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Abstract 

Harmonic oscillator well eigenfxmctions, classified 

according to the group SU^, are used as a set of zero order 

approximations to nuclear states, A selection rule is used 

to put the representation; of SU^ in their order of importance. 

A method is developed for calculating energy levels, 

with theses tates, by a variational procedure using a central 

force only. 

The appearance of rotationalf eatures for even nuclei 

in the ds-shell is discussed, using only the states of the 

leading representation, and the low lying energy levels of 

X8 pQ 2Zi. 

0 , Ne and Mg are calculated. The agreement with the 

K = 0 bands as good but the K = 0 and K = 2 band spacing 

in I3ĝ  is too small for any exchange mixture. 

The mixing of bands in Mg , for Rosenfeld exchange, 

is of the right kind to give almost the correct branching ratio 

for E2 transitions from the s econd 2^ state. 

Mixing of representations is small and the changes in 

the spectrum from the leading representation only slight. 

Initial calculations are given an the use of the 

deformed, harmonic oscillater well eigenfunctions as a set of 

zero order states. It is found that there is very little 

difference between the deformation parameters which minimise 

the deformed harmonic oscillator potential and the Gaussian 

two body potential. 
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Introduotion 

The states in iitiioh the nucleus may exist are given, 

in the quantum mechanical approach to the nuclear problem, as 

the eigenfunctions in the Schrodinger equation 

= B9 (l) 

•where H is the nuclear Hamiltonian operator. The energy 

in the state 9 is given by the eigenvalue E. The solution 

of the Schrbdinger equation is doubly difficult. In the 

first place, even if our knov/ledge of nuclear forces vms so 

complete that •we could construct the true Hamiltonian, the 

resulting many-bo^ problem could not be solved tgr present 

mathematical techniques. The task, therefore, is to reduce 

the insoluble problem to a soluble one lAile Introducing as 

little error as possible. 

In the usual appraoch to such physical problems, 

models are constructed "which approximate to the actual 

system in some way and are mathematically tractable. 

Unlike the atomic problem, no single nuclear model has yet 

been proposed which mil predict all the known nuclear 

properties although the many models already put fortvard do 

partially solve the problem.(Mosz.ko\vski 1957) 

The aim today then, is to try to construct a 

'unified' model -which retains the good points of the old 
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models but rejects their bad ones. 

In this thesis, certain ideas connected mth an 

attempt to build up such a unified model are tested. This 

model m s proposed by J.P. Elliott (1958 I & II) and is based 

on the Independent Particle Model. The significant part about 

it is that the many-particle -wave functions are classified 

according to tha irreducible representations of the unimodular 

unitary group SU^, This classification allo-ws states to be 

associated in a vvay resembling rotational bands and the 

construction of the states involves an intrinsic state which 

may be related to that in the rotational model. 

The physical importance of this scheme has already 

been shown by Elliott. States classified according to the 

SC^-group have been favourably compared -with those arising 

from a variational calculation in the nuclear ds-shell using 

a realistic Hamiltonian. 

We shall have develop a method to set up directly 

the energy matrix spread out by the states of this new model. 

The method mil be applied to nuclei in the nuclear ds-shell 

and, in particular, to the nucleus v/hich is -fereated in 

greater detail. For these latter reasons, the tlieory is 

developed with respect to the ds-shell but it can easily 

be extended to other shells. 
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In Chapter 1 a Hamiltonian is defined -vshioh is 

realistio as far as our rather qualitative arguments later 

on are concerned. The assumptions associated with the model, 

in the ds-shell, are set out and a brief account of the 

•well-known classification according to the permutation group 

is recorded. 

Chapters 2 and 3 deal with the SU^-group in some 

detail. The theory is developed using a simpler set of 

operators of the group than those suggested by Elliott. 

The raising and lowering operators in Chapter 3 will be seen 

to be very important in our method for calculating matrix 

elements. 

The classified, many particle, angular momentum 

states are given in Chapter 4 as projections out of states 

classified according to two subgroiQJS of SU^ - the SU^ and 

^r 

The method fcao calculating the energy matrix, 

spread out by these states, is given in Chapter 5. 

In Chapter 6 -we illustrate the appearance of 

collective features, as particles are added into the shell, 

using only the states of the 'leading' representation of SU^. 

Approximaticais to the 0^^, Nê *̂  and spectra are shovan. 
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The results of calculations on the mixing of other 

SU^-representations, with the 'leading* representation for 
pi 

Mg are given in Chapter 7. 

Scsne conclusions are drawn after Chapter 7. 

At the end of the thesis an addendum has been 

added. In this y/e present initial calculations on the use 

of the eigenfunctions of the axially symmetric, deformed 

harmonic oscillator as a set of zero order approximations to 

the true nulcear states. Although these calculations are 

far from complete, it is felt that at least one of the results 

so far obtained, is warth recording. 
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Chapter 1 

Assumptions of the Model and the Nuclear Hamiltonian 

Assumptions 

In the shell model (Elliott and Lane, 1957) the nucleus 

is assumed to consist of A particles which, in the first 

approximation (for A < 40), move in the central potential of the 

harmonic oscillator. The nuclear particles all have intrinsic 

spin -g- and may either be protons cr neutrons. The protons and 

neutrons are assumed to be different states in isotopio spin (charge) 

space of a hypothetical particle, the nucleon (Rose 1957, p.217). 

Operators t^ and t^, describing the isotopic spin space, are 

defined analagously to the operators s = § ̂  and s 

of the intrinsic spin space, where a and c are the Pauli 
ii O 

spin matrices (Schiff 1949), The convention will be used that, 

for a nude on state ip, 

~ t. ̂  1 *1 

depending on whether (/> is a neutron or proton respectively. 

The actual states of the nucleus, in the zero order 

approximation, are formed by totally antisymmetrising products 

of A single-particle oscillator states. This ensures that the 

Pauli Exclusion Principle is obeyed. The low lying energy states 

are constructed by completely filling the lowest oscillator shells 
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with A-k nucleons and then putting the remaining k-partioles in 

the next (in general unfilled) shell. Thus far 0 < A < 4, 

4 < A < l6 and 16 < A < 40, the unfilled shells are the Is, 

Ip and (2s, Id) respectively. In general there are many such 

low lying states which can be constructed, all being degenerate 

in energy for the oscillator potential. With such an approximation, 

the "magic" numbers at 4 and l6 (Elliott and Lane 1957, p« 26l) 

can be associated with the completely filled oscillator orbits 

Is and Ip. Indeed, if a single particle spin orbit force is 

added (see 1.2a below) the magic numbers throughout the whole 

periodic table can be associated with the closure of shells 

(Mayer 1949). 

As the next approximation to the actual nuclear states, 

the lowest degenerate oscillator states, which are finite in number, 

are used to spread out a matrix representation of the realistic 

Hamiltonian. On diagonalising this energy matrix, the eigen-

functions and eigenvalues correspond to a first order approximation 

to the states and energy levels respectively. For more than a few 

particles in the shell, such a program is prohibitive because of the 

large number of possible degenerate oscillator well states. The 

problem in the shell model is to reduce this number of states to 

reasonable proportions. This implies the discovery of possible 

classification schemes. 
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We shall here describe a possible classification scheme 

for the oscillator states with 16 < A < 40 (the ds-shell) and 

develop a method for calculating the energy in the states for a 

realistic Hamiltonian, 

The first excited state of 0^^ is about 6Mev above 

the ground state. It seems reasonable to suppose that the anergy 

differences, less than 6 Mev, between the low-lying excited states 

of the A-particle nucleus (l6 < A < 40) and the ground state, 

come solely from the interaction between the k-particles in the 

ds-shell. The first order approximation to the low-lying energies 

will thus be found by considering the energy matrix spread out by 

the k-particle degenerate oscillator states. 

The nuclear Hamiltonian 

Nuclear models do not rely on the detailed form of the 

Hamiltonian for their construction, but they do stem from some of 

the general features which this operator is supposed to possess. 

In the rotational model, for example, the part of the Hamiltonian 

coupling the intrinsic motion to the collective one is assumed 

small - the adiabatic assumption. Of course, on testing the 

validity of a model some realistic Hamiltonian must be used. 

We quote then the effective Hamiltonian (Elliott and 

Lane, 1957> p.536) which is believed to be realistic for a shell 

model, at least for qualitative arguments, in the region l6 < A < 40. 
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The Hamiltonian consists of two parts - the kinetic (T) 

and potential (v) energies. The explicit for-m for T is known 

exactly in the A-particle problem: 

-A 
T s ^ [p(i)] jUl 

1=1 

where p(i) is the momentum of the i^^ particle and m the mass 

of the nude on (assumed constant). 

The potential V is not known exactly because of the 

uncertainty in the form of the nuclear forces. It is kiown that 

the repulsive Coulomb force, existing between protons, is small, 

izL this region, compared with the attractive nuclear forces which 

must exist to form stable nuclei. Calculations in the p-shell 

(inglis 1953, Kurath 1956^ have shown ihat a mass of agreement can 

be found by using a potential of the form 

V = y ] V (Ij) + e %(S.L.) liga 
* O J. X 

i < j 1 
?diere 

Vjij) =(w . - HPJ. *BP°^)Vjr.p 1 ^ 

P^., P X and P^. are the exchange operators in iiie ordinary, 
J J 

isotopic spin and intrinsic spin spaces. ¥,M,H and B are 

exchange constants, usually normalised such that ¥ + M + B + H = l . 

Vg(r^j) is the radial shape de^pending on the internucleon distance 

^ij* 
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Experience has shmm that the properties of low lying 

states are reasonably insensitiv^ the radial shape. Essentially 

the same results can be obtained by using a Yulcawa or Gaussian 

radial dependence. For mathematical simplicity we shall take 

VoCfij) = -

where V is the (positive) strength and a the range of the force. 

The spin orbit force (s.L.) is introduced to 
i 

account for the doublet splitting for one particle- outside a closed 

5 17 

shell e.g. and 0 , Such a term, on its own, cannot arise from 

a nude on - nucleon interaction however, it is thought that perhaps 

a two body vector or t ensor force wLll account for the effects 

produced. 

(See Elliott and Lane 1957, p.336 on this point and for references. 

Also Peingold 1956.) 

In this -thesis we concentrate on finding the spectrum 

produced from a Hamiltonian with central force alone. For those 

nuclear states Tfhich have spin S =• 0, the matrix elements of the 

spin-orbit potential are zero and the total angular momemtum J is 

equal to the orbital angular momentum L. In such cases we shall 

•thus be able to c ompare our predictions for the energy levels 

directly with those found experimentally. 
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Classification of states according to the permutation group 

An irreducible representation of the group of 

permutations of degree k, is labelled by a set of numbers 

[f] = "* n̂̂ * [f] is a partitbn of k into n integral 

parts such that 

f^ > fg"* f^ and f^ + fg + ...+f^ = k. 

(jahn and van Wieringen (l95l)) 

The set may be represented, diagrammatically, by a Young Tableau 

with n rows of lengths f^f^.-.f^ respectively. 

f 
n 

A function (p is said to have symmetry I f ] if it belongs to the 

basis of the representation [f] of 8^. It is usual to describe 

such a function by ip [f] . 

It is well known that totally antisymmetrie nuclear 

states, ^ , may be formed if orbital functions of symmetry 

[f] [f]] are combined with charge-spin functions of adjoint 

symmetry [?] (Sunday 1960, Chapter II). The 

adjoint representation [?] has the number of rows (columns) in 

its tableau equal to the number of columns (rows) of the tableau 
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for ff] . The antisanraneti-ia state 9 will be labelled with the 

[f] of its orbital part. 

We notice that since the charge-spin space is of only 

four dimensions, functions [ [~"jin this space cannot be constructed 

which are antisymmetric in more than f our parts. This implies that 

the representations [?] can have at most four rows i.e. [f] can 

have at most four columns. 

A Hamiltonian whose operators act only in the orbital 

space (Wigner (W) and Majorana (M) exchanges only), cannot couple 

states #[f] and 9[f*] with different [f] labels. This is 

because functions classified according to Sĵ , in particular the 

["'-states, are orthogonal with respect to the [fj-labsl. Thus, 

for such a Hamiltonian, the classification according to wiU 

certainly reduce the number of zero-order states without loss in 

accuracy. 

Since nuclear forces are attractive, the states of 

maximum orbital symmetry will be lowest in energy. As we are 

only interested in the low-lying energy levels, then only those 

states lAich have maximum orbital symmetry need be considered. 

We shall, in fact, include some Heisenberg (H) and 

Bartiett (B) exchange in the Hamiltonian but still consider only 

the states with maximum orbital symmetry. The mixing of states 

of other symmetries, with the states of maximum orbital symmetry. 
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is expected to be small enough, in a first approximation, to be 

ignored. 

Throughout this thesis the [f]-lab.el will tend to be 

dropped - in these cases states with maximum orbital symmetry 

are implied. 

Construction of antis.ymmetric states with maximum orbital symmetry 

The k-particle totally antisymmetric states, whose orbital 

parts have maximum orbital symmetry, may be formed by antisymmetrising 

between antisymmetric states of four (or less) particles with 

symmetrical orbital parts. 

If a,b,o and d are four different single particle 

orbital states, a normalisedfour particle symmetric state will be 

1̂234'"̂ ^ = V^^^Ka^bgO^d^) = (abcd)^234 izM 

where ̂  P su ms over all permutations of the partide numbers 
P 

1,2,3 and 4. 

If tv/o particles happen to be in the c-orbital state , we 

shall have > 

^1234^^^ = s (abo^)^234 1.4b 

where ^ ignoa^ permutations between particles in the same orbital 

states. The charge-spin functions^2T+1)(2S+1) symmetries 

£?] [y] and are well known (Jahn and Van Vfieringer 1951, 

Elliott, Hope and Jahn 1953). 
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We shall write then 

^ 1 1 _ 2 2 ,_13 r^31 
I [4-] , ffj] and | [2J or j [2] 

^,^,.[4] = p K ] iaia 

Thus, for example, totally antisymmetric four particle states 

may be written, 

r). 1 ̂  //R r J. 1 I 
1234 

Where [W = (abod)^^^ etc. We shall adopt the notation 

^1234^^^ ~ ®̂'̂ °'̂ 1̂234 etc. 1.6b 

Take now the construction of a k-particle antisymmetric state. 

If k = 4p + q, where q < 4, consider 

' T, 11 11 11 11 11 

^2T+1,2S+1^ 1 . 1 X 

P 12345678 ..4p-l,4p 

2T+1,2S+1 2T+1,2S+1 H I 

*[q] 1 
4P+1,..,4p+q y 

where N is a normalisation coefficient, P means the sum over 

all permutations between the p + 1 sets of numbers 

(1234)(5678) . . . ( , , 4 p + 1, 4p)(4p + 1 , , . . . 4p + q) 

/ \P' 

preserving the natural order in the sets. (-) = +1 depending 

on whether P is an even or odd permutation. The charge-spin 

functions are vector coupled (trivially) to a (2T + l)(2S + l) 

state. 
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The fact that is antisymmetric is clear from the 

construction. 

Because the p-sets of four particles all have symmetry 

[4] and one set has symmetry [ q], cannot have orbital %rmmetry 

less than [2*4 ••• 4q]. The charge-spin space however always 

prevents having orbital symmetry greater than [2j4 ... 4q]. 

Hence has either orbital sjomnetiy [44 ... 4q], i.e. maximum 

symmetry, or is identically zero. 

Further Classification 

If the single particle wave functions span a vector space 

of S-dimensions, ihe k-particle states classified according to the 

representation [f] of also spread out an irreducible 

representation of the group U^. Here, is the group of all 

simultaneous unitary transformations among the single particle 

states. The representations of may then, also be labelled 

with [f] . In the nuclear ds-shell, for example, the states ^[f] 

spread out the irreducible representation [f ] of Ug. 

By considering the infinitesimal operators of the group 

Ug, it can be shown that a state tp may be classified simultaneously 

according to the irreducible representations of and its 

subgroups. Which subgroups we choose for further classification 

will depend on physical considerations 
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It has been shown (Elliott 1958 l) that the classification 

according to the U^-subgroup and the further reduction to the 

rotation group is especially suited for the labelling of 

states in a degenerate oscillator level. This classification 

seems to Imve some physical significance and so we shall use the 

representation labels of these groups to classify the states 9̂ [f] 

further. 

In the next chapter we consider the -group in some 

greater detail and determine the classification of its irreducible 

representations. The classification of states according to the 

-group will be left until Chapter 4. 
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Chapter 2 

The U, Group 

The Group Operators 

The oscillator Hamiltonian 

= (r^ + •b̂ p̂ )/2b̂  2 a 

is invariant with respect to the group described by the 

nine spherical tensor operators (Elliott 1958 I sec, 3)» 

= (rf + b4p2)/2b2 

tq = (r X P)q 

Qg = / w F + bS4^(%)}/b= 2j2 

Here the are the three infinitesimal rotation operators and 

the Qq the five compcpnts of a second degree tensor operator. 

The arguments of the spherical harmonics are the polar angles of 

space.and momentum vectors r and In particular 

Qo = l(2z^ - - / ) + b^(2p^ - p^ - Py)l/2b^ Jal 

The invariance of H with respect to means that it 
0 3 

commutes with all the operators of the group, (Jauch and Hill 1940). 

This implies that the group operators only transform between the 
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degenerate states of This property can clearly be seen by 

rewriting the operators in 2.2 in terms of the three creation 

operators a^and the three destruction operators of the 

oscillator quanta in the x,y and s directions iSiere 

\ - i-t̂ p̂ )/b 

and = v'l/2 (x + ib^p^)/b similarly for y and z 2.4 

Thus by defining the operators 

A. . = (a? a, + a, a?)/2»i and j = x, y or 
XJ 1 .1 .1 l" ' 1 0 ill 

we may deduce the relation (Table l) between these operators A. 

formed from a Cartesian basis, and the spherical tensor operators in 2.2 

Q+i Q-1 ! I Q+2 i Q_2 % 
i - i / 2 1 / 2 1 / 2 1 / 2 

1 
i 
I 

t -

j-l/2 +1/2 -1/2 -1/2 1 I 

p A y 

% 

|-]/2 - 1 / 2 1 / 2 -1/2 
p A y 

% 

-1/2 -1/2 -1/2 +1/2 p A y 

% 

y i 7 2 1 / 2 -1/2 
p A y 

% V 7 2 ] / 2 -1/2 

p A y 

% 

1 / 2 1 / 2 -Jl/S 

% - 1 / 2 - 1 / 2 yi/3 - m % t i 
yi/F m 

Table I. Transformation Coefficients between the Cartesian operators 

Aĵ j and the spherical tensor operators. 
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The many particle operators A. . are defined as the sum of 

single particle operators A^j(p). 

Thus 

A^. = ̂  A_j(p) summed over all particles 2.6 

For this reason the commutation properites of the single particle 

operators will belong also to the many particle operators. Hence-

forth the symbol will denote the many particle operator 

unless otherwise stated. 

Because the A^^ operators are combinations of one 

destruction v/ith one creation operator, it is clear that they 

cannot excite a state out of a given degenerate oscillator level. 

The operators A^^ merely shift a quantum from the j-direction 

into the i-direction. 

If s is the number of states in the degenerate 

oscillator level, then clearly the A. . ivill be some of the 
3. J 

operators of - the set of unitary transformations in 

8-dimensions. 

The Commutation Relations 

The commutators of the A.. operators may be deduced 

from those belonging to the tensor set. (Elliott 1958 I (8)). 

We shall here find them directly from the simpler relations for 

the creation and destruction operators. 

From the explicit form of the at and a^ given in 

2.4 we d educe. 
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le-l' ap = 0 

• E&j > 8. ] = 0 
J 

[aj, aj] = 0 i / j 

but since a^ a^ = (x^ - b^ - b^ d̂ /d:!̂ )/2b̂  

and a a^ = (x^ + b^ - b^ d^/dx^)/2b^ 
X X 

we may write >in general :-

where 

[a^, a J =-S. , for all i and j 

#ij = 0 for i J 

= 1 for i = j. 

The most general commutator for the A. . operators is; 
1J 

[A. J, = (a^ a, + a at)(a^ 

- (*k *! + 2.8 
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From equations 2.7 we know that 

"y 3% = + ̂ jk ̂  \ 

ia.1 aj, aj] = ffa^; - a^ 

[aj a+, a^a^] = *1 *I " *il 4^ 

' V ^ = ^jk ̂  =1 - ''ii =j 4 

Thus from 2,8 

^•^ij'\l^ ~ -̂ il ̂ jk " \ j ^11 

This: last relation shows that the set A. . do in fact describe 

the group TJy 

The commutation relation in 2.9 is very easy to remember 

and apply. For this reasonfE prefer to use the set A. rather 
^ J 

than the tensor set in 2.2, to describe the properties of Û » 

Classification According to the Group II 

Just as the classification of the group Ug may be 

described in terms of Young Tableau, with at most s-rows, so 

may the group be described by tableau with at most three rows. 

The many particle oscillator wave functions may be 

considered as tensors in the oscillator creation operators. In 

the p-she11, for example, the single particle wave functions are 

tensors of degree one 
+ 

0=3'. 4> ± = X, y or z. 2.10a 
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where is i±ie "vacuum" state of no quanta viz. the (is) 

state. 

In the sd-shell the single particle states are 

symmetric tensors of degree two 

# = a f a t i,j = x,y or z 2.10b 

that is, six in number. 

The classification of the many particle states with 

respect to the group merely describes the tensorial symmetry 

of the wave functions mth respect to the creation operators. 

The representations of are, therefore, described 

by partitions of n, the numbers of oscillator quanta, into not 

more than three parts, [n^n^n^] where 

n^ > Og ^ n^ + n^ + n^ = n 

We can define the leading state of the representation [n] as the 

one having n^ quanta in the a-dir©otion and 

quanta in the x and y directions respectively. This is 

analagous to saying that, in the rotation group R^, mth 

angular momentum quantised in the z-direction, the leading state 

is the one with M = L, The leading state in has the 

maximum number of quanta (n^) in the z direction and the 

maximum number of quanta in the x direction.where n^ = n^ fcr 

the representation [n^n^n^]. The leading state is then the one 

with maximum weight (Racah 1951)• 
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The other states of the representation [n] may be 

generated by some operation with the group operators on the 

leading state. 

The single particle states in the p-shell then spread 

out the representation [lOO] of The two particle 

states oao spread out the representations [200] and [llO], 

In the latter example the leading state of [200] will have 

n- = 2 and n = n = 0 and the leading state of [lio] v/ill 
z X y ^ 

have n = n = 1 and n = 0 since the single particle in the 
a x y 

ds-shell is a symmetric tensor of degree two, it must spread out 

the representation [200] of U^. 

