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CIRCULATION MODEL

by Fiona McLay

Adjoint models calculate the exact sensitivity of an output function of a model to

infinitesimal perturbations in the forcing or initial conditions. In eddy resolving ocean

models the presence of chaotic eddies is expected to lead to sensitivities to infinitesimal

perturbations that are very different from the sensitivity to large perturbations and that

no longer contain useful information. Previous studies disagree as to whether adjoint

models can be used with eddy resolving ocean models on timescales longer than a few

months.

Here the MIT ocean general circulation model and its adjoint are used to look at

the sensitivity of the time mean heat content, kinetic energy, available potential energy

and thermocline depth to the sea surface temperature, zonal wind stress, and vertical

diffusivity in an eddy resolving model of a zonally reentrant channel. Using the tangent

linear model the non linear timescale of the eddy resolving model is estimated at around

200 days. The adjoint model is integrated over 278 days and 690 days to see whether

useful information remains in the sensitivities calculated by the adjoint model for longer

than the non linear timescale of the system. The usefulness of the information in the

sensitivities calculated by the adjoint model is assessed by comparison with integrations

of the full non linear forward model with large spatial scale perturbations to the forcing,

finite difference gradient checks, and sensitivities calculated by an adjoint model in

a non eddy resolving channel where the adjoint method is known to provide useful

information.

Finite difference gradients are found to be unsuitable for calculating sensitivities

of time averaged climate quantities in an eddy resolving ocean model as they are also

affected by chaos. Comparison of the sensitivities calculated by the adjoint model in

the eddy and non eddy resolving models shows that information remains in the spatial

structure of the adjoint model results in the eddy resolving model on a time scale of

278 days.

In the non eddy resolving case the adjoint model results agree well with the per-

turbed forward model experiments, and are clearly climatically relevant on a timescale

of 690 days. Use of a parameterisation scheme that reduces the eddy kinetic energy

gives adjoint sensitivities that agree with well the perturbed forward model experiments

after 690 days, although there are areas of extremely high adjoint sensitivity that may

not be physically realistic. Without this parameterisation scheme, adjoint sensitivi-

ties involving dynamic variables grow exponentially with time as expected in a chaotic

system, but at the end of the integration time of 690 days there is some agreement be-

tween the adjoint and forward model results for sensitivities involving thermodynamic

variables only.

These results show that even in the presence of chaotic eddies some useful infor-

mation is retained in the adjoint model solution beyond the nonlinear timescale of the

system.
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Chapter 1

Introduction

1.1 Introduction

Almost all the questions that climate models are used to address are fundamen-

tally ones of sensitivity. We wish to know how a change in the model inputs will

affect the outputs. The output is the simulated climate of the model, or some

function of it, while the inputs are not only the forcing fields used to drive the

model but also the physics used to parameterise poorly understood or resolved

processes. Adjoint models are an extremely powerful tool for sensitivity analysis

of complex climate models, and they have already been widely used for sensitiv-

ity studies (e.g Marotzke et al. (1999); Junge and Haine (2001); Bugnion et al.

(2006b)) and data assimilation (e.g Stammer et al. (2002); Moore et al. (2004)),

both in oceanography and in other fields.

However previous studies have shown that there is a time limit to the appli-

cability of the adjoint method in chaotic systems, including eddy resolving ocean

models (Köhl and Willebrand, 2002; Lea et al., 2002). As computer power in-

creases it is likely that eddy resolving ocean models will be used more frequently

and guidance is needed about which problems the adjoint method can still pro-

vide insight. This chapter begins with an introduction to adjoint models and

some of their uses in physical oceanography. The issues surrounding the use of

adjoint models in chaotic systems are then discussed in the context of the Lorenz

(1963) equations, with some extensions to the existing literature in sections 1.3.3
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and 1.3.4. Previous work using adjoint models and eddy resolving ocean models

is reviewed in section 1.3.5 and finally the questions addressed in this thesis are

outlined in section 1.4.

1.2 A General Introduction to Adjoint Models

Two possible methods for calculating the sensitivity of a quantity are the direct

method and the adjoint method. Before looking at the adjoint method in more

detail, it is important to see how it compares to the direct method and the

advantages that can be gained by using it.

The Direct Method

In the direct method a perturbation is added to the kth component of the vector

of model inputs X0k
+ ∆X0k

, resulting in a new value of the output function

J + ∆J . The gradient of the output function with respect to this component of

model input is then evaluated

∂J

∂X0k

' ∆J

∆X0k

≡ J(X0k
+ ∆X0k

) − J(X0k
)

∆X0k

(1.1)

The sensitivity of all possible Js to X0k
+ ∆X0k

can thus be calculated from two

forward model integrations. However, we normally are interested in only a few J

while X0 may have many thousands of components in a GCM. Ensembles of model

runs with different perturbations must be used, and as physically meaningful

changes in the parameters do not normally move the climatic mean of the model

outside the range of fluctuations of the model’s dependent variables, it is necessary

to use integration times which are long compared to the natural timescales of

the model, (Hall et al., 1982; Lea et al., 2000). The direct method is therefore

prohibitively expensive in terms of computational time, although it is possible

that distributed computing initiatives such as that of the climateprediction.net

experiment, which aims to get the public to run climate models on their home

PCs, may make it possible (Stainforth et al., 2005).

2



The Adjoint Method

In contrast to the direct method the sensitivity of a single J to perturbations in

all possible components of X0, can be calculated by a single application of the

adjoint model. The resulting computational time is only about 5 times greater

than for the original forward integration (Griewank, 1992).

The general principle of adjoint and tangent linear models is outlined in sev-

eral places, notably Errico (1997), Giering and Kaminski (1998) and Marotzke

et al. (1999), but is included here for convenience. This approach follows that in

Marotzke et al. (1999).

The state of the model at time-step n can be written Xn, 0 ≤ n ≤ N where

X0 is the vector of initial conditions, and XN is the final state of the model. Any

function of the model output J =
∑N

n=1 fn ◦ Xn, can be computed from X0 by

repeated application of the numerical model Ψ, where fn gives the contribution

to J at time step n only.

J =
N
∑

n=1

fn ◦ Ψn ◦ Ψn−1 ◦ · · · ◦ Ψ2 ◦ Ψ1 ◦ X0. (1.2)

The sensitivity of J to X0 is then given by the chain rule.

∂J

∂X0

=
N
∑

n=1

1f ′
n

(

Ψ′
n

(

Ψ′
n−1 (· · · (Ψ′

2 (Ψ′
1 (I))))

))

(1.3)

where the prime denotes differentiation with respect to the argument, and each

Ψ′
n is the Jacobian matrix of the model at time step n. Each Ψ′

n corresponds

to a linearisation of the model around the model trajectory and is termed the

tangent linear model (TLM). The TLM evolves an infinitesimal perturbation to

the initial conditions forwards in time to give the perturbation at the final time,

under the assumption of linear dynamics.

We can take the transpose of equation 1.3 to get

(

∂J

∂X0

)T

=
N
∑

n=1

(Ψ′
1)

T
(

(Ψ′
2)

T
(

· · ·
(

(Ψ′
n−1)

T
(

(Ψ′
n)T

(

(f ′
n)T (1)

)))))

(1.4)
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This is the adjoint model, which is often said to operate “backwards in time” as

it calculates the sensitivity with respect to model input from a sensitivity with

respect to model output. As a matrix has the same eigenvalues as its transpose,

the adjoint and tangent linear models have the same eigenvalues, meaning that

if perturbations in the TLM grow exponentially forwards in time, sensitivities in

the adjoint model will grow exponentially backwards in time.

Although the above only considers initial condition sensitivity, it is possible

to augment the state vector with model parameter and forcing values so that the

adjoint model also calculates the sensitivity to these.

Due to the time taken to produce an adjoint model, many of the early ad-

joint models were approximate, and they did not become widely used until the

development of software tools, such as TAMC, Tangent linear and Adjoint Model

Compiler (Giering and Kaminski, 1998) which allow adjoint models to be devel-

oped automatically from the FORTRAN code for the forward model. Among

others TAMC has been used for the MIT model (Marotzke et al., 1999) and the

Hamburg Ocean Primitive Equation Model (HOPE) (Junge and Haine, 2001; van

Oldenborgh et al., 1999).

1.2.1 Uses of Adjoint Models in Physical Oceanography

Adjoint models have been used for two major types of problem in oceanography,

sensitivity analysis, and 4 dimensional variational data assimilation (4DVAR). In

sensitivity analysis the output function is some quantity of interest in the forward

model, such as a measure of the heat transport, and the sensitivity information

from the adjoint model is used by itself to gain an understanding of physical

processes. In data assimilation the output, or cost, function is a measure of the

model-data misfit and the adjoint sensitivities are used as gradient information

in descent algorithms.

4



Sensitivity Analysis

The first sensitivity studies using an adjoint of a OGCM were those of Marotzke

et al. (1999) who examined the sensitivity of the heat transport across 29◦N in

the Atlantic, to temperature and salinity anomalies, and van Oldenborgh et al.

(1999) who investigated some of the mechanisms behind ENSO. Since then adjoint

models have been used for identifying an oscillatory mode in the THC (Sirkes

and Tziperman, 2001), investigating the sensitivity of the meridional overturning

circulation to global wind stress (Bugnion et al., 2006a,b), studying the heat

uptake of the deep ocean (Huang et al., 2003a,b) and looking at the persistence

of winter SST anomalies in the North Atlantic (Junge and Haine, 2001).

Data Assimilation

In meteorology 4DVAR is most commonly used to initialise forecast models, while

in oceanography it is more commonly used to compensate for the sparsity of data.

By bringing models into consistency with available data it is possible to study the

general circulation and its variability. This approach has been used by Tziperman

and Thacker (1989); Tziperman et al. (1992a,b), Marotzke and Wunsch (1993),

and Stammer et al. (2002) and others.

1.3 Adjoint Models and Chaotic Systems

1.3.1 Chaos and Predictability

All the above examples of the uses of adjoint models used ocean models where

the resolution was too low to resolve oceanic eddies. Increasing the resolution so

that eddies are resolved leads to a more realistic representation of the previously

parameterised small scales and of the large scale mean circulation (Smith et al.,

2000; Hogan and Hurlburt, 2000). However, resolving eddies means that the flow

may become chaotic.

In a chaotic system there is sensitive dependence on initial conditions so that

the distance between two trajectories in phase space, |δ(t)|, initially separated

5



by a distance |δ0| grows exponentially so that |δ(t)| ∼ |δ0|eλt, where λ > 0.

Predicting the state of the system to within an amount a of the true state is

therefore only possible out to a time,

thorizon ∼
(

1

λ
ln
(

a

δ0

))

(1.5)

where δ0 is the difference between the true and measured states at the initial

time. The extreme sensitivity to the initial conditions means that improving

the measurement at the initial time does not significantly reduce thorizon due to

logarithmic dependence on δ0 (Strogatz, 1994). This results in a limit to what

Lorenz (1975) termed predictability of the first kind, where the state of a system

at a future time may be predicted given the initial conditions. Beyond this limit,

the system may still have predictability of the second kind where the effect of a

change in the forcing on the statistics of the system, or its climate, may still be

predictable. It is predictability of the second kind that is normally of interest

in climate modelling; we are not usually interested in instantaneous state of the

turbulent ocean, but rather some time averaged quantity such as the mean heat

transport. Lorenz (1975) argued that it is necessary for predictions of the second

kind that integrations are extended beyond the limit of predictability of the first

kind, or the climate will not be representative of the climate evaluated over a

longer interval. If the integration time is long enough we might expect that the

sensitivity of a time averaged climate quantity to the initial conditions calculated

by the adjoint model is zero, and that the sensitivity to the forcing or parameter

values approaches a constant value. In a non chaotic systems this indeed happens;

Bugnion and Hill (2006) found that, in an ocean model that did not resolve chaotic

eddies the sensitivity of the meridional overturning circulation to the initial sea

surface temperature decayed to zero after around 400 years, while the sensitivity

to a perturbation to the zonal windstress reached a constant value. However,

studies have shown experimentally that, in a chaotic system, the sensitivity of a

time averaged climate quantity to the initial conditions and forcing calculated by

the adjoint method also grows exponentially backwards in time (Lea et al., 2000,

2002).
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1.3.2 Studies of the Lorenz (1963) System

The Lorenz (1963) system of equations are a simplified description of convection

between two parallel plates, which give rise to the well known butterfly shaped

attractor. The system has been used by Stensrud and Bao (1992), Lea et al.

(2000), and Köhl and Willebrand (2002) to study the limitations of the adjoint

method in a chaotic system. The small number of parameters means that direct

sensitivity calculations are computationally feasible, while for certain choices of

parameter values the model exhibits chaotic behaviour, which is thought to be

analogous to that in the atmosphere and oceans. The Lorenz (1963) equations

are

dx

dt
= −σx + σy

dy

dt
= −xz + rx − y

dz

dt
= xy − bz (1.6)

Stensrud and Bao (1992) found that in the chaotic regime 4DVAR becomes

less successful in recovering the initial conditions in the Lorenz (1963) model

as the assimilation window is increased beyond a certain timescale, due to the

development of local minima in the cost function. This is directly related to

loss of predictability of the first kind. The exponential divergence of nearby

trajectories means that the sensitivity to initial conditions grows exponentially

backwards in time, and the output or cost function develops many local minima.

The sensitivity calculated by the adjoint model is still exact but no longer contains

useful information.

Lea et al. (2000) looked at the sensitivity of the time mean of z, z, to r.

Provided the integration time is much longer than the limit of predictability of

the first kind z varies almost linearly with r over much of the range (figure 1.1A),

and has predictability of the second kind. However, an infinitesimal change in

a parameter value leads to exponential divergence of model trajectories similar

to that seen for an infinitesimal change in the initial conditions. The climate
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Figure 1.1: A) z as a function of r in the Lorenz (1963) equations, for σ = 10 and
b = 8/3. B) A close up of z as a function of r in the Lorenz (1963) equations,
for σ = 10 and b = 8/3. C) dz/dr calculated by adjoint model as a function of
integration time, τ , for r = 28. After Lea et al. (2000).

of a chaotic system is not a smooth function of the parameter value but has a

number of local maxima and minima (figure 1.1B) that increases exponentially

with increasing integration time. The adjoint model calculates the sensitivity to

an infinitesimal perturbation, which Lea et al. (2000) termed the microscopic sen-

sitivity, as opposed to the macroscopic sensitivity which would be calculated for

larger perturbations. The microscopic sensitivity grows exponentially backwards

in time with the increasing number of local maxima and minima in the output

function (figure 1.1C). Köhl and Willebrand (2002) looked at the similar problem

of using the adjoint method for parameter value estimation in the Lorenz (1963)

equations, and got similar results.

