check may be put on
the results by using the symmetrical property of the matrix for H.
Alternatively, the symmetry of [H] will provide a method for
calculating one g - element from another when the a- coefficients
and overlaps are known. |

Since

(A ) [ 136),

(O o txof 12| o) = (i
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from 516 we find -

AN ) g5 o ) ((am o ] (o ) 30
a( K| L)

[k |

= a(uKIL)  gon g | % L!K*IlKHb((';‘\ﬁ);Kim }(iﬁ) iK' M) 5.2k
= la(.)\" p K L)

In particular, when L = O, the only K value will be K = 0, Thus,

1 —— - gz'"“: ) | e
M’é(m [art prr000) = 2 Q0 Z(am pn | A 00) 5.25
a( 00) a(AM ptt 00)

From the selection rule derived later (Table 8), we shall see

=12
that, when (2% + p) = (22" p“%(there cen be no miwing of K, that is:

5(w|a" p* LIK'K) =0 unless [K'i =|Kl
When (2%+p) - (2AWp®)= 6, it is found that:-

(e ,}\" p® LIKYK) is small forlKY # Kl compared with the

term when |K'| =|Kl.

If also the overlaps of the states in the (\i)representation

-are small, then :-

a(z\: pt ‘K“'L) 'é'('%ﬁh" u® LIK" X )
a(3g(KIL)

o a(WIKIL)  gom e | 5 vkt ).

a(A" ptK"|L)

Of course, if the overlaps in the (A" p,“) representation are also
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small, 526 will be very accurate,

The relations in 525 and 526 will be useful later on when
N

we are estimating the mixing of representations in the I‘/Igz nucleus

(k = 8 particles in the ds-shell)
The determination of the energy levels and stationary states
using the states ¥, merely depends on our ability to calculate the

functions §. From 5-14 and 5.8 we see that the §'s are known if

the matrix elements in the intrinsic frame can be calculated and if

the constants £ can be determined from 5¢6.

Matrix elements in the intrinsic frame,

Only the matrix elements coupling a state & ((Mp)EAv) to the
leading state,®(3g) , of the (A1) =~ representation have to be
calculated (5.8). The construction of 8((n)eav) from the leading

state @(NL) in Chapter 3 involved the introduction of certain

configurational states @i(gv) (3+57).

Thus <(NL)E/\_\J ’%lﬁ) = Z r¥ (st <ievh;ﬁ\ﬂ> 5.27

i
Since the @i(Ev) andé(i}:) are known explicitly, the calculation

now follows the standard process of determining the (k-2, 2)
fractional parentage coefficients for the configurational states i.e.

q’i(Ev) - Z a @i(ev) o 5.28

. T3 —
3 3
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®
where g are the fractional parentage coefficients

ot
¥ is an antisymmetric state of k-2 particles in §

and &' is an antisymmetric state of 2 particles in §
and we are summing over all possible states ‘$;§',

Thus we may write:

(= v |1, ) - _Jlgikl ;>> :>> ' aéi(ev) aé(kﬂ) §

L t
§ " @ § 31@1 %2@2
1
t 1
(3 1%,) (o] | 85 ,l8) 5,29
since H is a two body operator i.e. H = EE: Hi' .
i<J J
o,
The a = may be found by going back to the form for the %5EV)
3 8

(;;5;) and explicitly taking out the last two particles using the
known charge—spin fractional parentage reduction by one and two
particles (Jahn & van Wieringen 1951, Elliott, Hope and Jahn, 1953)
and the orbital fractional parentage coefficients. Since our
orbital states are not vector coupled in any way, the orbital
coefficients will Jjust be normalisation constants., TFor example,
with the four particle state (ab c cit with symmetry [4] (1-4b),

we find |-

e 11
(abcc}iz34 (J (abc)§§3 i? }% (acc ig} iz J Z(beo )123 L %
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and

B 11 L 13, 13
(abcc:)lzy+ = j%({j% (ab)ig(cz)%-z " %-(ac)i’s(cb)gz + fgi(bc)lg(aia)ﬂ+
+ j%(cz)gg(ab)]éi | -{E(ab)ﬁ(cz )gi + j%( )31( )31+ ceces }}ll

(See also Appendix 2 for an example of the reduction of an eight
particle state).
@i(ev)
From 5.50 we see that the only coefficients a which
N
need be calculated are those where (51| 52) are non zero,
A considerable amount of labour is saved by observing this fact,
For central forces, the two body matrix elements in 5.29 will
vanish unless ¢]'_ and @é have the same charge-spin labels.
Since the states g1l and 511 are symmetric in their
11 ‘
orbital spaces (g(s)) while &'~ and 8157 are antisyrmetric (g(a) ),
the only matrix elements of Vc(ij ) (defined in 1.2b) which can occur,

arei-

2..,2
(97, (33 852) = = V@0 + 26+ B+ D)) | & V| 4y(6))

(817 lo37) = = v (7 + % = H - B)(d ()] [£,(s))

(@iu{ ’@511) == V(7 = M + H = B)(4, ()] |#,())

(§i331 |33 - - V(W =3 -H 4 B)(¢,(a) 14,(=)) 5,31

The two body matrix elements have been evaluated in general, for a
Gaussian radial dependence‘in Appendix 1.
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Selection rules for intrinsic states.

Not all states CDi(E y) will couple to ®(Au). For the states
in the ds-shell, since H, is a two body operator, the greatest
change in € which can occur through H, 4in going from @(3\;-1) to
¢.(ev) , is Ae=12.  From Al-lk we see that the two body matrix

elements, (@i | Vc(ij),éé ), vanish, for a Gaussian potential,

unless the sums of the oscillator quanta in the x, y and z directions
are all even for the two functions @i and @é . The resulting
selection rule for the coupling of many particle states to s’?\?\ﬁ)

is given in Table 8,

Table 8, Selection rule for the states @i( € v)coupling to

s(An). de=|2h+p=-e¢ and Ay = |p = v |
LSS Ay
o o’ L]', 8.
-6 2, 6.
12 0, 4.

B ® ) coefficients.

Because o’f the selection rule and the relation in 5.8, it is
clear that only the f -coefficients, whose € and vy values satisfy
one of the relatiorsin Table 8, need be calculated., That is, only
a few operators E(?\;J,,EA\) ) and their equivalences are needed to

form the required f~coefficients,
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For the coupling of intrinsic states within the leading
representation, the operators required and their equivalences have
been listed in Tables 3 to 6 (Chapter 3). These tables also
contain some of the E's which are necessary for the mixing of

representations (2u) into the leading representation (7)) where

A+ )~ (2A+ p) =6 or 12,
The mixing of other representations has not been considered here
although the calculations are straightforeward once the expansion
of the operators E and their equivalences are known.
In the remaining chapters we shall use the method now
developed to calculate the energy in the states of two, three, four
and eight particles in the ds-shell and try to fit the results

onto the physical picture,

Parameter fitting.

Before attempting any calculations, we must first decide what
values of the parameters will give realistic results for the nuclei
in the ds-shell. In the rex%ning part of this chapter,we discuss
these same paramters in the p-shell and, from the work of Kurath
(1956), deduce approximate, realistic values for them.

In the p-shell,the only orbital matrix elements which occur are

((p)° 2] 50 | Vo(i3) [ (1p)° [2]80) =L + 2K
((1p)? [2}mz] V. (13) ] () [2]mi) =L -k
((1p)2{11] B | Vo(ij)‘ (1p)[1}mi) =L -3 5,32

(Elliott 1952, p.49)
(T



Evaluation of the matrix elements in 532 yields the results:-

L= 70 4 s 5@
K = 3/25 F(z) ces D33
where
0 00
= 2.2
] a?<m
22
6" o
5 oo
V12 = + Vb e-Tiz /2 = ZE:: Jk(rl,rz) I% (cos wlz)
k=0

with Pk: a Legendre Polynomial

2
o0 /2

and U(P) = -21'?]74 E P

radial part of the harmonic oscillator wave function

in the nuclear p-shell,

r12/b with b the oscillator well parameter,

el
i

(Elliott and Lane 1957, Appendix 8)
The radial integrals in 5.3k have been evaluated by Jahn (I).

Hence we can deduce, for a Gaussian potential,




Consistent results may be obtained for the p-shell by taking

L
e
CCZ = 1.20

68, and K=-0.9Mev., (Kurath, 1956). This implies that

i

An estimate of the nuclear mean square radius may be made

using the formula

(= > r ) = 282 ith R=24"7 13 x 105 s, 5.36
i 5

where centre of mass motion is neglected, The expectation value

of 2 ri is easily evaluated using the lowest oscillator well wave-

i
functions.,.

For Li6 we find

b = 15 x 1071 o ms.

2,2 _ .. -
Thus, if & = & /a7 =102, we have a = 1°65 x 10 13 cns. 5.37
Using Kurath's value for K = -0+9 and with « = 1.2, we may estimate
the strength of the force to be
VO = ll-o MeV. X 2038
In the cases we have considered only two exchange parameters occur,

We write these as:~

A - Pl e
ena | (FYEIFY + 9 [5]2)f fo
= {207 - 106 - 81 + @jAo = ¥ 5.39

= T s g e, .
where E = W+ M Pij H Pij + B Pi,j and| is the charge-spin

-96~



state of the i and jth particles .

Table 9 indicates the valuss of X and Y/zi for various well-known

exchange parameters,

Table 9
. Y
Mixture W M B H X /X
Serber 0.5 0.5 0 0] 1 0
Rosenfeld “‘0.13 0093 00){-.3 "'0.26 0.8 "0.6
Inglis 0 0.8 0.2 0 0.8 -0.8

In Mg24 the mean square radius formula in 5,36 yields a value
of b =1.7 x 10% cms. Hence, with a = 1.65 x 10>, we shall
assume that the ratio 'gg:a/b = 1 gives realistic results,

-
All energy levels are plotted in units of ( O/Z;.O) Mev,
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Chapter 6.

Application of the Method and the Appearance of

Rotational Features.

Elliott has compared thevlowest eigenstates from shell-model
calculations, in the beginning of the ds-shell, with those states
classified according to the representation of SU3° (Elliott 1958, I.
Elliott and Macfarlane, Private communication)., Large overlaps were
found and it was seen that the level ordering, by a realistic
potential, corresponded closely to that by <6}>:ML The representa-
tion which maximises <61£>P“®5 always found to'bellowest.

Such a result may be seen, in a very crude way, by meking a
'long~range' expansion of the Gaussian potential, That is,

assuming the muclear distances i3 remain small for a long range

force, we may write;-

4

2
o, < 2 2
e Wi >a T13/2 « Ti3/h o)
i< i<

- the terms getting successively smaller,

The first two terms in this expansion contribute the same
amount of energy to all states within an oscillater shell. The
third term consists of functions which contribute the same, or almost

the same amount of energy to states within a shell, and a term of

the form

|

s .2 2
+ ry Ty

AN}

. Ib(cos Gij)
dJd

"R
A
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- the quadrupole force appearing with a positive sign,

The latter function may be written in terms of the Casimir
operator?% which appears again with a positive sign.

With these rather general arguments,we are led to make the
assumption that, for an attractive force, the states belonging
to the representation (i,f), where <a’l>ﬁ7‘\l‘l’ is a maximum, form the
major part of the léw lying states of muclei. How accurate is
this assumption will appear when we discuss representation mixing
(see Chapter 7).

In this chapter we consider the significance of iaking only
the representation which maximises (5;-}7\“ , for k = 2,3,4 and 8
particles in the ds-shell, while illustrating the method,developed

in Chapter 5, for calculating the énergy in the states \Il((m)K]‘_M)

from a central potential.,

General Remarks

(a) The kinetic energy will not affect the results as we are
only concerned with energies above the ground state and our wave-
functions for the k particles come only from the degenerate ds=-shell,
We therefore ignore this part of the Hamiltonian in all the calcula~
tions, and measure energies from the ground state,

(b) The supermultiplet classification for the low lying states
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or 028, M6 and Mg®¥ give these miclei a spin S =0, henoe the

total spin J = L (the orbital angular momentum). The addition of
a spin-orbit force in the Hamiltonian, to make it more realistic,
will give zero contribution to the energy in these cases. If we
take the k(= 2,4, and 8) particle states to have S =0, we shall
be able to relate our results, using only a central potential, to
the physical pictures of 018 Nozo and Mgzh.