In physical problems we want to ignore transformations 

which are simply an overall change of phase. This means dealing 

with the unimodular unitary group SU^ obtained by removing the 

unit infinitesimal operator H = (A + A + A )* Under this 
^ 0 XX yy zz 

restriction the representations do not reduce further, but those 

corresponding to tableaux differing only in a number of complete 

columns become equivalent. Thus the irreducible representations 

of SU^ may be labelled by only two numbers (Aju ), These 

numbers are defined by convention as A = n^ - n^ and n = n^ - n^, 

(Elliott 1958 I par. 4.) 

The leading state of the ( A/i ) representation then 

has an excess of A quanta in the z-direction over that in the x. 
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/i -» 

n. 2.11 

The problem of classifying the nuclear states with 

respect to SU and SU, involves determining v/hich representions 
s J 

(Aju) occur in a given representation [f]. This reduction maybe 

performed, by a chain calculation, in a very simple way using the 

rules for combining tableau, (Jahn 1950), and the dimension 

formula, 

dimension of [f] (D[f]) 

j-i) 
l$i<j$s 

for the irreducible representation [f] of or SU^ 

(Weyl 1920 p. 283). 

In the ds-shell, for example, e ach single particle 

function transforms according to the representation (20) of 8U^. 

Thus 

[1] (20) 2.12a 

For two particles in the shell, the possible classifications 

according to SUg (the permutation symmetry) are given by 

[1] X [1] = [2] + [11] 

Simply by adding one square to the representation [l]. 

The possible representation of SU^ are found by adding two squares 
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to (20) in a symmetric way. 

Thus vf e get 

1 a 
+ 1« 

a s. a 

i.e. (20) X (20) = (40)+ (21) + (02) 

From the dimension formula 

D[2] = 21 D[11] = 15 

and D(40) = 15 D(2l) = 15 D(02) = 6 

The representation (40) of SU^ means that the f our 

creation operators, describing the two particle state, form 

totally symmetric tensors of rank four. These tensors can only 

arise if the two particle states themselves are symmetric. 

Hence we must have 

[2] ̂  (40) + (02) 

[11] (21) 

In this way we may build up the complete reduction of 

any [f]into representations of SU^ (Elliott 1958 I Table l). 

The Subgroups SU^ and of the Group SU^ 

The subgroups SU^ and do not seem to have any 

direct physical significance but they will be used later in 

defining a set of states classified according to the sub-

group. For this reason the classification of states according 
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to SUg and is considered important. 

Subgroups of SU^ may, in general, be found by looking 

for sets of operators, within the set of SU^ group operators, 

which describe a group, i.e. whose commutators are contained 

within the set (Racah 1951)• 

The SU^-group operators can be formed from the 

group operators by removing the unit infinitesimal operator. 

That is by removing H or (A + A + A ), 
'' ^ o XX yy zz 

We introduce the operators 

® i j ^ 1 1 " • 

»here clearly , B^. = 0 and B.^ + B^^ = B ^ 

The eight independant operators d es cribing the SU^ group may 

thus be written 

A ., i X j 
X J 

, i,j = X or y or z. 

since at most two operators may be written down as being 

linearly independant. 

From the commutation relation in 2.9 we deduce 

\ k ĵk " 4cj ̂ kl " 4.1 ^il 

From the commutators in 2.15 with 2.9 vfe can see that 

the operators A^, A ^ and form a group, the group SUg* 

and all these operators commute with the operator (B + B ) 
^ zx zy 
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which describes the group Thus the SU^ group reduces 

simultaneously to the SU^ group and the group i.e. 

SU^ —^ SU^xJJ^ . 

Irreducible Representations of the Subgroups SU^ and 

The group, being of only one dimension, needs but 

one "number" to label its representations. We shall choose a 

set of states which diagonalize the operator and 

introduce the quantum number e 

Thus 

^®zx * Bgy) (pie) = e 0( e ) 2.16 

where we assume now that (p implies a normalised state, with 

permuation symmetry [f], and belonging to the ( A /i ) 

representation of SU^ (Elliott 195^ II (2)). 

The SUg group is isomorphic with the group. 

This isomorphism may be seen directly from the operators 

in 2.1L by defining operators 

"o = = - A q r "-1 = & K . 

The <u-operators have the commutation relations 

[w+l* w_i] = - Wo and 

•which are just those of the group. 

The olassifioation by the SUg group follows in a 

similar way to the classification by the group, with a 
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number A oorresponding to the orbital angular momentum 

quantum number L. 

The Casimir operator of the SUg group, oorresponding 

2 
to the operator L of is 

2 2 
0, « 0,̂  - "̂+1 ^-1-^-1^+1 

We introduce the labelling /\ such that. 

E/s) =A(A+ l) /(EA) (Elliott 1958, 11,(7)) 

The quantum number e is preserved in the operation 

with since (B + B ) commutes with all operators 
zx zy 

2 

of SUgi in particular with &.>. 

We are free to diagonalize one more operatcsr of SUg 

corresponding to the diagonalization of in. ly. We define 

a number . v ; such that 

B Ae/\v ) = 2 ĵ ie/Av ) = v/(e/iv) 2.21 
1 V 

Clearly 2 takes on the values A" ••• ~A by 

analogy with the group, that is 

V takes on the values 2A, 2A- 2, —2A» 2.22 

With the exception of the last quantum number ' v', this 

classification of states has been given fcgr Elliott (1958 » II), 

In the last stage, Elliott chooses to diagonalize the operator 

= i ( ). Thus a set of states % ( E/\K ) is defined 
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which have the component of angular momei^m in the z-direction 

a good quantum number. The use of the y-labelling has certain 

advantages which will be seen in Chapter 4. 

So that many of the results obtained by Elliott may 

be carried over into this paper, the relationship between the 

sets of states ^ and x must be (tetemined. To do this we 

must first deduce the exact connection between the operators 

w which we have used to describe SU^j and the set v v 
ir 2' ° + 

which Elliott (1958, II) uses to describe the group. 

Defining and in analogy vd-th the 

operators and of we have I 

"4.1 - "-1^ •= ° - ̂ -s) 

^ " -l) = ° 

from 2.17 and Table 1. 

Elliott descritesthe 8Ug-group by the set of operators 

V = -i- L 

( 2 ^ 

Defining Cartesian components of v in the 

conventional way as above, -m deduce! 

o ^ o 

and = + \2V37 1̂+2' 
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V^, = - -v_^) = 2 ^ (flj + Q.2) e " a-

Vy. = /fi ( * v.i) = ̂ 6 (92 - 9.2) -

V I = V = -^ = w 
o y 

The primes have been introduced when discussing v since, with 

these formal operators, the compoents and were defined 

quite independently. 

Thus, in our language, the set of states % (Ak) 

spread out the representation A of for v/hich is 

diagonal. Because of the isomorphism betvreen the SUg azid 

R^-groups, the relationship bettveen the sets % (A^^) and 

is the same as that between the sets and 

in this order. Here ) I belongs to 

the basis of the representation L of E.̂  in vvhich 

is diagonal. 

We determine now the relationship in the R^-group, 

Consider a set of axes S', Tdiich occupy the same 

positions in space as a set S but Yî ere the 2'-axis lies 

along Gy and the x' axis lies along Of. 

y,z ' 



An Euler angle rotation of (jr/2, ir/2, v) carries S 

into S'. Olearly, the set of states a defined 

in S', vdiioh diagonalize L , are identical -with the 
z 

set (IM), defined in S, which diagonalize L , 

i.e M H 

Using the well known transformation properties of angular 

momentum functions under finite rotations (e.g. Elliott 1958 

III, p.29) we have 

= E 4 . ( 1 

l.e # (LM) = (-)* a5,M("/2) fv(LM') 
I/I' 

We use the fact that; 

4 - ( ^ v ) = 4 . W 

aa.a a^,(P) = (-)*•-" 4„(^) 

(Elliott 1958 III, p.30) 

We may consider the SUg-group to be a pseudo E^-group viiere 

and are the angular momentum operators in 
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b(A, 2A; K) = (-i /AF / 

V(A+§):(A-§): 

-31-

the S*-frame and uĵ , oĵ  and the operators in the 

S-frame. Thus Yie oan •write immediately, from 2.2^a, 

<i>M = ^2 ^ (AK) 

K 
em. 

where it must be ren̂ bered that, -whereas in the group 

have 

5&-(n'l) = M (JsJjM.) and ) = M* ), 

in the SUg-group, because of the definition of the <p{/\v) 

and xO^K) , we have; 

=fi;/2ĵ (Ay) and w^(aK) =(V2)a:(aK). 

We write 2.25b as 

= 2_, b(A,v;K) %(AK) 2.24 
K 

where b(A,v;K) = (Vz) 

We shall see later that we are most interested in the 

ooeffioients b(/\,2AiK). In tMs case the d ^ ^ (ir/2) 

simplifies so that we may write 
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It is useful to know the relation, bet-ween the numbers e and 

V and the osoillator quanta* 

Ercra the explicit fozci of the single particle operator 

(B + ), -we can see that the single particle state / (e ) 
^ zx zy'' o x - rg^pv / 

in the osoillator n-shell has the number of quanta in the 

z^direction (r^) as a quantum number since s-

e a 2n - n - n =3" - n 2.27a 
z X y z 

similarly, it can be seen that the state ^ ( Ey) has 

also the difference (n - n ) of the oscillator quanta in the 
^ y 

X and y direction a quantum number since 

I' = \ " "y 

Since the many particle operators A. . are linear 
Xj 

conitinations of the single particle operators, it foUovfs that, 

for the many particle state ^ ), 

6 = 3N^ - M = ^ (3n/i) - n) = ̂ , 

and v = - Ny ~ "y(i-) = zJ ''i 2.28 
i i 

summing over all particle numbers. 

In the single particle states the ti lab@l is 

unnecessary since it is related to e . 

i.e. A = + Hy) = Z G ) 
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For the many particle states hovvevar, the /^labelling 

is not so trivial. It describes the symmetry of the quanta in 

the xy-plane and thus serves to distinguish states of a 

representation with the same s and ^ labels. The numbers 

and V form a unique set of labels for a state of the ( ) 

representation. 

For the leading state of a representation { kfj ) 

e = (W - N ) + (N - N ) = 2A + /i ( = s ) 
z X ^ a y 

and V = N - N » (x(- v) 
% y ^ ' 

This then is part of the reduction SU^ -» SUg % found in 

a simple manner. e is the maximum e in the representation 

and V is the maximum y in e . 

The complete reduction has been studied by Elliott 

(1958. 11) J using Young Tableau v̂ hich illustrate the representation 

of a unitary group (as in 2.12 for example). He finds the simple 

results that, mthin a representation ( ), 

B = 2X + jjf 2X + n — 3 f *»») —A — 2/i 2.30 

(This can be deduced immediately from 2.28) 

For each value of s.'-

~|2A-2;u-e| 5̂ 1 2A-2;U-G|+1, ... ,min[̂ (2A+4/̂ -E),̂ (2̂ +4A+e)| 

2.31 
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We notice that for e = E = 2A.+jU, has the 

single value . 

It is useful to present the values of 2A appearing 

for each value of E, in a ( A/j ) representation, in an 

array; 

E 2A_ 

=̂2A+/u 

^-3 2A-1 2A+1 

1-6 2A-2 27\ 2M2 

e-9 2^rl 2A+1 2̂ +3 
eto. 

This is the most general form for the array. In a special 

case, parts of the array in 2A may be missing e.g. the 

values of 2/\ must alimys remain positive or zero. 

In the next chapter we shall discuss the raising and 

lowering operators in a ( A/U ) representation. These operators 

will be useful in generating other states of a representation 

when the leading state is known. 
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Chapter 3 

Raisinp; and Lovrerinp; Operators and the 

Classification of Many Particle States 

Raising and Lowering (R and L) Operators in the SUg-group 

The R and L operators in the StJg-group •vri.11. be 

farmed from the operators of the group and therefore will not 

be able to alter the s or A labels of a state. Prom the 

Dommutation relation in 2,15 #s see 

Thus, since B /( A v ) = v /\v ) 
xy 

We have ) = (^y^xy + /( A ̂  ) 

= ( V + 

i.e. /(Av) = /'(A v + 2) 3»la 

Similarly A /(/\v ) = /' ( Av - 2) 3,1b 

yx 

vjhere throughout the chapter, primed states -will be, in general, 

unnormalised. 

Thus the and operators of SUg are the 

R and L operators respectively of the v-label by tvm units. 
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Because of the isomorphism between the and SUg groups, 

this fact could have been deduced immediately from the Tjell 

known properties of (Edmonds 1357). 

The normalisation coefficient of the states 

may be calculated in the same my as those normalisation 

coefficients associated "with L ̂  . 
+x 

Thus 

"̂ +1 ~ ' §)( A+ f + l) ± 2) 3,2a 

i.e. A^4>(hv) = /( A- f)( A+ I" + 1) <p(\v + 2) 3.2b 

and A^(^v) = /( /\+ ̂ )( A- ^ +- l) ̂(a,v - 2) 3.2c 

The phases have been chosen in acoordance v/ith those of Condon 

and Shortley(l935) 

R and L operators in the full SÛ  - group 

We wish to find the operators navr vihich raise and 

lower the e and A labels as well as the v, 

Consider the operators A JA ,A and A . The 
xz' zx' yz zy 

effect of these operators on the e and v labels may be deduced 
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immediately from the commutation relations !-

[ = ^2% , '̂ 2=c''®zx + ®zy^ ̂  

^ •'V̂ '̂ xŷ  ^ \z } " ̂ yz 

[ ̂ zy-^xy] = " V ' + ̂ zy) ̂  ^ V ^ 

Thus "vse find 

/ ( e v ) = / ' ( e - 3 > y + l ) 3 . 4 a 

X(Ep ) = / ' ( e + ^ » y - l ) 3 . 4 b 

\ z / ( E y ) = / ' (E - 3 , y - l ) 3 . 4 : 

Agy / ( e y ) = / ' (E + 3 , y + l ) 3 . 4 d 

These operators do not, in general, preserve the /\ labelling. 

We should expect some combination of these operators mth the 

A and A to give states vAiich belong to a definite 
xy yx 

representation of SUg. 

We shall novf derive the explicit form for the 

operators 0^ -where 

0^ / ( E / \ y ) = - 3» / \+ 1 / 2 , y - l ) 3 . 5 

and then quote the results for the remaining six raising and 
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lowering operators in the e,/\and v. 

TvfO operators which decrease e and v are 

V V "Sc., • 

o 

I^om the explicit form for w (2.19) and the ooinrautation 

relation for the A. . (2.9) v/e may deduce 
Xj 

+ ^Aj - y 

Consider 

[ApfSa + 'Ayj '"kA") 

•where a is some number. 

Then 

* - 0./$^ - +»!w2 - a/^B^y - l/iil! # A ") 

5.8a 

Since « Abav) = A (/\+ l) f^(sAv) (2.20) and B /(eav) 
jgr 

2 

= y^( e^v ) ( 2 . 2 1 ) . vre may rewite the right hand side of 5.8a as 

{ [ A ( A+ 1) + fv + 5/4 + a] 

+ Ayg [A(A+ 1) - |-v( 4-v + 1 ) + a[A(/\+ 1 ) - -Jv - l/i|]J X 

4>i£i\v) 5 .8b 
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iV 
If 3.7 is to be a state Yidth definite ̂ ĵiWalue, then the ratio 

of the coefficients of A A and A in 3.8b must be 
yx xz yz ——— 

equal to the ratio of the coefficients in 3.7. Tvro values 

of a a satisfy the equivalence, they are', 

0=2 = (A- 2v) and = -(A+ + l) 

substituting the values into 3.8b lise deduce the corresponding 

A "Values, for the function in 3.7, to be 

= A+ 1/2 and Ag = A " V2. 

Hence •m see 

'••̂ yx\z ]/( ̂ Av) = - 5,/\+ 1/2, V - l) 3.9a 

[^•^2 - (A+ + l)AyJ /(^Av) = - 3,A- 1/2, V - l) 3.9b 

Similarly Tive may show. 

= /'(e - 3,,A+ 1/2j v + l) 3.9o 

+ l)^.^] /(pAv) = /'(e - 3, A- 1/2, V + l) 3.9d 

^z%&y /fe/iV) = /'(e + 3,A- 1/2, V + l) 3.10a 

^ + l)Agy] /(sAv) = + 3,y\+ 1/2, v + l) 3.10b 

iv)A^ 3/CeAv) = /'(s + 3,y\- 1/2, V - l) 3.10O 

[A^yAy^ - (A- |v + 1)A^ M e A ^ ) = XXe + 3,A+ V2, v - l) 3.103 
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The expressions in 3^9 and 3.10 are the most general forms 

for the raising and lovjering operators. Any state 

can be obtained from a given state by 

a suitable combination of the operators in 3.9 and 3.10. 

A glance at 3.9 and 3.10 •vvill show that the 

operators are very cumbersome to use as they stand. Poisars 

of operators must be understood since the function of 

and V vidthin the operators will change its value after 

each operation. We are most interested, in this thesis, 

in generating states A ^ t h e leading state of 

a representation { > (i)L 

By observing certain rules on how the state is 

to be generated the set of R and L operators may be 

simplified. 

States ĝ '(g.Av) generated from the leading; state 

We notice that if a state X' (̂ Av = 2/0 can bo 

generated from the leading state, any state with 

the same e and A labels, may be generated from it by pollers 

of the operator Thus we Head only use the general 

R and L operators in 3.9 to generate a state of maximum v. 
With these restrictions the operators simplify. 

From 3.9d we see that if v =; 2A then 

/'(E - 3, A- 1/2, 2/\+ 1)5 0 

since the maximum v in this case is only (2 A — l). 
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Thus we deduce 

V = 2/0 = A^ty ~ 2/i) 3.11 

Substituting this identity into 2.9o %e see that 

^ P̂ (eA V = 2/i) = /'(e - 3,A+ V2» v = (2/%+ l)) 3.12a. 

Defining now 

= \ a 

any state -with maximum v for a given e can bo generated 

from the leading state by suitable powers of That is 

= X' {ZK + fi -3p-, l/2(|i + P ), fi + p ) 3.13 

since E = 2A + p, /^= v = p) 

By referring to the array in 2,32 ,-vrfiich shovjs explicitly 

the states of maximian v for each value -within ane, 

\ve see that the operators generate the states on the 

extreme right hand side of the array, from the leading 

state at the head. 

With V = 2^, the expression in 3.9b simplifies to 

] /(EAV = 2A) = /' ( E - 3, A- ^A> v = (2A- l) 

j W A 

The operator in 3.14 is not in a very convenient form as 

repeated application requires a change in the coefficient of 

V -
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For example, -we must -write 1-

]/(EA,2A) 

= /' ( E - 6, A- 1, 2/v - 2) 

The operator in 3.14 however is equivalent to the complete 

operator form 

=- = t V x ^ - A^(B^ . 1) ]B - i^(2A+ 1)] 

whai acting on a state mth maximum v in A . 

Since E_ will always generate a state vd-th maximum v in 

y\ f the complete operator form may alvrays be used. Hence, 

repeated application of the operator in 3.14 may be written as 

powers of e.g. 

/ ( e / \ 2 A ) = / ' ( e - 6 , y \ - 1 , 2 A - 2 } 

Clearly now, any state with maximum v i n c a n be generated, 

frcan the leading state, by a combination of operators . 

Thus 

) ss j/'(2A + fi - 3(p + q), h (ji + P - q)> + P - q) 3 . 1 6 

The leading state generated fa?an a state s^(sA v = 2^) 

We now consider the inverse operation to take a 

state /(eAv = 2./̂) back to at least an unnormaJLised form 

of the leading state. 
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First consider the operator which v/ill tabs a 

state on the extreme right hand side of the array in 

back to the leading state 

Erom equation j.lOd 

(AzyA&x - 4%%) = /'(E+ 1/S, 2/1* 1) 2.1L 

•sdiere A is the maximum A in g . Since /\ is the 

maximum A in e , a glance at the array 2.52 -will show that 

the state (e + 3> 7\+ 1/2, 2a- l) does not exist i.e. is 

identically zero. Hence -

5 Ag; /(En 2%) jbJjS 

Substituting this identity into 2.10o vfe see that 

= /'(e+ 3,A- 1/2, 2/"- l) 3,19a 

Thus tgr defining 

p_ = A,: jaigb 

the operator vjill have exactly the opposite effect to 
p . . 

E , Ifot only this, F = A = A = B . It is for this 
+ - 2 x xz + 

latter reason that we prefer to operate on /(^) with 

before 

The inverse operator (P^) to that in 3.15 arises 

from that in 3.10b. Thus 
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•where P̂(e/:,v = 2/^) = ̂ '( e + 3>A+ 1/^, v = 2A+ l) 3.20b 

Notice that in this case ^ E_̂ . 
q p 

The complete inverse operator to E E acting on the 
" • + 

p g 

leading state /(7^) is F_ F , -rAich will talce the state 

g QgP /(A/̂ ) to an unnormalised form of 

Normalisation coefficients for E and E 
+ 

Siace the inverse operator of E^ is also the 

adjoint of E_̂ , i.e. Ê"*" = F_ = (E^) t«3 are able to 

determine the normalisation coefficients vdiere 

+ p. — 3p)j ( 2 f- + gp )j F- + p] 

We adapt a method used by Rao ah (l95l). 

If T'G define states such that, 

V c = = V i 

= 4 = V a 

etc. Where the unprimed 

^'s are normalised. 

Introduce the numbers -where F_ 0 - 5.83 

knovang the ^^^5, it is possible to determine the 

normalisation coefficient for > 

= 7 / o = \ ^ 

But pT = Np Ttfhere (^|^) = 1. 
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Thus by taking the adjoint of 3.24 mth itself, viihere 

(^•r = < = ( ^ 1 / ^ 

•we have 

N = I / ^ ) 

Thus r N, = — h'^o "o 

If si is normalised, N" N ss 1 
' 0 0 

X 
1.8. = 11 ajg: 

j=l 
J 

To determine the fi.̂, v/e first derive a recurrence relation. 

Erom 3.23, •we have 

= fj+i >'3 

but ?>• = ̂ . V j 

" Arom 3.12b and 3.19b 

[•̂ Z3c''\z] ̂  \z'^zx^3 

= ®z/j * 

" ^^3* ¥3 ^ 

How 

and (B^ + = (2% + p - 3jW^ 

®xy 

from the relations in 3.22, and 3.13. 
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We find, then, from 3.28, and 3.29, 

~ (f̂j + A - 2j)/j for any 3.30a 

Hence + A - 2j. 3.30b 

Stom this recurrence relation and knowing « 0 

•me can deduce 

« j(-j + 1 + %) 

Substituting this value in 3.27 we see that the normalisation 

coefficient in 3.21 is given by 

P 
15 H = I I j(- j + 1 + %) iig. 

j-1 

Notice that in 3.23.F is used as the inverse of Tishilst 

in 3.25 Tsje use the fact that . 