1.3.3 Finite Difference Gradient Checks in the Lorenz

(1963) Equations

Lea et al. (2000) estimated the macroscopic sensitivity ∆z/∆r from a linear fit to

the graph of z as a function of r, where the time average had been evaluated over

around 100 orbits of the chaotic attractor (figure 1.1A). This led them to conclude

that the direct method can be used to calculate the macroscopic sensitivities in the

Lorenz (1963) model. However, unlike the 2 integrations required for calculating

sensitivities using the direct method in section 1.2, Lea et al. (2000)’s estimate of

8



∆z
∆r

required z to be evaluated for a large range of r. This is feasible in a system

with few parameters such as the Lorenz (1963) model, but not in a GCM where

using 2 integrations per parameter is already computationally infeasible.

Lea et al. (2000) show experimentally that in the Lorenz (1963) equations the

amplitude of the isolated extrema decreases with 1/
√

τ , where τ is the integration

time, so that if the integration time is long enough, and the perturbation is large

enough ∆z/∆r calculated from a finite difference gradient should approach the

macroscopic sensitivity calculated from a linear fit to the graph. However, it is

not clear a priori what the correct integration time and perturbation size should

be. For a non chaotic system the optimum step size for centred finite difference

gradients scales as 3
√

εJ where εJ is the fraction accuracy with which the output

function J is computed (Press et al., 1992). In the best case scenario εJ is

equivalent to the machine accuracy εm which is around 2 × 10−16 for double

precision floating point numbers, giving an optimal step size of 1 × 10−5. In

the non chaotic regime of the Lorenz (1963) equations finite difference gradients

converge for ε > 1 × 10−5 (figure 1.2A), while in the chaotic regime they only

approach the larger scale sensitivity for ε = 1 (figure 1.2B), even though in this

case the integration time is longer than that used by Lea et al. (2000) for their

estimate of the macroscopic sensitivity using a linear fit. Finite difference gradient

checks are often used as a measure of the accuracy of sensitivity calculated by

an adjoint model, the experience here with the Lorenz (1963) model shows that

they need to be treated with caution in a chaotic system.

1.3.4 Lorenz (1963) System Coupled to a Non Chaotic

System

Although the work of Lea et al. (2000) and Köhl and Willebrand (2002) showed

that the adjoint method will not work with the Lorenz (1963) equations there are

obvious ways in which the Lorenz (1963) equations are not a good analogy for

the real climate. One of these is the absence of a much longer timescale, and it is

interesting to see if these results hold when slower non chaotic elements are added
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Figure 1.2: Finite difference gradient checks as a function of the step size ε for
the Lorenz (1963) equations. A) Non chaotic regime r = 10, b = 8/3, σ = 10,
τ = 500 B) Chaotic regime r = 28, b = 8/3, σ = 10, for 2 sets of initial conditions
x0, integration time τ = 500.

to the system. In particular do the adjoint sensitivities grow at the same rate as

in the simple Lorenz (1963) model? The system considered here is the Stommel

(1961) box model of the North Atlantic thermohaline circulation coupled to the

Lorenz (1963) equations, and the same system with a passive tracer added.

Stommel (1961) Box Model Coupled to the Lorenz (1963) Equations

The Stommel (1961) box model can be fully described by the non dimensional

equation,
∂δ

∂t
= E − |1 − δ|δ (1.7)

where δ is the non dimensional strength of the thermohaline circulation and E

is the non dimensionalised strength of the fresh water forcing (Marotzke, 2002).

This is coupled to the Lorenz (1963) equations by writing

E = E0 + cz (1.8)

where E0 and c are constants, and z is given by equation 1.6. The model can be

considered roughly analogous to a chaotic atmosphere coupled to a non chaotic

ocean. Provided the integration time is long enough the system reaches an equi-

librium state where δ is determined by the mean value of E, Ē. In this case the
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∂E0
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parameter in the Lorenz (1963) equations ∂δ
∂r

.

sensitivities of δ to c and E0 can be derived analytically to give

∂δ

∂c
= z̄

∂δ

∂E

∣

∣

∣

∣

∣

Ē

(1.9)

∂δ

∂E0

=
∂δ

∂E

∣

∣

∣

∣

∣

Ē

(1.10)

The equations are integrated numerically using a 4th order Runge-Kutta

scheme (Press et al., 1992), with a timestep of 0.005, using the classical param-

eters for the Lorenz (1963) model r = 28, σ = 10, b = 8/3, and using E0 = 0.3,

c = 0.001, and δ0 = 1.2 in the Stommel (1961) model. The adjoint is generated

with help of TAMC (Giering and Kaminski, 1998). The adjoint sensitivities ∂δ̄
∂c

and ∂δ̄
∂E0

agree closely with the calculated values, however sensitivities to the pa-

rameters in the Lorenz (1963) model still grow exponentially backwards in time

(figure 1.3), at the same rate as in the uncoupled Lorenz (1963) equations.

This result is not promising for the prospect of determining the sensitivity

of climate quantities using an adjoint model. Adding a slower timescale to the

system does not reduce the exponential growth of the sensitivity calculated by the

adjoint method. However, it suggests that it may be possible to use an adjoint to

determine the sensitivity of the concentration of a passive tracer to non dynamical

parameters. This is explored in the next section.
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Passive Tracers in a Stommel (1961) Box Model Coupled to the Lorenz

(1963) Equations

FL

F1

F2

FO F3

Fb

C1

C2

C3

CO

F1 = µ1

∣

∣

∣

∣

∣

∂x

∂t

∣

∣

∣

∣

∣

C1 (1.11)

F2 = µ2

∣

∣

∣

∣

∣

∂y

∂t

∣

∣
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∣

∣

C2 (1.12)

F3 = µ3

∣
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C3 (1.13)

FO = µOCO (1.14)

Fb = µbδCO (1.15)

Figure 1.4: Stommel (1961) box model coupled to the Lorenz (1963) equations
with a passive tracer C.

The coupled Stommel (1961) model, section 1.3.4, is modified by the addition

of a passive tracer C. For the tracer the model consists of 4 boxes, three ‘chaotic

atmosphere’ boxes with tracer concentrations C1, C2, and C3 and an ‘ocean box’

with tracer concentration CO. The tracer is added to the system at a rate FL, and

then advected between the ‘atmosphere’ boxes according to equations 1.11-1.13,

where µ1, µ2, and µ3 are constants, δx
δt

, δy

δt
and δz

δt
, are given by equation 1.6, and

F1,F2 and F3 are the fluxes between the boxes. There are two fluxes out of the

‘ocean’ box, FO, which is fed back into the ‘atmosphere’, equation 1.14, where

µO is a constant, and Fb, equation 1.15, where δ is given by equation 1.7. Fb can

be taken as representing the flux of the tracer to the deep ocean. The dynamical

parameters have the same values as used in the coupled Stommel (1961) model,

section 1.3.4, while the non dynamically active parameters have values FL = 0.5,

µ1 = 0.0025, µ2 = µ3 = µO = 0.001 and µb = 0.1, and are selected so that the

system reaches equilibrium in a reasonable timescale.
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As can be seen in figure 1.5, the sensitivities of CO to the parameters in the

Lorenz (1963) model grow exponentially backwards in time. However, adjoint

sensitivities to FL, µ1, µ2, µ3, µO, and µb agree with those calculated from per-

turbed forward model runs. There are no problems associated with calculating

the sensitivity of passive tracers to nondynamically active variables in a chaotic

system using an adjoint model. This fact has been used by Fukumori et al. (2004)

to look at the origin of water masses in a GCM.

1.3.5 Studies of Eddy Resolving Ocean Models with the

Adjoint Method

Studies of the applicability of the adjoint method to eddy resolving, or eddy

permitting models have shown it to have varying degrees of success, depending

on the integration time, and type of model being used. For integration times

shorter than the eddy timescale the flow still has predictability of the first kind,

so the adjoint method is expected to provide useful information. Several studies

have used adjoint models for data assimilation over this timescale. Schröter et al.

(1993) successfully assimilated SSH measurements into an eddy resolving quasi-

geostrophic model of the Gulf Stream Extension area over a time period of 34

days using the adjoint method, Morrow and De Mey (1995) successfully assimi-
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Figure 1.6: The exponential growth of adjoint gradients with increasing integra-
tion time in the shallow water model of Lea et al. (2002). The dashed line is the
climate sensitivity calculated by the direct method Lea et al. (2002).

lated SSH and hydrographic data into an eddy resolving quasigeostrophic model

of the Azores Current over 20 days, and Moore (1991) successfully assimilated

altimeter data into an eddy resolving model of the Gulf Stream Region over 7

days.

Over longer timescales the situation is less clear, with the 3 existing studies

providing different results. Lea et al. (2002) extend their analysis of the climate

sensitivity of the Lorenz (1963) model to a shallow water model. They examine

the sensitivity of the time mean advective transport of vorticity, Ξ, across the

mid-basin line of a double gyre configuration to the strength of the wind-stress

curl, w, over climate timescales. As for z in the Lorenz (1963) model, Ξ clearly

has predictability of the second kind and depends almost linearly on w for a wide

range of values. Provided that the integration time is long enough the sensitivity

∆Ξ
∆w

can be estimated using forward model experiments, by fitting a line to the

graph of Ξ against w. Lea et al. (2002) identified three regions in the adjoint

sensitivities ∂Ξ
∂w

; between 0 and 0.05 years the adjoint method underestimates the

climate sensitivity as this is a shorter timescale than that needed for the model to

spin up, from 0.05 to 0.20 years there is a plateau in the adjoint sensitivities where

the adjoint method provides a reasonable estimate of the climate sensitivity, and

for times greater than 0.2 years there is an exponential growth in the adjoint

gradients (figure 1.6).
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The quasigeostrophic model of Lea et al. (2002) only contains fast dynamical

processes, and not slower thermodynamic processes. There are two instances

where the adjoint method has been used with eddy resolving general circulation

models for timescales that are long compared to the eddy timescale of the system,

and these give different results. Gebbie (2004) used an adjoint model in the same

form as was used for a non eddy resolving model, to assimilate data into an eddy

resolving model of the eastern subtropical North Atlantic (40◦W to 8◦W, 12◦N to

40◦N). He found that the adjoint gradients appeared to be stable for an integration

time of 2 years. The eddy timescale in his system is of the order of 3 to 4

months so it would be expected that the exponentially increasing adjoint gradients

associated with chaotic error growth would be apparent on this timescale (G.

Gebbie, personal communication). However, Köhl and Willebrand (2003) found

that sensitivities calculated by the adjoint method did grow exponentially in an

eddy resolving North Atlantic GCM. The reasons for the differing success of the

adjoint method in these two cases is not clear, but Gebbie (2004) suggests that

the dynamics in his model are only weakly nonlinear.

1.3.6 Possible Solutions

Three modifications of the adjoint method have been proposed to deal with the

problem of exponentially growing sensitivities in a chaotic system, the ensemble

adjoint technique of Lea et al. (2000), the coarse resolution adjoint of Köhl and

Willebrand (2002), and the Fokker-Planck adjoint approach of Thuburn (2005).

Ensemble Averaging Approach of Lea et al. (2000)

Lea et al. (2000) suggested that sensitivity estimates could be improved by aver-

aging over an ensemble of shorter integrations of the adjoint model, the timescale

being set by when the plateau in the adjoint sensitivity occurs (figure 1.6). They

tested this approach in the Lorenz (1963) model (Lea et al., 2000), and in a shal-

low water model in a double gyre configuration (Lea et al., 2002). For the double

gyre configuration the ensemble adjoint approach calculated the sensitivity of the
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vorticity transport across the mid-basin line to wind stress curl successfully, but

it failed when applied to the variance of the vorticity transport Lea et al. (2002).

This method has potential problems if it is to be used with a GCM as the shorter

integrations may be too short to account for the non-local aspect of sensitivity

(Thuburn, 2005). Also Eyink et al. (2004) found experimentally that at least

in the Lorenz (1963) equations, the ensemble average sensitivity only converges

slowly towards the finite difference sensitivity.

Coarse Resolution Adjoint Approach of Köhl and Willebrand (2002)

Köhl and Willebrand (2002) suggested a solution suitable for data assimilation.

For the forward run statistical moments are calculated by averaging the solu-

tion of the high resolution model, while for the adjoint run a coarse resolution

model twin linearised about the mean of the high resolution model is used. By

parameterising rms variability of sea surface height in terms of density gradients,

Köhl and Willebrand (2002) were able to assimilate sea surface height variabil-

ity into a 1/3◦ eddy permitting model of the North Atlantic, using an adjoint

constructed from a 1◦ model. This improved the state estimation by steepening

frontal structures, particularly the Azores front and the Gulf Stream, and con-

sequently increasing variability so levels are similar to those observed (Köhl and

Willebrand, 2003). However, due to the parameterisations involved in construct-

ing the lower resolution adjoint it is unlikely that this method would provide

useful information for sensitivity studies.

Fokker-Planck Adjoint Approach of Thuburn (2005)

The Thuburn (2005) solution is more complicated as it modifies the way in which

the adjoint is derived from the forward model. By adding stochastic forcing to the

forward model equations, it is possible to describe the evolution of the forward

model probability density function using the Fokker-Planck equation, and the

adjoint of this equation is then used to calculate sensitivities. The method is

successful at calculating the climate sensitivity of the Lorenz (1963) model, but

is not computationally feasible for a GCM.
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1.4 This Thesis

Previous studies with the Lorenz (1963) equations have demonstrated that the

adjoint method cannot provide useful information on climate sensitivities in sim-

ple chaotic systems (section 1.3.2). However, it is not clear to what extent these

results apply to eddy resolving ocean models as the three existing studies give

differing answers about the extent to which adjoint models can be used (sec-

tion 1.3.5). Amongst the many unanswered questions are; over what timescale

can an adjoint model can be expected to provide useful information? is this

timescale the same for all quantities? and how can we tell if the sensitivity infor-

mation provided by an adjoint model is useful or not?

Here we aim to address some of these questions by looking at the behaviour

of sensitivities calculated by an adjoint model in an eddy resolving general cir-

culation model of a zonally reentrant channel. Results are compared with those

from a non eddy resolving channel and a model where the eddies are damped by

the use of a parameterisation scheme. The idealised configuration makes inter-

pretation of the adjoint sensitivities easier, and the small domain size allows the

adjoint model to be run many times with different output functions and makes

comparison with perturbed forward model experiments practical.

The model setup and the circulation in the forward model are described in

chapter 2. Chapter 3 looks at the timescale over which we can still extract useful

information from the adjoint model results, and how we can see if there is useful

information contained in the adjoint sensitivity. Chapter 4 looks at the physical

interpretation of the sensitivities calculated by the adjoint model and their spatial

structure, and conclusions and outlook are given in chapter 5.

1.5 Summary

• Adjoint models are a powerful and efficient tool for sensitivity analysis in

coarse resolution ocean models.

• Studies with the Lorenz (1963) equations have shown that sensitivities cal-
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culated by an adjoint model only contain useful information on a finite

timescale in a chaotic system. This also applies to the sensitivity of time

averaged climate quantities, which have predictability of the second kind.