For the k = 3 problem to represent Fl9, some/sﬁfg dependant
force must be introdueed into the Hamiltonian -~ this will not be
done here, The k = 3 problem is considered only to show how
rotational features appear in the orbital space ag particles are
added into the shell,

(¢) All tebles and figures have been collected at the end of

the chapter.
k =2 golg)

The leading representation of SU3 appearing in[ f] = [2] is
(a ) = (W0). (Elliott I Teble 1). The leading state of (40)

for the 018 nucleus is

271((40) 800) = (4, ) ves Sul
The states within the (L0) representation which satisfy the
selection rules in Table 8 (Chapter 5) are given in Table 10 in
terms of the configurational states %g (e@). The powers (rgp) in

the operators A;x E_qE+P needed to generate these states  are also
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shown in this table,

Non-zero two body matrix elements coupling the configurational
states to (d;z) are given in Table 1l. These have been evaluated
directly from the formulae given in Appendix 1,

The expansion of #((40)800) in terms of ¢((40)KIK) yields
only a2 K = 0 band i.e,

A((40)8 00) = /1/5 ¢((40) 000) + /u/7 ((40) 020)+

J8/35 y((40) O4O) .uu 642

where the coefficients may be deduced from 4,12

With only a K = @ band, the g-elements (5.1)) are equal to the

g-elements and we can now deduce from 5,8 , Tables 10 and 11 and

Tables 4 to 6 (Chapter 3)
g(40140,100) = V_{ay +[ = (B + w) = 75 Gy + 6+ p) JL(L + 1)

1
+[3g Gy + & + p)]Lz(L + 1)2 8.3
Where 3, w,Y ,5 and p are defined in Table 11, and A._,L is independent

of L,
In this simple case we find (from 5,16):-
((uo)oxm)[vckw)om) = g (40/40, L0O) ees 6ok

The ground state has L = 0, The energies of other states above the

ground state are thusi=
E(OLHM) = @o) OLM ]vc)(m).om@ - <z,o,ooo lvoi(w) ooo)
=-v{{Z®r0) -3 Gy +p+8) LL+1)

v Gy+p+ sl L@+ 1)) 6.6a
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i,e. E(OLM)

=+ V p{-jg{ cc2++32 ec2+5oo) L(L + 1) 6.6b
-5 @ 1)?)

with « = the ratio of range (a) to well paremeter p(o = /b) and
p= /(24 )11/2

The ratio E (0M)/E (02M) is plotted in Figure 1 against the
parameter «. For a fixed mean square radius (implying b is
constant), the variation in @ corresponds to varying the range of
the force. We see then that for a long range, E (o) /& (02u)
tends to the limit 10/3 - just that for a rotational band. For a
realistic value of the range (¢~1), E (O4)/E (02u) = 1.7,
which compares favourably with the experimental value of 1.8.
(Ajzenberg-Seloye & Lauritsen, 1959 ).It is instructive to note
from where the various terms in E (OIM) come and what approximations
we can make to them,

If only the states with Ae = 0 are considered in the intrinsic
freme i.es = =y =8§=p =0 in 6.6a (see Table 10 & 11)
all the levels are degenerate, Including the mixing of states
with Ag£ 6 (only y =6 = p =90) it is clear from (6.6a)
that we get just a rotational band. Comparing (6,62) in this
approximation, with the energy levels obtained from the rotational
model, we have the moment of inertia (I) given by

2

J
o

= + VO(B +w)/6 6.

SR

|
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Including the intrinsic states with A = 12, we get a more

realistic picture with the moment of inertia decreased to satisfyi-

4‘12
5t =T, [(Br )+ 1107 + o +0)8 ] 6.7b

In Figure 2 the various approximation to the energy levels
have been plotted in units of (Vo /0) Mev for o= 1 and Serber
Exchange., Figure 6 shows how the energy level spacing varies with a .

k=3

The leading SU5 representation in [f] =[3] is (7\11,) = (60).

The leading state for the representation is :-
22 -2 3,22
§°2(60) = §4(60) 12, 00) = #.”) vee 6.8
The states within the (60) representation,which satisfy the
selection rules in Table 8 (Chapter 5), are given in Table 12,
The matrix elements in the intrinsic frame which are required are

listed in Table 13.

The expansion of #(60), in terms of the ¥ (KLK) -states,yields

only a K =0 band,

#(60) = /1/7 ¢(000) + /10/21 020) + /24/77 ¢(0%0) + /16/231 ¢(060) 6.9
As in the k = 2 case, we deduce that, for energies above the

ground state (I, = 0)~-
g (60}60 1.00) - g(60l60 000)

-V, {[—(1/513 * @) - —2—14% Gy + 6+ p)] LEL +1) ... £.10a

E(0LM)

1

+{(1/480) 3y + &+ p)'] L2(L + 1)2}
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i.e. E(oLy) = + \g P { (10 gf* + 16 ccz + 109Y1/20)L(L + 1)
-0 AT + 1)2}» ees 6,100,

The ratio B (04M)/E(02i) has been plotted against ¢ in Figure l.

Again we notice that, for a long range force, the ratio tends to the

10/3 limit, By analysing 6J0s it can be seen that it is the Ae=6

states which give the rotational spectrum and the Ae= 12 states

which introduce the term LZ(L + 1)2.

K = i (We?0)

Table 1) shows all the SU3 representations within the representa—
tion [r] = [4] for SU;. On this table also is shown the
reduction SU3 - SU2 b'd Ul for those states with Aeé 12. IHere Ae

is the difference in € from that of the leading state of the lead-
ing representation...

The leading SU3 representation is seen to be (au) = (80), and

the leading state isi=-
@u(so) = @JJ((so) 16, 00) = (,q(c)l*)11 cos 6,11

The explicit form for the other states of the representation,
satisfying the selection rules in Table 8 (Chapter 5), are given
in Table 15 together with the powers (r q p) in the operators AyiEgEE

required to generate the state.
The required energy matrix elements in the intrinsic frame are

listed in Table 16,
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Exponding 4{(80) in terms of Y(KLK) we £ind, from 412,
4(80) = /1/9 ¢(000) + /L0739 4(020) + /L8/1h3 y(0kO)

+ /6L,/1495 ¢(060) + ./128/6135 y(080) 6.12

Again only a K=0 band is predicted.

In this case,

g(80l80 100) ~ g(80180 000)
+ Vo«gfj/lAIB + w) +(27/560)(3y+ 8 + p)] (L + 1)

B(OLM)

~[(1/32.35 X3y + & + p) JIP(L + 1)° 6.13

+ vop{(s/mo}(loo o+ 10 & 4 211) L(L + 1)

:

- 9/280 121 + 1)°} 6,13b

The ratio E(O4M)/E(02M) has been drawn in Figure 1 for various
valueg of the parameter « , For a long range force we have a
rotational spectrum whilst for a realistic range (g~1 ) the ratio
compares favourably with the value 3,05 from the experimental
spectrum (Azjenberg ~ Selove and Lauritsen, 1959),

The approximations to the energy levels, as first the pe= 6
and then the pe= 12 terms are included in the energy calculation
in the intrinsic frame, are shown in Figure 3 in units of (Vo/lq.O) Mev.
Figure 7 shows how the energy level spacings vary with o .

Summary for k = 2, 3 and 4 particle problemns,.

Already it can be seen that a rotational spectrum appears in

-.105_
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this scheme for realistic value of «(~l ) as particles are added
into the shell (Figure 1). This result is directly related to
the fact that the contribution of the A€ = 12 intrinsic states to
the energy grows relatively smaller with the greater number of
particles, For more particles we should expect a good estimate
to the spectrum by ignoring the A€ = 12 terms (see k = 8 particle
problem).

The absolute energies compare quite well with the experimental
data, A value of V_ ~ 54 Mev, will £fit the k = 2 results to the
O18 spectrum whilst a value Vb ~ 60 Mev, will fit the k = 4 results
to Nezo. It is encouraging to see that these strengths are about
the same and near VO = 40 Mev. which we have estimatéd to be the
correct value from p-shell data (Chapter 5).

k = 8 (g2

Because of the four dimensional charge spin space the maximum
orbital symmetry is [£] = [a4].

The representations of SU3 contained in [f] = [hh] of SU6,
which have €-values differing by less than 12 from the leading state
of the lecding representation, are shown in Table 17.

The leading representation is seen to be (2#) = (84). With

the notation of 3,50, the leading state of (84) (from 3,53) is:-

11. - 1. 11

e 2 o) 20, 2, 4) = (g (g) cor Solk
From the two body matrix elements deduced in (4_1,5 ) the configura-

tional states, @i(Ev )}, coupling directly to the state &(84) can
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be written down immediately. These are the states |1) «.. ’15)
listed in Table 18, The coefficients pi(8L;.EAv ) of the @i(E V)
in the expansion of states &((84)eAv) (see 3.56) are given in
Table 19. The pi(81|. EAy) may be calculated independently of each
other hence only those belonging to configurational states which
couple directly to the leading state need be known. This saves a
great amount of labour.

The matrix elements (i)l( Ev) }Vc | #(8L)) can immediately be
deduced (using A 1.5 ) once the fractional parentage coefficient
are known for the reduction of the eight particle states by two
particles (see, for example, Appendix 2).

Since the two particle states can now be either symmetric or
antisymmetric, the form of the matrix elements will depend on the
exchange mixture to a much larger extent than in the simpler cases
already considered,

The elements < %(Ev)jvc,f @(84)) in Table 20 have been given
in two parts - the contribution (S and A) from the symmetric and
antisymmetric pairs of particles respectively. The full element
will then bed

(o)) | ew) = x (] ) + v (Pl ), .o 6.15.
with X andY defined in 5,38,

2
vV ==V Texp ("Fi3/ a2) and
C o :',:‘<—J‘

<§(84)‘V:3 l @i(Ev)DS = Contribution from symmetric pairs of
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particles

( @(SA)jV; Jié&(E\Q>A £ Contribution from antisymmetric pairs
of particles.

Using 5.8, we may now construct g(84)84 L'K'K") and hence
deduce §(8l+t 8L It |K'| R ) from 5.1k.

The expansion of &(84) ks in gggL) shows that there are K = 0,
2 and L bands, Thas the’E elements, in this case, are not trivially
equal to the g-elements for all values of K.

To simplify the analysis we divide the g elements into four
parts. First we define ES and EA to be the contribution to E
from the two body matrix elements of the symmetric and antisymmetric
pair of particles respectively, We then define Eé and gg to be
the contribution to §é from the intrinsic terms with A€ € 6 and

A€ = 12 respectively., A similar definition will stand for gk.

Thus we may write:~

fad ~

g = gS' M gS' + g.A' + gA" XX} 6.16

For a Serber force g = Qé + gg since Y in 6.15 is zero.
t

The expression for é'in erms of the parameter « is very
complicated in this case and no attempt has been made to write it
down in general. It is possible to derive the general form for
gsorA however .,  Ignoring, for the moment, the A€ =12

intrinsic stotes, we have, from 5.4 and Table 4 (Chapter 3) :-
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O 2 2 2 2 2
v_ ®(8k)= '_hl #hy A+ By ED o+ by Ao B4 by AL ED

b hg Ao BE +hy K BE +hg B 4+ by A EEJ %(8) 6.17
=[{(1/21h5 +h o+ h9)Lé* - %-(hlP + 28h5 + hg + 10h, + hg = 22h9)L§

+ 1/2(ng + 6hy + 720y = 2khg = I+8h9)} (LfJL +L._2_1)

+{= (5h +{h9)Lc2) + (3hg + 30n, + 5hy + 10n)L }(Lf_l - 12))

+f- %’-(h5 +hy + hg)LY + 3(n, + 28n, + by + 100, + hg + 18, )1

1 | z
_.E(h3 + 6h4 + 2h. + 16h8 + 32h9)} L

5
{1/2Xn, + sn ) =E(h +12n 4+ h -12h +h, - 8h )i
5 + by o+ gLy =3, 5 + g 7 *Pg = Shy L
+ (-2, + h, = 10n, = 376hy = 22hy = 220h, = 1ong = 436h9)1,§
+ (h1 + l;hz + 8h3 + 1+8hl+ + 576h5 + 208h8 + L;J.6h9) } ] )g(SA) 6.18a
Denoting the operator in the R.H.S. of 6,18a by G' we have}
Vc@(81+) = G' &(84) 6.18h
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The h, are defined in 6,17 as the matrix elements coupling an
intrinsic state of the (84) representation to the leading state,
divided by the normalization factor (NqupPrjqp) of that particular
intrinsic state (3.37)

From 5,6 %o 5.3 we deduce

o' $((84) K'LK') = > g (84[8ULIK'K™ ) u( (84 K'LIK™ ) 6,19
"

Thus,by knowing the forIm of the h;'s in éﬂ,g]‘.r_?%we can immediately

deduce the g' and hence g'.