As Ti/e have already observed , j4 ^ and so this 

approach cannot be used to calculate the normalisation 

coefficients M -vshere 
qp 

A (2A + ji - 3p), ii/2 + p/2, /i + p) 

a ̂ qp + /A - 3p ~ 3q)f ii/2 + p/2 "* q/2-, ss fi + p - q) 3,33 

We therefore have to resort to the straightfcarvrard method of 

calculating explicitly 

(2A + fi, u/Z, ) V if I 2A + li, 11/2, 11) 

ss N* N M* M for each value of p and q 3.34 
p p qp qp ^ 
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%is may be done using the ooinmvtfcation relation of the 

and making use of the faot that any creation operator in 

Bg /\ or V on the leading state gives zero. 

For all the normalisation ooeffioients required 

in this paper, and calculated in the vey indioated in 3.54.'we 

find that they are given by the expression;-

_ g _ 

= i I k(^ - k + l)(/i + P + 2 - k)(A + jx + 2 - k) 3.35 

k=l 

This is verified for all p and q vd-th p + q = 2 or 4. Thus 

"vsfe have the result, at least fox p + q = 2 or 4 and all p 

mth q = 0. 

B ̂  j(-j + 1 + k(/i. - k + l)(ji. + p + 2 - k) 

j=l k=l — — — 
(Tv + fi + 2 - kix 

ĵ (e=2X + fi. - 3(p + q),A- f̂ /2 + vA " q/2, V a Ji + p - q) 

The phase Tdll be chosen to be +1 for convenience i.e. 5 = 0. 

With this oonvention and that in 3.2, all states of a representation 

mil have real and positive normalisation ooeffioients if the phase 

of the leading state is real and positive. 

In Chapter 5 we shall use the notation 

B(%p,6 /\v) 

to denote the operator Wiich generates a normalised state 
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from, the leading state , in the T/ay iadioated in this 

Chapter. That is, if ^ = 2A + p. - 3(p + g)f l/̂ (fi + p - q), 

V = Zjl" 2r, 

thens-

- /(MEAv) 3«37 

P M N 
rqp qp p 

-where P is the normalisation coefficient derived from 
rqp 

Equivalent Operators 

We shall find it useful to represent such operators 

as acting on the leading state, as combinations 

of the operators L^, ̂ +1* 

We notice that, from 3.1a., 

/(A/ = 2/i) = 0 

Hence 

•V: "* = 2A) = - iL^(A,v = 2A.) 3.39 

(Table 1, Chapter 2) 

Slnoe [ii^, - 1L„ ] = " A ^ ) ] = 

we deduce 

/(A, V = 2A) = ̂ ( ~ ILqMA.V = 2A) 

= (( - = 2A) 

= (- + 2y\) /(A, V = 2A). 
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Similarly for any pmver A 

Since /(^) is a state mth maximum v in 

/N s(l/̂ )[jx + p -» q) J -we may replace the part of the 

operator immediately in terms of 

operators and oonstepats. 

The operator Ê *̂  E^^ is merely a sum of products 

of the form A*̂ ^̂  A^^ "̂ x̂z* ^ vrell as the equivalences in 

3*38 and 3.39 we have from 3.4b and 3.4a.; 

\ y . X(^) = 0 

Hence A^^A'¥)= (A^ " ^-1^ 3.41a 

= (Ay^ - A^y) = - iJ(l/2XL̂ 3_ - /(7^) 3.41b 

Thus from 3.39 and 3.41 we may deduce the equivalences of any 

product A*̂  A^ A^ and hence E ^ E knowing the 
y x y x x z - + • 

ooramutators of the A. . with L and L. -. 
ij o +1 

In Tables 3 to 6, given at the end of this Chapter, 

•m quote the expansions and equivalences of cortain operators 

A ^ E^E^. These operators mil be of most use to us in the 
yx - + 

later Chapters. 

In Table 3^ the expansion of the operators A^E^E? 

is given in terms of operators of the form 

A"̂  A^ A^ . Table 3& contains only operators vvhich do 
yx yz xz 

not change the e-value i.e. p + q = 0. Table 3b contains 
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4 ^ - < " "l 4 + ̂ 2 A; 

+ 

Wiere the b. are functions of ii only. 
1 o 

operators which lower s by6,(p + q = 2), and Table 3o has 

operators mth p + g =4 i.e. they lovjer e by 12. 

i\s an example of how Table 3 may be read vve quote 

(from entry 311) 

^ ®+ - "̂ yx \:z " * 2) 

In Table 4 we list the equivalences of the operators 

appearing in Tables 3a and 3b using the results of Table 3 • 

These equivalences are written in the general form 

^ e2 EP . + 4 ) H. - L_l) + a, if + ^ 

•where the a.'s are functions of L only. 
X o 

Thus, under the entry (002), -we have 

E^h(1/2Xl^3^ + lI^) -(1/^^ + i(l/2).l + -X) 1.43b 

The equivalences of the operators appearing in Table 3o are 

too cumbersome to be written in one table. ¥e have thus 

split up the equivalence-reduction into tvro parts. In 

Table 5 we list the equivalences 

^ "oQ TnP _ T, A 4 . V A A 3 . V A^ 
yz xz 

^4 4^2 ,2a44a. 
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Thus?under the entry (ll5)j 

^ E V . U)L^A^ 4 . + ° ^ 

In Table 6 the equivalences of all operators with 

m + n = 4 are listed. These equivalences are of the form. 

^ ^ • t!i)+ % (i?i - ti)* \ ( 4 + Lfi) 

+ % 

'where d^ = + c ^ iF' + 3 • 45b 

and the o^j*8 are functions of only. 

Thus, for the operator A^^j 

dg = { -1/2 I iF- + Ki/2) + 3 (% - l) i 3.450 

Explicit form for the single particle states 

The single particle states in the oscillator n-shell 

are symmetric tensors of degree n of the creation operators 

â"*", that is, they spread out the representation (no) of 

SUj. When fi = o, they\-number is given directly by the 

e-number (see 2.3l), hence the single particle states are 

only distinquished by the e and v labels. In view of the 

relations in 2.27, vse see that the single particle oscillator 

•VTell functions, which are labelled by e and v are just those 

which may also be labelled with n ,n and n I that is, the 
x' y z ' 

solution of the harmonic oscillator equation in Cartesian 

coordinates, 
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The six single particle states in the osoillator 

n = 2 shell are given in Table 2, together v/ith the shorthand 

notation vre shall adopt for them. 

Table 2 

Total number 
of quanta E 2/\ V 

Shorthand 
Rotation Explicit form 

2 4 0 0 4 

1 1 1 / . I 

^1 ((.1 )Ei( )î ( 

-2 2 2 +̂2 !%( )S„( )3„( )a-p'/2 

0 S^( )B̂ ( 

2 SJ )Ŝ ( M J )a-P^^ 

In this table x, y and z mean ^/b, ̂ /b and ^/b respectively 

with b the oscillator -well parameter and =(l/t̂ ](x̂  + 

(x) = us 

-with ^(x) the Hermite Polynomial of degree n. 

The phase of the /'s has boen chosen to tie up with the 

phases of the raising and lowering operators in 5.2 and 3.56 . 
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The matrix represenetation of the basic operators 

A . A and A , spread out by the single particle states, 
yx' yz xz' ' 

have been given in Tables 7. These matrices will be seen 

to have great use when trying to construct a many particle 

state of maximum orbital symmetry, from the 

leading state using the operators A^, and E_̂ . 

Tables 7 have totelead doiTnwards. Thus, frcsn 

Table 7a, 

Construction of antisymmetric states, with maximum orbital 
symmetry, classified according to SU^, SU^ and 

Erom the work on raising and loif/ering operators, 

states of a (}^) representation may be generated from the 

leading state of the representation. The leading state of 

the (unique) representation containing the maximum s-value 

in a given configuration is easy to construct. This 'leading' 

representation will be the one which maximises 27v + ji (2.50) 

and it has a leading state which is ^t ermined solely from 

the e and v values i.e. for this state, the (Tyi) and ./"l 

labels are trivial. The leading state of other representations 

can be found by orthogonality relations with the states of the 

leading representation. 
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The k-partiole state of maximum orbital symmetry, 

-which has maximum e and v valuê , is formed by puttijag-

k particles into the single particle orbits, in the viray 

shovTO in 1.7 .filling those orbits v»ith the greatest value 

for E and v first. Thus, in the ds-shell, four particles 

must be put into the state before the filling of the 

etc. Because of the relation in 2.28, the e value of 

the k-particle state is bound to be a maximum and the v 

value will be a maximum for this e. 

For k = 4, only the single-particle orbit 

is filled. Thus e = 4 x 4 = v = 4 x 0 = 0. The only 

representation (7̂ )t which has a state mth e = 16 and 

V = 0, -within [f] = [4], is (80) (Elliott 1958,1^Table l). 

Hence 

(80),16,0,0) .LJyB 

using the notation in 1.6b . 

When k = 8, both the and orbits are 

filled. In -fchis case 

E 5s ( 4 X 4) + (4 X l ) = 20 and v = (4 x o ) + (4 x l ) = 4. 

i.e. (T̂ i) =(84Xsiliott 1958,1,Table l). 

Hence 

^ \[44j (84),20,2,4) (») P {(^^234^^1^67 
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the coupling of the charge-spin states being trivial. 

Other states ) of the leading representation 

are found by applying the appropriate operator if 

to In practice tve expand the operator into a sum 

over operators A^ A^ (see Table 3) emd then proceed 

to find by using the known relations of the 

operators A , A and A on the single particlo states 
^ yx' yz xz 

(see Table 7). 

It is coi,venient to represent the states in terms 

of Slater determinants for these operations to be carried out. 

For the nuclei tAich we shall consider later [i.e. k = 2,3,4 

and 8] , these determinants may be -written down immediately e.g. 

$([4](80)16 00) = J l / h l 
++ +- —+ — 

Xo(l) /Jl) /o(l) 4C1) 

/ o ( 2 ) 

t 

o (4) - - - X(4) 

+ -
where ^^(l) meaiK that number 'one' particle is in the 

orbital state and has isotopic spin projection +1/2 

(neutron) and intrinsic spin-1/2. 

We shall write the normalised determinant 

I <̂ 0 >>0 *o I 
the order of the charge spin functions being understood. 
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The bracketed number mil give the number of suoh 

determinants Which sim to give a maximum symmetric orbital 

state. 

Thus, the totally ant isymme trio state j 06 a cc P | 

with orbital symmetry [ f ] « if] , is given explicitly as 

j cc oc a p j I % % % p I + % |3 % (+ ) a p a a | + |(3acca| 

Henoe, fcsr example, 

§^^0) 10, 1, 2) =s §^^80) -where the normalisation 
hjl is deduced from 3.5b 

^2 

§^^80) (Table 3) 
4j7 

But 

4 1/0 /o I I 1 

K x I + <̂ 2 1/^ i<,2 I ! 

Thus 1(76 deduce 

i^^((80) 10, l,2)=^/6(f(^ ^+2^^) 

the obvious normalisation of vAich provides a chock on the 

calculations above. In the k = 8 particle problem vve 

shall have > 

= I /o /o /g /+! ^+1 I 2-22 
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Thias, for example 
j,2 

$"((84) 14, i, 6) = ^^84) iiS 
4i7 

2 
K. 11 

= § (84) (Table 3). 
4i7 

But 

1 I / . 

* I /,! X,1 ^ l'");. 

The determinants in the first term all have two columns mth 

the same orbital and charge-spin states and so are identically 

zero. Ihus /(84) =/2!/2| /+! "+2 ' 

there being only four non-zero determinants of 

li *o it'll <^1 4 l "(.2 I - U o ^ 2 'll <(̂ 1 'll "<̂ 1 

Hence -we deduce ;-

14,3, 6) = + 

Such states as (^ in §̂ '̂ (80̂  10, 12) ̂  and 

[(^ ̂ +2^^ ^ *^t(84) 14, 3, 6). vre shall 
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call configuratxonal states. These states have [f],E and 

v as quantum numbers but not (?^) or » The oonfigurational 

states will be written gu(E v) where i is some arbitrary 

label. 

In general ise have 

§(CAfi) E/^v) = ^ v) 3.57 

Gasimir Operators of the U^-group 

We shall define a Gaslmir Operator to be any 

operator of the group which commutes v/ith all operators of 

the group. 

It oan be seen that the operators 

° i ~ Z ! 

j 

and 

°2 = Zi 4.j \ i 

i,j,k 

are linearly independent and commute with all operators 

Apq of U^. 

The explicit form for the operator of the 

group-SO"̂ * obtained frcm 0^ by removing the unit operator 

= V S ^ ] + 1/6 [A^ 4. A ^ y 

• f V V " V V 

+ 1/6 [A^ \ a + 
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This operator corresponds to the Casimir Operator formed 

from the tensor prescription (Racah 1951 P. 30 ) 

= ( 1 / 1 2 ) C ( Q . Q ) + 3 ( L . L ) ] 5.59 

-where ( . ) denotes a scalar product. 

States of a particular representation of SU^, 

diagonalize the Gasimir Operators, We could equally vrell 

have defined the numbers A and /x as being associated 

•with the eigenvalues of and Cg just as L is 

2 

associated vvith the eigenvalue of L for the R^-group. 

The eigenvalues of the C 's are the same no matter 

on T̂ iich state of a representation they are operating. ¥e 

thus choose the most convenient state - the leading state — 

to determine the values of in a representation. 

¥.friting 3.58 in the more convenient form 

= ( 1 A 3 K B ^ + * 3 B ^ ] +(1/0KB^ 4, B^y) + B ^ ] 

T/ve deduce, since /(v) = 0 

(see 3.38 and 3.40) 

/ ( T y i ) = ( 1 / 3 + 2% + j p ] 

(2.16 and 2.2l) 
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The eigenvalue of Cg in a (>\jx) representation may be 

found in a similar way but, as yet, no physical 

interpretation has been given to this number. 

(See Chapter 6, for the use of the operator ) 
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[lable 3» Expansion of some operators E^ acting on /(Xm) (for example see 3*hl) 
yx — + 

L'ac 

I 
On 

Le 3a p + q = 0 

r q p 1 
i k yx 

0 0 0 1 

2 0 0 1 

4 0 0 1 

Table 3b p + q = 2 

z xz 
r q p 
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2 0 2 

4 0 2 
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3 1 1 

0 2 0 

2 2 0 
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Cable 5 (For an example see 3*44) 

) 

1 " 
r q P jL. ^ 1 
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0 0 4 1 4 
2 0 4 -1 (p+4) 4 
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Table 6 (For an example see 3*45) 

I 1 
! • 

xz 
1 
8 

- ̂ (4,V5) 

-i 

1̂,̂ +̂ (8 -9)]:,̂ +3A(/-2) 

+ 30\-l) 

i 

4 

A- A? 
jz xz -i"'o 

ii 

K 

4iL^-|Ai 
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< 4 -

4 . 4 

1. 

i jL^Ol+f •^)A>(>,+)i-2) 

-5 

1 

4 + 4 
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4 + 4 

I 
On 
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Table 6 (Cont.) 
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Table 7. Matrix representation of A ,A and A 
^ xz yz yx 

(For example see 3«47) 

7 a« A 
xz K K-l K2 ''o *-z 

K 

K\ 
/F 

U 

K. 
/2 

1 

7b. A 
yz K\ K2 K ^-2 

/ 
0 

^̂4.1 
•n 

'̂ -l 
•n 

K2 
1 

*.z 
/2 

7c. A 

K 

Kr 

K2 

K 

v/2 
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Chapter 4 

in Integral Form for the Wave Functions 

The nuclear Hamiltonian, mth central force alono, 

is invariant vd-th respect to rotations of the orbital oo«* 

ordinates in three dimensions. The true eigenfunctions 

therefore, spread out irreducible representations of the 

group of rotations in three dimensions (R^)i.e. they have 

the orbital angular momentum (L) a good quantum number. 

From the operators of the TĴ -group (2.2) it can be 

seen that is a subgroup of SU^. Orbital states may 

therefore be classified according to SU^ and in the 

same way that we have states / classified according to 

SU^, SUg and TĴ . The sets of states classified in the tw 

different ways span the same space and hence a relation 

exists of the form 

/( [f ] (^)£/\v) = ^ a( e/vv,aL'K'(Cf ] ) 4.1 

a L'K' 

where both X aiid ip are normalised. 

The a's are numerical coefficients and the ip 's 

are the states classifed according to vn-th the 

operator diagonal. States with the same L'K' labels, 

in a representation (?^), are distinguished by an 

arbitrary labelling a. 
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We define the a-label in the expansion of the 

leading state i.e. 

X([f] ^ a( ̂  ,K'L') ^([f](v)K'L'IC') 4.2 
L'K' 

Other states ijr may be found by suitable operations mth 

the R^-group operators. Thus J— 

^K'L'K') = ^'(K'L'K'+p) 

In 4.2 the ^states are defined to mthin a phase 

depending on the phase of X and the definition of the 

a-ooeffioients. The ̂ states mil be defined to be 

exactly those defined by Elliott (1958, 1,(24)) in the 

equation 

X([f ] (7\̂ t)K») = 2! o(¥K'L') ( If ] M E ' 1' E') 4.3 

•srtiere ^ 

X ([f] ) s%( If] (7^) E = 2% + |X, y^= |i,/2, K«) and 

the o(?yi K'L') are positive for non-negative K. Since 

the relation between the and the %'s is laiown 

(2.24) -me have: -

/( BP] (7\p)) = ^b(p/5 L̂, E') /([f] (:^)E«) 

= y b(p/2 P, K') o( K'L') f ([f] (7^) K' L' K') 

A ' 
^ a ( 7^ K' L'> ^([f] (^) K' L' K») 

K'L' ^ ^ 
from 4.2 
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We deduce 

a( 7^ K« L') = b(fi/2 /i, E*)*( V K' L») 4.5a 

In order that L M) = ^(-K L M), the coefficients 

o( 7^ - K L) = o( ^ E L) (Elliott 1958 II sec. 6) 

Since b(/i/2,fî ) = b(jx/2,fi - K) (2.24), 'we find 

a(7ft -K L) = a()f K L) 4.5b 

The relation in 4.2 is true in any frame of reference, in 

particular in a frame rotated through Euler angles 

j3, y (=n) (Edmund^ 1957» p.7) Thus 

^([f](^))= ^ a(Aa K' L O «ir̂ ([f3 (̂ fi) K' L' K») 4.6 

L'K' 

Tdiere the states are now defined relative to the rotated 

frame n . 

With the relationships 

D 
(K»L'K') = ^ l^'(n) I } 

K" f K"K' I 

and 

m ^ K"K' 

(Elliott 1958, III p.28) 

a, _ 5(11.') «(m" ) 6(KE') 

(2L + 1) 

(Edmunds 1957, P.62) 

•we find, by multiplying 4.6 by ̂ ^(fi) and integrating 

over the angles 0 , after substituting 4.7a for 

4.7a 

6 a . 
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f ([F ]W) ^^(N) a n = (?^)k L M) 4 . 8 
^ ^ ̂  nsK (2 L + 1) 

vdiere 

r 1 
j dnmeans —g- j da J sin /3 d ̂  J d y 

0 0 0 

Equation 4.8 is very similar to the integral form of the 

yr-states given in terms of theX-states (Elliott 1958 II (2l). 

Elliott has shown that by using all the states ( [f ] (py/ife) 

with maximum e in a representation all states ̂ (̂[f]( >fi)KIi\i) 

may be generated. Since the state ;/̂ ( [f] ̂ )) may be 

expanded in terms of all the states ^( [:d ?fi,)k), because none of 

the b-ooeffioients can ever be zero, it follows immediately 

that the integral in 4.8 must generate all states of a 

representation. 

By using the %-functions as 'intrinsic* states in 

the integral, it was found that a different state is needed 

for each 'band' K. With the ;Afunction however, only one 

intrinsic state need be defined for each representation and 

that is the leading state. 

Wo may express the representations (L) of 

appearing in the (^) representation of SÛ  in the simple 

way (Elliott 1958, I, (24)) 

K = min min - 2, ... , 0 or 1 4.9a 
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-while, for each value of K, 

L = K, K + 1, ... , K + max (>fi) 4.9b 

except -when, K = 0 vAien 

L = max (A/i), max (7^) - 2, ... , 0 or 1 4.9o 

These relations may be deduced from the explicit 

calculations of the o(?p, KL), defined in 4.3,or the 

a(̂ /x KL), defined in 4.2 . 

The appearance of a band-like structure for the^ -states 

is clear firom the relations in 4.9. Each band is labelled 

-with a K-nuraber. Within each band, states with definite 

orbital angular mcsnentum appear in the way that angular 

Momentum states appear in a rotational band. In this 

classification scheme however, the bands are cut off at some 

upper limit -while the rotational bands extend to infinity. 

In this analysis, the K-label in the (̂ —states is 

not a proper quantum number in the sense that it describes 

a classification -with respect to some group. States -vd-th 

different K-labels are not necessarily orthogonal, in fact, 

it is possible for one state to have two different K-labels. 

The K-label -will help to distinguish different 

states with the same angular momentum. 
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She expansion ooeffioients a( 

The a( 7^ KL) may be derived explicitly from 

the relation in 4.5a. The calculation of the b(fi,/2, K) 

is straightforward using the closed expression in 2.2$. 

Recurrence relations derived by Elliott (1958, sec. 5), 

enable the c(}^ KL) to be calculated without too much 

difficulty. 

A more direct method for calculating the 

a-coeffioients has recently been found (J.P. Elliott private 

c ommunication). 

Since the a-coefficients depend only on the group 

properties of the representation ) of SU^, the [f] 

label for the states / mil not enter into the problan. 

This has already been indicated by the labelling of the 

ooeffioients. We ^all therefore, omit the [f] labels 

in the following proof. 

On forming the product:-

I (A K L K')) a( L) 4.10 

and expanding the ^([f] using; 4.2 -we find 

( / M I L E')) a( E L) 

\ ' 
aX ^ K" L-"- ) (̂(7yjt.)K[K')) a( ̂  KL) 

K"L" 

= at Tjx K'L) a( 7^ EL) ) | ̂  )) 4.11 
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The last relation coming from the orthogonality of the 

f -states -with respect to the proper-quantum numbers 

representing the angular momentum (L) and its projection. 