• Previous studies using adjoint models with eddy resolving ocean models

have been inconclusive about the timescale over which adjoint models can

be used successfully, and to what extent the results from the Lorenz (1963)

model are relevant to an ocean GCM.
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Chapter 2

Description of the model

2.1 Introduction

The model used for this study is the Massachusetts Institute of Technology general

circulation model (MITgcm) and its adjoint. The MIT model was chosen for this

study primarily because it has a flexible adjoint maintained alongside the forward

model code. The model code is freely available through the MITgcm website

http://mitgcm.org/, and is described in detail in Marshall et al. (1997a,b), and

in the manual that accompanies the code. This chapter begins with a summary

of the MITgcm and its adjoint, before describing the exact model configurations

used in this study and the circulation in the forward models, with a particular

emphasis on the levels of eddy kinetic energy.

2.2 MITgcm

The MITgcm is a primitive equation ocean general circulation model (OGCM),

which solves the equations for the ocean circulation under the Boussinesq approx-

imation, where the density is assumed to be constant unless density variations

give rise to buoyancy forces. The MITgcm is novel in that it can be run in both

hydrostatic and nonhydrostatic modes. The hydrostatic mode is used here so
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that the equations solved by the model are,

Dvh

Dt
+

1

ρ0

∇hp + 2Ω × vh − Ah∇4
hvh − Av

∂2vh

∂z2
=

1

ρ0

∇ · τ (2.1)

∂η

∂t
−∇ ·

∫ 0

−H
vh dz = 0 (2.2)

dp

dz
= −gρ (2.3)

ρ = ρ(T, S, z) (2.4)

DT

Dt
− κh∇4

hT − κz

∂2T

∂z2
= ∇ · QT (2.5)

DS

Dt
− κh∇4

hS − κz

∂2S

∂z2
= ∇ · QS (2.6)

(2.7)

where vh is the horizontal velocity, p is the deviation in pressure from that of an

ocean at rest with density ρ0, Ω is the rotation of the earth, Ah is the (biharmonic)

horizontal viscosity, Av is the vertical viscosity,τ is the surface windstress, η is

the elevation of the implicit free surface, T is the potential temperature, S is the

salinity, H is the depth of the ocean, κh is the horizontal diffusivity, κv is the

vertical diffusivity, and QT is the surface heat flux.

The equations are discretised using a z-level coordinate system in the verti-

cal, where the vertical coordinate is the distance from the ocean surface, and an

Arakawa C-grid, in the horizontal (figure 2.1 left). A quasi second order Adams-

Bashforth scheme is used for the time discretisation. Any choice of coordinate

system has its advantages and limitations, a z-level coordinate system allows

easy representation of the horizontal pressure gradient and equation of state in

a Boussinesq fluid, but it is difficult to represent the bottom topography and

isopycnal diffusivity (Griffies et al., 2000). Arakawa C-grids are usually the pre-

ferred horizontal grid in models that resolve the Rossby radius as they represent

inertia-gravity waves well. However, the u and v velocity points are staggered in

space on a C-grid so that calculating the Coriolis terms involves spatial averaging.

If the resolution of the grid is low compared to the Rossby radius, this spatial

averaging leads to false minima in the dispersion relation and regions where the

group velocity has the wrong sign. Energy is thus fed into short scale perturba-
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Figure 2.1: Arrangement of the model variables on the C grid (left) the D grid
(centre0 and the C-D grid (right). From Adcroft et al. (1999).

tions and there is a checkerboard pattern of computational noise (Adcroft et al.,

1999). For this reason it has been traditional to run models that do not resolve

the Rossby radius on a grid where the velocity points coincide.

In the MITgcm this problem is solved by using a C-D coupling scheme. A D-

grid is overlaid on the C-grid so that the u velocities on the C-grid coincide with

the v velocities on the D grid (figure 2.1) right. The velocities on the C-grid are

used for calculating the Coriolis terms on the D-grid and vice versa, thus removing

the need for the spatial averaging (Adcroft et al., 1999). The D-grid velocities

are relaxed back to the C-grid velocities with a timescale τCD. The C-D scheme

effectively doubles the resolution for the velocity, but not for the tracers, so that

half the model kinetic energy is associated with the D-grid velocities (Adcroft

et al., 1999). This scheme is not required when the Rossby radius is resolved, so

it is not normally used at this resolution, although the dispersion relation on the

C-D grid is similar to that on the C grid and it should give similar results.

When using the hydrostatic mode a convective adjustment scheme is necessary

to maintain static stability in the model. This scheme checks adjacent model

levels for static stability and if they are found to be statically unstable it mixes

them so that they have the same salinity and potential temperature.
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2.3 MITgcm Configuration

2.3.1 Model Domain and Resolution

The basic configuration is a flat bottomed zonally reentrant channel, 9.6◦ by 9.6◦

by 5000m, with the southern wall at 45◦N. The model is run at 2 resolutions,

0.1◦ × 0.1◦, corresponding to a maximum grid spacing of 10km at 45◦N, and

0.48◦ × 0.48◦, corresponding to a maximum grid spacing of 50km. In order to

allow chaotic eddies to form the first baroclinic Rossby radius, a = c/f , where f

is the Coriolis parameter and c is the Rossby wave speed, must be resolved. In the

0.1◦ model the 1st baroclinic Rossby radius ranges from 32km at 45◦N to 20km

at 54.5◦N, and is resolved everywhere so that the model is termed eddy resolving.

The 0.48◦ model is non eddy resolving, the first baroclinic Rossby radius ranges

from 40km at 45◦N to 20km at 54◦N, and is only resolved north of 50◦N. At both

resolutions there are 19 levels in the vertical, ranging in thickness from 30m at

the surface to 550m at depth.

Although 0.1◦ resolution is sufficient for eddies the form and the model to

exhibit the chaotic behaviour of interest in this study (Hogan and Hurlburt,

2000) found that levels of kinetic energy increased in their model of the Japan

sea, untie the resolution was 1/32◦. It is thus likely that increasing the resolution

beyond 0.1◦ would also increase the eddy kinetic energy in the high resolution

model used here. However, this would significantly increase the integration time

making many the integrations of the forward and adjoint models, which are a

requirement of this study computationally impractical.

Biharmonic horizontal viscosity and diffusion are used for the lateral dissi-

pation of momentum and lateral mixing of temperature, respectively as they

are more scale selective than Laplacian friction or mixing and cause less damp-

ing of mesoscale eddies for the same damping of computational noise (Semt-

ner and Mintz, 1977). To ensure that the integrations at different resolutions

have equivalent values of mixing and viscosity, the parameters are scaled so that

A0.48 = A0.1

(

∆x0.48

∆x0.1

)4
∆t0.1

∆t0.48
where A0.48 is the mixing/viscosity in the 0.48◦ model,

A0.1 is the mixing/viscosity in the 0.1◦ model, ∆x is the grid spacing and ∆t is the
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Parameter Coarse Resolution High Resolution
Resolution 0.48◦ × 0.48◦ 0.1◦ × 0.1◦

Grid 20 × 20 × 19 96 × 96 × 19
Time step 2400s 500s
Biharmonic horizontal viscosity 5.5 × 1012m4s−1 5 × 1010m4s−1

Biharmonic horizontal diffusivity 1.1 × 1012m4s−1 1 × 1010m4s−1

of heat and salt
Vertical viscosity 2 × 10−3m2s−1 2 × 10−3m2s−1

Vertical diffusivity of heat and salt 1 × 10−4m2s−1 1 × 10−4m2s−1
Quadratic bottom friction 0.001 0.001
CD coupling time scale 172800s 86500s
(damped model only)
SST restoring time scale 86500s 86500s

Table 2.1: Model parameters.

timestep. As the vertical resolution is the same at both resolutions the vertical

viscosity and vertical diffusivity are kept constant. More sophisticated schemes

for isopycnal mixing are not used as they tend to be highly nonlinear and were

found to cause the adjoint model to become unstable after a few timesteps.

Quadratic bottom drag and no slip boundary conditions are applied at the

bottom boundary. Bottom friction is necessary for the barotropic energy to

reach equilibrium, and because with low bottom friction large scale meanders

are favoured over mesoscale eddies (Rivière et al., 2004). Free slip boundary

conditions are applied at the side boundaries.

The C-D coupling scheme described in section 2.2 is used in all the experiments

with the 0.48◦ model. Although it is not necessary to include this scheme in an

eddy resolving model it was suggested that the C-D scheme may lead to smoother

velocity fields and a better behaved adjoint solution in an eddy resolving model

(Patrick Heimbach, personal communication), so for some of the 0.1◦ models runs

the CD scheme is included. Eddies in these runs are less vigorous, so this model

is referred to as the damped 0.1◦ model, while the model without the CD scheme

is referred to as the undamped 0.1◦ model.
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Figure 2.2: Model forcing fields. Left, SST∗. Right, zonal windstress τx.

2.3.2 Model Surface Forcings

The model is forced at the surface with a temporally and zonally constant zonal

windstress, which is sharply peaked in the centre of the channel,

τx(φ) = τx0
exp

(

− (φ − φm)2
)

(2.8)

where τx0
is the maximum windstress, φ is the latitude and φm is the latitude

at the centre of the channel (figure 2.2). Initially τx0
is set to 0.1Nm−2, which is

close to the winter mean for 55◦N (Peixoto and Oort, 1992).

For the thermal forcing, restoring boundary conditions are used, where the

heat flux into the ocean is given by,

QT = (SST∗ − T1)/τT (2.9)

where SST∗ is the apparent atmospheric temperature seen by the ocean surface,

after the effects of solar radiation and evaporation on the heat flux have been

taken into account (Haney, 1971), τT is the restoring timescale, and T1 is the

temperature of the top model layer. The heat content of the model is thus free to

vary over time as the heat flux into the model depends on the state of the surface

layer.

In the current case SST∗ is zonally constant and varies linearly with latitude

(figure 2.2),

SST∗(φ) = SST∗
0 + (φ − φm) B (2.10)
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Figure 2.3: Heat content, after the 20 year spin up, as a function of time. A) the
0.1◦ model B) the damped 0.1◦ model and C) the 0.48◦ model. Note the different
scales.

where SST∗
0 is the apparent atmospheric temperature in the centre of the channel,

and B is the meridional gradient of SST∗. The restoring timescale of 1 day

is relatively short, and causes significant damping of temperature anomalies at

the surface (section 2.3.4). A short τT is necessary to maintain the meridional

temperature gradients in the model. Other studies using GCMs to study the flow

in a channel have either restored to climatological fields over a longer timescale

but over the entire interior of the model domain (Alves and de Verdière, 1999), or

have applied sponge boundary conditions at the side boundaries. Restoring over

the entire domain is inappropriate here as we are interested in the sensitivity of

climate quantities to changes in the forcing, while sponge boundary conditions

would make the results harder to interpret. Initially SST∗
0 = 16◦C and B =

−2◦C◦N−1. Both these values are rather higher than observed in the real ocean

where the zonal mean temperature is 8◦C at 50◦N and B is −0.4◦C◦N−1 (Peixoto

and Oort, 1992), but were chosen so that the model would be highly unstable.

To simplify the analysis, salinity is kept constant at 35 p.s.u.

2.3.3 Model Initialisation

A perturbation is added to the initial conditions to allow eddies to develop more

quickly, and both models are spun up for 20 years prior to the start of the adjoint

integrations. This is not long enough for the model to achieve full thermodynamic
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Figure 2.4: Kinetic energy, after the 20 year spin up, as a function of time. A)
the 0.1◦ model B) the damped 0.1◦ model and C) the 0.48◦ model. Note the
different scales.

equilibrium, but it should be long enough for the velocity field to adjust to the

density structure. In the 0.48◦ model there is an obvious drift in the heat content

(figure 2.3C) and kinetic energy (figure 2.4C), but the drift in both the damped

and undamped 0.1◦ models is much smaller (figure 2.3A,B and figure 2.4A,B) .

As the aim of this thesis is to look at the usefulness of a particular method

for calculating climate sensitivities and how this relates to the predictability of

the system, and not to examine its equilibrium behaviour, the drift of the model

is not considered a problem.

2.3.4 Forward Model State

Due to the short timescale used for restoring to SST∗, deviations of the tempera-

ture from SST∗ are strongly damped in the surface layer in all models (figure 2.5).

Away from the surface layer in both the undamped and damped 0.1◦ model there

is a sharp front, and associated zonal jet, centred on 49.5◦N. Across the front

the temperature falls by around 5◦C over 1◦ latitude between 50 and 500m (fig-

ure 2.5). The front meanders between with a wavelength equal to twice the length

of the channel (figure 2.6). In the 0.48◦ model the front is broader due to the

lower resolution, and the temperature change across the front is only 8◦C over 3◦

latitude, between 50 and 500m (figure 2.5 right).

The kinetic energy in the channel is sharply peaked at the position of the
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Figure 2.5: Instantaneous temperature at 690 days after the 20 year spin up.
Left: undamped 0.1◦ model at 4.75◦E; centre: damped 0.1◦ model at 4.75◦E;
right: 0.48◦ model at 4.56◦E. Contour interval is 1◦C.

Figure 2.6: Instantaneous temperature at 95m, at 690 days after the 20 year spin
up. Left: undamped 0.1◦ model; centre: damped 0.1◦ model; right: 0.48◦ model.
Contour interval is 1◦C
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Figure 2.7: Zonally averaged kinetic energy per unit volume at 95m. Left the time
mean total kinetic energy TKE = uu+vv. Centre, kinetic energy due to the mean
flow MKE = ūū + v̄v̄. Right, eddy kinetic energy EKE = TKE − MKE. Solid
line: undamped 0.1◦ model; dashed line: damped 0.1◦ model; dotted line: 0.48◦

model. All time averages are calculated over the 690 period shown in figure 2.4.

front where there is a zonal jet, 49◦ in the undamped 0.1◦ model and 49.5◦ in the

damped 0.1◦ and 0.48◦ models (figure 2.7 left). The peak is broader in the 0.48◦

model, due to the less steep front, and kinetic energy decreases more rapidly with

depth (not shown), so that the total kinetic energy in the 0.48◦ model is half that

of the 0.1◦ models (figure 2.4). Above 500m all three models have similar levels

of kinetic energy although there are major differences in the way it is partitioned

between the mean and time varying parts of the flow. In the damped 0.1◦ model

more of the kinetic energy is contained in mean flow (figure 2.7 centre) and less

in the eddying field (figure 2.7 right) than in the undamped 0.1◦ model. Over all

depths there is a 50% reduction in the eddy kinetic energy in the damped 0.1◦

model, compared to the undamped 0.1◦ model. This is seen in the snapshots

of the temperature field at 95m, where there are more eddies present in the

undamped 0.1◦ model than in the damped 0.1◦ model (figure 2.6). In the 0.48◦

model the grid resolution is too coarse to permit eddies to form; almost all the

kinetic energy is due to the time mean flow (figure 2.7 left and right) and no

eddies are visible in the snapshots of the temperature field (figure 2.6 right).