Table 21 lists the form of the hi's in terms of ¢ . In
Tables 22 the functions of the hi's in 6,18 have been evaluated
for several values of the parameter a . Table 22a lists the
contribution to the functions from the symmetric pairs of particles
and Table 2Zb shows the contribution from the antisymmetric pairs.

The %' g and 'Q"A matrices may now be deduced and are shown in

My

Tables 23 and 24 for o = 1. The g matrices, are found to be the

same for all values of the parameter @ within a factor of
2 \11/2
p = Sl 2

and are shown in Table 25, The 'é'A" matrices are identically zero

for all values of .
The energy levéls, deduced from a diagonalisation of the E -
matrices for various values of «, have been drawn in Figures 8, 9

and 10,as functions of « for three different exchange mixtures.
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The form of the g ~ matrices will now be examined, for a Serber
force, after making various approximations. First we ignore
all intrinsic states except those with A€ = Q; secondly we
include those states with AE< 6; finally we take into account
all the intrinsic states. (Figure 4).

In the first approximation then, the g matrices are given by
the G' operator, from 6,19 where all the hy 's in 6,18, except h,
and h,, are zero. In this case, since there are no operators to
mix bands g = g. We see that all levels with the same K label are
degenerate but the different bands are split by an amount proportional
to -h2K2. Since h, is negative (Table 21), the K =0 band is
lowest,.

The next approximation has all the hi's in 6,17 non-zero,
Ignoring the nixing of K we see that again the g-matrices = g-
matrices and, from 5.15, the Z-elements give the energy levels
directly. Since the X-band mixing will come from the Lf ’ termS in
6,18, it can be seen that the energy levels within a bond are just
of the form

A + BL (L+1).
The mixing of the K-bands at this stage depends on the

coefficients of the L2 terms. From Tables 22 we see that these

+

coefficients are very small, This is directly responsible for the

small off-diagonal matrix elements in Tables 23,
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We note here that the most important contribution to the
energy ,from the terms with Ae= 6,comes from the state with
maximunm v .

The Es—matrices s resulting from the inclusion of all the
intrinsic states, can be found by adding the matrices 'és' to 'éé'
from Tebles 2k and 26 (see 6,16) .

A first approximation to the energy levels is found from the
diagonal elements of gs. Since the diagonal elements of E"S are
very small, the diagonal elements of ES are almost equal to those
of 'g“é .

The of f-diagonal elements of '%" are of the same order of
magnitude as the same elements for Eé. It is, therefore, not
consistent to calculate the K~band mixing when the intrinsic states
with A€ = 12 are ignored. This approximation will still give a
good approximation to the energy levels however as the K-band
mixing is always very small, For a Rosenfeld - type exchange the
mixing of K is found to be even smaller,

In Figures 4 and 5 the spectra for the S erber and Rosenfeld
type exchanges (with ¢ = 1) are drawn for these various approxima-
tions.

From these diagrams we can see that the error in ignoring the
K-band mixing and the Ae = 12 terms is not great. We have, then,

almost pure rotational bands described by the K-label,
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The actual states with L = 2 fox the levels deduced in the
Serber and Rosenfeld-type exchange cases have been calculated,

for «= 1, from 5.,23.

In this calculation we use the facts that :-

( (81)221 |(81)ozt)* = 3/19.157 6.20

o2(84 22) = 137/2.9.11.13. end o2(8h 02) = 19/11.13. 6,21
(8ee 4.1l and 4,12)

Thus for a Serber exchange.

\%'(L = 2,M) = + 99097 w((8L)02#) + +10462 ¢((8L)221)

\Ié(z,m) = = 13965 v((84)027) + +99493 w((8L)221) 6,22
and for Rosenf'eld exchange

xpl(zm) = + +99650 w((84)021) + *05613 v ((8L)221)

y2) = = *09110 w((8k)ozt) + #9990 w((8k)221) 6:23
This classification scheme is slightly better for a Rosenfeld-type

exchange than for a Serber,

Pitting the experimental data.

The results of all our calculations so far are illustrated in
Figures 6 to 10. The energy levels are shown as functiorgof the
parameter & and are plotted in units of Vo/ho Mev, To make
direct comparisons, the experimentally d§duced spectra have also

been drawn on these figures in units of (Yo /40) Mev for various
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values of the strength Vo'

183
We find that the best consistent fit is made, to the O , NeZO

and Mgzz" spectra, for a range & = 1,85 x lOml3 cmg, This is a
slightly larger value than that deduced from p-shell data (Chapter 5),

From the mean square radius formula in 5,36 we find the resultsi-

18 1'7/

0 : b = 97 x 107 s

173 -
Ne?O; b = .967x 10 s

Mg i b = x 10 cms
We thus make the comparison of our results, with experiment,
a .
for values of the parameter o (= /b) = 1.08, 1.07 and 1.04 (i.e.

18,N20 2l

e and Mg = respectively.

about 1) for C
A value for the strength V(j is deduced in each case by fitting
the energy of the firstexcited state exactly to the experimental
one. The values of V-u chosen in the different cases for the
various exchanges are shown below, The intermediate exchange has

been chosen to see how the MgZL'” spectrum changes as Y/X changes

from O (Serber) through -0.2 (Intermediate) to -0.6 (Rosenfeld)

Exchange Y LA

018 1120 g2t
Serber 1 0 54 60 60
Intermediate 0.8 -0.16 90 75 78
Rosenfeld 0,8 -0.48 90 75 110
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The calculations on the 018 and Ne20 problems were only for a
Serber-type exchange but, since the exchange contribution is merely
an overall multiplicative factor of (W + ¥ = H - B) and (W + IM) in
these respective cases, the results for any other exchange mixture
may easily be deduced, It is clear that the same results can be
obtained from any exchange by taking different strengths,

We notice that the strengths required, with the Serber and
intermediate exchanges, are roughly consistent to within 15 Mev,
The apparent inconsistency in the Rosenfeld case is not so serious
as it would at first seem. From Figure/ga we see that a slight
increase of Jjust 0,15 vb/%ﬂ lev of the first éxcited state (coming
from representation mixing maybe) would imply a strength of only
Vb = 80 Mev,

The actual spectra we have deduced are compared with the
experimental ones in Figure 11 for Mgzh + The fitting of the
lowest K = 0 bands of O18 and Nezo is good,

The lowest K = C band of Mg24 is given quite well for any

2 band is consistently too low although a

1

exchange, The K
better result is obtained by using a Rosenfeld exchange instead

of a Serber, The relative spacing of the L = 2 and 3 levels of
the K = 2 band are then given correctly and the L = 4 level is only
.6 Mev from the experimental level at 6 Mev., One further piece
of information which favours this model is in the calculation of

el

the branching ratio from the second 2° level in Mg .
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The lifetime for an E2 transition of energy E from a level

J'to a level J is given by -

11-7rE5 @110 1152
75 50 0@ (250 + 1)

7{(3tJ) =

where the reduced matrix element is defined in .-

(2)
G ‘O(Z)l i) =(32uiq | ITMi*) (J(Zito+ 1')53

and Oq(z) is the gquadrupole moment operatori=

(Blatt and Weisskopf, 1952).

o) . SR AORS PHCERANE AR AON

P

P sums over all protons and 1 sums over all particles. "(z
is the isotopic spin operator such that <"((i)>,= 21 depending
2z
on whether the ith particle is a neutron or proton respectively,
e is the charge on the proton.
Thus the branching ratio :-
_ 2 2
r(n(a0)-%w)) /B -8V /(5C)]|7] w0o)) \
= —-r-———-- )
- - L.
(v, (Bi)>4 (241))  \ Ej = B, (@ (2)] o ][\%(2)/ /
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where B, B, and Ey are the energies of the first L =0 ( ¥(00) )

2 2
the first L = 2 ( @1(21\.»1)), and second L = 2 ( \pz(zm)) states
respectively.

Putting in the experimental values (Batchelor et al, 1960)

for the branching ratio (~2.,8) and for the energies, we deduce;-

Ol 6.25

i (2 2
(@2(2)!: o®) || ¥(0))
R: =
(2) ‘
(,@]] 0 |le @)
We now calculate a value for R using the wave functions deduced
from this model with band mixing.
Although the second degree tensor operators Qq, of the Uj-
group operators (2.2), contain the momentum operators, the symmetry
between the momenta and the coordinates in @ oscillater well means

that, within an oscillator well:-

e S L2 S\ 42
QG = b /s 27y Yqz(:.)/b | 6,26

Thus, Qq is equivalent to a quadrupole mass operator within a shell,
with sum ovenéll particles. In a muclaswith T =0, the contribu-

tion from the term i) in 6.25 is zero and so, in this case
7Z F) 2

i

2 2 iy
0F = ob°/B J ok Q 6.27
L

Thus the ratio R for the Mgz miclaxs is equivalent to :-

(e (2m) || o || w(00) )?

R = .
<\p2(2m) H ) H v, (24) )2
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Ir ‘111(2 M) = o(l‘I’(O2M‘) + 61\11(22%)

and g, (2,) = @, 02) + B,¥22)

then
2 (%2/p,Xc2]19]]00) + (22]]q]] 00) ¥
= “l_ZL (wz/ﬁzioz)“Q“oz) +(51/q1X22HQH22) + tl +£]&\(ZZHQHOZJ
a8 '
Elliott (1958, II (45)) has derived the result;- -,6"2'2

e o KLi) = ‘.I (2L + 1) (r2Mo|Ltm')
L« (2b' + 1) o(p K,L)

[ (L2K0| L'K) o(np KIL*)

x{p + 27+ %—(L‘(L’ +1)+6-L (L+ 1))} P (e )KL)

o S0 (22| TRe2) (/30 TE) (b £ K 4 2)) Y2

x o(wm X a+2, L) v((M)K 42, L'M)J . £:30
From which we may deduce, by replacing the c~coefficients with the

b and a-coefficients (&.26) and with the explicit form for the b's

(2.26) -

e [oll e - Etdl, e

{27\ +p+ @ 1)+ 6-L(L+ 19)/21(L21<01L'K)<(M)KIL'1(M)KL'>

+T(L2K + 2|L* K+2)y/ 3/2(p +K +2) a(uX 2, I')
- 3-(7‘“: KL)

<(7\p)1{'1,' f(m) K + 2, L'>

X
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For pure K-bands, % = Bl = 0 and, from_6,29 and 6,31 we find
R = 0.,79.

For the states deduced using a Serber exchange, R = 0,12 and
for a Rosenfeld, R = 0,23.