The a-coefficients are given directly by putting 

K? = K in 4.11. Thus 

a^( 741 K L) =(/(7^) I )) a( E L) 4.12 

Knovving the a-coefficients from 4.12, the overlaps of the 

i}i -states may be deduced directly from 4.11. 

The problem reduces to the calculation of such 

functions shovm in 4.10. 

Defining the rotation operator Igr ^ 

•we have, from 4.10 and 4.8 ; -

6C(V) I a()# KL) = (2L + 4.13 
K'K 

We appeal to a particularly simple exrplicit form 

for the in terms of a product of one quantum, 

normalised states v/ith symmetry (/\a). There -will, of course, 

be a number of such functions corresponding to the v/ays of 

ordering the numbers 1,2, ... (2/i + a) in the tableau of 

(5^). Since one such arrangement can be obtained from 

another by a permutation, the overlap in 

4.15 will be independent of which one ito use. We therefore 

choose the most convenient. 
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A state î (AO) made up from single particle states 

(p(l) may be written:-

#(X0) = #2(1)4^(2) ... #g(A) 4.15a 

where ^^(i) is a single particle state with one 

quanta in the z-direction and zero quanta in the xy-plane 

i.e. z 
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The state has less than full symmetry and 

so a representative state may be written 

1)... +2/^ 4.15b 

Now i^(^) vd.ll be the p:̂ duct of all rotated single 

particle functions and hence reduces to 

a product of such matrix elements as I 

( Xg I P 4.16a 

= (cos cc cos y - cos ̂  sin a sin y) 4.16b 

Tfî ich follows from the explicit form for the ^'s. 

Hence we may write :-

(^(^) I = ( 008 a cos Y ~ COS P sin a sin y)^(cos |3)̂  4.17 

Substituting 4.17 in. 4.13 we find;-

L E')) EL) = (21 + 1) j" %^g(n) x 

(cos a cos Y ~ cos 3 sin a sin X (cos 0)^ dfi 4.18 

Since A ( n ) = e^^ a^,,(p) (Edmunds 1957, 4.l) 
K'K ^ ̂  

and 

(cos ct cos y - cos p sin a sin y)^ = ^ n!̂ jl̂ -̂ n)! ̂  
n=o 

(sin a sin y cos (3)"(oos <x cos y)^"^ 4.19 
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by a binomial expansion, 

we may rgmribe 4.18 such that:-

)) EL) =iSL+J;l V h' 

^ n=o (P- " ̂ i)-' 

A^(hK' ) G^(XLK'K) 4.20 

"vAiere :-
2it 

Â (|jE' ) = J" a% 0 ^ ^ sin̂ oc ooŝ ""̂ (%) 4.21a 

277" • 
dy sin^Y oos^""(y) 4.21b 

+1 

On(%IK'K) = a(co8 P) dg.EfP) 4.21q 

Thus,by substituting 4.20 into 4,11,a closed expression for 

the a-^oeffioients and the overlaps may be found. 
of 

The functions A and B are/the same form and the n n A-

integrals may be performed in general. It can be shorn that 

- =)! ^ I z Z Z 

(l)° 2^ ^ p!(n - p)!(^ 2 ̂  2 - n t p)] 

4.22a 

•where p is summed frcci max [ 0,^2n - p -E')] to 

min[n, ^ ]. 
2 

In the actual evaluation of A^ it has been found useful to 

use the expression 

-79-



\.J"/ ̂  III«'V* 

#iere / = ^ , m = •̂• - •~̂' ' and D = -— , D * , 
2 2 y ay ^ ax 

It can easily be seen that the expansion of 4.22b yields the 

summation in 422a. 

No general expression has yet been found for the functions 

but it is possible to evaluate them in special oases. 

Ihen K = K' = 0 (inrplying ji even), <̂ qq(P) = Pĵ (oos |3} 

(Edmunds 1957. P.59). 

Thus O^CWjOO) = Pĵ (x) dx. 4.23 

Expanding x^^ in terms of Legendre functions we finds-

y (2L- 4. + B + P , ( x ) 4 . 2 4 

(n+ A + L* + 1)1 10 + n - L')/2]l ^ 

•sî ere L' is suoh that (7\ + n + L') is even. (Whittaker & 

Watson 1927, p.310), 

Thus, from the orthogonality relations for the Legendre 

Polynqmials, we have 

c (XLOO) . i i 
" (?. + n + L + 1); KTv + n - L)/2 ll 

if 7̂  + n + L is even 

= 0 otherifldse. 4.25 
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In these particular cases the A and B coefficients sinplify 

to 

A.(ii.O) = B(ftO) = •• 2ir for n and |i even 

jxli 

ss 0 othervd.se 4.26 

Tflftiere = - 2)(ji - 4) ... 2. etc. 

We can, in this case, using 4.12, tiorite down the general 

expression:-

3,2(^0L) = fe.'' + 1.) 2^'' f' ^ 

(p./2):(fj,/̂ )i nlliii - n)ll 

(a + n)l ((a + n + L)/2}I 

(Tv + n + L + l)l f (a + n - L)/2) J h'?X. 

"vAiere E' sums over even n only. 

The form of the Ĉ(XIjK'K) coefficients in two more 

important cases are given beloY/ for K and K' $ 2 

0 (7^20) = ^ ^ 
(a + n + l) (Tv + n + 3)^ 2 

0 (>222) = (% + a + 2) f 

^ (% + n + 1)(A + n + 3) 2 ' 

i w T h r z j ) ( ^ 4 ^ ) 

Using 4.22,4.27 and 4.28, all the a'^©efficients 

required in this thesis may be calculated. 
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Chapter 5 

Energy Matrix Spread Out by the States [fj (A)u)KLM) 

The general method for calculating matrix elements. 

We now develop the method for determining the energy in 

totally antisymmetric states ̂ ([fl of the realistic 

Hamiltonian discussed in Chapter 1, The states have orbital 

functions defined in the last chapter and, for the moment the 

charge-spin labels have been suppressed. Since the Hamiltonian 

is scalar in the charge and spin spaces, it follows that the 

matrix elements of H between states^ with different charge-spin 

labels must be zero. 

The Hamiltonian with central potential alone is spherically 

symmetric. This means that the operator H will have the same form 

no matter in which frame of reference it is seen. 

Thus 
r 

a(Xji.,KL) ̂  

(3L + 1) 

a(>5r,KL) * 

(from 4.8) 

where is the Hamiltonian seen in the intrinsic frame. 

With the assumption that [f]is a good quantum number, we may 
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just consider the states of maximum orbital syrometry when 

ceiloulating the energy of low lying energy levels (Chapter l). 

We have then 

where is the matrix element coupling the state 

to the leading state of the (Tvfi ) - representation 

in the matrix representation of , spread out by the states 

®(>fi£Av), in the intrinsic frame. 

From 3.57 we may write 

M t ^ a v ) %("¥) ^ 

Thus 

Expanding in terms of ̂((7̂ jj,)K'L'K') , using 4*2 ,we 

have 

$(%P) = zl] a(%iE'L') tpffTpjE'L'E') a&S, 
Jl E'L' ^ 

Since in 5*4 the operator E acts on the leading state of a 

representation, it may be replaced by the equivalent operator E, 

From 5*4 and 5*5 we see that the E operators will now act directly 
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on the states . Because the E - operators are functions only 

of the angular momentum operators and L+j , we can deduce the 

numbers f where 

^ K" ' Si- ' -

Notice that the E operators can only change the last label in 

Thus,from 5'4. 5»5 and 5*6^ 

^ a(?vi[C'L')2_,f(Ŵ Âv|L'K'K* )x 
Tp-tfiV K'L' K* 

'̂ ((7v}x)K'L«K«) U L 

Defining the number g by!-

g(̂ p:j A/i L'K'K") = (>fteAv|Ĥ |7̂ )f(7vfi,eAv!L'E'K" ) , 5.8 

equation 5*7 reduces to 

^(3^) = 2 2 a(AHK'L') gOT^L'K'K»)^^((7yfi)K'L'K«) ^ 

Substituting 5*9 into 5«1 we find 

f2L + l) 
H $((9Jl)Em) = 

^ K ^'L'K'y ' 

^̂ ((>̂ )K»L'K«)d,a 
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EKiice (p ([ ) * ((TyijE'jL'Z:*") JZajLl, 
fi K' "K" 

(Elliott 1958, III, p.28) 

we mâ'- integrate directly over the ̂ functions, using 4*7b. to find;-

?#:' a(>fIiCL) 

From the definition of the phases of the ^-state in 2*..St we have 

= »((?fL) - |K»|DO 

with a(?\jx - |K'|l) = (-)̂ ^̂ a(74ijk'| Ii). 

Defining now 

g(5̂ |?\jx LIkMk) = g(^ |7\u, LiK'jK) f g(̂ Tj?vix L - jKjK), 5.1^ 

with the exception of K' = 0, when 'g(5̂ jAjJ. LOK) = g(?̂ j LCK), 5.14b 

we may rewrite 5*12 as:-

iijCOvijaEUE) = I") ;;(:%%jK'lz:) (Tyi) pc' I itO ,5A]:S. 
VIK'f KL) 
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We therefore deduce the elements of the energy matrix j H ] to be:-

((V* ji') |E" I L" U» I H = Z X 
|K' | a(?^IxL) 

L|K'|k} X ((%" (a" jx" ) lll'l Di) 5(L'I.) 

the sum over jK'j persisting since the states are not orthogonal 

with respect to this number. 

The eigenvalues of jji] will be the prediction of the energy 

levels. The eigen^functions will correspond to the stationary 

states of these levels. If the classification is a good one, the 

off-diagonal elements in [H] will be small, that is, the diagonal 

elements will be a good approximation to the true eigenvalues and 

the true eigenfunctions will involve little mixing of A,,a or K. 

It is not necessary to diagonalize the matrix j H] , v/ith elements 

defined in 5«l6. to deduce the energy levels, even though it has 

the advantage of being symmetric. The non-symmetric matrix with 

elements LjK'lK) has the same eigenvalues as [H] 
To prove this last statement, let us first define unnormalised 

states 

Ba) = a(V K ((V) K U^) 3.17 

Equation 5*15 may now be written as * -

H ^((^)IC[M) = ^ g(^|?^ LIK'IK) 3.18 
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The eigenfunctions of the matrix [s] mil be linear 

combinations of the thus 

x;!|Ei 

where are expansion constants. 

If is the eigenvalue of [H} corresponding to then, within 

the given f̂ j, 

XT"* 
H ^ 5.20 

%&|K| 

also H ?^(m) = ^ 

n\^\ 

y <X gCĵ Il ̂ vJ-LlE'lK) X BO 5.21 

X7i|k| 

Replacing the left-hand side of 5*20 by the right-hand side 

of 5*21 and equating coefficients of - since these states are 

independent - we find 

E, %.(()yi)|E'| IM) = > g(7^ T^LlK'lK) a, ((V)|K!IM) 
J- 3. ^ / 1 

Â lKl 

or,in matrix notation, 

["iJ = [s j K J ^ 
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Clearly now the are the eigenvalues of the ] matrix. 

The eigenfunctions of ĵ 'g] give the values of <x̂ ( ("") jKj Bi} to 

within a normalisation factor. If the eigenfunctions "̂ ôf [h] 

are to be normalised then, from 5*19 and 5»17j 

= 1 

— Di) a(7̂ x|KiL) L) 

lEllE't 

((5^:)|K'in€j(7^I)|K|nf) 5.25 

Knowing the a-coefficients and the overlaps in 5'2.3 we can deduce 

the unknown normalisation coefficient for 

We notice that, in deducing the eigenvalues from 5»22. no 

knowledge of the a-coefficients or the overlaps ('1̂1'?) need be 

possessed since "g is independent of both. 

Since most of the calculation of the matrix elements of [H j 

go into the g" - functions, (see 5.16). a useful check may be put on 

the results by using the synanetrical property of the matrix for H. 

Alternatively, the symmetry of [hJ will provide a method for 

calculating one g-element from another when the a- coefficients 

and overlaps are known. 

Since 

((A" ft •J |E"| BijH 
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from 5*16 we find 

V a(A>" !KML) L jlC | k)((7v" fi")jK" I Dij (V« |K' i 

jg, j a(>fiiK|l) 

= V " a(7̂|J.iK'l L) L!K'l!K"l)((̂ )|Kin'I (^)iK'ln^ 5.24 

In particular, when L = 0, the only K value will be K = 0. Thus, 

a(A" fi:'!..QPî (̂  jy. qoq) = p," j OO) ^ 
a(7yi 00) a(A" ji" 00) 

From the selection rule derived later (Table 8), we shall see 
=12 

that, when (2A + jl) - (2A'+ there can be jao M&ang^-of -tMt iel 

g(9̂ j A" /i" LlK'j K) ̂  0 unless jK'j =jK| 

When (2Â p,) - (2X"+}î )= 6, it is found that 

g(^ j X" jJ'" LjK'l K) is small foriK'j / |K| compared with the 

term when JK' | = |Ki. 

If also the overlaps of the states in the (^) representation 

are small, then 

aj[3*' p" IK»iL) LjE'lK ) 

a(l?|KlL) 

JB G(A« FI« I ^ LIKIJK"! ). 

aCA" |i»iK"(L) 
5.26 

Of course, if the overlaps in the ("X* jj,") representation are also 
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small, 5*26 will be very accurate. 

The relations in 5*25 and 5*26 will be useful later on when 

we are estimating the mixing of representations in the Mg nucleus 

(k = 8 particles in the ds-shell) 

The determination of the energy levels and stationary states 

using the states ^ , merely depends on our ability to calculate the 

functions g. From 5*14 and 5'8 we see that the ̂ 's are known if 

the matrix elements in the intrinsic frame can be calculated and if 

the constants f can be determined from 5*6. 

Matrix elements in the intrinsic frame. 

Only the matrix elements coupling a state § to the 

leading state, §(^) , of the - representation have to be 

calculated (5*8). The construction of ^((^)e/sv) from the leading 

state in Chapter 3 involved the introduction of certain 

configurational states i^(Ev) (5»57). 

Thus I H j5̂ ) = ^ 

Since the i^(Ev) and$(%) are known explicitly, the calculation 

now follows the standard process of determining the (k-2, 2) 

fractional parentage coefficients for the configurational states i.e. 

. y a ? #' 5.28 
/_ I §§ ' 

? §' 
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§ 
where a are the fractional parentage coefficients 

is an antisynmetric state of k-2 particles in J 

and §' is an antisymmetric state of 2 particles in J 

and we are summing over all possible states 

Thus we may write: 

3, (iis V ^ ^ 

III' #2*2 1 ^ 

I Sg) I 

since H is a tw body operator i.e. H = ^ H. . . 

i<j 

§. 
The a ̂  may be found by going back to the form for the 

? § 
(3*51) and explicitly taking out the last two particles using the 

known charge-spin fractional parentage reduction by one and two 

particles (Jahn & van Wieringen 1951, Elliott, Hope and Jahn, 1953) 

and the orbital fractional parentage coefficients. Since our 

orbital states are not vector coupled in any way, the orbital 

coefficients will just be normalisation constants. For example, 
11 

with the four particle state (ab c c), with symmetry [4] (l'4b). 

we find 
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and 

(abGc)i234. = + j^(bo)^(am)^^ 

^ ^ # ( ) ' " ( r 

(See also Appendix 2 for an example of the reduction of an eight 

particle state). 
§.(ey) 

Prom 5»30 we see that the only coefficients a which 
% ' 

need be calculated are those v/here (?^j ) are non zero. 

A considerable amount of labour is saved by observing this fact. 

For central forces, the two body matrix elements in $.2$ will 

vanish unless $and #2 have the same charge-spin labels. 

13 31 
Since the states and are symmetric in their 

11 33 

orbital spaces (f̂ (s)) while #' and #' are antisymmetric (^(a) ), 

the only matrix elements of V̂ (:U ) (defined in 1.2b) which can occur, 

are;-
2 9 

B I e"* j dgCs)) 

($^^^ = - V^(w + M - H - B)(/̂ (s)i 1/2(3)) 

(§'^i |#g^) = - V^(W - M + H - B)(/]̂ (a)| |^(a)) 

^ I ̂ 2^^) = - V^(W - M - H + B)(/̂ (a)j |^(a)) 5.31 

The two body matrix elements have been evaluated in general, for a 

Gaussian radial dependencejin Appendix 1. 
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Selection rules for intrinsic states. 

Not all states §. (gy) 'will couple to ^(^) . For the states 

in the ds-shell, since is a two body operator, the greatest 

change in E which can occur through ,in going from §(%) to 

§^(ev) , is AEa 12. From Al«14- we see that the two body matrix 

elements, j y (ij)l^2 vanish, for a Gaussian potential, 

unless the sums of the oscillator quanta in the x, y and z directions 

are all even for the two functions and . The resulting 

selection rule for the coupling of many particle states to 

is given in Table 8. 

Table 8. Selection rule for the states Gv)coupling to 

i(xjl). Ae = j 2A + jx - e | and Av = | a - v j 

Ae Av 

0 0, 4, 8. 
6 2, 6. 

12 0, 4. 

It-'KHC" ) coefficients. 

Because of the selection rule and the relation in 5*8. it is 

clear that only the f -coefficients, whose E and v values satisfy 

one of the relatiorg in Table 8, need be calculated. That is, only 

a few operators E(7v|jI.,SAV ) ̂ .nd their equivalences are needed to 

form the required f-coefficients. 
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For the coupling of intrinsic states within the leading 

representation, the operators required and their equivalences have 

been listed in Tables 3 to 6 (Chapter 3) . These tables also 

contain some of the E's which are necessary for the mixing of 

representations ( ) into the leading representation ( Aju.) where 

(2A + - (2A + ft) = 6 or 12. 

The mixing of other representations has not been considered here 

although the calculations are straightforeward once the expansion 

of the operators E and their equivalences are known. 

In the remaining chapters we shall use the method now 

developed to calculate the energy in the states of two, three, four 

and eight particles in the ds-shell and try to fit the results 

onto the physical picture. 

Parameter fitting. 

Before attempting any calculations, we mast first decide what 

values of the parameters will give realistic results for the nuclei 

a 

in the ds-shell. In the retaining part of this chapter,we discuss 

these same paramters in the p-shell and, from the work of Eurath 

(1956), deduce approximate, realistic values for them. 

In the p-shell,the only orbital matrix elements which occur are 

((Ipf [2 ] 80 I j (Ipf [2] 80) = L + 2E 

((ip)^ [zjm) = L . E 

((lp)^[llj m \ I (lp)^[lli B/I) = L - 3E 

(Elliott 1952, p.49) 
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Evaluation of the matrix elements in 5*32 yields the results> 

• 4v 

X2) 

L = + 4./25 

K = 3/25 F 

where 
0 0 0 0 

F 
(o) 

F 
,(2) 

Of 
00 oO 
o 

U^(pl) U^Cpg) J2^^1*^2^PlP2 "̂ Pl 

co 
7l2 = + To ° 12 ^,0 A = ^ (°°= "12) 

k=o 

. 503 

5.34 

with P|̂  a Legendre Polynomial 

and U(p} = P e ^ 

= radial part of the harmonic oscillator wave function 

in the nuclear p-shell, 

p = ^12/b with b the oscillator well parameter, 

(Elliott and Lane 1957> Appendix 8) 

The radial integrals in 5*34 have been evaluated by Jahn (l). 

Hence we can deduce, for a Gaussian potential, 

^ - 2P + 3P^J 

K = i |33A[i . 2P H. pZ , K = Vt ^ 
2 

cc + 2 
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Consistent results may be obtained for the p-shell by taking 

^/K = 6*8, and K=-0.9Mev, (Kirath, 1956). This implies that 

= 1*2. 

An estimate of the nuclear mean square radius may be made 

using the formula 

/ — ^ , r? ) = with R = 1*3 x lo"^^ cms. 5.36 
A i 5 

where centre of mass motion is neglected. The expectation value 

' •. 2 
of r. is easily evaluated using the lowest oscillator well wave-

i ^ 

functions. 

For we find 

b = 1 • 5 X 10 o ms. 
2 2 

Thus, if gp _ a /b = 1 2 , have a = 1*65 x 10 cms. 5.37 

Using I&irath's value for K = -0«9 and with a= 1*2, we may estimate 

the strength of the force to be 

Vo = W Mev. ... 5»38 

In the cases we have considered only ty/o exchange parameters occur. 

We write these as;-

| (p^^ |E |P^^) + I = w + M = X 

and [ (p^l e | + 9(p^ j /io 

= JlOT - im - 8H + 8B|/io = Y ^ 

where E = W + M - H pT̂ . + B P ^ and|~is the charge-spin 
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state of the i and j particles « 

Table 9 indicates the values of X and ̂  /5[ for various well-known 

exchange parameters. 

Table 9 

Mixture W M B H X 

Serber 0 .5 0.5 0 0 1 0 

Eosenfeld -0.13 0.93 0.4J -0.26 0.8 —0.6 

Inglis 0 0,8 0 .2 0 0.8 -0 .8 1 

pK 
In the mean square radius formula in 5.36 yields a value 

-13 r- -13 of b = 1.7 X 10 cms. Hence, with a = 1,65 x 10 , we shall 

assume that the ratio = 1 gives realistic results. 
V 

All energy levels are plotted in units of ( /hO) Mev, 
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Chapter 6. 

Application of the Method and the Appearance of 

Rotational Features. 

Elliott has compared the lowest eigenstates from shell-model 

calculations, in the beginning of the ds-shell, with those states 

classified according to the representation of SU^. (Elliott 1958, I, 

Elliott and Macfarlane, Private communication). Large overlaps were 

found and it was seen that the level ordering, by a realistic 

potential, corresponded closely to that by (C \ The representa-
1 Xu, 

.•v 

tion which maximises \C ) was always found to be lowest. 

Such a result may be seen, in a very crude way, by making a 

'long-range' expansion of the Gaussian potential. That is, 

assuming the nuclear distances r. . remain small for a long range 
1J 

force, we may write;-

-r. ./ _ ' 2 4 
e _ r.jy,2 + ,,,) 

i<j i<j a * 

- the terms getting successively smaller. 

The first two terms in this expansion contribute the same 

amount of energy to all states within an oscillater shell. The 

third term consists of functions which contribute the same, or almost 

the same amount of energy to states within a shell, and a term of 

the form 

fglcos e^) 

i<j 
-98-



- the quadrupole force appearing with a positive sign. 

The latter function may be written in terms of the Casiinir 

operator which appears again with a positive sign. 