At 52◦N there is a local maximum in the kinetic energy due to the mean flow in

the damped 0.1◦ model (figure 2.7 centre). This is due to a much weaker secondary
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zonal jet at this latitude, which can also be seen in the plots of instantaneous

temperature (figure 2.6). This peak is not present in the undamped 0.1◦ model,

but there is slower decay of eddy kinetic energy with latitude to the north of

the front than south of it (figure 2.7). In the undamped 0.1◦ model, most of

the eddies are formed north of the front (figure 2.6 left). Alves and de Verdière

(1999) found a similar asymmetry in their model of the Azores Front. A water

parcel of a given volume, between two isopycnals south of the front has higher

relative vorticity and is thicker than one north of it, as, away from the front, the

isopycnals in the surface layer in the basic state are nearly horizontal (figure 2.8).

A water parcel moving northwards gains negative relative vorticity, and decreases

in thickness, while one moving south gains positive relative vorticity and increases

in thickness. This leads to larger and weaker anticyclones north of the jet, and

smaller stronger cyclonic filaments south of it. The cyclonic filaments south of the

jet are quickly dissipated by the subgridscale dissipation in the model, while the

anticyclonic filaments north of it persist long enough to form pinched off eddies

(Alves and de Verdière, 1999).

The varying levels of eddy activity can also be seen in the fluctuation in time

of the kinetic energy and heat content of the channel. In the undamped 0.1◦

model the kinetic energy fluctuates about the mean by around 10% compared to

1% in the undamped model (figure 2.4) while in the heat content fluctuates by

around 0.2% in both the damped and undamped 0.1◦ models. The 0.48◦ model

has clearly failed to reach equilibrium, but even after detrending there are no

obvious fluctuations of the kinetic energy or heat content with time.

Thus although the general circulation in the three models is similar they have

varying amounts of eddy activity and allow the performance of the adjoint method

to be studied in systems that are expected to be highly chaotic, the undamped

0.1◦ model, less chaotic the damped 0.1◦ model, and non chaotic, the 0.48◦ model.

An estimate of the speed at which disturbances in the flow grow is given by

the Eady model of baroclinic instability. The growth rate of the most unstable

mode is

σmax = 0.3098
f

N

dU

dz
(2.11)
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Figure 2.8: The distribution of isopycnals across the front in Alves and de Verdière
(1999)’s model of the Azores Front. Near the surface the isopycnals are nearly
horizontal, so that a water parcel south of the front has a greater thickness, and
lower volume than one north of it. From Alves and de Verdière (1999).

where f is the Coriolis parameter, N = −g

ρ0

dρ

dz
is the buoyancy frequency, and

U is the mean velocity (Gill, 1982, p557). In all models the core of the jet is

the most baroclinically unstable part of the flow, with an e-folding time for the

instabilities, 1/σmax, of around 6-days (figure 2.9). Along the boundaries and at

depth this increases to around 5000 days.

2.4 The MITgcm Adjoint and Tangent Linear

Models

2.4.1 Generation of the Adjoint and Tangent Linear Models

There are two possible methods for generating an adjoint or tangent linear model,

linearise then discretise where the adjoint and tangent linear equations are first

derived from the continuous formulation of the nonlinear forward model and then

discretised, or discretise then linearise where the nonlinear forward model is first
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Figure 2.9: Eady growth period in days calculated from the time averaged velocity
and temperature fields, for the 690 days after the 20 year spin up. Top row (A-C):
Eady growth period at 50m. Bottom row (D-F): Eady growth period at 4.6◦E.
Left column (A,D) shows the undamped 0.1◦ model, middle column (B,E) shows
the damped 0.1◦ model, right column (C,F) shows the 0.48◦ model. Note that
the colour scale is not linear.
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discretised and the adjoint and tangent linear equations are either derived from

the discretised equations or from the computational code. The MITgcm uses

the discretise linearise approach. The discretise then linearise approach gives

the exact adjoint to the model code, resulting in a sensitivity that is correct

to within computational round off error, while the adjoint-discretise approach

is only accurate to within the accuracy of the finite difference approximations

(Sirkes and Tziperman, 1997). However, in some instances the linearise then

discretise method may be preferable. Sirkes and Tziperman (1997) observed an

unphysical computational mode due to the leapfrog time differencing scheme in

the solution of an adjoint model generated using the discretise then linearise

method but not in that generated by the linearise then discretise method. The

leapfrog scheme is not used in the MITgcm and so this is not a problem for

this study. Zhu and Kamachi (2000) showed that timestepping schemes that

are unconditionally stable in a nonlinear model may be only conditionally stable

in a TLM requiring a much shorter timestep to be used in a TLM; this is a

particular problem with some parameterisations for vertical diffusivity, and is the

reason why a constant vertical diffusivity is used in this study. The linearise then

discretise method allows the use of an approximate adjoint model, such as that

of Schiller and Willebrand (1995), which considerably reduces the computational

cost of running the adjoint model.

The main advantage of the discretise then linearise approach is that it en-

ables automatic differentiation software to be used to generate the adjoint code,

without which developing an adjoint model is extremely time consuming, and

changes to the forward model code may require the adjoint model to be com-

pletely rewritten. The MITgcm adjoint and tangent linear models are generated

using the free access automatic differentiation software TAMC (Giering, 1999;

Giering and Kaminski, 1998), and later its commercial successor TAF (Giering,

2005) which allows the adjoint model to be maintained alongside the forward

model code (Marshall et al., 2004). The principal advantage of TAF over TAMC

is speed. Generating and compiling the adjoint model takes around 1 hour using

TAMC but only 10 minutes using TAF. The adjoint code generated using TAF
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also allows the adjoint integration to be split so that it can fit into a computer

queue, while the TAMC generated code does not (Marshall et al., 2004). There

is also a bug in the TAMC generated tangent linear model code that causes the

forward model to crash due to counters for an iterative loop in the routine used

to solve for the pressure field not being reset correctly. This is corrected by hand

(Patrick Heimbach personal communication). The code generated by TAF and

TAMC is otherwise identical. Both TAMC and TAF deal with nondifferentiable

conditional statements in the forward model by requiring the adjoint model to

take the same branch of the code as the forward model (Giering and Kaminski,

1998). As the convective adjustment scheme contains conditional statements this

means that if convection occurs in the forward model, it also occurs in the adjoint

model, so the adjoint model does not calculate the part of sensitivity due to a

possible increase or decrease in convection.

2.4.2 Checkpointing Scheme and Computational Require-

ments

The adjoint model requires the state of the forward model in the reverse or-

der to which it is computed. Storing the forward model state at every timestep

would require prohibitively large amounts of memory, while recomputing at ev-

ery timestep would require prohibitively large amounts of computer time. The

MITgcm adjoint employs a checkpointing scheme with three loops, which reduces

the amount of storage required without involving excessive recomputations (fig-

ure 2.10). The resulting computational cost of the adjoint model is only around

5 times that of a single forward model integration (Griewank, 1992).

Using n1 = n2 = 65, n3 = 30, a 690 day integration of the 0.1◦ adjoint model

uses 4Gb of disk space and 2.5Gb of RAM. The adjoint model was mainly run on 4

processors of the Sun SMP server at the MPI for Meteorology in Hamburg, where

a 690 day integration of the adjoint model took about 7 days. A centred differ-

ence gradient check of the adjoint model results requires 2 further integrations of

the forward model. This significantly increases the run time, if several gradient
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Figure 2.10: Schematic of the checkpointing scheme in the MIT model. The
outer loop is divided into n1 segments and runs over the entire integration time
of L timesteps. The model state is written to disk when l = (i1 − 1)L/n1, where
i1 = 1, 2, . . . , n1. The middle loop is divided into n2 segments and runs between
timesteps l = (i1−1)L/n1 and l = i1L/n1, with the first integration of the middle
loop starting from l = (n1 − 1)L/n1. The model state is written to disk when
l = (i1 − 1)L/n1 + (i2 − 1)L/(n1n2), where i2 = 1, 2, . . . , n2. The inner loop
contains n3 timesteps and the model state is stored in memory at every timestep.
The adjoint model is then integrated backwards in time over the n3 timesteps of
the inner loop (Marotzke et al., 1999; Marshall et al., 2004). For illustration the
simple case n1 = 3, n2 = 4, n3 = 5 is shown here. Adapted from Marshall et al.
(2004, p.248)
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checks are required. Most of the forward model experiments were computed at

the Rechenzentrum Garching, but the difficulty of splitting the adjoint model

integrations using the TAMC generated code, meant that this was impractical

for the longer adjoint model runs.

2.5 Summary

• The basic model is a flat bottomed zonally reentrant channel, 9.6◦ by 9.6◦

with the southern boundary at 45◦N. The model is forced at the surface by

restoring boundary conditions for temperature, and by zonal windstress.

• The model is run at 2 different resolutions 0.1◦ and 0.48◦. Two versions of

the 0.1◦ model are run, damped and undamped. These differ only in the

inclusion of the CD coupling scheme in the damped model.

• The different levels of eddy activity in the undamped 0.1◦, damped 0.1◦

and 0.48◦ models allow the usefulness of the adjoint method to be studied

in systems that are highly chaotic, slightly chaotic and non chaotic respec-

tively.
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Chapter 3

Time Limits on the Applicability

of the Adjoint Model

3.1 Introduction

The aim of this chapter is to establish a timescale over which useful informa-

tion remains in the sensitivities calculated by the adjoint model, and to look at

methods of assessing whether sensitivities calculated by the adjoint model con-

tain useful information. We begin by looking at the results from integrations

of the tangent linear model, which allow us to define an approximate maximum

timescale over which we expect the linearisation to be valid in the most chaotic

undamped 0.1◦ model. The adjoint model is then run over this timescale (around

280 days), and again over a much longer timescale of around 690 days, on which

timescale the linear approximation in the undamped 0.1◦ model is clearly no

longer valid. The usefulness of the information in the sensitivities calculated by

the adjoint model is then assessed by comparing the adjoint model results with

finite difference gradient checks, and forward model experiments where a larger

spatial scale perturbation to the forcing has been made. The time evolution of

the adjoint sensitivities is also examined.

The two output functions considered in this chapter are the time mean total

heat content H and the time mean total kinetic energy K. Time averaged inte-
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gral quantities are chosen as we wish to look at the upper limit at which useful

information is retained in sensitivities calculated by the adjoint method. It is

thought that this upper limit may be longer for integral quantities that clearly

have predictability of the 2nd kind (Lorenz, 1975), even on a relatively short

timescale of a couple of years. Use of H and K allows a comparison between the

behaviour of dynamic and more slowly varying thermodynamic variables. The

majority of this work is covered in McLay and Marotzke (2006).

3.2 Validity of the Linearisation

3.2.1 Tangent Linear Model Results

Although it is known that there is a limit of applicability of the adjoint method in

any chaotic system, it is not clear what this is in any given model. The solution

of the TLM can be compared with the difference between 2 nonlinear model

integrations to give an indication of the timescale over which the linearisation

required for the adjoint model is valid (Errico and Vukicevic, 1992; Kleist and

Morgan, 2005). Following Kleist and Morgan (2005) a 1◦C perturbation was

applied to the initial temperature field at the grid cell that showed the highest

adjoint sensitivity of H to the temperature at the initial time (4.56◦E, 50.52◦N,

2703m for the 0.48◦ model, 5.35◦E, 52.55◦N, 324m for the damped 0.1◦ model, and

2.8◦E, 51.9◦N, 324m for the undamped 0.1◦ model). The location of the maximum

sensitivity of K to the temperature at the initial time is in approximately the

same location.

The trajectories in the two perturbed non linear model integrations diverge

in both the undamped 0.1◦ model and the damped 0.1◦ model, but the difference

between the trajectories saturates at a higher value in the undamped 0.1◦ model

due to the more vigorous eddies. Exponential divergence of nearby trajectories is

a characteristic of chaotic dynamics (Strogatz, 1994), but cannot be seen between

the two perturbed non linear integrations in either model due to saturation. The

tangent linear solution shows clear exponential growth in the undamped 0.1◦
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Figure 3.1: A) Divergence of the potential temperature calculated from two inte-
grations of the nonlinear model (solid lines) and calculated by the tangent linear
model (dotted lines). B) Correlation between the perturbation potential tem-
perature in the difference between 2 integrations of the non linear forward model
and the TLM, at 50m. Undamped 0.1◦ (blue) damped 0.1◦ model (red) and 0.48◦

model (green).

The divergence is defined as,

∑

ijk(Vijk∆Tijk)
2

∑

ijk
Vijk

where ∆Tijk is the perturbation tem-

perature of the grid cell with index ijk and Vijk is its volume. The correlation

is defined as

∑

ij
∆TTLMij

∆TNLMij

√
(

∑

ij
∆TTLMij

∆TTLMij

∑

ij
∆TNLMij

∆TNLMij

) , where ∆TTLM is the per-

turbation calculated by the TLM, and ∆TNLM is the difference between the two
nonlinear model integrations. The perturbed non linear model and the TLM are
initialised with a 1◦C perturbation to the initial potential temperature at the grid
cell that shows the highest sensitivity in the adjoint model runs, see text. Other
state variables behave similarly.
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Figure 3.2: Perturbation temperature at 50m after 694 days. The top row (panels
A-C) shows the results from the TLM, the bottom row (D-E) shows the difference
between 2 integrations of the nonlinear forward model. Left column (A,D) shows
the undamped 0.1◦ model, middle column (B,E) the damped 0.1◦ model, and the
right column (C,F) the 0.48◦ model. Note the difference in scales.
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model and grows more slowly in the damped 0.1◦ model (figure 3.1A). In the

damped 0.1◦ model the growth of the tangent linear solution is much slower.

However, after 690 days, the perturbation variables in the tangent linear solution

are still an order of magnitude greater than in the difference between the nonlinear

forward models. The integration time is insufficient to determine whether the

TLM solution is growing exponentially in the damped 0.1◦ model, which would

be indicative of chaos, or linearly. There is only slight divergence between the 2

integrations of the 0.48◦ nonlinear model, and the perturbation quantities are the

same size in the tangent linear and non linear model integrations (figure 3.1A).

The initial difference between the trajectories is larger than in the 0.1◦ models,

as the initial perturbation has been applied to a grid cell with a larger volume.

Although trajectories diverge much more quickly in the undamped 0.1◦ model

than in the damped 0.1◦ model, the linearisation is valid for a similar time interval,

with the correlation between the TLM and the difference between two non linear

forward model integrations falling below 0.8 after 200 days in the undamped 0.1◦

model and 250 days in the damped 0.1◦ model (figure 3.1B). There are therefore

similar differences between the spatial structure of the perturbations calculated by

the perturbed non linear model integrations and the TLM in both the undamped

and damped 0.1◦ models, and the main difference between the two models is

the much larger local growth of perturbations in the undamped 0.1◦ model. In

contrast the correlation coefficient does not fall below 0.8 in the 0.48◦ model.

In the undamped 0.1◦ model there is a large difference in the eddy field be-

tween the two perturbed forward model integrations. This leads to high per-

turbation temperatures distributed throughout the channel, in both the TLM

(figure 3.2A) and non linear model (figure 3.2D). In the damped 0.1◦ model the

perturbations are concentrated to the north of the central jet in both the difference

between the two non linear models (figure 3.2B) and in the TLM (figure 3.2E).