Thus we see that the ratio R is very sensitive to the mixing
of bands., The change in this mixing, on going from a Serber
exchange to a Rosenfeld, doubles the small value for R deduced in

the Serber case,to get within .17 of the given experimental value,

Adjustment to the nuclear Hamiltonian

Up to now the 'realistic' potential has consisted only of two-
body operators between particles outside the O16 closed shell,
Such a potential will not give any s - 4 spacing in 017 which has

Just one particle in the ds-shell, Introducing a one body poten-

tial of the form,

x Zhi 6.33
1

into the Hamiltonian, the correct order of spacing in 017 can be ;
achieved by putting x = + .2 Mev. Here]:':.L is the orbital
angular mementum operator for the iig particle,
We now ask: What effect does such a potential have in the
k = 8 particle case?
Since E:l;iis a spherically sysmetric operator, the general
1

method of Chapter 5 can be used to calculate the matrix representa-

tion of the potential by the states 4((§ﬁDKIM) )
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The calculation of the required elements of the matrix of j{:Li
in the intrinsic frame follows the usual procedure. First, the .
single particle elements must be determined. Secondly, the
fractional parentage coefficients of the reduction of the many
particle state by one particle must be found. This latter
problem is solved in a similar way to the reduction of the many
particle states by two particles (See Appendix 2) . The former
problem entail finding matrix elements of the form,

(#((20)env)] 2] #((20)e' 4v1)) 63k

where the f's are single particle states with two oscillator
quanta. (The A labelling is really trivial for these states from
2,31).

Now g#((20)av) = E€€20)eqv) #((20)1400)

il

E((20)env)7, 635
also ¢((20)400) = ,/1/3 ¥((20)000) + ,/2/3 w((20)020)

1]

/13 v +/2/5 1, 6.36
(4oll eand 4.12)
Thus  (#((20)eav)l 12 14((20)'A »1))
= (T3 u, + /275 v, | B *((20)env) 17B((20)e’ A?)]
/5% +i3/5 %) 6.3

In the k = 8 particle problem, the oniy non=zero orbital matrix

elements required are:-
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7, 11° ) = &
@, 18] 4,,) = -2
(¢, 11%] ) = -2

2 - 6,38
(¢+1IL I ¢+1) = +6 £.38
In this case, the only configurational states which will couple
to the leading state #(8L4) are:
by, o 11 3 b1l 3 411 .
BT, R A T ma (B A)ED 6.39

We see that only states with A€€6 will couple to

operator,

A similar

hl

%(84) by this

expression to that in 6,18, with v, =>_,L§‘-, yields:-

L0
0

0.143

0.005

0.003

- 0.004

1

Neglecting band mixing, the increase in the energy of the first

excited state above the ground state is given by:-

x | (ozo[?Lil 020) = (000 ,lZL:ZL ) 000)}
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which, from 6,18 and 6,40, is found to give:

-x ( .330) = - ,066 Mev,
Thus, this change in the potential tends to decrease the
energy of the first excited state above the ground state although
by a negligible amount, Small changes are found in the other spacings also.
In the next chapter, we consider the acouracy of the

assumption concerning the smallness of the representation mixing.
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Table 11. Two-body matrix elements for k = 2

b o Blia(2 »a?)I/?

-123=~

| Operator

e A v Configurational States ;z!’i(ev) r g D

8 0 Ao (pff) 0 0 0

2 1 2 |J1/6 /24 4. ,) + 2(,531) | 00 2
-2 f172 é/z‘(yf’oyf‘_z) + 2(;(1) _} 2 0 2

4z 4 | ) | 0 0 4
o | /6lfe(s 4 ) + 2(8:°)) 2 0 4
-4 | (2 40 4

Table 10. States of the (40) representation k-2

g, (1) ($(40) | exp(-z: ,/a") |, €v ) Shorthand

(#2) p(4c%s 16254 60. %4 56 %4 41) 3

(# 4. ,) Jop( 2d%- 4a®- 1) /28

(4. | /2l 2d'- 4o 1) o

(ﬂ{il) 2p( 4ats 4"+ 7)) w

($) 20( 4a’te doe 1) v

(42,) 9 v

(#7,) 9p y

(9552) 6D P

(o) |42 30 /26

VAN



Operator

€AY Configurational Statés ;zfi(ev) T ¢ D
12 0 O (g{z) : 0 0 O
s 1 2 | I5[(6 60) + 24 40))] 0 0 2

2 | /5.8 + 208 47)] 2 0 2
o2 4 | B ) oo

0 | S350 (4,8 B a2 g1 )28 4 e | 2 0 4
2424 )+ (8,19 140)]
4 | S5 8, + 2080 8] 40 4

Table 12. States of the (60) representation. k = 3

d.(ev) | BT/ |4, (en))

(552) 3% |

(4 4°) [

(#4,,) 2/3 - .
(54_,) 2130 Vv L enn) J
(4 4°) Y °

(4 8°,) I3y

(% d:°) X

(4 .8,.5_) Je¢

4 4,) B

Table 13. Matrix elements for k = 3.
(See Table 11 for definition of Greek symbols)
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(Au) € 2A
(80) 16 0
13 1
10 2
7 3
4 4
+
(42) 10 ‘ 2
7 13
4 024
-+
(04) 4 4
+
(20) 4 0
+

Table 14. Classification of states with orbital symmetry [4]
showing only those which couple to %(80) by the Gaussian Potential.

€ 2A Configurational states ¢, (€7) ipezat;r
16 0 O (;&i’) 0 0 0
10 2 2 A1 ) + 54 )] 0o 0 2

2 | 71082, « JB64)] 2 0 2
44 4 | 1710 [bih )3 g0 4 Neald)] | 0 0 4

o | [i735[(426 6 NES A Va2 g8 ) | 2 0 4
2(6 718 )sald g 4414212847
-4 | V1/10 E/é(disz!fg)+4I§(dodfl¢_2)+4(¢!fl)] 4 0 4

Table 15. States of the (80) representation. k = 4.
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g, (ev) ($(80) | v:/v |, (€9))
(7!3) 6
2,2 i
(¢0¢+1) 6w
3
(64, 68
(4247) [6
o= 2
3 =T, .
(dod—Z) 68 V; = VO gg%expi ;
(447,) & o
#24:%) I&n
2 —
(¢+2¢-2¢o) 2436
(447 ,) 3t

Table 16. Matrix elements for k = 4.

(See Table 11 for definition of Greek symbols)
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() () ¢ 2A
148 (84) 20 4

17 35

14 2 46
11 1357
8 024678

109 (73) 17 3

11 135
8 0246

106 (46) 14 6
11 5 17
8 4 68

100 (81) 17 1

88 (54) 14 4

88 (08) 8 8
76 2x(62) 14 2

73 (35) 11 5

58 (43) 11 3

49 2x(51) 11 1

46 2x(24) 8 4
34 (32) 8 2
28 2x(40) 8 0
Table 17. Classification of states with orbital symmetry [44].
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Table 18, Definition of configurational states for k = 8, [ [ﬁ4]

(ema,28+1) = (1,1)
D) - EH @) 12) = (@2 40)
13) = B (167 14) = (424 ) (F0)
DICRICIS 16) = (4514 8.,
1) = (824_,) 8% 18) = (B4 E0)

19) = 273 (824 ) (B2 40) + (824 (82140

o) - &/5 R¢O¢_1><¢+1¢o> - <¢j¢o><¢+1¢_lzJ

1) - @4 12) - (4242, (B1)
SDINCEIRION 114) = (6 9,) 6*)
1) - B4 @) 126) = (8h (247
1) - D618 80 | 118) - (B4 ) 8014
19) - VIZ5[(826 ) (#2185 « FBBA )6 58 )]
20) - (D4, 21) -(46,) 6,147 ,)
22) = (4 (4 4_) 123) = BD(F810)
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Pable 19.

States #((84)¢Av) in terms of configurational states g{i(ev).

L};pi(m,s Au);z(i (ev)

20

14

|
N

O O O » O~ O B

1)

|2)

J6/7 13)-/177 |4)

/8735 |5) /4735 16)=/1/105 |1)~/1/35 |9) +/1/21 | 10)
+/2/35116) +/16/35|17)~/2/35{18)

J2/35 [11) +. ..

-/172615)-/175216)-/1/156 |1)~/4/13 19)=/5/39 |10)
+/1]26116)+/1/52|17) +/1/104 |18) -/45/104 |19)

-/1/26 11) +...

J47195|5)=/371306) +/9/130 |7) +/20/39 |8) +/8/195|9)
«/2713]10)+/17195| 16)~/1/39 [17) +/3/260 |18)~/25/156 | 19)

J1/195{11) +...

J3/35 [12) +/24/35 |21) +/8/35 |20)

/37245 |13) /37490 {14) 4. .+

/372450 l15)+- o

1791 [13) +/1/182 [14) 4. . -

J/3/910|15) 4+ ..

J2]637113)~/25/2548|14) +. . .

-m|15)+. .

=/Z7]2860 |15) + - -

/128710725 [15) 4+ -«
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Table 20.
Matrix elements for k - 8.

Coupling to ¢(84).

g.(€v)  [(4(84) l‘fc'lszfi(w))g/vop (4(84) |14, (€¥)),/V p
(X8 a6 064 l().'2 1 068 C(s a4 a2
1) 72 |288 |900 | 936 |630 40 160 | 340 | 360
|2) 4/€ |8/ |12/8 |
13) 8/6 | 8/6 |14/%] |
|4) 42 |-12 |6 | ~30 | -60
[5) | 4/8 | 8/% [12/8
|6) L8/3 |-4/3
17) 18 |-36 [-18 10 | 20
8) 8/¢ |8/6 {14/6
l9) 8/3 |8/3 | 8/3
f10) 8/5 |16/5
[11) 6/6
| 12) 96
$13) 6/6
| 14) » 6/3
|15) 96
.2
D SR i .|
Vo = Vo 56 exph 2
@
T e dP
( l l )S = contribution from Symmetric pairs of particles.
¢ |1 ) - " " Antisymmetric " " "
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Table 21.

Expansion of hi coefficients in terms ofa, divided into
the contribution from the symmetric and antisymmetric

pairs of particles. Units of(-V p Mev.
le]

hi . iymmetic 5 Agtisyrgmetriz 5 |
o o a o4 1 o a o o

h, | 72 (288 | 900 | 936 |630 40 {160 | 340 | 360

b, 2 4 6

By 3/14{15/7{39/14 15/14| 15/17

h4 1/140|1/14{19/140 1/28 1/14

h5 1/280

Y -23 t -1 1-23 =15 |-15
208 [104 | 208. 208 {104

h7 -1/208

hg 131 | 7| 53 11 |11
1560156 | 520 312 | 156

By 1/520
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Table 222

004 0.5 0.7 0.8 1.0 1.2 1.4
%(h5+h7+h9) 0.0003 0.0003 0.0003 0.,0003 0.0003 0.0003 |
%(h4+28h5+h6+10h7+h8— 0.0738 0.0783 0,080 0.0831 0.0834 0.0790
22h9)

%(h3+6h4+72h5-24h8- 0.7912 0.8144 0.7775 045275 -0.0876 ~1.2533

48n,)

—(3h7+5h9) 0.0048 0.0048 0.0048 0.0048 0.0048 0.0048

(3h6+30h7+5h8+10h9) 0.0640 0.0850 0.1033 0.1634 0.2680 0.4355

%(h4+28h5+h6+10h7+ 0.1123 0.1165 0.1185 0.1216 0.1219 0.1174

h8+18h9)

%(h3+6h4+72h5+16h8+ 2.774T 3.2359 3.7728 4.1551 5.2198 6.8027

32h,)

%(h4+12h5+h6-12h7+ 0.1116 0.1158 0.1178 0.1209 0.1212 0.1167

h8-8h9)

%(th-h3+loh4+376h5+ 5.9038 6.7696 T.3770 9.0424 11.4765 14.9183

22h6+220h7+10h8+436h9)

(h1+4h2+8h3+48h4+ 1015+ 1448+ 1802+ 2976+ 5213+ 94254
0.0844 0.7226 0.7653 0.2854 0.6622 0.6414

576h5+208h8+416h9)

Evaluation of the symmetric contribution to the functions

of hi in 6.19.