With these rather general arguments, we are led to make the 

assumption that, for an attractive force, the states belonging 

to the representation (^), where is a maximum, form the 

major part of the low lying states of nuclei. How accurate is 

this assumption will appear when we discuss representation mixing 

(see Chapter 7). 

In this chapter we consider the significance of taking only 

the representation which maximises <'6 ) , for k = 2,3,4 and 8 
1 

particles in the ds-shell, while illustrating the method, developed 

in Chapter 5, for calculating the energy in the states 

from a central potential, 

General Remarks 

(a) The kinetic energy will not affect the results as we are 

only concerned with energies above the ground state and our wave-

functions for the k particles cQme only from the degenerate ds-shell. 

We therefore ignore this part of the Hamiltonian in all the calcula-

tions, and measure energies from the ground state, 

(b) The supermultiplet classification for the low lying states 
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l8 20 21l 

of 0 , Ne and Mg give these muclei a spin 3=0, henoe the 

total spin J = L (the orbital angular momentum), The addition of 

a spin-orbit force in the Hamiltonian, to make it more realistic, 

will give zero contribution to the energy in these cases. If we 

take the k(= 2,4, and 8) particle states to have S= 0, we shall 

be able to relate our results, using only a central potential, to 

-1Q 20 22J. 

the physical pictures of 0 No and Mg , 

For the k = 3 problem to represent some-'̂ în dependant 

force must be introduoed into the Hamiltonian - this vdll not be 

done here. The k = 3 problem is considered only to show hovf 

rotational features appear in the orbital space as particles are 

added into the shell, 

(c) All tables and figures have been collected at the end of 

the chapter. 

k = 2 (0^) 

The leading representation of SU^ appearing in [ f] = [2] is 

) = (40). (Elliott I Table l), The leading state of (40) 

for the 0^^ nucleus is 
#^^((W) 800) = (/q )^^ ... 6,1 

The states within the (^D) representation v/hich satisfy the 

selection rules in Table 8 (Chapter 5) are given in Table 10 in 

terms of the configurational states (em) . The powers (rgp) in 

the operators needed to generate these states,are also 
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shown in this table. 

Non-zero two body matrix elements coupling the configurational 

states to are given in Table 11, These have been evaluated 

directly from the formulae given in Appendix 1, 

The expansion of /((2|£>)800) in terms of ̂ ((2|J0)I<LK) yields 

only a K = 0 band i.e. 

/((40)8 00) = ikO) 000) + {̂ ((40) 020) + 

4^(40) 040) ... 6^2 

where the coefficients may be deduced from 4» 12 

With only a K = o band, the g-elements (5.14) are equal to the 

g-elements and we can now deduce from 5.8 , Tables 10 and 11 and 

Tables 4 to 6 (Chapter 3) 

g(40j40,1X50) = + [ - |(3 + co) - ̂  (3y + 5+ p) ] L(L + 1) 

+ [ ̂  (3r + 5 + p) ] l^(l + if" £,3 

Where P, a),y ,5 and p are defined in Table 11, and is independent 

of L. 

In this simple case we find (from 5.16) 

( ( 4 o)onO | v J : 4 o)oii^ 5 g (4JD|40, LOO) ... 6 . 4 

The ground state has L = 0. The energies of other states above the 

ground state are thusI-

E(OIM) = ̂ 40) OIM I vJ(40)OIM^ - ^40,000 j vj(4a) ooo) 

= - (P + oj) - (3y + p + 5)] L(L + 1) 

+ (3y+ p + 5)] L^(L + 1)^ 6.6a 
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i.e. E(OLM) 

= + Vg p { ^ 8 0 + 32 oP + 500) L(L + 1) 6.6b 

- § if) 

with a= the ratio of range (a) to well parameter b(cc= ̂ /ti) and 

p= aV4(2+a^)^/^ 

The ratio E (OiiM)/S (02M) is plotted in Figure 1 against the 

parameter cc. For a fixed mean square radius (implying b is 

constant), the variation in a corresponds to varying the range of 

the force. We see then that for a long range, E (OW)(02M) 

tends to the limit IO/3 - just that for a rotational band. For a 

realistic value of the range E (02)M)/E (02M) = 1.7 , 

which compares favourably with the experimental value of 1.8. 

(Ajzehberg-8eloye & Lauritsen, 1959 ).It is instructive to note 

from where the various terms in E (Olii) come and what approximations 

we can make to them. 

If only the states with Ae = 0 are considered in the intrinsic 

frame i.e. ̂  - oi = y = 5= p = 0in 6.6a (see Table 10 & ll) 

all the levels are degenerate. Including the mixing of states 

with Ae^ 6 (only y = 5 = p = O) it is clear from (6.6a) 

that we get just a rotational band. Comparing (6.6a) in this 

approximation, with the energy levels obtained from the rotational 

model, we have the moment of inertia (l) given by 

i .... 
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Including the intrinsic states with = 12, we get a more 

realistic picture with the moment of inertia decreased to satisfy;-

21 = ĵ (3 + co)/6 + l l (3y + p +^}A8 6.7b 

In Figure 2 the various approximation to the energy levels 

have been plotted in units of (^o/^O) Mev for %= 1 and Berber 

Exchange, Figure 6 shows how the energy level spacing varies with a . 

k = 3 

The leading SU^ representation in [fl = [ 3l is (T̂jj,) = (6o) • 

The leading state for the representation is 

4^22(60) = 12, OO) = ... 

The states within the (6o) representation,which satisfy the 

selection rules in Table 8 (Chapter 5)> are given in Table 12, 

The matrix elements in the intrinsic frame which are required are 

listed in Table 13. 

The expansion of ̂ (6o)j in terms of the 9̂ '(KLK) -states,yields 

only a K = 0 band, 

^(60) = ^(ooo) + ,/lo75. (6(020) + {^(040) + /16/23I ^(060) 6.9 

As in the k = 2 case, we deduce that, for energies above the 

ground state (j, = 0):-

E(OB/l) = g (60}60 LOO) - g(60 |60 000) 

= -VQ {[-(1/5XP +«) - 240 + 5 + p)] L(L + 1) ... 6.10a 

+[(1/^80) (3y + 6 + p) ] L^CL + l)^} 
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i.e. E(OLM) = +Tf P { CW) + l6 % + 109Xl/20)L(L + l) 
2 
! 

2 , 
-(3/40)1 (L + 1) } ... 6.10b. 

The ratio E (02tM)/E(02Ivl) has been plotted against % in Figure 1, 

Again we notice that, for a long range force, the ratio tends to the 

10/3 limit. By analysing 6.l0a it can be seen that it is the Ae = 6 

states which give the rotational spectrum and the ae= 12 states 

2 2 
which introduce the term L (L + l) . 

k = 4 

Table I4. shows all the SQ^ representations within the representa-

tion [f] = [4] for SUg. On this table also is shown the 

reduction SU^ BUg x for those states with 12. Here Ae 

is the difference in e from that of the leading state of the lead-

ing representation... 

The leading SU^ representation is seen to be ( ) = (8O), and 

the leading state is:-

§^(80) = i^(80l 16, 00) = ... 6.11 

The explicit form for the other states of the representation, 

satisfying the selection rules in Table 8 (Chapter 5), are given 

in Table 15 together with the powers (r q p) in the operators 

required to generate the state. 

The required energy matrix elements in the intrinsic frame are 

listed in Table I6, 
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a 

Expanding ̂ 80) in terms of ^̂ (KLK) we find, from ^ 

/(80) = !fr{000) + .'/hO/SS ^(020) + ,:/48/ii0 tpioho) 

+ ^(060) + ,:/i28/6435 ̂ (̂080) 6.12 

Again only a K = 0 "band is predicted. 

In this case, 

EiCSM) = g(80|80 100) - g(80|80 000) 

= + + w) +(27/560)(^y+ 6 + p)] X l + l) 

-[( 1/32.35 )(3.y + 6 + p) ] L^(L + if ija 

= + V^p|(3A40][100 + 40 oP + 211) L(L + 1) 

- 9/280 L^(L + 1)2} 6.13b 

The ratio E(02|M)/̂ (02M) has been drawn in Figure 1 for various 

values of the parameter a . For a long range force we have a 

rotational spectrum whilst for a realistic range (ix~l ) the ratio 

compares favourably with the value 3.05 from the experimental 

spectrum (Azjenberg - Selove and Lauritsen, 1959). 

The approximations to the energy levels, as first the A6= 6 

and then the ^e= 12 terms are included in the energy calculation 

in the intrinsic frame, are shown in Figure 3 in units of (̂o/2|JO) Mev. 

Figure 7 shows how the energy level spacings vary with a . 

Summary for k = 2. 3 and 4 particle problems. 

Already it can be seen that a rotational spectrum appears in 
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this scheme for realistic value of a(~l ) as particles are added 

into the shell (Figure l). This result is directly related to 

the fact that the contribution of the aE = 12 intrinsic states to 

the energy grows relatively smaller with the greater number of 

particles. For more particles we should expect a good estimate 

to the spectrum by ignoring the Ae = 12 terms (see k = 8 particle 

problem). 

The absolute energies compare quite well vd-th the experimental 

data, A value of ~ $6- Mev, wiH fit the k = 2 results to the 

0^^ spectrum whilst a value ~ 60 Mev. will fit the k = 4 results 

20 

to Ne , It is encouraging to see that these strengths are about 

the same and near = 2}jO Mev. which we have estimated to be the 

correct value from p-shell data (Chapter 5). 

k = 8 

Because of the four dimensional charge spin space the maximum 

orbital symmetry is [f ] = [2̂ 4]. 

The representations of SU^ contained in [f1 = [44] of 

which have e-values differing by less than 12 from the leading state 

of the leading representation, are shown in Table 17. 

The leading representation is seen to be (2^) = (84). With 

the notation of 3.50. the leading state of (84) (from 3,53 ) is:-

$^v84) = a(84) 20, 2, 4) = ... i j a 

From the two body matrix elements deduced in (A 1.5 ) the configura-

tional states, §ĵ (ev ), coupling directly to the state §(84) can 
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be written down immediately. These are the states jl) ...|l5) 

listed in Table 18. The coefficients ) of the v) 

in the expansion of states §((84)eAv) (see 3.56) are given in 

Table 19. The p^(84 E/̂ v) may be calculated independently of each 

other hence only those belonging to configurational states which 

couple directly to the leading state need be known. This saves a 

great amount of labour. 

The matrix elements (^(Ev)1j f(84)) can immediately be 

deduced (using A 1.5 ) once the fractional parentage coefficient 

are knovm for the reduction of the eight particle states by two 

particles (see, for example, Appendix 2). 

Since the two particle states can now be either synmetrio or 

antisymmetric, the form of the matrix elements will depend on the 

exchange mixture to a much larger extent than in the simpler cases 

already considered. 

The elements $(ev)|̂ Q,| K^hS) in Table 20 have been given 

in two parts - the contribution (S and A) from the symmetric and 

antisymmetric pairs of particles respectively. The full element 

will then beZ-

(s.fav)!^ ! # 4 ) ) = x ( |w( )3 + y(|p i ... 

with X and If defined in 5.38. 
^ 2 

V = - V 2 ^ exp ( ̂ ij/a^) and 
° o l<j 

$(82f) jV"'̂  I = Contribution from symmetric pairs of 
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particles 

^ §(84)j Vg /|i (e = Contribution from antisynSi&trio pairs 

of particles. 

Using 5.8. we may now construct g(84,184 L'K'K") and hence 

deduce g(84| 84 L« | K'} H' ) from 5.14. 

The expansion of #(84) in 4.2) shows that there are K = 0, 

2 and 4 bands. Thus the g elements, in this case, are not trivially 

equal to the g-elements for all values of K. 

To simplify the analysis we divide the g elements into four 

parts. First we define g^ and g^ to be the contribution to g 

from the two body matrix elements of the symmetric and antisymmetric 

pair of particles respectively. We then define gg and gg to be 

the contribution to gg from the intrinsic terms with AE < 6 and 

Ae = 12 respectively, A similar definition will stand for g^. 

Thus we may write 

g = ^ ^ % ... 6.16 

For a Berber force g = gj!, + g" since Y in 6.15 is zero. 

The expression for g in terms of the parameter % is very 

complicated in this case and no attempt has been made to write it 

down in general. It is possible to derive the general form for 

ori however. Ignoring, for the moment, the Ae = 12 

intrinsic stateSj we have, from 5.4 and Table 4 (Chapter 3) 
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k84). [h^ h- hj . hj ej . ^ ef 

+ "7 "ys $(84) 3.3+ + h? '^=:i.B+ + h8::! + ^ 42cs!_ 

j^^4%hg + hy+ hg%a .j^;h^ + 28^ + ̂  + %*y +1% "sghg^f 

+ 1/2(h^ + 6h^ + 72hg - 24hg - 48hg)} +L.f^) 

+{- (3h_, +f h9)^ + c%% + .%)hy + 5hg + 10h,)^ }(^^ - ̂ ^ ) 

+{-i^)y +1^, + ly)l4 + ̂ (^, + 2my + 1% + +1% + 

- ̂ (ly + 6h^ + 72h^ + i6hg + 32hg)} 

+{>/2xh5 + hy + hp)!,* - + izh^ + h^ - izh^ + hg - gh^ 

+ ̂ -2hg + h - lOh^ - 376h^ - 22hg - 220h^ - lOhg - 436ĥ )lj 

6.17 

:(84) + (h^ + 4h2 + ah + 48h^ + 516h^ + 208hg + 4l6h^) } 

Denoting the operator in the r.h.s. of 6.18a by g' we haveS 

V §(84) = g' §(84) 

K 

6.18a 

6.1% 

-109-



The h^ are defined in 6.17 as the matrix elements coupling an 

intrinsic state of the (84) representation to the leading state, 

divided by the normalization factor (N M P ) of that particular 
P qp rqp' 

intrinsic state (3.37) 

From 5.6 to 5.8 we deduce 

G' $((84) K»L'K») = g'(84|82iL'K«K« ) vf((84K'LlK« ) 6.19 
k" 

Thus,by knowing the form of the in 6.17^we can immediately 

deduce the g' and hence g'. 

Table 21 lists the form of the h^'s in terms of a . In 

Tables 22 the functions of the h^'s in 6.18 have been evaluated 

for several values of the parameter a . Table 22a lists the 

contribution to the functions from the symmetric pairs of particles 

and Table 22b shows the contribution from the antisymmetric pairs. 

The g' g and g'^ matrices may now be deduced and are shown in 

Tables 23 and 24 for <x = 1. The matrices, are found to be the 

same for all values of the parameter a within a factor of 

p = a3y4(2+3F)l^/^ , 

and are shown in Table 25. The g^" matrices are identically zero 

for all values of <x. 

The energy levels, deduced from a diagonalisation of the g -

matrices for various values of cc, have been drawn in Figures 8, 9 

and 10,as functions of % for three different exchange mixtures. 
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The form of the g - matrices will now be examined, for a Berber 

force, after making various approximations. First we ignore 

all intrinsic states except those mth A£ = 0; secondly we 

include those states with 6; finally we take into account 

all the intrinsic states. (Figure 4). 

In the first approximation then, the g matrices are given by 

the G' operator, from 6.19 .where all the h^'s in 6.18, except ĥ  

and hgf are zero. In this case, since there are no operators to 

mix b.ands g = g. We see that all levels with the same K label are 

degenerate but the different bands are split by an amount proportional 

to -hgK^. Since hg is negative (Table 2l), the K = 0 band is 

lowest. 

The next approximation has all the h's in 6,17 non-zero. 

Ignoring the niadng of K we see that again the g-matrices = g-

matrices and, from 5.15. the ̂ -elements give the energy levels 

2 

directly. Since the K-band mixing will come from the terms in 

6,18. it can be seen that the energy levels within a bojid are just 

of the form 

A + B L (L + 1), 

The mixing of the K-bands at this stage depends on the 

2 

coefficients of the terms. From Tables 22 we see that these 

coefficients are very small. This is directly responsible for the 

small off-diagonal matrix elements in Tables 23, 
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We note here that the most important contribution to the 

energy,froci the terms with Ae= 6,comes from the state v/ith 

maximum v. 

The gg-matrices, resulting from the inclusion of all the 

intrinsic states, can be found by adding the matrices to ̂  

from Tables 24 and 26 (see 6«l6) . 

A first approximation to the energy levels is found from the 

diagonal elonents of g^. Since the diagonal elements of gg are 

very small, the diagonal elements of gg are almost equal to those 

of • 

The off-diagonal elements of are of the same order of 

magnitude as the same elements for . It is, therefore, not 

consistent to calculate the K-band mixing when the intrinsic stat® 

with AE = 12 are ignored. This approximation will still give a 

good approximation to the energy levels however as the K-band 

mixing is always very small. For a Eosenfeld - type exchange the 

mixing of K is found to be even smaller. 

In Figures 4 and 5 the spectra for the S erber and Rosenfeld 

type exchanges (with <x = l) are drawn for these various approxima-

tions . 

From these diagrams we can see that the error in ignoring the 

K-band mixing and the A6 = 12 terms is not great, We have, then, 

almost pure rotational bands described by the K-label, 
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The actual states with 1 = 2 for the levels deduced in the 

Berber and Rosenfeld-type exchange cases have been calculated, 

for &= 1, from 5.23. 

In this calculation we use the facts that 

( (82^)2mj(8h)02tif = 3a9.1j7 6.20 

a^(84 22) 137/2.9.11.13. and a^(84 02) = 19/11.13. 6.21 

(See 4.11 and 4.12) 

Thus for a Berber exchange, 

= 2,M) = + .99097 $((84)02/0 + '10462 »((84)221,1) 

^(2pi) = - .13965 »((84)02//) + '99493 ̂ ((84)22M) 6.22 

and for Rosenfeld exchange 

\̂ (2M) = + .99650 »((84)02Ivl) + '0563J »((84)22M) 

v̂ (2M) = - •09110 »((84)0ZK) + .9990 »((84)22K) 

This classification scheme is slightly better for a Rosenfeld-type 

exchange than for a Berber. 

Fitting the experimental data. 

The results of all our calculations so far are illustrated in 

Figures 6 to 10. The energy levels are shown as functiorfe of the 

V . 

parameter « and are plotted in units of 0 /40 Mev, To make 

direct compai'isons, the experimentally deduced spectra have also 
been drawn on these figures in units of (̂ o/lfO) Mev for various 
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values of the strength V^. 

18 20 
We find that the best consistent fit is made, to the 0 , Ne 

and Mg^^ spectra, for a range a = 1,85 x 10 cms. This is a 

slightly larger value than that deduced from p-shell data (Chapter 5) . 

From the meein square radius formula in 5.56 we find the results;— 

o = 0 
-ij 

b = 10 ^ cms 

Ne 20 

.24, 

b = 10 cans 

lig ; b = 10 cans 

We thus make the comparison of our results, with experiment, 

for values of the parameter «£ (=^/b) = 1,08, 1,07 and 1.04 (i.e. 

TO 20 PJi 

about l) for 0 , Ne and Mg respectively, 

A value for the strength is deduced in each case by fitting 

the energy of the firstexcited state exactly to the experimental 

one. The values of V chosen in the different cases for the 
u 

various exchanges are shown belov/. The intermediate exchange has 

been chosen to see how the Mg^^ spectrum changes as changes 

from 0 (Serber) through - 0 , 2 (intermediate) to - 0 . 6 (Hosenfeld) 
Exchange Y 

V ' 
o 

0^^ NeZO 

Serber 1 0 54 60 6o 

Intermediate 0,8 —0,l6 90 75 78 

Rosenfeld 0,8 -0 ,48 90 75 110 
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The calculations on the 0^^ and problems were only for a 

Serher-type exchange but, since the exchange contribution is merely 

an overall multiplicative factor of (W + M - H - B) and (W + M) in 

these respective cases, the results for any other exchange mixture 

may easily be deduced* It is clear that the same results can be 

obtained flro-m any exchange by taking different strengths. 

We notice that the strengths required, with the Serber and 

intermediate exchanges, are roughly consistent to within 15 Mev, 

The apparent inconsistency in the Rosenfeld case is not so serious 
10 

as it would at first seem. Prom Figured, we see that a slight 

increase of just 0.15 Mev of the first excited state (coming 

from representation mixing maybe) would imply a strength of only 

V_ = 80 Mev, 
0 

The actual spectra we have deduced are compared with the 

experimental ones in Figure 11 for Mg ̂  . The fitting of the 

lowest K = 0 bands of 0̂ ® and Ne^^ is good. 

The lowest K = C band of Mg^^ is given quite well for any 

exchange. The K = 2 band is consistently too low although a 

better result is obtained by using a Rosenfeld exchange instead 

of a Serber, The relative spacing of the L = 2 and 3 levels of 

the K = 2 band are then given correctly and the L = 4 level is only 

.6 Mgv from the experimental level at 6 Mev. One further piece 

of information which favours tliis model is in the calculation of 

the branching ratio from the second 2^ level in Mg^^. 
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The lifetime for an E2 transition of energy E from a level 

J' to a level J is given by'-

T = Ayp with 

i z s l . x ||jf 

75 (2j' + 1) 

where the reduced matrix element is defined in> 

(j'M' j 0^2) j Ml) =(J2I€g I J'M') 11°^ 1̂ 1^) 
\ I s I / ' ' r%t, ̂  (2J» + 1)^/2 

(2) 
and 0^ ' is the quadrupole moment operator 

(Blatt and Y/eisskopf, 1952). 

= f Z d - \ ( i ) ) 4 3^(1) , G.24b 

p sums over all protons and i sums over all particles, T. 

is the isotopic spin operator such that ^T(i^= depending 

X 

2^= j.1 dependii 

on whether the i^^ particle is a neutron or proton respectively, 

e is the charge on the proton. 

Thus the branching ratio 

r(^(zk) ̂9/(00)) / eg " bp f / (%(2)| i 0̂ 1 | »(0/) 

r(*2(zm)+*^(2m)) \ - eg / \ (g^(2)||o2|| // 
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where E^, 2^ and are the energies of the first L = 0 ( f(00) ) 

the first L = 2 ( #^(2M)), and second L = 2 ( states 

respectively. 

Putting in the experiiziental values (Batchelor et al, l$6o) 

for the branching ratio ( ~2.8) and for the energies, we deduces-

E 
. / (̂ 2̂ 11 II )% ^ 

* a n(2) !u r?a ' (9̂ x2)11 11*1(2)) 

We now calculate a value for R using the wave functions deduced 

from this model with band mixing. 