In the 0.48◦ model the perturbation to the non linear model shifts the phase of

the wave travelling through the channel slightly, resulting in alternating crescents

of positive and negative perturbation temperature in the centre of the channel

(figure 3.2F). While the TLM shows a slightly smaller phase shift the pattern is

40



similar (figure 3.2C).

The validity of the linearisation obviously depends on the perturbation made,

but the TLM results suggest that the adjoint method is likely to provide reliable

information over a timescale of 200 days for the undamped 0.1◦ model and 250

days for the damped 0.1◦ model. For the 0.48◦ model there is no obvious time

limit on its applicability.

3.2.2 Finite Difference Gradient Checks

The second common check on the usefulness of the adjoint gradients is to compare

the sensitivities calculated by the adjoint model with those from finite difference

gradients (section 1.2). Two different sets of finite difference gradient checks are

carried out, different magnitude perturbations to the temperature at the point

of maximum sensitivity at the initial time as calculated from the 690 day adjoint

model integration, T0maxsens
, and perturbing the surface wind stress at a number

of grid cells.

As discussed in section 1.3.1 the macroscopic sensitivity of a time averaged

quantity to the initial conditions is expected to approach 0 as the integration

time increases. A maximum integration time of 2000 days is too short for this to

happen for the sensitivity of H to T0maxsens
for any of the finite difference sensitiv-

ities calculated (figure 3.3D-F). In the damped and undamped 0.1◦ models the

magnitude of the finite difference sensitivity increases with increasing integration

time and with decreasing T0maxsens
(figure 3.3D-E). The increasing sensitivity with

decreasing T0maxsens
is similar to that seen in the chaotic regime of the Lorenz

(1963) equations (section 1.3.3). In the 0.48◦ model there is closer agreement

between the finite difference sensitivities calculated for different T0maxsens
but, un-

like the 0.1◦ models, an increase in T0maxsens
does not always lead to a decrease in

∆H
∆T0maxsens

(figure 3.3F).

The finite difference sensitivities agree well with the sensitivities calculated

by the adjoint model at least out to 690 days in the damped 0.1◦ model and

the 0.48◦ model for all ∆T0maxsens
except ∆T0maxsens

= 1 (figure 3.3B-C). In the
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Figure 3.3: Centred difference finite difference gradients ∆H/∆T0maxsens
for dif-

ferent ∆T0maxsens
(colour coding). Top row (A-C): Linear plot of ∆H/∆T0maxsens

over the integration time used in the adjoint model experiments, A) undamped
0.1◦ model, B) damped 0.1◦ model, and C) 0.48◦ model. Bottom row (D-F): Log-
arithmic plot of ∆H/∆T0maxsens

over over a period of 2000 days, A) undamped
0.1◦ model, B) damped 0.1◦ model, and C): 0.48◦ model. The results from the
different length adjoint model integrations in section 3.3 are also shown. Note
the different scales, and that the red and green curves are totally obscured by the
blue curve in A and C, and the red curve is totally obscured by the green curve
in B and F.
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undamped 0.1◦ model the sensitivities calculated by the adjoint model are much

larger than those calculated using finite difference gradients (figure 3.3A). In the

undamped 0.1◦ model the sensitivity calculated by the adjoint model to ∆T0maxsens

does not contain useful information, but it is not certain to what extent the finite

difference sensitivities do. Results for the sensitivity of the K to ∆T0maxsens
are

similar and are not shown here.

A perturbation of 1 × 10−5Nm−2 is also made to τx at 5 different grid cells.

After 690 days adjoint and finite difference gradients for H agree to within 2%

in the 0.48◦ model, to within 12% in the damped 0.1◦ model, and to within

31% in the undamped 0.1◦ model. The finite difference sensitivities in the 0.48◦

model are an order of magnitude larger than in the damped 0.1◦ model due to

the perturbation being made over a larger grid cell. However, the finite difference

sensitivities calculated in the undamped 0.1◦ model are also an order of magnitude

bigger than in the damped 0.1◦ model, for the same ∆τX (table 3.1). Results

from the experiments described in section 3.3 show that the sensitivity of H

to the magnitude of the surface windstress τX0
is not an order of magnitude

larger in the undamped 0.1◦ model than in the damped 0.1◦ model and 0.48◦

model (figure 3.4). For small ∆X0i
, finite difference sensitivities do not contain

any useful information due to the same local maxima and minima in the output

function that affect the adjoint model results. Although it may be possible to

choose a larger ∆X0i
that is not effected by these local maxima and minima, larger

scale curvature in the output function may mean that the resulting sensitivities

are also of limited use.

3.3 Comparison with Perturbed Forward Model

Experiments

Tanguay et al. (1995) demonstrated that the linearisation becomes inaccurate

first at the smallest length scales. It is therefore reasonable to assume that infor-

mation may be retained in the adjoint model solution for longer at larger spatial
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Undamped 0.1◦ model

Adjoint (1 × 1020 JN−1m2) Finite Difference (1 × 1020 JN−1m2) 1-finite difference
adjoint

(%)

2.0 1.5 25
2.3 1.6 27
2.4 1.7 29
2.6 1.8 31
2.7 1.9 31

Damped 0.1◦ model

Adjoint (1 × 1018 JN−1m2) Finite Difference (1 × 1018 JN−1m2) 1-finite difference
adjoint

(%)

1.8 1.9 -8.2
1.7 1.8 -9.2
1.5 1.7 -10
1.4 1.6 -11
1.3 1.5 -12

0.48◦ model

Adjoint (1 × 1019 JN−1m2) Finite Difference (1 × 1019 JN−1m2 ) 1-finite difference
adjoint

(%)

1.1 1.1 -0.10
4.8 4.8 0.72
4.2 4.2 1.7
5.8 5.7 0.34
3.1 3.1 0.45

Table 3.1: Finite difference gradients ∆H
∆τX0

and adjoint gradients ∂H
∂τX0

for a 690

day adjoint model integration for different grid cells (rows).
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Figure 3.4: H as a function of τX0
for a 690 day integration. To allow all 3 models

to be plotted on the same axis H from the unperturbed experiment τX0
has been

subtracted.
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scales. Instead of comparing the adjoint solution with point-wise gradient checks,

the effect of larger-scale changes in the forcing or parameter value ∆X0 can be

computed from the sensitivities calculated by the adjoint model by
∑

i ∆X0i

∂J
∂X0

i

.

This can then be directly compared with sensitivities calculated from perturbed

forward model experiments. The adjoint model results can be said to agree well

with the forward model results if a change in H or K calculated by the adjoint

model is tangent to a curve fitted to the forward model results.

A series of 4 perturbed forward model experiments are used; 1) varying the

vertical diffusivity, κv, over the entire model domain 2) increasing or decreasing

the restoring SST∗ by a constant factor throughout the entire model domain 3)

increasing or decreasing the meridional restoring SST∗ gradient while keeping

the mean restoring SST∗ constant 4) varying the strength of the maximum zonal

windstress, τx0
. All other forcings and parameters are held fixed at the same

values as used in the adjoint run (table 2.1). The experiments are started from

the same initial state as the forward model integration about which the adjoint

model is linearised, and integrated for 690 days with the perturbed forcing or

parameter value. The sensitivity to the perturbation calculated from the adjoint

model results, cannot easily be compared with the sensitivity calculated from the

forward model experiments at different times. A single integration of the adjoint

model calculates the sensitivity of the output function evaluated at the final time

to a perturbation in the forcing made at progressively earlier time steps, while

in the perturbed forward model experiments the perturbation to the forcing is

made at the initial time and the output function is evaluated at progressively

later time steps. For a comparison at different times the adjoint model must

either be started from different points along the forward model integration, or

the forward model experiments must be repeated with the perturbation to the

forcing made at different times. The former approach is used here, but due to

the computational expense of running the adjoint model the comparison is only

made at two times, 278 days and 690 days which are chosen based on the TLM

results (section 3.2.1). After 278 days the response to a perturbation calculated

by the TLM is an order of magnitude larger than that calculated by perturbed
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nonlinear model integrations, in the undamped 0.1◦ model; after 690 days, the

same applies for the response to a perturbation in the damped 0.1◦ model.

The dependence of H on all forcing is qualitatively similar between the models

indicating similar physical processes are responsible, so only the undamped 0.1◦

model results are shown here. 278 days after the perturbation to the forcing is

made H is a monotonic smoothly varying function of the mean SST∗ (crosses in

figure 3.5A), τx0
(crosses in figure 3.5C), and κv (crosses in figure 3.5D). H is also

a monotonic smoothly varying function of the SST∗ gradient in the undamped

0.1◦ model (crosses in figure 3.5B), and damped 0.1◦ model (not shown), but not

in the 0.48◦ model where both an increase and a decrease in the SST∗ gradient

cause H to decrease (not shown), and the response is clearly different to what

would be expected in equilibrium. Nevertheless, the smooth response of H to

changes in the forcing, suggests that H is clearly predictable after 278 days. 278

days is too short a timescale for the model to fully adjust to a change in the

forcing, so the response after 690 days is larger, but has a similar form (stars in

figure 3.5).

H depends almost linearly on τx and κv within the range of values used, and

there is good agreement between a linear fit to the forward model results and the

change in H calculated from the adjoint model results, in all models after 278

days (solid and dotted lines in figure 3.5 C and D). After 690 days the agreement

between a change in H due to a change in τx0
or a change in κv calculated by

the adjoint model is still good in the damped 0.1◦ model and the 0.48◦ model.

In the undamped 0.1◦ model the agreement between the change in H due to a

change in κv calculated using the forward and adjoint models has deteriorated

after 690 days, but adjoint model results still have the correct sign and order of

magnitude (dashed and dot-dashed lines in figure 3.5D). In contrast the sensitivity

to τx calculated by the adjoint model is 2 orders of magnitude larger than that

calculated from the forward model experiments and has the wrong sign, and

there is no information retained in the adjoint solution even on this spatial scale

(dashed and dot-dashed lines in figure 3.5C).

H does not depend linearly on either the mean SST∗, or on the SST∗ gradient
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Figure 3.5: H in the perturbed forward model experiments, and as predicted
from the adjoint model results for the undamped 0.1◦ model. A) H as a function
of mean SST∗ B) H as a function of the North South SST∗ difference across the
channel C) H as a function of the maximum zonal windstress τx0

D) H as a
function of κv. Crosses, results from the perturbed forward model experiments
after 278 days. Dotted line, quadratic fit to perturbed forward model experiments
after 278 days. Solid line, response to perturbation predicted from the adjoint
model results after 278 days. Circle, forward model state about which the adjoint
model is linearised in 278 day integration. Stars, results from the perturbed for-
ward model experiments after 690 days. Dash-dot line, quadratic fit to perturbed
forward model experiments after 690 days. Dashed line, response to perturbation
predicted from the adjoint model results after 690 days. Square, forward model
state about which the adjoint model is linearised in 690 day integration.
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as a cooling at the surface leads to convection, while a warming does not. In

this case a quadratic is fitted to the data, as it is the lowest order polynomial

which can approximate the data. The adjoint model is constructed so that con-

ditional statements always take the same value as in the forward model (Giering,

1999), so it is unable to calculate the sensitivity associated with an increase in

convection correctly. However, in the region of the unperturbed forward model

experiments the adjoint model results still agree well with the perturbed forward

model experiments in all models after 278 days (solid and dotted lines in fig-

ure 3.5A and B). After 690 days there is still good agreement between the change

in H calculated from the adjoint model results, and from the perturbed forward

model experiments, in the damped 0.1◦ and 0.48◦ model. Again the agreement

in the undamped 0.1◦ model has deteriorated, but the response calculated by

the adjoint model, still has the correct sign and order of magnitude (dashed and

dot-dashed lines in figure 3.5A and B).

In the forward model experiments the dependence of K on the SST∗ gradient,

τx0
and κv is qualitatively the same after 278 days in all models, so again only the

undamped 0.1◦ model results are shown here (crosses in figure 3.6B-D). As for H

the response after 690 days is larger, but has a similar form (stars in figure 3.6B-

D). K does not depend linearly on either the SST∗ gradient, τx0
and κv so to

enable comparison with the adjoint model results, a quadratic is fitted to the

forward model results in all experiments. After 278 days there is good agreement

between the adjoint and forward model results in all experiments in all 3 models

(solid lines and dotted lines in figure 3.6B-D). After 690 days there is still good

agreement with the adjoint and forward model results in the damped 0.1◦ model

and 0.48◦ model, but no agreement at all in the undamped 0.1◦ model (dashed

and dot-dashed lines in figure 3.6B-D).

The dependence of K on the mean SST∗ is more complicated, in the undamped

0.1◦ model a decrease in the mean SST∗ leads to an increase in K (crosses in

figure 3.6A) while in the 0.48◦ model it leads to a decrease (not shown). After 278

days the adjoint and forward model results agree well in the undamped 0.1◦ model

(solid and dotted lines figure 3.6A), and in the damped 0.1◦ model and 0.48◦ model
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Figure 3.6: K in the perturbed forward model experiments, and as predicted
from the adjoint model results for the undamped 0.1◦ model. A) K as a function
of mean SST∗ B) K as a function of the North South SST∗ difference across the
channel C) K as a function of the maximum zonal windstress τx0

D) K as a
function of κv. Crosses, results from the perturbed forward model experiments
after 278 days. Dotted line, quadratic fit to perturbed forward model experiments
after 278 days. Solid line, response to perturbation predicted from the adjoint
model results after 278 days. Circle, forward model state about which the adjoint
model is linearised in 278 day integration. Stars, results from the perturbed for-
ward model experiments after 690 days. Dash-dot line, quadratic fit to perturbed
forward model experiments after 690 days. Dashed line, response to perturbation
predicted from the adjoint model results after 690 days. Square, forward model
state about which the adjoint model is linearised in 690 day integration.
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(not shown). After 690 days there is still good agreement between the adjoint

and forward model results in the damped 0.1◦ model, but response calculated

by the adjoint model is too large and has the wrong sign in the undamped 0.1◦

model (dashed and dot-dashed lines in figure 3.6A), again there is no information

remaining in the sensitivities calculated by the adjoint model even at the largest

spatial scale. Although in both 0.1◦ models there is a greater response to the

change in SST∗ in the forward model after 690 days than after 278 days, in the

0.48◦ model the response is reduced. In 0.48◦ model the adjoint method also gives

the wrong sign for the sensitivity of K to the mean SST∗ after 690 days.

The greater success of the adjoint model at calculating the sensitivity of the

heat content to SST∗ and κv can also be seen in the rate of growth of adjoint

sensitivities. The sensitivity of H and K to SST∗, κv and τx grows throughout the

integration time in all the models (figure 3.7). If the integration time is shorter

than the time needed for the model to reach equilibrium, a perturbation applied

over a longer time period will have a greater effect on the time averaged climate

quantities. However, although the adjoint sensitivities in the 0.48◦ and damped

0.1◦ model grow at similar rates, the sensitivities in the undamped 0.1◦ model,

show the broadly exponential growth expected in a chaotic system (figure 3.7).