Units of(—Vop)Mev.
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Table 22b.

| a 0,5 0.1 0.8 1.0 1.2 1.4
- 0 0 o] 0
2(h5+h7+h9) 0 | 0
-%(h4+28h5+h6+10h7+ 0.0003 0.0007 0.0010 0.0017 0.0028 0.0044
h8—22h9)
%(h3+6h4+72h5-24h8- 10.1236 0.2682 0.3713 0.6593 1.0887 1.7058
48n,) |
-(3h7+5h9) 0 0 0 0 0 0
-(3h6+30h7+5h8+10h9) 0.0225 0.0489 0.0677 0.1202 0.1985 0.3110
-%(h4+28h5+h6+10h7+ 0.0003 0.0007 0.001C 0.0017 0.0028 0.0044
hy+18h) | .
. %(h3+6h4+72h5+16h8+ 10.5203 1.1285 1.5627 2.7747 4.5816 7.1788
32h,)
-%(h4+12h5+h6-12h7+ 0.0003 0.0007 0.0010 0.0017 0.0028 0.0044
h8-8h9) o A | |
-%(2h2—h3+10h4+376h5+ 0.5479 1.1885 1.6459 2.9224 4.8255 T7.5608
22h6+220h7+10h8+136h9)
(hl+4h2+8h3+48h4+ 1044 300+ 4484 9524+ 1960+ 3948+
576h5+208h8+416h9) :0.6920 0.6609 0.0863 0.8571 0.4513 0.5380

Evaluation of the antisymmetric contribution to the functions

of h, in 6.19.
i a2

Units of (-Vop)Mev.
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Table 23. F1(84]84 LKK') ( relative to §§(84'84 000) )
L .2 L . 3 L4

S I 2 N E O K)K 0 2 4
0| 0.7457 -0.0615 O | 2.2608 0| 2.4856 -0.2383 O

2 1-0.1278 3.1634 0.0208
4| 0 -0.0312  5.7493

2 1-0.0330 1.5837

Table 24. §£(84|84 LKK') ( relative to g3(84]84 000) )

L = 2 L = 3 L = 4
e\ K O 2 K 0 e\ K O 2 4
0| 0.3964 -0.0769 O ' 0.5157 O | 1.3213 =0.2979 ©
41 0 -0.0260 0.2097

Table 25. §§(84§84 LKK') ( relative to gé(84[84 000) )
L -2 L =3 L -4

VK 0 2 X 0 A K O 2 4

K

0 0.1313 -0.0679 0 0.0505 0 0.3181 =0.1431 -0.0452

2 1-0.0360 0.0580 2 1-0.0785 0.1878 0.0032
4§ -0.0102 =-0.0306 C.0836
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Figgre 1
Ratio of the energies E(04M) and E(02M) for k = 2,3&4.

18 2
Experimental values for O and Ne ° are indicated by
the broken lines.
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Figure 2

18
Approximations to the O spectrums (Units of Vo/40 Mev )
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Figure 3

20
Approximations to the Ne spectrum. (Uhits of Vo/40 Mewv )
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Figure 4

) ,
Approximations to the Mg 4 spectrum - Serber-type exchange.

(Units of vo/4o Mev )
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Figure

5

2
Approximations to the Mg 4 spectrum -

vo/4o
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Figure 6

18

Energy levels for 0O . (Units of VO/4O Mev )

(a) Theorys shown as & variation witha for a
Serber exchange.

(v) Experiment: shown for varying Vﬁ'

(Azgenberg-Selove and Lauritsen, 1959.)
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Figure 7

20
Energy levels for Ne . (Units of VO/4O Mev )

(a.) Theoryt shown a@s a variation with a for a
Serber exchange.

(b) Experimentt shown for varying VO.

(Azjenberg-Selove and Lauritsen, 1959.)
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Figure 8

2
Energy levels for Mg 4. (Units of Vo/40 Mev )

(a) Theory: shown as a variation with a for a
Serber exchange.

(b) Experiment:s shown for varying VO- (Endt and Bra%ﬁms, 1957)
KL
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Figure 9

2
Energy levels for Mg 4. (units of V0/4O Mev )

(a) Theo 11 shown as a variation with o for an
Intermediate exchange.

(b) Experiments shown for varying Voo (Endt and Braajims, 1957)
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Figure 10

2
Energy: levels fer Mg 4. (Units of Vo/40 Mev )

(a) Theoryt shown as a variation with @ for a
Rosenfeld exchange.

(b) Experiments shown for varying VO. (Endt and Braa}ims, 1957)
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Figure 11

Energy levels for
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Chapter 7
Representation Mixing For The Eight Particle Problem

In this chapter we begin to discuss the magnitude
and effect of the mixing of other representations with the
(84) representation.

The mixing of different ¥K=bands, from different
representations, is expected to be small in the same way
that wo have seen the mixing of bands within the (84 )=
representation to be small, Thus, when considering the
mixing of states of different representations into the
lowest=lying states of () = (84), we shall here, as a
first step, only consider these representations containing
K = 0 bands with even L. TFrom Table 17 and 4.9 these

are seen to be
(84), (46), (08), 2x(62), (24), 2x(40)

From the general remarks on the Casimir operator
@'1 in Chapter 6, we may suppose that the next most
important representation to (84) is (46) = this having the
next highest valus for {0 1>7\P' (Table 17)

The mixing of the (46)=representation

The leading intrinsic state of the (L6)-representaiion
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must be orthogonal to #L((8L), 1k, 3, 6). Ve find then,

from Teble 19,
F1((6) 14, 3, 6) = SIAANBE 420 +[TL ) 12

The g-mebtrix elements which couple the § = O bands of the

N

(84) and (46) representations, are of the form:-
284 46, . 0 0) and F(46|84, L O O) 7.3

We illustrate the difference between these two elements

with the help of the diagrams shown below.

Diagram 1 Diagram 2
£ (84) (16) (84) 6) e
20 —— — 20
. [N AN
<
1 N BEIAN 1
-~ ;;/zf/l
8 N o it 8
1
2 ¢ 2
etc. etc.

In the diagrams, the horizontal lines rcepresent
the different e-values, at a distence ol = 6 apari, with
the meximum € (= 20) highest,

Diagram 1 indicates the steps required to build
up %(8L4|46, L 0 0). The unbroken arrowed line represents
the coupling of the state 8((46),& v) to &(84) by the

two body potential., The broken arrowed line represents
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the equivalent operator %,((4-6)5/\3)) where -
E((%6 kav) 2(46) = #((46)env)

Diagram 2 indicates the steps required to build up

B(46]84, L 00).

Remembering that for each e-value there may be several A

& v numbers, it can be seen that the g(84/46 L 0 0)-

element is much easier to build up than the E(46/8L L 0 0).
The %(46|8L, L O 0) - elements can be deduced

exactly from the %(84|46, L 0 0) using the set of

equations in 5,24, however, to estimate the (46) representation

mixing,only the B(84/46 L 0 0) and T(84]L46 L 2 2) off

diagonal elemcnts have been calculated exactly.  The

elements E(46[84 L 00) and F(46] 84 1L 2 2) are estimated

using the relation in 5.26. We take as our Justification

for daing this the smallness of the overlaps in the (814.)

representation for L = 0, 2 & 4 and the smallness of the

terms §(84]46 L K K' )K £ compared with B(84 46 L X K).

This latter result arises from the fact that #(84 46 L K K! )K 4

only comes from the coupling 6f the states 3((46), 8ay) to

5(8L) by the putential, whereas §(84 40 L K X) comes from

the coupling of states &((40) liay) and &((LO) 8pv) to

&(84). The smallness of the matrix elements in the former
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case together with the small mormalisation coefficients of
the operators E((L6), 84av), compsred with the same
functions in the latter case, Jjustify over assumptions.

We note here that, for the representations (M) such thatb
(20=22=p) = 12, +the elements F(84 2 L K K! )K L g1 o
identically zero. For these cases then, there can be no
mixing of bands with the mixing of representations, For
the representation (i) wmuch that (20-2n=1) = 6, e.g.
(M) - (46), the mixing of bands will be small and, as

we have already stated, may be ignored.

The configurational states with€s= 14 and 8, which
will couple to @(8L4) by a two body potentisl, have becn
deduced in the last Chapter. The intrinsic stabes of the
(46) representation which contain these configurational
states are given in Table 26,

We find that, for o = 1,

v
(841 46 100) = /6/7{1-59% + «0L8 L(L + 1)} (5™ 1liev.)

___ w
%, (84|46 100) =V/6/7{2+571} (:52 liev. )
_ v,
ES(BAIAE 122) = /6/7§1.223 + +039 L(L + L)} (-1-5- HMev. )

w
E, (84146 122) =7/67712-286 ] (2 iev.)

-149-
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The elements T(46|84 100) may be calculated from 7.4 for

L =0, 2 and 4 using 5.26 with :-
a2(8L 00) = 5/11.13 246 00) = 10/3.7.11
22(84 02) = 19/11.13 8216 02) = 5.5.17/5.7.11.13
a2(8L OL) = 3.807/8.11.13.17 a2(L6 Ok) = 149 .5/7.8.11.13
Similarly we may deduce the element F(L4 84 L22) from
1.5 with i~
o2(8L 22) = 137/2.9.11.13 , a2 (46 22) = 5.5.17/2.5.7.11.13
a.2(81+ 23) .—.4,7/3. 015, a2(46 23) = 5/1.3,/3.
o (84 24) =223/k-5817, 87 (46 24) = 3.5/ 4701

The exact forn of the element F(46|L6 IKK) should be
deduced in the same way as the E(84]8L IKK) of the last

chapter. However, to estimate the order of magnitude of

the representation mixing, it is only necessary G0 deduce

the order of magnitude of the spacings between the terms

5(46] 46 1KK) ana E(84] 3L IKK).

In building up F(8L]84 IKK), we saw that the
intrinsic states, differing in their e-valucs by more than
12 from the leading state, ®(84), contribute a negligible
amount to the energy. The states differing in their

Ewyalues by 6 from that of #(84) contribute only a small
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amount of energy compared with the Age = O terms. Of the
states with Ae = 6, the most important one had maximum v,
Thus, in estimating Z(44 46 000), the only intrinsic states

which have been considered are’
3 ((46) 14, 3, 6)
3 ((46) 14, 3, 2)
& ((46) 1k, 3,-2)
® ((46) 8, k4, 8)

The configurational states of thess intrinsic states, which
couple to H46) via a two body potential, are included in
Table 26. The non-gzero matrix elements,

(qsi(e\;)lvcl 5(46)), are listed in Table 27.

We find the differences,

Dy

Vv
B(16] 46 000) = E(8L] 84 000) = 8:30 (75 Mev.)

for the Serber—type exchange

1]

v
(16| 46000) = F(B[Bu 000) = 60k (g5 Hov.)

]

for the Rosenfeld=typre exchange

Incidentally, since the F(Nu|aw 000) is the
first approximation to the lowest state of the (y)

representation, 7.7 shows that the (84) represcntation is
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indeed lower than the (46) in encrgy. This then partially
Justifies omr assumption at the beginning of Chapter 6.
In the estimation of the mixing of the other states

y((46 K1), with K = 0 and 2 we have assumeds=

#(u6l 46 1ix) - (8Ll 8L IKK) = Dy o

Thus, we have assumed that the error in the spacing of
levels in the (46) representation is small compared with the
spacing of the (84) and (46) representation (i.e. the
difference in energy in the states¥((84)000) and ¥{(46 )000)).
An estimation of the difference!

#(16]46 200) - F(84]84 200) = D
using only the states in 7,6, yields the resultsi=

v
DY = 811 (4—8' Mev.) for the Serber-type exchange

v
and D} = 5688 (4—8' Mev,) for Rosenfeld~type exchange .8
These figures must be taken as an underestimation of the
true differences and so we may conclude that the use of the
D's in 7,7, for all spacings, is probably as accuraie as we
require for these rather qualitative arguments ..
On setting up the various matrices :-
» ey
(84 84 LXK) (46| 8L Lix) |
%(84) 46 IEK) E(46] 46 IKK) 7.9
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and diagonalising, we deduce the results shown in Figures
12a aend 1l3a for the Serber and Rosenfeld exchanges., In
these figures we are only comparing the encrgy spacings
not the absolute energies. The amount of (84)
representation states in the lowest eigenstates is indicated
as a percentage.