Although the second degree tensor operators Q^, of the U^-

group operators (2.2). contain the momentum operators, the symmetry 

between the momenta and the coordinates in aa oscillater well means 

that, within an oscillator well;-

Thus, is equivalent to a quadrupole mass operator within a shell, 

with sum overall particles. In a nuclaus with T =0, the contribu-

tion from the term "^(i) in 6.25 is zero and so, in this case, 

oq » 6 ^ 

OK 
Thus the ratio R for the Mg nuclajg is equivalent to 

,(2m) ii q ii $(00) )' 

( $2(2m) II q II *i(2m) )' 
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If »̂ (2̂ Vi) = 

gkkl »g(2,m) = *,$(ozm) + fl%(22m) 

then 

(*2/flx02||q||00) + (22 ii qll oo) 
e = -% 

4 I ( VPJJOSJINIIOZ) +('V«iX22|l«l|22) + •^^22|iQ)|02^ 

\ 
Elliott (1958, II (4-5)) has derived the result 

q (lsmll'h' i (l2k0|l'k) o(%ji kl' ) 
° l* (2b« + 1) o(}fl k,l) i 

x{ft + 2A + ~(l'(l' + 1) + 6 - l (l + 1))} 9((^)l[l'm) 

+ 1>z (ize+al l'e+2)((3/2x;, ; e) (p + e + 2))l/2 
+ 

x o(?^ k +2, l') e + 2, l'm) _ 6.30 

From which we nay deduce, by replacing the c-coefficients with the 

b and a-coefficients (4.5^) and with the explicit form for the b's 

(2.26) 

(O^X ' L - I k II (V)Kl) = 
kl' ) 

X 

la(7^ kl) 

I 2A + ji + (L'(lJf 1) + 6 - L(l+ l̂ )/2|(L2K0|L'k)((afi)k'l'j(afi,)lCL') 

+v(]:^ + 2|l' k+2)/372(|i + k + 2) )' X 
^ kl) 

((9\p)k'l' j(7yi) k + 2, l') 6.^1 
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For pure K-bands, gCg = = 0 and, from 6.29 and 6.31 we find 

R = 0.79. 

For the states deduced using a Berber exchange, E = 0,12 and 

for a Rosenfeld, R = 0,23. 

Thus we see that the ratio R is very sensitive to the mixing 

of bands. The change in this mixing, on going from a Berber 

exchange to a Rosenfeld, doubles the small value for R deduced in 

the Berber case,to get within .17 of the given experimental value. 

Adjustment to the nuclear Hamiltonian 

Up to now the 'realistic' potential has consisted only of two-

body operators between particles outside the 0^^ closed shell. 

Such a potential will not give any s - d spacing in 0^^ which has 

just one particle in the ds-shell. Introducing a one body poten-

tial of the form, 

X 6.33 

^ 17 
into the hamiltonian, the correct order of spacing in 0 can be 

achieved by putting x = + .2 Mev. Here L is the orbital 

"th 

angular mementum operator for the i — particle. 

We now ask; fhat effect does such a potential have in the 

k = 8 particle case? 
Since ^ L ̂  is a spherically symmetric operator, the general 

i ^ 

method of Chapter 5 can be used to calculate the matrix representa-

tion of the potential by the states . 
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The calculation of the required elements of the matrix of X J L ? 

i ^ 

in the intrinsic frame follows the usual procedure. First, the 

single particle elements must be determined. Secondly, the 

fractional parentage coefficients of the reduction of the many 

particle state by one particle must be found. This latter 

problem is solved in a similar way to the reduction of the many 

particle states by two particles (See Appendix 2) . The former 

problem entaii finding matrix elements of the form, 

(^c(20^a")| j^((20)e'^v)) 6^4 

where them's are single particle states with two oscillator 

quanta. (The labelling is really trivial for these states from 

Now /((20)eAv) =e((20)£av) /((20)400) 

= e((20)ey\vv^ 6.35 

also p%(20)400):=. /it) $((20)000) + ystf *((20)ce0) 

9/1/5 + /2/5 *2 

(4.11 and 4.12) 

Thus (/((20)eAv)| |/((20)E'/J v')} 

= (/l75 + y275r*2 i % *((20)g4v) l^b((20)e'/jv*)|* 

h/i/) * +4/2/% fg) iljbl 

In the k = 8 particle problem, the only non-zero orbital matrix 

elements required are:-
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(/o IL̂ I Xo) = 4 

(fo ^^2) = -2 

^lg) = -2 

(/̂ 3_|l̂ i = +6 lsi§ 

In this case, the only configurational states which will couple 

to the leading state {̂Qh-) are: 

We see that only states with AE<6 will couple to #(84) by this 

operator. 

v 2 
A similar expression to that in 6.18. with V =Z_|L. ̂  yields:-

c ^ X 

^ 1 ^ 
= 40 

h'2 ^ = 0 

h'3 : = 0.143 

= = 0.005 

0 

^6 = = 0.003 

^'7 ' 
= 0 

^ 8 : 
= -0.004 

h'5 = : 0 ... 6,2(0 

Neglecting band mixing, the increase in the energy of the first 

excited state above the ground state is given by;-

IF'" 
i 
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T/hich, from 6.18 and 6.4O, is found to give; 

- X ( .330) = - .066 Mev. 

Thus, this change in the potential tends to decrease the 

energy of the first excited state above the ground state although 

by a negligible amount. Small changes are found in the other spacings also. 

In the next chapter, we consider the accuracy of the 

assumption concerning the smallness of the representation mixing. 
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e A V Configurational States 
Operator 
r q p 

8 0 0 (<) 0 0 0 

2 1 2 ,/i76 + 2Ul,) 1 0 0 2 

-2 Vl/6 |/2(^y_2) + 2w!i) i 2 0 2 

-4 2 4 (&) 0 0 4 

0 2 0 4 

-4 (&) 4 0 4 

Table 10. States of the (40) representation k=2 

(/(40)j ezpf-r^g/a' .)) 
Shorthand 
Notation 

(<) p(4& + 162^+ 60u^+ 56z^+ 41) a 

(<%) 

A 2 
y^p ( 2 (% — 4^ — 1 ) 

v/̂ p ( 2 G! —' 4^ — 1 ) 

2p( Aa+ 4a + 7 ) 

4/2/) 

w 

( 4 ) 2p( 4a^+ 4a + 7 ) u 

w!s) 

9p 

9p 

y 

y 

6p p 

y'g 3P y2g 

Table 11. Two-body matrix elements, for k = 2 

'/*4(2 2)11/2; 

/v 
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f A 

• -

Configurational States (ev) 
Operator 
r q p 

12 0 0 0 0 0 

6 1 2 0 0 2 

-2 2 0 2 

0 2 4 0 0 4 

0 ./1/30 2 0 4 

^<-41.^4 J*'i(4^^4_^4'J\ 

-4 Jih \(4/j . 2 4 0 4 

Table 12, States of the (60) representation, k = 3 

<I>A.€V) 

(<) 3a 

H'u 

2/t^ 

2jt ̂  

vtw 

/ t y 

/ty 
1 

V = V 4-'. exp 
c o K j 

2 

La 

Table 13. Matrix elements for k = 3. 
(See Table 11 for definition of Greek symbols) 
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(Â i) e 2A 

(80) 16 0 
13 1 
10 2 
7 3 
4 4 
+ 

(42) 10 2 

7 1 3 
4 0 2 4 
+ 

(04) 4 
+ 

4 

(20) 4 
+ 

Table 14« Classification of states with orbital symmetry [4] 

showing only those which couple to ̂ (8o) by the Gaussian Potential. 

i 
e 2A V Configurational states 

Operator 
r q p 

16 0 0 (/) 0 0 0 0 

10 2 2 / V 7 | ( A J •» 
0 0 +i 

0 0 2 

-2 yi/7[((l(V J + )1 
0 — c 0 ""X -J 

2 0 2 

4 4 4 yi/70 0 0 4 

0 yi/35 * 2 0 4 

-4 yi/70 |/6(<rf j+4;3(/ / / J+4(A)I 
0 0 —X —c —i. 

4 0 4 

Table I5. States of the (80) representation, k = 4« 
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/.(fp) (/(80)|7'/V |(2f. (fi/)) 
' c 0 1 

65 

(%) <16 00 

( % ) 
6,8 

V 6w 

613 

J 6y 

JVP 

G/Tf 

v 
c 

.r • 
i - r . 

13 

L a 

Table 16. Matrix elements for k = 4» 
(See Table 11 for definition of Greek symbols) 
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< 9 iXfu) e 2 A 

148 (84) 20 4 
17 3 5 
14 2 4 6 
11 1 3 5 7 
8 0 2 4 6 8 
+ 

109 (73) 17 3 
14 2 4 
11 1 3 5 
8 0 2 4 6 
+ 

106 (46) 14 6 
11 5 7 
8 4 6 8 
+ 

100 (81) 17 1 

14 0 2 
11 1 3 
8 2 4 
+ 

88 (54) 14 4 
11 3 5 
8 2 4 6 
+ 

88 (08) 8 8 (08) 
+ 

76 2i(62) 14 2 
11 1 3 
8 0 2 4 
+ 

73 (35) 11 5 
8 4 6 
+ 

58 (43) 11 3 
8 2 4 
+ 

49 2i(5l) 11 1 
8 0 2 
+ 

46 21(24) 8 
4-

4 

34 (32) 8 2 
+ 

28 2z(40) 8 0 

Table 17. Classification of states with orbital symmetry [44]. 

-127-



Table 18. Definition of configurational states for k = 8, [f] = p̂ 4]. 

il) = 

|3 ) . 

I 5) = 

|7) = 

110) = 

111) = 

I13) = 

115) = 

117). ({) 

|19) = 

I20) = 

|22) = 

(£T-a.,2S+l) = (1,1) 

12). ((/!,) 

14) . ( / % , ) ( / , ) 

I«) - (<) 

18) . ( / / , ) ( / j 
o —1 +x 

/3,.\//3 

(/) u\/j 

w k ' ) (<1) 

/4\ 

112). (</,){<,) 

114) . 

116) . 

ii8) . 

ui) 

123) - (<) •') 

-128-



Table 19. 

States (84)f A ) in terms of oonfigurational states 

€ f\ V > p. (84,e A v)4. Gp) 
/ i X 

20 2 4 ID 
0 |2) 

14 3 6 76/7 |3)-yi/7 |4) 
2 /8/35 15)4/4/35 |6)Vl/l05 |7)-/l/35 19)4̂ 1/21110) 

+/2/35|l6)+yi6/35 il7)-y2/35|l8) 
-2 /2/35 111)4.... 

2 2 -yi/26| 5)-yi/52 l6)-yi/l56 (7) V4/13 |9) V5/39 |l0) 
4/1/26 116)4/1/52 {17)4/1/104|l8)-y45/l04 |19) 

-2 Vl/26 111)4.... 
1 2 /4/19515) V3/13016)4/9/130 {7)4/20/39 18)4/8/19519) 

4/2/13 |l0)4.yi/l95| 16) Vl/39 |l7)4.y3/260|l8)-y25/l56|l9) 
-2 yi/195111)4.... 

8 4 8 73/35 112)4/24/35 121)4/8/35 |20) 
4 y3/245 |13) 4/3/490 |14)4.... 
0 /3/24 50115)4.... 

3 4 yi/91113)4/1/182114)+... 

0 y3/910115)4.... 
2 4 /2/637 |l3)-/25/2548114)4.... 

0 -y 1/7644115)4.... 
1 0 -y27/2860 115)4.... 
0 0 yi28/l0725 115)4.... 
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Table 20. 

•Matrix elements for k = 8. 

Coupling to ^(84). 

(^ (84 ) |V^ | / . ( fy ) )g /V^ P (^X84) l^cl^ P 

8 
a 2 a 1 

2 a 

ll) 72 288 900 936 630 40 160 340 360 

I2) 4 y r 8 / r 12/6" 

|3) 8 / ^ 8/6" 14/6-

|4) 42 -12 6 -30 -60 

|5) 4/r 8/6" 12/6" 

l6) -4/r 

I ? ) 18 -36 -18 10 20 

!b) V T 8 / ^ 1 4 / ^ 

|9) 8/3- 8/3 8/3-

I 10) 8/5 16/5 

1 11) 6/6 

I 12) 9/6" 

| 1 3 ) 6/6 

1 14) 6/r 

! 15) 9/6" 

z 
o i<j 

V = V f-ri exp 

2 

l i l 
2 
a 

P = 

) = contribution from Symmetric 

) " " Antisymmetric 

pairs of particles. 
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Table 21. 

Expansion of coefficients in terms of a, divided into 

the contribution from the symmetric and antisymmetric 

pairs of particles. Units of(-V p)E"Iev. 
o 

h. Symmetic 
— 

Antisymmetric 
8 
a 6 a 

2 
a 1 

8 
a. 

6 
a 

2 
a 

72 288 900 936 630 40 160 340 360 

2 4 6 

3/14 15/7 39/14 15/14 15/7 

1/140 1 /14 19/140 1/28 1/14 

N 
1/280 

-23 
208 

-7 
104 

-23 
208. 

ill 
208 

-15 
104 

-1 /208 

>>8 131 
1560 

7 
156 

51_ 
520 

11 
312 

11 
156 

1/520 
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Table 22a. 

0< 0.5 0.7 0.8 1.0 1.2 1.4 

i ( h +h^+hg) 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 

i(h^+28h +hg+10hy+hg-

22hg) 

0.0738 0.0783 0.0800 0.0831 0.0834 0.0790 

i(h2+6h^+72h-24hg-

48hg) 

0.7912 0.8144 0.7775 0.5275 -0.0876 -1.2533 

-(3hy+5hg) 0.0048 0.0048 0.0048 0.0048 0.0048 0.0048 

(3hg+30h +5hg+10hg) 0.0640 0.08%) 0.1033 0.1634 0.2680 0.4355 

i(h +28h +h +10h + 
4 D O 1 

hg+lShg) 

0.1123 0.1165 0.1185 0.1216 0.1219 0.1174 

(h 6h^+7 2h ̂+16h g+ 

32hg) 

2.7747 3.2359 3.7728 4.1551 5.2198 6.8027 

i(h^+12h +hg-12h^+ 

^8" ̂ ^9^ 

0.1116 0.1158 0.1178 0.1209 0.1212 0.1167 

i(2h2-h2+10h^+376h + 

22h,+220h^+10hq+436h_) 
6 / o y 

5.9038 6.7696 7.3770 9.0424 11.4765 14.9183 

(h^+4h2+8h^+48h^+ 

576h +208hg+416h^) 

1015+ 1446+ 1802+ 2976+ 5213+ 9425+ 

0.0844 0.7226 0.7653 O.2854 0.6622 0.6414 

Evaluation of the symmetric contribution to the functions 

of h^ in 6.19. Units of(-V^p)Mev. 
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Table 22b. 

a 0 . 5 0 .7 0 . 8 1 .0 1 . 2 1 . 4 
i(h^+h^+hg) 0 0 0 0 0 0 

—|(h +28h +h +10h + 
4 y 0 I 

hg-22hj) 

0.0003 0.0007 0 .0010 0.0017 0.0028 0 .0044 

-24hg-

48hg) 

0.1236 0 .2682 0 .3713 0.6593 1.0887 I .7058 

-(3h^+5hg) 0 0 0 0 0 0 

-(3hg+30hy+5hg+10hg) 0.0225 0.0489 0 .0677 0.1202 0 .1985 0 .3110 

-i(h^+28h^+hg+10h^+ 

hg+lShg) 

0.0003 0.0007 0.001© 0.0017 0.0028 0 .0044 

-&(hyf6h^+72h^+16hg+ 

32hg) 

0.5203 1.1285 1.5627 2.7747 4.5816 7.1788 

-•3(h^+12h^+hg-12h^+ 0.0003 0.0007 0.0010 0.0017 0.0028 0 .0044 

-•J-( 2h2-h^+10h^+37 6h^+ 

22hg+220h +10hg+136hg) 

0 . 5 4 7 9 I . I 8 8 5 1 . 6 4 5 9 2.9224 4.8255 7 . 5 6 0 8 

(h^4.4hg+8h +48h + 

576h +208hg+416hg) 

104+ 300+ 448+ 952+ 1960+ 3948+ 

0.6920 0.6609 0 .0863 O.857I 0 .4513 O.538O 

Evaluation of the antisymmetric contribution to the functions 

of h. in 6.19. Units of (-V p)Mev. 
1 o 
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Table 23» g j (841 84 LIQC) ( r e l a t i v e to (84 184 OOO) ) 

E' 
0 

2 

K 

0.7457 -0.0615 

-0.0330 1.5837 

l = 3 

k' 
0 

x E 0 

2 .2608 
k 
0 

2 

4 

ic 0 4 

2.4856 - 0 . 2 3 8 3 0 

-0.1278 3.1634 0.0208 

0 -0.0312 5.7493 

Table 24. §^(84 |84 LKK') ( r e l a t i v e to (84|84 OOO) ) 

l = 2 

0 

0.3964 - 0 . 0 7 6 9 

- 0 . 0 2 4 8 0 .1184 

l = 3 

0 

0.5157 

k 
0 

2 

4 

1j = 4 

,\k 0 4 

1.3213 -0.2979 0 

-0.0962 1.0455 -0.1142 

0 -0 .0260 0.2097 

Table 25. ^ ( 8 4 | 8 4 LEE') ( r e l a t i v e to g ' ( 8 4 | 8 4 OOO) ) 

L _ 2 

\ k 0 

0.1313 -0.0679 

-0.0360 0.0580 

•l a 3 

,.vk 0 

0.0505 
E 
0 

2 

4 

\ e 0 4 

0.3181 -0.1431 -0.0452 

- 0 . 0 7 8 5 0 .1878 0.0032 

-0.0102 - 0 . 0 3 0 6 0 .0836 

-134-



Figure 1 

Ratio o f the e n e r g i e s E(04M) and E(02M) f o r k = 2,3&4« 

Experimental v a l u e s f o r 0^^ and Ee^^ are i n d i c a t e d t y 
the broken l i n e s . 

E(04M) 
E(02M) 

(k . 4 ) 3 -

(k . 3 ) 

(k . 2 ) 

oC 
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Figure 2 

Approximations to the 0^^ spectrum. (Un i t s of V /40 Mev ) 
o 

/ 

/ 
/ 

/ 
/ 
x — 

\ 
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Figure 3 

20 
Approximations to the Ne spectrum. (Uni t s of V^/40 Mev ) 

0 

r 
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/ 

/ 

/ 

/ 
/ 

/ 

/ 

/ 

/ 

\ 
\\ 

\ 

0 6 

0 4 

\ \ 
\ . 0 2 

\ 

0 0 

Ae = 0 . 0&6 = 0,6&12 K L 
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Figure 4 

24 
Approximations to the Mg spectrum - Serber- type exchange. 

(Units o f V^/40 Mev ) 

V / 4 0 Mev 
o 

0 

\ 

\ 

\ 
\ 

\ 

\\ 

\\ 
\ 

\ 
\ \ 

\ \ 
\ ' 

\ 
\ 

4 4 

2 4 

0 4 
2 3 

\ 
\ \ — — 2 2 

0 2 

0 0 

Ae = 0 = 0&6 = 0,6&12 K L 
no K-band plus K-band 
mixing mixing 
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Figure 5 

Approximations to the Mg^^ spectrum - Rosenfe ld - type 

V / 4 0 Mev 
o 

6 

4 4 

exchange, 

(Units o f V^/40 Mev ) 

\ 

\ 
\ 
\ 
\ 
\ 

2 4 

\ \ 
x 

4 4 

2 4 

\ \ _ _ _ _ _ _ _ _ 2 3 
' - : : : : 0 4 

^ 2 2 

\ \ 

\ - 0 2 
\ 

0 4- -- 0 0 

Ae = 0 = 0&6 = 0,6&12 IC L 
no K-band plus K-band 

mixing mixing 
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Figure 6 

Energy l e v e l s f o r 0^^. (Units o f V / 4 0 Mev ) 

(a) Theory: shown as a v a r i a t i o n wi th a f o r a 
Berber exchange. 

(b) Experiment! shown f o r vary ing 7^. 

(Azjenberg-Selove and L a u r i t s e n , 1959 . ) 

V / 4 0 Mev 
0 

40 60 
-——r 

80 
.0 0 

Y 
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figure 7 

20 
Energy l e v e l s f o r Ne • (Units o f 7 / 4 0 Mev ) 

(a) Theory: shown as a v a r i a t i o n \vith a f o r a 
Serber exchange. 

("b) Experiment* shown f o r v a r y i n g 

(Az jenherg-Selove and L a u r i t s e n , 1 9 5 9 . ) 

5 -,v / 4 0 Mev 
o' 

40 

a-* 

60 
v 

0 2 

0 0 
80 

—1z|.1— 



Figure 8 

Energy l e v e l s f o r Mg (Units o f V^/40 Mev ) 

(a) Theory: shown as a v a r i a t i o n w i t h a f o r a 
Serher exchange» 

(Id) Experiment: shown f o r vary ing V • (Endt and B r a a ^ s , 1957) 
e l ° 

6 -

I - -

0 . 

4 4 
V / 4 0 Mev 

o 

40 60 

0 2 

0 0 

80 
v 
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Fiffltre 9 

Energy l e v e l s f o r llg ( u n i t s o f 7 ^ / 4 0 Mev ) 

(a) Theory8 shown as a v a r i a t i o n w i th a f o r a# 
Intermediate ezohange. 

(b) Experiment* shown f o r vary ing V • (Endt and Braa)6is, 1957) 

V / 4 0 Mev 

50 

(h) 

r 

70 

K L 

2 3 

I 

0 2 

0 0 

9 0 

V 
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t̂ jg-ure 10 

Energy l e v e l s f # r Mg^^. (Units of V^/40 Mev ) 

(a) Theoryt shown as a v a r i a t i o n wi th a f o r a 
Rosenfe ld exchange. 

(b) Experiment* shown f o r varying V . (Endt and Braa^s , 1957) 

V y w Mev K L 

4 4 

0 . 5 1 1.2 80 
a-> 

- h -

100 

V ^ 

(h) 

120 

K L 

2 3 
2 2 
0 4 

0 2 

0 0 
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Figure 11 

Energy l e v e l s f o r f o r three exchange mix tures s -
Serber ( s ) , Intermediate ( l ) and E o s e n f e l d (r)« 
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Chapter 7 

Representation Mixing For The Eight F a r t i o l e Problem 

In t h i s chapter w begin t o d i scuss the magnitude 

and e f f e c t of the mixing of other representat ions Ti/ith the 

(84) representat ion. 