The growth is not a pure exponential, there are times when the sensitivity grows

less rapidly, or even decays. However the sensitivities of H to SST∗ (figure 3.7A),

and H to κv (figure 3.7B), in the undamped 0.1◦ model remain the same order of

magnitude as in the damped 0.1◦ model and 0.48◦ model for a longer time than

the sensitivity of H to τx0
(figure 3.7C) and the sensitivity of K to SST∗, κv,

and τx0
(figure 3.7D-F). This suggests that sensitivities calculated by the adjoint

model involving thermodynamic variables only may contain useful information

on longer time scales than those that also involve dynamic variables as it takes

longer for the exponential growth to dominate in this case. This may also be

affected by the strength of restoring boundary conditions at the surface.
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Figure 3.7: Growth of the sensitivity calculated by the adjoint model in the
undamped 0.1◦ model, blue, the damped 0.1◦model, red, and the 0.48◦ model,
green. A) mean sensitivity per unit area of H to SST∗ B) mean sensitivity per
unit volume of H to κv at 50m C) mean sensitivity per unit area of H to τx D)
mean sensitivity per unit area of K to SST∗ E) mean sensitivity per unit volume
of K to κv at 50m F) mean sensitivity per unit area of K to τx. Note the adjoint
model starts from the end of the forward model integration and runs backwards
in time, right to left here.
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3.4 Discussion

The results presented here agree with those of Lea et al. (2002) and Köhl and

Willebrand (2002), that chaos in eddy resolving ocean models does provide a time

limit beyond which the adjoint model ceases to give useful information, which is

related to the limit of predictability of the first kind. After 278 days when the

comparison of the nonlinear forward model and the tangent linear model results

suggest that the linear approximation assumed in the adjoint model is likely to

be valid, the adjoint model is able to give the correct sensitivity of H and K to

κv, τx0
, the mean SST∗ and the meridional SST∗ gradient in all models. After

690 days, when comparison between the nonlinear forward model and tangent

linear model integrations suggest that the adjoint model is unlikely to provide

useful information in the undamped 0.1◦ model the adjoint model is no longer

able to give the correct sensitivity of K to any quantity or of H to τx0
, however,

the adjoint model is still able to give the correct sensitivity of H to the mean

SST∗, SST∗ gradient and κv. This indicates that some information remains in

the adjoint sensitivities for far longer than the non linear timescale of the system.

The amount of useful information in the adjoint method also depends on the

quantity being studied. The sensitivity of the heat content to thermodynamic

variables, SST∗, and κv contains useful information over longer timescales than

the sensitivity of the heat content to the dynamic variable τx, and the sensitivity

of the kinetic energy to all variables. This indicates that the adjoint method is

more stable with regards to the more slowly varying thermodynamic quantities,

than to dynamic quantities, but caution is needed in this interpretation as the

strong restoring to SST∗ damps eddies in the surface layer of the model and

sensitivities calculated by the adjoint model may grow more rapidly in a model

with weaker restoring.

Finite difference gradient checks fail to provide an indication of when an ad-

joint model can give us climatologically relevant sensitivity information. Lea et al.

(2000) introduced the concepts of macroscopic and microscopic sensitivity of time

averaged climate quantities, where the macroscopic sensitivity describes the re-
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sponse of the climate to large scale changes in the forcings and parameter values,

and the microscopic sensitivity describes the fluctuations in the response due to

changes in the model trajectory caused by the change in forcing. The adjoint

model calculates the microscopic sensitivity, and it is dominated by chaos. For

short time scales finite difference methods also give the microscopic sensitivity.

It is possible that on longer timescales finite difference gradients may give the

macroscopic sensitivity, but this is not true of the adjoint method. In contrast

experiments where a larger spatial scale perturbation has been made to the forc-

ing can be used to show if the information obtained from the adjoint model is

climatically relevant. However, they do not show if information is also retained

at small spatial scales and this is the subject of the next chapter.

3.5 Summary

• Information remains in the large scale structure of sensitivities calculated by

the adjoint model for far longer than the nonlinear timescale of the system.

There is information remaining in the sensitivities calculated by the adjoint

model on a timescale of at least 690 days, in the chaotic undamped 0.1◦

model.

• The adjoint method is able to calculate sensitivities only involving ther-

modynamic variables over a longer timescale than sensitivities that involve

dynamic variables.

• Finite difference gradient checks do not provide a good indication of whether

useful information remains in gradients calculated by an adjoint model in

eddy resolving ocean models. Perturbed forward model experiments provide

an alternative check on the usefulness of adjoint gradients.

53



Chapter 4

Spatial Structure of Sensitivities

Calculated by the Adjoint Model

4.1 Introduction

The results of the previous section show that information is retained on the largest

spatial scales, beyond the time at which the system can be expected to behave

linearly. However, this does not automatically imply that the adjoint model still

provides information efficiently. Running the adjoint model is around 5 times as

expensive as running the forward model, so the sensitivity information provided

by the adjoint model has to be in greater detail than could easily be obtained

from perturbed forward model experiments. In this chapter the spatial structures

in sensitivities calculated by the adjoint model are examined to see if they make

physical sense, and if they provide information at a resolution that could not

easily have been provided by perturbed forward model experiments.

In the previous chapter only two output functions, the heat content and the

total kinetic energy were used. Two further output functions are introduced

here, the available potential energy and the thermocline depth. As in the previous

chapter sensitivities are analysed after 278 days when we expect the adjoint model

to give good results, and after 690 days when we do not.

54



D
 (

m
)

Figure 4.1: Zonally averaged thermocline depth. Solid line: undamped 0.1◦

model; dashed line: damped 0.1◦ model; dotted line: 0.48◦ model. All averages
are calculated over the 690 day period used for the long adjoint model runs.

4.1.1 Thermocline Depth

Several definitions of the thermocline depth, D, exist. Here we use the e-folding

scale for the potential density, σ, meaning that density of the thermocline is

defined by

σ(D) = σ(−H) +
σ(0) − σ(−H)

e
(4.1)

where H is the depth of the channel, σ(−H) is the potential density at the bottom,

and σ(0) is the potential density at the surface. The depth of the thermocline

is then found by searching for the first model layer k which is denser than σ(D)

and then linearly interpolating between the depths zk and zk−1.

D = (zk − zk−1)
σ(D) − σ(zk−1)

σ(zk) − σ(zk−1)
+ zk−1 (4.2)

The thermocline depth is similar in the damped and undamped 0.1◦ models.

There is a local minimum at 49◦N where there is convection associated with

upwelling south of the front, and a sharp decrease in thermocline depth north of

50◦N which is also associated with convection. In the 0.48◦ model the thermocline

is deeper, but has a similar shape (figure 4.1).

The actual output function used here is the spatial and temporal mean ther-

mocline depth D, where the overbar denotes that the thermocline depth has been

calculated from the spatial and temporal mean temperature and salinity. Defin-
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ing the thermocline depth in the way used here involves conditional statements,

which mean the sensitivity is poorly defined if σ(zk) = σ(D). By using a definition

for the mean thermocline depth based on time and spatially averaged quantities,

D = D(σ(Tz)), rather than the time averaged thermocline depth calculated from

instantaneous quantities, this becomes less likely and σ(zk) was not equal to σ(D)

for any of the adjoint integrations used here.

4.1.2 Available Potential Energy

The kinetic energy of the channel can be changed, either by direct forcing through

increased windstress, or indirectly as a response to a change in the density struc-

ture, and thus the potential energy, of the channel. The available potential energy

(APE) provides a measure of how much of the potential energy in the channel

is available for conversion to kinetic energy, and looking at the sensitivity of the

APE should thus allow us to distinguish between sensitivity to direct and indirect

forcing.

The total potential energy contained in the worlds oceans,

TPE =
∫ ∫ ∫

ρgz dx dy dz (4.3)

is seven orders of magnitude greater than the total kinetic energy (Oort et al.,

1989). However, not all of the potential energy is available for transformation into

kinetic energy. Lorenz (1955) defined the concept of available potential energy,

APE, as the difference between the total potential energy and the potential energy

of a reference state that has the minimum total potential energy which could

result from an adiabatic redistribution of mass. The reference state is stably

stratified and has horizontal isopycnals, and the sum of available potential energy

and kinetic energy is conserved under adiabatic flow. For the global ocean the

available potential energy is just 0.001% of the total potential energy (Oort et al.,

1989).

Several methods of calculating the oceanic APE, or more specifically the en-

ergy of the reference state, have been proposed. Here we use the method of
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Oort et al. (1989), which is a modified version of Lorenz (1955)’s method for the

atmosphere. The APE is defined as,

A = −1

2
g
∫ ∫ ∫

(ρ − ρ̃)2

δσ̃/dz
dx dy dz (4.4)

where ρ̃ is the global mean density at the constant height z and δσ̃/dz is the

gradient of potential density. This definition assumes that horizontal gradients

in density are much smaller than vertical gradients, which is normally the case in

the ocean. It is easily seen from equation 4.4 that A decreases if the isopycnals

become more horizontal, or the stratification becomes more stable.

4.2 Sensitivity after 278 Days

4.2.1 Sensitivity to SST∗

In all models regions of high sensitivity to SST∗ are associated with convection

in the forward model, as perturbations to SST∗ in these regions are mixed to a

greater depth and effect a larger volume of water. In all models convection is most

frequent and deepest along the northern boundary of the channel (figure 4.2D-F).

There are also shallower bands of convection associated with upwelling south of

the front between 49◦N and 50◦N in the 0.1◦ models and between 47◦ and 50◦N

in the 0.48◦ model (figure 4.2D-F). In the undamped 0.1◦ model there is also a

band of convection at 52◦N (figure 4.2E) this is associated with upwelling south

of the secondary zonal jet (section 2.3.4) .

Sensitivity of H to SST∗

The sensitivity of H to SST∗, in the 0.48◦ model is highest along the northern

boundary, and south of the front at 48◦N where there is convection in the forward

model (figure 4.3C). After 278 days both the damped and undamped 0.1◦ models

have regions of high sensitivity of H to SST∗, at the northern boundary and at

50◦N, also associated with convection (figure 4.3A and B). Although convection

is stronger at 52◦N than at 50◦N in the undamped 0.1◦ model there is no clearly
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Figure 4.2: Number of timesteps convection occurs averaged over 278 days. Top
row (A-C) convection between the top two model layers. Bottom row (D-F)
zonally averaged convection. Left (A,D): undamped 0.1◦ model, centre (B,E):
damped 0.1◦, right (C,F): 0.48◦ model.
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Figure 4.3: Sensitivity of H to the restoring SST∗ as calculated by the adjoint
model at T=0 in a 278 day integration. A: undamped 0.1◦ model B: damped 0.1◦

C: 0.48◦ model. Due to the extremely high sensitivity to SST∗ along the northern
boundary in both 0.1◦ models, a different scale is used north of 53.5◦N (black line
in panels A and B, and 2 sets of numbers along the colour key). Also note the
difference in scale between the panels.

discernible band of high sensitivity at 52◦N (figure 4.3B). At 52◦N the convection

is confined to the second model layer (figure 4.2E), so that a SST∗ perturbation

in this region effects the shallow surface layers only .

Sensitivity of D to SST∗

In the damped 0.1◦ model there is a band of high negative sensitivity at the

northern boundary and a band of positive sensitivity at 48◦N (figure 4.4B). In the

undamped model the thermocline depth is 738m and is similar to the maximum

depth of convection at the northern boundary (figure 4.2E). An increase in SST∗

at the northern boundary is thus able to reach the depth of the thermocline in

the damped 0.1◦ model, causing it to deepen (D becomes more negative). The

band of convection at 50◦N is only 150m deep (figure 4.2E), and the integration

time is insufficient for an increase in SST∗ in this region to diffuse down to the

thermocline, and the resulting warming is all above the level of the thermocline.

The sensitivity of D to SST∗ is positive throughout the channel in the 0.48◦

model, including the northern boundary (figure 4.4C). In the 0.48◦ model the

thermocline is deeper, 1013m, and the maximum depth of convection is shallower
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Figure 4.4: Sensitivity of D to SST∗ as calculated by the adjoint model after
278 days of a 690 day integration. A: the undamped 0.1◦ model; B: the damped
0.1◦ model; C: the 0.48◦ model. Due to the extremely high sensitivity to SST∗

along the northern boundary in both 0.1◦ models, a different scale is used north
of 53.5◦N (black line in panels A and B and 2 sets of numbers along the colour
key). Also note the difference in scale between the panels.

(figure 4.2F), so that throughout the entire channel the increase in SST∗ all the

heat uptake due to an increase in SST∗ is above the thermocline. In the undamped

0.1◦ model there is a band of positive sensitivity at 50◦N but it is less distinct

than in the damped 0.1◦ model. No band of high sensitivity can be seen at the

northern boundary due to the small scale patches of extremely high sensitivity

similar to those seen in the heat content.

Sensitivity of K to SST∗

In the 0.48◦ model the sensitivity of K associated with convection at the north-

ern boundary is negative, where an increase in SST∗ would tend to decrease the

meridional temperature gradient and the available potential energy, and positive

at 48◦N where an increase in SST∗ would tend to increase the meridional temper-

ature gradient and the available potential energy. There is no obvious pattern in

the sensitivity of K to SST∗ in the damped or undamped 0.1◦ model at 278 days,

due to patches of extremely high sensitivity at the northern boundary, similar to

those seen in the sensitivity of H to the SST∗ (figure 4.5A and B).
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Figure 4.5: Sensitivity of K to the restoring SST∗ as calculated by the adjoint
model at T=0 in a 278 day integration. A: undamped 0.1◦ model B: damped 0.1◦

C: 0.48◦ model. Due to the extremely high sensitivity to SST∗ along the northern
boundary in both 0.1◦ models, a different scale is used north of 53.5◦N (black line
in panels A and B, and 2 sets of numbers along the colour key). Also note the
difference in scale between the panels.

Sensitivity of A to SST∗

The sensitivity of A to SST∗ in the 0.48◦ model is negative everywhere (fig-

ure 4.6C). Warming the surface of the channel increases the static stability and

reduces the available potential energy. This dominates the sensitivity of A to

SST∗ in the 0.48◦ model, so that the effect of changing the meridional temper-

ature gradient, which is clearly visible, in the sensitivity of K to SST∗, is not

seen. Again the sensitivity is most negative where there is convection, as the

temperature perturbations are mixed to a greater depth effecting a larger volume

of water.

In the damped and undamped 0.1◦ models there are bands of high positive

sensitivity of A to SST∗ at 50◦N, and bands of negative sensitivity along the

northern boundary (figure 4.6B). Again these correspond to bands of convection

in the forward model. Although all three models have negative sensitivity along

the northern boundary, the bands of sensitivity associated with convection due

to upwelling at the south of the front are of opposite sign in the 0.1◦ models and

0.48◦ model. Heating here would tend to increase the meridional temperature
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Figure 4.6: Sensitivity of A to SST∗ as calculated by the adjoint model after
278 days of a 690 day integration. A: the undamped 0.1◦ model; B: the damped
0.1◦ model; C: the 0.48◦ model. Due to the extremely high sensitivity to SST∗

along the northern boundary in both 0.1◦ models, a different scale is used north
of 53.5◦N (black line in panels A and B and 2 sets of numbers along the colour
key). Also note the difference in scale between the panels.

gradient and hence the available potential energy. Different processes dominate

the sensitivity of the available potential energy to SST∗ in the different resolution

models.