We see that the mixing of the representations is
small and that the spectrumstill possesses the main
features of the spectrum of the (84) representation,

Discussion on representation mixing

Since the <81>7\F‘ of the other represcntations in
[.l are cven smaller than (/6'1\) 16? we might expect the
percentage of mixing of these represcntations 4o be very

small,

The slight changes in the spectrum,from that of
the (8#) representation,due to the (146) representation,have
very little significance until the effect of the mixing of
other representations has been considered.

We notice that the energy of the first excited
state of the (84) representation is decreased slightly
in the mixing of the (U46) represent:tion, Referring back
to Figures 8 to 10, this implies that a larger value of Vo

must be chosen to fit the experimental value. An estimate
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of the effect of the (08) representation mixing has been
made, however, in the same way as that for the (46) with

«=1 (FiguresI2b andl3b ), We see that in this case the
first excited state of the (8L4) representation is increased
in energy. Both the (46) and (08) representations increase
the K = O and K = 2 band spacing = a pleasing result since
this spacing was found to be too small in the (8L4)
represantation, ’

Ié is perhaps unwise, at this state, to compare
these few results of representation mixing directly with
experiment until the effects of other representations has
been examined, We notice that, although (q@ is smaller
than either C@i}hé or-<§i>08, the fact that there are
two (62) representations may have a noticeable effect,

The representations with odd K, which were not
includedin 7.1, must also be examined, although the
smallness of the mixing of bands indicates that they will

again have little effect on mixing with the (84) representation.
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Table 26.

States of the (46) representation in terms of

configurational states whigh couple to & (84) and @(46) with
the Gaussian potential.

g

s 5 (
5 Pi(467513v )Qi (1)

‘\/i

14

ﬁﬁ’3)+ﬁ'4)

J17105 [215) +/216) +/617) + 116) +2/2 [17) +6|18)
 +3/29)-/30 [10)]
J1/105[[11) 4. . ]
J1742[2/6120)~/Z [21)-4 [12)]
1/21[-2/3114)-2/6113) +. . ,]
(1/TWI/15[-2115) +e . ]
(1/3WA7TT(-214)-2[13) 4e o]
ﬁ7'lT5'5[-2115)+.--]
(1/105)/1711 [59/2 [14)=8[13) +.. ]
(1/35W/1733[10WZ]15) 4. - |
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Tsble 27.
Watrix elements for k - 8.

Coupling to & (46).

g, ev)| B (G461 V! |F (e /V p (a6l v!|g, (ev)) /¥ »

0:8 a6 oc4 a2 1 a8 a6 a4 a2
3) J1/T | 72 |288 | 846 | 826 | 561 | 20| 160 | 310 |300
4) J6/T | 7121288 | 796 1832 | 559 | 40| 160 | 340 {360
5 | V1/7 | 8 8 14
6) 2/1 91 6 6 5 | 10
7) JeIT 9| 6| 12 5 | 10
8) |-/1/1 24 | 12
9) J2/7 12 | 12 | 12
10) |-/30/7 | 41 8
11) | VI/7 | | 9
12) | /177 | 130 [-80 | 49 -45 {-105
16) | V1/1 4| 8| 12
17) | J/2/7 8| 8 8
18) | /1T 24 | 50 | 73|
19) |=/1/35 22 | 11
20) | Ve6/T 8| 8| 14
21) |+/2/T 29 2 35 -15 | =30

ovge (| 1 gy =Bl oge wau v oo )Yp
5 5, .
-Tr
V! - Vo §;7 exp ZJ ] D = a2
it L a A(2 a2)11/2
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Mixing of representationsi~-

Figure 12. ~for a Serber exchange. (a=1)
V /40 Mev
o (a) (b)
3T -
04 : - -
23 - -
2‘-»
2 2 - - -7
1To 2 S 17 S
472{
0400 - — ---
KL (84) (84) +(46) (84) +(46) +(08)
Figure 13 ~for a Rosenfeld exchange.
3 (=) *)
V /40 Vev .
o] L7
o124 T r
2 3 - T
0 4 o 1P
2 2 -7
1
02 ... 88z -
907,
O'po0 - - Z S
KL (84) (84) +(46) (84) +(46)+(08)
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Summary and Conclusions

The method developed here, for calculating the
spectra of light nuclei, is sufficiently streamlined to make
a number ef such calculations possible for a large ﬁumber of
particles in the shell.

Taking only the states from the leading SUj
representation (XZ), the only labour in the calculations
came in the expansion of the intrinsic states @((;:)EAy),
in terms of configurational states, and the coupling of the
configurational states to @(XZ) by the potential. Because
of the simple form of the intrinsic states, both of these
calculations are straighEJforward but, sometimes, a little
tedious.

Analysis has shown that, in the calculations without
representation mixing, the intrinsic states of the leading
representation with Ae = 0 give a spectrum in which the
stateswith different K-labels are separated in energy but
where the states with the same K~label are d egenerate. A
rotational spectrum within a K-band is formed by the inclusion
of the Ae = 6 intrinsic states and the differences from
rotational spectra come from the addition of the Ae = 12
states. We have seen that the contiibution from the

Ae = 12 states grows relatively smaller as particles are

added into the shell -~ thus producing the well known rotational
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features away from closed shells., The comparison of our
results with experiment for the spectra of 018, N%O and
Méh, using only the leading SU3 representation, d epends
on the choice of the range and strength of the ceuntral force.
The results with the values of the parameters chosen in
Chapter 6 are encouraging, In general, the X = 0 bands
can be fitted close to the e xperimental ones, for any of
the exchanges we have used, but the spacing between the
K=0 and K =2 bands in M%? is too small,

the least error coming with a Rosenfeld exchange. The
spacing of the first and second states in the K = 2 band
is found to be almost correct for any exchange.

The strengths chosen in eachc ase are roughly
consistent far Serber and Intermediate exchanges but the
strength, with a Rosenfeld exchange, for M%& is perhaps
too large compared with those for Ol§ and N%p.

With the small band mixing in the MgZLP case,
deduced with Rosenfeld exchange, and the correct energy
spacings, we are able tocalculate the branching ratio of
the E2 transitions from the second 2% state to be very
close to the experimental value.

The ihtroduction of the term ?Li into the
Hamiltonian was found to have little effect on the M%?

spectra.
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The initial calculations on representation mixing
indicate that these are probably small. The (46) and (08)
representations change the spectrum, from that of the
(84)~representation, only slightly and the increases in the
K =0 and K = 2 spacing are also small, The actual effect
of the representations with odd A and/or u will have
to be examined although, since these do not contain K =0
bands with even L, the changes in the lowest states from
that of the (84 )-representation is expected to be small.
It is difficult to see, in view of this, how any of these
representations alone can increase the K =0 and K =2
band spacing appreciably.

Work is now in progress at Southampton on the
introduction of a spin-orbit force into the potential so

that complete calaulations on all nuclei in the ds-shell

may be made.

-~160-



Roferences

F. izjenberg=Selove and T, Isuritsen(1959) Nuclear Physics 11, 1
w

R. Batchelar, i.J. Ferguson, H.E. Gove, 4.E. Litherland (1960).

Mucleer Physics 16. 38

H, Bateman (1953 II) Higher Transcendental Functions Vol. IT

(compiled by A. Erdelyi, W. lagnus,
F. Oppenheimer, F.G. Tri comi),

McGraw Hill,

J. Blatt and V.F. Weisskopf (1952) 'Thecretical Nuclear Physics!'

B oDo

B.V.

A.R.

J.P.

J'P'

J.P,
J.P,
J.P,
J.P.

JeP.

New York : J. Wiley and Sons,

Bunday (1960) Ph.D. Theais. Southampton,

Condon & G.H. Shortley (1935) Theory of Atomic Spectra
(Cambridge University Press)

Edmpnds (1957) ingular Momentum in Quantum Mechanics
Princeton University Press

Elliott (1952) Ph.D. Thesis. London

Elliott, J, Hope and H.A. Jahn (1953, IV B) Phil. Trans. Roy. Soc.
A 246, 241,

Elliott and B.H. Flowers (1955) Proc. Rpy. Soo. i 229, 536.

Elliott and A, Lane (1957) Eocyclopedia of Physics 39, 241

Elliott (1958 I) Proc. Roy. Soc. 4 245, 128,

Elliott (1958 II) Proc. Roy. Soc. A& 245, 562.

Elliott (1958 III) Gollective Motion in Nuclel Compiled by
M.H. Macfarlane.

-161-




P.M, Endt & C.M, Brasfms. (1957) Rev. liod, Phys. 29, L. 683
T. Hu and H.3.W. Massey (19%9) Proc. Roy. Soc. A1%. 135.
D.R. Inglis (1953) Rev. Mod. Phys. 25. 390
H.A. Jahn (I) Tabulation of the Radisl Inkegrals by the
Talmi Method (unpublished)
H,A. Jahn (1950) Proc. Roy. Soc. 4 301 516
H.A, Jahn end H. Ven Wieringen (1951 IVA) Proc. Roy. Soc. A 209, 502.
J.M, Jauch & E,L., Hill 1940. Phys. Rev. 57 641,
D. Kurath (1956) Phys. Rev. 101, 216,
M. G. Hayer C1944) Thys. Rev. 75, 1969
S.A. Moszkowski (1957) Encyclopedia of Physics 39, 411.
S.G. Nilsson (1955) Dan. Mat. Fys. Medd. 23 No, 16.
G. Racah (1951) Princeton Lecture Notes on Group Theory and
Spectroscopy.
M,E. Rose (1957 ) Elementary Theory of ingular Momentum
John Wiley & Somns.
L. Rosenfeld (1948) Nuclear Forces.
imsterdam ; North Holland Publishing Co,
L.I.Schiff (1955) 'Quantum Mechanics' MoGraw Hill,
H. Weyl (1928) Group Theory snd Quantum Mechanics.
New York ¢ Dover Publications
B.T, Whittaker and G.N, Watson (1927) Modern inalysis (hﬁh ed)

Cambridge University Press.

~162-




Appendix 1

Two Body Matrix Elements of the Gaussion Potential

The spherical harmonic oscillator equation in three

dimensions, for a single particle, can be written?

2 x2 2 2
-%f‘ﬁ- v20+-%- -E‘LT-I'U.-.fz—-Eu A1.1
bm b™m

The solution of this equation in Cartesisn co~ordinates is?

=2 =2 =D
A, L G)E, G =

U(nnn):ﬁn(i)ﬁ
p'd y %

where ﬁm(;;) = 1/ém ! JiT b) Hm(x/b), X = x/b eto.

with Hm(x/b) a Hermite polynomial of degree m.
(Shiff 1955)

The eigenvalue, corresponding to this eigenfunction, gives

E

E:(nx-i-ny+nz+3/2)
Using the set of k=particle oscillator well functions
to describe the nuclear states, we have found it necessary to

evaluste such integrals as

N = (Ul(nae:ln;ylnzl)U 2 (nx2ny2n22) l Vij l Uy (nx3ny3nz3)U2 (nxl.unyl+nzl+) ) -—-—-Alz"

b perticle is in the state Ui{n nn )

N
Where the i L D0,

The two body potential Vi 3 has been taken to be

2 2
e"rij /e -~ the Gaussian potential apart

from the strength parameter Vo'
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We shall show that

- n 1t in 10 1 ‘3"3
M= \/P?IXJ' pyj. [nz}. W x

£(n,qn. L ot 5T xl+) f(nyln Znyjnylp) :E‘(nzlnzznzjnZ 4) A5

ere « = o m ]! =n.!n_!n! ! etac.
where a/b, ij 1" Byept Tyzt Byt etc
T N2y

and f(nln n,n ) = 2__, }__, (—)P-Q{Z(P + Q)}f (l/c;c2 + 2)P+Q x
L7275 P=#, Q=Fy,

1/l s By pt(® = B M@ + By)HQ = By )ilmgy = B x
(ny, = Q1(® + @)1 2]

with (n:L + 7, + Ny o+ nAL) an even integer

3

and :f‘(nlnzn}nh) = O otherwise AL 6
+n -n

Here, g = il—-—-———-é and ?113 = ?—1-—-—-2 ete.
2 2

The integrals in Al.L reduce to a product of three in x,y and z

spaces, of the form s~

e ' '
I = - F Al.7a
x 2 \/2n1+n.2+n3+n4 ottt x
nl. 2. 3. 2+.
(Here n, . n_ etc. for convenimce in writing)
1