The mixing of d i f f e r e n t 1-bands, from d i f f erent 

representat ions , i s expected t o be small i n the same m y 

that w have seen the mixing of bands within the (84 ) -

r epr e sent at ion t o be small. Thus, when considering the 

mixing of s t a t e s of d i f f erent representat ions into the 

lowes t - ly ing s t a t e s of (Tft) = (84 ) , we s h a l l here, as a 

f i r s t s t e p , only consider these representat ions containing 

K = 0 bands -with even L. Erom Table 17 and 4 .9 these 

are seen to be 

(84), (46), (08), 2%(62), (24), 2%(40) 2̂ 1 

From the general remarks on the Gasimir operator 

i n Chapter 6 , -we may suppose that the nejct most 

important representat ion t o (84) i s ihS) — t h i s having the 

next highest value for ^ (Table 17) 

The mixing of the (46)-representat ion 

The leading i n t r i n s i c s t a t e of t h e (46 ) -r epr e s ent at ion 
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I I l 

m a ^ 
14 v _ li_l.^ 14 

4^ i i 
8 lj: 8 

2 2 

e tc . e t c . 

In the diagrams, the horizontal l i n e s represent 

the d i f ferent E-valu.es, at a distance £se sf S apart, v/ith 

the maximum 6 (= 20) highest . 

Diagram 1 indicates t he steps required t o build 

up g(84 |46, l o o ) , The unbroken arrowed l i n e represents 

the coupling of the s ta te § ( ( 4 6 ) , e v) t o §(84) the 

two body p o t e n t i a l . The broken arrowed l i n e represents 

must be orthogonal t o § ^ ( ( 8 4 ) , 14, 3> 6 ) . We f ind t h e n , 

from Table 19, 

14, 3 , 6) = 

The gmatr ix element^ which couple the K = 0 bands of the 

(84) and (46) representat ions ,are of the form I — 

g ( 8 ^ 4 6 , L 0 0 ) and g(46 |a4 , L 0 O) 2 .2 . 

We i l l u s t r a t e the d i f ference between these two elements 

with the help of the diagrams shown below. 

Diagram 1 Diagram 2 

JL i4jD (84) (46) E 
20 , 20 
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the equivalent operator E((46)e/^v) •vjhere> 

e((ij6^av) #(46) = $((46)e/\.v) 

Diagram 2 indicates the steps required t o b u i l d up 

g(46{84, L O O ) . 

Remembering that f o r each e-value there laay be several A 

& u numbers, i t can be seen that the g(84| 46 L 0 o)-

element i s much easier t o build up than the g(46| 84 L 0 O). 

The g(46| 84, L 0 O) - elements can be deduced 

exact ly from the ^(84|46, L 0 o) using the s e t of 

equations in 5 .24 , however, t o estimate the (46 ) representation 

mixing,only the g ( 8 4 j ^ L 0 O) and ^(84j 46 L 2 2) o f f 

diagonal elements have been calculated exac t ly . The 

elements ^(46|84 L 0 O) and g(46j 84 L 2 2) are estimated 

using the r e l a t i o n i n 5 .26. We take as our j u s t i f i c a t i o n 

for doing t h i s the smallness of the overla,ps i n the (84) 

representation for L = 0 , 2 & 4 and the smallness of the 

terms g(84l 46 L K K' )^ ^ g., compared m t h g'(84l 46 L K K). 

This l a t t e r r e s u l t ar i ses frora the fac t that ^(8ijj 46 L K K' )^ ^ 

only comes from the coupling iSf the s t a t e s § ( ( 4 6 ) , 8/^v) t o 

§(84) by the p o t e n t i a l , -whereas g(84| 40 L K K) comes from 

the coupling of s t a t e s §( (40) 14/y) and §((40) 8/^v) t o 

^(84}. The smallness of the matrix elements i n the former 
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oase together vd-th the small monaalis at ion o o e f f i o i e n t s of 

the operators E((46^, compared m t h t h e same 

funct ions in the l a t t e r case , j u s t i f y over assumptions. 

We note here t h a t , f o r the representat ions (7^) such that 

(20-2>v-jx) = 1 2 , the elements 1, K E' ^ g., are 

i d e n t i c a l l y zero. For these oases then, there can be no 

mixing of bands with the mixing of representat ions . For 

the representat ion ()\p,) such that (20-2>,-jj.) = 6 , e . g . 

(7\IJ,) = (46 ) , the mixing of bands v / i l l be small and, as 

we have a l r e a ^ s ta ted , may be igiiored. 

The conf igurat ional s t a t e s w i t h e * 14 and 8 , whioh 

w i l l couple t o 5(84) by a two b o ^ p o t e n t i a l , have been 

deduced i n the l a s t Chapter. The i n t r i n s i c s t a t e s of the 

(46) representat ion which contain these conf igurat iona l 

s t a t e s are given in Table 26. 

We f i n d t h a t , for a = 1 , 

xv 
^ ( 8 4 1 46 LOO) = ,/677^ 1 .594 + '048 L(L + l ) l ( - ^ I m v . ) 

w 
g , ( 8 4 | 4 6 LOO) =V6/Vf2 .571 ] ( — Mev. ) 7 . 4 b 
^ 40 

W 
gg(84l 46 L22) = 11.223 + .039 L(L + 1 ) ] mev. ) 7 . 5 a 

I V 
^ ( 8 4 | 4 6 122) = V ^ [ 2 . 2 8 6 ] Mev.) 7 .5b 
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The elements ^(46(84 LOO) may be calculated from 7 . 4 for 

L = 0 , 2 and 4 using 5.26 -with 

a^(84 00) = 5 A 1 . 1 3 a^(46 OO) = 1 0 / 3 . 7 . 1 1 

a^(84 02) = 19/11.13 a^(46 02) = 5 . 5 . 1 7 / 3 . 7 . 1 1 . 1 3 

a^(84 04) = 3 .807/8 .11 .13 .17 a^(46 04) = 149 . 5 / 7 . 8 . 1 1 . 3 ^ 

Similarly we may deduce the element 'g(4^ 84 L22) from 

7 .5 with 

â (84 22) = 137/̂ .9.11.13 ̂  â (46 22) = 5.5.17/̂ .;;.7.11.13 

â (84 23) 23) = 

â (84 24) =̂2ZS/̂-S'.n.i7,̂{kS 24) = 2.5/¥.7.11. 

The exact fczra of the element g(46(46 IiKIC) should be 

deduced in the same way as the g(84j84 lEC) of the l a s t 

chapter. However, t o estimate the order of ma#iitude of 

the representation mixing, i t i s only necessary to deduce 

the order of magnitude of the spacings between the terms 

g(46(46 LIS) and g(84|84 IZZ). 

In building up g(8ij|84 li^K), we saw that the 

i n t r i n s i c s t a t e s , d i f f e r i n g in t h e i r e -va lues by more than 

12 from the leading s t a t e , § ( 8 4 ) , contribute a neg l i g ib l e 

amount to the energy. The s t a t e s d i f f er ing in the ir 

e -va lues by 6 from that of §(84) contribute only a small 
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amount of energy compared m t h the Ae = 0 terms. Of the 

i^ates with Ae = 6 , the most important one had maximum v. 

Thus, in est imating 'g(4^ 46 OOO), the only i n t r i n s i c s t a t e s 

•which have been considered are! 

a((46) 14, J, 6) 

3 ((46) 14, 3, 2) 

§((46) 14, 3,-2) 

a ((46) 8, 4, 8) jLJl 

The conf igurat iona l s t a t e s of thes6 i n t r i n s i c s t a t e s , vAiich 

couple t o $(46) v i a a twD body p o t e n t i a l , are included in 

Table 26. The non-zero matrix elements, 

( §^(ev) i § ( 4 6 ) ) , are l i s t e d in Table 27. 

We f i n d the d i f f e r e n c e s , 

v 
Dg = 3(46|46 000) - g(84(84 000) = 8-30 ( j ^ Mev.) 

for the Serber-^iype exchange 

v 
= g(46( 46000) - g (84 |84 000) = 6*04 ("jj^Mev.) 

for the Rosenfeld-type exchange 7 . 7 

I n c i d e n t a l l y , s ince the 000) i s the 

f i r s t approximation t o the lowest s t a t e of it he (]\p) 

representat ion , 7 .7 shows that the (84) representat ion i s 
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indeed lomjr than the (46) i a energy. This then p a r t i a l l y 

j u s t i f i e s our assumption at the beginning of Chapter 6. 

In the es t imat ion of ihe mixing of t h e other s t a t e s 

'J'((46)inivl}, with K = 0 and 2 we have assumodl-

(̂46| 46 liKE) - ̂(84l 84 UZ) = Dg ^ 

Thus, we have assumed that the error in the spacing of 

l e v e l s i n the (46) representat ion i s small compared with the 

spacing of the (84) and (46) representat ion ( i . e . the 

d i f f erence i n energy i n the stat® ^((84)000) and "̂((46 )000)), 

An est imation of the d i f ference! 

f (46|46 200) - 'g(84|84 200) = D' 

us ing only the s t a t e s in 7 . 6 , y i e l d s the r e s u l t s ! -

= 8*11 ( ^ Mev.) for the Serber-type exchange 

7 
and = 5*88 ( ^ Mev.) f o r Rosenfold-type exchange 7 . 8 

Thsse f i g u r e s must be taken as an underestimation of the 

true d i f ferences and so we may conclude that the use of the 

i n 7 .7 , for a l l s p a c i n g s , i a probably as accurate as we 

require for these rather qua l i ta t ive arguments,. 

On s e t t i n g up the various matrices 

g(84) 84 LEE) g(46| 84 liOC) 

^(84 |46 LKK) g(46| 46 HOC) 7 . 9 
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and diagonalxsing, -vse deduce the r e s u l t s shown in Figures 

12a and 13a for the Berber and Eosenfeld exchanges. In 

these f i g u r e s -we are only comparing the energy spacings 

not the absolute energ ies . The amount of (84) 

representat ion s t a t e s in the lowest e i g e n s t a t e s i s indicated 

as a percentage. 

We see that the mixing of the represent s t ions i s 

small and that t h e spectrumd;i l l possesses the main 

fea tures of the spectrum of t h e (84) representat ion . 

Discussion on representat ion mixing 

Since the of the other representat ions i n 

7 . 1 are even smaller than might expect the 

percentage of mixing of these representat ions t o be very 

smal l . 

The s l i g h t changes i n the spectrum,from that of 

the (84) representation,due t o the (46) representat ion,have 

very l i t t l e s i g n i f i c a n c e u n t i l the e f f e c t of the mixing of 

other representat ions has been considered. 

We n o t i c e that the energy of the f i r s t exc i t ed 

s t a t e of the (84) representat ion i s decreased s l i g h t l y 

i n the mixing of the (46) representat ion . Referr ing back 

t o Figures 8 to 10, t h i s implies that a larger value of 

must be chosen t o f i t the experimental value . Ai est imate 

-153-



of the e f f e c t of the (08) representat ion mixing has been 

made, hovrever, in the same vvay as that for the (46) vd-th 

a = 1 (Figures I2b and IJb ) . We see that i n t h i s case the 

f i r s t exc i t ed s t a t e of the (84) representat ion i s increased 

i n energy. Both the (46) and (08) representa t ions increase 

the K = 0 and K = 2 band spacing - a p leas ing r e s u l t s ince 

t h i s spacing m s found to be too small i n the (84) 

representat ion . 

14 i s perhaps un^vise, at t h i s s t a t e , t o canpare 

these few r e s u l t s of representat ion mixing d i r e c t l y v/ith 

experiment u n t i l the e f f e c t s of other representat ions has 

been examined. We no t i ce t h a t , although i s smaller 

than e i ther ^"^2/46 ^ ^ l ) o 8 ' f a c t that there are 

two (62) representat ions may have a not i ceab le e f f e c t . 

The representat ions -with odd K, which vvere not 

included i n 7 . 1 , must a l so be examined, although the 

smallness of the mixing of bands ind icates that they td-ll 

again have l i t t l e e f f e c t on mixing vn.th the (84) representat ion . 
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Table 26. 

S t a t e s o f the (46) r e p r e s e n t a t i o n i n terms of 
c o n f i g u r a t i o n a l s t a t e s whimh couple to @ (84) and f (46) w i th 
the Gaussian p o t e n t i a l . 

E I, "4" (46 ) 2^ (e v) 

14 3 6 / 1 / 7 13)4 /6 /7 )4) 

2 / 1 / I O 5 [2| 5)+/2 | 6 ) + / ^ | 7 ) + | l 6 ) + 2 / 2 |17)+6|18) 

+ 3 / ^ | 9 ) - / 3 0 |10)] 

- 2 / l / l 0 5 [ | l l ) + . . . j 

8 4 8 / l / 4 2 [ ^ / r | 2 0 ) - / ^ | 2 l ) _ 4 |12)] 

4 1 / 2 1 [ - 2 / 3 | l 4 ) - 2 / 6 1 1 3 ) + . . . j 

0 (1 /7 ) / l / l 5 1^2115)+. . . ] 

3 4 (1 /3 V l / 7 7 [ - 2 | 1 4 ) - 2 1 1 3 ) + . . . ] 

0 y i / 1 1 5 5 [ - 2 j l 5 ) + . . . J 

2 4 ( l / 1 0 5 ) / l / l l [5S/2 | l 4 ) - 8 1 1 3 ) + . . .j 

0 ( l / 3 5 ) / l / 3 3 [ l 7 y 2 | l 5 ) + . . { | 
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Table 21. 

Matrix elements f o r k = 8. 

Coupling to # ( 4 6 ) . 

B ( f ( 4 6 ) | V ' 
c 

( ^ 4 6 ) ) 7 ^ 1 ^ ( g i , ) ) y 7 ^ p 

8 
a 

6 
a / 2 

a 1 
8 
a 

6 
a 

2 
a 

3) ; i 7 f 72 288 846 826 561 20 160 310 300 

4) 72 288 796 832 559 40 160 340 360 

5) / i T f 8 8 14 

6) / 2 / 7 9 6 6 5 10 

7) 9 6 12 5 10 

8) 24 12 

9) 12 12 12 

10) - / 3 ^ 7 4 8 

11) 9 

12) /Ui 130 - 8 0 49 -45 -105 

16) ./iT?" 4 8 12 

17) 8 8 8 

18) /TTi 24 50 73 

19) - / i T B 22 11 

20) 8 8 14 

21) V 2 / 7 29 2 35 -15 - 3 0 

'"g" ( I 
8 / A 

V . 7 ezp 
° ° i T j 

- r . 
10 

k a 

8 6 
b \ 8,g + s-g oc + 

p = 
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Mixing of r e p r e s e n t a t i o n s ? -

V /4O Mev 
Figure 12 . 

2 " 

1 - -

0 4 

2 3 

2 2 

0 2 

- f o r a Berber exchange. (a=l) 

Co.) Ct'J 

q 4 0 0 

e l (r4) (84) + (46) (84) + (46)+(08) 

Figure 13" -for a Rosenfe ld exchange. (a=l) 

7 /4O Mev 
o 

c-) 

2 3 . 

0 4" 

2 2 

0 2 -

0 0 0 
E L (84) (84) + (46) (84) + (46) + (08) 
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Summary and Conclusions 

The method developed here, for c a l c u l a t i n g the 

spectra of l i g h t nuc l e i , i s s u f f i c i e n t l y streamlined to make 

a number ef such c a l c u l a t i o n s poss ib l e f o r a large number of 

p a r t i c l e s i n the s h e l l . 

Taking only the s t a t e s from the leading SU, 

representat ion (A/u), the only labour i n the ca lcu la t ions 

came i n the expansion of the i n t r i n s i c s t a t e s §((Aju)^l'), 

in terms of configurat ional s t a t e s , and the coupling of the 

conf igurat ional s ta te s to t(Aju) by the p o t e n t i a l . Because 

of the s i n g l e form of the i n t r i n s i c s t a t e s , bo th of these 

ca lcu la t ions are straigh-^forward but, sometimes, a l i t t l e 

tedious . 

Analysis has Aown that , in the c a l c u l a t i o n s without 

representat ion mixing, the i n t r i n s i c s t a t e s of the leading 

representat ion with Ae = 0 give a spectrum i n which the 

s tatesvdth d i f f e r e n t K-labels are separated i n energy but 

where the s t a t e s with the same K-label are degenerate . A 

ro ta t iona l spectrum w i t h i n a K-band i s formed by the i n c l u s i o n 

of the Ae = 6 i n t r i n s i c s t a t e s and the d i f f e r e n c e s from 

ro ta t iona l spectra come from the addit ion of the Ae = 12 

s t a t e s . We have seen that the contribution from the 

Ae = 12 s t a t e s grows r e l a t i v e l y smaller as p a r t i c l e s are 

added i n t o the s h e l l - thus producing the wel l known r o t a t i o n a l 
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f ea tures away from closed s h e l l s . The comparison of our 

r e s u l t s w i t h experiment for the spectra of 0^^, and 

Mg ,̂ using only the leading Su^ representat ion , depends 

on the choice of the range and strength of the central f orce . 

The r e s u l t s with the values of the parameters chosen in 

Chapter 6 are encouraging. In general , the E = 0 bands 

can be f i t t e d c lose to the experimental ones , for any of 

t±ie exchanges we have used, but the spacing between the 

K = 0 and K = 2 bands i n i s too small, 

the l e a s t error coming ¥/ith a Rosenfeld exchange. The 

spacing of the f i r s t and second s t a t e s in the K = 2 band 

i s found to be almost correct f o r any exchange. 

The s trengths chosen in each c a s e are roughly 

cons i s tent f o r Serber and Intermediate exchanges but the 

strength, v/iiii a Rosenfeld exchange, for Mg^ i s perhaps 

too large compared with those for 0^? and Ne^. 

24 

With the small band mixing in ihe Mg case , 

deduced with Rosenfeld exchange, and the correct energy 

spacings, w e are able to c a lcu la te the branching r a t i o of 

the E2 t rans i t i ons from the second 2^ s t a t e to be very 

c lose t o the experimental value. 
2 

The introduct ion of "the term SL. in to the 

Hamiltonian was found to have l i t t l e e f f e c t on the 

spectra. 
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The i n i t i a l c a l c u l a t i o n s on representat ion mixing 

indicate that these are probably small. The (46) and (08) 

representat ions change the spectrum, from t h a t of the 

(84-)-representation, only s l i g h t l y and the increases in the 

K = 0 and R = 2 spacing are a l s o small. The actual e f f e c t 

of the representat ions with odd A and/or /i w i l l have 

to be examined although, s ince these do n o t contain K = 0 

bands w i t h even L, the changes in the lowes t s t a t e s from 

that of the (84-)-representation i s expected to be small. 

I t i s d i f f i c u l t to see, in view of t h i s , how any of these 

representat ions alone can increase the K = 0 and K = 2 

band spacing appreciably. 

'tTork i s now i n progress at Southampton on the 

introduct ion of a spin-orbi t force i n t o the p o t e n t i a l so 

that complete ca laulat ions on a l l nuc le i i n the ds - she l l 

may be made. 
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appendix 1 

Two Body lAatrxx Elements of the Gaussian Potent ia l 

The spherical harmonic o sc i l l a tor equation in three 

dimensions, for a s ingle p a r t i c l e , can be fzritten! 

fu + § - ~ ^ u = - ~ e u JH.l 
® ^ b \ b m 

The solut ion of th i s equation in Cartesian co-ordinates i s t 

. a^^(x) s (y) — 

•sshere i ^ ( x ) = \/l/^ ml Jff b) E^(x/b), x = x/b e tc . 

•with H^(x/b) a Hermite polynomial of degree m. 

(Shiff 1955) 

The eigenvalue, corresponding to t h i s e igenfmet ion, gives 

E = (n^ + ny + Kg + 3/^) MsJ. 

Using the set of k-part ic le o s c i l l a t o r -mil functions 

to describe the nuclear s t a t e s , -we have found i t necessary to 

evaluate such integrals as 

^ ~ (^1 ( " x l ^ y l ^ z l ^ i | ^1 ^ 

Where the i^^ par t i c l e i s in the s tate U^^n^n^n^) 

The twa b o ^ potential has been taken to be 

2 , 2 
e"^ j ' ^ - the Gaussian potent ia l apart 

from the strength parameter V^. 
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We shal l shcnv that 

^ " / w - ["jj- w ' + 2)^/2 

^'"ia'x2'x3"x4^ ̂ ^"yl'v2'v3"y4^ 

Tihers « = a A , [ n J ! " n ^ ! n ^ ! n ^ ! 

-22, 

and f(nu,n„rL^,) = ^ ^ (-')^*^{2(P + Q)} t (l/oP + 2 ) ^ x 

1 y f(p + nij)!(p - iiij)!(q + - 1̂ 24)'(̂ 13 ~ ^ 

(n2^-q)l(p+ q)!2^+'^] 

Tiidth (n^ + Hg + ry + n^) an even integer 

and f (n^^ngn 3̂î ) = 0 otherwise .41,. 6 
n, + n, _ * n_ 

Here, n^^ w and = ——-— e-bo. 

The integrals in Al .4 reduce to a product of three in x ,y and z 

spaces, of the form : -

I » / — i — ht F Al.7a 
" b v / , ° l w 4 

(Here n« „ n e tc . for .conveniaace in T v r i t i n g ) 
1 ^1 

h-ct> 
" 2 - 2 

•where ^ = 
x^ fxgs'q) 

•"••71' 
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Putting = %̂  + Zg and - x^, "we f i n d 

+do 

e p . - ® ^ ^ ^ '' 
X X 

nhere o^ = 1/Sb^ and a^ = (l/2b^ + 1/a^) 

2g 2 - d^f 2 e~° ~x •Al. 8a 

^.8b 

The problem in evaluating the integral in iJL.Sa reduces to 

representing the product of Hermite polynomials, in the 

integrand, in terms of functions of and P^, 

We knov/, fran Bateman 1953> Vol.11, p. 193 - 4 , 

min(n ,n^) 

2^ p! 

fn\ ̂  p=o 
Viiiere | ^1 are the binomial c o e f f i o i e n t s , 

H 
p /ip / (n^+n^-2p) 

and H_ ._ ,_2p( ; i ) = ( l / 2 ) ^ l + * 3 
(n^+i-i,-2p)/2 

n^+n^-2p , n^+n^.2p \ 

lc=o 

(op ) 

\ i ° \ - 2 p - l c ) 
la.io 

Similar transformations of H (x^)H (*_) produces 
°2 ^ *4 

sums over q and 

Defining now 2n = n^ + ng + n^ + n^, P = n ^ - p , Q 
~ "24 

- q A l . l l 
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•we may -write 

"13 "24 

^ z 2"-2̂ 2q . p);(̂ ^ _ q)! 