4.2.2 Sensitivity to κv

The forward model uses a constant value of κv, but the adjoint model calculates

the sensitivity to κv throughout the channel. The sensitivity to κv in the surface

layer is identically zero, as the model does not use the diffusivity in the surface

layer to calculate heat fluxes. The downwards diffusive heat flux in the model

depends on κv∂T/∂z, so that sensitivity of all quantities to κv tends to be highest

where ∂T/∂z is highest. ∂T/∂z is highest near the surface (figure 4.7D-F) and

in the south of the channel (figure 4.7A-C).

Sensitivity of H to κv

After 278 days sensitivity of H to the vertical diffusivity, κv, is highest at 50m in

the 2nd model layer in the 0.48◦ model and both the damped and undamped 0.1◦

models (figure 4.8D-F). The short integration time means that the sensitivity is
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Figure 4.7: ∂T/∂z averaged over the 690 day integration used for the adjoint
model integrations. Top row (A-C),∂T/∂z at 50m. Bottom row (D-E), zonally
averaged ∂T/∂z. Left (A,D): the undamped 0.1◦ model; centre (B,E): the damped
0.1◦ model; right (C,F): the 0.48◦ model. Note difference in scales between the
panels.
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Figure 4.8: Sensitivity of H to κv as calculated by the adjoint model at T=0 in a
278 day integration. Top row (A-C), sensitivity of H to κv at 50m. Bottom row
(D-E), zonally averaged sensitivity of H to κv Left (A,D): the undamped 0.1◦

model; centre (B,E): the damped 0.1◦ model; right (C,F): the 0.48◦ model. Note
difference in scales between the panels.
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Figure 4.9: Sensitivity of D to κv as calculated by the adjoint model after 278
days of a 690 day integration. A: Sensitivity in the undamped 0.1◦ model at
593m. B: Sensitivity in the damped 0.1◦ model at 774m C: Sensitivity in the
0.48◦ model at 992m. Bottom row (D-F): zonally averaged sensitivity, in D the
undamped 0.1◦ model, E the damped 0.1◦ model and F the 0.48◦ model. Note
the difference in scale between the panels.

near zero elsewhere, as the only heat source is at the surface and the choice of

κv (1 × 10−4m2s−1) means that heat can only diffuse by about 50m in 278 days.

At 50m there are bands of high sensitivity along the southern boundary in all

models and at 51◦N in the 0.48◦ model, and at 53◦N in the damped 0.1◦ model

(figure 4.8A-C). These bands of high sensitivity all correspond to areas of high

∂T/∂z (figure 4.7A-C).
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Sensitivity of D to κv

The sensitivity of D to κv is strongly negative above the thermocline and strongly

positive below it in all 3 models (figure 4.9D-F). Increasing the diffusivity in a

model layer increases the heat flux into that layer so this pattern of sensitivity

reduces ∂σ/∂z. Directly above the thermocline the sensitivity is most strongly

negative in the south of the channel where ∂T/∂z is highest, and lowest in the

north of the channel where ∂T/∂z is lowest. This signal can be seen clearly in all

three models. As for the sensitivity of H the sensitivity of D to κv is also high

at the surface (figures 4.9D-F) where ∂T/∂z is highest. However, the sensitivity

is much smaller than at the level of the thermocline. Elsewhere the sensitivity

is near zero as the integration time is insufficient for the signal to diffuse over a

greater distance.

Sensitivity of K to κv

After 278 days there is high sensitivity of K to κv, corresponding to high ∂T/∂z,

between 50m and 150m in all three models (figure 4.10D-F). At 50m the sensi-

tivity is positive south of the front and negative north of the front, in both the

0.48◦ model and the damped 0.1◦ model (figure 4.10B and C). An increase in

κv south of the front leads to a greater meridional temperature gradient across

the front, and an increase in available potential energy, while an increase in κv

north of the front has the opposite effect. Although this can also be seen in the

zonally averaged sensitivity in the undamped 0.1◦ model (figure 4.10D), the sig-

nal is hidden by small scale patches of extremely high sensitivity around 46◦N in

the plot of the sensitivity of K to κv at 50m (figure 4.10A). In the damped 0.1◦

model there is an area of high negative sensitivity of K to κv between 400m and

500m and 47◦N to 51◦N and an area of high positive sensitivity between 500m

and 700m (figure 4.10E). This is at the base of the front (figure 2.5B), increas-

ing the diffusivity below the base of the front tends to make the front deeper,

increasing the extent of the zonal jet, while decreasing the diffusivity above the

base of the front would tend to make it shallower. This is not seen in the 0.48◦

model (figure 4.10F).
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Figure 4.10: Sensitivity of K to κv as calculated by the adjoint model at T=0 in
a 278 day integration. Top row (A-C), sensitivity of K to κv at 50m. Bottom
row (D-E), zonally averaged sensitivity of K to κv Left (A,D): the undamped 0.1◦

model; centre (B,E): the damped 0.1◦ model; right (C,F): the 0.48◦ model. Note
difference in scales between the panels.
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Figure 4.11: Sensitivity of A to κv as calculated by the adjoint model at T=0
in a 690 day integration. Top row (A-C): sensitivity at 50m. Bottom row (D-
F): zonally averaged sensitivity. Left column (A,D): the undamped 0.1◦ model;
middle column (B,E): the damped 0.1◦ model; right column (C,F): the 0.48◦

model. Note the difference in scale between the panels.

Sensitivity of A to κv

As for the sensitivity of K to κv the sensitivity of A to κv is positive in the south

of the channel but negative in the north of the channel in the damped 0.1◦ model

(figure 4.11B), as this would tend to increase the meridional temperature gradient.

This signal can be seen in the zonally averaged sensitivity in the undamped 0.1◦

model (figure 4.11D) but is difficult to see in the sensitivity at 50m due to small

patches of high sensitivity along the southern boundary. In the 0.48◦ model the

sensitivity of A to κv is negative everywhere at 50m (figure 4.11C). The static

stability dominates the sensitivity of A to κv in the 0.48◦ model in the same
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Figure 4.12: Sensitivity of H to τx as calculated by the adjoint model at T=0 in
a 278 day integration. A: undamped 0.1◦ model B: damped 0.1◦ C: 0.48◦ model.
Note difference in scales, between the panels.

way as it dominates the sensitivity of A to SST∗. Between 200m and 400m the

sensitivity to κv is positive in the 0.48◦ model (figure 4.11F). There is a minimum

in ∂σ/∂z at 200m, and decreasing κv above this level, and increasing κv below

this level further decreases ∂σ/∂z in this region. The sensitivity of A to κv is

negative between 400m and 700m in the damped 0.1◦ model, as this again tends

to increase the static stability (figure 4.11E).

4.2.3 Sensitivity to τx

Unlike the sensitivity to SST∗ and κv the sensitivity to τx is not governed by local

processes, but by changes in the circulation throughout the entire channel that

result from a change in the windstress, and there are no simple explanations for

the patterns in the sensitivity.

Sensitivity of H to τx

Increased eastwards windstress leads to an increase in the southwards Ekman

transport at the surface, and thus deeper down-welling of warm water south of

the jet. Consequently the sensitivities of H to τx are positive everywhere in the

0.48◦ model. There is a band of high sensitivity at 51◦N in the 0.48◦ model
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Figure 4.13: Sensitivity of D to τx as calculated by the adjoint model after 278
days of a 690 day integration. A: the undamped 0.1◦ model; B: the damped 0.1◦

model; C: the 0.48◦ model. Note the difference in scale between the panels.

(figure 4.12C) and at 47◦N in the damped 0.1◦ model (figure 4.12B). Again the

sensitivity in the undamped 0.1◦ model is dominated by patches of very high

positive and negative sensitivity, which are unlikely to be the sensitivity of H to

a non infinitessimal perturbation to τx in these regions.

Sensitivity of D to τx

In the 0.48◦ model the sensitivity of D to τx is near zero north of 52◦N, negative

between 48◦N and 52◦N, and positive south of 52◦N (figure 4.13C). North of

52◦N D is controlled by the depth of convection, which is constant in the adjoint

model integrations. The reason for the exact pattern of sensitivity south of 52◦N

is unclear, but could be ascertained by making this shape of perturbation to

τx in the forward model. There is no large scale spatial structure evident in

the sensitivity of D to τx in the undamped 0.1◦ model (figure 4.13A), while in

the damped 0.1◦ model there is a band of weak negative sensitivity at 47◦N

(figure 4.13B).

Sensitivity of K to τx

The sensitivity of K to τx is also positive, due to direct driving by the wind. The

sensitivity of K to zonal windstress is highest in the centre of the channel, where

the zonal velocity is highest, in both the 0.48◦ model and damped 0.1◦ models
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Figure 4.14: Sensitivity of K to τx as calculated by the adjoint model at T=0 in
a 278 day integration. A: undamped 0.1◦ model B: damped 0.1◦ C: 0.48◦ model.
Note difference in scales, between the panels.

(figure 4.14B and C). The band of high sensitivity in the centre of the channel

can also be seen in the undamped 0.1◦ model after 278 days (figure 4.14A), but

is much less distinct.

Sensitivity of A to τx

The sensitivity of A to τx is positive between 48◦N and 50◦N in the 0.48◦ model,

negative between 45◦N and 48◦N in the 0.48◦ model and near zero elsewhere.

In the damped 0.1◦ model there is a band of high positive sensitivity at 46.5◦N

and a less distinct band of negative sensitivity at 52◦N. There is a lot of small

scale structure near the northern boundary, but there may be an additional band

of high sensitivity at 54◦N. Again the sensitivity is near zero elsewhere. The

physical explanation for the different response in the two models is not clear

in this case, and further forward model experiments with perturbations to the

surface windstress in this area are required to interpret the results. No structure

is visible in the sensitivity in the undamped 0.1◦ model after 278 days.
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Figure 4.15: Sensitivity of A to τx as calculated by the adjoint model after 278
days of a 690 day integration. A: the undamped 0.1◦ model; B: the damped 0.1◦

model; C: the 0.48◦ model. Note the difference in scale between the panels.

4.3 Sensitivity after 690 Days

After 690 days the sensitivities calculated by the adjoint model in the 0.48◦ model

look similar to those at 278 days for all quantities but tend to have a larger magni-

tude as they are sensitivities to perturbations applied over a longer time interval.

There are more differences between the sensitivities calculated by the adjoint

model after 278 and 690 days in the undamped and damped 0.1◦ models, and

these are discussed in greater length in this section. As the differences between

the two times are similar for most variables, here we concentrate on 3 fields, the

sensitivity of H to SST∗, the sensitivity of K to τx and the sensitivity of D to κv.

In both the 0.1◦ models there are small areas of extremely high sensitivity of

H to SST ∗ that accumulate north of 52◦N (figure 4.3A and B) after 278 days.

After 690 days these areas of high sensitivity are still present, and have grown in

magnitude (figure 4.16E and F). In the undamped 0.1◦ model the band of high

sensitivity at 50◦N is no longer visible after 690 days due to small scale structure

in the interior of the channel (figure 4.16E). In the damped 0.1◦ model the band

of sensitivity at 50◦N is still visible after 690 days (figure 4.16F).

Unlike for the bands of high sensitivity associated with convection the small

patches of sensitivity north of 52◦N have no clear relation to processes in the

forward model, and are unlikely to be the sensitivity of H to a non infinitessimal
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Figure 4.16: Sensitivity of H to SST∗ at T = 0 in the 690 day integration. A)
Meridionally averaged zonal variance of time averaged convection as a function of
integration time at 50m; black: undamped 0.1◦ model; red: damped 0.1◦ model;
green: 0.48◦ model. B) Percentage of timesteps convection occurs between the
top 2 model layers in the undamped 0.1◦ model, averaged over 690 days. C)
Percentage of timesteps convection occurs between the top 2 model layers in the
damped 0.1◦ model, averaged over 690 days. D) Meridionally averaged zonal
variance of the sensitivity of H to SST∗ normalised by the mean sensitivity as
a function of integration time; black: undamped 0.1◦ model; red: damped 0.1◦

model; green: 0.48◦ model. E) Sensitivity of H to SST∗ after 690 days in the
undamped 0.1◦ model. F) Sensitivity of H to SST∗ after 690 days in the damped
0.1◦ model.
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pertubation to SST∗. The sensitivity of H to SST∗ is strongly associated with

the presence of convection in the forward model. The channel and the forcing are

zonally symmetric so that we expect that

C
′2

=

〈(

1

T

∫ T

0
Cdt

)2〉

−
〈

1

T

∫ T

0
Cdt

〉2

→ 0

as T → ∞ (4.5)

where C, is the the percentage of timesteps where convection occurs between the

top two model layers, 〈 〉 denotes a zonal average, and T is the integration time. As

the integration time is increased C
′2

decreases at a similar rate in all three models

(figure 4.16A) despite the differing amounts of eddy kinetic energy. Similarly it

should be expected that the zonal variance of the sensitivity of H to SST∗ tends

to zero as the integration time increases in the adjoint model and after 278 days

the structure of the sensitivity of H to SST∗ is roughly zonally symmetric. The

sensitivity of H to SST∗ grows rapidly backwards in time (figure 3.7A), so that the

magnitude of (∂H/∂SST∗)′2 calculated by the adjoint model also grows rapidly

backwards in time. For comparison with C
′2

the sensitivity is normalised by the

zonal mean before the variance is calculated. This quantity is defined as

HSST∗ =

(

∂H/∂SST∗

〈∂H/∂SST∗〉

)′2

(4.6)

In the 0.48◦ model HSST∗ decreases backwards in time (figure 4.16D), while in the

damped 0.1◦ model it increases backwards in time between 690 and 450 days and

is roughly constant between 450 and 0 days. In the undamped 0.1◦ model HSST∗

increases backwards in time throughout the 690 days. A visual comparison of C

and ∂H/∂SST∗ also shows that the small areas of high sensitivity above 52◦N are

not associated with any small scale structure in the convection (figure 4.16B,C

and E,F). It seems likely that these areas of high sensitivity represent a loss of

information in the sensitivities calculated by the adjoint model at small spatial

scales.

The sensitivity of D to κv was very similar in all three models at 278 days, and
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Figure 4.17: Sensitivity of D to κv as calculated by the adjoint model at T = 0
in a 690 day integration. A: Sensitivity in the undamped 0.1◦ model at 593m. B:
Sensitivity in the damped 0.1◦ model at 774m C: Sensitivity in the 0.48◦ model
at 992m. Bottom row (D-F): zonally averaged sensitivity; D: the undamped 0.1◦

model; E: the damped 0.1◦ model; F: the 0.48◦ model. Note the difference in
scale between the panels.

was clearly related to dT/dz in the forward model. After 690 days the sensitivity

of D to κv in the damped 0.1◦ model and 0.48◦ model has a similar pattern to that

after 278 days (figure 4.17). However, after 690 days the sensitivity in the un-

damped 0.1◦ model is dominated by small scale structure (figure 4.17A,D). Again

it is likely that these areas of high sensitivity represent the loss of information on

small spatial scales.