X < z = .~ (x 2+- 2) ~(xymx 2
where B;(: fj. Hnl<x’.L)Hn2(x'2)Hn3(X1)th(XZ)e ( 1 ¥ )e ( 1 2)

Xl,x2='cg &

1

Al 7b
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Putting Rx=xl+X2 and Px=xl-x2, we find

. - S N
= 1/2 jj nl(xl)H (Xz)Hmz(xl)th(xz)e x T0% ®.a@. A8

XX

where o2 = 1/2b nd & = (1/2b2 + 1/a2) AL.8b

+O

The problem in evaluating the integral in A4l.8a reduces Go
representing the product of Hermite polynomials, in the
integrand, in terms of functions of Rx and Px'

We know, from Bateman 1953, Vol.II. p. 193 ~ 4,

mln (n ,1’1 ) i I3

- {~ nl) /%) &)
Hnl(xl)H 3(x ) ( P { P ”, H( +1,=2p ) =
' D=0 AR Dy+ig
where { o] &€ the binomial coefficients,
ond n1+n -2p(‘*1) (1/2)(n +1 -2p)/2
n,+n_ =2p 2D | ,
173 7 [ngnlp (oB,) 41,10
IZ . Hk(CRx)H(nl-x-n ~2p=k)
=0

Similer transformations of H (iz)H (%,) produces
n2 nh 2

sums over ¢q and (

Defining now 2n=n1+n2+n3+n,P=n15-p,Q:nZLF—q Al,11
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we may write

B (%) )an (x, )Hn5 (2, )Hnl}(}? ) =

o
By Pog
N ~2P=2
24 Z 2P gy = By, = Q)
P=n13 Q,=n24

nl \ .// n2 ) ( n3 ) ( n L )
! X
3P / \ o @)\ m3mF A0y, =Q

i \

2P 2Q
Z S——‘ N (ZQ ) H (R, _JHg(cR )H (cP )H (cP )(_)ZQ--Q
” [-4 x/ \¢, kN TN e (2P )N T T (20m0) N T x

.12
The integral in Al.8a now reduces to a product of two integrals:
+o0 5
j Hk(cRx)I-I.f(cRx)e-csz de = 5kf 2kk! ST /c Al,13
'w h% 4
N a%p 2
and J H(2P_.k)(ch)H(2Q _ k)(ch) e "x dB
-
< 2P - k|/2Q - k® 2p 2
4, 27 r! ( )( J’H (cPX) e x &P, Al 1L
T=0 r r |} 2(PeQ=k~r)
9

(Bateman 1953, Vol. II, p.194)
Since k (A1.10), 2P and 2Q (41.12) and r (ALl.1h) are all

integers, we have that 2(P+ Q - k = r) is an integer. Bub
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the integral in Al.lk venishes unless 2(P+ Q = k =) is
an even integer. This implies that (P + Q) is an integer.

From AL,11l

P+Q=(n.l+n2+n3+n1+)/2-p-q::anim‘seger

Since p (and q) is an integer from Al,9 we deduce that

(nl + 7y + Dyt nA)/Z = n = an integer for non

zero solutiaons of Al.lL Al,15
Using the fact that =~
e "‘dZP 2 A7 [2(PrQekear )] § 2 PyQekcer
H (ch) e~ "x dB ="d-' . - [(c/d) - lJ
2(P+Q=-kw=x) [Peq-ler] ! |
- Al.16

we find, from Al.8 to Al.l15
n n

1 24
fri’ < \ ' T (\ i
F= o3 L 2L 2. 2N-2P-2Q+r+k(_)2Q-k «
© P:ﬁ Q =ﬁ k=0 =0 . .
13 % \ /P Ny o\ 3y,
(1’113 - P)! (n21+ - Q)! kir! } ) x
5Pl AnpymR ) ey 5F) 0

(ZP) (ZQ) (ZP-k)(ZQ-k) @+q=k=-x)t {(c/d)z_l]HQ—k-r
I x |

k T r (P+ Q=X =1x)8
Al.17

with k summing to min{ZQ,ZP}

and T " " min { 2Pk, 2Q-k}
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Putting Q+ P~k =K =and K~-r =R we have
th tn tnt ‘S-ihs N NeBQ QP
e X S A SO S e C w911 ) L

2cd P_n Q%
_nl3 &_n24

/(R +y5)t (P = 5y5)1(Q + 8y, )1(Q = 1) )t (ng5 = B)i(ny, ~ Q)1 x
P4Q P+Q

K 2 R
(- E (2R)! (gcéz-ﬂ
Z. L_ RT(Q + P - K)I(X RQ(P—Q+R)£(Q-P+R)!

R= P=-Q K=R

A1.18
The sum over K vanishes unless P+ Q- R = O,
With (c/d)z-l = "z/oc2 +2, «=a/b wafind;:
2.n
T(nl 2'n 'n ta2
Al,Ll
f(n nznjnh) 9

oo + 2)1/ 2
Where f(nananh) is defined in Al.6.
The result in Al.5 now follows immediately from Al.l7a.
We notice that the f-functions have the following symmetry
relations.
f(nln n nA) = f(njnznlnh)
f(nznlnhnj)

The only f-functions which are needed for the calculation

of matrix elements in +this thesis are those for which

ng {2, These have been listed in Table 32,
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Table 32 f=functions presented in the form.

f(nananA) gK(l/gf952+2)t [ a8tt8 + a6m6 + za.)_‘_or,l+ + azocz + aOJ

for (n:L + Dy +0g F nh) even

= O otherwise

n, n, ny ml K |t ey 8 3 a8
o o o0 o0 1 1
1 1 0 © 1 |1 1
1 o 1 o0 1|1 1 1
i 1 1 1 1 (2 1 2 3
2 0 6 o|=1/2 |1 1
2 1 1 o 1/ |2 2 1
> 1 0 1|-1 |2 1 -1
2 2 0 0] 3/ |2 1
2 0 2 ol 1/k |2 2 L 3
2 2 1 1| /4|3 Lo L7
2 1 2 1] /413 2 6 15 7
2 2 2 0| -1/81|3 2 =4 =l
2 2 2 2 16| 4|k 16 O 56 M
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Appendix 2
Fractional Parentage Reduction of the

T
Eight Particle State (o) (b%) by Two Particles

The state has been defined in 3.51 1o be.

(MO = a2 >1234<k#*>5678§m 2.1

4

<

where Z, sums over all the permutaitions P between the two
sets of numbers (1234) and (5678) pérserving the natural
arder in the sets. The charge spin functions being woiter
coupled to a singlet=singlet state. Wr’i’cing the sum over

permutations involving 7 and 8 explicitly we find:
"
11, 4,11 N
O el PRI 3 & 155,00 Va6

i
7
(& 1237 bh)wes@ ( 1*)1258("’4)4567 + Zb>1278(‘°4) 156 J el

R

7 7

Where now Z sums over all permuation of i)—j except those
involving 7 end 8 i.e. the permutations involve the numbers
12,..6 only.

The fractional perentage coefficients (c.f.p) of
the reduction of a totally symmetric fcourparticle orbital
state by one or two particles are trivial since the orbital
states are not coupled. The charge spin c.f.p. are well

known (Jehn Van Wierengen, 1951. Elliott, Hope and Jahn, 1953).
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Thus, for example,

3]
- RGRRE -/i0 0R | 2.3

(™)L

5678 =

Similarly for (a )1278

L
and (a*)ig5; = ()55 (a)37) 42.5b
Similsrly far (bhl)l*.568 ] (a )1238 and (b4)4567

Using the recoupling coefficients for the charge-spin spaces,
i.e. the normglised Racah U=function defined in.

W ((31350975,357M) = } (3135735395955 ¥(37 (3,35 )755,10)
\/23
(Elliott 1958, III, p.10)

and the Hopex-function defined ing

Y ((333,09155(353,03 5, ,0%) =

2?(((:5 3o 0153C323, W5, 59 | (3232099250353, 09,,57) x

17 19277122339, 3L 1937132 WaCy Y2y
(A R L. . i
WV (313509135(353,095),57%)

with
1 (% % |

(2J +1)(2 +l)(2J +l)(2J +1) | ) .
X =1 Iy 21 ] 835 3 Ta
\JBJZL;J yi

being a nine-~j symbol.

Ay
Mmoot

(Blliott 1958, III, p.15)
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we £ind,

(3510 5 ) T A2 3, (0P (22

= Vi72(( )i PO P02 g | 2.k
()25 0] *1/’*;‘((3)123(1’3) & (egpg) 4
3((22 )05 (605250 (o bg P 4 V3 (235587 )25 2 o bg )™

» /3((2)55 5 (57 )22 P (b P T 22,00

Collecting up the terms from A2,3 and A2,L and putting them

back into A2.2 we find, by summing over the permutations between

the particle numbers 1 ....62-

(Y = Vo8 {Ji7é<<a‘*>n<b2>f>f<b2>$ - A0 )%}1*

11

N A ot G R v ES GRS T

- x,/E/’éé“{ﬁ/&<a3>22<b5’2i?f‘a"’§§ V(e GO A Y o

/10/28’J1/10<< 2 P2 (6% P2 ) b 7 +/9/10((2 P2 (2 7275 ¢ b?f} -

A2.r2
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The first six-particle states in A2,5 are antisymetric and
are coupled in the charge=spin spaces to antisymmetric fwo=
particle states of the last two particles. The orbital

symmetry of the last pair is given by the charge spin functions.

S T
(an)y = Vi/R(aqbg + s )73
@B)7g = [falerpg = 2y ) 75

etc.,
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Addendum

On_the Use of the Eigenfunctions of the Deformed

Harmonic Oscillator

Throughout this thesis so far we have been concerned with the
energy, in the k-particle states in the ds-shell, of an A-particle
nucleus with 16< A< 40, The method for calculating energy levels
has been designed to bring out certain features of the rotational
model., No excitation of the closed shells (- corresponding to
the O16 core) has been permitted however, We know that such an
excitation must be considered if the correct quadrupole moments
are to be predicted, From the known features of the rotational

model a deformed shape, which is stable ih some sense, is

suggested,

In this addendum, we record the results from initial calcula-~
tions in the p-shell {4 <A <16} for the binding energy, using the
many particle eigenfunctions of the axially symmetric deformed
oscillator (Hﬁ) ag a set of zero order approximations to the
‘muclear states, The energy in these states, from the Hamiltonian
with only central forces (Hc)’ is now given in terms of two
-oscillator-well parameters one of which can measure the deformation
of the wells The best approximation to the binding energy, with
a few of these states, is found by diagonalising the energy matrix

and minimising the lowest eigenvalue with respect to the two -

A7



parameters,

We show that very similar values for the deformation parameter

will minimise the energy from either H q °F Hc.