^""13 ^""24 

m \ / \ I " / ^ . 4 

^3"^/ I ̂ 24*^' • ̂ 13"^' • "24"*̂  

x 

3 , / 2P \ 2Q 

k=o 
k / ^ / 

i l . l 2 

The in tegra l in Al.Sa now reduces to a product of tvira integrals : 

yod /» 

h^(oi^)h.^(cr^)e"°^x dr^ = 5 ^ 2^1 \/w/6 

w 2 2 

^ ] v k ) k ^ ( 2 « - k ) k > 

w 
-00 
-too 

A1.15 

~m 

y. g^r-
r=o 

2P - k \ / 2Q - k\ •fflo 

[n (op^) 

'J 2(P+Q-k-r) 

e - ^ \ ^ ap_ ia.14 

r l\ T 1: 
-so 

(Bateraan 1955? Vol. I I , p. 194) 

Since k (Al . lO) , 2P and 2Q (AI.12) and r (AI.I4) aie a l l 

in tegers , have that 2 ( P + Q - k - r ) i s an integer. But 
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the integral in Al .14 vanishes unless 2 ( P + Q — k - r ) i s 

an even integer. This implies that (P + Q) i s an mteger . 

Erom A l . l l 

P + Q = (n^ + n^ + n^ + n^)/2 - p - q = an integer 

Since p (and q) i s an integer from A1.9 'vvb deduce that 

(n^ + ng + n^ + nj^)/2 = n = an integer for non 

zero solutions of A1.14 

Using the fac t that f-

4" co 
h (ol^) 

2(P + Q - k - r ) 

dP L2(P+q-k^)] I r(q/a)^ « ^^iP+Q-k-r 
X J r*r». /-V •»- ^ [P+Q-k-r] I 

' od 

•we f ind , from Al.B to A1.15 
n. 

p = 
tt 

2cd 

^ ^ 
z . z _ 2n-2b-2»+r+k(_)2q-k X 

s-"l3 

~ F): (ng^ - Q): kirl 

% -P 

/ 2 n_ \ / n 4 

"24"^ / W}^!\''2k^, 

X 

11.16 

f2P 

k 

/2q 2̂p-kl 

k / \ r i 

2Q-S: 
i2(P+ q - k - r } 3 l 

(P + Q - k - r)J 
iia7 

with k summing to min {2Q,2Pj 

and r " min 12P-k, 2Q-kj 
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Puttixig Q + P - k = K and K - r = R w have 
^3 ^ 

tf"l!"2'"3'v > > 2^^(-)'^~^(2f)!(2q)! ^ 
f = - z i /_ 1 ' - ' ' ' ' ' x 

2ca 

l / ( P +n^^)l(P - n^^)l(Q + (Q - ^ 2 4 ^ ' " * " Q)' ^ 

P+Q P+Q 
\ \ (-f (2r)i ro/d)^--l]^ 

R' CQ + p - K)» CK - R;I(P - q + R}!(Q - P + R)I 
R= P-Q K=R 

A1.18 
The sum over K vanishes unless P + Q - R = 0. 

With (c /d)^- l = + 2 , cc = a,/b vrer f i n d ; 

2 n 
•ifrL, In^in !n '.a 2 

' • i! > " w . ) 

Inhere f(n^ngn^n^) i s defined in A1.6. 

She resu l t i n Al.5 now follows immediately from A1.17a. 

We notice that the f - f unctions have the follo\?±ng symmetry 

re la t ions . 

fcn^ngn^n^) = f(n^n^njn^) 

= f(ngn^n^n^) 

The only f - f unot ions which are needed for the ca lculat ion 

of matrix elements in th i s thes is are those for tvhich 

n^ ^ 2, These have been l i s t e d in Table ^2. 
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Table 32 f - fuact ions presented in the form. 

ftningojn*) = [ ag«p + agof + a^a^+ + 61 

for (n^ + Hg + "2 + Gven 

= 0 otherwise 

•o] 

"2 "3 "4 
K t % % % 

0 0 0 0 1 1 

1 1 0 0 1 1 1 

1 0 1 0 1 1 1 1 

1 1 1 1 1 2 1 2 3 

2 0 0 0 -1 /S 1 1 

2 1 1 0 1/2 2 2 1 

2 1 0 1 -1/1 2 1 - 1 

2 2 0 0 3 / 4 2 1 

2 0 2 0 1 /4 2 2 4 3 

2 2 1 1 1 /4 3 4 4 7 

2 1 2 1 1 /4 5 2 6 15 7 

2 2 2 0 - 1 / 8 3 2 - 4 - 1 

2 2 2 2 I A 6 4 4 16 $0 56 41 
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Appendix: 2 

Fractional Parentage Reduction of the 

Eight Part ic le State (a ) Cb ) by Two Part ic les 

The s ta te has been defined in 3 .51 to be. 

= , / 4 : 4 : / g , 

v ' 

-where z__, sums over a l l the permutations P betvTeen the tiro 

se t s of numbers (1234) and (5^78) perserving the natural 

order i n the s e t s . The charge spin functions being wo tor 

coupled to a s ing le t - s ing le t s tate . Writing the sum over 

permutations involving 7 and 8 e x p l i c i t l y \fe f indl 

. /ww/g, -

Where now 2Li sums over a l l permuation of 2L^ except those 

involving 7 and 8 i . e . the permutations involve the numbers 

1 2 . . . 6 only. 

The fract ional parentage c o e f f i c i e n t s ( c . f . p ) of 

the reduction of a t o t a l l y symmetric four par t i d e orbital 

s ta te by one or tm) part ic les are t r i v i a l s ince the orbi ta l 

s tates are not coupled. The charge spm c . f . p , are T/ell 

known (Jahn Van l^ierengen, 1951» E l l i o t t , Hope and Jalm, 1953)* 
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Thus, for example, 

-,/I/%(b2)%l(b2)31 I A2.3a 

Similarly for (a 

and (aĵ ĵ' A2.;b 

Similarly for and 

Using the reooupling coe f f io ients for the charge-spin spaces, 

i . e . the normalised Raoah U-function defined in! 

(El l io t t 1958, I I I , p.10) 

and the HopeX-function defined inl 

j_ x 

Y ^^1^3 ̂ "^13' 

•vsith 

i (h h ^12 I 

j being a nine-J symbol. 

(E l l i o t t 1958, I I I , p .15) 
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we f ind , 

- /%^( (^ j ̂  -w-te 

[(a'')jj3̂ (b'«)«58] = la[((a3)g3(b^|2)ll(a^bg)ll + 

e tc . 

Collect ing up the terms f ree A2,3 and A2.4 and putt ing them 

baok into A2.2 -<,% f i n d , by summing over the perrautations betfreen 

the part i c l e numbers 1 . . . . 6 ! -

1..6 1..6 

+ ̂  )̂ 8j 

L 1 . . 6 7 8 l - G 78 V 

8 J 
A2.5 

^0/^8^la0((a^f^(b^f^g(ab)^ +j9ao((a^) (b^^y ̂  
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The f i r s t s i x - p a r t i o l e s ta te s in ^ . 5 are sntisymnetrio and 

are coupled in the charge-spin spaces t o antisyrametric tivo-

p a r t i c l e s t a t e s of the l a s t tfro p a r t i c l e s . The orbi ta l 

symmetry of the l a s t pair i s given by the charge spin functions. 

e.g . ^ 

(ab}yg = v'^/2c^bg + -jQ 

11 itt̂ f , u nnll 
Sb)y8 ~ 78 

e t c . 
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Addendum 

On the Use of the Eicenfu.nctions of the Deformed 

Harmonic Osci l lator 

Throughout th is thes is so far we have been concerned with the 

energy, in the k-part ic le s ta tes in the d s - s h e l l , of an A-particle 

nucleus with l6 < A< The method for calculating energy l eve l s 

has been designed to bring out certain features of the rotational 

model. No excitation of the closed s h e l l s ( - corresponding to 

the 0^^ core) has been permitted however. We know that such an 

excitat ion must be considered i f the correct quadrupole moments 

are to be predicted. From the known features of the rotational 

model a deformed shape, which i s stable ih some sense, i s 

suggested. 

In t h i s addendum, we record the resu l t s from i n i t i a l calcula-

t ions in the p - she l l [ 4 <A <l6] for the binding energy, using the 

many part ic le eigenfunctions of the ax ia l ly symmetric deformed 

o s c i l l a t o r (H )̂ as a set of zero order approximations to the 

'nuclear s t a t e s . The energy in these s ta tes , from the Hamiltonian 

with only central forces (H^), i s now given in terms of two 

o s c i l l a t o r - w e l l parameters one of which can measure the deformation 

of the w e l l . The best approximation to the binding energy, with 

a few of these s ta tes , i s found by diagonalising the energy matrix 

and minimising the lowest eigenvalue with respect to the two 
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parameters. 

We show that very similar values for the deformation parameter 

w i l l minimise the energy from either or 

The deformed harmonic o s o i l l a t o r . 

We may write the aacially symmetric deformed harmonic osc i l l a tor 

as : -

H = [ - / + + 0^ J + z^] . . . Ad.l 

2m 

where, for zero deformation (spherical o s c i l l a t o r ) , %= p . 

The s ingle part ic le eigenfanctions of can be expressed in 

either of two ways: 

or 

4 
|m I 

2 2\ _ ,2 2 n2 2. 
(8z) + p z 

"x - ffl i ;/2 ẑ ' 
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Here H i s a Hermite Polynomial and a Laguerre Polynomial 

(Bateman 1953 H i ) , p , a r e cyl indrical polar coordinates and 

n, = n „ + n n = n + n + n i. 3C y X y z 

The eigenvalues of are; 

\ n n » \ n n = T 1 /^) + 8%, 1 /2) ! 
X y z 1 

The functions U and V both spread out irreducible representations 

of the group SU^ described by the three operators B , A , A of 

o X- £ ^ X % y ' x y ' yx 

Chapter 2 = l / t^. We may write; 

"nnn 
x y 2 

and = V ( n A t ) M . 4 
"X z 

where A- i s a representation of SUg such that j \ = (n^ + ^2 

s — (n^ "" n^)^2 t " mĵ 2* ••• Ad,5 

The difference between the U and V functions is^then^ just the same 

as that between the ^ and % of Chapter 2. The re lat ions between 

U and V can immediately be deduced from 2^3 to b e : -

U(nyis) = 2 b(A2s; 2 t ) V(nAt) 
t 

Tnihere b(/%,2sl 2 t ) = ( - i ) ^ d^(7r/2) Ad. 6 

He define paramters y and 5 after Nilsson (l955) by the re la t ion > 

=; y^(l +(2/^6) 

_(4y%5) 
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where the parameter 5 i s a measure of the deformation. The 

—2 

(volume) of an equipotential e l l ip so id in i s proportional to: 

= y^[ l + ( 2 / ^ ] [ l (say) Ad.8 

By varying 5 with constant, we shal l be varying the 

deformation of the potential keeping the volume of each 

equipotential surface constant. 

Since the potential derives from the nuclear density, th i s i s 

an approximation to keeping the nuclear volume f i xed while the 

shape i s varied. 

Many part ic les in the deformed osc i l l a tor p o t e n t i a l . 

The eigenvalue of a many par t i c l e s tate of at a certain 

deformation ( s ) , can be calculated by adding up the energies of 

i t s s ingle part ic le constituents from Ad.5b, The energies, in 

2 2 

units of in the lov/est configurations for A = 6, 8 and 10 

part ic l e s , are shown as functions of the parameter 5 in Figures 

14, 15 and 16. 

We notice that for A = 6 and 8, the lowest energy i s given for 

a pos i t ive value of the i -prolate deformation. For A = 10 the 

lowest energy i s given for a negative value of the deformation 
V 

although there i s a s ta te , (̂ ^QQ ^ool ^ l - lo^' having a minimum 

energy of almost the same value but with a pos i t ive deformation -

the transi t ion from a prolate to oblate shape. 
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Many part i c l e s in a two body potent ia l . 

The two body central potential i s given i n 1 .2 . For these 

calculations we used the Hi-Massey (1949) values for the strength 

and range of the force; 

Vo = 29*59 Mev a = 2«l8 x 10 cms. 

and the Rosenfeld exchange constants. 

The many part ic le s ta tes x have been taken in terms of the 

s ing le part ic le s tates in Ad.2b. In th i s way we can preserve the 

labe l l ing with the projection of the orbi ta l angular momentum 

"fcll. 

M = 2 m̂  on the symmetry axis where m̂  refers to the i nucleon. 

By taking the low lying deformed o s c i l l a t o r states,however, i t i s 

not possible to form simply a s ta te which can be labe l led vri-th the 

orbi ta l angular momentum quantum number L. This i s a disadvantage 

s ince we know that, for a central potent ia l , L i s a good quantum 

number. 

For the lowest nuclear s ta tes , we again jus t consider those 

o s c i l l a t o r well s ta tes with maximum orbi ta l symmetry (see Chapter 1 

for the general construction). 

The calculation of the matrix elements of the potential follows 

the standard procedure of f inding the c . f . p of the reduction of the 

many part i c l e s tates by two part i c l e s . Since the s ingle part ic le 

s tates Y/ill only be vector coupled in their charge-spin spaces, 

the calculation of the c . f . p . fo l lows in a similar way to that in 

Appendix 2 for an eight part ic le s t a t e . 
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The two body matrix elements using the s e t of s ingle 

part ic le s tates in Ad.2b may be -written in terms of those using 

the se t in Ad.2a with the aid of Ad.6. These l a t t e r matrix 

elements can be deduced immediately from the general formulae i n 

Appendix 1 . The energy now w i l l be given in terms of "two 

parameters. 

e = aa and f = aP Ad. 9 

Matrix elements of tho k ine t i c energy. 

The k inet ic energy of a nucleus, r e la t i ve to the centre of 

mass, may be written;-

~ 2mA / j ~ Ad. 10 

where ^ = 2 p ( i ) i s the momentum of the centre of mass and p ( i ) 

i s the momentum of the i^^ nucleon. 

For o sc i l l a tor well s ta te s if r with t o t a l quanta N, we have 

the equivalence between momenta and coordinates 

I S ( p ( i ) - p ( j ) ) ^ | 
k j 

= (^'(N) ( 2 Ad. 11a 
k j 

•vri-th Xĵ j = x ( i ) - x ( j ) e tc . 

The matrix elements of the k inet ic energy may be deduced from those 
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of the Gaussian potential (Appendix l ) for: 

2 1 1 
S e i j / a = S — 2 x?. + o( 4) ̂  

i^ j i < j a 1J a 

4 
Ignoring 0('a:) we can deduce; 

\ 2 xj I ̂  5(#') 
a l<j ^ 

2 

-(f I I Q Ad. l ib 

2 2 ^ 
Similarly for S J . . and 2' z 

i < j i<j 
The k ine t i c energy matrix elements are of the form 

(̂ ' I 2 & 2 ( p ( i ) - p ( j ) )^ I 
^ i<j 

where A and B are constants. 

Parameters 

Per the purpose of minimising the energy matrix spread out 

by the s ta tes Xt we choose parameters (functions of e and f ) 

such that the mean square radius, 

M.S.R. = Y S (r, - R)^ = - ^ S (r. - r Ad. 13 
^ 1 ^ A i < j ^ ^ 

remains a constant 

From the form of the k inet ic energy matrix elements we deduce; 
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M.S.R. = + B/(3̂  1 = 
A 

~ [a/e^ + b/f^ j jba.l4 

Writing l / e ^ = p + and l / f ^ = P + %€ 4^.15 

where for the moment x ,y Eire arbi trary , we have 

+ B)P + (Ay + BK)E1 = M.S.R. Ad. l6 
AT ^ 

We choose the rat io of x to y such that Ay + Bx = 0 . In t h i s case, 

2 ~ ~ 
M.S.R. = [A + B 1 p Ad. 17 

A 

p i s then proportional to the M.S.E, 

The actual values for x^y are unimportant, A change in the ir 

values w i l l just change the d e f i n i t i o n of the parameter e . Notice 

that the E also measures the deformation of the o s c i l l a t o r w e l l 
d.»6> 

s ince , when E = 0, e=f^ cfeB (Ad. 15. Ad.9). I t i s poss ible to 

r e l a t e the parameters p ^ E to the Nilsson parameter 5. 

On the one hand we have 

4 . _(i + b/jk) = (say) i^is 

/ a v (1 -

On the other hand 

s adgg 
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Thus we have 

s = 4 " "xA vrfiere S =/2_±_2E. ^ Ad.20 
^ \1 + 28^/ ip + ye ' 

Although the calculat ions have been done using the £ parameters 

and the energy, in the many par t i c l e s ta tes of the deformed 

o s c i l l a t o r , minimised v/ith respect to these parameters, the re su l t s 

have been given for convenience in terms of the mean square 

radius (deduced fromp in Ad. 17) and Ni l sson's 6 (deduced from p g' 

i n Ad.20). 

We now discuss the re su l t s of the ca lculat ions for the A = 6, 

6 and 10 part ic le nucle i corresponding to and 

r e s p e c t i v e l y . 

The Problem. 

The lowest s i x par t i c l e s ta t e s in the deformed o s c i l l a t o r 

potent ia l with M = 0, N = 2 f N = S (n ( i ) + n ( i ) + n (x))l 
^ X y z 

and orbi ta l syniaetry [42] are; -

13 

^ 002 

where the many par t i c l e s ta te s are of the form 

2T + 1, 2 8 + 1 

n . m , 
-i. 2 
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The energy i n these two s t a t e s , for , was evaluated for several 

values of the parameters p and e . Near the minimum energy, small 

changes in p were found not to change the energy appreciably. 

The value of p which actual ly gives the minimun: leads to a mean 

, . _ r —26 2 square radius 9#5 x 10 cms . 

The variat ion of the energy with,^', at t h i s value for p, i s 
(ft) ancL lb) 

shown by the continuous curves^in Figure 17. 

In th i s one case, the mixing of the two s t a t e s was 

considered. The minimum of the lowest eigenvalue was found for 

the same value of p which gave a minimum Y/ithout mixing. The 

variat ion of the eigenvalues with S i s shown by the brokon" curves (c)ahcl(^J 

in Figure 17. 

We notice that the mixing of s ta tes does not contribute 

appreciably to the energy at that value for 5 which minimises 

the energy. The 6 which minimises the energy i s seen to be 

pos i t ive and to have about the same value as that vfhich minimises 

when A = 6 (Fig. I 4 ) . 

o 

The problem. 

In th i s case there are three s ta tes of maximum orbita l 

symmetry with lowest o s c i l l a t o r quanta ( N = 4) and angular 

momentum project ion M = 0. 

11 4x11 4-\11\ 

4x4 
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*202 " ^'uo 

= ((^ooo)" ( % 0 ...miia 

We have only performed the var ia t iona l ca lcu la t ion on the 

f i r s t of these s t a t e s . 

The rniniinuEi energy was found for a mean square radius of 

10;5 X 10 ons^ - a s l i g h t increase over that for » Again 

only s l i g h t changes i n the energy were detected for small changes 

of p around the minimum. 

11 

The var ia t ion of the energy with § i n the s t a t e i s 

shovm in Figure 18. 

The minimum energy i s given for a value again 

comparing favourably with that value which minimises (Figure 15) 

10 

The B problem. 

This nuclus i s in the middle of the p - s h e l l . We not ice that 

the s t a t e s 
xloi. = ( 

have near enough the same minimum energies i n but for '^fe'ferent 

values f o r 5 . The former favours a p o s i t i v e deformation and the 

13 
l a t t e r a negative one. (Figure l6) The energy in the s t a t e X2qi^ 

with has been found to be minimised for a mean square radius 
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value of 15.2 X 10 cms^ - again an increase over that for 

and. B 
e 

The variation of the energy in this s ta te with J*, for th is 

M.S.E,, i s shown in Figure 19. Notice again that the & which 

minimises the energy, i s the same one that minimises the energy 

with 

Although time has not permitted the calculation of the energy 

in it is expected to be minimised for a value of S which 

minimises the energy in the state from 

Three states, of the form 

Xmi = (̂ 000 ̂ 001 ̂ uo ...ad»aa 

may be constructed which have a minimum energy with for 5~0. 

It would be interesting to see if the mixing of the states in 

Ad.23a and Ad.23b produce a lov/est eigenvalue which is U-shaped 

and centred about 5 = 0 when the variation v/ith 5 is considered. 

The nucleus could then be thought of as having an unstable 

spherical shape. 

Conclusions. 

We have here only begun to discuss the use of deformed 

oscillator well states however, with the calculations already done, 

we can begin to get a picture of the part the deformation plays in 

energy calculations. It is seen that a gain in binding energy is 

-185-



achieved by going away from spherical symmetry to axial symmetry 

with that deformation which minimises the en erg; for For 

a gain of 0,85 Mev i s obtained over the S - s t a t e for zero 

deformation ( i . e . the lowest eigenstate at 6 - O). 

The mixing of all higher states mast make the lowest state 

one with good angular momentum the main single part of which is 

the lowest deformed oscillator configuration. 

The , of course, form a complete set of states for 

any value of the deformation parameter and the true states of a 

k-particle nucleus can be expanded in terms of any of these sets. 

Thus by mixing in all states of a set, and diagonalising the 

resulting energy matrix, the lowest eigenvalue, when plotted 

against the deformation parameter, would be a horizontal line* 

(This is mathematically correct but cannot be checked in practise 

since the complete sets are infinite). It appears, however, that 

by expanding the true nuclear eigenfunction in terms of the complete 

set of states which minimise the deformed oscillator energy, a 

better approximation to the binding energy is obtained in a fewer 

number of terms than for any other value of the deformation 

parameter. This approximation though will not, in general, give 

a state with good angular momentum. A study of the variation of 

with deformation will have to be carried out. 
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Lowest energy l e v e l s f o r A-part ic le s t a t e s (M«0) in the 
deformed harmonic o s c i l l a t o r p o t e n t i a l . 

figure 14* - - a. = 6 
\ /w 

- 0 . 4 

Figure 1$. A = 8 

(5) 

10.5 -L 

Figure 16 

Units o f 

A = 10 States 

o 
m 

420 .5 

• ^ooo^lo\-lo 

(3) 
ooo oo i 

" ^doo'ool^l-lo 

(5) -

- 'coo^ool^llo^l-lo 
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Energy in the lowest A-part ic le ,deformed o s c i l l a t o r 
e igenfunct ions from 

Figure 17« a = 6 Figure 18. A = 8 

Figmre 19« a = 10 
Mev 

Sta tes 

(c) = lowest eigenvalue from (a)&(b) 

(d) = h ighes t 

,13 

J1 II ft 

M -y. 

(f).)( 

oo4 
13 
2o4 
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