The sensitivity of K to τx is again similar in the 0.48◦ model after 278 and 690

days (figures 4.18C and 4.14C). In the damped 0.1◦ model there is a faint band

of high sensitivity at the position of the secondary zonal jet at 52◦N after 278
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Figure 4.18: Sensitivity of K to τx as calculated by the adjoint model at T=0 in
a 690 day integration. A: undamped 0.1◦ model B: damped 0.1◦ C: 0.48◦ model.
Note difference in scales, between the panels.

days, but this is much more distinct after 690 days (figures 4.18B and 4.14B). In

the undamped 0.1◦ model the sensitivity of K to τx is dominated by small scale

spatial structures after 690 days, particularly north of 52◦N (figure 4.18A).

4.4 Discussion

For most quantities, after 278 days, the spatial structures in the sensitivity of H

to SST∗, κv and τx and K to κv and τx as calculated by the adjoint to the chaotic

undamped 0.1◦ model are similar to those in the less chaotic damped 0.1◦ model

and unchaotic 0.48◦ models, although there is more small scale structure in the

sensitivity in the undamped 0.1◦ model. There are clear physical explanations for

most of the structures in the sensitivities and on this timescale the adjoint model

is able to give useful information about the sensitivity of time averaged climate

quantities at a higher resolution than could easily be achieved using perturbed

forward model experiments.

After 690 days there is little structure remaining in the sensitivities calculated

by the adjoint model, in the undamped 0.1◦ model, that can be related to pro-

cesses in the forward model. This is true even for quantities such as the sensitivity

of H to SST∗ where the adjoint model was able to give the correct sensitivity to
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large scale perturbations in the forcing (chapter 3). The time over which useful

information remains in the adjoint solution depends on the spatial scale of the

information, with the adjoint model able to give the correct sensitivity to large

scale changes in forcing for longer, although there may be little spatial struc-

ture in the sensitivities calculated by the adjoint model that obviously relates to

processes in the forward model.

When small scale areas of high sensitivity, that do not relate to process in

the forward model, develop in part of the model domain they do not necessarily

dominate the solution in other regions, and useful information can still be gained

from running the adjoint model. A good example of this are the areas of high

sensitivity of H to SST∗ after 690 days in the damped 0.1◦ model, which do not

effect the band of high sensitivity associated with convection in the centre of the

channel at 50◦N.

The location of areas of high sensitivity depends on the circulation in the

forward model, so that the sensitivity fields after 278 days look different in the 3

different models. However, areas of high positive and negative sensitivity of the

heat content, kinetic energy and thermocline depth are associated with similar

features in the forward model circulation. Although it is possible that different

processes may dominate the sensitivity in the different resolution models at longer

times, this suggests that the sensitivity calculated by the adjoint to a non eddy

resolving ocean model run over long timescale may give an indication of what the

sensitivity will look like in an eddy resolving model over a longer timescale.

However, even on a short timescale the sensitivity of the available potential

energy is very different in the 0.48◦ and 0.1◦ models. In the 0.48◦ model the

sensitivity of the available potential energy is dominated by the sensitivity of the

static stability, while in the 0.1◦ models it is dominated by the sensitivity to the

meridional temperature gradient. As a result not only is the size of the sensi-

tivity different in the different models, but it also has a different sign in some

regions. Although the adjoint to the 0.48◦ model can be used to calculate sen-

sitivities over a longer timescale than the adjoint to the undamped 0.1◦ model,

a long integration of the adjoint to the 0.48◦ model could not be used to make
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inferences about the sensitivity of the available potential energy in the undamped

0.1◦ model. The circulation in the 0.1◦ models is very different than in the 0.48◦

model; in particular there is a greater meridional temperature gradient across

the front (section 2.3.4) and the thermocline is deeper (section 4.1.1). It is pos-

sible that the differences in the density structure cause the different sensitivities.

Köhl and Willebrand (2002) proposed using the adjoint to a non eddy resolv-

ing model linearised about the state of an eddy resolving model averaged onto

the coarser grid, for calculating sensitivities in an eddy resolving ocean model

over long timescales. Although this method would still result in a lower merid-

ional temperature gradient across the front, the circulation in the undamped 0.1◦

model averaged onto the 0.48◦ grid would be more similar to the circulation in

the undamped 0.1◦ model than the circulation in the 0.48◦ model. It is therefore

possible that this method could be used to calculate the correct sensitivity of

the available potential energy over long time scales in the undamped 0.1◦ model.

However, this needs to be tested in practice.

4.5 Summary

• Information remains in the spatial structure of the sensitivities calculated

by the adjoint model for many times longer than the eddy timescale. In

the undamped 0.1◦ model used here, information remains on a timescale of

9 months while the Eady growth rate in the centre of the jet is around 16

days.

• The adjoint model is able to give the correct sensitivity to large spatial scale

perturbations in the forcing on a longer timescale than for smaller spatial

scale perturbations. In the undamped 0.1◦ model used here, the adjoint

model still gives the correct sensitivity to large scale perturbations for some

quantities on a timescale of 2 years, although no information remains in the

spatial structure of the sensitivities calculated by the adjoint model on this

timescale.
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• Different processes may dominate the sensitivity at different resolutions.The

sensitivity of the available potential energy in the 0.48◦ model is dominated

by the sensitivity of the static stability, while the sensitivity of the available

potential energy in the 0.1◦ models is dominated by the sensitivity of the

meridional density gradient. Conclusions drawn from the sensitivity in a

non eddy resolving ocean model can not necessarily be applied to an eddy

resolving ocean model.
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Chapter 5

Conclusions and Outlook

In the 0.48◦ model the adjoint model is able to provide sensitivity information

at the grid resolution on a timescale of a least 690 days. This is expected as the

forward model is non chaotic. Chaos in the undamped 0.1◦ model means there

is a time limit beyond which the adjoint model can no longer provide useful in-

formation. The non linear timescale of the 0.1◦ model is estimated to be around

200 days. At a slightly longer timescale of 278 days the adjoint model provides

useful information in the spatial structure of the sensitivities for most quantities.

After 690 days the adjoint model is able to give the sensitivity of the heat content

to very large spatial scale perturbations to the sea surface temperature and the

vertical diffusivity, but it is unable to provide information at a smaller spatial

scale. Even at large spatial scales, after 690 days, the adjoint to the undamped

0.1◦ model is unable to give the correct sensitivity of the kinetic energy to any

quantities and of the heat content to the surface windstress, which suggests that

information remains for longer for thermodynamic quantities. Information re-

mains in the spatial structure of the sensitivities in the damped 0.1◦ model on a

timescale of 690 days. Although there are some signs that the sensitivities may

not contain useful information on the smallest spatial scales this result is rather

surprising as the non linear timescale in this model is estimated at around 280

days.

Three methods are used for assessing whether useful information remains in

the results calculated by an adjoint model; these methods are: finite difference
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gradient checks, forward model experiments where a larger perturbation is made

to the forcing, and an assessment of whether it is believed the results are phys-

ically significant. Finite difference gradient checks may be affected by the same

problems as the adjoint model and calculate the microscopic rather than the

macroscopic sensitivity in a chaotic system. Very good agreement between ad-

joint and finite difference gradients, such as for the 0.48◦ model here, would

indicate that the adjoint model results do contain useful information. However

agreement between the sign and order of magnitude of the adjoint and finite

difference gradients, as seen in the undamped 0.1◦ model here, does not neces-

sarily indicate that useful information remains in the sensitivities calculated by

the adjoint model.

Forward model experiments where a larger scale perturbation is made to the

forcing allow us to see if a time averaged climate quantity has predictability of the

second kind. However, they only show if there is useful information contained in

the adjoint model at the largest spatial scales. As information loss occurs soonest

at the smallest scales, these experiments probably provide an upper limit on when

an adjoint model can provide useful information.

An assessment of whether the results from the adjoint model are physically

significant is rather subjective. Sensitivities calculated by the adjoint to a non

eddy resolving model ocean model, where very good agreement between adjoint

and finite difference gradients suggests that that the sensitivities calculated by

the adjoint model are likely to contain useful information, allows us to identify

features in the forward model that are associated with high sensitivity, such as

the presence of convection for the sensitivity to SST∗. If these features are also

associated with areas of high sensitivity in an eddy resolving model, it is likely

that the sensitivity calculated by the adjoint model is also physically relevant in

the eddy resolving model. This approach needs to be applied with caution as the

processes governing the sensitivity of an output function are not necessarily the

same in models of different resolution. This is clearly seen in the sensitivity of

the available potential energy to SST∗ and κv in the 0.48◦ and 0.1◦ models. In

the 0.48◦ model the sensitivity of the available potential energy is dominated by
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the sensitivity of the static stability, while in the 0.1◦ model the sensitivity of

the available potential energy is dominated by the sensitivity of the meridional

density gradient.

A comparison of an eddy resolving and non eddy resolving model also fails to

provide any information on what we expect the structure in the sensitivities to be

at small spatial scales, as these are not resolved in the non eddy resolving model.

As the channel and the forcing are zonally symmetric, and the time averaged

state variables are also zonally symmetric it is expected that there will be no

preferred location in the zonal direction for a perturbation to the forcing. It is

thus expected that the sensitivities calculated by the adjoint model should be

zonally symmetric as the integration time increases. Sensitivities calculated by

the adjoint to the undamped 0.1◦ model become less zonally symmetric as the

integration time increases, and are dominated by small scale structure, which is

unlikely to be physically relevant. In the damped 0.1◦ model there are small areas

of high sensitivity near the northern boundary for some quantities, and these are

also thought not to be physically realistic.

Although explanations are given here for most of the structures in the sensi-

tivity fields after 278 days, little explanation is offered for the sensitivity to the

surface windstress. The sensitivity to the surface windstress is assumed to be

physically significant, as it has a number of features we expect, i.e. zonal symme-

try, and similar features between the different resolution models after 278 days.

However, the results are difficult to interpret. Making perturbations to the sur-

face windstress in the forward model that are shaped like the sensitivity patterns

in the adjoint model would help in interpreting the results.

As information is present for longer over larger spatial scales, a simple com-

parison of the TLM solution with the difference between 2 perturbed non linear

integrations as proposed by Kleist and Morgan (2005) is likely to give a con-

servative estimate of when the adjoint model can be used. Short spatial scales

dominate the TLM solution in a chaotic system (Tanguay et al., 1995), so that

the correlation between the TLM solution and the difference between 2 perturbed

non linear model integrations decreases rapidly, in both 0.1◦ models. The TLM
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model suggests that after 200 days the linearisation should no longer be valid in

the undamped 0.1◦ model, while even at 278 days considerable climatically rele-

vant information remains in the spatial structure of sensitivities calculated by the

adjoint method to most quantities. Similarly the TLM results imply a 250 day

timescale beyond which the linearisation fails in the damped 0.1◦ model when,

even at 690 days there is useful information remaining in the spatial structure of

sensitivities calculated by the adjoint method.

The useful information remaining in the spatial structures in the adjoint sen-

sitivities out to 278 days, suggests that the limit to length of the data assimilation

window caused by the presence of chaotic eddies in a 0.1◦ model at 45◦N may be

as long as 9 months. This is longer than the 0.2 years over which Lea et al. (2002)

found that the sensitivities calculated by an adjoint model gave a reasonable esti-

mate of the climate sensitivity, but far shorter than the 2 years over which Gebbie

(2004) was able to successfully assimilate data into an eddy resolving model of

the subtropical North Atlantic. It is still not clear why the adjoint method was

so successful in Gebbie (2004)’s case.

The model used here has strong restoring to SST∗ at the surface. This causes

significant damping at the surface and may reduce the eddy kinetic energy in

the channel and increase the timescale over which the adjoint model can provide

useful information. Hogan and Hurlburt (2000) found that a resolution of 1/32◦

was necessary to properly represent mesoscale variability in the ocean, which is a

much higher resolution than used in the present study. As smaller spatial scales

tend to have shorter timescales, an increase in the resolution is likely to reduce the

time over which useful information can be obtained by using an adjoint model.

The effect of the use of the CD coupling scheme on reducing the exponential

growth of the sensitivities calculated by the adjoint model in this study shows that

this timescale is sensitive to parameterisations and computational schemes used.

The predictability of a chaotic system varies along its trajectory in phase space

(Palmer, 2000), and it is possible that starting from a different initial condition

could change the timescale over which the adjoint model is able to give useful

information about the system.
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This study differs from previous work looking at the use of the adjoint method

with eddy resolving ocean general circulation models as it compares sensitivities

calculated using different resolution models, and used a range of output functions.

This has shown that useful information remains in the sensitivities calculated

by the adjoint model for longer for some quantities than for others, and that

sensitivities calculated by a non eddy resolving ocean model may be very different

to those in an eddy resolving model, even when the sensitivities in the eddy

resolving model still contain useful information. The work also provides a guide

of how to determine if sensitivities calculated by an adjoint model contain useful

information.

In the present study information remains in the sensitivities calculated by

the adjoint model for longer for quantities than involve thermodynamic variables

only. It is not clear if this is due to these being slower components of the system,

or if it is due to the strength of the forcing. The potential for the strength of the

forcing to affect the time over which useful information remains in the sensitivities

calculated by the adjoint model should be the subject of further study. This could

be done within the current framework by varying the strength of the restoring

timescale for SST∗, or the strength of the windstress, and could potentially give

an insight into how the strength of the forcing affects the predictability of the

system.

Climate sensitivity studies are usually performed over a much longer timescale

than the timescale over which useful information was shown to remain in the

sensitivity of the chaotic undamped eddy resolving model in this study. It is

therefore unlikely that climate sensitivity studies would ever be possible using

the adjoint to an eddy resolving GCM. This problem is likely to become more

apparent in the future as greater computing power means that climate models will

be run at higher resolution and will generally resolve chaotic eddies. However,

the current work suggests two approaches by which the adjoint method could be

used to gain information about the sensitivity of an eddy resolving OGCM at long

timescales. In most cases regions of high sensitivity in the eddy resolving and

non eddy ocean models coincide with similar features in the forward model. A
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multi grid approach could then be used where a non eddy resolving ocean model

and its adjoint are used to identify regions where the sensitivity was likely to be

high in an eddy resolving ocean model. This could be tested using perturbed

forward model experiments in both the eddy resolving and non eddy resolving

ocean models to see if the response to the perturbation was the same. The second

method is suggested by the greater timescale over which information remains in

damped eddy resolving model in this study. A parameterisation scheme that

reduces the growth of the sensitivities calculated by the adjoint model could be

introduced into either forward and adjoint models, or into the adjoint model only

in a similar method to Köhl and Willebrand (2003). This has potential benefits

over the coarse resolution adjoint model approach of Köhl and Willebrand (2003)

as horizontal density gradients would not be reduced by the averaging onto a

coarser grid. A comparison between these methods would be a useful additional

study.
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