The deformed harmonic oscillator,

We may write the axially symmetric deformed harmonic oscillator

Hy = ﬁi [-"V2 it xt s o y2 + Bl" 2°] eee Ad, 1
2m

where, for zero deformation (spherical oscillator), «w= B.
The single particle eigenfunctions of Hd can be expressed in

either of two ways:

2
. e (R, (s, (P SELREREY

X'y a 2 nx'ny.n 'r® Ad.2a

or

Bocz {n, = in| )2}t . g
(.L (i o3 (ocp)lm' x

2z, nzl{(nJ.+ }ml)/Zgl 7/

B om,

[m |

& gWZ'P)}Z H, (6z) e—(oczpz v B22°) /0 Ad,2b
- fmn P
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Here H is a Hermite Polynomial and L a Laguerre Polynomial
(Bateman 1953 III). p, #,z are cylindrical polar coordinates and

n = n_ 4+ n n = n 4+ n + n
de X k% X y 2

The eigenvalues of Hd ares

A 2 1 2 ‘
Bnn, = T TE L0y 3 e Sy e 1/2) 6y 1/2)]  Ad3b

The functions U and V both spread out irreducible representations

of the group SU, described by the three operators BKY’ Axy’ Ayx of
Chepter 2 ([« = 1/b} We may write:
Un an = U(n As)
Xy s
and V = V(n At) ' Ad, b
n,mn, ,

where A is a representation of SU2 such that A= (nx + ny)/2 and

s = (nx - ny)/2 t o= m/z. eee 445
The difference between the U and V functions is ’then} Just the same
as that between the g and X of Chapter 2, The relations between

U and V can immediately be deduced from 223 to be:=

U(nas) = 2 b(azs: 26) vinat)
t

where b(a,2s: 2t) = (=i)° d;:(w/z) Ad,6

We define paramters y and & after Nilsson (1955) by the relation -

&= P +(2/38)

B* = yl*(l ~(L/35) Ad,
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where the parameter § is a measure of the deformation, The

(Volu.me)"2 of an equipotential ellipsoid in Hd is proportional to:

4.2 6 12 6
H62 = yo1 + /3I0L - /312 = 3 8 (say), 3.8
By varying § with A constant, we shall be varying the
deformation of the potential keeping the volume of each

equipotential surface constant.
Since the potential derives from the muclear density, this i1s

an approximation +to keeping the nuclear volume fixed while the
shape is varied,

Many particles in the deformed oscillator potential,

The eigenvalue of a many particle state of Hd’ at a certain
deformation (8), can be calculated by adding up the energies of
its single particle constituents from Ad.3b. The energies, in
units of yozﬁz/m, in the lowest configurations for 4 = 6, 8 and 10
particles, are shown as functions of the parameter § in Figures
14, 15 and 16.

We notice that for A = 6 and 8, the lowest energy is given for
a positive value of the { -prolate deformation, For A = 10 the
lowest energy is given for a negative value of the deformation
although there is a state, (Voof: Voo?Ll‘ Vl_l‘i/\z , having a miﬁimum

energy of almost the same value but with a positive deformation =

the transition from a prolate to oblate shape,
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Many particles in a two body potential.

The two body central potential is given in 1l.,2. For these
calculations we used the Hu-Massey (1949) values for the strength
and range of the force:

Vo = 29.59 Mev a = 2¢18 x ].O"17 cms,
and the Rosenfeld exchange constants.

The many particle states y have been taken in terms of the
single particle states in Ad.Zb, In this way we can preserve the
labelling with the projection of the orbital angular momentum ‘

M= § ms on the symmetry axis where mi refers to the ith nucleon,
By teking the low lying deformed oscillator states,however,it is
not possible to form simply a state which can be labelled with the
orbital angular momentum quantum number L, This is a disadvantage
since we know that, for a central potential, L is a good quantum
number,

For the lowest nuclear states, we again Just consider those
oscillator well states with maximum orbital symmetry (see Chapter 1
for the general construction).

The calculation of the matrix elements of the potential follows
the standard procedure of finding the c.f.p of the reduction of the
many particle states by two particles. Since the single particle
states will only be vector coupled in their charge-spin spaces,
the calculation of the c.f.p. follows in a similar way to that in

Appendix 2 for an eight particle state.
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The two body matrix elements using the set of single
particle states in Ad.2b may be written in terms of those using
the set in Ad,2a with the aid of Ad.6. These latter matrix
elements can be deduced immediately from the general formulae in

Appendix 1. The energy now will be given in terms of two

parameters.
e=ax and f = af | Ad, 9

Matrix elements of the kinetic energy.

The kinetic energy of a nucleus, relative to the centre of

mass, may be written:-

2
_ L () -t
=g 3 op() -3 P
1 i 2
sx= I (p(1) - »(J)) Ad, 10

i<
where B = P(i) is the momentum of the centre of mass and .f;(l)

is the momentum of the ith nucleon.,

For oscillator well states ¢, with total quanta N, we have

the equivalence between momenfa and coordinatesi=-

G |z G - )2 k)
i<d

2 2
= (W) | iﬁj{m“xij caly2 e g1 | o) Ad.11a
with ;s = x(i) -~ =x(3) ete.

The matrix elements of the kinetic energy may be deduced from those

~179-



of the Gaussdan potential (Appendix 1) for:

2 1 1

-X. 2 - 9 =
I e i3/ = X B-TT3 %%, 40 }
1¢j / i< 22 ¥ay ¥ O

Ignoring 0(%) we can deduce:

‘%Z(Wl Exijl@z :A'.Qi‘;_];z s(gr)

i<

x2 2
~(¢ | 26"k ) 2 Ad.11b
i< o@}: 0 =
Similarly for 2 yij and .2'_ z;

i< i<j
The kinetic energy matrix elements are of the form

N I ORI ) i )
i<

~

- "'2:}1"2 (16 + BE) 44,12

~ -~

where A and B are constants.

Parameters
For the purpose of minimising the energy matrix spread out
by the states X, we choose parameters (functions of e and f)

such that the mean square radius,

SR, == 2 (z, =R =& 2 (r, - r.)? 44.13
A . i 2. .74 J
i ATi<]

remains a constant

From the form of the kinetic energy matrix elements we deduce:
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M.S.R. =-}5 {A’:'/mz + 5/62} =
A

a2 ~ 5 ~ 5 )
= {A/e + B/f ; &£d. 14
A

2
Writing l/e2 =D + ¥t and 1/£° = p + x¢ Ad, 15

where for the moment x,y are arbitrary, we have

2 ~ ~ ~ ~
.a'..é.{(A + B)p + (Ay + B{)E} = M:.S.R. .A.d.16
A

~

We choose the ratio of x to y such that Ay + Bx = O, In this case,

2 ~ ~
M.S.R. =25 f{a+Blp 44,17
A

p is then proportional to the M,S,R.

The actual values for x,y are unimportant. A change in their
values will just change the definition of the parameter €, Notice
that the € also measures the deformation of the oscillator well
since, when € = 0, e=fj(_?f=.(3 (Ad.15, Ad,9). It is possible to
relate the parameters p y € to the Nilsson parameter 5.

On the one hand we have :=-

et atgt (1 -G/3k)
On the other hand

of ot (1 s/3) = &2 (say) £4d.18

L 2
:°...=(J.3.."'._X.-.F:) s & 44,19
l+ L )
f P+ ¥E
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Thus we have

_3 a1 _
5 =2 (1 - 232) where S u(ﬁ—;ﬁi) 43,20

Although the calculations have been done using the B £ parameters
and the energy, in the many particle states of the deformed
oscillator, minimised with respect to these parameters, the results
have been given for convenience in terms of the mean square

radius (deduced fromR in Ad.17) and Nilsson's & (deduced from p«nd &

in Ad,20).
We now discuss the results of the caloulations for the 4 = 6,
8 and 10 particle nuclei corresponding to 136, 588 and Blo

respectively.

The Li6 Problem,

The lowest six particle states in the deformed oscillator
potential with M =0, N=2 { N= 3 (n (i) + ny(i) + nz(i))§
i
and orbital synmetry [42] are:-

B ™ wqdP)

X 002
R A )13) B e Ad.21
X 300 ( ooo - A10'310 adezt

where the many particle states are of the form

X 2T + 1, 25 + 1
N T
DLEMVZ
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The energy in these two states, for Hc , was evaluated for several
values of the parameters p and €. Near the minimum energy, small
changes in p were found not to change the energy appreciably.

The value of p which actually gives the minimum leads to a mean
square radius 9.5 x 10-26 cmsz.

The variation of the energy with,d', at this value for p, is

(a) and (b)
shown by the continuous curves Ain Figure 17,

In this one case, the mixing of the two states was
considered., The minimum of the lowest eigenvalue was found for
the same value of p which gave a minimum without mixing. The
variation of the eigenvalues with d is shom by the brekencurves (c) and (4)
in Pigure 17,

We notice that the mixing of states does not contribute
appreciably to the energy at that value for § which minimises
the energy. The § which minimises the energy is seen to be

positive and to have about the same value as that which minimises

H; when A = 6 (Pig. 14),

The B 8 problem,

In this case thers are three states of maximum orbital
symetry with lowest oscillator quanta ( N = 4) and angular

momentum projection M = O.

14 b 11 b1y M
= V) (V)
ook (ooo 001 )
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T 11 T
Xa02 = (oo 3 (0(31 210 %-10)" )

11 11y 11

X 100

(oo™ (146 ni0) ver AL22

We have only performed the wvariational calculation on the
first of these states.

The minimum energy was found for a mean square radius of
10:5 x 10‘26 Gmsj2 ~ a slight increase over that for 136. Again
only slight changes in the energy were dstected for small changes
of p around the minimum,

The variation of the energy with § in the state Xgéu is
shown in Figure 18.

The minimm energy is given for a value &§~0.57 again
comparing favourably with that value which minimises Hd (Figure 15)

The B10 probleme

This nuclus is in the middle of the p-shell. We notice that

the states
13 1T dy 1 13, 13
Xo0, = (Usgo Vo) (hao V4og0)™)
1 11 11 1
xg2y = (Woo®) (w2 v, ) v L) 3)" .o Ad.230

have near enough the same minimum energies in Hj but for dEfferent
values for §. The former favours a positive deformation and the
latter a negative one. (Figure 16) The energy in the state x%éh

with HC has been found to be minimised for a mean square radius

oy 7/



value of 15.2 x 10'"26 cn182 - again an increase over that for Li
and B 8.

e

The variation of the energy in this state with é‘, for this
M.S.R., is shown in Figure 19, Notice again that the & which
minimises the energy, is the same ON® that minimises the energy
with H a

Although time has not permitted the caloulation of the energy
in x%go, it is expected to be minimised for a value of 4 which
minimises the energy in the state from Hd'

Three states, of the form

13 2. 2
Xo2 = oo Voo1 110 1.10) eeo Ad.230

may be constructed which have a minimum energy with Hd for §~0.
It would be interesting to see if the mixing of the states in

Ad.23a and Ad.23b produce a lowest eigenvalue which is U-shaped

and centred zbout § = 0 when the variation with § is considered,
The Blo nucleus could then be thought of as having an unstable

spherical shape.

Conclusions.

We have here only begun to discuss the use of deformed
oscillator well states however, with the calculations already done,
we can begin to get a picture of the part the deformation plays in

energy calculations., It is seen that a gain in binding energy is
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achieved by going away from spherical symmetry to axial symmetry
with that deformation which minimises the energy for Hd‘ For
I.:i6 a gain of 0.85 Mev is obtained over the S-state for zero
deformation (i.e. the lowest eigenstate at § = 0),

The mixing of all higher states must make the lowest state
one with good angular momentum the main single part of which is
the lowest deformed oscillator configuration,

The XN.LNH\E-’ of course, form a complete set of states for
any value of the deformation parameter and the true states of a
k-particle nucleus can be expanded in terms of any of these sets,
Thus by mixing in all states of a set, and diagonalising the
resulting energy matrix, the lowest eigenvalue, when plotted
against the deformation parameter, would be a horizontal line,
(This is mathematically correct but cannot be checked in practise
since the complete sets are infinite). It appears, however, that
by expanding the true nuclear eigenfunction in terms of the complete
set of states which minimise the deformed oscillator energy, a
better approximation to the binding‘ energy is obtained in a fewer
number of terms than for any other value of the deformation
parameter, This approximation though will not, in general, give
a state with good angular momentum., A study of the variation of

(L2> with deformation will have to be carried out.
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Lowest energy levels for A~particle states (11.0) in the
deformed harmonic oscillator potential. ~ '

FE- ure "1'4-0~ A= 6 Figl&re 15. A - 8
\ : (2) : (5)

(3)
O' -+
10.5 15
2, 2
I A
Units of 2
Figure 16. A = lQ States
™
(8) (1) vt ve
o000 ool
4
2) =
(2) - Vooovllovl-lo
4 4
(3) = Vooovool
4 2 2
(4) = Vooo ool 1-lo
4 2 2
’{ (5) = Vooo 1lo 1-10
4 4
(6) = Vooovool 1lo 1-1o0
4 .2 _2 2
.
(1) - Jooo ool 1lo 1l-lo

4 3 3
(8) vooovllovl—lo
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Energy in the lowest A-particle ,deformed oscillator
eigenfunctions from Hc.

Figure 17. A= 6 +~Figure 18, A = 8
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